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input in many high energy processes. Here, various methods for determination of gluon
distribution function from proton and deuteron structure functions are presented. For this
purpose, mainly GLDAP evolution equations are used and results are compared with those of
other authors.
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Chapter-1
INTRODUCTION

1.1. Structure of Matter:

The end of the nineteenth century, in1897, J. J. Thomson discovered the electron, a
negatively charged particle. The study was started by J. Dalton in his atomic theory.
According to him, each element consists of atoms, indivisible objects. But that the
atom cannot hold the claim of being indivisible became clear in 1895, when J. J.
Thomson showed that all atoms contain electrons. The electron is, therefore, an
element of all atoms and hence of all substances. In addition to the electron, each
atom consists of a nucleus which is located at the center of the atom with most of its
mass. The electrons and the nucleus of each atom are bound together by the coulomb

force or in general the electromagnetic force.

In 1911, E. Rl‘ltherford showed that all nuclei contain protons which are positively
charged particles. In 1932, J. Chadwick discovered the neutron, a particle with mass
nearly equal to the mass of the proton but with no electric charge, as a companion
constituent of nuclei along with the proton. Thus nuclei are made up of protons and
neutrons. In 1934, E. Fermi wrote down a beta nuclear decay Hamiltonian which with
slight modification is still believed to be the correct weak interaction Hamiltonian in
the low energy limit. In 1935, H. Yukawa introduced yet another force known as
strong force responsible for binding together of the proton and the neutron inside the

nucleus.

In the 1950°s and 1960’s, experiments were done at higher and higher energies taking
advantages of the existence of new and very powerful particle accelerators. In the
subsequent probing of the neutron and the proton, a whole zoo of new particles were
found. Following the ideas, that led to the reduction of 100 e;toms to only three
fundamental particles, physicists suspected that this new, huge number of particle

really indicated that even smaller, more fundamental particles existed. Experiments in
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the 1970’s proved that three smaller particles called Quark could be combined to

make up neutrons, protons and many of the multitude of other particles.

The picture of fundamental constituents of matter and the interactions among them
that has emerged in recent years is one of great beauty and simplicity. All matter
seems to be composed of Quarks and Leptons which are supposedly point like that is
structureless, spin half particles. Leaving aside gravitation, which is a negligible
perturbation at the energy scales usually considered, all the three interactions namely
weak, electromagnetic and strong, are described by gauge theories, and are mediated

by spin one gauge bosons. Now there are three generations of Quarks and Leptons as

follows:
Particles First Generation Second Generation | Third Generation
Quarks u,d s, ¢ b, t
Leptons e, v, H,V, t, v,

where, u,d,s,c,b,t are up, down, strange, charm, bottom and top quarks
respectively and e, u,7,v, sV, s M, are electron, muon, tau, electron-neutrino,

muon-neutrino and tau-neutrino respectively.

Matter seems of require three kinds of interactions to behave as it does:
electromagnetic, which holds the electrons to nuclei; strong which holds the quarks to
one another and the weak which can change one kind of quark into another or
equivalently, a neutron into a proton or a proton into a neutron. The masses of single
atoms are so small that the gravitational force is negligible at the atomic level. At this

level the other three forces are much more important.

Each flavour quark comes in three colours: Red (R), Green (G) and Blue (B). Colour
Is just a quantum number like the charge and bears no similarity with the visual

colours. The colour structure tells us also about the properties of gluons. Since they
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are absorbed and emitted by quarks, they can change the colour of quarks, that is, a
red-blue gluon changes a red quark to a blue quark and so forth. There are also red-
red, blue-blue and green-green gluons, so that there are nine possible gluon states in
all altogether mathematically only eight of them are independent. Thus we see a kind
of pattern: the electromagnetic force requires one photon; the weak force requires
three intermediate bosons and the strong force requires eight gluons, each labeled by
two colours. Gluons actually carry one colour and one anticolour. The properties of
the weak force indicated that the weak force carriers are massive. Photons,

intermediate bosons and gluons are all spin one particles.

Forces in the Standard Model

Force Range Strength Carrier Mass at | Spin | Electric
at Fermi rest charge
distance (GeV/c?)

Gravitational Infinite 10738 Graviton: g* 0 2 0

Weak <10'%m 107" Intermediate

bosons:

+
w 81 1 +1
W 81 1 8|

0
Z 93 1 0
Electromagnetic | Infinite 1072 Photon: y 0 1 0
Strong = 10" 1 Gluon: g 0 1 0

Since quarks have colours, antiquarks must possess negative colours ( R, G, B )
having characteristics exactly opposite to the colour triplet (R, G, B). Since gluons are
supposed to mediate interaction between all possible coloured pairs (qq), (q q) and
( a a ), they must also carry quantum numbers corresponding colour transitions, for
example, R—>G, R— B, apart from colourless transitions such as R—R. In other

words, gluons must exhibit a rich colour structure so that a particular gluon state must
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in general be distinct, in terms of colour content, from the corresponding antigluon
state. This necessitates a generalization of the concept of charge. With the quark
model, hadrons, that is baryons and mesons are made of quarks which are strongly
bound together. The exchange particle between quarks, and the true carrier of the
strong force is the gluon. The properties of the gluon come out of the standard model
theory. Evidence for gluons came in 1978 from an electron-positron machine at
Hamburg in Germany. The machine, called PETRA, was able, like its Stanford twin
PEP, to observe collisions up to 30 GeV' and in the pattern of produced particles, the

gluon was read.

Some people may still doubt the existence of the quark. The primary reason for this
doubt is that quarks cannot be seen. To be able to justify treating quarks in the same
way as the other elementary particles, the theoretical test, other than directly seeing
them, would be necessary; and we must examine the characteristics of quarks in detail
and refine the theory if need be. According to the Gell Mann-Zweing theory, quarks
are a triplet of spin half fermions that carry SU; quantum numbers. In other words,
they are particles similar to leptons. Since hadrons are compounds of quarks, not only
their isospin and strangeness, but also their spin should be determined by the way the
quarks are combined and one should also be able to predict the properties of the
excited states of the hadrons. The spectra of hadrons should also be an important

indication of the nature of interaction of quarks.

The theory of a Yang-Mills field with colour as the quantum number is called
Chromodynamics; that is to say, the dynamics is colour. By assumption, there are
three colours: Red, Green and Blue, and the strong force acts between coloured
quarks. The hadrons are supposed to be a system in which the colours have cancelled
themselves out and become white. The quantum of the colour gauge field is called
Gluon, meaning the glue that holds quarks together. Now let us think of a process in
which a gluon is emitted by a quark. If, as a result of this process, the red (R) quark
changes to a blue (B) one, then the gluon took red from the quark and gave blue.
Equivalently, one can think of the gluon as having taken away red (R) and anti-blue

( B); thus this gluon is carrying a composite colour of R B (Fig.1.1).
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gluon

quark quark quark

Fig.1.1: Quarks have colours and emit coloured gluons.

In general, the gluon, G

,, » that is released when g, becomes g, acts exactly like the

compound state of g, and q_; , G,,~ q,9,. There are 3x3 =9 such combinations and
one of the nine gluons is a special combination corresponding to the colour white,

G,~q: 9z +9q; ‘I-c +q, g9, =0. But since it was required, to begin with, that the glue
does not work on a white state, one must have G, =0. Thus the number of

independent gluons must be eight. QCD (Quantum Chromodynamics) refers to the
quantum theory of colour gauge fields. One can think of this theory as QED
(Quantum Electrodynamics) with the electron replaced by the quarks and photon by

the gluons.

1.2. Deep Inelastic Scattering:

High energy Deep Inelastic lepton-nucleon Scattering (DIS) has been recognized as
an important testing ground for the understanding of the structure of matter.
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Pioneering experiments in this direction started more than twenty years ago. Since
then, DIS has been served as the experimental area where QCD is being tested
progressively. The complete kinematics of the process is determined measuring the
angle and energy of the scattered lepton and two variables which are directly

accessible from the experiments. However the results are usually presented and

interpreted through the variables Q?, x and y (Fig.1.2).

o~
9= kK %

piEP Mp

k E

WA

{ > Anything

Fig.1.2: Kinematics of deep inelastic scaftering process.

Defining,

k,= four momentum of the incoming lepton,

k;, = four momentum of the scattered lepton,

E = energy of the incoming lepton,
E'= energy of the scattered lepton,

£, = energy of the nucleon,

M ,= rest mass of the nucleon,

P, = four momentum of the nucleon,

§ = available squared energy in the CM system,
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S = (k+P) ~ 4EE',

Q? =-q* =—{k—k') ~ 4EE'Cos’012,

0? EE'Cos’0/2
X = = ’
2pq E.(E-E'Sin’6/2)
pq 2pgq E-E'Sin*6/2
y=s — = =~ ’

pk S E

where, @ = angle of the scattered lepton measured with respect to the nucleon
direction. Physically x is the fraction of the nucleon momentum carried by the struck
quark while y represents the fraction of the lepton energy transferred to the nucleon
in the nucleon rest frame. The relation between Q?, x, y and § is Q? ~ xyS. The
differential cross section for deep inelastic scattering from a nuclear target is
completely calculable in QED. This cross section is expressible in terms of two
structure functions W, and W, which parametrize the virtual photon nucleon coupling

and contain all the interesting physics.

1.3. Structure Function:

Consider the case of electron scattering from a target composed of N well defined
constituents which is characterized by the initial state vector |y, > , and the final state
|y ,>. Let the final state is unobserved. The invariant scattering cross section can be
expressed in the form

0o __a
dQoE’ QF

E’ ,
.—E—LNW“ ,

where, L,, = Zkﬂk‘f + 2kvk//, - ngZ is the electron polarization tensor

averaged over initial spin states, while

W= <pl 1> 10°1p>0%(p-p;~0)
s

1s the unpolarised hadronic tensor averaged over initial spins, and J* is the hadronic

transition current.




Studies on Gluon Distribution Function at Low-x

All the interesting target physics is contained with W#". Without any a prior

knowledge of nucleon structure, it is possible to place strong constraints of the form
of W*"and thus on the cross section. The most general form of W *" consistent with

Lorentz and gauge invariances, and parity is

w,, = Wl(v,QZ){&V__gﬂV}LWZ(v,QZ)A;Z {p“ + P2 Q“Hp” +£’—Q—Q"},

ok 0* 0’
where, W, and W, are independent scalar functions of v and Q. Using this form,

the invariant cross section can be expressed as

oo o ,..D{Wl(v,Q2)+ le(v,QZ)tanz(%)] ,

C =—>
O0QOE
where,
2 1
o-""’"=f3Q4iCosz(§), v=E-E'and, ¢ and @ arerelatedby 8 =7 —¢.

Here W, and W, are the two nucleon structure functions reflecting the possibility of

magnetic as well as electric scattering, or alternatively, the possibility of photo

absorption of either transverse (helicity = * 1) or longitudinal (helicity = 0) photons.

It was suggested by Bjorken that for large v and Q*(v = ®, 0* — 0, v/Q? fixed),
v W, and M W, should become functions solely of the ratio x = 0% 12M , - This

functional dependence was indeed observed in the very early SLAC data, at least

approximately and is called scaling (Fig.1.3). If the nucleon constituents had internal
structure denoted by F,:(q2 ), then we would expect the data is to be damped by an
additional factor of .Fc(qz)l *. Thus the lack of pronounced Q°dependence, known

as scaling, suggests that the nucleon constituents are pointlike.

A simple approach for understanding this scaling phenomenon is offered by the naive
parton model. In this model, the nucleon is assumed to consist of a collection of

pointlike constituent partons with well defined quantum numbers. Viewed from a
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05—

0.4 }—

sl Mm“w 4 %}

vW,
o2l |

0.1

0? (GeV/c)?

Fig.1.3 Scaling at x = 0 25 as observed in very early SLAC data

frame in which the nucleon is highly relativistic, the so called infinite momentum
frame, deep inelastic scattering is seen to be simply incoherent scattering from the
individual partons. In this highly boosted frame, the partons recombine to form the
final hadronic state over a much longer time scale than that of the collision, and so, it
is precise to consider these as quasi-free non-interacting particles. In this frame, the
Bjorken scalling quantity, x, is identifiable as the momentum fraction of the elastically
scattered partons. Spin half partons thus contributing incoherently to the Dirac cross

section yield the observable structure func'tions,

Fl)=M W =3 f(w)el and  F(x)=v W, =x3 fx)el,

where, f(x) is the probability density of finding the i-th parton with fractional
momentum x and charge e,. The Callan-Gross relation F, =2xF, is a direct

consequence of spin half partons and is strongly supported experimentally. To
complete the identification of these partons with the quarks of Gell Mann and Zweing,

one compares electron and neutrino scattering results for F, and F, to infer the

fractional charge assignment of the quark model.
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1.4. Low-x Physics:

According to QCD, at low values of x (x ~107%) and at large values of 0?, a nucleon

consists predominantly of gluons and sea quarks. Their densities grow rapidly in the
limit x = 0 leading to possible spatial overlap and to interactions between the partons.
Several interesting physical phenomena are thus expected when the parton densities
are high, such as for example, shadowing or semihard processes appearing with large
cross-sections in the high energy hadronic reactions [1,2]. Several DIS experiments
have been performed on nuclear targets and various nuclear effects have shown up at
low-x, as for example, shadowing which depletes the bound nucleon structure
function relative to that measured from free nucleons. The low-x physics is a very

complicated subject with scare data and a variety of different theoretical approaches.

The low-x region of Deep Inelastic Scattering offers a unique possibility to explore
the Regge limit of perturbative QCD [1-14]. Deep Inelastic Scattering corresponds to

the region where both v and Q? are large and x is finite. The low-x limit of deep in
elastic scattering corresponds to the case when 2Mv >>Q?, yet 07 is still large, that
is at least a couple of GeV?. The limit 2Mv >>Q? is equivalent to S >>Q?, that is to
the limit when the center of mass energy squared S is large and much greater than
Q? . The high energy limit, when the scattering energy is kept much greater than the
external masses, is by definition the Regge limit. In deep inelastic scattering Q7 is by
definition also kept large, that is O?>> A?, where A is the QCD scale parameter. The
limit of energy v and 2Mv>>Q’ is therefore the Regge limit of deep inelastic

scattering [3]. The fact that Q7 is large allows to use perturbative QCD.

Low energy charged lepton scattering is mediated by a pure electromagnetic
interaction. This is also the dominant contribution at low and medium Q? at large

energies. Therefore it is natural to focus the discussion on one photon exchange. The

differential cross section is then given by the formula:

9% (x,0?)  4ra’ My \F,(x,0%) ., :
anax - Q4 [(l—y— 2E) . +y FI(X,Q )_’

10
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where, due to parity conservation only two structure functions F| and F, appear. At

much higher 0%, Q*>M}, where M, is the Z bosons mass, an admixture of the
weak interaction and thus axial vector current may appear which introduces a third

structure function F,. Thus when discussing existing DIS data, only the structure
functions F, and F, will be mentioned except for neutrino scattering data where the

function F, will also be referred to.

Since the low-x limit of DIS corresponds to the Regge limit the concepts of the old
Regge theory and Regge phenomenology appear and acquire a new content within
perturbative QCD. Since a long time it has been known that two-body scattering of
hadrons is strongly dominated by small momentum transfers ¢ or equivalently by
small scattering angles. This is successfully described by the exchange of a particle
with appropriate quantum numbers. Regge pole exchange is a generalization of a

single particle exchange (Fig.1.4).

b >

\./ d
Fig.1.4 Regge pole exchange
The Regge poles, like elementary particles, are characterized by quantum numbers

like charge, isospin, strangeness, etc. The Regge pole carrying the quantum numbers

of the vacuum and describing diffractive scattering is called the pomeron. Other

11
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Regge poles are called reggeons. It is useful to represent Regge pole exchange in
terms of quarks and gluons. Regge pole exchange describes the exchange of states

with appropriate quantum numbers and different virtuality ¢ and spin a. The relation
between ¢ and a is called the Regge trajectory, a(t). Whenever this function passes
through an integer (for bosonic Regge poles) or a half integer (for fermionic Regge

poles), that is a(t)= n n=1,2,.... or n=1/2,3/2,....... ,there should exist a

particle of spin n and mass M, = Jt . The trajectory a(t) thus interpolates between

particles of different spins. The increase of the total cross sections with energy and so

the possible nature of the pomeron, is strongly constrained by the Froissart bound

implying that asymptotically the total cross sections cannot increase faster than In’ S
[15]. This bound is a consequence of unitarity and analyticity. The natural quantities

to consider are the structure functions F, and F, which are proportional to the total

virtual photon-nucleon cross section and which are expected to have Regge behaviour

corresponding to pomeron or region exchange [3].

The predictions obtained in this way for the production of the hadronic system in DIS

can be used to estimate the low-x behavour of the structure functions, since the limit
of large S >>(Q7 discussed above corresponds to low-x ~ Q?/S. In the parton
model, which is appropriate in the large Q7 limit the structure functions, are related
to the quark and antiquark distributions in the nucleon. The Regge behaviour of the
structure function F, (x) in the large Q7 region reflects itself in the low-x behaviour
of the quark and antiquark distributions. Thus a 1/x behaviour of the sea quark and
antiquark distributions for low-x ¢, (x)~1/x corresponds to a Compton amplitude
with a pomeron exchange while a behaviour of the valence quark distributions
corresponds to a mesonic Regge pole exchange, that is ¢, (x)~1//x . Since the same
processes lead to gluon and sea quarks distributions in the nucleon, we expect that for
fow-x G{(x)~1/x. The x dependence of the parton densities given above are often

assumned also for the Q* dependent parton densities at moderate Q.

12
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A=~

1.5. Evolution Equations: Kl Dlace no. 7’ 36

Let us now discuss the pertubative QCD predictions for the low-x behaviour of

parton distributions. We shall consider the sea quark and gluon distributions which

dominate the valence quarks in the low-x limit. Perturbative QCD becomes applicable
in the large Q? region leading to the evolution of the parton densities with Q?,

expressed in a form of evolution equations. The exact form of these equations

In(1/x).

1.5.1. GLDAP Evolution Equations:

In the leading ln(Qz) approximation (LLQ 2) which corresponds tokegping only those
terms in the perturbative expansion which have the leading power of ln(Q’), that is
a’ln” (QZ), the equations have the familiar form of the Gribov-Lipatov-Dokshitzer-
Altarelli-Parisi (GLDAP) evolution equations [16-19],

8q,(x,0%) _ a,(QZ)]d_y
Y

onl{Q*/A?) 2x

P, (x/9)a, (0,0 )+ Po(x/y)G(y,0%), (1}

a?:zg(g /QA)j .o’ )J?[ZP@ (x/»)a.( ’Q\2)+Pca(x/y)G(y,Q2)} (1.2)

\
where, P, are the one loop splitting functions. When the appropriate gauge is chosen,

the diagrams which contribute in this approximation are the ladder diagrams with

gluon and quark exchange (Fig.1.5). In those diagrams, the longitudinal momenta ~ x,
are ordered along the chain (x, 2 x,) and the transverse momenta are strongly
ordered, that is, k] <<k? ., . It is this strong ordering of transverse momenta towards
Q? which gives the maximal power of ln(Q2 ), since the integration over transverse

momentum in each cell is logarithmic. When the terms with higher powers of the

coupling a,(Qz) are included in the right hand side of these equations, one obtains

the next-to-leading logarithmic approximation (NLLQ2 )

13
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Fig.1.5: Ladder diagram for the deep inelastic scattering in leading In(Q2).

Let us now look at the low-x limit of the distributions generated by these equations.

To this end, one notices that the term P, (z)behaves as 6/z at low-z which is
relevant at low-x, where z = x/ y. Retainig in the above equations only these terms,

one gets the product of maximal powers of both large logarithms ln(Qz) and In(1/ x)

which leads to the so-called double logarithmic approximation (DLA).

This predicts the gluon distribution (multiplied by x) to grow faster than any power

of ln(l/ x) in the low- x limit. The same applies to the sea quarks since the dominant

contribution to sea quark distributions at low-x comes from the gq pairs emitted

from gluons (Fig.1.6).

14
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N\

L

k

Fig.1.6. Sea quark distribution refated to the gluon

distribution in the deep inelastic scattering.

1.5.2. BKFL Evolution Equations:

The double logarithmic approximation does not however take into account all leading
terms in the parton densities in the low-x limit. By definition it neglects those terms

in the perturbative expansion which contain the leading power of ln(ll x) but which
are not accompanied by the leading power of In(Qz). The sum of leading power of
ln(l/x) and arbitrary powers of ln(Qz) corresponds to the leading ln(l/ x)
approximation ( LL(1/x)) [2,8,20-22]. This approximation is equivalent to the leading
ln(S) approximation. Equivalence of the leading In(S) and leading In(l/ x)

approximation follows from the fact mentioned above that in the limit §>>Q?,

x~Q?%/8, and so ln(l/x) ~ ln(S/ Qz). This approximation gives the bare pomeron
is perturbative QCD. The corresponding diagrams which contribute in this
approximation are ladder like diagrams, yet the exchange mechanism along the ladder
is slightly more complicated. Instead of the elementary gluon exchange, one has the
exchange of the reggeised gluon (Fig.1.7). The term ‘reggeised gluon’ means that one
can associate the Regge trajectory with the gluon which is calculable in perturbative
QCD (2,8,9,10,20]. The Balitskij-Kuraev-Fadin-Lipatov (BKFL) evolution equation
which sum these diagrams has the form [8,2,9,23]

@ 2 2
) gty ) e e L), o)
i ¥ k" —k " it

k]

/2
v W k

15
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where, the function f (x,kz) is the nonintegrated gluon distribution, that is

f(x,k2)= c?fox,k2 ’

Oln k*?

3

f °(x,k2) is a suitably defined inhomogeneous term; k?* k' are the transverse
momenta squared of the gluon in the final and initial states respectively, and ko2 is
the lower limit cut-off. The important point here is that, unlike the case of the leading

ln(Qz) approximation, the transverse momenta are no longer ordered along the chain.

As before the dominant contribution to sea quark distributions comes from the gg

pairs emitted from gluons.

d
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Fig.1.7 The ladder diagram for the deep nelastic scattenng in leading in(1/x) approximation

It is also possible to generalize the LL(1/ x) equation in a way which treats both large

logarithms, that is In(Q?) and In(1/x), on equal footing [2]. The numerical study of
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these equations suggests however that the results do not differ substantially when

compared with the solution of the conventional GLDAP equations, at least in the

region of not too small values of x >107* [27,28,29].

1.6. Screening Corrections:

The unlimited increase of the parton distributions (multiplied by x) leads to a conflict
with unitarity, that is, too rapid S dependence of high energy cross sections violating
the Froissart bound [15]. Assume the gluon density G(x,QZ) to be dominant in the
low-x region. Unfortunately we have no direct DIS type of measurement with
photonic or W /Z probes for gluons. There exists however the strong interaction
analogue to DIS which is the hadron-nualeon interaction where a highly virtual gluon

from a hadron probes the structure of the nucleon.

Within the QCD improved parton model, when one counts incoherently the individual
probe gluon cross sections, the cross section corresponding to the virtual gluon-
nucleon interaction per unit rapidity is o ., = 04xG (x, 0’ ), where o, is the total

cross-section corresponding to the interaction of the probe with the gluon in a

nucleon, that is,

%)

Ty = 0., = Const ——=
This can be illustrated in a simple geometrical picture [2]. Assuming that the cross

section o, on the parton level is equal to the transverse size of the probed parton, the

cross section o .. is equal to the transverse area occupied by partons (gluons) per
unit of their rapidity. Since the number of gluons per unit rapidity, xG, can grow
indefinitely for x — 0, the total transverse area occupied by gluons can become

comparable or larger than the transverse area of a nucleon, = R?, for sufficiently

small values of xor Q. When this happens, then gluons begin to overlap spatially in

the transverse direction and so can no longer be regarded as free partons [2]. This is in

conflict with the basic assumption of the QCD improved parton model.
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Y

The QCD evolution described by the equations (1.1, 1.2) and corresponding to ladder
diagrams simply takes care of the evolution of the individual partonic cascades. The
important point here is that the interaction of partons from different cascades can be
neglected. This interaction of partons leads to non-linear screening or shadowing
corrections to the evolution equations (1.1, 1.2). In the simplest version the corrected

evolution equation takes the form [30,31]

axacl;r%c ég2)= SGSEQZ)?dTy(y G(y’Qf))’ 169Rz (M’Q(QZ))Z lfdjy belno' ). a3

X

In this equation, the linear term on right hand side was obtained from the standard
evolution equation for gluons, equation (1.2), by neglecting the quark contribution

and keeping only the most singular term of the P,;;~6/z. That means that, in fact

G(x,Qz) is treated here in the double logarithmic approximation. The second term in
equation (1.3) is the screening correction. Note that this equation is written for
G(x,QZ) times x. The most dramatic consequence of parton saturation is a linear

scaling violation in parton distributions to be contrasted with the mild logarithmic

scaling violation given by perturbative QCD.O
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Chapter-2
TAYLOR EXPANSION METHOD

2.1. Taylor's Theorem:

It is frequently easier to find the numerical value of a function by expanding into a
power series and evaluating the first few terms than by any other method. In fact, this

is sometimes the only possible method of computing it. If a function f defined on
[a,a + A], is such that (i)the (n —1)-th derivative "' is continuous on [a,a + 4] and
(i)the n-th derivative /" exists on ]a,a+h[, then there exist at least one real

numberd between 0 and 1 (0<@<1) such that [32]
h? h’
fla+n)= fla)+ hf’(a)+;f”(a)+;—f’”(a)+ ..................

- R(-6)*

........ +(n ) f'(a)+ BeE ]f”(a+0h), (2.1)

where, p is a given positive integer. First of all, we observe that the condition (i) in
the statement implies that all the derivatives f',f”,............... £ exist and are

continuous on [a,a + h]. Consider the function ¢ defined on [a,a + h] as
/ (a +h- X)z /"
d(x)= f(x)+(@a+r-x)f (x)+ ———2—|———f () + oo e

(a+h x)

.......... Y

where, 4 is a constant to be determined such that ¢ (a + #) = ¢{(a). Therefore,

frtx)+d(@a+h-x),

fla+h)= fla)+ nf' (a)+ f”( )

hn—l et »
............ + mf (@)+ 4h " (2.2)
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Now,

@) £ f S e ,/™" being all continuous on [a,a+#k], the function ¢(x) is

continuous on [a,a + h],

@) fof s, ,f"" and (a+h—-x)" forall  being all derivable in |a,a+h[ and

the function ¢(x) is derivable in ]a,a+h4[, and

(iit) ¢la + 1) = ¢(a).
Thus the function ¢(x) satisfies all the conditions of Rolle’s theorem [33] and hence

there exists at least one real numberé between 0 and 1 such that ¢'(a + 64)=0. But

, _(a+h—x)"_' . et
¢(X)-~Wf (x)- 4pla+h-x)".

Therefore,
n-1{1 _ p\r-!
¢’(a+eh)=h—(—(l%f"(aw;z)—/iph""(pe)”" =0
n-— \
n- -p
oA OO) k), k0, 61, 2.3)

p(n-1)!
Substituting 4 from equation (2.3) in equation (2.2), we get the required result, that is
equation (2.1). If f satisfies the conditions of Taylor’s Theorem in[a,a + h] and x is
any point of [a,a+h] then it satisfies the conditions in the interval [a,x] also.

Replacing (a+h) by x or h by (x—a) in equation (2.1), we get
)= f(a)+(x_a)ff(a)+(*_‘2f‘)_ F@) b

(x a)"‘ ""a+(x a) nop a+8{x-a
------ e (a) m e ](1 0)?f(a+8(x-a)),(24)

where, 0< @ < 1. The remainder after n terms can thus be written as

¢ mar -0y

e

where, ¢ lies between a and x, and depends on the selection of x. We have seen

that ,
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2 hn—l .
fla+h)=fa)+hf'(a)+ -};——!-f”(a)+.... +mf" (a)+R,, (2.5)

where, R, is the remainder after n terms. The result can be interpreted in two ways:

(i)The value f (a+h) of the function at a point may be approximated by a

r

h' f"(a) involving values of the function and its

summation of the terms like
derivatives at some other point of the domain of definition, and
(i¢) The value f(a+ h) of the function may be expanded in powers of .

Here we present the application of Taylor’s theorem in solving GLDAP evolution

equation [34,35,36] at low-x which are already discussed elsewhere [37].

