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Abstract

In his notebooks [48] and lost notebook [49]). Ramanujan listed many amazing results, most of
them without any proof. It is now a remarkable chapter in the history of mathematics that most of
Ramannjan’s claims have been fonnd to be tiue by several great mathematicians. Berndt ([L11], [14],
[15], [17], and [18]), Agarwal[l], and Andiews and Berndt [3] systematically discussed the claims
made by Ramanujan. Many of the prools given by later mathematicians used ideas or theorems not,
known to Ramanujan. That is, it was possible to find the technique used to establish the truth of
these results because the end results were already known. We call such proofs “verifications.” The

main aim of this thesis is to give proofs of many results by using methods known to Ramanujan. In
the process, many new results are also derived. We deal with Ramanujan’s Schlafli-type “mixed”

modular equations. class invatiants, eta-function identities, explicit evaluations of theta-functions,

Rogers-Ramanujan contimmed fraction, and Ramanujan’s cubic continued fraction.
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Chapter 1 |

Introduction

o W
1.1 Introduction ,‘\oké}w \ \})Og Méﬁ“

The Indian mathematical genius Srinivasa Ramanujan Ayenger (1887-1920) recorded many
spectacnlar mathematical results in his notebooks [48] and his lost notebook [49]. 1t is well
known that Ramanujan rarely provided any proof for his stated resalts. Bendt ([11], [14], [15],
[17], and [18]), Agarwal{l], and Andrews and Berndt [3] systematically discussed the claims
made by Ramanujan and provided proofs for the results stated by Ramanujan. Some of their
proofs are based on modein ideas and some of them are verified being knowing the result in
advance. In this thesis, we prove some of those resnlts regarding modular equations, class
invariants, theta-functions, and continued fractions. In the comse ol our study, we have also

discovered many new results.



2 CHAPTER 1. INTRODUCTION

1.2 Scope of the Thesis

The thesis has seven chapters including the inttoductory Chapter 1.

In Chapter 2, we deal with Ramanujan’s Schlafli-type “mixed” modulat equations. On
pages 86 and 88 of his fitst, notebook [48], Ramanujan recorded 12 Schlifli-type “mixed”  mod-
wlar equations. 11 of these were not tecorded in lus second notebook [48]  One of these 11
cquations follows from a modula equation 1ecotded by Ramanujan in Chapter 20 of his second
notehook. This was fitst observed by K. G. Ramanathan [41, pp. 419-420]. Berndt [18] proved
the other 10 equatiomsbymodular forms, a method with which Ramanujan was not familiar. We
give alternate proofs for 8 of these equations. Two are proved by deriving some theta-function
identitios using Schioter’s formulace, and the est are proved by employing Ramanujan’s Schlifhi-
ty pe modulat equations of prime degrees and some other modular equations. In the process,
we also find two new Schldfli-type “mixed”  modular equations [(2.3 19) and (2.3.60)]. For

example, in Lemma 2.3.1 of Section 2.3, we find that, if

Q= ((vﬁ(l — o) (1 =) ) "

fy(1 = A)(1 =)

and
po (PO MU=\
' off(l—a)(1 = p3 ;
then,
R2+l—cg"+l—3
Rt Q7

wheie /4 7y, and § are of degiees 3, 7, and 21, tespectively, over cv.



1.2. SCOPE OF THE THESIS 3
In Chapter 3, we deal with Weber-Ramanujan'§ class invariants.
Let
(@ @)oo = IZy (1 — ag™), lal <1,
and, after Ramanujan, we set
X(@) = (—4:¢*)oo-
If ¢ = exp(—my/n), where n is any positive rational number, then Weber-Ramanujan’s class

invariant G,, is defined by

G = 27147 x(g).

In section 3.3, we derive

1/2 1/2
11 + 47 9+ 47 12 + 57 16 + 5v/7
Gz = T\ 4 + 4

by using Ramanujan’s modular equations of degrees 7 and 31. Berndt, Chan, and Zhang [26] r(:/’
(Also see [18]) could not utilize the modular equations of degrees 7 and 31 recorded by Ramanujan
to effect a proof for Go;7. In Section 3.4, we employ some of the Schlafli-type “mixed” modular
equations discussed in Chapter 2, along with some other Schléfli-type modular equations of
prime degrees to evaluate Ramanujan’s class invariants G, égl, G33, Gag, Gss, and Ggs. It is
worthwhile to note that our evaluation of Ggs is much ﬁm easier than that of Berndt, Chan,
and Zhang [26]. The most important feature of. our method is that we can also simultaneously
get the values of Gsys, Grys, Gz, Gas, Giuys, and Giays. Previously, these values were found
by verifications. We also note that, these class invariants can be utilized to find some of the

explicit values of certain g- continued fractions [25), certain values of Ramanujan’s product of

theta-functions [27], and some values of the quotient of eta-functions [30].
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[n Chapter 4, we deal with Ramanujan’s eta-function identities.

If ¢ = exp(2m22), then Ramanujan’s eta-function f(—q) is defined by
—1/24 ¢
f(=q) = q'*"n(2), (L.21)
where 9(z) is classical Dedekind cta-function defined by

n(z) = ™% (1 = ¢*™"%), lmz > 0. (1.2.2)

n=1

In the unorganized pottions of his second notebook, Ramanujan [48] recorded without proofs
25 beautiful identities involving quotients of ouly cta-functions and no other theta-functions
Bewndt and Zhang [23] proved some of these identitics. Proofs of all the 25 identitics recorded
by Ramanujan ate given in Chapter 25 of Berndt’s book [17]. Of these identities 19 were proved

. . S . N

by employing modular equations and patameterizations and 6 were proved by invoking L:;tlw
theory of modulat forms. But in many of theit proofs via patameterizations, they used heavy
amount of tedious algebra and the identities must be known beforehand. So those proofs may
be metely called verifications. In Chapter 4, we deduce five of these identities [see Theorms
4.2.1-4 2.5] by using Ramanujan’s other eta-functions identities and one of our newly derived
identitics [sce Lemma 4.5.1]. The main advantage of our method is that one can find other
identitios of the same kind. For example, in Section 7.6 of out last, chapter, we find thiee new

identities of the same kind in connection with Ramanujan’s cubie continued fraction.
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1.2. SCOPE OF THE THESIS
In chapter 5, we deal with explicit evaluations of Ramanujan’s theta-function ¢(q), defined

hy

dlg) =1L +2 i (]kz, (1.2.3)
k=1

whete Jg| < 1.

At different, places of his notehooks [48], Ramanujan recorded several explicit values ¢(q).
Borwein and Borwein [31] fitst observed that Ramanujan’s class invariants could be used to
calcilate certain explicit values of ¢p(e ™). Berndt and Chan [21] verificd all of Ramanujan’s
non-clementary values of ¢p(e™"). They also derived some new values by combining Ramann-
jan’s class invariants with his modular equations. We give W simpler proofs for some of
these evaluations and calculate some new values of ¢(e™™7). We also find some new theo-
rems for finding explicit values of quotients of theta-functions by detiving some theta-function
identities

In Chapter 6, we deal with the famous Rogers-Ramanujan contined fraction R{q), defined
by

g\ 2

)
7 9 9 .
R(q) = ST lg| < 1. (1.24)

+le 414,
In his first and second letters to Haidy [22], Ramanujan communicated several explicit values of
R{q) and S(y), whete S(g) = =R(—q¢). Watson [52]-{53] proved some of the results claimed by
Ramanujan iu those letters. In both his first [48] and lost, notehooks [49], Ramanujan recorded
several other evaluations. In particular, on page 210 of his lost notebook [49], Ramanujan
provided a list of evaluations and intended evaluations. Ramanathan [42]-[46] made the first

attemplt Lo find a uniform method to evaluate R(g) by using Kronecket’s limit formula, with
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which Ramanujan was not familiar. Beindt and Chan [20] and Bendt, Chan, and Zhang [25]
completed the incomplete list of Ramanujan by using some modular equations rccotded by
Ramanujan [48] in his notebooks. Most importantly, Berndt, Chan, and Zhang [25] derived
general formulas for evaluating R(e=?™V") and S(("”\/’—’) in terms of Weber-Ramanujan class
invatiants. The lost notebook [49] also contains mauny formulas for ?(q) and theta-tunction
identities giving more formulas for the explicit evaluation of [7(q). Kang [37]-[38] proved many of
the claims made hy Ramanujan. It appears that thongh Ramanujan’s formulas ate interesting,
thev generally are not very much amenable in the calculation of clegant values of R{q). Here
we find some of the evaluations of R(q) and S(q), by using the values ol the quotients of theta-
functions found in Chapter 5 and some other theta-function identities. Our evaluations ae
much easier than those of the previous anthors.

In Chapter 7. we deal with Ramanujan’s cubic coutinued fraction G(g), defined by

—ql/% q+q2 (12+q4 q!+(1(»
I U T

G(q): lg] < L. (1.2.5)

Ramanunjan first intioduced this continned fraction in his sccond letter to Hardy [22]. He also
1ccorded this continued fraction on page 366 of his lost notebook [49], and claimed that theie
are many results of G(q) which are analogous-to-fi(q). Mativated by Ramanuajan’s claims,
Chan [32] proved many new identities which probabiy weie the identities vaguely referted g
by Ramanujan. He established some 1eciprocity theorems for G(g), found relations between
G(q) and the thice continted tractions G(—q), G(¢?) and G(q?), and obtained some explicit,
evaluations of G(g). For example, he proved the following relation between G(q) and G(q*)

L - Glg*) + G4y

9 ¢
14 2G(¢}) +4G2%(g%) (126)

GY(a) = Glo)
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But his proof of {1.2.6) is not.satisfactory. In particular, the last deduction [32, (2.18), p. 317]
is not, an obvious one. In Section 7.2, we find an easy proof of (1.2.0).

By deriving some theta-function identities in Section 7.3 and Section 7.4, we give general
formulas for the explicit evaluations of G(—e™*™V") and G(e=*™V*) in Section 7.5. General
formulas for the explicit evalnations of G(—e™™") and G(e™™), were established by Berndt,
Chan and Zhang [24].

In Section 7.6, we find three new beantiful eta-function identities tTh(-:()r(-.nnS 7.6.1-7.6.3],
and use them to derive two beautiful identities [Theorems 7.7.1-7.7.2] giving rclations between
G(q) and the two continued fr;,l.ctioné G(q®) and G(q¢7). For example, in "I‘lneorem 7.7.1, we

prove that, il v = G(¢) and w = G(¢), then

0" — vw 4 Sow(v? + w?) (1 - 20w) + w' = v (160 w? - 200%w?* 4 200w - 5).



Chapter 2

Schlafli-type “Mixed” Modular Equations

2.1 Introduction

The theory of modular equations began with the transformations of Gauss and Landen which give
modular equations of degree 2 {13, pp. 30-31]. In 1825 Legendre explicitly found a modular equation
of degree 3. In the next 100 years, many modular equations were discovered by E. Fielder, R. Fricke,

A. G. Greenhill, C. Guetzlaff, M. Hanna, C. G. J. Jacobi, F. Klein, R. Russell, L. Schlafli, H. Weber,

and others. Hanna's paper [34] contains a lot of references in the literature. However, Ramanujan

Note: The main results of this chapter have appeared in our papers [{] and [9. A part of this
chapter was presented at the 15th Annual Conference of the Ramanunjan Mathematical Society,
held in the Ramanujen Institute for Advanced Study in Mat&gmatics, Unwersity of Madras, for

which the author was awarded “Prof. M. Vengkataraman memorial best puper presentation award.”
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recorded more modular equations than those of his predecessors combined. Chapters 19-21 of
his second notebook [48] are almost completely devoted to modular equations. Many others can
be found in the unorganized pages of his first and second notebooks [48]. He also recorded some
modular cquations in his lost notebook ([19], {49]) and his letters to Hardy [22]. For the introductory
part of his modular equationsione may also see [12], [13], [15] ,[16], or [41]. His work on modular

equations is based on his theory of theta-functions. His general theta-function f(a,b) is given by

DI i el (2.1.1)

2

f(a,b) =

k=—00
where |ab| < 1. If we set a = ¢**, b = ¢ %2, and q = ¢™", where z is complex and Im(r) > 0,
thenf(a,b) = ¥3(z,7), where J3(z,7) denotes one of the classical theta-functions in its standard
notations [62, p. 464].

Now, we recall the definition of a modular equation from Berndt’s book [15].

The complete elliptic integral of the first kind K (k) is defined by

T %nz m 11 2
__Z Sk = R (5, 5 L 2.1.2
2 — 22 1(2)2’11k)7 ( 1 )

0= [ =
(k) s’

where 0 < k < 1. The series representation in (2.1.2) is found by expanding the integrand in
a binomial scries and integrating termwise, and ,I is the ordinary or Gaussian hypergeometric

function defined by

oQ
2Fy(a, b;¢; 2) Z "z", 0< 2| <1,

where a, b, and ¢ are complex numbers such that c is not a nonpositive integer. The number k is
called the modulus of K, and &' := v/1 — k2 is called the complementary modulus. Let K, K’, L,

and L' denote the complete elliptic integrals of the first kind associated with the moduli k, &', {,
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and !’, respectively. Suppose that the equality

e L (2.1.3)

holds for some positive integer n. Then a modular equation of degree n is a relation between the
moduli k£ and ! which is implied by (2.1.3). Ramanujan recorded his modular equations in terms of
a and B, where o = k? and B = I?. We say that (3 has degree n over a. The multiplier m is defined

by

(2.1.4)

m=X
7
Similarly one can define Ramanujan’s “mixed” modular equation or modular equation of com-
posite degrees. Again, we recall from Chapter 20 of B. C. Berndt’s book [15, p. 325]. Let K,
K', Ly, L, Ly, L}, Lj, and L} denote complete elliptic integrals of the first kind corresponding, in
pairs,to the moduli /o, /B, Va? and‘\/g, and their comnplementary moduli, respectively. Let n,,

ng, and n3 be positive integers such that ny = nyn,. Suppose that the equalities

K L, K L K I
—_— —_— T —— d _ = — 2.1.5
M T MK TL MK T I, (2.1.5)

hold. Then a “mixed” modular equation is a relation between the moduli /o, /B, /7, and Ve
that is induced by (2.1.5). In such an instance, we say that 3, v, and é are of degrees n;, n,, and

n3, respectivély, over a. Denoting z, = ¢*(q"), where ¢ = exp(—7K'/K), ¢(q) = f(q,9), |g| < 1;

the multipliers m, and m/ associated with @, ﬂ, and v, 0, respectively are defined by

21 Zn i
m=—, m =22, (2.1.6)
’znl Zn:;

Ramanujan probably used a lot of methods [12] in deriving his modular equations. Berndt ([14],

[15], [17], [18], [19]) discussed all the modular equations recorded by Ramanujan in his notebooks
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(48] and lost notebooks [49]. (One may also see [3] ) But it is worthwhile to note that many of the
Ramanujan’s modular equations remained to be elucidated by the methods kuown to Ramanujan.
Two new methods arc employed to prove those 1esults. One is parametrization of certain quantities
and the other is the theory of modula: formns. R.J. Evans in [33] used the theory of modular forms to
\)@Wﬁ L .
veeys théta-function identitics in a very 1emarkable way. Berndt has frequently used Evans’ ideas
)
realfy Evans’ ol .
also. But the main disadvantage of these lpeotfgods is h;?toon 1as to know the mod%la.r equation

in advance. These methods do not give much insights to Ramanujan’s discoveries. So deductions

and proofs based on probable methods of Ramanujan {12] are preferred.

If the modular quantitics (2*/cv(1 - (Y))UM and (2'/5(1 — /5)))‘/24 are connected in an equation,
then such a modular equation is called a Schlafli-type modular equation (see, [41, p. 404]). In 1870,
L. Schléfli studied such type of equations for prime degrees. Ramanunjan not only rediscovered all
the equations found by Schlafli but also discovered such type of equations associated with “mixed”
modular equations. In fact, on pages 86 and 88 of his first notebook [48], Ramanujan recorded 12
Schlafli-type “mixed” modular equations. 11 of these were not recorded in his second notebook [48].
One of these 11 equations follows from a modular equation recorded by Ramanujan in Chapter 20 of
his second notebook. This was first observed by K. G. Ramanathan [41, pp. 419-420]. Berndt [18]
proved the other 10 equations by invoking the theory of modular forms. In this chapter, we prove
8 of these equations. Two are proved analytically by deriving some theta-function identities 1;8;11g
Schidter’s formulae. For the other equations we give elementaty proofs by employing Ramanujan’s
" modular equations of prime degrees, other “mixed” modular equations and Weber-type equations

([18], [41]). In the process, we also found two new Schlifli-type “mixed” modular equations [(2.3.49)

and (2.3.60)].
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Now we state the theorems which will be proved in thism

We set
P := (256a876(1 — a)(1 — B)(1 - 7)(1 - 6)) %, (2.1.7)
_ (ad(1-a)(1-0)\"
o= (=) 219
(01 = 7)(1 = 6) % |CENTRAL LIBRARY, T. U.
ft= (aﬁ(l - a)(1 —ﬂ) ’ EACC.NO. ......................... (2.1.9)
and,
(B -p-8)\*
e (BUZB0-0) o1

Theorem 2.1.1 ({48, Vol. I, p. 86]; [18, p.380]). If o, B, v, and & have degrees 1, 8, 5, and 15,

respectively, then

1 1
T4+Z—,Z —2(P2+73—2)+3=0. (2.1.11)

Theorem 2.1.2 ([48, Vol. I, p. 86]; [18, p. 380]). If @, B, v, and & have degrees 1, 8, 11, and

33, respectively, then

1 1 1
T4+TT+3(T2+T2 =2(P*+ 55) =0. (2.1.12)

Theorem 2.1.3 ([48, Vol. I, p. 86]; [18, p. 380]). If o, B, v, and & have degrees 1, 3, 5, and 15,

respectively, then

1 1
R6+F—4(P4+ﬁ)+10(P2+%2—1)=0- (2.1.13)

-

Theorem 2.1.4 ([48, Vol. I, p. 86]; [18, p. 380]). If o, B, 7y, and & have degrees 1, 3, 7, and 21,

respectively, then

1 1 1 1 1
8
R +ﬁ+7(R6+h_g>+14(R4+EZ)+21 (R2+ﬁ§>~8(136+—ﬁs->+42:0- (2.1.14)
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Theorem 2.1.5 ([48, Vol. I, p. 86]; [18, p. 880]). If o, 3, 7y, and § have degrees 1, 3, 7, and 21,

respectively, then

1

Q16+@-ﬁ

—5(Q12+@l@>+5<Q8+ZJI§)+6<Q4+@1—4>—8(P6+§31—6)+6=0. (2.1.15)

Theorem 2.1.6 ([48, Vol. I, p. 86]; [18, p. 381]). If o, 3, 7y, and & have degrees 1, 5, 7, and 35,

respectively, then

T6+%€+5\/§<T3+%) (P+-115)—4(P4+7}Z)+10=0. (2.1.16)

Theorem 2.1.7 ([48, Vol. I, p. 86]; [18, p. 881]). If o, B, 7y, and 0 have degrees 1, 5, 7, and 35,
respectively, then |
, 1 .1 , 1 , 1
R+R—4——(Q +—6->+5<Q +@)—10<Q +©3)+15=0. (2.1.17)
Theorem 2.1.8 ([48, Vol. I, p. 86]; [18, p. 881]). If e, B, v, and & have degrees 1, 5, 11, and

55, respectively, then

T6+—T13—5(T4+%)+10<T2+7—1,—2) (P2+P1—2—1)—4<P4+i) 10(P2+—1—)—25=0.

