

REFERENCE BOOK
NOT TO BE ISSUE TEZPUR UNIVERSITY LIBra: Y

STUDIES ON GLUON DISTRIBUTION FUNCTION AT LOW-X

A thesis submitted to
Tezpur University
in fulfillment of the requirements
for the degree of
Doctor of Philosophy
By
\section*{Ghana Kanta Medhi}
Department of Physics
School of Science and Technology
Tezpur University
Napaam, Tezpur - 784028
Assam, India

Dedicated to my beloved father

Ramesh Chandra Medhi

And
my beloved mother
Late Labanya Medhi

CERTIFICATE

Dr. Jayanta Kumar Sarma
Reader
Department of Physics
Tezpur University
Napaam, Tezpur- 784028
Assam, India

This is to certify that Mr. Ghana Kanta Medhi has worked under my supervision for the thesis entitled "Studies on Gluon Distribution Function at Low-x" which is being submitted to Tezpur University in fulfillment of the requirements for the degree of Doctor of Philosophy. The thesis is Mr. Medhi's own work. He has fulfilled all the requirements under the Ph. D. rules and regulations of Tezpur University and to the best of my knowledge, the thesis as a whole or a part thereof has not been submitted to any other university for any degree or diploma.

Date : 07-11.2002
Place : Napaam, Tezpur

PREFACE

This thesis deals with gluon distribution function at low-x. Gluon distribution function can not be determined directly from experiment. On the otherhand, it is important as it may be an essential input in many high energy processes. Here, various methods for determination of gluon distribution function from proton and deuteron structure functions are presented. For this purpose, mainly GLDAP evolution equations are used and results are compared with those of other authors.

I am deeply indebted and grateful to my supervisor Dr. Jayanta Kumar Sarma, Reader, Physics Department, Tezpur University for his inspiring ànd painstaking guidance and constant encouragement throughout the course of this work.

My grateful thanks are due to Professor A. Choudhury and Dr. A. Kumar, Reader, for their kind interest and providing me necessary facilities of research as the heads of the department of Physics Department, Tezpur University during my work.

I acknowledge my gratefulness to Dr. D. K. Choudhury, Dr. N. Nimai Shingh, Dr. P. M. Kalita, Dr. B. Das, Mrs. K. Deka and all the faculty members of Physics Department of Tezpur University for their kind encouragement in performing the research work.

I feel immense pleasure to acknowledge my wife Mrs. Mrinalini Deka Medhi and my son Bittu for their constant support, love, inspiration and encouragement during the arduous time of my life.

My warm appreciation goes to Anjan, Mukesh, Ranjit, Siddhartha, Diganta, Abu, Naba, Juti, Syamalima, Anjali, Rasna, Supriya, Hupesh, Biswanath, Rubul, Bobbyma, Mani, M. Das, K. Nath, Kananba, Parulba, B. Barman, Bhanuba, Khagen, Putul, K. Das, Jyotshna, Jogen, Neelima, Kalpana, Bhabesh, Bijuba, M. Rajbangshi, Deepaba, N. K. Talukdar, Gitiba, Dhan, A. Sarma, Amal and Deepa for their love, inspiration and close friendship.

My thanks are due to all the members of the teaching staff of the Department of Physics of Birjhora Mahavidyalaya, Bongaigaon, all the members of Sangeet Tirtha, all the boarders of Assam Type Hostel of Tezpur University for their inspiration and keen interest to my work.

Financial support from the University Grants Commission, New Delhi, India as a minor research project is gratefully acknowledged.

Sate | $07-11-2002$ |
| :---: |
| Place. Napaam, Tezpur | ShanaKanta Nedhi,

(Ghana Kanta Medhi)

STUDIES ON GLUON DISTRIBUTION FUNCTION AT LOW-X

CONTENTS

Chapter-1 INTRODUCTION 1Page No11 Structure of Matter1
12 Deep Inelastic Scattenng 5
13 Structure Function 7
14 Low-x Physics 10
15 Evolution Equations 13
16 Screening Corrections 17
Chapter-2 TAYLOR EXPANSION METHOD 19
21 Taylor's Theorem 19
22 Taylor's Theorem and Structure Function at Low-x 21
Chapter-3 GLUON DISTRIBUTION FUNCTION FROM STRUCTURE FUNCTION - A REVIEW 26
31 Prytz Method 27
32 Bora and Choudhury Method 29
33 Kotikov and Parente Method 31
34 Ellis, Kunszt and Levin Method 35
Chapter-4 GLDAP EVOLUTION EQUATION AND GLUON DISTRIBUTION 38
41 Theory 38
42 Result and Discussion 44
43 Conclusion 53
Chapter-5 GLUON DISTRIBUTION FUNCTION FROM PROTON STRUCTURE FUNCTION 55
51 Theory 55
52 Result and Discussion 58
53 Conclusion 69
Chapter-6 GLUON DISTRIBUTION FUNCTION FROM DEUTERON STRUCTURE FUNCTION 72
61 Theory 72
62 Result and Discussion 78
63 Conclusion 82
Chapter-7 REGGE BEHAVIOUR AND GLUON DISTRIBUTION FUNCTION 83
71 Theory 83
72 Result and Discussion 86
73 Conclusion 96
Chapter-8 CONCLUSION 97REFERENCEPUBLICATION AND PRESENTATION
ADDENDA

Chapter-1

INTRODUCTION

1.1. Structure of Matter:

The end of the nineteenth century, in 1897 , J. J. Thomson discovered the electron, a negatively charged particle. The study was started by J. Dalton in his atomic theory. According to him, each element consists of atoms, indivisible objects. But that the atom cannot hold the claim of being indivisible became clear in 1895, when J. J. Thomson showed that all atoms contain electrons. The electron is, therefore, an element of all atoms and hence of all substances. In addition to the electron, each atom consists of a nucleus which is located at the center of the atom with most of its mass. The electrons and the nucleus of each atom are bound together by the coulomb force or in general the electromagnetic force.

In 1911, E. Rutherford showed that all nuclei contain protons which are positively charged particles. In 1932, J. Chadwick discovered the neutron, a particle with mass nearly equal to the mass of the proton but with no electric charge, as a companion constituent of nuclei along with the proton. Thus nuclei are made up of protons and neutrons. In 1934, E. Fermi wrote down a beta nuclear decay Hamiltonian which with slight modification is still believed to be the correct weak interaction Hamiltonian in the low energy limit. In 1935, H. Yukawa introduced yet another force known as strong force responsible for binding together of the proton and the neutron inside the nucleus.

In the 1950's and 1960's, experiments were done at higher and higher energies taking advantages of the existence of new and very powerful particle accelerators. In the subsequent probing of the neutron and the proton, a whole zoo of new particles were found. Following the ideas, that led to the reduction of 100 atoms to only three fundamental particles, physicists suspected that this new, huge number of particle really indicated that even smaller, more fundamental particles existed. Experiments in
the 1970 's proved that three smaller particles called Quark could be combined to make up neutrons, protons and many of the multitude of other particles.

The picture of fundamental constituents of matter and the interactions among them that has emerged in recent years is one of great beauty and simplicity. All matter seems to be composed of Quarks and Leptons which are supposedly point like that is structureless, spin half particles. Leaving aside gravitation, which is a negligible perturbation at the energy scales usually considered, all the three interactions namely weak, electromagnetic and strong, are described by gauge theories, and are mediated by spin one gauge bosons. Now there are three generations of Quarks and Leptons as follows:

Particles	First Generation	Second Generation	Third Generation
Quarks	u, d	s, c	b, t
Leptons	e, v_{e}	μ, v_{μ}	τ, v_{τ}

where, u, d, s, c, b, t are up, down, strange, charm, bottom and top quarks respectively and $e, \mu, \tau, \nu_{e}, \nu_{\mu}, \mu_{\tau}$ are electron, muon, tau, electron-neutrino, muon-neutrino and tau-neutrino respectively.

Matter seems of require three kinds of interactions to behave as it does: electromagnetic, which holds the electrons to nuclei; strong which holds the quarks to one another and the weak which can change one kind of quark into another or equivalently, a neutron into a proton or a proton into a neutron. The masses of single atoms are so small that the gravitational force is negligible at the atomic level. At this level the other three forces are much more important.

Each flavour quark comes in three colours: Red (R), Green (G) and Blue (B). Colour is just a quantum number like the charge and bears no similarity with the visual colours. The colour structure tells us also about the properties of gluons. Since they
are absorbed and emitted by quarks, they can change the colour of quarks, that is, a red-blue gluon changes a red quark to a blue quark and so forth. There are also redred, blue-blue and green-green gluons, so that there are nine possible gluon states in all altogether mathematically only eight of them are independent. Thus we see a kind of pattern: the electromagnetic force requires one photon; the weak force requires three intermediate bosons and the strong force requires eight gluons, each labeled by two colours. Gluons actually carry one colour and one anticolour. The properties of the weak force indicated that the weak force carriers are massive. Photons, intermediate bosons and gluons are all spin one particles.

Forces in the Standard Model

Force	Range	Strength at Fermi distance	Carrier	Mass at rest ($\mathrm{GeV} / \mathrm{c}^{2}$)	Spin	Electric charge
Gravitational	Infinite	10^{-38}	Graviton: g^{*}	0	2	0
Weak	$<10^{-16} \mathrm{~cm}$	10^{-13}	Intermediate bosons: W^{+} W^{-} Z^{0}	81 81 93	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} +1 \\ -1 \\ 0 \end{gathered}$
Electromagnetic	Infinite	10^{-2}	Photon: γ	0	1	0
Strong	$\simeq 10^{-13} \mathrm{~cm}$	1	Gluon: g	0	1	0

Since quarks have colours, antiquarks must possess negative colours ($\overline{\mathrm{R}}, \overline{\mathrm{G}}, \overline{\mathrm{B}}$) having characteristics exactly opposite to the colour triplet (R, G, B). Since gluons are supposed to mediate interaction between all possible coloured pairs (qq), ($q \bar{q}$) and ($\overline{\mathrm{q}} \overline{\mathrm{q}}$), they must also carry quantum numbers corresponding colour transitions, for example, $R \rightarrow G, R \rightarrow B$, apart from colourless transitions such as $R \rightarrow R$. In other words, gluons must exhibit a rich colour structure so that a particular gluon state must
in general be distinct, in terms of colour content, from the corresponding antigluon state. This necessitates a generalization of the concept of charge. With the quark model, hadrons, that is baryons and mesons are made of quarks which are strongly bound together. The exchange particle between quarks, and the true carrier of the strong force is the gluon. The properties of the gluon come out of the standard model theory. Evidence for gluons came in 1978 from an electron-positron machine at Hamburg in Germany. The machine, called PETRA, was able, like its Stanford twin PEP, to observe collisions up to 30 GeV and in the pattern of produced particles, the gluon was read.

Some people may still doubt the existence of the quark. The primary reason for this doubt is that quarks cannot be seen. To be able to justify treating quarks in the same way as the other elementary particles, the theoretical test, other than directly seeing them, would be necessary; and we must examine the characteristics of quarks in detail and refine the theory if need be. According to the Gell Mann-Zweing theory, quarks are a triplet of spin half fermions that carry SU_{3} quantum numbers. In other words, they are particles similar to leptons. Since hadrons are compounds of quarks, not only their isospin and strangeness, but also their spin should be determined by the way the quarks are combined and one should also be able to predict the properties of the excited states of the hadrons. The spectra of hadrons should also be an important indication of the nature of interaction of quarks.

The theory of a Yang-Mills field with colour as the quantum number is called Chromodynamics; that is to say, the dynamics is colour. By assumption, there are three colours: Red, Green and Blue, and the strong force acts between coloured quarks. The hadrons are supposed to be a system in which the colours have cancelled themselves out and become white. The quantum of the colour gauge field is called Gluon, meaning the glue that holds quarks together. Now let us think of a process in which a gluon is emitted by a quark. If, as a result of this process, the red (R) quark changes to a blue (B) one, then the gluon took red from the quark and gave blue. Equivalently, one can think of the gluon as having taken away red (R) and anti-blue (\bar{B}); thus this gluon is carrying a composite colour of $\mathrm{R} \overline{\mathrm{B}}$ (Fig.1.1).

Fig.1.1: Quarks have colours and emit coloured gluons.

In general, the gluon, G_{t}, that is released when q_{t} becomes q, acts exactly like the compound state of q_{1} and $\bar{q}_{j}, G_{1} \sim q_{1} \bar{q}_{j}$. There are $3 \times 3=9$ such combinations and one of the nine gluons is a special combination corresponding to the colour white,
$G_{w} \sim q_{R} \overline{q_{R}}+q_{G} \overline{q_{G}}+q_{B} \bar{q}_{B}=0$. But since it was required, to begin with, that the glue does not work on a white state, one must have $G_{w}=0$. Thus the number of independent gluons must be eight. QCD (Quantum Chromodynamics) refers to the quantum theory of colour gauge fields. One can think of this theory as QED (Quantum Electrodynamics) with the electron replaced by the quarks and photon by the gluons.

1.2. Deep Inelastic Scattering:

High energy Deep Inelastic lepton-nucleon Scattering (DIS) has been recognized as an important testing ground for the understanding of the structure of matter.

Pioneering experiments in this direction started more than twenty years ago. Since then, DIS has been served as the experimental area where QCD is being tested progressively. The complete kinematics of the process is determined measuring the angle and energy of the scattered lepton and two variables which are directly accessible from the experiments. However the results are usually presented and interpreted through the variables Q^{2}, x and y (Fig.1.2).

Fig.1.2: Kinematics of deep inelastic scattering process.

Defining,
$k_{\mu}=$ four momentum of the incoming lepton,
$k_{\mu}^{\prime}=$ four momentum of the scattered lepton,
$E=$ energy of the incoming lepton,
$E^{\prime}=$ energy of the scattered lepton,
$E_{p}=$ energy of the nucleon,
$M_{p}=$ rest mass of the nucleon,
$P_{\mu}=$ four momentum of the nucleon,
$S=$ available squared energy in the CM system,

$$
\begin{aligned}
& S=(k+P)^{2} \approx 4 E E^{\prime}, \\
& Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \approx 4 E E^{\prime} \operatorname{Cos}^{2} \theta / 2, \\
& x=\frac{Q^{2}}{2 p \cdot q}=\frac{E E^{\prime} \operatorname{Cos}^{2} \theta / 2}{E_{p}\left(E-E^{\prime} \operatorname{Sin}^{2} \theta / 2\right)}, \\
& y=\frac{p \cdot q}{p \cdot k} \approx \frac{2 p \cdot q}{S} \approx \frac{E-E^{\prime} \operatorname{Sin}^{2} \theta / 2}{E},
\end{aligned}
$$

where, $\theta=$ angle of the scattered lepton measured with respect to the nucleon direction. Physically x is the fraction of the nucleon momentum carried by the struck quark while y represents the fraction of the lepton energy transferred to the nucleon in the nucleon rest frame. The relation between Q^{2}, x, y and S is $Q^{2} \approx x y S$. The differential cross section for deep inelastic scattering from a nuclear target is completely calculable in QED. This cross section is expressible in terms of two structure functions W_{1} and W_{2} which parametrize the virtual photon nucleon coupling and contain all the interesting physics.

1.3. Structure Function:

Consider the case of electron scattering from a target composed of N well defined constituents which is characterized by the initial state vector $\left|\psi_{1}\right\rangle$, and the final state $\left|\psi_{f}\right\rangle$. Let the final state is unobserved. The invariant scattering cross section can be expressed in the form
$\frac{\partial^{2} \sigma}{\partial \Omega \partial E^{\prime}}=\frac{\alpha^{2}}{Q^{4}} \cdot \frac{E^{\prime}}{E} L_{\mu \vartheta} W^{\mu \nu}$,
where, $L_{\mu \nu}=2 k_{\mu} k_{\nu}^{\prime}+2 k_{\nu} k_{\mu}^{\prime}-g_{\mu \nu} Q^{2}$ is the electron polarization tensor averaged over initial spin states, while

$$
W^{\mu \nu}=\sum_{S}<p\left|J^{\mu^{+}}\right| f>f\left|J^{\nu}\right| p>\partial^{4}\left(p-p_{f}-Q\right)
$$

is the unpolarised hadronic tensor averaged over initial spins, and J^{μ} is the hadronic transition current.

All the interesting target physics is contained with $W^{\mu \nu}$. Without any a prior knowledge of nucleon structure, it is possible to place strong constraints of the form of $W^{\mu v}$ and thus on the cross section. The most general form of $W^{\mu v}$ consistent with Lorentz and gauge invariances, and parity is
$W_{\mu \nu}=W_{1}\left(\nu, Q^{2}\right)\left[\frac{Q^{\mu} Q^{\nu}}{Q^{2}}-g^{\mu \nu}\right]+W_{2}\left(\nu, Q^{2}\right) \frac{1}{M_{p}^{2}}\left[p^{\mu}+\frac{p \cdot Q}{Q^{2}} \cdot Q^{\mu}\right]\left[p^{\nu}+\frac{p \cdot Q}{Q^{2}} Q^{\nu}\right]$,
where, W_{1} and W_{2} are independent scalar functions of v and Q^{2}. Using this form, the invariant cross section can be expressed as
$\sigma \equiv \frac{\partial^{2} \sigma}{\partial \Omega \partial E^{\prime}}=\sigma^{\text {mout }}\left[W_{1}\left(v, Q^{2}\right)+2 W_{1}\left(v, Q^{2}\right) \tan ^{2}\left(\frac{\phi}{2}\right)\right]$,
where,
$\sigma^{\text {mot }}=\frac{4 \alpha^{2} E^{\prime}}{Q^{4}} \operatorname{Cos}^{2}\left(\frac{\phi}{2}\right), v=E-E^{\prime}$ and, ϕ and θ are related by $\theta=\pi-\phi$.
Here W_{1} and W_{2} are the two nucleon structure functions reflecting the possibility of magnetic as well as electric scattering, or alternatively, the possibility of photo absorption of either transverse (helicity $= \pm 1$) or longitudinal (helicity $=0$) photons.

It was suggested by Bjorken that for large v and $Q^{2}\left(v \rightarrow \infty, Q^{2} \rightarrow \infty, v / Q^{2}\right.$ fixed), $v W_{2}$ and $M_{p} W_{1}$ should become functions solely of the ratio $x=Q^{2} / 2 M_{p}^{v}$. This functional dependence was indeed observed in the very early SLAC data, at least approximately and is called scaling (Fig.1.3). If the nucleon constituents had internal structure denoted by $F_{c}\left(q^{2}\right)$, then we would expect the data is to be damped by an additional factor of $\left|F_{c}\left(q^{2}\right)\right|^{2}$. Thus the lack of pronounced Q^{2} dependence, known as scaling, suggests that the nucleon constituents are pointlike.

A simple approach for understanding this scaling phenomenon is offered by the naive parton model. In this model, the nucleon is assumed to consist of a collection of pointlike constituent partons with well defined quantum numbers. Viewed from a

Fig.1.3 Scaling at $x=025$ as observed in very early SLAC data '
frame in which the nucleon is highly relativistic, the so called infinite momentum frame, deep inelastic scattering is seen to be simply incoherent scattering from the individual partons. In this highly boosted frame, the partons recombine to form the final hadronic state over a much longer time scale than that of the collision, and so, it is precise to consider these as quasi-free non-interacting particles. In this frame, the Bjorken scalling quantity, x, is identifiable as the momentum fraction of the elastically scattered partons. Spin half partons thus contributing incoherently to the Dirac cross section yield the observable structure functions,
$F_{1}(x) \equiv M_{p} W_{1}=\sum_{1} f_{1}(x) e_{t}^{2} \quad$ and $\quad F_{2}(x) \equiv \nu W_{2}=x \sum_{1} f_{1}(x) e_{1}^{2}$,
where, $f_{1}(x)$ is the probability density of finding the i-th parton with fractional momentum x and charge e_{1}. The Callan-Gross relation $F_{2}=2 x F_{1}$ is a direct consequence of spin half partons and is strongly supported experimentally. To complete the identification of these partons with the quarks of Gell Mann and Zweing, one compares electron and neutrino scattering results for F_{1} and F_{2} to infer the fractional charge assignment of the quark model.

1.4. Low-x Physics:

According to QCD, at low values of $x\left(x \sim 10^{-4}\right)$ and at large values of Q^{2}, a nucleon consists predominantly of gluons and sea quarks. Their densities grow rapidly in the limit $x=0$ leading to possible spatial overlap and to interactions between the partons. Several interesting physical phenomena are thus expected when the parton densities are high, such as for example, shadowing or semihard processes appearing with large cross-sections in the high energy hadronic reactions [1,2]. Several DIS experiments have been performed on nuclear targets and various nuclear effects have shown up at low- x, as for example, shadowing which depletes the bound nucleon structure function relative to that measured from free nucleons. The low- x physics is a very complicated subject with scare data and a variety of different theoretical approaches.

The low-x region of Deep Inelastic Scattering offers a unique possibility to explore the Regge limit of perturbative QCD [1-14]. Deep Inelastic Scattering corresponds to the region where both v and Q^{2} are large and x is finite. The low- x limit of deep in elastic scattering corresponds to the case when $2 M v \gg Q^{2}$, yet Q^{2} is still large, that is at least a couple of $G e V^{2}$. The limit $2 M v \gg Q^{2}$ is equivalent to $S \gg Q^{2}$, that is to the limit when the center of mass energy squared S is large and much greater than Q^{2}. The high energy limit, when the scattering energy is kept much greater than the external masses, is by definition the Regge limit. In deep inelastic scattering Q^{2} is by definition also kept large, that is $Q^{2} \gg \Lambda^{2}$, where Λ is the QCD scale parameter. The limit of energy v and $2 M v \gg Q^{2}$ is therefore the Regge limit of deep inelastic scattering [3]. The fact that Q^{2} is large allows to use perturbative QCD.

Low energy charged lepton scattering is mediated by a pure electromagnetic interaction. This is also the dominant contribution at low and medium Q^{2} at large energies. Therefore it is natural to focus the discussion on one photon exchange. The differential cross section is then given by the formula:

$$
\frac{\partial^{2} \sigma\left(x, Q^{2}\right)}{\partial Q^{2} \partial x}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{M x y}{2 E}\right) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]
$$

where, due to parity conservation only two structure functions F_{1} and F_{2} appear. At much higher $Q^{2}, Q^{2}>M_{Z}^{2}$, where M_{Z} is the Z bosons mass, an admixture of the weak interaction and thus axial vector current may appear which introduces a third structure function F_{3}. Thus when discussing existing DIS data, only the structure functions F_{1} and F_{2} will be mentioned except for neutrino scattering data where the function F_{3} will also be referred to.

Since the low-x limit of DIS corresponds to the Regge limit the concepts of the old Regge theory and Regge phenomenology appear and acquire a new content within perturbative QCD. Since a long time it has been known that two-body scattering of hadrons is strongly dominated by small momentum transfers t or equivalently by small scattering angles. This is successfully described by the exchange of a particle with appropriate quantum numbers. Regge pole exchange is a generalization of a single particle exchange (Fig.1.4).

Fig.1.4 Regge pole exchange

The Regge poles, like elementary particles, are characterized by quantum numbers like charge, isospin, strangeness, etc. The Regge pole carrying the quantum numbers of the vacuum and describing diffractive scattering is called the pomeron. Other

Regge poles are called reggeons. It is useful to represent Regge pole exchange in terms of quarks and gluons. Regge pole exchange describes the exchange of states with appropriate quantum numbers and different virtuality t and $\operatorname{spin} \alpha$. The relation between t and α is called the Regge trajectory, $\alpha(t)$. Whenever this function passes through an integer (for bosonic Regge poles) or a half integer (for fermionic Regge poles), that is $\alpha(t)=n, n=1,2, \ldots \ldots$. or $n=1 / 2,3 / 2, \ldots \ldots \ldots$, there should exist a particle of spin n and mass $M_{n}=\sqrt{t}$. The trajectory $\alpha(t)$ thus interpolates between particles of different spins. The increase of the total cross sections with energy and so the possible nature of the pomeron, is strongly constrained by the Froissart bound implying that asymptotically the total cross sections cannot increase faster than $\ln ^{2} S$ [15]. This bound is a consequence of unitarity and analyticity. The natural quantities to consider are the structure functions F_{1} and F_{2} which are proportional to the total virtual photon-nucleon cross section and which are expected to have Regge behaviour corresponding to pomeron or region exchange [3].

The predictions obtained in this way for the production of the hadronic system in DIS can be used to estimate the low- x behavour of the structure functions, since the limit of large $S \gg Q^{2}$ discussed above corresponds to low-x $\sim Q^{2} / S$. In the parton model, which is appropriate in the large Q^{2} limit the structure functions, are related to the quark and antiquark distributions in the nucleon. The Regge behaviour of the structure function $F_{2}(x)$ in the large Q^{2} region reflects itself in the low-x behaviour of the quark and antiquark distributions. Thus a $1 / x$ behaviour of the sea quark and antiquark distributions for low- $x q_{\text {sea }}(x) \sim 1 / x$ corresponds to a Compton amplitude with a pomeron exchange while a behaviour of the valence quark distributions corresponds to a mesonic Regge pole exchange, that is $q_{v a l}(x) \sim 1 / \sqrt{x}$. Since the same processes lead to gluon and sea quarks distributions in the nucleon, we expect that for low- $x G(x) \sim 1 / x$. The x dependence of the parton densities given above are often assumed also for the Q^{2} dependent parton densities at moderate Q^{2}.

1.5. Evolution Equations:

Let us now discuss the pertubative QCD predictions for the low- x behaviour of parton distributions. We shall consider the sea quark and gluon distributions which dominate the valence quarks in the low-x limit. Perturbative QCD becomes applicable in the large Q^{2} region leading to the evolution of the parton densities with Q^{2}, expressed in a form of evolution equations. The exact form of these equations depends upon the accuracy with which one treats the large digithnind $\left(Q^{2} / \Lambda^{2}\right)$ or $\ln (1 / x)$.

1.5.1. GLDAP Evolution Equations:

In the leading $\ln \left(Q^{2}\right)$ approximation $\left(L L Q^{2}\right)$ which corresponds to keeping only those terms in the perturbative expansion which have the leading power of $\ln \left(Q^{2}\right)$, that is $\alpha_{s}^{n} \ln ^{n}\left(Q^{2}\right)$, the equations have the familiar form of the Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) evolution equations [16-19],

$$
\begin{align*}
& \frac{\partial q_{1}\left(x, Q^{2}\right)}{\partial \ln \left(Q^{2} / \Lambda^{2}\right)}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{r}^{1} \frac{d y}{y}\left[P_{q q}(x / y) q_{1}\left(y, Q^{2}\right)+P_{q G}(x / y) G\left(y, Q^{2}\right)\right], \tag{1.1}\\
& \frac{\partial G\left(x, Q^{2}\right)}{\partial \ln \left(Q^{2} / \Lambda^{2}\right)}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{\tau}^{1} \frac{d y}{y}\left[\sum_{1} P_{G q}(x / y) q_{1}\left(y, Q^{2}\right)+P_{\sigma G}(x / y) G\left(y, Q^{2}\right)\right], \tag{1.2}
\end{align*}
$$

where, $P_{a b}$ are the one loop splitting functions. When the appropriate gauge is chosen, the diagrams which contribute in this approximation are the ladder diagrams with gluon and quark exchange (Fig.1.5). In those diagrams, the longitudinal momenta $\sim x_{\text {, }}$ are ordered along the chain $\left(x_{1} \geq x_{t+1}\right)$ and the transverse momenta are strongly ordered, that is, $k_{1, i}^{2} \ll k_{1, t+1}^{2}$. It is this strong ordering of transverse momenta towards Q^{2} which gives the maximal power of $\ln \left(Q^{2}\right)$, since the integration over transverse momentum in each cell is logarithmic. When the terms with higher powers of the coupling $\alpha_{s}\left(Q^{2}\right)$ are included in the right hand side of these equations, one obtains the next-to-leading logarithmic approximation ($N L L Q^{2}$).

Fig.1.5: Ladder diagram for the deep inelastic scattering in leading $\ln \left(Q^{2}\right)$.

Let us now look at the low- x limit of the distributions generated by these equations. To this end, one notices that the term $P_{G G}(z)$ behaves as $6 / z$ at low-z which is relevant at low $-x$, where $z=x / y$. Retainig in the above equations only these terms, one gets the product of maximal powers of both large logarithms $\ln \left(Q^{2}\right)$ and $\ln (1 / x)$ which leads to the so-called double logarithmic approximation (DLA).

This predicts the gluon distribution (multiplied by x) to grow faster than any power of $\ln (1 / x)$ in the low- x limit. The same applies to the sea quarks since the dominant contribution to sea quark distributions at low- x comes from the $q q$ pairs emitted from gluons (Fig.1.6).

Fig.1.6. Sea quark distribution related to the gluon distribution in the deep inelastic scattering.

1.5.2. BKFL Evolution Equations:

The double logarithmic approximation does not however take into account all leading terms in the parton densities in the low- x limit. By definition it neglects those terms in the perturbative expansion which contain the leading power of $\ln (1 / x)$ but which are not accompanied by the leading power of $\ln \left(Q^{2}\right)$. The sum of leading power of $\ln (1 / x)$ and arbitrary powers of $\ln \left(Q^{2}\right)$ corresponds to the leading $\ln (1 / x)$ approximation $(L L(1 / x))$ [2,8,20-22]. This approximation is equivalent to the leading $\ln (S)$ approximation. Equivalence of the leading $\ln (S)$ and leading $\ln (1 / x)$ approximation follows from the fact mentioned above that in the limit $S \gg Q^{2}$, $x \sim Q^{2} / S$, and so $\ln (1 / x) \sim \ln \left(S / Q^{2}\right)$. This approximation gives the bare pomeron is perturbative QCD. The corresponding diagrams which contribute in this approximation are ladder like diagrams, yet the exchange mechanism along the ladder is slightly more complicated. Instead of the elementary gluon exchange, one has the exchange of the reggeised gluon (Fig.1.7). The term 'reggeised gluon' means that one can associate the Regge trajectory with the gluon which is calculable in perturbative QCD [2,8,9,10,20]. The Balitskij-Kuraev-Fadin-Lipatov (BKFL) evolution equation which sum these diagrams has the form $[8,2,9,23]$

$$
f\left(x, k^{2}\right)=f^{0}\left(x, k^{2}\right)+\frac{3 \alpha_{s}\left(k^{2}\right)}{\pi} k^{2} \int_{i}^{1} \frac{d x^{\prime}}{x^{\prime}} \int_{k_{j}^{\prime}}^{\infty} \frac{d k^{\prime 2}}{k^{\prime 2}}\left\{\frac{f\left(x^{\prime}, k^{\prime 2}\right)-f\left(x^{\prime}, k^{2}\right)}{\left|k^{\prime 2}-k^{2}\right|}+\frac{f\left(x^{\prime}, k^{2}\right)}{\sqrt{4 k^{\prime 4}+k^{4}}}\right\}
$$

where, the function $f\left(x, k^{2}\right)$ is the nonintegrated gluon distribution, that is
$f\left(x, k^{2}\right)=\frac{\partial x G\left(x, k^{2}\right)}{\partial \ln k^{2}}$,
$f^{0}\left(x, k^{2}\right)$ is a suitably defined inhomogeneous term; $k^{2}, k^{\prime 2}$ are the transverse momenta squared of the gluon in the final and initial states respectively, and $k_{0}{ }^{2}$ is the lower limit cut-off. The important point here is that, unlike the case of the leading $\ln \left(Q^{2}\right)$ approximation, the transverse momenta are no longer ordered along the chain. As before the dominant contribution to sea quark distributions comes from the $q q$ pairs emitted from gluons.

Fig.1.7 The ladder diagram for the deep inelastic scattening in leading $\ln (1 / x)$ approximation

It is also possible to generalize the $L L(1 / x)$ equation in a way which treats both large logarithms, that is $\ln \left(Q^{2}\right)$ and $\ln (1 / x)$, on equal footing [2]. The numerical study of
these equations suggests however that the results do not differ substantially when compared with the solution of the conventional GLDAP equations, at least in the region of not too small values of $x>10^{-4}[27,28,29]$.

1.6. Screening Corrections:

The unlimited increase of the parton distributions (multiplied by x) leads to a conflict with unitarity, that is, too rapid S dependence of high energy cross sections violating the Froissart bound [15]. Assume the gluon density $G\left(x, Q^{2}\right)$ to be dominant in the low- x region. Unfortunately we have no direct DIS type of measurement with photonic or W / Z probes for gluons. There exists however the strong interaction analogue to DIS which is the hadron-nualeon interaction where a highly virtual gluon from a hadron probes the structure of the nucleon.

Within the QCD improved parton model, when one counts incoherently the individual probe gluon cross sections, the cross section corresponding to the virtual gluonnucleon interaction per unit rapidity is $\sigma_{G^{*} N}=\sigma_{0} x G\left(x, Q^{2}\right)$, where σ_{0} is the total cross-section corresponding to the interaction of the probe with the gluon in a nucleon, that is,
$\sigma_{0}=\sigma_{G \cdot G \rightarrow \mathrm{r}}=$ Const. $\frac{\alpha_{S}\left(Q^{2}\right)}{Q^{2}}$.

This can be illustrated in a simple geometrical picture [2]. Assuming that the cross section σ_{0} on the parton level is equal to the transverse size of the probed parton, the cross section $\sigma_{C^{*} N}$ is equal to the transverse area occupied by partons (gluons) per unit of their rapidity. Since the number of gluons per unit rapidity, $x G$, can grow indefinitely for $x \rightarrow 0$, the total transverse area occupied by gluons can become comparable or larger than the transverse area of a nucleon, πR^{2}, for sufficiently small values of x or Q^{2}. When this happens, then gluons begin to overlap spatially in the transverse direction and so can no longer be regarded as free partons [2]. This is in conflict with the basic assumption of the QCD improved parton model.

The QCD evolution described by the equations (1.1, 1.2) and corresponding to ladder diagrams simply takes care of the evolution of the individual partonic cascades. The important point here is that the interaction of partons from different cascades can be neglected. This interaction of partons leads to non-linear screening or shadowing corrections to the evolution equations (1.1, 1.2). In the simplest version the corrected evolution equation takes the form $[30,31]$

$$
\begin{equation*}
\frac{\partial x G\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{3 \alpha_{s}\left(Q^{2}\right)}{\pi} \int_{\tau}^{1} \frac{d y}{y}\left(y G\left(y, Q^{2}\right)\right)-\frac{9}{16 R^{2}}\left(\frac{3 \alpha_{s}\left(Q^{2}\right)}{Q}\right)^{2} \int_{x}^{2} \frac{d y}{y}\left(y G\left(y, Q^{2}\right)\right)^{2} . \tag{1.3}
\end{equation*}
$$

In this equation, the linear term on right hand side was obtained from the standard evolution equation for gluons, equation (1.2), by neglecting the quark contribution and keeping only the most singular term of the $P_{G G} \sim 6 / z$. That means that, in fact $G\left(x, Q^{2}\right)$ is treated here in the double logarithmic approximation. The second term in equation (1.3) is the screening correction. Note that this equation is written for $G\left(x, Q^{2}\right)$ times x. The most dramatic consequence of parton saturation is a linear scaling violation in parton distributions to be contrasted with the mild logarithmic scaling violation given by perturbative QCD. \square

Chapter-2

TAYLOR EXPANSION METHOD

2.1. Taylor's Theorem:

It is frequently easier to find the numerical value of a function by expanding into a power series and evaluating the first few terms than by any other method. In fact, this is sometimes the only possible method of computing it. If a function f defined on $[a, a+h]$, is such that (i)the $(n-1)$-th derivative f^{n-1} is continuous on $[a, a+h]$ and (ii)the n-th derivative f^{n} exists on $] a, a+h[$, then there exist at least one real number θ between 0 and $1(0<\theta<1)$ such that [32]

$$
\begin{align*}
f(a+h)= & f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\ldots \ldots \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots+\frac{h^{n-1}}{(n-1)!} f^{n-1}(a)+\frac{h^{n}(1-\theta)^{n-p}}{p[(n-1)!]} f^{n}(a+\theta h), \tag{2.1}
\end{align*}
$$

where, p is a given positive integer. First of all, we observe that the condition (i) in the statement implies that all the derivatives $f^{\prime}, f^{\prime \prime}, \ldots \ldots \ldots \ldots \ldots . . f^{n-1}$ exist and are continuous on $[a, a+h]$. Consider the function ϕ defined on $[a, a+h]$ as

$$
\begin{aligned}
\phi(x)= & f(x)+(a+h-x) f^{\prime}(x)+\frac{(a+h-x)^{2}}{2!} f^{\prime \prime}(x)+. . \\
& \ldots \ldots \ldots+\frac{(a+h-x)^{n-1}}{(n-1)!} f^{n-1}(x)+A(a+h-x)^{p},
\end{aligned}
$$

where, A is a constant to be determined such that $\phi(a+h)=\phi(a)$. Therefore,

$$
\begin{array}{r}
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots \ldots \ldots \\
 \tag{2.2}\\
\ldots \ldots \ldots \ldots+\frac{h^{n-1}}{(n-1)!} f^{n-1}(a)+A h^{p} .
\end{array}
$$

Now,
(i) $f, f^{\prime}, f^{\prime \prime}, \ldots \ldots, f^{n-1}$ being all continuous on $[a, a+h]$, the function $\phi(x)$ is continuous on $[a, a+h]$,
(ii) $f, f^{\prime}, \ldots \ldots, f^{n-1}$ and $(a+h-x)^{r}$ for all r being all derivable in $] a, a+h[$ and the function $\phi(x)$ is derivable in $] a, a+h[$, and (iii) $\phi(a+h)=\phi(a)$.

Thus the function $\phi(x)$ satisfies all the conditions of Rolle's theorem [33] and hence there exists at least one real number θ between 0 and 1 such that $\phi^{\prime}(a+\theta h)=0$. But

$$
\phi^{\prime}(x)=\frac{(a+h-x)^{n-1}}{(n-1)!} f^{n}(x)-A p(a+h-x)^{p-1} .
$$

Therefore,

$$
\begin{align*}
& \phi^{\prime}(a+\theta h)=\frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!} f^{n}(a+\theta h)-A p h^{p-1}(1-\theta)^{p-1}=0 \\
& \Rightarrow A=\frac{h^{n-p}(1-\theta)^{n-p}}{p(n-1)!} f^{n}(a+\theta h), \quad h \neq 0, \quad \theta \neq 1 . \tag{2.3}
\end{align*}
$$

Substituting A from equation (2.3) in equation (2.2), we get the required result, that is equation (2.1). If f satisfies the conditions of Taylor's Theorem in $[a, a+h]$ and x is any point of $[a, a+h]$ then it satisfies the conditions in the interval $[a, x]$ also. Replacing $(a+h)$ by x or h by $(x-a)$ in equation (2.1), we get

$$
\begin{align*}
f(x)= & f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\ldots \ldots \ldots \ldots \ldots \ldots \\
& \ldots \ldots+\frac{(x-a)^{n-1}}{(n-1)!} f^{n-1}(a)+\frac{(x-a)^{n}}{p[(n-1)!]}(1-\theta)^{n-p} f^{n}(a+\theta(x-a)), \tag{2.4}
\end{align*}
$$

where, $0<\theta<1$. The remainder after n terms can thus be written as

$$
R_{n}=\frac{(x-a)^{n}(1-\theta)^{n-p}}{p[(n-1)!]} f^{n}(c),
$$

where, c lies between a and x, and depends on the selection of x. We have seen that

$$
\begin{equation*}
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots .+\frac{h^{n-1}}{(n-1)!} f^{n-1}(a)+R_{n}, \tag{2.5}
\end{equation*}
$$

where, R_{n} is the remainder after n terms. The result can be interpreted in two ways:
(i) The value $f(a+h)$ of the function at a point may be approximated by a summation of the terms like $\frac{h^{r}}{r!} f^{r}(a)$ involving values of the function and its derivatives at some other point of the domain of definition, and
(ii) The value $f(a+h)$ of the function may be expanded in powers of h.

Here we present the application of Taylor's theorem in solving GLDAP evolution equation $[34,35,36]$ at low- x which are already discussed elsewhere [37].

2.2. Taylor's Theorem and Structure Functions at Low-x:

The GLDAP evolution equations for the non-singlet and singlet quark structure functions have the standard forms [38]

$$
\begin{align*}
& \frac{\partial F_{2}^{N S}(x, t)}{\partial t}-\frac{A_{f}}{t} \cdot\left[\{3+4 \ln (1-x)\} F_{2}^{\text {NS }}(x, t)\right. \\
& \left.\quad+2 \int_{:}^{1} \frac{d w}{1-w}\left\{\left(1+w^{2}\right) F_{2}^{\text {NS }}\left(\frac{x}{w}, t\right)-2 F_{2}^{\text {NS }}(x, t)\right\}\right]=0 \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial F_{2}^{s}(x, t)}{\partial t}-\frac{A_{f}}{t} \cdot\left[\{3+4 \ln (1-x)\} F_{2}^{s}(x, t)\right. \\
& \left.\quad+2 \int_{x}^{1} \frac{d w}{1-w}\left\{\left(1+w^{2}\right) F_{2}^{s}\left(\frac{x}{w}, t\right)+\frac{3}{2} N_{f}\left(w^{2}+(1-w)^{2}\right) G\left(\frac{x}{w}, t\right)\right\}\right]=0 \tag{2.7}
\end{align*}
$$

where, $t=\ln \left(\frac{Q^{2}}{\Lambda^{2}}\right)$ and $A_{f}=\frac{4}{\left(33-2 N_{f}\right)}, \quad N_{f}$ being the number of flavours.

