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Abstract 

III his lIot.('books [/J8J and lost. lIot.('book [49J. l1alllmllljall liskd IIlallY alll<tzillg l(ISttlt.S, 1II0St. of' 

them withollt. allY PlOOf. It is now a rClIlcukable chapt(,'r ill the history of lIlath!:'Ill(-1,t.ics t.hat. most. of 

HallJi-lIl1ljaJl's claillls bave beeJl fOllmI to be LItH' by scvctal gleat lllatlH'lIIaticialls. BClHdt. ([ll], [14], 

[IG], [17], alld [18]), Agalwnl[l], alld AlI<il('WS alld B('llIdt [:3] s.vstc'lltatiqllly discllss('d t.1H' claims 

1I1(\<iI' by nalllalllljall. MallY yf U)(~ ploofs giVI'1I l,y 1;1.1.('1 IIIntlll'llIal.i('ialls IIs(~d idea,s 01 th('OU'IIIS 1I0t. 

knowll t.o Ralltall1ljall. That. is, it. was fH)ssihl(' t.o fiud t.he t.<'chuiq1H' l1S('<I t.o ('stahl ish the tlut.h of 

these resllits I)('('(tlls(' tIl!! cud lesults wel(' already kuowu. \V(~ call sHch ploofs "wrifi('at.ious." Tl){~ 

11I<till ailll of this t.hesis i~ to give pIOO{~ of Hlany ll'sttit.S by IIsillg lIlethods known t.o RaltliUlIl.iilll. III 

t.It(' plOl'I'~S, UlallY Il<'W l<'~lllt.s (11(' also d('liv('(\. \V(' d(I(1I wiLh nflll\(\,lllljall's S('hl~i.!li-t,'yJ)(~ "llIix('d" 

1II0dlliar ('!(tl<-1.Liolls. class illvllliallt.s, ('t,a-fllllrtioll id(,lIf.it.i('s, ('xplicit ('vnltlations of (./\('t.a-fllll('t.ioll~, 

n O).!,('l s-n allla 1111 j H II cOllt.illlWd triwt.ioll, ami Ralllalllljan's ('II bi!' cOlltiIlIH'c\ fra('t.ion. 

IV 



Acknowledgment 

I illll ill(i<-hf.ed f.o PlOk~~ot P. Bhatt acltat YY(}, Illy thesis slIpnvisOl, tot his helpflll SIl~g('St.ioIlS, 

illSpitatioll, alld C()Il~t,;Uli. C'lluHllagl'lllcllt.. 

This WOI k wOIlIe! lI(Jt itaV(' "c('lI possihle hut for acc('~s to 1II0St. of t./f(' ClllH'Ut pllhlicat.iolts ill 

till' {ipld This \\(1:-' IlIad(' po~sibh' by till' gelH'IOllS and LitHely h(,lp hom mall.v ma,t.\l('lllaticinnh ltol\! 

dillel('IIt. pill t.s (II t.hl' wOlld 

PlOf('f,SOl 13111l'(' C. 13('1 ,,<It. of UlliV('lsit y of IIIillois, U.S.A., Wllo..; (!xt J('llIl'\.v ki"d t.o illC'. H(' o..;CIlt. 

Ill(' I1HtII)' of Iris papCIS, hif, book RmTlrtnll]nn's Notebooks - Part V, HlIlIh·'s R(I1JW.11:I~J(/,n, nIHI s('wll1l 

tll('S('''' of hi:-. f,tlld('Ilt.~ I J('(,Old 11IV Silln'l(' t.hallb t.o 11111/ 

1 alII al~o gutLdlll to PlOf(':-'hUl Bet Helt.'S SLlld('Ilt.f. Ilellg llllaL Clmn. Liallg-C!H'lIg Zhallg, S()()II- Yi 

l\allg, SC'llT1g Hwall SUII. and .Jill\H'C Yi, who hclped IIIC by sC'lldillg offplillt.s of t.lwil papelS 

I silw('IPly t.hallk G('OIg(' E. AII<iJ('ws ofPclIllsy\vallia StaL(' UlliV<'ISiLy, U.S.A., no\)('rt. A. n;lIlklll 

of Ulli\('lsity of Glasgow, S('otl<llld, .JollathaIlM. Botw('i" ofSilllOIl F'la~('t UlIiv(,tsit..v, Callad;r, I!;\li 

1\.1 SI i va.., 1.<1\ <I 01 U II i WI ~i Lv 01 Vicl.OI ia, Callacl <I, Lis;) LOI ('IIt.Z('1J of U II i WI si I.y of TI ollcllwi Ill, N 01 \\';1\ . 

l\lichad O. Hil~chh()lIl of Ullivl'lsity of N('w SOllth Wltl('S, Australia, 1..1 Zuckel of King's Colkgl'. 

Londoll, CIHU\("H~d<a1 AdigH I1l1d PadlJlnvnt.haJllllla or UlJiV(!l~it.y of l'vly~Ol(', Mizall H.ahlltnll 1111<1 

1«('/lIJ('t.1i ~ Willialrl~ !If CnllC'i.oll UlliW'ISit.v. Callada. 1(1 isltllltswarlli J\lIadi, Flallk G Garvall illid 

Li-Chi<!11 SIJ('1I of UlliVC'lSit.v of Florida, U.S A., i!il!! Hi('h;ud P L(,.""i.., 01 lJlliV('ISit.y of SIIf,~('\:, 

LOlldoll, for 1f('lpillg 1/1(' by PIIl\·idilll2 .. oflpl int.s of theil paJ)('ls. 

v 



I t.h:lIIk Plorc'ssor i\t.ull\ulllar l3orlmimt.i, Dr. l'vlllllillcira Dorah, Dr. l3alralll Dul)(~y, Dr. Kish()r 

K 1I1ll<ll Da,s, 1'1'11'. Dchaj i L Haza.rilm, l'vlr. DhilIl PUl.t);-l,d Sarmah, alld 1'v1:-:>. M 1I1ll111111 Hazarika, of our 

d('parillwllt. (or IH'lpillg IIlC' ill IllallY ways. 

tvl\' t.hallks an' also rille t.o Dltinl.j, Raiul, a.wl S1I1IIali of t.he COlllput.er Cent.er. 

I c'xpn'ss Illy dc'c~p a.pp['(~c'iat.i()11 t.o Illy t.c'ach('!'s P"hiLla Paid alld Dilip Salltmh, who helpcd 1111' 

hot.h a<:a</c'llI i(';t1ly a lid ot.lJ('nvisc~. 

Next, T t.ak(~ t.il is opportl1l1 i t.y to t.hallk a II Illy wondC'l ('11 I ('ric~nds, especially, Allkur, AJljalla., 

DumaJi, Jihall, .lilllli, .Jllri, lV[ukllt., Yashwallt, fwd ltlallY oth(~rs fOl their t.rne ftif'lldships. 

Last., hut. 1I0t. Icast., I thallk Illy family lllCl11IH'IS for t.llC'ir lovc~ awl C)I](;OurageltlclIt. l'v'ly pan'lIts, 

sist.(~rs, (llld paJ(~lIts-il1-law JIitVC~ IH'Cll WI Y sllp[Jortiv(). I t.hallk llly wirc', MallsllIlli, fur }WI I ()\;(!, 

carc~, support., pat.icnc;c~, nlHl Illld(~lst.alldiJlg thro1lghout. LlH's(' years. J thallk Illy thre(~-lII()llth-olC\ 

dallght.c'r, Dehallgc'c, for .in.v. happilless, alld liVf'lilll'sS t.hat site hrings t.o om faIllily, 

VI 



Table of Conteuts 

Abstract ... : .............................................................................. iv 

Acknowledgment ......................................................................... v 

J. Introduction .............................................................................. L 

L. L. Iut.rod1lct.ioll ......................................................................... I 

1.2. S('oP(' of tlt<' t.1I('sis ................................................................... '2. 

2. SchUifii-type "mixed" modular equations ............................................. 8 

2.1. Illtroc\ llct.i 01 I ......................................................................... 8 

2.2 Proofs of t.1H'OH'llIS 2.1. L a.lld 2.1.2 ................................................... L 7 

2.3 PJ()ofs of 2.1.3-2.1.8 ................................................................. 2G 

:1. Weber-Ramanujan's Class Invariants ................................................. :.~!) 

3.1 iut.roc\lldioll ........................................................................ :3H 
• f • - '" • 

3.'2 Pl'c/iltlillary If;~lllllas ........ . 

:3.3 Clflss illvf1.1 iallt 0'217' ................................ : . : .............................. 'IG 

:3.4 CIHss imal iant.s from "IJlix('d" lIlodlllar eqllat.iolls .................................. ·ID 

V11 



4. Eta-function identities . ................................................................. 61 

4.1 Introduction ........................................................................ 61 

4.2 Ramanujan's identities .............................................................. 62 

4.3 Proof of theorem 4.2.1 .............................................................. 64 

4.4 Proof of theorem 4.2.2 ............................................................... 65 

4.5 Proof of theorern 4.2.3 ............................................................... 67 

4.6 Proof of theorem 4.2.4 ............................................................... 71 

4.7 Proof of theorem 4.2.5 ............................................... '" ............. 73 

5. Explicit evaluations of theta-functions ................................................ 75 

5.1 Introduction ........................................................................ 75 

5.2 Evaluation of ¢(e-9mT)/¢(e-n7r) ...................................................... 78 

5.3 Evaluation of ¢(e-5n7r)/¢(e-n7r) ...................................................... 81 

5.4 Evaluation of (jJ2(e- 77r ) .............................................................. 82 

5.5 A simple evaluation of ¢(e-157r) ...................................................... 84 

5.6 Evaluation of ¢(e-217r ) ............................................................... 86 

5.7 Evaluation of ¢(e-357r ) ............................................................... 87 

viii 



G. Evaluatiolls of Rogers -Ramallujall continued fraction .............................. S!) 

G.1 I ll1.rud IlCt,jOIl ......................................................................... 89 

6.2 The't.rL-function id0,ntities ............................................................. 9l 

G.3 Explicit. c~valllat,iolls of t.hc,t.n-fllllctiolls ................................................ D4 

().tI Evnlllrll,iolls or 1l.(IJ) nlld ')'(IJ) ........................................................ !J(j 

7. Ramallujan's cubic continued fraction ............................................... I () I 

7.1 IIIt.IOdllC"l.iOIl ....................................................................... 101 

7.2 A )"('Ial.ioll 1H'l.wc'c'/1 G('l) awl G(I/ l
) ................................................. J(J2 

7.:3 A 1.11('1 a-fllllctioll idC'lltit,y ............................................................ 10·1 

7.4 ExpliC"il. c'vallJat.ioll uf t.iwl.a-ftlltcLiollS ............................................... lOG 

7.G Explicit fOlllllllas for G( _e-'l1rfii ) awl G( e-"3rr Jil ) .................................... IOf 

7.6 Thrc(' C'l.a-ftlllct.ioJl idellt.it.ies ........................................................ l()!) 

7.7 fkla.t.iolls of (i(lj) ·wit.h G(ll) and G(I/) ............................................. ] 17 

References .............................................................................. ] 2 L 

Vita .................................................................................... (:28 

IX 



Chapter 1 

Introduction 

1.1 Introduction 

Tit!' Illdiall IIIH.t.Ilnlllllt.i(,Hi g<'lliIlS Srillivasa llallll\,lllljall Ay<mg('J" (1887-HJ20) [('curded Ifl(U1Y 

sp<'dacular ltlatllClllat.ical I"<'SlrI t.s ill his llot.ehooks [48] and his lost. 11Ut.l'book [4D]. It is well 

kllOWII t1mt. l1illll'lIll1jnll I (1I'<'ly provid<,d allY proof for Itis still,<'d l"<'sllIt.s. B('llIdt. ([11], [14], [Irq, 

[17], alld [IRJ), J\ganval[l], alld Alldrews ;~/l(\ 13<~rndf, [1] syst.clIlat.icnlly dis(,lIss!'d til<' clailils 

lIlad!' by RalllaJllljall alJd provided proofs for the reslIlts stat,(·,d by Ralllillltlja.ll. Sorllr of t\l<'ir 

proofs al!' IHls('d OIl lIlod('11l id('ilS and SOllln of t.1t<~1l1 an' v<'l'ifi<'d Iwing kllowillg t.1t<, rt'slIlt, ill 

aelvaIH'('. III this UJ('sis, W{' plOW S(j/l1C of th()s(~ leslI!t,s regardillg IIIOdlllrll' ('(!,Iatiolls, clilss 

ill\'ttl ittllt.S, t.heta-fulld,iuBs, alld COIlt.illucd i'ract.iolls. 111 Lhe C011lS(~ or 0111" ~t.lIdy, W(' hilV(' als() 

dis('ovt'n'd IIl,tIly lie\\, lC'slrlt.S. 
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1.2 Scope of the Thesis 

The' thesis has sevcn ('haptl'lS iucluding the iutlUdllctOl v Chapt.cl 1. 

III Cliapt.('1 2, we deed with Ranw,lIujalt's Schliifli-typp "Illixed" modular equations, OIl 

pages 8G a lid 88 of h is IiI sL !lot.!'l look [48], n HlII all u jail IC)COI d!'d 12 Schhifl i- ty}>!' "mixed" lIlod-

Illa.l 1'<1"<1 tiUIlS, 11 of Lhes(' \\'('/!' Uot. I cl'uulrd in IllS sc('ond Ilote hook [48] UIl!' of these 11 

('qllal iOIl" follows hOlll a Illudlllcu ('qllaLiulI lI'col(kd by HallJ(llIlljall ill ClwpL('1 20 of his S('('OlIlI 

1I0t.C'\H)()k, Tlri~ was fitst. Oh:-'C'IVC'd hy 1\, G, HallliulaLlrall [,11, pp, 4 \ !)-/l20] , I3('lndL [18] plOv!'d 

thc' Ot.II('1 ]0 c'qll(\tioll~b'iflllOdlllat fOllllS, a 1l1('t.lrod wit.h which Ilarllallujall was HOt. faillilial. VV(' 

gin) alt,(,tllat,(' PlOof.') I'm 8 of the's(' ('qulltioll~. Two all' plOved by d('rivillg ~Olt}() thda-flllictioll 

id!'lItit.i('" using Scllli)t(,1 's fOllllllla(', awl the II'1>t alt' plOvrd by ('1I1ployillg nell1Jallllj;-ll1'S SdJ!~illi-

t.) IH' 1I1o<illlm ('qllatiolls of plillH' tif'gl('es alii I SOlIH) Ot\Wl lIlodlllal ('qllaLiorts. In the PlU('('S:-', 

we also fiud two nc\o" SrhliHli-t.ypc "mixed" modular c'quatioIls [(2,:1 19) aIld (2,3.GO)], For 

C'x;ullpll', ill Lrllllllit 2,:3,1 of S('dioll 2.3, wt' fiud that, if 

I 

Q = ((Y() (1 - (\')( 1 - (l) ) Iii 

(h(1- (3)(1 - ')') 

- 1 

( 
')'6 (1 - ')' H 1 ..:- r5) ) 4i< 

R = (\'(-1(1 - n)(l - (3 

UH'1l , 

2 \ _I L 
fl + fl2 = Q + (Jt! - 3, 

Whrll' /1, ,)" aBel (5 (\.1(' of tkg[('('s :3, 7, ;md 21, respcrtivt']v, OWL (V, 
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In Chapter 3, we deal with Weber-Ralllanujall" class illvariallts. 

Let 

Iql < 1, 

and, after Ramanujan, we set 

If q == exp( -7I'fo) , where n is any positive rational number, then Weber-Ramanujan's class 

invariant Gn is defined by 

In section 3.3, we derive 

fIIlJJ- ~ 1/2 ~ ~ 1/2 
G = ( 11 + 4/7 9 + 4J7) (12 + 5J7 16 + 5J7) 

217 2 + 2 4 + 4 

by using Ramanujan's modular equations of degrees 7 and 31. Berndt, Chan, and Zhang [26) IY) ,_I 

0-lso see [18]) could not utilize the modular equations of degrees 7 and 31 recorded by Ramanujan 

to effect a proof for G217 . In Section 3.4, we employ some of the SchHifli-type "mixed" modular 

equations discussed in Chapter 2, along with some other SchlaJii-type modular equations of 

prime degrees to evaluate Ramanujan's class invariants GIS, G21 , G33 , G39 , GSrJl and G6S ' It is 

worthwhile to note that our evaluation of G6S is much ~ easier than that of Berndt, Chan, 

and Zhang [26]. The most important feature oJ. our method is that we can also simultaneously, 

get the values ofG5/:3, G7/ 3 , GU / 3 , G13 / 3 , GIl / S, and G13/ 5 . Previously, these values were foulld 

by verifications. We also note that, these class invariants can be utilized to find some of tIlC' 

explicit values of certain q- continued fractions [25), certain values of Ram all ujall 's product of 

theta-functions (27), and some values ,of the quotient of eta-functions [30]. 
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III Chaptel 4, WC' deal with 11alllauujnn's ('ta-fullctiun id(·lltiti(·s. 

If q = ('xp(2m,z), then 11amauujrw's eta-fuuctioll [(-I]) is ddiu('d hy 

(1.2 1) 

~ 
witere '1/(:) is dm,sical Dedekiud et.a-illllction defined by 

~ 

(1.2.2) 

III t.Il(' t111(ll ganiz('c\ [J0l tiolls of h i~ <;('COlJ( I 1I0t('hook, 11 II III anllja II [48]1 ('COl ded wi thou t !JlOols 

25 I)('<tlltifu\ idcntiti('s involving ClllOticlits of 0111y eta-fuuctions awl no other tlu,ta-fllllctiolls 

8PIlleI t and Zhallg [23] plOved SOlll(, of thC'se identities. PlOof., of a.1I the 25 id('uti tics I ('COl d('d 

by l1alllHlllljall ate giH)1I in Chapt('l 25 of Beilldt's hook [17]. Of tlH'sC id('llt.itips 19 weiC plOv('d 

hy ('1I1plo),ilJg 11Iodlliar ('qllatiolls alJ(\ p;llalllC't,('r i7,at.i()I1~ ali<I G \\,(,1 (' plov(·d hy imoki1lg G f1)(, 

ti]('OlY (JllJlodlllar fmlTls. But. ill IlliWy of t.iH'it ptoofs via palallt('t(·)i7,at.iOlls, tlH'Y IIs('d 11('(\\'v 

(I 111011 II t of t,('diolls a\gf'l)lil awl t.lH· idcntitips IIJIISt he knowlI h(.fol(·hallcl. So thosc plOofs IlIny 

1)(' 1IH'1(,\Y called v(,lificatiolls. In ChRpt(,1 4, we d('ducc' fi\"(' of thesE' iciclitities [sf'e Thl'oJlJIS 

4.2.1-42.5] hy using RalllHllujau's other eta-fullctiollS idclltitics alld 011<.' of our newly derived 

id<.')ltitit'~ [SCC) lA'lIJlIla 4.5.1]. The llIaill advantage of ottl Illcthocl is that ulle call liml ot \]('1 

ic\clltiti('s of t.he Sallll' kind. Fot ('xatllpk, ill Se(tioll T.G or 0111 last. ("!tapt.I'l, WI' filld LItu'(' IIP\\' 

id(,)tt,it.i('S of t.ir(' saltH' kind ill conll(·('tiol! with J1alltalllljall's c!!iJic cont.inlled fnutioll. 
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III ('lIapt.('1 G, Wf' dcal with explicit ('vaillations of 1111111ctUlIjall's theta-fullctioll q)(q), dC'fitl('d 

by 

00 

r/J((j) := l + 2 L (/2, (J .2.3) 
k=1 

W\if'l (' I'll < 1. 

At. dif['('l('IIt. plac('s of hi:-> I\otri>ooks [48], BatlliUlujall r('(:ordl'd s('vC'ral ('xpli('it valllPs qJ((j). 

