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Chapter-1 

INTRODUCTION 

1.1. Structure of Matter: 

The end of the nineteenth century, in1897, 1. J. Thomson discovered the electron, a 

negatively charged particle. The study was started by J. Dalton in his atomic theory. 

According to him, each ele~ent consists of atoms, indivisible objects. But that the 

atom cannot hold the claim of being indivisible became clear in 1895, when J. J. 

Thomson showed that all atoms contain electrons. The electron is, therefore, an 

element of all atoms and hence of all substances. In addition to the electron, each 

atom consists of a nucleus which is located at the center of the atom with most of its 

mass. The electrons and the nucleus of each atom are bound together by the coulomb 

force or in general the electromagnetic force. 

In 1911, E. Rutherford showed that all nuclei contain protons which are positively 
J 

charged particles. In 1932, J. Chadwick discovered the neutron, a particle with mass 

nearly equal to the mass of the proton but with no electric charge, as a companion 

constituent of nuclei along with the proton. Thus nuclei are made up of protons and 

neutrons. In 1934, E. Fermi wrote down a beta nuclear decay Hamiltonian which with 

slight modification is still believed to be the correct weak interaction Hamiltonian in 

the low energy limit. In 1935, H. Yukawa introduced yet another force known as 

strong force responsible for binding together of the proton and the neutron inside the 

nucleus. 

In the 1950's and 1960's, experiments were done at higher and higher energies taking 

advantages of the existence of new and very powerful particle accelerators. In the 

subsequent probing of the neutron and the proton, a whole zoo of new particles were 

found. Following the ideas, that led to the reduction of 100 atoms to only three 

fundamental particles, physicists suspected that this new, huge number of particle 

really indicated that even smaller, more fundamental particles existed. Experiments in 
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the 1970's proved that three smaller particles called Quark could be combined to 

make up neutrons, protons and many of the multitude of other particles. 

The picture of fundamental constituents of matter and the interactions among them 

that has emerged in recent years is one of great beauty and simplicity. All matter 

seems to be composed of Quarks and Leptons which are supposedly point like that is 

structure less, spin half particles. Leaving aside gravitation, which is a negligible 

perturbation at the energy scales usually considered, all the three interactions namely 

weak, electromagnetic and strong, are described by gauge theories, and are mediated 

by spin one gauge bosons. Now there are three generations of Quarks and Leptons as 

follows: 

Particles First Generation Second Generation Third Generation 

Quarks U , d s, c b, t 

Leptons e, v. f-J,Vp r, vr 

where, u, d , s , c , b ,t are up, down, strange, charm, bottom and top quarks 

respectively and e, f.J , r ,V e ,V Jl ,f.Jr are electron, muon, tau, electron-neutrino, 

muon-neutrino and tau-neutrino respectively. 

Matter seems of reqUIre three kinds of interactions to behave as it does: 

electromagnetic, which holds the electrons to nuclei; strong which holds the quarks to 

one another and the weak which can change one kind of quark into another or 

equivalently, a neutron into a proton or a proton into a neutron. The masses of single 

atoms are so small that the gravitational force is negligible at the atomic level. At this 

level the other three forces are much more important. 

Each flavour quark comes in three colours: Red (R), Green (G) and Blue (B). Colour 

is just a quantum number like the charge and bears no similarity with the visual 

colours. The colour structure tells us also about the properties of gluons. Since they 

2 



Studies on Gluon Distnbution Function at Low-x 

are absorbed and emitted by quarks, they can change the colour of quarks, that is, a 

red-blue gluon changes a red quark to a blue quark and so forth. There are also red

red, blue-blue and green-green gluons, so that there are nine possible gluon states in 

all altogether mathematically only eight of them are independent. Thus we see a kind 

of pattern: the electromagnetic force requires one photon; the weak force requires 

three intermediate bosons and the strong force requires eight gluons, each labeled by 

two colours. Gluons actually carry one colour and one anticolour. The properties of 

the weak force indicated that the weak force carriers are massive. Photons, 

intermediate bosons and gluons are all spin one particles. 

Forces in the Standard Model 

Force Range Strength Carrier Mass at Spin Electric 

at Fermi rest charge 

distance (GeV/c2
) 

Gravitational Infinite 10-38 Graviton: g* 0 2 0 

Weak <1O- 16cm 10-13 Intermediate 

bosons: 

w+ 
81 1 +1 

w-
81 1 -1 

ZO 
93 1 0 

Electromagnetic Infinite 10-2 Photon: y 0 1 0 

Strong Gluon: g o I I 
o 

Since quarks have colours, antiquarks must possess negative colours ( R, G, B ) 

having characteristics exactly opposite to the colour triplet (R, G, B). Since gluons are 

supposed to mediate interaction between all possible coloured pairs (qq), (q q) and 

( q q ), they must also carry quantum numbers corresponding colour transitions, for 

example, R ~ G, R ~ B, apart from colourless transitions such as R ~ R. In other 

words, gluons must exhibit a rich colour structure so that a particular gluon state must 

3 
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in general be distinct, in terms of colour content, from the corresponding antigluon 

state. This necessitates a generalization of the concept of charge. With the quark 

model, hadrons, that is baryons and mesons are made of quarks which are strongly 

bound together. The exchange particle between quarks, and the true carrier of the 

strong force is the gluon. The properties of the gluon come out of the standard model 

theory. Evidence for gluons came in 1978 from an electron-positron machine at 

Hamburg in Germany. The machine, called PETRA, was able, like its Stanford twin 

PEP, to observe collisions up to 30 Ge V and in the pattern of produced particles, the 

gluon was read. 

Some people may still doubt the existence of the quark. The primary reason for this 

doubt is that quarks cannot be seen. To be able to justify treating quarks in the same 

way as the other elementary particles, the theoretical test, other than directly seeing 

them, would be necessary; and we must examine the characteristics of quarks in detail 

and refine the theory if need be. According to the Gell Mann-Zweing theory, quarks 

are a triplet of spin half fermions that carry SU3 quantum numbers. In other words, 

they are particles similar to leptons. Since hadrons are compounds of quarks, not only 

their isospin and strangeness, but also their spin should be determined by the way the 

quarks are combined and one should also be able to predict the properties of the 

excited states of the hadrons. The spectra of hadrons should also be an important 

indication of the nature of interaction of quarks. 

The theory of a Yang-Mills field with colour as the quantum number is called 

Chromodynamics; that is to say, the dynamics is colour. By assumption, there are 

three colours: Red, Green and Blue, and the strong force acts between coloured 

quarks. The hadrons are supposed to be a system in which the colours have cancelled 

themselves out and become white. The quantum of the colour gauge field is called 

Gluon, meaning the glue that holds quarks together. Now let us think of a process in 

which a gluon is emitted by a quark. If, as a result of this process, the red (R) quark 

changes to a blue (B) one, then the gluon took red from the quark and gave blue. 

Equivalently, one can think of the gluon as having taken away red (R) and anti-blue 

( B ); thus this gluon is carrying a composite colour of R B (Fig. I. I ). 

4 
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gluon 

gluon gluon 

quark quark quark 

Fig.1.1: Quarks have colours and emit coloured gluons. 

In general, the gluon, G,} , that is released when q, becomes q} acts exactly like the 

compound state of q, and q-j , G'j - q, q} . There are 3 x 3 = 9 such combinations and 

one of the nine gluons is a special combination corresponding to the colour white, 

-
G w - q R q R + q G q G + q 8 q 8 = o. But since it was required, to begin with, that the glue 

does not work on a white state, one must have G w = o. Thus the number of 

independent gluons must be eight. QCD (Quantum Chromodynamics) refers to the 

quantum theory of colour gauge fields. One can think of this theory as QED 

(Quantum Electrodynamics) with the electron replaced by the quarks and photon by 

the gluons. 

1.2. Deep Inelastic Scattering: 

High energy Deep Inelastic lepton-nucleon Scattering (DIS) has been recognized as 

an important testing ground for the understanding of the structure of matter. 

5 
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Pioneering experiments in this direction started more than twenty years ago. Since 

then, DIS has been served as the experimental area where QCD is being tested 

progressively. The complete kinematics of the process is determined measuring the 

angle and energy of the scattered lepton and two variables which are directly 

accessible from the experiments. However the results are usually presented and 

interpreted through the variables Q2 , x and y (Fig.l.2). 

k',E' 
k,E 

q= k-k' 

p,Ep 

Fig.1.2: Kinematics of deep inelastic scattering process. 

Defining, 

k I' = four momentum of the incoming lepton, 

k~ = four momentum of the scattered lepton, 

£ = energy of the incoming lepton, 

£' =: energy of the scattered lepton, 

£ p =: energy of the nucleon, 

M p =: rest mass of the nucleon, 

PI' =: four momentum of the nucleon, 

S =: available squared energy in the CM system, 

6 
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x = 

p.q 
y=-

p.k 
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££'Cos 2e/2 
= 

£p(£ - £' Sin 2e /2)' 

2p.q 
~ ~ 

S 

where, e = angle of the scattered lepton measured with respect to the nucleon 

direction. Physically x is the fraction' of the nucleon momentum carried by the struck 

quark while y represents the fraction of the lepton energy transferred to the nucleon 

in the nucleon rest frame. The relation between Q2, x, y and S is Q2 ~ xyS. The 

differential cross section for deep inelastic scattering from a nuclear target is 

completely calculable in QED. This cross section is expressible in tenns of two 

structure functions WI and W2 which parametrize the virtual photon nucleon coupling 

and contain all the interesting physics. 

1.3. Structure Function: 

Consider the case of electron scattering from a target composed of N well defined 

constituents which is characterized by the initial state vector I'll. > , and the final state 

1'11/>. Let the final state is unobserved. The invariant scattering cross section can be 

expressed in the form 

where, Lpv = 2kpk~ + 2kvk~ - gpvQ2 IS the electron polarization tensor 

averaged over initial spin states, while 

W JJV = L <pi JJJ+ If> fIJ v lp>a 4(p- PI -Q) 
/ 

is the unpolarised hadronic tensor averaged over initial spins, and jJJ is the hadronic 

transition current. 

7 
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All the interesting target physics is contained with W p v. Without any a prior 

knowledge of nucleon structure, it is possible to place strong constraints of the fonn 

of Wpvand thus on the cross section. The most general fonn of Wpv consistent with 

Lorentz and gauge invariances, and parity is 

where, ~ and W2 are independent scalar functions of v and Q2. Using this fonn, 

the invariant cross section can be expressed as 

where, 

a motl = 4~4E' cos 2
( %), v = £ - £' and, ¢ and B are related by B =;r - ¢ . 

Here ~ and W2 are the two nucleon structure functions reflecting the possibility of 

magnetic as well as electric scattering, or alternatively, the possibility of photo 

absorption of either transverse (helicity = ± 1) or longitudinal (helicity = 0) photons. 

It was suggested by Bjorken that for large v and Q2 (v ~ 00, Q2 ~ ex:>, v / Q2 fixed), 

v W2 and M PWI should become functions solely of the ratio x = Q2 / 2M;. This 

functional dependence was indeed observed in the very early SLAC data, at least 

approximately and is called scaling (Fig.l.3). If the nucleon constituents had internal 

structure denoted by Fe ( q 2), then we would expect the data is to be damped by an 

additional factor of I Fe (q2 W. Thus the lack of pronounced Q2 dependence, known 

as scaling, suggests that the nucleon constituents are pointlike. 

A simple approach for understanding this scaling phenomenon is offered by the naive 

parton model. In this model, the nucleon is assumed to consist of a collection of 

pointIike constituent partons with well defined quantum numbers. Viewed from a 

8 
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0.5 

0.4 

0.3 t I ¢-t+ ¢ ,#+ 
+ vW2 I 0.2 

0.1 
w=4 

0 
0 1 2 3 4 5 6 7 8 

Q2 (GeV/c)2 

Fig.1.3 Scaling at x ;:: 0 25 as observed In very early SLAC data I 

frame in which the nucleon is highly relativistic, the so called infinite momentum 

frame, deep inelastic scattering is seen to be simply incoherent scattering from the 

individual partons. In this highly boosted frame, the partons recombine to form the 

final hadronic state over a much longer time scale than that of the collision, and so, it 

is precise to consider these as quasi-free non-interacting particles. In this frame, the 

Bjorken scalling quantity, x, is identifiable as the momentum fraction of the elastically 

scattered partons. Spin half partons thus contributing incoherently to the Dirac cross 

section yield the observable structure func,tions, 

where, !, (x) is the probability density of finding the i -th parton with fractional 

momentum x and charge e" The Callan-Gross relation F2 = 2xF; is a direct 

consequence of spin half partons and is strongly supported experimentally, To 

complete the identification of these partons with the quarks of Gell Mann and Zweing, 

one compares electron and neutrino scattering results for F; and F2 to infer the 

fractional charge assignment of the quark model. 

9 
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1.4. Low-x Physics: 

According to QeD, at low values of x (x _10- 4
) and at large values of Q2 , a nucleon 

consists predominantly of gluons and sea quarks. Their densities grow rapidly in the 

limit x = 0 leading to possible spatial overlap and to interactions between the partons. 

Several interesting physical phenomena are thus expected when the parton densities 

are high, such as for example, shadowing or semihard processes appearing with large 

cross-sections in the high energy hadronic reactions [1,2]. Several DIS experiments 

have been performed on nuclear targets and various nuclear effects have shown up at 

low-x. as for example, shadowing which depletes the bound nucleon structure 

function relative to that measured from free nucleons. The low-x physics is a very 

complicated subject with scare data and a variety of different theoretical approaches. 

The low-x region of Deep Inelastic Scattering offers a unique possibility to explore 

the Regge limit ofperturbative QeD [1-14]. Deep Inelastic Scattering corresponds to 

the region where both v and Q2 are large and x is finite. The low-x limit of deep in 

elastic scattering corresponds to the case when 2M v > > Q2 , yet Q2 is still large, that 

is at least a couple of GeV 2. The limit 2Mv»Q2 is equivalent to S »Q2, that is to 

the limit when the center of mass energy squared S is large and much greater than 

Q2 . The high energy limit, when the scattering energy is kept much greater than the 

external masses, is by definition the Regge limit. In deep inelastic scattering Q2 is by 

definition also kept large, that is Q2» A2 , where A is the QeD scale parameter. The 

limit of energy v and 2Mv» Q2 is therefore the Regge limit of deep inelastic 

scattering [3]. The fact that Q2 is large allows to use perturbative QeD. 

Low energy charged lepton scattering is mediated by a pure electromagnetic 

interaction. This is also the dominant contribution at low and medium Q2 at large 

energies. Therefore it is natural to focus the discussion on one photon exchange. The 

differential cross section is then given by the formula: 

10 
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where, due to parity conservation only two structure functions FI and F2 appear. At 

much higher Q2, Q2 > M i, where M z is the Z bosons mass, an admixture of the 

weak interaction and thus axial vector current may appear which introduces a third 

structure function F). Thus when discussing existing DIS data, only the structure 

functions F; and F2 will be mentioned except for neutrino scattering data where the 

function F) will also be referred to. 

Since the low-x limit of DIS corresponds to the Regge limit the concepts of the old 

Regge theory and Regge phenomenology appear and acquire a new content within 

perturbative QeD. Since a long time it has been known that two-body scattering of 

hadrons is strongly dominated by small momentum transfers t or equivalently by 

small scattering angles. This is successfully described by the exchange of a particle 

with appropriate quantum numbers. Regge pole exchange is a generalization of a 

single particle exchange (Fig.l.4). 

t ~ 
a c 

b d 

Fig.1.4 Regge pole exchange 

The Regge poles, like elementary particles, are characterized by quantum numbers 

like charge, isospin, strangeness, etc. The Regge pole carrying the quantum numbers 

of the vacuum and describing diffractive scattering is called the pomeron. Other 

11 
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Regge poles are called reggeons. It is useful to represent Regge pole exchange in 

tenns of quarks and gluons. Regge pole exchange describes the exchange of states 

with appropriate quantum numbers and different virtuality t and spin a. The relation 

between t and a is called the Regge trajectory, a(t). Whenever this function passes 

through an integer (for bosonic Regge poles) or a half integer (for fennionic Regge 

poles), that is a(t)== n, n == 1, 2, ........ or n == 112,3/2, ......... ,there should exist a 

particle of spin n and mass M n ::.Ji . The trajectory a(t) thus interpolates between 

particles of different spins. The increase of the total cross sections with energy and so 

the possible nature of the pomeron; is strongly constrained by the Froissart bound 

implying that asymptotically the total cross sections cannot increase faster than In2 S 

[15]. This bound is a consequence of unitarity and analyticity. The natural quantities 

to consider are the structure functions F, and F2 which are proportional to the total 

virtual photon-nucleon cross section and which are expected to have Regge behaviour 

corresponding to pomeron or region exchange [3]. 

The predictions obtained in this way for the production of the hadronic system in DIS 

can be used to estimate the low-x behavour of the structure functions, since the limit 

of large S» Q2 discussed above corresponds to low-x - Q2 1 S. In the parton 

model, which is appropriate in the large Q2 limit the structure functions, are related 

to the quark and antiquark distributions in the nucleon. The Regge behaviour of the 

structure function F2 (x) in the large Q2 region reflects itself in the low-x behaviour 

of the quark and antiquark distributions. Thus a l/x behaviour of the sea quark and 

antiquark distributions for low-x qseJx)-11 x corresponds to a Compton amplitude 

with a pomeron exchange while a behaviour of the valence quark distributions 

corresponds to a mesonic Regge pole exchange, that is q val (x )-11.[; . Since the same 

processes lead to gluon and sea quarks distributions in the nucleon, we expect that for 

low-x G(x )-11 x. The x dependence of the parton densities given above are often 

assumed also for the Q2 dependent parton densities at moderate Q2 . 

12 
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1.5. Evolution Equations: f.I ~, Ace. NO ... q.::. .. :3.-b ... , 
Let us now discuss the pertubative QCD predictions for the low- x behaviour of 

parton distributions. We shall consider the sea quark and gluon distributions which 

dominate the valence quarks in the low-x limit. Perturbative QCD becomes applicable 

in the large Q2 region leading to the evolution of the parton densities with Q2, 

expressed in a form of evolution equations. The exact form of these equations 

depends upon the accuracy with which one treats the lar ~~jit.&UiSl.19 2 1 A 2 ) or 
~ ,- ..... -? 

In(ll x). $ " . '\ ~ 
~ .. ... , 

,&.; ( Arc' . - )., ff 

4\ Dale_M~ ;) 
"n f' () '-)'\/~ /I 

1.5.1. GLDAP Evolution Equations: ~~~ 'I;) ~.!;;:.:: 
~Pbt}\f~'\~~41 

In the leading In(Q2) approximation (LLQ2) which correspon ~'- -ping only those 

terms in the perturbative expansion which have the leading power of In(Q2), that is 

a ;lnn (Q2), the equations have the familiar form of the Gribov-Lipatov-Dokshitzer

Altarelli-Parisi (GLDAP) evolution equations [16-19], 

(Ll ) 

8G(X,Q2) a s (Q2)lfdy [" ( ) (Q2) ( ) ( 2)~ 
8In(Q2IA2)= 2" ty~PGqxlyq,y" +PGGxlyG\y,Q 'j' (l.2) 

"\ 
where, Pab are the one loop splitting functions. When the appropriate gauge is chosen, 

the diagrams which contribute in this approximation are the ladder diagrams with 

gluon and quark exchange (Fig.l.S). In those diagrams, the longitudinal momenta - x, 

are ordered along the chain (x, ~ X,+l) and the transverse momenta are strongly 

ordered, that is, k L. «k L'+l . It is this strong ordering of transverse momenta towards 

Q2 which gives the maximal power of In(Q2), since the integration over transverse 

momentum in each cell is logarithmic. When the terms with higher powers of the 

coupling as (Q2) are included in the right hand side of these equations, one obtains 

the next-to-Ieading logarithmic approximation (NLLQ2). 

13 
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y 

2 

p 

Fig.1.5: Ladder diagram for the deep inelastic scattering in leading In(02). 

y 

p 

Let us now look at the low- x limit of the distributions generated by these equations. 

To this end, one notices that the term PGG(z)behaves as 6/ z at low-z which is 

relevant at low- x, where z = x / y . Retainig in the above equations only these terms, 

one gets the product of maximal powers of both large logarithms In(Q2) and In(ll x) 

which leads to the so-called double logarithmic approximation (DLA). 

This predicts the gluon distribution (multiplied by x) to grow faster than any power 

of In(1 / x) in the low- x limit. The same applies to the sea quarks since the dominant 

contribution to sea quark distributions at low- x comes from the q q pairs emitted 

from gluons (Fig.l.6). 

14 
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)----q 

I-----q 

Fig.1.6. Sea quark distribution related to the gluon 

distribution in the deep inelastic scattering. 

1.5.2. BKFL Evolution Equations: 

The double logarithmic approximation does not however take into account all leading 

terms in the parton densities in the low- x limit. By definition it neglects those terms 

in the perturbative expansion which contain the leading power of In(ll x} but which 

are not accompanied by the leading power of In{Q2). The sum of leading power of 

In(ll x} and arbitrary powers of In(Q2) corresponds to the leading In(ll x} 

approximation (LL(ll x}) [2,8,20-221. This approximation is equivalent to the leading 

In(S} approximation. Equivalence of the leading In(S} and leading In(lI x} 

approximation follows from the fact mentioned above that in the limit S» Q2 , 

x - Q2 IS, and so In(lI x) - In(S I Q2). This approximation gives the bare pomeron 

is perturbative QeD. The corresponding diagrams which contribute in this 

approximation are ladder like diagrams, yet the exchange mechanism along the ladder 

is slightly more complicated. Instead of the elementary gluon exchange, one has the 

exchange of the reggeised gluon (Fig.I.7). The term 'reggeised gluon' means that one 

can associate the Regge trajectory with the gluon which is calculable in perturbative 

QeD [2,8,9,10,20]. The Balitskij-Kuraev-Fadin-Lipatov (BKFL) evolution equation 

which sum these diagrams has the form [8,2,9,23] 
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where, the function l(x,e) is the nonintegrated gluon distribution, that is 

1 (X k 2 ) = B xC (x, k 2 ) 

, BIn k 2 ' 

1° (x, e) is a suitably defined inhomogeneous term; e, k,2 are the transverse 

momenta squared of the gluon in the final and initial states respectively, and ko 2 is 

the lower limit cut-off. The important point here is that, unlike the case of the leading 

In{Q2) approximation, the transverse momenta are no longer ordered along the chain. 

As before the dominant contribution to sea quark distributions comes from the q q 

pairs emitted from gluons. 

• 
• 

p p 

Fig.1.7 The ladder diagram for the deep Inelastic scattenng In leading In(1/x) approximation , 

It is also possible to generalize the LL(I / x) equation in a way which treats both large 

logarithms, that is In(Q2) and In(l/ x) , on equal footing [2]. The numerical study of 
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these equations suggests however that the results do not differ substantially when 

compared with the solution of the conventional GLDAP equations, at least in the 

region of not too small values of x>lO-4 [27,28,29]. 

1.6. Screening Corrections: 

The unlimited increase of the parton distributions (multiplied by x) leads to a conflict 

with unitarity, that is, too rapid S dependence of high energy cross sections violating 

the Froissart bound [15]. Assume th~ gluon density G{x, Q2) to be dominant in the 

low- x re"gion. Unfortunately we have no direct DIS type of measurement with 

photonic or W / Z probes for gluons. There exists however the strong interaction 

analogue to DIS which is the hadron-nualeon interaction where a highly virtual gluon 

from a hadron probes the structure of the nucleon. 

Within the QCD improved parton model, when one counts incoherently the individual 

probe gluon cross sections, the cross section corresponding to the virtual gluon-

nucleon interaction per unit rapidity is 0" G' N = .0" 0 xG (x, Q 2 ), where 0"0 is the total 

cross-section corresponding to the interaction of the probe with the gluon in a 

nucleon, that is, 

This can be illustrated in a simple geometrical picture [2]. Assuming that the cross 

section 0"0 on the parton level is equal to the transverse size of the probed parton, the 

cross section 0" G'N is equal to the transverse area occupied by partons (gluons) per 

unit of their rapidity. Since the number of gluons per unit rapidity, xG, can grow 

indefinitely for x ~ 0, the total transverse area occupied by gluons can become 

comparable or larger than the transverse area of a nucleon, Jr R 2, for sufficiently 

small values of x or Q2 . When this happens, then gluons begin to overlap spatially in 

the transverse direction and so can no longer be regarded as free partons [2]. This is in 

conflict with the basic assumption of the QCD improved parton model. 
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The QCD evolution described by the equations (1.1, 1.2) and corresponding to ladder 

diagrams simply takes care of the evolution of the individual partonic cascades. The 

important point here is that the interaction of partons from different cascades can be 

neglected. This interaction of partons leads to non-linear screening or shadowing 

corrections to the evolution equations (1.1, 1.2). In the simplest version the corrected 

evolution equation takes the form [30,31] 

In this equation, the linear term on right hand side was obtained from the standard 

evolution equation for gluons, equation (1.2), by neglecting the quark contribution 

and keeping only the most singular term of the PGG - 6 / z. That means that, in fact 

G(X,Q2) is treated here in the double logarithmic approximation. The second term in 

equation (l.3) is the screening correction. Note that this equation is written for 

G(X,Q2) times x. The most dramatic consequence of parton saturation is a linear 

scaling violation in parton distributions to be contrasted with the mild logarithmic 

scaling violation given by perturbative QCD.o 
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Chapter-2 

TAYLOR EXPANSION METHOD 

2.1. Taylor's Theorem: 

It is frequently easier to find the numerical value of a function by expanding into a 

power series and evaluating the first few tenus than by any other method. In fact, this 

is sometimes the only possible method of computing it. If a function I defined on 

[a, a + h], is such that (i)the (n -1) -th derivative In-I is continuous on [a, a + h] and 

(ii)the n -th derivative In exists on la, a + h [, then there exist at least one real 

number B between 0 and 1 (0 < B < 1) such that [32] 

l(a+h)=/(a)+hl'(a)+~/"(a)+~II!!(a)+ ................. . 
2! 3! 

hn-I hn(l-BY-p 
........ + ( ) f"-I(a)+ [( )] 1"(a+Bh), (2.1) 

n-l! pn-l! 

where, p is a given positive integer. First of all, we observe that the condition (i) in 

the statement implies that all the derivatives I', I" , ............... .jn-I exist and are 

continuous on [a, a + h ]. Consider the function ¢ defined on [a, a + h ] as 

( ) _ () ( ) '() (a + h - x Y II ( ) ¢x -Ix+a+h-xl x+ I x+ .................. . 
2! 

(a + h - X )"-1 /"-1 () ( h )P .......... + () x+Aa+ -x, 
n -1 ! 

where, A is a constant to be determined such that ¢ (a + h) = ¢(a). Therefore, 

f(a + h)= I(a)+ hf'(a)+ ~/"(a)+ ............ . 
2! 

.. + ( h "-I) I "-I (a) + Ah P • 

n - 1 ! 
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Now, 

(i) f,fl ,fll , ........... ,f"-' being all continuous on [a,a + h], the function ¢(x) IS 

continuous on [a,a + h], 

(ii)f,fl, .......... ,f"-I and (a+h-x)' for all r being all derivable in ]a,a+h[ and 

the function ¢(x) is deriyable in ] a, a + h [, and 

(iii) ¢(a + h) = ¢(a). 

Thus the function ¢(x) satisfies all t~e conditions of Rolle's theorem [33] and hence 

there exists at least one real number8 between 0 and 1 such that ¢I(a + 8h) = O. But 

Therefore, 

(2.3) 

Substituting A from equation (2.3) in equation (2.2), we get the required result, that is 

equation (2.1). If f satisfies the conditions of Taylor's Theorem in [a, a + h] and x is 

any point of [a,a+h] then it satisfies the conditions in the interval [a,x] also. 

Replacing (a + h) by x or h by (x - a) in equation (2.1), we get 

f{x)= f{a)+{x-a)fl{a)+ (x-aY fll(a)+ .......... ....... . 
2! 

(x-a)"-I fn-,() (x-a)" (1 8)n- P f"( 8( )) (24) ...... + () a + [( )] - a+ x-a, . 
n-l! pn-l! 

where, 0 < 8 < I . The remainder after n terms can thus be written as 

R = {x - a)n {I - 8 y-P f" ( ) 
" p[(n _ 1 )!] c , 

where, c lies between a and x, and depends on the selection of x. We have seen 

that 

20 



Studies on Gluon Distribution Function at Low-x 

where, Rn is the remainder after n terms. The result can be interpreted in two ways: 

(i) The value I(a + h) of the function at a point may be approximated by a 

summation of the terms like ~ IT (a) involving values of the function and its 
r! 

derivatives at some other point of the domain of definition, and 

(ii) The value I(a + h) of the function may be expanded in powers of h. 

Here we present the application of Taylor's theorem in solving GLDAP evolution 

equation [34,35,36] at low-x which are already discussed elsewhere [37]. 

2.2. Taylor's Theorem and Structure Functions at Low-x: 

The GLDAP evolution equations for the non-singlet and singlet quark structure 

functions have the standard forms [38] 

(2.6) 

and 

aF/(x,t)_ AI. [{3+4In(1-x)}F/(x,t) 
at t 

(
Q

2

) 4 where, t = In -2 and A f = ( ) , N f being the number of flavours. 
A 33-2Nf 
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The F2 structure functions measured in deep inelastic electro-production can be 

written in tenns of singlet and non-singlet quark distribution functions as [38] 

(2.8) 

and 

Fep = 2...F NS + .2..F S • 
2 18 2 18 2 

(2.9) 

Let us introduce the variable 

u=l-w~w=l-u (2.10) 

and note that [39] 

x X <0 k 
-=--=xIu 
w 1 - U k=O 

(2.11 ) 

Since x < w < 1, so 0 < U < 1- x, and hence the convergence criterion is satisfied. 

Using equation (2.11) we can rewrite FtS (x / w,t) as 

which, covers the whole range of u, 0 < u < 1- x. Neglecting higher order tenns 

O(X2), FtS (x / w,t) can then be approximated for 10w- x as, 

F NS (~ ) _ F NS ( ) ~ k a F 2
NS 

(x, t) 2 ,t - 2 x,t+xL.,.U . 
w k=1 a x 

(2.12) 

Putting equations (2.10) and (2.12) in equation (2.6) and perfonning U -integrations, 

we have, 

(2.13) 

where, 

A(x) = 3 + 41n (1- x)- (1- x )(x + 3) and B (x) = x(l - x 2)_ 2x In x , 
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'" Uk 1 
and we used the identity [39] I - = In -- . 

k=1 k 1 - u 

The general solution of (2.13) is [40] F (u, v) = 0, where, F is an arbitrary function 

and u (x, t, F 2
NS ) = eland v(x, t, F 2

NS ) = C 2 fonn a solution of the equations 

(2.14) 

Solving equation (2.14) one obtains 

U(X,I, F:')~ lexp [ All J Bt)] and v(x",F:')~ F:' exp[J ;~: ~ dx ] . 

It thus has no unique solution. The simplest possibility is that a linear combination of 

u and v is to satisfy, so that 

where, ANS and B NS are arbitrary constants. Putting the values of u and v in 

equation (2.15) we obtain 

NS ( ) ANS [ f{ 1 ' A(X)} 1 F2 x,1 = --.t.exp ( ) --( ) dx 
BNS AlB x B x 

Defining 

NS ( ) ANS [f{ 1 A(X)} 1 F2 X.t 0 = - -. to' exp ( ) - -( ) dx , 
BNS AIBx Bx 

one gets 

(2.16) 

which gives the t-evolution of non-singlet structure function F/ (x, t). . 

In order to solve equation (2.7), we need to relate singlet structure function FtS (x,t) 

with gluon distribution function C(x, I). For low-x and high - Q2 , gluon is expected to 

be more dominant than the sea [41]. For simplicity, we therefore assume identical 
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t-dependence for both : 

G (x, t) = KF / (x, t), (2.17) 

where, K is a parameter to be determined from experiments. Putting equation (2.17) 

in equation (2.7) and following the same procedure as that for non-singlet case, we 

obtain for singlet structure function, 

aF/ (x,t) _ !L.[L (x )F/ (x,t)+ M (x) aF/ (x,t )] = 0, 
at t ax 

where, 

L(x) = 3 + 4In(l- x)- (1- x)(x + 3)+ ~KN /(1- x)(2 - x + 2X2) 
3 

and 

M{x) = x(l- x2)_ 2xlnx + ~KN / ~ x{l- x).(S - 4x + 2X2)- 2xlnx}. 
2 

The equation (2.18) can also be solved as before to get the solution, 

where, 

Using equations (2.16) and (2.19) in equations (2.8) and (2.9), we get, 

and 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 

Equations (2.20) and (2.21) will give t-evolution and proton structure functions. 

