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Preface 

One of the important direction of research in the theory of discrete probability distribution is to 

develop/obtain large class/family of probability distributions and investigate their various properties, 

problem of estimation, data fitting, etc. This thesis deals with the study of various distributional 

properties, estimation of parameters, and fitting of real life data to some new classes of discrete 

probability distributions. The thesis has been organised into six chapters as described below. 

In chapter one an introduction of the work is presented. Chapter two deals with various 

properties, estimation and data fitting problems of a class of weighted quasi binomial distributions. 

Chapter three describes two discrete probability models developed using urn models with different 

predetermined strategies. Some of their important properties are studied. Chapter four deals with a 

class of a-modified binomial and some related distributions. In chapter five various properties of class 

of weighted generalized Poisson distributions are presented. In the sixth chapter a class of generalized 

multivariate generalized Poisson distributions is proposed, some properties of new distributions are 

studied. Finally, some important results on the Abel's generalizations of the binomial identities and 

exponential sums related to our works are presented in'two appendices. 

Subrata Chakraborty 
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Chapter 1 

Introduction 

Discrete probability distributions arise whenever we are dealing with a problem of random nature 

involving counting. It is one of the most important basic field of study in the theory of statistics. 

Discrete probability distributions are applied in many areas of application. One of the most im

portant area of research in the theory of discrete probability distribution is to obtain general frame 

works or probabilistic models which can serve as a parent model for a large and varied collection 

of discrete probability distributions. Such classifications into broad classes are often useful in un

derstanding large number of known distributions and their inter relations and helps in unification 

of results, construction of models, derivation of general method of analysis. Quasi binomial dis

tributions, a-modified binomial distributions, generalized Poisson distributions, generalizations of 

Polya-Eggenberger distributions using urn models with predetermined strategies and multivariate 

Poisson distributions are some of the most important discrete probability distributions that have 

drawn attention of many research workers. 

1 



2 CHAPTER 1. INTRODUCTION 

1.1 Previous works 

1.1.1 Quasi binomial distributions 

Consul [l1J first introduced the notion of urn model with predetermined strategy with a two urn 

model and developed quasi binomial distribution (QBD) with probability function (pf) 

Pr(X = k) = (~)P(P + k</»k-l(1 - p - k</>t-k, k = O(I)n, -pin::; </> ::; (1 - p)ln (1.1.1) 

using sampling with replacement schemes. He gave justification and mentioned applications of these 

distributions in various fields. Consul and Mittal [20J defined QBD type II using four urn model with 

a predetermined strategy as 

Pr(X = k) = (n) p(1 - p - n</» (p + k</»k-l(1 - p - k</>t-k-\ k = O(I)n; -pin::; </> ::; (1 - p)ln 
k (1 - n</» 

(1.1.2) 

and indicated large number of possible applications. Berg and Mutafchiev [5J have shown applications 

of some QBD and modified QBDs in random mapping problems. Consul [15J studied properties of 

(1.1.1) with deduction of moments, inverse moments, maximum likelihood estimation and data fitting. 

Using Abel's generalization of binomial identities (Riordan [62]), Das [28J proposed a class of QBD 

with pf 

(
n) (p + k¢)k+S(1 - p - k</»n-k+t 

Pr(X = k) = , k = O(I)n 
k Bn(p,q;s,t;</» 

(1.1.3) 

where sand t are integers, p + q + n</> = 1 and 

Bn(P, q; s, t; </» = t (~) (p + k</»k+S(1 - p - k</>t-k+t 
k=O 

(1.1.4) 



1.1. PREVIOUS WORKS 3 

1.1.2 Generalization of Polya-Eggenberger distributions 

Urn models were used to define Polya-Eggenberger (PE) distribution (Eggenberger and Polya [30]) 

with pf 

(1.1.5) 

and Inverse Polya-Eggenberger (IPE) (Johnson and Kotz [48], pp.229-332) distributions having the 

pf 

(
n + k - 1) ark,s] b[n,s] 

Pr(X = k) = k (a + b)[n+k,s] , k = 0,1, ... (1.1.6) 

Later, many modifications and generalizations of these two models were suggested by different au-

thors (Johnson and Kotz [49]). Consul [11], Consul and Mittal [20J discussed urn models with pre-

determined strategies. Using different urn models with different pre-determined strategies Janardan 

([43], [44J and [46]) obtained quasi Polya distributions (QED) as 

(1.1. 7) 

where a[k,sj = a(a + s) ... (a + (k - 1)8), (~) = a[~;sJ 

quasi inverse Polya distributions (QIPD) with pf 

(
n + k - 1) a (a + kz)[k,sj(b + nz)[n,s] 

Pr{X = k) = { [ k]' k = 0,1, ... k a+kz a+b+(n+k)z}n+ ,s 
(l.l.8) 

generalized Markov-Polya distributions (GMPD) having the pf 

(a+kz) (b+(n-k)z) 
Pr(X = k) = a b a + b + nz k s n-k s, k = 0(1)n 

a+kzb+(n-k)z a+b (a+b:nz)s 
(1.1.9) 

and generalized inverse Markov-Polya distributions (GIMPD) as 

Pr(X = k) 
= (n + k - 1) _a __ b_a + b + {n + k)z (a + kz)[k,sj(b + nz)[n,s] 

k a+kzb+nz a+b {a+b+(n+k)z}[n+k,s]' 

k = 0,1, ... (l.l.10) 
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Sen and Mishra [63] used combinatorial method to obtain generalized Polya-Eggenberger model 

(GPE) unifying PE and IPE with the pf 

Pr(X = k) = 
n (n + (/-L + 1)) a[k,sjb[n+/Lk,sj 

n + (/-L + l)k k (a + b)[n+(/L+l)k,sj' 
(1.1.11) 

k = 0,1, ... ,min(n, a), when s = -1. 

1.1.3 a-modified binomial and Poisson distributions 

Berg and Jaworski [4J introduced a-modified binomial distribution with pf 

Pr(X = k) = (n) (p (a¢):r-
k

, k = O(l)n, p> O,p + ¢ > 0 
k l+a n -

(1.1.12) 

They derived E[(n - X)(v)] and also a weighted form of the pf (1.1.12) as 

Pr(X = k) = (~) {q + (n - k)¢}(P + a¢)kqn-k-l, k = O(l)n, p + ¢ ? 0 (1.1.13) 

and ¢::; q/n 

As a limiting form of the pf (1.1.12) and the pf (1.1.13), they obtained one and two parameter 

a-modified Poisson distributions with pf 

)...k 
Pr(X = k) = kfDk(1 - )...) exp()...), k = 0,1, ... ; 0 < )... < 1 (1.1.14) 

and 

()... + a'ljJ)k 
Pr(X = k) = k! (1 - 'ljJ) exp( -)...), k = 0,1, ... ; )... > 0, )... + 'ljJ ? 0 (1.1.15) 

and 1 'ljJ 1< 1 

respectively, where 
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They discussed how these distributions arise in connection with random mapping model (Ja-

worski [47]) and its inference. 

Berg and Mutafchiev [5] obtained the probability distribution 

(1 - A)2 k 
Pr(X = k) = k! {All + A12 + A(a + k)} exp{ -(All + A12 + Ak)}, k = 0,1, ... (1.1.16) 

as a sum of two weighted Lagrangian Poisson distribution (Consul and Jain [18], Berg [3]). Berg and 

Nowicki [6] introduced two classes of distributions with pf 

Ak 
Pr(X = k) = kf[a(m) + n]k(1 - A)m exp( -nA), k = 0,1, ... (1.1.17) 

m, n = 0,1, ... ; not both equal to zero; ° < A < 1 

Pr(X = k) = 
(A exp( _A))k k m 
-'----=-...:...,--'-'--[a(m - 1) + n + k] (1 - A) exp( -nA), k = 0,1, . .. (1.1.18) 

k. 

m, n = 0, 1, ... ; not both equal to zero; ° < A < 1 

generated respectively by a power series and modified power series expansion and studied various 

properties, where 

ak(m) = (k + m - 1) k! 
m-l 

1.1.4 Generalized Poisson Distributions 

Discrete probability distributions have been used as a modelling tool in various branches of statistical 

sciences. Poisson distribution is among the most widely used discrete probability distributions and 

has been receiving very high degree of attention from researchers in discrete distributions. A large 

volume of works are done to obtained generalizations, modifications of Poisson distributions by 

different workers. 

Consul and Jain ([18], [19]) developed generalized Poisson distribution (GPD) with two pa-
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rameters having pf 

{ 
-b a(a + kz)k-Ie-(a+kz) 

Pr(X = k) = 
o 

k = 0,1, ... 
(1.1.19) 

for k > m when z < 0 

and zero otherwise, where a > 0,max(-1,a/4) ~ z < 1 and m the largest positive integer for which 

a + zm > 0 when z < O. 

Since then, a lot of works have been done on this model (Consul [14]). 

Nandi et al. [55] proposed a class of discrete distributions called generalized Poisson distribu-

tions with pf 

1 (a + kz)k+se-kz 
Pr(X = k) = k' K( .. ) , k = 0,1, ... ; a> 0, 1 z 1< 1 

. a, s, z 
(1.1.20) 

by defining a class of exponential sums as 

1 
K(a; s; z) = L ,(a + kz)k+se-kz 

k~O k. 

subject to the simultaneous realization of the constraints a + kz > 0, for all k and 

(
a) ( z )k+S 

0< z+ k+1 1+ a+kz e-
z

<l 

for all sufficiently large k where s is an integer. 

1.1.5 Multivariate Poisson distributions 

The multinomial distribution (Johnson et al. [50], p.31) with parameters (n; ,PI, ... ,Pk) is defined 

by probability function 

(1.1.21) 

k k 

where n t ~ 0, l: nt = n, l: Pt = 1. If PI,P2,··· ,Pk-l -+ 0 hence Pk -+ 1 as n -+ 00 such that 
t=l t=l 

npt = At; 2 = 1,2, ... , k - 1 then (1.1.21) tends to 

(1.1.22) 
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which is known as the multiple Poisson distribution. (Patil and Bildikar [58), Johnson et al. [50)). 

The pf (1.1.22) is simply joint distribution of (k - 1) independent Poisson (At) variates. Consul and 

Mittal [21] defined k- variate quasi Multinomial distribution with parameters (n;Pl,P2, ... ,Pk; ¢) 

with pf 

(1.1.23) 

where L~=l nt = n,O < Pt < I, L~=l Pt = I, <p 2: O. As n -T 00 and P1,P2,· .. ,Pk-l -T 0 hence 

Pk -T 1 such that npt = At; ~ = 1,2, ... ,k - 1 and n¢ = /3; 0 < At < 00 then (1.1.23) tends to multiple 

generalized (Lagrangian) Poisson distribution with parameters 

At . /3 
1 + /3' ~ = 1, ... , (k - 1) and 1 + /3 

with probability function (Consul and Mittal [21]) 

(1.1.24) 

The pf (1.1.24) is the joint distribution of (k - 1) independent generalized Poisson (Consul and Jain 

[18]) with parameters 1~.B; ~ = 1, ... , (k - 1) and .B 
1+.8 . Das [28] obtained a class of quasi 

multinomial distributions with probability function 

p n N - - n. II Pt nt'f/ ( 
k) I k ( + A.)n, +s, 

r t-nt - . . I I I 
t=l Bn (P1, ... ,Pk> 81,··· ,8k> ¢) t=l n1·n2···· nk· 

(1.1.25) 

where 

k 
wherein the summation is over all non-negative integers nt, ~ = 1(l)k such that L nt = n. 

t=l 

The pf (1.1.23) is a particular case of the pf (1.1.25) when St = -1; ~ = l(l)k. As a limiting 

distribution of the pf (1.1.25), a class of multiple generalized Poisson is defined as 

(1.1.26) 
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Clearly (1.1.24) is a member of (1.1.26). Like (1.1.24), (1.1.26) too is a joint distribution of (k - 1) 

independent variates belonging to a class of weighted generalized Poisson distribution. Among non-

trivial class of Poisson distributions, Holgate [40] [See Johnson et al. [50], p.124] defined a class of 

bivariate Poisson distributions as a joint distribution of the variables Xl = Vo + VI and X2 = Vo + V2 

where Vo, VI and V2 are mutually independent Poisson variates with mean AO, Al and A2 respectively. 

The probability function is given by 

(1.1.27) 

The pf (1.1.27) can be derived as a limiting form of (Hamdan and Al-Bayyati [38]) 

(1.1.28) 

as -t 00, Pll, POI, P10 -t 0 such that np1 -t AI, np2 -t A2, npll -t AO where Pll + PlO + POI + POO = 1 

and Pll + POI = P2, POO + Pll = PI (Johnson et al. [50], p.125). The pf (1.1.27) can be generalized by 

considering the distributions of Vo, VI and V2 as generalized Poisson (Consul [18]) with parameters 

. (AO, ¢O), (AI, </>1), (A2' ¢2) respectively (Johnson et al. [50], p.133). The probability function is then 

given by 

Pr(kl,k2) = AOAIA2e-(AO+Al+A2+¢lk1+¢2k2) 

minI:,k2) (AO + ¢Oi)i-I(AI + (kl - i)¢dkl-~-I(A2 + (k2 - i)¢2)k2-~-1 
t=O i!(k1 - i)!(k2 - i)! 

(1.1.29) 

for ¢o = ¢I = ¢2 = ¢ (1.1.29) reduces to 

Pr(kl,k2) = AOAIA2e-(AO+Al+A2+¢k1+¢k2) 

mm(kl,k2) (AO + ¢i)~-I(AI + (k1 - i)¢)kl-~-I(A2 + (k2 _ i)¢)k2-i-1 

~ i!(k1 - i)!(k2.- ~)! (1.1.30) 

Das [28] derived a class of bivariate generalized Poisson distribution by defining a class of bivariate 

exponential sums, (1.1.29) is a member of the class. 
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1.2 Objective of the thesis 

1. Study the class of QBDs (1.1.3) for various distributional properties, inter-relationships, prob

lem of parameter estimations, data fitting in general and properties of some of the members of 

this class in particular. 

2. Develop two unified probability models using urn models with pre-determined strategies to 

unify QED, QIPD and GMPD, GIMPD and study some distributional aspects of these models. 

3. Obtain a class of weighted a-modified binomial distribution and study its various distributional 

properties, generalizations and compounding. 

4. Study various aspects of the class of GPDs (1.1.20) in general and some of the new distribution 

belonging to this class in particular. 

5. Define a class of generalized multivariate GPD, study its various properties in general and 

bivariate case in particular. 

1.3 Organisation of the thesis 

An introduction of the work is given in the first chapter. 

In chapter two an attempt has been made to develop some new discrete distributions of 

the QBD type using urn models with pre-determined strategies. It has been shown that these 

distributions are infact members of a class of weighted QBD (WQBD)s, that can also be derived by 

Abel's generalization of the binomial identities (Riordan [62]). Then the following properties of this 

WQBD' class in general and some new QBDs in particular have been studied. 

1. Derivation of new QBDs using urn models with pre-determined strategies. 

2. A class of QBD as a weighted (mixed factorial moment) QBD. 
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3. Various moment properties of the WQBD class in general and some members in particular. 

4. Negative (Inverse) moments for the WQBD class in general and new QBDs in particular. 

5. Bound for the mode of the WQBD class. 

6. Estimation of the parameters of different QBDs by the method of 

• Zero one class frequencies. 

(). Zero class frequency and mean. 

• Moments. 

• Maximum likelihood. 

7. Fitting of QBDs to data from various field of applications and comparative performance study 

by goodness of fit. 

8. Zero-truncated WQBDs their first two factorial moments and inverse moments. 

9. A class of weighted generalized Poisson distribution as the Limiting distributions of the class 

ofWQBDs. 

In the third chapter, first an attempt has been made to develop a unified probability model 

based on a three urn setup with a predetermined strategy which will generate both QED and QIPD 

and hence all their particular cases. Some recurrence relations among the moments and probabilities 

are established. A few limiting distributions are mentioned. Then a generalized probability model 

(GPM) based on a five urn setup with a predetermined strategy has been discussed. This model 

generates both GMPD and GIMPD and hence all their particular cases and many more important 

discrete distributions. Some recurrence relations among moments and probabilities are obtained. 

Formulae for first and second moments of GMPD are obtained using different approaches. A few 
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limiting distributions of the models are cited. The steps involved in the maximum likelihood estima

tion of the parameters of QED and GMPD by using numerical methods have also been discussed. 

The fourth chapter begins with the study of the general form of (1.1.12). Some useful identities 

are derived and a class of weighted a-modified binomial(wamb) distribution is proposed. Both 

(1.1.12) and (1.1.13) are seen as particular cases of the proposed class. Some important recurrence 

relations among and between the different probability functions are established and the pgf of the 

class is derived. The factorial moments of the wamb class is deduced in general and first few moments 

for some of the distributions belonging to class of wamb distributions are obtained. A few useful 

recurrence relations among moments are also obtained. Limiting distributions under different set of 

conditions are derived. It is has been observed that both (1.1.14) and (1.1.15) occur as particular 

case of these limiting distributions. Next, some generalized and compound (Johnson and Kotz 

[48], Johnson et al. [51]) a-modified binomial distributions have been discussed. Then, some of 

the occurrences of the various distributions studied above in different fields of applications such as 

matching problem, extended matching problems, rumor problem, random mapping (when number of 

points is fixed as well as stochastic) are mentioned. For each of these the formulas for the first two 

moments of the variable of interest are provided. 

In chapter five it has been first shown how the class of GPD (1.1.20) can be obtained as a 

class of weighted distribution of the generalized Poisson distribution (Consul and Jain [18]) and then 

the various properties of the class of weighted GPD (WGPD) in general and two new distributions, 

GPD II (obtained by taking s = -2 in (1.1.20)) and GPD III (derived by putting s = 0 in (1.1.20)) 

in particular are studied. Some new distributions of the class and their basic properties like pgf, 

mean and variance are mentioned. The following aspects of class of WGPD have been investigated. 

1. Some results on moments and inverse moments. 

2. Incomplete moments, mean deviation about mean. 
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3. Probability generating function (pgf). 

4. Relationship between the derivative of pgf and first four moments. 

5. Distributions of the sum. 

6. Distributions of the difference. 

7. Distribution of the sum of left truncated variates. 

8. Some new distributions and their properties. 

9. Characterizations of the class of distributions. 

10. Limiting distributions. 

In addition we have also studied the following aspects of GPD II and GPD III 

1. First four factorial, central moments, cumulants, i31, i32. 

2. Estimation of parameters by the method of 

• Maximum likelihood. 

• Moments. 

• zero class frequency and mean. 

3. A relation between moments of GPD I and GPD III 

4. Fitting of data sets taken from various areas of application and test of goodness of the fits. 

5. Models leading to GPD III 

In the last chapter a class of generalized multivariate generalized Poisson distribution has been 

proposed by defining a class of multivariate exponential sums. Various forms of GMGPD are derived 
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by choosing different values for parameters. Various distributional properties viz. characterization, 

marginal, conditional distributions, regression function, moment vectors, dispersion matrices, formula 

for mixed factorial moments and estimation in bivariate cases of some of these distributions are 

studied. 

Finally, two appendices are provided to list the various formulae and results related to the 

present work. 

r; ---
,CENTRAL LIBRARY, T. U. 

! ACC. NO ........ ~ .. ±:.~ 



Chapter 2 

A class of weighted Quasi Binomial 

Distributions 

2 .1 Introduction 

In this chapter, a class of weighted quasi binomial distributions, the moments, inverse moments, re

currence relations among moments, bounds for mode, truncated distributions, problem of estimation 

and fitting of data from real life situations using different methods have been studied. 

2.2 Urn models with predetermined strategies 

2.2.1 A two urn model 

Let there be two urns marked I and II, urn I containing a white and urn II a white b black balls. Let 

nand z be two known positive integers, for given nand z, a strategy is determined by choosing an 

integer k such that 0 :s k :s n before making two draws from urn I and n draws from urn II under 

the following rules: 

(i) kz black balls will be added to urn I and kz white, (n - k)z black to urn II, 

14 
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(ii) Two balls are drawn from urn I with replacement, if both the balls are white, n draws are made 

from urn II with replacement, otherwise no draws are made. 

A success is achieved, if exactly k out of n draws are white balls. 

Clearly, therefore the probability of success is equal to 

Pr(X=k)=(_a )2(n) ( a+kz )k(b+(n_k)Z)n-k 
a + kz k a + b + nz a + b + nz 

(2.2.1) 

With 

a b z 
p= q= and ¢=----

a + b + nz ' a + b + nz a + b + nz 

Pr(X = k) = (~)p2(p + k¢)k-2(q + (n _ k)¢)n-k (2.2.2) 

2.2.2 An model with three urns 

Let there be three urns marked I, II and III. Urn I containing a white, urn II b black and urn III a 

white, b black balls respectively. For given nand z, a strategy 0 ~ k ~ n is chosen before making 

two draws from urn I, one from urn II and n from urn III under the following conditions: 

(i) kz black to urn I, (n - k)z white to urn II and kz white, (n - k}z black balls to urn III will be 

added, 

(ii) Two balls are drawn with replacement from urn I, if both white, then one is drawn from urn II if 

black, n draws with replacement are made from urn III, otherwise the game is stopped as a ~ailure. 

A success is achieved, if out of n draws from urn II exactly k are white. 

Then the probability of success is given by 

(2.2.3) 

2.2.3 Another three urn model 

Here the same setup as that in the last model has been considered only the drawing pattern is 

changed as follows. 
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Two balls are drawn from urn I if both white, then two draws are made from urn II, if both 

black n draws with replacement are made from urn III, a success is defined in the same manner as 

earlier. Hence, here 

(2.2.4) 

None of these models are proper probability distribution. But using Abel's generalisation of the 

binomial identities (Riordan [62]), it is possible to find norming constants c in such a way that 

l:kC Pr(X = k) = 1 

All these and many more distributions are infact members of a class of quasi binomial distributions 

(Das [28]) defined using Abel's formula as 

Pk = (
n) (p + k¢)k+S(q + (n _ k)¢)n-kH 

k Bn(P, q; s, t; ¢) 
(2.2.5) 

Bn (p, q; s, t; ¢) = t, (~) (p + k¢ )k+' (q + (n - k)¢ )"-k+t, (Riordan [62]) (2.2.6) 

where p and q being the non-negative fractions, p + q + n¢ = 1; -~ < ¢ < (l~P) and s, t integers. 

Alternatively, (2.2.5) can also be written as 

Pk = (
n) (P + k¢)k+S(1 - p - k¢)n-k+t 

k Bn(P,1-p-n¢;s,t;¢) 

Some special cases of (2.2.5) : For 

i) s = -1, t = 0 , QBD type I (Consul [11]). 

ii) s = -1, t = -1, QBD type II (Consul and Mittal [20]). 

iii) s = -2, t = 0, QBD type III (Das [28]). 

iv) s = -2, t = -1, QBD type IV (Das [28]). 

v) s = 0, t = 0, QBD type VII (Das [28]), etc. 

(2.2.7) 

In fact, the above class can also be derived as a class of weighted QBD I with some reparametri-

sation as stated below. Here, it should be noted that the weighted probability mass function(pmf) 
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Q(x) corresponding to the pmf p(x) of the random variable X with weight function w(x) is given by 

Q(x) = w(x)p(x) 
E w(x)p(x) 
x 

In case w(x) = x, the distribution is said to be size biased distribution (See Johnson et al. [51], 

p.145). 

Theorem 2.2.1 If X '" QBD I (Consul (11]) with n,p, ¢, then the weighted distribution of X with 

weight w(x) = x(s+1)(n - x)(t) is given by 

Pk (nk~~~~l) (P + (s + 1)¢ + (k _ s _ 1)¢)k-s-l+s 
Bn - s- t - 1(p + (s + 1)¢, 1 - p - (n - t)¢; s, t; ¢) 

(1 - p - (s + 1)¢ - (k - s - 1)¢t-t-s-k+sH, k = O(I)n (2.2.8) 

Hence the distribution of Y = X - s - 1 is given by 

(m) (P' + k¢)k+s (I _ p' _ k¢)m-k+t 
Pr(Y = k) = k k = O{I)m 

Bm(p',1 - p' - m¢; s, t; ¢) , 
(2.2.9) 

where m = n - s - t - 1, p' = p + (s + 1)¢ and -~ < ¢ < (I:'), which is the class of QBD 

given in (2.2.7). Thus, all the distributions belonging to the (2.2.7) can be derived as the weighted 

distribution of QBD I by choosing appropriate values for the integers sand t in the weight function 

w{x). Denoting the class (2.2.7) by WQBD{n;p, ¢; s, t), it can be seen that the form of the weighted 

QBD I (2.2.8) is 

1 + s + WQBD(n - s - t - l;p + (s + 1)¢, ¢; s, t). 

In particular, for 

1. s = 0, t = ° we get when ¢ = ° the size biased for of binomial distribution (Johnson et al. [51], 

p.146) as 

1 + Binomial(n - l;p) 

II. s = 0, t = ° the size biased for of QBD I become 

1 + WQBD{n - l;p + (s + 1)¢, ¢; 0, 0) 
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2.3 Moments 

In this section, the Abel's generalisations of binomial identities (see appendix A) and umbrals (Rior-

dan (62]) have been exploited for the derivation of the formuiae of moments of the class of weighted 

quasi binomial distributions in general and various quasi binomial distributions in particular in com-

pact form. 

Theorem 2.3.1 The r-th order descending Jactorial moments oj the class oj WQBD is given by 

(Das [28]) 

, (. . t.,.!,) _ n(r)Bn_r(p+r¢,q;s+r,t;¢) 
J.t(r) n,p,q,s, ,'1-' - B (p . t.,.!,) , 

n ,q, S, , 'I-' 
(2.3.1) 

where n(r) = n(n -1) ... (n - r + 1) and J.t(r) (n; p, q; s, ti ¢) denotes the r-th order descending factorial 

moments. 

Theorem 2.3.2 The r-th order moments about origin oj the class of WQBD is given by 

,( .. t."!')-~S( .) (j)Bn-j(p+j¢,qiS+j,t;¢) 
f.Lr n, p, q, s, , 'I-' - L... r,] n B (p . t. ,.!,) , 

j==O n , q, s, ,'I-' 
(2.3.2) 

where S(r, j) are the Stirling numbers oj second kind (See Riordan [61], Johnson et al. [51]) defined 

as 

S(i, j) 
6,.j Oi 

for i ? j = ., 
J. 

= 0 Jor i < j. 

= 1 jor j = 1 or i = j (2.3.3) 

also S(i + l,j) = jS(i,j) + S(i,j - 1) 

Proo]. The r-th order moments of about origin is 

r 

J.t~(n;p,qis,ti¢) = E(XT] = LS(r,j)J.t(j)(nip,q;s,ti¢) 
j==O 

~ S( .) (J') Bn-j(p + j¢, qi s + j, ti ¢) 
= L... r,] n (p . 

j==O Bn ,qi s, ti ¢) 
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Theorem 2.3.3 The r-th order moments about mean of the class of WQBD is given by 

Bn-v(P + I/</J, q; s + 1/, t; </J). (2.3.4) 

Proof. The r-th order moments about mean is 

J.Lr(n;Pl,P2; s, t; </J) = E[X - J.L~r 

r (-lr-J 

= (J.L~ r ~ (;) (J.L~ )J J.L~ 

J.L~r t t (r) (-lr-J S(j, I/)n(v) 
Bn(p,q;s,t;</J) j=Ov=O J J.L~J 

= 

Bn-v(P + I/¢, q; s + 1/, t; ¢). 

The relations (2.3.1), (2.3.2) and (2.3.4) are the general formulae of the moments for the 

class of quasi binomial distributions. Using different combinations of integer values of r, sand t, 

the different moments of the weighted quasi binomial distributions may be obtained. The above 

results are used to find moments of some of the QBDs. It may be noted that in all the results above, 

P + q + n</J = 1 that is q = 1 - P - n¢. 

2.3.1 First four central moments of some of the WQBDs 

2.3.1.1 Moments of the QBD I 

n-l 
np L(n -1)(v)</Jv (2.3.5) 

v=O 
n-2 v n-l 

J.L2 = n(2)p L L(n - 2)(v)</Jv(p + 2</J + 1</J) + np L(n - 1)(v)</Jv 
v=O~=O v=o 

n2p2 {I: {(n -1)(v)</JV}2 + I: (n - 1)(t)(n - j)(j) </Jt+J } 
v=o t#J=O 

(2.3.6) 

It can be verified that this result is equal to that of Consul [15]. 

(2 13 3 12 ') J.L3 = J.Ll - J.Ll + J.Ll 
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n-2 v 
+ 3p(1 - J.L~) L L n(v+2)¢(v)(p + 2¢ + ,¢) 

n-3 v 

+ p L L n(v+3)¢(V+l),(1/ -, + 1)(P + 3¢ + ,¢) 

n-3 v "( 

+ p L L L n(v+3)¢v(p + 3¢ + J.L¢)(p + 3¢ + b - J.L)¢). 
v=o ,,(=0 j.L=0 

J.L4 = p[p-lJ.L~4+n(1+a¢t-l{-4J.L~3+6J.L~2_4J.L~+1} 

+ n(3)[(1 + a¢ + (3'(P + 3¢; 2)¢)n-3 + (1 + a(2)¢ + ,'(p + 2¢)¢t-3){ -4J.L~ + 6} 

+ n(4)[(1 + a¢ + ¢(3'(P + 4¢; 3)t + 3(1 -fJ ¢a(2) + ¢(3'(P + 4¢) + ¢I'(p + 4¢))n 

(2.3.7) 

+ (1 + ¢a(2) + ¢(3'(O) + ¢I'(p + 4¢))n + (1 + ¢a(3) + ¢'lj;'(p + 4¢))n] ] (2.3.8) 

2.3.1.2 Moments of the QBD II 

, np 
(2.3.9) J.Ll = 1-n¢ 

J.L2 = np ['f (n - 1)("+1)¢"(p + 2¢ + v¢) + 1- n(¢ + p) 1 ,(2.3.10) 
1 - n¢ 1- n¢ v=o 

J.L3 = (2J.L~ 3 _ 3J.L~ 2 + 1) 

+ II' n¢ [3n(2)p(1 - ,,;) ~ (n - 2)" ¢(v)(p + 2¢ + -y¢) 

n-3 v 
+ n(3){L 2)n - 3)(v)¢(v)(p + 3¢ + ,¢)(p + 3¢ + (1/ -,)¢) 

v=o"(==o 

+ ?; ~ (n - 3)(") ¢V+1-y(p + 3¢ + -y¢)} ]. (2.3.11) 

J.L4 = ,4 P [( ,3 6,2 4' 1) J.Ll + 1 _ n¢ n -4J.Ll + J.Ll - J.Ll + 

+ n¢Bn-l (P + 4¢, q + ¢; 3,0; ¢)} J (2.3.12) 

Further expansion has been avoided as the expression becomes too long. 