J3orw('ill alld J3ol\vcill [31] first oi>s('lvl'd that TIalllalllljan's class invariallts cOllld be lIsed t.o 

calculat.f' celt.aill explicit values of 1J(e-mr
). J3f'l'Ildt alld Chall [21] vprified all of l1a.lJlallujall's 

jail's class illvariallts with his \IIodular eqllatiolls. \,y(, give ~ sirllpl('r proo!:" for SOil 1(' or 

th(,s(' ('vailia tiolls a \ld (·a.lcula t.(' SOllie \If'W valu('s of r/J( e-n'Tr). vVe also filld SOIllP uew t.1J('o-

1'('IIIS foJ' filldillg ('xplicit vailles of quot.iellts of theta-fullctiolls by del ivillg SOIll(' UJ('ta-flinct.ioll 

idcut.it.i('S 

III Chapter G, Wf' deal with t.ht' falllotls Rogers-RalllHlllljall ('out.iutlcd fractioll R(q), ddillcd 

(1.2 II) 

111 his filSt. and s('('()Jld ~('ttcrs to Haldy [22], TIalllClnlljan cOlUlIltluicated seV<'lal explicit. vaItH's of 

It(q) and 5((}), wlll'u' 5((1) = -fl(-I}). Wa.tsoll [G2]-[53] proved SOIlH' of t,l)(' results c1aillH'd by 

l1allJalllljall ill thosf' letters. III botlJ his first [48] and lost. lJOL(,books [cia], l1alllalllijall leeord(,d 

S('VC'ut\ othl'l' ('valtla.tiOlls. III par t iell/ar, 011 page 210 of hi:-> lost. lIot.f'hook [40], n HlIllllLll.iall 

provid(,d (l list of ('valtlatiolls awl iJlf,{'lIdl'd ('valtlatiolls. Balllanat.halt [42]-[4G] IIIi1de til<' first. 

a.tt.(~JrlPt, t.o filld a uJliform method to evaluate R(q) by using Krolleckl'r's limit. fOlllltlla, wiLli 
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which Ralll<tlllljall waH not. familial. 13(,ll1elt ami Chan [20] and Dc'mdt, Chan, and Zhang [2G] 

cOlllpletcd the incomplete list of Ilam<.tnlljan by IIsillg SOUle modlliar eqllat.ions lccOlded hv 

nHllIalllljall [tl8] ill his t1o/'"books. Most illJpor t.aIlU", BCl'Ildt., Chall, Hnd Zhallg [2GJ d(,1 iV<'d 

~llvHlialits. 'I'll!' los/' Ilot.c,hook [49J also ('olltains lJIallY fOlllllllas for 17(q) awl t.lH'ta,-fllllct.ioll 

ic\put.i ti('s gi villg 1Il0l (' forlIl1llas for tiif' ('xplirit ('valuatioll of R( q). Kclllg [37]- [38] plOved Illauy of 

thc claims mad(' by nalllfllllljan. It app('ars that t.hollgh Ralllalllljan's for ItIlIlas at(' illt('l('st.illg, 

t.h('v g('llclrdlv ill e !lOt. VC'l Y Illllch HlIIe'lIable' i u t.he calclll" t.ioll of ci<-gall t valll(,s of R( q). IIc't(' 

we find SU\ll(' of t.he e'vaillat.iolls of R(q) and S(q), by usillg the' vlIlll<'~ o[ the' qllotieut.s of thc,ta-

rllllCt.iollS fOllnd ill Chapt.(,1 G alld ~OIlIC Ot.\f('1 thcta-fllll('t.ioll idcnt.it.ic's. 0111 ('valuat.iolls alc' 

Il1lll·h ('asi('r t.hall t.hos(' or t.ll(' pl('viollS allt.hOl~. 

III Chapter I. we dc'al \\'i th R alIl<1IlU jaB's ClI hic continllcd h act.ion G ((J), defincd by 

ql/l () + q2 (/ + (/ ql + (i' 
G(q):= - --

1+ 1 + 1 + 1 + 
(1.2.G) 

RmilHlllljall filst. int.rodllc('d this cout.iullcd fr(letioll ill his second I('t.t.c'r to Hardy [22]. He also 

recorded this ceJlltillllcd hact.iOlI on page 366 of his lost not.ebook [40], ami claillled that UlC'I(' 

alC lllany r(,sults of G(q) "hieh aH' allalogolls't~'R(q). rVlnt.,ivatcd by RalIlanllajau's claims, 

Chan [32] prov('d lIHtlI.Y !I('W idC'uti ties which Tn ohablY Wel e r,11(' idC'nti tic's vagll('ly 1 den ('d ~ 

by Raltlaulljall. HI' f'stablislted SOIlJ(' )f'ciplo('it.y tIWOl(,IIIS for G(I/), fOllnd l('/at,jolls betw('('11 

('valllatiolls of G (q). FOl eXaIlI pIc, hc proved the following r dat.ioll Iwt,\.v('C'1l G (q) and G (IJ I) 

(1 2 (j) 
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I311t. l!is proof of0...Z.GJ is lIot,satisfact.ory. III particular, t,lle last dcdllCt.ioll [:32, (2.)8), p. :JtI7] 

is !lot a.11 obvious O!le. III Sectioll 7.2, we filld all easy proof of (1.2.G). 

By deriving some theta-functioIl identities i!l Sectioll 7.3 ami Sect.ion 7.4, we give gem~ral 

Chall alld Zlt,wg [24]. 

III S(~ctioll 7,G, W(~ Nud tince 11e\-\' br'!alltiflll (~t.a-[ullction ic.lelltit.ir·)s [Theorellls 7.G.I-7.G.:3]' 

aJl(1 Us(~ thelll to derive two beautiful idelltit.ies [Theorems 7.7.1-7.7.2J givillg reiatiulls bet;wer~1I 

G(q) aile! the t.wo continued fractions G(r/,) and G(q7). For ex;ullple, ill Theorelll 7.7.1, we 

prove that., if'IJ = G(r/) ami 'W = G(i["), then 

r .\ '1· (' '2:1 '\:} '2 '2 • 
'/I' - V'll) + 5vw(v' + w' )(1 - 2vw) + 71)' = v '/.n (lG'/)' w' - 20v 'IV + 20v'IJ! - 0). 



Chapter 2 

Schlafli-type "Mixed" Modular Equations 

2 .1 Introduction 

The theory of lllOdular equHt.i()ll~ began wiLh the transformations of Gauss and Landen which give 

modular ('quatiolls of degrcc' 2 [13, pp. 30-31]. In 1825 Lcgendre explicitly found a modular equatioll 

of degrce 3. In the Hex!. 100 ycars, mallY modular e<]wttic)1ls were rliscovered by E. Fielder, n.. Fricke, 

A. G. Greenhill, C. GUf'tzlaff, M. Hanna, C. G. J .. Jacobi, F. Klein, R. Russell, L. Schliifii, H. Wrbrr, 

and others. Hanna's paper [34] contaillS a lot of rcferencf's ill the literature. However, R.amallujan 

Note: The ma.in 1·esult.s of this chaptr.r lw.ve a.ppea.red in our pa.pers [41 and [9j. A part of this 

chapter was ]Jr'e8enterl at the 15th Annual Confer'ence of the Ramanll.njan Mathematical Society, 

held in the Rarnanujan Institute JOT Advanced Study in MatQ~rry.Ltic8, Uni'!Jc1'sity of Madras, for 

which the author' was awar'ded "Pmj. M. Vengkatamman memoria.l best paper' pr'esentation awar·d . . , 

8 
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recorded more modular equations than those of his predecessors combined. Chapters 19-21 of 

his second notebook [48] are almost completely devoted to modular equations. Many others can 

be found in the unorganized pages of his first and second notebooks [48]. He also recorded some 

modular equations in his lost notebook ([19], [49]) and his letters to Hardy [22]. For the introductory 

part of his modular equations lone may also see [12], [13], [15] ,[16], or [41]. His work on modular 

equations is based on his theory of theta-functions. His general theta-function f(a, b) is given by 

~ k(k+l) k(k-l) 
f(a, b) = 0 a 2 b 2 , (2.1.1) 

k=-oo 

where labl < 1. If we set a = q2tZ, b = q-2tZ, and q = e7rlT
, where z is complex and 1m (r) > 0, 

thenf(a, b) = 'l9 3 {z, r), where 'l93 (z, r) denotes one of the classical theta-functions in its standard 

notations [62, p. 464]. 

Now, we recall the definition of a modular equation from Berndt's book [15]. 

The complete elliptic integral of the first kind [((k) is defined by 

(2.1.2) 

where 0 < k < 1. The series representation in (2.1.2) is found by expanding the integrand in 
.... - .. ~ i. 

a binomial series and integrating termwise, and 2Fl is the ordinary or Gaussian hypergeometric 

function defined by 

( ) ~ (a)n{b}n n I I 
2Fl a, bj Cj Z := ~ () I Z, 0 ~ Z < 1, 

n=O C nn. 

where a, b, and c are complex numbers such that c is not a nonpositive integer. The number k is 

called the modulus of [(, and k' := VI - k2 is called the complementary modulus. Let [(, [(I, L, 

and L' denote the complete elliptic integrals of the first kind associated with the moduli k, k', l, 
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and i', respectively. Suppose that the equality 

J(' L' 
n-=-

J( L 
(2.1.3) 

holds for some positive integer n. Then a modular equation of degree n is a relation between the 

moduli k and l which is implied by (2.1.3). Ramanujan recorded his modular equations in terms of 

a and /3, where a = k2 and /3 = l2. We say that /3 has degree n over o. The multiplier m is defined 

by 

J( 
m= y. (2.1.4) 

Similarly one can define Ramanujan's "mixed" modular equation or modular equation of com-

posite degrees. Again, we recall from Chapter 20 of B. C. Berndt's book [15, p. 325]. Let J(, 

IC, L 1 , L~, L2 , L~, L3 , and L~ denote complete elliptic integrals of the first kind corresponding, in 

pairs,to the moduli y1a, VlJ, ~, and VJ, and their complementary moduli, respectively. Let nI, 

n2, and n3 be positive integers such that n3 = nIn2. Suppose that the equalities 

IC L' J(' L' J(' L' 
- I - 2 and n3 _ = 2 

ni J( - L1' n2 J( - L2' J( L3 (2.1.5) 

hold. Then a "mixed" modular equation is a relation between the moduli y1a, VlJ, ~, and VJ 

that is induced by (2.1.5). In such an instance, we say that /3, '"'I, and 6 are of degrees nI, n2, and 

n3, respectively, over o. Denoting Zr = (p2(qr), where q = exp( -7r J(' / J(), ¢>(q) = /(q, q), Iql < 1; 
,< 

., -I.. I" 

the multipliers m, and 111,' associat~d ~ith a', Ii; a~d ,,/, 6, respectively are defined by 

(2.1.6) 

Ramanujan probably used a lot of methods [12] in deriving his modular equations. Berndt ([14], 

[15], [17], [18], [19]) discussed all the modular equations recorded by Ramanujan in his notebooks 
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[48] and lost not.t'books [49]. (One lIlay abo see [3] ) But. it. is WOl thwhile to note that many of t.hc 

RamaIlIljan's Inodular equations H'l1laiuE'd to he elucidated by the methods known to Ramanlljan. 

Two Ilew methods ate emplo)'rd to prove t.hose result.s. One is parametrization of certain qunutities 

and the ot.her is the theory of modulal fOlms. RJ. Evans in [33] used the theory of modular forIllS t.o 

\)el(~~-..( 
-verifys trh~ta.-fllnction identit.irs in a very lemalkable way. Berndt. has frequently used Evans' ideas 

'I1tF tea{("I' <?er ~ (;V~S) mh/~S 
also. But. t.he main disadvantage of these IfietTlOds is that on~ has t.o know tlievi~lOcrular equat.ion 

in advance. These methods do not give much insights to Ramanujau's discoveries. So deductions 

and proofs based OIl probable methods of Ramanujan [12] are preferred. 

If the lllodular qna.nt.ities (2"/rv(1- 0'))1/24 and (24/(3(1- (3))1/24 are cOlluected iu an equat.ion, 

then such a modular equat.ion is called a Schliifli-type modular equation (see, [41, p. 404]). In 1870, 

1. SchUifli studied such type of equatiolls for prime degrees. Rarnanujal1 not only rediscovel eLi all 

the equations found by Schliifli but also discovered sueh type of equations associated with "mixpd" 

modular equations. In fact, on pages 86 and 88 of his first notebook [48], Ramanujall recorded 12 

Schlafli-type "mixed" modular equatiolls. 11 of these were not recorded in his second notebook [48J. 

One of these 11 equations follows from a modular equation recorded by Ramanujan in Chapter 20 of 

his second notebook. This was first obselved by K. G. Ramanathan [41, pp. 419-420]. Berndt [18] 

proved the other 10 equations by invoking the theory of modular forms. In this chapter, we prove 

, I, t I J: 
8 of these equations. Two ale proved aualytically by deriving some theta-function identities 'using 

Schloter's formulae. For the other eqnations we give elcmentary proofs by employing Ramaunjau's 

modular equations of prime degrees, other "mixed" modular equations and Weber-type equations 

([18), [41]). In the process, we also found two new SchHifli-type "mixed" modular equations [(2.3.i9) 

and (2.3.60)]. 
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Now we state the theorems which will be proved in this i:~IC~)~,c~. 

We set 

and, 

1 

P:= (256a,8')'b(1- a)(1 - ,8)(1 - ')')(1- b))4"8, (2.1.7) 
1 

Q : = (ab (1 - a) (1 - b) ) 4"8 

,8')'(1 - ,8)(1 - ')') 
1 

R '= (')'8(1 - ')')(1 - 8)) 4"8 
. a,8(l - a)(l - ,8 , 

1 

T '= (,8b(l - ,8)(1 - b) ) 4"8 
. a')'(1 - a)(1 - ')') . 

(2.1.8) 

bENiRAL LIBRARY, i. U. ( 9) 
I 2.1. eCG. NO . ....................... .. 

(2.1.10) 

Theorem 2.1.1 ([48, Vol. I, p. 86); (18, p.380j). If a, ,8, ,)" and b have degrees 1, 3, 5, and 15, 

respectively, then 

4 1 2 1 
T + T4 - 2(P + p2) + 3 = O. (2.1.11) 

Theorem 2.1.2 ((48, Vol. I, p. 86); (18, p. 380}). If a, ,8, ,)" and b have degrees 1, 3, 11, and 

33, respectively, then 

4 1 (2 1 21 
T + T4 + 3 T + T2) - 2 (P + p2) = o. (2.1.12) 

Theorem 2.1.3 ([48, Vol. I, p. 86}; [18, p. 380}). If a, (3, ')'. and d have degrees 1, 3, 5, and 15, 

respectively, then 

6 1 (4 1) (2 1 ) R + R6 - 4 P + P~ + 10 P + p2 - 1 = O. (2.1.13) 
, 

Theorem 2.1.4 ([48, Vol. I, p. 86}i [18, p. 380}). If a, (3, ,)" and b have degrees 1, 3, 7, and 21, 

respectively, then 

RB + ~B + 7 (R6 + ~6) + 14 (R4 + ~4) + 21 (R2 + ~2) - 8 (p6 + ~6) + 42 = O. (2.1.14) 
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Theorem 2.1.5 ([48, Vol. I, p. 86); [18, p. 380}). If (x, (3, ,,/, and 0 have degrees 1, 3, 7, and 21, 

respectively, then 

16 1 r. (12 1) r. (8 1) (-1 1) (6 1) _ Q + Q16 - l) Q + Ql2 + l) Q + Q8 + 6 Q + Q4 - 8 P + p6 + (3 - o. (2.1.15) 

Theorem 2.1.6 ([48, Vol. I, p. 86); [18, p. 381}). If (x, (3, ,,/, and 0 have degt'ees 1, 5, 7, and 35, 

respectively, then 

T6 + ;6 + 5V2 ( T3 + ;3) (p + ~) - 4 (p4 + ~4) + 10 = O. (2.1.16) 

Theorem 2.1.7 ([48, Vol. I, p. 86); [18, p. 381j). If (x, (3, ,,/, and 0 have degrees 1, 5, 7, and 35, 

respectively, then 

4 1 (6 1) (41) (21) R + R4 - Q + Q6 + 5 Q + Q4 - 10 Q + Q2 + 15 = O. (2.1.17) 

Theorem 2.1.8 ([48, Vol. I, p. 86); [18, p. 381]). If (x, (3, ,,/, and 0 have degrees 1, 5, 11, and 

55, respectively, then 

T6 + ;6 - 5 ( T4 + ;4) + 10 ( T2 + ;2) (p2 + ~2 - 1) - 4 (p4 + ~4) + 10 (p2 + ~2) - 25 = o. 

(2.1.18) 

The first two theorems will be proved in section 2 by deriving some theta-function identities by 

employing Schroter's formulae. The other modular equations will be proved by using Ilamanujan's 

SchUifli-type modular equations of prime degrees, "mixed" modular equations, and Weber-type 

equations. 

We shall make use of several results from Berndt's book [15] in our proofs. We record some of 

these results below for further reference. Page numbers refer to the location of the results in [15]. 
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Entry 18. (p. 34) We have 

(z) f(a, b) = f(b, a), (2.1.19) 

(zz) f(1, a) = 2f(a, a3), (2.1.20) 

(zzz) f(-1,a)=0, (2.1.21) 

and, if n is an integer, 

('LV) f(a, b) = an(n+1)/2bn(n-l)/2 f(a(abt, b(ab)-n). (2.1.22) 

Entry 22. (pp. 36-37) If Iql < 1, then 

00 

(2) ¢>(q) := f{q, q) = 1 + 2 L qk
2

, (2.1.23) 
k=l 

00 

(zi) 'ljJ(q) := f(q, q3) = I: qk(k+l)/2, (2.1.24) 
k=O 

00 00 

(zzz) f( -q) := f( -q, _q2) = I:( _1)kqk(3k-l)/2 + I:( _1)kqk(3k+l)/2 = (q; q)oo, (2.1.25) 
k=O k=l 

(iv) (2.1.26) 

where (a; q)oo := nr;o(1 - aqk). 

The third equality in (iii) is a statement of Eijle~tf! famous pentagonal number theorem. For an 

elementary proof and further references see 9. E. AIldrews' paper [2]. 

If we put q = exp( -7r K' / K), Z = Zl, and x = a in Entries 10, 11, and 12 of chapter 17 (pp. 

122-124) then we have the following results; 

lO{z) ¢>(q) = yIzl, (2.1.27) 
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10( ii) 
1 

¢(-q) = y'zl(1- a)4, (2.1.28) 

1O( iv) ¢(q2) = y'zl{ ~(l + v'f=C;))!, (2.1.29) 

10(vi) ¢(q!) = y'zl(l + vn)!, (2.1.30) 

1O( vii) ¢( -q!) = y'zl(1 - vn)!, (2.1.31) 

11 (i) I¥ 1 1 'Ij;(q) = 2 aaq- a, (2.1.32) 

11 (ii) I¥ 1 1 'Ij;( -q) = 2(a(1 - a))aq-a, (2.1.33) 

11 (iii) 
2 1 1 1 

'Ij;(q ) = "2y'zla4 q-4, (2.1.34) 

11 (iv) 4 l~ v'f=C;" 'Ij;(q) ="2 "2 z1 {(1- 1- a)}"2q-"2, (2.1.35) 

12(iii) 
2 1 1 1 f(-q ) = y'zl2-a{a(1- a)} T2 q-T2 , (2.1.36) 

12(v) 
1 1 1 

X(q) = 2a{a(1- a)}-"24q"24. (2.1.37) 

It is to be noted that, if we replace q by qr, then ZI and a will be replaced by Zr and corresponding 

square of the modulus, respectively. 

If J-L and v are integers such that J-L > v ~ 0, then from Schroter's formulae (36.1), (36.2), (36.6), 
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and (36.9) (pp. 67-69), we note that 

xl (ABq'.H"m, q':;m), (2.1.38) 

~ {f(Aqlt+v, qlt+v / A)f(Bqlt-V, qlt-V / B) - f( _Aqll+V, _qlt+v / A)f( _Bq1l-V, _qlt-V / Bn 

(2.1.39) 

It-I 
= I:: q2ttm2 f(q(2tt+4mH/t2-v2) , q(2/1-4mH/t2-v2))f(q2vm+It/2, Q-2vm+It /2), (2.1.40) 

711=0 

and, 

(1t-3)/2 
+ L qltm(m+l) f( q(/t+2m+IH/t2 _v2), q(/L-2m-l H/L 2 -v2 ))f (q/l+v+2vm, q/l-v-2Vm), (2.1.41) 

m=O 

where in (2.1.41) /./, is odd. 



2.2. PROOFS OF THEOREMS 2.1.1 AND 2.1.2 

From Entry 24(iii) (p. 39), Example (v) (p. 51), and (7.5) (p. 365) we note that 

and, 

f( _q2) 
X(q) = 7jJ( _q) , 

2.2 Proofs of Theorems 2.1.1 and 2.1.2 

17 

(2.1.42) 

(2.1.43) 

(2.1.44) 

Proof of Theorem 2.1.1. First of all we prove the following beautiful modular equation of 

Ramanujan. 

