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Preface 

Investigations reported in tlns thesis entitled - 'A study on Mixture of some Univariate Discrete 

Probability Distributions' is undertaken by tlle autllor under the guidance of Dr. Munindra Bora, Reader, 

Department of Mathematical Sciences, Tezpur University, Tezpur. 

This thesis contains mainly some finite and countable mixtures of univariate discrete probability 

distributions. The nnxture of discrete probability distribution has become an extremely useful branch of 

statistics having important applications in a wide variety of disciplines such as biological and medical 

sciences, social sciences, physical sciences, operation research, quality control, engineering and so on. The 

moment one gets in to a stochastic problem where nothing more than counting is involved, one is dealing 

with discrete distribution. While pursuing tllis study I have been greatly influenced by learned works of 

several authors like Prof. P.C. Consul, G.c. Khatri, S.K. Katti, C.D. Kemp, A.W. Kemp, K.G. Janardan, 

G.P. Patil, L.R. Shenton, N.L. Johnson, S. Kotz, G.c. Jain, RC. Gupta and I.G. Plwlkctl. I alll indebted to 

all of them. 

The works in tllis tllesis a!~'-lded into scven chapters. The first chaptcr is an introductory one. 
\" ;' . 

It is devoted to the various technique~, of nlixture distributions tllat have been studicd in tIllS tIlcsis. It also 

contains review of previous works and the synopsis of the thesis. In the rest of the chapters, we studied 

certain lnixture distributions such as - inflated distributions, generalized distnbutions and Lagrangian type 

distributions. The parameters of each of tlle distribution are estimated and empirical fits are given to test tlle 

relative efficiency of different method of estimation. The whole study involves a lot of computer 

progranuning. The recurrence relations for probabilities and moments are aimed to derive in such a way 

that they are easy to handle on computers. 

During the course of the investigation, I got the opportunities to attcnd certain international 

conferences where I got the chances to meet lllany renowned statisticians, specially- Prof.C.RRao, 

Prof.J.Roy, Prof.S.B.Sinha, Prof.G.P.Bhattacharya, Prof.N.RMohan etc. Their valuable advices encourage 

me to study furtller in tllis field. 

In tltis thesis, due to linntation of spaces, only the important results are given tIlOugh a large 

number of .data sets were investigated during tlte course of investigation. 

A few words about tlte notation used in tlns tllesis arc given below. 

An equation is marked as C.S.fl., where c stands for tlle 'chapter', s for tlle 'sechon' in wluch it 

occurs and n is tlte 'serial nwnber'. 

Similarly, tlle graphs and tables are marked as c.n., where e stands for 'chapter' and n IS tIle 

'serial nwnber'. 

Lastly, tlle published papers of autIlOr arc given in tlle appendix for ready referenccs. 
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Chapter 1 

1.1 Introduction 

The theory of discrete probability distribution is an extremely 

useful branch of statistics having important applications in a wide variety of 

disciplines. The origin of this theory began with the work of James Bernoulli 

(1713) and Poisson (1837). In recent years the mixture distributions have received 

continuous attention since elementary distribution such as Poisson, binomial, 

logarithmic which can be formulated on the basis of simple models, have been 

found to be inadequate to describe the situations which occurs in number of 

phenomenon. Hence univariate mixture distributions, which combine two or more 

of the elementary distributions through the process of compounding or 

generalizing, have become an extremely useful branch of statistics. These 

distributions have important applications in biological sciences, medical sciences, 

social sciences, physical sciences, operation research, engineering and so on. A 

-
detailed account of these discrete mixture distributions and their properties can be 

found in the works of Neyman (1939), Gurland (1957,1958,1965), Haight (1961), 

Patil (1961,1962a,1962b,1964), Khatri (1961,1962), Katti (1966), Katti and 



Gurland (1961, 1962a, 1962b) and in the books of Johnson and Kotz (1969), 

Johnson et al (1992) and Consul (1989). 

1.2 MixtUl'c Distribution 

A mixture distribution is a superimposition of distributions with 

different functional forms or different parameters, in specified proportions. 

Sometimes, however, mixing is just a mechanism for constructing a new 

distribution for which empirical justification IS sought later on. 

IfF, (XI> X2 , .•.• x J, (j = 0,1, .. .. ,m) represents diiTerent cumulative distribution 

m 

functions (cdt) and a, ~ 0 and La, = 1 then 
)=0 

m 

F(XpX2' .... XJ= La)~(x" .. xJ 
)=0 

IS a proper cumulative distribution function. This mixture distribution {l~} is 

finite or infinite according to m is finite or infinite. Thus two important categories 

of mixture distributions are finite mixture and countable or continuous mixture of 

discrete distributions. 

(a) Finitc mixture 

The concept of finite mixture of distribution was introduced into 

literature by Pearson (1915). A mixture distribution is said to be a finite mixture 

of distribution if 

2 



where PI>P2,00"Pk are the weights of the compound distribution with cdfs 

k 

~ (X),F2 (x), ... ,Fk (x) and p) > 0, LP) =1. 
)=1 

In finite mixture of distribution the problem of central interest arises 

when data are not available for each conditional distribution separately but 

available only for the overall mixture distribution. Often such situation arises 

because it is impossible to observe some underlying variables which split the 

observations into groups - only the combined distribution can be studied. In these 

circumstances interest often focuses on estimating the mixing proportions and on 

estimating the parameters in the conditional distributions. Zero modified or 

inflated distribution is an example of finite mixture of distribution. 

Inflated Distribution 

A random variable X is said to have the inflated distribution if its 

probability mass function (pmt) is defined by 

( ) {
fJ + apo, X = 0 

p X=x = 
ap x' X = 1,2,3'00' 

where p) , U=O, 1 ,2, ... ) is the pmf of the original distribution without inflation and 

a + fJ = 1 . It is also possible to take fJ less than zero, provided fJ + apo ~ O. 

The probability generating function (pg£) of inflated distribution IS 

H (I) = fJ + aG{/) , where GV) is the pgf of original distribution without inflation. 

3 



The studies of discrete inflated distributions were initiated by Singh 

(1963) to consider the probabilistic description of such experiment where there is 

some 'inflation' of the probability at the point zero for Poisson distribution. Singh 

(1966) studied the inflated binomial distribution. The generalized inflated Poisson 

distribution was investigated by Pandey (1965) in the sense that the inflation of 

the distribution occurs at an arbitrary point '/' (being the value of the random 

variable X). " . 

Thus the random variable X IS said to have generalized inflated 

distribution if its pmf is expressed as 

p(x = x) = {fJ + ap x' 

apx, 

x = / 

x = 0,1, ... ,/-1,1 + 1 .... 

(b) Countable and Continuous Mixture of Discrete Distribution 

A mixture distribution also arises when the cumulative distribution 

function of a random variable depends on the parameters 01,02 , ... ,0", and some 

(or all) of those parameters may vary. A mixture distribution of this type is 

represented by 

F I\F 
A e 8 

where FA is the original distribution and F8 is the mixing distribution. When 0 has 

a discrete distribution with probability p" (i=O, 1,2, ... ) we call the outcome a 

countable mixture of discrete distribution. The pmf of the mixture is 

P(x = x) = LP,P, (x) 
I~O 

4 



where P
J 
(x) = F

J 
(x) - F

J 
(x - 1) 

A continuous mixture of discrete distribution arises when a parameter 

corresponding to some features of a model for a discrete distribution can be 

regarded as a random variable taking continuous values. Greenwood and Yule 

(1920), Lundberg (1940) first studied the theory of countable and continuous 

mixture of discrete distribution. 

In case of mixture distribution there are three important theorems 

derived by Gurland (1957), Levy (1957) and Maceda (1948). 

Gurland's generalization Theorem [Gurland (1957)J 

According to this theorem, a distribution with pgf of the form 

G1 (G2 (z)) will be called a Fl distribution generalized by the generalizing F2 

distribution provided that Gz (z / k¢) = [Gz (z / ¢)Y 

Symbolically, it will be represented by Fl v Fz . 

Levy's theorem [FeUel' (1957)] 

If and only if discrete probability distribution on the non negative 

integers is infinitely divisible, then its pgf can be written as 

G(z) = eA(g(:)-I) 

where A> 0 and g(z) is an another pgf 

Maceda's theorem. [Maceda (1948)] 

According to this theorem, miXIng Poisson distributions USIng an 

infinitely divisible distribution yields a Poisson-stopped-sum distribution. 

5 



1.3 Review on Previous Works of Mixture of Discrete Distributions 

An increasing amount of eiTorts have been made in the last few 

years in the area of discrete mixture distributions. Sometimes it is found that a 

simple distribution such as binomial, Poisson, negative binomial, logarithmic etc. 

fails to describe a set of data which leads to the belief that the model underlying 

the distribution has some of the characteristics of the generalized or mixture 

model. Thus further research was made to examine if any simpler mixture 

distribution will describe the data to a better degree of satisfaction. In this process 

a large number of discrete distributions were derived which are classified as 

generalized, modified and contagious distributions. A detailed accounts of these 

discrete mixture distributions and their propeliies can be found in the books of 

Johnson and Kotz (1969), Everitt and Hand (1981), Consul (1989) and Johnson et 

al (1992). 

According to Smith (1985) finite mixture of distribution can be used in 

medicine, where the categories are disease states, in economics, where the 

categories are discontinuous forms of behaviours, in fisheries research, where the 

components are of different ages and in sedimentology where the categories are of 

mineral types. Again according to Titterington (1990) finite mixture distribution 

is used in speech recognition and in image analysis. Everitt and Hand (1981) 

studied finite mixture of distributions in their book and estimate the parameters by 

the method of moments and maximum likelihood 

6 



Inflated distribution studied by Singh (1963) and Pandey (1965) is an 

another example of finite mixture of distribution. Singh (1966) also investigated 

generalized inflated binomial distribution. He investigated that this distribution 

will be applicable in those cases where the single binomial describes the situation 

well except for the 'I'lb cell, which is inflated, i.e. there are some more numbers of 

observations with 'I' that can be expected on the basis of single binomial. 

Grzegorska (1973) studied the inflated generalized power series distribution and 

obtained the recurrence relation for moments of this distribution. Patel (1975) 

investigated inflated at zero power series distribution. Sobich and Szynal (1974) 

and Lingappaiah (1977) obtained some properties of inflated distribution. 

Gerstenkorn (1979) established the recurrence relation for the moments about an 

arbitrary point of class of discrete inflated distributions. The same author also 

investigated the moment recurrence relations for the generalized inDated negative 

binomial, Poisson and geometric distribution. Kemp (1986) and Kemp and Kemp 

(1988) used maximum likelihood method to estimate the parameters of inflated 

Poisson and binomial distribution. A zero modified geometric distribution was 

studied by Holgate (1964) as a model for the length of residence of animals in a 

specified habitat. WilJiams (1947) introduced logarithmic with zero distribution. 

Chatfield (1969) used the probability generating function of this distribution as a 

model for stationary purchasing behavior. Khatri (1961) and Pati! (1964) obtained 

it by mixing binomials. 

7 



Cohen (1963) considered a mixture distributions formed from a Poisson 

component and a binomial component. Dawid and Skene (1979) considered a 

mixture of multinomial distributions arising in a model of observed rating. 

The works on countable and continuous mixture of discrete distribution 

were developed by the "accident proneness" theory of Greenwood and Yule 

(1920). In their model, an individual was assumed to have accidents at random, 

with an intensitye, where e is assumed to have a gamma distribution over the 

population of individuals. The number of accidents per individual is therefore a 

Poisson distribution with the value of its parameter e conditional on a 

generalization of a gamma variable, which leads to have a negative binomial 

distribution. 

Different mixtures of Poisson distributions where the mlXIng 

distributions are countable or continuous are discussed in details in the book by 

Johnson et al (1992). 

Poisson mixture of Poisson distribution i.e. Neyman Type A 

distribution has often been used to describe plant distributions, especially when 

reproduction of the species produces clusters. Evans (1953) found that Neyman 

Type A gave good results for plant distribution. Martin and Katti (1965) fitted 35 

data sets with a number of standard distributions and they found that those 

distributions have wide applicability. Cresswell and Froggatt (1963) derived the 

Neyman Type A distribution in context of bus driver accidents. 

8 



The Poisson Pascal distribution which is a Poisson mixture of negative 

binomial distribution was introduced in the context of the special distribution of 

plant by Skellam (1952). Katti and Gurland (1961) studied its properties, method 

of its estimation and derived it from an e?tomological model. 

The Hermite distribution which is a Poisson mixture of Bernoulli 

distribution was studied by Kemp and Kemp (1965). Plunkett and Jain (1975) 

derived a new distribution known as Gegenbauer distribution by mixing the 

Hermite distribution with gamma distribution. Borah (1984) studied the 

probability and moment properties of Gegenbauer distribution and Medhi and 

Borah (1984) investigated the four parameter generalized Gegenbauer distribution 

and had used estimation via moment and ratio of first two frequencies and x and 

The Polay-Aeppli distribution described by Polay (1930) anses m a 

model where the objectives occur in clusters and the number of clusters having a 

Poisson distribution, while the number of objects per cluster has the geometric 

distribution. Douglas (1965,1980) obtained an approximate formula for the 

probability of this distribution. This distribution is also the limiting form of Beall 

and Rescia's generalization of the Neyman Type A, Band C distribution. 

Regarding mixtures of binomial distributions i.e. beta binomial 

distribution studied by Ishii and Hayakawa (1960), Poisson binomial distribution 

discussed by Skellam (1952) were discussed in details in the book by Johnson et 

9 



al (1992). Recent further works on mixtures of binomial distributions are studied 

by Bowman et a1 (1992). 

Lagrangian expression for the derivation of the probabilities of certain 

discrete distributions has been used for many years. Consul and Shenton (1972, 

1973,1975) and their co-workers have studied systematically the technique for 

deriving the distributions and their properties. Lagrangian binomial distribution 

was obtained by Mohanty (1966). Jain and Consul (1971) derived an analogous 

Lagrangian negative binomial distribution. The Lagrangian Poisson distribution 

was obtained by Consul and Jain (1973) as a limiting form of the Lagrangian 

negative binomial distribution. A detailed study was made on the properties of 

Lagrangian Poisson distribution by Consul in his book (1989). Lagrangian Katz 

family of distributions was studied by Consul and Famoye (1996). 

A very broad class of distribution, i.e. power series distributions which 

includes many of the common distributions was studied by Khatri (1959) and 

Patil (1961,1962). Gupta (1974) studied the modified power series distributions. 

Tripathi et al (1986) studied the incomplete moments of modified power series 

distribution. Grzegorska (1973) studied inDated generalized power senes 

distribution and Patel (1975) investigated inflated at zero power senes 

distribution. Patel (1975) obtained the maximum likelihood estimate of the 

parameters of inflated power series distribution. 

10 



1.4 Synopsis of the Thesis 

The thesis entitled "A Study on Mixture of some Univariate 

Discrete Probability Distributions" comprises of seven chapters in all. The first 

chapter is an introductory one. It gives an account of the relevant works in the 

theory of univariate discrete probability distributions. The earlier works on 

different types of finite, countable and continuous mixture of some discrete 

distributions are discussed. 

In the second chapter, inflated distribution with inflation of probability 

at zero and at an arbitrary point, say 'l', are investigated. lnflated binomial, 

Poisson, negative binomial and geometric distributions are further investigated to 

study the recurrence relation for probabilities and moments of inflated at zero and 

generalized inflated distributions. The fitting of the inflated distributions are also 

considered. It has been seen that if there is an excess frequency of observed event 

at point zero as well as a respective decrease of its value at the remaining points, 

the inflated distribution provides much closer fit to the data than the classical one. 

The inflated power series distribution is also investigated. The recurrence relation 

for factorial moment and central moment are studied. 

In chapter 3, two mixture distributions of Poisson Lindley distribution, 

namely, Poisson-Poisson-Lindley and Poisson-Lindley-Poisson distribution are 

obtained by using Gurland generalization (1957) theorem. Here, an attempt has 

been made to derive the recurrence relation for probabilities and moments without 

11 



derivatives so that it will be easier to handle on computer. The parameters of these 

distributions are estimated by the method of moments and the ratio of first two 

frequencies with mean. A few reported data sets have been considered for 

empirical fitting of Poisson-Lindley, Poisson-Poisson-Lindley and Poisson­

Lindley-Poisson distribution with remarkable results. 

In chapter 4, inflated Poisson-Lindley distribution has been studied with 

some inflation at zero. Some properties of inflated Poisson-Lindley distribution 

are also discussed. The recurrence relation for probabilities as well as for 

moments and factorial moments are derived. The skewness and kurtosis of the 

distribution are studied. The parameters of the distribution have been estimated by 

the method of maximum likelihood, method of moments and the ratio of first two 

frequencies with mean. Different applications of inflated Poisson-Lindley 

distribution are discussed. The fits are compared with the generalized Poisson 

distribution with varied amount of success. 

In chapter 5, an extension of Poisson-Poisson-Lindley distribution, i.e. 

short Poisson-Poisson-Lindley distribution is investigated. The model for 

derivation of the distribution has been discussed. The probability recurrence 

relation and moment recurrence relation are also studied. The application of this 

distribution has been considered. A few sets of accident data have been 

considered for fitting of the short Poisson-Poisson-Lindley distribution. The fits 

of short Poisson-Poisson-Lindley distribution are also compared with the fits 

12 



given by the 'short' distribution and some other distributions as obtained by 

different authors and found much closer fit in all the cases for short Poisson-

Poisson-Lindley distribution. 

In chapter 6, a class of Lagrangian distribution, i.e. Lagrangian Hermite 

type probability distributions are discussed. The pmf and the cumulants of the 

basic Lagrangian Hermite distribution are studied. The parameters for the basic 

Lagrangian Hermite distribution are estimated by the method of moments and the 

method offirst frequency and mean. For testing the validity of the estimate of the 

parameters of basic Lagrangian Hermite distribution the fitting of this distribution 

is considered. Then, several members of Lagrangian Hermite type distribution of 

type-I and type-II are investigated by various choice of pgf. The Lagrangian 

Hermite Poisson distribution of type-I and type-II are derived and fitted to some 

well known data sets with good results. 

In chapter 7, a study on a dass of Charlier type Lagrangian probability 

distribution has been made. The basic Lagrangian Charlier distribution is 

investigated. A discussion on some properties of pmf and the cumulant of the 

distribution are provided. The parameters are estimated by ratio of first two 

moments and first frequency. The fitting of the basic Lagrangian Charlier 

distribution has been considered for the testing of the validity of the estimates of 

the parameters. Further the general Lagrangian Charlier Poisson distribution of 

type-I and type-II are also investigated. An ad-hoc method is used for estimating 
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the parameters of Lagrangian Charlier Poisson distribution of type-I. The fitting 

of the basic Lagrangian Charlier distribution is also compared with logarithmic 

series. distribution, generalized logarithmic series distribution and geometric 

distribution and it is found that the basic Lagrangian Charlier distribution gives 

much closer fit than obtained by logarithmic series distribution, generalized 

logarithmic series distribution and geometric distribution. 

14 



CHAPTER Q 

• RECURRENCE RELATIONS' IN S'OME DIS'CRETE INFLATED 

PROBABILIN DIS'TRIBUTIONS' 



Chapter 2 

Recurrence Relations in some Discrete Inflated Probability 

Distributions 

2.1 Introduction 

Many distributions obtained in the course of experimental 

investigations often have an excess frequency of the observed event at zero point. 

This has been a major motivating force behind the development of inflated 

distributions that has been used as models in applied statistics. The inflated 

distribution is a finite mixture of original distribution. The probability mass 

function (pmf) of an inflated or zero modified distribution may be written as 

p(x = x)= {fJ +apo, x = 0 
apx' x=1,2, ... 

(2.1.1) 

where a is a parameter assuming arbitrary values in the interval (0,1] such that 

a+p=l and p)s the pmf of the original distribution (for x=0,1,2, ... ). It is also 

, 
possible to take the parameter fJ less than zero, provided fJ + apo ~ ° 

=> (2.1.2) 
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Singh (1963) obtained the inDated Poisson distribution as a special case 

of contagious distribution. Further Singh (1965) indicated that there might exist 

analogous situations in binomial distribution, i.e. there is a distinct increase of the 

frequency of the observed event at zero point as well as a respective decrease of 

its value at the remaining points. 

Pandey (1965) and Singh (1966) published the generalized distribution 

of equation (2.1.1) in the sense that the inflation of the distribution occurs at an 

arbitrary point 'i. Thus the pmf of generalized inflated distribution is expressed as 

P(X = x) =. /> {f3 +ap x=./ 

OJ1x' x=.O,I, ... ,l-l,/+I, ... 
(2.1.3) 

where 0 < a. .::; 1 and a + f3 = 1 

Cohen (1960) gave some examples of fitting of inflated Poisson 

distributions to empirical data. Martin and Katti (1965) also fitted the distribution 

to a number of data sets. Khatri (1961) studied the logarithmic-with-zero 

distribution .. Katti and Rao (1970) investigated log-zero-Poisson distribution and 

fitted this distribution by the method of maximum likelihood to each of the 35 

empirical distributions collected by Martin and Katti (1965). Kemp and Kemp 

(1988) gave a bound for the maximum likelihood (ML) estimate of inflated 

Poisson distribution. They also studied a suitable method to provide initial ML 

estimators of the parameters of inflated binomial distribution. 
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The objective of this chapter is to extend the entire works on inflated 

distributions like binomial, Poisson, negative binomial and geometric etc. The 

essential problems considered in further examination of inflated distributions are -

(i) To obtain the recurrence relation for probabilities of certain inflated at 'I' 

distributions. 

(ii) To calculate the moments recurrence relations for both inflated at zero and of 

inflated at 'l' distributions. 

(iii) To obtain the rapid estimate of the parameters for. inflated negative binomial 

and geometric distributions. 

2.2 Inflated Binomial Distribution 

The pmf of inflated at zero binomial distribution may be obtained 

from equation (2.1.1) as 

{ 

f3 + aqX , x == 0 
P(X = x) = n x Il-X aC)p q ,x = 1,2,3, ... 

(2.2.1) 

where 0 < a::;; 1, f3 == 1-a, 0 < p < 1 and p + q == 1 [see Singh(1965)]. 

Similarly, for inflated at 'f' or for generalized inflated binomial 

distribution, the pmf may be written from equation (2.1.3) as 

P(X == x) = 
(11) n x f3+ a

x
Pxq -, x=I 

(n) x n-x X = 0,1, .. 1- 1,1 + 1, .. 11 a p q , 
x 

(2.2.2) 
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where 0< a51, j3=l-a, O<p<l and p+q=1. 

(a) Recurrence Relation for Probabilities 

By using the relation of equation (2.2.1), the recurrence relation for 

probabilities may be derived as 

p =(n-r)pp 
r+1 (r + 1) q r' 

r=1,2,3, .... n (2.2.3) 

where Po = f3 + aq", I~ =.aJl/)(j,,-1 and H(/) denotes the pgf 

of inflated at zero binomial distribution. 

Similarly, for generalized inflated (inflated at 'I') binomial distribution the 

recurrence relation for probability may be derived as 

r=l,2, ... 1-1,1+2, ... 11 (2.2.4) 

P = a( n Jpl+1 (l"-I-I for r = 1+1 1+1 1+1 "1 , 

where Po = aq". 

(b) Recurrence Relation for Raw Moments 

The moment generating function (mgt) of a zero modified distribution 

may be easily derived from the original distribution. If M(t) is the mgf of the 

original distribution, then the mgf for inflated distribution may be written as 

m(t) = f3 + aIvf(t) [see Johnson et al.(1992)] 
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Differentiating both sides of equation (2.2.5) with respect to 't', we get 

(q + pe' }n'(t) = anpe' {m(t)- p} 

Considering the coefficient of C in equation (2.2.6), we get 
r! 