The F_{2} structure functions measured in deep inelastic electro-production can be written in terms of singlet and non-singlet quark distribution functions as [38]

$$
\begin{equation*}
F_{2}^{e d}=\frac{5}{9} F_{2}^{s} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}^{e p}=\frac{3}{18} F_{2}^{N s}+\frac{5}{18} F_{2}^{s} . \tag{2.9}
\end{equation*}
$$

Let us introduce the variable
$u=1-w \Rightarrow w=1-u$
and note that [39]
$\frac{x}{w}=\frac{x}{1-u}=x \sum_{k=0}^{\infty} u^{k}$.
Since $x<w<1$, so $0<u<1-x$, and hence the convergence criterion is satisfied. Using equation (2.11) we can rewrite $F_{2}^{N S}(x / w, t)$ as

$$
\begin{aligned}
& F_{2}^{N S}(x / w, t)=F_{2}^{N S}\left(x+x \sum_{k=1}^{\infty} u^{k}, t\right) \\
& \quad=F_{2}^{N S}(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial F_{2}^{N S}(x, t)}{\partial x}+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} F_{2}^{N S}(x, t)}{\partial x^{2}}+\ldots \ldots \ldots \ldots
\end{aligned}
$$

which, covers the whole range of $u, 0<u<1-x$. Neglecting higher order terms $O\left(x^{2}\right), F_{2}^{N S}(x / w, t)$ can then be approximated for low- x as,

$$
\begin{equation*}
F_{2}^{N S}\left(\frac{x}{w}, t\right) \approx F_{2}^{N S}(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial F_{2}^{N S}(x, t)}{\partial x} . \tag{2.12}
\end{equation*}
$$

Putting equations (2.10) and (2.12) in equation (2.6) and performing u-integrations, we have,
$\frac{\partial F_{2}^{N S}(x, t)}{\partial t}-\frac{A_{f}}{t} \cdot\left[A(x) F_{2}^{N S}(x, t)+B(x) \frac{\partial F_{2}^{N S}(x, t)}{\partial x}\right]=0$,
where,
$A(x)=3+4 \ln (1-x)-(1-x)(x+3)$ and $B(x)=x\left(1-x^{2}\right)-2 x \ln x$,
and we used the identity [39] $\sum_{k=1}^{\infty} \frac{u^{k}}{k}=\ln \frac{1}{1-u}$.

The general solution of (2.13) is [40] $F(u, v)=0$, where, F is an arbitrary function and $\quad u\left(x, t, F_{2}^{N S}\right)=C_{1}$ and $\quad v\left(x, t, F_{2}^{N S}\right)=C_{2} \quad$ form a solution of the equations $\frac{d x}{A_{f} B(x)}=\frac{d t}{-t}=\frac{d F_{2}{ }^{N S}}{-A_{f} A(x) F_{2}^{N S}}$.

Solving equation (2.14) one obtains
$u\left(x, t, F_{2}^{N S}\right)=t \cdot \exp \left[\frac{1}{A_{f}} \int \frac{d x}{B(x)}\right] \quad$ and $\quad v\left(x, t, F_{2}^{N S}\right)=F_{2}^{N S} \exp \left[\int \frac{A(x)}{B(x)} d x\right]$.
It thus has no unique solution. The simplest possibility is that a linear combination of u and v is to satisfy, so that

$$
\begin{equation*}
A_{N S} u+B_{N S} v=0 \tag{2.15}
\end{equation*}
$$

where, $A_{N S}$ and $B_{N S}$ are arbitrary constants. Putting the values of u and v in equation (2.15) we obtain
$F_{2}^{N S}(x, t)=-\frac{A_{N S}}{B_{N S}} \cdot t \cdot \exp \left[\int\left\{\frac{1}{A_{f} B(x)}-\frac{A(x)}{B(x)}\right\} d x\right]$.
Defining
$F_{2}^{\text {Ns }}\left(x . t_{0}\right)=-\frac{A_{N S}}{B_{N S}} \cdot t_{0} \cdot \exp \left[\int\left\{\frac{1}{A_{f} B(x)}-\frac{A(x)}{B(x)}\right\} d x\right]$,
one gets
$F_{2}^{\text {NS }}(x, t)=F_{2}^{\text {NS }}\left(x, t_{0}\right) \cdot\left(t / t_{0}\right)$,
which gives the t -evolution of non-singlet structure function $F_{2}^{s}(x, t)$.

In order to solve equation (2.7), we need to relate singlet structure function $F_{2}^{N S}(x, t)$ with gluon distribution function $G(x, t)$. For low- x and high $-Q^{2}$, gluon is expected to be more dominant than the sea [41]. For simplicity, we therefore assume identical
t-dependence for both :
$G(x, t)=K F_{2}^{s}(x, t)$,
where, K is a parameter to be determined from experiments. Putting equation (2.17) in equation (2.7) and following the same procedure as that for non-singlet case, we obtain for singlet structure function,

$$
\begin{equation*}
\frac{\partial F_{2}^{s}(x, t)}{\partial t}-\frac{A_{f}}{t} \cdot\left[L(x) F_{2}^{s}(x, t)+M(x) \frac{\partial F_{2}^{s}(x, t)}{\partial x}\right]=0 \tag{2.18}
\end{equation*}
$$

where,
$L(x)=3+4 \ln (1-x)-(1-x)(x+3)+\frac{1}{3} K N_{f}(1-x)\left(2-x+2 x^{2}\right)$
and
$M(x)=x\left(1-x^{2}\right)-2 x \ln x+\frac{1}{2} K N_{f}\left\{-x(1-x) .\left(5-4 x+2 x^{2}\right)-2 x \ln x\right\}$.
The equation (2.18) can also be solved as before to get the solution,
$F_{2}^{S}(x, t)=F_{2}^{S}\left(x, t_{0}\right) /\left(t / t_{0}\right)$,
where,
$F_{2}^{s}\left(x, t_{0}\right)=-\frac{A_{s}}{B_{s}} \cdot t_{0} \cdot \exp \left[\int\left\{\frac{1}{A_{f} M(x)}-\frac{L(x)}{M(x)}\right\} d x\right]$.
Using equations (2.16) and (2.19) in equations (2.8) and (2.9), we get,
$F_{2}^{e d}(x, t)=F_{2}^{e d}\left(x, t_{0}\right) \cdot\left(t / t_{0}\right)$
and
$F_{2}^{e p}(x, t)=F_{2}^{e p}\left(x, t_{0}\right) \cdot\left(t / t_{0}\right)$
where, $F_{2}^{e d}\left(x, t_{0}\right)=\frac{5}{9} F_{2}^{s}\left(x, t_{0}\right) \quad$ and $\quad F_{2}^{e \rho}\left(x, t_{0}\right)=\frac{3}{18} F_{2}^{N S}\left(x, t_{0}\right)+\frac{5}{18} F_{2}^{S}\left(x, t_{0}\right)$.

Equations (2.20) and (2.21) will give t-evolution and proton structure functions.
Again defining
$F_{2}^{N S}\left(x_{0}, t\right)=-\frac{A_{N S}}{B_{N S}} . t \cdot \exp \left[\int\left\{\frac{1}{A_{f} B(x)}-\frac{A(x)}{B(x)}\right\} d x\right]_{r=\mathrm{r}_{10}}$,
one obtains
$F_{2}^{N S}(x, t)=F_{2}^{N S}\left(x_{0}, t\right) \exp \cdot\left[\int\left\{\frac{1}{A_{f} B(x)}-\frac{A(x)}{B(x)}\right\} d x\right]_{x=x_{0}}$,
and similarly by defining
$F_{2}^{S}\left(x_{0}, t\right)=-\frac{A_{S}}{B_{S}} \cdot t \cdot \exp \left[\left\{\frac{1}{A_{f} M(x)}-\frac{L(x)}{M(x)}\right\} d x\right]_{x=x_{0}}$,
we obtain
$F_{2}^{s}(x, t)=F_{2}^{s}\left(x_{0}, t\right) \exp \left[\int_{x_{0}}^{x}\left\{\frac{1}{A_{f} M(x)}-\frac{L(x)}{M(x)}\right\} d x\right]$
and
$F_{2}^{e d}(x, t)=F_{2}^{e d}\left(x_{0}, t\right) \exp \left[\int_{r_{0}}^{x}\left\{\frac{1}{A_{f} M(x)}-\frac{L(x)}{M(x)}\right\} d x\right]$,
where,
$F_{2}^{e d}\left(x_{0}, t\right)=\frac{5}{9} F_{2}^{s}\left(x_{0}, t\right)$.

Equation (2.24) will give x-evolution of deuteron structure function.

But the x-evolution of proton structure function like that of deuteron structure function is not possible by this methodology, because to extract the x-evolution of proton structure function we are to put equations (2.22) and (2.23) in equation (2.9). But as the function inside the integral sign of equations (2.22) and (2.23) are different, we need to separate the input functions $F_{2}^{N S}\left(x_{0}, t\right)$ and $F_{2}^{S}\left(x_{0}, t\right)$ from the data points to extract the x-evolutions of the proton structure function, which will contain large error. \square

Chapter-3

GLUON DISTRIBUTION FUNCTION FROM STRUCTURE FUNCTION - A REVIEW

The measurement of the proton and the deuteron structure functions by Deep Inelastic scattering (DIS) processes in the low- x region where x is the Bjorken variable have opened a new era in parton density measurement [42]. It is important for understanding the inner structure of hadrons. In addition to these knowledge, it is also important to know the gluon distribution inside hadron at low- x because gluons are expected to be dominant in this region. Moreover gluon distributions are important inputs in many high-energy processes and also important for examination of Quantum Chromodynamics (QCD), the underlying dynamics of quarks and gluons. On the otherhand, gluon distribution can not be measured directly from experiment. It is therefore, important to measure gluon distribution $G\left(x, Q^{2}\right)$ indirectly from the proton as well as the deuteron structure functions $F_{2}\left(x, Q^{2}\right)$. A few numbers of papers have already been published [$43,44,48,49,52,53$] in this connection where several authors have presented their various methods to extract gluon distribution from quark structure function.

In Prytz method [43,44], gluon distributions are extracted from proton structure function data. Here use of leading order (LO) and next-to-leading order (NLO) has been done. In this method, Taylor expansion about $z=1 / 2$ in GLDAP evolution equation has been used. In Bora and Choudhury method also, proton structure function data have been used to extract gluon distributions by using LO GLDAP evolution equation. But here, Taylor expansion about $z=0$ in GLDAP evolution equation has been used. In Kotikov and Parente method also, proton structure function data have been used to extract gluon distributions, but they used NLO GLDAP evolution equation. Here they used standard input parametric equations of singlet quarks and gluons and solution of GLDAP evolution equation has been done by
standard moment method. Lastly, in Ellis, Kunszt and Levin method also gluon distributions have been extracted from proton structure function data. But here next-next-to-leading order (NNLO) GLDAP evolution equation has been used. Like Kotikov and Parente method, here also standard input parametric equations for structure functions has been used and solution of GLDAP evolution equation has been done by standard moment method.

3.1. Prytz Method:

K. Prytz $[43,44]$ gives a method to obtain an approximate relation between the unintegrated gluon density and the F_{2} scaling violations at low-x. The resulting formula can be used to determine the gluon density from the HERA data taken at lowx. It was shown in reference [45] that the gluon density at low- x can be obtained in a convenient way by analysing the longitudinal structure function. Here a similar method is applied using the Q^{2} derivative of F_{2} to obtain the gluon density to a good accuracy. The basic idea rests on the fact that the scaling violation of F_{2} arises at low-x, from the gluon density alone and does not depend on the quark densities. At low- x, actually already at $x=10^{-2}$, the quarks can be neglected in the GLDAP evolution equation and we have,

$$
\begin{equation*}
\frac{\partial F_{2}}{\partial \log Q^{2}} \simeq \frac{5 \alpha_{s}}{9 \pi} \int_{0}^{1-x} G\left(\frac{x}{1-z}, Q^{2}\right) P_{q g}(z) d z \tag{3.1}
\end{equation*}
$$

for four flavours, where in lowest order

$$
\begin{equation*}
P_{q g}(z)=z^{2}+(1-z)^{2} \tag{3.2}
\end{equation*}
$$

When applying equation (3.1) to experimental data, the problem arises of determining the gluon distribution $G(x)$ over the complete x-range. At low- x, this problem can be avoided since the integral in equation (3.1) can then be performed approximately. For this purpose, the gluon distribution is expanded in the following way:

$$
G\left(\frac{x}{1-z}\right) \simeq G(z=1 / 2)+(z-1 / 2) G^{\prime}(z=1 / 2)+(z-1 / 2)^{2} \frac{G^{\prime \prime}(z=1 / 2)}{2}
$$

This expression is then inserted in equation (3.1) and approximating the upper integration limit to 1 , the second term will vanish in view of the symmetry of $P_{48}(z)$ around $z=1 / 2$. The third term is expected to give a small contribution compared to the first and is neglected. As a result, one therefore obtains

$$
\begin{equation*}
\frac{\partial F_{2}(x)}{\partial \log Q^{2}} \simeq \frac{5 \alpha_{s}}{9 \pi} G(2 x) \int_{0}^{1} P_{q g}(z) d z \tag{3.3}
\end{equation*}
$$

For a numerical study, equation (3.3) is evaluated using the leading order expression equation (3.2) for $P_{q g}(z)$ to give
$\frac{\partial F_{2}(x)}{\partial \log Q^{2}} \simeq \frac{5 \alpha_{s}}{9 \pi} \frac{2}{3} G(2 x)$,
which is the main result of Prytz method at LO analysis.

Due to the large α_{s}^{2} corrections to the F_{2} scaling violations in the kinematical region of HERA [42], the approximate LO relation between the F_{2} scaling violations and the gluon distributions at low-x need to be corrected. A new relation is presented in NLO and found to give reasonable agreement with the exact calculation. The gluon to quark splitting function K_{g} at NLO analysis is given by
$K_{g}=\frac{\alpha_{S}}{4 \pi} K_{g}^{(1)}+\left(\frac{\alpha_{S}}{4 \pi}\right)^{2} K_{g}^{(2)}$.
Prytz used the formula derived by Floratos et. al. [46] which agrees with the independent calculation by Furmanski and Petronzio [47]. The first order contribution

$$
\frac{\partial F_{2}^{(1)}(x)}{\partial \ln Q^{2}}=2 \sum_{f} e_{1}^{2} \frac{\alpha_{s}}{4 \pi} \int_{x}^{1} G(x / z) K_{g}^{(1)}(z) d z
$$

is equivalent to the LO calculation equation (3.4). The second order contribution is

$$
\begin{aligned}
\frac{\partial F_{2}^{(2)}(x)}{\partial \ln Q^{2}} & =2 \sum_{f} e_{1}^{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \int_{x}^{1} G(x / z) K_{g}^{(2)}(z) d z \\
& \simeq 2 \sum_{f} e_{1}^{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[\int_{x}^{0} G^{\exp }(x / 2) K_{g}^{(2)}(z) d z+G(2 x) \int_{0}^{1} K_{g}^{(2)}(z) d z\right]
\end{aligned}
$$

where, $G^{\text {exp }}$ is the gluon distribution found from the complete QCD analysis of existing data. Now introducing the function $N\left(x, Q^{2}\right)$ for the first integral and evaluating the second integral, author obtained the total contribution for four flavours,

$$
\begin{aligned}
\frac{\partial F_{2}(x)}{\partial \ln Q^{2}} & =2 \sum_{f+j} e_{t}^{2} \int_{x}^{1} G(x / z) K_{g}(z) d z \\
& \simeq G(2 x) \cdot \frac{20}{9} \cdot \frac{\alpha_{s}}{4 \pi}\left[\frac{2}{3}+3 \cdot 58 \cdot \frac{\alpha_{s}}{4 \pi}\right]+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \cdot \frac{20}{9} \cdot N\left(x, Q^{2}\right)
\end{aligned}
$$

in NLO analysis [44], where $N\left(x, Q^{2}\right)$ is given by

$$
N\left(x, Q^{2}\right)=\int_{x}^{0} G^{\exp }\left(x / z, Q^{2}\right) P_{g}^{(2)}(z) d z
$$

where $P_{8}^{(2)}$ is a long and complicated function given in reference [44].

3.2. Bora and Choudhury Method:

Bora and Choudhury also present a method [48] to find the gluon distribution from the F_{2} structure function and its scaling violation $\partial F_{2} / \partial \ln Q^{2}$ at low-x using Taylor expansion method. Here the LO GLDAP evolution equations are used to relate scaling violation with gluon distribution $G(x)$. They also used equation (3.1) at the beginning and expanded $G\left(x /(1-z), Q^{2}\right)$ using Taylor expansion about $z=0$ taking only up to first order derivative in the expansion. While expanding they used first two terms in the expansion of the infinite series $x /(1-z)=x \sum_{k=0}^{\infty} z^{k}$ also. And using the fact that quark densities can be neglected and that the non-singlet contribution $F_{2}^{N S}$ can be ignored safely at low-x, the GLDAP evolution equation becomes, for four flavours,

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{10 \alpha_{s}}{9 \pi} \int_{x}^{1} d x^{\prime} P_{q g}\left(x^{\prime}\right)\left(x / x^{\prime}\right) \cdot G\left(x / x^{\prime}, Q^{2}\right) \tag{3.5}
\end{equation*}
$$

where, $\alpha_{s}=\alpha_{s}\left(Q^{2}\right)$ is the strong coupling constant and the splitting function $P_{q g}\left(x^{\prime}\right)$ gives the probability of finding inside a gluon a quark with momentum fraction x^{\prime} of the gluon. In LO, $P_{q g}\left(x^{\prime}\right)$ is given by

$$
P_{q 8}\left(x^{\prime}\right)=\left\{x^{\prime 2}+\left(1-x^{\prime}\right)^{2}\right\} / 2 .
$$

Equation (3.5) can be rearranged as

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{x}^{1} d y \cdot \frac{x}{y} \cdot G\left(y, Q^{2}\right) \frac{1}{y^{2}} \cdot\left[x^{2}+(y-x)^{2}\right] . \tag{3.6}
\end{equation*}
$$

Substituting $y=x /(1-z)$, we can write the right hand side of equation (3.6) as
$\frac{5 \alpha_{S}}{9 \pi} \int_{0}^{1-\tau} d z G\left(x /(1-z), Q^{2}\right)\left[(1-z)^{2}+z^{2}\right]$.
Now expanding $G\left(x /(1-z), Q^{2}\right)$ about $z=0$ and retaining terms only up to the first derivative of $G(x)$ in the expansion, we get

$$
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{0}^{1-z} d z\left[G(x)+z G(x)+\left.z x \frac{d}{d z} G\left(\frac{x}{1-z}\right)\right|_{z=0}\right]\left[(1-z)^{2}+z^{2}\right] .
$$

Here in $G(x)$, the Q^{2}-dependence has been suppressed and they symbolize $G\left(x /(1-z), Q^{2}\right)$. After doing a simple algebra one gets,

$$
\begin{aligned}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}} & =\frac{5 \alpha_{s}}{9 \pi} A(x) \cdot\left(G(x)+\frac{B(x)}{A(x)} \cdot x \cdot \frac{d G(x)}{d x}\right) \\
& \simeq \frac{5 \alpha_{s}}{9 \pi} \frac{[A(x)+B(x)]^{2}}{A(x)+2 B(x)} \times G\left(x+\frac{B(x)}{A(x)+B(x)} \cdot x\right)
\end{aligned}
$$

where,

$$
A(x)=\frac{2(1-x)^{3}}{3}-(1-x)^{2}+(1-x) \text { and } B(x)=\frac{(1-x)^{4}}{2}-\frac{2(1-x)^{3}}{3}+\frac{(1-x)^{2}}{2} .
$$

Finally,

$$
G\left(x+\frac{B(x)}{A(x)+B(x)} x, Q^{2}\right) \simeq \frac{9 \pi}{5 \alpha_{s}} \frac{A(x)+2 B(x)}{[A(x)+B(x)]^{2}} \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}} .
$$

Using this approximate relation, they can find gluon distribution $G\left(x^{\prime}\right)$ at

- $x_{1}=x+\frac{B(x)}{A(x)+B(x)} \cdot x$
from the value of the derivative of F_{2} with respect to Q^{2} at x which is their main result. Of course, utilizing the asymptotic limit of $P_{9 g}(x)$ for $x \rightarrow 0$ they also got the result,

$$
G\left(x_{1}, Q^{2}\right) \simeq \frac{36 \pi \quad(2-x)}{5 \alpha_{s}[(1-x)(3-x)]^{2}} \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}
$$

3.3. Kotikov and Parente Method:

Kotikov and Parente presented a set of formula [49] to extract the gluon distribution from structure function F_{2} and its derivative $\partial F_{2} / \partial \ln Q^{2}$ at low-x in the NLO approximation. They began with the standard parametrizations of singlet quark $s\left(x, Q_{0}^{2}\right)$ and gluon $G\left(x, Q_{0}^{2}\right)$ parton distribution function at some Q_{0}^{2} [50]. As the behaviour $p\left(x, Q^{2}\right) \sim$ constant, $(p=(s, g))$ is not compatible with the GLDAP evolution equations, they considered more singular behaviour like $p\left(x, Q^{2}\right) \sim x^{-\delta_{\rho}\left(Q^{2}\right)}$ for Regge-like behaviour $[4,49]$ and $p\left(x, Q^{2}\right) \sim \exp \left(0.5 \sqrt{\delta_{p}\left(Q^{2}\right) \ln (1 / x)}\right)$ for Doublelogarithmical behaviour [49,51], where $\delta_{s}\left(Q^{2}\right) \neq \delta_{g}\left(Q^{2}\right)$. They then put these quark and gluon distributions in the GLDAP evolution equations and solved for gluon distribution by standard moment method. The method to arrive to the solution is based in the replacement of the Mellin convolution by ordinary products [52].

Assuming the Regge-like behaviour for the gluon distribution and $F_{2}\left(x, Q^{2}\right)$ at $x^{-\delta} \gg 1, G\left(x, Q^{2}\right)=x^{-\delta} \tilde{G}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)=x^{-\delta} \widetilde{s}\left(x, Q^{2}\right)$, they obtained the following equation for the Q^{2} derivative of F_{2} :

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=-\frac{1}{2} x^{-\delta} \sum_{\rho=s, g}\left(\gamma_{s p}^{1+\delta}(\alpha) \widetilde{p}\left(0, Q^{2}\right)+\gamma_{s p}^{\delta}(\alpha) x \widetilde{p}^{\prime}\left(0, Q^{2}\right)+O\left(x^{2}\right)\right) \tag{3.7}
\end{equation*}
$$

where, $\gamma_{s p}^{\eta}(\alpha)$ are the combinations of the anomalous dimensions of Wilson operators $\gamma_{s p}^{\eta}=\alpha \gamma_{s p}^{(0), \eta}+\alpha^{2} \gamma_{s p}^{(1), \eta}+O\left(\alpha^{3}\right)$ and Wilson coefficients $\alpha B_{2}^{\rho, \eta}+O\left(\alpha^{2}\right)$ of the η moment:
$\gamma_{s s}(\alpha)=\alpha \gamma_{s s}^{(0) \cdot \eta}+\alpha^{2}\left(\gamma_{s s}^{(1) \cdot \eta}+B_{2}{ }^{g \cdot \eta} \gamma_{8 s}^{(0, \eta)}+2 \beta_{0} B_{2}^{s, \eta}\right)+O\left(\alpha^{3}\right)$,
$\gamma_{s g}^{\eta}(\alpha)=\frac{e}{f}\left[\alpha \gamma_{s g}^{(0), \eta}+\alpha^{2}\left(\gamma_{s g}^{(1), \eta}+B_{2}^{g, \eta}\left(2 \beta_{0}+\gamma_{s g}^{(0), \eta}-\gamma_{s s}^{(0), \eta}\right)\right)\right]+O\left(\alpha^{3}\right)$
and
$\tilde{p}\left(0, Q^{2}\right) \equiv \frac{d}{d x} \tilde{p}\left(x, Q^{2}\right)$ at $x=0$,
where, $e=\sum_{1}^{\delta} e_{1}^{2}$ is the sum of square of quark charges. With accuracy of $O\left(x^{2-\delta}\right)$, for equation (3.7) they got,

$$
\begin{aligned}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}= & -\frac{1}{2}\left[\gamma_{s g}^{1+\delta}\left(\xi_{s g}\right)^{-\delta} G\left(\frac{x}{\xi_{s g}}, Q^{2}\right)+\gamma_{s s}^{1+\delta} F_{2}\left(x, Q^{2}\right)\right. \\
& \left.+\left(\gamma_{s s}^{\delta}-\gamma_{s s}^{1+\delta}\right) x^{1-\delta} \cdot \widetilde{s}^{\prime}\left(x, Q^{2}\right)+O\left(x^{2-\delta}\right)\right]
\end{aligned}
$$

with $\xi_{s g}=\gamma_{s g}^{1+\delta} / \gamma_{s g}^{\delta}$. From equation (3.8), they obtained for gluon distribution,

$$
\begin{align*}
G\left(x, Q^{2}\right)= & -\frac{\left(\xi_{s g}\right)^{\delta}}{1+\delta} \times\left[2 \cdot \frac{\partial F_{2}\left(x \xi_{s g}, Q^{2}\right)}{\partial \ln Q^{2}}+\gamma_{s s}^{1+\delta} F_{2}\left(x \xi_{s g}, Q^{2}\right)\right] \\
& \left.+\left(\gamma_{s s}^{\delta}-\gamma_{s s}^{1+\delta}\right) x^{1-\delta}\left(\xi_{s g}\right)^{-\delta} \widetilde{s}^{\prime}\left(x \xi_{s g}, Q^{2}\right)+O\left(x^{2-\delta}\right)\right] . \tag{3.9}
\end{align*}
$$

Restricting the analysis to $O\left(x^{2-\delta}, \alpha x^{1-\delta}\right)$, one can replace
$\xi_{s g} \rightarrow \xi=\gamma_{s g}^{(0)}, 1+\delta / \gamma_{s g}^{(0) . \delta}$
and neglect the term $\sim \widetilde{s}^{\prime}\left(x \xi_{s g}, Q^{2}\right)$ into equation (3.9), so that,

$$
G\left(x, Q^{2}\right)=-\frac{\xi^{\delta}}{\gamma_{s g}^{1+\delta}}\left[2 . \frac{\partial F_{2}\left(x \xi, Q^{2}\right)}{\partial \ln Q^{2}}+\gamma_{s s}^{1+\delta} F_{2}\left(x \xi, Q^{2}\right)+O\left(x^{2-\delta}, \alpha x^{1-\delta}\right)\right] .
$$

Using NLO approximation of $\gamma_{s p}^{1+\delta}$ we easily obtain the final result for $G\left(x, Q^{2}\right)$:

$$
\begin{align*}
G\left(x, Q^{2}\right)= & -\frac{2 f}{\alpha e} \frac{\xi^{\delta}}{\gamma_{s}^{(0), 1+\delta}+\bar{\gamma}_{s}^{(1), 1+\delta} \cdot \alpha}\left[\frac{\partial F_{2}\left(x \xi, Q^{2}\right)}{\partial \ln Q^{2}}+\frac{\alpha}{2} \cdot \gamma_{s s}^{(0) 1+\delta} F_{2}\left(x \xi, Q^{2}\right)\right. \\
& \left.+O\left(\alpha,^{2} x,^{2-\delta} \alpha x^{1-\delta}\right)\right] \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
G\left(x, Q^{2}\right)= & -\frac{2 f}{\alpha e} \cdot \frac{1}{\gamma_{s g}^{(0,1+\delta}+\bar{\gamma}_{s g}^{(1), 1+\delta} \cdot \alpha}\left[\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+\frac{\alpha}{2} \gamma_{s s}^{(0), 1+\delta} F_{2}\left(x, Q^{2}\right)\right. \\
& \left.+O\left(\alpha,{ }^{2} x^{1-\delta}\right)\right] \tag{3.11}
\end{align*}
$$

where, $\bar{\gamma}_{s g}^{(1), \eta}=\gamma_{s g}^{(1), \eta}+B_{2}^{g . \eta}\left(2 \beta_{0}+\gamma_{g s}^{(0), \eta}-\gamma_{s s}^{(0), \eta}\right)$.

In principle any equation from above formulae (3.10), (3.11) may be used, because there is a strong cancellation between the shifts in the arguments of the function F_{2} and its derivative, and the shifts in the coefficients in front of them. The difference lies in the degree of accuracy one can reach with them, which depends on the x and Q^{2} region of interest. For accurate values of $\delta=0.5$,
$G\left(x, Q^{2}\right)=\frac{0.62}{e \alpha(1+26.9 \alpha)}\left[\frac{\partial F_{2}\left(0.3, Q^{2}\right)}{\partial \ln Q^{2}}+2.12 \alpha F_{2}\left(0.3 x, Q^{2}\right)+O\left(\alpha^{2} x,,^{2-\delta} \alpha x^{1-\delta}\right)\right]$
and
$G\left(x, Q^{2}\right)=\frac{1.14}{e \alpha(1+26.9 \alpha)}\left[\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+2.12 \alpha F_{2}\left(x, Q^{2}\right)+O\left(\alpha,{ }^{2} x^{1-\delta}\right)\right]$.
In obtaining the formulae, they neglected some higher order term $\sim \delta \widetilde{s}\left(x \xi_{s q}, Q^{2}\right) / \delta x$ where $\xi_{s q}$ is the combinations of the anomalous dimensions of Wilson coefficients. Similarly assuming the Double-logarithmical behaviour for the gluon distribution and $F_{2}\left(x, Q^{2}\right)$, they obtained,

$$
G\left(x, Q^{2}\right)=\frac{\exp \left(\frac{1}{2} \sqrt{\delta_{g}\left(Q^{2}\right) \ln \frac{1}{x}}\right)}{\left(2 \pi \delta_{g}\left(Q^{2}\right) \ln \frac{1}{x}\right)^{\frac{1}{4}}} \widetilde{G}\left(x, Q^{2}\right)
$$

and
$F_{2}\left(x, Q^{2}\right)=\frac{\exp \left(\frac{1}{2} \sqrt{\delta_{s}\left(Q^{2}\right) \ln \frac{1}{x}}\right)}{\left(2 \pi \delta_{s}\left(Q^{2}\right) \ln \frac{1}{x}\right)^{\frac{1}{4}}} \tilde{s}\left(x, Q^{2}\right)$.
Then they obtained the following equation for the Q^{2} derivative of the $F_{2}\left(x, Q^{2}\right)$,

$$
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=-\frac{1}{2} \sum_{p=s . g} \frac{\exp \left(\frac{1}{2} \sqrt{\delta_{p}\left(Q^{2}\right) \ln \frac{1}{x}}\right)}{\left(2 \pi \delta_{p}\left(Q^{2}\right) \ln \frac{1}{x}\right)^{\frac{1}{4}}} \times\left(\tilde{\gamma}_{s p}^{\prime}(\alpha) \widetilde{p}\left(0, Q^{2}\right)+O\left(x^{\prime}\right)\right)
$$

where, $\tilde{\gamma}_{s p}^{1}(\alpha)$ can be obtained from corresponding functions $\gamma_{s p}^{1+\delta}(\alpha)$ replacing the singular term $1 / \delta$ at $\delta \rightarrow 0$ by $1 / \widetilde{\delta}$; that is,
$\stackrel{1}{\delta} \xrightarrow{\delta \rightarrow 0} \frac{1}{\tilde{\delta}}=\sqrt{\frac{\ln \left(\frac{1}{x}\right)}{\delta_{p}\left(Q^{2}\right)}}-\frac{1}{4 \delta_{p}\left(Q^{2}\right)}\left[1+\sum_{m=1}^{\infty} \frac{1 \times 3 \times \ldots \ldots \ldots . . . \times(2 m-1)}{\left(4 \sqrt{\delta_{p}\left(Q^{2}\right) \ln \left(\frac{1}{x}\right)}\right)^{m}}\right]$.
The singular term appears only in the NLO part of the anomalous dimension $\gamma_{s p}^{(1), 1+\delta}$ in equation (3.8). The replacement equation (3.12) corresponds to the following transformation:
$\gamma_{s p}^{(1), 1+\delta} \equiv \hat{\gamma}_{s p}^{(1), 1} \frac{1}{\delta}+\tilde{\gamma}^{(1), 1+\delta}$
and

$$
\begin{equation*}
\delta \rightarrow 0, \gamma^{(1), 1} \equiv \hat{\gamma}_{s p}^{(1), 1} \frac{1}{\tilde{\delta}}+\tilde{\gamma}_{s p}^{(1), 1} \tag{3.13}
\end{equation*}
$$

where, $\hat{\gamma}_{s p}^{(1) .1}$ and $\tilde{\gamma}_{s p}^{(1), 1+\delta}$ are the co-efficients corresponding to singular and regular parts of $\gamma_{s p}^{(1), 1+\delta}$ respectively. Repeating the analysis of the previous section step by step, using the replacement equation (3.13), we get,

$$
G\left(x, Q^{2}\right)=\frac{3}{4 e \alpha} \cdot \frac{1}{(1+26 \alpha[1 / \tilde{\delta}-41 / 13]} \times\left[\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+O\left(\alpha^{2}, x\right)\right]
$$

Here also they neglected some higher order terms and replaced the singular term $1 / \delta$ at $\delta \rightarrow 0$ by some non-singular term $1 / \widetilde{\delta}$.

3.4. Ellis, Kunszt and Levin Method:

A different method for the determination of $G\left(x, Q^{2}\right)$ at low values of x has been proposed by Ellis, Kunszt and Levin [53] based on the solution of GLDAP evolution equations in the moment space up to next-to-next to-leading order. In this method, the gluon momentum density and F_{2} are assumed to behave as $x^{-\omega}$ where ω is a parameter the actual value of which must be extracted from the data. They can also estimate gluon distribution directly from the measurement of the $F_{2}\left(x, Q^{2}\right)$ structure function at HERA. The basic idea is that, the Q^{2} derivative of F_{2} is sensitive to the gluon distribution function [49].

The quantity \sum from the experimental data for F_{2} is

$$
\begin{equation*}
\Sigma\left(x, Q^{2}\right)=\frac{F_{2}\left(x, Q^{2}\right)}{x\left\langle e^{2}\right\rangle} . \tag{3.14}
\end{equation*}
$$

Knowledge of \sum as a function of x and Q^{2} is the input which can be obtained from experiment. For four active flavours, $\left\langle e^{2}\right\rangle=5 / 18$. Let us consider only the DIS structure function F_{2} which is given in terms of parton densities as

$$
\begin{align*}
F_{2}\left(x, Q^{2}\right)= & x \int_{x}^{1} \frac{d z}{z}\left\{\left\langle e^{2}\right\rangle\right\}\left[C^{F F}\left(z, Q^{2}\right) \sum\left(x / z, Q^{2}\right)+C^{F G}\left(x, Q^{2}\right) G\left(x / z, Q^{2}\right)\right] \\
& -\frac{1}{6} C^{N S}\left(z, Q^{2}\right) \Delta_{N S}\left(x / z, Q^{2}\right) \tag{3.15}
\end{align*}
$$

with $\left\langle e^{2}\right\rangle=\frac{4 f_{u}+f_{d}}{f_{d}^{2}}$, where C denotes the co-efficient functions, f_{u} and f_{d} denote the number of up and down quarks respectively, and the non-singlet parton density $\Delta_{N S}$ is given in terms of the non-singlet combinations,
$\Delta_{N S}=T_{3}+\frac{1}{3}\left(T_{8}-T_{15}\right)+\frac{1}{5}\left(T_{24}-T_{35}\right)$

$$
\equiv \frac{2 f_{d}}{f} \sum_{i=1}^{f_{u}} q_{u, i}^{+}-\frac{2 f_{u}}{f} \sum_{i=1}^{f_{d}} q_{d, 1}^{+}
$$

where $f=f_{u}+f_{d}$. For an even number of flavours, $\left\langle e^{2}\right\rangle=5 / 18$ and
$\Delta_{N S}=\sum_{l=1}^{f / 2}\left(q_{u, i}^{+}-q_{d, i}^{+}\right)$. From equation (3.15), for the lowest order in α_{s} we get
$F_{2}\left(x, Q^{2}\right)=x\left\langle e^{2}\right\rangle \Sigma\left(x, Q^{2}\right)$, where the non-singlet contribution which gives a small contribution at low-x.

The lowest-order GLDAP equation for Σ reads

$$
\begin{equation*}
\frac{\partial \sum\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[P_{0}^{F F}(z) \Sigma(x / z)+P_{0}^{F G}(z) G(x / z)\right] . \tag{3.16}
\end{equation*}
$$

The information about the gluon is difficult to extract from this equation at normal x, because it involves a weighted integral over the quark and gluon distribution functions. In moment space, this means that we have to know the moments of \sum and $\partial \Sigma / \partial \ln Q^{2}$ for all values of ω. Taking moments of equation (3.16) we obtain
$\frac{\partial \sum(\omega)}{\partial \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi}\left[P_{0}^{F F}(\omega) \Sigma(\omega)+P_{0}^{F G}(\omega) G(\omega)\right]$.
$P_{0}^{F F}$ could be neglected in lowest order because $P_{0}^{F F}(0)=0$. However the dominant value of ω is unlikely to be that small and furthermore this simplification does not occur in higher orders. Assuming a simple form for the gluon distribution,
$G(x)=A_{G} x^{-\omega_{n}}$ and $\quad \sum(x)=A_{\Sigma} x^{-\omega_{n}}$, where $\omega_{0}>0$. Taking moments we get
$G(\omega)=\frac{A_{G}}{\omega-\omega_{0}} \quad$ and $\quad \sum(\omega)=\frac{A_{\Sigma}}{\omega-\omega_{0}}$.
Now let us consider the simple form of equation (3.17) as
$\frac{\partial \sum(\omega)}{\partial \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi}\left[P_{0}^{F F}\left(\omega_{0}\right) \sum(\omega)+P_{0}^{F G}\left(\omega_{0}\right) G(\omega)\right]$.

The value of ω_{0} can be determined by the measured slope of F_{2},

$$
\begin{equation*}
\omega_{0}=\frac{\partial \ln \sum}{\partial \ln (1 / x)} . \tag{3.18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial \sum\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi}\left[P_{0}^{F F}\left(\omega_{0}\right) \Sigma\left(x, Q^{2}\right)+P_{0}^{F G}\left(\omega_{0}\right) G\left(x, Q^{2}\right)\right] . \tag{3.19}
\end{equation*}
$$

Since the GLDAP kernels are known as a function of $\omega, G\left(x, Q^{2}\right)$ can be determined. The extension of the basic result to include higher order is straight forward but tedious. Here ω_{0} is given by equation (3.18) and Σ is given by equation (3.14). Equation (3.19) is the basis of the method for determining $G\left(x, Q^{2}\right)$. And so ultimately we get for four flavours,
$G\left(x, Q^{2}\right)=\frac{18 / 5}{P^{F G}\left(\omega_{0}\right)}\left[\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}-P^{F F}\left(\omega_{0}\right) \cdot F_{2}\left(x, Q^{2}\right)\right]$,
where, we replace $\Sigma\left(x, Q^{2}\right)$ by $F_{2}\left(x, Q^{2}\right)$ and the functions P have perturbative expansions

$$
P^{F F}\left(\omega_{0}\right) \simeq \alpha_{S} P_{0}^{F F}+\alpha_{S}^{2} P_{1}^{F F}+\alpha_{S}^{3} P_{2}^{F F}+O\left(\alpha_{S}^{4}\right)
$$

and

$$
P^{F G}(\omega)=\alpha_{S} P_{0}^{F G}+\alpha_{S}^{2} P_{1}^{F G}+\alpha_{S}^{3} P_{2}^{F G}+O\left(\alpha_{S}^{4}\right)
$$

The coefficients $P_{1}^{F F}$ and $P_{1}^{F G}$ depend on the parameter ω_{0} which are tabulated in reference [53] for a range of ω_{0} values

Chapter-4

gLDAP EVOLUTION EQUATION AND GLUON DISTRIBUTION

In this chapter, we obtain t and x-evolutions of gluon distribution function at low- x from Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) evolution equation. Comparison is made with the prediction of Balitskij-Kuraev-Fadin-Lipatov (BKFL) as well as Gribov-Levin-Ryskin (GLR) equations. We also make predictions for the HERA range. In a recent letter [54] the t-evolutions of non-singlet and singlet structure functions [38] have been reported. The same technique can be applied to the GLDAP equation [16] for the gluon distribution function to obtain t as well as x evolution of gluon at low-x.

