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ABSTRACT 

This work deals with up-continuation of a two-dimensional potential field from 

boundary data by reproducing it as a potential of simple as well as double layer 

boundary density. It is also achieved by Green's formula without finding Green's 

function for the boundary. For the field specified over a horizontal boundary, 

downward continuation of it to a flat-bottom curved boundary with its ends fixed and 

arms extending along the datum line is achieved as potential of double layer density 

belonging to the continuation boundary. Subsequently, down-continuation to a 

concave boundary with its ends fixed at the datum line and apex moving downward in 

steps along a vertical, giving the boundary a tapering shape as depth increases, is 

achieved. Finally, depth to the top of the subsurface causative mass is determined by 

the first maximum of the vertical gradient of the down-continued field computed 

along a vertical passing through it. The techniques developed are successfully tested 

on model data. The up-continued field obtained fr'om model data agrees with the true 

response to a good degree of accuracy and the down-continued field appears with 

error proportional to that in the input data, the error increasing steadily with increase 

in depth without affecting the computed depth to the causative mass. When applied to 

aeromagnetic data of Umium valley of Shillong-Nongpoh area, the techniques 

identi fy the E-W trending basement faults and determine the sedimentary thickness in 

the valley. 
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CHAPTER I 

INTRODUCTION 

Analysis and interpretation of gravity-magnetic (GM) data is the first geophysical 

method used in exploration of hydrocarbons in a basin. The GM anomaly maps 

prepared from the survey data provide a qualitative picture of the basin defining 

basement highs and lows and the basin boundary. Subsequently, depth to the 

basement can be computed from the observed GM data. 

The primary goal of studying gravity and magnetic data is to provide a bett~r 

understanding of the subsurface geology of the basin. Both gravity and magnetic 

measuremcnts are non-destructive remote sensing methods that are relatively cheap, 

and are used to determine information about the subsurface that is useful especially 

for exploration of oil, gas and mineral deposits. The value and utility of gravity and 

magnetic methods today are greater than ever because of their low cost compared to 

seismic survey and drilling, availability of continent-scale data-sets for tectonic 

analysis and increasing resolution achieved through advanced acquisition and 

processing techniques. 

Gravity data provide information about the densities of the subsurface rocks. Because 

there is a wide range in density among the rock types, geologists can make inferences 

about the distribution of strata that may be favourable for trapping oil and gas. The 

magnetic field of the earth is probably generated by electric currents in the liquid 

outer core (Gibson, 2005). Effectively, it is reasonable to think of the field as that due 

to a bar magnet at the earth's core. It affects the magnetic minerals that are distributed 
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In many rocks in the crust, so that the rocks have a component of magnetization. 

Because of variation III the magnetic rropertics of different rocks, the sedimentary 

rocks having the least magnetic effect, the geophysicists can determine the depth to 

the magnetite-rich rocks placed in general at the basement of a sedimentary basin. 

A force field in general exhibits a three-dimensional behaviour. However, there are 

certain systems in which the field shows a two-dimensional behaviour, the field 

varying in a plane without yielding a component perpendicular to it. A field described 

in two-dimensions provides a quick computational facility to study its nature. Under 

certain approximations, many systems can be treated as two-dimensional and useful 

results can be obtained with less computational work. 

Oil and mining industries acquire gravity and magnetic data to interpret them in terms 

of depth and geometry of the subsurface causative mass. ror the field data Hi acquired 

over an irregular surface S these are required to be up-continued to a horizontal plane 

S for subsequent use in qualitative and quantitative analysis of them. Ii, two­

dimensions, the field is to be up-continued to a horizontal line S , Sand S both lying 

in a vertical plane. Subsequently, to determine depth to the basement from the 

observed data, the field is to be continued downward from S to a boundary below it. 

Both the problcms stated abovc, up-continuation frOI11 (111 irregular boundary S to a 

horizontal boundary S above it and down-continuation from S to a lower boundary 

below it, involve solution of certain inverse problems. The former involves solution of 

a boundary value problem (Jaswon & Symm, 1977; LaskaI' & Bhattacharyya, 2002) 

that yields a stable solution for arbitrary data over the boundary, the later involves 

solution of an ill-posed problem (Tikhonov & Goncharsky, 1987) the solution of 

which is highly sensitive to error in input data. (Strakhov, 1963) 

2 
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Gravity or a component magnetic field H due to sllbsllrf~lce causative mass IS a 

harmonic function with asymptotic behaviour H=0(r-Jl),n~2, 1'-+ co, in the upper hal1'­

sp<1ce domain Bi bounded below by a half-space boundary S. In two­

dimensions, H=O«('\ n ~ -I, r -+ co,in Bj. Givcn Hover S, computation of H in the 

upper half-space domain Bj requires finding of Green's function for the boundary S. 

Finding of Green's function for a horizontal boundary is straightforward, finding it for 

a general boundary is an extremely difficult task. Courtillot et. al. (1973) however, 

found it following a procedure that involves solution of a non-linear equation with 

apriori knowledge of the parameters. 

Bhattacharyya and Chan (1977) attempted an alternative approach for up-continuation 

of gravity and magnetic fields from boundary data. They reproduced the gravity field, 

following Roy (1962), as derivative of potential due to a simple (monopole) layer 

boundary density (J on formulating the problem in an integral equation of the second 

kind in (J in terms of data specified over S. They reproduced a component of 

magnetic field as potential of double (dipole) layer boundary density ~l on formulating 

the problem in an integral equation of the second kind in ~l in terms of the component 

field data specified over S. The fact that the magnetostatic field H that vanishes at 

infinity in 0(1'-.1), 1'-+ co, can also be reproduced as potential of double layer boundary 

density which vanishes at infinity in 0((2), r-+co in general, remains unexplained in 

their work. LaskaI' (1984) showed that both gravity and magnetic fields could be 

rcproduced from the respective boundary data as potentials of double layer boundary 

density. Subsequently, LaskaI' and Bhattacharyya (2002) have shown that gravity as 

well as a component magnetic field can be reproduced in upper half-space domain 

from respective boundary data as potential of simple as well as double layer boundary 
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density. Further, they have also reproduced the fields by Green's formula without 

finuing Green's function for the boundary. The boundary densities in all the above 

cases are obtained as stable solution of inverse problems expressing the density in 

terms of the data speci fied over the boundary (LaskaI' & Bhattacharyya, 2002). Their 

discussion is confined in three-dimensiuns only. 

Continuation of a potential field towards its source is supposed to exhibit an irregular 

behaviour on reaching the target as it is having a singularity at the source. This 

property of the continued field identifies a possible approach for determination of 

dcpth to the baselllent in a geological basin. Petcrs (1949) made the first attempt to 

find the depth to the basement by downward continuation of vertical component 

magnetic data frolll the ground level to a levcl below it as an inverse problem 

cxpressed in an integral equation of the first kind in the field value at the lower level 

in terms of the data observed at the ground level. Instead of solving the problem as 

formulated, Peters (1949) suggested analytical continuation of the field by Taylur's 

series extrapolation towards the source. Roy (1966) used Taylor's series extrapolation 

for continuation of a two-dimensional field and derived a 4-point formula to compute 

an approximate field at the lower level. On specific spacing of data, not explained in 

the work, he could show the electromagnetic field widely oscillates on reaching the 

target. The approach failed to produce valid results for gravity-magnetic fields (Roy, 

1966). 

Strakhov (1963) has discussed the inverse problem proposed by Peters (1949). He has 

shown that the problem has a closed form solution and it is highly sensitive to error in 

input data. He named it an incorrectly posed problem in potential theory. Strakhov 

(1967) however could construct a solution using successive approximation method. 

4 
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This was quite stable relative to errors in t'he original data. The difficulty was that the 

rate of convergence of successive approximation was very low, particularly when the 

lower level, i.e., the level of continuation was near the source. The problem of finding 

stable approximate solution was finally solved by Glasko et. al. (/987) by using of 

regularisation technique (Tikhonov & Goncharsky, 1987). They named it an ill-posed 

problem in potential theory. 

The above procedure of down-continuation of an observed potential field from a 

datulll plane (line in two-dimensions) to a horizontal plane (line in two-dimensions) 

below it, cannot help liS ill finding point to point depth to an undulated basement of a 

geological basin. In this case, the continuation plane/ line passing through the bottom 

of a trough contains a portion of the neighbouring basement high above it. This 

violates Dirichlet condition that the domain of contillLlUtion, bounded below by the 

boundary of continuation, must be free from the causative mass. 

Theoretically, the above formulation requires the boundaries to be extended frol11 -co 

to co with space between them free from the causative mass and the field vanishing at 

infinity. In all practical problems we consider the data over a finite bOlll.ldary an~1 

assume that the input data are zero outside it. This produces erroneous solution at the 

periphery of the boundary and the error propagates towards the central part as depth 

of continuation increases. As a result, down continuation of aeromagnetic data 

acquired over a narrow valley bounded by sharply rising high granitic hills, suffers 

from loss of reliable information over a strip of considerable width stretched all along 

the boundary of the valley. The question arises how to provide maximum possible 

coverage in the valley. 

5 
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To find point to point depth to an undulated basement in a basin Laskar (199 I) has 

proposed downward continuation of two-dimensional potential field to a concave 

lower boundary, with its arms coinciding with the datum line and apex movll1g 

downward in steps along a vertical line passing through the causative mass. At each 

downward step, the field value is computed at its apex and finally the gradient of the 

continued field is computed along the vertical to find the depth to the top of the 

causative mass without considering the error in the computed field and its effect on 

determination of depth to the causative mass. 

The work of LaskaI' (1991) needs further development on (i) design of the 

convergence criterion in numerical solution of the ill-posed problem, (ii) choice of 

spacing of data over the datum line for obtaining a reliable continued field at a 

preassigned depth and (iii) a discussion on behaviour of error in the down-continued 

field whose gradient along the vertical defines the depth to the top of the causative 

mass. 

In the present work (I) the basics of two-dimensional potential theory is prcsented in 

short for ready reference and existence and uniqueness of solution of close domain 

Dirichlet-Neumann problem.s are furnished in brief for their subsequent use in 

discussion on existence-uniqueness of solution of a half-space problem. Order of the 

boundary density at infinity is determined and the theory of half-space problem is 

discussed as a particular case of close domain problem when one part of the boundary 

goes to infinity. Next (II) reproduction of a two dimensional harmonic function ~ 

with asymptotic behaviour ~=O(..-n), n~ I, r-WJ, is achieved in the upper hal f-space 

domain 8 1 bounded below by a hal f-space boundary S from boundary data as potential 

of single as well as double layer boundary density. The field is also reproduced in 13 1 

6 
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by Grccn's formula without finding Green's function for the boundary. Subsequently, 

(III) for <I> specified over a horizontal boundary S,clown\ovard continuation of <I> to a 

curved lo\ver boundary S with its arms extel1ding along S is discussed by formulating 

the problem in an integral equation or the lirst kind in double layer density over S in 

tcrms of data specified over S. Assuming <I> is defined on and above the continuation 

boundary S, it is shown that it has a unique solution over S. However, for the input 

data with error, this problem formulates an ill-posed problem in potential theory 

(Tikhonov & Goncharsky, 1987), a small perturbation in input data over S creates an 

wide oscillation in solution over S. 

The anomalous gravity field ~g and the component magnetic field Tz, we encounter in 

gravity-magnetic data analysis in geophysics, are harmonic functions vanishing at 

infinity in the upper half-space domain bounded below by the half-space boundary S. 

As such, (IV) the problems of continuation of a geo-potential field H, either ~g or T" 

mentioned above, are expressed by replacing <I> by 1-1 in the equations. formulating the 

half-space problems. Since down continuation of data is highly sensitive to error in 

input data and the error goes on increasing with depth, a theoretical discussion is 

carried out for determination of spacing of data over the datum line for a reliable 

continued field at a given depth. It is also theoretically shown that for a finite length 

of the datum line S, down continuation of the field at the apex Zk of a concave lower 

boundary SL as SL extcnds downward with its ends fixed at Sand Zk moving 

downward in steps along the axis of SL, the error in the continued H(Zk) increases 

steadily with depth of Zk below S. As such, the error in the computed H(Zk) does not 

affect the location of the first maximum of the gradient of H(Zk) that defines the depth 

to the top of the causative mass below S. 

7 
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On discretization of equations (V) a discussion is carried out for finding a suitable 

method of solution of a equation forillulating the up-continuation problem. 

Subsequently, a method of successive correction of a guess solution is described that 

yields a stable approximate solution of the ill-posed problem. 

Subsequently model studies are carried out for numerical verification of theoretical 

results. (VI) It is shO\vn numerically that each of the three formulations presented in 

the present work for up-continuation of a field from boundary data, yields the result to 

a good degree of accuracy. In down-continuation of data from a finite datum line, it is 

interesting to note that down-continuation of data to flat-bottom curved boundary 

presents a better result over the flat part than that produced by down-continuation to a 

horizontal boundary coinciding \.\,Iith it at the sal1le depth below the datulll line. 

rllrthcl', ii' a tUHTOW valley bounded by sharply rising grarlilic hills, downward 

continuation of aeromagnetic data to a flat bottom curved boundary, provides a better 

coverage of the valley than that by down-continuation to a horizontal line. 

finally, (VII) the techniques are applied to aeromagnetic data of Shillong-Nongpoh 

area of the state of Meghalaya for identification of basement faults frol11 the vertical 

component magnetic field and its gradients computed along NS lines above the night 

level in the area. To identify a weak basement feature, if present in the area, the 

vertical component magnetic field is continued downward to a flat bottom curved 

boundary to enhance the response of the basement over the narrow valley, the flat part 

proving the maximum possible coverage of the valley above the ground surface. In 

the next step, point to point depth to the basement is computed from vertical 

component magnetic data to find the thickness of the sedimentary cover in the area. 

The depth-profile so obtained approximately agrees with the predicted bascment 

faults across it and the exposed geology at Umsning, a small town in the area. 

8 



CHAPTER II 

TWO-DIMENSIONAL POTENTIAL THEORY 

2.1 Potential due to simple sOUl-ces 

2.1.1 Potential due to a simple sOlll-ce 

For a logarithmic simple source m placed at point q in a xoz plane (Fig. 2.1.1) the 

potential q) due to it at a point P in the same plane IS given by 

(1)( P) = -mlog r = -llllog/P - q/, (2. I. I ) 

where P and q are the position vectors speci tYing the points P alld q respectIvely with 

respect to nn arbitr~ry reference point 0 and r is the distance between P and q. 

rig. 2.1.1: The source point q and the field point P in a 
xoz reference frame with z-axis upward 

z 

p 

!) 



CHAPTER II 

Properties of Simple sOUl'ce potential 

• The potential <I> is defined everywhere except at the point q where it has a 

singularity. 

• \72<1>=0 everywhere except at the source point q, I.e., the potential <I> satisfies 

Laplace's equation everywhere except at q. 

• The <I> at infinity shows the behaviour 

aslpl ~ 00. 

2.1.2 Potential due to simple sources ovel' a closed contour 

For a smooth closed contour aB defining the periphery of a vertical section of an 

infinitely long closed surface of density 0' (Pig. 2.1.2), the potential <p at a point P in 

the plane of the contour is expressed as 

q)(I» = - J loglp - qIO'«I)dq, (2.1.2) 
DO 

rig. 2.1.2: Interior domain Bi is enclosed by the closed contour aBo 

Exterior domain Be lies outside B,. Unit vectors i and e are 

internal and external normals respectively to aB at q. 

10 
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where II" - (II defines the distance between the points P and q, cr(q) represents the line 

dcnsity at the boundary point q and dq represents the elementary arc length at q. Por 

the sakc of further mathcmatical analysis, let liS ol1lit the ncgative sign to the integral 

and write the logarithmic potentials as 

<p(P) = f log/P - q/cr(q)dq, PE Bj (2.1.3) 
,'B 

and <p(P) = J logl£> - qlcr(q)dq, PE Be (2.1.4) 
aB 

These define harmonic functions in Bj, Be respectively and they remains continllous at 

08 as 

<PCp) = J loglp - qlcr(q)dq, pEoB (2.1.5) 
,:1\ 

It is evident from (2.1.3), (2.104) and (2.1.5) that 

• The potential <p is continuous everywhere including the boundary 

• '\72<p=0 everywhere except at the boundary. 

• The <p at infinity shows the behaviour 

<p(P) = loglpl J cr(q)dq -l p l-1 J(P.q)cr(q)dq + 0(1£>1-2
) 

;)13 iJB 

The tangential derivatives exist and continuous at pEoB provided cr IS Holder 

continuous at p, but the normal derivatives are discontinuous. 

We \vrite 

II 



( 11/\ I' II:I~ " 

::l a loglJl - (II == log~ III -lJl == loglq - pi ' 
un l 

e 

for the interior and exterior derivatives of loglp- <II at 11 keeping q fixed. These have 

equal status and are connected by 

(2.1.6) 

For an interior point P, the derivative of ~ at P in the direction 11 is given by 

= JlogJP - qlcr( q)dq, P E B, , (2.1.7) 
(;13 

exists and continllous in B, for the integrand being regular and uniformly convergent 

in P. As p~ pEoB, the integrand in (2.1.7) has a singularity at p. Following Kellogg 

(1929), it can be established for cr satisfying Holder continuity at p and n representing 

the interior normal i at oB, 

a ' 
-~(p) = ~:(p) = 1!cr(p) + flog,lp -qlcr(q)dq, p E oB. 
an, m 

(2.1.8) 

Following the sign convention of Jaswon (1963), treating both sides of oB as positive, 

a . 
-~(p) = ~~(p) = 1!cr(p) + Jlogelp - qlcr(q)dq, P E oB, 
an c all 

(2.1.9) 

for ~ defined in the exterior domain Be (Fig. 2.1.2) and cr satisfying I-lOlder continuity 

at pEas. 

12 
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2.2 Potential due to double sour"ces 

2.2.1 Potential due to a double source 

For a dipole of strength p placed at a point q In the direction 11 (Fig. 2.2.1), the 

potential W due to it at a point P is given by 

W(P) = -p logll' - (II,; (2.2.1 ) 

Fig 2.2.1: The doublet of strength ~l having direction 11 is placed at the 
source point q and P defines the field point at a distance r from q 

z 

oL--------------------------x 

For the sake of further mathematical analysis, let us omit the 

integral and write the logarithmic potentials as 

W(P) = ~lloglp - ql,; 

Properties of Double source potential 

• The potential W IS defined everywhere except at the point q where it has a 

singularity. 

• \7
2W=O everywhere except at the dipole at q. 

• The W vanishes at infinity with asymptotic behaviour W = o~pl·-I} Ipi ~ (fJ 

13 
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2.2.2 Potential due to double sources over a closed contour 

J\ continuous distribution of double sources or strength ~l over aB generates the 

double layer logarithmic potentials 

W(I') = floglp -(ll;~l«(I)clq, P EB, (2,2,2) 
,'II 

alld W(P) = flog/p -(,/,.·p(q)dq, P EBc (2.2.3) 
,'II 

These are harmonic functions in 13" Be respectively and 

W(P) = 0(11'1- 1
), aslpl ~ roo (2.2.4) 

The integral (2.2.2) suffers a discontinuity at 813 as 

lilll W(P;) = W(p) - n:~l(p) (2.2.5) 
1'1-)1' 

and lilll W(Pc)= W(p)+n:~l(fJ), (2.2.6) 
I' .. -+P 

where P, and Pc arc points on nj andl1c respectively both em,mating from Jl E aBo 

It is evident from (2.2,2) and (2.2.5) that 

• The potential W is continuous everywhere except at the boundary 

• The potential W jumps by an alllount n:~l at the boundary 

• The W vanishes at infinity with asymptotic behaviour W = oijpl- 1 

} Ipi ~ ro 

14 
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2.3 Formulation of Dirichlet and Neumann Problems 

2.3.1 I ntedOl· Problems 

(a) Interior Dirichlet Problems 

For a two-dimensional harmonic fUllction <p given over a sl1100th closcd contour aB, <p 

in thc interior domain B, can be reproduced by simple layer logarithmic boundary 

density cy as 

<p(p) = J loglp - qlcy(q)dq, P EB,. (2.3. I) 
(~Il 

As J> ~ P E aB, we obtain the boundary relation 

1---"1 
<p(Il) = J loglll - qlcy( q )dq, Il E,'aB.: (2.3.2) 

til 

Given <p over aB, (2.3.2) formulates a Dirichlet problcm in an integral equation of thc 

first kind in CY in terms of <p over aB. 

This general equation was formulated by Hamel (1949) and Volterra (1959) without 

any further discussion on it. It has been shown by Jaswon and Symm (1977) that the 

cquation (2.3.2) has a general solution 

CY =CY o +k,,- , (2.3.3) 

where CY o is a particular solution of (2.3.2), k is an arbitrary constant and "- satisfies 

I = <p(p) = J loglp - ql"-( q )dq, P E aB (2.3.4 ) 
(13 

for as *' r -contour for which equation (2.3.4) does not have a solution (Jaswol1, 

1963). The solution can bc made uniquc on a particular choice of k. 

15 



(111\1"1 CR 11 

Givcll (I) over aB the intenor Dirichlet problcm can also be formulated fol/owing 

(2.2.5) by a double layer logarithmic boundary density ~L as 

<pep) == -ITp(p) + floglp - (JI:~l(q)dq,Jl E 013. (2 3.5) 
,'Il 

Pol/owing Kellogg (/929), equation (2.3.5) in ~l has a solution if 

fq)(p)A-(p)dp = 0, (2.3.6) ,II 

where A is the solution of the corresponding adjoint homogeneous cquation 

0= -ITA-(p) + flog:lp - q~(q)dq, p E 08 (2.3.7) 
im 

which is mathematically equivalent to 

O=1tA(p)+ flog~lp-q~(q)clq,pEaB (2.3.8) 
{;[l 

by virtue of (2.1.6). It can be established that the equation (2.3.8) does not have a 

nOll-trivial A-. This A- satisfies (2.3.6) for an arbitrary <p on aB. (-fence, following 

Kellogg (1929), equation (2.3.5) has a uniquc solution ~l for an arbitrary ¢ over aB. 

(b) Interior Neumann Problems 

POI' <1>: prescribed over aB, the a that reproduces the <I> In B, + aB, can be obtained 

for aB:t: r as a solution of the normal derivative equation 

<1>: (p) = 1ta(p) + flog; Ip - qla( q)dq, p E aB, (2.3.9) 
,'H 

formed by (2.1.8) . Equation (2.3.9) expresses an interior Neumann problem by a 

Fredholm integral equation of the second kind in a in terms of <1>: given on aB. 

rollowing Kellogg (1929), this has a solution if 

J<I>: (p)A-(p)dp = 0 (2.3.10) 
DR 
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where tv is the solution of the corresponding <Ie/joint homogeneous equation 

0== ITtv(p) + floglp - <II: !,( <I )dq, P E an (2.3. I I) 
I'll 

wlllch ,by virtue of 

floglp - <II: dq ~ -IT, P E aB (2.3.12) 
/'\Il 

has a non-trivial solution tv = 1 on aB. On substitution of this tv 111 (2.3. 10), we 

arnve at the Gauss' condition 

H: (p)dp = 0 (2.3.13) 
I'IJ 

for a <I) harmonic in B, . This ensures the existence of a solution of equation (2.3.9). 

The solution can be written as 

(2.3.14) 

where CJ n is a particular solution of (2.3.9), k is an arbitrary constant and A is the 

solution of (2.3.4). This solution when substituted in (2.3.1) produces a series of ~ III 

B, as 

<j>= <Po + k (2.3.15) 

having the interior nornlal derivative as prescribed on aB. The solution can be 

made unique on proper choice of k. 

17 
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2.3.2 Exterior Problems 

(a) Exterior Dirichlet Problems 

The boulldary density cr obtained as solution of equatioll (2.3.2) i.e. 

--I 

<1>(11) = f loglp - qlcr(q)dq, P E:·aB,j (2.3.16) 
,)13 

for aB:j::. r, generates a potential V in B, that solves the interior Dirichlet 

problem for ~ The cr generates an exterior potential Vo characterized by 

logarithmic behaviour at infinity, whereas the classical existence.-uniqueness theorem 

(Kellogg 1929) specifies O( I) behaviour, implying bounded ness on Vo at infinity. 

It has been shown by Jaswon and SymJ11 (1977) that the equation (2.3.16) for the 

exterior domain Be has a solution 

(2.3.17) 

1= floglp -q~(q)dq, P E aB, (2.3.18) 
,1B 

where G satisfies o 

ci>n(P) = Jloglp -qPo«(I)dq, P E aB (2.3.19) 
c1B 

with existence condition 

(2.3.20) 

implying <1>0 =O(r-'),r~oo,and Go isthe ul1lque solution of(2.3.19). 

The solution (2.3.17) can be made unique on proper choice of k. 

