| CENTRAL LIBRAR -
TEZPUR UNIVEY
,ﬂLCOSSfontJojgi/

|
|

g )

Tezpur University Library
I

B[]



SOLUTION OF CERTAIN TWO-DIMENSIONAL INVERSE
PROBLEMS IN POTENTIAL THEORY AND THEIR
APPLICATION IN EXPLORATION GEOPHYSICS

A
thesis submitted in partial fulfillment
for the award of degree of

Doctor of Philosophy

By

Pallabee Choudhury
Regn. No. 098 of 1998/

In
The School of Energy, Environment and Natural Resources

Department of Energy
Tezpur University
Napaam - 784 028

Assam, India

JULY 2005






CERTIFICATE

This is to certify that the matter embodied in the thesis entitled “Solution of Certain
two-dimensional Inverse Problems in Potential Theory and their Application in
Exploration Geophysics” submitted by Ms. Pallabee Choudhury for the award of
degree of Doctor of Philosophy of Tezpur University is agoriginal picce of research
work carried out by her under our supervision and guidance. The results embodied in
this thesis have not been submitted to any other University or Institute for the award

of any degree or diploma.

LTI ommarerr— kp{k
(D. Konwer) (S. K. Laskar)
Professor, Dept. of Energy Ex Consultant, DST-GPS Project
Tezpur University Dept. of Physics |
Napaam, Tezpur -784028 Tezpur University
Assam, India Napaam, Tezpur —784028

Assam, India

Date:Z?/July 2005 Date : 29 July 2005



ACKNOWLEDGEMENT

I am deeply indebted and grateful to Dr. S. K. Laskar for introducing mc to potential
theory and its application in geophysics. I cxtend my heartfeit gratitude to him for his
painstaking guidance, constant encouragement, support and cooperation throughout

the course of this work.

I also acknowledge my thankfulness to Prot. D. Konwer for his constant inspiration
and supervision during the entire course of the work and preparation of this

manuscript.

I would like to acknowledge my grandmother, father, brother, sister, aunt and my
friend Nabamita without whose moral support and encouragement the work could not

have been completed.

I would like to express my sincere thanks to Prof. P.C.Deka, Prof. P.Bhattacharyya,
Dr. A. Kumar and Prof. P.K. Bordoloi for their kind help and cooperation throughout

the work.

I am deeply thankful to Anjanda and Nava for their valuable help and useful

discussions.

I will remain ever grateful to my friend Joya and Anindita for their constant
encouragement and various help during the arduous time while working for this

thesis.

I am thankful to all faculty members of Department of Mathematical Sciences and

Department of Energy, Tezpur University for their timely help and support.

Thanks are also due to Prof. V.K.Gaur for his active interest in this work right from

the beginning.

Financial support from the Department of Science and Technology, Govt, of India, is

gratefully acknowledged.

Date  :July 29, 2005 FPttobee (hondun,
Place : Napaam, Tezpur (Pallabee Choudhup;/)



ABSTRACT

This work deals with up-continuation of a two-dimensional potential field from
boundary data by reproducing it as a potential of simple as well as double layer
boundary density. It is also achieved by Green’s formula without finding Green’s
function for the boundary. For the field specified over a horizontal boundary,
downward continuation of it to a flat-bottom curved boundary with its ends fixed and
arms extending along the datum line is achieved as potential of double layer density
belonging to the continuation boundary. Subsequently, down-continuation to a
concave boundary with its ends fixed at the datum line and apex moving downward in
steps along a vertical, giving the boundary a tapering shape as depth increases, is
achieved. Finally, depth to the top of the subsurface causative mass is determined by
the first maximum of the vertical gradient of the down-continued field computed
along a vertical passing through it. The techniques developed are successfully tested
on model data. The up-continued field obtained from model data agrees with the true
response to a good degree of accuracy and the down-continued field appears with
error proportional to that in the input data, the error increasing steadily with increase
in depth without affecting the computed depth to the causative mass. When applied to
aeromagnetic data of Umium valley of Shillong-Nongpoh area, the techniques
identify the E-W trending basement faults and determine the sedimentary thickness in

the valley.
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INTRODUCTION

Analysis and interpretation of gravity-magnetic (GM) data is the first geophysical
method used in exploration of hydrocarbons in a basin. The GM anomaly maps
prepared from the survey data provide a qualitative picture of the basin defining
basement highs and lows and the basin boundary. Subsequently, depth to the

basement can be computed from the observed GM data.

The primary goal of stud.ying gravity and magnetic data is to provide a better
understanding of the subsurface geology of the basin. Both gravity and magnetic
measurements are non-destructive remote sensing methods that are relatively cheap,
and are used to determine information about the subsurface that is useful especially
for exploration of oil, gas and mineral deposits. The value and utility of gravity and
magnetic methods today are greater than ever because of their low cost compared to
setsmic survey and drilling, availability of continent-scale data-sets for tectonic
analysis and increasing resolution achieved through advanced acquisition and

processing techniques.

Gravity data provide information about the densities of the subsurface rocks. Because
there is a wide range in density among the rock types, geologists can make inferences
about the distribution of strata that may be favourable for trapping oil and gas. The
magnetic field of the earth is probably generated by electric currents in the liquid
outer core (Gibson, 2005). Effectively, it is reasonable to think of the field as that due

to a bar magnet at the earth's core. It affects the magnetic minerals that are distributed
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in many rocks in the crust, so that the rocks have a component of magnetization.
Because of variation in the magnctic propertics of different rocks, the sedimentary
rocks having the least magnetic effect, the geophysicists can determine the depth to

the magnetite-rich rocks placed in general at the basement of a sedimentary basin.

A force field in general exhibits a three-dimensional behaviour. However, there are
certain systems in which the field shows a two-dimensional behaviour, the field
varying in a plane without yielding a component perpendicular to it. A field described
in (wo-dimensions provides a quick computational facility to study its nature. Under
certain approximations, many systems can be treated as two-dimensional and useful

results can be obtained with less computational work.

Oil and mining industries acquire gravity and magnetic data to interpret them in terms
of depth and geometry of the subsurface causative mass. :For the field data H;acquired
over an irregular surface S these are required to be up-continued to a horizontal plane
S for subsequent use in qualitative and quantitative analysis of them. In two-
dimensions, the field is to be up-continued to a horizontal lineS, S and S both lying

in a vertical plane. Subsequently, to determine depth to the basement from the

observed data, the field is to be continued downward from S to a boundary below it.

Both the problems stated above, up-continuation from an irregular boundary S to a
horizontal boundary S above it and down-continuation from S to a lower boundary
below it, involve solution of certain inverse problems. The former involves solution of
a boundary value problem (Jaswon & Symm, 1977; Laskar & Bhattacharyya, 2002)
that yields a stable solution for arbitrary data over the boundary, the later involves
solution of an 1ll-posed problem (Tikhonov & Goncharsky, 1987) the solution of

which is highly sensitive to error in input data. (Strakhov, 1963)
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Gravity or a component magnetic field H due to subsurface causative mass 1s a
harmonic function with asymptotic behaviour H=0(r"),n>2, r—o0, in the upper half-
space domain  B; bounded below by a halfsspace  boundary S, In two-
dimensions, H=0(r™"), nz:],r — ogin B;. Given H over S, computation of H in the
upper half-space domain B; requires finding of Green’s function for the boundary S.
Finding of Green’s function for a horizontal boundary is straightforward, finding it for
a general boundary is an extremely difficult task. Courtillot et. al. (1973) however,
found it following a procedure that involves solution of a non-linear equation with

apriori knowledge of the parameters.

Bhattacharyya and Chan (1977) attempted an alternative approach for up-continuation
of gravity and magnetic fields from boundary data. They reproduced the gravity field,
following Roy (1962), as derivative of potential due to a simple (monopole) layer
boundary density ¢ on formulating the problem in an integral equation of the second
kind in o in terms of data specified over S. They reproduced a component of
magnetic field as potential of double (dipole) layer boundary density p on formulating
the problem in an integral equation of the second kind in p in terms of the component
field data specified over S. The fact that the magnetostatic ficld H that vanishes at
infinity in O(™), r—>o0, can also be reproduced as potential of double layer boundary
density which vanishes at! infinity in O(r'%), r—>m in general, remains unexplained in
their work. Laskar (1984)'showed that both gravity and magnetic fields could be
reproduced from the resbective boundary data as potentials of double layer boundary

density. Subsequently, Laskar and Bhattacharyya (2002) have shown that gravity as

well as a component magnetic field can be reproduced in upper half-space domain

from respective boundary data as potential of simple as well as double layer boundary
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density. Further, they have also reproduced the fields by Green's formula without
finding Green’s function for the boundary. The boundary densities in all the above
cases are obtained as stable solution of inverse problems expressing the density in
terms of the data specified over the boundary (Laskar & Bhattacharyya, 2002). Their

discussion is confined in three-dimensions only.

Continuation of a potential field towards its source is supposed to exhibit an irregular
behaviour on reaching the target as it is having a singularity at the source. This
property of the continued field identifies a possible approach for determination of
depth to the basement in a geological basin. Peters (1949) made the first attempt to
find the depth to the basement by downward continuation of vertical component
magnetic data from the ground level to a level below it as an inverse problem
cxpressed in an integral equation of the first kind in the field value at the lower level
in terms of the data observed at the ground level. Instead of solving the problem as
formulated, Peters (1949) suggested analytical continuation of the field by Taylor's
series extrapolation towards the source. Roy (1966) used Taylor’s series extrapolation
for continuation of a two-dimensional field and derived a 4-point formula to compute
an approximate field at the lower level. On specific spacing of data, not explained in
the work, he could show the electromagnetic field widely oscillates on reaching the
target. The approach failed to produce valid results for gravity-magnetic fields (Roy,

1966).

Strakhov (1963) has discussed the inverse problem proposed by Peters (1949). He has
shown that the problem has a closed form solution and it is highly sensitive to error in
input data. He named it an incorrectly posed problem in potential theory. Strakhov

(1967) however could construct a solution using successive approximation method.
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This was quite stable relative to errors in the original data. The difficulty was that the
rate of convergence of successive approximation was very low, particularly when the
lower level, i.e., the level of continuation was near the source. The problem of finding
stable approximate solution was finally solved by Glasko et. al. (1987) by using of
regularisation technique (Tikhonov & Goncharsky, 1987). They named it an ill-posed

problem in potential theory.

The above procedure of down-continuation of an observed potential field from a
datum plane (line in two-dimensions) to a horizontal plane (line in two-dimensions)
below it, cannot help us in finding point to point depth to an undulated basement of a
geological basin, In this case, the continuation plane/ line passing through the bottom
of a trough contains a portion of the neighbouring basement high above it. This
violates Dirichlet condition that the domain of continuation, bounded below by the

boundary of continuation, must be free from the causative mass.

Theoretically, the above formulation requires the boundaries to be extended from -oo
to o with space between them free from the causative mass and the field vanishing at
il-ﬁ'mity. In all practical problems we consider the data over a finite boundary and
assume that the input data are zero outside it. This produces erroneous solution at the
periphery of the boundary and the error propagates towards the central part as depth
of continuation increases. As a result, down continuation of aecromagnetic data
acquired over a narrow valley bounded by sharply rising high granitic hills, suffers
from loss of reliable information over a strip of considerable width stretcﬁed all along
the boundary of the valley. The question arises how to provide maximum possible

coverage in the valley.
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To find point to point depth to an undulated basement in a basin Laskar (1991) has
proposed downward continuation of two-dimensional potential field to a concave
lower boundary, with its arms coinciding with the datum line and apex moving
downward in steps along a vertical line passing through the causative mass. At each
downward step, the field value is computed at its apex and finally the gradient of the
continued field is computed along the vertical to find the depth to the top of the
causative mass without considering the error in the computed field and its effect on

determination of depth to the causative mass.

The work of Laskar (1991) needs further development on (i) design of the
convergence criterion in numerical solution of the ill-posed problem, (it) choice of
spacing of data over the datum line for obtaining a reliable continued field at a
preassigned depth and (iii) a discussion on behaviour of error in the down-continued
field whose gradient along the vertical defines the depth to the top of the causative

mass.

In the present work (1) the basics of two-dimensional potential theory is presented in
short for ready reference and existence and uniqueness of solution of close domain
Dirichlet-Neumann problems are furnished in brief for their subsequent use in
discussion on existence-uniqueness of solution of a half-space problem. Order of the
boundary density at infinity is determined and the theory of half-space problem is
discussed as a particular case of close domain problem when one part of the boundary
goes to infinity. Next (II) reproduction of a two dimensional harmonic function ¢
with asymptotic behaviour $=0(r™"), n21, r—oo, is achieved in the upper half-space
domain B, bounded below by a half-space boundary S from boundary data as potential

of single as well as double layer boundary density. The field is also reproduced in B,




Solution of certain two-dimensionat inverse problems in potential theory and thew appheation in exploration geophysics

by Green’s formula without finding Green's function for the boundary. Subsequently,

(1) for ¢ specified over a horizontal boundary S, downward continuation of ¢ to a

curved lower boundary S with its arms extending along S is discussed by formulating
the problem in an integral equation of the lirst kind in double layer density over S in
terms of data specified over S. Assuming ¢ is defined on and above the continuation
boundary S, it is shown that it has a unique solution over S. However, for the input
data with error, this problem formulates an ill-posed problem in potential theory
(Tikhonov & Goncharsky, 1987), a small perturbation in input data over Screates an

wide oscillation in solution over S.

The anomalous gravity field Ag and the component magnetic field T,, we encounter in
gravity-magnetic data analysis in geophysics, are harmonic functions vanishing at
infinity in the upper half—spéce domain bounded below by the half-space boundary S.
As such, (1V) the problems of continuation of a geo-potential field H, either Ag or T,
mentioned above, are expressed by replacing ¢ by H in the equations_formulating the
half-space problems. Since down continuation of data is highly sensitive to error in
input data and the error goes on increasing with depth, a theoretical discussion is
carried out for determination of spacing of data over the datum line for a reliable
continued field at a givelin depth. It is also theoretically shown that fc;r a finite length
of the datum line S, down continuation of the field at the apex z, of a concave lower
boundary S, as S, extends downward with its ends fixed at Sand z moving
downward in steps along the axis of S, the error in the continued H(zx) increases

steadily with depth of z, below S. As such, the error in the computed H(z) does not

affect the location of the first maximuim of the gradient of H(zy) that defines the depth

to the top of the causative mass below S.
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On discretization of equations (V) a discussion is carried out for finding a suitable
method of solution of a equation formulating the up-continuation problem.
Subsequently, a method of successive correction of a guess solution is described that

yields a stable approximate solution of the ill-posed problem.

Subsequently model studies are carried out for numerical verification of theoretical
results. (V1) It is shown numerically that each of the three formulations presented in
the present work for up-continuation of a ficld from boundary data, yields the result to
a good degrec of accuracy. In down-continuation of data from a finitc datum line, it is
interesting to note that down-continuation of data to flat-bottom curved boundary
presents a better result over the flat part than that produced by down-continuation to a
horizontal boundary coinciding with it at the same depth below the datum linc.
Further, in a narrow valley bounded by sharply rising granitic hills, downward
continuation of aeromagnetic data to a {lat bottom curved boundary, provides a better

coverage of the valley than that by down-continuation to a horizontal line.

Finally, (VI1) the techniques are applied to aeromagnetic data of Shillong-Nongpoh
area of the state of Meghalaya for identification of basement faults from the vertical
component magnetic field and its gradients computed along NS lines above the flight
level in the area. To identify a weak basement feature, if present in the arca, the
vertical component magnetic field is continued downward to a flat bottom curved
boundary to enhance the response of the basement over the narrow valley, the flat part
proving the maximum possible coverage of the valley above the ground surface. In
thc next step, point to point depth to the basement is computed from vertical
component magnetic data to find the thickness of the sedimentary cover in the area.
The depth-profile so obtained approximatcly agrees with the predicted basement

faults across it and the exposed geology at Umsning, a small town in the area.




CHAPTERII

TWO-DIMENSIONAL POTENTIAL THEORY

— e ——

2.1 Potential due to simple sources

2.1.1 Potential due to a simple source

For a logarithmic simple source m placed at point q in a xoz planc (Fig. 2.1.1) the

potential ¢ due to it at a point P in the same planc 1s given by
Gp(P)=-mlogr=-m log'l’—q,, (2.1.1)

where P and q are the posttion vectors specifying the points P and q respectively with

respect to an arbitrary reference point O and r is the distance between P and q.

Fig. 2.1.1: The source point g and the ficld point P in a
xoz reference frame with z-axis upward

z
P
A
-
o7
7 T
/'/ - \\_
-~ m
—~7 4
P e
/'/ T q
_P"“-
Vet <
o]

9



CHAPTER 11

Properties of Simple source potential

¢ The potential ¢ is defined everywhere except at the point q where it has a
singularity.,

o V=0 cverywhere except at the source point q. i.e., the potential ¢ satisfies
Laplace’s equation everywhere except at .

¢ The ¢ at infinity shows the behaviour
o(P) = —lm log’l'l —ll’l"(l’ Sq)m + O(IPI'Z )L

:1s||’| - o,

2.1.2 Potential due to simple sources over a closed contour

For a smooth closed contour B defining the periphery of a vertical section of an
infinitcly long closed surface of density o (Fig. 2.1.2), the potential ¢ at a pont P in

the plane of the contour is expressed as

G(P) = - I ]og|l’ - qlo(q)dq, (2.1.2)

o

Fig. 2.1.2: Interior domain B; is enclosed by the closed contour oB.
Exterior domain B, lies outside B,. Unit vectors i and & are
internal and external normals respectively to OB at g.
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where |P - q| defines the distance between the points P and q, o(q) represents the line

density at the boundary point q and dq represents the elementary arc length at q. For
the sake of further mathematical analysis, Iet us omit the negative sign to the integral

and write the logarithmic potentials as

o(P) = [ log|P - q|o(q)dq, PeB; (2.1.3)
o
and  §(P)= [ log|P - q|o(q)dq, PeB. (2.1.4)

o
These define harmonic functions in B;, B, respectively and they remains continuous at

OB as

¢o(p) = [ log|P -qlo(a)dq, pedB (2.1.5)

oB

It is evident from (2.1.3), (2.1.4) and (2.1.5) that
¢ The potential ¢ is continuous everywhere including the boundary
¢ V’$=0 everywhere except at the boundary.

¢ The ¢ at infinity shows the behaviour

o(P) = log|P| [ o(q)dq-|P|”" [(P.q)s(q)dq + O(P|?)

B aB

as |P|-—>oo.

The tangential derivatives exist and continuous at pedB provided o is Holder
continuous at p, but the normal derivatives are discontinuous.

We write

p-q|= Ioglq - p|'|

9 loglp — q| = log;
on. '
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pP- q| = I0g|q - |)|k ,

—a—log|p - q| = log,
on, ¢

¢

at p keeping q fixed. These have

for the interior and exterior derivatives of Iog'p -q

cqual status and are connccted by

log,|p—q|+log. [p—q|=0, pedB (2.1.6)

For an interior point P, the derivative of ¢ at P in the direction n is given by

0 DY — A (P — __(?_ >
S0P =4, (P) = Ia log|P —qlo(q)dq

Y

= [log |P~qlo(q)dq, P €B,, (2.1.7)

o
exists and continuous in B, for the integrand being regular and uniformly convergent
in P. As P— pedB, the integrand in (2.1.7) has a singularity at p. Following Kellogg
(1929), it can be established for ¢ satisfying Holder continuity at p and n representing

the interior normal i at 9B,

o , .
aTd’(l)) =¢,(p) =nc(p)+ [log |p~qlo(q)dq, p<oB. (2.1.8)

oB

Following the sign convention of Jaswon (1963), treating both sides of OB as positive,

0o . .
54 =d.(p) = no(p) + [log [p—alo(a)da, p < 3B, (2.1.9)

aB
for ¢ defined in the exterior domain Be (Fig. 2.1.2) and o satisfying Holder continuity

at p € 0B.
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2.2 Potential due to double sources
2.2.1 Potential due to a double source

FFor a dipole of strength p placed at a point q in the direction n(Fig. 2.2.1), the
potential W due to it at a point P is given by

W(P) = —ploglP - g, (2.2.1)

Fig 2.2.1: The doublet of strength p having direction i is placed at the
source point q and P defines the ficld point at a distance r from q

!

= 0

integral and write the logarithmic potentials as

W(P) = nlog|P —q,

Propertics of Double source potential

¢+ The potential W is defined everywhere except at the point q where it has a
singularity.

¢ VW=0 everywhere excepl at the dipole at q.

¢ The W vanishes at infinity with asymptotic behaviour W = O“l’|--l ), |P| > oo
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2.2.2 Potential due to double sources over a closed contour

A continuous distribution of double sources of strength | over 9B generates the

double layer logarithmic potentials

W(P) = [log|P —q| 1(q)dq, P eB, (2.2.2)
o
and  W(P)= floglP -q|,n(q)dq, P €B, (2.2.3)

23]

Thesc are harmonic functions in B,, B, respectively and
W(P)=O(|P|"), as|P| - oo. (2.2.4)

The integral (2.2.2) suffers a discontinuity at B as

!_ip] W(P) = W(p)-nu(p) (2.2.5)
and  |im W(P,)=W(p)+nrp(p), (2.2.6)
Po—p

where Py and P are points on n; and n.respectively both emanating from p € 0B.

It is evident from (2.2.2) and (2.2.5) that
¢ The potential W is continuous everywhere except at the boundary

¢ The potential W jumps by an amount ntp at the boundary

¢ The W vanishes at infinity with asymptotic behaviour W = O(IPI_I) |P| — W
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2.3 Formulation of Dirichlet and Neumann Problems

2.3.1 Interior Problems

(a) Interior Dirichlet Probiems

For a two-dimensional harmonic function ¢ given over a smooth closed contour B, ¢
in the interior domain B, can be reproduced by simple layer logarithmic boundary
density o as

¢(P) = | log|P —q|o(q)dq, PeB,. (2.3.1)

B

AsP — p € OB, we obtain the boundary relation

d(p) = | logll)—qls(q)dq,peﬁ (2.3.2)

e
Given ¢ over 8B, (2.3.2) formulates a Dirichlet problem in an integral equation of the

first kind in o in terms of ¢ over JB.

This general equation was formulated by Hamel (1949) and Volterra (1959) without
any further discussion on it. It has been shown by Jaswon and Symm (1977) that the
cquation (2.3.2) has a general solution

o =0,+kA , (2.3.3)

where o is a particular solution of (2.3.2), k is an arbitrary constant and A satisfies

I=¢(p)= | loglp-q[r(q)dq,peB (2.3.4)

2]
for 0B = I -contour for which equation (2.3.4) does not have a solution (Jaswon,

1963). The solution can be made unique on a particular choice of k.
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Given ¢over 0B the interror Divichlet problem can also be formulated following
(2.2.5) by a double layer logarithmic boundary density p as

o(p) = —mtp(p) + floglp - g, 1(q)dq,p € IB. (2 3.5)

o3
Following Kellogg (1929), equation (2.3.5) in 1t has a solution if

[d(p)A(p)dp =0, (2.3.6)

B
where A is the solution of the corresponding adjoint homogeneous cquation

0=-nMp)+ [log|p-aql(q)dg,pedB (2.3.7)

on

which ts mathematically equivalent to

0=n\(p)+ [log |p-q](q)dg,peoB (2.3.8)
(?B

by virtue of (2.1.6). It can be established that the equation (2.3.8) does not have a
non-trivial A. This A satisfies (2.3.6) for an arbitrary ¢ on dB. Hence, following

Kellogg (1929), equation (2.3.5) has a uniquc solution p for an arbitrary ¢ over 0B .