2.3. MOMENTS 

2.3.1.3 Moments of the QBD III 

, 
J.Ll = p+ ¢ - np¢ 

J.L2 = np2(p + ¢) [~(n - 1)(1I+1)¢1I + 1 - np 1 
p + ¢ - np¢ 11=0 p + ¢ - np¢ 

n-2 

J.L3 = (2J.L~ 3 - 3J.L~ 2 + 1) + 3(1 - J.L~) L n ll+2¢(II) 
11=0 

n-3 II 
+ L L n(II+3)¢(II)(p + 3¢ + ,¢) 

11=0"(=0 

( 3 ,4+ 6 ,3 4 ,2+ ')+ p2(p+¢) [(2)(6,2 12' +7) J.L4 = - J.Ll J.Ll - J.Ll J.Ll + A. A. n J.Ll - J.Ll 
P 'f' - np'f' 

n-2 n-3 
'L(n - 2)(1I)¢1I + n(3)(6 - 4J.L~) L(n - 3)(11) ¢II (p + 3¢ + ,¢) 
11=0 

+ n(4) {:~;t,t,(n - 4)(4)</>"(p + 4</> + ~</>)(p + 4</> + b - I')</» 

+ f, t, (n - 4)(") </>" 'Y </> (p +4</> + 'Y</» } 1 

2.3.1.4 Moments of the QBD IV 

21 

(2.3.13) 

(2.3.14) 

(2.3.15) 

(2.3.16) 

np2(1 - (n - 1)¢) (2.3.17) 
(p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 

J.L2 = np2(1 - (n - 1)¢) ( np2(1 - (n - 1)¢) ) 
(p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 1 - (p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 

n(2)p2(p + ¢) 

+ (p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 
(2.3.18) 

= (2,3 ,2 1) p2(p+¢) {3(') (2) 
J.L3 J.Ll - 3J.Ll + + (p + ¢)(1 _ n¢) _ np¢(1 _ (n _ 1)¢) - 1 - J.Ll n 

n-3 

+ n(3) L(n - 3t¢lI(p + 3¢ + v¢)} (2.3.19) 
11=0 

( 3 ' 4 6' 3 4' 2 1 ) p2 (p + ¢) 
J.L4 = - J.Ll + J.Ll - J.Ll + + (p+¢)(I-n¢)-np¢(I-(n-l)¢) 

{n(2)(6J.L~2 - 12J.L~ + 7) + n(3)(6 - 4J.L~) ~(n - 3)(11) ¢II (p + 3¢ + v¢) 

+ n(4) {f, (n - 4)(") </>" (p + 4</> + v</» + E t, (n - 4)(") </>"+I'Y(P + 4</> + 'Y</» }} (2.3.20) 
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2.3.1.5 Moments of the QBD VII 

1'; ~ n (t, n(V)q,") -1 [foi;, (n - 1)(v)4>"(p + 4> + 'l'4»] (2.3.21) 

(2) {n-2 v "( 
P,2 = (p,~ - p'~ 2) + L~=~ n(IJ)¢1J ~J;:; (n - 2)(v)¢v(p + 2¢ + p,¢)(P + 2¢ + (J - p,)¢) 

+ :E i;,(n - 2)(")4>"(v - 1 + Ih4>(P + 24> + 14» } (2.3.22) 

Expressions for P,3 and p,4 for this distribution become too messy to present here. 

Remark: Formulas for Oi, (3' (.), ,'(.), 'lj/ (.) and Bn (.) used in expressions above are provided in ap-

pendix A. 

2.3.2 Recurrence relation of moments 

In the following, two recurrence relations for the moments of (2.2.5) have been stated. 

1. p,~(n;p,q;s,t;¢) = nBn- 1(p + ¢,q; s + 1, t; ¢) ~ (r -1) 
Bn(P, q; s, t; ¢) }=o J 

p,; (n - 1 i P + ¢, qi s + 1, ti ¢) (2.3.23) 

Repeated application of (2.3.23) gives 

2. p,~(n;p,q;s,t;¢) = n(2) Bn-2(P + 2¢, q; s + 2, t; ¢) ~ I: (r -:- 1) (j - 1) 
Bn(p,q;s,t;¢) ]==ov=o J 1/ 

p,~(n - 2;p + 2¢,q;s + 2,t;¢). (2.3.24) 

2.4 Inverse moments 

The importance of inverse or negative moments are well known in the estimation of the parameters 

of a model and also for testing the efficiency of various estimates. Besides they are equally useful 

in life testing and in survey sampling, where ratio estimates are being employed. Consul [15J gave a 

detailed account of negative moments of QBD 1. In this section similar properties have been studied 

for the class of WQBD by deriving general formulas and listing some particular cases. 
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Theorem 2.4.1 If X ",class of WQBD (2.2.7), then 

E[ xCr)(n_X)Cu) 1 =nCr+u)Bn-r-u(P+rcp,l-p-ncp+uCPis+r-v,t+u-WiCP) 
(p + Xcp)v(1- p - Xcp)w Bn(P,l - p - ncpi s, ti cp) 

(2.4.1) 

Some important results on negative moments using the above general formula are listed below. 

2.4.1 QBD I 

E(P + Xcp)-l 
1 np 

= ----
p p+cp 

(2.4.2) 

EX(p+ Xcp)-l 
np 

= p+¢ 
(2.4.3) 

n-3 
EX(2)(p + Xcp)-l = p L ¢,JnC]+2) (2.4.4) 

J=O 

E(p + X¢)-2 = p-2 _ np-1¢(p + ¢)-1 _ n¢(p + ¢)-2 

(2.4.5) 

EX(p + Xcp)-2 = np(p + cp)-2 _ n(2)p¢(p + cp)-l (p + 2cp)-1 (2.4.6) 

EX(2)(p + Xcp)-2 
n(2 )p 

= p+2cp 
(2.4.7) 

EX2(p + X ¢)-2 = np(p + ¢)-2 + n(2)p2(p + ¢)-1(p + 2¢)-1 (2.4.8) 

n-3 
EX(3)(p + Xcp)-2 = p L ¢,JnCJ +3) (2.4.9) 

J>O 
n-3 

EX2(X -1)(P + Xcp)-2 = P L f'n eJ +3) + 2pn(2)(p + 2¢)-1 (2.4.10) 
J==O 

E(P + X¢)-3 = p-3 _ n¢(p + cp)-1[p-2 + p-1(p + ¢)-l + (p + ¢)-2] 

+ n(2)cp2(p + cp)-l(p + 2cp)-1[p-l + (p + 2¢)-2 + (p + cp)-l 

(p + 2¢)-1] + n(3)cp3(p + ¢)-l(p + 2¢)-1(p + 3¢)-1 (2.4.11) 

(2.4.13) 
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EX(3)(p + X¢)-3 
n(3)p 

(2.4.14) = 
p+3¢ 

E(l - p - X¢)-l 
1-n¢ 

(2.4.15) -
1- p - n¢ 

EX(l - p - X¢)-l 
np 

(2.4.16) = 1- P - n¢ 

E(l - p - X¢)-2 1 [1 - n¢ 1 - (n - 1)¢ ] (2.4.17) = -n¢ 
1 - P - n¢ 1 - P - n¢ 1 - P - n¢ + ¢ 

EX(l - P - X¢)-2 = np [1 (n - 1)¢ ] (2.4.18) 
1 - P - n¢ 1 - P - n¢ 1 - P - (n - 1) ¢ 

E(n - X)(l - P - X¢)-2 = 
n(l - (n - 1)¢) 

(2.4.19) 
1 - P - (n - 1)¢ 

E(n - X)X(l - p - X¢)-2 
n(2)p 

(2.4.20) = 1 - p - (n - 1)¢ 
n-3 

E(n - X)X(2)(1 - p - X¢)-2 = p L n(v+3)(pv(p + (v + 2)¢) (2.4.21) 
1 - p - (n - 1) ¢ 1'=0 

E(n - X)(l - p - X¢)-3 = n(l - p - (n - 1)¢)-2(1 - (n - 1)¢) 

_ n(2) ¢(1 - (n - 2)¢) 
(1 - P - (n - 1)¢)(1 - P - (n - 2)¢) 

(2.4.22) 

E(n - X)X(l- p - X¢)-3 = 
n(2)p [ 1 

1 - p - (n - 1)¢ 1 - P - (n - 1)¢ 

(n - 2)¢ ] 
1- p - (n - 2)¢ 

(2.4.23) 

(3) n-3 
n p ~ (v) (v) 

= (1_p_(n_1)¢)2~(n-3) ¢ (p+2¢+v¢) 

n-4 
L: (n - 4)(v)¢V(p + 2¢ + v¢) 

_ n (4) P ¢-:-:--_v=-,-o--;-_~~_--;-_--:---:-
(1 - p - (n - 1)¢)(1 - P - (n - 2)¢) 

(2.4.24) 

2.4.2 QBD II 

E(p + X¢)-l 
1 1 - (n - 1)¢ 

= - -n¢ 
p (1 - n¢) (p + ¢) 

(2.4.25) 

E X p(l - (n - 1)¢) 
= n 

(p + X¢) (1 - n¢)(p + ¢) 
(2.4.26) 

X(2) 
n(2) p 

E(p+X¢) = 1-n¢ 
(2.4.27) 

E(P + X¢)-2 
1 n¢(2p + ¢)(1 - (n - 1)¢) 

= --
p2 p(l - n¢)(p + ¢) 

+ 
n(2)¢2(1 - (n - 2)¢) 

(1 - n¢)(p + ¢)(p + 2¢) 
(2.4.28) 
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X 
E(p+X¢)2 = 

np [1 - (n - 1)¢ _ ¢(n - 1)(1 - (n - 2)¢)] 
1 - n¢ (p + ¢)2 (p + ¢)(p + 2¢) 

(2.4.29) 

n(2)p(1 - (n - 2)¢ 

(p + 2¢)(1 - n¢) 
(2.4.30) 

np(l - (n - 1)¢) n(2)p2(1 - (n - 2)¢) 
= (1 - n¢)(p + ¢)2 + (p + 2¢)(1 - n¢)(p + ¢) 

(2.4.31 ) 

n(3)p 
EX(3) (p + X ¢) -2 = (2.4.32) 

1- n¢ 

EX2(X-1)(P+X¢)-2 = 1n~:¢[(n_2)+2(1~~~2)¢)] (2.4.33) 

np [1 -p - n¢] n(2)p¢ 
EX (p + X ¢) -3 = (1 _ n¢) (p + ¢) 1 + p + ¢ + 1 _ n¢ 

[
1 + (1 - p - n¢) + _1_ + 1 - p - n¢ ] 

(p + 2¢) p + ¢ (p + ¢) (p + 2¢) 
n(3)p¢2(1 - p - n¢) 

+ (2.4.34) 
(1 - n¢)(p + 2¢)(P + 3¢) 

EX(2)(p + X¢)-3 = p [n(2)(1 - (n - 2)¢) _ n(3)¢(1 - (n - 3)¢)] (2.4.35) 
1 - n¢ p + 2¢ (p + 2¢)(p + 3¢) 

EX(3)(p + X¢)-3 = n(3)p(1- (n - 3)¢) (2.4.36) 
(1 - n¢)(p + 3¢) 

E(l _ p _ X ¢)-l = 1 np(l - (n - 1)¢) (2.4.37) 
1- p - n¢ 1- n¢ 

EX(1 - p - X ¢)-l = P [n n(2)¢] (2.4.38) 
1 - n¢ 1 - P - n¢ 1 - P - (n - 1)¢ 

E(l _ P _ x¢)-2 1 [ 1 - n¢ ¢ (2 - 2p - (2n - 1)¢)(1 - (n - 1)¢) 
= I-n¢ (l-p-n¢)2 -n (1-p-n¢)(1-p-(n-1)¢)2 

+ n(2)¢2 1 - (n - 2)¢ ] (2.4.39) 
(1 - p - (n - 1)¢)(1 - p - (n - 2)¢) 

= np [(1 - p - n¢)2 (n - 1)(2 - 2p - (2n - l)¢) 
EX(l - P - X¢)-2 1 _ n¢ 1 - p _ (n - 2)¢ - (1 - p - n¢)(1 - p - (n _ 1)¢)2 

(n - 1)(2)¢2 ] 
+ () (2.4.40) 1-p- n-l ¢ 

E(n _ X)(l _ p _ X¢)-2 = n(1 - p - n¢) [ 1- (n - 1)¢ 
1 - n¢ 1 - p - (n - 1)¢ 

¢(n - 1)(1 - (n - 2)¢) ] 
(1 - P - (n - 1)¢)(1 - P - (n - 2)¢) (2.4.41) 

E(n _ X)X(l _ P _ X¢)-2 = n(2)p(1 - p - n¢) [ 1 
(1 - n¢)(l - p - (n - 1)¢) 1 - P - (n - 1)¢ 

¢(n - 2) ] 
( (2.4.42) 

1 - p - n - 2)¢ 



26 CHAPTER 2. A CLASS OF WEIGHTED QUASI BINOMIAL DISTRIBUTIONS 

(n - X)X(2) 
~[ 1 

(l-p-X¢)2 

~[ (n-X) 1 
(I-p-x¢)3 

~(n - X)X(1 - p - X ¢)-3 

2.4.3 QBD III 

= n(3)p(1 _ p _ n¢) [:~: ¢V(n - 3)(v)(p + 2¢ + v¢) 

I-n¢ (l-p-(n-l)¢)2 

_ (n - 3)¢ :~: ¢V(n - 4)(v)(p + 2¢ + V¢)] 

(1 - p - (n - 1)¢)(1 - p - (n - 2)¢) 

= n(l-p-n¢) [ 1-(n-l)¢ 
1 - n¢ (1 - p - (n - 1) ¢)3 
(n - 1)¢(2p + 3¢)(l - (n - 2)¢) 

(1 - p - (n - 1)¢)2(1 - p - (n - 2)¢)2 

(n - 1)(2)¢2(1 - (n - 3)¢) ] 
+ (1 - p - (n - 1)¢)(1 - p - (n - 2)¢)(1 - p - (n - 3)¢) 

= n(2)p(1 - p - n¢) [ 1 

(1 - n¢)(1 - p - (n - 1)¢) (1 - p - (n - 1)¢)2 

(n - 2)¢(2p + 3¢) 
(1 - p - (n - 1)¢)(1 - P - (n - 2)¢)2 

(n_2)(2)¢2 ] 

+ (1-p-(n-2)¢)(1-p-(n-3)¢) 

1 n<fJ 2p+<fJ n(2)p2 
= PI - p p+<fJ) + (p+<fJ)(p+2<fJ) 

~ - (p~P<fJ) 

~X(P + X¢)-l = np2 [1 (n - 1)¢] 
p(l - n¢) + ¢ p + ¢ p + 2¢ 

n(2)p2(p + ¢) 

(p + 2¢)(P(1 - n¢) + ¢) 

(2.4.43) 

(2.4.44) 

(2.4.45 ) 

(2.4.46) 

(2.4.47) 

(2.4.48) 

p2 (p + ¢) [ 1 n¢ ( 1 1 1 
= (p+¢-npif;) p4 - p(p+¢) p2 + p(p+¢) + (p+¢)2 

(n-l)¢(1 1 1) 
- (p+2¢) P + (p+2¢)2 + (p+¢)(p+2¢) , 

(n - 1)(2)¢2 )] 
(p + 2¢)(P + 3¢) 

(2.4.49) 

~X(P + X¢)-2 = np2(p + ¢) [1 (n - 1)(2p + 3¢)¢ 
p +.¢ - np¢ (p + ¢)3 (p + ¢)2(P + 2¢)2 

(n - 1)(2)¢2 ] 
+ (p + ¢)(p + 2¢)(p + 3¢) 

(2.4.50) 

= n(2)p2(p+¢) [1 (n-2)¢] 
(p + if; - npif;) p + 2¢ p + 3¢ 

(2.4.51) 
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EX2(p + X¢)-2 = np2(p+¢) [(n-1) (1- ¢(2P +3t)) 
p + ¢ - np¢ (p + 2¢)2 (p + ¢) 

(n - 1)(2)¢ ( ¢) 1 1 
(p + 2¢)(p + 3¢) 1 - P + ¢ + (p + ¢)3 

(2.4.52) 

EX(3)(p + X¢)-2 
n(3)p2(p + ¢) 

(2.4.53) = 
(p + 3¢)(P + ¢ - np¢) 

EX2(X - 1)(P + X¢)-2 
n(3)p3(p + ¢) 

= 
(p + 2¢)(P + 3¢)(p + ¢ - np¢) 

2n(2)p2(p + ¢) 
(2.4.54) + (p + 2¢)2(P + ¢ - np¢) 

EX(p + X¢)-~ = 
n 2 [1 (n - 1)¢ [ 1 

p+¢~np¢ (p+¢)-3 - (p+2¢) (p+¢)-2 

+ 
1 1] (n - 1)(2)¢2 

(p + ¢)(P + 2¢) + (p + 2¢) - (p + 2¢)(P + 3¢) 

[1 1 1] 
(p+¢) + (p+3¢)2 + (p+2¢)(p+3¢) 

+ 
(n - 1)(3)¢3 1 

(p + 2¢)(P + 3¢)(p + 4¢) 
(2.4.55) 

EX(2) (p + X ¢)-3 n(2)p2(p + ¢) [ 1 _ (n - 3)¢(2p + 5¢) 
(p + 2¢)2 = 

p+¢-np¢ (p+2¢)3 

+ 
(n - 2)(2)¢2(P + 4¢) 1 

(p + 2¢)(p + 3¢) 
(2.4.56) 

EX(3)(p + X¢)-3 = 
n(3)p2(p+¢) [1 (n-3)¢] 

(p + ¢ - np¢) (p + 3¢) p + 3¢ - p + 4¢ 
(2.4.57) 

E(1- p - X¢)-l 
(1 - n¢)(p + ¢) - np¢(l - (n - '1)¢) 

(2.4.58) = (1 - n¢)(p + ¢ - np¢) 

EX(l - p - X¢)-l 
np2(1 - (n - 1)¢) 

(2.4.59) = 
(p + ¢ - np¢) (1 - p - n¢) 

E(l - p - X¢)-2 
1 - P - n¢ [( 1 - n¢) (p + ¢) 

= p + ¢ - np¢ 1 - p - n¢ 

n¢(1- (n - 1)¢) {p(l _ p _ (n _ 1)¢) -
(1 - p - n¢) (1 - p - (n - 1) ¢) 

+ 
n(2)¢2p(1 - (n - 2)¢) 1 

(1 - p - n¢) (p + ¢)} + 1 - P _ (n - 1) ¢ (2.4.60) 

EX(l - p - X¢)-2 np2 [1 - (n - 1) ¢ 
= (p + ¢ - np¢)( 1 - p - n¢) 1 - p - n¢ 

(n - 1)¢(1 - (n - 2)¢)] 
1-p- (n-1)¢ 

(2.4.61) 

E(n - X)(l - p - X¢)-2 • = (1 - (n - l)¢)(p + ¢ - (n - l)¢p) 
n (1 _ P - (n - 1)¢)(P + ¢ - np¢) 

(2.4.62) 

1 - (n - 2)¢ 
(2.4.63) E(n - X)X(l - p - X¢)-2 (2) 2 = n p (1 - p - (n - 1) ¢) (p + ¢ - np¢) 



28 CHAPTER 2. A CLASS OF WEIGHTED QUASI BINOMIAL DISTRIBUTIONS 

(p + 1> - np1>)(1 - p - (n 1)1» 

E{n - X)(1 p - X1»-3 n [{I - (n - 1)1»(P + 1» _ (n _ 1)1>(1 
p + 1> - n1> (1 p (n 1)1»2 

2.4.4 QBD IV 

HI - P - (n - 1)1»(P + 1» + p(1 P - (n - 2)1>)} 
(1 - p - (n - 2)1>)(1 - P - (n - 1)1»2 

(n - 1)(2)1>2p(1 - (n 3)1» 1 
+ (1 - p (n - 1)1»(1 - P - (n - 2)1» 

= (1 - n1> n1>(1 - (n - 1)1»] -1 [1 - n1> 
p p + 1> p2 

n1>(2p + 1»(1 - (n - 1)1» n(2)1>2] 
- p(l - P - n1»(p + 1»2 + (P + 1»(p + 21>) 

= _P_ [1 - (n - 1)</> _ (n 1)(1 - (n - 2)</»] 
p + </> p + </> p + 2</> 

= 

[
1 - n1> _ n1>(l - (n - 1)</»]-1 

p p+1> 

[n (2)p (1-(n-2)¢)] 
p+2¢ 

[
I-np _ nr/..l-(n-l)¢) 

p '+' P+4> 

np2(p + </» [1 - (n - 1)1> 
(1 - n</»(p + </» - np</>(1 - (n - 1)4> (p + 4>)3 
(n - 1)1>(2p + 3</>}(1 - (n - 2)1» 

(p + 1»2(P + 21»2 

+ (n - 1)(2)4>2(1 - (n - 3)4»] 
(p + </»(P + 24»(P + 3</» 

n(2}p2(p + </» [1 - (n - 2)</> 
(1 - n1>)(p + 1» - np1>(1 - (n - 1)</» (P + 21»2 

_ (n - 2)1>(1 - (n - 3)1»] 
(p + 21»(P + 31» 

n(2)p2(p+</» [1 (n I)</> 
(1 - n</»(p + 4» np1>(1 - (n - 1)1» (P + 1»3 

_ (n - 1)(1 (n - 2)4» (1 _ 4>(2p + 34»} 
(P+2</>}2 (p+1>}2 

(n - 2)(2)</>(1 - (n - 3)1» 4>] 
(P + 24»(P + 34» (1 - p + 1» 

n(3)p2(p + 4>)(1 - (n - 3)1» 
(P + 34>){(1 - n1»(p + 4» - np1>(1 - (n - 1)1>} 

n(2}p2(p + 1» 

(1 - n1»(p + 1» - np1>(l (n - 1)1» 

(2.4.64) 

(n-2)4» 

(2.4.65) 

(2.4.66) 

(2.4.67) 

(2.4.68) 

(2.4.69) 

(2.4.70) 

(2.4.71) 

(2.4.72) 
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EX(2) (p + X <f;)-3 

EX(3) (p + X <f;)-3 

E(I-p-X<f;)-l 

[
2(1 - (n - 2)<f;) (n - 2)p(1 - (n - 3)<f;)] 

(p + 2<f;)2 + (p + 2<f;)(p + 3¢) 

= n(2)p2(p + <f;) [1 - (n - 2)<f; 
(1 - n<f;)(p + <f;) - np<f;(1 - (n - 1)<f;) (P + 2<f;)3 
(n - 2)<f;(2p + 5<f;)(1 - (n - 3)<f;) 

(P + 2<f;)2(P + 3<f;)2 

(n - 2)(2)<f;2(1 - (n - 4)<f;)] 
+ (P + 2<f;)(p + 3<f;)(P + 4<f;) 

= n(3)p2(p + <f;) [1 - (n - 3)<f;) 
(P + <f;)(1 - n<f;) - np<f;(1 - (n - 1)<f;) (P + 3<f;)2 

_ (n-3)<f;(I-(n-4)<f;)) 
(P + 3<f;)(P + 4<f;) 

1 
= 1 _ P _ (n _ 1)<f;) [(1 - n<f;)(p + <f;)(1 - p - (n - 1)<f;) 
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(2.4.73) 

(2.4.74) 

(2.4.75) 

- n<f;(1- (n - 1)<f;){(1 - P - n<f;)(p + <f;) + p(1 - P - (n - 1)<f;)} 

+ p(1 - P - (n -1)<f;) + n(2)p<f;2(1- p - n<f;)] 

{(I - n<f;)(p + <f;) - np<f;(1 - (n - 1)<f;)}-1 

EX(1 - P - X<f;)-l = 
(1 - n<f;)(p + <f;) - np<f;(1 - (n - 1)<f;) 

EX(1 - P - X <f;)-2 

[
1 - (n - 1)<f; _ (n - 1)(1 - (n - 2)<f;)] 
1 - p - n<f; 1 - P - (n - 1)<f; 

= np2 [ 1 - (n - 1) ¢ 
(1 - n<f;)(p + <f;) - np<f;(1 - (n - 1)<f;) (1 - P - n<f;)2 
(n - 1)<f;(2 - 2p - (2n - 1)<f;)(1 - (n - 2)<f;) 

(l-p-(n-1)<f;)2 

(n - 2)(2)<f;2(1 - (n - 3)<f;) 1 
+ (1 - p - (n - l)<f;)(l - p - (n - 2)<f;) 

2.4.5 Inverse factorial moments 

Theorem 2.4.2 If X "J class of WQBD (2.2.7), lhen 

E[ 1 ] E[ 1 ] _ Bn+r(p-r<f;,l-p-n<f;is-r,ti<f;) 
(X + 1)[rJ = (X + r)(r) - (n + 1)[rJBn(P, 1 - p - n<f;i s, ti <f;) 

r-l 
L: C+r)(p - r<f; + y<f;)y+(s-r) (1 - p + (r - y)<f;)n+r-y+t 

y>o y 

(n + l)[rJBn(P, 1 - p - n<f;i s, ti <f;) 

(2.4.76) 

(2.4.77) 

(2.4.78) 

(2.4.79) 
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Putting ¢ = 0, we get for binomial distribution (Johnson et al. [51]' p.l09) with parameters n,p 

r-l 
1 - I: (n~r)pY(1 _ p)n+r-y 

E [ex : r) (r)] = --=-Y--_O-
C
-n-+-r-) (-r )-pr--- (2.4.80) 

In particular, the following results can be derived for 

2.4.5.1 QBD I 

(2.4.81 ) 

PCP - ¢)-2(P _ 2¢)-3 2 

= (n + l)(n + 2) [pcp - ¢) - p¢(n + 2)(P - 2¢)(2p - 3¢) 

+ (n + l)(n + 2)(P - ¢)(p - 2¢)2 _ (p - ¢)2(1 _ P + 2¢)n+2 

(2.4.82) 

2.4.5.2 QBD II 

E [_1_] = pel - (n +.l)¢) + ¢(n + 1)(1 - n¢}(p - ¢) + pel - p - n¢HI _ p + ¢)n 
X + 1 (n + 1)(1 _ n¢)(p _ ¢)2 (2.4.83) 

1 
(n + l)(n + 2)(1 - n¢)(p _ ¢)2(P _ 2¢)3 {pcp - ¢)(1 - (n + 2)¢) 

+ np¢(2p - 3¢)(1 - (n + 1)¢)(P - 2¢) + n(2}¢2(1 - n¢)(p - 2¢)2 

- (p - ¢)p(l - p - n¢)(l - p - 2¢t+1 

(2.4.84) 

2.5 Mode of the class of WQBDs 

Consul [15J obtained bounds for the mode of QBD 1. Here an attempt has been made to find similar 

result for the class of WQBDs. 
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Denoting the mode by m, it is observed that m lies between I and u where I is the real positive 

root of the equation 

q/m3 
- [2n - 1 + 2(t - 1)]m2 + [1 - p(1 + (s + 1)¢ - 2¢ - 2n¢ + n¢ + (t - 1)¢) 

2¢ + (s + 1)¢(1 - n¢ - (t - 1)¢) - 2n¢(1 - n¢ - (t - 1)¢)]m 

+ (1 - p)2 + n(p + (s + 1)¢)(1 - p - n¢ - (t - 1)¢) > 0 (2.5.1) 

and 

(n + l)(p + (s - 1)¢) 
u= ----~--~--~~ 

1 - (n - (t + s) + 2)¢ 
(2.5.2) 

Proof: Similar to the one provided for QBD I (Consul [15]). 

It is seen that for s = -1, t = 0 the above result reduces to the bound given by Consul [15]. Similar 

bounds for other distributions belonging to the WQBD class can be easily derived using the above 

result. 

2.6 Estimation 

Consul [15] discussed MLE (Maximum likelihood estimation) of the parameters of the QBD I for raw 

as well as for grouped data set and suggested starting values for solving the ML equations numerically. 

He also provide exact solutions when number of classes are small (two, three and four). Here the 

problem of estimation of the parameters of QBD I, QBD II, QBD III and QBD IV using different 

methods of estimation have been discussed. It is assumed, that observed frequency in a random 

sample of size N are nk, k = O(I)m for different classes, i.e., Lk=O nk = N, where m is of course the 

largest value observed. Here, the parameter n is estimated by m, x is the sample mean, fo frequency 

of zeros and h frequency ones. Since the analytical solution of the ML equations are not easy, they 

are solved numerically using Newton-Rapson method. The second ordered partial derivatives needed 

for implementing the method have been provided. In solving ML equations numerically by successive 
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approximation, estimates of p and ¢ obtained by other methods may be taken as the starting values 

for p and ¢. 

2.6.1 QBD I 

The pf of QBD I with parameters p, ¢ is given by 

(2.6.1) 

I. By proportion of zeros and ones 

fJ = 1- (~) ~ (2.6.2) 

¢ , (h) n:l = I-p- --
nfJN 

(2.6.3) 

II. By proportion of zeros and sample mean 

cOnce the estimate of p is obtained, the estimate of ¢ can be obtained by numerically solving 

the equation 
n-l 

np 2: (n - l)(t}¢t - i; = 0 (2.6.4) 
t-O 

Equation (2.6.4) can be solved by standard techniques like Newton-Rapson or by employing direct 

search methods. Initial value may be 0 or the estimate of ¢ as given by method of proportion of 

zeros and ones. 

III. ML method 

The loglikelihood function is given by 

n 

l = log L ex N logp + L nk(k - 1) log(p + k¢) 
k=O 

n 

+ 2: nk(n - k) log(l - p - k¢) (2.6.5) 
k=O 

The two likelihood equations obtained by partially differentiating l w.r.t p and ¢ are 
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=}-h = 0, say (2.6.6) 

at t nk(k - l)k _ t nk(n - k)k = 0 
o¢ k=O P + k¢ k=O 1 - P - k¢ 

=}-g = 0, say (2.6.7) 

The partial derivatives of hand 9 w.r. t P and ¢ are 

(2.6.8) 

(2.6.9) 

(2.6.10) 

It may be noted that 

oh og 
= 

o¢ op 

2.6.2 QBD II 

The pf of QBD II is given by 

(2.6.11) 

1. By proportion of zeros and ones 

First, the estimate of the parameter P is obtained by numerically solving the following equation 

(
1 _ P _ (1 - p)n - Po ) [np (1 _ p _ -:-(,-I_--:-p_)n--::--_p_O_)] n:2 

n[(1 - p)n-l - Pol (1 - p)n-l - Po 

_ [p (1 _ (1 - p)n - Po )] n:2 = 0 
(1 - p)n-l - Po 

(2.6.12) 

Using direct search method, one can get a root of (2.6.12). Then the estimate of the parameter ¢ is 

obtained from the equation 

(1 - p)n - Po 
n¢ - --'-------''-'--::---

- (1 - p)n-l - Po 
\ 

(2.6.13) 

II. Sample proportion of zeros and the mean 
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The estimate of p is obtained by numerically solving the following equation 

p(l - p)n-l(n - x) - npop = 0 (2.6.14) 

then substituting the value of pin (2.6.13), cjJ can be estimated. 

