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Abstract 

The first chapter is an introduction to this thesis. We have discussed about the high growth 

of energy demand with the robust increase in world human population and industrializa­

tion. We have further discussed that the energy demand may be substantially met if the 

fusion energy (controlled) is used, prospected due to its cost effectiveness and for some 

other important factors also. The ultimate aim of the fusion research is to provide an even 

condItion for a burning plasma and for this, certain well known parameter values have to 

be obtained: the product of density and energy confinement time has to be 3 x lOI4 cm-3. s 

and the average plasma temperature has to be I OKe V. The most promising fusion device 

is a toroidal confinement system 'Tokamak' in which toroidal and poloidal magnetic field 

is issued for plasma confinement. In the tokamaks the target values of these parameters 

have not been obtained simultaneously. In experiments, where the temperature was ade­

quate the confinement product inadequate and vice versa. The use of auxiliary heating to 

increase the plasma temperature in the tokamaks severely degraded the confi nement, with 

no net result of effective approach to break even conditions. In 1982, ASDEX tokamak 

in Germany, discovered H-mode, where the deterioration of confinement quality at high 

temperature is avoided. After this discovery, as a result of continuous quest for high con­

finement, several other high confinement modes viz. VH-mode, ERS-mode, NCS-mode 

and RI-mode have been discovered. Still the challenge remains to enhance tokamak oper­

ation for the development and understanding the basic physics involved in the process that 

leads to the transition to these improved confinement modes. We have discussed some 

popular and arguably successful theories which tells that some mechanism(s) creates a 

(sheared) flow that gives rise to a (sheared) radial electric field (E), (thereby Ex B shear) 

stabilizing various instabilities and as a result fluctuations are suppressed and confine­

ment is improved. A sheared flow is responsible for the transition to all improved modes 

in tokamaks in one way or other. Next we have presented the summary and conclusion of 

some of the fusion research related problems. 

In the second chapter, the effect of a radiaJly varying paraJlel equilibrium flow on the 

stability of the Rayleigh-Taylor CRT) mode is studied analytIcally in the presence of a 



sheared magnetic field. It is shown that the parallel flow curvature can completely stabi­

lize the RT mode. The flow curvature also has a robust effect on the radial structure of the 

mode. Possible implications of these theoretical findings to recent experiments are also 

discussed. 

In the third chapter, the linear and quasilinear behaviour of the ITG drived perturbation 

with a parallel velocity shear is studied in a sheared slab geometry. Full analytic stud­

ies show that when the magnetic shear has the same sign as the second derivative of the 

parallel velocity with respect to the radial coordinate, the linear mode may become unsta­

ble and turbulent momentum transport increases. On the other hand, when the magnetic 

shear has opposite sign to the second derivative of the parallel velocity, the linear mode is 

completely stabilized and turbulent momentum transport reduces. 

In the fourth chapter the well known instability associated with the ITG modes is shown 

to be stabilized in the presence of a radially varying parallel flow profile. This is contrary 

to the usual belief that the parallel flow shear is destabilizing for the lTG-like microinsta­

bilities. The scale length of the flow profile required for this stabilization is rather modest 

and is usually observed in the toroidal flow profile measured during various improvement 

modes in the tokamak core. This shows that purely parallel flow can be used to create 

transport barriers to reduce the loss of particle and energy from the plasma. The improved 

mode formed by the parallel flow will, unlike the reverse shear mode, be non-transient in 

nature 
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Chapter 1 

1.1 Introduction 

With the growth of industrialization energy today is in prime demand like never before. In 

keeping parity with the expected 6 billion world population mark by 2050 and the contin­

ued high growth the world energy demand may be as high as 3 times by 2050 as compared 

to the 1990 level. The demand for energy is mostly met by coal, oil, natural gas and in 

lesser extent by the nuclear (fissile) fuels and by the renewable energy sources. But the 

supplies of oil and gas is becoming increasingly limited and costly in the present days and 

on the top of that, the environmental impact of the increased use of fossil fuel is of high 

concern. The alternative eco-friendly renewable sources of energy meet only 2 percent 

of the world energy need. The present day nuclear power plants have reduced the emis­

sion of green house gases by almost 15 percent. However, the known Uranium resources 

will satisfy our energy requirements only for another 50 to 80 years at the current rate of 

consumption without the help of a breeder reactor. But, because of the accidents in Cher­

nobyl (USSR) and Three Mile Island (USA), the public awareness regarding the safety 

aspects have made nuclear fission reactors politically counter-productive. In contrast to 

the conventional fission power plants fusion may provide inherently safe, cost effective 

and abundant source of alternative energy generator. 

The natural abundance of deuterium in hydrogen is one part in 6700. The mass of water 

in oceans is 1 4 X 1021 kg and mass of deuterium is therefore 4 x lQ16kg. The cost of 

deuterium is of the order of $1 per gram and one gram allows the production of 300 GJ 

(electricity). The cost share of the deuterium fuel is therefore $0.003 per GJ (electricity). 

This is negligible in comparison to today's consumer cost of $30 per GJ. 

The situation for Tritium is a little complex. Due to its short half-life it is virtually non­

existent in nature. Tritium, however, may be bred from lithium using neutron fusion 
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induced fission reactions. 

(1.1 ) 

L27 + n -t T + He4 + n - 2.5MeV. (1.2) 

The natural abundance are 7.4% Li6 and 92.6% Li7. The cost of lithium is $ 40 per kg and 

so, the contribution of the lithium to the fuel cost is less than $ 0.001 per GJ (electricity). 

When a nucleus of deuterium is fused with a nucleus of tritium, an a-particle is produced 

and a neutron is released. The nuclear rearrangement results in a reduction of total mass 

and consequently, in the Einsteinian way, energy is released in the form of kinetic energy 

as a reaction product. 

( 1.3) 

In order that the nuclei of deuterium and tritium can fuse it is necessary to overcome 

the mutual repulsion due to their positive charges and as a result, the cross-section for 

fusion is small at low energies. However cross-section increases with energy, reaching a 

maximum at 100 keY, and a positive energy balance is possible if the fuel particle can be 

made to react before they lose their energy. To achieve this the particle must retain their 

energy and remain in the reacting region for a sufficient time. More precisely the product 

of this time and the density of the reacting particles must be sufficiently large. 

In toroidal plasma confinement system tokamak, the plasma is confined by a magnetic 

field. The principal magnetic field is a toroidal field. However, this field alone does 

not allow confinement of the plasma. In order to have equilibrium in which the plasma 
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pressure is balanced by the magnetic forces it is necessary to have also a poloidal magnetic 

field which in a tokamak is produced by the toroidal current in the plasma. 

Impurities in plasma give rise to radiation losses and dilute the fuel. The restriction of 

their entry in to the plasma therefore plays a fundamental role in the successful operation 

of tokamaks. This requires a separation of the plasma from the vacuum vessel and this is 

done either by using a material limiter or by using magnetic field to produce a magnetic 

divertor. 

The plasma pressure is the product of the particle density and temperature. The fact that 

the reactivity of the plasma increases with both of these quantities implies that in a reactor 

the pressure must be sufficiently high. The pressure which can be confined is determined 

by stability considerations and increases with the strength of the magnetic field. However, 

the magnitude of the toroidal field is limited by technological factor and cost. 

The early tokamaks had energy confinement times of several milliseconds and ion tem­

peratures of a few hundred of eY. The obvious need for the 1970s were to find out whether 

these conditions could be improved. But it soon became apparent that the energy confine­

ment was anomalous. Large tokamaks were built to improve the confinement and the 

confinement time approaching lOOms had been obtained during 1980s. 

The ultimate aim of the fusion plasma research is to provide the conditions for a burn­

ing plasma. The parameter values which have to achieve are well known: the product of 

density and energy confinement time has to be 3 x 1014 cm-3 -s and the average plasma 

temperature has to be I OKe Y. The target values of these parameters have been obtai ned 

separately; however, in experiments where the temperature was adequate the confine­

ment product inadequate, and vice versa. Simultaneous achievement of the two values 

was found to be difficult. The use of auxiliary heating to increase the plasma tempera­

ture 111 a tokamak gave rise to severe degradation of the confinement, with the net result 

of no effective approach to break-even conditions. The operational regime of tokamak 

plasma characterized by a confinement time that decreases strongly with increasing aux-
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iliary heating power in termed the L- (low) mode. Recently, a new confinement regime 

has been discovered in the ASDEX tokamak in Germany [1] where the deterioration of the 

confinement quality at high heating power is avoided. This regime is called the H- (high) 

mode because of its high confi nement. characteristics. There is evidence that the L-mode 

characteristics will not lead to sufficient confinement for successful plasma burning. As 

a result there has been a continuing quest for other improved modes in tokamak in this 

decade, leading to the discovery of the VH- (very high) modes in the DIII-D [2], ERS­

(enhanced reverse shear) modes in the TFfR [3], NCS- (negative central shear) modes in 

the DIII-D [4], and the RI- (radiation improved) modes in the TEXTOR-94 [5] and the 

IH- (improved high) modes in the DIII-D [6]. 

An important challenge for enhanced tokamak operation is the development and under­

standing of the basic physics involved in the process that leads to the transition to these 

improved confinement modes. A popular and arguably successful picture of these im­

proved modes is that some mechanism(s) creates a (sheared) flow which gives rise to a 

(sheared) radial electric field (E), thereby (by the Ex B shear) stabilizes various instabil­

ities and as a result fluctuations are suppressed and confinement is improved. It is usually 

believed while a sheared poloidal flow is responsible for the H-mode transition, a sheared 

toroidal flow is the cause for the VH-mode transition. A hollow q profile, on the other 

hand, is necessary for the ERS or NCS modes. However, it is now widely accepted that 

the negative magnetic shear is not the only factor needed for the transport reduction in the 

ERS or NCS modes. Some of the clearest evidence comes from the comparison of the RS 

(reverse shear) and ERS (enhanced reverse shear) transition data in TFfR [7]. It shows 

that the RS phase is not necessarily an ERS phase and some other factor is needed to 

explain the transition. Theoretical study also indicates that the reversal of magnetic shear 

alone might have a little effect on the ITG-type microinstabilities [8]. Most recently, the 

E x B shear stabilization mechanism has been proposed to explain the core transport bar­

riers formed in plasmas with negative or reverse magnetic shear regimes [9]. It is believed 

that the change in the radial electric field in the core is produced by a number of ways, for 

example, by toroidal flow (v<I>') [10] and/or by pressure gradient ('lp,) [7] and more re­

cently by poloidaJ flow (ve,) [11]. Similarly recent RI mode experiments in the TEXTOR 

7 



indicate that the shear in the toroidal flow also plays a crucial role in the transition to the 

RI mode [12]. The E x B velocity shear is also believed to be playing the key role in the 

IH-mode transition in the DIII-D [61. However, while a sheared flow is responsible for 

the transition to all the improved modes in tokamaks in one way or other, there are many 

unsolved problems in the fusion research related to the flow shear stabilization of various 

plasma instabilities. 

