
I TEZ UR ~JNiVER ::-:: 0 

I 

! Accession No. 4 ~ ~t 2-
I ----~-- ~ ~ 



Recognition of Printed Assamese Characters 

using Orthogonal Moments 

A thesis submitted in partial fulfillm ent of the requirem ents for the degree of 

Doctor of Philosophy 

Sarat Saharia 

Registration No. 021 of 1999 

School of Engineering 

Department of Computer Science and Engineering 

Tezpur University 
D ecember, 2009 



To the memory of my parents 



Abstract 

Optical Character Recognition (OCR) is an extensively studied and challenging 

areas of pattern recognition. Most of the researches on OCR are done for Roman, 

Chinese, Japanese and Arabic characters. A large number of researches on OCR have 

also been done on different scripts of Indian languages. The majority of OCR researches 

on Indian scripts have been done for Devanagari and BangIa scripts. Assamese is one of 

the Indian languages where very few researches on OCR are reported. The Assamese 

script is similar to BangIa script but there are few distinct characters in both the 

languages. Therefore, this research work was taken up to study the representation and 

recognition aspects of printed Assamese characters. 

Statistical moments have been used as features in pattern recognition including 

character recognition. Most of the studies on character recognition using moments 

are done for Chinese, Arabic and Roman characters. The moment-based methods for 

character recognition have a few advantages. Orthogonal moments are becoming more 

popular due to their better image representation capability than the non-orthogonal 

moments. However, use of moments for recognition of Indian language scripts is very 

few. Therefore, we choose to investigate printed Assamese character recognition using 

orthogonal moments. Three orthogonal moments, namely, Legendre, Tchebichef and 

Krawtchouk moments are used in this study. 

The study includes a comparative analysis of the performance of Legendre, 

Tchebichef and Krawtchouk moments in representation of printed Assamese characters. 

The Principal component Analysis (PCA) and the Linear Discriminant Analysis 

(LDA) are also used for improved representation. The representation aspects of Scale 

Invariants (SI) of Legendre and Tchebichef moments are studied. Two new moment

based methods for recognition of printed Assamese characters are proposed. The 

methods extract moments from parts of the character images to reduce ambiguity 

in recognition by splitting the character images either vertically or horizontally. One of 

the methods uses LDA and concept of Euler numbers and can be used for both multiple 

font-sizes and multiple font-types. The other method is computationally less expensive 

but does not give good recognition accuracy for multiple font-type characters. 

Keywords ~ Optzcal Character Recogmtion, Assamese, Moment, Orthogonal 

Moment, Legendre Moment, TchebzcheJ Moment, K rawtchouk moment, Prtnctpal 

Component Analyszs, Lznear Dzscrzmznant Analyszs, Scale Invarzant, Euler 

Number, Ambzguous Cluster, Unambzguous Cluster 
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Chapter 1 

Introduction 

Optical Character Recognition (OCR) is one of the challenging areas of pattern 

recognition. Extensive research has been done during last few decades on OCR 

due to its vast range of applications. OCR research has a comparatively old 

history in the field of pattern recognition. Invention of retina scanner by Carey in 

1870 is considered as the origin of character recognition [88]. The research, during 

the initial period, was aimed at developing reading machines for the visually 

handicapped. The first concept of the idea of OCR, as reported in the literature, 

appeared in two patents obtained by Tausheck [147] in Germany in 1929 and by 

Handel [55] in the U.S. in 1933. However, the development of a machine that 

could read characters and numerals was not realized until the arrival of age of 

computers in the 1950's. The commercial OCRs of first generation appeared in 

the beginning of the 1960s using logical template matching methods. From these 

initial developments, the field of OCR research has gone through tremel1dous 

developments in terms of different method being employed and type of characters 

the OCRs can read. The OCRs of present generation are characterized by 

complex documents containing text, graphics, mathematical symbols, tables, 

handwritten characters, low-quality noisy documents etc. However, the present 

state of OCR research is not same for all scripts or languages. Though, the 

research works in OCR for some scripts are at very advanced stage, they are in 

developing stage for many other scripts. 
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1.1 Motivation 

Most of the research works reported in the area of OCR are for Roman, Chinese, 

Japanese and Arabic scripts. The amount of research works on recognition of 

characters of Indian scripts is not sufficient considering the variety of Indian 

scripts. Assamese is one of the Indian languages where very few OCR research 

works are reported in the literature. Though Assamese script is similar to BangIa 

script, there are a few distinct characters in both languages. Considerable 

research has been done on BangIa script but exclusive works on Assamese 

character recognition are very few. Though the methods proposed for BangIa 

scripts may be extended for Assamese, the author feels that it is worthwhile to 

carry out study using other techniques on Recognition of Assamese characters 

which may also be extended to any other scripts including BangIa. 

Statistical moments have been used as features in pattern recognition 

including character recognition, image classification, target identification, scene 

analysis etc. [113], [43]. Moment-based character recognition methods for 

one script can easily be adapted to another script because the methods are 

developed without considering the specific features of a script. Moments are 

also computationally less expensive than other filter bank based methods where 

the features are extracted by applying the filters in different directions and 

scales. Recently, orthogonal moment-based features are getting more attention 

due to less redundancy and better image representation capabilities in comparison 

to non-orthogonal moments [86], [97], [157], [159]. Most of the studies on 

moment based character recognition reported in the literature are on Chinese 

characters. To the best of the author's knowledge, very few studies on Indian 

scripts recognition using orthogonal moments are reported in the literature. It 

is, therefore, worthwhile to investigate the suitability of orthogonal moments as 

features for recognition of Indian scripts. Among the orthogonal moments defined 

in continuous domain, Zernike and Legendre moments are more popular. In 

this study we consider only Legendre moments among the continuous moments 

because Zernike moments are computationally more complex [99J. Since the 

discrete orthogonal moments are known to be better than the continuous 

orthogonal moments, we use two most popular discrete orthogonal moments 
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viz., Tchebichef and Krawtchouk. Similar study may also be done using other 

moments. 

1.2 Objectives of the Work 

In pattern recognition problems appropriate representation of the patterns itself is 

very important to solve the problem of recognition. Therefore our first effort is to 

study the problem of appropriate representation. This is followed by development 

of methods for recognition. The objectives of this thesis are as follows: 

1. To study the appropriateness of representing printed Assamese characters 

with orthogonal moments like Legendre, Tchebichef and Krawtchouk. 

2. To study the performance of Scale Invariants of Legendre and Tchebichef 

moments for representation of: 

(a) Printed Assamese characters in presence of noise, and 

(b) Printed Assamese characters of multiple font-sizes. 

3. To develop new methods based on orthogonal moments for recognition of 

printed Assamese characters of multiple font-sizes and multiple font-types. 

1.3 Organization of the Thesis 

Apart from this introductory chapter, the thesis includes five more chapters. 

These chapters are briefly outlined below. 

1.3.1 Chapter 2: Optical Character Recognition 

This chapter briefly reviews the development of Optical Character recognition. 

It starts with some of the major developments in OCR during the initial days 

[55], [93), [88], [147]. The generations of commercial OCR systems depending 

on versatility, robustness and efficiency are also discussed. This chapter also 

briefly reviews the development of OCR for Indian scripts. Amongst the existing 
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works on Indian scripts, majority of works are done on Devanagari and BangIa 

scripts. Some other works, reported in the literature, on recognition of other 

Indian languages include Tamil, Telugu, Oriya, Kannada, Gujarati, Gurmukhi, 

etc. Most of the works on Indian script OCR use spatial domain features but use 

of transform domain features, moment-based features, ANN, SVM etc. are very 

few. 

Finally, the chapter discusses the use of statistical moments for character 

recognition. Most of the studies on moment based character recognition reported 

in the literature are on Chinese characters but such studies are very few for Indian 

scripts. 

1.3.2 Chapter 3: Representation of Printed Assamese 

Characters using Orthogonal Moments 

This chapter presents the study on representation of printed Assamese character 

using orthogonal moments, namely, the Legendre, the Tchebichef and the 

Krawtchouk. A comparative analysis of their performance is also carried out. 

The study presented in this chapter also includes use of Principal Component 

Analysis (PCA) and Linear Discriminant Analysis for better representation. 

1.3.3 Chapter 4: Representation of Printed Assamese 

Characters using Scale Invariants of Orthogonal 

Moments 

Scale Invariants (SI) of Legendre and Tchebichef moments has been reported 

in [28] and [160] respectively. In this chapter, a study on representation of 

printed Assamese characters using the Scale Invariants (SI) of Legendre and 

Tchebichef moments is presented. The representation aspects of the scale 

invariants are investigated for printed Assamese characters in presence of noise 

and for characters of multiple font-sizes. 
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1.3.4 Chapter 5: Recognition 

Characters by Splitting 

Orthogonal Moments 

of Printed Assamese 

of Characters using 

In this chapter, two new moment-based methods for recognition of printed 

Assamese characters are proposed. Both the methods split character images 

either vertically or horizontally, in some situations where ordinary moment 

methods fail to distinguish different characters, and extract moment features 

from the appropriate half as distinguishing features. The first of these two 

methods is computationally less expensive but not suitable for multiple font

type characters. The second method, which is computationally more expensive, 

uses Linear Discriminant Analysis and concept of Euler numbers, in some cases 

and is suitable for characters of multiple font-sizes and multiple font-types. 

1.3.5 Conclusions and Future Work 

The last chapter summarizes the contributions of this work and also gives 

directions for future work. 
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Chapter 2 

Optical Character Recognition 

2.1 Introduction 

Optical Character Recognition (OCR) is one of the challenging areas of pattern 

recognition. It gained popularity among the research community due to its vast 

application potentials. Extensive research has been done on OCR evidenced by 

a large number of research articles published in the literature during the last few 

decades. Most of the research works reported in this area are for Roman, Chinese, 

Japanese and Arabic scripts. The number of research works on recognition of 

characters of Indian scripts is not sufficient keeping in view the variety of Indian 

scripts. There are 12 major scripts for 16 major Indian languages. There are 

many commercial OCRs available nowadays and most of them work for Roman, 

Chinese, Japanese and Arabic characters. This chapter presents an overview 

of OCR research and development. OCRs on Indian language scripts are given 

more emphasis in this chapter and special attention is given to the statistical 

moment-based character recognition methods. 

2.2 Optical Character Recognition 

The process of automatic recognition of characters in optically scanned and 

digitized document text is called Optical Character Recognition (OCR). It is 

a process of translating human-readable characters to machine readable codes. 
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It can improve the man-machine interface and can contribute greatly to the 

automation process in many applications. 

OCR has many practical applications including the following: 

1. Banks and Post Offices: automatic reading and sorting of mail, bank 

cheques and such other documents 

2. Library: automatic text entry into the computer for cataloging, ledgering 

etc. 

3. Desktop publishing: automatic reading from scanned documents for editing 

and publishing 

4. Document data compression: converting scanned document images to 

ASCII and other computer readable format 

5. Reading aid for blind: OCR can be combined with a text-to-speech 

converter which can read out text from a scanned document 

6. Language processing: automatic text entry from manuscripts for language 

processing 

2.3 Development of OCR 

The invention of retina scanner by C. R. Carey of Boston Massachusetts in the 

year 1870, which was a image transmission system using a mosaic of photocells, is 

considered as the origin of character recognition [88]. The second significant event 

in the history of OCR is the invention of sequential scanner by Nipkow in 1890 

which was a major breakthrough for modern television and reading machines. 

