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Preface

Investigations reported in this thesis entitled — ‘A study on Mixture of some Univariate Discrete
Probability Distributions’ is undertaken by the author under the guidance of Dr. Munindra Bora, Readcr,
Dcpartment of Mathematical Sciences, Tezpur University, Tezpur.

This thesis contains mainly some finite and countable mixtures of univariate discrete probability
distributions. The mixture of discrete probability distribution has become an extremely useful branch of
statistics having important applications in a wide variety of disciplines such as biological and medical
sciences, social sciences, physical sciences, operation research, quality control, engineering and so on. The
moment one gets in to a stochastic problem where nothing more than counting is involved, one is dealing
with discrete distribution. While pursuing this study I have been greatly influenced by learned works of
several authors like Prof. P.C. Consul, G.C. Khatri, S.K. Katti, C.D. Kemp, A W. Kemp, K.G. Janardan,
G.P. Patil, L.R. Shenton, N.L. Johnson, S. Kotz, G.C. Jain, R.C. Gupta and I.G. Plunkett. T am indebted to
all of them. )

The works in this thesis ag' ffided into scven chapters. The first chapter is an introductory onc.
It is devoted to the various techniquc‘.’: oi' mixture distributions that have been studicd in this thesis. It also
contains review of previous works and the synopsis of the thesis. In the rest of the chapters, we studied
certain mixture distributions such as — inflated distributions, gencralized distnbutions and Lagrangian typc
distributions. The parameters of each of the distribution are estimated and empirical fits are given to test the
relative efficiency of different method of estimation. The whole study involves a lot of computer
programming, The recurrence relations for probabilities and moments are aimed to derive in such a way
that they are easy to handle on computers.

During the course of the investigation, I got the opportunities to attcnd certain international
conferences where I got the chances to meet many renowned statisticians, specially- Prof.C.R.Rao,
Prof.J.Roy, Prof S.B.Sinha, Prof. G.P.Bhattacharya, Prof N.R.Mohan etc. Their valuable adviccs encourage
mc to study further in this ficld.

In this thesis, due to limitation of spaces, only the important results are given though a large
number of data sets were investigated during the course of investigation.

A few words about the notation used in this thesis arc given below.

An equation is marked as c.s.n, where ¢ stands for the ‘chapter’, s for the ‘section’ in whuch it
occurs and n is the “serial number’.

Similarly, the graphs and tables are marked as c.n., where ¢ stands for ‘chapter’ and n 1s the
‘serial number’.

Lastly, the published papcrs of author arc given in the appendix for rcady references.
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Chapter 1

1.1 Introduction

The theory of discrete probability distribution is an extremely
useful branch of st;tistics having important applications in a wide \;‘ariety of
disciplines. The origin of this theory began with the work of James Bernoulli
(1713) and Poisson (1837). In recex;t years the mixture distributions have received
continuous attention since elementary distribution such as Poisson, binomial,
logarithmic which can be formulated on the basis of simple models, have been
found to be inadequate to describe the situations which occurs in number of
phenomenon. Hence univariate mixture distributions, which (;ombine two or more
of the elementary distributions through the process of compounding or
generalizing, have become an extremely useful branch of statistics. These
distributions have important applications in biological sciences, medical sciences,
social sciences, physical sciences, operation research, engineering and so on. A
detailed account of these discrete mixture distributions and their properties can be

found in the works of Neyman (1939), Gurland (1957,1958,1965), Haight (1961),

Patil (1961,1962a,1962b,1964), Khatri (1961,1962), Katti (1966), Katti and



Gurland (1961,1962a,1962b) and in the books of Johnson and Kotz (1969),
Johnson et al (1992) and Consul (1989).
1.2 Mixture Distribution

A mixture distribution is a superimposition of distributions with
different functional forms or different parametérs, in specified proportions.
Sometimes, however, mixing is just a mechanism for constructing a new
distribution for which empirical justification 1s sought later on.

lfFJ(xl,xz, ..... xn),(jzo,l,...‘,m) represents different cumulative distribution

functions (cdf) and a, 20 and ) a, =1 then

J=0
m
Fx,%,,..%,)= > a F (x,.x,)
J=0

is a proper cumulative distribution function. This mixture distribution {FJ} is

finite or infinite according to m is finite or infinite. Thus two important categories
of mixture distributions are finite mixture and countable or continuous mixture of
discrete distributions.
(a) Finite mixture

The concept of finite mixture of distribution was introduced into

literature by Pearson (1915). A mixture distribution is said to be a finite mixture

of distribution if

F(x)zp,F,(x)+ ..... DA (x)



where p,,p,,...,p,are the weights of the compound distribution with cdfs
k

F (%), Fy(x),...,E (x)and p, >0, > p =1
1=1

In finite mixture of distribution the problem of central interest arises
when data are not available for each conditional distribution separately but
available only for the overall mixture distribution. Often such situation arises
because it is impossible to observe some underlying variables which split the
observations into groups — only the combined distribution can be studied. In these
circumstances interest often focuses on estimating the mixing proportions and on
estimating the parameters in the conditional distributions. Zero modified or
inflated distribution is an example of finite mixture of distribution.

Inflated Distribution
A random variable X is said to have the inflated distribution if its

probability mass function (pmf) is defined by

=0
P(X:x):{'g+q0°’ _x
ap., x=123,..

where p , (j=0,1,2,...) is the pmf of the original distribution without inflation and
a+ [ =1.1Itis also possible to take f less than zero, provided f+ap, 2 0.

The probability generating function (pgf) of inflated distribution is

H(t)= B +aG(t), where G(¢) is the pgf of original distribution without inflation.



The studies of discrete inflated distributions were initiated by Singh
(1963) to consider the probabilistic description of such experiment where there is
some ‘inflation’ of the probability at the point zero for Poisson distribution. Singh
(1966) studied the inflated binomial distribution. The generalized inflated Poisson
distribution was investigated by Pandey (1965) in the sense that the inflation of
the distribution occurs at an arbitrary point ‘/’ (being the value of the random
variable X). RS

Thus the random variable X is said to have generalized inflated

distribution if its pmf is expressed as

_ N _[Brap,, x=1
P(X—x)—{ Cq)x’ x=071,'-'>1_1’l+1"“

(b) Countable and Continuous Mixture of Discrete Distribution

A mixture distribution also arises when the cumulative distribution
function of a random variable depends on the parameters 6,,6,,...,d, and some
(or all) of those parameters may vary. A mixture distribution of this type is
represented by

F,nEF,

2]
where F,is the original distribution and F}is the mixing distribution. When @ has
a discrete distribution with probability p,, (i=0,1,2,...) we call the outcome a

countable mixture of discrete distribution. The pmf of the mixture is

P(X=x)=>p,P(x)

120



where P, (x):FJ (x)—FJ (x— 1)

A continuous mixture of discrete distribution arises when a parameter
corresponding to some features of a model for a discrete distribution can be
regarded as a random variable taking continuous values. Greenwood and Yule
(1920), Lundberg (1940) first studied the theory of countable and continuous
mixture of discrete distribution.

In case of mixture distribution there are three important theorems
derived by Gurland (1957), Levy (1957) and Maceda (1948).

Gurland’s generalization Theorem [Gurland (1957)]

According to this theorem, a distribution with pg{ of the form

G,(G,(z)) will be called a F,distribution generalized by the generalizing F,
distribution provided that G,(z/k¢) =[G, (z/¢)]"

Symbolically, it will be represented by F, v F, .

Levy’s theorem [Feller (1957)]
If and only if discrete probability distribution on the non negative

integers is infinitely divisible, then its pgf can be written as
G(z) = eHstH

where A>0 and g(z) is an another pgf.

Maceda’s theorem [Maceda (1948)]

According to this theorem, mixing Poisson distributions using an

infinitely divisible distribution yields a Poisson-stopped-sum distribution.

5



1.3 Review on Previous Works of Mixture of Discrete Distributions

An increasing amount of efforts have been made in the last few
years in the area of discrete mixture distributions. Sometimes it is found that a
simple distribution such as binomial, Poisson, negative binomial, logarithmic etc.
fails to describe a set of data which leads to the belief that the model underlying
the distribution has some of the characteristics of the generalized or mixture
model. Thus further research was made to examine if any simpler mixture
distribution will describe the data to a better degree of satisfaction. In this process
a large number of discrete distributions were derived which are classified as
generalized, modified and contagious distributions. A detailed accounts of these
discrete mixture distributions and their properties can be found in the books of
Johnson and Kotz (1969), Everitt and Hand (1981), Consul (1989) and Johnson et
al (1992).

According to Smith (1985) finite mixture of distribution can be used in
medicine, where the categories are disease states, in economics, where the
categories are discontinuous forms of behaviours, in fisheries research, where the
components are of different ages and in sedimentology where the categorics are of
mineral types. Again according to Titterington (1990) finite mixture distribution
is used in speech recognition and in image analysis. Everitt and Hand (1981)
studied finite mixture of distributions in their book and estimate the parameters by

the method of moments and maximum likelihood



Inflated distribution studied by Singh (1963) and Pandey (1965) is an
another example of finite mixture of distribution. Singh (1966) also investigated
generalized inflated binomial distribution. He investigated that this distribution
will be applicable in those cases where the single binomial describes the situation
well except for the /"™ cell, which is inflated, i.e. there are some more numbers of
observations with /> that can be expected on the basis of single binomial.
Grzegorska (1973) studied the inflated generalized power series distribution and
obtained the recurrence relation for moments of this distribution. Patel (1975)
investigated inflated at zero power series distribution. Sobich and Szynal (1974)
and Lingappaiah (1977) obtained some properties of inflated distribution.
Gerstenkorn (1979) established the recurrence relation for the moments about an
arbitrary point of class of discrete inflated distributions. The same author also
investigated the moment recurrence relations for the generalized inflated negative
binomial, Poisson and geometric distribution. Kemp (1986) and Kemp and Kemp
(1988) used maximum likelihood method to estimate the parameters of inflated
Poisson and binomial distribution. A zero modified geometric distribution was
studied by Holgate (1964) as a model for the length of residence of animals in a
specified habitat. Williams (1947) introduced logarithmic with zcro distribution.
Chatfield (1969) used the probability generating function of this distribution as a
model for stationary purchasing behavior. Khatri (1961) and Patil (1964) obtained

it by mixing binomials.



Cohen (1963) considered a mixture distributions formed {rom a Poisson
component and a binomial component. Dawid and Skene (1979) considered a
mixture of multinomial distributions arising in a model of observed rating.

The works on countalble and continuous mixture of discrete distribution
were developed by the “accident proneness” theory of Greenwood and Yule
(1920). In their model, an individual was assumed to have accidents at random,
with an intensity @, where& is assumed to have a gamma distribution over the
population of individuals. The number of accidents per individual is therefore a
Poisson distribution with the value of its parameter 6 conditional on a
generalization of a gamma variable, which leads to have a negative binomial
distribution.

Different mixtures of Poisson distributions where the mixing
distributions are countable or continuous are discussed in details in the book by
Johnson et al (1992).

Poisson mixture of Poisson distribution i.e. Neyman Typc A
distribution has often been used to describe plant distributions, especially when
reproduction of the species produces clusters. Evans (1953) found that Neyman
Type A gave good results for plant distribution. Martin and Katti (1965) fitted 35
data sets with a number of standard distributions and they found that those
distributions have wide applicability. Cresswell and Froggatt (1963) derived the

Neyman Type A distribution in context of bus driver accidents.



The Poisson Pascal distribution which is a Poisson mixture of negative
binomial distribution was introduced 1n the context of the special distribution of
plant by Skellam (1952). Katti and Gurland (1961) studied its properties, method
of its estimation and derived it from an eptomological model.

The Hermite distribution which is a Poisson mixture of Bernoulli
distribution was studied by Kemp and Kemp (1965). Plunkett and Jain (1975)
derived a new distribution known as Gegenbauer distribution by mixing the
Hermite distribution with gamma distribution. Borah (1984) studied the
probability and moment properties of Gegenbauer distribution and Medhi and
Borah (1984) investigated the four parameter generalized Gegenbauer distribution

and had used estimation via moment and ratio of first two frequencies and X and

st

The Polay-Aeppli distribution described by Polay (1930) arises in a
model where the objectives occur in clusters and the number of clusters having a
Poisson distribution, while the number of objects per cluster has the geometric
distribution. Douglas (1965,1980) obtained an approximatc f{ormula for the
probability of this distribution. This distribution is also the limiting form of Beall
and Rescia’s generalization of the Neyman Type A, B and C distribution.

Regarding mixtures of binomial distributions 1.e. beta binomial
distribution studied by Ishii and Hayakawa (1960), Poisson binomial distribution

discussed by Skellam (1952) were discussed in details in the book by Johnson et



al (1992). Recent further works on mixtures of binomial distributions are studied
by Bowman et al (1992). ,

Lagrangian expression for the derivation of the probabilities of certain
discrete distributions has been used for many years. Consul and Shenton (1972,
1973,1975) and their co-workers have studied systematically the technique for
deriving the distributions and their properties. Lagrangian binomial distribution
was obtained by Mohanty (1966). Jain and Consul (1971) derived an analogous
Lagrangian negative binomial distribution. The Lagrangian Poisson distribution
was obtained by Consul and Jain (1973) as a limiting form of the Lagrangian
negative binomial distribution. A detailed study was made on the properties of
Lagrangian Poisson distribution by Consul in his book (1989). Lagrangian Katz
family of distributions was studied by Consul and Famoye (1996).

A very broad class of distribution, i.e. power series distributions which
includes many of the common distributions was studied by Khatri (1959) and
Patil (1961,1962). Gupta (1974) studied the modified power series distributions.
Tripathi et al (1986) studied the incomplete moments of modified power series
distribution.  Grzegorska (1973) studied inflated generalized power series
distribution and Patel (1975) investigated inflated at zero power series
distribution. Patel (1975) obtained the maximum likelihood estimate of the

parameters of inflated power series distribution. o
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1.4 Synopsis of the Thesis

The thesis entitled “A Study on Mixture of some Univariate
Discrete Probability Distributions” comprises of seven chapters in all. The first
chapter is an introductory one. It gives an account of the relevant works in the
theory of univariate discrete probability distributions. The earlier works on
different types of finite, countable and continuous mixture of some discrete

distributions are discussed.

In the second chapter, inflated distribution with inflation of probability
at zero and ;t an arbitrary point, say ‘/’, are investigated. Inflated binomial,
Poisson, negative binomial and geometric distributions are further investigated to
study the recurrence relation for probabilities and moments of inflated at zero and
generalized inflated distributions. The fitting of the inflated distributions are also
considered. It has been seen that if there is an excess frequeﬁcy of observed event
at point zero as well as a respective decrease of its value at the remaining points,
the inflated distribution provides much closer fit to the data than the classical one.
The inflated power series distribution is also investigated. The recurrence relation

for factorial moment and central moment are studied.

In chapter 3, two mixture distributions of Poisson Lindley distribution,
namely, Poisson-Poisson-Lindley and Poisson-Lindley-Poisson distribution are
obtained by using Gurland generalization (1957) theorem. Here, an attempt has
been made to derive the recurrence relation for probabilities and moments without

11



derivatives so that it will be easier to handle on computer. The parameters of thesc
distributions are estimated by the method of moments and the ratio of first two
frequencies with mean. A few reported data sets have been considered for
empirical fitting of Poisson-Lindley, Poisson-Poisson-Lindley and Poisson-

Lindley-Poisson distribution with remarkable results.

In chapter 4, inflated Poisson-Lindley distribution has been studied with
some inflation at zero. Some properties of inflated Poisson-Lindley distribution
are also discussed. The recurrence relation for probabilities as well as for
moments and factorial moments are derived. The skewness and kurtosis of the
distribution are studied. The parameters of the distribution have been estimated by
the method of maximum likelihood, method of moments and the ratio of first two
frequencies with mean. Different applications of inflated Poisson-Lindley
distribution are discussed. The fits are compared with the generalized Poisson

distribution with varied amount of success.

In chapter 5, an extension of Poisson-Poisson-Lindley distribution, i.e.
short Poisson-Poisson-Lindley distribution is investigated. The model for
derivation of the distribution has been discussed. The probability recurrence
relation and moment recurrence relation are also studied. The application of this
distribution has been considered. A few sets of accident data have been
considered for fitting of the short Poisson-Poisson-Lindley distribution. The fits

of short Poisson-Poisson-Lindley distribution are also compared with the fits

12
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given by the ‘short’ distribution and some other distributions as obtained by
different authors and found much closer fit in all the cases for short Poisson-

Poisson-Lindley distribution.

In chapter 6, a class of Lagrangian distribution, i.e. Lagrangian Hermite
type probability distributions are discussed. The pmf and the cumulants of the
basic Lagrangian Hermite distribution are studied. The parameters for the basic
Lagrangian Hermite distribution are estimated by the method of moments and the
method of first {requency and mean. For testing the validity of the estimate of the
parameters of basic Lagrangian Hermite distribution the fitting of this distribution
is considered. Then, several members of Lagrangian Hermite type distribution of
type-1 and type-ll are investigated by various choice of pgf. The Lagrangian
Hermite Poisson distribution of type-I and type-II are derived and fitted to some

well known data sets with good results.

In chapter 7, a study on a class of Charlier type Lagrangian probability
distribution has been made. The basic Lagrangian Charlier distribution is
investigated. A discussion on some properties of pmf and the cumulant of the
distribution are provided. The parameters are estimated by ratio of first two
moments and first frequency. The fitting of the basic Lagrangian Charlier
distribution has been considered for the testing of the validity of the estimates of
the parameters. Further the general Lagrangian Charlier Poisson distribution of

type-I and type-1I are also investigated. An ad-hoc method is used for estimating

13 CENTRAL LIBRARY, T. U.




the parameters of Lagrangian Charlier Poisson distribution of type-I. The fitting
of the basic Lagrangian Charlier distribution is also compared with logarithmic
series . distribution, generalized logarithmic series distribution and geometric
distribution and it is found that the basic Lagrangian Charlier distribution gives
much closer fit than obtained by logarithmic series distribution, generalized

logarithmic series distribution and geometric distribution.

14



CHAPTER ©

o RECURRENCE RELATIONS IN SOME DISCRETE INFLATED
PROBABILITY DISTRIBUTIONS



Chapter 2

Recurrence Relations in some Discrete Inflated Probability

Distributions

2.1 Introduction

Many distributions obtained in the course of experimental
investigations often have an excess frequency of the observed event at zero point.
This has been a major motivating force behind the development of inflated
distributions that has been used as models in applied statistics. The inflated
distribution is a finite mixture of original distribution. The probability mass

function (pmf) of an inflated or zero modified distribution may be written as

P(sz)={ﬂ+ap°’x;=20m @.1.1)

X?
where a is a parameter assuming arbitrary values in the interval (0,1] such that

at+B=1 and p, is the pmf of the original distribution (for x=0,1,2,...). It is also

-

possible to take the ;)arameter B less than zero, provided 8 +ap, = 0

= Vi zl—__—p[-)"— (2.1.2)
0

15



Singh (1963) obtained the inflated Poisson distribution as a special case
of contagious distribution. Further Singh (1965) indicated that there might exist
analogous situations in binomial distribution, i.e. there is a distinct incrcase of the
frequency of the observed event at zero point as well as a respective decrease of
its value at the remaining points.

Pandey (1965) and Singh (1966) published the generalized distribution
of equation (2.1.1) in the sense that the inflation of the distribution occurs at an

arbitrary point /. Thus the pmf of generalized inflated distribution is expressed as

B+ap,, x=1[

2.13
x=01. [-1[+],. 2.1.3)

P(X:x):{

x?

where 0 <o <land a+f =1

Cohen (1960) gave some examples of fitting of inflated Poisson
distributions to empirical data. Martin and Katti (1965) also fitted the distribution
to a number of data sets. Khatri (1961) studied the logarithmic-with-zero
distribution.. Katti and Rao (1970) investigated log-zero-Poisson distribution and
fitted this distribution by the method of maximum likelihood to each of the 35
empirical distributions collected by Martin and Katti (1965). Kemp and Kemp
(1988) gave a bound for the maximum likelihood (ML) estimate of inflated
Poisson distribution. They also studied a suitable method to provide initial ML

estimators of the parameters of inflated binomial distribution.
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The objective of this chapter is to extend the entire works on inflated
distributions like binomial, Poisson, negative binomial and geometric etc. The
essential problems considered in further examination of inflated distributions are -
(i) To obtain the recurrence relation for probabilities of certain inflated at ‘/’
distributions.

(1) To calculate the moments recurrence relations for both inflated at zero and of
inflated at /” distributions.
(iii) To obtain the rapid estimate of the parameters for. inflated negative binomial
and geometric distributions.
2.2 Inflated Binomial Distribution

The pmf of inflated at zero binomial distribution may be obtained

from equation (2.1.1) as

PCX = x) = /‘fzwq’ x=0 221
s a(x)!”‘q”"‘,x=123 221

25~y

where 0<a <1, f=1-a, O<p<land p+¢=1 [see Singh(1965)].

Similarly, for inflated at '/’ or for generalized inflated binomial

distribution, the pmf may be written from equation (2.1.3) as

’I X n-x
g +a[xjp q, ool

P(X =x)=
( ) nY o x=0L.J0-1L/+1.n
U L

(2.2.2)
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where 0< a<l, f=1-q, 0<p<1 and p+¢=1.

(a) Recurrence Relation for Probabilities

By using the relation of equation (2.2.1), the recurrence relation for

probabilities may be derived as

1)r+l = (” ~ r)£1)r ]
(r + l) q

r=1,23...n (2.2.3)

r

where P =

r

H@)| , P, =p+aq", P, =anpg”" and H(1) denotes the pgf

=0

oL
of inflated at zero binomial distribution.

Similarly, for generalized inflated (inflated at ‘) binomial distribution the

recurrence relation for probability may be derived as

P = {M}EPH, =12, 1-1,1+2,..n (2.2.4)
r q -

n { n-1 53 n i+l n-i-1
1’,=ﬂ+a(lqu , r=1 and 1,+,=a(1+l)p g™t for r=1+1

where P, =o0q".