In this thesis, (i) we study the effect of a radially varying parallel equilibrium flow on 

the stability of the Rayleigh-Taylor (RT) mode analytically in the presence of a sheared 

magnetic field. It is shown that the parallel flow curvature can completely stabilize the 

RT mode. The flow curvature also has a robust effect on the radial structure of the mode. 

Possible implications of these theoretical findi ngs to recent experiments are also discussed 

[13]. (ii) We then study the linear and quasi linear behaviour of the ITG driven perturbation 

with a parallel velocity shear in a sheared slab geometry. Full analytic studies show that 

when the magnetic shear has the same sign as the second derivative of the parallel velocity 

with respect to the radial coordinate, the linear mode may become unstable and turbulent 

momentum transport increases. On the other hand, when the magnetic shear has opposite 

sign to the second derivative of the parallel velocity, the linear mode is completely stabi­

lized and turbulent momentum transport reduces [14-15]. (iii) The well known instability 

associated with the ITG modes is shown to be stabilized in the presence of a radially vary­

ing paralIel flow profile. This is contrary to the usual belief that the paralIel flow shear 

is destabilizing for the lTG-like microinstabilities. The scale length of the flow profile 

required for this stabilization is rather modest and is usually observed in the toroidal flow 

profi Ie measured during various improvement modes in the tokamak core. This shows 

that purely parallel flow can be used to create transport barriers to reduce the loss of par­

ticle and energy from the plasma. The improved mode formed by the parallel flow will, 

unlike the reverse shear mode, be non-transient in nature [16]. 

In summary, we study the stability of RT, ITG and drift type instabilities in the 

presence of a radially varying equilibrium flow and report some interesting novel 

results [13-16]. 
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Chapter 2 

Effect of flow on Rayleigh-Taylor 
instability 

2.1 Introduction 

Heavy fluid supported by a lighter fluid in the presence of the gravitational field gives 

rise to Raleigh-Taylor (RT) instability [19]. This instability commonly occurs both in 

collisionless and collisional domain in the magnetized plasmas, where the role of the 

light fluid is played by the magnetic field. The collisionless interchange type instability 

(ballooning mode) can exist in the earth's plasma sphere as well as in the laboratory 

plasma. These collision less mode arises due to an unfavorable curvature in the magnetic 

field (simulating an effective gravity) in the presence of a pressure gradient. It is believed 

that the RT instability can playa major role in the onset of equatorial spread F [18]. This 

instability is also known to be a major problem for a wide range of applications, from 

pulsed power technology to inertial confinement fusion. Conventional Z-pinch implosions 

are inherently unstable due to the RT instability which appears during run-in phase due to 

a steep density gradient across an accelerating interface between plasma and the magnetic 

field. A number of ways, like using of gas puff loads with thick shells, uniform fills 

[19-20], puff on puff [21-23], shear stabilization [24-25] and tailored density profiles 

[27-27], have been proposed to control or mitigate some of the most dangerous modes 

associated with RT type instabilities in the Z-pinch. Some of these methods have also 

been successfully implemented on several facilities in the past but only with a limited 

success. 

Recently it has been proposed that the flow curvature (the second radial derivative) in the 

perpendicular flow might suppress microinstabilities and fluctuations [28-291. It is shown 
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that the flow curvature in the perpendicular flow indeed has robust effects both on the lin­

ear [30-31] and nonlinear mode stability [32] of drift-type waves. Studies on the resistive 

pressure gradient driven fluctuations [33] also show a similar result. Numerical simulation 

results of the ion temperature gradient (lTG) modes also seem to have reached a similar 

conclusion [34]. However, no such investigation on the effect of the flow shear/curvature 

in the parallel flow has ever been carried out for the RT type instability in the presence 

of magnetic shear. This is specially very important because in the recent staged Z-pinch 

experiments at the University of California at Riverside, an axial magnetic field is ap­

plied to shear stabilize the target plasma during implosions. The outer plasma shell is 

made of high-Z gas that is highly radiative and keeps the plasma cold during implosion. 

This allows both components of magnetic field diffuse easily through this plasma column, 

Bz diffuses outward and Bo diffuses inward during the implosion phase. This creates a 

sheared profile of magnetic field that maintains the stability of the outer shell during the 

implosion [351. This is also very important because the recent gas puff experiments on 

the 7-MA Saturn generator have identified a curved surface at the plasma-vacuum inter­

face and observed at the same time an improvement in the implosion quality [36]. In a 

subsequent simulation work [37], Douglas et. al. have shown a curved surface introduces 

an axial flow (note because Bz > Bo, the parallel flow is almost equal to the axial flow) 

which might result in the reduction in the RT growth. However, the exact cause of the 

reduction in the RT growth is due to the result of the velocity shear/curvature or because 

of the material advection along the interface is not known. 

We develop a nonlocal theory of the RT mode in the presence of a radially varying parallel 

flow. Our full analytic analysis shows that the parallel flow curvature can stabilize the RT 

mode. The flow curvature also has a robust effect on the radial structure of the mode. 

The parallel flow shear, on the other hand, plays an insignificant role in this matter. These 

theoretical findings, apart from showing the parallel flow curvature as a major candidate 

to stabilize the RT mode, might also have an important role in determining the stability 

of staged Z-pinch and also in elucidating the recent gas puff experiments on the 7-MA 

Saturn generator which have identified a curved surface while observing an improvement 

in the implosion quality. 
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2.2 Stability Analysis 

Following our earlier work [40], we carry out a nonlocal stability analysis and assume, for 

simplicity, a Cartesian coordinate system and a two-fluid model for the Rayleigh-Taylor 

modes in the presence of a radially varying parallel flow. We assume a low-{3 collision­

less plasma (hence neglecting any electromagnetic fluctuations) with both equilibrium 

density variation and magnetic shear in x, i.e., no(x) = nooexp( _x2 /2L;), B(x) = 
B[ez + (xl Ls)eyJ (it is important to note here that, in the staged Z-pinch equilibrium at 

the University of California at Riverside, the ratio ~ is of the order of 0.6). Here, L" is the 

magnetic shear scale length and x is the distance from the mode rational surface defined 

by k B = O. We assume a uniform gravity force mg in the x direction for ions. We model 

the equilibrium parallel flow by a profile Vilo(x) = ViI(JO+ Viloox/ Lvl + Viloox2 /2Lv2 , where 

the shear and the curvature contributions to the velocity profile are represented by the sec­

ond and the third term in the Taylor series respectively; and LVi = (l/ViloodVilo(x)/dx)-l; 

Lv2 = (l/Vilood2Vilo(x)/dx2)-1. Because of inhomogeneity in the x-direction, perturba­

tions have the form ¢(x, t) = ¢(x) exp z(kyY + kzz - wt). Ion inertia effects are retained 

to include the ion polarization drift, but electron inertia and ion and electron pressure are 

neglected for simplicity. We can write the linearized basic equation of continuity and 

momentum transfer for ions and electrons as follows: 

(2.1 ) 

1 
E = --(Ve x B) 

c 
(2.2) 

a e1l; x B 
mt(a- + V;.\7)y' = eE + + 1n,g 

t c 
(2.3) 

Here 
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VE = -C(V'.L¢ x B)j B2 

v = _Cm,g e 9 eB Y 

_ eB 
W C1 - -c.m, 

Here a denotes species (e for electrons and i for ions), all other symbols are assumed to 

have the usual meaning unless otherwise stated explicitly. Parallel flow, Vilo, has there­

fore two effects. First, it introduces a Doppler shift, kll \lilo(x), in all time derivatives 

and second, an extra term, V E.V'\lilo(x), representing radial convection of ion momen­

tum. It is the second term which makes the effect of parallel flow shear completely 

different from that of the perpendicular flow shear. We eliminate the Doppler shIft by 

performing a Galilean transformation in the ell direction. It is important to mention 

here that the spatial variation in the Doppler shift in the mode frequency due to par­

allel flow is negligible for flute-type modes (k ll « k.L). It is probably obvious as 

dnjdxn(kIlVo(x)) « dnjdxn(k.LVo(x)) due to the fact that kll « k.L. So, one can 

eliminate the Doppler shift performing a Galilean transformation in the ell direction. This 

has also been noted elsewhere [39]. Now, using quasi neutrality and the usual low fre­

quency assumptions, we obtain radial eigenvalue equation: 

d2¢ d¢ 
-l 2 + P(X)-d + q(x)¢ = 0 
ex x 

(2.4) 
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where 

p(x) = ~ no 

2 2 

q(X) = _k2 + k,,9 ~ + k"~119 dVIlOO 
Y w2 nu w3 dx 

In deriving equation (2.4) we have retained terms up to the first order in kll which is 

justified for the flute type mode (kll f'.J 0). Now to remove the first derivative (with respect 

to x) term we make use of the transformation 

f·x P(17) 
¢(x) = 1jJ(x) exp( - -2-d17) 

when we get 

where 

Q(x) = q(x) _ P';:L) _ Jl2~:L). 

With the velocity and density profile described earlier, the radial eigenvalue equation now 

reduces to: 

where 

l ' - 1 k· 2 
- 2L~, - Y 
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R - £"ki, __ 1_ 
- £,£,,2 4£;', 

In deriving equation equation (2.5), we have assumed that W f'V J 9 / Ll£ f'V Viloo, which 

is usually true. Equation (2.5) is a simple Weber equation. Depending on the sign of R, 

we have two types of solutions. If R < 0, the solution satisfying the physical boundary 

condition, i.e., '1/) --+ 0 at x = ±oo IS given by 

where Xu = S/2/R/. So, in this case, the mode decays with .7:, i.e., it does not propagate 

and hence is Intrinsically undamped. This solution therefore implies the existence of an 

unstable mode. 