Lemma 2.2.1 ([15, p. 280]). If (J has degree 5 over a, then 

I 1 1 
(a(J)"2 + {(1 - a)(1 - (J)}2 + 2{16a(J(1- a)(l - (J)}ii = 1. (2.2.1) 

According to Berndt [15, p. 282] direct proof 9f this modular equation, by methods known to 

Ramanujan, is not available. He verified this equation frolT! the other equations of same degrer! 

and conjectured that Ramanujan might ha~e deduced in a same procedure. But we see that this 

equation follows from a very simple theta-function identity. Therefore Berndt may not be right in 

making his conjecture. In [511, Li-ChicIl Shcn establishcd this equation via classical ideas given ill 

[62]. 
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Proof of Lemma 2.2.l. 
Applying (2.1.39) with Jl = 3, lJ = 2, A = 1, B = -1, we find that 

2 
= L (_1)mq5(2m+l)+6m

2 f( _q5(8+4m), _q5(4-"m))f( _ql6+8m, _q-4-8m). (2.2.2) 
m=O 

Taking p = q5, and utilizing (2.1.19), (2.1.21), (2.1.22), and (2.1.23) we deduce from (2.2.2) that 

(2.2.3) 

Invoking (2.1.25)' we deduce from above that 

¢( -p)¢(q) - ¢(p)¢( -q) = 4qf( -q4)f( -p"). (2.2.4) 

Replacing q by q~ in (2.2.4), we find that 

1 1 1 1 1 2 2 
¢( -p'i)¢(q'i) - ¢(p'i)¢( -q'i) = 4q'i f( -q )f( -p ). (2.2.5) 

Transcribing (2.2.5) via (2.1.30), (2.1.31)' and (2.1.36), we find that 

fal fa! 4 1 
{(I + J(i)(l- y,B)}2 - {(1- J(i)(1 + y,B)}2 = 23{(a,B(1- a)(l- ,B)}TI. (2.2.6) 

Squaring both sides of (2.2.6), and then simplifying, we arrive at (2.2.1), which completes the proof. 

Proof of the main t~~orem. 

Putting Jl = 3, lJ = 2, and replacing q by q2 in (2.(40), we. find that 

(2.2.7) 
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where p = q5 and we have also employed (2.1.19), (2.1.22), and (2.1.23). 

Again, setting f.L = 3, lJ = 2, A = B = 1 ill (2.1.39), we find that 

\ 

~{J(]J, p)f(q, q) - f( -]J, -p)f( -q, -q)} = t q5{2m+I)+6m2 f(p8+4m, p4.-4m)f(qHH8m, q-4-8m) 
m=O 

(2.2.8) 

where we have utilized (2.1.19) and (2.1.22). 

In (2.2.8) we employ (2.1.20), (2.1.23), and (2.1.24), to deduce that 

Multiplyillg both sides of (2.2.9) by 2, and then replacing q by q2, we find that 

(2.2.1O) 

Putting f.L = 3, lJ = 2 in (2.1.41), and writing p = q5, we obtain 

(2.2.11) 

where we have again used (2.1.19), (2.1.22), and (2.1.23). 

Raplacing q by q4 in (2.2.11), we deduce that 

(2.2.12) 
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Multiplying both sides of (2.2.12) by 4q3 and adding (2.2.10), we arrive at 

+4q15'IjJ(p24)¢(q12) + 4q3 f(q4, q20)f(p8, p16) 

= 4q2 f(p8, p16)[J(q8, q16) + qf(q4, q20)] + 4q15'IjJ(p24)[f(q12, q12) 

(2.2.13) 

where we have employed 

(2.2.14) 

which can easily be deduced from Entries 30(ii) and 30(iii) [15, p. 46]. 

From (2.2.7) and (2.2.13)' we find that 

(2.2.15) 

Employing (2.2.14)' we deduce from (2.2.15) that 

(2.2.16), 

Now invoking (2.1.43) in (2.2.16), we find that 

(2.2.17) 
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Transcribing (2.2.17) via (2.1.27), (2.1.29), (2.1.30), (2.1.35), and (2.1.37), we arrive at 

JZIZ5 ~ , r:;--: 1 JZIZ5 ~ r;--:. 1 
-2-[(1 + vi - a)(l + Vi - 'Y)J2 + -2-[(1 - vi - a)(l - Vi - 'Y)J2 

1 ({30(1 - (3)(1 - o))k 
= J Z3Z15 + J Z3Z I5 23 1 . 

(cq(1 - ex)(1 - 'Y))24 

21 

(2.2.18) 

If m and m' are the multipliers associated with Zl, Z3, and Z5, ZI5, respectively then from (2.2.18), 

we find that 

Jmm'[{(1 + ~)(1 + h)}4 + {(1- ~)(1 - h)}4J 
1 

= 2 + 2~ [{/30(1 - (3)(1 - 6)P] 24 . 
cq(1 - ex)(l - 'Y) 

Squaring both sides of (2.2.19), we arrive at 

mm'[(1 + ~)(1 +.;r=-;y) + (1- ~)(I-.;r=-;y) + 2JCYYJ 

1 1 

Ji [{{30(1 - (3)(1 - O)P] 12 2.!Q [{(30(1 - (3)(1 - O)P] 24 = 4 + 23 + 3 • 
ex'Y(1 - ex)(l - 'Y) a'Y(1 - a)(1 - 'Y) 

Simplification gives 

mm'[1 + JCYY + J(1 - 0:)(1 - 'Y)] 

1 1 

.~ [{{3c5(I-{3)(I-c5)Pj12 1 [{(3c5(I-{3)(1-0)Pj24 
=2+2~ ~ +2 3 • 

0:'Y(1 - a)(1 - 1') " a'Y(l - a)(l - 1') 
~ 

Employing Lemma 2.2.1 in (2.2.21), we find t~at 

1 + 2~ [{P6(1-PHI-6)P] h + 2~ [ fP6(l-P)(1-6)}3]-h 
, o'1'(l-a)(l--y) a-Y(l-a)(I--y) 

mrn = 2 1 

1 - 23[a'Y(1 - 0:)(1 - 'Y)J6 

(2.2.19) 

(2.2.20) 

(2.2.21) 

(2.2.22) 

This is a mixed modular equation of degrees 3, 5, 15. Another mixed modular equation of same 

degrees, but of reciprocating nature is given by 

-= 2 1 
mm' 1 - 23 [{3c5(1 - /3)(1 - 0)J6 

(2.2.23) 
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In (2.2.22) and (2.2.23) we substitute P and T from (2.1.7) and (2.1.10), respectively, to deduce 

and, 
p4 p2 

9 1 + ~ + 2y.r 
mrn'::::: 1 - P"'T4 

respectively. 

Multiplying (2.2.24) and (2.2.25), we find that 

9 = (1 + p 4T B + 2p2T 4)(1 + ~ + 2f,:) 
(1 - ~)(1 - P1Q1) 

We rewrite (2.2.26) in the form 

B 1 (4 1) 2 2 4 l' 
T + T8 + 4 + T + T4 (2P + p2 + 9) - 8(P + p4) = o. 

Factorizing (2.2.27), we find that 

(T4+ ~4 _2(P
2+ ~2)+3) ('1'4+ ~4 +4(p2+ ~2)+6) =0. 

Therefore we llave 
.!');,. 

1'4 1 (2 1) + 1'4 - 2 P + p2 + 3 = 0, 

since the other factor can not be zero. 

Thus we arrive at (2.1.11), which completes the proof of Theorem 2.1.1. 

(2.2.24) 

(2.2.25) 

(2.2.26) 

(2.2.27) 

(2.2.28) 

(2.2.29) 
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Proof of Theorem 2.1.2. 

Setting f.L = 6, /J = 5 in (2.1.40), and taking p = qll, we find that' 

5 
= L q12m2 f(p12+4m, p12-4m)f(q3+10m, q3-10m). (2.2.30) 

l1t=O 

Replacing m by m + 3 in the last three summands of the right hand side of (2.2.30), we find, after 

applying (2.1.22), that 

q 12{m+3)2 f (p12+4{m+3) , p12-1{m-f3)) f (q3+1O{m+3) , q3-1O{m+3)) 

(2.2.31) 

Thus the right hand side of (2.2.30) may be rewritten in the form 

2 L q12m2 {f(pl2+4m,p12-4m) + p2m+3 f(p2H4m,p-4m)}f(q3+10m, q3-10m). (2.2.32) 
m=O 

Taking a = p2m+3 and b = p3-2711 in (2.2.14), we deduce that 

f (p3+2m, p3-2m) = f (p12+4m, p12-4m) + p2m+3 f (p24+4m, p -4m). (2.2.33) 

Employing (2.2.33) in (2.2.32), we find, after applying (2.1.19), that 

2 L q12m2 f (p3-2m, p3+2m) f (q3-10m, q3+ 10m). (2.2.34) 
m=O 

Thus from (2.2.30), we find that 

2 

</J(p)</J(q) + </J( -p)</J( -q) + 4q3'IjJ(p2)'IjJ(q2) = 2 L q12m2 f(p3-2m,p3+ 2m)f(q3-lOm, q3+ 10m ). (2.2.35) 
m=O 



24 CHAPTER 2. SCHLAFLI-TYPE "MIXED" MODULAR EQUATIONS 

Employing (2.1.19) and (2.1.22), we can write (2.2.35) in the form 

(2.2.36) 

By (2.1.23) and (2.1.43), (2.2.41) may be written as 

(2.2.37) 

Employing (2.1.42) in (2.2.37), we find that 

(2.2.38) 

Now, invoking (2.1.44) in (2.2.38), we arrive at 

(2.2.39) 

This can also be written as, 

[1 _ q3 'I/J{ _q3)'1/){ _p3)] </J{p)</J{q) + [1 + q3 'I/J( _q3)'I/J{ _p3)] 
'ljJ( -q)'ljJ( -p) 'I/J( -q)'ljJ( -p) 

x (</J( -p)</J( -q) + 4q3'I/J (p2)'I/J (q2) ) = 2</J(q3)</J(p3). (2.2.40) 
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Transcribing (2.2.40) via (2.1.27), (2.1.28), (2.1.33), and (2.1.34), we find that 

[
1 - Z3 Z33 (jJ8(1 - jJ)(l - 8) )~] JZIZll + [1 + Z3 Z33 (jJ8(1 - jJ)(l - 8) )~] 

ZlZU a,(l - a)(l - ,) ZIZU a,(l - a)(l - ,) 

(2.2.41) 

If m and m' are the multipliers associated with 0', (3, and 'Y, 6 respectively then (2.2.41) may be 

written as, 

1 /38(1 - /3)(1 - 8) 8 1 (38(1 - jJ)(l - 8) 8 

[ 1] [ 1] 
1-~ (a, (l- a)(l- I )) + 1 + ~ (a, (1- a)(l- I )) 

( 1 1) 2 
X (Cq)1 + ((1- a)(l - ')'))1 = ~. 

1nrn' 
(2.2.42) 

Now, by Entry 7(i) [15, p. 363], we have 

1 1 1 
(a')')4 + ((1 - a)(l - ')'))4 = 1 - 2{16a')'(1 - a)(l - 'Y)} 12. (2.2.43) 

Employing (2.2.43) in (2.2.42), we arrive at 

r-; _ (a')'(1- a)(l - ')'))~ + 2~(/38(1- (3)(1- 6))* 
vrnm' - 1 I l' 

( a')' (1 - a) (1 - ')')) 24 - 2 3 ( a')' (1 - a)( 1 - 1')) 8 
(2.2.44) 

This is fl. mixed modular equation of degrees 3, 11, 33. Another mixed modular equation of same 
, , 

degrees, but of leciprocating nature is given by, 

( ( 
I 1 1 

3 _ /315 1- jJ)(l- 15))24 + 21 (a')'(l - a)(l - 'Y))ii 
';111,711/ - ((36(1- (3)(1 - 6))11 - 2~((36(1 - (3)(1 - 6))1 . 

(2.2.45) 
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Multiplying (2.2.44), and (2.2.45), we find that 

(cq(l- a)(l- "{))14 + 2~(,86(1- ,8)(1- 6))k 
3 = 1 1 1 

(a"{(l - a)(l- "{))2"4 - 23 (a"{(l - a)(l - "{))8 

(,86(1- ,8)(1- 6))14 + 2~(a"{(1- a)(l- "{))k 
x 1 1 l' 

(,86(1- ,8)(1- 6))2"4 - 23(,86(1- ,8)(1- 6))8 
(2.2.46) 

Putting the expressions for P and T from (2.1.7) and (2.1.10) in (2.2.46), we find that 

(2.2.47) 

Simplifying (2.2.47) we readily arrive at (2.1.12), which completes the proof of Theorem 2.1.2. 

2.3 Proofs of Theorems 2.1.3-2.1.8 

First Proof of Theorem 2.1.3.: For simplicity, we set 

A:= (a,8)~, B:= ((1 - a)(l- ,8))~,C:= ("{6)k, and D:= ((1- "{)(1- 6))~ (2.3.1) 

so that 

p6 = 2ABCD and n6 = CDI:1B . (2.3.2) 

Now [rom Entry l1(xiv) ([15, p. 385]; [48, VOL. II, P. 247]), we obtain 

AC+BD= I_p2 (2.3.3) 

This modular equation was also derived by Weber [61, p. 415]. 

Now from Entry 5(ii) [15, p. 230] we recall the following modular equation of degree 3. 

1 1 
(a,8)'4 + ((1 - a)(l - ,8))4 = 1. (2.3.4) 
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Therefore, we have 

1 1 ( 1) {0(3{1 - 0)(1 - (3))4 = {0(3)4 1 - {0(3)1 . 

Employing (2.3.1) and (2.3.2)' we rewrite (2.3.5) as 

Hence, 

where 

p6 1 ( 1 1)2 
- = - - (0(3) 4 - -
2R6 4 2 

1 1 h 
(0(3)4 = "2 ± V kl' 

1 p6 
kl = 4" - 2R6' 

Using (2.3.7) in (2.3.4), we find that 

In a similar way, we obtain 

where 

1 1 h 
{{1 - 0){1 - (3))4 = "2 =F V k1· 

1 p 6 R6 

k2 = - - --. 
4 2 

From (2.3.7), (2.3.8), (2.3.9), and (2.3.1O), we find that 

27 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.11) 



FrUl1I (:2 :L:l) ;llId (:2.:\ II). ,,'(' dt'dll( (' I.Ilil1. 

(:2 . \ I:!) 

1~()lilllllg 1.11(' 1.('1111 ill\'()lvllig ;7:;1,'1. Oil ()II(' I-.id(' o[ I.he ('<lII;d,i()lI, I-.<jllilllllg iJoLh SHI(,s, (llid IIII'll 

Second Proof of Theorelll 2.1.3.: FIOIII Ell 1.1 v L:~(xlv) [J G, p :2W2], \H' 1I0L(' 1,11;11. 

( (j) I ( !J') ! [ J , -L 1 - -I- - :::: '2 1 - ( i()Wf( 1 - 1\')( 1 - "y)) 12 

I? (j (1 Gwy( I-(\')( 1 - "{))"G 

Also 

(Q/?) \ -I- - = '2 1 - (IG(lr5(J - fI)( I - ()))T2 ( 1 )'\ [I 11 
QI? (IU(Jr)(I-/J)(L -r)))TI 

f\11!lt,lplvilig (2;\ 1 'I) rlild (2.:\.11), il.IJd 1.h(,11 llSillg ('2 1 7)-(2 L 10). W(' lilld LlIaL 

(/, -I- ~- + (17(' -I- _I ) = I (r I + _I _ rr I _ ~_) 
(l' nil ') I I 1 

I 1 r.:;( ,-, I (j -I- - = v2 -1--) 
Cd l I' 

('2 :1.I(j) 

FrOl1l TIJ('()I ('III :2.1.1., WI' II()L(' I.hat 

1 J 
7"1 + - = 2(p2 + -) - :3. 

T'I In 
('2.:3 17) 

Using (2.:~.JG) alld (:2.:U7) ill (2.:3.1 G), w(! filld tlmt. 

Sililplih'iug (2.3.l8), \\ (' ('ilsilv at t ive aL (2.].1 :3), wliirli (olllplC't.('s LlI(' pi OO!. 

Proof of Theorem 2.1.4: Fitst of all, w(, PI'O\(' th<' f()llowillg II('\\' S('lJliilli-t.vpc "llIi,\crl" 1I10dlllfli 

cqllaLiol1 of d<'gn'(''i J, :3, 7, alld 21. 



:2.3. P({()()FS ()F T/I/','( J/{fj'JHS :2. ( :1-:2.1.8 

Lelllllla 2.3.1 rf'I\·. /1. ,. (f,'lId Ii' !U/I)(' !ll'!/,/'I'('s I. ,'I. 7. (f,'/l.d 21, n;.'i/}('(·I't:/I(.l:t/, th(;1I, 

., l , I 
17~ + - = (l' + - - ~3, 

f{l ( Cd' . (2 :U D) 

when; (J lI.nrl /( 1I:,.e .'J /'Ii'''//. by (~. 1.8) (/.'/1.<1 (fl. J. I) ). 1 eS7H:cl1:IJciy. 

Proof of Lelllma 2.3.1: FrOll1 Elltry l!J(i) or CllflpL('r 20 [IG, p. LI2G], WC' 1I0l.C' that 

By COlolJary (i) of Elltty ;31 ill Cltapt.('r lG [IG, p. <J9] 

( 2 .:\. :2 j ) 

N()\\' In' ElI!.IY :2(ij) [Fl. p. ~W)], wC' IIOt.<' t.hat. 

(2. ;~. 2 I) 

Tllif, tll;1.\· 1)(' I('writ,tell ill t.lle f0111! 

'I I 2 I (/;((}) = 1(/J(1}) + 1,(q )l/:(-Cj). 
, , 

(2 T2(i) 
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Replacillg, (j by (/ in (2.3.3G), W(' find t.hat. 

(2.3.27) 

Using (2.3.3G) and (2.3.37) ill (2.3.30), w(' obtain 

(2.3.28) 

Trallscribiu{?, (2.3.38) by employillg (2.1.27), (2.1.:33), (2.1.37) and Eutry 12(i) uf Chapter 17 [LJ; 

, pp. ] 22-124], auc.\ t.lwll simplifyillg, w(' d('d1lc(' LiJ<1t 

I 

(,(l-,))i< 
J 

((5(1- r5))TI 
(,,(1- ")J: = ~(ffJ(1- tI)(l - JJ)"', 
(;3(1 - ;3))"24 1II:rn' 

where 1IL ami '1/7.' are th(' llluitiplicn; aSRociated with u and ;3, alld "( alld 6, respectively. 

Reciproca.l of t.his mixed modular equation of degrees 1, 3, 7, and 21 is given by 

Multiplying (2.3.39) and (2.3.40), we find that 

(1,,(1 - 11)(1 -,))~ (ar5(l - n)(l - rS))k 6 ..L 

(wSO _ n)(l _ 8)):14 - (l.h(1 _ 13)(1 _ ,))14 - (, (1 - ,)(1 - 6)) 12 

-(Q;3(1- u)(l- fJ))h = 3(C\'fJ,c)(1- 0')(1- 11)(1-,)(1- 6))11. 

(2.3.2!J) 

(2.3::31) 

pividillg both sides of (2.3.41) Ly (C\'/J,(5(1- u)(1-/3)(1-,)(1- 6))14, aud then using (2.1.8) and 

(2.1.9), we find that 

~ 

(2.3.32) 

which is e4uivalent to (2.3.29). This completes the plOof uf the Lf'llJma. 
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Proof of the main theorem: Wp not (' that 

Q _ (~(1 -0')) -b , _ (6(1 _ ()) ) -b 
n - 1(1 - 1') cUHJ QR - /3(1 - (3) (2.3.33) 

FIOlIl EutlY 19(ix) of Chapt.er 19 [15, p. :315], we finel that 

(Q)4 (1?)'1 [ 1 1 J R + (,1 + 7 = 2V2 (16cn(1 - cv)(1 _1'))8 + 1 
~ f (lOa'lO - rr)(l - ,))11 

(2.3.3.4) 

and 

(QR)4 + (Q1n) 4 
+ 7 = 2V2 [(16.86(1 _ (3)(1 - 8))k + 1 1j. 