18 
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(a) Exterior Neumann Problems 

For <I>~ defining the exterior normal derivative of an exterior harmonic function '<1>, 

with asymptotic behaviour <I> =0«(1), r ~ co, given <I>~ over oB (Fig.2.1.2), <I> in Be 

can be obtained as a potential due to a simple layer boundary density cr on 

0/3 ( =F- r contour) as 

<1>(1') == flogl p - qlo-«J)dq, P E Be (2.3.21 ) 
r71l 

Following (2.1.9), the 0- of (2.3.21) is related to (P~ on oB as 

<I>~(p) == recr(p) + flogJp - qlcr(q)dq, P E oB (2.3.22) 
all 

Given <I>~ over oB, equation (2.3.22) expresses an exterior Neumann problem in a 

Predholm boundary integral equation of the second kind for cr in terms of <I>~ over 

oB. This equation has a solution if 

f<l>~(PP .. (I»dp = 0 (2.3.23) 
ilil 

where')... satisfies the adjoint homogeneous equation 

o == re')...(p) + floglp - (II~ ')...( q )dq, Jl E oB . (2.3.24) 
DB 

That the homogeneous component of (2.3.22) 

o == reo-(p) - Jlog~ Ip - qlo-( q)dq, p E oB, 
a8 

does not have a non-trivial solution. Hence, following Kellogg (1929), we conclude 

that the adjoint homogeneous equation (2.3.24) does not have a non-trivial solution. 

This implies, the condition (2.3.23) is satisfied for an arbitrary <I>~ on oB. 

Consequently, the equation (2.3.22) has a solution for an arbitrary <I>~ on oB and this 

solution is unique. 
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2.4 Green's Fonllulae 

2.4.1 Green's Formulae for interior domain 

For a harmonic function <I> defined in an interior domain B, bounded by a smooth 

closed contollr aB, Green's formula in two dimensions takes the form 

floglp - ql: <I>(q)dq - flogl p - q~p: (q)dq = -2mp(P), P E B, (2.4.1 ) 

For the field point P located on aB, the boundary formula 111 two-dimensions is 

written as, 

floglp - ql: <1>( q)dq - floglp - q~: (q)dq = -1"[<I>(p), P E aB (2.4.2) 

Given <I> on aB, equation (2.4.2) expresses an interior Dirichlet problem fur <1>; III 

terms of <1>, by a Fredholm boundary integral equation of the first kind in <1>: as 

Jloglp - q~; (q)dq = 1"[<I>(p) + Jloglp - ql; <I>(q)dq, P E aB. (2.4.3) 
ilB 

This equation is of the type (2.3.2) which has been proved to have a unique solution. 

2.4.2 Green's Formulae for exterior domain 

To discllss Green's formulae for the exterior domain Be, let liS 

assume <I> = O(r-'), r ~ CI). We know changing of i into e yields the analogous exterior 

formulae under the new sign convention of Jaswon (1963). For example, under this 

rule, the formula (2.4.1) yields the exterior formula 

(2.4.4) 

and (2.4.2) yields the boundary formula for the exterior ~ as 

20 
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(2.4.5) 

where rr signi fies the external angle at p. 

Given <jl on aB, the relation (2.4.5) yields the Boundary equation 

floglp -q~;(q)dq = rr<jl(p) + floglp -ql;<J>(q)dq, p E aB (2.4.6) 
~ 00 

which expresses the exterior Dirichlet Problem for ",. in a Fredholm integral 'fie 

equation of the first kind in <jl~ in terms of <jl on aB. 

This equation is of type (2.3.16) for the exterior domain Be which has a solution for 

O( I) behaviour of <jl and that can be made unique. Since the <jl under discussion 

vanishes at infinity, the equation (2.4.6) has a unique solution. 

Given <J>~ on aB, equation (2.4.6) expresses an exterior Neumann Problem III a 

Fredholm integral equation of the second kind in c\> as 

floglp - q[ <J>( q)dq + rr<J>(p) = floglp - q~~ (q)dq (2.4.7) 
eB aB 

rollowing Kellogg (1929), this has a solution ifand only if 

where 'A satisfies the adjoint homogenous equation 

0= rr'A(p) + Jlog~ Ip - ql'A( q)dq, p E aB 
an 

This equation does not have a non-trivial solution A as discussed in the equation 

(2.3.22). Hence, the exterior Neumann problem, expressed by equation (2.4.7) has a 

unique solution for <jl = O(r- I
), r ---t 00 and aB *- r contour. 
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2.4.3 Reproduction of a Harmonic function as Simple and double 
layer potential 

Let a two-dimensional harmonic function cj> with asymptotic behaviour cj>=O(r- Il
), n~ J, 

r-)oo, be defined in the upper half-space domain bounded below by a general half-

space boundary S. Let us consider the cj> above S in a closed domain Bi as shown in 

Fig.2A. J, bounded above by a semicircle S\I of radius R. Given cj> and its fnferior 

normal derivative cj>; over aB(=S+Su), cj> in the interior is given by Green's formula as 

(2.4.8) 

Fig. 2A. J: The closed domain Bi bounded below by S and above by a 
semicircle Su of Radius R, R~oo 

B 
I 

p 

Let LIS now consider an exterior harmonic function f with asymptotic behaviour 

[=0«('\ n~ I, r~oo defined in the exterior domain Be bounded at interior by aB. 
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fool lowing Green's identity II, its boundary data 'latisfy 

Jlog:lq - rlf(q)dq - Jloglq - pl( (q)dq = 0, I' EB, (2.4.9) 
DB r1R 

Superposition of (2.4.9) on formula (2.4.8) yields, by virtue of 

log: Iq - 1'1 = log~ Iq - 1'1, q E aB, 

Jlog:lq - pi {<I>(q) - f(q)}dq - Jloglq - 1'1 {<I>: (q) -I- f~ (q)}dq = -2n<l>(P), I' EB" 

(2.4.10) 

already shown by Jaswon and Symm ( 1977). 

Now we consider two distinct possibilities for f 

(a) For f=<I> over aB, we find 

Jloglq - rl{<I>: (q) -I- f~ (q) }dq = 2n<l>(P), I' EB" (2.4.11) 
,,13 

This provides a simple layer representation of <I> in B, with source density 

1 { . .} cr(q) =-1-- <I>,(q)+fc(q). 
2n 

(2.4.12) 

Existence of a unique exterior f with asymptotic behaviour as assumed above, 

satisfying f=<I> over aB, is ensured by the exterior Oil ichlet existence theorem. 

(b) The second possibility f~ = -<I>: over as, provides the representation 

Jlog:lq - pl{<I>(q) - f(q)}dq = -2n<l>(P), P EB" 
,'13 
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This is a double layer potential generated by source density 

I 
~L( q) = - - {<I> ( q) - f (q) }. 

2n: 
(2.4.13) 

Existence of a lI111que f in Be satisfying (= -<I): over aB IS ensured by exterior 

Neumann existence theorem. 

For f and <I> vanishing at infinity in same order over Su (Fig. 2.4.1) as r-w,), we find for 

qES u 

a(q) = 0(<1>,\ Iql ~ 00, (2.4.14) 

and p(q) = 0(<»), Iql ~ 00, (2.4.15) 

from (2.4.12) and (2.4.13) respectively. 

A quick verification of (2.4.14) and (2.4.15) comes from the boundary relations of <1>,' 

and cr and that of <I> and ~l over a half~space horizontal boundary S. For <I> in 8, (Fig. 

2.4.1) given by 

<I> (P) = jloglp - qla(q)dq, P E B,. 
s 

the normal derivative relation <I> and a over S is 

<1>: (p) = n:a(p) + flog: Ip - ql a(q)dq = 1ta(p), PES (2.4.16) 

the integral over S being zero for both p,q E S. For <I> in B, given by 
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~ (P) = jlog/P - q/: ~l(q)dq, P E B
" s 

and the boundary relation of 4) and p over S IS 

cp(p) = -re~L(p) + floglp - (II,' p( (I )dq = -rep(p), PES, (2.4.17) 
;; 

the integral on the right hand side of (2.4.17) vanishing for p, q E S . 
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CHAPTER III 

HALF-SPACE PROBLEMS 

3.1 Upwanl Continuation from Boundary Data 

3.1.1 Simple layer' FonnulaHon 

Let a two-dimensional harmonic function (I) with asymptotic behaviour 

(P == O(r- II ), n ~ I, r ~ 00, be defined in a closed domain Bj bounded below by a 

general boundary S and above by a semicircle Su of radius R, R~oo, as shown in rig. 

2.4.1. Following (2.3.1), (p in B j can be reproduced by a simple layer boundary 

density 0' as 

q)(P) == flog!p - q!O'(q)dq, P E 13; 
fiB 

= floglp - qlcr(q)dq + floglp - qlcr(q)dq, P E B j (3.1.1 ) 
s 

As R ~ 00, i.e., as Sli moves to infinity, the formula (3.1.1) yields 

(p(l') == flogl p - qlcr(())dq, P E B j , (3.1.2) 
s 

the second integral of (3.1.1) having no contribution to </> at P, for 

cr(q)=O(</>')=O(R-CIIIII), n~l, by (2.4.14), dq = O(R)O(I), qES" and 

lim(logR/R)=O, R~oo. 
R-"f) 

As P ~ PES, by virtue of continuity of <P in 13j+ S, we obtain 

(PCp) = floglp -qp(q)dq,p E S (3.1.3 ) 
s 
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To dIscuss the cxistcncc-uniqucncc;s of the c;olutlon of (3.1.3), Ict us considcr the 

boundary formula 

q)(p) = Jlog\p - qp( q )dq, p E BB (3.1.4) 
au 

GIven <p over aB, cquation (3. J.4) explesses an intcl ior Dinchlct plOblclll in cr in 

terms of ~ specified over aBo This equation, by (2.3.3), has a solution cr =cr" +kA, 

which can be made unique on proper choice of k, cro being the particular solution of 

(3.1.4) 

Since (3.1.4) has a solution that can be made unique, the solution of 

<p(p) = flogl!> - qlcr(q)dq + flogl" - qlcr(q)clq,,, E al3 
'"') '-'u 

= Jloglp -qlcr«(])dq,p E S, (3.1.5) 

has a unique solution cro for the choice k=O, ~ and cr being O(R-I) and 0(R-2
) over Sli 

as R ~ 00. The cr(~cro) reproduces the ~ on and abovc the hal f-space boundary S. 

3.1.2 Double layel' Formulation 

Let a two dimensional harmonic functIon ~) with asymptotic behavIOur 

~ = O(r-n
), n ~ I, r ~ 00, be defined in a closed domain B, bounded below by a 

general boundary S and above by a semicircle Sli of radius R, R ~ 00, as shown in 

Pig. 2.4.1. Following (2.2.2), ~ in B, can be reproduced as potential of a double laycr 

boundary density ~l as 

~(p) = jloglp - ql:~l(q)dq, p E B, (3.1.6) 
(1) 

yielding the boundary relation, by (2.2.5) 
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q)(p) = -n~t(p) + floglp - ql:p(l1)dq,p E uB. (3.1.7) 
,"113 

Given <J> over aB, the equation (3.1.7), following (2.3.5), has a unique solution ~l for 

an arbitrary <J> over aB. 

As R --+ <X) , i.e., SII goes to infinity, (3.I.G) becomes 

<J>(P) = flogJI> - <]J:~l(<])dq, J> E B, (3.1.8) 
s 

and (3. 1.7) becomes 

<J>(p) = -n~l(p) + floglp - <]1: ~l( q)dq, PES (3.1.9) 
~ 

the integral over Su having no contribution to q) at J> for 

P = O(<J» = 0(1'-"), n ~ I, r --+ 0') and Ilog:lq - rldql being bounded for all locations of 

Since the equation (3.1.7) has a unique solution for an arbitrary <J> specified over aB, 

the equation (3.1.9), a particular case of (3.1.7) for <J> and p vanishing over Su, has a 

unique ~l over S for an arbitrary <J> over S. This ~l reproduces the <J> in B, by (3.1.8). 

3.1.3 Formulation by Green's Formula 

For a two-dimensional harmonic fUllction <J> with asymptotic behaviour 

~ = O(r- I1
), n ~ I, r --+ 0'), defined in a closed domain B, bounded below by a general 

boundary S and above by a semicircle of radius R, R--+ 0') , as shown in Fig. 2.4.1, 

given ~ and ~; over aB(=S+Su, Fig. 2.4.1), <J> in B, can be obtained by (2.4.1) as 

- 2n<J>(P) = floglp - <]1: <J>( q)dq - floglp - q~: (q)dq, P E B, (3.1.10) 
iJB ;'1} 

For aB=S+Su, the above formula can be written as 
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- 2rr<p(P) = floglp - ql:</>(q)dq - floglJ> - q~p.: (q)dq 

+ floglp - ql: qJ(q)dq - flogl p - q~: «()dq, r E 13, 
C\u \, 

AS R~co, Sli goes to infinity ancilhe above forllluia becomes 

- 2rr</>( P) = [Ioglp - ql: </>( q)c1q - [logl» - ()~: (q )dq, » E 13 , ' (3.1.11) 

the integrals over Su vanishing at least in O(R- ' ), R~co. The formula (3.1.11) 

expresses </> in the upper half-space domain B, in terms of </> and </>,' given on S. As 

1)~pES and R~co, thc formula (2.4.2) becomcs 

- rr</>(p) = [Ioglp - ql: </>( q)dq - [logll1 - q~< «(1 )dq, PES, (3.1.12) 

the integrals over SlI vanishing at least in OCR-'), R~co. 

Given </> on S, the formula (3.1.12) defines a Dirichlet problem for </>: in terms of </> as 

[Ioglp - q~: (q)dq = rr</>(p) + [Ioglp - ql: </>( q)dq, pES. (3.1.13) 
s s 

for the upper hal f-space domain bounded below by S. 

Introducing the upper part Sli of the boundary, the equation can be expressed as 

[Ioglp - q~: (q)dq = rr</>(p) + floglp - ql: </>( q)dq, P E oB. (3.1.14) 
(:B al3 

This equation, by (2.4.3), has a UlJlque solution. Hence, the half-space problem 

formulated by (3.1.13), a particular case of (3.1.14), has unique </>: over S for </> given 

over S. 
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3.2 Downward Continuation frollt Bounda.'y Data 

For a two-dimensional harmonic function $ with asymptotic behaviour$ =0«("), n 2: 

I, r --} 00, defined in the upper half-space domain B, bounded below by a half-space 

boundary S(= SO +SL+ So. Fig.3.2.1), given cp over S, by (3.1.8), there exists a double 

layer boundary density ~l over S that reproduces thei~ 

<P (P) = flog.'lq - plp(q)dq, P E B, . (3.2.1 ) 
~ 

Fig. 3.2.1: A closed domain B, bounded below by a curved boundary 

S( = So + SL + S,,) and above by a semicircle Stl of radius R, R~oo 
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As P --} J> E S, by (3.1.9), the formula (3.2.1) yields the boundary relation between <p 

and ~l as 

~ (p) = - rr~l(p)+ Jlog,'lq - pi p(q)dq,p E S. (3.2.2) 
s 

Givcn ~ over S, the equation (3.2.2) formulatcs a Dirichlet problem in ~l for the 

upper half-pace domain 8, in terms of $ specified over S. It has already been showll in 
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subscction 3.1.2 that the above equation has ,I unique paver S and this ~l reproduces 

the ~ on and above S. 

Let us now assume that the ~ be speci fied over a horizontal hal f-space boundary 

S(= S" + S" + S,,' rig. 3.2. J) and the curved continuation boundary S, having a central 

concave part SL with its ends common to those of SIr ' extend to infinity along S" on 

both sides of S". Now for PE S", excluding its end points, the half-space formula 

(3.2.1) yiclds 

~ (P) = Jlog 'Iq - pl~l(q)dq + Jlog~lq - pl~l(q)dq 
I _ , 

SL s. 

= Jlog'-Iq - pl~l(q)dq, I' E S", (3.2.3) 
!-" 

the integral over So having no contribution to q, at PES". This is evident frol11 the 

fact that 10g,'Iq - 1'1= ° for P, (I E Sand P :f:: q. Once the ~L over SL is obtained as 

solution of the equation (3.2.3), ~L over S" is given by (3.2.2) rewritten as 

rr~L(P) = ~ (P) + J~ogi'lq - plp(q)dq, PESo, 
S, +s" 

= ~ (P) + Jlog'-Iq - pl~l(q)dq, PES", (3.2.4) 
s, 

the integral over S" being zero for P:f::q, log'-Iq - 1'1=0, P,qE So and for 1'=<1, the 

integral being singular at an isolated point P, a set ofllleasure zero. 
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CHAPTER IV 

APPLICATION IN GEOPHYSICS 

4.1 Upward Continuation 

4.1.1 Rep.'oduction of G.'avity-Magnetic Fields ""0111 boundary data 
as potential due to Simple Layer Boundary Density 

Let H be a harmonic function, an anomalous gl avity field 6g or component magnetic 

field T7 , in two-dimensions wIth asymptotic behaviour H=O(r-"), n 2 I, r~oo in the 

LIpper hal f-space domain 8, bounded belo\-v by a hal f-space boundary S, given Hover 

S, H in 13, can be reproduced by (3.1.2) as potential due to sImple layer logarithlllic 

boundary density (J as 

H(P) = - floglq - Pp«J) dq, (4. I . I ) 
<; 

introducing the original negative sign to the integral and (J (q) is the simple 

layer boundary density over S at the point q. 

Fig. 4.1.1: Boundary S, field point P and the outward (towards 8 i ) 

normal ito S at boundary point q 
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The H in (4.1.1) is continuous In Bj+S. ror the field point P coinciding with the 

boundary point p, we obtain the boundary formula 

H (p) = - flogl<1 - pr( q) dq, pES. (4.1.2) 
s 

Given Hover S, equation (4.1.2) expresses a rrec1holl1l integral equation of first kind 

ill (J in terms of H speci lied over S. It has been shown in (3.1.5) that the equation has 

a unique (J over S. Once the (J is known as solution of equation (4.1.2), H in B j can be 

computed by (4.1.1 ). 

Now, as P moves to infinity, the formula (4.1.1) yields 

H(r) = o(loglpl)J(J(q)dq, Ipl ~ 00. 

s 

For H representing a t\vo-dimensional gravity field, H = O(r- I
), r ~ r:t:). As such, in 

this case 

fa(q) dq = 0, 
s 

ror H representing a two-dimensional component magnetostatic field, H = 0(r-2
), 

r ~ r:t:). As such, for this case also 

fa(q) dq = 0 
s 

I-Ience for both the cases, H representing either a gravimetric or a component 

magnetostatic field in two-dimension" 

Ja(q) dq = O. (4.1.3) 
s 
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4.1.2 Reproduction of Gr'avity-Magnetic Fields from boundary data 
as potential due to Double Layrr Boundar"y Density 

For H denoting either a gravimetric or a component magnetostatic field in B,+S, H in 

Bi is a harmonic function with asymptotic behaviour H= 0(1'-11), n ~ I, as 1'-4 Cf). As 

such, upward continuation of H in 8, can be obtained following (3.1.8) as a potential 

due to a double layer boundary density as 

H(P) = - ]log;lq - P~t(q) dq, P E 8" (4.1.4) 
S 

introducing the original negative sign to the integral, p(q) defining the double layer 

boundary density at the point q over S. For the field point P coinciding with a 

boundary point p, as P approaches S, we obtain by boundary formula (3.1.9), 

H(p) = n:~t(p) - J,'iq - plp(q) dq, pES. (4.1.5) 
~ 

Given Hover S, equation (4.1.5) presents a boundary integral equation of the second 

kind in ~l. This expresses a Dirichlet problem in ~l in terms of Hover S. Since the 

equation (3.1.9) has a unique solution for an arbitrary ~ over S, this equation has a 

unique solution for an arbitrary Hover S. Once ~l is known over S, H at P E Bi can be 

computed by (4.1.4). 

As Ipl-4 Cf), formula (4.1.4) yields 

H(P) = O~prl )ht(q) dq, Ipl-4 Cf). (4.1.6) 
s 

ror H representing a two-dimensional gravimetric field, H = o~pl-1 ~ Ipl-4 Cf). It is 

evident from (4.1.6) that for H representing a gravity field, 

fp(q)dq~O (4.1.7) 
s 

necessari Iy. 
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Por H representing a two-dimensional magnetostatic component field, 

H = 0~pr2} Ipl ~ ctJ. Hence, it is evident from (4.1.5) that for the magnetostatic case, 

f ~l( q)dq = O. (4.1.8) 
s 

4.1.3 Reproduction of Gravity-lVlagnetic Fields from boundary data 
by Green's Formula 

For H representing a gravity or a component magnetostatic field in the upper half-

space domain B, bounded below by S, H is a harmonic function in B, with asymptotic 

behaviour 1-1 = O(r- It
), n 2 I, r ~ CIJ. As sllch given Hover S, following (3.1.11), H 

in B, can be obtained by Green's formula 

- 2rrH( P) = flog;lq - pIH(q)dq - Jloglq - rll{ (q)dq, rEB" (4.1.9) 
s ~ 

on obtaining H: over S as a solution of the boundary integral equation 

-rrH(p) = f'og,'/q - r>/H(q)dq - flogler - pll{ «(Odq, pES. (4. J. J 0) 
S S 

Given Hover S, equation (4.1.10) represents a boundary integral equation of the first 

kind in H; in terms of I-I specified over S. Following (3.1.13), we conclude that this 

equation has a unique H; over S. With this I{ over S, I-I at a point PE B, can be 

obtained by (4.1.9). 
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4.2 Downward continuation 

4.2.1 Continuation to a cm'ved lower boundary 

Let a two-dimensional harmonic function 1-1, a gravity field L\g or a ll1agnctostatic 

component field T" with asymptotic behaviour H = 0 ((11), n ~ I, r ~ O'J, be defined in 

the upper hal f space domain B, bounded below by a curved hal f-space boundary 

S(==So+SL+So' Fig.3.2.1) such that its central part SL is concave upward with its cnds 

fixed at the datum line and arms extending along it. 

Let us now assume that the upper half-space domain B, , bounded below by S, be also 

bounded above by a semicircular arc Sli of radius R, R ~ 00. The domain so bounded 

by S+SII (==8B, say) be considered as an interior domain Bi. For the causative mass 

lying below S. the field H is a harmonic function in B,. As such, given Hover 8B, H 

in B, can be reproduced as potential due to a double layer boundary density ~l (Jaswon 

and Syml11, 1977) as 

H(P} = - flog,'lq - pl~l(q)dq = - flog:lq - plp(q)dq, p E B" (4.2.1 ) 
DB S+Su 

where P and q represent the position vectors of the field point P and the boundary 

point q respectively, 10g,'lq - pi represents the interior (towards B,) normal derivative 

of log Iq - pi at the point q keeping P fixed, ~l (q) represents the double layer 

logarithmic boundary density p at the point q and dq represents the arc element at q. 

Since the boundary density ~l(q)=O(I-I), 1<11 ~ Cf), by (2.4.15), contribution of the p of 

Sli to H at P in formula (4.2.1) vanishes as R~Cf). Consequently, formula (4.2.1) 

reduces to the ha I f-space formula 
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I-I(P) == ~ flog}, - pl~l«J)dq, I' E B;, (4.2.2) 
s 

for the upper h;lJ f-space domain Bi bounded below by S. 

Since the ~l of (4.2.2) reproduces the H on and above S, it must reproduce the field on 

a horizontal line S in Bj+S. Let us 110\V assume that the field I-I be specified over the 

horizontal half-space boundary S (== So +SII +S", fig.3.2.1) and let the curved lower 

boundary SL lie vertically below S" with end-points common to them. Now for 

P ES II excluding its end points, the half-space formula (4.2.2) yields 

== ~ flog;'lq ~ plp(q)dq, PES ", (4.2.3 ) 
S .. 

the integral over S:, havil)g no contribution to H at PES" for 10g;lq - 1'1=0, P:;tq, 

P,qE S(==S"+S,,+S,,,Fig.3.2.1). 

It is to be mentioned here that for an erroneous input data, equation (4.2.3) formulates 

an ill-posed problem (Tikhonov and Goncharsky, 1987) in ~l in terms of I-I specified 

over S". A small perturbation in H creates a wide oscillation in PESt.. 

Assuming that the input data are free from error, given Hover S", equation (4.2.3) 

has a unique solution (Appendix J). To find the ~l over So, let us consider, following 

Jawson and Symm (1977), the boundary equation as 

H(P) = rr~l (I') - Jlog;'lq - 1'1 p(q)clq, I' E So 
s 
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= 1tp (P) - flogJI- pi ~l(q)c1q, PESo' (4.2.4) 
~, 

the integral over So vanishing for log j·lq - pi = 0, P, q E So' P;t: q, and for P===q, the 

integral having a singularity at the isolated point P, a set of measure zero. Once the ~l 

over SL is obtained as solution of the equation (4.2.3), the ~l over S" can be directly 

obtained from (4.2.4). 