On the other hand, if R > 0, equation (2.5) has the solution 

Thus, in this case we have a non-localized mode with outgoing energy flux at x = ±oo. 

Because of the convective wave energy leakage the perturbation will decay in time in 

the absence of any energy source feeding the wave. The wave is therefore damped. So, 

positive parallel flow curvature has a stabilizing role on the RT instability. Parallel flow 

shear, on the other hand, has an insignificant role in this matter. It can shift the potential, 

but does not alter the quadratic structure. It also shifts the center of the mode away from 

the x = 0 rational surface. The main stabilizing effect comes from the quadratic term 

which forms an anti-well pushing the wave function away from x = O. These observations 

are the same as in the case of drift waves [39J. The corresponding dispersion relation is 

given by T- ~~ = 2VR, which can be simplified for a weakly unstable situation (w t < WI) 
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and without the velocity shear contribution as: 

Here w,. and Wi are the real and the imaginary parts of the eigenfrequency, respectively. 

It is easy to see that without the velocity field the linear growth rate of the RT instability 

assum~s the familiar form J 9/ Ln. From the dispersion relation it is clear that the parallel 
3 

flow curvature can stabilize the RT instability if f::':~ > 4i'A' If we assume Lv2 "-J Ln, 

k,yPi f'V 0.1 (where Pi is the ion-gyroradius) and h f'V 100, then the condition of stability 
. fJ, 

can be further simplified to i,: < 400. We emphasize here that, these assumptions, 

although are usually true, are made only to facilitate comparison with the experimental 

data and no generality whatsoever is lost thereby. We have therefore obtained a condition 

of stability for the RT mode in the presence of axial flow curvature, which is likely to be 

satisfied in any staged Z-pinch type device having a very weak magnetic shear. 

2.3 Conclusion 

In summary, we have studied the effect of a radially varying parallel equilibrium flow on 

the stability of the Rayleigh-Taylor mode analytically. It is shown that the parallel flow 

curvature can completely stabilize the RT mode. The flow curvature also has a robust 

effect on the radial structure of the mode. Our work therefore shows that by suitably 

tailoring the parallel flow profile it is possible to completely stabilize the RT instability 

in a magnetized plasma. A weak magnetic shear is needed for the process, and hence a 

staged Z-pinch will be an ideal device for realizing this. This result might also have an 

important part to play in explaining the recent gas puff experiments on the 7-MA Saturn 

generator which have identified a curved surface while observing an improvement in the 

implosion quality [36]. This is because the subsequent simulation work of Douglas et 

al. [37] has shown that a curved surface introduces an axial flow and our work here 

shows that the flow curvature in such an axial flow can indeed stabilize the RT growth. 
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However, a definitive comparison is only possible when one gets additional data from this 

experiment. 

Before we conclude, it is interesting to compare our results with a recent work of Shumlak 

and Roderick [40]. The authors in reference [40] find that the shear in the axial flow can 

mitigate the RT instability, whereas the result in this work, including both the flow shear 

and curvature in the parallel flow and also the magnetic shear, indicates that it is the flow 

curvature which plays the leading role in suppressing the RT instability. Furthermore, 

the result in reference [40] indicates that for the mitigation of RT inst~bility, a sufficiently 

strong sheared flow is necessary, in this work we, however, find that the value of the 

flow curvature necessary for the mitigation of the RT instability is rather modest in the 

presence of even a very weak magnetic shear. So, possibly the most realistic way of 

stabilizing the RT instability is to use an axial flow with a properly tailored flow profile 

in conjunction with a sheared magnetic field. This possibility is already being explored 

on the Z-Accelerator at Sandia National Laboratories [41], where the magnetic shear 

comes from the axial magnetic field produced by using a twisted tungsten wire array 

and the radially varying axial velocity, presumably, from the hourglass shape of the array 

associated with its twisting. The initial result indeed shows a stabilizing effect. 
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Chapter 3 

Effect of flow on slab ITG instability 

3.1 Introduction 

Arguably the most remarkable story of fusion research over the past decade is the discov­

ery of the enhanced reverse shear modes (ERS modes) in Tokamak Fusion Test Reactor 

(TFTR) [3] and the negative central magnetic shear modes (NCS modes) in DIII-D [4]. It 

is not often that a system self-organizes to a higher energy state with such a large reduction 

of turbulence and transport when an additional source of free energy is applied to it [9]. 

It is usually believed that the ERS or NCS configurations can provide the characteristics 

desirable for a fusion reactor [42]. 

The understanding of the formation of transport barriers in the ERS or NCS plasma con­

figurations is therefore fundamental to the development of techniques to control such 

barriers for tailoring profiles and for improving operating regimes further. This is espe­

cially significant because it is now widely accepted that the negative magnetic shear is 

not the only factor needed for the transport reduction in the ERS or NCS modes. Some 

of the clearest evidence comes from the comparison of the RS (reverse shear) and ERS 

(enhanced reverse shear) transition data in TFTR [7]. It shows that the RS phase is not 

necessarily an ERS phase and some other factor is needed to explain the transition. The­

oretical study also indicates that the reversal of magnetic shear alone might have a little 

effect on the lTG-type microinstabilities [8]. 

Most recently, the E x B shear stabilization mechanism has been proposed to explain the 

core transport barriers formed in plasmas with negative or reverse magnetic shear regimes 

[9]. It is believed that the change in the radial electric field in the core is produced by a 

number of ways, for example, by toroidal flow (v qn ) [J 0] and/or by pressure gradient 
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(\1Pt) [7] and more recently by poloidal flow (vo t ) [II). However, while this E x B shear 

stabilization mechanism alone can satisfactorily explain the confinement improvement in 

the edge, it may not be an obvious explanation for the core confinement improvement in 

the ERS and NCS plasma. For example, the formation of the ERS mode in TFTR has 

been reported [7 J at values of 'YExB (E x B shearing rate), as much as a factor of 3 below 

'Ymax (the maximum linear growth rate), while for the suppression of turbulence-induced 

transport the condition 'YExB 2: 'Ymax needs to be satisfied. It is therefore natural that an 

explanation of these experimental results should be sought in the effects such optimized 

magnetic configurations have on microinstabilities and on the consequent transport. 

In this work, we identify another effect which might be playing a key role in the reverse 

shear transition. We show here when the magnetic shear has the same sign as the second 

derivative of the parallel flow with respect to the radial coordinate, the ion temperature 

gradient (ITG) mode may become unstable. On the other hand, when the magnetic shear 

has opposite sign to the second derivative of the parallel velocity, the ITG mode is com­

pletely stabilized. This result, therefore, shows that it is the relative sign of the second 

radial derivative of the equilibrium parallel flow with respect to the magnetic shear which 

may be the key factor for the enhanced reverse shear transition. 

3.2 Stability Analysis 

We choose a simple model of the lTG-driven modes [44]. We adopt a two-fluid theory in 

a sheared slab geometry, B = Bo[z + (xl Ls)Y], where Ls is the scale length of magnetic 

shear. The X, y and z directions in the sheared slab geometry are defined as the radial, 

poloidal and toroidal directions in the tokamak conFiguration. We assume a background 

plasma with all inhomogeneities only in the radial direction, where perturbations have the 

form ¢(x, t) = ¢(x)exp[2(kyy+kz z-wt)]. We ignore finite gyroradius effects by limiting 

consideration to the wavelength domain kl..pt « 1, where Pt is the ion gyroradius. We 

then write down the equations of continuity for ions: 
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ant n( -)( - -) 0 - + v. no + n t Vo + V 1. + vII = at (3.1 ) 

where, 

Assuming electron dynamics to be adiabatic equation (3.1) can be reduced to 

Here, in deriving equation (3.2) we have re-scaled the quantities as 

¢ == e¢/Te, vII == Vllt/Cs, 13 == [13t/ Pto](~/Te), T == ~:, y == ~, ~L == Jtl~~r.'. Here, r is 

the ration of specific heats, and ~LII is the parallel viscosity (due to either Landau damping 

or collisional viscosity) required for saturation of the turbulence. 

Similarly, the parallel momentum equation for ions can be written as: 
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and the re-scaled equation as: 

Finally, the equation of adiabatic pressure evolution is written as: 

(3.5) 

and the re-scaled version as: 

(3.6) 

Here, all symbols are assumed to have the usual meaning unless otherwise stated ex­

plicitly. We make no attempt to speculate about the source of the parallel flow although 

a strongly peaked ion velocity parallel to the magnetic field is observed to coexist in 

tokamaks in the region where the plasma confinement is improved [45]. Parallel flow 

introduces a Doppler shift, kllvllo(x), in all time derivatives and second, an extra term, 

vE,'Vvllo(x), representing radial convection of ion momentum. The second term makes 

the effect of parallel flow shear completely different from that of the perpendicular flow 

shear [43]. 

To model the equilibrium parallel velocity we assume a simple general case of variation 

with the radial distance x. 
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( ,) + .!!l.!l!.x + ~X·2 Vo X = VOO L 2L' 1)1 112 

Linearizing equations (3.2,3.4,3.6), and neglecting Y (which gives corrections of order 

(kll/k.d 4
), we write down the eigenvalue equation as 

(3.7) 

where, 

A - -k2 + 1-(1 P - _ JoS + 52 Q - ~S (') - ~ J( - 1+,[, S - L" 
- Y ~l+K' - n(n+K) (12' - \l(n+K) ,lG- kvvv' - 'T' - Ls' 

J = (!!SlJJb) J = (~). 2 L,,2' 1 LuI 

Equation (3.7) is a simple Weber equation. Depending on the sign of P, we have two 

types of solution. If P < 0, i.e., 

J2S S2 
Q(Q + K) > Q2 

the solution which satisfies the physical boundary condition, i.e., ¢ --7 ° at x = ±oo is 

given by 

(3.8) 

where Xo = IQI/2IPI. The wave therefore does not propagate and is intrinsically un­

damped. 

On the other hand, if P > 0, Equation (3.7) has the solution 
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(3.9) 

So, in this case we have now a non-localized wave. The wave is therefore damped as in 

this case because of the convective wave energy leakage the perturbation will decay in 

time in the absence of any energy source feeding the wave. 