(2.2.5) 

(2.2.6) 

(2.2.7) 

which is the recurrence relation for raw moments of inflated at zero binomial 

distribution where m; denotes the rIll raw moment of inflated at zero binomial 

distribution. Putting r=0,1 ,2,3 in equation (2.2.7), the first four raw moments may be 

obtained as 

, 
m1 = anp, 

m~ = an(n-IXIl- 2)p3 + 3an(n _1)p2 + anp , and 

respectively. 

Hence mean= m; = anp and variance= anp(l - p + Pllp) . (2.2.8) 

To derive the recurrence relation for the simple moments of inflated at 

'I' binomial distribution, we consider the lemma used by Gerstenkorn (1979). 

According to his lemma 

(2.2.9) 
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where¢y(t) and ¢x(t) denote the characteristic functions ofa random variable Y 

and X , with and without inflation respectively. 

The characteristics function of the random variable possessmg the 

moments of an arbitrary order can be expanded by using the Maclaurian series as 

(2.2.10) 

where m
J 

denotes the /h simple moments of the random variable Y, which follows 

the inflated distribution. Then putting If = (j in equation (2.2.10), the follOWing 

relation may be obtained 

(2.2.11) 

Differentiating both Sides of equation (2.2.11) with respect to () , we get 

(2.2.12) 

Considering the following transformation in the left hand side of equation (2.2.11), 

we get 

(q+peO)=p(e O -l)+q+p 

= p(eo -1)+ 1 

<0 ()' 

=iL-+1 
1=1 I! 

co (j'l' co ()'(l+l)' 'fJ W ()'+J co rJ> ()HJ-I 

=q/3I!;-I-! +p/3{J-n}"f i! +I1P~ ~ I!J!m) -P~~(j_l)mJ 
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Considering the coefficients of er
-

I 
, we get 

(2.2.13) 

which is the recurrence relation for raw moments of inflated at '1' binomial 

distribution where 111r denotes the rlh raw moment of the distribution. Considering 

r=1,2,3,4 in equation (2.2.13), we get 

nll = PI +anp, 

nl4 = pr + an(n -1)(11- 2)(n - 3 )p4 + 6an(n -l)(n - 2)p3 + 7(XJ1(n -l)p 2 + anp 

respectively, where 111r denotes the rth raw moments for inflated at 'l' binomial 

distribution. Thus the above raw moments provide an illustration of the simple 

fortnula 

(2.2.14) 

where 111; is the rill raw moments of when there is no inflation. Hence equation 

(2.2.14) determines the relationship between the raw moments of the inflated 

distrIbution and the one without inflation. 

(c) Recurrence Relation for Central moments 

From the definition of the central moment of rlh order of generalized 

inflated binomial distribution, we have 
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(2.2.15) 

Putting the values of /111 = fJI + anp in equation (2.2.15), we may obtain 

(2.2.16) 

Differentiating both sides of equation (2.2.16) with respect to 'p', we get 

6fLr = _a r f3nrV -np Y-I - a 2 I1r i (x -lfJ _ anjJ r(lll"x g"=X + ~ i(nJpx 

q; x=o x r pq x=o x 

q"-X(X -lfJ - anjJ Y x- an i(ntlxqn-X(x -1f3 - CXJIP Y (2.2.17) 
q ,;=0 X r 

Substituting x= (x -1f3 - aJ7p) + (/ f3 + anp) in equation (2.2.17), we obtain the 

following relation after simple transformation. 

611 a ~ ( )r+l(n) a:j3(I-I1IJ) _r_r =-aJ7rfLr_1 +_~ x-If3-aJ7p pxqn-x +-'--.0....---.::.1 -'... 

op pq x=O X pq 

(2.2.18) 

It follows from equation (2.2.16) that 

Thus from equation (2.2.18), we have 
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Sf' aJ/,. () r ( )ri I => Jlr+1 = pq_r + -Jlr-I - f3 / -IlP Jlr + a fJ / -I1P 
Sp pq 

(2.2.19) 

Putting /=0 in equation (2.2.19), we obtain the recurrence relation for central 

moments of inflated at zero binomial distribution. The equation (2.2.19) with 

f3 = 0 and / = 0 gives the recurrence relation for the central moments of the 

binomial distribution without inflation, i.e. 

(
Sf.ir ) 

fJ-r+1 = pq Sp + nr fJ-r-1 (2.2.20) 

2.3 Inflated Poisson Distribution 

The pmf of inflated Poisson distribution at zero may be written as 

{fJ 
-; 

+ae , x=o 
P(X = x) == e-~(r _ 

a , x -1,2, ... 
x! 

(2.3.1) 

and for inflated at 'l', the pmf may be written as 

P(X == x) == (2.3.2) 

where 0< a ~ I, a + j3 = 1 and ¢ > 0 

(a) Recurrence Relation for ProbabiUtb~i 

Recurrence relation for probabilities of inflated at zero Poisson may be 

written as 

- ¢ P,+I - --P" r=J, 2, ... , 
r+l 

(2.3.3) 
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where 

Similarly, for inflated at 'I' distribution, the recurrence relation for probability 

may be written as 

P, = ¢ P,_I' 
r 

e-if>¢1 
where ~ =jJ+a--, 

l! 

r=J, 2, ... 1-1,1+2, ... ... . 

and P. - ae-¢' o -

(b) Recurrence Relation for Raw Moments 

If m~) is mgf of inflated Poisson distribution then, we have 

(2.3.4) 

(2.3.5) 

Differentiating both sides of equation (2.3 .5) with respect to '1', and equating the 

t' 
term -, we get the raw moment recurrence relation as 

r! 

r=O,1,2, ." (2.3.6) 

where m~ denotes the rIll order raw moments for inflated Poisson distribution. 

Putting r = 0,1,2,3 in equation (2.3.6) the first four raw moments of inflated 

Poisson distribution may be obtained as 

m; = a¢, 

m~ = a¢(¢ + 1), 
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respectively. Hence mean= a¢, variance= a¢(l + ¢,B) . 

Similarly, if ¢ J') and ¢)!) denote characteristics function of Poisson and 

generalized inflated Poisson distribution respectively, then using Gerstenkom (1979) 

lemma, we have 

(2.3.7) 

After some suitable transformations, the recurrence relation for raw moments of 

generalized inflated Poisson distribution may be written as 

(2.3.8) 

Putting r=0,1,2,3 in equation (2.3.8), we get 

1111 =,Bi +a¢, 

respectively, where nlr denotes the rlh raw moment of inflated at'/, Poisson 

distribution. 

2.4 Inflated Negative Binomial Distribution 

The pmf of inflated negative binomial distribution may be written 

from equation (2.1.1) as 
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p(x = x) = { ( 1
f3)«+-;:J"' /I x X = 0 

a - p q, x = 1,2, ... 
x 

(2.4.1) 

where 0 < a $; 1, a + 13 = 1, 0 < p < 1 and p + q = 1 

Similarly, from equation (2.1.3), the pmf of generalized inflated 

negative binomial distribution may be written as 

a( -I It :}" '1" x ~ 0,1,2, ... ,1- 1 

p(X=x)= f3+a(-lYp"(/, x=! (2.4.2) 

a(-IY( -:'Jp" '1', x ~ 1+ 1,1 + 2, ... 

where 0 < a ~ 1, a + p = 1, 0 < p < 1 and p + q = 1 

(a) Recurrence Relation for Probabilities 

The pgf of inflated negative binomial distribution may be writ1en as 

H(t)= p+ap"(l-qltn 
(2.4.3) 

Differentiating both sides of equation (2.4.3) with respect to 't', and equating the 

coefficient of tr, the recurrence relation for probabilities may be obtained as 

_ VI + r)q 
Pr+J - ( ) Po r=1,2, ... 

r + 1 
(2.4.4) 

where Po = P +apn and ~ = anp"q 

(b) Recurrence Relation for Raw Moments 

The mgffor inflated negative binomial distribution may be written as 

(2.4.5) 
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Differentiating both sides of equation (2.4 5) with respect to 't' and equating the 

coefficient of t
Y ~ , and after some suitable calculations it is obtained that /r! 

(2.4.6) 

Putting r=0,1,2,3 in equation (2.4.6), the first four raw moments may be written as 

follows 

, q 
I1lI = all-, 

p 

m; = a{I1Vl + 1Xn + 2) q: + nVl + 1) q: + 11 q}, and 
p p p 

m~ =a n(n+1Xn+2Xn+3)-4 +11(11 +1XI1 + 2)-3 +11(n+1)-2 +11-{ 
q4 {/ q2 q} 
p p p p 

respectively, where 111; denotes the rtli raw moments of inflated at zero negative 

binomial distribution. 

The recurrence relation for moments of generalized inflated negative 

binomial distribution may be written as 

1 [ Y-I { (r -1J (r -IJ} ] my = p f312 -f3qV+IlXI+1Y-1 +q~ 11 j + j+l IJl r- J - 1 (2.4.7) 

Thus the first four raw moments of generalized inflated negative 

binomial distribution may be obtained by putting r=1,2,3,4 in equation (2.4.7) as 
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1111 = 13/ + an q , 
p 

m3 = 1313 + a{ll~l + l)(n + 2) q: + 1l~1 + 1) q: + n!.L}, and 
. p p p 

respectively, where nIr denotes the rill raw moments for generalized inflated 

negative binomial distribution. 

2.5 Inflated Geometric Distribution 

The pmffor inflated at zero geometric distribution may be written as 

( ) {
f3 + ap, x = 0 

P X=x = 
apqX, X = 1,2,3 ... 

(2.5.1) 

where 0 < a ~ 1, a + 13 = 1, 0 < P < 1 and p + q = 1 

Similarly, for inflated at 'I' geometric distribution, the pmf may be written as 

{ 

apqX, x=O,l, .. }-l 

p(X = x) = 13 + apqx, x = I 

apq x , X = I + 1, I + 2, ... 

(2.5.2) 

where, 0 < a ~ 1, a + 13 = 1, 0 < P < 1 and p + q = 1 . 

(a) Recurrence Relation for Probabilities 

Since geometric distribution is a special case of negative binomial 

distribution, so putting n=1 in (2.4.4), we get the following recurrence relation for 
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probabilities of inflated geometric distribution as 

r=1,2,3, ... (2.5.3) 

where Po = 13 + ap and ~ = apq 

Similarly, for inflated at '/' geometric distribution, the recurrence 

relation for probabilities may be written as 

P = r 

ap, r = ° 
qPr- 1 , 

13 + apql, 
r apq , 

r = 1,2, ... ,1-1 

r = / 
r = 1+ 1,1 + 2, ... 

(b) Recurrence Relation for Raw Moments 

(2.5.4) 

The raw moment recurrence relation of inflated geometric distribution 

may be obtained from equation (2.4.6) by putting n=1. 

m --" +" m --13 , q { r ( r! J r-l ( r! J}' q 
r+l - L.J . 1·1 L.J. . r- J P )=0 (r - J)' J. )=0 (j + 1). (r - ) - 1). P 

(2.5.6) 

Similarly, putting n=l in equation (2.4.7) of generalized inflated 

negative binomial distribution, the recurrence relation for generalized inflated 

geometric distribution may be obtained as 

1 [ r-l {(r -1J (r -1J} ] 
mr+l = P f3r -qf3V+ 1Y +q~ k + k+1 mr_H: (2.5.7) 

Putting r=0, 1 ,2,3 respectively in equation (2.5.7), the first four raw moments for 

the generalized inflated geometric distribution may be obtained as 
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11/ =jJt+a q I , 

P 

and m4 = f314 +a 24-
4 
+36-

3 
+14~+-{

q4 (/ (2 q} 
p P P P 

respectively, where mr denotes the rlh raw moments for generalized .inflated 

geometric distribution. Considering 1=0 in the above relations, the first four raw 

moments of inflated at zero geometric distribution may be obtained. 

2.6 Inflated Power Series Distribution 

Patel (1975) introduced the inflated at zero power series distribution. 

He showed that Singh's inflated Poisson distribution is a particular case of 

inflated power series distribution. 

The pmf of inflated at zero power series distribution may be written 

from equation (2. 1. 1) as 

x=O 

x = 1,2, ... 

where 0 < a ~ 1,{J = I-a, 1(0)= LaxOx , a
J 
~ Oand 0> O. 

x 

In (2.6.1),0 is the power parameter and 1(0) is the series function. 
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Similarly, the pmf of inflated at 'I' power series distribution may be 

written from equation (2.1.3) as 

x =1 
(2.6.2) 

x = 0,1,2, .. . ,1-1,1 + 1, ... 

Grzegorska (1973) studied the inflated generalized power senes 

distribution (IGPD). He obtained the moment recurrence relation of IGPD. 

(a) Recurrence Relation for factorial Moments 

The factorial moment generating function (fmgf) of inflated power 

series distribution may be written as 

H(l ) -13 /(e+le) 
+1 - +a /(e) (2.6.3) 

So the rth factorial moments of inflated power series distribution may be written as 

(2.6.4) 

Putting r=1, 2 in equation (2.6.4), we get the first two factorial moments as 

, ae /"(e) 
fJ(2) = /(e) \; , 

respectively, where fJ(r) denotes the. rth factorial moments of inflated power series 

distribution. Hence the mean and variance of inflated power series distribution are 
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Mcan= a(8)f'(0) & 
f\O 

V . a0
2 

jn(o) aO f'(O) a
2

0
2 

[j'(0)]2 
anancc = f(O) -I- f(8) - [r(o )Y . 

In particular, considering the different values of 0 and f( 0) in equation (2.6.4), 

we can find the mean and variance of inflated binomial, inflated Poisson and 

inflated negative binomial distribution. 

(b) Recurrence Relation for Central Moments 

From the definition of the central moments, the rUt central moment of 

inflated at'/, power series distribution may be written as 

{ )r ~( )r GxOx 
JLr = /3\/-1111 + a L..J x - m l --r-) 

. x f \0 
(2.6.5) 

where /111 = IfJ + a j ~ ~] is the mean of inflated at'/, power seri es di stri bu tion. 

Differentiating both sides of equation (2.6.5) with respect to 0 and after some 

suitable calculation, the recurrence relation for central moments may be written as 

11 = 0 --+r--II -- -111 /I +- /-111 [
8JLr 8ml ] /3 (/ ) /3 ( )r+1 

rr+1 80 88 rr-I a I rr a I 
(2.6.6) 

Putting /=0 in equation (2.6.6), we obtain the recurrence relation for central 

moments of inflated at zero power senes distribution. After some simple 

transformation of equation (2.6.6), we can easily derive the recurrence relation for 

central moment of inflated at '/' binomial distribution as shown in equation 

(2.2.19). Similarly, the recurrence relation for central moments of inflated 
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Poisson, negative binomial and geometric distribution can be derived from 

equation (2.6.6). 

(c) Some Special Cas'es of Inflated Powel' Series Distribution. 

Noack (1950) first studied the power series distribution and showed that many 

important discrete distributions like binomial, Poisson, negative binomial and 
I 

logarithmic belong to this class. Similarly the limiting forms of the inflated power 

series distribution are given in Table 2.1 as the parameter takes different values. 

Table 2,1 

S1.No. Parameter values Distribution and its pgf 

1 j(B) = (1 + B)" , n is +ve integer 

B= P 
(I-p)' a. ~(:) Inflated binomial, J3 + a(q + pi)" 

2 j(B)=e~, B=fjJ, 
1 

Inflated Poisson, J3 + ae~(t-I) a =-x I x. 

3 j(B)=(1-0tn, ,k>O Inflated negative binomial, 

(-II) B = q, ax = (-lY x J3 +apn(l-qltn 

2.7 Some Propel,ties of Inflated Distribution. 

(a) Distribution of the sum. 

Sobich and Szynal (1974) studied the distribution of the sum of'm' 

independent random variables having the same inflated binomial distribution. 

They used the characteristics function to obtain the distribution of the sums. 
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Lingappaiah (1977) also obtained the distribution of sum of 'm' independent 

random variables having the same inflated distribution. Let ¢oV) be the 

characteristic function of the inflated at zero distribution while ¢(l) be the 

characteristic function of non inflated case. Then we have 

(2.7.1) 

If XI> X 2 , ... ,X m are the independent and identical random variables 

,having the same inflated distribution as in equation (2.l.1) and if 

Z = XI + X 2 + ... + X m' then the characteristic function of the sum of 'm' 

independent and identical random variables having the same inDated power series 

distribution may be written as 

¢;(t) = [p + a¢(t)r (2.7.2) 

Using the Inversion form for characteristic function we have the distribution of 

the sum of em' independent random variables having the same inflated power 

series distribution as 

z=Q 

z = 1,2, ... 
(2.7.3) 

where p. (z) is the distribution of XI + X 2 + ... + X r , and Po = ~o). 
r f~ 

(b) Truncated Case 

The distribution of truncated inflated distribution, truncated at zero, is 

same as the truncated simple distribution truncated at the same point (see Sobich 
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and Szynal, (1974)]. If Pr (X = x), dcnoLcs Lhc probabiliLy funcLion of LruncaLcd 

inflated distribution then 

for x=1,2,3, ... (2.7.7) 

where Px = P(X = x) , for x=1,2,3,oo. and Po = p(X = 0). 

2.8 Estimation of Parameters of Inflated distributions 

The estimation of parameters of inflated distributions other than a 

can be carried out by ignoring the observed frequency in the zero class and then 

using a technique appropriate to the original distribution. After the other 

parameters have been estimated, the value of a can then be estimated by equating 

the observed and expected frequencies in the zero class [see Johnson et al.(1992)]. 

(a) Inflated Binomial Distribution 

(i) Method of maximum likelihood 

Since this is a zero modified distribution, hence, one of the maximum 

likelihood (ML) equation is [ see Johnson et aI., (1992), p. 315] 

/J + (1 - Ii )qn = 10 
N 

(2.8.1) 

where 10 is the observed proportion of zeros. As it is a power series distribution 
N 

therefore, the other ML equation is 

- ~~ x;:;: nap (2 8.2) 
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Kemp and Kemp (1988) showed that these maximum likelihood equations do not 

have explicit solution, therefore, for rapid assessment of data they used method of 

moments and method of mean and first frequency. 

(ii) Method of moments 

By equating the sample mean x and sample vanance S2 to the 

population mean and variance respectively in equation (2.2.8), we get 

and 

S2 
-+x-l 

p = --'x-'--__ 
11-1 

_ x 
a =-;::: 

np 

(iii) Method of mean and first frequency 

and 

By equating the 1 st class probability with 1; , we obtain 
N 

J 

p =1- _I 
, {~ }(n-I) 

Nx 

, x 
a =­

np' 

(b)Iunatcd Poisson Distribution 

(i)M'ethod of maximum likelihood 

(2.8.3) 

(2.8.4) 

(2.8.5) 

(2.8.6) 

The ML equations for inflated Poisson distribution are [ Singh, (1963)] 
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~ ..( 

fJ 
~ _'" J 0 +ae ¥' =-

N 
(2.8.7) 

x=a¢ (2.6.8) 

Eliminating a ,from equations (2.8.7) and (2.8.8) gives 

(2.8.9) 

~ 

Hence rjJ (and a) can be obtained by iteration, [ see Johnson et al. (1992), p. 

314]. Martin and Katti (1965) fitted this distribution to 35 data sets, using ML 

method with rjJ(O) = x as the initial estimate ofrjJ. Kemp (1986) showed 
(1_f~) 

that (>(0) = I1{ 7) was another initial estimate of ML equation and it was found 

that usually rjJ(O) < ¢ < rjJ(O) 

(ii) Method of moments 

By equating sample mean x and sample variance S2 to the population 

mean and variance of inflated Poisson distribution, the following relations are 

obtained. 

(2.8.10) 

(2.8.11) 

(2.8.12) 
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and 
_ x 
a =-= 

¢ 

(iii) Method of mean and first frequency 

and 

and 

By equating the 1 st. probability with 11 , where 
N 

- ''/'' x=a'l' 

, x 
a=-

¢' 

(c) Inflated Negative Binomial DistribL 

(2.8.13) 

(2.8.14) 

(2.8.15) 

(2.8.16) 

(2.8.17) 

A composite method has been used to estimate the parameters of 

inflated negative binomial (JNB) distribution. 

(i) Ratio of first two moments and ratio of frequencies 

By equating the sample mean x and sample vanance S2 to the 

corresponding population values, we have 

- q x = (X1l-

P 

S2 _ q 
--=-+x-1 = (11+1)-
x P 
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· f (/1 + 1)(;1 J; Agam we have _2 = I 
, N 2 N 

=> 

From equation (2.8.20) and (2.8.21), we may have 

From equation (2.8.22) and the first frequency ~ = nap" q , we get 

/'1 = 1 + \Og(jl I Hi) 
logp 

Again from the zero class frequency fo = f3 + aq" , we get 
N 

1- fo 

a= ~ 
1 ~ /I -p 

(d) Inflated Geometric Distribution 

(2.8.21) 

(2.8.22) 

(2.8.23) 

(2.8.24) 

The parameters of inflated geometric distribution may be estimated by 

following method of estimation. 

(i) Method of Maximum Likelihood (ML) 

Since the inflated geometric distribution is a zero modified distribution 

so one of the ML equation is 

f3~ ~~ fo 
+ap=­

N 
(2.8.25) 
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where 10 is the observed proportion of zeros. It IS also a power senes 
N 

distribution, and so the other ML equation is 

(2.8.26) 

Eliminating a between equation (2.8.25) and (2.8.26), we get 

(2.8.27) 

and 
. (1-~) 
a= A 

q 
(2.8.28) 

(ii) Method of moments. 

The parameters p and a of inflated at zero geometric distribution may 

be estimated from the mean and variance as 

and . 

_ 2x 
P = S2 +X2 +x 

_ xp 
a = ...,.--:'--:-

(1- 13) 

where mean =x = ii; and varianc,,",s' = ii; {; (2 -ii)+ I} 

(iii) Method of mean and first frequency 

We have .A = apq and x = a!, 
N p 

13= r7: '1m 
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(2.8.30) 

(2.8.31) 



~ 

and 
_ xp 
a = -;:::-

q 
(2.8.32) 

2.9 Goodness of fit 

Here we consider some reported data sets for fitting of these inflated 

binomial, Poisson and geometric distribution. We use the method of maximum 

likelihood, method of moments, method of mean and first frequency for fitting of 

these distributions. 

In Table 2.2, the inflated binomial distribution was fitted to Pyrausta ni 

bilalis data [Beall (1940)], for which Neyman type A (NT A) and Neyman type B 

(NTB) were fitted by McGuire et al (1957). Since maximum likelihood method 

does not give an explicit solution, method of moment and an adhoc method are 

used here to estimate the parameters of the inflated binomial distribution. It has 

been observed that when the first two frequencies are large compared to others, 

the estimation by the adhoc method gives some improvement in the fitting of the 

inflated binomial distribution. 

In Table 2.3 and 2.4, we consider European corn borer data for which 

negative binomial and Neyman type A distributions were fitted by McGuire et al 

(1957) and inflated Poisson distribution (ML method) was fitted by Singh (1963). 
/ 

It is observed from the tables (2.3 & 2.4) that method of moments, method of 

mean and first frequency give as good fit as the maximum likelihood method by 

Singh (1963). Thus in most of the cases it has been seen that if there is an excess 

frequency of observed event at point zero as well as a respective decrease of its 
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value at the remaining points, the inflated Poisson distribution provides much 

closer fit to the data than the others. 