4.1. Theory:

The GLDAP evolution equation for the gluon distribution function has the standard form [38] as

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{\left(\frac{11}{12}-\frac{N_{f}}{18}+\ln (1-x)\right) G(x, t)+I_{g}\right\}=0 \tag{4.1}
\end{equation*}
$$

where,

$$
\begin{aligned}
I_{g}= & \int_{x}^{1} d \omega\left[\frac{\omega G(x / \omega, t)-G(x, t)}{1-\omega}+\left(\omega(1-\omega)+\frac{1-\omega}{\omega}\right) G(x / \omega, t)\right. \\
& \left.+\frac{2}{9}\left(\frac{1+(1-\omega)^{2}}{\omega}\right) F_{2}^{s}(x / \omega, t)\right] \\
t= & \ln \left(Q^{2} / \Lambda^{2}\right) \text { and } A_{f}=\frac{36}{33-2 N_{f}}, N_{f} \text { being the number of flavours. }
\end{aligned}
$$

For low- x and high- Q^{2}, gluon is expected to be more dominant than the sea [41]. For lower- $Q^{2}\left(Q^{2} \simeq \Lambda^{2}\right)$, however, there is no such clearcut distinction between the two. For simplicity, we therefore, assume identical t-dependence for both, $G(x, t)=K F_{2}{ }^{\prime}(x, t)$,
where, K is a parameter to be determined from experiments. Then we get

$$
\begin{align*}
I_{g}= & \int_{x}^{1} d \omega\left[\frac{\omega G(x / \omega, t)-G(x, t)}{1-\omega}+\left(\omega(1-\omega)+\frac{1-\omega}{\omega}\right) G(x / \omega, t)\right. \\
& \left.+\frac{2}{9 k}\left(\frac{1+(1-\omega)^{2}}{\omega}\right) G(x / \omega, t)\right] . \tag{4.2}
\end{align*}
$$

Let us introduce the variable
$u=1-\omega$
and note that [39]
$\frac{x}{1-u}=x \sum_{k=0}^{\infty} u^{k}$

The series equation (4.4) is convergent for $|u|<1$. Since $x<\omega<1$, so $0<u<1-x$ and hence the convergent criterion is satisfied. Using equation (4.4) we can rewrite $G(x / \omega, t)$ as [55] ,
$G(x / \omega, t)=G\left(x+x \sum_{k=1}^{\infty} u^{k}, t\right)$

$$
\begin{equation*}
=G(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial G(x, t)}{\partial x}+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} G(x, t)}{\partial x^{2}}+\ldots \ldots . . \tag{4.5}
\end{equation*}
$$

which covers the whole range of $u, 0<u<1-x$. Neglecting higher order terms $O\left(x^{2}\right), G(x / \omega, t)$ can then be approximated for low- x as

$$
\begin{equation*}
G(x / \omega, t) \simeq G(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial G(r, t)}{\partial x} \tag{4.6}
\end{equation*}
$$

Putting equations (4.3) and (4.6) in equation (4.2) and performing u-integrations, we obtain,
$I_{g}=R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x}$,
where, we have used the identity $\sum_{k=1}^{\infty} \frac{u}{k}=\ln \frac{1}{1-u}$ [39], and where,
$R(x)=-\left\{\left(1+\frac{2}{9 K}\right)(1-x)+\left(-\frac{1}{2}+\frac{1}{9 K}\right)(1-x)^{2}+\frac{1}{3}(1-x)^{3}+\left(1+\frac{4}{9 K}\right) \ln x\right\}$,
and

$$
\begin{align*}
S(x)= & x\left\{\left(1+\frac{4}{9 K}\right) \frac{1}{4}+\left(2+\frac{4}{9 K}\right)(1-x)+\frac{1}{9 K}(1-x)^{2}+\frac{1}{3}(1-x)^{3}\right. \\
& \left.+\left(2+\frac{8}{9 K}\right) \ln x-1-\frac{4}{9 K}\right\} . \tag{4.9}
\end{align*}
$$

Using equation (4.7) in equation (4.1) we get,

$$
\begin{aligned}
\frac{\partial G(x, t)}{\partial t} & -\frac{A_{f}}{t}\left\{\left(\frac{11}{12}-\frac{N_{f}}{8}\right)+\ln (1-x) G(x, t)\right. \\
& \left.+R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x}\right\}=0
\end{aligned}
$$

which gives

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{P(x) G(x, t)+Q(x) \frac{\partial G(x, t)}{\partial x}\right\}=0 \tag{4.10}
\end{equation*}
$$

where,

$$
\begin{equation*}
P(x)=\left(\frac{11}{12}-\frac{N_{f}}{18}\right)+\ln (1-x)+R(x) \tag{4.11}
\end{equation*}
$$

and
$Q(x)=S(x)$.
The general solution of equation (4.10) is [40]
$F(U, V)=0$,
where, F is an arbitrary function and $U(x, t, G)=C_{1}$ and $V(x, t, G)=C_{2}$ form a solution of the equations
$\frac{d x}{A_{f} Q(x)}=\frac{d t}{-t}=\frac{d G}{-A_{f} P(x) G(x, t)}$.
Solving equation (4.13) one obtains
$U(x, t, G)=t . \exp \left[\frac{1}{A_{f}} \int \frac{d x}{Q(x)}\right]$
and
$V(x, t, G)=G(x, t) \exp \left[\int \frac{P(x)}{Q(x)} d x\right]$.

It thus has no unique solution. The simplest possibility is that a linear combination of U and V is to satisfy equation (4.12) so that
$A_{g} U+B_{g} V=0$,
where A_{g} and B_{g} are arbitrary constants. Putting the values of U and V in equation (4.14) we obtain,
$G(x, t)=-\frac{A_{g}}{B_{g}} t \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]$.
Defining
$G\left(x, t_{0}\right)=-\frac{A_{g}}{B_{g}} t_{0} \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]$,
one gets,
$G(x, t)=G\left(x, t_{0}\right)\left(t / t_{0}\right)$
which gives the t-evolution of gluon distribution function $G(x, t)$. Again defining
$G\left(x_{0}, t\right)=-\frac{A_{g}}{B_{g}} t \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]_{x=x}$,
one obtains,
$G(x, t)=G\left(x_{0}, t\right) \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]$,
which determines the x-evolution of gluon distribution function $G(x, t)$. We can perform the integration inside the exponential in the equation (4.16) with further approximation that $\ln (1-x) \rightarrow 0$ and $x \ln x \rightarrow 0$ for very low $-x, x \rightarrow 0$. Then we get from equation (4.11),

$$
\begin{align*}
P(x)= & \left(\frac{11}{12}-\frac{N_{f}}{18}\right)-\left(1+\frac{2}{9 K}\right)(1-x)-\left(-\frac{1}{2}+\frac{1}{9 K}\right)(1-2 x) \\
& -\frac{1}{3}(1-3 x)-\left(1+\frac{4}{9 K}\right) \ln x, \tag{4.17}
\end{align*}
$$

and
$\left.Q(x)=\left(1+\frac{4}{9 K}\right)+\left(2+\frac{4}{9 K}\right) x+\left(\frac{x}{9 K}+\frac{x}{3}\right)-\left(x+\frac{4}{9 K} x\right), \quad\right)$
when we have neglected the square and higher terms of x. Putting the values of $P(x)$ and $Q(x)$ from equation (4.17) in equation (4.16) and performing the integrations analytically we get,

$$
\begin{align*}
G(x, t)= & G\left(x_{0}, t\right) \exp \left[-\frac{1}{b}(1+d+2 e)\left(x-x_{0}\right)\right]\left(\frac{x}{x_{0}}\right)^{-(a / b) \ln a} \times\left\{\frac{(a+b x)^{\ln x}}{\left(a+b x_{0}\right)^{\ln x_{0}}}\right\}^{a / b} \\
& \times\left(\frac{a+b x}{a+b x_{0}}\right)^{\left\{-1 / b-\left(1 / 3-1 / A_{f}+C_{f}-d-e\right)+a / b^{2}(1+d+2 e)\right\}}, \tag{4.18}
\end{align*}
$$

where, $a=1+\frac{4}{9 K}, b=\frac{4}{3}+\frac{1}{9 K}, c_{f}=\frac{11}{12}-\frac{N_{f}}{18}, d=1+\frac{2}{9 K}$ and $e=-\frac{1}{2}+\frac{1}{9 K}$.

Instead of neglecting the higher order terms $O\left(x^{2}\right)$ from the equation (4.5) as is done in equation (4.6), let us retain the second term of Taylor expansion series (4.5) and neglect higher order terms $O\left(x^{3}\right)$. Then $G(x / \omega, t)$ can be approximated for low- x as [55],
$G(x / \omega, t) \simeq G(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{G(x, t)}{x}+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} G(x, t)}{\partial x^{2}}$.
Putting equations (4.3) and (4.19) in equation (4.2) and performing u-integrations we obtain,
$I_{g}=R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x}+T(x) \frac{\partial^{2} G(x, t)}{\partial x^{2}}$,
where, $R(x)$ and $S(x)$ are defined by equations (4.8) and (4.9) respectively and $T(x)$ is given by,

$$
T(x)=\frac{1}{2} x^{2} \int_{0}^{1-x}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2}\left(u(1-u)+\frac{u}{1-u}+\frac{1-u}{u}+\frac{2}{9 K} \frac{1+u^{2}}{1-u}\right) d u .
$$

It does not need to calculate explicitly the value of $T(x)$ as a function of x for the reason which will be clear shortly. Using equation (4.20) in equation (4.1) we get

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{P(x) G(x, t)+Q(x) \frac{\partial G(x, t)}{\partial x}+T(x) \frac{\partial^{2} G(x, t)}{\partial x^{2}}\right\}=0 \tag{4.21}
\end{equation*}
$$

where $P(x)$ and $Q(x)$ are defined by equation (4.11). The equation (4.21) is a second order partial differential equation which can be solved by Monge's method [40]. According to this method the solution of second order partial differential equation
$R r+S s+T t=V$
can be obtained from the subsidiary equations
$R d y^{2}-S d x d y+T d x^{2}=0 \quad$ and $\quad R d p d y+T d q d x-V d x d y=0$,
where, R, S, T, V are functions of x, y, z, p and q. Here z, p, q, r, s and t are defined as follows:

$$
z=z(x, y), \quad p=\frac{\partial z}{\partial x}, \quad q=\frac{\partial z}{\partial y}, \quad r=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial p}{\partial x}, \quad s=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}
$$

and $t=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial q}{\partial y}$.
Comparing equation (4.21) with equation (4.22) we get, $R=A_{f} Y(x), S=0, T=0$ and $V=t \cdot \frac{\partial G(x, t)}{\partial t}-A_{f} Q(x) \frac{\partial G(x, t)}{\partial x}-A_{f} P(x) G(x, t)$.

Substituting the values of R, S, T and V in subsidiary equations we obtain ultimately $V=0$, which gives,
t. $\frac{\partial G(x, t)}{\partial t}-A_{f} Q(x) \frac{\partial G(x, t)}{\partial x}-A_{f} P(x) G(x, t)=0$,
which is exactly the equation (4.10). This equation has been solved earlier and now it is clear that the introduction of the second order terms does not modify the solutions equation (4.15) or (4.16).

4.2. Result and Discussion:

We have presented our result qualitatively in Fig.4.1 and Fig.4.2. In Fig.4.1, the result of t or Q^{2} - evolutions of $G\left(x, Q^{2}\right)$ from the equation (4.15) is given. We have taken arbitrary inputs $G\left(x, Q_{0}^{2}\right)=1,2$ and 3 for $x=x_{1}, x_{2}$ and x_{3} respectively. Similarly in Fig.4.2, the results of x-evolutions of $G\left(x, Q^{2}\right)$ from the equation (4.16) (solid lines) and from the equation (4.18) (dashed lines) are presented. Integration in the equation (4.11) is computed numerically. We have taken arbitrary inputs $G\left(x_{0}, Q^{2}\right)=10$ for $Q^{2}=Q_{1}^{2}$ for both the sets. Different lines are due to different K-values, $K=0.01,0.1,1,10$ and 100 indicated in the Fig.4.2. For the dashed graphs, K-values are labelled as K^{\prime} for convenience. It is clear from the figures that evolutions of gluon distribution functions $G\left(x, Q^{2}\right)$ depend upon inputs $G\left(x, Q_{0}^{2}\right)$ or $G\left(x_{0}, Q^{2}\right)$ and also upon K-values.

Eichen, Hinchliffe, Lane and Quigg (EHLQ) [56] began with input distribution inferred from experiment at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$ and integrate the evolution equation

Fig.4.1: Q^{2} e evolutions of $G\left(x, Q^{2}\right)$ from equation (4.15). Arbitrary inputs $G\left(x, Q_{0}{ }^{2}\right)=1,2$ and 3 are taken for $x=x_{1}, x_{2}$ and x_{3} respectively.
numerically. They started with the data of CDHS neutrino experiment [57] at CERN. Gluon distribution is determined indirectly and parametrized as

$$
G\left(x, Q_{0}^{2}\right)=(2.62+9.17 x)(1-x)^{5.9}
$$

with $R=\sigma_{L} / \sigma_{T}=0.1$ and $\Lambda=200 \mathrm{MeV}$ at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$. This is Set-1. Under the assumption that $R=\sigma_{L} / \sigma_{T}$ has the behaviour prescribed by QCD, gluon is parametrized as

$$
G\left(x, Q^{2}\right)=(1.75+15.57 x)(1-x)^{603}
$$

with $\Lambda=290 \mathrm{MeV}$ at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$. This is Set-2. The calculated $Q^{2}-$ dependence of $G\left(x, Q^{2}\right)$ for Set-1 is shown in Fig. 4.3 (a) by dashed lines for x values $10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4} as indicated in the figure.

Fig.4.2: x - evolutions of $G\left(x, Q^{2}\right)$ from the equation (4.16) (solid lines) and (4.18) (dashed lines). Arbitrary input $\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{Q}^{2}\right)=10$ for $\mathrm{Q}^{2}=\mathrm{Q}^{2}{ }^{2}$ is taken. K or $\mathrm{K}=0.01,0.1,1,10$ and 100 .

The expected growth of the distributions at low- x is apparent. Our results from the equation (4.15) are given in the figure by solid lines for the same values of x. Inputs are taken from the corresponding values at $10 \mathrm{GeV}^{2}$ from the parametrization. The corresponding result for Set-2 is shown in Fig. 4.3 (b). Again to explore the uncertainties in low- x region EHLQ consider two modifications of Set- 1 as follows:

Fig.4.3(a) and Fig.4.3(b) Q^{2}. evolutions of $G\left(x, Q^{2}\right)$ for EHLQ Set-1 and Set-2 respectively(dashed lines) for $x=10^{1}, 10^{2}, 10^{3}$ and 10^{-4} Results from equation (4 15) (solid lines) are also given for same values of x Inputs are taken from the corresponding values at $10 \mathrm{GeV}^{2}$ from the parametnzation

$$
G\left(x, Q_{0}^{2}\right)=(262+9.17 x)(1-x)^{59} \quad \text { for } \quad x>0.01
$$

and
\qquad
$\left.\begin{array}{rl}G\left(x, Q_{0}^{2}\right)= & (0.444 x)^{-0.5}-1.886 \\ & (25.56 x)^{0.5}\end{array}\right\} \quad$ for $x<0.01$.
The results of these changes are presented in Fig. 4.4 (a) and Fig. 4.4 (b) for Set-1 (a) and Set-1 (b) respectively for $x=10^{-2}, 10^{-3}$ and 10^{-4} along with our corresponding predictions. Diemoz, Ferroni, Longo and Martineli (DFLM) [58,59] also proceed in the same manner to parametrize the data from the neutrino experiments BEBC'85 [60], CCFRR' 83 [61], CHARM'83 [62] and CDHS'83 [57] at $Q_{0}^{2}=10 \mathrm{GeV}^{2}$. For the set DFLM-2 they consider gluon function to be
$G\left(x, Q^{2}\right) \sim(1-0.18 x)(1-x)^{5.06}$,
with $\lambda_{\overline{M S}}=300 \mathrm{MeV}$. Here the next to leading order QCD calculation is performed. The result is given in Fig. 4.5 for $x=10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4} by dashed lines Our results from the equation (4.15) is given by solid lines taking inputs as before.

The role of absorptive corrections in the low-x behaviour of deep inelastic gluon distribution functions $G\left(x, Q^{2}\right)$ is widely discussed now [63] due to the new generation of accelerators. Kim and Ryskin estimated [64] the non-linear absorption corrections with the parametrization used in semihard phenomenology [65]. As nonlinear absorption effects are essentially at very low- x only [2], they decided to use the standard GLDAP evolution equation $[16,66,67]$ in region of interest $\left(x>10^{-6}\right.$, $\left.Q^{2}<10^{5} \mathrm{GeV}^{2}\right)$, that is, $x>x_{0}\left(Q^{2}\right)$, where, $\ln x_{0}=(1 / 12.7) \ln ^{2}\left(Q^{2} / \Lambda^{2}\right)$. But in this case they are to add a new boundary condition

$$
\begin{equation*}
G\left(x, Q^{2}\right)=a Q^{2} \tag{A}
\end{equation*}
$$

on line $x=x_{0}\left(Q^{2}\right)$, where, $a=G\left(x_{0}, Q^{2}\right) Q^{2}$, which is fixed by the initial condition

$$
\begin{equation*}
G(x)=A\left(1-x^{3}\right) x^{-\omega_{0}} \tag{B}
\end{equation*}
$$

Fig.4.4(a) and Fig. 4 (b) Q^{2} - evolutions of $G\left(x, Q^{2}\right)$ for EHLQ Set-1(a) and Set-1 (b) respectively (dashed lines) for $x=10^{-1}, 10^{2}, 10^{3}$ and 10^{4} along with the corresponding predictions (solid lines) from equation (415) as indicated in Fig 4 3(a) and Fig 4 3(b)
at $Q_{S}^{2}=4 \mathrm{GeV}^{2}$ The coefficient A is fixed by the normalization $\int G(x) d x=0.55$ and $\omega_{0}=(1 / \pi) N_{c} \alpha_{s}\left(Q_{s}^{2}\right) \cdot 4 \ln 2$ corresponds to the QCD pomeron singularity given

Fig.4.5 Q^{2} - evolutions of $G\left(x, Q^{2}\right)$ for DFLM-2 (dashed lines) for $x=10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4} along wth the DFLM-1 corresponding predictions (solid lines) from equation (415) as indicated in Fig 4 3(a) and Fig 4 3(b)
by the summation of leading-log contributions $\left(\alpha_{s} \ln \frac{1}{x}\right)^{n}[20], N_{c}=3$ be the number of colours. Absorption corrections reveal itself due to this new boundary condition. Kim and Ryskin obtained numerical solution of linear GLDAP evolution equation. The boundary condition corresponds to a strong correlation between gluons inside the proton. Gluons form groups in small Hot Spots [65,30] with radius $R_{s} \simeq 0.2 F_{m}$ at $x=1 / 3$. If gluons are distributed uniformly inside the proton. The screening would be smaller and non-linear effect reveals itself at lower- x. For this case $R_{s} \simeq 0.7 F_{m} \simeq R_{n}$ at $x_{0}=0.0035$. In the Fig. 4.6(a), the x-dependence of gluon distribution functions $G\left(x, Q^{2}\right)$ at $Q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ is given by the curves $1,4,7 ; 2,5,8$ and $3,6,9$ respectively.

Fig.4.6(a) x - evolutions of $G\left(x, Q^{2}\right)$ at $Q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ are given by curves 1,4 , 7, $2,5,8$ and $3,6,9$ respectively Solid curves are GLDAP evolution, long-dashed curves take into account the absorption corrections through (A) for $R_{s} \simeq 02 \mathrm{Fm}$, short dashed are the same for $R_{s} \simeq R_{n}$ The shaded area is the prediction from equation (4 16) wth upper and lower boundaries corresponding to $K=1$ and 100 respectively

Fig.4.6(b) Difference between GLDAP (solid curves) and GLR (dashed curves) equations. The curves 1,$4 ; 2,5$ and 3,6 correspond to $\mathrm{Q}^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ respectively Intral conditions (A) and (B) are shown by dotted and dot-dashed curves respectively The shaded area is same as in Fig 4 6(a)

Solid curves are the ordinary linear GLDAP evolution equation; long dashed curves take into account the absorption corrections through the new boundary condition (A) for $R_{s} \sim 0.2 F_{m}$. Short dashed is the same for $R_{s} \sim R_{n}$. Here $\Lambda=200 \mathrm{MeV}$. In the Fig. 4.6(b) the difference between linear (solid curves) GLDAP and non-linear (dashed curves) GLR [2] evolution is given. The curves 1,$4 ; 2,5$ and 3, 6 correspond to $Q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ respectively. The new and old initial conditions (A) and (B) at $Q_{s}^{2}=4 \mathrm{GeV}^{2}$ are shown by dotted and dot-dashed curves respectively Here $\Lambda=200 \mathrm{MeV}$. In both the figures, the dashed areas are our predictions from the equation (4.16) with upper and lower boundaries corresponding to $K=1$ and 100
respectively. In both cases gluon distribution functions $G\left(x_{0}, Q^{2}\right)$ for linear GLDAP equation at $x_{0}=10^{-2}$ are taken as inputs; because, it is almost same for all curves.

In the leading $\log (1 / x)$ approximation of QCD , it is expected that the gluon distribution will grow indefinitely as,

$$
\begin{equation*}
G\left(x, Q^{2}\right) \simeq x^{-\lambda} \tag{C}
\end{equation*}
$$

in the low- x limit [68] with $\lambda \simeq 0.5$. This increase with decreasing x, will of course eventually be tamed by screening corrections which give rise to non-linear terms in the QCD evolution equations. The approximate framework is provided by the BKFL equation $[8,69]$ with the addition of the non-linear shadowing term. This is known as GLR equation. The radius parameter R in the shadowing term characterises the area πR^{2} in which the gluons are concentrated within the proton. We would expect R to be approximately equal to the radius of the proton that is $R \simeq 5 \mathrm{GeV}^{-1}$, although it has been argued that the gluons may be concentrated in Hot Spots within the proton. So, the results for $R \simeq 2 \mathrm{GeV}^{-1}$ are also shown. The non-linear integro-differential BKFL equation can now be solved numerically [68] with the analysis entirely confined to the low- x region $x<x_{0}$. It is informative to compare the above results with the gluon distributions to Set- B_{-}of partons obtained in the Kwiecinski, Martin, Roberts and Stirling (KMRS) [70] global structure function analysis which attempted to incorporate both the BKFL and shadowing effects, albeit in an approximate manner. KMRS evolved the starting distributions up from $Q^{2}=4 \mathrm{GeV}^{2}$ using the next-to-leading order GLDAP equations. In Fig. 4.7 the continuous curves are the . values of $G\left(x, Q^{2}\right)$ determined by solving the BKFL equation for $Q^{2}=100$ and $1000 \mathrm{GeV}^{2}$.

The dashed curves are $G\left(x, Q^{2}\right)$ of Set- $B_{\text {_ }}$ of the KMRS next-to-leading order structure function analysis. In each case three curves are in descending order the solution with shadowing neglected, and the solutions with the shadowing term

Fig.4.7 x - evolutions of $G\left(x, Q^{2}\right)$ of $B K F L$ equation for $Q^{2}=100$ and $1000 \mathrm{GeV}^{2}$ (sold curves) The dashed curves are $G\left(x, Q^{2}\right)$ of KMRS Set- $B_{\text {_ }}$ In each case three curves in descending order are the solutions with shadowng neglected, with $R=5 \mathrm{GeV}^{1}$ and $R=2 \mathrm{GeV}^{1}$ respectively The shaded area is same as in Fig. 4 6(a)
included with $R=5 \mathrm{GeV}^{-1}$ and $R=2 \mathrm{GeV}^{-1}$ respectively. The shaded areas are our predictions described before. $G\left(x, Q^{2}\right)$ at $x=10^{-2}$ for BKFL equation are taken as inputs. They are almost same for all the curves.

4.3. Conclusion:

In this chapter, we obtain t and x-evolutions of gluon distribution function at low- x from GLDAP evolution equation. Comparison is made with the prediction of BKFL as well as GLR equations. We also make predictions for the HERA range. It is clear from the figures that our results for t-evolutions of gluon distribution functions conform with those of EHLQ Set-1, EHLQ Set-2 and DFLM-2 parametrizations for $x<10^{-2}$, but do not conform for $x>10^{-2}$. But they conform excellently with Set-1(a) whereas differ badly with Set-1(b). The bands in all the figures gives our predictions for x-evolutions for $1<K<100$. Our predictions conform well with those of others It can be inferred from our predictions that screening correction at very low- x is more likely. To conclude, our simple approximate analytical solution of GLDAP evolution equation for structure function gives satisfactory predictions in HERA range. The
qualitative predictions of our results conform to those of several other authors. GLDAP evolution equation in present form thus stands as a viable alternative to - BKFL and GLR predictions, at least in the x and Q^{2} - range under study.口

Chapter-5

GLUON DISTRIBUTION FUNCTION FROM PROTON STRUCTURE FUNCTION

The measurements of proton structure function by Deep Inelastic Scattering (DIS) processes in the low- x region where x is the Bjorken variable have opened a new era in parton density measurements [42]. Gluon distribution can not be measured directly from, experiments. It is therefore important to measure gluon distribution $G\left(x, Q^{2}\right)$ indirectly from the proton structure function $F_{2}\left(x, Q^{2}\right)$. A few number of papers have already been published $[43-45,48,49,50,52,53]$ in this connection. Here we present an alternative method to relate $G\left(x, Q^{2}\right)$ with proton structure function and their derivatives with respect to $\ln Q^{2}, \partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and with respect to $x, \partial F_{2}\left(x, Q^{2}\right) / \partial x$ for fixed values of Q^{2}. Our method is more general with less approximation, simpler and mathematically more transparent.

5.1. Theory:

It is shown in the references $[45,52]$ that the gluon distribution at low-x can be obtained by analysing the longitudinal structure function. Similarly it is also shown in the reference $[48,49,53]$ that this distribution can be calculated from the proton structure function $F_{2}\left(x, Q^{2}\right)$ and their differential coefficient with respect to $\ln Q^{2}, \partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$. The basic idea lies on the fact that the scaling violation of $F_{2}\left(x, Q^{2}\right)$ arises, at low- x, from the gluon distribution alone and does not depend on the quark distribution. Then neglecting the quarks the leading order GLDAP evolution equation for four flavours [49] gives

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{0}^{1-x} G\left(\frac{x}{1-z}, Q^{2}\right) P_{q g}(z) d z, \tag{5.1}
\end{equation*}
$$

where, the splitting function is

$$
\begin{equation*}
P_{q g}(z)=z^{2}+(1-z)^{2}, \tag{5.2}
\end{equation*}
$$

and, α_{s} is the strong coupling constant. Now,
$\frac{x}{1-z}=x \sum_{k=0}^{\infty} z^{k}=x+x \sum_{k=1}^{\infty} z^{k}$.
We have, $1-x>z>0 \Rightarrow|z|<1$ which implies that the expansion equation (5.3) is convergent. Now by the Taylor expansion [39] we get,

$$
\begin{aligned}
G\left(\frac{x}{1-z}, Q^{2}\right) & =G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right) \\
& =G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x}+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} z^{k}\right)^{2} \frac{\partial^{2} G\left(x, Q^{2}\right)}{\partial x^{2}}+O\left(x^{3}\right)
\end{aligned}
$$

where, $O\left(x^{3}\right)$ are the higher order terms. Neglecting the terms containing x^{2} and higher orders $O\left(x^{3}\right)$ for simplicity, we get,

$$
\begin{equation*}
G\left(\frac{x}{1-z}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right) \cong G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} . \tag{5.4}
\end{equation*}
$$

But as a matter of fact, we can not neglect the higher order terms, as these terms are not small in Regge-like behaviour $[4,49] G(x) \simeq x^{-\delta_{p}\left(0^{2}\right)}$ or in Double-logarithmical behaviour $[49,51] ~ G(x) \simeq \exp \left(0.5 \sqrt{\delta_{p}\left(Q^{2}\right) \ln (1 / x)}\right)$ for gluon at low-x. Here $\delta_{p}\left(Q^{2}\right)$ is a Q^{2}-dependent parameter where $p=s$ (singlet quark) or g (gluon). On the otherhand, it has been shown that this Taylor expansion method is successfully applied in calculating Q^{2} - evolution of proton structure functions [36] at low-x with reasonable phenomenological success. Bora and Choudhury [48] and also Prytz [43,44] has already applied Taylor expansion method to calculate gluon distributions from proton structure functions and scaling violations of them. But our method is more general and transparent with less approximation.

Putting equations (5.2) and (5.4) in equation (5.1) and performing z - integrations we get,
$\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi}\left[A(x) G\left(x, Q^{2}\right)+B(x) \frac{\partial G\left(x, Q^{2}\right)}{\partial x}\right]$,
where,
$A(x)=(1 / 3)(1-x)\left(2 x^{2}-x+2\right)$
and
$B(x)=(1 / 3) x(1-x)\left(-2 x^{2}+4 x-5\right)-x \ln x$.
Here we used the identity [39] $\sum_{k=1}^{\infty} \frac{z^{k}}{k}=\ln \frac{1}{1-z}$. Recasting the equation (5.5) we get,
$G\left(x, Q^{2}\right)+\frac{B(x)}{A(x)} \cdot \frac{\partial G\left(x, Q^{2}\right)}{\partial x}=\frac{9 \pi}{5 \alpha_{5} \cdot A(x)} \cdot \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}$
at constant $Q^{2}=Q_{0}^{2}$, where, $G\left(x, Q^{2}\right)=G(x)$ and $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}=K(x)$.
And so, equation (5.6) gives,
$G(x)+\frac{B(x) \partial G(x)}{A(x) \partial x}=\frac{9 \pi K(x)}{5 \alpha_{s} A(x)}$.
Since the ratio $B(x) / A(x)$ is very small at low-x, $\lim _{r \rightarrow 0} B(x) / A(x)=0$, the left hand side of equation (5.7) can be written as

$$
G(x)+\frac{B(x)}{A(x)} \cdot \frac{\partial G(x)}{\partial x}=G(x)+\frac{B(x)}{A(x)} \cdot \frac{\partial G(x)}{\partial x}+\frac{1}{2}\left(\frac{B(x)}{A(x)}\right)^{2} \cdot \frac{\partial^{2} G(x)}{\partial x^{2}}+\ldots=G\left(x+\frac{B(x)}{A(x)}\right)
$$

by Taylor expansion series [39]. Thus from equation (5.7) we get,

$$
\begin{equation*}
G\left(x+\frac{B(x)}{A(x)}\right)=\frac{9 \pi}{5 \alpha_{s}} \cdot \frac{K(x)}{A(x)} . \tag{5.8}
\end{equation*}
$$

The equation (5.8) is the relation between the gluon distribution $G\left(x^{1}, Q^{2}\right)$ at $x^{\prime}=x+B(x) / A(x)$ and $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at x, at the fixed values of $Q^{2}=Q_{0}^{2}$.

This is our main result.

5.2. Results and Discussion:

We use HERA data taken by $\mathrm{H1}$ and ZEUS collaborations from the Table-1 [71] and Table-2 [72] respectively. In these tables, the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ are listed for a range of x-values at $Q^{2}=20 \mathrm{GeV}^{2}$. Similarly we use parametrizations of the recent New Muon Collaboration (NMC) proton structure function data [73] from a 15- parameter function [73]. Here we calculate the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $Q^{2}=40 \mathrm{GeV}^{2}$. Moreover recent HERA data are also parametrized by H 1 and ZEUS collaborations by some appropriate functions. In these cases also we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $Q^{2}=20 \mathrm{GeV}^{2}$. From all these data or parametrizations we calculate the structure functions $F_{2}\left(x, Q^{2}\right)$ or scaling violations of structure functions with respect to $\ln Q^{2}$ and apply them in the equation (5.8) to calculate the gluon distribution functions $G\left(x^{\prime}, Q^{2}\right)$ at $x^{\prime}=x+B(x) / A(x)$.

Table-1

The values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ for different low values of x from HERA data given by Hl collaboration at $Q^{2}=20 \mathrm{GeV}^{2} . \sigma_{\text {stat. }}$ and $\sigma_{\text {syst }}$ are statistical and systematic errors respectively.

x	$\partial F_{2} / \ln Q^{2}$	$\sigma_{\text {suat }}$	$\sigma_{\text {syst }}$
0.000383	0.51	0.14	0.09
0.000562	0.65	0.18	0.10
0.000825	0.46	0.06	0.06
0.00133	0.28	0.06	0.11
0.00237	0.21	0.03	0.06
0.00421	0.20	0.03	0.03
0.0075	0.08	0.02	0.03
0.0133	0.06	0.02	0.02

Reference [71]: S. Aid et. al, H1 Collaboration, Phys. Lett. B 354 (1995) 494.

Table-2

The values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ for different low values of x from HERA data given by ZEUS collaboration at $Q^{2}=20 \mathrm{GeV}^{2} . \sigma_{\text {sat }}$ and $\sigma_{\text {syst }}$ are statistical and systematic errors respectively.

x	$\partial F_{2} / \ln Q^{2}$	$\sigma_{s a t}$	$\sigma_{s y s}$
0.00085	0.45	0.03	$+0.05,-0.10$
0.00155	0.30	0.03	$+0.09,-0.30$
0.00268	0.25	0.02	$+0.07,-0.09$
0.00465	0.23	0.03	$+0.02,-0.05$

Reference [72]: M. Dernck et. al., ZEUS collaboration, Phys. Lett. B 364 (1995) 576.

The 15 -parameter function to describe the recent NMC proton structure function data is,
$F_{2}\left(x, Q^{2}\right)=A(x)\left[\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(Q_{0}{ }^{2} / \Lambda^{2}\right)}\right]^{B(x)} \cdot\left[1+\frac{C(x)}{Q^{2}}\right]$.
Here, $Q^{2}=20 \mathrm{GeV}^{2}, \Lambda=0.250 \mathrm{GeV}$,
$A(x)=x^{a_{1}}(1-x)^{a_{2}}\left\{a_{3}+a_{4}(1-x)+a_{5}(1-x)^{2}+a_{6}(1-x)^{3}+a_{7}(1-x)^{4}\right\}$,
$B(x)=b_{1}+b_{2} x+b_{3} /\left(x+b_{4}\right)$
and
$C(x)=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.

Table-3
15-parameters for $F_{2}^{p}\left(x, Q^{2}\right)$ and $F_{2}^{d}\left(x, Q^{2}\right)$.

Parameter	$F_{2}^{p}\left(x, Q^{2}\right)$			$F_{2}^{d}\left(x, Q^{2}\right)$		
	Middle Value	Upper Value	Lower Value	Middle Value	Upper Value	Lower Value
a_{1}	-0.02778	-0.05711	-0.01705	-0.4858	-0.04715	-0.02732
a_{2}	2.926	2.887	2.851	2.863	2.814	2.676
a_{3}	1.0362	0.998	0.8213	0.8367	0.7286	0.3966
a_{4}	-1.84	-1.758	-1.156	-2.532	-2.151	-0.608
a_{5}	8.123	7.89	6.836	9.145	8.662	4.946
a_{6}	-13.074	-12.696	-11.681	-12.504	-12.258	-7.994
a_{7}	6.215	5.992	5.645	5.473	5.452	3.686
b_{1}	0.285	0.247	0.325	-0.008	-0.048	0.141
b_{2}	-2.694	-2.611	-2.767	-2.227	-2.114	-2.464
b_{3}	0.0188	0.2043	0.0148	0.0551	0.0672	0.0299
b_{4}	0.0274	0.0307	0.0226	0.057	0.0677	0.0396
c_{1}	-1.413	-1.348	-1.542	-1.509	-1.57	-2.128
c_{2}	9.366	8.548	10.549	8.553	9.515	14.378
c_{3}	-37.79	-35.01	-40.81	-31.2	-34.94	-47.76
c_{4}	47.1	44.43	49.12	39.98	44.42	53.63

Reference [73]: M. Arneodo at. al., NMC,Phys. Lett. B 364 (1995) 107.

Table-4

Recent HERA data in parametrized by Hl collaboration as
$F_{2}\left(x, Q^{2}\right)=\left|a x^{h}+c x^{d}(1+e \sqrt{x})\left(\ln Q+f \ln ^{2} Q^{2}\right)\right|(1-x) g$.

Parameter \rightarrow	a	b	c	d	e	f	g
Value \rightarrow	3.07	0.75	0.14	-0.19	-2.93	-0.05	3.65

Reference [74]: T. Ahmed et al, H1 collaboration, Nucl. Phys. B 439 (1995) 471.

Table-5

Recent HERA data is parametrized by ZEUS collaboration as

$$
F_{2}=\left(1-x^{a}\right)^{b}\left[c+d x^{\left(e+f \log _{10} Q^{2}\right)}\right] \quad \text { where, } Q^{2}-\text { range is from } 8.5 \mathrm{GeV}^{2} \text { to }
$$ $500 \mathrm{GeV}^{2}$.

a	b	c	d	e	f
2	4	0.35	0.017	-0.35	-0.16

Reference [75]: M. Derrick et al, ZEUS collaboration, DESY 94-143, (1994).

For our calculation, strong coupling constant α_{s} was taken from a next-to-leading order fit [76] to F_{2} data which yields $\alpha_{s}=0.180 \pm 0.008$ at $Q^{2}=50 \mathrm{GeV}^{2}$ corresponding to $\Lambda_{M S}^{(4)}=0.263+0.042$ and $\alpha_{s}\left(M_{z}^{2}\right)=0.113 \pm 0.005$. This value of α_{s} agrees with one given by Particle Data Group [77]. But in our practical calculations we neglect the errors of α_{s} and Λ which are rather small.

In the Fig.5.1, we calculate $G\left(x^{\prime}\right)$ (equation (5.8)) for x^{\prime} values which varies from 5.52×10^{-2} to 2.27×10^{-6} for highest and lowest values of x under consideration respectively. The gluon distribution increases from $\simeq 3.5$ to 6.5 when x decreases from the highest to the lowest values under consideration. But gluon distribution decreases slightly ($<1 \%$) for a particular values of x when Q^{2} increases from $40 \mathrm{GeV}^{2}$ to $100 \mathrm{GeV}^{2}$. We do not compare the result of NMC data with those of mainly HERA, because, their Q^{2} and x - ranges are different.

In the Fig.5.2, the gluon distribution obtained by our method (equation (5.8)) from HERA data measured by Hl collaboration [71] is presented at $Q^{2}=20 \mathrm{GeV}^{2}$. The middle line is the result without considering any error in the data. The upper and lower lines are the results adding and subtracting algebraically the statistical and the systematic errors with the data respectively, and thereby calculating the gluon distributions. These two lines are symmetric about the middle lines and positive and negative errors are equal. The area bounded by these lines gives the result with

Fig.5.1 Gluon distribution obtained by our method (equation (58)) for NMC proton parametrization (15-parameter function -Table-3) at $Q^{2}=40 \mathrm{GeV}^{2}$ The middle, upper and lower lines are the results (a)without considenng any error, (b)adding algebracally the statistical and systematic errors and (c)subtracting algebraically the statistical and systematic errors respectively

Fig.5.2 Same result as in Fig 51 (equation(5 8)) for HERA proton data by H 1 collaboration (Table-1) at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$
maximum error. The x-values in the data ranges from the highest value 1.33×10^{-2} to the lowest value 3.83×10^{-4}. The corresponding x^{\prime} values are 6.81×10^{-2} and 3.948×10^{-3} respectively, and also gluon distributions are $\simeq 3.0$ and $\simeq 24.0$ respectively for data without considering any error. Here also gluon distribution increases when x decreases except the lowest value when gluon distribution decreases. But the rate of increment for HERA data measured by Hl collaboration is much higher than that of NMC data.

In Fig.5.3 the same thing is presented for HERA data measured by ZEUS collaboration [72] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.3 Same result as in Fig 51 (equation (58)) for HERA proton data by ZEUS collaboration (Table-2) at $Q^{2}=20 \mathrm{GeV}^{2}$

Here the x-values in the data ranges from the highest value 4.65×10^{-3} to the lowest value 8.5×10^{-4}. The corresponding x^{\prime} values are 3.077×10^{-2} and 7.752×10^{-3} respectively and also gluon distributions are $\simeq 10.9$ and are $\simeq 21.2$ respectively for
data without considering any error. We see, in this case also, gluon distribution increases when x decreases. And the rate of increment is slightly higher to that of Hl collaboration in the x-range considered, but much higher than that of NMC data.

In the Fig. 5.4 comparison of gluon distributions by our method (equation (5.8)) for HERA proton data by Hl and ZEUS parametrizations (Table-4 and Table-5 respectively) is presented at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.4 Companson of gluon distributions by our method (Sarma and Medhı - equation (5 8)) for HERA proton data by H 1 (dashed line) and ZEUS (solid line) parametnzation (Table-4 and Table-5 respectively) with $\operatorname{MRS}(G)$ [50] input gluon distribution (thin solid lines with solid circles) at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

The x range used by H1 collaboration is $10^{-4}<x<1$ for Q^{2} range $4 \mathrm{GeV}^{2}<Q^{2}<$ $2000 \mathrm{GeV}^{2}$. This parametrization also covers the F_{2}^{p} data from the NMC and BCDMS experiments. Similarly the x range used by ZEUS collaboration is up to small values $\simeq 10^{-4}$ for all values of Q^{2} under consideration But it will also cover the high values of x from NMC collaboration. It is seen from the figure that as usual when x decreases gluon distribution increases, but in different rates.

In the Fig.5.5, comparison of gluon distribution from NMC proton data parametrization (Table-3) middle value only by our method (equation (5.8), line with solid diamonds), Bora and Choudhury method (line with solid squares), and Pryz method (line with solid triangles) at $Q^{2}=40 \mathrm{GeV}^{2}$ is presented.

Fig.5.5 Same result as in Fig 54 for NMC proton parametrnzation (Table-3) middle value only by Sarma and Medhı (equation(5 8)), Bora and Choudhury [48] and Prytz [43,44] methods at $Q^{2}=40 \mathrm{GeV}^{2}$

If we apply proton structure functions and their scaling violations at a particular x value, the calculated gluon distributions will be in different x-values for these different methods. They are $x^{\prime}=x+B(x) / A(x)$ in our method,
$x_{1}=x+[B(x) / A(x)+B(x)] x$ in Bora and Choudhury method and $x_{2}=2 x$ in Prytz method. Thus the shifting of the arguments in gluon distributions is appreciable in our method. For all the methods, gluon distribution increases when x decreases except for the last data point for which it decreases. But rate of increment is different for different methods. The values of gluon distributions are comparable but rate of increment is highest in our method and lowest in Bora and Choudhury method.

In Fig.5.6, the same thing as in Fig.5.5 is presented for HERA data middle value only measured by Hl collaboration (Table-1) at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.6: Same result as in Fig.5.5 for HERA proton data by H 1 collaboration (Table-1) by various methods (Kotikov and Parente method) [49,52] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$.