For the ~l known over S(= S" +SL +S,,' Fig.3.2.1), I-I at a point PESL can be computed 

as potential due to ~l(q), qES, by the boundary formula 

H(p)= 1t~l (p) - flog;lq - pl~l«(J)dq, pES. (4.2.5) 
s 

To examine the validity of ~l obtained over SI. and S" as solution of equations (4.2.3) 

and (4.2.4) respectively, let us obtain the ~l over S(= S" +SL +S", Fig.3.2.1) as 

solution of Dirichlet problem expressed by (4.2.5), assuming that the I-I is known over 

S. This provides an opportunity to examine the uniqueness of the solution of (4.2.3), 

assuming that the input data are free frolll error. 
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4.2.2 Continuation to a horizontal lower boundary 

For SL coinciding with a horizontal half-space boundary SL (say) placed at a depth d 

below S, the boundary relation between 1-1 ancl p over SL' by (4.2.5), is 

H(p)= rrp (p) - Jlog'-Iq - pl~l( (])dq, P E SL 
S, 

= rr~l(p), PESt., (4.2.6) 

for flog;lq - pi ~l«J}dq = 0, p, q E SL ' as shown earlier in (4.2.3) ancl (4.2.4). This 
SI. 

expresses p in terms of H belonging to S,- as 

~l(q) = I-I(q)/ rr, q E S'-' (4.2.7) 

ror S" and SI.. both representing hal f-space horizontal boundaries, SL (= SI.) placed at 

depth d below S,,' the p over SL in equation (4.2.3) can be replaced by J-I(q)/rr. 

Putting this ~l in equation (4.2.3) with S" and SL (= SI.) both extending to infinity, we 

obtain downward continuation of H to a horizontal boundary SL at a depth d belo\-v 

S as 

H(P) = - Jlog'-Iq - rIH(q)dq, i'E S" 
~, 

If' =- rr _ log,lq - PjI-l(q)dq, 
5, 

(4.2.8) 

for p(q) replaced by H(q)/rr. 

For P and q defined by the co-ordinates (X,O) ancl (x,-d) respectively in a cartesian 

frame with z-axis upward, the formula (4.2.8) leads to the well known downward 

continuation formula of Peters( 1949). 
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H( 0) d oof H(x,-d) dx 
X, = TC_

cn 
[(x_X)2+d 2] , 

(4.2.9) 

for Su defined by z=O and S,- defined by z=-d. 

4.2.3 Depth-Determination from G."adient of Down-Continued Field: 
A New Approach 

For a potential field continued towards its source, the field is supposed to exhibit a 

wild behavior on reaching the target. This property of the field suggests a possible 

approach for finding the depth to the magnetic basement from the observed magnetic 

data in a geological basin. 

10 determine point to point depth to the basemellt, we flrC to cOIHililltl tlie field to [\ 

concave boundary, tapering in shape as depth increases, its apex moving along a 

vertical defining the axis of the boundary. This can be achieved by down-continuation 

of data to a concave lower boundary that extends downward with its ends fixcd at the 

datum line and apex moving downward in steps along the vertical. 

Since the solution technique discussed in subsection 5.4.2 ensures convergence and 

produces a stable approximate numerical solution for all positions of SI. above or 

below the causative mass, it is likely that contrary to expectation the computed H(zd, 

Zk defining the apex of SL, will show a s11100th behaviour at the boundary of thc 

causative mass. However, as the field rapidly increases as we approach the target and 

the formulation becomes invalid for the field point passing through the causative 111355 

(Laskar 2000), the vertical gradient of the computed field, under such a situation, is 

expected to show its first maximum at the boundary of the target. As such, the depth 
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of the tirst maximum of the vertical gradient of the continued field IS supposed to 

define the depth to the top of the causative mass. 

On finding H(Zk) as Zk moves downwaJd in a regular step 6z along the vertical, the 

ver tical gradient of I-I(z) at Z=Zk is computed, following Scarborough (1966), by the 

tinite difference formula 

(4.2. 10) 

where V7 Hk denotes the vertical gradient of I-Ik at the point Z=Zk, Hk=J-J(7.o+kL.\z), 

L.\ I H k is the j'" order di fferenee 0 f 1-1 ~ placed aga i nst the depth val ue z~ ina 

horizontal difference table ofH. 

To provide a graphical representation of the behaviour of the gradient values as depth 

incr eases, the normalised devration of V 71-h from V I H 1 is computed by the formula 

11~ = 
V H -V I-I 

z k z 3 ,k=34, ... (n -2) 
Iv 1-( - V HI' , 

I k 7"\ I1m-.: 

(42.11 ) 

where IV zH k - V 7H 31m", represents the largest absolute value of the deviation of 

V 7 l-h from V 7 I-1 J . as k varies from 3 to (11 5-2), I1s detining the last step taken along the 

vertical at which the continued field H(Zk) is computed. 
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4.2.4 Spacing of data over the datum line 

It IS always preferable to have equispaced data over the datum line S. The question 

arises what should be the spacing ordata luI' obtaining a reliable dowll-continued ficld 

value to a pre-assigned depth below S. This means we ~l1e to find the spacing or data 

over S for which equation (4.2.3) yields a good approx imate ~l over SL. This can be 

achieved when the matrix la Ij I, appearing in the discretised version of (4.2.3), presents 

a system with detlalll having a significant value. To arrive at a working rule, let us 

divide the lower boundary SI. into n sub-intervals and the corresponding SlI that lies 

vertically above SL also be divided into 11 equal sub-intervals such that ~SI of 

S"bCC0111CS the projection of ~SJofSLon SlI,j=I,2, ... ,n. Under this subdivision, the 

discretised version of(4.2.3) appears in n simultaneous linear algebraic equations in Il 

unknown ~l j as 

where 

11 I> k) ~l j = H k , 

)=1 

k=I,2, ........ ,n, 

a kl =- floglpk -ql;dq,l\ E~Sk' 
"';, 

(4.2.12) 

(4.2.13) 

In the above equation detlak)1 gradually decreases with increase in depth of SL. This in 

turn detoriates the solution ~l at depths, particularly when the input data are with 

enor. To improve the condition of det/akll, let LIS choose a h sllch that the diagonal 

element a kk , for a given depth of continuation, satisfies the condition 

a kk 2: 0.25, k= J ,2, ......... ,n . (4.2.14) 
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That yields a well-conditioned matrix IAI for its use in finding a reliable ~L as solution 

of (4.2.12). 

A relation between h and depth of investigation Ds can however be established on 

finding ,1Il approximate n kk by the centroid rule (I-less and Smith 1967) as 

a kk =- f10glpk -ql; dq, Pk E~Sk 
I~S, 

A0 '~/ h == -Ll0 k (r.n;) r = -, k = 1,2, ....... n, (4.2.15) 
r 

where -6SkU.ll,)=h, ris vertically downward over ~Sk ESt, n, IS the inward 

(tow<1rds 8,) nor111<11 to ~Sk' h is the uniform spacing of data over S" and r is the 

vertical distance from the nodal point 11k E ~Sk to the nodal pointqk E ~Sk, qk lying 

vertically below pdFig. 4.2.1) 

It is evident from (4.2.15) that a kk attains its lo\vest value at the deepest location of 

~Sk that defines the depth of apex Zk in the kth configuration of SL. If Ds be the depth 

of investigation, by (4.2.14) and (4.2.15), we obtain 

h 
- 2: 0.25 or 
Ds 

D h ?,_s 

4 
(4.2.16) 

Hence, for a depth of investigation Os, spacing of data h=05/4 is expected to provide a 

reasonable approximate solution of(4.2.12), the discretised version of(4.2.3) over SL. 
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4.2.5 Working Data-length 

The theory of upward or downward continuation of a potential field from boul1d?ry 

data requires the input data specified over a hal f-space boundary. In all practical 

cases, we consider the data over a finite boundary and this introduces, for a short data-

length, a significant error in the continued field. 

For a potential field, clue to a subsurface causative mass, measured positive 

downward, the field rapidly increases as the field point approaches the masS and it 

either changes its bahavioul' (in gravimetric case) or becomes undefined (in magnetic 

case) once the field point is on or inside the mass. I-lence, the depth to the top of the 

causative mass can be defined, as discussed in subsection 4.2.3, by that of the first 

maximum of the vertical gradient of the field computed along a vertical passing 

through it, provided the error in the computed field does not affect it adversely. 

rig. 4.2.1: Continuation to n concave boundary extending downward in 
steps of tlz taking a tapering shape as depth increases 
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a) Error in Reproduced Down-continued Ficld 

Down-continuation of an observed two-dimensional potential field 1-1, a gravity field 

~g or a component magnetic field ~T, from the datum line 

central concave part SL with its ends fixed at the end-points of S" and arms extending 

along the datum line, has been discussed in subsection 4.2.1. It has been shown that 

for H specified over S, H can be reproduced at Zk at depth Dk below S, by (4.2.5), as 

a double layer potential 

H(Zk) = rr~l (Zk) - flogi·lq -Zk I p(q)dq, Zk E SL' 
S 

(4.2.17) 

provided tbe upper bal f-space domain Bi bounded below by S is free from the 

causative mass. The boundary density ~L over SL can be obtained as a stable 

approximate solution of the equation (4.2.3) written as 

H(P} = - flog: Iq - pl~l(q)dq, PES" (4.2.18) 
SI. 

and that over So can be directly obtained from the boundary relation (4.2.4) written 

as 

rr~L(ql11)= H(qrn) + flogi·lq -q",1 ~l(q)dq, (1", ES o ' ( 4.2.19) 
SI. 

for H specified at qm E So and p over SL is obtained as solution of (4.2.18). Once the 

~l is known over S( = SO +S L + S () ), the field at the apex Zk 0 f SL can be computed by 

(4.2.17). 

Let us assume that the input data are specified over an interval 0 of the datum line S 

that coincides with the x-axis of a cartesian reference frame and D extends from -
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(x,,+h/2) to (x,,+h/2) containing (2n+ I) equal subintervals of length h each. Let the 

central part SIt of S extend from -(x ll1_l+h/2) to (x l1l_l+h/2) containing 2(111-1)+ I 

subintcrvals and the concave lower boundary SI , with its apex at Zk on thc vertical 

x=O, lies vertically below S". As such, the mlh subinterval ~SIl1 lie just outside SIt 

with its node point at a distance mh from the axis of SL. Now the contribution of 

~SIl1 to H(Zk), Zk lying at depth Dd=kh) below S, is 

E~, = - JIOg;j<l-qkl~l(q)dq 
L\SI1I 

(4.2.20) 

by centroid rule (Hess and Smith, 1967), ~l,~ defining the constant value of ~l over 

• 
~S ", for the klh configuration of SI .. , (Fig. 4.2.1) Zk=qk and 11 i defining the upward 

(inward to 8,) norlllal to ~S,,, at CjI1l. On further simplification, we find 

E k ~ _ Dk h l k = _ kh 2 l k 

111 (1)2 D 2 ~ 111 (2 k 2)1 2 ~ 111 m1 + k 111 + 1 

k k 

2 k2 P'" m + 
(4.2.21 ) 

Following the same procedure, we find the contribution of ~S m to H(zk 'I) at depth 

Dk'I[=(k+l)h] below S for the (k+lyhconfiguration ofSL is 

E k+1 = _ k + 1 k+1 

m 111 2 + (k + 1) 2 ~l 01 • 
(4.2.22) 

For D extending from -(x,,+h/2) to (x,,+h/2), as mentioned earlier, the contribution to 

H(Zk) frol11 the sub-elements over the half-space datul11 line S lying outside (-x,,-h/2, 

x,,+h/2) on both sides of SII' is 

[ 

00 k -00 k ] c-- " k + " k I - ~ 2 2 ~ll11 ~ 2 2 P I11 ' 

01=111, nl + k 111=-111, m + k 
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by (4.2.21), where I11I=n+1. This contribution C is knout to be added to H(Zk) and as 

such, the error E in the conti11ued H(zd is 

[ 

00 k -oc k ] 
E=-C= L 2 2 ~l~, + L ' 2 ~l~, . 

01="'1 III + k "'=-"'1 111" + k 
(4.2.23 ) 

It is evident from (4.2.21) that for a fixed Zk, the error in the reproduced H(Zk) 

decreases with increase in 111, i.e., increase in data-length, as expected. 

b) Behaviour of Error in Vertical Gradient of the Down-continued Field at apex 
OfSL 

To understand the behaviour of error in I-I(zd (]S Zk moves downward in steps along 

x=O, we are to examine the change in Pill from P~, to P~,4 lover .6S", as SL changes its 

configuration from SL(k) to SL(k+I) shown in Fig. 4.2.1 with depth of Zk increasing (1'0111 

kh to (k+ I)h below S. 

For a gravimetric or a magnetostatic component field H defined in the upper half-

space domain 8 , bounded below by a hal f-space boundary S( = So + SL + So, Fig.4.2.1) 

with its arms So coinciding with the half-space datum line S, it is shown in Appendix 

II that the line integral of the double layer boundary density p reproducing H in 13 ,+S 

exhibits the property 

f~l(q)dq = f~l(q)dq + f~l(q)dq + f~l(q)dq = fjl(q)dq, 
s 5,,(L) S, S,,(R) S 

where ~l is the density over Sand So(L) and So(R)are the arms of S at left and 

right of Su respectively. Further, as Iql ~ co, 

jl(q) = ~l(q) = 0, 

q lying over So as it extends to infinity where the field vanishes. As such, a change in 

the line integral of ~l over SL, as SL changes fro111 SL(k) to SL(k~I), is compensated in the 
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~l-integral over So, So extending to infinity on both sides SL. This brings a very minor 

change in ~l over ~SI11 compared 'to a significant increment in k/(m 2+k2
) as SL changes 

from SL(k) to Sl.(k'll) As such, the prodllct terl11S show the property 

k + I hi I k k I 
2 (k I) 2 ~t 111 > 2 k 2 Pill , 111+ + m+ 

(4.2.24) 

for a positive or negative pm over ~Slll' Subsequently. the error in the computecl H(Zk) 

will be steadily increasing or decreasing according to pm is positive or negative over 

~SI11 as depth of Zk increases. 

It is to be noted here that the field is measured positive downward and the magnetic 

causative is polarised by downward doublets. As such, the field becomes positive and 

it rapidly increases near the causative mass. 

It is now evident from the above discussion that for a potential field H specified ovcr 

a finite interval D of the datum line S, the error in the down-continued field along a 

vertical, steadily increases or decreases with depth along the vertical when the field 

increasing rapidly near the causative mass. As such, this error does not affect the true 

position of the first maximum of the gradient of the field that defines the depth to the 

top of the causative mass along the vertical. Hence, the data over a short data-length 

D >S" is sufficient enough to determine the depth to the causative mass below it, 

though the computed field might have large error in it. It is our working experience 

that for a causative mass lying within a search depth Ds, S" ~ 5Ds provides the 

reproduced field H(Zk) along the axis of SL that leads to determination of a reliable 

depth to the top of the causative mass. 
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CHAPTER V 

NUMERICAL PROCEDURE 

5.1 Disc.-etisation of Equations formulating Up-continuation 
Problems 

5.1.1 Simple Layer' Fonnulae 

For a two-dimensional potential field 1-1, all anomalous gl<lvity field 6g or a 

component magnetic field T, with asymptotic behaviour H =O(r- ll
), n 2: I, r~ 00, 

defined in the upper half-space domain 8, bounded below by a general half-space 

boundary S, given Hover S, H in B, can be reproduced by (4_1.1.) as potential of 

simple layer logarithmic boundary density cy as 

I-I(P) = - flog/CI- r/cr(q) dq, P E 13" (5.1.1 ) 
~ 

011 obtaining the cy over S as solution of the boundary equation (4.1.2) 

H(p) = - floglp - qp( q) dq, pES. (5.1.2) 
s 

To solve the equation (5.1.2) numerically, we divide a large finite boundary S Into 11 

piecewise straight subintervals .6S
" 

j= I, 2, . _ ..... , n and make the fundamcntal 

assllmption that CY is constant over a subinterval. For qk defining the nodal pomt 

(centroid) of k'" subinterval .6Sk and CYJ defining the constant valuc of CY over thc j'" 

subinterval .6S
" 

the H at qk given by (5.1.2) can be expressed as 

11 

Hk = L - CY , floglq - (ik Itlq 
,:, ,,'>, 



II 

= I - a~IO"" 
1=1 

t 11/\1' II R \. 

where Hk is the value or H at the nodal point qh' ails the constant value or a over 

j''' subtnterva I .6S I and 

a kl = Jloglq - qhldq. (5.1.3) 
J\C;;. 

For k successively assuming the values 1,2,3, ......... , n, the equation (5.1.2) yields 

n 

"L-ahIO"I=Hk, k= 1,2,3 ....... ~n, 
)=1 

a system or n simultaneous linear algebraic equations III n unknown a I' 

(5.1.4) 

On finding the a I as solution of (5.1.4) ror Hk specified over S, the field H at a point 

PE 8, can be computed by the discretisecl version or (5.1.1) expressed as 

~ 11 

H(P)=-LO", floglp-qldq, (5.1.5) 
)=1 (\<;1 

where H(I') denotes the approximate value or H at P. 

5.1.2 Double Layer Formulae 

For the same harmonic function H, a potential field described in subsection 5.1.1, 

given Hover S, H in 8, can be reproduced by (4.1.4) as a double layer potentilll 

H(P) = - f1og:lq - plp(q)dq, P EB, ' (5. I .6) 

on obtaining the p over S as solution orthe bOlindellY equation (4.1.5) 

H(p) = n:~l(p) - JlogJt- pl~l(q)dq, PES (5.1.7) 

so 



Sulution nrccrtain t\\'()-diIllCllsiollallllVClse plohlclllS in pOh:llti.ll tlll'OI), alld their appliL:ltinll ill eXphH:ltioll geophysics 

To solve the equatioll (5.1.7) Ilumerically, we divide a large fil1ite boul1dary S into f1 

piecewise straight subintervals and make the fundamental assumption that p is 

constant over a subinterval. ror the field point P coinciding with qk, the nodal point of 

the kIll subinterval .6S~ of S, the equation (5.1.7) is discretised as 

n . 

H k = npk + L - PI JlogJl - (lk Idq, 
j=1 L\Sj 

(5.1.8) 

where Hk is the value of I-I at the nodal point C]k of .6S k , ~tJ is the constant value of ~l 

over the jIll subinterval .6Sj , (\.1 is the Kronecker delta and 

b kj = Jlog;lq-qkldq (5.1.9) 
AS, 

The equation (5.1.8) represent a system of n simultaneous linear algebraic equations 

in n unknown ~lj. On finding the ~ll as solution of (5.1. 7), the field H at a point PE Bj 

can be computed by 

n 

1-1(1') == -.L~lj jlog;lq - P~q, 
j=1 ~S, 

(5.1.10) 

the discretised version of (5.1.6). 

·5.1.3 Green's Fo.'mulae 

For a harmonic function I-I with asymptotic behaviour H = O(r- n
), n ~ I, r ~ ff), 

defined in the upper half-space domain 13; bounded below by a half-space boundary S, 

given Hover S, H in Bi can be obtained by Green's formula (4.1.9) on obtaining 

I-t; over S as a unique solution of (4.1.10). ror a numerical approach to solve the 

equations (4.1.10) and subsequently to reproduce I-I in Bj, let us divide as before a 
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large finite boundary S into n r)lecewlse strcllght subintervals .6S
I

, j=l, 2, 3, ..... '" n 

and assume that H is constant ovcr a subintel val, its value betng assoclatcd with thc 

nodal point of thc subllltervai. Undcr this condition the dlscretiscd version of the 

formula (4.1.9) becomes 

(5.1.11) 

whcrc H(P) is the approxImate value of H at P, HI is the constant value of I-lover 

/' subinterval .6S
J 
and l{ is constant value of I{ assumed constant over .6S

I
. Under 

the same assumptions that HI and I-l>re constant over .6S
I

, discretised version of the 

boundary cquatlon (4 1.\0) becomes 

where H k is the value of H at the nodal pomt q ~ of .6S k • On reorganization, the 

above equations become 

11 11, 

IH', Jloglq-qkldq=IH , Jlog,lq-<hldq+TCHk, k=I,2, ... ,n. (5.1.12) 
J=I AS, 1=1 AS, 

Denoting Jlogl(l- ql( Iclq and JlogJ.l- q~ Idq by a~, and bk, respectively, thc n 

equations (5.1.12) in n unknown 1-(1 take the form 

n, n 

'L HJ a kl = 'LH,b~J + 1t1-I~, k=l, 2, 3, ........ , n 
1=1 1=1 

= D~ , k= 1,2,3, ....... , 11, 

n 

where Dk='LHJbk,+1tHk' 
J=I 
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The equations (5.1.13) represent a system or 11 simultaneoLls linear algebraic equations 

in 11 unknown I-I'.. On solving the equations (5.1.13) for I-I'., ]-I at a point P E B; can 
.I .I 

be computed by (5.1. I I), the diseretised version of (4. 1.9). 

5.2 Discretisation of Equations 
continuation Problern 

fonnulating Down-

POl' a two-dimensional harmonic function H, an anomalous gravity field .6g or a 

component magnetic field Tz with asymptotic behaviour ]-I =0«(11), n ~ I, r~ (X) , 

defined in the upper half-space domain Bi bounded below by a half-space boundary 

S(=S,,+SL+So,Pig.3.2.1) with the curved part SL below the datulll line 

S(= So + SlI + So' Fig.3.2.1), given H ovet' S, Hover S Cfil1 be cOl11puted by (4.2.5) as 

H(p)= rr~L(p)- Jlog"lq-pl~l(q)dq, pES. (5.2.1 ) 
s 

011 obtaining the ~l over SL as solution of (4.2.3) 

H(P k )= - flog,'lq-J\IIl(q)dq, Pk ES II, (5.2.2) 
Sr 

and that over So obtained directly from (4.2.4) 

rr~l(p)=H(p)+ Jlog,'lq-pl p(q)dq, PESo, (5.2.3) 
s .. 

when the ~l over SL is known as solution of (5.2.2). 

To solve the equations (5.2.2) and (5.2.3) and to compute Hover S by (5.2.1) 

numerically, let us divide a large finite datum line S into N equal subintervals L.\Sk' 

k=l,2, ... ,N and assign the input data Hk at the nodal point Pk of .6S k , k==I,2, ... ,N with 
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n or them over S that lies directly o\;er SL with end-points C0l111110n to them. Let us 
II 

now divide SL into n piecewise straight subintervals L':ISj, j= 1,2, ... ,n, such that the 

projection of L':ISj over S coincides with L':ISj,j=I~2, ... ,n or S" 

Now assuming, as before, p is constant over a subinterval, the equation (5.2.2) can be 

writtcn as 

n 

H k = -J~~lj f 10gJ,-I\!clq, k=I,2, ... ,n, 
L\SJ 

(5.2.4 ) 

where Hk is the input data over S" at the nodal point Pk or L':ISk , ~lj is the constant 

value of p over the.;t" subinterval .6Sj of S/.. The cquations (5.2.4) represent a system 

or n simultaneous linear algebraic equations in n unknown ~lj over St.. It has already 

been mentioned earlier that the equation (5.2.2) formulates an ill-posed problem in 

potential theory, a small perturbation in Hk creates a wide oscillation in solution. 

However, a stable approximate ~lj over SL can be obtained by successive correction of 

an initial guess described in " 'subsection 5.4. 

On obtaining the ~lj over SL, the p( qk) over So can be obtained directly from the 

discretised version 0[(5.2.3) written as 

n , 

n~l(qk)=H(qk) +L~lj f logi!q-qk!dq, qkESo' 
1=1 i.\,; 

(5.2.5) 

On finding the ~lj over S( = So + SL + So), the down-continued field H(Zk), Zk E Scan 

be computed by the discretised version 0[(5.2.1) written as 

(5,2.6) 
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5.3 Evaluation of the I ntegrals over a Line Elelnent 

It is evident from the previous subsectIOns that numerical solutions of the boundary 

integral equations in up-continuation of a potential field from boundary data, solution 

of an ill-posed problem in down continuation of a field from the datum line and 

reproduction of a field in the upper half-space domain involve evaluation of certain 

integrals over the subelement of the boundary. 

The integrals involved are 

Ip= flo~q - pldq (5.3.1) 
/\<;' 

and Jp= flog: III -P/dq (5.3 2) 
N" 

for the field point P lying outside or in the line element DoSJ . 

£701' P coinciding with the nodal point qk of a subelemcnt D.Sk, the simple layer integral 

(5.3.1) is denoted by akJ and the double layer integlal (5.3.2) is denoted by bk, in the 

subsection 5.1. Hence, under tIllS setup, we expless (5.3.1) and (5.3.2) as 

a k, = flo~<J -q" /dq (5.3 3) 

"" I 

and b kJ = Jlog:/q-qkldq (5.3.4) 
bS, 

respectively. 

