
RY 
0' ..,;.,' • 

----~ 



\ 

SOLUTION OF CERTAIN HALF·SPACE 
PROBLEMS AND THEIR 

APPLICATION TO GEOPHYSICS 

A thesis submitted to 
Tezpur University 

in fulfillment of the requirements 
for the degree of 

Doctor of Philosophy 

By 

Anjan Kumar Bhattacharyya 

Department of Mathematical Sciences 
School of Science and Technology 

Tezpur University 
Napaam - 784 028 

India 



CERTIFICATE 

This is to certify that Mr. Anjan Kumar Bhattacharyya has worked under our supervision for the thesis 
entitled "Solution of Certain Half·Space Problems and their Application to Geophysics" which is 
being submitted to Tezpur University in fulfillment of the requirements for the degree of Doctor of 
Philosophy. The thesis is Mr. Bhattacharyya's own work. He has fulfilled all the requirements under the 
Ph. D. rules and regulations of Tezpur University and to the best of our knowledge, the thesis as a whole 
or a part thereof has not been submitted to any other university for any degree or diploma. 

(Dr. A. K. Borkakati) 
Professor, Dept. of Mathematical Sciences 
T ezpur University 
Napaam, Tezpur-784028 
Assam, India 

Date: 27th December 2002 

l~C»v( 
(Dr. S. K. Laskar) 
Visiting Professor, 
Dept. of Mathematical Sciences 
Tezpur University 
Napaam, Tezpur-784028 
Assam, India 

Date: 27th December 2002 



ABSTRACT 

For a hannonic function H, anomalous gravity field ~g or anomalous component magnetic 

field T z, with asymptotic behaviour H = D( r -n ), n ~ 2, r -) C1J, defined in the upper 

half-space domain Be bounded below by a half-space boundary S, the problem of 

reproduction of H in Be from the boundary data is fonnulated as a half-space problem in 

boundary density in tenns of H specified over S. Reproduction of H in Be is also achieved 

by Green's fonnula, fonnulating the problem in Green's boundary fonnula. Subsequently, 

it is shown that a gravity or' a component magnetic ~eld can be reproduced in Be as a 

potential of simple as well as double layer boundary density from the data specified over 

the boundary. It is also shown that the fields can be continued upward from the boundary 

data by Green's fonnula without finding Green's function for the boundary. When applied 

to the ground magnetic data of Vishakhapatnam-Srikakulam area of Andhra Pradesh, the 

up-continued field clearly reveals the basement trend in the coastal area and the basement 

features in the hilly Lamaput-Araku area. Subsequent analysis of the up-continued data 

locates the exposed chamokites and identifies the direction of thrust responsible for 

defonnation of the landmass in the area. 
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Cbapter-l 

INTRODUCTION 

A subsurface mass declares its existence by producing some fields around it. Contour map 

of the field at a datum level reveals its structural configuration and also its location below 

it. Geophysical fields, such as gravity and magnetic responses of a subsurface body, when 

contoured on a datum level, the contoured data provides a qualitative interpretation of 

them in terms of size, shape and location of the causative mass. A quantitative analysis of 

them is supposed to provide complete information about the causative mass. 

To understand the subsurface geology of an area, gravity magnetic (GM) data are acquired 

over the area, which is irregular in general. Reduction of data to a datum level appears as 

the first geophysical problem in interpretation of them in terms of subsurface geology of 

the area. The problem of reduction of gravity data to a horizontal level from data acquired 

in an irregular surface was solved by Hammer (1939) from the knowledge of masses 

causing the irregularities at the topography. This procedure however, cannot be applied to 

the magnetic data acquired in an irregular terrain. It requires application of a theoretical 

approach of reproduction of a harmonic function in the upper half-space domain from the 

data specified over the boundary. 

The problem of reproduction of gravity or component magnetic field in the upper half­

space domain, bounded below by a half-space boundary, suggests application of Green's 

formula for its solution. This requires finding of Green's function for the boundary. 

Finding of Green's function for a horizontal boundary is straightforward, but finding it for 

a general boundary is an extremely difficult task. Courtillot et al (1973), Ducruix et al 

(1974) made the first attempt to find a numerical solution of it. They came out with a 

numerical approximation of Green's function for the boundary. Their approach deals with 

non-linear estimation of unknown parameters and for solution, it requires an iterative 

scheme with a good apriori knowledge of the parameters. 



Alternatively, Bhattacharyya and Chan (1977) formulated the problem of upward 

continuation by boundary integral equations in boundary densities. They used simple layer 

boundary density for the gravimetric case and double layer boundary density for the 

magneto static case. In their work, they derived the gravity field as a derivative of simple 

layer potential and reproduced the component magnetic field as potential of double layer 

boundary density. 

Solution of a boundary integral equation analytically is out of question, it is to be solved 

numerically. This requires approximation of the boundary by sub-elements, subareas in 

three dimensions, and evaluation of the surface integrals of {I and or-I / one over the 

subareas and finally solution of a system of linear algebraic equations by numerical 

means. 

To find the numerical solution of the problem, Bhattacharyya and Chan (1977) 

approximated the boundary by rectangular subareas and used approximate values of the 

integrals over them. As such, the approximated boundary appeared with gaps between the 

subareas, interpolation of boundary data at the centroids of the subareas came out with 

error because of inaccurate representation of the boundary. Further, approximation of the 

integrals restricted reproduction of the field with reliable accuracy at a point near the 

boundary. 

Again, reproduction of the gravity field involves evaluation of complicated singular 

integrals. In some cases, depending on the geometry of the boundary, the discretised 

version of the integral equation in simple layer density becomes non-amenable to solution 

by Gauss-Seidal iterative method, a method suitable to handle a large system of linear 

algebraic equations as they appear in solution of a geophysical problem. Further, we know 

that a component magneto static field vanishes at infinity in 0(r-3 ),r ~ 00 and the 

potential due to a double layer density vanishes in 0(r-2 ),r ~ 00. As such, reproduction 

of a component magnetic field, as potential due to a double layer density, remains to be 

explained in their work. 
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Laskar (1984) formulated the problem of upward continuation of gravity and magnetic 

fields from boundary data by formulating the problems in boundary integral equation in 

double layer boundary density and also derived the component magneto static field as 

derivative of potential due to simple layer boundary density. However, the possibility of 

reproduction of both gravity and magnetic fields as potential of simple layer boundary 

density is left to be discussed in his work. 

Since approximation of regular integrals suffices finding of reasonable solutions of the 

boundary equations (Laskar 1971, Bhattacharyya and Chan 1977, Kumar et al 1992), no 

much efforts were made to evaluate the regular integrals analytically. Fpr a field point 

lying at a distance d ~ 2D from the boundary; D defining the largest diagonal of the nearest 

subarea ~S, approximate values of the integrals appear with more than 5% error (Laskar 

1977). This error adversely affects the field value as the field point approaches the 

boundary. This necessitates analytical evaluation of the integrals at least over the subareas 

lying within a distance of 2D from the field point. 

In this thesis, reproduction of potential fields from the data specified over a half-space 

boundary is formulated in boundary integral equation. Existence and uniqueness of 

solution of a half-space problem is discussed as a special case of a closed domain problem. 

In reproduction of a potential field in the upper half-space domain from boundary data, it 

is theoretically shown that upward continuation of gravity and magnetic fields can be 

carried out from a general boundary as potential of simple as well as double layer 

boundary density. It is also achieved by use of Green's formula without finding Green's 

function for the boundary. Subsequently, efficacies of the techniques are successfully 

demonstrated on model data. To carry out numerical work, the boundary is divided into 

triangular sub-areas to have the best possible approximation of it and the integrals over 

them are evaluated analytically. Finally, the ground magnetic data of Vishakhapatnam­

Srikakulam area are continued upward to a common level grazing the highest topographic 

point of the area by double }ayer formulation of the problem and subsequently, these are 

continued downward for finding the depth to the magnetic causative by use of 

DEPTHDNC software that determines depth to causative mass from the profile potential 

field data. The analysis reveals the basement configuration in the relatively flat coastal 

3 



area of Vishakhapatnam region and mechanism of deformation of the landmass in the 

undulated hilly region of Lamaput-Araku area that lies at the northwest of the coastal area. 
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Cbapter-2 

POTENTIAL THEORY 

2.1 Potential due to Simple Sources 

2.1.1 Potential due to a Simple Source 

For a monopole of mass cr placed at a point q the potential ~ due to it at a point P is given 

by 

cr cr I I-I <I>(P)=-=I I=crp-q = cr(q)g(P,q) , 
r P-q 

where q and P are the position vectors 

specifying the points q and P respectively with 

respect to an arbitrary reference point 0, r is the 

distance between P and q (Fig.2.1.1) and {I is 

denoted by g(P,q) or g(q,P). 

It is evident from Fiq. 2.1.1 that 

OP=Oq+qP 

=> qP = OP-Oq 

=> r = OP-Oq. 

(2.1.1) 

z 
P 

q( cr ) 
~=-------~y o 

x 
Fig.2.1.1 

The ~ in (2.1.1) is continuous and differentiable function of P except at the point q, i.e., at 

P = q. As Ipi ~OC, g(P,q) on expansion yields 

(2.1.2) 
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Further, this satisfies Laplace's equation 

(2.1.3) 

everywhere except at the point P = q. As such ~ is a harmonic function of P everywhere 

except at q. Formally ~ satisfies Poisson's equation 

v 2</>(P) = -41ta(q).8(P,q) 

where o(P, q) is the Dirac-Delta function. 

2.1.2 Potential due to Distribution of Simple Sources 

A continuous distribution of simple source of surface density (J over a smooth surface S 

generates simple layer potential 

<p(P) = fads = ~P - qr
l 
a( q)dq 

s r s 

= fg(p,q)a(q)dq, P~S (2.1.4) 
s 

at the field point P, dq (=ds) representing the 

surface element at the point q. Unlike the potential 

due to a simple source (monopole), expression 

z 

P 

y 

Fig.2.1.2 

(2.1.4) is continuous everywhere including the surface S. For P~PES, following Jaswon 

and Symm (1977), we obtain 

<p(p) = fg(p,q)a(q)dq, pES. 
s 

Further, the ~(P) in (2.1.4) has asymptotic behaviour 

<p(P) = Ipl-I fa(q)dq + O~pl-2) as P~oc, 
s 

(2.1.5) 

(2.1.6) 

differentiable to 2nd order and satisfies Laplace's equation everywhere except at PES, 

I.e., 

(2.1.7) 

and as such it is a harmonic function in P everywhere except PES. 

For (J satisfying HOlder continuity (Kellog 1929, Jaswon and Symm 1977), which is 

stronger than the continuity and weaker than the differentiability at PES, the tangential 
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derivative of ~ exists and continuous at p. But its norm,al derivatives are discontinuous 

(SJIl.imov, 1964). To examine the nature of discontinuity we draw a normal line to one side 

of S at p and locate points on the normal by a variable Ii which increases as we move 

away from S (Fig.2.1.2). At any point P on the normal, other than the initial point PES 

o~ = fOg(P,q) cr(q)dq 
On s On 

= f~(1 I IJcr(q)dq , P ~S san P-q 
(2.1.8) 

where, og(P,q}/on denotes the derivative of ~ at P. The integrand in (2.1.8) is regular 

and the integral can be evaluated on S. For p contained in an infinitely small surface 

element 8 of S, we may rewrite (2.1.8) as 

~~) a( 1 ) a( 1 J = f- I I cr(q)dq+ f - I I cr(q)dq. an Ii an P - q S-Ii an P - q 

As P---+PES, moving along the normal, the second integral is regular, but an apparent 

indeterminacy occurs in the integral over 8, when q == P. Following Kellog (1929), for 

P---+p and 8---+0, the first integral yields a definite value -27tcr(p} and the normal derivative 

of ~ at PES becomes 

a~(p) , a ( 1 ) 
=-21tcr(p)dq+ f- I I cr(q)dq,pES. an san P-q 

(2.1.9) 

For the sake of convenience, using the notation of Jaswon and Symm (1977), we rewrite 

the derivatives (2.1.8) and (2.1.9) as 

~~ (P) = fg~ (P,q)cr(q)dq, P~S (2.l.1O) 
S 
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and 

~~ (p) = fg~ (p,q)a(q)dq- 27ta(p), pES. (2.1.11) 
s 

There are two distinct nonnals at PES, one at either side of S. Assuming both sides of S to 

be positive (Jaswon and Symm 1977), i.e., the relevant variables n, and I1e both increases 

on moving away from S, following (2.1.11), putting i for n, and e for I1e , we obtain 

~: (p) = fg: (p,q)a(q)dq- 27ta(p) (2.1.12) 
s 

and 

~~(p) = fg~(p,q)a(q)dq-27ta(p). (2.1.13) 
s 

Since g(p,q) remains continuous as p crosses S, it follows that 

g~ (p,q) + g: (p,q) = 0, pES. (2.1.14) 

By virtue of this property of g; (p,q), on adding (2.1.12) and (2.1.13) we obtain 

~~(p)+~:(p) = -47ta(p), pES. (2.1.15) 

Unlike the normal derivative of the simple layer potential of~, that has a jump of amount 

-27tcr(q) at the boundary point p, the tangential derivative of ~ at PES is continuous as 

P~p E S and it can be expressed as 

4) 

lim a~(p,) = a~(p) 
P,-4P at at 

I 

(2.1.16) 

where, a~(p,)/at, represents the derivative of ~ at the interior point P, along line t .. which is 
I 

parallel to the tangent t at pES. The limit holds for a smooth S having a second order 

space derivative at the surface element S· with p in it and cr satisfies Holder continuity at 

pE S' (Kel/og 1929). It is now followed from (2.1.11) and (2.1.16) that 
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o~(p) =-2ncr(p)(u.n)+ Jg~(p,q)cr(q)dq, pES. 
au s 

(2.1.17) 

as shown by Jaswon and Symm (1977), where u is a unit vector in any arbitrary direction 

at pES. For ~ considered in the domain indicated by the normal n l , expression (2.1.17) 

yields 

o~(p) = -2ncr(p)(u.i) + Jg~ (p,q)cr(q)dq 
au s 

(2.1.18) 

and for ~ considered in the domain indicated by the normal Ile, expression (2.1.17) yields 

o~(p) = -2ncr(p)(u.e)+ Jg~(p,q)cr(q)dq 
au s (2.1.19) 

Following old sign convention one side of S is positive and other side negative, 

Bhattacharyya and Chan (1977) also arrived at (2.1.19). 

2.2 Potential due to Double Sources 

2.2.1 Potential due to a double source 

A dipole of strength (moment) ~ is placed in a 

direction u at a point q in a cartesian frame with 

z-axis upward (Fig.2.2.1). Its potential ~ at a 

field point P is given by 

$(P) ~ f1 !G) 
= Jl(q)Jq - pl-l 
= Jl(q)g(P,q)~ 

= ~(q)--;'-(f. ii)=- Jl(q)~cose 
r r 

9 

z 
p 

--> 

r = q -pi 

y 

x 
Fig.2.2.1 

(2.2.1) 



where, r = Ip - ql = Iq - pi, g(P, q) ~ is the derivative of g(P ,q) [= Iq - pi-I] at the point q 

in the direction u, keeping P fixed. r denotes the unit vector in the direction of Pq and e 

is the angle between the vectors Pq and U. The potential is a continuous and 

differentiable function of P satisfying V2~ = 0 except at the point q and therefore is a 

hannonic function everywhere except at q. This ~ vanishes at infinity with asymptotic 

behaviour 

(2.2.2) 

For P, q defined by (X,Y,Z) and (x,y,z) respectively and u by the direction cosine (l,m,n), 

expression (2.2.1) becomes 

$(P) = l'(x,y,Z)! m 

1 (A A) = -Jl-
2 

r.ll 
r 

= -Jlr-2 [(x - X)l + (y - y)m + (z - Z)n]/ r 

= -Jlr-3 [(x - X)l + (y - Y)m + (z - Z)n], (2.2.3) 

The upward intensity at P due to the doublet at q, 
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= Jl[- nr-3 + 3{1{x - X)+ m{y - Y)+ n{z - Z)}(z - Z)r-5
]. (2.2.4) 

For the doublet placed at the origin of the reference frame, in vertically downward 

direction, and the field point P lying vertically above the doublet by putting x= y= 0, 1= 

m= 0, n= -1 and X =Y =0 in (2.2.4), we obtain the upward intensity T z at P as 

This indicates, the intensity at P(O,O,Z) is vertically downward, as expected. 