(16,88(1- ,8)(1- 0))11 
(2.3.35) 

Multiplying (2334) awl (2.3 3G), awl thPll llsiIlg (2.17)-(2.1.10), we find that 

Q8 + ~ + (R8 + _1 ) + 7 (qt\ + ~) (R4 + ~) + 40 = 8 (p6 + _1 +]"" + ~). (2.3.36) q8 RR (J" ~ R4 p6]"6 

Employing Lelllma 2.3.1, (2.:3.:36) ~'rUJ 1)(1 wIitt,(IJj a:; 

n8 
+ ~8 + (17 2 + ~2 + 3/ + 7 ( n4 + ~4) (n2 + ;2 + :3) + 47 

= 8 (pu + _1 + T(' + ~) . 
ph TI> (2\3.37) . 

Agaill [WIll Entry 5(xii) of CI\(~pt.el 10 [Hi, p. 231]' we find that. 

( (1(1- Ii)) + (LY(I - U)) = 2J2 1 1 _ (WnfJ( L - u)(l- f3))~ (2.3.38) t + [ 1 
- 0:(1 - 0') /3(1 -13) (160'/3(1 _ a)(l -/3))11 

anel 

(6~~ - 6~).t + (f}g - Jj) ~ = 2J2 ( 1 1 _ (Hh8(1 - ,)(1 - 6))kj. (2.3.~9) 
I.? -, - (16')'0(1- 1')(1- 6))8 

~u~tiplyillg (2.3.38) and (2.3.39), qnel then using (2.1.7)-(2.1.10), Wfl find that 
l .. ~{ 

I .' 12 1 - , 1 (1 1 ) T + - -t- Q12 + _ = 8 pfi + - - Rfi __ 
T12 Ql2 p6 R6 (23.40) , . 
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Usillg L<.'lIlllll1 2.3.1. ... ve deciucl' frolll (2.3.40) t.haL 

12 1 (6 1 6 1) (2 1 ) J (:2 1 ) T + TL2 = 8 P + pfj - R - RO - 17 + 172 + 3 + 3 17 + 172 + 3 . (2.3.41). 

Elilllinating T from (2.3.37) and (2.3.41), we filld thRL 

6J (8 (p" + ~,,) - 8 (no + ~,,) - (n' + I:' + 3) 1 + 3 (Il' + ~, + 3) + 2) 

~ ( n' + ~" + (n' + ~2 + 3)' + 7 ( Il' + ~,) (Ill + ~, + 3) + 47 - 8 ( p" + ~n))' (2.3.4 2) 

Tl'rtllsf('rrillg to UHf' sitk and Ul<'11 factol'illg by Ilfling Mathematica, we fiud that 

(nx+ ~R+i(lt'+ 1~(,)+14(Ir1+ ~1)+21(n2+ 1~2)-8(P(j+ ~(1)+42) 

( nil + l~H + 7 (17(, + ~fi) + 30 ( R 
1 + ~'1) + 5 ( R2 + ~:2) - 8 (pfi + ~fi) + 138) = u. 

It can he shown (hy Illllllcri('ally ciwckiug, or by 1Jsiug power series llIethod) t.hat. the second [actor 

~ 
is noL identically U. Thns, we all'iv(' at (2.1.14), which C()m~t(,fl Lhe proof of the theorem. 

Proof of Theorem 2.1.5.: From Lelllllla. 2.3.1 aud TI\('ol(~1l1 2.1 4 we easily deduce (2.1.1G), whIch 

Proof of Theorem 2.1.6.: We se't 

A:= (n,,),)*, D:= ((1 - n)(J - ")'))k, C:= (/J(5) * , Hnd D:= ((1- /3)(1 - (5))k (2.f43) . 

:;0 tha.t 

Employing (2.3.43) in the \"'eb(~r-Ralllanlljan "mixed" modular equation of degrees 1, 5, 7, and 35:-
I 

. "' . ([48; Vol. I, p. 309]; [18, p. 392]; [41, p. 41G], we not.e that 

(1+AC+BD)2_4(AC+BD+ABCD)-(1+AC+BD)(2ABC'D)1/3_2(2ABCD)2/3 = O. (2.3.45) 
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Using (2.3.44) we may rewrite (2.3.45) as 

(AC + DD)2 - (2 + p2)(AC + DD) + 1 - p2 - 2P" - 2p6 = O. 

Solving for AC + ED, we find that 

AC + ED = ~+ p 2 ± PV8 + 9p2 + 8P" . 
2 

Now by Entry 19(i) (15, p. 3141 

1 1 
( n')' ) 8 + (( 1 - n) (1 - ')')) 8 = 1. 

Therefore 

Employing (2.3.43) and (2.3.44), we rewrite (2.3.49) as 

Hence, 

where 

Using (2.3.51) ill (2.3.48), we filld that 

1 p3 
kl == - -~-

4 -/2J'.'I' 
r

M
,'" 

" 

1 1 h 
((1- 0')(1- ')'))ii = 2 =f Vk[. 

Proceeding in a :;;imilar way, we obtain 

33 

(2.3.46) 

(2.3.47) 

(2.3.48) 

(2.3.49) 

(2.3.50) 

(2.3.51) 

(2.3.52) 

(2.3.53) 
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and 

where 

1 P3T3 
k2 = 4" - y'2 . 

From (2.3.51), (2.3.52)' (2.3.53), aIHI (2.3.54), we deduce that 

AC + BD = ~ ± 2Jk1k2. 

From (2.3.47) and (2.3.55), we find that 

1 ~ 2 + p 2 ± P..j8 + 9p2 + 8p-1 
2" ± 2V klk2 = 2 . 

Thus, 

4Vklk2 = 1 + p2 ± P..j8 + 9p2 + 8P4. 

(2.3.54) 

(2.3.55) 

(2.3.56) 

(2.3.57) 

Squaring both sides of (2.3.57), and then simplifying by employing the expressions for kl and k2' 

we arrive at 

(2.3.58) 

Squaring both sides of (2.3.58) we easily deduce (2.1.16), which completes the proof. 

, 
Remark: AI~plying th~ same procedure to Weber's modular equation [41, p. 416] 

-.:~ 

(2.3.59) 
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we easily derive the new Schliifli-type "mix~d" modular equation . 
T12 + T112 - 18 (T6 + ;6) + 18h (T3 -t ;3) (p3 + ~3) - 8 (p6 + ~6) - 54 = 0, (2.3.60) 

where, now, in the expressions for P amI T, Q, (3, ,,(, and 0 are of degrees 1, 3, 7, and 21, respectively. 

Proof of Theorem 2.1.7.: We note that 

Q _ (a(1-a))14 _ (8(1-0))14 
R - (J - 'Y) and QR - /3(J -/3) 

7'\ " / 
(2.3.61) 

From Entry 19(ix) of Chapter 19 [15, p. 315], we find that 

(Q)4 + (QR)4 + 7 = 2V2 [(lGCl:"((l ~ a)(l - "())k + 1 1]' 
R (16a"((1 - a)(l - "()) 8 

(2.3.62) 

Also 

(QR)4 + (Q1R) 
4 
+ 7 = 2V2 [(16(30(1 - (3)(1- o))~ + 1 1]' 

(16,88{1 - ,8)(1 - 8)) 8 

(2.3.63) 

Multiplying (2.3.62) and (2.3.63), and then using (2.1.7)-(2.1.10)' we find that 

8 1 (8 1) (1 1)( 4 1) (6 1 6 1) Q + Q8 + R + R8 + 7 Q + Q1 R + R1 + 49 = 8 P + p6 + T + T6 . (2.3.64) 

" Now frolll t~e Ram8;JlUjan's Schliifli-type "~i~ed" modular equation in Notebook-I [48, p. 86], 
, .' 

which was proved by Ramanathan ([41, p. 420]; (!~, p. 379-3801), we note that 

(2.3.6~) 

where 

(2.3.66) 

Therefore, we have 

(2.3.67) 
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Again from Entry 13(xiv) of Chapter 19 [15, p. 282], we find that 

(3(1 - (3) 8 + a(l - a) n = 2 1 1 _ (16a{3(1- a)(l _ (3))f2 1 1 [ 1 
(<>(1- <») CJ(I- 11») (16<>11(1- <>)(1- 11»" 

(2.3.68) 

and, 

15(1 - 15) 8 + ,(1 -,) n = 2 1 1 _ (16,c5{1 -,){1 _ c5))f2 1 1 [ 1 
(,)'(1 - ')'») (0(1 - 0») (16')'0(1 -,),)(1 - 0» " 

(2.3.69) 

Multiplying (2.3.68) and (2.3.69), and then using (2.1.7)-(2.1.10), we find that 

6 1 6 1 (4 1 4 1) T +-+Q +-=4 P +--R -- . T6 Q6 p4 R4 (2.3.70) 

Thus, we have 

(2.3.71) 

where 

(2.3.72) 

Employing (2.3.(7) and (2.3.71) in (2.3.64), and then simplifying, we find that 

(2.3.73) 

: ;','" 

Factoring (2.3.73), we obtain 

(v - u3 + 5u2 
- 7u + 5)(v + u3 + 2u2 + 7u + 13) = O. (2.3.74) 

Thus, we deduce that 

v "- u3 + 5u2 
- 7u + 5 = 0, (2.3.75) , 

since the other factor never vanishes. Putting the expressions for u and v from (2.3.66) and (2.3.72), 

respectively, we easily deduce (2.1.17), which completes the proof. 
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Proof of Theorem 2.1.8.: For simplicity, we set 

1 ! 1 ! 
A:= (a,)a, B:= ((1- a)(1- ,))8, C:= (f30)a, and D:= ((1- f3)(1- 0))8 (2.3.76) 

so that 

pG = 2ABCD and T6 = CD/AB (2.3.77) 

Now from the Weber-Ramallujan "mixed" modular equation of degrees 1, 5, 11, and 55 ([48, Vol. 

I, p. 309]; [18, p. 391-392]; [41, p. 415-416]), we note that 

(2.3.78) 

where 

u = 1- AC - ED, 

v = 4{AC + BD - ABCD), 

ami W = (2ABCD)I/3 = p2. 

Setting x:=AC+BD, and then usillg (2.3.76)' we Illay rewrite {2.3.77} a.c:; 

(2.3.79) 

From Entry 7(i) of [15, p. 363], we note th~l 

A~ + E2 = t ~ 2 (~) 2 

Thus 

(AB)' = A' (1- 2;" _ A'). (2.3.81) 
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After some simplification, we arrive at 

and 

where 

Similatly, we find that 

and 

where 

Therefore, we obtain 

where 

and 

( 
p6 ) 1/2 

A2 = a ± a
2 

- 2T6 ' 

1 p2 
a = - --. 

2 T2 

;' 6 
2 P, 

kl = a - 21.'6' 

(2.3.82) 

(2.3.83) 

(2.3.84) 

(2.3.85) 

{2.3.86} 

(2.3.87) 

(2.3.88) 

(2.3.89) 

(2.3.90) 

Employing the value of x 2 from (2.3.88) in (2.3.79), and then simplifying by using Mathematica, 

we complete the theorem. 



Chapter 3 

Weber-Ramanujan's Class Invariants 

3.1 Introduction 

We set 

Iql < 1, 

and, recall frOIll (2.1.26) that 

(3.1.1) 

If q = exp( -7l' v'n); ''-where n is any positiv~ rational number. then Weber-Ramanuian's class 

invariants Gn and 9n are defined by 

(3.1.2) 

Note: This chapter is identical to our paper (6j, which has been accepted for publication in the 

Journal of Indian Mathematical Society. 

39 
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In his book, H. Weber [61] calculated 105 class invariants, or monic, irreducible polynomials satisfied 

by them. He was motivated to calculate class invariants so that he could construct Hilbert class 

fields. At the scattered places in his first notebook [48], Ramanujan recorded 107 class invariants, 

or monic, irreducible polynomials satisfied by them. On pages 294-299 in his second notebook [48), 

he recorded a table of 77 class invarints, three of which are not found in the first notebook. By 

the time Ramanujan wrote his paper [47], he came to know about Weber's work, and therefore his 

table of 46 class invariants in [47] does not contain any that are found in Weber's book [61]. Except 

for 9325 and G363 , all of the remaining values are found in his notebooks [48]. G.N. Watson [54]-[60] 

established 28 of these 46 class invariants. Ten of the class invariants had been proved by using 

Ramanujan's modular equations and the rest had been proved by using his unrigorous "empirical 

process" . So, after Watson's work, 18 invariants ,of Ramanujan from his paper [47] and notebooks 

[48] remained to be verified. These 18 class invarints are: G65 , G69 , G77 , G Il7 , G141 , G I4S , G153 , 

B.C. Berndt, H.H. Chan, L.C. Zhang [24), [26]. In [24], five of the invariants, viz., G1l7 , G153 , G441 , 

990, and 919S, are proved by employing two new theorems that relate G9n with Gn , and 99n with 9n' 

respectively. In [26], they used modular equations to prove six of the remaining thirteen invariants. 

To prove the other seven invariants via modular equations, one-needs modular equations of degrees 

31, 41, 43, 53, 79, 89, and, 101. But, only for degree 31 Ra~~nujan recorded modular equatio~/:l, 
• J 

for he recorded no modular equations for the other degrees. They could not utilize those modular 

equations of degree 31 to effect a proof for G217 . They [26] proved all the remaining invariants, 

including G2I7 , by using Kronecker's limit formula, an idea completely unknown to Ramanujan, and 

Watson's "empirical process." For a detail discussion on their evaluations see Berndt's book [18]. 

\>-t ~,~ ~k~ 
,,<-; 'Y'~ \(J;~ '0'-1 tV, Jj\j" 

(V\~ ~~r1 
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In Section 3.3, we shall establish the class invariant G217 by using Ramanujan's modular equations 

of degrees 7 and 31. In Section 3.4, we employ, for the first time, some of the SchHifti-type "mixed" 

modular equations discussed in Chapter 2, along with some other Schliifli-type modular equations 

of prime deglees to evaluate Ilamanujall's cla.'is iuvariauts G15 , G21 , G33 , G39 , G55 , and G65 • It 

is worthwhile to note that our evaluation of G65 is much more easier than that of Berndt, Chan, 

and Zhang [18], [26]. Most important feature of our method is that we can also simultaneously 

get the values of G,/" G7/" Gu /" G l3/" Gu /" and Gl3/,. previouslf.1th~?eI~~ found by 

verifications. We also note that, these class invariants can be utilised to find some of the explicit, 

values of the famous Rogers-Ramanujan ~ontinued fraction, R(q), defined by 

Iql < 1, (3.1.3) 

some of the values of Ramanujan's product of theta-functions am,n (m, n are positive integers), 

recorded on pages 338-339 of his first notebook [48], and defined by 

and, the values of the quotient of eta-functions, An, recorded by Ramanujan on page 212 of his lost 

notebook [49], and defined by 

For details of the above evaluations see [25], [27], and [30]. 
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We complete this introduction by noting that, since from (2.1.37), 

it follows from (3.1.2) that 

Gn = {4a(l- a)/q}-1/24 and (3.1.4) 

where (3 has degree r over a and q = exp( -7rfo). 

3.2 Preliminary Lemmas 

In this section we stat.e some lemmas which will he used in our evaluat.ion. 

Lemma 3.2.1 ({18, p. 247j; {26}}If (3 has degree r over a, then (3 hqs degree paver 1 - a, where 

p and r are two coprime positive integers. 

In the next three lemmas we state three SchUifli-type modular equations of Ilamanujan [15, pp. 

231, 282, 315] for prime deglees. 

Lemma 3.2.2 Let 

P = {16a(3(1 - a)(1 - (3)} 1/8 

Then 

where (3 has degee 3 over a. 

and Q = ((3(1 - (3)) 1/4 

a(l - a) 
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Lemma 3.2.3 Let 

P = {16a,8(1 - a)(l - ,8)}t/12 

Then 

where ,8 has degee 5 over a. 

Lemma 3.2.4 Let 

P = {16a,8(1 - a){l - ,8)}t/8 

Then 

and 

and 

Q = (,8{1- ,8))1
/
8 

a(l - a) 

Q = (,8(1 - ,8)) 1/6 

a(l - a) 

Q + ~ + 7 = 2v'2 (p + ~) , 

where ,8 has degee 7 over a. 

43 

In the following three lemmas, we state three of Ramanujan's Schliifli-type modular equations 

for composite degrees. 

Lemma 3.2.5 ([48, Vol. I, p. 86), /15, p. 324}) i.r a, ,8, roy, e~~ ~ have de,qrees 1, 3, 5, and 15, .. 
,', 

respectwely, then 

(3.2.1) 

Lemma 3.2.6 ([48, Vol. I, p. 88J, [18, p. 381}) If a, ,8, roy, and ~ have degrees 1, 3, 13, and 39, 

respectwely, then 

4 1 (2 1) (2 1) Q + Q4 - 3 Q + Q2 - R + R2 + 3 = O. (3.2.2) 
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Lemma 3.2.7 ([48, Vol. I, p. 88J, [18, p. 381]) If a, (3, I, and fJ have degrees 1, 5, 13, and 65, 

respectively, then 

(3.2.3) 

The next lemma due to Landau [40, p. 53] will be very useful ill simplifying some of our redicals. 

~~ 

Lemma 3.2.8 If a2 
- qb2 = d2

, a perfect square, then 

J /a+d ~ a+bJq= V~-2- + (sgnh)V~-2-' (3.2.4) 

Our last lemma is originaly due to Bruce Reznick. For a proof via Chebyshev polynomials one 

may see [28, p. 150]. 

Lemma 3.2.9 If a, b ~ 1/2, then 

{(8a2 -1) + V(8a2 -1)2 -Ir/4 
= /a+ ~ + F ~ (3.2.5) 

and 

(3.2.6) 
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3.3 Class invariant G217 

Theorem 3.3.1 

~ fI[li 1/2 ~ ~1/2 
G = ( 11 + 4 J7 9 + 4 J7) (12 + 5 J7 16 + [) J7 

217 2 + 2 4 + 4 

Proof: From Entries 19(i) and 19(iii) of Berndt's book [15, p. 314], we note that 

(3.3.1) 

and 

( 
7)1/8 ((1- )7)1/8 7 ~ - a = _ (1 _ (af3(l - a)(l- 13)1/8), 

13 (1 - 13) m 
(3.3.2) 

where 13 has degree 7 over n, ami m is t.he lHultiplier connecting a and 13. 

Multiplying (3.3.1) and (3.3.2), we find that 

a(l - (3) + (3(1 - a) = A [7(1 - A)2 + (af3)3/4 + ((1 - a)(l - (3))3/4] , (3.3.3) 

where A = (af3(l - 0:)(1 - 13))1/8. ' 

Now, by the first cqualit.y of Entry 19(i) of Berndt's hook [15, p. 314], we obtain 

(af3)3/4 + ((1 - a)(l - 13))3/4 = 1 - 6A + 9A2 - 2A3. (3.3.4) 

From (3.3.3) and (3.3.4), we deduce that 

a(l - (3) + 13(1 - a) = 2A (4 - lOA + 8A2 
- A3

) • (3.3.5) 

Now, suppose, G31/ 7 = (4a(1- a))-1/24. If {3 has degree 7 over a, then, by (3.1.4), we find that 

G217 = (413(1 - (3))-1/24. 
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Thus, 

(3.3.G) 

We now lecall the following two modular equat.iolls of degree 31 from Ent.lies 22{ii) and (iii) of 

Berndt's book (15, p. 439]. 

and 

1 + (u,8)I/-1 + ((1 - u)(1 - ,8))1/-1 - 2((u,8)I/B + ((1 - 0:)(1- ,8))1/8 + A) 

1 + (0'.,8)1/-1 + ((1 - 0'.)(1- ,8))1/-1 - (~{1 + (0'.,8)1/2 + ((1 _ 0'.)(1- ,8))1/2}) 1/2 

= (0:,8)1/8 + ((1 - 0'.)(1- ,8))1/8 + A, 

where ,8 has degIee 31 over 0'.. 