(b) Recurrence Relation for Raw Moments
The moment generating function (mgf) of a zero modified distribution
may be easily derived from the original distribution. 1f M(t) is the mgf of the
original distribution, then the mgf for inflated distribution may be written as

m(t)= B +aM(t) [see Johnson et al.(1992)]
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=0 +a((1+ pe')" (2.2.5)
Differentiating both sides of equation (2.2.5) with respect to ‘t’, we get

(q + pe' )n'(t) = anpe’ {m(t)— ,6} (2.2.6)

r

. . . .
Considering the coefficient of - in equation (2.2.6), we get
r

r r r—1 s
m = psan - ' m._ — PBonp (2.2.7)
' { J}:oU ,};«LH} ’

which is the recurrence relation for raw moments of inflated at zero binomial

distribution where m! denotes the r raw moment of inflated at zero binomial

distribution. Putting r=0,1,2,3 in equation (2.2.7), the first four raw moments may be

obtained as

m; =anp,

my = anf{n—-1)p* +anp,

m’, = an(n—1 n-2)p’ +3an(n-1)p* +anp, and

ny = anln =1\ —2)n~3)p* + 6an(n —~)n-2)p* +Tan(n -1)p* + arp
respectively.
Hence mean=m, = onp and variance= anp(l -p+ ,Bnp). (2.2.8)

To derive the recurrence relation for the simple moments of inflated at

‘!’ binomal distribution, we consider the lemma used by Gerstenkorn (1979).
According to his lemma

¢, ()= pe" +ap,(t) 2.2.9)
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whereg, (1) and ¢, (f) denote the characteristic functions of a random variable Y

and X , with and without inflation respectively.
The characteristics function of the random variable possessing the

moments of an arbitrary order can be expanded by using the Maclaurian series as
© lt J '
8,(0)= Z(—j)‘—m, (2.2.10)
=0 J°

where m, denotes the j™ simple moments of the random variable Y, which follows

the inflated distribution. Then putting £ =@ in cquation (2.2.10), the following
relation may be obtained

«© J

]l = fe” +a(q+pe ) (2.2.11)
=0

Differentiating both sides of equation (2.2.11) with respect to @, we get

q+ pe m =g+ pe® le® +anpe® g + pe’ | (2.2.12)
o i <l b el )

Considering the following transformation in the left hand side of equation (2.2.11),

we get
(q+pe”):p(e” - 1)+q+p
:p(e” —1)+1

=p) —+1
1=] I!

@ 91—1

32(/——1)—m —(q+pe )ﬂle +npe (Z—:—m ~ e J pii g.w— .m

=0

= qﬂli-e—;!—l’— + pﬁ(l - n)Zw: a (li?- 1)
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Considering the coefficients of 87, we get

r-1 — 1 - 1
m, = fql" + ,Bp(l— nXI +1)'_1 +1’Z n ’ -7 m,_, (2.2.13)
o k k+1

which is the recurrence relation for raw moments of inflated at ‘/’ binomial
distribution where m, denotes the ™ raw moment of the distribution. Considering
r=1,2,3,4 in equation (2.2.13), we get

m, = pfl+anp,

m, = pI* +an(n-1)p* +anp

my = PI* +an(n=1¥n-2)p* +3an(n-1)p* +anp,

m, = P +ann—1{n—2)n-3)p* + 6an(pn ~ 1Yn~ 2)p* + Tan(n—1)p* +anp
respectively, where m_ denotes the ™ raw moments for inflated at ‘/’ binomial
distribution. Thus the above raw moments provide an illustration of the simple
formula

m, = pl" +am (2.2.14)
where m! is the ™ raw moments of when there is no inflation. Hence equation

(2.2.14) determines the relationship between the raw moments of the inflated
distribution and the one without inflation.
(c) Recurrence Relation for Central moments
From the definition of the central moment of r* order of generalized

inflated binomial distribution, we have
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X

M, = ﬁ(l—m,)' +a2 (x —m,) (H)p‘q"" (2.2.15)
2=0

Putting the values of m, = fl + awip in equation (2.2.15), we may obtain

U, = ﬂ(l— pl - anp)’ +azl—l:(x -Gl —anp) (Z]p‘q"" (2.2.16)

Differentiating both sides of equation (2.2.16) with respect to ‘p’, we get

5;)’ =—a’ far((—np) ™ - aznri (x-10 - wy))’(")p‘q"“ + _a__i(n]px
x=0

x P o\ X

¢ (x—1B—anp) x- -%”-ﬁ:(”lp‘q"" (x~1B8-anmp) (2.217)

x=0 X
Substituting x=(x -/ ~anp)+(Ip +anp) in equation (2.2.17), we obtain the

following relation after simple transformation.

OH, _ —anry, | + —C-Z—Zn: (x-18 - (Xﬂp)rﬂ(”)p*’qn—x + a,B(l - np)
P Je= x pq

i(x-lﬂ —amp)'(';)p’q"" (2.2.18)

x=0

It follows from equation (2.2.16) that
C i 7 x_n-x ' '
ay (x—1f - anp) (x)p q"" = u, —a'B{l-np)
x=0

Thus from equation (2.2.18), we have

5,”, 1 r+l r+l ﬁ(l - 77[)) r+l
=~ —_— - /- A "B\~
P anry,  + o {um a ,B( np) }+ p {,u,a ﬁ(l np) }
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e O = B, +a (- mp) " (2.2.19)
& pq

= f =P

Putting /=0 in equation (2.2.19), we obtain the recurrence rclation for central
moments of inflated at zero binomial distribution. The equation (2.2.19) with
f=0and /=0 gives the recurrence relation for the central moments of the

binomial distribution without inflation, i.e.
o)
Hra = pCI(_ﬂL +nr#r—~lJ (2.2.20)
&p

2.3 Inflated Poisson Distribution

The pmf of inflated Poisson distribution at zero may be written as

prae?, .,
P(X=x)={ e?¢* 2.3.1
( %) ozC ¢ ,Xx=12.. ( )
x!
and for inflated at */’, the pmf may be written as
e?o*
P(X =x) fre=r x=1 232
=X)= : LI
ae"’¢" x=01.J/-11+1,.. )
xt ’

where O<a <l,a+f=1and¢>0
(a) Recurrence Relation for Probabilities

Recurrence relation for probabilities of inflated at zero Poisson may be

written as

p.=2 p 2. (2.3.3)
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where P =f+aec™®, P =age™ .

Similarly, for inflated at ‘/’ distribution, the recurrence relation for probability

may be written as

P =%PM, r=1, 2, A-11+2, ... ... (2.3.4)
where P, = f+a e':!g/}‘ , B, = a(z:fi;: and P, =oe™
(b) Recurrence Relation for Raw Moments
If m(r) is mgf of inflated Poisson distribution then, we have
(2.3.5)

m(()= g+ et )

Differentiating both sides of equation (2.3.5) with respect to ‘t’, and equating the

r

4 .
term —, we get the raw moment recurrence relation as

r ,A
’71:_+] = Z( .}n:‘-_] _ﬁ ’ r=0y1:2J oo (236)
=0/

where m’ denotes the r order raw moments for inflated Poisson distribution.

Putting r=0,1,23 in equation (2.3.6) the first four raw moments of inflated

Poisson distribution may be obtained as
m =ap,
m, = a¢(¢ +1),
ny = a¢(¢2 +3¢ + l),
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and my = a¢(¢3 +64% +7¢+ 1)
respectively. Hence mean=q¢, variance= a¢(1 4+ ¢,B).
Similarly, if ¢, (¢)and ?, (t) denote characteristics function of Poisson and

generalized inflated Poisson distribution respectively, then using Gerstenkorn (1979)

lemma, we have

¢,()=pe" +ap. () (2.3.7)

After some suitable transformations, the recurrence relation for raw moments of

generalized inflated Poisson distribution may be written as
m,,, =p" - pp{l+1) +¢z’;[;}nw r=0,1,2,... (2.3.8)
.

Putting r=0,1,2,3 in equation (2.3.8), we get

m = fl+a¢,

m, = BI* + ap(p +1),

m, = B +ad(p? +34+1),
and  m, = fI* +ap(p’ + 64" + 74 +1)

respectively, where m, denotes the r* raw moment of inflated at /* Poisson

distribution.
2.4 Inflated Negative Binomial Distribution
The pmf of inflated negative binomial distribution may be written

from equation (2.1.1) as

25



B +aop", x=0
PX=x)=4 1)‘[”’)1)"(1‘, v=12. (2.4.1)
X

gy

where O<a<l,a+pf=1,0<p<land p+qg=1

Similarly, from equation (2.1.3), the pmf of generalized inflated

negative binomial distribution may be written as

( —n)

a(—l)"( p'q*, x=012,.,[-1
X )

P(X = x)=1 B +a(=1)p"y', x=1 (2.4.2)
— )

a(-1) " pqgt, x=I1+11+2,..
x

where O<a<l,a+f=1,0<p<land p+qg=1
(a) Recurrence Relation for Probabilities
The pgf of inflated negative binomial distribution may be written as
H()=pB+ap"(1-q)" (2.4.3)
Differentiating both sides of equation (2.4.3) with respect to ‘t’, and equating the

coefficient of 7", the recurrence relation for probabilities may be obtained as

P, = (r+r)g P, =12, (2.4.4)
(r +1)

where Py = f+aqp” and P, =amp”q
(b) Recurrence Relation for Raw Moments

The mgf for inflated negative binomial distribution may be written as

n1(t)=,8+ap"(1—qe')_" (2.4.5)
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Differentiating both sides of equation (2.4 5) with respect to ‘t” and equating the

coefficient of ’% , and after some suitable calculations it is obtained that

w5005 -] e

Putting r=0,1,2,3 in equation (2.4.6), the first four raw moments may be written as

follows
m, = ani,
p
q 2
m, = a{n(n + 1)—13- -+ n—q—} ,
p p

3 2
m, = a{n(n +1)n + 2)13— +n(n+ I)-‘I—z- + n-q—} , and
p p p

4 3 2
my = a{n(n + 1)(n + 2)(11 + 3)—(1—7 + n(n + l)(n + 2)13— + n(n + 1)—(‘% +n fl_}
P 4 P P

respectively, where m. denotes the ™ raw moments of inflated at zero negative
binomial distribution.
The recurrence relation for moments of generalized inflated negative

binomial distribution may be written as

m, = %{ﬂlz = Bal+nfi+1)"" + qg{”(r;lj +(;;D}mr-;-1} (2.4.7)

Thus the first four raw moments of generalized inflated negative

binomial distribution may be obtained by putting r=1,2,3,4 in equation (2.4.7) as
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m, = [l + an(—l,

P

2
m, = I +a{n(n+ l)—(—1—2—+ni},
P P

3 2
m, = I’ +a{n(n+ 1Xn + 2)—%+n(n + 1)%—2—+n%} , and

2

4 q* q q . 4
m, =" +a n(n + 1)(11 + 2)(/1 + 3)——7 + n(n + 1)(/1 + 2)—3— + n(n + 1)— +n—;.
P P p r

respectively, where m_ denotes the " raw moments for generalized inflated

negative binomial distribution.
2.5 Inflated Geometric Distribution

The pmf for inflated at zero geometric distribution may be written as
+ x=0
P(sz):{’g i 2.5.1)

where O<a<l,a+f=1,0<p<land p+g=1
Similarly, for inflated at ‘/’ geometric distribution, the pmf may be written as

opg*, x=0../1-1
P(X = x)={ B +apq”, x=1 (2.5.2)
apq*, x=1+11+2,..

where, 0<a<l,a+f=1,0<p<land p+¢g=1.

(a) Recurrence Relation for Probabilities

Since geometric distribution is a special case of negative binomial

distribution, so putting n=1 in (2.4.4), we get the following recurrence relation for
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probabilities of inflated geometric distribution as
P, =qP, =1,23,... (2.5.3)
where P, = f+apand P, =apq

Similarly, for inflated at ‘/’ geometric distribution, the recurrence

relation for probabilities may be written as

p, r=0
P, r=12,.0-1
P, = ﬂq ST (2.5.4)
tapq',  r=

apq’, r=Il+1[+2,..
(b) Recurrence Relation for Raw Moments

The raw moment recurrence relation of inflated geometric distribution

may be obtained from equation (2.4.6) by putting n=1.

S e e

Similarly, putting n=1 in equation (2.4.7) of generalized inflated

negative binomial distribution, the recurrence relation for generalized inflated

geometric distribution may be obtained as

1 , , 1 -1 r—1
m.,, = ;[ﬂl —qpU+1) + q; {(’ . ) + (k . J}m,_,_k] (2.5.7)

Putting r=0,1,2,3 respectively in equation (2.5.7), the first four raw moments for

the generalized inflated geometric distribution may be obtained as
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m, =ﬂl+a1,

P

2
_ +a{2f1_2+f1_},
P P

m, = B> + a{G

q}
P

+6q
2
and /ﬂ“+a{%1 36 414L 4 q}
pop P

respectively, where m,_ denotes the ™ raw moments for generalized inflated
geometric distribution. Considering /=0 in the above relations, the first four raw
moments of inflated at zero geometric distribution may be obtained.
2.6 Inflated Power Series Distribution
Patel (1975) introduced the inflated at zero power series distribution.

He showed that Singh’s inflated Poisson distribution is a particular case of
inflated power series distribution.

The pmf of inflated at zero power series distribution may be written

from equation (2.1.1) as

f+a——= (9) x=0
a 6"
“70)

P(X=x)= (2.6.1)

x=12,..
where O0<a<l1,f=1-aq, f(@):ZaXB", a,20and 6>0.

In (2.6.1), @ is the power parameter and f(@) is the series function.
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Similarly, the pmf of inflated at ‘I’ power series distribution may be

written from equation (2.1.3) as

a 6"
p+ra—— (9)

a9‘

" ey

Grzegorska (1973) studied the inflated generalized power series

=
H
"~

P(X =x)= (2.6.2)

x=012, . 0-11+1,..

distribution (1GPD). He obtained the moment recurrence relation of IGPD.
(a) Recurrence Relation for factorial Moments
The factorial moment generating function (fmgf) of inflated power

series distribution may be written as

H(1+t)=/3+a—f—(%)i) (2.6.3)

So the ™ factorial moments of inflated power series distribution may be written as

= ont0] S0 2ot

7(6)do

Putting r=1, 2 in equation (2.6.4), we get the first two factorial moments as

,U(, (‘9) S (0)

/J('z) f”(@)

f(9)
respectively, where 1,y denotes the ™ factorial moments of inflated power series

distribution. Hence the mean and variance of inflated power series distribution are
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Mcan = 70 )f(O) &  Varance= (B)f )+

o O e er

In particular, considering the different values of @ and f(6) in equation (2.6.4),
we can find the mean and variance of inflated binomial, inflated Poisson and
inflated negative binomial distribution.

(b) Recurrence Relation for Central Moments

From the definition of the central moments, the ™ central moment of

inflated at ‘> power series distribution may be written as

,B(l—ml) +aZ(x ml)

7 (9) (2.6.5)

'(6)

where m, =1 + a—f—(g—)— is the mean of inflated at ‘" power series distribution.

Differentiating both sides of equation (2.6.5) with respect to @ and after some

suitable calculation, the recurrence relation for central moments may be written as

Lo :9[?‘9’ +r %;—,u } g(l—m e, +—(l ml)'+1 (2.6.6)

Putting /=0 in equation (2.6.6), we obtain the recurrence relation for central
moments of inflated at zero power series distribution. Afler some simple
transformation of equation (2.6.6), we can easily derive the recurrence relation for
central moment of inflated at /' binomial distribution as shown in equation

(2.2.19). Similarly, the recurrence relation for central moments of inflated
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Poisson, negative binomial and geometric distribution can be derived from

equation (2.6.6).
(c) Some Special Cases of Inflated Power Series Distribution.

Noack (1950) first studied the power series distribution and showed that many
important discrete distrib‘utions like binomial, Poisson, negative binomial and
logarithmic belong to this class. Similarly the limiting forms of the inflated power

series distribution are given in Table 2.1 as the parameter takes different values.

Table 2.1
SI.No. Parameter values Distribution and its pgf
1 | £(8)=(1+86)", nis+ve integer
p n . \
0=——=, a, = Inflated binomial, S +a(qg + pt)
(1-p) x
2 f@)=¢e*,0=¢, a = —1—| Inflated Poisson, /3 + ae?!™)
x!
3 f@)=01-80)", >0 Inflated negative binomial,
J(-n . o
0=¢. a,=C0(7] pra(i-g)
x

2.7 Some Properties of Inflated Distribution.
(a) Distribution of the sum.
Sobich and Szynal (1974) studied the distribution of the sum of ‘m’
independent random variables having the same inflated binomial distribution.
They used the characteristics function to obtain the distribution of the sums.
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Lingappaiah (1977) also obtained the distribution of sum of ‘m’ indcpendent

random variables having the same inflated distribution. Let ¢,(f) be the
characteristic function of the inflated at zero distribution while ¢(r) be the
characteristic function of non inflated case. Then we have

4,(0) = B+ag(t) 2.7.1)

If X,X,,.,X, are the independent and identical random variables
‘having the same inflated distribution as in equation (2.1.1) and il
Z=X+X,+..+X,, then the characteristic function of the sum of ‘m’

independent and identical random variables having the same inflatecd power series

distribution may be written as

#y ()= 8 +ap)] 2.7.2)
Using the Inversion form for characteristic function we have the distribution of
the sum of ‘m’ independent random variables having the same inflated power
series distribution as

(B+ar,)", z=0

Z(m) “ra'P,(2), z=12,.
. ,

r=1

P(Z=2)= 2.7.3)

where P, (z) is the distribution of X, + X, +...+ X, ,and P, = l

‘ /)
(b) Truncated Case
The distribution of truncated inflated distribution, truncated at zero, is

same as the truncated simple distribution truncated at the same point [see Sobich
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and Szynal, (1974)]. If P.(X = x), denotes the probability function of truncated
inflated distribution then

o, P
x = for x=1,2,3,... (2.7.7)
1-—[ﬂ+aP0] 1-F,

P (X=x)=
where P = P(X =x) ,forx=1,23,... and F, =P(X = 0).

2.8 Estimation of Parameters of Inflated distributions

The estimation of parameters of inflated distributions other than «
can be carried out by ignoring the observed frequency in the zero class and then
using a technique appropriate to the original distribution. After the other
parameters have been estimated, the value of a can then be estimated by equating
the observed and expected frequencies in the zero class [see Johnson et al.(1992)].
(a) Inflated Binomial Distribution
(1) Method of maximum likelihood

Since this is a zero modified distribution, hence, one of the maximum

likelihood (ML) equation is [ see Johnson et al., (1992), p. 315]

; Jo

p+(-a)" = N (2.8.1)

where %v‘)— is the observed proportion of zeros. As it is a power series distribution

therefore, the other ML equation is

X =nap , (28.2)
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Kemp and Kemp (1988) showed that these maximum likelihood cquations do not
have explicit solution, therefore, for rapid assessment of data they used method of
moments and method of mean and first frequency.

(11) Method of moments

By equating the sample mean X and sample variance s* to the

population mean and variance respecﬁvely in equation (2.2.8), we get

2
S o+x-1
p=-=% (2.8.3)
n—1
and &= (2.8.4)
np
(iii) Method of mean and first frequency
By equating the 1% class probability with%, we obtain
N .
, _f] (n-1)
=]1-<{ 285
p { Ve | (2.8.5)
and o == (2.8.6)
np

S

where 2= = napg™ .
Q N pq

(b)Inflated Poisson Distribution

(i)Method of maximum likelihood

The ML equations for inflated Poisson distribution are [ Singh, (1963)]
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3 +Ge?t =22 2.8.7
b +ae N ( )
%=a¢ (2.6.8)
Eliminating &, from equations (2.8.7) and (2.8.8) gives
- -4 " fo ‘
1-e?)=¢g[1-2% 2.8.9
*{-e)-4(1-2 239

Hence ;3 (and&) can be obtained by iteration, [ see Johnson et al. (1992), p.
314]. Martin and Katti (1965) fitted this distribution to 35 data sets, using ML

method with ¢ = % asthe initial estimate ofg . Kemp (1986) showed

&

-——J was another initial estimate of ML equation and it was found

that gy = In(

1
that usually @, << .
(11) Method of moments

By equating sample mean ¥ and sample variance s? to the population
y €q g p p pop

mean and variance of inflated Poisson distribution, the following relations are

obtained.
X=dg (2.8.10)
and  s? =g+ §(-a)} (2.8.11)
>¢=—+x—1 (2.8.12)
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and a=

| =l

(1i1) Method of mean and first frequency

By equating the 1% probability with —]fv—’, where

L a'e™

N
and x=a'p'

= ¢'= log(—NZ)
1
and a' = —x—,
¢

(c) Inflated Negative Binomial Distribu

(2.8.13)

(2.8.14)

(2.8.15)

(2.8.16)

(2.8.17)

A composite method has been used to estimate the parameters of

inflated negative binomial (INB) distribution.

(1) Ratio of first two moments and ratio of frequencies

By equating the sample mean ¥ and sample variance s* to the

corresponding population values, we have

- q
)CZCUIi

P

2 2

G ¢
s* = anln +1)1—2 +and—on? q_2
P

4 14

2
= ST+)?—1=(12+1)1
X P
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(2.8.19)

(2.8.20)



12_= (n+l)q_£,_

Again, we have
2 N

_ fi_+l)g (2.8.21)
£ 2

From equation (2.8.20) and (2.8.21), we may have
p=—" (2.8.22)

From equation (2.8.22) and the first frequency% =nap"q, we get

n= 1-*————————102:7’(‘fl /NE)

- (2.8.23)
log p
Again from the zero class frequency{—‘;— = f+aq", we get
1-Jo
p—. (2.8.24)
l _pll

(d)Inflated Geometric Distribution
The parameters of inflated geometric distribution may be estimated by

following method of estimation.

(1) Method of Maximum Likelihood (ML)

Since the inflated geometric distribution is a zero modified distribution

so one of the ML equation is

v ap=2o 8.2
ﬂ+@—N (2.8.25)
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where %’—is the observed proportion of zeros. It is also a power series

distribution, and so the other ML equation is

x=14 (2.8.26)
p
Eliminating & between equation (2.8.25) and (2.8.26), we get
[-%)
. N
p=-—"7 (2.8.27)
X
) |
and a=-~—"2 : (2.8.28)
q

(i1) Method of moments.

The parameters p and a of inflated at zero geometric distribution may

be estimated from the mean and variance as

- 2%
I 2.8.29
P sP+xt+x ( )
and - @=L (2.8.30)
(1-7p)

= TIESY

a % and variance=s* =@

P
(iii) Method of mean and first frequency

where mean=Xx =

{%(2 —&‘)+1}

We have —f—’—=&'ﬁ§ andJ?:g—g
N p

S (2.8.31)

= ‘BZNE
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and a= 3;;3 (2.8.32)

2.9 Goodness of fit

Here we consider some reported data sets for fitting of these inflated
binomial, Poisson and geometric distribution. We use the method of maximum
likelihood, method of moments, method of mean and first frequency for fitting of
these distributions.

In Table 2.2, the inflated binomial distribution was fitted to Pyrausta ni
bilalis data [Beall (1940)], for which Neyman type A (NTA) and Neyman type B
(NTB) were fitted by McGuire et al (1957). Since maximum likelihood method
does not give an explicit solution, method of moment and an adhoc method are
used here to estimate the parameters of the inflated binomial distribution. It has
been observed that when the first two frequencies are large compared to others,
the estimation by the adhoc method gives some improvement in the fitting of the
inflated binomial distribution.

In Table 2.3 and 2.4, we consider European corn borer data for which
negative binomial and Neyman type A distributions were fitted by McGuire et al ‘
(1957) and inflated Poisson distribution (ML method) was fitted by Sinth (1963).
It is observed from the tables (2.3 & 2.4) that method of moments/, method of
mean and first frequency give as good fit as the maximum likelihood method by
Singh (1963). Thus in most of the cases it has been seen that if there is an excess
frequency of observed event at point zero as well as a respective decrease of its
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value at the remaining points, the inflated Poisson distribution provides much
closer fit to the data than the others.