III. ML method 

The loglikelihood function is given by 

l = log L ex NIog[p(l-
p

-ncjJ)] + tnk(k-1)log(p+kcjJ) 
1 - ncjJ k=O 

n 

+ 2: nk(n - k - 1) log(l - p - kcjJ) (2.6.15) 
k=O 

The two likelihood equations obtained by partially differentiating l w.r.t p and cjJ are 

N _ N + t ndk - 1) _ t nk(n - k - 1) = 0 
p 1 - p - ncjJ p + k'" 1 - p - k'" k=O ~ k=O ~ 

=> 9 = 0, say (2.6.16) 

at = _ nNp + ~ nk(k - l)k _ ~ nk(n - k - l)k _ 0 
ocjJ (l-p-ncjJ)(l-ncjJ) 6 p+kcjJ 6 1-p-kcjJ -

0, say (2.6.17) 

The partial derivatives of 9 and h w.r.t p and cjJ are 

09 = N N t nk(k - 1) t ndn - k - 1) 
op - p2 - (l-p-ncjJ)2 - k=O (p+kcjJ)2 - k=O (l-p- kcjJ)2 

(2.6.18) 

09 = nN t nk(k - l)k t nk(n - k - l)k 
ocjJ - (1 - p - ncjJ)2 - k=O (P + kcjJ)2 - k=O (1 - p - kcjJ)2 

(2.6.19) 

oh n2 Np(2 - p - 2ncjJ) n nk(k - 1)k2 n nk(n - k - 1)k2 

ocjJ = (1 - P - ncjJ)2(1 - np)2 - ~ (p + kcjJ)2 - ~ (1 - p - kcjJ)2 
(2.6.20) 

I t may be noted that 

oh 09 
= 

op ocjJ 
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2.6.3 QBD III 

The pf of QBD III is given by 

(2.6.21) 

1. Proportion of zeros and mean 

Here first, the parameter p is estimated numerically by solving the following equation for p 

(2.6.22) 

Then estimate of cp is obtained from 

np2 - xp 
cp - np # 1 

-(l-np)x' 
(2.6.23) 

II. ML method 

The loglikelihood function is given by 

l = logL 

n 

+ L nk(n-k)log(l-p-kcp) (2.6.24) 
k=O 

The two likelihood equations obtained by partially differentiating l w.r.t p and cp are 

at _ N(l - ncp) + ~ + 2N + t nk(k - 2) _ t nk(n - k) = 0 = op p + cp - npcp p + cp P k=O P + kcp k=O 1 - p - kcp 

~g 0, say (2.6.25) 

at nNp2 t nk(k - 2)k t nk(n - k)k 
= + - -0 

ocp (p + cp) (p + cp - npcp) k:=:O p + kcp k=O 1 - p - kcp -

~h 0, say (2.6.26) 

The partial derivatives of hand 9 w.r.t p and cp are 

09 
op 

N(l - n¢)2 

(p+cp-npcp)2 
N 2N t nk(k - 2) t nk(n - k) 

(p + cp)2 - "P2 - k=O (P + kcp)2 - k=O (1 - p - kcp)2 (2.6.27) 
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89 N(l - n¢)(1 - np) Nn N ~ nk(k - 2)k 
8¢ = (p+¢-np¢)2 + p+¢-np¢ - (p+¢)2 - 6 (p+k¢)2 

8h 
o¢ 

~ nk(n - k)k 
6 (1- p - k¢)2 

N(l - np)2 

(p + ¢ - np¢)2 

It may be noted that 

2.6.4 QBD IV 

The pf of QBD IV is given by 

8h 89 
= 

op o¢ 

Pk = p2(p + ¢)(1 - p - n¢) (n) (p + k¢)k-2(1 _ P _ k¢}n-k-l 
(p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) k 

1. Method oj moments 

(2.6.28) 

(2.6.29) 

(2.6.30) 

Here, the moment estimates for the parameters p, ¢ are obtained by solving the following 

equations 

1-r 
¢= -- -rp 

n-l 

[
l-r ]2 [l-r ] -- - rp n(l - (n - l)p)x - -- - rp 
n-1 n-1 

::::} f = 0, say 

where r = x 
2nd order sample moment about the origin 

(2.6.31) 

(2.6.32) 

Equation (2.6.32) can be solved using Newton Rapson method. The initial value of p is first obtained 

by searching in (0, 1). 

Following result is needed for implementing the routine. 
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(2.6.33) 

II. ML method 

The loglikelihood function is given by 

[ 
p2(p + ¢)(I - p - n¢) 1 ~ 

l=logL ex Nlog (p+¢)(I-n¢)-np¢(I-(n-I)¢) + tonk(k-2)log(p+k¢) 

n 

+ L nk(n - k - 1) log(I - p - k¢) 
k=O 

The two likelihood equations are 

az = -N (1 - n¢) - n¢(1 - (n - 1)¢) 
8p (p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 

+ N(3p2 + 2¢)(1 - p - n¢) _ p2(p + ¢) 
p2(p + ¢)(1 - p - n¢) 

+ t nk(k - 2) _ t nk(n - k - 1) = ° 
k=O P + k</J k=O 1 - p - k</J 

=* 9 = 0, say 

at = -N (1 - n</J) - n(p + </J) - np(1 - 2(n - 1)</J) 
8</J (p + </J)(1 - n</J) - np</J(I - (n - IO</J) 

+ N p2 (1 - p - n</J) - np2(p + </J) 
p2(P + </J)(I - p - n</J) 

+ t nk(k - 2)k _ t nk(n - k - I)k = ° 
k=O P + k</J k=O 1 - p - k</J 

=* h ~ 0, say 

The partial derivatives of 9 and h w.r.t p and </J are 

8g = N(6p2 + 2</J)(1 - p - n</J) - 4p2 - 2p</J - 2p(p + </J) 
8p p2(p + </J)(I - p - n</J) 

_ 2N (3p2 + 2p</J) (I - p - n</J) - p2(P + </J) 
p3(p + </J)(1 - p - n</J) 

_ N (3p2 + 2p</J)(1 - p - n</J) - p2(P + </J) 
p2(P + </J)2(1 - P - n</J) 

+ N (3p2 + 2p</J)( 1 - p - n</J) - p2 (p + </J) 
p2(p + </J)(I - p - n</J)2 

(2.6.34) 

(2.6.35) 

(2.6.36) 
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+ N (1 - n¢ - n¢(1 - (n - 1)¢))2 
((P + ¢)(1 - n¢) - np¢(1 - (n - 1)¢)2 

_ ~ nk(k - 2) _ ~ nk(n - k) 
~ ~---::---:-:-i::-2 ~ (2.6.37) 
k=O (P + k¢) k=O (1 - p - k¢)2 

8g = N2p(1 - p - n¢) - (3p2 + 2p¢)n _ p2 

8¢ ~ p2 (p + ¢)( 1 - p - n¢) 

_ N(3p2 + 2p¢)(1 - p - n¢) - p2(P + ¢) 
p2(P + ¢)2(1 - P - n¢) 

+ N(3p2 + 2p¢) (1 - P - n¢) - p2(P + ¢) 
p2(P + ¢)(1 - p 7""" n¢)2 

+ N (1 - n¢ - n¢(1 - (n - 1)¢))(1 - n¢ - n(p + ¢) - np(1 - (n - 1)¢) + np¢(n - 1) 
" [(p + ¢)(1 - n¢) - np¢(1 - (n - 1)¢)J2 

+ N 2n(1 - ¢(n - 1)) 
(p + ¢)(1 - n¢) - np¢(l - (n - 1)¢) 

_ ~ nk(k - 2)2k _ ~ nk(n - k - 1)k 
~ ) ~ 2 (2.6.38) 
k=O (p+k¢ 'k=O (l-p-k¢) 

8h = N [(1 - n¢) - n(p + ¢) - np(1- 2(n _1)¢)]2 
8¢ (P + ¢)(1 - n¢) - np¢(l - (n - 10¢) 

+ 2nN 1 - p(n - 1) 
(P + ¢)(1 - n¢) - np¢(1 - (n - 1)¢) 

1 
- 2nN~--~----~ 

(P + ¢) (1 - p - n¢) 

_ NP2(1 - p - n¢) - np2(p - ¢) 
p2(P + ¢)2(1 - P - n¢) 

N 
p2(1-p-n¢)-np2(p+¢) + n:..........:.--;:;-:-~--:-:--:'-'-----.:--=....,-:-;;-...:....:... 

p2(p + ¢)(1 - p - n¢)2 

_ ~ nk(k - 2)k2 _ ~ nk(n - k - 1)k2 
~ ( )2 ~ 2 (2.6.39) 
k=O p+k¢ k=O (1-p-k¢) 

It may be noted that 

8h 8g 
= 

8p 8¢ 

2.7 Data fitting 

In this section, the fittings of the different QBDs to four sets of data using the method of maximum 

likelihood have been presented. 

Example 1. Here, McGuire, Brindley and Bancroft's data on the Europian Corn borer, used by 

Shumway and Gurland [65], Crow and Bardwell [27] and Consul [15] is considered. 
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Table 2.1: Observed and Expected frequencies of Europian Corn borer in 1296 Corn plants 

No. of Observed QBD I QBD II QBDIII QBDIV 

borers no. of 

per plant plants 

0 907 906.41 906.45 905.94 906.01 

1 275 277.40 277.26 278.84 278.63 

2 88 85.90 86.01 84.75 84.90 

3 23 22.59 22.60 22.56 22.58 

~4 3 3.70 3.68 3.91 3.88 

P 0.0855 0.0797 0.1281 0.1187 

¢ 0.0591 0.0557 0.0655 0.0613 

X2 0.2124 0.0.1975 0.3991 0.2788 

d.f. 2 2 2 2 

As measured by X2, all the models give almost equally good fit, but QBD II is better than 

the rest. 
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Example 2. Classical data derived from haemacytometer yeast cell counts observed by 'Student' in 

400 squares of haemacytometer used by Crow and Bardwell [27], Consul [15] see also Hand et al. 

[39]. 

Table 2.2: Distribution of yeast cells per square in a haemacytometer 

No. of Observed QBD I QBD II QBDIII QBDIV 

cells per no. of 

square squares 

0 213 215.73 215.72 215.84 215.83 

1 128 118.28 118.29 118.31 118.31 

2 37 47.23 47.25 46.99 47.02 

3 18 14.89 14.89 14.89 14.89 

4 3 3.43 3.42 3.50 3.49 

5 1 0.44 .44 .47 .46 

P 0.1162 0.1110 0.1147 0.1400 

¢ 0.0391 0.0376 0.0419 0.0401 

X2 3.7031 3.6996 3.6047 3.6162 

d.f. 2 2 2 2 

Here also, all the models give almost equally good fit, but QBD III is better than the rest. 
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Example 3. Taken from Ord et al. [57] is based on field data on D. bimaculatus by time of the day. 

Table 2.3: Distribution of number of seeds by time of day 

Time Observed. QBD I QBD II QBDIII QBDIV 

no. seeds 

0 7 6.50 6.77 6.25 6.59 

1 4 5.38 4.95 5.67 5.24 

2 5 4.55 4.28 4.73 4.39 

3 5 4.18 4.28 4.16 4.18 

4 4 4.40 4.95 4.18 4.72 

5 7 6.99 6.77 7.02 6.88 

P .2729 .1934 .3612 .2734 

¢ .1346 .1226 .1219 .1143 

X2 .6342 .6225 .7647 .6765 

d.f. 3 3 3 3 

While all the models are equally good it can be seen that only the QBD II preserves the 

symmetry of the original data. It should be noted here that QBD II is a symmetric distribution 

when ¢ = 1~2P 
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Example 4. This data about incidence of flying bombs in an area in south London during world war 

II is taken from Feller [33] used by Clarke [9]. 

Table 2.4: Distribution of number of hits per square. 

No. of No. of QBD I QBD II QBD III QBDIV 

hits 1/4 km 

squares 

0 229 231.35 231.35 231.35 231.36 

1 211 203.60 203.59 203.66 203.65 

2 93 100.24 100.26 100.15 100.16 

3 35 33.01 33.01 32.99 33.00 

4 7 7.04 7.04 7.07 7.07 

5 1 .76 .76 .77 .77 

P .1668 .1619 .1847 .1819 

<P .0263 .0257 .0271 .0263 

X2 .9409 .9344 .9346 .9156 

d.f. 2 2 2 2 

Clearly from the value of the X2 and the expected frequencies, all the models are equally good 

but QBD IV is better than the rest. 
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2.8 Zero truncated WQBDs 

Some times in real life situations it may not be possible to count the number of zeros in other words 

zero is not observable. Such occurrences are common in ecological experiments (Ord et al. [57]. 

Here, two zero truncated quasi binomial distributions, their factorial and inverse factorial moments 

have been studied. The pf of zero truncated WQBD class is given by 

The rth factorial moment about origin for (2.8.1) is 

(r) Bn_r(p+r¢,I-p-n¢;s+r,t;¢) 
n 

Bn(P, 1 - p - n¢; s, tj ¢) - pS(1 - p)n+t 

Bn(p,I-p-n¢;s,t;¢) 

where /-L(r) is the corresponding factorial moment of the WQBD class. 

The rth inverse factorial moment of (2.8.1) is given by 

(2.8.1) 

(2.8.2) 

(2.8.3) 

1 
Bn(P, 1 - p - n¢; s, t; ¢) _ pS(l _ p)n+t(n + l)[rJ [Bn+r(P - r¢, 1 - p - n¢; 

s - r, t; ¢) - t (n + r) (P - r¢ + y¢)y+s-r(1_ p + (r - y)¢t+r-y+t] (2.8.4) 
y==O Y 

For ¢ = 0 (i.e. for binomial distribution with parameters n,p), left hand side of (2.8.4) reduces to 

Ip(r + 1; n) 
(2.8.5) 

where 

Ip(x, n - x + 1) = t (n)p1(1 - p)n-J , (Johnson et al. [51], p.130) 
J==X J 

2.8.1 Zero truncated QBD I 

The pf is 

_ (n) p(P + k¢)k-l(1 - p - k¢)n-k 
Pk - k (1 - (1 _ p)n) (2.8.6) 
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It's mean is 

E[X] = np(l + a¢)n-l 
l-(l-p)n 

where a is umbral defined earlier and 

2.8.2 Zero truncated QBD II 

The pf is 

Pk = (
n) P(P + k¢)k-l(l - P - n¢)(l - P _ k¢)n-k-l 

k 1 - n¢ - (1 - P - n¢)( 1 - (1 - p) n-l ) 

The mean is 

E[X] = . np 
1 - n¢ - (1 - p - n¢)(l - (1 - p)n-l) 

and 

2.9 Limiting Distribution 

(2.8.7) 

(2.8.8) 

(2.8.9) 

(2.8.10) 

(2.8.11) 

Theorem 2.9.1 As n -t 00 and p, ¢ -t 0 such that np = >., n¢ = 'ljJ the class of WQBD (2.2.7) 

tends to the WGPD class with parameters (>';s;'ljJ). 

Proof The proof is given in the theorem (5.18.1) in page number 136. 



Chapter 3 

Unification of Probability Models 

3.1 Introduction 

In the first part of this chapter, a three urn setup with a predetermined strategy has been used to 

combine QED and QIPD to construct a unified probability model (UPM) and hence obtain all their 

particular cases. Some recurrence relations among the moments and probabilities are established. A 

few limiting distributions are mentioned. In the second part starting with section §3.3, a five urn 

setup with a predetermined strategy is used to unify GMPD and GIMPD to obtain a generalized 

probability model (GPM) which gives all the particular cases of GMPD and GIMPD and some new 

distributions. For this model also some recurrence relation among moments and probabilities are 

derived and limiting distributions are mentioned. Steps of ML estimation by numerical method are 

discussed for both the models. 

3.2 Model I : A n urn model wzth three urns 

Consider three urns A, Band C. A is empty, B contains a white, C a white and b black balls. 

For given positive integers n, ¢, z and integer s, a strategy is determined by selecting an integer 

k ~ O. Once this integer is selected, n white, ¢ k black balls to A, kz black balls to Band kz white, 

45 



46 CHAPTER 3. UNIFICATION OF PROBABILITY MODELS 

(n + (¢ - l)k)z black balls to C are added. The constitution of the urns will now be as below: 

Table 3.1: Constitution of the urns 

Number of balls 

Urn white black 

A n ¢k 

B a kz 

C a+ kz b + (n + (¢ - l)k)z 

Now a ball is drawn from A, if it is white, a ball is drawn from B, if it is white too, then 

n + ¢k draws are made from C successively one by one with replacement, where after each draw, 

the ball drawn is replaced with 8 additional balls of the same colour before the next draw. Success 

is achieved if exactly k of this n + ¢k balls are white. 

Clearly, the probability of success is the joint probability of drawing a white from A in the 

first trial, a white from B in the second trial and then exactly k white balls in n + ¢k repeated trials 

from C using sampling scheme stated above. 

Pr(Success I Strategy k) P(k) = n a (n+¢k) 
n + ¢k a + kz k 

(a + kz)[k,sj (b + (n + (¢ - l)k)z)[n+(¢-l)k,sj 

(a + b + (n + ¢k)z)[n+¢k,sj 

(a+kz) (b+(n+(¢-l)k)z) 
n _a_ k s n+(¢-l)k s 

n + ¢k a + kz (a+b+(n+<t>k)z) 
n+¢k s 

(3.2.1) 

where (~) s = a[~;sl = a(a+s) .. t!+(k-l)S). Here the parameters a, b, n, ¢, z, 8 are such that for k = 

0,1, ... j P(k) ~ O. If 8 = -1, k = 0,1, ... ,min(l~Z,n). It is possible for 8 to be negative when 

¢ ~ 0 provided 

a + b + (n + ¢k)z + (n + ¢k - 1)8) > O. 
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Further, if a + kz is a fractional number, (a~kz) is expressed in gamma function. 

The UPM (3.2.1) can be written in the form 

(o+kt) (.B+(n+(4>-l)k)t) 
) 

n a k n+(4)-l)k 
P(k . = n + </>k a + kt (o+.B+(n+4>k)t) 

n+4>k 
(3.2.2) 

where 
a b z 

= a, - = (3, - = t, 
s s s 

(
a) = a!k] = a(a + 1) ... (a + k - 1) !O] 

and a = 1 
k k! k! 

and also as 

a n (n + </>k) (a + kt)!k] ((3 + (n + (</> - l)k)t)!n+(4)-l)k] 
P(k) = a + kt n + </>k k (a + (3 + (n + </>k)t)[n+4>k] 

(3.2.3) 

for t = 0 (3.2.3) reduces to GPE (Sen and Mishra [63]), with parameters n, </>, a, (3. 

3.2.1 Distributions as special cases 

UPM (3.2.1) is not a proper discrete probability distribution for all values of </>, z and s, but 

it generates most of the well known discrete distributions as well as new distributions for different 

values of parameters n, </>, s, z, a and b. In the following a list of the well known discrete distributions 

(Das [29], Johnson, Kotz and Kemp [51], Nandi and Das [54], Sen and Mishra [63], Patil, Boswell, 

Joshi and Ratnaparkhi [59], Charalambides ([7], [8]) are presented which are particular cases of UPM. 

Table 3.2: Special cases of unified probability model 

Class Parameters Distribution Mass Function Range of k 

(a+kz) (b+(n-k)z) 
1. </>=0 QED (Janardan [43]) a k s n-k 11 O(l)n a+kz (a+bn+nZ) s 

2. </> = 0, z = 0 Polya-Eggenberger (PE) (%) s (n~k), 
(a~6) s O(l)n 

3. S = I,</> = 0 Quasi beta-binomial a (a~kz) (b+~~-kk)z) 
O(l)n a+kz (a+6n+nz) 

(QBB) 
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Class Parameters 

4. s=l,¢=O 

5. s = 1,¢ 

z=O 

6. s = -1,¢ = ° 

Distribution 

Quasi negative hyper-

geometric (J anardan 

[43]) 

0, Beta-Binomial (BB) 

(Ord [56], Patil & 

Joshi, [60]) 

Quasi hypergeometric 

(QH) (Nandi and Das 

[54], Janardan [43]) 

Mass Function 

a 
a+kz 

(a-l+Z(z+l») (b-l+(~=~)(z+l») 

(a+b l~n(+l)Z) 

7. ¢ = O,s = ° Quasi Binomial (QB) (n) a(a+kz)k-l (b+(n-k)z)n-k 
k (a+b+nz)n 

(Consul and Mittal 

[11]), Janardan [43]) 

8. ¢ = 0, z = ° s = Hypergeometric (HG) 

-1 

9. ¢ = 0, z = ° Re- Markov-Polya Survival 

place s by -s Model (MPSM) (J a-

nard an [46]) 

10. ¢ = 0, s = 0, Binomial 

z 0, a/(a + 

b) =p 

11. ¢ = O,z 0, Uniform or Discrete 

a=b=s rectangular 

1 
n+l 

Range of k 

O(l)n 

O(l)n 

max(O,n - b) 

(1) min(n, a) 

O(l)n 

0(1) min(n, a) 

0(1) min(n, a) 

O(l}n 

O(1)n 



3.2. MODEL I : AN URN MODEL WITH THREE URNS 

Class Parameters Distribution 

12. ¢ = 1 QIPD (Janardan [43]) 

13. ¢ = 1,8 = -1 Quasi inverse hyper-

geometric (Janardan 

[43]) 

Mass Function 

(n+k-l)_a_ 
k a+kz 

(a+kz )[k,s](Hnz lIn,s] 
(a+H(n+k)z)!nH,s] 

(n+k-l)_a_ 
k a+kz 

(a+kz)(k) (Hnz)(n) 
(a+H(n+k)z)(nH) 

14. ¢ = l,z = 0 Inverse Polya- (n+k-l) ark,s] bIn,s] 
k (a+b)!nH,s] 

Eggenberger (IPE) 

15. '" = 1,8 = 0, b+ Quasi negative Bino- (n+k-l) pn(l-p)(l-p+kz)k-l 
'f' k (1+kz)n+k 

nz = p, a + p = mial (QNB) (Berg [3]) 

1 

16. ¢ = 1,8 = 0, Negative 

z 0, al(a + (NB) 

b) = p 

p), p = al(1+a) NB used in Ecology 

in 16. (Evans [31)), Patil et 

al. [59]) 

17. ¢ 1,8 0, Geometric 

n = 1, Z 0, 

alb = P,Q = 

1 +P 

18. 8 = -1,¢ = 1, Negative hypergeo- n (~) (~) 
n+k (a+b) 

n+k 

Z=O metric (NH G) 

49 

Range of k 

0(1)00 

0(1)00 

0(1)00 

0(1)00 

0(1)00 

0(1)00 

0(1) 

min(O, a + 

b - n) 
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Class Parameters Distribution Mass Function Range of k 

19. <p = I, Z = 0, Inverse factorial n 0(1)00 (n+k)(n+k+l) 

a=b=8 (IF) (Irwin (41]) 

20. 8 = I, <p = I, Beta-Pascal (BP) (Ord 0(1)00 

Z o Or 8 [56]) 

-1 A. = 1 Z = 1 , <p , 

21. <p = 2,8 = 0, Haight (Haight [37]) n (2k-n-l) Qk-n 
k k-l (1+Q)2k n n(l)oo 

alb = Q (Re-

placing k by k-

n), Z = 0 

22. Z = 0,8 0, Negative binomial- _n_ (n+!/>k) (E..) k 
n+!/>k k Q 0(1)00 

alb = F, Q = negative binomial Q-(n+(!/>-l)k) 

l+F (Consul and Shenton 

[22]) 

23. 8 = 0, Z = 0, Takacs (Takacs [66]) 

alb = F,Q = Q-(¢;-l)k 

1 + P (Replacing 

n by <p - 1 and 

then k by k - 1) 

24. Z = 0,8 = 0, Generalized negative _n_ (n+!/>k)pk 
n+if>k k 0(1)00 

al(a + b) = p binomial (GNB) (Jain (1 _ p)(n+(¢;-l)k) 

and Consul [42]), 

Consul and Gupta 

[17]) 
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Class Parameters Distribution Mass Function 

25. 

26. 

27. 

z 0,8 = 0, Binomial-delta (BD) !!: (mk) pk-n 
k k-n 

¢ m, al(a + (Consul and Shenton (1 _ p)mk+n-k 

b) = p (Replac- [22]) 

ing n by mn and 

k by k - n) 

z 0,8 = 0, Consul distribution 1 (mk) pk-l 
k k-l 

¢ m, al(a + (CD) (Consul and (1 - p)mk+l-k 

b) = p (Replac- Shenton [24], Consul 

ing n by mn and [13]) 

k by k-n) when 

n=1 

z = 0,8 0, Negative binomial- !! (4)k-n-l) (E) k-n 
k k-n Q 

alb = P,Q delta (Consul and Q-(4)-l)k 

1 + P (Replac- Shenton [22]) 

ing n by (¢-1)n 

and k by k - n) 

28. 8 = 0, ¢ = 2, Negative binomial 

alb = P,Q 

1 + P,z = ° 
29. ¢ = 0, Replace Generalized quasi hy-

s bY-8 pergeometric (GQH) 

(Nandi and Das [54)) 

51 

Range of k 

n(1)00 

1(1)00 

n(1)00 

max(O,n - b) 

(1) min(n, a) 
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3.2.2 Moments 

Denoting the expression on the right hand side of (3.2.3) by P(k; n,//, a, (3, t), where // + 1 = <P, 

the r th moment about origin for the model is defined as 

Proof: 

M:(n,v,a,(3,t) = 2:: FP(k;n,v,a,(3,t) 
k~O 

(3.2.4) 

= n L F-1 (n + (// + l)k - 1) _a_ (a + kt)[kl((3 + (n + vk)t)[n+lJkl 
k~l k - 1 a + kt (a + (3 + (n + (v + 1)k)t)[n+(1/+1)kl 

= n; L(l+kr-1(1+//+l k )(1+ t k) 
a + + t k~O n + v a + t + 1 

{ 
t(n+v) v+1 }-l 

1+ 4 (l+--k) P(k;n+v,v,a+t+1,(3,t) 
a+fJ+t n+// 

na ~(r-1) ""'k) t ""' m(t(n+//))m a+(3+t~ J ~ (1+ a+t+1k) ~(-1) a+(3+t 
)=0 k~O m~O 

f, (m; 1) ((:: l~k) 'P(k;n + v,v,a + t + l,p,t) 

= na ~(r-1) L(_1)m(t(n+//))m1:
1

(m+1)((1/+1))l 
a + (3 + t )=0 J m~O a + (3 + t l=O g n + // 

[M;H(n + 1/,1/, a + t + 1, (3, t) + a + : + 1 M;H+l (n + 1/,1/, a + t + 1, (3, t)] 

For t = 0, (3.2.4) reduces to (Sen and Mishra [63]) 

na ~ (r -1) I // + 1 = --4~ {M)(n+I/,I/,a+1,/3)+--
a + fJ )=0 J n + 1/ 

(3.2.5) 

M;+l (n + 1/,1/, a + 1, (3)) 
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3.2.3 Recurrence relations for mean and second order moment when v = -1 

Putting r = 1 and v = -1 in (3.2.4) we get 

M{(n,a,{3,t) = ;a {1+ t M{(n-1,a+t+1,{3,t)} 
a + + nt a + t + 1 

(3.2.6) 

where M{ (n, a, (3, t) = M{ (n, -1, a, (3, t) is the mean of the QED (Janardan [43]). 

Repeating successively, we get 

na n-l (n - 1)(J) 
M' (n a f3 t) - '" tJ 

1 , " - a+{3+nt {;;o (a+{3+nt+ l)!JJ 
(3.2.7) 

This result is equivalent to the one obtained by Consul [11]. 

Putting r = 2 and 1./ = -1 in (3.2.4) we get 

M~(n, a, (3, t) = 
, ) na 

M1(n,a,{3,t + (3 
a+ +nt 

{ M{(n-1,a+t+1,{3,t)+ t M~(n-1,a+t+1,{3,t)} (3.2.8) 
a+ t + 1 

where M2(n,a,{3,t) = M2(n,-1,a,{3,t) is the second order moment of the QED (Janardan [43]). 

Some interesting expressions for moments of X following QED with n, a, {3, t are presented 

below. Using the generalized quasi factorial distribution (Das [29]), it can be observed that 

L {3 a + {3 + nt 
k~o{3+(n-k)t a+{3 

{ (
n) _a_ (a + kt)[kJ({3 + (n - k)t)[n-kj } = 1 
k a + kt (a + {3 + nt)[nJ 

(3.2.9) 

But the quantity inside the second bracket is the probability function of X following QED with 

n, a, {3, t. Therefore 

E[ 1 ]_ a+{3 
{3+(n-X)t - (3(a+{3+nt) 

Also using a generalized Vandermonde convolution identity (Gould [34]), it can be seen that 

E [ 
c + dX ] c( a + (3) + nad d - an 

{3+(n-x)t - (3(a+{3+nt) 
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E [(C + dX)(u + v(n - X))] 
f3+(n-x)t 

Another result that can easily be obtained for QED is 

E [a + X(t + 1)] = ~ a + f3 + n(t + 1) - 1 [1 _ (f3 + (n + l)t)[n+l]] 
a - t n + 1 (a + f3 + nt)[n+1] 

For the mean of the QIPD, we have the following recurrence relation 

I _ na 00 (n + 1) (J ) J 
M1(n,a,b,z,s)-b L( )bl(Z+S) 

+ nz + ns]=o b + nz + ns 

(3.2.11) 

(3.2.12) 

In particular, for s = 0, Z = ° (i.e. for negative binomial) r.h.s. of (3.2.12) reduces to nba and for 

s = -1, Z = -1 (beta Pascal distribution) r.h.s. of (3.2.12) becomes nba. 