(b) Interior Neumann Problems

For ¢, prescribed over 8B, the o that reproduces the ¢ in B, + 0B, can be obtained
for 0B = [ as a solution of the normal derivative equation

¢,(p) = no(p) + flog,[p ~qlo(q)dg, p € 6B, (2.3.9)

on
formed by (2.1.8) . Equation (2.3.9) expresses an interior Neumann problem by a
Fredholm integral equation of the second kind in o in terms of ¢ given on 9B.
Following Kellogg (1929), this has a solution if

[&,(PIA(P)dp =0 (2.3.10)

B

16
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where A is the solution of the corresponding adjoint  homogeneous cquation

0=mA(p)+ [loglp - q|, A(q)dq, p € 3B (2.3.11)

B
which |, by virtue of

floglp —q|,dq = -n, peoB (2.3.12)

R
has a non-trivial solution A =1 on éB. On substitution of this A in (2.3.10), we

arrive at the Gauss’ condition

[b,(p)dp=0 (2.3.13)

B
for a ¢ harmonic in B, . This ensures the existence of a solution of equation (2.3.9).
The solution can be written as

c=0,+kA (2.3.14)
where o, is a particular solution of (2.3.9), k is an arbitrary constant and A is the
solution of (2.3.4). This solution when substituted in (2.3.1) produces a series of ¢ in

B, as
b= do+k (2.3.15)
having the interior normal derivative as prescribed on 0B. The solution can be

made unique on proper choice of k.




CHAPTER H

2.3.2 Exterior Problems

(a) Exterior Dirichlet Problems

The boundary density ¢ obtained as solution of equation (2.3.2)i.e.

4(p) = [ loglp - qlo(a)da, p €08’ (23.16)

aB
for OB =1, generates a potential V in B, that solves the interior Dirichlet
problem  for ‘Bl- The o generates an exterior potential V, characterized by
logarithmic behaviour at infinity, whereas the classical existence-uniqueness theorem

(Kellogg 1929) specifies O(1) behaviour, implying boundedness on V, at infinity.

It has been shown by Jaswon and Symm (1977) that the equation (2.3.16) for the

exterior domain B, has a solution

o =0, + ki (2.3.17)

I'= [loglp —qp(q)dq, pedB, (2.3.18)

B

where G satisfies

¢,(p)= [loglp-qlo,(q)dq, p € OB (2.3.19)

aB

with existence condition

[o,(MA(p)dp = [o,(q)dq =0 (2.3.20)

oB on
implying ¢_ =O(r™"),r - o0, and G, is the unique solution of (2.3.19).

The solution (2.3.17) can be made unique on proper choice of k.
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(a) Exterior Neumann Problems

For ¢, defining the exterior normal derivative of an exterior harmonic function ¢,

with asymptotic behaviour ¢=0("), r — o, given ¢, over 9B (Fig.2.1.2),¢ in B,
can be obtained as a potential due to a simple layer boundary density ¢ on
OB (= I' contour) as

o(P) = [log|P —qlo(q)dq, P € B, (2.3.21)

B

Following (2.1.9), the o of (2.3.21) is related to ‘b; on OB as

¢.(p) = no(p)+ [log [p - qlo(q)dq, p € 9B (23.22)

oB

Given ¢_ over B, equation (2.3.22) expresses an exterior Neumann problem in a

Fredholm boundary integral equation of the second kind for o in terms of ¢, over

ol . This equation has a solution if

[o.(P)A(p)dp =0 (2.3.23)

M

where A satisfies the adjoint homogeneous equation

0=m\(p)+ [loglp~q|,A(q)dq,p e 3B. (2.3.24)

B

That the homogeneous component of (2.3.22)

0 = no(p) - [log,|p - qlo(q)dq,p € 3B,

aB
does not have a non-trivial solution. Hence, following Kellogg (1929), we conclude

that the adjoint homogeneous equation (2.3.24) does not have a non-trivial solution.

This implies, the condition (2.3.23) is satisfied for an arbitrary ¢.on 0B.

Consequently, the equation (2.3.22) has a solution for an arbitrary ¢, on 9B and this

solution is unique.
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2.4 Green’s Formulae

2.4.1 Green’s Formulae for interior domain

For a harmonic function ¢ defined in an interior domain B, bounded by a smooth
closed contour OB, Green’s formula in two dimensions takes the form

\J’loglP ~q|,d(q)dq - [log|P —qlp,(q)dq = -2nd(P), P e B, (2.4.1)

3]
For the field point P located on 8B, the boundary formula in two-dimensions is

written as,

[loglp —al,d(q)dq - [loglp - alp, (a)dq = -nd(p), p € 3B (2.4.2)

o i)

Given ¢ on @B, equation (2.4.2) expresses an interior Dirichlet problem for ¢, in

terms of ¢, by a Fredholm boundary integral equation of the first kind in ¢, as

[loglp - al¢, (a)dq = np(p) + [log|p — g, $(a)dq, p € 8B.. (2.4.3)
on

B

This equation is of the type (2.3.2) which has been proved to have a unique solution.

2.4.2 Green’s Formulae for exterior domain

To discuss Green’s formulae for the exterior domain B, let us
assume = O(r™'),r - 0. We know changing of i into e yields the analogous exterior
formulae under the new sign convention of Jaswon (1963). For example, under this

rule, the formula (2.4.1) yields the exterior formula

flog|P —q|, d(q)dq~ [log|P - qlp, (q)dq = ~2nd(P), P e B, (2.4.4)

L] B

and (2.4.2) yields the boundary formula for the exterior ¢ as

20
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[loglp = q|. d(q)dq - [loglp -, (q)dq = —md(p), p € OB (2.4.5)

B B

where msignifies the external angle at p.

Given ¢ on 9B, the relation (2.4.5) yields the Boundary equation

.(q)dg, p € 9B (2.4.6)

floglp — qlp. (@)dq = np(p) + floglp —q

B o

which expresses the exterior Dirichlet Problem for ¢, in a Fredholm integral

equation of the first kind in ¢, in terms of ¢ on OB.

This equation is of type (2.3.16) for the exterior domain B. which has a solution for

O(1) behaviour of ¢ and that can be made unique. Since the ¢ under discussion

vanishes at infinity, the equation (2.4.6) has a unique solution.

Given ¢. on 0B, equation (2.4.6) expresses an exterior Neumann Problem in a

Fredholm integral equation of the second kind in ¢ as

[loglp - af d(a)da + nd(p) = [loglp ~ alp. (a)dq (2.4.7)

B oB

Following Kellogg (1929), this has a solution if and only if

¢;(q)dq}k(p)dq =0,

J{ floglp—q

B L EB
where A satisfies the adjoint homogenous equation

0=rnA(p)+ Jlog.|p~q[r(a)dq,p € 3B
aB

This equation does not have a non-trivial solution A as discussed in the equation

(2.3.22). Hence, the exterior Neumann problem, expressed by equation (2.4.7) has a

unique solution for ¢ = O(r™"),r > and B =T contour.

21
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2.4.3 Reproduction of a Harmonic function as Simple and double
layer potential

Let a two-dimensional harmonic function ¢ with asymptotic behaviour ¢$=0(r"), n21,
r—o, be defined in the upper half-space domain bounded below by a general half-
space boundary S. Let us counsider the ¢ above S in a closed domain B; as shown in
Fig.2.4.1, bounded above by a semicircle S, of radius R. Given ¢ and its interior

normal derivative ¢, over dB(=S+S,), ¢ in the interior is given by Green’s formula as

-2nd(P) = [log;|a - P[p(q)dq - [loglq - Pp;(q)dq, PeB; (2.4.8)

aB

Fig. 2.4.1: The closed domain B; bounded below by S and above by a
semicircle S, of Radius R, R—w

Let us now consider an exterior harmonic function f with asymptotic behaviour

=0(r™), n21, r—oo defined in the exterior domain B, bounded at interior by 0B.

22
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Following Green's identity [1, its boundary data satisfy

[log la - Plf(a)da ~ [loglq - Pt (a)dq = 0, P B, (2.4.9)

on an

Superposition of (2.49) on formula (2.4.8) yields, by virtue of

log,|q ~ P| =log.|q - P|,q € 0B,

[log.|a - Pl{é(q) - f(@)}dq - [loglq— P|{b. (@) + f. (@)}dq = ~2r4(P), P B,

k) &3]

(2.4.10)
already shown by Jaswon and Symm (1977).
Now we consider two distinct possibilities for f
(a) For f=¢ over dB, we find
e;l;log|q ~ Pl () + f.(q)}dq = 2nd(P), P eB, . (2.4.11)
This provides a simple layer representation of ¢ in B, with source density
o(q) = +21—n{¢L @)+ f.(a)} (2.4.12)

Existence of a unique exterior { with asymptotic behaviour as assumed above

b4

satisfying {=¢ over 0B, is ensured by the exterior Ditichlet existence theorcm.

(b) The second possibility f, = ~¢, over B, provides the repiesentation

flog.|a - Pl{o(a) - F(a)}dg = -2n¢(P), P €B,,

B

23
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This is a double layer potential generated by source density

u(q)=—2in{¢(q)—f(m}~ (2.4.13)

Existence of a unique f in B, satisfying f, =~¢, over OB is ensured by exterior

Neumann existence theorem.

For fand ¢ vanishing at infinity in same order over S, (Fig. 2.4.1) as r—o0, we find for

qeS,
a(q) = O($,), ja| - oo, (2.4.14)
and  p(q) = O(¢), |q] - oo, (2.4.15)

from (2.4.12) and (2.4.13) respectively.

A quick verification of (2.4.14) and (2.4.15) comes from the boundary relations of ¢,

and ¢ and that of ¢ and p over a half-space horizontal boundary S. For ¢ in B, (Fig.

2.4.1) given by

¢ (P)= [log|P-q|o(q)dq,P € B,.
S

the normal derivative relation ¢ and o over S is

¢,(p) = no(p) + flog,|p ~q| o(q)dq = no(p),p € § (2.4.16)

the integral over S being zero for both p,qe S . For ¢ in B, given by
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¢ (P)= [logP-q| u(q)dq,PeB,,

and the boundary relation of ¢ and pover S is

¢(p) = —mp(p) + [loglp — al 1(a@)dq = —np(p), p € S, (2.4.17)

the integral on the right hand side of (2.4.17) vanishing for p,q € S.
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HALF-SPACE PROBLEMS

3.1 Upward Continuation from Boundary Data

3.1.1 Simple layer Formulation

Let a two-dimensional harmonic function ¢  with asymptotic behaviour
d=00""),n=21,r— oo, be defined in a closed domain B; bounded below by a
general boundary S and above by a semicircle S, of radius R, R—o, as shown in Fig.
2.4.1. Following (2.3.1), ¢ in B; can be reproduced by a simple layer boundary

densily o as

G(P) = jlog!l’ - qlc(q)dq, PeB,

oB

= [log|P - qlo(q)dq + [log|P - glo(q)dq. P € B, (3.1.1)
S S,

As R >, ie,as S moves to infinity, the formula (3.1.1) yields

$(P) = [log|P - qlo(q)dq, P € B,, (3.1.2)

the second integral of (3.1.1) having no contribution to ¢ at P, for
o(q)=0(p ) =OR™™"), n21, by (24.14), dq = OR)O(I), qeS, and

lim(logR/R)=0, R - .

R—rn

As P — peS, by virtue of continuity of ¢ in Bi+ S, we obtain

d(p) = [loglp —qlo(q)dq.p €S (3.1.3)

S
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To discuss the cxistence-uniqueness of the solution of (3.1.3), let us consider the

boundary formula

(p) = [loglp —alo(a)da,p < 0B (3.1.4)

cB
Given ¢ over 9B, cquation (3.1.4) expresses an interior Dirichlet problem in o in

terms of ¢ specificd over B. This equation, by (2.3.3). has a solution ¢ =c_+kA,

which can be made unique on proper choice of k, o, being the particular solution of

(3.1.4)

Since (3.1.4) has a solution that can be made unique, the solution of

o(p) = [loglp - alo(a)dq + [loglp - qlo(a)da.p < 8B
S Sa
= [loglp - qlo(q)dq,p €S, (3.1.5)

has a unique solution o, for the choice k=0, ¢ and o being O(R") and O(R'z) over S,

as R = o . The o(~0,) reproduces the ¢ on and above the half-space boundary S.

3.1.2 Double layer Formulation

Let a two dimensional harmonic function ¢ with asymptotic behaviour
d=0(""),nz21lr— o0, be defined in a closed domain B, bounded below by a

general boundary S and above by a semicircle S, of radius R, R — o, as shown in

Fig. 2.4.1. Following (2.2.2), ¢ in B, can be reproduced as potential of a double laycr

boundary density p as

(P) = [log|P - q| p(q)dq,P € B, (3.1.6)

B

yielding the boundary relation, by (2.2.5)
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d(p) = —mp(p) + jloglp - ql;u(q)dq,p 0B (3.1.7)

(&3]
Given ¢ over OB, the equation (3.1.7), following (2.3.5), has a unique solution p for
an arbitrary ¢ over 0B.

As R — o0, ie, S gocstoinfinity, (3.1.0) becomes
d(P) = [log|P —q]lp(q)dq,]’ €B, (3.1.8)
S

and (3.1.7) becomes

o(p) = ~mp(p) + [loglp — | p(q)da,p € S (3.1.9)
S

the intcgral over S, having no contribution to ¢ at P for
pR=0@)=0"),n=11r— o0 and |Iog',|q - P|dql being bounded for all locations of
P in By+S,

Since the equation (3.1.7) has a unique solution for an arbitrary ¢ specified over 0B,
the equation (3.1.9), a particular case of (3.1.7) for ¢ and p vanishing over S, has a

unique ptover S for an arbitrary ¢ over S. This pt reproduces the ¢ in B, by (3.1.8).

3.1.3 Formulation by Green’s Formula

For a two-dimensional harmonic function ¢ with asymptotic behaviour
d=0@"),n>1,r— oo, defined in a closed domain B, bounded below by a general
boundary S and above by a semicircle of radius R, R—co, as shown in Fig. 2.4.1,

given ¢ and ¢, over OB(=S+S,, Fig. 2.4.1), ¢ in B, can be obtained by (2.4.1) as

- 2nd(P) = [log|P - q|, §(q)dq - [log|P - q}p, (q)dq, P € B, (3.1.10)

f5it) B

For 8B=S+S,, the above formula can be written as
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~ 2n¢(P) = [log|P — a|, ¢(q)dq — [log|P - qip, (a)dq
+ jlog|l’ - q]; d(q)dq - jlog'l’ - qH), (q)dq, P e B,

As R—o0, S goces to infinity and the above formula becomes

- 2n¢(P) =[log|P - q|, ¢(q)dq - [log|P - q¢p, (q)dg, P € B,, (3.1.11)

the integrals over S, vanishing at least in O(R"), R—o. The formula (3.1.11)
expresses ¢ in the upper half-space domain B, in terms of ¢ and ¢, given on S. As

P—peS and R—oo, the formula (2.4.2) becomes

- n(p) = [loglp — qf, ¢(q)dq - [loglp -, (q)dq, p €S, (3.1.12)

the integrals over S, vanishing at least in O(R"), R—o0.

Given ¢ on S, the formula (3.1.12) defines a Dirichlet problem for ¢, in terms of ¢ as

floglp — ql, (@)dq = nd(p) + {loglp — q|, d(q)da, p € S. (3.1.13)

for the upper half-space domain bounded below by S.

Introducing the upper part S, of the boundary, the equation can be expressed as

floglp ~ ap, (@)dq = nd(p) + [loglp — q|, $(q)dq, p € IB. (3.1.14)

B B

This equation, by (2.4.3), has a unique solution. Hence, the half-space problem

formulated by (3.1.13), a particular case of (3.1.14), has unique ¢, over S for ¢ given

over S.
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3.2 Downward Continuation from Boundary Data

For a two-dimensional harmonic function ¢ with asymptotic behaviourd=0(™"), n >
I, r —> o0, defined in the upper half-space domain B, bounded below by a half-space
boundary S(=S,+S,+S, . Fig.3.2.1), given ¢ over S, by (3.1.8), there exists a double

layer boundary density p over S that reproduces the(d) in B, as

¢ (P)= flog Ja- Plu(q)dq,P € B,. (3.2.1)

Fig. 3.2.1: A closed domain B, bounded below by a curved boundary
S(= §0 +S, + S, )and above by a semicircle S, of radius R, R—o
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As P—p € S, by (3.1.9), the formula (3.2.1) yields the boundary relation between ¢

and n as

¢ (p) = - mp (p)+ [log |q - p| 1(g)dq,p€S.
S

(3.2.2)

Given ¢ over S, the equation (3.2.2) formulates a Dirichlet problem in p for the

upper half-pace domain B, in terms of ¢ specified over S. It has already been shown in
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subscction 3.1.2 that the above equation has a unique p over S and this p reproduces
the ¢ on and above S.

Let us now assume that the ¢ be specificd over a horizontal half-space boundary

S(= S, +§u +3S,,Fig.3.2.1) and the curved continuation boundary S, having a central
concave part S with its ends common to those of §” . extend to infinity along §(_on

both sides of S,. Now for Pe S

[

excluding its end points, the half-space formula
(3.2.1) yiclds

¢ (P) = flog |q - P|(q)dq + [log |q - Pl(q)dq

= flog"lq - Plp(q)dq, PeS,. (3.2.3)
S
the integral over S_having no contribution to ¢ at P e S,. This is evident from the
fact that Iog;lq— P|= 0 for P, q €S and P # q. Once the p over S_ is obtained as

solution of the equation (3.2.3), it over S, is given by (3.2.2) rewritten as

e (P)= ¢ (P)+ [log |q-Pu(a)dq,PeS,,
S, +5

= ¢(P)+ [log |- Plu(q)dq,P € S,, (3.2.4)
S

the intcgral over go being zero for P=zq, log"|q—l’|=0, P.qe §0 and for P=q, the

integral being singular at an isolated point P, a set of measure zero.




CHAPTER IV

APPLICATION IN GEOPHYSICS

4.1 Upward Continuation

4.1.1 Reproduction of Gravity-Magnetic Fields from boundary data
as potential due to Simple Layer Boundary Density

Let H be a harmonic function, an anomalous gravity field Ag or component magnetic

-n

field T,, in two-dimensions with asymptotic behaviour H=O(r™), n > I, r—o0 in the

upper half-space domain B, bounded below by a half-space boundary S, given H over

S. H in B, can be reproduced by (3.1.2) as potential duc to simple layer logarithmic

boundary density o as

H(P) = - [loglq - Plo(q) dq, PeB,, (4.1.1)

introducing the original negative sign to the integral and o (q) is the simple

laycr boundary density over S at the point q.

Fig. 4.1.1: Boundary S, ficld point P and the outward (towards B;)
normal ito S at boundary point q

B, P
T,
I, -
! W'\_ A
] \.\ /ﬂ
[ T
1 / ?f”*
-3 \
P N
- AN
- g .

32



Solution of certain two-dimensional inverse problems in potential theary and thewr application in explotanon geophysics

The H in (4.1.1) is continuous in B;+S. For the field point P coinciding with the

boundary point p, we obtain the boundary formula
H(p) = - [logla - plo(q) dq, peS. (4.1.2)
S
Given H over S, equation (4.1.2) expresses a IFredholm integral equation of first kind
in o in terms of H specified over S. It has been shown in (3.1.5) that the equation has

a unique ¢ over S. Once the ¢ is known as solution of equation (4.1.2), H in B; can be

computed by (4.1.1).

Now, as P moves to infinity, the formula (4.1.1) yields

H(P) = O(Iog]l’mc(q)dq, |P| — o,

For H representing a two-dimensional gravity field, H=0(r""), r — oo. As such, in

this case

[o(q) dq =0,

for Iog|P| 20, |l’| — o0,

For H representing a two-dimensional component magnetostatic field, H = O(r™?),

r — o0. As such, for this case also

Jo(q) dq=0

Hence for both the cases, H representing either a gravimetric or a component

magnetostatic field in two-dimensions,

fo(q) dg=0. (4.1.3)
S
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4.1.2 Reproduction of Gravity-Magnetic IFields from boundary data
as potential due to Double Layer Boundary Density

FFor H denoting either a gravimetric or a component magnetostatic field in B,+S, H in
B; is a harmonic function with asymptotic behaviour H=0@ ™), n 2 |, as r— o. As

such, upward continuation of H in B, can be obtained following (3.1.8) as a potential

due to a double layer boundary density as

H(P) = - [log |a - P|u(q) dq, PeB, (4.1.4)

S
introducing the original negative sign to the integral, n(q) defining the double layer
boundary density at the point q over S. For the field point P coinciding with a
boundary point p, as P approaches S, we obtain by boundary formula (3.1.9),

H(p) = nu(p) - ”q - plu(q) dq, peSsS. (4.1.5)

Given H over S, equation (4.1.5) presents a boundary integral equation of the second

kind in p. This expresses a Dirichlet problem in pt in terms of H over S. Since the

equation (3.1.9) has a unique solution for an arbitrary ¢ over S, this equation has a

unique solution for an arbitrary H over S. Once t is known over S, H at PeB; can be

computed by (4.1.4).

As |P| — oo, formula (4.1.4) yields

H(P) = o(]P|" )jp(q) dg, |P|—> . (4.1.6)

S
. . . . . -1 .
FFor H representing a two-dimensional gravimetric field, H = O(]PI 1|P| — o0, It is
cvident from (4.1.6) that for H representing a gravity field,

Ip(q)dq #0 (4.1.7)

S

necessarily.

34



Solution of certam two-dimensional nverse problems n potentiat theory and their apphication i exploration geophysics

For H representing a two-dimensional magnetostatic component field,
H = O(]Pl_z/\l |P| — oo, Hence, it is evident from (4.1.5) that for the magnetostatic case,

jp(q)dq =0 (4.1.8)

S
4.1.3 Reproduction of Gravity-Magnetic Fields from boundary data
by Green’s Formula

For H representing a gravity or a component magnetostatic field in the upper half-
space domain B, bounded below by S, H is a harmonic function in B, with asymptotic

behaviour H=O(r™), n>1,r — . As such given H over S, following (3.1.11), H

in B, can be obtained by Green’s formula

-2nH(P) = [log |q - P|H(q)dq ~ [loglq - P|H,(q)dq, PeB,  (4.1.9)
S S

on obtaining H over S as a solution of the boundary integral equation

-nH(p) = j'log;lq — p{H(q)dq - [loglq - p|H, (q)dq, peS. (4.1.10)
S S

Given H over S, equation (4.1.10) represents a boundary integral equation of the first

kind in H, in terms of H specified over S. Following (3.1.13), we conclude that this
equation has a unique H, over S. With this H over S, H at a point Pe B, can be

" obtained by (4.1.9).
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4.2 Downward continuation

4.2.1 Continuation to a curved lower boundary

Let a two-dimensional harmonic function H, a gravity field Agor a magnectostatic

component field T,, with asymptotic behaviour H= O ("), n>1,r - o, be defined in

the upper half space domain B, bounded below by a curved half-space boundary

S(=S,+S, +S,, Fig.3.2.1) such that its central part S_is concave upward with its ends

fixed at the datum line and arms extending along it.

Let us now assume that the upper half-space domain B, , bounded below by S, be also
bounded above by a semicircular arc S, of radius R, R — oo . The domain so bounded
by S+S, (=8B, say) be considered as an interior domain B;. For the causative mass
lying below S, the field H is a harmonic function in B,. As such, given H over 0B, H

in B, can be reproduced as potential due to a double layer boundary density p (Jaswon

and Symm, 1977) as

H(P) =- J'Ioglilq -Plu(q)dg = - flog |q - Pu(q)dg, PeB,, (4.2.1)

oB S48,

where P and q represent the position vectors of the field point P and the boundary
point q respectively, log I'Iq - P| represents the interior (towards B,) normal derivative
of log|q—l’|at the point q keeping P fixed, n(q) represents the double layer

logarithmic boundary density pt at the point q and dq represents the arc element at q.