2.2. Taylor’s Theorem and Structure Functions at Low-x:

The GLDAP evolution equations for the non-singlet and singlet quark structure
functions have the standard forms [38]

NS
anat("”)— Atf J{3+4m@-x)}F* (x,2)

+2 I'[I—d_—%{(l +w? )F;"S(—:%,t) ~2F" (x,t)} J=0 (2.6)

and

an;fx”)_ Atf - [{3+ an(l-x)} Ff(x,1)

+2;|‘1—d;—%{(1+WZ)FZS(%J)+%NI<W2 +(1—W)Z)G(%,tj} =0, @7

ok ] 4 .
where, ¢ = ln(——— and 4, = N, being the number of flavours.
> / ’ /
N B3-2n,)
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The F, structure functions measured in deep inelastic electro-production can be

written in terms of singlet and non-singlet quark distribution functions as {38]

F;d = ins (2.8)
9
and
3 5
Fep____FN __FS 2.9
o1l 18 29)

Let us introduce the variable

u=l-wow=1-u (2.10)
and note that [39]

x <

—= =x) u". (2.11)
w kz=0

Since x< w< 1, so O<u<l-x, and hence the convergence criterion is satisfied.

Using equation (2.11) we can rewrite F," (x/w,t) as

F (x/w,t)= Fst(x + xi u",t)
k=1

2 B8F (x,1 = Y 0 F (xt
= F (x,0)+ xD u* 2 (& )+lx2 ut o ) (x, )+
k=1 ox 2 k
which, covers the whole range of u, 0<u<l-x. Neglecting higher order terms

0(x2 ), F;¥*(x/w,t) can then be approximated for low- x as,

= OF,Y (x,¢
FZNS(—:—J) ~ F (x,t)+ xz uk af" ). 2.12)
Putting equations (2.10) and (2.12) in equation (2.6) and performing u -integrations,
we have,
N A,
éfl—a@ ~ [A(x)FNS (x,t)+ B(x )QF——("—’—)} , (2.13)
where,

A(x)=3+4In(1-x)-(1-x)(x+3) and B(x)=x(i- xz)— 2xInx,
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U

@ k 1
and we used the identity [39] D> — = In .
k=1 k 1 - Uu

The general solution of (2.13) is [40] F (u, v) = 0, where, F is an arbitrary function
and u(x,t,FzNS )= C, and v(x,t,Fst )= C, form a solution of the equations

dx dt dF »
—— = —= : (2.14)
A,B(x) -t -A4,4(x)F"

Solving equation (2.14) one obtains

u(x’t’FZNS )= t'exp{'Al— Iﬂ_} and V(X,t,Fst): FZNS exp[j‘A(x)dx:I )
!

B(x) B(x)

It thus has no unique solution. The simplest possibility is that a linear combination of
u and v is to satisfy, so that

Ayu+Byv=0 _ (2.15)
where, A,, and B, are arbitrary constants. Putting the values of ¥ and v in

equation (2.15) we obtain

Defining
A 1 A(x)
F¥ (xty)= -1, - dx |,
2 (xty) gl CXP{I{AIB(x) B(x)} x}
one gets
E (x,6)= F" (x,44).(t/¢t,), (2.16)

which gives the t-evolution of non-singlet structure function £ (x,t)..

In order to solve equation (2.7), we need to relate singlet structure function FZ’VS (x,t)

with gluon distribution function G(x,t). For low-x and high - Q?, gluon is expected to

be more dominant than the sea [41]. For simplicity, we therefore assume identical
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t-dependence for both :
(2.17)

G(x,t)= KF 5 (x,1),
where, K is a parameter to be determined from experiments. Putting equation (2.17)

in equation (2.7) and following the same procedure as that for non-singlet case, we

obtain for singlet structure function,

N A N
OF (x1) _ —-f—.[L (X)FS (x,0)+ M (x)M:l =0, (2.18)
ot t 0x
where,
L(x)=3+4In(l-x)-( _x)(x+3)+§1<1v,(1_x)(z —x+2x?)
and
M(x)= x(l —xz)—2xlnx+%KN[{—x(l—x).(5—4x+ 2x2)— 2x1nx}.
The equation (2.18) can also be solved as before to get the solution,
FS(x,t)= F (x,0)(t11,), (2.19)
where,
4 1 L(x)
Fl(x,t,)=-=%14,. - dx |.
2 (x to) B, t, CXP[I{AIM(X) M(x)} x:l
Using equations (2.16) and (2.19) in equations (2.8) and (2.9), we get,
F(x,t)= F (x,0).(e12,) (2.20)
and
(2.21)

F(x,0)= F7(x,00)(t/¢,)
where, F(x,1,)= —;—FZS (x,t,) and F7(x,t,)= %FZNS (x,to)+%Fzs (x,t5).
Equations (2.20) and (2.21) will give t-evolution and proton structure functions

Again defining

NS _ Ay 1 A(X)
F¥ (xy,t) = —T.t.exp [ I{ AfB(x)_ B(x)}dx]‘_“ )

NS -
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one obtains

4,B(x) B(x)

Fz”s(x,t)=F,”S(xo,t)exp.[j{ 1 A(x)}dx} , (2.22)

and similarly by defining

we obtain

Fi(x,t)=F/ (xo,t)exp{]{ 1 L(x) }dx} (2.23)

A,MG) MG)

Xo

and

Ff(x,t)= F (xo,t)expli ]{ Af]:!(x) - Af{((tc))}dx} , (2.24)

Yo

where,
ed 5 S
F) (xo,t)=-9—F2 (xo’t)'

Equation (2.24) will give x-evolution of deuteron structure function.

But the x-evolution of proton structure function like that of deuteron structure
function is not possible by this methodology, because to extract the x-evolution of
proton structure function we are to put equations (2.22) and (2.23) in equation (2.9).
But as the function inside the integral sign of equations (2.22) and (2.23) are different,

we need to separate the input functions ;" (x,,¢) and F;%(x,,t) from the data points

to extract the x-evolutions of the proton structure function, which will contain large

error.[]
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Chapter-3

GLUON DISTRIBUTION FUNCTION FROM STRUCTURE
FUNCTION - A REVIEW

The measurement of the proton and the deuteron structure functions by Deep Inelastic
scattering (DIS) processes in the lovs;-x region where x is the Bjorken variable have
opened a new era in parton density measurement [42]. It is important for
understanding the inner structure of hadrons. In addition to these knowledge, it is also
important to know the gluon distribution inside hadron at low-x because gluons are
expected to be dominant in this region. Moreover gluon distributions are important
inputs in many high-energy processes and also important for examination of Quantum
Chromod¥namics (QCD), the underlying dynamics of quarks and gluons. On the
otherhand, gluon distribution can not be measured directly from experiment. It is
therefore, important to measure gluon distribution G(x,QZ) indirectly from the proton

as well as the deuteron structure functions F, (x,Q2 ) A few numbers of papers have

already been published [43,44,48,49,52,53] in this connection where several authors

have presented their various methods to extract gluon distribution from quark

structure function.

In Prytz method [43,44], gluon distributions are extracted from proton structure
function data. Here use of leading order (LO) and next-to-leading order (NLO) has
been done. In this method, Taylor expansion about z=1/2 in GLDAP evolution
equation has been used. In Bora and Choudhury method also, proton structure
function data have been used to extract gluon distributions by using LO GLDAP
evolution equation. But here, Taylor expansion about z=0 in GLDAP evolution
equation has been used. In Kotikov and Parente method also, proton structure function
data have been used to extract gluon distributions, but they used NLO GLDAP
evolution equation. Here they used standard input parametric equations of singlet

quarks and gluons and solution of GLDAP evolution equation has been done by
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standard moment method. Lastly, in Ellis, Kunszt and Levin method also gluon
distributions have been extracted from proton structure function data. But here next-
next-to-leading order (NNLO) GLDAP evolution equation has been used. Like
Kotikov and Parente method, here also standard input parametric equations for
structure functions has been used and solution of GLDAP evolution equation has been

done by standard moment method.

3.1. Prytz Method:

K. Prytz [43,44] gives a method to obtain an approximate relation between the
unintegrated gluon density and the F, scaling violations at low-x. The resulting
formula can be used to determine the gluon density from the HERA data taken at low-
x. It was shown in reference [45] that the gluon density at low-x can be obtained in a
convenient way by analysing the longitudinal structure function. Here a similar
method is applied using the Q® derivative of F, to obtain the gluon density to a good
accuracy. The basip idea rests on the fact that the scaling violation of F, arises at
low-x, from the gluon density alone and does not depend on the quark densities. At

low-x, actually already at x =107, the quarks can be neglected in the GLDAP

evolution equation and we have,

oF, Sag 't x 2)
~ Gl —*—.0% |P.(2)d .
o050’ o OI (l——z Q" [Py (2)de 3

for four flavours, where in lowest order
P (z)=2"+(1-2). (3.2)

When applying equation (3.1) to experimental data, the problem arises of determining
the gluon distribution G(x) over the complete x-range. At low-x, this problem can be

avoided since the integral in equation (3.1) can then be performed approximately. For

this purpose, the gluon distribution is expanded in the following way:

»G"(2=1/2)

G( a ): G(z=1/2)+(z-1/2)G'(z=1/2)+(z-1/2)

-2
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This expression is then inserted in equation (3.1) and approximating the upper
integration limit to 1, the second term will vanish in view of the symmetry of P, (z)

around z =1/2. The third term is expected to give a small contribution compared to the

first and is neglected. As a result, one therefore obtains

an(x) _ Sag :
Tos 07 " on G(2x)6[qu (2)dz . (3.3)

For a numerical study, equation (3.3) is evaluated using the leading order expression

equation (3.2) forP, (z) to give

OF,(x) _ Sag 2
dlog Q° 97z

36 (2x), (3.4)

which is the main result of Prytz method at LO analysis.

Due to the large a; corrections to the F, scaling violations in the kinematical region

of HERA [42], the approximate LO relation between the F, scaling violations and the

gluon distributions at low-x need to be corrected. A new relation is presented in NLO
and found to give reasonable agreement with the exact calculation. The gluon to quark

splitting function K, at NLO analysis is given by

t " an

K, =% K0 ( JK(z)
an

Prytz used the formula derived by Floratos et. al. [46] which agrees with the

independent calculation by Furmanski and Petronzio {47]. The first order contribution

aF() !
Y. Q(x 23 e? :[ J'G(x/z)Ké')(z)dz

f

is equivalent to the LO cdlculation equation (3.4). The second order contribution is

B;L)Q(x Ze( )IG(x/z)K(z)(z)dz

=23 ( j[jc (x/z)Km(z)dz+G(zx)jz<<z>(z)dz
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where, G is the gluon distribution found from the complete QCD analysis of
existing data. Now introducing the function N(x,Qz) for the first integral and

evaluating the second integral, author obtained the total contribution for four flavours,

an(xz) -2 z e,Z TG(x/z)Kg(z)dZ

olnQ P

20 a,[2 a;] (ag) 20 .
~ et B [P . et 1 ) (et 8 el Y
G(2x)-5 4”[3+ 4,,]’“(4;;) .07)

in NLO analysis [44], where N (x,QZ) is given by

N(x,Q2)= ojG”P (x/z,Qz)Pg(z)(z)dz ,

where Pg(z) is a long and complicated function given in reference [44].

3.2.Bora and Choudhury Method:

Bora and Choudhury also present a method [48] to find the gluon distribution from
the F, structure function and its scaling violation 9F,/dInQ? at low-x using Taylor
expansion method. Here the LO GLDAP evolution equations are used to relate
scaling violation with gluon distribution G(x). They also used equation (3.1) at the
beginning and expanded G(x /(1 - z),Qz) using Taylor expansion about z = 0 taking
only up to first order derivative in the expansion. While expanding they used first two

terms in the expansion of the infinite series x/(1—z)= xZ:=0 z* also. And using the

fact that quark densities can be neglected and that the non-singlet contribution F,*

can be ignored safely at low-x, the GLDAP evolution equation becomes, for four

flavours,
20 (101) 106 o ()orx') 0 o1 07), 09

X

29



Studies on Gluon Distribution Function at Low-x

where, a; =a; (Qz) is the strong coupling constant and the splitting function £, (x’)
gives the probability of finding inside a gluon a quark with mo%nentum fraction x’ of

the gluon. InLO, P, (x' ) is given by

P, (x')= {x” +(1—x’)z}/2.

Equation (3.5) can be rearranged as

OF,(x,0?) _sa,’ fd 6(y,0° )__[x +(y-x)y] (3.6)

oln Q2 9

X

Substituting y = x/ (1 - z), we can write the right hand side of equation (3.6) as

SaS

Ide x/(l—z)Q [(l—z) +z ]

Now expanding G(x /(1 - z),QZ) about z = 0 and retaining terms only up to the first

derivative of G(x) in the expansion, we get

oF,(x,0%) Sa'f d x .
L = on sz[G(x)+zG(x)+zxZG(l_zj |Z=O}[(1——z) +z°].

Here in G(x), the (Q”-dependence has been suppressed and they symbolize

G(x /(1 - z),Q2 ) After doing a simple algebra one gets,
/
oF,(x,0?) Saj B(x) dG (x)
= Alx).
3inQ’ 97 (x)| G(x)+ A"

- sa: el of, 26 )

9z A(x)+2B(x) A(x)+ B(x)

where,

A(X)= }__(l_;x_)} - (1 —x)2 + (1 - x) and B(x): (1 ‘2/‘)4 _ 2(1;Jc)3 N (l —x)z .

2

Finally,

o BB o). 97 a()+2B(x) oF,(x,0?)
G( A+ B QJ_ Sag [4(x)+ BG)F omQ?
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Using this approximate relation, they can find gluon distribution G(x’ ) at

B(x)

x,=x+-—————A(x)+B(x).x

from the value of the derivative of F, with respect to O at x which is their main
result. Of course, utilizing the asymptotic limit of P, (x) for x— 0 they also got the

result,

2\ . 367 (Z—x) 6F2(x,QZ)
G(XnQ )— Sas [(!_x)(:;_x)]z aanZ .

3.3. Kotikov and Parente Method:

Kotikov and Parente presented a set of formula [49] to extract the gluon distribution
from structure function F, and its derivative OF,/dInQ? at low-x in the NLO
approximation. They began with the standard parametrizations of singlet quark

s(x,Q(f) and gluon G(x,Qé) parton distribution function at some(QZ[50]. As the
behaviour p(x,0? )~constant,(p = (s,g)) is not compatible with the GLDAP

evolution equations, they considered more singular behaviour like p(x,Q2)~x_5"(Q:)

for Regge-like behaviour [4,49] and p(x,QZ) ~ exp(O.Sw/é‘ piQZ iln(l/ x)) for Double—
logarithmical behaviour [49,51], where 9§, (Qz ) #0, (Q2 ) They then put these quark

and gluon distributions in the GLDAP evolution equations and solved for gluon
distribution by standard moment method. The method to arrive to the solution is based

in the replacement of the Mellin convolution by ordinary products [52].

Assuming the Regge-like behaviour for the gluon distribution and F, (x,QZ)at
x%>>1, G(x,Q")= x“sé(x,QZ) and Fz(x,Qz)zx"; E(x,Qz), they obtained the

following equation for the Q° derivative of F,:

%%f;g—gz)*%"“’_Z(r:;5<a)ﬁ(o,Q2)+r;i(a)xﬁ’(o,Qz)+O(f))’ (3.7
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where, y;, (a) are the combinations of the anomalous dimensions of Wilson operators
001 4 g2y 07 4 0(a?) and Wil ffici By +0(a?) of th
}’,p =ay, " +a‘y," + and Wilson coefficients a B,"" + Ola* ) of the

T moment:

7.@)=ay O+ a7+ B 07 v 25,817 )+ 0la), (3.8

7:g(a)-—[arsg’”+a (0 4 BE (28, + 7O -y O )]+ 0(a?)
and

50,0%)= = 5(x,0%) at x=0,

d
dx

/
where, e = Zef is the sum of square of quark charges. With accuracy of O(XH ), for

1

equation (3.7) they got,

or(07) 1 {y:;s(e;:g)-aa(i,gz}ymx,w)

olnQ? 2 £
e e ]

with § . = 7;; ° }'Sg From equation (3.8), they obtained for gluon distribution,

€.) [ , (g, .0%)

G(x,0%)=- T+ 5 o Q° +7“+°F(Z_,‘,3,Q )}

wlys -y )xole, )05 (re,, 00 )+ 0() ] (3.9)

Restricting the analysis to O(xH ,ax'™? ), one can replace

Sy > =1+ Sy )7

and neglect the term ~ § /(x SN 2 ) into equation (3.9), so that,

o) £ . 1 0]

Using NLO approximation of },:;5 we easily obtain the final result for G(x,Q2 ):
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G(x’Qz)z_E é:& . [aFZ(X‘f’QZ)_,_ﬁ,y:(f)”‘st(xf,Qz)

ae yO 47l o | amE* 2
+0(a, %, ax'? )] (3.10)
and
2f 1 OF, (X,Qz) Q  (0)1+6 2
Gl\x,0%)=-—=. 2 +—=y, " F, x,
(x Q ) ae }/S:),lﬂi +}7x(g|),|+6'a [ aanZ 27; z(x Q )

+0la,’ x"“)} | (3.11)

e, 77 <7 07+ 8572, 7 7 =7 197).

In principle any equation from above formulae (3.10), (3.11) may be used, because
there is a strong cancellation between the shifts in the arguments of the function F,

and its derivative, and the shifts in the coefficients in front of them. The difference

lies in the degree of accuracy one can reach with them, which depends on the x and

Q? region of interest. For accurate values of § =0.5,

A 062 [6r030Y) , e s
Glr0?)=— (1+269a)[ v +2.12aF,(03%,0* )+ Ol 5,7 ax )]
and

. 114 oF, (x,0?) , ) s
G(X’Q )_ ea (1+26.9a){ dln0? +2.12aF2(x,Q )+O(a, X ):‘

In obtaining the formulae, they neglected some higher order term
~0 E(xfsq,Qz)/ ox where &, is the combinations of the anomalous dimensions of
Wilson coefficients. Similarly assuming the Double-logarithmical behaviour for the

gluon distribution and F, (x,Q2 ), they obtained,

exp[% 5,(0%)n l] "

X

(?_né‘g(QZ)lnl)%

X

G(x,0%)=
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exp[%J&,(Qz)lnéj i

Fz(x,Q2)= s(x,Qz).

(27:5I (Q2 )ln L):

Then they obtained the following equation for the O derivative of the F, (x,Q2 ),

and

2 exp| 1.6, (0 )n =
F(0') Ly [2 "]x(f;,(a)ﬁ(o,QZ)w(x’)),

dlnQ? 2 <, 1 :
(27: 5, (Qz)ln ;)

where, }7:'1, (@) can be obtained from corresponding functions y

1+6
p

(a) replacing the

singular term 1/6 at 6 > 0 by 1/6 ; that s,

(3.12)

(1)1+6

The singular term appears only in the NLO part of the anomalous dimension y,;

in equation (3.8). The replacement equation (3.12) corresponds to the following

transformation:
ys(;).n& = };:(,1,).1 L_{_ 57(]),14-6
)
and
550 yMiosor L o o 313
- 0, ¥ =7, g+y:p , (3.13)

where, }75,',)" and )7:(,:)"*‘5 are the co-efficients corresponding to singular and regular

(1)1+6
p

parts of ¥ respectively. Repeating the analysis of the previous section step by

step, using the replacement equation (3.13), we get,

). 3 1 ~ [aF,(x,0?) ,
G(.0")= 22 (1+26all/5—41/13ﬂx[ 0’ ~0let 1))
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Here also they neglected some higher order terms and replaced the singular term 1/

at § — 0 by some non-singular term 1/ 5.

3.4. Ellis, Kunszt and Levin Method:

A different method for the determination of G(x,QZ) at low values of x has been

proposed by Ellis, Kunszt and Levin [53] based on the solution of GLDAP evolution

equations in the moment space up to next-to-next to-leading order. In this method, the
gluon momentum density and F, are assumed to behave as x™ where @ is a
parameter the actual value of which must be extracted from the data. They can also
estimate gluon distribution directly from the measurement of the F, (x,QZ) structure
function at HERA. The basic idea is that, the Q® derivative of F, is sensitive to the

gluon distribution function {49].

The quantity 3, from the experimental data for F, is

2
Z(x,Q2)=ﬂ5’7Q—) . (3.14)
e’)
Knowledge of 3 as a function of x and Q? is the input which can be obtained from

experiment. For four active flavours, ( e? ) = 5/18 . Let us consider only the DIS

structure function F, which is given in terms of parton densities as

Fz(x’Qz):xlIdz

X

(e e (2.0?)x (x12,02)+ €7 (x.0?)Glx/ 2.0?)]

z
-%c”s (2,0?) 8 s (x/2,0?) 3.15)

. 41, + . .

with (ez) = f"—zfd— , where C denotes the co-efficient functions, f, and f, denote
d

the number of up and down quarks respectively, and the non-singlet parton density

A s 18 given in terms of the non-singlet combinations,
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1 1
Ays=T; + g(Ts - Tjs )+ E(Tza - Ty5)
— 2fd Ju 2fu fd
= f Zi:lq:.i—TZi=]q;,l
where f = f, + f,. For an even number of ﬂavours,<e2> =5/18 and

Aps = flz(q* q;, ) From equation (3.15), for the lowest order in « , we get

1=1 u,

F, (x, Q2 )= x(e?)Y (x, Q2 ), where the non-singlet contribution which gives a

small contribution at low-x.

The lowest-order GLDAP equation for 3 reads
9 ( , 2! a, td
gl:QQZ S e LA QM TR A O T CYE ) AT

The information about the gluon is difficult to extract from this equation at normal x,
because it involves a weighted integral over the quark and gluon distribution

functions. In moment space, this means that we have to know the moments of 3> and

dY./8InQ* for all values of w . Taking moments of equation (3.16) we obtain

oY (a))_ a, [, G
omQ? 2= [Po (0)Z (»)+ P, (a))G(a))]‘ (3.17)

P/F could be neglected in lowest order because Py (0)=0. However the dominant

value of w is unlikely to be that small and furthermore this simplification does not

occur in higher orders. Assuming a simple form for the gluon distribution,

G (x) = Asx"“ and Z(x) = A, x™™ ,where w, >0. Taking moments we get

A Ay

- and Z(a))=

Glo)==0r

w-w,

Now let us consider the simple form of equation (3.17) as

) Ll @)z )+ A (@) ()]
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The value of @ , can be determined by the measured slope of F,,

OlnY
L.y 318
“0 = S/ G-19)

Therefore,

M= .’%r—[PoFF (wo)}:(x»QZ)"' Py (,) G(X’QZ)]' (3.19)

dlnQ?

Since the GLDAP kernels are known as a function of @, G(x, QZ) can be determined.
The extension of the basic result to include higher order is straight forward but

tedious. Here w, is given by equation (3.18) and 3 1is given by equation (3.14).

Equation (3.19) is the basis of the method for determining G(x,Qz). And so

ultimately we get for four flavours,

185 [oR(x,0?)
P w,)| olmQ?

Glx,0?) — P (,).F>(x,0?),

where, we replace Z(x,Qz) by F, (x,QZ) and the functions P have perturbative

expansions

FF - FF | 2pFF | 3 pFF 4
P (wy) = asB™ +aiP +a3P, +0(as)
and

P (w) = asBf% +aiP™ +aipPfc +0(a§).

The coefficients P and P depend on the parameter wy which are tabulated in

reference [53] for a range of w, values.O
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Chapter-4

GLDAP EVOLUTION EQUATION AND GLUON
DISTRIBUTION

In this chapter, we obtain ¢ and x-evolutions of gluon distribution function at low-x
from Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) evolution equation.
Comparison is made with the prediction of Balitskij-Kuraev-Fadin-Lipatov (BKFL)
as well as Gribov-Levin-Ryskin (GLR) equations. We also make predictions for the
HERA range. In a recent letter {54] the ¢-evolutions of non-singlet and singlet
structure functions [38] have been reported. The same technique can be applied to the
GLDAP equation [16] for the gluon distribution function to obtain t as well as x-

evolution of gluon at low-x.

4.1. Theory:

The GLDAP evolution equation for the gluon distribution function has the standard
form [38] as

aG(x,t)_A/ ll_N// _ _
T T{(E TS—+]n(1 x) G(x,t)+1g =0, 4.1)

where,

1

I, = J.da)—wG(X/;Oltc)o_ G(x’t)+(w (1-w)+ I;G)JG(X/(UJ)

X g

2
L2 H(l_—w)JF;(x,w,,)}
9 w

36

t=In|lQ*/A?)and 4, = ———
l0*1x) 7 33-2N,

, N[ being the number of flavours.
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For low-x and high-Q?, gluon is expected to be more dominant than the sea [41]. For

lower-Q? (Q?= A?), however, there is no such clearcut distinction between the two.

For simplicity, we therefore, assume identical ¢ -dependence for both ,
G(x,t)= KF; (x,t),

where, K is a parameter to be determined from experiments. Then we get

I, —jd [“’G”“" G(X’t)+(w(l—co)+l_—wJG(x/a),t)

@

2 1+(1—a))2 ]
+9k[————w ]G(x/a),t) : (4.2)

Let us introduce the variable

U= 1 -Q (43)
and note that [39]
=xy ut. (4.4)
k=0

The series equation (4.4) is convergent for |ul< 1. Since x<w<l, so O<u<i-x

and hence the convergent criterion is satisfied. Using equation (4.4) we can rewrite

G(x/w,t) as [55],

G(x/w,t)= G[x+ S uk,t)

k=t

-_—G(x,t)+xiuk aG(x’t)+%x2(iu"J 8_0(£Q+ ....... (4.5)

3 ’
ox k=1 dx°

which covers the whole range of u, O<u<l-x. Neglecting higher order terms

O(x2 ), G(x/w,t) can then be approximated for low-x as

G(x/w,t) = G(x,1)+ tZuk 6G ) (4.6)
k=1
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Putting equations (4.3) and (4.6) in equation (4.2) and performing u — integrations, we

obtain,

I, = RE)G () ()28, @7

1

- U

where, we have used the identity Z % =1In [39], and where,
k=1

R(x)z—{(1+9—i<—)(1—x)+(—%+311—<—)(1—x)2+%(1—x)3+(1+%)lnx}, 4.8)

and

s(x)=x{(1+_9_‘;?); (z+_]( B L (T W,

8 4
+|2+—|lnx-1-— ;. 4,
( +9K)nx 9K } 4.9)

Using equation (4.7) in equation (4.1) we get,

3G (x,1) 4y {(11 Ny j+ln(1—x)G(X”)

ot t 12 8
£ R()G (x,0)+ s(x)i%(;‘—”l b -0

which gives

?.?%_A%{p(x) (x.0)+ 0()2%21) ’)} 0, (@.10)
where,

P(ﬁ:(%—?—gf—jﬂn( - x)+R(x) h

and & 4.11)
O(x)= S(x). )

The general solution of equation (4.10) is [40]
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F(U,V)=0, (4.12)
where, F is an arbitrary function and U(x,t,G)=Cl and V(x,t,G)zC2 form a
solution of the equations

k. G
4,0(x) -t -4,P(x)G(x,t)"

(4.13)

Solving equation (4.13) one obtains

U(x,t,G) =t .exp[Al—f J‘ad(x;)-}

and

(5.0, G) = G (x,1)exp [ j%a].

It thus has no unique solution. The simplest possibility is that a linear combination of

U and V is to satisfy equation (4.12) so that

AU +BY =0, (4.14)

where 4, and B, are arbitrary constants. Putting the values of U and V' in equation

(4.14) we obtain,

)= -2 ¢ ex L Pk)
oi=3, "MAfQ(x) Q(ﬁ}‘b‘}

Defining
A 1 P(x)
Glx,ty)=-=% - dx |,
(x,2) B, to €Xp “{ 1,00) Q(x)} x}
one gets,
G(x,t)= Gx,1,)(t/1t,) (4.15)

which gives the ¢ -evolution of gluon distribution function G (x,t). Again defining
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A 1 _P(x)
G(xo,t)—— B, feXPD{A[Q(x)-Q(X)}dex’

one obtains,

G (x,t)= G (xy,t) exp [I{ A/;(x)— 28}4 (4.16)

which determines the x - evolution of gluon distribution function G(x,t). We can
perform the integration inside the exponential in the equation (4.16) with further
approximation that ln(l - x) — 0 and xInx — 0 for very low-x, x - 0. Then we get

from equation (4.11),

P(e)= (12 lgf] (1 2 )= 2 (-2 5 )0-20)

——(1—3x) (1+7)1n X, (4.17)

and

Q(x)=(1+-9%)+(2+9%)x+(9—2—+%)—(x+—9%x], )

when we have neglected the square and higher terms of x. Putting the values of P(x)

and Q(x) from equation (4.17) in equation (4.16) and performing the integrations

analytically we get,

G(x,t)=G(xo,t)exp[—%(l+d+2e)(x_xo)](x_z)4a/b)ma } {(M}wb

a +bx0)'"x°

( 4 b }{-l/b—(lll—l/Af+C/—d-e)+a/b2(1+d+2e)}
X

, 4.18
a+bx, (4.18)
- N
where,a=1+—4—,b:i+—l—,cf=£———f—,d=1+ and
9K 3 9K 12 18
1
e= ——+ —
2 9K
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Instead of neglecting the higher order terms O(xz) from the equation (4.5) as is done
in equation (4.6), let us retain the second term of Taylor expansion series (4.5) and
neglect higher order terms O(x3 ) . Then G(x/ a),t) can be approximated for low-x as

[55),

G(x/w,t) = G(x,t) +xiuk Glx (i } o Gx, ) (4.19)
k=1 ‘

k=i

Putting equations (4.3) and (4.19) in equation (4.2) and performing u - integrations

we obtain,
2
I, = R(x)G(x,1)+ S(x)ﬂ;a(—"’—’lJr T (x)i-g—(f’—’—), (4.20)
X X

where,R(x) and § (x) are defined by equations (4.8) and (4.9) respectively aﬁd T(x)

is given by,

1-x w 2, 2
T(x)==x2 I u(l - a +1-u+_2_1+u du .
5 l-u u 9K 1-u

It does not need to calculate explicitly the value of T(x) as a function of x for the

N~

reason which will be clear shortly. Using equation (4.20) in equation (4.1) we get

0G(x,t) At { ()G (x.1)+ 0(x )aG(x 0, T(x)ﬁfG_(xi)}zo, 4.21)

ot Ox Ox?

where P(x) and Q(x) are defined by equation (4.11). The equation (4.21) is a second

order partial differential equation which can be solved by Monge’s method [40].