2.2.2 Potential due to Surface Distribution ,of Double Sources 

A double source or a doublet of strength /..I. 

is located at a point q belonging to a smooth 

surface S (not necessarily closed) with its 

direction along a unit vector i nonnal to S 

at q. Its potential at a point outside the 

surface S (Fig.2.2.2) is given by (2.2.1) as 

~(P) = Jl(q)g(P,q):. 

For continuous distribution of double 

X 

Z 

p 

p 

Fig.2.2.2 

s 

Y 

sources of strength ~ per unit area on S, i.e., for surface distribution of doublets of density 

~ over S, the potential at P is 

W(P) = fg(p,q); Jl(q)dq, PIlS. (2.2.5) 
s 

The W(P) in (2.2.5) is continuous and differentiable at P '* q. Further, it satisfies Laplace 

equation at all the points P '* q. It is therefore a hannonic function everywhere except at S, 

where it is discontinuous. 

To define the discontinuity properties at S, let us consider two points PI and Pe on i and e, 
the internal and external nonnals respectively at p (Fig.2.2.3) over S. 
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lim W(P;) = W(p) + bqJ.(p) 
P,->p 

(2.2.6) 

and 

lim W(Pe ) = W(p) - 21tJl(p) . 
p.->p 

(2.2.7) 

The tenn -2 7t1l(P) appearing in expression (2.2.7) for the doublet at p being directed along 

the nonnal i . 

The jumps of an amount 2 7t1l(P) in the 

integral can be realized on evaluating the 

integral as sum of the integrals over the 

surface element 8 c Sand S - 8 as 8---+0 

containing p, i.e., pE 8. The value of the 

integral over 8, when PI---+p and 8 ---+0 is 

21tJl(p) (Kellogg, 1929), where Il (p) is the 

average value of Il over 8 containing p and 

8 is infinitesimally small. It is to be noted 

here that the direction of the vector Fig.2.2.3 

r = (p - p.) is in the opposite direction of the doublet at p. The integral over S- 8 IS 

regular and yield a value W(P) which is less by an amount 27t Il (P) than the value of the 

integral (2.2.5), when P(= PI) is at infinitesimal distance from p. This phenomenon of 

change of the value of the integral when PI goes to PES moving along i, is tenned as 

jump in the integral and the limiting value of the integral (2.2.5) at the boundary is 

therefor~ W (P) + 27t Il (P). 

When Pe---+PES, from the other side of S, the direction of the vector r = (p-Pe) is in the 
A 

direction i, the direction of the doublet at p, which is opposite to the case we see in 

(2.2.6). Hence as Pe---+ PES, the limiting value of the integral (2.2.5) is given by 

W(p) - 21tJl(p). 
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2.3 Green's Formulae for Half-Space Domain 

2.3.1 Green's Identities 

(i) Green's Identity-I 

For a hannonic function ~ defined in a domain V bounded by a closed smooth surface S, 

Green's Identity-I states that 

J~ds=O. 
S On i 

Using present notation, we express it as 

J ~: (q)dq = 0 , (2.3.1) 
aB 

where aB denotes the boundary S, ~: (q) represented the inward normal derivative of ~ 

at the point q E aB, and dq = ds. This identity also defines the Gauss condition for ~ to 

be a harmonic in the interior domain V (= Bj' Fig.2.3.1) bounded by aB. 

For a regular harmonic function ~, i.e., ~ = O( r -\ ), r ~ <X), defined in the exterior 

domain Be (Fig. 2.3.1) bounded at the interior by aB, the identity becomes 

J~~(q)dq + J~~(q)dq = 0, (2.3.2) 
aB as 

where as is. the outer boundary that 

encloses the exterior domain Be within it and 

~~ stands for the normal derivative of ~ 

towards the domain Be at the point 

q E aB + SI + S2 + as as seen in Fig.2.3.1. 

Fig.2.3.1 

For ~ = O(r-I)~ r ~ <X), the second integral of expression (2.3.2) does not vanish as can 

be seen from 
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J~~(q)dq == ~~~ JO(r-
2
).r

2
dco = 0(1), 

as as 

where dro is the solid angle subtended by dq E as at the central point of Bj (Fig.2.3.1). In 

this case, by ( 2.3.2) 

J~~(q)dq =1= 0 (2.3.3) 
aB 

necessarily. 

However, for ~ == O(r-2), r----+ 00, the second integral on as vanishes for ~~ == OCr -3). 

Under this condition, we obtain 

J~~(q)dq==O. (2.3.4) 
aB 

(ii) Green's Identity-II or Green's Reciprocal Formula 

Two functions ~ and \Jf are harmonic in a domain V bounded by a closed smooth surface 

S. Green's Identity-II states that 

f~ mv ds- f\V~s = 0, 
s an. s an. 

I I 

(2.3.5) 

where nj is an inward normal to S . 

Following the present notation, the identity (2.3.5) can be written as 

(2.3.6) 
aB aB 

For ~ and \jJ to be regular and harmonic in the exterior domain Be (Fig.2.3.1), bounded 

by aB in the interior, the identity (2.3.6), on changing i bye, becomes 
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f cj>( q)\jJ ~ (q)dq - f \jJ( q)cj> ~ ( q)dq + f cj>( q)\jJ ~ (q)dq - f \jJ( q)cj> ~ (q)dq = 0 , 
m m ~ ~ 

the integrals over S, canceling those over S2, S, coinciding with S2 . As as goes to 

infinity, i.e., as r ~ 00 , keeping aB fixed in position, the integrals over as tends to zero, 

yielding the identify for Be as 

fcj>(q)\jJ~(q)dq - f\jJ(q)cj>~(q)dq = O. (2.3.7) 
aB aB 

2.3.2 Green's Formulae 

Let cj> be a hannonic function in an interior domain B. bounded by a smooth closed surface 

S. Given cj> and its interior nonnal derivative cj>: over S Green's fonnula detennined the 

value of cj> at an interior point P. 

Let us enclose the point P by a small spherical 

surface S of radius a and introduce a function 

\II defined by 1/ r = Ip - ql-I. In the annular 

region V (= Bi , say) bounded by Sand S 

(Fig.2.3.2), both cj> and \jJ are hannonic 

functions. As such, by Green's Identity-II, i.e., 

by (2.3.6), we obtain 

the integrals over S, and S2 canceling each other. 

As the radius a ~ 0, the first integral over S yields 
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(2.3.8) 



. f alar la~­hm[ {~-(-)----}dS] 
a->O ar r an r an 

s " 

1 AA - la~-
= lim[f{~(--2)(r.n,)dS- f--dS] 

a->O r r an 
- - , s s 

. f I - I fa~ -
= hm[~av (--)dS- - ...:2..dS] 

a->O a 2 a an 
s s ' 

= - ~(p) lim fd(J) -lim.!. f~ S 
a->O a-+O a an 

w s, 

= -47t~(p), (2.3.9) 

rand il, being both outward, dro the solid angle subtended at P by dS, ~av being the 

average value of ~ over the sphere of radius a and the second integral being zero by 

Green's Identity-I. 

On substituting the value of the first integral in (2.3.8), we obtain 

47t~(P) = f~- - s- f--ds a (I} I a~ 
s an, r s ran, 

(2.3.1 0) 

which is known as Green's formula for the interior function ~. In this case, ~ at an 

interior point P is expressed in terms of ~ and a~/ an, given over the boundary S. 

Using the current notation, we rewrite (2.3.10) as 

47t~(P) = J : Iq - pr1 ~(q)dq - ]q - pl-l ~~ (q)dq, P E B, (2.3.11) 
aB aB 
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where aB is the smooth closed surface S that encloses the domain B, ( = V ). 

For P lying outside Bh we find V2 \V = 0 in B, Consequently, by Green's 

Identity-II, we obtain 

B\V acj> f( cj>- - \V -)dS = 0 
s an, an, 

a(l) la~ or, f<- - ~---)dS=O 
s an, r ran, 

aB aB 

Be defining the infinite domain exterior to B,. 

(2.3.12) 

For a regular cj> defined in the exterior domain Be, bounded at the interior by a closed 

smooth surface aB and at the exterior by a spherical surface as lying at infinity 

(Fig.2.3.1), using the formula ( 2.3.11), we obtain 

aB aB 

(2.3.13) 
as as 

omitting the integral over SI and S2 (Fig.2.3.I) as they cancel each other. As 8Smoves to 

infinity, the contributions of the last two integrals of (2.3.13) at P, lying in the finite 

region, are each of D( (1), r~ 00, where r = Ip -ql and q> being regular. This leads to 

Green's formula for the exterior domain Be bounded at the interior by 8B as 

(2.3.14) 
aB aB 
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2.3.3 Green's Boundary Formula 

Green's fonnula generates <I> throughout the interior domain B. assuming that <I> and <1>: 

are both available and compatible over aB. According to fundamental existence theorems, 

either <I> alone or <1>. alone over aB essentially suffices detennination of <I> throughout B. 

(Jaswon and Symm 1977). Thus application of Green's fonnula requires more boundary 

infonnation and as such it cannot be used immediately for solving problems. One well­

known approach is elimination of the redundancy in Green's fonnula by constructing 

Green's function for the boundary, which is, in general, an extremely difficult task 

(Courtillot et. aI., 1973). An alternative approach is provided by Green's fonnula taken to 

the boundary. 

For a hannonic function <I> defined in an interior domain B. bounded by a smooth closed 

boundary aB, given <I> and <1>: over aB, Green's fonnula (2.3.11) provides <I> at an 

interior point P. Using the notation /q - p/-
I 

== g(P,q) and ."Iq - pi-I == g(P,q): we 

rewrite (2.3.11) as 

(2.3.15) 
aB aB 

Comparing the above integrals with those expressing double and simple layer potentials of 

surface densities shown in (2.2.5) and (2.1.4) respectively, it can be stated that Green's 

fonnula yields the <I> at P as a combination of double and simple layer potentials of 

boundary densities <I> and <1>: respectively. This provides a vital link between the theory of 

hannonic function and potential theory. 

When P ~ P E aB the simple layer potential with boundary density <1>: remaInS 

continuous in B.+ aB as seen in (2.1.5), but the double layer potential with boundary 

density <I> suffers a loss of amount 2n<l>(p) due to the jump - 2n<l>(p) in the integral at 

p E aB, as explained in (2.2.6). By virtue of continuity of the simple layer potential and 

loss in the double layer potential when P = p E aB, fonnula (2.3.15) yields 
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2mj>(p) = fg(p,q):~(q)dq- fg(p,q)~:(q)dq, pEaB. (2.3.16) 
as aB 

This formula is known as Green's boundary formula for the interior domain B, 

When p crosses the boundary aB moving from aB to Be, the double layer potential again 

jumps by - 27t~(p) yielding the identity 

° = fg(p,q):~(q)dq - fg(p,q)~: (q)dq, P E Be' (2.3.17) 
aB aB 

This identity is deduced earlier in (2.3.12). The formula (2.3.17) can also be realised from 

formula (2.3.16) considering p = Pe E Be and Pe approached aB moving form Be to aB. 

As Pe ~ P E aB, the double layer integral gains an amount 27t~(p) by a jump at 

p E aB, as seen in (2.2.7). Since the same value appears as the value of the integral in 

boundary formula (2.3.16), the formula must yield a zero value when P E Be 

The analogous results hold for a regular exterior harmonic function ~, viz., 

fg(P,q)~~(q)dq - fg(p,q)~~(q)dq = 47t~(P), P E Be' (2.3.18) 
aB aB 

fg(p,q)~~(q)dq - fg(p,q)~~(q)dq = 27t~(p), P E aB (2.3.19) 
aB aB 

and 

Jg(P,q)~~(q)dq - Jg(P,q)~~(q)dq = 0, P E B,. (2.3.20) 
aB aB 

2.3.4 Formulation of Dirichlet and Neumann Problems 

It is now left to show how Green's boundary formula can be directly applied to solve 

problems when either ~ or ~' alone is given over aB. 
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(i) Interior Problems 

(a) Given <I> over aB, the relation (2.3.16) leads to the equation 

fg(p,q)<I>; (q)dq = fg(p,q);<1>( q)dq - 27t<l>(p), p E aB, (2.3.21) 
aB 

a Fredholm integral equation of the first kind in <1>; (q) expressed in terms of <I> specified 

over aB. This describes an interior Dirichlet problem specified over the boundary. It has 

been shown in Jaswon and Symm (1977) and similarly in Kress (1989) that there exist a 

unique solution for <1>: (q) . 

(b) Given <1>: over aB, relation (2.3.16) yields the equation 

f g(p, q): <1>( q)dq - 2 7t<l>(p) = f g(p, q)<I>: ( q)dq, p E aB (2.3.22) 
aB aB 

which is a Fredholm integral equation of the second kind in <I> in terms of 4>: given over 

aB. This describes an interior Neumann problem in <I> for <1>; given on aB. General 

solution of (2.3.22) appears as <I> = <1>0 + k (Jaswon and Symm 1977) and this can be made 

unique on proper choice of k. 

(ii) Exterior Problems 

(a) Given <I> on aB, the boundary formula (2.3.19) yields the equation 

fg(p,q)<l>~ (q)dq = fg(p,q)~<1>( q)dq - 27t<l>(p), p E aB . (2.3.23) 
aB aB 

This is an exterior Dirichlet problem expressed in a Fredholm integral equation of the first 

kind for <I>~ in terms of <I> given over aB and as the exterior Dirichlet problem exists a 

unique solution (Kress 1989): So solution to (2.3.23) also uniquely defines over aB. 
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(b) Given ~~ over DB, relation (2.3.19) yields the boundary equation 

fg(p,q)~~(q)dq - 21t~(p) = fg(p,q)~~(q)dq, P E DB (2.3.24) 
aB aB 

which expresses an exterior Neumann problem in ~, by an integral equation of the second 

kind for ~, in terms of ~~ given over 8B. Solution ~ of (2.3.24) exists and it is unique 

over 8B (Jaswon and Symm 1977). 

2.3.5 Green's Formulae for Half-Space Domain 

(i) For a harmonic function ~ defined in an 

interior domain BI bounded by a smooth 

closed boundary DB = S + Su' such that Su 

is a hemispherical surface of a large radius 

R (Fig.2.3.3). Given ~ and its interior 

normal derivative ~~ on DB, the ~ at an 

interior point P is given by (2.3.15) as 

aB aB 

= fg(P,q)~~(q)dq - fg(P,q)~:(q)dq 
S S 

BI 

+ fg(P,q):~(q)dq - fg(P,q)~:(q)dq, P E B, , 
Su Su 

Su 

S 

Fig.2.3.3 

(2.3.25) 

where g(P,q) = Ip - qr l 
as usual. For a regular ~ in BI as Su moves to infinity the 

contribution of each the integrals described over Su to the field point P becomes zero of 

the same O( 1/ r), r ~ 00 . This follows from the fact that 

fg(p, q)~ ~(q)dq = f Iq - pi-I ~(q)dq 
Su Su 
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= lim JO(r-2 ).O(r- I ).r2dro 
r->co 

Su 

(2.3.26) 

For dq = ~ dill, where dill is the solid angle subtended by dq at the point P. Hence, as Su 

moves to infinity, the formula (2.3.25) yields the Green's formula for the upper half-space 

domain as 

47t$(P) = J g(P, q): $( q)dq - J g(P, q)$: (q)dq . (2.3.27) 
S S 

It is to be noted here that the formula (2.3.27) is deduc ed assuming $ is regular, i.e. 