Here results by an extra method, Kotikov and Parente method [49,52] are also included. The x-values under consideration are same as in Fig.5.2. But the arguments of the gluon distributions calculated are different for different methods as discussed earlier, except for Kotikov and Parente method for which the arguments do not change. Accordingly, for the highest and the lowest x values, x^{\prime} values are 6.81×10^{-2} and $3.948 \times 10^{-3} ; x_{1}$ values are 1.8×10^{-2} and 5.16×10^{-4} and x_{2} values are 2.66×10^{-2} and 7.66×10^{-4} respectively. For all the methods gluon distribution increases when x decreases except for the last data point for which it decreases. But rate of increment is different for different methods. The values of gluon distributions are comparable but rate of increment is highest in our method and lowest in Kotikov and Parente method. It is intermediate in other two methods of which rate of Prytz method is slightly higher than that of Bora and Choudhury method.

In Fig.5.7 also, the same thing as in Fig.5.5 is presented for HERA data parametrization (Table-4) measured by H 1 collaboration [74] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.7: Same result as in Fig. 5.5 for HERA proton parametrization by H 1 collaboration (Table-4) by various methods at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$.

The x values under consideration are same as before in Fig.5.1. Accordingly shifted arguments of gluon distributions for different methods are exactly same as in Fig.5.5. When x decreases, gluon distribution increases for all the methods as usual, but with different rates for different methods as before. The growth rate is highest in our method and lowest in Bora and Choudhury method. In the same figure, we compare the result with Martin, Roberts, Stirling (MRS(G)) [50] input gluon distribution (solid line with solid circles) in the same $Q^{2}-$ value. $\operatorname{MRS}(\mathrm{G})$ distribution is close to our method.

In Fig.5.8, comparison of gluon distributions by various methods exactly same way as in Fig. 5.6 is presented for HERA data middle value (Table-2) measured by ZEUS collaboration [72] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.8: Same result as Fig. 5.6 for proton data by ZEUS collaboration (Table-2) by various methods at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$.

The x-values under consideration is same as in Fig.5.3. But the arguments of the gluon distributions calculated are different for different methods as discussed earlier. Accordingly, for the highest and lowest x values x^{\prime} values are 3.077×10^{-2} and $7.752 \times 10^{-3}, x_{1}$ values are 6.2×10^{-3} and 1.13×10^{-3}, and x_{2} values are 9.3×10^{-3} and 1.7×10^{-3} respectively. The arguments of gluon distribution for Kotikov and Parente method are same as x-values under consideration. The gluon distribution increases when x decreases for all the methods as before, but the rate of increment is highest in our method and lowest in Kotikov ans Parente method. The rates are intermediate in other two methods of which rate of Prytz method is higher than that of Bora and Choudhury method.

In Fig.5.9, the same thing as Fig. 5.7 is presented for HERA data prametrization (Table-5) measured by ZEUS collaboration [75] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig.5.9: Same result as in Fig. 5.7 for HERA proton parametrization by ZEUS collaboration (Table-5) by various methods at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

The x values under consideration are same as before as in Fig.5.1 except the lowest x values which is 10^{-6} here instead of $\simeq 10^{-7}$ in the previous cases. Accordingly, the shifted arguments are also same as in Fig. 5.5 with suitable modification for the lowest values. When x decreases gluon distribution increases as before with different rates. This is highest in our method and lowest in Bora and Choudhury method. In the same figure, we compare the result with $\operatorname{MRS}(G)$ [50] input gluon distribution in the same Q^{2}-value. But it is far below than the gluon distribution calculated from ZEUS HERA data by other methods. It is because the rate of increment of HERA ZEUS data when x decreases is very high which makes the calculated gluon distributions also very high.

5.3 Conclusion:

In this chapter, we present an alternative method than other methods [43$45,48,49,52,53]$ to extract gluon distribution $G\left(x, Q^{2}\right)$ from the measurement of low-
x proton structure function $F_{2}\left(x, Q^{2}\right)$ and their differential coefficients $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ with respect to $\ln Q^{2}$. For calculation of gluon distribution from proton structure function at low-x, we use HERA data measured by H 1 [71] and ZEUS [72] collaborations, HERA data parametrizations presented by H1 [74] and ZEUS [75] collaborations and NMC data parametrizations [73]. Of course, the last parametrization includes SLAC [78] and BCDMS [79] low-x data also. In our method, gluon from NMC data [73] is appreciably small, it is almost one fifth of HERA data measured by H 1 and ZEUS collaborations at $x \simeq 10^{-3}$. But if we compare with HERA data parametrizations, we will get slightly different result. In our method, gluon from NMC data parametrizations is almost one third than that of Hl and ZEUS HERA data parametrizations at $x \simeq 10^{-3}$. But it is almost one tenth of that of H1 parametrization and almost one thousandth of that of ZEUS parametrization. In our method, gluon distributions calculated from direct HERA data measured by H 1 and ZEUS collaborations up to $x \simeq 10^{-3}$ are almost in the same order. Gluon distribution from the HERA data parametrizations by H 1 and ZEUS collaborations up to $x \simeq 10^{-3}$ are also of the same order to them and mutually are also same. But after $x \simeq 10^{-3}$ when x decreases the rate of increment of ZEUS parametrization is much higher than that of H 1 and gluon distribution from the first parametrization becomes also hundred times of the second one at $x \simeq 10^{-7}$.

We compared our result with other methods, Bora and Choudhury, Prytz, Ktikov and Parente, and $\operatorname{MRS}(G)$ input gluon distribution. The general trend is that gluon distribution $G\left(x, Q^{2}\right)$ increases when x decreases. But the rate of increment of gluon distribution calculated by our method is in general higher than those of other methods. The result of Kotikov and Parente method are the lowest. The result of two other methods are the intermediate ones between these two methods of which the result of Prytz method is higher than that of Bora and Choudhury method. Results from our method are closed to those from Prytz method. This is because Bora and Choudhury method is a crude approximation as they include only one term of the infinite series $x /(1-z)$, whereas we include all the infinite terms. So the other terms enhance the
contribution in our method. In our method, the first order approximation in Taylor expansion of $G\left(x /(1-z), Q^{2}\right)$ is used; that is only terms having first order differentiation $\partial G\left(x, Q^{2}\right) / \partial x$ is used. \square

Chapter-6

GLUON DISTRIBUTION FUNCTION FROM DEUTERON STRUCTURE FUNCTION

We present some simple methods to find gluon distribution from analysis of deuteron structure function data at moderately low- x. Here we use the leading order GLDAP evolution equation and New Muon Collaboratio (NMC) deuteron structure function data to extract gluon distribution. We also compare our results with those of other authors. Here we present two alternative methods to relate gluon distribution $G\left(x, Q^{2}\right)$ with deuteron $F_{2}\left(x, Q^{2}\right)$ structure function and their differential coefficients with respect to $\ln Q^{2}$ and x, that is, $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and $\partial F_{2}\left(x, Q^{2}\right) / \partial x$ for fixed values of Q^{2}. We report for the first time some methods to extract gluon distribution from deuteron structure function data. Our methods are simpler with less approximation and more transparent. Of course, there exist some established methods [80] for extracting gluon distribution from data based on global fits. In these methods, momentum distribution and other constraints [81] are used to get gluon distribution. But our methods are based on the direct solution of QCD evolution equation which may be some good alternatives.

6.1. Theory:

In the leading order analysis, deuteron structure function is directly related to the singlet structure function [38]. On the otherhand, the differential coefficient of singlet structure function $F_{2}^{s}\left(x, Q^{2}\right)$ with respect to $\ln Q^{2}$, that is, $\partial F_{2}^{s}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ has a relation with singlet structure function itself as well as gluon distribution function [38]. Thus it is possible to calculate gluon distribution from singlet structure function or ultimately from deuteron structure function also. The leading order GLDAP evolution equation for singlet structure function [38] is given by

$$
\begin{gather*}
\frac{\partial F_{2}^{S}(x, t)}{\partial t}-\frac{A_{f}}{t}\left[\{3+4 \ln (1-x)\} F_{2}^{S}(x, t)+2 \int_{0}^{1-x} \frac{d z}{z}\left\{\left(z^{2}-2 z+2\right) F_{2}^{S}(x / 1-z, t)\right.\right. \\
 \tag{6.1}\\
\left.\left.-2 F_{2}^{S}(x, t)\right\}+\frac{3}{2} N_{f} \int_{0}^{1-x}\left(2 z^{2}-2 z+1\right) G(x / 1-z, t) d z\right]=0,
\end{gather*}
$$

where, $t=\ln \left(Q^{2} / \Lambda^{2}\right)$ and $A_{f}=4 /\left(33-2 N_{f}\right), \quad N_{f}$ being the number of flavours and Λ is the $Q C D$ cut off parameter. Now,
$\frac{1}{1-z}=x \sum_{k=0}^{\infty} z^{k}=x+x \sum_{k=1}^{\infty} z^{k}$.
We have, $1-x>z>0 \Rightarrow|z|<1$ which implies that the expansion equation (6.2) is convergent. Now by the Taylor expansion [39] we get,

$$
\begin{equation*}
F_{2}^{S}\left(\frac{x}{1-z}, t\right) \simeq F_{2}^{S}(x, t)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial F_{2}^{S}(x, t)}{\partial x} \tag{6.3}
\end{equation*}
$$

and
$G_{2}^{S}\left(\frac{x}{1-z}, t\right) \simeq G_{2}^{S}(x, t)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G_{2}^{S}(x, t)}{\partial x}$
neglecting the higher order terms.

But as a matter of fact, we cannot neglect the higher order terms for singlet structure function or gluon distribution function as they may have some contribution. On the otherhand, it has been shown that this Taylor expansion method is successfully applied in calculating Q^{2}-evolution $[35,36$] or x-evolution [34] of structure function with excellent phenomenological success. Some authors [43,44]. again applied this method to extract gluon distribution from proton structure function. It was suggested that [34], one possible reason for success of this method may be due to the simplification of $Q C D$ processes at low- x for momentum constraints.

Putting equations (6.3) and (6.4) in equation (6.1) and performing z-integrations we get,

$$
\begin{align*}
\frac{\partial F_{2}^{S}(x, t)}{\partial t} & -\frac{A_{f}}{t}\left[A_{S}(x) F_{2}^{S}(x, t)+B_{S}(x) G(x, t)+C_{S}(x)+\frac{\partial F_{2}^{S}(x, t)}{\partial x}\right. \\
& \left.+D_{S}(x) \frac{\partial G(x, t)}{\partial x}\right]=0 \tag{6.5}
\end{align*}
$$

where,

$$
\begin{aligned}
& A_{S}(x)=3+4 \ln (1-x)+2\{(1-x)(-2+(1-x) / 2)\}, \\
& B_{S}(x)=(3 / 2) N_{f}\left\{(1-x)\left(x+(2 / 3)(1-x)^{2}\right)\right\}, \\
& C_{S}(x)=2 x\{\ln (1 / x)+(1-x)(1-(1-x) / 2)\}
\end{aligned}
$$

and

$$
D_{S}(x)=(3 / 2) N_{f}\left\{\ln (1 / x)-(1-x)\left(1+(2 / 3)(1-x)^{2}\right)\right\} .
$$

Now, we can have two methods to extract gluon distributions:

First Method:

At very low- x limit, $x \rightarrow 0$, the functions $A_{S}(x), C_{S}(x)$ and $D_{S}(x)$ become vanished and $B_{s}(x)=N_{f}$. Equation (6.5) then becomes simplified and we get,

$$
\begin{align*}
& \frac{\partial F_{2}^{S}(x, t)}{\partial t}-\frac{A_{f}}{t} \cdot N_{f} G(x, t)=0 \\
& \Rightarrow G(x, t)=\frac{t}{A_{f} N_{f}} \cdot \frac{\partial F_{2}^{S}(x, t)}{\partial t} . \tag{6.6}
\end{align*}
$$

Equation (6.6) is a very simple relation between gluon distribution function with the differential coefficient of singlet structure function with respect to t.

Second Method:

Recasting equation (6.5) we get,

$$
\begin{align*}
& G(x, t)+\frac{D_{S}(x)}{B_{S}(x)} \cdot \frac{\partial G(x, t)}{\partial x} \\
& =\frac{1}{A_{f} B_{S}(x)} \cdot t \cdot \frac{\partial F_{2}^{S}(x, t)}{\partial t}-\frac{A_{S}(x)}{B_{S}(x)} \cdot F_{2}^{S}(x, t)-\frac{C_{S}(x)}{B_{S}(x)} \cdot \frac{\partial F_{2}^{S}(x, t)}{\partial x} . \tag{6.7}
\end{align*}
$$

Now $D_{s}(x) / B_{s}(x)$ is very small at low $-x, \lim _{x \rightarrow 0} D_{s}(x) / B_{s}(x)=0$. So, applying the Taylor expansion series we can write,

$$
G(x, t)+\frac{D_{S}(x)}{B_{S}(x)} \cdot \frac{\partial G(x, t)}{\partial x}=G\left(x+\frac{D_{S}(x)}{B_{S}(x)}, t\right) .
$$

Thus equation (6.7) gives,

$$
\begin{equation*}
G\left(x,{ }^{\prime} t\right)=K_{1}(x) \cdot t \cdot \frac{\partial F_{2}^{S}(x, t)}{\partial t}+K_{2}(x) \frac{\partial F_{2}^{S}(x, t)}{\partial x}+K_{3}(x) F_{2}^{S}(x, t), \tag{6.8}
\end{equation*}
$$

where,

$$
x^{\prime}=x+\frac{D_{S}(x)}{B_{S}(x)} \quad, \quad K_{1}(x)=\frac{1}{A_{f} B_{S}}, K_{2}(x)=\frac{C_{S}(x)}{B_{S}(x)} \quad \text { and } K_{3}(x)=-\frac{A_{S}(x)}{B_{S}(x)} .
$$

Equation (6.8) is also a simple relation between gluon distribution function with the differential coefficients of singlet structure function with respect to t and x, and with singlet structure function itself. If we try to combine the last two terms of equation (6.8), let us take common $K_{3}(x)$ from both the terms and then they reduce to

$$
K_{3}(x)\left[F_{2}^{s}(x, t)+\frac{K_{2}(x)}{K_{3}(x)} \cdot \frac{\partial F_{2}^{s}(x, t)}{\partial x}\right] .
$$

But $K_{2}(x) / K_{3}(x)$ is not small at low- x and therefore these two terms can not be combined to one as in the case of gluon by applying Taylor expansion series.

The relation between deuteron and singlet structure function at leading order [38] is

$$
\begin{equation*}
F_{2}^{d}(x, t)=\frac{5}{9} F_{2}^{s}(x, t) \Rightarrow \dot{F}_{2}^{s}(x, t)=\frac{9}{5} F_{2}^{d}(x, t) . \tag{6.9}
\end{equation*}
$$

Then we get,

$$
\begin{equation*}
\frac{\partial F_{2}{ }^{s}(x, t)}{\partial t}=\frac{9}{5} \cdot \frac{\partial F_{2}^{d}(x, t)}{\partial t} \tag{6.10}
\end{equation*}
$$

and
$\frac{\partial F_{2}^{S}(x, t)}{\partial x}=\frac{9}{5} \cdot \frac{\partial F_{2}^{d}(x, t)}{\partial x}$.
Putting equations (6.9), (6.10), and (6.11) in equations (6.6) and (6.8), we get respectively,

$$
\begin{equation*}
G(x, t)=\frac{9 t}{5 A_{f} N_{f}} \cdot \frac{\partial F_{2}^{d}(x, t)}{\partial t} \tag{6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(x^{\prime}, t\right)=\frac{9}{5}\left[K_{1}(x) \cdot t \cdot \frac{\partial F_{2}^{d}(x, t)}{\partial t}+K_{2}(x) \frac{\partial F_{2}^{d}(x, t)}{\partial x}+K_{3}(x) F_{2}^{d}(x, t)\right], \tag{6.13}
\end{equation*}
$$

which are our main results. From these equations it is seen that if we have deuteron structure function and their differential coefficients with respect to t and x at any x for a fixed value of $t=t_{0}$, we can calculate gluon distribution function at x (first method) from equation (6.12) or at $x^{\prime}=x+D_{s}(x) / B_{s}(x)$ (second method) from equation (6.13) as a leading order analysis.

For analysis of our result, we use NMC 15-parameter function [73,82] which parametrized their data for proton and deuteron structure functions for Q^{2}-values from $0.5 \mathrm{GeV}^{2}$ to $75 \mathrm{GeV}^{2}$ and low-x values from 0.002 to 0.6 . This parametrization can also well describe the SLAC [78] and BCDMS [79] data, and Fermilab [83] low- x data. The function used to describe proton as well as deuteron data is given by,

$$
\begin{equation*}
F_{2}\left(x, Q^{2}\right)=A(x)\left[\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(Q_{0}^{2} / \Lambda^{2}\right)}\right]^{B(x)} \cdot\left[1+\frac{C(x)}{Q^{2}}\right] . \tag{6.14}
\end{equation*}
$$

Here,
$Q_{0}{ }^{2}=20 \mathrm{GeV}^{2}, \Lambda=0.250 \mathrm{GeV}$,
$A(x)=x^{a_{1}}(1-x)^{a_{2}}\left\{a_{3}+a_{4}(1-x)+a_{5}(1-x)^{2}+a_{6}(1-x)^{3}+a_{7}(1-x)^{4}\right\}$,
$B(x)=b_{1}+b_{2} x+b_{3} /\left(x+b_{4}\right)$
and

$$
C(x)=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4},
$$

where, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}$ and c_{4} are the 15parameters used to fit the data. Actually two different sets of these parameters are used to describe proton and deuteron structure functions in the same equation (equation (6.14)). Thus for the respective sets of parameters, equation (6.14) gives the deuteron structure function as
$F_{2}^{d}(x, t)=A(x) \cdot\left[\frac{t}{t_{0}}\right]^{B(x)} \cdot\left[1+\frac{e^{-t}}{\Lambda^{2}} \cdot C(x)\right]$,
where, $t=\ln \left(Q^{2} / \Lambda^{2}\right)$ and $t_{0}=\ln \left(Q_{0}{ }^{2} / \Lambda^{2}\right)$. Differentiating $F_{2}^{d}(x, t)$ with respect to t and x, we get respectively,

$$
\begin{equation*}
\frac{\partial F_{2}^{d}(x, t)}{\partial t}=\left(\frac{B(x)}{t}-1\right) F_{2}^{d}(x, t)+A(x)\left(\frac{t}{t_{0}}\right)^{B(x)} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial F_{2}^{d}(x, t)}{\partial x} & =\left[\left(\frac{t}{t_{0}}\right) \cdot \frac{\partial A(x)}{\partial x}+A(x)\left(\frac{t}{t_{0}}\right)^{B(r)} \cdot \ln \left(\frac{t}{t_{0}}\right) \cdot \frac{\partial B(x)}{\partial x}\right] \\
& \times\left[1+\frac{e^{-t}}{\Lambda^{2}} \cdot C(x)\right]+A(x)\left(\frac{t}{t_{0}}\right)^{B(x)} \cdot\left[\frac{e^{-t}}{\Lambda^{2}} \cdot \frac{\partial C(x)}{\partial x}\right], \tag{6.17}
\end{align*}
$$

where,
$\frac{\partial A(x)}{\partial x}=\left(\frac{a_{1}}{x}-\frac{a_{2}}{1-x}\right) A(x)-x^{a_{1}}(1-x)^{a_{2}} \cdot\left\{a_{4}+2 a_{5}(1-x)+3 a_{6}(1-x)^{2}+4 a_{7}(1-x)^{3}\right\}$,
$\frac{\partial B(x)}{\partial x}=b_{2}-\frac{b_{3}}{\left(x+b_{4}\right)^{2}}$
and

$$
\frac{\partial C(x)}{\partial x}=c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3} .
$$

Now putting equations (6.15), (6.16) and (6.17) in equations (6.12) and (6.13), we can easily calculate gluon distributions at x (first method) or $x^{\prime}=x+D_{s}(x) / B_{s}(x)$ (second method) respectively.

6.2. Result and Discussion:

The NMC 15-parameter function [73,82] parametrizes the NMC data for Q^{2} - values from $0.5 \mathrm{GeV}^{2}$ to $75 \mathrm{GeV}^{2}$ and low-x values from 0.002 to 0.6 which also well describes the SLAC [78], BCDMS [79] and Fermilab [83] low-x data. As the data range of x we use is moderately low, we will restrict our analysis values from $10 \mathrm{GeV}^{2}$ to $60 \mathrm{GeV}^{2}$ and low-x values from 0.1 to 0.001 . We can not extend our analysis to HERA low-x region [42] due to lack of deuteron F_{2} structure function data in that region.

In Fig.6.1(a) and Fig.6.1(b) gluon distributions obtained by our first method (equation (6.12)) from NMC deuteron parametrization from the 15-parameter function are represented at $Q^{2}=10 \mathrm{GeV}^{2}$ and $60 \mathrm{GeV}^{2}$ respectively. The middle lines are the results without considering the error. The upper and the lower lines are the results with parameter values by adding and subtracting the statistical and systematic errors with the middle values respectively. It has been seen that the middle lines almost coincide with the upper ones. We calculate gluon distributions for x-values from 10^{-1} to 10^{-3} for both $Q^{2}=10 \mathrm{GeV}^{2}$ and $Q^{2}=60 \mathrm{GeV}^{2}$. In both the cases, $G\left(x, Q^{2}\right)$ values increases when x decreases as expected, but $G\left(x, Q^{2}\right)$ is higher in $Q^{2}=60 \mathrm{GeV}^{2}$ than in $Q^{2}=10 \mathrm{GeV}^{2}$ for same x, especially in lower- x side. Moreover, rate of increment of $G\left(x, Q^{2}\right)$ is very high from $x=10^{-1}$ to 10^{-2}. But the rate decreases to some extent to lower-x region.

Exactly in the similar way, in Fig.6.2(a) and Fig.6.2(b) gluon distribution obtained by our second method (equation (6.13))from NMC deuteron parametrization from the 15 - parameter function are presented at $Q^{2}=10 \mathrm{GeV}^{2}$ and $60 \mathrm{GeV}^{2}$ respectively,

Fig.6.1(a) Gluon distributions obtained by our first method (equation (6 12)) from NMC deuteron parametrization from the 15 -parameter function at $Q^{2}=10 \mathrm{GeV}^{2}$ The middle line is the result without considering the error The upper and lower lines are the results with parameter values by adding and subtracting the statistical and systematic errors with the middle values respectively

Fig.6.1(b) Gluon distributions obtaned by our first method (equation (6 12)) from NMC deuteron parametrization from the 15 - parameter function at $\mathrm{Q}^{2}=60 \mathrm{GeV}^{2}$ The middle line is the result without considering the error The upper and lower lines are the results with parameter values by adding and subtracting the statistical and systematic errors with the middle values respectively

Fig.6.2(a) Same result as in Fig 6 1(a) by our second method (equation (6 13))

Fig.6.2(b) Same as in Fig 6 1(b) by our second method (equation (6 13))

All discussion are exactly same as for Fig.6.1(a) and Fig.6.1(b) respectively. But overall values of $G\left(x, Q^{2}\right)$ are higher in second method than in first one for any value of x. For example, $G\left(x, Q^{2}\right)$ medium values are almost 20% and 25% higher in second method than in first method for $Q^{2}=10 \mathrm{GeV}^{2}$ and $Q^{2}=60 \mathrm{GeV}^{2}$ respectively at $x=10^{-3}$. This is because in our first method, we apply very low-x approximation and neglected $A_{S}(x), C_{S}(x)$ and $D_{S}(x)$ in equation (6.5) as they are vanishingly small at very low-x to obtain equation (6.6) and then equation (6.12). On the otherhand, in our second method, we do not apply such approximation and automatically the contributions from these functions have been included in equation (6.13).

In Fig.6.3, comparison of gluon distributions obtained by Bora and Choudhury method (BC), Prytz method, our first method (SM 1st) and our second method (SM 2nd) is presented for middle values only for $Q^{2}=60 \mathrm{GeV}^{2}$.

Fig.6.3: Comparison of gluon distributions obtained by Bora and Choudhury method ($B C$), Prytz method, our first methud (SM 1st) and our second method (SM 2nd) for middle values only at $\mathrm{Q}^{2}=60 \mathrm{GeV}^{2}$.

Values are higher for the result of other authors with proton structure function data than of ours with deuteron structure function data. This is actually due to the fact that the scaling violations of deuteron structure functions $F_{2}^{d}\left(x, Q^{2}\right)$ with respect to $\ln Q^{2}$ are themselves considerably less than those of HERA proton data due to H 1 [71] and ZEUS $[72,84]$ collaborations and these scaling violations are directly proportional to gluon distributions in the formulas used by Bora and Choudhury and Prytz to calculate gluon distributions. These HERA proton data covers x-values up to at least $\simeq 10^{-4}$ in comparison with those of NMC data which covers up to $\simeq 10^{-3}$ only. Gluon distribution increases as x decreases due to all the authors as expected from QCD analysis. Moreover, gluon distribution by our first method is lowest and Prytz method is the highest for a particular low-x.

6.3. Conclusion:

In this chapter, we present for the first time a method to extract gluon distribution from the measurement of moderately low-x deuteron structure functions and their differential coefficient with respect to $\ln Q^{2}$ and x. Here we use leading order GLDAP evolution equation to relate gluon distribution function with moderately lowx structure function or differential coefficient. In our analysis, we use only NMC deuteron data parametrization by a 15 -parameter function. We find gluon distribution from deuteron also increases when x decreases as in the case of proton as usual. We can not compare our result of NMC data with other because low- x deuteron data is not sufficiently available. Moreover, no other work to calculate gluon distribution function from deuteron data has been so far reported. But we compare our result with gluon distributions due to Bora and Choudhury and Prytz calculated from low-x proton data. We see that our result is to some extent less, as differential coefficient of deuteron structure function with respect to $\ln Q^{2}$ is much less than of proton structure function.

Chapter-7

REGGE BEHAVIOUR AND GLUON DISTRIBUTION FUNCTION

In this chapter, we present a method to find the gluon distribution function from proton structure function data at low-x assuming the Regge behaviour of gluon distribution function at this limit. We use the leading order GLDAP evolution equation in our analysis and compare our result with those of other authors. We also discuss the limitations of Taylor expansion method in extracting gluon distribution from quark structure function used by those authors.

7.1. Theory:

The gluon distribution at low- x can be obtained by analysing the longitudinal structure function [45,52]. Similarly it is also shown that, this distribution can be calculated from the proton structure function and its scaling violation [43,44]. Moreover, in reference [84] we see that, it is also possible to calculate gluon distribution from deuteron structure function and its scaling violation. The basic idea lies on the fact that the scaling violation of quark structure function arises at low-x from the gluon distribution alone and does not depend on the quark distribution. Neglecting the quark, GLDAP evolution equation for four flavour [43,44] gives,
$\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{0}^{1-x} G\left(\frac{x}{(1-x)}, Q^{2}\right) P_{q g}(z) d z$,
where the leading order splitting function is
$P_{q g}(z)=z^{2}+(1-z)^{2}$
and α_{s} is the strong coupling constant. Now let $1-z=y \Rightarrow d z=-d y$. Again $z=0 \Rightarrow 0 \Rightarrow y=1$ and $z=1-x \Rightarrow y=x$. Therefore equation (7.1) gives,

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{x}^{1} G\left(x / z, Q^{2}\right) \cdot\left(2 z^{2}-2 z+1\right) d z . \tag{7.2}
\end{equation*}
$$

Now, let us consider the Regge behaviour of gluon distribution [4],

$$
\begin{equation*}
G\left(x, Q^{2}\right)=C \cdot x^{-\lambda\left(Q^{2}\right)}, \tag{7.3}
\end{equation*}
$$

where, C is a constant and $\lambda\left(Q^{2}\right)$ is the intercept. The Regge behaviour of the structure function $F_{2}(x)$ in the large $-Q^{2}$ region reflects itself in the low-x behaviour of the quark and the antiquark distributions. Thus the Regge behaviour of the sea quark and antiquark distribution for low- x is given by $q_{\text {sea }}(x) \sim x^{-\alpha}{ }_{p}$ corresponds to a pomeron exchange of intercept $\alpha_{p}=1$. But the valence quark distribution for low-x given by $q_{v a l}(x) \sim x^{-\alpha_{R}}$ corresponds to a reggeon exchange of intercept $\alpha_{R}=1 / 2$. Since the same processes lead to gluon and sea quarks distributions in the nucleon, we expect $G(x) \simeq 1 / x$. The x-dependence of the proton densities given above is aften assumed at moderate - Q^{2}.

Applying equation (7.3) in equation (7.2) we get,

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \cdot C \cdot \int_{0}^{1} x^{-\lambda\left(Q^{2}\right)_{\cdot z} \lambda\left(Q^{2}\right) \cdot\left(2 z^{2}-2 z+1\right) d z ~ . ~} \tag{7.4}
\end{equation*}
$$

For fixed Q^{2}, let $K(x)=\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and $A=5 \alpha_{s} /(9 \pi)$. Thus equation (7.4) gives,

$$
\begin{equation*}
K(x)=A \cdot C \cdot x^{-\lambda\left(Q^{2}\right)} \int_{x}^{1}\left(2 z^{\lambda+2}-2 z^{\lambda+1}+z^{\lambda}\right) d z \tag{7.5}
\end{equation*}
$$

Taking logarithm and rearranging the terms, equation (7.5) gives

$$
\begin{align*}
& \lambda= \frac{1}{\ln x}\left[\ln \left\{\frac{2}{\lambda+3}\left(1-x^{\lambda+3}\right)-\frac{2}{\lambda+2}\left(1-x^{\lambda+2}\right)+\frac{1}{\lambda+1}\left(1-x^{\lambda+1}\right)\right\}\right] \\
&-\frac{1}{\ln x}\left[\ln \left\{\frac{K(x)}{(A . C)}\right\}\right] \tag{7.6}\\
& \Rightarrow \lambda-\phi(\lambda)=0, \tag{7.7}
\end{align*}
$$

where, $\lambda \equiv \lambda\left(Q^{2}\right)$ and $\phi(\lambda)$ represents the right hand side of equation (7.6). Now equation (7.7) has been solved numerically using iteration method [85] to calculate the values of $\lambda\left(Q^{2}\right)$ for different x-values for a fixed value of Q^{2}. Scaling violation of structure function $K(x)=\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and strong coupling constant at leading order α_{s} are experimental inputs. C is the only free parameter in our calculation. After calculation of $\lambda\left(Q^{2}\right)$, we can calculate $G\left(x, Q^{2}\right)$ from equation (7.3) for different values of the free parameter C and compare our result with those due to other authors.

Now, let us discuss the limitation of Taylor expansion method in this regards. Applying Taylor expansion in equation (7.1) we get

$$
\begin{align*}
& G\left(\frac{x}{1-z}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right) \\
& =G\left(x, Q^{2}+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x}\right)+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} z^{k}\right)^{2} \frac{\partial^{2} G\left(x, Q^{2}\right)}{\partial x^{2}}+O\left(x^{3}\right), \tag{7.8}
\end{align*}
$$

where, $O\left(x^{3}\right)$ are the higher order terms. Here we have $1-x>z>0 \Rightarrow|z|<1$, which implies that $x /(1-z)=x \sum_{k=0}^{\infty} z^{k}$ is convergent. In the previous methods, either the terms beyond second order $[43,44]$ or beyond first order $[48,84]$ derivatives of x are neglected in the expansion series equation (7.8). But in actual practice, this type of simplification is may not be possible because the contributions from the higher order, terms can not be neglected due to the singular behaviour of gluon distribution.

There are some other methods also which are not based on Taylor expansion. Kotikov and Parente presented [49] a set of formulae to extract gluon distribution from quark structure function and its scaling violation at low-x in the next-to-leading order approximation. A different method for the determination of gluon distribution at low values of x has been proposed by Ellis, Kunszt and Levin [53] based on the solution of GLDAP evolution equations in the moment space up to next-to-next-to leading order.

7.2. Result and Discussion:

We use HERA data taken by H 1 [71] and ZEUS [72] collaborations where the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ are listed for a range of x values at $Q^{2}=20 \mathrm{GeV}^{2}$. The recent HERA data is parametrized by Hl [74] and ZEUS [75] collaborations by some appropriate functions and we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $Q^{2}=20 \mathrm{GeV}^{2}$ for those functions also. We also use parametrizations of the recent New Muon Collaboration (NMC) [73,82] proton structure function data from a 15 - parameter function from which also we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $40 \mathrm{GeV}^{2}$. Now we apply the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ in equation (7.7) to calculate λ numerically by iteration method [85] and hence gluon distribution function $G\left(x, Q^{2}\right)$ for $C=1$ and $C=100$. For our calculation, strong coupling constant α_{s} was taken from a next-to-leading order fit [76] to F_{2} data which yield $\alpha_{s}=0.180 \pm 0.008$ at $Q^{2}=50 \mathrm{GeV}^{2}$ corresponding to $\Lambda^{(4)}=0.263 \pm 0.042 \mathrm{GeV}$. This value of α_{s} agrees with one given by Particle Data Group [77]. But in our practical calculations, we neglect the errors of α_{s} and Λ, which are rather small. We compare our result with those of other authors discussed in the theory as well as with the recent MRST global fit [80].

In Fig.7.1(a) - Fig.7.1(d), we present gluon distributions $G(x)$ for different low-x values from NMC proton data parametrization [73,82] at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively for $C=1$ and $C=100$.

From the figures, it is seen that results are almost same for all Q^{2} values and $G(x)$ slowly increase when x decreases logarithmically. We also present the MRST global

Fig.7.1(a) - Fig.7.1(d): Gluon distribution $G(x)$ by our method from NMC proton parametrization [73,82] at $\mathrm{Q}^{2}=40,60$ and $100 \mathrm{GeV}^{2}$ respectively with $\mathrm{C}=1$ and $\mathrm{C}=100$. In the same figures we include a global fit by MRST [80].
fit [80] result, but its rate of increment is much higher. The values of $G(x)$ are higher for $C=1$ than those for $C=100$ for a particular value of low-x.

In Fig.7.2(a) and Fig.7.2(b), we present the gluon distributions $G(x)$ for different

Fig.7.2(a) - Fig.7.2(b) Gluon distribution $\mathrm{G}(\mathrm{x})$ by our method from H 1 HERA proton data [71] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ with $\mathrm{C}=1$ and $\mathrm{C}=100$ respectively Here we present the results for the data (i)without considering the error (middle), (ii)adding algebraically statistical and systematic errors (high) and (iII)subtracting algebraically statistical and systematic errors (low) In the same figures we include a global fit by MRST [80]
low-x values from H1 HERA proton data [71] at $Q^{2}=20 \mathrm{GeV}^{2}$ for $C=1$ and $C=100$ respectively. The middle line in each figure is the result without considering any error in the data. The upper and lower lines are the results with data adding and subtracting systematic and statistical errors with the middle values respectively. As usual, gluon distribution $G(x)$ increases when x decreases, but the whole system of lines in the graphs shifts towards the lower $G(x)$ values when we change from $C=1$ to $C=100$. In the same graphs, we also present the $G(x)$ values for MRST global fit [80] which is also increasing towards low- x values, but with somewhat lesser rate. But for $C=100$ our $G(x)$ values come in the range of this fit.

In Fig.7.3, we present gluon distributions $G(x)$ for HI HERA proton parametrization [74] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $C=1$ and $C=100$ respectively

Fig.7.3 Gluon distribution $\mathrm{G}(\mathrm{x})$ by our method from H1 HERA proton data parametrization $[74]]$ at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ with $\mathrm{C}=1$ and $\mathrm{C}=100$ In the same figures we include a global fit by MRST [80]

Gluon distribution $G(x)$ increases when x decreases, but the line in the graph shifts towards the lower $G(x)$ values when we change from $C=1$ to $C=100$. In the same
figure, we present $G(x)$ values for MRST global fit [80] which also increases towards low- x values with somewhat lesser rate. But for $C=100$ our $G(x)$ values are closer to this fit.

In Fig.7.4(a) and Fig.7.4(b), we present gluon distributions $G(x)$ for ZEUS HERA proton data [72] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low- x values for $C=1$ and $C=100$ respectively. The descriptions and the results are same as H1 HERA data [71] depicted in Fig.7.2(a) and Fig.7.2(b) respectively.

In Fig.7.5, we present gluon distributions $G(x)$ for ZEUS HERA proton parametrization [72] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $C=1$ and $C=100$. The descriptions and the results are same as H1 HERA parametrization [74] depicted in Fig.7.3.

In Fig.7.6, we present the values of λ (Lambda) for H1 HERA proton data [71] for low, middle and high values of them at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $C=1$ and $C=100$. For $C=1$, all the graphs are almost parallel and λ - values tend to $\simeq 0.5$ at low-x. For $C=100$, for all the graphs, λ-values tend to $\simeq 0.0$ from some negative values at low- x.

In Fig.7.7, we present the λ-values for ZEUS HERA proton data [72] in the same way as in Fig.7.6. For $C=1$, for all the graphs, λ-values tend to $\simeq 0.5$, as we approach lower- x from some slightly higher values in comparatively higher x. On the other hand, for $C=100$, for all the graphs, λ-values tend to $\simeq-0.1$, as we approach lower x from some slightly lower negative values in comparatively higher x.

Fig.7.4(a) - Fig.7.4(b): Same results as in Fig.7 2(a) - 7.2(b) respectively from ZEUS HERA proton data [72] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig.7.5 Same results in Fig 73 from ZEUS HERA proton data parametrization [72) at $\mathrm{Q}^{2}=$ $20 \mathrm{GeV}^{2}$

Fig.7.6 λ - values by our method from H 1 HERA proton data [71] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ wih $\mathrm{C}=1$ and $C=100$ Here we present the results for the data (i)mithout considering the error (middle). (iI)adding algebraically statistical and systematic errors (high) and (iil)substracting algebraically statistical and systematic errors (low)

Fig.7.7 Same results as in Fig 76 from ZEUS HERA proton data [72] at $Q^{2}=20 \mathrm{GeV}^{2}$

In Fig.7.8, we compare our results for HERA Hl data (middle value only) [71] at $Q^{2}=20 \mathrm{GeV}^{2}$ for $C=1$ and $C=100$ with those of Bora and Choudhury [48] and

Fig.7.8 Comparison of gluon distribution $G(x)$ from H1 HERA proton data [71] for middle values only by our method for $\mathrm{C}=1$ and $\mathrm{C}=100$ at $\mathrm{Q}^{2}=20 \mathrm{GeV}$ with those by other methods due to Bora and Choudhury [48] and Prytz $(43,44$] In the same figures, we include a global fit MRST [80]

Prytz [43,44] In the same figure, we also present the result for MRST global fit [80] For all the cases, gluon distribution $G(x)$ mereases when x decreases, but with different rates The rates of increment in our result for $C=1$ is highest and in MRST is lowest But our result with $C=100$ is very close with that of Bora and Choudhury, and also inside the range of MRST

Lastly, we include a simple FORTRAN programme for calculation of λ from the scaling violation of structure function given in Programme-1

Programme-1

```
C GLUON DISTRIBUTION FROM SCALING VIOLATION OF PROTON DATA
05 REALY, K, X, A, PHIX1, PHIX2, PHIX3, PHIX, P, AB,G
10 PRINT*, " }Y=\mathrm{ ?"
15 READ*,Y
20 PRINT*, "K=?"
25 READ*,K
30 PRINT*, "C=?"
35 READ*,C
40 X=3
45 ALPH=118
50 Pl=31416
55 A=(5*ALPH)/(9*PI)
56 PHIX1=2/(X+3)*(1-\mp@subsup{y}{}{**}(X+3))-2/(X+2)*(1-Y**(X+2))
5 7 ~ P H I X 2 = 1 / ( X + 1 ) * ( 1 - Y * * ( X + 1 ) )
58 PHIX3=ALOG(K)(A*C))
60 PHIX=1/ALOG(Y)**(ALOG(PHIX1+PHIX2)-PHIX3)
65 P=X-PHIX
70 AB=ABS(P)
75 G=C*(Y**(-PHIX))
80 IF (AB LT 00000001) THEN
                    PRINT*, C, Y, PHIX,G
        GOTO }1
        ELSE
            X=PHIX
        ENDIF
        GOTO 56
    85 END
```


7.3. Conclusion:

In this method, we present an altermative method than other methods to extract gluon distribution $G\left(x, Q^{2}\right)$ from the scaling violation of proton structure function $\partial F_{2}(x) / \partial \ln Q^{2}$ at low- x. We compare our result with those of other methods due to Bora and Choudhury [48] and Prytz [43,44] and with a global fit due to MRST [80]. Gluon distribution will increase as usual when x decreases with different rates for the different values of the parameter $C=1$ and $C=100$. But our graph with $C=100$ is very close to that due to Bora and Choudhury and the global fit due to MRST. We discussed the limitation of Taylor expansion method [85] in calculating gluon distribution from scaling violation of structure function at low- x. Prytz in both leading order [43] and next-to-leading order [44], and Bora and Choudhury in leading order [48] used this method to extract gluon distribution from scaling violation of structure function at low- x in a slightly different way. But all the authors neglected the higher order terms in the Taylor expansion series which is not a very good approximation for a singular behaviour of gluon distribution at low- x, because the contributions from the higher order terms in the series are not negligible. Sarma and Medhi [84] used this method in some improved way with less number of approximation, yet this basic approximation of neglecting higher order terms in the expansion series could not be avoided. On the other hand, in Kotikov and Parente method [49,52] also, authors approximated their result by neglecting some higher order terms. Moreover, their method is to some extent complicated. Again Ellis, Kunszt and Levin method [53] is also not much developed than other methods. In the present method, of course, we use a free parameter C, yet the other ambiguities due to the approximation of the Taylor expansion series can be avoided. Moreover, our method is very simple one and the computer programme can calculate gluon distribution immediately when we put the value of scaling violation from experiment.