Replacing 0'. by 1 - 0'. in (3.3.7) and (3.3.8), and employing Lemma 3.2.1, we obtain 

1 + {(I - 0'.),8} 1/4 + {0'.(1 - ,8)}1/-1 - 2[{(1 - O'.),8}I/B + {0'.(1- ,8)}I/B + A] 

and 

[
1 ] 1/2 

1 + {(I - 0'.),8} 1/4 + {0'.(1- ,8)}1/4 - 2{1 + /(1- 0'.),8 + /0'.(1 -,8)} 

= {(I - O'.),B}I/B + {0'.(1 - ,8)} liB + A, 

where, now, ,8 has degree 7 over 0'.. 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 
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From (3.3.5), (3.3.9) and (3.3.10), we arrive at (simplification is done by using Mathematica) 

1 - 160A - G6848A2 - 4978240A3 i- 88485264A4 - 657312128A5 + 2752494208A6 

-72353151GGA7 + 1252232:J010AR 
- 11170G30012AII _? llOOg97G832A 10 - G258497024A II 

+14157G4224A 12 
- 159303G80A I3 

- 4278272A I
" - 20480A I5 + 25GA 16 = O. {3.3.11} 

Factoring the left side of {3.3.11} by using Mathematica, we find that 

(1 - 37GA + 1048A2 - 752A3 + 44")(1 - 8A + 24A2 - 16A3 + 4A")(1 + 224A 

+15088A2 - 80192A3 + 166728A4 
- 160384A5 + 60352A6 + 1792A7 + 16AB

) = O. (3.3.12) 

Thus, 

1 - 37GA + 1018A2 - 752A3 + 4A" = ~ 0 (3.3.13) 

Since from the other two factors we will not get positive real values of A. 

We can ~ewrite (3.3.13) as 

A2 (4A2 + 12 - 37'q (3~ -!- ~) + ~048) = O. 
: I 

(3.3.14) 

Since A 2 i= 0, we find that 

( 1)2 1 
2A + A - 376 (2A + A) + 1044 = O. (3.3.15) 

Solving (3.3.15), we fiud that. 

l 
2A + --- = 188 + 700. 

A. 
(3.3.16) 

Hence, 

~ - 2A = 2V17409 + 65800. (3.3.17) 
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From (3.3.16) and (3.3.17), we obtain 

~ = 94 + 35v7 + J 17409 + 6580v7. (3.3.18) 

Now, by Lemma 2.2.4, we note that 

Q + ~ = 2 (2A + ~) - 7, (3.3.19) 

where Q = (G217/G31/7)1. From (3.3.16) and (3.3.19), we find that 

1 
Q + Q = 369 + 140J7. (3.3.20) 

Solving (3.3.20) for Q, we obtain 

Q = ~(3G9 + 140v7 + J273357 + 103320v7). (3.3.21) 

From (3.3.6), (3.3.18) and (3.3.21)' we deduce that 

. ( ) 1/6 ( G _ 94 + 35V7 17409 + 6580V7 369 + 140V7 
217 - V2 + 2 2 + 

,----------,. 1/8 
273357 + 103320V7 

4 

(3.3.22) 

Now, substituting a = (14 + 5V7)/4 in Lemma 2.2.9] we finq tlJat 

(309 + ; 40 v'7 + 273357 + :03320v'7 1/' = J12 +45v'7 + to +45 v'7 , 

Hence, it remains to show that 

94+35V7 17409+ 6580V7 = (Jll+4v'7 J9+4v'7)' 
V2 + 2 2 + 2 ' 

which is a routine work. This completes the theorem. 



3.4. CLASS INVARIANTS FROM "MIXED" MODULAR EQUATIONS 49 

3.4 Class invariants from "mixed" modular equations 

Theorem 3.4.1 

and G = 21/1 Vi.) - 1 
( 

rr. )1/3 
,5/3 2 

Proof: If 

Gn = (4a(1 - a))-1/21 

and /3, " and fJ have degrees 3, 5, and 15, respectively, over a, then by (3.1.4), we obtain 

G971 = (4,8(1 - ,8)tl/24, G25n = (4,(1- ,))-1/21 and G225n = (46(1- 6))-1/24. (3.4.1) 

Employing Lemma 3.2.3, we find that 

(3.4.2) 

Putting 11, = 1/15 in (3.4.2), we obtain 

(3.4.3) 

where we have used the fact that, Gn = G1/ n . 

Now, by Lemma 3.2.5, we obtain that 

( GnG22sn) 3/2 + (G971G2571 )3/2 = . '2 [(G G G G )1/2 1 1 
G G G G v L, n 971 25n 225n + 1/2 . 

971 25n n 22571 ( G 71 G 9n G 25n G 225n) 
(3.4.4) 

Putting n = 1/15 in (3.4.4), we find that 

(3.4.5) 
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Setting x := G15G5 / 3 in (3.4.3) and (3.4.5), we deduce that 

As x + ~ > 0, from (3.4.6), we conclude that 

1 
v2(x - -) = 1. 

x 

Solving (3.4.7) for x, we find that 

Using this value of x in (3.4.5), we deduce that 

Solving (3.4.9) for y3, we find that 

From (3.4.8) and (3.4.10), we obtain 

and 

Now, [10m Lemma 3.2.8, we see that 

1 
y3 + _ = 3, 

y3 

V3 ± v'5 = V5/2 ± fli2. 
Thus, from (3.4.11) and (3.4.12), we can arrive at the required values of G 15 and G5/ 3• 

(3.4.6) 

(3.4.7) 

(3.4.8) 

(3.4.9) 

(3.4.10) 

(3.4.11) 

(3.4.12) 
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Theorem 3.4.2 

_ (J3 + v'7) 1/4 (3 + v'7) 1/6 

G21 - 2 J2 and 
_ (v'7 - J3) 1/4 (3 + v'7) 1/6 

G7/ 3 - 2 J2 

Proof: As ill the proof of Theorem 3.1.1, if 

f-' and (3, " and 0 have degrees 3, 7, and 21, respectively, over 0:, then by (3.1.4), 

G911 = {4(3(1 - (3)t 1
/

24
, G49n = {4,(1 - ,)t l

/
24 and GH1n = {46(1 - 0))-1/24. (3.4.13) 

Therefore, by LelIllIla 3.2.2, we find that 

(3.4.14) 

Putting n = 1/21 in (3.4.14)' we deduce that 

(3.4.15) 

where we have again used the fact that, Gn = G1/ n . 

Now, by Theorem 2.1.4, we deduce that 

R4 + ~4 + 7 (R3 + ~3) + 14 (R2 + ~2) + 21 (R + ~) - 8 (p6 + ~6) + 42 = 0, (3.4.16) 

where, now, 

and 
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Putting n = 1/21 in (3.4.16), we find that 

Solving (3.4.17) for (G21G7/3rl, we obtain 

Employing (3.4.18) in (3.4.15), we find that 

( G21 )6 + (G7/3)6 = 2J2 (3 + J7 _ y'2 ) = 4../7. 
G7/ 3 G21 vf2 3 + V7 

Solving (3.4.19) for (G21 /G7/3)6, we obtain 

From (3.4.18) and (3.4.20), we obtain 

and 

G12 = (v17 - V3)3 (3 + vI7)2 
7/3 2 y'2 

(3.4.17) 

{3.4.18} 

(3.4.19) 

(3.4.20) 

(3.4.21) 
~ 2 ,1 

" , . , 
-1 -~!.' f 

. !. 

(3.4.22) 

From (3.4.21) and (3.4.22), we get the required valueR of G21 and G7/:l nH givon in the theorem. 

Theorem 3.4.3 

G = (3 + VII) 1/6 (1 + V3) 1/2 33 y'2 y'2 and G = (VII -3) 1/6 (1 + J3) 1/2 

11/3 y'2 y'2 
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Proof: In this case also, if 

Gn = (4a(1 - a))-1/24 

and (3, " and 6 have degrees 3, 11, and 33, respectively, over a, then by (3.1.4), 

By putting 17, = 1/33 in (3.4.14), we deduce that 

(3.4.24) 

Now, by Theorem 2.1.2, we find that 

2 1 ( 1) (2 1) T + T2 + 3 T + T - 2 P + p2 = 0, (3.4.25) 

where, now, 

ami 

Putting 17, = 1/33 in (3.4.25), we find that 

(3.4.26) 

Solving (3.4.26) for (G33G 11/3) 2, we obtain 

( )2 (1 + v'3)2 
G33GlI / 1 = 2 + J3 = J2 (3.4.27) 

Employing (3.4.27) in (3.4.24), we find that 

(~)6 + (Gll/3)6 = 20. 
G11 / 3 G33 

(3.4.28) 
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Solving (3.4.28) for (G33/Gll / 3)6, we obtain 

( 
G33 )6 = 10 + 3v'li = (3 + JIT)2 

G ll / 3 V2 
(3.4.29) 

From (3.4.27) and (3.4.29), we obtain 

G12 = (1 + v'3)6 (3 + JIT)2 
33 V2 V2' (3.4.30) 

and 

G12 _ (1 + v'3)6 ( V2 )2 
11/3 - V2 3 + JIT (3.4.31) 

From (3.4.30) and (3.4.31), we can easily find the values of Gll and Gll / 3 . 

Theorem 3.4.4 

G = 21/4 (JI3 + 3)1/6 (/5 + /i3 / /i3 - 3) 
39 2 8 + 8 

and 

G = 21/4 (JI3 + 3) 1/6 (/5+ /i3 _ / /i3 - 3) . 
13/3 2 8 8 

Proof: As above, if ,1 

.. ~ -.. ~~ 
J_" ~ \ ~_ 

-.t{ 

Gn = (4a(1 - a))-1/24 

and {3, " and 0 have degrees 3, 13, and 39, respectively, over a, then 

GOn = (4,8(1- (3))-1/24, G160n = (4,(1- ,))-1/24 and G1521n = (40(1- 0))-1/24. (3.4.32) 

Putting n = 1/39 in (3.4.14), we Find that 

(3.4.33) 
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Now, by Lemma 3.2.6, we obtain 

Q' + ~, - 3 ( Q + ~) - (R + ~) = 0, 

where 

and 

Putting n = 1/39 in (3.4.34), we find that 

(~)4 + (G13/3)4 _ 3 (~)2 + (G13/3)2 :t 1 = O. 
G13/3 G3<J G13/3 G~<J 

Therefore, we obtain 

(~)2 + (G13/3)2 = 3 + JI3. 
G13/3 G39 2 

Solving (3.4.36) for (G39/G13/3) 2, we find that 

( 
G39)2 = ~ [3+vTI +/3+3vTI]. 

G13/3 2 2 2 

Employing (3.4.37) in (3.4.33), we find that 

Solving (3.4.38) for (G39G13/3) 3, we find that 

(G G )~ _ ! [27 + 7v13 
39 13/3 - 2 4V2 + 

747 + 189JI3 
16 

Since, 7472 - 13.1892 = 3062, by Lemma 3.2.8, we note that 

V747 189 Ij'J = t47 + 306 t47 -306 = 21 + 9vTI + V 1,) 2 + 2 V2' 

55 

(3.4.34) 

(3.4.35) 

(3.4.36) 

(3.4.37) 

(3.4.38) 

{3.4.39} 
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Thus, from (3.4.39), we find that 

(3.4.40) 

From (3.4.37) and (3.4.40), we obtain 

G12 = (3 '13)2 [3+ v'i3 J3+ 3v'i3]' 39 + V 1,j 2 +. 2 (3.4.41) 

Therefore, 

~
1/4 

G = 21/4(3 '13)1/6 [3 + Ji3 ~ 3 + 3Ji3 
39 + V 1,j 4. + 2 2 (3.4.42) 

Now, putting a = (1 + Ji3)/8 in Lemma 3.2.9, we obtain 

(3+ v'i3 /3+ 3v'i3f4 = /5 + v'i3 /v'i3 -3 
4 + 8 8 + 8· 

Thus, we arrive at the lequired value of G39 . Similarly, we can get the value of G l3 / 3 . 

Theorem 3.4.5 

0 55 = 2'('(2 + J5ll" (t;8 11'5 + /11'58- 1) 

and 

OLL/5 = 2'/4(2 + 11'5)'/4 ( /7 +811'5 - /11'58- 1) . 
Proof: As in the previous proofs, if 

Gn = (4a(1 - a))-1/24 

and {3, " and 0 have degrees 5, 11, and 55, respectively, over a, then by (3.1.4) 

G 25n = (4{3(1 - (3)t 1
/

2\ G l2ln = (4,(1 - ,))-1/24 and G3025n = (40(1 - 6))-1/24. (3.4.43) 
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By putting n = 1/55 in (3.4.2), we deduce that 

( 
G 55 ) 3 ( G 11 15) 3 [( ) 2 1 1 - + - == 2 G55Gll/5 - 2 . 

G ll / 5 G 55 (G55 G ll / 5) 

By Theorem 3.1.8, we deduce that 

where 

3
1 

(21) ( 1) 2 1 T + - - 5 T + - + 10 T + - (P + - - 1) T3 T2 T p2 

-4 (p4 + J-.) + 10 (p2 + J-.) - 25 = 0 P{ p2 ' 

T = GnG121n 

G25nG3025n 
and 

Putting n = ,1/55 in (3.4.45), we find that 

4 (p4 + ~1) - 30 (p2 + ~2) + 53 = 0, 

where, now, p 2 = 1/ (G55Gll/5 f . 
From (3.4.46), we deduce that 

2 1 H'l + 3v's 
P+[ii= 4 . 

Solving for 1/ p2, we find that 

~ _ 15 + 3V5 !.j103+ 45V5 
p2 - 4 + 4 2 . 

Since, 1032 - 5.452 = 222, we see from Lemma 3.2.8 that 

Thus 

1 
p2 = 3 + v's. 

57 

(3.4.44) 

(3.4.45) 

(3.4.46) 

(3.4.47) 

(3.4.48) 

(3.4.49) 
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Employing (3.4.49) in (3.4.44), we find that 

(~)3 + (G ll/5 )3 = 9 + 5V5. 
Gll/5 G55 2 

(3.4.50) 

Solving (3.4.50) for (G55 /G IL /5)3, we obtain 

(3.4.51 ) 

From (3.4.49) and (3.4.51), we deduce that 

(3.4.52) 

Thus, 

G55 = 21/4(2 + J5)116 9 + :V5 + /95 + ;5V5 
( )

1/6 

(3.4.53) 

Now, substituting b = (3 + V5)/8 in Lemma 3.2.9, we see that 

(
9+5V5 /95 + 45V5) 1/6 =t+ VS /VS- 1 

4 + 8 8 + 8 
(3.4.54) 

This completes the evaluation of G55 . The value of Gu/s can be deduced similarly by using (3.4.49) 

an~ (3.4.51). 

Theorem 3.4.6 

and 

G = (J13 -3)1/4 (V5 _1)1/4 (/9+,J65 /1+ ,J65)'" 
13/5 2 2 8 + 8 
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Proof: Here also, if 

and /3, 'Y, and 0 have degrees 5, 13, and 65, respectively, over a, then as in the previous proofs, by 

(3.1.4) 

G25n = (4,8(1 - ,8))-1/2"', G169n = (4'Y(1 - 'Y))-1/24 and G4225n = (40(1 - 0))-1/24. (3.4.55) 

By putting n = 1/65 in (3.4.2), we deduce that 

( 
G 

)3 (G )3 [ 1 65 13/5 2 1 
C- + G = 2 (G65GI3/5) - ( )2 . 

13/5 65 G65G13/5 

By Lemma 3.2.7, we deduce that 

where, now, 

and R = GnG2Sn 

G169nG422Sn 

Putting n = 1/65 in (3.4.57), we find that 

( Q3 + ~3 ) - 20 ( Q + ~) - 42 = 0, 

- 2 

where, now, Q = (G6S/GI3/5) . 

From (3.4.58), we obtain 

Solving for G65/G13/51 we find that 

G" =t+..J65+/..J65-1 
G13/ 5 8 8 

(3.4.56) 

(3.4.57) 

(3.4.58) 

(3.4.59) 

(3.4.60) 
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Invoking (3.4.60) in (3.4.56), we find that 

2 [(G65G13/5)2 - 1 2] = )74 + 1OJ65. 
• (G65G13/5) 

(3.4.61) 

Solving (3.4.61) for (G65G 13/5) 2, we find that 

(3.4.62) 

Thus, we deduce that 

(3.4.63) 

Since, 902 - 65.102 = 402 , from Lemma 3.2.8, we see that 

Hence, 

G G - J9+..fG5 JI+..fG5 
65 13/5 - 8 + 8' (3.4.64) 

From (3.4.60) and (3.4.64), we deduce that 

C2 :;:: (J7+..fG5 J..fG5 - 1) (J9 + ..fG5 Jl + ..fG5) 
65 ; 8 . + 8,. 8 + 8 

r • 

(3.4.65) 

and 

C2 = (t +..fG5 - J..fG5 - 1) (J9+..fG5 JI+ ..fG5) . 
13/6 8 8 8 + 8 (3.4.66) 

Now, simple calculation shows that 

(17+ 8..fG5 ± J ~ -1)' = (~ ± 3) (V52± 1) . (3.4.67) 

Using (3.4.67) in (3.4.65) and (3.4.66), we easily arrive at the required class invariants. 

As mentioned in the Introduction, we have seen that our evaluation of G65 is much easier than 

that of Berndt, Chan and Zhang [18], [25]. 



Chapter 4 

Eta-Function Identities 

4.1 Introduction 

The classical Dedekind eta-function 7](z) is defined by 

(4.1.1) 

Following Ramanujan's notations, we set q = exp(27r1,z) and 

(4.1.2) 

In the unorganized portions of his second notebook [48], Ramanujan recorded without proofs 

25 beautiful identities involving quotients of only eta-functions and no other theta-functions. 

Note: This chapter is identical to our paper [5j, which has been accepted for publication in the 

Indian Journal of Mathematics. 
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8. C. Berndt and L.-C. Zhang proved some of Ramanujan's eta-functions identities in [23]. 

Proofs of all 25 identities recorded by Ramanujan are given in Chapter 25 of Berndt's book 

[17]. 19 identities were proved by employing modular equations and parameterization and 6 

were proved by invoking to the theory of modular forms. But in many of their proofs via 

parameterization, and in all the proofs via modular forms the identities must be known in 

advance. So those proofs may be merely called verifications. In this chapter, we prove five 

of these identities by using Ramanujan's other eta-functions identities and one of our newly 

derived identities. The remarkable feature of our method is that new identities can also be 

derived by this method. We note that in Section 7.6 of our last chapter, we find three new 

theta-function identities in course of deducing some modular equations for Ramanujan's cubic 

continued fraction. 

4.2 Ramanujan's Identities 

We will prove the following eta-functions identities of Ramanujan: 

Theorem 4.2.1 ([48, p. 314J; [17, p. 186J) If 

f( -q3)f( _q6) 
U - and 

- qi f( -q9)f( _q18) 

then 

(4.2.1) 

Theorem 4.2.2 ([48, p. 330J; [17, p. 218j) If 

P = /( -q6)f( _q5) and Q = ~(-q3)f( _qlO) , 
q"4 f( -q2)f( _q15) q"4 f( -q)f( _q30) 
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then 

1 (Q)2 (P)2 PQ + 1 + PQ = P + Q (4.2.2) 

Theorem 4.2.3 ([48, p. 313}; [17, p. 230}) If 

then 

25 (Q)2 (p)2 (Q P ) PQ + PQ = P + Q - 3 P + Q + 2 . (4.2.3) 

Theorem 4.2.4 ([48, p. 327}; [17, p. 233]) If 

then 

(4.2.4) 

Theorem 4.2.5 ([48, p. 327}; [17, p. 235]) If 

then 

5 (Q)2 Q P (P)2 PQ + - = - + 3- + 3- - -PQ P P QQ' (4.2.5) , 

Ramnujan incorrectly recorded the entry in Theorem 4.2.5 as 

In Theorem 4.2.1 we have slightly changed the notations used by Ramanujan. 
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The existing proofs of these theorems in the literature [17, Chapter 25] involves heavy 

amount of algebraic manipulation and could not have been accomplished without prior knowl-

edge of the identities. Here we prove these theorems by using other eta-function identities 

whose proofs via modular equations can be found directly. 

4.3 Proof of Theorem 4.2.1. 

We set 

We note that 

PR= ~ and QS = v. 
u 

From Entry 56 [17, p. 210], we find that 

Employing (4.3.1) in Entry l(iv) [15, p. 346], we find that 

( 
9 )3 27 

1 + Q3 = 1 + p12' 

Replacing q by q2 in (4.3.4), and then employing (4.3.1), we obtain 

( 
9 )3 27 

1 + S3 = 1 + R12' 

We may rewrite (4.3.4) and (4.3.5) in simplified form as 

Q9 = Q6 + 9Q3 + 27 
p12 

(4.3.1) 

(4.3.2) 

(4.3.3) 

" , 
• Ii;"', 

(4.3.4) 

(4.3.5) 

(4.3.6) 
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and 

59 6 3 
R12 = 5 + 95 + 27, 

respecti vely. 