3.2.4 Recurrence relation for probabilities 

Following recurrence relations for the probabilities P(k; n, </>, a, f3, t) in equation (3.2.3) hold 

I. P(k+l;n,</>,a,f3,t) = 
k+l 

n n+</>-I+k a a+t+(t+l)k 
n + </> - 1 a + t a + f3 - 1 + (n + </> + </>k) (t + 1) 

P(k; n + </> - I, </>, a + t, f3, t) 

II. P(k; n + I, </>, a, f3, t) 
n + 1 n + </>k f3 + (n + (</> - 1) k) (t + 1) + t 

n n + (</> - 1) k + 1 a + f3 + (n + </>k) (t + 1) + t 

P(k; n, </>, a, f3 + t, t) 

II I. P(k; n, </>, a + I, f3, t) = a+la+kt+k a+f3+(n+</>k)t P(k ,J.. (3) 
a a+kt+la+f3+(n+</>k)(t+l) ;n,'f',a, ,t 

IV. P(k; n, </>, a, f3 + 1, t) 
f3+(n+(</>-I)k)(t+l) a+f3+(n+</>k)t 

= 
f3 + (n + (</> - l)k)t a + f3 + (n + </>k)(t + 1) 

P(k; n, </>, a, f3, t) 

Recurrence relations for probabilities of various distributions occurring as particular cases of UPM 

(3.2.3) can be obtained from the above relations by choosing appropriate values for the parameters 

n, </>, a, {3, t. 
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3.2.5 Estimation 

In this section various steps involved in the ML estimation of the parameters of QED using iterative 

numerical method have been outlined. It is assumed that observed frequency in a random sample of 

size N are nk, k = O(l)m for different classes, i.e., L:k=O nk = N, where m is of course the largest 

value observed. Here, the parameter n is estimated by m. 

The pf of QED can be written as 

k-l n-k-l 
_ (n)P~~1(P+k¢+2t) ~~o (l-p-(n-k)¢+it) 

Pk - k n-l 
ll(l+n¢+it) 

(3.2.13) 

~=O 

where P = a~b' q = a!b' ¢ = a~b and t = a~b' 

The log likelihood function is given by 

1= logL <X Nlogp + En, {~lOg(P + k¢ + it) + n~'(I_ p+ (n - k)¢+ it)} 

n-l 
N L log(l + n¢ + it) (3.2.14) 

~=O 

The three likelihood equations obtained by partially differentiating l with respect to p, ¢, and tare 

8l 
ap 

8l 
at 

N m {k-l 1 n-k-l 1 } 
-+ Lnk L - L =0 
P k=O ~=lP+k¢+it ~=O 1-p+(n-k)¢+it 

0, Say 

m {k-l k n-k-l n - k } E nk ~ p + k¢ + it + ~ 1 - p + (n - k)¢ + it 
n-l 1 

nN L 1 ¢ . = ° =? U2 = 0, Say 
~=O + n + 2t 

E n, {~p+ k~+it - n~' 1- p+ (ni_ k)¢+ it} 

n-l . 
N L 2 = ° =? U3 = 0, Say 

~=O 1 + n¢ + it 

(3.2.15) 

(3.2.16) 

(3.2.17) 

It is not possible to solve these likelihood equations as above analytically even for small values of 

m. Hence we present here the numerical method of solving these equations by applying the Newton-
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Rapson technique. Following are the partial derivatives of Ul, U2 and U3 required for implementing 

the algorithm. 

m {k-l 1 n-k-l 1 } 

= - {;nk tr (P+k¢+it)2 + t; (1-p+ (n k)¢+it)2 

N 
(3.2.18) 

n-k-l k } 

t; (1-P+~--k)¢+it)2 
= d12, Say (3.2.19) 

a~, E nk {~ (P + k; + it)2 -7-:" (1 - p + (n ~ k)</>+ it)2 } 

= dI3 , Say (3.2.20) 

m {k-l k2 n-k-I (n _ k)2 } E nk t1 (P + k¢ + it)2 + ~ (1 - P + (n - k)¢ + it)2 

n-l 1 
+ n2N L = d22 , Say 

$=0 (1 + n¢ + it)2 
(3.2.21) 

m {k-l n-k-l i(n k) } E nk [; -:-------:-= + ~ (1 - p + (n - k)¢ + it)2 

(3.2.22) 

(3.2.23) 

It may be noted here that 

Now, the estimates of p, ¢ and t can be obtained by generating the sequence of vectors (Pi, ¢i, ti) 

using the recurrence relations 

where inc = _D-1'Q, 

wherein 
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The iteration is stopped at the rth step if the distance between rth and the (r + l)th solution 

is less than a pre-assigned small positive number and (Pr, <Pr, tr) is taken as the MLE of (p, <p, t). 

3.2.6 Limiting cases: 

1. If al s, bl sand nl s are infinitely large quantities of the same order, as t approaches zero and 

<P = 0, then the UPM tends to a normal distribution. 

2. The UPM with parameters p( = a~b)' q( = a!b)' r( = a~b)' t( = a~b)' <p = 0 and n, tends to the 

generalized Poisson distribution with parameters Al and A2 as n -+ 00, p -+ 0 and r -+ 0, t -+ 0 such 

that np = AI, nt = A2 and nr -+ O. 

3. If al s is a quantity of lower order and nl s is of the same order as the quantity bl s, then the UPM 

tends to the Poisson distribution as z and <p approaches zero. 

3.3 Model II : An urn model wzth five urns 

Let us consider five urns UI , U2, U3, U4 and U5 . UI is empty, U2 contains a white no black, U3 no 

white b black, U4 and U5 both contains a white and b black balls respectively. For given positive 

integers n, <p, z and integer s, a strategy is determined by selecting an integer k, k ~ O. Once selected, 

n white, <pk black balls to UI , kz black balls to U2, (n + (<p - l)k)z white balls to urn U3, kz white, 

(n + (<p - l)k)z black balls to U4 are added. The constitution of the urns are now shown as follows. 

Table 3.3: Constitution of the urns 

Number of balls 

Urn whJte black 

UJ n ¢k 

U2 a kz 

U3 (n + (cf> - l)k)z b 

U4 a+kz b + (n + (¢ - l)k)z 

Us a b 
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Now, a ball is drawn from the urn UI, if it is white, then a ball is drawn from the U5 , if it is 

white, a ball is drawn from U3 else from U2. If the colours of the balls drawn in the last two trials 

are different, then n + ¢k draws are be made from U4 one by One with replacement, where after 

each draw the ball drawn is replaced with 8 additional balls of the same colour before the next draw. 

Success is achieved, if exactly k of these n + ¢k balls are white. 

Clearly, the probability of success is the joint probability of drawing a white from UI in the 

first trial, a white again from U5 and black from U3 or black from U5 and a white from U3 in second 

and third trials and then exactly k white balls in n + ¢k repeated trials from U4 using sampling 

scheme stated above. 

Pr(Success I Strategy k) P(k) = n [_a_ b + _b ___ a_] 
n+¢k a+b b+(n+(¢-l)k)z a+b a+kz 

(
n + ¢k) (a + kz)[k,s] (b + (n + (¢ - l)k)z)[n+(4)-I)k,s] 

k (a + b + (n + ¢k)z)[n+4>k,s] 

n a- b a + b + (n + ¢k)z --
n + ¢k a + kz b + (n + (¢ - 1) k) z a+b 

(a+kz) (b+(n+(4>-I)k)z) 
k s n+(4)-I)k s 

(a+b+(n+4>k)z) 
n+4>k s 

(3.3.1 ) 

h (a) a[k,s] 
were k s = k! a(a+s) ... (:!+(k-I)S). Here the parameters a, b, n, ¢, z, 8 are such that for k = 

0,1, ... ; P(k) 2:: O. If 8 = -1, k = 0,1, ... ,min(l~z,n). It is possible for 8 to be negative when 

¢ 2:: 0 provided a + b + (n + ¢k)z + (n + ¢k - 1)8) > O. Further, if a + kz is a fractional number, 

(a~kz) is expressed in gamma function. 

The GPM (3.3.1) can be written in the form 

P(k) = 

where 
a 

8 

n a 13 a+f3+(n+¢k)t 
n + ¢k a + kt 13 + (n + (¢ - l)k)t a + 13 
(Q+kt) (.B+(n+(4>-I)k)t) 

k n+(4)-I)k 

(Q+.B+(n+4>k)t) 
n+4>k 

b z 
a, - = 13, - = t, 

8 8 

(
a) = ark] = a(a + 1) ... (a + k - 1) and a[O] = 1 
k k! k! 

(3.3.2) 
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and also as 

P(k) 
a 13 a+f3+(n+¢k)t n 

= 
a + kt 13 + (n + (¢ - l)k)t' a + 13 n + ¢k 

(
n + ¢k) (a + kt)(kl(f3 + (n + (¢ - l)k)t)(n+(¢-l)kl 

k (a + 13 + (n + ¢k)t) (n+¢kl 
(3.3.3) 

For t = 0, the pf (3.3.3) reduces to GPE model of Sen and Mishra [63]) with parameters n, ¢, a, 13· 

Remark. The same model can also be developed using four urns with a different strategy of defining 

success. (Janardan [44]). 

3.3.1 Distributions as special cases 

GPM (3.3.1) is not a proper discrete probability distribution for all values of ¢, z and s, but 

it generates most of the well known discrete distributions as well as new distributions for different 

values of parameters n, ¢, s, z, a and b. In the following, a list of the well known discrete distributions 

(Das [29], Johnson, Kotz and Kemp [51], Nandi and Das [54], Sen and Mishra [63], Patil, Boswell, 

Joshi and Ratnaparkhi [59], Charalambides ([7], [8]) are presented as particular cases of GPM. 

Table 3.4: Distributions as special cases of GP model 

Class Parameters Distribution Mass Function Range of k 

l. ¢=O GMPD (Janardan [44], a b a±b±nz 
a+kz b+(n-k}z a+b O(l)n 

(aHz) (b+(n-k)z) 
Johnson et al. [51]) k s n-k s 

(a+bn+nZ) s 

2. ¢ = O,z = 0 Polya-Eggenberger (PE) m s (n~k) 2 
(a~b) s O(l)n 
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Class Parameters Distribution 

3. 8=1,<p=0 Quasi beta-Binomial 

II (QBB II) 

4. 8 = 1, <p = 0 Mixed quasi nega-

tive hypergeometric 

(Janardan [44]) 

5. 8 1, <p = 0, Beta-Binomial (BB) 

Z o or 8 = (Ord [56], Patil and 

-1, <p = 0, Z = 1 Joshi (60]) 

6. 8=-1,<p=0 Quasi hypergeometric 

II(QHII) ( Consul and 

Mittal [20], Nandi and 

Das [54], Janardan 

[44]) 

7. <p = 0,8 = 0 Quasi Binomial II 

(QBII) (Consul and 

Mittal (20], Janardan 

[44]) 

8. <p = 0, Z = 08= Hypergeometric (HG) 

-1 

9. <p = 0, Z = 0 Re- Markov-Polya Survival 

place 8 by -8 Model (MPSM) (Ja-

nardan [46]) 

Mass Function 

a b a+b+nz 
a+kz b+{n-k)z a+b 

(a~kz) (b+~n_-kk)z) 

(a+bn+nz) 

a b a+b+nz 
a+kz b+{n-k)z a+b 

(a-l+~(z+l)) (b-l+(:=~)(z+l)) 

(a+b-l~n(+l)z) 

(a+Z-l) (b+:=~-l) 
(a+b~n 1) 

a b a+b+nz 
a+kz b+{n-k)z a+b 

Range of k 

O(l)n 

O(l)n 

O(l)n 

max(O,n - b) 

(1) min(n, a) 

(
n) ab(a+kz)k-l(b+(n-k)z)n-k-l 0(1) 
k (a+b)(a+b+nz)n 1 n 

0(1) min(n, a) 

0(1) min(n, a) 
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Class Parameters Distribution Mass Function Range of k 

10. cp=Os=O Z= , , Binomial (~)pk(1 _ p)n-k O(l)n 

O,a/(a + b) = p 

II. cp=Oz=O a= Uniform or Discrete 1 O(I)n , , n+l 

b=s rectangular 

12. cp=1 GIMPD (Janardan (n+k-l) a b a+b+~n+k)z 0(1)00 k a+kz b+nz a+b 

[44]) 
~ a+kz )Ik,s] ~b+nz )In,s] 
(a+b+(n+k)z )tn+k,s] 

13. cp = 1, s = -1 Quasi inverse Polya- (n+k-l) a b a+b+(n+k)z 0(1)00 k a+kz b+nz a+b 

Eggenberger (Janar- {a+kz){kl (b+nz){nl 
(a+b+(n+k)z){n+kl 

dan [44]) 

14. cp=l,z=O Inverse Polya- (n+k-l) alk,s] bIn,s] 
k (a+b)tn+k,s] 0(1)00 

Eggenberger (IPE) 

15. cp=ls=O Z= , , Negative Binomial (n+z-l)pk(1 _ p)n 0(1)00 

O,a/(a+b)=p (NB) 

15a. m = np/(1 - A alternative form of (m/aj;k-l) C~a)k (l!a)m/a 0(1)00 

p), p = a/(1 + a) NB used In Ecology 

in 16. (Evans [31], Patil et al. 

[59]) 

16. cp=ls=O n= , , Geometric (p/Q)kQ-l 0(1)00 

1,z = 0, alb 

P,Q = 1 +P 
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Class Parameters Distribution 

17. s = -1, ¢ = 1, Negative hyperge-

z=o ometric (NHG) or 

distribution of no. of 

exccedence (Johnson 

et aL [511) 

18. ¢ = 1, z = 0, Inverse factorial 

a=b=s (IF) (Irwin [411) 

19. s = 1, ¢ 1, Beta-Pascal (BP) (Ord 

z = 0 Or s = [56], Johnson et aL 

-l,¢=l,z=l [51]) 

20. ¢ = 2,s = 0, Haight (Haight [37]) 

alb = a (Re-

placing k by k-

n), z = 0 

21. z=o Generalized Polya-

Eggenberger (GPE) 

(Sen and Mishra [63]) 

Mass Function 

n m(~) 
n + k (a+b) 

n+k 

or 

n 
(n+k)(n+k+l) 

n 
n+k 

(a+Z-l) (b+~-l) 

(a+b+n+k-l) 
n+k 

or 

n (2k-n-l) ok-n 
k k-l (l+o)2k-n 

_n_ ms (n+C:-I)k) s 
n+¢k ( aH ) 

n+,pk s 

Range of k 

0(1) 

min(a, a + 

b - n) 

0(1)00 

0(1)00 

n(l)oo 

0(1) min(a, n) 

when s = -1 
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Class Parameters Distribution Mass Function 

22. z = 0,8 = 0, Negative binomial- _n_ (n+¢k) (E.) k 
n+¢k k Q 

alb = P, Q = 1 + negative binomial Q-(n+(¢-l)k) 

P (Consul and Shenton 

[22]) 

23. 8 = 0, z = 0, Takacs (Takacs [66]) -L 
¢k-l 

alb = P,Q = 1 + 

P (Replacing n by 

¢-1 and then k by 

k -1) 

24. z = 0,8 = 0, Generalized nega- _n_ (n+¢k)pk 
n+¢k k 

25. 

26. 

al(a+b) =p tive binomial (GNB) (1 _ p)(n+(¢-l)k) 

(Jain and Consul [42J, 

Consul and Gupta 

[17]) 

z = 0,8 = 0, Binomial-delta (BD) !! (mk) pk-n 
k k-n 

¢ = m, al(a+b) = (Consul and Shenton (1 - p)mk+n-k 

p (Replacing n by [22]) 

mn and k by k-n) 

z = 0,8 = 0, Consul distribution 1. (mk) pk-l 
k k-l 

¢ = m,al(a+b) = (CD) (Consul and (1- p)mk+l-k 

p (Replacing n by Shenton [24], Consul 

mn and k by k-n) [13]) 

when n = 1 

63 

Range of k 

0(1)00 

0(1)00 

n(l)oo 

1(1)00 
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Class Parameters Distribution Mass Function Range of k 

27. z = 0,8 = 0, Negative binomial- !! (¢>k-n-1) (E) k-n 
k k-n Q 

n(l)oo 

alb = P,Q = delta (Consul and Q-(4)-l)k 

1 + P (Rep lac- Shenton [22)) 

ing n by (1)-l)n 

and k by k - n) 

28. 8 = 0,1> = 2, Negative binomial I (n1~1-1)(PIQ)k Q-n-k 0(1)00 

alb = P,Q = 

1 + P,z = 0 

29. 1> = 0, Replace Generalized quasi b a+b+nz 
b+(n-k)z a+b max(O,n - b) 

8 bY-8 hypergeometric (GQH (1) min(n, a) 

II) (Nandi and Das 

[54]) 

3.3.2 Moments 

Denoting the expression on the right hand side of equation (3.3.3) by P(k; n, II, a, {3, t), where 

II + 1 = 1>, the moment of the GPM model is defined as 

M:(n, II, a, {3, t) = ~ I: (r -:- 1) f= (_l)m ( ten + II) ) m 
a + {3 J==O J m==O a + t + 1 + {3 

Proof. 

M:(n,lI,a,(3,t) = LFP(k;n,lI,a,(3,t) 
k~O 

=~ L{1+kr-1(1+ 11+1 k)(a+t+1+kt) 
a + {3 k~O n + II a + t + 1 

(3.3.4) 
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( 
a+t+1+(3 ) P k; n + v, v, a + t + 1, (3, t) 

a+t+1+(3+(n+v+(v+l)k)t ( 

na ~ (r - 1) L (1 v + 1 k) (1 t k) 
= a + (3 f;;o j k~O + n + v + a + t + 1 

[ 
a+t+1+(3 ] J ) 

( ()k) k P(k;n+v,v,a+t+1,/3,t 
a+t+1+(3+ n+v+ v+1 t 

na ~ (r - 1) L (1 v + 1 k) (1 t k) 
= a + /3 1=0 j k>O + n + v + a + t + 1 

[
a+t+1+/3+(n+V+(V+1)k)tj-

1
k1 P(k' t 1 (3 t) 

(3 
, n + v, v, a + + , , 

a+t+1+ 

= ~ I: (r -1) L (1 + v + 1 k) (1 + t k) L (_l)m 
a + /3 ]=0 j k~O n + v a + t + 1 m~O 

tn+v v+1 m 

]

m . 

[ ( ) (l+--k) k1 P(k;n+v,v,a+t+1,/3,t) 
a+t+1+(3 n+v 

=~~(r-1) L(-l)m[ t(n+v) ]mL(l+ t k) 
'a + /3 ]=0 j m~O a + t + 1 + /3 k~O a + t + 1 

m+l (m+ 1) (v+ 1)£ ~ l n+v kH £P(k;n+v,v,a+t+1,(3,t) 

= ~ ~ (r-1) f (_l)m( t(n+v) )m 
a + /3 ]=0 J m=O a + t + 1 + (3 

~ (m; I) (~: ~r{M;+l(n + v,v,,, + t + l,fJ,t) + 

t MJ~+Hl(n+v,v,a+t+l,/3,t)} 
a+t+ 1 

Similar relation for the model (3.3.1) can be obtained as. 

M '( b) _ ~~(r-1) ~ (_ )m( z(n+v) )m 
r n, v, a, , z, s - b ~ . ~ 1 b 

a +]=0 J m=O a + + z + s 

~l (m; I) (~: ~r{M;+l(n + v,v,. + z + s,b,z.s) + 

z , ) 
---MHH1(n + v,v,a+z +s,b,z,s } 
a+z+s 

65 

(3.3.5) 

In fact, the relation (3.3.5) reduces to the relation (3.3.4) for s = 1 and a = a, b = (3 and z = t. For 

z = 0, (3.3.5) reduces to 

M;(n, v, a, b, s) 
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(3.3.6) 

When 1/ = 0, relation (3.3.6) reduces to (Inverse Polya -Eggenberger distribution ( Johnson and Kotz 

[49]) 

r-l ( ) 1 I . na r - 1 I I 
Mr(n,a,b,s) = --b L . {Mj(n,a+s,b,s)+-Mj+1(n,a+s,b,sn 

a + j=O J n 
(3.3.7) 

Which for r = 1 becomes 

I na { 1 I ( }} M1(n,a,b,s) = a+b 1+;;;,M1 n,a+s,b,s) (3.3.8) 

Putting s = 0 in relation (3.3.7) we get the following relation for negative binomial distribution 

(Johnson et al. [51], p.207) 

r-l ( ) na r - 1 I 1 I 
-b L . {Mj(n,a,b) + -Mj+1(n,a,bn 
a + j=O J n 

where a~b = p while for t = 0, (3.3.4) reduces to (Sen and Mishra [63]) 

M:(n, 1/, Q, (3) = nQ(3 ~ (r -:- 1) {Mj (n + 1/,1/, Q + 1, (3) + 
Q + j=O J 

1/+1 I 
--Mj +1 (n + 1/,1/, Q + 1, (3n 
n+1/ 

(3.3.9) 

(3.3.10) 

It may be mentioned here that while for z = 0 relations (3.3.4) and (3.3.5) gives moment relations 

correctly for all the distributions belonging to the GPM with z = 0, unfortunately for z -=1= 0 it seems 

to fail to give results when 1/ = 0 

3.3.3 Recurrence relations for mean and second order moment when 1/ = -1 

Putting r = 1 and 1/ = -1 in (3.3.4) and (3.3.5) we get respectively 

M~ (n, Q, (3, t) = nO' ~ ( )m ( ten - 1) ) m{ I ( --(3 ~ -1 1 (3 Mon-1,Q+t+l,(3,t)+ 
Q + m=O Q+t+ + 

t 1 M~ (n - 1, Q + t + 1, (3, tn (3.3.11) 
Q+t+ 
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where MUn,a,,8,t) == Mf(n,-l,a,,8,t) is the mean of the GMPD (Janardan [44]) and 

M{(n,a,b,z,s) = 
00 (( ))m na z n - 1 -- L (_1)m {M~(n-1,a+z+s,b,z,s)+ 

a + b m=O a + b + z + s 

z M{(n-1,a+z+s,b,z,s)} 
a+z+s 

(3.3.12) 

where M{ (n, a, b, z, s) == M{ (n, -1, a, b, z, s) is the mean of the GMPD (Janardan [44]). 

Since Mo(n - 1, a + t + 1,,8, t) = 1, 

, na { (t(n-1) )}-l t , 
Mdn,a,,8,t) = a+,8 1+ a+t+1+,8 {1+ a+t+1Mdn-1,a+t+1,,B,t)} (3.3.13) 

and Mf (1, a + (n - l)(t + 1),,8, t) = a~~+n~~l~~~l)' using (3.3.13) recursively we get (Janardan [44J 

M' (n a ,8 t) = ~ t (n - l)(t-l) (a + ,B + (t + l)i) tt-l 
1 , " a+,Bt=l (a+,B+nt+1)[tl 

The same result can be directly obtained using the fact that 

_a_ (n) (a + kt)[kl(,8 + (n - k)t)[n-kl 
a+kt k (a+,8+nt)[nl 

na 

a+,B 
(3.3.14) 

(3.3.15) 

is a proper probability distribution for k = 0,1, ... , n, referred to as quasi Polya distribution (QED) 

with parameters n, a, {3, t (Consul [I1J, Janardan [43], Das [29]). 

Also using a generalized Vandermonde convolution identity (Gould [34]), it can be seen that 

E(c + dX) = c(a +,B) + nad 
a+,B 

where X follows GMPD with (n, a, {3, t). 

Putting r = 2 and v = -1 in (3.3.4), we get 

M~(n,a,{3,t) = na{3 f (_1)m( t(t
n

-l
1

) {3)m{l+ tt IM{(n-1,a+t+1,{3,t) 
a + m=O a + + + a + + 

+M{(n-1,a+t+1,,B,t)+ t M~(n-1,a+t+1,,B,t)} 
a+t+ 1 

na { 1 (n - 1) (a + t + 1) } na a + ,8 + t + 1 -- + + ----~---
a+,B (a+,B+nt+1) a+,Ba+,B+nt+1 

t '( 
1

M2 n-1,a+t+1,,8,t) 
a+t+ 

(3.3.16) 
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where MHn, a,j3, t) == M~(n, -1, a,j3, t) is the second order moment of the GMPD (Janardan [44]). 

The second order factorial moment can also be obtained in terms of the mean of quasi Polya 

distribution (QED) (Janardan [43]) given in (3.3.15) as follows 

E[X(X _ I)J = n(n - l)a a + nt + 1 
a + j3 a + f3 + nt + 1 

n(n - l)at E[YJ 
(a + (3)(a + f3 + nt + 1) 

(3.3.17) 

where Y is distributed as QED with (n - 2, f3, a + 2t + 2, t) and E(YJ is given in (3.2.7). 

Which reduces to E[X(X - I)J for PE when t = 0 (Johnson and Kotz [49]). 

A general formula for various first and second order moments for the variate X distributed 

GMPD with (n, a, f3, t) can be written using a generalized Vandermonde convolution identity (Gould 

[34]) as 

E[(c + dX)(u + v(n - X))J 

By properly choosing the constants c, d, u, v as below, various moments can be obtained from relation 

(3.3.18) 

i) E[X 2
J if c = 0, d = 1, u = n, v = -1. 

ii) E[X(X -1)J if c = -I,d = l,u = n,v =-1. 

iii) E[X(X + I)J for c = I,d = l,u = n,v =-1. 

. ) V{X)'f - _....!!fL d - - -.!!:.L -IV I C - a+tl> - l,u - a+,B'v --1. 

v) E[XJ if c = 0, d = 1, u = 1, v = O. 

vi) E[n - XJ if c = 1, d = 0, u = 0, v = 1. 

Some of the formulas are listed below 

2 n2a a n-2 n(j+2) . 
E[X J = ----2: t J 

a + f3 a + f3 ]=0 (a + f3 + nt + l)b+ I ] 
(3.3.19) 

n(n - l)a a + nt + 1 a n-2 n(J+2) 
E[X{X - l)J = 2: tJ 

a+f3 a+f3+nt+1a+f3]=0 (a+f3+nt+1)b+1] 
(3.3.20) 



3.3. MODEL II : AN URN MODEL WITH FIVE URNS 69 

This result is equivalent to the (3.3.17) 

(3.3.21) 

3.3.4 Recurrence relations for probabilities 

Following the recurrence relations for the probabilities P(k; n, v, a, (3, t) on the r.h.s. of (3.3.3) 

where v + 1 = ¢; holds. 

1. 
n + vk (n + (v + 1)k)[1I+2j a + kt 

P(k + l' n v aRt) = -----,------:- -=-----'----'--~- ---.,....,. 
, , "/-,, (n+vk)[1I+1j n+(v+1)(k+1) (a+kt)[t) 

(a + (t + l)k)[t+l) (3 + (n + vk)t ((3 + (n + vk)(t + l))[II(t+l)) 

a + (k + l)t ((3 + (n + Vk)t)[lIt) (3 + (n + v(k + l))t 

a + (3 + (n + (v + l)(k + l))t (a + (3 + (n + (v + 1)k)t)[(1I+1)t) 
a + (3 + (n + (v + l)k)t (a + (3 + (n + (v + l)k)(t + l))[(II+l)(t+l)) 

1 
-k -P(k; n, v, a, (3, t) 

+1 

Specwl cases of {3.3.22}. For 

i) t = 0, 

GPE(k+ l;n,v,a,(3) = 
(n + (v + 1)k)[1I+1J ((3 + n + Vk)[IIJ 

(n + vk + l)[IIJ (a + (3 + n + (v + 1)k)[1I+1j 

ii) t = 0, v = -1 

iii) t = 0, v = ° 

a+k 
-k -G P E(k; n, v, a, (3) 

+1 

a+k n-k 
PE(k + l;n,a,(3) = k + 1 (3 + n _ k -1 PE(k;n,a,(3) 

a+k n+k 
IPE(k+1;n,a,(3) = -k 1 (3 k IPE(k;n,a,(3) + a+ +n+ 

iv) t = 0, v = -1, a = -a, (3 = -b (See Johnson et al. [51], p.253) 

n-k a-k 
HG(k + l;n,a,b) = -k 1 b k HG(k;n,a,b) 

+ -n+ +1 

(3.3.22) 

(3.3.23) 

(3.3.24) 

(3.3.25) 

(3.3.26) 
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v) t = 0) v = 0, Q = -a, (3 = -b 

a-k n+k 
NHG(k + l;n,a,b) = -k- b kNHG(k;n,a,b) 

+1 a+ -n-
(3.3.27) 

2. P(k'n+1v Q (3 t) = n+1 n+(l/+l)k (3+(n+vk)t 
, "" n (n + vk + 1) ((3 + (n + l/k)t)[t) 

((3 + (n + vk)(t + l))[(t+l)) Q + (3 + (n + (v + l)k)t + t 
(3+(n+vk)t+t Q+(3+(n+(v+1)k)t 

(Q + (3 + (n + (v + l)k)t)[t) P k 
( 'n vex (3 t) 

(Q + (3 + (n + (l/ + l)k)(t + l))[(t+l)) "", 
(3.3.28) 

Special cases of {3.3.28}. When 

i) t =: 0, 

GP E(k; n + I, v, Q, (3) 
= n + 1 (n + (v + 1) k) ((3 + n + v k ) 

n (n+vk+l) (Q+(3+n+(v+l)k) 

GPE(k; n, v, Q, (3) (3.3.29) 

ii) t = 0, v = -1 

(3+n-k n+1 
PE(k;n + l,Q,(3) = 13 k PE(k;n,Q,f3) Q+ +nn- +1 

(3.3.30) 

iii) t = 0, v = 0 

n+k f3+n 
IPE(k;n + l,Q,f3) = -- 13 IPE(k;n,Q,f3) 

n Q+ +n+k 
(3.3.31) 

iv) t = 0, v = -I, Q = -a, (3 = -b (See Johnson et al. [51], p.253) 

n+l b-n+k 
HG(k; n + I, a, b) = HG(k; n, a, b) 

n-k+1a+b-n 
(3.3.32) 

v) t = 0 v = 0 Q = -a 13 = -b , , , 

n+k b-n 
NHG(k;n+l,a,b) = -- NHG(k;n,a,b) 

n a+b-n-k 
(3.3.33) 

3. P k'n v+1 Q t = (n+(v+1)k)[k) f3+(n+vk)t 
( " , ,13,) (n + vk + l)[k) ((3 + (n + vk)t)[kt) 

((3 + (n + vk)(t + 1))[k(Hl)) (Q + (3 + (n + (v + l)k)t)[kt) 

. f3+(n+(v+1)k)t Q+f3+(n+(v+1)k)t 

(Q + 13 + (n + (v + 1) k) t + kt) 
(Q + (3 + (n + (l/ + l)k)(t + l))[k(t+l)) P(k; n, v, Q, 13, t) (3.3.34) 
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Special cases of (3.3.34)· If 

i) t = 0, 

GPE(k;n,1I + I,a,/3) = 
(n + (II + I)k)[kJ (13 + n + IIk)[k] 

(n + IIk)[k] (a + 13 + n + (II + I)k)lk] 

GP E(k; n, II, a, 13) 

ii) t = 0, II = -1 

n 1k] (13 + n - k)lk] 
IPE(k;n,a,f3) === (n _ k)[k] (a + 13 + n)lk]PE(k;n,a,f3) 

which gives a relationship between probabilities of PE and IPE. 

iii) t = 0, II = 0 

(n+k)lk] (f3+n)[k] 
GPE(k;n, I,a,f3) = [k] [k] IPE(k; n,a,f3) 

(n+I) (a+f3+n+k) 

4. P(k; n, II, a + 1,13, t) = 
a + 1 a + 13 a + kt + k 

a a + 13 + 1 a + kt + 1 
a+f3+(n+(II+I)k)t+I Pk 

( . n II aRt) 
a+f3+(n+(II+I)k)(t+I) '" ,/J, 

Speczal cases of (3.3.38). In case 

i) t = 0, 

a+k a+f3 
GP E(k; n, II, a + 1,13) = - () GP E(k; n, II, a, 13) 

a a+f3+n+ 11+1 k 

ii)t=O,II=-I 

P'D" . ) a+k a+i3 ( ) .D~K:; n, a -r I, t3 = -- FE k; n, a, t3 
a a+f3+n 

iii) t = 0, II = 0 

a+k a+f3 
IPE(k;n,a + 1,,13) = -- IPE(k;n,a,f3) 

a a+f3+n+k 

iv) t = 0, II = -1, a = -a, 13 = -b {See Johnson et al. [51], p.253} 

a+I a+b-n+I 
HG{k; n, a + 1, b) = HG{k; n, a, b) 

a-k+I a+b+I 

71 

(3.3.35) 

(3.3.36) 

(3.3.37) 

(3.3.38) 

(3.3.39) 

(3.3.40) 

(3.3.41) 

(3.3.42) 
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v) t = ° v = ° a = -a (3 = -b , , , 

a+l a+b+l-n-k 
NHG(k;n,a+ l,b) = k b NHG(k;n,a,b) 

a+ -1 a+ +1 

5. P(k; n, v, a, (3 + 1, t) 
= (3+1 0'+(3 (3+(n+vk)(t+l) 

(3 0'+(3+1 (3+(n+vk)t+l 

O'+(3+(n+(v+l)k)t+l P(k.n va (3 t) 
0'+(3 + (n + (v + l)k)(t + 1) "'" 

Special cases of (3.3.44). When 

i) t = 0, 

a + (3 (3 + n + vk 
GPE(k;n,v,O',{3+1)=-(3- (3 (l)k GPE(k;n,v,a,{3) 

0'+ +n+ v+ 

i)t=O,v=-1 

O'+(3(3+n-k 
PE(k;n,a,(3 + 1) = -(3- (3 PE(kjn,a,{3) 

a+ +n 

iii) t = 0, v = ° 
0'+(3 (3+n 

IPE(k;n,O',{3 + 1) = -(3- (3 k IPE(k jn,a,{3) 
a+ +n+ 

iv) t = 0, v = -1, a = -a, (3 = -b (See Johnson et al. [51J, p.253) 

b+l a+b-n+l 
HG(kjn,a,b+l) = a+b+l b_n+k+l HG (k;n,a,b) 

v) t = 0, v = 0, 0'= -a,(3 = -b 

b+l a+b+l-n-k 
NHG(k;n,a,b+l) = a+b+l b+l-n NHG(kjn,a,b) 

6. P(kjn,v,a+l,{3-1,t) 
(3 - 1 a + 1 a + kt + k 

= -------
(3 a 0'+ kt + 1 

(3 + (n + vk)t 
(3 + (n + vk)(t + 1) _ 1 P(kj n, v, a, (3, t) 

Special cases of (3.3. 50}. Let 

i) t = 0, 

O'+k (3-1 
GPE(k;n,v,a + 1,{3 -1) = -- GPE(k·n va R) a (3 + n + vk - 1 ' , , , fJ 

(3.3.43) 

(3.3.44) 

(3.3.45) 

(3.3.46) 

(3.3.47) 

(3.3.48) 

(3.3.49) 

(3.3.50) 

(3.3.51) 
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ii) t = 0, v = -1 

a+k (3-1 
PE(k;n,a + 1,(3 -1) = -- (3 k 1 PE(k;n,a,{3) 

a +n--
(3.3.52) 

iii) t = 0, v = ° 
a+k (3-1 

IPE(k;n,a + 1,{3 -1) = -- (3 l IPE(k;n,a,{3) 
a +n-

(3.3.53) 

iv) t = 0, v = -1, a = -a, (3 = -b (See Johnson et al. [51], p.253) 

, a+l b-n+k 
HG(k;n,a+l,b-l)=a+k_l b HG(k;n,a,b) (3.3.54) 

v) t = 0, v = 0, a = -a, (3 = -b 

a+l b-n 
NHG(k;n,a+l,b-l) = k --NHG(k;n,a,b) 

a+l- b 
(3.3.55) 

3.3.5 Estimation 

Here the various steps involved in the ML estimation of the parameters of GMPD using iterative 

numerical scheme are presented. It is assumed that the observed frequencies in a random sample of 

size N are nk, k = O(I)m for different classes, i.e., Ek=O nk = N, where m is of course the largest 

value observed. Here the parameter n is estimated by m. 