Chapter-8

CONCLUSION

In Chapter-1, we present a brief introduction of the problem. Gluon distribution function at low-x is important for understanding of inner structure of hadrons and for examination of Quantum Chromodynamics (QCD), the underlying dynamics of quarks and gluons. Moreover, gluons are expected to be dominant in the low-r region. In addition to that, gluon distributions are important inputs in many high energy processes. On the otherhand, gluon distribution cannot be measured directly from experiment. It is therefore, important to measure gluon distribution function indirectly from quark structure function. In this chapter, we discuss about structure of matter, deep inelastic scattering, structure function, low-x physics, evolution equations and screening corrections.

In Chapter-2, we discuss about the Taylor expansion method. Here we discuss the Taylor's theorem and application of it in determination of t and x evolution of structure function at low-x.

In Chapter-3, we discuss briefly the various methods to extract the gluon distribution function from quark structure function due to other authors. Accordingly, here, we discuss about Bora and Choudhury method, Kotikov and Prente method, and Ellis, Kunszt and Levin method. We also discuss about the differences and limitations of these methods.

In the Chapter-4, we discuss briefly about the t and x evolutions of gluon structure function at low- x. We consider the leading order GLDAP evolution equation for gluon distribution function and extract gluon distribution by solving it by applying Taylor expansion method. We compare our methods with some standard parametrizations and make predictions for the HERA range.

In Chapter-5, we discuss briefly about the gluon distribution function at low- x from proton structure function. Here we present an alternative method than other methods to extract gluon distribution from proton structure function. Here HERA data measured by Hl and ZEUS collaborations are used and we compare our results with those of other methods.

In Chapter-6, we discuss briefly about the gluon distribution function at low-x from deuteron structure function. Here we present for the first time a method to extract gluon distribution from deuteron structure function. We use NMC deuteron data parametrization by a 15 -parameter function and compare our result with those of other methods.

In Chapter-7, we discuss briefly about the Regge behaviour of structure function and gluon distribution at low-x. Here we present an alternative method to extract gluon distribution method in this regard. We also compare our results with those of other methods and global fits.

In all the result from other methods as well as global fits, it is seen that gluon distribution function increases when x decreases and Q^{2} increases for fixed values of Q^{2} and x respectively. But the rates are different in different methods. It is observed that the results from our methods also generally comparable with those of other methods and they can easily be considered as some viable alternative to other methods. On the otherhand, our methods are mathematically more simpler with less number of approximations.

In extracting gluon distribution function from quark structure function, we use here only leading order GLDAP evolution equation. But we can extend it to next-toleading or higher orders as subsequent works. Moreover, we are mostly restricted up to the term containing the first order derivations of the Taylor expansion series we used. We can try to include the terms containing higher order derivatives for lesser approximation. We neglected contributions from quarks in obtaining gluon
distribution function from proton structure function as well as by using Regge behaviour. But we can test the result by including the contribution from quarks also. Lastly, we may try to apply Taylor expansion method in longitudinal structure function and thereby extract gluon distribution function from it. \square

REFERENCE

[1] E. M. Levin and M. G. Ryskin: Phys. Rep. 189 (1990) 267.
[2] L. V. Gribov, E. M. Levin and M. G. Ryskin: Phys. Rep. 100 (1983)1; E. M. Levin: "Orsay lectures on Low-x Deep Inelastic Scattering," LPTHE preprint, Orsay 91/02 (1991).
[3] P. V. Landshoff and J. C. Polkinghorne: Phys. Rep. 5 (1972) 1.
[4] P. D. B. Collins: "An Introduction to Regge Theory and High Energy Physics", Cambridge Univ. Press, Cambridge (1977).
[5] G. V. Frolov, V. N. Gribov and L. N. Lipatov: Phys. Lett. B 31 (1970) 34.
[6] A. R. White: Nucl. Phys. B 159 (1979) 77.
[7] J. Bartels: Nucl. Phys. B 151 (1979) 293; Acta Phys. Polon. B 11 (1980) 281.
[8] Ya. Ya. Balitskij and L. N. Lipatov: Yad. Fiz. 28 (1978) 1597; Sov. J. Nucl. Phys. 28 (1978) 822.
[9] J. B. Bronzan and R. L. Sugar: Phys. Rev. D 17 (1978) 585.
[10] L. N. Lipatov and L. Szymanowski: Warsaw INR report I B J/11/ UW / 80 (1980).
[11] E. M. Levin and M. G. Ryskin: Talk presented at the "Topical Workshop on the Small-x Behaviour of Deep Inelastic Scattering Structure Functions in QCD", DESY, Humburg, May 1990, Nucl. Phys. B (Proc. Suppl.) 18 C (1990) 92.
[12] T. Jaroszewicz: Acta Phys. Polon. B 11 (1980) 965; Phys. Lett. B 116 (1982) 291.
[13] L. N. Lipatov: in "Perturbative QCD" (World Scientific) ed. A. H. Mueller (1989) 411; L. N. Lipatov: Yad. Fiz. 23 (1976) 642; Sov. J. Phys. 23 (1976) 338.
[14] H. Cheng and T. T. Wu: Phys. Rev. Lett. 24 (1969) 1456.
[15] M. Foissart: Phys. Rev. 123 (1961) 1053; A. Martin: Z. Phys. C 15 (1982) 185.
[16] G. Altarelli and G. Parisi: Nucl. Phys. B 126 (1977) 298.
[17] Yu. L. Dokshitzer, D. I. Dyakonov and S. I. Troyan: Phys. Rep. 58 (1980) 265.
[18] G. Altarelli: Phys. Rep. 81 (1982) 1.
[19] E. Reya: Phys. Rep. 69 (1981) 195.
[20] E. A. Kuraev, L.N. Lipatov and V. S. Fadin: Zh. Eh. Eksp. Teor. Fiz. 72 (1977) 373; Sov. Phys. JETP 45 (1977) 199.
[21] M. Ciafaloni: Nucl. Phys. B 296 (1988) 49.
[22] S. Catani, F. Fiorani and G. Marchesini: Phys. Lett. B 234 (1990) 339; Nucl. Phys. B 336 (1990) 18.
[23] J. Kwiecinski: Z. Phys. C 29 (1985) 561.
[24] J. L. Cardy: Phys. Lett. B 53 (1974) 355; Nucl. Phys. B 93 (1975) 525.
[25] L. N. Lipatov: Sov. JETP 63 (1986) 904.
[26] J. Collins and J. Kwiecinski: Nucl. Phys. B 316 (1989) 307.
[27] J. Kwiecinski: Z. Phys. C 29 (1985) 147.
[28] M. Krawczyk: Talk presented at the "Topical Workshop on the Small-x Behaviour of Deep Inelastic Scattering Structure Function in QCD", DESY, Hamburg, May 1990, Nucl. Phys. B (Proc. Suppl.) 18 C (1990) 64; K. Charchula and M. Krawczyk: DEYS Preprint 90-122.
[29] G. Marchesini and B. R. Webber: Nucl. Phys. B 349 (1991) 617.
[30] A. H. Mueller and J. Qiu: Nucl. Phys. B 268 (1986) 427.
[31] L. V. Gribov, E. M. Levin and M. G. Ryskin: Nucl. Phys. B 188 (1981) 155; Sov. Phys. JETP 53 (1981) 1113.
[32] S. C. Malik, S. Arora: "Mathematical Analysis", Wiley Eastern Ltd. (1995).
[33] R. K. Ghosh, K. C. Maity: "An Introduction to Analysis of Differential Calculus", Part-I, Books and Allied (P) Ltd., Cacutta, India, (1998).
[34] J. K. Sarma, D. K. Choudhury, G. K. Medhi: Phys. Lett. B 403 (1997) 139.
[35] D. K. Choudhury and A. Saikia: Pramana- J. Phys. 29 (1987) 385; 33 (1989) 359; 34 (1990) 85; 38 (1992) 313.
[36] D. K. Choudhury and J. K. Sarma, Praman-J. Phys. 38 (1992) 481; 39 (1992) 273.
[37] D. K. Choudhury, G. K. Medhi and J. K. Sarma: Gau. Univ. J. Sc. (1998) 39-53.
[38] L. F. Abbot, W. B. Atwood and R. M. Barnett: Phys. Rev. D 22 (1980) 582.
[39] I. S. Granshteyn and I. M. Ryzhik: "Tables of Integrals, Series and Products," ed. Alen Jeffrey, Academic Press, New York (1970).
[40] I. Sneddon: "Elements of Partial Differential Equations," Mc. Graw Hill, New York (1957).
[41] F. J. Yudurain: "Quantum Chromodynamics," Sringer-Verlag, NewYork (1983).
[42] W. Buchmuller and G. Ingleman: eds., Proc. Workshop "Physics at HERA," Hamburg (1991).
[43] K. Prytz : Phys. Lett. B 311 (1993) 286.
[44] K. Prytz : Phys. Lett. B 332 (1994) 393.
[45] A. M. Copper-Sarkar et. al. : Z. Phys. C 39 (1988) 281.
[46] E. G. Floratos et. al. : Nucl. Phys. B 192 (1981) 417.
[47] W. Furmanski and R. Petronzio: Phys. Lett. B 97 (1980) 437.
[48] K. Bora and D. K. Choudhury: Phys. Lett. B 354 (1995) 151.
[49] A. V. Kotikov and G. Parente : Phys. Lett. B 379 (1996) 195.
[50] A. D. Martin, W. J. Stirling and R. G. Roberts: Phys. Lett. B 354 (1995) 155.
[51] R. D. Ball and S. Forte: Phys. Lett. B 335 (1994) 77; B 336 (1994) 77.
[52] A.V. Kotikov: Phys. Rev. D 49 (1994) 5746.
[53] R. K. Ellis, Z. Kunszt and E. M. Levin: Nucl. Phys. B 420 (1994) 517.
[54] J. K. Sarma and B. Das, Phys. Lett. B 126 (1993) 323.
[55] L. A. Pipes and L. R. Harvill: "Applied Mathematics for Engineers and Physicists", Mc Graw-Hill Book Company, New York (1970).
[56] E. Eichten, Z. Hinchliffe, K. Lane and C. Quigg: Rev. Mod. Phys. 56 (1984) 579.
[57] H. Aramowicz et. al.: CDHS'83, Z. Phys. C 17 (1983) 283.
[58] M. Diemoz, F. Ferroni, E. Longo and G. Martinelli: Z. Phys. C 39 (1988) 21.
[59] M. Diemoz, F. Ferroni and E. Long: Phys. Rep. 130 (1986) 293.
[60] D. Alasia et. al. : BEBC'85, Z. Phys. C 28 (1985) 321.
[61] D. Mac Farlane et. al. : CCFRR'83, Fermilab-Pub. 83, 108, Exp. (1983).
[62] F. Bergsma et. al. : CHARM'83, Phys. Lett. B123 (1983) 269.
[63] A. Ali and J. Bartels: eds., Proceeding of the "DESY Topical Meeting in the Small-x Behaviour of Deep Inelastic Structure Function in QCD", 1990, North Holland (1991).
[64] V. T. Kim and M. G. Ryskin: DEYS 91-064, June, (1991).
[65] E. M. Levin and M. G. Ryskin: Phys. Rep. 189 (1990) 267.
[66] V. N. Gribov and L. N. Lipatov: Sov. J. Nucl. Phys. 15 (1972) 438.
[67] Yu. L. Dokshitzer: Sov. Phys. JETP 46 (1977) 641.
[68] J. Kwiecinski, A. D. Martin and P. J. Sutton: Durham Preprint, DTP/ 91/92, April, (1991).
[69] S. Catani, F. Fiorani, G. Marchesini and G. Oriani : Cavendish Lab. Preprint, HEP-90-24 (1990).
[70] J. Kwiecinski, A. D. Martin, R. G. Roberts and W. J. Stirling: KMRS, Phys. Rev. D 42 (1990) 3645.
[71] S. Aid et. al.: Hl Collaboration, Phys. Lett. B 354 (1995) 494.
[72] M. Derrick et. al. : ZEUS Collaboration, Phys. Lett. B 364 (1995) 576.
[73] M. Arneodo et. al., NMC, Phys. Lett. B 364 (1995) 107.
[74] T. Ahmed et. al.: H1 Collaboration, Nucl. Phys. B 439 (1995) 471.
[75] M. Derrick et. al. : ZEUS Collaboration, DEYS 94-143, August (1994).
[76] M. Virchaux and A. Milsztajn: Phys. Lett. B 274 (1992) 221.
[77] L. Montanet et. al. : Particle Data Group, Phys. Rev. (1994)1173.
[78] L. W. Whitlow et. al.: Phys. Lett. B 282 (1992) 475.
[79] A. C. Benvenuti et. al. : BCDMS Collaboration, Phys. Lett. B 233 (1989) 485.
[80] A. D. Martin et. al. : hep-ph 9803445 (1998).
[81] F. Halzen and A. D. Martin: "Quarks and Lepton, An Introductory Course in Modern Particle Physics", John Wiley and Sons, New York (1990).
[82] M. Arneodo et. al. : NMC, Phys. Lett. B 483 (1997) 3.
[83] A. V. Kotikov; Ph. D. Thesis, Harvard University (1995).
[84] J. K. Sarma and G. K. Medhi: T U / THEP-1 / 98 (1998).
[85] J. B. Scarborough, "Numerical Mathematical Analysis", John Hopkins Press, Baltimore (1996)

PUBLICATION AND PRESENTATION

Publications:

1. Taylor expansion method and gluon distribution from structure function data at low-x: the leading order analysis, J. of Assam Sc. Soc. 41 (2000) 54-69.
Co-author: J. K. Sarma.
2. Regge behaviour of structure function and gluon distribution at low-x in leading order, Euro. Phys. J. C 16 (2000) 481-487.
Co-author: J. K. Sarma.
3. Regge behaviour of structure function and gluon distribution at low-x in leading order, Proc. Annual Tech. Session, Assam Sc. Soc., Guwahati, India, February 23, 1999 (1999)1-21. Co-author: J. K. Sarma.
4. t and x-Evolution of gluon structure functions at low-x, Gauhati Univ. J. of Sc., Golden Jubilee Vol. (1998) 39 - 53.
Co-authors: J. K. Sarma and D. K. Choudhury.
5. x-Distribution of deuteron structure function at low-x, Phys. Lett. B 403 (1997) 139-144. Co-authors: J. K. Sarma and D. K. Choudhury.
6. The gluon distribution $\mathrm{G}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ as a function of $\mathrm{dF}\left(\mathrm{x}, \mathrm{Q}^{2}\right) / \mathrm{dln} \mathrm{Q}^{2}$ at low- x ; the leading order analysis, Proc. of 8th Manipur Sc. Cong., Imphal, India, February 26 to 29, 1997 (1997). Co-author: J. K. Sarma.

Presentations:

1. Regge behaviour of structure function and gluon distribution at low-x in leading order, Annual Tech. Session, Assam Sc. Soc., Guwahati, India, February 23, 1999.

ADDENDA

Taylor Expansion Method and Gluon Distribution from Structure Function Data at Low-x : the Leading Order Analysis

J. K. Sarma ${ }^{1}$
Department of Physıcs, Tezpur University, Napaam, Tezpur-784028, Asam, India
and
G. K. Medhi
Department of Physics, Birjhora Mahavidyalaya, Bongaingaon - 783380, A.ssam, India

Abstract

We present a method to find the gluon distribution from proton and deuteron structure function data at low-x. Here we use the leading order (LO) Altarelli-Pariu (AP) evolution equation to relate the gluon distribution with the structure function, and the scaligg violations of them extracted by various collaboration from recent low-x data. We also analyse other method and compare our results with them.

Key Words: Gluon distribution: low-x phyuc, Q C D Tavler expanvon method

INTRODUCTION

The measurements of the proton and the deulcion structure lunction by Decp lachavil Scattering (DIS) processes in the low-x region where x is the Boorken variable have opencei a new era in parton density measurements (Buchmuller and Inglelman, 1991) It is important for understanding the inner structure of hadrons In addition to these knowledge, it ハ dive important to know the gluon distribution enside hadron at low-x because gluons are expected to be dominant in this region. On the otherhand, gluon distribution can not be mearuicd directly from expenments. It is, theretore, important to measure directly trom experimenn It is, theretore, mportant to measure gluon diveribution $\mathrm{G}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ indirectly from the protion as well as the deuteron structure functions $F_{2}\left(x, Q^{2}\right)$ A few number of papers have alluady
-been published [Copper-Sarkar, 1988, Sarma and Medhi(ın press)] in this connection Here we present an alternative method to relate $G\left(x, Q^{2}\right)$ with proton and deuteron structure functions and their derivatives with respect to $\ln Q^{2} \partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and with respect to $x \partial F_{2}\left(x, Q^{2}\right) / \partial x$ for fixed values of Q^{2} Our method $\stackrel{\text { more }}{ } \mathrm{g}$ eneral with less approximation, - umpler and more transparent

THEORY

Gluon Distribution from the Proton

If is shown (Copper-Sarkar, 1988) that the gluon distribution at low-x can be obtaned by andysing the longitudinal structure tunction. Similarly it is also shown by Prytz (1993), Kotikov and Parente (1996) that this distribution can be calculated trom the proton structure function $F_{2}\left(x, Q^{2}\right)$ and their ditterential coettictent with respect to $\ln Q^{2} \partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$. The bask idea lies on the tact that the scaling violation of $\mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ arise, at low- x , trom the gluon distribution alone and does not depend on the quark distribution Then neglecting the quarks the LO AP evolution equation for tour flavours (Prytz, 1993, 1994) gives

$$
\begin{equation*}
\frac{\partial F_{z}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{s}}{9 \pi} \int_{0}^{x} G\left(\frac{x}{1-z}, Q^{2}\right) P_{a s}(z) d z \tag{1}
\end{equation*}
$$

where in LO , the splating function

$$
\begin{equation*}
P_{G \mathbb{R}}(f)=\frac{1}{2}\left|z^{2}+(1-<)^{2}\right| \tag{2}
\end{equation*}
$$

and α_{s} is the strong coupling constant Now

$$
\begin{equation*}
\frac{x}{1-z}=x \sum_{k=0}^{\infty} z^{k}=x+x \sum_{k=1}^{\infty} z^{k} \tag{3}
\end{equation*}
$$

We have, $1-x>z>0 \Rightarrow|z|<1$ which implies that the expansion (3) is convergent. Now by the Taylor expansion (Grandshteyn and Ryzhik, 1965)

$$
\begin{align*}
& G\left(\frac{x}{1-z}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right)=G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} \\
&+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} L^{n}\right)^{2} \frac{\partial^{2} G\left(x, Q^{2}\right)}{\partial x^{2}}+O\left(x^{s}\right) \tag{4}
\end{align*}
$$

where $O\left(x^{3}\right)$ are the higher order terms Neglecting the terms contaming x^{2} and higher onder $O\left(x^{\prime}\right)$ tor simplicity, we get

$$
\begin{equation*}
G\left(\frac{x}{1-1}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} s^{r} \simeq G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} s^{h} \frac{\partial G\left(x, Q^{1}\right)}{\partial x}\right. \tag{5}
\end{equation*}
$$

 I ogarithmical behaviour (Kotikov and Parente, 1996, Ball and Iorte, 1994) (i(x) - wp (0) $5 \sqrt{\left.\delta_{p}\left(Q^{2}\right) \ln (1 / x)\right)}$ tor gluon dl low-x Here $\delta_{p}\left(Q^{2}\right)$ ハ d Q^{2} - dependent parameks where $\mathrm{p}=$ - (singlet quark) or g(gluon) On the otherhand, it has been shown that tha laylor expamaon muthod is successtully applied in calculating Q^{2} - evolution of proton ustuctur funcion (Choudhury and Sarma, 1992, Sarma and Das, 1993) at low-x whil kavonable phenomenological success It was a natural improvement of an ealicr allalyas at micmedtallx (Choudhury and Sakid. 1989) This approxamation neglecting higher ordu terms in laylor expabion s also applied recently (Sarma et al , 1997) in calculating x-cvolutoon of deutcon structure function with excellent phenomenological succes The duthors suggested that one poswble reason for the succes of this method at low-x is that tradhonally the Al evolution equations provide a means of calculating the manner in which paton distributions change at
 cmusion processes and the x-distributions are modhacd as the matid momentum is wath dmong the various daghter partons llowever, the exact rate of modificatoons of a diverbutions dt fixed Q^{2} camot be obtaned from the AP eguatioms sance it depends not only on the matal x but also on the ratcs of change of pation datributions with reypect $10 \leq \partial$ " $1 / \lambda^{\prime \prime}(11=1$ to ∞), upto mbinte order Phy momentum Iraction at is disposal and a a revalt radiates patoms meladmg gluons in momerable ways, some of them involving complicated QCD mechatmems Howe ve for bowx many of the radation processes will ceace to occur due 10 momentum comstatals and the

 (Choudhury (1995) and alao Pryt (1993, 1994) ha dready applied lavion cxpansom muthod 10 calculated gluon distributions from vructure funchom and healing violdtom of them But our mathod is more general and tratiperent with leas approximation than other two method mentioned dhove which will be discussed later on

Puting equations (2) and (5) in equation (1) and pertoring 7 -mintegrations we get

$$
\begin{align*}
& \left.\frac{\cdot \partial 1_{2}\left(x, Q^{2}\right)}{\partial \ln \left(Q^{2}\right.}=\frac{5 \alpha_{s}}{9 \pi} \right\rvert\, \Lambda(x)\left(\left.i\left(x, Q^{2}\right)+13(x) \frac{\partial\left(i\left(x, Q^{2}\right)\right.}{\partial x} \right\rvert\,\right. \tag{0}\\
& \text { where, } \Lambda(x)=(1 / 3)(1-x)\left(2 x^{2}-x+2\right) \tag{7}\\
& \text { and } 13(x)=(1 / 3) x(1-x)\left(-2 x^{2}+4 x-5\right)-x \ln x
\end{align*}
$$

Rearling the eyuation (6), we gel

$$
\begin{equation*}
\left(i(x, Q)+\frac{B(x)}{\Lambda(x)} \frac{d\left(i\left(x, Q^{2}\right)\right.}{d x}=\frac{9 \pi}{5 \alpha_{i} \Lambda(x)} \frac{d I\left(x, Q^{2}\right)}{d \ln \left(Q^{2}\right.}\right. \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
G_{1}(x)+\frac{B(x)}{\Lambda(x)} \frac{\partial(i(x)}{\partial x}=\frac{9 \pi}{5 \alpha} \frac{K(x)}{\Lambda(x)} \tag{111}
\end{equation*}
$$

 al cymathon (10) call be wrilten as

$$
\begin{aligned}
& G(x)+\frac{B(x)}{\Lambda(x)} \frac{\partial(i(x)}{\partial x}=C i(x)+\frac{B(x)}{\Lambda(x)} \frac{\partial(i(x)}{\partial x}+\frac{1}{2}\left(\frac{B(x)}{\Lambda(x)}\right)^{2} \frac{\partial C_{i}(x)}{\lambda x^{\prime}}+ \\
&=\left(i\left(x+\frac{B(x)}{\Lambda(1)}\right)\right.
\end{aligned}
$$

b) Iaviot expamson serics lhas Irom çatton (10), we get

$$
\begin{equation*}
G\left(x+\frac{13(x)}{\Lambda(x)}\right)=\frac{9 \pi}{5 x} \frac{K(x)}{\Lambda(x)}- \tag{11}
\end{equation*}
$$

GLUON DISTRIBUTION FROM THE DEUTERON

 lunclison also No duthor has uptill now repoted a method lo calculak ghon
 whillut Iunction is given by

$$
\begin{align*}
& -213(x, 1))+(3 / 2) N \int\left(2 r^{2}-2 r+1\right)\left(i \frac{x}{-1}, 1\right) d 1=0 \tag{12}
\end{align*}
$$

where, $l=\ln \left(Q^{2} / A^{2}\right)$ and $\Lambda_{f}=4 /\left(33-2 N_{r}\right)$, N_{f} hemg the number of llovour and Λ w the $Q(D)$ cut oll parameter

Applying the same method of Taylor expansion as in the case of proton we get hure aloo,

$$
\begin{align*}
& \begin{aligned}
& \Gamma_{2}^{s}\left(\frac{x}{1-z}, t\right)=\Gamma_{2}^{s}\left(x+x \sum_{k=1}^{\infty} \lambda^{k}, t\right) \\
&=F_{2}^{s}(x, t)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial \Gamma_{2}^{s}(x, t)}{\partial x} \\
& \text { and } G_{2}^{s}\left(\frac{x}{1-\iota}, t\right)=G_{2}^{s}(x\left.+x \sum_{i=1}^{\infty} z^{k}, t\right) \\
& \simeq G_{2}^{s}(x, t)+x \sum_{k=1}^{\infty} L^{k} \frac{\partial G_{2}^{s}(x, t)}{\partial x}
\end{aligned}
\end{align*}
$$

neglectung the higher order terms at betore
Putting equations (13) and (14) mequation (12) and pertorming r-integrations a in the cale ol proton, we get

$$
\begin{align*}
& \frac{\partial \Gamma_{2}^{s}(x, t)}{\partial t}-\frac{\Lambda_{t}}{l} \int \Lambda_{s}(x) \Gamma_{2}^{s}(x, t)+B_{s}(x) G(x, 1) \\
& +C_{s}(x) \frac{\partial I_{2}^{Y}(x, t)}{\partial x}+D_{s}(x)-\frac{\partial G(x, t)}{\partial x} l=0 \tag{15}
\end{align*}
$$

where, $\Lambda_{\uparrow}(x)=3+4 \ln (1-x)+2\{(1-x)(-2+(1-x) / 2)\}$,

$$
\left.\begin{array}{r}
B_{s}(x)=(3 / 2) N_{r}\left\{(1-x)\left(x+(2 / 3)(1-x)^{2}\right)\right\} \tag{16}\\
C_{s}(x)=2 x\{\ln (1 / x)+(1-x)(1-(1-x) / 2)\} \\
\text { and } D_{s}(x)=(3 / 2) N_{r}\left\{\ln (1 / x)-(1-x)\left(1+(2 / 3)(1-x)^{2}\right)\right\}
\end{array}\right\}
$$

Recasting equadion (15) we get,

$$
\begin{align*}
& G(x, t)+\frac{D_{s}(x)}{B_{s}(x)} \frac{\partial \mathrm{G}(x, t)}{\partial x}=\frac{1}{\Lambda_{1} B_{s}(x)} t \frac{\partial \Gamma_{2}^{s}(x, t)}{\partial t} \\
&-\frac{\Lambda_{s}(x)}{B_{s}(x)} I_{2}^{s}(x, t)-\frac{C_{s}(x)}{B_{s}(x)}-\frac{\partial \Gamma_{2}^{s}(x, t)}{\partial x} \tag{17}
\end{align*}
$$

Now D/B, ハ very umall at low-x, $\lim _{x, n} D / B_{s}=0$ So, applying the Tayfor capansom uctu d) belore we can wrile

$$
\left(i(x, 1)+\frac{1)_{(}(x)}{B_{1}(x)} \frac{\partial(i(x, 1)}{\partial x}=\left(i\left(x+\frac{1)(x)}{B_{0}(x)}\right)\right.\right.
$$

Thas eymarno (17) Elves

$$
\begin{align*}
& G\left(x^{n}, 1\right)=K_{1}(x) 1 \frac{H_{3}(x, 1)}{d}+K_{2}-\frac{A \xi(x, 1)}{d x}+K_{1} l_{2}(x, 1) \tag{X}\\
& \text { where, } x^{\prime \prime}=x+\frac{1)_{1}(x)}{B_{1}(x)} \\
& K_{1}(x)=\frac{1}{\Lambda_{1} \Pi_{1}} . \tag{10}\\
& K_{i}(x)=-\frac{C(x)}{B_{2}(x)} \\
& \text { and } K_{r}(x)=-\frac{\Lambda_{1}(x)}{B_{1}(x)}
\end{align*}
$$

 the lerms when reduce to

$$
\left.K_{1}(x) H_{2}(x, 1)+\frac{K_{2}(x)}{K_{1}(x)} \frac{\partial W_{2}^{\prime}(x, 1)}{d x} \right\rvert\,
$$

 to one an ith tase of glaon by applyme Taytor expanson serice

$$
\begin{equation*}
\ln (x, 1)=(5 / 0) \operatorname{lo}(x, 1) \Rightarrow \ln (x, 1)=(9 / 5) \ln (x, 1) \tag{20}
\end{equation*}
$$

lhen we yor.

$$
\begin{align*}
& \text { and } \frac{d x(x-1)}{d x}=\frac{9}{9} \frac{d x(x, 1)}{d x} \tag{21}
\end{align*}
$$

$$
\begin{equation*}
G\left(x^{\prime \prime}, 1\right)=\frac{9}{5}\left\{K_{1}(x)\left|\frac{m_{1}^{x}(x, 1)}{d!}+K_{1}-\frac{w_{2}(x, 1)}{d x}+K_{1},(x, 1)\right|\right. \tag{123}
\end{equation*}
$$

 cymatom (23) 心 a 1,0) matyons.

RESULTS AND DISCUSSION

We use HERA data taken by H 1 and ZEUS collaborations from ref. Aid, S., H1 collaboration (1995) and rel. Derrick, M., ZEUS collaboration (1995) respectively. In these tables the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ are listed for a range of x values at $Q^{2}=20 \mathrm{GeV}^{2}$. Similarly we use parametrizations of the recent New Muon Collaboration (NMC) proton and deuteron structure function data (Arneodo, M., NMC 1995; 1997) from a 15 -parameter function given in ref. Arneodo, M., NMC (1995). Here we calculate the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at Q^{2} $=40 \mathrm{GcV}^{2}$. From all these data or parametrizations we calculate the structure functions $\mathrm{F}_{2}(\mathrm{x}$, Q^{2}) or scaling violations of structure functions with respect to $\ln Q^{2}$ and apply them in the equation (11) and equation (23) to calculate the gluon distribution functions $\mathrm{G}\left(\mathrm{x}^{\prime}, \mathrm{Q}^{2}\right)$ or $\mathrm{G}\left(\mathrm{x}^{\prime \prime}, \mathrm{Q}^{2}\right)$, where $\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{B}(\mathrm{x}) / \mathrm{A}(\mathrm{x})$ and $\mathrm{x}^{\prime \prime}=\mathrm{x}+\mathrm{D}_{\mathrm{s}}(\mathrm{x}) / \mathrm{B}_{s}(\mathrm{x})$ from proton and deuteron structure functions respectively.

For our calculation, strong coupling constant α_{s} was taken from a NLO it (Virchaux and Milsztajn 1992) to F_{2} data which yields $\alpha_{s}=0.180 \pm 0.008$ at $Q^{2}=50 \mathrm{GeV}^{2}$ coresponding to $\Lambda_{\mathrm{MS}}^{(4)}=0.263+0.042 \mathrm{GeV}$ and $\alpha_{s}\left(\mathrm{M}_{z}^{2}\right)=0.113 \pm 0.005$. This value of α_{s} agrees with one given hy Particle Data Group (PDG)(Montanet, 1994). But in our practical calculations we neglect the errors of α_{s} and \wedge which are rather small.

In the Fig. 1. the gluon distribution obtained by our method (equation (23)) for the deuteron paramerization (Arneodo, 1995, 1997) from a 15 -parameter function (Arneodo, 1995) is presented at $Q^{2}=40 \mathrm{GeV}^{2}$. The middle line is the result without considering any error. The upper and the lower lines are the results with paramter values by adding and substracting the statistical and systematic errors with the middle values respectively. It has been seen that the middle line almost coincides with the upper line. The area between these lines are the result with full errors. The NMC at lirst parametrized their data from proton and deuteron for Q^{2} values from $0.5 \mathrm{GeV}^{2}$ to $75 \mathrm{GeV}^{2}$ and low-x values from 0.006 to 0.9 (Arneodo, 1995) by a 15-parameter function (Arneodo, 1995). This parametrization can also well describe the SLAC and BCDMS (Benvenuti, 1989) data. The recent NMC data (Arneodo, 1997) has becon extended for low-x values from 0.002 to 0.6 ; but in that case also the same parametrization fits well with SLAC and BCDMS data. We calculate F_{2}^{d} and $\partial \mathrm{F}_{2}^{d} / \partial \ln Q^{2}$ for x values 10^{-2} to 10^{-7} for the equation (23) which gives $\mathrm{G}\left(\mathrm{x}^{\prime \prime}\right)$ for x " values from 5.52×10^{-2} to 2.27×10^{-6}. We obtain our result for Q^{2} values from $40 \mathrm{GeV}^{2}$ to $100 \mathrm{GeV}^{2}$. It is seen that the gluon distribution increases from $\simeq 1.0$ to $\simeq 2.0$ when x decreases from higher to lowest values in our consideration; but deuteron gluon distribution is almost three times smaller than proton gluon distribution from NMC data. Moreover deuteron gluon distribution increases slightly (almost 15%) for a particular value of x when Q^{2} increases from $40 \mathrm{GeV}^{2}$ to $100 \mathrm{GeV}^{2}$. We can nol compare our result of NMC data with others because sufficient low-x deuteron data is not avialable. Moreover, no other author has tried to calculate gluon distribution from deuteron structure function and so, we can also compare our result with those of others.

In the ligg. 2, the same result is presented for NMC proton parametrization from the same references as for deuteron. Here also we use the same 15 -parameter function (Arneodo, 1995) with different parameters which also describe SLAC and BCDMS data in addition to the recent NMC data (Arneodo, 1997) exactly same as before at $40 \mathrm{GeV}^{2}$. The Q^{2} and x-ranges of our calculations are also same. We calculate $G\left(x^{\prime}\right)(c q u a t i o n(11))$ for x values which varics from 5.52×10^{-2} to 2.27×10^{-6} for highest and lowest values of x under considerathon respectively. The gluon distribution increases from $\simeq 3.5$ to $\simeq 6.5$ when x decreases from the hghest to lowest values under consideration. But proton gluon distribution decreases slightly ($<1 \%$) for a particular values of x when Q^{2} increases from $40 \mathrm{GeV}^{2}$ to $100 \mathrm{GeV}^{2}$. We do mot compare the results of NMC data with those of mainly IIER Λ because their Q^{2} and x-ranges are diflerent.

In the Fig. 3, the gluon distribution obtained by our method (equation (11)) from HERA data measured by H1 collaboration (Aid, $\mathrm{H} 1,1995$) is presented at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$. The middle hate is the result without considering any error in the datal. The upper and the lower lines are the results adding and subtracting algebrically the statistical and systematic errors with the data respectively and thereby calculating the gluon distributions. These two lines are symmetric about the middle lincs and positive and negative errors are equal. The area bounded by these lines eives the result with maximum error. The x-values in the data ranges from the highest value 1.33×10^{-2} to the lowest value 3.83×10^{4}. The corresponding x values are 6.81×10^{-2} and 3.948×10^{-3} respectively, and also gluon distributions are also $\simeq 3.0$ and $\simeq 24.0$ respectively for data without considering any error. Here also gluon distribution increases when x decreases except the lowest value when gluon distribution decreases. But the rate of increamem for IIISR \wedge data measured by H1 collaboration is much higher than that of NMC data.

In the lig. 4, the same thing is presented tor HERA data measured by ZFUS collaboration (1)errick. 7EUS, 1905) at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$. Here the x -values in the data ranges from the highest value 4.65×10^{3} to the lowest value 8.5×10^{-4}. The corresponding x values are 3.077×10^{-2} and 7.752×10^{-1} respectively, and also gluon distribution $=10.9$ and $=21.2$ respectively for datat without considering any error. We see, in this case also, gluon distribution increases when x decreases. And the rate of increament is slightly higher to that of IIt collaboration in the x range considered; but much higher than that of NMC data.

In the Fig. 5, comparison of gluon distributions by our method (Sarma, equation (11)), Bora and Choudhury Mcthod (Bora), Prytz method (Prytz) and Kotikov and Parente method (Kotikov) is presented for HERA data middle value only measured by H1 collaboration att Q^{2} $=20 \mathrm{CeV}^{2}$. The x values under consideration is same as in Fig. 3. But the arguments of the gluon distributions calculated are different for different methods except for Kotikov and Parente's method for which the arguments do not change, they are the same x values under consideration. Accordingly for the highest and the lowest x values, x^{\prime} values are 6.81×10^{2} and $3.948 \times 10^{\prime}$ respectively. For all the methods gluon distribution increases when \times decreases
except for the last data point tor which it decreases But rate of increament is different for ditterent methods The values of gluon distributions are comparable but rate of incrament is highest in our method and lowest in Kotikov and Parente's mathod It is intermediati in other two mentods of which rate of Prytz's method $\sqrt{ }$ shightly heher than that of Bord and Choudhury's method
In the Fig 6, comparison of gluon dustrbutions by various methods exacily same waty is ill Fig 5 is presented tor HERA datd middle valuc measured by ZCUS collaboration (Dcrrick, ZCUS 1995) at $Q^{2}=20 \mathrm{GeV}^{2}$ The x value under consuderation is same a in Γ ig 4 But the arguments of the gluon distributions calculated are different for dilferent methods a discussed carlier Accordingly, for the highest and the lowest x values x^{\prime} valuch are $3077 \times$ 10^{2} and 7752×10^{3} respectively The arguments of gluon distribution for Kolikov and Parente's method are same as x valucs under convoderation, 1 e they do not change The gluon distribution increasce when x decreases for all the methods ds betore, but the ralle of increasement is highest in our method and lowest in Kotakov and Parente's method the ratu are intermediate in other two methods of which rate at Pryiz a method is higher than that ol Bord and Choudhury's method

Fig. 1 : The gluon distribution obtaned by our method for the NMC deuteron parametri/ation (15 - parameter function, Table-3) dt $\mathrm{Q}^{2}=40 \mathrm{GeV}^{2}$ The (1) middle, (11) upper and (111) lower lines are the results (d) without considering any crror, (b) ddding digebrically the shatisal and systematic errors and (c) substracting algebrically the statistical and systematic errors respectively

Fig. 2 : Same result as in Fig. 1 (equation-11) for NMC proton parametrization at $Q^{2}=40$ GeV^{2}.

Fig. 3 : Same result as in Fig. 1 (cquation-11) for HER \wedge proton data by Hl collaboration at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig. 4 : Same result as in Fig. 1 (equation-11) ${ }^{\text {LPStoxIERA proton data by ZEUS collaboration }}$ at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$.

Fig. 5 : Comparison of gluon distributions for HERA proton data hy HI collaboration by varrous methods at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$.

Fig. 6 : Sounc result d in 「ig 5 for proton dald by 7 LUS collaboration by varoous method it $Q^{2}=20\left(\mathrm{icV}^{2}\right.$

SUMMARY AND CONCLUSION

 extact gluon datribution $\left(i\left(x, Q^{2}\right)\right.$ Irom the medsurement of low-x proton and dablaon
 1 Ix with respeci $10 \ln ^{2}$ and x respectively H lere we report for the lirst time a method 10 land gluon datribution from deuteron structure function $\mathrm{I}_{2}^{\prime \prime}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ dllow-x fiere we use the 10
 low-x structure function or their dafterentad coctlicients We compare our rcsuld with othe methods also In Bora and ('houdhury's method (Bora and Choudhury, 1995) to cxatat gluon datribution $G\left(x, Q^{2}\right)$ authors expanded $G\left(x /(1-7), Q^{2}\right)$ uning laytor expamoon about $=0$ taking only upto lirst order derivative in the expanson Whate expanding they used only liral

 ($1-1$), Q^{2}) upto the first order derivative of $\left(i\left(x, Q^{2}\right)\right.$ with respect to x () ot the otherhand in Kotikov and Parente's method (Kotiko and Parente, 1996), ambors asumed some receat parametriadtoms for anglet guark and gluon, put them in AP evolution equation and uolval for gluon datribution by stadaded moment method in NIO But here alvo duthors approvimital
ther solution by neglectmg some heher order term and differental coefficient of singlet gluon $\partial 7 \partial x$ with respect to x Moreover, here the solving process by moment method is also a bit complacated Agan Ellıs, Kunszt and Levin’s method (Ellis et al, 1994) 1 alloo not much developed than other methods Lake Kotikov and Parente's method here aso the duthos dsumed some behaviour for I_{2} and gluon momentum demity with some unkonwn parameta and solved $A P$ equations in moment space, of course, in NNLO abalys But here NNL () kernals are also parameter dependent Moreover, this mehtod covers the x-range lower that HLRA rance and so we become do not serious to include the result of this method in our analysus in calculating the gluon dratribution trom deuteron dt low-x we use only NMC deuteron dat parametration (Arneodo, 1995) by a 15 -parameter function and lind that 11 is

 thard in case of NMC data and still smatler in other datal like IIT.RA ek \wedge possoble
 In our theory (equation (23)) gluon dutribution depend upon dewteron structurc lunction I "1 (x 1), $\left(1=\ln \left(Q^{2} / \wedge^{2}\right)\right.$ and 15 derivative with tebpect to t and x the structure fimetion and is denvalives lor deuteron are unall (Arncodo, 1995, 1997) due t' which ultimatcly glaon dasiabutiom lrom deuteron are small Moreover, dependence of the gluon databution on Q^{2} N vay bmall de low-x in a particular low-x gluon distributandecreases very wighty when Q ${ }^{2}$ merease The 15 -parameter functaon not only desersbes the NMC data but abo SLAC and BC'DMS (Benvenuti, 1989) data and so our calculation dutomatically meludes the es two type ol experaments
for calculation of gluon distibution from proton structure funchon at low-x we we III R \wedge data medsured by 111 (Aid, III, 1995) and ZLUS (Derrick, ZLUS 1995) colldhonallom and NMC data patrametazalion (Ameodo, 1995) In our method gluon from NMC dald (Vichatux
 111 and ZLUS collahorations at $x \simeq 10^{\text {a }}$

In our method, gluon destibutions calculated from direct HERA data measured by III and ZLUS collaborations upto $x \simeq 10$ are dimost th the ame order Gluon databutions from the IILRA dad parametarations by HI and ZLUS collaborations upto $\mathrm{x}=10^{\prime}$ are also of the same orde to them and are mutually are alse adme But alter $x=10^{\circ}$ when x decreases the
 dablabution from the tirst parametrization becomes also hundred tames of the second one at $x \simeq 10^{7}$

We compare our iesulth with other method by Bora and Choudhury, Path and Kotiheva and Patente the genctal trend s that gluon detribution $\mathrm{G}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ encredses when y decrease But the rate of merement of gluon distrbutwo calculated by our method is in generat hgha that those of other methods the result of Kotikov and Parentes method are the lowey the
sesuls of two other method are the enternedhate oncs between these two methods of which the result of Pryizi method is higher thatn that of Bora and Choudhury's method Resull from our method are closed to those trom Prytis method Thas is becallue Bold and Choudhury's incthod $\sqrt{ }$ a crude appoormation as they melude only one temm of the mimil serics $x /(1-1)$ whereas we melude all the infinte ferms so the ofter terms enhame the comtribution in our method In our method, the tirst order appooximation in liytor expansem

 we have the pian to do so in the subseguent work We did a prehimmary work in the 1 egad

 approximation 13 at smill contribution Irom quark sull there and we plan to examanc thas poment 小o in our laller work

ACKNOWLEDCEMENT

We are very much gratelul to Protchor (Dr) Y V i S Murthe for providme neccshay lathlaes in Physucs Departinent of 111 . (iawadall where most of the work was done We all

 Proteshor (Dr) D K Choudhury of Gahati Umveratly tor uctul discushoms

REFERENCES

1 Nud, S et al, I_{1} Collaboration (1995) The Gluon Densty of the Proton at I ow-x Irom Q('I) Analyw of F_{2}. Phy Letl B 354494
 Phys 1312298

3 Armeodo, M, NM(${ }^{*}$ (1995) Mesumement of the Proton and the Deateron Struclunc Irunctoons, I ${ }_{2}^{p}$ and I ${ }_{2}^{1}$, Phy Lell 13364107
 I unctions. If, and I_{2}^{d} and of the Rato σ_{1} / σ_{r} Nocl Phys 13483 ?