In Table 2.5, for fitting of inflated geometric distribution, the accident
of 647 women working in a high explosive shells during 5 weeks period [data
Greenwood & Yule (1920)] has been considered for which negative binomial and
Hermite distributions were fitted by Plunket & Jain (1975). In Table 2.6,
European corn borer data for which negative binomial distribution (ML method)
was fitted by McGuire et al (1957) has been considered for fitting of inflated
geometric distribution. It is observed from the Table 2.5 & 2.6, that maximum
likelihood method gives better fit in both the cases as judges by the x? values.

Here the fitting of inflated negative binomial distribution is not
considered since the fitting of this distribution by the composite method does not
give better fit like inflated Poisson, inflated binomial and inflated geometric

distribution. Hence the result is not reported in this case.
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Table 2.2 Observed and expected frequencies on the basis of inflated binomial

(IB), NTA & NTB distribution. [Data on Pyrausta nibilalis to which NTA & NTB
were fitted by Beall and Rescia (1953)]

Noof | Observed Expected frequency
insects frequency IB(MM) IB(FM) NTA NTB
0 33 34.35 32.00 37.8 37.1
1 12 6.66 11.17 5.6 6.8
2 6 7.79 8.21 52 5.0
3 3 4.55 3.02 3.5 3.2
4 1 1.33 0.56 1.9 1.9
=5 1 0.32 0.04 2.0 2.0
Total 56 56.00 56.00 56.0 56.0
1t 5.0396 0.1083 9.04 5.57
Parameter estimates p 0.3690 0.2689
a 0.4138 0.7311

Note: IB: Inflated Binomial distribution,
NTA: Neyman Type A,
NTB: Neyman Type B,
MM: Method of moments,

FM: Method of Mean and first frequency.
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Table 2.3 Observed and expected frequencies on the basis 1P, NB and NTA
distribution. [Data McGuire et al (1957), distribution 6]

Count per| Observed ~ Expected frequency
plant frequency | IPMM) IP(FM) IP(ML) NB NTA

0 907 906.19 906.53 907.00 902.85 906.28
1 275 27554 27594 27427 288.86 280.61
2 88 90.64 90.73  90.85 78.07  82.01
3 23 19.88 19.96  20.06 19.81 20.45
4 3 3.75 2.84 3.82 6.82 5.65
Total 1296 1296.00 1296.00 1296.00 1296.00 1296.00
I 0.31 0.53 0.70 4.19 1.97

Parameter estimates& 0.6578 0.6598 0.6625
a | 0.6239 0.6221 0.6192

Note. IP: Inflated Poisson, NB: Negative binomial, ML: Maximum Likelihood
Table 2.4 Observed and expected frequencies on the basis IP, NB and NTA
distribution. [Data MaGuire et al (1957), Distribution 9].

Count per | Observed Expected frequency
plant frequency |IP(MM) IP(FM) IP(ML) NB NTA
0 188 188.57 187.18 188.00 185.19 187.79
1 83 81.22 82.99 81.89 89.23  85.29
2 36 38.58 38.52 38.56 3299 3454
3 14 12.25 11.92 12.11 10.97 11.62
4 2 2.92 2,77 2.85 3.45 3.48
5 1 0.46 0.62 0.64 1.52 1.28
Total 324 324.00 324.00 324.00 324.00 324.00
7’ "] 033 0.36 0.55 2.36 126

Parameter estimatesq; 0.9524 09283 0.9424
a |0.6806 06982 0.6876
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Table 2.5 Observed and expecled frequencies on the basis of 1G, NB and

Hermite distribution. [Data Greenwood and Yule (1920)]

Number of | Observed Expected {requency
accidents | frequency IG(ML) 1G(MM) NB  Hermite
0 447 446.99 44294 445.39 440.04
1 132 132.89 135.86 134.90 135.54
2 42 43.58 46.39 44.00 55.66
3 21 15.95 15.57 14.69 12.82
4 3 5.02 5.22 4.96 3.20
5 2 2.57 1.02 2.56 0.74
Total 647 647.00 647.00 647.00 647.00
X 254 2.7 3.7 9.015
Parameter estimates p 0.664 0.677
a 0.9212 0.9792

Note.

Table 2.6 Observed and expected frequencies on the basis of 1G and NB

1G: Inflated Geometric

distribution. [Data McGuire et al. (1957), Distribution 8]

Count per|{ Observed Expected frequency
plant frequency IG(ML) IG(MM) NB
0 1117 1117.00 1114.77 1114.98
1 149 151.13 155.39 154,51
2 27 23.52 24.11 22.51
3 3 435 1.73 3.99
Total 1296 1296.00 1296.00 1296.00
7t 0.96 1.54 1.35
Parameter estimates p 0.84439 0.8548
a 0.8873 0.9633
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Chapter 3

Poisson-Lindley and some of its Mixture Distributions

3.1 Introduction
Poisson-Lindley distribution is a generalized Poisson distribution

originally due to Lindley (1958) with pmf

_¢*p+2+x) _
P.(¢)= e x=0,1,2,... (3.1.1)

Sankaran (1970) further investigated this distribution with application to mistakes
in copying groups of random digits [data from Kemp and Kemp (1965)] and
accidents to 647 women on high explosivé shells in 5 week [data from
Greenwood and Yule (1920)]. In both the above examples, single parameter
Poisson- Lindley distribution gives a better fit than Poisson distribution. It is a
special case of Bhattacharya's (1966) more complicated mixed Poisson
distribution. Some mixtures of Poisson-Lindley distribution by using Gurland’s
generalization (1957) were studied by Borah and Deka Nath (2001) where the
properties of Poisson-Poisson-Lindley and Poisson-Lindley-Poisson distributions

were investigated.
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In this chapter, Poisson-Lindley distribution 1s further investigated.
Recurrence relations for the probabilities and the factorial moments are studied.
Two mixture distributions of Poisson-Lindley distribution i.e. Poisson-Poisson-
Lindley and Poisson-Lindley-Poisson distributions are investigated and their
recurrence relations for factorial moments and probabilities are discussed. The
parameters of the distributions are estimated by different methods of estimation.
The aim of this chapter is to derive some basic properties of these three
distributions and to compare them with other distributions on the basis of their fits
to empirical data.

3.2 Poisson-Lindley Distribution

(a) Expression for Probabilities

The probability generating function (pgf) of Poisson-Lindley

distribution may be written as

H()= ¢’ (p+2-1)

(¢+1X¢+1—-t)2 3.2.1)
Differentiating equation (3.2.1) with respect to ‘t’, we get
()22 +3-1)
H =
2 (p+1)Np+1-1)
= (¢+1_1)3H'(,)=(¢+1_1)2H(,)+.@% (3.2.2)

Equating the i term in the equation (3.2.2), the following recurrence relation for

probabilities may be obtained.
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@2+ n)
GG (3.2.3)

where Py = &-L;t)
(@+1)

Putting r=1,2,3...in equation (3.2.3), the higher order probabilities may be

computed easily.

(b) Factorial Moments

The factorial moment generating function (fmgf) of Poisson-Lindley

distribution may be written as

t
]
H(t+l):———(¢—4i

2 (3.2. l)

Differentiating the equation (3.2.4) with respect 10‘t’ and equating the coefficients

r

of — the following relation for factorial moments may be obtained.
r!

, _r(¢+r+1)

- ' for r=234,.. 325
’u(’) ¢(¢+I‘) 'u('-l) ( )

where )= ¢§¢(5¢++21)) and

, _2(p+3)
ﬂ(z)———-¢z(¢+l)

where 4,y stands for the ™ factorial moments.

3 2
Hence variance = u, = ¢ +4¢" +6¢ +2

$*(p +1)°
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(c) Estimation of Parameter

The single parameter ¢ of the Poisson-Lindley distribution can be
estimated by the following methods.
(i) Method of moments

Using the sample meanX, the parameterg of Poisson-Lindley
distribution may be estimated as

l}(f—0+\Kf—Q2+8f]

2x

(3.2.6)

where X = ;?;f])) [see Sankaran (1970)].

(i) Ratio of first two frequencies
For Poisson-Lindley distribution, ¢ may also be estimated by taking

ratio of first two frequencies We have

fo _#@+2) S _$'(@+3)

N (g+1) N (g+1)

Eliminating ¢ between first two frequencies, we may obtain

(gz—(3fl"fo)+\/(?fl ;;0) _4f‘(2ﬁ_3f°) (3.2.7)

3.3 Poisson-Poisson-Lindley Distribution
Poisson-Poisson-Lindley distribution may be derived by
generalizing Poisson distribution [see Gurland (1957)], by using Poisson-Lindley

distribution.
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(a) Expression for Probabilitics
By using Gurland’s theorem [Gurland (1957)], the pgf of

Poisson-Poisson- Lindley distribution may be written as

NACER) _,}

H(t)=e l(””)(””" ) (3.3.1)

Differentiating both sides of equation (3.3.1) with respect to ‘t” , we get

, A9 (p+3- l)
H(t)—(¢ Y10 H() (3.3.2)

Equating the coeflicient of /" on both sides of the equation (3.3.2), we get
= (r+1fp+1)’P, -3 +1)"rP +3(p+1r-1)P_, - (r-2)P_,
/1¢2 {(¢ + 3)Pr - Pr-l }/(¢ + 1)

Hence the recurrence relation for probabilities may be written as

gl o el

a*(r-2)P., ], =23,..., (3.3.3)

1 A {¢’(¢+3)_ }
where A>0, >0, a=——, P, =e (p+1) ,
¢+1

Ag? (¢+3)a Ada
he H @#+1) (¢+l)}P (¢+1)2P°J
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(b) Factorial Moments

The fmgf of Poisson-Poisson-Lindley distribution may be written as

(3.3.4)

Differentiating both sides of equation (3.3.4) with respect to‘t’ and equating the

r

. t 3 . . .
coefficient of e the following relation for factorial moments may be obtained.
rl

. (3 AMe+2)| , [3r(r-1) . A . rr=1r-2) ,
g "“"{TW}”"’ { PRSI T

forr=2,3,.... (3.3.5)

where g, denotes the i factorial moment of Poisson-Poisson-Lindley

distribution and

, Mg +2)
08+

, _Alg+2)  24(g+3)
(2) ¢z(¢+1)2 ¢2(¢+1)’

yri

= A@p+2)  222(p+2)56+9)  6A(¢ +8)
) Y R D

u _Ap+2) | 2@+2)' (74 +27) 12,12(7¢2+28¢+29)+12,1(11¢+28)
D) 1) ¢ (¢ +1) ¢ +1)

/l(¢2 +4¢+6)
8@ +1)

Hence Variance =, =
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(c) Estimation of Paramecters

The two parameters ‘A’ and ‘¢ ’of Poisson-Poisson-Lindley distribution
may be estimated by the following methods.

(i) Method of moments

Using the sample mean and variance the two parameters A and ¢ of

Poisson-Poisson-Lindley distribution may be estimated as follows.

i 7 -57)+z- 5 ) - 6x(% - 5?)

336
(£-5?) (3:36)
j=2P UK (3.3.7)
+2
where E:’l(¢+2) and

$(+1)

oo Mp?+ap+6)
#*(¢p+1)

(ii) Ratio of first two frequencies and the mean

By equating first two probabilities with f, /N and f,/N , we get

. f,(¢° +1)3

he [ 2alp +2)-1) (3.3.8)

$ =— 2 -57)+ \/((2;_—;2)) —ox(x -Sf) (339
where A: éﬂ(ﬁi}_) 10_
N @+1) |N
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3.4 Poisson-Lindlcy-Poisson Distribution

Poisson-Lindley-Poisson  distribution may be derived by
generalizing Poisson-Lindley distribution [see Gurland (1957)] using Poisson
distribution as the generalizing distribution.
(a) Expression for Probabilities

The pgf of Poisson-Lindley-Poisson distribution may be written as

Hy=2 pr2-c) :
(+ 1)(¢ +1- e"(“'))

¢+2— e

= ,451?1—)}—2 (3.4.1)
where A= (¢¢—5:1)3 and
1
(+1)

Differentiating both sides of equation (3.4.1) with respect to ‘t’, we get

(1-aeY 1) = 42 fa(p +2)-1- ae* )}

- (1 _ 3ae’1("') + 3a2eu(:-x) _ a3e3'{("’))H'(t) — A{}{e“"' (¢ + ) _ /'Laeﬂ.(l—l)}

3
(6+1)
(3.4.2)

Equating the coefficients of " on both sides of the equation (3.4.2), the
recurrence relation for probabilities of Poisson-Lindley-Poisson distribution may

be written as
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B (¢+3) A r | A PR -1 12 -24
P, = A Ae™ -2 alde —+3ae 1-27 ae 3/ 2
-~ (r+1)|: {(¢+1) a }r! +3ae g( ac™ +3"'a’e™)

WA
(r—.l +1)7'_pr—1+l (342)
-2
where B = L : PozA(¢+2—e2J and
(1—3ae" +3a’e™ —a3e'“) (l—ae")

P, = ABe™ {((;%35) _ W-A}

(b) Factorial Moments

The [mgf of Poisson-Lindley- Poisson distribution may be wrilten as

Alp+2-e*)

H({+1)= (1 = )2 (3.4.3)

r

. . t . i
Expanding and equating the term -, on both sides of equation (3.4.3), the
rl

following factorial moment recurrence relation of Poisson-Lindley-Poisson

distribution may be obtained.

, —(¢—+—3)/1’“ —2’/1’“a+2(3a—3a22’ +a33f(r.
:u(r+1) = (1 _a)3 (¢ +1) J=1 J

)A’I Iu(’r-j+l)

for =1,2,3,... (3.4.4)
Putting r= 1,2,3 in equation (3.4.4), the higher order moments may be obtained as

. 2(p? +ap+6)
T )
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, /13(¢3 +8¢p° +12¢+48)

- d
o AT N

. AMp* +164° + 7867 +60g + 336)
H (@ +1)

respectively where u, denotes the ™ factorial moment of Poisson-Lindley-

Poisson distribution. Hence the mean and the variance for Poisson-Lindley-

Poisson distribution may be written as

A(p +2)
$(p+1)

and

mean= u, =

12(23 + 4¢° +6¢+2)+A(¢+2)
$*(¢+1)’ $+1)

variance = y,=

(c) Estimation of Parameters
The two parameters ‘A’ and ‘¢’ of Poisson-Lindley-Poisson
distribution may be estimated by the method of moments. By eliminating A

between mean and variance, we obtain

¢ +4¢> +60+2  p, —p
@+2) u o4

which gives an estimate for ¢ by a numerical solution by using Newton-Raphson
method. On getting the estimate ¢3 of ¢ from equation (3.4.5), the estimate of A

may be derived as

/i:f%‘ﬁ}) , (3.4.6)
+2

where X denotes the mean of the distribution.
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3.5 Goodness of Fit

It is believed that the Poisson-Lindley and the two of its mixture
distributions i.e  Poisson-Poisson-Lindley and  Poisson-Lindley-Poisson
distribution should give a reasonably good fit to some numerical data for which
various modified forms of Poisson distributions was fitted earlier. Therefore, we

have tried the fitting of these distributions to some published data and have

compared them with other distributions as measured by y?criterion. In getting the

x’ criterion for goodness of fit, tail frequencies are grouped to obtain 5 or
slightly greater than 5 for the expected frequency in each group.

In Table 3.1, we have considered the problem of accidents to 647
women on high explosive shells in 5 week period [data from Greenwood and
Yule (1920)] for which Poisson distribution was fitted earlier and Poisson-Lindley
was fitted by Sankaran (1970). The problem of mistakes in copying groups of
random digits [data from Kemp and Kemp (1965)] is considered in Table 3.2 for
which single parameter Poisson distribution was fitted. Observing the values of
z* and a comparison of the observed frequencies with the expected frequencies
for corresponding Poisson-Lindley, Poisson-Poisson-Lindley and Poisson-
Lindley-Poisson distribution in both the Table 3.1 & 3.2, it is clearly seen that the
Poisson-Lindley and two of its mixture distributions describe the data very well.
In Table 3.3, we have considered the number of European red mites on apple

leaves [Data Bliss, (1953)] for which negative binomial distribution was fitted.
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Again in Table 3.4, the data on Pyrausta nibilais is considered for which
Neyman Type A distribution was fitted by Beall and Rescia (1953).

In the last table of this chapter, we considered the problem of home
injuries of 122 experienced men during 11 years for which generalized Poisson
distribution was fitted by Consul (1989). Because of complexity of maximum
likelihood method of estimation, method of moments and ratio of first two
frequencies and mean are used to estimate the parameters of these distributions.

For all the five sets of data, the relative efficiency of Poisson-Lindley,
Poisson-Poisson-Lindley distribution and Poisson-Lindley-Poisson distribution
are shown in Table 3.1, 3.2, 3.3, 3.4 and 3.5 respectively, by using different
method of estimation..

From the following tables it is clear that there are some improvement,
however small it may be, in fitting these mixture distributions i.e. Poisson-
Lindley, Poisson-Poisson-Lindley distribution and Poisson-Lindley-Poisson

distribution over the other distributions considered earlier. The distributions as

indicated here may be used with in other situations also.
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Table 3.1 Comparison of observed frequencies for accidents to 647 women on
high explosive shells in 5 weeks with fitted Poisson-Lindley (PL), Poisson-
Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP) distributions. [Data
Greenwood and Yule (1920)]

No. of | Observed Expected Frequency
accident | frequency | Poisson PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM)
0 447 406 441.28 45290 442.05 450.95 444.58
1 132 189 139.83 135.15 137.79 133.15 134.78
2 42 45  45.02 38.82 46.57 43.86 46.17
3 21 7 1488 13.86 14.57 13.46 14.85
4 3 1 420 408 432 324 462
>5 2 1 1.79 219 170 234 200
Total | 647 649 647.00 647.00 647.00 647.00 647.00
x: 50.57 384 439 404 441 356
6 2.726 3.056 5.163 5.163 0.567
A 2.066 1.957  0.161

Note: PL(MM): Poisson-Lindley distribution (Method of moments)

PL(RF): Poisson-Lindley distribution (Ratio of first two frequencies)
PPL(MM): Poisson-Poisson-Lindley distribution (Method of moments)
PPL(RF): Poisson-Poisson-Lindley distribution (Ratio of first two

frequencies)

PLP(MM): Poisson-Lindley-Poisson distribution (Method of moments)

58



Table 3.2 Distribution of Mistakes in copying groups of random digits with
expected frequencies obtained by Poisson, Poisson-Lindley (PL), Poisson-
Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP) distribution. [Data
Kemp and Kemp (1965)]

No. of errorg Observed Expected Frequency
per group | frequency | Poisson PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM)
0 35 274 33.05 41.34 3283 3987 3553
1 11 21.5 1527 1299 1522 1253  15.69
2 8 84 674 346 706 487  7.02
3 4 22 289 182 299 178 2091
4 2 4 121 039 119 095 1.15
Total 60 59.9 59.16 60.00 59.29 60.00 59.29
2 1513 248 1649 233 672 258
6 1.7421 2839 3.930 3.930 0.244
A 2559 1735 0.106
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Table 3.3 Comparison of observed frequencies for counts of the number of
European red mites on apple leaves with expected negative binomial, Poisson-
Lindley (PL), Poisson-Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP)
distributions. [ Data Bliss (1963)].

No.of mitcs | Obscrved Expected Frequency
perical |frequency| N.B. PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM)
0 70 67.49 67.189 71.832 69.879 066.146 68.675
1 38 39.03 38884 38995 35391 35908 36.944
2 17 20.86 21.262 20068 21.016 21977 21.213
3 10 10.97 11206 9972 11.626 12469 11.405
4 9 566 5755 4834 6.116 6.707 5911
5 3 290 2.899 2300 3.096 3.465 2.986
6 2 1.48  1.439 1.079 1521 1.734 1.480
7 1 0.75 0.706 0.500 0.728 0.845 0.723
8 0 0.76 _ 0.660 0.420 0.627 0.749 0.663
Total 150 150.00 150.00 150.00 150.00 150.00 150.00

2 1.9275 1.6853 25795 1.4898 19906 1.4909

X
0 1258 1386 2472 2472 0357
y) 2201 2359 0236
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Table 3.4 Observed and fitted Poisson-Lindley (PL), Poisson-Poisson-Lindley
(PPL) and Poisson-Lindyey-Poisson (PLP) distribution. [Data on the Pyrausta
nibilais, to which NTA was fitted by Beall & Rescia (1953)].

No.of | Observed Expected Frequency
insccts | frequency | NTA PL(MM) PL(FM) PPL(MM) PPL(FM) PLP(MM)
0 33 37.8 31485 35968 32503 33.881 32212
1 12 5.6 14156 13.079 12.796 12320 13.191
2 6 52 6.090 4592 6079 5668 6.094
3 3 3.5 2,542 1572 2703 2,453 2,642
4 1 1.9 1.038 0.529 1.147 1.016 1.107
5 1 2.0 0.689 0.260 0.772 0.662 0.754
Total 56. 56.00 56.00 56.00 56.00 56.00 56.00
x* 9.04 0437 0.791 0.065 0.178  0.037
6 1.808 2.378 3.176  3.176 0.487
A 1922 1.775 0218
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Table 3.5 Comparison of observed frequencies for home injuries of 122
experience men during 11years (1937-1947) with expected Poisson-Lindley (PL),
Poisson-Poisson-Lindley (PPL) and Poisson-Lindyey-Poisson (PLP) and GPD
[Consul (1989)] frequencies.

No.of | Obscrved Expcected Frequency

injurics| frequency | GPD PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM)

0 58 5722 59.753 53.869 57.051 57.083 56.430
1 34 3441 31.693 31.579 33.443 33.437 34.530
2 14 16.64 15956 17.479 17.486 17.476 17.351
3 8 759 7761 9321 8.158 8.150 7911
4 6 6.14 3.683 4843 3.525 3.521 3411
5 2 3.154 4.909 2337 2.333  2.367

Total 122 122 122 122 122 122 122

22 1.09 0664 0315 1503 1.505 1.554
9 1.434 1233 3.976 3.976 0.094
A 3259 3256  0.048
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Chapter 4

A study on Inflated Poisson-Lindley Distribution

4.1 Introduction

To serve the probabilistic description of an experiment with a
slight inflation of probability at point zero, the inflated Poisson-Lindley
distribution is studied in this chapter. The recurrence relations for moments and
probabilities of the inflated Poisson-Lindley (IPL) distribution are derived.
Attempt has been made to obtain the recurrence relations without derivatives,
since these forms are easy to handle on computer. Borah and Deka Nath (2001)
studied and fitted the IPL distribution to some well known data for empirical
comparison.