For P lying outside D.SJ, the integrals are regular and these can be evaluated 

analytically or approximations to them by Centroid rule (Hess and Smith 1967) may 

suffice the purpose. For P lying on i1S" the integrals are singular and these are to be 

evaluated analytically. 
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It is to be noted here that in downward continuation of a potential field from the 

datum line S, the equation (5.2.2) formulating the problem involves evaluation of the 

double layer integral (5.3.4) over the subelelllent 6Sj of the continuation boundary SL, 

the field point P lying on the central part S" of S. Since the equation (5.2.2) 

formulates an ill-posed problem, the integral (5.3.4) is to be evaluated analytically for 

a better stable approximate solution of the equation. 

An extensive discussion on the above integrals has been carried out by Jaswon and 

SYIllJl1 (1977) for an arbitrary alignment or L~Sj. Keeping in view the geophysical 

problems in which the field point P lies on and above a half-space boundary S, the 

coordinates of P are expressed in a new reference frame xoz with its origin at the 

centroid q; of 6Sj, x-axis coinciding with i.\Sj and 7..-axis pointing tm.vards the upper 

half-space domain Bi above S as shoWJl in Fig. 5.3.1. This brings a good 

simplification in the approach for implementation of the simple layer integral (5.3.1) 

presented by JaSWOJl and SYI11I11 (1977). Under th is transformation, the double layer 

integral (5.3.2) also comes up in a simple form for its easy implementation on a 

computer. 
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5.3. t Analytical Evaluation of Simple Layer Integral 

Lct a sttaight linc segmcnt I\il of length h rcplcscnt thc subclclllcnt .6S, in a local xoz 

Icfcrence frame with its origin at the nodal (centroid) point q, of .6S" x-axIs coinciding 

With .6SJ and z-axis pointing towards the upper half-space domain above .6SJ as shown 

III fig, 5.3.1. 

fig. 5.3.1: Evaluation of simple and double layer integrals over a 
sllbelement AB 

z 

Let the field point P in this frame be defined by (X,Z), the end-points A, B defined by 

(-h/2, 0) and (h/2, 0) respectively, 1\13 subtends an angle tl' at P and PB sllbtcnds an 

angle 0 at 1\. For PA and PB dcnoted by a and b lespectively, following Jaswon and 

Syml11 (1977), we express the integlal (5.3.1) as 

Ip= floglq - rldq 
"", 

=a cos 0(loga -log b) + h(log b -I) + 3\/' sin0 (5.3.5) 

ror P representing the nodal point qk of a subelement t3Sk of S, the expression for akJ 

of(5.3.3) also stands as 

ak) = a cos 0(log a - log b) + h(log b -I) + <HI' sin 0 (5.3.6) 
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Special Case I: Regula,- Integral 

When P, A and B are collinear, 8=0 or 11: and therefore sin8=O and cos8=1 or-I 

respectively. 

(i) when 8 = 0, i.e., when P is at the right side of the subinterval ~Sj (=AB). 

akj= a(1oga -I) - b(logb -I) (5.3.7) 

(ii) \vhen 8 = 11:, i.e., when P is at the left side of the subinterval ~Sj(=AB) 

Rkj= a(l-Ioga) - b(l-Iog b) (5.3.8) 

Special Case J I: Singular Integral 

When the field point P coincides with the nodal (centroid) point of ~Sj, the integral is 

singular. In this case, considering 8=0 and b=O, the contribution from the left half of 

~Sj at q;, by (5.3.8), is ~ (lOg ~ -I} The same contribution appears at qj from the 

other halfofthe subinterval placed at right side ofqj. l-Ience, the singular integral 

a" = a" = 2[ ~ ( log ~ - I) 1 

= h(IOg ~-I) 

5.3.2 Analytical Evaluation of Double Layer Integral 

(5.3.9) 

To evaluate the double layer integral (5.3.2) over the /' subinterval ~Sj, we fix up a 

local reference frame xoz, its origin coinciding with the nodal point ql of ~Sj, x-axis 

coinciding with ~Sj and z-axis pointing upward in the upper half-space domain Bi 

above £1Sj as shown in Fig. 5.3.1. For £1Sj of length h, the coordinates of the end points 
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of L\SI are defined by A( -hl2, 0) and 8(hl2, 0). Let ( X, Z) define the coordinates of 

the field point P and (x,z) define the coordinates q in this frame. 

Jp= f1og;lq -pldq 
I~S~ 

= '=r~ Z[(x - X)2 + (z - zf r dx 
.=-h/2 

_]'=h/2 x-x = tan-I-_-
Z 

,=-hl2 

(5.3.10) 

For P coinciding with the nodal point qk of the subinterval L\Sk, the .I p in (5.3.10) 

stands for bkJ of(5.3.4) and hence, 

-]'="12 -1 X - X . 
bkJ = tan ---z- ' J "* k. 

,=-" 12 

(5.3.11 ) 

For qk and ~ defined by (Xk,Zk) and (xJ, zJ) respectively in the original reference frame 

XOZ, we find 

(5.3.12) 

for (1 1,1111) and (l2,m2) defining the direction cosines of x-axis and z-axis respectively 

of local frame in the original reference frame. For x-axis of the local frame making an 

angle 8 with the x-axIs of the origll1al frame, we find, II = cos 0, 

1111 = sin e, 12 = -sin e, and 1112 = cose. 

Special Case: Evaluation of Singular Integral 

For the field point P or the nodal point qk coinciding with ~, the integlal becomes 

singular. In this case, on expansion of the integrand, we find 

bkl-= Jlog;lq-qkldq 
6<;k 
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= Jlq -(h r2 (q -£I ~ ) '11, dq 
L\Sk 

=0, (S.3.13) 

for (I;t:qk, the outward normal n, to ~Sk at (Ik being normal to (q-(Id and for q=(lk, the 

integral having a singularity at the isolated point qk, a set of mcasure zero. 

5.4 Solution of equations 

For computation of the solution of equations, three solution techniques are used: 

(i) Gauss-Seidal iterative method uscd for diagonal dominant system for solving 

boundary integral equations formulating up-continuation problem 

(ii) Gauss Elimination method used for diagonal having non-zcro elemcnt for 

solving boundary integral equations formulating up-continuation problem 

(iii) Successive correction of initial guess solution used for solving integral 

equations formulatlllg ill-posed problem 

5.4.1 Upward Continuation: Solution of Bounda."y Integ."al 
Equation 

(i) Choice of numerical methods of solution 

In simple layer formulation of up-continuation problem we come across (S.I.4), the 

digitized version of the boundary equation (5.1.2) 

n n 

Hk = -I floglq - qk lu(q)dq = - Ia./J I' k = 1,2, ... , n (5.4.1) 
1=16S, 1=1 

for its solution in n unknown u
J 

where the analytical expressions for ak) and akk are 

given by (S.3.6) and (S.3.9) respectively. It is evident from the expressions of ak) and 
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ilkk that ak~ :t-: Oand (5.4.1) does not 1'01111 a diagonal clOlllll1ant system. In such a case, 

Gauss elimination Illethod provides the suitablc Ilulllcrical technIque for its solution. 

~ 
Thc same is truc 1'01 nUIllCI ical solulton ofGreen~ boundary cquatlon (S.I.12) in H" 

I , 

givcn by (S.1.13):a5\ 

11 

L>kl,-t'l = Dk, k=l, 2, 3, .... , n. 
I-I 

(S 4.2) 

In doublc laycr formulation or thc up-continuation problem, we come aCloss the 

boundary equation (5.1.8) in ~tJ 

11 , 

I-Ik = TC~l~ - LP I f'og,/q -qk/dq, 
1=1 ,,\ 

11 

= TC~lk - L b~/P I' k = 1,2, ... n, 
1=1 

where bkk=O, b/ (5.3.13).\ 

We know, 

n n 

I bkJ = I Jlog:/q-qkldq = Jlog:!cl-qkldq. 
J=I J:I I\S) <; 

(5.4.3) 

(S.4.4) 

For BI enelosed by aB=S+SlI (rig. 2.4.1), where Sli is a semicircle of radius R, Gauss 

integral in 2-D over aB is 

flog:/q -qk/dq = flog:/q -qk/dq + flog:/q -qk/dq = -IT. 
all <; \, 

As R~cy.), the integral over Su is -IT. Hence, the integr al over the half-space boundary 

Sis 

n 

f'og:/q -qk/dq = IbkJ = ° (5.4.5) 
S pi 
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It is now evident that the system of equations in ~l, in (5.4.3) forms a highly diagonal 

dOlllinant system for the presence of n:bkk, k= I ,2, ... ,n, in it. ;\s such, the equations 

(5.4.3) can be best solved by Gauss-Seidal iterative method yielding quick 

convergence of solution. 

(ii) Gauss-Seidal iterative method of solution of equations: 

In this method, the zeroth order approximation to solution x, is assumed to be zero 

and the mlh order approximate solution is given by 

~-, II 

x/nI) = [ I-h-{ I akjx}111-1)+ I akjx/m
.
I
)} J I(n: + akk) ,k=1 ,2, ... n, 

J=I I=k" 

(5.4.6) 

where xi(I11·I) stands for (m-I) III order approximate value of Xj. The iterative process of 

obtaining of the solution terminates at the pth itrerativc step, if for a pre-assigned 

small value 1': 

I (m) (111.1)1 ·-12 
XI -xj <1':, J- , , ...... n, (5.4.7) 

The C In general is taken as 0.00000 I that yields the solution correct upto 5 decimal 

places. 

5.4.2 Downwa."d Continuation: Solution of III-posed P."oblems 

It has been sho'wn that for H ,<vithout error specified over S, the equation 

H(P)=- flog,·lq-pl~l(q)dq, PES", (5.4.8) 
s, 

has a unique solution (Appendix I). However, as already mentioned earlier, the 

solution is highly sensitive to error in input data. A solution, built by successive 
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correction of the initial choice is expected to provide a stable approximate solution of 

(he equation. !\ numerical plocedure to con<;(ruct a stable approximate solution is 

described below. 

The equation (5.4.8) can be rewritten in a general form 

H(P) = J K(P,q)~l(q)dq, PES", (5.4.9) 
<;, 

where the kernel K(P,(J) is -log;lq - pi . To make a numerical approach to solve the 

equation (5.4.9), let us divide SL into n pieccwise straight sub-intervals and ploject 

them on S such that S is divided into n equal sub-intervals. The inl1Ut data I-I k (= 
1\ II 

H(Pk), Pk E SlI) are then specified at the n nodal points (centroid) of the subintervals 

over S". 

As the approximate solution ~l leproduces a field that deviates from the original data 

1-1 ,. let us find a ~l such that the sum E of the squared deviations with an additional 

term 'A times the integral of ~l2(q) ovcr SL, expressed as 

(5.4.10) 

is a minimum. The p under question can be obtained from the equation a EI ap =0. 

On discretisation, this equation appears ill a matrix form with 'Acls k as an additional 

term at the diagonal. This enhances the diagonal of the resultant ITlatrix and thereby 

makes the inverse always computable. On cliscretisation of the integrals in (5.4.10) 

and carrying out differentiation with respect to ~l~, we arrive at the equation 

aE n [ II -=2:- 2 1-1-L 
a~lk ,:\ 'J:\ 

f K(Pi'q)~lldq] f K(Pi'q)clq + 2'A f ~l~ dq =0, k= 1,2, ... n 
I k k 

(5.4.11 ) 
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that produces the minimulll of E, p J being the value of ~l treated constant over 

the jl" subinterval of SI. and f denotes the intcgral over the subinterval ~Sk. 

Using the notation 

the equations (5.4.11) can be writtcn as 

where dSk= f dq . 
~ 

(5.4.12) 

For synthetic input data the equations (5.4.12) with A =0 lead to a reasonable solution 

for a shallow depth of SL. For the input data with error, say within I % of the absolute 

value of true 1-1" it is our experience that the traditional Marquardt-Levenberg 

formulation (Marquardt .963, Bard 1970, Hillll11elblau 1972) that uses scalar times 

ad-hoc diagonal matrix [A 1" produces results within 5% error to a shallow depth (less 

than 2h units), h defining the uniform spacing of data over S. The convergence 

however becomes slow as depth increases. The choice of AJ is quite critical to the 

convergence rate for the algorithm. An iterative update for AJ of the form 

(5.4.13) 

(5.4.14) 

obtained following Mendal (1983), solves the equations (5.4.12) satisfactorily. Herc, 

(i+ 1) denotes the current operation of estimation of the vector OJ for 

(5.4.15) 
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(5.4.16) 

(5.4.17) 

wherc ~Hk = Hk - J K(Pk,(l)1:L:"dq; (5.4.18) 

"I 

j:l;"being the estimation 01" p) in the i'" concction. The estimation of (O,L is due to 

Mendal (1983) and it has been suggested that the aJ of (5.4.14) to be kept in the 

bounds 0.1 ~ aJ ~ 10. 

To find the initial choice of P
J

, we observe that for the lower boundary SL coinciding 

with the datum line S, the ~lJ of (5.4.12) assumes the value H/ IT, by (4.2.7). This 

provides a good choice for the initial approximation to ~ll of equation (5.4.12). 

Further, A= IT in (5.4.15) also provides a good initial estimation of D1• An 

approximate stable solution PI can be obtainccllll the f'orl11 

(5.4.19) 

where ~l~ol = Hi IT and ~<') is the correction to ~ll at the itll iterative step, the detai Is of 

which is given below: 

Considcring the initial choice of~ll as ~ll (0)=1-1 /IT, the deviations ~Hk ,k=I,2, ... ,n are 

computed by (5.4.18). In the next step, [OJ of(5.4.15) is initialized by putting A = IT 

and [0
1
+1] of(5.4.I3) is computed 011 finding [g.] and [gl+l] by (5.4.16) and (5.4.17) 

respectively. Subsequently, HI of (5.4. [2) ale replaced by ~HI and the equations are 
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solved for p, to be treated (IS pll:of(5.4.llJ). Oil fillding the first order approximation 

of~l, as fl,")=~l,''')+P,''), the ~Hk ate computed by (54.18) for filld111g the next 

correction term p~2) lIsillg the Iterative process as described in the case of ~ll(l). 

On finding the mth order estimation of ~ll as a sum of the correction terms ~l ~') , 

i=1 ,2, ... ,111, the solution ~lJ is lIsed to sec that the mean squared deviation, I.e., the 

mean squared error (MSE) satisfies the termination condition 

n 

L(~Hk Y /n $~, (5.4.20) 
k=1 

~ defining the square of assumed level of error in input data specified over S". In a 

field problem, this information is usually made available in the field book. 

It is evident from the above discussion that ~H~'), the deviation at ~Sk at the ith 

operation, gradually decreases in magnitude in general as i increases. Consequently, 

the ~<" of (5.4.19) appto(lciles 7ero as i inctcases yielding a stable convergent 

summation series for ~lJ' 
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CHAPTER VI 

ANALYSIS OF MODEL DATA 

6.1 Up-continuation of a Potential Field frolll Boundary data 

6.1.1 The boundar)' and the C.-avity-Magnetic Data over it 

Let a vertically polarised unit logarithmic Illass III bc placed at point q(x,z) at a depth 

d below the datum line S defined by z={) in a xoz reference frame with z-axis 

upward. Let us flOW construct an Irregular boundary S by the line segments joining the 

points (-25.25,0), (-3.25,0), (-I, I), (I, I), (3.25,0) and (25.25,0). The boundary S so 

obtained is divided into N=IOO unequal subintervals ~S.l' each of length h == 0.5 and 

their nodal points are noted. The boundary so constructed is shown in rig.G.I.I 

Fig. 6.1.1: The gravity-magnet ic responses due to the polarised subsurface mass 
m are specified over S for their up-continuation to a higher level 

z, , 
I up -C ontmued level 
I 

(-I,I).C ;;; I [l ~l,l) 

AOo-o ___ --=8=41< .. 3 i _ /\~, ~O-(_Z) __ F_. 
c-" 2>.01 (-, 25.0) 1 : / (J"Pl 

d=3 I /t 
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The gravity response ~g at a nodal point P(X,Z) of S due to the mass 111 placed at 

q(x,z) 'is given by the formula 

Z-z 
1-I(P)=~g(X,Z)=G111 J 2 

. (X-x)- +(Z-z) 
(6.1.1) 

Assuming the universal gravitational constant G= I the ~g values are computed by 

(6.1.1) for 111= I at the nodal points of the subelements. The boundary data so obtained 

over S, are shown at some representative points in column 3 of Table 6.1.1. 

Subsequently, the downward vertical component magnetic field T7. at a nodal point 

P(X,Z) is computed by the formula 

I-I(P) = T (X Z) = [ 2( z - zr2 

_ I ] 
z " , ~l 2 2 2 

[e x - x )2+ez - z)2] (x-X) +(z-Z) 
(6.1.2) 

with w:= I and these are shown at some representative points in column 4 of Table 

6.1.1)~l defining the vertically downward doublet placed at q. 
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Table 6. I. 1 : Gravity aile! magnetic responses over the boundary S 

Nodal point Gravity field Magnetic field 
x z ~g T, 

-25.0 0.0 00047 -00015 

-23.0 0.0 0.0056 -0.0018 

-21.0 0.0 0.0067 -0.0021 
-19.0 0.0 0.0081 -0.0026 
-17.0 00 00101 -0.0032 
-15.0 0.0 0.0128 -0 0039 
-13.0 0.0 0.0169 -0.0051 
-11.0 0.0 0.0231 -00066 

-9.0 0.0 0.0333 -00089 

-7.0 0.0 0.0517 -0.0119 
-5.0 0.0 0.0882 -0.0138 
-3.0 0.125 0.1682 0.0028 

-0.75 1.0 0.2415 0.0563 
0.75 1.0 0.2415 0.0563 
3.0 0.125 0.1682 0.0028 
5.0 0.0 0.0882 -0.0138 

7.0 0.0 0.0517 -0.0119 
9.0 0.0 0.0333 -0.0089 
11.0 0.0 0.0231 -0.0066 
13.0 0.0 0.0169 -0.0051 
15.0 0.0 0.0128 -0.0039 
17.0 0.0 0.0101 -0.0032 
19.0 0.0 0.0081 -0.0026 
21.0 0.0 0.0067 -0.0021 
23.0 0.0 0.0056 -0.0018 
25.0 0.0 0.0047 -0.0015 

[Vertically polarised unit logarithmic point mass III is placed at a depth d=3 units 

below the datum line S defined by z=O in a xoz frame with z-axis urward] 
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6. t.2 Up-continuation as Simple Layer Potential 

Gravity or a component magnelostalic field H is a harmonic function in the upper 

half-space domain Bj, Both of them vanish at infinity with asymptotic behavior 

H = O(r-I1), n ~ I, r ---* CfJ, As such, following (4,1,1), these fields can be reproduced 

in Bj from respective boundary data as potentials due to simple layer boundary density 

cr as 

H(P) := - JlogJq - Pp(q) dq, P E B (6.1.3) 
s 

It has been shown in subsection 4.1.1 that the cr in (6.1.3) can be obtained as a unique 

solution of the boundary equation (4.1.2), i.e., 

1-1 (Il) = - floglq - Illo( q) dq, Il E S. (6.1.4) 
s 

Dividing the boundary S into piecewise straight subelements 6Sj and assuming cr is 

constant over a subelement, the formula (6.1.3) can be expressed in the form of 

(5.1.5) as 

~ 11 

H(P) = L - cr j floglq - pldq, (6.1.5) 
j=I, L\Sj 

where, H(P) is the approximate value of H at P and the equation (6.1.4) can be 

written as 

n 

H(qk) = L - cr j floglq - qK ~Iq, k=1 ,2,3 .... ,11 , 
j=1 ' I~SJ 

11 

or, b k = L-ak,(JI"k = 1,2,3 ...... ,n, 
J , 

(6.1.6) 
j=1 

where, 
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(6.1.7) 

and (6.1 8) 

The analytical expression of (6.1.7), following (5.3.6), is given by 

akJ= floglq -q k ~q, q k E ~Sk ' 
/\<;) 

= {a cos8(1oga -log b) + h(log b -I) -\- ,HI' sin 8}, (6.1.9) 

where a, b, h, 8 and 'I' are explained in Fig. 5.3.1. For the end points of the subelement 

are collinear with qk, we find by (5.3.7) and (5.38) 

ak,= a(loga -I) - b(logb -I) (6.1 10) 

for qk lying at the right side of ~SJ 

a",= a(I-loga) - b(I-logb) (6.1.11) 

for qk lying at the left of ~SJ 

ror ~ coinciding with the nodal point of qk of ~Sk, i.e., for j=k, 

(6.1.12) 

by (5.3.9). 

On evaluation of the co-efficients akJ' the bk are to be computed by (6.1.1) for the 

gravimetric case and by (6.1.2) for the magnetostatic case. Then the n(= 1 00) 

equations (6.1.6) can be solved for a f • Since the equations do not form a diagonal 

dominant system, these are to be solved by Gauss Elimination method mentioned in 

subsection 5.4.1. On finding the aJ values over S, the field at a point P(X,Z) above S 

can be computed by (6.1.5), the discretised version of (6.1.3). 
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(i) Gravimetric case 

foor thc boundary S dividcd into n= I 00 suhclclllcnts .6S" the .6g valucs at the n nodal 

points Pk(Xk,Zk) of .6Sk. k= I ,2, ... ,n, are computed by formula (6. I. I) with G= I, 111= I, 

Z=Zk, x=O and z=-3 and the coefficients a kl are evaluated analytically for all 

positions of k and j over S as described in (6.1.9), (6.1.10), (6.1.11) and (6.1.12). 

Subsequently, the equations (6.1.6) are solved by Gauss Elimination method. 

Thc O"J so obtained are shown at some represcntativc points 111 column 3 of Tablc 

6.1.2. 

The line integral of (J is found to be -0.01547 which by (4.1.3) is expected to be zero. 

Since the 0" I are negative at the outer sides of S, as evident in Table 6.1.2, it is 

expected that the line integral of numerical (J will attain the zcro value on further 

extension of the boundary. On finding the O"J over S, the up-continued .6g values at 

level z=1.5 are computed by formula (6.1.5) on evaluating the integrals by the 

analytical means. The values so obtained are shown in column 3 of Table 6.1.3 along 

with the true values in column 2 for comparison. 

It is evident from Table 6.1.3 that the up-continued values of .6g obtained by the 

discretised version of (6.1.3) agree with the true values to a good degree of accuracy 

but the end values of the reproduced field contain large errors in them and the error 

goes on decreasing at the central part of the continued level. This is due to the fact 

that the datum was considered finite in length but theoretically the datum line extends 

from -00 to +00. 
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Table 6.1.2: Simple and double layer boundary densities obtained from boundary 
gravity data 

Boundary point Simple layer Double layer Green's Sigma 
x z a, ~lJ H' 

-25.0 0.0 -0.0062 00015 0.0209 
-23.0 0.0 -0.0018 0.0018 0.0060 
-21.0 0.0 -0.0015 0.0022 0.0051 
-19.0 0.0 -0.0015 0.0026 0.0050 
-17.0 0.0 -0.00 15 0.0033 0.0052 
-15.0 0.0 -0.0017 0.0042 0.0058 
-13.0 0.0 -0.0020 0.0055 0.0067 
-11.0 0.0 -0.0024 0.0075 0.0082 
-9.0 0.0 -0.0030 0.0108 0.0104 
-7.0 0.0 -0.0038 0.0169 0.0134 
-5.0 0.0 -0.0038 0.0289 0.0153 
-3.0 0.125 0.0060 0.0596 -0.0241 

-0.75 1.0 0.0141 0.0889 -0.0541 
0.75 1.0 0.0141 0.0889 -0.0541 
3.0 0.125 0.0060 0.0596 -0.0241 
5.0 0.0 -0.0038 0.0289 0.0153 
7.0 0.0 -0.0038 0.0169 0.0134 
9.0 0.0 -0.0030 0.0108 0.0104 
11.0 0.0 -0.0024 0.0075 0.0082 
13.0 0.0 -0.0020 0.0055 0.0067 
15.0 0.0 -0.0017 0.0042 0.0058 
17.0 0.0 -0.00 15 0.0033 0.0052 
19.0 0.0 -0.0015 0.0026 0.0050 
21.0 0.0 -0.00 15 0.0022 0.0051 
23.0 0.0 -0.00 18 0.0018 0.0060 
25.0 0.0 -0.0062 0.0015 0.0209 

[The boundary S with a central high extends at both ends along the datum line S 
defined by z=O] 
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Table 6.1.3: Up-continuation of gravity field at level z= 1.5 frolll boundary data 

True field rield as potential of By use of 
Smpl Iyr. ObI Iyr. Green's frill!. 

x ~g!tJ ~g[Sl ~g!D.I ~g!.G.I 

-10.25 0.0359 0.0381 0.0346 0.0511 
-9.25 0.0425 0.0446 0.0410 0.0569 
-8.25 0.0510 0.0530 0.0490 0.0643 
-7.25 0.0618 0.0638 (),059 I 0.0740 
-6.25 0.0759 0.0778 0.0721 0.0866 
-5.25 0.0941 0.0960 0.0884 0.1027 
-4.25 0.1175 0.1193 0.1079 0.1229 
-3.25 0.1460 0.1477 0.1296 0.1465 
-2.25 0.1778 0.1792 0.1541 0.1732 
-1.25 0.2063 0.2076 0.1862 0.2023 
-0.25 0.2215 0.2224 0.2196 0.2256 
0.25 0.2215 0.2224 0.2196 0.2257 
1.25 0.2063 0.2076 0.1862 0.2025 
2.25 0.1778 0.[792 0.154l 0.[735 
3.25 0.1460 0.1477 0.1296 0.1470 
4.25 0.1175 0.1193 0.1079 0.1234 
5.25 0.0941 0.0960 0.0884 0.1033 
6.25 0.0759 0.0778 0.0721 0.0872 
7.25 0.0618 0.0638 0.0591 0.0747 
8.25 0.0510 0.0530 0.0490 0.0650 
9.25 0.0425 0.0446 0.0410 0.0576 
10.25 0.0359 0.038[ 0.0346 0.0517 

[~g[t] & ~g[S], ~g[D], ~g[G] are the true & reprocluced gravity values by simple 
layer boundary density, double layer boundary density and Green's formula 
respectively] 

(ij) Magnetostatic case: 

In this case, the vertical component magnetic data Tz at the no.dal points of S are 

computed by formula (6.1.2) with W=1 and the values so obtained are shown at some 

representative points in column 4 of Table 6.1.1. It has been theoretically shown that 

this field also can be reproduced in the upper half-space domain as potential of simple 
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laycr boundary density (J on obtaining it as solution of equations (6.1.6). Considering 

the akJ values alrcady computed for the gravimctric case, the equations (6.1.6) are 

solved by Gauss-elimination method treating T,(qk) value as bk, k=1 ,2, ... ,n. The 

(J I values so obtained are shown in column 3 of Table 6.1.4 at some representative 

points over S. 