In Table 2.5, for fitting of inflated geometric distribution, the accident 

of 647 women working in a high explosive shells during 5 weeks period [data 

Greenwood & Yule (1920)] has been considered for which negative binomial and 

Hermite distributions were fitted by Plunket & Jain (1975). In Table 2.6, 

European corn borer data for which negative binomial distribution (ML method) 

was fitted by McGuire et al (1957) has been considered for fitting of inflated 

geometric distribution. It is observed from the Table 2.5 & 2.6, that maximum 

likelihood method gives better fit in both the cases as·judges by the X 2 values. 

Here the fitting of inflated negative binomial distribution is not 

considered since the fitting of this distribution by the composite method does not 

give better fit like inflated Poisson, inflated binomial and inflated geometric 

distribution. Hence the result is not reported in this case. 

42 



Table 2.2 Observed and expected frequencies on the basis of inOated binomial 
(IB), NTA & NTB distribution. [Data on Pyrausta nibilalis to which NT A & NTB 
were fitted by Beall and Rescia (1953)] 

No of Observed Expected frequency 

insects frequency IB(MM) IB(FM) NTA NTB 

0 33 34.35 32.00 37.8 37.1 
1 12 6.66 1l.17 5.6 6.8 
2 6 7.79 8.21 5.2 5.0 
3 3 4.55 3.02 3.5 3.2 
4 1 1.33 0.56 1.9 1.9 

~5 1 0.32 0.04 2.0 2.0 

Total 56 56.00 56.00 56.0 56.0 
. 

X
2 5.0396 0.1083 9.04 5.57 

Parameter estimates 
~ 

0.3690 0.2689 P 
~ 

0.4138 0.7311 a 

Note: m: Inflated Binomial distribution, 

NTA: Neyman Type A, 

NTB: Neyman Type B, 

MM: Method of moments, 

FM: Method of Mean and first frequency. 
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Table 2.3 Observed and expected frequencies on the basis lP, NB and NTA 
distribution. [Data McGuire et al (1957), distribution 6] 

Count per Observed Expectedtrequency 

plant frequency IP(MM) IP(FM) IP(ML) NB NTA 

0 907 906.19 906.53 907.00 902.85 906.28 
1 275 275.54 275.94 274.27 288.86 280.61 
2 88 90.64 90.73 90.85 78.07 82.01 
3 23 19.88 19.96 20.06 19.81 20.45 
4 3 3.75 2.84 3.82 6.82 5.65 

Total 1296 1296.00 1296.00 1296.00 1296.00 1296.00 

X
2 0.31 0.53 0.70 4.19 1.97 

Parameter estimates ¢ 0.6578 0.6598 0.6625 
~ 

0.6239 0.6221 0.6192 a 

Note. IP: Inflated Poisson, NB: Negative binomial, ML: Maximum Likelihood 
Table 2.4 Observed and expected frequencies on the basis IP, NB and NTA 
distribution. [Data MaGuire et aI (1957), Distribution 9]. 

Count per Observed Expected frequency 

plant fr~guency_ IP(M:M) IP(FM) IP(ML) NB NTA 

0 188 188.57 187.18 188.00 185.19 187.79 
1 83 81.22 82.99 81.89 89.23 85.29 
2 36 38.58 38.52 38.56 32.99 34.54 
3 14 12.25 11.92 12.11 10.97 1l.62 
4 2 2.92 2.77 2.85 3.45 3.48 
5 1 0.46 0.62 0.64 1.52 l.28 

Total 324 324.00 324.00 324.00 324.00 324.0C 

X2 '. 
0.33 0.36 0.55 2.36 1 26 

~ 

Parameter estimates ¢ 0.9524 0.9283 0.9424 

a 0.6806 0.6982 0.6876 
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Table 2.5 Observed and expecled frequencies on the basis of IG, NB and 
Hermite distribution. [Data Greenwood and Yule (I 920)] 

Number of Observed Expected frequency 
< 

accidents frequency IG (ML) IG(MM) NB Hermite 

0 447 446.99 442.94 445.39 440.04 
1 132 132.89 135.86 13,4.90 135.54 
2 42 43.58 46.39 44.00 55.66 
3 21 15,95 15,57 14.69 12.82 
4 3 5.02 5.22 4.96 3.20 
5 2 2.57 1.02 2.56 0.74 

Total 647 647.00 647.00 647.00 647.00 
Xl 2.54 2.7 3.7 9.015 

Parameter estimates 
~ 

0.664 0.677 P 
~ 

0.9212 0.9792 a 

Note. IG: Inflated Geometric 

Table 2.6 Observed and expected frequencies on the basis of IG and NB 
distribution. [Data McGuire et al. (1957), Distribution 8] 

Count per Observed Expected frequency 

plant frequency IG (ML) IG(MM) NB 

0 1117 1117.00 1114.77 1114.98 
1 149 151.13 155.39 154.51 
2 27 23.52 24.11 22.51 
3 3 4.35 1.73 3.99 

Total 1296 1296.00 1296.00 1296.00 

X2 0.96 1.54 1.35 
Parameter estimates p 0.84439 0.8548 

~ 

0.8873 0.9633 a 
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Chapter 3 

Poisson-Lindley and some of its Mixture Distributions 

3.1 Introduction 

Poisson-Lindley distribution is a generalized Poisson distribution 

originally due to Lindley (1958) with pmf 

x=0,1,2, ... (3.1.1) 

Sankaran (1970) further investigated this distribution with application to mistakes 

in copying groups of random digits [data from Kemp and Kemp (1965)] and 

accidents to 647 women on high explosive shells in 5 week [data from 

Greenwood and Yule (1920)]. In both the above examples, single parameter 

Poisson- Lindley distribution gives a better fit than Poisson distribution. It is a 

special case of Bhattacharya's (1966) more complicated mixed Poisson 

distribution. Some mixtures of Poisson-Lindley distribution by using Gurland's 

generalization (1957) were studied by Borah and Deka Nath (2001) where the 

properties of Poisson-Poisson-Lindley and Poisson-Lindley-Poisson distributions 

were investigated. 
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In this chapter, Poisson-Lindley distribution is further investigated. 

Recurrence relations for the probabilities and the factorial moments are studied. 

Two mixture distributions of Poisson-Lindley distribution i.e. Poisson-Poisson-

Lindley and Poisson-Lindley-Poisson distributions are investigated and their 

recurrence relations for factorial moments and probabilities are discussed. The 

parameters of the distributions are estimated by different methods of estimation. 

The aim of this chapter is to derive some basic properties of these three 

distributions and to compare them with other distributions on the basis of their fits 

to empirical data. 

3.2 Poisson-Lindley Distribution 

(a) Expression for Probabilities 

The probability generating function (pgt) of Poisson-Lindley 

distribution may be written as 

H t - ¢/ (¢ + 2 - t) 
()- (¢+lX¢+l-tY 

Differentiating equation (3.2.1) with respect to 't', we get 

(¢ + 1- I)' H'{I}~ {¢ + I-I}' H{I}+ :~ I} 

(3.2.1) 

(3.2.2) 

Equating the rOI term in the equation (3.2.2), the following recurrence relation for 

probabilities may be obtained. 
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p = (¢+2+r) p 
r (¢ + l)(¢ + 1 + r) r-I 

(3.2.3) 

where 

Putting r=1,2,3 ... in equation (3.2.3), the higher order probabilities may be 

computed easily. 

(b) Factorial Moments 

The factorial moment generating function (fmg£) of Poisson-Lindley 

distribution may be written as 

(3.2.4) 

Differentiating the equation (3.2.4) with respect to't' and equating the coefficients 

of C, the following relation for factorial moments may be obtained. 
r! 

where 
I _ (¢ + 2) 

,u(I) - ¢(¢ + 1) 

I _ 2!(¢ + 3) 
f.i(2) - ¢2(¢ + 1) 

for r =2,3,4, ... 

and 

where f.i(r) stands for the rth factorial moments. 
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(c) Estimation of Parameter 

The single parameter ¢ of the Poisson-Lindley distribution can be 

estimated by the following methods. 

(i) ,Method of moments 

Using the sample mean x , the parameter¢ of Poisson-Lindley 

distribution may be estimated as 

~ [-(X-l)+~(:i-lY +8xJ 
¢ = 2x 

where x ~ (~+ 2)) [see Sankaran (1970)]. 
¢ ¢+1 

(ii) Ratio of first two frequencies 

(3.2.6) 

For Poisson-Lindley distribution, ¢ may also be estimated by taking 

ratio of first two frequencies We have 

Eliminating ¢ belween first two frequencies, we may obtain 

(3.2.7) 

3.3 Poisson-Poisson-Lindley Distribution 

Poisson-Poisson-Lindley distribution may be derived by 

generalizing Poisson distribution [see Gurland (1957)], by using Poisson-Lindley 

distribution. 
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(a) Expression for Probabilities 

By using Gurland's theorem [Gurland (1957)], the pgf of 

Poisson-Poisson- Lindley distribution may be written as 

Differentiating both sides of equation (3.3.1) with respect to 't' , we get 

Equating the coefficient of ,r on both sides of the equation (3.3.2), we get 

=> (r + I'M + lY P,+t - 3(¢ + lY rP, + 3(¢ + IXr -1)P,_t - (r - 2)P'_2 = 

A¢2 {(g) + 3 )Pr - Pr- t }/{¢ + 1) 

Hence the recurrence relation for probabilities may be written as 

where Iva, ¢ >0, 
1 

a=--
¢ + l' 

P = [A¢ 2 (¢ + 3 )]p. d 
I ( )3 oan ¢+1 
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(b) Factorial Moments 

The fmgf of Poisson-Poisson-Lindley distribution may be written as 

(3.3.4) 

Differentiating both sides of equation (3.3.4) with respect to't' and equating the 

coefficient of C, the following relation for factorial moments may be obtained. 
r! 

forr=2,3,.... (3.3.5) 

where J.1;r) denotes the rth factorial moment of Poisson-Poisson-Lindley 

distribution and 

, _ A4(¢+2t + A3(¢+2Y(7¢ +27) + 12A2(7¢2 +28¢+29)+ 12A(11¢+28) 
P(4)- ¢4(¢+lt ¢4(¢+lY ¢4(¢+lY ¢4(q)+1) 

. A ( ~ 2 + 4¢ + 6) 
Henee Vanance = p = \!I' 

2 ¢2 (¢ + 1) 
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(e) Estimation of Paramctcrs 

The two parameters 'A.' and' ¢ 'of Poisson-Poisson-Lindley distribution 

may be estimated by the following methods. 

(i) Method of moments 

Using the sample mean and variance the two parameters f... and ¢ of 

Poisson-Poisson-Lindley distribution may be estimated as follows. 

where x = A(¢ + 2) 
¢(¢ + 1) 

and 

S2 = A(¢2 +4¢+6) 
¢2(¢+1) . 

(ii) Ratio of first two frequencies and the mean 

(3.3.6) 

(3.3.7) 

By equating first two probabilities with 10 / Nand 1\ / N ,we get 

(3.3.8) 

(3.3.9) 
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3.4 P()isson-Lindlcy~Poisson Distribution 

Poisson-Lindley-Poisson distribution may be derived by 

generalizing Poisson-Lindley distribution [see Gurland (1957)] using Poisson 

distribution as the generalizing distribution. 

(a) Exprcssion for Probabilitics 

The pgf of Poisson-Lindley-Poisson distribution may be written as 

(3.4.1) 

where 
(p2 

and A= 
(¢ +IY 

1 
a= 

(¢ + 1) 

Differentiating both sides of equation (3.4.1) with respect to 't', we get 

(1- aeA(t-l) Y H'(t) = AeA(t-I)"l ~a(¢ + 2)-1- aeA(t-i)} 

(3.4.2) 

Equating the coefficients of t r on both sides of the equation (3.4.2), the 

recurrence relation for probabilities of Poisson-Lindley-Poisson distribution may 

be written as 
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P H [A{(¢+3) L-.t 2r , .. _U}X 3 -.t *' (1 2) -.t 3)-1 2 -U) =-- /IK - a/1£ -+ ae L.. - ae + a e 
r+1 (r + 1) (¢ + 1) r! )=1 

,.t, ] 
(r - j + 1)-.1 Pr-)+I 

J. 
(3.4.2) 

and 

(b) Factorial Moments 

The rmgf of Poisson-Lindley- Poisson distribution may be written as 

(3.4.3) 

t r 

Expanding and equating the term - on both sides of equation (3.4.3), the 
r! 

following factorial moment recurrence relation of Poisson-Lindley-Poisson 

distribution may be obtained. 

for r=l,2,3, ... (3.4.4) 

Putting r= 1,2,3 in equation (3.4.4), the higher order moments may be obtained as 
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respectively where ,u~r) denotes the rIll factorial moment of Poisson-Lindley-

Poisson distribution. Hence the mean and the variance for Poisson-Lindley-

Poisson distribution may be written as 

_ ,_ A(¢ + 2) and 
mean-,ul - ¢(¢ + 1) 

. _ = A 2 ~ 3 + 4¢ 2 + 6¢ + 2) A(¢ + 2) 
vanance-,u2 ¢2 (¢ + lY + ¢(¢ + 1) 

(c) Estimation of Parameters 

The two parameters ''A.' and ' ¢ , of Poisson-Lindley-Poisson 

distribution may be estimated by the method of moments. By eliminating A 

between mean and variance, we obtain 

¢,3 + 4¢2 + 6¢ + 2 _ ,u2 - ,u; 
(¢ + 2Y - 1-L;2 

(3 . .4.5) 

which gives an estimate for ¢ by a numerical solution by using Newton-Raphson 

method. On getting the estimate ¢ of ¢ from equation (3.4.5), the estimate of A 

may be derived as 

(3.4.6) 

where x denotes the mean of the distribution. 
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3.5 Goodness of Fit 

It is believed that the Poisson-Lindley and the two of its mixture 

distributions I.e Poisson-Poisson-Lindley and Poisson-Lindley-Poisson 

distribution should give a reasonably good fit to some numerical data for which 

various modified forms of Poisson distributions was fitted earlier. Therefore, we 

have tried the fitting of these distributions to some published data and have 

compared them with other distributions as measured by X2 criterion. In getting the 

X2 criterion for goodness of fit, tail frequencies are grouped to obtain 5 or 

slightly greater than 5 for the expected frequency in each group. 

In Table 3.1, we have considered the problem of accidents to 647 

women on high explosive shells in 5 week period [data from Greenwood and 

Yule (1920)] for which Poisson distribution was fitted earlier and Poisson-Lindley 

was fitted by Sankaran (1970). The problem of mistakes in copying groups of 

random digits [data from Kemp and Kemp (1965)] is considered in Table 3.2 for 

which single parameter Poisson distribution was fitted. Observing the values of 

X 2 and a comparison of the observed frequencies with the expected frequencies 

for corresponding Poisson-Lindley, Poisson-Poisson-Lindley and Poisson­

Lindley-Poisson distribution in both the Table 3.1 & 3.2, it is clearly seen that the 

Poisson-Lindley and two of its mixture distributions describe the data very well. 

In Table 3.3, we have considered the number of European red mites on apple 

leaves [Data Bliss, (1953)] for which negative binomial distribution was fitted. 
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Again in Table 3.4, the data on Pyrausta nibilais is considered for which 

Neyman Type A distribution was fitted by Beall and Rescia (1953). 

In the last table of this chapter, we considered the problem of home 

injuries of 122 experienced men during 11 years for which generalized Poisson 

distribution was fitted by Consul (1989). Because of complexity of maximum 

likelihood method of estimation, method of moments and ratio of first two 

frequencies and mean are used to estimate the parameters of these distributions. 

For all the five sets of data, the relative efficiency of Poisson-Lindley, 

Poisson-Poisson-Lindley distribution and Poisson-Lindley-Poisson distribution 

are shown in Table 3.1, 3.2, 3.3, 3.4 and 3.5 respectively, by using different 

method of estimation .. 

From the following tables it is clear that there are some improvement, 

however small it may be, in fitting these mixture distributions i.e. Poisson-

Lindley, Poisson-Poisson-Lindley distribution and Poisson-Lindley-Poisson 
, 

distribution over the other distributions considered earlier. The distributions as 

indicated here may be used with in other situations also. 
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Table 3.1 Comparison of observed frequencies for accidents to 647 women on 
high explosive shells in 5 weeks with fitted Poisson-Lindley (PL), Poisson­
Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP) distributions. [Data 
Greenwood and Yule (1920)] 

No. of Observed Expected Frequency 

accident frequency Poisson PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM) 

0 447 406 441.28 452.90 442.05 450.95 444.58 
1 132 189 139.83 135.15 137.79 133.15 134.78 
2 42 45 45.02 38.82 46.57 43.86 46.17 
3 21 7 14.88 13.86 14.57 13.46 14.85 
4 3 1 4.20 4.08 4.32 3.24 4.62 

~5 2 1 1.79 2.19 1.70 234 2.00 

Total 647 649 647.00 647.00 647.00 647.00 647.00 

Xl 50.57 3.84 4.39 4.04 4.41 3.56 
~ e 2.726 3.056 5.163 5.163 0.567 
~ 

A 2.066 1.957 0.161 

Note: PL(MM): Poisson-Lindley distribution (Method of moments) 

PL(RF): Poisson-Lindley distribution (Ratio of first two frequencies) 

PPL(MM): Poisson-Poisson-Lindley distribution (Method of moments) 

PPL(RF): Poisson-Poisson-Lindley distribution (Ratio of first two 

frequencies) 

PLP(MM): Poisson-Lindley-Poisson distribution (Method of moments) 
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Table 3.2 Distribution of Mistakes in copying groups of random digits with 
expected frequencies obtained by Poisson, Poisson-Lindley (PL), Poisson­
Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP) distribution. [Data 
Kemp and Kemp (1965)] 

No. of err on Observed Expected Frequency 

per group frequency Poisson PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM) 

0 35 27.4 33.05 41.34 32.83 39.87 35.53 
1 11 21.5 15.27 12.99 15.22 12.53 15.69 
2 8 8.4 6.74 3.46 7.06 4.87 7.02 
3 4 2.2 2.89 1.82 2.99 1.78 2.91 
4 2 .4 1.21 0.39 1.19 0.95 1.15 

Total 60 59.9 59.16 60.00 59.29 60.00 59.29 

X
2 15.13 2.48 16.49 2.33 6.72 2.58 

~ 

B 1.7421 2.839 3.930 3.930 0.244 
~ 

A 2.559 1.735 0.106 
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Table 3.3 Comparison of observed frequencies for counts of the number of 
European red mites on apple leaves with expected negative binomial, Poisson­
Lindley (PL), Poisson-Poisson-Lindley (PPL) and Poisson-Lindley-Poisson (PLP) 
distributions. [ Data Bliss (1963)]. 

No.ofmilcs Obscrvcd Expectcd Frcqucncy 

per leaf frcqucncy N.B. PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM) 

0 70 67.49 67.189 7l.832 69.879 66.146 68.675 

1 38 39.03 38.884 38.995 35.391 35.908 36.944 

2 17 20.86 21.262 20.068 21.016 21.977 21.213 

3 10 10.97 11.206 9.972 11.626 12.469 11.405 

4 9 5.66 5.755 4.834 6.116 6.707 5.911 

5 3 2.90 2.899 2.300 3.096 3.465 2.986 

6 2 1.48 1.439 1.079 1.521 1.734 1.480 

7 1 0.75 0.706 0.500 0.728 0.845 0.723 

8 0 0.76 0.660 0.420 0.627 0.749 0.663 

Total 150 150.00 150.00 150.00 150.00 150.00 150.00 

Xl 1.9275 l.6853 2.5795 1.4898 1.9906 1.4909 

~ e 1.258 1.386 2.472 2.472 0.357 

i 2201 2359 0236 
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Table 3.4 Observed and fitted Poisson-Lindley (PL), Poisson-Poisson-Lindley 
(PPL) and Poisson-Lindyey-Poisson (PLP) distribution. [Data on the Pyrausta 
nibilais, to which NTA was fitted by Beall & Rescia (1953)]. 

No.of Observed Expected Frequency 

insects frequency NTA PL(MM) PL(FM) PPL(MM) PPL(FM) PLP(MM) 

0 33 37.8 31.485 35.968 32.503 33.881 32.212 

1 12 5.6 14.156 13.079 12.796 12.320 13.191 

2 6 5.2 6.090 4.592 6.079 5.668 6.094 

3 3 3.5 2.542 1.572 2.703 2.453 2.642 

4 1 1.9 1.038 0.529 1.147 1.016 1.107 

5 1 2.0 0.689 0.260 0.772 0.662 0.754 

Total 56. 56.00 56.00 56.00 56.00 56.00 56.00 

X" 9.04 0.437 0.791 0.065 0.178 0.037 
~ e 1.808 2.378 3.176 3.176 0.487 
~ 

A 1.922 1.775 0.218 
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Table 3.5 Comparison of observed frequencies for horne injuries of 122 
experience men during 11 years (1937-1947) with expected Poisson-Lindley (P L), 
Poisson-Poisson-Lindley (PPL) and Poisson-Lindyey-Poisson (PLP) and GPD 
[Consul (1989)] frequencies. 

No.of Observed Expected Frequency 

injuries frequency GPO PL(MM) PL(RF) PPL(MM) PPL(RF) PLP(MM) 

0 58 57.22 59.753 53.869 57.051 57.083 56.430 

1 34 34.41 31.693 31.579 33.443 33.437 34.530 

2 14 16.64 15.956 17.479 17.486 17.476 17.351 

3 8 7.59 7.761 9.321 8.158 8.150 7.911 

4 6 6.14 3.683 4.843 3.525 3.521 3.411 

5 2 3.154 4.909 2.337 2.333 2.367 

Total 122 122 122 122 122 122 122 

"1.
2 1.09 0.664 0.315 1.503 1.505 1.554 

~ e 1.434 1.233 3.976 3.976 0.094 
~ 

A 3.259 3.256 0.048 
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Chapter 4 

A study on Inflated Poisson-Lindley Distribution 

4.1 Introduction 

To serve the probabilistic description of an experiment with a 

slight inflation of probability at point zero, the inflated Poisson-Lindley 

distribution is studied in this chapter. The recurrence relations for moments and 

probabilities of the inflated Poisson-Lindley (lPL) distribution are derived. 

Attempt has been made to obtain the recurrence relations without derivatives, 

since these forms are easy to handle on computer. Borah and Deka Nath (2001) 

studied and fitted the IPL distribution to some well known data for empirical 

companson. 

4.2 Recurrence Relation for Probabilities 

The probability generating function (pgf) of the IPL distribution 

may be written as 

H(t} = {J+ag(t} (4.2.1) 

where get) ¢2 (jJ + 2 - t) is the pgf of Poisson-Lindley (PL) distribution 
(¢ + lX¢ + I-I? 

and a + {J = 1, 0 < {J < 1 and ¢ > 0 . 
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It is also possible to take the parameter j3 less than zero, provided j3 + apo ;::: 0, 

where Po = p(X:::: 0). 

Differentiating equation (4.2.1) with respect to 't' and equating the coefficients of 

tr from both sides of the equation, we have the recurrence relation for probabilities 

P(X=r):::: (¢+2+r) P(X::::r-1), 
(¢+lX¢+l+r) 

r=2,3, ... 

P(X:::: 1):::: a¢2(¢ + 3) 
(¢+It 

After some suitable transformation of equation (4.2.2), we may have 

r=1,2,3, ... 

4.3 Graphical Representation of IPL Distribution 

(4.2.2) 

(4.2.3) 

To study the behaviour of the IPL distribution with varying values 

of ¢ and f3:::: 1- a , the probabilities for possible values of X are computed by 

using above equations (4.2.2) or (4.2.3) and accordingly different graphs may be 

drawn for various values of the two parameters. 

Fig. 4.1 contains four graphical representation for j3 = -0.1 and 

¢=1,2,5,7. Similarly, Fig. 4.2 contains four graphs for /3= -0.4 and ¢ =2,3,5,9 

respectively. It clearly indicates from the graphs that for the changes in the values 

of ¢ there are significant differences in the probability distribution i.e. as ¢ 
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increases, the value of P(X=O) increases and the probabilities for all other values 

of X decrease. 