The first two theorems will be proved in section 2 by deriving some theta-function identities by
cmploying Schréter’s forinulae. The other modular equations will be proved by using Ramanujan’s
Schlifli-type modular equations of prime degrees, “mixed” modular equations, and Weber-type
equations.

We shall make use of several results from Berndt’s book [15] in our proofs. We record some of

these results below for further reference. Page numbers refer to the location of the results in [15].
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Entry 18. (p. 34) We have

(2)
(22)
(112)

and, if n is an integer,

(w)  f(a,b) = a”HI2p2=D/2 f(a(ab)”, b(ab) ™).

Entry 22. (pp. 36-37) If |¢| < 1, then

()

() f(-q) = f(-q,—-¢") = i(—l)"qk“"“‘”2 + }oi(—l)'°¢1'°(3'°+”/2 = (¢; Door

k=0

where (a; ¢)oo := 1132 4(1 — ag*).

f(a’ b) = f(ba a):
f(l,a) = Qf(a" a3),

f(_l’a) =0,

o0
fla,9) =1+23 ¢,
k=1

¥(q) = f(g.q°) = Y g7,
k=0

X(9) := (—; ¢*)oos

(2.1.19)
(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

The third equality in (jii) is a statement of Euler's famous pentagonal number theorem. For an

elementary proof and further references sce G. E. Andrews’ paper [2].

If we put ¢ = exp(~wK'/K), z = z, and £ = a in Entries 10, 11, and 12 of chapter 17 (pp.

122-124) then we have the following results :

10(2)

(2.1.27)



2.1. INTRODUCTION
10(4)
10(4v)
10(vs)
10(vid)
11(5)
11(44)
11(443)
11(iv)
12(443)

12(v)

#(—0) = Va(l - )
3(e) = valz 1+ VI— @)

Al

b

#(q7) = Var (1 + Va)1,

o) =/ Fete
¥(=0) = /3 (all - a))iq”

¥a") = 5y/5 10 - VI a)}ah,

f(=¢%) = Va2 i {a(l - @)} g

x(g) = 28{a(l — )}

o}

4q2

L
12
)

4

15

(2.1.28)
(2.1.29)
(2.1.30)
(2.1.31)
(2.1.32)
(2.1.33)
(2.1.34)
(2.1.35)
(2.1.36)

(2.1.37)

It is to be noted that, if we replace q by ¢", then 2z; and « will be replaced by 2, and corresponding

square of the modulus, respectively.

If 4 and v are integers such that 4 > v > 0, then from Schroter’s formulae (36.1), (36.2), (36.6),
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and (36.9) (pp. 67-69), we note that

%{f(Aq"va, gt /A)f(Bg"™",¢"""/B) + f(—A¢"*", —¢*** [A) f(—-B¢*™*, —¢""" |/ B)}

= “}_:l (é)mqmnnzf ﬂq(2u+4m)(u2_u2) Blt+uq(2u_4m)(#2_y2)
m=0 B Butv ’ Ap—v ’

ABgtivm M 2.1.38
xf q 3 AB ) ( e )

%{f(AQ”“”’, @t /A) f(Bg*™,¢"""/B) — f(—Aq"*", —¢"*"/A) f(-B¢"~*, —¢""*/B)}

e m, (2m41)(p+v)+2pum? n=v putv  (2p+dm4-2)(p? —v?) q(2/t;4m—2)(;12—u2)
—_:Amzz:o(AB) g f{ arvprreg T

Xf (A 4p+2v+4vm E —2u—4um) ,

4 , 2.1.39
ik 719 ( )
s (@) (") + d(—a*+)p(—q"7")} + 2q*/ 24 (g )p (g )
Kol 2 2_,2 2_,2
— Z q2pm f(q(Z;ka)(lL —v )’q(2/1'4m)(ll -v ))f(q2um+u/2,q“z‘/m-*-l‘/?)’ (2140)
m=0
and,
Y(gH ) (gh ) = g A (g2 D)) £ (g gho )
w32 2_,2 : 2_,2 '
+ };0 qum(m+1)f(q(“+2m+l)(u -v ), q(ll—2"l—1)(ll -y ))f(q/t+u+2um’qu—u—2um)’ (2.1.41)

where in (2.1.41) p is odd.
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From Entry 24(iii) (p. 39), Example (v) (p. 51), and (7.5) (p. 365) we note that

x(9) = {/}((:q:)), (2.1.42)
f(a,¢°) = ¥(—a")x(9), (2.1.43)

and,
49f(—=a™)f(=4*) = #(a')d(q) — ¢(~4')o(~q) ~ 44’ (¢**)¥(q*). (2.1.44)

2.2 Proofs of Theorems 2.1.1 and 2.1.2

Proof of Theorem 2.1.1. First of all we prove the following beautiful modular equation of

Ramanujan.

Lemma 2.2.1 ([15, p. 280]). If B has degree 5 over a, then

=11

(@B)? + {(1 - &)(1 ~ B)}7 +2{16af(1 - &)(1 - f)}s = 1. (2.2.1)

According to Berndt [15, p. 282] direct proof of this modular equation, by methods known to
Ramanujan, is not available. He verified this equation from the other equations of same deg'ré;e?
and conjcctured that Ramanujan might have deduced in a same procedure. But we see thz;t tl;is
equation follows from a very simple theta-function identity. Therefore Berndt may not be right in
making his conjecture. In [51], Li-Chien Shen established this equation via classical ideas given in

[62).
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Proof of Lemina 2.2.1.
Applying (2.1.39) with p=3,v =2, A=1, B = -1, we find that

%{f(q‘r’, ¢°) (=4, —q) — f(=¢°, —4°) f(9,9)}
- i (_l)mq5(2m+l)+6m2f(_q5(8+4m), _q5(4—-4m))f(_q16+8m’ _q—4—8m). (2_2.2)
m=0

Taking p = ¢°, and utilizing (2.1.19), (2.1.21), (2.1.22), and (2.1.23) we deduce from (2.2.2) that
S (80)8(~0) — H-)9(@)} = ~207 (", 1)1 (=0, =2"). (2.23)
Invoking (2.1.25), we deduce from above that
(~p)b(q) — $(P)d(~q) = 4af(~¢") F(~p"). (224)
Replacing q by ¢7 in (2.2.4), we find that
(—p?)g(a?) — $(p?)d(—q?) = 4¢5 f(~) f(—P?). (2.2.5)
Transcribing (2.2.5) via (2.1.30), (2.1.31), and (2.1.36), we find that
(L4 Va)a - VB (- va)(a + /B =28 ((aB(1 - 0)(1 - B} . (2:2.6)

Squaring both sides of (2.2.6), and then simplifying, we arrive at (2.2.1), which completes the proof.
Proof of the main théorem.

Putting u = 3, v = 2, and replacing ¢q by ¢? in (2.1?40), we find that

3 ($(0")8() + 9(~0")9(~0)) + 20" (a) (")

2
— Z?n:O q12m f(q5(12+8m), q5(12—8m))f(q3+8m’ q3—8m)

= ¢(p'?) (%) + 29" f(q,4°) F(P*, p*°), (2.2.7)
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where p = ¢® and we have also employed (2.1.19), (2.1.22), and (2.1.23).

Again, setting p =3, v =2, A= B =1 in (2.1.39), we find that

2
%{f B, 0)F(0,0) = [(=p, =) f(—q,—q)} = Y P@mHD+om? p(pftam pi=dm) p(gl6+8m q=4=8m)

m=0

=29f (", p*) f(a*, ) + ¢ F(1,¢"2) F(1,P"2), (2.2.8)

where we have utilized (2.1.19) and (2.1.22).

In (2.2.8) we employ (2.1.20), (2.1.23), and (2.1.24), to deduce that

'21-{¢(P)¢(Q) ~ ¢(-p)o(~0)} = 24/ (a", ) F (0", %) + 40”0 (4" *)(p"%). (2.2.9)
Multiplying both sides of (2.2.9) by 2, and then replacing q by ¢?, we find that
$(0°)$(a®) — $(-p*)p(—4") = 44’1 (¢%,4"°) F (1°, p"®) + 8¢"3p(¢*" ) (p™). (2.2.10)
Putting x = 3, v = 2 in (2.1.41), and writing p = ¢, we obtain
v)¥(a) = 9" (e’ a7%) + F(0" P°) (e q)

= ¢"(p®)(¢®) + fla,¢°) (P, p"), (2.2.11)

where we have again used (2.1.19), (2.1.22), and (2.1.23).

Raplacing ¢ by ¢* in (2.2.11), we deduce that

Y )(e') = 2™ é(a®) + f(¢*, @) F (PP, p9). (2.2.12)
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Multiplying both sides of (2.2.12) by 4¢® and adding (2.2.10), we arrive at
$(p*)8(q%) — #(—p*)b(—a°) + 4’ (p")¥(q")
= 4¢°f (2%, 4'°) (P, p'®) + 8¢"*¥(¢* )9 (p*")
+49"9 (™) #(q'?) + 4¢°f (¢*,4*) f (#°, p*°)

=4¢* f(p%,p"%)[f (%, ¢"®) + af (¢, 4*°)] + 44" (P*)[f (¢'%, ¢"?)
+¢*f(1,¢*)]
= 4¢*f(p%, p'%) f(q, ") + 4¢"°¥(p**)8(¢%), (2.2.13)

where we have employed

(@) = f(ab,ab) +af(>, Sa't?) (2.2.14)

which can easily be deduced from Entries 30(ii) and 30(iii) {15, p. 46].

From (2.2.7) and (2.2.13), we find that

2[¢(p*)$(a*) + 40’ (p")¥(a")]
26()fW'%,0") + 2 F(1, 7] + 46°F (g, ) (. p'°) + Pf (0", ™). (2.2.15)
Employing (2.2.14), we deduce from (2.2.15) that
$(r°)8(¢%) + 1a*v (" )b (¢") = #(¢°)o(»°) + 20°f(9,0°) f (. P°). (2.2.16)
Now invoking (2.1.43) in (2.2.16), we find that

o(p°)8(¢%) + 4> (P ¥ (q*) = ¢(¢°)8(P%) + 26*¥(—*)¥(—P*)x(a)x(p)- (2.2.17)
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Transcribing (2.2.17) via (2.1.27), (2.1.29), (2.1.30), (2.1.35), and (2.1.37), we arrive at
AR T a1+ T+ Y221 vIm @)1 - 1= )

= 23215 + \/3321523  (B601 = f)(1 = 9))

(ay(l - a)(1 = 1))

If m and m' are the multipliers associated with z;, 23, and zs, 25, respectively then from (2.2.18),

(2.2.18)

2| -

we find that

V({1 + VT =a)(1 + /1 - 1)} + {(1 = vVI=a)(l = 1 —7)}7]

(B8(1 - B)(1 - D))
=2+42% [m(l_a)(l_ﬂ ] . (2.2.19)

Squaring both sides of (2.2.19), we arrive at
mm'[(1+vV1-a)(1+/T=-7)+ (1 -V1i-a)(l-yI-7)+2/a7]

(B8 —- A1 = )™ [{B5( = B)(1— )] ™
av(l—a)(1~7)] 2 [a’y(l—a)(l—'y)} : (2.2:20)

=4+28 [

Simplification gives

mm'(1+ /a7 + /(1 - a)(1 - 7)]

{B(1 - B)(1 = )11 1 [{B5(1 = B)(1 - §)]F
av(1 - a)(1 = 7) ] +23 [ v = )T =) } . (2.2.21)

2+2§[

Employing Lemma 2.2.1 in (2.2.21), we find that
| 493 [{ﬂd(l A)(1— 6213]1 4+ o [{ﬂ&(l B)(1- 6213]'2'-

mm/' = o(l-e)l=7) orlloeli-m) 1 (2.2.22)
1= 28an(1 — (1 — )}

This is a mixed modular equation of degrees 3, 5, 15. Another mixed modular equation of same

degrees, but of reciprocating nature is given by

1 1
2 [{ar(1-a)(1—y)}3112 4 [{ay(1-2)(1-7)}3 1
9 14 25 |12 =201 + 23 e S
— [ 56(1 ﬁ)(l 6) ] [ 5‘5(1 ﬂ)(l 6) ] . (2223)

man/ 1 - 23[B5(1 - B)(1 - 8)]¢
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In (2.2.22) and (2.2.23) we substitute P and T from (2.1.7) and (2.1.10), respectively, to deduce

, _ 14 PAT® 4 2P?T"

mm - % (2.2.24)
and,
mg:n = 1—;—— P—:Y?“ (2.2.25)
respectively.
Multiplying (2.2.24) and (2.2.25), we find that
478 2774
_4+P fl jif))g_)(;j@) v + 2f), (2.2.26)
We rewrite (2.2.26) in the form
T + 1 +4+ (T + ) (2P + 2 +9) — 8(P* + —14) =0. (2.2.27)
T8 T4 p? P4
Factorizing (2.2.27), we find that
(T4 + —1— - 2(P? + 5 ) + 3) (T“ 4(P? + i) + 6) 0. (2.2.28)
P2
Therefore we have N
T+ le - 2P? + %—5) +3=0, (2.2.29)

since the other factor can not be zero.

Thus we arrive at (2.1.11), which completes the proof of Theorem 2.1.1.
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Proof of Theorem 2.1.2.

Setting = 6, v = 5 in (2.1.40), and taking p = ¢'', we find that

S (60)8(0) + S (-0} + 29 (P (e?)

5
— Z qlzmzf(p12+4m’p12—4m)f(q3+10m,qa—lom)_ (2.2_30)

m=0

Replacing m by m + 3 in the last three summands of the right hand side of (2.2.30), we find, after

applying (2.1.22), that

q12(m+3)2f(p12+4(m+3), p12—4(m+'3))f(q3+10(m+3), q3~—10(m+3))

— q]2(m+3)2f(p24+/lm,p—/lm)f(q33+10m’ q—27—-10m)
2 - —
— ql2m p2m+3f(p‘24+4m’p 4m)f(q3+10m’ q3 IOm)- (2231)

Thus the right hand side of (2.2.30) may be rewritten in the form

2
Z q12mz{f(pl2+4m’p12—4m) + p2m+3f(p24+4m’p—4m)}f(q3+10m, q3—10m)‘ (2.2.32)

m=0

Taking a = p*™*3 and b = p*~2" in (2.2.14), we deduce that
f(P3+2m,P3_2m) — f(p12+4m,p12—4m) + P2m+3f(P24+4m,P—4m)» (2233)
Employing (2.2.33) in (2.2.32), we find, after applying (2.1.19), that

2
7"2 It m J— m
> g f(E PP f( 10, P, (2.2.34)

m=0

Thus from (2.2.30), we find that

d(p)$(q) + d(~p)d(—q) + 4¢°v(P)Y(¢®) =2 ¥ ¢'*™ FE°Im PP f(g*10m, g, (2.2.35)

m=0
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Employing (2.1.19) and (2.1.22), we can write (2.2.35) in the form

o(p)#(q) + d(—p)d(—q) + 46’V (P*)Y(¢?)

=2f(p%, ") f(¢*,4°) + 44" f(p, ") f(a, ¢°).

By (2.1.23) and (2.1.43), (2.2.41) may be written as

o(p)9(q) + d(—p)d(—q) + 4’ (p*)¥(q?)
= 2¢(p*)¢(g*) + 44" x (@)Y (—*) x(p)¥(—1°).
Employing (2.1.42) in (2.2.37), we find that

o(p)d(q) + ¢(—p)d(—q) + 4¢*P(p*)Y(q?)

(=) f(=p")
Y(—q)9(-p)

= 20(p°)8(¢°) + 4¢"¥(~¢*)¥(~p’)
Now, invoking (2.1.44) in (2.2.38), we arrive at

d(p)d(q) + ¢(—p)d(—q) + 48°¥(p?)1h(q?)

s P(=¢*)¥(-p%)
Y(-@)¥(-p)

= 20(p")$(¢°) + ¢

This can also be written as,

)Y T
[1 T v (=) ]“”"”“’”[”" (=)

x ($(—p)d(—q) + 4g*(P*)w(e%)) = 26(¢°)(P°).

[6(P)b(q) — d(—p)d(—q) — 46> (P*)¥(d)).

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)

(2.2.40)
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Transcribing (2.2.40) via (2.1.27), (2.1.28), (2.1.33), and (2.1.34), we find that

- () v o 2 (= 063)

x[Vzrzi((1 — o)1 = )t + vZEzn (o)) = 2vz7s, (2.241)

If m and m’ are the multipliers associated with o, f, and v, § respectively then (2.2.41) may be

written as,

1 (BB -6)\* 1 (85 - -8\t
[1 vmn (a'y(l - a){1 - 7)) ] + [1 + Vmm! (07(1 —a)(1 - 7)) }

% (o)t + (1 a)(1 = 7)F) = \/nZTn (2.2.42)
Now, by Entry 7(i) {15, p. 363], we have
(a7)7 + ((1 = a)(1 —7))i =1 — 2{16ay(1 — a)(1 — 7)} . (2.2.43)

Employing (2.2.43) in (2.2.42), we arrive at

(oy(1 = a)(1 = 7))¥ +

(2.2.44)
(ay(1 - a)(1 —7))¥ —

mm' =

This is @ mixed modular equation of degrees 3, 11, 33. Another mixed modular equation of same

degrees, but of 1eciprocating nature is given by,

3 (BO(1-P)(1-9)7 + 23 (ay(1 — a)(1 - M)*
V' (B5(1 — B)(1 ~ 6))35 — 25(B6(1 ~ B)(1 — §))}

(2.2.45)
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Multiplying (2.2.44), and (2.2.45), we find that

(cy(1 = a)(1 = 7))% +25(B6(1 — B)(1 ~ 6))%
(ay(1 ~ @)(1 — 7)) % — 25 (ay(l — a)(1 — 7))3

(8L = B)(1 = )% + 2Hay(1 - )1 =)} (2246
(B5(1= B)(1— 8))% — 23(B8(1 - B)(1 — 6))*

Putting the expressions for P and T from (2.1.7) and (2.1.10) in (2.2.46), we find that

_ [27sPT-' 4278 P31 (276 PT + 2~ P°T

= ] — . (2.2.47)
[27s PT-! — 278 P3T-3] [276 PT — 275 P3T3]

Simplifying (2.2.47) we readily arrive at (2.1.12), which completes the proof of Theorem 2.1.2.

2.3 Proofs of Theorems 2.1.3-2.1.8

First Proof of Theorem 2.1.3.: For simplicity, we set

,and D= ((1 - 7)(1 - 6))% (2.3.1)

QO
R

= (@f)s, B:=((1-a)(l-p))F,C:=(d)

so that

P8 =2ABCD and R® = CD/AB. (232)

Now from Entry 11(xiv) ([15, p. 385]; [48, VOL. II, P. 247]), we obtain
AC+BD=1-P? (2.3.3)

This modular equation was also derived by Weber {61, p. 415].

Now from Entry 5(ii) {15, p. 230] we recall the following modular equation of degree 3.