MUltiplying (4.3.6) and (4.3.7), we obtain 

Invoking (4.3.2) and (4.3.3) in (4.3.8), and then simplifying, we arrive at 

Factorizing (4.3.9), we find that 

U
l2 

-3 - (v 2 + 3v + 9)3 = O. 
V 

65 

(4.3.7) 

(4.3.9) 

(4.3.10) 

From (4.3.10) we readily arrive at (4.2.1), since the second factor on the left hand side can not 

be O. Thus we complete the proof. 

4.4 Proof of Theorem 4.2.2. 

We set 

L1 := 
f(-q) 

L2 := 
f(.-q5) 

1 , 6 , 
qT2 f( _q3) qT2 f( _q15) 

Ml := 
f( _q2) 

and, M2 := 
f( _q10) 

(4.4.1) 1 q~ f( _q30) , qfi f( _q6) 

so that 

P= L2 
, M} 

. and Q= M2 
L} . ( 4.4.2) 
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Employ~ng (4.4.1) in Entry 51 [17, p. 204], we obtain 

( 4.4.3) 

Replacing q by q5 in the same Entry, and then employing (4.4.1) again, we find that 

( 4.4.4) 

Multiplying (4.4.3) and (4.4.4), and then applying (4.4.2)' we obtain 

(4.4.5) 

Now employing (4.4.1) in Entry 59 [17, p. 214], we find that 

(4.4.6) 

Using (4.4.2) in (4.4.6), we obtain 

(4.4.7) 

Squaring both sides of (4.4.7), we arrive at 

(4.4.8) 
'.I 

From (4.4.5) and (4.4.8), we obtain 

(4.4.9) 
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Employing (4.4.1) in Entry 60 [17, p. 215], and then using (4.4.2), we find that 

(4.4.1O) 

Squaring both sides of (4.4.10), and then invoking (4.4.9), we obtain 

( 1 ) 2 Q 6 (P) 6 { 2 1} 
PQ + PQ - 4 - 2 + (p) + Q - 9 (PQ) + (PQ)2 

= { (~)' _ 4 (~) _ 4 (~) + (~) '} 
2 

- 18. (4.4.11) 

Simplifying (4.4.11), we arrive at 

( Q)2 (P)2 (Q)4 (P)4 2 1 1 
P + Q - P - Q + (PQ) + (PQ)2 + PQ + PQ' (4.4.12) 

Factorizing (4.4.12), we find that 

(4.4.13) 

Thus, we arrive at 

1 (Q)2 (p)2 PQ + - - - - - + 1 = 0 PQ P Q . (4.4.14) 

since the other factor can not be O. This completes the proof. 

4.5 Proof of Theorem 4.2.3. 

First of all, we prove the following new eta-function identity. 

Lemma 4.5.1 If 
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then 

Proof of Lemma 4.5.1.: Let 

By Entries 12(i) and (iii) in Chapter 17 of [15, p. 124], we find that 

and 

1 

Rl = ZlZ3 (atJ(1- a)(1 - tJ)) 24., 

Z5 Z 15 18(1 - 1)(1 - 8) 

1 

Ql _ ZlZ3 (atJ(1 - a)(1 - tJ)) 12 

- Z5 Z 15 10{1 - 1)(1- 0) , 

(4.5.1) 

(4.5.2) 

(4.5.3) 

where tJ, " and 0 have degrees 3, 5, 15, respectiveJy, over a. From (4.5.2) and (4.5.3) we readHy 

see that 
1 

Ql = (atJ (1 - a)(1 - m) 24 , 

Rl 18(1 - 1)(1 - 0) 
( 4.5.4) 

and 

(4.5.5) 

Now by Entries l1(xii), (xiii), respectively, in Chapter 20 of [15, p. 384], we note that 

1 1 1 1 

( 
10) 4 + ({I -1)(1 - 0)) 4 + ( 10(1 - 1)(1 - 0) ) 4 _ 2 ( 10(1 - 1)(1 - 0) ) 8 

a{3 (1 - a)(l - (3) a{3(l - a)(l - (3) atJ(l - a)(l - tJ) 

(4.5.6) 

and 

1 1 1 1 

(
atJ) 4 + ((1 - a)(1 - tJ)) 4 + (atJ (1 - a)(1 - m) 4 _ 2 (atJ (1 - a)(1 - tJ)) 8 

10 (1 - 1)(1 - 0) 10(1 - 1)(1 - 0) 10(1 - 1)(1 - 0) 
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x {I + (0'.(3) k + ((1 - 0'.)(1 - (3)) k} = 25~. 
,0 (1 - ,)(1 - 0) Z5Z15 

(4.5.7) 

For simplicity, we set 

1 1 1 

X := ('0) 8 + ( (1 - ,)(1 - 0)) 8 ( ,0(1 - ,)(1 - 0) ) 8 
0'.(3 (1 - 0'.)(1 - (3) and y:= 0'.(3(1 - 0'.)(1 - (3) , 

so that 

(4.5.8) 

Then from (4.5.6), we find that 

(4.5.9) 

Also, from (4.5.7), we find the reciprocal equation of (4.5.9) as 

(4.5.10) 

Combining (4.5.9) and (4.5.10), we obtain 

1 1 

( 
ZIZ3)2 (4 Z5 Z15)

2 

Y ± 4y + -- = 1 ± y - + 25--
Z5 Z 15 Y Z1 Z3 

(4.5.11) 

Employing (4.5.4), (4.5.~), al)O (4.5.8) in (4.5.11), we fino that 

(4.5)2) 

We rewrite (4.5.12) as 

3 2 1 3 4 1 

R3 Q3 ±R3(4Ql Ql)2 Q3(4Rl Rl)2 
1 - 1 = 1 R~ + 25 Rt =t= 1 Q~ + Q~ . (4.5.13) 

Squaring both sides of (4.5.13), and then simplifying, we arrive at 

(4.5.14) 
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Dividing both sides of (4.5.14) by RlQl, we find that 

( 4.5.15) 

If we replace q by -q then RIQI transforms to PIQI and RUQl transforms to Pl/Ql. Thus 

(4.5.15) is transformed to (4.5.1), which completes the proof of the lemma. 

Proof of the main theorem: We set 

MI := 
f( _q2) 

and, M2 := 
f( _q6) 

(4.5.16) 1 qf( _q30) , q3 f( _qIO) 

so that 

P = LIMI and Q = L 2M 2 • (4.5.17: 

Employing (4.5.16) in Entry 53 [17, p. 206], we find that 

(4.5.18) 

Rep~aci~lg q by q3 in the same entry, and then employing (4.5.16)' we find that 

(4.5.19) 
) 

Multiplying (4.5.18) and (4.5.19), and then applying (4.5.17), we obtain 

=PQ+-+5 -+-25 (Q P) 
PQ P Q . (4.5.20) 
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Employing (4.5.16) and (4.5.17) in Entry 59 [17, p. 214), we find that 

(4.5.21) 

From (4.5.20) and (4.5.21), we find that 

(4.5.22) 

Now invoking (4.5.16) and (4.5.17) in the above lemma, we find that 

(4.5.23) 

From (4.5.22) and (4.5.23) , we obtain 

( 
100) 1/2 (P Q) 41 + 4PQ + - = 3 - 2 - + -PQ Q P . (4.5.24) 

Squaring both sides of (4.5.24), and then simplifying, we readily deduce (4.2.3), completing the 

proof of the theorem. 

4.6 Proof of Theorem 4.2.4 

We note from Entry 24{iii) [15, p. 39] that 

(4.6.1) 

Therefore P and Q can be reformulated as 
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Now we set 

and, ( 4.6.2) 

so that 

and (4.6.3) 

Employing (4.6.2) in Entry 53 [17, p. 206], we obtain 

( 4.6.4) 

Replacing q by q3 in the same entry, and then employing (4.6.2), we find that 

(4.6.5) 

Using (4.6.3) we may rewrite (4.6.4) in the form 

(4.6.6) 

Thus we arrive at 

(4.6.7) 

Similarly from (4.6.3) and (4.6.5), we deduce that 

(4.68) 

Employillg (4.6.2) in (59.10) of [17, p. 215], we find that 

( L2)3 + (M2)3 = (L2M2)2 _ (L2M2) 
Ll Ml LIMI LIMI 

(4.6.9) 
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Invoking (4.6.3) in (4.6.9), and then simplifying we deduce that 

(
M2)3 1 + PIQ 
Ml = (5)2 _ (5)3· 

From (4.6.7), (4.6.8) and (4.6.10), we find that 

Q4(Q2 - 5)(P2 - 1) [1 + PIQ ]2 
p4 (P2 - 5)( Q2 - 1) - ( G) 2 _ (G) 3 

This can be readily seen to be equivalent to (4.2.4). Thus we complete the proof. 

4.7 Proof of Theorem 4.2.5. 

We note from Entry 24(iii) [15, p. 39] that 

P(q) 
¢(q) = f( _q2)· 

Therefore P and Q can be reformulated as 

Let 

e P( -q)f( _ql0) 
anfl 

P(q-3)f( _q30) 
R= ~ = f( _q6)J2(q-15) ' f( _q2)J2(q-5) 

Then 

R = L12 
Ml 

and S = L22 
M2' 

73 

(4.6.10) 

(4.6.11) 

(4.7.1) 

(4.7.2) 

where L1, L2, M1 , and M2 are same as in the proof of Theorem 4.2.4. We may write (4.6.4) in 

the form 

(4.7.3) 
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Thus we arrive at 

(4.7.4) 

Similarly we can deduce that 

(4.7.5) 

Invoking (4.7.2) in (4.6.9), and then simplifying, we obtain 

(4.7.6) 

From (4.7.4), (4.7.5), and (4.7.6), we arrive at 

(4.7.7) 

This can be readily seen to be equivalent to 

(4.7.8) 

Replacing q by -q, we see that RS transforms to PQ and RIS transforms to PIQ. Thus, we 

obtain 

5 (Q)2 Q P (p)2 
PQ + PQ = P + 3 P + 3 Q - Q (4.7.9) 

This completes the proof. 

It is worthwhile to note that in [32], H. H. Chan used this identity to find the value of 

"-

G( _e-v's1r), where G(q) is the Rarri'anujan's cubic continued fraction defined in (1.2.5). 



Chapter 5 

Explicit Evaluations of Theta-Functions 

5 .1 Introduction 

We recall the following special type of Ramanujan's theta-functions from Chapter 2. 

00 

¢(q) := f{q, q) = 1 + 2 2: qk
2

, (5.1.1) 
k=l 

where Iql < 1. 

If J«(k) and 2Fl denote the complete elliptic integral of the first kind and ordinary or 

Gaussian hypergeometric function as defined ,in' (~.L3) and (2.1,.4), respectively, then one of 

the most fundamental results in the theory of elliptic functions [15, p. 102] is 

q = exp( -7r J(' / J(), 

Note: The results of this chapter are identical to our paper [1 OJ. 

75 



76 CHAPTER {). EXPLICIT EVALUATIONS OF THETA-FUNCTIONS 

K' = K(k'), and k' = V1 - k2 is the complementary modulus. So, an evaluati.on of anyone of 

the functions ¢, 2Ft, or, K yields an evaluation of the other two functions. But such evaluations 

may not be very explicit. For example, if K(k) is known for a certain value of k, it may be 

difficult or impossible to determine explicitly [(' and q. cenVerSelY, it is possible to evaluate 

¢(q) for certain q, but it may be impossible to determine k. Several values of 2Ft and K(k) have 

been determined by I. J. Zucker [65J and G. S. Joyce and Zucker [36J. Ramanujan recorded 

many values of ¢( q) in his notebooks [48], some of which are new and some of which are classical. 

In his second notebook [48], Ramanujan recorded the values of ¢(e-'Tr), ¢(e-"fi'Tr), ¢(e-2'Tr), and 

¢(e-5'Tr). The first three values are classical and can be found in Whittaker and Watson's text 

[62, p. 525], while the value of ¢(e-5'Tr) is new. Using theta transformation formula Berndt 

[15, p. 210J and .]0YCf> and Zucker [36J obtained the evaluation indepenuently. Ramanujan also 

recorded many values of ¢, as well as values of 'ljJ and .f in his first notebook [48). All the 

elementary values of ¢, 'ljJ and f are easy consequences of the "catalogue" of evaluations given 

by Rarnanujan in chalJter 17 of his second notebook [15, pp. 122-124J. At scattered places in 

his first notebook [48J, Ramanujan also recorded the nonelementary values of ¢(e-!l'Tr) for n =3, 

7, 9, and 45. The evaluation for n = 3 can be found in Zucker's paper [65). For proofs of all 

the non-elf'mentary values one may see Berndt. [18, Chapter 35), and Berndt. and Chan [21]. In 

[21), Berndt and Chan also found three new explicit evaluations of ¢(e-!l'Tr) for n = 13, 27 and 

63. It is worthwhile to note that Ramanujan recorded most of his values for ¢(e-n'Tr) in terms 

of ¢(e-'Tr). But, since the value 
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is well known [62, p. 525], so ¢(e-n7f ) is determined explicitly. In this chapter, we give some 

more transparent proofs for the evaluation of the non-elementary values of ¢( e-n7f ) claimed by 

Ramanujan by employing some of his modular equations and class invariants. We also evaluate 

some new explicit non-elementary values of ¢(e-n7f ). 

In Section 5.2, we find a new proof, different from that of B. C. Berndt [15, p. 352]' for one 

of the modular equations recorded by Ramanujan in his second notebook, and combine this 

with his class invariants to arrive at Borweins' [31, p. 145] formula for ¢(e-9n7f)!¢(e-n7f) and 

deduce a number of evaluations. 

In Section 5.3, we find a general formula for explicit evaluation of ¢( e-5n7f )! ¢( e-n7f ) and 

again deduce some evaluations. 

In Section 5.4, we prove the evaluation for ¢2(e-77f ). Berndt [18, p. 336J and Berndt and 

Chan [21, p. 289J have also proved this evaluation. But, in [18] Mathematica is used to 

simplify the very complicated nested radicals, and in [21], the simplification of the rad~cals 

are very cumbersome and, they agreed that Ramanujan might have found a more transparrn~A ~ 

¥UtOflVJ r~~t~ 
proof. We believe that, our evaluation is close to Ramanujan's proof. I%> ~ ~ ['~ 

In Sections 5.5, 5.6, and, 5.7 we find three new evaluations ¢(e-157f), ¢(e-217f ), and ¢(e-357f ), 

respectively from "mixed" modular equations. Three of the modular equations are found by 

Ramanujan and another one by us in Chapter 2. 
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5.2 Evaluations of ¢( e-9mr
) / ¢( e-mr

) 

J. M. and P. B. Borwein [31, p. ,145] first observed that class invariants could be used to 

calculate certain values of ¢(e-mr
). In fact, they observed the following theorem. 

Theorem 5.2.1 For any positive rational number n2, 

(5.2.1) 

Berndt [18] and Berndt and Chan [21] also provide a proof for this theorem. Here, we 

give another proof using Ramanujan's modular equations. First of all, we recall the following 

beautiful modular equation of Ramanujan [15, Entry 3(i), p. 352]. 

Lemma 5.2.2 Let (3 and 'Y have degrees 3 and 9, re~pectively, over a. Let m denote the 

multiplier connecting a and (3, and let m' be the multiplier relating (3 and (. Then 

--=3= = 1 + 41/ 3 (a3(1 - a)3) 1/24 
Jmm' (3(1 - (3) 

(5.2.2) 

We provide here a proof somewhat different from that in [15]. 

Proof of Lemma 5.2.2: We recall from (2.3.31) that 

(5.2.3) 

Since by (2.1.43) 

(5.2.4) 
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so, from (5.2.3), we find that 

(5.2.5) 

Transcribing (5.2.5) via Entries 10(i), l1(ii) and 12{v) [15; pp. 122-124], we arrive at 

.J mm' = 1 + 41/ 3 ' - , ( 
3(1 )3)1/24 

,8(1 - ,8) 
(5.2.6) 

Reciprocating ( in the sense of Entry 24(v) [15, p. 216]) the above modular equation, we can 

easily arrive at (5.2.2). 

Proof of Theorem 5.2.1. If we set q = e-n1r , it can be easily seen from (3.1.4) and (5.2.2) 

that 

(5.2.7) 

complete. 

A number of evaluations claimed by Ramanujan follows as corollaries from the above theorem. 

Corollary 5.2.3 ([48, Vol.-I, p. 287]). 

¢(e-97r ) _ 1 + ¢2{ vI3 + 1) 
¢(e-1r ) 3 

(5.2.8) 

Proof: We put n = 1 in (5.2.1) to arrive at 

(5.2.9) 
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Since from Berndt's book [18, p. 189J 

and 
_ (1 + J3) 1/3 

G9 - J2 ' 

we easily find the required evaluation. 

Corollary 5.2.4 ([48, V01UmeVChap. 18J; [15, p. 210]) 

(.;5 + J3)<p(e-1TVS
/
3

) = (3 + J3)<p(e-31TVS
). (5.2.10) 

Proof. Putting n = v'5/3 in (5.2.1), we find that 

(5.2.11) 

Again from Berndt's book [18, p. 189 and p. 345], we note that 

..:. (1 +-v'5) 1/4 
G5 - 2 ' ( 

v'5 - J3) 1/3 
and G5 / 9 = G9/ 5 = (.;5 + 2)1/4 V2 

Employing these values in (5.2.11), and then simplifying, we find that 

(5.2.12) 

Thus, 

<p(e-31TVS
) 3 - J3 v'5 + v'3 

<p(e-1TVS/ 3 ) - 3( v'5 - J3) = 3 + J3 . (5.2.13) 

Similarly, some other explicit values of <p( e- 9n1T ) / <p( e-n1T ) , for positive rational n2 , can also 

be evaluated if the corresponding class invariants are known. For ex~mple, Berndt and Chan 

[21J have found the evaluations corresponding to n = 5 claimed by Ramanujan and two new 

evaluations corresponding to n = 3 and n = 7. 
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5.3 Evaluations of ¢( e-5mr) / ¢( e-mr ) 

Theorem 5.3.1 For any positive rational number n2 , 

(5.3.1) 

Proof: If (3 has degree 5 over Q and m is the multiplier for degree 5, then from Chapter 19 of 

Ramanujan's second notebook [15, Entry 13(iv), p. 281] 

(5.3.2) 

Putting q = e-1rn in (5.3.2) and then employing (3.1.4), we easily arrive at (5.3.1). 

As in the Theorem 5.2.1, a number of evaluations follow from Theorem 5.3.1 if the corre-

sponding class invariants are known. We give a couple of examples below. 

Corollary 5.3.2 [18, p. 327} 

¢(e-51r
) 1 

¢(e-1r
) - V5../5 - 10' 

(5.3.3) 

Proof: Putting n = 1 in (5.3.1), we obtain 

(5.3.4) 

Since from Berndt's book [18, p. 190] 

and G _1+../5 
25 - 2 ' 

we see that 

(5.3.5) 
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Now it is easy to arrive at (5.3.3). 

The following evaluation is new. 

Corollary 5.3.3 

(5.3.6) 

Proof: We put n = 3 in (5.3.1), to obtain 

(5.3.7) 

Using the values of G225 and Gg from Berndt's book [18], one can get the required assertion. 

As the value of ¢>(e-37r ) is already known [18, p. 327], ¢>(e-157r
) can be found explicitly, provided 

the appropriate root is extracted. In section 5.5 we find a simple evaluation for ¢>(e- 157r
). 

Theorem 5.4.1 

(5.4.1) 

Berndt [18J and Berndt and Chan [21J proved this evaluation claimed by Ramanujan. Bu~, 

simplifications of radicals are too cumbersome. They agreed that Ramanujan might have had 

a more transparent proof. We think the following proof is very close to that of Ramanujan. 
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Proof: From Entry 19{i), (ii), and (viii) of Chapter 19 of Ramanujan's second notebook [15, 

pp. 314-315]' we note the following modular equations. 

(o.[3) 1/8 + {(I - 0.)(1 - [3)}1/8 = 1, (5.4.2) 

1 _ 4 (0<7(1-0<)1) 1/24 
7 /3(1-{J) 

m - (0.[3)1/8 - {(I - 0.)(1 - ,a)} 1/8 ' 
(5.4.3) 

and, 

m - ! = 2((0.[3)1/8 - {(I - 0.)(1 - ,B)}1/8)(2 + (0.[3)1/4 + {(I - 0.)(1 - [3)}1/4), (5.4.4) 
m 

where [3 has degree 7 over 0. and m is the multiplier connecting Q and [3. 