For further study of the effect of the changes in the values of f3 on the 

behaviour of IPL distribution, Figures 4.3 and 4.4 are shown. Fig. 4.3 contains 

two graphs for f3 =0.1 and ¢ = 1 & 3 and Fig 4.4 contains two graphs for f3 =0.9 

and ¢ =1 & 5 respectively. It is clear from these graphs of Fig. 4.3 and Fig. 4.4 

that when f3 increases, the value of P(X=O) increases and the probabilities for 

all other values of X decrease and the model always remains L-shaped. Thus the 

tail becomes more and more heavier and longer with the decrease in the value of 

¢. It is also clear from Figure 4.4 that the probabilities on the right hand side tail 

sharply decline when f3 closes to unity and ¢ takes any value. 

Again Fig. 4.5 contains four graphs for ¢ =2 and f3 =-0.8,-0.6,-0.2,04 

and Fig. 4.6 contains four graphs for ¢ =9 and f3 =-0.8,-0.6,0.2,0.6 respectively. 

From Fig. 4.5, it is seen that the model looses its L-shaped form when f3 and ¢ 

are both small. But from Fig. 4.6, it is observed that there is a similar effect like in 

the Fig 4.4 that, when the value of ¢ is large and the value of f3 is slowly 

increased, then P(X=O) increases and the probabilities for other values of X 

decrease sharply giving a L-shaped form to the model like the Geeta distribution 

[Consul (1990)]. 
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Figure 4.1 Graphs of probability distribution for P = -0.1 and t/J = 1,2,5,7 

respectively for IPL distribution. 
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Figure 4.2 Graphs of probability distribution for p = -0.4 and ¢ = 2,3,5,9 
respectively for IPL distribution 
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Figure 4.3 Graphs of probability distribution for f3 = 0.1 and iP = 1,3 
respectively for IPL distribution. 
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Figure 4.4 Graphs of probability distribution for f3 = 0.9 and iP = 1, 5 
respectively for IPL distribution. 
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Figure 4.5 Graphs of probability distribution for t/J = 2 and 

p = -0.8,-0.6,-0.2,0.4 respectively for IPL distribution. 
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Figure 4.6 Graphs of probability distribution for ¢ = 9 and P = -0.8,-0.6,0.2,0.6 
respectively for IPL distribution. 
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4.4 Recurrence Relation for Raw Moments 

The moment generating function (mgt) of IPL distribution may 

be written as 

m(t) = fJ + aM(t) (4.4.1) 

(p2(¢ +2 e') 
where M V) = - is the mgf of the PL distribution [see chapter 3]. 

(¢ + lX¢ + l-e' y 
Differentiating equation (4.4.1) with respect to '1' and equating the coefficient of 

C , we get the raw moments recurrence relation for the lPL distribution as 
r! 

,=aK¢+3)-2r}+r-l (3a-3.2J+la2+2j+la3)( r J' r>1 
fir ¢(¢+1) ~ (I-a) )+1 fir-i' 

where 

and 

1 
a = --:-----:-

(¢ + 1) 

, a(¢ + 2) 
Jil = ¢(¢ + 1) , 

(4.4.2) 

(4.4.3) 

(4.4.4) 

where fi~ denotes the rth raw moment of IPL distribution. The central moments of 

IPL distribution which can be obtained from the raw moments are given bellow 

30¢+4 )+2fJ2{P3+6¢2+12¢+lS)} 
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(4¢6 + 36¢5 + 145¢4 + 312¢3 + 400¢2 + 384¢ + 48)+ 3,82 (2¢5 

+ 15¢4 + 44¢3 + 52¢2 )+ 3,83~4 + 8¢3 + 24¢2 + 32¢ + 16) } (4.4.7) 

Putting ,8 = 0 in equation (4.4.5) the variance of PL distribution may be obtained 

[see Borah and Deka Nath (2001)]. 

4.5 Skewness and Kurtosis of IPL Distribution 

The expression for the coefficient of skewness and kurtosis can 

be written as follows in terms of ¢ and a. 

and 

where E=¢7 +2¢6 +73¢s +174¢4 +256¢3 +152¢2 -24¢+12 

F = 7¢6 + 54¢5 + 181¢4 + 312¢3 + 34¢2 + 264¢ + 12 
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1t is clear from the above expression of Y1 that for any given value of 

¢>O and f3 is close to unity, the skewness is infinitely large and it becomes 

smaller and smaller as the value of f3 decreases. The IPL distribution is 

leptokurtic as the value of Y2 is positive for all values of ¢>O and 0<f3<1, which 

is also clear from the simulated results of f32 - 3 : 
f31 

f3 .5 .5 .5 

.0001 .2 1 

.5 .5 

10 20 

11.432 22.06 58.49 202232 4151833 

From the above simulated result, it is seen that the value of the ratio 

f32- 3 f3 -3 
tends to 00 as ¢ becomes larger. This wider limit of 2 indicates 

~ ~ 

greater flexibility of the IPL distribution. 

4.6 Recurrence Relation for Factorial Moments 

The factorial moment generating function (fmg£) of IPL 

distribution may be written as 

(4.6.1) 
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where 
1 

a=--
¢+l 

Differentiating equation (4.6.1) with respect to 't' and equating the coefficients of 

C, the following recurrence relation for factorial moments may be obtained. 
r! 

(4.6.2) 

where 
, l!a(¢ + 2) 

,u(\) = ¢(¢ + 1) 

, 2!a(¢+3) 
f.1(2) = (P(¢ + 1) 

, 3!a(¢+4) 
f.1(3) = ¢3(¢+1) 

where ,u(r) is the rth factorial moment of lPL distribution. The recurrence relation 

in equation (4.6.2) of factorial moments may also be written as 

, r!a(¢+r+l) 
,u(r) = r(¢ + 1) (4.6.3) 

4.7 Estimation of Parameters 

The parameters ¢ and f3 of IPL distribution can be estimated 

by using the following methods. 

(a) Method of Maximum Likelihood (ML) 

Since IPL distribution is a zero modified distribution, one of the ML 

equations is 
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(4.7.1) 

where ~ is the observed proportion of zeros. As it IS also a power senes 
N 

distribution so the other ML equation will be 

~ _ " +2 
x==a ¢¢+1 (4.7.2) 

" Eliminating fJ from equation (4.7.1) and (4.7.2) respectively, we may have 

(4.7.3) 

" ¢ can be estimated from equation (4.7.3) by using Newton Raphson method and 

" 
thenfJ may be estimated from equation (4.7.1) 

(b) Methods of Moments 

The parameters ¢ and fJ may be estimated from the first two raw 

moments JL; and JL; from equation (4.4.3) and (4.4.4). 

Thus (4.7.4) 

and (4.7.5) 

(c) Ratio of first two Frequencies and Mean 

I· . . fJ b p" • 11\ d 112 E Imlllatlllg etween first two ~requencles I.e. - an -, we get 
N N 
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d,' _ ( ". ) If' - --2 + 
2112 

(4.7.6) 

h _11. _ a(¢+3}p and 112 a(¢+4}p 
were - and P' may be estimated from the 

N - (¢+It N - (¢+lY 

following expression. 

P' = 1- ¢,(¢, + l)x 
(¢' + 2) 

4.8 Fitting of IPL Dish'ibution to Data 

(4.7.7) 

As the IPL distribution has only two parameters and has a simple 

form so it may be applied in different fields such as biology and ecology, social 

information, genetic and so on which are discussed below. 

Biology and Ecology 

-
For the fitting of IPL distribution, in Table 4.1, we have considered the 

Student's historic data on Haemocytometer counts of yeast cells for which 

Oegenbauer distribution (OD) was fitted by Borah (1984) (using method of 

moments). In Tables 4.2 and Table 4.3, we have considered two data sets of Beall 

(1940), for which generalized Poisson distribution (OPD) was fitted by Jain 

(1975) (by using MLE). It is observed from the following Tables 4.1,4.2 and 4.3 

that ML method gives better result in all the cases and there is some improvement 

however small it may be, in fitting of IPL distribution over the other distributions 

considered earlier. In case of Table 4.3, the method of ratio of first two 

76 



frequencies with mean does not give better fit, as the computed X 2 value is quite 

large. Hence the result is not reported in this case. 

Strikes in industries 

Kendall (1961) considered the observed data on the number of strikes 

10 4-week period in four leading industries in U.K. during 1948-1959 and 

concluded that the aggregate data for the four industries agrees with Poisson law 

but that it did not hold well for the individual indu~tries. The IPL distribution has 

been fitted to the observed data for the four individual industries and the results 

are given in Table 4.4 along with the expected GPD frequencies [Consul (1989)]. 

From the '1.2 values it is clear that the pattern of strikes in vehicle manufacture, 

ship building and transport industries follow IPL and GPD model and IPL 

distribution gives better fit than the GPD model for coal mining industries. 

Genetics 

Chromosome interchanges in organ!c cell is produced by irradiation of 

X-rays. Feller (1968) showed that the distribution of number of cells with exactly 

k interchanges should follow Poisson distribution for which he had given 

Catcheside et al. (1946)'s data. Consul (1989) showed that GPD model provides 

better fit in every case than the Poisson distribution. It is observed from Table 4.5 

that IPL distribution also provides better fit, except the last case. However the '1.2 

for IPL distribution in that case is lower than the significant value. 
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Table 4.1 Hacniocytometer Counts of Yeast Cells 

No. of Yeast Observed Expected frequency 

cells per square frequency lPL (ML) lPL (MM) GD (Borah1984) 

0 213 213.00 210.46 214.15 
1 128 127.59 131.14 123.00 
2 37 40.91 40.76 44.88 
3 18 12.82 12.39 13.36 
4 3 3.95 3.71 3.55 
5 1 1.2 1.09 0.86 
6 0 0.53 0.45 0.20 

Total and 400 400.00 400.00 400.00 
~ 

Estimates r/> =2.669 r/> =2.774 
~ 

/3=-0.431 /3 =-0.497 

X2=1.037 X2 =1.53 X2=2.8342 

Table 4.2 Fit of distribution on Pyrausta niblilalis in 193 7 [data of Beall (1940)] 

No. of Observed Expected frequency 

Insects Frequency IPL(ML) lPL (MM) IPL (FM) GPD (Jrun1975) 

0 33 33.00 32.07 34.08 
1 12 12.41 13.47 11.23 
2 6 5.84 6.00 5.61 
3 3 2.66 2.59 2.71 
4 1 1.18 1.096 1.28 , 
5 1 0.91 0.774 1.09 

Total 56 56.00 56.00 56.00 
~ -and r/> =1.588 r/>=1.719 r/>' =1.449 

-Estimates /3 =0.1406 /3 =0.0573 /3'=0.228 

X2=0.029 X2=0.215 X2=0.096 

Note: IPL: InOated Poisson-Lindley distribution, ML: Maximum likelihood 
MM: Method of moments, FM: Ratio of first two frequencies and mean 
GPD: Generalized Poisson Pistribution. 
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Table 4.3 Fit of distribution of Corn Borer [data of Beall (1940)] 

Corn borer Observed Expected frequency 
Per hill frequency IPL (ML) IPL (MM) GPD (Jain 1975) 

0 43 42.99 44.99 43.91 
1 35 32.12 30.39 32.00 
2 17 19.45 18.81 19.11 
3 11 11.31 11.19 10.88 
4 5 6.40 6.47 6.12 
5 4 3'.55 3.66 3.44 
6 1 1.94 2.04 1.94 
7 2 1.05 1.12 1.10 
8 2 1.19 1.3 1.50 

Total 120 120.00 120.00 120.00 
~ 

Parameter estimates ¢ =1.0587 ¢ =1.0715 

~ 

{J =-0.5696 {J =-0.0087 

X2=0.577 X2 =0.995 X2=0.87 
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Table 4.4 Comparison of observed frequencies of the Number of outbreaks of strike in four leading 
industries in the U.K. during 1948-1959 with the expected IPL and GPD frequencies. 

Number of Coal mining Vehicle manufacture Ship building Transport 

outbreaks Obs. IPL GPO Obs. IPL GPO Obs. IPL GPO Obs. IPL GPO 

0 46 46.00 50.01 110 110.00 109.82 117 117.00 116.74 114 114.00 114.84 

1 76 77.84 66.77 33 32.98 33.36 29 29.78 30.22 35 33.25 33.881 

I 

2 24 22.93 31.23 9 9.40 9.24 9 7.07 6.97 4 6.95 7.27 I 

3 9 6.62 7.23 3 2.63 3.58 0 1.65 0.88 2 1.43 2.61 

~4 1 2.61 0.76 1 0.99 1 0.50 1 0.37 1.69 

Total 156 156 156 156 156 156 156 156 156 156 156 156 
A A A A 

and ¢ = 2.963 ¢ = 3.084 ¢ = 3.828 ¢ = 4.43 
A A A A 

~stimates ,0=-1.351 ,0 = -0.016 ,0 = -0.037 fJ = -0.27 

X 2 =0.157, 4.25 1'2 =0.056, 0.06 X 2 =1.16, 1.19 1'2 =2.14, 2.27 
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Chapter 5 

The Short Poisson-Poisson-Lindley Distribution 

5.1 Introduction 

Cresswell & Froggatt (1963) derived a model which was a 

convolution of Poisson distribution and a Neyman Type A distribution. They 

called it 'Short', as opposite to the two-parameter 'Long' Neyman Type A 

distribution. The name' Short' appears to relate the tails of the distribution. Kemp 

(1967) considered the properties, recurrence relations for probabilities and fitted 

this 'Short' distribution to accident data. 

Here our distribution, namely the Short Poisson-Poisson-Lindley 

(SPPL) distribution is a convolution of Poisson distribution and Poisson-Poisson-

Lindley distribution. The SPPL distribution which is an extension of Poisson-

Poisson-Lindley distribution was studied by Deka Nath and Borah (2000). 

Model derivation from accident data 

While deriving the 'Short' distribution from accident data, four 

assumptions were made by Cresswell & Froggatt. In the same manner, the SPPL 

distribution has been derived by considering the following assumptions: 
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(i) Every driver is liable to a spell - these are periods of time 

during which his performance is sub-standard so that he is 

liable to incur accidents. The number of spells in a given 

time period is assumed to be Poisson variable with 

parameter Ai. 

(ii) All drivers are equally liable to the occurrence of a spell. 

(iii) The probability of an accident occurring within a spell is 

constant and not dependent on the particular driver and it 

is assumed to have a Poisson-Lindley distribution with 

constant parameter B. 

(iv) Lastly, accidents can occur outside a spell and such 

accidents are independently distributed as Poisson 

distribution with parameter A2 over the given time period. 

It is generally observed that the derivation of probability mass function 

(pmf) for some generalized mixture distributions seems to be complicated. So, the 

pgf of SPPL distribution has been obtained by using Levy's theorem [ see Feller 

(1957)], which may be written as 

H(/) = exp[{A1 (g(t) -1)+ A2 (t -I)}], (5.1.1) 

where H(t) converges forlll ~ 1 , '1' is the generating parameter and 

get) = e
2 

(e + 2 - t) denotes the pgf of Poisson-Lindley distribution [see 
(e+lXe+l-IY 

chapter 3]. Hence equation (5.1.1) may be written as 
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_ [{ 8
2 
(2 + 8 - t)} ] H(t) - exp A, (X )2 - I + A2 (t - I) , 

,8+1 8+1-t 
(5.1.2) 

In this chapter, we have studied the recurrence relation for probabilities 

and factorial moments of the SPPL distribution. The limiting distributions of 

SPPL distribution are discussed. The parameters are estimated by a composite 

method i.e. by using the ratio of first two frequencies and first two moments. To 

illustrate the various applications of this distribution, it is fitted to number of data I 

sets. Firstly, we have considered the number of accidents sustained by a group of : 

708 bus drivers over a period of 3 years. Secondly, we have considered the : 

number of accidents to 647 women on high explosive shells in 5 week periods. 

Thirdly, the number of accidents (home injuries) of 122 experienced men during' 

11 years period was considered and lastly we considered number of accidents of 

122 experienced shunting men over a period of 11 years. In all the cases the SPPL 

distribution provides a better fit to the observed data. 

5.2 Expression for Probabilities 

Taking l<?garithm of equation (5.1.2), we have 

10gH(I) =: A,{~ 02~ + 2 -t»)' -I} + A2 (t -1) 
8+1 8+1-1 

Differentiating the equation (5.2.1) with respect to 't', we get 
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(5.2.2) 

Equating the coefficient of t r on both sides of equation (5.2.2), we get the 

following recurrence relation. 

P = _1_[{.-1,02(0 + 3) + 3r + }p _ { .-1,0
2 

+ 3(r -1) + 3~ }p 
r+\ r+1 (O+lt (0+1) ~ r (O+lt (O+IY 0+1 r-\ 

{ 
3~ r - 2 }p I p] 

+ (0 + lY + (0 + lY r-2 - (0 + lY r-3 , 
(5.2.3) 

where Po= exp (5.2.4) 

P={1 0
2

(0+3) 1}P 
J ''1 ( )4 +''"2 a 

,0 + 1 
(5.2.5) 

Putting r=1,2,3 .. in equation (5.2.3), the higher order probabilities may be derived. 

5.3 Expression for Factorial Moments 

The factorial moment generating (fmg) function of the SPPL 

distribution may be written as 

(5.3.1) 
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Taking logarithm of both sides of the equation (5.3.1) and dill'crentiating it with 

respect to 't', we get the following relation 

H'(1+/)(1_~)3 =A, (0+2-/) +ii (1_~)3 
H(1+t) 0 0(0+1) 2 0 

(5.3.2) 

=> 

( 
31 3/

2 
1
3 J ' (0+2-/) ( 31 3/

2 
1

3 J 
1-0 + 02 -(j3 H(1+I)=A, 0(0+1) H(t+l)-A2 1- 0 + 0 2 -(j3 H(t+l) 

Considering the coefficient of ~,on both sides of the above expression, we 
r! 

obtain the following recurrence relation for moments of SPPL distribution. 

, {~(0+2) 3r A}' {~ r 3r(r-l) A 3r} , 
Jl(r+l)= ''1 0(0+1)+0+ 2 Jl(r)- ''1 0(0+1)+ 02 + 20 Jl(r-i) + 

{
r(r -1)(r - 2) A 3r(r -I)}, A r(r -l)(r - 2) , 

03 + 2 0 2 J1(r-2) - 2 0 3 Jl(r-3) (5.3.3) 

where I-l'(r) denotes the rIll order factorial moments of SPPL distribution. Explicit 

expression for the first four factorial moments may be obtained as 

, _ 2 (0+2Y (0+3) (0+2) 2 

Jl(2) - A, 2( )1 + 2-1, l( ) + 2-1,~ ( ) + Al o 0 + 1 0 ,0 + 1 0 0 + 1 
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l-lence 

the moments become same a~ those of Poisson-Poisson-Lindlcy 

distribution [see chapter 3]. 

5.4 Estimation of Parameters 

A composite method has been use.:! to estimate the parameters of SPP:Q, 

distribution. The method is based on ratio of first two frequencies, sample mea4 

and sample variance. We have 

X=A (0+2) +A 
10(0 + 1) 2 

(5.4.1) 

and S2 =.1, (0
2 

+40 +6) +A 
0 2 (0+1) 2 

(5.4.2) 

By equating the first two probabilities of equation (5.2.3) of SPPL 

d· ·b· . h 110 III . Istn utlOn Wit - and - , we obtam 
N N 

(5.4.3) 

By eliminating AI and A2 between equation, (5.4.1), (5.4.2) and (5.4.3), we have 

S 2 --x 
(5.4.4) 

which gives an estimate for 0 either by ~raphically or by numerical solution, 

using Newton Raphson method I.e. 
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· 2(0 + 3XO + lY 
Let us consIder f(O) = 4 3 2 - K 

20 + 90 + 70 + 28 

where 

Then the iteration formula for Newton Raphson method is 

(5.4.5) 

where 80 is the initial value and iJ is the estimated value of 8 respectively. The 

initial guess value for starting the Newton Raphson method has to be selected by 

trial values, based on our assumptions. When the trial value closes to the 

estimated value, the method will always be convergent. 

After getting the estimate of 8 i.e. 8 from equation (5.4.5), the 

estimate of A, and /1.2 may be obtained as 

(5.4.6) 

(5.4.7) 

5.5 Some Special cases of SPPL distribution 

The limiting forms of the SPPL distribution as the parameters take 

particular values are given' in Table 5.1. 
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Table 5.1 

Sl.no. Parameter values Distribution and its pgf 

1 () = 0, ~ =0 Poisson, eA2 (1-1) 

A { 0
2 

(0+2-1) } 
1 2-1 

2 Az = 0 Poisson-Poisson-Lindley, e (O+IXO+I-I) 

5.6. Goodness of Fit 

To illustrate the applications of the SPPL distribution, firstly, in Table 

5.2 we consider the data on the number of accidents sustained by a group of 708 

bus drivers over a period of three years for which Neyman Type A and 'Short' 

distributions were fitted by Kemp (1967). When SPPL distribution is applied to 

these data it provides a good fit with X2 value of 2.445. Using the equations 

A A A 

(5.4.5), (5.4.6) and (5.4.7), we get e =8.0110, ~ =30.171 and Az = -1.892. 

Secondly, in Table 5.2, we have considered the data on number of 

accidents to 647 women on high explosive shells during 5 weeks period [data 

from Greenwood & Yule, (1920)]. Here the original data together with the 

expected frequencies of SPPL, PPL [Borah & Deka Nath (2001)] and Negative 

binomial [Plunket & Jain (1975)] distribution are considered .. Using equations 

(S.4.S), (S.4.6) and (S.4.7), we get e =S.3066, ~ =2.4117 and ~ =-0.061. From 

Table 5.3, it is seen that SPPL distribution provides a better fit to this data as 

compared to the other distributions. 
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Considering Adelstein (1952) data on number of accidents (home 

injuries) of 122 experienced men in 11 years period where Adelstein had 

concluded that the Poisson distribution fits the first sets of data but did not fit the 

second sets. In Table 5.4, when the SPPL distribution is applied to those sets it 

provides a good fit like GPO [Consul (1989)] model in all the cases. Here we get 

B =4.2305, ~ =0.4401 and ~ =0.4171 for the first set and B=4.0447, ~ =3.359 

~ 

and ~ =-0.0115 for the second set. When the estimated value of g. are divided by 

the respective number of years (6 & llyears), the average values of B for these 

sets become 0.705 & 0.3677 respectively. These values do indicate that the 

average natural rate for home injuries does decrease with experience. 

In Table 5.5, we have considered accident data for experienced shunting 

men over 11 years. For which Adelstein (1952) had used the Poisson distribution 

and negative binomial distribution. The SPPL distribution is fitted to this data and 

it is found that the calculated value of X2 for the SPPL distribution is much less 

~ ~ 

than its significant values. In Table 5.5, we get g =6.7819, /I, =6.759 and 

'" 1'\ '" " 

~=0.1457 for the first set and g =1.7748, /1,=0.2090 and A2 =0.8069 for the 

~ 

second set. The values of g for the second group indicates that due to 

experienced, this group has a less natural chance of making accidents. 

It is apparent from the results of the following tables that the 

SPPL distribution can be applied very successfully in case of accident data. In all 

the cases the SPPL distribution provides a good fit. 
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Table 5.2 Numbers of drivers sustall1tng accidents over three year period 
[Cresswell & Froggatt's Table 5.4, (1963)) with expected fTequencies based on 
SPPL, Neyman -Type A [Kemp (1967)] and Short distribution [Kemp (1967)]. 