$ =O( (I ), r -; 00, in the upper half-space domain. It is evident from (2.3.26) that the 

formula (2.3.25) holds for a $ with asymptotic behaviour $ =O( r -n), n ~ 1 , r -; 00 . 

(ii) Considering the upper half-space domain as an exterior domain Be bounded at the 

interior by a closed boundary aB (= S + Sw, Fig. 2.3.4), we find 

47t$(P) = fg(p,q)~$(q) - fg(P,q)$~(q)dq + fg(P,q)~$(q)dq - fg(P,q)$~(q)dq, 
S s ~ ~ 

by (2.3.18). Following the same analysis as 

carried out in (2.3.26) for P E Be the above 

formula yields 

41t~(P) = f g(P, q) ~ ~(q)dq - J g(P, q)~ ~ (q)dq . 
S S 

(2.3.28) 

Formulae (2.3.27) and (2.3.28) are identical in 

all respects, both representing Green's 
Fig.2.3.4 

e 

S 

formula for the same upper half-space domain with interchange of unit normals i and e 

both pointing towards upper half-space domain over S. Hence, for mathematical 

convenience, the upper half-space domain can be treated either interior or exterior as one 

wishes. 
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(iii) Green's boundary fonnula for interior domain BI is given by expression (2.3.16) as 

aB aB 

Considering aB = S + Su (Fig.2.3.3) and following the same procedure as carried out in 

the case of (2.3.25), we arrive at 

(2.3.29) 
s s 

Depending on boundary data two cases arise in (2.3.29): 

a) Given 4> over S, fonnula (2.3.29) yields a boundary integral equation of the 1st 

kind in 4>: . This expresses a Dirichlet problem for 4>: in tenns of 4> over S, 

b) Given 4>: over S, fonnula (2.3.29) yields a boundary integral equation of the 2nd 

kind in 4>. This expresses a Nuemann problem for 4> in tenns of 4>: over S. 

(iv) Green's boundary fonnula for exterior domain Be is given by expression (2.3.19) as 

27t4>(p) = Jg(p,q)~4>(q)dq - Jg(p,q)4>~(q)dq, p E aB'
J 

aB aB 

Considering aB = S + Sw (Fig.2.3.4) and following the same procedure carried out in the 

case of (3.2.28), we arrive at 

27t4>(p)= Jg(p,q)~4>(q)dq- Jg(p,q)4>~(q)dq, pES. (2.3.30) . 
s s 

Depending on boundary data two cases arise in (2.3.30): 

a) Given 4> over S, fonnula (2.3.30) yields a boundary integral equation of the 1st 

kind in 4>~. This expresses a Dirichlet problem for 4>~ in tenns of 4> over S, 
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b) Given </>~ over S, fonnula (2.3.30) yields a boundary integral equation of the 2nd 

kind in</>o This expresses a Nuemann problem for </> in tenns of 4>~ over S. 

The fonnula (2.3.29) and (2.3.30) are also identical in all respects, both representing 

Green's fonnula for the same boundary S with interchange of unit nonnals i and e both 

pointing towards the half-space domain over S. 
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Chapter-3 

HALF-SPACE PROBLEMS IN POTENTIAL 

THEORY 

3.1 Representation of Harmonic Function as a Simple and 
Double Layer Potentials 

A hannonic function 4> may be represented throughout the interior domain Bi by Green's 

formula. On the other hand this may also be represented by a simple layer potential or by a 

double layer potential. To bring out the connection between these different 

representations, following Jaswon and Symm (1977), we introduce an arbitrary regular 

exterior harmonic function f into the exterior domain Be, such that it satisfies the 

expression (2.3.20) i.e., 

fg(P,q)J(q)dq - fg(P,q)f~(q)dq = 0, P E B i . (3.1.1 ) 
aB aB 

Superposition of this on Greeen's formula (2.3.15) for interior domain, i.e., on 

(3.1.2) 

yields the more general continuation formula 

Jg(P,q);(4>(q) - f(q)~q - Jg(P,q) (4);(q) + f~(q)~q = 4n4>(P),P E B j • (3.1.3) 
aB aB 

Now, we consider two distinct possibilities for f. 

The first is f = $ over aB, providing the representation 

4n4>(P)=- fg(p,q)[4>;(q)+(q)~q, PEB j (3.1.4) 
aB 
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which is similar to the simple layer potential generated by the source density 

1 (' ') 0' = - 4n 4>; + fe . (3.1.5) 

This possibility hinges upon the existence of a unique regular f in Be satisfying f = 4> over 

aB, as it is in fact ensured by the exterior Dirichlet existence theorem. The second 

possibility is f~ = -4>: over aB, providing the representation 

4n4>(P) = fg(p,q): [4>(q) - f(q)}:Iq, P E B; (3.1.6) 
aB 

which may be identified as the double layer potential generated by source density 

1 
J.l = -(4) - f). 

4n . 
(3.1. 7) 

This possibility hinges upon the existence of a unique regular f in Be satisfying f~ = -$; 
over aB, as it is in fact ensured by the exterior Nuemann existence theorem. 

In the case of a harmonic function 4> vanishing at infinity at least in OCr -n ), n~l, the 

above statements remain valid as these can be derived as a special case of close domain 

exterior as well as interior problem following article (2.3.5). So, analogous to statements 

(3.1.4) and (3.1.6), considering f =4> and ( = -4>~ respectively, the expression for exterior 

half-space problem will be 

4n4>(P) = - fg(p,q)[4>~(q) + ((q)~q, P E Be (3.1.8) 
as 

which is similar to the simple layer potential generated by the source density 

(3.1.9) 
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and 

(3.1.10) 
aB 

which may be identified as the double layer potential generated by source density 

1 
J.l = -(f - <1». 

47t 
(3.1.11) 

The representation (3.1.8) remains valid at aB, so yielding the boundary relation 

jg(p,q)cr(q)dq = <I>(p), p E aB (3.1.12) 
aB 

where, cr is given by (3.1.9). This may be regarded as an integral equation in cr in terms 

of <1>, to which a unique solution exists since <I>~ and [,' uniquely exist. Similarly the 

representation (3.1.10) jumps by - 27t/-l(p) at aB, so yielding the boundary relation 

jg(p,q)~ J.l( q)dq + 27tJ.l(p) = <I>(p), p E aB . (3.1.13) 
aB 

where J.l is given by (3.1.11). This may be regarded as integral equation for J.l in terms of 

<1>, to which a unique solution exists since funiquely exists. 

3.2 Half-space Problems in Simple and Double Layer Potentials 

For a regular harmonic function <I> defined in an exterior domain Be bounded at the interior 

by a closed boundary aB (= S + Sw, Fig. 2.3.4), we may write <I> following (3.1.8) and 

(3.1.10) as 

<I>(P) = jg(P,q)crdq + jg(P,q)crdq, P E Be (3.2.1) 
s 
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where, 

and 

~(P) = Jg(P,q)~ ~dq + Jg(P,q)~ ~dq, P E Be (3.2.2) 
s 

where, 

1 
~ = -(f - ~) = O( ~). 

41t 

Following the same analysis as carried out in (2.3.26) for P E Be the above formula yields 

~(P)= Jg(P,q)crdq, PEB e (3.2.3) 
S 

and 

~(P)= fg(P,q)~~dq, PEB e. (3.2.4) 
S 

The relation (3.2.3) is valid for the boundary S, so yielding the boundary relation as 

~(p) = fg(p,q)crdq, pES. (3.2.5) 
s 

For ~ given on S the expression (3.2.5) may be regarded as integral equation in cr. This 

has unique cr as shown in (3.1.6). Similarly the representation (3.2.4) jumps by 

- 21t~(p) at S, so yielding the boundary relation 

~(p) = Jg(p,q)~ ~dq + 21t~(p) ,p E S. (3.2.6) 
s 

For given ~, this may also be regarded as integral equation in ~ to which unique solution 

exists as shown in (3.1. 7) since f exists uniquely. 
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Chapter-4 

APPLICATON TO GEOPHYSICS 

4.1 Representation of Gravity-Magnetic Fields by Simple Layer 
Boundary Density 

For ~ denoting either a gravity field or a 

component magnetostatic field in Be+S 

(Fig. 4.1.1), ~ in Be is a harmonic function 

with asymptotic behaviour ~ =O(r-"), n ~ 

2, as f---).OO. As such following (3.2.3), 

reproduction of ~ in Be can be obtained as 

potential due to simple layer density as 

~(P) = flq - pl-I(J(q) dq, 
5 

e 

FigA.l.l 

(4.1.1) 

where cr (q) is the simple layer boundary density over S at the point q. The gravity and the 

magnetic field are continuous in Be+S. For the field point P coinciding with the boundary 

point p, following (3.2.5), we obtain the boundary formula 

~(p) == flq - pI-I (J( q) dq, pES. (4.1.2) 
5 

Given ~ over S, equation (4.1.2) expresses a Fredholm integral equation of first kind in cr 

in terms of~ specified over S. It has been shown in (3.2.5) and (3.1.6) that the equation 

has a unique cr over S. Once the cr is known as solution of equation (4.1.2), ~ in Be can be 

computed by (4.1.1). 
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Now, as P moves to infinity, the formula (4.1.1) yields 

~(P) = O~prl )fcr(q)dq, p ~ 00. 

s 

For q, representing the gravity field, q, = 0(r-2
), r ~ 00. As such, 

Jcr(q) dq = 0 
s 

For q, representing a component magnetostatic field, q, = 0(r-3
), r ~ 00. As such for 

this case also 

fcr(q) dq = 0 (4.1.3) 
s 

for q, representing gravity and component magnetostatic field. 

4.2 Gravity-Magnetic Fields by Double Layer Boundary Density 

For ~ denoting either a gravity field or a component magnetostatic field in Be+S, ~ in Be 

is a harmonic function with asymptotic behaviour ~ = O(r-n
), n ~ 2, as r~ 00. As such 

upward continuation of~ in Be can be obtained as a potential due to double layer boundary 

density by (3.2.4) as 

~(P) = f ~Iq - pi-I Jl(q) dq, (4.2.1) 
s 

where Jl( q) is the double layer boundary density over S at the point q. For the field point P 

coinciding with boundary point p, we obtain the boundary formula (3.2.6) as 

~(P) = 21tJl(P) + f ~ Iq - pi-I Jl( q) dq, pES. (4.2.2) 
s 

because the double layer potential jumps by an amount -2 7tJl(p) at the boundary, 
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Given ~ over S, equation (4.2.2) presents a boundary integral equation of 2nd kind in ~, 

which expresses a Dirichlet problem in ~ in terms of ~ over S. It has been shown in 

(3.2.6) and (3.1.7) that this equation has a unique solution over S. Once ~ is known over 

S, ~ at PEBe can be computed by (4.2.1). 

As IPI ~ 00, formula (4.2.1) yields 

~(p) = o~PI-2 ) f ~(q) dq, Ipl ~ 00. (4.2.3) 
s 

For ~ representing a gravity field with asymptotic behaviour ~ = O~PI-2 ~ IPI ~ 00, it is 

evident from (4.2.3) that 

f ~(q)dq :;t 0 (4.2.4) 
s 

necessarily. 

For ~ representing a magneto-static component field with asymptotic behaviour 

~ = O~PI-3 } Ipi ~ 00, it is evident from (4.23) that 

f~(q)dq = O. (4.2.5) 
s 

4.3 Gravity-Magnetic Fields by Green's Formula 

For ~ representing a gravity or a magneto-static component field in the upper half-space 

domain Be bounded below by S, ~ is a harmonic function in Be with asymptotic behaviour 

~ = O(r-n
), n ~ 2, r ~ 00. As such given ~ over S, following (2.3.28), ~ in Be can be 

obtained by Green's formula 
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(4.3.1) 
s s 

on obtaining ~~ over S as a solution of the boundary integral equation 

21I~(P) = IJq - pl-J ~(q)dq - nq - pl-J~: (q)dq, pES. (4.3.2) 
s s 

Given ~ over S, equation (4.3.2) represents a boundary integral equation of the first kind 

in ~~ in terms of ~ specified over S. It has been shown in (2.3.24) that this equation has a 

unique ~~ over S. With this ~~ over S, ~ at a point PE Be can be obtained by (4.3.1). 

As IPI ~ 00 , the formula (4.3.1) yields 

(4.3.3) 
s s 

Since both gravity and component magnetic fields vanish at infinity in o~pl-n } n ~ 2, and 

f~(q)dq being bounded, it is evident from (4.3.3) that 
s 

f~~ (q)dq = 0 (4.3.4) 
s 

for both gravity and magnetic cases. 
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Chapter-5 

NUMERICAL PROCEDURE 

To carry out computational work involving a harmonic function 4>, with asymptotic 

behaviour 4> =O(r"n), n ~ 1, r ~ 00 , defined in the upper half-space domain Be, we are to 

make certain compromises. To solve the problem we choose a large finite boundary 

surface S and assume that the contribution from the rest part of the half-space boundary is 

negligibly small at its periphery. Subsequently we delete the solution over the peripheral 

part and accept it over the central part of S for any practical purpose. 

5.1 Discretisation of Equations 

5.1.1 Simple Layer Formulae 

A regular harmonic function 4> can be reproduced in the upper half-space domain as a 

potential of simple layer boundary density. For 4> denoting gravity or a component 

magnetic field due to a subsurface causative mass m, in the upper half-space domain Be 

bounded bel.ow by a ground surface S, given 4> over S, 4> in Be can be reproduced by 

simple layer boundary density cr by (4.1.1) 

4>(P) = ]q - pi-I cr( q) dq, P E Be' (5.1.1) 
s 

To find the numerical value of 4> at P E Be' we divide the boundary S into n subareas 

~SJ' j=l, 2, '" .... , n and make the fundamental assumption that the function cr is 

constant over a subarea. Under this assumption the formula (5.1.1) becomes 

(5.1.2) 
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where ~ is the approximation to <I> at P and O'j is constant value of 0' over the j-th 

subarea ~S .. On finding the 0'. over S, an approximation to <I> at P can be obtained by J J . 

(5.1.1). To find 0' j over S, we are to solve the boundary integral equation (4.1.2) in 0'. 

To solve it numerically we divide the boundary S into n subareas ~Sj' j=l, 2, ....... , n as 

done earlier and find the nodal point (centroid) of each subarea. For qk defining the nodal 

point of k-th subaraea ~Sk and p of (4.1.2) coinciding with q k we obtain' 

n 

=L>kPj· (5.1.3) 
j=J 

where <l>k is the value of <I> at the nodal point qk' O'j is the constant value of 0' over j-th 

subarea ~S j and 

ak,j = ~q - qkrJdq. 
6S j 

For successively assuming the values 1,2,3, ......... , n for k, we obtain 

n 

IakPj=<I>k' k= 1,2,3 ....... , n. 
j=J 

(5.1.4) 

(5.1.5) 

For <l>k specified over ~Sk' k=l, 2, 3, ........ , n, the equation (5.1.5) provides a system of 

n simultaneous linear algebraic equations in n unknowns O'j' j = 1, 2, 3, ....... , n. On 

finding the O'j as solution of (5.1.5), the field <I> at a point PEBe can be computed by 

(5.1.2), the discretised version of (5.1.1). 
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5.1.2 Double Layer Formulae 

It is also possible to reproduce a regular harmonic function ~ in the upper half-space 

domain as potential of double layer density J.l over the boundary surface S. On dividing 

the boundary S into n subareas and assuming that the J.l is constant over a subarea, the 

formula (4.2.1) yields 

~(p) = t J.lj f Jq - prl dq, (5.1.6) 
)=1 os) 

-
where ~(P) is the approximate value of ~ at P, /-lj is constant value of /-lover the j-th 

subarea ~S). The q;" at P E Be' can be obtained from (5.1.6) on finding the /-l) as a 

solution of the boundary equation (4.2.2). 