During the initial days the efforts were primarily made towards the development 

of character recognition devices as an aid to the visually handicapped and 

successful attempts were made by the Russian scientist Tyurin in 1900. Two 

patents on OCR were obtained: one in 1929 by Tausheck in Germany [147] and 

the other in 1933 by Handel in the u.S. [55]. These are the first concepts of the 
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idea of OCR as reported in the literature [93]. The principle of Tausheck's patent 

is template/mask matching. 

The commercial OCR systems are divided into four generations depending on 

versatility, robustness and efficiency [107], [93], [38]. The first generation systems 

are characterized by the constrained letter shapes which the OCRs read. Such 

machines appeared in the beginning of the 1960s. Two most typical systems 

were NCR 420 [49] and Farrington 3010 [64]. IBM developed the first widely 

commercialized OCR of this generation, the IBM 1418 [53], which was designed 

to read a special IBM font, 407 [93] . The recognition method was logical template 

matching where the positional relationship was fully utilized. Some other OCR 

systems of IBM that follow are IBM 1428, IBM 1285 and IBM 1975. By the 

end of the 1960's some mainframe companies of Japan announced their OCRs of 

the first generation. Some of them are Facom 6300A from Fujitsu, H-852 from 

Hitachi and N240D-1 of NEC. The first two systems used stroke analysis method 

and the third one used logical template matching [93] . 

The second generation OCR systems appeared in the middle of 1960s to early 

1970s and they are characterized by the recognition capabilities of a set of hand

printed characters in addition to regular machine printed characters [93], [107]. 

At the early stages of this generation, the scope was restricted to recognition of 

numerals only. IBM 1287 was the first and famous OCR system of this generation 

which was exhibited at the 1965 New York world fair. The system was developed 

as a hybrid one combining analog and digital technology. Another significant 

development during this period is the first automatic letter-sorting machine for 

postal code numbers of Toshiba. The methods were based on the structural 

analysis approach [48], [93], [107]. Some other OCR systems of this generation 

was RETINA of Recognition Equipment Inc.[135]' H-8959 of Hitachi [129]. 

The third generation OCR systems were targeted to recognize characters from 

poor-print-quality documents, and hand-printed characters for a large category 

character set. Commercial OCR systems, which partially met these targets, 

appeared roughly during the period from 1975 to 1985. Two common objectives 

for these systems were high performance and low cost [93], [94], [102]. 

The fourth generation is characterized by the OCRs of complex documents 
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containing text, graphics, table and mathematical symbols, unconstrained 

handwritten characters, color document, low-quality noisy documents like 

photocopy and fax, etc [107]. Due to the upgraded performances of UNIX 

workstations and personal computers, a major part of the recognition was 

implemented by softwares on general purpose computers and commercial OCR 

software packages running on personal computers also appeared in the market 

[45]. Advanced layout analysis techniques enabled recognition of a large variety 

of complex documents. There are many works reported in the literature on 

unconstrained handwritten character but the recognition accuracy hardly exceeds 

85% [107]. On the otherhand very few studies are reported on color documents 

and research on this problem is continuing [107]. Another area of research in 

this period is recognition of characters on noisy documents [114], [143]. The 

commercial products of this period include postal address readers that can 

sort automatically hand-printed addresses [103] and a reading aid for the blind 

marketed by XeroxKurzweil which is an integrated OCR with speech output for 

English language [74]. 

At present, more sophisticated optical readers which can process documents 

that has been typewritten, typeset, or printed by dot-matrix, line and laser 

printers are available for Roman, Chinese, Japanese and Arabic text. These 

readers can recognize characters with different fonts and sizes, with different 

formats including intermixed text and graphics [93], [6], [40], [41], [101], [51], 

[123], [144]. With the introduction of narrow range scanners, an optical reader can 

recognize multiple columns or sections of a page or mailing lists. Some of them 

are also equipped with software for spell checking, and for flagging suspicious 

characters or words [114], [150]. More recently, several research works are 

reported in the literature in areas of low-quality, degraded character recognition 

[132]' [11], [87], [59], recognition of historical documents [75], [120], [2], [70], 

[152]' vehicle number plate recognition [21], [7], [63]' recognition of multilingual 

documents [23], [62]' [31], [92]' [142], [15] etc. 

The the characteristics and period of these OCR generations are shown in 

Table 2.1. 
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Table 2 1· Generations of OCR 
Generation Period Type of Document/Character OCRs Read 

First Beginning of the Constrained letter shapes 

1960s 

Second Mid 1960s to Hand-printed and machine-printed 

early 1970s characters 

Third 1975 - 1985 Poor quality documents, large set of hand-

printed characters 

Fourth 1985 - Complex documents containing text, 

graphics, tables, mathematical symbols, 

unconstrained handwritten character set etc. 

2.4 Methodologies used for OCR 

The Optical Character Recognition techniques are broadly classified as template

based and feature-based approaches [107], [93]. The template-based approach, 

which is also called template-matching approach, was used in OCR systems 

during the early stage of development. In this approach, an input character image 

is superimposed on a template and then the degree of correlation between them 

is measured and this measure is used for classification. Applications of template

matching approach are also found in modern OCR systems in combination with 

feature-based methods [25]. 

Feature-based methods extract important characteristics or features from the 

characters and use them to develop classification models. There are two types 

of feature-based approaches: spatial domain approach and transform domain 

approach. Spatial domain approaches use features which are directly extracted 

from the spatial representation of the pixels. Examples of spatial domain features 

are stroke-based feature, topological features, features obtained from the concept 

of water reservoirs [26] etc. The techniques under the transform domain approach, 

first transform a character image into another space like Fourier, Cosine, Wavelet 

and then useful features are obtained from the transformed images. These 
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features are then used in a sophisticated classification model. Other techniques 

used for OCR include graph-theoretic [65] and formal grammar-based approaches 

[42]. A large number of works are also done on moment-based OCR [18], [39], 

[156]. 

Among the modern techniques, Artificial Neural Network (ANN), Hidden 

Markov Model (HMM), Support Vector Machines (SVM), Fuzzy rules, tolerant 

rough set, Evolutionary algorithms are also used for character recognition. In 

these techniques, the systems do not explicitly derive any feature from the 

characters. Such a system is trained by raw or normalized patterns and the 

system adjusts itself to have best possible classification of these patterns. The 

trained system is used to classify unknown patterns of character images. 

2.5 Works on Indian Script Optical Character 

Recognition 

There are 22 languages recognized by the Constitution of India, spoken in 

different parts of the country, namely Assamese, Bengali, Bodo, Dogri, Gujarati, 

Hindi, Kannada, Kashmiri, Konkani, Maithili, Malayalam, Meitei, Marathi, 

Nepali, Oriya, Punjabi, Sanskrit, Santhali, Sindhi, Tamil, Telugu and Urdu 

[161]' [162]. These languages are written using twelve different scripts. Most 

of these scripts originated from ancient Brahmi through various transformations 

[36]. Considering these large number of languages and scripts, the number of 

studies on Indian language script character recognition is not sufficient. Amongst 

the existing works on Indian scripts, majority of works are done on Devanagari 

and BangIa scripts. Some other works, reported in the literature, on recognition 

of other Indian languages include Tamil, Telugu, Oriya, Kannada, Punjabi, 

Gujarati, etc. 

A large number of works are done for OCR in Devanagari script. Among 

the early works, some efforts were made for Devanagari character recognition by 

Sinha [137], [139]. In his doctoral thesis [137], he discussed a syntactic pattern 

analysis system and its application to Devanagari script recognition. A system 

for recognition of handwritten and machine printed Devanagari characters was 
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presented in [139]. Another important work of Sinha is found in [138], where 

he demonstrated how the spatial relationship among the constituent symbol of 

Devanagari scripts plays an important role in interpretation of Devanagari words. 

Some other initial studies on Devanagari script recognition was also done in [133], 

[134]. The work in [137] discusses a Devanagari hand-printed numeral recognition 

system on the basis of presence of some basic primitives, namely, horizontal and 

vertical line segment, left and right slant, curves etc. and their positions and 

interconnections. A similar technique was presented in [134] for recognition of 

constrained hand-printed Devanagari characters. The above systems deal with 

character recognition in isolation. Two first works on complete OCR systems 

for printed Devanagari characters are due to Palit and Choudhury [112] and 

Pal and Choudhury [105]. The method proposed in [105] is reported to give 

96% accuracy. Recently, a system for recognition of hand-written Devanagari 

numeral recognition is proposed in [12]. Here, two types of features are used to 

represent the numerals and a multilayer perceptron is used for categorization of 

the numerals. 

BangIa is another Indian script where lots of research works are reported. 

Some early works on recognition of BangIa characters are done in [22], [113]' 

[141]. A nearest neighbour classifier for BangIa character recognition is presented 

in [122], which uses features by string connectivity criterion. During the same 

time, a generalized formal approach for generation and analysis of BangIa and 

Devanagari characters is presented in [36]. The first work on a complete BangIa 

OCR is done by Choudhury and Pal [25]. The system uses both feature and 

template matching for recognition. A feature-based tree classifier is used for 

recognition of simple characters and the compound/conjunct characters are 

recognized using run-based template matching which is preceded by feature

based grouping. The system is reported to have almost 96% recognition accuracy. 

Skew angle detection and correction is an important preprocessing step in any 

OCR system. A novel technique for skew detection and correction is proposed 

in [24]. An algorithm to estimate the skew angle of individual text lines in 

a document where different text lines may have different skew is proposed in 

[110]. Error detection and correction is an important aspect of an OCR system. 

An error detection and correction technique based on morphological parsing of 
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recognized word is presented in [109]. Works on handwritten BangIa character 

recognition are also reported in the literature. Some of these works are: an 

isolated handwritten numeral recognition [113], a multistage classification scheme 

for handwritten BangIa character recognition [117], a robust scheme for off-line 

recognition of BangIa isolated handwritten numerals [106], a neural network

based system for recognition of isolated handwritten alphanumeric characters 

[37], etc. Some of the recent works are: a water reservoir based scheme for the 

segmentation of unconstrained handwritten texts into line, words and characters 

[108], a neural network approach for recognition of BangIa handwritten numerals 

[16], on-line recognition of BangIa handwritten characters [47] etc. 

Tamil is another language where some amount of work on character 

recognition is reported. Some of the early works on recognition of machine

printed and hand-printed Tamil character recognition is found in [140], [27], [20]. 

A work on on-line Tamil character recognition is reported in [146]. 

Among the early works on Telugu character recognition, a two-stage printed 

Telugu character recognition system is reported in [118]. The system uses 

a knowledge-base about the primitive shapes present in the characters and 

classification is done by a decision tree. Another printed Telugu character 

recognition system by neural network approach is proposed in [145]. A 

compositional approach for printed Telugu character recognition using connected 

components and fringe distance based template matching is proposed in [104]. 