Since the boundary density 11(q)=0(H), |q| — o, by (2.4.15), contribution of the p of

Su to H at P in formula (4.2.1) vanishes as R— o . Consequently, formula (4.2.1)

reduces to the half-space formula
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H(P) = flog|q - Pluta)dq, PeB, (4.2.2)
S
for the upper half-space domain B; bounded below by S.

Since the p of (4.2.2) reproduces the H on and above S, it must reproduce the field on

a horizontal line S in Bi+S. Let us now assume that the field H be specified over the

horizontal half-space boundary S(=S_+S, +S,, Fig.3.2.1) and let the curved lower
boundary Si lie vertically below S with end-points common to them. Now for

P egu excluding its end points, the half-space formula (4.2.2) yields
H(P)= - Jlog{lq - Pl w(q)dq + Ilogi‘!q - P| t(q)dq |,
S, Sa

=- jlong - Plp(q)dq, PeS.. (4.2.3)
St )

the integral over §‘ having no contribution to H at Pe§" for Iog;lq—l’l=0, P=q,

P.qe S(=S,+S +S,,Fig3.2.1).

It is to be mentioned here that for an erroneous input data, equation (4.2.3) formulates

an ill-posed problem (Tikhonov and Goncharsky, 1987) in p in terms of H specified

over §u. A small perturbation in H creates a wide oscillation in p €S,

Assuming that the input data are free from error, given H over §u, equation (4.2.3)

has a unique solution (Appendix I). To find the p over S_, let us consider, following

Jawson and Symm (1977), the boundary equation as

H(P) = np(P) - Ilog;(q-P| p(q)da, Pegu
S
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= np(P) - J-Iog;lq-l’| r(q)dq + J‘Iog;lq—l’l Ll((|)dq , PeS, .

S

= np(P) - J'Iogl'lq -P| w(q)dq, PeS,, (4.2.4)

Sy

the integral over S

O

vanishing for logivlq - l”= 0,P,qeS,, P=q, and for P=q, the
integral having a singularity at the isolated point P, a set of measure zero. Once the
over St is obtained as solution of the equation (4.2.3), the p over §n can be directly

obtained from (4.2.4).

For the p known over S(=_S—(,+S,~+§ Fig.3.2.1), H at a point pe S, can be computed

0

as potential due to p(q), q€8, by the boundary formula

H(p)= mu(p) - ‘[Iog;|q-p|u(q)dq, peS. (4.2.5)

To examine the validity of p obtained over S;. and S, as solution of equations (4.2.3)

and (4.2.4) respectively, let us obtain the p over S(=S_+S, +S,, Fig.3.2.1) as

solution of Dirichlet problem expressed by (4.2.5), assuming that the H is known over

S. This provides an opportunity to examine the uniqueness of the solution of (4.2.3),

assuming that the input data are free from error.

38



Solution of certain two-dimensional inverse problems in potential theory and their application wn explotation geophysics

4.2.2 Continuation to a horizontal lower boundary

For Sy coinciding with a horizontal half-space boundary S, (say) placed at a depth d

below S, the boundary relation between H and p over §L ,by (4.2.5), is

H(p)= mn(p) - IIOg,'lq-plu(q)dq, peS,
S,

= mu(p),p €S, (4.2.6)

for J’logglq -p] wq)dq =0, p,q eg,_ , as shown earlier in (4.2.3) and (4.2.4). This
5

expresses t in terms of H belonging tog,‘as

w(q)=H(q) n,qe S,. (4.2.7)

For §u and S;, both representing half-space horizontal boundaries, S, (=§,.) placed at
depth d below §‘,, the p over S, in equation (4.2.3) can be replaced by H(q)/n.
Putting this p in equation (4.2.3) with §“ and S, (=§L) both extending to infinity, we

obtain downward continuation of H to a horizontal boundary S at a depth d below

Sas
H(P) = - [log |q- P[H(q)dq, PeS,
5
| .
=-— [log|q- P|H(q)da, (4.2.8)
Tt gl
for p(q) replaced by H(q)/n.

For P and q defined by the co-ordinates (X,0) and (x,-d) respectively in a cartesian
frame with z-axis upward, the formula (4.2.8) leads to the well known downward

continuation formula of Peters(1949).
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_dF H(x,~d)
H(X,0) = ;i X +d2]dx, (4.2.9)

for S, defined by z=0 and S, defined by z=-d.

u

4.2.3 Depth-Determination from Gradient of Down-Continued Field:
A New Approach

For a potential field continued towards its source, the field is supposed to exhibit a
wild behavior on reaching the target. This property of the field suggests a possible
approach for finding the depth to the magnetic basement from the observed magnetic
data in a geological basin.

To determine point to point depth to the basement, we are to continue the ficld to a
concave boundary, tapering in shape as depth increases, its apex moving along a
vertical defining the axis of the boundary. This can be achieved by down-continuation
of data to a concave lower boundary that extends downward with its ends fixed at the

datum line and apex moving downward in steps along the vertical.

Since the solution technique discussed in subsection 5.4.2 ensures convergence and
produces a stable approximate numerical solution for all positions of S, above or
below the causative mass, it is likely that contrary to expectation the computed H(z),
zx defining the apex of Si, will show a smooth behaviour at the boundary of the
causative mass. However, as the field rapidly increases as we approach the target and
the formulation becomes invalid for the field point passing through the causative mass
(Laskar 2000), the vertical gradient of the computed field, under such a situation, is

expected to show its first maximum at the boundary of the target. As such, the depth
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of the first maximum of the vertical gradient of the continued field 1s supposed to

define the depth to the top of the causative mass.

On finding H(zx) as zx moves downwaid in a regular step Az along the vertical, the
vettical gradient of H(z) at z=z; is computed, lollowing Scarborough (1966), by the

finite difference formula

Vo= = L fam ean V2o(aH, Ak ) 124,
7 yr, AZ \ k4l

(4.2.10)

where V,Hy, denotes the vertical gradient of Hy at the point z=z,, H=H(z,+kAz),

AH s the i" order difference of H, placed against the depth value z in a

horizontal difference table of H.

To provide a graphical 1epresentation of the behaviour of the gradient valucs as depth

incieases, the normalised deviation of V,Hy from V H . is computed by the formula

_ V,H, -V H,
|v¢“—vga

n, k=34,(n_-2), (42.11)

max

whete ,VZHk - V7HJ|"m represents the largest absolute value of the deviation of
V7 Hy from V7 Hj_ as k varies from 3 to (ns-2), ngdefining the last step taken along the

vertical at which the continued field H(zy) is computed.
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4.2.4 Spacing of data over the datum line

It 1s always preferable to have equispaced data over the datum line S. The question
ariscs what should be the spacing of data for obtaining a rcliable down-continuced ficld
value to a pre-assigned depth below S. This means we are to find the spacing of data

over S for which cquation (4.2.3) yields a good approximate pt over S.. This can be

achieved when the matrix (a ;|, appearing in the discretised version of (4.2.3), presents

a system with det having a significant value. To arrive at a working rule, let us

a,
divide the lower boundary S;. into n sub-intervals and the corresponding S, that lies
vertically above S also be divided into n equal sub-intervals such that Aglof

§u becomes the projection of AS,of Si.on §l, ,J=1,2,....n. Under this subdivision, the

discretised version of (4.2.3) appears in n simultaneous linear algebraic equations in n
unknown p;as

1]

Zakjuj =H,, k=12,..... n, (4.2.12)
)=l
where
a,, = [log|P, —q|dq,P, €AS,. (4.2.13)
/\9l

In the above equation det|a,| gradually decreases with increase in depth of Sy.. This in

turn detoriates the solution p at depths, particularly when the input data are with
error. To improve the condition of detay, let us choose a h such that the diagonal
element a,, , for a given depth of continuation, satisfies the condition

ag 2025 k=12..... n . (4.2.14)
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That yields a well-conditioned matrix |A] for its use in finding a reliable p as solution

of (4.2.12).

A relation between h and depth of investigation Ds can however be established on

finding an approximate a,, by the centroid rule (Hess and Smith 1967) as

a, =- [log|p, —ql; dq, P, € AS,

AS,
.. |
= —AS, (iR, )/r=— k=12 ...n, (4.2.15)
r

where — AS, (7.1,) =, Tis vertically downward over AS, €S, , f, is the inward

(towards B,)) normal to AS, ., h is the uniform spacing of data over §,,a|1(l ris the

vertical distance from the nodal point p, € ASk to the nodal pointq, € ASk, qx lying

vertically below pi.(Fig. 4.2.1)

It is evident from (4.2.15) that a,, attains its lowest value at the deepest location of
AS, that defines the depth of apex z in the k™ configuration of S.. If D be the depth

of investigation, by (4.2.14) and (4.2.15), we obtain

> (4.2.10)

Hence, for a depth of investigation Ds, spacing of data h=D¢/4 is expected to provide a

reasonable approximate solution of (4.2.12), the discretised version of (4.2.3) over S,..
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4.2.5 Working Data-length

The theory of upward or downward continuation of a potential field from boundary
data requires the input data specified over a half-space boundary. In all practical
cases, we consider the data over a finite boundary and this introduces, for a short data-

length, a significant error in the continued field.

For a potential field, due to a subsurface causative mass, measured positive
downward, the field rapidly increases as the field point approaches the mass and it
either changes its bahaviour (in gravimetric case) or becomes undefined (in magnetic
case) once the field point is on or inside the mass. Hence, the depth to the top of the
causative mass can be defined, as discussed in subsection 4.2.3, by that of the first
maximum of the vertical gradient of the ficld computed along a vertical passing

through it, provided the error in the computed field does not affect it adversely.

Fig. 4.2.1: Continuation to a concave boundary extending downward in
steps of Az taking a tapering shape as depth increases
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a) Errorin Reproduced Down-continued Field

Down-continuation of an observed two-dimensional potential ficld H, a gravity field

Ag or a component magnetic field AT, from the datum line
S=(S,+S,+S,.Fig.4.2.1) to a lower boundary S(=S_+S, +S_, Fig.4.2.1) having a
central concave part S, with its ends fixed at the end-points of S and arms extending
along the datum line, has been discussed in subsection 4.2.1. It has been shown that

for H specified over S, H can be reproduced at z, at depth Dy below S, by (4.2.5), as

a double layer potential .

H(zi) = mp (z4) -jlogi’lq -z, | n(@)dg, z, €8, (4.2.17)
S

provided the upper half-space domain B; bounded below by S is free from the
causative mass. The boundary density p over S_ can be obtained as a stable

approximate solution of the equation (4.2.3) written as

H(P)=- [log|q- Plu(q)dq, PeS, (4.2.18)
S,

and that over §0 can be directly obtained from the boundary relation (4.2.4) written

as

n"l (qm)= H(qm) + J'logillq -qml “(Q)an q m e§0 3 (42 l 9)
S

for H specified at q,, §0 and p over Sy, is obtained as solution of (4.2.18). Once the
1 is known over S(=§0 +SL+§0), the field at the apex zx of Si, can be computed by

(4.2.17).

Let us assume that the input data are specified over an interval D of the datum line S

that coincides with the x-axis of a cartesian reference frame and D extends from —
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(xoh/2) to (x,+h/2) containing (2n-+1) equal subintervals of length h each. Let the

central part S, of S extend from —(Xp.1+1/2) 0 (Xm1+1/2) containing 2(m-1)-+1

it

subintervals and the concave lower boundary Sy, with its apex at zx on the vertical
x=0, lies vertically below S,. As such, the m" subinterval AS , lie just outside S,

with its node point at a distance mh from the axis of S;.. Now the contribution of

AS,, to H(z), z lying at depth Dy(=kh) below S | is

Ex, = - [log g -q,i(a)dq

a8,

h(qm —q )’ﬁl
«————"—2 £, (4.2.20)
lqm _q k ,

H

k

m

by centroid rule (Hess and Smith, 1967), p = defining the constant value of p over

»

AS,, for the kK configuration of S, (Fig. 4.2.1) zx=qx and n; defining the upward
(inward to B,) normal to A§m at qm. On further simplification, we find

K D, h K kh? .

k
- lp = U ——H,, 4221
(mh)? +DkZLI (m? +k?)h? mz+kZL ( )

m=

Following the same procedure, we find the contribution of A§m to H(zk:1) at depth

Dyi[=(k+1)h] below S for the (k+1)" configuration of S_is

Tkt _ k+1 K+l

= ——— ) 42722
" mz+(k+l)2 " ( )

For D extending from —(x,+h/2) to (x,+h/2), as mentioned earlier, the contribution to
H(z«) from the sub-elements over the half-space datum line S lying outside (-x,-h/2,

x,+h/2) on both sides of S, is

C=- —_ ST
' Z kzhl Z mz+k2Lm}

2
m=m, m- + m=-nm,
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by (4.2.21), where ny=n+1. This contribution C is leflout to be added to H(z) and as

such, the error E in the continued H(z) is

E=-C= { ) ILII S S } (4.2.23)

L
2 2 2 L m
m=m, m* +k m=-ny m- + k

It is evident from (4.2.21) that for a fixed z, thc error in the reproduced H(z)

decreascs with increase in m, i.e., incrcasce in data-length, as expccted.

b) Behaviour of Error in Vertical Gradient of the Down-continued Field at apex
of SL

To understand the behaviour of error in H(zx) as zx moves downward in steps along

L

m

kel

m

x=0, we are to examine the change in p,, from p to p. over A—S-m as Si changes its
configuration from Sy to Sy+1y shown in Fig. 4.2.1 with depth of z increasing from

kh to (k+1)h below S.

For a gravimetric or a magnetostatic component ficld H defined in the upper half-

space domain B, bounded below by a half-space boundary S(=S, +S, +S_, Fig.4.2.1)
with its arms §ncoinciding with the half-space datum line S, it is shown in Appendix

Il that the line integral of the double layer boundary density pi reproducing H in B+S

exhibits the property

fm@da = [u@da+ fu@da+ [w@da= [fi(a)da,

S, (L) S.(R)
where U is the density over S and S, (L) and §0(R)are the arms of S at left and
right of §u respectively. Further, as [ql —> 0,
H(a) = p(q) =0,
q lying over S_as it extends to infinity where the field vanishes. As such, a change in

the line integral of p over Sy, as Sy, changes from Sy to Sik+1, is compensated in the
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u-integral over S_, S, extending to infinity on both sides S, This brings a very minor
. s : . . . . 2 2.

change in pLover AS  compared to a significant increment in k/(m“+k?) as Si_ changes

from Sy to Sye1y As such, the product terms show the property

k+1 hl

IR 4.2.24)
mz+(k+l)zlm (

k ¥
m?+k? Hunl

for a positive or negative ,, over AS . Subsequently, the error in the computed H(zy)
will be steadily increasing or decreasing according (o p, is positive or negative over

AS,, as depth of zy increascs.

It is to be noted here that the ficld is measured positive downward and the magnetic
causative is polarised by downward doublets. As such, the field becomes positive and
it rapidly increases near the causative mass.

It is now evident from the above discussion that for a potential field H specified over
a finite interval D of the datum line S, the error in the down-continued field along a
vertical, steadily increases or decreases with depth along the vertical when the field
increasing rapidly near the causative mass. As such, this error does not affect the true
position of the first maximum of the gradient of the field that defines the depth to the

top of the causative mass along the vertical. Hence, the data over a short data-length
D >S, is sufficient enough to determine the depth to the causative mass below it,
though the computed field might have large error in it. It is our working experience
that for a causative mass lying within a search depth D, S, >5D, provides the
reproduced field H(zx) along the axis of S, that leads to determination of a reliable

depth to the top of the causative mass.
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NUMERICAL PROCEDURE

5.1 Discretisation of Equations formulating Up-continuation
Problems

5.1.1 Simple Layer Formulae

FFor a two-dimensional potential ficld H, an anomalous gravity field Ag or a
component magnctic ficld T, with asymptotic bchaviour H=0G™"), n21, r— o0,
defined in the upper half-space domain B, bounded below by a general half-space

boundary S, given H over S, H in B, can be reproduced by (4.1.1.) as potential of
simple layer logarithmic boundary density ¢ as

H(P) = - [loglq - Plo(q) dq, PeB3,, (5.1.1)
S .

on obtaining the ¢ over S as solution of the boundary cquation (4.1.2)

H(p) = - [log|p - qjo(q) da, peSs. (5.1.2)
S

To solve the equation (5.1.2) numerically, we divide a large finite boundary S into n

pieccwise straight subintervals ASI, =12, , 1 and make the fundamental
assumption that ¢ is constant over a subinterval. For q, defining the nodal pont
(centroid) of k™ subinterval AS, and o, defining the constant valuc of ¢ over the j"

subinterval AS , the H at qy given by (5.1.2) can be expressed as

H, = i—a‘ Jloglq —(ikldq
1=|

aS,
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:Z— ahgl ?
1=l
where H, is the value of H at the nodal point q,, o, 1s the constant value of ¢ over

" subinterval AS, and

a, = [loglq-q,}dq. (5.1.3)
1\9I
For k successively assuming the values I, 2,3,......... , n, the equation (5.1.2) yields
Y-a,0,=H,, k=1,2,3......,n, (5.1.4)
)= N

a system of n simultaneous linear algcbraic equations in n unknown o .
On finding the &, as solution of (5.1.4) for Hy specified over S, the field H at a point

PeB, can be computed by the discretised version of (5.1.1) expressed as

ﬁ(P):—ic, flog|P - qg|daq, (5.1.5)

=1 Ay

where ﬁ(l’) denotes the approximate valuc of H at P.

5.1.2 Double Layer Formulae

For the same harmonic function H, a potential field described in subsection 5.1.1,

given H over S, H in B, can be reproducced by (4.1.4) as a double layer potential

H(P) = - [log,|q - P|n(q)dq, P €B, , (5.1.6)

on obtaining the p over S as solution of the boundary equation (4.1.5)

H(p) = mp(p) - [log, |q - pln(a)dq, p € S (5.1.7)
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To solve the equation (5.1.7) numerically, we divide a large finite boundary S into n
piecewise straight subintcrvals and make the fundamental assumption that p is
constant over a subinterval. For the field point P coinciding with qy, the nodal point of

the k™ subinterval AS, of S, the equation (5.1.7) is discretised as

H, =nu, + i— H, jlogi.I(] - qkldq,

i=t L\Sj
= (10 -b ), k=12.n, (5.1.8)
where Hy is the value of H at the nodal point g, of AS,, 1, is the constant value of

over thej”‘ subinterval AS,, 8k_, is the Kronecker delta and
b, = [log.la—q,ldq (5.1.9)
AS,
The equation (5.1.8) represent a system of n simultaneous linear algebraic equations
in n unknown ;. On finding the p  as solution of (5.1.7), the field H at a point PeB;

can be computed by
H(P) = -3, [log;|q - Pldq, (5.1.10)
=1 as,

the discretised version of (5.1.6).

'5.1.3 Green’s Formulae

For a harmonic function H with asymptotic behaviour H=O(r™), n>lr—w,

defined in the upper half-space domain B; bounded below by a half-space boundary S,

given H over S, H in B; can be obtained by Green’s formula (4.1.9) on obtaining
H,over S as a unique solution of (4.1.10). For a numerical approach to solve the

equations (4.1.10) and subsequently to reproduce H in Bj, let us divide as before a
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large finite boundary S into n precewisc stiaight subintervals AS |, j=1,2, 3,....... , N

and assume that H is constant over a subinterval, its value being associated with the

nodal point of the subinterval. Under this condition the discretised version of the

formula (4.1.9) becomes

—2nH(P) = i[HJ J.]Og;|q —P| dq-H, floglq- P|dq:|, (5.1.11)
1=| as,

as,
where l-i(l') is the approximate value of H a( P, H is the constant valuc of H over
J" subinterval AS and H|is constant value of H,assumed constant over AS,. Under
the same assumptions that H, and H'lare constant over AS , discretised version of the

boundary equation (4 1.10) becomes

~nH, =i H, Sjlogl‘lq—qk,dq—H', flog[q—qkldq:l, k=1,2,..n,

=1 A AS,
whete H, is the value of H at the nodal pomnt ¢, of AS,. On reorganization, the

above equations become

i H' [loglq —q,]dq =i H, jlog;lq —q.fdq+nH,, k=12,.,n. (51.12)
1=1 1=1

AS, AS,

Denoting  [loglq — q, |dq and J‘logl'|q—qk|dq by a, and b, respectively, the n

AS, 1\5J

equations (5.1.12) in n unknown H '| take the form
S H a, =Y Hb, +nH, k=1,2,3,......n
)=1 =1
=D, ,k=1,2,3,....... 1, (5.1.13)

n
whete D, =3 H b, +nH,.
)=l
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The equations (5.1.13) represent a system of n simultaneous linear algebraic equations

in n unknown H'j. On solving the equations (5.1.13) for H'_i, H at a point P e B, can

be computed by (5.1.11), the discretised version of (4.1.9).

5.2 Discretisation of Equations formulating Down-
continuation Problem

For a two-dimensional harmonic function H, an anomalous gravity field Ag or a
component magnetic field T, with asymptotic behaviour H=0(r"), n=1, r— o0,
defined in the upper half-space domain B; bounded below by a half-space boundary

S(=S, +S, +S,, Fig.3.2.1) with the curved part Si below the datum line

S(=S,+5, +5S

[

Fig.3.2.1), given H over S, H over S can be computed by (4.2.5) as
H(p)= mu(p) - J’log;|q -p‘u(q)dq, peSs. (5.2.1)
S

on obtaining the 1t over S, as solution of (4.2.3)

H(P,) = - flog |a-P,|n(q)dq, P, eS., (522)
S
and that over S_ obtained directly from (4.2.4)
np(p) = H(p) + Ilog;lq - p, pn(q)dq, pe §0 , (5.2.3)
S,

when the p over Si is known as solution of (5.2.2).

To solve the equations (5.2.2) and (5.2.3) and to compute H over S by (5.2.1)

numerically, let us divide a large finite datum line S into N equal subintervals AS, ,

k=1,2,...,N and assign the input data Hy at the nodal point Py of AS, , k=1,2,...)N with
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n ol them over §u that lies directly over S, with end-points common to them. Let us
now divide S_ into n piecewise straight subintervals ASj, j=1,2,...,n, such that the

projection of ASj over S coincides with A§.i,_i=l~,2,...,n of S,

Now assuming, as before, p is constant over a subinterval, the equation (5.2.2) can be

written as

H, = -2u, f logiqu-l’k’dq, k=1.2,....n, (5.2.4)
i

As,

where Hy is the input data over §u at the nodal point Py of A§k, 1 is the constant

value of it over thej“‘ subinterval AS; of §;. The cquations (5.2.4) represent a system

of n simultaneous linear algebraic equations in n unknown p; over S;. It has already
been mentioned earlier that the equation (5.2.2) formulates an ill-posed problem in

potential theory, a small perturbation in Hy creates a wide oscillation in solution.
However, a stable approximate 1 over Sy can be obtained by successive correction of

an initial guess described in "> -7 ‘subsection 5.4.