LN

(@) + (1 - a)(1-B))* =1. (2.3.4)
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Therefore, we have

(@B(1 - a)(1 - B))* = (af)* (1 - (eB)}). (23.5)
Employing (2.3.1) and (2.3.2), we rewrite (2.3.5) as
P 1 D12
= p—— 2.3.6
20 4 ((aﬂ) 2) (2:36)
Hence,
(af)t = % +/ky, (2.3.7)
where
1 6
e T
Using (2.3.7) in (2.3.4), we find that
11
(L-a)(1-B)* = 5F k. (2.3.8)
In a similar way, we obtain
11
(v6)7 = 3 T V2 (2.3.9)
and’
o1 o BTN
(L=m)(1=0)t =2 F ks (2.3.10)
where
6 6
ol PR
4 2

From (2.3.7), (2.3.8), (2.3.9), and (2.3.10), we find that

(AC)* + (BD)* = % + 24/ k1 ks. (2.3.11)
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From (2 3.3) and (2.3 11), we deduce that,

2/ kg 4+ P = (1~ P%)? (2.312)

[solating the term involving Ak, on one side ol the equation, sqnating both sides, and then

N —

substituting lor &y and ky. we easily anive at (2.1.13) Thus we complete the proof.

Second Proof of Theorem 2.1.3.: From Entav L3(xiv) [15, p 282, we note that,

2% (/f)‘ | J \ i |
= i) =2 = — {(16ay(l — )} — )72 2313
<l')) ) [(]G(y'y(] ——(v)(l —f)))TE oy ) ) J ( )
Also
; ;! 1 ‘ N ,
Q1 =2 o 16A5(1 — Y] — §))12 25 14)
o +<Q’"> [(I(_i/f(i(l—/})(l—d))w (165001 = A){1 = 1) } (23.14]

Multiplving (2 3 13) and (2.3.11), and then using (21 7)-(2 1 10). we lind that

(" + a‘; + (l?" + %) = | (P‘ + % —7h - T'T> (23 15)
By Entey Pr(av) |15, p 383), we find that,
cg‘+$:\/§(/’+%) (2 3.16)
From Theorem 2.1.1., we note that
¥ orp2 . , 9t
T = 2P ) - B (2.3 17)
Using (2.3.16) and (2.3.17) in (2.3.15), we find that
9 (P + i>2 24 (/?" + l) = [P" Ll (rﬂ + i) + :s] | (2.3 18)
P T2 P Iz

Simplifving (2.3.18), we casilv arvive at (2.1.13), which completes the proot.
Proof of Theoremn 2.1.4: Fitst of all, we prove the following new Schliifli-type “mixed™ modula

equation of degrees 1,3, 7, and 21.
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Lemuna 2.3.1 [f . (5. and & have degrees {0307 and 21, respectioely, then
P4 — ="'+ 6—' -3, (23.19)
where Q and R are groen by (2.1.8) and (2.1.9). 1especlely.
Proof of Lenuna 2.3.1: From Entry 19(i) of Chapter 20 [15, p. 426], we note that
Pa)pla®) = blaD)pla") = 20 () [ (*). (2.3.20)
By Corollary (i) of Entry 31 in Chapter 16 [15, p. 49]
P(¢”") = dlg) =201 (q",4"). (2.3.21)
Emploviog (2.1 43) in (2.3.31), we dednee that
¢(g") = dlq) = 20x(q")p(=q"). (2.3.22)

Now by Entry 2(ii) [15. p. 349], we note that,

,,/,(_,,"):l{ i) _,I/)(_q)}_\ (2.3.21)

Emploving (2.3.34) in (2.3.32), we obtain

dlq") = Pply) = é\/(q ) { M) _ ‘r/)(—(/)} : (2.3.25)

This tmav be rewritten in the fonmn

s

) 2 .
</)(q)=—(/><q S V(@) (=). (2:3.26)
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Replaciug ¢ by 7 in (2.3.36), we find that

¢(q*™) = éd)((ﬂ) + gx(q‘“),/)(_m, (2.3.27)
Using (2.3.36) and (2.3.37) in (2.3.30), we obtain
A x(*IP(—¢") = ¢l ) x(¢)(=q) = 3¢f(¢*) f(¢*"). (2.3.28)

Transcribing (2.3.38) by cploying (2.1.27), (2.1.33), (2.1.37) and Eutry 12(i} of Chapter 17 (15:
- pp- 122-124], and then simplifying, we deduce that

(Y(1=y))F _ (o(l-o))s _ 3 . .
~ == 30(1 — £Y(L - §))#, 2.3.29)
Ca_aNF B a)E ST (
where m and ' are the multipliers associated with « and 3, and v aud 4§, respectively.
Reciprocal of this mixed modular equation of degrees 1, 3, 7, and 21 is given by
3(L—B))5  (6(1—6))8
(BA=PE_ B it - )1~ ), (23.30),
(01 =) (y(1—7))m o

TMultiplying (2.3.39) and (2.3.40), we find that

(By(1=8)(1=9)
(@d(l — )(1 = 6))

Dt

(a6(1 — a)(1 - 8))¢
— - - (5 — —_ T
i (B =B =) (a1 = 7)1 = 3)

MI_
wl"

~(af(1 - @) (1 - B))™ = 3(afys(L — a)(1 — B)(1 - y)(1 — 6)) 7 (2.3:31)
Dividing both sides of (2.3.41) by (afy5(1 — a)(1 = B)(1 = 4)(1 - 6))7, and then using (2.1.8) and
(2.1.9). we find that

1 . 1
4 2
Q_;__z_]?_._/.i_g,

(2.3.32)
which is equivalent to (2.3.29). This completes the proof of the Lenima.
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Proof of the main theorem: We note that

Q ( (1—0))2L ((5(1—5))ﬁ )
AN . = (2279 3.33
7T \va—y) 9= \Eaop (23.39)
From Entry 19(ix) of Chapter 19 [15, p. 315], we find that
Q\ <I?>" : , L J
=) + (=] +7=2vV2 |(16ay(1 - &)(1 - v))% + l 2.3.34
(%) 5 (a1 = et =+ ey (2.3.34)

and

=

! J o (2.3.39)
(16686(1 — 8)(1 = 9))

Multiplying (2 3 34) and (2.3 35), and then using (2.1 7)-(2.1.10), we find that

=

(QR)“+<@%) +7=2V2 [(16[361—/3)(1—6))

1 1 1 1, 1
@+@+@uﬁg <w+aﬂn+ﬁpmbs@°szwT) (2.3.36)

Employing Lemma 2.3.1, (2.3.36) ¢an be wiitten as

L 1
R8+72—8+(1’2+RL+3> +/<R” ;)(RZ+E;+3>+47

R | -
=8(P°+]—);+’.Z‘ +77)). (2:3.37) -

Again from Entry 5(xii) of Chapter 19 [15, p. 231), we find that

ﬂﬂ«ﬁn* (MI—M)%=2( , R
-(a(l—(.v) \Ba=p V2 T60B0 — )1 = B} (L6cA(L — )(L = B))*| (2.3.38)

and

6a~ﬁ)% wa—vvfz. i i o
‘(.y(lw) +(6(1—6) 2\@{(1676(1—7)(1—5)) (1676(1 = ¥)(1 - 6))

Mul.ltiplyiug (2.8.38) and (2.3.39), and then using (2.1.7)-(2.1.10), we find that

Ly,
vl

D=

}.mﬂﬁi

[ L

12 12 1_ ﬁ 6 1
T T Q+W 8<P P R—I—?g) (23.40)
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Using Lemna 2.3.1. we deduce from (2.3.40) that,

.1 o ] , \ 9 L1 '
T'2+T—u=8<P°+73—6—R(’—I—?E)—<I?‘+El2—+3> +3(1?‘+Ez-+3). (2.3.41).

Eliminating T from (2.3.37) and (2.3.41), we find that

1 1 1 3 1
64(8(P('+ﬁ>—-8<R6+ﬁg>—(1?2+ﬁ+3> +3<R‘+ﬁ+3>+2>

| 2 1 1 1\)’
=(1?*+%+(1?2+ﬁ+3> +7(1?‘+7?7) <1?‘+ﬁ+3>+47—8(1’“+—ﬁ(—3>) . (2.3.42)

!

Transferring to one side and then factoring by using Mathematica, we find that

L 1 1 o Co1
e () () e (P ) (7 ) v
(R+R8+:( b ) 1B o) 2 (P ) 8 (PPt ) 42
(1?“+—l—+7<1?"+i>+30(1?’+L)+5(I?2+i>—8<P“+i>+138>=0
It I Y C TR PS '

It can be shown (by numerically checking, or by using power series method) that the second factor

is not identically 0. Thus, we atrive at (2.1.14), which comletes the proof of the theorem.

Proof of Theoremn 2.1.5.: From Lemma 2.3.1 and Theorem 2.1 4 we casily deduce (2.1.15), which

completes the proof \

Proof of Theorem 2.1.6.: We set,

Ti—

A= (o)F, Bi=((1—-a)( =), C = (B6)F, and D= ((1 - B)(1 — 6))4 (2.3.43) .

s0 that

P® = 2ABCD and T* = CD/AB - (2.3.44)]

Employing (2.3.43) in the Weber-Ramanujan “mixed” modular equation of degrecs 1, 5, 7, and 35.

([48f Vol. 1, p. 309]; [18, p. 392); [41, p. 416], we notc that

(1+ AC+BD)*~4(AC+BD+ABCD)—(14+ AC+BD)(24BCD)>—2(24ABCD)** = 0. (2.3.45)
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Using (2.3.44) we may rewrite (2.3.45) as

(AC + BD)? - (2+ P?)(AC + BD) + 1 — P* - 2P* - 2P% = 0.

Solving for AC + BD, we find that

2+ P?+ P8+ 9P? + 8P

AC+ BD = 5

Now by Entry 19(i} (15, p. 314]
(@7)f + (1 - )1 —))F = 1.

Therefore
(ay(1—o)(1 - ”Y))% = (a’y)% (1 - (a’y)%) .

Employing (2.3.43) and (2.3.44), we rewrite (2.3.49) as

Hence,
11
(a’)l)8 - 5 :}: \/k_])
where
3
kl - .]; — ——I—).-———_
4 213

Using (2.3.51) in (2.3.48), we find that

(A=) =) =2 5/l

Proceeding in a similar way, we obtain

(B8) = 5 & ks

33

(2.3.46)

(2.3.47)

(2.3.48)

(2.3.49)

(2.3.51)
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34
and
1
(1-B)(L-6))s = 5F Vs, (2.3.54)
where
L L pT
2 — 4 \/5 .

From (2.3.51), (2.3.52), (2.3.53), and (2.3.54), we deduce that

1
From (2.3.47) and (2.3.55), we find that
P*+ P8 +9P? 4 811
Lok, = 2 v8+9P" + 81" (2.3.56)
2 2
Thus,
(2.3.57)

4\/kiko =1+ P2+ PV8 +9P2? + 8P4
Squaring both sides of (2.3.57), and then simplifying by employing the expressions for k; and ko,

we arrive at

1
10P? +10P" + 2V2PY(T° + 175) = £2PV8 + 9P7 + 8P4, (2.3.58)
Squaring both sides of (2.3.58) we casily deduce (2.1.16), which completes the proof.
Rer.nall'k: Applying the same procedure to Weber’s modular equation [41, p. 416]
(2.3.59)

(1 - AC - BD)? - 2P"" = P(1 + AC + BD),
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we easily derive the new Schlifli-type “mixed ” modular equation

1
T2 4 Tlm ~18 (TG + 7—,5) +18V3 <T3 7}3) (P3 + Fl;) -8 <P6 + %) -54=0, (2.3.60)

where, now, in the expressions for P and T', «, 3, v, and § are of degreces 1, 3, 7, and 21, respectively.

Proof of Theorem 2.1.7.: We note that

ol — a)) % (81 -8)\*

('v\(J ~ ) and QR = (ﬁ(l _/j>) (2.3.61)
From Entry 19(ix) of Chapter 19 [15, p. 315}, we find that
94 (5)4 7:2\/5[16 1- PR 1 } 2.3.62
(%) +lg) + 161~ a)1 =)+ el (2300
Also

4 1\ _ 3 !

(QR)" + (Zjﬁ) +7=2V2 [(16ﬁ6(1 ~B)(1-6))% + (16730 = Byl 5))4 . (2363)

Multiplying (2.3.62) and (2.3.63), and then using (2.1.7)-(2.1.10), we find that
1 1 1 1 1 1
QP 4 v (R4 F7 Ot + RY 4 PS4~ LT 4
Q8 ( R8> 7 ( Q! ) ( R4) =38 ( I TG) (2.364)

" Now from the Ramanujan’s Schlafli-type “mixed” modular equation in Notebook-I [48, p. 86,

which was proved by Ramanathan ([41, p. 420]; [‘18? p. 379-3801), we note that

1 q
2 (P2 + 733) —ul—u-2 (2.3.65)
where
— N2 1 2

Therefore, we have

8 (P6 + -;—6) = (u -y —2)° —12(u — u— 2). (2.3.67)
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Again from Entry 13(xiv) of Chapter 19 [15, p. 282], we find that

(ﬂ“ ‘ﬁ))% ; (“(1 - “’)’l_‘ ) [ ! ~ (16af(1 - a)(1 - ﬂ))r‘f] (2.3.68)

(1 - ) A(1 - B) (16aB(1 — a)(1 — B))
and,
5(1_5))% (7(1—@)* ! 5
+ =) =2 —— (1676(1 = y)(1 = 6))2| (2.3.69)
(7(1 =) 6(1 - 4) (1676(1 —y)(1 - 9)) ™
Multiplying (2.3.68) and (2.3.69), and then using (2.1.7)-(2.1.10), we find that
1 1 1 1
6 _ 4
T+,T—6+Q6+@_4(P4+W—R—ﬁ). (2.3.70)
Thus, we have
Tt —7—,15 =u' — 3u’ ~ 3u+ Tu — 4 — 4v, (2.3.71)
where
1
_

Employing (2.3.67) and (2.3.71) in (2.3.64), and then simplifying, we find that
v? + (Tu? + 18)v — u® + 3u® — 4ut + 13u® + 26u? — 56u + 65 = 0. (2.3.73)
Factoring (2.3.73), we obtain
(v —u® + 5u — Tu+ 5)(v + u® + 2u? + Tu + 13) = 0. (2.3.74)

Thus, we deduce that

v=u+5ul—Tu+5=0, (2.3.75)

since the other factor never vanishes. Putting the expressions for u and v from (2.3.66) and (2.3.72),

respectively, we easily deduce (2.1.17), which completes the proof.
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Proof of Theorem 2.1.8.: For simplicity, we set

Qo

A= ()8, B:=((1-0a)(1-7))3, C:=(B5), and D := ((1 - B)(1-4))

so that

P® = 2ABCD and T® = CD/AB

Gl
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(2.3.76)

(2.3.77)

Now from the Weber-Ramanujan “mixed” modular equation of degrees 1, 5, 11, and 55 ([48, Vol.

I, p. 309]; (18, p. 391-392}; [41, p. 415-416]), we note that
U - W@U2+ V) -~ UW? +4W3 = 0,

where

U=1-AC~ BD,
V = 4(AC + BD — ABCD),

and W = (2ABCD)'/* = P2,

Setting x:=AC+BD, and then using (2.3.76), we may rewrite (2.3.77) as
1+ 32% — 4P% — 4P%? + 2P% — P' 4+ 4P% = (3 + 2° — 4P? — PY)z.

From Entry 7(i) of {15, p. 363], we note that

o
A+ B =1-2(7)
U AV

Thus

2
(AB)? = A2 <1 - % —AZ).

(2.3.78)

(2.3.79)

(2.3.80)

(2.3.81)
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After some simplification, we arrive at

ps /2
A’=a+ (a2 - ﬁ?) , (2.3.82)
and
ps\ 172
B*=a7F (a2 — 2—7-5) , (2.3.83)
where
. % _ 1_’; (2.3.84)
Similaily, we find that
C*=b+ (b2 - P;TG) 1/2, (2.3.85)
and
D*=bF (b2 ~ PGQTG) ‘/2, (2.3.86)
where
b= % _ p7?. (2.3.87)
Therefore, we obtain
22 = 2ab+ 2\/k1kz + P, (2.3.88)
{)vilere -
ky = a El;iﬁ, (2.3.89)
and
ky = b? — P(;TG (2.3.90)

Employing the value of z? from (2.3.88) in (2.3.79), and then simplifying by using Mathematica,

we complete the theorem.



Chapter 3

Weber-Ramanujan’s Class Invariants

3.1 Introduction

We set
(@; 9)oo = I35 (1 — ag™), lgl <1,
and, recall from (2.1.26) that
x(9) = (=4;6°)o- (3.1.1)
If ¢ = exp(—w\/r_a.);ﬁ'where n is any positive rational number. then Weber-Ramanuian’s class

invariants G, and g, are defined_ by

Gn =271 x(q),  gu:=271q7 ¥ x(~q). (3.1.2)

Note: This chapter is identical to our paper [6], which has been accepted for publication in the

Journal of Indian Mathematical Society.

39
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In his book, H. Weber [61] calculated 105 class invariants, or monic, irreducible polynomials satisfied
by them. He was motivated to calculate class invariants so that he could construct Hilbert class
fields. At the scattered places in his first notebook [48], Ramanujan recorded 107 class invariants,
or monic, irreducible polynomials satisfied by them. On pages 294-299 in his second notebook {48],
he recorded a table of 77 class invarints, three of which are not found in the first notebook. By
the time Ramanujan wrote his paper [47], he came to know about Weber’s work, and therefore his
table of 46 class invariants in [47] does not contain any that are found in Weber’s book [61]. Except
for g3as and Gjes, all of the remaining values are found in his notebooks [48]. G.N. Watson [54]-[60]
established 28 of these 46 class invariants. Ten of the class invariants had been proved by using
Ramanujan’s modular equations and the rest had been proved by using his unrigorous “empirical
process” . So, after Watson’s work, 18 invariants of Ramanujan from his paper [47] and notcbooks
[48] remained to be verified. These 18 class invarints are: Ggs, Ggso, G717, G117, G141, Gas, G153,
Gaos, Ga13, Gar7, Gass, Gaor , Gaar, Gass, Gsos, Gss3, oo, and gigs. These invariants are proved by
B.C. Berndt, H.H. Chan, L.C. Zhang [24], [26]. In [24], five of the invariants, viz., G117, G153, Gan,
990, and gy9g, are proved by employing two new theorems that relate Gy, with G,,, and gg, with g,,
respectively. In [26], they used modular equations to prove six of the remaining thirteen invariants.
To prove the other seven invariants via modular equa;ions, oncjneeds modular equations of degrees
31, 41, 43, 53, 79, 89, and, 101. But, only for degree 31 Rarg‘anujan recorded modular equations,
for he recorded no modular equations for the other degrees. They could not utilize those modilliar
equations of degree 31 to effect a proof for G2;;. They [26] proved all the remaining invariants,
including G,7, by using Kronecker’s limit formula, an idea completely unknown to Ramanujan, and

Watson’s “empirical process.” For a detail discussion on their evaluations see Berndt’s book [18].
! Nl
T
)\
(\1\0& %\’“\L
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In Section 3.3, we shall establish the class invariant G;7 by using Ramanujan’s modular equations
of degrees 7 and 31. In Section 3.4, we employ, for the first time, some of the Schlafli-type “mixed”
modular equations discussed in Chapter 2, along with some other Schlafli-type modular equations
of prime degices to evaluate Ramanujan’s class invariants G5, Gay, G33, Gag, Gss, and Ggs. It
is worthwhile to note that our evaluation of Ggs is much more easier than that of Berndt, Chan,
and Zhang [18], [26]. Most important feature of our method is that we can also simultaneously
get the values of Gs/3, G7/3, G113, G133, G11/s, and Ggys. Previous%gsse‘veatMr found by
verifications. We also note that, these class invariants can be utilised to find some of the explicit,

values of the famous Rogers-Ramanujan continued fraction, R(q), defined by

/ 2 3
q 9 9 9
R(a) : 21 1 1 1.

some of the values of Ramanujan’s product of theta-functions a,,, (m, n are positive integers),

recorded on pages 338-339 of his first notebook 48], and defined by

—2ry/mn
o me—(T/4)(n=1) / ¢'( ") (—e )
inn += € 1n/n ¢( -—27r\/m/n)

and, the values of the quotient of eta-functions, A, recorded by Ramanujan on page 212 of his lost

notebook [49], and defined by

Ap 1= i/527_\'/3n—_£{(1 + e’"\/"/_s)(l - 6‘2”\/"/—3)(1 - 6—4”\/;'/_3).. }6.