The pf of GMPD can be written as 

k-l n-k-l 

_ (n) p(1 - P).tQl (P + k¢ + it) Dl (1 - P - (n - k)¢ + ~t) 
Pk - k n-l 

IT (l+n¢+it) 
(3.3.56) 

t=l 

where P = a~b' q = a!b' ¢ = a~b and t = a~b' 

The log likelihood function is given by 

I ~ logL ex Nlogp(J - p) + t, n, {~IOg(p + k4' + it) + n~' (l - p + (n - k)4' + it)} 

n-l 

N L log(1 + n¢ + it) (3.3.57) 
t=O 
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The three likelihood equations obtained by partially differentiating l with respect to p, </J, and 

1 - 2p m {k-l 1 n-k-l 1 } 
= N +2: n 2: - 2: =0 

op p(1-p) k==O k i==lP+k</J+it i==l 1-p+(n-k)</J+it 
al 

= 0, Say (3.3.58) 

fJl 
o</J 

m {k-l k n-k-l n - k } 

{;nk t;P+k</J+it+ ~ 1-p+(n-k)</J+it 

n-l 1 
- nN 2:: . = 0 :::::} U2 = 0, Say 

i==l 1 + n</J + '/,t 

fJl = f nk {I: i . + nfl i . } 
ot k==O i==l P + k</J + '/,t i==l 1 - P + (n - k)</J + '/,t 

n-l . 

N " '/, --0 0 S ~ :::::} U3 = , ay 
i==O 1 + n</J + it 

(3.3.59) 

(3.3.60) 

Analytical solution of the likelihood equations above even for small values of m are not avail-

able. Hence we present here the numerical method of solving the equations by applying the Newton-

Rapson technique. Following are the partial derivatives OfUl, U2 and U3 required for implementing the 

algorithm. 

m {k-l 1 n-k-l 1 } 
- 2:: nk 2: (p k</J . )2 + 2: ( ( ) . )2 k==O i==l + + '/,t i==l 1 - P + n - k </J + '/,t 

1 1 
N(p2 + (1 _ p)2) = du, Say (3.3.61 ) 

m {k-l k n-k-l n - k } 

-Enk ~(p+k</J+it)2 - ~ (1-p+(n-k)</J+it)2 

d12, Say (3.3.62) 

-~> {E (P+k~+it)' - n"El (1- p + (n ~ k)¢+ it)' } 

= d13, Say (3.3.63) 

m {k-l k2 n-k-l (n _ k)2 } -E nk ~ (p + k</J + it)2 + ~ (1 - P + (n - k)</J + it)2 

n-l 1 
+ n2 N 2:: = d22, Say 

i==O (1 + n</J + it)2 
(3.3.64) 

m {k-l ik n-k-l i(n _ k) } 
= - E nk ~ (p + k¢ + it)2 + ~ (1 - P + (n - k)¢ + it)2 
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n-l . 
~ 

+ nN ~ (1 + nifJ + it)2 = d23, Say (3.3.65) 

- ~ n, {~ (p +k~ + it)' + n~' (1 _ p + (ni~ k),p + it)' } 

n-l ·2 . 

+ N L ~ = d33 , Say 
i=O (1 + nifJ + it)2 

(3.3.66) 

It may be noted here that 

Now the estimate of p, ifJ and p can be obtained by generating the sequence of vectors (Pi, ifJi, td using 

the recurrence relations 

The iteration is stopped at the rth step if the distance between rth and the (r + l)th solution 

is less than a pre-assigned small positive number and (Pr, ifJr, tr) is taken as the MLE of (p.ifJ, t). 

3.3.6 Limiting cases 

1. If a/ s, b/ sand n/ s are infinitely large quantities of the same order, as t approaches zero and 

ifJ = 0, then the GPM tends to a normal distribution. 

2. The GPM with parameters p(= a~b),q(= a!b),r(= a~b),t(= a~b)' ifJ = 0 and n tends to the 

generalized Poisson distribution (Consul and Jain [18]) with parameters A and 'l/J as n --t 00, P --t 0 

and r --t 0, t --t 0 such that np = AI, nt = A2 and nr --t 0, where A = 1~~2 and'l/J = 1~i2. 

3. The GPM with parameters p(= a+b~nz),q(= a+b~nz),r(= a+b~nz),t(= a+b~nz)' ifJ = 0 and n 

tends to the generalized Poisson distribution (Consul and Jain [18]) with parameters A and 'l/J as 

n --t 00, P --t 0 and r --t 0, t --t 0 such that np = A, nt = 'l/J and nr --t O. 

4. If aj s is a quantity of lower order and n/ s is of the same order as the quantity b/ s, then the GPM 

tends to the Poisson distribution as z, ifJ and approaches zero. 
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5. If a, b -+ 00 with (a~b) = p(o < p < 1) n remaining constant then as rP and z approaches zero, 

GPM tends to binomial distribution with n,p. 

6. If a, b -+ 00 with (a~b) -+ 00 also n -+ 00 with (a~b) -+ A(O < A < (0) and (a;tsb) -+ J1.(0 < J1. < (0) 

then as rP and z approaches zero, GPM tends to negative binomial distribution with AJ1. and (1 + J1.)-1. 

7. If n -+ 00 with * -+ .13(0 < .13 < (0) and (a~b) -+ A(O < A < (0) then as rP and z approaches 

zero, GPM tends to Poisson distribution with A. 

8. If n -+ 00 with ~ -+ 0, (~t!f -+ 00 and (a~b) -+ A(O < A < (0) then as ¢ and z approaches 

zero, GPM tends to Poisson distribution with A. 

9. If n -+ 00 with ~ -+ 00, * -+ 0 and (an':b) -+ A(O < A < (0) then as ¢ and z approaches zero, 

GPM tends to Poisson distribution with A. 

10. If n -+ 00 with a~b -+ 0, a~b -+ 0 such that (a~b) -+ (h, (a~b) -+ fh finite nonzero then as ¢ and 

z approaches zero GPM tends to negative binomial distribution with ~,02 ' 

11. When a, a + b -+ 00 with a~b -+ p(O < p < 1) as z approaches zero GPM tends to negative 

binomial distribution. (Johnson,Kotz [48)' p.157) when ¢ = 1 and s -+ -1. 

12. For s = 0, z = 0, and a~b = p is small GPM tends to GPD I with A and 'ljJ as nand ¢ tends to 

00 such that np = A and ¢ = 'ljJ. (Consul [14], p.26). 

3.4 A simple extension of the model 

Instead of drawing a ball form U1 and proceed if it is white, here r draws are made from U1 one 

by one without replacement before proceeding to the next stage if all r balls are white. Rest of the 

steps being the same the probability of success under this setup is given by 

Pr(Success I Strategyk) = P(k)= n(r-) a b a+b+(n+rPk)z 
(n+¢k)(r)a+kz b+(n+(¢-l)k)z a+b 

(
n + rPk) (a + kz)[k,s] (b + (n + (¢ - l)k)z)[n+(c,/>-l)k,s] 

[ c,/>k] , (3.4.1) k (a+b+(n+¢k)z)n+ ,s 



3.5. CONCLUSION 

with r = 1 (3.4.1) reduces to (3.3.1) and for ¢ = 0 to GMPD. For ¢ = 1 (3.4.1) transforms to 

(
n + k - r) _a __ b_ a + b + (n + k)z (a + kz)[k,sj (b + nz)[n,sj 

k a+kz b+nz a+b (a+b+(n+k)z)[n+k,sj 
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(3.4.2) 

which is the probability of k whites preceding the nth black when (r - 1) other blacks occurs in 

prefixed positions. This is a generalization of GIMPD (Janardan [44]). 

3.5 Conclusion 

Urn models helps in understanding complex physical systems by interpreting them mathemati-

cally and hence have tremendous importance in applications (Johnson and Kotz [49]). Urn models 

with pre-determined strategies have applications in many real life situations (Consul [11], Janardan 

[43J and Consul and Mittal [21]) ranging form Migration, War strategies, Ecology, Business, Indus-

try, Agriculture, Medicine to Psychology, Sociology, Operation Research, etc. The Models described 

in this chapter are developed theoretically and is among the most wider urn models in terms of 

its coverage of number and variety of discrete probability distributions having diverse applications. 

Study of these models will certainly strengthen the base of unification of various distributions and 

lay foundation of a common frame work for future studies. These models can be used to develop 

general routines for computing probabilities for a large number of discrete distributions. Also using 

cumulative probabilities, one can simulate random samples through inversion method. GMPD is a 

symmetrical discrete distribution when a = b or p = q and takes variety of shapes. 



Chapter 4 

a-Modified Binomial Distributions 

4.1 Introduction 

Here various aspects like pgf, moments, inter-relation among different pfs and limiting distributions 

of a class of weighted a-modified binomial and related distributions are studied. Some applications 

of these distribution are considered. 

4.2 A class of a-modified binomial distributions 

Definition 1 A discrete random variable X is said to follow a a-modzjied-binomial distribution wzth 

parameters n, p, q, ¢ if its probability function is given by 

Pr(X = k) = (n) (p + a¢)kqn-k, k = O(1)nj ¢ 2: OjP + ¢ 2: OJ q > 0, 
k (q + P + a¢t 

where on expanszon at == at = i!. 

(4.2.1) 

For p + q = 1, the pf (4.2.1) reduces to a-modified-binomial distribution of Berg and Jaworski [4J 

with n,p, ¢. While for ¢ = 0 to common binomial distribution with n,p. 

78 
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Clearly, if X follows (4.2.1) Y = n X, the complimentary variable has the pmf 

(
n) (p + a¢»n-kqk 

Pr(Y = k) = k (q + P + a¢>t' k = O(l)n; ¢> ~ O;p + ¢> ~ 0; q > O. (4.2.2) 

This distribution is referred to as complimentary-a-modified-binomial distribution with param-

eters (n,p, q, ¢» 

4.2.1 Factorial moments 

Factorial moments of the complimentary variable (n - X) is given by 

if ¢ > 0 
E[(n ( 4.2.3) 

if ¢ = 0 

It can be shown that 

(q + p + a¢)n = (q + p)n + n¢>(q + p + a¢>t- 1 (4.2.4) 

Applying the result recursively we get 

/.L-l 

(q + P + a¢»n I: n(r)¢>r(q + p)n-r + n(!·I.)¢/.L(q + p + a¢»n-/.L (4.2.5) 
r=O 

Hence from (4.2.3) 

( 4.2.6) 

When J.L = 1, the mean of (4.2.1) is given by 

E[(n - X)] = !!. [1 -. (q + p)n-r 1 
¢> (q+p+a¢»n 

(4.2.7) 

for q + p = 1, r.h.s. of (4.2.7) reduces to Berg and Jaworski [4] 

~ [1 - (1 + 1a¢» n ] 

From (4.2.6) 

/.L-l 

I: n(r)¢r(q + p)n-r (4.2.8) 
r=O 
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From this relation, it is clear that the sum in the left hand side of (4.2.8) is equal to the sum 

of the first J..L terms of the expansion (q + p + a¢) n . 

In fact 

(4.2.9) 

1 + n¢, if p + q = 1 (4.2.10) 

t (~) (p + a¢)kqn-k = (q + P + a¢)n = (1 + a¢)n, ifp + q = 1 
k==O 

(4.2.11) 

Using the result above, we now introduce a class of weighted probability distribution of (4.2.1) as 

follows. 

4.3 A class of weighted a-modified binomial distributions 

Definition 2 With at == at· = i! the following pf represents a class of discrete probability 

distributions 

(4.3.1) 

for k = O(l)n; 0:::; ¢ :::; q/n; p + ¢ ~ 0; q> o. 

4.3.1 Some special cases 

For 

i) v = n + 1, the pf (4.3.1) reduces to the pf (4.2.1). 

ii) v = 1,p + q = 1, the pf (4.3.1) transforms to the pf given by (Berg and Jaworski [4]) 

Pr(X = k) = (~) (p + a¢)kqn-k-l(q - (n - k)¢), k = O(l)n; ¢:::; q/n,p + ¢ 2:: O. (4.3.2) 
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This distribution is referred to as weighted-a-modified-binomial distribution with parameters 

(n,p,¢) 

4.3.2 Probability generating function 

The probability generating function (pgf) of the complimentary random variable (n - X) when X 

follows a-modifIed-binomial as stated in (4.3.1) is given by 

In particular, the pgf of (n - X) when 

(i) X follows the distribution in (4.2.1) is 

(ii) X follows the distribution in (4.3.2) is 

{qs+p+a¢)n 

(q+p+a¢)n 

(qs + P + a¢t - n¢s{qs + p + a¢)n-I 

Using the following generalization of (4.2.5) 

v-I L n(r)¢r(qs + p)n-r 
r=O 

+ (1 - sV)n(v)¢V(qs + p + a¢t-V, 

the pgf (4.3.3) can be alternatively written as 

v-I 
L: n(rl¢r(qs + p)n-r + (1 _ sV)n(vl¢v(qs + p + a¢)n-v 

r=O 
v-I 
L: n(rl¢r(q + p)n-r 

r=O 

4.3.3 Factorial Moments 

(4.3.3) 

(4.3.4) 

(4.3.5) 

(4.3.6) 

(4.3.7) 

Denoting by E~[n - Xl the mathematical expectation of (n - X) when X follows (4.3.1) with 1/ = Z, 

it can be seen that 

Ev[n - X) = G'(l) 
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[nq(q + P + a</J)n-1 - n(vl</Jv {V(q + P + a</J)n-v + q(n - V)(q + P + a</J)n-V-1 }] 
= v-I 

L n(rl</Jr(q + p)n-r 
r=O 

(4.3.8) 

In particular, with v = 1, we have E[n - X] for (4.3.2) as 

Edn - X] = G'(I) Iv=l= n(q - </J)(1 + a</Jt- 1 
- n(2l q</J(1 + a</Jt-2 (4.3.9) 

Using (4.2.4), (4.3.9) can be written as 

Erln - X] = -n</J(1 + a</Jt-1 + nq (4.3.10) 

Therefore, 

ErlX] = n</J(1 + a</J)n-l + np (4.3.11) 

For 

i) v = n + 1, we get 

E [ X] _ nq(q + p + a</J)n-l 
n+ 1 n - - ---..:....:(:-=-q-+--.:.p-+-a...:..,.</J~)n- (4.3.12) 

which is equal to the r.h.s of (4.2.7). 

ii) v = 2, 

E2[n - X] = G'(I) Iv==2 

Now 

= {nq(q + p + a</J)n-l - 2n(2l</J2(q + p + a</J)n-2 :..- n(3l</J2q(q + p + a¢)n-3} 

{(q + p)n + n</J(q + pr- 1
} 

= (1 + n</J)-I{nq(1 + a</Jr-1 
- 2n(2)</J2(1 + a</Jt-2 - n(3)</J2q(1 + a</Jt-3} , 

if p + q = 1 (4.3.13) 

+ 2vn(v+1lq(q + p + a</J)n-V-1 + n(V+2lq2(q + p + a</J)n-v-2}] 

(; n l')",' (q + p)n~') ~l (4.3.14) 
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In particular, when 

i) v = 1, 

Using (4.2.4) it can be seen that 

Hence, 

Edn - X]2 = n[2 + q(p + nq) - (¢ + 2)(1 + a¢t-1
] 

ii) v = n + 1, 

Following relations hold provided p + q = 1, 

n{2lq2(q + P + a¢)n-2 

(q+p+a¢)n 
n{2lq2(1 + a¢)n-2 

(1 + a¢)n q + p = 1 
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(4.3.15) 

(4.3.16) 

(4.3.17) 

(4.3.18) 

(4.3.19) 

Mean, variance and other moments of different distributions belonging to the weighted a-modified-

binomial class can be derived using the results stated above along with the relationships between the 

ascending and descending factorials. 

4.4 Generalized distributions 

Let Y be a discrete random variable with E[sYj = L Prsr = G(s), where Pr = Pr(Y = r). If G(s) 
r>O 

has the form 

G(s) = (qg(s) + P + a¢)n, 
(q+p+a¢}n 

(4.4.1) 
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where the parameters n,p,</; obeys' q > O,</; ~ 0 and p + </; > O,n positive integer and g(s) is a 

pgf, then the distribution of X = n - Y is said to be a generalized a-modified-binomial distribution 

generalized by the distribution whose pgf is g(8). (Johnson and Kotz [48], p.202 and Johnson et al. 

[51], p.324 ) 

Clearly, 

(4.4.2) 

and Pr = Coefficient of sr in G (8). 

In particular, if the distribution with the pgf 9 depends on a parameter, say z, such that 

[g(s I z))1 = g(s I jz), then 

p - t (n) (p + a</;)n-Jql x Coefficient of sr in g(sfjr) 
r -]=0 j (q + p + a</;)n 

Some special cases: For 

1. g(s) = eA(s-l), A ~ 0, 

Pr(Y = r) = A~ t JT e-JA (n) r + a</;)n-J)q~, r = 0,1, ... 
r. ]=0 J q + p + a</; 

(4.4.3) _ 

(4.4.4) 

with </; = 0 and P + q = 1, (4.4.4) reduces to Poisson(O) A Binomial(n, q) (Johnson and Katz [48], 
8/>. 

p.186 and Johnson et al. [51], p.333). 

Alternatively, the pf (4.4.4) can be written as 

(4.4.5) 

The factorial moment for the distribution (4.4.4) is 

( 4.4.6) 

where (n - j) follows a-modified binomial distribution (4.2.1) with parameters n,p, q and </;. 

Using the formula for Ell) in (4.2.3), it can be shown that 

(4.4.7) 
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where ~ is the forward difference operator and in expansion /j,)ON = ~JxN Ix= ° is known as 

the difference of zero. The values of c:,.~~N for different values N, J are tabulated in Table (34.2) of 

Johnson et al. [50J (p.6). 

From (4.4.7) it can be observed that 

E[Y]=nq)..{(q+p+a¢)n-l} , 
(q+p+a¢)n 

(4.4.8) 

(4.4.9) 

(4.4.10) 

For ¢ = O,p + q = 1, the above results reduces to (Johnson and Kotz [48], p.186; Johnson et al. [51], 

p.334). 

E[Y] = nq).., 

and V[Y] 

The pgf of (4.4.4) is 

Therefore 

(qeA(S-l) + P + a¢)n 
G (8 ) = --:-( q-+-p-+-a-¢:-)n-

(qe- A + P + a¢)n 
Po = and 

(q+p+a¢)n 
)..r (_)..)1, 

Pr = I L -l,-J.lr+I' 
r. 12:0 . 

(4.4.11) 

(4.4.12) 

(4.4.13) 

(4.4.14) 

where J.l~+l is the (r + l)th order raw moment of the a-modified -binomial distribution (4.2.2). 

This results may be used for computation of probabilities. 

II. 9(8) = (q' +p'8)n', 

Pr(Y = r) t (n) (p + a¢)n-Jq~ (n'J) (p'r(q,)n'J-r, 
J2:r/n' J (q+p+a¢) r 

(4.4.15) 

r = 0,1, ... ; q' = 1 _ p'. 
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with ¢ = 0 and p + q = I, the pf (4.4.15) reduces to Binomial(n',p') /\ Binomial(n, q) (Johnson and 

Kotz [48], p.194 and Johnson et al. [51], p.336). 

where (n - j) follows a-modified-binomial distribution (4.2.1) with n,p, q and ¢. 

When n = I, the pf (4.4.15) reduces to 

(4.4.16) 

r = 0, 1, ... ; q' = 1 - p'. 

is also a a-modified-binomial of the form (4.2.2) with parameters n,p, qp' and ¢. 

III. 9(S) = (Q - PS)-N, 

Prey = r) = t (~) (p + a¢)n-jqj (-Nj) prQNj+r, 
j=O J (q+p+a¢)n r 

(4.4.17) 

r = 0, 1, ... ; Q = 1 + P. 

with ¢ = 0 and p + q = I, the pf (4.4.17) reduces to Negative Binomial(N,P) 1\ Binomial(n,q) 

(Johnson and Kotz [48], p.200 and Johnson et al. [51], p.341). 

IV. 9(S) = ,Blog(1 - Os), where,B = [log(1 - 0)t 1 

Prey = r) = L I I n (n) (p + a¢)n- j qj 1 or j! S(J') 

j=O j (q + p + a¢)n [-log(1 - O)]j r! r , 
(4.4.18) 

r = 0,1, ... 

where S~j) = ? [d~J (D (x - t + 1))] the Stirling number of the first kind with arguments j and 
t-l x=o 

r (Johnson and Kotz [48], p.179). 

For ¢ = 0 and p + q = I, the pf (4.4.18) becomes Binomial(n, q) V logseries(O) (Johnson and Kotz 

[48], p.203). 
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4.5 Some compound distributions 

1. Complimentary-a-modified-binomial(N,p, ¢) 1\ Poisson (A) 
N/n 

Pr(Y=r) = e->' ~ (nj) (p+a¢)nj-rqr Aj
, 

.~ r (q+p+a¢)nJ j! 
J?r In 

r = 0,1, ... 

The pgf of (4.5.1) is given by 

G(s) = exp [A (g(s) - 1)], where g(s) is given by (4.3.4). 

Using the generating function yield 

E[Y] = nqA {(q + P + a¢)n-l} and 
(q+p+a¢)n 
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(4.5.1) 

(4.5.2) 

E[y(2)] = nqA) {(n _ l)q(q + p + a¢t-2 + nqA(q + p + a¢)n-l (~+ p + a¢)n-l} (4.5.3) 
(q+p+a¢ n q+p+a¢)n 

For ¢ = 0 and p + q = 1, the above results reduces to (Johnson and Kotz [48], p.191). 

(4.5.4) 

II. Weighted-a-modified-binomial(N,p, ¢) 1\ Poission(A) 
N/n \ 

Pr(Y = r) = t (nj) (p + a¢r qnj-r-l [q - (nj - r)¢] e-~IAj , 
j?r/n r J. 

(4.5.5) 

after some patch work 

(4.5.6) 

where J.L(k)' is the kth factorial moment of nj, where j follows Poisson distribution with Aqn. 
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where st)'s are the Stirling number of the first kind. The pgf of (4.5.5) is given by exp[A(g(S) -1)], 

where g(s) is the pgf of Y having distribution (4.3.2). 

Hence, E[YJ = AE[X], E[Y(Y - l)J = A[E(X(X - 1)) + E(Y)E(X)], Using results of section §4.3.3 

and X(v) = L:j=o (-l)j (j)(n - x)(j) (n - /) + 1)[v-j1 , 

expressions for factorial moments can be obtained. In fact, 

E[YJ = A[n¢(l + a¢/n-l) + n(l - q)], and so on. 

4.6 Limiting distributions 

1. For p + q = c as n -t 00; p, ¢ -t 0; np = A; and n¢ = 'lj;, the pf (4.3.1) tends to two parameter 

a-modified-Poisson distribution given by 

(4.6.1) 

which, for c = 1, reduces to two parameter a-modified-Poisson (Berg [4]). 

-II. When p + q = c as n -t 00; p, ¢ -t 0; np = -A; and n¢ = A, the pf (4.3.1) tends to 

1 (A)X A ( A) x! ~ Dxec 1 - ~ , x = 0,1, ... ; 0< A < c (4.6.2) 

where Dx = (-1 + a)X is the displacement number. For c = 1 expression (4.6.2) reduces to one 

parameter a-modified-Poisson (Berg and Jaworski [4]). 

III. As n -t 00 and q + p = 0, the pf (4.2.2) tends to Poisson distribution with q/¢. 

4.7 Some extensions of a-modified binomial distributions 

Definition 3 A discrete random variable X is said to follow a a-modified binomial distribution 

of order j with parameters n, p, ¢, if its probability function is of the form 

Pr(X = k) = (n) {p + ¢a(j)}kqn-k x = O(l)n 
k {q + P + ¢a(j)}n ' 

(4.7.1) 

where ¢ ~ O,p + ¢ ~ 0. and on expansion a(j)i = (i+~-l)i! 
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Clearly, the pf (4.7.1) reduces to amb(n,p, q, ¢) for j = 1. We write X rv ambj(n,p, q, ¢). 

4.7.1 Some properties 

I. The lith factorial moment of (n - X) when X rv ambj(n,p, q, ¢) is 

II. The pgf of the complimentary variable (n - X) when X rv ambj(n,p, q, ¢) is 

III. Limiting distributions: 

{qs + P + a(j)¢}n 
{q + P + a(j)¢}n 

(a) As n -+ OO,p, ¢ -+ 0; np -+ A; and n¢ -+ 'lj;, the pf (4.7.1) tends to 

1 {A 'lj; .}k (A) . - - + -a(J) exp -- (1 - 'lj;)1 
xl c c c 

(b) As n -+ OO,p, ¢ -+ 0; np -+ ->.; and n¢ -+ A, the pf (4.7.1) tends to 

1 (A)k k (A) ( A)j x! ;;- { -1 + a(j)} exp ;;- 1 - ;;-

(4.7.2) 

(4.7.3) 

(4.7.4) 

(4.7.5) 

These distributions are referred to as amp of order j with two parameters (A, 'lj;) and one parameter 

A respectively. For j = 1 and c = 1 these reduces to amp distribution of Berg and Jaworski [4}. 

However (4.7.4) is referred as ampj(A, 'lj;) and (4.7.5) is referred as ampj( -A, A) when c = 1. 

IV. Characterizations: 

(a) If X rv amp(A, 'lj;) and Y rv Geometric('lj;), then 

1 
Pr(X + Y = k) = k! (1 - 'lj;)2 exp( -A)(A + 'lj;a(2))k (4.7.6) 

In general, if X rv ampj_l(A,'lj;) and Y rv Geometric('lj;), then 

1· k 
Pr(X + Y = k) = k! (1 - 'lj;)1 exp( -A)(A + 'lj;a(j)) (4.7.7) 
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This result is a direct generalisation of the fact that if X rv Poisson( A) and Y rvGeometric( ~), then 

X + Y rv amp(A,~) (Berg and Jaworski [4]). 

In general, if X k rv amp~k(A, ~); k = l(l)p, then Xl + X 2 + ... + Xp rv amp~(A, ~), where 2 = 

In particular, if Y;. rv amp ( -A, A); 2 = l(l)p, then YI + Y2 + ... + Yp rv ampp( -PA, A) with pf 

Pr(Y = k) 

(4.7.8) 

[In Berg and Jaworski [4] the same result appeared to have wrongly printed in that there in the 

expression within the third bracket which they denoted by Apy the term (p - I)! is missing. Though 

their numerical results take care of the factor.] 