From the above equations it can be easily deduced that 

Now, in (5.4.5) we put 0. = 1/2, so that q = e- 1f
, and then we find by invoking (3.1.4) that 

(5.4.6) 

From Berndt's Book [18], 

(5.4.7) 

Simple calculations give 

-1 _ J 4 + yI7 - 71
/

4 

G49 - 2 ' (5.4.8) 

(5.4.9) 

and 

(5.4.10) 
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Employing (5.4.7), (5.4.9), and (5.4.10) in (5.4.6), and then simplifying using (see Lemma 3.2.8) 

we find that 

(5.4.11) 

Taking square root of both sides, we obtain 

(5.4.12) 

Since 

and 

20 + 4J7 = (13 + J7) + (7 + 3J7), 

it is easy to arrive at (5.4.1) from (5.4.12). 

5.5 A simple evaluation of cP( e-151r ) 

Theorem 5.5.1 

Proof: From Entries li(i)and 11(iv) of Chapter 20 of Ramanujan's second notebook [15, p. 

383], we note the following modular equations. 

((3,)1 /8 + {(I - (3)(1 _,n 1/8 = f!!£" (5.5.2) 
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and 

where /3, " and b have degrees 3, 5, and 15, respectively, over a. 

From (5.5.2) a.nd (5.5.3), we find that 

(5.5.4) 

Setting a = 1/2 in (5.5.4), and then using (3.1.4), we deduce that 

(5.5.5) 

Again from Berndt's book [18, pp. 189-190 and 195], we note that 

Gg = (
1 + v'3) 1/3 

V2 
G _ 1+V5 

25 - 2 ' 

and 

Employing these values in (5.5.5), and then simplifying, we find that 

(5.5.6) 

where in the simplification, we also used (see Lemma 3.2.8) 

Using (5.3.3) and the value ([18, p. 327J; [21, p. 280]) 
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in (5.5.6), we find that 

¢(e-151T ) J2(15)1/4 + V3 - 1 

¢(e-1T
) - (1 + V5)( \!6V3 - 9)( V5V5 - 10) . 

(5.5.7) 

Simplifying (5.5.7), we easily arrive at (5.5.1). 

5.6 Evaluation of ¢(e-217r ) 

We shall use the following "mixed" modular equation of degrees 1, 3, 7, 21 found by us in 

Chapter 2. 

Lemma 5.6.1 Let (3, 'Y, and 6 have degrees 3, 7, and 21, respectivly, over a. Let m denote the 

multiplier connecting Q and /3, and let m' be the multiplier relating 'Y and b. Then 

---==(/315(1 _ (3)(1 _ (5))1/24 = 'Y - 'Y _ a - a 
3 (3(1 )3) 1/24 (3(1 )3) 1/24 

Jmm' 15(1 - b) /3(1 - (3) 
(5.6.1) 

In the above lemma, we now set a = 1/2, so that q = e- 7r to obtain 

(5.6.2) 

Thus 

(5.6.3) 

Using the requisite class invariants from Berndt's book [18], and the known values of ¢(e-1T
), 

¢(e-31T
), and ¢(e-71T ), we can find an explicit value of ¢(e-211T ) from (5.6.3). 
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5.7 Evaluation of ¢( e-357f ) 

We shall use the following "mixed" modular equation of degrees 1, 5, 7, 35 recorded by Ra-

manujan and proved by Berndt [15, p. 423]. 

Lemma 5.7.1 Let {3, 'Y, and c5 have degrees 5, 7, and 35, respectivly, over a. Let m denote the 

multiplier connecting a and f3, and let m' be the multiplzer relating 'Y and c5. Then 

r;;:;; {16f3'Y(1- (3)(1 - 'Y)}1/24 - {16ac5(1 - a)(1 - c5)P/8 
Y -;;: = {16f3'Y(1 - (3)(1 - 'Y)}1/24 + {16f3'Y(1 - (3)(1 - 'Y)}1/8' 

(5.7.1) 

In the above lemma, we set a = 1/2, so that q = e-1T to obtain 

(5.7.2) 

Thus, 

if>(e- 51T )if>(e-71T
) G:;lG491 

- Gil25 
if>(e- 1T )if>(e-351T ) - G:;lG:i<} + G:;lG493' 

(5.7.3) 

Using the requisite Ramanujan's class invariants from Berndt's book [18], and the known values 

of if>(e- 1T ), if>(e- 51T ), and if>(e- 71T ), we can find an expFcit value of if>(e- 351T ) from (5.7.3). 

Note that, evaluation for ¢2(e-351T ) can be found by using (5.3.1). But to get the value of 

if> ( e-351T ) our evaluation is less tedious. 
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Concluding remarks: 1. The following theta-transformation formula for </J [~5, p. 43] can be 

used to find the ~xplicit evaluations of </J(e-7r / n ) , \vhen the corresponding values of </J(e-7rn
) are 

known. 

Ifa,b> 0 with ab = 7r, then Va</J(e- a2
) = Vb</J(e- b2

). 

As for example, if a2 = 7r/.jr, then </J(e-7r / Vr ) = T l / 4</J(e-7rVr ); and hence, by putting r = 25, 

we obtain </J(e-7r / 5 ) = v'5</J(e-57r
). 

2. It is to be noted that the values of </J( e-n7r ) / </J( e-7r
) are algebraic. In fact, Berndt, Chan, 

and Zhang [27, p. 610] proved the following general theorem. 

Let 'Tn and n be positive integer's. Then </J( e-mn7r
) / </J( e-n~) is algebraic. furthermor-e, if m 

is odd, then J2rn</J( e-mn7r ) / </J( e-n7r
) is an algebr'aic integer' dividing 2 Vm, while if m is even, 

then 2 Vm</J( e-mn7r ) / </J( e-ll7r
) is an algebraic integer dividing 4y17n. 

3. In Chapter G and Chapter 7 we give many interesting general formulas for the explicit 

evaluations of theta-functions in contexts with Rogers-Ramanujan contilllled fraction and Ra-

manujan's cubic continued fraction. 



Chapter 6 

Evaluation of Rogers-Ramanujan 

Continued Fraction 

6.1 Introduction 

We recall that, for Iql < 1, the famous Rogers-Ramanujan continued fraction R(q) is defined by 

ql/5 q q2 q3 
R(q):= - - - -

1 + 1+ 1 + 1 + .. 
(6.1.1) 

. We also set S(q) = -R( -q). In the literature, consic!~rable at~:~tion has been given in finding 
~ i ,'" 
'--:.,0 

the explicit values of R(q) when q = e-1TvIn , for several positive rational values of n. In fact, 

In his first and second letters to Hardy [22], Ramanujan communicated several explicit values 

of R(q) and S(q). Watson [52], [53] proved Ramanujan's claims in those letters. Moreover, 

Note: Some parts of this chapter consist of our paper [7}. 

89 
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in both letters, Ramanujan asserted that "R(e-7rVn ) can be exactly found if n be any positive 

rational quantity". In both his first [48] and lost notebooks [49], Ramanujan recorded several 

other evaluations. In particular, .on page 210 of his lost notebook [49], Ramanujan provided 

a list of evaluations and intended evaluations. In [42]-[46], K.G. Ramanathan made the first 

attempt to find a uniform method to evaluate R(q) by using Kronecker's limit formula, with 

which Ramanujan was not probably familiar. B.C. Berndt and H.H. Cha~ntin~ 

and Berndt, Chan and L.-C. Zhang [25] completed the incomplete list of Ramanujan by using 

some modular equations recorded by Ramanujan in his notebooks [48]. Most importantly, in 

[25], Berndt, Chan, and Zhang derived general formulas for evaluating R( e-27rVn) and S( e-7rVn) 

in terms of Weber-Ramanujan class invariants. The lost notebook [49) also ~ontains many 

formulas for R(q) and theta-function identities giving more formulas for the explicit evaluation 

of R(q). S.-Y. Kang [37], [38] proved many of the claims made by Ramanujan. It appeared 

that though Ramanujan's formulas are interesting, they generally are not very much amenable 

in the calculation of elegant values of R(q). We would like to refer the expository paper by 

Berndt, Chan, Huang, Kang, Sohn, and Son [29] to know about the knowledge available in the 

literature till the publication of that paper. In this chapter, we find some of the evaluations of 

, 
R(q) and S(q). Our evaluations are more transpq.rent than those of the previous authors. 

First of all, in section 6.2, we establish some beautiful theta-function identities recorded by 
Or 

Ramanujan in the unorganized pages of both his first and second notebooks [48J. Berndt [17], 

[18] proved these identities via parameterization. 

Secondly in section 6.3, we give some more theorems for the explicit evaluation of the 

quotients of theta-functions, as found in Section 4.2, by combining Weber-Ramanujan's class 
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invariants with the identities proved in section 6.2 and some other theta-function identities. In 

our last section, we find some of the evaluations of R(q) and S(q), by using the values of the 

quotients of theta-functions found in section 6.3 and some other identities. 

6.2 Theta-function Identities 

The following identity was recorded by Ramanujan on page 295 of his first notebook [48]. 

Berndt [18J proved this by papametrization. Here we give an alternate proof directly from 

theta-functions. 

Theorem 6.2.1 If ¢(q), 1/J(q), and X(q) are as defined zn (2.1.23), (2.1.24), and (2.1.26), 

respectwely, then 

.I,2() .I,2( 5) ¢2(q) 
'f' -q + 5q'f' -q = X(q)X(q5)' (6.2.1) 

Proof: From ~Entries 9(vii) and 10(v) of Berncit:s book [15, p. 258 and 262, re~pectively], we 
4.. ,...,~, ;'::..;"$':,\". ,\.J. ~ ~ (' • ; ~ 

find that 

(6.2.2) 

where f is as defined in (2.1.25). 

From Entry 24(iii) of the same book [15, p. 39], we note that 

f( ) = ¢(q) 
q X(q)' (6.2.3) 

From (6.2.2) and (6.2.3), we deduce that 

(6.2.4) 
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Again, we recall from Entry 9(iii) [15, p. 258] that 

(6.2.5) 

Replacing q by -q in (6.2.5), we deduce that 

(6.2.6) 

Employing (6.2.6) in (6.2.4), we find that 

(6.2.7) 

Now, by Entry 24(iii) [15, p. 39]' we find that 

(6.2.8) 

Using (6.2.8) in (6.2.7)' we obtain 

From Entry 24{iv) [15, p. 39], we note that 

x{q)x( -q) = x( _q2). (6.2.10) 

Thus, from (6.2.9), vJe ohtain 

(6.2.11) 

From Entry 25(iv) [15, p. 40], we note that 

(6.2.12) 
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Employing (6.2.3) and (6.2.12), with q replaced by q5, we conclude from (6.2.11) that 

2() o,.2( 5) ¢i( -q) 4 o,.2( 5) 1/J q - q<p q = ( ) ( 5) + q<p q . X -q X -q , 
(6.2.13) 

Replacing q by -q in (6.2.13), we complete the proof of the theorem. 

The next theorem was recorded by Ramanujan on page 4 of his second notebook [48). It is 

extremely useful in our calculations. Berndt [17, p. 202] proved this theorem via parameteri-

zation. Here we prove this from theta-function identities. 

Theorem 6.2.2 

(6.2.14) 

Proof: From Theorem 6.2.1, we find that 

(6.2.15) 

Now, from Entry 24{iii) [15, p. 39], we note that 

(6.2.16) 

Employing (6.2.16) in (6.2.15) we arrive at (6.2.14), which completes the proof. 
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6.3 Explicit evaluations of theta-functions 

Theorem 6.3.1 

('l ) (6.3.1) 

and 

(ii) (6.3.2) 

Proof: From Theorem 6.2.2 and the definition of Gn from (3.1.2), we easily arrive at (6.3.1) 

by putting q = exp( -7ry'n). 

Replacing q by -q in Theorem 6.2.2 and then using the definition of 9n from (6.3.1), we arrive 

at (6.3.2) by again putting q = exp( -7ry'n). 

If the class invariants are known, then we can explicitly find the value of the quotients of 

the right hand side expressions of the theorem. We give some examples below. 

Corollary 6.3.2 

Proof: Putting n = 1 in Theorem 6.3.j(i). \fe, nnel that 

From Berndt's book [18, p. 189], 

and G
25 

= 1 + J5. 
2 

Employing (6.3.5) in (6.3.4), and then simplifying we complete the proof. 

(6.3.3) 

(6.3-4) 

(6.3.5) 
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This was also evaluated by Kang [38] by using a different method. 

Corollary 6.3.3 

(6.3.6) 

Proof: We put n = 1/5 in Theorem 6.3.1(i), to obtain 

{6.3.7} 

Now, note from Berndt's book [18, p.189], that 

_ (1 + v'5) 1/4 
G5 -

2 
(6.3.8) 

We easily complete the proof by (6.3.7) and (6.3.8). 

Corollary 6.3.4 

(6.3.9) 

Proofs Putting n = 3/5 in Theorem 6.3.1(i), ~~ QJ>tjtin 

e- rr y'3i5 1jJ2( _e-
7TVl5

) = ~ (2 G3/5 _ 1) . 
1jJ2( _e- rr y'375) 5 GI5 

(6.3.10) 

From Berndt's book (18, p. 341]' we again note that 

(6.3.11) 

Employing (6.3.11) in (6.3.10)' and then simplifying we arrive at (6.3.4). 
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Since from Chapter 4 (Theorem 4.2.1), for q = e-7rVn, n positive rational, the explicit 

formulas for ¢i(q5)/</J2(q) is known, we now derive an identity by which the corresponding 

values of the quotient '!jJ2( _q5)/'!jJ2( -q) may be found. 

Theorem 6.3.5 

'!jJ2( _q5) 1 _ </J2(q5)/</J2(q) 
q '!jJ2( -q) = (5</J2(q5)/</J2(q)) - 1· 

(6.3.12) 

Proof: We replace q by -q in (6.2.4) and then divide the resulting identity by (6.2.1) to obtain 

</J2(q5) '!jJ2( _q) + q'!jJ2( _q5) 
-</J2(q) '!jJ2( _q) + 5q'!jJ2( _q5)· 

(6.3.13) 

This is indeed equivalent to (6.3.12). 

6.4 Evaluation of R(q) and S(q) 

The following important formula about R(q) was found by Watson in Ramanujan's notebooks 

and proved by him [52J. 

(6.4.1) 

Replacing q by -q and q2, respectively, we find that' 

(6.4.2) 

and 

(6.4.3) 

respecti vely. 
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From (6.4.2) and (6.4.3), we see that, to find the explicit values of S(q) and R(q2), for q = e-7TVn , 

it is enough to find the expressions on the right sides, because solving the quadratic equations 

(6.4.2) and (6.4.3), one can easily obtain 

(6.4.4) 

where 

and 

(6.4.5) 

where 

See also the papers by Berndt, Chan, and Zhang [25] and Kang [38]. In the sequel, we shall see 

that Cl and C2 can be obtained by combining some simple theta-function identities recorded by 

Rarnanujan in Chapter 16 of his second notebook [48J with the explicit values of the quotients 

of theta-functions discussed in Section 6.3. 

\ 

Theorem 6.4.1 If ¢(q), 'l/J(q) , and f(q) are as defined zn (2.1.23), (2.1.24), and (2.1.25), 

respectzvely, then 

(2) (6.4.6) 

and 

(22) (6.4.7) 
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Proof: From Entries 24(ii) and 24(iv) [15, p. 39], we note that 

(6.4.8) 

and 

(6.4.9) 

From (6.4.8) and (6.4.9), it is easy to arrive at (6.4.6) and (6.4.7). 

The values of FI (q) and F2(q) can be determined explicitly for q = e-7rVn by employing 

(5.3.1) and (6.3.1). Thus, (6.4.4) and (6.4.5) gives explicit evaluations for S(q) and R(q2). We 

give some examples below. 

Corollary 6.4.2 

(6.4.1O) 

and 

(6.4.11) 

Proof: As in Corollary 6.3.3, by putting n = l/vIs in (5.3.1). it can be easily seen that 
" . 

(6.4.12) 

Putting q = e-7r/v'5 in (6.4.6) and (6.4.7), and then employing (6.4.12) and Corollary 6.3.3, 

we obtain 

(6.4.13) 
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and 

(6.4.14) 

respectively. Using these results in (6.4.4) and (6.4.5) we complete the proof. 

Remarks. Corollary 6.4.2 (i) was recorded by Ramanujan on page 210 of his lost notebook 

[48], and first proved by Ramanathan [43]. Berndt, Chan and Zhang [25] and Kang [38] also 

proved this. 

Corollary 6.4.3 

and 

(ii) 

(i) 

R5 (e- 21t .,fi15) = -147 - 55V5 + )36750 + 16170V5. 
4 

(6.4.15) 

(6.4.16) 

Proof: As in Corollary 6.3.4, by putting n = )3/5 in (5.3.1), it can be easily seen that 

(6.4.17) 

Putting q = e-1f..j3;5 in (6.4.6) and (6.4.7), and then employi!lg (6.4.17) and Corollary 6.3.4, 

we obtain 

(6.4.18) 

and 

L' ( -1fV3;5) = 5(25 + 11 V5) 
1.'2 e 2' (6.4.19) 

respectively. Invoking (6.4.18) and (6.4.19) in (6.4.4) and (6.4.5), respectively, we complete the 

proof. 



100 CHAPTER 6. EVALUATION OF ROGERS-RAMANUJAN CONTINUED FRACTION 

Remark: Corollary 6.4.3(i) was incompletely recorded by Ramanujan on page 210 of his lost 

notebook [48], and was first proved by Ramanathan [44J. Other proofs may be found in [20], 

[25], and [38J. 

Proceeding in the same lines as in the above corollaries we can find the ~alues of S5(e-7rVn ) 

and R5(e-27rvn ), for n = 1,9/5,11/5,13/5,3,17/5,21/5,29/5,41/5,9,53/5,89/5, and 101/5, as 

the corresponding class invariants are known [18, Chapters 34-35J in these cases. Using the 

reciprocity theoerems by Ramanathan [43], namely, if (JI and 13 are positive and 0'.(3 = 1/5, then 

~~ct;)R~ 

{ (-/52- 1) 5 + S'(e-'")} { (V52-1) 5 + S'(c-'P) } = 5V5 (V52-1) 5, 

and 

one can easily obtain S5(e- 7r /v'25n) and R5(e- 27r/.J25fi), for the values ofn stated above. We omit 

the details. It is worthwhile to mention that, Ramanathan [42]-[46], Berndt and Chan [20], 

Berndt, Chan, and Zhang [25], and Kang [38] also found some of these continued fractions. But 

in [42]-[46], Ramanattl&1l used Kronec~CJ;Ei.limit f9rniqla, in [25], one has to solve two quadratic 
I 

equations, and in [20] and [38], the cairlliatioilS are vp.ry lengtlry-. Surely o!-lr formulas are much 

more amenable than the previous authors. 

We complete this chapter by noting that Jinhee Yi [63J-[64] has recently found many new 

eta-function identities and modular equations from which a number of explicit evaluations of 

R(q) and S(q) follow without depending upon class invariants. 



Chapter 7 

Ramanujan's Cubic Continued Fraction 

7.1 Introduction 

Let, for iqi < 1, 

, 
+ .. 

(7.1.1) 

denot~' Ramanujan's cubic continued fraction, first introduced by him in his second letter to 

Hardy [22J. Ramanujan also recorded this continued fraction on page 366 of his lost note-

book [49J, and claimed that there are many results of G(q) which are analogous to Rogers-

Ramanujan continued fraction R(q). Motivated by Ramanuajan's claims, H.H. Chan [32J 

proved many new identities which probably were the identities vaguely reffered by Ramanujan. 

He established some reciprocity theorems for G(q), found relations between G(q) and the three 

continued fractions G( -q), G(q2) and G(q3) and obtained some explicit evaluations of G(q). 

Note: Some parts of this chapter consist of our papers [8} and [9}. 
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rrwf~ 
We note that his proof of the relation between G(q) and G(q3) is not satisfactory. In particular, 

the last deduction [32, (2.18), p. 347] is not an obvious one. In Section 7.2 of this chapter, we 

find an easy proof of this relation. 

In Section 7.3, we establish some theta-function identities recorded by Ramanujan in the 

unorganized pages of both his first and second notebooks [48]. Berndt [17] also proved these 

identities via parameterization. 