No. of observed Expected frequency 

accidents frequency SPPL NTA Short(MM) Short(ML) 

0 117 118.588 116.69 110.38 116.88 
1 157 159.130 162.04 169.70 160.43 
2 158 153.191 153.12 156.02 153.64 
3 115 115.631 115.26 113.90 116.05 
4 78 74.94 74.58 72.54 75.13 
5 44 43.182 43.13 41.90 43.29 
6 21 22.687 22.83 22.45 22.76 
7 7 11.095 11.25 11.31 11.09 
8 6 5.041 5.21 5.42 5.07 
9 1 2.177 2.29 2.49 2.20 
10 3 0.895 0.96 1.10 0.91 
11 1 1.493 0.39 0.43 0.35 

Total 708 708.00 707.75 707.68 707.81 

X
2 2.445 2.64 3.78 2.56 

Note. MM: Method of moments 
ML: Method of maximum likelihood. 
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Table 5.3 Comparison of Observed Frequencies for Accidents to 647 Women on 
High Explosive Shells during 5 weeks with Expected Frequencies of SPPL, 
PPL[Borah & Deka Nath (2001)] and Negative Bionomial(NB) 
distribution[plunket & Jain (1975)]. [Data from Greenwood and Yule (1920)]. 

No. of Observed Expected fTequency 

accidents frequency SPPL PPL NB 

0 447 445.959 442.52 445.89 
1 132 131.692 137.79 134.90 
2 43 47.698 46.57 44.00 
3 21 15.218 14.57 14.69 
4 3 4.124 4.32 4.94 

>5 2 2.309 1.70 2.56 
Total 647 647.00 647.00 647.00 

X
2 2.981 3.57 3.6315 

Table 5.4 Comparison of Observed Frequencies for Home Injuries of 122 ' 
Experienced Men during 5 years (1937-1942) and 11 years (1937-1947) with 
Expected SPPL & GPD [Consul (1989)] Frequencies. [Data from Adelstein 
(1952)] 

No. of 1937-1942 1937-1947 

Injuries Obs. SPPL GPD Obs. SPPL GPD 

0 73 72.952 73.23 58 57.045 57.22 
1 36 35.977 35.32 34 33.441 34.41 
2 10 10.079 10.41 14 17.521 16.64 
3 2 2.313 3.04 8 8.161 7.59 
4 1 0.679 6 3.404 6.14 
5 - 2 2.428 

Total 122 122.00 122.00 122 122.00 122.00 

X2 0.00068 2.62 1.542 1.09 

Note: Obs.: Observed frequency, 
GPD: Generalized Poisson dis. .tribution 
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Table 5.5 Comparison of Observed Frequencies of Accidents of 122 Experienced 
Shunting Men over 11 years (1937-1947) with Expected SPPL & GPD [Consul 
(1989)] Frequencies. [Data from Adelstein (1952»). 

No. of 1937-1942 1937-1947 

Injuries Obs SPPL GPD Obs. SPPL GPD 

0 40 40.141 39.98 50 49.642 51.48 
1 39 39.138 39.49 43 39.671 39.57 
2 26 23.794 23.76 17 19.945 19.28 
3 8 11.459 11.32 9 6.731 7.67 
4 6 4.749 4.70 2 2.074 4.00 
5 2 1.765 2.75 0 0.579 
6 I 0.954 1 0.808 

Total 122 122.00 122.00 122 122.00 122.00 

X
2 1.648 1.57 1.15 1.09 
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Chapter 6 

A Class of Hermite Type Lagrangian Distributions 

6.1 Introduction 

Lagrangian expansIOn for the derivation of expressions for 

probabilities of certain discrete distributions were used by Consul and 

Shenton (1972,1973,1975), Mohanty (1966), Consul and Jain (1973) and their 

co workers. The nature of the generalization process for these distributions 

was clarified in two important papers by Consul and Shenton (1972,1973) 

and also by Consul (1983). Consul's (1989) book on generalized Poisson 

distributions offers a systematic study of the Lagrangian Poisson 

distribution. This book also focuses on applications of the generalized 

Poisson model to various areas with actual data sets. Consul and Famoye 

(1996) studied Lagrangian Katz family of distributions. The parameters of 

this distribution were estimated by various method of estimation and some of 

the applications of the Lagrangian Katz distribution were studied. 

If get) and f(t) be two probability generating functions (pgf) defined 

on non-negative integers, such that g(O) 7:- 0, then the pgf for the general 
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distribution formed from get) and ret) where considering the transformation 

t=u.g(t) is given by [see Consul and Shenton (1972)] 

J(t) = J(O) + ~ US d'-: If (t»)' .fl(t)} I 0 
~ sldtS- ~ 1= 

(6.1.1) 

Thus the probability mass function (pm!) for the general 

Lagrangian probability distribution is given by 

1 d,,-t ~ } 
p X = x = --- t" I t r[ ] xldt,,-l (») .f() Lo x=1,2.3, .... (6.1.2) 

Pr[X = 0] = J(O) 

Equation (6.l.2) is also known as Lagrangian distribution of type-I (LD-I) 

(according Janardan and Rao's terminology). 

Using Lagrangian expansion of 2nd kind, J anardan and Rao (1983) 

investigated a new class of discrete distribution call Lagrangian distribution 

of type -II (LD-II) with pmf 

P(X = x) = {{I-!'(I))[ ~'. k(z)Y f(z)}L: x ~ 0,1,2, .... 

0, otherwise 

(6.l.3) 

The Hermite distribution was formally introduced by Kemp and 

Kemp (1966) and was applied in the field of biological sciences, physical 

sciences and operation research. The pgf of this distribution is 

The probabilities of this distribution can be conveniently expressed in terms 

of modified Hermite polynomials. 
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The motivation of investigation behind this chapter is to derive the 

Hermite type Lagrangian distribution, since Hermite distribution has a wide 

application in various fields of experimentation. The basic Lagrangian Hermite 

distribution (LHD) is investigated. The parameters of this distribution are 

estimated by the method of moments and ratio of first frequency and mea~. 

Considering different values of f(t) and get) in equation (6.1.2) and (6.1.3), 

different general Lagrangian Hermite type distributions are generated. Borah and 

Deka. Nath (2000) studied Lagragian Hermite type distributions and fitted this 

distribution to some well known data sets for empirical comparison. 

6.2 Basic Lagrangian Hermite Distribution (LHD) 

The pmf of basic Lagrangian distribution is given as 

{

I d x
-

I 
x 

P
r 
[X = x] = x! dtx-I {g(t)} 1,=0' x = 1,2,3, ... 

0, otherwise 
(6.2.1) 

where get) is the pgf defined on some or all non-negative integers, such that 

g(O);f. 0. In this case 

(6.2.2) 

Thus the pmf of basic LHD may be written as 

{ 

j(X-I)/2] X-I-2) j x-I-j a a x 
ex x a +a 1 2 P [X = x] = p[- ~ I 2) L (- 2 ") ., , 

r ]=0 X J .J. 
0, 

x = 1,2,3, ... 
(6.2.3) 

otherwise 

where [(x -1)/2] denotes the integer part of (x-1)/2 
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(a) CUDlulallts of the Basic LIID 

The cumulants of basic Lagrangian distribution may be investigated by 

using Consul and Shenton (1975) general formula. According to this, if G1 be 

the ith cumulant of the distribution with pgf, g(t) then the first four cumulants k;, 

i=1,2,3,4 of basic Lagrangian distribution can be written as 

In case of Hermite distribution, we have the first four cumulants as 

G1 =a l +2a2 (6.2.4) 

G2 =a l +4a 2 (6.2.5) 

G3 =at +8a2 (6.2.6) 

G4 = at + 16a 2 (6.2.7) 

Thus the first four cumulants of basic LHD may be written as 

(6.2.8) 
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k = a l +4a2 

2 (I-al -2a2Y (6.2.9) 

(6.2.10) 

_ a , +16a2 1O(a,+8a2Xa,i-4a2) 15(a
l
+8aJ2 

k4 - (I-a. -2a2Y + (I-a. -2a r + (I-a. -2a2Y . (6.2.11) 

(b) Estimation of Parameters 

Method of moments and ratio of first frequency with mean are used 

to estimate the parameters of basic LHD. 

(i) Method of moments 

The mean and variance of basic tHD as given in equation (6.2.8) and 

(6.2.9), may be written as 

_ 1 x-,----__ 
- (I-a. -2aJ 

(6.2.12) 

(6.2.13) 

where x is the sample mean and fIl2 is the sa.mple variance. 

By eliminating a. between equation (6.2.1~) and (6.2.13), we obtain 

(6.2.14) 

Substituting the value of &2 in equation (6.~.12), we may get 

~ m 2 2 
a =2----• -3-

X X 
(6.2.15) 
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(ii) Ratio of first frequency and mean 

By equating the first probability of basic LHD with ~ , we obtain 
N 

(6.2.16) 

By eliminating a l between equation (6.2.12) and (6.2.16), we may obtain 

~ 1 I n l a =1--+ og-
2 X N 

(6.2.17) 

and 
~ 1 III a =-- 210g--1 

I X N (6.2.18) 

(c) Fitting of Basic LHD 

For the application of basic LHD, we have considered the example of 

numbers of papers published per author in the review of applied entomology [data 

by Kendall (1961)] in Table 6.1, for which geometric distribution (GD), 

logarithmic series distribution (LSD) were fitted by Williams (1944) and 

generalized logarithmic series distribution (GLSD) was fitted by Jain (1975). 

From the Table 6.1, we have, the sample mean x = 1.5508475 and sample 

variance m2 = 1.1405050. By using method of moments we have al = 0.404616 

and a2 = -0.024712 and by using ratio of first frequency and mean we have 

al = 0.3803 and a2 = -0.012. From the Table 6.1, it is observed that the LHD 

model (by using both the method of estimation) gives better fit than GD, LSD and 

GLSD as judged by the values of X 2 
• 
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Table 6.1 Fitting of no. of papers per author by LHD, GLSD, LSD and GO. 

Publication in the review of applied entomology. Vol. 24, 1936 (2379 papers by 

1534 authors) 

No.of Observed LHD LHD GLSD LSD GD 
papers Williams Williams 

per author frequency (MM) (FM) Jain(1975 ( 1944) (1944) 

1 1062 1049.14 1062.06 1052.72 1046.05 989.10 
2 263 290.33 279.59 287.52 293.05 351.30 
3 120 108.38 104.02 107.1 0 109.46 124.80 
4 50 45.86 45.95 45.10 45.99 44.33 
5 22 20.78 21.33 20.83 20.61 15.75 
6 7 13.96 10.33 10.00 9.62 5.59 
7 6 3.09 5.45 4.97 4.62 1.99 
8 2 1.49 2.30 2.53 2.26 0.71 
9 0 0.74 1.23 1.31 1.12 0.25 
10 1 0.15 1.19 0.70 0.53 0.09 
11 1 0.09 0.55 1.81 0.66 0.09 

Total 1534 1534.00 151400 151400 111400 1534.00 

X
2 4.74 4.94 5.14 5.56 46.39 

a1 = 0.4046 0.3803 

Parameter estimates a2 = -0.024 -0.012 

Note: MM: MeUlOd of moments, FM: Ratio of mean and first frequency 

6.3 General Lagrangian Hermite Poisson Distribution 

Considering different values of get) and fCt) in equation (6.1.2) 

and (6.1.3), different LIID of type I and type II may be obtained. Let 

fCt)=exp [e(t - 1)] 
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where get) be the pgf of Hermite distribution and f(t) be the pgf of Poisson 

distribution respectively. Hence the pmf of Lagrangian Hermite Poisson 

distribution of type I (LHPD-I) may be written as 

1 
[X-I] 
""2 (e+xa Y-Ia JxJ 

P,(X = x) = eexp{e +x(al +a2 )} L (I"). .~ , 
(

=0 x-2J .J. 
exp -el 

x = 1,2,3, ... (6.3.1) 

x=O 

where e> O. 

Similarly, considering equation (6.1.3), the pmf ofLHPD-II may be written as 

x = 0,1,2, ... (6.3.2) 

otherwise. 

(a) Cumulants of General LHPD 

According to Consul and Shenton (1975), if Fr be the rth cumulants for 

the pgf f(t) as a function of t, and if kr be the rth cumulants for the basic 

Lagrangian distribution obtained from get) then the cumulants of general 

Lagrangian distribution may be written as 

D4 = F;k4 + 3F2k; + 4F2klk3 + 6F3kl2k2 + F4k14. 
(See Consul and Shenton 1975). 
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Here D1, D2, D3 and D4 are the first four cumulants of general Lagrangian 

distribution. k l , k2' k3 and k4 are given in equation (6.2.8), (6.2.9), (6.2.10) and 

(6.2.11) respectively. Thus the first three cumulants of general LHPD may be 

written as 

(6.3.3) 

(6.3.4) 

(6.3.5) 

(b) Estimation of Parameters 

The parameters ofLHPD-I may be estimated from the ratio of first two 

frequencies and the mean. By equating the first and second probabilities of 

LHPD-I with ~ and ~, we obtain 
N N 

and 

~ flo 
B=-log­

N' 

Also from equation (6.3.3), we have 

_ B 
x=----

I-a - 2a ' 1 2 

(6.3.6) 

(6.3.7). 

(6.3.8) 

Hence from equation (6.3.6), (6.3.7) and (6.3.8), we may estimate a l and a z as 

~ 

~ B 111 A A 

a 2 = 1 - x + log N -log B + B 
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and (6.3.10) 

(c) Fitting of LHPD-I 

In Table 6.2, we have considered Adelstein (1952) data on number of 

accidents (home injuries) of 122 experienced men in 11 years period where 

Adelstein concluded that the Poisson distribution gave good fit to the first sets of 

data but did not fit the second and third sets .. 

When LHPD-I is fitted to these data sets it gives good fit to all the 

cases. From the following table it is also observed that the LHPD-I distribution 

gives better fit than GPD (Consul, 1989). In Table 6.2, we get B =0.5135, at 

=0.0103 and a2 =0.0304 for the 1st set and B =0.3267, al =-0.1799 and a2 = 

0.648 for the 2nd set and B =0.7435, al =0.006 and a2 =0.2316 for 3rd set. 

Thus this chapter has defined and studied a class of Hermite type 

Lagrangian probability distribution, by well known Lagrange's expansion, with 

application to various fields of data. The fitting of LHPD-II will be invistigated 

latter on. 
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c 
~ 

Table 6.2: Comparison of Observed Frequencies for Home Injuries of 122 Expected Men during 11 
years (1937-1947) with the Expected LHPD-I and GPD [Consul (1989)] Frequencies. 

Number 1937-19.+2 19.+3-1947 1937-19.+7 
of 

injuries Observed LHPD GPD Observed LHPD GPD Observed LHPD GPD 

-
0 73 72.99 73.23 88 87.99 86.77 58 57.99 57.22 

1 36 35.99 35.32 18 17.99 22.85 34 33.99 34.41 

2 10 9.93 10.41 11 9.14 7.56 14 16.17 16.64 

3 2 2.36 3.04 4 4.79 2.82 8 7.42 7.59 

4 1 0.73 ----- 1 2.09 2.00 6 3.41 6.14 

5 2 3.02 ------
"-

Total 122 e =0.5135 122 0.3276 122 0.7435 
and ~=0.0103 -0.1799 0.006 

Estimates a2 =0.0304 0.648 0.2316 

X 2 = 0.15 2.62 0.00002 0.124 0.719 . l.09 
-

~--- -- --
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Chapter 7 

A class of Charlier Type Lagrangian 

Distributions 

7.1 Introduction 

Doetsch (1933), Meixner (1934,1938) and Berg (1985) 

investigated Charlier polynomials which was defined by the generating function 

Jain and Gupta (1975) defined the generalized Charlier polynomial by 

the generating function 

Medhi and Borah (1986) studied the generalized four parameter 

Charlier distribution with pgf 

They studied some properties of this distribution including recurrence relations 

for the probability mass function as well as for the moments and cumulants of the 

distribution. Negative binomial, Gegenbauer, generalized Gegenbauer, Charlier 

and generalized Charlier distributions were the limiting distribution of this four 
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parameter Charlier distribution. Medhi and Borah (1986) also discussed the 

methods for fitting of these four parameter Charlier distribution. 

Using Lagrange expansion to this Charlier distribution, Borah and 

Begum (1997) studied only the probabilistic structures of Lagrangian Charlier 

distribution of type-I (LCD-I) and type-ll (LCD-II). Deka Nath and Borah (2001) 

studied the basic LCD and fitted this distribution to a data set for empirical 

companson. 

The objective of this chapter is two folded. Firstly, we have to investigate 

the pmf of basic LCD in a simpler form than the earlier one, which is also easy to 

handle on computer. Secondly, considering /(1)= eO(z-l) in equation (6.1.2) and 

(6.1.3), Lagrangian Charlier Poisson distribution of type I and type II (LCPD-I & 

LCPD-II) are also derived. The cumulants of the distributions are investigated. 

For fitting of basic LCD, some methods of estimation of the parameters are 

suggested. The basic LCD has been fitted to some data for which logarithmic 

series, geometric, generalized logarithmic series and basic Lagragian Hermite 

distribution were fitted. It has been found that the basic LCD gives surprisingly a 

better fit than the other distributions. The LCPD-I is also fitted to some data sets 

for which generalized Poisson distribution (GPD) was fitted by Consul (1989). 

7.2 Basic Lagrangian Charlier Distribution (LCD) 

In this chapter we have considered the pgf of three parameter 

Charlier distribution as 
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(7.2.1) 

Thus the pmfofbasic LCD may be written as 

{ 

-xa(l_ ,8)Ax { k (k) } 
P(X = x) = e x! ~ j (axY-J ,8J 0x)(J)' x = 1,2, ... 

0, otherwise. 

(7.2.2) 

where k=x-l, a >0, P<l, A>O. 

Equation (7.2.2) may also be written as 

etzX (1 a)Ax (ax)x-l 
P(X=x) jJ 2Fo(1-x,Ax,-,8lax),x:2:1 

x! 
(7.2.3) 

[see Borah and Begum (1997)] 

(a) Cumulants of the Basic LCD 

Using Consul and Shenton (1975) general formula, the cumulants of 

basic LCD are investigated. Let Gi be the ilh cumulants of the Charlier distribution 

with pgf g(z), then we have 

G =a+ A,8 
I (1-,8) 

(7.2.4) 

G =a+ A,8 
2 (1- ,8)2 

(7.2.5) 

G = a + A,8(1 + ,8) 
3 (1- ,8)3 

(7.2.6) 

G =a+ A,8 
4 (1- ,8)4 

(7.2.7) 

then the first four cumulants ki ,i=1,2,3,4 for basic LCD may be obtained by the 

relations as shown in chapter 6. 
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k
1
= (1- 13) 

{(1 - a)(1 - 13) - tip }' 

k = (1 - f3){:x(1- 13)2 + tip} 
:2 {(1- a)(l- 13) - Af3f ' 

k - a(1- [3)4 + Af3(1 - [32) 3(1- [3)h(l- [3)4 + A[3} 
3 {(1-a)(1-f3)-Af3}4 + {(l-a)(l-f3)-Af3}' . 

~= (1 - 13) [~(1- [3t + A[3}+ 15 ko -f3Y + Af3 r 
[(1- aX1- 13)- Apr {(1- aX1- 13)- ApY 

+ 10 k(l- f3r + Ap(l + f3)k(l- [3y ~ Af3 }] 
{(I - a Xl - 13) - Ap} 

(b) Estimation of Parameters 

(7.2.8) 

(7.2.9) 

(7.2.10) 

(7.2.11) 

The parameters of basic LCD can be estimated in terms of its 

cumulants. A composite method has been used to estimate the parameters. The 

method is based on ratio of first two moments and first frequency. 

By equating the first probability of basic LCD with ~, we obtain 
N 

11 
a = A 10g(1 - 13) -log(-I ) 

N 
(7.2.12) 

By equating the mean and variance of the sample to the population value 

of mean and variance of basic LCD, given in equation (7.2.4) and (7.2.5) , we get 

x = ...,....-_..:-(1_-~f3~)_~ 
{(l- a)(l- 13) - AP} 

_ (1- f3)h(l- 13)2 + Af3} 
nI2 - {(1- a)(l- 13) - Af3r 

(7.2.13) 

(7.2.14) 
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By eliminating a and A between equation (7.2.12), (7.2.13) and 

(7.2.14), we obtain 

(7.2.15) 

The equation (7.2.15) may give an estimate for j3 either by graphically or by using 

Newton Raphson method. 

After getting the estimate jJ of j3 from equation (7.2.15), the 

estimates of A and a may be obtained from the following equations. 

(7.2.16) 

(7.2.17) 

(c) Fitting of Basic LCD 

For the application of basic LCD, we consider the example of number of 

papers published per author for which geometric distribution (GD) and 

logarithmic series distribution (LSD) were fitted by Williams (1944) and by 

generalized logarithmic series distribution (GLSD) by Jain (1975). The 

comparison of observed and expected frequencies among LCD, GLSD, LSD and 

GD are given in the following Table 7.1. 
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For the data in Table 7.1, we have the sample mean x=1.5508475 and 

central moments 11l 2 =1.1405050. Solving the equation (7.2.15) by Newton 

Raphson method, we get /J = 0.6113. Substituting the values of /J in equation 

(7.2.16) and (7.2.17), we get 1=-0.0199 and a =0.3866. It is clear from Table 

7.1 that the expected basic LCD frequencies are much closer to the observed 

frequencies than obtained by geometric, logarithmic and generalized logarithmic 

distributions. Thus the LCD model better describes the pattern of the frequency 

distribution of number of paper per author. 

Table 7.l. Fitting of number papers per author by LCD, GLSD, LSD and GD. 

Publication in the review of applied entomology, Vol. 24, 1936 (2379 papers by 

1534 authors). 

No.of Observed LCD LHD GLSD LSD GD 
papers frequency a =0.3866 (FM) Jain Williams William~ 

per 2=-0.0199 (1975) (1944) (1944) 
author 

1 1062 1061.90 1062.06 1052.72 1046.05 989.10 
2 263 275.02 279.59 287.52 293.05 351.30 
3 120 105.14 104.02 107.10 109.46 124.80 
4 50 46.08 45.95 45.10 45.99 44.33 
5 22 22.53 21.33 20.83 20.61 15.75 
6 7 11.41 10.33 10.00 9.62 5.59 
7 6 5.76 5.45 4.97 4.62 1.99 
8 2 3.15 2.30 2.53 2.26 0.71 
9 0 1.47 1.23 1.31 1.12 0.25 
10 1 0.43 1.19 0.70 0.53 0.09 
11 1 0.19 0.55 1.81 0.66 009 

Total 1534 1534.00 1534.00 1 534.00 1534.00 1534.00 

X
2 4.66 4.94 5.14 5.56 46.39 

Note. FM: Ratio of mean and first frequency. 

110 



7.3 General Lagl'angian Charlier type Distributions 

Considering g(z)=e-a (1- 13»). eaz (1- f3z)-). 

and f(z)=eO(Z-I) 

in equation (6.l.1), the pmf of Lagrangian Charlier Poission distribution of type I 

(LCPD-I) may be written as 

P(X = x):::: e-(xa+O) (\- flYx (j {±(~ I(ax + fJY-J 13) (Ax )())}, for x= 1,2, ... (7.3.1) 
x. )=0 J) 

and P(X:::: 0) = e-o 

where k=x-l , a, it, fJ > 0 and 13 < 1. 

Similarly, considering equation (6.l.2), the pmf ofLCPD-II may be written as 

e-(xa+O)(l_ f3)J.x { x (x) X-)} } 

P(X=x)::::A \ L . (ax+fJ) 13 (Ax)()) , forx=0,1, ... (7.3.2) 
x. }=o J 

(a) Cumulants of General Lagrangian Charlier Poisson Distribution(LCPD) 

The following cumulants of general LCPD model can be derived 

by using Consul and Shanton (1975) formula as shown in chapter 6. 