From the above discussion it is clear that it is the parallel flow curvature which actually 

plays the key role in the stability of the mode. When the magnetic shear has the same 

sign as the parallel flow curvature, i.e., for positive magnetic shear (L6 > 0), parallel flow 

curvature acts to destabilize the mode. On the other hand, for the negative magnetic shear 

configuration (Ls < 0), i.e., when the magnetic shear has the opposite sign to the second 

derivative of the parallel flow with respect to the radial coordinate x, the parallel flow 

curvature acts to stabilize the mode. Flow curvature now forms an additional anti well 

which pushes the wave function away from the mode rational surface, thereby enhancing 

stabilization. 

The overall stability of the mode may also be obtained from the dispersion relation 

Q2 
A = - +iJiPi 

4P 

which can be written more explicitly as: 

11 - S(~~ K) I 
(3.10) 

We will now solve the eigenvalue equation by using a numerical code developed by Bai 

et al. [46]. For numerical solution we keep the contribution of Y when the eigenvalue 
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equation reduces to 

(3.11 ) 

where, 

It is clear that because of the x dependence of PrI/., eq. (3.11) is not solvable analytically. 

(Ln=0.15[mJ, 11,=2) 
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Figure 1 
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Figure I: Normalized growth rate of lTC mode with kypt for negative and positive mag­

netic shear. 

Fig. I shows that for the case of positive magnetic shear the ITG mode is more desta­

bilized than the case when there is no parallel flow. On the other hand, for the negative 

magnetic shear case the growth rate of the ITG mode decreases in the presence of parallel 

flow curvature and the mode can be fully stabilized for kyPi > 0.8. Fig. 2 shows the plot 

of real frequencies in these three cases. Fig. 3 shows the variation of the ITG growth 

rate with the scale length of parallel flow curvature for the positive and negative magnetic 

shear cases. It reconfirms while for the positive shear case the growth rate of the ITG can 
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Figure 2: Real part of the frequency of lTG mode with kyp~ for negative and positive 

magnetic shear. 

be very high, in the case of negative shear the ITG mode can be completely stabilized by 

decreasing the scale length of the parallel flow curvature. 

3.3 Conclusion 

In summary, we present here a model for transition to the enhanced reverse shear (ERS) 

or negative central shear (NCS) mode triggered in tokamaks. Our studies show that when 

the magnetic shear has the same sign as the second derivative of the parallel velocity 

with respect to the radial coordinate, the ITG mode may become more unstable. On the 

other hand, when the magnetic shear has the opposite sign to the second derivative of 

the parallel velocity, the ITG mode may be completely stabilized. This result is similar to 

what we have found earlier for the PYS instabilities [61,47]. So, the similar result with the 

ITG mode, considered nowadays as the dominant source of anomalous energy losses in 

the low confinement (L) mode, therefore, shows on a firmer footing that it is the relative 

sign of the second radial derivative of the equilibrium parallel flow with respect to the 

magnetic shear which may be the key factor for the enhanced reverse shear transition. 
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Figure 3: Normalized growth rate of ITC mode with Lv2 for negative and positive mag-

netic shear. 

Now, the real benefit of the outcome of this work is that it puts forward a novel idea of 

transport barrier formation. This is that, contrary to the usual notion that a parallel flow 

shear is always destabilizing, the destabilizing influence of the shear in the parallel flow 

can be changed altogether if one takes the effect of the flow curvature into account. The 

transverse curvature in the parallel flow can overcome the destabilizing influence of the 

shear and can render the low frequency modes stable and can thereby reduce the radial 

transport. This new scenario that parallel flow can be a viable candidate for the stabiliza­

tion of instabilities is very promising (note the usual picture is that it is the perpendicular 

E x B flow which does the stabilization). This is because, in a tokamak, the parallel 

velocity is very nearly equal to the toroidal velocity whereas the perpendicular velocity 

to the poloidal velocity. Now, the poloidal rotation in tokamak suffers from several dis­

advantages over toroidal rotation, most notably that poloidal flow is efficiently damped 

by magnetic pumping. Indeed, experimentally measured damping time of poloidal flows 

is of the order of the ion-ion collision time or less. and hence is much shorter than the 

damping time of toroidal flows. As a result, poloidal rotation dies away immediately after 

the beams [in the neutral beam injection (NBI) heating] are turned off leaving the plasma 
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rotation in the toroidal direction. Toroidal rotation, on the other hand, is dissipated only 

through the diffusive transport of momentum which is expected to reduce to low, neoclas­

sical levels. Stabilization by parallel flow, there/ore, seems to offer much more attractive 

prospect/or high performance tokamak operation. 

On experimental front, recent results from the JET have shown that the reduction of small­

scale turbulence in optimized magnetic shear regimes is directly related to the existence 

of a strongly sheared toroidal velocity in the area of the internal transport barrier [45]. 

Furthermore, the clear evidence for the theory developed here comes from the STOR-M 

tokamak at Canada where no change in the radial electric field is observed during the 

transition to the improved modes indicating that it is the parallel component of the flow 

which might be playing the key role in the transition [48]. 
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Chapter 4 

Effect of Parallel Flow Profile on the 
Toroidal ITG mode 

4.1 Introduction 

In order that the tokamak becomes a leading contender for a fusion reactor it should 

develop a magnetic configuration that has good confinement and stability and a large 

fraction of bootstrap current. Understanding and control of turbulent transport and of its 

underlying driving agents is therefore a prerequisite in this process. Recent discoveries of 

various enhanced performance operational regimes like the H-modes [1], the YH-modes 

[2], the enhanced reverse shear modes (ERS-modes) [3] or negative central magnetic shear 

(NCS-modes) [4] and the radiative improved modes (RI-modes) [5] has opened up a new 

window for improved tokamak operation. 

An important challenge for enhanced tokamak operation is the development and under­

standing of the basic physics involved in the process that leads to the transition to the 

improved confinement modes. While a sheared poloidal (toroidal) flow is found to be 

responsible for the H- (YH-) modes, a hollow q profile (hence normally a hollow current 

profile) is necessary for the ERS or NCS modes. Most tokamaks however operate with 

inductive current drive which in general produces a peaked current density profile at the 

magnetic axis because of the strong dependence of the plasma conductivity on the elec­

tron temperature. Only by noninductive current drive or transient techniques can a hollow 

current density profile be generated. 

All these improved modes in the tokamak core seem to have a common feature that the 

formation of the transport barrier is usually accompanied by ajump in the toroidal velocity 
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in the region where the transport barrier is formed. Although in the beginning oUhe ERS 

plasma in the TFTR usually a balanced injection was used resulting in almost no toroidal 

flow, in more recent shots using different applied torques from the neutral beam injection 

(NBI) it has been confirmed that the toroida} v:elocity also plays an important role in the 

TFTR ERS mode [49-50]. Similarly recent RI-modes experiments in the TEXTOR-94 

indicate that the toroidal flow also plays a crucial role in the transition to the RI-mode 

[51]. It is usually believed that the (sheared) toroidal velocity gives rise to a (sheared) 

radial electric field (E) and thereby (by the E x B shear) suppressing fluctuations and 

improving the core confinement. However, while this E x B shear stabilisation mecha­

nism alone can satisfactorily explain the confinement improvement in the edge, it may not 

be an obvious explanation for the core confinement improvement. This is because from 

the radial force balance equation 

it is obvious that with B<jJ » Bo, v<jJ can contribute only weakly to V.i. As a result to 

produce the same change in E, v<jJ should change by ~: (» 1) times that of v</J. Experi­

ments however indicate otherwise. It is also supported by the fact that the formation of 

the ERS mode in TFTR can occur at values of 'YExJ3 (E x B shearing rate) as much as a 

factor of 3 below 'YMAX (the maximum linear growth rate) while for the suppression of 

turbulence-induced transport the condition 'YExJ3 ~ 'YMAX need to be satisfied [52]. 

We suggest in this letter that the transport barrier may be created by purely parallel flow 

profile. We demonstrate that the parallel flow curvature stabilizes toroidal ITG modes, 

which is thought to be the likely mechanism for anomalous transport in the plasma [53, 

54]. We thus demonstrate two aspects, first in the core confinement improvement, the 

important role of the toroidal rotation may not be only through the E x B shear (which 

is usually weak) but by the strong parallel component. Second, as the parallel flow in the 

tokamak is almost equal to the toroidal flow and as the toroidal flow can be generated 

by the NBI, there is no time limit for how long the parallel flow can be maintained. So, 
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the transport barrier created by the toroidal flow will have a distinctive advantage over 

that created by the poloidal flow as the toroidal flow unlike the poloidal counterpart is not 

damped by the magnetic pumping. 

4.2 Stability Analysis 

We use usual (1', e, ¢) coordinates, corresponding to the minor radial, poloidal and toroidal 

directions, respectively, and consider the long-wavelength (K 2a; « 1) ITG modes for a 

large aspect-ratio circular tokamak. The purturbed potential can then be expressed as: 

tj;(r, e, ¢, t) = <p(r, 8) exp{i(n¢ - me - wt)} 

where r is the radial distance from the mode rational surface, i.e. m = nq(ro), and 

S = rq' / q at r = 1'0. Here, for simplicity, we will assume ions to be cold and will 

ignore the electron temperature gradient. Using fluid descriptions, the eigenvalue equation 

in the presence of a velocity field can be derived (ref. Appendix III, eg. (III.9» in a 

straightforward way. 

2~ b- (w.-w+tw6) - (W.fC)2 (B . )2_ 
at Br2 - <p + (w+w. (~)) <p - WIW, BO + ZKSr <p 

where 

/'I, = nq/r = '1'10/1' 

s = (r'lq)(dq/dr) 

29 



Ell = qEe = r,,jR 

Now to model the equilibrium parallel velocity we follow the toroidal velocity profile 

usually observed during the VH-mode, the NCS-mode, and the RI-mode experiments. 