Some research works are reported for recognition of Oriya characters. One 

system to recognize Oriya alphabet using Kohonen neural network is proposed in 

[91]. The system was tested only on five Oriya characters and hence the reliability 

of the system was not established. A complete OCR system for printed Oriya 

characters is presented in [26]. The system uses a combination of stroke and run

number-based features along with features obtained from the concept of water 

overflow from a reservoir. The feature detection methods are simple and robust 

and it is reported to have about 96% accuracy. 

A complete OCR system for printed Gurmukhi script is reported in [77]. 

The system uses a multi-stage classification scheme combined with binary tree 

and nearest neighbour classifier. The system is reported to give about 97.34% 
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accuracy. Some other studies on recognition of Gurmukhi characters are found 

in [81], [80], [79], [82], [78]. An post-processor for Gurmukhi script OCR is also 

proposed in [76]. 

To the best of the author's knowledge, the first work on recognition of 

Gujarati characters is reported in [8], which describes classification of a subset 

of printed Gujarati characters. Another work on zone identification of printed 

Gujarati text is reported in [32]. 

Another Indian language, where a few research works on character recognition 

are available, is Kannada. Two recent works on Kannada character recognition 

are: a font and size independent OCR system reported in [9], and an on-line 

system for handwritten Kannada character recognition using Wavelet features 

and neural classifier reported in [119]. 

Among few research works in Assamese OCR, a method for generating 

a feature set using neural feature extractor for use in neural network based 

Assamese character and numeral recognition is reported in [131]. Another work 

on Assamese character and Anglo-Assamese numeral recognition using hybrid 

feature set is reported in [130]. A method for handwritten Assamese character 

segmentation using Artificial Neural Network is reported in [17]. Representation 

of printed Assamese characters using Legendre and Tchebichef moments are 

studied in [124], [125]. 

2.6 Optical 

Moments 

Character Recognition . uSIng 

The first work on character recognition by moments was done by M.K.Hu 

[58]. He demonstrated the utility of invariant features based on geometric 

moments for pattern recognition. Since then, moment-based features are used 

in many diverse areas like pattern recognition including character recognition, 

image classification, target identification, scene analysis [116], [43]. Application 

of moments in recognition of aircraft silhouette is described in [14] and [34]. 

The moments and moment invariants are also used in template matching and 
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registration of satellite images [155], [52], [43], texture classification [154], and 

character recognition [14], [13], [44], [66], [10], [1], [67], [69], [68], [83], [40]. 

Most of the studies on moment based character recognition reported in the 

literature are on Chinese, Arabic and Roman characters [83], [84], [85], [86], 

[6]' [40]' [39], [3]' [5], [14], [58], [68], [67]' [69], [1], [35], [10]. To the best 

of the author's knowledge, very few studies on Indian scripts are reported in 

the literature [72], [125], [8], [73]. Representation of printed characters using 

orthonormal Tchebichef moments and Legendre moments are studied in [128], 

[124], [125]. Some other studies on orthogonal Legendre moments as features are 

reported in [85], [10], [28]. Orthogonal Zernike moment is used in recognition of 

handwritten Devanagari characters in [72]. Recently some discrete orthogonal 

moments like Tchebichef[97]' Krawtchouk[157]' Racah[159] based on discrete 

orthogonal polynomials are also used as feature descriptors and are reported 

as better alternatives for continuous orthogonal moments. 

2.7 Conclusion 

In this chapter, an overview of research and development of OCR, which is one 

of the most challenging and extensively studied areas of pattern recognition, is 

presented. At first, some of the major developments in OCR during the initial 

days are presented. The generations of commercial OCR systems depending on 

versatility, robustness and efficiency are also discussed. Most of the commercial 

OCR systems are meant for Roman, Chinese, Japanese and Arabic characters. 

The chapter also briefly reviews the developments of OCR for Indian scripts. 

Considering the large number of languages and scripts in India, the number of 

research works in Indian language OCR is not sufficient. The majority of research 

works are done on BangIa and Devanagari scripts. Finally, the chapter discusses 

the use of statistical moments for character recognition. Most of the studies on 

moment-based character recognition reported in the literature are on Roman, 

Chinese and Arabic characters but such studies are very few for Indian scripts. 
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Chapter 3 

Representation of Printed 

Assamese Characters using 

Orthogonal Moments 

3.1 Introduction 

Moment functions are widely used in image analysis as feature descriptors. 

Compared to geometric moments, orthogonal moments have become more 

popular in image analysis for their better representation capabilities. In 

comparison to continuous orthogonal moments discrete orthogonal moments 

provide a more accurate description of the image features. This chapter presents 

a study on representation of printed Assamese characters using orthogonal 

moments, namely, Legendre, Tchebichef and Krawtchouk and also gives a 

comparative analysis of their performance. The chapter also discusses the use of 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

for improved representation. 

3.2 Moment Functions 

A digital image of a character or any other object can be defined as a two

dimensional density distribution f(x, V), where the function values are the 
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intensities at pixel locations (x, y). A general definition of moment functions 

<Ppq of order (p + q), of the function f(x, y) is given by 

<Ppq = J J Wpq(x, y)f(x, y) dx dy, p, q = 0, 1,2,3, ... (3.1) 

<: 

where ( denotes the domain of the function f(x, y) and Wpq(x, y) is a continuous 

function of (x, y) in (, known as the moment weighting kernel or the basis set [100]. 

The indices p, q usually denote the degrees of the coordinates x, y respectively, 

as defined inside the function W. The intensity function f (x, y) of an image 

is bounded and has compact support in ( and therefore, the integral given by 

Equation 3.1 is finite. 

3.2.1 Problems Associated with Implementation of 

Moment Functions 

The implementation of moment functions involve the following major problems 

[98]: 

1. Numerical approximation of continuous integrals: The integrals in the 

definition of two-dimensional moment function of Equation 3.1 are usually 

approximated by discrete summations. This leads to numerical errors in 

the computed moments and also severely affects the analytical properties 

such as invariance, orthogonality etc., which they are intended to satisfy. 

2. Large variations in the dynamic range of values: Because of the powers p 

and q of the kernel Wpq of Equation 3.1, the computed moments have large 

variations in the dynamic range of values for different orders. Therefore, 

it is necessary to include additional measures, like scale normalization, 

in applications involving these moments to maintain equal weight for all 

components in a set of feature vectors. 

3. Coordinate space transformation: Generally, the domains of the moment 

kernels are completely different from the image coordinate space. Therefore, 

applications of such kernels in Equation 3.1 require an appropriate 
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transformation of the image coordinate space which increases the 

computational complexity [100]. 

The continuous orthogonal basis functions, such as Legendre polynomial, 

Zernike polynomial etc., do not have the above problem of large dynamic range 

variation but generally have the other two problems. On the other hand, discrete 

orthogonal polynomials as basis set overcome all the above problems associated 

with implementation of moment functions. Some examples of discrete orthogonal 

basis functions are Tchebichef, Krawtchouk, Racah etc. 

3.2.2 Geometric moments 

The geometric moments are the simplest of the moment functions. The (p + q )th 

order two-dimensional geometric moments, denoted by m pq , are defined with the 

basis set {xPyq}, and can be expressed as 

mpq = J J xPyq.f(x, y) dx dy , (3.2) 

Geometric moments are widely used as object descriptors. The following are two 

important theorems about geometric moments [58], [100]. 

Uniqueness Theorem: Assuming that the intensity function f(x, y) is piece

wise continuous and bounded in the region (, the moment sequence {mpq} is 

uniquely determined by the intensity function .f (x, y), and conversely. 

Existence Theorem: Assuming that the intensity function .f (x, y) is piece-wise 

continuous and bounded in the region (, the moments mpq of all orders exists and 

are finite. 

3.2.3 Legendre Moments 

Legendre moments were introduced as image processing tools by Teague [148]. 

The two-dimensional Legendre moments of order (p + q) of an image intensity 

function f(x,y), are defined as [100] 

L = (2p + 1)(2q + 1) 1+1 1+1 
P (x) P ( ) f(x ) dx d pq 4 p q y. ,y y, 

-1 -1 

(3.3) 
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where Pp(x) is the Legendre polynomial of order p and is given by 

( ) _ 1 d
P 
(2)P [ ) Pp x - -2 '-d x - 1 , x E -1,1, pp. xp 

which hold the following orthogonal property: 

(3.4) 

(3.5) 

where 6pq is the Kronecker function, i.e., 6pq = 1 if P = q and a otherwise. 

3.2.3.1 Computation of Legendre Moments 

The Legendre polynomials are defined in the range [-1, 1]. Therefore, 

computation of these moments requires the image coordinate space to be 

transformed to the range [-1, 1]. At the same time the continuous integrals 

are to be approximated by discrete summations. 

For a digital image of size N 2 , an approximation of Lpq is given by 

(3.6) 

where x t , Y3 denote the normalized pixel coordinates in the range [-1,1]' given 

by 

x t = (2i/N) - 1; Y3 = (2.i/N) - 1 
(3.7) 

i,.i = 1,2, ... , N 

The computation of Legendre moment can be facilitated by using the 

following recursive relation in Legendre polynomials [100]: 

Pp(x) = (2p - 1)xPp_1(x) - (p - 1)Pp_2 (x) 
p 

where Po(x) = 1; P1(x) = x; Ixl:S 1 and p> 1. 

(3.8) 

An efficient algorithm for fast computation of Legendre moments is given in 

[100]. 
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The implementation of Legendre moments using Equation 3.6 involves some 

approximation errors due to the problems mentioned in 1 and 3 of Subsection 

3.2.1. These approximation errors increase with the order of moments [86]. 

Therefore higher order moments fail to represent detail features of the images. 

A better approximation of Lpq is proposed in [86] and is given by the following 

equation: 

(3.9) 

where 

(3.lO) 

~X = X t - Xt-l = 2/N and ~Y = YJ - YJ-l = 2/N are the sampling intervals 

in x and Y directions [86]. 

The Equation 3.lO gives the integration of Pp(x)Pq(y) over the (~,j)th pixel. 