D = e(l- 13) 
I (l-aXl- 13)- itf3' 

(7.3.3) 

, D = e(l- ,B)Kl-,BY + itf32 } 
2 {(1-aX1-f3)-Af3r' 

(7.3.4) 
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4a(1- P)+( AP )(2+ P) 
__ ~~~l~-~P~ ____ + 

(1 - a X1- p) - AP 

3{ a(l- f3)' + (1 ~~)' } 

{(1-aX1-p)-APY +1 
(7.3.5) 

(b )Estimatioll of parameters 

The parameters of LCPD-I can be estimated from the ratio of first two 

frequencies and by using the mean and variance of the distribution. By equating 

first two probabilities with ~ and !2 respectively, we obtain 
N N 

n A (11 ) ; = e-o => B = -log ; 

and ~ = e-(u+o)(l_ PY iJ 
N 

=> a = Alog(l- f3)-IOg( ::) + logO 

From equation (7.3.3), (7.3.4) we may get the following equations as 

_ B(l-p) 
x = -;-----;:-i---'-.:----

(l-a)(l- p)- AP 

and 

(7.3.6) 

(7.3.7) 

(7.3.8) 

(7.3.9) 

(7.3.10) 

The estimate of A in terms of Band P may be obtained from equation (7.3.10) 
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as (7.3.11) 

Again from equation (7.3.9) and (7.3.10), we obtain 

a == 1- B _ (1112B2 -lJ (1- fJ) 
x x3 fJ 

(7.3.12) 

By eliminating a between equation (7.3.8) and (7.3.12), we get 

(7.3.13) 

Hence from equation (7.3.11) and (7.3.13), we get 

(7.3.14) 

which gives an estimate for fJ either by graphically or by numerical solution 

~ 

using Newton-Raphson method. On getting the estimate B of B from (7.3.6) and 

jJ offJ from (7.3.14), the estimates of Aanda may be obtained by 

(7.3.15) 

and a = 110g(1- jJ )-lOg~ll / 110 )+ loge (7.3.16) 

(c) Fitting of LCPD-J 

Some reported observed data have been considered for the fitting 

of the four parameter LCP distribution of type-l for empirical comparison. In 
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Table7.2, the accidents data of shunting service for different age group have been 

considered for which Adelstein (1952) had used the Poisson and negative 

binomial distribution and Consul (1989) had successfully fitted the GPD model. It 

may be noted that when LCPD-I model has been applied to these data, it provides 

an excellent fit to all the sets of data as judged by the chi-square values In 

Table7.2. , 

In Table 7.3, we consider Kendall (1961) data for fitting of LCPD-I 

model. Kendall (1961) considered the observed data on the number of strikes in 4-

week period in four leading industries in U.K. during 1948-1959 and concluded 

that the aggregate data for the four industries agrees with Poisson law but it did 

not hold well for the individual industries. The LCPD-I has been fitted to the 

observed data for the four individual industries and the results are given in Table 

7.3 along with the expected frequencies. Based on the expected frequencies and 

the corresponding X2 values (Table 7.3), it is clear that the pattern of strikes in 

coal mining, vehicle manufacture, ship building and transport industries follow 

LCPD model and this distribution gives better fit than the GPD model for coal 

mining industries. In the light of the above discussions it may be stated that the 

Charlier type of Lagrangian probability distribution can be applied in various 

fields of experiment with varied amount of success. 
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Table 7.2 Comparison of Observed Frequencies for First- Year Shunting Accidents and for a 
Five-Year Record of Experienced Men with Expected LCPD-I and GPD Frequencies 
for Different Age Group. 

Number Age 21-25 yr. Age 26-30 yr. Age 31-36 5- yr. Record for 
I of experienced 

Accidents Observed LCPO GPO Observed LCPO GPO Observed LCPO GPO Observed LCPO GP[ 

0 80 79.99 76.40 121 120.99 126.42 80 79.99 80.23 54 54.00 51.7j 

1 56 55.99 65.03 85 8.J.99 74.49 61 60.99 60.4-1 60 59.99 62.11 

2 30 29.84 23.37 19 18.66 21.45 13 12.99 13.48 36 38.54 40.02 

3 4 4.05 5.2 1 1.89 4.02 1 1.02 0.88 21 18.69 18.41 

~4 0 .08 1 0.31 0.62 0 11 10.55 9.69 
Total 170 227 155 182 

A 

B =0.75 0.63 0.66 1.21 

and a =-0.18 -0.14 -0.11 0.10 
A 

Estimates f3 =-1.09 0.46 -026 0.76 
A 

.1,=-0.34 0.05 0.12 -.008 

X 2 = .0049 3.58 0.024 3.45 0.0008 0.04- 0.46 1.13 
- -- - - -- --
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Table 7.3 Comparison of Observed Frequencies of the Number of Outbreaks of Strike in Four Leading 

Industries in U.K. During 1948-1959 with the Expected LCPD-I and GPD Frequencies. 

Number Coal mining Vehicle manufacturing Ship building Transport 
of 

outbreaks Observed LCPD GPD Observed LCPD GPD Observed LCPD GPD Observed LCPD GPD 

0 46 45.99 50.01 110 110.00 109.82 117 117.00 116.74- 114 114.00 11 .. t84 

1 76 75.99 66.77 33 32.94 33.36 29 28.99 30.22 35 34.99 33.88 

2 24 22.55 3l.23 9 9.30 9.24 9 9.39 6.97 4 3.34 7.27 

3 9 1l.20 7.23 3 2.65 3.58 0 2.03 0.88 2 2.35 2.01 

4 1 1.15 0.76 1 0.76 1 0.81 1 l.64 9.69 

Total 156 156 156 156 
A e =l.22 0.34 0.28 0.31 

and a =0.24 0.15 0.09 0.02 
A 

Estimates /3=-0.34 0.82 -3.82 ..().75 
A 

A =1.85 -0.001 -O.Q.I. 0.42 

X 2 =0.29 X2 =4.52 1.47 0.06 l.21 1.19 0.25 2.27 
--- -- -- -- -- -----

i 
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34. A Class of I-Ierlnite rrype Lagrangian 
Distributions 

M. l30mh 
!Jept. of Mathematkal Sciences 

TC7pur University, NlIpllam 
TI'/.pur-7H4025, ASSlll1l (1IlJiLI) 

Abstract 

A. Dcka Nalh 
Dcpartment of Sllliislics 

Dl1rrang College, 
'lc/.pur-7H4001, Assalll (Illdill) 

A dass oj l/enl1lte type oj I,agrangian pruhlll"hty distributions hal'e hcen defined 

by using well known I,agrallge's expansions. lhe probability mass filllCtioll and climulallts oj 

the Qasic l.agrallgiallllermite (UID) distribution are provided l1w parameter.\ are eSlimated 

by using method of moments a/ld melhod (!ffirst freque/lcy and meall. Some applicatiulls oj this 

dislribulio/l are al.\:() cO/lsiciered '1he/l sel'eral memhers (!! /,llgl'£lngiu/I Ilermile Iype 

distributiuns oj Iype I alld type /I are investigateci by various choice oj pl'Obability generating 

fimctioll oj f (I) and g (I). For example, Ihe J.agrangilln lIermile Poissoll di.'ilrihulion oj Iype I 

and Iype If are derived and filled to ,\(J/lle well-knuwll data wilh good re.wlts. 

Key Words: Lagrange's Expansion, Lagrangian Probability Distribution, Ilcrrnitc distribution 

and Cumulants. 

I. Introduction 

Lagrangian expansion fOI the dcrivation of thc probabilitics of ccrtain discrete 

distributions has been used by Consul and Shenton [I], [2], [3] and Mohanty [4], Consul and Jain 

[5] and their co-workers. The nature of the generalization process for thcse distributions were 

clarified by Consul and Shenton [I], [2] and also by Consul [6] in their papers. 

If g(t) and ('(1) alC two prob~lbili1y gcncla1ing functions (pgl) dcfincd on non 

negative iiltcgcrs such that g(O) 7- 0, thcn the pgf for the genel al Lagrangian distribution formed 

fi'olll g(t) and f\t) by considering the tiansformatiull t--u.g(t), is given by 

Thus the probability mass function (pml) for thc Lagrangian probability distribution is given by 
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x= I ,2.3, .... (1.2) 

where Pr[X = 0] = f(O) 

Equation( 1.2) is also known as Lagrangian probability distl ibution of type-l(LPD-I) (according to 

Janardan and Rao's terminology). 

Using Lagrangian expansion of 2nd kind Janardan and Rao [7] investigated a new class of 

discrete distribution called the Lagrangian probability distribution of type -II (LPD-II), with pmf 

1', (X = x) = (I - ~'(I )1 [~: t:(z)), j{z ))L. fi" x-0.1.2 .... ( 1.3) 

= 0, otherwise 

The Hermite distribution was formally introduccd by Kemp and Kemp [8] and was 

applied in thc field of biological scicnces, physical sciences and operation research. Hermite 

distribution is a generalized Poisson distribution whose pgf is 

expla, (/ - I) + a 2 (/2 - I)J 
The probabilities of which can be conveniently expressed 111 terms of modified Hermite 

polynorriials. 

The motivation behind this paper is to derive the basic Lagrangian Hermite 

distribution (LlID). The cUlIlulants of this distribution are invcstigatcd. The paramcters of this 

distribution arc estimllted by lIIethod of moments and ratio of first fj·cqllency and mean. 

Considcrillg dilTerellt vnlllcs or Ilt) and get) ill cquation (1.2) lind (1.:1). dillclent general 

Lagrangian Ilcrmite type distriuutions are gCllcrntcd and Lagrnllg1an r lerlllile Poisson 

distribution of type-I and type-II me particularly investigatcd in this paper. 

2(a). Basic Lagrangian Hermite distribution (LIIO) 

Thc plllf of basic Lagrangian distribution is givcn as 

x7: I ,2), ... 

=- 0, otherwise. 

whcre get) is thc pgr defined 011 somc or all non negative integers, stich that g(O) TO. In 

this case 

Thus the pllIf of basic LlII) lIlay bc wrillcn as 
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(2.1 ) 

(2.2) 



= 0, otherwise. 

where [(x - I) /2] denotes the integer part of (x-I)/2 

(b) Cumulants of the basic LHD 

x=1,2,3 ... (2.3) 

The cumulants of basic Lagrangian distribution are investigated by using Consul 

and Shenton [3] general formula. The momerlts can be directly obtained by cumulants. If G, be 

the jth cumulants of the distribution with pgf get) then the first four cumulants of basic 

Lagrangian distribution can be written as 

I 
k\=--

I-G, 

k - G2 
2-

(I-G,)3 

k - G3 3G/ 
3- 4 + ~ 

(1-.0,) (I-G,) 

G lOG G 15G 2 14= 4 + 1 2 +_ 3 

(I-G,)5 (I-G,)6 (I-G,)7 

In case of Hermite distribution we have the cumulants as 

G 2 =a, +4a 2 

G3 =al +8a2 

G4 = a l + 16a 2 

Thus the first four cUflluJants of basic LHD may be written as 

k = a l + 4a z 
2 (1 - a

l 
- 2a

2 
r 
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(2.4) 

(2.5) 

(2.6) 

(27) 

(28) 

(2.9) 

(2.10) 



k _ a.+16a2 1O(a.+8a2 Xa.+4a 2 ) 15(a.+8a2Y 
4 - (1- a. - 2aJ~ + (1 - at - 2a r + (I - a. - 2a

2 
r (2.11) 

(c) Estimation of pa."amctcl' 

Method of moments and ratio of first frequency and mean can be used to estima 

the parameters of basic LHD. 

(i)Method of moments: 

The mean and variance of the basic LHD, as given in (2.8) and (2.9) may be writt 

as 

By eliminating a l between (2.12) and (2.13) we may obtain 

a =- -+--1 A 1 [m2 1 ] 
2 2 X- 3 X-

Substituting the value of a2 in equation (2.12) we may get 

A m2 2 
a =2----• -3-X· x 

(ii) Ratio of first frequency and mean: 

By equating the first probability of basic LHD with!'!'!' we may obtain 
N 

By eliminating at between (2.12) and (2.16) we may obtain 

hence, A 1 "l a =-- 2Iog--1 
I X N 

(d) Fitting of basic LHD 

(2.12) 

(2.13) 

(2.l4) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

For the application of basic LHO, we consider the example of number of pap 

published per author in the review of applied entomology data by Kendall [9] for wh 
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geometric distribution (GD), logarithmic series distribution (LSD) are fitted by Williams [10] 

and generalized logarithmic series distribution (GLSD) by Jain [11]. The observed and the 

expected frequencies of this example are given in Table I. (t is clear fi om Table 1 that the'LBD 

model gives much better fit than GD, LSD and GLSD as shown by the values of X 2 • 

Table 1. Fitting of no. of papers per author by LBD, GLSD, LSD and GD. Publication in the 
review of applied entomology. Vol. 24, 1936 (2379 papers by 1534 authors) 

No. of papers Observed LIIO GLSO LSD GO 
per frequency a l = 0.3803 Jain (1975) Williams Williams 

author a z = -0.012 ( 1944) (1944) 

I 1062 1062.06 1052.72 1046.05 989.10 
2 263 219.59 1~1.51 193.'05 35\.3'0 
3 120 104.02 107.10 109.46 124.80 
4 50 45.95 45.10 45.99 44.33 
5 22 21.33 20.83 20.61 15.75 
6 7 10.33 10.00 9.62 5.59 
7 6 5.45 4.97 4.62 1.99 
8 2 2.30 2.53 2.26 0.71 
9 0 1.23 1.31 1.12 0.25 

10 1 1.19 0.70 0.53 0.09 
11 1 0.55 0.8J 0.66 0.09 

Total 1534 1534.00 1534.00 1534.00 . 1534.00 

X
2 4.94 5.14 5.56 46.39 

3(a). General Lagrangian Hermite poisson Distribution'. 

Considering different values of get) and f(t) III (1.2) and (1.3) 

different LHD of type I and type II may be obtained. Let 

g(t)= exp[al(/-I)+a2~2 -lh 
f(t)=exp [O{I - 1)] 

Hence the pmf of Lagrangian Hermite poisson distribution of type I (LHPD-I) may be 

written as 

[X-I] 
. 2 (n + )X-I-2) J) 

f. ( )} '" v x a I a 2 X Pr(X = x) = OexPtO + x a l + a 2 ~ { •. \1 ., 
pO x - 2 } l J. 

x=1 ,2,3, ... (3.1) 
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where () > O. 

Similarly considering (1.3) the p.m.f. ofLHD-ll may be written as 

IX/2J(0 + xa Y-2 l a j Xl 

I'r(X=x)=Aexp{O+x(a. +aJ}L: ' .. ,2 
)=0 (x - 2J) J. 

and zero otherwise, where A={ 1-( a, + 2az )} 

(b) Cumulants of general LI-IPD-I 

x=O,] ,2, ... (3.2) 

According to Consul and Shenton [3] if Fr be the rth cumulants for the pgf f(t) as a 

function of z, and if Dr be the fth cumulants for the basic Lagrangian distribution obtained from 

get) then the cumulants of general Lagrangian distribution may be written as 

k,=F,lJJ 

k2=F}lJrl-F2D} 2 

k3=FJD3+ 3F2D JDTt- F3D / 

k4=FJDrl-3F2D/+.fF1D/D31 6F3D/lh I-FJ)/4 (See Consul and Shenton [3]) 

Here D" D2 , DJ and D"arc given in equation (2.8), (2.9), (2.10) and (2.11) respectively. Thus 

k, = ( () ) 
1- a. - 2az 

(3.3) 

(3.4) 

k3 = 30(a. + 4a2 Y + 40(a. + 5a2 ) + 0 
(1 - a -? a)~ (J - a - 2a)4 (1 - a - 2a )1 

• - 2 • 2 • Z 

(3.5) 

lienee the parameters or 'L1IPD-1 call be eSlimaled ill tC'IIlS orils cUlllulallls. 

(e) Estimation of parameters 

The parameters of L1IPD-1 may be eSlimated rrom the ratio of first two frequencies and 

the mean. By equating the first and second probabilities of ,L1-IPD-I with nolN and ndN, we may 

obtain 

~ 11 
O=-Iog-O 

N' 
(3.6) 
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and 

from (3.3) we have 
() 

x=----
1- a l - 2a2 

Hence from equation (3.6), (3.7) and (3.8) we may obtain the estimate of a. and a z as 

and 

(c) Fitting of LUPD-J 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

In Table 2 we consider Adelstein [12], data on number of accidents (home injuries) 

of 122 experienced men in 11 years period where Adelstein had concluded that the Poisson 

distribution fits the first sets of data but did not fit the second and third sets. When the 

LHPD-I distribution is applied to those sets it provides good fit in all the cases. In Table 2 

we get S' =0.5135, 0.1' =0.0103 and o.l' =0.0304 for the 1~ set and S' =0.3267, 0.1' =-0.1799 

• Co h nd d O' • d· Co rd and o.l = 0.648 lor t e 2 set an =0.7435,0.1 =0.006 an 0.2 =0.2316 lor 3 set. 

Table 2. Home injuries of 122 Experienced Men during 11 years with expected LHPD-I 

Frequencies Adelstein r I 2] data ]. 

No. of 1937-1942 1943-1947 1937-1947 

Injuries Observed LHPD-I Observed LHPD-I Observed LHPD-I 

0 73 72.99 88 87.99 58 57.99 

1 36 35.99 18 17.99 34 33.99 

2 10 9.93 11 9.14 14 16.17 

3 2 2.36 4 4.79 8 7.42 

4 ] 0.73 ] 2.09 6 3.41 

5 2 3.02 

Total & X 2 122 122.00, 0. I 5 122 122, 1.07' ]22 122, 2.71 

Concluding remark: Thus this paper defined and studied a class of hermite type Lagrangian 

probability distribution, by well know~ Lagrange's expansion, with application to various fields of 

experiments. The fitting of LHPD-Il will be investigated latter on. 
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A Study on the Inflated IJoisson Lindley Distribution 

M. Borah and A. Deka Nathl 
Tezpur University, Tezpllr 

(Recei ved : June, 2000) 

SUMMARY 

The Poisson Lindley distribution has been further studied with some 
inflation of probability at zero. Some properties of this Inflated Poisson 
Lindley (lPL) distribution are discusscd. The recurrence relations are 
obtaincd without derivatives, so that they will be easy to handle Oil computer 
for computation of higher order probabilities, moments, etc. The parameters 
of this distribution have been estimated by threc methods. Examples are 
given for fitting of this distribution to real data, and the fit is cOl11lJared with 
that obtained by using other distributions. 

Key words: Poisson-Lindley distribution, 
Recurrence relation, Raw moments, Skewness, 
estimation. 

1. Introduction 

Inflated distribution, 
Kurtosis, Parameter 

Poisson Lindley distribution is a generalized poisson distribution 
(see Consul (5» originally due to Lindley [10] with probability mass function 

P (<\»=<\>2(<\>+2+x) 
x (<I>+lr+ 3 

x = 0,1,2, ... (1.1 ) 

Sankaran [12] further investigated this distribution with application to 
errors and accidents. In both the examples, single parameter Poisson Lindley 
distribution gives a better fit than Poisson distribution. It is a special case of 
Bhattacharya's [2] more complicated mixed poisson distribution. Some mixture 
of Poisson Lindley distributions derived by using Gurland's generalization [7] 
were studied by Borah and Deka Nath [4J, where certain properties of Poisson­
Poisson-Lindley and Poisson-Lindley-Poisson distributions were investigated. 

A random variable X is said to have the discrete inflated distribution if its 
probability function is given by 

I Departlllent 0(' Statistics, Danallg College. TCl.pul, Assalll 
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( ) {
(I)-I-(I-IIl)PO 

P X = x = 
(I-w)px. 

x=() 

x = J, 2,3, ... 
( 1.2) 

whcre w is a parametcr assuming arbitrary valucs in thc interval (0, 1). It is also 
possible to take w < 0, provided {JJ + (I - w) Po 2 () (See Johnson ct at. 191). 

The discrcte inflatcd distribution was first invcstigatcd by Singh l15!. I Ie 
studicd inflated poisson distribution to serve thc probabilistic dcseription of an 
experiment with a slight inrIation at a point, say zcro. Later Singh (1131. 14J) 
pointed out that there exists analogolls situaliolls in hinol1lial distrihution, i.c. 
distinct increase ot' frequcncy of observed cvent at point zero as well as 
rcspcctive dccrease of its value at thc rcmaining points. Pandey II II studicd the 
gencralized inflated poisson distribution. Gcrstcnkorn l6j cstablishcd the 
recurrence relation for the moments for the inflated negative binomial, poisson 
and gcometric distribution. 

In this papcr, an Inflated Poisson-Lindley (lPL) distribution is discussed to 
scrve the probabilistic dcscription of an expcrimcnt with a slight inflation of 
probability at zero. The recurrcncc rclations for momcnts and probabilitics for 
IPL distribution are obtained. For fitting of the IPL distribution, three well­
known data sets are considered for an empirical comparison and it is observed 
that this distribution gi ves bettcr fit in all the cases. 

2. Recurrcllce RelatiolljlJr Probabilities 

The probability gencrating function (p.gJ.), G(t) of IPL dislributi9n may 
be written as 

O(t)=w+(L-w)g(t) (2.1) 

where g (t) = <1>2 ($ + 2 - t) IS the p.g.f. of Poisson Lindley (PL) 
{(I/> + lXI/> + 1- tY) 

distribution 0 < w < I, I/> > 0 (scc Sankaran li2J). OJ rrcrcntiating (2.1) W.r.t. It' 

and equating the coefficients of tr from both sidcs, we have 

p = (~)+2+r) p 
r (X ) r-I <1>+1 q)+I+r 

r>1 (2.2) 
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3. Recurrellce Relation Jor Moments 

The raw moments recurrence relation [or IPL distribution may similarly be 
wriuen as 

, _ (l - w ) {(<I> + 3 ) - 2 r} ~ (3a - 3 x 2 j + I a 2 + 2 j + I a 3 ) ( r ) , 
fJ. r - () + L.J ()1 . fJ.r_j,r>1(3.l) 

<l>q)+l j=O I-a J+1 

1 
where a = ( ) 

\<1> + 1 

, _ (I - to )(<1> + 2) 
MI - {<I> (<I> + 1)} 

Thus the variance may be obtained as 

_ ....:..-( 1_-_oo~)~~_3 _+~4~<I> 2_+_6<1>,--+--:;2,--+_00...:...:.( <I>_+_2~}--,} 
112 - ~2 (<I> + If } 

(3.2) 

Putting 0) = 0 in (3.2) the variance of PL distribution may be obtained 

(see Borah et al. [4]). The expression for the coefficient of skewness and 
kurtosis can be wriuen in terms of <I> and 0) 

_ 113 _ P 
YI-~-Q 

112 
(3.3) 

where P = ~5 + 7<1>4 + 22<1>3 + 32</>2 + IS</> + 4 + ill (3</>4 -I- 17</>3 -I- 36</>2 + 30</> + 4) 

+ 0)2 (<1>3 + 6<1>2 + 12<1> + IS)} 

and Q = ~(I-- 0))~3 + 4</>2 + 6<1> + 2 + 0) (<I> + 2f }3 

Y 2 = fJ.4 _ 3 = A + wB + 30)2 C + 300
3 

D 

Il~ (1-0))~3 +4<1>2 +6<1>+2+0)(<I>+2fi 

where A = <1> 7 + 2<1>6 + 73</>5 + 174</>4 + 256<1>3 + 152 q,2 - 24<1> -I- 12 

B = 7<1>6 -I- 54<1>5 -I- IS 1<1>4 -I- 312</>3 -I- 34<1>2 -I- 264<1> -I- 12 

C = 4q,5 -I- 30<1>4 -I- 62<1>3 -I- 112<1>2 -I- 32<1> and 

D = 2<1>4 -I- 16<1>3 -I- 52<1>2 + 64<1> + 32 

(3.4) 

It is clear from the above expression of YI that for any given value of <I> > 0 
and 0) closes to unity, the skewness is infinitely large and it becomes smaller and 
smaller as the value of 00 decreases. The IPL distribution is easily seen to be 
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leptokurtic as the value of Y2 is positive for all values of <I> > 0 and 0 < ill <,1 
though there is a factor '-24<1>' in the numerator of (3.4). 