The line integral of (J in this case is found to be 0.00035, as theoretically expected in 

(4.1.3). Subsequently, the Tz values at level lines z= 1.5 are computed by formula 

(6.1.5) on evaluation of the integrals by analytical means. The values so obtained are 

shown in column 3 of Table 6.1.5 along with the true values in column 2 for 

comparison. It is evident from Table 6.1.5 that the lip-continued T, values agree with 

the true values to a good degree of accuracy. 
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Table 6.1.4: Simple and double layer boundary densities obtained frol11 boundary 
magnetic data 

Boundary point Simple layer Double layer Green's Sigma 
x z cr· , PJ H' 

-25.0 0.0 0.0001 -0.0005 0.0002 
-23.0 0.0 0.0000 -0.0006 0.0001 
-21.0 0.0 0.0000 -0.0007 0.0001 
-19.0 0.0 0.0000 -O.OOOS 0.0001 
- 17.0 0.0 0.0000 -0.0010 0.0002 
-15.0 0.0 0.0000 -0.0012 0.0003 
-13.0 0.0 -0.000 I -0.00 15 0.0005 
-11.0 0.0 -0.0002 -0.0020 0.0010 
-9.0 0.0 -0.0005 -0.0027 0.0019 
-7.0 0.0 -0.0012 -0.0035 0.0042 
-5.0 0.0 -0.0028 -0.0039 O'(JIOI 
-3.0 0.125 -0.0034 0.0035 0.0070 

-0.75 1.0 0.0074 0.0216 -0.0246 
0.75 1.0 0.0074 0.0216 -0.0246 
3.0 O. 125 -0.0034 0.0035 0.0070 
5.0 0.0 -0.0028 -0.0039 0.0101 
7.0 0.0 -0.0012 -0.0035 0.0042 
9.0 0.0 -0.0005 -0.0027 0.0019 
11.0 0.0 -0.0002 -0.0020 0.0010 
13.0 0.0 -0.0001 -0.0015 0.0005 
15.0 0.0 0.0000 -0.0012 0.0003 
17.0 0.0 0.0000 -0.0010 0.0002 
19.0 0.0 0.0000 -0.0008 0.0001 
21.0 0.0 0.0000 -0.0007 0.0001 
23.0 0.0 0.0000 -0.0006 0.0001 
25.0 0.0 0.0001 -0.0005 0.0002 

[The boundary S with a central high extends at both ends along the datum line S 
defined by z=O] 
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Table 6.1.5: Up-continuation of Magnetic field at level z= 1.5 from boundary data 

True field Field as potential of By use of 
Smpl Iyr. Dbllyr. Green's frml. 

x ,1Tlt] ,1Tl S] ,1T[Dl ,1T[G] 

-10.25 -0.0054 -0.0054 -00055 -0.0021 
-9.25 -0.0058 -0.0059 -0.0060 -0.0027 
-8.25 -0.006\ -0.0062 -0.0064 -0.0032 
-7.25 -0.0061 -0.0061 -0.0064 -0.0034 
-6.25 -0.0053 -0.0054 -0.0058 -0.0029 
-5.25 -0.0032 -0.0032 -0.0039 -0.0011 
-4.25 0.0015 0.0015 0.0003 0.0031 
-3.25 0.0102 0.0102 0.0079 0.0110 
-2.25 0.0237 0.0237 0.0197 0.0232 
-1.25 0.0393 0.0394 0.0351 0.0381 
-0.25 0.0489 0.0489 0.0484 00493 
0.25 0.0489 0.0489 0.0484 0.0493 
1.25 0.0393 0.0394 0.0351 0.0382 
2.25 0.0237 0.0237 0.0197 0.0233 
3.25 0.0102 0.0102 0.0079 0.0111 
4.25 0.0015 0.0015 0.0003 0.0032 
5.25 -0.0032 -0.0032 -0.0039 -0.00 I 0 
6.25 -0.0053 -0.0054 -0.0058 -0.0028 
7.25 -0.0061 -0.0061 -0.0064 -0.0033 
8.25 -0.0061 -0.0062 -0.0064 -0.0031 
9.25 -0.0058 -0.0059 -0.0060 -0.0026 
10.25 -0.0054 -0.0054 -0.0055 -0.0020 

[t1T[t] & ,1T[S], t1T(D], ,1T[G] are the true & reproduced magnetic values by simple 
layer boundary density, double layer boundary density and Green's formula 
respectively) 
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6. J.3 Up-continuation as Double Layer Potential 

We know that gravity or a component magnetic field H in two-dimensions due to a 

subsurface causative mass is a harmonic fUllction in the upper half-space domain 8 1 

bounded below by the ground Slit face S. Both the fields vanish at in finity with 

asymptotic behaviour H= OCr -11), n ~ I, r ~ 00. As such, following (4.1.4), H can be 

reproduced in Bl from the respective boundary data as potential of double layer 

boundary density Jl as 

(6.1.13) 

For H specified over S, the Jl over S can be obtained as a unique solution of the 

boundary integral equation (4.1.5), i.e., 

(6.1.14) 

On discretisation, the formu la (6.1.13) becomes 

(6.1.15) 

~ 

where H(P) is the approximation to H at P and the boundary equation (6.1.14) 

becomes 

11 

H(qk) = n/l(qk)- .z=~lJJ\s,log:lq-qkldq 
J;I 

11 

or, Hk = L:(n8 kl - bk)~lJ,k = 1,2,3 ... n, (6.1.16) 
FI 

(6.1.17) 

78 



<;olullon ofCCllall1lwo-dllllCIISIOllallllvcrsc problcl11~ 111 polenll." Ihcol), alld Ihelr appllcalloll III cxplOiallon geophY~lc~ 

H, = H(q,), i is the normal towards BI at pieceWIse straight ~SJ and 1\, is the 

Kronecker delta defined as Dkl = 0 for j:;t k and Dkk = I for j = k. 

Two distinct cases arise in evaluation of the coefficient b kl 

Case 1: 

For j:;t k, the integral is regular. Analytical evaluation of it is discussed in subsection 

5.3.2. For the nodal point Pk of 6S k defined by (X, Z) in a local reference frame xoz 

with its origin at the nodal point q, of 6S , and z-axis extending towards 8 1 coinciding 

with the normal to 6S
" 

the bkJ over 6S
J 

by (5.3.11) is 

(6.1.18) 

h defining the length of 6S , . For qk and q, defined by (Xk,Zk) and (xJ,zJ) respectively 

in the original refelence frame xoz and (X, Z) defining co-ordinates of Pk in the local 

frame xoz at the nodal point of 6SJ, we find 

for (I"m,) and (h,1112) defining the direction cosines of x-axis and z-axis respectively 

of local frame in the original reference frame. For x-axis of the local frame making an 

angle e with the x-axIs of the original frame, we find, II = cos e, 

1111 =sine, 12 =-sin8,and 1112 =cos8. 
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Case 2: 

Forj =k, 

bkk= Jlog:lq-qkldq=o, (6.1.19) 
6SJ 

since (q - qk ).i = 0, q 7= qk q, qk E ~Sk and the integral having a singularity at an 

isolated point q k , a set of measure zero. 

Since the equations (6.1.16) form a diagonal dominant system, as shown in subsection 

5.4.1, the equations (6.1..16) can be solved easily by Gauss-Seidal iterative method 

with convergence condition E=O.OOOOO I. On finding the ~l over S, the field at a point 

P above S can be computed by (6.1.15) 

(i) Gravimetric case 

On computing the gravity values at the n(= I 00) nodal points of the sub-elements over 

S, as described in the previous subsection and shown ill column 3 of Table 6.1.1, the 

coefficient bkJ are computed by (6.1.18) for j 7= k and by (6.1.19) for j=k. The 

equations (6.1.16) are then solved for ~lJ by Gauss-Seidal iterative method with 

convergence condition £: = 0.00000 I. The equations took only 6 iterations to 

converge as expected and the surface integral of ~l is found to be 0.95454(:;t:0) as 

theoretically expected in (4.1.7). The ~l values so obtained are shown at some 

representative points in column 4 of Table 6.1 2. 

The gravity values along the level z= 1.5 are then computed as potential of double 

layer density ~l by the formula (6.1.13) and these are exhibited in column 4 of Table 

6.1.3 along with the true values in column 2 for comparison. It is evident from Table 
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6.1.3 that the gravity values, reproduced from the boundary data as potential of double 

layer boundary density, agree with the true values 10 a good degree of accuracy ill 

general. The error at few points over the middle part is due to the steep nature of the 

input field and the boundary having edge and corners over the central part. 

Oi) Magnetostatic case 

Subsequently, vertical component magnetic data due to a unit vertically downward 

doublet are computed as Hk at the nodal points of S by the formula (6.1.2). The 

coefficients bkj are computed as above and the equations (6.1.16) are solved for ~l J by 

Gauss-Seidal iterative method with convergence condition £ = 0.00000 I. The 

equations took 6 iterations to converge as expected. The solution at some of the 

representative points over S are shown in column 4 of Table 6.1.4. The solutions are 

positive over the central part of S and negative over the outer part. The surface 

integral of ~L over S is found to be 0.028669 where its theoretically expected value, 

by (4.1.8), is, O. Since the p values are negative at the outer part of S, the surface 

integral of the numerical ~L over S is expected to be zero as S extends to infinity. 

The vertical component magnetic values at the level z= 1.5 are then computed as 

potential of the boundary p by (6.1.15) and these are shown m columll 4 of Table 

6.1.5 along with tbe true values in column 2 for comparison. It is evident from Table 

6.1.5 that the magnetic values obtained as double layer potential of boundary density 

agree with the true values to a good degree of accuracy over the central part of S. 
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6.1.4 Up-continuation by Green's Formula 

Fot a harmonic function H, a gravity field L)g or a magnetostatic component field T7 , 

with asymptotic behavior H= O(r-I1), n ~ I, r ---+ if.) , defined in the upper half- space 

domain B, bounded below by a half-space boundary S, given Hand I{ over S, H in B, 

can be reproduced by Green's formula (4.1.9) as 

(6.1.20) 

AS P ---+ PES, the boundary relation between Hand 1-( over S is given by (4.1.10) as 

(6.1.21) 

AS discussed in subsection 4.1.3, given Hover S, I{ over S can be obtained as a 

unique solution of the boundary integral equation 

110glq - I>II{ (q)dq = £ Jog:lq -IJIH(q)dq + nH(I», I> E S. (6.1.22) 

The discretised versions of(6.1.20) and (6.1.22) are given below 

n 11 

- 2nH(P) = L H(qJ) t<;J 10g:lq - pldq - L H; (q) tSJ loglq - P~q, P E B, 
J~I J=I 

(6.1.23 ) 

and 

n n 

L H: (qJ) t"J loglq - qk ~q = I H(q I) l",log: Iq - qk Idq + nH(qk)' (6.1.24) 
1=1 J~I 

respectively where k=I,2, .. ,n and r{(q,) and H(q,) stand for the constant values 

of l{ (q) and H(q) respectively over the /" subinterval ~SJ' Following the 

notations used for the coefficients in (6.1.7) ancl (6.1.17), the equation (6.1.24) can be 

expressed as 
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n 11 

l::a kJ 1-( (q J ) = L b kJ H (q J) + 1t H (q k ), k = 1,2, ... n 
J=t J=t 

or, (6.1.25 ) 

whele c\ is the Kronecker delta such that Okl = 0, k =F j and 0 Jk = I, j = k .. 

For H specified over the nodal points of the piecewise straight subelemellts L\SI' the 

equation (6.1.25) can be solved for I{ by Gauss Elimination method on evaluation of 

the coefficients a kJ and b kl • On finding H: over S, the field H in the tipper halfspace 

domain B, can be computed by (6. J .23), the discretised version of (6. J .20). 

(i) Gravimetric case 

On computing the gravity values L\gJ = H(q J)l at the n(= I 00) nodal points of the 

subelements of S by (6.1.1) as described earlier and shown in colullln 3 of Table 

6.1.1, the a kJ and Dk values of (6.1.25) are computed following the procedures 

mentioned in subsections 6.1.2 and 6.1.3 above. The n equations in }-( are then solved 

by Gauss Elimination method. The 1-( values so obtained are shown column 5 of 

Table 6.1.2. On finding the H;(qJ) values over S, the gravity values H are then 

computed at the level z = 1.5 by the formula (6.1.23) and these are shown in column 5 

of Table 6.1.3 along with the true values for comparison. It is evident frOIll Table 

6.1.3 that the computed values agree with the true values to a good degree of accuracy 

over the central part of the boundary S. 
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(ii) Maglletostatic case 

Subsequently, the vertical component magnetic data Tz are computed at the n(= 100) 

nodal points of the subelements over S by use of formula (6.1.2) as described earlier 

and shown in column 4 of Table 6.1.1. On evaluation of coefficients a kj and 

bki following the same procedure described earlier, the equations (6.1.25) are solved 

for H; by Gauss Elimination method. The I-t; values so obtained are shown in 

column 5 of Table 6.1.4. Finally, with these I-t; values known over S, the vertical 

component magnetic field H is computed at the level z = 1.5 by the formula (6.1.20) 

and these are exhibited in column 5 of Table 6.1.5 along with true T7. values for 

comparison. It is evident from Table 6.1.5 that the comr)uted Tz values agree with the 

trlle T z values to a good degree of accuracy over the central part of the boundary S. 

6.1.S Summarization of Results on Up-continuation 

(i) Up-continuation of a two-dimensional potential field, an anomalolls gravity 

field or a component magnetic field from its boundary data can be achieved as 

potential of simple as well as double layer boundary density. It can also be 

achieved by Green's formula without finding Green's function for the 

boundary. 

(ii) All the three formulations are theoretically sound, none superior to other. The 

double layer formulation is however numerically superior to others as in this 

case computation of the coefficients is : straightforward I and the equations, 

arriving from discretisation of the equation, form a highly diagonal dominent 

system making it amenable to quick solution by Gauss-Seidal iterative 

method. 
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6.2 Downward continuation of Gravity-Magnetic Data 

6.2.1 Continuation to a curved lower boundary 

(i) TheOl-y in brief 

Let a two-dimensional harmonic function 1-1, a gravity field 6g or a magnetostatic 

component field T z ' with asymptotic behviour 1-1 = 0 «(n), n ~ I, r ~ CfJ, be defined in 

the upper half space domain Bi bounded below by a curved half-space boundary 

S(= So +St.. +S", Fig_3.2.1) such that its central part SL is concave upward with its ends 

fixed at the datum line S(=So +SII +So' Fig.3.2.1) and arms extending along it. 

For H given over S, H at a point qk over S can be computed by (4.2.5) as 

H(qk) = Tt~l (qk) ~ Jlog;!q ~ qk! ~l(q)dq, Clk @ S (6.2.1 ) 
S 

The ~l of (6.2.1) can be obtained over SI.. as an approximate stable solution of the ill-

posed problem (4.2.3) 

H(P} = - Jlog;lq - plp(q)dq, PES II (6.2.2) 
S 

and that over So as a direct solution of(4.2.4) 

rrp(P)= H(P)+ flog}l-pl ~l(q)dq, PES". (6.2.3 ) 
s .. 

For synthetic input data, it has already been shown III Appendix I that the equation 

(6.2.2) has a unique solution. This can be verified in a model study, where H can be 

computed over S from the model response, by comparing the ~l obtained as solution or 

the Dirichlet problem (4.2.5) 

H(p)= rr~l(p)- Jlog,'lq-pl~l(q)dq, PES, (6.2.4) 
s 

for H given over S. 
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For a horizontal SI" say SI extending to infinity at both ends lying at a depth d belcn,v 

the datum line S, the equation (6.2.2) t<lkes the form (4.2.8) written as 

J . 
H(P) = - - flog Iq - pIH(q)dq, PES. 

IT 51. I 

(6.2.5) 

For P, q defined by (X,O) and (x,-d) respectively in a cartesian reference frame xoz 

with z-axis upward, the equation (6.2.5) becomes 

H(X,O) = i '} H(x,-d) dx, 
IT -N) [ (x - X) 2 + d 2 ] 

(6.2.6) 

the well-known Peters (1949) down-continuation formula, for S" defined by z=O and 

SI. defined by z=-d. 

(ii) Model Response 

To carry out a model study, let us assume that a vertically polarised logarithmic line-

mass of line-density A.. be placed at a depth d units below the datulll line S coinciding 

with x-axis of a reference frame xoz with z-axis upward. For the line-mass extending 

frolll x=x I to X=X2, its gravity and downward vertical component magnetic fields at a 

(6.2.7) 

and (6.2.8) 

respectively, where G is the universal gravitational constant, ~l is the uniform strength 

of the logarithmic doublets per unit length of the line mass, (I,m) are the direction 

cosines of the doublets, (x,z) are the coordinates of the point q on the line-mass, Tz is 

86 



Solutioll Orcl'rtail1l\\'o-dil1lclI~ioll;d iIH'CISC prohleilis ill pol(,lIli:1I Iheory alld Iheir application ill exploration gcophysic!" 

the downward vertical component magnetic field and .6g is the gravity field due to the 

line-mass. 

Assuming G= I, A= I, z=-d=-3, x ,=-12, X2= 12, ~L= I and assigning 1=0, 111=-1 for 

vertically downward doublets, the gravity and the vertical component magnetic 

responses of the line mass can be computed by (6.2.7) and (6.2.8) respectively at the 

nodal points over Staking Zk=O. 

(iii) The Datum line and the Down-continuation Boundary 

To solve the equations (6.2.2) and (6.2.3) and to compute the Hover S 

(= So +SI. +So' Fig.3.2.1) numerically, let us assume that N equidistant Hk values are 

specified over a large data-length S (=AB C. Os EF=AB + S" + EF, Fig. 3.2.1) for 

downward continuation of H to the lower boundary S'- (=SC+CO+OE, Fig.3.2.1). The 

boundaries are such that C and 0 of SL lie vertically below Cs and Ds respectively of 

- -
S to a depth d below S. Let us now divide the lineS(=AF) into N equal subintervals 

.6SI , .6S2 •••.•.••. ,.6SN such that AS, S Cs ' Cs Ds ' Ds E and EF contain N I, N2, N3, 

N2, N4 subintervals respectively. When the end-points of .6S k are projected 

downward, these divide the lower boundary S(= AB + BC + CD + DE +EF, Fig.3.2.1) 

into N unequal subintervals. Let us make the subintervals piecewise straight and 

denote them as .6S j , j= 1,2, ....... N. 

It is to be noted here that the segments AB and EF are common to both the boundaries 

Sand S, CD is parallel to S and each of the curved parts BC and DE at flanks is 

formed of two parabolic arcs, one above the other. 
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(iv) Discritiscd version of the Equations 

Now locating the N input data \-h at the centroids of the subintervals .6S k , k = 1,2, 

-
.... N over S and assuming that the boundary density ~l is constant over a subinterval 

.6Sj ofS, we obtain the discretised version of tile equation (6.2.2) as 

NIII1 

H(Pk )= L -~l.iL. loglpk-(1i: dq,k=NI+I, ........ ,NI+n, 
j=NI+I J 

(6.2.9) 

where n = N2+N3+N2 and )..l i is the constant value of )..l over the jth subinterval .6S .. 
.I 

In the above equations, the n input data H(I\) specified over S" are related to n 

_ unknown )..lj specified over SL. Now, denoting the input data H(PNH-I), H(PNI12 ), ....... 

H(PNI +n) by HI, H2 ...... Hn respectively, and .6S N1 +.I by .6Sj , j=I,2, ... ,n, we rewrite 

the equations (6.2.9) as 

n 

= La kj)..l J' k = 1,2, ........ , n, 
j=1 

(6.2.10) 

(6.2.11 ) 

The equations (6.2.10) represent a system of n simultaneous linear algebraic equations 

in n unknown Pi over SL. On finding the )..lj over SL as solution of the equations 

(6.2.10), the )..lj is labeled back as )..lNI+j' Subsequently, the )..lover So can be obtained 

directly from the discretisecl vcrsion of (6.2.3) writ~en as 

NI+n 

nPk = Hk + I akJ)..lj' k = 1,2, .... , NI,(NI + n + I),(NI + n + 2), ...... , N, (6.2.12) 
j=NI+1 
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\-vhere PNI+I' ~lNI~2""'" ~tNI+" of(6.2.12) are the ~ll. ~l2, .... pn respectively of the 

equation (6.2. 10) with their labels retrieved. 

For a horizontal continuation boundary SL, say SL' the down continued field over SI is 

given by (4.2.7) 

(6.2.13) 

on finding the ~lJ as solution of (6.2. I 0) for a horizontal SL extending over a large finite 

length. 

On the basis of the same assumption that the p is constant over a subinterval, the 

boundary formula (6.2.4) can be discretised as 

11 

I-Ik = L (a kl + rr8kl)~ll,k = 1,2, ........ , N, (6,2.14) 
1=1 

whcre P I is the constant value of ~l over the jlh subinterval and 

(6.2.15) 

qk defining the nodal point of the piecewise straight subinterval L)Sk and ~\ defining 

the Kronecker delta bkk = I and bkJ =0, k:;tj. 

6.2.2 Uniqueness of Solution 

It is already shown in Appendix I that the inverse problem formulated by equation 

(6.2.2) has theoretically a unique solution. For a numerical verification, we are to 

show that the solution of (6.2.2) agrees with the Dirichlet-~l over the curved boundary 

SL (Fig, 3.2.1) to a reasonable accuracy. ror this purpose, let us compute the vertical 

component magnetic field due to a vertically polarised logarithmic line mass extending 
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from x=-12 to x=12 lying at depth 3 units below the datulll line S(=SIl+SII+S", 

f-ig.3.2.1). Vertically downward component field Tz at a point P(Xk,Zk) in a xoz frame 

with z-axis upward is given by the formula (6.2.8). The true Hk values so computed 

with Zk=O, z=-3 1=0, 111=-1 and ~L= I are shown as 1-11 in colullln 2 of Table 6.2. I at some 

representative node points over the datulllline S extending from x=-10.25 to x=10.25. 

The continuation boundary S(= So + SL + So, Fig.3 .2.1) is now formed by the line 

segments joining A(-1O.25,0) and B(-8.25,0), C(-3.25,-I) and 0(3.25,-1), E(8.25,0) 

and F( I 0.25,0) with curved parts BC and DE at flanks. AB and Ef-, each identified as 

So over S, define the horizontal arms of S and the curved parts BC and Ef- with 

straight horizontal part CD between them form the continuation part SL of S with CD 

at depth I unit below S. 

Considering the subinterval length h = 0.5 over S (= So + Su + So, Fig.3.2.1), we find 

/\B(= So) and EF(= So) contain 4 subintervals each, BC, and 0, E contain 10 

subintervals each and Cs 0, contains 13 subintervals. It is to be noted here that the N 

nodal points over S are distributed as N4 = N 1=4, N2= I ° and N3= 13. This makes 

N=N I +2N2+N3+N4 = 41 and n=2N2+N3=33. 

The N piecewise straight subintervals ~ SJ over S are obtained by projecting the (N+ I ) 

end points of the N subintervals ~ SI of S over S. For Pk defining the nodal point of 

~Sk' the field value at Pk is denoted by Hk , k= I ,2,00 .. ,N. Subsequently, the co­

efficients akJ of (6.2.10) is considered as Jp of (5.3.10) with a negative sign. The 
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equations (6.2.10) are then solved for Pi over SL by Gauss-Seidal iterative method with 

convergence condition c:=0.00000 I. On obtaining the ~l J over SL, the Pi over AB(= S" ) 

and Er(=S,,) are computed by (6.2.12). The Pj so obtained are shown as p(l) in 

- -
column 6 of Table 6.2.1 at some representative points over S (= So +SL+ So ). 