For the field point q defining the nodal point of j-th subarea ~S and the field point p of 
) ) 

(4.2.2) coinciding with the nodal point ofk-th subarea ~Sk' the equation (4.2.2) yields 

~k = 27t/-lk + t /-lj f Jq - qk rl 

dq, (5.1. 7) 
j=1 os) 

b k) = J Jq - qk rl 

dq (5.1.8) 
os, 

For k assuming successively the values 1,2,3, ....... , n as qk moves over S, the equation 

(5.1.7) yields a system of n simultaneous algebraic equations in n unknowns /-lj' j=l, 2, 

...... , n for ~k specified over S. These equations. (5. 1.7) can be rewritten as 

n 

~k = 27t/-lk + I /-l)b k) , 
)=1 
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where ~k is the value of ~ at the nodal point qk of ~Sk and bkJ = f Jq - qk rl 

dq 
6SJ 

This can be rewritten as 

I (2nb kJ + bkj )f.lJ = ~k' k=l, 2, 3, ...... , n, (5.1.9) 
J=I 

where bkJ is the Kronecker delta. 

On finding the f.l
J 

as solution of (4.2.2), the field ~ at a point PEBe can be computed by 

discretised version of (4.2.1). 

5.1.3 Green's Formulae 

For a harmonic function ~ with asymptotic behaviour ~ = O(r-"), n 2 1, r ~ 00, 

defined in the upper half-space domain Be bounded beL)w by S, given ~ over S, ~ in Be 

can be obtained by Green's formulae (4.3.1) on obtaining ~~ over S as a unique solution of 

(4.3.2). For a numerical approach to solve the equations (4.3.2) and subsequently to 

reproduce ~ in Be, as before let us divide a large finite boundary S into n subareas ~SJ' 

j=l, 2, 3, ....... , n and assume that ~ is constant over a subarea, its value being associated 

with the nodal point of the subarea. Under this condition the discretised version of the 

formula (4.3.1) becomes 

(5.1.10) 

-where ~(P) is the approximate value of ~ (P), ~J is the constant value of ~ over j-th 

subarea ~SJ and ~~J is constant value of ~~ over ~SJ and that of(4.3.2) becomes 
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(5.1.11) 

where <l>k is the value of <I> at the nodal point qk of .1Sk· 

For k assuming successively the values 1, 2, 3, ....... , n as qk moves over S, the above 

equation on reorganization yields 

t ~~I flq - qkl-
I 
dq = t~J f Jq - qkr

l 

dq - 27t~/\J' k = 1,2, ... , n. (5.1.12) 
J=I 6S

1 
J=I 6S

1 

Denoting as before flq - qkl-
I 
dq and f Jq - qkl-

I 
dq by akJ and bkJ respectively the 

6S
J 

6SJ 

above equation (5.1.12) takes the form 

n n 

L~~JakJ = L~JbkJ - 27t~J8kJ' k=l, 2, 3, ........ , n 
J=I J=I 

n 

L~~JakJ = Dk, k=l, 2, 3, ....... , n, 
J=I 

(5.1.13) 

n 

where Dk = L~JbkJ - 27t~J8kJ 
J=I 

The equation (5.1.13) represents a system of n simultaneous linear algebraic equations in n 

unknowns~' . On finding ~e' as a solution of equation (5.1.13), ~ at a point qk E B can 
eJ I e 

be computed by (5.1.10), the discretised version of (4.3.1). 

5.2 Evaluation of Coefficients 

To solve the equations (5.1.5), (5.1.9) and (5.1.13), we are to evaluate the coefficients a kJ 

and bkJ . Depending on the values ofj and k two distinct cases arise: 
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i) For j = k, the integral is singular and it is to be evaluated analytically. 

ii) For j ;t:. k, the integral is regular and it can be evaluated analytically or an 

approximation to them by a numerical means may suffice our purpose. 

5.2.1 Evaluation of Coefficients for Singular Integrals 

To evaluate the singular integral a kk and bkk , we consider that the subareas are piecewise 

flat. Under this assumption to evaluate the singular integral a kk , we divide k-th subarea 

into 3 (4 in case of a rectangular sub-area) triangular sub-areas with their vertices at 

qk and evaluate the integral over each of them by the formula (Jaswon and Symm 1977) 

1= 2~ 10g(b + c + a), 
a b+c-a 

(5.2.1) 

where /}. is the area of the triangle ABC, qk coinciding with the vertex A and a, b, c are as 

usual defining the sides BC, CA, AB respectively of ABC. 

To evaluate the singular integral bkk, we consider that the subareas are piecewise flat. 

Under this assumption 

• -1 

bkk = JJqk -ql dq=O, qk,qE~Sk (5.2.2) 
k 

sInce Jqk -ql = 0, for qk ;t:. q and both lying on the flat k-th subarea and for q = qk, the 

integral is having a singularity at the isolated point qk' a set of measure zero. 

5.2.2 Evaluation of Coefficients for Regular Integrals 

i) Approximation of Regular Inte'grals 
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Approximations to akJ and bkJ' j"* k can be computed by the centroid rule (Hess and 

Smith 1967, Laskar 1977). In this method the kernel is considered to be constant; its value 

being associated with the centroid (nodal point) of the subarea. 

Let Ie be the centroid method of approximation to a regular integral of f(P ,q) over a 

subarea ~S for q E ~S and P lying outside it. Following the definition, 

Ie = f f(P, q)dq 
60S 

= f(P,qo) fdq, 
60S 

qo defining the centroid of ~S. It has been shown by Laskar (1977) that if D be the 

largest diagonal of ~S, then the percentage of error in Ie becomes less than 1 % if 

Ip - qol ~ 2D. The error increases when P approaches to qo. The formula is applicable 

to all kinds of acceptable subareas. 

In the case of simple layer representation of the problem 

Ie = ff(P,q)dq = flq - qkl-
I 
dq = Iqo - ql-I fdq (5.2.3) 

60S) 60S) 60S) 

and fOF the double layer case, 

(5.2.4) 

qo defining the centroid of the j-th subarea ~S) 

ii) Analytical Evaluation of Regular Integrals 

We know that for a triangular area ABC and a field point P defined in a cartesian reference 

frame, the coordinates of the vertices of ABC and those of P can be described in a new 
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frame with its origin at the foot of the perpendicular dropped from P to the plane of ABC 

and the (x,y)-plane of the new frame coinciding with the plane of the triangle. This set up 

can be achieved by necessary transformations. 

For analytical evaluation of regular 

integrals involved in akJ and bkJ , we 

consider a flat and triangular subarea 

and define it by ABC (Fig.5.2.l). To 

evaluate an integral over the subarea 

ABC, we consider it as a combination 

of integrals over the triangular subareas 

F AB, FBC and FCA with a common 

vertex at F, the foot of the 

perpendicular dropped from qk at the 

plane of the subarea ABC (Fig.5.2.1). 

q 

z 

m 

,;:---........... ----~B 

M 
Fig.5.2.l 

A 

For f( qk' q) defining the integrand of a regular integral, the integral A over the area 

ABC is given by 

(5.2.5) 
6S FAB FBC FCA 

-> -> -> -> -> -> 

" FCxFA 
, e113 = -> -> 

" FBxFC 
, e11 2 = -> -> where 

" FAxFB 
ell I = -> -> 

FAxFB FBxFC FCxFA 

It is evident from the above formula that 111 =1, 112 =1, 113 = -1 and as such the expression 

(5.2.5) defines the integral of f( qk' q) over the triangular subarea ABC. Evaluation of the 

integral of r- I and Or-I / an for r defined by Iqk - ql and n defining the vector 

-. -+ ...... -+ 

(FAx FB) / I FAx FB I in the outward direction of ,1S (=ABC) are discussed for the 

various position of qk' which is valid for any orientation of the triangular subarea. 
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a. Evaluation of the Integral of Iq - qk I-I 

For f(qk,q)= Iq - qkl-
I
, the integral over the triangular sector FAB (Fig.5.2.I) is 

regular and it can be expressed as 

IFAB = If(qk,q)dq = II q - q k I-I dq 
FAB FAB 

~H tan-' htan~-U) -e) + ffiln{tanCe-u) + ~}L ,h*O, 

(5.2.6) 

where m is the perpendicular drawn from F to the line of AB, 81 is the angle 

between FA and FB, a is the angle made by the perpendicular m with FA, the 

arm coinciding with x-axis, h=lzl, z defining the z co-ordinate of qk in the local 

..... ..... 
cartesian co-ordinate system with origin at F, R (= Fq) makes an angle 8 with 

x-axis (Fig.4.2.1) and D=~m2 sec2 (8 - a) + h 2 . 

For z =0, i.e., for qk coinciding with F, the integral is singular. The value of 

integral however can be obtained by putting h=O in (5.2.6) as 

[ ( D)]81 2~ FA+FB+AB 
IFAB = mIn tan(8 - a) + - = -In , 

m 8=0 AB FA+FB-AB 
(5.2.7) 

as shown in Jaswon and Symm (1977). This holds good for all positions of qk 

over the plane of the triangle ABC. Following the same procedure, the singular 

integrals over the other triangular sectors FBC and FCA can be computed for all 

positions of qk as qk moves along FZ, the z-axis of local frame. 
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b. Evaluation of Integral of Jq - q k rl 

(i) Evaluation of Regular Integral 

Considering f( qk' q) = Jq - qk ,-I , the integral over the triangular sector F AB is 
, 

regular for qk does not coinciding with F. On evaluation of the integral, we find 

FAB FAB FAB 

91 R(9) R dR de 91 [ 1 ]mSeC((/-Cl) 

= z f f 3 = z f - 2 2 de 
9=0 R=O (h2 + R2)2 9=0 -JR + h R=O 

z [e -I h tan(8 - a )]81 I I 0 =- - tan h= z :;t: 
h D2 8=0' • 

(5.2.8) 

To compute the integral for z = 0 i.e., for qk coinciding with F, we observe that 

the multiplying factor z / I z 1= z / h in (5.2.8) is undefined for z= O. Considering 
~ 

z / h = 1 , we find J FAB = 8 I • 

(ii) Evaluation of Singular Integral 

Two cases arise depending the position of P(= qk) over S , the plane of ABC 

(1) The field point qk does not belong to triangle ABC 

For qk lying outside ABC, the i~tegral over triangle ABC is regular but it is 

singular when described over the sector F AB for the field point 

qk coinciding with F. The integral over ABC then can be obtained by (5.2.5) 

on evaluation of the integrals over the triangular sectors F AB, FBC and 

FCA. It is evident from the Fig.5.2.1 that when J FAB = 81 = LAFB, J FAB 
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and J will be LBFC and LCF A respectively. Now putting the values 
FAC 

in (5.2.5) we find, 

Alternatively, for qk lying in the plane of ABC, 

ABC t.s 

since (q - qk ).e = 0, as qk' q lying in the plane of ABC, qk =I- q and e 

defining the nonnal to the plane of ABC. 

(2) The field point qk belong to triangle ABC 

For qk to be an interior point of ABC, the integral J( qk) is singular. On 

expansion of the integrand as before, we find 

J(qk) = - flq - qkr
3 
(q - qk ).edq = 0, (5.2.10) 

t.s 

for (q - qk ).e = 0, q =I- qk and e defining the direction of the nonnal to 

ABC and for q = qk' the integral has a singularity at an isolated point qk ' a 

set of measure zero. 

To carry out the integrals IFBc and hBC over the triangular sector FBC, the (x,y)-plane is 

rotated about the new z-axis coinciding with Fqk such that the x-axis coincides with FB. 

Now, defining a new set of 81 , a and m for the sector FBC, the integrals are evaluated 

by (5.2.6) and (5.2.8) respectively. The same procedure is followed to evaluate the 

integrals over the sector FCA. Finally the integrals over ABC are evaluated by (5.2.5) on 

finding the values of 11 1 , 112 and 113' 
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5.3 Solutions of the Equations 

The equations (5.l.3), (5.l.7) and (5.l.13) represent4 a system of n simultaneous linear 

algebraic equations in n unknowns xJ,j = 1,2, .... ,n. xJ is O'J in case of(5.l.3), JlJ and 

$~ in case of (5.l.7) and (5.l.13) respectively. On evaluation of the corresponding 

coefficient matrices, the equations are solved by Gauss-Seidal iterative method. 

In this method, the zeroth order approximation to the solution x J' j = 1,2, .... , n is taken to 

be zero. The m-th order approximation to x J is given by 

k-I n 

x~ = (IakJx~-1 + IakJx~-I)/ akk , k= 1,2,3, ....... , n, (5.3.1) 
J=I J=k+1 

where a kJ are the elements of the coefficient matrix. Termination of the iterative process 

on improvement of the solution, as m increases is given by the condition 

I x: - x:-
I I~ E ,k=l, 2, 3, ....... , n, (5.3.2) 

for a preassigned small value of E . 

It is evident from (5.3.1) that the method works for akk =I=- 0, k=l, 2, 3, ....... , n and the 

convergence of the solution is faster for a diagonal dominant system. In the present study, 

the diagonal elements of (5.1.3), (5.1.7) and (5.1.13) are 

21t + flq - qk I-I dq and flq - qk I-I dq respectively. It can be easily deduced from 
6Sk 6Sk 

(5.2.7) that flq -qkl-Idq =I=- ° and the diagonal element of (5.1.5) contains an additional 
6Sk 

term 21t through the integral over .1Sk • This additional term not only makes the diagonal 

term nonzero, it makes the system a diagonal dominant one and makes the system highly 

suitable for application of Gauss-Seidal method for its solution. 
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Chapter-6 

ANALYSIS OF MODEL DATA 

UPWARD CONTINUATION OF POTENTIAL FIELD 

6.1 Boundary and Field Symmetrical about z-Axis 

6.1.1 Approximation to Boundary and Causative Mass 

Let a large horizontal plane with a partial hemispherical relief at its central part be defined 

in a cartesian refer~nce frame with (x,y)-plane coinciding with the horizontal plane and 

the z-axis pointing upward through the pole of the spherical part of the surface. Let this 

surface be denoted by S. Let us now assume that a gravitating mass m and a vertically 

downward dipole of strength 1..1. be placed at (0,0,-3), 3 units below the horizontal plane 

S defined by z = ° and the partial hemispherical part of S with its pole at (0,0,1) meets 

S in a circle of 

radius .J2R -1, R(= 

7.464 units) defining 

the radius of curvature 

of the part S. The 

sharp edge of the 

relief over S IS 

replaced by a smooth 

parabolic strip that 

__ .-~~ ________ -=~ __________ ~-r~S~~y 

x 
FIg.6.1.1 

maintains a smooth continuity as we move from the relief to the plane. Under this setup, 

the boundary S and the fields due to m and )l, all are symmetrical about the z-axis. The 

boundary so constructed is shown in Fig.6.1.1. 

The boundary is now divided into I1o(=130) rings. The top ring is divided into SIX 

equilateral triangular subareas and the rest of the rings are divided into nk 

(k=2,3, .... ,130) congruent trapezoidal subareas. The subareas are made such that the anns 
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of the subareas are nearly equal in length and the ratio of the area of subarea of two 

consecutive rows having a value lying between 0.79 and 1.126. Outside the partial 

hemispherical relief, the area of a subarea increases gradually as we move away from the 

axis of S. The surface S is divided into 30516 subareas. Some of the representative 

subareas along with number of subareas in a ring are shown in Table-6.1.1. 