On obtaining the 1 over S, the p(qi) over S. can be obtained directly from the

discretised version of (5.2.3) written as

(g, ) = H(g,) +§uj [ log la-q,|da, q,€S,. (5.2.5)

AS;

On finding the pj over S(=S, +S, +8S,), the down-continued field H(z), zx€S can

be computed by the discretised version of (5.2.1) writlen as

H(z,) = nu(z, ) —]Z;uj | logi']q-zkldq, z,€S . (5.2.6)
= As;
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5.3 Evaluation of the Integrals over a Line Element

It is evident from the previous subsections that numerical solutions of the boundary
integral equations in up-continuation of a potential field from boundary data, solution
of an ill-posed problem in down continuation of a field from the datum line and
reproduction of a ficld in the upper half-space domain involve cvaluation of certain
integrals over the subelement of the boundary.

The integrals involved are

1= [loglq- Pldq (5.3.1)
/\9,

and )= J'log;]q-l’ldq (5.32)
AS,

for the field point P lying outside or in the line element AS, .

For P coinciding with the nodal point qx of a subelement ASy, the simple layer integral
(5.3.1) is denoted by ay, and the double layer integral (5.3.2) is denoted by by, in the

subsection 5.1. Hence, under this setup, we cxpiess (5.3.1) and (5.3.2) as

a,, = jlog]q -quq (5.33)
AS,
and  b,= [loglq-q,|dq (5.3.4)
A8,
respectively.

For P lying outside AS,, the integrals are regular and these can be evaluated
analytically or approximations to them by Centroid rule (Hess and Smith 1967) may
suffice the purpose. For P lying on AS,, the integrals are singular and these are to be

evaluated analytically.
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It is to be noted here that in downward continuation of a potential field from the
datum line S, the equation (5.2.2) formulating the problem involves evaluation of the
double tayer integral (5.3.4) over the subelement AS; of the continuation boundary Sy,
the field point P lying on the central part §u of S. Since the equation (5.2.2)

formulates an ill-posed problem, the integral (5.3.4) is to be evaluated analytically for

a better stable approximate solution of the equation.

An extensive discussion on the above integrals has been carried out by Jaswon and
Symm (1977) for an arbitrary alignment of AS;. Keeping in view the geophysical
problems in which the field point P lies on and above a half-space boundary S, the
coordinates of P are expressed in a new reference frame xoz with its origin at the
centroid q; of AS;, x-axis coinciding with AS; and z-axis pointing towards the upper
half-space domain B; above S as shown in Fig. 53.1. This brings a good
simplification in the approach for implementation of the simple layer integral (5.3.1)
presented by Jaswon and Symm (1977). Under this transformation, the double layer
integral (5.3.2) also comes up in a simple form for its easy implementation on a

computer.
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5.3.1 Analytical Evaluation of Simple Layer Integral

Let a straight linc segment AB of length h represent the subelement AS; in a local xoz
1eference frame with its origin at the nodal (centroid) point g, of AS,, x-axis coinciding
with AS; and z-axis pointing towards the upper half-space domain above AS, as shown

in fig. 5.3.1.

Fig. 5.3.1: Evaluation of simple and double layer integrals over a
subelement AB

R
ey
// NE N
a.” ” \\b\
e
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Let the field point P in this frame be defined by (X,Z), the end-points A, B defined by
(-1/2, 0) and (h/2, 0) respectively, AB subtends an angle ¥ at P and PB subtends an
angle 0 at A. For PA and PB dcnoted by a and b 1espectively, following Jaswon and

Symm (1977), we express the integial (5.3.1) as

1= Ilog|q - Pldq
AS,

=acosO(loga —logb)+ h(logb - 1) + aysind (5.3.5)
For P representing the nodal point qx of a subelement ASy of S, the expression for ay,

of (5.3.3) also stands as

ay, =acosB(loga —logb) + h(logb -1 +aysin 6 (5.3.0)
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Special Case 1: Regular Integral

When P, A and B are collinear, 6=0 or n and therefore sin6=0 and cosb=1 or —|
respectively.
(i) when 6 =0, i.e., when P is at the right side of the subinterval AS;(=AB),

a= a(loga — 1) - b(logb - 1) (5.3.7)
(it) when © = m, i.e., when P is at the left side of the subinterval AS;(=AB)

aj= a(l —loga)—b(l ~logb) (5.3.8)

Special Case 11: Singular Integral

When the field point P coincides with the nodal (centroid) point of AS;, the integral is

singular. In this case, considering 6=0 and b=0, the contribution from the left half of

1
AS; at qj, by (5.3.8),1s g(log—;——l). The same contribution appcars at q; from the

other half of the subinterval placed at right side of q;. Hence, the singular integral

h h
oo -1

h '
=hl log— ~
h( og2 lj (5.3.9)

5.3.2 Analytical Evaluation of Double Layer Integral

To evaluate the double layer integral (5.3.2) over the j™ subinterval AS;, we fix up a
local reference frame xoz, its origin coinciding with the nodal point g, of AS;, x-axis
coinciding with AS; and z-axis pointing upward in the upper half-space domain B;

above AS;jas shown in Fig. 5.3.1. For AS; of length h, the coordinates of the end points
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of AS, are defined by A(-1/2, 0) and B(h/2, 0). Let (X,Z) define the coordinates of

the field point P and (x,z) define the coordinates ¢ in this frame.

Jp= flog;lq - P|dq

AS,
x=h/2 _ =5
= [~Z[x-X)? + (2~ 2] dx
x=-h/2
—)—(— x=h/2
= tan"' 22 } . (5.3.10)
Z x=-h/2

For P coinciding with the nodal point qx of the subinterval ASy, the 1, in (5.3.10)

stands for by, of (5.3.4) and hence,

—jx=h/2
by, = tan~! 2= ji#k. (53.11)
! Z

x=-h/2
For qx and q defined by (Xy,Z«) and (x,, z) respectively in the original reference frame
X0Z, we find

x=l, (X, -x)H+m(Z, -z
S e ez (5.3.12)
z=|2 (Xk-xj)+mz(Zk-zJ) e

for (1;,my) and (l,m;) defining the direction cosines of x-axis and z-axis respectively
of local frame in the original reference framc. For x-axis of the local frame making an

angle 06 with the x-axis of the original frame, we find, II‘—‘COSO,

m, =sin0, l2 =-sin @, and m,y = cos@ .

Special Case : Evaluation of Singular Integral

For the field point P or the nodal point qx coinciding with g, the integial becomes

singular. In this case, on expansion of the integrand, we find

b= [log |a-q,|dq

ASk
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= fla-a,)"(q-q,), dqg

ASk
=0, (5.3.13)
for g#qy, the outward normal n, to ASy at q being normal to (q-qx) and for q=qx, the

integral having a singularity at the isolated point qu, a set of measure zero.

5.4 Solution of equations

For computation of the solution of equations, three solution techniques are used:

(1) Gauss-Seidal iterative method uscd for diagonal dominant system for solving
boundary integral equations formulating up-continuation problem

(i) Gauss Elimination method used for diagonal having non-zcro element for
solving boundary integral equations formulating up-continuation problem

(iii)  Successive correction of initial guess solution used for solving integral

equations formulating ill-posed problem

5.4.1 Upward Continuation: Solution of Boundary Integral
Equation

(i) Choice of numerical methods of solution

In simple layer formulation of up-continuation problem we come across (5.1.4), the

digitized version of the boundary equation (5.1.2)

n

H, ==Y jloglq —qklc(q)dq =->a,0, k=12,.,n (5.4.1)

=1 AS| 1=1
for its solution in n unknown o, where the analytical expressions for ay, and ay are

given by (5.3.6) and (5.3.9) respectively. It is evident from the expressions of ay, and
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awe that a,, = 0and (5.4.1) does not form a diagonal dommant system. In such a case,
Gauss climination mecthod provides the suitable numerical technique for its solution.

| )
The samc is truc for numerical solution ()IQreenE boundary cquation (5.1.12) in H

given by (5.1.13)"as\

Ya,H =D, k=1,2,3,.. ..n (5 4.2)

11

In double layer formulation of the up-continuation problem, we come across the

boundary equation (5.1.8) in p,

My =nmp, —iu. flog |a~ q,[da.

=1 AS,
=y, - ib,\,u,, k=120, (5.4.3)
-
where by =0, bym\
We know,
g b= g A!J]og:|q —qk|dq = g'[log',|(| -qkldq. (5.4.4)

For B, enclosed by dB=S+S, (Fig. 2.4.1), where S, is a semicircle of radius R, Gauss

integral in 2-D over OB is

[log.la-q,|dq = [log|a-q,|dg+ [log|a-q,]dq=~n.
S s,

P31} ]
As R—oo, the integral over S, is -n. Hence, the integial over the half-space boundary

Sis

flog Ja - q,]dq = ilbkj =0 (5.4.5)
S )=
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It is now evident that the system of equations in p, in (5.4.3) forms a highly diagonal

dominant system for the presence of ndyk, k=1,2,....,n, in it. As such, the equations
(5.4.3) can be best solved by Gauss-Seidal iterative method yielding quick

convergence of solution.

(i) Gauss-Seidal iterative method of solution of equations:

In this method, the zeroth order approximation to solution x, is assumed to be zero

I . . . .
and the m" order approximate solution is given by

A=l n
= [HeL Y agy™ Y g™ A an) k=12,,

=1 )=k +1

(5.4.6)
n . . ,
where x™" stands for (m-1) " order approximate value of x;. The iterative process of

obtaining of the solution terminates at the pth itrerative step, if for a pre-assigned
small value €

Ix,™-x, " N<e, j=1,2,...... n, (5.4.7)
The ¢ in general is taken as 0.000001! that yields the solution correct upto 5 decimal

places.

5.4.2 Downward Continuation: Solution of Ill-posed Problems

It has been shown that for H without error specified over S, the equation

H(P) = - jlogl'|q-l>|p(q)dq, PeS, , (5.4.8)
Sy

has a unique solution (Appendix [). However, as already mentioned earlier, the

solution is highly sensitive to error in input data. A solution, built by successive
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correction of the initial choice is expected to provide a stable approximate solution of
the cquation. A numerical procedurc (o construct a stable approximate solution is
described below.

The equation (5.4.8) can be rewritten in a general form

H(P) = jK(P,q)u(q)dq, PeS,, (5.4.9)

\I
where the kernel K(P,q) is -log;‘q - P| . To make a numerical approach to solve the

cquation (5.4.9), let us divide S, into n piecewise straight sub-intervals and pioject

them on S, such that S, is divided into n equal sub-intervals. The input data Hy (=

H(Py), Pk € §“ ) are then specified at the n nodal points (centroid) of the subintervals

over S, .

As the approximate solution p reproduccs a ficld that deviates from the original data
H, let us find a p such that the sum E of the squared deviations with an additional

term A times the integral of p 2(q) over S, expressed as

2
n

E= " |H, - [K(P,@u(@da| +2 | 1’ (q)da, (5.4.10)
S, S

1=1
is a minimum. The p under question can be obtained from the equation 8 E/on=0.
On discretisation, this equation appears in a matrix form with Ads, as an additional
term at the diagonal. This enhances the diagonal of the resultant matrix and thereby

makes the inverse always computable. On discretisation of the integrals in (5.4.10)

and carrying out differentiation with respect to p, , we arrive at the equation

84 n i
—0—5 = Z_ 2| H, - Z JK(Pi,q)pldq JK(P.,,q)(lq + 2kj t,dq=0, k=1_2,...n
He = )= k k

(5.4.11)
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m p that produces the minimum of E, p, being the value of p treated constant over

thej"' subinterval of S; and j denotes the intcgral over the subinterval ASy.
k

Using the notation

a”: .[K(')i’q)dq‘ Pi egu M

the equations (5.4.11) can be writtcn as

> [Z a“a‘k]u‘+kukdsk =Y Ha,k=12,.n, (5.4.12)

1=1 1=1 =1

where dS= qu )
[N

For synthetic input data the equations (5.4.12) with A =0 lead to a rcasonable solution
for a shallow depth of Si, For the input data with error, say within 1% of the absolute
value of true H,, it is our experience that the traditional Marquardt-Levenberg
formulation (Marquardt 1963, Bard 1970, Himmelblau 1972) that uses scalar times
ad-hoc diagonal matrix [ A ],, produces results within 5% error to a shallow depth (less
than 2h units), h defining the uniform spacing of data over S. The convergence
however becomes slow as depth increases. The choice of A, is quite critical to the

convergence rate for the algorithm. An iterative update for A, of the form

[D..];=[DJii/a, =|rds,) | 7a,. (5.4.13)

a,=1-[g]/[g.-2] (5.4.14)

!

obtained following Mendal (1983), solves the equations (5.4.12) satisfactorily. Herc,

(i+1) denotes the current operation of estimation of the vector D, for

D], =lrds,)] . (5.4.15)
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&), {Z Hkak,} , (5.4.16)

[&.] = [i/ﬁ\Hkakl} (5.4.17)
k=1 )

where AH, =H, - [ K(P,,q)i""dq; (5.4.18)

S
1" being the estimation of i, in the i cortection. The estimation of [D;]” is due to

Mendal (1983) and it has been suggested that the a, of (5.4.14) to be kept in the

bounds 0.1< a; < 10.

To find the initial choice of p , we observe that for the lower boundary S, coinciding
with the datum line S, the i, of (5.4.12) assumes the value H/nr, by (4.2.7). This
provides a good choice for the initial approximation to p, of equation (5.4.12).

Further, A= mn in (5.4.15) also provides a good initial estimation of D, An
approximate stable solution 1, can be obtaincd m the form

m

n, = Z " ,j=l,2,.i..n, (5.4.19)
1=()

where n{” = Hy/ mand p!”is the correction to p, at the i iterative step, the details of

which is given below:

Considering the initial choice of i, as M,(n)=H,/7L the deviations AH, k=1,2,....n are

computed by (5.4.18). In the next step, [DI] of (5.4.15) is initialized by putting A = 7t
and [D,,,] of (5.4.13) is computed on finding [g,] and [g,,,] by (5.4.16) and (5.4.17)

respectively. Subsequently, H, of (5.4.12) ate replaced by AH, and the equations are
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solved for , to be treated as pu')of (5.4.19). On finding the first order approximation

of pyas [r,=p 4y ", the AHx ate computed by (5 4.18) for finding the next

)

. . . . ~ (l
" using the iterative process as described in the casc of p .

correction term p'?

. } . . .
On finding the m" order estimation of i, as a sum of the correction terms u',",

i=1,2,...,m, the solution p, is used to sce that the mean squared deviation, i.e., the

mean squared error (MSE) satisfies the termination condition

n

>(aH, ) /n<e, (5.4.20)

k=|
& defining the square of assumed level of error in input data specified over _S_“. Ina
field problem, this information is usually made available in the field book.
It is evident from the above discussion that AH{", the deviation at AS, at the i"

operation, gradually decreases in magnitude in gencral as t increases. Consequently,

the p‘|" of (5.4.19) appioaches 7cro as i incicascs yielding a stable convergent

summation series for p,.

66



CHAPTER VI

ANALYSIS OF MODEL DATA

6.1 Up-continuation of a Potential Field from Boundary data

6.1.1 The boundary and the Gravity-Magnetic Data over it

Let a vertically polarised unit logarithmic mass m be placed at point q(x,z) at a depth
d below the datum line S defincd by z=0 in a xoz reference frame with z-axis
upward. Let us now construct an nrregular boundary S by the line segments joining the
points (-25.25,0), (-3.25,0), (-1,1), (1.1), (3.25,0) and (25.25,0). The boundary S so
obtained is divided into N=100 unequal subintervals AS,, each of length h = 0.5 and

their nodal points are noted. The boundary so constructed is shown in Fig.6.1.1

Fig. 6.1.1: The gravity-magnetic responses due to the polarised subsurface mass
m are specificd over S for their up-continuation to a higher level
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The gravity response Ag at a nodal point P(X,Z) of S due to the mass m placed at

q(x,z)is given by the formula

Z-z

6.1.1
(X=-x) +(Z-2)° ( )

H(P)=Ag(X,Z2)=Gm

Assuming the universal gravitational constant G=1 the Ag values are computed by
(6.1.1) for m=1{ at the nodal points of the subelements. The boundary data so obtained
over S, are shown at some representative points in column 3 of Table 6.1.1.
Subsequently, the downward vertical component magnetic field T, at a nodal point
P(X,Z) is computed by the formula

20z-2)" 1

H(P)=TJ(X,Z2) = _ :
) Ll [(X_X)Z +(Z_Z)2]Z (X—X) +(Z__Z)2

(6.1.2)

with p=1 and these are shown at some representative points in column 4 of Table

6.1.1, 1t defining the vertically downward doublet placed at q.
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Table 6.1.1: Gravity and magnetic responses ovct the boundary S

Nodal point Gravity field Magnetic field
X z Ag T,
-25.0 0.0 00047 -0 0015
-23.0 0.0 0.0056 -0.0018
-21.0 0.0 0.0067 -0.0021
-19.0 0.0 0.0081 -0.0026
-17.0 00 0o0lol -0.0032
-15.0 0.0 0.0128 -0 0039
-13.0 0.0 0.0169 -0.0051
-11.0 0.0 0.0231 -0 0066
-9.0 0.0 0.0333 -0 0089
-7.0 0.0 0.0517 -0.0119
-5.0 0.0 0.0882 -0.0138
-3.0 0.125 0.1682 0.0028
-0.75 1.0 0.2415 0.0563
0.75 1.0 0.2415 0.0563
3.0 0.125 0.1682 0.0028
5.0 0.0 0.0882 -0.0138
7.0 0.0 0.0517 -0.0119
9.0 0.0 0.0333 -0.0089
11.0 0.0 0.0231 -0.0066
13.0 0.0 0.0169 -0.0051
15.0 0.0 0.0128 -0.0039
17.0 0.0 0.0101 -0.0032
19.0 0.0 0.0081 -0.0026
21.0 0.0 0.00067 -0.0021
23.0 0.0 0.0056 -0.0018
25.0 0.0 0.0047 -0.0015

[Vertically polarised unit logarithmic point mass m is placed at a depth d=3 units
below the datum line S defined by z=0 in a xoz frame with z-axis upward]
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6.1.2 Up-continuation as Simple Layer Potential

Gravity or a component magnetostatic ficld H is a harmonic function in the upper

half-space domain B;. Both of them vanish at infinity with asymptotic behavior

H=0@™"), n>1,r— . As such, folfowing (4.1.1), these fields can be reproduced

in B; from respective boundary data as potentials due to simple layer boundary density
cas

H(P) = - [log|lq - Plo(q) dq, - PeB (6.1.3)

It has been shown in subsection 4.1.1 that the o in (6.1.3) can be obtained as a unique

solution of the boundary equation (4.1.2), i.e.,

H(p) = —jlog[q - plo(q) dq, pes. (6.1.4)
S

Dividing the boundary S into piecewise straight subelements AS. and assuming o is

constant over a subelement, the formula (6.1.3) can be expressed in the form of

(5.1.5) as

ficp) = i._c" [loglq - Pida, (6.1.5)
)=t

AS;
where, H(P)is the approximate value of H at P and the equation (6.1.4) can be

written as

H(q,) = i—cj flogla—aq,dq, k=1,23.....n,

=1 AS,

o, b,=Y-2,0,k=123...n, (6.1.6)

where,
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a, = I\qllog'q—qkldq (6.1.7)

and b, =H(q,). (6.18)

The analytical expression of (6.1.7), following (5.3.6), is given by

ay= [loglq —q,[dq, q, €AS,,

AS)
= {acosO(loga — logb) + h(logb — 1)+ ay sin 6}, (6.1.9)

whete a, b, h, 8 and y are explained in Fig. 5.3.1. For the end points of the subelement
are collinear with qx, we find by (5.3.7) and (5.3 8)

ay= a(loga—-1)-b(logb -1) (6.1 10)
for q« lying at the right side of AS;

a,= a(l —loga) —b(l - logb) (6.1.11)
for qx lying at the left of AS,

For q, coinciding with the nodal point of qx of ASy, i.e., for j=k,

a,, =h(log%—lj (6.1.12)

by (5.3.9).

On evaluation of the co-efficients ay,, the by are to be computed by (6.1.1) for the
gravimetric case and by (6.1.2) for the magnetostatic case. Then the n(=100)
equations (0.1.6) can be solved for o, Since the equations do not form a diagonal
dominant system, these are to be solved by Gauss Elimination method mentioned in
subsection 5.4.1. On finding the o, values over S, the field at a point P(X,Z) above S

can be computed by (6.1.5), the discretised version of (6.1.3).
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(i) Gravimetric case

For the boundary S divided into n=100 subclements AS, the Ag values at the n nodal

points Py(Xy,Zy) of ASy k=1,2,...,n, are computed by formula (6.1.1) with G=1, m=1,
Z=Zy, x=0 and z=-3 and the coefficients a, are evaluated analytically for all
positions of k and j over S as described in (6.11.9), (6.1.10), (6.1.11) and (6.1.12).
Subsequently, the equations (6.1.6) are solved by Gauss Elimination method.

Theo, so obtained are shown at some representative points in column 3 of Table

6.1.2.

The line integral of o is found to be -0.01547 which by (4.1.3) is expected to be zero.
Since the o, are negative at the outer sides of S, as evident in Table 6.1.2, it is
expected that the line integral of numerical o will attain the zcro value on further
cxtension of the boundary. On finding the o, over S, the up-continued Agvalues at
level z=1.5 are computed by formula (6.1.5) on evaluating the integrals by the

analytical means. The values so obtained are shown in column 3 of Table 6.1.3 along

with the true values in column 2 for comparison.

It is evident from Table 6.1.3 that the up-continued values of Ag obtained by the

discretised version of (6.1.3) agree with the true values to a good degree of accuracy
but the end values of the reproduced field contain large errors in them and the error
goes on decreasing at the central part of the continued level. This is due to the fact

that the datum was considered finite in length but theoretically the datum linc cxtends

from -oo to +oo.
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Table 6.1.2: Simple and double layer boundary densities obtained from boundary
gravity data

Boundary point ~ Simple layer Double layer  Green’s Sigma
X Z o, L H'
-25.0 0.0 -0.0062 00015 0.0209
-23.0 0.0 -0.0018 0.0018 0.0060
-21.0 0.0 -0.0015 0.0022 0.0051
-19.0 0.0 -0.0015 0.0026 0.0050
-17.0 0.0 -0.0015 0.0033 0.0052
-15.0 0.0 -0.00t7 0.0042 0.0058
-13.0 0.0 -0.0020 0.0055 0.0067
-11.0 0.0 -0.0024 0.0075 0.0082
-9.0 0.0 -0.0030 0.0108 0.0104
-7.0 0.0 -0.0038 0.0169 0.0134
-5.0 0.0 -0.0038 0.0289 0.0153
-3.0 0.125 0.0060 0.0596 -0.0241
-0.75 1.0 0.0141 0.0889 -0.0541
0.75 1.0 0.0141 0.0889 -0.0541
3.0 0.125 0.0060 0.0596 -0.0241
5.0 0.0 -0.0038 0.0289 0.0153
7.0 0.0 -0.0038 0.0169 0.0134
9.0 0.0 -0.0030 0.0108 0.0104
11.0 0.0 -0.0024 0.0075 0.0082
13.0 0.0 -0.0020 0.0055 0.0067
15.0 0.0 -0.0017 0.0042 0.0058
17.0 0.0 -0.0015 0.0033 0.0052
19.0 0.0 -0.0015 0.0026 0.0050
21.0 0.0 -0.0015 0.0022 0.0051
23.0 0.0 -0.0018 0.0018 0.0060
25.0 0.0 -0.0062 0.0015 0.0209

[The boundary S with a central high extends at both ends along the datum line S
defined by z=0]
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Table 6.1.3: Up-continuation of gravity field at level z=1.5 from boundary data

True field Field as potential of By use of
Smpl lyr. Dbl lyr.  Green’s frml.
X Agl(] Ag[ST  Ag(D] Ag(G]

-10.25  0.0359  0.0381  0.0346 0.0511
-9.25  0.0425  0.0446  0.0410 0.0569
-8.25  0.0510  0.0530  0.0490 0.0643
=725  0.0618  0.0638  0.0591 0.0740
-6.25  0.0759  0.0778  0.072] 0.0866
525 0.0941 0.0960  0.0884 0.1027
425  0.1175  0.1193  0.1079 0.1229
325 0.1460  0.1477  0.1296 0.1465
2225 0.1778  0.1792  0.1541 0.1732
-1.25  0.2063  0.2076  0.1862 0.2023
025 02215 02224 0.2196 0.2256
0.25 02215 02224 02196 0.2257
1.25 0.2063 02076  0.1862 0.2025
2.25 0.1778  0.1792  0.1541 0.1735
3.25 0.1460  0.1477  0.1296 0.1470
425 0.1175  0.1193  0.1079 0.1234
5.25 0.0941 0.0960 . 0.0884 0.1033
6.25 0.0759  0.0778  0.0721 0.0872
7.25 0.0618  0.0638  0.0591 0.0747
8.25 0.0510  0.0530  0.0490 0.0650
9.25 0.0425  0.0446  0.0410 0.0576
10.25  0.0359  0.0381  0.0346 0.0517

[Ag[t] & Ag[S], Ag[D}], Ag[G] are the true & reproduced gravity values by simple
layer boundary density, double layer boundary density and Green’s formula
respectively]

(ii) Magnetostatic case:

In this case, the vertical component magnetic data T, at the nodal points of S are
computed by formula (6.1.2) with p=1 and the values so obtained are shown at some
representative points in column 4 of Table 6.1.1. It has been theoretically shown that

this field also can be reproduced in the upper half-space domain as potential of simple
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layer boundary density o on obtaining it as solution of equations (6.1.6). Considering
the ay, values alrcady computed for the gravimetric case, the equations (6.1.6) are
solved by Gauss-elimination method treating T,(qk) value as by, k=1,2,...,n. The

o, values so obtained are shown in column 3 of Table 6.1.4 at some representative

points over S.