Again defining 

NS ( ) A NS [ f{ 1 A (x )} ] F2 xo,t=--.t.exp. ()--()dx , 
BNS AlB x B x 

t= 'Cn 
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one obtains 

(2.22) 

and similarly by defining 

we obtain 

(2.23) 

and 

F et/( ) Fet/( ) ["'J{ 1 L(X)}dx] 
2 x, t = 2 xo,t exp '0 A 1M (x) - M (x) , (2.24) 

where, 

Equation (2.24) will give x-evolution of deuteron structure function. 

But the x-evolution of proton structure function like that of deuteron structure 

function is not possible by this methodology, because to extract the x-evolution of 

proton structure function we are to put equations (2.22) and (2.23) in equation (2.9). 

But as the function inside the integral sign of equations (2.22) and (2.23) are different, 

we need to separate the input functions FtS (xo' t) and F/ (xo' t) from the data points 

to extract the x-evolutions of the proton structure function, which will contain large 

error. 0 
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Chapter-3 

GLUON DISTRIBUTION FUNCTION FROM STRUCTURE 

FUNCTION· A REVIEW 

The measurement of the proton and the deuteron structure functions by Deep Inelastic 

scattering (DIS) processes in the low-x region where x is the Bjorken variable have 

opened a new era in parton density measurement [42]. It is important for 

understanding the inner structure of hadrons. In addition to these knowledge, it is also 

important to know the gluon distribution inside hadron at low-x because gluons are 

expected to be dominant in this region. Moreover gluon distributions are important 

inputs in many high-energy processes and also important for examination of Quantum 

Chromo<lYnamics (QCD), the underlying dynamics of quarks and gluons. On the 

otherhand, gluon distribution can not be measured directly from experiment. It is 

therefore, important to measure gluon distribution G{x, Q2) indirectly from the proton 

as well as the deuteron structure functions F2 (x,Q2). A few numbers of papers have 

already been published [43,44,48,49,52,53] in this connection where several authors 

have presented their various methods to extract gluon distribution from quark 

structure function. 

In Prytz method [43,44], gluon distributions are extracted from proton structure 

function data. Here use of leading order (LO) and next-to-Ieading order (NLO) has 

been done. In this method, Taylor expansion about z = 1/2 in GLDAP evolution 

equation has been used. In Bora and Choudhury method also, proton structure 

function data have been used to extract gluon distributions by using LO GLDAP 

evolution equation. But here, Taylor expansion about z = 0 in GLDAP evolution 

equation has been used. In Kotikov and Parente method also, proton structure function 

data have been used to extract gluon distributions, but they used NLO GLDAP 

evolution equation. Here they used standard input parametric equations of singlet 

quarks and gluons and solution of GLDAP evolution equation has been done by 
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standard moment method. Lastly, in Ellis, Kunszt and Levin method also gluon 

distributions have been extracted from proton structure function data. But here next

next-to-leading order (NNLO) GLDAP evolution equation has been used. Like 

Kotikov and Parente method, here also standard input parametric equations for 

structure functions has been used and solution of GLDAP evolution equation has been 

done by standard moment method. 

3.1. prytz Method: 

K. Prytz [43,44] gives a method to obtain an approximate relation between the 

unintegrated gluon density and the F2 scaling violations at low-x. The resulting 

formula can be used to determine the gluon density from the HERA data taken at low

x. It was shown in reference [45] that the gluon density at low-x can be obtained in a 

convenient way by analysing the longitudinal structure function. Here a similar 

method is applied using the Q2 derivative of F2 to obtain the gluon density to a good 

accuracy. The basic idea rests on the fact that the scaling violation of F2 arises at 

low-x, from the gluon density alone and does not depend on the quark densities. At 

low-x, actually already at x = 10-2
, the quarks can be neglected in the GLDAP 

evolution equation and we have, 

8F2 ::: 5as '7 G(_X_,Q2)p (z)dz 
8 log Q 2 91r 0 1 - z qg 

(3.1) 

for four flavours, where in lowest order 

(3.2) 

When applying equation (3.1) to experimental data, the problem arises of determining 

the gluon distribution G(x) over the complete x-range. At low-x, this problem can be 

avoided since the integral in equation (3.1) can then be performed approximately. For 

this purpose, the gluon distribution is expanded in the following way: 

G(_x_)::: G(z = 112)+ (z -1I2)G' (z = 1/2)+ (z -1I2Y Gil (z = 112) . 
l-z 2 
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This expression IS then inserted in equation (3.1) and approximating the upper 

integration limit to 1, the second term will vanish in view of the symmetry of Pqg (z ) 

around z =112. The third term is expected to give a small contribution compared to the 

first and is neglected. As a result, one therefore obtains 

(3.3) 

For a numerical study, equation (3.3) is evaluated using the leading order expression 

equation (3.2) for Pqg (z) to give 

(3.4) 

which is the main result of Prytz method at LO analysis. 

Due to the large a ~ corrections to the F2 scaling violations in the kinematical region 

of HERA [42], the approximate LO relation between the F2 scaling violations and the 

gluon distributions at low-x need to be corrected. A new relation is presented in NLO 

and found to give reasonable agreement with the exact calculation. The gluon to quark 

splitting function Kg at NLO analysis is given by 

Prytz used the formula derived by Floratos et. al. [46] which agrees with the 

independent calculation by Furmanski and Petronzio [47]. The first order contribution 

of (I)(X) a I 
2 = 2L: e2

_ S fG(x/z)K(')(z)dz 
a In Q 2 f' 4 1r x g 

is equivalent to the LO calculation equation (3.4). The second order contribution is 

28 



Studies on Gluon Distribution Function at Low-x 

where, Gexp is the gluon distribution found from the complete QCD analysis of 

existing data. Now introducing the function N{x, Q2) for the first integral and 

evaluating the second integral, author obtained the total contribution for four flavours, 

::::G(2x).20 .~[~+3.58.~]+(~)2.20 .N(X,Q2) 
9 41l' 3 41l' 41l' 9 

in NLO analysis [44], where N(X,Q2) is given by 

a I 
N(X,Q2)= f G exp (x / Z,Q2 )??)(z )dz , 

.t 

where p;2) is a long and complicated function given in reference [44]. 

3.2. Bora and Choudhury Method: 

Bora and Choudhury also present a method [48] to find the gluon distribution from 

the F2 structure function and its scaling violation 8F2 /8 In Q2 at low-x using Taylor 

expansion method. Here the LO GLDAP evolution equations are used to relate 

scaling violation with gluon distribution G(x). They also used equation (3.1) at the 

beginning and expanded G(x /(1- z), Q2) using Taylor expansion about z = 0 taking 

only up to first order derivative in the expansion. While expanding they used first two 

terms in the expansion of the infinite series x /(1- z) = x L~=o z* also. And using the 

fact that quark densities can be neglected and that the non-singlet contribution F;s 

can be ignored safely at low-x, the GLDAP evolution equation becomes, for four 

flavours, 

aF2 (x, ~ 2) = lOa S f dx I P
qg 

(x I )(x / x I). G (x / x I , Q 2 ), 
a In Q 91l' 

.t 

(3.5) 
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where, as = as (Q2) is the strong coupling constant and the splitting function Pqg (Xl) 

gives the probability of finding inside a gluon a quark with mo~entum fraction Xl of 

the gluon. In LO, Pqg (Xl) is given by 

P
qg 

(Xl)= ~/2 + (1- Xl J } 12. 

Equation (3.5) can" be rearranged as 

8F2(X,Q2)=~f\d ~ G( Q2\ 1 [2 ( _ )2] --"--"-"';""::=2:--'- y.. y, r-z. X + Y X . 
8 In Q 9" x y y 

(3.6) 

Substituting y = X 1(1- z), we can write the right hand side of equation (3.6) as 

5 \- f 

~ f dz G (x I( 1 - z), Q 2 ) [(1 - z y + Z 2 ]. 

9" 0 

Now expanding G(x 1(1- z), Q2) about z = 0 and retaining terms only up to the first 

derivative of G(x) in the expansion, we get 

2 X, 2 =~ f dz G(x)+zG(x)+zx-G _x_ 1,_ [(l_Z)2+Z2]. 8F ( Q 2) 5 \-: [ d ( ) ] 
8InQ 9" 0 dz l-z _-0 

Here in G(x), the Q2 -dependence has been suppressed and they symbolize 

G(x 1(1- z), Q2). After doing a simple algebra one gets, 
,P" 

8F2 (X,Q2) = 5a s A (x) .(G(x)+ B (x ).x. dG (x )] 
8lnQ2 9" A(x) dx 

_ 5 as [A (x) + B (x W G ( B (x) ] 
- 9" A (x) + 2 B (x) x x + A (x) + B (x) . x , 

where, 

A(x) = 2(1 - x y _ (1 _ x Y + (1 _ x) and B(x) = (1- x t _ 2(1 - x Y + (1 - x Y 
3 2 3 2 

Finally, 

( 
B(x) 2] ~ A(x)+2B(x) 8F2 (x,Q2) 

G x + A (x) + B(x)x,Q == [ ( ) ] 5 a s A x + B (x) 2 8 In Q 2 
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Using this approximate relation, they can find gluon distribution G{x l
) at 

XI = X + () () . X A x +B x 

B{x} 

from the value of the derivative of F2 with respect to Q2 at x which is their main 

result. Of course, utilizing the asymptotic limit of Pqg (x) for x~ 0 they also got the 

result, 

3.3. Kotikov and Parente Method: 

Kotikov and Parente presented a set of formula [49] to extract the gluon distribution 

from structure function F2 and its derivative oF2 1 a In Q2 at low-x in the NLO 

approximation. They began with the standard parametrizations of singlet quark 

s(x,Qg} and gluon G~,Qg} parton distribution function at someQg [50]. As the 

behaviour p{x,Q2)-constant,(p=(s,g)) is not compatible with the GLDAP 

evolution equations, they considered more singular behaviour like p{x, Q2 )_ x -§p(Q') 

for Regge-like behaviour [4,49] and p{X,Q2) - exp(O.5~OJQ2 )In(11 x)) for Double

logarithmical behaviour [49,51], where os{Q2}:;f:Og(Q2). They then put these quark 

and gluon distributions in the GLDAP evolution equations and solved for gluon 

distribution by standard moment method. The method to arrive to the solution is based 

in the replacement of the Mellin convolution by ordinary products [52]. 

Assuming the Regge-like behaviour for the gluon distribution and F2 (x, Q2 )at 

x-§»l, C{X,Q2)= x-§C{X,Q2) and F
2
(x,Q2)=X-§:S{X,Q2), they obtained the 

following equation for the Q2 derivative of F2 : 
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where, r~ (a) are the combinations of the anomalous dimensions of Wilson operators 

r~ =ar~)''1 +a2r!~)''1 +O{a 3
) and Wilson coefficients aBt'l +O{a 2) of the 

" moment: 

r 'a)=ar(O).'1 +a d .(I).'1 +B g·'1 r (o·'1)+2j3 B s ·'1)+O(a 3 ) 
ss \: ss 'If ss 2 gs 0 2 ~, (3.8) 

and 

f 
where, e = Ie; is the sum of square of quark charges. With accuracy of O{x2-0), for 

equation (3.7) they got, 

+ (,: - r;;- jx'-'s' (x,Q')+ o(x'-')] 

with ~ sg = r ~;o / r ~ . From equation (3.8), they obtained for gluon distribution, 

G(x Q2)=_ (C;Sg)b X[2.8F2(X~sg'Q2)+ l+oF (x;: Q2)~ 
, 1+0 8lnQ2 y" 2 "S8' J 

( 0 1+0) 1-0 (;; ) -0 -/(;; Q2) o( 2-0) ] + r ss - r ss x '=' sg S X,=, sg , + x . (3.9) 

Restricting the analysis to O{x2-0 ,a xl-O
), one can replace 

;: ~;: = r(O) 1 + 8/r(O).o 
~. ~ . ' . 
and neglect the term - S I (x.; sg , Q 2) into equation (3.9), so that, 

G{x Q2)=_~[2.aF2{x';,Q2)+rl+OF (x;: Q2)+O{X2-0 axl-o)j. 
, 1+0 a I Q 2 ss 2 ~ , , 

rsg n 

Using NLO approximation of r~;o we easily obtain the final result for G{X,Q2): 

32 



Studies on Gluon Dlstnbutlon Function at Low-x 

(3.10) 

and 

G( Q2) 2/ 1 [BF2(X,Q2)+ a y(o).,+oF (x Q2) 
x, = - a e' y(O).I+O + y-(I).I+O a BIn Q2 2 ss 2' 

sg sg' 

(3.11 ) 

where y-(I).'7 = y (1).'7 + B g.'7 (2f3 + y (0).'7 - Y (0).'7) 
'sg sg 20 gg ss' 

In principle any equation from above fonnulae (3.1 0), (3.11) may be used, because 

there is a strong cancellation between the shifts in the arguments of the function F2 

and its derivative, and the shifts in the coefficients in front of them. The difference 

lies in the degree of accuracy one can reach with them, which depends on the x and 

Q2 region of interest. For accurate values of 8 = 0.5, 

( 2) 0.62 [BF2 (OJ, Q2) l 2) (2 2-0 I-O)~ G x,Q = ( ) 2 +2.12aF2\OJx,Q +0 a, x, ax 
ea 1+26.9a BlnQ 

and 

In obtaining the fonnulae, they neglected some higher order tenn 

- 8 S (x~Sq, Q2 )/ Ox where ~sq is the combinations of the anomalous dimensions of 

Wilson coefficients. Similarly assuming the Double-Iogarithmical behaviour for the 

gluon distribution and F2 (x, Q2 ), they obtained, 
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and 

Then they obtained the following equation for the Q2 derivative of the F2 (x, Q2 ), 

where, rs~ (a) can be obtained from corresponding functions r ~;8 (a) replacing the 

singular term 1/5 at 5 ~ 0 by 1/5; that is, 

1 2 1 + i 1 x 3 x ............ x (2m -1) 

40p{Q) m;1 ( (r\) (1)]m 
4 5 p \!x! 2 In -

x 

(3.12) 

The singular term appears only in the NLO part of the anomalous dimension r~~)·1+8 

in equation (3.8). The replacement equation (3.12) corresponds to the following 

transformation: 

r
(I).1+8 == r~(I).1 ~+ -(1).1+8 
sp sp 5 r 

and 

5 ~ 0 y(I).1 == r~(I).1 ~+ r- (1).1 
, sp g sp (3.13) 

where, r!~)·1 and rs~)·1+8 are the co-efficients corresponding to singular and regular 

parts of r!~)·1+8 respectively. Repeating the analysis of the previous section step by 

step, using the replacement equation (3.13), we get, 
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Here also they neglected some higher order terms and replaced the singular term 1/0 

at 0 ~ 0 by some non-singular term 1/0 . 

3.4. Ellis, Kunszt and Levin Method: 

A different method for the determination of G(x, Q2) at low values of x has been 

proposed by Ellis, Kunszt and Levin [53] based on the solution of GLDAP evolution 

equations in the moment space up to next-to-next to-leading order. In this method, the 

gluon momentum density and F2 are assumed to behave as x-OJ where (j) is a 

parameter the actual value of which must be extracted from the data. They can also 

estimate gluon distribution directly from the measurement of the F2 (x, Q2) structure 

function at HERA. The basic idea is that, the Q2 derivative of F2 is sensitive to the 

gluon distribution function [49]. 

The quantity L from the experimental data for F2 is 

(3.14) 

Knowledge of L as a function of x and Q2 is the input which can be obtained from 

experiment. For four active flavours, ( e 2 ) = 5 / 18 . Let us consider only the DIS 

structure function F2 which is given in terms of parton densities as 

(3.15) 

with (e 2) = 4 fu : fd ,where C denotes the co-efficient functions, fu and fd denote 
fd 

the number of up and down quarks respectively, and the non-singlet parton density 

L\ NS is given in terms of the non-singlet combinations, 
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where f = fu + fd' For an even number of flavours, (e 2) = 5/18 and 

/). NS = L~~ 2 (q :., - q;,,). From equation (3.15), for the lowest order in a s we get 

F2 ~, Q 2) = x( e 2) L: (x, Q 2), where the non-singlet contribution which gives a 

small contribution at low-x. 

The lowest-order GLDAP equation for L: reads 

(3.16) 

The information about the gluon is difficult to extract from this equation at normal x, 

because it involves a weighted integral over the quark and gluon distribution 

functions. In moment space, this means that we have to know the moments of L: and 

8L: / 8 In Q 2 for all values of w. Taking moments of equation (3.16) we obtain 

(3.17) 

p[F could be neglected in lowest order because p[F (o) = 0 . However the dominant 

value of w is unlikely to be that small and furthermore this simplification does not 

occur in higher orders. Assuming a simple form for the gluon distribution, 

G (x) = Ac x -CU
n and L (x) = At x-cuo ,where w 0 > O. Taking moments we get 

G(w}= _A_G_ and 

Now let us consider the simple form of equation (3.17) as 
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The value of OJ 0 can be determined by the measured slope of F2 , 

Bln~ 
OJ 0 = Bln(lI x)' 

(3.18) 

Therefore, 

(3.19) 

Since the GLDAP kernels are known as a function of OJ, G~, Q2 ) can be determined. 

The extension of the basic result to include higher order is straight forward but 

tedious. Here OJ o is given by equation (3.18) and ~ is given by equation (3.14). 

Equation (3.19) is the basis of the method for determining G(x,Q2). And so 

ultimately we get for four flavours, 

G( Q2)= 18/5 [BF2~,Q2)_pFF( )F( Q2)] x, FG() 2 OJo . 2 x, , 
P OJo BlnQ 

where, we replace ~ (x, Q2) by F2~' Q2) and the functions P have perturbative 

expansIOns 

P FF (OJ ) - a p,FF +a2 p,FF +a3 pFF + rla4) 
0- so SI S2 l.I\;s 

and 

The coefficients p'FF and p,FG depend on the parameter OJo which are tabulated in 

reference [53] for a range of OJo values.D 
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Chapter-4 

GLDAP EVOLUTION EQUATION AND GLUON 

DISTRIBUTION 

In this chapter, we obtain t and x-evolutions of gluon distribution function at low-x 

from Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) evolution equation. 

Comparison is made with the prediction of Balitskij-Kuraev-Fadin-Lipatov (BKFL) 

as well as Gribov-Levin-Ryskin (GLR) equations. We also make predictions for the 

HERA range. In a recent letter [54] the t -evolutions of non-singlet and singlet 

structure functions [38] have been reported. The same technique can be applied to the 

GLDAP equation [16] for the gluon distribution function to obtain t as well as x

evolution of gluon at low-x. 

4.1. Theory: 

The GLDAP evolution equation for the gluon distribution function has the standard 

form [38] as 

aG(x,t)_~{(~_ Nf '+ln(I-X))G(x,t)+! }=o, 
at t 12 18 g 

(4.1 ) 

where, 

! - Sid [OJG(XIOJ,t)-G(X,t) (1 ) I-OJ)G( I ) 
g - OJ + OJ - OJ + -- x OJ,t 

I-OJ OJ 
.t 

~[ I + (I - OJ )2 ) F S (I )] + 2 x OJ,I , 
9 OJ 

I = tn(Q2 11\2) and A[ = 36 ,N f being the number of flavours. 
33-2N[ 
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For low-x and high-Q 2
, gluon is expected to be more dominant than the sea [41]. For 

lower- Q2 (Q2::::: A?), however, there is no such clearcut distinction between the two. 

For simplicity, we therefore, assume identical t -dependence for both , 

where, K is a parameter to be determined from experiments. Then we get 

I, = JdW[ wG(x '7~ ~-G(x,t) + ( W (1- w) + 1 ~ W ) G (x I w,t) 
x 

(4.2) 

Let us introduce the variable 

u=l-lU (4.3) 

and note that [39] 

(4.4) 

The series equation (4.4) is convergent for I u I < 1. Since x< lU < 1, so 0< u < 1 - x 

and hence the convergent criterion is satisfied. Using equation (4.4) we can rewrite 

G(x / ~,t) as [55] , 

G (x / lU , t) = G (x + x ~ Uk, t) 

which covers the whole range of u, 0< u < 1 - x. Neglecting higher order terms 

0{x2), G(x / lU, t) can then be approximated for low-x as 

G{ / ) - G( ) ~ kaG(X,t) x lU,t - x,t +x~u . 
k=1 ax 

(4.6) 
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Putting equations (4.3) and (4.6) in equation (4.2) and perfonning u - integrations, we 

obtain, 

I g = R {x )C (x, t) + S (x) ac (x, t) , 
ax 

where, we have used the identity f!!.- = In _1 _0 [39], and where, 
*=1 k 1 - u 

(4.7) 

R(X)=-{(I+~)(I-X)+(_~+_1 )(I-X)2 +'!'(I-x)3 +(I+~)lnx } (4.8) 
9K 2 9K 3 9K' 

and 

S(x)= X{(1 + ~)~+ (2 + ~)(1- x)+ _1 (1- xy + .!.(1- xy 
9K 4 9K 9K 3 

+ (2 + _8_) In x-I -~ }. 
9K 9K 

Using equation (4.7) in equation (4.1) we get, 

aC(x,t) _~{(~_ N f)+ In(l- x)G(x,t) 
at t 12 8 

+ R (x)G (x, t) + S (x) aG (x, t) } = 0 
ax 

which gives 

aG(x,t) _~{P(x)G(x,t)+Q(x)aG(x,t)} = 0, 
at t ax 

where, 

p{x)= __ -L +In{l-x)+R{X) (
II N) 
12 18 

and 

Q(x) = Sex). 

The general solution of equation (4.10) is [40] 

40 
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F(U,V}=O, (4.12) 

where, F is an arbitrary function and U(x,t, G} = C\ and V(x,t, G} = C1 fonn a 

solution of the equations 

dx dt dG 
AfQ(x} = =t = - AfP(x}G(x,t} . 

(4.13) 

Solving equation (4.13) one obtains 

and 

V(x,t, G) ~ G(x,t )exp [f ~~:l dx l 
It thus has no unique solution. The simplest possibility is that a linear combination of 

U and V is to satisfy equation (4.12) so that 

(4.14) 

where Ag and B g are arbitrary constants. Putting the values of U and V in equation 

(4.14) we obtain, 

Defining 

one gets, 

(4.15) 

which gives the t -evolution of gluon distribution function G (x, t). Again defining 
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one obtains, 

(4.16) 

which detennines the x - evolution of gluon distribution function G(x,t}. We can 

perfonn the integration inside the exponential in the equation (4.16) with further 

approximation that In(1 - x} ~ 0 and x In x ~ 0 for very low-x, x ~ O. Then we get 

from equation (4.11), 

p(x}= --- - 1+- (l-x)- --+- (1-2x) 
(

11 Nf) ( 2) (1 1) 
12 18 9K 2 9K 

(4.17) 

and 

Q(x}= (1 + ~)+(2 +~)x+(~+ ~)-(x + ~x) 
9K 9K 9K 3 9K' 

when we have neglected the square and higher tenns of x. Putting the values of p(x) 

and Q(x} from equation (4.17) in equation (4.16) and perfonning the integrations 

analytically we get, 

- 4 4 1 11 N f where a = 1 + -- b = - + - C = - - - d = 
9K ' 3 9K' f 12 18' 

1 1 e=--+- . 
. 2 9K 
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Instead of neglecting the higher order tenns O(X2) from the equation (4.5) as is done 

in equation (4.6), let us retain the second tenn of Taylor expansion series (4.5) and 

neglect higher order tenns O{x3
) • Then G(x / ro, t) can be approximated for low-x as 

[55], 

(4.19) 

Putting equations (4.3) and (4.19) in equation (4.2) and perfonning u - integrations 

we obtain, 

(4.20) 

where,R(x) and Sex) are defined by equations (4.8) and (4.9) respectively a~d rex) 

is given by, 

"-

t-X( ~ )2( 2) 12k U l-u 2 l+u T(x)=-x f LU u(l-u)+-+-+--- duo 
2 0 k=t 1- U U 9K 1- u 

It does not need to calculate explicitly the value of r(x) as a function of x for the 

reason which will be clear shortly. Using equation (4.20) in equation (4.1) we get 

whereP(x) and Q(x) are defined by equation (4.11). The equation (4.21) is a second 

order partial differential equation which can be solved by Monge's method [40]. 

According to this method the solution of second order partial differential equation 

Rr+Ss+Tt=V (4.22) 

can be obtained from the subsidiary equations 

R dy 2 - S dx dy + T dx 2 :::: 0 and R dp dy + T dq dx - V dx dy = 0 , 

where, R,S,T,V are functions of x,y,z,P and q. Here z,p,q,r,S and t are defined 

as follows: 

z = z(x,y), 
_ a2z _ ap 

r----ax 2 ax' 
a2z ap aq 

s=--=-=-
axfly fly ax 
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02 Z oq 
and t=-=-. ay2 ay 

Comparing equation (4.21) with equation (4.22) we get, R = A f Y(x), S = 0 ,T :::: 0 and 

v = t. aG(x,t) - A fQ(x )aG (x,t) - A fP(x )G(x,t). 
at ax 

Substituting the values of R,S,T and V in subsidiary equations we obtain ultimately 

V = 0, which gives, 

which is exactly the equation (4.10). This equation has been solved earlier and now it 

is clear that the introduction of the second order tenns does not modify the solutions 

equation (4.15) or (4.16). 

4.2. Result and Discussion: 

We have presented our result qualitatively in Fig.4.1 and Fig.4.2. In Fig.4.1, the 

result of t or Q2 - evolutions of G(x, Q2) from the equation (4.15) is given. We 

have taken arbitrary inputs G~,Q5)=I, 2 and 3 for x=x\,x2 and x3 respectively. 

Similarly in Fig.4.2, the results of x - evolutions of G(x, Q2 ) from the equation (4.16) 

(solid lines) and from the equation (4.18) (dashed lines) are presented. Integration in 

the equation (4.11) is computed numerically. We have taken arbitrary inputs 

G(xo, Q 2 
) = 10 for Q 2 = Q\2 for both the sets. Different lines are due to different 

K -values, K = 0.01, 0.1, 1, 10 and 100 indicated in the Fig.4.2. For the dashed 

graphs, K - values are labelled as K / for convenience. It is clear from the figures that 

evolutions of gluon distribution functions G(x,Q2) depend upon inputs G(x,Q5) or 

G~to ,Q 2 ) and also upon K - values. 

Eichen, Hinchliffe, Lane and Quigg (EHLQ) [56] began with input distribution 

inferred from experiment at Q~ :::: 5 GeV 2 and integrate the evolution equatio~ 
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1~r-------------------------------------------------------~ 

3 

2 

10' 102 

Q2(GeV2) ') 

Fig.4.1: Q2_ evolutions of G(X,Q2) from equation (4.15). Arbitrary inputs G(X,Qo2) = 1, 2 and 3 
are taken for x = Xl, X2 and XJ respectively. 

numerically. They started with the data of CDHS neutrino experiment [57] at CERN. 

Gluon distribution is determined indirectly and parametrized as 

G(x, Q5 ) == (2.62 + 9.l7x)(1 - x )5.9 

with R==aL/ar==O.l and A==200MeVat Q5 =5GeV 2
. This is Set-I. Under 

the assumption that R = a L / a r has the behaviour prescribed by QCD, gluon is 

parametrized as 

with A = 290 MeV at QJ = 5 GeV 2
. This is Set-2. The calculated Q2 - dependence 

of G(x,Q2) for Set-l is shown in Fig. 4.3 (a) by dashed lines for x values 

10-1
, 10-2 , 10-3 and 10-4 as indicated in the figure. 
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105~----------------------------------------------------' 

10' 
"./ 

--- ---
KI=.1 ..................... 

...- -- -- - - - - - - -.=-.=----
.",............ ....- --- --

K'= .01/ 
/ 

I 
/ 

./ 

/' 

,. 
/ 

100 ~ ____ aB~--~~ __________ -L __________ J-__________ ~ ________ ~ 

10.6 10.5 10.4 10.3 10.2 

x-
Fig.4.2: x - evolutions of G(X,Q2) from the equation (4.16) (solid lines) and (4.18) (dashed 
lines). Arbitrary input G(xo,Q2) = 10 for Q2 = Q12 IS taken. K or K' = 0.01, 0.1, 1, 10 and 100. 

10.1 

The expected growth of the distributions at low-x is apparent. Our results from the 

equation (4.15) are given in the figure by solid lines for the same values of x. Inputs 

are taken from the corresponding values at 10 GeV2 from the parametrization. The 

corresponding result for Set-2 is shown in Fig. 4.3 (b). Again to explore the 

uncertainties in low-x region EHLQ consider two modifications of Set-l as follows: 

46 



Studies on Gluon Dlstnbulion Funclion at Low-x 

103 

(a) 

----- -----102 
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------ -----100 

f 
~10"~--------~----------~~--------~------------~--------~ 
o 
~ 103 r---------------------------------------------------~--_, 
~ (b) 

- -~--
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x = 
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x = 
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10' 
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Fig.4.3(a) and Fig.4.3(b) Q2 . evolutions of G(X,Q2) for EHLQ Set·1 and Set·2 
respectlvely(dashed lines) for x = 10 1, 10 2,10 3 and 10-4 Results from equatJon (4 15) (solid 
lines) are also given for same values of x Inputs are taken from the corresponding values at 
10 GeV2 from the parametnzatlon 

C(x,QJ)= (262 + 9.17 x)(I- x)59 for x>O.OI, 

and 
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G(x,Q~)= {0.444x)-O,s -1.886 } 

(25.56x)O s 

for x < 0.01. 

The results of these changes are presented in Fig. 4.4 (a) and Fig. 4.4 (b) for Set-l (a) 

and Set-l (b) respectively for x = 10-2, 10-3 and 10-4 along with our corresponding 

predictions. Diemoz, Ferroni, Longo and Martineli (DFLM) [58,59] also proceed in 

the same manner to parametrize the data from the neutrino experiments BEBC'85 

[60], CCFRR'83 [61], CHARM'83 [62] and CDHS'83 [57] at Q~ = 10 GeV 2
. For the 

set DFLM-2 they consider gluon function to be 

with A. _ = 300 Me V. Here the next to leading order QCD calculation is performed. 
MS 

The result is given in Fig. 4.5 for x = 10-1,10-2, 10-3 and 10-4 by dashed lines Our 

results from the equation (4.15) is given by solid lines taking inputs as before. 