Table-6.1.1 Side length and area of sub-areas at some representative nodes over S 

Rmg Nodal Qoints of sub-area Area No. of Arms of sub-area 
No. x y z ~S sub-area Top Bottom Lateral 

1 0.0800 0.0462 0.9989 0.0111 6 0.0000 0.1600 0.1600 
2 0.2080 0.0557 0.9965 0.0123 12 0.0828 0.1415 0.1133 
3 0.3272 0.0577 0.9921 0.0131 18 0.0949 0.1350 0.1156 

17 2.1181 0.0679 0.6922 0.0184 98 0.1313 0.1396 0.1362 
18 2.2489 0.0686 0.6522 0.0188 103 0.1329 0.1408 0.1371 
19 2.3797 0.0692 0.6095 0.0190 108 0.1343 0.1419 0.1379 

29 3.3804 0.0425 0.1057 0.0082 250 0.0838 0.0859 0.0966 
30 3.4655 0.0436 0.0633 0.0082 250 0.0859 0.0881 0.0940 
31 3.5525 0.0445 0.0313 0.0082 250 0.0877 0.0899 0.0919 

62 7.2310 0.0832 0.0000 0.0274 273 0.1643 0.1681 0.1646 
63 7.3976 0.0832 0.0000 0.0286 273 0.1681 0.1720 0.1684 
64 7.5681 0.0871 0.0000 0.0300 273 0.1720 0.1760 0.1722 

123 29.0285 0.3341 0.0000 0.4408 273 0.6597 0.6749 0.6606 
124 29.6976 0.3418 0.0000 0.4614 273 0.6749 0.6905 0.6759 
125 30.3820 0.3496 0.0000 0.4829 273 0.6905 0.7064 0.6915 

(Total area ofS is 3719.91 sq.units divided into 30516 sub areas arranged in 130 rings) 

6.1.2 Input Data over Boundary 

Gravity data due to a unit mass placed at (0,0,-3) and the vertical component magnetic 

data due to a·unit downward doublet placed at the same point are specified at the nodal 

(centroid) points of the subareas over S. The gravity response at the nodal points are 

computed by the fonnula 

(6.1.1) 
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where d (=3) is the depth of m (=1) below Sand (x,y,z) defining the nodal point of a 

subarea. The vertical component magnetic field T z is computed by the formula 

(6.1.2) 

where d(=3) is the depth below S and r is the distance between the boundary point 

q(x, y, z) and the doublet ~ placed at Q(O,O,-d). 

6.1.3 Upward Continuation of Gravity-Magnetic Field 

i) Up-continuation as Simple Layer Potential 

Gravity or a component magneto static field H is a harmonic function in the upper half-

space domain Be. Both of them vanish at infinity with asymptotic behavior H = O(r- n
), 

n 2 2, r ~ 00. As such, following (4.1.l), these fields can be reproduced in Be from 

respective boundary data as potentials due to simple layer boundary density cr as 

H(P) = ~q - pl-1cr(q)dq,P E Be. (6.1.3) 

It has been shown in section (4.1) that the cr in (6.1.3) can be obtained as a unique 

solution of the boundary equation (4.1.2), i.e. 

(6.1.4) 

Dividing the boundary S into piecewise flat subareas ~S. and assuming cr is constant 
J 

over a subarea, the formula (6.1.3) can be expressed in the form of (5.1.2) as 

(6.1.5) 
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where, H(P) is the approximate value of H at P and the equation (6.1.4) can be written 

as 

n n -I 
H(qJ=2:(Jj Jlq-qKI dq,k=I,2,3 .... ,n, 

j=1 dSJ 

n 

or, bk = 2:akj(Jpk = 1,2,3 ...... ,n, 
j=1 

where, 

and 

Depending on the position of qk two distinct cases arise in evalution of akj . 

Case-I: 

(6.1.6) 

(6.1. 7) 

(6.1.8) 

For j ':t= k, the integral is regular and it can be evaluated either analytically or 

approximated by the centroid rule (Hess and Smith 1967) may suffice our purpose. 

According to centroid rule 

(6.1.9) 

where, qj is the centroid (or nodal point) of the j-th subarea. 

Case-2: 

For j = k, the integral is singular and it is to be evaluated analytically. We know for a 

triangular area ABC with qk coinciding with the vertex A, following Jaswon and Symm 

(1977), or expression (5.2.5) the analytical value ofthe integral over ABC is 
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II I-'d - 2d l (b+c+a) q-qk q-- n , 
ABC a b+c-a 

(6.1.10) 

a finite non-zero quantity, where a, b and c are the ann-lengths BC ,CA and AB 

respectively and /1 is the area of the triangle ABC. On evaluation of the coefficients akj , 

the equation (6.1.6) in cr for b
k 

given over S, can be solved by Gauss-Seidal iterative 

method since a kk * 0 as seen in (6.1.10). On finding cr
J 

over S, the field H in Be can be 

computed by (6.1.5). 

In the present case, the gravity response /1g and the topography S are both symmetrical 

about z-axis and the boundary (topography) is approximated by 30516 piecewise flat 

subareas. As such, cr of equation (6.1.6) can be treated constant over the i-th ring and 

consequently, the n (=30516) equations of (6.1.6) reduce to N (=130) independent 

equations. 

On computing the dg values at the centroids of the subareas by fonnula (6.1.1) with d=3, 

the approximate values of the coefficients a kj ,k * j, are computed by centroid rule 

(6.1.9) and the singular integrals akk are evaluated analytically with help of (6.1.10). 

Subsequently, the equations (6.1.6) are solved by Gauss-Seidal iterative method with 

convergence condition E =0.00001. It took 44 iterations to converge. The cr j at some 

representative rings are shown in column 5 of Table-6.1.2. The surface integral of cr is 

found to be 0.017206. The cr. are negative in the outer part of S (Table-6.1.2) and as such, 
• J 

with increase in S, the integral is expected to attain the zero value as theoretically expected 

in (4.1.3). On finding the cr j over S, the up-continued dg values at level lines y = 0, z = 

1.5; Y = 0, z = 3, and y = 0, z = 5 are computed by fonnula (6.1.5) on evaluating the 

integrals by the centroid rule. The values so obtained are shown in column 4 of Table-

6.1.3 along with the true values in column 3 for comparison. It is evident from Table-6.1.3 

that the up-continued values of dg obtained by the discretised version of (6.1.3) agree 

with the true values to a good degree of accuracy. 
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Table-6.1.2 Simple and double layer boundary densities for Gravity field 

Ring Nodal Eoints of sub-area Boundary Density 
No. X Y Z cr Jl 

1 0.0800 0.0462 0.9989 0.449xlO·2 O.l19xlO-( 

2 0.2080 0.0557 0.9965 0.454xl0-2 0.119xlO-( 

3 0.3272 0.0577 0.9921 0.436xl0-2 0.118xl0-( 

17 2.1181 0.0679 0.6922 0.266xlO-2 0.92 Ix IO"2 

18 2.2489 0.0686 0.6522 0.251xlO-2 0.891xl0-2 

19 2.3797 0.0692 0.6095 0.234x10-2 0.860xl0-2 

29 3.3804 0.0425 0.1057 0.157xlO-2 0.559x10-2 

30 3.4655 0.0436 0.0633 O.l46x10-2 0.567xlO-2 

31 3.5525 0.0445 0.0313 0.130xlO-2 0.535xl0-2 

62 7.2310 0.0832 0.0000 -0.156x10-3 0.101xlO-2 

63 7.3976 0.0832 0.0000 -0.153x10-3 0.959x10-3 

64 7.5681 0.0871 0.0000 -0.149x10-3 0.903x10-3 

123 29.0285 0.3341 0.0000 -0.800xlO-s 0.195xlO-4 
124 29.6976 0.3418 0.0000 -0.785x10-s 0.182xlO-4 
125 30.3820 0.3496 0.0000 -0.779x10-s 0.170x10-4 

(cr and Jl stand for simple and double layer boundary densities over the 
boundary S) 

Table-6.1.3: Continuation of gravity field in Be 

Co-ordinates True Field as Qotential of 
Along Y = 0 Gravity Simple layer Double layer Green's formula 
Z X ag[t] ag[S] ag[D] ag[G] 

1.5 0 0.04938 0.04952 0.04756 0.04870 
2 0.03768 0.03778 0.03720 0.03754 
4 0.02061 0.02065 0.02049 0.02058 
6 0.01066 0.01067 0.01061 0.01065 
8 0.00581 0.00582 0.00579 0.00580 

10 0.00341 0.00341 0.00339 0.00340 

3.0 0 0.02777 0.02785 0.02732 0.02763 
2 0.02371 0.02378 0.02342 0.02363 
4 0.01600 0.01603 0.01587 0.01596 
6 0.00982 0.00984 0.00975 0.00980 
8 0.00600 0.00601 0.00596 0.00599 

10 0.00378 0.00379 0.00376 0.00378 

5.0 0 0.01562 0.01567 0.01544 0.01557 
2 0.01426 0.01431 0.01411 0.01423 
4 0.01118 0.01121 0.01108 0.011l6 
6 0.00800 0.00803 0.00793 0.00799 
8 0.00552 0.00555 0.00548 0.00552 

10 0.00380 0.00383 0.00378 0.00381 

(ag[t] & ag[S], ag[D], ag[G] are the true & reproduced gravity value by simple layer 
boundary density, double layer boundary density and Green's formula respectively) 
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In the next step, the vertical component magnetic data T z at the nodal points of S are 

computed by fonnula (6.1.2) with d = 3. It has been theoretically shown that this field also 

can be reproduced in the upper half-space domain from boundary data by simple layer 

fonnulation of the problem. Since this field is also symmetrical about z-axis, the procedure 

described for up-continuation of the gravity field ~g is followed to find N (=130) and 

O"J s over S. In this case, the equations took 42 iterations to converge. The O"J values at 

some representative rings over S are shown in column 5 of Table-6.1.4. The surface 

integral of cr in this case is found to be -0.000529, as theoretically expected, in (4.1.3). 

Subsequently, the Tz values at level lines y = 0, z= 1.5; Y = 0, z = 3 and y = 0, z = 5 are 

computed by fonnula (6.1.5) on approximating the integrals by centroid rule. The values 

so obtained are shown in column 4 of Table-6.1.5 along with the true values in column 3 

for comparison. It is evident from Table-6.1.5 that the up-continued T z values agree with 

the true values to a good degree of accuracy. 

Table-6.1.4 Simple and double layer boundary densities for 
magnetic field 

Ring Nodal points of sub-area Boundary density 
No. x y z cr ~ 

1 0.0800 0.0462 0.9989 0.359xl0=I 0.587xl0·2 

2 0.2080 0.0557 0.9965 0.360xl0·2 0.583xl0·2 

3 0.3272 0.0577 0.9921 0.343xl0·2 0.579xlO-2 

17 2.1181 0.0679 0.6922 0.127xlO-2 0.327xlO·2 

18 2.2489 0.0686 0.6522 O. 11 Ox 10.2 0.303xI0-2 

19 2.3797 0.0692 0.6095 0.932xl0·3 0.279xI0-2 

29 3.3804 0.0425 0.1057 -0.159xI0·3 0.105xlO·2 

30 3.4655 0.0436 0.0633 -0.276x 10.3 0.892xl0·3 

31 3.5525 0.0445 0.0313 -0.377xl0-3 0.744xl0·3 

62 7.2310 0.0832 0.0000 -0.953x 10-4 -0.168xl0·3 

63 7.3976 0.0832 0.0000 -0.873xl0-4 -O.I64x 10-3 

64 7.5681 0.0871 0.0000 -0.799xl0-4 -O.l60xl0·3 

123 29.0285 0.3341 0.0000 0.750xl0·7 -0.596x 10.5 

124 29.6976 0.3418 0.0000 0.867xI0-7 -0.558x 10.5 

125 30.3820 0.3496 0.0000 0.987xIO-7 -0.522xl0-5 

(cr and ~ stand for simple and double layer boundary densities 
over the boundary S) 
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Table-6.1.5: Continuation of magnetic field in Be 

Co-ordinates True compo Field as Qotential of 
Along Y=O magn.field Simple layer Double layer Green's formula 
Z X Tz[t] Tz[S] Tz[D] Tz[G] 

1.5 0 0.02194 0.02203 0.02108 0.02163 
2 0.01260 0.01265 0.01241 0.01255 
4 0.00309 0.00310 0.00305 0.00308 
6 0.00019 0.00018 0.00017 0.00018 
8 -0.00036 -0.00036 -0.00036 -0.00036 

10 -0.00037 -0.00037 -0.00037 -0.00037 
3.0 0 0.00925 0.00929 0.00909 0.00919 

2 0.00672 0.00674 0.00660 0.00665 
4 0.00287 0.00287 0.00282 0.00285 
6 0.00081 0.00081 0.00080 0.00081 
8 0.00008 0.00007 0.00007 0.00007 

10 -0.00013 -0.00013 -0.00013 -0.00013 
5.0 0 0.00390 0.00392 0.00383 0.00388 

2 0.00325 0.00326 0.00319 0.00323 
4 0.00195 0.00196 0.00192 0.00194 
6 0.00092 0.00092 0.00090 0.00091 
8 0.00034 0.00034 0.00033 0.00342 

10 0.00008 0.00008 0.00007 0.00007 

(Tz[t] & Tz [S], Tz[D], Tz[G] are the true & reproduced z-component of 
magneto static field value by simple layer boundary density, double layer 
boundary density and Green's formula respectively) 

ii) Up-continuation as Double Layer Potential 

We know that gravity or a component magnetic field H due to a subsurface causative mass 

is a harmonic function in the upper half-space domain Be bounded below by the ground 

surface S. Both the fields vanish at infinity with asymptotic behaviour H= O(r -n), 

n ~ 2,r ~ 00. As such, following (4.2.1), H can be reproduced in Be from the respective 

boundary data as potential of double layer boundary density as 

(6.1.11) 

For H specified over S, the J..L over S can be obtained as a unique solution of the boundary 

integral equation (4.2.2), i.e., 

H(p) = 27q.1.(p) + !~Iq - pi-I ~(q)dq, pES. (6.1.12) 
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On discretisation, the fonnula (6.1.11) becomes 

n 

H(P) = ~)t j ls
j 
~ Iq - pr

l 

dq 
J=I 

(6.1.13) 

and the boundary equation ( 4.2.2) becomes 

H(qK) = 27tJl(qk) + t Jl j isj ~ Iq - qk I-I dq 
j=1 

n 

or, HK = ~:<bkj + 27t~\)Jlj'k = 1,2,3 ... n, (6.1.14) 
j=1 

(6.1.15) 

Hk = H(qJ,eis the nonnal towards Be at piecewise flat ,1Sjand Dkjis the Kronecker 

delta defined as , DkJ = 0 for j -:t k and Dkj= 1 for j = k. 

Two distinct cases arise in evaluation ofthe coefficient b kj. 

Case-I: 

For j -:t k , the integral is regular and it can be evaluated analytically or an approximation 

to it by centroid rule may suffice our purpose. Following the centroid rule of 

approximation 

bkj ::-Iqj _qkl-
3

(qj -qk)·e fdq=-Iqj _qkl-
3

(qj -qk)·e,1Sj' 
6S 

Case-2: 

integral having a singularity at an isolated point qk' a set of measure zero. 
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On computing the gravity values at the nodal points of the subareas over S by the formula 

(6.1.1) with d=3, the coefficient bkj,j:;ekare computed by the centroid rule of 

approximation to integrals and the singular integral bkk is taken to be zero, as explained 

above. :Because of the symmetry ofS and H about z-axis, n (=30516) equations of(6.1.14) 

reduce to N (=130) independent equations. These equations are then solved for Il
j 

by 

Gauss-Seidal iterative method with convergence condition E = 0.00001. The equations 

took to 5 iterations to converge and the surface integral of J.l is found to be 0.9299 as 

theoretically expected in (4.2.4). The Il-values so obtained are shown at some 

representative rings in column 6 of Table-6.1.2. 

The gravity values along the level lines y = 0, z= 1.5; Y = 0, z= 3 and y = 0, z= 5 are then 

computed as potential of double layer density Il by the formula (6.1.13) and these are 

exhibited in column 5 of Table-6.1.3 along with the true values in column 3 for 

comparison. It is evident from Table-6.1.3 that the gravity values, reproduced from the 

boundary data as potential of double layer boundary density, agree with the true values to 

a good degree of accuracy. 

Subsequently, vertical component magnetic data, due to a unit vertically downward 

doublet, are computed as Hk at the nodal points of S by the formula (6.1.2) with d = 3 and 

the equations (6.1.14) are solved for Il j by Gauss-Seidal iterative method with 

convergence condition E = 0.00001. The equations took 5 iterations to converge. The 

solution at some of the representative rings over S are shown in column 6 of Table-6.1.4. 