9 Batl, R D and Iorte, S (1994) Double Ayympotic Scalme alll RA, Phw I (ll B33577.1333677

6 Benvenuti, \wedge C , BCDMS Collaboration (1989), (1990) \wedge High Stalisuc Mcasurement of the Proton Structure 1 unctions $\mathrm{I}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ and R Irom Dcep Inclatic Muon Scalling athigh Q^{2} Phys Left B 23 485, B 27592
7 Bora, Kalpana and Choudhury, D K (1995) Findme the Gluon Distribution of the Proton at Low-x trom F_{2}, Phys Lett B 354151
8 Buchmuller, W and Inglelman, G |cds \| (1991) Proc Work hop 'Physics at IILRA, Hamburg
9 Choudhury, D K and Sarka, \wedge (1989) An Improved Appioximall Solution ol Altarclla-Paras Equatuon, Pranala-I, Phys 33359
10) Choudhury, D K and Sama, I K (1992) Perturhative and Non-perturbative Lvolution ol Structure I unction at Low-x, Pranand-I Phy 38481
11 Collms, P 1) 13 (1977) An Introducuon to Regge Theory and ligh Lancrgy Phyach Cambridge Unversity Piess, Cambridge
12 Copper-Yarkar, $A M$ u al, (1988) Medsurement of the Longitudmal Structur I unction and the Small-x Giono Densty of the Proton, 7 phys C-39 281
13 Derrick, M, ZLUUS Collahoralion (1905) Phys Lell B 364576
14 Dok hatact. Y I (1977) ('alculation ot Structure I unction of Deep Inclanta Statume and $\mathrm{e}^{+} \mathrm{e}$ Anhalation by Perturbative I heory in Quantum Chromodynamics, Sov Phes II 11 46641
 .ll Small-x, Nucl Pliy 13420517
 Fud|Elluy, A Accademac Press New Yook

18 Montanct L, (1994) Partick Data (iroup (PD(i), Phy Rev 1) 50 1173
19) Piyta K (1993) Approximate Detemmation of the Gluon Denally at I ow-x laom the 1, Salling Violations, Phys Lett V 311286
20 Pryt K (1994) An Approximale Next-to-I eadang Orda Relation Between the I owx I_{2} Salling Voldtoms and the (iluon Denaty, Phy Letl 13332303
21 Sama, I K and Das, B (1993) R-Lvolutions ol Structure I unction at Low-x Phys Letl 13304323
22 Sarma | K , Choodhury, D K and Medhi, (i K (1997) - X -Divtribution of Dculcron Structur I uncion all Low-x Phys Lell B403 139
23 Samal, I K and Medhi, (i K (in plos) Regee Bchaviour of Slacture I unction and

 a (QCD) Andy I CII 13 274221

Regge behaviour of structure function and gluon distribution at low- x in leading order

JK Sarma ${ }^{1 \text { a }}$, GK Medhı ${ }^{2}$
${ }^{1}$ Physics Department, Tezpur University, Napaam, Tezpur-784 028, Assam, Indıa
${ }^{2}$ Physics Department, Birjhora Mahavidyalaya, Bongaıgaon-783 380, Assam, India

Received 2 January 2000 / Revised version 23 February 2000 /
Published onlıne 6 July 2000 - (c) Springer-Verlag 2000

Abstract

We present a method to find the gluon distribution from the F_{2} proton structure function data at low- x assuming the Regge behaviour of the gluon distribution function at this limit We use the leading order (LO) Altarellı-Parisi (AP) evolution equation in our analysis and compare our result with those of other authors We also discuss the limitations of the Taylor expansion method in extracting the gluon distribution from the F_{2} structure function used by those authors

1 Introduction

The measurements of the F_{2} (proton and deuteron) structure functions by deep inelastic scattering (DIS) processes in the low- x region, where x is the Bjorken variable have opened a new era in parton density measurements [1] It is important for understanding the inner structure of hadrons and ultimately of matter It is also important to know the gluon distribution inside a hadron at low- x because gluons are expected to be dominant in this region On the otherhand, the gluon distribution cannot be measured directly from experiments It is, therefore, important to measure the gluon distribution $G\left(x, Q^{2}\right)$ indirectly from the proton as well as the deuteron structure functions $F_{2}\left(x, Q^{2}\right)$ Here the representation for the gluon distribution $G(x)=x g(x)$ is used, where $g(x)$ is the gluon density

A few papers have already been published [2-9] in this connection Here we present an alternative method to extract $G\left(x, Q^{2}\right)$ from the scaling violations of $F_{2}\left(x, Q^{2}\right)$ with respect to $\ln Q^{2}$, ie $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ Our method is mathematically more transparent and simpler than those of other authors

2 Theory

It 15 shown in $[2,8]$ that the gluon distribution $G(x)$ at low- x can be obtained by analysing the longitudinal structure function Similarly it is also shown in [3-7] that this distribution can be calculated from the F_{2} proton structure function and its scaling volation Moreover, in [9] we see that it is also possible to calculate the gluon distribution from the F_{2} deuteron structure function and its

[^0]scaling violation The basic idea relies on the fact that the scaling violation of the F_{2} structure function arises at low- x from the gluon distribution alone and does not depend on the quark distribution As a demonstration of this fact, the scaling violation of the sea quark distribution as a function of x has been illustrated in [3] Here as in Figs 1a,b the scaling violation of the sea quark distribution using the KMRS B_{-}and B_{0} parametrizations [10] are demonstrated, respectively At low- $\boldsymbol{\tau}$, actually aiready at $x=10^{-2}$, the quarks can be neglected in the AP evolution for the number of flavours of $n_{f}=4$

Neglecting the quark the AP evolution equation for four flavours [3,4] gives

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{\mathrm{s}}}{9 \pi} \int_{0}^{1-x} G\left(x /(1-z), Q^{2}\right) P_{q q}(z) \mathrm{d} z \tag{1}
\end{equation*}
$$

where the LO splitting function is

$$
\begin{equation*}
P_{q g}(z)=z^{2}+\left(1-z^{2}\right) \tag{2}
\end{equation*}
$$

and α_{s} is the strong coupling constant
Now, let $1-z=y \Rightarrow \mathrm{~d} z=-\mathrm{d} y$ Again $z=0 \Rightarrow y=1$ and $z=1-x \Rightarrow y=x$ Therefore (1) gives

$$
\begin{equation*}
\frac{\partial F_{2}\left(x Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 a_{s}}{9 \pi} \int_{x}^{1} G\left(x / z, Q^{2}\right)\left(2 z^{2}-2 z+1\right) \mathrm{d} z \tag{3}
\end{equation*}
$$

Now, let us consider the Regge behaviour of the gluon distribution [11]

$$
\begin{equation*}
G\left(x, Q^{2}\right)=C \imath^{-\lambda\left(Q^{2}\right)} \tag{4}
\end{equation*}
$$

where C is a constant and $\lambda\left(Q^{2}\right)$ is the intercept The Regge behaviour of the structure function in the largeQ^{2} region reflects itself in the small- x behaviour of the

Fig. 1a,b. Scaling violations of sea quark distributions using the KMRS B_{-}and B_{0} parametrizations [10] respectively as in [3]. The solid lines were obtained using the complete AP equations and the dashed lines were obtained neglecting quark distributions.
quark and the antiquark distributions. Thus the Regge behaviour of the sea quark and antiquark distribution for small- x is given by $q_{\text {sea }}(x) \sim x^{-\alpha_{P}}$ corresponding to a pomeron exchange of intercept $\alpha_{P}=1$. But the valence quark distribution for small- x given by $q_{\text {val }}(x) \sim x^{-\alpha_{R}}$ corresponds to a reggeon exchange of intercept $\alpha_{R}=1 / 2$. Since the same processes lead to gluon and sea quark distributions in the nucleon, we expect $G(x) \sim 1 / x$. The x-dependence of the parton densities given above is often assumed at moderate- Q^{2}.

> Applying (4) in (3) we get

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{\mathrm{s}}}{9 \pi} C \int_{x}^{1} x^{-\lambda\left(Q^{2}\right)} z^{\lambda\left(Q^{2}\right)}\left(2 z^{2}-2 z+1\right) \mathrm{d} z . \tag{5}
\end{equation*}
$$

For fixed- Q^{2}, let $K(x)=\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and $A=$ $5 \alpha_{3} /(9 \pi)$. Thus (5) gives

$$
\begin{equation*}
K(x)=A C x^{-\lambda\left(Q^{2}\right)} \int_{x}^{1}\left(2 z^{\lambda+2}-2 z^{\lambda+1}+z^{\lambda}\right) \mathrm{d} z . \tag{6}
\end{equation*}
$$

Taking the logarithm and rearranging the terms (6) gives

$$
\begin{align*}
\lambda & =\frac{1}{\ln x}\left[\operatorname { l n } \left\{\frac{2}{\lambda+3}\left(1-x^{\lambda+3}\right)\right.\right. \\
& \left.\left.-\frac{2}{\lambda+2}\left(1-x^{\lambda+2}\right)+\frac{1}{\lambda+1}\left(1-x^{\lambda+1}\right)\right\}\right] \\
& -\frac{1}{\ln x}[\ln \{K(x) /(A C)\}], \tag{7}\\
& \Rightarrow \lambda-\Phi(\lambda)=0, \tag{8}
\end{align*}
$$

where $\lambda \equiv \lambda\left(Q^{2}\right)$ and $\Phi(\lambda)$ represents the right hand side of (7). Now, (8) has been solved numerically using the iteration method [12] to calculate the values of $\lambda\left(Q^{2}\right)$ for different x-values for a fixed value of Q. A simple computer programme for this iteration method is given in Appendix A. Scaling violation of the F_{2} structure function, i.e. $K(x)=\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$, and the strong coupling constant at LO α_{s} are experimental inputs. C is the only free parameter in our calculation. After the calculation of
$\lambda\left(Q^{2}\right)$ we can calculate $G\left(x, Q^{2}\right)$ from (4) for different values of the free parameter C and compare our results with those due to other authors.

Now, let us discuss the methods due to other authors. Prytz reported a method to obtain an approximate relation between the unintegrated gluon density and the scaling violations of the quark structure function at low- x at leading order (LO) [3] as well as at next-to-leading order (NLO) [4]. He expanded $G(x /(1-z))$ of (1) using the Taylor expansion formula at $z=1 / 2$ to obtain the expression [3]

$$
\begin{align*}
G\left(\frac{x}{1-z}\right) & \approx G\left(z=\frac{1}{2}\right)+\left(z-\frac{1}{2}\right) G^{\prime}\left(z=\frac{1}{2}\right) \\
& +\left(z-\frac{1}{2}\right)^{2} \frac{G^{\prime \prime}\left(z=\frac{1}{2}\right)}{2} \tag{9}
\end{align*}
$$

taking the derivative up to second order. This expression is then inserted in (1) and after integration one gets

$$
\begin{equation*}
\frac{\partial F_{2}(x)}{\partial \ln Q^{2}} \approx \frac{5 \alpha_{s}}{9 \pi} \frac{2}{3} G(2 x) \tag{10}
\end{equation*}
$$

for fixed- Q^{2}, which is the main result for the LO [3] analysis. Using a similar method he obtained the formula for the NLO [4] analysis,

$$
\begin{align*}
\frac{\partial F_{2}(x)}{\partial \ln Q^{2}} & \approx G(2 x) \frac{20}{9} \frac{\alpha_{\mathrm{s}}}{4 \pi}\left[\frac{2}{3}+\frac{\alpha_{\mathrm{s}}}{4 \pi} 3.58\right] \\
& +\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2} \frac{20}{9} N\left(x, Q^{2}\right) \tag{11}
\end{align*}
$$

where $N\left(x, Q^{2}\right)$ is given in [4].
Bora and Choudhury also presented a method [5] to find the gluon distribution from the F_{2} proton structure function and its scaling violation at low- x using the Taylor expansion method. They also expanded $G\left(x /(1-z), Q^{2}\right)$ of (1) using the Taylor expansion method about $z=0$ taking only the derivative up to first order in the expansion. While expanding they used only the first two terms

In the infinite expansion series $x /(1-z)=x \sum_{h=0}^{\infty} z^{k}$ to get an expression This expression is then inserted in (1) and after integration one gets

$$
\begin{equation*}
G\left(x_{1}, Q^{2}\right) \simeq \frac{9 \pi}{5 \alpha_{\mathrm{s}}} \frac{A(x)+2 B(x)}{[A(x)+B(x)]^{2}} \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}} \tag{12}
\end{equation*}
$$

at

$$
x_{1}=x+\frac{B(x)}{A(x)+B(x)} x
$$

Sarma and Medhı also obtaıned a method [9] to find the gluon distribution from the F_{2} proton and deuteron structure functions and their scaling violations at low- x They also expanded $G\left(x /(1-z), Q^{2}\right)$ of (1) by using the Taylor expansion method taking only the derivative up to first order in the expansion But unlike Bora and Choudhury method they considered the whole series $x /(1-z)=$ $x \sum_{k=0}^{\infty} z^{\mathcal{h}}$ to get the expression

$$
\begin{align*}
G\left(\frac{x}{1-z}, Q^{2}\right) & =G\left(x+x \sum_{k=1}^{\infty} z^{\wedge}, Q^{2}\right)=G\left(x, Q^{2}\right) \\
& +x \sum_{k=1}^{\infty} z^{\kappa} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} \tag{13}
\end{align*}
$$

Using this relation in (1) and then integrating one obtains for the proton

$$
\begin{equation*}
G\left(x_{p}, t\right)=\frac{9 \pi}{5 \alpha_{\mathrm{s}}} \frac{1}{A(x)} \frac{\partial F_{2}^{p}(x, t)}{\partial t} \tag{14}
\end{equation*}
$$

and for the deuteron

$$
\begin{align*}
G\left(x_{d}, t\right) & =\frac{9}{5}\left[K_{1}(x) t \frac{\partial F_{2}^{d}(x, t)}{\partial t}\right. \\
& \left.+K_{2} \frac{\partial F_{2}^{d}(x, t)}{\partial x}+K_{3} F_{2}^{d}(x, t)\right], \tag{15}
\end{align*}
$$

where $x_{p}=x+B(x) / A(x) \quad x_{d}=x+D(x) / C(x)$ and $t=\ln \left(Q^{2} / \Lambda^{2}\right), \Lambda$ being the QCD cut-off parameter Here $A(x), B(x), C(x), D(x), K_{1}(x), K_{2}(x)$ and $K_{3}(x)$ are some functions of x mentioned in [9]

Now, let us discuss the limitation of the Taylor expansion method in this regard Applying the Taylor expansion [12] for the gluon distribution function in (1), we get

$$
\begin{align*}
G\left(\frac{x}{1-z}, Q^{2}\right)= & G\left(x+x \sum_{h=1}^{\infty} z^{k}, Q^{2}\right) \\
= & G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} \tag{16}\\
& +\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} z^{h}\right)^{2} \frac{\partial^{2} G\left(x, Q^{2}\right)}{\partial x^{2}}+O\left(x^{3}\right)
\end{align*}
$$

where $O\left(x^{3}\right)$ are the higher order terms Here we have $1-x<z<0 \Rightarrow|z|<1$ which implies that $x /(1-z)=$
$x \sum_{k=0}^{\infty} z^{h}$ is convergent In the previous methods either the terms beyond second order [3,4] or beyond first order derivatives $[5,9]$ of x are neglected in the expansion series (16) But in actual practice this type of simplifiration is not possible because the contributions from the higher order terms cannot be neglected due to the singular behaviour of the gluon distribution

There are some other methods also which are not based on the Taylor expansion method Kotikov and Parente presented [7] a set of formulae to extract the gluon distribution function from the F_{2} structure function and its scaling violation at small- x in the NLO approvimation They considered for singlet quark and gluon parton distributions $p\left(x, Q^{2}\right) \approx x^{-\delta_{1}\left(Q^{2}\right)}$ for a Regge-like behaviour and $p\left(x Q^{2}\right) \approx \exp \left(05\left(\delta_{p}\left(Q^{2}\right) \ln (1 / x)\right)^{1 / 2}\right)$ for doublelogarithmical behaviour [6] where $p \equiv s g$ and $\delta_{\Delta}\left(Q^{2}\right) \neq$ $\delta_{q}\left(Q^{2}\right)$ Then they put these distributions in the AP equations and solved for the gluon distribution bv the standard moment method Now for Regge-like behaviour the gluon distribution becomes

$$
\begin{align*}
g\left(x, Q^{2}\right) & =\frac{114}{e \alpha(1+269 \alpha)}\left[\frac{\partial F_{2}\left(r Q^{2}\right)}{\partial \ln Q^{2}}\right. \\
& +212 \alpha F_{2}\left(x Q^{2}\right)+O\left(\alpha^{2} a^{1-\delta}\right] \tag{17}
\end{align*}
$$

for $\delta=05$ and the number of flavours $f=4$ Again for double-logarithmical behaviour the gluon distribution becomes

$$
\begin{align*}
g\left(x, Q^{2}\right) & =\frac{3}{4 e \alpha} \frac{1}{(1+26 \alpha[1 / \tilde{\delta}-41 / 13])} \\
& \times\left[\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+O\left(\alpha^{2} x\right)\right] \tag{18}
\end{align*}
$$

A different method for the determination of the gluon dis tribution at small values of x has been proposed by Ellis Kunszt and Levin [6] based on the solution of the AP evolution equations in the moment space up to nevt-to-next-to-leading order (NNLO) In this method the quarh and gluon momentum densities are assumed to behave as $x^{-w_{0}}$ where w_{0} is a parameter the actual value of which must be extracted from the data Here the gluon momen tum density for four flavours is

$$
\begin{align*}
x g\left(x, Q^{2}\right) & =\frac{18 / 5}{P^{F G}\left(w_{0}\right)} \\
& \times\left[\frac{\partial F_{2}\left(\tau Q^{2}\right)}{\partial \ln Q^{2}}-P^{\Gamma F}\left(w_{0}\right) F_{2}\left(\tau Q^{2}\right)\right] \tag{19}
\end{align*}
$$

The evolution kernels $P^{F F}$ and $P^{\Gamma G}$ calculated in the $\overline{M S}$ scheme are expanded up to third order in α_{s}

3 Results and discussion

We use HERA data taken by the H1 [13] and ZEUS [14] collaborations where the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ are listed for a range of x values at $Q^{2}=20 \mathrm{GeV}^{2}$ The re cent HERA data are parametrized bv the H 1 [15] and

Fig. 2a,b. Gluon distribution $G(x)$ by our method from the NMC proton parametrization $[17,18]$ at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively with $C=1$ In the same figure we include a global fit by MRST [21]

ZEUS [16] collaborations by some appropriate functions and we calculate $\partial F_{2}\left(x Q^{2}\right) / \partial \ln Q^{2}$ at $Q^{2}=20 \mathrm{GeV}^{2}$ for those functions also We also use the parametrizations of the recent New Muon Collaboration (NMC) $\{17,18\} F_{2}$ proton structure function data from a 15 -parameter function from which also we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $40 \mathrm{GeV}^{2}$ Now we apply the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ in (8) to calculate λ numerically by the iteration method [6] and hence the gluon distribution function $G\left(x, Q^{2}\right)$ for $C=1$ We do not consider higher values of C, say $C=100$, because in this case the neglect of the valence quark distribution $x q_{\mathrm{val}} \sim x^{1 / 2}$ is not so correct as the λ-value is close to $-1 / 2$ in quite a broad range of x Moreover, in this case we obtain $x g \sim x^{1 / 2}$ and $x q_{\text {val }} \sim x^{1 / 2}$ Then also we get $x q_{\text {sea }} \sim x^{1 / 2}$ Otherwise it should not be neglected in (1) Then it is easy to obtain $F_{2} \sim x^{1 / 2}$ which contradicts the experimental data For our calculation the strong coupling constant α_{s} was taken from a NLO fit [19] to the F_{2} data yieldıng $\alpha_{s}=0180 \pm 0008$ at $Q^{2}=50 \mathrm{GeV}^{2}$ corresponding to $\Lambda \frac{(4)}{\mathrm{MS}}=0263 \pm 0042 \mathrm{GeV}$ and $\alpha_{\mathrm{s}}\left(M_{z^{2}}\right)=0113 \pm 0005$ This value of α_{s} agrees with the one given by the Particle Data Group (PDG) [20]

But in our practical calculations we neglect the errors of α_{s} and Λ which are rather small

We compare our result with the results of other authors discussed in the theorv as well as the recent MRST global fit [21]

In Figs 2a-d we present the gluon distributions $G(x)$ for different low- x values from the NMC proton data parametrization $\{17,18]$ at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively From the figures it is seen that the results are almost the same for all Q^{2}-values and $G(x)$ is slowly increasing when x decreases logarithmically We also present the MRST global fit [21] result, but its rate of nerement is much higher

In Fig 3 we present the gluon distributions $G(x)$ for different low- x values from the H1 HERA proton data $[13]$ at $Q^{2}=20 \mathrm{GeV}^{2}$ The middle line is the result without considering any error in the data The upper and lower lines are the results with data adding and subtracting systematic and statistical errors with the middle values, respectively As usual the gluon distribution $G(x)$ increases when x decreases In the same graph we also present the $G(x)$ values for the MRST global fit [21] which is also increasing towards low- x values but with a somewhat smaller rate

Fig. 3. Gluon distribution $G(x)$ by our method from the H1 HERA proton data [13] at $Q^{2}=20 \mathrm{GeV}^{2}$ with $C=1$. Here we present the results for the data (i) without considering the error (middle), (ii) adding algebrically statistical and systematic errors (high) and (iii) substracting algebrically statistical and systematic errors (low). In the same figures we include a global fit by MRST [21].

Fig. 4. Gluon distribution $G(x)$ by our method from the Hl HERA proton data parametrization [15] at $Q^{2}=20 \mathrm{GeV}^{2}$ with $C=1$. In the same figures we include a global fit by MRST [21].

Fig. 5. Same result as in Fig. 3 from the ZEUS HERA proton data [14] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig. 6. Same result as in Fig. 4 from the ZEUS HERA proton data parametrization [16] at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig. 7. λ-values by our method from the H1 HERA proton data [13] at $Q^{2}=20 \mathrm{GeV}^{2}$ with $C=1$. Here we present the results for the data (i) without considering the error (middle), (ii) adding algebrically statistical and systematic errors (high) and (iii) subtracting algebraically statistical and systematic errors (low).

In Fig. 4 we present the gluon distributions $G(x)$ for the H1 HERA proton parametrization [15] at $Q^{2}=$ $20 \mathrm{GeV}^{2}$ for different low- x values. The gluon distribution $G(x)$ is increasing when x is decreasing. In the same graph we present the $G(x)$ values for the MRST global fit [21], which is also increasing towards low- x values with a somewhat smaller rate.

In Fig. 5 we present the gluon distribution $G(x)$ ZEUS HERA proton data [14] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different lowx values. The descriptions and the results are the same as the H1 HERA data [13] depicted in Fig. 3.

In Fig. 6 we present the gluon distributions $G(x)$ for the ZEUS HERA proton parametrization [16] at $Q^{2}=$ $20 \mathrm{GeV}^{2}$ for different low- x values. The descriptions and the results are the same as the H1 HERA parametrization [15] depicted in Fig. 4.

In Fig. 7 we present the value of λ (Lambda) for the H 1 HERA proton data [13] for low, middle and high values at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low- x values. All the graphs are almost parallel and the λ-values tend to ~ 0.5 at lower- x. That is, the parameter λ has a small dependence on x and

Fig. 8. Same result as in Fig 7 from the ZEUS HERA proton data $[14]$ at $Q^{2}=20 \mathrm{GeV}^{2}$

Fig. 9. Comparison of gluon distribution $G(x)$ from the Hl HERA proton data [13] by our method for $C=1$ with those by other methods due to Bora and Choudhury [5] and Prytz [3] In the same figure, we include a global fit by MRST [21]
Q^{2} This behaviour is in good agreement with experimental data [22], fits [21,23] and with the double-logarithmical semi-analytical analysis [24-26]

In Fig 8, we present the λ-values for the ZEUS HERA proton data [14] in the same way as in Fig 7 and the analysis is also the same For all the graphs λ values tend to ~ 05 as we approach a lower- x from some higher values of x

In Fig 9, we compare our results for the HERA H1 data (middle value only) [13] at $Q^{2}=20 \mathrm{GeV}^{2}$ with those of Bora and Choudhury [5] and Prytz [3] In the same figure, we also present the result for the MRST global fit [21] For all cases the gluon distribution $G(x)$ is increasing when x is decreasing but with different rates The rates of increment in our result is highest and in MRST is lowest

4 Summary and conclusion

In this paper we present an alternatise method [2-9] to extract the gluon distribution $G\left(\imath, Q^{2}\right)$ from the scaling violation of the F_{2} proton structure function $\partial F_{2}(x) / \partial \ln Q^{2}$ at low- x We compare our result with those of other methods due to Bora and Choudhury [5] and Prytz [3], and with a global fit due to MRST [21] The gluon distribution will increase ds usual when r decreases

We discussed the limitations of the Taylor expansion method [12] in calculating the gluon distribution from the scaling violation of the F_{2} structure function at low- x Prytz in both LO [3] and NLO [4] and Bora and Choudhury in LO [5] used this method to extract the gluon distribution from the scaling violation of the F_{2} structure function at low- x in a slightly different way But all the authors neglected the higher order terms in the Taylor expansion series, which is not a good approximation for the singular behaviour of the gluon distribution at low- x, because the contributions from the higher order terms in the series are not negligible Sarma and Medhı [9] used this method in some improved way with a better approximation, yet the basic approximation of neglecting higher order terms in the expansion series could not be avoided On the other hand in the Kotikov and Parente method $[7,8]$ also these authors approximated their results by neglecting some higher order terms Moreover, their method is to some extent complicated The Ellis, Kunszt and Levin method [6] netther has been more developed than other methods Though their analysis is up to NNLO, the kernels are parameter dependent and the x-ranges are lower than the HERA region In the present method of course we use a free parameter C, yet the other ambiguities due to the approximation of the Taylor expansion series can be avoided Moreover, our method is very simple and the computer programme can calculate the gluon distribution immedrately when we put in the value of the scaling violation from experiment

We can use this method by assuming a doublelogarithmical behaviour [7] of the gluon distribution at low- x also The present procedure is a LO analysis only But there is a possibility to extend this method to NLO or higher to have more accurate results

Acknowledgements One of us (JKS) is very grateful to Professor Dr R Ramachandran for providing the necessary facilities in IMSC, Chennal where most of the work was done He is also grateful to DST, New Delhi, for a SCRC visiting fellowship in IMSC, Chennas and UGC, New Delhı, for financial assistance in the form of a minor research project

Appendix

A simple FORTRAN programme for the calculation of λ from the scaling violation of the structure function is given here

C

05
10

20

25

35
GLUON DISTRIBUTION FROM SCALING VOLATION OF PROTON DATA
REAL Y, K, C, X, A, PHIX1, PHIX2, PHIX3, PHIX, P, AB, G
PRINT, "Y=7"
READ', Y
PRINT, "K=?"
READ*' K
PRINT", "C=?"
READ* ${ }^{*}$ C
$X=3$
ALPH= 118
Pi=3 1416
$A=\left(5{ }^{*} A L P H\right)(9$ *PI)
PHIX $=2 . J(X+3)^{*}\left(1 .-Y^{m}(X+3)\right)-2 J(X+2)^{*}\left(1-Y^{m+}(X+2).\right)$
PHIX2=1J($X+1)^{4}\left(1-Y^{20}(X 1)\right)$
PHDX3=ALOG(N|A'C))
PHIX $=1 / J A L O G(Y)^{\prime}(A L O G(P H I X 1+P H I X 2)-P H I X 3)$
$P=X \cdot P H X$
$A B=A B S(P)$
$G=C^{+1}\left(Y^{+1}(\cdot P H I X)\right)$
IF (AB LT 00000001) THEN
PRINT', C, Y, PHXX, G
GOTO 10
ELSE
$X=P H H X$
ENDIF
GOTO 56
85
END

References

1 See for example, Proceedings Workshop "Phvsics at HERA", edited by W Buchmuller, G Inglelman Hamburg (1991)
2 A M Copper-Sarkar et al, Z Phys C 39, 281 (1988)
3 K Prytz, Phys Lett B 311, 286 (1993)
4 K Prytz, Phys Lett B 332, 393 (1994)
5 Kalpana Bora, D K Choudhury, Phys Lett 13354151 (1995)

6 R K Ellis, Z Kunszt, C M Levin, Nucl Phys B 420,517 (1994)

7 A V Kotıkov, G Parente, Phys Lett B 379, 195 (1996)
8 A V Kotıkov, Phys Rev D 49, 5746 (1994)
9 J K Sarma, G K Medhı, TU/THEP-1/98 (1998)
10 J Kwiecınskı, A D Martın, R G Roberts, W J Stırlıng, Phys Rev D 42, 3645 (1990)
11 P D B Collins, An introduction to Regge theorv and highenergy physics (Cambridge University Press, Cambridge 1977)

12 JB Scarborough, Numerical mathematıcal analvsis (John Hopkıns Press, Baltımore 1996)
13 S Aid et al, H1 collaboration, Phys Leti B 354, 494 (1995)

14 M Derrick et al, ZEUS collaboration, Phys Let 1 B 364, 576 (1995)
15 T Ahmed et al; H1 collaboration, Nucl Phys B 439 471 (1995)
16 M Derrick et al, ZEUS collaboration, DESY 94-143 August(1994)
17 M Arneodo et al, NMC, Phys Lett B 364, 107 (1995)
18 M Arneodo et al, NMC, Nucl Phys B 483, 3 (1997)
19 M Virchaux, A Mılsztajn, Phvs Lett B 274221 (1992)
20 L Montanet et al, Particle Data Group (PDG), Phys Rev D 50, 1173 (1994)
21 A D Martm et al, DTP/98/10, RAL-tr-98-029, hepph/9803445 (1998)
22 S Aid et al, Hl collaboration, Nucl Phys B470,3(1996)
23 M Gluck, E Reya A Vogt, Eur Phys J C 5, 461 (1998)
24 R D Ball, S Forte, Phys Lett B 336, 77 (1994)
25 L Mankiewcz, A Saalfeld, T Wergl Phys Lett B 393 175 (1997)
26 A V Kotikov, G Parente, Nucl Phys B 549242 (1999)

REGGE BEHAVIOUR OF STRUCTURE FUNCTION AND GLUON DISTRIBUTION AT LOW-X IN LEADING ORDER

J. K. Sarma* and G. K. Medhi**

Abstract

We present a method to find the gluon distribution from F_{2} proton structure function data at low-x assuming the Regge behaviour of gluon distribution function at this limit. We use the leading order (LO) Altarelli-Parisi (AP) evolution equation in our analysis and compare our result with those of other authors. We also discuss the limitations of Taylor expansion method in extracting gluon distribution from F_{2} structure function use by those authors

Key words : Altarelli Parisi evolution equation, Bjorken variable, gluon distribution.

1. INTRODUCTION

The measurements of the quark (proton and the deuteron) structure functions by Deep Inelastic Scattering (DIS) processes in the low-x region where x is the Bjorken variable have opened a new era in parton density measurements [1]. It is important for understanding the inner structure of hadrons and ultimately of matter. It is also important to know the gluon distribution inside hadron at low-x because gluons are expected to be dominant in this region. On the other hand, gluon distribution can not be measured directly from experiments. It is, therefore, important to measure gluon distribution $G\left(x, Q^{2}\right)$. indirectly from the proton as well as the deuteron structure functions $F_{2}\left(x, Q^{2}\right)$

A few number of papers have already been published $(2-9)$ in this connection. Here we present an alternative method to extract $G\left(x, Q^{2}\right)$ from scaling violations of $F_{2}\left(x, Q^{2}\right)$ with respect to $\ln Q^{2} \partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$. Our method is mathematically more transparent and simpler than those of other authors

2. THEORY

It is shown in the ref. $[2,8]$ that the gluon distribution at low-x can be obtained by analysing the longitudinal structure function. Similarly it is also shown in the ref. [3-7] that this distribution can be calculated from the proton structure function and its scaling violation Moreover in ref. [9] we see that it is also possible to calculate gluon distribution from deuteron structure function and its scaling violation. The basic idea lies on the fact that the scaling violation of quark structure function arises at low-x from the gluon distribution alone

[^1]and does not depend on the quark distribution. Neglecting the quark the AP evolution equation for four flavours $[3,4]$ gives
\[

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha}{9 \pi} \int_{0}^{1-x} G\left(x /(1-x), Q^{2}\right) \cdot P_{q g}(z) d z \tag{1}
\end{equation*}
$$

\]

where the LO splitting function is

$$
\begin{equation*}
P q g(z)=z^{2}+\left(1-z^{2}\right) \tag{2}
\end{equation*}
$$

and α_{0} is the strong coupling conistant.

$$
\text { Now, let } 1-z=y \Rightarrow d z=-d y \text {. Again } z=0 \Rightarrow y=1 \text { and } z=1-x \Rightarrow
$$

$y=x$. Therefore eq. (1) gives

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{2}}{9 \pi} \int_{x}^{1} G\left(x / z, Q^{2}\right) \cdot\left(2 z^{2}-2 z+1\right) d z \tag{3}
\end{equation*}
$$

Now, let us consider the Regge behaviour of gluon distribution [10]

$$
\begin{equation*}
G\left(x, Q^{2}\right)=C \cdot x^{\lambda\left(Q^{2}\right)} \tag{4}
\end{equation*}
$$

where C is a constant and $\lambda\left(Q^{2}\right)$ is the intercept. The Regge behaviour of the structure function $F_{2}(x)$ in the large- Q^{2} region reflects itself in the small- x behaviour of the quark and the antiquark distributions. Thus the Regge behaviour of the sea quark and antiquark distributions for small-x is given by $q_{s e a}(x) \sim x^{-\infty}$ corresponds to a pomeron exchange of intercept $\alpha p=1$. But the valence quark distribution for small-x given by $q_{\text {val }}(x) \sim x^{-\alpha R}$ corresponds to a reggeon exchange of intercept $\alpha_{R}=1 / 2$. Since the same processes lead to gluon and sea quarks distributions in the nucleon, we expect $G(x) \sim 1 / x$. The x-dependence of the parton densities given above are often assumed at moderate- Q^{2}.

Applying eq.(4) in eq. (3) we get

$$
\begin{equation*}
\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\frac{5 \alpha_{x}}{9 \pi} \cdot C \cdot \int_{x}^{1} x^{\lambda\left(Q^{2}\right)} \cdot z^{\lambda\left(Q^{\prime}\right)} \cdot\left(2 z^{2}-2 z+1\right) d z \tag{5}
\end{equation*}
$$

For fixed Q^{2} let $K(x)=\partial F^{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ and $A=5 \alpha_{i} /(9 \pi)$. Thus eq. (5) gives

Taking logarithm and rearranging the terms eq. (6) gives

$$
\begin{gather*}
\lambda=\frac{1}{\ln x}\left[\ln \left\{\frac{2}{\lambda+3}\left(1-x^{\lambda+3}\right)-\frac{2}{\lambda+2}\left(1-x^{\lambda+2}\right)+\frac{1}{\lambda+1}\left(1-x^{\lambda+1}\right)\right\}\right] \\
-\frac{1}{\ln x}[\ln [K(x) /(A . C)] \tag{7}\\
\Rightarrow \lambda-\Phi(\lambda)=0 \tag{8}
\end{gather*}
$$

where $\lambda \equiv \lambda\left(Q^{2}\right)$ and $\Phi(\lambda)$ represents the right hand side of eq. (7). Now, eq. (8) has been solved numerically using iteration method [11] to compute the values of $\lambda\left(Q^{2}\right)$ for different
x-values for a fixed value of Q . Scaling violation of structure function $K(x)=\partial F_{2}\left(x, Q^{2}\right) /$ $\partial \ln Q^{2}$ and strong coupling constant at LO α_{s} are experimental inputs in our computations. C is the only free parameter in our computation. After computation of $\lambda\left(Q^{2}\right)$ we can compute $G\left(x, Q^{2}\right)$ from eq. (4) for different values of the free parameter C and compare our results with those due to other authors.

Now, let us discuss the methods due to other authors. Prytz reported a method to obtain an approximate relation between the unitegrated gluon density and scaling violations of quark structure function at low-x at leading order (LO) [3] as well as at next-to-leading order (NLO) [4]. He expanded $G(x /(1-z))$ of eq. (1) using Taylor expansion at $z=1 / 2$ to obtain the expression [3]

$$
\begin{equation*}
G\left(\frac{x}{1-z}\right) \approx G\left(z=\frac{1}{2}\right)+\left(z-\frac{1}{2}\right) G^{\prime}\left(z=\frac{1}{2}\right)+\left(z-\frac{1}{2}\right)^{2} \frac{G^{\prime \prime}\left(x=\frac{1}{2}\right)}{2} \tag{9}
\end{equation*}
$$

taking upto second order derivative. This expression is then inserted in eq. (1) and after interation one gets

$$
\begin{equation*}
\frac{\partial F_{2}(x)}{\partial \ln Q^{2}}=\frac{5 \alpha_{3}}{9 \pi} \cdot \frac{2}{3} \cdot G(2 x) \tag{10}
\end{equation*}
$$

for fixed Q^{2} which is the main result for $\mathrm{LO}[3]$ analysis. Using a similar method he obtained the formula for NLO[4] analysis

$$
\begin{equation*}
\frac{\partial F_{2}(x)}{\partial \ln Q^{2}}=G(2 x) \cdot \frac{20}{9} \cdot \frac{\alpha_{s}}{4 \pi}\left|\frac{2}{3}+\frac{\alpha_{s}}{4 \pi} \cdot 3 \cdot 58\right|+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \cdot \frac{20}{9} \cdot N\left(x, Q^{2}\right) \tag{11}
\end{equation*}
$$

where $N\left(x, Q^{2}\right)$ is given in ref. [4].
Bora and Choudhury also presented a method[5] to find the gluon distribution from the quark structure function and its scaling violation at low-x using Tayior expansion method. They also expanded $G\left(x /(1-z), Q^{2}\right)$ of eq. (1) using Taylor expansion method about $z=0$ taking only upto first order derivative in the expansion. While expanding they used only first two terms in the infinite expansion series $x /(1-z)=x \sum_{k=0}^{\infty} z^{k}$ to get an expression. This expression is then inserted in eq (1) and after integration one gets

$$
\begin{equation*}
G\left(x_{1}, Q^{2}\right) \sim \frac{9 \pi}{5 \alpha_{s}} \cdot \frac{A(x)+2 B(x)}{[A(x)+B(x)]^{2}} \cdot \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}} \tag{12}
\end{equation*}
$$

at

$$
x_{1}=x+\frac{B(x)}{A(x)+B(x)} \cdot x
$$

Sarma and Medhi also obtained a method [9] to find the gluon distribution from proton and deuteron structure functions and their scaling violations at low-x. They also expanded $G\left(x /(1-z), Q^{2}\right)$ of eq. (1) by using Taylor expansion method taking only upto first order derivative in the expansion. But unlike the Bora and Choudhury method, they considered the whole series $x /(1-z)=x \sum_{k=0}^{\infty} z^{k}$ to get the expresion

$$
\begin{equation*}
G\left(\frac{x}{1-z}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right)=G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} \tag{13}
\end{equation*}
$$

Using this relation in eq. (1) and then integrating one obtains for proton

$$
\begin{equation*}
G\left(x_{p}, t\right)=\frac{9 \pi}{5 \alpha_{s}} \cdot \frac{1}{A(x)} \cdot \frac{\partial F_{2}(x, t)}{\partial t} \tag{14}
\end{equation*}
$$

and for deuteron

$$
\begin{equation*}
G\left(x_{d}, t\right)=\frac{9}{5}\left|K_{1}(x) t \frac{\partial F_{2}^{d}(x, t)}{\partial t}+K_{2} \frac{\partial F_{2}^{d}(x, t)}{\partial x}+K_{3} F_{2}^{\mathrm{d}}(x, t)\right| \tag{15}
\end{equation*}
$$

where $x_{p}=x+B(x) / A(x), x_{d}=x+D(x) / C(x)$ and $t=\ln \left(Q^{2} / \Lambda^{2}\right), \quad \Lambda$ being the QCD at off parameter. Here $A(x), B(x), C(x), D(x), K_{1}(x), K_{2}(x)$ and $K_{3}(x)$ are some functions of x mentioned in ref. [9].