The role of absorptive corrections in the low-x behaviour of deep inelastic gluon 

distribution functions G(x, Q2) is widely discussed now [63] due to the new 

generation of accelerators. Kim and Ryskin estimated [64] the non-linear absorption 

corrections with the parametrization used in semihard phenomenology [65]. As non

linear absorption effects are essentially at very low-x only [2], they decided to use the 

standard GLDAP evolution equation [16,66,67] in region of interest (x> 10-6
, 

Q2<10S GeV2), that is, x>xO(Q2), where, Inxo = (1112.7)ln 2(Q2/i\?). But in this 

case they are to add a new boundary condition 

(A) 

on line x = Xo (Q 2), where, a = G(xo, Q2 )Q2 , which is fixed by the initial condition 

(B) 
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Fig.4.4(a) and Fig.44(b) Q2 - evolutions of G(X,Q2) for EHLQ Set-l (a) and Set-l(b) 
respectively (dashed lines) for x = 10-1, 10 2, 10 3 and 10 4 along With the corresponding 
predictions (solid lines) from equation (4 15) as Indicated In Fig 4 3(a) and Fig 43(b) 

106 

at Q~ = 4 GeV 2 The coefficIent A is fixed by the nonnalization fG(x)dx = 0.55 

and (vo = (1/:r )Nca s(Qi). 4 In 2 corresponds to the QeD pomeron singularity given 
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103 ~------------------------------------------------------, 

102 .... -----------
x = 
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~--~--::~--::-=~----------__ _=~~J ~ 10-J ------- -----------
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Fig.4.5 Q2 - evolutions of G(X,Q2) for DFLM-2 (dashed hnes) for x = 10-1, 10-2, 10-3 and 1(}4 
along With the DFLM-1 corresponding predictions (solid lines) from equation (4 15) as 
Indicated In Fig 4 3(a) and Fig 43(b) 

106 

by the summation of leading-log contributions (a s In ~ r [20], Nc = 3 be the 

number of colours. Absorption corrections reveal itself due to this new boundary 

condition. Kim and Ryskin obtained numerical solution of linear GLDAP evolution 

equation. The boundary condition corresponds to a strong correlation between gluons 

inside the proton. Gluons form groups in small Hot Spots [65,30] with radius 

Rs:::: 0.2 F", at x = 113. If gluons are distributed uniformly inside the proton. The 

screening would be smaller and non-linear effect reveals itself at lower-x. For this 

case Rs:::: 0.7 Fm:::: Rn at Xo = 0.0035 . In the Fig. 4.6(a), the x-dependence of gluon 

distribution functions G(x,Q2) at Q2 = 10, 100 and 1000 GeV 2 is given by the 

curves 1,4, 7; 2, 5, 8 and 3, 6, 9 respectively. 
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(a) (b) 
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Fig.4.S(a) x - evolutions of G(X,Q2) at Q2 = 10, 100 and 1000 GeV2 are given by curves 1, 4, I 

7, 2, 5,8 and 3, 6, 9 respectively Solid curves are GLDAP evolution, long-dashed curves take 

Into account the absorption corrections through (A) for Rs ::::: a 2 Fm, short dashed are the 

same for Rs ::::: Rn The shaded area IS the prediction from equalion (4 16) With upper and 
lower boundanes corresponding to K = 1 and 100 respeclively 

Fig.4.S(b) Difference between GLDAP (solid curves) and GLR (dashed curves) equations. 
The curves 1,4; 2, 5 and 3, 6 correspond to Q2 = 10, 100 and 1000 GeV2 respectively Initial 
condllions (A) and (8) are shown by dotted and dot-dashed curves respeclively The shaded 
area IS same as In Fig 4 6(a) 

Solid curves are the ordinary linear GLDAP evolution equation; long dashed curves 

take into account the absorption corrections through the new boundary condition (A) 

for Rs- 0.2Fm. Short dashed is the same for Rs-Rn.Here A=200MeV.lnthe 

Fig. 4.6(b) the difference between linear (solid curves) GLDAP and non-linear 

(dashed curves) GLR [2] evolution is given. The curves 1, 4; 2, 5 and 3, 6 correspond 

to Q2 = 10, 100 and 1000 GeV 2 respectively. The new and old initial conditions (A) 

and (B) at Qs2 = 4 GeV 2 are shown by dotted and dot-dashed curves respectively 

Here A = 200 Me V . In both the figures, the dashed areas are our predictions from the 

equation (4.16) with upper and lower boundaries corresponding to K = 1 and 100 
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respectively. In both cases gluon distribution functions G~o, Q2) for linear GLDAP 

equation at Xo = 10-2 are taken as inputs; because, it is almost same for all curves. 

In the leading log(l/ x) approximation of QCD, it IS expected that the gluon 

distribution will grow indefinitely as, 

(C) 

in the low-x limit [68] with A ~ 0.5. This increase with decreasing x, will of course 

eventually be tamed by screening corrections which give rise to non-linear terms in 

the QCD evolution equations. The approximate framework is provided by the BKFL 

equation [8,69] with the addition of the non-linear shadowing term. This is known as 

GLR equation. The radius parameter R in the shadowing term characterises the area 

Jr R2 in which the gluons are concentrated within the proton. We would expect R to 

be approximately equal to the radius of the proton that is R ~ 5 GeV- 1 
, although it 

has been argued that the gluons may be concentrated in Hot Spots within the proton. 

So, the results for R ~ 2 GeV-1 are also shown. The non-linear integro-differential 

BKFL equation can now be solved numerically [68] with the analysis entirely 

confined to the low-x region x < xo' It is informative to compare the above results 

with the gluon distributions to Set- B_ of partons obtained in the Kwiecinski, Martin, 

Roberts and Stirling (KMRS) [70] global structure function analysis which attempted 

to incorporate both the BKFL and shadowing effects, albeit in an approximate 

manner. KMRS evolved the starting distributions up from Q2 = 4 GeV 2 using the 

next-to-Ieading order GLDAP equations. In Fig. 4.7 the continuous curves are the 

. values of G(x,Q2) determined by solving the BKFL equation for Q2 = 100 and 

1000 GeV 2
• 

The dashed curves are G(x, Q2) of Set- B_ of the KMRS next-to-Ieading order 

structure function analysis. In each case three curves are in descending order the 

solution with shadowing neglected, and the solutions with the shadowing term 
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Fig.4.7 x - evolutions of G(X,Q2) of BKFL equation for Q2 = 100 and 1000 GeV2 (solid curves) 
The dashed curves are G(X,Q2) of KMRS Set-B_ In each case three ~urves In d:scendln~ 
order are the solutions With shadOWing neglected. With R = 5 GeV and R - 2 GeV 
respectively The shaded area IS same as In Fig. 46(a) 

I 

10.2 

included with R = 5 GeV-1 and R = 2 GeV- 1 respectively. The shaded areas are our 

predictions described before. G(x, Q2) at x = 10-2 for BKFL equation are taken as 

inputs. They are almost same for all the curves. 

4.3. Conclusion: 

In this chapter, we obtain t and x-evolutions of gluon distribution function at low-x 

from GLDAP evolution equation. Comparison is made with the prediction of BKFL 

as well as GLR equations. We also make predictions for the HERA range. It is clear 

from the figures that our results for t -evolutions of gluon distribution functions 

confonn with those of EHLQ Set-I, EHLQ Set-2 and DFLM-2 parametrizations for 

x < I 0-2 
, but do not confonn for x> 10-2

. But they confonn excellently with Set-l (a) 

whereas differ badly with Set-I (b). The bands in all the figures gives our predictions 

for x-evolutions for l<K <lao. Our predictions confonn we11 with those of others 

It can be inferred from our predictions that screening correction at very low-x is more 

likely. To conclude, our simple approximate analytical solution of GLDAP evolutIOn 

equation for structure function gives satisfactory predictions in HERA range. The 
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qualitative predictions of our results conform to those of several other authors. 

GLDAP evolution equation in present form thus stands as a viable alternative to 

BKFL and GLR predictions, at least in the x and Q2 - range under study.o 
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Chapter-S 

GLUON DISTRIBUTION FUNCTION FROM PROTON 

STRUCTURE FUNCTION 

The measurements of proton structure function by Deep Inelastic Scattering (DIS) 

processes in the low-x region where x is the Bjorken variable have opened a new era 

in parton density measurements [42]. Gluon distribution can not be measured directly 

from, experiments. It is therefore important to measure gluon distribution G(x, Q2 ) 

indirectly from the proton structure function F2 (x, Q2 ). A few number of papers have 

already been published [43-45,48,49,50,52,53] in this connection. Here we present an 

alternative method to relate G(x, Q2) with proton structure function and their 

derivatives with respect to In Q2, aF2 (x, Q2)/ a In Q2 and with respect to 

x, aF2 (x, Q2)/ ax for fixed values of Q2. Our method is more general with less 

approximation, simpler and mathematically more transparent. 

5.1. Theory: 

It is shown in the references [45,52] that the gluon distribution at low-x can be 

obtained by analysing the longitudinal structure function. Similarly it is also shown in 

the reference [48,49,53] that this distribution can be calculated from the proton 

structure function F2 (x, Q2) and their differential coefficient with respect to 

In Q2, aF2 (x, Q2 )/ aln Q2 . The basic idea lies on the fact that the scaling violation of 

F2 (x, Q2) arises, at low-x, from the gluon distribution alone and does not depend on 

the quark distribution. Then neglecting the quarks the leading order GLDAP evolution 

equation for four flavours [49] gives 

(5.1 ) 
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where, the splitting function is 

(5.2) 

and, as is the strong coupling constant. Now, 

00 00 

x "k "k --=x~z =x+x~z . 
l-z k=O k=1 

(5.3) 

We have, 1- x> z >0 ~ I z I < 1 which implies that the ~xpansion equation (5.3) is 

" 
convergent. Now by the Taylor expansion [39] we get, 

G( Q2) ~ kOG(X,Q2) 1 2(~ k]202G(X,Q
2

) 0(3) = x, +x~z +-x ~z 2 + X 
k=1 ox 2 'k=1 ox 

where, 0(x3) are the higher order terms. Neglecting the terms containing x2 and 

higher orders 0(x 3
) for simplicity, we get, 

But as a matter of fact, we can not neglect the higher order terms, as these terms are 

not small in Regge-like behaviour [4,49]G(x)::::: x-6p (Q') or in Double.logarithmi~al 

behaviour [49,51] G(x):::::exptO.5~8p(Q2)ln(l/x)) for gluon at low-x. Here 

8 P (Q2) is a Q2 - dependent parameter where p = s (singlet quark) or g (gluon). On 

the otherhand, it has been shown that this Taylor expansion method is successfully 

applied in calculating Q2 - evolution of proton structure functions [36] at low-x with 

reasonable phenomenological success. Bora and Choudhury [48] and also Prytz 

[43,44] has already applied Taylor expansion method to calculate gluon distributions 

from proton structure functions and scaling violations of them. But our method is 

more general and transparent with less approximation. 
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Putting equations (5.2) and (5.4) in equation (5.1) and perfonning z - integrations we 

get, 

(5.5) 

where, 

and 

B(x) = (1/3)x (1 - x )(- 2x2 + 4x - 5)- x In x . 

00 k 1 
Here we used the identity [39] L -=- = In --. Recasting the equation (5.5) we 

k=1 k 1- z 

get, 

And so, equation (5.6) gives, 

G() B(x)aG(x)_ 97rK(x) 
x + A (x ) a x - 5 a s A (x )" 

(5.6) 

(5.7) 

Since the ratio B(x)/A(x) is very small at low-x, limr->o B{x)/A{x) = 0, the left 

hand side of equation (5.7) can be written as 

G{) B{x) aG{x) = G() B{x) aG{x) ~(B{X))2 a2G{x) 
x + A{x)" ax x + A{x)" ax + 2 A{x) . ax 2 + .... 

= G(x+ B{X)) 
A{x) 

by Taylor expansion series [39] . Thus from equation (5.7) we get, 

G(x + B{X)) = ~. K{x) . 
A{x) 5as A{x) 

(5.8) 

The equation (5.8) is the relation between the gluon distribution G(x', Q2) at 

Xl = X + B{x)/ A{x) and aF2 (x, Q2)/ a In Q2 at x, at the fixed values of Q2 = Qg. 

This is our main result. 
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5.2. Results and Discussion: 

We use HERA data taken by HI and ZEUS collaborations from the Table-l [71] and 

Table-2 [72] respectively. In these tables, the values of 8F2 (x, Q2 )/ 81n Q2 are listed 

for a range of x - values at Q2 = 20 Ge V 2. Similarly we use parametrizations of the 

recent New Muon Collaboration (NMC) proton structure function data [73] from a 

15- parameter function [73]. Here we calculate the values of 8F2(x,Q2)/81nQ2 at 

Q2 = 40 GeV 2
• Moreover recent HERA data are also parametrized by HI and ZEUS 

collaborations by some appropriate functions. In these cases also we calculate 

8F2(x,Q2)/81nQ2 at Q2 =20GeV 2
• From all these data or parametrizations we 

calculate the structure functions F2 (x, Q2) or scaling violations of structure functions 

with respect to InQ2 and apply them in the equation (5.8) to calculate the gluon 

distribution functions G(XI, Q2 ) at Xl = X + B{x)/ A{x). 

Table·1 

The values of 8F2 (x, Q2 )/ 81n Q2 for different low values of x from HERA data 

given by HI collaboration at Q2 = 20 GeV 2
. a stat . and a sys, are statistical and 

systematic errors respectively. 

x 8F, /lnQ2 a
Slal 

a sys, 

0.000383 0.51 0.14 0.09 

0.000562 0.65 0.18 0.10 

0.000825 0.46 0.06 0.06 

0.00l33 0.28 0.06 0.11 

0.00237 0.21 0.03 0.06 

0.00421 0.20 0.03 0.03 

0.0075 0.08 0.02 0.03 

0.0133 0.06 0.02 0.02 

Reference [71J: S. Aid et. a H1 Collaboration, Phys. Lett. B 354 (1995) 494. 
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Table-2 

The values of aF2 (x, Q2 )/ aln Q2 for different low values of x from HERA data 

given by ZEUS collaboration at Q2 = 20 Ge V 2. cr sial and cr SYSI are statistical and 

systematic errors respectively. 

x aF2/lnQ2 cr SUlI cr sySI 

0.00085 0.45 0.03 +0.05, -0.10 

0.00155 0.30 0.03 +0.09, -0.30 

0.00268 0.25 0.02 +0.07, -0.09 

0.00465 0.23 0.03 +0.02, -0.05 

Reference [72J: M. Demck et. aI., ZEUS collaboration, Phys. Lett. B 364 (1995) 576. 

The 15-parameter function to describe the recent NMC proton structure function data 

IS, 

Here, Q2 = 20 GeV 2
, A = 0.250 GeV , 

A(x) = xal (1- xyz {a3 + a4(I-x)+ as(l- x? + a6 (l-x)3 + a7(1- X)4}, 

B (x) = b I + b 2 X + b 3 / (x + b J 

and 

C (x) = C I X + C 2 X 2 + C 3 X 3 + C 4 X 4 • 
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Table-3 

15-parameters for F! (x, Q2 ) and F! (x, Q2 ). 

Parameter F!~,Q2 ) F2d~,Q2 ) 

Middle Value Upper Value Lower Value Middle Value 

al -0.02778 -0.05711 -0.01705 -0.4858 

a2 2.926 2.887 2.851 2.863 

a3 1.0362 0.998 0.8213 0.8367 

a4 -1.84 -l.758 -1.156 -2.532 

as 8.123 7.89 6.836 9.145 

a6 -13.074 -12.696 -1l.681 -12.504 

a7 6.215 5.992 5.645 5.473 

bl 0.285 0.247 0.325 -0.008 

b2 -2.694 -2.611 -2.767 -2.227 

b3 0.0188 0.2043 0.0148 0.0551 

b4 0.0274 0.0307 0.0226 0.057 

CI -1.413 -l.348 -l.542 -1.509 

C2 9.366 8.548 10.549 8.553 

C3 -37.79 -35.01 -40.81 -31.2 

C4 47.1 44.43 49.12 39.98 

Reference [73]: M. Ameodo at. aI., NMC,Phys. Lett. B 364 (1995) 107. 

Table-4 
Recent HERA data in parametrized by HI collaboration as 

Parameter .... a b C d e 

Value .... 3.07 0.75 0.14 -0.19 -2.93 

Reference [74]: T. Ahmed et ai, H1 collaboration, Nucl. Phys. B 439 (1995) 471. 
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Upper Value Lower Value 

-0.04715 -0.02732 

2.814 2.676 

0.7286 0.3966 

-2.151 -0.608 

8.662 4.946 

-12.258 -7.994 

5.452 3.686 

-0.048 0.141 

-2.114 -2.464 

0.0672 0.0299 

0.0677 0.0396 

-1.57 -2.128 

9.515 14.378 

-34.94 -47.76 

44.42 53.63 

f g 

-0.05 3.65 
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Table·5 
Recent HERA data is parametrized by ZEUS collaboration as 

F2 = (1- x a ) [c + d )e+ jloglO Q2)] where, Q2 - range IS from 8.5 GeV 2 to 

500 GeV 2 
. 

a b c d e f 

2 4 0.35 0.017 -0.35 -0.16 

Reference [75): M. Derrick et ai, ZEUS collaboration, DESY 94-143, (1994). 

For our calculation, strong coupling constant as was taken from a next-to-Ieading 

order fit [76] to F2 data which yields as = 0.180 ± 0.008 at Q2 = 50 Ge V 2 

corresponding to A(,~s = 0.263 + 0.042 and as (M; ) = 0.113 ± 0.005. This value of 

a s agrees with one given by Particle Data Group [77]. But in our practical 

calculations we neglect the errors of a s and A which are rather small. 

In the Fig.5.l, we calculate G{x l
) (equation (5.8) ) for Xl values which varies from 

5.52xl0-2 to 2.27xl0-6 for highest and lowest values of x under consideration 

respectively. The gluon distribution increases from == 3.5 to 6.5 when x decreases 

from the highest to the lowest values under consideration. But gluon distribution 

decreases slightly « 1 %) for a particular values of x when Q 2 increases from 

40 GeV 2 to 100 GeV 2
• We do not compare the result of NMC data with those of 

mainly HERA, because, their Q2 and x - ranges are different. 

In the Fig.5.2, the gluon distribution obtained by our method (equation (5.8)) from 

HERA data measured by HI collaboration [71] is presented at Q2 = 20 GeV 2
. The 

middle line is the result without considering any error in the data. The upper and 

lower lines are the results adding and subtracting algebraically the statistical and the 

systematic errors with the data respectively, and thereby calculating the gluon 

distributions. These two lines are symmetric about the middle lines and positive and 

negative errors are equal. The area bounded by these lines gives the result with 
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Fig.S.1 Gluon distribution obtained by our method (equation (58)) for NMC proton 
parametrization (15-parameter function -Table-3) at Q2 = 40 GeV2 The middle, upper and 
lower lines are the results (a)Wlthout consldenng any error, (b)addlng algebraically the 
statistical and systematic errors and (c)subtractlng algebraically the statistical and systematic 

-1.258 

I errors respectively 

50 

45 

40 

35 

30 -N 

q, 25 
>< -(!) 

20 

15 

10 

5 

0 

~Mlddle 

--Upper 
....... Lower 

-2.404 -2.262 -2.121 -1.949 -1.744 -1.546 -1.352 -1.169 

L0910X 

Fig.S.2 Same result as In Fig 5 1 (equatlon(5 8)) for HERA proton data by H1 collaboration 
(Table-1) at Q2 = 20 GeV2 
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maximum error. The x-values in the data ranges from the highest value 1.33 x 10-2 to 

the lowest value 3.83 x 10-4. The corresponding Xl values are 6.81 x 10-2 and 

3.948 x 10-3 respectively, and also gluon distributions are ~ 3.0 and ~ 24.0 

respectively for data without considering any error. Here also gluon distribution 

increases when x decreases except the lowest value when gluon distribution decreases. 

But the rate of increment for HERA data measured by HI collaboration is much 

higher than that ofNMC data. 

In Fig.5.3 the same thing is presented for HERA data measured by ZEUS 

collaboration [72] at Q2 = 20 GeV 2
• 

30~--------------------------____________________ __ 
--Middle 
--Upper 

25 ~Lower 

20 

~ 15 
(5' 

10 

5 

O+---------------+-------------__ +-____________ ~ 
-2.111 -1.886 Log1oX 

Fig.5.3 Same result as In Fig 5 1 (equation (5 8)) 
collaboration (Table-2) at Q2 = 20 GeV2 

-1.701 -1.512 

for HERA proton data by ZEUS 

Here the x-values in the data ranges from the highest value 4.65 x 10-3 to the lowest 

value 8.5xI0-4. ~The corresponding Xl values are 3.077xI0-2 and 7.752xI0-3 

respectively and also gluon distributions are ~ 10.9 and are ~ 21.2 respectively for 
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data without considering any error. We see, in this case also, gluon distribution 

increases when x decreases. And the rate of increment is slightly higher to that of HI 

collaboration in the x-range considered, but much higher than that ofNMC data. 

In the Fig.5A comparison of gluon distributions by our method (equation (5.8)) for 

HERA proton data by HI and ZEUS parametrizations (Table-4 and Table-5 

respectively) is presented at Q2 = 20 Ge V 2 
. 

10000~------------------------------------------~ 

1000 

- .. H1 
~ZEUS 

-MRS(G) 

-N 

a 
>< 
(5' 

100 

10 .. 

1+---------~--------~------~~------~--------~ 
·5.544 -4.176 ·3.802 -2.909 -2.052 -1.258 

L0910X 
Fig.5.4 Companson of gluon dlstnbutlons by our method (Sarma and Medhl - equallon (5 8)) 
for HERA proton data by H1 (dashed line) and ZEUS (solid line) parametnzatlon (Table-4 and 
Table-5 respectively) With MRS(G) [50] mput gluon dlstnbutlon (thin solid lines With solid 
circles) at Q2 = 20 GeV2 

The x range used by HI collaboration is 10-4< x<1 for Q2 range 4 GeV 2 <Q2 < 

2000 GeV 2
• This parametrization also covers theF/ data from the NMC and 

BCDMS experiments. Similarly the x range used by ZEUS collaboration is up to 

small values =::: 10-4 for all values of Q2 under consideration But it will also cover 

the high values of x from NMC collaboration. It is seen from the figure that as usual 

when x decreases gluon distribution increases, but in different rates. 
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In the Fig.5.5, comparison of gluon distribution from NMC proton data 

parametrization (Table-3) middle value only by our method (equation (5.8), line with 

solid diamonds), Bora and Choudhury method (line with solid squares), and Pryz 

method (line with solid triangles) at Q2 = 40 Ge V2 is presented. 

12~-------------------------------------------------------, 
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-N 

8 

~6 
)( 

(5' 

4 

2 
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=====--~ .. ----....-.-. .. • • 

-6.9 -6.7 -5.9 -5.7 -5.6 -4.9 -4.7 -4.2 -3.9 -3.8 -3.7 -2.9 -2.9 -2.7 -2.1 -1.9 -1.7 -1.3 
L0910X 

Fig.5.5 Same result as In Fig 5 4 for NMC proton parametmzatlon (Table-3) middle value only 
by Sarma and Medhl (equatlon(5 8)), Bora and Choudhury [48] and Prytz [43.44] methods at 
Q2 = 40 GeV2 

If we apply proton structure functions and their scaling violations at a particular x

value, the calculated gluon distributions will be in different x-values for these 

different methods. They are x' = x + B{x)/ A{x) in our method, 

X\ = X + [B{x); A{x)+ B{x)].x in Bora and Choudhury method and X 2 = 2x in Prytz 

method. Thus the shifting of the arguments in gluon distributions is appreciable in our 

method. For all the methods, gluon distribution increases when x decreases except for 

the last data point for which it decreases. But rate of increment is different for 

different methods. The values of gluon distributions are comparable but rate of 

increment is highest in our method and lowest in Bora and Choudhury method. 
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In Fig.5.6, the same thing as in Fig.5.5 is presented for HERA data middle value only 

measured by HI collaboration (Table-I) at Q2 :::: 20 GeV 2
. 
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L0910X 

Fig.5.S: Same result as in Fig.5.5 for HERA proton data by H1 collaboration (Table-1) by 
various methods (Kotikov and Parente method) [49.52J at Q2 = 20 GeV2. 

Here results by an extra method, Kotikov and Parente method [49,52] are also 

included. The x- values under consideration are same as in Fig.5.2. But the arguments 

of the gluon distributions calculated are different for different methods as discussed 

earlier, except for Kotikov and Parente method for which the arguments do not 

change. Accordingly, for the highest and the lowest x values, x I values are 6.81 x 10-2 

and 3.948xI0-3
; Xl values are 1.8x10-2 and 5.16xI0-4 and x2 values are 

2.66 x 10-2 and 7.66 xl 0-4 respectively. For all the methods gluon distribution 

increases when x decreases except for the last data point for which it decreases. But 

rate of incren:ent is different for different methods. The values of gluon distributions 

are comparable but rate of increment is highest in our method and lowest in Kotikov 

and Parente method. It is intermediate in other two methods of which rate of Prytz 

method is slightly higher than that of Bora and Choudhury method. 
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In Fig.5. 7 also, the same thing as in Fig.5.5 is presented for HERA data 

parametrization (Table- 4) measured by HI collaboration [74] at Q2 = 20 GeV 2
. 
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Fig.5.7: Same result as in Fig.5.5 for HERA proton parametrization by H1 collaboration 
(Table-4) by various methods at Q2 = 20 GeV2. 

The x values under consideration are same as before in Fig.5.1. Accordingly shifted 

arguments of gluon distributions for different methods are exactly same as in Fig.5.5. 

When x decreases, gluon distribution increases for all the methods as usual, but with 

different rates for different methods as before. The growth rate is highest in our 

method and lowest in Bora and Choudhury method. In the same figure, we compare 

the result with Martin, Roberts, Stirling (MRS(G)) [50] input gluon distribution (solid 

line with solid circles) in the same Q2 - value. MRS (G) distribution is close to our 

method. 

In Fig.5.8, comparison of gluon distributions by various methods exactly same way as 

in Fig.5.6 is presented for HERA data middle value (Table-2) measured by ZEUS 

collaboration [72] at Q2 = 20 GeV 2
• 
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Fig.5.B: Same result as Fig.5.6 for proton data by ZEUS collaboration (Table-2) by various 
methods at Q2 = 20 GeV2. 

The x-values under consideration is same as in Fig.5.3. But the arguments of the 

gluon distributions calculated are different for different methods as discussed earlier. 

Accordingly, for the highest and lowest x values Xl values are 3.077x 10-2 and 

7.752xlO-3
, XI values are 6.2xlO-3 and 1.13xlO-3

, and x2 values are 9.3xIO-3 

and 1.7 x 10-3 respectively. The arguments of gluon distribution for Kotikov and 

Parente method are same as x-values under consideration. The gluon distribution 

increases when x decreases for all the methods as before, but the rate of increment is 

highest in our method and lowest in Kotikov ans Parente method. The rates are 

intermediate in other two methods of which rate of Prytz method is higher than that of 

Bora and Choudhury method. 

In Fig.5.9, the same thing as Fig.S.7 is presented for HERA data prametrization 

(Table -5) measured by ZEUS collaboration [75] at Q2 = 20 GeV z. 
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Fig.5.9: Same result as in Fig.5.? for HERA proton parametrization by ZEUS collaboration 
(Table-S) by various methods at Q2 = 20 GeV2 

The x values under consideration are same as before as in Fig.5.l except the lowest x 

values which is 10-6 here instead of ~ 10-7 in the previous cases. Accordingly, the 

shifted arguments are also same as in Fig.5.5 with suitable modification for the lowest 

values. When x decreases gluon distribution increases as before with different rates. 

This is highest in our method and lowest in Bora and Choudhury method. In the same 

figure, we compare the result with MRS (G) [50] input gluon distribution in the same 

Q2 _ value. But it is far below than the gluon distribution calculated from ZEUS 

HERA data by other methods. It is because the rate of increment of HERA ZEUS data 

when x decreases is very high which makes the calculated gluon distributions also 

very high. 

5.3 Conclusion: 

In this chapter, we present an alternative method than other methods [43-

45,48,49,52,53] to extract gluon distribution G(x, Q2) from the measurement of low-

69 



Studies on Gluon Distribution Function at Low-x 

x proton structure function F2 (x, Q2 ) and their differential coefficients 

aF2 (x, Q2 )/ aln Q2 with respect to In Q2 . For calculation of gluon distribution from 

proton structure function at low-x, we use HERA data measured by HI [71] and 

ZEUS (72) collaborations, HERA data parametrizations presented by Hl (74) and 

ZEUS [75] collaborations and NMC data parametrizations [73]. Of course, the last 

parametrization includes SLAC [78] and BCDMS [79] low-x data also. In our 

method, gluon from NMC data [73] is appreciably small, it is almost one fifth of 

HERA data measured by H I and ZEUS collaborations at x~ 10-3 
. But if we compare 

with HERA data parametrizations, we will get slightly different result. In our method, 

gluon from NMC data parametrizations is almost one third than that of HI and ZEUS 

HERA data parametrizations at x~ 10-3
. But it is almost one tenth of that of HI 

parametrization and almost one thousandth of that of ZEUS parametrrization. In our 

method, gluon distributions calculated from direct HERA data measured by HI and 

ZEUS collaborations up to x~ 10-3 are almost in the same order. Gluon distribution 

from the HERA data parametrizations by HI and ZEUS collaborations up to x~ 10-3 

are also of the same order to them and mutually are also same. But after x~ 10-1 

when x decreases the rate of increment of ZEUS parametrization is much higher than 

that of HI and gluon distribution from the first parametrization becomes also hundred 

times of the second one at x~ 10-7 
. 

We compared our result with other methods, Bora and Choudhury, Prytz, Ktikov and 

Parente, and MRS (G) input gluon distribution. The general trend is that gluon 

distribution G(x, Q2) increases when x decreases. But the rate of increment of gluon 

distribution calculated by our method is in general higher than those of other methods. 

The result of Kotikov and Parente method are the lowest. The result of two other 

methods are the intermediate ones between these two methods of which the result of 

Prytz method is higher than that of Bora and Choudhury method. Results from our 

method are closed to those from Prytz method. This is because Bora and Choudhury 

method is a crude approximation as they include only one term of the infinite series 

x /(1- z), whereas we include all the infinite terms. So the other terms enhance the 
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contribution in our method. In our method, the first order approximation in Taylor 

expansion of G(x /(1- z), Q 2) is used; that is only tenns having first order 

differentiation aG(x, Q2 )/ ax is used.o 
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Chapter-S 

GLUON DISTRIBUTION FUNCTION FROM DEUTERON 

STRUCTURE FUNCTION 

We present some simple methods to find gluon distribution from analysis of deuteron 

structure function data at moderately low-x. Here we use the leading order GLDAP 

evolution equation and New Muon Collaboratio (NMC) deuteron structure function 

data to extract gluon distribution. We also compare our results with those of other 

authors. Here we present two alternative methods to relate gluon distribution C(x, Q2 ) 

with deuteron F2 (x, Q2) structure function and their differential coefficients with 

respect to InQ2 and x, that is, 8F2(x,Q2)/8InQ2 and 8F2(x,Q2)/8x for fixed 

values of Q2. We report for the first time some methods to extract gluon distribution 

from deuteron structure function data. Our methods are simpler with less 

approximation and more transparent. Of course, there exist some established methods 

[80] for extracting gluon distribution from data based on global fits. In these methods, 

momentum distribution and other constraints [81] are used to get gluon distribution. 

But our methods are based on the direct solution of QCD evolution equation which 

may be some good alternatives. 

6.1. Theory: 

In the leading order analysis, deuteron structure function is directly related to the 

singlet structure function [38]. On the otherhand, the differential coefficient of singlet 

structure function F/(X,Q2) with respect to InQ2, that is, 8F/(x,Q2)/8InQ2 has a 

relation with singlet structure function itself as well as gluon distribution function 

[38]. Thus it is possible to calculate gluon distribution from singlet structure function 

or ultimately from deuteron structure function also. The leading order GLDAP 

evolution equation for singlet structure function [38] is given by 
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2 x, _-L {3+4In(l-x)}F/(x,t)+2 J ~ z2 -2z+2)F/(xll-z, t) 
aFS

( t) A [ I-x d {( 

at t 0 z 

3 I-x ] 
-2F/(x,t) }+-Nf J (2z2 -2z+I)G(xll-z, t)dz =0, 

2 0 
(6.1 ) 

where, t = In(Q2 /1\.2) and AJ = 4/(33 - 2N J)' N J being the number of flavours 

and I\. is the QeD cut off parameter. Now, 

1 - z 
(6.2) 

We have, l-x>z> ° :::::>Izl< I which implies that the expansion equation (6.2) is 

convergent. Now by the Taylor expansion [39] we get, 

F S(_X_ ) -FS( ) ~ k aF/(x,t) 
2 ,t - 2 x,t+x~z 

1 - z k=1 ax 
(6.3) 

and 

G s(_x_ ) _ GS( ) ~ k aGi(x,t) 
2 ,t - 2 x,t +x~z 

1- z k=1 ax 
(6.4) 

neglecting the higher order tenns. 

But as a matter of fact, we cannot neglect the higher order tenns for singlet structure 

function or gluon distribution function as they may have some contribution. On the 

otherhand, it has been shown that this Taylor expansion method is successfully 

applied in calculating Q2 - evolution [35,36] or x - evolution [34] of structure 

function with excellent phenomenological success. Some authors [43,44].· again 

applied this method to extract gluon distribution from proton structure function. It was 

suggested that [34], one possible reason for success of this method may be due to the 

simplification of QeD processes at low- x for momentum constraints. 

Putting equations (6.3) and (6.4) in equation (6.1) and perfonning z-integrations we 

ge.t, 
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D ( )aG(x,t)J- 0 + s x - , 
ax 

(6,5) 

where, 

As (x) = 3 + 41n(1 - x)+ 2 {(I - x x- 2 + (I - x )/2) }, 

Bs (x)= (31 2)N I {(1- x)(x + (2/3)(1- xy)}, 

c s (x) = 2x {In (II x)+ (1- x )(1- (1 - x)1 2)} 

and 

Now, we can have two methods to extract gluon distributions: 

First Method: 

At very low-x limit, x ~ 0 , the functions As (x), C s (x) and D s (x) become, vanished 

and B s (x) = N f' Equation (6.5) then becomes simplified and we get, 

aF/(x,/) _~ N G( )= 0 . f x,t 
at t 

G( )_ I aF/ (X,/) 
=> x,t - . . 