The solutions are positive over the central part of S and negative over the outer periphery. 

The surface integral of Il over S is found to be 0.03203 where its theoretically expected 

value by (4.2.5) is O. Since the Il values are negative at periphery, the surface integral of 

the numerical Il over S is expected to be zero as S extends to infinity. 

The vertical component magnetic values along the level lines y = 0, z= 1.5; y=0, z=3 and 

y=0, z=5 are then computed by (6.1.13) and these are shown in column 5 of Table-6.1.5 

along with the true values in column 3 for comparison. It is evident from Table-6.1.5 that 
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the magnetic values obtained as double layer potential of boundary density agree with the 

true values to a good degree of accuracy. 

iii) Up-continuation by Green's Formula 

For a harmonic function H, a gravity field ~g or a magnetostatic component field Tz, with 

asymptotic behavior H= O(r-n
), n ~ 2, r ~ 00, defined in the upper haJf- space domain 

Be bounded below by a half-space boundary S, given H and H~ over S, H in Be can be 

reproduced by Green's formula (4.3.1) as 

(6.1.16) 

as P ~ PES, the boundary relation between H and H~ over S is given by (4.3.2) as 

(6.1.17) 

as discussed in article (4.3), given Hover S, H~ over S can be obtained as a unique 

solution of the boundary integral equation 

~q - prlH~ (q)dq = !~Iq - pr
l 
H(q)dq - 2nH(p), pES. (6.1.18) 

The discretised versions of (6.1.16) and (6.1.18) are given below 

and 

i: H~ (q) lsj Iq - qK I-I dq = i: H( qj) iS
J 

~ Iq - qK rl 

dq - 2nH( qK)' k = 1,2,3 ...... n, 
pi ~ 

(6.1.20) 
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where H~ (q) and H( q) stand for the constant values of H~ (q) and H( q) 

respectively over the j-th subarea ~Sj' Following the notations used for the coefficients 

in (6.1.6) and (6.1.14), the equation (6.1.20) can be expressed as 

n n 

:Lakj H~(q) = :Lbkj H(q) - 27tH(qK)' k = 1,2, ... n 
j=l j=l 

or,Iakj H~(qj) = I[bkj + Okj(-27t)]H(q) = DK (say),k = 1,2, ..... n, (6.1.21) 
j=l j=l 

where ~\ is the Kronecker delta. 

For H specified over the nodal points of the piecewise flat subareas ~S j' the equation 

(6.1.21) can be solved for H~ by Gauss-Seidal iterative method on evaluation of the 

coefficients a kj and b kj . On finding H~ over S, the field H in the upper half space 

domain Be can be computed by (6.1.19), the discretised version of(6.1.16). 

On computing the gravity values ~gJ = H( q)] at the nodal points of S by (6.1.1) with d=3, 

the a kj and Dk values of (6.1.21) are computed following the procedures mentioned in 

subsections (6.1.3(i» and (6.1.3(ii» above. Since ~g and S are both symmetrical about 

the z-axis, the n (=30516) equations of(6.1.21) reduce to N (=130) independent equations. 

These are then solved by Gauss-Seidal -iterative method with convergence condition 

E =0.00001. The equations took 56 iterations to converge. The H~ values so obtained are 

shown as ~g~ in column 6 of Table-6.1.6 along with the true values for comparison. It is 

evident from Table-6.1.6 that the solution H~ reasonably agrees with the true values of 
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On finding the H~ (qj) values over S, the gravity values H are then computed at the level 

lines y = 0, z = 1.5; y=0, z=3 and y=0, z=5 by (6.1.19) and these are shown in Table-

6.1.3 along with the true values for comparison. It is evident from Table-6.1.3 that the 

computed values agree with the true values to a good degree of accuracy. 

Subsequently, the vertical component magnetic data T z are computed at the nodal points of 

the subareas over S by use of formula (6.1.2) with d = 3. In this case also the magnetic 

field is symmetrical about z-axis and consequently the n (=30516) equations in H~ of 

(6.1.21) reduce to N (=130) independent equations. On evaluation of coefficients akj and 

bk/ollowing the same procedure described earlier, the equations (6.1.21) are solved for 

H~ by Gauss-Seidal iterative method with E =0.00001. The equations took 51 iterations to 

Table--6.1.6 Solution of Green's boundary equation for gravirretric and magnetostatic cases 

Ring Nodal POint of sub-area True CoIqJuted True Corrputed 

No. x y z L\ g' (= <1>' ) L\g' (= <1>' ) T' (-<1>' ) T' (=<1>' ) 
e e e e e e e e 

1 0.0800 0.0462 0.9989 -O.312xlO-1 -0. 343 x 10-1 -0.234xl0-1 -0.254xlO-1 

2 0.2080 0.0557 0.9965 -O.311xlO-1 -0.33OxlO-1 -0.232xlO-1 -0.248xlO-1 

3 0.3272 0.0577 0.9921 -0.309><10-1 -O.318xlO-1 -0.229xl0-1 -0.237xlO-1 

17 2.1181 0.%79 0.6922 -0.203 x 10-1 -0.203 x 10-1 -0. 933x 10-2 -0.938xlO-2 

18 2.2489 0.%86 0.6522 -0.192xlO-1 -0.192xlO-1 -O.816xlO-2 -0.819x1O-2 

19 2.3797 0.%92 0.6095 -0.182xlO-1 -0.1 82xlO-1 -0.702xlO-2 -0.705xlO-2 

29 3.3804 0.0425 0.1057 -0. 11 Ox 10-1 -0.1 26x 10-1 -0.355xl0-3 -0.552xlO-3 

30 3.4655 0.0436 0.0633 -O.899xlO-2 -0.105xlO-' 0.837xlO-3 0.723xlO-3 

31 3.5525 0.0445 0.0313 -0.677x 1 0-2 -0.849x 1 0-2 0.192xl0-2 0.185xlO-2 

62 7.2310 0.0832 0.0000 0.1 16xlO-2 0.117xl0-2 0.693xlO-3 0.694xlO-3 

63 7.3976 0.0832 0.0000 0.113xlO-2 0.114xlO-2 0.636xlO-3 0.638xlO-3 

64 7.5681 0.0871 0.0000 0.109><10-2 0.l1OxlO-2 O. 584x 10-3 0.585xlO-3 

123 29.0285 0.3341 0.0000 0.389xW4 0.537xW4 O.l25xlO-5 0.136xlO-5 

124 29.6976 0.3418 0.0000 0.364xW4 0.527x104 0.112xl0-5 O.l25xlO-5 

125 30.3820 0.34% 0.0000 0.341x104 0.523x104 O.lOOxlO-5 0.116xlO-5 

( ~g' and ~ T' stands for the outward mnml derivative of gravity and component magnetic 
e e 

fields) 
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converge. The H~ values at some representative rings over S are shown as T ~ (= H ~) in 

column 7 of Table-6.1.6 for comparison with the true values of T~. It is evident from 

Table-6.1.6 that the computed H~ values agree with the true values to a reasonable 

accuracy. 

Finally, with these H~ values known over S, the vertical component magnetic field H is 

computed along the level lines y = 0, z = 1.5; y= 0, z= 3 and y= 0, z= 5 by the formula 

(6.1.19) and these are exhibited in Table-6.1.5 along with true Tz values for comparison. It 

is evident from Table-6.1.5 that the computed T z values agree with the true T z values to a 

good degree of accuracy. 

6.2 Continuation from a General half-space Boundary 

In earlier articles, upward continuation of a potential field, a gravity field or a component 

magnetic field, is carried out from a boundary symmetrical about z-axis when the fields 

are also symmetrical about the z-axis. It has been shown that upward continuation of 

gravity or a magnetic component field can be carried out either as a potential of a simple 

layer boundary density or as a potential of a double layer boundary density or by use of 

Green's formula without finding Green's function for the boundary. All the three 

formulations are theoretically sound and each of them reproduces the fields from the 

respective boundary data to a good degree of accuracy. However, it is found that 

reproduction of a field as a potential due to a double layer boundary density provides the 

simplest and the fastest numerical approach and it can be easily handled on a PC. 

Henceforth, upward continuation of gravity or a component field will be carried out as 

potential of double layer boundary density only. 

6.2.1 Boundary Representing a Hilly Area 

The topography of northwestern part of Vishakhapatnam-Srikakulam area, named as 

Lamaput-Araku area in this thesis, bounded by North latitudes 18.25 ° and 18.5° and East 

longitudes 82.5° to 83°, is considered as the boundary surface S for the model study. 

Survey of India topo-sheets in 1 :50000 scale covering the area are divided into 2x2 sq. km 

grids and the topographic heights at the grid points are noted. These are then transferred to 

a cartesian reference frame with its origin at the crossing of 82.50E longitude and 18.25° 
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north latitude, x-axis coinciding with 18.25~ latitude, y-axis coinciding with 82.5
0
E 

longitude and z-axis pointing upward. On conversion of distance into kIn, it is found that 

Fig.6.2.1 Topographic contour map of north west part of Vizag-Srikakulam Area 
Contour interval = .05 km 

(All co-ordinates are in km) 

1 

1 

o 5 10 15 20 25 30 35 40 45 50 
Origin of the frame refers to longitude 82.50 N and latitude 18.250 E respectively. 

Table-6.2.1 :Description of some triangular subareas over the topography of northwestern part of 
Vizag-Srikakulam area 

Vertices of,1S Area Aspect Direction cosine of outward 
of ratio nonnaltOOS 

x v z ~S n I m n 

24.00 0.00 1.2 
26.00 0.00 1.18 2.005 0.707 0.01 0.07 0.998 
24.00 2.00 1.06 

30.00 4.00 1.01 
30.00 6.00 1.09 2.007 0.707 -0.075 -0.04 0.996 
28.00 6.00 1.2 

28.00 14.00 0.98 
30.00 14.00 1.06 2.017 0.7<X> -0.037 -0.124 0.992 
28.00 16.00 1.23 

26.00 24.00 1.06 
28.00 24.00 1.26 2.012 0.704 -0.099 0.04 0.994 
26.00 26.00 0.98 

30.00 26.00 1.02 
30.00 28.00 1.02 2.000 0.707 -0.005 0 1.000 
28.00 28.00 1.01 
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the projection of the surface S on (x,y)-plane occupies an area bounded by x == 0 and x == 

52 km and y == 0 and y = 28km. The topography with height varying from 0.45 to 1.615 

kIn consists of 364 subareas each standing on 2x2 sq. km area on the (x,y)-plane. Each 

subarea is then sub-divided into two piecewise flat triangular subareas. This yields a total 

of 728 piecewise flat triangular subareas. Approximation of the surface by triangular 

subareas presents a surface without a gap between the subareas. The areas of the subareas 

approximating the surface varies from 2 to 2.12 sq. km and the aspect ratio 11, defined as 

ratio of the smallest and the largest arm-length ofa subarea, varies from 0.69 to 0.73. This 

indicates that no thin triangular subareas are involved in approximating the undulated 

surface by flat triangular subareas. The topographic heights as noted at the grid points are 

used to prepare a contour map of the topography of the area by Surfer-32 package and it is 

exhibited in Fig.6.2.1. Description of some of the subareas are shown in Table-6.2.1 in 

which (x,y,z) define the co-ordinates of the nodal point of a subarea, (I,m,n) define the 

direction cosines of the outward normal drawn on it. 

6.2.2 Model Response 

A thin rectangular plate with comers at (16,11.5), (36,11.5), (36,16.5) and (16,16.5) is 

placed a depth d = 3 units below the (x,y)-plane defined by z = 0 . The plate is then 

polarized by vertically downward doublets of strength I-l = 1 per unit area. 

Assuming the density p of the plate to be 1, and the universal gravitational constant G ==1, 

the gravity field at a point P(X,Y,Z) in a cartesian reference frame with z-axis upward, is 

given by, following Laskar (1994), as 

(6.2.1) 

for the plate lying at (x,y)-plane at which z = 0 and its comer points are defined by 

(x\,y\,O), (X2,Y\,0), (X2,Y2,0) and (X\,y2,0). The vertical component magneto static field at 
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P(X,Y,Z) due to the polarised plate lying at the plane z = 0 in the same reference frame 

can be expressed as 

_ (x - X)(y - Y)[(x - X)2 + (y - y)2 + 2Z2] 
Tz (X, Y, Z) = -Z-2 [-{-( x-_-X-)2-+-(-y-_-y~)-=C-2 -+:....:Z:..;2~} 3~/2-+...!..(!:.::X.:......_-X-)-72 -(y-_~Y~) 2-{(~X-_-X-)-+~(-y-_-y-)-:;-2 -+-2-Z-::-2 }:"7\ ;:;-::-/2 ] 

(6.2.2) 

under the limits x varying from XI to X2 and y varying from YI to Y2, as shown in (6.2.1) 

6.2.3 Upward Continuation of Gravity Data 

For the rectangular gravitating plate lying at depth d units below the plane z=O, its gravity 

responses at the nodal points of the subareas are computed with help of (6.2.1) on 

replacing Z by Z+d and fixing the values XI =16, X2 =36, YI =11.5, Y2 = 16.5 and d=3. 

These are then denoted by Hk, k=I,2, ... ,n, and the n equations of (6.1.14) are fonned. 

Subsequently, the coefficients bkj are evaluated by centroid rule and also by analytical 

means as discussed in article 5.2 and the n equations in n unknown ~j are solved by Gauss­

Seidal iterative method with € = 0.00001. 

Tab 11:>-6.2.2: Upward continuation of gravity field from an irregular boundary to a level z = 1.615 

CCHlrdinate True field Analytical integration Approximate integration 

technique technique 
y 6g L\g % err. L\g % err. 

1.8667 0.1752 0.1768 -0.9333 0.1044 40.4045 
3.7333 0.2557 0.2611 -2.1194 0.1932 24.4439 

5.6 0.3866 0.3905 -1.0228 0.2979 22.94673 
7.4667 0.6027 0.6094 -1.1333 0.5361 11.0464 
9.3333 0.9448 0.9228 2.3226 0.7663 18.8886 

11.2 1.3907 1.4011 -0.7551 1.2717 8.5558 
13.0667 1.738 1.7188 1.0978 1.5043 13.4447 
14.9333 1.738 1.7154 1.2911 1.3827 20.4415 

16.8 1.3907 1.3551 2.5557 1.2193 12.3248 
18.6667 0.9448 0.9302 1.549 0.8365 11.4616 
20.5333 0.6027 0.591 1.932 0.5006 16.9407 

22.4 0.3865 0.379 1.9568 0.3092 20.0186 
24.2667 0.2557 0.2493 2.4845 0.1958 23.4366 
26.1333 0.1752 0.1671 4.6382 0.1346 23.155 

(The field is presented along theline x = 26 at the level z = 1.615, z = 0 defining the datum plane. The 
causative mass is a gravitating mass extending from x = 16 to 36 and y = 11.5 to 16.5, placed at 

d = 3 units below the plane z = O. Topographic height varies from z = 0.45 to 1.615) 
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The equations took 5 iterations to converge when the coefficients bkj are evaluated 

analytically. The equations took the same number of iterations for the approximate values 

ofbkJ computed by the centroid rule. Finally, the up-continued values of the field at level z 

= 1.615 are computed by (6.1.13) with H(P) representing ~g in this case. The up-continued 

~g values so obtained along the North-south line defined by x = 26, Z = 1.615, are shown 

in Table-6.2.2 along with the true values for comparison. The field values also computed 

by the same J..I. values by (6.1.13) along the line x = 26, z= 2.615 are exhibited in Table-

6.2.3. 

It is evident from Table-6.2.2 and Table-6.2.3 that the centroid method of approximation 

does not work when the field point is near the boundary. The result gradually improves at 

the central part of the continuation level S as its height increases. However, the results at 

the periphery of S detoriates in comparison to those at the central part, at the increase of 

height of S. In the case of analytical values of the coefficients, the errors in the computed 

field values at S, even when it grazes the boundary, are well within a tolerable error and 

these values can be used for further analysis ofthe problem. 