4.2 Recurrence Relation for Probabilities

The probability generating function (pgf) of the IPL distribution

may be written as
H(t)= p+ag(0) 4.2.1)

p*p+2-1)
(p+1Xp+1-1)
and a+f=1,0<f<1 and ¢9>0.

where g(t)= is the pgf of Poisson-Lindley (PL) distribution
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It is also possible to take the parameter # less than zero, provided S +ap, 20,
where p, = P(X =0).
Differentiating equation (4.2.1) with respect to ‘t” and equating the coefficients of

t" from both sides of the equation, we have the recurrence relation for probabilities

P(X =r)= (¢+2+r) P(X=r-1), =23, 4.2.2)

(@+1Mg+1+7r)

where P(X =0)=f+ m P(X=1= ___a¢2_(¢ +3)

@+1y 7 (¢ +1)

After some suitable transformation of equation (4.2.2), we may have

P(X =r)= a¢(2¢f¢:)f+ D) =123,

(4.2.3)

where P(X=O):,B+-Cﬁ$—2—(¢—+Zl :

@ +1)
4.3 Graphical Representation of IPL Distribution
To study the behaviour of the IPL distribution with varying values

of ¢ and f =1-a, the probabilities for possible values of X are computed by

using above equations (4.2.2) or (4.2.3) and accordingly different graphs may be

drawn for various values of the two parameters.

Fig. 4.1 contains four graphical representation for £F= -0.1 and
$=1,2,5,7. Similarly, Fig. 4.2 contains four graphs for f#=-0.4 and ¢ =2,3,5,9
respectively. It clearly indicates {rom the graphs that for the changes in the values

of ¢ there are significant differences in the probability distribution ie. as ¢
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increases, the value of P(X=0) increascs and the probabilities for all other valucs

of X decrease.

For further study of the effect of the changes in the values of £ on the
behaviour of IPL distribution, Figures 4.3 and 4.4 are shown. Fig. 4.3 contains
two graphs for #=0.1 and ¢ =1 & 3 and Fig 4.4 contains two graphs for £=0.9
and ¢ =1 & 5 respectively. It is clear from these graphs of Fig. 4.3 and Fig. 4.4
that when [ increases, the value of P(X=0) increases and the probabilities for
all other values of X decrease and the model always remains L-shaped. Thus the
tail becomes more and more heavier and longer with the decrease in the value of
¢ . It is also clear from Figure 4.4 that the probabilities on the right hand side tail
sharply decline when £ closes to unity and ¢ takes any value.

Again Fig. 4.5 contains four graphs for ¢ =2 and =-0.8,-0.6,-02,04
and Fig. 4.6 contains four graphs for ¢ =9 and £=-0.8,-0.6,0.2,0.6 respectively.
From Fig. 4.5, it is seen that the model looses its L-shaped form when 3 and ¢
are both small. But from Fig. 4.6, it is observed that there is a similar effect like in
the Fig 4.4 that, when the value of ¢ is large and the value of £ is slowly

increased, then P(X=0) increases and the probabilities for other values of X
decrease sharply giving a L-shaped form to the model like the Geeta distribution

[Consul (1990)].
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Figure 4.1 Graphs of probability distribution for #=-0.1 and ¢=12,57

respectively for IPL distribution.

Probabili
0.35 robability 0.6 Probability
03 05
0.25
0.4
02
0.3
0.15
0.2
0.1
0.05 l L 01
0 5 L Li 1 0 - I [ ] .
¢ 1t 2 3 4 5 6 7 8 9% 10 o 1+ 2 3 4 5 6 7 8 9 10
Value of x Value of x
1 Probability 1 Probability
0.8 08
0.6 06
0.4 04
0.2 02
0 B I 0 '}
0 1 2 3 4 5 6 7 8 9 0 2 3 4 S 6 7 8
Value of x Value of x

66



Figure 4.2 Graphs of probability distribution for f=-04 and ¢ =239
respectively for IPL distribution
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Figure 4.3 Graphs of probability distribution for f=0.1 and ¢=1,3
respectively for IPL distribution.
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Figure 4.4 Graphs of probability distribution for #=09 and ¢=1, 5
respectively for IPL distribution.
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Figure 4.5 Graphs of probability distribution for ¢= and
p =-0.8,-0.6,-0.2,0.4 respectively for IPL distribution.
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Figure 4.6 Graphs of probability distribution for ¢ =9 and f =—-0.8,-0.6,0.2,0.6
respectively for IPL distribution.

1 Probability 1 Probability
08 ' 08| °
06 0.6
04 04
0.2 0.2
0 a 0 A
0 1 2 3 4 5 ) 0 1 2 3 4 S 6
Value of x Value of x
; Probability ’ Probability
I
08 08
0.6 06
0.4 04
0.2 0.2
N 0
0 1 2 3 4 S 6 7 o] 1 2 3 4 S 6
Value of x Valye of x

70



4.4 Recurrence Relation for Raw Moments

The moment generating function (mgf) of IPL distribution may

be written as

m(t) = B +aM (1) “4.1)

2 ot
where M (t) = ¢ (¢ t2-¢ ) is the mgf of the PL distribution [see chapter 3].
@+1fp+1-e')

Differentiating equation (4.4.1) with respect to ‘t” and equating the coefficient of

r

4 . c e
— . we get the raw moments recurrence relation for the IPL distribution as
r!

_nr r _ g+ 2 i+1 3
Hy afp+3) -] +2, ba-s3 20+ a)( ' )#L,,Dl (4.4.2)

) (1-a) j+1

’ ¢(¢+1) J=0

where a = —1———-

@#+1)

,=a(¢+2) 4.43
My s6+1) (4.4.3)

, ='a(¢2 +4¢ + 6)
wd TG

(4.4.4)

where 4! denotes the i raw moment of IPL distribution. The central moments of

IPL distribution which can be obtained from the raw moments are given bellow

_ aff? +a¢* +6p+2+ plp+2) )

, - . 4.4.5
#*(¢+1) (34
Uy = ——a—;{ab’ +7¢% +224° +32¢4% +18¢ +4+,B(3¢“ +17¢% +36¢* +
#*(p+1)
304 +4 )+20(p* + 64> +124 +18) } (4.4.6)
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i, = ¢_4_(lﬁ_¢_)4{¢7 +5¢° +97¢° +2584" + 4064° + 314p* + 484 + 24 +
+

(49¢ +36¢° +1454* +3124° + 40047 + 384¢ + 48)+ 357 (2¢°
+154° +44¢° + 524 )+38°(p* +84° + 249" +324 +16) } (4.4.7)
Putting £ = Oin equation (4.4.5) the variance of PL distribution may be obtained

[see Borah and Deka Nath (2001)].

4.5 Skewness and Kurtosis of IPL Distribution

The expression for the coefficient of skewness and kurtosis can

be written as follows interms of ¢ and .

_A+pB+pC

_ _ M
¥y =+B, = P o (4.5.1)

where A=¢° +7¢* +22¢° +324% +184 + 4
B=3¢" +17¢° +36¢ +30¢ + 4
C=¢>+64>+12¢ +18
D=¢>+4¢> +6p+2+w(p +2)°

_E+fF+3B°G+38°H

s (4.5.2)

and 72::32_3:#24 -3

Hy
where E=¢7 +2¢° +73¢> +174¢* +256¢° +152¢% — 244 +12
F =7¢° +54¢° +181¢* +312¢° +34¢* +264¢ +12
G =4¢> +304* +62¢° +112¢* +32¢
H =2¢* +16¢> +52¢* + 64¢ +32
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It is clcar from the above expression of y, that for any given value of
¢>0 and B is close to unity, the skewness is infinitely large and it becomes
smaller and smaller as the value of [ decreases. The IPL distribution is

leptokurtic as the value of y, is positive for all values of ¢>0 and 0< f <1, which

) ) -3
is also clear from the simulated results of 2 :
1
B 5 5 5 5 5
¢ : .0001 2 1 10 20

—E: 11.432 2206 5849 202232 4151833

From the above simulated result, it is seen that the value of the ratio

£=3 tends to oo as ¢ becomes larger. This wider limit of pz3 indicates

1 i
greater flexibility of the IPL distribution.
4.6 Recurrence Relation for Factorial Moments

The factorial moment generating function (fmgf) of IPL

distribution may be written as

a(l - L)
H+()=p+—~—22 (4.6.1)

&
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where a=——

Differentiating equation (4.6.1) with respect to ‘t’ and equating the coefficients of

r

0 the following recurrence relation for factorial moments may be obtained.

rl
/U(’rn) :%/1(”) _B_r%__lzlu(’r-l) +f_(f'_:;_)3(/;—_2)#(,’_2) (4.6.2)

, 1 2

where Hyy = —;i(%_l))
_ 2lalp+3)

‘U(z) - ¢2(¢+1)
= 3la(p + 4)
Vgl

where 4, is the ™ factorial moment of IPL distribution. The recurrence relation

in equation (4.6.2) of factorial moments may also be written as

Koy =i‘;%2rl—;l) (4.6.3)
4.7 Estimation of Parameters

The parameters ¢ and # of IPL distribution can be estimated
by using the following methods.

(a) Method of Maximum Likelihood (ML)

Since IPL distribution is a zero modified distribution, one of the ML

equations is
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o [
ﬂ+é¢A¢+3=ii (4.7.1)
+1 N

ny . : o .
where 7\/0—18 the observed proportion of zeros. As it is also a power series
distribution so the other ML equation will be

f:&é%g% 4.72)

Eliminating ,B from equation (4.7.1) and (4.7.2) respectively, we may have

(¢ + 1) AZ n0

V+2 @+ﬁ_ ~=L (4.7.3)

¢3 can be estimated from equation (4.7.3) by using Newton Raphson method and

then ,é may be estimated from equation (4.7.1)
(b) Methods of Moments

The parameters ¢ and [ may be estimated from the first two raw

moments 4, and u; from equation (4.4.3) and (4.4.4).

— )+ J(uy =20 + 20 113)
(4 — a17)

Thus J:@M (4.7.4)

~ Sip +1

- 4.7.5
+2 ( )

(c) Ratio of first two Frequencies and Mean

.. . . . n H
Eliminating B between first two frequencies 1.e.ﬁ' and —]—vz-, we get
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o) J{(z_;; - _)} “76

ﬂ—M ”Z_M

= G and =+ and B’ may be estimated from the

N (p+1)

where

following expression.

pe1 ¢'(p +1)x

417
@'+2) @D

4.8 Fitting of 1PL Distribution to Data
As the IPL distribution has only two parameters and has a simple

form so it may be applied in different fields such as biology and ecology, social
information, genetic and so on which are discussed below.
Biology and Ecology

For the fitting of IPL distribution, in Table 4.1, we have considered the
Student’s historic data on Haemocytometer counts of yeast cells for which
Gegenbauer distribution (GD) was fitted by Borah (1984) (using method of
moments). In Tables 4.2 and Table 4.3, we have considered two data sets of Beall
(1940), for which generalized Poisson distribution (GPD) was fitted by Jain
(1975) (by using MLE). 1t is observed from the following Tables 4.1, 4.2 and 4.3
that ML method gives better rc;,sult in all the cases and there is some improvement
however small it may be, in fitting of 1PL distribution over the other distributions

considered earlier. In case of Table 4.3, the method of ratio of first two
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frequencies with mean doces not give better fit, as the computed x?* value is quite
large. Hence the result is not reported in this case.
Strikes in industrics

Kendall (1961) considered the observed data on the number of strikes
in 4-week period in four leading industries in UK. during 1948-1959 and
concluded that the aggregate data for the four industries agrees with Poisson law
but that it did not hold well for the individual industries. The IPL distribution has
been fitted to the observed data for the four individual industries and the resuits
are given in Table 4.4 along with the expected GPD frequencies [Consul (1989)].
From the %? values it is clear that the pattern of strikes in vehicle manufacture,
ship building and transport industries follow IPL and GPD model and IPL
distribution gives better fit than the GPD model for coal mining industries.

Genetics

Chromosome interchanges in organic cell is produced by irradiation of
X-rays. Feller (1968) showed that the distribution of number of cells with exactly
k interchanges should follow Poisson distribution for which he had given
Catcheside et al. (1946)’s data. Consul (1989) showed that GPD model provides
better fit in every case than the Poisson distribution. It is observed from Table 4.5
that IPL distribution also provides better fit, except the last case. However the %?

for IPL distribution in that case is lower than the significant value.
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Table 4.1 Hacniocytometer Counts of Ycast Cells

No. of Yeast |Observed Expected frequency
cells per square |frequency | IPL (ML) IPL (MM) GD (Borah1984)
0 213 213.00 210.46 214.15
1 128 127.59 131.14 123.00
2 37 40.91 40.76 44388
3 18 12.82 12.39 13.36
4 3 3.95 3.71 3.55
5 1 1.2 1.09 0.86
6 0 0.53 0.45 0.20
Total and 400 400.00 400.00 400.00
Estimates $=2.669 ¢ =2.774
$=-0.431 B =-0.497
x1=1.037 22=1.53 2=2.8342

Table 4.2 Fit of distribution on Pyrausta niblilalis in 1937 [data of Beall (1940)]

No. of | Observed Expected frequency
Insects | Frequency | IPL (ML) IPL (MM) IPL (FM) GPD (Jan1975)
0 33 33.00 32.07 34.08 32.46
1 12 12.41 13.47 11.23 13.47
2 6 5.84 6.00 5.61 5.60
3 3 2.66 2.59 2.71 2.42
4 1 1.18 1.096 1.28 1.08
5 1 0.91 0.774 1.09 0.97
Total 56 56.00 56.00 56.00 56.00
and $=1.588 $=1719  ¢'=1449
Estimates £=0.1406  [F=0.0573 [B'=0.228
22=0.029 22=0215  x*=0.096 »*=0.25

Note: IPL: Inflatcd Poisson-Lindley distribulion,

ML: Maximum likclihood

MM: Metliod of moments, FM: Ratio of {irst two frequencics and mean

GPD: Gencralized Poisson Distribution.
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Table 4.3 Fit of distribution of Corn Borer [data of Beall (1940)]

Corn borer{ Observed Expected {requency
Per hill frequency| IPL (ML) IPL (MM) GPD (Jain 1975)
0 43 42.99 44 99 4391
1 35 32.12 30.39 32.00
2 17 19.45 18.81 19.11
3 11 11.31 11.19 10.88
4 5 6.40 6.47 6.12
5 4 3.55 3.66 3.44
6 1 1.94 2.04 1.94
7 2 1.05 1.12 1.10
8 2 1.19 1.3 1.50
Total 120 120.00 120.00 120.00
Parameter estimates $=1.0587  §=1.0715
f=-0.5696 5 =-0.0087
22=0.577 2%=0.995 22=0.87
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Table 4.4 Comparison of observed frequencies of the Number of outbreaks of strike in four leading
industries in the U.K. during 1948-1959 with the expected IPL and GPD frequencies.

Number of Coal mining Vehicle manufacture Ship building Transport
outbreaks |Obs. IPL GPD Obs. IPL  GPD Obs. IPL GPD Obs. IPL.  GPD
0 46 46.00 50.01 J110 110.00 109.82 |117 117.00 116.74|114 114.00 114.84
1 76 77.84 66.77 {33 3298 333629 29.78 3022| 35 3325 3388
2 24 229331239 940 924|9 707 697| 4 695 727
3 9 662 723 |3 263 358|0 165 08| 2 143 26l
>4 1 261 076 |1 099 1 0.0 1 037 1.69
Total 156 156 156 |156 156 156 | 156 156 156 | 156 156 156
and é=2.963 $=3.084 $=3.828 g=443
estimates | 4 = —1.351 B =-0.016 B =-0.037 B =-027
72=0157, 425| y*=0.056, 006 | y*=1.16, 1.19]|y*=2.14, 227




CHAPTER 5

o THE SHORT POISSON-POISSON-LINDLEY DISTRIBUTION



Chapter 5

The Short Poisson-Poisson-Lindley Distribution

5.1 Introduction
Cresswell & Froggatt (1963) derived a model which was a

convolution of Poisson distribution and a Neyman Type A distribution. They
called it “‘Short’, as opposite to the two-parameter ‘Long’ Neyman Type A
distribution. The name ‘Short” appears to relate the tails of the distribution. Kemp
(1967) considered the properties, recurrence relations for probabilities and fitted
this ‘Short’ distribution to accident data.

Here our distribution, namely the Short Poisson-Poisson-Lindley
(SPPL) distribution is a convolution of Poisson distribution and Poisson-Poisson-
Lindley distribution. The SPPL distribution which is an extension of Poisson-
Poisson-Lindley distribution was studied by Deka Nath and Borah (2000).
Modecl derivation from accident data

While deriving the ‘Short’ distribution from accident data, four
assumptions were made by Cresswell & Froggatt. In the same manner, the SPPL

distribution has been derived by considering the following assumptions:
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(i)  Every driver is liable to a spell — these are periods of time
during which his performance is sub-standard so that he is
liable to incur accidents. The number of spells in a given
time period is assumed to be Poisson variable with
parameter A;.

(i)  All drivers are equally liable to the occurrence of a spell.

(iii)  The probability of an accident occurring within a spell is
constant and not dependent on the particular driver and it
is assumed to have a Poisson-Lindley distribution with

constant parameter 6.

(iv)  Lastly, accidents can occur outside a spell and such
accidents are independently distributed as Poisson
distribution with parameter A, over the given time period.

It is generally observed that the derivation of probability mass function
(pmf) for some generalized mixture distributions seems to be complicated. So, the
pgf of SPPL distribution has been obtained by using Levy’s theorem [ see Feller

(1957)], which may be written as

H() = expl{d, (g~ 1)+ 4, -1}, (5.1.1)

where H(t) converges for|t|s1, ‘t> is the generating parameter and

6’0 +2-1)
(@+1X6 +1-1)

g)= denotes the pgf of Poisson-Lindley distribution [see

chapter 3]. Hence equation (5.1.1) may be written as
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e 0'2+6-1) _
H{)=¢e p['l‘{(eﬂ)(eﬂ-:)’ 1}+/12(1 I)}, (5.1.2)

where A, A2>0 and >0

In this chapter, we have studied the recurrence relation for probabilities
and factorial moments of the SPPL distribution. The limiting distributions of
SPPL distribution are discussed. The parameters are estimated by a composite
method i.e. by using the ratio of first two frequencies and first two moments. To
illustrate the various applications of this distribution, it is fitted to number of data
sets. Firstly, we have considered the number of accidents sustained by a group of
708 bus drivers over a period of 3 years. Secondly, we have considered the '
number of accidents to 647 women on high explosive shells in 5 week periods.
Thirdly, the number of accidents (home injuries) of 122 experienced men during
11 years period was considered and lastly we considered numbeér of accidents of
122 experienced shunting men over a period of 11 years. In all the cases the SPPL
distribution provides a better fit to the observed data.

5.2 Expression for Probabilities

Taking logarithm of equation (5.1.2), we have

i _ g (0+2-1) _
log,H(t)nll%(QH)(eH_t)z 1}+,12(: 1) (5.2.1)

Differentiating the equation (5.2.1) with respect to ‘t’, we get

H'() _
H(t)

6%*(0+3~1)
@+1fg+1-1)

A

2
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= @+1-0’H'() =2, Q%’J%)_L)H(zyraz(mrl—z)’ﬂ(z)
= {o+1) -306+1)r+3(0+1) tl-ﬂ}H'(l):xl%H(rn
2,40 +1F =30 +1) 1 +3(0+1)* -2 JH (D) (5.2.2)

Equating the coefficient of ¢” on both sides of equation (5.2.2), we get the

following recurrence relation.

1 | |A8*(@+3)  3r ] A8 3(r-1) 34,
P'”_r+l|i{ @+1) +(9+1)+12}P’ {(9+1)4+(9+1)2+0+1}

34, r—2
{(9+1)2+(9+1)3}P’-2 ©+1y 3] (5.2.3)
(9 )
" {/11 ©+1) Hi} Fo (5.2.5)

Putting r=1,2,3.. in equation (5.2.3), the higher order probabilities may be derived.
5.3 Expression for Factorial Moments
The factorial moment generating (fmg) function of the SPPL

distribution may be written as

!

(<9+1)

H(+1)=expi 4, + A1 (5.3.1)

=L
0
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Taking logarithm of both sides of the cquation (5.3.1) and diffcrentiating it with

respect to ‘t’, we get the following relation

' 3 _ 3
H (1+’)(1—i) =,1,(‘9—+2——’2+,12[1—i) (5.3.2)
Hl+)\ @ 60 +1) 6
=
3t 3 o (0+2 ) 3¢ 3%
- +1 ST H ) = A 1= - H (4]
Considering the coefficient of —t—l, on both sides of the above expression, we
r!

obtain the following recurrence relation for moments of SPPL distribution.
(9 + 2) r 3r(r-1) 3r
L) = + A, — + + A, =+
H(rn) {;{1 9(0 l) 9 }.u(r) {}1 9(9 + 1) 97 2 g H(r)

-1 2 3r(r-1 -DH(r-2) ,
{f(" 9)3(f ) + 4, f‘(;z )}ﬂ(r-z)—’lzr(r 0)3(" ):“(r-a)

(5.3.3)

where |t denotes the * order factorial moments of SPPL distribution. Explicit

expression for the first four factorial moments may be obtained as

., (6+2)
Ho=hpe) ™
. (@+2) (6+3) ©@+2) .,
Ho =t ey ey e )
(9+2) L5 1 64, 61 A
/1( {’11 ( 1) },U(z) { 9(€+1)+ 9 +92}#(l)+69

(9+2) 9 o 18 9
S A, Uy <=+ A, =y —
6 18] , 6
{;”z y}#m"y
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2
+2) +A, and vanance—llw + 4,

Hence mean= M( 6*(6 +1)
+

66 +1)
If A;—0, the moments become same a$ those of Poisson-Poisson-Lindley
distribution [see chapter 3].
5.4 Estimation of Paramecters
A composite method has been used to estimate the parameters of Sppl
distribution. The method is based on ratio of first two frequencies, sample mean

and sample variance. We have

(0+2) ‘
oy (5.4.1)
and  S*=4, @%;(—6‘:——?:)6)+/1 (5.4.2)

By equating the first two probabilities of equation (5.2.3) of SPPL

L .. n n ,
distribution with —%and — | we obtain
N N

mo_ ,19_(_913_) A, (5.4.3)
n, @+1)

By eliminating A, and A, between equations (5.4.1), (5.4.2) and (5.4.3), we have

200 +1)°(0+3) S*-x
= 54.4
20* +96° +70* +20 . G449

which gives an estimate for @ either by graphically or by numerical solution,

using Newton Raphson method 1i.e.
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20 +3)0 +1)°

Let us conside o) =
e ider /(9) 20* +96° +70* +20

2_..
where K=S u
PRy

Jo

Then the iteration formula for Newton Raphson method is

; £(0)
0=0,-—~% 54.5
7'6) 643)

where @, is the initial value and @ is the estimated value of @ respectively. The

initial guess value for starting the Newton Raphson method has to be selected by
trial values, based on our assumptions. When the trial value closes to the
estimated value, the method will always be convergent.