( ) ( 
I· ,.2 ) 

Vllo r = VIIOO - L + IT vllo, 
. vI 1J2 

where 

We put 

x = r;,r S =? r = 2:... ==> ?,. = 1... 
K.S ax K.S 
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Therefore we get 

where 

() = ~ 
bs 

(4.2) 

and vllo is the equilibrium parallel flow. The first term in Eq. (4.1) arises from the finite 

Larmour radius effect and the third from the ion sound. The parameter i8 represents the 

destabilizing effect of electron Landau resonance and the trapped electrons. The fourth 

is the effect of toroidal coupling. Parallel flow has two effects. First, it introduces a 

Doppler shift, kll'Ulio (in deriving equation (4.1) we have neglected Doppler shifts due 

to equilibrium velocity), in all time derivatives, and second, an extra term v E V'vllo(x) 

representing the radial convection of the ion momentum. It is the second term which 

makes the effect of parallel flow shear completely different from that of perpendicular 

flow shear. 

To reduce the two-dimensional (2-D) eigenmode problem to one-dimensional (I-D), we 

will apply the ballooning transformation. However, the validity of the conventional bal­

looning formalism in the presence of sheared flow is, in general, severely restricted. This 

is due to the fact that in an equilibrium with differential rotation, the Doppler-shifted fre­

quencies varies from one flux surface to another and hence the conventional ballooning 
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formalism, for which to lowest order (the local approximation) the perturbation is a super­

position of identical single helicity modes, no longer applies. In other words, the eikonal 

solutions do not have pure exponential time dependence and are not eigenmodes in the 

system. However, we notice that the spatial variation in the Doppler shift, kllvllo, in the 

mode frequency due to parallel flow is negligible for flute-type modes (k ll « kl.)' It is 

probably obvious as dn jdxn(kllvllo(x)) « dHjdxH(kl.vo(x)) due to the fact that kll « kl. 

and that vllo rv Vl.O in the experiments. So, one can eliminate the Doppler shift by per­

forming a Galilean transformation in the ell direction. This has been noted else where 17. 

It can be noted that the effect of the parallel shear/curvature enters in the problem through 

an extra term vE"\Zvllo(x) representing radial convection of ion momentum 17. So, once 

radial variation in the Doppler shift is neglected, the restriction on the applicability of the 

ballooning formalism no longer applies. 

To determine the radial mode structure, the solution of the fully 2-D eigenmode problem 

must be obtained within the framework of ballooning formalism, this means solving the 

problem to a higher order. The problem then separates into two distinctive radial length 

scales. To leading order, the problem reduces to the usual J-D eigenmode equation (with 

radial variable appearing only as parameter), which determines the mode structure along 

the magnetic field lines. The next order equation then determines the radial mode struc­

tu~e. In the usual theory of high n bal!ooning mode, one maps the poloidal angle 8 on to 

an extended coordinate X with -00 < X < 00 and writes the perturbation in the form 

cp(8, x) = L e-tlnO l: e1mx¢(x, x)dX, 
m 

where 

¢ = A(x)F(X, x) exp[-ix(X + Xo)]. 

Here Xo is an arbitrary phase of the eikonal. A(x) is assumed to vary on some scale inter­

mediate between the equilibrium scale length and the perpendicular wavelength. Now to 

32 



leading order (in n- i / 2 expansion), the ballooning equation becomes 

( a 2 d2 + (X + XO)2 + E[COS X + s(X + Xo) sin xl + PiX + P2X2 - >.) F(X, X) = 0 
dX2 

(4.3) 

To explore its implication for radial mode structure and stability of toroidal ITG mode 

one needs the higher order ballooning theory. In the higher order theory 18 Xo is obtained 

from the equation ([)>./8Xo)(x, Xo) = 0 and A(x) satisfies 

where 

>. - 1 [w.-w-tWO b] 
- bs2 w-w ... ( ~) - ) 

\ _. fr 
AO - "t;S, 

_ K.a, c, ulloO 

Pi - bs2 £u]QRw(w+w.( ~))' 

_ a,c,vlloo 

P2 - bsJL;'2QRw(w+w.(~))' 

(4.4) 

Equation (4.2) is a simple Weber equation. When P2 is positive and [)2 >./8X6 > 0 

(82 )./8X6 > 0 is necessary in order that the mode be most unstable), A(x) is local­

ized Gaussian function. However, an important change is introduced by the velocity term 

for the negative magnetic shear. A(x) is then given by 

(4.5) 
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where Xo = pdlp21. So, the mode envelop is now radially outgoing, which is reminiscent 

of the equivalent slab problem. Velocity curvature in the toroidal problem like magnetic 

shear in the corresponding slab problem creates an antiwell in the radial direction. The 

wave energy is therefore convected outward. The eigenvalue is given by 

(4.6) 

This also shows damping contribution in the global eigenvalue. Thus, both the radially 

outgoing nature and the damping contribution in the global eigenvalue unambiguously 

show that parallel flow profile might stabilize toroidal ITG waves which otherwise escape 

magnetic shear damping! 

4.3 Conclusions 

In conclusion, we have shown in this article that the transport barriers may be created by 

purely parallel flow profile. We have demonstrated that the curvature in the parallel flow 

stabilizes toroidal ITG modes, which have been identified as the likely mechanism for 

anomalous transport in the plasma. We thus demonstrated two aspects. First, in regards 

to core confinement improvement, the important role of the toroidal rotation may not be 

only through the E x B shear (which may be weak), but also through the strong parallel 

component. Second, as the parallel flow in the tokamak is almost equal to the toroidal 

flow and as the toroidal flow can be generated by the NBI, there is no limit for how long 

the parallel flow can be maintained. So, the transport barrier created by the toroidal flow 

will have a distinctive advantage over that created by the poloidal flow as the toroidal flow 

unlike the poloidal counterpart is not damped by the magnetic pumping. 
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Chapter 5 

Summary and Conclusion 

The first chapter is an introduction to this thesis. We have discussed about the high growth 

of energy demand with the robust increase in world human population and industrializa­

tion. We have further discussed that the energy demand may be substantially met if the 

fusion energy (controlled) is used, prospected due to its cost effectiveness and for some 

other important factors also. The ultimate aim of the fusion research is to provide an even 

condition for a burning plasma and for this, certain well known parameter values have to 

be obtained: the product of density and energy confinement time has to be 3 x l014 cm-3.$ 

and the average plasma temperature has to be lOKeY. The most promising fusion device 

is a toroidal confinement system 'Tokamak' in which toroidal and poloidal magnetic field 

is issued for plasma confinement. In the tokamaks the target values of these parameters 

have not been obtained simultaneously. In experiments, where the temperature was ade­

quate the confinement product inadequate and vice versa. The use of auxiliary heating to 

increase the plasma temperature in the tokamaks severely degraded the confinement, with 

no net result of effective approach to break even conditions. In 1982, ASDEX tokamak 

in Germany, discovered H-mode, where the deterioration of confinement quality at high 

temperature is avoided. After this discovery, as a result of continuous quest for high con­

finement, several other high confinement modes viz. VH-mode, ERS-mode, NCS-mode 

and Rl-mode have been discovered. Still the challenge remains to enhance tokamak oper­

ation for the development and understanding the basic physics involved in the process that 

leads to the transition to these improved confinement modes. We have discussed some 

popular and arguably successful theories which tells that some mechanism(s) creates a 

(sheared) flow that gives rise to a (sheared) radial electric field (E), (thereby Ex B shear) 

stabilizing various instabilities and as a result fluctuations are suppressed and confine­

ment is improved. A sheared flow is responsible for the transition to all improved modes 

in tokamaks in one way or other. Next we have presented the summary and conclusion of 

35 



some of the fusion research related problems. 

In the second chapter we have studied the effect of a radially varying parallel equilibrium 

flow on the stability of the Rayleigh-Taylor mode analytically. It is shown that the parallel 

flow curvature can completely stabilize the RT mode. The flow curvature also has a.robust 

effect on the radial structure of the mode. Our work therefore shows that by suitably 

tailoring the parallel flow profile it is possible to completely stabilize the RT instability 

in a magnetized plasma. A weak magnetic shear is needed for the process, and hence a 

staged Z-pinch will be an ideal device for realizing this. This result might also have an 

important part to pJay in expJaining the recent gas puff experiments on the 7-MA Saturn 

generator which have identified a curved surface while observing an improvement in the 

implosion quality [18]. This is because the subsequent simulation work of Douglas et 

al. [19] has shown that a curved surface introduces an axial flow and our work here 

shows that the flow curvature in such an axial flow can indeed stabilize the RT growth. 

However, a definitive comparison is only possible when one gets additional data from this 

experiment. 

It is interesting to compare our results with a recent work of Shumlak and Roderick. The 

authors in reference find that the shear in the axial flow can mitigate the RT instability, 

whereas the result in this work, including both the flow shear and curvature in the paral­

lel flow and also the magnetic shear, indicates that it is the flow curvature which plays 

the leading role in suppressing the RT instability. Furthermore, the result in reference 

indicates that for the mitigation of RT instability, a sufficiently strong sheared flow is nec­

essary, in this work we, however, find that the value of the flow curvature necessary for the 

mitigation of the RT instability is rather modest in the presence of even a very weak mag­

netic shear. So, possibly the most realistic way of stabilizing the RT instability is to use 

an axial flow with a properly tailored flow profile in conjunction with a sheared magnetic 

field. This possibility is already being explored on the Z-Accelerator at Sandia National 

Laboratories, where the magnetic shear comes from the axial magnetic field produced by 

using a twisted tungsten wire array and the radially varying axial velocity, presumably, 

from the hourglass shape of the array associated with its twisting. The initial result indeed 
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shows a stabilizing effect. 

In the third chapter we present a model for transition to the enhanced reverse shear (ERS) 

or negative central shear (NCS) mode triggered in tokamaks. Our studies show that when 

the magnetic shear has the same sign as the second derivative of the parallel velocity 

with respect to the radial coordinate, the ITG mode may become more unstable. On the 

other hand, when the magnetic shear has the opposite sign to the second derivative of 

the parallel velocity, the ITG mode may be completely stabilized. This result is similar to 

what we have found earlier for the PVS instabilities [47,55]. So, the similar result with the 

ITG mode, considered nowadays as the dominant source of anomalous energy losses in 

the low confinement (L) mode, therefore, shows on a firmer footing that it is the relative 

sign of the second radial derivative of the equilibrium parallel flow with respect to the 

magnetic shear which may be the key factor for the enhanced reverse shear transition. 