For details of the above evaluations see [25], [27], and [30).
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We complete this introduction by noting that, since from (2.1.37),
x(9) = 2"/%{a(1 — o)/} 7V,
it follows from (3.1.2) that
G = {4a(1 — @)/q}~"/*" and G2, = {48(1 = B)/q} Y™, (3.1.4)

where f has degree r over a and ¢ = exp(—m/n).

3.2 Preliminary Lemmas

In this section we state sonie lemmas which will be used in our cvaluation.

Lemma 3.2.1 ([18, p. 247]; [26])If B has degree r over a, then 3 has degree p over 1 — «, where

p and T are two coprime positive integers.

In the next three lemmas we state three Schlifli-type modular equations of Ramanujan [15, pp.

231, 282, 315 for prime degrecs.

Lemma 3.2.2 Let

3 1/4
P ={16af(1-a)1—-B)} and Q= (—____58 _i;)

Then

Q+%+2\/§(P—-115)=0,

where B has degee 8 over a.
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Lemma 3.2.3 Let
P={16af(l —a)1~-B)}/? and Q= (_(__

Then

where 3 has degee 5 over o.
Lemma 3.2.4 Let
P={16af(1-a)1 -}/ and Q= (————

Then

Q+$+7=2\/§(P+115),

where 8 has degee 7 over «.

In the following thice lemmas, we state three of Ramanujan’s Schlifli-type modular equations

for composite degrces.

Lemma 3.2.6 ([48, Vol. I, p. 86], [15, p. 324]) If o, B, v, and § have degrees 1, 3, 5, and 15,
respectively, then

Q° + % = V2 (P + %) : (3.2.1)

Lemma 3.2.6 ({8, Vol. I, p. 88], [18, p. 381]) If a, B, v, and & have degrees 1, 8, 18, and 39,

respectwely, then

Q4+———3(Q2+—)—(R2+%)+3=0. (3.2.2)
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Lemma 3.2.7 ([48, Vol. I, p. 88], [18, p. 381]) If o, B, 7, and & have degrees 1, 5, 13, and 65,

respectively, then

Goges(ond) (g -(wag) -0 e

The next lemma due to Landau [40, p. 53] will be very uscful in simplifying some of our redicals.
e ol

Lemma 3.2.8 If a? — qb? = d?, a perfect square, then

Ja+by/q = \/a—;ﬂ + (sgnb)\/a—;—d. (3.2.4)

Our last lemma is originaly due to Bruce Reznick. For a proof via Chebyshev polynomials one

may sec (28, p. 150].

Lemma 3.2.9 Ifa,b > 1/2, then

{(8a2—-1)+\/(8a2—1)2—1}1/4=\/a+%+\/ —%— (3.2.5)

and

: 1
{(326° - 6b) + J@bbs —6b)2 - 1}/ = ﬁ+ 5+ \/ - -;- (3.2.6)
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1
o

Theorem 3.3.1

1/2
11 + 47 9+ 47 2 12 + 57 16 + 57
Carr = 2 VT i VT '

Proof: From Entries 19(i) and 19(iii) of Berndt’s book [15, p. 314], we note that

() () cnieann, o
and
)" - () - 0= en-an-am). (332

where f has degree 7 over «, and m is the multiplier connecting « and B.

Multiplying (3.3.1) and (3.3.2), we find that
a(l-B)+p(l-a)=A4 [7(1 ~ A2+ () + (1 =) - ﬂ))"""] , (3.3.3)

where A = (af(1 - a)(1 - A)V/8.

Now, by the first equality of Entry 19(i) of Berndt’s book [15, p. 314], we obtain
(@Bt + (1 - a)(1 - B))* =1 - 64+ 94% - 24°. (3.3.4)
From (3.3.3) and (3.3.4), we deduce that
ol = B)+B(1-a) =24 (4- 104 +8A% - A°). (3.3.5)

Now, suppose, G317 = (4a(l — @))~1/?4. If B has degree 7 over a, then, by (3.1.4), we find that

Gaur = (48(1 - B)) =Y.
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Thus,

1
i= \/5(6'217031/7)3- (3.3.6)

We now 1ecall the following two modular equations of degree 31 from Entiies 22(ii) and (iii) of

Berndt’s book (15, p. 439].
1+ ((1[3)1/4 + ((1 _ a)(l _ ﬁ))l/'i _ 2(((1,3)]/8 + ((1 _ (,Y)(l _ ﬂ))l/B +A)

=2A2(1 + (@B) 2 + (1 — @) (1 — B))'/%)"/2, (3.3.7)

and

1/2
1+ (@)1 + (- a)(L = A)/ = (314 (@) + (1 - 0)(1 - ) %))

= (af)'f + (1 - )(1 - B))'"/® + 4, (3.3.8)

where § has degiee 31 over c.

Replacing a by 1 — « in (3.3.7) and (3.3.8), and employing Lemma 3.2.1, we obtain

L+ {(1 = )} + {e(1 = )} - 2[{(1 — ) B}/* + {a(1 - B)}'/* + 4]

=241+ {(1 - )8} + {a(1 - B)}'/¥)'72, (3.3.9)
and
L+ (1= B+ (ol = )~ L JT B + ot = 3))]
={(1~a)B}* + {a(1 - B)}'/* + A, (3.3.10)

where, now, 8 has degree 7 over a.
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From (3.3.5), (3.3.9) and (3.3.10), we arrive at, (simplification is done by using Mathematica)
1 — 1604 — 66848 A% — 4978240A° + 88485264 A* — 657312128 A% + 2752494208 A°

~7235315456 A7 + 125223230404 — 14470630912A4° + 11009976832A"" — 5258497024 A"
+1415764224 A" - 1593036804 " — 42782724 — 20480A'° + 256A'% = 0. (3.3.11)

Factoring the left side of (3.3.11) by using Mathematica, we find that
(1 —376A + 1048A4% — 7524° + 44")(1 — 8A + 24A% — 16A4° + 4A*)(1 + 2244

+15088A4% — 80192A4° + 166728A* — 160384 4° 4 60352A4° + 179247 + 164%) =0.  (3.3.12)

Thus,

1 - 376A +10484° — 7524° 4 4A" = Qg @ (3.3.13)

Since from the other two factors we will not get positive real values of A.

We can rewrite (3.3.13) as

A2 (4A2 + ;;; — 376 (gAL + %) + 11048) = 0. (3.3.14)

Since A? # 0, we find that

1 2
(2A + Z) — 376 <2A + %) + 1044 = 0. (3.3.15)

Solving (3.3.15), we find that

24 + % =188 4+ 70V7. (3.3.16)
Hence,
1
S — 2A4=21/17409 + 6580v/7. (3.3.17)
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From (3.3.16) and (3.3.17), we obtain

% — 94 4+ 35V/7 + /17400 + 6580v/7. (3.3.18)

Now, by Lemma 2.2.4, we note that

Q)+ % =2 (2A + %) -7, (3.3.19)

where Q = (G217/G31/7)*. From (3.3.16) and (3.3.19), we find that

Q + % = 369 + 140+/7. (3.3.20)

Solving (3.3.20) for (), we obtain

1
Q = (369 + 140V7 + /273357 + 103320V7). (3.3.21)

From (3.3.6), (3.3.18) and (3.3.21), we deduce that

. 1/6 1/8
94 + 357 17409 + 6580v/7 369 + 140/7 273357 + 103320v/7
Ga7 = 7 + 5 5 + i .

(3.3.22)

Now, substituting a = (14 + 5/7)/4 in Lemma, 2.2.9, we find fhat

1/4
(369+140\/7+\/273357+103320\/7)/ _\/12+5\/7+\/16+5\/”7
2 4 B 4 4

Hence, it remains to show that

3
94+35\/7+\/17409+6580\/7_ \/11+4ﬁ+\/9+4ﬁ
V2 2 - 2 2 ’

which is a routine work. This completes the theorem.
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3.4 Class invariants from “mixed” modular equations

Theorem 3.4.1

1/3 1/3
1 5 5-—1
G5 =2/ (—%—\/3) and  Ggj3 = o1/ <£2——) .

Proof: If

Gr = (4a(1 — o))~/

and B, v, and é have degrecs 3, 5, and 15, respectively, over «, then by (3.1.4), we obtain
Gow = (48(1 = B)) V%,  Gosn = (@71 — 7)) ¥# and  Gagsn = (46(1 = 8))"V%.  (3.4.1)

Employing Lemma 3.2.3, we find that

’ Gn )3 (G25n)3 [ 2 1 ]
+ =2 GnG n —_ ——— ], 3.42
(G25n Gn ( 25 ) (Gnstn)Z ( )
Putting n = 1/15 in (3.4.2), we obtain
G5\ (Gsps) 2 1
(G—‘i) + (5%1) =2 (G1sGsp3) -~ ——1, (3.4.3)
5/3 15 e (G15G5/3)
where we have used the fact that, G, = G/n.
Now, by Lemma 3.2.5, we obtain that
GnG225n ) e ( ng G25n ) 32 l: 1/2 1 }
—_ F | = = \/:(): GnG nG 5nG n + : 3.4.4
<G911G25n GnG225n ( ? 2 22 ) (GnngG25nG225n)]/2 ( )

Putting n = 1/15 in (3.4.4), we find that

) (@ -aloon ] o
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Setting z := G5G's/3 in (3.4.3) and (3.4.5), we deduce that
1 1
2 —
2(.’17 — _7;—2) = \/5(%‘ + ;)
As z + 1 >0, from (3.4.6), we conclude that

V2(z - l) = 1.

T
Solving (3.4.7) for z, we find that

xr = G15G5/3 = \/5

Using this value of z in (3.4.5), we deduce that

where, y = G15/G’s/3.

Solving (3.4.9) for 3*, we find that

y3=<§£)3—3+‘/5
G5/3 2

From (3.4.8) and (3.4.10), we obtain
GS. = y’a® = 23/22_1*'5‘,[,_5 = v2(3 + V),

HEEN
g7
JA

and

- 2
G =ta" =22 = i - V)

Now, fiom Lemma 3.2.8, we sce that

V3xv5=/5/2+/1/2

Thus, from (3.4.11) and (3.4.12), we can arrive at the required values of G5 and G/3.

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)
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Theorem 3.4.2

2 V2 2 V2

G = (M)‘“ (3+ﬁ>1/6 and ‘Gv/a _ (M)w <3+ \/7)1/6.

Proof: As in the proof of Theorem 3.4.1, if
G, = (4a(l — o))~/

— and f, v, and ¢ have degrees 3, 7, and 21, respectively, over «, then by (3.1.4),

Gon = (4B(L = B))™™, Guon = (4y(1 =)™ and Gy = (45(1 - 6))7V2".

Therefore, by Lemima 3.2.2, we find that

(gg':,)ﬁ + (%T)G =2v2 [(G"G"")s - (Gnégn)”] '

Putting n = 1/21 in (3.4.14), we deduce that

Ga )6 (G7/3)6
Ja ) 4 (Z2) =2v2
(Gm Ga va

where we have again used the fact that, G, = Gy/x.

1
(G'zlG'v/a)Fl

.

(GuGr) -

Now, by Theorem 2.1.4, we deduce that

1 1 1 1 1
4 3 2 6
[Z+_4+7<R +__3.)+14(R +_2)+21<R+_)_8(p +_6)+42 (),

where, now,

R= (ﬂ) and P? =1/ (G1Go,Ga9nGaa1n) -
Gi9nGasin

51

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)
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Putting n = 1/21 in (3.4.16), we find that

6 1
(GuGrps) + ———5 =16 (3.4.17)
(GuaGrys) ©
Solving (3.4.17) for (G21G7/3)6, we obtain
2
6 3+V7
GuGrj3) =8+3V7= : 3.4.18
(GuGrys) (2¥F) (34.18)
Employing (3.4.18) in (3.4.15), we find that
G21>6 (G7/3>6 (3+\/7 V2 )
22y [ 28 —9/ - = 4/7. 3.4.19
(G7/3 G2 V2 3+V7 ( )
Solving (3.4.19) for (GQ]/G7/3)6, we obtain
6 3
Su) _3/342/7= V3+ VT _ (3.4.20)
G7/3 2
From (3.4.18) and (3.4.20), we obtain
3 2
. Gy = \/5+1ﬁ . 3+ﬁ; : (3.4.21)
and : |
Vi-V3\' (3+ 7\
12 _
G2, = ( - ( ) (3.4.22)

From (3.4.21) and (3.4.22), we get the required values of Gy and Gy/3 as given in the theorem.

Theorem 3.4.3
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Proof: In this case also, if

Gn = (4a(1 — )~/

and 3, v, and § have degrees 3, 11, and 33, respectively, over o, then by (3.1.4),
Gon = (48(1 = B) ™V, Gratn = (4y(1 = 7))"Y*  and G gsen = (46(1 — 8))~/*. (3.4.23)

By putting n = 1/33 in (3.4.14), we deduce that

G o G 6 3 1
(G 33 ) " ( 61'1/3) =22 (G33G1,/3) -] - (3.4.24)
11/3 33 (GasGu/a)
Now, by Theorem 2.1.2, we find that
T2+i+3(T+—1—)*2<P2+—1—>=0 (3.4.25)
17 T P? ’ o
where, now,
T = —Ci"—qmi and P? = 1/ (GnGQnGIZInGIOBQn)-
GQnGIOSQn
Putting n = 1/33 in (3.4.25), we find that
2 1 :
(Gaaau/a) + =4 (3.4.26)
(GssG'u/a) :
Solving (3.4.26) for (G33G’11/3)2, we obtain
2
2 1+3

Employing (3.4.27) in (3.4.24), we find that

e )6 (Gll/:,)“
+ [ —=] =20. 3.4.28
(Gu/s G33 ( )
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Solving (3.4.28) for (G33/G11/3)6, we obtain

(G(’Z‘l‘js)ﬁzmwx/ﬁ: <3+\/‘§/1_1>2. (3.4.29)
From (3.4.27) and (3.4.29), we obtain
G = (1 J\"/i‘/g)ﬁ (3 +\/‘§/ﬁ)2, (3.4.30)
and
Giljs = (1 J\r/%/g)ﬁ (3 +‘/\§/1_1>2. (3.4.31)

From (3.4.30) and (3.4.31), we can casily find the values of G, and Gyy/3.

Theorem 3.4.4

or=a () (PR

and

e (VB+3\" [ +v3  [VI3-3
Graga = 2!/ { T=5— e

4
-

Proof: As above, if x w
< o i

Gn = (4a(1 — ;))-1/24 S
and 3, v, and § have degrees 3, 13, and 39, respectively, over «, then
Gon = (48(1 = )Y,  Gieon = (4y(1 =)™ and Gisan = (45(1 — 8))"1/2. (3.4.32)
Putting n = 1/39 in (3.4.14), we Find that

G3g )6 (Gw/a)6 1
+ = 2V/2
(GIB/B G39

— (3.4.33)
(GagGw/a)3

(GagGw/s)3 -
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Now, by Lemma 3.2.6, we obtain

Q2+—1——3(Q+l>—<12+%)=0,

Q? Q
where
GQnG169n GnGQn
= —— d T=—o——7—.
Q GnGISZIn an G169nG1521n

Putting n = 1/39 in (3.4.34), we find that

Gag )4 (613/3)4 (ng)2 <G13/3)2
+ -3(=2) + +1=0.
(Gm/s G39 G133 G39

Therefore, we obtain

( Gig )2 (G13/3>2 3+/13
+ SRR Al
Gra/s G1g 2

Solving (3.4.36) for (G39/G13/3)2, we find that

G \"_1[3+VI3  [3+3V13
Guz) 2 2 2 '

Employing (3.4.37) in (3.4.33), we find that

1 2747/13

3
GG - =
( ? 13/3) (Cv'sgcw/s)3 4v2

Solving (3.4.38) for (G39G13/3)3, we find that

(G39G13/3) T = 3 W + T5

3 1[27+7\/1”3 747+189\/15J

Since, 747% — 13.189% = 3062, by Lemma 3.2.8, we note that

/_—-—747+189\/1—:\ﬁ47+306+\/747—306:21+9\/ﬁ'
2 2 V2

55

(3.4.34)

(3.4.35)

(3.4.36)

(3.4.37)

(3.4.38)

(3.4.39)
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Thus, from (3.4.39), we find that
(039013/3)3 =2(3 + V13).

From (3.4.37) and (3.4.40), we obtain

3

-

G2 = (3 + V13)?

1/4
Gy = 2/4(3 + VI3)I/6 [_3_%@ + %\/ii%*_‘/ﬁ’

Now, putting a = (1 +1/13)/8 in Lemma 3.2.9, we obtain

<3+¢“ \/W) \/5+\/— \/\/— 3

[3+\/T§ 3+ 313
5 T 2

Therefore,

Thus, we arrive at the 1equired value of Gy9. Similarly, we can get the value of G3/3.

Theorem 3.4.5

Gss = 2'14(2 + VB)I/1 (\/7 er‘/g + ‘/58_ )

and

Guys = 21/4(2 n \/5)1/4 (\/7 +8\/5 _ \/\/58— 1) .

Proof: As in the previous proofs, if
G, = (4a(l — a))~V/2

and f3, v, and 4 have degrees 5, 11, and 55, respectively, over «, then by (3.1.4)

Gasn = (481 = B)) ™M, Gian = (dy(1 =)™ and  Gagasn = (46(1 - 6)) 7Y/

(3.4.40)

(3.4.41)

(3.4.42)

(3.4.43)
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By putting n = 1/55 in (3.4.2), we deduce that

( Gss )3+ (G11/5>3 ~9
Guys Gss

By Theorem 3.1.8, we deduce that

1
(Gsan/s)2

(Gsan/s)2 -

1 1 1 1
T3+T5_5(T2+T5)+10<T+T>(P2+ﬁ_l)

1
—4(P4+i)+10(132+—)—25=0,

Pt p?
where
G.Gan
T=_—n"l2n and P? =1/ (G1G25:G121nG3025n) -
G25nG3025n

Putting n = 1/55 in (3.4.45), we find that

1
4<P4+%)c30<P2+ﬁ)+53=0,

where, now, P? =1/ (G55G11/5>2.