4. Estimation of Parameters 

The estimation of parameters of inflated distributions other than w can be 
carried out by ignoring the observed frequency in the zero class, and then using 
a technique appropriate to the original distribution truncated by omission of zero 
class. After the other parameters have been estimated, parameter W can then be 
estimated by equating the observed and expected frequencies in the zero class 
(See 10hnson et al. [9]). Three methods for estimating parameters of IPL 
distribution, i.e. method of maximum likelihood, method of moments and ratio 
of first two frequencies with mean are discussed in this section. 

(a) Method of Maximum Likelihood (ML): Since IPL distribution is a zero 
modified distribution, one of the ML equations is (see Johnson et al. [9]) 

& + (1 - &)$2 -($ + 2) = ~ 
(~+ I) N 

(4.1) 

where no is the observed proportion of zeros. It IS also a power serIes 
N 

distribution so the other ML equation will be 

,.. 

~ = (1 - & )($ + 2) 
{~(~+1)} 

Eliminating & from equation (4.1) and (4.2), we have 

$ ($ + 1 Lx _ $2 = 1 _ ~ 
(~ + 2) (~ + I r N 

(4.2) 

(4.3) 

<I> can be estimated from equation (4.3) by using Newton Raphson method and 

then & may be estimated from equation (4.1). 

(b) Methods of Moments : The parameters may be obtained from the 
moments as 

" {(2~~ - ~;)+ ~(Jl; - 2~~ + 2~~ ~;)} 
<I> = ij!; _ ~~) . (4.4) 

w = 1- ~(~ + l)~~ 
(~+ 2) 

(4.5) 

where ~~ and~; denote mean and second order raw moments respectively. 
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(c) Ratio of First Two Frequencies and Mean: Eliminating w between first 
two frequencies, we get 

(4.6) 

where ~= (I-W)(~+3}t>2 and ~= (1-W)(~+4)~2 
N (~ + 1) N (~ + 1) , 

are the first two 

relative frequencies and & may be estimated from equation (4.5). 

5. Fitting of IPL Distribution to Data 

For the fitting of IPL distribution, we consider two data sets of Beall [1] in 
Tables 1 and 2, for which generalized Poisson distribution (GPD) was fitted by 
Jain [8] (using lVILE). In Table 3, we consider Student's historic data on 
Haemocytorneter of yeast cells, for which Gegenbauer distribution was fitted by 
Borah [3], using method of moments. It is observed from Table 1, 2 and 3 that 
ML gives better result in all the cases. In case of Table 2 the method ratio of first 
two frequency with mean does not give better fit, as the computed X2 value is 
quite large, hence the result is not reported in this case. It is also clear from the 
values of the expected IPL frequencies that there is some improvement, however 
small it may be, in fitting of IPL distribution over the other distributions 
considered earlier. 

Table 1. Fit of distribution 011 Pyrallsta nllblilalis in 1937 (data of Deall f 1 J) 

No. of Observed IPL IPL (Method IPL (Ratio GPD 
Insects Frequency (Maximum of Moments) of Two (Jain [8]) 

Likelihood) Freq.) 

0 33 33.00 32.07 34.08 32.46 

1 12- 12.41 13.47 11.23 13.47 

2 6 5.84 6.00 5.61 5.60 

3 3 2.66 2.59 2.71 2.42 

4 1 1.18 1.096 1.28 1.08 

5 1 0.91 0.774 1.09 0.97 . 

Total 56 56.00 56.00 56.00 56.00 

A A A 

$ = 1.588 $ = 1.719 $ = 1.449 

Parameter estimates & = 0.1406 & = 0.0573 & = 0.228 

X2 = 0.029 X2 = 0.215 X2 = lJ.(N6 X2 = 0.25 
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Table 2. Fit of distribution of Corn Borer (data of Beall [1]) 
Corn Observed IPL (Maximum IPL (Melhod of GPD (Jain [8]) 

Borer Frequency Likelihood) Moments) 

Eer Hill 
0 43 42.99 44.99 43.91 
1 35 32.12 30.39 32.00 
2 17 ]9.45 18.81 19.11 
3 11 11.31 11.19 10.88 
4 5 - 6.40 6.47 6.12 
5 4 3.55 3.66 3.44 
6 1 1.94 2.04 1.94 
7 2 1.05 1.12 I.lO 
8 2 1.19 1.30 1.50 

Total 120 120 120 120 
~ ~ 

<I> ::: 1.0587 <I> ::: 1.0715 

Parameter estimates W == - 0.5696 W == -0.0087 
2 X = 0.577 

2 X = 0.995 X2 ::: 0.87 

Table 3. Haemoc~tometer Counts of Yeast Cells 
No. of Observed IPL IPL (MCLhod of IPL (Ratio of Gcgenbauer 
Yeast Frequency (Maximum Moments) first Two Freq) (Borah [3]) 
cells per Likelihood) 

s9· 
0 213 213.00 210.46 204.00 214.15 
1 128 127.00 131.14 139.18 123.00 
2 37 40.91 40.76 40.23 44.88 
3 18 12.82 12.39 11.39 13.36 
4 3 3.95 3.71 3.18 3.55 
5 1 1.20 1.09 0.88 0.86 
6 0 0.53 0.45 0.34 0.20 

Total 400 400.00 400.00 400.00 400.00 
~ ~ A 

<I> = 2.669 <I> = 2.774 <I> = 3.0328 

Parameter estimates & = - 0.431 & =-0.497 & = - 0.6586 

X2 ::: 1.037 2 X ::: 1.53 X2 ::: 3.93 X2 = 2.8342 
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Ahstract 

POISSON-LINDLEY AND SOME OF ITS 
MIXTURE DISTUIUUTIONS 

Af. Borah lIlld A. Delia Nalh 

The discrete Poisson-Lindley distribution is a one-parameter mixture 
uistribution obtained from Poisson distribution by mb(ng with one duc to 
Lindlcy. In this puper an Ultcfllpt has been made to review some of the 
properties like recurrence relations for probabilities, moments etc and to 
study the problem of 'estimatian for the fitting of the Poisson-Lindley 
distribution to some well known data. Two generalized distributions 
namely Poisson-Poisson-Lindley and Poisson Lindley-Poisson are also 
investigated. The recurrence relations with out any derivafives have been 
obtained for the computation of higher order probabilities and factorial 
momcnts of the above' newly derived distriblltions. The parameters of 
the distributions have been estimated in terms of /irst two moment!!, and 
also in terms of mean and ratio of first two frequencies. A few sets of 

reported data, to which difTerent types of 'derived' distrihutions are Htted 
with varied amount of fllIccess, have been consiuercu for the litting of the 
above distributions 

I. Introdllctiull 

P () iss 0 n -Li IHII c y dis t r i hut i u n is a III i x t \I red i s t r i h II t i uno h I a i ned by 
mixing thc Puisson distrihulion with one due to Linulcy (195~). Sankar:lll 
(1970) further stuuies this distributiun with applications to errors and 
accidents. Somc of the dilHcul ics in obtaining the MLE or the param~ter 

() of this single parameter distrihution is poillted out hy him, and two 

Key Words: Poisson-Lindley, Mixture of Distributions, Rccllrrem;e 
Rein tion, Factoria J MO/llcll ts, and Para me ler Est i mation 
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applications to the data suggested that the present distrihution can he uscd 
liS un lIpproximatioll to the negative hinomial (l~2() and the hermit~ 

distribution (J 965). 

In this paper Poisson-Lindley distribution i~ further investigated. 
Recursive relationship of the probabilities and factorial moments are 
studied .. Two mixture distribution or Poisson-Lindley di5tribution obtained 
by mixing Poissoll distrihution with Poisson-Lindley distribution and 
Poisson·Lindley mixture' of Poisson distrihutioll are also investigated. 
Recurrence relations for factorial moments and proba~ilities are also 
discusccd. The aim of this paper is to derive some basic properties of both 

of these three distributions and to compare it with other distributions on 
the basic of their fils to empirical data. 

2. (Joisson-L:ndley distribution 

(8) Expression for probabilities: 

The probahility generating function (pgf) of Poisson·Linuley di~tribu­
tion is 

G(I) C"7:: 02 (0 + 2 - 1)/ (0 "1- I) (0 -1-. I - I/,. ... (2. 1 ) 

Differentiating the pgf with respect to I the following recurrence rela­
tion for probabilities may be written as 

P,=[(0+2-I-r)/.O+I) (0+1+1')] P,-l ... (22) 
PO=02 (O+l-/)/(O'I~lr' (sec Sankaran (1970). 

Putting r= 1,2,3 ... in equation (2.2), the higher order probabilities 
may be computed easily. 

(b) li'nctorial MomclIls : 

The moment generating function of Poisson-Lindley uistribution IS 

given liS 
J 

G(lI·-I)={I-I/(O-I-I)}IlI· ·,/0)2. .... (2.3) 

bJth On differentiating (2.3) w.r.t. and computing coefIicient or I', on 
sides of the equation we oblaino 

IL' --"(I'-I.l)[2/LI -r,.l,' 10 J ('11) , (r-J) , . /'0 r ,. <= '1, 3, t1, ••• • .. (2.4) 

where 

1-';.) = (0 -+·2)/{O(O'I' I)}, 

anti 

";r) stands for tlse rtll factorial moments 
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Explicit expression for th~ Jr.1 and 4"1 order fadorial /IIoments Illay be 
written us 

fL~3) -.--:3! (0 1 4)/{IP ,0 I-I)} 

I' ~ 4,. . 4! lO I· 5 ) 1 {()4 ((J 1- I ) } . 

V n rill nee --,. I L ~. (0:1. I 4 () 2 1 (, () I 2) I { f) '.l (IJ 1- 1 ) 2 } • 

(c) EsUmnt Ion : 

The single pnrllmeter If)' of the PO;ssIJu-Lindley distribution call be 

e!ltimated in the following methods: 
(J) Mcthod of IIlOJllcnts : 
The parameter () or Poisc;on-Lindley distrilmtiull IS estimutcd by 

Sunkornn (1970) as 

Whcr~ 14~ llcnotcR the mcan of lhe distrihution. 

(2) Uatio of lirst t \\,u fn'cl'lcncics and thc IIIl'llll : 

For Poisson-Lindley distrihutiol1s, II /IIay he estilllated hy taking ratio 
of first (wo frequencies 

() = 1--- (J.I~ -fu) 1- V tD.r.-~~)~---4.TI·Tn~ - ~.I~JjTrl.Tl' 
where 

Ilnd 
J't --III N , ({):t (I) 1 J) J I (II 1 1 r' . 

3. Poisson-Poissoll-I.illdley distrihlltiull 

Poisson·Poisson·Lindlcy distrihution may he derived hy generalizillg 
Poisson distrihution /see (iurlalllJ (1957)/, lIsing Poisson·Lilldley as gen­

cruliziJlg dislrihution. 

(Il) )':xJlrCSSiUIl fur I'wlmhility : 

The pgf of Poisson mixtlilc or Poisson-Lilldley distl ihutioll may he 

written ns 

(i(/)"I~XPP,I0:l(() 12 .. /)/(0-1- 1)(01 J 1)2 I}I. 

The probability recurrence relation may be written HS 

l)tll=\{~rxr·I·/J)iPrx(2-1 O)-l}/(O l-l):l} rr- poc2 (r ·1) 

... (1.1). ' 

-1/,02 rx/(O I-If'} 1" __ l+ rx:1 (r --2) I'r '21/(1' I I) ... (3.2) 

Where 
,\ > () and 0 > O. 

l'o=Exp lA{02 (0 1·2)/(0 I 1 ):1 .. I} I. 
I'J=\A0 2 (l rxt2 ·1 0) 1)/(0'1-1 JaJ /'UI 
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1'2=l3al't I-).U:l (t2oc;2-1 0) --11/\ oc/'u}/(O 1-lflj/2. 

(b) Ji'nctorial Momcnts : 
The factorial moment generati ng function for Poisson· Poisson· 

Lindley distribution mny be written as 
G(l-I-/)=EXP [).{{I-I/(O-I-J)}/(1-:..I/O)2--1}]. ...(33) 

Hence the factorial moments recurrence relation 

and 

1.t~t'_I_l}={3r/O-I-A (O-I-2)/O(O-l-l)} IL~ -prCr-I)/O:l-h\r!O(O -I-I)} l-'-(r-1) 

-1-" (r--1) (r--2) IL~'_!lI!(F). • •• (1.4) 

Meun=I-'-(L) ='A (0 1-2)/0(0 -I- J), 

IL~2)=N~ (0-1-2)2/0 2 (1)+lr~-1-2" (0-1-3)/0 2 (0-1-1), 

lJ.~a)-=N'(O-I-2lJ/()!'(O 1-1):1-1-2).2(0-1-2) (50 I-<))/(J=!,(J 1·1,2 

-\-( A pO -1- H )/03 (0 -1- J), 

It~4)--A4«() 1'2)"i()~ (0 I-I)"-I-'A:I(O 1-1.)2(70 1-17)/O"(O-I-J)S'I-l?A2 (70!l 

+)'8()-1-29)/O~ (O+J)-1-12). (1IU-I-28)/O" (0 I-I). 
Variance=/.tz='A (0 2 -1-40 -1-(1)/0 2 (0 I-I )!l. 

(e) J~stilllntioll: 

The two paralll~ter 'A, f)' of Poissnn-P,)j,\ull·Lindlcy distribution call 

he cstilH:\'{cd in the following methods. 

The two parnmeters A, n of Poisson Poisson-Lindley distribution may 
be estimated hy using sample mean :tnd variance 

0* = 1-- (2x - .\'2) -1- \/ t (2x - .')2) - (i.~ ~_t .\';!)} I/tx S:l), 
und 

"A"'=:\: 1.0(0 I-l)}/(O 1-2). 
Where.t is the s.lll1ple lIIean S2 is the sample varinnce. 

(2, J{ntio of fir_d t \vo frc11"Cllcics nml tlw "I(_'all : 

For Poisso:l-Poisson-Lindlcy distrihutioll 

A* -:: Cf, (0*'1-' ),'11.1;,0*2 (oit-I-/ )". 

0'" ::-: 1- (2~"-- S2) -I- v{ 1x-- .\'t) - ()x lx -- Sl,} If(x 0'2), 
where 

nnd 



Pure Al'pl. Ala/h. Sci., Vol. LIII, No. 1-2, Marcil 200} [ 5 

4. l'oisson-Liucllcy-l)oissoll distribution 

Poisson .. Lindley-Poissoll uistribUlion may be ueriveu by ~eneralising 
Poisson-Lindley uistributioll I see Gurland (1957)] using Poisson distribu­
tion as generalising distri bution. 

The pgf or Poisson·Linuley-Poisson can be written as 
G(t)=L02 (0-1-2- e),(t-l)]/[(O-/-l) (U-I-l-e),(I-l»2J 

=-=.1 LU !-2-cA(t-l)Jlll-a eA(t-l)j2, 

where A=02/(U+l):J and a=I/(O+I). 

Hence the probabilily recurrence relution can be writtcn as 

... (4.1) 

r 

P'+1=--'LA{(O-I-3){(U+ J) Ae- A-2" Ae-2?} Ar/r!-1-3ae-A [2: (1_21 ae- A 

where 

-I-Zl -1 a
2 e--:!') AIUI (r- j-I- J) Pr-jf-J J /lJ(r- l- J), 

B=, 1/( 1- 3ow-L I-3a2 C'-2),--a:1 e-:I~), 

I'll = A (I) -1- 2 - c-A) / ( I - a c-} ) 2, 

P1=AA £I-A {(0-1·3)/(1J-I-J)-AC'·-A}/IJ. 

(h) Ifactorinl momen(s: 

.i=1 

... ( 4.2) 

The factorial momcnts generating function of Poisson-Linuley-l'oisson 
uistributioll may be written as 

G(t·1 1) =A (0 1-2-c-),')/(l-· ae A#)2. 

The factorial moment recurrence relation may be written as 

l-'~r'PI=-=[A{«()+3)/«()-I-l) ,\rl-1_2"Ar
I1 «} 

r 

... (4.3) 

'1- 2: (3a-3a :l 21.1-1)·:1 31)' ('1 "J /L~r-j+L)J/(l-a):I. ...(4.4) 

j:==1 

Putting r=-= 1,2,3, .. in equation (4.4) rcspectively, the highcr oruer 
moments may bc obtaincu as 

/";2) =-=N~ (02 -1-40-/-6)/1)2 (0+1), 

JL (:I) :=).. a (():I-I- 8 () -I- 12 U -/-4 8) I ():I l () -I- I ), 

IL(1) =)..4 (O"-I-IG03+78U2.!-GOO+336)/Oc (0-/-1). 

Hence mean anu variance for Poisson-Lindley-Poisson distribution 

will be 
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Mean--IA.~ = A(O 1 2){O(0 1 I), 

and 
Variance=A2 (0:1 -4112-1-60 1-2)/02 (0 ~-I) ! A«()-~-2)/O(O I-I). 

(c) Estimation: 
The two parameters A and 0 of Poisson-Lindley-Poisson distribution 

may he estimated as follows. 
Let 

F(O)=(IP /-402 1 (i0 1-2)/(f)-~-2)2 --(ft:!-/.t~ ) 1ft ;. ..,(4.5) 

The parameter () may he estimatcd by Newton Raphson IlIcthod using 
equation (4.5) and the other parameter A lIlay he estimated as 

,\=X O~() + I )/(0 ~-2), where x uenotes the mean of the distribution. 

Goodness of fit : 

All these three distl ihutions i,t'. Pois~()Il-Lindley. Poissoo·Poisson­
Lindley and l'oisson-LlIluley-Poisson were litted to di~trihulion of \l\isl(I,~es 

in groups of random digits, data froIH Kemp and Kemp (1965) arad 
accidents to 647 woincn Oil high explosive ~hells in 5 weck data r, om 

Greenwood and Yule (J 920) reported by Kendal and Stuart (1963) for 
which single parameter Poisson, two parameter Ilermite and Negative 

binomial have been fitted. Since obtaining n13ximum likelihood estimates 
is very cumbersome, method of moments are used to esti mate the para­
meters of these distributions. The Table I and 1. give the comparis~n of 
observed and expected frequencies for these distributions, the Poisson­

Lindley, the Poisson·Poissoll-Lindley di<;tribution and the Poisson-Lindley­
Poi~son distribution. 

Table 1. Observed and fitted J'oisson-Lindley, Poisson-Poisson­
Lindley and Poisson-Lindley-Poisson distributions. 

---- -- ------
No. of Ohserved Expected Frequency 
Accident Frequency -f>olsson NU PL Pl'L I'Ll~ 

0 447 406 441 439.2~ 442.05 444.58 
I 132 189 140 142.83 137.79 13J.78 

2 42 45 45 45.02 46.57 46.17 
3 21 7 14 J3.X~ 14.57 14,85 

4 3 I 5 4.20 4.32 4.(,2 

~5 2 2 1.79 1.7 200 
----

Total 647 G49 64~ G47.00 647.1)0 647.00 

X2 3.05 2.17 1.40 
Degrees of 4 3 3 
Freedom 
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. Table 2. Observed and filled Poisson-Lindley, Poisson-Poisson­
LlIld Icy alld PoissulI- Li lid Ie y- Poisson d ist rihut iOfls. 

Nu. of errors Observed 
per group Frequency 

o 
J 
2 

3 
4 

35 

J J 

8 
4 
2 

--- ~~--------------.-- _. 
Total 

X2 

Degrees of 

freedom 

60 

Expected Frequency 
POIsson -·N: Bio. IlL" PliL---FCF-

1.7.4 

21.5 
8.4 

2.2 
.4 

S~.9 

34.2 
II. 7 
9.6 
2.R 
1.3 

SlJ.6 

33.05 
15.27 
6.7 -l 
2 ~9 
1.21 

59.17 

2.23 
3 

32.83 

J 5.22 
7.06 
2.l)9 

1.19 

59.29 

1.99 
2 

35.53 
15.6<) 

7.02 
2.91 

1.15 

59.29 

2.179 
2 

Form the a ove table it is clear tliut (here is some improvement, 
however small it muy be, in fitting these mixture distrihutions PL, PI L 
and PLP over the other distributions consider earlier. .. he distribu­
tions llS indicated here, may be used with cuse in the uther situations 
also. 
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ABSTRACT 

The Short Poissoll-Poisson-Lindley (SPPL) distrihution is an 

extension of Poisson-Poisson-Lindley (PPL) distrihution. It is a 

convolution of PPL and Poisson distrihution. This convolution 

has heen made hy assuming that the nUlllhel' of speHs in a given 

time period is assumed to he Poisson variahle and the prohahility 

of accidents within a spell have a Poisson-Lindley distrihution, 

which is a more generalized Poisson distrihution with a constant 

parametel' and accidents occurring outside the spell arc 

independently distrihuted as Poisson distdhutioll. The 

rCCUlTcncc relation for prohahilities and factol'ial moments for 

this SPPL distrihution m'e discussed. A few sets of accident 

data, to which the different types of distrihutions are fitted with 

varied amount of success, have hecn considered for fitting of the 

SPPL distrihution. 

Key Words: Short distribution, Poisson-Lindley distribution. PoissolL-Poissol1-Lilldley 
distribution, recurrence relation, j'act(;rial moments, parameter estimation. 

INTRODUCTION 

Cre~swell and !;roggall (1963) derived a model which was a convolution of Poisson disLrihution 

and a Neyman Type A distribution. They called it 'Short', as opposed to the two-parameter 
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'Lollg' Neyman Type 1\ dislIihutioll. The nallle 'Sholt' appears to relate the tails of the 

L1istrihutiol1. Kemp (1967) cOllsidered its properties, recurrence relations for probabilities and 

tilled this distribution to accident data. This SPPL distribution is also a convolution of Poisson 

distribution ami Poisson-Poisson-Lindley (unpublished work of the authors) distribution. llere 

wr.:. havr.:. cOl1siderr.:.d Poisson-Lindley distribution since it is a more generalized Poisson 

distribution. Sankaran (1970) studied UlC Poisson-Lindley distribution wilh applications to 

errors and accidents. Laler two mixture distributions of this distribution namely Poisson­

Poisson-Lindley and Poisson-Lindley-Poisson was investigated by Borah and Deka Nath 

(unpublished work) with application to accident data. 

Model Derivation from Accident Data 

While deriving the 'Short' distribution from accident data, four assumptions were made by 

Cresswr.:.11 and Froggall (1963). In the same manner, SPPL distribution has been derived by 

considering the following assumptions: 

(i) Evr.:.ry driver is liable to a spell during which he is liable to incur accidents. The 

number of spells in a given time period is assumed to be Poisson variable with 

parameter AI' 

(ii) All drivers are equally liable to the occurrence of a spell. 