According to this method the solution of second order partial differential equation
Rr+Ss+Tt=V (4.22)
can be obtained from the subsidiary equations

Rdy?~Sdedy +Tdx*=0 and Rdpdy+Tdgdx—Vdxdy=0,

where, R,S,T,V are functions of x, y,z, p and ¢. Here z, p,q,r,s and ¢ are defined

as follows:

z=ony), p=2, ¢=Z& 9%z _p  _2z _op_ &
XY ooP ax) q ays axz 6x’ axay ay Py
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Comparing equation (4.21) with equation (4.22) we get, R=A4,Y (x), §=0,T=0and

V=t.——aGa(j’t) A,0(x)—=*

0G (x,t
( ) - A, P(x)G(x,2).
Substituting the values of R,S,7 and V in subsidiary equations we obtain ultimately

V =0, which gives,

, 96 (x.1) 3G (x,1) 4G (x t)

” AQ()

~ A P(x)G(x,1)=0,

which is exactly the equation (4.10). This equation has been solved earlier and now it
is clear that the introduction of the second order terms does not modify the solutions

equation (4.15) or (4.16).

4.2. Result and Discussion:

We have presented our result qualitatively in Fig.4.1 and Fig.4.2. In Fig4.1, the
result of t or Q% — evolutions of G(x, Qz) from the equation (4.15) is given. We
have taken arbitrary inputs G(x,Q§)=1, 2 and 3 for x =x,x, and x; respectively.

Similarly in Fig.4.2, the results of x — evolutions of G(x,QZ) from the equation (4.16)

(solid lines) and from the equation (4.18) (dashed lines) are presented. Integration in

the equation (4.11) is computed numerically. We have taken arbitrary inputs
G(xO,Q2)= 10 for Q% =Q} for both the sets. Different lines are due to different
K ~values, K =0.01, 0.1, 1, 10 and 100 indicated in the Fig.4.2. For the dashed
graphs, K —values are labelled as K’ for convenience. It is clear from the figures that
evolutions of gluon distribution functions G(x,QZ) depend upon inputs G(x,Qé) or

G(xo,Qz) and also upon K —values.

Eichen, Hinchliffe, Lane and Quigg (EHLQ) [S6] began with input distribution

inferred from experiment at Qg =5 GeV? and integrate the evolution equatioh
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G(X,Qz) —

1 1 1 R
10" 102 103 104 105 108

Q2GeV) ——

Fig.4.1: Q2 evolutions of G(x,Q?) from equation (4.15). Arbitrary inputs G(x,Qe?) = 1, 2 and 3
are taken for x = x1, x2 and x3 respectively.

numerically. They started with the data of CDHS neutrino experiment [57] at CERN.

Gluon distribution is determined indirectly and parametrized as
Glx, 02 )= (2.62+9.17x)(1 - x)*°

with R=0,/0,;,=0.1 and A =200 MeV at O =5 GeV'?. This is Set—1. Under

the assumption that R =0,/0; has the behaviour prescribed by QCD, gluon is

parametrized as
Glx,0%)=(1.75+15.57 x)(1 - x)*®

with A =290 MeV at Qg =5 GeV?. This is Set-2. The calculated 0® — dependence

of G(x,Qz) for Set-1 is shown in Fig. 4.3 (a) by dashed lines for x values

107,107,107 and 107 as indicated in the figure.
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10%

104

-
(=]
<

G(x,Q) —>

108

10

/
100 - T 1 ] 1
106 105 104 103 10-2 10-1

x—%

Fig.4.2: x - evolutions of G(x,Q?) from the equation (4.16) (solid lines) and (4.18) (dashed
lines). Arbitrary input G(x0,Q2) = 10 for Q2= Q215 taken. K or K' = 0.01, 0.1, 1, 10 and 100.

The expected growth of the distributions at low-x is apparent. Our resuits from the

equation (4.15) are given in the figure by solid lines for the same values of x. Inputs
are taken from the corresponding values at 10 GeV? from the parametrization. The

corresponding result for Set-2 is shown in Fig. 4.3 (b). Again to explore the

uncertainties in low-x region EHLQ consider two modifications of Set-1 as follows:
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10
(@)
. X =
— o =1 10+
102 - e ——
102
10! 102
100 |- ——___——————~10-'
= 10 1 1 | 1
X 10°
(O] (b) X =
L -4
- —1 10
-
-
—
w - -
102
10 L 102
100 | ——_-—_"—'———-——10.1
101 | 1 1 1
10 102 103 104 108 10¢

Q2(GeV?)—>
Fig.4.3(a) and Fig.4.3(b) Q? - evolutions of G(x,Q) for EHLQ Set-1 and Set-2
respectively(dashed lines) for x = 101, 102, 103 and 104 Results from equation {4 15) (sohd

lines) are also given for same values of x Inputs are taken from the corresponding values at
10 GeV2 from the parametnzation

G(x,02)=(262+9.17)(1-xf°  for x > 001,

and
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G(x,Qg): (0.444 x)™° ~1.886 for x<0.01.

(25.56x)°°

The results of these changes are presented in Fig. 4.4 (a) and Fig. 4.4 (b) for Set-1 (a)
and Set-1 (b) respectively for x = 1072,107% and 107* along with our corresponding

predictions. Diemoz, Ferroni, Longo and Martineli (DFLM) [58,59] also proceed in

the same manner to parametrize the data from the neutrino experiments BEBC'85
[60], CCFRR’83 [61], CHARM’83 [62] and CDHS’83 [57]} at Q2 =10 GeV' 2. For the

set DFLM-2 they consider gluon function to be
G(x,0?) ~ (1-0.18x)(1 - x)**,

with A _ =300 MeV. Here the next to leading order QCD calculation is performed.
MS

The result is given in Fig. 4.5 for x = 107,107, 10~ and 107* by dashed lines Our

results from the equation (4.15) is given by solid lines taking inputs as before.

-

The role of absorptive corrections in the low-x behaviour of deep inelastic gluon
distribution functions G(x,QZ) is widely discussed now [63] due to the new

generation of accelerators. Kim and Ryskin estimated [64] the non-linear absorption
corrections with the parametrization used in semihard phenomenology [65]. As non-

linear absorption effects are essentially at very low-x only [2], they decided to use the

standard GLDAP evolution equation [16,66,67] in region of interest (x>107°,

0?<10° GeV'?), that is, x>x,(0?), where, Inx, = (1/12.7)in2(Q?/A?). But in this

case they are to add a new boundary condition
G(x,0?)=a0? (A)
on line x = x, (Q2 ), where, a = G(xo ,0° )Q2 , which is fixed by the initial condition

G(x)= All-x*)x 0 (B)
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1
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10+ 1 1 ] 1
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Fig.4.4(a) and Fig.44(b) Q2 - evolutions of G(x,Q?) for EHLQ Set-1(a) and Set-1(b)
respectively (dashed lines) for x = 10, 102 103 and 104 along with the corresponding
predictions (solid ines) from equation (4 15) as indicated in Fig 4 3(a) and Fig 4 3(b)

at Qi =4 GeV'? The coefficient 4 is fixed by the normalization IG(x)dx =0.55

and o, = (l/n)Nca S(Q; ) .41n2 corresponds to the QCD pomeron singularity given
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109
102 -
101
1001 *—~—_—-——"-““——'—--—_~104
10+ 1 ) | . 1

10" 102 103 10+ 108 108

Q%(GeVZ) —>
Fig.4.5 QZ - evolutions of G(x,Q?) for DFLM-2 (dashed hines) for x = 10!, 102, 103 and 10+

along with the DFLM-1 corresponding predictions (solid lines) from equation (4 15) as
indicated in Fig 4 3(a) and Fig 4 3(b)

by the summation of leading-log contributions (aslnl) [20), N. =3 be the
X

number of colours. Absorption corrections reveal itself due to this new boundary
condition. Kim and Ryskin obtained numerical solution of linear GLDAP evolution
equation. The boundary condition corresponds to a strong correlation between gluons
inside the proton. Gluons form groups in small Hot Spots [65,30] with radius

R,~02 F, at x=1/3. If gluons are distributed uniformly inside the proton. The
screening would be smaller and non-linear effect reveals itself at lower-x. For this

case R, ~0.7 F, =R, at x, =0.0035. In the Fig. 4.6(a), the x-dependence of gluon

distribution functions G{x,0?) at ©? =10,100 and 1000 GeV'> is given by the

curves 1,4,7; 2,5,8 and 3, 6, 9 respectively.
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@

logiex ——

Fig.4.6(a) x - evolutions of G(x,Q2) at Q2 = 10, 100 and 1000 GeV? are given by curves 1, 4, !
7, 2,5,8 and 3, 6, 9 respectively Solid curves are GLDAP evolution, long-dashed curves take

into account the absorption corrections through (A) for Rs = 02 Fm, short dashed are the

same for Rs = R. The shaded area 1s the prediction from equation (4 16) with upper and
lower boundaries corresponding to K = 1 and 100 respectively

Fig.4.6(b) Difference between GLDAP (solid curves) and GLR (dashed curves) equations.
The curves 1, 4; 2, 5 and 3, 6 correspond to Q2 = 10, 100 and 1000 GeV2 respectively Inital

conditions (A) and (B) are shown by dotted and dot-dashed curves respectively The shaded
areas same as Iin Fig 4 6(a)

Solid curves are the ordinary linear GLDAP evolution equation; long dashed curves

take into account the absorption corrections through the new boundary condition (4)
for R,~ 0.2 F,. Short dashed is the same for R,~R,. Here A =200 MeV . In the

Fig. 4.6(b) the difference between linear (solid curves) GLDAP and non-linear
(dashed curves) GLR [2] evolution is given. The curves 1, 4; 2, S and 3, 6 correspond

to 0? =10,100 and 1000 GeV? respectively. The new and old initial conditions (A)
and (B) at Q] =4 GeV'? are shown by dotted and dot-dashed curves respectively
Here A =200 MeV . In both the figures, the dashed areas are our predictions from the

equation (4.16) with upper and lower boundaries corresponding to K =1 and 100
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respectively. In both cases gluon distribution functions G(xo,Qz) for linear GLDAP

equation at x, = 1072 are taken as inputs; because, it is almost same for all curves.

In the leading log(l/ x) approximation of QCD, it is expected that the gluon

distribution will grow indefinitely as,
G(x,.QZ) ~ 7t (C)

in the low-x limit [68] with A =~ 0.5. This increase with decreasing x, will of course

eventually be tamed by screening corrections which give rise to non-linear terms in
the QCD evolution equations. The approximate framework is provided by the BKFL
equation [8,69] with the addition of the non-linear shadowing term. This is known as

GLR equation. The radius parameter R in the shadowing term characterises the area
7 R? in which the gluons are concentrated within the proton. We would expect R to
be approximately equal to the radius of the proton that is R =~ 5 GeV ™', although it
has been argued that the gluons may be concentrated in Hot Spots within the proton.
So, the results for R =2 GeV ™' are also shown. The non-linear integro-differential
BKFL equation can now be solved numerically [68] with the analysis entirely
confined to the low-x region x<x,. It is informative to compare the above results

with the gluon distributions to Set- B_ of partons obtained in the Kwiecinski, Martin,

Roberts and Stirling (KMRS) [70] global structure function analysis which attempted

to incorporate both the BKFL and shadowing effects, albeit in an approximate
manner. KMRS evolved the starting distributions up from Q% =4 GeV'? using the
next-to-leading order GLDAP equations. In Fig. 4.7 the continuous curves are the

. values of G(x,QZ) determined by solving the BKFL equation for Q% =100 and
1000 GeV'?.

The dashed curves are G(x,QZ) of Set-B_ of the KMRS next-to-leading order

structure function analysis. In each case three curves are in descending order the

solution with shadowing neglected, and the solutions with the shadowing term
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10 Q2= 100 GeV? Q2=1000 Ge\V?

102

10"

R 104 Jos 102 103 0+ 05 102
X —>

Fig.4.7 x - evolutions of G(x,Q2) of BKFL equation for Q2 = 100 and 1000 GeV? (solid curves)
The dashed curves are G(x,Q2) of KMRS Set-B_ In each case three curves in descending
order are the solutions with shadowing neglected, with R = 5 GeV' and R = 2 GeV'!
respectively The shaded area 1s same as in Fig. 4 6(a)

/
included with R =5GeV ™' and R =2 GeV ™' respectively. The shaded areas are our
predictions described before. G(x,Qz) at x=10"2 for BKFL equation are taken as

inputs. They are almost same for all the curves.

4.3. Conclusion:

In this chapter, we obtain ¢ and x-evolutions of gluon distribution function at low-x
from GLDAP evolution equation. Comparison is made with the prediction of BKFL
as well as GLR equations. We also make predictions for the HERA range. It is clear
from the figures that our results for ¢ —evolutions of gluon distribution functions

conform with those of EHLQ Set-1, EHLQ Set-2 and DFLM-2 parametrizations for

x<107%, but do not conform forx>107%. But they conform excellently with Set-1(a)
whereas differ badly with Set-1(b). The bands in all the figures gives our predictions
for x —evolutions for 1<K <100. Our predictions conform well with those of others
It can be inferred from our predictions that screening correction at very low-x is more
likely. To conclude, our simple approximate analytical solution of GLDAP evolution

equation for structure function gives satisfactory predictions in HERA range. The
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qualitative predictions of our results conform to those of several other authors.

GLDAP evolution equation in present form thus stands as a viable alternative to

BKFL and GLR predictions, at least in the x and Q* — range under study.O
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Chapter-5

GLUON DISTRIBUTION FUNCTION FROM PROTON
STRUCTURE FUNCTION

The measurements of proton structure function by Deep Inelastic Scattering (DIS)
processes in the low-x region where x is the Bjorken variable have opened a new era

in parton density measurements [42]. Gluon distribution can not be measured directly
from experiments. It is therefore important to measure gluon distribution G(x,QZ)
indirectly from the proton structure function F, ()c,Q2 ) A few number of papers have
already been published [43-45,48,49,50,52,53] in this connection. Here we present an
alternative method to relate G(x,Qz) with proton structure function and their
derivatives with respect to InQ’, OF, (x,QZ)/ dlnQ*and with respect to

x, OF, (x,QZ)/ Ox for fixed values of QZ. Our method is more general with less

approximation, simpler and mathematically more transparent.

5.1. Theory:

It is shown in the references [45,52] that the gluon distribution at low-x can be
obtained by analysing the longitudinal structure function. Similarly it is also shown in

the reference [48,49,53] that this distribution can be calculated from the proton

structure function F, (x,QZ) and their differential coefficient with respect to
InQ?, oF, (x,QZ)/aanz. The basic idea lies on the fact that the scaling violation of

F, (x,Qz) arises, at low-x, from the gluon distribution alone and does not depend on

the quark distribution. Then neglecting the quarks the leading order GLDAP evolution

equation for four flavours [49] gives

6F2()c,Q2)_5a,l"r (L 2
ot o Jo -0 Jqu(z)dz, (5.1)
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where, the splitting function is
Py (@)=27+(-z2), (5.2)

and, o, is the strong coupling constant. Now,

I (53)

We have, 1-x>z>0 = |z|< 1 which implies that the expansion equation (5.3) is

convergent. Now by the Taylor expansion [39] we get,

G( x ,Q2)=G(X+xizk,Q2J
1-z k=1

= 3G(x0?) 1 (& ) 0%G(x,0?
=G(x,Q2)+x;szgxi)+Ex2[§zk] —%:Z—Q—)+O(x3)

where, O(x3) are the higher order terms. Neglecting the terms containing x2 and

higher orders O(x3) for simplicity, we get,

G( o sz:G(x+xizk,Q2jEG(x,Q2)+xiz"a_G1;’L2). (5.4)
k=1 k=1 x

1-z’

But as a matter of fact, we can not neglect the higher order terms, as these terms are

not small in Regge-like behaviour [4,49] G(x)= x-a,(o’) or in Double-logarithmical

behaviour [49,51] G(x)zexp(O.S,/cSpiéz iln(l/x)) for gluon at low-x. Here

6, (Qz) is a Q? — dependent parameter where p = s (singlet quark ) or g (gluon). On
the otherhand, it has been shown that this Taylor expansion method is successfully

applied in calculating Q% —evolution of proton structure functions [36] at low-x with
reasonable phenomenological success. Bora and Choudhury [48] and also Prytz
[43,44] has already applied Taylor expansion method to calculate gluon distributions
from proton structure functions and scaling violations of them. But our method is

more general and transparent with less approximation.
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Putting equations (5.2) and (5.4) in equation (5.1) and performing z - integrations we
get,

aFZLQ )_sa, 4(x)G(x,0% )+ B( )_ﬁ___)ac; X0 (5.5)

dlnQ* Or

where,

A(x)= (/3)1- x)(2x2 - x+2)
and
B(x)=(1/3)x (- x)(- 2x? + 4x - 5)— xlnx.

)

Here we used the identity [39] Z

get,

607} B(x) 8G(x,0?) o aFZLQ ) 56

A(x)”  ox 5a,.A(x) 8InQ?

at constant Q% = Q¢ where, G()c,Q2 )= G(x) and oF, (x,QZ)/aln 0% =K(x).
And so, equation (5.6) gives,

G(x)+ B(x)aG(x) - 97[K(x) .

(5.7)

! Since the ratio B(x)/ A(x) is very small at low-x, lim _, B(x)/ A(x)= 0, the left

hand side of equation (5.7) can be written as

Glx)+ _(x_) )zG(Y)JrB(x) 6G(x)+l[B(x)J2 26, _ G[HB(X))

Alx) 8 Alx) a2l 4(x)) ox? A(x)
by Taylor expansion series [39] . Thus from equation (5.7) we get,
ol s B(x) - or .K(x) . (5.8)
Alx)) Sa,  A(x)

The equation (5.8) is the relation between the gluon distribution G(x’,QZ) at

x' = x+B(x)/ A(x) and oF,(x,0?)/aInQ? at x, at the fixed values of O = Q7.

This is our main result.
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5.2. Results and Discussion:

We use HERA data taken by H1 and ZEUS collaborations from the Table-1 [71] and
Table-2 [72] respectively. In these tables, the values of OF), (x,Qz)/ dlnQ? are listed
for a range of x —values at Q> =20GeV*. Similarly we use parametrizations of the
recent New Muon Collaboration (NMC) proton structure function data [73] from a
15- parameter function [73]. Here we calculate the values of OF, (x,Qz)/ onQ* at
0? =40 GeV?. Moreover recent HERA data are also parametrized by H1 and ZEUS
collaborations by some appropriate functions. In these cases also we calculate
an(x,Qz)/ dlnQ? at Q? =20 GeV?. From all these data or parametrizations we
calculate the structure functions F, (x,QZ) or scaling violations of structure functions
with respect to InQ> and apply them in the equation (5.8) to calculate the gluon

distribution functions G(x’ ,QZ) at x' = x+ B(x)/ A(x).

Table-1
The values of OF, (x,Qz)/ dlnQ* for different low values of x from HERA data

given by H1 collaboration at Q> =20 GeV’.o and o, are statistical and

suat. syst

systematic errors respectively.

x OF, /1In Q> O s e
0.000383 0.51 0.14 0.09
0.000562 0.65 0.18 0.10
0.000825 0.46 0.06 0.06
0.00133 0.28 0.06 0.11
0.00237 0.21 0.03 0.06
0.00421 0.20 0.03 0.03
0.0075 0.08 0.02 0.03
0.0133 0.06 0.02 0.02

Reference [71): S. Aid et. al, H1 Collaboration, Phys. Lett. B 354 (1995) 494.
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Table-2
The values of OF, (x,QZ)/ dlnQ? for different low values of x from HERA data

given by ZEUS collaboration at 0? =20 GeV?. O, and o, are statistical and

systematic errors respectively.

x oF,/InQ’ O O
0.00085 0.45 0.03 +0.05, -0.10
0.00155 0.30 0.03 +0.09, -0.30
0.00268 0.25 0.02 +0.07, -0.09
0.00465 0.23 0.03 +0.02, -0.05

Reference [72): M. Dernck et. al., ZEUS collaboration, Phys. Lett. B 364 (1995) 576.

The 15-parameter function to describe the recent NMC proton structure function data

is,

B(x)
02)= 4l I Q2 /A? C(x)
Fy(x,0%)= 4( )Ln T } .{1+——Q2 }

Here, 0> =20 GeV?, A =0.250 GeV,

A(x) = x (1= ) {ay + a1 x)+ a5l - x) + a6 (1~ x)* + a5 (1 x)*},
B(x)=b, +b,x+ b, /(x +b,)

and

C(x)=cx+c,x? +c,x* +c,x*.
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Table-3
15-parameters for F’ (x,Qz) and F (x,Q2 )
Parameter | fp (x,Q2 ) Fe ( 0> )
Middle Value| Upper Value | Lower Value | Middle Value| Upper Value | Lower Value
a -0.02778 | -0.05711 |-0.01705 |-0.4858 -0.04715 | -0.02732
az 2.926 2.887 2.851 2.863 2.814 2.676
as 1.0362 0.998 0.8213 0.8367 0.7286 0.3966
as -1.84 -1.758 -1.156 -2.532 -2.151 -0.608
as 8.123 7.89 6.836 9.145 8.662 4.946
as -13.074 -12.696 -11.681 -12.504 -12.258 -7.994
az 6.215 5.992 5.645 5.473 5.452 3.686
b, 0.285 0.247 0.325 -0.008 -0.048 0.141
by -2.694 -2.611 -2.767 -2.227 -2.114 -2.464
bs 0.0188 0.2043 0.0148 0.0551 0.0672 0.0299
bs 0.0274 0.0307 0.0226 0.057 0.0677 0.0396
cl -1.413 -1.348 -1.542 -1.509 -1.57 -2.128
c 9.366 8.548 10.549 8.553 9.515 14.378
c3 -37.79 -35.01 -40.81 -31.2 -34.94 -47.76
s 47.1 44 .43 49.12 39.98 44.42 53.63
Reference (73]: M. Arneodo at. al., NMC,Phys. Lett. B 364 (1995) 107.
Table-4

Recent HERA data in parametrized by H1 collaboration as
Fy(x,0%)=|ax" + ex’ (1 + vz )In @ + £ 102 0*) J1 - )g .
Parameter— a b ¢ d e / g

Value— 3.07 0.75 0.14 -0.19 -2.93 -0.05 3.65

Reference [74]: T. Ahmed et al, H1 collaboration, Nucl. Phys. B 439 (1995) 471.
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Table-5
Recent HERA data is parametrized by ZEUS collaboration as

2
F, :(l—x")b[c+a' x(e+fl°g'°Q )] where, Q% —range is from 8.5GeV? to

500 GeV'?.
a b c d e f
2 4 0.35 0.017 -0.35 -0.16

Reference [75]: M. Derrick et al, ZEUS collaboration, DESY 94-143, (1994).

For our calculation, strong coupling constant o, was taken from a next-to-leading

order fit [76] to F, data which yields a, =0.180+0.008 at Q% =50 Gel>

corresponding to A(:/)s =0.263+0.042 and as(Mzz)=0.113i'0.005. This value of
a, agrees with one given by Particle Data Group [77]. But in our practical

calculations we neglect the errors of o, and A which are rather small.

In the Fig.5.1, we calculate G(x’ ) ( equation (5.8) ) for x’ values which varies from
5.52x107 to 2.27x10° for highest and lowest values of x under consideration
respectively. The gluon distribution increases from = 3.5 t06.5 when x decreases
from the highest to the lowest values under consideration. But gluon distribution
decreases slightly (<1%) for a particular values of x when Q7 increases from
40 GeV'? to 100 GeV*. We do not compare the result of NMC data with those of

mainly HERA, because, their Q% and x - ranges are different.

In the Fig.5.2, the gluon distribution obtained by our method (equation (5.8)) from
HERA data measured by H1 collaboration [71] is presented at Q =20 GeV'>. The
middle line is the result without considering any error in the data. The upper and
lower lines are the results adding and subtracting algebraically the statistical and the
systematic errors with the data respectively, and thereby calculating the gluon
distributions. These two lines are symmetric about the middle lines and positive and

negative errors are equal. The area bounded by these lines gives the result with
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Logox
Fig.5.1 Gluon distnbution obtaned by our method {equation (58)) for NMC proton
parametnzation (15-parameter function -Table-3) at Q2 = 40 GeV? The middle, upper and
lower lines are the results (a)without considenng any error, (b)adding algebraically the
statistical and systematic errors and (c)subtracting algebraically the statistical and systematic
" errors respectively
50
45 +
40
35 -
30 -

0 4 A 'y y d L
L] L] LJ 1 L] L] 1]

-2.404 -2.262 2421 -1.949 -1.744 -1.546 -1.352 -1.169
Logqex

Fig.5.2 Same result as in Fig 5 1 (equation(5 8)) for HERA proton data by H1 collaboration
(Table-1) at Q2 = 20 GeV?
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maximum error. The x-values in the data ranges from the highest value 1.33x107% to

the lowest value 3.83x107*. The corresponding x’ values are 6.81x107> and

3.948x107 respectively, and also gluon distributions are =~3.0 and =24.0

respectively for data without considering any error. Here also gluon distribution
increases when x decreases except the lowest value when gluon distribution decreases.
But the rate of increment for HERA data measured by H1 collaboration is much

higher than that of NMC data.

In Fig.5.3 the same thing is presented for HERA data measured by ZEUS
collaboration [72] at Q* =20 GeV’.

30
-=— Middle
! —e—Upper
25 - —+ Lower
20 4

G(x,Q?
r

—

5 -
0 t t
-2.111 -1.886 Logex -1.701 -1.512

Fig.5.3 Same result as in Fig51 (equation (58)) for HERA proton data by ZEUS
collaboration (Table-2) at Q2 = 20 GeV?

Here the x-values in the data ranges from the highest value 4.65x107 to the lowest

value 8.5x107*. The corresponding x' values are 3.077x1072 and 7.752x107°

respectively and also gluon distributions are =~10.9 and are =~ 21.2 respectively for
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data without considering any error. We see, in this case also, gluon distribution
increases when x decreases. And the rate of increment is slightly higher to that of H1

collaboration in the x-range considered, but much higher than that of NMC data.

In the Fig.5.4 comparison of gluon distributions by our method (equation (5.8)) for
HERA proton data by H1 and ZEUS parametrizations (Table-4 and Table-5

respectively) is presented at Q° = 20 GeV*.

10000

- = H1
—=—ZEUS
—e— MRS(G)

1000 1

10 -

1 : + ' :

-5.544 -4.176 -3.802 -2.909 -2.052 -1.258
Logox

Fig.5.4 Companson of gluon distributions by our method (Sarma and Medhi - equation (5 8))
for HERA proton data by H1 (dashed line) and ZEUS (sold line) parametnzation (Table-4 and
Table-5 respectively) with MRS(G) [50] input gluon distribution (thin solid lines with solid
circles) at Q2 = 20 GeV?