A fN f at 
(6.6) 

Equation (6.6) is a very simple relation between gluon distribution function with the 

differential coefficient of singlet structure function with respect to t. 

Second Method: 

Recasting equation (6.5) we get, 

74 



Studies on Gluon Dlstnbution Function at Low-x 

Taylor expansion series we can write, 

G( ) Ds(x) aG(x,t) - G( Ds(x) tJ x,t + (). - x + ()' . Bs x ax Bs x 

Thus equation (6.7) gives, 

(6.8) 

where, 

/ D s (x) 
x =x+ () Bs x 

Equation (6.8) is also a simple relation between gluon distribution function with the 

differential coefficients of singlet structure function with respect to t and x, and with 

singlet structure function itself. If we try to combine the last two terms of equation 

(6.8), let us take common K3(X) from both the terms and then they reduce to 

K ()[F S( ) K2(X) aF/(x,t)] 
3 x 2 x,t + (). . 

K3 x ax 

But K 2 (x)/ K 3 (x) is not small at low-x and therefore these two terms can not be 

combined to one as in the case of gluon by applying Taylor expansion series. 

The relation between deuteron and singlet structure function at leading order [38J is 

F;' (x,t) = ~F/ (x,t) => F/ (x,/) = ~F/ (x,/). 
9 5 

(6.9) 

Then we get, 

aF/ (x,t) 9 of/ (x,t) 
at = 5' at (6.10) 
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and 

aF/ (x,t) 9 aF/ (x,t) 
ax = s' ax (6.11 ) 

Putting equations (6.9), (6.10), and (6.11) In equations (6.6) and (6.8), we. get 

respectively, 

and 

aF/ (x,t) 
at 

( I ) 9 [ () aF/ (x, t) ( ) aF/ (x, t) () d ( )] Gx,t =- K\ X.t. +K2 x +K3 xF2 x,t , 
5 at ax 

(6.12) 

(6.13) 

which are our main results. From these equations it is seen that if we have deuteron 

structure function and their differential coefficients with respect to t and x at any x for 

a fixed value of t = to ' we can calculate gluon distribution function at x (first method) 

from equation (6.12) or at x'=x+Ds(x)IBs(x) (second method) from equation 

(6.13) as a leading order analysis. 

For analysis of our result, we use NMC I5-parameter function [73,82J which 

parametrized their data for proton and deuteron structure functions for Q2 - values 

from 0.5 GeV 2 to 75 GeV 2 and low-x values from 0.002 to 0.6. This 

parametrization can also well describe the SLAC [78J and BCDMS [79J data, and 

Fermilab [83J low-x data. The function used to describe proton as well as deuteron 

data is given by, 

Here, 

Qo 2 = 20 GeV 2
, I\. = 0.250 GeV, 

A(x) = x a
, (1- x t ~3 + a4 (1- x)+ as (1- x Y + a6 (1- X)3 + a7 (1- x t }, 

B{x)= bl + b 2 x + b 3 I(x + b 4 ) 
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and 

parameters used to fit the data. Actually two different sets of these parameters' are 

used to describe proton and deuteron structure functions in the same equation 

(equation (6.14)). Thus for the respective sets of parameters, equation (6.14) gives the 

deuteron structure function as 

(6.15) 

where, I = In (Q2 / A2) and 10 = In (Qo 2/ A2). Differentiating F2d (X,/) with respect to 

I and x, we get respectively, 

aF/ (x,!) = (R{X) -1) F/ (x,t)+ A{x )(.!..-)B<X) 
at t 10 

(6.16) 

and 

(6.17) 

where, 

and 
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Now putting equations (6.15), (6.16) and (6.17) in equations (6.12) and (6.13), we can 

easily calculate gluon distributions at x (first method) or Xl = X + Ds (x)/ B s e-c) 

(second method) respectively. 

6.2. Result and Discussion: 

The NMC IS-parameter function [73,82] parametrizes the NMC data for 

Q2 _ values from 0.5 GeV 2 to 75 GeV 2 and low-x values from 0.002 to 0.6 which 

also well describes the SLAC [78], BCDMS [79] and Fermilab [83] low-x data. As 

the data range of x we use is moderately low, we will restrict our analysis values 

from 10 GeV 2 to 60 GeV 2 and low-x values from 0.1 to 0.001. We can not extend 

our analysis to HERA low-x region [42] due to lack of deuteron F2 structure function 

data in that region. 

In Fig.6.1 (a) and Fig.6.1 (b) gluon distributions obtained by our first method (equation 

(6.12)) from NMC deuteron parametrization from the IS-parameter function are 

represented at Q2 = 10 GeV 2 and 60 GeV 2 respectively. The middle lines are the 

results without considering the error. The upper and the lower lines are the results 

with parameter values by adding and subtracting the statistical and systematic errors 

with the middle values respectively. It has been seen that the middle lines almost 

coincide with the upper ones. We calculate gluon distributions for x-values from 10-1 

to 10-3 for both Q2 = 10 GeV 2 and Q2 = 60 GeV 2. In both the cases, G(X,Q2) 

values increases when x decreases as expected, but G (x, Q 2) is higher in 

Q2 = 60 GeV 2 than in Q2 = 10 GeV 2 for same x , especially in lower-x side. 

Moreover, rate of increment of G (x, Q2) is very high from x = 10-1 to 10-2
• But the 

rate decreases to some extent to lower-x region. 

Exactly in the similar way, in Fig.6.2(a) and Fig.6.2(b) gluon distribution obtained by 

our second method (equation (6.13))from NMC deuteron parametrization from the 

15 - parameter function are presented at Q2 = 10 GeV 2 and 60 GeV 2 respectively. 
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Fig.6.1 (a) Gluon distributions obtained by our first method (equation (6 12)) from NMC 
deuteron parametrization from the 15-parameter function at Q2 = 10 GeV2 The middle line IS 

the result Without considering the error The upper and lower lines are the results With 
parameter values by adding and subtracting the statistical and systematic errors With the 
middle values respectively 
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Fig.S.1(b) Gluon distributions obtained by our first method (equation (612) ) from NMC 
deuteron parametrization from the 15- parameter function at Q2 = 60 GeV2 The middle line IS 

the result Without consldenng the error The upper and lower lines are the results With 
parameter values by adding and subtracling the statlslical and systematic errors With the 
middle values respectively 
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Fig.6.2(a) Same result as In Fig 6 1 (a) by our second method (equation (6 13)) 
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Fig.6.2(b) Same as In Fig 6 1 (b) by our second method (equation (6 13)) 
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All discussion are exactly same as for Fig.6.1(a) and Fig.6.1(b) respectively. But 

overall values of G (x, Q2 ) are higher in second method than in first one for any value 

of x. For example, G (x, Q2) medium values are almost 20% and 25% higher in 

second method than in first method for Q 2 = lOGe V 2 and Q 2 = 60 Ge V 2 

respectively at x = 10-3
. This is because in our first method, we apply very low-x 

approximation and neglected As Cx), C s CX") and Ds (x) in equation (6.5) as they are 

vanishingly small at very low-x to obtain equation (6.6) and then equation (6.12). On 

the otherhand, in our second method, we do not apply such approximation and 

automatically the contributions from these functions have been included in equation 

(6.13). 

In Fig.6.3, companson of gluon distributions obtained by Bora and Choudhury 

method (BC), Prytz method, our first method (SM 1 st) and our second method (SM 

2nd) is presented for middle values only for Q2 = 60 Ge V 2. 

10 

9 I-
_. - 'Be 

.. · .. ·····Prytz 

8 ~ -SM1st 
-SM2nd 

7 

6 

b )(- 5 ~- - - - - __________ _ 
(5" ----. -----.----- __ 

4 

3 

2 

1 

o 
0.001 

---------- - .. . _- .. _---.. --. -- ...... ' ... - .. .. .. ...... .. .. . .. -' ...... --:::... 

-------0.01 

x 
Fig.6.3: Companson of gluon distributions obtained by Bora and Choudhury method (BC ), 
Prytz method, our first methvd (SM 1st) and our second method (SM 2nd) for middle values 
only at Q2 = 60 GeV2. 
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Values are higher for the result of other authors with proton structure function data 

than of ours with deuteron structure function data. This is actually due to the fact that 

the scaling violations of deuteron structure functions F;' (x, Q2) with respect to In Q2 

are themselves considerably less than those of HERA proton data due to HI [71] and 

ZEUS [72,84] collaborations and these scaling violations are directly proportional to 

gluon distributions in the formulas used by Bora and Choudhury and Prytz to 

calculate gluon distributions. These HERA proton data covers x- values up to at least 

=::: 10-4 in comparison with those of NMC data which covers up to :::: 10-3 only. 

Gluon distribution increases as x decreases due to all the authors as expected from 

QCD analysis. Moreover, gluon distribution by our first method is lowest and Prytz 

method is the highest for a particular low-x. 

6.3. Conclusion: 

In this chapter, we present for the first time a method to extract gluon distribution 

from the measurement of moderately low-x deuteron structure functions and their 

differential coefficient with respect to In Q2 and x. Here we use leading order 

GLDAP evolution equation to relate gluon distribution function with moderately low

x structure function or differential coefficient. In our analysis, we use only NMC 

deuteron data parametrization by a 15- parameter function. We find gluon distribution 

from deuteron also increases when x decreases as in the case of proton as usual. We 

can not compare our result of NMC data with other because low-x deuteron data is not 

sufficiently available. Moreover, no other work to calculate gluon distribution 

function from deuteron data has been so far reported. But we compare our result with 

gluon distributions due to Bora and Choudhury and Prytz calculated from low-x 

proton data. We see that our result is to some extent less, as differential coefficient of 

deuteron structure function with respect to In Q 2 is much less than of proton structure 

function.D 
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Chapter-7 

REGGE BEHAVIOUR AND GLUON DISTRIBUTION 

FUNCTION 

In this chapter, we present a method to find the gluon distribution function from 

proton structure function data at low-x assuming the Regge behaviour of gluon 

distribution function at this limit. We use the leading order GLDAP evolution 

equation in our analysis and compare our result with those of other authors. We also 

discuss the limitations of Taylor expansion method in extracting gluon distribution 

from quark structure function used by those authors. 

7.1. Theory: 

The gluon distribution at low-x can be obtained by analysing the longitudinal structure 

function [45,52]. Similarly it is also shown that, this distribution can be calculated 

from the proton structure function and its scaling violation [43,44]. Moreover, in 

reference [84] we see that, it is also possible to calculate gluon distribution from 

deuteron structure function and its scaling violation. The basic idea lies on the fact 

that the scaling violation of quark structure function arises at low-x from the gluon 

distribution alone and does not depend on the quark distribution. Neglecting the 

quark, GLDAP evolution equation for four flavour [43,44] gives, 

(7.1) 

where the leading order splitting function is 

and a. s is the strong coupling constant. Now let 1- z = y => dz = -dy. Again 

z = 0 => 0 => y = 1 and z = 1- x => y = x. Therefore equation (7.1) gives, 
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(7.2) 

Now, let us consider the Regge behaviour of gluon distribution [4], 

(7.3) 

where, C is a constant and A{Q2) is the intercept. The Regge behaviour of the 

structure function F2 (x) in the large - Q2 region reflects itself in the low-x behaviour 

of the quark and the antiquark distributions. Thus the Regge behaviour of the sea 

quark and antiquark distribution for low-x is given by q se)x) - x -a P corresponds 

to a pomeron exchange of intercept a p = 1. But the valence quark distribution for 

low-x given by q val (x)- x -a R corresponds to a reggeon exchange of intercept 

a R = 1/2. Since the same processes lead to gluon and sea quarks distributions in the 

nucleon, we expect G(x) ~ 1/ x. The x-dependence of the proton densities given 

above is aften assumed at moderate _ Q2 . 

Applying equation (7.3) in equation (7.2) we get, 

(7.4) 

For fixed Q2, let K(x) = 8F2 (x, Q2 ); 8 In Q2 and A = Sa s /(9rt ). Thus equation 

(7.4) gives, 

K (x ) ~ A. C .x - A (Q 2 ) J( 2 z A + 2 - 2 z A + 1 + z A ) dz . (7.5) 

x 

Taking logarithm and rearranging the terms, equation (7.5) gives 
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1 [1 {K (x)}] 
-lnx n (A.C) 

(7.6) 

(7.7) 

where, A == A(Q2) and ~ (A) represents the right hand side of equation (7.6). Now 

equation (7.7) has been solved numerically using iteration method [85] to calculate 

the values of A(Q2) for different x-values for a fixed value of Q2 . Scaling violation 

of structure function K{x) = aF2 (x, Q2 )/ aln Q2 and strong coupling constant at 

leading order a s are experimental inputs. C is the only free parameter in our 

calculation. After calculation of A(Q2), we can calculate G(X,Q2) from equation 

(7.3) for different values of the free parameter C and compare our result with those 

due to other authors. 

Now, let us discuss the limitation of Taylor expansion method In this regards .. 

Applying Taylor expansion in equation (7.1) we get 

_ G( Q2 ~ k aG(x,Q2 )) 1 2(~ k)2 a2G(X,Q2) o( 3) - x, + xL.. z + -x L.. z 2 + X , 

k=l ax 2 k=l ax 
(7.8) 

where, 0(X3) are the higher order tenus. Here we have 1- x > z > 0 => I z I < 1, which 

implies that x /(1- z) = x I:=o zk is convergent. In the previous methods, either the 

tenus beyond second order [43,44] or beyond first order [48,84] derivatives of x are 

neglected in the expansion series equation (7.8). But in actual practice, this type of 

simplification is may not be possible because the contributions from the higher order, 

tenus can not be neglected due to the singular behaviour of gluon distribution. 
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There are some other methods also which are not based on Taylor expansion. Kotikov 

and Parente presented [49] a set of formulae to extract gluon distribution from quark 

structure function and its scaling violation at low-x in the next-to-Ieading order 

approximation. A different method for the determination of gluon distribution at low 

values of x has been proposed by Ellis, Kunszt and Levin [53] based on the solution 

of GLDAP evolution equations in the moment, space up to next-to-next-to leading 

order. 

7.2. Result and Discussion: 

We use HERA data taken by HI [71] and ZEUS [72] collaborations where the values 

of BF2 (X,Q2)/ BlnQ2 are listed for a range of x values at Q2 = 20 GeV2. The recent 

HERA data is parametrized by HI [74] and ZEUS [75] collaborations by some 

appropriate functions and we calculate BF2 (x,Q2)/ aInQ2 at Q2 = 20 GeV 2 for those 

functions also. We also use parametrizations of the recent New Muon Collaboration 

( NMC ) [73,82] proton structure function data from a 15- parameter function from 

which also we calculate BF2 (x, Q2 )/ BIn Q 2 at 40 Ge V 2. Now we apply the values of 

BF2(x,Q2)/aInQ2 in equation (7.7) to calculate A. numerically by iteration method 

[85] and hence gluon distribution function G{X,Q2) for C = I and C = 100. For our 

calculation, strong coupling constant a s was taken from a next-to-Ieading order fit 

[76] to F2 datawhichyielda s =0.180±0.008 at Q2=50GeV 2 corresponding to 

A (~)s = 0.263 ± 0.042 Ge V. This value of a s agrees wi~h one given by Particle Data 

Group [77]. But in our practical calculations, we neglect the errors of a s and A , 

which are rather small. We compare our result with those of other authors discussed 

in the theory as well as with the recent MRST global fit [80]. 

In Fig.7.1(a) - Fig.7.1(d), we present gluon distributions G(x) for different low-x 

values from NMC proton data parametrization [73,82] at Q2 = 40, 60, 80 and 

100 GeV 2 respectively for C = 1 and C = 100. 
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From the figures, it is seen that results are almost same for all Q2 values and G(x) 

slowly increase when x decreases logarithmically. We also present the MRST global 
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Fig 7.1(d) Q2 = 100 GeVl -+- Gluon C=1 
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Fig.7.1(a) • Fig.7.1(d): Gluon distribution G(x) by our method from NMC proton 
parametrization [73.82J at Q2 = 40. 60 and 100 GeV2 respectively with C = 1 and C = 100. In 
the same figures we include a global fit by MRST [80J. 

0.01 

0.01 

fit [80] result, but its rate of increment is much higher. The values of C(x) are higher 

for C = I than those for C = 100 for a particular value of low-x. 
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In Fig.7.2(a) and Fig.7.2(b), we present the gluon distributions G(x} for different 
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Fig.7.2(a). Fig.7.2(b) Gluon distribution G(x) by our method from H1 HERA proton data [711 
at Q2 = 20 GeV2 With C = 1 and C = 100 respectively Here we present the results for the data 
(I)Wlthout considering the error (middle), (lI)addlng algebraically statistical and systematic 
errors (high) and (lII)subtractlng algebraically statistical and systematic errors (low) In the 
same figures we Include a global fit by MRST [801 
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low-x values from HI HERA proton data [71] at Q2 = 20 GeV 2 for C = 1 and 

C = 100 respectively. The middle line in each figure is the result without considering 

any error in the data. The upper and lower lines are the results with data adding and 

subtracting systematic and statistical errors with the middle values respectIvely. As 

usual, gluon distribution G(x) increases when x decreases, but the whole system of 

lines in the graphs shifts towards the lower G(x) values when we change from C = 1 

to C = 100 . In the same graphs, we also present the G(x) values for MRST global fit 

[80] which is also increasing towards low-x values, but with somewhat lesser rate. But 

for C = 100 our G(x) values come in the range of this fit. 

In Fig.7.3, we present gluon distributions G(x) for HI HERA proton parametrization 

[74] at Q2 = 20 GeV 2 for different low-x values for C = 1 and C = 100 respectively 

250 

200 

150 

100 

50 

Fig 7.3 Q2 = 20 GeV2 

\ 

. . 

... -..... -- '" .. 

••• Gluon C=1 

- -Gluon C=100 

-MRST 

.. 
. . . 

--o ~ .................... ~ ......................... ~ ......................... ~ ......................... ~ .................... ~ 
0.0000001 0.000001 0.00001 0.0001 0.001 

x 
Fig.7.3 Gluon dlstnbutlon G(x) by our method from H1 HERA proton data parametrization 
[7411 at Q2 = 20 GeV2 With C = 1 and C = 100 In the same figures we mclude a global fit by 
MRST [80J 

O.O~ 

Gluon distribution G(x) increases when x decreases, but the line in the graph shifts 

towards the lower G(x) values when we change from C = 1 to C = 100. In the same 
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figure, we present G(x) values for MRST global fit [80] which also increases towards 

low-x values with somewhat lesser rate. But for C = 100 our G{x) values are closer 

to this fit. 

In Fig.7.4(a) and Fig.7.4(b), we present gluon distributions G{x} for ZEUS HERA 

proton data [72] at Q2 = 20 GeV 2 for different low-x values for C = 1 and C = 100 

respectively. The descriptions and the results are same as H I HERA data [71] 

depicted in Fig.7.2(a) and Fig.7.2(b) respectively. 

In Fig.7.S, we present gluon distributions G(x) for ZEUS HERA proton 

parametrization [72] at Q2 = 20 Ge V2 for different low-x values for C = I and 

C = 100. The descriptions and the results are same as HI HERA parametrization [74] 

depicted in Fig.7.3. 

In Fig.7.6, we present the values of A (Lambda) for HI HERA proton data [71] for 

low, middle and high values of them at Q2 := 20 Ge V2 for different low-x values for 

C = 1 and C = 100. For C = 1 , all the graphs are almost parallel and A - values tend 

to == 0.5 at low-x. For C = 100, for all the graphs, A -values tend to == 0.0 from some 

negative values at low-x. 

In Fig.7.7, we present the A -values for ZEUS HERA proton data [72] in the same 

way as in Fig.7.6. 'For C:= 1, for all the graphs, A -values tend to == 0.5, as we 

approach lower-x from some slightly higher values in comparatively higher x. On the 

other hand, for C:= 100, for all the graphs, A -values tend to == - 0.1 , as we approach 

lower x from some slightly lower negative values in comparatively higher x. 
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Fig.7.4(a) - Fig.7.4(b): Same results aSin Hg.7 2(a) - 7.2(b) respectively from ZEUS HERA 
proton data [721 at 02 = 20 GeV2 
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Fig 7.6 Q2 = 20 GeV2 

O.5~ ! c::::::.....-: ----...: 
0 

-0.5 

-1 

-1.5 

-2 

-2.5 

C 

~- -- - - - - - - - - - - - - - - - --
.1:-· . .•..• ",.:1 

' .... :::: .. ::: ... . 
".. .. ...................... .. ... 

0.002 0.004 )0.005 

. .. . . . . . . .......• ... . . . . . . . -.. 
' .. 

. '" 

O.OOS 0.Q1 0.012 

x 

0.014 

-HighC=1 
••• High C=100 

....-Middle C=1 
- •• Middle C=100 

--.-Low C=1 

• .' Low C=100 

Fig.7.S A. -values by our method from H1 HERA proton data [71J at Q2 = 20 GeV2 Wlth C = 1 
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(lI)addtng algebraically statistical and systematic errors (high) and (11I)supstractlng algebraically 
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Fig.7.7 Same results as In Fig 7 6 from ZEUS HERA proton data [72] at Q2 = 20 GeV2 

In Fig.7.8, we compare our results for HERA HI data (middle value only) [71] at 

Q 2 = 20 Ge V 2 for C = 1 and C = 100 with those of Bora and Choudhury [48] and 
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Flg.7.B Comparison of gluon distribution G(x) from H1 HERA proton data [71] for middle 
values only by our method for C = 1 and C = 100 at Q2 = 20 GeV2wlth those by other methods 
due to Bora and Choudhury [48] and prytz [43,44] In the same figures, we Include a global fit 
MRST [80] 
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Prytz [43,44] In the same figure, we also present the result for MRST global fit [80] 

For all the cases, gluon dlstnbutlon G{x) mer eases when x decreases, but with 

dIfferent rates The rates of Increment In our result for C = 1 IS hIghest and In MRST 

IS lowest But our result with C = 100 IS very close wIth that of Bora and Choudhury, 

and also mSlde the range of MRST 

Lastly, we mclude a sImple FORTRAN programme for calculation of A from the 

scahng VIOlatIOn of structure functIon gIVen In Programme-l 

Programme-1 

C GLUON DISTRIBUTION FROM SCALING VIOLATION OF PROTON DATA 
05 REAL Y, K, X, A, PHIX1, PHIX2, PHIX3, PHIX, P, AB, G 
10 PRINT", "Y=?" 
15 READ*, Y 
20 PRINT'", uK=?" 
25 READ", K 
30 PRINT'", "C=?" 
35 READ*, C 
40 X= 3 
45 ALPH= 118 
50 PI=31416 
55 A=(5 *ALPH)J(9 *PI) 
56 PHIX1=2 J(X+3 )*(1 -y**(X+3 ))-2 J(X+2)*(1 -Y**(X+2)) 
57 PHIX2=1 J(X+1 )*(1 -Y**(X+1 )) 
58 PHIX3=ALOG(K/(A*C)) 
60 PHIX=1 JALOG(Y)"(ALOG(PHIX1 +PHIX2)-PHIX3) 
65 P=X-PHIX 
70 AB=ABS(P) 
75 G=C*(Y**( -PHIX)) 
80 IF (AS LT 00000001) THEN 

PRINT*, C, Y, PHIX, G 
GOTO 10 
ELSE 

X=PHIX 
ENDIF 
GOTO 56 

85 END 
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7.3. Conclusion: 

In this method, we present an alternative method than other methods to extract gluon 

distribution G(x, Q2) from the scaling violation of proton structure function 

8F2 (x)/ 8 In Q2 at low-x. We compare our result with those of other methods due to 

Bora and Choudhury [48] and Prytz [43,44] and with a global fit due to MRST [80]. 

Gluon distribution will increase as usual when x decreases with different rates for the 

different values of the parameter C = 1 and C'= 100 . But our graph with C = 100 is 

very close to that due to Bora and Choudhury and the global fit due to MRST. We 

discussed the limitation of Tayl?r expansion method [85] in calculating gluon 

distribution from scaling violation of structure function at low-x. Prytz in both leading 

order [43] and next-to-Ieading order [44], and Bora and Choudhury in leading order 

[48] used this method to extract gluon distribution from scaling violation of structure 

function at low-x in a slightly different way. But all the authors neglected the higher 

order terms in the Taylor expansion series which is not a very good approximation for 

a singular behaviour of gluon distribution at low-x, because the contributions from the 

higher order terms in the series are not negligible. Sarma and Medhi [84] used this 

method in some improved way with less number of approximation, yet this basic 

approximation of neglecting higher order terms in the expansion series could not be 

avoided. On the other hand, in Kotikov and Parente method [49,52] also, authors 

approximated their result by neglecting some higher order terms. Moreover, their 

method is to some extent complicated. Again Ellis, Kunszt and Levin method [53] is 

also not much developed than other methods. In the present method, of course, we use 

a free parameter C, yet the other ambiguities due to the approximation of the Taylor 

expansion series can be avoided. Moreover, our method is very simple one and the 

computer programme can calculate gluon distribution immediately when we put the 

value of scaling violation from experiment. 0 
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Chapter-S 

CONCLUSION 

In Chapter-I, we present a brief introduction of the problem. Gluon distribution 

function at low-x is important for understanding of inner structure of hadrons and for 

examination of Quantum Chromo dynamics (QCD), the underlying dynamics of 

quarks and gluons. ~oreover, gluons are expected to be dominant in the low-x region. 

In addition to that, gluon distributions are important inputs in many high energy 

processes. On the otherhand, gluon distribution cannot be measured directly from 

experiment. It is therefore, important to measure gluon distribution function indirectly 

from quark structure function. In this chapter, we discuss about structure of matter, 

deep inelastic scattering, structure function, low-x physics, evolution equations and 

screening corrections. 

In Chapter-2, we discuss about the Taylor expansion method. Here we discuss the 

Taylor's theorem and application of it in determination of t and x evolution of 

structure function at low-x. 

In Chapter-3, we discuss briefly the various methods to extract the gluon distribution 

function' from quark structure function due to other authors. Accordingly, here, we 

discuss about Bora and Choudhury method, Kotikov a!ld Prente method, and Ellis, 

Kunszt and Levin method. We also discuss about the differences and limitations of 

these methods. 

In the Chapter-4, we discuss briefly about the t and x evolutions of gluon structure 

function at low-x. We consider the leading order GLDAP evolution equation for 

gluon distribution function and extract gluon distribution by solving it by applying 

Taylor expansion method. We compare our methods with some standard 

parametrizations and make predictions for the HERA range. 
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In Chapter-S, we discuss briefly about the gluon distribution function at low-x from 

proton structure function. Here we· present an alternative method than other methods 

to extract gluon distribution from proton structure function. Here HERA data 

measured by HI and ZEUS collaborations are used and we compare our results with 

those of other methods. 

In Chapter-6, we discuss briefly about the gluon distribution function at low-x from 

deuteron structure function. Here we present for the first time a method to extract 

gluon distribution from deuteron structure function. We use NMC deuteron data 

parametrization by a IS-parameter function and compare our result with those of other 

methods. 

In Chapter-7, we discuss briefly about the Regge behaviour of structure function and 

gluon distribution at low-x. Here we present an alternative method to extract gluon 

distribution method in this regard. We also compare our results with those of other 

methods and global fits. 

In all the result from other methods as well as global fits, it is seen that gluon 

distribution function increases when x decreases and Q2 increases for fixed values of 

Q2 and x respectively. But the rates are different in different methods. It is observed 

that the results from our methods also generally comparable with those of other 

methods and they can easily be considered as some viable alternative to other 

methods. On the otherhand, our methods are mathematically more simpler with less 

number of approximations. 

In extracting gluon distribution function from quark structure function, we use here 

only leading order GLDAP evolution equation. But we can extend it to next-to

leading or higher orders as subsequent works. Moreover, we are mostly restricted up 

to the term containing the first order derivations of the Taylor expansion series we 

used. We can try to include the terms containing higher order derivatives for lesser 

approximation. We neglected contributions from quarks in obtaining gluon 
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distribution function from proton structure function as well as by using Regge 

behaviour. But we can test the result by including the contribution from quarks also. 

Lastly, we may try to apply Taylor expansion method in longitudinal structure 

function and thereby extract gluon distribution function from it.o 
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Taylor Expansion Method and Gluon Distribution from Structure 
Function Data at Low-x: the Leading Order Analysis 
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and 
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ABSTRACT 

We present a method to find the gluon distrihution from proton 
and deuteron structure function data at lo\\-x. Hert' we u,e the 
leading order (LO) Altardli-Pan'l (AP) evolution equation to 
relate the gluon distrihutlon with the ... tructure '\IndIO", and 
the 'icaliilg violations of them extracted hy varioll'" LollahoratlOn ... 
from recent low-x data. We also analy ... e other method, ancl 
compare our results with them. 

Key Words: Gluon dLslnbulwn; low-.\ phYILC.I, Q C IJ '1av/()/ eXpUfl11O/l lItel/wd 

INTRODUCTION 

The measuremenL<; 01 the proton cmd thc dlUIClllll "'lrUlLUn.: IUllllIOIl' by DCLP \ Ill:\,,"'lll 

Scattenng (DIS) processes III the low-x regIOn when.: x I~ the B)orken Vdflable helvC opclled 
a new era In parton density measurements (Buchmullcr and Inglelman, 1991) I[t 1:- ImpOrLtlJ1l 
for understandmg the mner structure ot hadron::; In additIon to the~e knowledge, Il I" ,tI"o 
Important to know the gluon dlstnbuuon m~lde hadron at low-x becaus.e gluon~ are expeLled 
to be dommant m thiS regIOn. On the otherhelnd, gluon dlstnbutlon' can not be mCd"UI ed 
duectly from expenments. It IS, theretore, Important to mea~ure dIrectly trom eXpCfI!I1elll" 
It I~, theretore, Important to measure gluon dl"tnbutlOn G (x, Q2) mdlreclly trom thc PflJlllll 

a~ well as the deuteron structure functIons F2 (x, Q2) A few numhcr ot paper~ helvC ,tflLoldv 

E-mad : I jk,@ agnig.lrh. tezlI.ernet.in. 
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.heen pubh~hed [Copper-Sarkar, 1988, Sanna and Medhl(tn press)] In tim connectIOn Here 

we: pre~enl an alternative method to relate G (x, Q2) wIth proton dnd deuteron ~tructure 
I 

tunLtlOn~ dnd theIr denvallves with respect to InQ2 a F2 (x, Q2) / a InQ2 dnd With re~pCLl [0 

x aF~ (x, Q1) / ax tor fixed value~ ot Q2 Our method I' more g ;neral with les~ approxlmaLJOn, 

~lInpler dnd more tran~pare!1l 

THEORY 

Gluon Distribution from the Proton 

It l~ ~hown (Copper-Sarkar, 1988) that the gluon dl~tnbuuon at Inw-x can be obta.med by 

andlysmg the longItudinal structure tunctlOn. Similarly It IS also shown by Prytz (1993), 

Kotlkov and Parente (1996) that thl~ dl!'>trlbutlOn can be calculated tram the proton ~tructure 

lunctlon F1 (x, Q2) dI1d theIr dltterentlal coetticlent wIth re~pect to InQ2 aF2 (x, Q2) / CllnQ2. 