(iii) The probability of an accident occurring wiUlin a spell is constant and it is assumed to 

have a Poisson-Lindley distribution with constat parameter e. 
(iv) Lastly, accidents can occur outside a spell and such accidents are independently 

distributed as Poisson distribution with parameter A
2

• 

It is generally observed that the ~erivaLion of prob(~bi1ity mass function (p.m.L) for some 

generalized mixture distributions are seem to be complicated. So, the p.g.f. of SPPL distribution 

has been obtained by using Levy's theorem [see Feller (1957)], which may be written as 

G(t) = exp[{A)g(t) - 1) + A
2
(t - I)}] (1.1) 

which converges ror I t I .$; I, where l is the generating parameter and get) = (9 ~ i~(; ~ ~ ~ 1)2 

denotes Ule p.g.f. of Poisson Lindley distribution [see Sankara~1 (1970)]. Hence, (1.1) may be 

written as 

[ { 
82 (0 + 2 - t) } ] 

G(l) = exp \ (8 + 1)(9 + 1 _ 1)2 - 1 + A2(l - 1) (1.2) 

be tile p.g.r. or SPPL distributioll, where \' A2 > 0 and 0 > O. 
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In this papl.:r, Wl.: havl.: obtaiIll.:d thl.: lCCUITl.:I1Cl.: rdation for probahilitics illld ra~lorial 1II()l\lelll~ 

of the distribution. TIll.: pmi.ul1eters are eslimatl.:d by a composite method i.e. by using the raliQ 

of lirst two frequencies and Jirst two moments. To illustrate the various applicat ions or tlid 

distribution, lirst we consider the number of accidents sustained by a group of 70X bus driver~ 

over a period of 3 years. Secondly, we condider the number of accidents to 647 women UI\ 

high explusive shells in 5 week periods. Thirdly, we consider the number of accidents (hollll! 

injuries) of 122 experienced men during 11 years perIud and lastly, we considered number 01 

accidents of 122 experienced shunting men over a periud of 11 years. In all the cases lhQ 

SPPL distribution provides a better lit to the observed data. 

EXPRESSION FOR PROBABILITIES 

DilTerl.:ntiating p.g.i'. (1.1) W.r.t. 't', the following rectlfrence rdation for probabilities may bq 

obtained as 

p _ I [{ /...102(0 + 3) + 3,. A } P {/...1f)2 3(,. - 1) 3/...2 
,+1 - r+T (0 + 1)4 (0 + I) + 2 , - (e + 1)4 + (0 + \)2 + 8 + L } P,.I 

{
3M ,. - 2 } 1'] 

+ (8 + 1)2 + (e + If P,.2 - (9 + 1)3 P,.3 ' 

where 

(2.3) 

Putting r = I, 2, 3 .. : .. in equatiun (2.1) the higher order probabilities may be obtained. 

EXPRESSION FOR FACTORIAL MOMENTS 

The factorial mOml.:lll generating eLm.g.) function of the new distribution is 

G(l + l) = exp AI (8 + I) 
{

I _ I 

(1 -if (3.1) 

On differentiating (3.1) W.Ll. 't' and comparing the coeflicienl or F, on both sides of tile. 

equation, we obtain 
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, {'\ (0 + 2) '\ ] J' \' {'''' 3"- r I- 3 r(.1" - \) \ ' ~l(r+l) = 11., U(U + \) + 11.2 + - 0 J ~t(r) - U(O + 1) + 20- 02 J 11 (,-1) 

{3A ~.!.l + l\r - \)(1" - 2) }IL' _ r(r - 1)(r - 2) , 
+ 2 O! 0 \ r- (r-2) 0 \ J.1 (r-3) 

(3.2) 

where II' denotes the r'h order factorial moments. Explicil expression for lhe firsl rour 
t-" (T) 

factorial moments may be obtained as 

(0 + 2) A 
11'(1) = \ 0(0 + 1) + 2 

, _ "-2 (0 + 2)2 + 2AI (0 + 3) + 2A,A2 (0 + 2) + A2 
J.1(2) - 1 81(0 + \)2 82(0 + 1) 8(0 + \) 2 

II' {AI (H + 2) + A + £..)111 -{A 1 + 6M + 2)111 + 61...2 
/""'(3)= 0(0+ I) ~ 0 /""'(2) I 8(0+ J) e (J2 /""'(1) 0 

Mean = A (0 + 2) + A
2

, 
, 0(0 + 1) 

. (82 + 40 + 6) 
Vanance = '\ + A 1\., 02(0 + 1) 2' 

If A2 -) 0, then Ule moments are same as those of Poisson-Poisson-Lindley dislribution. 

ESTIMATION OF PARAMETERS 

A composite method has been used to estimate the parameters of SPPL distribution. The 

method is based on ratio of lirst two frequencies, sample mean and sample variance. We have, 

x = A (8 + 2) A 
I 8(0 + 1) + 2 

(4.1) 

S? = A (0
1 + 48 + 6) + A 

I 01(8 + 1) 2 
(4.2) 

13 Y equaling the tina two probahilities of SPPL distribution with ';; and ~ we obtain from 

(2.3) 
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(4.3) 

By eliminating A,I and A,2 between (4.1), (4.2) and (4.3), we obtain 

__ 2...;,.(0_+_1....:...) '-,-(9_+_3-,-)_ = 
294 + 90' + 792 + 29 

S2 - X 

_ "1 
X - Ii;; 

(4.4) 

which gives an estimate for 8 either by graphically or by numerical solution using Newtoll­

Raphson method i.e., 

Let, 

where 

2(8 + 3)(0 + 1)·1 
f(8) = --'--------- - K, 

284 + 90' -I- 702 + 28 

K= 
,\'2 _ J: 

- II 
X - J~ 

Then the iteration formula for Newtoll-Raphson metilOd is, 

(4.5) 

where 8u is the initial value and 8· is the estimated value or e respectively. The initial glles~ 

value for ~tarting tile Newton-Raphson metilOd have to be selected by trial values, based Ull 

our assumptions. When trial value closes to estimated value tile method will always convergent. 

After gelling the estimate of e i.e. 0" from (4.5) the estimate of A,I and A,2 may be obtained 

as 

A, • = (S2 - I)O"UJ' + 1) 
I 2(8' + 3) 

'\. -
f\. =x-2 

GOODNESS OF FIT 

A.I'(fl' + 2) 
(-)'(0' + 1) 

(4.6) 

(4.7) 

To illustrate the application of this distribution tirst we consider in Table-I, the data on (he 

number or accidents sustained by a group of 708 bus drivers over a period of three years lor 

which Neyman Type A and Short distribution were tilled by Kemp (1967). When SPPL 

distribution is applied to this data it provides a surprisingly good fit wilh X2 value of 2.445. 

Using equations (4.5), (4.6) and (4.7) we gel 8· = 8.0110, \. = 30.171 and A,2· = -1.892. 
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Tahlc-l :Numhers of drivers sustallllng accidents over three year period (Cresswell and 

forggatt's Table-5.4, 1963) with expected frequencies based on SPPL, Neyman -

Type A and short distribution. 

No. of Observed SPPL Neyman-Type A Short distribution 

acddents frequency disu'ibution diSlribution (Kemp, 1967) 

(Kemp, 1967) 

0 117 II~L588 116.69 110.3H 

1 157 159.130 162.04 169.70 

2 158 153.191 153.12 156.02 . 
3 115 115.631 115.26 113.90 

4 78 74.940 74.58 72.54 

5 44 43.182 43.13 41.90 

6 21 22.687 22.83 22.45 

7 7 11.045 11.25 11.31 

8 6 5.041 5.21 5.42 

9 1, 2.177 2.29 2.49 

10 3 0.H95 0.96 1.] 0 

11 ] 1.493 0.39 0.47 

Total 708 70H.000 707.75 707.68 

X2 2.445 2.64 3.7H 

Secondly, we consider the data on number of accidents to 647 women on high explosive shells 

during 5 weeks period (data from Greenwood and Yule, 1920). ]n Table-2 we considered the 

original data logeUler with the expected frequencies of SPPL, PPL (Borah and Deka Nath, 

unpublished work) and Negative Bionomial (Plunket and Jain, ] 975) distribution. Using 

equations (4.5), (4.6) and (4.7) we get O' = 5.3066, AI" = 2.4117 and A
2

" = - 0.061. from 

Table- 2 we have seen Uwt SPPL distribution provides a good fit to this data. 

In Table-3 we consider Adelstein (1952), data on nUlllber of accidents (home injuries) of 122 

experienced men in 11 years period where Adelstein had concluded Ulat Ule Poisson dislribtllion 

tlts the lirsl sets of data but did not ritthe second and third sels. When the SPPL distribution 

is applied to UlOse sets it provides a surprisingly good fit in all the cases. In Tablc-2 we get 

0" = 4.2305, "I" = 0.4401 emd A2" = 0.4171 for the first set/llnLl 0" = 4.0447, }~I" = 3.359 and }'2" 

= - 0.0115 for the second set. When the estimated vallie of 0" are divided by the respective 
r, 

number of years (6 and 11), the average value for 0" ['or these sets become 0.705 and 0.3677 

respectively. These values do indicate that the average natural rale for home injuries does 

decrease with experience. 
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Tahlc-2:COllIparisoll of obselved frequencies for accidenls lo 647 women on high explosive 

shells during 5 weeks with expected frequencies of SPPL, PPL (Borah and Oeka 

Nalh, unpublished work) and Ncgalive Bionomial dislribution (Plunkel and Jain, 1975). 
(Dala from Greenwood and Yu Ie, 1920). 

No. of Ob~erved SPPL N. B. PPL 
accident frequency frequency frequency frequency 

0 447 445.959 445.89 442.52 

1 132 131.692 134.90 137.79 
2 43 47.69X 44.00 46.57 
3 21 15.218 14.69 \ 14.57 
4 3 4.124 4.96 4.32 

~5 2 2.309 2.56 1.70 
Total 647 647.000 647.00 647.00 

X2 3.199 3.710'9 4.041 

Tahlc-3:Comparison of observed frequencies [or home injuries of 122 experienced men during 

11 years (1937 - 1947) with expected SPPL distribution frequencies. 

Number 1937 - 1942 1937 - 1947 
of 

injuries Observed Expected Observed Expected 

0 73 72.952 58 57.045 

1 36 35.977 34 33.441 

2 10 10.079 14 17.521 

3 2 2.313 8 8.161 

4 1 0.679 6 3.404 

5 - - 2 2.428 

Total 122 122.000 
, 

122 122.000 
X2 0.00068 1.542 
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In Tahlt;-4 we con~idt;r accilkllLS data lor expeli<.;nced shunting men over 1/ years. I:or whIch 

Adelstein (1952) had used the Poisson distribution and negative binomial distribution. When 

SPPL distribution is filled to this data the calculated 'value of X2 for the SPPL distrihution is 

much kss than the signincant values. In Table-4 we get O· = 6.7819, A,· = 6.759 and 1..2• = 

0.1457 for the first set and O· = 1.7748, A,· = 0.2090 and 1..
2

• = 0.8069 for the second set. The 

values of e" for the second group indicate).; that due to experience this group has a less natural 

chance or making accidents. 

Tuhlc-4:Comparison or observed frequencies of accidents of 122 experienced shunting men 

over 11 years (1937 - 1947) with expected SPPL distribution frequencies. 

Number 1937 - 1942 1937 - 1947 

of -

injuries Observed Expected Observed Expected 

0 40 40.141 50 49.642 

1 \ 39 39.138 43 49.671 

2 26 23.794 17 19.495 

3 X 11.459 9 6.731 

4 () 4.749 2 2.074 

5 2 1.765 0 0.5790 
() 1 0.954 1 O.XOX 

Total 122 122.000 122 122.000 

t 1.648 1.150 . 

CONCLUSION 

I 

lL is apparent from the re.sult~ o/" the following tables Ulat Ole SPPL distributioll can be applied 

very successfully in case of accident <law. In all Ule cases tile SPPL distribution provides :t 

much beLler fit than the other distributions. . 
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Abstract: A class of Charlier type Lagrangian probability distributions are 
defined and studied. The probability mass function (pmf) and cumulants of the 
basic Lagrangian Charlier distribution is provided. The parameters are estimated 
by ratio of two moments and first frequency. Fitting of the distribution has been 
considered for the testing the validity of the estimate of the parameters. Further 
the general Lagrangian Charlier Poisson distribution of type -I and type -II are 
also investigated. -

Key Words: Lagrange's expansion, Lagrangian probability distribution, 
Charlier distribution, Probability generating function, Cumulants. 

INTRODUCTION 
I 

Lagrangian expansions for the derivation of expressions for the probabilities of certain discrete 
distributions have been used for many years. The potential of this technique for deriving 
distributions and their properties has been systematically exploited by Consul and Shention and 
their co-workers. Consul and Shenton [I], [2], [3], Mohanty [4], Consul and lain [5] have written 
many key papers on Lagrangian probability distribution. Consul's [9] book on Lagrangian Poisson 
distribution highlights many properties, and also for various modes of genesis of Lagrangian 
Poisson distribution. 

If g (z) and f (z) are two given probability generating functions (pgf) in 'z' then the 
transformation z=ug (z) gives Lagrangian probability distribution of type-I, with pmf given by 

p[X=x]=~ c?:-~I [(g(z)Y 8/(z)] ,forx=l,2,3,... (1) 
x. liz l5z :-0 

and P[X = 0]= /(0) 
8.r-1 

where --I denotes (x-l )th derivative. l5z.r-
Using Lagrangian expansion of 2nd kind lanardan and Rao [7] investigated a new class of 

discrete distribution call Lagrangian probability distribution of type -II (LPD-II) with pmf 
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p(x = x)= 1-;'(1)[ !: ~(z)Y 1 (z))L ' for x=O,I,2"" 

::: 0, otherwise, 
where g'(I) dcnote 1'1 dcrivative ofg (z) at z=l. 

(2) 

Charlier polynomials defined by the generating function e t (1- pz r A are associated with 

the Poisson distribution of rare events. Jain and Gupta [8] defined the generalized Charlier 

polynomial by the generating function eta (1 - pz m r A 
• 

Medhi and Borah [9] also studied the probability, moments and cumulants properties of four 
parameter generalized Charlier distribution. The distribution includes, as particular cases, 
negative binomial, Gegenbauer and generalized Charlier distributions. 

Using Lagrange. expansion to this Charlier distribution here we have derived the pmf of basic 
LCD in a simpler form than the earlier one, ( See Borah and Begum, [l OJ) and also the estimation 

of the parameters. Then considering f (t) = eO(t-l) in equation (1), Lagrangian Charlier Poisson 
distribution of type I and type II (LCPD-I & LCPD-II) are also obtained. The cumulants of the 
distflbution~ are investigated. For fitting of basie LCD a composite method of estimation of the 
parameters are suggested. The basic LCD has been fitted to some data for which logaritlunic 
series, geometric and generalized logarithmic series distributions have been fitted. It has been 
found from Table 1. that this three parameters basi," LCD gives a better fit than the other 
distnbutions. 

l(a). Basic Lagrangian Charlier distribution (LCD) 
The probability mass function (pmt) of basic Lagrangian distribution is given as 

1 8 x
-

1 
x 

P(X = x) = --_I {g(z)} I %=0 ,for x=1,2, ... 
x! (jzx 

= 0, otherwise. 

(3) 

where g (z) is the probability generating function (pgt) defined on some or all non negative 
integers, such that g(O) *- 0. Here we consider 

g(z)=e-a (1- fJ)A eoz (1- pzrA (4) 

which is the pgf of t1~rce-parametcr Charlier distribution (for m=l ). 111US the pmf of basic LCD 
may be written as 

e-xa 
(1- pyx { k (kJ Ie-I I } _ P(X=x)= 1 :L. (ax) p (,u)(/) ,forx-l,2, ... 

x. 1=0 } 

=0, otherwise. 
where k=x-l, a >0, pd, /..>0. This pmfmay also be written as 

e<lX(l- P)Ax(axf-1 
P(X=x) 2Fo(l-x,,u,-fJ/ax),x~1 

x! 
(See Borah and Begum'[lO)) 

(b) CUl1lu\allts of the basic LCD 

(5) 

(6) 

The cumulants of basic LCD are investigated by using Consul and Shenton's [31 general 
fom1Ula. For simplicity, let G, be the ith cumulants of the Charlier distribution with pgf g (z) then 
the first four c1ll1l1liants k" i= 1 ,2,3,4 can be written as 
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In case of charlier distribution, we have the first four cumulants as 

G = a + A/3 G = a + A/3 
1 (1- ,6) , 2 (1- ,6)2 

G = a + A{3(1 + fJ) and G = a + AfJ 
3 (1-/3/ 4 (1-13)4 

Thus the first four cumulants of basic LCD may be given as 

_ ' (1- {3) 
kl-DI { } 

(1- a)(1- fJ) - AfJ 
k2=D2= (1- fJ)ho- ,6)2 + Af3 

{(1- a)(l- fJ) - A/3r 
k3=D3= a(l - fJ)4 + AfJ(1- fJ 2) + 3(1- fJ)~(I - fJ)4 + AfJ} 

{(l- a)(l- fJ) - AfJ}<I {(l- a)(l- fJ) - Apr 

(7) 

(8) 

(9) 

kt=D4= (1-p) 0 5[~(1-fJt +Ap}+15 k(I-PY +A{3L 2 

[(I-aXI-fJ)-AfJJ {(J-aXl-fJ)-AfJ) 

+ 10 k(l- PY + A,8(1 + fJ)Ye(l- fJY + AfJ }] 
. {(I - a Xl - fJ) - AP} 

(10) 

(c) Estimation of Parameters 

A composite method has been used to estimate the parameters of basic LCD 0 By equating the 
first probability of basic LCD with nJIN, we obtain .. 

n 
a = A log(l- fJ) -log(-' ) 

N 
(11 ) 

By equating the mean and variance of the basic LCD with x and m2 , we get the following 
equations 

x = k == (1 - fJ) 
1 {(1-a)(1- fJ) - AfJ} 

(12) 

om2=k = (l-fJ){::(l-fJ)2 +AfJ} 
2 {(l-a)(l-,B)-A,B}3 

(13) 

Eliminating a and A. between Eqso (II), (12) and (13), we obtain 

-3 "1 
01 1 m2 + x log(N) 

(13 -1)2Iog(1- fJ) + 13 = _1 -3 
111, +x--x 

(4) 
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The Eq. (14) may give an estimate for f3 either by graphically or by using Ncwton Raphson 
A 

method. After getting the estimate 13 of f3 from (14) the estimates of A and a may be obtain as 

follows, 

i = {log(n. 1 N)-lIx + I} / ~Og(l- jJ)+ jJ 1(1- jJ) ( 15) 

a = 1-~ - Af3
A 

x (1- 13) 
and (16) 

(d) Fitting of basic LCD distribution 

For the applicati.on of basic LCD, we consider the example of number of paper published per 
author for which geometric distribution (GO) and logarithmic series distribution (LSD) are fitted 
by Williams [11} and generalized logaritlunic series distribution (GLSD) by Jain [12]. The 
comparison of observed and expected frequencies among LCD, GLSD, LSD and GO are given in 
Table 1. 

For the data ~ Ta..ble 1, the sample mean x =1.5508475, and central moments 

m2' =l.1405050. Solving Eq. (14) by Newton Raphson method we get /J = 0.6113. Substituting 

the values of /J in EqS". (15) and (16), we get i =-0.0199 and a =0.3866 

Table 1. Fitting of no. papers per autllOr by LCD, GLSD, LSD and GO. Publication in the review 
of applied entomology, Vol. 24, 1936 (2379 papers by 1534 authors). 

No of papers Observed LCD GLSD LSD GD 
Par author frequency frequencies Jain [12) Willams [11] Wiliams [11] 

1 1062 1061.90 1052.72 1046.05 989.10 
2 263 275.019 287.52 293.05 351.30 
3 120 105.l4 107.l0 109.46 124.80 
4 50 46.083 45.51 45.99 44.33 
5 22 22.53 20.83 20.61 .15.75 
6 7 11.41 10.00 9.62 5.59 
7 6 5.76 4.97 4.62 1.99 
8 2 3.15 2.53 2.26 0.71 
9 0 1.47 1.31 l.l2 0.25 

10 1 0.43 0.70 0.53 0.09 

11 1 0.19 0.81 0.66 0.09 . 

X
2 4.66 5.14 5.56 46.39 

It is clear from table 1 that the expected basic LCD frequencies are much closer to the 
observed frequencies than obtained by geometric, 10garitIunic and generalized logaritlunic 
distributions, as tile values of X2 for the LCD are smaller than for the other distributlOns. Thus the 
LCD model better describes the pattern of the frequency distribution of number of paper per 
~oc . 
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2(a). General Lagrangian Charlier type distributions 

Considering g(z)= e-a (1- P)A. eaz (1- pz rA. and f (z)= eO(z-l) 
in Eq. (1) the plllf of Lagrangian Charlier Poisson distribution of type I (LCPD-I) may be written 
as 

e-(xa+O)(I_ pyx B { Ie (k) Ie- } 
P(X=x)= I L . (ax+B) JPJ(Ax)(J) . for x=J.2 .... 

x. J=O } 

P(X=O)=e-o 

where k=x-l , a, A, B > 0 and p < I. 

Similarly considering Eq. (2) the pmf of LCPD-II may be written as 

P(X = x) = A e-(xa+O) (~- f3)A.x {t(x.)(ax + BY-J 13 J (Ax )(J)} ,forx=O,l,. 
x. )=0 } 

= O. otherwise. 
where A = J -{ a+A.p!(l-P)}. 

(b). Cumulants of general Lagrangian distribution 

(17) 

(18) 

,According to Consul and Shenton [3], if Fr were the rth cumulants for the pgf f(z) as a 
function of z, and if Dr were the rth cumulants for the basic Lagrangian distribution for pgf g (z) 
then the cumulants of general Lagrangian distribution may be written as 

kl = F;DI , k2 = F;D2 + F;DI2, k3 = F;D3 + 3F;DID2 + ~D13 
k . F 2 2 4 

4 = F;D4 + 3 3DI + 4F2DID3 + 6F3DI D2 + F4DI 
Here D1, D2, D3 and D4 are given in Eqs, (7) - (10) respectively, Thus 

k
l
= B(I-p) 
. (1- aXI- 13)- Af3 

k2 = B(I- f3)KI- f3Y + Af32 
{(l- a Xl - p) - AP}3 

Table 2. Showing some Charlier family of Lagrange distributions of first kind. 

No. g(z) f(z) LCDI 

1 G
1 
a,p,A. (z) G/N (z) Nf3(1- f3)A.x+N e-ax (roy-I / x! 

2F0(1- x,N + 1,-13 / ax), x~ 1 

2 G1a,p,.t (z) G/(z) Af3(1- f3)A.x e-ax (axy-I / xl 

2Fo(l-x,Ax+I,-P/ax), x~ 1 
where A= - 1 / 10g(1 - P) 

(19) 

(20) 

where G1a,p,.t (z), G/,N (z) and G/ (z)denote the pgf of three parameter Charlier, negative 

binomial and logarithmic series distribution respectively. 2 Fo (a, b; x) denotes Hypergeometric 

funCtion. 
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Table 3. Showing some Charlier family of Lagrange distributions of second kind 

No g(z) fez) LCDU 

1 Gla,P,)" (z G/,N (z) [1- {a + AfJ /(1- fJ)}](1- fJ)}..x e-ax (axy / x! 

2FO(-X,/..x + N,-fJ / ax), x~ 1 

2 G/N 
(z) G

I 
a,p,)" (z) {l- NfJ /(1- fJ)}(I- fJtx

+),. e-aa x 
/ x! 

2FO(-x,Nx + A,-fJ / a), x~ 1 

3. Conclusions 
This paper defines a class of charlier type Lagrangian probability distributions by using well 

known Lagrange's expansions, It is also conceivable that discrete data occurring in ecology, 
epidemiology and meteorology can be statistically modeled on one of the distributions consider in 
this investigation, It may be of interest to investigate LCP D of type I and II further. 
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