The x range used by H1 collaboration is 10™< x<1 for Q? range 4 GeV?<Q’<
2000 GeV?. This parametrization also covers the F” data from the NMC and
BCDMS experiments. Similarly the x range used by ZEUS collaboration is up to

small values =107* for all values of Q* under consideration But it will also cover

the high values of x from NMC collaboration. It is seen from the figure that as usual

when x decreases gluon distribution increases, but in different rates.
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In the Fig5.5, comparison of gluon distribution from NMC proton data
parametrization (Table-3) middle value only by our method (equation (5.8), line with
solid diamonds), Bora and Choudhury method (line with solid squares), and Pryz

method (line with solid triangles) at Q% =40 GeV? is presented.

2
- SARMA

0+ -=-BORA
——PRYTZ

8--

61

4-1-

2+

0 et —t —tt -ttt

69 67 -59 -57 -56 49 47 42 -39 -38 -3.7 -29 -29 -27 -21 19 17 12

Logiox

Fig.5.5 Same result as in Fig 5 4 for NMC proton parametrnzation (Table-3) middle value only

by Sarma and Medhi (equation(5 8)), Bora and Choudhury 48] and Prytz [43,44) methods at
Q2 =40 GeV2

1

If we apply proton structure functions and their scaling violations at a particular x-

value, the calculated gluon distributions will be in different x-values for these

different methods. They are x' = x+B(x)/ 4(x) in our method,

X =x+ [B(x)/ A(x)+ B(x)].x in Bora and Choudhury method and x, = 2x in Prytz
method. Thus the shifting of the arguments in gluon distributions is appreciable in our
method. For all the methods, gluon distribution increases when x decreases except for
the last data point for which it decreases. But rate of increment is different for
different methods. The values of gluon distributions are comparable but rate of

increment is highest in our method and lowest in Bora and Choudhury method.
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In Fig.5.6, the same thing as in Fig.5.5 is presented for HERA data middle value only
measured by H1 collaboration (Table-1) at Q* = 20 GeV'>.

35
304
25 ——SARMA
-=—BORA
- PRYTZ
20 + - KOTIKOV
15 4
10--
5--
0 Fp——re— e}
R R Y R S S S S R A S S A
N N R AT AT SN A A A e
s 27 A g 0¥ gV 08 ¥ P g N INSN AN SN

Fig.5.6: Same result as in Fig.5.5 for HERA proton data by H1 collaboration (Table-1) by
various methods (Kotikov and Parente method) [49,52] at Q? = 20 GeV2. '

Here results by an extra method, Kotikov and Parente method [49,52] are also
included. The x- values under consideration are same as in Fig.5.2. But the arguments
of the gluon distributions calculated are different for different methods as discussed

earlier, except for Kotikov and Parente method for which the arguments do not
change. Accordingly, for the highest and the lowest x values, x’ values are 6.81x107

and 3.948x107%; x, values are 1.8x107° and 5.16x10™ and x, values are

2.66x107 and 7.66x10™* respectively. For all the methods gluon distribution
increases when x decreases except for the last data point for which it decreases. But
rate of increment is different for different methods. The values of gluon distributions
are comparable but rate of increment is highest in our method and lowest in Kotikov
and Parente method. It is intermediate in other two methods of which rate of Prytz

method is slightly higher than that of Bora and Choudhury method.
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In Fig.5.7 also, the same thing as in Fig.5.5 is presented for HERA data

parametrization (Table- 4) measured by H1 collaboration [74] at Q* = 20 GeV*.

G(x,Q%)

160
- SARMA
140 + . ~-a-BORA
- PRYTZ
120 4 ——MRS(G)
100 +
80 -
60 -
40 -
20 -
0
% %° »° a® a° a¥ A¥ N

Fig.5.7: Same result as in Fig.5.5 for HERA proton parametrization by H1 colfaboration
(Table-4) by various methods at Q2 = 20 GeV2.

The x values under consideration are same as before in Fig.5.1. Accordingly shifted
arguments of gluon distributions for different methods are exactly same as in Fig.5.5.
When x decreases, gluon distribution increases for all the methods as usual, but with
different rates for different methods as before. The growth rate is highest in our
method and lowest in Bora and Choudhury method. In the same figure, we compare

the result with Martin, Roberts, Stirling (MRS(G)) [50] input gluon distribution (solid
line with solid circles) in the same Q? - value. MRS(G) distribution is close to our

method.

In Fig.5.8, comparison of gluon distributions by various methods exactly same way as

in Fig.5.6 1s presented for HERA data middle value (Table-2) measured by ZEUS
collaboration [72] at O =20 GeV?.
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Fig.5.8: Same result as Fig.5.6 for proton data by ZEUS collaboration (Table-2) by various
methods at Q2 = 20 GeV2.

The x-values under consideration is same as in Fig.5.3. But the arguments of the

gluon distributions calculated are different for different methods as discussed earlier.
Accordingly, for the highest and lowest x values x values are 3.077x107* and

7.752x1073, x; values are 6.2x107 and 1.13x1073, and x, values are 9.3x107°

and 1.7x107° respectively. The arguments of gluon distribution for Kotikov and
Parente method are same as x-values under consideration. The gluon distribution
increases when x decreases for all the methods as before, but the rate of increment is
highest in our method and lowest in Kotikov ans Parente method. The rates are
intermediate in other two methods of which rate of Prytz method is higher than that of
Bora and Choudhury method.

In Fig.5.9, the same thing as Fig.5.7 is presented for HERA data prametrization
(Table —5) measured by ZEUS collaboration [75] at Q* =20 GeV?’.
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Fig.5.9: Same fesult as in Fig.5.7 for HERA proton parametrization by ZEUS collaboration
(Table-5) by various methods at Q2 = 20 GeV?

The x values under consideration are same as before as in Fig.5.1 except the lowest x

values which is 107 here instead of =107 in the previous cases. Accordingly, the

shifted arguments are also same as in Fig.5.5 with suitable modification for the lowest
values. When x decreases gluon distribution increases as before with different rates.
This is highest in our method and lowest in Bora and Choudhury method. In the same
figure, we compare the result with MRS(G) [S0] input gluon distribution in the same
Q? - value. But it is far below than the gluon distribution calculated from ZEUS
HERA data by other methods. It is because the rate of increment of HERA ZEUS data
when x decreases is very high which makes the calculated gluon distributions also

very high.

5.3 Conclusion:

In this chapter, we present an alternative method than other methods [43-

45,48,49,52,53] to extract gluon distribution G(x,QZ) from the measurement of low—
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x proton structure function Fz(x,Qz) and their differential coefficients

OF, (x,Qz)/ dlnQ* with respect to InQ?. For calculation of gluon distribution from

proton structure function at low—x, we use HERA data measured by H1 [71] and
ZEUS {72] collaborations, HERA data parametrizations presented by H1 {74} and
ZEUS [75] collaborations and NMC data parametrizations [73]. Of course, the last
parametrization includes SLAC (78] and BCDMS [79] low—x data also. In our
method, gluon from NMC data [73] is appreciably small, it is almost one fifth of

HERA data measured by H1 and ZEUS collaborations at x=~107> . But if we compare
with HERA data parametrizations, we will get slightly different result. In our method,
gluon from NMC data parametrizations is almost one third than that of H1 and ZEUS
HERA data parametrizations at x=~107>. But it is almost one tenth of that of HI
parametrization and almost one thousandth of that of ZEUS parametrrization. In our

method, gluon distributions calculated from direct HERA data measured by H! and

ZEUS collaborations up to x=107> are almost in the same order. Gluon distribution
from the HERA data parametrizations by H1 and ZEUS collaborations up to x=10">

are also of the same order to them and mutually are also same. But after x=10">

when x decreases the rate of increment of ZEUS parametrization is much higher than

that of H1 and gluon distribution from the first parametrization becomes also hundred

times of the second one at x~1077.

We compared our result with other methods, Bora and Choudhury, Prytz, Ktikov and
Parente, and MRS(G) input gluon distribution. The general trend is that gluon
distribution G(x,Qz) increases when x decreases. But the rate of increment of gluon
distribution calculated by our method is in general higher than those of other methods.
The result of} Kotikov and Parente method are the lowest. The result of two other
methods are the intermediate ones between these two methods of which the result of
Prytz method is higher than that of Bora and Choudhury method. Results from our
method are closed to those from Prytz method. This is because Bora and Choudhury
method is a crude approximation as they include only one term of the infinite series

x/(l - z), whereas we include all the infinite terms. So the other terms enhance the
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contribution in our method. In our method, the first order approximation in Taylor
expansion of G(x/(l—z),Qz) i1s used; that is only terms having first order

differentiation 6G(x,Q2 )/ Ox is used.0)
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Chapter-6

GLUON DISTRIBUTION FUNCTION FROM DEUTERON
STRUCTURE FUNCTION

We present some simple methods to find gluon distribution from analysis of deuteron
structure function data at moderately low-x. Here we use the leading order GLDAP
evolution equation and New Muon Collaboratio (NMC) deuteron structure function

data to extract gluon distribution. We also compare our results with those of other

authors. Here we present two alternative methods to relate gluon distribution G(x,QZ)

with deuteron F, (x,Qz) structure function and their differential coefficients with
respect to InQ? and x, that is, 9F,(x,02)/AnQ? and 9F,(x,Q?)/dx for fixed

values of Q. We report for the first time some methods to extract gluon distribution

from deuteron structure function data. Our methods are simpler with less
approximation and more transparent. Of course, there exist some established methods
[80] for extracting gluon distribution from data based on global fits. In these methods,
momentum distribution and other constraints [81] are used to get gluon distribution.
But our methods are based on the direct solution of QCD evolution equation which

may be some good alternatives.

6.1. Theory:

In the leading order analysis, deuteron structure function is directly related to the
singlet structure function {38]. On the otherhand, the differential coefficient of singlet
structure function F; (x,Qz) with respect to InQ?, that is, 9F; (.vc,Qz)/aan2 has a
relation with singlet structure function itself as well as gluon distribution function
[38]. Thus it is possible to calculate gluon distribution from singlet structure function

or ultimately from deuteron structure function also. The leading order GLDAP

evolution equation for singlet structure function [38] is given by
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S A I
—anafx’[)‘Tf[{mma -2 [ (2 st len-=. )
I-x
—2F (x,1) }+%Nf I(2zz —22+1)G(x/1—z, t)dz ]:0, (6.1
0

where, t = ln(Q2 /Az) and A, = 4/(33 - 2N/), N, being the number of flavours

and A isthe QCD cut off parameter. Now,

=xi zk=x+xi zk . (6.2)

k=0 k=1
We have, 1-x>z> 0 =|z|< 1 which implies that the expansion equation (6.2) is

convergent. Now by the Taylor expansion [39] we get,

X 2 OF; (x,t
Fzs(l_z,t):FZS(x,t)+x;zk—%—) . (6.3)
and
GZS( X ,z) o)+ xY 2 "aGZ ”) (6.4)

-z k=

neglecting the higher order terms.

But as a matter of fact, we cannot neglect the higher order terms for singlet structure
function or gluon distribution function as they may have some contribution. On the
otherhand, it has been shown that this Taylor expansion method is successfully
applied in calculating Q° —evolution [35,36] or x-—evolution [34] of structure
function with excellent phenomenological success. Some authors [43,44] -again
applied this method to extract gluon distribution from proton structure function. [t was
suggested that [34], one possible reason for success of this method may be due to the

simplification of QCD processes at low-x for momentum constraints.

Putting equations (6.3) and (6.4) in equation (6.1) and performing z-integrations we

get,
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OF S (x,1)
ox

aza;(tx,t)_ﬁtf_{Asmpf(x,mBs<x>c<x,r>+cs<x>+

+ Dg (,r)gg(—"’—’)J= 0, (6.5)

Ox

where,
A5()=3+41n( - x)+ 2 {1 - xX-2+ (0 -x)2)},

B (x)= (12N {0~ e+ @/3)G - x) )},
Cs(x)=2x{In(t/x)+ (- x)(0 - (- x)2)}

and

D (x)=B/2)N {in(1/x)- (1~ Nt + (213X - ) ).

Now, we can have two methods to extract gluon distributions:

First Method:

At very low-x limit, x — 0, the functions Ag(x), Cg(x) and D(x) become vanished

and B (r) = N,. Equation (6.5) then becomes simplified and we get,

OFy (x,1) _ Ay
_— N ) =
v t ;Gx,t)=0

t OF (x,1)
Ny ot

= G(x,t)= y (6.6)

Equation (6.6) is a very simple relation between gluon distribution function with the

differential coefficient of singlet structure function with respect to ¢.

Second Method:

Recasting equation (6.5) we get, *
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Ds(x) 3G(x,1)

G(x,t)+ B.(x) o
- 1 p ans(x”)_ 4s(x) s ; Cs(x) oF°(x, ’)
RPN ) R ety o R Sy o R (67)

Now D (x)/ B(x) is very small at low-x, lim__, D;(x)/ By (x)=0. So, applying the

Taylor expansion series we can write ,

0. Ds(0) 966n)_ (. Dsle)
O G o G( S<x>)

Thus equation (6.7) gives,

Gle' ()= K, (x).¢ ..ai’zfa(t_"ﬁ+ K,(x )%(_"‘_h K, (2)FS (x.0), 65)
where,
x' =x+ ﬁ((x; , K,(x)=;1— K,(x)= Eg and K,(x)=- Azgg

Equation (6.8) is also a simple relation between gluon distribution function with the
differential coefficients of singlet structure function with respect to ¢ and x, and with
singlet structure function itself. If we try to combine the last two terms of equation

(6.8), let us take common K, (x) from both the terms and then they reduce to

ol gt

But K,(x)/K, (x) is not small at low-x and therefore these two terms can not be

combined to one as in the case of gluon by applying Taylor expansion series.

The relation between deuteron and singlet structure function at leading order {38] is
5

FY (1) = 2 Ff (nr) = F o )—%Fz"(x,t). 6.9)

Then we get,

6Fzs(x,t)=2 oF, (x,1)
ot 5 B¢

(6.10)
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and

OF; (x,1) _ 9 0F; (x,1) :)

6.11
ox 5 Oox ( )

Putting equations (6.9), (6.10), and (6.11) in equations (6.6) and (6.8), we. get

respectively,

9t 0Ff(x,1) 6.12
G(x,t)—- 3 Afo . 5 (6.12)
and

d d
Glx' )= %{Kl (x)1.%E Zafx”) vk, (1) & 26)(:" ) 4 K, () (x,t):', (6.13)

which are our main results. From these equations it is seen that if we have deuteron

structure function and their differential coefficients with respect to ¢ and x at any x for
a fixed value of ¢ =, we can calculate gluon distribution function at x (first method)

from equation (6.12) or at x' = x+ D(x)/ B;(x) (second method) from equation
N N

(6.13) as a leading order analysis.

For analysis of our result, we use NMC 15-parameter function [73,82] which
parametrized their data for proton and deuteron structure functions for Q2 — values

from 05GeV? to 75GeV? and low-x values from 0002 to 0.6. This
parametrization can also well describe the SLAC [78] and BCDMS (79] data, and

Fermilab [83] low-x data. The function used to describe proton as well as deuteron

data is given by,

F,(x,0?)= A(x)[l-“—éQ—z—/—A;ﬂB(X) [1 ¥ C(f)] (6.14)
Q¢ /A 0

Here,

0,0 =20GeV?, A =0.250 GeV,

A(x)= xo oy +a, (1= x)+ ag(1 - x) +ag(1-x) +a,(1-x)'},

B(x)=b, +b,x+b,/(x+b,)
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and
_ 2 3 4
Clx)=cx+c,x* +¢,x* +¢,x*,

where, a,, a,, a3, a,, as, ag, a;, by, b,, by, by, ¢, ¢y, c; and ¢, are the 15-
parameters used to fit the data. Actually two different sets of these parameters are
used to describe proton and deuteron structure functions in the same equation
(equation (6.14)). Thus for the respective sets of parameters, equation (6.14) gives the

deuteron structure function as

Ff(x,0)= A(x) .[érw.[l + %.C(x)], (6.15)

where, ¢ =In(0?/A?) and t, =In{Q,?/A?). Differentiating Fy (x,f) with respect to

t and x, we get respectively,

OFy (x,) _ (fo) ~ 1)1?2" (x,1)+ A(x)(L)B(X) (6.16)

ot )

and
8(x) 1

O (x1) _ [H o4(x) , A(")H | IH(L]QM

0x t, ) Ox t, t, )] Ox |

S el awf L) e 26k (6.17)
A t, T A? ox _’ .

where,

e :(ﬂ_fl_) Ax)-x (1-x)". {"4 +2a(1- x)+3a5(1- %)} +4a,(1~x) }

Ox x 1-x
9B(x) b,
=by-—2—
0x (x+b4)
and
a—g—%)= o, +2c,x+3cyx? +4dc,x’.
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Now putting equations (6.15), (6.16) and (6.17) in equations (6.12) and (6.13), we can
easily calculate gluon distributions at x (first method) or x’ = x+ Dg(x)/ B, (x)

(second method) respectively.

6.2. Result and Discussion:

The NMC 15-parameter function ([73,82] parametrizes the NMC data for
Q? — values from 0.5 GeV'? to 75 GeV'? and low-x values from 0.002 to 0.6 which
also well describes the SLAC [78], BCDMS [79] and Fermilab [83] low-x data. As

the data range of x we use is moderately low, we will restrict our analysis values
from10 GeV* to 60 GeV? and low-x values from 0.1 to 0.001. We can not extend
our analysis to HERA low-x region [42] due to lack of deuteron F, structure function

data in that region.

In Fig.6.1(a) and Fig.6.1(b) gluon distributions obtained by our first method (equation

(6.12)) from NMC deuteron parametrization from the 15—parameter function are
represented at Q> =10 GeV'* and 60 GeV® respectively. The middle lines are the

results without considering the error. The upper and the lower lines are the results
with parameter values by adding and subtracting the statistical and systematic errors

with the middle values respectively. It has been seen that the middle lines almost
coincide with the upper ones. We calculate gluon distributions for x-values from 107
to 10™ for both Q% =10 GeV'> and Q° =60 Ge¥>. In both the cases, G(x,0?)
values increases when x decreases as expected, but G(x,QZ) 1s higher in

Q? =60 GeV’ than in Q> =10GeV? for samex, especially in lower-x side.

Moreover, rate of increment of G(x,Q ) is very high from x=10" to 107. But the

rate decreases to some extent to lower-x region.

Exactly in the similar way, in Fig.6.2(a) and Fig.6.2(b) gluon distribution obtained by

our second method (equation (6.13))from NMC deuteron parametrization from the

15 — parameter function are presented at O° =10 GeV'? and 60 GeV* respectively.
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0.004 0.04 0.1
X

Fig.6.1(a) Gluon distnbutions obtaned by our first method (equation (612)) from NMC
deuteron parametrization from the 15-parameter function at Q2 = 10 GeV2 The middle line 1s
the result without considering the error The upper and lower hnes are the results with
parameter values by adding and subtracting the statistical and systematic errors with the
middle values respectively

3
—— Medium
— - High
25 F ---Low
2

0.5
o i
0.001 0.01 0.1
X

Fig.6.1(b) Gluon distnbutions obtained by our first method {(equation (6 12) ) from NMC
deuteron parametrization from the 15- parameter function at Q2 = 60 GeV? The middle line 1s
the result without considering the error The upper and lower lines are the results with
parameter values by adding and subtracting the statistical and systematic errors with the
middle values respectively

79



Studies on Gluon Distnbution Function at Low-x -
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0 1
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X
Fig.6.2(a) Same result as in Fig 6 1(a) by our second method (equation (6 13))
3

—— Medium

05 |
o A
0.001 0.01

X
Fig.6.2(b) Same as in Fig 6 1(b) by our second method (equation (6 13))

0.1
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All discussion are exactly same as for Fig.6.1(a) and Fig.6.1(b) respectively. But
overall values of G (x, Qz) are higher in second method than in first one for any value
of x. For example, G(x,Qz) medium values are almost 20% and 25% higher in
second method than in first method for Q° =10GeV’ and Q° =60 GeV?®
respectively at x =107, This is because in our first method, we apply very low-x
approximation and neglected A (x), Cq (r) and D (x) in equation (6.5) as they are

vanishingly small at very low-x to obtain equation (6.6) and then equation (6.12). On
the otherhand, in our second method, we do not apply such approximation and
automatically the contributions from these functions have been included in equation

(6.13).

In Fig.6.3, comparison of gluon distributions obtained by Bora and Choudhury
method (BC), Prytz method , our first method (SM 1st) and our second method (SM

2nd) is presented for middle values only for Q° = 60 GeV'’.

N - T BC
.......... Prytz
N ——SM 1st
——SM 2nd
7 3
6 F
5-----------------..
N - e LT
3t T
2 \
1 - \
0 A
0.001 0.01 .

X

Fig.6.3: Comparison of gluon distributions obtained by Bora and Choudhury method (BC ),

Prytz method, our first methud (SM 1st) and our second method (SM 2nd) for middle values
only at Q2 = 60 GeV?,
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Values are higher for the result of other authors with proton structure function data
than of ours with deuteron structure function data. This is actually due to the fact that
the scaling violations of deuteron structure functions F,’ (x,Qz) with respect to InQ?
are themselves considerably less than those of HERA proton data due to H1 [71] and
ZEUS [72,84] collaborations and these scaling violations are directly proportional to
gluon distributions in the formulas used by Bora and Choudhury and Prytz to

calculate gluon distributions. These HERA proton data covers x- values up to at least

~10"" in comparison with those of NMC data which covers up to =107 only.
Gluon distribution increases as x decreases due to all the authors as expected from

QCD analysis. Moreover, gluon distribution by our first method is lowest and Prytz

method is the highest for a particular low-x.

6.3. Conclusion:

In this chapter, we present for the first time a method to extract gluon distribution
from the measurement of moderately low-x deuteron structure functions and their
differential coefficient with respect to InQ? and x. Here we use leading order
GLDAP evolution equation to relate gluon distribution function with moderately low-
x structure function or differential coefficient. In our analysis, we use only NMC
deuteron data parametrization by a 15- parameter function. We find gluon distribution
from deuteron also increases when x decreases as in the case of proton as usual. We
can not compare our result of NMC data with other because low-x deuteron data is not
sufficiently available. Moreover, no other work to calculate gluon distribution
function from deuteron data has been so far reported. But we compare our result with
gluon distributions due to Bora and Choudhury and Prytz calculated from low-x

proton data. We see that our result is to some extent less, as differential coefficient of
deuteron structure function with respect to InQ? is much less than of proton structure

function.O
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Chapter-7

REGGE BEHAVIOUR AND GLUON DISTRIBUTION
FUNCTION

In this chapter, we present a method to find the gluon distribution function from
proton structure function data at low-x assuming the Regge behaviour of gluon
distribution function at this limit. We use the leading order GLDAP evolution
equation in our analysis and compare our result with those of other authors. We also
discuss the limitations of Taylor expansion method in extracting gluon distribution

from quark structure function used by those authors.

7.1. Theory:

The gluon distribution at low-x can be obtained by analysing the longitudinal structure
function [45,52). Similarly it is also shown that, this distribution can be calculated
from the proton structure function and its scaling violation [43,44]. Moreover, in
reference [84] we see that, it is also possible to calculate gluon distribution from
deuteron structure function and its scaling violation. The basic idea lies on the fact
that the scaling violation of quark structure function arises at low-x from the gluon
distribution alone and does not depend on the quark distribution. Neglecting the
quark, GLDAP evolution equation for four flavour [43,44] gives,

oF,(x,0%) S, “I‘G( x
dInQ> 9 {

),szqu(z)dz : (7.1)

0

where the leading order splitting function is
2 2
P, (z)=z +(1—z)

and o, 1s the strong coupling constant. Now let 1-z=y=dz=-dy. Again

z=0=>0= y=1land z=1-x = y = x. Therefore equation (7.1) gives,
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agzl(f,QQZZL 5;7‘: lj G(x/2,0%).222-22+1) ez . (72)
n

X

Now, let us consider the Regge behaviour of gluon distribution [4],
G(x,0?)= c.x*?), (7.3)

where, C is a constant and X(Qz) is the intercept. The Regge behaviour of the

structure function F,(x) in the large — Q° region reflects itself in the low-x behaviour

of the quark and the antiquark distributions. Thus the Regge behaviour of the sea
quark and antiquark distribution for low-x is given by ¢, (x) ~x e corresponds

to a pomeron exchange of intercept o, =1. But the valence quark distribution for

low-x given by g¢q,, (x)~x_aR corresponds to a reggeon exchange of intercept
a, =1/2. Since the same processes lead to gluon and sea quarks distributions in the

nucleon, we expect G(x)=1/x. The x-dependence of the proton densities given
above is aften assumed at moderate - Q.

Applying equation (7.3) in equation (7.2) we get,

0F [ x,02 1
2(X © ) _ 2%s .C.Ix—k<Q2).z}“<Q2)_(222 py +1)dz. (7.4)
dln 02 on

For fixed Q7 let K(x)zan(x,Qz)/aanz and A=50,/(9n). Thus equation

(7.4) gives,
1
K(X)=A.C.x_}‘(Q2)I(22}‘+2—22}‘+1+z7‘)dz. (7.5)
X

Taking logarithm and rearranging the terms, equation (7.5) gives
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A = lx{ln{ 2 (1-x*)- 2 (1—x“2)+—1—(1—x“')H

In A+3 A+2 A+1
1 K(x)
CInx [ln{(A.C)H 79
=>A-06()=0, (1.7)

where, A = K(QZ) and ¢ (1) represents the right hand side of equation (7.6). Now
equation (7.7) has been solved numerically using iteration method [85] to calculate
the values of K(QZ) for different x-values for a fixed value of Q. Scaling violation
of structure function K(x)=6F2(x,Q2)/ olnQ? and strong coupling constant at
leading order o, are experimental inputs. C is the only free parameter in our
calculation. After calculation of X(QZ), we can calculate G(x,QZ) from equation

(7.3) for different values of the free parameter C and compare our result with those

due to other authors.

Now, let us discuss the limitation of Taylor expansion method in this regards.-

Applying Taylor expansion in equation (7.1) we get

G(l a ,Q2J= G(x+xi z",QZJ
-z k=1

o o 2
=G("’Q2 +sz*MJ+§xZ[Zz*] 26l.0") +o(e), (7.8)
k=1

Ox =l ax?

where, O(x’) are the higher order terms. Here we have 1-x >z >0 = |z|< 1, which

implies that x/(1-z)= xz::O z¥ is convergent. In the previous methods, either the

terms beyond second order [43,44] or beyond first order [48,84] derivatives of x are
neglected in the expansion series equation (7.8). But in actual practice, this type of
stmplification is may not be possible because the contributions from the higher order

terms can not be neglected due to the singular behaviour of gluon distribution.
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There are some other methods also which are not based on Taylor expansion. Kotikov
and Parente presented [49] a set of formulae to extract gluon distribution from quark
structure function and its scaling violation at low-x in the next-to-leading order
approximation. A different method for the determination of gluon distribution at low
values of x has been proposed by Ellis, Kunszt and Levin [53] based on the solution
of GLDAP evolution equations in the moment space up to next-to-next-to leading

order.

7.2. Result and Discussion:

We use HERA data taken by H1 [71] and ZEUS [72] collaborations where the values
of OF, (x,Qz)/ dInQ? are listed for a range of x values at Q® =20 GeV'*. The recent
HERA data is parametrized by H1 {74] and ZEUS [75] collaborations by some

appropriate functions and we calculate 0F, (x,Q2 )/ dInQ?* at Q% =20 GeV'? for those

functions also. We also use parametrizations of the recent New Muon Collaboration

( NMC ) [73,82] proton structure function data from a 15- parameter function from
which also we calculate OF, (x,QZ)/aan2 at 40 GeV?. Now we apply the values of
OF, (x,Qz)/ dInQ? in equation (7.7) to calculate A numerically by iteration method
[85] and hence gluon distribution function G{x,Q?) for C =1 and C =100. For our
calculation, strong coupling constant o, was taken from a next-to-leading order fit
[76] to F, data which yield o, = 0.180£0.008 at Q® =50 GeV'* corresponding to
A(':_)S = 0.263+0.042 GeV'. This value of o, agrees wiFh one given by Particle Data
Group [77]. But in our practical calculations, we neglect the errors of o, and A ,

which are rather small. We compare our result with those of other authors discussed

in the theory as well as with the recent MRST global fit [80].

In Fig.7.1(a) — Fig.7.1(d), we present gluon distributions G(x) for different low-x
values from NMC proton data parametrization [73,82] at Q? =40, 60,80 and

100 GeV'? respectively for C =1 and C = 100.
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Fig 7.1(b) Q2= 60 GeV? —+—Gluon C=1
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From the figures, it is seen that results are almost same for all Q° values and G(x)

slowly increase when x decreases logarithmically. We also present the MRST global
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Fig 7.1(d) Q2=100 GeV? ——Gluon C=1
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Fig.7.1(a) - Fig.7.1(d): Gluon distibution G(x) by our method from NMC proton

parametrization {73,82] at Q? = 40, 60 and 100 GeV? respectively with C = 1 and C = 100. In
the same figures we include a global fit by MRST [80].