'I he ba!-liL Idea he~ on the tact that the ~(..ahng vlOlatlOll ot F2 (x, Q2) dfl~e, at low-x, trom the 

gluon dl ... trlbutIon alone and does not depend on the quark dlstnhutlOn Then neglectIng the 

qu,U"k~ the LO AP evolutIon equation tor tour t1avour~ (Prytz, 1993, 1994) gIVes 

()F~ (x, ,?) = ~ J b (_x_ Q2) P (z)dz 
dnQ- 97t 0 1 _ z' a. (1) 

where 10 LO, the ~pllttmg tunctlOn 

and as IS the ~trong coupling constant Now 

x ~ ~ -- = x L Zk = X + x L Zk 
1 - Z k=O k=1 

0) 

We hdve, 1 - x > z > 0 ~ Izl < 1 whIch unplles that the expansIOn (3) IS convergenl. Now 

by the Taylor eXPdn~lon (Grand~hteYIl and Ryzhlk, 19(5) 

a2
(J (x, 0=)+ O( J) 

:I 2 X , ox 
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where O(x ') eire the higher orller term... Neglel.tlng the term ... l.OIlt.llIlIllg x~ .lIlti IlIgher 01 till" 

O(x') lor '1mplll.lly, we gel 

( '( X Q2) _ ('( ~ l ('( QO) ~ l rl(;(x, QO) 
r --, - r X + X £.., I ::. r x, - + x £.., I -----

I - I k= I l= I rl x 
('i) 

Bul ..... <I 1ll,ILler 01 LILl, we l..m not neglel.t the higher order term\ "I, Ihc\e lalm .1Il. not \Ill III 

\11 Reggc-lIkc hdMvlOur (Kollkov <l[ltl P.lfcnlc, 1996, Collll1\ 1977) (I(x) - x ~'(Q') or In J)ouhlL

logdnthmll..11 hehdvlour (Kollkuv ,1Ild P,lrcnte, 1996, B,1I1 (Ind lorll:, 1')1)4) (,(x) - l.\P 

(0 'i-Y81'(Q2)ln(l/x» lor gluon cll low-x lIere Op(Q2) 1\ cI Q2 - dependl.lIl pdr.llllLlu where p = 
... (\Inglel qUMk) or g(gluon) On Ihe oLherhdn(\, It h,l\ heen \hown tll.lt Ihl\ I.lvlm np.lll\'llll 

mLlhod 1\ \ul.l.e\\lully 'Ipphed III l..IIl.u1.llIng Q2 - evolulHlIl 01 proton \lflILlUIl. 11I11l.tHliI 

(Choudhury ,tnd Sdfmcl, 1992, Stlfmd ,\!ld /).1<', 1991) .It low-x wll h I Ld"OIl,11l IL 

phl.nOmeIlologll.,tI ... Ul.Le...... It w ..... el ndtur,11 Improvemenl 01 em e,lt her ,m.IlY\I" ,II IIIlu mull,ltL

X (Choudhury ellld S,Ukld, 19X9) 'I hl\ clpproxlln,lllon negleWng hIgher ordu term ... III 1.lyllll 

CXp<lIl\lOIl 1\ ,d<,(1 .tpphed reLently (S<lrma et ed , 1997) In l.,tll.Uldllllg x-evolulHIII 01 deuluoll 

\Irul.ture lunctlon wIth eXLellent phcnomenologlLdl \Ul.Le...... 'I he .nJlhOI\ \\lgge\led Ih,11 (JilL 

pO\\lhle re,l\on lor the \\ll.l.e ...... ot tllI\ method elt low-x 1\ th.lt trddlllOn.llly the 1\1' evolutloll 

equ,lllon\ provIde el medn\ 01 e,llLuldt1l1g the m,lIlner 111 whll.h p,uton dl\lnhllIIOll\ Lildflgl. .II 

11\l.d X ,1\ Q2 v.lne\ 1 hl\ Llldflge l.ome\ dhoul heL,IU\e 01 the V.lfIOU\ Ivpe\ 01 P,1I1011 hr,lIlLhl"g 

Lflll\\f()11 proLe ...... e ... ,1IId the x-ol\tnhutlOn\ .Ire mooll lui ,1\ Ihe fllIlI.d mOfllenlufIl '" \1I.1f ul 

.lfHong Ihe VdnOU\ d,lughler p,trIOn\ Ilowever, lhe ex.tLl r,11C 01 1l10dIIILI{I\II\\ 01 \ d"lnhlfll<lll\ 

,ll I,xeo Q2 l.,mnol he ohl,lIfled trom Ihe 1\1' equ,ltIOfl\ \Inl.e Il dLpLfld\ nol olll) Oil IhL 11I111.1i 

x hllt .d,o 011 lhe rdtl.\ oj Lh,mgl 01 p,uton (\l\lrrhllLH)fl' wllh rl.'pell 10 \ ()" I I (}\" (II == I 

10 oc), UplO IIllinlle order PhY\ll.,t\ly thl\ IInplle\ th.ll .It hIgh x the p.IfIOll h,l\ .I 101l!!L 

lllomenlulTl Ir,ll.lIon ell ILl, d"po,,,1 • 11 III ,1\ ,I re\ult r,ldldle, p.uIOIl\ IflLludlflg gllHlfl\ III 

Illllllfllerdhlc w,ly\, "'()fne 01 Ihem IIlVOIVlflg LomplIL.IIUI QeD mLLI"lfll\fIl\ IloWL \ILl 101 1011'

X Ill,my 01 the r"dl,IIHlI1 prol.e"e\ will Le,l\e lo Ol.l.1I1 due Lo 1l10menlum LlJlI\lldllll\ .llld IhL 

x-LvolllLJOll\ gel \"nphlied It .... thell pO\\lhle to vlw.lh/e d \llll.tllOIl til whlLh {he lllod,IIl..!II"'1 

01 {he x-dl\lflhulton "'lInply depend\ on 11\ 111111.11 v,liue ,lIId I{\ Ilr\1 del f\ .lllve Hor.1 "'HI 

Choudhury (1 <J9'i) elllll ,Iho Prytt (lC)91, 1<J1)4) h,l\ etlreddy .Ipplled I.lvlol LXP,lfl\lOIl melhod 

10 e,tlLul,llCd glUOll d .... lnhullom trom \Irueture 11I1l1lH)fl\ dlld \l..tlmg Vloldllon\ 01 Ihull BUI 

OUT 1l1.llhOlI 1\ more gener,t\ ,mel tr.lI1\perent Wllh Ie" .tpproXlIll.IIIOIl Ih.tll olher Iwo IllLlIHIlI" 

IllLnllOned ,tl1Ove wll1Lh will he dl\l.u\,ed I.ller on 

PUllIng equ,lllol1\ (2) ,Ind ('5) til eqll.ltlOl1 (I) ,I1HI perionl1.!! 7-1II1egr.tII\Jfl\ we gel 

where, I\(x) = (111)(1 - x)(2x 2 - X + 2) 

(}(;(X. QO) I 
rJx 

,Ind H(x) == (111)x( I - x)(- 2x 2 + 4x -'i) - XlllX 

(7) 

(X) 
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;\1 LOII\I.1Il1 cy = V,~, (i(x, cy) = (1(\) .1Ilt! ()l2(X, Q") / rllIlV~ = K(x) .11It! '0. Lljll.IIIOII ('J) ~~lIl' 

lI(x) i)(i(x) !)rr K(x) 
(I(X) + -- ---- = -- ---

t\(x) (Jx 'iCt., t\(x) 
( \I) 

)lIlll: 11Il: 1.1/10 lI(x) / t\(x) " very \(I,).ill .1/ low-x, 11111, ." lI(x) / t\(x) = O. Ihl: kll h.lIld \lllL 

01 l:qll.ll lOll (10) L.1Il hl: wrJlIl:1l .1\ 

(i('<) + ~~(xL ()(i(,<) = (i(,<) + ~1(xL 
t\( x) (Jx t\( x) 

()(~-.l + ~ (~(x)_)" ()(-,l~ + 
(Jx 2, t\(x) (h' 

= (i(x + ~~-) 
t\( \) 

h) l.lyl()J l:xp.ln\Joll 'l:rJl:' Ihll' lrolll Lqll.lllon (I!). Wl: gl:1 

(i(X + ~~) = 2'~ K(~_ 
t\(x) 'iCt., t\(x) 

(II) 

Ihl UllI.l11Il1l (11) I' Ihl: rl:i.llllllJ hcIWl:l:n Ihl: glllWllll\llIhullOIl (i(,<, V').I1 '( = '\ + 1\(\) / 

;\(x) .IIHI ()I ,(x. <Y) I (JlII<t.l1 x .II Iltl: IlxLd V.ilUl 01 <t = I~~ lit"" (Jill: 01 ollr 111.1111 IL,"I1, 

GLlJON DISTRIBUTION FROM TilE DEUTERON 

In IIll: LO .1I1.tly,,' t!l:IIIl:ron \IIULIUIl: lunLllon " Olll:llly rl:l.llcd 10 \llIglLl "llIllllIL 

1llllLIIOil ( ..... trllld l:1 .II ,1')1)7) On thc olhl:lh.llld, Iltl: t!llIcIl:IIII,tI lOl:llllllll (JI "gill 

,IIIILIIIIL IltllLlmn I,' wllh n;\pl:LI 10 InVz ill'l / rllllV z h,\\ .1 n:Llllon \\llll \lllgiLl 

,lrllLlltle IlllllllOIl II\LII .\\ wLII ,1\ gilloll dl\lflhulIOIl IUIlLlloll lrom t\i> CY(lIUII(l1l 

lllu.IIIOIl (t\ll.llcll .Il1d l'.IrJ\J, 11)1)7, Dbhll/l:r, 11)77) I hu,. II 1\ J)(J\\lhk 10 L.illUl.lll 

gluoll d1\lllhullOII Imlll ,,"glLl "llIllurl: fUIILllOII or 1I111111.11c dl:lIll:IOIl ,lrllllllll 

1lll!LIIIOil .Iho No .lullI()J h.l\ IIplllI now rl:poIIl:d .1 trlLlhod 10 l.tllIll.lll: glllllil 

dl\11 IhullOIl IIOIll dlllll:ron In Ihl: 111l:r.lIIJrl: I Ill: I () t\i> LvoluilOIl l:ljll.1l10n lor '"I!..!I, I 

,111Il11l1L IUllllIOII 1\ pVl:1I hy 

()I~(,<,I) _ t\,/ (1 + 41n(1 _ x»)I;(x. I) + 2 J ~[/2 - 21 + 2)1 ;(-1 ~ I) 
rll I - I - I 
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when;, t = In(Q2 1 A2) ,inti Ar = 4/01 - 2N r), Nr he\llg the numher 01 110vollf ,lIld A 1\ the QeD 

cut 011 p,lrclmeter 

ApplYlIlg the ',une method 01 Tclylor Cxp,lIl\lon ,1<; III thc c,,'c 01 prolon we get here ,Iho, 

~ i>f1(x, t) 
=- F1 (x, t) + x ~ Zk ox 

,tIld G
2
' (_x -, t) = G

2
' (x + x f Zk, t) 

I-/' 1=1 

~ 

=- G; (x, t) + x t-I I,k 

neglectmg the hlghcr order term, cl\ hclorc 

oG'i(x, I) 

ax 

( 11) 

( 14) 

Puttlllg equdllon<, (11) ,lnd (14) III cqu,l!lOn (12) ,lIld pcrlorrnlllg 1-lIllcgr<lllom ,1\ III lhe C,I~L 

01 ploton, wc gel 

()111~' I) - ~rr A,(x)q(x, I) + Bs(x)G(x, t) 

+ C (x) ol'2(x, I) + D (x) oG(x, I) I = 0 (1 'i) 
, ax ' ax 

whcre, A,(x) = 1 + 4111(1 - x) + 2{(1 - x)(-2 + (1 - x)/2)]. 

Bs(x) = (/2)N r{ (1 - x)(x + (211)(1 - xj2) J, 

(',(x) = 2x{ln(1/x) + (\ - x)(l - (1 - x)/2)]. 

clnd Ds(x) = (l/2)Nr{ln(lIx) - (1 - x)(1 + (211)(1 - xj2)} 

RcccI\l1ng equclllOll (1 '5) wc gct, 

D,(x) oG(x, t) __ 1_ t oI1(x, I) 
(I(x,l) + ID'XT ox - ArB,(x) ()t 

A,(x) 
13.( x) 

s ('.(x) o~(x, I) 
I 2(X. I) - 13.(x) ax 

( 16) 

( 17) 

Now DIB 1\ vcr)' ... rn,tli cit low-x, hill (I D/13 = 0 So, clpplYlllg thc l,lylor e\p,III\IOII \Clll~ 
... .. X) .. !> 

cI' hLlore we LcllI wflle 
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'//111\ ell",lllIlIl (/7) glve:-

( '(" ) K ) ()J·~(x. I) ()J·~(x. I) 
, x ,I = (x 1--)---- + K ---)-- + K,I'~('{, I) 

I ( I ! ( X • 
( 1:-1) 

( 11)) 

II we Iry 10 l'omllille Ihe la"l lwo lerrll!'. 01 equal ion (I X) lei m. take UHII1I101l K ,(x) IrOll1 hoth 

Ihe lerrn'. Whll h rnllll:e to 

K ( )11 .' ( ) _19x~ ()J·~(x, I) 1 
I x ! x, t + K ( ) 

I X dx 

Bill K~{x) I K,(x) I~ lIoly :-mall al low-x and Ihere/ofe Ihe"e Iwo l\:rlll" (;lIlnol he lOlllhlll\',r 

10 11IIe ;'" 111 Ihl' (';I"e 01 ).!IIIIJIl hy applylll)! Taylor eXpan"loll ."ene\ 

I'he leLllloll helwcl'1l deuleron alld ~lllglcl \lllIclllrc IUlIlllol1\ al 1.<) I" 

I hen wc gel. 

alld 

1'II1111lg eqllall(JlI~ (2(), (21) and (22) 11\ cqllalloll (1 X) we ,refl ulilmalely 

(i(x". I) = ~ IK (X)I..0""(~~ + K,..0.i~.!l. ~ K,I"~('{. 1)\ 
:'i' III . (h 

( 2m 

(21 \ 

Willdl 1\ olle 01 Ollf 111;1111 fe,"lh, l'fIllll Ihl~ l'qllalloll II 1\ ~ecll Ihal II we !I;IVl' delllelOIl 

\!lIILlme 11I1ll'IHlll alld 11\ (lillerellllallollliucllh Will! Ic:-peLl 10 IIl<Y alld x al allY '< 101 a (",:-onl 

vaillc 01 (Y = (),,~. we (;111 calclliate Ihe gluoll dl'tflhu(loll I II IH': I 1011 al x" = '{ + DJx)fll,('{) II(]JII 

eqllatlOll (21) ,I" a f,() allaIY'.ls. 
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RESULTS AND DISCUSSION 

We use HERA data taken by HI and ZEUS collaborations from ref. Aid, S., HI collaboration 
(199S) and ref. Derrick, M., ZEUS collaboration (199S) respectively. In these tables the 
values of of/x, Q2) I iHnQ2 are listed for a range of x values at Q1. = 20 GeY1.. Similarly we 

usc parametrizations of the recent New Muon Collaboration (NMC) proton and deuteron 
structure function data (Ameodo, M., NMC 1995; 1997) from a IS-parameter function given 
in ref. Arneodo, M., NMC (1995). Here we calculate the values of i)Fix, Q2) I olnQ2 at. Q2 

= 40 GeY1. From all these data or parametrizations we calculate the structure functions P,(x, 

Q2) or scaling violations of structure functions with respect to InQ2 and apply them in -the 

equation (11) and equation (23) to calculate the gluon distribution functions G(x', Q2) or 

G(X",Q2), where x' = x + B(x) / A(x) and x" = x + D (x) I B (x) from proton and deuteron 
s s 

structure functions respectively. 

For our calculation, strong coupling constant 0., was taken from a NLO tit (Vuchaux amI 
Milsztajn 1992) to F2 data which yields as = 0.180 ± 0.008 at Q2 = SO GeV1 coresponding to 
"(Us = 0.263 + 0.042 GeY and a, (M;> = 0.113 ± O.OOS. This value of as agrees with one given 
hy Particle Data Group (PDG)(Montanet, 1994). But in our practical calculations we neglecl 
the errors of as and" which are rather small. 

In the Fig. 1. the gluon distribution obtained by our method (equation (23» for the deuteron 

paramerization (Arneodo, 1995, 1997) from a 15-parameter function (Arneodo, 1995) is 
presented at Q2 = 40 GeY2. The middle line is the result without considering any error. The 
upper and the lower lines are the results with paramter values hy adding and substracting the 
statistical and systematic errors with the middle values respectively. It has heen seen that the 
middle line almost coincides with the upper line. The area between these lines arc the result 
with full errors. The NMC at first parametrized their data from proton and deuteron ror Q~ 
values from 0.5 Gey2 to 75 Gey1 and low-x values from 0.006 to 0.9 (Arneodo, 1995) hy a 

lS-parameter function (Arneodo, 1995). This parametrization can also well describe the 
SLAC and BCDMS (Benvenuti, 1989) data. The recent NMC data (Arneodo, 1997) has been 

extended for low-x values from 0.002 to 0.6; but in that case also the same parametrization 

tits well with SLAC and BCDMS data. We calculate F~ and oF~ I olnQ1. for x values 10.2 to 
10.7 for the equation (23) which gives G(x") for XU values from 5.52 x 10.2 to 2.27xl0·6 

. We 

oblain our result for Q2 values from 40 Gey2 to 100 GeV2. It is seen that the gluon distribution 
increases from .:: 1.0 to .:: 2.0 when x decreases from higher to lowest values in our 

consideration; but deuteron gluon distribution is almost three times smaller than proton gluoll 

distrihution from NMC dala. Moreover deuteron gluon distribution increases slightly (almost 
IS%) for a particular value of x when Q2 increases from 40 Gey2 to 100 GeY2. We can nol 

compare our result of NMC data with others because suf'ticient low-x deuteron data is not 

avialable. Moreover, no other author has tried to calculate gluon distribution from deuteron 

structure function and so, we can also compare our result with those of others. 
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In the Fig. 2, the !;ame result i!; presented for NMC proton parametrization from the same 

references as for deuteron. lIere also we use the same 15-parameter function (Arneodo, 199) 

WitJl different parameters which also descrihe SLAC and BCDMS data in addition to the 

recent NMC data (Ameo(\o, 1997) exactly same as hefore at 40 Gey2. The Q2 and x-ranges 

of our calculations arc also !;a~e. We calculate G(x')(equation (1 J» for x' values which varie!; 

from 5.)2 x 10.2 to 2.27 X 10.6 for highest and lowe!;t values of x under consideratIon 

respectively. The gluon distrihution increases from:: 3.5 to:: 6.5 when x decreases from the 

11Ighc.~t fo lowest values under consideration. But proton gluon dislrihution decreases slightly 

« 1%) for a particular values of x when Q2 increases from 40 Gey2 to 100 Gey2. We do not 

cornrare the results of NMC data with those of mainly IIERA because their Q2 and x-ranges 

arc different. 

In the Fig. 1, the gluon dIstribution ohtained hy our method (equation (11» from HERA data 

measured by !-Il eollahoration (Aid, Ill, 199)) is presented at Q2 = 20 Gey2. The middle IlIle 

is the result without considering any error in the data .. The upper and the lower lines arc the 

re~ults adding and suhtraeting algehricaJly the statistical and systematic errors with the data 

respcctively and therehy calculating the gluon distributions. These two Jines arc symmetric 

ahout the middle lines and positive and negative errors arc equal. The area hounded hy these 

lines gives the result with maximum error. The x-value!; in the data ranges from the highest 
vallie I.:n x 10.2 to the lowest value 3.83 x 10-4. Thc corresponding x' values arc 6.81 x 10.2 and 

1.94X x 10.1 respectively, and also gluon (hSlrihutlOns are also::. 3.0 and::. 24.0 rc!;rectively 

for dala without considering any error. Here al!;o gluon di!;lrihution increase!; when x decreases 

except the lowe!;t value when gluon di!;tribution decreases. nul the rate of increament for 

I J1~RA data me(l!;ured hy 1-11 collaboration is milch higher lhan lhat of NMC data. 

In the FIg. 4, the same thing is pre!;entcd tor I-IJ~RA data measured hy ZEUS collahoration 

(Ikrrick. ZEUS, 1995) al Q2 = 20 GeY2. Here the x-value!; in the data ranges from the hig.hest 

valuc 4.6) x 10'tn the lowest valuc 8.) x 10-4. 'The corresponding x' values arc :'.077 x 10.2 and 

7.752 x 10. 1 respectively, and also gluon distrihution ::. 10.9 and =- 21.2 respectively ror data 

without considering any error. Wc sec, in this case also, gluon distrihution increases when x 

decreases. And the rate of inereament is slighlly higher to that or III collahoration in the x 

range considered; hut much higher than that of NMC data. 

In the Fig. ), compari!;on of gluon distrihutions by our method (Sarma, equation (11». Bora 

and Choudhury Method (Bora), Pryt? method (Pryl'l.) and Koli\Cov and Parente method 

(Kotikov) I!; rre!;ented for lJERA data middle value o.nly measured hy 1-11 collahoratlOn at (t 
= 20 Gey2. The x values under consideration i!; same as in Fig. 3. But the arguments or the 

gluon distrihutions calculated arc different for different methods except for Kotikov and 

Parente'!; method for which the arguments do not change, lhey arc the same x values under 
con!;ideration. Accordingly for the highc!;l and the loWCM x values, x' values arc 6.8) x 10.2 and 

1.()4X x 10" respectively. For all the methods gluon distrihution increases when x decreases 
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except tor the la ... t dcllJ. POlOt tor whIch It dt,cfedl.,c<, But rcltc ot WCfccuncnt 1\ dlllLrull 101 

dltterent method.. The v,llue<; ot gluon ol<,tnbutJOn" <lfe lompMclble but r,lte 01 lIlcrctlmLnl 

1\ hlghe<;t 111 our method .tnd lowe\t 111 Koukov <lnd Pelrentc', mcthod It I, mtcrmedl.llL 111 

othLr two mcnlOd, 01 whKh ralc of Prytz'<, method I, ,lightly hIgher th,1Il th,1t 01 BOT.I .Intl 

Choudhury', method 

In the FIg 6, lompMI,on of gluon dl,lnbutlon<; by VtlflOU, methoo<; cXclLlly \,lInc w.IY .1\ III 

FIg 5 I~ pre\cnteo lor HERA deltel middle vdluc me,I\Ufcd by zeus Lo\lclhorclttoll (DCrrtLk, 

zeus 1995) elt Q2 = 20 Gey2 Tht, x vdlue\ unoer coll\\(lcrcltloll I, "unc ,\\ 111 rtg 4 But 

the elrgumcnt<., 01 the gluon dl<;tnbutton, L(lllulclteo ,lfC dlllcrLll1 lor dJilucllt mLl.hod\ (1\ 

dll.,cu<,<;eo c.trhcr Accordtngly, tor Ihe hlghc\t cllld the lowe<;t x v.tiue<, x' v,lluL\ clrL 3 077 x 

10 2 dnd 7 752 x 10 1 re<;pelllvely The drgumcnb 01 g\uon dl<,lnbutlOll IOf KoUkov .lIld 

P,lfente'\ method Me <;ame a<; x v,t1ue<; under Lon<'lder,llloll, I c they do not chclllge 1 hl gluon 

dl"tnbutlOn 1I1Lred'L<' whell x decred,e\ lor dll lhe method\ d\ helore, but lhL r,llc 01 

mered<;ement 1<; hlghe<;11l1 our method cllld lowe\l1l1 Kotlkov ,md P.lrellle'" method I he f,IIL\ 

clre IIltermeoldte III other two method<; 01 whIch rclte .It Prylz <, method I, hIgher thdll lhdl 01 

BOfel and Choudhury'" method 
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Fig, 1 : The gluon dl\lnbullon ohtcUned by our method lor the NMC deuteron p,lr,unetrlldLH1J1 

(15 - parcUnetcr luncoon, Table-3) ,ll Q2 = 40 GeY2 The (I) mIddle, (II) upper dnd (1\1) IOWL[ 

lllle, ,lfe the re\ult\ (d) WIthOut wJ1<.,ldenng £Illy error, (b) clddmg cllg<-bnc,llIy lh<- <'l,ll1<,lIc,t1 

dnd "y~temdtK error" and (c) sub<;lf,ICtmg a\gebnldlly the <;latl,llCdl cllld <;y,lemdtlc uror~ 

re~pectlvel y 
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Fig. 2 : S~une result as in Pig.1 (equation-I1) for NMC proton parametrization al Q2 == 40 
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Fig. 3 : S:.une result as in Fig.1 (equation-II) for l-IERA proton data oy H 1 collaboraliol1 at 

Q2 == 20Gcy2. 
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SUMMARY AND CONCLUSION 

III lh" dflKIt- we pre\Llll ,Ill ,lllern.lIIVe melhod Ih,1Il olhu mLl/lo(h « 'OPPLI "",lIk,lr JI)XX) 10 

extrdLl gluon dl<.,lrthullOn (;(x, Q2) lrom the me,I\lIfelllelll 01 I(lW-X proton .lIHI llLllluon 

,truLlure 11IIKllol1\ f'2(X, Q2) ,\\ld thelf dtllefenlldl ult-IIIUUII\ ill 2(X, Q2) / il!tl( .. f ,\Ild ill 2(X Q') 

I ih wllh H:'-peL\ 10 InQ2 ,\I\d x re"peL\\\1c1y Here we repml tor the In\t tllne.1 method \0 lInd 

gluoll d"tnhllltoll lrom deuleron \tfllLlure lunLllol1 I '~(x, Q2) .II low-x lIefe we U\L the I () 

Ai> evolllilon equtliloll (AII,lrelll ,lIld P,lrr'I, 1~~7) 10 rcl,lle gluon dl\lnbullOn IUIlLllOn WIlli 

low-x \tfuctllfe lunctlon or thuf dllluentl.t1 LoLlIIUUll\ We Lomp.lfL our [(..,\ull\ With olhu 

melhml\ ,Iho In BOf,1 ,lIld Choudhury', method (Hor,1 ,lI1d Choudhury, P)!),) 10 LXlf.ILI gitHlll 

dl\lnhullOn G(x, Q2) (lUtI,or, exp,\I1ded G(x / (I - 1), (2) lI\lIlg '1.lylor exp.\\l\lon ,Ihout I = () 

t .. klllg only uplo fif\l order denv,I(lve III Ihe CXp,\Jl\lon While cxp(I\H\1ng (hey u\ed only Ilf\1 

two tenn\ JIl Ihe exp,I/l\lol1 01 the infinite \erre\ x I (I - 7) = x 2: ~=n/~ ,11"0 1\\11 l\1I'

.Ipproxlm.lltoll 1\ very Lfude ~I\ntl.lrly III PrYl7'\ melhod (pryll 1 f)'Jl, 1')!)4) .Iuthor cxp,lIlliul 

(,(x 1(1 - I), Q2) U\lllg the whole mfinlte \enc\ x I (I - 1) whlLh 1\ more gellu,t1 lh.1I1 IhL 

PfLVIOU\ method 01 LOUr\e, we ,1"0 ldke lir\l Iwo tum\ III Llylor exP,IIl\lIl1l \lflL'" ((J(x I 

( I - I). (n uplo the fif\l ofder denv,lllve 01 (I(x, Q2) wllh re\peLI to x Oil thL olhuh.lllt1 

III Kotlkov ,lnd P,lfeIHe'" method (KOllko ,IIlU P,\fellie. \!)!)(), ,1\llbm ... ,1 ...... lIlnLd \Olll\.: rlLLIII 

pdr.tmeln/.llt<lIl\ lor \lI1glel qu.trk'- cllld gluon, PUI them 111 ;\1' evolutloll eqll.ltlllll ,111<1 \(llvul 

lor g IlIOIl d I\trt hut toll hy \l,\IId.lrU moment melhod III NI () BUI hue ,I ho .IUI \lor .... Ippm\ I III Ilul 
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thclT \olulllln by neglcctlJlg \ornc higher order term\ ,md dlllerentJ,d loeifiLlcnt 01 .... lI1glel 

gluon ()\J()x with re\peLL 10 x Moreover, here the \olvtllg pnlle\\ hy moment method 1\ ,lI\o 

,I bn compllc,lted Ag,lIn Ell", Kun\zt dnd Levll1\, method (EIII\ et ,tI ,1994) 1\ ,lI\o not much 

developed th,lIl other melhod\ 1,lke Koukov ,lIld Pdrente '\ method here ,t1\O Ihc duthOl \ 

d\'.umco '.ome heh,lvlOur lor I ~ ,1llO gluon momentuln dcn,lty wllh ,ome unkonwn p,lr,llllclu 

,1Ild \olved AP equdtlOn\ 111 moment \PdCC, ot COUT\e, III NNLO ,1Ilclly\I' But here NNU) 

kell1,t1\ dre dho p.tr,lmeler dependent Moreover, thl\ mehtod cover" Ihe x-f,lIlge lower IIMII 

IILI{A rdnce ,lIld "0 we hecome do not \enou\ to Include the re\ull oj Ih" melhod III our 

analY\I\ In CtlllUlaling lhe gluon dl\lnbullon Irom deuleron tll low-x we u\e only NMC 
deuteron ddt,l p,lr,llnetn/,ltlon (Arneodo, 19')5) hy d 1')-p,LTdlneter tUllcllon .Ind lind th,lt II 1\ 

,t\'.o II1Cre,I'.lI1g when 'I(. dCCre,l\mg d\ 111 the C,I\e 01 prolon .1\ u\u,11 But II 1\ \Len th,11 the 

v,due 01 gluol1 d"lnhulloll lrom deuteron 1\ much Ie\" Ih.1O Ihdl I rom proton ddl.t, ,lImo\1 OIlL 

Ihml 111 cd,e 01 NMC ddt,l .1IId ,,1111 "m,tller In other ddl,l like IlLRA elc A p()\\lhlc 

InlLrpret,lllon 1\ thdt gluon dl\lnhullol1 G(x, Q2) 1\ dLlu,t1ly "In,tli In deutlfoll II I" \lLn Ih,11 

In our IhulIY (equdtroll (21)) gluon dl\tnhullon dcpend ... upon dLuteron \lfllLtUIL lunctl{lII I ~(x 

I), (I = In (Q2 /,,2) ,1IId It ... deflVclllve\ WIth re,pectto I elllll x I he \Iructure lunctlon ,lilt! I'" 

dellv,IIIVL\ lor dcuteron .tTe \m.tll (Arneodo, 1')9'), 19l>7) due t'l whICh ullllll.tlLly gluoll 

dl\lnhllllolh lrom deuleron Me \mdll Moreover, dependenLe 01 the gluon dl\llihulion on (Y 
" vuy \m,tli .It low-x In ,I p,lrllLuldr low-x gluon dl\tnhullOlH]clfed\e\ very \lIghlly whLn 

(,)'II1<-re,I'C\ I he 1 ')-pM,lInLter lUllcllOn not only de\url1e\ thc NMC d,lt.l bUI ,11\0 ~Li\C ,ml! 