Pr(X = r I X + Y = n) = (n) (Ax + a(i)~t(Ay + a(j)~)n-r 
r (Ax + Ay + a(i + j)~)n (4.7.9) 

This distribution as doubly a-modified-binomial distribution of the order (i,]). 

(d) If 

(4.7.10) 

(e) If X rv Poisson(A) and Y rv Negative binomial(], ~) and are independent, then X + Y rv 

(f) If X rv Poisson(Ax) and Y rv amp(Ay, ~), then X +Y rv amp(Ax+Ay,~) and X I (X +Y) rv 

v. The pgf of (4.7.1) is given by 

( 
1 - ~ )J 
1 _ ~s exp( -A(l - s)) (4.7.11) 
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VI. The mean and variance of ampj with parameters A and 7jJ are 

E[X] A+~ 
1-7jJ' 

(4.7.12) 

E[X(X -1)] = 
A 2 2j7jJA j (j + 1 )7jJ2 

+ 1 -7jJ + (1 _7jJ)2 (4.7.13) 

and V[X] 
j7jJ 

A + (1 _7jJ)2 (4.7.14) 

VII. If Ep(X) and Emp(X) stands for mathematical expectation of X, when X rv Poisson(A) and 

amp ( A, 7jJ), then the following recurrence relation hold 

(4.7.15) 

VIII. If X rv ampj(A, 7jJ), then 

(4.7.16) 

This result reduces to equation (3.9) of Berg and Nowicki [6], (p.253) when A = n7jJ. In fact, for 

A = n7jJ, the pf (4.7.7) reduces to the class of distributions given in equation (3.1) of Berg and Nowicki 

[6], (p.250) . 

IX. If X rv GPD III (a; A), then X = Xl + X2 + ... + Xj has a probability distribution with pf 

(4.7.17) 

[ See theorem (5.9.5) of page number 114] 

for ja = nA (4.7.17) reduces to the class of distribution of Berg and Nowicki [6], eq no.(3.3). The 

moments of a-modified GPD III of order (j -1) (4.7.17) can be easily obtained from those of GPD 

III (a,A) as 

E(X) = ja(l - A) + jA d V(X) = . [A2 + (1 - a)A + a] 
(1 _ A)2 an J (1 _ A)4 (4.7.18) 

X. Some new distributions. 
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(a) If X rv Poisson(>.), Y rv Generalized negative binomial(Johnson et al. [51], pp.142,230) 

with parameters m, J, and 'lj;, then z = X + Y rv Generalized amp) of type I having pf 

(4.7.19) 

where [a(j, m)Jk = (m~~rl)k! For m = I, the pf (4.7.19) reduces to amp). Following formulas can be 

derived easily using the corresponding results of generalized negative binomial distribution (Johnson 

et al. [51]). 

(i) E(Z) 

V(Z) 

E(Z - E(Z))3 

= >. + j'lj; 
I-m'lj; , 

= >.+ j'lj;(I-'lj;) and 
(1 - m'lj;)3 

= >. [3mj 'lj;(1 - 'lj;) 4(1 - 'lj;) - 1] 2n'lj;(1 _ 'lj;)2 
- f.L2 (1 - m'lj;)2 + (1 - m'lj;) - (1 - m'lj;)4 

(ii) The pgf of (4.7.19) is given by 

(4.7.20) 

(4.7.21) 

(b) If X rv Poission(>.) and Y rv Ripp - Shuffle distribution ('lj;,j) (Johnson et al. [51], p.234), 

then Z = X + Y rv Generalized amp) of type II with pf 

Pr(Z = k) 
1 . 
k! (1 - 'lj;)1 exp( ->.)(>. + 'lj;a(J ))k 

1 . 
+ k! 'lj;)exp(->')(>'+(I-'lj;)a(J))k; k=O(I)j (4.7.22) 

For large j we have the following approximate moment formulas using the results of corresponding 

formulas of Ripp-Shuffle distribution. 

E(Z) = >. + j(1 ; 'lj;) and V(Z) = >. + j(I'lj;~ 'lj;) (4.7.23) 

(c) If 11;. rv amp(>'z, 'lj;d; i = 0, I, 2, then the joint distribution of X = Vo + VI, Y = Vo + V2 is 

termed as the bivariate amp distribution having pf 



4.8. SOME APPLICATIONS 93 

(4.7.24) 

Obviously the marginal distribution of X is 

(4.7.25) 

and conditional distribution of Y given X is the convolution of a doubly a-modified-binomial distri-

bution and a a-modified Poisson distribution. 

XI. Using the fact that 

, p-l ( n/,)k 
"'"' n. n-k IT at + a<p , ( (P) )n i: kp! ap P t=l kt! = a + ap + a-11/;, (4.7.26) 

p 

where k = (k l , k2, ... , kp), n = L: kt; a = al + a2 + ... + ap-l, a multivariate extension of (4.2.1) as 
t=l 

Definition 4 Multivariate a-modified binomial distribution with parameters (aI, a2,···, ap; 'I/J) with 

pI 

(

P-I ) (n) a;-k rr~;ll(at + a1/;)k, 
P !J X t = kt = k (L:~=1 ai + a(p - l)1/;)n' 

(4.7.27) 

where ak == ak = k!; ak(p) == ak(P) = (~ + a + ... + ~)k = (k+r-l)k! and (k) is the multinomial 
... 

p terms 

coefficient. Then we write (XI,X2, ... ,Xp-l) ,.....,mambp(al,a2, ... ,ap;1/;). 

For p = 2, the pf (4.7.1) reduces to amb(al 1 a2; 1/;). 

4.8 Some applications 

I. Matching problem. 

In classical matching problem the probability of exactly r matches in n is given by 

1 n-r . 
Pr = ,2:(-1)t/i!, r=O,1,2, ... ,n. 

r. t=O 

= (~)(-1+at-r1r/(-1+1+at (4.8.1) 
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is a particular case of the pf (4.2.2) with p = -1, q = 1, ¢ = 1. 

Using (4.3.12) and (4.3.18) it can be seen that 

~[X] = 1, E[X{X - 1)] = Ij and V[X] = 1. (4.8.2) 

The above distribution also arises as a particular case of the factorial series distribution (Berg [2]). 

As n --t 00, the pf (4.8.1) tends to Poisson distribution with parameter 1. 

II. Extended Matching problem. 

Suppose that the probability that there are matches in r places is given by ---¢--r instead of n\r'pr 

n i=Et. ;;fry as in classical case. Then the probability of no match in any position is E -:r and probability 
n k=O 

of exactly r matches is 

Pr = (~) x Probability of r matches in some position x Probability of no matches in the remaining 

(n - r) positions. 

Clearly, Pr 

= ( 4.8.3) 

is a particular case of the pf (4.2.2) with P = -p, q = p, ¢ = 1. 

Using {4.3.12} and {4.3.18} it can be shown that 

E[X] = np a
n

-
1 

= p, E[X{X _ I}] = n(n - l)p
2
a

n
"-2 = p2 and V[X] = p. 

an an • 
(4.8.4) 

As n --t 00, the pf {4.8.3} tends to Poisson distribution with parameter p. 

III. Matching problem when n is a Poisson r.v. with ..\ 

The probability of exactly r matches by (4.5.1) is 

(4.8.5) 

Which is a particular case of the pf {4.5.1}. Therefore 

E[X] = ..\, E[X(X - I}J = ..\ + ..\2j and V[X] = 2,,\. (4.8.6) 



4.8. SOME APPLICATIONS 95 

IV. Extended matching problem when n is a Poisson r.v. with A 

(4.8.7) 

Which also is a particular case of the pf (4.5.1) with p = -p, q = p. Hence 

E[X] = Ap and V[X] = Ap{l + p) (4.8.8) 

Clearly, (4.8.8) reduces to (4.8.6) when p = 1. 

V. A problem of rumor. 

Suppose there are (n + 1) individuals in a region. A person narrates a rumor to a second 

person who in turn narrates it to a third person and so on. At each stage a recipient of the rumor is 

chosen at random from n available persons excluding the narrator himself. Then 

Pr = Probability [ a rumor will be told r times without being narrated to any person more than once 

I that the rumor will be told without narrating more than once] 

Obviously, Pr 
n(r)/nr 

n 
I: n(r)/nr 

r=O 

(
n) (alnt 
r (1 + aln)n 

(4.8.9) 

is a particular case of the pf (4.2.1) with p = 0, q = 1, ¢ = lin. 

_ (l+Q!nt- 1 
_ [ 1] Therefore by (4.3.12), it is observed that E[n - X] - n Cl+Qln)n - n 1 - Cl+Qln)n 

VI. Random mapping problem. 

For the random mapping model (Jaworski [47]) (T; q) defined on a set of n points such that 

Pr[T(i) = i] = q', i = l(l)n and Pr[T(i) = j] = ~-=-q;, i i j. Consider the random variable Yn = 

number of cyclical vertices which are not loops. Berg and Jaworski [4] have shown that Pr[Yn = k] 

is a special case of the pf (4.3.2) with p = -Q, ¢ = Q, Q = ~-=-q;. i.e. 

Pr(Yn = k) = (~) (-Q + aQ)~(l + Q)n-k-l(q' + kQ) (4.8.10) 
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With q' = lin i.e. Q = lin (4.8.10) reduces to 

Now by results of section §4.3.3. 

E[Ynlq' = lin) = (1 + aQt-1 
- 1 , 

E[(n - yn)(2) Iq' = lin] 

where of course Q = ~. 

n(2)(1 + Q)2 _ 2n(2)Q(1 + aQt-2 and 

(n-1) [(n:1)2 -2(1+~)n-2l' 

VII. Random mapping problem when n is a Poisson r.v. with >.. 

(4.8.11) 

( 4.8.12) 

If in the model in (VI) n is assumed to be a r.v. having Poisson distribution with parameter 

>., then denoting Y~ = number of cyclical vertices which are not loops, it can be shown by (4.5.5) 

that 

e-A(l-(1+Q)n) (_Q + aQ)k [ Q ] 
Pr y' - k - , - -- ' ( n - ) - k! (1 + Q)k J.t(k) 1 + QJ.t(k+l) , (4.8.13) 

where J.t(kj' is the kth factorial moment of nj, where j follows Poisson distribution with >'(1 + Qt. 

In this case 

E[Y~] 

E[Y~/q' = lin] 

>.E[Yn] = nQ>. [(1 + aQt- 1 
- 1] 

>. [(1 + aQt- 1 -1] , 

>. (E(Y;) + E(Yn)E(Y~)] 

where Yn has probability distribution (4.8.10). 

(4.8.14) 
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4.9 Some relation among the various probabilities 

Denoting r.h.s. of the pfs (4.2.1),(4.3.1) and (4.3.2) by amb(x; n,p, ¢), camb(x; n,p, ¢) and 

wamb(x; n,p, ¢) we get the following relations 

I. amb(x; n,p, ¢) = ( 1 ¢t [B(x; n,p) + n¢(q + p + a¢)n-I 
q+p+a 

II. amb(x; n,p, ¢) 

III. amb(x;n,p,¢) 

IV. B(x; n,p) 

V. camb(x; n,p, ¢, II) 

VI. wamb(x;n,p,¢) 

V II. wamb(x; n,p, ¢, II) 

VIII. wamb(x;n,p,¢,II) 

IX. amb(x + 1; n,p, ¢) 
amb(x; n,p, ¢) 

amb(x - 1; n - 1,p, ¢)] 

1 ~ (i) (¢)i ( ) 
( ",)n ~x - B x;n,p 
q + P + a'f' i=O p . 

1 n-x+1 
= ( ",)nB(x;n,p)+¢ amb(x-1;n,p,¢) 

q+p+a'f' q 

(q + P + a¢tamb(x; n,p, ¢) - n¢(q + p + a¢)n-I 

amb(x - 1; n - 1,p, ¢) 

1 = v-I [B(x; n,p) + ¢vn(v) B(x; n - lI,p) + 
L n(T)¢T(q + p)n-T 

T=O 

(

V-I ) 
n¢ ?; (n - l/T)¢T(q + p)n-I-T camb(x - 1; n - 1,p, ¢, II) 

. n¢ 
b(x; n,p) - ( ) [b(x; n - 1,p) - cwamb(x - 1; n - 1,p, ¢)] 

q+p 

x x(i) (~r 
L v-I P [B(x; n,p) + ¢vn(v) B(x; n - lI,p)] 
i=O L n(T)¢T(q + p)n-T 

T=O 

x (¢)i 
= ~ x(i) p [b(x; n,p) + n¢b(x; n - 1,p)] 

xt
l 

(x + l)(i) (~)i 
b(x + 1; n,p) i=O P 

b(x; n,p) ita x(i) (~r 

. x+I 

= n-xp [(l+a~) 1 
x+1q (l+a~)x , 

where b(x; n,p) = (: )pxqn-x and B(x; n,p) = (q + p)nb(x; n,p). 



Chapter 5 

A Class of Weighted Generalized 

Poisson Distributions 

5.1 Introduction 

In this chapter various distributional properties of a class of weighted generalized Poisson distributions 

in general and that of some members of the class namely GPD II and GPD III in particular have 

been studied. The problem of parameter estimation by various methods including MLE has been 

discussed along with some data fittings. 

5.2 A class of weighted generalized Poisson distributions 

The pf of the GPD (Consul and Jain [18J, [19]) is given by 

Clearly, 

1 
Pr(X = k) = k! a (a + kz)k-l e-(a+kz) 

= a e-(a+rz+z) L ~(a + rz + z + izy+r e-(a+rz+Z+2Z) 
22:0 k! 

ae-(a+rz+z) K(a + rz + z; r; z), say 

98 

(5.2.1) 

(5.2.2) 
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where K(a; s; z) = L: ~(a + iz)~+se-~z and x(r) = X(X - 1) ... (X - r + 1). 
~>o 

Therefore the pf of the weighted GPD with weight function x(r+l) is given by 

1 {a + rz + z + (x - r - l)zp-r-l+r e-(x-r-l)z 

(x-r-l)! K(a+rz+z;rjz) 

making the transformation Y = X - r - 1; b = a + rz + z The pf of Y is obtained as 

1 (b + yz)y+r e-Yz 
p --
Y- y! K(bjrjz) 
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(5.2.3) 

(5.2.4) 

which is a class of weighted GPD derived from Consul's GPD. For r = ° the size biased (Ord et al. 

[57], p.149, Johnson et al. [51], p.146) GPD distribution is obtained as 

1 
P = -(1 - z)(b + yz)ye-(b+yz) 

y y! (5.2.5) 

Berg and Mutafchiev [5] mentioned about (5.2.5) and its convolution property. Nandi et al. [55] 

derived (5.2.4) by defining the exponential sums K(aj Sj z) (see appendix B) and referred it as a 

class of generalized Poisson distribution. Here it is shown that the above class of GPD is infact a 

family of weighted distributions of the GPD. This class (5.2.4) is therefore called a class of weighted 

generalized Poisson distribution (WGPD). 

Denoting the weighted GP variate with parameters b, z for given r in (5.2.4) by WGPD(bj rj z), it can 

be observed that the weighted GPD in (5.2.3) with weight function x(r+l) is 1 + r+ WGPD(b; rj z), 

where b = a + r z + z 

In particular 

I. r = 0, z = 0, size biased Poisson (Johnson et al. [51] p.146) is observed as 1 + Poisson (a) 

II. r = 0, GPD III (Nandi et al. [55] can be seen as I+WGPD(a + Zj OJ z) 

III. r = -1, GPD in (5.2.1) as WGPD(a; -1; z) 

IV. r = -2, gives GPD II (Nandi et al. [55] as 1 - 2+WGPD(a - z; -2; z) 

and many more for different choices of the parameter r. Following Nandi et al. [55] henceforth we 

refer (5.2.1) as GPD I. 
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5.3 Some Results on Moments 

Moment properties of GPD I have been studied by Consul and Jain [19], Shoukri [64]. Gupta [36], 

Gupta and Singh [35] and Janardan [45J dealt with the moments of the restricted GPD I model (i.e. 

when z = aa in (5.2.1)). In this section, the moment properties of the class of WGPD have been 

discussed by deriving general formulas, recurrence relations and moments of some new distributions. 

Theorem 5.3.1 If X is WGPD {5.2.4} class with parameters (aj Sj z), then 

In particular, 

E(X) 

In general, we may write 

E(a + Xz)r = K(a; s + r; z) 
K(a;s;z} 

~ {K(a; s + 1jz) _ a} 
z K(a; Sj z) 

= ~ {K(a j s + 2j z} _ 2azE(X) _ a2} 
z2 K(aj Sj z) 

= ~ {K(a; s + 3; z) _ 3az2E(X2) _ 3a2 zE(X) _ a3} 
z3 K(aj Sj z} 

{5.3.1 } 

(5.3.2) 

(5.3.3) 

(5.3.4) 

This relation can be used to determine the higher order moments starting with E(X) and values of 

exponential sums. 

Theorem 5.3.2 

,Id I ( ) I -z I I 
J.Lr+l = 1 _ z dtJ.Lr t t=l +e J.LIJ.Lr 

where J.L~(t) is the rth moment about the origin for the WGPD class with parameters (at; s; zt), i.e. 

J.L~(1) = J.L~ is the rth moment about the origin for the WGPD class with parameters (aj s; z), and J.L~ 

is the mean of the distribution. 
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For 

I. s = -1, reduces to 

II. s = 0 

, 1 d '()I a(l-z)+z, 
I-lr+1 = 1 _ z dtl-lr t t=l + (1 _ z)·2 I-lr 

III. s = -2 

Theorem 5.3.3 If X is WGPD class with parameters (a; s; z), then 

ez 

K{ .. ) Lzke-kZ {a+rz+kz)K(a+{k+l)z;s;z) 
a,s,z k~O 

I-l(r-l){a + (k + l)z; s; z) 
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(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.8) 

This formula can be used to obtain the ith factorial moment about the origin when the form 

of the corresponding (i - l)th moment is available. 

In particular, for 

I. s = -1 

II. s = 0 

, ""' k (a + r z + kz) , 
I-l(r) (a; -1; z) = a ~ z ( k ) I-l(r-l){a + (k + l)z; -1; z) 

k~O a + z + z 

I-lCr) (a; 0; z) = :L zk{a + rz + kZ)I-lCr-l){a + (k + l)z; 0; s) 
k~O 

px(a; s; z) is the pf of WGPD(a; s; z) i.e. I-l = 1-l(1), the mean of X rv WGPD(a;s;z) 

The above result can be equivalently stated as 

(5.3.9) 

(5.3.10) 
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For 

I. z = 0, the following relation for Poisson distribution with parameter a is obtained 

(5.3.11) 

II. s = -1, reduces to (Consul [14], p.51)) 

ak 1 d 
f.LHI = (1 _ z)3 f.Lk-1 + 1 _ z dtf.Lk(t) It=1 (5.3.12) 

III. s = 0 

(5.3.13) 

IV. s =-2 

(5.3.14) 

5.4 A relationship between central moments of GPD I and GPD III 

Denoting the rth central moment of GPD I(a; z) and GPD III(a + z; z) by f.Lr and f.Lr * respectively 

it can be easily seen that 

5.5 Inverse moments 

a r-I (r - 1) 
f.Lr = 1 _ z L . f.Lr * 

)=0 J 

Inverse integer moments of the class of WGPD are discussed here. These results are important in 

many problem of applied statistics. The corresponding results for GPD I (Consul and Shoukri [26]) 

are seen as particular cases. 



5.5. INVERSE MOMENTS 

Theorem 5.5.1 If X is WGPD class with parameters (a; s; z), then 

E(a + Xz)-r = K(a; s - r; z) 
K(a; Sj z) 

In particular, 

Now, for 

E(X+;)-1 
E(X+;)-2 

Z{K(a;s-l;z)} 
K(a;s;z) 

z2 {K (a; s - 2; z) } 
K(a;s;z) 

I. S = -1, we get the corresponding G PD I( Consul [14), p.60) results. 

II. s = 0 

E (X +;)-1 
E(x+;)-2 

a a + z 
z2 z3 z3 z4 
-- - +-----
a2 a(a + z) (a + z)2 (a + z)(a + 2z) 

E (X +;)-1 
E ((X +;)-2 

z(1 - z) 

a 

z2 (1 - z) a + z - az 

a2 a +z 

III. s = -2 

(
a) -1 Z z2a z3(1 - z)a 

E X + ; = ;;: - (a + z)(a + 2z) - (a + z)(a + 2z)(a(1 - z) + z) 

Theorem 5.5.2 If X is WGPD class with parameters (a; s; z), then 

K(a + z· s· z) E( + X )-r -1E( + X )-(r-1) -1 -z " E( + + X )-(r-1) a z = a a z - za e K( ) a z z 
ajSjZ 

alternatively (5.5.9) can be written in the following different ways 

or 

E(a + X z)-r = aE(a + X z)-r-1 + ze- z K;t z; s~ z) E(a + z + X z)-r-1 
a;s;z 

E (X + ~)-r = ~E (X + ~)-r-1 + ze-zK(a + z;s;z)E (X + 1 + ~)-r 
Z Z ,z K(a; s; z) z 
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(5.5.1) 

(5.5.2) 

(5.5.3) 

(5.5.4) 

(5.5.5) 

(5.5.6) 

(5.5.7) 

(5.5.8) 

(5.5.9) 

(5.5.10) 

(5.5.11) 
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or 

(
a) -r Z ( a) -(r-1) z2e-z K(a + Zj Sj z) ( a) -(r-1) 

E X + - = -E X + - - -- E X + 1 + -
Z a Z a K(aj Sj z) Z 

(5.5.12) 

In particular, for 

1. S = -1, it reduces to (Consul [14], p.62) 

(
a) -r (a) -(r-1) z2 ( a) -(r-1) 

E X + -; = za-
1
E X + -; - a + zE X + 1 +-; (5.5.13) 

II. S = 0 

( ) 
-r () -(r-1) 2 ( ) -(r-1) 

E. X + ; = za- 1E X + ; - : E X + 1 + ; (5.5.14) 

III. S = 1 

(
a) -r -1 ( a) -(r-1) az2[(a + z)(1 - z) + z] ( a) -(r-1) 

E X + - = za E X + - - E X + 1 + -
z z (a + z)( a + 2z)( a + z - az) z 

(5.5.15) 

Theorem 5.5.3 If X is WGPD class with parameters (aj Sj z), then 

{ I} erz { r-1 e- kZ (a_rz+kZ)k+s-r} 
E (X + 1)[rJ = K( . . ) K(a - rZj S - rj z) - L k' (5.5.16) 

a,s,z k~O. 

In particular, for 

1. r = 1 

{ I} e
Z 

E X + 1 = K(aj Sj z) {K(a - Zj S - Ij z) - (a - z)S-l} 

(a) S = -1, (Consul [14], p.60) 

(b) S = 0 

E -- - + 1 e-a+z { I} -z a 
X + 1 - (a - z) (a - z)2 {- } 

E {_1_} = 1 - z (1 _ e-a+z) 
X+l a-z 

(5.5.17) 

(5.5.18) 

(5.5.19) 
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(c) s = -2 

(5.5.20) 

2. r = 2 

E {( )\ )} = (e
2Z 

) {K(a _ 2z; s - 2; z) - ((a - 2z)s-2 + e-Z(a _ Z)S-l)} 
X + 1 X + 2 K a; s; z 

(5.5.21) 

3. r = 3 

E[ 1 1 _ (e
3Z 

)[K(a-3z;s-3;z)-{(a-3z)S-3 
(X + l)(X + 2)(X + 3) - K a; s; z 

+ e-Z(a - 2z)S-2 + e-2Z(a2~ z)S-l } 1 (5.5.22) 

Given the values of E {(X)l)[T]}' it is possible to evaluate the values of E {(x~m)} for m = 2,3, ... , 

by using the following relations 

1 1 1 
----c---~ 

X + 2 X + 1 (X + 1)[2) 

1 1 2 2 
X + 3 = X + 1 - (X + 1)[2) + (X + 1)[3) 

1 1 3 6 6 
X + 4 = X + 1 - (X + 1)[2) + (X + 1)[3) - (X + 1)[4) 

In general on using the result 

1 1 
-------,,....,- = -:-----;--;-
(X + m)[r) (X + m - l)[r) 

r 
(5.5.23) 

(X + m - l)[r+l) 

The following recurrence relation can be obtained. 

Theorem 5.5.4 If X 2S WGPD class with parameters (a; s; z), then 

E { 1 } _ E { 1 } rE { 1 } 
(X + m)[r) - (X + m - l)[r) - (X + m - l)[r+l) 

(5.5.24) 
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Theorem 5.5.5 If X is WGPD class with parameters (a; s; z), then 

e- z a - z - sz K(a; s; z) Ea(X + m + 1)-r 
a- z K(a - z;s;z) 

- {_S __ ~ logK(a _ z; s; z)} Ea-z(X + m)-r 
a - z da 

where Et ( ) denotes the mathematical expectatwn of X ",WGPD(a; s; z) when a = t 

In particular for 

1. s = -1, reduces to (Consul [14], p.62) 

II. s = 0 

III. s = -2 

(a - z)(a + z - aZ)Ea(X + m + 1)-r 
a(a + z2 - az) 

( 
1 - z ) E ( ) -r d ( )-r - 1 + 2 a-z X + m + - Ea-z X + m 

a-az+z da 

5.6 Incomplete moments: Some relations 

(5.5.25) 

(5.5.26) 

(5.5.27) 

(5.5.28) 

The incomplete moments are important as they can be used to derive expressions for mean deviation 

about mean and the generalized moments of the absolute deviations (Kamat [52]). Denoting incom-

plete moments of order k on the right about origin by xMk and on the left by x Mk, we have for 

WGPD(a; s; z) 

00 jk (a + jz)1+se-Jz 

= ?= J·1 K{a· s· z) 
J=X ' , 

(5.6.1) 

x l (a + jz)J+se-Jz 
= L J·1 K{a· s· z) 

J=O ' , 

(5.6.2) 
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Hence, oMo(a; z) = 1; oMl(a; z) == E(X) = IMl(a; z); ... , xMo(a; z} = 1 - Fx(a; z) = Qx-l(aj z) 

where Fx(a; z) is the cumulative distribution function (cdf) of X Le. 

Fx(a; z) Pr(X ::; x) and 1 - Fx(a; z) = Qx-l (a; z) 

5.6.1 Some relation for xMk 

Theorem 5.6.1 

_zK(a+z;s;z) { k-l(k_1) 
e K(") (a + z) L . x-lMi(a + z; z) 

a, s, Z i=O % 

+ z fn x-1MH1(a + Z; Z)} (5.6.3) 

In particular, for 

1. s = -1, reduces to Consul [14], p.68) 

(5.6.4) 

II. s = 0 

(5.6.5) 

III. s = -2 

= {a
2

[(a + z)(l - z) + z]} ~ (k - 1) 
(a + 2z)(a - az + z) ~ i x-lMi(a + z; z) 

~=o 

{ 
za2[(a + z)(l z) + zJ } k-l 

+ (a + z)(a + 2z)(a(1 _ z) + z) ~ x-1Mi+da + z; z) (5.6.6) 
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Theorem 5.6.2 

(5.6.7) 

In particular, for 

I. s:::: -1, reduces to Consul [14], p.68 

(5.6.8) 

II. s = 0 

xMk(a; z) = {(a + Z)Qx-2(a + z; z) + zx-1Mk(a + z; z)} 

+ ~ (a(~;:) + z(,: 1) } x-1 M,H(a + Z; z) (5.6.9) 

III. s = -2 

xMk(aj z) = {g(a, Z)Qx-2(a + Zj z) + h(a, z)x-lMda + Zj z)} 

k-2 { (k 1) (k 1) } + ~ g(a, z) ~; 1 + h(a, z) ~ x-lMl+l (a + Zj z) (5.6.10) 

where 

( ) 
a2{(a+z)(1-z)+z} 

9 a, Z = ---"::"':"'-_~_-'-----..L 

(a + 2z)(a(1 - z) + z) 

and 

h(a z) = za2{(a + z)(1 - z) + z} 
, (a + z)(a + 2z)(a(1 - z) + z) 

Theorem 5.6.3 
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For 

1. S = -1, reduces to Consul [14], p.69 

x-2 
xMl (aj z) = a L Z~Qx-2-t(a + (2 + l)zj z) + zX-l 1 ~ z 

t=O 

( 5.6.12) 

II. S = 0 

x-2 
xMl(aj z) = L zt(a + (2 + l)z) Qx-2-t(a + (2 + l)zj z) 

t=O 

x-l ((a + xz)(l - z) + z2) 
+ z (1 _ z)2 (5.6.13) 

The following result is derived using the relation (5.6.3) when k = 2 

Theorem 5.6.4 

x-2 -(t+l)zK( + ( 1) ) '"""' te a 2+ ZjSjZ {( ( )) 
L- Z k() a + 2 + 1 Z 
t=O aj Sj Z 

Qx-2(a + (2 + l)zj z) + (a + (2 + 2)Z)x-t-1Ml(a + (2 + l)zj z)} 

x-l e-XZk(a + (x - l)zj Sj z) 
+ Z lM2(a + (x - l)zj z) 

K(aj Sj z) 
(5.6.14) 

5.6.2 Some relation for x Mk 

Theorem 5.6.5 

-Z k(a + Zj Sj z) ~ (k - 1) {( ) X-tMt( .) 
e K( ) L- a+z a+z,z 

aj s; Z t=O 2 

(5.6.15) 

In particular, for 

1. S =-1 

(5.6.16) 
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II. S = 0 
k-I 

XMk(ajz) = L{(a+z) X-~M~(a+zjz) +z X-IM~+I(a+Zjz)} (5.6.17) 
~=O 

III. S = -2 
k-I 

x Mk(aj z) = L {(a + z) X-~M~(a + z; z) + Z x-I Mt+l(a + z; z)} (5.6.18) 
~=O 

Theorem 5.6.6 

x MI (a; z) = I: zte-(~+I) (a + (i + l)z)K(a + (i + l)z; s; z) 
~=O K(a; s; z) 

F (+ (. + 1) . ) + x-I -xz (a + .(x - l)z + z)S+l x-~-I a ~ z, z z e () (5.6.19) 
K a;s;z 

XM2(a,'z) ~ t _(~+I)zK(a+(~+l)z,s;z){( (. )) ~ze K( .. ) a+ ~+1 z F;t-t-da+(~+l)z;z) 
~=O a,s,z 

+ (a + (~ + 2)z x-~-I MI (a + (i + l)z; z)} + zX-I e-XZ(a + xz)S+l 
K(ajsjz) 

In particular, for 

1. s = -I, reduces to Consul [14] (p.70) 

x-2 
a L z~Fx-~-l(a + (i + l)Zj z) + azx-le-a-xz 

x-2 
'" { a + (~ + 2)z = a ~ zt Fx-~-I (a + (~ + l)zj z) + x-~-I MI 
~=O a+(~+l)z 

(a + (t + l)zj z)} + azx-Ie-a-xz 

II. s = 0 

x-2 
x MI(a; z) = L zt(a + (~ + l)z)Fx- t-l (a + (i + l)z; z) 

t=O 

x-2 
x M2(a; z) = L z~[(a + (i + 1)z)Fx- t- 1 (a + (i + l)zj z)(a + (i + 2)z) x-~-I MI 

t=O 

(a + (i + l)zj z)] + zx-Ie-a-xz (a + xz)(l - z) 

III. s = -2 

XMI(ajz) = ~ zt { [(a + (i + l)z)(l- z) + zJa
2

(a + z) (. } 
~ (a + (i + l)z)((a + (~ + 2)z)(a + z _ az) Fx-~-I a + (~ + l)zj z) 

(5.6.20) 

(5.6.21) 

(5.6.22) 

(5.6.23) 

(5.6.24) 
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ZX-l e-a-XZa2(a + z) 
+ (5.6.25) 

(a+xz)(a+z-az) 

2 ~ i{ [(a+(i+1)z)(1-z)+z]a
2
(a+z) ( (. 1))F ' ( +('+1)' ) XM(ajz) ~z a+ ~+ Z x-t-la ~ Z,Z 

i=O (a + (i + 1)z)2(a + (i + 2)z)(a + z - az) 

. } e-a- xza2 (a + z) 
+ (a + (i + 2)z) X-t-l Ml(a + (i + 1)zj z) + zX-l ()( ) (5.6.26) 

a + xz a + z - az 

5.6.3 A formula for doubly incomplete moment of order 1 

Theorem 5.6.7 If X is WGPD class with parameters (aj Sj z), then the doubly incomplete moment 

of order 1 is given by 

(5.6.27) 

(5.6.28) 

Putting S = -1 in the above formulas the results obtained by Consul [14] (p.70.) can be observed as 

particular cases. 