In Section 7.4, we give some more theorems for the explicit evaluation of the quotients of 

theta-functions by using the identities found in the previous section. 

In Section 7.5, we combine the theorems found in Section 7.4 with some other theta-function 

identities to deduce a number of explicit evaluations for G(q). In fact, we have found general 

formulas for the explicit evaluations of G( _e-37rVn) and G(e37rVn ). General formulas for the ex-

plicit evaluations of G( _e-7rVn) and G(e7rVn ), were established by Berndt, Chan and Zhang [24]. 

In Section 7.6, we give three new eta-function identities, and use them in our final section 

to find two new identities giving relations between G(q) and the two continued fractions G(q5) 

7.2 A Relation Between G(q) and G(q3) 

H.H. Chan [32] found the following beautiful relation connecting G(q) and G(q3). As we already 

mentioned in the Introduction, his proof is not satisfactory. Here we give a simple proof of his 

theorem. 
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Theorem 7.2.1 If G(q) is as defined in (7.1.1), then 

(7.2.1) 

Proof: From Entry lei) [15, p. 345], we note that 

(7.2.2) 

and 

(7.2.3) 

where 'ljJ(q) is as defined in (2.1.24). 

Replacing q by q3 in (7.2.2), we find that 

1 'ljJ(q) 
1 + G(q3) = q'ljJ(q9)· (7.2.4) 

Now, from Entry l(ii) [15, p. 345], we note that 

(7.2.5) 

Replacing q by -q in (7.2.3) and (7.2.4), and then using the resultant identities in (7.2.5)' we 

find that 

( 3w)3 9u 
1 - 1 + w = 1 - '1 + u' (7.2.6) 

where w :::: G( _q3) and u = G3 ( -q). 

Solving (7.2.6) for u, we find that 

1 - {(I - 2w)/(1 + w)P 
u = ---:-:---~-----.:..-:-

8 + {(I - 2w)/(1 + w)p· 
(7.2.7) 
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Simplifying (7.2.7), we obtain 

1- W +w2 

U=W . 
1 + 2w + 4w2 

(7.2.8) 

Replacing q by -q in (7.2.8), we complete the proof. 

7.3 A Theta-Function Identity 

The following theorem was recorded by Ramanujan on page 4 of his second notebook [48]. It 

is extremely useful in our calculations. Berndt [17, p. 202] proved this theorem via parameter-

ization. Here we prove this from theta-function identities. 

Theorem 7.3.1 If X and'ljJ are as defined in (2.1.26) and (2.1.24), respectively, then 

(7.3.1) 

Proof: From Corollary (ii) of Chapter 16 in Berndt's book [15, p. 49], we find that 

(7.3.2) 

Using Jacobi's triple product identity [15, Entry 19, p. 35], Berndt [15, p. 350] proved that 

2 <fJ( _q3) 
f(q, q ) = ( ). 

X -q 
(7.3.3) 

Replacing q by q3 in (7.3.3), and then using the resultant identi~~ in (7.3.2), we find that 

(7.3.4) 

Now, from Corollary (i) [15, p. 49] and (2.1.43)' we find that 

(7.3.5) 



7.4. EXPLICIT EVALUATIONS OF THETA-FUNCTIONS 

Invoking (7.3.5) in (7.3.4), we deduce that 

Thus, 

9 ¢( -q) 
1/J(q) - 3q1/J(q ) = ( 3)' 

X -q 

1- 3q1/J(q9) = ¢(-q) . 
1/J(q) X( -q~)1/J(q) 

Now from Entry 24(iii) [15, p. 39], we note that 

x(q) = 3 ¢(q) 
1/J(-q) 

105 

(7.3.6) 

(7.3.7) 

(7.3.8) 

Replacing q by -q in (7.3.7) and then using (7.3.8), we complete the proof of the theorem. 

7.4 . Explicit evaluations of theta-functions 

Theorem 7.4.1 

(i) (7.4.1) 

and 

(ii) (7.4.2) 

Proof: From Theorem 7.3.1 and the definition of Gn from (3.1.2), we easily arrive at (7.4.1). 
, 

To prove (ii), we replace q by -q in Theorem 7.3.1 an4.;~hen use ,the definition of 9n from (3.1.2). 

Since, G9n and 99n can be calculated from the respective values of Gn and 9n [24], from 

the above theorem, we see that the certain quotients of theta-functions on the right sides can 

be evaluated if the corresponding values of Gn and 9n are known. We give only a couple of 

examples below. 
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Corollary 7.4.2 

(7.4.3) 

Proof: Putting n = 1 in Theorem 7.4.1(i), we find that 

(7.4.4) 

From Berndt's book [16, p. 189], 

and 
_ (1 + v'3) 1/3 

Gg - y'2 (7.4.5) 

Employing (7.4.5) in (7.4.4), and simplifying we complete the proof. 

From Entry l1(ii) [15, p. 123], we find that 

(7.4.6) 

Since 

7r1/4 

4>(e-
1T

) = r (D 

is classical [62], (7.4.3) and (7.4.6) provide an explicit evaluation for 'IjJ( _e-91T
). 

Corollary 7.4.3 

(7.4.7) 

Proof: f~tt~~g n = 5/9 in Theorem 7.4.1(i), we obtain 

(7.4.8) 
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Now, from Berndt's book [18, pp. 189 and 345], we note that 

_ (1 + J5) 1/4 
GS -

2 (J5 -V3) 1/3 
and GS/9 = (v'5 + 2)1/4 ../2 (7.4.9) 

Employing (7.4.9) in (7.4.8), and then simplifying we arrive at (7.4.7). 

Since by Theorem 5.3.3 of Chapter 5, we know the explicit formula for ¢J(q9)/¢J(q), for 

q -= e-7TVn, ,~ [JOslth'e rat.ioBaJ, H'e B(JW deri~e an identity hy which the corresponding values of 

the quotients 7/;( _q9)/7/;( -q) may bf;! found. 

Theorem 7.4.4 

. (7.4.1O) 

Proof: Replacing q by -q in (7.3.4) and (7.3.6) and then dividing the first resulting identity 

by the second, we find that 

TJ:tl _ 1/;( -q) + q1/;( _q9) 
¢J(q) - 1/;( -q) + 3q1/;( _q9)' 

It is now easy to see that (7.4.10) and (7.4.11) are equivalent. 

7.5 Explicit formulas for G( _e-37fvln) and G(e-37fvln) 

(7.4.11) 

Berndt, Chan and Zhang [24] have found general formulas for G( _e-7rVn ) and G(e-7rJil ) by 

employing the formulas connecting Gn and G9n , and gn and g9n, respectively. Using the formulas 

can find the general formulas for GC-e-3~v'n) aIJd G(e-37TVn) 

From Entry l(i) [15, p. 345], we find that 



108 CHAPTER 7. RAMANUJAN'S CUBIC CONTINUED FRACTION 

Replacing q by -q in (7.5.1), we find that 

(7.5.2) 

Taking q = e-7rfo in (7.5.1) and (7.5.2), we find the following formulas for G( _e-37rfo) and 

Theorem 7.5.1 

(i) (7.5.3) 

and 

(iz) (7.5.4) 

Combining with Theorem 7.4.1, a number of explicit evaluations follow. We give a couple of 

examples below. 

Corollary 7.5.2 

(7.5.5) 

Proof: Putting n = 1 in Theorem 7.5.1 0), and then using Corollary 7.4.2, we arrive at (7.5.5). 

Corollary 7.5.3 
, 

G(_e-7rVS) = (y'5 - v'31(y'5 - 3). (7.5.6) 

Proof: In this case we put n = 5/9 in Theorem 7.5.1 (i), and then use Corollary 7.4.3, to 

obtain 

G( _e-7rVS) = 2 - (v'5 - v'3)(3 + y'5) 
4 + (y'5 - v'3)(3 + y'5)' 

(7.5.7) 
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Simplifying (7.5.7), we complete the proof. 

Remark: For different proofs of Corollary 7.5.3, see [24] and [32]. 

7.6 Three eta-function Identities 

In this section, we prove three eta-function identities which we will use in our next section. 

Theorem 7.6.1 If 

then 

2 9 (Q)3 (Q)2 (p)2 (Q P) (P)3 (PQ) + (PQ)2 = P + 5 p + 5 Q + 5 p - Q - Q (7.6.1) 

Proof. We note from Entry 24(iii) [15, p. 39] that 

(7.6.2) 

Therefore P and Q can be reformulated as 

Now we set 

and, (7.6.3) 

so that 

and (7.6.4) 
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Employing (7.6.3) in Entry 51 [17, p. 204], we obtain 

(7.6.5) 

Replacing q by q5 in the same entry, and then using (7.6.3), we find that 

(7.6.6) 

Using (7.6.4) we may rewrite (7.6 .5) in the form 

.kf16 
9p2 = (M1)6 (~)6 

p2 + M I 6 P + MI . (7.6.7) 

Thus we arrive at 

M 
12 _ p8(p4 - 9) 

I - p4 . -1 
(7.6.8) 

Similarly from (7.6.4) and (7.6.6), we deduce that 

(7.6.9) 

Employing (7.6.3) in (59.10) [17, p. 215], we find that 

(L2)3 + (M2)3 = (L2M2)2 _ (L2M2) . 
Ll Ml LIMI LIMl 

(7.6.10) 

Invoking (7.6.4) in (7.6.10), and then simplifying, we deduce that 

(7.6.11) 

From (7.6.8), (7.6.9), and (7.6.11), we find that 

(7.6.12) 
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Setting x := PIQ and y := PQ, and then simplifying, we deduce that 

Further simplifications give 

Since the first factor never vanishes, we deduce that 

Thus, 

2 9 1 5 2 (1 ) 3 Y + - = - + - + 5x + 5 - - x - x , 
y2 x3 x 2 X 

which is readily seen to be equivalent to ( 7.6.1). 

Remark Since by Entry 24(iii) [15, p. 39], 

p~oce~ding as above, W~ see that, if 
'0' ... , J> 

j2(-q) 
¢( -q) = f( _q2)' 

then (7.6.1) holds. Replacing q by -q, we see that the same identity holds if 

111 

(7.6.13) 

(7.6.14) 

{7.6.15} 

(7.6.16) 
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Theorem 7.6.2 If 

then 

(P)3 Q 3 9 ( 36 ) 1/2 
Q + (p) = 10 + PQ + PQ - 2 25 + 4PQ + PQ 

Proof: Let 

By Entries 12(i) and (iii) in Chapter 17 of [15, p. 124] we find that 

and 

R = vmm' (ar(l - a)(1 - r)) 1/24 

{30(1 - {3)(1 - 0) 

Q = ~ (ar(l - a)(l _ r)) 1/12 

mm {30(1 - {3)(1 - 8) , 

(7.6.17) 

(7.6.18) 

(7.6.19) 

where {3, " and b have degrees 3, 7, 21, respectively, over a and m and m' are the multipliers 

connecting a, {3 and " 0, respectively. 

From (7.6.18) and (7.6.19), we readily see that 

Q = (ar(1- a)(l _ r)) 1/24 

B, {30(1 - t3l0 - 0) 
.... tf:. ~ J 

(7.6.20) 

and 

(7.6.21 ) 

Now by Entries 13{v) and 13(vi) in Chapter 20 of [15, p. 384], we note the "mixed" modular 
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equations 

(
(3J) 1/4 + ((1 - (3)(1 - J)) 1/4 + ((3J(l - (3)(1 - J)) 1/4 _ 2 ((3J(1 - (3)(1 - J)) 1/8 
crt (1 - 0) (1 - 'Y) 0'Y(1 - 0)(1 - 'Y) 0'Y(1 - 0)(1 - 'Y) 

x 1 + - + - = mm { ( 
(3J) 1/8 ((1 - (3) (1 - J) ) 1/8} , 
O'Y (1 - 0)(1 - 'Y) 

(7.6.22) 

and 

(
a'Y) 1/4 ((1 - a)(l - 'Y))1/4 (0'Y(1 - 0)(1 - 'Y))1/4 _ 2 (a'Y(l - a)(l - f')) 1/8 
(3J + (1 - (3)(1 - J) + (3J(l - (3)(1 - J) (3J(l - (3)(1 - J) 

{ (
O'Y) 1/8 ((1-0)(1-'Y))1/8} 9 

x 1 + (38 + (1 - (3)(1 - 8) = mm" 

respecti vely. 

For simplicity, we set 

x:= ((38)1/8 + ((1-(3)(1-J))1/8 and y:= ((3J(1-(3)(1-0))1/8, 
Of' (1 - a)(l - f') a'Y(l - 0)(1 - 'Y) 

so that 

Then from (7.6.22), we find that 

x = y;± (4y + tn~')1/2 . 
- > I' .. ¥ .. ' 

Also, from (7.6.23), we find the leciprocal equation of (7.6.25) as 

~ = ~ ± (i + _9_) 1/2 
Y Y Y mm' 

Combining (7.6.25) and (7.6.26), we obtain 

(4 9) 1/2 
Y ± (4y + mm,)1/2 = 1 ± Y - + -

Y mm' 

(7.6.23) 

(7.6.24) 

(7.6.25) 

(7.6.26) 

(7.6.27) 
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Employing (7.6.20), (7.6.21), and (7.6.24) in (7.6.27), we find that 

(7.6.28) 

We rewrite (7.6.28) as 

(7.6.29) 

Squaring both sides of (7.6.29), and then simplifying, we arrive at 
, 

(7.6.30) 

Dividing both sides of (7.6.30) by R3Q3, we find that 

( R) 3 (Q) 3 9 ( 36 ) 1/2 
Q + R = 10 + RQ + RQ - 2 25 + 4RQ + RQ (7.6.31) 

If we replace q by -q then RQ transforms to PQ and (R/Q)3 transforms to (P/Q)3. Thus 

(7.6.31) is transformed to (7.6.17), which completes the proof of the theorem. 

Theorem 7.6.3 If 

then 

where 
.1 t 

< , ,. 

kl = (~)' - 1, k, = 14P' ((~)' -) k3 = P'(7 - P'), 

k, = 7P'(P' - 3), and, ks = 27 (~)' - 7P' (3 + 3 (~)' - p,), 

(7.6.32) 

(7.6.33) 
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Proof. Proceeding as in Theorem 7.6.1, if we set 

f(-q) 
Ll := ql/12 f( _q3)' 

and, (7.6.34) 

so that 

and (7.6.35) 

we find that 

M 12 _ p8 (P4 - 9) 
1 - p4 -1 ' (7.6.36) 

and 

(7.6.37) 

Employing (7.6.34) and (7.6.35) in Theorem 7.6.2, we deduce that 

(
MIM2)3 (PQ)3 (M1M2)3 9PQ ( 4(M1 M2)3 36PQ) 1/2 

PQ + MIM2 = 10 + PQ + (M1M2)3 - 2 25 + PQ + {M
1
M2)3 

(7.6.38) 

Simplifying (7.6.38), we find that 
" 

b (4X 36PQ) 1/2 
ax + ;; + 10 = 2 25 + PQ + -x- , (7.6.39) 

where 

1 1 
a = PQ - (PQ)3' and b = 9PQ _ (PQ)3. (7.6.40) 

Squaring both sides of (7.6.39), and then simplifying, we deduce that 

(7.6.41) 
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where 

c = 144PQ - 20b and 
16 

d = PQ - 20a. 

Squaring both sides of (7.6.41), and then rearranging the terms, we arrive at 

Squaring both sides of (7.6.43), and then transferring to one side, we find that 

From (7.6.36), (7.6.37), (7.6.40), and (7.6.42), we note that 

k = (PQ)8(p4 
- 9)(Q4 - 9) 

(P4 _ 1)(Q4 - 1) 

(7.6.42) 

(7.6.43) 

(7.6.44) 

(7.6.45) 

Substituting the expressions for a, b, c, d, and k from (7.6.40), (7.6.42), and (7.6.45) in (7.6.44), 

and then factoring by Mathematica, we deduce that 

(7.6.46) 

where y = PQ, z = P/Q, 

and 

It can be seen that the first three factors in (7.6.46) are not identically zero. Thus, we 

deduce that 

B(y, z) = O. (7.6.47) 



7.7. RELATIONS OF G(q) WITH G(q5) AND G(q7) 

It is now easy to see that (7.6.32) and (7.6.46) are equivalent. 

Remark: Since by Entry 24(iii) [15, p. 39] 

P(-q) 
¢( -q) = f( _q2)' 

proceeding as above, it can be seen that, if 

then (7.6.32) holds. Replacing q by -q, we also see that the same identity holds if 

7.7 Relations of G(q) with G(q5) and G(q7) 
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In this section we find relations between G(q) and the two continued fractions G(q5) and G(q7). 

T4eorem 7~?1 Let for Iql < 1, v = G(q) and w = G(q5). Then 
, I • \ .., 

} /'" ~ 

Proof. From (7.2.3), we note that 

and 

where 

and 

,., 

4 1 Q =1+-
3

, 
W 

(7.7.1) 

(7.7.2) 
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From the identity in Theorem 7.6.1, we see that 

(7.7.3) 

Squaring both sides of (7.7.3), and then simplifying, we deduce that 

4 81 (Q)4 (P)4 4 4 90 90 
(PQ) + + 15 - + 15 - + 120 - 10Q - lOP - - - -(PQ)4 P Q p4 Q4 

= (~) 2 ( (~) 8 + (~) 4 + 15 (~) 4 + 15) . (7.7.4) 

Squaring both sides of (7.7.4), and then using (7.7.2), we can deduce that 

G(v, w)H(v, w) = 0, (7.7.5) 

where 

and 

• < 

280v9w6 + vw7 - 5v4W 7 + 440v7w7 + 320vlOwl + 20V2W.~ + lOv5wB + 80VB'4JB + 10v3w9 +: 

From the definitions of v and w, we note that v = O(ql/3) and w = O(q5/3) as q tends to 

O. So the first factor in (7.7.5) vanishes for q sufficiently small. Hence by the identity theorem, 

G(v,w) vanishes for Iql < 1. Thus, 

which is equivalent to {7.7.1}. Thus we complete the proof. 



7.7. RELATIONS OF G(q) vVITH G(qS) AND G(q7) 

Theorem 7.7.2 Let for Iql < 1, v = G(q) and w = G(q7). Then 

Proof. From (7.2.3), we find that 

and 

where 

and 

4 1 Q =1+-3 , 
W 

Now, squaring both sides of the identity in Theorem 7.6.3, we find that 

(ki + k~(PQ)' + 2k,k,}(PQ)' + 2k,k, (~)' = k" 

where kl - ks are as given in Theorem 7.6.3, and 

Squaring both- sides of (7.7.9), and t~len using (7.7.8), we deduce that 

(1 + V3
)3 ;1(v, w)B(v, w) = 0, 

where, 

and 
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(7.7.7) 

(7.7.8) 

(7.7.9) 

(7.7.10) 
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B(v, w) = v16 + v9w - 7V l2W + V2W2 - 14v5W2 + 49v8W2 - 28v 14W2 + 28v7W3 - 196v lOW3 -

112v13W3 - 56v6W4 + 385v9W4 + 763v 12W4 + 56v l5
W

4 - 14v2W5 + 56v5W5 + 406v8W5 + 

840V llW5 -56v4w6 + 196v7W6 +2604vlOW6 + 1568v13w6+28v3W7 + 196V6W7 -1960V9W7 -

3080V 12
W

7 + 64v 15
W

7 + 49v2W8 + 406v5W8 - 4920V8
W

8 
- 3248vllW8 + 3136v 14W8 + vw9 + 

385v4w9 - 1960V7W9 - 1568v lOW 9 + 1792v l3W 9 - 196v3w lO + 2604v6WlO - 1568v9W10 -

3584v 12
W

lO + 840V5Wll 
- 3248v8W10 + 3584v10w ll + 7168v 14Wll - 7vW 12 + 763v4W12 -

3080v7 W12 - 3584v10w 12 - 112v3W13 + 1568v6W13 + 1792v9w l3 - 28v2
W 14 + 3136v8W14 + 

7168v ll
W

14 + 4096v 14Wl4 + 56v4W15 + 64v7W15 + W 16
. 

From the definitions of v and w, we see that v = O(ql/3) and W = O(q7/3) as q tends to O. 

Hence the second factor of (7.7.10) vanishes for q sufficiently small. By the identity theorem 

that factor vanishes for Iql < 1. Thus we arrive at 

(7.7.11) 

which is equivalent to (7.7.7). 

---*---
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