Now, let us discuss the limitation of Taylor expansion method in this regard. Applying Taylor expansion [11] in eq. (1), we get

$$
\begin{align*}
G\left(\frac{x}{1-z}, Q^{2}\right)=G\left(x+x \sum_{k=1}^{\infty} z^{k}, Q^{2}\right) & =G\left(x, Q^{2}\right)+x \sum_{k=1}^{\infty} z^{k} \frac{\partial G\left(x, Q^{2}\right)}{\partial x} \\
+ & \frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} z^{k}\right)^{2} \frac{\partial^{2} G\left(x, Q^{2}\right)}{\partial x^{2}}+O\left(x^{3}\right) \tag{16}
\end{align*}
$$

where $O\left(x^{3}\right)$ are the higher order terms. Here we have $1-x<z<0 \Rightarrow|z|<1$ which implies that $x /(1-z)=x \sum_{k=0}^{\infty} z^{k}$ is convergent. In the previous methods, either the terms beyond second order $[3,4]$ or beyond first order $[5,9]$ derivatives of x are neglected in the expansion series eq. (17). But in actual practice, this type of simplification is not possible because the contributions from the higher order terms can not be neglected due to the singular behaviour of gluon distribution.

There are some other methods also which are not based on Taylor expansion method. Kotikov and Parente presented [7] a set of formulae to extract gluon distribution function from quark structure function and its scaling violation at small-x in the NLO approximation. They considered for singlet quark and gluon parton distributions $p\left(x, Q^{2}\right)$ $\approx x^{-\delta} \delta_{p}\left(Q^{2}\right)$ for Regge-like behaviour and $p\left(x, Q^{2}\right) \approx \exp \left(0.5 \sqrt{\left.\delta_{p}\left(Q^{2}\right) \ln (1 / x)\right)}\right.$ for Doublelogarithmical behaviour [6] where $p \equiv s, g$ and $\delta_{s}\left(Q^{2}\right) \neq \delta_{g}\left(Q^{2}\right)$. Then they put these distributions in AP equations and solved for gluon distribution by standard moment method. Now for Regge-like behaviour, gluon distribution becomes
$g\left(x, Q^{2}\right)=\frac{1.14}{e \alpha(1+26.9 \alpha)}\left|\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+2.12 \alpha F_{2}\left(x, Q^{2}\right)+O\left(\alpha^{2}, x^{1-\delta}\right)\right|$.
for $\delta=0.5$ and number of flavour $f=4$. Again for Double-logarithmical behaviour gluon distribution becomes,

$$
\begin{align*}
g\left(x, Q^{2}\right)=\frac{3}{4 e \alpha} & \frac{1}{(1+26 \alpha(1 / \delta-41 / 13))} \\
& \left|\frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}+O\left(\alpha^{2} x\right)\right| \tag{18}
\end{align*}
$$

A different method for the determination of gluon distribution at small values of x has been proposed by Ellis, Kunszt and Levin[6] based on the solution of AP evolution equations in the moment space upto next-to-next-to leading order (NNLO) In this method quark and gluon momentum densities are assumed to behave as $x^{-u_{0}}$ where w_{0} is a parameter the actual value of which must be extracted from the data Here gluon momentum density for four flavour is

$$
\begin{equation*}
\left.x g\left(x, Q^{2}\right)=\frac{18 / 5}{P^{F G}\left(\omega_{0}\right)} \left\lvert\, \frac{\partial F_{2}\left(x, Q^{2}\right)}{\partial \ln Q^{2}}-P^{F F}\left(w_{0}\right) F_{2}\left(x, Q^{2}\right)\right.\right\} \tag{19}
\end{equation*}
$$

The evolution kernels $P^{F F}$ and $P^{r G}$ calculated in $\overline{M S}$ scheme are expanded upto third order in α s

3. RESULTS AND DISCUSSIONS

We use HERA data taken by $\mathrm{H} 1[12]$ and ZEUS[13] collaborations where the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial l n Q^{2}$ are listed for a range of x values at $Q^{2}=20 \mathrm{GeV}^{2}$ The recent HERA data are parametrized by $\mathrm{H} 1[14]$ and $Z E U S[15]$ collaborations by some approprate functions and we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $Q^{2}=20 \mathrm{GeV}^{2}$ for those functions also We also use parametrizations of the recent New Muon Collaboration (NMC) [16, 17] proton structure function data from a 15 -parameter function from which also we calculate $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ at $40 \mathrm{GeV}^{2}$ Now we apply the values of $\partial F_{2}\left(x, Q^{2}\right) / \partial \ln Q^{2}$ in eq (8) to compute λ numerically by iteration method[6] and hence gluon distribution function $G\left(x, Q^{2}\right)$ for $C=1$ and $C=$ 100 For our calculations strong coupling constant α_{s} was taken from a NLO fit 181 to F_{2} data which yield $\alpha_{s}=0180 \pm 0008$ at $Q^{2} 50 \mathrm{GeV}^{2}$ corresponding to $\Lambda_{\frac{(4)}{(4)}}^{\mathrm{MS}}=0263 \pm$ 0042 GeV and $\alpha_{s}\left(M_{z}{ }^{2}\right)=0113 \pm 0005$ This value of α_{s} agrees with the one given by Particle Data Group (PDG)[19] But in our practical calculations we neglected the errors of α_{s} and A which are rather small

We compare our result with the results of other authors discussed in the theory as well as the recent MRST global fit[20]

In Fig l(a)-Fig $1(\mathrm{~d})$ we present gluon distributions $G(x)$ for different low-x values from NMC proton data parametrization $[16,17]$ at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively for $C=1$ and $C=100$ From the figures it is seen that results are almost same for all Q^{2} values and $G(x)$ are slowly increasing when x decreases loganthmically We also present the MRST global fit[20] result, but its rate of increment is much higher The values of $G(x)$ are higher for $\mathrm{C}=1$ than those for $\mathrm{C}=100$ for a particular value of low-x

In Fig 2(a) and Fig 2(b) we present the gluon distributions $\mathrm{g}(\mathrm{x})$ for different low x values from H1 HERA proton data[12] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ for $\mathrm{C}=1$ and $\mathrm{C}=100$ respectively The middle line in each figure is the result without considering any error in the data The upper and lower lines are the result with data adding and subtracting systematic and statistical errors with the middle values respectively As usual gluon distribution $\mathrm{G}(\mathrm{x})$ increases when x decreases but the whole system of lines in the graphs shifts towards the lower $G(x)$ values when we change from $C=1$ to $C=100$ In the same graphs we also present the $G(x)$ values for MRST global fit[20] which is also increasing towards low-x values but with somewhat lesser rate But for $\mathrm{C}=100$ our $\mathrm{G}(\mathrm{x})$ values come in the range of this fit

In Fig 3 we present the gluon distributions $\mathrm{G}(\mathrm{x})$ for H1 HERA proton parametrization[14] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $\mathrm{C}=1$ and $\mathrm{C}=100$ respectively Gluon distribution $G(x)$ is increasing when x is decreasing, but the line in the graph shifts towards the lower $\mathrm{G}(\mathrm{x})$ values when we change from $\mathrm{C}=1$ to $\mathrm{C}=100$ In the same graph we present the $G(x)$ values for MRST global fit $[20]$ which is also increasing towards low-x values with somewhat lesser rate But for $\mathrm{C}=100$ our $\mathrm{G}(\mathrm{x})$ values are closer to this fit

In Fig 4(a) and Fig 4(b) we present the gluon distributions G(x) ZEUS HERA proton data[13] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $\mathrm{C}=1$ and $\mathrm{C}=100$ respectively The descriptions and the results are same as H1 HERA data[12] depicted in Fig 2(a) and Fig 2(b) respectively

In Fig 5 we present the gluon distributions $G(x)$ for ZEUS HERA proton parametrization[15] at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $C=1$ and $\mathrm{C}=100$ The descriptions and the results are same as H1 HERA parametrization[14] depicted in Fig 3

In Fig 6 we present the value of λ (Lambda) for H1 HERA proton datal 12] for low, middle and high values of them at $Q^{2}=20 \mathrm{GeV}^{2}$ for different low-x values for $\mathrm{C}=1$ and $\mathrm{C}=100$ For $\mathrm{C}=1$, all the graphs are almost parallel and λ-values tend to ~ 05 at low-x For $\mathrm{C}=100$ for all the graphs λ-values tend to ~ 00 from some negative values at low x

In Fig 7, we present the λ-values for ZEUS HERA proton data[13] in the same way as in Fig 6 For $\mathrm{C}=1$, for all the graphs λ-values tend to ~ 05 as we approach lower x from some slightly higher values in comparatively higher-x On the other hand for $\mathrm{C}=100$, for all the graphs λ-values tend to ~-01 as we approach lower-x from some slightly lower negative values in comparatively higher-x

If Fig 8, we compare our results for Hera H 1 data (middle value only) [12] at $Q^{2}=$ $20 \mathrm{GeV}^{2}$ for $\mathrm{C}=1$ and $\mathrm{C}=100$ with those of Bora and Choudhury [5] and Prytz[3] In the same Fig we also present the result for MRST global fitt[20] For all the cases gluon distrbution $\mathrm{G}(\mathrm{x})$ is increasing when x is decreasing but with different rates The rates of increment in our result for $\mathrm{C}=1$ is highest and in MRST, lowest But our result with $\mathrm{C}=100$ is very close with that of Bora and Choudhury and also inside the range of MRST

4. SUMMARY AND CONCLUSION

In this method we present an alternative method to extract gluon distribution $G\left(x, Q^{2}\right)$ from the scaling violation of proton structure function $\partial F_{2}(x) / \partial l_{n} Q^{2}$ at low-x We compare our result with those of other methods due to Bora and Choudhury[5] and Prytz[3], and with a global fit due to MRST[20] Gluon distribution will increase as usual when x decreases with different rates for the different values of the parameter $\mathrm{C}=1$ nd $\mathrm{C}=100$ But our graph with $\mathrm{C}=100$ is very close to that due to Bora and Choudhury and the global fit due to MRST

We discussed the limitations of Taylor expansion method[11] in calculating gluon distribution from scaling violation of structure function at low-x Prytz in both LO[3] and $\mathrm{NLO}[4]$ and Bora and Choudhury in LO[5] used this method to extract gluon distribution from scaling violation of structure function at low-x in a slightly different way But all these authors neglected the higher order terms in the Taylor expansion series which is not a good approximation for a singular behaviour of gluon distribution at low-x because the contrbutions from the higher order terms in the series are not negligible Sarma and Medhi \{9] used this method in an improved way with less number of approximations, yet the basic approximation of neglecting higher order terms in the expansion series could not be avoided On the other hand in Kotikov and Parente method $[7,8]$ also the authors approximated their results by neglecting some higher order terms Moreover their method is to some extent complicated Again Ellis, Kunszt and Levin method[6] is also not more developed than other methods Though their analysis is upto NNLO, the kernels are parameter dependent and its x-ranges are lower than HERA region In the present method of course we use a free parameter C , yet the other ambiguities due to the approximation of the Taylor expansion series can be avoided. Moreover our method is a very simple one

We can use this method by assuming the Double-logarithmical behaviour[7] of gluon distribution at low-x also The present procedure is an LO analysis only But there is possibility to extend this method to NLO or higher to have more accurate results

ACKNOWLEDGEMENT

One of us (JKS) is very much grateful to Professor Dr R Ramachandran for provpding necessary facilities in IMSC, Chennai where most of the work was done. He is also grateful to DST, New Delhi for a SERC visiting fellowship in IMSC, Chennai

Fig.1(a) : from NMC proton parametrization at $\mathrm{Q}^{2}=40 \mathrm{GeV}^{2}$

Fig. 1(a) : Gluon distribution $G(x)$ by our method from NMC proton parametrization[16] 17] at $\mathrm{Q}^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectuvely with $\mathrm{C}=1$ and $\mathrm{C}=100$ In the same figure we include a global fit by MRST[20]

Fig. 1 (b) : Gluon from NMC proton parametrization at $\mathrm{Q}^{2}=60 \mathrm{GeV}^{2}$

Fig. 1 (b) : Giuon distributinn $G(x)$ by our method from NMC proton parametrization[16] 17] at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively with $\mathrm{C}=1$ and $\mathrm{C}=100$ In the same figure we include a global fit by $\operatorname{MRST}[20$)

Fig.1(c) : Gluon from NMC proton parametrization at $Q^{2}=80 \mathrm{GOV}^{2}$

Fig. 1(c) : Gluon distribution $G(x)$ by our method from NMC proton parametrization 16$] 171$ at $\mathrm{Q}^{2}=4060.86$ and $100 \mathrm{GeV}^{2}$ respectively with $\mathrm{C}=1$ and $\mathrm{C}=100$ In the same figure we include a global fit by MRSM20,

Fig.1(d) : Gluon from NMC proton parametnzation at $\mathrm{Q}^{2}=100 \mathrm{GeV}^{2}$

Fig. 1(d) : Gluon distribution $G(x)$ by our method from NMC proton parametrization[16] 17] at $Q^{2}=40,60,80$ and $100 \mathrm{GeV}^{2}$ respectively with $C=1$ and $C=100$ In the same figure we include a global fit by MRST[20]

Fig. 2 (a) : Gluon from H1 HERA proton data at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}(\mathrm{C}=1)$

Fig.2(a) : Gluon distribution $G(x)$ by our method from H1 HERA proton datal 121 at $Q^{\prime}=20 \mathrm{GeV}^{2}$ with $C=1$ and $C=100$ respectively Here we present the results for the data (i) without considering the error (middle), (ii) adding algebrically statistical and systematic errors (high) and (iii) substracting algebrically statistical and systematic errors(low) In the same figure we include a global fit by MRST[20].

Fig. 2 (b) : Gluon from H1 HERA proton data at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}(\mathrm{C}=100)$

Fig.2(b) : Gluon distribution $G(x)$ by our method from H1 HERA proton datal12] at $Q^{2}=20 \mathrm{GeV}^{2}$ with $C=1$ and $C=100$ respectively Here we present the results for the data (1) without considering the error (middle), (il) adding algebrically statistical and systematic errors (high) and (iil) substracting algebrically statistical and systematic errors(low) in the same figure we include a global fit by MRST[20;

Fig. 3 : Gluon from H1 HERA proton parametrization at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 3 : Gluon distribution $G(x)$ by our method from H1 HERA proton data parametrization(14) at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$ with $\mathrm{C}=1$ and $C=100$ In the same figure we include a global fit by MRST[20]

Fig.4(a) : Gluon from ZEUS HERA proton data at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}(\mathrm{C}=1)$

Fig.4(a) : Same result as in Fig.2(a)-2(b) respectively from ZEUS HERA proton data(13) at $Q^{2}=20 \mathrm{GeV}^{2}$.

Fig. 4 (b) : Gluon from 2EUS HERA proton data at $Q^{2}=20 \mathrm{GeV}^{2}(\mathrm{C}=100)$

Fig.4(b): Same result as in Fig 2(a)-2(b) respectively from 2EUS HERA proton data[13] at $Q^{2}=20 \mathrm{GeV}^{2}$

Fig. 5 : Gluon from ZEUS HERA proton parametrization at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 5 : Same result as in Fig 3 from ZEUS HERA proton data parametrization $[15]$ at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 6 : Lambda for H1 HERA proton data at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 6 : λ-values by our method from H1 HERA proton datal12] at $Q^{2}=20 \mathrm{GeV}^{2}$ with $\mathrm{C}=1$ and $\mathrm{C}=100$ Here we present the results for the data (i) without considering the error(middle), (i) adding algebrically statistical and systematic errors (high) and (in) substracting algebrically statistical and systematic errors (low)

Fig. 7 : Lambda for 2EUS HERA proton data at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 7 : Same result as in Fig 6 from ZEUS HERA proton data[13] at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 8 : Comparison of Gluon by different authors for HERA H1 data (middle value) at $\mathrm{Q}^{2}=20 \mathrm{GeV}^{2}$

Fig. 8 : Comparison of gluon distribution $\mathrm{G}(\mathrm{x})$ from H1 HERA proton datal 12] by our method for $\mathrm{C}=1$ and $\mathrm{C}=100$ with those by other methods due to Bora and Choudhury[5] and Prytz(3) In the same figure, we include a global fit by MRST[20)

REFERENCES

[1] See for example, W Buchmuller and G Inglelman, eds, Proc Workshop 'Physics at HERA', Hamburg (1991)
[2] A M Copper Sarkar et al, 2 Phys C39 (1988) 281
[3] K Prytz, Phys Lett B311 (1993)286
[4] K Prytz, Phys Lett B332 (1994)393
[5] Kalpana Bora and DK Choudhury, Phys Lett B354 (1995)151
161 RK Ellis, 2 Kunszt and EM Levin, Nucl Phys B420 (1994) 517
[7] AV Kotikov, G Parente, Phys Lett B379 (1996) 195
[8] AV Kotikov, Phys Rev D49 (1994) 5746
[9] JK Sarma and GK Medhı, TU/THEP-198 (1998)
[10] PK B Collıns, 'An Introduction to Regge Theory and High-Energy Physics', Cambridge University Press, Cambridge (1977)
[11] JB Scarborough Numerical Mathematıcal Analysıs, John Hopkıns Press, Baltımore (1996)
[12] S Aid et al, H1 collaboratıon, Phys Lett B354(1995)494
[13] M Derrick et al, ZEUS collaboratıon, Phys Lett B364(1994)576
[14] T Ahmed et al, H1 collaboration, Nucl Phys B439(1995)471
[15] M Derrick et al, ZEUS collaboration, DESY 94-143, August, (1994)
[16] M Arneodo et al, NMC, Phys Lett B364(1997)107
[17] M Arneodo et al, NMC, Nucl Phys B483(1997)3
[18] M Virchaux and A Milsztajan, Phys Lett B274(1992)221
[19] L Motanet et al , Particle Data Group (PDG), Phys Rev D50(1994)1173
[20] A D Martin et al, DTP/98/10, RAL tr-98 029, hep-ph/9803445(1998)

t and x-evolutions of gluon structure functions at low- x

D.K. CHOUDHURY, *G.K. MEDHI and **J.K. SARMA ${ }^{\dagger}$

Department of Physics, Gauhati University, Guwahati 781014

- Department of Physics, Birjhora Mahavidyalaya, Bongaigaon
"•Department of Electronics Science, Gauhati University, Guwahati 781014

Abstract

We obtain x and t-evolutions of gluon structure function at low- x from Altarelli-Parisi equation. Comparison is made with the prediction of Lipatov as well as GLR equations. We also make predictions for the HERA range.

Keywords. Structure function, Altarelli-Parisi equations, low-x.

1. In a recent letter [J.K. Sarma and B. Das, 1993] the t-evolutions of non-singlet and singlet structure functions [L.F. Abbot, W.B. Atwood and R.N. Barnett, 1980] have been reported. The same technique can be applied to the Altarelli-Parisi (AP) equation [G. Altarelli and G. Parisi, 1977] for the gluon structure function to obtain t as well as x-evolution of gluon at low- x.

The AP equation for the gluon structure function has the standard form [L.F. Abbot, W.B. Atwood and R.N. Barnett, 1980]

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{\left(\frac{11}{12}-\frac{N_{f}}{18}+\ln (1-x)\right) G(x, t)+I g\right\}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
I_{g}= & \int_{x}^{1} d w\left[\frac{w G(x / w, t)-G(x, t)}{1-w}+\left(w(1-w)+\frac{1-w}{w}\right) G(x / w, t)\right. \\
& \left.+\frac{2}{9}\left(\frac{1+(1-w)^{2}}{w}\right) F_{2}^{s}(x / w, t)\right] \tag{2}
\end{align*}
$$

$t=\ln \left(Q^{2} / \Lambda^{2}\right)$,

$$
A_{f}=\frac{36}{33-2 N_{f}}
$$

N_{f} being the number of flavour.

[^2]For small-x and high- Q^{2}, gluon is expected to be more dominant than the sea [F.J. Yadurain, 1983]. For lower- $Q^{2}\left(Q^{2} \approx \Lambda^{2}\right)$, however, there is no such clear cut distinction between the two. For simplicity, we therefore; assume identical t dependence for both:

$$
\begin{equation*}
G(x, t)=K F_{2}^{*}(x, t) \tag{3}
\end{equation*}
$$

where, K is a parameter to be determined from experiments. This results in

$$
\begin{align*}
I_{،}= & \int_{x}^{1} d w\left[\frac{w G(x / w, t)-G(x, t)}{1-w}+\left(w(1-w)+\frac{1-w}{w}\right) G(x / w, t)\right. \\
& \left.+\frac{2}{9 k}\left(\frac{1+(1-w)^{2}}{w}\right) G(x / w, t)\right] \tag{4}
\end{align*}
$$

Let us introduce the variable

$$
\begin{equation*}
u=1-w \tag{5}
\end{equation*}
$$

and note that [I.S. Granshteyn and I.M. Ryzhik, 1965]

$$
\begin{equation*}
\frac{x}{1-u}=x \sum_{k=0}^{\infty} u^{k} \tag{6}
\end{equation*}
$$

The series (6) is convergent for $|u|<1$. Since $x<w<1$, so $0<u<1-x$ and hence the convergence criterion is satisfied. Using (6) we can rewrite $G(x / w, t)$ as [L.A. Pipes and L.R. Harvill, 1970]

$$
\begin{align*}
G(x / w, t) & =G\left(x+x \sum_{k=1}^{\infty} u^{k}, t\right) \\
& =G(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial G(x, t)}{\partial x}+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} G(x t)}{\partial x^{2}}+\ldots \tag{7}
\end{align*}
$$

which covers the whole range of $u, 0<u<1-x$. Neglecting higher order terms $o\left(x^{2}\right), G(x / w, t)$ can then be approximated for small- x as

$$
\begin{equation*}
G(x / w, t) \approx G(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial G(x, t)}{\partial x} \tag{8}
\end{equation*}
$$

Putting (5) and (8) in (4) and performing u-integrations we obtain

$$
\begin{equation*}
I_{4}=R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x} \tag{9}
\end{equation*}
$$

where we have used the identity [I.S. Granshteyn and I.M. Ryzhik, 1965]

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{u}{k}=\ln \frac{1}{1-u} \tag{10}
\end{equation*}
$$

and where.

$$
\begin{align*}
R(x)= & -\left\{\left(1+\frac{2}{9 K}\right)(1-x)+\left(-\frac{1}{2}+\frac{1}{9 K}\right)(1-x)^{2}+\frac{1}{3}(1-x)^{3}\right. \\
& \left.+\left(1+\frac{4}{9 K}\right) \ln x\right\} . \tag{11}\\
S(x)= & x\left\{\left(1+\frac{4}{9 K}\right) \frac{1}{4}+\left(2+\frac{4}{9 K}\right)(1-x)+\frac{1}{9 K}(1-x)^{2}+\frac{1}{3}(1-x)^{3}\right. \\
& \left.+\left(2+\frac{8}{9 K}\right) \ln x-1-\frac{4}{9 K}\right\} \tag{12}
\end{align*}
$$

Using (9) in (1) we get.

$$
\begin{aligned}
& \frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{\left(\frac{11}{12}-\frac{N_{f}}{8}\right)+\ln (1-x) G(x, t)\right. \\
&\left.+R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x}\right\}=0
\end{aligned}
$$

which gives.

$$
\begin{equation*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\left\{P(x) G(x, t)+Q(x) \frac{\partial G(x, t)}{\partial x}\right\}=0 \tag{1:3}
\end{equation*}
$$

where.

$$
\left.\begin{array}{l}
P(x)=\left(\frac{11}{12}-\frac{N_{1}}{18}\right)+\ln (1-x)+I P(x) \tag{14}\\
Q(x)=S(x)
\end{array}\right\}
$$

The general solution of (13) is [I. Sneddon. 1957]

$$
\begin{equation*}
F(U, V)=0 \tag{15}
\end{equation*}
$$

where, F is an arbitrary function and

$$
\left.\begin{array}{rll}
U(x, t, G) & =C_{1} \tag{16}\\
V(x, t, G) & =C_{2}
\end{array}\right\}
$$

form a solution of the equations

$$
\begin{equation*}
\frac{d x}{A_{f} Q(x)}=\frac{d t}{-t}=\frac{d G}{-A_{f} P(x) G(x, t)} \tag{17}
\end{equation*}
$$

Solving (17) one obtains.

$$
\begin{equation*}
U(x, t, G)=t \exp \left[\frac{1}{A_{f}} \int \frac{d x}{Q(x)}\right] \tag{18}
\end{equation*}
$$

and.

$$
\begin{equation*}
V(x, t, G)=G(x, t) \exp \left[\int \frac{P(x)}{Q(x)} d x\right] \tag{19}
\end{equation*}
$$

It thus has no unique solution. The simplest possibility is that a linear combination of U and V is to satisfy (15) so that

$$
\begin{equation*}
A_{\imath} U+B_{q} \bar{B}=0 \tag{20}
\end{equation*}
$$

where A_{y} and B_{q} are arbitrary constants Putting the values of U and V in (20) we obtain

$$
\begin{equation*}
G(x, t)=-\frac{A_{g}}{B_{\vartheta}} t \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right] \tag{21}
\end{equation*}
$$

2(a). Defining,

$$
\begin{equation*}
G\left(x, t_{0}\right)=-\frac{A_{q}}{B_{g}} t_{0} \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right] \tag{22}
\end{equation*}
$$

One gets,

$$
\begin{equation*}
G(x, t)=G\left(x, t_{0}\right)\left(t / t_{0}\right) \tag{23}
\end{equation*}
$$

which gives the t-evolution of gluon structure function $G(x, t)$.
2(b). Again defining,

$$
\begin{equation*}
G\left(x_{0}, t\right)=-\frac{A_{g}}{B_{g}} t \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]_{r=x_{0}} \tag{24}
\end{equation*}
$$

one obtains,

$$
G(x, t)=G\left(x_{0}, t\right) \exp \left[\int\left\{\frac{1}{A_{f} Q(x)}-\frac{P(x)}{Q(x)}\right\} d x\right]
$$

which determines the x-evolution of gluon structure function $G(x, t)$
3. We can perform the integration inside the exponential in the equation (25) wit further approximation that $\ln (1-x) \rightarrow 0$ and $x \ln x \rightarrow 0$ for very small- $x, x \rightarrow($ Then we get from (14),

$$
\left.\begin{array}{rl}
P(x)= & \left.\left.\left(\frac{11}{12}-\frac{N_{1}}{18}\right)-\left(1+\frac{2}{0 K}\right)(1-x)-\left(-\frac{1}{2}+\frac{1}{9 K}\right)\right) 1-2 x\right) \\
& -\frac{1}{3}(1-3 x)-\left(1+\frac{4}{9 K}\right) \ln x, \\
d Q(x)= & \left(1+\frac{4}{9 K}\right)+\left(2+\frac{4}{0 K}\right) x+\left(\frac{5}{0 K}+\frac{x}{3}\right)-\left(x+\frac{4}{0 K} x\right),
\end{array}\right\}
$$

when we have neglected the square and higher terms of x.
Putting the values of $P(x)$ and $Q(x)$ from (26) in (25) and performing th integrations analytically we get,

$$
\begin{align*}
G(x, t)= & G\left(x_{0}, t\right) \exp \left[-\frac{1}{b}(1+d+2 e)\left(x-x_{0}\right)\right]\left(\frac{x}{x_{0}}\right)^{-\frac{g}{b} \ln a} \times\left\{\frac{(a+b x)^{\ln r}}{\left(a+b x_{0}\right)^{\ln r_{0}}}\right\}^{i} \\
& \times\left(\frac{a+b x}{a+b x_{0}}\right)^{\left\{-\frac{1}{b}-\left(\frac{1}{3}-\frac{1}{1_{j}}+C_{f}-d^{-}-\rho\right)+\frac{o}{b}(1+d+2 e)\right\}}
\end{align*}
$$

where,

$$
\left.\begin{array}{rl}
a & =1+\frac{4}{9 K}, \\
b & =\frac{4}{3}+\frac{1}{9 K}, \\
C_{f} & =\frac{11}{12}-\frac{N_{f}}{18}, \tag{28}\\
d & =1+\frac{2}{9 K}, \\
\text { and } \quad e & =-\frac{1}{2}+\frac{1}{9 K} .
\end{array}\right\}
$$

4. Instead of neglecting the higher order terms $o\left(x^{2}\right)$ from the equation (7) as is done in (8), let us retain the second order terms of Taylor expansion series (7) and neglect higher order terms $o\left(x^{3}\right) ; G(x / w, t)$ can then be approximated for small- x as [L.A. Pipes and L.R. Harvill. 1970]

$$
\begin{equation*}
G(x / u, t) \simeq G(x, t)+x \sum_{h=1}^{\infty} u^{k} \frac{G(x, t)}{x}+\frac{1}{2} x^{2}\left(\sum_{h=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} G(x, t)}{\partial x^{2}} \tag{29}
\end{equation*}
$$

Putting (5) and (29) in (4) and performing u-integrations we obtain.

$$
\begin{equation*}
I_{4}=R(x) G(x, t)+S(x) \frac{\partial G(x, t)}{\partial x}+T(x) \frac{\partial^{2} G(x, t)}{\partial x^{2}} \tag{30}
\end{equation*}
$$

where $R(x)$ and $S(x)$ are defined by equations (11) and (12) respectively and $T(x)$ is given by,

$$
\begin{align*}
& T(x)=\frac{1}{2} x^{2} \int_{0}^{1-r}\left(\sum_{h=1}^{\infty} u^{k}\right)^{2}\left(u(1-u)+\frac{u}{1-u}+\frac{1-u}{u}\right. \\
&\left.+\frac{2}{9 K} \frac{1+u^{2}}{1-u}\right) d u \tag{31}
\end{align*}
$$

It does not need to calculate explicitly the value of $T(x)$ as a function of x for the reason which will be clear shortly. Using (30) in (1) we get,

$$
\begin{align*}
\frac{\partial G(x, t)}{\partial t}-\frac{A_{f}}{t}\{P(x) G(x, t) & +Q(x) \frac{\partial G(x, t)}{\partial x} \\
& \left.+T(x) \frac{\partial^{2} G(x, t)}{\partial x^{2}}\right\}=0 \tag{32}
\end{align*}
$$

where $P(x)$ and $Q(x)$ are defined by equation (14).
The equation (32) is a second order partial differential equation which can be solved by Monge's method [I. Sneddon. 1957]. According to this method the solution of second order partial differential equation

$$
\begin{equation*}
R r+S s+T t=V \tag{33}
\end{equation*}
$$

can be obtained from the subsidiary equations
and $\quad R d p d y+T d q d x-V d x d y=0,0, ~(\}$
where R, S, T, V are functions of x, y, z, p and q. Here z, p, q, r, s and t are defined as follows:

$$
\begin{array}{ll}
Z=z(x, y), \quad p=\frac{\partial z}{\partial x}, \quad q=\frac{\partial z}{\partial y}, \quad r=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial p}{\partial x} \\
S=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}, \quad t=\frac{\partial^{2} z}{\partial y^{2}},=\frac{\partial q}{\partial y}
\end{array}
$$

Comparing equation (32) with (33) we get,

$$
\left.\begin{array}{rl}
R & =A_{f} Y(x) \\
S & =0 \\
T & =0, \tag{35}\\
V & =t \frac{\partial G(x t)}{\partial t}-A_{f} Q(x) \frac{\partial G(r, t)}{\partial x}-A_{f} P(x) G(x, t)
\end{array}\right\}
$$

Substituting the values of R, S, T and V in subsidiary equations we obtain ultimately $V=0$, which gives

$$
t \frac{\partial G(x, t)}{\partial t}-A_{f} Q(x) \frac{\partial G(x, t)}{\partial x}-A_{f} P(x) G(x, t)=0
$$

which is exactly the equation (13). This equation is solved earlier and now it is clear that the introduction of the second order terms does not modify the solutions (23) or (25).

Fig. 1. Q^{2}-evolutions of $G\left(x, Q^{2}\right)$ from the equation (23). Arbitrary inputs $G\left(x, Q^{2}\right)=1,2$ and 3 are taken for $x=x_{1}, x_{2}$ and x_{3} respectively.

Fig. 2. x-evolutions of $G\left(x, Q^{2}\right)$ from the equation (25) (solid lines) and from equation (27) (dashed lines). Arbitrary inputs $G\left(x_{0}, Q^{2}\right)=10$ for $Q^{2}=Q_{1}^{2}$ is taken. K or $K^{\prime \prime}=0.01,0.1,1,10$ and 100.
5. We have presented our results qualitatively in Fig. 1 and Fig. 2. In Fig. 1 the result of t or Q^{2}-evolutions of $G\left(x, Q^{2}\right)$ from the equation (23) is given. We have taken wbitrary inputs $G\left(x, Q_{0}^{2}\right)=1,2$ and 3 for $x=x_{1}, x_{2}$ and x_{3} respectively Similarly in Fig. 2 the results of x-evolutions of $G\left(x, Q^{2}\right)$ from the equation (25) (solid lines) and from the equations (27) (dashed lines) are presented. Integration in the equation $125)$ is computed numerically. We have taken arbitrary inputs $G\left(x_{0}, Q^{2}\right)=10$ for $Q^{2}=Q_{1}^{2}$ for both the sets. Different lines are due to different K-values, $K=0.01$. (1) 1,10 and 100 indicated in the Fig. 2 for the dashed graphs. K-values are labolled as K^{\prime} for convenience It is clear from the figures that evolutions of gluon structure functions $G\left(x, Q^{2}\right)$ depend upon inputs $G\left(x, Q_{0}^{2}\right)$ or $G\left(x_{0}, Q^{2}\right)$ and also upon K^{2}-values. Moreover, AP and GLAP or $G\left(x, Q^{2}\right), x G\left(x, Q^{2}\right), g\left(x, Q^{2}\right)$ and $u \eta\left(c, Q^{2}\right)$ are equivalent here.

EHLQ [E. Eichten, Z. Hinchliffe, K. Lane and C. Quigg, 1984] begin with input distributions inferred from experiment at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$ and integrate the evolution
equation numerically. They started with the data of CDHS neutrino experiment [H. Abramowicz et al. 1983] at CERN. Gluon distribution is determined indirectly and parametrized as

$$
x G\left(x, Q_{0}^{2}\right)=(2.62+9.17 x)(1-x)^{59}
$$

with $R=\sigma_{L} / \sigma_{T}=0.1$ and $\Lambda=200 \mathrm{MeV}$ at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$. This is set-1. Under the assumption that $R=\sigma_{L} / \sigma_{T}$ has the behaviour prescribed by QCD, gluon is parametrized as

Fig.3(a) and Fig. 3(b). Q^{2}-evolutions of $x G\left(x, Q^{2}\right)$ for EHLQ Set-1 and Set-2 respectively (dashed lines) for $x=10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4}. Results from equation (23) (solid lines) are also given for same values of x. Inputs are taken from the corresponding valucs at $10 G e v^{2}$ from the parametrization.
with $\Lambda=290 \mathrm{MeV}$ at $Q_{0}^{2}=5 \mathrm{GeV}^{2}$. This is set-2. The calculated Q^{2} dependence of $x G\left(x, Q^{2}\right)$ for set-1 is shown in Fig. 3(a) by dashed lines for x values $10^{-1}, 10^{-2}, 10^{-3}$
and 10^{-4} as indicated in the figure. The expected growth of the distributions at small- x is apparent. Our results from the equation (23) are given in the figure by solid lines for the same values of x. Inputs are taken from the corresponding values at, $10 \mathrm{GeV}^{2}$ from the parametrization. The corresponding result for set-2 is shown in Fig. 3(b). Again to explore the uncertainties in the small-x region EHLQ consider two modifications of set-1 as follows:

$$
x G\left(x, Q_{0}^{2}\right)=(2.62+9.17 x)(1-x)^{59}, x>0.01
$$

and

$$
x G\left(x, Q_{0}^{2}\right)=\left\{\begin{array}{l}
\left(0.444 x^{-1) 5}-1.886\right. \tag{a}\\
25.56 x^{0.5}
\end{array}\right.
$$

for $x<0.01$.

Fig. 4(a) and Fig. 4(b). Q^{2}-evolutions of $x G\left(x, Q^{2}\right)$ for EHLQ Set-1(a) and Set-1(b) respectively (dashed lines) for $x=10^{-2}, 10^{-3}$ and 10^{-4} alongwith the corresponding predictions (solid lines) from equation (23) as indicated in Fig. 3(a) and Fig. 3(b).

The results of these changes are presented in Fig. 4(a) and Fig. 4 (b) for set-1(a) and set-1(b) respectively for $x=10^{-2}, 10^{-3}$ and 10^{-4} alongwith our corresponding predictions.

DFLM [M. Diemoz, F. Ferroni. E. Long, G. Martineli. 1986;1988] also proceed in the same manner to parametrize the data from the nutrino expreiments BEBC' 85 [D. Alasia et al, 1985] CCFRR'83 [D. MacFarlane et al, 1983] CHARM'83 [F. Bergsma ct al. 1983] and CDHS'83 [H. Abramowicz et al, 1983] at $Q_{0}^{2}=10 \mathrm{GeV}^{2}$. For the set DFLM-2 they consider gluon function to be

$$
x G\left(x, Q^{2}\right) \sim(1-0.18 x)(1-x)^{5,166}
$$

with $\lambda_{\overline{\mathrm{MS}}}=300 \mathrm{MeV}$. Here the next to leading order QCD calculation is performed. The result is given in the figure for $x=10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4} by dashed lines. Our result from the equation (23) is given by solid lines taking inputs as before.

The role of absorptive corrections in the small-x behaviour of deep inelastic gluon structure functions $x G\left(x, q^{2}\right)$ is widely discussed now [A. Ali and J. Bartels. 1991] due to the new generation of accelerators HERA [A. Ali, J. Bartels 1991 and F Eisale and F.W. Brasse 1992] LHC [G. Jarlskog and D. Rein 1990] SSC [J.H. Mullvey 1987] etc. Kim and Ryskin estimated [V.T. Kim and M.G. Ryskin 1991] the non-linear absorption corrections with the parametrization used in semihard phenomenology [E.M. Levin and M.G. Ryskin, 1990]. As non-linear absorption effect are essentially at very small-x only [L.V. Gribov. E.M. Levin and M.G. Ryskin 1983]. they decided to use the standard GLAP equation [G. Altarelli and G. Parisi 1977; V:N. Gribov and L.N. Lipatov 1972; Yu.L. Dokshitzer 1977| in region of interest $\left(x>10^{-6}, q^{2}<10^{5} \mathrm{GeV}^{2}\right)$ i.e. $x>x_{0}\left(q^{2}\right)$ where $\ln x_{0}=(1 / 12.7) \ln ^{2}\left(q^{2} / \Lambda^{2}\right)$. But in this case they are to add a new boundary condition

$$
\begin{equation*}
x G\left(x, q^{2}\right),=a q^{2} \tag{A}
\end{equation*}
$$

on the line $x=x_{0}\left(q^{2}\right)$, where $a=x_{0} G\left(x_{0}, q^{2}\right) q^{2}$, which is fixed by the initial condition

$$
\begin{equation*}
x G(x)=A\left(1-x^{3}\right) x^{-w_{0}} \tag{B}
\end{equation*}
$$

at, $q_{4}^{2}=4 \mathrm{GeV}^{2}$. The coefficient A is fixed by the normalization $\int x G(x) d x=0.55$ and $u_{0}=(1 / \pi) N_{c} \alpha_{s}\left(q_{9}^{2}\right) \times 4 \ln 2$ corresponds to the QCD pomeron singularity given by the summation of leading-log contributions $\left(\alpha_{s} \ln \frac{1}{s}\right)^{n}[25], N_{r}=3$ be the number of colours Absorption corrections reveal itself due to this new boundary condition. Kim and Ryskin obtain numerical solution of linear GLAP equation. The boundary condition corresponds to a strong correlation between gluons inside the proton. Gluons group in a small " h-', spots" [E.M. Levin and M.G. Ryskin 1990; A.H. Muller and J. Qiu 1986] with radius $R, \sim 0.2 \mathrm{Fm}(x=1 / 3)$. If gluons are distributed uniformly inside the proton the screening would be smaller and non-linear effect reveals itself at smaller x. For this case $R_{s} \sim 0.7 \mathrm{Fm} \sim R_{n 1}\left(x_{0}=0.0035\right)$. In the Fig. $6(a)$ the x dependence of gluon structure functions $x G\left(x, q^{2}\right)$ at $q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ is given by the curves $1,4,7,2,5,8$ and $3,6,9$ respectively. Solid
curves are the ordinary linear GLAP evolution; long dashed curves take into account the absorption corrections through the new boundary condition (A) for $R, \sim 0.2$ Fm. Short dashed is the same for $R_{s} \sim R_{n}$. Here $\Lambda=200 \mathrm{MeV}$. In the Fig. 6(b) the differcuce between linear (solid curves) GLAP and non linear (dashed curves) GLR [L.V. Gribov and E.M. Levin; M.G. Ryskin 1983] evolution is given. The curves 1. 4: 2. 5 and 3,6 correspond to $Q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ respectively. The new and old initial conditions (A) and (B) at $q_{s}^{2}=4 \mathrm{GeV}^{2}$ are shown by dotted and dot-dashed curves, respectively. Here $\Lambda=200 \mathrm{MeV}$. In both the figures, the shaded areas are our predictions from the equation (25) with upper and lower boundaries corresponding to $K=1$ and 100 respectively. In both cases glnon distribution fiunctions $x G\left(x_{0} Q^{2}\right)$ for linear GLAP equation at $x_{0}=10^{-2}$ are taken as inputs: becansr. it is almost same for all curves.