It has been shown that the moments computed using Equation 3.9 contain less 

approximation errors than using Equation 3.6 [126]. Use of Equations 3.9 and 

3.10 requires working out the Legendre polynomials which is not feasible for any 

arbitrary order. We propose to use the recursive relation given in Equation 3.8 

and the following integral formula for Legendre polynomials [100] in Equations 

3.9 and 3.10: 

(3.11) 

For images of size M x N the Equation 3.9 is modified to 

(3.12) 

and the sampling intervals in Equation 3.lO become ~x = X t - Xt-l = 2/ M 

and ~Y = YJ - YJ-l = 2/N. 
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3.2.4 Tchebichef Moments 

Tchebichef moments are based on discrete orthogonal Tchebichef polynomials 

and are introduced in [98] as tools for analysis of two-dimensional images. The 

(p + q) order Tchebichef moments of an image intensity function f(x, V), 0 ~ 

{x, y} ~ N - 1 are defined as [98] 

N-l N-l 

Tpq = ( N)1 ( N) L L lp(x)lq(y) f(x, V), 
p p, p q, x=O y=O (3.13) 

p, q = 0, 1, 2, ... N - 1 

where p(p, N) is the squared norm and lp (x) is the scaled Tchebichef polynomial 

and is defined as 
- () tp(x) 
tp x = f3(p, N) (3.14) 

and tp(x) is the discrete Tchebichef polynomial of order p and is given by 

(3.15) 

n,x = 1,2,3, ... ,N-1 

and f3(p, N) is the scale factor which is independent of x. The Tchebichef 

polynomials satisfy the following orthogonality condition 

N-l 

L tp(x)tq(x) = p(p, N)6pq , 
x=O (3.16) 

o ~ p, q ~ N - 1 

where 6pq is the Kronecker function and the squared norm p(p, N) is given by 

( 
N) = N(N2 - 1)(N2 - 2) ... (N2 - p2) 

P p, 2p + 1 ' 

= (2P)!(N+P), p=0,1,2, ... ,N-1 
2p+ 1 

(3.17) 

The scale factor f3(p, N) in Equation 3.14 is typically a function of N and the 

simplest choice is 

f3(p, N) = NP (3.18) 
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With this choice for (J(p, N), the squared norm p(p, N) is modified to 

-( N) = N(1 - ~)(1 - *) ... (1 - ~) 
P p, 2p + 1 (3.19) 

The problem associated with Equation 3.13 is that, the value of the squared 

norm tends to zero as p increases. As a result, Equation 3.13 gives very large 

values for the moments when either p or q is large. The problem can be resolved 

by the orthonormal version of the moments [95], [96]. The orthonormal version 

of Tchebichef polynomials can be obtained by modifying the scale factor (J(p, N) 

as 

(J(p, N) = V p(p, N) 

N(N2 - 1)(N2 - 22) ... (N2 _ p2) (3.20) 

2p+ 1 

With the above scale factor, the orthonormal Tchebichef polynomials, 

denoted by {ti }, are given by the following recurrence relation: 

where 

tp(x) = alxtp_1(x) + a2tp-l(X) + a3fp-2(X), 

p = 2,3, ... , N - 1; x = 0, 1,2, ... , N - 1 

_~~P2-1 
al - N2 2 P -p 

_ (1-N)~P2_1 
a2 - N2 2 P -p 

a3 = (p - 1) (2P+T 
p V~ 

,.------

The initial conditions of the above recurrence relation are 

~ 1 
to(x) = N-"2 

t (x) = V3(2x+ 1- N) 
1 VN(N2_1) 
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The discrete orthonormal polynomials defined as above satisfy the following 

condition for all p: 
N-l 

p(p, N) = L {ip (i)}2 = 1.0 (3.24) 
i=O 

where p(p, N) is the squared norm of {ip(i)}. 

With these normalized Tchebichef polynomials the Equation 3.13 is now 

reduced to 

N-l N-l 

Tpq = L L ip(x)iq(y).f(x, y), 
x=O y=O (3.25) 

p,q = 0, l,2, ... N - 1 

For images of size M x N, the Equation 3.25 can be modified as follows: 

M-IN-l 

Tpq = L L ip(x)iq(y).f(x, y), 
x=O y=O (3.26) 

p = 0, 1,2, ... M - 1; q = 0, 1,2, ... , N - 1 

In order to reduce propagation of any numerical errors through the recurrence 

relation, the polynomials given in Equation 3.21 can be renormalized as follows: 

(3.27) 

It has been shown that the reconstruction accuracy improves significantly by 

renormalization of the orthonormal Tchebichef polynomials [95]. 

We use the renormalized version of the orthonormal Tchebichef polynomial 

in our study. 

3.2.4.1 Computation of Tchebichef moments 

The basis functions of Tchebichef moments are orthogonal in the discrete domain 

of the image coordinate space. Therefore, implementations of these moments do 

not require any discrete approximation. It also eliminates the need for coordinate 

space normalization. The Equations 3.25 and 3.26 can be used directly to 
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compute the Tchebichef moments. Due to the use of appropriate scale factors, the 

computed moments do not exhibit large variation in the dynamic range of values. 

It also avoids any kind of numerical instabilities for large image sizes. Therefore, 

implementation of Tchebichef moments overcomes all the problems mentioned in 

Subsection 3.2.1 and they are proved to be superior to the conventional orthogonal 

moments like Legendre and Zernike moments. 

3.2.5 Krawtchouk Moments 

The Krawtchouk moments are based on discrete classical Krawtchouk 

polynomials and are introduced in [157] as tools for two-dimensional image 

analysis. The two-dimensional Krawtchouk moments of order (p + q) for a an 

image intensity function f(x,y),O::; {x,y}::; N -1 are defined as [157] 

N-l N-l 

Qpq = L:L Kp(x; h, N - 1)Kq(y; t2, N - 1)f(x, y) (3.28) 
x=o y=o 

where Kp(x; t, N - 1) is the pth order weighted Krawtchouk polynomial and 

is defined as 

as 

Kp(x; t, N - 1) = Kp(x; t, N - 1) 
w(x; t, N - 1) 
p(p;t,N - 1) 

(3.29) 

where Kp(x; t, N -1) is the pth order discrete Krawtchouk polynomial defined 

p 1 
Kp(x; t, N - 1) = :L ak,p,txk = 2Fl (-p, -x; -(N - 1); t) 

k=O (3.30) 

x,p = 0, 1,2, ... , N - 1; N - 1 > 0; t E (0,1), 

2Fl is the hypergeometric function and is defined as 

(3.31 ) 
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and (a) k is the Pochhammer symbol given by 

r(a+ k) 
(ah = a(a + 1) ... (a + k - 1) = r(a) (3.32) 

The set of Krawtchouk polynomials defined by Equation 3.30 forms a 

complete set of discrete basis functions with weight function 

(N -1) w(x; t, N - 1) = x e:(1 - t)N-I-X (3.33) 

and satisfies the orthogonality condition 

N-I 

L w(x; t, N - 1)Kp(x; t, N - 1)Kq(x; t, N - 1) = p(p; t, N - 1)bpq 
x=o (3.34) 

p, q = 1, 2, ... , N - 1 

where 
_ p(l-t)P p! 

p(p,t,N -1) - (-1) -t- (-(N -l))p (3.35) 

and bpq is the Kronecker function. 

For images of size M x N, the Equation 3.28 becomes 

M-I N-I 

Qpq = L L Kp(x; tl, M - 1)Kq(y; t 2, N - l)f(x, y) (3.36) 
x=o y=o 

Krawtchouk moments have the additional property of being able to extract 

local features from any region-of-interest by varying the parameter t of the 

binomial distribution associated with the Krawtchouk polynomial [157]. 

3.2.5.1 Computation of Krawtchouk moments 

In order to avoid overflowing for mathematical functions like hypergeometric 

functions and gamma functions, recurrence relation can be used in computation 

of Krawtchouk polynomials. The three-term recursive relation for the weighted 

Krawtchouk polynomials is given by [157], [153] 
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- A((N-1)t-2pt+p-x)-
Kp+1(x; t; N - 1) = t(N _ 1 _ p) Kp(x; t, N - 1) 

Bp(l - t) - (3.37) 
- t(N _ 1 _ p)Kp_1(x;t; N - 1) 

where 

with 

p = 1,2, ... , N - 2 

A= 

B= 

t(N-1-p) 
(1 - t)(p + 1) , 

t 2 (N - 1 - p) (N - p) 
(1 - t)2(p + l)p 

Ko (x; t, N - 1) = Jw(x; t, N - 1) 

- (X )(~) K1(x; t, N - 1) = 1 - t(N _ 1) V l-=-t vw(x; t, N - 1) 

Similarly, the following recursive relation can be used to compute the weight 

function given in Equation 3.33 

(
N - 1- x) t w(x + 1; t, N - 1) = --w(x; t, N - 1) 

x+1 1-t 
(3.38) 

with w(O; ,t, N - 1) = (1 - t)N-l 

The computation time of the Krawtchouk moments can be reduced 

significantly by using the symmetry property for the special case tl = t2 = 0.5. 

The symmetry relation of the weighted Krawtchouk polynomial is given by [157] 

Kp(x; t, N - 1) = (-l)P Kp(N - 1 - x; t, N - 1) (3.39) 

Using this symmetric relation for computing Krawtchouk moments of a 2-D 

image intensity function would save both computation time and storage space 
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for the Krawtchouk polynomials. For an image of size N X N, where N is even, 

only the polynomials in the first quadrant, 0 ::; x, y ::; (N /2 - 1), need to be 

calculated. For an odd N, the image can be zero-padded to make N even. 

The following matrix form of representation is useful for Krawtchouk 

moments computation in software packages such as MATLAB: 

(3.40) 

where (.)T denotes the transpose of the matrix and 

Q = {Q }t,)=N-l 
t) t,)=O 

The image can be reconstructed by 

(3.41) 

Similar to the Tchebichef moments, Krawtchouk moments also do not have 

the problems mentioned in Subsection 3.2.1. Similar to the Tchebichef moments, 

the basis functions of Krawtchouk moments are orthogonal in the discrete domain 

of the image coordinate space. Therefore, implementation of these moments 

requires neither any discrete approximation nor coordinate space normalization. 

Appropriate scale factors are used for the weighted Krawtchouk polynomials to 

ensure numerical stability Therefore, implementation of Krawtchouk moments 

overcomes all the problems mentioned in Subsection 3.2.1 and found to be suitable 

as pattern feature in two-dimensional image analysis. 

In all computations of Krawtchouk moments, the values of the parameters tl 

and t2 are taken to be 0.5 because our region-of-interest is the whole image. 
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3.3 Printed Character Representation 

Orthogonal Moments 

. 
uSIng 

In moment based character recognition systems, like other statistical pattern 

recognition systems, the image of a character is represented in terms of a set of d 

moments (features) of different order and is viewed as a point in ad-dimensional 

feature space [61]. Due to the variations in the images of a given character they 

generally map to more than one point in the space. The variations may be due to 

noise, font type, font size etc. Thus, the images of a character normally map to 

a cluster of points in the space. If the clusters formed by the images of different 

characters do not overlap with each other, they remain distinguishable. Choice 

of appropriate set of moments becomes important here. It is also important to 

keep the value of d minimum so that the computation involved is minimized. 

This section presents a study on representation of printed Assamese characters 

using Legendre, Tchebichef and Krawtchouk moments and gives a comparative 

analysis of their performance. The section also presents a study on use of the 

Principal Component Analysis and the Linear Discriminant Analysis for better 

representation. 

3.3.1 The Representation Scheme 

Let us consider an alphabet consisting n characters. From each character, k 

different noisy images are generated by adding Gaussian noise of zero mean 

and different standard deviations. These Ns = n x k noisy character images 

belong to n different classes where each class represents one character from the 

alphabet. Moments of order 0 to t are computed for each character image and 

then the images are represented in a d = (t+ 1)(t+2)/2 dimensional feature space 

where the features are the moments. The clusters formed by the images of the 

different characters are examined and if they (the clusters) do not overlap with 

each other then the representation scheme can effectively be used to recognize 

noisy characters of the alphabet. 

Let, X ri is the ith sample of the rth character (r = 1,2, ... ,n; i = 1,2, ... , k) 

represented as a vector of d moments. Again let, Cr be the rth cluster formed by 
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the samples of the rth character. The centroid Xr of Cr is given by 

_ 1 k 

Xr = k L Xri, r = 1,2, ... ,n; i = 1,2, ... , k 
i=l 

(3.42) 

In general, the clusters will have irregular shapes. However, for simplicity we 

model these clusters as hyperspheres. Now, let us consider the hypersphere in 

d dimensional Euclidean space centered at Xr corresponding to the rth cluster. 