From (3.4.46), we deduce that

1 _15+3v6

2
P+P2 3

Solving for 1/P?, we find that

1 _15+3V5 1 /103+45/5
P 4 4 2 '

Since, 103% — 5.452 = 222, we sce from Lemma 3.2.8 that

125 [81 9455
\/103+45\/5—— T+ ?— \/§ ;

Thus

1

o7

(3.4.44)

(3.4.45)

(3.4.46)

(3.4.47)

(3.4.48)

(3.4.49)
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Employing (3.4.49) in (3.4.44), we find that

3 3
( Gss ) 4 <G11/5) _9+t 5‘/5. (3.4.50)
Guys

3 .
Solving (3.4.50) for (G55/G“/5) , we obtain

3
Gss \* _1[945v5  [95+45/5) (3.4.51)
Guys 2 2 2 :

From (3.4.49) and (3.4.51), we deduce that

. 2
Gl = (3+V5)° (9 +45\/5 +1 ?5—%1—5—‘/—5> . (3.4.52)
7 1/6
Gss = 2'/4(2 4 V/5)/6 (9 +40f"+\/95 +:5 5) . (3.4.53)

Now, substituting b = (3 4+ v/5)/8 in Lemma 3.2.9, we see that

1/6
9+5v5 95 + 45v/5 7+5 V5 —1
( yuma \/ 3 ) = \/ 3 + \/ T (3.4.54)

This completes the evaluation of Gss. The value of Gy /5 can be deduced similarly by using (3.4.49)

Thus,

and (3.4.51).

Theorem 3.4.6

Ge5=(3+\/1_3)1“(\/5+1)‘“ (\/9+g/63+\/1+ﬁ)1/2

2

and

Grajs = (\/1_32_ 3)1/4 <\/52” 1>1/4 (\/9+8\/§5+\/1 +8\/g> 1/2.
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Proof: Here also, if

Gn = (4a(1 — @)~V

59

and f, v, and & have degrees 5, 13, and 65, respectively, over «, then as in the previous proofs, by

(3.1.4)

Gasn = (48(1 = B))~1#,  Gigon = 4¥(1 = ))"Y*  and  Gagasn = (46(1 = 8))7V/**. (3.4.55)

By putting n = 1/65 in (3.4.2), we deduce that

< Ges )3+ (013/5>3 —9
Grass Ges

By Lemma 3.2.7, we deduce that

1
(G65G13/5)2

(GosGuays)” -

Q3+@13—5<Q+-61§+2> (R+%+2)—(R2+7;3>,

where, now,

_ G25nG169n
GnG4225n

GnG25n

and R=—ou———.
G169nG 42250

Q

Putting n = 1/65 in (3.4.57), we find that

1 1
(Q3+Zg—3) —20(Q+5) - 42 =0,
where, now, Q = (G65/G’1‘3/5)2.

From (3.4.58), we obtain

Solving for Ggs/G 135, we find that

Ges \/'7+\/6_5+\/\/GE—1'

Ghyys B 8 8

(3.4.56)

(3.4.57}

(3.4.58)

(3.4.59)

(3.4.60)
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Invoking (3.4.60) in (3.4.56), we find that

(G65G13/5)2 - ——1—— =\V74+ 10v/65.

(CssGryss)”

Solving (3.4.61) for (G65Gl3/5)2, we find that

2

(GosGrays)” = ;11- (\/74 +10v65 + /90 + 10\/%) .

Thus, we deduce that

1 1/2
GesGays = ;5 (ﬁ+ 10v/85 + /90 + 10v/65) .

Since, 90% — 65.10%2 = 402, from Lemma 3.2.8, we see that
130 o0
V90 + 10V/65 = ,/—5— + \/7 =54 v/65.

Hence,

9+ 65 1+ 65
GesGrays = \/ 5t \/ 8\/—'

From (3.4.60) and (3.4.64), we deduce that

6 = (\/7+8/675+\/J(Tf;i—1) (\/9+8¢€5+\/T+g/@).

]

and

8 8

et~ ([ - [T ([ )

Now, simple calculation shows that

(\/Hs\/%i\/\/éi—l)?: <\/_1_12:i:3) (\/5:1:1

2

Using (3.4.67) in (3.4.65) and (3.4.66), we easily arrive at the required class invariants.

(3.4.61)

(3.4.62)

(3.4.63)

(3.4.64)

(3.4.65)

(3.4.66)

(3.4.67)

As mentioned in the Introduction, we have seen that our evaluation of Ggs is much easier than

that of Berndt, Chan and Zhang [18], [25].



Chapter 4

Eta-Function Identities

4.1 Introduction

The classical Dedekind eta-function n(z) is defined by

77(2) — emz/lZH;lni;l(l _ e21rmz)’ Imz > 0. (411)
Following Ramanujan’s notations, we set ¢ = exp(2m:z) and
f(=q) = g7 /*'n(2). (4.1.2)

In the unorganized portions of his second notebook [48], Ramanujan recorded without proofs

25 beautiful identities involving quotients of only eta-functions and no other theta-functions.

Note: This chapter is identical to our paper [5], which has been accepted for publication in the

Indian Journal of Mathematics.
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B. C. Berndt and L.-C. Zhang proved some of Ramanujan’s eta-functions identities in [23)].
Proofs of all 25 identities recorded by Ramanujan are given in Chapter 25 of Berndt’s book
[17]. 19 identitics were proved by employing modular equations and parameterization and 6
were proved by invoking to the theory of modular forms. But in many of their proofs via
parameterization, and in all the proofs via modular forms the identities must be known in
advance. So those proofs may be merely called verifications. In this chapter, we prove five
of these identities by using Ramanujan’s other eta-functions identities and one of our newly
derived identities. The remarkable feature of our method is that new identities can also be
derived by this method. We note that in Section 7.6 of our last chapter, we find three new
theta-function identitics in course of deducing some modular equations for Ramanujan’s cubic
continued fraction. y
K

4.2 Ramanujan’s Identities

We will prove the following eta-functions identities of Ramanujan:

Theorem 4.2.1 ([48, p. 314]; [17, p. 186]) If

_ SR f(a)f(-e)
¢ f(=) f(—4") af(=4%)f(~4")

then

ut = v® + 3v? 4 9v. (4.2.1)

Theorem 4.2.2 (48, p. 330]; [17, p. 218]) If

O o F(=P)f (=)
YTy T S A TR y T
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then

PQ+1+7,15 s (%>2+ (§>2
Theorem 4.2.3 ([{8, p. 813]; [17, p. 230]) If

[ =) g oo SO (1)

YT YT A a1

N3

q

then
25 _ Qv (P\*_.(Q., P )
PQ+F@-—-(F) +(a> —3(j)—+Q+2 .

Theorem 4.2.4 ([{8, p. 327]; [17, p. 239]) If

then
5 (Q\?,.Q , .P (P)
PQ+m— (ﬁ) +3=+3=— (—) .
Theorem 4.2.5 ([48, p. 827]; [17, p. 235]) If

o(¢°)
¢(¢'%)’

P=—¢—(Q and Q =

#(q°)

then

5 _(Q\°, .Q P (P\’
PQ+7‘;_Q-—(F> +3}'5+3-Q—(a> .

Ramnujan incorrectly recorded the entry in Theorem 4.2.5 as

1 (P\* .Q .P [Q\?
5PQ+FQ—<6> +3I—)+36—(-15) .

In Theorem 4.2.1 we have slightly changed the notations used by Ramanujan.
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(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)
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The existing proofs of these theorems in the literature [17, Chapter 25] involves heavy
amount of algebraic manipulation and could not have been accomplished without prior knowl-
edge of the identities. Here we prove these theorems by using other eta-function identities

whose proofs via modular equations can be found directly.

4.3 Proof of Theorem 4.2.1.

We set
f(— _
P L( q)a’ Q= lf( q)97
qi f(—¢°%) 73 f(-¢°)
—g? 2
R:= —lf—(—‘% and, §:= L0 (4.3.3)
g5 f(—q ¢ f(—q")
We note that
PR= % and QS =wu. (4.3.2)
From Entry 56 {17, p. 210}, we find that
Q@+ 8% =0+ 3u. (4.3.3)
Employing (4.3.1) in Entry 1(iv) 15, p. 346], we find that
9\’ 27 N
(1 + @) =14 55 (4.3.4)
Replacing ¢ by ¢* in (4.3.4), and then employing (4.3.1), we obtain
9\3 27
(1 + 33) =1+ 2. (4.3.5)

We may rewrite (4.3.4) and (4.3.5) in simplified form as

QQ

PG = Q% +9Q3 + 27 (4.3.6)
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and

59
}Z—B =Ss+953+27,

respectively.

Multiplying (4.3.6) and (4.3.7), we obtain

(@S)°

(@S)° +9(@S)*(Q° +5°+9) +27(@° + 5°) + 243(Q° + 5% + 729 = (oo

Invoking (4.3.2) and (4.3.3) in (4.3.8), and then simplifying, we arrive at

ul?
F—(v2+3v+9)3=0.

Factorizing (4.3.9), we find that

ut ub u
<?—— (v2+30+9)> (t—)~2-+(v2+3v+9)2+—U—(v2+3v+9)> =0.

65

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

From (4.3.10) we readily arrive at (4.2.1), since the second factor on the left hand side can not

be 0. Thus we complete the proof.

4.4 Proof of Theorem 4.2.2.

We set A
Ll = 1f(_q) ) L -TfL:qiz—a
q7 f(-¢°) g7 f(~—q'®)
M= LCO g, gy SO
qs f(—¢°) qs f(—q°)
so that
P = L .and Q= —Aﬁ

(4.4.1)

(4.4.2)
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Employing (4.4.1) in Entry 51 (17, p. 204], we obtain

(LM + (Lliﬁ)z = (%‘)6 + (%1)6 (4.4.3)

Replacing g by ¢° in the same Entry, and then employing (4.4.1) again, we find that

(L2Ms)? + : Lj@)z - (—LA%-)G + (%2)6 (4.4.4)

Multiplying (4.4.3) and (4.4.4), and then applying (4.4.2), we obtain

81 ML\ ® M,Li\°
Ly LM, My)? + —(“’)+(“)}
( RER 2) (L1L2M1M2)2 { M2Ll M1L2
7+ (&) -feor )
=(=) +(=] -9{(PQ)*+ . 4.4.5
Now employing (4.4.1) in Entry 59 {17, p. 214], we find that
LgMg L1M1 . M2L1)3 (M1L2)3
LM, + LM, (Mle + ML, + 4. {4.4.6)
Using (4.4.2) in (4.4.6), we obtain
M,L1\? (Mle 5 1
(5e2) +(G22) =PQ+ 55— 4 (4.4.7)
Squaring both sides of (4.4.7), we arrive at
Mle)ﬁ (Mle)“__ A
(M1L2 +(32n) = (Pa+s5-14) -2 (448
From (4.4.5) and (4.4.8), we obtain
81 1 2 Q\® [P\°
LiLeMiMp)? 4 —— = (PQ+ — — 4] —2 (—) ~
(LyLy My M) (L1L2M1M2)2 ( Q PO + P + 0

-9 { (PQ)* + ( ng)z} . (4.4.9)
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Employing (4.4.1) in Entry 60 [17, p. 215], and then using (4.4.2), we find that

bttt g = (@) -4 ()-4(5) + (5)

Squaring both sides of (4.4.10), and then invoking (4.4.9), we obtain
a1) -2 (8)+ (5) {0 )
PQ+ <=4 —2+<—)+ =) —9{(PQ)?+
(Pa+5g4) p) *\g) "\ oy

@@ -1(3)-(5)) -

Simplifying (4.4.11), we arrive at

(%)2+ (g)2 — (%)4 - (g)4+ (PQ)* + (—1}? +PQ + 1_315'

Factorizing (4.4.12), we find that

() + (&) +re ) (ro 7o~ (- () 1) =

Thus, we arrive at

P2+ (3)-(5) +i=0

i

since the other factor can not be 0. This completes the proof.

4.5 Proof of Theorem 4.2.3.

First of all, we prove the following new eta-function identity.

Lemma 4.5.1 If

fCof=) 0, =1
a3 f(~¢°) f(~¢") g5 f(—g) f(=¢%®)’
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(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)
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then

P1>3 (Q1)3 25 ( 100 )“2
—] +(=X) =104+ PQ; + — 241 +4PQ; + : 4.5.1
(Ql P, At ra @t 50, (45.1)

Proof of Lemma 4.5.1.: Let

__fle)f(d*)
=~ 5 15\
g5 f(¢°)f(q'®)
By Entries 12(i) and (iii) in Chapter 17 of [15, p. 124], we find that

_ [mE (eBl-o)(1-B)\F ,
= 2512135 (’75(1-’7)(1—5)> . (452)

1

z1z3 (af(l—a)(1—-p)\"™
z5215 ( ¥5(1 — 7)(1 - 6) ) ’ (4.5.3)

where 8, v, and § have degrees 3, 5, 15, respectively, over . From (4.5.2) and (4.5.3) we readily

and

Qi =

see that

Q. (eB(l-a)(1—B)\*
72_1_(75(1—7)(1—5)) ’ (4:54)

2
B _ |2z (4.5.5)
Q1 25215

Now by Entries 11(xii), (xiii), respectively, in Chapter 20 of [15, p. 384], we note that
(7_5)%+ ((1—v)(1—6)>%+ (75(1—7)(1—6))% “2(76(1—7)(1—6))%
af (1-o)(1-5) af(1~-a)(1 - B) af(1 - a)(1 - f)

(@ )

and

and
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{1+ (aﬁ) + (((llzaigiig)))é} = 25:;35. (4.5.7)

For simplicity, we set

(1) +(F2305R) e v= (3620055)
so that
-g% —y (4.5.8)
Then from (4.5.6), we find that
=yt (4y + ;1:5)% . (4.5.9)

Also, from (4.5.7), we find the reciprocal equation of (4.5.9) as

1
= 5 + (f + 2525z‘5) . (4.5.10)

z
y y 2123

Combining (4.5.9) and (4.5.10), we obtain

1 1

Iy = 4 2

Y+ (4y+ le"’)’ =1:l:y<—+25z5215) . (4.5.11)
25215 Y 2123

Employing (4.5.4), (4.5.5), and (4.5.8) in (4.5.11), we find that

R3 s Qs Q2
Q3 Ly (4Q3 + 5’%) =1l ( +25R4) (4.5.12)

We rewrite (4.5.12) as

3 2 3 4
~ Q% =+ ( ?23 + 25%) F Q3 (4%37 + gg) . (4.5.13)

Squaring both sides of (4.5.13), and then simplifying, we arrive at

. 1
100 2
RS+ QS = 10R3Q% + 25R2Q? + RIQ! — 2R3Q® (41 AR+ & 31) : (4.5.14)
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Dividing both sides of (4.5.14) by R3Q3, we find that

1
R Q3 25 ( 100 )5
L4+ =104+ RQL+ — 2141 +4R,Q, + . 4.5.15
& @t R D Ro; (45.15)
If we replace ¢ by —¢ then R,Q transforms to P,Q, and R3/Q?} transforms to P{/Q3}. Thus
(4.5.15) is transformed to (4.5.1), which completes the proof of the lemma.

Proof of the main theorem: We set

L= lf(—q , L, = lf(—qa ’
s f(-¢°) qz f(—¢")
_ f(=d) _ f(=¢%
M1 = W and, M2 = m, (4516)
so that
P = LlMl and Q = L2M2. (4517

Employing (4.5.16) in Entry 53 [17, p. 206], we find that

(%)3 4 (%)3 (4.5.18)

)

LM,

LM +

Replacing g by ¢? in the same entry, and then employing (4.5.16), we find that

) Loy} M\?
M, + R __) + (.__) . 4.5.1
LM, Ly M, (M2 L, (4:5.19)

Multiplying (4.5.18) and (4.5.19), and then applying (4.5.17), we obtain
(fa ) (J)' () ()
M, M, ML, M,L, LL,

_ 25 Q P
——PQ+*P—Q'+5(};+Z§>. (4.5.20)
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Employing (4.5.16) and (4.5.17) in Entry 59 [17, p. 214], we find that

MoL\? (L2M1>3 Q P
= — 4+ — — 4. 4.5.21
(M1L2> t\mL) TPTQ (4.5.21)

From (4.5.20) and (4.5.21), we find that

LiLy \° MiMyN? 25 Q@ P
(M1M2> +(L1L2) _PQ+FC§+4<F+'Q_>+4‘ (4.5.22)

Now invoking (4.5.16) and (4.5.17) in the above lemma, we find that

Lilo \3 /M My\° 25 100\ /2
—104 PO+ 22 9414 4p0+ 20) 4.5.23
(M1M2) +<L1L2) 0+PQ+ 55 +H4PQ+ 55 (4.5.23)

From (4.5.22) and (4.5.23) , we obtain

100\'* P Q ]
(41 +4PQ + »15@-) =3-2 (5 + ﬁ) . (4.5.24)

Squaring both sides of (4.5.24), and then simplifying, we readily deduce (4.2.3), completing the

proof of the theorem.

4.6 Proof of Theorem 4.2.4

We note from Entry 24(iii) [15, p. 39] that

(4.6.1)
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Now we set
A G _f=a)
1-— 71 ’ 2= 71 ’
g8 f(—¢°) 97 f(—¢")
_ f(=4") M e 490
M= g% f(—q'°) andy M= F gy
so that
B M12 _ M22
P = —L—l- and Q = —L—z—

Employing (4.6.2) in Entry 53 [17, p. 206], we obtain

5 Li\? M1)3
LM = (= it
1A1+L1M1 (M1> +(L1

Replacing ¢q by ¢? in the same entry, and then employing (4.6.2), we find that

3

5 Ly\? M,
o - () + (29
oM+ 51 <M2> "\

Using (4.6.3) we may rewrite (4.6.4) in the form

M3 sp M?® P?

P rMET R T
Thus we arrive at
P4(P? - b)
Mb==— "
! P21

Similarly from (4.6.3) and (4.6.5), we deduce that

QYQ* -5
M26='—é—2—_—1—l.

Employing (4.6.2) in (59.10) of [17, p. 215}, we find that

(2)+ (G2) = (242) - (22)
L M) \LM LM,

(4.6.2)

(4.6.3)

(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7)

(4.6 8)

(4.6.9)
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Invoking (4.6.3) in (4.6.9), and then simplifying we deduce that

(VO N (2)2 _

1+ P/Q

Q

From (4.6.7), (4.6.8) and (4.6.10), we find that

QYQ* - 5)(P* - 1)

(5

)

1+ P/Q

P4(P?-5)(Q* —1)

4.7 Proof of Theorem 4.2.5.

We note from Entry 24(iii) [15, p. 39] that

Therefore P and @) can be reformulated as

_ P@f(=¢")

P =@
Let
he £20f(=47)
(=% f*(q7%)
Then
L?
R=3

and S

and @

and

i [(-5—)2 - (5)

This can be readily seen to be equivalent to (4.2.4). Thus we complete the proof.