The line integral of o in this case is found to be 0.00035, as theoretically expected in
(4.1.3). Subsequently, the T, values at level lines z= 1.5 are computed by formula
(6.1.5) on evaluation of the integrals by analytical means. The values so obtained are
shown in column 3 of Table 6.1.5 along with the true values in column 2 for
comparison. It is evident from Table 6.1.5 that the up-continued T, values agree with

the true values to a good degree of accuracy.

75



CHAPTER VI

Table 6.1.4: Simple and double layer boundary densities obtained from boundary
magnetic data

Boundary point  Simple layer Double layer Green’s Sigma
X zZ lof Ly H'
-25.0 0.0 0.0001 -0.0005 0.0002
-23.0 0.0 0.0000 -0.0006 0.0001
-21.0 0.0 0.0000 -0.0007 0.0001
-19.0 0.0 0.0000 -0.0008 0.0001
-17.0 0.0 0.0000 -0.0010 0.0002
-15.0 0.0 0.0000 -0.0012 0.0003
-13.0 0.0 -0.0001 -0.0015 0.0005
-11.0 0.0 -0.0002 -0.0020 0.0010
-9.0 0.0 -0.0005 -0.0027 0.0019
-7.0 0.0 -0.0012 -0.0035 0.0042
-5.0 0.0 -0.0028 -0.0039 0.0101
-3.0 0.125 -0.0034 0.0035 0.0070
-0.75 1.0 0.0074 0.0216 -0.0246
0.75 1.0 0.0074 0.0216 -0.0246
3.0 0.125 -0.0034 0.0035 0.0070
5.0 0.0 -0.0028 -0.0039 0.0101
7.0 0.0 -0.0012 -0.0035 0.0042
9.0 0.0 -0.0005 -0.0027 0.0019
11.0 0.0 -0.0002 -0.0020 0.0010
13.0 0.0 -0.0001 -0.0015 0.0005
15.0 0.0 0.0000 -0.0012 0.0003
17.0 0.0 0.0000 -0.0010 0.0002
19.0 0.0 0.0000 -0.0008 0.0001
21.0 0.0 0.0000 -0.0007 0.0001
23.0 0.0 0.0000 -0.0006 0.0001
25.0 0.0 0.0001 -0.000s 0.0002

[The boundary S with a central high extends at both ends along the datum line S
defined by z=0]
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Table 6.1.5: Up-continuation of Magnetic field at level z=1.5 from boundary data

True field Field as potential of By use of
Smpl lyr. Dbl lyr. Green’s frml.
X AT[t] AT(S] AT[D] AT[G]

-10.25  -0.0054  -0.0054 -0 0055 -0.0021
-9.25 -0.0058  -0.0059  -0.0060 -0.0027
-8.25 -0.0061 -0.0062  -0.0064 -0.0032
-7.25 -0.0061 -0.0061  -0.0064 -0.0034
-6.25 -0.0053  -0.0054  -0.0058 -0.0029
-5.25 -0.0032  -0.0032  -0.0039 -0.0011
-4.25 0.0015 0.0015 0.0003 0.0031
-3.25 0.0102 0.0102 0.0079 0.0110
-2.25 0.0237 0.0237 0.0197 0.0232
-1.25 0.0393 0.0394  0.0351 0.0381
-0.25 0.0489 0.0489 0.0484 00493
0.25 0.0489 0.0489  0.0484 0.0493
1.25 0.0393 0.0394 0.0351 0.0382
2.25 0.0237 0.0237  0.0197 0.0233
3.25 0.0102 0.0102 0.0079 0.0IT11
4.25 0.0015 0.0015 0.0003 0.0032
5.25 -0.0032  -0.0032 -0.0039 -0.0010
6.25 -0.0053  -0.0054  -0.0058 -0.0028
7.25 -0.0061 -0.0061  -0.0064 -0.0033
8.25 -0.0061 -0.0062  -0.0064 -0.0031
9.25 -0.0058  -0.0059  -0.0060 -0.0026
10.25 -0.0054  -0.0054  -0.0055 -0.0020

[AT[t] & AT[S], AT[D], AT[G] are the truc & reproduced magnetic values by simple
layer boundary density, double layer boundary density and Gieen's formula
respectively]
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6.1.3 Up-continuation as Double Layer Potential

We know that gravity or a component magnetic field H in two-dimensions due to a
subsurface causative mass is a harmonic function in the upper half-space domain B,
bounded below by the ground sutface S. Both the fields vanish at infinity with

asymptotic behaviour H= O(r ™), n > 1,r — oo. As such, following (4.1.4), H can be
reproduced in B, from the respective boundary data as potential of double layer
boundary density p as

H(P) = - [ log;]q - P|u(q)dq,P € B, . (6.1.13)

For H specified over S, the p over S can be obtained as a unique solution of the

boundary integral equation (4.1.5), i.e.,

H(p) = np(p) - [log,|a - p(q)dg, peS. (6.1.14)

On discretisation, the formula (6.1.13) becomes
H(P) = —ZIMJ is,'og:|a - Pldq (6.1.15)
1=

where ﬁ(l’) is the approximation to H at P and the boundary equation (6.1.14)

becomes

H(q,) = ni(q,) - 21, [ log.|a - a, jdg
=1
or, H, = i(nSkl -b . k=123.n, (6.1.16)
)=

where b, = [ log,jq-q,|dq= _[\sj‘q—qkl—z(q——qk)jdq, (6.1.17)
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H, :H(qk),fis the normal towards B, at piccewise straight AS and 9§, is the

Kronecker delta defined as §,,=0 for j#k and 5, = | forj=k.

Two distinct cases arise in evaluation of the coefficient b,

Case 1:

For j# k, the integral is regular. Analytical evaluation of it is discussed in subsection
5.3.2. For the nodal point Px of AS, defined by (X,Z)in a local reference frame xoz

with its origin at the nodal point q, of AS and z-axis extending towards B, coinciding

with the normal to AS,, the by, over ASJ by (5§.3.11)1s

- 3x=h/2
by = [log|a-P,|dq = = tan™’ i?z—‘i} . (6.1.18)

AS) x=-h/2

h defining the length of AS,. For qi and q, defined by (X«,Zk) and (x,,z) respectively
in the original reference frame xoz and (X.Z) defining co-ordinates of Py in the local

frame xoz at the nodal point of AS,, we find

Y=|I (Xk -xj)+ml (Zk -ZJ.)
Z =12 (Xk —xj)+m2 (Zk -ZJ.)

for (}y,m;) and (l;,m;) defining the direction cosines of x-axis and z-axis respectively
of local frame in the original reference frame. For x-axis of the local frame making an

angle 6 with the x-axis of the original frame, we find, I} = cos,

my = sin 0, l2 =-sin @, and m, = cosf.
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Case 2:

For j =k,

b= flog;|q—qk|dq=0, (6.1.19)

AS)
since (q —q, )i =0, q#q, q,q, €AS, and the integral having a singularity at an

isolated point q, , a set of measure zero.

Since the equations (6.1.16) form a diagonal dominant system, as shown in subsection
5.4.1, the equations (6.}.16) can be solved casily by Gauss-Seidal iterative method
with convergence condition €=0.000001. On finding the p over S, the field at a point

P above S can be computed by (6.1.15)

(i) Gravimetric case

On computing the gravity values at the n(=100) nodal points of the sub-elements over
S, as described in the previous subsection and shown in column 3 of Table 6.1.1, the

coefficient by, are computed by (6.1.18) for j=k and by (6.1.19) for j=k. The
equations (6.1.16) are then solved for i, by Gauss-Seidal iterative method with
convergence condition &=0.000001. The equations took only 6 iterations to
converge as expected and the surface integral of p is found to be 0.95454(=0) as
theoretically expected in (4.1.7). The p values so obtained are shown at some

representative points in column 4 of Table 6.1 2.

The gravity values along the level z= 1.5 are then computed as potential of double

fayer density p by the formula (6.1.13) and these are exhibited in column 4 of Table

6.1.3 along with the true values in column 2 for comparison. It is evident from Table
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6.1.3 that the gravity values, reproduced from the boundary data as potential of double
layer boundary density, agree with the true values to a good degree of accuracy in
general. The error at few points over the middle part is due to the steep nature of the

input field and the boundary having edge and corners over the central part.

(ii) Magnetostatic case

Subsequently, vertical component magnetic data due to a unit vertically downward
doublet are computed as H, at the nodal points of S by the formula (6.1.2). The
coefficients byj are computed as above and the equations (6.1.16) are solved for K, by
Gauss-Seidal iterative method with convergence condition € =0.000001. The
equations took 6 iterations to converge as expected. The solution at some of the
representative points over S are shown in column 4 of Table 6.1.4. The solutions are
positive over the central part of S and negative over the outer part. The surface
integral of p over S is found to be 0.028669 where its theoretically expected value,
by (4.1.8), is 0. Since the n values are negative at the outer part of S, the surface

integral of the numerical pt over S is expected to be zero as S extends to infinity.

The vertical component magnetic values at the level z= 1.5 are then computed as
potential of the boundary p by (6.1.15) and these are shown in column 4 of Table
0.1.5 along with the true values in column 2 for comparison. It is evident from Table
6.1.5 that the magnetic values obtained as double layer potential of boundary density

agree with the true values to a good degree of accuracy over the central part of S.
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6.1.4 Up-continuation by Green’s Formula

For a harmonic function H, a gravity field Agor a magnetostatic component field T,,
with asymptotic behavior H= O(r™),n 21, r — oo, defined in the upper haif- spacc
domain B, bounded below by a half-space boundary S, given H and H over S, H in B,
can be reproduced by Green’s formula (4.1.9) as
- 2nH(P) = [log, |q - PH(q)dq - [ loglq - PH,(q)dq, P € B,. (6.1.20)
As P — peS, the boundary relation between H and H' over S is given by (4.1.10) as
-nH(p) = [log,|a - p[H(q)dq - [loglg - pH,(q)dq, p € S. (6.1.21)
As discussed in subsection 4.1.3, given H over S, H'I over S can be obtained as a

unique solution of the boundary integral equation

[logla - p[H (q)dq = [log,|q - p|H(q)dq + nH(p),p €. (6.1.22)

The discretised versions of (6.1.20) and (6.1.22) are given below
~2nH(P) = 3 H(a,) [ log,[a - Plda - 2 H (a,) [ logla - Plda, P e B,
- e

(6.1.23)

and

ZIH'.(q,)[\sjloglq -q,[dq = Zlﬁ(q,)Lg,logllq -q,|dg+nH(q,), (6.1.24)
1= =

respectively where k=1,2,..,n and H;(q,) and H(q,) stand for the constant values

of H (q)and H(q) respectively over the i" subinterval AS,. Following the

notations used for the coefficients in (6.1.7) and (6.1.17), the equation (6.1.24) can be

expressed as
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>.a, H(q)=2b, H(q)+nH(q,). k=12,.n
3= )=1

o,  Ya,Hl(q,)= Zl[bk, +38,n|H(q,) = D, (say).k =1,2,....n, (6.1.25)
1=l 1=

whete 8, is the Kronecker delta such that 5, =0,k # jand &, =1, j=k..

For H specified over the nodal points of the piecewise straight subelements AS,, the

equation (6.1.25) can be solved for H, by Gauss Elimination method on evaluation of

the coefficients a, and b, . On finding H, over S, the field H in the upper half space

domain B, can be computed by (6.1.23), the discretised version of (6.1.20).

(i) Gravimetric case

On computing the gravity values Ag[=H(q,)]at the n(=100) nodal points of the

subelements of S by (6.1.1) as described earlier and shown in column 3 of Table
6.1.1, the a,, and Di values of (6.1.25) are computed following the procedures
mentioned in subsections 6.1.2 and 6.1.3 above. The n equations in H are then solved
by Gauss Elimination method. The H values so obtained are shown column 5 of
Table 6.1.2. On finding the H;(qj) values over S, the gravity values H are then
computed at the level z = 1.5 by the formula (6.1.23) and these are shown in column §
of Table 6.1.3 along with the true values for comparison. It is evident from Table
6.1.3 that the computed values agree with the true values to a good degree of accuracy

over the central part of the boundary S.
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(ii) Magnetostatic case

Subsequently, the vertical component magnetic data T, are computed at the n(=100)
nodal points of the subelements over S by use of formula (6.1.2) as described earlier

and shown in column 4 of Table 6.1.1. On evaluation of coefficients a, and
b,; following the same procedure described earlier, the equations (6.1.25) are solved
for H, by Gauss Elimination method. The H, values so obtained are shown in

column 5 of Table 6.1.4. Finally, with these I~I;values known over S, the vertical
component magnetic field H is computed at the level z = 1.5 by the formula (6.1.20)
and these are exhibited in column 5 of Table 6.1.5 along with true T, values for
comparison. It is evident from TaI)le 6.1.5 that the computed T, values agree with the

true T, values to a good degree of accuracy over the central part of the boundary S.

6.1.5 Summarization of Results on Up-continuation

(1) Up-continuation of a two-dimensional potential field, an anomalous gravity
field or a component magnetic field from its boundary data can be achieved as
potential of simple as well as double layer boundary density. It can fnlso be
achieved by Green’s formula without finding Green’s function for the
boundary.

(i) All the three formulations are theoretically sound, none superior to other. The

double layer formulation is however numerically superior to others as in this

—_—

case computation of the coefficients is | straightforward jand the equations,
arriving from discretisation of the equation, form a highly diagonal dominent
system making it amenable to quick solution by Gauss-Seidal iterative

method.
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6.2 Downward continuation of Gravity-Magnetic Data

6.2.1 Continuation to a curved lower boundary

(i) Theory in brief

Let a two-dimensional harmonic function H, a gravity field Agor a magnetostatic
component field T, , with asymptotic behviour H =0 (r"), n21,r - o, be defined in
the upper half space domain B; bounded below by a curved half-space boundary

S(=S,+S,+S,, Fig.3.2.1) such that its central part S, is concave upward with its ends

fixed at the datum line S(=S_+S, +§0, Fig.3.2.1) and arms extending along it.

For H given over S,Hata point gx over S can be computed by (4.2.5) as
H(@w = np(a) - [logla-a,| p@da, q, s (6.2.1)
S
The p of (6.2.1) can be obtained over S as an approximate stable solution of the ill-

posed problem (4.2.3)

H(P) = - [log |q - Plu(q)dg, PeS, (6.2.2)
> S

and that over S, as a direct solution of (4.2.4)

nu(P) = H(P)+Ilogi‘|q—l’| (q)dq, PeS, . (6.2.3)
Sy,

For synthetic input data, it has already been shown in Appendix I that the equation
(6.2.2) has a unique solution. This can be verified in a model study, where H can be

computed over S from the model responsc, by comparing the p obtained as solution of

the Dirichlet problem (4.2.5)

H(p)= nu(p) - [log Ja-pl(a)da, pesS, (6.2.4)
S

for H given over S.
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IFor a horizontal S, say —S., extending to infinity at both ends lying at a depth d below

the datum line S, the equation (6.2.2) takes the form (4.2.8) written as
] : —
H(P)=-— jlogl|q - P]H(q)dq, PeS. (6.2.5)
TS,

For P, q defined by (X,0) and (x,-d) respectively in a cartesian reference frame xoz

with z-axis upward, the equation (6.2.5) becomes

nx0 =3 | H(x,—d)

X 6.2.6
1 [ =X)ed] (6.2.6)

the well-known Peters (1949) down-continuation formula, for S, defined by z=0 and

S, defined by z=-d.

(ii) Model Response

To carry out a model study, let us assume that a vertically polarised logarithmic line-
mass of line-density A be placed at a depth d units below the datum line S coinciding
with x-axis of a reference frame xoz with z-axis upward. For the line-mass extending
from x=x, to x=x,, its gravity and downward vertical component magnetic fields at a

point Py(xy,zx) are given by

H(P)=Ag(x,24)=GA tan ™ : - "; (6.2.7)
SU P
and  H(PO=T, (x,,2,) = p (Z’Zk)l;(x“xk)”; , (6.2.8)
i (x =x,) +(z~-z2,) s,

respectively, where G is the universal gravitational constant, pt is the uniform strength
of the logarithmic doublets per unit length of the line mass, (I,m) are the direction

cosines of the doublets, (x,z) are the coordinates of the point g on the line-mass, T, is
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the downward vertical component magnetic field and Ag is the gravity field due to the
line-mass.

Assuming G=1, A=, z=-d=-3, x,=-12, x,=12, p=I1 and assigning 1=0, m=-1 for
vertically downward doubl'ets, the gravity and the vertical component magnetic

responses of the line mass can be computed by (6.2.7) and (6.2.8) respectively at the

nodal points over S taking z,=0.

(ili)  The Datum line and the Down-continuation Boundary

To solve the equations (6.2.2) and (6.2.3) and to compute the H over S

(=§o +S|‘+§o, Fig.3.2.1) numerically, let us assume that N equidistant Hy values are

~ specified over a large data-length S (=AB C,D,EF=AB + S+ EF, Fig. 3.2.1) for
downward continuation of H to the lower boundary S;, (=BC+CD+DE, Fig.3.2.1). The

boundaries are such that C and D of Sy lie vertically below C_and D, respectively of

Stoa depth d below S. Let us-now divide the line§(=AF) into N equal subintervals

AS,, AS, ......... ,AS, such that AB,BC_, C, D,, D,E and EF contain N1, N2, N3,

N2, N4 subintervals respectively. When the end-points of AS, are projected
downward, these divide the lower boundary S(= AB + BC + CD + DE +EF, Fig.3.2.1)
into N unequal subintervals. Let us make the subintervals piecewise straight and

denote them as ASj,j=l 2y N.

It is to be noted here that the segments AB and EF are common to both the boundaries

S and S, CD is parallel to Sand each of the curved parts BC and DE at flanks is

formed of two parabolic arcs, one above the other.
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(iv)  Discritised version of the Equations

Now locating the N input data Hy at the centroids of the subintervals /_\§k k=12,

...N over S and assuming that the boundary density y is constant over a subinterval

AS;j of S, we obtain the discretised version of the equation (6.2.2) as

Nlin

H(P,) = ' Z

=N

-1 Lq log,[l’k —q|1dq,k =Nl+1,...... JNL+n, (6.2.9)
] ]

where n = N2+N3+N2 and p; is the constant value of p over the jth subinterval AS;.

In the above equations, the n input data H(Py) specified over S, are related to n
.unknown p; specified over Si.. Now, denoting the input data H(Pni+1), H(Pn1i2), oo
H(Pnin) by Hy , Hy oo H, respectively, and ASNI+J by ASJ., j=1,2,...,n, we rewrite

the equations (6.2.9) as

n

H, = Z W L logll’k ~q|;dq,k =1,2,....... ,n,

j=!

= Yag, k=12, (6.2.10)
o1
where Hy=H(Py) and ay; = - J’\S log;,q - l’kldq. (6.2.11)
hs,

The equations (6.2.10) represent a system of n simultaneous linear algebraic equations

in n unknown p;j over Si.. On finding the pj over S as solution of the equations
(6.2.10), the p; is labeled back as puy,, ;. Subsequently, the pover §0 can be obtained

directly from the discretised version of (6.2.3) writlen as

Nlt+n
My = He + Y ag,k =120 NL(NT+n 4 D,(NF+n +2),.00, N, (6.2.12)

j=NI+l
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Where [ Hagagseoos B, OF (6.2.12) are the puy po, ..., respectively of the

equation (6.2.10) with their labels retricved.

For a horizontal continuation boundary S, say §," the down continued field over §, 1S
given by (4.2.7)

H(q,) = nu(q,), q, es, . (6.2.13)
on finding the p, as solution of (6.2.10) for a horizontal S, extending over a large finite

length.

On the basis of the same assumption that the pt is constant over a subinterval, the

boundary formula (6.2.4) can be discretised as

n

Ho=Y (a, + 18 )u, k=12, N, (6.2.14)

where pt, is the constant value of p over thejlh subinterval and
ay, =~ J\S log|q, —a dq. (6.2.15)
q« defining the nodal point of the piecewise straight subinterval AS, and 0,, defining

the Kronecker delta 8y =1 and Sy, =0, k=j.

6.2.2 Uniqueness of Solution

‘

It is already shown in Appendix I that the inverse problem formulated by equation
(6.2.2) has theoretically a unique solution. For a numerical verification, we are to
show that the solution of (6.2.2) agrees with the Dirichlet-p over the curved boundary
Si (Fig. 3.2.1) to a reasonable accuracy. For this purpose, let us compute the vertical

component magnetic field due to a vertically polarised logarithmic line mass extending
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from x=-12 to x=12 lying at depth 3 units below the datum line S(=S,+S, +S,,

FFig.3.2.1). Vertically downward component field T, at a point P(xy,z¢) in a xoz frame
with z-axis upward is given by the formula (6.2.8). The true Hy values so computed

with z,=0, z=-3 1=0, m=-1 and pt=1 are shown as H, in column 2 of Table 6.2.1 at some

representative node points over the datum line S extending from x=-10.25 to x=10.25.

The continuation boundary S(=S, +S, +S_, Fig.3.2.1) is now formed by the line
scgments joining A(-10.25,0) and B(-8.25,0), C(-3.25,-1) and D(3.25,-1), E(8.25,0)
and F(10.25,0) with curved parts BC and DE at flanks. AB and EF, each identified as
§00ver S, define the horizontal arms of S and the curved parts BC and EF with
straight horizontal part CD between them form the continuation part S;, of S with CD

at depth 1 unit below S.

Considering the subinterval length h = 0.5 overS(=S, +S, +S,, Fig.3.2.1), we find
/\B(=§0) and EF(=S_ ) contain 4 subintervals each, BC._ and D_E contain 10
subintervals each and C, D, contains 13 subintervals. It is to be noted here that the N

nodal points over S are distributed as N4 = N1=4, N2=10 and N3=13. This makes

N=N1+2N2+N3+N4 = 4] and n=2N2+N3=33.