The radius Rr of this hypersphere is the distance between the centroid and the 

sample which is farthest from the centroid and is given by 

(3.43) 
r = 1,2, ... ,n; i = 1,2, ... , k 

These hyperspheres represent n clusters corresponding to the n characters 

of the alphabet. If these hyperspheres are non-overlapping, i.e. the clusters are 

disjoint then the noisy characters belonging to one class are clearly distinguishable 

from the other classes. Let, de(Xn Xs) be the Euclidean distance between Xr 
and Xs. For two clusters Cr and Cs centered at Xr and Xs respectively, we have 

the following three cases: 

• de(Xr, Xs) = Rr + Rs - the clusters are touching each other 

• de(Xr, Xs) < Rr + Rs - the clusters are overlapping 

Obviously, if de(Xr, Xs) > Rr + Rs, for all values of r, S = 1,2, ... , nand 

r =/:. s, then all the clusters are disjoint. 

To examine the disjointness of the clusters, the closest pair of clusters are 

considered and if the closest pair of clusters are disjoint, then all the clusters are 

disjoint. For this, let us denote the distance between two clusters Cr and Cs as 

D(Cr , Cs ) and defined as the difference between the Euclidean distance be~ween 

the centroids of the clusters and the sum of their radii, i.e., 

(3.44) 

29 



The distance given by the Equation 3.44 is based on Euclidean distance and 

therefore it will generally have a higher value at a higher dimension than a lower 

dimension. Since dimension d of one representation increases (or decreases) with 

moment order, therefore in order to compare the representations at different 

moment order, the distance measure given by Equation 3.44 is not a good measure 

of separability. For this purpose it is proposed to use a weighted distance Dw 

between the closest pair of clusters, where the weight is the inverse of the average 