Now, the real benefit of the outcome of this work is that it puts forward a novel idea of 

transport barrier formation. This is that, contrary to the usual notion that a parallel flow 

shear is always destabilizing, the destabilizing influence of the shear in the parallel flow 

can be changed altogether if one takes the effect of the flow curvature into account. The 

transverse curvature in the parallel flow can overcome the destabilizing influence of the 

shear and can render the low frequency modes stable and can thereby reduce the radial 

transport. This new scenario that parallel flow can be a viable candidate for the stabiliza­

tion of instabilities is very promising (note the usual picture is that it is the perpendicular 

E x B flow which does the stabilization). This is because, in a tokamak, the parallel 

velocity is very nearly equal to the toroidal velocity whereas the perpendicular velocity 

to the poloidal velocity. Now, the poloidal rotation in tokamak suffers from several dis­

advantages over toroidal rotation, most notably that poloidal flow is efficiently damped 

by magnetic pumping. Indeed, experimentally measured damping time of poloidal flows 

is of the order of the ion-ion collision time or less. and hence is much shorter than the 

damping time of toroidal flows. As a result, poloidal rotation dies away immediately after 

the beams [in the neutral beam injection (NBI) heating] are turned off leaving the plasma 

rotation in the toroidal direction. Toroidal rotation, on the other hand, is dissipated only 
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through the diffusive transport of momentum which is expected to reduce to low, neoclas­

sical levels. Stabilization by parallel flow, therefore, seems to offer much more attractive 

prospect for high performance tokamak operation. 

On experimental front, recent results from the JET have shown that the reduction of small­

scale turbulence in optimized magnetic shear regimes is directly related to the existence 

of a strongly sheared toroidal velocity in the area of the internal transport barrier [45]. 
\ 

Furthermore, the clear evidence for the theory developed here comes from the STOR-M 

tokamak at Canada where no change in the radial electric field is observed during the 

transition to the improved modes indicating that it is the parallel component of the flow 

which might be playing the key role in the transition [48]. 

In the fourth chapter we have shown that the transport barriers may be created by purely 

parallel flow profile. We have demonstrated that the curvature in the parallel flow stabi­

lizes toroidal ITO modes, which have been identified as the likely mechanism for anoma­

lous transport in the plasma. We thus demonstrated two aspects. First, in regards' to core 

confinement improvement, the important role of the toroidal rotation may not be only 

through the E x B shear (which may be weak), but also through the strong parallel com­

ponent. Second, as the parallel flow in the tokamak is almost equal to the toroidal flow 

and as the toroidal flow can be generated by the NBI, there is no limit for how long the 

parallel flow can be maintained. So, the transport barrier created by the toroidal flow will 

have a distinctive advantage over that created by the poloidal flow as the toroidal flow 

unlike the poloidal counterpart is not damped by the magnetic pumping. 

38 



Appendix I 

Calculations regarding Chapter 2 

Let us define: 

¢(x, t) = ¢(x) expi(kyY + kzz - wt) 

v. = (~)\1 ¢ = (~)(~k e '" + e d</» p Bow" 1. Bowe., y y'+' .c dx 

v = _C'I11,g e 9 eBo Y 

w=~ 
Ct em, 
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here B(x) is the shear magnetic field,' Ls is the magnetic shear scale length, x is the 

distance from mode rational surface which is defined as k.B = 0, ¢(x, t) is the form of 

perturbed potential, vila is the equilibrium parallel flow varying in x-direction, 9 is the 

acceleration due to gravity, e is the charge of an electron, m l is the ion mass, ey and ez 

are unit vectors in y and z direction respectively, c is the speed of light, ky and kz are the 

wave numbers in y and z direction respectively and all the other symbols have their usual 

meaning unless stated otherwise. 

Continuity equation for ions 

(1.1 ) 

here 111 , no; V1-1 and Vlll is respectively the perturbed ion density, equilibrium ion density; 

perturbed perpendicular and parallel ion velocities. 

(1.2) 

We will evaluate separately each terms of the equation (1.2) as below: 

Let us take the second term of equation (1.2), 

=\7 [ (-..L·k"'+~cf:!1.)' + (..Lcf:!1. lCW 'k"')'] 1- no Bo Z y'f/ Bowe< dx ex no Bo dx + Bowe. Z y'f/ ey 
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The third, fourth and fifth terms of equation (1.2) 

Let us take momentum balance equation for ions 

(1.3) 

Therefore we get, 

Now let us rearrange the evaluated quantities of equation (1.2) 

~wii + [- tk~cwno ¢ _ tk1Jcn, ¢ + ~nO~ + ~n' cUp] 
t Bowet Bo 0 Bow" dx Bow't 0 dx 

cm - - tek
2
11 tlc ll k enu dVllu 

-~k =gn + ~kliviion + -no~ - 1/ ~ = 0 Y Boe t t m,w 'P wBo dx 'P (1.4 ) 

Let us take the momentum balance equation for electrons 

(1.5) 
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Again, the continuity equation for electrons is 

(1.6) 

(1.7) 

The second term of equation (1.7) is 

= ik ...£...n d¢ - ...£...ik [n d¢ + n' A-.] 
y Bo 0 dx Bo Y 0 dx 0'1-' 

Therefore equation (1.7) becomes 

. _ . , tkfi eno tk ll kycno dVllo _ 
-1.Wne - 1.kyB

C nO¢ + --¢ - B -d ¢ + 1.k//v//one = 0 
U WIT"e OW X 

( k)- [~n' kllkyC7todVIlO _ krrenU ] A-. 
=? -w + -"V"O ne = Bo 0 + Bow dx wm" 'I-' 

Taking Galilean transformation in ell direction we eliminate k"vllo 

- _ 1 [kyC' kllkycnodvllo krreno] A-. =?n -- -n +------ 'I-' e -w Bo 0 Bow dx wm" (I.8) 

Rearranging the equation (1.4) we get, 
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Now we apply quasineutrahty condItion (I.e f"e rv nz) in (1.4) i.e we replace n1 in equation 

(1.4) by ne from equation (1.8). Thus we get 

+ [~ (_ J..f,LWno) Bow"kyC'fI~ Bow"kfieno Bow"knkycno dVno] A. 
LWflO Bow" - CWTloBo + cwnorn,w - cwflowBo ""'dX'" If' 

f [BowP(_W) _ Bow"k,/un,y] [_k,/cno _ knkyC110 dVno + kijeno] ¢ = 0 
cwno cwnoeBo wBo wBow d:L w2m p 

+ [_~ (_kI/CTlO) _ Bow,! (_kllkycnUdVllo) _ ~kfieno] 
enD wBo Uto w2BO dx Uta w2m p ¢ 

Neglecting the terms Involving k« (k/l rv 0 is justIfied for flute type mode) we get, 

~t + p(x)~~ + q(x)¢ = 0 CLIO) 

where 

p(x) = ~ 
no 
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This is the equation (2.4) in Chapter 2. 

Using transformation 

¢( x) = 'Ij;( x) exp( - r P~l) d17) in equation (I.! 0), we get 

~:~ + Q(x)'Ij; = 0 (I.J 1) 

where 

Q(x) = q(x) _ p/~X) _ p2~X). 

We use the velocity and density profile as described below: 

Here 

LvI = (l/voo dvo(x)/dx)-I, 

and Ln is the density gradient scale length. 

B . k k x y puttmg "II = T we get ., 

k 2 k3 k 3 .2 

Q( .) _ _ k2 _1_ _ y9X y9VouX + y9V OO X £ 
x - + 2L2 2 L2 + 3 L L 3 L L + L4 Y 11. W II w .. vI W."I 1J2 4 H 
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Assuming Voo rv wand noting w2 Ln rv 9 we get 

Q() k2 1 k~gx k~L"x + k~LnX2 + xl 
X =-" +-2 -:-.272+-- --- --~ • y 2L" w L" L,Lvl L,Lvl 4L" 

With this equation (1.11) becomes 

~ + [T + Sx + RX2]o/, = 0 dx 1 '+' 

where 

T - 1 k 2 
- 2L2 - Y 

" 

R - L"k~ __ 1_ 
- L,Lv2 4L~, . 

This is the equation (2.5) in Chapter 2. 

Now we get two types of solution for equation (1.12) 

(1.12) 

1. If R < 0, the solution satisfying the physical boundary condition, i.e., 'if; -t 0 at 

x = ±oo is given by 

where Xo = Sj2IRI. 

2. If R > 0, equation (I. 12) has the solution 
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The corresponding dispersion relation is given by T - :~ = iVR 

The dispersion relation can be derived as follows: 

We start from eigen value equation (1.12), which is 

Let us consider z = x + Xo. 

This will transform the equation (I.12) to 

~:~ + [T + RZ2 - (2Rxo - S)z + (Rxo - S)xoJ'f = 0 

Now we put 

X - s-
0- 2R 

This will give 

~ + [T + Rz2 - S2 Jol• = 0 8z2 4R 'f' 

Now we reconvert the independent variable z to x 

::;.. fJ + [T + R(x + XO)2 - :~J'f = 0 

Again let us take the solution for R > 0 
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Twice differentiating with respect to x we get 

Equation (1.13) and (I.14) will exactly match when 

This is our dispersion relation. 

From the dispersion relation 

52 = T - iVR 
4R 

=> 82 = 4R(T - iVR) 

Without the velocity shear contribution we get (hence 8 = - w~~i~,) 

(I.14) 

Here W 7• and Wi are the real and the imaginary parts of the eigenfrequency, respectively. 
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Appendix II 

Calculations regarding Chapter 3 

Let us start with the continuity equation for ions 

(II.! ) 

(II.2) 

here no, nt, Vo, Vl., vII, Pto and Pt are equilibrium density, perturbed density, equilibrium 

parallel velocity, perturbed perpendicular velocity, perturbed parallel velocity, radial equi­

librium ion pressure and perturbed ion pressure respectively. The all other symbols have 

their usual meaning. 
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We consider perturbation as 

¢(x, t) = ¢(x)exp[t(kyY + kzz - wt)]. 