0.001 0.01

fit 80] result, but its rate of increment is much higher. The values of G(x) are higher

for C =1 than those for C =100 for a particular value of low-x.
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In Fig.7.2(a) and Fig.7.2(b), we present the gluon distributions G(x) for different

120
| Fig 7.2(a) Q% =20 GeV? (C=1) ——THigh
—o— Middle
100 ¢ - L ow
—MRST
80
60
40
20
0 dd i a Ah_‘
0.0001 0.001 0.01 0.1
X
70
Fig 7.2(b) Q2= 20 GeV? (C=100) —eHigh
—o—Middle
-~ Low
—MRST
0.0001 0.001 0.01 0.1
) X

Fig.7.2(a) - Fig.7.2(b) Gluon distribution G(x) by our method from H1 HERA proton data [71]
atQ? =20 GevV2with C = 1 and C = 100 respectively Here we present the results for the data
(without considering the error (middle), (n)adding algebraically statistical and systematic
errors (high) and (im)subtracting algebraically statistical and systematic errors (low) In the

same figures we include a global fit by MRST [80]
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low-x values from Hl HERA proton data [71] at Q% =20GeV* for C=1 and
C =100 respectively. The middle line in each figure is the result without considering
any error in the data. The upper and lower lines are the results with data adding and
subtracting systematic and statistical errors with the middle values respectively. As
usual, gluon distribution G(x) increases when x decreases, but the whole system of
lines in the graphs shifts towards the lower G(x) values when we change from C =1
to C =100. In the same graphs, we also present the G(x) values for MRST global fit
[80] which is also increasing towards low-x values, but with somewhat lesser rate. But

for C =100 our G(x) values come in the range of this fit.

In Fig.7.3, we present gluon distributions G(x) for Hl HERA proton parametrization

[74] at Q° =20 GeV'* for different low-x values for C =1 and C =100 respectively

250
Fig 7.3 Q%= 20 GeV? - - - Gluon C=1
— = Gluon C=100
200 \ ——MRST
) \

150 B
100

50

0 1 ¢ 1 -1
0.0000001 0.000001 0.00001 0.0001 0.001 0.04

X
Fig.7.3 Gluon distnbution G(x) by our method from H1 HERA proton data parametnzation

[74]) at Q2 = 20 GeVZwith C = 1 and C = 100 In the same figures we tnclude a global fit by
MRST {80]

Gluon distribution G(x) increases when x decreases, but the line in the graph shifts

towards the lower G(x) values when we change from C =1 to C =100. In the same
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figure, we present G(x) values for MRST global fit [80] which also increases towards
low-x values with somewhat lesser rate. But for C =100 our G(x) values are closer

to this fit.

In Fig.7.4(a) and Fig.7.4(b), we present gluon distributions G(x) for ZEUS HERA

proton data (72] at Q° =20 GeV'’ for different low-x values for C =1 and C =100

respectively. The descriptions and the results are same as Hl HERA data [71]

depicted in Fig.7.2(a) and Fig.7.2(b) respectively.

In Fig.7.5, we present gluon distributions G(x) for ZEUS HERA proton
parametrization [72] at Q° =20 GeV'® for different low-x values for C =1 and

C =100 . The descriptions and the results are same as H1 HERA parametrization [74]
depicted in Fig.7.3.

In Fig.7.6, we present the values of A (Lambda) for Hl HERA proton data [71] for
low, middle and high values of them at Q2 =20 GeV? for different low-x values for
C =1 and C =100. For C =1, all the graphs are almost parallel and A - values tend
to = 0.5 at low-x. For C =100, for all the graphs, A -values tend to =~ 0.0 from some

negative values at low-x.

In Fig.7.7, we present the A -values for ZEUS HERA proton data [72] in the same
way as in Fig.7.6.'For C =1, for all the graphs, A -values tend to =0.5, as we
approach lower-x from some slightly higher values in comparatively higher x. On the

other hand, for C =100, for all the graphs, A -values tend to =~ ~0.1, as we approach

lower x from some slightly lower negative values in comparatively higher x.
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Fig 7.4(a) Q% =20 GeV? (C=1) —=— High
- Middle
- Low
— MRST

7

0F
0 -

. , ) L
3.0001 0.001 0.C1
X

5 — -
Fig 7.4(b) Q* =20 GeV? (C=100) —=—High
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Fig.7.4(a) - Fig.7.4(b): Same results asin Fig.7 2(a) - 7.2(b) respectively from ZEUS HERA
proton data [72] at Q2 = 20 GeV?
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10000

1000

Fig 7.5 Q%= 20 GeV?
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RN NG — —Gluon C=100
~ Y .
i ~3-. ———MRST

100
10
1 N L L
0.000001 0.00001 0.0001 0.001 0.01
X
gbggéf,/z Same results in Fig 7 3 from ZEUS HERA proton data parametnzation {72) at Q2 =
1 2 2
Fig 7.6 Q° =20 GeV
0.5 W >
Olg———————— - - — - - ===
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Fig.7.6 A - values by our method from H1 HERA proton data [71] at Q2 = 20 GeV2 with C = 1
and C = 100 Here we present the results for the data (ijwithout cansidenng the error (middle),
(n)adding algebrarcally statistical and systematic errors (high) and (n)substracting algebraically
statistical and systematic errors (low)
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Fig.7.7 Same results as in Fig 7 6 from ZEUS HERA proton data {72} at Q2 = 20 GeV?
In Fig.7.8, we compare our results for HERA H1 data (middle value only) [71] at
Q* =20 GeV* for C =1 and C =100 with those of Bora and Choudhury [48] and
80
Fig 7.8 Q2=20 GeV?
70 r
80 ~+—Bora &
50
x
& 40

0.0001

0.001 0.01
X

0.1

Fig.7.8 Comparison of gluon distribution G(x) from H1 HERA proton data {71] for middle
values only by our method for C = 1 and C = 100 at Q2 = 20 GeV2with those by other methods
due to Bora and Choudhury (48] and Prytz [43,44] In the same figures, we include a global fit
MRST (80)
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Prytz {43,44] In the same figure, we also present the result for MRST global fit [80]
For all the cases, gluon distnbution G(x) increases when x decreases, but with
different rates The rates of increment in our result for C =1 1s highest and in MRST

1s lowest But our result with C =100 s very close with that of Bora and Choudhury,

and also inside the range of MRST

Lastly, we include a simple FORTRAN programme for calculation of A from the

scaling violation of structure function given 1in Programme-1

05
10
15
20
25
30
35
40
45
50
55
56
57
58
60
65
70
75
80

85

Programme-1

GLUON DISTRIBUTION FROM SCALING VIOLATION OF PROTON DATA

REALY, K, X, A, PHIX1, PHIX2, PHIX3, PHIX, P, AB, G
PRINT*, “Y=2"
READ*, Y
PRINT*, "K=?"
READ", K
PRINT*, “C=7"
READ*, C
X=3
ALPH= 118
PI=3 1416
A=(5 *ALPH)/(9 *P)
PHIXT=2 J(X+3 J(1 -y (X+3 ))-2 H(X+2 )(1 -Y**(X+2))
PHIX2=1 J(X+1 (1 -Y*(X+1))
PHIX3=ALOG(K/A*C))
PHIX=1 /ALOG(Y)*(ALOG(PHIX1+PHIX2)-PHIX3)
P=X-PHIX
AB=ABS(P)
G=C*{Y**(-PHIX))
IF (AB LT 00000001) THEN
PRINT*, C, Y, PHIX, G
GOTO 10
ELSE
X=PHIX
ENDIF
GOTO 56
END
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7.3. Conclusion:

In this method, we present an alternative method than other methods to extract gluon

distribution G(x,QZ) from the scaling violation of proton structure function

dF,(x)/81n Q* at low-x. We compare our result with those of other methods due to

Bora and Choudhury [48] and Prytz [43,44] and with a global fit due to MRST [80].
Gluon distribution will increase as usual when x decreases with different rates for the
different values of the parameter C =1 and C'=100. But our graph with C =100 is
very close to that due to Bora and Choudhury and the global fit due to MRST. We
discussed the limitation of Taylor expansion method ([85] in calculating gluon
distribution from scaling violation of structure function at low-x. Prytz in both leading
order [43] and next-to-leading order [44], and Bora and Choudhury in leading order
[48] used this method to extract gluon distribution from scaling violation of structure
function at low-x in a slightly different way. But all the authors neglected the higher
order terms in the Taylor expansion series which is not a very good approximation for
a singular behaviour of gluon distribution at low-x, because the contributions from the
higher order terms in the series are not negligible. Sarma and Medhi [84] used this
method in some improved way with less number of approximation, yet this basic
approximation of neglecting higher order terms in the expansion series could not be
avoided. On the other hand, in Kotikov and Parente method [49,52] also, authors
approximated their result by neglecting some higher order terms. Moreover, their
method is to some extent complicated. Again Ellis, Kunszt and Levin method [53] is
also not much developed than other methods. In the present method, of course, we use
a free parameter C, yet the other ambiguities due to the approximation of the Taylor
expansion series can be avoided. Moreover, our method is very simple one and the
computer programme can calculate gluon distribution immediately when we put the

value of scaling violation from experiment. 0
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Chapter-8

CONCLUSION

In Chapter-1, we present a brief introduction of the problem. Gluon distribution
function at low-x is important for understanding of inner structure of hadrons and for
examination of Quantum Chromodynamics (QCD), the underlying dynamics of
quarks and gluons. Moreover, gluons are expected to be dominant in the low-x region.
In addition to that, gluon distributions are important inputs in many high energy
processes. On the otherhand, gluon distribution cannot be measured directly from
experiment. [t is therefore, important to measure gluon distribution function indirectly
from quark structure function. In this chapter, we discuss about structure of matter,
deep inelastic scattering, structure function, low-x physics, evolution equations and

screening corrections.

In Chapter-2, we discuss about the Taylor expansion method. Here we discuss the
Taylor’s theorem and application of it in determination of ¢ and x evolution of

structure function at low-x.

In Chapter-3, we discuss briefly the various methods to extract the gluon distribution
function’ from quark structure function due to other authors. Accordingly, here, we
discuss about Bora and Choudhury method, Kotikov and Prente method, and Ells,
Kunszt and Levin method. We also discuss about the differences and limitations of

these methods.

In the Chapter-4, we discuss briefly about the t and x evolutions of gluon structure
function at low-x. We consider the leading order GLDAP evolution equation for
gluon distribution function and extract gluon distribution by solving it by applying
Taylor expansion method. We compare our methods with some standard

parametrizations and make predictions for the HERA range.
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In Chapter-5, we discuss briefly about the gluon distribution function at low-x from
proton structure function. Here we. present an alternative method than other methods
to extract gluon distribution from proton structure function. Here HERA data
measured by H1 and ZEUS collaborations are used and we compare our results with

those of other methods.

In Chapter-6, we discuss briefly about the gluon distribution function at low-x from
deuteron structure function. Here we present for the first time a method to extract
gluon distribution from deuteron structure function. We use NMC deuteron data
parametrization by a 15-parameter function and compare our result with those of other

methods.

In Chapter-7, we discuss briefly about the Regge behaviour of structure function and
gluon distribution at low-x. Here we present an alternative method to extract gluon
distribution method in this regard. We also compare our results with those of other

methods and global fits.

In all the result from other methods as well as global fits, it is seen that gluon

distribution function increases when x decreases and O increases for fixed values of

O®and x respectively. But the rates are different in different methods. It is observed

that the results from our methods also generally comparable with those of other
methods and they can easily be considered as some viable alternative to other
methods. On the otherhand, our methods are mathematically more simpler with less

number of approximations.

In extracting gluon distribution function from quark structure function, we use here
only leading order GLDAP evolution equation. But we can extend it to next-to-
leading or higher orders as subsequent works. Moreover, we are mostly restricted up
to the term containing the first order derivations of the Taylor expansion series we
used. We can try to include the terms containing higher order derivatives for lesser

approximation. We neglected contributions from quarks in obtaining gluon
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distribution function from proton structure function as well as by using Regge
behaviour. But we can test the result by including the contribution from quarks also.
Lastly, we may try to apply Taylor expansion method in longitudinal structure

function and thereby extract gluon distribution function from it.0
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Taylor Expansion Method and Gluon Distribution from Structure
Function Data at Low-x : the Leading Order Analysis

J. K. Sarma’
Department of Physics, Tezpur University, Napaam, Tezpur-784028, Assam, Indiu
and
G.K . Medhi
Depariment of Physics, Birjhora Mahavidyalaya, Bongaingaon - 783380, Assam, Indiu

ABSTRACT

We present a method to find the gluon distribution from proton
and deuteron structure function data at low-x. Here we use the
leading order (LO) Altarelli-Paria (AP) evolution equation to
relate the gluon distribution with the structure functions and
the scaling violations of them extracted by various collaborations
from recent low-x data. We also analyse other methods and
compare our results with them.

Key Words: Gluon distribution; low-x physics, Q C D Tavlor expansion method

INTRODUCTION

The measurements of the proton and the deuteron structure tunctions by PDeep Inclastic
Scattering (DIS) processes 1n the low-x region where x 18 the Bjorken vanable have opened
a new era m parton density measurements (Buchmuller and Inglelman, 1991) 1\t 1s important
for understanding the mner structure of hadrons In addition to these knowledge, 1t i also
important to know the gluon distnbuuon mside hadron at low-x becdause gluons are expected
to be dominant 1n this region. On the otherhand, gluon distnbution’ can not be measuvied
directly from expeniments. It 15, theretore, umportant to measure directly from experiments
It 1s, theretore, important to measure gluon distribution G (x, Q%) indirectly trom the proton
as well as the deuteron structure functions F, (x, Q%) A few number ot papers have aficady

.
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.been pubhished [Copper-Sarkar, 1988, Sarma and Medhi(en press)] in this connection  Here
we present an altermative method o relate G (x, Q%) with proton and deuteron structure
tunctions and thesr derivatives with respeclt to InQ* d F, (x, Q%) / d InQ? and with respect o
x dF, (x, Q%) / ox tor fixed values ot Q* Our method 18 more g :neral with less approximation,

sunpler and more transparent

THEORY
Gluon Distribution from the Proton

it 1y shown (Copper-Sarkar, 1988) that the pluon distnbunon at low-x can be obtained by
analysing the longitudinal structure tunction. Similarly 1t 1s also shown by Prytz (1993),
Kotikov and Parente (1996) that this distribution can be calculated trom the proton structure
funcuion F, (x, Q%) and their ditterenual coetficient with respect to InQ? dF, (x, Q) / dInQ2
‘The basic 1dea lies on the fact that the scaling violation of F2 (x, Q?) arise, at low-x, trom the
gluon distribution alone and does not depend on the quark distribution  Then neglectng the
yuarks the LO AP evolution equation tor tour flavours (Prytz, 1993, 1994) gives

oOF (x, Q) _ So X
oNaQr = g Ih (1 -~z Q) Pa,(z)dz N

where m LO, the splitting tunction
P(7) =31zt + (1 - ¢)] (2)

and @_1s the strong coupling constant  Now

XooxFr=x+x3 2 3)

We have, 1 - x > z> 0 = lzl < 1 which implies that the expanston (3) 18 convergent. Now
by the Taylor expansion (Grandshteyn and Ryzhik, 1965)

- - 2
G(T).i? Q) = Gx + x g 2% Q) = Gx, Q) + x F 2 29%}—02

(8 A QY o, @
2 %A ax?
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where O(x') are the higher order terms Neglecting the terins contaming x? and higher orders
O tor sunplicity, we get

X
1-7°

G( QY = Gx + x k}; A= Glx, Q) + X ki_l * _()('_(‘_9_1_)_ ()

dx

But as a matter ol Lact, we can not neglect the higher order terms as these terms are not sm ol
in Regge-Tike behaviour (Kotikov and Parente, 1996, Collins, 1977) G(x) ~ < ®(Q”) or in Doublc-
1 ogarithmical hehaviour (Kotikov and Parente, 1996, Ball and lorte, 1994) (i(x) ~ \p
QN SVS‘)(Qz)ln(l/x)) tor gluon at low-x  Here § (Q%) 18 @ Q° - dependent parameter where p =
s (singlet quark) or g(gluon)  On the otherhand, 1t has been shown that this faylor expansion
muthod 1 successtully applicd e caleulating Q* - evolution of proton strucluie function
(Choudhury and Sarma, 1992, Sarma and Das, 1993) at low-x with rcasondable
phenomenological success 1t was a natural improvement ol an cather analysis at intamediate-
¥ (Choudhury and Satkia, 1989) This approximation neglecting higher order terms i Taylos
cxpanston s dalso applied recently (Sarma et al, 1997) in caleulating <-cvolution ol deutcron
structure function with excellent phenomenologiceal success The authors suggested that onc
possible reason for the success of this method at low-x 18 that tradstionally the AP evolubion
cyuattons provide 4 means of caleulating the manner 1in which parton distrtbutions change at
fined x as QF varies  Lims change comes about because of the various types ol parton branchimg
cmission processes and the x-distnibutions are modified as the imtial momentum s shared
among the vartous davghter partons  However, the exact rate of modifications of v distributions
at fixed Q* cannot he obtained from the AP equations since 1t depends not only on the mitral
x but also on the rates ol change of paston distributions with respect to v /o (o= |
10 oc), upto finite order  Physically this implies that at high © the parton has a larec
momentum traction at sts disposal and as a result radiates partons icluding gluons
mnumecrdable ways, some of them mvolving complicated QCD mechantsms However tor fow-
x many of the radiation processes will cease 1o oceur due to momentum constraimts and the
x-cvolutions get simplified It as then possible to visuahize a situation in which the moditication
of the x-distnibution simply depends on sts mitial vadue and ats first dervative  Bora and
Choudhury (1995) and also Pryts (1993, 1994) has already applicd Tavior cxpansion method
10 caleulated gluon distributions from structure functions and seeling violations ol them But
our mathod 18 more general and transperent with less approximation than other two methods
mentioned above which will be discussed later on

Putting cquations (2) and (5) n cquation (1) and perloring z-integrations we gel

N L(x, QY Sa, . , AG(x, Q7)
- = A i(x, Q° B(X) —————= (
din()? In IAG) Gx, Q7 + B(x dx l (©)

(1D - x)2xE-x + 2) (7)

f

where, A(x)

and B(x) = (131 - x)(- 2x2 + 4x -9) - xinx (8)
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Recasting the cquatton (6}, we get

B AGGQY) 9 Ak, Q)

Gix, Q) + A Jx T Sa A) dnQ?

()

Atconstant QF = Qg Gi(x, Q%) = G(v) and I (x, Q") / dInQ? = K(x) and so, cquation (V) gives

B(x) dG(x)  9m  K(x)

GO R T T T S AR

(1)

Stee the ratio B(x) 7 A(x) 1s very sall at Tow-x, lim - B(x) / A(x) = 0. the Telt hand sicde
ol cquation (10) can be written as

((x) +

_—/\_(T() ax

Y

I} aG B A 2 .
0 g D L (1) e

= (':(‘( + '—/i%))—)

hy lavlor expansion series  Thus from cquation (10), we pet

(;(‘+ B(x) _r K(x)

AX) 77 so A(x) (an

Phe cgquation (11) 18 the retation between the glnon distnbution GEx, Q7)) at v = 1+ By /
ACO and 91 (<. Q) 7 A€’ at x at the hixed valuc ol Q7= Qp Hhas 1 one ol our nrun resalts

GLUON DISTRIBUTION FROM THE DEUTERON

In the 1O analysis deuteron structure functron s ducectly related to singlet structune
function (Sarma ¢t al, 1997)  On the otherhand, the ditferential coclicient ol siglet
structure tunction T with respect to InQ? al'z [ atnQ® has o retation with singlcd
strctre tunction iisedt as well as gluon distribution function from AP cvelution
cguation (Altarelr and Parisi, 1997, Dkshitzer, 1977) 0 Thus, alas possible o calcuiate
cluon distithutton fTrom singlet structure function or ultmate deuteron structue
functtrion also No author has uptll now reported a method (o calculate gluon
distiibution tram deuteron i the hiterature  The 1O AP evolution cquation for singlel
structure lunction s grven by

MG

A - ds o, oy
h 13+ din(1 - )11 n)+2j—;{/ -2+ DI 0

Sy )+ (UDNJ(272 - 27 + 1)(;‘—f-/—-, Ods) = 0 (12)



58 J Assvsam Se Soc 41(1) Maich 2000

where, t=[n(Q? / A?) and A, =4/(33 - 2N), N being the number of {lovour and A 1s the QCD
cut oll parameter

Applying the same method of Taylor expanston as in the case of proton we get here also,
x ) -
BEZ0=RBKx+xX /A0
1-2 ey}

¢ O3x, 1)

:F‘:(X,t)‘*XkZ_:_]Z I (1)
and G ( 0 =G (x + ,i, 2 1)
:Gs(x,t)+xid‘——a—cﬂx—’—0— (14)
2 (= Ix

neglecting the hegher order terms as betore

Putting equations (13) and (14) m cquation (12) and performing 7-inlegrations as m the casc
of proton, we gct

—‘3'3%2 - %{As(x)rg(x, 0 + B(x)G(x, 1)
(.

dl z(X 0 (7C|(x )

+ C(x)

+ D (x) |=0 (15)

where, A\(x) =3 4+ 4in(l - x) + 2{(1 - x)(-2 + (1 - X)/D)}, )
Bs(x) = (IN (A - N+ @2HA - x)H), (16)

C(x) = 2x{In(1/x) + (1 -x)(1 -Q -x)/2)},

and D(x) = (3/2)N {In(1/x) - (1 - x)(1 + (2/3)(1 - )3} )

Recasting equation (15) we gel,

D) G,y _ 1 A%, 1)
GO B0 " ABX LT
Ae(x) Cs(‘() (7F‘3(x, [)

TR Y BT o an

Now D/B 18 very small at tow-x, lim | ' D/B =0 So, applymg the Taylor cxpanston serics
as helore we can wrile
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. D) G0 . D.(x)
GO R T T T
Thus equation (17) gives '
Rt (L
GEx", 1) = K (x) ¢t L“—;(();-')— + K, i—*%—i + KIS (I8)
e, K" = D(x)
where, X" = x + Ty
i
X) = — ]
K, (x) AT (1
_ Oy
KE(X) = - T;K-{}
_ A
l‘Hld K‘(X) = - R—,.(Xv)

It we try to combine the tast two terms of equion (18 et us ke common K (x) from bath
the terms wiindh reduce to

S, 1) ) Ay
KW, ) + K (x) ax !

But K (x)/ KL () s noty siall it fow-x and therefore these two terms can nol be combined

to one as e the case of gluon by applyving Taylor expanson sernes

Phic retation between deuteron and siglet Stracture tunctions at 1O 1y

PG ) = (S9) 1500 1) = 15(x 1) = (975) Fix, 0 (200

Fhen we pet,

AN Y '_”.LQJ_)_

LA L S 2N
N 5 bl (
N, 9 K.
and ! ‘(}——‘-) = — ——'ll—:(}—-'l (2h
ox q ax
Putting cquations (20), (21) and (22) m equatton (18) we gert ultunately
) M N ’
Goero ) = — K o2 )y JECD g e ) (2%
5 ] Tk

which s one of onr masn results, Frome this cguation it isoseen that 11 we ave deuteron
structure function and s differential coctticients with respect (o QR and x at any < fora fised
value oF Q= Q% we can calenlate the glyon distnibution tuaction it x™ = <+ D ()1 (x) trom
cquation (23} as a 1O analyss,
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RESULTS AND DISCUSSION

We use HERA data taken by H1 and ZEUS collaborations from ref, Aid, S., H1 collaboration
(1995) and rel. Derrick, M., ZEUS collaboration (1995) respectively. In these tables the
values of IF,(x, Q?) / 9InQ? are listed for a range of x values at Q? = 20 GeV2, Similarly we
use parametrizations of the recent New Muon Collaboration (NMC) proton and deutcron
structure function data (Ameodo, M., NMC 1995; 1997) from a 15-parameter tunction given
in ref. Arneodo, M., NMC (1995). Here we calculate the values of dF ,(%, Q1) / dInQ? at Q*
=40 Ge V2 From all these data or parametrizations we calculate the structure functions ,(X,
Q? or scaling violations ot structure functions with respect to InQ? and apply them in the
equation (11) and equation (23) to calculate the gluon distribution functions G(x', Q) or
G{x",Q?, where x" = x + B(x) / A(x) and x" = x + D (x) / B(x) from proton and deuteron
structure functions respectively.

For our calculation, strong coupling constant o, was taken from a NLO fit (Mirchaux and
Milsztajn 1992) to F, data which yields o = 0. 180 * 0.008 at Q* = 50 GeV? coresponding to
A =0.263 + 0.042 (er and o (M?) = 0.113 + 0.005. This value of . agrees with one given
by Particle Data Group (PDG)(Montanet, 1994). But in our practical calculations we neglect
the errors of o and a which are rather small.

In the Fig. 1. the gluon distribution obtained by our method (equation (23)) for the deuteron
paramerization (Arneodo, 1995, 1997) from a 15-parameter tunction (Ameodo, 1995) is
presented at Q* = 40 GeV?. The middle line is the result without considering any error. The
upper and the lower lincs are the results with paramter values by adding and substractling the
statistical and systematic errors with the middle values respectively. It has been seen that the
middlc line almost coincides with the upper line. The area between these lincs arc the resuit
with tull errors. The NMC at first parametrized their data from proton and deuteron for Q°
values from 0.5 GeV? to 75 GeV? and low-x values from 0.006 to 0.9 (Arneodo, 1995) by a
15-parameter funclion (Arneodo, 1995). This parametrization can also well describe the
SLAC and BCDMS (Benvenuti, 1989) data. The recent NMC data (Arneodo, 1997) has hecn
extended tor low-x values trom 0.002 to 0.6; but in that case also the same parametrization
fits well with SLAC and BCDMS data. We calculate F} and JF / 9InQ? for x values 102 to
107 for the equation (23) which gives G(x") for x" values from 5.52 x 102 to 2.27x10 . We
obtain our result for Q2 values from 40 GeV? to 100 Ge V2. It is seen that the gluon distribution
increases tfrom ~ 1.0 to ~ 2.0 when x decreases from higher to lowest values in our
consideration; but deuteron gluon distribution is almost three times smaller than proton gluon
distribution from NMC data. Moreover deuteron gluon distribution increases slightly (almost
15%) for a particular value of x when Q? increases from 40 GeV? to 100 GeV? We can nol
compare our result of NMC data with others because sufficient low-x deuteron data is not
avialable. Moreover, no other author has tried to calculate gluon distribution {rom deuteron
structure function and so, we can also compare our rcsult with those of others.
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In the Fig. 2, the same result is presented tor NMC proton parametrization from the samc
references as for deuteron. Here also we use the same 15-parameter function (Arneodo, 1995)
with ditferent parameters which also describe SLAC and BCDMS data in addition to the
recent NMC data (Arneodo, 1997) cxactly same as before at 40 GeV: The Q? and x-ranges
ol our calculations are also same. We calculate G(x')(cquation (11)) for x values which varics
from 5.52 x 102 to 2.27 x 10° for highest and fowest values of x under consideration
respectively. The gluon distribution increases from ~ 3.5 to ~ 6.5 when x decreases from the
highest to lowest values under consideration. But proton gluon distribution decreases slightly
(< 19) for a particular values of x when Q2 increases from 40 GeV? to 100 GeV:i We do not
comparce the results of NMC data with those of mainly IHTERA becausce their Q* and x-ranges
arc dillerent.

In the Fig. 3, the gluon distribution obtained by our method (equation (11)) trom HERA data
measurcd by HI collaboration (Aid, 11, 1995) is presented at Q2 = 20 GeV2 The middle hne
is the result without considering any crror in the data. The upper and the lower lines are the
results adding and subtracting algebrically the statistical and systcmatic errors with the data
respectively and therehy calculating the gluon distributions. These two lines are symmetric
about the middle lines and positive and negative errors arc cqual. The arca bounded by thesc
lincs gives the result with maximum error. The x-values in the data ranges from the highest
value 1.33 x 102 10 the fowest value 3.83 x 104, The corresponding x' values are 6.81 x 102 and
3.948 x 107 respectively, and also gluon distributions are also ~ 3.0 and = 24.0 respectively
for data without considering any error.  Hcere also gluon distribution increases when x decreases
except the lowest value when gluon distribution decreases.  But the rate of increament for
HERA data measured by H1T collaboration is much higher than that of NMC data.