3

-¢%)

_ AP
f(=a®)f

_ ) (=q%)

Q)

S

_ L
-,

LT EO PG
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(4.6.10)

(4.6.11)

(4.7.1)

(4.7.2)

where Ly, Ly, My, and M, are same as in the proof of Theorem 4.2.4. We may write (4.6.4) in

the form

L’ 5R L

BRI

B

R3

L

(4.7.3)
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Thus we arrive at

RY(R? - 5)
Lf=—"— 4.7.4
Similarly we can deduce that
S4(S?% - 5)
LS="2> 7 4.7.5
Invoking (4.7.2) in (4.6.9), and then simplifying, we obtain
L 3
(2) = -721—;-*-11/%3 (4.7.6)
o (8) - (8)
From (4.7.4), (4.7.5), and (4.7.6), we arrive at
2
S4(S8% - 5)(R? - 1) 1+ R/S
R(R?—5)(S2—1) | (R) _ (B} (4.2.7)
(5) - (5)
This can be readily seen to be equivalent to
RS+—§——(§)2+3‘—9—+3—Pf—(£)2 (4.7.8)
RS \R R "S \s/' o

Replacing ¢ by —gq, we see that RS transforms to PQ and R/S transforms to P/Q. Thus, we

obtain

PQ+I—J%= (%>2+3Q+3£— (5)2 (4.7.9)

This completes the proof.
It is worthwhile to note that in [32], H. H. Chan used this identity to find the value of

G(—e~V5"), where G(q) is the Ramafiujan’s cubic continued fraction defined in (1.2.5).



Chapter 5

Explicit Evaluations of Theta-Functions

5.1 Introduction

We recall the following special type of Ramanujan’s theta-functions from Chapter 2.

¢(q) == f(g,9) =1+2iq"2, (5.1.1)

k=1

where |g| < 1.
If K(k) and oF; denote the complete elliptic integral of the first kind and ordinary or
Gaussian hypergeometric function as defined in' (2.],3) and (2.1.4), respectively, then one of

“

the most fundamental results in the theory of elliptic functions [15, p. 102] is

2
¢*(a) = K (k) =2Fy (% %; 1 k"’) ,  g=exp(-mK'/K),

Note: The results of this chapter are identical to our paper [10].
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K'= K(k'), and k' = v/1 — k? is the complementary modulus. So, an evaluation of any one of
the functions ¢, ,Fy, or, K yields an evaluation of the other two functions. But such evaluations
may not be very explicit. For example, if K (k) is known for a certain value of k, it may be
difficult or impossible to determine explicitly I’ and q. Cénversely, it is possible to evaluate
¢(q) for certain q, but it may be impossible to determine k. Several values of . F; and K (k) have
been determined by I. J. Zucker [65] and G. S. Joyce and Zucker {36]. Ramanujan recorded
many values of #(g) in his notebooks [48], some of which are new and some of which are classical.
In his second notebook [48], Ramanujan recorded the values of ¢(e™™), #(e~V2"), ¢(e~27), and
#(e=°"). The first three values are classical and can be found in Whittaker and Watson’s text
(62, p. 525], while the value of ¢(e™") is new. Using theta transformation formula Berndt
(15, p. 210] and Joyce and Zucker [36] obtained the evaluation independently. Ramanujan also
recorded many values of ¢, as well as values of ¥ and f in his first notebook [48]. All the
elementary values of ¢, ¢ and f are easy consequences of the “catalogue ”of evaluations given
by Ramanujan in chapter 17 of his second notebook [15, pp. 122-124]. At scattered places in
his first notebook [48], Ramanujan also recorded the nonelementary values of ¢(e™"") for n =3,
7,9, and 45. The evaluation for n = 3 can be found in Zucker’s paper [65]. For proofs of all
the non-elementary values one may see Berndt [18, Chapter 35], and Berndt and Chan [21]. In
[21], Berndt and Chan also foxinci three new explicit evaluations of ¢(e™"") for n = 13, 27 and
63. It is worthwhile to note that Ramanujan recorded most of his values for ¢(e ") in terins

of ¢(e”™). But, since the value
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is well known [62, p. 525], so ¢(e™"") is determined explicitly. In this chapter, we give some
more transparent proofs for the evaluation of the non-elementary values of ¢(e~"") claimed by
Ramanujan by employing some of his modular equations and class invariants. We also evaluate

—ﬂ.‘ll’).

some new explicit non-elementary values of ¢(e

In Section 5.2, we find a new proof, different from that of B. C. Berndt [15, p. 352], for one
of the modular equations recorded by Ramanujan in his second notebook, and combine this
with his class invariants to arrive at Borweins’ [31, p. 145] formula for ¢(e=*"*")/¢(e ") and

deduce a number of evaluations.

In Section 5.3, we find a general formula for explicit evaluation of ¢(e~>"")/@(e~"") and

again deduce some evaluations.

In Section 5.4, we prove the evaluation for ¢?(e~""). Berndt [18, p. 336] and Berndt and
Chan [21, p. 289] have also proved this evaluation. But, in [18] Mathematica is used to
simplify the very complicated nested radicals, and in [21], the simplification of the radicals
are very cumbersome and, they agreed that Ramanujan might have found a more transpar?nt

~ Chans
proof. We believe that, our evaluation is close to Ramanujan’s proof. 0 Radeey bn [’@3

In Sections 5.5, 5.6, and, 5.7 we find three new evaluations ¢(e~1°"), ¢(e=2'"), and ¢(e~3"),
respectively from “mixed ” modular equations. Three of the modular equations are found by

Ramanujan and another one by us in Chapter 2.
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5.2 Evaluations of ¢(e=""")/p(e™"")

J. M. and P. B. Borwein [31, p. .145] first observed that class invariants could be used to

calculate certain values of ¢(e™""). In fact, they observed the following theorem.

Theorem 5.2.1 For any positive rational number n?,

—9nmw
3%% =1+ \/5%93":. (5.2.1)

Berndt [18] and Berndt and Chan [21] also provide a proof for this theorem. Here, we
give another proof using Ramanujan’s modular equations. First of all, we recall the following

beautiful modular equation of Ramanujan [15, Entry 3(i), p. 352].

Lemma 5.2.2 Let B and v have degrees 3 and 9, respectively, over . Let m denote the

multiplier connecting o and 3, and let m' be the multiplier relating B and y. Then

3 e fad(1—a)P\
Vo =147 ( B(1-f) ) 622

We provide here a proof somewhat different from that in [15].
Proof of Lemma 5.2.2: We recall from (2.3.31) that

o(q) = ¢(¢°) + 24(¢°, ") (5.2.3)

Since by (2.1.43)

fla,¢%) = ¥(-¢*)x(q), (5.2.4)
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so, from (5.2.3), we find that
#(a) = ¢(q”) + 299 (—¢")x(c%)- (5.2.5)
Transcribing (5.2.5) via Entries 10(i), 11(ii) and 12(v) [15; pp. 122-124], we arrive at

1/24
Vmm' =1 + 413 (1;%:—;);) (5.2.6)

Reciprocating ( in the sense of Entry 24(v) [15, p. 216]) the above modular equation, we can

easily arrive at (5.2.2).

Proof of Theorem 5.2.1. If we set ¢ = e, it can be easily seen from (3.1.4) and (5.2.2)

that

3 ng2
=14+ V2
vmm/ Ve G2,

where , now, m = ¢*(e™"")/¢?(e7*"") and m' = ¢*(e™3"")/¢*(e~*""). Thus, the proof is

(5.2.7)

complete.

A number of evaluations claimed by Ramanujan follows as corollaries from the above theorem.

Corollary 5.2.3 (48, Vol.-I, p. 287]).

Ble) _ 1+ {2(/3+1) 529

¢le™) 3 '

Proof: We put n =1 in (5.2.1) to arrive at

$(e®) _ G
3 o = 14 \/5(—;% (5.2.9)
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Since from Berndt’s book [18, p. 189]

1/3
Gl=1 and G9=<1+\/§> y

we easily find the required evaluation.

Corollary 5.2.4 ([48, volume{ll,\Chap. 18]; [15, p. 210])

(V5 + V3)(e ™V33) = (3 + V/3)p(e7"V?). (5.2.10)

Proof. Putting n = v/5/3 in (5.2.1), we find that

™) _ G5 2.11
d(e-mv5/3) 1+ \/ﬁGg/g' (52.11)

Again from Berndt’s book [18, p. 189 and p. 345], we note that

, 1/4 _ 1/3
Gs = (1 +2.\/5> , and  Gajg = Goys = (V5 +2)!/4 (_\/i\/—i_@>

Employing these values in (5.2.11), and then simplifying, we find that

¢(e—37r\/5) _ 3 — \/ﬁ

3¢(e'"\/5/3) == (5.2.12)

Thus,

$(e®5) _ 3-vV3 _V5+VB
¢(e=™V53) ~ 3(vVE—-V3) 3+V3 '

Similarly, some other explicit values of ¢(e9"")/¢(e "), for positive rational n2, can also

(5.2.13)

be evaluated if the corresponding class invariants are known. For example, Berndt and Chan
[21] have found the evaluations corresponding to n = 5 claimed by Ramanujan and two new

evaluations corresponding ton =3 and n = 7.
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5.3 Evaluations of ¢(e™"")/¢(e ")

Theorem 5.3.1 For any positive rational number n?,

2(,—5nw
() g 4 pGam (5.3.1)

¢2( —n1r) G?lz

Proof: If 8 has degree 5 over a and m is the multiplier for degree 5, then from Chapter 19 of

Ramanujan’s second notebook [15, Entry 13(iv), p. 281]

5 _ o BUP) _ |, gt (L)
¢2(q) =142 (ﬁ(l—ﬂ)) . (5.3.2)

3 |

Putting ¢ = e™™ in (5.3.2) and then employing (3.1.4), we easily arrive at (5.3.1).
As in the Theorem 5.2.1, a number of evaluations follow from Theorem 5.3.1 if the corre-

sponding class invariants are known. We give a couple of examples below.

Corollary 5.3.2 [18, p. 327]

#(e) L (5.3.3)

Proof: Putting n =1 in (5.3.1), we obtain

—51r
ii(( _W)) =1 +2%—§5- (5.3.4)

Since from Berndt’s book [18, p. 190]

Gl =1 and 025 =

we see that

ohd il NPy SO (5.3.5)
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Now it is easy to arrive at (5.3.3).

The following evaluation is new.

Corollary 5.3.3

Sl (S0 e

Proof: We put n = 3 in (5.3.1), to obtain

2(,—16m
5%%—)) =1+ 2%—55. (5.3.7)

Using the values of Gag5 and Gy from Berndt’s book [18], one can get the required assertion.

As the value of ¢(e=") is already known [18, p. 327], #(e~'°") can be found explicitly, provided

the appropriate root is extracted. In section 5.5 we find a simple evaluation for ¢(e=15").

5.4 Evaluation of ¢*(e™™").

Theorem 5.4.1

“222((‘;__7:)) = ‘(252;/8 (\/13 +VT+ T+ 3\/7) : (5.4.1)

Berndt (18] and Berndt and Chan [21] proved this evaluation claimed by Ramanujan. But,

simplifications of radicals are too cumbersome. They agreed that Ramanujan might have had

a more transparent proof. We think the following proof is very close to that of Ramanujan.
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Proof: From Entry 19(i), (ii), and (viil) of Chapter 19 of Ramanujan’s second notebook [15,

pp. 314-315], we note the following modular equations.

(@B) +{(1 - )1~ A}/ =1, (5:4.2)
ol (1-a)7\ 1/24
L) (5.4.3)

m  (aB) A —{(1-a)(1 - B}/

and,

™= % =2((eB)"® — {(1 - a)(1 - B)}/) (2 + (@B)/* + {1 —e)(1 = B)}*),  (5.4.9)

where f has degree 7 over o and m is the multiplier connecting « and 3.

From the above equations it can be easily deduced that

ol(1 — o) 7\ /2 )
5 = L)) 24 (GAZGE) T -i6tel-a) a8 (549

Now, in (5.4.5) we put a = 1/2, so that ¢ = e~", and then we find by invoking (3.1.4) that

¢4 (6—77r) 3 .
=14 2v2G +6V2Gs — 8GR, (5.4.6)

49¢4(e—71r)

From Berndt’s Book [18],

_ VA VT (5.4.7)

49 2

Simple calculations give

o Va+ VT
G'491 = P ’
862 =4 (2 +VT = T4+ V7)), (5.4.9)

(5.4.8)

and

2GS = 2(4+ VT) — V2VT.TH — 3V2.714, (5.4.10)
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Employing (5.4.7), (5.4.9), and (5.4.10) in (5.4.6), and then simplifying using (see Lemma 3.2.8)

it Vi = i+ A2

we find that

¢*e™™™) 1/4 3/4
95 =T+ 5V2.74 + VT + V2.7 (5.4.11)

Taking square root of both sides, we obtain

—7r /
iigi_;; (282)1 - (20 + 8274 + 4v7 + 2v27) (5.4.12)
Since
22T 4 8V2TY = 20/ (13 + V7)(7 + 3VT)
and

20 + 4v/7 = (13 4+ V7) + (7 + 3V/7),

it is easy to arrive at (5.4.1) from (5.4.12).

5.5 A simple evaluation of ¢(e1°7)

Theorem 5.5.1

ple™") _ 1 V3 -1
#e™)  Vav3—3 o—vB  vE JouE—5 Jova-o

Proof: From Entries 1i(i)and 11(iv) of Chapter 20 of Ramanujan’s second notebook [15, p.

(5.5.1)

383], we note the following modular equations.

m

BN+ {(1-B)(1 =)} == (5.5.2)

m'’
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and

52,7‘2(1 __ ﬂ)Z(l _

L+ (B0 +{(1 = B)(1 =7}/ = 4V ( ad(l—a)(1 ~

where f, v, and ¢ have degrees 3, 5, and 15, respectively, over .

From (5.5.2) and (5.5.3), we find that

M s (B~ B)P(L =)\
1+\/7:n;—41/3( ab(l—a)(1 - 6) )

Setting o = 1/2 in (5.5.4), and then using (3.1.4), we deduce that

Ble)b(e™) _ /5 Gas.
Lt g~ ¥ Eieh

Again from Berndt’s book {18, pp. 189-190 and 195}, we note that

1/3
1++/3 1++/5
ng( %) Gos = NG

and

2

Gags = (1 + \/5> (2+ \/g)l/a (M+ (15)1/4

2

Employing these values in (5.5.5), and then simplifying, we find that

Bemp(e ) _ VIS VE-1
Bl ~ 1+v5 145

where in the simplification, we also used (see Lemma 3.2.8)

Va+vI5=\f5/2+/3/2.

Using (5.3.3) and the value ({18, p. 327]; [21, p. 280])

$(e™)/$(e™™) = 1/V6v/3 -9,
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(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)



86 CHAPTER 5. EXPLICIT EVALUATIONS OF THETA-FUNCTIONS

in (5.5.6), we find that

ple™m) _ v2(15)* + V3 -1 , (5.5.7)
€)1+ VB)(1/6v/3 - 9)(V/5V5 - 10)

Simplifying (5.5.7), we easily arrive at (5.5.1).

5.6 Evaluation of ¢(e™%'")

We shall use the following “mixed” modular equation of degrees 1, 3, 7, 21 found by us in

Chapter 2.

Lemma 5.6.1 Let 3, 7, and § have degrees 3, 7, and 21, respectivly, over o.. Let m denote the

multiplier connecting o« and B, and let m' be the multiplier relating v and §. Then

3 sy s (PO (a0 ety
a0y = (S8 ) - (S625) (5.61)

In the above lemma, we now set a = 1/2, so that ¢ = e~" to obtain

3 GoG?
- — ng‘“ — G3Guar. (5.6.2)
Thus
Pp(eM)p(e™ ™)  GoGan (G441 )
= — G, . 5.6.3
dende™ ~ 3\ O (5.6:3)

Using the requisite class invariants from Berndt’s book 18], and the known values of ¢(e™"),

¢(e~3"), and ¢(e~""), we can find an explicit value of #(e=21™) from (5.6.3).
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5.7 Evaluation of ¢(e ")

We shall use the following “mixed” modular equation of degrees 1, 5, 7, 35 recorded by Ra-

manujan and proved by Berndt {15, p. 423].

Lemma 5.7.1 Let 3, 7y, and § have degrees 5, 7, and 35, respectivly, over a.. Let m denote the

multiplier connecting o and 3, and let m' be the multiplier relating v and 6. Then

\/—"_ﬂ“/ _ {168y(1 = B)(1 — N} — {1606(1 — a)(1 - 8)yv/e 5
m  {168y(1 — B)(1 — )}/ + {168y(1 - B)(1 — )} /& 1.

In the above lemma, we set @ = 1/2, so that ¢ = e™" to obtain

- 11 _ =3
m _ ijs C_?fg C_’;zzs‘s. (5.7.2)
m Gy Gy +Gx Gy
Thus,
$e>)(e™™) GGy — Gids (5.7.3)

¢lem)¢(e™®m) GG +GEGas
Using the requisite Ramanujan’s class invariants from Berndt’s book [18], and the known values

of ¢(e™™), #(e®"), and $(e~""), we can find an explicit value of ¢(e~%*") from (5.7.3).

Note that, evaluation for ¢?(e73°") can be found by using (5.3.1). But to get the value of

#(e=3") our evaluation is less tedious.
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Concluding remarks: 1. The following theta-transformation formﬁla for ¢ [}5, p. 43] can be
used to find the éxplicit evaluations of ¢(e~"/"), when the corresponding values of ¢(e™™) are
known.

If a,b > 0 with ab = 7, then \/E¢(e'“2) = V(e ).

As for example, if u? = 7/\/7, then ¢(e”™/V7) = r/4¢(e="V"); and hence, by putting r = 25,
we obtain ¢(e~"/%) = v/5¢(e5").

2. It is to be noted that the values of ¢(e™"")/¢(e~™) are algebraic. In fact, Berndt, Chan,
and Zhang (27, p. 610] proved the following general theorem.

Let m and n be positive integers. Then ¢(e™™"") /d(e™"") is algebraic. Furthermore, if m
is odd, then \/2mg(e™™")/¢(e™™") is an algebraic integer dividing 2\/m, while if m is even,
then 2\/m¢(e=™"")/d(e™"") is an algebraic integer dividing 4/m.

3. In Chapter 6 and Chapter 7 we give many interesting general formulas for the explicit
evaluations of theta-functions in contexts with Rogers-Ramanujan continued fract-ion and Ra-

manujan’s cubic continued fraction.



Chapter 6

Evaluation of Rogers-Ramanujan

Continued Fraction

6.1 Introduction

We recall that, for |g| < 1, the famous Rogers-Ramanujan continued fraction R(q) is defined by

g/

R(q) == —

2 3
297 (6.1.1)
1 +14+1 41 4.,

. We also set S(g) = —I(—¢). In the literature, considérable at:t;;{gtion has been given in finding

the explicit values of R(q) when ¢q = e~™" for several positive rational values of n. In fact,

In his first and second letters to Hardy [22], Ramanujan communicated several explicit values

of R(q) and S(q). Watson [52], [53] proved Ramanujan’s claims in those letters. Moreover,

Note: Some parts of this chapter consist of our paper [7].