The N piecewise straight subintervals AS, over S are obtained by projecting the (N+1)

end points of the N subintervals A §, of S over S. For P, defining the nodal point of

AS, , the field value at Py is denoted by Hy, k=1,2,....,N. Subsequently, the co-

efficients ay, of (6.2.10) is considered as J, of (5.3.10) with a negative sign. The
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equations (6.2.10) are then solved for pjover S;. by Gauss-Seidal iterative method with

convergence condition £€=0.000001. On obtaining the 11, over Sy, the 11; over AB(=S,)
and EF(=§U) are computed by (0.2.12). The p; so obtained are shown as p(l) in

column 6 of Table 6.2.1 at some representative points over S (=S, +S.+8S.).

Table 6.2.1: Uniqueness of solution in down-continuation of a magnetostatic field to a
curved lower boundary.

Node  Inputat z-co-ord Dirichletu Dirichlet  Inverse pover S Difference

point  S(z=0) ofqeS gyerS  poverS (1) Ju(D) - p(D)|
X H, Z; n n(D) E
-10.0  0.0489 0.0 0.0156 0.0159 0.0159 0.0
8.5 0.1860 0.0 0.0592 0.0598 0.0595 0.0003
8.0 0.2079  -0.01 0.0662 0.0668 0.0667 0.0001
3.5 0.1974  -0.99 0.0628 0.0625 0.0618 0.0007
3.0 0.1937 -1.0 0.0617 0.0608 0.0602 0.0006
2.5 0.1906 -1.0 0.0607 0.0594 0.0588 0.0006
0.5 0.1838 -1.0 0.0585 0.0566 0.0560 0.0006
0.0 0.1835 -1.0 0.0584 0.0565 0.0559 0.0006
0.5 0.1838 -1.0 0.0585 0.0566 0.0560 0.0006
2.5 0.1906 -1.0 0.0607 0.0594 0.0588 0.0006
3.0 0.1937 -1.0 0.0617 0.0608 0.0602 0.0006
3.5 0.1974  -0.99 0.0628 0.0625 0.0618 0.0007
8.0 0.2079  -0.01 0.0662 0.0668 0.0667 0.0001
8.5 0.1860 0.0 0.0592 0.0598 0.0595 0.0003
100 0.0489 0.0 0.0156 0.0159 0.0159 0.0

[The vertical component magnetic field is due to a vertically polarised logarithmic
line mass extending from x=-12 to x=12 lying at depth 3 units below the datum line

S defined by z=0 in a cartesian ref. frame with z-axis upward.]
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The Hy values at the N nodal points q of S are then computed by (6.2.8) and the ay; of
cquations (6.2.14), the discretised version of the Dirichlet problem for the domain B;
bounded below by S, are evaluated analytically with Py replaced by qr. The co-
efficient agj shown in (6.2.15) is the by of (5.3.11) with a negative sign for j # k and
awk is the by of (5.3.13), the value of it being zero. The equations (6.2.14) are then
solved by Gauss-Seidal iterative method with £=0.000001. The Dirichlet p; so
obtained are shown as (D) in column S of Table 6.2.1 for comparison with L(I). Itis
to be noted here that all the computations in this subsection are carried out in double

precision.

For the same setup of the boundaries and the causative mass, as shown in Fig.3.2.1, a

similar exercise is carried out for down-continuation of the gravity response from the

datum line S to the continuation boundary S. In this case, the input data are the gravity

response due to the logarithmic line mass extending from x=-12 to x=12 placed at
depth 3 units below S. The 2-D gravity response Hy is computed over the datum line

S by (6.2.7) with universal gravitational constant G=1, logarithmic line density A=1,
z=0 and z=-3. The values so obtained are shown as H, in column 2 of Table 6.2.2.

Subsequently, following the same procedure mentioned above, p(D) andl(I) are

obtained and these are shown in columns 5 and 6 respectively in Table 6.2.2

It is evident from Tables 6.2.1 and 6.2.2 that for both gravimetric and magnetostatic

cases, the n(I) and (D) values agree closely with each other, providing a numerical
verification of the theoretical conclusion that the inverse problem (4.2.3) theoretically

has a unique solution since (D) is unique over S(=S, +S.+ §0 )-
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Table 6.2.2: Uniqueness of solution in down-continuation of a gravimetric field to a
curved lower boundary.

Node  Inputat z-co-ord Dirichlet p Dirichlet i Inverse pover Difference
point S(z=0) ofqeS over S over S S Iu(D) - u(l)l
X H, Z i D) p(t) E
-10.0 1.4219 0.0 0.4526 0.4490 0.4487 0.0003
-8.5 1.8737 0.0 0.5964 0.5902 0.5877 0.0025
-8.0 1.9937 -0.01 0.6346 0.6259 0.6259 0.0
-3.5 2.4905 -0.99 0.7928 0.7980 0.8049 0.0069
-3.0 2.5099 -1.0 0.7989 0.8060 0.8128 0.0068
-2.5 2.5255 -1.0 0.8039 0.8121 0.8191 0.0070
-0.5 2.5574 -1.0 0.8141 0.8239 0.8300 0.0061
0.0 2.5587 -1.0 0.8145 0.8244 0.8305 0.0061
0.5 2.5574 -1.0 0.8141 0.8239 0.8300 0.0061
2.5 2.5255 -1.0 0.8039 0.8121 0.8191 0.0070
3.0 2.5099 -1.0 0.7989 0.80060 0.8128 0.0068
3.5 2.4905 -0.99 0.7928 0.7980 0.8049 0.0069
8.0 1.9937 -0.01 0.6346 0.6259 0.6259 0.0
8.5 1.8737 0.0 0.5904 0.5902 0.5877 0.0025
10.0 1.4219 0.0 0.4526 0.4490 0.4487 0.0003

[The gravity field is due to a logarithmic line mass extending from x=-12 to x=12
lying at depth 3 units below the datum line S defined by z=0 in a cartesian ref. frame

with z-axis upward.]
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6.2.3 Downward Continuation of Erroneous Input Data to a
Horizontal and a Flat-Bottom Curved Boundary

Let a finite interval D extend from x=-10.25 to x=10.25 over the datum line S defined
by z=0 in a xoz refercnce fiame with z-axis upward. This interval D be divided into

N(=41) equal subintervals A§' of length h=0.5 units each. Let us now consider a

horizontal continuation boundary S, at a depth d=1 vertically below D such that S,
also extends from x=-10.25 to x=10.25 and contains N(=41) equal sub-intervals AS in
it. Subsequently, let us consider a flat bottom curved boundary S (= §“ +3S, + _S_n) such
that its flat part extends from x=-3.25 to x=3.25 coinciding with the central part of S;,
as shown in Fig.3.2.1. The curved boundary S(=S, +S, +S,) is now divided into
N(=N1+N2+N3+N2+N4) unequal subintervals AS such that the projection of AS, on

S coincides with AS, of S, j=1,2,...N. In this case, N1(=4) and N4(=4) sub-intervals

lie on S, N3(=13) subelements coincide with those over the central part of S, and each

of the curved parts of S contains N2(=10) unequal subintervals.
(a) Continuation to Horizontal Boundary

On dividing the boundaries S and Sy, each into N piecewise staright subintervals as

described above, vertical component magnetic field, Hy, k=1,2,...,N is computed at the

nodal points (Xy,z«) of .S by (6.2.8) with p=1, z=0, z=-3, 1=0, m=-1, x;=-12 and

x;=12. These are then contaminated with random error E, E| < 1% of the true response

for treating them as input data. The input data so obtained are shown as H, in the

column 2 of Table 6.2.3.

94



Solution of certain two-dimensional inverse problems in potential theory and therr application in exploration geophysics

It is already mentioned that the horizontal continuation boundary Sy, (-10.25, 10.25) 1s
divided into N(=41) equal subintervals. Assuming that the p is constant over a
subinterval, the coefficients ay of equation (6.2.10) for qjeS, as described in
subsection 6.2.2, are evaluated by analytical means and the resulting n(=N) equations
are solved for approximate p; following the procedure described earlier with
£=0.000001 for less than 1% mean squared error (MSE) in input data, the largest field
value being 0.2070 over S. On finding the p1 over Sy, the continued field H; over S, is
obtained by (6.2.13). The values so obtained are shown in column 5 of Table 6.2.3

along with the true field H, in column 4 for comparison.

Subsequently, the gravity values at the nodal points (xk,z«), k=1,2,...N are computed
by formula (6.2.7) with G=1, A=1, z=0, z=-3, x;=-12 and x,=12. These are

contaminated with random error E, |E| < 1% of the true response to treat them as input

data. The input data so obtained are shown in column 2 of Table 6.2.4. These are then
normalised and the above procedure is followed with £=0.0001 for 1% MSE in the
normalised data to find the continued field over S,,. The field so obtained over §;, are
multiplied by the noi‘malising factor M=2.5674 to get back the field due to the
causative mass. The continued field so obtained are shown in column 5 along with the

true values in column 4 of Table 6.2.4 for comparison.
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Table 6.2.3: Down-continuation of magnetic data to a horizontal and a flat-bottom
curved lower boundary at a shallow depth.

Node Input % error True field Down-continued field at depth d=1(=2h)

points over indata  overS§, unit below S,
S (z=0) (d=1)  over over
Er Hriz Sy, % Er Crvd S;. % Er
X H, H, H E H E

-10.0 0.0494  0.9447  0.0495 -0.1908 -485.310 -- --
-8.5 0.1847 -0.7192 0.2934 03622 23.4350 -- -

-8.0 0.2071  -0.3841 0.3049 0.2578 -15.4450 -- -
-3.5 0.1976  0.1049  0.2130 0.2101  -1.3526 -- --

-3.0 0.1938  0.0257 0.2072 0.2161 42759  0.2052 -0.9752
-2.5 0.1891  -0.7902 0.2025 0.1895 -6.4091  0.1978  -2.3364
-0.5 0.1820 -0.9780 0.1927 0.1810 -6.0657 0.1886 -2 1376
0.0 0.1841 03395 0.1923  0.1894 -1.5039  0.1914 -0.4540

0.5 0.1853  0.8388  0.1927  0.2001 3.8493 0.1934  0.3497 |
2.5 0.1901  -0.2767 0.2025 0.1987  -1.8730  0.1992 -1.6109
3.0 0.1928 -0.4941 0.2072 0.2013  -2.80664  0.2030 -2.0243

3.5 0.1965 -0.4746 0.2130  0.2011  -5.5837 -- --
8.0 0.2082  0.1256  0.3049 0.2644 -13.2670 -- --

8.5 0.1873  0.6972  0.2934 0.3728 27.0470 -- --
10.0 0.0493  0.7694  0.0495 -0.1907 -485.240 -- --

[The field is due to a vertically polarised logarithmic line mass extending from x=-12
to x=12 lying at depth 3 units below the datum line S. The horizontal continuation
boundary Sy, at depth coincides with the {lat part of S; over the interval (-3.25, 3.25)]

(b) Continuation to Curved lower Boundary

For continuation of magnetic data of column 2 of Table 6.2.3 from the datum line S to
the curved lower boundary S, the co-efficients ay, of equations (6.2.10) arc evaluated

by analytical means and an approximate stable p, over Si. are obtained by solving the

equations with terminating condition £=0.000001. Subsequently, the p, over S are

[¢]
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obtaincd by (6.2.12) and the field values over the hotizontal part of S, are computed
by the discretised version (6.2.14) of formula (6.2.1). The results obtained are shown
in column 7 of Table 6.2.3 along with the truc values in column 4 for comparison. The
samc exercise is carried out for gravity data and results obtained are shown in column

7 of Table 6.2.4 along with the true values in column 4 for comparison.

From the down-continued field values, obtained over the central part of the horizontal
continuation boundary and these obtained over the central flat part of the curved
continuation boundary, exhibited in Tables 6.2.3 and 6.2.4, it appears that for a finite
length of input data, down-continuation to a curved boundary is having a shght edge

over continuation to a horizontal boundary.

(c) Down-continuation of Magnetic Data to Horizontal and Flat-bottom curved
Boundary at Deeper Depth

On finding the continued field at a depth D(=2h)=1 unit below S, the procedure is
repeated for the same input magnetic data for S;, and §L (Fig.3.2.1) at depth d(=4h)=2
units below S without changing the values of N1, N2, N3 and N4. The continued field

values obtained over S, and S are shown in columns 3 and 7 respectively of Table

0.2.5 along with the true values for comparison.
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Table 6.2.4: Down continuation of gravity data to a horizontal and a flat-bottom
curved lower boundary.

Down-continued field at depth d=1(=2h)
Node Input % error True field unit below S.
points _over indata over S, gver over
S (z=0) Er (z=-1) Hrtz S % Er Crvd Sy, % Er
X H, H, i E B E
-10.0 1.4353  0.9447 14711 34141 132.0700 -- --
-8.5 1.8602  -0.7192 21066 19167 -9.017] -- --
-8.0 1.9860 -0.3841 2.2455 23525 4.7651 -~ --
-3.5 2.4931 0.1049 2.6960 2.7463  1.8662 -- -
-3.0 2.5105  0.0257 27106 2.7966  3.1723 2.8884  6.5569
-2.5 2.5056  -0.7902 27223 2.6779 -1.6338 2.6675 -2.0132
-0.5 2.5324 -0.9780 2.7459 2.6324 -4.1329 2.6406 -3.8327
0.0 2.5674 03395  2.7468 2.8034 20590 2.7866  1.4496
0.5 2.5789 0.8388 2.7459 2.8870  5.140l 2.9067  5.8567
2.5 25186  -0.2767 2.7223  2.7354  0.4802 2.7211  -0.0463
3.0 24975 -0.4941 27106 2.6854 -0.9316 2.6980 -0.4654
3.5 24787 -0.4746 2.6960 2.6383 -2.1404 -- --
8.0 1.9962  0.1256  2.2455 2.3903  6.4487 -- --
8.5 1.8867 0.6972 2.1066 2.0371 -3.3015 -- --
10.0 1.4328 0.7694 14711 3.7239 153.1400 -- --

[The field is due to a vertically polarised logarithmic line mass extending from x=-12

to x=12 lying at depth 3 units below the datum line S. The horizontal continuation
boundary S, at depth coincides with the flat part of S, over the interval (-3.25, 3.25)]
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Table 6.2.5: Down-continuation of vertical field magnetic data to a horizontal and to
a flat bottom curved lower houndary with their central parts at depth
d=2units below the datum linc

Down-continued field to Down-continued field to curved
hortzl boundary S, placed at boundary with its central part
depth d=2 CD at depth d=2
Node True Contd % Error  Depth True Contd % Error
over S field field co-ord field field
X “H, H E -Zs H, H E

-10.0  0.0499 -0.3549 -811.49 0.0 0.0489 0.0492  0.6855
-85 05154 04122 -20.039 0.0 0.1860 0.1831 -1.5649
-8.0 04554 0.6219 36.574 0.02 0.2094 0.2080 -0.6407

-5.5 0.2760  0.2420  -12.319 1.18 0.2546  0.2393 -6.0362
-5.0 0.2587  0.2402 -7.1542 1.5 0.2495 0.2387 -4.3377
-3.5 0.2240 0.2401 9.8730 1.98 0.2238 0.2228 -0.4421

3.0 02165 02140 -1.1535 2.0 0.2165 0.2165 -0.0062
-2.0 0.2058 0.1906  -7.4281 2.0 0.2058 0.2021 -1.8235
-1.0 0.1999 0.1892  -5.3747 2.0 0.1999  0.1981 -0.9300
0.0 0.1980 0.1995  0.7564 2.0 0.1980 0.1966 -0.7330
1.0 0.1999  0.1974  -1.2495 2.0 0.1999 0.1986 -0.6609
2.0 0.2058 0.1965 -4.5329 2.0 0.2058 0.2053 -0.2567
3.0 02165 0.1972 -8.8998 2.0 0.2165 0.2153 -0.5320
3.5 0.2240 0.2114 -5.6253 1.98 0.2238 0.2211 -1.2075
5.0 0.2587 0.2387 -7.7385 1.5 0.2495 0.2377 -4.7272
55 0.2760 0.2390 -13.404 .18 0.2546 0.2404 -5.6054
8.0 0.4554 0.6866 50.771 0.02 0.2094 0.2091 -0.1381
85 05154 04240 -17.745 0.0 0.1860 0.1857 -0.1527
10.0 0.0499 -0.3728 -847.42 0.0 0.0489 0.0491 0.5091

[Both the datum line S and the horizontal continuation boundary S extend from x=-
10.25 to x=10.25, S, lying at a depth d=2 units below S defined by z=0. The co-

ordinates of some of the node points over S and S;, are shown in column | and the
corresponding z-coordinates of those over S are shown in column 5]
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It is evident from Table 6.2.5 that for input data within 1% random error specified over
an interval D (-10.25, 10.25), the continued field at a depth d(=2h)=2 units below it
can be obtained within a reasonable error over the flat interval (-3.25, 3.25) of the

curved continuation boundary.

Further, it is also evident from Tables 6.2.3 and 6.2.5 that the error in the down-
continued field values over the central part of the horizontal boundary increases more
rapidly with increase of depth of continuation than that over the central part of the
curved continuation boundary. Moreover, it is evident from Table 6.2.5 that when the
error over the outer parts of the finite horizontal boundary increases rapidly with
encroachment towards the central part, the error remains reasonable all over the curved
boundary for all depths of continuation < 4h, h defining the spacing of data over the

datum line.
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6.3 Depth-Determination

6.3.1 Choice of Boundary and spacing of data over the datum line

Usual downward continuation of an observed potential field to a horizontal level
cannot reach the basement low in a geological basin without encountering the
neighbouring basement high. This violates the Dirichlet condition of continuation,
i.e., the continued field is a harmonic function above the continuation boundary. This
situation can be avoided if the continuation boundary approaches the target in a
Fapering shape extending below a finite interval with its arms extending along the
datum line. On computing the field at the apex of the tapering boundary, as it moves
downward along a vertical in steps, the depth to the top of the basement can be

obtained from the gradient of the computed ficld along the vertical.

In downward continuation of an observed potential field, spacing of data over the
datum line plays an important role in obtaining a well-behaved set of field values

along a vertical. It is shown in subsection 4.2.4 that for h defining the uniform length

of subinterval A§k over the datum line S and D defining the depth of continuation,
h>—. (6.3.1)

provides a well behaved computed field up to a depth of D, below. S .

Further, it is shown in subsection 4.2.5 that for a finite data-length D over S, the

error in the down-continued field H(z) along a vertical uniformly increases . =

_ - as depth of the apex z of the boundary increases, while the field increasing

[

raptdly near the causative mass. It is also shown in the subsection that the error in the
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computed H(zy) decrcases as length of D increascs. However, it is our working
expericnce that

S, 25D, (6.3.2)

u

S, defining the central part of S with Sy, directly below it (Fig. 4.2.1), provides the

u

computed field H(zy) along the axis of S, with steadily increasing = . error
for D, <D, = 4h, Dy defining the depth of z below S. Under such a situation, the
vertical gradient of the computed field along the vertical shows its first maximum at

the top of the causative mass.

6.3.2 Generation of Input Data

Let a vertically polarised logarithmic line-mass of line-density A be placed at a depth
d units below the datum line S coinciding with x-axis of a reference frame xoz with z-
axis upward. For the line-mass extending from x=x, to x=x3, lying at a depth d below

the datum line S , its gravity and downward vertical component magnetic fields at a

point Py(xk,zx) are given by (6.2.7) and (6.2.8) respectively.

Assuming G=1, A=1, z=-d=-3, x,=-12, x,=12, p=1 and assigning 1=0, m=-1 for
vertically downward doublets, the gravity and the vertical component magnetic
responses of the line mass are computed at the nodal points of the subintervals of D (-
20.5, 20.5) of S by (6.2.7) and (6.2.8) respectively taking z,=0 and xy running over
the nodal points of D. The true responses so obtained are shown at some
representative points in columns 2 and 5 as H(=Ag) and H(=T,) respectively in Table
6.3.1. The data contaminated with random error are shown as H, in columns 3 and 6 in

Table 6.3.1 for treating them as input data.
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Table 6.3.1: Input gravity and magnetic data over a datum line S

Node Gravity data over S Magnetic data over S
over S True Input % Error  True Input % Error
X field data field data
H((Ag) Hi E Hl(Tz) Hi E

-20.0 0.2653 0.2678 094  -0.0786 -0.0794 0.94
-15.0 0.6747 0.6759  0.17  -0.1301 -0.1314 0.97
-10.0 20233 20430 098 0.1985  0.1991 0.34
-5.0 2.5620 25418 -0.79  0.1777 0.1792 0.82
-4.0 25975 25722 -097 0.1700 0.1686 -0.83
-3.0 2.6224 2.6035 -0.72 0.1641  0.1653 0.73
2.0 2.6390 26502 042 0.1600 0.1602 0.13
-1.0 2.6485 2.6226 -098  0.1576  0.1562 -0.95
0.0 26516 2.6606 0.34 0.1569  0.1581 0.77
1.0 2.6485 2.6708 0.84 0.1576  0.1586 0.60
2.0 2.6390 2.6384 -0.02 0.1600 0.1607 0.42
3.0 2.6224  2.6307 0.8l 0.1641  0.1628 -0.82
4.0 2.5975. 25999 -0.28 0.1700 0.1689 -0.62
5.0 2.5620 25549 -0.28 0.1777 0.1770 -0.40
10.0 12,0233 2.0399  0.82 0.1985  0.1991 0.30
15.0 0.6747 0.6778  0.45 -0.1301  -0.1299 -0.11
20.0 0.2653 0.2673  0.77 -0.0786  -0.0786 -0.02

(Gravity and vertical component magnetic fields are due to a vertically polarized

logarithmic line mass extending from x=-12 to x=12 lying at a depth 3 units below S
defined by z=0 in a xoz reference frame with z-axis upward)

6.3.3 Down-Continuation of Erroneous Potential Field to a Tapered
Parabolic boundary
Considering the continuation or search-depth D=4, the normalised gravity data over

the interval D (-13.5, 13.5) of S are sampled following (6.3.1) at a regular spacing

h=1 and these are assigned at the nodal points of the subintervals A§I of D. This
subdivision yields N=27 data over D with the central one at x=0. Following the

scheme of distribution of data over S , as shown in Fig.4.2.1, N1=2 data over S_to

the left of §, N4=2  over §0t0 the right of § and n

u u
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=[N2(=10)+N3(=3)+N2(=10)]=23 over S, are assigned. The values of N2 and N3 so

chosen automatically satisfies the condition (6.3.2) for all choice of h < D_/h.

Considering the first configuration Sy of Si, (Fig. 4.2.1) with its apex z, at depth

d=Az=0.5 below S at the vertical x=0, equations (6.2.10) in n(=23) unknown ; are
solved for stable approximate py allowing a mis-match of 1% mean squared error
(MSE) between the reproduced field and the input data over S, by setting £€=0.0001

for a preassumed 1% maximum average error in the normalised input data. On finding

the approximate p; over Sy (), the pjover S, are obtained by (6.2.12). On obtaining the
1, over S(=S_+S, +S_, Fig.4.2.1) for data specified over the interval D (-13.5, 13.5)
of S, the down-continued field H(z;) at the apex z.=z; at depth d|=Az=0.5 below

S is computed by (6.2.14), the discretised version of (6.2.1). The value so obtained is

multiplied by the normalising factor M of the data over D to find the down-continued

ficld value of the original field.