Table 6.2.1: Uniqueness of solution in down-continuation of a magnetostatic field to a 
curved lower boundary. 

Node Input at z-co-ord Dirichlet ~L Dirichlet Inverse ~l over S Difference 
point S (z=O) of qJ E S over S ~l over S p(l) Ip(D) - p(I)1 

.x I-It Zj ~l p(O) E 

-10.0 0.0489 0.0 0.0156 0.0159 0.0159 0.0 
-8.5 0.1860 0.0 0.0592 0.0598 0.0595 0.0003 

-8.0 0.2079 -0.01 0.0662 0.0668 0.0667 0.0001 
-3.5 0.1974 -0.99 0.0628 0.0625 0.0618 0.0007 

-3.0 0.1937 -\.O 0.0617 0.0608 0.0602 0.0006 
-2.5 0.1906 -\.O 0.0607 0.0594 0.0588 0.0006 
-0.5 0.1838 -\.O 0.0585 0.0566 0.0560 0.0006 
0.0 0.1835 -1.0 0.0584 0.0565 0.0559 0.0006 
0.5 0.1838 -\.O 0.0585 0.0566 0.0560 0.0006 
2.5 0.1906 -\.O 0.0607 0.0594 0.0588 0.0006 
3.0 0.1937 -\.O 0.0617 0.0608 0.0602 0.0006 

3.5 0.1974 -0.99 0.0628 0.0625 0.0618 0.0007 
8.0 0.2079 -0.01 0.0662 0.0668 0.0667 0.0001 

8.5 0.1860 0.0 0.0592 0.0598 0.0595 0.0003 
10.0 0.0489 0.0 0.0156 0.0159 0.0159 0.0 

[The vertical component magnetic field is due to a vertically polarised logarithmic 
line mass extending from x=-12 to x= 12 lying at depth 3 units below the datum line 

S defined by z=O in a cartesian ref. frame with z-axis upward.] 
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The Hk values at the N nodal points qk of S are then computed by (6.2.8) and the akj of 

equations (6.2.14), tbe discrctised version 01' the Dirichlet problem for the domain Bj 

bounded below by S, are evaluated analytically with Pk replaced by qk. The co-

efficient aki shown in (6.2.15) is the bki of (5.3.11) with a negative sign for j ~ k and . . 

akk is the bkk of (5.3.13), the value of it being zero. The equations (6.2.14) are then 

solved by Gauss-Seidal iterative method with 13=0.00000 I. The Dirichlet P.i so 

obtained are shown as ~l(D) in column 5 of Table 6.2.1 for comparison with ~l(I). It is 

to bc noted here that all the computations ill this subsection are carried out in double 

precISion. 

For the same setup of the boundaries and the causative mass, as shown in Fig.3.2.1, a 

similar exercise is carried out for down-continuation of the gravity response from the 

datum line S to the continuation boundary S. In this case, the input data are the gravity 

response due to the logarithmic line mass extending from x=-12 to x= 12 placed at 

depth 3 units below S. The 2-D gravity response Hk is computed over the datum line 

S by (6.2.7) with universal gravitational constant G= I, logarithmic line density }...== I, 

Zk=O and z=-3. The values so obtained are shown as Ht in column 2 of Table 6.2.2. 

Subsequently, follovving the same procedure mentioned above, ~l(D) and~l(l) are 

obtained and these are shown in columns 5 and 6 respectively in Table 6.2.2 

It is evident from Tables 6.2.1 and 6.2.2 that for both gravimetric and magnetostatic 

cases, the p (I) and ~l (D) values agree closely with each other, providing a Ilumerical 

verification of the theoretical conclusion that the inverse problem (4.2.3) theoretically 

has a unique solution since ~l (D) is unique over S(= So +SL + So ). 
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Table 6.2.2: Uniqueness of solution in down-continuation of a gravimetric field to a 
curved 10'vver boundary. 

Node Input at z-co-ord Dirichlet ~l Di rich let ~l Inverse ~l over Di fference 
point S (z=O) of q,E S over S over S S l~l(D) - ~l(l)1 

X Ht zJ ~l p(D) ~l(l) E 

-10.0 1.4219 0.0 0.4526 0.4490 0.4487 0.0003 
-8.5 1.8737 0.0 0.5964 0.5902 0.5877 0.0025 

-8.0 1.9937 -0.01 0.6346 0.6259 0.6259 0.0 
-3.5 2.4905 -0.99 0.7928 0.7980 0.8049 0.0069 

-3.0 2.5099 -1.0 0.7989 0.8060 0.8128 0.0068 
-2.5 2.5255 -1.0 0.8039 0.8121 0.8191 0.0070 
-0.5 2.5574 -1.0 0.8141 0.8239 0.8300 0.0061 

0.0 2.5587 -1.0 0.8145 0.8244 0.8305 0.0061 
0.5 2.5574 -1.0 0.8141 0.8239 0.8300 0.0061 
2.5 2.5255 -1.0 0.8039 0.8121 0.8191 0.0070 
3.0 2.5099 -1.0 0.7989 0.8060 0.8128 0.0068 

3.5 2.4905 -0.99 0.7928 0.7980 0.8049 0.0069 
8.0 1.9937 -0.01 0.6346 0.6259 0.6259 0.0 

8.5 1.8737 0.0 0.5964 0.5902 0.5877 0.0025 
10.0 1.4219 0.0 0.4526 0.4490 0.4487 0.0003 

[The gravity field is due to a logarithmic line mass extending from x=-12 to x= 12 

lying at depth 3 units below the datum line S defined by z=O in a cartesian ref. frame 
with z-axis upward.] 
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6.2.3 Downward Continuation of Erroneolls Input Data to a 
)-Iodzontal and a Flat-Bottom Curved Boundary 

Let a finite interval D extend from x==-\ 0.25 to x= \ 0.25 over the datum line S defined 

by z=O in a xoz reference f,ame with z-axis upward. This interval D be divided into 

N(=4\) equal subintervals 6.S, of length h=0.5 units each. Let us now consider a 

horizontal continuation boundary Sh at a depth d= I vertically below D such that S" 

also extends from x=-I 0.25 to x= I 0.25 and contains N(=41) equal sub-intervals 6.S , in 

it. Subsequently, let us consider a nat bottom curved boundary S (= So + SL + So) such 

that its nat part extends from x=-3.25 to x=3.25 coinciding with the central part of S" 

as shown in Fig.3.2.1. The curved boundar y S (= So + S, + So) is now divided into 

N(=N I +N2+N3+N2+N4) unequal subintervals ~S,J slIch that the projection of ~S, on 

S coincides with 6S) of S, j= 1 ,2, ... N. In this case, N 1 (=4) and N4(=4) sub-intervals 

lie on S, N3(=13) subelements coincide with those over the central part ofSh and each 

of the curved parts of S contains N2(== I 0) unequal subintervals. 

(a) Continuation to Horizontal Boundary 

On dividing the boundaries Sand SI" each into N piecewise staright subintervals as 

described above, vertical component magnetic field, Hk, k= J ,2, ... ,N is computed at the 

nodal points (Xk,Zk) of.S by (6.2.8) with p=l, Zk=O, z=-3, 1=0, n1=-I, x,=-12 and 

x2=12. These are then contaminated with random el ror E, lEI $ 1 % of the true response 

for treating them as input data. The input data so obtained are shown as H, in the 

column 2 of Table 6.2.3. 
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It is already mentioned that the horizontal continuation boundary S" (-10.25,10.25) is 

divided into N(=41) equal subintervals. Assunling that the ~l is constant over a 

subinterval, the coefficients akj of equation (6.2.10) for qj E S" as described in 

subsection 6.2.2, are evaluated by analytical means and the resulting n(=N) equations 

are solved for approximate ~lj following the procedure described earlier with 

~=O.OOOOO I for less than I % mean squared error (MSE) in input data, the largest field 

value being 0.2070 over S. On finding the p over S", the continued field Hj over S" is 

obtained by (6.2.13). The values so obtained are shown in column 5 of Table 6.2.3 

along with the true field Ht in column 4 for comparison. 

Subsequently, the gravity values at the nodal points (Xk,Zk), k=1 ,2, ... N are computed 

by formula (6.2.7) with 0=\, "-.=\, Zk=O, 7..=-3, xl=-12 and x2=12. These are 

contaminated with random error E, lEI::; I % of the true response to treat them as input 

data. The input data so obtained are shown in column 2 of Table 6.2.4. These are then 

normalised and the above procedure is followed with ~=O.OOO I for 1% MSE in the 

normalised data to find the continued field over S". The field so obtained over Sh are 

multiplied by the normalising factor M=2.5674 to get back the field due to the 

causative mass. The continued field so obtained are shown in column 5 along with the 

true values in column 4 of Table 6.2.4 for comparisol,1. 
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Table 6.2.3: Down-continuation of magnetic data to a horizontal and a nat-bottom 
curved lower boundary at a shallow depth. 

Node Input % error True field Down-continued field at depth d= I (=2h) 
points over in data over S" unit below S. 

S (z=O) (d= I ) over over 

Er 1-1 rtz S" % Er Crvcl Sf. % Er 
x HI I-I t J-I E H E 

-10.0 0.0494 0.9447 0.0495 -0.1908 -485.310 
-8.5 0.1847 -0.7192 0.2934 0.3022 23.4350 

-8.0 0.2071 -0.3841 0.3049 0.2578 -15.4450 
-3.5 0.1976 0.1049 0.2130 0.2101 -1.3526 

-3.0 0.1938 0.0257 0.2072 0.2161 4.2759 0.2052 -0.9752 
-2.5 0.1891 -0.7902 0.2025 0.1895 -6.4091 0.1978 -2.3364 
-0.5 0.1820 -0.9780 0.1927 0.1810 -6.0657 0.1886 -2 1376 
0.0 0.1841 0.3395 0.1923 0.1894 -1.5039 0.1914 -0.4540 
0.5 0.1853 0.8388 0.1927 0.200 I 3.8493 0.1934 0.3497 
2.5 0.1901 -0.2767 0.2025 0.1987 -1.R730 0.1992 - Ui I 09 
3.0 0.1928 -0.4941 0.2072 0.2013 -2.8664 0.2030 -2.0243 

3.5 0.1965 -0.4746 0.2130 0.20 I I -5.5837 
8.0 0.2082 0.125() 0.3049 0.2644 -13.2()70 

8.5 0.1873 0.6972 0.2934 0.3728 27.0470 
10.0 0.0493 0.7694 0.0495 -0.1907 -485.240 

rThe field is due to a vertically polarised logarithmic line mass cxtcnding from x=-12 
to x=12 lying at depth 3 units below the datum line S. The horizontal continuation 
boundary Sh at depth coincides with the nat part ofSL over the interval (-3.25, 3.25)\ 

(b) Continuation to Curved lower Boundary 

for continuation of magnetic data of column 2 of Table 6.2.3 from the datum line S to 

the curved lower boundary S, the co-efficients akJ of equations (6.2.10) arc evaluated 

by analytical means and an approximate stable ~lJ over SL are obtained by solving the 

equations with terminating condition ~=O.OOOOO 1. Subsequently, the ~ll over So are 
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obtained by (6.2.12) and the tield values over the hOI izontal part of SI. are computed 

by the discretised version (6.2.14) of formula (6.2.1). The results obtained are shown 

in colullln 7 of Table 6.2.3 along with the true values in colullln 4 for cOlllparison. The 

same exercise is carried out for gravity data and results obtained are shown in column 

7 of Table 6.2.4 along with the true values in column 4 for comparison. 

Prom the down-continued field values, obtained over the central part of the horizontal 

continuation boundary and these obtained over the central Oat part of the curved 

continuation boundary, exhibited in Tables 6.2.3 and 6.2.4, it appears that for a finite 

length of input data, down-continuation to a curved boundary is having a slight edge 

over continuation to a horizontal boundary. 

(c) Down-continuation of Magnetic Data to Horizontal and Flat-bottom curved 
Boundary at Deeper Depth 

On finding the continued field at a depth D(=2h)= I unit below S, the procedure is 

rcpeated for the same input magnetic data for Sh and S L (Fig.3.2.1) at depth d(=4h)=2 

units below S without changing the values of N I, N2, N3 and N4. The continued field 

values obtained over Sh and S are shown in colulllns 3 and 7 respectively of Table 

6.2.5 along with the true values for comparison. 
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Table 6.2.4: Down continuation of gravity data to a horizontal and a nat-bottom 
curved lower boundary. 

Down-continued field at depth d= I (=2h) 
Node Input % error True field unit below S. 
points over in data over S" over over 

- Er (z=-1 ) S (z=O) Hrtz Sh % Er Crvd SL % Er 
X HI H t H E H 

-10.0 1.4353 0.9447 1.47"i1 3.4141 132.0700 
-8.5 \.8602 -0.7192 2.1066 1.9167 -9.0171 

-8.0 1.9860 -0.3841 2.2455 2.3525 4.7651 

-3.5 2.4931 0.1049 2.6960 2.7463 . 1.8662 

-3.0 2.5105 0.0257 2.7106 2.7966 3.1723 2.8884 6.5569 
-2.5 2.5056 -0.7902 2.7223 2.6779 - \.6338 2.6675 -2.0132 

-0.5 2.5324 -0.9780 2.7459 2.6324 -4.1329 2.6406 -3.8327 

0.0 2.5674 0.3395 2.7468 2.8034 2.0590 2.7866 1.4496 

0.5 2.5789 0.8388 2.7459 2.8870 5.1401 2.9067 5.8567 
2.5 2.5186 -0.2767 2.7223 2.7354 0.4802 2.7211 -0.0463 
3.0 2.4975 -0.4941 2.7106 2.6854 -0.9316 2.6980 -0.4654 

3.5 2.4787 -0.4746 2.6960 2.6383 -2.1404 
8.0 1.9962 0.1256 2.2455 2.3903 6.4487 

8.5 1.8867 0.6972 2.1066 2.0371 -3.3015 
10.0 1.4328 0.7694 1.4711 3.7239 153.1400 

[The field is due to a vertically polarised logarithmic line mass extending from x=-12 

to x= 12 lying at depth 3 units below the datum line S. The horizontal continuation 
boundary S" at depth coincides with the flat part of SL over the interval (-3.25,3.25)] 
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Table 6.2.5: Down-continuation of vertical field magnetic data to a horizontal and to 
a flat bottom curved lower boundary with their central parts at depth 
d=2units below the datulll linc 

Down-continued field to Down-continued field to curved 
hortzl boundary Sh placed at boundary with its central part 

depth d=2 CD at depth d=2 
Node True Contd % Error Depth True Contd % Error 
over S field field co-ord field field 

X 'H t I-I E -zs I-II 1-1 E 

-10.0 0.0499 -0.3549 -811.49 0.0 0.0489 0.0492 0.6855 

-8.5 0.5154 0.4122 -20.039 0.0 0.1860 0.1831 -1.5649 

-8.0 0.4554 0.6219 36.574 0.02 0.2094 0.2080 -0.6407 

-5.5 0.2760 0.2420 -12.319 1.18 0.2546 0.2393 -6.0362 

-5.0 0.2587 0.2402 -7.1542 1.5 0.2495 0.2387 -4.3377 

-3.5 0.2240 0.2461 9.8730 1.98 0.2238 0.2228 -0.4421 

-3.0 0.2165 0.2140 -1.1535 2.0 0.2165 0.2165 -0.0062 

-2.0 0.2058 0.1906 -7.4281 2.0 0.2058 0.2021 -1.8235 

-1.0 0.1999 0.1892 -5.3747 2.0 0.1999 0.1981 -0.9306 

0.0 0.1980 0.1995 0.7564 2.0 0.1980 0.1966 -0.7330 
1.0 0.1999 0.1974 -1.2495 2.0 0.1999 0.1986 -0.6609 

2.0 0.2058 0.1965 -4.5329 2.0 0.2058 0.2053 -0.2567 

3.0 0.2165 0.1972 -8.8998 2.0 0.2165 0.2153 -0.5320 

3.5 0.2240 0.2114 -5.6253 1.98 0.2238 0.2211 -1.2075 

5.0 0.2587 0.2387 -7.7385 1.5 0.2495 0.2377 -4.7272 

5.5 0.2760 0.2390 -13.404 1.18 0.2546 0.2404 -5.6054 

8.0 0.4554 0.6866 50.771 0.02 0.2094 0.2091 -0.1381 

8.5 0.5154 0.4240 -17.745 0.0 0.1860 0.1857 -0.1527 

10.0 0.0499 -0.3728 -847.42 0.0 0.0489 0.0491 0.5091 

[Both the datum line S and the horizontal continuation boundary Sh extend from x=-

10.25 to x= 10.25, Sh lying at a depth d=2 units below S defined by z=O. The co­

ordinates of some of the node points over Sand Sh are shown in column I and the 
corresponding z-coordinates of those over S are shown in column 5] 
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It is evident from Table 6.2.5 that for input data within I % random error specified over 

an intcrval D (-10.25, 10.25), the continued field at a depth d(=2h)=2 units below it 

can be obtained within a reasonable error over the flat interval (-3.25, 3.25) of the 

curved continuation boundary. 

Further, it is also evident from Tables 6.2.3 and 6.2.5 that the error in the down­

continued field values over the central part of the horizontal boundary increases more 

rapidly with increase of depth of continuation than that over the central part of the 

curved continuation boundary. Moreover, it is evident frol11 Table 6.2.5 that when the 

error over the outer parts of the finite horizontal boundary increases rapidly with 

encroachment towards the central part, the error remains reasonable all over the curved 

boundary for all depths of continuation ~ 4h, h defining the spacing of data over the 

datu III line. 
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6.3 Depth-Detennination 

6.3. J Choice of Boundar')' and spacing of data over the datum line 

Usual downward continuation of an observed potential field to a horizontal level 

cannot reach the basement low In a geological basin without encountering the 

neighbouring basement high. This violates the Dirichlet condition of continuation, 

i.e., the continued field is a harmonic function above the continuation boundary. This 

situation can be avoided if the continuation boundary approaches the target in a 

tapering shape extending below a finite interval with its arms extending along the 

datum line. On computing the field at the apex of the tapering boundary, as it moves 

downward along a vertical in steps, the depth to the top of the basement can be 

obtained frol11 the gradient of the computed field along the vertical. 

In downward continuation of an observed potential field, spacing of data over the 

datum line plays an important role in obtaining a well-behaved set of field values 

along a vertical. It is shown in subsection 4.2.4 that for h defining the uniform length 

of subinterval L1 Sk over the datum line S and Os defining the depth of continuation, 

Os 
h~-. 

4 

provides a well behaved computed field up to a depth of Ds below. S 

(6.3.1 ) 

Further, it is shown in subsection 4.2.5 that for a finite data-length 0 over S , the 

error in the down-continued field H(Zk) along a vertical uniformly increases , ~ 

_ '. as depth of the apex Zk of the boundary increases, while the field increasing 

rapidly near the causative mass. It is also shown in the subsection that the error in the 
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computed H(zd decreases as length of D II1Cre(1Ses. However, it is our working 

experience that 

SII ~ 50s (6.3.2) 

SII defining the central part of S with SL directly below it (Fig. 4.2.1), provides the 

computed field H(zk) along the axis of SL with steadily increasing: . _ error 

for Ok ~ Os = 4h, Ok defining the depth of Zk below S. Under slich a situation, the 

vertical gradient of the computed field along the vertical shows its first maximum at 

the top of the eallsative mass. 

6.3.2 Generation of I nput Data 

Let a vertically polarised logarithmic line-mass of line-density I-.. be placed at a depth 

d units below the datum line S coinciding with x-axis of a reference frame xoz with z­

axis upward. For the line-mass extending frol11 x=x I to X=X2, lying at a depth d below 

the datum line S , its gravity and downward vertical component magnetic fields at a 

point Pk(Xk,Zk) are given by (6.2.7) and (6.2.8) respectively. 

Assuming G=I, 1-..=1, z=-d=-3, xl=-12, x2=12, ~l=1 and asslgnlllg 1=0, m=-I for 

vertically downward doublets, the gravity and the vertical component magnetic 

responses of the line mass are computed at the nodal points of the subintervals of D (-

20.5,20.5) of S by (6.2.7) and (G.2.8) respectively taking Zk=O and Xk running over 

the nodal points of O. The true responses so obtained are shown at some 

representative points in columns 2 and 5 as HI(=i1g) and HI(=T7 ) respectively in Table 

G.3.1. The data contaminated with random error are shown as HI in columns 3 and 6 in 

Table G.3.1 for treating them as input data. 
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Table 6.3.1: Input gravity and magnetic data over a datum line S 

Node Gravit~ data over S Magnetic data over S 
over S True Input % Error True Input % Error 

x field data field data 
Ht(L1g) Hi E Ht(Tz) Hi E 

-20.0 0.2653 0.2678 0.94 -0.0786 -0.0794 0.94 
-15.0 0.6747 0.6759 0.17 -0.1301 -0.1314 0.97 
-10.0 2.0233 2.0430 0.98 0.1985 0.1991 0.34 
-5.0 2.5620 2.5418 -0.79 0.1777 0.1792 0.82 
-4.0 2.5975 2.5722 -0.97 0.1700 0.1686 -0.83 
-3.0 2.6224 2.6035 -0.72 0.1641 0.1653 0.73 
-2.0 2.6390 2.6502 OA2 0.1600 0.1602 0.13 
-1.0 2.6485 2.6226 -0.98 0.1576 0.1562 -0.95 
0.0 2.6516 2.6606 0.34 0.1569 0.1581 0.77 
1.0 2.6485 2.6708 0.84 0.1576 0.1586 0.60 
2.0 2.6390 2.6384 -0.02 0.1600 0.1607 OA2 
3.0 2.6224 2.6307 0.81 0.1641 O. I 628 -0.82 
4.0 2.5975· 2.5999 -0.28 0.1700 0.1689 -0.62 
5.0 2.5620 2.5549 -0.28 0.1777 0.1770 -OAO 
10.0 2.0233 2.0399 0.82 0.1985 0.1991 0.30 
15.0 0.6747 0.6778 OA5 -0.1301 -0.1299 -0.11 
20.0 0.2653 0.2673 0.77 -0.0786 -0.0786 -0.02 

(Gravity and veltical component magnetic fields are due to a vertically polarized 

logarithmic line mass extending from x=-12 to x= 12 lying at a depth 3 units below S 
defined by z=O in a xoz reference frame with z-axis upward) 

6.3.3 Down-Continuation of EIToneous Potential Field to a Tapered 
Parabolic boundary 

Considering the continuation or search-depth D,=4, the normal ised gravity data over 

the interval D (-13.5, 13.5) of S are sampled following (6.3.1) at a regular spacing 

h=1 and these are assigned at the nodal points of the subintervals L}S, of D. This 

subdivision yields N=27 data over D with the central one' at x=O. Pollowing the 

scheme of distribution of data over S , as shown in FigA.2.1, N I =2 data over So to 

the left of Su' N4=2 over So to the right of S" ' and n 
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=[N2(= I 0)+N3(=3)+N2(= I 0)]=23 over S" are assigned, The values of N2 and N3 so 

chosen automatically satisfies the condition (6.3.2) for all choice of h ~ D. / h. 

Considering the first configuration SL(I) of SI. (Fig. 4.2.1) with its apex ZI at depth 

d= 6z =0.5 below 8 at the vertical x=O, equations (6.2.10) in n(=23) unknown ~l.i are 

solved for stable approximate ~l.i allowing a mis-match of I (Yo mean squared error 

(MSE) between the reproduced field and the input data over S" by setting ~=O.OOO I 

for a preassumed I % maximum average error ill the normalised input data. On finding 

the approximate ~lj over SL(I). the ~i over So are obtained by (6.2.12). On obtaining the 

~lJ over S(=8
0 

+SI. +8
0 

, FigA.2.I)for data specified over the interval 15(-13.5, 13.5) 

of S , the down-continued field H(zl) at the apex Zk=ZI at depth dl=~z=0.5 below 

S is computed by (6.2.14), the discretised version of (6.2.1). The value so obtained is 

multiplied by the normalising factor M of the data over D to find the down-continued 

field value of the original field. 

In the next step, keeping S" and the input data ullchanged over 15, SL is extended 

downward with its apex Z2 on x=O at a depth d=2 ~Z (= I) below S . The procedure 

described above is followed to compute H(z2). The procedure of extending of SL 

downward with, its apex Zk moving in steps of ~z along the vertical at x=o and 

subsequent computation of H(zk) is continued till Zk attains a depth d;:::Ds below S. 