5.7 Mean deviation about mean 

Theorem 5.7.1 Let /.L =mean and (/.L) = integral part of mean of the distribution, then the mean 

deviation about mean for WGPD(aj Sj z) is given by 

In particular, for 

<5 = E[I X - J.t Il 

~ 2 [I'F("i (a; z) - ~ x ?x(a; s; z) 1 
= 2 [/.LF(JL)(ajz) _(JL) M1(ajz)] 

I. S = -1 we have for GPD I 

[ 

(JL)-2 
<5 = 2 /.LF(JL)(ajz)-a ~ z i F(JL)_1_i(a+(i+1)zjz) 

- az(JL)-l e -a-(JL)z ] 

(5.7.1) 

(5.7.2) 
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II. S = 0 

[ 

(jj)-2 

c5 = 2 J.l.F(jj) (a; z) - a ~ z~(a + (i + l)z)F(jj)_l_~(a + (i + l)z; z) 

- z(jj)-le-a-(jj)Z(a + (J.I.)z)(1 - z)] (5.7.3) 

III. s = -2 

[ 

(~2 ~ [(a + (i + l)z)(1 - z) + z]a2 (a + z) . 
c5 = 2 J.l.F(jj) (a; z) - a ~ z ( (. 1))( (. 2))( ) F(jj)_l_~(a + (2 + l)z; z) 

~=O a + 2 + z a + 2 + z a + Za Z 

_ a2(a + Z)z(jj)-le-a-(jj)Z] 
( )( ()) (5.7.4) 
a + z - az a + J.I. z 

IV. z = 0, the corresponding result for Poisson distribution is observed as (Johnson and Kotz [48), 

p.91, and Johnson et al. [51], p.157) 

5.8 Probability generating function of the class of WGPD 

The probability generating function (pgf) of the class of WGPD is given by 

where u = tez(l-t). 

G(u) = CsK(at; S; zt) 
K(a;s;z) 

For s = -1 the pgf of GPD I is obtained as G(u) = ea(t-l). 

Moments from pgf 

(5.7.5) 

(5.8.1) 

In the following the expressions for first four moments about origin in terms of derivatives of 

the pgf are presented. 

i) ! G(u) It=l = (1 - z)E(X) (5.8.2) 

ii) :t22 G(u) It=l = (1 - z)2E(X2) - E(X) (5.8.3) 

iii) :t33 G(u) It=l = (1 - z)3E(X3) - 3(1 - z)E(X2) + 2E(X) (5.8.4) 
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d4 
iv) dt4 G(u) It=l = (1 - z)4E(X4) - 6(1 - z)2E(X3

) 

+ (11 - 8z)E(X) - 6E(X) (5.8.5) 

5.9 Distribution of the sums 

In the following the distributions of sums of independent WGP variates are discussed. 

Theorem 5.9.1 If XiS are independent WGPD class with parameters (ai, Si, z) , then Y = Xl + 

... + Xj is distributed with pf 

(5.9.1) 

where 

wherein k = (kl"'" kj ), (~) is the multinomial coefficient and the sum is over all non-negative 

integers k l , ... , k j such that "Lt=l ki = n. 

For j = 2, (5.9.1) reduces to 

(5.9.2) 

The distributions (5.9.1) and (5.9.2) are referred to as j-gpsum and 2-gpsum distributions respec-

tively. 

5.9.1 Some important particular cases 

Following are some important particular cases are derived from the above theorems. 

Theorem 5.9.2 If Xl and X 2 are two independent GPD I with parameters (al,z) and (a2'z) 

respectively, then the sum Y = Xl + X2 is also a GPD I with parameters al + a2, z) (Consul [14])· 
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Theorem 5.9.3 If Xl be a GPD I with (all z) and X2 is a GPD III independent of Xl with 

parameters (a2l z) respectively, then the sum Y = Xl + X2 is follows a GPD III with parameters 

Theorem 5.9.4 If Xl and X2 are two independent GPD III with parameters (a1 1 z) and (a2l z) 

respectively, then the sum Y = Xl + X2 is a a-modified GPD III of order one with parameters 

(a1 + a2, z). The pf of the a-modified GPD III of order one is given by 

(5.9.3) 

where O'.k = O'.k == k!. 

Above theorem can be extended as follows: 

Theorem 5.9.5 If Xts are independent GPD III with parameters (ail z) , then the sum Y = Xl + 

... + X J+1 is a a-modified GPD III of order j with parameters (a1 + ... + aJ+1lz). The pf of the 

O'.-modtfied GPD III of order j is given by 

{ 

+1 }n 1 J 1+1 

Pr(Y = n) = ,(1 - z)J+1 L at + O'.(j)z + nz e-{L'=1 a,+nz} 
n. t=l 

(5.9.4) 

where O'.k = O'.k == k! and O'.k(j) = O'.k(j) = (0'. + 0'. + ... + 0'./ = (HC 1)k! ... 
J 

Remark: The WGPD class is closed under convolution only for s = -1. 

5.9.2 Two recurrence relations of the probabilities 

It can be easily seen that (Riordan [62], p.24, eq. 32) 

e-Z t K{at + Z; St + 1; z) 

n i=l K(at ; St; z) 

(5.9.5) 
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The second relation is obtained using equation 33 of Riordan [62], p.24 as 

t K(a1 + kz; 81 - 1; z) e-kz 
k=O K(a1;81;z) 

Pn-da1 + kz, a2, ... , aj; 81 - 1,82,· .. , 8J ; z) (5.9.6) 

5.9.3 Factorial moments 

Formula for the first two factorial moments can be derived using the first relation above as 

E[n] = e-z t K(az +Z;8z + liZ) 

z=1 K(az; 8z; z) 
(5.9.7) 

= e-2z t t K(az + z; 8z + 1; z)K(al + (1 + bh)Z; 81 + bit + 1; z) 
z=11=1 K(az; 8 z; z)K(al + bhZ; 81 + bli; z) 

(5.9.8) 

where for given i, 

1 if I = i 

5.10 Difference of two WGP Variates 

Theorem 5.10.1 If Xl ",WGPD(al; 82; z) and X2 ",WGPD(a2; 82; z) and are independent, then 

the probability distribution of Y = Xl - X2 is given by 

Pr{Y = d) = 
dz 

e L e-2iz 

K(a1; Sl; z) K(a2; S2; z) i~O 

(a1 + (i + d)z)i+d+sl (a2 + iz)t+s2 

i! (2 + d)! 

1. For z ::= 0, (5.10.1) reduces to (Johnson et al. [51], p.191) 

where 

(5.10.1) 

(5.10.2) 
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is the modified Bessel function of the first kind.(Johnson and Kotz [48], p.9j Johnson et al. [51], 

p.16). 

II. When Xl ",GPD I (alj z) and X2 ",GPD I (a2j z), then (5.10.1) reduces to (Consul [14], p.74) 

(5.10.3) 

III. If the variates are GPD III, then 

(5.10.4) 

and 

IV. For GPD II 

Pr(Y = d) 

(5.10.5) 

5.11 Distributions of sums of left truncated WGPD class of variates 

Medhi [53], Consul [14] have derived the distributions of the sums of the left truncated generalized 

Poisson variates. In this section the corresponding results for the class ofWGPD have been discussed. 

Let Xi, i = 1,2, ... ,n be n independent left truncated WGPD variates with parameters (a; z) 

for given value of s with pf 

Pr(X = x) = px(aj s; z) ., 
F. ( ) 

x = c, c + 1, ... 
1 - c-l aj Sj Z 

Here we seek the distribution of Y = L~l Xi when c = 1 and c = 2 i.e. zero-truncated case and 

zero-one truncated case respectively. 
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5.11.1 Case I. Sum of zero-truncated WGPD variates 

For, c = 1, the distribution of Y is 

( ) ( 
-s(t+n) -YZ) 

Pr(Y = y) = ~(_l)n-t: a y! e 
[ 

t terms t terms 1 
By(~;~;Z) 

{}((a;s;z) - as}n 
(5.11.1) 

where By(a, . .. , a; s, ... , s; z) is defined in theorem(5.9.1) 

In particular, for 

I. z = 0 (Johnson et al. [51], p.190) the distribution of the sum of n i.i.d. zero-truncated Poisson 

variates is given by 

n!aY 
Pr(Y = y) = y! (ea _ l)n S(y, n), y = n, n + 1, ... (5.11.2) 

where S(y, n) is the Stirling number of the 2nd kind. This distribution is also known as Stirling 

distribution of the second kind. 

II. s = -1 (Consul [14], p.71) 

Pr(Y = y) = ~ (n) (_l)n-t {at(at + yz)Y-1e-
YZ

} ~ '()' y = n,n + 1, ... tty. ea - 1 n 
(5.11.3) 

III. s = 0 

Pr(Y = y) = L (n) (_l)n-dat + yz + a(t - l)z}ye-
yz

(1- z)n 
t 

, 
( ) 

, y = n, n + 1, ... 
t y. ea - 1 + z n 

(5.11.4) 

Similarly it is possible to obtain the distributions for other values of s using the results of Bn(.) 

5.11.2 Case II. Sum of zero-one-truncated WGPD variates 

For, c = 2, the distribution of Y is 

Pr(Y = y) = t I: (_l)n-u (n) (n - t) {as(n-u-t)(a + ztS+lJe-Z(Y+tJ } 
t=Ou=O t u y. 

(.----"'----. ~ Bya, ... ,a;s, ... ,s;z) 

[ 

u terms u terms 1 
(5.11.5) 
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Alternatively, 

Pr(Y = y) = I)-1)t(n) (e-Z(a~Z)S+l)t{~ (n-t)(_l)U (a-S(U-:)e-
ZY

)} 
t==O t a u==o u y. 

In particular, for 

By(~;~;Z) 
{K(a; S; z) - as - e-Z(a + z)S+l}n 

l 

(n-t-u) terms (n-t-u) terms 1 

1. z = 0, the pf of the sum of n iid zero-one truncated Poisson variates is given by 

,y n71 t 

( ) n. a '"' t a 
Pr Y=y = '( a_1- )n L.,..(-1) -t' S(y,n-t) 

y. e a t>o . 

(5.11.6) 

(5.11.7) 

II. s = -1 , the pf the sum of n iid zero-one truncated GPD I variates is given by (Consul [14], p.73) 

Pr(Y = y) = (Yl (;I_a: ~-::-')n) fo(-I)t(~) 

YEt (Y -: -I) (z(y a- t) r Sly - t - k, n - t) , 

where S(y - t - k,n - t) = (n~t)! L:~:b-l(-l)u(n-~-l)(n - t - u)y-t-k 

5.12 Some known and new generalized Poisson distributions 

(5.11.8) 

Probability functions, pgfs, and the first two moments of some members of the class of WGPD (5.2.4) 

with parameters (a; S; z) are listed below. 

i) s = -3, the pf is 

The pgf is 

ance are 

E(X) 

G(u) = 93(at, zt) ea(t-l) 
93(a, z) 

(5.12.1) 

(5.12.2) 

(5.12.3) 
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ii) s = -2, (GPD II) the pf become 

The pgf is 

Mean and variance of are 

a2{a + z) (a + kz)k-2 e-(a+kz) 
a(l-z)+z k! 

G(u) = a(l - zt) + z ea(t-l) 
a(l-z)+z 

E[X] - a
2 

and V(X) = a
2
(a + z) 

- a(l - z) + z (1 - z)(a - z + az)2 

iii) s = -1, (GPD I) The pgf is given by 

G(u) = ea(t-l) 

Mean and variance of GPD I are 

a a 
E[X] == (1 _ z) and V(X) = (1 z)3 

iv) s = 0, (GPD III) the pf is 

( . ) _ (1 - z)(a + kz)k -(a+kz) 
Pk a, z - k! e 

The pgf is 

l-z ) G(u) = -- ea(t-l 
1 zt 

Mean and variance are 

E[X] a(l-z)+z and V(X)=z2+(1-a)z+a 
(1-z)2 (l-z)4 

v) s 1, the pf become 

Pk(ai z} = (1 - z)3 (a + kz)k+l e-(a+kz) 
a(1 - z) + z2 k! 
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(5.12.5) 

(5.12.6) 

(5.12.7) 

(5.12.8) 

(5.12.9) 

(5.12.10) 

(5.12.11) 

(5.12.12) 

(5.12.13) 
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The pgf is 

where 

G(u) = ~ (1- Z)3 91(at,zt) eu(t-l) 

t 1 -zt 91(a,z) 

91(a,z) = a(l- z) + z2 

E(X) = (2 - a)z3 - (a - a2 - 1)z2 - (2a2 - 2a)z + a2 

(a- az+z2)(1 - z)2 

(5.12.14) 

(5.12.15) 

V(X) = 2z6 + (4 - 5a)z5 + (4a2 - a)z4 + (5a - 6a2 - a3)z3 + (a + 3a3)z2 + (2a2 - 3a3)z + a3 

(a - az + z2)(1 - z)4 

(5.12.16) 

vi) s = 2, we get the pf a.s 

(5.12.17) 

The pgf is 

G(u) = ~ (1- Z)5 92(at,zt) eu(t-l) 

t2 1 - zt 92(a, z) 
(5.12.18) 

where 

The mean and variance are 

E(X) = h(a,z) 
(2z4 + (-3a + 1)z3 + (a2 + 3a)z2 - 2a2z + a2)(1 - z)2 

(5.12.19) 

where 

V(X) = h(a, z) 
(2z4 + (-3a + 1)z3 + (a2 + 3a)z2 - 2a2z + a2)(1- z)2 

(5.12.20) 
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where 

Remark: In all the pgfs G(u) above t = uez(l-t). 

5.13 Skewness and Kurtosis 

In this section the expressions for the third and fourth central moments, fourth cumulant, skewness 

and kurtosis for GPD II and GPD III are furnished. Some numerical results are also presented. 

5.13.1 GPD II 

= _a2 [2az3 + (2a2 - a - 1)z2 - (a2 + 2a)z - a2] 
Jl.3 ((a - 1)z - a)3(z - 1)3 

2 

#4 = - (z _ 1)5(a~z _ 1) _ z)4 [3a
2
z
5 + (5a

2 
- .lOa + 2)z4 

+ (1 + lOa + 14a3 - 28a2 
- 3a4 )z3 + (9a4 

- 27a3 + 3a + 17a2)z2 

+ (3a2 + 12a3 9a4)z + a3 + 3a4
] 

2 

k4 = (z _ 1)5(a~z _ 1) _ z)4 [6a2z5 + (6a3 
- 4a2 - lOa + 2)z4 + (lOa - 19a2 

- 4a3 + 1)z3 

+ (3a + 14a2 - 9a3 )z2 + (3a2 + 6a3 )z + a3
] 

fh 
(2az2 - az - z a)2 

= 
(a+z)(z - 1)3a2 

{32 1 [ 2 4 2 3a3)z3 + (1 + 8a + 9a3 18a2)z2 = ( )( 1)3 2 3a z + (5a - lOa + 2 a+z z- a 

+ (9a2 
- 9a3 + 2a)z + a2 + 3a3] 
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5.13.2 GPD III 

1 
J.t3 = (1 _ z)6 [2z3 + (5 - 2a~z2 + (1 + a)z + a] 

1 
( )8 [9z4 + (32 + 2a)z3 + (18 + 3a2 - 2a)z2 
l-z 

+ (1 - 6a2 + 13a)z + 3a2 + a] 

1 
k4 = (1 _ z)8 [6z4 + (26 - 6a)z3 + (15 - 2a)z2 + (1 + 7a)z + a] 

1 
/31 = (2 (1 ) )3 f4z 6 + (20 - 8a)z5 + (4 + 4a + (5 - 2a)2)z4 

z + -az+a 

+ {4a + 2(1 + a)(5 - 2a)}z3 + {2a(5 - 2a) + (1 + a)2}z2 + 2a(1 + a)z + a2] 

{2 (1 1) F [9z4 + (32 - 12a)z3 + (18 + 3a2 - 3a)z2 
z + -az+a 

+ (1 - 6a2 + 13a)z + 3a2 + a] 

It is easy to observe that for large values of a, /31 -+ 0 and /32 -+ 3 for both the distributions. 

A table of numerical values to see the behaviour of the coefficients /31 and /32 for z = .1 for different 

values of a is presented below. 

Table 5.1: Values of /31 and i32 for GPD II and GPD III 

GPD II GPD III 

a /31 fh /31 /32 

.1 29.6740 40.0820 8.4500 14.100 

1 1.7364 5.2305 1.4732 4.9122 

3 0.5485 3.7071 0.5186 3.6710 

5 0.3254 3.4199 0.3146 3.4069 

6 0.2705 3.3490 0.2629 3.3399 

8 0.2021 3.2609 0.1979 3.2558 

9 0.1795 3.2319 0.1761 3.2276 

12 0.1343 3.1734 0.1324 3.1711 

15 0.1073 3.1358 0.1061 3.13l7 

20 0.0803 3.1037 0.0797 3.1029 

30 0.0535 3.0691 0.0532 3.0687 
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5.14 Estimation 

Consul [14] discussed the estimation of the two parameters of GPD I using (i) mean and zero class 

frequency, (ii) maximum likelihood method (Consul and Shoukri [25], Consul and Famoye [16]) (iii) 

method of moments (Consul and Jain [18]) and presented some data fittings. In this section the 

problem of estimation of the two parameters of GPD II and GPD III using different methods have 

been discussed. Here, x = sample mean, m~ = ith sample moment about origin. It is assumed that 

the observed frequencies in a random sample of size n are nk = 0,1, ... ,m for the different classes 

such that L:k=:Q nk = n, where m is of course the largest value observed. 

5.14.1 GPD II 

The pf of the GPD II is given by 

Pk = a2(a + z) (a + kz)k-2 e-(a+kz) 

a(l-z)+z k! 

I. By proportion of zeros and mean 

Here the estimate of a is first obtained by solving 

numerically and then z is estimated by substituting the value of a in 

II. Moments (Nandi et al. [55]) 

III. MLE 

f 

Z = 1 - (1 - a) m 1 

m~ 

(5.14.1) 

(5.14.2) 

(5.14.3) 
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The log-likelihood function is given by, 

l = log L ex 2n log a + n log( a + z) - n log( a + z - az) - na - nzx 

m 

+ 2:)k - 2)nk log(a + kz) 
k=O 

The two likelihood equations are 

at 
oa 

at 
oz 

2n + _n _ _ n(l- z) _ n + f nk{k - 2) = 0 ~ 9 = 0, say 
a a + z a + z - az k=O a + kz 

n n(l - z) - ~ (k - 2)knk 0 h 0 -- - - nx + ~ = ~ = ,say 
a + z a + z - az k=O a + kz 

(5.14.4) 

(5.14.5) 

(5.14.6) 

as it is not easy to solve this equations analytically, MLE of a and z are obtained by solving (5.14.5) 

and (5.14.6) numerically with Newton-Rapson technique. Following partial derivatives are required 

for applying the method. 

og 2n n n(l - z)2 m nk(k - 2) d 
= - - - + - """' - 11 say 

oa a2 {a+z)2 (a+z-az)2 t;:o(a+kz)2 - , 
(5.14.7) 

og _ n + n{l - z)(l - a) + n _ f k{k - 2)nk = 
oz (a+z)2 (a+z-az)2 a+z-az k=O (a+kz)2 

d12, say (5.14.8) 

oh n n(l - a)2 m nk(k - 2)k2 
- + - """' - d22 , say 

oz {a + z)2 {a + z - az)2 t;:o {a + kz)2 -
(5.14.9) 

It may be noted that 

Now the ML estimates of a, z are obtained by generating a sequence of pairs (ai, Zi); i = 1,2, ... 

using the recurrence relations ai=l = ai + incai and Zi+l = Zi + inczi for i = 0,1, ... starting with 

an initial pair of (ao, zo). 

where inc = -D-11!, wherein inc· = (incai inczd, 1! = (g h)' and D = (dij) evaluated at the 

point a = ai, z = Zi. 

The iteration is stopped at the rth step if the distance between the rth and the (r + l)th 

solution is less than a preassigned small positive number and (ar, zr)' is taken as the MLE of (a, z). 
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5.14.2 GPD III 

The pf of G PD III is given by 

Pk = ~(1 - z)(a + kz)ke-(a+kz) 
k! 

1. Proportion of zeros and ones 

Here first the estimates of a is obtained by solving 

numerically and then the estimate of z calculated from the equation 

II. Proportion of zeros and mean 

Here too the estimate of a is obtained by numerically solving 

Then z is estimated as in the last case. 

III. Moments 
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(5.14.10) 

(5.14.11) 

(5.14.12) 

(5.14.13) 

Moment estimators are obtained by equating the sample mean and variance with the corre-

sponding population expressions. Here the estimate of z is first obtained by numerically solving 

then a is estimated from 

Where m2 = sample variance. 

IV. MLE 

z a = (1 - z)m~ - --A 
1-z 

(5.14.14) 

(5.14.15) 
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The log-likelihood function is given by 

m 

l = log L ()( n log(l - z) - na - nzx + L knk log (a + kz) 
k=O 

The two likelihood equations are 

at 
8a 

~ nkk 
-n+ L..-- =0 

k=O a + kz 

at n m k 2n 
= --+nx-L--k-=O 

8z 1 - Z k=O a + kz 

multiplying (5.14.17) by a and (5.14.18) by z and then subtracting we get 

z a = --- + x(l - z) and 
1-z 

m (k2 1 ) L nk - -- - nx = 0 => 9 = 0 say 
(k - x - _l_)z + x 1 - z k=O l-z 

(5.14.16) 

(5.14.17) 

(5.14.18) 

(5.14.19) 

(5.14.20) 

The estimate of z is first obtained by generating a sequence of z~; i = 0,1, ... from the recurrence 

relation 

. The iteration is stopped at the rth step iffor some positive integer value r, the value of 1 Zr+l -Zr 1< 

'l/;, a preassigned arbitrary small positive number. Then Zr is taken as the ML estimate of z, where 

I ~ 2[x+~+2z-kl n 
9 (z) = ~ nkk [x(l _ z) - l':'z + kzJ2 (1 - z)2 (5.14.21) 

Estimate of a is then obtain using (5.14.19). 

5.15 Data fitting 

In this section fitting of GPD I, GPD II, and GPD III to four sets of data taken using maximum 

likelihood method of estimation are presented. 

Example 1. Data of Lucy Whiteker, Biometrika, 1914, 10, p.36 about the distribution of the number 

of days according to the number of deaths of women per day over 85 published in Times during 

1910-12 is taken from Yule and Kendall [67], used by Nandi et al. [55]. 
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Table 5.2: Distribution of the number of days according to 

the number of deaths of women per day over 85 published 

Times during 1910-12 

No. of Observed fre- Poisson GPO I GPO II GPO III 

deaths per quency 

day 

0 364 336.2495 364.7279 364.7098 364.7474 

1 376 397.3020 374.6163 374.6493 374.5805 

2 218 234.7200 216.4483 216.4466 216.4503 

3 89 92.4460 92.8999 92.8874 92.9135 

4 33 27.3078 33.0449 33.0401 33.0502 

5 13 6.4532 10.3158 10.3165 10.3152 

6 2 1.2708 2.9254 2.9271 2.9236 

7 1 0.2509 1.0212 1.0231 1.0193 

Total 1096 1096 1096 .1096 1096 

a. 1.1816 1.1003 1.1694 1.0311 

i 0.0688 0.0708 0.0668 

;X2 14.0136 0.3934 0.3960 0.3956 

d.f. 4 3 3 3 
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All the three models are almost equally good as shown by the value of the X2 . Of course 

GPD I is slightly better than the rest. All of them are far better than the Poisson distribution. Using 

method of moments it has been observed that GPD II gives the minimum value of X2. 
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Example 2. Data of Adelstien [1] about the accident proneness experienced by Shunters during 

1937-1942, used by Consul [14]. 

Table 5.3: Comparison of the observed and expected frequen

cies of accidents of 122 experienced shunting men over 6 years 

(1937-42) 

No. of Observed fre- GPD I GPD II GPD III 

deaths per quency 

day 

0 40 39.9796 39.9674 42.9373 

1 39 39.4855 39.5049 39.6524 

2 26 23.7589 23.7608 22.6314 

3 8 11.3162 11.3098 10.3244 

4 6 4.7028 4.6988 4.1374 

5 2 1.7894 1.7886 1.5253 

~ 6 1 0.9676 0.967 0.7919 

Total 122 122 122 122 

a. 1.1156 1.2391 0.9211 

Z 0.1219 0.1218 0.1159 

X2 1.5684 1.5676 2.2400 

dJ. 3 3 2 

As measured by X2 all the models are almost equally good. Here GPD II gives better fit than 

the rest of the models. 
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Example 3. Data of Adelstien [1] about the accident proneness experienced by Shunters during 

1943-1947, used by Consul [14]. 

Table 5.4: Observed and expected frequencies of accidents of 

122 experienced shunters over 5 years (1943-47) 

No. of Observed fre- GPD I GPD II GPD III 

deaths per quency 

day 

0 50 50.9108 50.9130 50.9073 

1 43 40.4033 40.4082 40.3084 

2 17 19.5701 19.5634 19.5782 

3 9 7.5135 7.5096 7.5178 

4 2 2.5196 2.5198 2.5192 

5 0 0.7743 0.7755 0.7726 

>6 1 0.3086 0.3105 0.3064 

Total 122 122 122 122 

Ii 0.8740 0.9702 0.7781 

Z 0.0964 0.1014 0.0914 

X2 0.9154 0.9161 0.9150 

d.f. 2 2 2 

Here GPD III is found to be better than the rest of the models. 
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Example 4. Data of Adelstien [1] about the accident proneness experienced by Shunters during 

1937-1947, used by Consul [14]. 

Table 5.5: Distributions of accidents of 122 experienced 

shunters over 11 years (1937-47) 

No of Observed fre- GPD I GPD II GPD III 

deaths per quency 

day 

0 21 202944 202526 203433 

1 31 303925 304117 303696 

2 26 273357 273684 272977 

3 19 19 2510 192637 192364 

4 7 11 7297 11 7260 11 7340 

5 9 64997 64914 65093 

> 6 9 64971 64800 65097 

Total 122 122 122 122 

ii 17937 19843 16016 

Z 01804 01881 01728 

x2 39383 39652 39145 

d f 4 4 4 

From the chi-square value it is clear that the GPD III is better than the other models. 
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5.16 Characterization of the class of WGPD 

Theorem 5.16.1 If Xl and X2 are two independent WGP variates with parameters (al; Sl; z) and 

(a2; S2; z) respectively, then the condztwnal dzstrzbution of Xl given Xl + X 2 = n is the class of 

wezghted quasi binomial distrzbutions (2.2.5) with parameters(al, a2; Sl, S2; z), when al + a2 + nz = 1. 

Proof. 

Pr(Xl = k I Xl + X2 = n) = 
Pr(Xl = k)Pr(X2 = n - k) 

Pr(Xl + X2 = n) 
(~)(al + kz)k+sl(a2 + (n - k)z)n-k+s 2 

13n(al,a2;sl,s2;Z) 
(5.16.1) 

This theorem is a generalization of the result that if Xl and X 2 are two independent GPD I variates 

with parameters (al; z) and (a2; z) respectively, the conditional probability of Xl given Xl + X2 = n 

is a QBD II with pf (2.6.11) in page (33). (Consul [12]). 

In general, for X t , i = l(l)m, independent random variables the following theorem can be established. 

Theorem 5.16.2 If X t , i = l(l)m, are m independent WGP variates with parameters (at; St; z) i = 

l(l)m, then the conditwnal distribution of Xl given Xl + X 2 + .,. + Xm = n is a class of quasi 

multinomial distributions (Das [28)). 

Proof. 

n~l Pr(Xi = kt) 
P (l:~1 X t = n) 

(n) nm (a + k z)k+s, 
k t=l t t (5.16.2) 

Theorem 5.16.3 If Xl and X 2 are two independent discrete rv s whose sum Y is a 2-gpsum 

distribution with parameters (n; aI, a2; Sl, S2; z) defined by (5.9.2), then Xl and X2 must each be a 

class of GP variates. 
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Proof. It can be seen that 

where v = eZv • 

Bn(a1 t ,a2t ;sl,S2;zt) 
tS1 +S2 

-iz 
L ~Bi(al' a2; Sl, S2; z) 
i~O 2. 

'" nBn(a1' a2; 81, 82; z) 
~t I 
n~O n. 

V-(51+52 ) K(alV; 81; ZV)K(a2V; 82; ZV) 

Therefore the pgf of the 2-gpsum distribution can be obtained as 

eZ(S1 +52)C(S1 +52) S(al e-Zt, a2e-Zt; Sl, 82; ze-Zt) 
= 

K(al;sl;z)K(a2;s2;z) 

-51 K(alU; 81; ZU) -52 K(a2u; S2; zu) 
= U U 

K(al;sl;z) K(a2;s2;z) 

where 

t = uez(l-u) 

(5.16.3) 

(5.16.4) 

Clearly gl and g2 are pgf of WGPDs, hence by uniqueness theorem of the pgfs Xl and X2 must follow 

WGPD with parameters (a1; 81; z) and (a2; 82; z) respectively. For 81 = 82 = -1, the corresponding 

result for GPD I (Consul [10]) can be obtained as particular case. 