In the next step, keeping §“ and the input data unchanged over D, S, is extended
downward with its apex z; on x=0 at a depth d=2Az (=1) below S . The procedure
described above is followed to compute H(zz). The procedure of extending of S
downward with its apex zx moving in steps of Azalong the vertical at x=0 and

subsequent computation of H(z,) is continued till z, attains a depth d2D; below S .

The H(zx) values so obtained along the vertical are shown in column 3 of Table 6.3.2

!

along with the true values for comparison. Similar procedure is followed for the input

data specified over the interval D (-20.5, 20.5) at a spacing of h=1 over S keeping §u

104



Solution of certain two-dimensional inverse problems in potential theory and their application in exploration geophysics

fixed in position with n=23, and N1=N4=10 at same spacing h=1 over S, on both
sides of S, . The H(z) values so obtained at steps of Az=0.5 along the vertical at x=0
are shown in column 5 in Table 6.3.2.

Following the same procedure, the erroneous vertical component magnetic data H;,
shown in column 6 of Table 6.3.1, are considered over the intervals D (-13.5, 13.5)
and D (-20.5, 20.5) at a spacing h=1 over S, for down-continuation of the field along
the vertical at x=0. The results obtained are shown in Table 6.3.3 along with the true
values for comparison.

Table 6.3.2: Down-continued gravity field along a vertical through mid-point of
D of datum line S .

Down-continued field for data-length
Depth True D (-13.5,13.5) D (-20.5, 20.5)
of field H(z) % Error  H(zy) % Error
Zy H‘
0.5 27308  2.6240 3391 2.6316 -3.63
1.0 2.8112  2.7520 2.1 2.7554 -1.98
1.5 2.8929  2.8416 -1.77 2.8457 -1.63
2.0 2.9753  2.9286 -1.57 2.9334 -1.40
2.5 3.0583  3.0157 1.39 3.0186 1.29
3.0 -- 3.1616 -- 3.1708 --
3.5 -- 3.2538 .- 3.2405 --
4.0 -- 3.3408 -- 3.3488 --
4.5 -- 3.4227 -- 3.4288 --
’ 5.0 -- 3.5021 -- 3.5062 --

[The field is reproduced at the apex z, of the parabolic part of the down-continuation
boundary as it extends downward with its ends fixed at the datum line and apex
moving downward in steps along the vertical at x=0.]
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Table 6.3.3: Down-continued magnetic field along a vertical through mid-point of
D of datum line S.

Down-continued field for data-length
Depth True D(-13.5,13.5) D (-20.5,20.5)
of field H(zy) % Error  H(zy) % Error
Zg Hl
0.5 0.1597 0.190 18.97 0.163 2.06
1.0 0.1622 0.197 21.45 0.169 4.19
1.5 0.1641 0.204 24 31 0.175 6.64
2.0 0.1655 0.211 27.49 0.180 8.76
2.5 0.1664 0.206 23.79 0.186 11.77
3.0 -- 0.211 -- 0.191 -
35 -- 0.217 -- 0.197 -
4.0 -- 0.223 -- 0.184 --
4.5 -- 0.230 -- 0.188 --
5.0 -~ 0.237 -- 0.192 --

. [The field is reproduced at the apex zy of the parabolic part of the down-continuation
boundary as it extends downward with its ends fixed at the datum line and apex
moving downward in steps along the vertical at x=0.]

It is evident from Tables 6.3.2 and 6.3.3 that for the input data specified over an
interval D, the error in the down-continued field along the axis of S; steadily
increases with depth as expected in subsection 4.2.5 for a negative pt,,. The error in
the computed H(z,) however decreases at a fixed depth of z, when the data interval
D increases in length, as expected in subsection 4.2.5. Further, for a fixed input data-
length, the error in H(zy) for the magnetostatic cases increases at a much faster rate
than that in the gravimetric case as expected in subsection 4.2.5. It is to be noted here

that the average percentage error in input data over S (-5.5, 5.5) is negative for the

gravimetric case and it is positive for the magnetistatic case as can be seen in Table
0.3.1. Hence, the % error in the reproduced H(z) for these set of model data starts
with a negative value for the gravimetric case and with a positive value for the

magnetostatic case.
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6.3.4 Depth-Determination from Down-continued Field-values

It is evident from the H(z:) columns in Tables 6.3.2 and 6.3.3 that contrary to
expectation, all the H(zy) profiles smoothly go past the causative mass with increasing
values without exhibiting a visible change in them at the causative mass. A distinct
change in property of the field on crossing the target lies suppressed for smoothening
of boundary p obtained by introducing an extra term A that appears in the diagonal
vector of the system of linear algebraic equations (5.4.12) to ensure convergence of

the solution.

Considering the down-continued gravity and rﬁagnetic values H(zx) of Tables 6.3.2
and 6.3.3 respectively, obtained from data specified over D (-13.5, 13.5), the vertical
gradient V_H of H(z) profiles are computed by formula (4.2.10) along with 1, the
normalised variation in V_H relative to the first (or shallowest) gradient value

V.H,, by (4.2.11). The details of computation are shown in Table 6.3.4 and 6.3.5, for

gravity and magnetic fields respectively.

It is evident from Tables 6.3.2 and 6.3.3 that even when the computed H(z) values
are with large error and the error increasing with depth of z, as expected, the vertical

gradient of H(zx) shows its first maximum at the top of the causative mass at depth

=3 units below the datum line S . Subsequently, gradients of H(z,) values

d=|z
obtained from input data of D (-20.5, 20.5) are computed. The down-continued H(z)
values and 1 values so obtained from gravity and magnetic data are si1own in columns
2&3 and 4&5 respecti;/ely in Table 6.3.6. In this case also depth to the causative mass

is shown at depth d=3.
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It is evident from Tables 6.3.4, 6.3.5 and 6.3.6 that for both the input data intervals

D (-13.5, 13.5) and D (-20.5, 20.5), the first maximum of the vertical gradients of

H(zx) occurs at the top of the causative mass. Hence, a input data interval D > S with

(2ZN2+N3) data, is expected to lead to correct depth to the causative mass, as expected

in subsection 4.2.5, for the mass lying at depth d<4h, h defining the spacing of data

over D .

Table 6.3.4: Depth-determination by down-continuation of gravity data along a
vertical for data specified over the interval D(-13.5,13.5) of Sat a

regular interval h=1.

Depth Continued field 15 2" 3" Grad  Normalised
of True  Reproduced Diff. Diff. Diff. f variation
Zk H, H(z)={x Af Arf Asf A,f n
0.5 2.7308 2.6240
1.0 2.8112 2.7520 0.1280
1.5 2.8929 2.8416 0.0896  -0.0384 0.1702 0.000
2.0 2.9753 2.9286 0.0870 -0.0026 0.0358  0.1639 -0.010
2.5 3.0583 3.0157  0.0871  0.0001  0.0027  0.2420 0.878
3.0 -- 3.1616  0.1459  0.0588  0.0587 1.0487< 1.000 <
3.5 = 3.2538  0.0922 -0.0537 -0.1125 0.1710 -0.026
4.0 - 3.3408  0.0870 -0.0052 0.0485
4.5 -- 3.4227 0.0819 -0.0051  0.0001

[Down-continued field H(zy) is obtained along the vertical x=0 from input data shown
in column 3 of Table 1 specified over D(-13.5,13.5). Af stands for the i" order
difference of f in the horizontal difference Table, V,f stands for downward vertical

gradient of f and n stands for normalised relative variation in V,f.]
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Table 6.3.5:

Depth-determination by down-continuation of magnctic data along a
vertical for data specified over the interval D(-13.5,13.5) of Sat a

regular interval h=1.

Depth Continued field I 2" 3" Grad Normalised
Oof True  Reproduced  Diff. Diff. Diff. f variation
7k H, H(z)=fx A Asf Asf Al n
0.5 0.1597 0.190
1.0 0.1622 0.197 0.007
1.5 0.1641 0.204 0.007 0.0 0.0160 0.0
2.0 0.1655 0.211 0.007 0.0 0.0 -0.0003 -0.736
2.5 0.1664 0.206 -0.005 -0.012  -0.012 -0.0020 -0.801
3.0 -- 0.211 0.005 0.010 0.022 0.0130« -0.099 <
3.5 -- 0.217 0.006 0.001  -0.009 0.0120 -0.138
4.0 -- 0.223 0.006 0.0 -0.001
4.5 -- 0.230 0.007 0.001 0.001

[Down-continued field H(zy) is obtained along the vertical x=0 from input data shown
in column 4 of Table 1 specified over D(-13.5,13.5). Af stands for the i" order
difference of f in the horizontal difference Table, V,f stands for downward vertical
gradient of f and 1 stands for normalised relative variation in V,f]

Table 6.3.6: Computation of depth to the causative mass from gravity and magnetic
data specified over D (-20.5,20.5) of S by down-continuation along the
vertical at x=0.

Relative Relative

Depth Gravity field vertical Magnetic field vertical

of along x=0 gradient along x=0 gradient

Zx H(z) n - H(zy) )

0.5 2.632 0.163

1.0 2.755 0.169

1.5 2.846 0.000 0.175 0.000

2.0 2.933 -0.129 0.180 -0.008

2.5 3.019 0.878 0.186 -0.108

3.0 3.171 1.000< 0.191 0.099 <«

3.5 3.241 -0.072 0.197 -0.938

4.0 3.349 -0.107 0.184 -1.000

4.5 3.429 0.188

5.0 3.506 0.192

(The first maximum of the vertical gradient of the down-continued gravity and
magnetic field values along x=0 occurs at z=3, the actual depth of the source below

the datum line S .]
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6.3.5 General Remarks on Down-Continuation and Depth-

(ii)

(iii)

(iv)

Determination

Formulation of problem of down-continuation to a horizontal half-space
boundary and that to a curved continuation boundary with a flat central part,
are both built up on sound theoretical basis. However, for data specefied over
a finite datum length, it appears that the later provides a better down-continued
field over its flat part than that provided by the former over the same interval
comeiding with it.

Numerical analysis on down-continuation of crroneous data with error E,

|E| < 1% of the true response, is carried out in this work. It is observed that the

error in the continued field increases to about 2% in gencral when the field is
continued to a level 2h below the datum line, b defining the spacing of data
over the datum line

Since the parabolic continuation boundary approaches the top of the causative
mass taking a tapcring shape as depth increases, the approach is expected to
provide a rcasonable point to point depth to the top of the undulated bascment
in a geological basin.

For a causative mass lying at a depth d > D_, the search depth, below the

datum line S, the vertical gradient of the continued field H('zk) will not exhibit
its first maximum at a depth shallower than Ds. To determine the depth in such
a case, Dy is to be increased and accordingly, the spacing h of data over S is
to be refixed as h=Dy/4. Further, the technique in general produces the depth

within a maximum error £ <Az, the step size of z along the vertical.

max

However, the result can be improved by considering a smaller value of Az.
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(v)

(vi)

The observed ground magnetic data are with more than 1% error in them in
general. The error in the data can be reduced by up-continuation of them to a
higher level. Presence of unacceptable error in data will be revealed either in
non-convergence of solution or in yielding of unacceptable depth to the
subsurface causative mass.

Profile magnetic data in 2D with normal corrections, can be treated as isolated
for its use in determination of depth to the causative mass by use of the down-
continuation technique described in the work. This provides as easy approach
in finding depth to the basement in a geological basin from observed magnetic

data.
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APPLICATION TO FIELD DATA

7.1 ldentification of EW trending faults and determination
of sedimentary thickness in Shillong-Mawlong area by
analysis of magnetic data

7.1.1 Introduction

On June 12, 1897 Shillong, the capital of Meghalaya, was violently rocked by the
great Assam Earthquake of magnitude 8.1 in Richter scale. The main cause of the
quake remained unknown for over a century. Most scientists previously believed that
this quakec was caused by a rupture on the Himalayan thrust fault that dipping to the

north and propagating all along beneath Bhutan.

At the turn of the century, Captain Bond discovered an 8 ft uplift of the Shillong
plateau while working for the Survey of India (Sol) to remeasure the triangular points
established by the original survey of the Plateau in 1862. His superiors dismissed his

results, says Prof. Bitham (Geology news, 2001).

In the early 20" century, Richard Oldham concluded that continuing movement of the
Shitlong Plateau following the Assam event caused errors in the original data and
recommended a retriangulation in the northern portion of the plateau. He later wrote
about the Assam earthquake in extraordinary detail and went on to discover the core

of the carth (Bilham and England 2001).
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FFinally, Bilham and England (2001) analyzed Bond’s data and found that the northern
cdge of the Shillong platcau rosc violently by more than 11m folld\ving the rupture of
a buried 110 km long reverse fault, dipping steeply away from the Himalaya and
penetrating 9 to 45km beneath the surface. They dubbed it ‘Oldham fault’. They also

inferred that there must exist a reverse fault at the southern edge of the plateau
dipping northwards that acted in concert with the Oldham fault to wedge the Shillong

Plateau uniformly upward without tilting it (Geology news 2001).

The reverse fault at South of Shillong coincides with the exposed Dauki fault which is
clearly visible at the southern edge of the plateau. However, the northern Oldham
fault does not show any outcrops in the Nongpoh-Barapani area (Bilham and England,
2001) which is mostly covered by Proterozoic Shillong group of sediments. The
Shillong plateau with a high clevation and positive Bouguer gr-ﬂvily (~20-40 mGal)
does not have a crustal root in the mantle and the crust underneath is thinner =35km,
(Mitra et. al., 2005). It must therefore be supported by dynamics along two reverse
faults, the south bounding Dauki fault and the north bounding Oldham fault, as opined
by Mitra et. al. (2005). But there is no direct visual evidence of the existence of the
Oldham fault. The paper addresses the question by interpreting magnetic data

available for the area.

Nandy and Dasgupta (1986) used satellite images to delineate a number of buried
lineaments beneath the Alluvium in northeast India. The NE-SW Tyrsad-Barapani
lineament/shear is clearly discernible on the imagery, but the Oldham fault, if it exists,
between Barapani and Nongpoh under the cover of Proterozoic sediments, finds no

mention in Nandy (2001).
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Magnetic traverses from Guwahati to Shillong along National Highways NH37
(extending from Guwahati to Jorabat) and NH40 (extending from Jorabat to Shillong
via Nongpoh, Umsning and Barapani) were laid out by Jawahar and Ramaiah (1991).
Without incorporating topographic and crooked-line correction to data, they
considered a vertical field profile passing through Nongpoh, Barapani and Shillong as
if the data were acquired on a horizontal line. A qualitative interpretation of data
showed high fluctuation of magnetic anomaly over Nongpoh on the exposed granite
and a negative anomaly over the Nongpoh-Shillong area, covered by sediment. In
their work, no attempt was made to identify any buried feature across NH40 in

Nongpoh-Shillong area.

Recently, the Geological Survey of India (GSI) carried out close-grid gravity-
magnetic (GM) surveys in certain parts in Meghalaya. GM maps of Umroi-Shillong, a
southern portion of the study area, were presented by Pathak et. al. (2003). The maps
clearly indicate an alignment of faults in the area. No such survey however was

carried out in the Barapani-Nongpoh area.

In the year 1977, an Aeromagnetic survey of the area had been conducted by National
Geophysical Research Institute (NGRI) for the North East Council (NEC) at two
different altitudes; the eastern and western blocks at 4600ft and the central block at
7000ft aMSL with a flight line spacing of 2km. A contour map of the magnetic
anomaly was prepared for each individual block and these were composited to present
an aeromagnetic map of the Plateau. A qualitative analysis of the map was carried out
by Rama Rao (1999) showing EW lineaments generally in the central part of the

plateau, but none through the Nongpoh-Barapani EW sector.
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In this work, we attempt to examine the existence of the Oldham fault by quantitative
analysis of aeromagnetic data. An attempt has also been made to reexamine the

ground magnetic data of Jawahar and Ramaiah (1991).

7.1.2. Geology and topography of the study area

The Shillong plateau is a granite massif with a prominent NE-SW trending wide patch
of Proterozoic Shillong group of sediments with a few exposed intrusives at its
castern edge. The study area, namely the Shillong-Nongpoh-Mawlong, bounded by
latitudes 25°30" and 26°N and longitudes 91°50" and 92°7'30” E (Toposheets Nos.
780/13, 780/14, 83C/1, 83C/2), lies mainly in the Proterozoics. Nongpoh, north of
Shillong, lies at the western edge of the Proterozoic patch, Umsning and Barapani lie
at its central part (Fig. 7.1.1) and Mawlong sits on exposed granites, north of the

patch.

The topographic height gradually increases towards the south as we move from
Nongpoh (500m approx.) to Shillong and attains a maximum of 1964 m (Shillong
peak) ~ 6km south of Shillong. The height generally varies from 500 to 1300m aMSL
in the E-W sector, bounded by the latitudes of Nongpoh and Barapani. The National
Highway NH40 with a zigzag course passes through Nongpoh, between Guwahati and
Shillong and apparently traverses the predicted Oldham fault somewhere between

Nongpoh and Barapani (Bilham and England 2001).
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Mg 7 11 Geological map of Shillong-Nongpoh area and NS lines over 1t
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7.1.3. Analysis of Aeromagnetic Data

(a) Qualitative Analysis

The area under study 1s covered by aeromagnctic survey with flight-line spacing of
2km at flight level 7000ft (2 1336km) aMSL A copy of the magnetic map on
! 250,000 scale in 10nT contour mterval and its patts in 1 50,000 scale are now
available at NEC, Shillong, wete obtained for a quantitative analysis However, in the
absence of the associated report, 1t 1s assumed that the data had a probable of ertor of

InT A magnetic map of the study atea read fiom 1 50,000 maps 1s reproduced 1n

Fig 712

16



Solution of certain two-dimensional inverse problems in potential theory and their application to exploration geophysics

Fig.7.1.2: Aeromagnetic Map of Nongpoh-Shillong area showing lines of 2-D
magnetic profiles under consideration.
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Fig. 7.1.2 clearly reflects the response of the exposcd granite of Nongpoh-Mawlong
corridor at its north, that of the intrusives at the southeast corner and the response of
NE-SW trending Barapani lineament/shear in its central part. It further shows E-W
magnetic lineaments immediately north of Shillong and NEW trending lineament
immediately south of the Nongpoh-Mawlong corridor. No EW lineament could be

traced in the area bounded by the latitudes of Nongpoh and Barapani.

(b) Quantitative Analysis

To carry out a quantitative analysis of the aeromagnetic data, six NS lines were drawn
between latitudes 26°N and 25.5°N so that the magnetic field anomaly along each of
them could be approximately regarded as a two-dimensional one. The lines are
identified as A1-BIl, A2-B2, A3-B3, A4-B4, A5-B5, A6-B6 in Fig. 7.1.1. The line
A1-B1 extends along longitude 91°50'E and A6-B6 extends along longitude 92°7.5'E.

The line A2-B2, shown in Fig. 7.1.1, passes near Nongpoh, Umsning, Barapani and
Shillong and A6-B6 defines the eastern boundary of the area under study.
Topographic height along A2-B2, read from the contour map of Toposheets, is shown
in Fig. 7.1.7 and that along A6-B6, in Fig. 7.1.8. It is evident from Fig. 7.1.7 that the
topographic height along A2-B2 varies from 500 to 1100m over the EW Nongpoh-
Barapani sector and rises sharply in the Barapani-Shillong sector beyond Barapani
attaining 1964m over a distance of about 9km. The height along A6-B6 varies from

750 to 1100m over the EW sector and rises to approx.1500m south of Barapani.

Assuming that the effect of remanent magnetic elements, if present, is negligibly
small, the downward vertical component magnetic field T, is computed along each

line using the formula T,=Tsin i, where T, is the vertical field, T the total field and i
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the inclination of the Earth’s |11;1g|1etic field at the point under consideration. (Murthy,
1998). The inclination angle i varics from 37.33" to 36°N as we move from latitudes
26°N (north of Nongpoh) to 25.5°N (south of Shillong). The normalised versions of T,
obtained along the line A2-B2 and A6-BG6 are shox\;n in Figs. 7.1.3 and 7.1.4
respectively.

(i) Gradients of Vertical magnetic profile and Identification of Approximate
Fault-trace Points

Thin plates represent the simplest model of step faults in two-dimensions. For a 35°
angle of polarisation, all the points, maximum of T,, inflexion of its horizontal
gradient T,, and the minimum of its vertical gradient T,,, form a cluster in the vicinity

of the fault-trace point. (Fig. 1, Appendix 111)

To model the approximate location of a basement fault from observed magnetic data;
we computed the gradients of T, numerically. It has been pointed out by Hammer
(1979) that computed gradients of an observed potential field are highly sensitive to
errors in the input data. However, stable and reliable horizontal and vertical gradients
of a gravity or magnetic profile can be computed from field data at z=2h level above
the datum line z=0 by the source technique of Laskar (1999), where h defines the
uniform spacing of data over the datum line. In this case the error in the computed
horizontal gradient T,, appears almost witliin the uncertainity of input data, whilst the
error in the vertical gradient T,, is slightly enhanced, without any shift in the locations
of the extrema of T,, (Laskar et.al 1996). Hence, horizontal and vertical gradients of
the vertical field were computed following Laskar (1999). Computed gradicnts T,y
and T,, of the vertical field T, at up-continued level along A2-B2 and A6-B6 are

shown in Figs. 7.1.3 and 7.1.4 respectively.
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Fig.7.1.3: Vertical Component field and its horizontal and vertical gradients defining

approx. location of basement faults along A2-B2.
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Fig.7.1.4: Vertical Component field and its horizontal and vertical gradients defining

approx. location of basement faults along A6-B6
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Following the criteria for identifying the approximate location of a fault from gradient
analysis of the vertical field discussed earlier, possible locations of the faults across
the NS lines have been noted. The T, profile and its gradients along A2-B2 and A6-
B6 are shown in Figs. 7.1.3 and 7.1.4 respectively. Four possible faults lying across
A2-B2 over the EW sector are identified and designated as Fy, F,, F3 and F4 (Fig.
7.1.3). Fault F; lies south of the Umsaw reserve forest (RF), at a distance of about
7km north of Umsning, F, lies at around Umsning at the southern margin of the
Proterozoic basin bounded to the south by an intruding patch of exposed granite
(Fig.7.1.1), F;3 lies about 3km north of Barapani and F, lies about 6km south of
Barapani. On examining the T,, T,« and T,, profiles of A6-B6, we find that the
northern half of the T, profile is almost flat and two possible faults F; and F, lie
across the southern part of A6-B6. Fault Iy lies about 4km north of Umsning and F,

about 4km south of Barapani.

The flat, smooth behaviour of the magnetic profile indicates that either the basement
is flat or, yvith small topographic variation, it lies at a greater depth. As such, to pick
up the variation, if any, at the' basement below the northern portion of A6-B0, the
observed magnetic profile need to be continucd downward to a level below the flight

altitude.

On examination of the geological map (Fig.7.1.1) and the Sol toposheets, we find that
the flight line clearance varies approximately from 834m to 1634m over the EW
sector bounded by the Nongpoh and Barapani latitudes. The topography rises sharply
south of Barapani and it attains a maximum height of 1964m over a distance of about
9km south of Barapani. As such, for a reliable continued field along a NS line over

the EW sector, the field is to be continued downward to a curved lower boundary, as
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shown in Fig. 7.1.8, with its flat part lying above the EW sector at a depth 750m

below the flight level.

(ii) Downward Continuation of Profile Magnetic Data and Preparation of
Magnetic Map at a lower level

It is evident from the topographic variation of the area under study that the T,-profiles
can be continued downward to a level 1.3836km aMSL (750m below the flight level)
over the E-W sector mentioned above, on a curved fower boundary ABCDEF (Fig.
7.1.7) without violating the Dirichlet condition that T, remains a harmonic function in
the upper half-space domain bounded below by the continuation boundary.
Formulation of the problem is presented in subsection 4.2.1 and model studies is
carried out in subsection 6.2. It may be mentioned here that for the input data within
1% random error spaced at a regular interval h(=0.5m) over the datum line, the field
can be continued downward within 2% error, in general, to a level which is | unit

(=2h) below it.