B(,))M~ (BLnvenutl, 19X9) ddtd ,l11d \0 our l,lIculdllon dutom,lllcdlly 1I111ude\ the\e two IYPl\ 

01 e'l(.perunLnl\ 

lor c,lIcul,ltlon 01 gluon dhtl1blltlOn lrom prolon \Iructure lunLllon .It low-x we u\e III Ri\ 

d.ltd me,l\ured by III (Aid, III, 199,)) .llll! ZLUS (Derrrlk, ZLUS 19,)'1) coll.lbol,IIHlIh .Inti 

NMC d.lt,1 p.lr,lInetIlL.lIH)11 (Alneodo, 19')')) In our method gluoll jrom NMC d,II,1 (Vllch,llIX 

.llld Mtlvt,l)ll, 1 ')')2) I, ,Ipplcu.lbly \m<1ll, It 1\ ,1Imo\t olle jlllh 01 I WRA ddl.! me.l\uled by 

II I ,1IId ZLUS lOlIdhor,lli<ll1\ .It x :: 10 l 

In our melhod, gillOIl dl\tflhullom L,tlLUI.tled lrom direct III.:/{A ddld me,l\uret! by 111 ,lI1e1 

lUJS lOlI.lbor,ltlon~ uplo x:: 10 ,LTC ,lImo\tln the \,une order Gluoll dl\tllhullOll~ jrolll Illl 

IILRi\ d,II,1 pM,lInellll,llJ<lB'. hy III ,lIld ZLUS lOlI.lhor,ltIOIl\ upto x :: 10 I ,If\.: ,JI\O 01 tile 

\<1rne ordll 10 them ,lilt! ,Ire Illlltll,tlly clre ,lI\o \dlne But ,tiler x :: 10\ when x deLfL.t\e\ IIIL 

Idle 01 Inue,llllent 01 7CU~ pdf,Ul1elfll.lIHlII 1\ much 11Igher theln Ih.lt 01 III ,1IId gluon 

til,,11 J11U I 1011 jrom the Ilr~t p,lr<1lllelfl7<111011 becollle\ ,11"0 hundred IIIne\ oj the \eLOlld onL ,II 

x:: \0 7 

WL Ulmpdre our le\ult\ wllh othcr lllelhod\ by 13or,1 .111(1 Choudhury, J>lItL ,lilt! Kotl"ov .Inti 

P,lf enle I hL gcnu <II Irelld 1\ Ih,lt gluoll 1I1\tnhlltHlIl G(x, Q2) IIlLfe,hC\ when x deLfe.I\\..,\ BUI 

IhL r,lte 01 IlIlfemLllt 01 gilion dl'..trlblll1on l.Ilcul.lted by our method I ... In gencf,lI hlghLi th,\Il 

Iho\l 01 olhel mLlhod... I he rC~1I11 ot KOllkov ,1Ild P,lrelllc \ melhod .tre the lowe ... 1 I hL 
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le,ulh 01 two other mclhod, .Ire the IIltenne(h.lte onL' hLtweLn the"'L two mLlIH)(h 01 Willdl 
the re'llfl 01 PryI7', melhod 1\ higher Ih.1I1 Ih.11 01 Bor.1 .1IIe1 Choudhury', lIlelhod Re,ulh 

Irmn our melhod .Ire Llo'ed 10 thmc lrom PryI7', method 'I hl\ " ht:ldIN.! BOld .11111 
Choudhury', melhoo ".1 Lfllde .lpp,o,,{lIn.ltlOn ,1\ tht:y lI11huiL only onc lellll 01 thl 1IlIIIIIIL 

'Crle' x I (I - I) where.1\ we 1I1L11Il/c .tli the mlinlle term, ~o the othLr term ... enh,l1lll thl 

L(lIl1rrhutlOl1 111 our 1111.!Ihoo In our method, thc Ilrq ordt:r ,IPP(())'II11,IIlon In I.lylor lXp.III'I\11\ 

01 (,(x I (I - I), Q~) " u'cd. Ie onll term, h,lvlIlg Ilr ... I order (hllcrcnll.ltlon ()C'('<. Q') I ()'< 

1\ u,t:(/ ~lope I' <,till there 10 IIKhlLC hIgher ordLf lerm, 01 Ihc Llylm CXp,I1l\IOn 'errl' ,lIld 

we h,IVC the pl,lII to do \\) In tl1l: ,"h':qllent work We (lid ,I prc!lIn1n,lry wOlk III th" 1t:l2dlli 
Indudlllg Ihe 'ClOlld order (II II crelll I,ll L(lcll1L1elll iFe; ('<, Q') I ()x 2 hilt It ,eLlll\ th,lt tim dOL'" 

not ulIllnhutl.! \1\ <l \tgllllil,lIlt w,ly ~I\oreover, th" 1\ only ,I LO ,In.dY'I' 10 h.lvl.! .1 ht:llu 
1l.!,"11 we IIIl1,t IIldude NI () .tlld thc uh,equellt term, III pl.!r/llrh,ll1VL QCD WorJ... 1\ gOIIl!! 

011 111 thl'" reg,lrd I a,tly, 111 eXlrolLllll!:, gillon dl\trrhullon lrom 'lolling vlol.tIIOll 01 'tllllllllL 

I U1lLI mil, we ""lime th.lt ,It low-x 'L.lllng vwl.ltmn ,m ... e' cnllrLiy I rom g luon d"tllhut 1011 

ollly ,lilt! there" no UJIltnhllllon lrom qu,lrk, 01 lour'e ,II low-x Ih, ... I'" .1 very good 

.lpproXI111.IIIOIl Bill '111.111 uHllnhlltlOll lrom tlu.lrk, 'It II there ,md we pl.11I to eXdmllll. till'" 

POlllt .Iho tn our 1.llIer work 
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Abstract We present a method to find the gluon dlstnbutlon from the F2 proton structure functIOn data 
at low-x assuming the Regge behaviour of the gluon dlstnbutlon functIOn at thiS lImit We use the leadlllg 
order (LO) Aitarelh-Pansl (AP) evolution equatIOn III our analysl'i and compare our result With tho'ie 
of other authors We also diSCUSS the lImitatIOns of the Taylor expansIOn method III extractmg the gluon 
distrIbutIOn from the F2 structure functIOn used by those authors 

1 Introduction 

The measurements of the F2 (proton and deuteron) struc
ture functions by deep melastlc 'icattenng (DIS) processes 
m the low-x regIOn, where 'C IS the BJorken variable have 
opened a new era m parton denSity measurements [1] 
It IS Important for understandmg the mner structure of 
hadrons and ultimately of matter It IS also Important 
to know the gluon dlstnbutlOn mSlde a hadron at 10w-1: 
because gluons are expected to be dommant m thiS re
gIOn On the otherhand, the gluon dlstnbutlOn cannot be 
measured directly from expenments It IS, therefore, Im
portant to measure the gluon dlstnbutlOn G(x, Q2) mdl
rectly from the proton as well as the deuteron structure 
functIOns F2(x, Q2) Here the representatIOn for the gluon 
dlstnbutlOn G('C) = xg(x) IS used, where g(x) IS the gluon 
denSity 

A few papers have already been published [2-9] m thiS 
connection Here we present an alternative method to ex
tract G(x, Q2) from the scaling VIOlatIOns of F2(x, Q2) 
With respect to In Q2, I e 8F2(x, Q2)/a In Q2 Our method 
IS mathematically more transparent and Simpler than 
those of other authors 

2 Theory 

It IS shown m [2,8] that the gluon dlstnbutlOn G(x) at 
low-x can be obtamed by analysmg the longltudmal strur-
ture functIOn Similarl} It IS also shown m [3-7] that thiS 
dlstnbutlOn can be calculated from the F2 proton struc
ture functIOn and ItS scalIng VIOlatIOn Moreover, m [9] we 
see that It IS also pOSSible to calculate the gluon dlstn
butlOn from the F2 deuteron structure functIOn and Its 

a e-mail Jks@agmgarh tezu ernet m 

scalmg VIOlatIOn The basiC Idea rehes on the fact that 
the <;cahng VIOlatIOn of the F2 structure function ,irises 
at low-T from the gluon dlstnbutlOn alone and does Ilot 
depend on the quark dlstnbutlOn As a demonstratlOll of 
thiS fact, the scalmg VIOlatIOn of the sea quark dlstnbu
tlOn as a functIOn of x has been Illustrated m [J] Here as 
III FIgs la,b the scaling VIOlatIOn of the sea quark dlstn
butlOn usmg the KMRS B_ and Bo parametnzatlOns [10] 
are demonstrated, respectively At 10w-1:, actu,llly cllready 
at x = 10-2, the quarks can be neglected 111 the AP evo
lutIon for the number of flavours of 71 f = 4 

Neglectmg the quark the AP evolutIon equatIon for 
four flavours [3,4] gives 

where the LO sphttmg functIOn IS 

(2) 

and a. IS the strong couphng constant 
Now, let 1 - z = y =:. dz = -dl} Agall1 ;; = 0 =:. IJ = 1 

and z = 1 - 'C =:. y = x Therefore (1) gives 

oF2 (x Q2) 5Qs 11 2) 
oln Q2 = 9;" x G(x/ z, Q )(2.;;- - 2;; + l)clz (J) 

Now, let us conSIder the Regge behavlollf of the gluon 
distributIOn [11] 

(4) 

where C IS a constant and A( Q2) IS the mtercept The 
Regge behaVIOur of the structure functIOn m the large
Q2 region reflects Itself 111 the small-1: behaVIOur of the 
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Fig. la,b. Scaling violations of sea quark distributions using the KMRS B_ and Bo parametrizations [10] respectively as 
in [3]. The solid lines were obtained using the complete AP equations and the dashed lines were obtained neglecting quark 
distributions. 

quark and the antiquark distributions. Thus the Regge 
behaviour of the sea quark and antiquark distribution for 
small-x is given by qsea(x) '" x-op corresponding to a 
pomeron exchange of intercept ap=1. But the valence 
quark distribution for small-x given by qval(x) '" X-OR 

corresponds to a reggeon exchange of intercept aR = 1/2. 
Since the same processes lead to gluon and sea quark dis
tributions in the nucleon, we expect G(x) '" I/x. The 
x-dependence of the parton densities given above is often 
assumed at moderate-Q2. 

Applying (4) in (3) we get 

8F2(X, Q2) = 50'. C t x--'(Q') z-'(Q') (2z2 _ 2z + l)dz.(5) 
alnQ2 971" lx 

For fixed-Q2, let K(x) = 8F2(x,Q2)/8InQ2 and A 
50'./(971"). Thus (5) gives 

,X(Q2) we can calculate G(x, Q2) from (4) for different val
ues of the free parameter C and compare our results with 
those due to other authors. 

Now, let us discuss the methods due to other authors. 
Prytz reported a method to obtain an approximate rela
tion between the unintegrated gluon density and the scal
ing violations of the quark structure function at low-x at 
leading order (La) [3] as well as at next-to-leading order 
(NLO) [4]. He expanded G(x/(I-z» of (1) using the Tay
lor expansion formula at z = 1/2 to obtain the expression 
[3] 

(9) 

K(x) = ACx--'(Q') 11 (2zH2 - 2Z-'+1 + z-')dz. 
taking the derivative up to second order. This expression 

(6) is then inserted in (1) and after integration one gets 

Taking the logarithm and rearranging the terms (6) gives 

,X = _1_ [In {_2_(1 _ x-'+3) 
lnx ,X + 3 

_2_(1_ xH2) + _1_(1_ x-'+I)}] 
'x+2 'x+I 

-11 [In{K(x)/(AC)}] , (7) 
nx 

=> ,X - 4>('x) = 0, (8) 

where ,X == ,X(Q2) and 4>('x) represents the right hand side 
of (7). Now, (8) has been solved numerically using the it
eration method [12] to calculate the values of ,X(Q2) for 
different x-values for a fixed value of Q. A simple com
puter programme for this iteration method is given in Ap
pendix A. Scaling violation of the F2 structure function, 
i.e. K(x) = 8F2(x,Q2)/8lnQ2, and the strong coupling 
constant at La a. are experimental inputs. C is the only 
free parameter in our calculation. After the calculation of 

8F2(x) ::::: 50's ~G(2x) 
8lnQ2 971" 3 

(10) 

for fixed_Q2, which is the main result for the La [3] anal
ysis. Using a similar method he obtained the formula for 
the NLO [4] analysis, 

8F2(X) ::::: G(2x) 20 a. [~+ as 3.58] 
8lnQ2 9 471" 3 471" 

( as )220N( Q2) + 471" 9 X, , (11) 

where N(x, Q2) is given in [4]. 
Bora and Choudhury also presented a method [5] to 

find the gluon distribution from the F2 proton structure 
function and its scaling violation at low-x using the Taylor 
expansion method. They also expanded G(x/(1 - z), Q2) 
of (1) using the Taylor expansion method about z = 0 
taking only the derivative up to first order in the expan
sion. While expanding they used only the first two terms 
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In the Infimte expansIOn senes x/(l - z) = x L::::o zk to 
get an expressIon TIllS expressIOn IS then Inserted In (1) 
and after integratIon one gets 

at 

B(x) 
Xt = x + A{x) + B{x)x 

Sarma and rvledhl also obtained a method [9] to find the 
gluon dlstnbutlOn from the F2 proton and deuteron struc
ture functIOns and theIr scaling VIolatIOns at low-T They 
also expanded C('l:/(1 - z), Q2) of (1) by USIng the Tay
lor expansIOn method takmg only the denvatlve up to 
first order In the expansIon But unlike Bora and Choud
hury method they considered the whole senes x/{I- z) = 
x L:~o zl.. to get the expressIOn 

~ I.. oC(x,Q2) 
+ x ~z ox 

k=1 

(13) 

USing thIs relatIOn In (I) and then Integratll1g one obtains 
for the proton 

C( ) 
_ 97r 1 oFf (x, t) 

x t - -- ----=-::"----'-
P' - 5as A(x) at (14) 

and for the deuteron 

G( t) 9 [f. ( )toFf(X, t) 
Xd, =5 niX ot 

of:!(x, t) d] + !{2 ax + h3F2 (x, t) , (15) 

where '"C p = x + B('"C)/A(x) Xd = x + D(x)/C(x) and 
t = In(Q2 / A2), A being the QCD cut-off parameter Here 
A( 7:), B(x), C(x), D(x), K I (x), !{2(X) and !\3(X) are some 
functions of x mentIOned In [9] 

Now, let us diSCUSS the limitatIOn of the Taylor expan
sIOn method In this regard ApplYing the Taylor expansIon 
[12J for the gluon dlstnbutlOn functIOn In (1), we get 

where O(x3 ) are the higher order terms Here we have 
1 - 1: < z < 0 => Izl < 1 whIch Implies that x/(1 - z) = 

'"C L:~o zl.. IS convergent In the prevIous methorl" eIther 
the terms beyond second order [3,4J or beyond fir~t or
der denvatlves [5,9] of x are neglected In the expansIon 
senes (16) But In actual practice thIs type of sImplIfi
catIOn IS not possIble hecause the contnbutlOn5 from the 
higher order terms cannot be neglected due to the slllgular 
behavIOur of the gluon dlstnbutlOn 

There are some other methorls also whIch arc not ha5ed 
on the Taylor expansIOn method Kotlkov ami Parente 
presented [7] a set of formulae to extract the gluon dls
tnbutlOn functIOn from the F2 5tructure fllnctlOn and It5 
scaling ViolatIOn at small-x In the NLO appro\.unatlon 
They considered for singlet quark and gluon parton (l1s
tnbutlOns p( '"C, Q2) ;:::: T-o, (Q2) for a Regge-lIke behavIOur 
and p(T Q2) ;:::: exp(O 5(6p (Q2) In(1/x))1/2) for rloublp.. 
loganthmlcal behavIOur [6J where p == s 9 and 8.(Q2) i= 
6q ( Q2) Then they put these dlstnbutlOns III the AP equa
tIOns and solved for the gluon dIstrIbutIOn bv the 5tandard 
moment method Now for Regge-llke behavIOur the gillon 
dlstnblltlOn becomes 

2 114 [OF1{T QZ
) 

g('"C,Q) = en(I+269a) dlnQ2 

+ 2 12aF2(x Q2) + O{a2 
:1

1- 6J (17) 

for 6 = 0 5 and the number of flavours f = 4 Agilln 
for double-loganthmlc<ll behavIour the gillon dlstnblltlO11 
becomf'5 

2 3 1 
g(x, Q ) = 4ea (1 + 26a[I/6 - 41/1.3]) 

[
OF2(X, Q2) O( 2 )] 

x dlnQ2 + a '"C (18) 

A different method for the determlllatlOn of the gluon (lIs 
tnbutlOn at small values of x has been proposed by Elh5 
Kunszt and LeVIn [61 based on the solutIOn of the AP 
evolutIon equatIOns III the moment space up to ne\.t-to
next-to-leadIng order (NNLO) In thIS method the quark 
and gluon momentum denSItIeS are assumed to behave as 
x-Wf) where Wo IS a parameter the actual value of whIch 
must be extracted from the data Here the glUOll momen 
tum denSIty for four flavours IS 

The evolutIOn kernels pFF and pre Calclliatedlll the 1I1S 
scheme are expanded up to thIrd order III as 

3 Results and discussion 

We use HERA data taken by the HI [13J and ZEUS [14J 
collaboratIOns where the values of oF2( '"C, Q2)/o In Q2 are 
listed for a range of x vallie" at Q2 = 20 Ge V 2 The re 
cent HERA data are parametnzed bv the HI [151 and 
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Fig. 2a,b. Gluon dlstnbutlon G(x) by our method from the NMC proton parametnzatlon [IT, 181 at Q2 = 40,60,80 and 
100 GeV2 respectively with C = 1 In the same figure we Include a global fit by l\IRST [211 

ZEUS [16] collaboratIOns by some appropnate functIOns 
and we calculate oF2(7; Q2)/0InQ2 at Q2 = 20 GeV2 for 
those functIOns also "We also use the parametnzatlons of 
the recent New IVluon CollaboratIOn (NMC) [17,18] F2 
proton structure functIOn data from a 15-parameter func
tIOn from which also we calculate oF2(x, Q2)/0 In Q2 at 
40 GeV2 Now we apply the values of oF2(x, Q2)/0 In Q2 
m (8) to calculate A numencally by the IteratIOn method 
[6] and hence the gluon dlstnbutlOn functIOn G(x, Q2) 
for C = 1 We do not consider higher values of C, say 
C = 100, because m thiS case the neglect of the valence 
quark dlstnbutlOn xqval '" x l/2 IS not so correct a.', the 
A-value IS close to -1/2 m qUite a broad range of x More
over, m thiS case we obtam xg '" x l /2 and 7;qval '" 7;1/2 
Then also we get xqsea '" Xl/2 OtherWise It should not 
be neglected m (1) Then It IS easy to obtam F2 ""' xl/2 
which contradicts the expenmental data For our calcu
latIOn the strong coupling constant as was taken from a 
NLO fit [19] to the F2 data Yleldmg as = a 180 ± 0 008 at 

Q2 = 50 GeV2 correspondmg to A~~~ = 0 263 ±O 042 GeV 
and as(Mz2) = a 113±0 005 ThiS value of as agrees With 
the one given by the Particle Data Group (PDG) [20] 

But m our practical calculatIOns we neglect the errors of 
as and II whIch are rather small 

vVe compare our result WIth the results of other authors 
discussed m the theorv as WE'll as the recent l\IRST globe,1 
fit [21] 

In Figs 2a-d we present the gluon clIstnbutlOns G( 7;) 
for different 10w-7; values from the NMC proton datil. 
parametnzatlon [17,18] at Q2 = 40,60,80 and 100 Ge Y 2 

respectively From the figures It IS seen that the results are 
almost the same for all Q2-values and G(x) IS slowly m
creasmg when x decrease., loganthmlcally We also present 
the MRST global fit [21] result, but ItS rate of mcrement 
IS much higher 

In Fig 3 we present the gluon dlstnbutlOns G( 7;) for 
different low-x values from the HI HERA proton data 
[13] at Q2 = 20Gey2 The middle Ime IS the result With
out consldermg any error m the data The upper and 
lower hnes are the results WIth data addmg and subtract
mg systematic and statistical errors WIth the mIddle val
ues, respectively As usual the gluon dlstnbutlOn G(x) 
mcreases when x decreases In the same graph Vve also 
present the G(x) values for the lVIRST global fit [21] which 
IS also mcreasmg towards low-x values but With a some
what smaller rate 
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Fig. 3. Gluon distribution G(x) by our method from the HI 
HERA proton data [13J at Q2 = 20Gey2 with C = 1. Here 
we present the results for the data (i) without considering the 
error (middle), (ii) adding algebrically statistical and system
atic errors (high) and (iii) su bstracting a1gebrically statistical 
and systematic errors (low). In the same figures we include a 
global fit by MRST [21J. 
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Fig. 6. Same result as in Fig. 4 from the ZEUS HERA proton 
data parametrization [16J at Q2 = 20Gey2. 
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Fig. 7. A-values by our method from the HI HERA proton 
data [13J at Q2 = 20Gey2 with C = 1. Here we present the 
results for the data (i) without considering the error (middle), 
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Fig. 4. Gluon distribution G(x) by our method from the HI 
HERA proton data parametrization [15J at Q2 = 20 Gey2 with 
C = 1. In the same figures we include a global fit by MRST 
[21J. 
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Fig. 5. Same result as in Fig. 3 from the ZEUS HERA proton 
data [14J at Q2 = 20Gey2. 

In Fig. 4 we present the gluon distributions G(x) for 
the HI HERA proton parametrization [15] at Q2 = 
20 Gey2 for different low-x values. The gluon distribu
tion G(x) is increasing when x is decreasing. In the same 
graph we present the G(x) values for the MRST global fit 
[21], which is also increasing towards low-x values with a 
somewhat smaller rate. 

In Fig. 5 we present the gluon distribution G(x) ZEUS 
HERA proton data [14] at Q2 = 20 Gey2 for different low
x values. The descriptions and the results are the same as 
the HI HERA data [13] depicted in Fig. 3. 

In Fig. 6 we present the gluon distributions G{x) for 
the ZEUS HERA proton parametrization [16] at Q2 = 
20 Gey2 for different low-x values. The descriptions and 
the results are the same as the HI HERA parametrization 
[15] depicted in Fig. 4. 

In Fig. 7 we present the value of A (Lambda) for the HI 
HERA proton data [13] for low, middle and high values at 
Q2 = 20 Gey2 for different low-x values. All the graphs are 
almost parallel and the A-values tend to "-J 0.5 at lower-x. 
That is, the parameter A has a small dependence on x and 
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Fig. 8. Same result as In Fig 7 from the ZEUS HERA proton 
data [141 at Q2 = 20 GeV2 
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Fig. 9. Companson of gluon dlstnbutlon C(x) from the HI 
HERA proton data [131 by our method for C = 1 With those 
by other methods due to Bora and Choudhury [51 and Prytz 
[31 In the same figure, we Include a global fit by MRST [211 

Q2 ThiS behavIOur IS In good agreement With expenmen
tal data [22], fits [21,23] and With the double-Ioganthmlcal 
semi-analytical analYSIS [24-26] 

In Fig 8, we present the A-values for the ZEUS HERA 
proton data [14] In the same way as In Fig 7 and the 
analYSIS IS also the same For all the graphs A values tend 
to ....., 0 5 as we approach a lower-x from some higher values 
of x 

In Fig 9, we compare our results for the HERA HI 
data (middle value only) [13] at Q2 = 20 GeV2 With those 
of Bora and Choudhury [5] and Prytz [3] In the same 
figurE', we also pre~ent the result for the MRST global fit 
[21] For all cases the gluon dlstnbutlOn G(x) IS increasing 
when x IS decreasing but With different rates The rates of 
Increment In our result IS highest and III MRST IS lowest 

4 Summary and conclusion 

In thiS paper we presE'nt an alternatl\e method [2-0] to ex
tract the gluon dlstnblltlon G( 'L, Q2) from the scahng VIO
latIOn of the F2 proton structure functIOn 
8F2 (x)/8 In Q2 at low-x We compare our result With those 
of other methods due to Bora and Choudhury [5] and 
Prytz [3], and With a global fit due to MRST [21] The 
gluon dlstnbutlOn wlil Increase cIS usual when T decreases 

We discussed the limitatIOns of the Taylor expansion 
method [12] In calculating the gluon dlstnbutlon from the 
scaling ViolatIOn of the F2 structure function at 10W-T 
Prytz In both LO [3] and NLO [4] and Bora and Choud
hury III LO [5] used thiS method to extract the gluon dls
tnbutlon from the scaling VIOlatIOn of the F2 structure 
functIOn at low-x In a slightly different way But all the 
authors neglected the higher order terms In the Taylof ex
pansIOn senes, which IS not a good approximatIOn for the 
singular behavIOur of the gluon dlstnbutlOn at 10W-T, be
cause the contnbutlOns from the higher order terms In the 
senes are not negligible Sarma and Medhl [9] used thiS 
method In some IInproved way With a better approxima
tIOn, yet the basiC approximatIOn of neglectll1g higher Of
der terms In the expansIOn ~enes could not be aVOided On 
the other hand In the Kotlkov dnd Parente method [7,8] 
also these author~ approxlIndted their results by neglect
Ing some higher order terms Moreover, their method IS 
to some extent complicated The Ellis, Kunszt and Levll1 
method [6] neither has been more developed than other 
methods Though their analYSIS IS up to NNLO, the ker
nels are parameter dependent and the x-ranges are lower 
than the HERA regIOn In the present method of course 
we use a free parameter C, yet the other ambigUIties due 
to the approximatIOn of the Taylor expansIOn senes can 
be aVOided Moreover, our method IS very Simple and the 
computer programme can calculate the gluon dlstnbutlOn 
Immediately when we put In the value of the scahng VIO
latIOn from expenment 

We can use thiS method by assuming a double
logarlthmlcal behavIOur [7] of the gluon dl'5tnbutlon at 
low-x also The present procedure IS a LO analYSIS only 
But there IS a possibility to extend thiS method to NLO 
or higher to have more accurate results 
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Appendix 

A Simple FORTRAN programme for the calculatIOn of A 
from the scalmg vIOlatIOn of the structure functIOn IS given 
here 

C GLUON DISTRIBUTION FROM SCAUNG \/IOLATION Of PROTON DATA 
05 REAL Y, K, C, X, A, PHlXI, PHlX2, PHIX3, PHlx, P, AB, G 
10 PRINT', ·Y=?" 
15 READ', Y 
20 PRlNl', uK=?" 
25 READ',K 
30 PRINl', 'C=?" 
35 READ',C 
40 X=3 
45 ALPH= 118 
50 1'1=31416 
55 A=(5 ' AlPHV(9 '1'1) 
5& PHlX1 D 2JIX+3 rIVf"'IX+3 )-2JIX+2 til ·Y"'(X+2.)) 
57 PHlXZ-1J(X+1 Yl1·Y"'IXl )) 
58 PHlX3=AlOG(KlIA'C)) 
60 PHlX-11ALOG(y)'(AlOG(PHlX 1 +PHlX2)oPHIX3) 
65 P:X·PHlX 
70 ABDABS(P) 
75 G"C'(Y"I·PHlX)) 
80 IF lAB L r 00000001) THEN 

PRINT', C, Y, PHlX, G 
GOrOl0 
ELSE 

X"PHIX 
ENDIF 
GOT056 

85 END 
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REGGE BEHAVIOUR OF STRUCTURE FUNCTION AND 
GLUON DISTRIBUTION AT LOW-X IN LEADING ORDER 

J. K. Sarma· and G. K. Medhi·· 

Abstract 
We present a method to find the gluon distribution from F2 

proton structure function data at low-x assuming the Regge behaviour 
of gluon distribution function at this limit. We use the leading order 
(LO) Altarelli-Parisi (AP) evolution equation in our analysis and 
compare our result with those of other authors. We also discuss the 
limitations of Taylor expansion method in extracting gluon distribution 
from F2 structure function use by those authors 

Key words: Altarelli Parisi evolution equation, Bjorken variable, gluon distribution. 

1. INTRODUCTION 

The measurements of the quark (proton and the deuteron) structure functions by 
Deep Inelastic Scattering (DIS) processes in the low-x region where x is the Bjorken variable 
have opened a new era in parton density measurements [1\. It is important for understanding 
the inner structure of hadrons and ultimately of matter. It is also important to know the 
gluon distribution inside hadron at low-x because gluons are expected to be dominant in 
this region. On the other hand, gluon distribution can not be measured directly from 
experiments. It is, therefore, important to measure gluon distribution G(x, Q2). indirectly 
from the proton as well as the deuteron structure functions Fix, Q2) 

A few number of papers have already been published (2-9J in this connection. Here 
we present an alternative method to extract G(x, Q2) from scaling violations of F2(x, Q2) 
with respect to InQ2 dF2(x,Q2)1dlnQ2. Our method is mathematically more transparent and 
simpler than those of other authors 

2. THEORY 

It is shown in the ref. (2,8J that the gluon distribution at low-x can be obtained by 
analysing the longitudinal structure function. Similarly it is also shown in the n~f. [3-7) that 
this distribution can be calculated from the protdn structure function and its scaling violation 
Moreover in ref. [9J we see that it is also possible to calculate gluon distribution from 
deuteron structure function and its scaling violation. The basic idea lies on the fact that the 
scaling violation of quark structure function arises at low-x from the gluon distribution alone 
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and does not depend on the quark distribution. Neglecting the quark the AP evolution 
equation for four flavours [3,4] gives 

aF (x (2) Sa II-x 
~nQz = % 0 G(x/(1-x). (2).Pqg (z)dz 

where the LO splitting function is 

Pqg (z) = Z2 + (1 - Z2) 

and a. is the strong coupling constant. -

Now, let 1 - z = y ~ dz = - dy. Again z = 0 ~ y = 1 and z = 1 - x ~ 

y = x. Therefore eq. (1) gives 

aF2(x, (2) = Sa, r G(x / z. (2). (2z2 - 2z + 1) dz. 
aln02 91C" 

Now, let us consider the Regge behaviour of gluon distribution (10) 

G(x, (2) = c.xA,(Q2) 

(1) 

(2) 

(3), 

(4) 

where C is a constant and A (02) is the Intercept. The Regge behaviour of the structure 
function F2 (x) In the large-02 region reflects itself In the sma\l-x behaviour of the quark and 
the antiquark distributions. Thus the Regge behaviour of the sea quark and antiquark 
distributions for sma\l-x is given by q_ (x) - ~ corresponds to a pomeron exchange,of 
intercept ap =1. But the valence quark distribution for sma\l-x given by qlJOI (x) - x-<IR 
corresponds to a reggeon exchange of Intercept ex" a 1/2. Since the same processes lead 
to gluon and sea quarks distributions in the nucleon, we expect G(x) - 1/x. The 
x~ependence of the parton densities given above are often assumed at moderate-02. 

Applying eq.(4) In eq. (3) we get 

aF2(x, (2) = Sa, .C. r rA,(Q2) .zA.(Q2). (2z2 - 2z + 1)dz (5) 
iJln02 91C " 

For ftxed Q2 let K(x) ... ap (X. (2) / alnQ2 and A a 5a. / (9TC). Thus eq. (5) gives 

K(x) Q A.C.x- A.(Q2) r (2zA+2 - 2zA+l + gA) dz. (6) 
" 

Taking logarithm and rearranging the terms eq. (6) gives 

A a_1_lln {_2_ (1 - xA+3) -~ (1 - xA+2) + _1_ (1 - XA+l)}] 
. Inx A+ 3 A+ 2 A+ 1 

- _1_ On {K (xl/(A. Cn 
lnx 

~ A. - cz, (A) co 0 

(7) 

(8) 

where A == A (Q2) and cz, (A) represents the right hand side of eq. (7). Now, eq. (8) has been 
solved mnnerica11y using iteration method [11] to compute the values of A (Q2) for different 
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x-values for a fixed value of Q. Scaling violation of structure function K(x) = aF2 (x, 0 2)1 
aln02 and strong coupling constant at LO as are experimental inputs in our computations. 
C is the only free parameter in our computation. After computation of A(02) we can 
compute G(x, 0 2) from eq. (4) for different values of the free parameter C and compare 
our results with those due to other authors. 

Now, let us discuss the methods due to other authors. Prytz reported a method to 
obtain an approximate relation between the unitegrated gluon density and scaling violations 
of quark structure function at low-x at leading order (LO) [3) as well as at next-to-Ieading 
order (NLO) (4). He expanded G(x/(1-z)) of eq. (1) using Taylor expansion at z = 1/2 to 
obtain the expression 13) 

G ( _x_) == G (z = ~) + (z - ~) G' (z =~) + {z _ ~)2 Gil (x = + ) (9) 
1-z 2 2 2 2 2 

taking upto second order derivative. This expression is then inserted in eq. (1) and after 
interation one gets 

aF2 (x) == ~ • ~ • G(2x) 
a/nQ2 97t 3 

(10) 

for fixed Q2 which is the main result for LO(3) analysis. Using a similar method he obtained 
the formula for NLOI4) analysis 

where N(X,Q2) is given in ref. 14). 

20 N (x, Q2) 
9 

(11) 

Bora and Choudhury also presented a methodlS) to find the gluon distribution from 
the quark structure function and its scaling violation at low-x using Taylor expansion 
method. They also expanded G(x/(1 - z), Q2) of eq. (1) using Taylor expansion method 
about z = 0 taking only upto first order derivative in the expansion. While expanding they 
used only first two terms in the infinite expansion series x/(1 - z) = X2.k:'OZk to get an 
expression. This expression is then inserted in eq (1) and after integration one gets 

at 

G(x
1

, Q2) _ 97t . A(x) + 2B(x) 
Sa, [A(x) + B(x)J2 

Xl = X + B(x) .x 
A(x) + B(x) 

(12) 

Sarma and Medhi also obtained a method 19) to find the gluon distribution from 
proton and deuteron structure functions and their scaling violations at low-x. They also 
expanded G(x/(l - z), 0 2) of eq. (1) by using Taylor expansion method taking only upto 
first order derivative in the expansion. But unlike the Bora and Choudhury method, they 
considered the whole series x/(1 - z) = x 2.:0 Zk to get the expresion 
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x 00 00 aG (X, Q2) 
G (~, Q2) = G(X + X ~Zk, Q2) = G(X, en + X k~ Zk aX (13) 

Using this relation in eq. (I) and then integrating one obtains for proton 

(14) 

and for deuteron 

(15) 

where xp = X + B(x) / A(x), Xd = X + D(x}/C(x) and t = In(Q2/ A2), A being the QeD cut 
off parameter. Here A(x), B(x), C(x) , D(x), KI(x) , K

2
(x) and K3 (x) are some functions of x 

mentioned in ref. (9). 
Now, let us discuss the limitation of Taylor expansion method in this regard. Applying 

Taylor expansion [11) in eq. (I), we get ' 

x 00 00 aG ( (2) 
G(-l--' Q2) = G(x + x L Zk, Q2) = G(x, (2) + x L Zk ;' 

- Z k-I k-I X 

~ 2 (~ k)2 d2G (x, (2) O(--~) + 2 x ~ z .... 2 + A- , 
k-l oX 

(16) 

where 0(x3) are the higher order terms. Here we have 1 - x < z < 0 ~ I z I < 1 which 
implies that x /(1 - z) = x I.:OZk is convergent. In the previous methods, either the terms 
beyond second order [3,4) or beyond first order [5,9) derivatives of x are neglected in the 
expansion series eq. (17). But in actual practice, this type of simplification is not possible 
because the contributions from the higher order terms can not be neglected due to the 
singular behaviour of gluon distribution. 