of the radii of all clusters, i.e., 

<f~~~~ 15~~<tt~· U~\Sl''1 
~t(fl1~'1 9f~<f\S~ 1f~i1~ 
1rr<f-q~ ~~~1? ~~g \:I 

\5f\5ff~~%\s ~H ~ ~ \f3 ~ 

\S~~ ~ ~~~~~ ~ ~~~ 
5~~~~~ ~~-.cs~~ ~ ~ 
~~ ~~~~~~ ~1i1~ 
~~~~~~~~~ 

(3.45) 

Figure 3.1: The Assamese characters used in the experiments (First three rows 

consonants, fourth row vowels and the last four rows conjunct characters 
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where Cr and Cs are the closest pair of clusters. A higher value of Dw implies 

better clustering. Clearly, Dw < 0, Dw = 0 and Dw > 0 mean overlapping, 

touching and disjoint clusters respectively. 

3.3.2 Experimental Results 

The alphabet for this experiment consists of 98 printed Assamese characters 

containing 41 consonants, 11 vowels and 46 conjunct characters (Yuktakshar) 

(Figure 3.1). The size of the character images varies from 30 x 30 to 60 x 60. 

For each character 100 noisy character images are generated by adding Gaussian 

noise of mean 0 and different standard deviations. These 9800 character images 

belong to 98 different classes where each class represents one character out of the 

98 characters taken for this experiment. 

After generating 9800 characters belonging to 98 classes, Legendre, 

Tchebichef and Krawtchouk moments of order from 0 to 30 are computed using 

Equations 3.12, 3.26 and 3.40 respectively, for each character image. Then the 

centroids Xr and the radii Rr of each class are computed using Equations 3.42 

and 3.43 respectively. Then the values de(Xr, Xs) and (Rr + Rs) are computed 

for all pairs of classes to find out the closest pair clusters and then the weighted 

distance between the closest pair of clusters Dw is computed using Equation 3.45 

as explained in the previous subsection. 

The experiment is repeated at different noise levels determined by the 

standard deviation Gaussian noise in the range of 5 - 50 in steps of 5 and 

considering moment vectors of order 1,2, ... ,30. The experimental results of 

these representations using Legendre, Tchebichef and Krawtchouk moments are 

described below. 

The recognition performance of the representation schemes on a dataset of 

19600 noisy character images comprising 200 noisy images of each character of 

Figure 3.1 is also presented. The recognition is done using a minimum distance 

classifier. The Euclidean distances of the moment vector of an input image of 

an unknown character, from the centroids Xr of the clusters Cr , r = 1,2, ... , n, 

are computed and the input image is assigned to the cluster of nearest cluster 

centroid and is recognized to be the character corresponding to that cluster. 
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Table 3.1: The values of Dw of the closest pair of clusters using Legendre moments 

at different noise level (a) 
Moment Standard Deviation of Noise (a) 

Order 5 10 15 20 25 30 35 40 45 50 

1 0.09 -0.79 -1.09 -1.40 -1.66 -1.72 -1.64 -2.25 -1.94 -2.19 

2 5.08 2.21 0.89 -0.17 -0.07 -0.36 -0.56 -0.78 -1.09 -1.35 

3 4.28 1.57 0.50 -0.15 -0.27 -0.50 -0.69 -0.97 -0.89 -1.04 

4 5.27 1.85 0.91 0.17 -0.37 -0.65 -0.69 -1.01 -1.05 -1.13 

5 4.88 1.99 0.91 0.23 -0.28 -0.55 -0.79 -0.89 -0.99 -0.92 

6 4.73 1.39 0.59 0.01 -0.54 -0.78 -1.06 -1.13 -1.13 -1.02 

7 4.59 1.58 0.47 0.01 -0.50 -0.74 -0.93 -1.21 -1.09 -1.10 

8 4.95 1.75 0.59 -0.09 -0.39 -0.63 -0.74 -0.95 -1.05 -1.27 

9 4.99 1.78 0.59 0.02 -0.34 -0.60 -0.89 -1.02 -1.04 -1.09 I 

10 6.01 2.15 0.98 0.31 -0.27 -0.55 -0.70 -0.88 -0.98 -1.04 

11 6.53 2.60 1.16 0.52 -0.04 -0.36 -0.61 -0.73 -0.79 -0.97 

12 6.60 2.69 1.22 0.49 -0.03 -0.35 -0.56 -0.78 -0.77 -0.96 

13 7.41 3.04 1.53 0.71 0.13 -0.22 -0.46 -0.65 -0.69 -0.85 I 

14 6.84 2.79 1.34 0.58 0.06 -0.26 -0.49 -0.67 -0.79 -0.95 

15 7.34 3.02 1.41 0.68 0.17 -0.17 -0.45 -0.58 -0.71 -0.95 I 

16 7.66 3.25 1.54 0.79 0.21 -0.15 -0.35 -0.55 -0.67 -0.91 I 

17 8.31 3.57 1.82 1.02 0.31 -0.07 -0.25 -0.44 -0.56 -0.85 I 

18 9.87 4.41 2.36 1.43 0.74 0.30 0.00 -0.25 -0.43 -0.60 ! 

19 9.74 4.37 2.31 1.38 0.67 0.24 -0.02 -0.24 -0.45 -0.64 I 

20 11.07 5.08 2.80 1.73 1.00 0.52 0.22 -0.07 -0.29 -0.46 

21 10.90 4.96 2.76 1.68 0.98 0.50 0.20 -0.07 -0.32 -0.47 

22 11.08 5.09 2.87 1.72 1.01 0.52 0.18 -0.04 -0.30 -0.47 

23 10.89 5.00 2.80 1.65 0.89 0.41 0.17 -0.08 -0.32 -0.49 

24 10.82 4.94 2.68 1.63 0.91 0.43 0.12 -0.11 -0.34 -0.51 

25 10.69 4.90 2.70 1.60 0.90 0.43 0.11 -0.15 -0.38 -0.49 

26 11.03 5.06 2.82 1.72 0.98 0.49 0.17 -0.06 -0.32 -0.46 

27 10.92 4.99 2.76 1.71 0.96 0.48 0.15 -0.12 -0.36 -0.47 

28 11.24 5.13 2.92 1.81 1.04 0.55 0.23 -0.05 -0.31 -0.45 

29 11.14 5.08 2.90 1.78 1.04 0.56 0.20 -0.06 -0.33 -0.50 

30 11.14 5.10 2.89 1.79 1.03 0.54 0.19 -0.07 -0.36 -0.49 
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Figure 3.2: The value of Dw using Legendre moments at different noise levels 

3.3.2.1 Legendre Moments 

In this subsection the experimental results using orthogonal Legendre moments 

are presented. 

Table 3.1 shows the values of Dw for different moment order at different noise 

level(o} It can be seen from the table that when standard deviation of noise, 

a = 5, Legendre moments up to order 1 are sufficient to represent the character 

images in order to make all the clusters disjoint. Since that dataset consists of 

noisy images of a single font-type and single font-size only, for small random 

variations (a = 5) disjoint clusters are observed even at Legendre moments of 

order = 1. When a is increased to 10 and the representation is done with moments 

up to order 2 or above, all the clusters become disjoint. Similarly, it can be 

observed from the columns corresponding to other values of a that number of 

moments required for representation increases along with noise level to make the 

clusters disjoint. At a noise level a = 35, moments up to order 20 or above are 
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necessary to represent the character images. For a noise level (j ~ 45, moments 

up to order 30 are not sufficient to represent the character images. 

The plots of Figure 3.2 show the values of Dw for Legendre moments of order 

1,2, ... ,30 at noise levels (j = 10,20,30,40,50. From the upward trend of all 

the plots in this figure (Figure 3.2), it is clear that the representation accuracy 

improves along with the order of moments considered for representation. As 

expected, the representation accuracy reduces when noise level increases. 

The recognition accuracies of the representation scheme at noise levels (j = 

5, 10 and 15 are found to be 100% using Legendre moments of order 2 and above. 

As expected, higher order moments are required to achieve 100% recognition 

accuracy at higher noise level. For example, at noise level (j = 40, 100% 

recognition accuracy is acheived using Legendre moments of order 7 and above. 

It is to be noted that the values of Dw are computed from two nearest cluster 

pairs. A negative value of Dw indicates that there are some overlapping clusters 

and recognition errors may occur only when an input character is mapped to such 

an overlapping region. Therefore, 100% recognition accuracies are obtained, in 

many cases, even when the values of Dw are negative. For example, when noise 

level is (j = 40, though the value of Dw is -1.21, 100% recognition acuracy is 

obtained at order 7. 

3.3.2.2 Tchebichef Moments 

The experimental results using discrete orthogonal Tchebichef moments are 

presented in Table 3.2 and Figure 3.3. 

Table 3.2 shows the values of Dw for different moment order at different values 

of (j. It can be seen from Table 3.2 that the representation performance decreases 

with increase in noise levels. As in the case of Legendre moments, Tchebichef 

moments up to order 1 are sufficient to distinctly represent the character images 

at CJ = 5. But unlike Legendre moments, Tchebichef moments up to order 2 are 

sufficient to have disjoint clusters for noise levels (CJ) from 10 to 25. At CJ = 35 

and CJ = 40, the maximum moment orders required for disjoint clusters are 16 

and 22 respectively. 

Figure 3.3 shows the plots of Dw at noise levels CJ = 10,20,30,40,50 with 
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Table 3.2: The values of Dw of the closest pair of clusters using Tchebichef 

moments at different noise level ((J) 
Moment Standard Deviation of Noise (eJ) 

Order 5 10 15 20 25 30 35 40 45 50 

1 0.38 -0.96 -1.39 -1.39 -1.40 -1.62 -1.55 -1.75 -1.79 -1.96 

2 8.14 3.58 1.81 0.87 0.45 -0.07 -0.35 -0.70 -0.80 -1.10 

3 6.97 3.00 1.43 0.67 0.31 0.02 -0.35 -0.57 -0.56 -0.80 

4 6.99 3.03 1.50 0.73 0.37 0.03 -0.36 -0.53 -0.59 -0.79 

5 6.91 2.95 1.53 0.80 0.25 -0.01 -0.37 -0.42 -0.59 -0.79 

6 6.69 2.82 1.44 0.68 0.19 0.01 -0.39 -0.61 -0.68 -0.80 

7 8.07 3.40 1.53 0.66 0.13 -0.08 -0.48 -0.51 -0.74 -0.82 

8 7.96 3.32 1.55 0.67 0.16 -0.16 -0.48 -0.52 -0.87 -0.88 

9 7.97 3.27 1.54 0.70 0.18 -0.11 -0.42 -0.51 -0.82 -0.92 

10 8.10 3.38 1.63 0.75 0.27 -0.09 -0.40 -0.51 -0.78 -0.92 

11 8.76 3.76 1.86 0.92 0.42 0.08 -0.25 -0.38 -0.72 -0.79 

12 8.59 3.68 1.84 0.88 0.34 0.05 -0.29 -0.40 -0.72 -0.78 

13 8.85 3.86 1.99 0.99 0.44 0.11 -0.19 -0.38 -0.70 -0.77 

14 8.73 3.78 1.98 0.96 0.43 0.10 -0.24 -0.42 -0.70 -0.77 

15 9.36 4.13 2.20 1.17 0.62 0.23 -0.12 -0.34 -0.59 -0.70 

16 9.94 4.48 2.42 1.37 0.74 0.36 0.00 -0.25 -0.49 -0.63 

17 10.25 4.63 2.53 1.45 0.82 0.41 0.06 -0.20 -0.43 -0.57 

18 10.96 5.03 2.82 1.68 1.01 0.54 0.16 -0.11 -0.31 -0.45 

19 11.22 5.18 2.91 1.78 1.07 0.60 0.21 -0.11 -0.25 -0.44 

20 11.58 5.36 3.10 1.90 1.15 0.68 0.28 -0.04 -0.23 -0.39 

21 11.67 5.42 3.11 1.94 1.14 0.69 0.31 -0.02 -0.20 -0.38 

22 11.98 5.57 3.24 2.03 1.22 0.74 0.35 0.03 -0.16 -0.35 

23 11.92 5.53 3.21 1.98 1.18 0.74 0.33 0.04 -0.17 -0.36 

24 12.00 5.57 3.24 2.02 1.19 0.77 0.35 0.05 -0.15 -0.34 

25 11.99 5.57 3.24 2.00 1.20 0.77 0.36 0.03 -0.16 -0.34 

26 12.09 5.61 3.27 2.04 1.24 0.79 0.36 0.06 -0.14 -0.33 

27 12.16 5.64 3.30 2.05 1.26 0.79 0.37 0.06 -0.14 -0.34 

28 12.21 5.68 3.31 2.05 1.28 0.79 0.39 0.07 -0.13 -0.34 

29 12.11 5.63 3.27 2.01 1.25 0.76 0.36 0.06 -0.15 -0.34 

30 12.12 5.64 3.28 1.99 1.25 0.76 0.36 0.06 -0.15 -0.35 
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Figure 3.3: The value of Dw using Tchebichef moments at different noise levels 

varying moment orders. Like the plots in Figure 3.2, here also the plots show 

upward trend indicating the improved representation accuracy with increasing 

moment order. 

The recognition accuracies of the representation scheme at noise levels (J = 5 

to (J = 25 are found to be 100% using Tchebichef moments of order 2 and above. 

As expected, in case Tchebichef moments also, higher order moments are required 

to achieve 100% recognition accuracy at higher noise level. For example, at noise 

level (J = 30, 100% recognition accuracy is acheived using Legendre moments of 

order 3 and above. In case of Tchebichef moments also, like Legendre moments, 

100% recognition accuracies are obtained, in many cases, even when the values 

of Dw are negative. For example, when noise level is (J = 40, though the value of 

Dw is -0.61, 100% recognition acuracy is obtained at order 6. 
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3.3.2.3 Krawtchouk Moments 

The experimental results using discrete orthogonal Krawtchouk moments are 

presented in Table 3.3 and Figure 3.4. Table 3.3 shows the values of Dw for 

different moment order at different noise levels. 
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Figure 3.4: The value of Dw using Krawtchouk moments at different noise levels 

It can be seen from Table 3.2 that when the noise level is (J = 5, like Legendre 

and Tchebichef moments, the cluster are disjoint when the characters images are 

represented by Krawtchouk moments up to order 1. The clusters remain disjoint 

up to a noise level (J = 20 using Krawtchouk moments up to order 2 and use of 

moments up to order 3 can make the clusters disjoint at (J = 25 and (J = 30. 

Similarly, at (J = 35 and (J = 40 all clusters are disjoint using moments up to 

order 4 or above and 6 or above respectively. 

Figure 3.4 shows the plots of Dw at noise levels (J - 10,20,30,40,50 with 

varying moment order. Unlike the plots in Figure 3.2 and Figure 3.3, the 

plots of this figure show upward trend up to moment order 9, then remains 
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Table 3.3: The values of Dw of the closest pair of clusters using Krawtchouk 

moments at different noise level (a) 
Moment Standard Deviation of Noise (a) 

Order 5 10 15 20 25 30 35 40 45 50 

1 0.60 -0.76 -1.06 -1.49 -1.55 -1.45 -1.75 -2.54 -2.68 -2.63 

2 7.68 2.87 1.36 0.53 -0.04 -0.41 -0.55 -0.52 -0.77 -1.09 

3 7.95 3.05 1.60 0.75 0.18 0.04 -0.25 -0.34 -0.47 -0.69 

4 11.45 4.81 2.84 1.67 0.95 0.63 0.21 -0.01 -0.19 -0.41 

5 12.27 5.11 2.92 1.78 1.10 0.60 0.21 -0.08 -0.25 -0.54 

6 14.74 6.47 3.89 2.48 1.56 0.97 0.65 0.23 0.06 -0.30 

7 14.14 6.29 3.80 2.27 1.51 0.94 0.61 0.22 0.00 -0.31 

8 15.50 7.12 4.31 2.68 1.83 1.22 0.80 0.41 0.08 -0.10 

9 16.18 7.46 4.39 2.90 1.97 1.37 0.91 0.48 0.24 -0.07 

10 15.50 7.16 4.14 2.73 1.84 1.21 0.78 0.37 0.20 -0.12 

11 14.99 6.91 3.93 2.63 1.72 1.17 0.70 0.36 0.07 -0.15 

12 15.23 7.03 4.07 2.72 1.78 1.21 0.77 0.38 0.11 -0.11 

13 15.12 7.02 4.03 2.71 1.81 1.23 0.80 0.37 0.14 -0.07 

14 15.02 7.00 4.03 2.72 1.83 1.22 0.76 0.38 0.13 -0.05 

15 15.16 7.06 4.13 2.75 1.84 1.22 0.82 0.43 0.16 -0.03 

16 14.91 6.97 4.07 2.69 1.82 1.21 0.78 0.41 0.14 -0.09 

17 14.62 6.82 3.97 2.62 1.78 1.15 0.73 0.35 0.12 -0.11 

18 14.82 6.93 4.06 2.68 1.83 1.20 0.76 0.38 0.16 -0.08 

19 14.97 7.00 4.11 2.69 1.85 1.21 0.80 0.37 0.18 -0.06 

20 14.97 7.00 4.16 2.73 1.85 1.21 0.81 0.39 0.19 -0.04 

21 14.84 6.94 4.11 2.70 1.80 1.18 0.75 0.40 0.18 -0.04 

22 14.64 6.82 4.05 2.66 1.78 1.17 0.71 0.36 0.15 -0.06 

23 14.30 6.63 3.93 2.56 1.69 1.11 0.66 0.31 0.11 -0.09 

24 14.03 6.50 3.84 2.50 1.63 1.06 0.63 0.29 0.08 -0.14 

25 13.86 6.40 3.77 2.46 1.60 1.04 0.60 0.26 0.05 -0.14 

26 13.69 6.33 3.73 2.41 1.55 1.01 0.58 0.24 0.01 -0.16 

27 13.48 6.23 3.66 2.35 1.52 0.96 0.54 0.21 -0.02 -0.19 

28 13.32 6.15 3.61 2.31 1.48 0.94 0.52 0.19 -0.03 -0.21 