Let us evaluate the terms from equation (11.2) starting with 

(iJ..t.. \7 .J..)no 

For the v E component of v.J.., 

-(.f.(_'.:£.0P. ,a¢_,.a¢) (",,£, '..£.)) - B z L, ax + Yax x ay . x ax + Yay no 

(II.3) 

For the VDt component of v.J.., 

=0 (llA) 

For the Vp component of v.J.., 

First two terms of v p 
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(II.S) 

For third term of v p 

= ( ( -~ ( ( ~ b x \7 -L ¢ ) . \7 -L ) \7 -L ¢ ) . 'iJ -L ) no 

= (_ c3
m, (( (_i..!:...JJ4> + y" at/> _ xat/» . (x.E.. + y" .E..)) (x~ + y" at/») . (x.E.. + y.E..)) no eB3 L, ax ax ay ax ay ax ay ax ay 

(II.6) 

These are all higher order terms and have subsequently been neglected. 

ap,o(x) _ n QL + 1', .!.'.ll 
ax - 0 ax tax 

( J~) =1',~ 1 + T, 8, tax J ~ 
nO 8r 

(II. 7) 

For fourth term of v p (starting with \7 -L. (nt v p)) 

Pt yields higher order terms, so they are neglected. 

=\7 . (_cJm, ((y" -"'- + z) x (xoP,o(X)) . (x~ + y" ~)) (x0t/> + y"ot/») 
-L e2 BJ L, ax ax ay ax ay 
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The second term is a higher order term ('" i;J so we neglect it. 

(II.8) (using (II.7)) 

To evaluate na(\7 -L.V-L) of equation (II.2) 

For the VE component of V-L 

=n (x.f2.. + y2...) . (..f.. (-i~0£ + yAO</> - x~</») a ox ay B Ls ox ox oy 

=0 (II.9) 

For VD" it is already worked out. 

For the Vp component of V-L 

First part 

_ (A 0 A a) ( c2rn (a (A0£ A a</» \7 (A§!2 A§!2))) -no x ox + y oy . -7ift at x ax + y oy + Va II x ax + y oy 
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(ILIO) 

The last term is neglected as it is a small quantity (kll made the term smaller). 

Now, 

=_ ngc3m, (§!E..£. _ §!E.,£,) \12 A. 
eB3 ax ay ay ax 1. 'f/ 

(lLll) 

We rewrite the equation (II.1) (considering the relevant terms from equation II.2, II.3, 

IIA,II.5, II.6, II.7 ,U.8, II.9, II. 10 and lUI) 

=? (It + Va.\1) (1 - \1l)¢ + VD [1 + e~7b) \11] \1y¢ 

- b x \1¢.\1(\11¢) + \1 II VII = 0 
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This is our equation (3.2) of Chapter 3. 

To simplify the qu<\ntities we re-scale time and distance to units of W~l and Ps(= Cs/Wci) 

and the other quantities as stated below: 

- - d(lnna)' _ ~ y _ r - Itl/We, dInT, V _ <v'f'> 2 - L:. W . _ 
ni,VD = -~,T = T,' = T'f.t = -cr-,1]i = dlnna' a - c., 'Cs - Tni' CI-

~ 
em, 

Let us take momentum balance equation 

(
8(VI/O(X)+Vl/i) ( ( )) "( () -)) mini 8t + V E + vila x . v vila x + VIIi 

= -eni'V lI ¢ - 'V11(PiQ + Pi) + mini{LII'V~Vl1i (H. 13 ) 

Let us evaluate each terms separately 
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- tfL:.a).a v -- eB y'l-' x 110 

In all the cases ax = :x' ay = :y 

--~\l ). 
- m,e 11'1-' 

1 \l -=- m,n, IIPt 

- P,oT. \l p 
--m,n,T, II 

(II.14) 
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We rewrite equation (II.l3), 

(IU5) 

This is our equation (3.4) of Chapter 3. 

H "II We. 
ere~£ =~. c, 

Let us take the pressure balance equation 

(II. 16) 

Here, 
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=cTp (-5;\7 i) \7(n aT, + 1: fu!2) eB y'f/ . 0 ax t ax 

Considering the relevant terms, we rewrite equation (II.16), 

(II.17) 

This is our equation (3.6) of Chapter 3. 

We'll now evaluate each term from equation (II. 12) 
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8 ) 2 -(at + va·\7 (1 - \7 .l)¢ 

This higher order term is neglected 

Now we evaluate each term of equation (II.I5) 

First term 

(-it + Va· \7) vII 

__ tk'lvQ;" 
- Lv 'I' 
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This is a higher order quantity and is neglected. 

=ikllP 

-lI.k2 
-r II 

This quantity is neglected as it involves the higher order term kIT. 

Now we evaluate each term of equation (11.17). 

First term 

. -
b x \l¢.\lp 
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This is a higher order term and is neglected. 

This term is neglected, as it gives only the higher order correction. 

We rewrite equation (II. 17) with the evaluated relevant terms. 

=.> P = ~ (1+,,,) ¢ 
W-kUvQ T 

(II.18) 

We write equation (II. 15) with the relevant terms. 

- -
=.> -~wvlI + ~kllvovil - ~kyT:;¢ + ~kll¢ + 2kliP = 0 

Here In the last term we have put p 

(II.19) 

Now we write equation (II.12) by putting the value of vII 

Substituting w - kllvo = W 
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(II.20) 

We rearrange (II.20) 

(II.21) 

We assume the velocity profile as described in the main text. 

Let us defi ne, 

This term is due to flow curvature. 

Let us substitute 

S =h 
Ls' 
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We get the eigenvalue equation (II.21) as 

We further substitute 

A k2 + l-ll = - "y 1l+I< 

_ 52 ( ~) 
- 112 1 - 5(1l+I<) 

=> 8
2
¢ + [A + Px2] = 0 8x2 (II.22) 

( J~5 52) For P > 0 we get ~ < 02 stable mode. From this expression we see that the 

increase in the positive flow curvature renders the mode unstable. 

The dispersion relation 

A = iv'fPf 

=> A - iv'fPf = 0 

15
2 

( ~)I-02 1 - 5(!1+K) - 0 

=> (1 + k~)02 + (KK;~ - 1)0 = -is(O + K) (II.23) 
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This dispersion relation (II.23) is same as the equation (3.10) when the shear flow term 

included. 
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Appendix III 

Calculation regarding Chapter 4 

Let us start with the pressure balance equation 

(III. I) 

here ~(T), Pt, Vo, v!lt and r respectively are equilibrium total radial ion pressure, perturbed 

ion pressure, equilibrium parallel velocity, perturbed ion parallel velocity and ratio of 

specific heats. The other quantities have their usual meaning. Here v E is the perturbed 

perpendicular velocity (VE = -ffiB X \!1.<P = B2(Bi) + B¢¢) x \!1.<P = lib x \!1.<P, B 

is the magnetic field and b = B / B. 

We have considered perturbation structure of various quantities in following form 

<P = <p(T, e) exp{ i(n¢ - me - wt)} 

Let uS evaluate each term from equation (III. I ) 

~ _ a(p.o(r)+P.) 
at - at 

-~ - at 

Vo.\! Pt 
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This term gives rise to Doppler shift. 

= VE, '\i ~O(r), 'Pt term will give higher order quantity and is therefore neglected, 

= ""2 -"'Be~ + eBA.~ - r-BA.~ ,r~ c ( , Er ' a - '1 a -) ,ap 
B <P ar 'l'a,' r 'l'ae a" 

c Bq, a(no(Te+T,)) {!:£. 
[j2 r er ee 

= _....£... Tr 0:!:.0. (1 + dinT,) {!:£. 
Br T a" dlnno ee 

where T = ~ 
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here I;o = noTe 
r 

The quantity ~ is neglected as it gives the correction of order (KII)4 

Rearranging the evaluated terms of equation (III. I ) 

-zwp- -&~(l+']))0£=O 
t Brr 8,· ·n 80 

::::} P = tcTc~ (l+r,,) 0£ 
t wrB 8, r 80 

Let us take momentum balance equation 

Let us evaluate each term from equation (111.3) 

This gives a frequency shift (Doppler shift) term. 
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(I1I.3) 



__ mjnOc 8VIIO(7') 0£, 
- B7' ar ae 

eno \711tP 

_ (iJBo+¢B.p) n--eno B ,v <p 

fi n iJBo+¢B", n 1 (a a ) 'k 
We de ne V" = B ,v = qR 88 + g a</l = ~ " 

_~ (Be0£. + B4>0£.) 
- Brae R a</l 

-~ (0£ + g0£.) - qR 8e 8</1 

1 (8 a)-= q R ae + q 8</1 Pi 

Here q = ~~: and all the terms defined above have their usual meaning, 

Rearranging the evaluated quantities of equation (III,3) we obtain 

The last quantity is a real quantity and the others are imaginary, Equating real and imagi-
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nary quantities and putting Pt from equation (III.2) 

=} -twrn n V - m,noe 8ullo(') 0£ = _ ~ (.Q. + q2....) In-.l.. (.Q. + q.Q.) teTe QI!:!J. (l+r,,) 0£ 
t 0 lit B,· 8r 88 qR 88 8</J Y qR 88 88 wrB 8r T 88 

=} v - - enp (.Q. + 2....) - _ teTe !2!!:0. (1+'1» (.Q. + 2....) 0£ lit - qR( -twrn,Tlo) 08 q a</J c.p q&JI B( -twm,TLo) 8, T a8 q a</> 88 

te 8vIlO(1') 8cp +-- -
wET 81' 8e 

em 8vllo(1') _ 
+- c.p 

wE1' 81' 
(I1I.4 ) 

Now let us consider a quantity (this will appear later while evaluating the continuity equa­

tIOn) 

=n tk { __ te_ (.Q. + q2....) In _ teT.", Q!!Q (1+7),) (.Q. + q.Q.) lin + E!!:... aVllo(r) In} o II wqRm, 80 8</J"" w2qRBnom,r 8r T ao 80 BY wBr 8,· Y 

_ { te k (8 + a) - teT,.m Q!!Q (1+,,,) k (8 + 8) 1 -} -no - wqRm, t II 80 q 8</J c.p - w2qRBnom,r 8r T t II 80 q 80 Eic.p 

{
em 8vllo(1') _} 

+no -B 8 tkllc.p 
w l' r 

Now let us replace tk ll by q~ (to + q t</J ), that will give 
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moe [_ (.£. + q1L) 2 cp- _ meTe ~ (l±?b.) (lL + q1L) 2 cp-] 
q2 R2wIIL, 8e 8<1> , eBno 8, T 8e 8<1> 

(III. 5) 

We now evaluate continuity equation for ions 

(III.6) 

We now evaluate each terms of equation (III.6) 

=-twnO;r (1 - u5)<j1; using uS model 

This term will only shift (Doppler shift) the frequency w. 

where 
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, -
- Gb"­VE=Ei x v1.<{J 

We define 

R = Ro + r cos e; Rand T major and mmor radu respectIVely of a tokamak. 