After getting the estimate of 8 i.e. 6 from equation (5.4.5), the

estimate of 4, and A, may be obtained as

2(6+3) (5.4.6)

-~ - ilé+2
=X — == 54.7
& 6\@ +1 ( )

5.5 Some Special cases of SPPL distribution
The limiting forms of the SPPL distribution as the parameters take

particular values are given in Table 5.1.
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Table 5.1

Skno.| Parameter values Distribution and its pgf
1 =0, ’11 =0 Poisson, e/lz(l—l)
2 [ﬂﬂfﬂ_]}
2 A4,=0 Poisson-Poisson-Lindley, e %o+~

5.6. Goodness of Fit

To illustrate the applications of the SPPL distribution, firstly, in Table
5.2 we consider the data on the number of accidents sustained by a group of 708
bus drivers over a period of three years for which Neyman Type A and ‘Short’

distributions were ﬁtted.by Kemp (1967). When SPPL distribution is applied to

these data it provides a good fit with %* value of 2.445. Using the equations

(5.4.5), (5.4.6) and (5.4.7), we get 6 =8.0110, A =30.171 and A,=-1.892,
Secondly, in Table 5.2, we have considered the data on number of
accidents to 647 women on high explosive shells during 5 weeks period [data
from Greenwood & Yule, (1920)]. Here the original data together with the
expected frequencies of SPPL, PPL [Borah & Deka Nath (2001)] and Negative
binomial [Plunket & Jain (1975)] distribution are considered.. Using equations
(5.4.5), (5.4.6) and (5.4.7), we get 6 =5.3066, 4 =2.4117 and A,=-0.061. From

Table 5.3, it is seen that SPPL distribution provides a better fit to this data as

compared to the other distributions.
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Considering Adelstein (1952) data on number of accidents (home
injuries) of 122 experienced men in 11 years period where Adelstein had
concluded that the Poisson distribution fits the first sefs of data but did not fit the
second sets. In Table 5.4, when the SPPL distribution is applied to those sets it

provides a good fit like GPD [Consul (1989)] model in all the cases. Here we get

6 =4.2305, 1,=0.4401 and A, =0.4171 for the first set and 6=4.0447, 1 =3.359
'~ and /1; =-0.0115 for the second set. When the estimated value of @ are divided by

the respective number of years (6 & 1lyears), the average values of 6 for these
sets become 0.705 & 0.3677 respectively. These values do indicate that the
average natural rate for home injuries does decrease with experience.

In Table 5.5, we have considered accident data for experienced shunting
men over 11 years. For which Adelstein (1952) had used the Poisson distribution
and negative binomial distribution. The SPPL distribution is fitted to this data and

it is found that the calculated value of x* for the SPPL distribution is much less

than its significant values. In Table 5.5, we get 6 =6.7819, /i1=6.759 and
1,=0.1457 for the first set and @ =1.7748, 1,=0.2090 and A,=0.8069 for the

second set. The values of @ for the second group indicates that due to
experienced, this group has a less natural chance of making accidents.

It is apparent from the results of the following tables that the
SPPL distribution can be applied very successfully in case of accident data. In all

the cases the SPPL distribution provides a good fit.
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Table 5.2 Numbers of drivers sustaining accidents over three year period
[Cresswell & Froggatt’s Table 5.4, (1963)] with expected frequencies based on
SPPL , Neyman -Type A [Kemp (1967)] and Short distribution [Kemp (1967)].

No. of observed Expected frequency

accidents |frequency SPPL NTA ShortgMM) Short(ML)
0 117 118.588 116.69 110.38 116.88
1 157 159.130 162.04 169.70 160.43
2 158 153.191 153.12 156.02 153.64
3 115 115.631 115.26 113.90 116.05
4 78 74.94 74.58 72.54 75.13
5 44 43.182 43.13 41.90 43.29
6 21 22.687 22.83 22.45 22.76
7 7 11.095 11.25 11.31 11.09
8 6 5.041 5.21 542 5.07
9 1 2177 2.29 2.49 2.20
10 3 0.895 0.96 1.10 0.91
11 1 1.493 0.39 0.43 0.35

Total 708 708.00 707.75 707.68 707.81

I 2.445 2.64 3.78 2.56

Note. MM: Method of moments
ML: Method of maximum likelihood.
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Table 5.3 Comparison of Observed Frequencics for Accidents to 647 Women on
High Explosive Shells during 5 weeks with Expected Frequencies of SPPL,
PPL{Borah & Deka Nath (2001)] and Negative Bionomial(INB)
distribution[Plunket & Jain (1975)]. [Data from Greenwood and Yule (1920)].

No. of Observed Expected frequency

accidents | frequency SPPL PPL NB
0 447 445,959 442,52 445.89
1 132 131.692 137.79 134.90
2 43 47.698 46.57 44.00
3 21 15.218 14.57 14.69
4 3 4.124 432 4,94
>5 2 2.309 1.70 2.56
Total 647 647.00 647.00 647.00
x? 2.981 3.57 3.6315

Table 5.4 Comparison of Observed Frequencies for Home Injuries of 122 °
Experienced Men during 5 years (1937-1942) and 11 years (1937-1947) with

Expected SPPL & GPD [Consul (1989)] Frequencies. [Data from Adelstein
(1952)]

No. of 1937-1942 1937-1947

Injuries Obs. SPPL  GPD Obs. SPPL GPD
0 73 72952  73.23 58 57.045 57.22
1 36 35.977 3532 34 33.441 3441
2 10 10.079 10.41 14 17521 16.64
3 2 2.313 3.04 3 8.161 7.59
4 1 0.679 6 3.404 6.14
5 - 2 2.428
Total 122 122.00 122.00 122 122.00 122.00

z? 0.00068  2.62 1.542 1.09

Note: Obs.: Obscrved frequency,
GPD: Generalized Poisson dis. tribution
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Table 5.5 Comparison of Observed Frequencies of Accidents of 122 Experienced
Shunting Men over 11 years (1937-1947) with Expected SPPL & GPD [Consul
(1989)] Frequencies. [Data from Adelstein (1952)].

No. of 1937-1942 1937-1947

Injuries | Obs SPPL  GPD Obs. SPPL GPD
0 40 40.141 39.98 50 49642 51.48
1 39 39.138 39.49 43 39.671  39.57
2 26 23.794 23.76 17 19.945 19.28
3 8 11.459 11.32 9 6.731 7.67
4 6 4.749 470 2 2.074 4.00
5 2 1.765 2.75 0 0.579
6 1 0.954 1 0.808

Total 122 122.00 122.00 122 122.00 122.00
z? 1.648 1.57 1.15 1.09
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Chapter 6

A Class of Hermite Type Lagrangian Distributions

6.1 Introduction
Lagrangian expansion for the derivation of expressions for
probabilities of certain discrete distributions were used by Consul and
Shenton (1972,1973,1975), Mohanty (1966), Consul and Jain (1973) and their
co workers. The nature of the generalization process for these distributions
was clarified in two important papers by Consul and Shenton (1972,1973)
and also by Consul (1983). Consul’s (1989) book on generalized Poisson
distributions offers a systematic study of the Lagrar;gialn Poisson
distribution. This book also focuses on applications of the generalized
Poisson model to various areas with actual data sets. Consul and Famoye
(1996) studied Lagrangian Katz family of distributions. The parameters of
this distribution were estimated by various method of estimation and some of
the applications of the Lagrangian Katz distribution were studied.
If g(t) and f(t) be two probability generating functions (pgf) defined

on non-negative integers, such that g(0)#=0, then the pgf for the general
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distribution formed from g(t) and {{t) where considering the transformation

t=u.g(t) is given by [see Consul and Shenton (1972)]

F(0)= f(0>+z"’j: oy o}, 6.11)

Thus the probability mass function (pmf) for the general
Lagrangian probability distribution is given by

PLX ,;1 oy ro}l., =123, (6.1.2)

P[X =0]=f(0)
Equation (6.1.2) is also known as Lagrangian distribution of type-I (LD-I)

(according Janardan and Rao’s terminology).
Using Lagrangian expansion of 2" kind, Janardan and Rao (1983)
investigated a new class of discrete distribution call Lagrangian distribution

of type -1I (LD-II) with pmf

P =)= fi- f!(l)}[ R0 f(z)}} L

0,0therwise

The Hermite distribution was formally introduced by Kemp and
Kemp (1966) and was applied in the field of biological sciences, physical
sciences and operation research. The pgf of this distribution is
explazl (l - 1)+ 052(12 - 1)]
The probabilities of this distribution can be conveniently expressed in terms
of modified Hermite polynomials.
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The motivation of investigation behind this chapter is to derive the
Hermite type Lagrangian distribution, since Hermite distribution has a wide
application in various fields of experimentation. The basic Lagrangian Hermite
distribution (LHD) is investigated. The parameters of this distribution are
estimated by the method of moments and ratio of first frequency and mean.
Considering different values of f(t) and g(t) in equation (6.1.2) and (6.1.3),
different general Lagrangian Hermite type distributions are generated. Borah and
Deka Nath (2000) studied Lagragian Hermite type distributions and fitted this
distributio‘n to some well known data sets for empirical comparison.

6.2 Basic Lagrangian Hermite Distribution (LHD)
The pmf of basic Lagrangian distribution is given as

1 d*! <
Pl =x]= {7 8O | x=123. (62.1)
0, otherwise

where g(t) is the pgf defined on some or all non-negative integers, such that

g(0)# 0. In this case

g(t) = exple, (¢ —1)+a2(t2 —1)] (6.2.2)

Thus the pmf of basic LHD may be written as

]l(x—l)lz] alx-l-ljazjxx—l-j
PLX=x]= expl-x(e, +a,) ; G2 x=1,2,3,...’ (6.2.3)
0, otherwise

where {(x —1)/2] denotes the integer part of (x-1)/2
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(a) Cumulants of the Basic LIID
The cumulants of basic Lagrangian distribution may be investigated by

using Consul and Shenton (1975) general formula. According to this , if G, be
the i cumulant of the distribution with pgf, g(t) then the first four cumulants k;,

1=1,2,3,4 of basic Lagrangian distribution can be written as

k1=——l——,
1-G,

k2=___G2_T,
(1_G1)

2
L S </
(1"G1)4 (I—Gl)

G, _, 10GG, | 15G,’

= (I—Gl)j (1_01)6 (1 "Gl)7

[see Consul and Shenton, 1975] .

In case of Hermite distribution, we have the first four cumulants as

G, =a, +2a, (6.2.4)
G, =q, +4a, (6.2.5)
G, =qa, +8a, (6.2.6)
G, =a, +16a, (6.2.7)

Thus the first four cumulants of basic LHD may be written as

1

k= ————
l (1_a1 —2(12)’

(6.2.8)
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a, +4a,

“= 6.2.9
’ (1-a,-2a,)’ ( )
a, +8a 3(a, +4a,)’
k = 1 2 1 2 , 6 |
e -2a,) (-a,-2a,) (6.2.10)
., - *16a, . 10(@, +8a; Yo, +4a,) 15(a, +8a,)’ -

._—(1—0.'1—2612)5 (1—a,—2a )" (-, —2a,)
(b) Estimation of Parameters

Method of moments and ratio of first frequency with mean are used
to estimate the parameters of basic LHD.

(i) Method of moments

The mean and variance of basic LHD as given in equation (6.2.8) and

(6.2.9), may be written as

- 1
Al G (6.2.12)
my =Gt (6.2.13)
(1-a, ~2a,)
where X is the sample mean and 1, is the sample variance.
By eliminating a, between equation (6.2.12) and (6.2.13), we obtain
~ 1{m, 1
a, =5[;3—+§—1} (6.2.14)
Substituting the value of @, in equation (6.2,12), we may get
d,:z—'—;’%—% (6.2.15)
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(i1) Ratio of first frequency and mean
By equating the first probability of basic LHD with —’;7‘ , we obtain

n
Fl: exp(-a, -a,) (6.2.16)

By eliminating &, between equation (6.2.12) and (6.2.16), we may obtain

1 n
a,=1-—+log—~ 6.2.17
2 P gN ( )
~ 1 n,
and a, =—-2log—-1 (6.2.18)
X N

(c) Fitting of Basic LHD

For the application of basic LHD, we have considered the example of
numbers of papers published per author in the review of applied entomology [data
by Kendall (1961)] in Table 6.1, for which geometric distribution (GD),
logarithmic series distribution (LSD) were fitted by Williams (1944) and
generalized logarithmic series distribution (GLSD) was fitted by Jain (1975).

From the Table 6.1, we have, the sample mean x =1.5508475 and sample

variance m, =1.1405050. By using method of moments we have &, = 0.404616
and @, =-0.024712 and by using ratio of first frequency and mean we have

@, =0.3803 and @, =-0.012. From the Table 6.1, it is observed that the LHD
model (by using both the method of estimation) gives better fit than GD, LSD and

GLSD as judged by the values of y*.
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Table 6.1 Fitting of no. of papers per author by LHD, GLSD, LSD and GD.
Publication in the review of applied entomology. Vol. 24, 1936 (2379 papers by
1534 authors)

No.of Observed| LHD LHD GLSD | LSD GD
papers ' Williams | Williams
per author | frequency | (MM) (FM) Jain(1975]  (1944) | (1944)

1062 1049.14 ] 1062.06 |1052.72| 1046.05} 989.10
263 290.33| 279.59 | 287.52} 293.05| 351.30
120 108.381 104.02 | 107.10] 109.46{ 124.80

50 4586 4595 45.10| 4599 4433
22 20.78 | 21.33 20.83 20.61| 1575
7 13.96 10.33 10.00 9.62 5.59

6 3.09 5.45 4.97 4.62 1.99
2 1.49 2.30 2.53 2.26 0.71
0 0.74 1.23 1.31 1.12 0.25
1 0.15 1.19 0.70 0.53 0.09
1 0.09 0.55 1.81 0.66 0.09

TS0V s W —

Total 1534 {1534.00 11534.00 11534.00 {1534.00{]534.00
xt 4.74 494 | 514 556 | 46.39

@, = 04046  0.3803
Parameter estimates @, =-0.024  -0.012

Notc: MM: Method of moments, FM: Ratio of mean and {irst frequency

6.3 General Lagrangian Hermite Poisson Distribution
Considering different values of g(t) and f{t) in equation (6.1.2)

and (6.1.3), different LHD of type I and type II may be obtained. Let

g)= expla, (t - 1)+ a, (12 - 1)]

f(t)y=exp [6(r — 1)]
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where g(t) be the pgf of Hermite distribution and f(t) be the pgf of Poisson
distribution respectively. Hence the pmf of Lagrangian Hermite Poisson

distribution of type I (LHPD-I) may be written as

x-1

T] @ +xa,) " o, x’

P(X=x)= 9exp{9+x(a,+a2)}z ST x=123,..  (63.1)
expflel x=0

where 6>0.

Similarly, considering equation (6.1.3), the pmf of LHPD-II may be written as

[;] 6 + x-2) a] J
P,(XZX)-'—" Aexp{9+x(al+a2)}§( (’icfi?zj)]'zx’
0 otherwise.

b

x=0L2,.. (63.2)

where A={1-(a, +2a, )}

(a) Cumulants of General LHPD
According to Consul and Shenton (1975), if F, be the i cumulants for

the pgf f(t) as a function of t, and if k. be the i cumulants for the basic
Lagrangian distribution obtained from g(t) then the cumulants of general
Lagrangian distribution may be written as

D, = Fk,,

D, =Fk, +F,k},

D, = Fk, +3F,kk, + F,k,

D, = Fk, +3E,k} +AF,kk, +6Fkk, + F k..
(See Consul and Shenton 1975).
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Here Dj, D2, D3 and D4 are the first four cumulants of general Lagrangian
distribution. &, k,, k, and k, are given in equation (6.2.8), (6.2.9), (6.2.10) and

(6.2.11) respectively. Thus the first three cumulants of general LHPD may be

written as

D, = (1_—5%—2;5 ’ (6.3.3)
Dn= (10—((2:;:))3 M-a e—zay’ 9
D, = 30(a, +4a,)" | 40l +5a;) | 6 (6.3.5)

) (1_(11 ‘2a2)5 (-, "2‘:‘2)4 (1—a1 *2a2)3 '
(b) Estimation of Parameters
The parameters of LHPD-I may be estimated from the ratio of first two

frequencies and the mean. By equating the first and second probabilities of

LHPD-I with 2% and . we obtain
NN

A n
6= —log7v°—, (6.3.6)
and log%’— =logf-(@+a, +a,) (6.3.7).
Also from equation (6.3.3), we have
F=— 9 (6.3.8)

l-a, -2a,’

Hence from equation (6.3.6), (6.3.7) and (6.3.8), we may estimate a, and a, as

~

&2=1——§+10g%——10gé +0 (6.3.9)
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~

and a, -—-1—2—2&2 (6.3.10)
X

(c) Fitting of LHPD-I

In Table 6.2, we have considered Adelstein (1952) data on number of
accidents (home injuries) of 122 experienced men in 11 years period where
Adelstein concluded that the Poisson distributi'on gave good fit to the first sets of
data but did not fit the second and third sets..

When LHPD-I is fitted to these data sets it gives good fit to all the

cases. From the following table it is also observed that the LHPD-I distribution

gives better fit than GPD (Consul, 1989). In Table 6.2, we get § =0.5135, &,
=0.0103 and &, =0.0304 for the 1% set and § =0.3267, &, =-0.1799 and &, =

0.648 for the 2™ set and 6 =0.7435, G, =0.006 and &,=0.2316 for 3" set.

Thus this chapter has defined and studied a class of Hermite type
Lagrangian probability distribution, by well known Lagrange’s expansion, with
application to various fields of data . The fitting of LHPD-II will be invistigated

latter on.
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Table 6.2: Comparison of Observed Frequencies for Home Injuries of 122 Expected Men during 11
years (1937-1947) with the Expected LHPD-I and GPD [Consul (1989)] Frequencies.

Number 1937-1942 1943-1947 1937-1947
of

Injuries Observed LHPD GPD Observed LHPD  GPD Observed LHPD  GPD

0 73 7299  73.23 88 8799 86.77 58 ) 5799 5722

1 36 3599 3532 18 17.99 2285 34 3399 3441

2 10 9.93 10.41 11 9.14 7.56 14 16.17 16.64

3 2 2.36 3.04 4 479 2.82 8 7.42 7.59

4 1 0.73  -—--- 1 2.09 2.00 6 3.41 6.14

S 2 302 -eoee-
Total 122 6=0.5135 122 0.3276 122 0.7435

and ,=0.0103 -0.1799 0.006
Estimates a,=0.0304 0.648 0.2316
71=0.15 262 0.00002 0.124 0.719 © 1.09
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Chapter 7

A class of Charlier Type Lagrangian

Distributions

7.1 Introduction
Doetsch (1933), Meixner (1934,1938) and Berg (1985)

investigated Charlier polynomials which was defined by the generating function
e*(1- pz2)™*
Jain and Gupta (1975) defined the generalized Charlier polynomial by
the generating function
e (1- ")
Medhi and Borah (1986) studied the generalized four parameter

Charlier distribution with pgf

H(z)= e"’(l—y —,b’)‘(l —n—ﬂz"')‘le“’ , a,fy,A20and m=12,...
They studied some properties of this distribution including recurrence relations
for the probability mass function as well as for the moments and cumulants of the
distribution. Negative binomial, Gegenbauer, generalized Gegenbauer, Charlier

and generalized Charlier distributions were the limiting distribution of this four
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parameter Charlier distribution. Medhi and Borah (1986) also discussed the
methods for fitting of these four parameter Charlier distribution.

Using Lagrange expansion to this Charlier distribution, Borah and
Begum (1997) studied only the probabilistic structures of Lagrangian Charlier
distribution of type-1 (LCD-1) and type-11 (LCD-I1). Deka Nath and Borah (2001)
studied the basic LCD and fitted this distribution to a data set for empirical
comparison.

The objective of this chapter is two folded. Firstly, we have to investigate
the pmf of basic LCD in a simpler form than the earlier one, which is also easy to
handle on computer. Secondly, considering f(t)=e”(“‘) in equation (6.1.2) and
(6.1.3), Lagrangian Charlier Poisson distribution of type I and type 11 (LCPD-I &
LCPD-1I) are also derived. The cumulants of the distributions are investigated.
For fitting of basic LCD, some methods of estimation of the parameters are
suggested. The basic LCD has been fitted to some data for which logarithmic
series, geometric, generalized logarithmic series and basic Lagragian Hermite
distribution were fitted. It has been found that the basic LCD gives surprisingly a
better fit than the other distributions. The LCPD-I is also fitted to some data sets
for which generalized Poisson distribution (GPD) was fitted by Consul (1989).

7.2 Basic Lagrangian Charlier Distribution (LCD)

In this chapter we have considered the pgf of three parameter

Charlier distribution as
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g@=e*(1-p)e” (1~ f)™

Thus the pmf of basic LCD may be written as

. M{j{’;)(m)wﬂf(zx)(,)}, r=12,.

x! 7=0
0, otherwise.

where k=x-1, a >0, <1, A>0.

Equation (7.2.2) may also be written as

P(X =x) _emd- ﬁil“(ax)“’ ,Fo(l=x,Ax,—fB/ax), x> 1

(7.2.1)

(7.2.2)

(7.2.3)

[see Borah and Begum (1997)]

(a) Cumulants of the Basic LCD

Using Consul and Shenton (1975) general formula, the cumulants of

basic LCD are investigated. Let G; be the i cumulants of the Charlier distribution

with pgf g(z), then we have

G =a+ AB
(1-5)
G,=a+ B
(1-p)
L)
-y
G,=a+ A8
1-p"°

(7.2.4)

(7.2.5)

(7.2.6)

(7.2.7)

then the first four cumulants k; ,i=1,2,3,4 for basic LCD may be obtained by the

relations as shown in chapter 6.
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)
T aa-p) sy 728

=80 -5’ wj}, (7.2.9)
{i-a)-p)- 28}

k=@ =B) +AB0 - B  30- Bl - )’ ”;ﬂ}. (72.10)
(-a)a-p-apf  {1-a)(-B)- 28]

s 0-p) +ip}
O s T

[o- a)(1 /3) A7

(1= B) + 401+ Bt - B) + A8
+1o{a ){(1 )i - ﬁ}){’ 7] }] (7.2.11)

(b) Estimation of Parameters
The parameters of basic LCD can be estimated in terms of its
cumulants. A composite method has been used to estimate the parameters. The

method is based on ratio of first two moments and first frequency.

By equating the first probability of basic LCD with%, we obtain

a=Alog(1- f) - 10g(£}% (7.2.12)
By equating the mean and variance of the sample to the population value

of mean and variance of basic LCD , given in equation (7.2.4) and (7.2.5) , we get

=B
- oa-p)-) T
_1-pla-p)* + 1) (72.14)

2

{-a)a-p)-21p¥
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By eliminating « and A between cquation (7.2.12), (7.2.13) and

(7.2.14), we obtain

m, +X%° log(%)

1 2 B 1 _
(E—l) log(1 'B)+,B —— —— (7.2.15)

The equation (7.2.15) may give an estimate for £ either by graphically or by using

Newton Raphson method.
After getting the estimate ﬁ of [ from equation (7.2.15), the

estimates of A and @ may be obtained from the following equations.

n 1
log(=4)-—+1
8y~

A= 5 (7.2.16)
log(1 - ,3) + ~
(1-5)
and a= ——l————ﬂﬂ,— (7.2.17)
x (1-p)
(c) Fitting of Basic LCD

For the application of basic LCD, we consider the example of number of
papers published per author for which geometric distribution (GD) and
logarithmic series distribution (LSD) were fitted by Williams (1944) and by
generalized logarithmic se;ries distribution (GLSD) by Jain (1975). The
comparison of observed and expected frequencies among LCD, GLSD, LSD and

GD are given in the following Table 7.1.
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For the data in Table 7.1, we have the sample mean X =1.5508475 and

central moments m,=1.1405050. Solving the equation (7.2.15) by Newton
Raphson method, we get ,é =0.6113. Substituting the values of B in equation

(7.2.16) and (7.2.17), we get A=-0.0199 and & =0.3866. It is clear from Table
7.1 that the expected basic LCD frequencies are much closer to the observed
frequencies than obtained by geometric, logarithmic and generalized logarithmic
distributions. Thus the LCD model better describes the pattern of the frequency
distribution of number of paper per author.