29 13.12 6.07 3.55 2.27 1.45 0.91 0.49 0.16 -0.07 -0.24 

30 12.91 5.95 3.48 2.21 1.40 0.87 0.46 0.13 -0.10 -0.26 

38 



steady from order 10 to around order 20 and beyond order 20 the values of Dw 

show a decreasing tendency. This is because though the representation accuracy 

increases initially with increasing moment order, at some point, the inaccuracy 

due to noise of the higher order moments outdo the added accuracy of them. It 

is also observed from the plots of Figure 3.4 that the representation accuracy 

reduces with increasing noise level. 

The recognition accuracies of the representation scheme at noise levels a = 5 

to a = 30 are found to be 100% using Krawtchouk moments of order 2 and 

above. In case of Krawtchouk moments also, higher order moments are required 

to achieve 100% recognition accuracy at higher noise level. For example, at noise 

level a = 40, 100% recognition accuracy is acheived using Legendre moments 

of order 4 and above. In case of Krawtchouk moments also, like Legendre and 

Tchebichef moments, 100% recognition accuracies are obtained, in many cases, 

even when the values of Dw are negative. For example, when noise level is a = 40, 

though the value of Dw is -0.34, 100% recognition acuracy is obtained at order 

4. 

3.3.2.4 Comparison among Legendre, Tchebichef and Krawtchouk 

Moments 

From the Figures 3.2, 3.3 and 3.4 and also from the Tables 3.1, 3.2 and 3.3 it can 

be observed that, in general, the performance off all the moments show upward 

trends initially with increasing moment order. The values of Dw for Legendre 

and Tchebichef moments maintain this upward trend up to moment order 30 

. while that for Krawtchouk moments show downward trend beyond order 20. 

In order to have a better view of the comparative performance among these 

three moments for noisy character representation, the values of Dw for all these 

three moments are plotted at noise level a = 10 and 30 in Figure 3.5, and 

3.6 respectively. From these two figures, it can be observed that Krawtchouk 

moments show the best performance among the three moments particularly at 

low moment order. Though the values of Dw starts decreasing beyond moment 

order 20, they are above the corresponding values for the other two moment up 

to order 30. Performance of Tchebichef moments is better than that of Legendre 
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moments as indicated by the values of Dw for all moment orders considered in 

the experiment. Similar results are obtained for other noise levels also. 
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Figure 3.5: The value of Dw using Legendre, Tchebichef and Krawtchouk 

moments at noise level ()" = 10 

The table 3.4 presents a summary view of the performance of the three 

moments. The first column is the noise level added to the character images. 

The next three columns show the lowest moment order at which the clusters 

become disjoint for Legendre, Tchebichef and Krawtchouk moments respectively. 

The fifth, sixth and seventh columns show the maximum values of Dw and the 

remaining three columns show the moment orders at which Dw have the maximum 

values for Legendre, Tchebichef and Krawtchouk moments respectively. It can 

be observed from this table that Krawtchouk moment-based method require 

considerably smaller number of moments to have disjoint clusters followed by 

Tchebichef moment-based method. It is also seen that values of Dws obtained 

from Krawtchouk moments are the highest among all the three moments. 

The second highest values of Dws are obtained from Tchebichef moments. 

Finally, from the last three columns it is observed that Krawtchouk moments 
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Figure 3.6: The value of Dw using Legendre, Tchebichef and Krawtchouk 

moments at noise level (j = 30 

give best representation (maximum values of Dw) at significantly low order of 

moments whereas the other two moments give their best representation nearly 

at same moment order. From these observations, it can be concluded that 

performance of Krawtchouk moments is the best followed by Tchebichef moments 

for representation of printed Assamese characters. 

The recognition performances of all the three moments show upward trends 

with increasing moment order. Higher order moments are required at higher 

noise levels for all the three moments. Among these three moments, Krawtchouk 

moment-based representations give the best performances, as they generally 

require less number of moments particularly higher noise levels, followed by 

Tchebichef moments. 
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Table 3.4: Comparison of the values of Dw computed from Legendre{L) 

Tchebichef{T) and Krawtchouk{K) moments 

Noise level Lowest moment order Maximum value of Moment order at 

(0") for disjoint clusters Dw maximum Dw 

L T K L T K L T K 

10 2 2 2 5.13 5.68 7.46 28 28 9 

20 4 2 2 1.81 2.05 2.90 28 27 9 

30 18 11 3 0.56 0.79 1.37 29 27 9 

40 - 22 6 -0.04 0.07 0.48 22 28 9 

50 - - - -0.45 -0.33 -0.03 28 26 15 

3.4 Principal Component Analysis for 

Improved Representation 

The principal component analysis (PCA) is a well-known technique for 

dimensionality reduction. It finds a projection which best represents the data 

in least-squares sense [33]. As the data contain less redundancy because of 

orthogonality of the moments, PCA is applied here only to find out the major 

dimensions corresponding to the variation of the characters of the alphabet and 

discarding those corresponding to the minor variation due to noise. Since the 

data consists of noisy character images of n characters of the alphabet, there 

are at most n - 1 major dimensions and the remaining dimensions are due 

to noise. Therefore, if the data consisting of the moment vectors of the noisy 

characters images, projected on the first n - 1 principal components according 

to their decreasing eigen values, is expected to give the best representation of 

the character images which is also supported by the experimental results to a 

great extent. In this section, a study on use of PCA of moment vectors for 

improved representation of printed Assamese characters is presented. The theory 

of Principal Component Analysis and the experimental results are presented in 

the following two subsections. 
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3.4.1 Principal Component Analysis 

The Principal Component Analysis (PCA) is a simple, non-parametric method 

of extracting relevant information from confusing data sets. Applications of PCA 

are found in all forms of analysis - from neuroscience to computer graphics. 

Let, X is an Ns x d data matrix where Ns is the number of samples and 

d is the number of attributes. The goal of PCA of this data matrix may be 

summarized as [136]: 

find some orthonormal matrix P where Y = PXT such that 

C y = N.1_l yyT is diagonalized. The rows of P are the principal 

components of X 

Let us express C y in terms of P 

C = 1 yyT 
Y Ns-1 

_ 1 (pXT) (PXTl 
Ns -1 

_ 1 pXTXpT 
Ns -1 

_ 1 p(XTX)pT 
Ns -1 

C = 1 PApT 
Y Ns-1 

where A = XTX is a symmetric matrix. A symmetric matrix is diagonalized 

by an orthogonal matrix of its eigenvectors. That is 

(3.46) 

where D is a diagonal matrix and E is a matrix of eigenvectors of A arranged 

as columns. Taking P to be a matrix where each row Pi is an eigenvector of XTX, 

we get P - ET. Substituting this into Equation 3.46, we find A = pTDP. Now, 
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It is evident that P _ ET diagonalizes C y , which was the goal of PCA. The 

above results can be summarized as follows: 

• The principal components (PC) of X are the eigenvectors of XTX; i.e the 

rows of P . 

• The ith diagonal value of C y is the variance of X along Pi. 

In practice, computing of PCA of a data set X consists of: 

1. Subtracting off the mean of each attributes and 

2. Computing the eigenvectors of XTX. 

3.4.2 Experimental Results 

The experiments are performed on the same dataset used in the experiments 

presented in Section 3.3. The principal components (PC) of the moment vectors 

containing moments of order 0 to 30 are obtained using 'princomp' function of 

MATLAB. The character images are represented using a representation scheme 

similar to the scheme presented in 3.3 where the moment vectors are replaced 

by the principal component scores. The principal component scores are used to 

compute the cluster centroids, the radii, the distances between the clusters and 

finally the weighted distances between the closest pair of clusters Dw. The results 

of these experiments are presented in the remaining part of this subsection. 

The recognition performance of the representation schemes, on the same 

dataset used in Subsection 3.3.2 of 19600 noisy character images of 98 characters 

of Figure 3.1, is also presented. The recognition is done using a minimum distance 

classifier. The moment vector of an input image of an unknown character is 

transformed by the matrix containing the principal components of the dataset 

used in representation. Euclidean distances of this transformed vector from the 

centroids Xr ofthe clusters Cr (r = 1,2, ... , n) are computed and the input image 

is assigned to the cluster of nearest cluster centroid and is recognized to be the 

character corresponding to that cluster. 
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Figure 3.7: The value of Dw using PC scores of Legendre moments 

3.4.2.1 Principal Components of Legendre Moments 

Figure 3.7 shows the plots of Dw computed from different numbers of principal 

component scores (Np ) of Legendre moments at noise levels (J' = 10,20,30,40 and 

50. It can be observed from these plots that the Dws obtain maximum values 

near Np = 97. Though the maximum values of Dw are not exactly at Np = 97, 

the values of Dws at Np = 97 are very close to the maximum values of Dw (the 

maximum value of Dw are at most 1.15 times of its value at Np = 97). 

A comparison of the plots of Figure 3.7 with that of Figure 3.2 shows 

that considerable improvement can be achieved by representing the character 

images using principal component scores of the Legendre moments instead of the 

moments themselves. The Table 3.5 gives a summarized view of the comparative 

performance of these two approaches. The first column of this table shows the 

standard deviation ((J') of Gaussian noise added to the character images. The 

values in the second column are the maximum values of Dws from the Legendre 
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Table 3.5: The maximum values of Dw computed from Legendre moments and 

principal component scores of the Legendre moments 
Noise level Legendre Moment Principal Component(PC) Score 

(0') Maximum Moment No. of Maximum No. of PC 

Dw order moments Dw scores (Np ) 

10 5.13 28 435 9.34 94 10 

20 1.81 28 435 3.88 95 10 

30 0.56 29 465 1.85 94 14 

40 -0.04 22 276 1.01 93 17 

50 -0.45 28 435 0.34 93 19 

moments. The third and fourth columns give the moment order and number of 

moments respectively that give the maximum values of Dws. The fifth and sixth 

columns indicate the maximum values of Dw and number of principal component 

scores that give these maximum values respectively. The last column in this table 

gives the minimum number of principal component scores that give a value of Dw 

which is higher than or at least equal to the maximum value of Dw given by the 

Legendre moments. For example, from the first row of this table it is observed 

that, when the standard deviation of noise 0' = 10, then the maximum value 

of Dw from Legendre moments is 5.13 which is obtained when the images are 

represented by Legendre moments of order ° to 28, that is 435 moments (one 

moment of order 0, two moments of order 1 and so on). Whereas, the maximum 

values of Dws obtained from principal component scores of the Legendre moments 

is 9.34 which is obtained when representation is done with 94 principal component 

scores. And finally, the value 10 in the last column indicates that a representation 

with 10 principal component scores gives a value of Dw 2: 5.13. It is observed 

that the maximum value of Dw obtained from the principal component scores are 

much higher than those obtained from the Legendre moments themselves. Also, 

the values of Dw obtained from principal component scores in lower dimensional 

representations are as good as those obtained from Legendre moments in much 

higher dimensions. For example, at noise level (J = 10, the value of Dw obtained 

from 10 principal component scores (10 dimensional Euclidean space) is as good 
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as that obtained from 435 Legendre moments (435 dimensional Euclidean space). 

Similar results are also observed at other noise levels. 

A summary of recognition results of Principal Component Analysis-based 

representations are presented in Table 3.6. From this table in can be observed 

that, PCA-based representations are more efficient as they give same performance 

at lower dimensions in comparison to the moments themselves. For example, 

minimum number of Legendre moments needed for 100% recognition accuracy at 

noise level a = 30 is 15 (order 4), whereas a minimum of 9 PC scores of Legendre 

moments give the same recognition accuracy at that noise level. 

Table 3.6: Minimum number of moments or Principal Component(PC) Scores 

needed for 100% recognition accuracy 
Noise Legendre Tchebichef Krawtchouk 

level (a) Moments PC scores Moments PC scores moments PC scores 

10 6 4 6 3 6 3 

20 10 6 6 3 6 4 

30 15 9 10 4 6 4 

40 36 10 28 6 15 5 

50 66 14 45 8 28 7 

3.4.2.2 Principal Components of Tchebichef Moments 

Figure 3.8 shows the plots of Dw , computed from principal component scores of 

Tchebichef moments, against the numbers of principal component scores (Np ) at 

noise levels a = 10,20,30,40 and 50. Unlike Legendre moments, it is observed 

from these plots that the Dw obtain the maximum value exactly at Np = 97 for 