There are some other methods also which are not based on Taylor expansion 
method. Kotikov and Parente presented (7) a set of formulae to extract gluon distribution 
function from quark structure function and its scaling violation at small-x in the NLO 
approximation. They considered for singlet quark and gluon parton distributions p(x, Q2) 
::; x-6p (Q2) for Regge-like behaviour and p(x, Q2) ::; exp (0.5"& (Q2) In(l/x)) for Double-

p 

logarithmical behaviour (6) where p = S, g and & (Q2) :F- & (Q2). Then they put these 
distributions in AP equations and solved for gluon distribution by standard moment method. 
Now for Regge-like behaviour, gluon distribution becomes 

1.14 [ aF2 (x, Q2) I 
g(x, Q2) = ea(l + 26.9a) a/nQ2 + 2. 12aF2(x, Q2) + O(a2, x l-.5) . (17) 

for 8 = 0.5 and number of flavour f = 4. Again for Double-logarithmical behaviour gluon 
distribution becomes, 
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3 
g(x, OZ) = 4ea 

1 
(1 + 26a [1/<5 - 41/13)) 

(18) 

A dIfferent method for the determlOatlon of gluon dIstribution at small values of 
x has been proposed by Ellis, Kunszt and Levln(6) based on the solution of AP 
evolution equations 10 the moment space upto next-to-next-to leadmg order (NNLO) [n 
thIs method quark and gluon momentum densIties are assumed to behave as x_Uo 
where Wo IS a parameter the actual value of whIch must be extracted from the data 
Here gluon momentum densIty for four flavour IS 

g( A2) = 18/5 I aFz (x, Q2) _ nFF ( ) F ( Q2) I 
x x,~· pFG(wo) olnOZ r Wo 2X, (19) 

The evolution kernels pFF and prG calculated m 1VfS scheme are expanded upto thIrd 
order 10 a • 

3. RESULTS AND DISCUSSIONS 

We use HERA data taken by Hl[12} and ZEUS[13} collaborations where the values 
of aF2(x, OZ)/alnOZ are lISted for a range of x values at Q2 = 20Ge\f2 The recent HERA 
data are parametnzed by Hl(14) and ZEUS(15) collaborations by some appropnate functions 
and we calculate aF

2
(x,OZ)lalnQ2 at Q2 = 20Ge\f2 for those functions also We also use 

parametnzatJons of the recent New Muon Collaboration (NMC) [16, 17\ proton structure 
function data from a IS-parameter function from whIch also we calculate aF

2
(x,Q2)1alnQ2 

at 40GeVZ Now we apply the values of aF2(x,Q2)1c)lnQ2 m eq (8) to compute A numencally 
by Iteration method(6) and hence gluon dlstnbutlOn function G(x,OZ) for C = 1 and C = 
100 For our calculatIons strong couplmg constant a was taken from a NLO flt[18} to F2 

5 (4) 
data which YIeld as = 0 180 ± 0008 at Q2 50GeVZ correspondmg to A M5 = 0263 ± 

o 042GeV and as (M/) = 0 113 ± 0 005 ThIs value of as agrees with the one gIven by 
PartIcle Data Group (PDG)[19) But In our practical calculations we neglected the errors of 
as and A whIch are rather small 

We compare our result wIth the results of other authors discussed In the theory as 
well as the recent MRST global flt[20) 

In FIg l(a)-Flg l(d) we present gluon dlstnbutJons G(x) for dIfferent low-x values from 
NMC proton data parametnzatlon [16,17\ at Q2 = 40, 60, 80 and 100GeVZ respectively 
for C= 1 and C= 100 From the fIgures It IS seen that results are almost same for all Q2 
values and G(x) are slowly increasing when x decreases loganthmlcally We also present the 
MRST global ht[20J result, but ItS rate of IOcrement IS much hIgher The values of G(x) are 
hIgher for C= 1 than those for C= 1 00 for a partIcular value of low-x 
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In FIg 2(a} and FIg 2(b} we present the gluon dlstnbutlons g(x} for dIfferent low x 
values from H 1 HERA proton datal 12) at Q2 = 20Ge \f2 for C= 1 and C= 100 respectively 
The mIddle line In each fIgure IS the result wIthout consldenng any error In the data The 
upper and lower hnes are the result wIth data adding and subtracting systematic and 
statistIcal errors wIth the mIddle values respectIvely As usual gluon dlstnbutlon G(x} Increases 
when x decreases but the whole system of hnes In the graphs shIfts towards the lower G(x) 
values when we change from C= 1 to C= 100 In the same graphs we also present the G(x) 
values for MRST global ht[20) whIch IS also increasing towards low-x values but wIth 
somewhat lesser rate But for C= 100 our G(x) values come In the range of thIS fit 

In FIg 3 we present the gluon dIstributIons G(x) for HI HERA proton 
parametnzatlon[ 14) at 02 = 20GeV2 for dIfferent low-x values for C= 1 and C= 1 00 
respectIvely Gluon dlstnbutIon G(x) IS increasing when x IS decreasing, but the line In the 
graph shIfts towards the lower G(x) values when we change from C= 1 to C= 1 00 In the 
same graph we present the G(x) values for MRST global flt[201 whIch IS also increasing 
towards low-x values wIth somewhat lesser rate But for C= 100 our G(x) values are closer 
to thiS fit 

In FIg 4(a) and FIg 4(b) we present the gluon dlstnbutIons G(x) ZEUS HERA proton 
data[13) at Q2 = 20GeV2 for dlfferent low-x values for C=l and C=100 respectively The 
descnptlons and the results are same as HI HERA data[121 depIcted In FIg 2(a) and FIg 2(b) 
respectIvely 

In FIg 5 we present the gluon dlstnbuhons G(x} for ZEUS HERA proton 
parametnzatIon(15) at 02 = 20Ge\f2 for dIfferent low-x values for C= 1 and C= 100 The 
descnptlons and the results are same as HI HERA parametnzatlon[ 14) depIcted In FIg 3 

In Fig 6 we present the value of f.... (Lambda) for HI HERA proton datal 12) for low, 
mIddle and hIgh values of them at 0 2 = 20Ge\f2 for dIfferent low-x values for C= 1 and 
C= 100 For C= 1, all the graphs are almost parallel and f....-values tend to - 0 5 at low-x 
For C= 100 for all the graphs f....-values tend to - 0 0 from some negative values at low 
x 

In Fig 7, we present the A-values for ZEUS HERA proton data(13) In the same way 
as In FIg 6 For C=l, for all the graphs f....-values tend to - 05 as we approach lower 
x from some shghtly hIgher values In comparatively hlgher-x On the other hand for 
C=100, for all the graphs f....-values tend to - - 0 1 as we approach lower-x from some 
shghtly lower negative values In comparatively hlgher-x 

If FIg 8, we compare our results for Hera HI data (mIddle value only) [12) at 02 = 

20Ge\f2 for C= 1 and C= 100 WIth those of Bora and Choudhury [5) and Prytz[3) In the 
same FIg we also present the result for MRST global flt(20) For all the cases gluon 
dlstnbutIon G(x) IS increasing when x IS decreasing but WIth dIfferent rates The rates of 
Increment In our result for C= 1 IS hIghest and In MRST, lowest But our result With C= 1 00 
IS very close WIth that of Bora and Choudhury and also InsIde the range of MRST 
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4. SUMMARY AND CONCLUSION 

In this method we present an alternative method to extract gluon distribution G(x,Q2) 

from the scaling violation of proton structure function aF2{x}/alnOZ at low-x We compare 
our result with those of other methods due to Bora and Choudhury[S] and Prytz[3], and 
with a global fit due to MRST{20] Gluon distribution will increase as usual when x decreases 
with different rates for the different values of the parameter C= 1 nd C= 100 But our graph 
with C= 1 00 is very close to that due to Bora and Choudhury and the global fit due to 
MRST 

We discussed the limitations of Taylor expansion method[11] in calculating gluon 
distribution from scaling violation of structure function at low-x Prytz in both LO[3] and 
NLO[4] and Bora and Choudhury in LOIS] used this method to extract gluon distnbution 
from scaling violation of structure function at low-x in a slightly dIfferent way But all these 
authors neglected the higher order terms in the Taylor expansion senes which IS not a good 
approximation for a singular behaVIour of gluon distribution at low-x because the contnbuttons 
from the higher order terms in the series are not negligible Sarma and Medhi \9\ used this 
method in an improved way with less number of approxImations, yet the basic approximation 
of neglecting higher order terms in the expansion series could not be avoided On the other 
hand in Kotikov and Parente method [7,8] also the authors approximated their results by 
neglecting some higher order terms Moreover their method is to some extent complicated 
Again Ellis, Kunszt and Levin method[6] is also not more developed than other methods 
Though their analysis is upto NNLO, the kernels are parameter dependent and its x-ranges 
are lower than HERA region In the present method of course we use a free parameter 
C, yet the other ambiguities due to the approximation of the Taylor expansion series can 
be avoided. Moreover our method is a very simple one 

We can use this method by assuming the Double-Iogarithmlcal behaviour[7j of gluon 
distribution at low-x also The present procedure is an LO analysis only But there is 
possibility to extend this method to NLO or higher to have more accurate results 
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Fig.l(a): Gluon distribution G(x) by our method from NMC proton parametrization[16] 17] at Q2 = 40, 60, 80 and 100GeV2 
, respectIvely with C=l and C=100 In the same figure we include a global fit by MRST[20] 
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Rg.l(b) : Gluon dlstnbutlo[1 G(x) by our 11lethod from NMC proton parametnzatlon[161 171 at Q2 = 40, 60, 80 and 100GeV2 

respectively with C: 1 and C= 1 00 In the same figure VJe include a global fit by MRST[20) 
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Fig.l(c): Gluon dlstnbutlon G(x) by our method from NMC proton parametnz.:ltlon[16] 171 at (Y =- 40 60,81) and 100GeV2 
respectively with C= 1 and C= 100 In the same figure we mclude a global fit by MR':,j"12(i, 
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Fig.l(d) Gluon from NMC proton parametnzatlon at Q2 = 100 GeV2 
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Fig.l(d): Gluon dlstnbutlon G(x) by our method from NMC pr.oton parametnzatlon[16J 17J at Q2 = 40, 60, 80 and 100GeV2 
respectively with C= 1 and C = 1 00 In the same figure we include a global fit by MRST[20J 
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Fig.2 (a) : Gluon from HI HERA proton data at Q2 
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Fig.2(a): Gluon distribution G(x) by our method from HI HERA proton datal121 at Q! = 20GeV' with C= 1 and C= 100 
respectively Here we present the results for the data (i) without considering the error (mlddlei. (11) adding algebncally statistical 
and systematic errors (high) and (iii) substracting algebrically statistical and systematic errors(low) In the same figure we Include 

a global fit by MRST(20). . 
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Fig.2 (b) Gluon from H 1 HERA proton data at Q2 = 20 GeV2 (C= 100) 
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Fig.2(b): Gluon dlstnbutlon G(x) by our method from Hl HERA proton data[12j at Q2 = 20GeV2 WIth C=l and C=100 
respectively Here we present the results for the data (1) without consldenng the error (middle), (11) adding algebrically statistical 
and systematic errors (high) and (\II) substracttng algebncally stattstlcal and systematic errors(low) In the same figure we include 

a global fit by MRSt[20~ 
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Fig.3 Gluon from Hl HERA proton parametnzatlOn at Q2 20 GeV2 
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Fig.4(b) : Gluon from ZEUS HERA proton data at Q2 =: 20 GeV2 '(C= 100) 
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t and x-evolutions of gluon structure functions at low-x 
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Department of Physics, Gauhati University, Guwahati 781014 
-Department of Physics, Birjhora Mahavidyalaya, Bongaigaon 
--Department of Electronics Science, Gauhati University, Guwahati 781014 

Abstract_ We obtain x and t-evolutions of gluon structure function at low-x from 
Altarelli-Parisi equation. Comparison is made with the prediction of Lipatov as 
well as GLR equations. We also make predictions for the HERA range. 

Keywords. Structure function, Altarelli-Parisi equations, low-x. 

1. In a recent letter [J.K. Sarma and B. Das, 1993J the t-evolutions of non-singlet 
and singlet structure functions [L.F. Abbot, W.B. Atwood and R.N. Barnett, 1980J 
have been reported. The same technique can be applied to the A!tarelIi-Parisi (AP) 
equation [G. Altarelli and G. Parisi, 1977J for the gluon structure function to obtain 
t as well as x-evolution of gluon at low-x. 

The AP equation for the gluon structure function has the standard form [L.F. 
Abbot, W.B. Atwood and R.N. Barnett, 1980J 

aG(x,t) A, {(ll N, ) } at -7' 12-18+ 1n(1-x) G(x,t)+Ig =0, (1) 

where 

Iii = 11 dw [wG(x/~, ~ ~ G(x, t) + ( w(l _ w) + 1 ~ w) G(x/11!' t) 

~ (1 + (1 - w)2) F:'{ / )] + 9 w 2 X w, t , (2) 

t = In(Q2/A2), 

36 

33 - 2N,' 

N, being the number of flavour. 

I Present address: Department of Physics, Tezpur University, Tezpur 784025 
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For small-x and high-Q2, gluon is expected to be more dominant than the sea 
[F.,J. Yadurain, 1983]. For lower-Q2(Q2 ~ A2 ). however, there is no such clear 
cut distinction between the two. For simplicity, we therefore,· assume identical t
dependence for both: 

G(x,t) = KFi'(x,t), (3) 

where, K is a parameter to be determined from experiments. This results in 

It{ = 11 d [WG(x/w, t) - G(x, t) (( ) 1 - w) G( / ) w + w 1 - w + -- x w, t 
T. l-w w 

2 (1+(l-WF) ] + 9k w G(x/w, t) . (4) 

Let IlS introduce the variable 

v.=I-w (5) 

and not.e that [I.S. Granshteyn and I.M. Ryzhik, 1965] 

<Xl 

X '""'" k --=x~u 
l-u 

k=O 

(6) 

The series (6) is convergent for lui < 1. Since x < w < 1, so 0 < u < 1 - x and 
hence the convergence criterion is satisfied. Using (6) we can rewrite G(x/w, t) as 

[L.A. Pipes and L.R. Harvill, 1970J 

G(x/w,t) = G (x+x ~uk,t) 

G( ) L
oo k8G(x,t) 1 'l. (LOO k)2 82G(xt) + = x, t + x u a + -x u a 2 ••• , , x 2 X 

k=1 k=1 
(7) 

which covers the whole range of u, 0 < u < 1 - x. Neglecting higher order terms 

o(x2 ), G(x/w, t) can then be approximated for small-x as 

/) ) 
~ k8G(x,t) 

G(x w,t ~ G(x,t +x ~u ax . 
k=1 

Putting (5) and (8) in (4) and performing u-integrations we obtain 

8G(x, t) 
Iq = R(x)G(x, t) + S(x) ax ' 

where we have used the identity [I.S. Granshteyn and I.M. Ryzhik, 1965] 

00 1 
'""'" ~ = In --, ~k 1-u 
1.=1 

(8) 

(9) 

(10) 
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illld where. 

R(:r:) _ { (1 + ~) (1 - :1') + (- ~ + _1_) (l - .r.)2 + ~(1 - .1').1 
9K 2 !IT<: ;\ 

+ (1 + ~) lnx}, (11) 
91\ 

5(x) = x { ( 1 + 9~ ) ~ + (2 + 9~ ) (I - :1') + C)~( (J - X)2 + ~(1 - x)J 

+ (2+~) In:1: -1-~} 112) 91\' flf{ \ 

Usillg (9) in (1) we get. 

oG(xJ) _ Af {(.!:..!:. _ Nf) + InO _ :r:)G(:r:, I.) 
Bt t 12 8 

. ()G(:r.,t)} 
+R(x)G(x,t) + 5(1:)-.--

( h: 

which gives. 

()G~:I;, t) _ Af {P(X)G(x, t) + Q( x) aG,(:I-::.!l} = 0, 
ot t " (I.T 

when'. 

P(:r:) 

Q(:r:) 

( IJ N) } T2 - Tt + In(l - :d + N(:r;). 

= 5(x) 

TIl<' general solution of (1:\) is [I. Sneddoll. ID57] 

F(U, V) = 0, 

where. F is an arbitrary function and 

U(:r;, t, G) = C1 } 

V(x, t, G) = C2 

form a solution of the equations 

dx dt dG 

AfQ(X) -t -AfP(x)G(x, t)' 

Sulvillg (17) one obta.ins. 

U(:/', t. G) = t exp [~f / Q~~;:)] . 
and 

) 
[/ 

P(x) ] V(:r:, t, G) = G(x, t exp Q(:I:) d:r; . 

0, 

( J:\) 

(14) 

(15) 

( 16) 

( 17) 

(18 ) 

(In) 

It thus has no unique solution. The simplest possibility is that a linear combi

lIat.ion of U and V is to satisf\r (15) so that 
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A,/U + BqB = 0, (20) 

where Ay and Bq are arbitrary constants Putting the values of U and V in (20) 
we obtain 

G(x,t) = - ~:texp [/ {Af~(X) - ~~:~} dX] . (21) 

2(a). Defining, 

G(x, to) = - ~: to exp [/ {Af~(X) - ~~:~ } dX] , (22) 

One gets, 

G(x, t) = G(x, to)(t/to), (23) 

which gives the t-evolution of gluon structure function G(x, t). 

2 (b). Again defining, 

A!1 [/{ 1 P(X)}] 
G(xo, t) = - Bg texp AfQ(x) - Q(x) dx r=To' (24) 

one obtains, 

G(x,t) = G(xo,t)exp [I {Af~(X) - ~~:~} dX]. (25 

which determines the x-evolution of gluon structure function G(x, t) 

3. We can perform the integration inside the exponential in the equation (25) witl 
further approximation that In( 1 - x) ---+ 0 and x In x ---+ 0 for very small-x, x ---+ ( 

Then we get from (14), 

P(x) = (M-~)-(1+D~.)(I-X)-(-4+9~))1-2X)} 
-!(1- 3x) - (1 + D~) In x, (2f 

Q(x) = (1 + 9~) + (2 + D~) x + UK + ~) - (x + 9~x) , and 

when we have neglected the square and higher terms of x. 
Putting the values of P(x) and Q(x) from (26) in (25) and performing th 

integrations analytically we get, 

whcrf', 
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a 1 + 9~' 

b 4 1 
'3 + flK' 

Cf 
!l_!!.1 
12 18 ' 

(28) 

d ] + 9~' 

and e 1 1 
-2 + 9K' 

4. Instead of neglecting the higher oreler terms 0(x2) from the equation (7) as is 
elone ill (8), let us retain the second order terms of Taylor expansion series (7) and 
nc'glect higher order terms o(:,;:J); G(x/w, t) can then be approximated for small-x 

a:-; [L.A. Pipes and L.R. Harvill. 1970] 

( / 
~ ~ G(x,t) 1 2 (~ ,,) 2 a2G(x, t) 

G x w.t)::::: G(x,t) + XL1/, -,- + -x L 11, a 2 . 
x 2 x 

~=, ~~, 

(29) 

Putting (5) ami (29) in (4) anel performillg 1I.-integrations we obtain. 

I = H( )G( ) Sr. )c)G(:I:.t) T( ,)a1G(x.t) 
,/ x x. t + x a + x a 2 • 

X X 
(30) 

wlH'rc R(x) and S(x) are defined by equations (11) and (12) respectively and T(x) 

is givel\ by, 

T(x) = 
1 1'-r("" )2( 1 ., k U-lL 
-x- L 11, 11,( 1 - u) + -- + --
2 () 1-11, 11, 

A=I 

2 1 + 11,2) d +--- u. 
9K 1- 11, 

(31) 

It. does not need to calculate explicitly the value of T( x) as a function of x for tIl(' 
Tl'aSOn which will be clear shortly. Using (:30) in (1) we get, 

aG1;' t) _ ~f {P(X)G(x. t) + Q(:,;) aG~:. t) 

T ) 
82G(x. t)} 

+ (x a 2 x 
= 0., (:32) 

where P(x) and Q(x) are defined by equation (14). 
The equation (32) is a second order partial differential equation which can be 

solved hy Monge's method [I. Sneddon. 1957]. According to this method the solutiol\ 

of f'erond order partial differential equation 

Rr + 58 +Tt = V (33) 
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can be obtained from the subsidiary equations 

and 
Rdy2 - Sdxdy + Tdx2 = ° } 

Rdpdy + Tdqdx - V dxdy = 0, (34) 

where R, S, T, V are functions of x, y, z, p and q. Here Z,p, q, r, 8 and t are defined 
as follows: 

z = z(x, y), 
8z 8z 82z 8p 

p= 
8x 

, q= 
8y' 

r= 
8x2 == 8x 

, 

82z 8p 8q 82z 8q 
S== - == = 8x' t= -,= 8y' 8x8y 8y 8y2 

Comparing equation (32) with (33) we get, 

R = A,Y(x), 

} S == 0, 
T = 0, 

(35) 

V = tOG};t) _ A,Q(x)OGJ;,t) - AfP(X)G(x,t). 

Substituting the values of R, S, T and V in subsidiary equations we obtain ultimately 
V == 0, which gives 

t 8G1~' t) _ A,Q(x) 8G~:, t) _ A,P(x)G(x, t) = 0, 

which is exactly the equation (13). This equation is solved earlier and now it is 
clear that the introduction of the second order terms does not modify the solutions 
(23) or (25). 

P'~------------------------------~ 

Fig. 1. Q2-evolutions of G(x, Q2) from the equation (23). Arbitrary inputs 
G (x, Q2) = 1, 2 and 3 are tak~n for x = Xl, X2 and X3 respectively. 
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5. We have presented our results qualitatively in Fig. 1 and Fig. 2. In Fig. 1 th(' re
silit of tor Q2-evolutions of G(x, Q2) from the equation (23) is given. We have taken 

.11 bitrary inputs G{x, Q~} ::::: 1,2 and ~ for x = XI,:l:2 and XJ r~spectively Similarly in 
Fig. 2 the results of x-evolutions of G(x, Q2) from the equation (25) (solid lines) and 
lrom the equations (27) (dashed lines) are presented. Integration in the equation 
125} is computed numerically. We have taken arbitrary inputs G(x(), Q2) = 10 for 
e2 2 == Q? for both the sets. Different hnes are due to different. K-values, K ::::: 0.01. 
() I 1, 10 and 100 indicated in the Fig. 2 for the dashed graphs. K -values are 
I,tlwlled as K' for convenience It is clear from the figures that evolutions of gluon 
sLrllcture functions G(x, Q2) depend upon inputs G(x, Qf.) or G(x(), Q2) and also 

"pon .K-values. Moreover, AP and CLAP or G(x, Q2), xG(x, Q2), g(x, Q2) and 

:LI/( c, Q2) are equivalent here. 

EHLQ (E. Eichten, Z. Hinchliffe, K Lane and C. Quigg, 1984J begin with input 

dJ: ... t.ributions inferred from experiment nt Q~ = 5CeV2 and integrate thE' evolution 
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equation numerically. They started with the data of CDHS neutrino experiment 
[H. Abramowicz et aJ. 1983] at CERN. Gluon distribution is determined indirectly 
and parametrized as 

xG(x, Q~) = (2.62 + 9.17x)(1 _ x)" 9, 

with R = uL/uT = 0.1 and A = 200MeV at Q~ = 5GeV2 . This is set-I. Under 
t.he assumption that R = uL/UT has the behaviour prescribed by QCD, gluon is 
parametrized as 

xG(x,Q~) = (1.75 + 15.57x)(1- x)603, 
I 
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Fig.3(a) and Fig.3(b). Q2-evolutions of xG(x, Q2) for EHLQ Set-l and 
Set-2 respectively (dashed lines) for x = 10-1 ,10-2 ,10-3 and 10-4

. 

Results from equation (23) (solid lines) are also given for same 
values of x. Inputs are taken from the corresponding values at 
10Gev2 from the parametrization. 

with A = 290 MeV at Q5 = 5GeV2
. This is set-2. The calculated Q2 dependence of 

xG(x, Q2) for set-1 is, shown in Fig. 3(a) by dashed lines for x values 10-1,10-2
, lO--J 



t and x-evolutions of gluon structure functions at low-x 47 

and 10- 4 as indicated in the figure. The expected growth of the distributions at 
small-x is apparent. Our results from the equation (23) are given in the figure by 
solid lines for the same values of x. Inputs are taken from the corresponding values 
at, 10GeV2 from the parametrization. The corresponding result for set-2 is shown in 
Fig. 3(b~. Again to explore the uncertainties in the small-x region EHLQ consider 
two modifications of set-l as follows: 

xG(x,Q~) = (2.62 + 9.17x)(1- x)59, x> 0.01, 

and 

{ 
(0.444x-1l 5 - 1.886 

xG(x, Q~) = 
25.56xIl5

, 

for x < 0.01. ,-
10~----------------------------------~(M~~ 
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10 
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Fig.4(a) and Fig.4(b). Q2-evolutions of xG(x, Q2) for EHLQ Set-l(,,\) and 
Set-l(b) respectively (dashed lines) for x = 10-2 ,10-3 and 10-4 

alongwith the corresponding predictions (solid lines) from equatIOn 
(23) as indicated in Fig.3(a) and Fig.3(b). 

(a) 

(b) 
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The results of these changes are presented in Fig. 4(a) and Fig. 4(b) for set-1(a) 
and set-1(b) respectively for x = 10-2 ,10-:1 and 10- 4 alongwith our corresponding 
predictions. 

DFLM [M. Diemoz, F. Ferroni. E. Long, G. Martineli. 1986;1988J also pro
CI'er! in the same manner to parametrize the data from the nutrino expreiments 
BEBC'85 [D. Alasia et aI, 1985] CCFRR'83 [D. MacFarlane et ai, 1983] CHARJ,,1'8:3 
[F. Bergsma et. al. 1983) and CDHS'8:3 [H. Abramowicz et at, 1983) at Q~ == lOGeV2 

For t he set DFLM-2 they consider gluon function to be 

with A
MS 

= 300MeV. Here the next to leading order QCD calculation is performed. 

The result is given in the figure for x = 10- 1,10-2 ,10-3 and 10-4 by dashed lines. 

Our result from the equation (23) is given by solid lines taking inpllts as before. 
The role of absorptive corrections in the small-x behaviour of rieep inelastic 

gluon structure functions xG(x, q2) is widely discussed now [A. Ali and J. I3artels. 
H)91j ('Iue to the new generation of accelerators HERA [A. Ali, J. I3artels HJ91 and 
F Eisale and F.W. Brasse 1992) LHC [G. Jarlskog and D. Rein 1990] SSC [J.H. 
MlI\lvey 1987J etc. Kim and Ryskin estimated [V.T. Kim and M.G. Ryskin 1991] 
the non-linear absorpt.ion corrections with the parametrization used in semi hard 
phenomenology [E.M. Levin and M.G. Ryskin, 1990]. As non-linear absorption 
effect are essentially at very small-x only [L.V. Gribov. E.M. Levin and M.G. Ryskin 
J 98:l]. they decided to use the standard GLAP equation [G. Altarelli and G. Parisi 
J!177; V'.N. Gribov and L.N. Lipatov 1972; Yu.L. Dokshitzer 1977] in region of 
illt.crest (x > 10-6 , q2 < 10'GeV2

) i.e. x> XO(q2) where In ~xo == (1/12.7) In2(q2 / 1\.2). 

But in this case they are to add a new boundary condition 

on the line x = XI)(q2), where a = x oG(XI),q2)q2, which IS fixed by the initial 

conriition 

(B) 

at q~ = 4 GeV2. The coefficient A is fix~d by the nqrmalization J xG(x)dx = 0.55 
and 1/)1) = (l/,rr)Noo,(q;) x 41n 2 corresponds to the QeD pomeron singularity given 

by the summation of leading-log contributions (0. In ~ r [25], No = 3 be the number 
of colours Absorption corrections reveal itself due to this new boundary condition. 
Kim and Ryskin obtain numerical solution of linear GLAP equation. The boundary 
condition corresponds to a st.rong correlation between gluons inside the proton. 
Gluons group in a small "h-'. spots" [E.M. Levin and M.G. Ryskin 1990; A.H. Muller 
and J. Qiu 1986] with radius R, '" 0.2 Fm (x == 1/3). If gluons are distributed 

nniformly inside the proton the screening would be smaller and non-linear effect 

reveals itself at smaller x. For this case R" '" 0.7Fm '" R.,,(xu == 0.0035). In the 
Fig. 6(a) the x dependence of gluon structure functions xG(x, q2) at q2 = 10,100 

alld lOOOGeV2 is given by the curves 1. 4, 7; 2, 5, 8 and 3, 6, 9 respectively. Solid 
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curves are the ordinary linear GLAP evohItion; long dashed curves take into account 
the absorption corrections through the new boundary condition (A) for R.. '" 0.2 
Fm. Short nashed is the same for R.. ~ R". Here A = 200 MeV. In the Fig. 6(b) the 
differellce between linear (solid cllrves) GLAP and lion linear (dashed curves) GLR 

IL.V. Gribov and E.M. Levin; M.G. Ryskin 19831 evolution is given. The curves 
1. 4; 2 .. ') and 3, fi correspond to ql = 10,100 and lOOOGeV2 respectively. The 
new anel old initial condit.ions (A) and (8) at q; = 4GeV2 are shown by dotted and 

dot.-dashed curves, respectively. Here A = 200 MeV. In both the figures, the shaded 
areas are our predictions from the equation (25) with upper and lower boundaries 
('()ITf'sponcling to J( = 1 and 100 respectively. In hoth cases gillon distributioll 
functions .r.G(:cuQ2) for linear GLAP f'quat.ioll at XII = 10 -2 are taken as inputs; 
')(,(,<\11SI'. it is almost same for aJl curv{'s. 