Tabl~6.2.3: Upward continuation of gravity field from an irregular boundary to a level z = 2.615 

C(K)rdinate True field Analytical integration Approximate integration 

technigue technigue. 
y ~ ~ % err. ~ % err. 

1.8667 0.1961 0.1903 2.9231 0.1788 8.7902 
3.7333 0.2791 0.2820 -1.0724 0.2706 3.0394 

5.6 0.4066 0.4141 -1.8414 0.3973 2.2971 
7.4667 0.6004 0.6091 -1.4445 0.6008 -0.0693 
9.3333 0.8744 0.878 -0.4103 0.859 1.7568 

11.2 1.1902 1.1941 -0.3233 1.19149 -0.3935 
13.0667 1.4175 1.4058 0.8298 1.3988 1.3199 
14.9333 1.4175 1.4008 1.1812 1.3828 2.446 

16.8 1.1902 1.1763 1.1725 1.186 0.3554 
18.6667 0.8744 0.87 0.498 0.8746 -0.0274 
20.5333 0.6004 0.5985 0.323 0.5942 1.0298 

22.4 0.4066 0.4031 0.8615 0.4001 1.589 
24.2667 0.2791 0.2722 2.4621 0.2714 2.7315 
26.1333 0.1961 0.1815 7.4131 0.1837 6.3086 

(The field is presented along the line x = 26 at the level z = 2.615, z = 0.0 derming the datum plane. The 
causative mass is a gravitating mass extending from x = 16 to 36 and y = 11.5 to 16.5, placed at 
d = 3 units below the plane z = O. Topographic height varies from z = 0.45 to 1.615.) 
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Fig. 6.2.2 Contour map of upward continued gravity anomaly at level z = 1.6) 5 using 

analytical integration over the subareas 

15 20 2r" 
~"'I 30 35 40 

Fig. 6.2.3 Contour map of true gravity anomaly at level z = 1.615 

5 10 15 20 7.5 30 35 40 45 
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The contour map of the gravity values obtained at level z = 1.615 by use of analytical 

values of the integrals is shown in Fig.6.2.2 and that obtained from the true values is 

shown in Fig.6.2.3. It is evident from these maps that the contour map of gravity values, 

obtained by use of analytical values of the integrals, is very much similar to that drawn 

from the true values ofthe gravity field at the same level. 

6.2.4 Upward Continuation of Magnetic Data 

For the rectangular polarised plate lying at a depth d units below the plane z=O, its vertical 

component magnetic field is computed at the nodal points (x,y,z) of the subareas by the 

formula(6.2.2)on replacing Z by (Z+d) and assigning Xl =16, X2 =36, Yl =11.5, Y2 =16.5 

and d = 3. These are then dented by Hk, k=I,2,3, .... ,n and the n (=728) equations of 

(6.1.14) are formed. Subsequently, the coefficients bkj are evaluated by centroid rule and 

also by analytical means. The n equations are then solved by Gauss-Seidal iterative 

method with E = 0.00001. The equations converge in 5 iterations in both the cases. In the 

next step, two sets of the vertical component magnetic field T z at level z = 1.615 are 

computed by (6.1.13). Once using the Jlj values obtained from the bkj evaluated 

analytically and also using those obtained from the approximated bkJ . The entire procedure 

Table-6.2.4: Upward continuation of vertical component magnetic fieJd from an irregular boundary to a 
level z = 1.615 

Co-ordinate True field Analytical integration Approximate integration 

technigue technigue 

y Tz Tz % err. Tz % err. 

3.4667 0.00951 0.00894 6.03355 0.00807 15.18841 
6.9333 0.01459 0.01418 2.82722 0.01349 7.58785 

10.4000 0.01667 0.01529 8.25731 '0.01340 19.61296 
13.8667 -0.04494 -0.04906 -9.14751 -0.03903 13.14802 
17.3333 -0.28578 -0.27809 2.68956 -0.25323 11.38880 
20.8000 -0.38888 -0.37762 2.89614 -0.34518 11.23850 
24.2667 -0.39471 -0.37214 5.71770 -0.25694 34.90245 
27.7333 -0.39471 -0.37765 4.32147 -0.28781 27.08134 
31.2000 -0.38888 -0.37108 4.57674 -0.30903 20.53419 
34.6667 -0.28578 -0.27631 3.31224 -0.24618 13.85516 
38.1333 -0.04494 -0.04932 -9.73235 -0.03774 16.02971 
41.6000 0.01667 0.01178 29.32914 0.00538 67.72171 
45.0667 0.01459 0.01415 3.07438 0.01310 10.22968 
48.5333 0.00951 0.00933 1.96036 0.00854 10.20152 

(The field is presented along the line y "" 14 at the level z = 1.615, z = 0 defining the datum plane. The 
causative mass is a vertically polarised horizontal plate extending from x = 16 to 36 and y = 11.5 to 16.5, 
placed at d = 3 units below z = O. Topographic height varies from z = 0.45 to 1.615.) 
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-
of computation of Tz at the continuation level S is either carried out by analytical means 

or by centroid of approximation to an integral. The field values obtained along line y= 14 

at height z=1.615 are shown in Table-6.2.4 along with the true values of Tz for 
-

comparison. It is evident from Table-6.2.4 that the field values computed at a level S near 

the boundary can be obtained with reasonable accuracy if the integrals involved in the 

expression (6.1.13) and (6.1.14) are computed analytically. 

Again, it is evident from Table-6.2.4 that the computed field at (41.6,14,1.615) is with 

unacceptable error. It is to be noted here that this field point lies above a sharp cliff of the 

boundary. As such, the error in the computed field at the point is abnormally high. This 

error will be minimized if the subareas are made smaller in size around the cliff of the 

boundary. The contour maps of the true field values at level z=1.615 and those made at 

the same level from the field values obtained by analytical and approximate means of 

computation are shown in Fig.6.2.4, Fig.6.2.5 and Fig.6.2.6 respectively. It is evident from 

Fig.6.2.4 and Fig.6.2.5 that at a level near the boundary, the field values obtained on 

analytical means of computation produce a contour map that preserves nearly all the 

characters of the field near the boundary. 

Fig.6.2.4 Contour map of vertical component magnetic at anomaly at level z = 1.615 

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 
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Fig.6.2.5 Contour map of vertical component magnetic anomaly at level z =: 1.615 using 
analytical integration over the subareas 

5.0~----~----~------~----~----~----~----~----~ 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 

Fig.6.2.6 Contour map of vertical component magnetic anomaly at level z = 1.615 using 
centroid approximation of integration over the subareas 

Contour interval = .02 
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On the contrary, the contour map of the field values obtained by use of approximation of 

the integrals over the subareas presents a distorted picture of the field which can not be 

used for any practical purpose. 
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Chapter-7 

Application to Geophysics 

Processing and Interpretation of Ground Magnetic Data of 
Vishakhapatnam-Srikakulam Area 

Introduction 

Vishakhapatnam-Srikaku1am area of Andhra Pradesh lies in the northeastern part of 

Eastern Ghats, a pre-Cambrian belt of peninsular India (Fig. 7.1.1). Its coastal part is 

relatively flat in comparison to the rugged Lamaput-Araku area at the northwest. The 

topographic height varies from 20 to 300 m in the coastal area and from 450 to 1 GOO m in 

Fig. 7.).) Andhra Pradesh and the study area 
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Araku area. The Eastern Ghats constitutes the most metamorphosed sector of the pre­

Cambrian rocks in the Indian shield. Geology of the area is complex. Nature of the 

basement, origin of the constituent rocks and their structure are yet to be clearly 

Fig. 7.1.2.Geological map ofVishakhapatnam-Srikakulam area and the study area A and B 
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understood. Geological investigations were extensively carried out In the Eastern Ghat 

region by many workers focussing on mineral, petrology, geo-chemlcal and other aspects. 

The geological map of the area, showing the structures and tectonics of eastern Ghats, 

suggested by Swamy (1975) is reproduced in Fig. 7 .1.2. Subrahmanyam (1978, 1983), 
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Subrahmanyam and Venna (1986) studied the gravity map published by National 

Geophysical Research Institute (NGRI) for broader details such as major faults and 

crustal thickness. Regional magnetic surveys on a local scale were conducted in parts of 

Vizianagaram district of Andhra Pradesh by Rao et al (1990), Murthy et al (1991). The 

surveys inferred a shallow magnetic interface of Charnokites, which has been repeatedly 

faulted and folded due to successive stages of defonnation in the Eastern Ghats. 

Chamokites, the popular rock type in this belt, is magnetic in nature. To infer the 

structure, depth and dimensions of the Chamokite rocks in the northeastern coastal 

districts of Vishakhapatanam, Vizianagaram and Srikakulam covering an area of about 

15000 sq. km of Andhra Pradesh,magnetic survey with proton-precision magnetometer 

was carried out by Andhra University (Murthy and Rao 2001) over the area. 

The magnetic anomalies are noisy and these are poorly correlated with the surface 

geology (Murthy and Rao 2001). On upward continuation of the observed field using 

harmonic analysis of profile magnetic data, they derived distinct anomaly trends running 

NE-SW at the southern part and EW trend at the northern part of the area. Based on 

tennination of anomaly closures and displacement of anomaly trends, they have predicted 

existence of five faults striking in almost NS direction. On modeling of smooth magnetic 

profiles they have concluded that the Chamokite fonn the magnetic basement in the area. 

7.1THE COASTAL PART OF VISHAKHAPATNAM-SRIKA 

-KULUMAREA 

7.1.1 Topography and Geology of the Area 

The area under study covers the relatiYely flat coastal areas consisting of Vizianagaram, 

Vishakhapatnam and a part of Srikakulam districts of Andhra Pradesh. This is a part of 

the area bounded by 17.5° and 18.5~ latitudes and 82.5° and 84.50E longitudes. The 

topographic height varies from 20 to 300 mts. in general in the area and as such, for all 

practical purpose, the data acquired over the area can be assumed as if these were 

acquired over a flat terrain. 
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The area is mostly covered by alternate patches of Khondalites and Leptynites in general 

with a few isolated patches of Chamokites lying exposed towards the northwestern part 

and alluvium covering a narrow coastal part of the area, (Fig. 7 .1.2, Swami 1975). The 

Khondalites are non-magnetic in nature, the Leptynites are weakly magnetized and the 

Charanokites are strongly magnetised with susceptibility varying from 12 x 10-4 to 24 X 

10-4 egs units (Murthy and Rao 2001). 

7.1.2 Magnetic Data 

The magnetic survey was conducted by use of proton-precision magnetometer on a 

regional scale by Andhra University. A total of 3117 stations were occupied covering 

the. -I>entire Vishakhapatnam-Srikakulam area, putting an average density of 1 station per 

3 to 4 sq. km. On carrying out all normal corrections such as diurnal and International 

Geomagnetic Reference Field (IGRF), a copy of the data was given to Tezpur University. 

Fig. 7.1.3. Total field magnetic anomaly map of a part of Vishakhapatnam­
Srikakulam area (Contours are plotted in an assumed datum plane) 

Contour interval: 100nT 

(The axes are in km. scale and (0,0) cI the reference frame is defined by Long. 82 SON and Lat. 17.SOE) 
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The accuracy of the magnetometer reading is 1 nT and that of the reduced anomaly is 

believed to be within ± 5 nT (Murthy and Rao 2001). 

A contour map of the magnetic anomaly, drawn by use of Surfer-32 package is presented 

in Fig.7.1.3. It is evident from Fig.7.1.3. the coastal area is adequately covered by 

magnetic stations. It is also evident in Fig. 7 .1.3 that the magnetic response of the 

basement is heavily masked by the response of shallow or nearly exposed unconsolidated 

magnetic sediments. Further, a careful examination reveals that a basement high platform 

exists in the Kalingpatnam-Udayagiri area at the northeastern comer of the area. 

7.1.3 Upward Continuation of Magnetic Field over a Flat Terrain 

The coastal area approximately bounded by lines joining (82.5°E, 17.5~, (83.1250E, 

17.5~, (83.50E, 17.87S~, (83.SoE, 18.2S~, (83.2SoE, 18.2S~, (82.87SoE, 

17.875<N) and (82.5° E, 17.875~ covering 5532 sq. km area is divided into 5532 equal 

sq. subareas and the coordinates of their nodal points are noted in a cartesian reference 

frame with x-axis coinciding with 17.5<N latitudes, y-axis coinciding with 82.50E 

longitudes and z-axis pointing upward. The total field magnetic data with station 

coordinates in km are considered for computing vertical component magnetic data at each 

station by use of the formula Tz = Tsin9, where Tz is the vertical component of the total 

field T and 9 is the angle of inclination of earth's magnetic field at the station. A contour 

map of the vertical component magnetic field is prepared with help of Surfer-32 

contouring package. Subsequently, the vertical component magnetic data at the nodal 

points are interpolated by inverse distance weighted interpolation formula (Watson and 

Philip 1985). Finally, following (5.1.13), the field is continued upward at a level z = 1 

km, z = 0 defining the assumed datum plane. The contour map of the vertical component 

magnetic field is shown in Fig. 7 .1.4. 

It is evident from Fig. 7 .1.4 that the high frequency magnetic response that masks the 

trend of the magnetic field of the basement, as seen in Fig.7 .1.3, is removed when the 

field is obtained at the level 1 km above the assumed datum level z =0. The anomaly map 

clearly shows a series of magnetic lows aligned in the form of an arc that continues up to 

the sea extending from southwest comer of the area. This is followed by another E-W 
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Fig. 7.1.4 Vertical component of magnetic anomaly map 
(Contours are plotted at a height of Hem from the assumed datum plane) 
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Area: A part of Vishakhapatnam-Srikakulam of Andhra Pradesh 

Contour interval: 20nT 
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trending magnetic low at its north separated by a NW -SE trending elongated magnetic 

high that continues upto the magnetic high platform at northeast. 

7.1.4 Determination of Depth to the Subsurface Magnetic Causatives 

To compute the study of the data, we considered 28 two-dimensional profiles on the 

datum plane and DEPTHDNC software developed at KDMIPE -and modified at Tezpur 

University is used to determine point-to-point depth along the profiles. It is evident from 

the magnetic anomaly maps exhibited in Fig. 7 .1.3 and Fig. 7 .1.4 that the magnetic 

response at the ground surface is a combination of responses of shallow and deeper 

magnetic causatives. To determine the depth to the causatives, 28 two-dimensional total 

field magnetic profiles along the lines L),L2, .... , L22 are considered. Latitude, longitude 

and magnetic inclination of end points of each line are shown in Table-7.1.1. 
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The total field magnetic data along each of the 28 lines are read from a large anomaly 

map prepared in 1: 250,000 scale as we move from south to north. The data read along 

the line L12 are shown in Table-7.1.2. Subsequently, the vertical component field T z along 

each line is obtained from total field data T as described earlier. 

Finally, the depth computed along the line L12 is shown Fig.7.1.5 and Table-7.1.3,~ for 

shallow and deeper magnetic causatives. Following the same procedure for all 28 lines, 

Fig. 7.1.5 Top of the shallow magnetic sediment and basement along line L12 
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contour maps for depth to the shallow magnetic causative masses and deeper magnetic 

causative masses are presented in Fig.7.1.6 and Fig.7.1.7 respectively. 

It is evident from Fig. 7 .1.6 that the area is mostly covered by exposed or nearly exposed 

unconsolidated magnetic sediments with patches of non-magnetic sediments at places. 