To prepare a map of the magnetic field at a lower level, the vertical component
profiles were continued downward taking into consideration the full-llength data
extending from latitudes 25°30'N to 26°N. The down-continued field obtained along
A6-BG6 profile is shown at the top of Fig. 7.1.8. The down-continued field so obtained
along the lines at the lower level are contoured by SURFER-32 at intervals of 10nT.
The map so prepared is shown in Fig.7.1.5. The approximate fault trace points

identified earlier along the NS profiles by gradient analysis were transferred to the

new map shown as F.
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Fig. 7.1.5: Contour map of vertical component magnetic field at level above EW
central sector (Contour interval =10nT)
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[(lat 25°30°N, long 91°50’E) define the origin of the reference frame. Distance
between 25.5°N and 26°N is 55.3 km. Map prepared at level 1.3638km.]

It is evident from Fig.7.1.5 that all the faults identified earlier by the gradient analysis
of profile data, visibly appear in the new map without much change in their locations.
Further, a new fault location across A6-B6 distinctly appears at a latitude about 8km

north of Umsning. This fault did not appear in the gradient analysis along the line at

the flight level.
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DY

Fig. 7.1.6: Regional Magnetic profile along Guwahati-Shillong highway and its

harmonic components
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[Profiles 1, 2, 3 and 4 represent superposition of first 10, 15, 20, 25 harmonic
respectively. Profile 5 represents the original VF profile of Jawahar & Ramaiah

(1998).]
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Fig. 7.1.7: Fhight level, Continuation boundary, ground and basement topographic

profiles along A2-B2
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Shillong peak (1at25°30'N, long91°53'E). Topographic elevation varies from

260m to 1920m aMSL along the line.]
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Fig.7.1 8: Normalised Total field, Topography and basement profile along A6-B6
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[A6-B6 line extends from  (lat 26°N, 1ong92°7'30"E) to  (1at25°30'N,
long92°7'30"E). Topographic elevation varies from 350m to 1470m aMSL along

the line. Continuation boundary BCDE with continuation level CD 0.75km below
the flight level. ]

(c) Alignment of EW Trending Faults in Nongpoh- Barapani sector

The down-continued magnetic map (Fig. 7.1.5) shows a series of lows aligned in a
NE-SW trending corridor at the central part of the Nongpoh-Barapani sector. This

coincides with the Barapani shear identified by Nandy (2001).

On jomning the approximate fault trace-points, shown as F, on each of the NS lines in
Fig. 7.1.5, we note that a nearly E-W trending fault begins to appear north of the
Umsaw reserve forest (91°50'E longitude) continuing eastwards up to the end of the
study area, taking .a northward shift in between the NS lines 4 and 5 where it

i
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encounters a NE-SW trending fault of the Barapani shear. In the western part, it lies
about 7km north of Umsning and follows the up-stream course of the west flowing
tributary of the Umsaw River. In the eastern part it shows a SEW trend on crossing
the Barapani shear. The analysis also reveals the existence of a éecond fault at
Umsning, defined by the trace points F; marked on the first 3 NS lines, that extends in

the SEW direction and joins the Barapani shear about Skm east of Umsning.

7.1.4 A Comparative Study of Throw of the Faults

On acquiring vertical component magnetic data along the zigzag and undulated
Guwabhati-Shillong road with a spacing of 1km, Jawahar and Ramaiah (1991)
presented a vertical field profile extending from Jorabat to Shillong passing through
Nongpoh, Umsning and Barapani. The data were not corrected for topographic and_
crooked line corrections as mentioned earlier. The profile is therefore unsuitable for
the study of small throw faults. However, since the basement lies at a shallow depth
along the NS line (Fig. 7.1.1) that passes through Nongpoh and Shillong, the data
acquired by Jawahar and Ramaiah (1991) may be expected to contain at least a weak

signature of faults, if any, even though it be masked by errors.

To extract this information, the profile data were decomposed into different
harmonics using the finite Fourier Series. Superposition of the first 10,15,20 and 25
harmonics are presented along with the original data in Fig. 7.1.6. We observe that the
3 and 4" profiles show their maxima at around Umsning and also at a point about
6km north of Umsning indicating the possible existence of fault.s at these locations.
On examination of trace 2, which is obtained by a combination of the first 15

harmonics, we observe that the maximum at around Umsning persists whilst the other
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maximum north of Umsning, disappears. This indicates that for a shallow basement,

the fault north of Umsning is of much smaller throw than that near Umsning.

7.1.5 Sedimentary thickness in the Shillong-Nongpoh-Mawlong Area

The Proterozoic Shillong group of sediments directly overlies the basement in the area
(Das 1990, Karim et. al. 2003). Once the depth to the basement below the flight level
is known, the scdimentary thickness can be determined from a knowledge of the

topographic height of the ground surface.

To find the depth to the basement, we use the DEPTHDNC software (Laskar & Singh
1993) for computing point to point depth to the basement along a 2-D profile. The
theoretical basis and working principles of DEPTHDNC are outlined in Subsection

4223.

Two vertical field profiles Aé-B2 and A6-B6, shown in Fig. 7.1.3 and 7.14
respectively, were analyzed to determine depth to the basement underneath. The
profiles are given at the flight level 2134m aMSL. Flight line clearance varies
approximately from 1030 to 1634m along A2-B2 and approximately from 1030 to
1384 along A06-B6 over the EW sector bounded by the latitudes of Nongpoh and

Barapani.

Since the maximum flight-line clearance along A2-B2 is 1634m and that along A6-B6
is 1384 over the sector, the search-depth for the basement top can be initially taken as
being 2km for the apex zy of Si. moving downward along a vertical in Az=0.25km
steps (see Fig.4.2.1). Depending on the search-depth, the data spacing along the

datum line S at flight level becomes h=0.5km. (See Subsection 4.2.4)
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Depths to the basement along A2-B2 and A6-B6 were obtained at points every 2km
apartl. The basement is encountered almost at every point along A2-B2 but only at a
few points along AG-B6 at the northern margin of the basin. The depth profile, so
obtained along A2-B2 thus shown at the bottom of Fig.7.1.7. Subsequently, the
program was run for a 4km search depth along A6G-B6 with h=Tkm and Az=0.5km.
These were then further refined by taking Az=0.25km. The depth profile so obtained,

is shown at the bottom of Fig.7.1.8 along with the normalised total field and down-

continued T, profiles on its upper part.

It is evident from Fig.7.1.7 that the maximum possible thickness of sediment is about
- 300m between Nongpoh and Umsning and a fault of small throw clearly appears in
the basement profile about 7km north of Umsning. Further, an apparently incorrect
depth appears at the exposed narrow NE trending granite patch, south of Umsning
showing that the computed depth to the top of the granite lies about 200m below the
actual. This happens because the response at the flight level, at about 1.5km above the
exposed patch, is devoid of the high frequency response of the granite patch. The
software therefore yielded a smooth version of the top of the basement showing it at
about 200m below the actual over the exposed patch of granite south of Umsning.
Further, from Fig.7.1.8, we find that the basement is more undulated in the central
part of A6-B6 with depths varying from 3.416 to 2.066 km below the flight level than
that found along A2-B2. A maximum of about 2.5km thick sediment overlies the

basement along A6-B6.

[t can also be inferred from the above exercise that the Shillong group of sediments
are probably non-magnetic in nature since the analysis did not indicate the presence of

a magnetic causative at the ground surface over the EW sector.
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7.1.6 Discussion

(i) Bilham and England (2001) predicted that the Oldham fault with a small throw
extends east-west over a distance of about 1 10km passing through the study area
somewhere between Nongpoh and Barapani and it penetrates to a depth of about 9
to 45km, dipping away from the Himalayas. The present study indicates the
possible existence of two EW trending faults in the study area. The first one, an
EW trending fault, extends over the elétire EW sector of the study area located at
7km north of Umsning and the second one, a SEW trending fault, extends over a
distance about 10km starting from west of Umsning and ending at around the
Barapani shear. The former has a small throw as evident from the harmonic
analysis of the ground magnetic profile along A2-B2 and also from the basement
profiles computed along A2-B2 and A6-B6. The trend, length and throw all
appear to be closely matching with the Oldham fault (Bitham and England, 2001),
although its depth extent and dip angle remain to be verified by other geophysical
means.

(i) The method used here for locating an approximate fault-trace using the simplest
fault model, appears to work well for field data. It is evident from Fig. 7.1.5 that
the possible existence of faults identified by gradient analysis also appear in the
contour map’ of down-continued data. Furthermore, they corroborate the basement
profiles obtained along A2-B2 and A6-B6 lines in the area.

(111)The technique of down-continuation of data from the datum line to a horizontal
line below it, could have been used by limiting the data-length over the EW
Nongpoh-Barapani sectonj at the flight level. Excluding the end values,
unacceptable for any practical purpose, however would have restricted reliable

field values only to the central part of the EW sector. The present approach
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provides reliable field values over the entire NS-span of the EW sector taking into
account the contribution of data specified over the entire data-length from north of
Nongpoh to south of Shillong.

(iv)The ground gravity-magnetic (GM) survey, carried out by Pathak et.al (2003), in
the southern part of the area suggests that close grid GM data with proper
corrections may possibly provide sharper indications of faults in the area.

(v) The basement profile obtained from magnetic data, in a shear zone in particular,
needs further verification from gravity data. The exercise could not be carried out
for non-availability of gravity data.

(vi)Upward or downward continuation of a potential field from boundary data is
governed by the theory of reproduction of a harmonic function from boundary
data. Implementation of total field as boundary data leads to generation of an
unknown harmonic function, in general, above or below the boundary. As such, in
this work, vertical component magnetic field is constructed from total field for its

upward or downward continuation fiom the boundary.
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7.1.7. Conclusion

The possible existence of a long EW trending continuous fault of small throw in the
northern half of the Shillong-Nongpoh-Mawlong area of Meghalaya appears to be
required by the analysis of available magnetic data. Appearing somewhere west of the
Umsaw reserve forest, it follows the upstream course of a west flowing tributary of
the river Umsaw, crosses the Barapani shear and continues past the eastern boundary
of the study area in the SEW direction. This corresponds rather well with the Oldham
fault predicted by Bilham and England (2001). The shillong group of sediments
appears to be non-magnetic in nature, its thickness varying from 200 to 300m in

Nongpoh-Umsning area, and about 2.5km thick in the eastern part of the study area.
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CONCLUSION

A hall=spacc problem in potential theory is treated as a particular case of a closed
domain problem with z\l part of the boundary at infinity. Derivation of a half-spacc
problem by Green’s formula is straightforward. For a closed domain problem
expressed in simple or double layer boundary density, consideration of the order of

the density at infinity leads to its conversion to a half-space problem.

On up-continuation of a two dimensional harmonic function H, an anomalous gravity
field or a component magnetic field with asymptotic  bchaviour
H=0(r""),n21,r > o, from boundary data, it is shown that for the data spccified
over a half-space boundary, the field in the upper half-space domain B, can be
reproduced as potential of a simple as well as a double layer boundary density. It is
also shown that the field can be reproduced in B, by Green's formula without finding

Green’s function for the boundary.

In down continuation of a two-dimensional potential ficld from a finite datum line it is
shown that down-continuation to a curved boundary with a flat central part, its arms
coinciding with the datum line, provides a better numerical result over the flat central
part than that provided over the same flat part by down-continuation to a horizontal
boundary coinciding with it. The technique_ so developed helps in providing a better
coverage in down-continuation of aeromagnetic data acquired over a narrow valley

bounded by steeply rising high granitic hills at its boundary.
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On depth-determination by down-continuation of a 2-D potential field towards its
source, it is expected that down-continuation to a concave boundary with its arms
extending along the datum line and the apex moving downward in steps along a
vertical giving the boundary a tapering shape as depth increases, will lead to
determination of point to point depth to an undulated basement in a geological basin

when continuation to a horizontal boundary theoretically fails to achieve it.

An analysis is carried out to determine the spacing of data over the datum line for
achieving a reliable continued field upto a depth Ds along a vertical. It is shown that
the data-spacing h = Dy/4 provides a reliable continued field at the apex of the
concave boundary as it moves downward along the vertical. Further, in down-
continuation of data from a finite datum line, it is shown that the error in the
continued field computed along the vertical steadily increases with depth. As such,
this does not affect the position of the first maximum of the vertical gradient of the
field along the vertical, the depth of the first maximum of the vertical gradient

defining the depth to the top of the subsurface causative mass.

In application to field data, isolation of a magnetic anomaly is not required for
determination of depth to the basement from it. The data read from a map or profile
data prepared with normal correction acquired along a line, can be treated as isolated

for its use in depth determination.

On successful testing of the techniques on model data, these are applied to
aeromagnetic data of Umium valley of Shillong-Nongpoh area, bounded at south by a
steeply rising hill of Meghalaya. The analysis identifies EW trending basement faults
un-identified in the exposed geology of the area and predicts existence of 2 to 2.5

thick sedimentary cover, possibly non-magnetic in nature.
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UNIQUESS OF SOLUTION OF THE INVERSE PROBLEM

For a two-dimensional harmonic function H with asymptotic behaviour H = O(r™),

n 21, r - defined in the upper half-space domain B; bounded below by a half-space
boundary S(=S,+S.+S, . Fig.3.2.1), given H over S, there exists a double layer

boundary density pt over S that reproduces the field H in B; (Laskar 1984) as

H(P) = - [log g - Pl(q)dq, P € B,. (0
S

As Pop e S, following Jaswon and Symm (1977), the formula (i) yields the

boundary relation between H and pt as
H(p) = m(p)- [log |a - p| m(@)da,pes. (ii)
: :

Given H over S, the equation (i) formulates a Dirichlet problem in p for the upper
half-pace domain B; in terms of H specified over S. That the equation has a unique p

over S, can be shown coﬁsidering B; as an interior domain enclosed by 0B= S+S,, S,
being a semicircle of radius R with ends over S (Fig. 3.2.1). Since the interior Dirichlet

problem in p represented by

H(p) = mis(p)- [log,jq - plu(a)dq,p 3B,

S+S,,
has a unique solution (Jaswon and Symm, 1977) and p = O(H), r > «, shown in
Subsection 2.4.3, we find the integrand over S, vanishes as R—oo and the above
equation takes the form of equation (it) with a unique p over S. This p reproduces the

field H on and above S as its potential.

135



Let us now assume that the field H be specificd over a horizontal half-space boundary

S(=S, +8S, +8,,Fig.3.2.1) and the curved continuation boundary S, having a central

concave part Si, with its ends common to those of S_, extend to infinity along go on

u?

both sides of S,. Now for Pe §u , excluding its end points, the half-space formula (i)

yields

H(P)=-| [log Ja— Pl(a)dq + [log,Ja - Plu(a)dq
Sy : S

= jlogi’|q ~Plu(q)dq, PeS,, (iii)

5,

the integral over §0 having no contribution to H at P e—S’u. This is evident from the
fact that Iogilq - I’|= 0 for P, q € Sand P # . Once the p over Sy, is obtained as
solution of the equation (iii), . over §o is given by (i1) rewritten as

n(P) = H(p) + Jlog;|q - Plu(q)dq, Pe §0,

S, +§,,

= H(P) + Jlog:|q - Plu(q)dq,l’ € §0, (1v)
S,

the integral over S being zero.

Let us now assume that given H over S (=§o+§u +§n ), the equation (iii) i.e.

H(P) = — [log | - Plu(a)da,P € S, . (v)

hasa [ over Sp as its solution, Once the i over Si is known, the [t over S  can be

obtained from (iv)
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mH (p) = H(p) + [log a - pliia)da,p e S, (v1)
Sy

This Tt belonging to S reproduce the H in B, including the boundary S. If H be the
potential in B, due to [t over S (=§0+ SL+§“, Fig.3.2.1) we find, following the above

conclusion

(P)=H(P),P €5S. (vii)

Now let us construct a harmonic function 8H in B, as

SH (P) = ~j|<>g|'|q ~ PSp(q)dq, P € B, (viii)
S

where SH(P) = H(P) - H(P), P € B, and du(q) = p(q)- fi(q), q € S. Since H =
Hover S, we obtain

0=H(P)- H(P)= - [log |q - Pl5p(q)dq,P e S (ix)
S

Since 8H(P) = 0 over the half-space boundary Sit must be zero at infinity. This

means, SH = 0 in upper half-space domain Bbounded below by S . This Icads to

SH,(P)=H(P)-H (P)=0,P e S (x)
Since H and H are potentials due to pt and p respectively, both belonging to the
boundary S, H and H must satisfy Laplaces equation in the upper half-space domain

B, bounded below by S and at an interior point P(xe,zo) of §“, both H and H and their

respective normal derivatives H and H' are analytic functions. Hence, considering the
origin of reference frame at P, by (ix) and (x), we obtain
H(xo) = H (x0) = Ho (xo) say,

and  H (x0) = H (xo) = Hi(xo) say,
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where Hg and Hy are two different analytic functions on the portion of S, containing

P . Now following Cauchy-Kowalevsky existence theorem (Kellogg, 1929, p.245), we

concludce in the present case that theie exists a two dimensional neighbouthood N of P
and a function U(x,z) which is harmonic in N and which assumes on the portion of S,
in N the samc values as the function Hy(x) and whose normal derivative assumes on
the same portion of §u the values H(x). There is only one such function. Here we
would like to mention that unlike other existence theorems Cauchy-Kowalevsky

thcorem asscrts continuation of U across the portion of S, containing P. This means,
H = H= U in two —dimensional neighbourhood of the portion of S, containing P.

This conclusion on H and H remains true over all other portions of S, and as such it

leads to
H(P) = H(P), Pesml, (Xl)

where S, is a half-space boundary with its central part immediately below _S_u and

arms coinciding with S, of S.

On repeated application of the above procedure to subsequent lower boundaries S,

we arrive at
H(P) = H (P), PeS
Or S H(P)=H(P)- H(P)=0, PeS. (xii)

This implies,

0 =8H (p) = nop(p) - flog,llq - pldp(a)da,p eS. (xii1)
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This equation is identical to the homogeneous component of (ii) with p replaced by
dp. Considering the equation in B, enclosed by S + S, , R—> e, it can be shown

following Jaswon and Symm (1977) that the equation (xiii) has no no-trivial solution .

This leads to the conclusion that
dp(q) = n(q)- p(q)=0,q €S

or ()= p(q),qeSs. (xiv)

Since p is unique over S, being a solution of a half-space Dirichlet problem expressed

by equation (i1) for H specified over S, the solution [t of equation (v) over S, and
consequently the [ over S (=S +S; + §") is unique and it is identical to the Dirichlet

p over S.




APPENDIX Il

DENSITY INTEGRAL OVER THE HALF-SPACE BOUNDARY

In upward continuation of a two-dimensional potential field H with asymptotic

behaviour H=0(r"), n>l, r—o, from a half-space curved boundary
S(=§0+S,l+'S_0, Fig.4.2.1), given H over S, following Laskar (1984), H in the upper

half space domain B,, bounded below by S, can be reproduced as a double layer

potential

H(P) = - [log |a~ Pli(q)da,P € B,. (i)

It is evident from (i) that as |P| - 00,

H(P) = O(P™) fu(q)dg. (ii)

For the gravimetric case, H vanishes asymptotically in O(IPI_')as ]Pl—)oo and as

such, (iv) yields

[u@da =00, (iii)

S
a constant, not equal to zero, necessarily. This holds for a horizontal boundary S, say
S (=S,+S,+S,, Fig.4.2.1), a particular case of S,

JAtaydq =00, (iv)

where [1(q) is the density over S.

For the magnetostatic case, H vanishes asymptotically in O(IPI_Z)as |P| — o0 and as

such, (ii) yields

I H(q)dq =0 (v)
S

For a horizontal S, say S,
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[i@yda =0, (vi)
S

where, as before, [1(q) is the density over S.

Now, considering the integrals (iii), (iv), (v), (vi) we rewrite the integral properties of

jLas

fu(@)dg + [i(ayda = [f(a)dq+ [r(q)da, (vi)
s, S S, S.

valid for both gravimetric as well as magnetostatic case with S_ extending to infinity

at both ends of S, .
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APPENDIX I

MAGNETIC RESPONSE OF THIN PLATES FORMING
A STEP-FAULT

Let three infinitely long thin plates of width AB, CD and EF, each extending from -oo
to +oo in the direction of y-axis of a Cartesian reference frame with z-axis upward, be
placed at depths hy, hy and h; respectively below the (x,y) plane such that the plates
form a step-fault, its strike pointing in the direction of y-axis. Let the plates be
uniformly polarised by downward doublets of strength pu per unit area and let the
doublets be inclined at an angle 6 with the x-axis, as shown in Fig.1. The plates so

arranged produce two-dimensional magnetic field T, in (x,z) plane as shown in Fig, I,

Fig. 1: Vertical component magnetic response and its gradients of step-faults
approximation to basement in a geological basin

T, Vertical component field
T,. Honzontal gradient of T,
T, Vertical component of T,

|V/’/ 3 U T, \Iy/\L”_io’_’/ \ / 1s /30
/ Y4
LA A A

Magnetc fieid and ds gradients in arbirary unt
Depl

(Three infinitely long plates of widths cxtending fiom x=-10 to 5, x=5to 15 and x=15 to
25 each polarised at 35° lie at depths 3, 1.5& | units respectively below the datum line
z=0 in a XOZ reference frame with z axis upward Maximum of T,, point of inflexion of
T, and point of minimum of T,, form a cluster in the vicinity of the fault-trace point.)
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(i) Magnetic Response of a Single Plate
FFor q(x,z) defining a point on the linc AB with A and B defined by (x,,z) and (x2,2)
respectively in the vertical plane y=(0, the magnctostatic potential due to the plate at a

point P(X,Z) is

W(P) == [log,|q- Pj(q)dq (i)

AB

where P,q define the position vectors of the field point P and the source point q

respectively, dq is the arc element at q, fq - P[ is the distance v between P and q, log

n

q- P| defines the derivative of Ioglq—l’| at the point q keeping P fixed in the

direction fi, n defining the direction of the doublet of strength p at q. On further

simplification, the equation (i) becomes

W(X.2)=- [la-P[ (@ P)-fna)da

AB

T B=X)+z-2)m “
x=A (X"X)2+(Z_Z)z p(x)dx, -

where 1,m are the direction cosines of 1.

Now, the downward vertical component field T, at P is,

TAX,Z)=

6W(X,Z)={(Z—Z)l—(x—X)m} B (i)

oz (x-X) +(z-2)*

=¥,

(ii) Vertical Component Magnetic field due to the Plates forming Step-Faults

Three infinitely long thin plates AB, CD and EF of widths extending from x; to x3, X3
to x3 and x3 to x4 respectively lying at depths hy, h; and hs respectively below the (x,y)
plane. They provide the simplest possible configuration of a step-fault below the
ground plane z=0. Superposition of T, response of each plate computed by (iii)

provides the T, response of the faults at (X,0) on the datum line. Using the T, values
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calculated for an angle of inclination i=6=35°N on the datum line, its horizontal
gradient T,, and vertical gradient T,, are computed at level z=2h, by the numerical
formulae given by Laskar (1999), z=0 defining the datum line and h(=0.125) defining
the spacing of data over z=0. The T,, T,, and T,, so obtained are shown in Fig. 1. It is
evident from Fig. | that the point of maximum of T,, point of inflexion of T,, and the

point of minimum of T,, form a cluster near the fault trace point.
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