The H(Zk) values so obtained along the vertical are shown in column 3 of Table 6.3.2 

I 

along with the true values for comparison. Similar procedure is followed for the input 

data specified over the interval D (-20.5,20.5) at a spacing of 11= lover S keeping S" 
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fixed in position with n=23, and NI=N4=10 at same spacing h=1 over So on both 

sides of Su. The H(zk) values so obtained at steps of L}Z =0.5 along the vertical at x=O 

are shown in column 5 in Table 6.3.2. 

Following the same procedure, the erroneous vertical component magnetic data Hi, 

shown in column 6 of Table 6.3.1, are considered over the intervals D (-13.5, 13.5) 

and 0 (-20.5, 20.5) at a spacing h= lover S, for down-continuation of the field along 

the vertical at x=O. The results obtained are shown in Table 6.3.3 along with the true 

values for comparison. 

Table 6.3.2: Down-continued gravity field along a vertical through mid-point of 

D of datum line S. 

Down-continued field for data-length 
Depth True D (-13.5,13.5) D (-20.5, 20.5) 

of field H(Zk) % Error H(Zk) % Error 
Zk H t 

0.5 2.7308 2.6240 -3.91 2.6316 -3.63 
1.0 2.8112 2.7520 -2.11 2.7554 -1.98 
1.5 2.8929 2.8416 -1.77 2.8457 -1.63 
2.0 2.9753 2.9286 -1.57 2.9334 -1.40 
2.5 3.0583 3.0157 1.39 3.0186 1.29 
3.0 -- 3.1616 -- 3.1708 --
3.5 -- 3.2538 -- 3.2405 --
4.0 -- 3.3408 -- 3.3488 --

4.5 -- 3.4227 -- 3.4288 --
5.0 -- 3.5021 -- 3.5062 --

[The field is reproduced at the apex Zk of the parabolic part of the down-continuation 
boundary as it extends downward with its ends fixed at the datum line and apex 
moving downward in steps along the vertical at x=O.] 

105 



llli\PILRVI 

Table 6.3.3: Down-continued magnetic field along a vertical through mid-point of 
- -
D of datum line S. 

Down-continued field for data-length 
Depth True 0(-13.5,13.5) o (-20.5,20.5) 

of field H(zd (Yo Error H(Zk) % Error 
Zk I-It 

0.5 0.1597 0.190 18.97 0.163 2.06 
1.0 0.1622 0.197 21.45 0.169 4.19 
1.5 0.1641 0.204 24.31 0.175 6.64 
2.0 0.1655 0.211 27.49 0.180 8.76 
2.5 0.1664 0.206 23.79 0.186 11.77 
3.0 -- 0.211 -- 0.191 --
3.5 -- 0.217 -- 0.197 --

4.0 -- 0.223 -- 0.184 --
4.5 -- 0.230 -- 0.188 --
5.0 -- 0.237 -- 0.192 --

. [The field is reproduced at the apex Zk of the parabolic part of the down-continuation 
boundary as it extends downward with its ends fixed at the datum line and apex 
moving downward in steps along the vertical at x=O.] 

It is evident from Tables 6.3.2 and 6.3.3 that for the input data specified over an 

interval D, the en·or in the down-continued field along the axis of SL steadily 

increases with depth as expected in subsection 4.2.5 for a negative ~lll1. The error in 

the computed H(Zk) however decreases at a fixed depth of Zk when the data interval 

D increases in length, as expected in subsection 4.2.5. Further, for a fixed input data-

length, the error in H(Zk) for the Illagnetostatic cases increases at a much faster rate 

than that in the gravimetric case as expected in subsection 4.2.5. It is to be noted here 

that the average percentage error in input data over SlI (-5.5, 5.5) is negative for the 

gravimetric case and it is positive for the magnetistatic case as can be seen in Table 

6.3.1. Hence, the % error in the reproduced H(Zk) for these set of model data starts 

with a negative value for the gravimetric case and with a positive value for the 

magnetostatic case. 
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6.3.4 Depth-Detennination from Down-continued Field-values 

It is evident from the H(Zk) columns in Tables 6.3.2 and 6.3.3 that contrary to 

expectation, all the H(Zk) profiles smoothly go past the causative mass with increasing 

values without exhibiting a visible change in them at the causative mass. A distinct 

change in property of the field on crossing the target lies suppressed for smoothening 

of boundary ~l obtained by introducing an extra term A that appears in the diagonal 

vector of the system of linear algebraic equations (5.4.12) to ensure convergence of 

the solution. 

Considering the down-continued gravity and magnetic values H(zd of Tables 6.3.2 

and 6.3.3 respectively, obtained from data specified over 0 (-13.5,13.5), the vertical 

gradient V z H of H(Zk) profiles are computed by formula (4.2.10) along with 11, the 

normalised variation in V zH relative to the first (or shallowest) gradient value 

V z H J' by (4.2.11). The details of computation are shown in Table 6.3.4 and 6.3.5, for 

gravity and magnetic fields respectively. 

It is evident from Tables 6.3.2 and 6.3.3 that even when the computed H(Zk) values 

are with large error and the error increasing with depth of Zk, as expected, the vertical 

gradient of H(Zk) shows its first maximum at the top of the causative mass at depth 

d=JzJ = 3 u~its below the datum line S . Subsequently, gradients of H(Zk) values 

obtained from input data of 0 (-20.5, 20.5) are computed. The down-continued H(Zk) 

values and 11 values so obtained from gravity and magnetic data are shown in columns 

2&3 and 4&5 respectively in Table 6.3.6. In this case also depth to the causative mass 

is shown at depth d=3 .. 
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It is evident from Tables 6.3.4, 6.3.5 and 6.3.6 that for both the input data intervals 

0(-13.5, 13.5) and 0 (-20.5, 20.5), the first maximum of the vertical gradients of 

H(Zk) occurs at the top of the causative mass. I-Ience, a input data interval 0> S" with 

(2N2+N3) data, is expected to lead to correct dcpth to the causative mass, as expected 

in subsection 4.2.5, for the mass lying at depth d:::;4h, h defining the spacing of data 

over D. 

Table 6.3.4: Depth-determination by down-continuation of gravity data along a 

vertical for data specified over the interval 0(-13.5,13.5) of Sat a 
regular interval h=l. 

Depth Continued field lSI 2nd 3rd Grad Normalised 
of True Reproduced Diff. Diff. Diff. f variation 

Zk I-II H(Zk)=fk ,1l f 62f 6Jf 6,J 11 

0.5 2.7308 2.6240 
1.0 2.8112 2.7520 0.1280 
1.5 2.8929 2.8416 0.0896 -0.0384 0.1702 0.000 
2.0 2.9753 2.9286 0.0870 -0.0026 0.0358 0.1639 -0.010 
2.5 3.0583 3.0157 0.0871 0.0001 0.0027 0.2420 0.878 
3.0 -- 3.1616 0.1459 0.0588 0.0587 I .0487~ 1.000 ~ 
3.5 -- 3.2538 0.0922 -0.0537 -0.1125 0.1710 -0.026 
4.0 -- 3.3408 0.0870 -0.0052 0.0485 
4.5 -- 3.4227 0.0819 -0.0051 0.0001 

[Down-continued field H(zd is obtained along the vertical x=O from input data shown 
in column 3 of Table I specified over D (-13.5,13.5). 6,f stands for the ilh order 
difference of f in the horizontal difference Table, "V 7 f stands for downward vertical 

gradient offand 11 stands for normalised relative variation in "Vzf.] 
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Table 6.3.5: Depth-determination by down-continuation of magnetic data along a 

vertical for data specified over the interval D(-13.5,13.5) of Sat a 
regular interval h=l. 

Depth Continued field lSI 2"" 3 fll Grad Normalised 
Of True Reproduced DirT. DirT. DifT. f variation 
Zk I-I I H(Zk)=fk 6 1f t32f t3J f 6,,- '11 

0.5 0.1597 0.190 
1.0 0.1622 0.197 0.007 
1.5 0.1641 0.204 0.007 0.0 0.0160 0.0 
2.0 0.1655 0.211 0.007 0.0 0.0 -0.0003 -0.736 
2.5 0.1664 0.206 -0.005 -0.012 -0.012 -0.0020 -0.801 
3.0 -- 0.211 0.005 0.010 0.022 0.0130-0( -0.099 -0( 
3.5 -- 0.217 0.006 0.001 -0.009 0.0120 -0.138 
4.0 -- 0.223 0.006 0.0 -0.001 
4.5 -- 0.230 0.007 0.001 0.001 

[Down-continued field H(Zk) is obtained along the vertical x=O from input data shown 
in column 4 of Table I specified over 0(-13.5,13.5). t3Jstands for the i'horder 

difference of f in the horizontal difference Table, Vzf stands for downward vertical 
gradient offand 11 stands for normalised relative variation in Vzf.] 

Table 6.3.6: Computation of depth to the causative mass from gravity and magnetic 

data specified over D (-20.5,20.5) of S by down-continuation along the 
vertical at x=O. 

Relative Relative 
Depth Gravity field vertical Magnetic field vertical 

of along x=O gradient along x=O gradient 
Zk H(Zk) 11 . H(Zk) 11 

0.5 2.632 0.163 
1.0 2.755 0.169 
1.5 2.846 0.000 0.175 0.000 
2.0 2.933 -0.129 0.180 -0.008 
2.5 ~.019 0.878 0.186 -0.108 
3.0 3.171 I.OOO~ 0.191 0.099~ 

3.5 3.241 -0.072 0.197 -0.938 
4.0 3.349 -0.107 0.184 -1.000 
4.5 3.429 0.188 
5.0 3.506 0.192 

[The first maximum of the vertical gradient of the down-continued gravity and 
magnetic field values along x=O occurs at zk=3, the actual depth of the source below 

the datum line S.] 
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6.3.5 Gener"al Remarks on Oown-Continuation and Oepth­
Determination 

(i) Formulation of problem of down-continuation to a horizontal half-space 

boundary and that to a curved continuation boundary with a nat central part, 

are both built up on sound theoretical basis. Howcver, for data specefied over 

a tinite datum Icngth, it appcars that thc later providcs a bctter down-continucd 

field over its nat part than that providcd by the former ovcr the same intcrval 

cOinciding with it. 

(ii) Numcrical analysis on down-continuation of erroneolls data with error E, 

lEI:::; I % of the true response, is carried out in this work. It is observed that the 

error in the continued field increases to about 2% in general when the field is 

continued to a level 2h below the datum linc, h definmg the spacing of <.IeIta 

over the datum line 

(iii) Since the parabolic continuation boundary approaches the top of the causative 

mass taking a tapcring shClpe as depth increases, the approach is expected to 

provide a rcasonable point to point depth to the top of the undulatcd bascmcnt 

in a geological basin. 

(iv) For a causative mass lying at a depth d ~ D" the search depth. below the 

datum line S, the vertical gradient ofthc continued field H(zk) will not exhibit 

its first maximum at a depth shallower than D~. To determine the depth in such 

a case, Ds is to be increased and accordingly, the spacing h of data over S is 

to be refixed as h=05/4. Purther, the technique in general produces the depth 

within a maximum error Em", < tJ.z, the step size of Zk along the vertical. 

However, the result can be improved by considering a smaller value of tJ.z. 
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(v) The observed ground magnetic data are with more than I % error in them in 

general. The error in the data can be reduced by up-continuation of them to a 

higher level. Presence of unacceptable error in data will be revealed either in 

non-convergence of solution or in yielding of unacceptable depth to the 

subsurface causative mass. 

(vi) Profile magnetic data in 20 with normal corrections, can be treated as isolated 

for its use in determination of depth to the causative mass by use of the down­

continuation technique described in the work. This provides as easy approach 

in finding depth to the basement in a geological basin from observed magnetic 

data. 
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CHAPTER VII 

APPLICATION TO FIELD DATA 

7. t Identification of EW trending faults and detennination 
of sediluentary thickness in Shillong-Mawlong area by 
analysis of Inagnetic data 

7.1.1 Introduction 

On June 12, 1897 Shillong, the capital of Meghalaya, was violently rocked by the 

great Assam Earthquake of magnitude 8.1 in Richter scale. The main cause of the 

quake remained unknown for over a century. Most scientists previously believed tbnt 

this quake wa's caused by a rupture on the Himalayan thrust fault that dipping to the 

north and propagating all along beneath Bhutan. 

At the turn of the century, Captain Bond discovered an 8 ft uplift of the Shillong 

plateau while working for the Survey of India (Sol) to remeasure the triangular points 

established by the original survey of the Plateau ill 1862. His superiors dismissed his 

results, says Prof. Bilham (Geology news, 200 I). 

In the early 20th century, Richard Oldham concluded that continuing movement of the 

Shillong Plateau following the Assam event caused errors in the original data and 

recommended a retriangulation in the northern portion of the plateau. He later wrote 

about the Assam earthquake in extraordinary detail and went on to discover the core 

orthe earth (Bilham and England 2001). 
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rinally, Bilham and England (200 I) analyzed Bond's data and found that the northern 

edge of the Shillong plateau rose violently by Illore thall 11m followillg the rupture of 

a buried 110 km long reverse fault, dipping steeply away from the Himalaya and 

penetrating 9 to 45km beneath the surface. They dubbed it 'Oldham fault'. They also 

inferred that there must exist a reverse fault at the southern edge of the plateau 

dipping northwards that acted in concert with the Oldham fault to wedge the Shillong 

Plateau uniformly upward without tilting it (Geology news 200 I). 

The reverse fault at South of Shillong coincides with the exposed Dauki fault which is 

clearly visible at the southern edge of the plateau. However, the northern Oldham 

fault does not show any outcrops in the Nongpoh-Barapani are~ (Bilham and England, 

200 I) which is mostly covered by Proterozoic Shillong group of sediments. The 

Shillong plateau with a high elevutiol1 anti positive Bouguer gravity (-20-40 mGnl) 

does not have a crustal root in the mantle and the crust underneath is thinner :::::35km, 

(Mitra et. aI., 2005). It must therefore be supported by dynamics along two reverse 

faults, the south bounding Dauki fault and the north bounding Oldham fault, as opined 

by Mitra et. al. (2005). But there is no direct visual evidence of the existence of the 

Oldham fault. The paper addresses the question by interpreting magnetic data 

available for the area. 

Nandy and Dasgupta (1986) used satellite images to delineate a number of buried 

lineaments beneath the Alluvium in northeast India. The NE-SW Tyrsad-Barapani 

lineament/shear is clearly discernible on the imagery, but the Oldham fault, if it exists, 

between Barapani and Nongpoh under the cover of Proterozoic sediments, finds no 

mention tn Nandy (200 I). 
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Magnetic traverses from· Guwahati to Shillong along National Highways NH37 

(extending from Guwahati to Jorabat) and NH40 (extending frolll Jorabat to Shillong 

via Nongpoh, Umsning and Barapani) were laid out by Jawahar and Ramaiah (1991). 

Without incorporating topographic and crooked-line correction to data, they 

corisidered a vertical field profile passing through Nongpoh, Barapani and Shillong as 

if the data were acquired on a horizontal line. A qualitativc interpretation of data 

showed high fluctuation of magnetic anomaly over Nongpoh on the exposed granite 

and a negative anomaly over the Nongpoh-Shillong area, covered by sediment. In 

their work, no attempt was made to identi fy any buried feature across NH40 111 

Nongpoh-Shillong area. 

Recently, the Geological Survey of India (GSI) carried out close-grid gravity­

magnetic (GM) surveys in certain parts in Meghalaya. GM maps of Umroi-Shillong, a 

southern portio'n of the study area, \",ere presented by Pathak et. a!. (2003). The maps 

clearly indicate an alignment of faults in the area. No such survey however was 

carried out in the 8arapani-Nongpoh area. 

In the year 1977, an Aeromagnetic survey of the area had been conducted by National 

Geophysical Research Institute (NGRI) for the North East Council (NEe) at two 

di fferent altitudes; the eastern and western blocks at 4600ft and the central block at 

7000ft aMSL with a flight line spacing of 2klll. A contour map of the magnetic 

anomaly was prepared for each individual block and these were composited to present 

an aeromagnetic map of the Plateau. A qualitative analysis of the map was carried out 

by Rama Rao (1999) showing EW lineaments generally in the ccntral part of the 

plateau, but none through the Nongpoh-Barapani EW sector. 
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In this work, we attempt to examine the existence of the Oldham fault by quantitative 

analysis of aeromagnetic data. An attempt has also been made to reexamine the 

ground magnetic data of lawahar and Ramaiah (1991) 

7.1.2. Geology and topography of the study area 

The Shillong plateau is a granite massif with a prominent NE-SW trending wide patch 

of Proterozoic Shillong group of sediments with a few exposed intrusives at its 

eastern edge. The study area, namely the Shillong-Nongpoh-Mawlong, bounded by 

latitudes 25 0 30' and 2GoN and longitudes 91 °50' and 92°7'30" E (Toposheets Nos. 

780113, 780114, 83CI I, 83C/2), lies mainly in the Proterozoics. Nongpoh, north of 

Shillong, .lies at the western edge of the Proterozoic patch, Umsning and Barapani lie 

at its central part (Fig. 7.1.1) amI Mawlong sits on exposed grnnites, north of the 

patch. 

The topographic height gradually increases towards the south as we move from 

Nongpoh (500m approx.) to Shillong and attains a maximum of 1964 m (Shillong 

peak) - Gkm south of Shillong. The height generally varies from 500 to 1300m aMSL 

in the E- W sector, bounded by the latitudes of Nongpoh and Barapani. The National 

Highway NH40 with a zigzag course passes through Nongpoh, between Guwahati and 

Shillong and apparently traverses the predicted Oldham fault somewhere between 

Nongpoh and Barapani (Gilham and England 200 I). 
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Fig.7.1.2: Aeromagnetic Map of Nongpoh-Shillong area showing lines of 2-D 
magnetic profiles under consideration. 

10.00 15.00 20.00 25.00 30.00 35.00 

10.00 15.00 20.00 25.00 30.00 35.00 

(Flight level 2.1336Km aMSL, contour interval 20nT) 
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Fig. 7.1.2 clearly renects the response or the exposed granite or Nongpoh-Mawlong 

corridor at its north, that of the intrusives at the southeast corner and the response of 

N E-S W trend i ng Barapan i I inealllent/shear in its ccntral part. It further shows E- W 

magnetic lineaments immediately north of Shillong and NEW trending lineament 

immediately south of the Nongpoh-Mawlong corridor. No EW lineament could be 

traced in the area bounded by thc latitudes of Nongpoh and Barapani. 

(b) Quantitative Analysis 

To carry out a quantitative analysis of the aeromagnetic data, six NS lines were drawn 

between latitudes 26°N and 25.5°N so that the magnetic field anomaly along each of 

thcm could be approximately regarded as a two-dimensional one. The lines are 

identified as A I-B I, A2-B2, A3-B3, A4-B4, A5-B5, A6-B6 in rig. 7.1.1. The line 

A I-B I extends along longitude 91 °50/E and A6-B6 extends along longitude 92°7.5 i E. 

The line A2-B2, shown in Fig. 7.1.1, passes near Nongpoh, Umsning, Barapani and 

Shillong and A6-B6 defines the eastern boundary of the area under study. 

Topographic height along A2-B2, read from the contour map of Toposheets, is shown 

in Fig. 7.1.7 and that along A6-B6, in Fig. 7.1.8. It is evident from rig. 7.1.7 that the 

topographic height along A2-B2 varies from 500 to 1I00m over the EW Nongpoh­

Barapani sector and rises sharply in the Barapani-Shillong sector beyond Barapani 

attaining 1964m over a distance of about 9km. The height along A6-B6 varies from 

750 to 11 OOm over the EW sector and rises \0 approx.1500m south of l3arapani. 

Assuming that the effect of remanent magnetic elements, if present, is negligibly 

small, the downward vertical component magnetic field Tz is computed along each 

line using the formula Tz=Tsin i, where T7 is the vertical field, T the total field and i 
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the inclination of the Earth's magnetic field at the point under consideration. (Murthy, 

1998). The inclination angle i varies from 37.33° to 36°N as we move frolll latitudes 

26°N (north of Non gpo h) to 25.5°N (south of Shill on g). The normalised versions ofTz 

obtained along the line A2-B2 and A6-B6 are shown in Figs. 7.1.3 and 7.1.4 

respectively. 

(i) Gradients of Vertical magnetic profile and Identification of Approximate 
Fault-trace Points 

Thin plates represent the simplest model or step ('aulls in two-dimensions. for a 35° 

angle of polarisation, all the points, maximum of Tz, inflexion of ils horizontal 

gradient T7,x and the minimum of its vertical gradient T7.7., form a cluster in the vicinity 

of the fault-trace point. (Fig. I, Appendix Ill) 

To model the approximate location of a basement fault from observed magnetic data; 

we computed the gradients of T7, numerically. It has been pointed out by Hammer 

(1979) that computed gradients of an observed potential field are highly sensitive to 

errors in the input data. However, stable and reliable horizontal and vertical gradients 

of a gravity or magnetic profile call be computed frol11 field data at z=2h level above 

the datum line z=O by the source technique of Laskar (1999), where h defines the 

uniform spacing of data over the datum line. In this case the error in the computed 

horizontal gradient Tzx appears almost witHin the ullcertainity of input data, whilst the 

error in the vertical gradient Tzz is slightly enhanced, without any shift in the locations 

of the extrema of Tzz (Laskar et.al 1996). Hence, horizontal and vertical gradients of 

the vertical field were computed following Laskar (1999). Computed gradients Tzx 

and Tn of the vertical field T7. at up-continued level along A2-B2 and A6-B6 are 

shown in Figs. 7.1.3 and 7.1.4 respectively. 
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Fig.7.1.3: Vertical Component field and its horizontal and vertical gradients definmg 
approx. location of basement faults along A2-B2. 
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Following the criteria for identifying the approximate location of a fault f)'om gradient 

analysis of the vertical field discussed earlier, possible locations of the faults across 

the NS lines have been noted. The T7. profile and its gradients along A2-B2 and A6-

86 are shown in Figs. 7.1.3 and 7.IA respectively. rour possible faults lying across 

A2-B2 over the EW sector are identified and designated as F I , F2, F3 and r4 (Fig. 

7.1.3). Fault FI lies south of the Umsaw reserve forest (RF), at a distance of about 

7km north of Umsning, F2 lies at around Umsning at the southern margin of the 

Proterozoic basin bounded to the south by an intruding patch of exposed granite 

(Fig.7.1.1), F3 lies about 3km north of Barapani and F4 lies about 6km south of 

Barapani. On examining the T" T" and Tn profiles of A6-B6, we find that the 

northern half of the Tz profile is almost nat and two possible faults r l and F2 lie 

across the southern part of A6-B6. Fault r I lies about 4km north of Umsning and r 2 

about 4km sOllth of 8arapani. 

The flat, smooth behaviour of the magnetic profile indicates that either the basemcnt 

is flat or, with small topographic variation, it lies at a greater depth. As such, to pick 

up the variation, if any, at the basement below the northern portion of A6-B6, the 

observed magnetic profile need to be continued downward to a level below the flight 

a Iti tudc. 

On examination of the geological map (Fig. 7 .1. I ) and the Sol toposheets, we find that 

the flight line clearance varies approximately frOIll 834m to 1634111 over the EW 

sector bounded by the Nongpoh and Barapani latitudes. The topography rises sharply 

south of 8arapani and it attains a maxilllulll height of 1964111 over a distance of about 

9km south of 8arapani. As sllch, for a reliable continued field along a NS line over 

the EW sector, the field is to be continued downward to a curved lower boundary, as 
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shown in Fig. 7.1.8, with its nat part lying above the EW sector at a depth 750m 

below the flight level. 

(ii) Downward Continuation of Profile Magnetic Data and Preparation of 
Magnetic Map at a lower level 

It is evident frol11 the topographic variation of the area under study that the T7-profiles 

can be continued downward to a level) .3836km aMSL (750111 below the flight level) 

over the, E-W sector mentioned above, on a curved lower boundary ABCDEF (rig. 

7.1.7) without violating the Dirichlet condition that T7. remains a harmonic function in 

the upper half-space domain bounded below by the continuation boundary. 

Formulation of the problem is presented in subsection 4.2.1 and model studies is 

carried out in subsection 6.2. It may be mentioned here that for the input data within 

1 % random error spaced at a regular interval h(=0.5m) over the datum line, the field 

can be' continued downward within 2% error, in general, to a level which is I unit 

(=2h) below it. 

To prepare a map of the magnetic field at a lower level, the vertical component 

profiles were continued downward taking into consideration the full-length data 

extending from latitudes 25°30/N to 26°N. The down-continued field obtained along 

A6-B6 profile is shown at the top of Fig. 7.1.8. The down-continued field so obtained 

along the lines at the lower level are contoured by SURFER-32 at intervals of 10nT. 

The map so prepared is shown in Fig.7.1.5. The approximate fault trace points 

identified earlier along the NS profiles by gradient analysis were transferred to the 

new Illap shown as r. 
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! 

Fig. 7.1.5: Contour map of vertical component magnetic field at level above EW 
central sector (Contour interval =1 OnT) 

Distance In km 

[(lat 25°30'N, long 91°50'E) define the origin of the reference frame. Distance 
between 25.5°N and 26°N is 55.3 km. Map prepared at level 1.3638km.] 