Theorem 5.16.4 If rv W assumes only non-negative integer values with pf (5.9.2) with parameters 

(ale, a2e; 81, 82; ze) is sub-divided into two parts X and Y such that Pr(X = k, Y = n - k I W = n) 

is a class of QBD with parameters (n, aI, a2, 81, 82, z). Then the rv's X and Yare independent and 

have WGP distribution with parameters (alO; Sl; zO) and (a20; S2; zO) respectively. 

Proof· 

Pr(X = k, Y = n - k) = Pr(X = k, Y = n - k I W = n)Pr(W = n) 



5.16. CHARACTERIZATION OF THE CLASS OF WGPD 

= 

= 

(~) (a1 + kZ)k+sl (a2 + (n - k)z)n-k+s
2 

e-nz 13n(a1 0,a20;81,82;zO) 
n! K(a1; 81; z)K(a2; 82; z) 

(alO + kZO)k+sle-kz(J (a2 + (n - k)ZO)k+s2 e-(n-k)z(J 

k!K(a10; 8; zO) (n - k)!K(a20; 82; zO) 
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Hence X and Yare independent and have class of WGPD with parameters (al(); 81; z(}) and 

Putting 81 = 82 = -1, Consul's result for GPD I (Consul [10]) is seen as particular case. 

Theorem 5.16.5 If X and Yare two independent rv's defined on a set of all non-negative mtegers 

such that Pr(X = k I X + Y = n) is QBD (2.2.5) with parameters (n, an, bn, 8, t, z), then 

i} an is independent of n and is equal to a for all n. 

zi) X and Y must have class of WGP distribution with parameters (av, 8, zv) and (bv, t, zv) 

respectively, where v > 0 is an arbitrary number such that zv ~ 1. 

Proof. Let the pfs of X and Y be denoted by f(x) and g(y).Science X and Yare independent 

Therefore 

Pr(X = k I X + Y = n) = Pr(X = k)Pr(Y = n - k) 

Pr(X + Y = n) 
f(k)g(n - k) 

n 0' 

L f(k)g(n - k) 
k=O 

n 

f(k)g(n - k) = Pr(X = k I X + Y = n) L f(k)g(n - k) 
k=O 

f(k)g(n - k) _ (n - k - l)(an + k)z)k+S(bn + (n - k)z)n-k+t 
f(k - l)g(n - k - 1) k(an + kz - z)k+s-l(bn + z + (n - k)z)n-k+t+l 

(5.16.5) 

(5.16.6) 

Now replacing k and n by k + 1 and n + 1 in (5.16.5) and then dividing by (5.16.6) and noting that 

the lhs of the resulting expression is independents of n we get 

f(k + l)f(k - 1) k {a + (k + l)z}k+l+s(a - z + kz)k+s+l 
= 

f(k)2 k + 1 (a + kz)2k+2s 
(5.16.7) 
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Putting k = 1,2, ... ,n -1 in (5.16.7) and multiplying we get 

f(n) f(l) as (a + nz)n+s 
= f(n - 1) f(O) (a + z)s+1 n(a + nz - z)n+s-1 

(5.16.8) 

Let 

f(l) as 
u=--

f(O) (a + z)s+1 

Therefore 

n (+ )n+s 
f(n) = ~ a nz f(O) 

n! as 
(5.16.9) 

But I: f(n) = 1 implies 

f(O) = as 
v-SK(av;s;zv) 

Where v = ueZV
• Hence 

1 (av + nzv)n+se-nzv 
f (n) = - -'------'----

n! K(av;s;zv) 

Therefore X has a class of WGP distribution with (av; s; zv). 

Putting k = 1 in (5.16.6) and proceeding as above it can be shown that Y also follows the WGPD 

with (bv;t;zv) 

Similar characterisation for GPD I obtained by (Consul [10]) can be derived from the above theorem 

by taking S1 = S - 2 = -1. 

Theorem 5.16.6 If X and Yare two independent non-negative mteger valued rv's such that 

2) Pr(Y = 0 I X + Y = n) 

22) Pr(Y = 1 I X + Y = n) 

where a1,a2 > 0;0 ::; z ::; 1, then X and Yare class of WGPD with parameters (a1v;s;zV) and 

(a2v; s; zv) respectively,where v is arbitrary number and 0 < v < 1. 
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Proof. Suppose that 

Pr(X = x) = f(x) and Pr(Y = y) = g(y) then by (i) 

f(n)g(O) 

L~=O f(i)g(n - i) 

by (ii) 

f(n)g(l} 

L~=O f(i)g(n 

dividing (5.16.10) by (5.16.11) and repeating the recurrence and remembering that 

Lf(n) = 1 
n2;:O 

we get 

1 (alv + nzv)n+se-nzv 
f(n) = - ( ); n 0,1, ... n! J( alV;SjZV 
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(5.16.10) 

(5.16.11) 

As a particular case this theorem provides corresponding characterisation theorem of GPD I (Consul 

[12]) . 

5.1 7 Models leading to G PD III 

Theorem 5.17.1 If the mean m(a, z) for the probability distribution px(a; z) is increased by chang-

ing the parameter a to a + 8z in such away that 

dpo(a; z) 
da 

and 

dpx(a;z} 
da 

= -po(a; z) (5.17.1) 

(5.17.2) 

for all mtegral values of x > 0 with the initial conditions Po (0, z) = 1-z and Px (0; z) = (~_ z) e- '''}!xz )" 

for x > 0, then 

px{a; z) = (1 - z) (a + xz)xe-(a+xz) a> 0; 0 < z < 1 
xl 

(5.17.3) 
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Theorem 5.17.2 Let g(8)= pgf of the number of customers arriving for service at a server, X= 

number of customers already waiting for service before the beginning of the service, f (8) = pgf of x. 

Then under the assumption that the service time for each customer served in any busy period of the 

server, will have a Lagrangian probability distribution given by (Consul and Shenton [23j) 

Taking 

1 d
y

-
l 

[ d ] Pr(Y = y) = Id y-l g(8)y-d f(8) 
y. 8 8 S=O 

1 - z ( ) f(8) = __ ea s-l 
1 - Z8 

and g(8) = ez(s-l) it can be shown that 

1 - Z () Pr(Y = y) = --(a + yz)Ye- a+yz a> 0; 0 < z < 1 
y! 

(5.17.4) 

(5.17.5) 

Theorem 5.17.3 Under steady state conditions the probability distribution of a first order kinetic 

energy process having forward and backward rate 

(a+kz)k and (a!t)k respectively, is given by 

1 - z () ~(a + kz)ke- a+kz a> 0; 0 < z < 1 (5.17.6) 

All these theorem can be proved following Consul [14]. 

5.18 Limiting Distribution 

Theorem 5.1S.1 As n -+ 00 and nal = .x, nz = '1f; the class of weighted quasi binomial distributions 

(wQBD) {2.2.5} with parameters (n, aI, a2; 81, 82; z) tends to the class of WGPD with parameters 

(A; 81; '1f;). 

Proof: Since 

lim nSl (n) (a1 + kZ)k+sl (1 - al _ kz)n-k+s
2 

n--?oo k 

~(A + k'1f;)k+Sl e-(A+ktP ) 
k! 

(5.18.1) 
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Hence 

Remark: Limiting distribution is independent of the choice of S2. i.e. all the members of the 

QBD class with fixed Sl approaches to WGPD(>';Sl;'ljJ) for all choice of S2. Thus QBD I (i.e. when 

Sl = -1, S2 = 0) (Consul [11]), QBD II (i.e. S1 = -1, S2 = -1) (Consul [20]) both tends to GPD I 

with (>.; 'ljJ) which is the result obtained in Consul [14J (p.27). 

Theorem 5.18.2 If X rv GPD III with a; z E(X) = /-L, V(X) = (72, then as a -+ 00, U = X ;;/1: 

approaches to the standard normal distribution. 

Proof: The cumulant generating function (cgf) of the standardized rv U is given by 

(5.18.2) 

where kr ; r = 1,2, ... are the successive cumulants of GPD III. Putting these values in the above 

expression and taking limit as n -+ 00 the cgf tends to ~, which is the cgf of the standard normal 

distribution. Hence the result. 



Chapter 6 

A class of Generalized Multivariate 

Generalized Poisson Distributions 

6.1 Introduction 

A class of generalized multivariate generalized Poisson distributions is proposed by defining a class 

of multivariate identities. Some known distributions are obtained as particular cases of this class. 

Moment properties of these distribution are studied. Parameter estimation for two bivariate distri-

but ions are discussed. 

6.2 Some multivariate exponential identities 

Definition 5 For all i = 0, 1,2, ... , n; bt > 0; I Zt 1< 1; and Si integer values, a class of multivariate 

exponential sums is defined as 

where bt + (x t - j)Zt > 0 for all X t ~ 0 and min = minimum {Xl,··· ,Xn} 

138 
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6.2.1 Some special cases 

(i) 80 = 81 = ... = 8 n = -1 

(ii) 80 = 0,81 = ... = 8 n = -1 

(iii) 80 = 81 = 0,82 = ... = 8 n = -1 

( 

n ) -1 n 
M = (1- zo)(l- zd g b~ exp(~b~) 

(iv) 80 = 81 = ... = 8 r -1 = 0, 8 r = ... = 8 n = -1 

M = OX (1- z,) g b,) -I exp (t, b,) 

(v) 80 = -2,81 = ... = 8 n = -1 

M = (bo(bo + z) Do b,) -I {bo + zo(1 - bo)) exp (t, &,) 

(vi) 8k = -2,s~ = -l;i = 0,1, ... ,n;i #- k 

(vii) 8k = -2,81 = 0, 8~ = -1; i = 0,1, ... ,n; i #- ki #- 1 

more such identities can be deduced using the recurrence relations stated below. 

6.2.2 Some recurrence relations. 
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Proof: Separating (bo + jzo) from (6.2.1). 

(6.2.3) 

Proof: Separating (b1 + (Xl - j)zt} in (6.2.1) 

(6.2.4) 

Proof: By separating (bk + (Xk - J )Zk)· 

Alternatively (6.2.4) can be written as 

IV. M(bo, b1,··· , bn; So, Sl,··· , Sk-1, Sk - 1, Sk + 1, ... , Sn; Zo, Zl,· .. , zn} = 

V. M(bo, b1,.·· , bn; So, Sl, ... , Sn; Zo, Zl,··· , zn) = L (bk + aZk)Zk ae-azk M(bo, b1,···, 
a~o 

(6.2.6) 

Proof: By repeated application of (6.2.5). 

Remark: For Zo = Zl =, ... , Zn = z, the relation (6.2.1) reduces to a class of exponential sums given 

by 

(6.2.7) 

Special cases for different values of So, Sl, ... , Sn and recurrence relations for the above sums can be 

easily deduced by using the corresponding results of (6.2.1). 
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6.3 A class of generalized multivariate generalized poission distributions 

Definition 6 A random vector X = (Xl, X2, .. ' , Xn) is said to follow a GMGP distribution with 

parameters bo, b1 , ... , bn; ZO, Zl, ... , Zn; for given so, s 1, ... , 8n, if its probability function is of the form 

(6.3.1) 

where M(.) is defined m {6.2.1} and min = minimum {Xl, X2,· .. , xn}. 

Theorem 6.3.1 If X~ = Vo + ~; i = 1, ... , n where ~ follows WGPD(b~, 8~, z~) for i = O(I)n, then 

the jomt pf of Xl, X 2,··., Xn is given by {6.3.1} 

Particular cases : 

I. For So = 81 = ... = Sn = -1, GMGPD I, the multivariate extension of the bivariate generalized 

Poisson distribution (Johnson et al. [50], p.133) is obtained with probability function 

(6.3.2) 

which is the joint distribution of Xl, X 2, ... , Xn where X~ = Vo + Vi; z = 1, ... , n and ~ follows 

GPD I (Consul and Jain [18]) with b~, Z~ and are mutually independent. 

II. Further, for Zo = Zl =, ... , Zn = z, the pf (6.3.2) reduces to a class of multivariate generalized 

Poisson (Das [28]) and when Z = 0, to multivariate Poisson with pf 

(6.3.3) 

which is a multivariate extension of the class of bivariate Poisson distributions (Holgate [40]). 

Some distributions of the GMGPD class by choosing various values of the s~' s will now be derived. 
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6.4 Some new multivariate generalized Poisson distributions 

(i) So = 0, Sl = ... , Sn = -1 (GMGPD II) 

e-2: b'L (l-zo)(bo+JZo)1~ II 1 1 X1-JZ~ Ie' , 
mm [{ -JZQ} n {b (b + ( .) )X,-J-1 -(x -J)z }] 

J~o J. 1=1 (X t J). 
(6.4.1) 

(ii) So = Sl = 0, S2 = ... = Sn = -1 (GMGPD III) 

(iii) So = Sl = ... = Sr-1 = 0, Sr = .,. = Sn = -1 (GMGPD VI) 

(6.4.4) 

(v) Sk = -2,81 = -1; z t= k = O(l)n (GMGPD V) 
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Corresponding Bivariate distributions can be obtained putting n = 2 in the above results. In all the 

above expressions min stands for min{xl,x2, ... ,xn} 

6.5 Marginal and conditional distributons 

Theorem 6.5.1 The marginal distribution of any subset Xd!, ... , Xds of Xl'···' Xn follow-

ing GMGPD {6.3.1} also follows GMGPD with parameters bo, bd!, ... ,bds ; so, Sd!, .. · ,Sds and 

Proof: 

= ~ Pr (n Xt = Xt) 
{xd,(l¥d!, ·,ds ) t=l 

= [M(bo,bl, ... ,bn;SO,Sl, ... ,Sn;ZO,Zl, ... ,zn)]-l (6.5.1) 

e-(Xd] Zd]) B~d! (bo, bd]; So, Sd]; Zo, ZdJ 

Xd]' M(bo,bd!;SO,Sd];ZO,Zd!) 
(6.5.3) 

where 

(6.5.4) 

which for Zo = zd! reduces to Abel's generalization of binomial identity. (Riordan [62]) In particular 

when Zo = Zd! = Z then 

for So = Sd! = -1 

e- Xd ! Z BXd! (bo, bd!; So, Sd!; z) 

Xd]' M(bo, bd!; So, Sd!; Z, z) 

e-(bo+bd] +Xd] z) (bo + bd! + Xd] Z td] -1 

Xd]' 

(6.5.5) 

(6.5.6) 
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which is the probability function of GPD I (Consul and Jain [18]) with parameters bo + bd1 ; z. 

Theorem 6.5.2 The conditional distribution of Xl, ... , Xn given X 2 = 0 is n - 1 variate multiple 

generalized Poisson distribution {Das [28J} with (bk, Sk, Zk); k = 1, ... , n; k '" i having pf 

(6.5.7) 

Theorem 6.5.3 For generalized bivariate GPD {i.e. GMGPD with n = 2} the conditional distri-

bution of Xl given X 2 is given by 

(6.5.8) 

When Zo = Z2 = Z {6.5.8} is clearly the convolution of weighted quasi binomial distribution {2.2.5} 

and WGPD distribution {5.2.4}. 

Converse of the theorem also holds. 

B~2-1 (bo+zo,b2j So+1,s2jZO,Z2) 
+ X2 B~2(bo,b2jSO,S2jZO,Z2) 

For different values of so, 81, 82 the regression function of Xl on X 2 can be derived from theorem 

(6.5.4) using values of the sums K(.) and B'(.). 

e.g. when (i) Zo = Zl = Z2 = z and 80 = 81 = 82 = -1, the pf (6.5.4) reduces to (Johnson et al. 

p.134) 

(6.5.9) 

(ii) Zo = Zl = Z2 = z and 80 = 0,81 = 82 = -1, we have 

b1 X2 
= (1 - z) + (bo + b2 + X2Z)X2 

x2-1 
L (bo + (k + l)z)zk(X2 - 1)(k)(bo + b2 + X2Z)x2-k-1 (6.5.10) 
k==O 
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(iii) Zo = Zl = Z2 = z and 80 = 0,81 = 0,82 =-1 

2 2) x2 
E[XI I X 2) = (b1 + z)(l - z) + z (1 - z + (b b + )X2 

0+ 2 X2 z 
X2- 1 

L (X2 - l){k l zk(bo + (k + l)z)(bo + b2 + X2 Z)X2-
k- 1 (6.5.11) 

k=O 

(iv) Zo = Zl = Z2 = z and 80 = 81 = 82 = ° 
E[XI I X 2) = (1 - z){(b1 + z)(l - z) + z2)} + X2 

~ x~~l z~(bo + b2 + X2Z)X2-~ 
~=O 

(6.5.12) 

For z = 0, relations (ii), (iii) and (iv) all reduces to relation (i) as expected. 

6.6 Mean and Dispersion 

Theorem 6.6.1 If a random vector X = (Xl, X 2) . .. ) Xn) '" GMGP distribution with parameters 

(6.6.1) 

(6.6.2) 

(6.6.3) 

where 

Note: For obvious reason it can be seen that the correlation between any two variables is always 

positive. 

Using the results described above below formulas for mean and dispersion matrix for different distri-

butions of the GMGPD class are listed below. 
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Case I: For So = 81 = 0 0 0 == 8 n = -1 

Case II: In the above case if further Zo = Zl = 0 0 0 = Zn = z, then (Das [28]) 

bo+bto bo 
(1-z)3' at) = (l-z)3 

Case III: Suppose 80 = 0,81 = 82 = 000 = 8n = -1, then 

bo(l - zo) + z6 bt 
J.Lt = +--

(1 - zo)2 1 - Zt 

a 2 = bo + (1 - bo)zo + z6 + bt 
t (1 - zO)4 (1 - Zt)3 

bo + (1 - bo) Zo + z5 
(1 - zO)4 

Case IV: If 80 = 81 = 0,82 = 83 = 000 = 8n = -1, then 

J.L1 

J.Lt = 

a? = 

a2 = t 

at) = 

Ca8e V: In case 80 = -2,81 = 82 = 000 = 8n = -1, then 

b5 bt 
--~--+--
bo + Zo - bozo 1 - Zt 

ba(bo + Zo) bt 
-:---~..:......:..-...:;.:...--- + --'--....,.. 
(1 - zo)(bo + Zo - bozO)2 (1 - Zt)3 

ba(bo + zo) 
(1 - zo)(bo + Zo - bozO)2 

Case VI: For 8k = -2, St = -1, z /; k = 0,1,000, n 
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bo bt 
J.Lt = --+--

1 - Zo 1 - Zt 

a2 bo b~(bk + Zk) 
= + k (1 - zO)3 (1 - zk)(bk + Zk - bkzk)2 

a2 bo bt 
= + t (1 - zO)3 (1 - Zt)3 

bo 
~ f:. J; ~ f:. k; ~,J = l(l)n at) = 

(1 - zo)3 

6.7 Some formula for mixed moments 

Theorem 6.7.1 l' ex~sts, the m~xed descendmg Jactorzal moment J.L'(T T ) oj the random vector J I, 2, ,Tn 

(Xl, X2, .. ·, Xn) Jollowmg GMGPD {6.3.1} can be expressed as 

(6.7.1) 

where ~ is WGPD with bt , St, Zt for ~ = O(1)n as in (5.2.4) 

6.8 Estimation 

In this section, the problem of estimation of the parameters of GBGPD I and GBGPD IV using 

method based on the observed proportion of double zeros and the first two sample moments have 

been studied. 

(i) GBGPD I 

Famoye and Consul [32J discussed a method of estimating the SIX parameters bo, bl , b2; Zo, Zl, Z2 
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based on observed proportion of double zeros(poo) and the observed sample first and second mo-

ments(Johnson et al. (50], p.134). 

(ii) GBGPD II : Here the parameters are obtained from the following formulas: 

~2 

b (1 ~)3 Zo o - Zo mn - (1 £0) 

b;. = (1 - ii)3[m20 - mn)] 

b; = (1 - i2)3[mo2 - mll] 

ii = 1 _ [mlo - m:n + (1 - i2)2(mo2 - mnlj t 
m20 - mll 

Where Zo, Z2 satisfy the following equations. 

log (1 £0) _ (1 £o)3mll + ;g 
Poo 1-~ 

(m~o - m~o + (1 - i2)2(m20 - mu)) ~ 
...jm20 - mll 

(1- i2)3{mo2 - mn) = 0 

(ii) GBGPD IV : Here the parameters are estimated using the following equations 

b; (1 - i2)3[m02 - mll] 

1 _ {mlo - min + (1 zz)2(moz 
m20 - mu 

Where bo, £0 and Z2 satisfy the following equations. 

~3 3 ~z 
bo + {(I - £0) mn - £o}bo 

1 

mu) } 2" 

(6.8.1 ) 

(6.8.2) 

(6.8.3) 

(6.8.4) 

(6.8.5) 

(6.8.6) 

(6.8.7) 

(6.8.8) 

(6.8.9) 

(6.8.1O) 
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{m02 - mn} - (1 - i2){bo{l- zo) + Zo}mu = 0 

log POO - 2 log bo - log (bo + Zo) + log {bo (1 - Zo) + Zo} 

~ 3 
+bo + (1- zo) {m2o - mn} - 31og(1 - i2) 

-log {m2o - mll} -log {mo2 - mn} 

+{ m20 - mll} {mio mCll 
m20 mn 

(1 - i2) 

I I 1 
-3 log {mlO - mOl _ (1 _ i2)2} 2 = 0 

m20 - mll 

2}~ 
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(6.8.11) 

(6.8.12) 

where, mu = Sample covariance (XI ,X2), m~o = Sample mean Xl, m~l = Sample mean X2, 

m20 :=:: Sample variance Xl, and m02 = Sample variance X 2· 



Appendix A 

Some important relations and identities related to a class of Abel's generalizations of binomial iden-

tities and two results of multinomial Abel identities (Riordan [62]) which are used repeatedly in 

deriving many results of the present work are presented here. 

The general form of the class of the Able sums is given by 

Bn(al, a2; s, t; z) = t (~) (al + kz)k+s(a2 + (n - k)z)n-k+t 
k=O 

(A.I.1) 

The parameter z will not be disposed of as it is important in the context of the present work. 

For z = 1, (A.I.1) reduces to An(al,a2;s,t) of Riordan [62]. Some of the important new 

results along with the known ones are listed below. More results can be derived using the recurrence 

relations (Riordan [62]). Though the process is straight forward, sometimes may be quite messy. 

(A.I.3) 
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Bn(al,a2; -2,0;z) = a1
2(al + z)-l[(al + Z)(al + a2 + nz)n 

- nZal(al + a2 + nz)n-l] (A.L4) 

Bn(al,a2; -l,O;z) a1l(al + a2 + nzt (A.L5) 

Bn(al,a2;0,0;Z) = (al + a2 + nz + zat (A.1.6) 

Bn(al, a2; 1,0; z) = (al + a2 + nz + za + z(3'(ad)n (A.L7) 

Bn(al,a2i 2,0;Z) = (al + a2 + nz + za + z(3'(al; 2))n 

+ (al + a2 + nz + za(2) + z,'{at})n (A.L8) 

Bn(al,a2;3,0;z) = (al + a2 + nz + za + z(3'(al; 3))n 

+ 3(al + a2 + nz + za(2) + z(3'{ad + z,'{adt 

+ (al + a2 + nz + za(2) + z(3'(O) + z,'(ad)n 

+ (al + a2 + nz + za(3) + z1jJ'(al)t (A.1.9) 

Bn(al, a2; -3, -1; z) al + a2 ( )n 1 nz(2al + z)(al + a2 + z) 
= 3 a 1 + a2 + nz - -

ala2 ar(al + z)2a2 

( + + )n-2 + n(n - 1)z2(al + a2 + 2z) al a2 nz 
al (al + z)(al + 2z)a2 

(al + a2 + nz)n-3 (A.LlO) 

Bn(al, a2; -2, -1; z) al + a2 1 nz(al + a2 + z) 
= 2 (al + a2 + nz)n- -

ala2 (al + Z)a2 al 

(al + a2 + nzt-2 (A.Ll1) 

Bn(al, a2; -1, -1; z) 
al + az 1 (A.L12) = (al + a2 + nz)n-

ala2 

Bn(al, a2; -2, 1; z) = 1 ( , ( n 2" al + a2 + nz + z(3 a2) 
al 

nz ( '( n 1 (A.1.13) - ( ) al + a2 + nz + z(3 az)) -
al al + z 

Bn(al, a2; -1, 1; z) = a1l(al + a2 + nz + z(3'(a2))n (A.1.14) 

Bn(al, a2; 1, 1; z) - (al + a2 + nz + za + zj3' (ad + zj3'(a2»n (A.1.15) 

Bn(al, a2; -1, 2; z) = all[(al + az + nz + z(3'(a2; 2))n 
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(A.l.16) 

(A.l.17) 

(al + a2 + nz + za(2) + z,'(ad + z(3'(a2; 2))n 

(A.l.18) 

(A.l.19) 

Multinomial Abel identities: 

The general form of the multinomial extension of Abel sum (A.!.!) is given by 

(A.l.20) 

where the sum is over all positive integers nl,' .. ,nm such that 2::~1 nt = n 

For z = 1 (A.l.20) reduces to An (a1, .. ' ,am; 81, ... ,8m;) of Riordan(1968). 

Two important identities: 

Bn(a" .. ,am; -1" -i) ~ (g .. f' (~a,) (~ .. +nzf' (A.l.21) 

Bn(a" ... , am;O, .. · ,0) {t, .. + nz + z,,(m -1) r (A.l.22) 

where 

(3~(x) == (3'k(x) = k! (x + kz) 
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,~(x) == ,'k(X) = (kz) k! (x + kz) 

1/J~(x) == 1/J'k(X) = (kz) (kz) k! (x + kz) 

(3'k(X; 2) = [(3'(x) + (3'(x)]k,etc. 

Putting z = 1, the corresponding results for An(al, a2; s, t) tabulated in page 23 of Riordan [62] can 

be obtained. An important relation for An{x, y; s, t) 

An{x, y; s, t) (x - 1) t (~) ci An-k(x + k, y; s - 1, t) 
k=O 

+ t, (~) ,,' (2),4,,-.(x +k, y; s - 1, t) (A.1.23) 

This relation is useful in converting results of An(x, y; s, t) only involving the umbral a. 

For example: 

(x - 1)(2)(x + y + n + a(3)t + [2(x - 1) + (x - 3)](x + y + n + a(4»n 

+ 3(x + y + n + a(5)t 

Expansions of the following type can be developed easily which will help to further simplify the 

expressions of Abel identities. 
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As in appendix A here too some results related to a class of exponential sums (Nandi et al. [55]) 

are listed as these are used in arriving some results specially related to class of weighted generalized 

Poisson distributions discussed in the present work. 

The general form of the exponential sum is given by 

subject to the simultaneous realization of the constrains a + kz > 0, for all k and 

( a) ( z )k+S o < z + k + 1 1 + a + kz e-
z 

< 1 

for all sufficiently large k where s is an integer. 

Recurrence relations of K(a; s; z) 

a) K(a; s - 1; z) 

b) K(a; s; z) 

c) K(a;s -l;z) 

1 
- [K(a; s; z) - ze- z K(a + z; s; z)] 
a 
00 

= Lzl.le-I.IZ(al +vz)K(a+vz,a;s -l;z) 
1.1=0 

= ~ [:a K(a; s; z) - e- z K(a + z; s; z)] 

Some important results derived using the recurrence relations are presented below 

K(a, -l,z) = 

K(a, -2,z) 

a 

ea {a(l - z) + z} 
a2 (a + z) 
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(B.l.l) 

(B.1.2) 

(B.1.3) 

(B.IA) 

(B.1.5) 

(B.1.6) 
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K(a, -3, z) = (B.l.7) 

K(a, -4,z) = 

+ 

+ 

+ (3a6 - 10a5)z - a6} (B.l.8) 

K(a, -5, z) 
5 

a5(a + z)4(a + 2Z;3(a + 3z)2(a + 4z) {(12a
4 

- 48a
3 + 144a

2 
- 228a + 228)ZlO 

+ (52a5 - 308a4 + 924a3 - 1848a2 + 1848a)z9 + (91a6 - 754a5 + 2602a4 

+ (-4a lO + 90a9 - 520a8 + 882a7)z3 + (6a lO -70a9 + 175a8 )z2 

+ (-4a lO + 20a9)z + aID} (B.l.9) 

K(a,O,z) 
ea 

(B.l.1O) = (1 - z) 

K(a,l,z) = e
a 

{a(I-Z)+Z2} (B.l.11) 
(1 - z) (1 - z)2 

ea 
K(a,2,z) ( )5 {2z4 + (1 - 3a)z3 + (a2 + 3a)z2 - 2a2z + a2} (B.l.12) 

l-z 

K(a,3,z) 
ea 

(1 _ z}7 {6z6 + (8 - 11a)z5 + (6a2 + 7a + 1)z4 

+ (_a3 - 12a2 + 4a)z3 + (3a3 + 6a2)z2 - 3a3 z + a3 } (B.l.13) 

K(a,4,z) 
ea 

(1 _ z)9 {24z8 + (58 - 5a)z7 + (35a2 + 22)z6 

+ (-lOa3 
- 60a2 + 45a + l)z5 + (a4 + 30a3 + 15a2 + 5a)z4 

(B.l.14) 
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Abbreviations 

QBD Quasi binomial distribution 

QPD Quasi Polya distribution 

QIPD Quasi inverse Polya distribution 

GMPD Generalized Markov Polya Distribution 

GIMPD Generalized inverse Markov Polya distribution 

GPD Generalized Poisson distribution 

WQBD Weighted QBD 

WGPD Weghted GPD 

GPM Generalized probability model 

UPM Unified probability model 

pgf probability generating function 

cgf cumulant generating function 

pf probability function 

PE Polya Eggenberger 

IPE Inverse Polya Eggenberger 

QBB quasi beta binomial 

BB beta binomial 

QH quasi hypergeometric 
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164 Abbreviation 

HG hypergeometric 

MPSM Markov Polya survival model 

QNB quasi negative binomial 

NB negative binomial 

NHG negative hypergeometric 

IF inverse factorial 

BP beta Pascal 

GNB generalized negative binomial 

BD binomial delta 

CD Consul distribution 

GQH generalized quasi hypergeometric 

GPE generalized Polya Eggenberger 

MLE maximum likelihood estimate 

amb a-modified binomial 

amp a-modified Poisson 

amp) a-modified Poisson of order j 

camb class of a-modified binomial 

wamp weighted a-modified Poisson 

GMGPD generalized multivariate GPD 

GBGPD generalized bivariate GPD 
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