B = BoRo/ R, Bo IS the field at magnetIc aXIs I e. at the mId plane R = Ro 

= fj 1. no(r)iJr; 

_r7 (no(/)Gb' r7-) 
-V1. -s x v1.<{J 

" (~(_1,0E. + e'0E. _ f0E.)) =v1. B ~~ ~ rW 

=!!l!f'\,1 (-if;0E. + e0i. - r 0E.) + (_1,0£ + e0E. - t 0£) '\,1 (!!l!f) B 1. ar a, r ao ~ a, ar r ao 1. B 

=~~ {_2... (R0£) + .Q. (R0£)} _ 10£.Q. (~) + 0E.l.Q. (~) 
B , R a, ao ao ar , ao a, B ar r ao B 

=~ [-~R a2 .:p _ ~a.:p case + ~R [P.:p + ~0£.(-r sme)] _ 10£!:.~ _ lQ'PnorcosO 
B , R a, ao , R ao , R a, ao , R a, , ao B ar I ao B R 

+ 0£1 (-, Sll1l1) 
a, :;-noc BR 
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__ 2nuc (sine0£. + cosf)0£.) _ -L!2!!:!l0£. 
- BR 8" ,'8f) ,B 8" 8f) 

n (jr.rcbx.g l.P,) P p +-= v.L' 'v eBN ,t = to PI 

_ n (chx.g l.Pt) 
- v.L' FB 

=....£..\1 ,(-¢~ + {j~ - f~) + (-¢~ + {j~ - f~) ,\1 (....£..) eB.L Eh 8,. I' 8f) 81' 8, , 8f) .L eB 

=....£.....!... [.£. {rR(-.!~)} +.£. (R~)]+(-¢~ +e~ - f~) ,f {f.£. (.1) +~.£. (.1)} eB 1 R 0" ,. of) of) 0" 8, 81' I' 8f) e 81' B ,'of) B 

=....£.....!... {_R 82P, _ ~cose+ R02p, + ~(-rsine)} _ ~fStnf) _ .!.~fcosf) 
eB ,R 01'08 of) 01'88 Or aT e BR l' 88 e BR 

=_-.1£.. ((.os8 ~ + sine!2b) 
eBR ,. 08 0" 

Putting p (= !fL:.!2!!:!l (1+''') qi) from equation (III,2) we get 
t wl'B 81' r 8f) 

= _~ [co,f).£. {!fL:.0:!:JJ. (1+''') 0£.} + sine.£. {!fL:.~ (1+1),) 0£.}] 
eBR l' of) w,.B 8,. r of) 0" w,'B 8,' r 00 

=_~ [CosOtcTe~ (1+'10) ~ + cosf)lcTeQ!!:Q (1+,,,) 8</><-"51110)] 
eBR ,'w,B 8" r 80 I' w,' 8,' r 80 BR 

_.k.. [Sin e!!!I.e. ~ (1 +'],) 82
,£ + sin e!fL:. Q!!:Q (1 +'],) ~ cos f) _ sin e!fIe. ~ (1 +'1),) ~ 1..] 

eBR w,.B 0,' r 0"00 WT 0" r 00 BR wB Or r of) ,,2 
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= _ ~ {coso teTe Qr!:Q (1+,],) EP¢ + sin e teTe Q!!:Q (1+,],) a2¢} +...1£... sin e~!2!!:Sl. (1+,],) 0£.l 
eBR T wrB ar T a£j2 wrB ar T a,'ao eBR wB aT T ao r2 

= _ t2e cTe!2!!:Sl. (~) (1 +'1<) (cos 0 ~¢ + sin e i2i) 
eBR wB 8r,' T " 80 8,' 

=_ 2cTe E5:.. Q!!:Q (1+,],) (co~o Qi + sin e~) 
eBRwB aT T ,'ao a, 

We eliminate (vo,\7)~ 1-<P by performing Galilean transformation in ell direction 

_c
2

;" ~.l'; [it + {fib x ~.l<P + e:N b X ~ .l(Pto(r) + Pt)},~.l] ~.l<P 

Here the terms involving ---+ Pt and 13b x \7.l<P are neglected as they are higher order 

terms, 

= twc;rn, (~.l' (~~.l<P)) - c:';', (~.l' ex~~p,o) '~.l) ~.l<P 

Let us evaluate the first quantity, 
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[ ...L {rR~ + R0£ + r0£ case +!i~ + 10£(-rSine)}] + 1'R a1'2 aT aT r ar]2 l' ao 

~wc2rnt {acjJ (~ ano + no2Rcos e) + ~ acjJ ~ no2R( -1' sin e) } 
e ar B2 ar B2 R2 r ae r B2 R2 

=twc
2

,n, I!lL (~ + .l.~) + e 8 2 a,.2 1'2 a02 .... 

The other quantities are negligibly small. 

N ow the second term 

__ cJ "" n x,' i'l, n n-(b--~ ) 
- e2 V 1.. BJ' v 1. v 1. tp 

_ c3 m, \1 1 (ap,o 1 a ) n --- el 1.. B3 or;: ao v 1. tp 
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=_c
3
m, [ 1 ap,Q\l (r a20 Q~) (r a20 Qa2.p) (f2.. + Q2..) ( 1 OP,a)] 

e2 ;;:[j3 ar .L. a,.ao + ,. a02 + a,.ao + ,. EJ02' a,· l' ao 'J33T a,. 

c3n~t [ 1 fP PtO 82
<jJ 2 cos e 8PtO 82

<jJ 2 sin e 8PtO 82
<jJ ] 

e2 B3r 8r2 8r8e - rB3 R 8r 8r8e + r2 B3 R 8r 8r8e 

__ (.3 mtTr Q:!1:Q (1+'Z,) ( a3 .p 1 ~) 
- e2 B31' or T ~ + r'i 003 

Let us defi ne: 

f<C=!I!: ,. 

w - cTc'" 
* - eB1 1l 

Now we rewrite equation (III.6) with the relevant evaluated terms. 

Let us divide by ~ 
To 
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::} c
2
m,Te. (w+ cTen. (1+'1») ~ _ c2m,T~,,2 (w+ cTen. (1+'11)) In 

e1 B2 eB,." T (JT- e2 B- eB,'" T Y 

+ w*0 - w(l - 26)0 - q2Ri':i2m , (w + w* e:'I,)) (:0 + q t¢ r 0 

+ 2.cTe (w + W (1+,,,)) (sin e0£. + eosO 0£) + nocm (.Q. + q..Q.) 
eB Rw * T 0",· 80 q Rw BT 80 8¢ 

Again let us divide by w + w* (1~'" ) 

=> a2f!!:£. _ bIn _ (w-w.-zwc5) In _ (w.€( )2 (.Q. + iKsr)2 In 
z 8,.2 Y (w+w. (~ )) Y Wl\,a l 00 Y 

- 2E ~ (cos e + .sin 0.Q.) 0 + meTe. (.Q. + q..Q.) 8Vllo(T) 0 = a 
n W K, 8,· (w+W' (~ ) )reBwqR. 00 8¢ 8r 

=> a2g. _ b0 + (w.-w+.wc5) In _ (w.€()2 (~ + iKsr)2 In 
• 0,. (w+w. (~ )) Y WK,(" 00 Y 

2 w. ( e + i Sill 0 8) - + K,a,c,k ll 8vllo(") - - a - E - cos -- - U) --If) 
n w K, 0" Y (w+w. ( ~ ))w 0" Y-

where 

K = nqjr = mjr 

s = (rjq)(dqjdr) 

En = qEe = r,jR 
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1 (0 0') \7 11 = qR 00 + q 0</1 • 

The equation (III.9) is reported as equation (4.1) in Chapter 4. 

Let us define: 

Let us put 

x = Kr S ::::} r = 2:.. ::::} or = ...L 
t<S oX t<S 

2... - 2... 0" ::::} ...L2... ::::} 2... - KS2... 
ox - 0" oX t<S or 0" - ox 

With these substitutions, we will get equation (III.9) as 

where 

. x = Krs 

(T=~ 
bs 
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(III. 10) 



A - 1 [(W-W. -1<») b] 
- a2",2s2 + (!.±.2.)-

1. WT W.T T 

With these substitutions equation (III.l 0) will become 

(III. I I) 

where 

_ ",a,c.\Ij/oo 
Pl - bs2L v lQRw(w+w'( ~)) 

_ a,c.\Ij/oo 
P2 - bS3L1J2qRw(w+w'(~))' 

This is our eigenvalue equation. 

In the usual theory of high n ballooning mode, one maps the poloidal angle e on to an 

extended coordinate X with -00 < X < 00 and writes the perturbation in the form 

where 

¢ = A(x)F(X, x) exp[-ix(X + Xo)l. 

Here XO is an arbitrary phase of the eikonal A(x) is assumed to vary on some scale inter­

mediate between the equilibrium scale length and the perpendicular wavelength. Now to 

leading order (in n- l / 2 expansion), the ballooning equation becomes 

(02 ~ + (X + XO)2 + t[cos X + s(X + Xo) sin xl + Pl''}; + P2X2 - A) F(X, x) = O(III.12) 
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To explore its implication for radial mode structure and stability of toroidal ITG waves 

one need the higher order ball~oning theory. In the higher order theory XO is obtained 

from the equation (8A/8xo) (x, Xo) = 0 and A(x) satisfies 

(III. 13) 

where 

). =i~ o bs' 

Xo is an arbitrary phase of the ikonal. Equation (III. 12) is a simple Weber equation. When 

P2 is positive and 82 )./8X6 > 0(82 A/8X6 > 0 is necessary in order that the mode be 

most unstable), A(x) is localized Gaussian function. However, an important change is 

introduced by the velocity term for the case of negative magnetic shear. A(x) is then 

given by 

(IlL 14) 

where Xo = Pl/lp21. 

The eigenvalue is given by 

(III. IS) 
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