Table 7.1. Fitting of number papers per author by LCD, GLSD, LSD and GD.
Publication in the review of applied entomology, Vol. 24, 1936 (2379 papers by
1534 authors).

No.of |Observed LCD LHD GLSD LSD GD
papers | frequency | @ =0.3866 | (FM) Jain Williams | Williams
per A=-0.0199 (1975) | (1944) | (1944)

author
1 1062 1061.90 1062.06 | 1052.72 1046.05 989.10
2 263 275.02 279.59 287.52 293.05 351.30
3 120 105.14 104.02 107.10 109.46 124.80
4 50 46.08 45.95 45.10 45.99 4433
5 22 22.53 21.33 20.83 20.61 15.75
6 7 11.41 10.33 10.00 9.62 5.59
7 6 5.76 5.45 4.97 4.62 1.99
8 2 3.15 2.30 2.53 2.26 0.71
9 0 1.47 1.23 1.31 1.12 0.25
10 1 0.43 1.19 0.70 0.53 0.09
11 1 0.19 0.55 1.81 0.66 009
Total 1534 1534.00 | 1534.00 | 1534.00 1534.00 1534.00
P 4.66 4.94 5.14 5.56 46.39
Notc. FM: Ratio of mcan and first {frcquency.
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7.3 General Lagrangian Charlicr type Distributions

Considering g(z)=e *(1- f)*e“(1- )™
and Rz)=e%¢™"

in equation (6.1.1), the pmf of Lagrangian Charlier Poission distribution of type I

(LCPD-I) may be written as

P(X =x)= il Y )l {‘Z(k)(wc +0) g (/?.x)m}, forx=1,2,...(7.3.1)

x! s\J
and P(X =0)=e"’
where k=x-1, a,4,80>0 and F<1.

Similarly, considering equation (6.1.2), the pmf of LCPD-II may be written as

P(X=x)=4 e 1= p)” {Zx:(j(ax +6) g’ (Ax)m}, for x=0,1,...(7.3.2)

x} 7=0

where A =I—{a +(1%£3/7)}

(a) Cumulants of General Lagrangian Charlier Poisson Distribution(LCPD)
The following cumulants of general LCPD model can be derived

by using Consul and Shanton (1975) formula as shown in chapter 6.

_ 6(-p)
'-afi-p)-ap°

(7.3.3)

b, 00-m{0- ) +25°]

SR EOR 9
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AP
9(1—,3)3 4a(l_ﬁ)+m(2+ﬂ)

T i-aXi-p)-28F | G-aXi-p)-48

a(l- ) + AB ”
3{ (1-5) (1_ﬁ)2}+1 -
{1-aXi- )-8} | -

. (b)Estimation of parameters
The parameters of LCPD-I can be estimated from the ratio of first two

frequencies and by using the mean and variance of the distribution. By equating

e .o H n _ _
first two probabilities with -JV"and —1\‘7 respectively, we obtain

nO -0 A no
—=e =0=-log| — 7.3.6
N OB(N) (7.3.6)
and  D=edq- gy é (7.3.7)
N
n, A
= a=llog(1—,8)—log — |+log@ (7.3.8)
nO

From equation (7.3.3), (7.3.4) we may get the following equations as

6(-4) (7.3.9)

T U-a)i-p)-28
and m, =57{1+(1}:’Bﬁz)2} (7.3.10)

The estimate of A interms of @ and # may be obtained from equation (7.3.10)
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s a=( Mm%, )(1 "ﬂf)z (7.3.11)

23

Again from equation (7.3.9) and (7.3.10), we obtain

a=1—§—(’"202 —1](1"ﬂ) (7.3.12)
X x? Yij

X

By eliminating a between equation (7.3.8) and (7.3.12), we get

1—‘—2—-(”’292 —1) (] '_Bﬂ)—logé?ﬂog(n, /n,)

=3

P (73.13
log(l - 8) 319
Hence from equation (7.3.11) and (7.3.13), we get
(-)[. (-p) 1—2+10g(’11 /n,)-logé
5 {1+ 3 log(1~ ,H)} =—2 (7.3.14)

m,6?
-1

which gives an estimate for £ either by graphically or by numerical solution

using Newton-Raphson method. On getting the estimate 6 of 6 from (7.3.6) and

/} of # from (7.3.14), the estimates of A and @ may be obtained by

~y ~\2
A=( ”’f -1 )(1“?) (7.3.15)
X Bt
and a :ﬂ:log(l —,B)-— log(n, /no)+logé (7.3.16)

(c) Fitting of LCPD-I
Some reported observed data have been considered for the fitting

of the four parameter LCP distribution of type-1 for empirical comparison. In
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Table7.2, the accidents data of shunting service {or different age group have been
considered for which Adelstein (1952) had used the Poisson and negative
binomial distribution and Consul (1989) had successfully fitted the GPD model. It
may be noted that when LCPD-I model has been applied to these data, it provides

an excellent fit to all the sets of data as judged by the chi-square values in

Table7.2. |

In Table 7.3, we consider Kendall (1961) data for fitting of LCPD-I
model. Kendall (1961) considered the observed data on the number of strikes in 4-
week period in four leading industries in U.K. during 1948-1959 and concluded
that the aggregate data for the four industries agrees with Poisson law but it did
not hold well for the individual industries. The LCPD-I has been fitted to the
observed data for the four individual industries and the resuits are given in Table
7.3 along with the expected frequencies. Based on the expected frequencies and
the corresponding x> values (Table 7.3), it is clear that the pattern of strikes in
coal mining, vehicle manufacture, ship building and transport industries follow
LCPD model and this distribution gives better {it than the GPD model for coal
mining industries. In the light of the above discussions it may be stated that the
Charlier type of Lagrangian probability distribution can be applied in various

fields of experiment with varied amount of success.
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Table 7.2 Comparison of Observed Frequencies for First- Year Shunting Accidents and for a
Five-Year Record of Experienced Men with Expected LCPD-I and GPD Frequencies

for Different Age Group.
Number Age21-25yr. Age 26-30 yT. Age 31-36 5- yr. Record for
of experienced
Accidents | Observed LCPD GPD | Obsernved LCPD GPD | Observed LCPD GPD | Observed LCPD GPL
0 80 79.99 76.40 121 120.99 126.42 80 7999 80.23 54 5400 51.77
1 56 5599 65.03 85 8499 74.49 61 6099 60.41 60 5999 62.11
2 30 2984 2337 19 18.66 2145 13 12.99 13.48 36 38.54 40.02
3 4 405 52 1 1.89 4.02 1 1.02 0388 21 18.69 1841
>4 0 .08 1 0.31 0.62 0 11 10.55 9.69
Total 170 227 155 182
4 =0.75 0.63 0.66 1.21
and a=-0.18 0.14 -0.11 0.10
Estimates p=-1.09 0.46 026 0.76
=034 0.05 0.12 -.008
,‘(2 = 0049 3.58 0.024 3.45 0.0008 0.04 046 1.13




911

Table 7.3 Comparison of Qbserved Frequencies of the Number of Outbreaks of Strike in Four Leading
Industries in UK. During 1948-1959 with the Expected LCPD-I and GPD Frequencies.

Number Coal mining Vehicle manufacturing Ship building Transport
of
outbreaks| Observed LCPD GPD Observed LCPD GPD) Observed LCPD GPD | Observed LCPD GPD
0 46 4599  50.01 110  110.00 109.82 117 11700 11674 | 114  114.00 114.84
1 76 75.99  66.77 33 32.94 3336 29 2899  30.22 35 3499 33.88
2 24 2255  31.23 9 930 9.24 9 939  6.97 4 334 727
3 9 1120 723 3 2.65 3.58 0 203 0388 2 235 201
4 1 115 0.76 1 0.76 1 0.81 1 164  9.69
Total 156 156 156 156
6=122 0.34 0.28 0.31
and a =024 0.15 0.09 0.02
Estimates pP=-034 0.82 -3.82 0.75
1=185 -0.001 0.04 0.42
21=029 y?=45) 1.47 0.06 121 1.19 025 227
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34. A Class of Hermite Type Lagrangian

Distribulions
M. Borah A. Deka Nath
Depl. of Mathemaltical Sciences Department of Stalistics
Tezpur Universily, Napaam Darrang College,
Tezpur-784025, Assam (India) Tezpur-784001, Assam (India)
Abstract

A class of Hernute type of Lagrangian probability distributions have been defined
by using well known Lagrange’s expansions. 1he probability mass function and cumulants of
the basic Lagrangian Hermite (LHD) distribution are provided. The paramcters are estimated
by using method of moments and method of first frequency and mean. Some applications of this
distribution are also considered. Then several members of Lagrangian  Hermite type
distributions of type I and (ype 1l are investigated by various choice of probability gencerating
Sunction of f(t) and g (1). I'or example, the Lagrangian Hermite Poisson distribution of type 1
and type Il are derived and fitted 1o some well-known data with good results.

Key Words: Lagrange’s Expansion, Lagrangian Probability Distribution, Hermite distribution

and Cumulants.

{. Introduction

Lagrangian expansion for the derivation of the probabilities of certain discrete

distributions has been used by Consul and Shenton [ 1], [2], [3] and Mohanty [4], Consul and Jain
[S) and their co-workers. The nature of the generalization process for these distributions were
clarified by Consul and Shenton [1], {2] and also by Consul [6] in their papers.

If g(1) and Q1) arc two probability generating functions (pgl) defined on non
negative integers such that g(0)# 0, then the pgf for the general Lagrangian distribution formed
from g(t) and {{t) by considering the transformation t—u.g(1), is given by

F0=7@ v 3oy S0l (.n

oaldrt!

Thus the probability mass function (pmf) for the Lagrangian probability distribution is given by

319



PIX=x]=- :11 Az s o), x=123,0 (1.2)

where P [X =0]=f(0)
Equation(1.2) is also known as Lagrangian probability distiibution of type-1(LPD-1) (according to
Janardan and Rao’s terminology).
Using Lagrangian expansion of 2" kind Janardan and Rao [7] investigated a new class of

discrete distribution called the Lagrangian probability distribution of type -11 (LPD-II), with pmf

P(X=x)= “‘j [ {e) /G )}J L forx-01.2.. (1.3)

=0, otherwisc
The Hermite distribution was formally introduced by Kemp and Kemp [8] and was
applicd in the field of biological sciences, physical sciences and operation rescarch. Hermite

distribution is a generalized Poisson distribution whose pgfis

expla,(l - I)+a'2(t2 - l)J
The probabilities of which can be conveniently expressed in terms of modified Hermite
polynomials.

The motivation behind this paper is to derive the basic Lagrangian Hermite
distribution (LIHD). The cumulants of this distribution arc investigated. The parameters of this
distribution arc estimated by method of moments and ratio of first frequency and mean.
Considering different values of Rt) and g(1) in cquation (1.2) and (1.3), different general
Lagrangian lermite type distributions are generated and Lagrangian Ilermite Poisson
distribution of type-1 and type-11 are particularly investigated in this paper.

2(a). Basic Lagrangian Hermite distribution (L1ID)
The pmf of basic Lagrangian distribution is given as
Plx=x]= «'—-‘L—; O x=1,2,3,... 2.1)
wE ' o
= (), otherwisc.
where g(t) is the pgf defined on some or all non negative integers, such that g(0)# 0. In
this case
g (= expla, (1 - 1)1 (1,(/7' - I)I (2.2)

Thus the pmf of basic LHID may be wrilten as
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-1-2 _1-
(,,_l)lz]alx Jazjxx 1-

7=0 (x—2j)' jL

PX = x]=exp|- x(, +a, )f , x=1,23...  (23)

= 0, otherwise.
where [(x —1)/2] denotes the integer part of (x-1)/2
(b) Cumulants of the basic LHD
The cumulants of basic Lagrangian distribution are investigated by using Consul
and Shenton (3] general formula. The moments can be directly obtained by cumulants. If G, be

the ith cumulants of the distribution with pgf g(t) then the first four cumulants of basic

Lagrangtan distribution can be written as

k=
Y1-g,
k2=——————62 3
(I—Gl)
G, 3G,’

Ka=
=Gy =Gy

G, 10G,G,  15G;*
= s + v \6 + 7
(1-G))" (a-G)° a-6)

In case of Hermite distribution we have the cumulants as

G, =aq, +2a, (2.4)
G, =a, +4a, (2.5)
G, =a, +8a, (2.6)
G,=a, +16a, 27

Thus the first four cumulants of basic LHD may be written as

1

k= 28
: (l—a, —2az) 28)
a, +4a
k, = ! 2 2.9
: (l~ocl —2az)‘ 29
2
k, = a, +8a, 3(0.'l +4a,) (2.10)

(1-q,-2a,) (1-q ~2a,)

321



2
k, = a, +16a, - 10(a, +8a, Xa, +40¢2)+ 15(a, +8(12)7 @2.11)
(1-a, -2a,) (l—a,—2a )6 (1-a, -2a,)

(c) Estimation of parameter

Method of moments and ratio of first frequency and mean can be used to estima
the parameters of basic LHD.

()Method of moments:

The mean and variance of the basic LHD, as given in (2.8) and (2.9) may be writt
as

_ 1
= T e (2.12)

¢, +4a,
m,

- (l—a, —201!2)3

(2.13)
By eliminating «, between (2.12) and (2.13) we may obtain

(2.14)

(2.15)
(i) Ratio of first frequency and mean:

By equating the first probability of basic LHD with B we may obtain

n,

=expl—aq, —a 2.16
N P( i 2) ( )
By eliminating a, between (2.12) and (2.16) we may obtain
a,=1- é + log'—z‘—
X

(2.17)
] n,
hence, a, =—-2log—-1
X N

(2.18)
(d) Fitting of basic LHD

For the application of basic LHD, we consider the example of number of pap

published per author in the review of applied entomology data by Kendall [9] for wh
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geometric distribution (GD), logarithmic series distribution (LSD) are fitted by Williams [10]
and generalized logarithmic series distribution (GLSD) by Jain [11]. The observed and the
expected frequencies of this example are given in Table 1. It is clear fiom Table 1 that the LHD

model gives much better fit than GD, LSD and GLSD as shown by the values of y*.

Table 1. Fitting of no. of papers per author by LHD, GLSD, LSD and GD. Publication in the
review of applied entomology. Vol. 24, 1936 (2379 papers by 1534 authors)

No. of papers| Observed LHD GLSD LSD GD
per frequency | a, =0.3803 Jain (1975){ Williams Williams
author a, =-0012 (1944) (1944)
| 1062 1062.06 1052.72 1046.05 989.10
2 263 271959 297352 29305 35130
3 120 104.02 107.10 109.46 124.80
4 50 45.95 45.10 45.99 4433
5 22 21.33 20.83 20.61 15.75
6 7 10.33 10.00 962 5.59
7 6 5.45 497 4.62 1.99
8 2 2.30 2.53 , 2.26 0.71
9 0 1.23 1.31 1.12 0.25
10 1 1.19 0.70 0.53 0.09
11 1 0.55 0.81 0.66 0.09
Total 1534 1534.00 1534.00 1534.00 1534.00
xz 494 5.14 5.56 46.39

3(a). General Lagrangian Ilermite Poisson Distribution:

Considering different values of g(t) and f{t) in (1.2) and (1.3)
different LHD of type I and type 11 may be obtained. Let

g= expla,(~ 1)+ a, (* 1))
Rty=exp[0(c - 1)]
Hence the pmf of Lagrangian Hermite Poisson distribution of type I (LHPD-I) may be

written as

x-1

’ N (¢9+xa )""z’a ‘x’
P (X =x)=0exp{0 + + 2 2
(X =x) xp{f + x(a, aZ)},.Z.o (-2, /1
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L (X=0)= e’
where 8> 0.

Similarly considering (1.3) the p.m.f. of LHD-I1 may be written as

2G4+ xa, ) a,’x’
P(X=x)=A4 0 + + ! 2
0 =x)= eplo a(e, + a3 7L e

and zero otherwise, where A={1-(a, +2a,)}

x=0,1,2, .. (3.2)

(b) Cumulants of general LHPD-I
According to Consul and Shenton [3] if F, be the rth cumulants for the pgf f{t) as a
function of z, and if D, be the rth cumulants for the basic Lagrangian distribution obtained from

g(t) then the cumulants of general Lagrangian distribution may be written as

ki=ID,

ky=1D+ 15D,

ks=F D3+ 3F>D, D+ 3D/

ka=I"1D 4+ 315D 2+ 415,03 1 615D 2D, v1d),* - (See Consul and Shenton [31)

Here D), D, D; and D4 are given in equation (2.8), (2.9), (2.10) and (2.11) respectively. Thus
(&

k)= —— 33
l (l"al—zaz) ( )
0, +4a,) 6
k, = ! 1+ 3.4
: (l—a,—-Zoez)3 (l—a —2(12—)2 G4
2
= 36(a, +4a,) .\ 46(a, + 5a,) 9 (3.5)

Qe —2a,) (- —2a,)  (-a -2a,)
Hence the parameters ol ‘LHPD-I can be estimated in tetms ol its cumulants.
(c) Estimation of parameters
The paramecters of LIIPD-1 may be estimated from the ratio of first two frequencies and
the mean. By equating the first and second probabilities of LHPD-I with ne/N and ny/N, we may

obtain

6=-log—>, 36
ogN (3.6)
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and log%‘— =log@- (@ +a, +a,), 3.7

from (3.3) we have X= 9 (3.8)

1-a, - 2a,

Hence from equation (3.6), (3.7) and (3.8) we may obtain the estimate of a, and a,as

~

a, =1—~—z—+log%'—logé+é (3.9)

~

and a, =1——€—‘—2&2 (3.10)
X

(c) Fitting of LUPD-1

In Table 2 we consider Adelstein {12], data on number of accidents (home injuries)
of 122 experienced men in 11 years period where Adelstein had concluded that the Poisson
distribution fits the first sets of data but did not fit the second and third sets. When the
LHPD-I distribution is applied to those sets it provides good fit in all the cases. In Table 2
we get 0 =0.5135, a;" =0.0103 and oz’ =0.0304 for the 1% set and §” =0.3267, a;” =-0.1799
and o” = 0.648 for the 2™ set and 8° =0.7435, ;" =0.006 and a,” =0.2316 for 3™ set.

Table 2. Home injuries of 122 Experienced Men during 11 years with expected LHPD-1

Frequencies [ Adelstein [12] data ].

No. of 1937-1942 1943-1947 1937-1947
Injuries  Pbserved LHPD-1 Observed LHPD-1 Observed LHPD-I
0 73 72.99 88 87.99 58 57.99
1 36 35.99 18 17.99 34 33.99
2 10 9.93 11 9.14 14 16.17
3 2 2.36 4 4.79 8 742
4 ] 0.73 ] 2.09 6 341
5 2 3.02
Total & x® | 122 122,00, 0.15| 122 122, 1.07: 122 122, 2.71

Concluding remark: Thus this paper defined and studied a class of hermite type Lagrangian
probability distribution, by well known Lagrange’s expansion, with application to various fields of

experiments. The fitting of LHPD-II will be investigated latter on.

325



10.

11

12.

References

. P.C. Consul and L R. Shenton, Use of Lagrange expression for gencraling generalized

probability distribution. SIAM Journal of Applicd Mathematics. 23 239-248 (1972).

P.C. Consul and L.R. Shenton, Some interesting properties of Lagrangian distributions.
Communications in Statistics. 2 263-272 (1973).

P.C. Consul and L.R. Shenton, On the probabilistic structure and properties of discrete
Lagrangian distributions. Statistical Distiibution in Scientific Work 1: Models and Structure,
(Bdited by G.P.Patil, S.Kotz and J.K.Kotz), 41-48, Dordrecht Reidel, (1975)

S.G. Mohanty, On generalized two-coin tossing problem, Biomeltrische Zeitschrift, 8 266-272
(1966).

P.C. Consul and G.C. Jain, A gencralization of Poisson distribution, Technometrics, 15 791-
799 (1973).

P.C. Consul, Lagrange and related probability distribution, Encyopedia of Statistical
Sciences, (Edited by S. Kotz, N.L. Johnson and C.B. Read), 4 448-454, New York: Wiley,
(1983)

K.G. Janardan and B.R. Rao, Lagrange distribution of second kind and weighted distributions,
SIAM Journal of Applied Mathematics, 43 302-313, (1983).

C.D. Kemp and A.W. Kemp, Some propertics of llermite distribution, Biometrika, 52 381-
394, (1966)

M.G. Kendall, Natural law in the social sciences, Journal of Royal Statistical Society, Series
A 124 1-9, (1961).

C.B. Williams, The number of publications written by biologists, Annals of Eugenics, 12,
143-146, (1944).

G.C. Jain, An power series distribution assoctated with Lagrange expression, Biometrische
Zeitschrift, 17, 85-97, (1975).

A M. Adelstein, Accidents proness a critism of the concept based upon analysis of shunter’s

accidents, Journal of Royal Statistical Society, Series A, 115, 345-410. { (9 55)

326



Jour. Ind. Soc. Ag. Statistics
54(3), 2001 : 317-323

A Study on the Inflated Poisson Lindley Distribution

M. Borah and A. Deka Nath'
Tezpur University, Tezpur
(Received : June, 2000)

SUMMARY

The Poisson Lindley distribution has been further studied with some
inflation of probability at zero. Some properties of this Inflatcd Poisson
Lindley (IPL) distribution are discusscd. The recurrence relations are
obtaincd without derivatives, so that they will be casy to handle on computer
for computation of higher order probabilitics, moments, etc. The parameters
of this distribution have been estimated by threc methods. Examples are
given for fitting of this distribution to real data, and the fit is compared with
that obtained by using other distributions.

Key words: Poisson-Lindley distribution, Inflated distribution,
Recurrence relation, Raw moments, Skewness, Kurlosis, Paramcter
estimation.

1. Introduction

Poisson Lindley distribution is a generalized poisson distribution
(see Consul [5]}) originally due to Lindley [10] with probability mass function

2
P, (¢)=¢((§‘it)%f3x) x=0,1,2, .. (1.1)

Sankaran [12] further investigated this distribution with application to
crrors and accidents. In both the examples, single parameter Poisson Lindley
distribution gives a better fit than Poisson distribution. It is a special case of
Bhattacharya’s [2] more complicated mixed poisson distribution. Some mixture
of Poisson Lindley distributions derived by using Gurland’s generalization {7]
were studied by Borah and Deka Nath [4], where certain properties of Poisson-
Poisson-Lindley and Poisson-Lindley-Poisson distributions were investigated.