It is evident from Fig.7.1.5 that all the faults identified earlier by the gradient analysis 

of profile data, visibly appear in the new map without much change in their locations. 

Further, a new fault location across A6-B6 distinctly appears at a latitude about 8km 

north of Umsning. This fault did not appear in the gradient analysis along the line at 

the flight level. 
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Fig. 7.1.6: ReglOnal Magnetic profile along Guwahati-Shillong highway and its 
harmonic components 
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[Profiles 1, 2, 3 and 4 represent superposition of first 10, 15, 20, 25 harmonic 
respectively. Profile 5 represents the original VF profile of Jawahar & Ramalah 
(1998).] 
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FIg. 7.1. 7: FlIght level, Continuation boundary, ground and basement topographIc 
profiles along A2-B2 
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[A2-B2 line extends from south of Bamihat (lat 26°N,long 91 0 53'E) to south of 
ShIllong peak (lat2S030'N, long910S3'E). Topographic elevation varies from 
260m to 1920m aMSL along the line.] 
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Fig.7.1 8: Normalised Total field, Topography and basement profile along A6-B6 

2500, 

N1=10 N3=61 

2000 A Flight level =2 1336 km aMSL 

1500 
c:'-----------~~------------~ 

1000 

i .. 1V~"'RI 
! i 

oj 
I 

·500 j 
I 

Oa\umllne S = AF = AB+BE ... 

120 

100 

f0-e 

080 ~ 
Qj 
0; 

u 
~ e 
g' 

060 E 

~ 
~ 

040 ~ 

020 

o 
Z 

.:: L ___ -'--_______ 1_._ -- - __ ..1.. _____ '---____ ~---.-- 000 
o 10 20 ~ ~ ~ ~ 

[A6-B6 line extends from (Jat 26°N, long92°7'30"E) to (Jat25°30'N, 
long92°7'30"E). Topographic elevation varies from 350m to 1470m aMSL along 
the line. Continuation boundary BCDE with continuation level CD 0.75km below 
the flight level. ] 

(c) Alignment ofEW Trending Faults ill Nongpoh- Barapani sector 

The down-continued magnetic map (Fig. 7.1.5) shows a series of lows aligned in a 

NE-SW trending corridor at the central part of the Nongpoh-Barapani sector. This 

coincides with the Barapani shear identified by Nandy (2001). 

On joming the approximate fault trace-points, shown as F I on each of the NS lines in 

Fig. 7.1.5, we note that a nearly E-W trending fault begins to appear north of the 

Umsaw reserve forest (91 °50'E longitude) continuing eastwards up to the end of the 

study area, taking oa northward shift in between the NS lines 4 and 5 where it 
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encounters a NE-SW trending fault of the Barapani shear. In the western part, it lies 

about 7km north of Umsning and follows the up-stream course of the west flowing 

tributary of the Umsaw River. In the eastern part it shows a SEW trend on crossing 

the Barapani shear. The analysis also reveals the existence of a second fault at 

Umsning, defined by the trace points F2 marked on the first 3 NS lines, that extends in 

the SEW direction and joins the Barapani shear about 5km east of Umsning. 

7.1.4 A Comparative Study of Throw of the Faults 

On acquiring vertical component magnetic data along the zIgzag and undulated 

Guwahati-Shillong road with a spacing of I km, .lawahar and Ramaiah (199 I) 

presented a vertical field profile extending frolll .Iorabat to Shillong passing through 

Nongpoh, Umsning and Barapani. The data were not cOITected for topographic and 

crooked line corrections as mentioned earlier. The profile is therefore unsuitable for 

the study of small throw faults. However, since the basement lies at a shallow depth 

along the NS linc (Fig. 7. 1.1) that passes through Nongpoh and Shillong, the data 

acquired by .Iawahar and Ramaiah (1991) may be expected to contain at ieast a weak 

signature of faults, if any, even though it be masked by errors. 

To extract this information, the profile data were decomposed into different 

harmonics using the finite Fourier Series. Superposition of the first 10,15,20 and 25 

harmonics are presented along with the original data in Fig. 7.1.6. We observe that the 

3rd and 4th profiles show their maxima at around Umsning and also at a point about 

6km north of Umsning indicating the possible existence of faults at these locations. 

On examination of trace 2, which is obtained by a combination of the first 15 

harmonics, we observe that the maximum at around Umslling persists whilst the other 
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maximulll north of Umsning, disappears. This indicates that for a shallow basement, 

the fault north of Umsning is of much smaller throw than that near Umsning. 

7.1.5 Sedimentary thickness in the Shillong-Nongpoh-Mawlong Area 

The Proterozoic Shillong group of sediments directly overlies the basement in the area 

(Das 1990, Karim et. al. 20(3). Once the depth to the basement below the flight level 

is known, the sedimentary thickness call be determined from a knowledge of the 

topographic height of the ground surface. 

To find the depth to the basement, we use the DEPTHDNC software (Laskar & Singh 

1993) for computing point to point depth to the basement along a 2-D profile. The 

theoretical basis and working principles of DEPTHDNC are outlined in Subsection 

4.2.3. 

Two vertical field profiles A2-B2 and A6-B6, shown in Fig. 7.1.3 and 7.1.4 

respectively, were analyzed to determine depth to the basement underneath. The 

profiles are given at the flight level 2134m aMSL. Flight line clearance varies 

approximately from 1030 to 1634m along A2-B2 and approximately from 1030 to 

1384 along A6-B6 over the EW sector bounded by the latitudes of Nongpoh and 

Barapani. 

Since the maximulll flight-line clearance along A2-B2 is 1634m and that along 1\6-B6 

is 1384 over the sector, the search-depth for the basement top can be initially taken as 

being 2km for the apex Zk of SL moving downward along a vertical in ~z=0.25km 

steps (see Fig.4.2.1). Depending on the search-depth, the data spacing along the 

datum line S at flight level becomes h=0.5km. (See Subsection 4.2.4) 
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Depths to the basement along A2-82 and A6- 86 were obtained at points every 2km 

apart The basement is encountered almost at every point along A2-82 but only at a 

few points along A6-B6 at the northern margin of the basin. The depth profile, so 

obtained along A2-82 thus shown at the bottom of Fig.7.1.7. Subsequently, the 

program was run for a 4km search depth along A6-86 with h=1 km and 6z =0.5km. 

These were then further refined by taking 6z =0.25km. The depth profile so obtained, 

is shown at the bottom of Fig.7.1.8 along with the normalised total field and down­

continued T7. proliles on its upper part. 

It is evident from Fig.7.1.7 that the maximulll possible thickness of sediment is about 

300m between Nongpoh and Umsning and a fault of small throw clearly appears in 

the basement profile about 7km north of Umsning. Further, an apparently incorrect 

depth appears at the exposed narrow NE trending gnmite patch, south of Umsning 

showing that the computed depth to the top of the granite lies about 200m below the 

actual. This happens because the response at the night level, at about 1.5km above the 

exposed patch, is devoid of the high frequency response of the granite patch. The 

software therefore yielded a smooth version of the top of the basement showing it at 

about 200m below the actual over the exposed patch of granite south of Umsnin~. 

Further, from Fig.7.1.8, we find that the basement is more undulated in the central 

part of A6-86 with depths varying from 3.416 to 2.066 km below the flight level than 

that found along A2-82. A maximum of about 2.5km thick sediment overlies the 

basement along A6-B6. 

It can also be inferred from the above exercise that the Shillong group of sediments 

are probably non-magnetic in nature since the analysis did not indicate the presence of 

a magnetic causative at the ground surface over the EW sector. 
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7.1.6 Discussion 

(i) Bilham and England (200 I) predicted that the Oldham fault with a small throw 

extends east-west over a distance of about I 10km passing through the study area 

somewhere between Nongpoh and Barapani and it penetrates to a depth of about 9 

to 45km, dipping away from the Himalayas. The present study indicates the 

possible existence of two EW trending faults in the study area. The first one, an 

EW trending fault, extends over the entire EW sector of the study area located at 

7km north of Umsning and the second one, a SEW trending fault, extends over a 

distance about 10km starting frol11 west of Umsning and ending at around the 

Barapani shear. The former has a small throw as evident from the harmonic 

analysis of the ground magnetic profile along A2-B2 and also from the basement 

profiles computed along A2-B2 and A6-B6. The trend, length and throw all 

appear to be closely matching with the Oldham fault (Bilham and England, 200 I), 

although its depth extent and dip angle remain to be verified by other geophysical 

means. 

(ii) The method used here for locating an approximate fault-trace using the simplest 

fault model, appears to work well for field data. It is evident from Fig. 7.1.5 that 

the possible existence of faults identified by gradient analysis also appear in the 

contour map' of down-continued data. Furthermore, they corroborate the basement 

profiles obtained along A2-B2 and A6-B6 lines in the area. 

(iii)The technique of down-continuation of data from the datum line to a horizontal 

line below it, could have been used by limiting the data-length over the EW 

Nongpoh-Barapani sector at the flight level. Excluding the end values, 

unacceptable for any practical purpose, however would have restricted reliable 

field values only to the central part of the EW sector. The present approach 
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provides reliable field values over the entire NS-span of the EW sector taking into 

account the contribution of data specified over the entire data-length from north of 

Nongpoh to south of Shillong. 

(iv)The ground gravity-magnetic (GM) survey, carried out by Pathak et.al (2003), in 

the southern part of the area suggests that close grid GM data with proper 

corrections may possibly provide sharper indications of faults in the area. 

(v) The basement profile obtained from magnetic data, in a shear zone in particular, 

needs further verification from gravity data. The exercise could not be carried out 

for non-availability of gravity data. 

(vi)Upward or downward continuation of a potential field from boundary data is 

governed by the theory of reproduction of a harmonic function from boundary 

data. Implementation of total field as boundary data leads to generation of an 

unknown harmonic fUllction, in general, above or below the boundary, As slIch, in 

this work, vertical component magnetic field is constructed from total field for its 

upward or downward continuation from the boundary. 
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7.1.7. Conclusion 

The possible existence of a long EW trending continllolls fault of small throw in the 

northern half of the Shillong-Nongpoh-Mawlong area of Meghalaya appears to be 

required by the analysis of available magnetic data. Appearing somewhere west of the 

Umsaw reserve forest, it follows the upstream course of a west flowing tributary of 

the river Umsaw, crosses the Barapani shear and continues past the eastern boundary 

of the study area in the SEW direction. This corresponds rather well with the Oldham 

fault predicted by Bilham and England (200 I). The shillong group of sediments 

appears to be non-magnetic in nature, its thickness varying from 200 to 300m in 

Nongpoh-Umsning area, and about 2.Skm thick in the eastern part of the study area. 
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CONCLUSION 

t\ halr-spacc problcm in potcntial thcory is trcatcd as a particular case of a closed 

domain problem with a part of the boundary at infinity_ Derivation of a half-space 

problem by Green's formula is straightforward. For a closed domain problem 

expressed in simple or double layer boundary density, consideration of the order of 

the density at infinity leads to its conversion to a half-space problem. 

On up-continuation of a two dimensional harmonic function 1-1, an anomalous gravity 

field or a component magnetic field with asymptotic behaviour 

H == O(r- II
), n ~ I, r ---,} CfJ, from boundary data, it is shown that for the data specified 

over a half-space boundary, the field in the upper half-space domain 8 1 can be 

reproduced as potential of a simple as well as a double layer boundary density. It is 

also shown that the field can be rcproducc~1 in 13 1 by Green's formula without finding 

Green's function for the boundary. 

In down continuation of a two-dimcnsional potential ficld froll1 (1 finitc datulll linc it is 

shown that down-continuation to a curved boundary with a nat central part, its arllls 

coinciding with the datu III line, provides a better numerical result ovcr the nat ccntral 

part than that provided over the same flat part by down-continuation to a horizontal 

boundary coinciding with it. The technique so developed helps in providing a better 

coverage in down-continuation of aeromagnetic data acquired over a narrow valley 

bounded by steeply rising high granitic hills at its boundary. 
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On depth-determinatIon by down-continuatIon or a 2-D potential field towards its 

source, it is expected that down-continuation to a concave boundary with its arms 

extending along the datum line and the apex moving downward in steps along a 

vertical giving the boundary a tapering shape as depth increases, will lead to 

determination of point to point depth to an undulated basement in a geological basin 

when continuation to a horizontal boundary theoretically fails to achieve it. 

1\n analysis is carried out to determine the spacing of data over the datum line for 

achieving a reliable continued field upto a depth Os along a vertical. It is shown that 

the data-spacing h = Dsf4 provides a reliable continued field at the apex of the 

concave boundary as it moves downward along the vertical. Further, in down­

continuation of data fro111 a finite datum line, it is shown that the error in the 

continued field computed along the vertical steadily increases with depth. As such, 

this does not affect the position of the first maximum of the vertical gradient of the 

field along the vertical, the depth of the first maximum of tile vertical gradient 

defining the depth to the top of tile subsurface causative mass. 

In application to field data, isolation of a magnetic anomaly is not required for 

determination of depth to the basement from it. The data read from a map or profile 

data prepared with normal correction acquired along a line, can be treated as isolated 

for its use in depth determination. 

On successful testing of the techniques on model data, these are applied to 

aeromagnetic data of Umiu111 valley of Shillong-Nongpoh area, bounded at south by a 

steeply rising hill of Meghalaya. The analysis identifies EW trending basement faults 

lin-identified in the exposed geology of the area and predicts existence of 2 to 2.5 

thick sedimentary cover, possibly non-magnetic in nature. 
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APPENDIX I 

UNIQUESS OF SOLUTION OF THE INVERSE PROBLEM 

For a two-dimensional harmonic function H with asymptotic behaviour H = 0«(11), 

n ~ I, r ~ <Xl defined in the upper half-space domain Bi bounded below by a half-space 

boundary S(= So +SL+ So, Fig,3.2.1), given 1-' over S, there exists a double layer 

boundary density ~l over S that reproduces the field H in Bi (Laskar 1984) as 

H(P) = - jlog;lq - pl~l(q)dq, P E B j • (i) 
s 

As P ~ PES, following Jaswon and Syml1l (1977), the formula (i) yields the 

boundary relation between H and ~l as 

H(p) = rr~l (p)- jlogj'lq- pi ~l(q)dq,p E S. (ii) 
s 

Given Hover S, the equation (ii) formulates a Dirichlet problem in ~l for the upper 

half-pace domain Bi in terms of H specified over S. That the equation has a unique ~l 

over S, can be shown considering Bi as an interior domain enclosed by aB = S+S\!> Su 

being a semicircle of rad.ius R with ends over S (Fig. 3.2.1). Since the interior Dirichlet 

problem in ~l represented by 

H(p) = rrj.t(p)- jlogj'lq -pl~l(q)dq,p E aB, 
S+SII 

has a unique solution (Jaswon and Symm, 1977) and ~l = O(H), r ~ <Xl, shown in 

Subsection 2.4.3, we find the integrand over Su vanishes as R~<X) and the above 

equation takes the form of equation (ii) with a unique ~l over S. This ~l reproduces the 

field H on and above S as its potential. 
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Let liS now assllme that the field H be specified over a horizontal half-space boundary 

S(= So + Su + So, Fig.3.2.1) and tbe curved continuation boundary S, having a central 

concave pal1 SL witb its ends common to those of Su' extend to infinity along So on 

both sides of Su' Now for PE Su' excluding its end points, the half-space formula (i) 

yields 

=- Jlogj'lq - pl~l(q)dq, P E Su' (i i i) 
S, 

the integral over So having no contribution to H at P E Su' This is evident frOI11 the 

fact that 10gj'I(I- 1'1 = 0 fur 1', (I E Sand I' ::f- (I. Once the ~l over SL is obtained as 

solution of the equation (iii), ~l over So is given by (ii) rewritten as 

rr~l(P) = H(p) + Jlog;lq - pl~l(q)c1q, PESo, 
s, +<;" 

= H(p) + Jlog;lq - pl~l(q)dq, PESo, (iv) 
Sr. 

the integral over So being zero. 

Let us now assume that given Hover S (= So + Su + So ), the equation (iii) i.e. 

H(p) = - Jlog;lq - pl~l(q)dq, PES.,. (v) 
s, 

has a ii over SL as its solution. Once the ii over SL is known, the ii over So can be 

obtained from (iv) 
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n:jI (p) = H(p) + flog,'lq - pljI( q )dq, p E S., 
5, 

This jI belonging to S reproduce the H in 8,. including the boundary S. If H be the 

potential in 8, due to jI over S (= S" + SL+ So' rig.3.2.1) we find, following the Rbove 

conclusion 

"(1')=1-/(1'), PES. (vii) 

Now let us construct a harmonic function 81-/ in 8, as 

8H (1') = - flog:lq - pI8~l(q)dq, I' E 8, (viii) 
<; 

where 8H (I') = H(P) - H (P), P E 8, and O~l(q) = ~l(q)- jI (q), q E S. Since H = 

Hover S, we obtain 

0= H(P) - H (I') = - jlog,'lq - pI8~l«t)dq, I' E S (ix) 
5 

SlIlce 8H (I') = 0 over the half-space boundary S it must be zero at infinity. This 

means, 8H = 0 in upper half-space domain 8 bounded below by S . This Icads to 

(x) 

Since Hand 1-/ are potentials due to ~l and ~l respectively, both belonging to the 

boundary S, Hand H must satisfy Laplaces equation in the upper half-space domain 

8, bounded below by S and at an interior point P(xo,zo) of Su' both Hand H and their 

respective normal derivatives H' and 1-( are analytic functions. Hence, considering the 

origin of reference frame at P, by (ix) and (x), we obtain 

H(xo) = H (xo) = Ho (xo) say, 
( 

and H; (xo) = H: (xo) = H I(XO) say, 
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whele Ho and I-II are t\VO different analytic functions on the portion of S" containing 

P. Now following Cauchy-Kowalevsky existence theOiem (Kellogg, 1929, p.245), we 

cOl1clude in the present Crlse tlwt thcle exist" a two dil1lensionalneighbolllhoocl N of r 

and a function U(x,z) which is harmonic in N alld \Vhich assumes on the portion of S" 

in N the samc valucs as the function Ho(x) and whose normal derivative assumes on 

the same portion of S" the values H ,(x). There is only one such function. Here we 

would like to mention that unlike other existence theorems Cauchy-Kowalevsky 

theorem asserts continuation of U across the portion of S" containing P. This means, 

H = H = U in two -dimensional neighbourhood of the portion of S" containing P. 

This conclusion on Hand H remains true over all other portions of S" and as such it 

leads to 

H(P) = H (P), PEStill. (xi) 

where Sill! is a half-space boundary with its central part immediately below S" and 

arms coinciding with So of S . 

On repeated application of the above procedure to subsequent lower boundaries SIIll. 

we arrive at 

H(P) = H (P), PES 

Or o H(P) = H(P) - H (P) = 0, PES. (xii) 

This implies, 

O=8H(p)= 1t8~L(p)- flog,'lq-pI8p(q)dq,pES. (xiii) 
S 
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This equation is identical to the homogeneous component of (ii) with ~l replaced by 

8p. Considering the equation in B, enclosed by S + SlI , R ~ 00, it can be shown 

following .Iaswon and Syml11 (1977) that the equation (xiii) has no no-trivial solution. 

This leads to the conclusion that 

or 

8~l(q)= ~l(q)- fL(q)=O,q E S 

fL(q) = ~l(q), q E S. (xiv) 

Sinee ~l is unique over S, being a solution of a half-space Dirichlet problem expressed 

by equation (il) for H specified over S, the solution fL of equation (v) over SL and 

consequently the fL over S (= S" +SL + So) is unique and it is identical to the Dirichlet 

p over S. 
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APPENDIX II 

DENSITY INTEGRAL OVER THE HALF-SPACE BOUNDARY 

In upward continuation of a two-dimensional potential field H with asymptotic 

behaviour H=O("-"), n21, r~C(), from a half-space curved boundary 

S(=So +Sl. +SO, FigA.2.1), given Hover S, following Laskar (1984), I-l in the upper 

half space domain 8" bounded below by S, can be reproduced as a double layer 

potential 

H(I') = - jlog;lq - pl~l«(I)dq, P E 8,. (i) 
s 

It is evident from (i) that as Ipl ~ C(), 

H(P) = OClpl-') jp(q)dq. ( ii) 
s 

For the gravimetric case, H vanishes asymptotically in O(/P/-' )as Ip/ ~ C() and as 

such, (iv) yields 

jp(q)dq = 0(1), 
s 

( iii) 

a constant, not equal to zero, necessarily. This holds for a horizontal boundary S, say 

S (=So +Su +SO, FigA.2.1), a particular case of S, 

jjI(q)dq = 0(1), 
s 

where jI(q) is the density over S. 

(iv) 

For the magnetostatic case, H vanishes asymptotically in oClp l-
2

) as Ipl ~ C() and as 

such, (ii) yields 

j~l(q)dq = 0 
s 

For a horizontal S, say S, 

(v) 
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flI(q)dq = 0, 
S 

where, as before, II( q) is t1~e density over S. 

(vi) 

Now, considering the integrals (iii), (iv), (v), (vi) we rewrite the integral properties of 

~l as 

fJ-l(q)dq + J~l(q)dq = flI(q)dq + flI(q)dq, (vii) 
So s, So s" 

valid for both gravimetric as well as magnetostatic case with So extending to infinity 

at both ends of Su . 
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APPENDIX III 

MAGNETIC RESPONSE OF THIN PLATES FORMING 
A STEP-FAULT 

Let three infinitely long thin plates of width AB, CD and EF, each extending from -00 

to +00 in the direction of y-axis of a Cartesian reference frame with z-axis upward, be 

placed at depths hI, h2 and h3 respectively below the (x,y) plane such that the plates 

form a step-fault, its strike pointing in the direction of y-axis. Let the plates be 

uniformly polarised by downward doublets of strength ~L per unit area and let the 

doublets be inclined at an angle e with the x-axis, as shown in Fig.l. The plates so 

arranged produce two-dimensionull11agnetic field T? in (x,z) plane as shown in Fig. I. 

Fig. I: Vertical component magnetic response and its gradients of step-faults 
approximation to basement in a geological basin 

T, Vertical corrponcnll1cld 
Tr• Honzonlal gradIent of T, 

Tn Vrrhc.tI comXlncnl of T, 

(Three infinitely long plates of widths extending flom x=-I 0 to 5, x=5 to 15 and x= 15 to 
25 each polarised at 35°, lie at depths 3, 1.5& I units respectively below the datum line 
z=O in a XOZ refelence frame with z axis upward Maximulll of T7 , point of innexion of 
T" and point of minimum ofT/7 form a cluster in the vicinity of the fault-trace point.) 

142 



(i) Magnetic Response of a Single Plate 

For q(x,z) defining a point on the linc A8 \-vith A and 8 defined by (XI,Z) and (X2,Z) 

respectively in the vertical plane y==O, the magnctostatic potential due to the plate at a 

pomt P(X,Z) is 

W(P) =- flog:,lq - pl~l(q)dq (i) 
"13 

where 1',<1 define the position vectors of the field point P and the source point q 

respectively, dq is the arc element at q, Iq - 1'1 is the distance r between P and q, log 

~I<I- 1'1 defines the derivative of loglq - pi at the point q keeping P fixed in the 

dircction 11, 1'1 defining the direction of the doublet of strength p at q. On further 

simpl i fication, the equation (i) becomes 

W(X,Z)= - flq - 1'1-2 
(q - P)· il~l(q)dq 

A" 

_ '=J" (x - X)I + (z - Z)m ( )d 
- - ~l X X, 

x=A (x - X)2 + (z - Z)2 
(i i) 

where I,m are the direction cosines of 1'1 . 

Now, the downward vel1ical component field Tz at Pis, 

Tz(X,Z)= aW(X, Z) =[(Z - Z)I- (x - X)m ]'=" 
az (x - X)2 + (z - Z)2 _ 

'( -'<I 

(iii) 

(ii) Vertical Component Magnetic field due to the Plates forming Step-Faults 

Three infinitely long thin plates AB, CD and EF of widths extending from x I to X2, X2 

to XJ and XJ to X4 respectively lying at depths hi, h2 and III respectively below the (x,y) 

plane. They provide the simplest possible configuration of a step-fault below the 

ground plane z=O. Superposition of Tz response of each plate computed by (iii) 

provides the Tz response of the faults at (X,O) on the datum line. Using the T7 values 
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calculated for an angle of inclination i=8=35°N on the datum linc, its horizontal 

gradient Tzx and vertical gradient Tn are computed at level 2=2h, by' the numerical 

formulae given by Laskar (1999), z=o defining the datum line and h(=0.125) defining 

the spacing of data over z=O. The Tz, T7.x and Tn so obtained are shown in Fig. I. It is 

evident from Fig. I that the point of maximum of Tz, point of inflexion of Tzx and the 

point ofminimu1l1 ofTzz form a cluster near the fault trace point. 
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