89
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in both letters, Ramanujan asserted that “R(e""/'_‘) can be exactly found if n be any positive
rational quantity”. In both his first [48] and lost notebooks [49], Ramanujan recorded several
other evaluations. In particular, on page 210 of his lost notebook [49], Ramanujan provided
a list of evaluations and intended evaluations. In [42]-[46], K.G. Ramanathan made the first
attempt to find a uniform method to evaluate R(q) by using Kronecker’s limit formula, with
which Ramanujan was not probably familiar. B.C. Berndt and H.H. Chal@@b
and Berndt, Chan and L.-C. Zhang [25] completed the incomplete list of Ramanujan by using
some modular equations recorded by Ramanujan in his notebooks [48]. Most importantly, in
[25], Berndt, Chan, and Zhang derived general formulas for evaluating R(e=2"V") and S(e~"v")
in terms of Weber-Ramanujan class invariants. The lost notebook [49] also contains many
formulas for R(q) and theta-function identities giving more formulas for the explicit evaluation
of R(g). S.-Y. Kang [37], [38] proved many of the claims made by Ramanujan. It appeared
that though Ramanujan’s formulas are interesting, they generally are not very much amenable
in the calculation of elegant values of R(g). We would like to refer the expository paper by
Berndt, Chan, Huang , Kang, Sohn, and Son [29] to know about the knowledge available in the
literature till the publication of that paper. In this chapter, we find some of the evaluations of
R(q) and S(q). Our evaluations are more transparent than those of the previous authors.

First of all, in section 6.2, we establish some beautiful theta-function identities recorded by
Ramanujan in the unorganized pages of both his first and second notebooks [48]. Berndt [17],
[18] proved these identities via parameterization.

Secondly in section 6.3, we give some more theorems for the explicit evaluation of the

quotients of theta-functions, as found in Section 4.2, by combining Weber-Ramanujan’s class
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invariants with the identities proved in section 6.2 and some other theta-function identities. In
our last section, we find some of the evaluations of R(g) and S(g), by using the values of the

quotients of theta-functions found in section 6.3 and some other identities.

6.2 Theta-function Identities

The following identity was recorded by Ramanujan on page 295 of his first notebook [48].
Berndt [18] proved this by papametrization. Here we give an alternate proof directly from

theta-functions.

Theorem 6.2.1 If ¢(q), ¥(q), and x(q) are as defined n (2.1.23), (2.1.24), and (2.1.26),

respectwvely, then

2 2(_ 5 ¢*(q)
P*(—q) +5q9*(—¢°) = NECOR (6.2.1)
Proof: From Entries 9(vii) and 10(v) of Bernﬁ%tﬁgﬁ\b‘g‘ok (15, p. 358 and 262, regpectively], we
find that “
(@) - i) = 2D, (6:22)

where f is as defined in (2.1.25).
From Entry 24(iii) of the same book [15, p. 39], we note that

_ %)
flg) = Q) (6.2.3)

From (6.2.2) and (6.2.3), we deduce that

W(q) - qu(®) = —¢L‘§—) (6.2.4)
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Again, we recall from Entry 9(iii) [15, p. 258] that

¢*(a) — ¢*(°) = 4ax(a) f(~a*)f(—=¢™). (6.2.5)

Replacing g by —q in (6.2.5), we deduce that
¢*(—¢°) = ¢*(—q) + 4gx(—9) f (") f(—"). (6.2.6)

Employing (6.2.6) in (6.2.4), we find that

$*(—q) f(@°)f(=¢*)
(—q)x(—q5)+4q x(—¢®) (6:27)

20N _ 01205 —
¥*(q) — q*(¢°) "

Now, by Entry 24(iii) [15, p. 39], we find that

f(=¢*) = v(@*)x(~¢%). (6.2.8)
Using (6.2.8) in (6.2.7), we obtain
20N — 2h2( a5 — ¢*(—9) F(@®)$(g"%)x(=¢")
LU e B ) e S S B (629)

From Entry 24(iv) [15, p. 39], we note that

x(@)x(—9) = x(—4%). (6.2.10)
Thus, from (6.2.9), we ahtain
P (q) — q¥*(¢®) = _#°a) +4qf(¢°)¥(¢" ) x(—¢%). (6.2.11)
x(—o)x(=¢®)

From Entry 25(iv) [15, p. 40], we note that

¢(@)9(g®) = ¥*(a). (6.2.12)
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Employing (6.2.3) and (6.2.12), with ¢ replaced by ¢°, we conclude from (6.2.11) that

2 2/ 5\ _ ¢*(—q) 2
V¥ (g) — q¥*(¢°) = M Em N e (¢%). (6.2.13)

Replacing g by —gq in (6.2.13), we complete the proof of the theorem.
The next theorem was recorded by Ramanujan on page 4 of his second notebook [48)]. It is
extremely useful in our calculations. Berndt [17, p. 202] proved this theorem via parameteri-

zation. Here we prove this from theta-function identities.

Theorem 6.2.2

5 2(_ 5
x°(q) P (—¢°)
=1+ 5¢——. 6.2.14
@~ TR (6219
Proof: From Theorem 6.2.1, we find that
2/ 5 2

v(—q)  x(Ox(e®)P*(—q)

Now, from Entry 24(iii) {15, p. 39], we note that

’ . 3 qb(Q)&
x(q) = Pl=g) (6.2.16)

i
>

Employing (6.2.16) in (6.2.15) we arrive at (6.2.14), which completes the proof.
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6.3 Explicit evaluations of theta-functions

Theorem 6.3.1

2(_ ,~5myn 1 GS
(2) e‘"‘/ﬁ%((_—ee_;ﬁ‘))‘ - ( a - 1) . (6.3.1)
and
§ ~ 2(,—5m/n 1 5
(17) e w\/ﬁ%)_) = (1 - ng;‘") ) (6.3.2)

Proof: From Theorem 6.2.2 and the definition of G, from (3.1.2), we easily arrive at (6.3.1)
by putting ¢ = exp(—m+/n).
Replacing ¢ by —g in Theorem 6.2.2 and then using the definition of g, from (6.3.1), we arrive
at (6.3.2) by again putting ¢ = exp(—m/n).

If the class invariants are known, then we can explicitly find the value of the quotients of

the right hand side expressions of the theorem. We give some examples below.

Corollary 6.3.2

—771!)2(_6_5") _ 1
BT T AT (6.3.3)

Proof: Putting n = 1 in Theorem 631(1\ we find that

e-nwz(( —j")) %(25255 i) (6.3.4)

From Berndt’s book [18, p. 189],

1+
2

IS

Gl =1 and G25 = (635)

Employing (6.3.5) in (6.3.4), and then simplifying we complete the proof.
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This was also evaluated by Kang [38] by using a different method.

Corollary 6.3.3

a1 (6.3.6)

C e T

Proof: We put n = 1/5 in Theorem 6.3.1(i), to obtain

—7/V5 ¢2(—e~\/5ﬂ) —

1 4
Now, note from Berndt’s book [18, p.189], that
1/4
1 5
We easily complete the proof by (6.3.7) and (6.3.8).
Corollary 6.3.4
2(_—mV/15 _
VB YT 35 (6.3.9)
Y2 —e ™V 5+/5
Proof: Putting n = 3/5 in Theorem 6.3.1(i), we obtain
e /B L) 1 (2_03/5 - 1) (6.3.10)
— G ' e
P2 (—e"TV3/5) 9 15
From Berndt’s book (18, p. 341], we again note that
Gis =221+ V5)"® and Gy =272 (V5 —1)'/° (6.3.11)

Employing (6.3.11) in (6.3.10), and then simplifying we arrive at (6.3.4).
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Since from Chapter 4 (Theorem 4.2.1), for ¢ = e~"V", n positive rational, the explicit
formulas for ¢?(q%)/#?(q) is known, we now derive an identity by which the corresponding

values of the quotient %?(—¢®)/1?(—¢) may be found.

Theorem 6.3.5
P2 (=¢%) 1 - ¢%(¢%)/4%(9) (6.3.12)

q .
P (—q)  (5¢*(¢°)/#%*(q)) — 1
Proof: We replace g by —q in (6.2.4) and then divide the resulting identity by (6.2.1) to obtain

$%(¢®)  P*(—q) + @} (—¢%)
¢*(q) ¥ (—q) + 599 (-¢%) (6.3.13)

This is indeed equivalent to (6.3.12).

6.4 Evaluation of R(q) and S(q)

The following important formula about R(q) was found by Watson in Ramanujan’s notebooks

and proved by him [52].

1

_ (-9
—-—R5(q)—11—R5(Q) Ty (6.4.1)

T qf%(—¢%)

Replacing g by —q and ¢2, respectively, we find that’

1 G5\ — f%(a)
() + 11 - 5°(q) aFo(a%)’ (6.4.2)
and
1oy = L)
) 11 - R°(¢°) = 2To(=g10)’ (6.4.3)

respectively.
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From (6.4.2) and (6.4.3), we see that, to find the explicit values of S(g) and R(g?), for ¢ = e~ ™V

it is enough to find the expressions on the right sides, because solving the quadratic equations

(6.4.2) and (6.4.3), one can easily obtain

S%q) = Jd+1+a, (6.4.4)

where
f8(q)
2¢) = ——— + 11,
YT af%(e)
and
R (¢*) =/ +1-c, (6.4.5)
where
f9(=¢%)
262 = W + 11.

See also the papers by Berndt, Chan, and Zhang [25] and Kang [38]. In the sequel, we shall see
that ¢, and ¢, can be obtained by combining some simple theta-function identities recorded by
Ramanujan in Chapter 16 of his second notebook [48] with the explicit values of the quotients

of theta-functions discussed in Section 6.3.

Theorem 6.4.1 If ¢(q), ¥(q), and f(q) are as defined in (2.1.23),\ (2.1.24), and (2.1.25),

respectively, then

e Y=g _ ¢'(9)
() Fle):= (@)~ (=) )’ (6.4.6)
and
(n)  F(q):= G I ) R C) (6.4.7)

T f(=e")  ¢%(¢®) T a*W(e®)
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Proof: From Entries 24(ii) and 24(iv) [15, p. 39}, we note that

) = $*(@)v(—q), (6.4.8)

and
£ (=d) = $(a)¥*(—q). (6.4.9)

From (6.4.8) and (6.4.9), it is easy to arrive at (6.4.6) and (6.4.7).
The values of Fi(q) and Fy(q) can be determined explicitly for ¢ = e~™" by employing
(5.3.1) and (6.3.1). Thus, (6.4.4) and (6.4.5) gives explicit evaluations for S(g) and R(q%). We

give some examples below.

Corollary 6.4.2

(i) S3(e/VB) = \’ (&55—_11) +1-— M%l (6.4.10)

and

(i) RS(e V%) = \J (54[5{—11) +1- 5—‘/i;—1—1 (6.4.11)

Proof: As in Corollary 6.3.3, by putting n = 1//5 in (5.3.1), it can be easily seen that

#e V') 1
) =7 (6.4.12)

Putting ¢ = e~™/V5 in (6.4.6) and (6.4.7), and then employing (6.4.12) and Corollary 6.3.3,

we obtain

Fy(e™™V3) = 51/5, (6.4.13)
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and

Fy(e™™V3) = 5/5, (6.4.14)

respectively. Using these results in (6.4.4) and (6.4.5) we complete the proof.

Remarks. Corollary 6.4.2 (i) was recorded by Ramanujan on page 210 of his lost notebook

[48], and first proved by Ramanathan [43]. Berndt, Chan and Zhang [25] and Kang [38] also

proved this.

Corollary 6.4.3

(i) S%(e~™V3/) = 3 -5V6 +4V 30(5 +v5) (6.4.15)

and

147 55/5 + /36750 + 16170v/5
~ ; .

(i) R°(e*"V3/%) (6.4.16)

Proof: As in Corollary 6.3.4, by putting n = 1/3/5 in (5.3.1), it can be easily seen that

$2 ) _ 2
gV 5-VE

Putting ¢ = e~V in (6.4.6) and (6.4.7), and then employing (6.4.17) and Corollary 6.3.4,

(6.4.17)

we obtain
Fi(e=™VF) = §(_5_J;_@ (6.4.18)
and
Fy(e~™V3/%) = 5—(22-%&@ (6.4.19)

respectively. Iﬁvoking (6.4.18) and (6.4.19) in (6.4.4) and (6.4.5), respectively, we complete the

proof.
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Remark: Corollary 6.4.3(i) was incompletely recorded by Ramanujan on page 210 of his lost
notebook [48], and was first proved by Ramanathan [44]. Other proofs may be found in [20],
[25], and [38].

Proceeding in the same lines as in the above corollaries we can find the \;alues of §5(e=™V7)
and R%(e~2"V"), for n = 1,9/5,11/5,13/5,3,17/5,21/5,29/5,41/5,9,53/5,89/5, and 101/5, as
the corresponding class invariants ate known [18, Chapters 34-35] in these cases. Using the

reciprocity theoeirems by Ramanathan [43], namely, if o« and /3 are positive and o = 1/5, then

{<ﬁ2’1>5+55(e—”“)}{(ﬁ;l):ss(c‘”’)}—5f(‘/‘?’”1> ,
{(\/52+1>5+R5(6_2m)}{(\/52+1>5+R(_2,”3)} M(fu) |

one can easily obtain $%(e=™/VZ") and R%(e=2"/V®")  for the values of n stated above. We omit

and

the details. It is worthwhile to mention that , Ramanathan [42]-[46], Berndt and Chan [20],
Berndt, Chan, and Zhang [25], and Kang [38] also found some of these contiuued\fractions. But,
in [42]-[46], Ramanathan used I(roneckers limit formula, in [25], one has to solve two quadiatic
equations, and in [20] and [38], the calculations are very lengthy. Surely our formulas are mucf’;
more amenable than the previous authors.

We complete this chapter by noting that Jinhee Yi [63]-[64] has recently found many new

eta-function identities and modular equations from which a number of explicit evaluations of

R(q) and S(q) follow without depending upon class invariants.



Chapter 7

Ramanujan’s Cubic Continued Fraction

7.1 Introduction

Let, for |g| < 1,
B g+ P+qt P

7.1.1
1+ 1 + 1 + 1 40 ( )

Glg) =
denot€g Ramanujan’s cubic continued fraction, first introduced by him in his second letter to
Hardy [22]. Ramanujan also recorded this continued fraction on page 366 of his lost note-
book [49], and claimed that there are many results of G(g) which are analogous to Rogers-
Ramanujan continued fraction R(q). Motivated by Ramanuajan’s claims, H.H. Chan [32]
proved many new identities which probably were the identities vaguely reffered by Ramanujan.
He established some reciprocity theorems for G(g), found relations between G(g) and the three

continued fractions G(—¢), G(¢*) and G(¢*) and obtained some explicit evaluations of G(q).

Note: Some parts of this chapter consist of our papers [8] and [9].
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Mol

We note that his proof of the relation between G(g) and G(g?) is not satisfactory. In particular,
the last deduction [32, (2.18), p. 347] is not an obvious one. In Section 7.2 of this chapter, we
find an easy proof of this relation.

In Section 7.3, we establish some theta-function identities recorded by Ramanujan in the
unorganized pages of both his first and second notebooks [48]. Berndt [17] also proved these
identities via parameterization.

In Section 7.4, we give some more theorems for the explicit evaluation of the quotients of
theta-functions by using the identities found in the previous section.

In Section 7.5, we combine the theorems found in Section 7.4 with some other theta-function
identities to deduce a number of explicit evaluations for G(g). In fact, we have found general
formulas for the explicit evaluations of G(—e~%"V") and G(€**V™). General formulas for the ex-
plicit evaluations of G(—e~"v") and G(e™™), were established by Berndt, Chan and Zhang [24].

In Section 7.6, we give three new eta-function identities, and use them in our final section
to find two new identities giving relations between G(q) and the two continued fractions G(q®)

and G(g").

7.2 A Relation Between G(q) and G(¢?)

H.H. Chan [32] found the following beautiful relation connecting G(q) and G(g®). As we already
mentioned in the Introduction, his proof is not satisfactory. Here we give a simple proof of his

theorem.
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Theorem 7.2.1 If G(q) is as defined in (7.1.1), then

1-G(¢®) + G*(¢%)

30\ (3
Proof: From Entry 1(i) [15, p. 345], we note that
1 ¥(g"?)
{ - 7.2.2
Y@ " o) (7:22)
and
1 ¥*(q)
1 = 7.2.3
"0 T wiey (7:23)
where 1(g) is as defined in (2.1.24).
Replacing ¢q by ¢® in (7.2.2), we find that
1 ¥(q)
1 = . 7.24
roRTICY (7:2:4)
Now, from Entry 1(ii) [15, p. 345], we note that
¥(=¢°) ) ¥'(=¢")
1+43¢g————=| =1+4+9¢g——-. 7.2.5
(o) =1rslcy (7:2:5)

Replacing ¢ by —q in (7.2.3) and (7.2.4), and then using the resultant identities in (7.2.5), we

find that

(1 - —33’—)3 PR (7.2.6)

where w = G(—¢*) and u = G?(—q).

Solving (7.2.6) for u, we find that

_1-{(1-2w)/(1+w)®
8+ {(1-2w)/1A+w)}

u (7.2.7)
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Simplifying (7.2.7), we obtain

1 —w+w?

— _ 7.2.8
wl + 2w + 4w? ( )

u

Replacing ¢ by —q in (7.2.8), we complete the proof.

7.3 A Theta-Function Identity

The following theorem was recorded by Ramanujan on page 4 of his second notebook [48]. It
is extremely useful in our calculations. Berndt [17, p. 202] proved this theorem via parameter-

ization. Here we prove this from theta-function identities.

Theorem 7.3.1 If x and ¢ are as defined in (2.1.26) and (2.1.24), respectively, then

P(—q°)
Tt (7.3.1)

=1+43¢q
Proof: From Corollary (ii) of Chapter 16 in Berndt’s book [15, p. 49], we find that
¥(9) — av(d®) = f(g* ¢%). (7.3.2)

Using Jacobi’s triple product identity [15, Entry 19, p. 35}, Berndt [15, p. 350] proved that

fla,4*) = (7.3.3)

$(a) - auw(e) = XL (7.3.4)

Now, from Corollary (i) [15, p. 49] and (2.1.43), we find that

¢(—¢°) = ¢(—q) + 2q¥(¢°)x(—%). (7.3.5)
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Invoking (7.3.5) in (7.3.4), we deduce that

_ 9\ _ ¢(—Q)
¥(q) 3q¢(q)—x(_q3). (7.3.6)
Thus,
- 3qu(q9) __¢(=9) (7.3.7)

w(g)  x(—¢®)v(g)

Now from Entry 24(iii) (15, p. 39], we note that

_ 4 %@ (7.3.8)

Replacing ¢ by —¢ in (7.3.7) and then using (7.3.8), we complete the proof of the theorem.

7.4 Explicit evaluations of theta-functions

Theorem 7.4.1

_p—9my/n 3
0) e—wﬁ%vn)) ~ % (\/Egg’; - 1) (7.4.1)
and
(1) e—w\/ﬁ%(g__g;r% - % (1 - ﬁ-gggi) (7.4.2)

d

Proof: From Theorem 7.3.1 and the definition of G, from (3.1.2), we easily arrive at (7.4.1).
To prove (ii), we replace ¢ by —q in i‘heorem 7.3.1 and then use the definition of g, from (3.1.2).