A random variable X is said to have the discrete inflated distribution if its
probability function is given by

! Department of Statistics, Darnang College, Tezput, Assam
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1)k (I - (n)p(, x =0

P(X=x)=
( X) (l—w)px' x=1,273,..

(1.2)

where @ is a parameler assuming arbitrary values in the interval (0, 1). It is also
possible to take w < 0, provided w + (I - (u) Py 2 0 (Sce Johnson et al. [9]).

The discrete inllated distribution was first investigated by Singh [15]. e
studied inflated poisson distribution to serve the probabilistic description of an
experiment with a slight inllation at a point, say zcro. Later Singh ([ 13], 14])
painted out that there exists analogous situations in binomial distribution, i.c.
distinct increase of frequency of observed event at point zero as well as
respectlive decrease of its value at the remaining points. Pandey [11] studicd the
gencralized inflated poisson distribution. Gerstenkorn {6 established the
recurrence relation for the moments for the inflated negative binomial, poisson
and gecometric distribution.

In this paper, an Inflated Poisson-Lindley (IPL) distribution is discussed (o
serve the probabilistic description of an experiiment with a slight inflation of
probability at zero. The recurrence relations for moments and probabilitics for
IPL distribution are obtained. For fitting of the IPL distribution, three well-
known data sets are considered for an empirical comparison and it is observed
that this distribution gives better fit in all the cases.

2. Recurrence Relation for Probabilities

The probability gencrating function (p.g.[.), G(1) of IPL distribution may
be written as

G()=w+(-w)g(t) (2.1)

2 —
where g(t)={(¢ (0+2-1) is the p.gf. of Poisson Lindley (PL)

O+ 1))+ 1= t))
distribution O0<w< L, ¢ >0 (sce Sankaran [12]). Diffcrentiating (2.1) w.r.t, ‘¢’
and equating the coetficients of (" [rom both sidcs, we have

a (q)+2+r) R
'"(¢+1)(q>+|+r)l"‘ > 22

where P, =w + (l - (JJ)([)2 (q) + 2)/(([) + l)1 and P, = (l - (E:p)d)zl()('l‘) * 3)
+
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3. Recurrence Relation for Moments

The raw moments recurrence relation for IPL distribution may similarly be
wrilten as

,_(l_w){(¢+3)_2r} r- (3a*3x2j+la2+2j+la3) rY)
W, = ¢(¢+1) +j20 (l—oc)3 i+ u,_j,r>1(3.1)

where 00 = ——

©+1) ( |
. (1-0)9+2) i , _(1-0)* +49+6
TR T )

Thus the variance may be obtained as
(1 —w){yﬁ + 497 + 69 + 2 + o + 2)2}
b o+ 1)

Putting w=0 in (3.2) the variance of PL distribution may be obtained

MUy =

(3.2)

(see Borah et al. [4]). The expression for the coefficient of skewness and
kurtosis can be written in terms of ¢ and @

Hy _ P
Y =5 =— (3.3)
W70

where P =45 +70% +220° +320% +180 + 4+ © (30* + 170 + 369> + 300 + 4)
+ ot (p* + 602 +12 +18)}

and  Q=y(- )}’ +40% +60+2+w(+27 [
Iy A+0B+30lC+30°D
1 (1—w)£1>3+4¢2+6¢+2+m(¢+2)2}2
where A =07+ 20° + 730> + 1749 + 256> +152 ¢% — 24 + 12
B =7¢% +54¢° + 181¢* +3120° + 349 + 2649 + 12
C =4¢° +300* + 629> + 112¢% +32¢ and
D =20* +16¢° + 529% + 64¢ + 32

3.4

It is clear from the above expression of vy, that for any given value of ¢ > 0
and  closes to unity, the skewness is infinitely large and it becomes smaller and
smaller as the value ol w dccreases. The IPL distribution is casily scen to be
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leptokurtic as the valuc of ¥, is positive for all values of ¢ > 0 and 0 < w <1
though there is a factor ‘-24¢’ in the numerator of (3.4).

4. Estimation of Parameters

The estimation of parameters of inflated distributions other than  can be
carried out by ignoring the observed frequency in the zero class, and then using
a technique appropriate to the original distribution truncated by omission of zero
class. After the other parameters have been estimated, parameter @ can then be
estimated by equating the observed and expected {requencies in the zero class
(See Johnson et al. [9]). Three methods for estimating paramecters of IPL
distribution, i.e. method of maximum likelihood, method of moments and ratio
of first two frequencies with mean are discussed in this section.

(a) Method of Maximum Likelthood (ML): Since IPL distribution is a zero
modified distribution, one of the ML equations is (see Johnson et al. [9])

®+0—g?3§+ﬁ=%% @4.1)
0

ng . . . .
where N is the observed proportion of zeros. It is also a power series

distribution so the other ML equation will be
2= - df)(q’ +2) 4.2)
{66+ 1)

Eliminating @ from equation (4.1) and (4.2), we have

A

be+1). &
(J)+2> X (&,_,_1)2 1 N 4.3)

(Ab can be estimated from equation (4.3) by using Newton Raphson method and

then ® may be estimated from equation (4.1).

(b) Methods of Moments : The parameters may be obtained from the
moments as

R T ) o

(wy =) '

@:ym%%ﬁgi 4.5)
+

where pj and p, denote mean and second order raw moments respectively.
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(c) Ratio of First Two Frequencies and Mean: Eliminaling w between first
two {requencies, we get

2
b= o). LTI I P .TY
¢—(2n2 )F [ 2112) ( nz] (4.6)
_ (- w)($ +3)¢? o n_2=(1—w)(&>+4)&>2

(¢+1)” N ((I)H)S

relative frequencies and ® may be estimated {rom equation (4.5).

where , are the first two

5. Fitting of IPL Distribution to Data

For the fitting of IPL distribution, we consider two data sets of Beall [1] in
Tables | and 2, for which generalized Poisson distribution (GPD) was fitted by
Jain [8] (using MLE). In Table 3, we consider Student’s historic data on
Haemocytometer of yeast cells, for which Gegenbauer distribution was fitted by
Borah [3], using method of moments. It is observed from Table 1, 2 and 3 that
ML gives better result in all the cases. In case of Table 2 the method ratio of first
two frequency with mean does not give better fit, as the computed % value is
quite large, hence the result is not reported in this case. It is also clear from the
values of the expected IPL frequencies that there is some improvement, however
small it may be, in fitting of IPL distribution over the other distributions
considered earlier.

Table 1. Fit of distribution on Pyrausta nublilalis in 1937 (data of Beall [1})

No.of  Obscrved 1PL IPL (Mcthod  IPL (Ratio GPD
Insccts  Frequency  (Maximum of Moments) of Two (Jain (8])
Likelihood) Freq.)

0 33 33.00 32.07 34.08 32.46
1 12 12.41 13.47 11.23 13.47
2 5.84 6.00 5.61 5.60
3 3 2.66 2.59 2.71 2.42
4 1 1.18 1.096 1.28 1.08
5 1 0.91 0.774 1.09 097 -

Total 56 56.00 56.00 56.00 56.00

¢ =1.588 O =1719 ¢ = 1.449

Parameter estimates @ = 0.1406 ® =0.0573 ® =0.228

2
x> =0029 x2=0215 %x%2=0096 X =025




322 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Table 2. Fit of distribution of Corn Borer (data of Beall [1])

Corn Observed IPL (Maximum IPL (Method of GPD (Jain [8))
Borer Frequency Likelihood) Moments)
per Hill
0 43 42.99 44.99 43.91
1 35 32.12 30.39 32.00
2 17 19.45 18.81 19.11
3 11 11.31 11.19 10.88
4 5 . 6.40 6.47 6.12
5 4 3.55 3.66 3.44
6 1 1.94 2.04 1.94
7 2 1.05 1.12 1.10
8 2 1.19 1.30 1.50
Total 120 120 120 120
¢ =1.0587 ¢ =1.0715
Parameter estimatcs O =-0.5696 O = -0.0087
x% =0.577 x2 =0.995 v =0.87

Table 3. Haemocytometer Counts of Yeast Cells
No. of Observed IPL IPL (Method of 1PL (Ratio of Gegenbauer
Yeast Frequency (Maximum Moments)  first Two Freq) (Borah [3])
cells per Likelihood)

5q.
0 213 213.00 210.46 204.00 214.15
1 128 127.00 131.14 139.18 123.00
2 37 40.91 40.76 40.23 44.88
3 18 12.82 12.39 11.39 13.36
4 3 3.95 3.71 3.18 3.55
5 1 1.20 1.09 0.88 0.86
6 0 0.53 0.45 0.34 0.20
Total 400 400.00 400.00 400.00 400.00

-~ A

0 =2669 ¢ =2774 ¢ =3.0328
Parameter estimates ) =—0431 O =-0497 @ =-0.6586
x?=1037 x*=153  x°=393 x> =2.8342
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POISSON-LINDLEY AND SOME OF ITS
MIXTURE DISTRIBUTIONS

M. Borali and A, Deka Nath

Abstract

The discrete Poisson-Lindley distribution is a onc-parameter mixture
distribution obtained from Poisson distribution by mix ng with one duc to
Lindley, In this paper an attempt has been made to review somec of the
properties like recurrence relations for probabilities, moments etc and to
study the problem of estimation for the [itting of thc Poisson-Lindley
distribution to some well known data., Two generalized distributions
namely Poisson-Poisson-Lindley and Poisson Lindley-Poisson are also
investigated. The recurrence relations with out any derivatives have been
obtained for the computation of higher order probabilities and factorial
moments of the above newly derived distributions, The parameters of
the distributions have been estimated in terms of first two moments, and
also in terms of mean and ratio of first two frequencies. A few scts of
reported data, to which different typss of *derived® distributions are litted
with varied amount of success, have been considered for the litting of the
above distributions

1. Introduction

Poisson-Lindley distribution is a mixture distribution obtained by
mixing the Poisson distribution with onc due to Lindley (1953%). Sankaran
(1970) further studies this distribution with applications to errors and
accidents. Somec of the dillicul ies in obtaining the MLE of the param:ter
0 of this single parameter distribution is pointed out by him, and two

Key Words :  Poisson-Lindley, Mixture of Distributions, Recurrence
Relation, IFactorial Moments, and Parameter Estimation
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applications to the data suggested that the present distribution can be used
as an approximation to the negative binomial (1920) and the hermite
distribution (1965).

In this paper Poisson-Lindley distribution is further investigated.
Recursive relationship of the probabilities and factorial moments are
studied. Two mixture distribution ol Poisson-Lindley distribution obtained
by mixing Poissou distribution with Poisson-Lindley distribution and
Poisson-Lindley mixture ‘of Poisson distribution arec also investigated.
Recurrence relations for factorial moments and probabilities are also
discussed. The aim of this paper is to derive some basic properties of both

of these three distributions and to compare it with other distributions on
the basic of their fits to empirical data.

2. DPoisson-Lindley distribution

(a) Expression for probabilitics :
The probability generating function (pgl) of Poisson-Lindley distribu-
tion is
G(1)=02(0-F2—~0)[(0-1-1) (0 -1 = 12, . (2.1)
Differentiating the pgf with respect to ¢ the following recurrence rela-

tion for probabilities may be written as ,
Po=[(0+21r)/ 0+1) (0+14-r)] P,_, ..(22)
Py=02 (0-F2—1)/(0-]-1)* (see Sankaran (1970)).

Putting r=1, 2, 3... in equation (2.2), the higher order probabilities
may be computed casily.
(b) Factorial Moments :

The moment gencrating function of Poisson-Lindley distribution is
given as
4

G T)y={1—1[O-- D)}/ (1- -1]0)2, -.(2.3)
On differentiating (2.3) w.r.t. and computing coeflicient of 17, on both
sides of the equation we obtaine

I‘(Irll)'—"(""l'l)[h‘; “"l"ir—-l)/o J’ forr=2,13, 4, .. .. (2.9)

where

4, =(0-+2)/{0(0 1)},

and

It(s) =21 (04-3)/102(04-1)}

Iy Stands for the rth factorial moments,
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Explicit expression for thz 3r¢ and 4" order factorial moments may be
written as

iy, == 30 (01 4)[{0% 0 - 1))

ity 410 1-5)/(08 (0 1- 1))
Variance = o= (03] 402 | 60 | 2)/{0* () |- 1)2}.
(¢) Estimation :

The single parameter ‘0" of the Poisson-Lindley distribution can be
estimated in the following methods :
(I) Method of moments :

The parameter 0 ol Poisson-Lindley distribution is estimated by
Sunkaran (1970) as

el i o

Where pt denotes the mean of the distribution,

(2) Ratio of first two frequencies and (he mean :
IFor Poisson-Lindley distributions, 0 may be cslmm(cd by taking ratio
of first two frequencics

0= (3} -fo) VGRSl =41, (21,3011 215,

where
= Lol N 02 (0 [} (0 |- 1),
and
Pi=fiIN 0 (0 1 )1 )

3. Poisson-Loisson-Lindley distribution

Poisson-Poisson-Lindley distribution may be derived by generalizing
Poisson distribution {sce Gurland (1937)], using Poisson-Lindley as gen-
eralizing distribution,

(n) Expression for probability :

The pgl of Poisson mixture ol Poisson-Lindley distiibution may be
wrilten as
G- -EXP 03 (012 -0y (011 )2 1) ().
The probability recurrence relation may be written as
Py =13 49202 2o (2-1 0) = 1}/(0 1)) Pp- 2 (r -1)
A0 af() |- 1)) Peoy o (r=2) Py L[(r 1 1) . (3.2)
A> Oand 0 > 0.
Where
Po=Txp (M02 (0 1-2)0 1 1y -1},
Py=|20% (2a(2-[ 0) 1}/ (0-1-1,] Py,
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and
Py={3aly 1-A0T ({20521 0) -1} Py al’ 0 1172,

(b) Factorial Moments :
The factorial moment gencrating function for Poisson-Poisson-
Lindley distribution may be written as

G(1--1)=EXP [ {{1—=1/(V-} 1)}/(1__1/0) ~1}]. ..(33)

Hence the factorial moments recurrence relation

Py ={3r[0-12 (0 2)J000-1 1)} pog —(3r(r = D)[0? +Ar[0(0 4+ 1)} pipy
o (r= 1) (r=2) pg,_y,/0%. ..(3.4)

Mcan:p(uzx (0 1-2y/0(0 -1,
and

fl22’=Az (0-1-2)2/0 ("--1)24-2A (0-F3)/02 (U--1),

By = =X (0-2)3/03 (0 [- 1)1 202 (0 - 2) (50 1-9)[03 {0 |- 1)
A (204-8)/0° (0-1- 1),
ltz‘)-—)ﬁ (0 1-2)%00 (0 1) 103 (0 1-2)2 (70 1-27)/00 (0 -- 1)® J- 1222 (0%
280 1-29)/00 (04-1)-- 122 (F10-1-28)/00 (O |- 1).

Variance = p,=x (02-1-40 {-6)[02 (0 [-1)%,

(¢) Estimation :

The two parameter A, 9’ of Poisson-Poisson-Lindley distribution can
be estimated in the following methods.

(1) Methods of moments : ?

The two parameters A, U of Poisson Poisson-Lindley distribution may
be estimated by using sample mean and variance

OF=] (2%~ 5%)|- V{25 - §7) - 63 (X SH))/(x 8Y),
and

A =X {000 - 1)}/ (0 |-2).
Where ¥ is the sample mean $2 is the sample variance.
(2) Ratio of first two [requencies and the mean ¢
For Poissoa-Poisson-Lindley distribution
A {fl ((}*_f, ! }4}//" (j*2 ((}wlr_'~ i )4.

* o= (20— 82) /{2057 - 0x (2 SEH(x 8Y),
where

Sol N=EXP [\02(0--2)/ 0 [ [)* -1},
and

SuUUN=[N2 (20 (2-]- =130 L1V LN
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4. DPoisson-Lindley-Poisson distribution

Poisson-Lindley-Poisson distribution may be derived by generalising

Poisson-Lindley distribution |see Gurland (1957)] using Poisson distribu-
tion as generalising distribution.

The pgfl ol Poisson-Lindlcy-Poisson can be written as

G(1)=(02 (0--2 = M=D]/[(0-+1) (0} 1— et-Dy2) (4.1
A0 F2— MD))| 1 & MU,
where A=0(0-+1)* and «=I1/(0-1).

Hence the probability recurrence relation can be written as

;

Py =L A{(O43)[(04 1) Ae-A=27 A2} Ar/rl-f-Foe= [z (1=2! ae-)
j=

T ) WL (=) P / By, ..(4.2)

where
B=1/(1—-3ac=-]-3a? =R~ =",
Py=A (02— ) /(1 —ae?)2,
Pi==Ax oM {(0-1-3)[(D - 1) =P} B,

(b) FKactorial moments:

'The factorial moments generating function of Poisson-Lindlecy-Poisson
distribution may be written as
Gt 1) =A (U }2—e~M)/(1—ae™)z, ...(4.3)

The factorial moment recurrence rclation may be written as

Piean ™ [A{(("H')/(”-l‘ I) AT _2r N g}

p
‘I_Z (3 —30c? 27107 31" ¢4 N I‘Zr—;+l)]/(l"—°‘)“. ..(4.4)
j== |
Putting r==1, 2, 3, .. in cquation (4.4) respectively, the higher order
moments may be obtained as

"'('2) == 2 (““-I-40—}—6)/l)2 (0-+1 ),
/“‘(13) =)\ ((}3-1—8“ 120 »l-48)/“:l (“ _’_ l)'

sy =A% (0%} 1603+ 78024-6004336)/04 (0-+1).

Hence mean and variance [or Poisson-Lindley-Poisson distribution
will be \
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Mean—p{ =201 2)[0(0 1 1),
and
Variance==A? (0 —402-{-60 [-2)/0% (0 - 1) | A0 4-2)70(0 I-1).
(c¢) Lstimation : ‘
The two paramecters A and 0 of Poisson-Lindley-Poisson distribution

may be cstimated as follows.
Let

F(0)=(0* [-402 | G |-2)/(V 4-2)* --(,Lg—p; )/,L; : ...(4.5)

The parameter 0 may be estimated by Newton Raphson method using
cquation (4.5) and the other parameter A may be estimated as

A=X 0.0 4-1)/() }-2), where X denotes the mean of the distribution,
Goodness of fit :

All these three distiibutions i.c. Poisson-Lindley, Poissoa-Poisson-
Lindley and Poisson-Lindley-Poisson were fitted to distribution of mistakes
in groups of random digits, data from Kemp and Kemp (1965) and
accidents to 647 woimen on high explosive shells in 5 week data fiom
Greenwood and Yule (1920) reported by Kendal and Stuart (1963) for
which single paramcter Poisson, two parameter lHermite and Negative
binomial have been fitted. Since obtaining maximum likelihood estimates
is very cumbersome, method of moments are used to estimate the para-
meters of these distributions. The Table | and 2 give the comparison of
observed and cxpected frequencies for these distributions, the Poisson-
Lindley, the Poisson-Poisson-Lindley distribution and the Poisson-Lindley-
Poisson distribution.

Table 1. Observed and fitted Poisson-Lindley, JPoisson-Poisson-
Lindley and Poisson-Lindley-Poisson distributions.

No. df Observed Fxpected F-rcqucncv
Accident Frequency  Poisson NB PL PrL PLY
0 447 4006 441  439.28 442,05 444.58
l 132 189 140 142.83 137.79 134.78
2 42 45 45 45.02 46.57 40.17
3 21 1 14 13.8% 14.57 14.85
4 3 [ 5 4.20) 4.32 4.02
25 2 l 2 1.79 1.7 200
Total 047 649 648  047.00 647.00 047.00
x? 3.05 2.17 1.40
Degrees of 9 3 3

Freedom
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Table 2. Observed and fitted

Poisson-Lindley, Poisson-Poisson-

Lindley and Poisson-Lindley-Poisson distributions.

No. of errors Observed

Lxpected Frequency

ber group Frequency Poisson ~ N. Bio. PLT T ePL PLE

0 35 27.4 34.2 33.05 32.83 35.53

1 11 21.5 1.7 15.27 15.22 15.69

2 8 8.4 9.0 6.74 7.06 7.02

3 4 2.2 2.8 289 2.99 2.91

4 2 4 1.3 1.21 1.19 1.15
Total 60 599  59.6 59.17 59.29  59.29

X2 2.23 1.99 2.179

Degrees of 3 2 2
freedom

also.

Form the a ove table it is clear that there is some improvement,
however small it may be, in fitting these mixture distributions PL, PtL
and PLP over the other distributions consider earlier, ‘lhe distribu-
tions as indicated here, may be used with case in the other situations

(1

(2)

R}

REFERENCES

Bhattacharya, S. K.,  Coulluent hypergeometic distributions of discrete and
Continuous tyye with applications to accident proneness, Bulletin of the
Caleutta Statistical Association, 15, 20-31 (1960).

Bora, M., The Gegenbenbauer  Distribution Revisited : Some rccmence
Relations tor Mcoments, Cumulant, ete., I stimation of Parametars and its
goodness of (i, Journal of the tndian Sociery of  Agricultural Statistics, New
Delhi, Vol. 34, No. 1, 72-78 (1984).

Greenwood, M, and Yule, G, U..  Aninguity into the natuwe of frequency
distributions sepresentative of multiple happmeengs with particular telerence
to the occucrence ol multiple attacks of disease o1 of aepeated acardents;
Journal of the Royal Statistical Society, scrios A, 81,255 179 (1920).

(4] Guitand, 1., Some interrettions among compotrnd ated  penerihized disteihu-

(5]

(6]

tions, Biometrika, 44, 265 268 (1957).

Kemp, C. D. and Kemp, A. W., Some propertics of the Hlermite Distabution,
Biometrics, 52, 381-.394 (1965).

Lindley, D. V., Diducial distiibutions and Baye’s thicorem, Journal of the
Royal Statistical Society, Sevies 1§, 20, 102 107 (1958).



& Pure Appl. Math, Sci., Vol. LI, No. 1-2, March 2001

(7) Medhi, J. and Bora, M., On generalized Fow Parameter Charlier Listiibution
Journal of Statistical Planning and Inference, 69-77 (1986).

(8) Sankaran, M., The discicte Poisson-Lindley disttibution,  Biometricy, 26,
145-146 (1970).

Received @ Scptember 25, 1999
Department of Mathematical Sciences,
Tezpur University, Tezpur—784001, Assam,

and

Department of Statistics,
Darrang College, Tezpur, Assam.



Jowrnal of Asssam Science Society, Vol 41 No.2, June, 2000, pp. 120-128

The Short Poisson-Poisson-Lindley Distribution

Arundhati Deka Nath
Departinent of Statisticy
Darrang College, Tezpur, Assam, India

and

M. Borah
Department of Mathematical Sciences
Tezpur University, Tezpur, Assam, India

ABSTRACT
The Short Poisson-Poisson-Lindley (SPPL) distribution is an
extension of Poisson-Poisson-Lindley (PPL) distribution. It is a
convolution of PPL and Poisson distribution. This convolution
has been made by assuming that the number of speils in a given
time period is assumed to be Poisson variable and the probability
of accidents within a spell have a Poisson-Lindley distribution,
which is a more generalized Poisson distribution with a constant
parameter and accidents occurring outside the spell are
independently  distributed as  Poisson  distribution. The
recurrence relation for probabilities and factorial moments for
this SPPL distribution are discussed. A few sets of accident
data, to which the different types of distributions are fitted with
varied amount of success, have been considered for fitting of the
SPPL distribution.
Key Words : Short  distribution, Poisson-Lindley distribution, P()is.\'on-P()i.v.w)n-Lind!eyl
distribution, recurrence relation, factcrial moments, parameter estimation.