In the Thg. 4, the same thing is presented tor HERA data measured by ZEUS collaboration
(Derrick, ZREUS, 1995) at Q? = 20 GeV2 Here the x-valucs in the data ranges from the highest
value 4.65 x 107 to the fowest vatuc 8.5 x 104, The corresponding x' values are 3.077 x 102 and
7.752 x 10" respectively, and also gluon distribution = 10.9 and ~ 21.2 respectively for data
without considering any ecror. We sce, in this case also, gluon distribution increases when x
decreases. And the rate of increament is slightly higher to that of 111 collaboration in the x
range considered; but much higher than that of NMC data.

In the Fig. 5, comparison of gluon distributions by our method (Sarma, cquition (11)), Bora
and Choudhury Mcthod (Bora), Prytz. method (Prytz) and Kotikov and Parente method
(Kotikov) 1s presented for TIERA data middie value only measurcd by H1 collaboration at Q?
= 20 GeV2 The x values under consideration is same as in Fig. 3. But the arguments of the
gluon distributions calculated are difterent for different methods except for Kotikov and
Parcnte’s method for which the arguments do not change, they arc the same x valucs under
consideration. Accordingly for the highest and the Towest x values, x' values arc 6.81 x 10 and
3.948 x 10" respectively. Tor all the methods gluon distribution increases when x decreases
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except tor the last data point for which 1t decredses  But rate of mncreament s daerent fo
ditterent methods  The values ot gluon distnibutions are comparable but rate of mcercament
1s highest 1n our method and lowest m Kotikov and Parente’s method It 18 intermediate in
othcr two mentods of which rate ot Prytz’s mcthod 1y shightly highcr than that ol Bora and
Choudhury’s method

In the Fig 6, comparison of gluon distrsbutions hy vartous methods exactly same wdy ds 1n
Fig 5 1s presented for HERA data middie value measured by ZLUS collaboration (Derrick,
ZLUS 1995) at Q* = 20 GeV?  The x valucs under consideration s same as m Mg 4 Bul
the arguments of the gluon distributions calculated are different tor different methods as
discussed carhier  Accordingly, tor the highest and the lowest x values X' values are 3077 x
102 and 7 752 x 107 respecuvely  The arguments of gluon distribution for Koukov and
Parcnte’s method arc same as x values under consideration, 1 ¢ they do not change The gluon
distribution mereases when x decrcases for all the methods as betore, but the ratc ol
wncreasement s highest i our method and lowest in Koukov and Parente’s method  Fhe rates
are intermediate m other two methods ot which rate at Prytz « method 1s higher than that ol
Bora and Choudhury’s method
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Fig. 1 : The gluon distribution obtatned by our method for the NMC deutcron parametrization
(15 - parameter tunction, Table-3) at Q? = 40 GeV? The (1) middle, (1) uppes and (1) lower
lines are the results (4) without considering any crror, (b) adding algebrically the staustical
and systematic errors and (¢) substracting algebrically the statistical and systematic errors
respectively
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SUMMARY AND CONCLUSION

In this article we present an alternative method than othor methods (Copper Sarkar 1988) 1o
extract gluon distribution G(x, Q%) trom the mcasurement ol low-x proton and devtcron
structure functions Fz(x, Q%) and therr ditterential coctiicients ol J(x, Q) / Q" and N S(x OB
[ dx with sespeat 1o InQQ? and x respectively  Here we report tor the biest time 4 method to hind
gluon distribution from deuteron structure tunction Py(x, Q%) at low-x  Ilere we use the 10
AP evolution cquation (Allarclly and Parisi, 1997) 1o relate gluon distnbution funchion with
low-x structure function or thair difterential coctlicients We compare our results with other
methods also  In Bora and Choudhury’s method (Bora and Choudhury, 1995) to cxiract gluon
distrtbution G(x, Q%) authors expanded G(x / (1 - 7), Q%) usimg Tayltor expansion dbout 7 = ()
taking only upto first order derivative in the expansion . While expandimg they used only first
two terms an the expansion of the nfimte senes x / (1 - 7) = x Z'MI‘ Also But dus
approximation is very crude  Stmilarly in Prytz's method (Prytz 1993, 1994) author expandcd
Gix 1 (1 - 7), QY using the whole mfinite series x / (1 - 7) which s more gencral than the
previous method  Of course, we also take first two terms i Laylor expansion series (Gix /
(1 -27), QY upto the first order denvative of G(x, Q) with respect 1o x - On the otherhand
m Koukov and Parcente’s method (Kotiko and Parente, 1996), authors assumaed some reeent
parametrizations for singlet quarks and gluon, put them in AP evolution equation and solved
for gluon distribution by standard moment method in NEO - But hore also authors appross ved
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therr solution by neglecting some higher order terms and difterential coctficient of singlet
gluon 9<dx with respect to x - Moreover, here the solving process by moment method 1s also
a bit complicated  Agan Elhs, Kunszt and Levin's method (Elts et al, 1994) 1s also not much
developed than other methods  Take Kouikov and Parente’s method here also the authors
assumed some behaviour tor 1 and gluon momentum density with some unkonwn parametet
and sofved AP cquations 1n moment space, of course, in NNLO analysis But here NNLO
kernals are also parameter dependent  Morcover, this mehtod covers the x-range lower than
HELRA rance and <o we become do not serious to include the result of this method m our
analysts  In caleulating the gluon distrtbution trom deuteron at low-x we use only NMC
deuteron data parametrization (Arneodo, 1995) by a 15-parameter tunction and find that 1t s
also mercasing when x decreastng as in the case of proton as usual - But 1t s seen that the
valuc ol gluon distribution trom deuteron 1s much less than that trom proton datda, almost onc
third m case of NMC data and stll smaller i other data like HLRA cte A possible
interpretation s that gluon distribution Gx, Q3?) 15 actually small in deutcron 1t 1s seen that
mn our theary (equation (23)) gluon distrtbutton depends upon deuteron structure tunction Ti(x
0, (t=1n (Q%/ A% and its dervatives with respect to t and x - Fhe structure function lmd-n\
denvatives lor deuteron are small (Arncodo, 1995, 1997) duc to which ulumatcly gluon
distributions from deuteron are small - Morcover, dependence of the gluon disttibution on Q?
s vary small at low-x  In a particular low-x gluon distributiondecreases very shghtly when
Q7 mereases  The T9-paramcter function not only desceribes the NMC data but also SLAC and
BCDMS (Benvenut, 1989) data and o our calculauon automatically mcludes these two types
ol experiments

For calculatton of gluon distitbution from proton structure function at fow-x we use HERA
data measured by 11 (Aid, 111, 1999) and ZLUS (Derrick, Z1LUS 1995) collaborations and
NMC data parametrization (Amcodo, 1995)  In our method ghuon from NMC data (Vitchaux
and Milsztagn, 1992) s apprectably small, 1t s almost one fifth of TITRA data measuied by
HIT and ZLUS collaborations at < ~ 10

In our mcthod, gluon distributions calculated from direet HERA data measured by 11T and
71LUS collaborations upto x ~ 10 are almost in the same order - Gluon disutbutions from the
HLRA data parametiizauons by HE and ZILUS collaborations upto x ~ 10} are also of the
same ordar to them and are mutudlly are also same  But aiter x ~ 10°* when x decrcases the
tate ol mcercament ol ZEUS parametrizaton s much higher than that of 11 and gluon
distrthution from the tirst parametrization becomes also hundred tumes of the second once al
x ~ 107

Wo compare our results with other methods by Bora and Choudhury, Ptz and Kotikov and
Parente  The gencral trend is that gluon distribution G(x, Q) increases when x decreases  But
the rate o mcrement of gluon distribution calculated by our method s i general higher than
those of other methods  The result of Kottkov and Parente s method are the fowest The
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1esults of two other methods are the ntermediate ones botween these two methods of winch
the result ol Prytz’s method s higher than that of Bora and Choudhury’s method  Results
from our method are closed to those from Prytz’s method  This 18 because Bota and
Choudbury’s method 1 a crude approxamation as they mclude only onc term ot the mibuuie
sertes x /(1 - 7) whereas we include all the mifinde terms  So the othor terms enhanec the
contnibution i our method — In our micthad, the tirst order approximation in Laylor cxpansion
ol G{x 7 (1 -72), Q9 s used, 1¢ onls terms having hirst order ditferentration dGix. Q) / ax
Ivused  Scope s sull there 1o mduee mgher order terins of the aylor expansion serics and
we have the plan 1o do vo in the subseguent work We did a prehminary work i thas tepand
includimg the second order differential coethicient 902G (x, Q7) 7 9x2 but it seems that this docs
not contribute m a significant way  Marcover, this s only o« LO analysis 1o have a better
result we mustanclude NT O and the  ubsequent terms i perturbative QCD - Work 18 goine
o this regard 1 astly, m extracting gluon distribution from scaling violation ol stracture
lunction, we assume that at Jow-x scalmyg violauon arises entircly from gluon distnibution
only and there 18 no contribution from guarks — OF cousse at low-x this 1o a very good
approxunation But anadl contribution Trom quarks stull there and we plan to examme this
pomnt also wn our latter work
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Abstract We present a method to find the gluon distribution from the F» proton structure function data
at low-z assuming the Regge behaviour of the gluon distribution function at this imit We use the leading
order (LQ) Altareli~-Pansi (AP) evolution equation wn our analysis and compare our result with those

-~ of other authors We also discuss the limitations of the Taylor expansion method 1n extracting the gluon
distnibution from the F, structure function used by those authors

1 Introduction

The measurements of the F, (proton and deuteron) struc-
ture functions by deep 1nelastic scattering (DIS) processes
in the low-z region, where 7 1s the Bjorken vanable have
opened a new era in parton density measurements [1]
It 1s important for understanding the inner structure of
hadrons and ultimately of matter It is also important
to know the gluon distribution inside a hadron at low-z
because gluons are expected to be dommant in this re-
gion On the otherhand, the gluon distribution cannot be
measured directly from experiments It 1s, therefore, 1m-
portant to measure the gluon distribution G(z,@?) ndi-
rectly from the proton as well as the deuteron structure
functions Fy(z,Q?) Here the representation for the gluon
distribution G(z) = zg(z) 1s used, where g(z) 1s the gluon
density

A few papers have already been published [2-9] n this
connection Here we present an alternative method to ex-
tract G(x,Q?) from the scaling violations of Fy(z,@?)
with respect to In @2, 1e 8Fy(z, Q?)/dIn Q% Our method
1s mathematically more transparent and simpler than
those of other authors

2 Theory

It 15 shown n {2,8] that the gluon distribution G(z) at
low-z can be obtained by analysing the longitudinal struc-
ture function Similarly 1t 1s also shown in [3-7] that this
distribution can be calculated from the F3 proton struc-
ture function and 1ts scaling violation Moreover, in (9] we
see that 1t 1s also possible to calculate the gluon distri-
bution from the F, deuteron structure function and 1ts

® e-mail jks@agnigarh tezu ernet 1n

scaling violation The basic idea relies on the fact that
the scaling violation of the F;, structure function arises
at low-r from the gluon distribution alone and does not
depend on the quark distribution As a demonstration of
this fact, the scaling violation of the sea quark distnbu-
tion as a function of z has been illustrated 1n [3] Here as
in Figs 1a,b the scaling violation of the sea quark distri-
bution using the KMRS B_ and By parametrizations [10]
are demonstrated, respectively At low-z, actually already
at z = 10~2, the quarks can be ncglected in the AP evo-
lution for the number of flavours of ny =4

Neglecting the quark the AP evolution equation for
four flavours [3,4] gives

1-z

2
B0 2] - 2 [T a1 - 2), Q) Pule)it

alnQ?  9r J, (M

where the LO sphitting function 1s
Pog(z) = 22 4+ (1~ 2%), (2)

and o 1s the strong couphing constant
Now,letl -z=y=>dz=—dy Agam:=0=>y=1
and z =1— 1 = y =z Therefore (1) gives

BFy(z Q%) 5as [! 2 >
—_— = — [ G(z/z, 2z°—-2:41)dz (3

e =2 | Gl @hes — 24 s
Now, let us consider the Regge behaviour of the gluon
distribution {11]

G(z,Q%) = C1~X@) ()
where C 15 a constant and XQ?) is the intercept The
Regge behaviour of the structure function in the large-
Q? region reflects itself in the small-t behaviour of the
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Fig. 1a,b. Scaling violations of sea quark distributions using the KMRS B_ and B, parametrizations [10] respectively as
in [3]. The solid lines were obtained using the complete AP equations and the dashed lines were obtained neglecting quark

distributions.

quark and the antiquark distributions. Thus the Regge
behaviour of the sea quark and antiquark distribution for
small-z is given by gsea(z) ~ z~ P corresponding to a
pomeron exchange of intercept ap=1. But the valence
quark distribution for small-z given by guai(z) ~ z~%*#
corresponds to a reggeon exchange of intercept ag = 1/2.
Since the same processes lead to gluon and sea quark dis-
tributions in the nucleon, we expect G(z) ~ 1/z. The
z-dependence of the parton densities given above is often
assumed at moderate-Q2.
Applying (4) in (3) we get

OFy(z,Q%) _ 50s o [ 2@ (@) (g,2

BInQz = B;C/; T z (22° — 22+ 1)d2.(5)
For fixed-Q?, let K(z) = 0Fy(z,Q%)/0InQ? and A =
50/ (97). Thus (5) gives

1
K@):ACE“@”/(%“Q—h“4+%ML

T

(6)

Taking the logarithm and rearranging the terms (6) gives
1 2 A+3
Inz [l“{,\+3(1 z™)

2 ooy, L A
W AR Al e Sk

A=

(7)
(8)

where A = A(Q?) and &(\) represents the right hand side
of (7). Now, (8) has been solved numerically using the it-
eration method [12] to calculate the values of A\(Q?) for
different z-values for a fixed value of Q. A simple com-
puter programme for this iteration method is given in Ap-
pendix A. Scaling violation of the F» structure function,
ie. K(z) = 8Fz(z,Q%/01nQ?, and the strong coupling
constant at LO s are experimental inputs. C is the only
free parameter in our calculation. After the calculation of

_ rnl; (In{X (z)/(AC)}],
> A-P(N) =0,

MQ?) we can calculate G(z, @?) from (4) for different val-
ues of the free parameter C and compare our results with
those due to other authors.

Now, let us discuss the methods due to other authors.
Prytz reported a method to obtain an approximate rela-
tion between the unintegrated gluon density and the scal-
ing violations of the quark structure function at low-z at
leading order (LO) [3] as well as at next-to-leading order
(NLO) {4]. He expanded G(z/(1—2)) of (1) using the Tay-
lor expansion formula at z = 1/2 to obtain the expression

() =ol-)-(-Del-)

9)

taking the derivative up to second order. This expression
is then inserted in (1) and after integration one gets

OF,(z) 5052
~ —-G(2
Fn0E ™ 9r 302%)

(10)

for fixed-Q?, which is the main result for the LO [3] anal-
ysis. Using a similar method he obtained the formula for
the NLO [4] analysis,

OF,(x)
dlnQ?

2
~ Gn) D% [

Qg
—— |-+ —3.58
9 4w + }

3 4rm
+(2) 2@,

o (11)

where N(z,Q?) is given in [4].

Bora and Choudhury also presented a method (5] to
find the gluon distribution from the F, proton structure
function and its scaling violation at low-z using the Taylor
expansion method. They also expanded G(z/(1 — 2), Q%)
of (1) using the Taylor expansion method about z = 0
taking only the derivative up to first order in the expan-
sion. While expanding they used only the first two terms
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in the nfinite expansion series z/(1 — z) = 3 o, z* to
get an expression This expression 1s then inserted 1n (1)
and after integration one gets

9r A(t) + 2B(z) 0F:(z,Q?)

G(z1, Q%) ~ 5oc [A(2) + B@ omGE (12)
at
_ B(z)
=T D) + B

Sarma and Medh: also obtained a method [9] to find the
gluon distribution from the F; proton and deuteron struc-
ture functions and their scaling violations at low-r They
also expanded G(z/(1 ~ z),Q?%) of (1) by using the Tay-
lor expansion method taking only the derivative up to
first order 1n the expansion But unlike Bora and Choud-
hury method they considered the whole series z/(1 - z) =
T Z?:o z* to get the expression

G(lz >=G<x+r§:z’”,Q2>=G(I,Q2)

oo

Z BG(m Q%)

k=1

(13)

Using this relation 1n (1) and then integrating one obtains
for the proton

_ 9 1 OF)(z,t)
G(zp,t) = S A of (14)
and for the deuteron
9 OF$(z,t)
Glzg,t) = 5 1\1($)i—‘—(%—
Fé(z,t
+ I(Q—M—) + R3F8(z, t)|, (15)

oz

where ©, = = + B(t)/A(z) z4 = z + D(z)/C(z) and
t = In(Q?/A?), A being the QCD cut-off parameter Here
A(z), B(z),C(z), D(z), K1(z), K2(z) and h3(x) are some
functions of x mentioned 1n 9]
Now, let us discuss the imitation of the Taylor expan-
sion method 1n this regard Applying the Taylor expansion
{12] for the gluon distribution function 1n (1), we get

G(Ifz’Q2> =G<z+m§:zk,Q2>

foe]

G(z,Q) +z) 2 "aG k& Q ) e)
k=1
1 kad 82G(z, Q?
+§12 (; zk) ——————ézzQ ) +O(z3),

where O(z®) are the higher order terms Here we have
1-7 <2< 0= |z| <1 which imphes that z/(1 - z) =

483

rzf’:o z* 15 convergent In the previous methods either
the terms beyond second order [3,4] or beyond first or-
der dervatives [5,9] of = are neglected in the expansion
sertes (16) But in actual practice this type of simphfi-
cation 1s not possible because the contributions from the
higher order terms cannot be neglected due to the singular
behaviour of the gluon distribution

There are some other methods also which are not based
on the Taylor expansion method Kotikov and Parente
presented (7] a set of formulae to extract the gluon dis-
tribution function from the Fj structure function and its
scaling violation at small-z 1n the NLO approxumation
They considered for singlet quark and gluon parton dis-
tributions p(t, Q2) ~ 7% (@) for a Regge-like behaviour
and p(r Q%) =~ exp(05(6,(Q%)In(1/z))'/?) for double-
logarithmical behaviour [6] where p = s g and §.(Q?) #
6q(Q2) Then they put these distributions in the AP equa-
tions and solved for the gluon distribution bv the standard
moment method Now for Regge-like behaviour the gluon
distribution becomes

L 114 OF (7 Q%)
9(0.Q%) = 50y | om0
+ 2120F(z Q%) + O(a? 2 l‘é]

(17)

for 8 = 05 and the number of Aavours f = 4 Agam
for double-logarithmical behaviour the gluon distribution
becomes

2 3 L
9(z, Q%) = dec (1 + 26[1/6 — 41/13))
e

A different method for the determination of the gluon dis
tribution at small values of = has been proposed by Ellis
Kunszt and Levin [6] based on the solution of the AP
evolution equations in the moment space up to next-to-
next-to-leading order (NNLO) In this method the quarh
and gluon momentum densities are assumed to behave as
™™ where wq 15 a parameter the actual value of which
must be extracted from the data Here the gluon momen
tum density for four flavours 1s

18/5
PFC(wg)
OFs (7 Q? )

d1lnQ?

r9(z, Q%) =

- PP (wo) Fa(x Q)] (19)

The evolution kernels PF¥ and PT'¢ calculated in the MS
scheme are expanded up to third order 1n a4

3 Results and discussion

We use HERA data taken by the H1 [13] and ZEUS {14]
collaborations where the values of dFs(z, Q%)/01n Q? are
listed for a range of z values at Q% = 20GeV? The re
cent HERA data are parametrized bv the H1 [15] and
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Gluon from NMC proton parametrization at Q'=60 GeV*
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Fig. 2a,b. Gluon distribution G(x) by our method from the NMC proton parametrization (17,18} at Q? = 40,60,80 and
100 GeV? respectively with C = 1 In the same figure we include a global fit by MRST [21]

ZEUS {16] collaborations by some appropriate functions
and we calculate 0F>(z Q%)/01nQ? at Q? = 20GeV? for
those functions also We also use the parametrizations of
the recent New Muon Collaboration (NMC) [17,18] F,
proton structure function data from a 15-parameter func-
tion from which also we calculate GFa(z,Q%)/81nQ? at
40GeV? Now we apply the values of 3F»(z,Q2%)/01n Q?
in (8) to calculate A numerically by the iteration method
[6] and hence the gluon distrnibution function G(z,Q?)
for C = 1 We do not consider higher values of C, say
C = 100, because 1n this case the neglect of the valence
quark distribution zge, ~ z!/2 15 not so correct as the
A-value 1s close to -1/2 in quite a broad range of z More-
over, 1n this case we obtain g ~ z!/? and Tqua ~ ©'/?
Then also we get Tqsea ~ /2 Otherwise 1t should not
be neglected in (1) Then 1t 1s easy to obtain Fp ~ z!/2
which contradicts the experimental data For our calcu-
lation the strong coupling constant ¢ was taken from a
NLO fit {19] to the F; data yielding as = 0 180 +:0 008 at

Q? = 50 GeV? corresponding to A\l = 0263 £0 042 GeV

and ag(M,2) = 01130005 This value of s agrees with
the one given by the Particle Data Group (PDG) [20]

But in our practical calculations we neglect the errors of
as and A which are rather small

We compare our result with the results of other authors
discussed 1n the theorv as well as the recent MRST global
fit [21]

In Figs 2a-d we present the gluon distributions G(t)
for different low-t values from the NMC proton data
parametrization {17,18] at Q2 = 40,60,80 and 100 GeV?
respectively From the figures 1t 1s seen that the results are
almost the same for all Q*-values and G(z) 15 slowly in-
creasing when z decreases logarithmically We also present
the MRST global fit [21] result, but 1its rate of increment
1s much higher

In Fig 3 we present the gluon distributions G(t) for
different low-z values from the H1 HERA proton data
{13] at Q% = 20GeV? The muddle line 1s the result with-
out considering any error in the data The upper and
lower lines are the results with data adding and subtract-
ing systematic and statistical errors with the middle val-
ues, respectively As usual the gluon distribution G(z)
increases when z decreases In the same graph we also
present the G(x) values for the MRST global fit [21} which
1s also increasing towards low-z values but with a some-
what smaller rate
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Ghuon from H1 HERA proton data st Q%20 GeV*

120
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Fig. 3. Gluon distribution G(z) by our method from the Hl
HERA proton data (13} at Q° = 20GeV? with C = 1. Here
we present the results for the data (i) without considering the
error (middle), (ii) adding algebrically statistical and system-
atic errors (high) and (iii) substracting algebrically statistical
and systematic errors (low). In the same figures we include a
global fit by MRST [21].

Giuon from H1 HERA proton parametrization st Q*=20 GeV®
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Fig. 4. Gluon distribution G(z) by our method from the H1
HERA proton data parametrization [15] at @ = 20 GeV? with
C = 1. In the same figures we include a global fit by MRST
[21).
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Fig. 5. Same result as in Fig. 3 from the ZEUS HERA proton
data (14] at Q* = 20 GeV?2.
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Gluon from ZEUS HERA proton parsmetrization at Q?=20 GeV*
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Fig. 6. Same result as in Fig. 4 from the ZEUS HERA proton
data parametrization [16] at Q% = 20 GeV2.
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Fig. 7. A-values by our method from the Hl HERA proton

data [13] at Q% = 20GeV? with C = 1. Here we present the

results for the data (i) without considering the error (middle),

(ii) adding algebrically statistical and systematic errors (high)

and (iii) subtracting algebraically statistical and systematic
errors (low).

0.014

In Fig. 4 we present the gluon distributions G(z) for
the H1 HERA proton parametrization [15] at Q? =
20GeV? for different low-z values. The gluon distribu-
tion G(z) is increasing when z is decreasing. In the same
graph we present the G(z) values for the MRST global fit
(21], which is also increasing towards low-z values with a
somewhat smaller rate.

In Fig. 5 we present the gluon distribution G(z) ZEUS
HERA proton data [14] at @? = 20 GeV? for different low-
z values. The descriptions and the results are the same as
the H1 HERA data [13] depicted in Fig. 3.

In Fig. 6 we present the gluon distributions G(z) for
the ZEUS HERA proton parametrization [16] at Q% =
20 GeV? for different low-z values. The descriptions and
the results are the same as the H1 HERA parametrization
[15] depicted in Fig. 4.

In Fig. 7 we present the value of A (Lambda) for the H1
HERA proton data [13] for low, middle and high values at
@? = 20 GeV? for different low-z values. All the graphs are
almost parallel and the A-values tend to ~ 0.5 at lower-z.
That is, the parameter A has a small dependence on z and
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Fig. 9. Companison of gluon distribution G(z) from the H1
HERA proton data [13] by our method for C = 1 with those
by other methods due to Bora and Choudhury (5] and Prytz
[3] In the same figure, we include a global fit by MRST [21]

@? This behaviour 1s 1n good agreement with experimen-
tal data [22], fits (21,23] and with the double-logarithmical
semi-analytical analysis [24-26)

In Fig 8, we present the A-values for the ZEUS HERA
proton data [14] in the same way as in Fig 7 and the
analysis 1s also the same For all the graphs X values tend
to ~ 0 5 as we approach a lower-z from some higher values
of z

In Fig 9, we compare our results for the HERA H1
data (muddle value only) [13] at Q% = 20 GeV? with those
of Bora and Choudhury (5] and Prytz [3] In the same
figure, we also present the result for the MRST global fit
{21] For all cases the gluon distribution G(z) 1s increasing
when z 15 decreasing but with different rates The rates of
increment 1n our result 15 highest and 1in MRST 1s lowest

J K Sarma, G K Medhi Regge behaviour of structure function and gluon distribution at low-z in leading order

4 Summary and conclusion

In this paper we present an alternative method {2-9] to ex-
tract the gluon distribution G(1, @2) from the scaling vio-
lation of the F, proton structure function
8F»(x)/01n Q? at low-z We compare our result with those
of other methods due to Bora and Choudhury [5] and
Prytz {3], and with a global fit due to MRST (21] The
gluon distribution will increase as usual when T decreases

We discussed the hmitations of the Taylor expansion
method [12] 1n calculating the gluon distribution from the
scaling violation of the F» structure function at low-7
Prytz in both LO (3] and NLO [4] and Bora and Choud-
hury 1in LO [5] used this method to extract the gluon dis-
tribution from the scaling violation of the F» structure
function at low-z in a shightly different way But all the
authors neglected the higher order terms in the Taylor ex-
pansion series, which 1s not a good approximation for the
singular behaviour of the gluon distribution at low-z, be-
cause the contributions from the higher order terms in the
series are not neghgible Sarma and Medh [9] used this
method 1n some improved way with a better approxima-
tion, yet the basic approximation of neglecting higher or-
der terms 1n the expansion series could not be avoided On
the other hand in the Kotikov and Parente method [7,8]
also these authors approximated their results by neglect-
ing some higher order terms Moreover, their method 1s
to some extent complicated The Ellis, Kunszt and Levin
method [6] neither has been more developed than other
methods Though their analysis 1s up to NNLO, the ker-
nels are parameter dependent and the z-ranges are lower
than the HERA region In the present method of course
we use a free parameter C, yet the other ambiguities due
to the approximation of the Taylor expansion series can
be avoided Moreover, our method is very simple and the
computer programme can calculate the gluon distribution
immediately when we put in the value of the scaling vio-
lation from experiment

We can use this method by assuming a double-
logarithmical behaviour (7] of the gluon distribution at
low-z also The present procedure 15 a LO analysis only
But there 1s a possibility to extend this method to NLO
or higher to have more accurate results
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grateful to DST, New Delhi, for a SCRC visiting fellowship in
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in the form of a minor research project
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Appendix

A simple FORTRAN programme for the calculation of A
from the scaling violation of the structure function 1s given
here

C GLUON DISTRIBUTION FROM SCALING VICLATION OF PROTON DATA
05 REALY, K, C, X, A, PHIX1, PHIX2, PHIX3, PHIX, P, AB, G
10 PRINT®, *Y=7"

1§ READ", Y

20 PRINT', “K=7"
25 READ*, K

kL) PRINT", “C=7"
35 READ, C

L] X=3

45 ALPH= 118

50 P1=3 1418

55  A=(5°ALPHY(9°PI)
58 PHIXTS2J0X43 PUL-Y™ (X3 ) 2U0X2 {1 -Y™(X42)
s7 PHIX2%1.J(X#1 F{1-Y"*(X1))
58 PHIX3=ALOG{K/(A*C))
60 PHIX=1JALOG(Y) (ALOG(PHIX1+PHIX2)-PHIX3)
65  P=X-PHIX
70 AB=ABS(P)
75 G=C'Y™(-PHIX)
80 IF (AB LT 00000001) THEN
PRINT, C, Y, PHIX, G
GOTO 10
ELSE
X=PHIX
ENDIF
GOTO 56
85  END

1

(=2} Gr oA LN

QO 0o~

15

16

17
18
19
20

21
22
23
24
25

26

References

See for example, Proceedings Workshop “Phvsics at
HERA”, edited by W Buchmuller, G Inglelman Ham-
burg (1991)

A M Copper-Sarkar et al , Z Phys C 39, 281 (1988)

K Prytz, Phys Lett B 311, 286 (1993)

K Prytz, Phys Lett B 332, 393 (1994)

Kalpana Bora, D K Choudhury, Phys Lett B 354 151
(1995)

R K Elhs, Z Kunszt, C M Levin, Nucl Phys B 420, 517
(1994)

AV Kotikov, G Parente, Phys Lett B 379, 195 (1996)
AV Kotikov, Phys Rev D 49, 5746 (1994)

J K Sarma, G K Medhi, TU/THEP-1/98 (1998)

J Kwiecinski, A D Martin, R G Roberts, W ] Stirling,
Phys Rev D 42, 3645 (1990)

P D B Collins, An introduction to Regge theorv and hgh-
energy physics (Cambridge University Press, Cambridge
1977)

J B Scarborough, Numerical mathematical analvsis
(John Hopkins Press, Baltimore 1996)

S Aud et al, H1 collaboration, Phys Lett B 354, 494
(1995)

M Derrick et al , ZEUS collaboration, Phys Lett B 364,
576 (1995)

T Ahmed et al , H1 collaboration, Nucl Phys B 439
471 (1995)

M Derrick et al , ZEUS collaboration, DESY 94-143 Au-
gust(1994)

M Arneodo et al , NMC, Phys Lett B 364, 107 (1995)
M Arneodo et al , NMC, Nucl Phys B 483, 3 (1997)
M Virchaux, A Milsztajn, Phvs Lett B 274 221 (1992)
L Montanet et al , Particle Data Group (PDG), Phys
Rev D 50, 1173 (1994)

A D Martin et al, DTP/98/10, RAL-tr-98-029, hep-
ph/9803445 (1998)

S Aidet al , H1 collaboration, Nucl Phys B 470, 3 (1996)
M Gluck, E Reya A Vogt, Eur Phys ] C 5,461 (1998)
R D Ball, S Forte, Phys Lett B 336, 77 (1994)

L Mankiewcz, A Saalfeld, T Weigl Phys Lett B 393
175 (1997)

AV Kotikov, G Parente, Nucl Phys B 549 242 (1999)



Proceedings of the Annual Technical Session,
Assam Science Society, 1999

REGGE BEHAVIOUR OF STRUCTURE FUNCTION AND
GLUON DISTRIBUTION AT LOW-X IN LEADING ORDER

J. K. Sarma*® and G. K. Medhi**

Abstract

We present a method to find the gluon distribution from F,
proton structure function data at low-x assuming the Regge behaviour
of gluon distribution function at this limit. We use the leading order
(LO) Altarelli-Parisi (AP) evolution equation in our analysis and
compare our result with those of other authors. We also discuss the
limitations of Taylor expansion method in extracting gluon distribution
from F, structure function use by those authors

Key words : Altarelli Parisi evolution equation, Bjorken variable, gluon distribution.