~~r----------------------------------------, 

-~ __ - ____ JO 

~~~~-~-=----------~~:1 ~ - - - _ _ _ _ 0-3 --------
~~------- _________ 0-2 

----------------
-I 

~J~O~~----~J~or-----~J~or------J~O~-----,-O~----~J06 

c>'/C,V')-

Fig. 5. Q:l-evolutions of xG(x, Q2) for DFLM 2 (dashed lines) for X = 10- 1• 

10- 2
• 10-3 and 10-4 alongwith the corresponding predictions (solid 

lines) from equation (23) a..<; indicated in Fig. 3(a) and Fig.3(b). 

In the leading log (1/x) ILL(1j:c)j approximation of QCD it is expected that 
the glunn distribution will grow indefinitely as 

(C) 

ill the small-x limit 13. Kwiecinski, A.D. Martin and P . .1. Sutton 1991] with A ~ 0.5. 
This increa..c;e with rlecreasing x. will of collrse eventually be tamed by screening 
corrections which give rise to non-linear t.erms in the QCD evolution equations. The 
approximate framework is provided by thp. Lipatov equation IYa.Ya. Balitskij and 
L.N. Lipatov 1978; S. Catani..F. Fiorani. G. Marchcsini and G. Oriani 1990] with the 
addition of the non-linear shadowing tcrrn. This is known as 'GLR' equation. The 

radius pa.rameter R in the shadowing term characterises t.he area 71' R2 in which t.he 

gluons are concentrated withiu the proton. We would expect R t.o be approximately 

<,(]ual to t.he radius of the proton i.e. R ~ 0GeV·· I
, although it has been argued that 
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Fig,6(a) x-evolutions orlxG(X,q2) at q2 = 10,100 and 1000GeV2 are given 
by curves 1,4,7; 2,5,8 and 3,6,9 respectively. Solid curves are GLAP 
evolution; long-dashed curves take into account the absorption cor
rections through (a) for R. '" O.2F",: short dashed are t.he same 
for R. '" R". The shaded area is the prediction from equation (25) 
with upper and lower boundaries corresponding to K = 1 and 100 
respectively. 

(b) Difference between GLAP (solid curves) and GLR ( dashed curves) 
equati0ns. The curves 1.4; 2,5 and 3.6 correspond to' q2 = 10,100 
and lOOOGeV2 respectively. Initial conditions (A) and (B) are 
shown by dotted and dot-dashed curves respectively. The shaded 
area is same as in (a). 
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the gluons may be concentrated in "hot spots" within the proton. So. the results for 
R = 2GeV-1 are also shown. The non-linear integra-differential Lipatov equation 
can now be solved numerically [J. Kwiecinski, A.D. Martin and P.J. Sutton 1991J 
with the a.nalysis entirely confined to the small-x region x < Xo. It is informativE' 
to compare the above results with the gluon distributions to set B_ of partons 
obtained in the KMRS [J. Kiecinski. A.D. Martin, R.G. Roberts and W.J. Stirling 
19901 global structure function analysis which attempted to incorporate both the 
Lipatov and shadowing effects, albeit in an approximate manner. KMRS evolved 
the starting distributions up from Q2 = 4 Ge V2 using the next-ta-Ieading order 
AP equations. In the Fig. 7 the continuous curves are the values of xg(x, Q2) 
determined by' solving the Lipatov equation for Q2 = 100 and 1000Ge V2 . The 
dashed curves are xg(x, Q2) of set B_ of the KMRS next-ta-Ieading order structure 
function analysis. In each case three curves are in descending order the solution 
with shadowing neglected and the solutions with the shadowing term included with 
R = 5GeV- 1 and R = 2GeV- 1• The shaded areas are our predictions described 
before. xg(x, Q2) at x = 10-2 for Lipatov equation are taken as inputs. They are 
almost same for all the curves. 

(OD·'-:;_Tr----.;~---JL.,__ 
.10 J(' ~~----JO~-~----J~O~-r--~J~-z 

%-

Fig.7. x-evolutions of xg(x,Q2) of Lipatov for Q = 100 and lOOOGeV2 

(solid curves). The dashed curves are xg(x, Q2) of KMRS set B_. 
In each three curves in descending order are the solutions with 
shadowing neglected, solutions with R = 5GeV- 1 and R = 2GeV- 1 

respectively. The shaded area is same as in Fig. 6(a). 

6. It is clear from the figures that our t-evolutions conform with those of EHLQ 
sct-I. EHLQ set-2 and DFLM 2 parametrizations for x < 10-2 but 00 not conform 
for x > 10-2 . But they conform excellently with set-l (a) whereas differ badly 
with set-l(b), The bands in all the figures gives our predictions for x-t'volutions 



52 D.K. Choudhury, G.K. Medhi and J.K. Sarma 

for 1 < K < 100. Our predictions conform well with those of others. It can be 
inferred from our predictions that screerung correction at verylow-x is more likely. 
To conclude, our simple approximate analytical solution of AP equation for gluon 
structure function gives satisfactory predictions in HERA range! The qualitative 
predictions of our results conform to those of several other authors. AP equation 
in present form thus stands as a viable alternative to Lipatov and; GLR predictions 
at least in the x and Q2 range under study. ' 

References 

[IJ J.K. Sanna and B. Das, Phys. Lett., B126(I993) 323. 

[2J L.F. Abbot, W.B. Atwood and R.N. Barnett, Phys. Rev., D22(1~80} 582. 

[3J G. Altarelli and G. Parisi, Nucl. Phys., B126 (1977) 298. i 

[4J F.J. Yadurain, Quantum Chromodynamics, Springer-Verlag, New York, 1983. 

[51 I.S. Granshteyn and I.M. Ryzhik, Table8 of Integrals, Serie8 and' Products, ed. Alen 
! 

Geffrey, Academic Press, New York, 1965. 

[6J L.A. Pipes and L.R. Harvill, applied Mathematics for Engine~rsand Physicians, 
Mc Graw-Hill Bokk Company, New York, 1970. 
. I 

[7J . I. Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, New York, 
1957. 

(8) E. Eichen, Z. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phus. 56(1984) 579. 

[9] H. Abramowicz et a\. (CDHS '83), Z. Phys., C17 (1983) 283. 
I 

[10] M. Diemoz, F. Ferroni, E. Long and G. Martinelli, (DFLM) Z. Phys., C39 (1988) 21. 

[11] M. Diemoz, F. Ferroni and E. Long, Phys. Rep., 130(1986} 293.i 
• I 

[12J D. Alasia et aI., (BEBC '85) Z. Phys., C28 (1985) 321. 

[I3] D. Mac Farlane et aI., (CCFRR '83), FermiJab-pub-83, lOB-expo (1983). 

[14] F. Bergsma et aI., (CHARM '83), PhY8. Lett., 123 (1983) 269. , 
. I 

[15] See for example Proceeding of the DESY t.opical meeting in the small-x behaviour 
of deep inelastic structure function in QCD, eds. A Ali arid J. Bartels. North 
Holland, 1991. 

[16] F. Eisale and F.W. Brasse, DESY 92-140, October, 1992. 

[17] See for example Proceeding of Lm"gp. Had1'On Collider Workshop, Vol. II, CERN 
90-10, eds. G.Jarlskog and D. Rein, 1990. I 

(18) See for example Proceedings of the W01'kshop on Physics at future accelerators. 
Vol. I. CERN 87-07, eds. J.H. Mulvev, 1987. 

[19] V.T. Kim and M.G. Ryskin, DESY 91-064, June, 1991. 

[20] E.M. Levin and M.G. Ryskin, Phys. Rep., 189 (19f)0) 2G7. 

[21) L.V. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep., 100 (1983) 1. 
, 

[22) V.N. Gribov and L.N. LipatoY, Sov. J. Nt/d. Phys., 15 (1972)i 438. 



I rim/ ? -evolutlonc; of glllon 'itrl1ctllre ftwtt/oIl1> dt low-x 

12 II I " 11!,<llm "ov J Nurl Phy' 20 (197)) I) I 

i2l! '111 L 1)()1,~llJl/( I Sov Phu, JI 1 P 460(77) 641 

12~)) I II KlJlapv L N Llpatov dllO V ~ fadm "nv Phys JLTP 45 (1977) 199 

12h) II H l'Ilucllpr and J QIII Nllcl Phy' B268 (!98G) 427 

.') l 

127] J K\\J('CIllSkl AD Martm amI P J 'Hltton ])ulharn Plcpnnt DTP/91/12 Apnl 

pj9! 

!2~1 Va. Va Baht!.klJ and L N Lljmtm )Oll I !Vliet Phy~ 28 (1978) 822 

1291 I N Llpatov 11\ Pel t1l1 bal1ol1 Qr () en A II Mlleller World ~(JcntlfJ{' SmgapOle 
!'l89 

lIn] I N Llpatoy Phys Lett, B251 (1f)I)O) 284 

Illj r N LlpatoyallriRKII~chllel Z fJhlJ' C45(1990)477 

! 121 N ('lar,dOIlI Nurl Phy' B296 (I<JH8) II) 

I HI S (atalll r rJOral1l G M,l]{he~1J11 <llld (, 01 Jail I (ar1'11dlSh Lab Pleplml HE!' 
90 2 1 (11)90) 

IJI] J 1\]((111""1 A l) MDlllll H (; 1l"\1!11<; alld \V J "IJlhll~ (KMH'-,) PIII/' Hn 
D42 (IC)f)O) .1(;45 



Reprinted from 

PHYSICS LETTERS B 

Physics Letters B 403 (1997) 139-144 

x-distribution of deuteron structure function at low-x 
J.K. Sarma a,l.2, D.K. Choudhuryb,3, G.K. Medhi c 

a Electronics SCIence Department. Gauhatl UniversIty. Guwahall 781014. Assam. IndIO 
b PhysIcs Department. Gauhatt UniverSIty. Guwahatt 781014. Assam. India 

C PhysIcs Department. BlrJhora Mahavldya/aya. Bongalgaon 783380. Assam. India 

Received 25 February 1997 
Editor H Georgi 

~ 
~ 
~ 

ELSEVIER 



PHYSICS LETTERS B 
EDITORS 

L. Aharez-Gaume, Theory DIvIsIon, CERN, CH-1211 Geneva 
23, SWItzerland, 
E-maIl address AJvarez@NXTH04 CERN CH 

Theoretical High Energy PhysIcs (General Theory) from the 
Iberuln Pemnsula, France, Switzerland, Italy, Malta, Austrta, 
Hungary, Ballum countrres and Cyprus 

J.-P. Blalzot, ServIce de PhysIque Theonque, Orme des Menslers, 
C E A ·Saclay, F-91191 Glf-sur-Yvette Cedex, France, 
E-maIl address plb(@)SPHT SACIA Y CEA FR 

Theoretical Nuclear PhysIcs 

M. Dine, PhysIcs Department, UniversIty of Cahfornla at Santa 
Cruz, Santa Cruz, CA 95064, USA, 
E-mail address Dlne@SCIPP UCSC EDU 

Theoretical High Energy PhysIcs from countrres oUlSlde 
Europe 

R. Gatto, Theory DIvIsIon, CERN, CH-1211 Geneva 23, 
SWItzerland, 
E-maIl address Raoul Gatto@CERN CH 

TheoretIcal HIgh Energy PhysIcs (PartIcle Phenomenology) 
from the Iberran Peninsula, France, SWItzerland, Italy, Malta, 
Austrra, Hungary, Balkan counlTles and Cyprus 

H. Georgi, Department of PhYSICS, Harvard UniversIty, Cam
bndge, MA 02138, USA, 
E-maIl address Georgl@PHYSICS HARVARD EDU 

TheoretIcal High Energy PhysIcs from countrres outside 
Europe 

Alms and Seope 
PhysIcs Letters B ensures the rapId pubhcallon of letter-type communlca
lions In the fields of Nuclear Physlcsflntermedlate Energy PhYSICS, HIgh 
Energy PhysIcs and FIeld Theory 

Abstractedlmdexed Ib: 

Current Conlents PhysIcal ChemIcal & Eanh SCIences IN SPEC 

Subscnptlon Informanon 1997 
PHYSICS LElTERS A (ISSN 0375·9601) and PHYSICS LElTERS B 
(ISSN 03702693) WIll each be pubhshed weekly For 1997 13 volumes 
volumes 224-236 (78 Issues allogether) of PhYSICS Leiters A have been 
announced For 1997 26 volumes volumes 390-415 (104 Issues altogether) 
of PhYSICS Leiters B have been announced The subscnpllon pnces for these 
volumes are avaIlable upon requesl from Ihe Pubhsher PHYSICS 
REPORTS (ISSN 0370-1573) will be published approXImately weekly For 
1997 14 volumes volumes 277-290 (84 Issues altogether) of PhYSICS Re 
pons have been announced The subscnpuon pnce for Ihese volumes IS 
avaIlable upon request from the Pubhsher 
A combined subscnptlon to the 1997 Issues of PhYSICS Letters A PhYSICS 
Letters B and PhYSICS Repons IS available at a reduced rate 
Subscnpuons are accepted on a prepaId basIS only and are entered on a cal· 
endar year basIS Issues are sent by SAL (Surface An LIfted) mall wherever 
thIS servIce IS avaIlable AlITnall rates are avaIlable upon request 
For orders claIms, product enqumes (no manuscnpl enqumes) please con 
tact the Customer Suppon Department at the RegIonal Sales Office nearest 
to you 

W. Haxton, Institute for Nuclear Theory, Box 351550, University 
of Washington, Seattle, WA 98195-1550, USA, 
E-maIl address plb@PHYSWASHINGTONEDU 

Theoretical Nuclear PhysIcs 

P.V. Landsboff, Department of Apphed Mathemahcs and 
Theoretical PhYSICS, UniversIty of Cambndge, Sliver Street, 
Cambndge CB3 9EW, UK, 
E-maIl address P V Landshoff@DAMTP CAM AC UK 

Theoretical HIgh Energy PhysIcs from Ireland, United 
Kmgdom, Benelux, ScandinaVIan countTles, German Federal 
Republrc, Poland, Czech Republrc, Slovak Republrc, BaltIC 
countrres and the Commonwealth of Independent Slates 

L. Montanet, CERN, CH-1211 Geneva 23, SWItzerland, 
E-maIl address LUCIen Montanet@CERN CH 

Expertmental HIgh Energy PhysIcs 

J.P. Scbiffer, Argonne NatIOnal Laboratory, 9700 South Cass 
Avenue, Argonne, IL 60439, USA, 
E-maIl address Schlffer@ANL GOV 

ExpeTlmental Nuclear PhysIcs (Heavy Ion PhysIcs, Inter
medIate Energy Nuclear PhysIcs) 

R.H. Siemssen, KVI, University of Gronlngen, Zermkelaan 25, 
NL-9747 AA Gronlngen, The Netherlands, 
E-maIl address Slemssen@KVI NL , 

Expertmental Nuclear PhysIcs (Heavy Ion PhYSICS, Low 
Energy Nuclear PhysIcs) I 

K. Winter, CERN, CH-1211 Geneva 23, SWItzerland 
E-maIl address Klaus Wlnter@CERN CH 

Experrmental HIgh Energy PhysIcs 

New York, ElseVIer ScIence, POBox 945, New York. NY 10159·0945 
USA Tel +1 212633 3730, [Toll free number for Nonh Amencan cus· 
tomers 1 888 4ES INFO (4374636)), Fax +12126333680, E·mall us Info· 
f@elsevler com 
Amsterdam, ElseVIer SCIence, POBox 211, 1000 AE Amsterdam The 
Netherlands Tel +31 204853757 Fax +31 204853432, E·mall nhnfo· 
f@elsevler nl 
Tokyo, ElseVIer SCIence, 9 15 Hlgashl·Azabu I·chome Mmato ku. Tokyo 
106, Japan Tel +81 35561 5033 Fax +81 35561 5047 EmaIl kyf04035 
@nlftyserve or JP 
Singapore, ElseVIer SCIence No I Temasek Avenue #17-01 MII/ema 
Tower Smgapore 039192 Tel +654343727. Fax +653372230 Email 
aSlalnfo@elsevler COm sg 
ClaIms for Issues not receIved should be made wuhm SIX months of our 
publlcalJOn (ma,hng) dale 

AdvertlSlog Offices 
imernallonai ElseVIer SCIence, Advemsmg Department rhe Boulevard 
Langford Lane KJdhngton, Oxford 0)(5 1GB UK rei +44 1865 843565, 

Fax +44 1865843976 
USA and Canada Weston MedIa AssOCIates, Dan Llpner POBox 1110 
Greens Farms, cr 06436·1110 USA rei +1 203261 2500 Fax +1 203 
2610101 
Japan ElseVIer SCIence Japan Markellng ServIces I 9 15 Hlgashl·Azabu. 
Mmalo·ku Tokyo 106, Japan Tel +81 35561 5033, Fax +81 35561 5047 

U.S mailing notice - PhYSICS Letters B (ISSN 0370-2693) IS pubhshed weekly by ElseVIer SCIence B V , POBox 211, 1000 AE 
Amsterdam, The Netherlands Annual subscnpllon pnce In the USA IS US$ 691700 (vahd In North, Central and South Amenca only), 
rncludlng air speed dehvery Penodlcals postage paId at JamaIca, NY 11431 
USA POSTMASTERS Send address changes to PhYSICS Letters B, Pubhcallons ExpedIting, Inc, 200 Meacham Avenue, Elmont, NY 
11003 
AIRFREIGHT AND MAILING rn the USA by Pubhcallons Expedltrng, Inc, 200 Meacham Avenue, Elmont, NY 11003 

® The paper used In thIS pubhcatlOn meets the reqUIrements of ANSI/NISO Z39 48-1992 (Permanence of Paper) 

Pnnted In The Netherlands 'I North-Holland, an imprint of Elsevier Science 



19Jullc IYY7 ,1, (' 
I 

, " 
PHYSICS LEnEiRS B 

I I <;1 VII I< I'h),,,_, I llll" Il H)l(I')')7) nY-I'll 

,t-distribution of deuteron structure function at low- r 

J K Sdlllld I I 2,0 K Choudhlllyh 1. G K Mcdhl L 

'l/lIl/ellII/1 \(/(/II( /)(1'(//1111/111 (,II//III1II/}III1(I"1I (,//1\111111117\/111-1111111111 /lIdlll 

I 1'/11111 1/)(1"1111111111 (,,111111111 /}1I11111111 (,111\11111111 7\101-1 /11""11 1",1111 

, 1'/1111/ \ /)(/)(1111111111 1111111011/ MII/IIIIII/III/IIIII 1J11f1~1I1~IIOII 7\11\11 /\\\11111 111 dill 

l(lLll\ld 2~ rLhlUll) 1'1'17 
I dliOI II GlOigl 

All "pproxIIll,llc ~()llItloll 01 thc A1t,IILIIi-1'1I1\1 (AI') LqlllllOll1\ PIL\llltul Illtl 111L \ tll'tllhlllJ()1I 01 thL LlLlIllI()1I '1llIllllIl 

IUlllilOil 1\ L,tluil"tctI II I III low \ lilllil I hL 11"1111\ "Iclomp IILd 1\1111 Illl I M( NA 2X L\Pllllllllll dill C0 1')<)7 1'lIblr,lIld 

h) rl\cvILI )lICllLC Il V 

I. Introduction 

The Alt,lIelll-P,lml (APl equ,ltlon'> III ,IIC thc h,1 

'>IC tool'> to ~tucly thc Q2-cvolutlOn 01 '>tructul e I unc

tion'> Evcn though clltcrnatlvc cvolutlon cquatlon,> 121 

hdvc hccn propo~cd clnd pur~ucd In rcccnt yc,\1 '> to 

'>tudy '>tlUctlllC lunctlon'> c~pcclally ,It lOW-I, thc AP 

cqudllon,> havc hccn thc ha'>lc tooh In <,tudYlng dou

hie ,1'>YlllptOtIC c,cdllTlg (DAS) 131 or cxtrdctlng thc 

gluon dcn'>lty hOIll thc ,>Iopc 01 thc ,>tructurc function'> 

,It lOW-I 141 

Bd'>cd on QCD '>tucllc'> 8.111 and FOliC ,>how 11lth,lt 

cvolvlng ,I flatlnlJllt dl'>lrlhullon ell Q(~ = I Gcy2 With 

thc AP cquatlon,> 1cdd<; to a '>trong r1'>C 01 r 2 elt low- I In 

thc IcglOn Illcd<,urcd hy HERA An Intclc,>lIng Ic,lturc 

I'> thdl " QCD cvolutlon I'> lhc undcrlYlng dynalllic'> 01 
the II'>C PCltlllheltl\cQCD prcdlct,> lhaLlt 1,lIgc Q2 dnd 

'>Illelll I thc '>tructurc lunctlOn cxhlhll'> douhlc '>celilng 
In thc two velllahic'> 

I E 111111 I"~@gu LI ilL! III 

, L 111.111 I"~@umghy rLIl IlIL 111 

\ [111.111 llrlrp@gU LlnL! 111 

(T=Jlog(III/I) 10g(I/III) II == 
log( 111/1) 

log( 1/ll1l 
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deutcron '>lruclurc IUl1ctlon'> ,It low I hOIll the '>dlllC 
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01 AP cqu,IIIOI1 u'>lIlg TdylOl CXP,II1'>1011 .It 10\\,,-1 The 
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111 Scctlon 2 wc dl'>lU'>'> thc Ilccc'>'>,lry themy lin ,Iillil 
Section 1 glvc,> thc Ic~ult ,\lid the dl'>cu'>'>Ion 
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2. Theory 

Though the theory is discussed earlier 15J yet we 
have mentioned the essential steps here again for clar
ity, 

The AP equation for the singlet structure function 
has the standard form [7] 

2 ~, _..J. {3 + 41n( I - x)} Fi'(x, f) apse x t) A [ 
il1 1 

I 

+2/ dw {(I+w2)F{(X/IV,t)-2F2'(X,1)} 
, (I - w) 

I 

+ ~NF.I {1V2 + (I - 1V)2}G(x/w, 1)dlV] 

x 

= 0, ( 1 ) 

where AJ = 4/(33 - 2NJ), NJ being the number of 
flavour and 1 = In(Q2/A2). Defining 

Ij'(x, I) 

I 

= 2/ dw {( 1 + 1V2) F2'(X/IV, 1) - 2F{(x, 1)} 
, (I-IV) 
x 

(2) 

and 

I{(x, I) 

I 

= ~NJ .I {IV + (I - 1V)2}G(x/w, I)dw, (3) 

one can recast (I) as 

ap'(x f) A 
2 ' _ ..J. [ {3 + 4 In (I - x) } F{ ( x, I) 

ilt f 

+1;'(X,I) +1{(x,l)] =0, (4) 

Let us introduce the variable It = 1 - wand note that 

00 

X "'k 
(I _ u) = x 6 u . 

k=O 

(5) 

The series (5) is convergent for 1111 < I. Since x < 
IV < I, so 0 < II < 1 - x and hence the convergence 
criterion is satisfied, Using (5) we can rewrite, 

F{ (X/IV, 1) = F2' (x +' x f,/, I) 
k=1 

F"( ) Loo
, k ilFl.'(x, I) = 2 x,1 +x /1--''---

x 
k=1 

J 2(L:OO 

k)2 a2F2 (X,I) +-2 x /I 2 , ax 
k=1 , 

+'" , 
, 

I 
I 
I 

(6) 

which covers the whole range of 11,0 < II < 1 - x, 
Neglecting higher drder terms, F2 (x /IV, 1) can then 

be approximated for low x as 

" 
/ ,,: ~ k ilF2'(x, 1) 

Fi (x IV, f) := Fi ( x, t) + x 6 /I , 

! k=1 X 

(7) 

PUlling (5) and (7) in (2) and (3) and performing 
II-integrations we get, 

I , 

Ij'(x, t) = [-( 1 - x) (3 + x) I F2(x. t) 
I 

ilF'(x, f) + {xC 1 - x2 ) + 2x In( I/x)} -----=.2 __ 
. ax 
I 

and 
, 
, 

l2<x,t) =NJ [5(1 ~X)(2-x+2X)G(x,t) 
+ {-~x( 1 - x)(:5 - 4x + 2x2) 

aC(x, f)] + 2x In ( 1 / x) }: , 
, ax 

where we have used the identity 
I 
I 

00 Ilk i L k = In 1/( I - \1) , 
k=J 

Using (8) and (9) in (4) we obtain 
I 

apex t) A [ , 
2 • _..J. A (x) F" (x. 1) 
af 1 2 

i 
apex 1) + B(x) 2 ' + C(x)G(x. f) 

ax 

+ D(x) , aG(x,:t)] 
ax 

= o. 
where 

A(x) = 3 + 41n( 1 :...- x) - (I - x)(3 -~) , 

(8) 

(9) 

( 10) 

( II ) 

( 12) 
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B(,) = ,(1- ,z)+2xln(l/x), 

C(I) =~Nr(l- r)(2- r+21 2
), 

IJ(,) = -~Nf( 1- r)(5 - 41 + 2rz) 

+2rln(I/I) 

( J 3) 

( 14) 

( J ') 

In Older 10 ~olve (J I), we need 10 relale the ~111-
glel (h"tnhutlOn Fi. (t, 1) wIth the gluon dl'itnbutlon 
G( 1.1) For small I and hIgh QZ, Ihe gluon I" ex

peLled to be more dominant than the "ea For lower 
Q2 (Q2 ~ A 2), however, there IS no ~ULh clear cut 

dl<,tlnctlon hetween the two For <;l1nphclty, we there
lore, ,,~<;ume, 

G ( 1.1) = K F2 ( \, t) , ( 16) 

where K I~ a par,lIneter to he determllled fmm expen
ment" But the pO~"lblhty 01 the breakdown 01 rc\dtlon 
(16) also can not he ruled out 

Then from Eq (II) we get 

dFi( r, t) 

al 

_ II) [L(\,K)/s(r,,) +M(r,K)(71s(r,,)] 
I 01 

=0. (17) 

where 

L( r, K) = A( r) + KC(x) , ( J 8) 

M( I, K) = B( \) + KD(x) ( 19) 

The gener.11 <,olullon of (17) can now be obl.llned 

by reLa"tlllg II 111 Ihe <;Iandard form 

P( T
' aF2 , aF{ 

).,1, 2)-+Q(r,t,F2)-
dX at 

=R(x,t,F2), 

where 

P( 1,1, Fi.> = A)M( r, K), 

Q(I,I,Fz) = -I, 
und:.- _ 

(20) 

(2 J ) 

The gener,t1 ~oJlIllon 01 (20) 1\ 

F(II, V) = (), ( 22) 

where r 1\ ,Ill .l1hlll,IIY IUllLllon ,\lid 

,lIId 

(21) 

fOI In .1 <,olullon 01 the eqlhlllllll" 

dr ~ dG 
---- = ---- = ---=--
P ( x . I Ji ) Q ( r. I . F2 ) R ( , . I I 2 ) 

(24) 

SolVing (24) one ohl,lIn<; 

,,(x,I,Fz) =IX'(I) (2'i) 

V ( I, I, rn = IS ( I, f) Y' ( I ) . (26) 

whele 

,lIId 

Y' ( I) = ex p [ I L ( I) / M ( I ) d , ] (2X) 

Thu<; the "tructure lunLilon ri( 1,1) h,l\ 10 <,.tll"fy 
(22) wIth" and V given by (2'5) ,lIld (26). re\pel

lively 11 thu" h.l<; no unIque <,olullon The "lmple"l 

pm~lh"'ly 1<; IhJI a Irne,lr to I11h 1Il.t1 Ion of /I ,lIld jI '" 

10 <;all"fy (20) <;0 IhJI 

II,,,+B,V=() (29) 

PUllIng the value" 01 /I and V III (29) we obl""1 

, A, [X'(I)] r2 ( \ ,t) = - - I --
B, Y'( I) 

( jO) 

Dehnlllg 

(11 ) 

one Ihen ha<; 

ri ( r, t) = ri. ( \ . '0) ( 1/ In) , (12 ) 
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which gives.,the 'I-evolution of singlet structure func
tion Fl(x, t}.' Again defining 

F(xo,n = --. I· --. ,,,,A, [Xf(X)] 
, . ' ,8".' Y'(x) X='o 

(33) 

one then hasll,) ,/ 

Fl(x,lf ) = F{(IXo,t) 

" [}"X f' I L(X)}] x exp ','. - -- dx 
" ,Ii ~/M(x) M(x) , 

(34) 

Xo 

which gives the x-evolution of Fl(x ,I). 
On the other hand, the AP equation for the non

singlet-structure function 
" , 

- 2F~S:~.x,~)}] 
=0 

can be written as 

iJFfS(x,. t) 
al : 

_ A/ [Af ~)IF2NS(x, t) + B(x) iJFfs(x, t)] 
I ),' ax 

=0 ,,; I 

J' I. 

(35) 

(36) 

which is' ffree from the additional assumption (16), 

Usihg the sa'irie' procedure as for the singlet equation, 
Eq."(36) yiClos 

Fi'\x,t) = Fi'S,(x, 10) , (1/10) (37) 
, " 

and 

• 
x ex p [/ f 1/ A/ B ( \) - A ( \) / B ( \) } d \] . 

'0 

(lX) 

which give the' and x-evolutions of non-slI1glct \II uc
ture function Fi's., 

The F2 deuteron and proton structure lunctlon~ mea
sured in deep ineltistic electro-production can he WrIt
ten in terms of singlet and non-singlet quark distrlhu
tion functions as 

p." - ~p.S 2 - 9 2 (39) 

(40) 

Using (32) and (34) in (39) we will gct Ihe, and 
x-evolutions of the deuteron structure function al low 
x as 

(41 ) 

and 

• 
xexp [.!{I/A/MC\)-L(X)/M(\)}d.l] (.42) 

In 

using the input functions 

F!/(x, (0) = ~Fi(x, (0) 

and 

F7,/(XO,t) = ~Fl(xo.t), 
Similarly using (32) and (37) in (40) we have the 

I-evolution of the proton structure function at low \ ,\\ 

Fi'(x,t) = Fi'(x,lo)' (1/10) (4l) 

using the input functions 

Ff(x,/o) = TIiFi's(X."o) + raFr(\,/n) 

But the x-evolution of the proton structure funCllOn 
like those of the deuteron structure functIOn IS not 
possible by this methodology; hecau<;e to extlact the 
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Fig 1 Nucleon structure funCl/on, F2(D) obtamed by EMC NA 
28 from deuteron a~ a functton of x for dIfferent Intervals of 
Q2 (In Gey2) Statl~ttcal errors are Indicated by bars, ~y~temallc 
error~ are shown by the bands beneath In addition to the marked 
clrors there I~ an overall normahzatton error of 7% Here ~ohd 
hnes are our re~ults (Eq (42) for Nr = 4 and K ~ 10-10 '2 
Inpul dala pOtnt~ are gIven by arrow heads. 

x-evolution of the proton structure function we are to 
put (34) and (38) in (40). But as the functions in
sidc the integral sign ofEqs. (34) and (38) are differ
ent, we need to separate the input funetions Fi(XQ, t) 

and Frs (xQ, t) from the data points to extract the x
evolution of the proton structure function, which is not 
possible. 

3. Results and discussion 

In our earlier analyses [5] we observed the excel
lent phenomenological success of the (-evolutions of 
deuteron and proton structure functions. Here we anal
yse the x-evolutIOns of the deuteron structure function, 
For a quantitative analysis we evaluate the integrals 
Ihat occurred in (42) for N f = 4 and present the re
sults in Fig, I (solid lines) for EMC NA 28 deuteron 
data 181 in the K ~ 10-1012 range, Input data points 
indicated by arrow heads are taken from experiments. 

It is seen that our integrals are almmt 'ir1dClpen<,!eht 
of the K-values particularly in the x '~\ O{ 1 range, 
These results conform well to the data cspecially for 
Q2 < 2 Gcy2; but for Q2 > 2 Gey2, F!/:gro,ws, faster 
as x decrcases. This is a possihlc indlC<1tion-o;' the 
breakdown of (16) at hlgh-Q2, A clearer testing 01 
our result is actually the relation (38) whienlis/free 
from the additional assumption ( 16), But non-singlet 
data is not sufficiently available at low x to test our 
result-Eq,(38) n,),'-\::::I' 

Generally the x-distributions of structure functIons 
are assumed at a fixed low Q2 = Q6 value by vari
ous experimental and theoretical constraints and there 
is no universal agreement among these different a<;
sumptions. Then the values of structure! f,un'ttions at 
hIgher Ql va\ues are calcu\ated trom evo)uttol,l equa
tions. But here we present a method to ealcu~atc the,x-

I , , 

dIstribution of the deuteron structure funCtioil for any 
value of Q2. By knowing the value of the"~tructure 
function at a fixed value of \ = \0, we can -evalpate, 
it for other values of x in the low-.\ region, Thi~'!ls;a' 
possible alternattve to the various other phenomeno;', 
logical x-distnbutions discussed In the literature. 

Traditionally the AP equations provi~~ a means of 
calculating the manner in whIch the parton distnbu
tlOns change at fixed x as Q2 vanes, This change comes 
about because of the various types of par_t(:m'l~~anch I ng 
emission processes and the x-distributIOns are modi
fied as the initial momentum is shared among the var
IOUS daughter parlOns. However the exact-\a~e of mod
ifications of x-distributIOns at fixed Q2 '~arinot be ob
tained from the AP equations since it depends nol only 
on the initial x but also on the rates of change of parton 
distnbutions with respect to x, d" F(x) Idx" (II = I to 
00), upto infinite order. Physically this implies that at 
high t, the parton has a large momentum fra'ctlon at 
its disposal and as a result radiates partons (Including 
gluons) in innumerable ways, some of, t,hepJ Ilwolv
ing complicated QCD mechanisms. How'evcr for low 
x, many of the radiation processes will cease to 0ssu~ 
due to momentum constraints and the x-evolutions get 
simpltfied. It is then pOSSIble to visuali,se ')J~\tualto}}1 
in which the mocltfication of the ..\-distnbu,U,Iiln S~\11P\Y 
depends on its mitial value and Its first dyply<!tive. 'n 
thIS simplified situation, the AP equations give infor
matIon on the shapes of the x-dlstributl0l,l 'f1s dcmon", 
strated in this paper, Our rcsult also indicates that the 
shapes of the x-distributIons of all the structure func~, 
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hons at (ow x which are some combinatIons of nOI)_ 
singlet a,nd singlet structure functlons, are the same f{)r 
all values of Q2 ThIs IS observed In all data including 
the HERA data 
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