INTRODUCTION

Cresswell and Froggatt (1963) derived a model which was a convolution of Poisson distribution
and a Neyman Type A distribution. They called it ‘Short’, as opposced to the two-parameter
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‘Long’ Neyman Type A distribution.  The name ‘Short’ appears to relate the tails of the
distribution. Kemp (1967) considered its propertics, recurrence relations for probabilitics and
fitted this distribution to accident data. This SPPL distribution is also a convolution of Poisson
distribution and Poisson-Poisson-Lindlcy (unpublished work of the authors) distribution. llere
we have considered Poisson-Lindley distribution since it is a morc gencralized Poisson
distribution. Sankaran (1970) studicd the Poisson-Lindley distribution with applications Lo
crrors and accidents.  Later two mixture distributions of this distribution namely Poisson-
Poisson-Lindlcy and Poisson-Lindley-Poisson was investigated by Borah and Dcka Nath
(unpublished work) with application to accident data.

Model Derivation from Accident Data

While deriving the ‘Short” distribution from accident data, four assumptions were made by
Cresswell and Froggatt (1963). In the same manner, SPPL distribution has been derived by
considering the lollowing assumptions :

(1) Iivery driver is liable o a spell during which he is liable o incur accidents. The
number ol spells in a given time period is assumed Lo be Poisson variable with
parameler A,

(i)  All drivers are equally liable to the occurrence of a spell.

(iii)  The probability of an accident occurring within a spell is constant and it is assumed Lo
have a Poisson-Lindley distribution with constat paramelcr 6.

(iv)  Lastly, accidents can occur outside a spell and such accidents are indcpendently
distributed as Poisson distribution with parameter A,

It is gencrally observed that the derivation of probability mass [unction (p.n.f.) for somc
generalized mixture distributions are secm to be complicated. So, the p.g.f. of SPPL distribution
has been obtained by using Levy’s thcorem [sec Feller (1957)], which may be wrilten as

G() = expl(A,(g(t) - 1) + At - D] oA

2 .
which converges tor | ¢ 1 < 1,where ¢ is the gencrating paramcter and g(¢) = (9(1 (1(;(33 i l_) 7

denotes the p.g.f. of Poisson Lindley distribution [see Sankaran (1970)]. Hence, (1.1) may be
written as

s RO +2 - 1)
G = exp [, { RS ES S 1} +2,0- D] (1.2)

be the p.g.f. of SPPL distribution, where A, A, > 0 and 0 > 0.
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In this papcr, we have obtained the securrence reliation for probabilitics and fagtorial momenty
of the distribution. ‘The paramelters are estimated by a composite method i.c. by using the ratig
of first two frequencies and first two moments. To illustrate the various applications ol (hif
distribution, first we consider the number of accidents sustained by a group ol 708 bus drivers
over a period ol 3 years. Sccondly, we condider the number of accidents to 647 women o
high explosive shells in 5 week periods. Thirdly, we consider the number of accidents (homg
injurics) ol 122 cxpericneed men during 11 years pertod and lastly, we considered number o1
accidents of 122 cexpericnced shunting men over a period ol 11 years. In all the cases the
SPPL distribution provides a better fit to the observed data.

EXPRESSION FOR PROBABILITIES

Dilferentiating p.gp.f. (1.1) w.r.t. *U, the following recurrence relation tor probabilitics may ba
oblained as

R R e e e R R (v B e R L
+ (93+Ml)2 <é112y}1’ 2 @+ 1)*1) ] 2.1)
where P, = exp [l { o ])1 1} ‘ (2.2)
P = {7\l %L + 7‘2}})0 (2.3)
Putting r = 1, 2, 3..... in cquation (2.1) the higher order probabilitics may be ()btqincd.

EXPRESSION FOR FACTORIAL MOMENTS

The factorial moment generating (f.m.g.) function of the new distribution is

.
O+ D - 3.1)
- =)

On difterentiating (3.1) war.l. U and comparing the coefficicnt of ¢, on both sides of the
cquation, we obtain

G(l+1=exp{A
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. (0 + 2) r ' A ro r - 1) .
Wy = {7\. 00 + |)+)‘2+3_0'}“m‘ {o(oi1)+3}‘27 F3 T }“('-”
- - l .- 2 ' To- l t- 2 '
+{37‘2 - 0° Ly O)S, : }H(r-ﬁ) - 8$, : M3 3.2)

where ', denotes the r'" order lactorial moments.  Bxplicit expression for the first four
factorial moments may be obtained as

L g (B2 (0 + 3) 0+ 2) 5
“’(2) - 1 B‘.‘(O + 1)2 + 2)\’1 92(0 + l) + 2)\'Ik’l 9(0 + l) 2
v !0 + 2) __6_ _ 1 6A2 3 A2
Hey = {7" 0O + 1) Mt }“'m [7\' b0+ 1) 8 +F]“l“>+ r
J PR R LR L o , 18],
Ha [x‘ 80 + 1) tht g e e+ 8 efle’

A, 6 6
(18« £+

o = % O +2) . _ (8% + 40 + 6)
Mean = A, D) + A, Variance = A, 7O+ D) + A,

If A, — 0, then the moments are same as those of Poisson-Poisson-Lindley distribution,

ESTIMATION OF PARAMETERS

A composite method has been used to estimate the parameters of SPPL distribution.  The
method is based on ratio of first two frequencies, sample mean and sample variance. We have,

0+ 2)

X = ;\'l m ?\2 (41)
2 _ (0? + 46 + 6)
o L0204, (4.2)

By cquating the first two probabilitics of SPPL distribution with —% and %} we abtain Lrom
(2.3)
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LISy 00+ 3 A, 4.3)
Mo (0 + 1)

By climinating A, and A, between 4.1), (4.2) and (4.3), we obtlain

20+ DO®+3) _ $-X @)
204 + 90" + 702 + 20 .0 '
1y

which gives an cstimate for © cither by graphically or by numerical solution using Ncewton-
Raphson mecthod i.c.,

200 + 3)(0 + 1)
264 4+ 90% + 702 + 20 ’

Let, f9) =
! AS‘Z -
where K=—-—"—-—

Then the iteration formula for Newton-Raphson method is,

g . LSO
6" =0, - L5 4.5)

where 0, is the initial value and 07 is the estimated value of 8 respectively. The initial guess
valuc for starting the Newton-Raphson method have to be sclected by trial valucs, based on
our assumptions. When trial valuc closes (o estimated value the method will always convergent.

After getting the cstimate ol 9 t.c. 07 from (4.5) the cstimate of A, and A, may be obtained
as

e ($-D0NO + 1)
A= 200" + 3) (4.0)

e g MO+ 2)

2 0'(0" + 1) 1)

GOODNESS OF FIT

To illustrate the application ol this distribution lirst we consider in Table-1, the data on the
numbcr ol accidents sustained by a group ol 708 bus drivers over a period ol three ycurs for
which Neyman Type A and Short distribution were fitted by Kemp (1967). When SPPL
distribution is applied to this data it provides a surprisingly good (it with x2? valuc ot 2.445.
Using cquations (4.5), (4.6) and (4.7) we get 87 = 8.0110, A" = 30.171 and A = -1.892.
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Table-1:Numbers ol drivers suslaining accidents over three year period (Cresswell and
Forggall’s Table-5.4, 1963) with cxpected Irequencics bascd on SPPL, Neyman -
Type A and short distribution.

No. ol Obscrved SPPL Ncyman-Type A | Short distribution
accidents Frequency distribution distribution (Kemp, 1967)
(Kemp, 1967)
0 117 118.588 116.69 110.38
1 157 159.130 162.04 169.70
2 158 153.191 153.12 156.02
3 115 115.631 115.20 113.90
4 78 74.940 74.58 72.54
5 44 43.182 43.13 41.90
6 21 22.687 22.83 22.45
7 7 11.045 11.25 11.31
8 6 5.041 5.21 5.42
9 I 2177 2.29 2.49
10 3 0.895 0.96 1.10
11 1 1.493 0.39 0.47
Total 708 708.000 - 707.75 707.68
X2 2.445 2.64 3.78

Sccondly, we consider the data on number of accidents to 647 women on high explosive shells
during 5 weeks period (data from Greenwood and Yule, 1920). In Table-2 we considered the
original data wgether with the expecled Irequencics of SPPL, PPL (Borah and Dcka Nath,
unpublished work) and Negative Bionomial (Plunket and Jain, 1975) distribution.  Using
cquations (4.5), (4.6) and (4.7) we get 0° = 5.30606, A" = 24117 and A" = - 0.061. From
Table- 2 we have scen that SPPL distribution provides a good [it to this data.

In Table-3 we consider Adelstein (1952), data on number of accidents (home injurics) of 122
expericnced men in 11 years period where Adelstein had concluded that the Poisson distribution
fits the first scts of data but did not it the sccond and third scts. When the SPPL distribution
is applicd o those scts it provides a surprisingly good {it in all the cases. In Table-2 we get
0" = 4.2305, 2" = 0.4401 and A" = 0.4171 for the first sct,and 07 = 4.0447, )" = 3.359 and 2’
= - 0.0115 lor the sccond sct. When the cstimated value ol 0% are divided by the respective
number ol years (6 and 11), the average value for 07 tor these sets become 0.705 and 0.3G677
respectively. These values do indicate that the average natural rate for home injurics docs
decrease with experience.
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Table-2:Comparison of obscived [requencics Tor accidents to 647 women on high explosive
shells during 5 weeks with expected frequencies ol SPPL, PPL (Borah and Dcka
Nath, unpublished work) and Negalive Bionomial distribution (Plunket and Jain, 1975).
(Data trom Greenwood and Yule, 1920).

No. of Obscrved SPPL ' N. B. PPL
accident frequency {requency frequency frequency

0 447 445.959 445.89 - 442.52

1 132 131.692 134.90 137.79

2 43 47.698 44.00 46.57

3 21 15.218 14.69 t14.57

4 3 4.124 4.96 4.32

>5 2 2.309 2.56 1.70

Total 647 647.000 647.00 647.00

x? 3.199 3.7109 4.041

Table-3:Comparison of obscrved {requencices for home injuries of 122 expericnced men during
11 years (1937 - 1947) with expected SPPL distribution {requencies.

Number 1937 - 1942 1937 - 1947
ol

injurics . Observed Expected Observed |  Expccled
0 73 72.952 58 57.045
1 36 35.977 34 33.441
2 10 10.079 14 17.521
3 2 2.313 8 8.161
4 1 0.679 6 3.404
5 - - 2 2.428

Total 122 122.000 ' 122 122.000
xX? 0.00068 1.542
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In ‘Table-4 we consider accidents data for expetienced shunting men over 11 years. For which
Adelstein (1952) had used the Poisson distribution and negative binomial distribution, When
SPPL distribution is fitted to this data the calculated -value of %2 for the SPPL distribution is
much less than the significant values. In Table-4 we get 07 = 6.7819, A ° = 6.759 and A" =
0.1457 for the first sctand 07 = 1.7748, 3 * = 0.2090 and 2" = 0.8069 for the sccond sct. The
valucs of 9" for the sccond group indicates that due to expericnce this group has a less natural
chance of making accidents,

Table-4:Comparison ol obscrved [requencics ol accidents ol 122 expericnced shunting men
over 11 years (1937 - 1947) with expected SPPL distribution frequencices.

Number 1937 - 1942 1937 - 1947
of

injurics Obscrved LExpected Obscrved | Expecled
0 40 40.141 50 49.642
1 39 39.138 43 49.671
2 26 23.794 17 19.495
3 8 11.459 9 6.731
4 6 4.749 2 2.074
5 2 1.765 Q 0.5790
6 1 0.954 ' 1 0.808

Total 122 122.000 122 122.000
X 1.648 1.150 .
CONCLUSION

1t is apparent from the results of the Tollowing tables that the SPPL distribution can be applicd
very suceesslully in case of accident data. In all the cases thic SPPL distribution provides a
much better fit than the other distributions.
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Abstract: A class of Charlier type Lagrangian probability distributions are
defined and studied. The probability mass function (pmf) and cumulants of the
basic Lagrangian Charlier distribution is provided. The parameters are estimated
by ratio of two moments and first frequency. Fitting of the distribution has been
considered for the testing the validity of the estimate of the parameters. Further

the general Lagrangian Charlier Poisson distribution of type I and type —II are
also investigated.

Key Words: Lagrange’s expansion, Lagrangian probability distribution,
Charlier distribution, Probability generating function, Cumulants.

INTRODUCTION
(

Lagrangian expansions for the derivation of expressions for the probabilities of certain discrete
distributions have been used for many years. The potential of this technique for deriving
distributions and their properties has been systematically exploited by Consul and Shention and
their co-workers. Consul and Shenton {1], [2], [3], Mohanty [4], Consul and Jain 5] have written
many key papers on Lagrangian probability distribution. Consul’s [6] book on Lagrangian Poisson
distribution highlights many properties, and also for various modes of genesis of Lagrangian
Poisson distribution.

If g (z) and f (z) are two given probability generating functions (pgf) in ‘z’ then the
transformation z=ug (z) gives Lagrangian probability distribution of type-I, with pmf given by

Plx x]__'gvﬁ[ g(2)y UG )Lo, forx=1,2,3,... (1)

&
and Plx =0]= 1(0)

where - denotes (x-1)th derivative.

Using Lagrangian expansion of 2™ kind Janardan and Rao [7] investigated a new class of
discrete distribution call Lagrangian probability distribution of type -II (LPD-II) with pmf
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P(X =x)= ll(l)[—‘s— {(g(z))xf(z)}jl , Jorx=0,12,... )

x! oz* 1=0
= (), otherwise,
where g'(1) denote 1* derivative of g (z) at z=1.

Charlier polynomials dcfined by the generating function e*(l— fz)™* are associated with
the Poisson distribution of rare events. Jain and Gupta [8] defined the generalized Charlier
polynomial by the generating function e™* (1 — fz™)™*.

Medhi and Borah [9] also studied the probability, moments and cumulants properties of four
parameter generalized Charlier distribution. The distribution includes, as particular cases,
negative binomial, Gegenbauer and generalized Charlier distributions. .

Using Lagrange.expansion to this Charlier distribution here we have derived the pmf of basic
LCD in a simpler form than the earlier one, ( See Borah and Begum, [10]) and also the estimation

of the parameters. Then considering f (t)=eo(’_” in equation (1), Lagrangian Chatlier Poisson
distribution of type I and type Il (LCPD-I & LCPD-II) are also obtained. The cumulants of the
distributions are investigated. For fitting of basic LCD a composite mcthod of estimation of the
parameters are suggested. The basic LCD has been fitted to some data for which logarithinic
series, geometric and generalized logarithmic series distributions have been fitted. It has been
found from Table 1. that this three parameters basic LCD gives a better fit than the other
distributions.

1(a). Basic Lagrangian Charlier distribution (LCD)
The probability mass function (pmnf) of basic Lagrangian distribution is given as

x-1
P(X :x):—l— g {g(z)}"lz=0 forx=1,2,... 3)
= (, otherwise.

x! &z*!
where g (z) is the probability generating function (pgf) defined on some or all non ncgative
integers, such that g(0) # 0. Here we consider

g2)=e (1~ B) e (1- fr)™ @)
which is the pgf of three-parameter Charlier distribution (for m=1 ). Thus the pmf of basic LCD
may be written as

P(X=x)= ﬂ);:ﬁ_):{i(/;)(wc)*"ﬂf (ﬂx)m} , forx=1,2,... (5)

! ~

=0, otherwise.
where k=x-1, a >0, B<1, A>0. This pmf may also be written as

PX = x) =502 ﬁif(“")x" Fo(l-x,Ax—f ), x2 1 ©)

(See Borah and Begum'[10])
(b) Cumulants of the basic LCD

The cumulants of basic LCD are investigated by using Consul and Shenton’s {3] general
formula. For simplicity, let G, be the ith cumulants of the Charlier distribution with pgf g (z) then
the first four cumulants k,, i=1,2,3,4 can be written as
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3G,*
k\="‘1'*—, ko= Y, T k= G, -+ 2 T
1-G, (1-G,) 1-G)* (1-G)
G, 10G,G,  15G,’
= -+ -+ 5
(I'“G|) (I_Gn) (I"Gn)

In case of charlier distribution, we have the first four cumulants as

G =a+ AP , G,=a+ A'Bz
(1-0) (1-8)
Aﬁ(1+ﬁ) and G,=a+ 40
' - By’ ) (-5
Thus the first four cumuhnts of basic LCD may be given as
- (1-5)
k1=D|= (7
@=a)i-5)-2p) !
iep, =Bk B) + 4P ®

-a)a-p)- 1%
0.D,= 0= B +3B(1- 8% 30 - Bt - ) + 15} o)
{(i-aya~py~-28)  {1-a)t- )~ 28}

o (=5) ¢ aghrs 0= B) +ap]
R (P ) Wy [{“(1 SR (e R

1o = BY + 2480+ B~ ) + 28]
R (R () BT } 1o

(c) Estimation of Parameters

A composite method has been used to estimate the parameters of basic LCD. By equating the
first probability of basic LCD with n,/N, we obtain

= Alog(1 - B) - log(=> 1
a = Alog(l-f) og(N (11)

By equating the mean and variance of the basic LCD with X and m,, we pet the following
equations

- 1-4)
=k = (12)

A TS0 py-A8)

g 2 U=Pa-p) +4p) (13

{a-a)0-p)- 28}
Eliminating a and A between Egs. (11), (12) and (13), we obtain
1 m, +%° 1og(%/'—)
—-1)’log(l-B)+—= (14)
( 5 )" log(1 - B) F; 3

) -
ms, +Xx" —-X
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The Eq. (14) may give an estimate for f§ either by graphically or by using Newton Raphson
mcthod. After getting the estimate § of £ from (14) the estimates of A and a may be obtain as

follows,
i:{log(n,/N)—1/f+1}/ﬁog(1—[f)+ﬁ/(1—ﬁ) (15)
and Ge=1-1_ B (16)
x (1-5)

(d) Fitting of basic LCD distribution

/

For the application of basic LCD, we consider the example of number of paper published per
author for which geometric distribution (GD) and logarithmic series distribution (LSD) are fitted
by Williams [11] and generalized logarithmic series distribution (GLSD) by Jain [12]. The
comparison of observed and expected frequencies among LCD, GLSD, LSD and GD are given in
Table 1.

For the data in Table 1, the sample mean X =15508475, and central moments
m, =1.1405050. Solving Eq. (14) by Newton Raphson method we get 3 =0.6113. Substituting

the values of ,é in Egs. (15) and (16), we get A=-0.0199 and & =0.3866

Table 1. Fitting of no. papers per author by LCD, GLSD, LSD and GD. Publication in the review
of applied entomology, Vol. 24, 1936 (2379 papers by 1534 authors).

No of papers Observed LCD GLSD LSD GD

Par author frequency 1 frequencies Jain [12] | Willams [11] | Willams [11]

! 1062 1061.90 1052.72 1046.05 989.10

2 263 275.019 287.52 293.05 351.30

3 120 105.14 107.10 109.46 . 124.80

4 50 46.083 45.51 45.99 44.33

5 22 22.53 20.83 20.61 .15.75

6 7 11.41 10.00 9.62 5.59

7 6 5.76 4.97 4.62 1.99

8 2 3.15 253 2.26 0.71

9 0 1.47 1.31 1.12 0.25

10 1 0.43 0.70 0.53 0.09
11 1 0.19 0.81 0.66 0.09 -

x? 4.60 5.14 5.56 46.39

It is clear from table 1 that the expected basic LCD frequencies are much closer to the
observed frequencies than obtained by geometric, logarithmic and gencralized logarithmic
distributions, as the values of %* for the LCD are smaller than for the other distributions. Thus the
LCD model better describes the pattern of the frequency distribution of number of paper per
author. '
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2(a). General Lagrangian Charlier type distributions
Considering  g(z)=¢™* (1= B)* e (1= f)™" and  f(9)=€’*™"

in Eq. (1) the pmf of Lagrangian Charlier Poisson distribution of type I (LCPD-I) may be written
as

—(xa+8) (1 _ Ax k k ‘e
P(X=x)=2 (; py°6 {Z(j](ax +0)' g’ (xx)(,)}, for x=1,2, .. (17)

4=0

P(X=0)=e""*
where k=x-1, a,4,0>0 and f<1. )
Similarly considering Eq. (2) the pmf of LCPD-1I may be written as

P(X=x)=4 e‘(xa+e)(1 - ﬂ)"‘ {i(xj(ax . 9)::-/’31 (ﬂx)(j)}.fofx=0.1,. (18)
x!

1=0
= (), otherwise.
where A=1-{a+AB/(1-B)}.

(b). Cumulants of general Lagrangian distribution

.According to Consul and Shenton [3], if F, were the rth cumulants for the pgf f(z) as a
function of z, and if D, were the rth cumulants for the basic Lagrangian distribution for pgf g (z)
then the cumulants of general Lagrangian distribution may be written as

k=FD, k=FD,+FED}, k=FD,+3RDD,+FD;]
k,=ED,+3FD} +4F,DD, +6F,D’D, + F,D}
Here Dy, D,, D; and D, are given in Eqs. (7) - (10) respectively. Thus
k. = 0(1 _ﬂ)
b (l-a)1-8)-8
L _00-pl1-p) +2p°
© {0-a)i-p)-as)

Table 2. Showing some Charlier family of Lagrange distributions of first kind.

(19)

(20)

No. g(z) 1(z) LCDI

L |G @) | G @) | NpQ- B e ()™

(A =-x,N+1,-f/ax),x21

2 |G @) | G | 4BU-pY<e (@) /x

S EQ-x,x+1,-f/ax),x21
where A=—1/log(1- f)

where G,"%*(z), Gzp M (z) and G3"J (z)denote the pgf of three parameter Charlier, negative

binomial and logarithmic series distribution respectively., F,(a,b;x) denotes Hypergeometric
funttion.
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Table 3. Showing some Charlier family of Lagrange distributions of second kind

No 2(2) f(z) LCDI

1[G (2) G " (@) [ 1-{a+AB/(1-B)))( - B)*e™ (ax)* /x|
o (=x,Ax+ N, -flax),x21
2 G Y@ G (2)  (1-NBIQ-p)(-B)* e at /xl
(=, Nx+A-fla),x21

3. Conclusions

This paper defines a class of charlier type Lagrangian probability distributions by using well
known Lagrange’s expansions. It is also conceivable that discrete data occurring in ecology,
epidemiology and meteorology can be statistically modeled on one of the distributions consider in
this investigation. It may be of interest to investigate LCPD of type I and II further.
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