Since, Gy, and gg, can be calculated from the respective values of G, and g, [24], from
the above theorem, we see that the certain quotients of theta-functions on the right sides can
be evaluated if the corresponding values of G,, and g, are known. We give only a couple of

examples below.
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Corollary 7.4.2

o) JAVI1-1 (7.4.3)

P(-em) 3

Proof: Putting n =1 in Theorem 7.4.1(i), we find that

et ] (ﬁg_f _ 1) | (7.4

From Berndt’s book [16, p. 189],

1/3
1t ‘/‘75) . (7.4.5)

G1~——-'1 and Gg=( \/5

Employing (7.4.5) in (7.4.4), and simplifying we complete the proof.

From Entry 11(ii) (15, p. 123], we find that

P(—e™™) = ple )27/ e /B, (7.4.6)
Since
1/4
Be) =
r ()

is classical [62], (7.4.3) and (7.4.6) provide an explicit evaluation for i(—e™%").

Corollary 7.4.3

ey Y(me¥E 3+ vB)(V5~V3)—2
e V8 1//(—6‘"‘/5/3)) = I ; )2 (7.4.7)

Proof: Putting n = 5/9 in Theorem 7.4.1(i), we obtain

_p=31V5 1 G3
- f((ﬁ:_m/a)) _! <\/5 _G%g _ 1) _ (7.4.8)
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Now, from Berndt’s book (18, pp. 189 and 345], we note that

Gs = ( ! +2‘/5) " and G5 = (V5 +2)1/4 (f%@) v (7.4.9)

Employing (7.4.9) in (7.4.8), and then simplifying we arrive at (7.4.7).

Since by Theorem 5.3.3 of Chapter 5, we know the explicit formula for ¢(q°)/¢(q), for
g = e "V m positive rational, we now derive an identity by whick the corresponding values of

the quotients ¥(—¢°)/¥(~q) may be found.

Theorem 7.4.4

P(-¢®)  1-¢(¢%)/9(q)
TCg) T B ) -1 (7:410)

Proof: Replacing ¢ by —¢ in (7.3.4) and (7.3.6) and then dividing the first resulting identity

by the second, we find that

#(&°) _ ¥(=q) +q¥(~1°)
o(q) — ¥(—q) +3q¥(—¢°) (7.411)

It is now easy to see that (7.4.10) and (7.4.11) are equivalent.

7.5 Explicit formulas for G(—e™3"V"*) and G(e=3"V")

Berndt, Chan and Zhang [24] have found general formulas for G(—e~"v") and G(e~"V") by
employing the formulas connecting G, and Gy,, and g, and gg,,, respectively. Using the formulas

for the explicit evaluations of the quotients of theta-functions found in the previous section, we

can find the general formulas for .C;'(f—é‘3;;‘/’7) and G(e3"v™) W ﬂjva/ /\WJQ{
From Entry 1(i) [15, p. 345], we find that W WVI

(=¢°)/¥(-q) @V‘ '
3y —q(=¢°)/Y(—q
C=) = 1+ qp(-¢°)/¥(—q) 0’\ (751
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Replacing ¢ by —¢ in (7.5.1), we find that

¥ (a°)/¥(9) (7.5.2)

@)= 1= i@

Taking ¢ = e~™™ in (7.5.1) and (7.5.2), we find the following formulas for G(—e %"V") and

G(e™3vr),

Theorem 7.5.1

—e (V) [y(—e=TVT)
T+ e Vm(—e9mV) [ —e"V7)

() G(~e V™) = (7.5.3)

and
TV (eI ()
[ e e /) [V

(in)  G(e V") = (7.5.4)

Combining with Theorem 7.4.1, a number of explicit evaluations follow. We give a couple of

examples below.

Corollary 7.5.2

G(—e™%) = 1- \/__‘WH (7.5.5)

2+ 2(V3-1)

Proof: Putting n = 1 in Theorem 7.5.1 (i), and then using Corollary 7.4.2, we arrive at (7.5.5).

Corollary 7.5.3

(V5 - V3)(V5-3) (75.6)

G(—e™™5) = : \

Proof: In this case we put n = 5/9 in Theorem 7.5.1 (i), and then use Corollary 7.4.3, to

obtain

“nvE) = 2 ~ (V5 - V3)(3 + V5) (75.7)

) = VA VaB+ Ve
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Simplifying (7.5.7), we complete the proof.

Remark: For different proofs of Corollary 7.5.3, see [24] and [32].

7.6 Three eta-function Identities

In this section, we prove three eta-function identities which we will use in our next section.

Theorem 7.6.1 If

then

3

(PQ)*+ (Pi;))z = (%) 5 (%

and @ =

¥(g°)
@®/4p(q'%)’

Proof. We note from Entry 24(iii) (15, p. 39] that

Y(g) =

Therefore P and @ can be reformulated as

)

(=) f*(=q

P = i Cor-g

Now we set

[ A )

M, = 19

so that

TR F(-7)

q'/% f(—q®)

. 3
) +5<Q) +5(%—g> (g) b
fftg))' o
B F(=q'%) f3(—q'0)
5y 9 FR )
__J=)
Lz = q5/12f(_q15))
_ 10
and, M, = ;s—fl(f—("_ql—()) (7.6.3)
o _Ag (7.6.4)
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Employing (7.6.3) in Entry 51 [17, p. 204], we obtain

(LML) + (13—124_1)2 - (fl—‘l)ﬁ + (]‘Ll—ll)6 (7.6.5)

Replacing ¢ by ¢° in the same entry, and then using (7.6.3), we find that

(L2 Ms)? + (—IZQW = (IL}?)G + (f—:’)s (7.6.6)

Using (7.6.4) we may rewrite (7.6 .5) in the form

M® 9p? M\® P\*
P2 + X/f_lg = (?) + (-AZ) . (7.6.7)
Thus we arrive at
P8Pt -9
M;'? = %—1—2. (7.6.8)

Similarly from (7.6.4) and (7.6.6), we deduce that

8(N4 _
Mglz = %—?—-_——1—9'—)' (769)

Employing (7.6.3) in (59.10) {17, p. 215], we find that

Lon\? M2)3 (L2M2)2 (LzMz)
=2 22y - . 7.6.10
(L) +(M1 LM, LM, (7.6.10)

Invoking (7.6.4) in (7.5.10), and then simplifying, we deduce that

My\? 1+ P/Q
A I s (7.6.11)
(M‘) () - (%)

From (7.6.8), (7.6.9), and (7.6.11), we find that

QQ - 9)(P* - ) [1+MQ 1612

PET@TD (8- (8)
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Setting x := P/Q and y := PQ, and then simplifying, we deduce that

(v~ 92%)(2%y? - 1)  (l+z\*
(y?2 — 22) (242~ 9) (1 - :c) '

Further simplifications give

(1 4 22 (923 — y? — 5zy® — 5z%y? + bzdy? — 525y% + 282 + 2%y = 0.

Since the first factor never vanishes, we deduce that
9z3 — y? — 5xy? — 5x%y? + 5xy? — 525y? + 282 + 23y = 0.

Thus,

9 1 5 1
y2+—5=——§+—2+5x2+5(——z)—x3,
y: ¥z T

which is readily seen to be equivalent to ( 7.6.1).

Remark Since by Entry 24(iii) [15, p. 39],

f(=q)
f(=¢?)

¢(—q) =

proceeding as above, we see that, if

99 452 #(=¢°),

¢(—q'5)’

then (7.6.1) holds. Replacing ¢ by —¢, we see that the same identity holds if

111

(7.6.13)

(7.6.14)

(7.6.15)

(7.6.16)
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Theorem 7.6.2 If

__feofd) oo SR (9D
T @R f(~¢*) f(—q®) q*3f(~q%) f(—q*?)’

then
P\* 0\ 9 36 \/°
(5) + (F) =10+ PQ+ 5 "2(25+4PQ+F§) . (7.6.17)
Proof: Let
f(a)f(q")

R= .
a*2f(q%) f(g*")
By Entries 12(i) and (iii) in Chapter 17 of [15, p. 124] we find that

_ (el = )1 =)}
R = vVmm (ﬂd(l——ﬂ)(l _5)) (7.6.18)
and
_ (ol = o)1 =)\
Q=vVmm ([36(1——,6)(1—6)) , (7.6.19)

where f, v, and § have degrees 3, 7, 21, respectively, over o and m and m’ are the multipliers
connecting a, 8 and 7, 4, respectively.

From (7.6.18) and (7.6.19), we readily see that

Q _(ar(l-a)1-y\"*
R (55(1~g;§1—6)) (7.6.20)
and o
%2 =vVmm'. (7.6.21)

Now by Entries 13(v) and 13(vi) in Chapter 20 of [15, p. 384], we note the “mixed " modular
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equations

(Qg”{+01—ma—6w”f+(mu—ﬁxr—a)w_a<ﬂay_mu_5nus

ay (1~a)(1-7) ay(l - a)(1 —7) ay(l—a)(1-7)

[ ()" (2 e em

(51) "+ (Gmgfamty™ (sl (st

@) ) ) o

and

respectively.

For simplicity, we set

o <é§>m+ ((1—[3)(1_6))1/8 and y = (55(1-5)(1—6)>1/8’

ay (1-e)(1-9) ay(l —a)(l-9)
so that
R3
> =y (7.6.24)
Then from (7.6.22), we find that
v =y (dy+mp)". (7.6.25)
Also, from (7.6.23), we find the 1eciprocal equation of (7.6.25) as
1, /4 9\
T4 (— + ——,) . (7.6.26)
Y Yy y mm

Combining (7.6.25) and (7.6.26), we obtain

N2 4 9\
yxdy+mm)’ =14y §+mm' . (7.6.27)
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Employing (7.6.20), (7.6.21), and (7.6.24) in (7.6.27), we find that

R3 RY  RY\Y? R (. Q3 Q2 1/2
We rewrite (7.6.28) as
3 2\ 1/2 R? RO\
R —Q*=4+R® (4% + 9%) F Q3 (4@3 + 'Q’i) : (7.6.29)

Squaring both sides of (7.6.29), and then simplifying, we arrive at

1/2
R+ Q% = 10R3Q® + 9R*Q* + R'Q* - 2R%Q® (25 +4RQ + -1%) . (7.6.30)

Dividing both sides of (7.6.30) by R*@3, we find that

3 3 1/2
(g) + (%) =10+RQ+%—2(25+4RQ+%) : (7.6.31)

If we replace ¢ by —¢ then RQ transforms to PQ and (R/Q)® transforms to (P/Q)3. Thus

(7.6.31) is transformed to (7.6.17), which completes the proof of the theorem.

Theorem 7.6.3 If
po_Y@ . Q _¥ld)

q/4p(q) T ()
then
, 2
"k (PQ)? + ky(PQ) = ka(PQ_)? + ks (@) -~ ks, (7.6.32)
where ;
P\® P\*
kl = <@‘> - 1, kz = 14P4 ((a) — 1) s ,C3 = P4(7 — P4),

4 4
ky=TPYP'—3), and, ks=27 (g) - 7P (3 +3 (g) - P“) : (7.6.33)
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Proof. Proceeding as in Theorem 7.6.1, if we set

P g2 f(-¢?) P g f(—g?)
_ _f=d) _ _f(=4")
Mo gRit M M gy (7639
so that
P——AE- and Q—-—Aéi (7.6.35)
L Ly’ o
we find that
P8(P* -9)
M2 = P (7.6.36)
and
8 4
2 _ @R -9)
M2 = o1 (7.6.37)

Employing (7.6.34) and (7.6.35) in Theorem 7.6.2, we deduce that

<M1M2> + ( PQ ) — 10+ (M, My) + 9PQ 2 (25+ 4(M1M2) + 36PQ )
PQ M M, PQ (M M) PQ (M M,)3
(7.6.38)
Simplifying (7.6.38), we find that N ;
b 4z 36PQ\""*
az+;+10—2(25+~ﬁé+—;——) , (7.6.39)
where
z= (MM, a=—— 1 and b=9PQ— (PQ) (7.6.40)
14¥2) - PQ (PQ)3’ = . 0.

Squaring both sides of (7.6.39), and then simplifying, we deduce that

a’k + b + 2abz’ = 1 (c + d:cz) , (7.6.41)
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where

16
k=1% c¢=144PQ—20b and d= 0 20a. (7.6.42)

Squaring both sides of (7.6.41), and then rearranging the terms, we arrive at
a’k? + bt + 6a26%k — 2cdk = o (¢* + d®k — 4a’bk — 4ab’) . (7.6.43)
Squaring both sides of (7.6.43), and then transferring to one side, we find that
(a*k? + b* + 6026k — 2cdk)” — k (* + %k — 4a°bk — 4ab®)” = 0. (7.6.44)

From (7.6.36), (7.6.37), (7.6.40), and (7.6.42), we note that

(PP -9)(Q' - 9) 16.45)

S TS ) 17T

Substituting the expressions for a, b, ¢, d, and k from (7.6.40), (7.6.42), and (7.6.45) in (7.6.44),

and then factoring by Mathematica, we deduce that
y"(y* - 9)*A(y, 2) By, z) = 0, (7.6.46)

where y = PQ, z = P/Q,
Ay, z) = =272 + 219222 — 21y%2% + 219228 — % — 149822 + 149328 + 328 + Tyt2? — Tyt +
Ty'zb — 521,
and
B(y, z) = 2724215222 4+21y22% 219228 3 — 1433 22 4143328 +43 28 — Ty 22 + Tyt 24 — Ty 25 + 48 24,
It can be seen that the first three factors in (7.6.46) are not identically zero. Thus, we
deduce that

B(y,z) = 0. (7.6.47)
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It is now easy to see that (7.6.32) and (7.6.46) are equivalent.

Remark: Since by Entry 24(iii) [15, p. 39]

o(—q")
¢(—q*)’

p=200 g g-=

then (7.6.32) holds. Replacing g by —gq, we also see that the same identity holds if

_9) o 2ld)
P=5 9= 5
o
\’/.

7.7 Relations of G(q) with G(¢°) and G(q") ng‘:\r@ ‘

In this section we find relations between G(gq) and the two continued fractions G(¢°) and G(q").

Theorem 7.7.1 Let for [¢| < 1, v = G(q) and w = G(¢°). Then
V8 — vw + Bow(v? + w?) (1 - 2vw) + wt = VW (1603w — 20v%w? 4 20vw — 5). (7.7.1)

Proof. From (7.2.3), we note that

1

1
4 __ 4 _
PiP=1+ 55‘ and Q =1+ EE’ (772)

where

v 4 o= YD)

 gM4(gd) gol49(g'3)’
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From the identity in Theorem 7.6.1, we see that

oy -5 (2) -5 (&) -5 (@) +o @)~ (§) ) oo

Squaring both sides of (7.7.3), and then simplifying, we deduce that

81 QY 15 (P +_jopt_ 0 _ %0
(PQ)4+W+15 (5) +15 (Zj) +120 — 10Q* — 10P* — jzialren

PN (@Y. (P\' - (@)
={= = — — 15]. 7.74
(Q) ((P) * (Q) 18 (P) * (7.74)
Squaring both sides of (7.7.4), and then using (7.7.2), we can deduce that

G(v,w)H (v, w) =0, (7.7.5)

where

G(v,w) = v® —vw + 5viw + 5v2w? — 10v3w? — 20v3w3 + Svw? + 20viw? ~ 10v2wS — 16v5w® + Wb,

and

H(v,w) = v'? +v"w — 50w + v2w? — 10v°w? + 2008w? + 100 w? + 5v3w? — 3508w + 100w +
sviwt — 5vTwt + 800 %w* — 1002w + 110v5w5 + 1008w 4 169 1w’ — 3503wS + 38615ws +
2800%w0 + v — 5t + 440v7w" + 32001007 + 20v2w8 + 10v°w® + 80v3w? + 10v3w® +-
280v5w°+320v%w° ~ 5vw'?+ 80v w0+ 32007 w0+ 2560 %w!0+1010vw ! + 1605w +w!2,

From the definitions of v and w, we note that v = O(g'/?) and w = O(¢%?) as ¢ tends to
0. So the first factor in (7.7.5) vanishes for ¢ sufficiently small. Hence by the identity theorem,

G(v,w) vanishes for |g| < 1. Thus,
v® —vw+ 5vtw+ 5vPw? — 10v°w? - 20v%w® + 5vw® + 200w — 10v%w® — 16V’ +w® = 0, (7.7.6)

which is equivalent to (7.7.1). Thus we complete the proof.
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Theorem 7.7.2 Let for |g] < 1, v=G(q) and w = G(q"). Then

119

08 — vw — 56v3w3(v? + w?) + Tvw(v? + w?)(1 — 8v3w?) + 28v W (v! + w?) = v'wh (21 - 640°W°).

Proof. From (7.2.3), we find that

P“=1+;}1§ and Q4=1+2—3§,
where
_ Plg) _ P(d")
b= /4 (q3) and Q= q4y(g?)’

Now, squaring both sides of the identity in Theorem 7.6.3, we find that

2
(k2 + K} (PQ)* + 2k3ks) (PQ)* + 2kqks (g) = kg,

where k, — k5 are as given in Theorem 7.6.3, and
2 4 2 (P ! 2 4 4
ke = ks(PQ) + k4 ‘é -+ k5 + 2k’3k4p - 2k1k2(PQ) .
Squaring both sides of 3(7.7.9), and then using (7.7.8), we deduce that

(1+ v*)}A(v, w)B(v,w) = 0,

where,

(7.7.7)

(7.7.8)

(7.7.9)

(7.7.10)

A(v,w) = v® — vw + Tviw + 28v8w? — 56v5w? + Tvw? + 21viw? — 5607w — 56v3wd + 28v2ws —

56vtw’ — 64vw’ + w7,

and



120 CHAPTER 7. RAMANUJAN’S CUBIC CONTINUED FRACTION
B(v,w) = v!% + v%w — Tw%w + v2w? — 14v5w? + 49v8w? — 28vM4w? + 28v7w3 — 196v1%w? —
11208w3 — 56v8w? + 385v°w? + 763v'2w* + 560%w? — 1402w’ + 56v°wS + 406v8w® +
840v 1 w® — 56v4w® + 1960w’ + 2604v1%w° + 1568v 3w + 28v3w 7 + 196v0w” — 1960v°w’ —
3080v' 2w + 64v'°w” +49v?w? + 406v5w? — 4920v8w? — 3248v' ! wd + 3136v 1w +vw® +
385v4w® — 1960v7w® — 1568v'%w® + 1792v3w® — 196v3w!® + 2604v5w' — 1568v7w!° —
35840120 + 840v w!! — 3248v8w0 + 3584v10w!! + 7168vMw!! — Tvw!'? 4 763viw!? —
3080v"w'? — 3584v'%w!'? — 1120w + 1568v0w?® + 1792v%w!3 — 28v2w! + 3136v8w™ +
7168vMw + 4096vMw™ + 56v*w'S + 64v7w!S + w!S.
From the definitions of v and w, we see that v = O(¢q'/?) and w = O(q"/?) as q tends to 0.

Hence the second factor of (7.7.10) vanishes for ¢ sufficiently small. By the identity theorem

that factor vanishes for |g| < 1. Thus we arrive at
v® — vw + Tvlw + 28v%w? — 56v°w? + Tvw! + 21vtw? — 56v7w! — 56v°w°
+28v2w® — 56v'w” — 64vw’ + w’ =0, (7.7.11)

which is equivalent to (7.7.7).
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