Fig. 5. Q^{2}-evolutions of $x G\left(x, Q^{2}\right)$ for DFLM 2 (dashed lines) for $x=10^{-1}$. $10^{-2} \cdot 10^{-3}$ and 10^{-4} alongwith the corresponding predictions (solid lines) from equation (23) as indicated in Fig. 3(a) and Fig. 3(b).

In the leading $\log (1 / x) \quad[\operatorname{LL}(1 / x)\}$ approximation of $Q C D$ it is expected that the gluon distribution will grow indefinitely as

$$
\begin{equation*}
x g\left(x, Q^{2}\right) \sim x^{-\lambda} \tag{C}
\end{equation*}
$$

in the small- x limit [J. Kwiecinski, A.D. Martin and P.J. Sutton 1991] with $\lambda \simeq 0.5$. This increase with decreasing x. will of course eventually be tamed by screening corrections which give rise to non-linear terms in the QCD evolution equations. The approximate framework is provided by the Lipatov equation [Ya.Ya. Balitskij and L.N. Lipatov 1978; S. Catani, F. Fiorani, G. Marchesini and G. Oriani 1990] with the addition of the non-linear shadowing term. This is known as 'GLR' equation. The radius parameter R in the shadowing term characterises the area πR^{2} in which the gluons are concentrated within the proton. We would expect R to be approximately equal to the radius of the proton i.e. $R \simeq 5 \mathrm{GeV}^{-1}$, although it has been argued that

Fig. 6(a) x-evolutions of ${ }^{\prime} x G\left(x, q^{2}\right)$ at $q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ are given by curves $1,4,7 ; 2,5,8$ and $3,6,9$ respectively. Solid curves are GLAP evolution; long-dashed curves take into account the absorption corrections through (a) for $R_{s} \sim 0.2 F_{m}$: short dashed are the same for $R_{3} \sim R_{n}$. The shaded area is the prediction from equation (25) with upper and lower boundaries corresponding to $K=1$ and 100 respectively.
(b) Difference between GLAP (solid curves) and GLR (dashed curves) equations. The curves 1,$4 ; 2,5$ and 3.6 correspond to $q^{2}=10,100$ and $1000 \mathrm{GeV}^{2}$ respectively. Initial conditions (A) and (B) are shown by dotted and dot-dashed curves respectively. The shaded area is same as in (a).
the gluons may be concentrated in "hot spots" within the proton. So, the results for $R=2 \mathrm{GeV}^{-1}$ are also shown. The non-linear integro-differential Lipatov equation can now be solved numerically [J. Kwiecinski, A.D. Martin and P.J. Sutton 1991] with the analysis entirely confined to the small- x region $x<x_{0}$. It is informative to compare the above results with the gluon distributions to set B. of partons obtained in the KMRS [J. Kiecinski. A.D. Martin, R.G. Roberts and W.J. Stirling 1990] global structure function analysis which attempted to incorporate botis the Lipatov and shadowing effects, albeit in an approximate manner. KMRS evolved the starting distributions up from $Q^{2}=4 \mathrm{GeV}^{2}$ using the next-to-leading order AP equations. In the Fig. 7 the continuous curves are the values of $x g\left(x, Q^{2}\right)$ determined by solving the Lipatov equation for $Q^{2}=100$ and $1000 \mathrm{GeV}^{2}$. The dashed curves are $x g\left(x, Q^{2}\right)$ of set $B_{\text {_ of }}$ of the KMRS next-to-leading order structure function analysis. In each case three curves are in descending order the solution with shadowing neglected and the solutions with the shadowing term included with $R=5 \mathrm{GeV}^{-1}$ and $R=2 \mathrm{GeV}^{-1}$. The shaded areas are our predictions described before. $x g\left(x, Q^{2}\right)$ at $x=10^{-2}$ for Lipatov equation are taken as inputs. They are almost same for all the curves.

Fig. 7. x-evolutions of $x g\left(x, Q^{2}\right)$ of Lipatov for $Q=100$ and $1000 \mathrm{GeV}^{2}$ (solid curves). The dashed curves are $x g\left(x, Q^{2}\right)$ of KMRS set $\mathrm{B}_{\text {. }}$. In each three curves in descending order are the solutions with shadowing neglected, solutions with $R=5 \mathrm{GeV}^{-1}$ and $R=2 \mathrm{GeV}^{-1}$ respectively. The shaded area is same as in Fig. 6(a).
6. It is clear from the figures that our t-evolutions conform with those of EHLQ set-1, EHLQ set-2 and DFLM 2 parametrizations for $x<10^{-2}$ but do not conform for $x>10^{-2}$. But they conform excellently with set-1(a) whereas differ badly with set-1(b). The bands in all the figures gives our predictions for x-evolutions
for $1<K<100$. Our predictions conform well with those of others. It can be inferred from our predictions that screening correction at verylow- x is more likely. To conclude, our simple approximate analytical solution of AP equation for gluon structure function gives satisfactory predictions in HERA range. The qualitative predictions of our results conform to those of several other authors. AP equation in present form thus stands as a viable alternative to Lipatov and GLR predictions at least in the x and Q^{2} range under study.

References

[1] J.K. Sarma and B. Das, Phys. Lett., B126(1993) 323.
[2] L.F. Abbot, W.B. Atwood and R.N. Barnett, Phys. Rev., D22(1980) 582.
[3] G. Altarelli and G. Parisi, Nucl. Phys., B126 (1977) 298.
[4] F.J. Yadurain, Quantum Chromodynamics, Springer-Verlag, New York, 1983.
[5] I.S. Granshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, ed. Alen Geffrey, Academic Press, New York, 1965.
[6] L.A. Pipes and L.R. Harvill, applied Mathematics for Engineersand Physicians, Mc Graw-Hill Bokk Company, New York, 1970.
[7] I. Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, New York. 1957.
[8] E. Eichen, Z. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phus. 56(1984) 579.
[9] H. Abramowicz et al. (CDHS '83), Z. Phys., C17 (1983) 283.
[10] M. Diemoz, F. Ferroni, E. Long and G. Martinelli, (DFLM) Z. Phys., C39 (1988) 21.
[11] M. Diemoz, F. Ferroni and E. Long, Phys. Rep., 130(1986) 293 .
[12] D. Alasia et al., (BEBC '85) Z. Phys., C28 (1985) 321.
[13] D. Mac Farlane et al., (CCFRR '83), Fermilab-pub-83, 108-exp. (1983).
[14] F. Bergsma et al., (CHARM '83), Phys. Lett., 123 (1983) 269.
[15] See for example Proceeding of the DESY topical meeting in the small-x behaviour of deep inelastic structure function in $Q C D$, eds. A Ali and J. Bartels. North Holland, 1991.
[16] F. Eisale and F.W. Brasse. DESY 92-140, October, 1992.
[17] See for example Proceeding of Large Hadron Collider Workshop, Vol. II, CERN 90-10, eds. G.Jarlskog and D. Rein, 1990.
[18] See for example Proceedings of the Workshop on Physics at future accelerators. Vol. I, CERN 87-07, eds. J.H. Mulvev, 1987.
[19] V.T. Kim and M.G. Ryskin, DESY 91-064, June, 1991.
[20] E.M. Levin and M.G. Ryskin, Phys. Rep., 189 (1990) 267.
[21] L.V. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep., 100 (1983) 1.
[22] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys., 15 (1972): 438.

123| V Ipator sov 1 Nurl Phys 20 (1975) 91
[21\} Y: L. Bohshmet Sov Phus J/7P 46 (197t) 641
[25) I A Kuraev L N Lipatov ana V S Sadın Sov Phys JL. TP 45 (1977) 199
126) A H Mucller and J Qu Nucl Phy B268 (1986) 427
[27] J Kwiecinskı ΛD Martın and P] Sutton Duharn Pieprint DTP/91/12 Aprıl 1991
[2ג] Ya Ya Balitskı and L N Lipator Sou I Nucl Phys 28 (1978) 822
[29] I N Lipatov m Peiturbation QCD ed A II Mueller World Scientific Singapoie 1989
[30] I N Lapatov Phys Lett, B251 (1990) 284
[31] I N Lipatov and R Kıschnel Z Phis C45 (1990) 477
|i2] N (ıafalomı Nurl Phya B296 (1988) 19
[3] S Catam Γ Cıoranı G Machesmu dud G Onanı Cacendısh Lab Pıepunt HEP $9021(1990)$
 D42 (1990) 3645

Reprinted from

PHYSICS LETTERS B

Physics Letters B 403 (1997) 139-144

x-distribution of deuteron structure function at low- x

J.K. Sarma ${ }^{\text {a.1.2 }}$, D.K. Choudhury ${ }^{\text {b.3 }}$, G.K. Medhi ${ }^{\text {c }}$

a Electronics Science Department, Gauhatı University. Guwahati 781014. Assam. Indıa
${ }^{\text {b }}$ Physics Department, Gauhati Universty. Guwahatı 781014, Assam, India
© Physics Department. Birjhora Mahavidyalaya, Bongaigaon 783380, Assam. India
Received 25 February 1997
Editor H Georgı

L. Alvarez-Gaumé, Theory Division, CERN, CH-1211 Geneva 23, Switzerland,
E-mall address Alvarez@NXTH04 CERN CH
Theoretical High Energy Physics (General Theory) from the Iberian Peninsula, France, Switzerland, Llaly, Malta, Austria,
Hungary, Balkan countries and Cyprus
J.-P. Blaizot, Service de Physique Theorique, Orme des Merisiers, C E A -Saclay, F-91191 Gıf-sur-Yvette Cedex, France,
E-mall address plb(@)SPHT SACLAY CEA FR
Theoretical Nuclear Physics
M. Dine, Physics Department, University of Californa at Santa Cruz, Santa Cruz, CA 95064, USA,
E-mall address Dine@SCIPP UCSC EDU
Theoretical High Energy Physics from countries outside Europe
R. Gatto, Theory Division, CERN, CH-1211 Geneva 23, Switzerland,
E-mall address Raoul Gatto@CERN CH
Theoretical High Energy Physics (Particle Phenomenology)
from the Iberian Peninsula, France, Switzerland, Italy, Malta,
Austria, Hungary, Balkan countries and Cyprus
H. Georgi, Department of Physics, Harvard University, Cambridge, MA 02138, USA,
E-mall address Georg1@PHYSICS HARVARD EDU
Theoretical High Energy Phystcs from countries outside Europe

Aums and Scope

Physics Letters B ensures the rapid publication of letter-type communicatoons in the fields of Nuclear Physics/intermediate Energy Physics, High Energy Physics and Field Theory

Abstracted/indexed in:

Current Contents Physical Chemical \& Earth Sciences INSPEC

Subscription Information 1997

PHYSICS LETTERS A (ISSN 0375-9601) and PHYSICS LETTERS B (ISSN 0370 2693) will each be published weekly For 199713 volumes volumes 224-236 (78 issues altogether) of Physics Letters A have been announced For 199726 volumes volumes $390-415$ (104 issues altogether) of Physics Letters B have been announced The subscmption prices for these volumes are avallable upon request from the Publisher PHYSICS REPORTS (ISSN 0370-1573) will be published approximately weekly For 199714 volumes volumes 277-290 (84 issues altogether) of Physics Re ports have been announced The subscription price for these volumes is available upon request from the Publisher
A combined subscription to the 1997 issues of Physics Letters A Physics Letters B and Physics Reports is avallable at a reduced rate
Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis Issues are sent by SAL (Surface Air Liffed) mall wherever this service is available Aurmall rates are avalable upon request
For orders clams, product enquiries (no manuscript enquiries) please con tact the Customer Support Department at the Regional Sales Office nearest to you
W. Haxton, Institute for Nuclear Theory, Box 351550, University of Washington, Seattle, WA 98195-1550, USA,
E-mall address plb@PHYS WASHINGTON EDU
Theoretical Nuclear Physics
P.V. Landshoff, Department of Applied Mathematics and Theoretical Physics, University of Cambnidge, Stlver Street, Cambridge CB3 9EW, UK,
E-mall address P V Landshoff@DAMTP CAM AC UK
Theorencal High Energy Physics from Ireland, United Kingdom, Benelux, Scandinavian countries, German Federal Republic, Poland, Czech Republic, Slovak Republic, Ballic countries and the Commonwealth of Independent States
L. Montanet, CERN, CH-1211 Geneva 23, Switzerland,

E-mall address Lucien Montanet@CERN CH
Experimental High Energy Physics
J.P. Schiffer, Argonne Natıonal Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA,
E-mall address Schiffer@ANL GOV
Experımental Nuclear Physics (Heavy Ion Physics, Intermediate Energy Nuclear Phystcs)
R.H. Siemssen, KVI, University of Groningen, Zemikelaan 25, NL-9747 AA Groningen, The Netherlands,
E-mail address Siemssen@KVI NL
Experimental Nuclear Physics (Heavy Ion Physics, Low Energy Nuclear Physics) ,
K. Winter, CERN, CH-1211 Geneva 23, Switzerland

E-mail address Klaus Winter@CERN CH
Experimental High Energy Physics
New York, Elsevier Science, P O Box 945, New York. NY 10159.0945 USA Tel +1 212633 3730, [Toll free number for North American customers I 888 4ES INFO (4374636)], Fax +1212633 3680, E-mall usinfof@elsevier com
Amsterdam, Elsevier Science, P O Box 211, 1000 AE Amsterdam The Netherlands Tel +31 204853757 Fax +3120485 3432, E-mall nlinfof@elsevier nl
Tokyo, Elsevier Science, 915 Higashi-Azabu 1-chome Minato ku, Tokyo 106, Japan Tel +81 355615033 Fax +81355615047 E mall kyf04035 @nifyserve or Jp
Singapore, Elsevier Science No 1 Temasek Avenue \#17-01 Millenia Tower Singapore 039192 Tel +65434 3727, Fax +653372230 E mail asiainfo@elsevier com sg
Claims for issues not received should be made within six months of our publication (masling) date

Advertisıng Offices

International Elsevier Science, Advertising Deparment The Boulevard Langford Lane Kidington, Oxford 0X5 1GB UK Tel +441865843565 , Fax +44 1865843976
USA and Canada Weston Media Assoctates, Dan Lipner PO Box 1110 Greens Farms, CT 06436-1110 USA Tel +1 2032612500 Fax +1203 2610101
Japan Elsevier Science Japan Marketing Services 19 is Hıgashı-Azabu.
Minato-ku Tokyo 106, Japan Tel +8135561 5033, Fax +81355615047
U.S mailing notice - Physics Letters B (ISSN 0370-2693) is pubhshed weekly by Elsevier Science BV, PO Box 211 , 1000 AE Amsterdam, The Netherlands Annual subscnption pnce in the USA is US\$ 691700 (valid in North, Central and South America only), including air speed delivery Perıodicals postage paid at Jamaica, NY 11431
USA POSTMASTERS Send address changes to Physics Letters B, Publications Expediting, Inc, 200 Meacham Avenue, Elmont, NY 11003
AIRFREIGHT AND MAILING in the USA by Publications Expediting, Inc, 200 Meacham Avenue, Elmont, NY 11003
(®) The paper used in this publication meets the requirements of ANSI/NISO 239 48-1992 (Permanence of Paper)

λ-distribution of deuteron structure function at low- r

JK Sarma ${ }^{112}$, DK Choudhury ${ }^{13}$. GK Mcdhı ${ }^{\text {c }}$

I dion II Gcomy

Abstract

 b) Flsevia Science BV

1. Introduction

The Altuelli-Parist (AP) cquations | I | ate the ba ut took to study the Q^{2}-cvolution of structure functions Even though alternative evolution equations [2] have been proposed and pursued in recent yeals to study stucture lunctions espectally at low-1, the AP equations have been the basic tooks in studying double aymptotic sading (DAS) |3| or extracting the gluon density from the slope of the structure functions al low-1 |4|

Based on QCD studies Ball and Forte show | $3 \mid$ that cvolving a flat input distribution at $Q_{0}^{2}=1 \mathrm{GcV}^{2}$ with the Λ P cquations leads to a strong rise ol Γ_{2} dt low-i in the tegion measured by HERA An meicsting falure is that il QCD evolution is the underlying dynamics of the we perturbatise $Q C D$ predicts that at lange Q^{2} and small t the structure function exhibits double scaling in the two vartables
$\sigma=\sqrt{\log (10 / 1) \log \left(1 / t_{10}\right)} \quad \rho \equiv \sqrt{\frac{\log (10 / 1)}{\log \left(1 / t_{0}\right)}}$
with $t \equiv \log \left(Q^{2} / \Lambda^{2}\right)$ This Iollows foom a computa tion of the asymptotic form of the stiucture lunctoon $F_{2}\left(, Q^{2}\right)$ at small-i and ielies only on the assumption that any incicase in $\Gamma_{2}\left(1, Q^{2}\right)$ al suall 14 gencrated hy perturbative $Q C D$ cvolution

It implies that the AP equations have chatakiemalia 1-evolution at low 1 The present paper epork wal culation of 1 -ceolutions lor sunglet non-singlet and deuteron structure functions at low i foom the same equations It is hased on the apposimate solutions of AP equation using Taylor expansion at lown The formalism was used carliet 15 | to the low-1 LMC and Fermilah data with reasonable phenomemblogical isuccess It was a natural impiovement of all callie andlyus at intermedate $|6|$ In the piesent papa in Section 2 we discuss the necessary theory in shiol Section 3 gives the tesule and the discussion

[^3]
2. Theory

Though the theory is discussed carlicr 15] yet we have mentioned the essential steps here again for clarity.

The AP equation for the singlet structure function has the standard form [7]

$$
\begin{align*}
& \frac{\partial F_{2}^{s}(x, t)}{\partial t}-\frac{A_{f}}{t}\left[\{3+4 \ln (1-x)\} F_{2}^{s}(x, t)\right. \\
& \quad+2 \int_{1}^{1} \frac{d w}{(1-w)}\left\{\left(1+w^{2}\right) F_{2}^{s}(x / w, t)-2 F_{2}^{s}(x, t)\right\} \\
& \left.\quad+\frac{3}{2} N_{F} \int_{x}^{1}\left\{w^{2}+(1-w)^{2}\right\} G(x / w, t) d w\right] \\
& \quad=0 \tag{1}
\end{align*}
$$

where $A_{f}=4 /\left(33-2 N_{f}\right), N_{f}$ being the number of flavour and $t=\ln \left(Q^{2} / \Lambda^{2}\right)$. Defining

$$
\begin{align*}
& I_{1}^{*}(x, t) \\
& \quad=2 \int_{x}^{1} \frac{d w}{(1-w)}\left\{\left(1+w^{2}\right) F_{2}^{s}(x / w, t)-2 F_{2}^{s}(x, t)\right\} \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& I_{2}^{s}(x, t) \\
& \quad=\frac{3}{2} N_{f} \int_{1}^{1}\left\{w+(1-w)^{2}\right\} G(x / w, t) d w \tag{3}
\end{align*}
$$

one can recast (1) as

$$
\begin{align*}
& \frac{\partial F_{2}^{s}(x, t)}{\partial t}-\frac{A_{f}}{t}\left[\{3+4 \ln (1-x)\} F_{2}^{s}(x, t)\right. \\
& \left.\quad+I_{1}^{s}(x, t)+I_{2}^{s}(x, t)\right]=0 \tag{4}
\end{align*}
$$

Let us introduce the variable $u=1-w$ and note that

$$
\begin{equation*}
\frac{x}{(1-u)}=x \sum_{k=0}^{\infty} u^{k} \tag{5}
\end{equation*}
$$

The series (5) is convergent for $|u|<1$. Since $x<$ $w<1$, so $0<u<1-x$ and hence the convergence critcrion is satisfied. Using (5) we can rewrite,

$$
\begin{align*}
& F_{2}^{k}(x / w, t)=F_{2}^{s}\left(x+x \sum_{k=1}^{\infty} \prime^{k}, t\right) \\
& \quad=F_{2}^{s}(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial F_{2}^{s}(x, t)}{x} \\
& \quad+\frac{1}{2} x^{2}\left(\sum_{k=1}^{\infty} u^{k}\right)^{2} \frac{\partial^{2} F_{2}^{s}(x, t)}{\partial x^{2}} \\
& \quad+\ldots, \tag{6}
\end{align*}
$$

which covers the whole range of $\|, 0<u<1-x$.
Neglecting higher order terms, $F_{2}^{\prime}(x / w, t)$ can then be approximated for low x as

$$
\begin{equation*}
F_{2}^{v}(x / w, t) \simeq F_{2}^{s}(x, t)+x \sum_{k=1}^{\infty} u^{k} \frac{\partial F_{2}^{s}(x, t)}{x} \tag{7}
\end{equation*}
$$

Putting (5) and (7) in (2) and (3) and performing u-integrations we get,

$$
\begin{align*}
& I_{1}^{\prime}(x, t)=\left[-(1-x)(3+x) \mid F_{2}^{i}(x, t)\right. \\
& \quad+\left\{x\left(1-x^{2}\right)+2 x \ln (1 / x)\right\} \frac{\partial F_{2}^{s}(x, t)}{\partial x} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& I_{2}^{S}(x, t)=N_{f}\left[\frac{1}{3}(1-x)(2-x+2 x) G(x, t)\right. \\
& \quad+\left\{-\frac{1}{2} x(1-x)\left(5-4 x+2 x^{2}\right)\right. \\
& \left.\quad+2 x \ln (1 / x)\} \frac{\partial G(x, t)}{\partial x}\right] \tag{9}
\end{align*}
$$

where we have used the identity

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{u^{k}}{k}=\ln 1 /\left(1-\frac{u}{i}\right) \tag{10}
\end{equation*}
$$

Using (8) and (9) in (4) we obtain

$$
\begin{align*}
& \frac{\partial F_{2}^{s}(x, t)}{\partial t}-\frac{A_{f}}{t}\left[A(x) F_{2}^{s}(x, t)\right. \\
& \quad+B(x) \frac{\partial F_{2}^{s}(x, t)}{\partial x}+C(x) G(x, t) \\
& \left.\quad+D(x) \cdot \frac{\partial G(x, t)}{\partial x}\right] \\
& \quad=0 \tag{11}
\end{align*}
$$

where
$A(x)=3+4 \ln (1-x)-(1-x)(3-x)$,

$$
\begin{align*}
& B(1)=1\left(1-1^{2}\right)+2 x \ln (1 / x) \tag{13}\\
& C(1)=\frac{1}{3} N_{f}(1-r)\left(2-r+2 \imath^{2}\right) \tag{14}\\
& D(1)=-\frac{1}{2} N_{f}(1-r)\left(5-41+2 r^{2}\right) \\
& \quad+2 r \ln (1 / 1) \tag{15}
\end{align*}
$$

In onder to solve (11), we need to relate the singlet distribution $F_{2}^{\prime}(x, t)$ with the gluon distribution $G(1,1)$ For small , and high Q^{2}, the gluon is expected to be more dominant than the sea For lower $Q^{2}\left(Q^{2} \simeq \Lambda^{2}\right)$, however, there is no such clear cut distunction between the two For simplicity, we therefore, assume,
$G(1, t)=K F_{2}^{\prime}(1, t)$,
where K is a parameter to be determined from experiments But the possibility of the breakdown of relation (16) also can not be ruled out

Then from Eq (11) we gel
$\frac{d F_{2}^{\prime}(r, t)}{\partial t}$

$$
\begin{align*}
& -\frac{\Lambda_{f}}{t}\left[L(1, K) F_{2}^{\prime}(\mathrm{r}, t)+M(\mathrm{r}, K) \frac{\partial F_{2}^{\prime}(\mathrm{r}, t)}{\partial r}\right] \\
& =0 . \tag{17}
\end{align*}
$$

where.
$L(r, K)=A(r)+K C(x)$,
$M(1, K)=B(1)+K D(x)$
The gencral solution of (17) can now be obtaned by recasting it in the standard form

$$
\begin{align*}
& P\left(x, t, \Gamma_{2}^{\prime}\right) \frac{\partial F_{2}^{\prime}}{\partial x}+Q\left(x, t, F_{2}^{\prime}\right) \frac{\partial F_{2}^{\prime}}{\partial t} \\
& \quad=R\left(x, t, F_{2}^{\prime}\right) \tag{20}
\end{align*}
$$

where
$P\left(1,1, F_{2}^{\prime}\right)=A_{f} M(r, K)$,
$Q\left(1,1, F_{2}^{\prime}\right)=-1$,
and $=$.
$R\left(1, t, F_{2}^{\prime}\right)=-A_{f} L(x, K) F_{2}^{\prime}(x, t)$

The gencral solution of (20) is
$F(\prime \prime, V)=0$,
where Γ is an abitury function and
$u\left(\mathrm{r}, \ell, \Gamma_{2}^{\prime}\right)=C_{1}$
and
$V\left(1, I, \Gamma_{2}^{\prime}\right)=C_{2}$
form a solution of the equations
$\frac{d r}{P\left(x, t, F_{2}^{\prime}\right)}=\frac{d I}{Q\left(x, 1, F_{2}\right)}=\frac{d \Gamma_{2}^{\prime}}{R\left(1.1 I_{2}\right)}$
Solving (24) onc ohtams
$"\left(x, t, F_{2}^{\prime}\right)=I X^{\prime}(1)$
and
$V\left(1,1, \Gamma_{2}^{\prime}\right)=F_{2}^{\prime}(1,1) Y^{\prime}(1)$.
whesc
$X^{\prime}(1)=\operatorname{cxp}\left[1 / \Lambda_{/} / d / M(1)\right]$
and
$Y^{\prime}(1)=\exp \left[\int L(1) / M(1) d\right]$
Thus the structure function $\Gamma_{2}^{\prime}(1, t)$ h.s to satisfy (22) with $"$ and V given by (25) and (26). respectively It thus has no unigue solution The simples possibility is that a linear combination of "and V to salusly (20) so that
$\Lambda_{1} \prime \prime+B_{5} V=0$
Putting the values of "and V in (29) we obtam
$\Gamma_{2}^{\prime}(1, t)=-\frac{A_{1}}{B_{1}},\left[\frac{X^{\prime}(1)}{Y^{\prime}(1)}\right]$
Defining
$F_{2}^{r}\left(x, t_{0}\right)=-\frac{\Lambda_{1}}{B_{1}} \quad t_{0}\left[\frac{X^{\prime}(1)}{Y^{\prime}(1)}\right]$
one then has
$\Gamma_{2}^{\prime}(x, t)=\Gamma_{2}^{\prime}\left(1, t_{0}\right)\left(t / t_{0}\right)$.
which gives the t-evolution of singlet structure function $F_{2}^{\prime}(x, t)$:' Again defining
$F\left(x_{0}, t\right)=\frac{, \ldots, A_{s}}{B_{5}} \cdot t \cdot\left[\frac{X^{s}(x)}{Y^{\top}(x)}\right]_{x=10}$
one then has, I_{1},

so that $1 f,-\operatorname{li}$,

$$
\begin{align*}
& F_{2}^{\prime}\left(x, t_{i}\right)=F_{2}^{s}\left(x_{0}, t\right) \\
& \left.\quad \times \exp ^{\prime}\left[\int_{\substack{n}}^{x} \cdot \frac{1}{A_{f} M(x)}-\frac{L(x)}{M(x)}\right\} d x\right], \tag{34}
\end{align*}
$$

which gives the x-evolution of $F_{2}^{\prime}(x, 1)$.
On the other hand, the AP equation for the non-singlet-structure function

$$
\begin{align*}
& \frac{\partial F^{\mathrm{NS}}(x, t)}{\partial t}-\frac{A_{f}}{t}\left[\{3+4 \ln (1-x)\} F_{2}^{\mathrm{NS}}(x, t)\right. \\
& +2 \int_{1}^{1} \frac{., d w}{(1-w)}\left\{\left(1+w^{2}\right) F_{2}^{N S}(x / w, 1)\right. \\
& \left.\left.-2 F_{2}^{\mathrm{NS}}(x, t)\right\}\right] \\
& =0 \text {, '" } \tag{35}
\end{align*}
$$

can be written as

$$
\begin{align*}
& \frac{\partial F_{2}^{N S}(x, t)}{\partial t} \\
& \quad-\frac{A_{f}}{t}\left[A(x) F_{2}^{\mathrm{NS}}(x, t)+B(x) \frac{\partial F_{2}^{\mathrm{NS}}(x, t)}{\partial x}\right] \\
& =0 \tag{36}
\end{align*}
$$

which is'free from the additional assumption (16). Using the sarine procedure as for the singlet equation, Eq.' (36) yields
$F_{2}^{\mathrm{NS}}(x, t)=F_{2}^{\mathrm{NS}}\left(x, t_{0}\right) \cdot\left(t / t_{0}\right)$
and

$$
\begin{align*}
& F_{2}^{N S}(x, t)=F_{2}^{N S}\left(1_{0}, t\right) \\
& \left.\quad \times \operatorname{cxp}\left[\int_{10}^{i}\left\{1 / A_{f} B(1)-A(1) / B(1)\right\} d\right)\right] . \tag{38}
\end{align*}
$$

which give the t and x-cvolutions of non-single stiucture function F_{2}^{NS}.

The F_{2} deuteron and proton structure functions measured in deep inelastic electro-production can be written in terms of singlet and non-singlet quark distribution functions as
$F_{2}^{\prime \prime}=\frac{5}{9} F_{2}^{S}$
and
$F_{2}^{\prime \prime}=\frac{3}{18} F_{2}^{\text {NS }}+\frac{5}{18} F_{2}^{S}$.
Using (32) and (34) in (39) we will get the t and x-cvolutions of the deuteron structure function at low x as

$$
\begin{equation*}
F_{2}^{\prime}(x, 1)=F_{2}^{\prime}\left(x, t_{0}\right) \cdot\left(1 / t_{0}\right) \tag{41}
\end{equation*}
$$

and

$$
\begin{align*}
& F_{2}^{\prime \prime}\left(x, t_{0}\right)=F_{2}^{\prime}\left(x_{0}, t\right) \\
& \quad \times \exp \left[\int_{10}^{1}\left\{1 / A_{f} M(x)-L(x) / M(1)\right\} d x\right] \tag{42}
\end{align*}
$$

using the input functions
$F_{2}^{\prime}\left(x, t_{0}\right)=\frac{5}{9} F_{2}^{S}\left(x, t_{0}\right)$
and
$F_{2}^{d}\left(x_{0}, t\right)=\frac{5}{9} F_{2}^{S}\left(x_{0}, t\right)$.
Similarly using (32) and (37) in (40) we have the t-cvolution of the proton structure function at low 1 , 4
$F_{2}^{\prime \prime}(x, t)=F_{2}^{\prime \prime}\left(x, t_{0}\right) \cdot\left(t / t_{0}\right)$
using the input functions
$F_{2}^{\prime}\left(x, 1_{0}\right)=\frac{3}{18} F_{2}^{\mathrm{NS}}\left(x, 1_{0}\right)+\frac{5}{18} F_{2}^{S}\left(1,1_{0}\right)$
But the x-cvolution of the proton structure finction like those of the deuteron structure function is not possible by this methodology; because to extact the

Fig 1 Nucleon structure function, $F_{2}(D)$ obtained by EMC NA 28 from deutcron as a function of x for different intervals of Q^{2} (in GeV^{2}) Statistical errors are indicated by bars, systematic crrors are shown by the bands beneath In addition to the marked eirors there is an overall normalization error of 7% Here solid hincs are our results (Eq (42) for $N_{f}=4$ and $K \simeq 10-10^{12}$ Inpul data points are given by arrow heads.
x-evolution of the proton structure function we are to put (34) and (38) in (40). But as the functions inside the integral sign of Eqs. (34) and (38) are differcnt , we nced to scparate the input functions $F_{2}^{S}\left(x_{0}, t\right)$ and $F_{2}^{\text {NS }}\left(x_{0}, t\right)$ from the data points to extract the x cvolution of the proton structure function, which is not possible.

3. Results and discussion

In our earlier analyses [5] we observed the excelIent phenomenological success of the t-evolutions of deuteron and proton structure functions. Here we analyse the x-evolutions of the deuteron structure function. For a quantitative analysis we evaluate the integrals that occurred in (42) for $N_{f}=4$ and present the rcsults in Fig. 1 (solid lines) for EMC NA 28 deuteron data 18$\}$ in the $K \simeq 10-10^{12}$ range. Input data points indicated by arrow heads are taken from experiments.

It is seen that our integrals are almost indenendient of the K-values particularly in the $x \leqslant 0 \leqslant 1$ range. These results conform well to the data especially for $Q^{2}<2 \mathrm{GcV}^{2}$; but for $Q^{2}>2 \mathrm{GcV}^{2}, F_{2}^{d}$, grows laster as x decreases. This is a possible indication of the brcakdown of (16) at high- Q^{2}. A clcarer testing ol our result is actually the relation (38) whichnsifrec from the additional assumption (16). But non-singlet data is not sufficiently available at low x to test our result - Eq. (38) nrlid= $=$
Gencrally the x-distributions of structure functions are assumed at a fixed low $Q^{2}=Q_{0}^{2}$ value by various experimental and theoretical constraints and there is no universal agreement among these different assumptions. Then the values of structure fúnictions at higher Q^{2} values are calculated from evolution equations. But here we present a method to calculate the, x distribution of the deuteron structure function for any value of Q^{2}. By knowing the value of the structure function at a fixed value of $1=10$, we can evaluate: it for other values of x in the low- λ regon. Thisias ar possible alternative to the various other phenomeno-" logical x-distributions discussed in the literature.

Traditionally the AP equations provide a means of calculating the manner in which the parton distributhons change at fixed x as Q^{2} varics. This change comes about because of the various types of partor branching emission processes and the x-distributions are modified as the initial momentum is shared among the varrous daughter partons. However the exact.rate of modifications of x-distributions at fixed Q^{2} cannot be obtained from the AP equations since it depends not only on the initial x but also on the rates of change of parton distributions with respect to $x, d^{\prime \prime} F(x) / d x^{\prime \prime}$ ($n=1$ to ∞), upto infinite order. Physically this implies that at high x, the parton has a large momentum fraction at its disposal and as a result radiates partons (including gluons) in innumerable ways, some of them involving complicated QCD mechanisms. However for low x, many of the radiation processes will ccase to occur duc to momentum constraints and the x-evolutions get simplified. It is then possible to visualise assituation, in which the modification of the x-distribution sumply depends on its initial value and its first derivative. In this simplificd situation, the AP equations give information on the shapes of the x-distribution as demon-, strated in this paper. Our result also indicates that the shapes of the x-distributions of all the structure func-,
tuons at low x which are some combinations of nonsinglet and singlet structure functions, are the same for all values of Q^{2} This is observed in all data including the HERA data

References

$$
10 \pi+10
$$

|l| G Altarelif and G Parısı Nucl Phys B 12 (1977) 298 G Altarellur Phys Rep 81 (1981) 1
VN Gribge and LN Lipatov Sov J Nucl Phys 20 (1975) 94
YL Dokshizer Sov Phys JETP 46 (1977) 641
12) YY Baltisky and LN Lipatov Sov J Nucl Phys 28 (1978) 820
EA Kuraev LN Lipatov and Fadm Sov Phys JETP 45 (1977) 199

LV G'nbov EM Zevin and MG Ryskin Phys Rep 100 (1983) 1 'Nucl Phvs B 188 (1981) 555
|3| R D Ball and S Forte Phys Leti B 335 (1994) 77 B 336 (1994) 77.

A De Rujula SL Glashow HD Polizer SB Tremme F Wilcrek and A Zee Phys Rev D 10 (1974) 1649 A Zec F Wilczek and S B Treman Phys Rev D 10 (1974) 2881
|4| K Prytr Phys Lell B 311 (1997) 286332 (1994) 393 Kalpana Bora and D K Choudhury Phys Lett B 154 (1995) 151
A V Kotokov and G Parcnte Phys Lett B 379 (1996) 195
15| DK Choudhury and JK Sarma Pramana J Phys 78 (1992) 48139 (1992) 273 JK Sarma and B Das Phys Lell B 304 (1993) 323
161 DK Choudhury and A Sakia Pramana J Phy¢ 29 (1987) 38533 (1989) 35934 (1990) 85
17 LF Abboll wh Armood and $8 M$ Bamey Phys Rov D 22 (1980) 582
181 EMC NA 28 M Ameodo ct al Nucl Phys B 373 (1990) 1 Phys Lett B 211 (1988) 493

PHYSICS LETTERS B

Instructions to Authors (short version)

(A more detailed version of these instructions is published in the preliminary pages to each volume)

Submission of papers

Manuscripts (one onginal + two copies), accompanied by a covering letter, should be sent to one of the Editors indicated on page 2 of the cover
Original material By submitting a paper for publication in Physics Letters B the authors imply that the matenal has not been published previously nor has been submitted for publication elsewhere and that the authors have obtained the necessary authonty for publication
Refereeing Submitted papers will be refereed and, if necessary, authors may be invited to revise their manuscript If a submitted paper relies heavily on unpublished material, it would berhelpful to have a copy of that material for the use of the referec

Types of contributions

Letters The total length of the paper should preferably not exceed six joumal pages equivalent to ten tvpewritten pages with double spacing including the list of autho's abstract, references, figure captions and three figures in the case that more figures are required the text shoudd be shotenea accordingly is proofs will not be sent authors should check their dapers carefullv before submission

Manuscript preparation

All manuscripts should be written in good English The paper copies of the text should be prepared with double line spacing and wide margins on numbered sheets Sec notes opposite on elec tronic version of manuscripts
Structure Please adhere to the following onder of presentation Arucle utle Author(s), Affiliation(s), Abstract Classification codes and kerwords Man text Achnoviledgements, Appendices, Refer ences Figure captions Tables
Corresponding author The name complete postal address, tele phone and fax numbers and the e mall dddress of the corresponding author should be given on the firt page of the manuscript Classificanon codes/hevwords Please supply one to four classification codes (PACS and/or MSC) and up to sir heywords of vour oun choice that describe the content of your article in more detail References References to other work should be consecutively numbered in the text using square brackets and isted by number in the Referenct list Please refer to the more detaled imstructions for examples

Illustrations

Illustrations should also be submitted in inplicate one master set and tho sets of coples The lire draumgs in the master se, should be onginal laser printer or plotier ourput oi drasin in blach india inh with cascul ieverng large enough ($3-5$ mmito ieman legn ble aftr reductian for pronting The photografts should the orgi nals, with sorew hat more contrast thar s required in the printed verston The snould be unmourted unicss part of a composite fig ure Any scak mathers should be rsern't on , ne photogreph not diawn below it

Colour plates Figures may be published in colour, if this is judged essential by the Editor The Publisher and the author will ecilh bear part of the extra costs involved Further information ${ }^{\prime}$ avalable from the Publisher

After acceptance

Notification You will be notified by the Editor of the joumal of the acceptance of your artucle and invited to supply an electronic version of the accepted text, if this is not already available ${ }^{\prime \prime}$:
Copyright transfer You will be asked to transfer the'copyright of the article to the Publisher This transfer will ensure the widest possible dissemination of information
No proofs in order to speed up publication, all proofreading wili be done by the Publisher and proofs are not sent to the author(s)

Electronic manuscnpts

1 "
The Publisher welcomes the recerpt of an electronic version of your accepted manuscript (preferably encoded in LaTeX) If you have not already supplied the final accepted version of your article to the journal Edito you are requested herewith to send a file with the text of the accepted manuscript directly to the Publisher by e manl or on dishette (allowed formats 3 5' or $525 \mathrm{MS}-\mathrm{DOS}$, or 35 Macintosh) to the address given below Please note that no deviations from the version accepted by the Editor of the Joumal are permissible without the pnor and explicit approval by the Editor Such changes should be clearly indicated on an accompa nying pnntout of the file

Author benefits

No page charges Publishing in Physics Letters B is free
Free offprints The corresponding author will rcceive 50 offprints free of charge An offprint order form will be suppled by the Publisher for ordening any additional paid offpunts
Discount Contributors to Elsevier Science journals are entuted to a 30% discount on all Elsevict Sciencu books
Contents Alert Physics Letiers B is included in Eisevier's pre pubhataon sernice Contemis Alert

Further information (after acceptance)

Elsevier Science B.V., Physics Letters B Issue Management
Physics and Materiais Science
P.O. Box 2759, 1000 CT Amsterdam
The Netherlands
Tel.: + 31204852634
Fax: + 31 204852319
E-mail: NHPDFSKFD@ELSEVIER.NL

[^0]: a e-mal Jks@agnigarh tezu ernet in

[^1]: ${ }^{*}$ Physics Department, Tezpur University, Nappam, Tezpur - 784028 , Assam, India
 **Physics Department, Birjhora Mahavidyalaya, Bongaigaon - 783 380, Assam. India

[^2]: ${ }^{\dagger}$ Present address: Department of Physics, Tezpur University, Tezpur 784025

[^3]: 'Emul ha@gucmulin
 'Lmal \boldsymbol{L} c@umghy run mu in
 ${ }^{3}$ E. mal dilppegu unc in