1. INTRODUCTION

The measurements of the quark (proton and the deuteron) structure functions by
Deep Inelastic Scattering (DIS) processes in the low-x region where x is the Bjorken variable
have opened a new era in parton density measurements {1}. It is important for understanding
the inner structure of hadrons and ultimately of matter. It is also important to know the
gluon distribution inside hadron at low-x because gluons are expected to be dominant in
this region. On the other hand, gluon distribution can not be measured directly from
experiments. It is, therefore, important to measure gluon distribution G{x, Q?). indirectly
from the proton as well as the deuteron structure functions F,(x, Q%

A few number of papers have already been published [2-9] in this connection. Here
we present an alternative method to extract Gix, Q? from scaling violations of F,(x, Q?)
with respect to InQ? dF,(x,Q%/dInQ?. Our method is mathematically more transparent and
simpler than those of other authors

2. THEORY

It is shown in the ref. [2,8] that the gluon distribution at low-x can be obtained by
analysing the longitudinal structure function. Similarly it is also shown in the ref. [3-7] that
this distribution can be calculated from the proton structure function and its scaling violation
Moreover in ref. [9] we see that it is also possible to calculate gluon distribution from
deuteron structure function and its scaling violation. The basic idea lies on the fact that the
scaling violation of quark structure function arises at low-x from the gluon distribution alone

*Physics Department, Tezpur University, Nappam, Tezpur - 784 028, Assam, India
**Physics Department, Birjhora Mahavidyalaya, Bongaigaon - 783 380, Assam. India



and does not depend on the quark distribution. Neglecting the quark the AP evolution
equation for four flavours [3,4] gives

oFx,Q) _ 5a (1-=
2 " ok Ok/(L-x), QAP ()dz ()
where the LO splitting function is
Pqg (2) = 2% + (1 - 29 2

and o, is the strong coupling coristant. -
Now,letl-z=y=dz=-dy. Aganz=0=y=1landz=1-x=
y = x. Therefore eq. (1) gives

Ffx, @) _ 5e, [l .
InQ? On I,, Glx/z, Q). (22 2z + 1)dz. 3

Now, let us consider the Regge behaviour of gluon distribution {10}
G(x, QZ) = C_XA(QZ) (4)

where C is a constant and A (Q? is the intercept. The Regge behaviour of the structure
function F, (x) in the large-Q? region reflects itself in the small-x behaviour of the quark and
the antiquark distributions. Thus the Regge behaviour of the sea quark and antiquark
distributions for small-x is given by q,_ (x) ~ x™® corresponds to a pomeron exchange.of
intercept ap =1. But the valence quark distribution for small-x given by g, (x) ~ x=
corresponds to a reggeon exchange of intercept o, = 1/2. Since the same processes lead
to gluon and sea quarks distributions in the nucleon, we expect G{x) ~ 1/x. The
x-dependence of the parton densities given above are often assumed at moderate-Q?.

Applying eq.(4) in eq. (3) we get

oFfx, Q) _ 5% ¢ [' i@ A@, (222 - 22 + 1)dz )
a’nQZ 27,1 x

For fixed Q? let Kix) = oF? (x, Q%) /dInQ? and A = 5a, /(9n). Thus eq. (5} gives
Kix) = A.C.x~ 2@ ,[: (2272 — 2221 4+ 2% dz. (6)
Taking logarithm and rearranging the terms eq. (6) gives

lﬂi In 2 (1 - xM9) -2 (1 - x™?) + 1 - x;.u)]]

Inx A+ 3 A+ 2 A+ 1
- 1 mixwach 7
Inx
2A-OMN =0 (8

where A = A (Q%) and ® (A) represents the right hand side of eq. (7). Now, eq. (8) has been
solved numerically using iteration method [11] to compute the values of A (Q?) for different

2



x-values for a fixed value of Q. Scaling violation of structure function Kix) = dF, (x, Q%/
dinQ? and strong coupling constant at LO o are experimental inputs in our computations.
C is the only free parameter in our computation. After computation of MQ? we can
compute Glx, Q?) from eq. (4) for different values of the free parameter C and compare
our results with those due to other authors.

Now, let us discuss the methods due to other authors. Prytz reported a method to
obtain an approximate relation between the unitegrated gluon density and scaling violations
of quark structure function at low-x at leading order (LO) [3] as well as at next-to-leading
order (NLO) [4]. He expanded G(x/(1-z)} of eq. (1) using Taylor expansion at z = 1/2 to
obtain the expression [3]

"y eGlel)ie-L) Gty spo Ly G k=)
G(l_z)~G(z 2)+(z Z)G(z 2)+(z 7) 22 9)

taking upto second order derivative. This expression is then inserted in eq. (1) and after
interation one gets

oF, ) _ 5% 2 Gy (10)
SnZ _ On " 3

for fixed Q? which is the main result for LO[3] analysis. Using a similar method he obtained
the formula for NLO[4] analysis

oF,x) . G 20 o [2,¢ 0!)2 20 2
oW =G ((2x) &Y . % £ +-=2.358 + (-] . . N (x, 11
9InQ? Y9 4 13 4r 9 b @ o

where N(x,(Q?) is given in ref. {4].

Bora and Choudhury also presented a method[5] to find the gluon distribution from
the quark structure function and its scaling violation at low-x using Taylor expansion
method. They also expanded G{x/(1 - z), Q%) of eq. (1) using Taylor expansion method
about z = 0 taking only upto first order derivative in the expansion. While expanding they
used only first two terms in the infinite expansion series x/(1 - 2) = xX2 z* to get an
expression. This expression is then inserted in eq (1) and after integration one gets

2. I Al) + 2Blx) 9F,(x, Q) 12
G 50, TA) + Bl oIn@ 1

at

_ Bix)

Sarma and Medhi also obtained a method [9] to find the gluon distribution from
proton and deuteron structure functions and their scaling violations at low-x. They also
expanded G{x/(1 - z), Q% of eq. (1) by using Taylor expansion method taking only upto
first order derivative in the expansion. But unlike the Bora and Choudhury method, they
considered the whole series x/(1 — z) = x Y2,z to get the expresion



o0 oo 2
G155, @1 =Gl +x 3,2, Q) = O, @1 + x 300 22

o (13
Using this relation in eq. (1) and then integrating one obtains for proton
_ 9n 1 9P, x, ¢t)
Gix,t)= 50, " A" N (14)
" and for deuteron
9 oF (x, 1) oF (x, t)
Glxy )= 5 [Kbt—5r— + K,— 57— + K, P, (x, 1], (15)

where X, =X+ Bix) / Alx), x; = x + D(x)/C(x) and t = In(Q?/ A?), Abeing the QCD cut
off parameter Here A(x), B(x) Cx), Dlx), K,x), K,ix) and K, (x) are some functions of x
mentioned in ref. [9].

Now, let us discuss the limitation of Taylor expansion method in this regard. Applying
Taylor expansion [11] in eq. (1), we get

Gl kxS ) - Gk QxS p8C D)
k=1 oy a_x—'—
+'—' x? (Bi Z¥)? M + OA), (16)

where Ox3) are the higher order terms. Here we have 1 ~x <z < 0 = lz| < 1 which
implies that x /(1 - 2) = x Z‘:o z* is convergent. In the previous methods, either the terms
beyond second order [3,4] or beyond first order [5,9] derivatives of x are neglected in the
expansion series eq. (17). But in actual practice, this type of simplification is not possible
because the contributions from the higher order terms can not be neglected due to the
singular behaviour of gluon distribution.

There are some other methods also which are not based on Taylor expansion
method. Kotikov and Parente presented [7] a set of formulae to extract gluon distribution
function from quark structure function and its scaling violation at small-x in the NLO
approximation. They considered for singlet quark and gluon parton distributions p(x, Q9
= x% (Q?) for Regge-like behaviour and p{x, Q% = exp (0. 5V8 (QZ) In(1/x)) for Double:
logarithmical behaviour [6] where p = s, g and §(Q% # § (Qz) Then they put these
distributions in AP equations and solved for gluon distribution éy standard moment method.
Now for Regge-like behaviour, gluon distribution becomes

1.14 dF, (x, Q)
gix, @) = s + 26.90) ez + 2.120F,x, Q) + Ofa?, x9)| . (17)

for 6 = 0.5 and number of flavour f = 4. Again for Double-logarithmical behaviour gluon
distribution becomes,
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3 1
glx, Q4 = deoc {1 + 260 [1/6- 41/13))

oF, (x, Q%)
aInQ?

A different method for the determination of gluon distribution at small values of
x has been proposed by Ellis, Kunszt and Lewin[6] based on the solutlon of AP
evolution equations in the moment space upto next-to-next-to leading order (NNLO) In
this method quark and gluon momentum densities are assumed to behave as x—*
where w, 15 a parameter the actual value of which must be extracted from the data
Here gluon momentum density for four flavour s

+ O (%) (18)

18/5 dF, (x, Q? -
xglx, Qz)=PFG({u g 5,‘;‘0?’ - P (w) Ffx, QY (19)

The evolution kernels P and P'¢ calculated in MS scheme are expanded upto third
order in «

3. RESULTS AND DISCUSSIONS

We use HERA data taken by H1[12] and ZEUS|13] collaborations where the values
of dF,{x, Q)/dIn@Q? are listed for a range of x values at Q? = 20GeV? The recent HERA
data are parametnzed by H1{14] and ZEUS[15] collaborations by some appropnate functions
and we calculate oF,{x,Q%)/dInQ*at Q* = 20GeV? for those functions also We also use
parametnzations of the recent New Muon Collaboration (NMC) [16, 17] proton structure
function data from a 15-parameter function from which also we calculate oF ,(x,Q%/dInQ?
at 40GeV? Now we apply the values of dF (x,Q%)/dInQ? n eq (8) to compute A numerically
by iteration method[6} and hence gluon distribution function G(x,Q?) for C = 1 and C =

100 For our calculations strong coupling constant o was taken from a NLO fit[18] to F,

data which yield a = 0 180 + 0 008 at Q* 50GeV? corresponding to /\% = 0263 +

0042GeV and o, (M2 = 0 113 £ 0 005 This value of o agrees with the one gwen by
Particle Data Group (PDG)[19] But in our practical calculations we neglected the errors of
a,and A which are rather small

We compare our result with the results of other authors discussed in the theory as
well as the recent MRST global fit{20]

In Fig 1{a)-Fig 1{d) we present gluon distnibutions G(x) for different low-x values from
NMC proton data parametnization [16,17] at Q? = 40, 60, 80 and 100GeV? respectively
for C=1 and C=100 From the figures it 1s seen that results are almost same for all Q?
values and G(x) are slowly increasing when x decreases logarithmically We also present the
MRST global £1t{20} result, but its rate of increment 1s much higher The values of G{x) are
higher for C=1 than those for C=100 for a particular value of Jow-x



In Fig 2(a) and Fig 2(b) we present the gluon distnibutions g(x) for different low x
values from H1 HERA proton data[12] at Q% = 20GeV? for C=1 and C=100 respectively
The muddle line 1n each figure 1s the result without considering any error in the data The
upper and lower lines are the result with data adding and subtracting systematic and
statistical errors with the middle values respectively As usual gluon distnbution G(x) increases
when x decreases but the whole system of lines in the graphs shifts towards the lower G(x)
values when we change from C=1 to C=100 In the same graphs we also present the G(x)
values for MRST global fit[20] which 1s also increasing towards low-x values but with
somewhat lesser rate But for C=100 our G{x) values come in the range of this fit

In Fig 3 we present the gluon distributions G(x) for H1 HERA proton
parametrization[14] at Q? = 20GeV? for different low-x values for C=1 and C=100
respectively Gluon distnbution G(x) 1s increasing when x 1s decreasing, but the line 1n the
graph shifts towards the lower G{x) values when we change from C=1 to C=100 In the
same graph we present the G(x) values for MRST global fit{20] which 1s also increasing
towards low-x values with somewhat lesser rate But for C=100 our G(x) values are closer
to this fit

In Fig 4(a) and Fig 4(b} we present the gluon distributions G(x) ZEUS HERA proton
datal13] at Q% = 20GeV? for different low-x values for C=1 and C=100 respectively The
descriptions and the results are same as H1 HERA data[12] depicted in Fig 2(a) and Fig 2(b)
respectively

In Fig5 we present the gluon distnibutions G(x) for ZEUS HERA proton
parametrization|15] at Q2 = 20GeV? for different low-x values for C=1 and C=100 The
descriptions and the results are same as H1 HERA parametrization[14] depicted in Fig 3

In Fig 6 we present the value of A (Lambda) for H1 HERA proton data[12] for low,
muddle and high values of them at Q? = 20GeV? for different low-x values for C=1 and
C=100 For C=1, all the graphs are almost parallel and A-values tend to ~ 0 5 at low-x
For C=100 for all the graphs A-values tend to ~ 0 0 from some negative values at low
X

In Fig 7, we present the A-values for ZEUS HERA proton data[13] in the same way
as in Fig 6 For C=1, for all the graphs A-values tend to ~ 0 5 as we approach lower
x from some slightly higher values in comparatively higherx On the other hand for
C=100, for all the graphs A-values tend to ~ - 0 1 as we approach lower-x from some
shghtly lower negative values in comparatvely higher-x

If Fig 8, we compare our results for Hera H1 data (middle value only) [12} at Q? =
20GeV? for C=1 and C=100 with those of Bora and Choudhury [5}] and Prytz[3] In the
same Fig we also present the result for MRST global fitf20] For all the cases giuon
distnbution G(x) 15 increasing when x 15 decreasing but with different rates The rates of
increment in our result for C=1 1s highest and in MRST, lowest But our result with C=100
15 very close with that of Bora and Choudhury and also mnside the range of MRST



4. SUMMARY AND CONCLUSION

In this method we present an alternative method to extract gluon distribution G(x,Q?
from the scaling violation of proton structure function dF,(x)/dInQ? at low-x We compare
our result with those of other methods due to Bora and Choudhury[5] and Prytz[3), and
with a global fit due to MRST[20] Gluon distribution will increase as usual when x decreases
with different rates for the different values of the parameter C=1 nd C=100 But our graph
with C=100 is very close to that due to Bora and Choudhury and the global fit due to
MRST

We discussed the limitations of Taylor expansion method[11] in calculating gluon
distribution from scaling violation of structure function at low-x Prytz in both LO[3] and
NLOI[4] and Bora and Choudhury in LO[5] used this method to extract gluon distnibution
from scaling violation of structure function at low-x in a slightly different way But all these
authors neglected the higher order terms in the Taylor expansion series which 1s not a good
approximation for a singular behawiour of gluon distribution at low-x because the contnbutions
from the higher order terms in the series are not negligible Sarma and Medhi {3] used this
method in an improved way with less number of approximations, yet the basic approximation
of neglecting higher order terms in the expansion series could not be avoided On the other
hand in Kotikov and Parente method [7,8] also the authors approximated their results by
neglecting some higher order terms Moreover their method is to some extent complicated
Again Ellis, Kunszt and Levin method|6] is also not more developed than other methods
Though their analysis is upto NNLO, the kernels are parameter dependent and its x-ranges
are lower than HERA region In the present method of course we use a free parameter
C, vet the other ambiguities due to the approximation of the Taylor expansion series can
be avoided. Moreover our method is a very simple one

We can use this method by assuming the Double-logarithmical behaviour(7] of gluon
distribution at low-x also The present procedure is an LO analysis only But there is
possibility to extend this method to NLO or higher to have more accurate results
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: from NMC proton parametrization at Q®> = 40GeV?
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Flg 1(a) : Gluon distribution G(x) by our method from NMC proton parametrization[16] 17] at Q? =
respectively with C=1 and C=100 In the same figure we include a global fit by MRST[20]



Fig.1(b) : Gluon from NMC proton parametrization at Q* = 60GeV?
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Fig.1(b) : Giuon distnbution G(x) by our method from NMC proton parametrization(16] 17] at Q? = 40, 60, 80 and 100GeV?
respectively with C=1 and C=100 In the same figure we include a global fit by MRST[20)
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Fig.1(c) : Gluon from NMC proton parametnzation at Q? = S0GeV?
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Fig.1(c) : Gluon distribution G{x) by our method from NMC proton parametrization{16] 17} at Q¢ = 40 60, B and 100GeV?
respectively with C=1 and C=100 In the same figure we include a global fit by MK rze,



1

Fig.1(d) : Gluon from NMC proton parametnzation at Q2 = 1060 GeV?
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Fig.1(d) : Gluon distribution G(x) by our method from NMC proton parametnzation[16] 17] at Q* = 40, 60, 80 and 100GeV?
respectively with C=1 and C=100 In the same figure we include a global fit by MRST(20]



Fig.2 (a) : Gluon from H1 HERA proton data at Q? = 20 GeV? (C=1)
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Fig.2(a) : Gluon distribution G(x)

by our method from H1 HERA proton datal12] at Q¢ = 20GeV?¢ with C=1 and C=100

respectively Here we present the results for the data (i) without considering the error (middle;j. (1) adding algebrically statistical
and systematic errors (high) and (iii) substracting algebrically statistical and systematic errors{low) In the same figure we include

a global fit by MRST[20].
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Fig.2 (b) : Gluon from H1 HERA proton data at Q? = 20 GeV? (C=100)
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Fig.2(b) : Gluon distrbution G(x) by our method from H1 HERA proton data[12] at Q? = 20GeV? with C=1 and C=100
respectively Here we present the results for the data ) without considering the error (middle), (1) adding algebrically statistical
and systematic errors (tugh) and (i) substracting algebrically statistical and systematic errors{low) In the same figure we include
a global fit by MRST[20}
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Fig.3 : Gluon from H1 HERA proton parametrization at Q? = 20 GeV?
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Fig.3 : Gluon distnibution G(x) by our method from H1 HERA proton data parametnzation|14] at Q*
and C=100 In the same figure we include a global fit by MRST(20]

= 20GeV? with C=1
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Fig.4(a) : Gluon from ZEUS HERA ;Sfoton data at Q? = 20 GeV? (C=1)
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Fig.4(a) : Same result as in Fig.2(a)-2(b) respectively from ZEUS HERA proton data(13] at Q? = 20GeV2.



Fig.4(b) : Gluon from ZEUS HERA proton data at Q? = 20 GeV? (C=100)
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Fig.4(b) : Same result as in Fig 2(a)-2(b) respectively from ZEUS HERA proton data(13] at Q? = 20GeV?
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Fig.5 : Gluon from ZEUS HERA proton parametrization at Q% = 20 GeV?

10000
~3. - - - Gluon C=1
1000 TN — —Gluon C=100
i ~3-. —— MRST

100
10
1 - ' o
0.000001 0.00001 0.0001 | 0.001

Fig.5 : Same result as in Fig 3 from ZEUS HERA proton data parametrization(15] at Q? = 20GeV?
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Fig.6 : Lambda for H1 HERA proton data at Q? = 20 GeV?
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Fig.6 : A-values by our method from H1 HERA proton data[12] at Q? = 20GeV? with C=1 and C=100 Here we present

the results for the data {1} without considering the error{middle), (1) adding algebncally statistical and systematic errors {high)
and (n) substracting algebrically statistical and systermatic errors (low)



61

Fig.7 : Lambda for ZEUS HERA proton data at Q* = 20 GeV?
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Fig.7 : Same result as in Fig 6 from ZEUS HERA proton data[13] at Q2 = 20GeV?
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Fig.8 : Comparison of Gluon by different authors for HERA H1 data
(middie value) at Q2 = 20 GeV?
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Fig.8 : Comparison of gluon distribution G{x) from H1 HERA proton data[12] by our method for C=1 and C=100 with those
by other methods due to Bora and Choudhuryl5) and Prytz{3] In the same.fxgure, we include a global fit by MRST{20}
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t and z-evolutions of gluon structure functions at low-x
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Abstract. We obtain x and t-evolutions of gluon structure function at low-z from
Altarelli-Parisi equation. Comparison is made with the prediction of Lipatov as
well as GLR equations. We also make predictions for the HERA range.

Keywords. Structure function, Altarelli-Parisi equations, low-z.

1. In a recent letter [J.K. Sarma and B. Das, 1993] the t-evolutions of non-singlet
and singlet structure functions [L.F. Abbot, W.B. Atwood and R.N. Barnett, 1980]
have been reported. The same technique can be applied to the Altarelli-Parisi (AP)
equation [G. Altarelli and G. Parisi, 1977] for the gluon structure function to obtain
t as well as z-evolution of gluon at low-z.

The AP equation for the gluon structure function has the standard form [L.F.
Abbot, W.B. Atwood and R.N. Barnett, 1980]

e -2 (G- T +ma-0) G+ o) =0 (1)

where
_ [ [wGlz/w,t) - Gl,1) - w
I, = /z dw[ T + (w(l—w)+T) Glz/w,t)
Y
s () A )
= In(Q?/A2),
36
A= s,

N; being the number of flavour.

! Present address: Department of Physics, Tezpur University, Tezpur 784025
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For small-z and high-Q?, gluon is expected to be more dominant than the sea
[F.J. Yadurain, 1983]. For lower-Q?(Q? =~ A?), however, there is no such clear
cut distinction between the two. For simplicity, we therefore; assume identical t-
dependence for both:

G(z,t) = KFy(z,t), (3)

where, K is a parameter to be determined from experiments. This results in

I, = /ml dw [‘”G(”’/";'i); Gla,t) | (w(l —w) + 1—1'”—‘”) Clz/w, 1)

+§2% (lM) G(z/w,t)] . | (4)

w

Let us introduce the variable
u=1—-w (5)

and note that [I.S. Granshteyn and .M. Ryzhik, 1965]

=z i uk (6)
k=0

The series (6) is convergent for |u| < 1. Sincez < w < 1,500 < u < 1-z and
hence the convergence criterion is satisfied. Using (6) we can rewrite G(z/w,t) as
[L.A. Pipes and L.R. Harvill, 1970]

G(z/w,t) = <x+m2u t)

2
= 1, (= | 9°G(zt

=G(z,t) +z ) u"?g%—ﬂ+§zz<§:”k) __ag—)+-.-. (7)
k=1

k=1

which covers the whole range of u, 0 < u < 1 — z. Neglecting higher order terms
o(z?), G(z/w,t) can then be approximated for small-z as

G(z/w,t) = G(x,t)+miuka—cg(zi)—. (8)
k=1 .

Putting (5) and (8) in (4) and performing u-integrations we obtain

3G(:l: t)

1, = R(z)G(z,t) + S(z) —— (9)

where we have used the identity [I.S. Granshteyn and L. M. Ryzhik, 1965]

gz= - (10)
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and where.

8 4
-+ 2+ﬁ 11’1:7:—-[—6?\7

Using (9) in (1) we get.

dG(z,t) ﬂ E Ny YLy
5 " {(12—? + In(l = «)G{x, 1)

+R(z)G(z,t) + S{a)

Ju
which gives.

G (a, f,) _ ﬂ {P(T)G(Tnt) + Q(’r)ﬂi)_} =0,

at t adr
where.
Plz) = (;~; - %) +In(1 - ) + R(x). }
Q) = S(x)
The gencral solution of (13) is [I. Sneddon. 1957)
FU,V)=0,

where, F' is an arbitrary function and

U(xz,t,G) = C,
V(iz,t,G) = C

form a solution of the equations

dr ﬁ _ dG
AQ(z) ~ —t  —AsP(z)G(z.t)

Solving (17) one obtains.

U(r, t.G) = texp [-Al—f / QT:)]

P(nc)”_
0(x) 1"] |

and |

V(z,t,G) = G(m,t)exp[

OG(n',t)} _ o

41

(13)

(14)

(16)

(17)

(18)

(19)

It thus has no unique solution. The simplest possibility is that a linear combi-

nation of U and V is to satisfy (15) so that
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AU+ B,B =0, (20)
where A, and B, are arbitrary constants Putting the values of U and V in (20)
we obtain

Got) = =204 exp [/{ L P, (21)

' B, A;Q(z) Q) '
2(a). Defining,
A, 1 P(z)
Glz,to) = — 21y [/{———————}d] 22
(z,t0) B, 0 €Xp 4,0 Q) T (22)
One gets,
G(z,t) = G(z, ty)(t/to), (23)

which gives the t-evolution of gluon structure function G(z,t).

2(b). Again defining,

G(zg, t) = —g—jtexp [/{—-A,Ql(:r) - %} dz] r=rn, (24)
one obtains,
G(z,t) = G(zy,t) exp [/ {A!C;(:z:) - %} dx] . (25

which determines the z-evolution of gluon structure function G(z,t)

3. We can perform the integration inside the exponential in the equation (25) wit!
further approximation that In(l — ) — 0 and z In £ — 0 for very small-z, z — (
Then we get from (14),

P(z) = (1_2"‘%) 1+0k)(1 5’3)_(“l —}—(—))1—2:::)
—% —39:) (1+9K)lnm ) (2t
and Q(z) = (1+ +(2+gg)e+ (F+3) - (z+5%2),
when we have neglected the square and higher terms of z.
Putting the values of P(z) and Q(z) from (26) in (25) and performing th
integrations analytically we get,
1 ) e (a+bz)" '}
- _z V(g — il Sl it A
G(z,t) = G(zo,t) exp [ b(l +d+2e)(z a:u)} (930) X { (ot bao)" 7
-}- g—T“‘f'C/—d.—P +ﬁ(l+d+2a)
(st (e ]

a+ bz

(2

L]

where,
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a = 1+%, )
b = 14k
C; = N3 (28)
d = 1+5%,
and e = —1+g¢ )

4. Instead of neglecting the higher order terms o(z?) from the equation (7) as is
done in (8), let us retain the second order terms of Taylor expansion series (7) and
neglect higher order terms o(x?): G(z/w,t) can then be approximated for small-z

as [L.A. Pipes and L.R. Harvill. 1970]
= .\ 82G(x.1)
2 r z,t

A=t

- ot
G(z/w,t) ~ Gz, t) + l‘Zu‘ G(z,t) +

\L
A=1

N

Putting {(5) and (29) in (4) and performing u-integrations we obtain,
9G (2. t) 9°G(x, t)

Oz Ox2
where R(x) and S(x) are defined by equations (11) and (12) respectively and T'(z)
is given hy,

L, (SN & ’ u l-u
T(x) = i:r/” (gu) (u(l—u)+1_u+ =

2 14+u°
9K 1—-u

I, = R(x)G(z,t) + S(x) + T(z) (30)

(31)

It does not need to calculate explicitly the value of T(z) as a function of z for the
reason Which will be clear shortly. Using (30) in (1) we get.