Fig. 7.1.7 reveals that a NE-SW trending central high axis extends from southwest to the 

northeast corner of the area where it merges with the basement high platform of 

Kalingapatnam-Udayagiri area. Two nearly semi-circular basement highs one at north of 

(82.97 0E, 17.56 ~ and the other at northwest of (83.47oE, 17.8~ lie at the south of 

the central high axis with their axes aligned in north and northwest directions 

respectively. The structural highs revealed in Fig.7.1. 7, the semicircular features in 

particular, are in agreement with concept of Swami (1975) about the basement in the 

area. 
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Table-7.1.1 Description of the 2-D lines used for computation of depth to 
shallow and deeper magnetic causatives 

Initial points End points 

Line Longitude Latitude Inclination Longitude Latitude Inclination 

Ll 84.0540° 18.2500° 21.5172° 83.6208° 18.5000° 22.0930° 
L2 83.9673° 18.1250° 21.2468° 83.6208° 18.5000° 22.1151° 
L3 83.8932° 18.1250° 21.2536° 83.5000° 18.5000° 22.1261° 
L4 83.7335° 18.0000° 20.9905° 83.4577° 18.5000° 22.1300° 
L4A 83.6967° 18.0676° 21.1461° 83.5687° 18.5000° 22.1198° 

L4B 83.8033° 18.0000° 20.9836° 83.6315° 18.3750° 21.8357° 
L5 83.6022° 18.0000° 21.0034° 83.4120° 18.5000° 22.1342° 
L5A 83.6220° 17.8750° 20.7236° 83.3543° 18.5000° 22.1394° 
L6 83.5880° 17.8750° 20.7264° 83.3122° 18.5000° 22.1433° 
L6A 83.5880° 17.8750° 20.7264° 83.3128° 18.5000° 22.1432° 

L7 83.5728° 17.8750° 20.7280° 83.1767° 18.3750° 21.8781° 
L8 83.5433° 17.8750° 20.7309° 82.9155° 18.5000° 22.1796° 
L9 83.5610° 17.7500° 20.4508° 82.7817° 18.5000° 22.1919° 
LIO 83.4332° 17.7500° 20.4638° 82.6197° 18.5000° 22.2067° 
Lll 83.4602° 17.6250° 20.1830° 82.6197° 18.2750° 21.9230° 

L12 83.3380° 17.6250° 20.1956° 82.5517° 18.3750° 21.9363° 
L13 83.2500° 17.6250° 20.2047° 82.8380° 18.0000° 21.0784° 
L14 83.1888° 17.6250° 20.2110° 82.6597° 18.0000° 21.0959° 
L15 83.2358° 17.5000° 19.9284° 82.6408° 18.0000° 21.0978° 
L16 83.0153° 17.6250° 20.2289° 82.5775° 18.0000° 21.1040° 

L17 83.0868° 17.5000° 19.9440° 82.6408° 17.8750° 20.8210° 
L18 82.9953° 17.5000° 19.9536° 82.5962° 17.8750° 20.8255° 
Lt9 82.8897° 17.5000° 19.9647° 82.5563° 17.8750° 20.8295° 
L20 82.7970° 17.5000° 19.9744° 82.4788° 17.8750° 20.8372° 
L20A 82.7970° 175000° 19.9744° 82.5000° 17.7500° 20.5586° 

L21 82.7593° 17.5000° 19.9784° 82.4765° 17.7500° 20.5610° 
L22 82.6232° 17.5000° 19.9927° 82.5000° 17.6250° 20.2820° 
L22A 82.6991° 17.5000° 19.9847° 82.5000° 17.6858° 20.4167° 
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Table7.12 Total Field Magnetic Data Along Line LI2 

Distance Field Distance Field 
(km.) (nT) (km.) (nT) 

6.875 375 20.625 -50 
7.000 350 21.250 -50 
7.500 300 22.250 -40 
8.000 250 23.125 -30 
8.375 200 25.000 0 
8.750 150 26.375 50 
9.250 100 27.500 75 
9.750 50 28.750 100 
10.250 0 31.000 120 
10.875 -50 33.375 125 
12.000 -100 35.625 150 
13.000 -100 38.500 175 
15.250 0 40.750 150 
15.750 50 42.000 125 
16.250 100 43.625 100 
16.750 150 44.250 50 
17.125 200 45.625 50 
17.625 250 47.250 50 
18.125 250 50.000 5 
18.750 150 52.000 0 
19.000 100 52.750 -50 
19.250 50 54.250 -100 
19.500 0 56.250 -100 
19.750 -50 57.875 -100 

Table 7.1.3. Depth to shallow and deeper magnetic causatives along line LI2 

Distance Shallow depth Deeper depth Distance Shallow depth Deeper depth 
inkm inkm inkm inkm inkm inkm 
15.875 -0.25 -0.75 31.875 -0.5 -0.5 
16.875 -0.25 -1 32.875 -0.125 -0.5 
17.875 0 -1.25 33.875 -0.125 -0.5 
18.875 -0.125 -1 34.875 -0.125 -1 
19.875 -0.25 -1.25 35.875 0 -1 
20.875 -0.25 -0.5 36.875 0 -1 
21.875 -0.125 -1.25 37.875 -0.125 -0.5 
22.875 -0.125 -1 38.875 -0.125 -0.5 
23.875 0 -1.25 39.875 -0.125 -0.5 
24.875 -0.5 40.875 0 -0.5 
25.875 -1 41.875 -0.375 -1 
26.875 0 -1 42.875 0 -1.25 
27.875 0 -1.75 43.875 -0.375 -1 
28.875 -0.125 -0.5 44.875 -0.5 -0.5 
29.875 0 -1 45.875 0 -0.5 
30.875 -0.25 -0.5 
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The area under discussion, with topographic height-variation 20-300mt, contains exposed 

or nearly exposed unconsolidated magnetic sediments. The depth to the basement in the 

area varies from 0.5 to 1.5 Ian in general. Under the above geological set up, processing 

of ground magnetic dat~ ,assuming as if these were acquired over a horizontal plane, is 

bound to lead to inaccurate depth not only to the shallow magnetic sediments but also to 

the basement. For a reliable result, the topography must be taken into account in 

processing of ground magnetic data in the area. However, the analysis carried out.· 

assuming the data were acquired over a horizontal plane, is expected to provide a lead to 

further work in the area, in addition to revealing a general information about the 

geometry of the basement. 

For interpretation of the magnetic data, a generalized geological map of the area in A4 

size paper, presented by Swami (1975), was consulted. For a reliable interpretation of the 

magnetic data, a good geological map in 1 :50,000 scale is required. Since the area falls in 

a restricted zone, the said map remained inaccessible in the present work. As such, the 

locations of the exposed or nearly exposed magnetic sediments, identified from the 

magnetic data, are to be verified on a detailed geological map of the area. 

7.2 Hilly Area of Lamaput-Araku Region 

7.2.1 Topography and Geology of the Area 

Lamaput-Araku area bounded by north latitudes 18.25° and 18.5° and east longitudes 

82.5° and 83° marked as area B in Fig. 7 .1.1 is a hilly terrain of northwestern part of 

Vishakapatnam-Srikakulam area. The topography of the area is shown in Fig.7.2.1. It is 

evident from Fig. 7 .2.1 that the topographic height varies from 450 to 1600 mts in the 

area. The western part of the area is mostly covered by exposed Chamokites and the rest 

by Khondalites. As already stated, the Khondalites are non-magnetic and the Chamokites 

are strongly magnetic in nature with susceptibility varying from 12 x 10-4 to 24 X 10-4 cgs 

units. (Murthy and Rao 2001). 
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Fig. 7.2.1. Topographic contour map of north west part of Srikakulam (Lamaput -
Araku area) of Andhra Pradesh 

Contour interval = 0.05 Ian 

o 5 10 15 20 25 30 35 40 45 50 
Origine of the frame refters to longitude degree 82.5 N and latitude degree 18.25 E respectively. 

7.2.2 Magnetic Anomaly and its Qualitative Interpretation 

The area is covered by 163 magnetic stations with an average of about 1 station per 9 sq. 

km. The total field magnetic data are assumed acquired over a flat terrain and a contour 

map of the magnetic anomaly is prepared with help of Surfer-32 package. The map so 

Fig. 7.2.2. Total field magnetic anomaly map of Lamaput -Araku area of Andhra Pradesh 
(Assuming data are acquired over a horizontal plane) 

Contour interval = 50nT 

82.55 82.60 82.65 82.70 82.75 82.80 82.85 82.90 82.95 83.00 

(Both the axes are in degree latitude and longitude) 
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prepared is shown in Fig.7.2.2. It is evident from Fig.7.2.2 that a magnetic high runs in 

NW-SE direction flanked by magnetic lows on both sides. The total field magnetic data 

are then used to find the vertical component field on finding the angle inclination of 

earth's magnetic field at each station. 

7.2.3 Quantitative Analysis of the Magnetic Data 

The topography is now approximated by 728 piecewise flat triangular subareas as 

described in article (5.2.2). The area of each subarea, coordinates of its vertices and nodal 

point (centroid) and the direction cosines of the outward drawn normal to it are noted. 

Subsequently, the vertical component field at the centroid of each subarea is interpolated 

from the boundary data by use of inverse distance weighted interpolation formula 

(Watson and Philip 1985). On setting the boundary data at the nodal points, the n (= 728) 

equations (5.1.13) are fonned and these are solved for the double layer boundary density 

J..I. J by Gauss-Seidal iterative method on evaluation of the coefficient bkJ by analytical 

means as described earlier. The equations took 5 iterations to converge with convergence 

condition of E= 0.00001. Finally, the field values are computed at levels z = 1.615 and 

2.115 Ian aMSL on analytical evaluation of the integrals involved in (5.1.12). The up­

continued field values so obtained are shown in contour maps in Fig.7.2.3 and Fig.7.2.4 

respectively. 

Fig. 7.2.3 Vertical component magnetic field of Lamaput -Araku area 
(Using analytical means of integration over subareas) 
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Fig. 7.2.4 Vertical component magnetic field of Lamaput -Aralm area 
(Using analytical means of integration over subareas) 

Height of the plane = 2.115 kIn (aMSL) 
Contour interval = lOnT 
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It is evident from Fig.7 .2.3 and Fig.7 .2.4 that a magnetic high is aligned in NW -SE 

direction in the area. This partially supports the general alignment of the structural 

elements in the area arrived earlier from the total field magnetic data that in the western 

part, the structural elements are aligned in NE-SW direction near Tuni at south and their 

orientation becomes NW -SE as we move towards Koraput at north. 

7.2.4 Determination of Depth to the Subsurface Magnetic Causatives 

To detennine the depth to the subsurface magnetic causatives, two lines A1-BI and A3-

B3 are chosen in the area along which the anomaly contours at level z = 1.615 kIn aMSL 

provide an approximate two-dimensional character of the field (Fig.7.2.3). In a local 

cartesian reference frame with its origin at the crossing of 82.50E longitude and 18.25~ 

latitude, x-axis coinciding with latitude 18.25~, y-axis coinciding with 82.5° E longitude 

and z-axis pointing upward, the line A1-Bl with end points at (82.61 0E, 18.25~ and 

(82.61 oE, 18.5~ and A3-B3 with end points (82.91 0E, 18.25~ and (82.91oE, 18.5~ 

are defined by x = 12 and 43 kIn respectively. 
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In the next step, the field values along the lines are read from the contour-map of the 

vertical component magnetic field exhibited in Fig.7.2.3. Subsequently, using the 

DEPTHDNC software, depth to the. shallow and deeper magnetic causatives are 

determined at a regular interval of 1 Ian along the lines AI-Bl and A3-B3 and exhibited 

in Fig. 7.2.5 and Fig.7.2.6 respectively. As the A2-B2 line crosses very few numbers of 

contour lines so this line is not taken into consideration for depth determination. 

Fig. 7.2.5 Topography, depth to causatives and field profile along line 
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Fig.7.2.6 Topography, depth to causatives and field profile along line 
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It is evident from Fig. 7 .2.5 that the basement, (stable Chamokites (Swami 1975)} along 

A 1-B 1 shows existence of a E-W trending fault across the line at a distance 10 km north 

of 18.25 0 N latitude with its up thrown side towards south at a height of 0.8 km aMSL 

and the down thrown side towards north at depth of about 0.55 km aMSL. The existence 

of the fault is clearly reflected in the magnetic profile at the same location. Further, the 

topographic high above it is pushed by a couple of km towards the down thrown side 

. indicating the direction of thrust at the location. The upthrust features do not corroborate 

the sub-thrust features in the area. 

A strange phenomenon is observed in the computed depth to the shallow magnetic 

sediments along the lineA1-B1. The results indicate presence of magnetic sediments in 

the free-space above the ground surface. This happens when the data are with large 

random error. The source of error might be in the up-continued field or in the basic data, 

which are possibly acquired over exposed magnetic materials. The topography along A1-

B1 is nearly flat as evident in the topographic profile exhibited in Fig.7.2.5. As such, the 

high fluctuating random error in the up-continued data cannot come from up-continuation 

of the field from boundary data. It is likely to come from the acquired data. On projecting 

the line on the geological map of the area presented in Fig. 7 .1.1, we find the entire line 

AI-Bl lies on the exposed Chamokites, which is strongly magnetic in nature. 

The results obtained on analysis of A3-B3 profile is exhibited in Fig.7.2.6. It is evident 

from Fig.7.2.6 that the topographic height along the line varies from 850 to 1170 mt with 

the lowest depression at around 12 km north of 18.25~ latitude. The basement along the 

line appears with three successive E-W trending faults having their reflections on the 

magnetic profile. In this case also the topographic high has a shift towards north from the 

location~ of the basement high along the line. 

In this case, the computed depth to the shallow magnetic sediments (unconsolidated 

Chamokites) as seen in the Fig.7.2.6, lie below the topographic surface along the line 

except probably at around x = 12 km, where the topographic low might be having some 

exposed magnetic sediments. The line A3-B3 entirely lies over the non-magnetic 

Khondalites in the area (Fig. 7.1.1). 
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The basement high at a distance of around 15 Ian from the end A3 of the line A3-B3 is 

probably the continuation of the NW-SE trending basement high predicted from the 

anomaly map over the area. Its continuation across AI-Bl remains unidentified, as the 

data-length is insufficient to compute the depth to the northern portion of AI-Bl. 

Approximation of the topography by triangular sub areas provides the best possible 

approximation to it. This produces a surface having no gap between the sub areas. In 

contrast, approximation of topography by square or rectangular subareas provides a 

surface having gaps between the sub areas in general. 

The triangular subareas used in the present study are each of about 2 sq. Ian in area. This 

is a bit larger in size than the one in which we can reasonably assume that a function is 

constant over it. Further, approximation of a boundary by use of such large subareas may 

not be a good approximation of the true surface. This is evident in Fig.7.2.7 where we 

find the true geometry of the topography along the line A3-B3 is a bit crude 

representation of the topography. 

The topography along a line in a shallow geological basin generally follows a geometry 

of the basement along the line and as such the topographic high corroborates the 

basement high in a basin. In the present case, the topographic highs along the lines A 1-

Bland A3-B3 are shifted towards north from up-thrown to down-thrown sides of E-W 

trending basement faults across the line. This indicates a northward thrust was the cause 

of the present set-up of the landmass at the locality. A similar study all over the area is 

expected to throw some light in the genesis of fonnation of the landmass in the area. 
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Chapter-8 

CONCLUSION 

Gravity or a component magnetic field can be reproduced in the upper half-space domain 

from a general boundary as potential of simple as well as double layer boundary density. 

The fields also can be continued upward from the boundary by Green's formula without 

finding Green's function for the boundary. Of all the above formulations of the problem, 

double layer formulation is numerically superior to others and it also can be easily handled 

on a computer. 

For the field point lying near the boundary, approximation of integrals fails to reproduce 

the field correctly in a field problem in particular, and where the subareas are large in size 

in general; whereas the analytical means of computation produce results acceptable for any 

practical purpose. 

The technique so developed when applied to the magnetic data of Vishakhapatnam­

Srikakulam area, the up-continued field clearly revealed the basement trend in the coastal 

area on continuation to a level z=lkm where the basement trend remained masked in the 

field at the assumed datum level z=O. When applied to the magnetic data of Lamaput­

Araku area, the rugged northwestern hilly region, up-continuation of the field to a 

common level nearly grazing the highest mountain peak in the area clearly reveals the 

alignment of the basement features. And further analysis of the up-continued field not only 

identifies the exposed chamokites but also reveals the direction of the thrust that deformed 

the landmass in the area. 
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