IG(z.t) A e
‘__;‘_Q - {pmc(z‘t) +Q(-'">*(%t—)
O*Glz.t)|  _ 3
+T<m>*5.»7z—} = o, (32)

where P(z) and Q(z) are defined by equation (14).

The equation (32) is a second order partial differential equation which can be
solved by Monge's method [I. Sneddon. 1957). According to this method the solution
of second order partial differential equation

Rr+Ss+Tt=V (33)
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can be dbtained from the subsidiary equations

Rdy? ~ Sdzdy+ Tdz*? = 0 }

and Rdpdy + Tdqdz — Vdzdy = 0, (34)

where R, 5, T,V are functions of z,y, z,p and q. Here z,p,q,r,s and ¢ are defined

as follows:
Oz oz 9%z dp
Z = = — = —-— = ——— I —
Z(m, y)’ p am! q ay! r 3::2 azv
_ P % _ 00
T 8zdy ~ 8y Oz’ T8y 8y
Comparing equation (32) with (33) we get,
R = A;Y(x),
S = 0,
T = 0 (35)

Vo= t2E8 _4,Q(x) 2 — A P(2)G(x,t).

Substituting the values of R, S, T and V in subsidiary equations we obtain ultimately
V = 0, which gives
: 0G(z, t)
ot

which is exactly the equation (13). This equation is solved earlier and now it is
clear that the introduction of the second order terms does not modify the solutions
(23) or (25).

- AfQ(z) BGa(: ) — A;P(z)G(z,t) =0,

10

J

xox,

0[1, el)——-'

“»
T
n
L]

3 xm,

£ L 1 i 1 s
. 20t 107 20? 20° 20

@ (6erH)—

Fig. 1. Q%evolutions of G(x, @?) from the equation (23). Arbitrary inputs
G(z,Q%) = 1,2 and 3 are taken for £ = z;,z; and 3 respectively.
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10

4 /X, 4»!/—’_"

20

Fig. 2. z-evolutions of G(z,Q?) from the equation (25) (solid lines) and
from equation (27) (dashed lines). Arbitrary inputs G(zy, Q%) = 10
for Q% = Q? is taken. K or K’ = 0.01, 0.1, 1, 10 and 100.

5. We have presented our results qualitatively in Fig. 1 and Fig. 2. In Fig. 1 the re-
sult of ¢ or Q*-evolutions of G(z, Q?) from the equation (23) is given. We have taken
arbitrary inputs G(z,Q3) = 1,2 and 3 for & = x,, T, and x; respectively Similarly in
Fig. 2 the results of z-evolutions of G(z, Q?) from the equation (25) (solid lines) and
from the equations (27) (dashed lines) are presented. Integration in the equation
(25) is computed numerically. We have taken arbitrary inputs G{zy, Q%) = 10 for
()7 = Qf for both the sets. Different lines are due to different K-values, K = 0.01,
¢t 1, 10 and 100 indicated in the Fig. 2 for the dashed graphs. K-values are
labelled as K’ for convenience It is clear from the figures that evolutions of gluon
structure functions G(x,Q?) depend upon inputs G(z, Q3) or G(zy, Q%) and also
upon A’-values. Moreover, AP and GLAP or G(z,Q?), zG(z,Q?), g{z,Q?) and
29( v, Q%) are equivalent here.

EHLQ [E. Eichten, Z. Hinchliffe, K. Lane and C. Quigg, 1984] begin with input
hstributions inferred from experiment at Q2 = 5GeV? and integrate the evolution
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equation numerically. They started with the data of CDHS neutrino experiment
[H. Abramowicz et al. 1983] at CERN. Gluon distribution is determined indirectly
and parametrized as

G (z, Q%) = (2.62 + 9.17z)(1 — z)°?,

with R = o1 /o7 = 0.1 and A = 200MeV at Q2 = 5GeV?. This is set-1. Under
the assumption that R = o /o7 has the behaviour prescribed by QCD, gluon is
parametrized as

zG(zx, Q?,) = (1.75 + 15.57c)(1 ~ )8,

ID’
[CJ]

4 | 1 1 |
178 r
10” 70° 27, , ° 707 70
[} Gy )—s

Fig. 3(a) and Fig.3(b). QZ%-evolutions of zG(x,Q?) for EHLQ Set-1 and
Set-2 respectively (dashed lines) for £ = 10~!,1072,1073 and 107*.
Results from equation (23) (solid lines) are also given for same
values of z. Inputs are taken from the corresponding valuecs at
10Gev? from the parametrization.

with A = 290 MeV at Q2 = 5GeV?. This is set-2. The calculated Q* dependence of
zG(x, Q?) for set-1 is shown in Fig. 3(a) by dashed lines for z values 107!, 107%,10¢
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and 10" % as indicated in the figure. The expected growth of the distributions at
small-z is apparent. Our results from the equation (23) are given in the figure by
solid lines for the same values of . Inputs are taken from the corresponding values
at 10GeV? from the parametrization. The corresponding result for set-2 is shown in
Fig. 3(b). Again to explore the uncertainties in the small-z region EHLQ consider
two modifications of set-1 as follows:

2G(z,Q3) = (2.62+9.17z)(1 - z)°?, z > 0.01,
and
(0.444z7"5 — 1.886 (a)
2G(z, Q) =
25.562" 5, (b)
for £ < 0.01. 5

27T

|

s’

26(x8)—
s

2°F

1 L 1
707 0* 707 70

& (Gevh)—s

Fig.4(a) and Fig. 4(b). Q*-evolutions of 2G(z, Q?) for EHLQ Set-1(2) and
Set-1(b) respectively (dashed lines) for z = 1072,1073 and 107*
alongwith the corresponding predictions (solid lines) from equation
(23) as indicated in Fig. 3(a) and Fig. 3(b).
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The results of these changes are presented in Fig. 4(a) and Fig. 4(b) for set-1(a)
and set-1(b) respectively for = 102,107 and 10~ alongwith our corresponding
predictions.

DFLM [M. Diemoz, F. Ferroni, E. Long, G. Martineli. 1986;1988} also pro-
ceed in the same manner to parametrize the data from the nutrino expreiments
BEBC'85 [D. Alasia et al, 1985] CCFRR'83 [D. MacFarlane et al, 1983) CHARM'83
[F. Bergsma ct al. 1983] and CDHS'83 [H. Abramowicz et al, 1983] at Q7 = 10GeV?.
For the set DFLM-2 they consider gluon function to be

2G (2, Q%) ~ (1 - 0.18z)(1 — )",

with /\m = 300MeV. Here the next to leading order QCD calculation is performed.
The result is given in the figure for z = 107',1072,10™% and 10~ by dashed lines.
Our result from the equation (23) is given by solid lines taking inputs as before.

The role of absorptive corrections in the small-z behaviour of deep inclastic
gluon structure functions 2G(z, ¢?) is widely discussed now [A. Ali and J. Bartels.
1991] due to the new generation of accelerators HERA [A. Ali, J. Bartels 1991 and
F Eisale and F.W. Brasse 1992] LHC [G. Jarlskog and D. Rein 1990] SSC [J.H.
Mullvey 1987] etc. Kim and Ryskin estimated [V.T. Kim and M.G. Ryskin 1991]
the non-linear absorption corrections with the parametrization used in semihard
phenomenology [E.M. Levin and M.G. Ryskin, 1990]. As non-linear absorption
effect are essentially at very small-z only [L.V. Gribov. E.M. Levin and M.G. Ryskin
1983). they decided to use the standard GLAP equation {G. Altarelli and G. Parisi
1977, V-N. Gribov and L.N. Lipatov 1972; Yu.L. Dokshitzer 1977] in region of
interest (z > 107, ¢* < 10°GeV?) i.e. = > zy(q?) where In zy = (1/12.7) In’(¢*/A?).
But in this case they are to add a new boundary condition

©G(z,q%), = ag’ (A)

on the line z = xz,(q?), where a = zyG(z,¢*)q*. which is fixed by the initial
condition

zG(z) = A(l - bz (B)

at, g2 = 4GeV? The coefficient A is fixed by the normalization [ zG(z)dz = 0.55
and wy = (1/m)N.a,(q?) x 41n 2 corresponds to the QCD pomeron singularity given
by the summation of leading-log contributions (a, In 1)" {25}, N = 3 be the number
of colours  Absorption corrections reveal itself due to this new boundary condition.
Kim and Ryskin obtain numerical solution of linear GLAP equation. The boundary
condition corresponds to a strong correlation between gluons inside the proton.
Gluons group in a small “h~* spots” [E.M. Levin and M.G. Ryskin 1990; A.H. Muller
and J. Qiu 1986) with radius R, ~ 0.2 Fm (z = 1/3). If gluons are distributed
uniformly inside the proton the screening would be smaller and non-linear effect
reveals itself at smaller z. For this case R, ~ 0.7Fm ~ R, (xy = 0.0035). In the
Fig. 6(a) the z dependence of gluon structure functions zG(z, ¢*) at ¢* = 10,100
and 1000GeV? is given by the curves 1, 4, 7; 2, 5, 8 and 3, 6, 9 respectively. Solid
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curves are the ordinary Jinear GLAP evolution; long dashed curves take into account
the absorption corrections through the new boundary condition (A) for R, ~ 0.2
Fm. Short dashed is the same for R, ~ R,,. Here A = 200 MeV. In the Fig. 6(b) the
difference between linear (solid curves) GLAP and non linear (dashed curves) GLR
[L.V. Gribov and E.M. Levin; M.G. Ryskin 1983] evolution is given. The curves
1. 4; 2.5 and 3, 6 correspond to ()? = 10,100 and 1000GeV? respectivelv. The
new and old initial conditions (A) and (B) at ¢° = 4GeV? are shown by dotted and
dot-dashed curves, respectively. Here A = 200 MeV. In both the figures, the shaded
areas are our predictions from the equation (25) with upper and lower boundaries
corresponding to K = 1 and 100 respectively. In both cases glnon distribution
functions G (xyQ?) for linear GLAD equation at x, = 107? are taken as inputs:
berause. it is almost same for all curves.

1 OJ

10 102 ey 0% 107 20°
t’l/ﬂlV")—~
Fig. 5. Q*-evolutions of zG(x, @?) for DFLM 2 (dashed lines) for z = 1071,
1072, 1073 and 10~* alongwith the corresponding predictions (solid
lines) from equation (23) as indicated in Fig. 3(a) and Fig. 3(b).

In the leading log (1/z) [LL(1/x)] approximation of QCD it is expected that
the gluon distribution will grow indefinitely as

zg(z, Q%) ~ z7X (C)

in the small-z limit [J. Kwiecinski, A.D. Martin and P.J. Sutton 1991] with A >~ 0.5.
This increase with decreasing x. will of course eventually be tamed by screening
corrections which give rise to non-linear terms in the QCD evolution equations. The
approximate framework is provided by the Lipatov equation [Ya.Ya. Balitskij and
L.N. Lipatov 1978; S. Catani. F. Fiorani, G. Marchesini and G. Oriani 1990] with the
addition of the non-linear shadowing term. This is known as ‘GLR’ equation. The
radius parameter R in the shadowing term characterises the area 7 R? in which the
gluons are concentrated within the proton. We would expect R to be approximately
equal to the radius of the proton i.e. R =~ 5GeV ™!, although it has been argued that
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Fig. 6(a) z-evolutions of(a:G(:z:,q"’) at g2 = 10, 100 and 1000GeV? are given
by curves 1,4,7; 2,5,8 and 3,6,9 respectively. Solid curves are GLAP
evolution; long-dashed curves take into account the absorption cor-
rections through (a) for R, ~ 0.2F,,: short dashed are the same
for R, ~ R,. The shaded area is the prediction from equation (25)
with upper and lower boundaries corresponding to K = 1 and 100
respectively.

(b) Difference between GLAP (solid curves) and GLR ( dashed curves)
equaticns. The curves 1.4; 2,5 and 3.6 correspond to ¢% = 10, 100
and 1000GeV? respectively. Initial conditions (A) and (B) are
shown by dotted and dot-dashed curves respectively. The shaded
area is same as in (a).
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the gluons may be concentrated in “hot spots” within the proton. So, the results for
R = 2GeV™! are also shown. The non-linear integro-differential Lipatov equation
can now be solved numerically [J. Kwiecinski, A.D. Martin and P.J. Sutton 1991}
with the analysis entirely confined to the small-z region * < zg. It is informative
to compare the above results with the gluon distributions to set B_ of partons
obtained in the KMRS [J. Kiecinski. A.D. Martin, R.G. Roberts and W.J. Stirling
1990] global structure function analysis which attempted to incorporate both the
Lipatov and shadowing effects, albeit in an approximate manner. KMRS evolved
the starting distributions up from Q? = 4GeV? using the next-to-leading order
AP equations. In the Fig. 7 the continuous curves are the values of zg(x,Q?)
determined by solving the Lipatov equation for Q% = 100 and 1000GeV*. The
dashed curves are zg(x, Q?) of set B.. of the KMRS next-to-leading order structure
function analysis. In each case three curves are in descending order the solution
with shadowing neglected and the solutions with the shadowing term included with
R = 5GeV~! and R = 2GeV~!. The shaded areas are our predictions described
before. zg(z,Q?) at z = 1072 for Lipatov equation are taken as inputs. They are
almost same for all the curves.

Q7000 ber?

' L 1 ] 1

Fig. 7. z-evolutions of zg(z,Q?) of Lipatov for Q = 100 and 1000GeV?
(solid curves). The dashed curves are zg(z, @?) of KMRS set B_.
In each three curves in descending order are the solutions with
shadowing neglected, solutions with R = 5GeV ! and R = 2GeV !
respectively. The shaded area is same as in Fig. 6(a).

6. It is clear from the figures that our #-evolutions conform with those of EHLQ
set-1, EHLQ set-2 and DFLM 2 parametrizations for z < 1072 but do not conform
for £ > 1072, But they conform excellently with set-1(a) whereas differ badly
with set-1(b). The bands in all the figures gives our predictions for z-evolutions
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for 1 < K < 100. Our predictions conform well with those of 6thers. It can be
inferred from our predictions that screening correction at verylow-z is more likely.
To conclude, our simple approximate analytical solution of AP equation for gluon
structure function gives satisfactory predictions in HERA range.E The qualitative
predictions of our results conform to those of several other authors. AP equation
in present form thus stands as a viable alternative to Lipatov and GLR predictions
at least in the £ and Q? range under study.
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Abstract

An approximate solution of the Altarci=Panst CAP) cquation s presented ind the v distiibution of the detcron struciure
tunction s caleulated acthe Tow v limat The results e compred with the FMCO NA 28 cxpanment datr (© 1997 Published

by Flsevict Saence BV

I. Introduction

The Altarelhi=Parisi (AP) equations | 1] are the ba
sic tools to study the Q%-cvolution of structure func-
tions Even though alternative evolution cquations [ 2]
have been proposed and pursued in recent years to
study structure functions especially at low-y, the AP
cquations have been the basic tools in studying dou-
ble asymptotic scaling (DAS) [3] or extracting the
gluon density fiom the slope ot the structure functions
at low-v |4

Based on QCD studies Ball and Forte show | 3] that
cvolving a flat input distnibution at Q(z, =1 GeV? with
the AP cquations leads to a strong risc of 75 at low-v1n
the tegion measured by HERA  An inteiesting fcature
1s that 1t QCD cvolution is the underlying dynamics of
thenise pertuwrbative QCD predicts that at farge Q2 and
small v the structure function exhibits double scaling
in the two variables
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"L mal hs@umighy ren nicin
YEomal dihp@gu cinetan

0370 2693 /97 /51700 © 1997 Published by Clscvier Saience B VAl

PIIS0370 2693(97)00483 8

o= \/Ing( W/ gt/ p= ___Iug( LUAY
|0g( ’/l())
with + = log(Q?/A%) This lollows from a computa
tion ol the asymptotic form of the structure function
Fy(v Q%) at small-v and rehics only on theyassump-
tion that any inctease m (v Q%) at small v 15 gen-
crated by perturbative QCD cvolution

[t implies that the AP cquations have charactenistic
v-cvolution at low v The present paper reports cal
culation of v-evolutions lor singlet non-singlet and
deutcron structure functions at fow 1 from the same
cquations It 15 based on the approvimate solutions
ol AP cquation using Taylor expansion at low-1 The
formahism was used carhier [ 5] to the low-1 LMC
and Fermilab data with reasonable phenomenological
s success It was a natural improvement of an carlics
analysis at intermediate v [6] In the present papa
in Scction 2 we discuss the necessary theory in shont
Scction 3 gives the tesult and the discussion

nghts sesenad
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2. Theory

Though the theory is discussed carlicr {5] yct we
have mentioned the essential steps here again for clar-
ity.

The AP equation for the singlet structure function
has the standard form [ 7]

IFS(x,1)
o

+2/(]

+ ‘in /{W' + (1 - w)z}G(.x'/w,r)dw

=0, ()

_ A [{3+4ln(l — ) }F(x. 1)

(l+w YFj (x/w, ) = 2F (x, 1)}

where Ay = 4/(33 — 2Ny), Ny being the number of

flavour and t = In(Q?/A?). Defining

If(x, 1)
I
=2/(_]£W__{u+w Y (x/w. 1) = 2F3(x.1)}

<X

(2)
and

I3(x,1)
!

= 5Ny /{W+ (1= w)%}G(x/w,0)dw,  (3)

A

one can recast () as

fif;_"l - ﬁ‘r—f[{3 +41In(1 = x)}FS(x, 1)
+ I (x, ) + 15(x,1)]1 =0. (4)

Let us introduce the variable it = [ —w and note that

The series (S5) is convergent for |u] < 1. Since x <
w < 1,500 < u < 1| — x and hence the convergence
criterion is satisfied. Using (5) we can rewrite,

. oo
F(x/w, ) =F) (x + A‘Zuk,t>

k=1

[ee] .
. v dF x, !t
=Fy(x,1) +x g u‘—z—(—\—)

X
k=1

x 2 42 sy
N IR ()
i 1.2 k 2
Ex <Zu) | ax2

k=1 :
+..., , (6)

which covers the whole rangcof 1, 0 < < [ — x.
Neglecting higher order terms, F3 (x/w, 1) can then
be approximated for low x as

oo o
. o AFS(x, 1)
F(x/w, 1) ~ F(x, t) +x§ W= ()
’ / 2 ! k=1 X

Putting (5) and (7:I) in (2) and (3) and pcrforming
u-integrations we get,

B, =[~(1 = x)(3+x) | F(x.0)

(9F2( X, t)

+{\(I—A)+2\]n(l/\)} (8)

and

15(x, t)-Nf[ (1 ~\)(2—- X+20G6(x, 0D

+{—'§x(l - \')('5—4x+2x )

&G(,\ r)]
dx

+2xIn(1/x)} . (9)

where we have uscd the identity

o<

llk
Zf=ln|/(|—?). (10)

k=1

Using (8) and (9) in (4) wc obtain

AFS(x, 1)

_As
P ; [A( Y)F3(x,t)

+C(x)G(x, 1)
8G (xat)
ax

T Bx )8F2(,\ )
dx

+ D(x) -
=0, , (1)

wherc

Ax)=3+4In(1 =x) = (1 —x)(3 - x), (12)

i
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B(v) = (= 2y 4+ 2xIn(i/x), (13)
C(O) =N (1 = )2~ v+ 2Y), (14)

D)= ~IN (1= 0 (5 -4 +2¢%)
+2¢in(t/v) (15)

In order to solve (11), we need to relate the sin-
glet distnibution 75 (x, 1) with the gluon distribution
G(r.1) For small v and high Q2 the gluon 1s ex-
pected to be more dominant than the sca For lower
0Q? (Q* ~ A?), howevcr, there 15 no such clear cut
distinction between the two For simplicity, we there-
fore, assume,

G(r.1) =KF(\, 1), (16)

where K 1s a parameter to be determined from cxperi-
ments But the possibility of the breakdown of relation
(16) also can not be ruled out

Then from Eq (11) we get

JF3 (1)

M

- f"_f LOGKYE (. n) +M(r.K)i,2(§—:’—')

=0, an
where
L(v,K)=A(v)+ KC(x), (18)
M\, K) =By + KD(x) (19)

The general solution of (17) can now be obtaned
by recasting 1t in the standard form

aoF, aF;
Px,t,l)y—2 Sy =%
(2 2)(9)’ +Q(x 2) o
= R(x, 1, Fy), 20)
where
Py, Fy)y=AM(x,K),

Qv 1. F)) = —1, (21

and_

ROV ILFS) = —AsL(x, KYF}(x, 1)

The genceral sotution of (20) 1s

F(n, V) =0, (22)
where 7718 an athittary function and

(v, 0, 0y)=C

and

Vgt 1) =Gy (23)

form a solution of the equations

dx _ dt _ dry (24)
P(x,0,13) ~ Q(x.1.Fy) ~ R(x.t 1)
Solving (24) onc obtains
u(x, 1, F3) =1X'(v) (25)
and
Vo, )y =Funy (. (26)
whcic
X\(\)=cxp[l//\,/(/\/M(\) (27)
and
Y‘(\)=cxp[/l,(\)/M(\)(l\ (28)

Thus the structurc function /(v 1) has to satisfy
(22) with w and V given hy (25) and (26). respee-
tively Tt thus has no uniguc solution The simplest
possibthity 1s that a hincar combination of « and V 1\
to satisly (20) so that

A+ BV =10 (29

Putting the values of « and V in (29) we obtain

A, X'(v)
ry == — 3
2 (8,0 B ! [y‘(\)] (3
Defining

A, X'(v)
ol = _3 3
F(x,19) B fy [Y‘(\)] (D

onc then has

Fi(r.l):rz‘(x.lo) (I/I())‘ (7)2)
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which gives the v-evolution of singlet structure func-
tion Fy(x,t)) Again defining

RPN

oA X' (x)
F(xo,r)=--—'-r-[ ] (33)
v By Y*(x) =0
ITTEEY
one then has,;3,;
[LYILENE
F(x,0) = N K
2(x. 1) = F(xo,1) o
vttt g LA E2 ) R

LSTHN
so that

[ AR )

yr
AR

Fj(x,t) = Fy(xo.1)

Corrf L(x)
X ex? [‘\/“{{AIM(X) - M(x) }dx] , (34)
Vo e

which gives the x-evolution of F;(x,1).
On the other hand, the AP equation for the non-
singlet-structure function

aFNS(x,1) A

P , [{3+4|n(l -0 }ES(x, 1)

L
dw, 2y NS
-+-2/(1 =) {(T+w)F>(x/w, 1)

~2R5(x, z)}}

=0 v (35)

LIRTY LA

can be written as

RS (x, 1)
at . .
A ; FYS(x,t
t ’ ax
=0 ' 7 (36)
o

whi’c;h is‘free {rom the additional assumption (16).
Using the saime’ procedure as for the singlet cquation,
Eq.'(36) yields

B0 = FS(x,10) - (1]t9) (37

and

3 (x,0) = F3S (o, 1)

L3

xcxp[/{l//“\/B(\) — A(V)/B(O) Y.

(38)

which give the t and x-cvolutions of non-singlet struc-
ture function F'S.!

The F; deuteron and proton structurc functions mca-
sured in deep ineldstic clectro-production can hc writ-
ten in terms of singlet and non-singlet quark distribu-

tion functions as
I

Fl=3F , (39)
W )
F =05 + 3F5 . (40)

Using (32) and (34) in (39) we will get the ¢ and
x-cvolutions of the deutcron structure function at low
X as i

Fil(x,0) = F§ (x.t0) - (t/to) (41)
|
and

Fl(x.t0) = F (x0.1)

xcxp[/{I/AfM(.\)—L(,\')/M(\)}rl,\} (42)

U]

using the input functions
F3 (x,10) = §F; (x, 1)
and !
F{ (x0,1) = 3F; (x0.1) .

Similarly using (32) and (37) in (40) wc have the
t-cvolution of the proton structure function at low v as

Fy (x,1) = Fy(x,ta) - (t/t0) (43)
using the input functions
Fi(x,10) = T%FZNS(XJO) + *,%Fiy(\vfo)

But the x-evolution of the proton structure function
like thosc of the deuteron structure function 1s not
possiblc by this methodology; because to extiact the
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Fig 1 Nucleon structure function, (D) obtained by EMC NA
28 from deutcron as a function of x for different intervals of
0? (in GeV?) Statistical errors are indicated by bars, systematic
crrors are shown by the bands beneath [n addition to the marked
cirors there 15 an overall normahization error of 7% Here sohd
hnes are our results (Eq (42) for Ny = 4 and K =~ 10-10"
Input data points are given by arrow heads.

x-cvolution of the proton structure function we are to
put (34) and (38) in (40). But as the functions in-
sidc the integral sign of Egs. (34) and (38) are differ-
cnt, we nced to scparate the input functions Fzs(xo, t)
and FzNS(xo, t) from the data points to extract the x-
cvolution of the proton structure function, which is not
possible.

3. Results and discussion

In our earlier analyses [5] we observed the excel-
lent phenomenological success of the t-evolutions of
dcuteron and proton structure functions. Here we anal-
yse the x-evolutions of the deuteron structure function.
For a quantitative analysis we evaluate the integrals
that occurred in (42) for Ny = 4 and present the rc-
sults in Fig. T (sofid lines) for EMC NA 28 deutcron
data | 8] in the K ~ 10-10'? range. Input data points
indicated by arrow heads are taken from cxperiments.

It is scen that our integrals arc almost independent
of the K-values particularly in thc x g\ 01 range.
Thesc results conform well to the data cspccidlly for
Q% < 2 GeV?; but for Q% > 2 GeV?, FY, grows laster
as x dccrcases. This is a possible indication of the
breakdown of (16) at high-Q* A clcarcr testing ol
our result is actually the rclation (38) whichtistircc
from the additional assumption (16). But non-singlet
data is not sufficicntly available at low x to test our
result - Eq. (38) n V=0

Generally the x-distributions of structure functions
are assumcd at a fixed low Q% = Q2 value by vari-
ous experimental and theorctical constraints and there
is no universal agreement among these different as-
sumptions. Then the valucs of structure! functions at
higher Q2 values arc calculated from evojution cqua-
tions. But here we present a method to calcuralc, the, x-
distribution of the deuteron structure funcuon for any

valuc of Q2. By knowing the valuc of the structure
function at a fixed valuc of v = g, we can -cvaluate:
it for other values of x in the low-a regron. Thisasiar
possible alternative to the various other phenomeno-,:
logical x-distributions discussed n the literature.

Traditionally the AP equations provide a mcans of
calculating the manner in which the parton distribu-
tions change at fixed x as Q2 varics. This change comes
about because of the various types of partombranching
emission processes and the x-distributions are modi-
ficd as the initial momentum is shared among the var-
1ous daughter partons. However the exact-rate of mod-
ifications of x-distributions at fixed Q2 cannot be ob-
tained from the AP equations since it depends not only
on the initial x but also on the rates of change of parton
distributions with respect to x, d"F(x) /dx" (n =1 to
00), upto infinite order. Physically this implies that at
high x, the parton has a large momentum fractron at
its disposal and as a rcsult radiates partons (including
gluons) in innumerable ways, some of, lhcm mvolv-
ing complicated QCD mechanisms. Howevér for low
x, many of the radiation proccsses will ccase to occur
duc to momentum constraints and the x-cvolutions get
simplfied. It is then possible to visualise a_situation,
in which the modification of the x-distribugion s;muiply
depends on its initial value and its (irst demyative. In
this simplificd situation, the AP cqualions give infor-
mation on the shapcs of the x-distribution-as demon-.
strated in this paper. Our result also indicates that the
shapes of the x-distributions of all the structure tunc;,
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tions at low x which are some combinations of non.
singlet and singlet structure functions, are the same for
ail values of @2 Ths 1s observed in all data mc]udlng
the HERA data
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