noise levels a = 10,20,30 and 40. On the other hand, at noise level a = 50, the 

value of Dw at Np = 97 is very close to the maximum value of Dw (the maximum 

value of Dw is only 1.0061 times the value of Dw at Np = 97). 

A comparison of the plots of Figures 3.8 and 3.3 shows that, like Legendre 

moments, significant improvement can be achieved by representing the character 

images using principal component scores of the Tchebichef moments instead 
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Figure 3.8: The value of Dw using PC scores of Tchebichef moments 

of the moments themselves. Table 3.7 provides a summarized view of the 

comparative performance of the representations using Tchebichef moments and 

principal component scores of these moments. From this table, it is found that 

the maximum values obtained from principal component scores of Tchebichef 

moments are much higher than those obtained from the moments themselves. 

For example, the maximum values of Dws, when (J = 10, for the Tchebichef 

moments and the principal component scores of the Tchebichef moments are 

5.68 and 11.45 respectively. The corresponding dimensions of representations are 

435 and 97 for Tchebichef moments and principal component scores of Tchebichef 

moments respectively. Also from the last column it is found that, the value of 

Dw obtained from 4 principal component scores of Tchebichef moments are at 

least equal to the value of Dw obtained from 435 Tchebichef moments (at noise 

level (J = 10). Similar results are also observed at all other noise levels. 

A summary of recognition results of Principal Component Analysis-based 

representations using Tchebichef moments are also given in Table 3.6. From this 
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Table 3.7: The maximum values of Dw computed from Tchebichef moments and 

principal component scores of the Tchebichef moments 

Noise level Tchebichef Moment Principal Component(PC) Score 

(0') Maximum Moment No. of Maximum No. of PC 

Dw order moments Dw score (Np ) 

10 5.68 28 435 11.45 97 4 

20 2.05 27 406 5.09 97 5 

30 0.79 27 406 2.79 97 4 

40 0.07 28 435 1.67 97 4 

50 -0.33 26 378 0.89 95 2 

table in can be observed that, PCA-based representations are more efficient as 

they give same performance at lower dimensions in comparison to the moments 

themselves. For example, minimum number of Tchebichef moments needed for 

100% recognition accuracy at noise level 0' = 30 is 10 (order 3), whereas a 

minimum of 4 PC scores of Tchebichef moments are sufficient to get the same 

recognition accuracy at that noise level. 

3.4.2.3 Principal Components of Krawtchouk Moments 

Similar to the experiments done using Legendre and Tchebichef moments, 

principal component scores of Krawtchouk moments are used to compute the 

values of Dws. Figure 3.9 shows the plots of these values against number of 

principal component scores (Np ) at noise levels 0' = 10,20,30,40 and 50. It is 

observed from these plots that the Dw obtain the maximum value at Np = 96 at 

all noise levels. These maximum values are at most 1.0097 times of the value of 

Dw at Np = 97. 

Similar to the Tables 3.5 and 3.7, Table 3.8 summarizes the comparative 

performance of Krawtchouk moment-based representation and principal 

component scores of Krawtchouk moment-based representation. It is observed, 

from this table, that the maximum values of Dw obtained from the principal 

component scores are much higher than those obtained from the moments 
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Figure 3.9: The value of Dw using PC scores of Krawtchouk moments 

themselves. But, unlike Legendre and Tchebichef moments, the maximum values 

of D w , based on Krawtchouk moments, are obtained comparatively at lower 

dimensions than the maximum values of Dw based on principal component scores 

of Krawtchouk moments. Though the maximum values of Dw , based on principal 

component scores of Krawtchouk moments, are obtained in a higher dimension 

than those obtained from the Krawtchouk moments in most cases, the clusters 

are more distinct in the former case as indicated by higher values of Dw. Also, 

form the last column of this table, it can be seen that, comparable values 

of Dw are obtained from the principal component score-based representation 

in sufficiently lower dimensions. For example, the Dw values obtained from 

6 principal component scores are at least equal to the values obtained from 

55 moments at noise levels a = 10,20,30 and 40, and 136 moments at noise 

level a = 50. From these observations it can be concluded that, significant 

improvement in representation can be achieved by applying PCA on Krawtchouk 

moments also. 

It can be observed from the summary of recognition results presented in Table 
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Table 3.8: The maximum values of Dw computed from Krawtchouk moments and 

principal component scores of the Krawtchouk moments 
Noise level Krawtchouk Moment Principal Component Score 

(a) Maximum Moment No. of Maximum No. of PC 

Dw order moments Dw scores (Np ) 

10 7.46 9 55 12.75 96 6 

20 2.90 9 55 5.61 96 6 

30 1.37 9 55 3.22 96 6 

40 0.48 9 55 1.91 96 6 

50 -0.03 15 136 1.14 96 6 

3.6 that PCA-based representations using Krawtchouk moments also perform 

better over the moments (Krawtchouk)-based representation. For example, 

minimum number of Krawtchouk moments needed for 100% recognition accuracy 

at noise level (J = 30 is 6 (order 2), whereas a minimum of 4 PC scores of 

Krawtchouk moments are sufficient to get the same recognition accuracy at that 

noise level. 

3.5 Linear Discriminant Analysis for Improved 

Classification 

The PCA finds components that are useful for representing data, but these 

components may not be useful for discriminating data in different classes. On 

the other hand, the Linear Discriminant Analysis (LDA) finds directions that are 

useful for discrimination. It (LDA) is a well-known method for dimensionality 

reduction and classification. It transforms high-dimensional data onto a low

dimensional space where the data achieves maximum class separability [33], [46], 

[56], [89], [158]. The new features derived in LDA are linear combination of 

the original features where the coefficients are from the transformation matrix. 

The goal of LDA is to minimize the within-class distance and to maximize the 

between-class distance. In this section, we present a study on use of LDA on 
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moment vectors for improved classification of printed Assamese characters. The 

following subsections, present the theory of LDA and experimental results of LDA 

on moment vectors of printed Assamese characters. 

3.5.1 Linear Discriminant Analysis 

Given a data set consisting of Ns samples where each sample is ad-dimensional 

feature vector belonging to one of the n different classes. Let Xri be a vector 

representing the lth sample belonging to the rth class where r = 1,2, ... , n, 

'/, = 1, 2, ... ,nr and nr is the number of samples in the rth class. Classical LDA 

computes a linear transformation G which maps X ri in the d-dimensional space 

to a vector X~i in d(dimensional space: X~i = GTXri, (dl < d). In discriminant 

analysis, three scatter matrices, called within-class, between-class and total scatter 

matrices, denoted by Sw, Sb and St respectively, are defined as follows [46]: 

1 n nr 

Sw = Ns L L(Xri - Xr)(Xri - Xr)T 
r=1 1=1 

(3.47) 

Sb = ~ t nr(Xr - X)(Xr - xf 
s r=1 

(3.48) 

(3.49) 

where Xr is the centroid of the rth class, and X is the global centroid and are 

defined as: 

(3.50) 

and 

(3.51) 

It follows from the definition that 
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The scatter matrices in the lower dimensional space resulting from the linear 

transformation G become 

(3.52) 

(3.53) 

(3.54) 

An optimal transformation G would in some sense maximizes the ratio of 

the between-class scatter to the within-class scatter. A simple scalar of scatter 

is the determinant of the scatter matrix. The product of the eigenvalues and 

equivalently, the product of the variances in the principal directions is the value 

of the determinant. Using this measure, the criterion function is obtained as [46], 

[33] 

(3.55) 

The optimal G which maximizes the above criterion function consists of the 

top eigenvectors of Sw -ISh corresponding to the nonzero eigenvalues, provided 

that the scatter matrix Sw is nonsingular [46]. Since St = Sh + Sw, an equivalent 

solution consists of the top eigenvectors of St -ISh corresponding to the nonzero 

eigenvalues [158]. A more general solution, in cases where St may be singular, 

consists of the top eigenvectors of St +Sh corresponding to the nonzero eigenvalues 

[158]. Here St + denotes the pseudo-inverse of St [54]. When St is nonsingular, 

then St + = St -1. 

3.5.2 Experimental Results 

LDA is performed on the moment vectors consisting moments of order 0 to 30 

of the dataset used in the experiments presented in the previous two sections. 

In these experiments also, we use a representation scheme similar to the scheme 

presented in Section 3.3, where the moment vectors are replaced by the LDA 
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features. The maximum values of Dw obtained from the LDA features along 

with those obtained from peA are shown Table 3.9. 

Table 3.9: The maximum values of Dw computed from peA and LDA 
Noise Level Legendre Moment Tchebichef Moment Krawtchouk Moment 

(0-) peA LDA peA LDA peA LDA 

10 9.34 9.78 11.45 11.45 12.75 12.70 

20 3.88 4.17 5.09 5.09 5.61 5.59 

30 1.85 1.98 2.79 2.80 3.22 3.23 

40 1.01 1.13 1.67 1.68 1.91 1.91 

50 0.34 0.45 0.89 0.90 1.14 1.14 

It may be observed, from this table that, the maximum values of Dw 

obtained from LDA features of Legendre moments are slightly higher than the 

maximum values of Dw obtained from peA scores. On the other hand, the 

maximum values of Dw obtained from both peA scores and LDA features are 

almost equal for Tchebichef and Krawtchouk moments. Therefore, it is found 

that, better discrimination between different classes is achieved using LDA on 

Legendre moments, but the discrimination is not improved by LDA over peA 

for Tchebichef and Krawtchouk moments. 

A set of experiments is also done to analyze the recognition performance 

of the representation schemes using LDA features on the same dataset used 

in Subsection 3.3.2 of 19600 noisy character images of 98 characters of Figure 

3.1. The recognition is done using a minimum distance classifier. The moment 

vector of an input image of an unknown character is transformed by the LDA 

transformation matrix obtained during representation. Euclidean distances of 

this transformed vector from the centroids Xr of the clusters Cr (r = 1,2, ... ,n) 

are computed and the input image is assigned to the cluster of nearest cluster 

centroid and is recognized to be the character corresponding to that cluster. 

It is observed from these experiments that the recognition performances of the 

LDA-based representation schemes are almost similar to those of PeA-based 

representation schemes. The numbers of LDA features, required to obtain 100% 
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recognition accuracy, are found to be same as the number of principal component 

scores for Tchebichef and Krawtchouk moments. On the other hand, for Legendre 

moments, 100% recognition accuracy is observed using comparatively less number 

of LDA features than the number of principal component scores. 

3.6 Conclusion 

In this chapter, a study on representation of printed Assamese characters using 

Legendre, Tchebichef and Krawtchouk moments is presented. It is observed that 

Krawtchouk moment based representation is the best among the three moments 

considered, followed by the Tchebichef and the Legendre moments. It can also 

be concluded that the principal component analysis can provide a considerable 

improvement in the representation of noisy characters. The chapter also presents 

a study on use of LDA on moment vectors for improved inter-class discrimination 

in representation of printed Assamese characters. It is observed that, in case of 

Legendre moments, performance of LDA is better than PCA. On the other hand, 

performances of both PCA and LDA are found to be same for Tchebichef and 

Krawtchouk moments. Though the experimentation is done only on Assamese 

characters, similar results can be expected in other scripts also. In this work only 

the representation aspects of noisy characters of a single font are considered in 

a simple framework. The aim of the work is to have a comparative performance 

analysis of the three moment methods in representation of noisy characters which 

may be useful for any moment-based OCR system. The actual optical character 

recognition scenario is more complex involving characters of different fonts and 

sizes. Some of these aspects are addressed in the following chapters. 
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Chapter 4 

Representation of Printed 

Assamese Characters using Scale 

Invariants of Orthogonal 

Moments 

4.1 Introduction 

An optical character recognition system should be able to recognize characters 

irrespective of position and size of the character images. Therefore, it becomes 

necessary for an OCR, to use features which are invariant to position and size of 

the images. Orientation invariance is not as important as position and size for an 

OCR from practical point of view [93]. Position or translation invariance is also 

not very important if the segmentation of the characters are done in such a way 

that only the minimum rectangle containing the character images are considered. 

This can be easily done in binary document images using segmentation approach 

proposed in literature [25]. Therefore, scale or size invariance property is more 

important than position and orientation invariance for the features of an OCR. 

In this chapter, a study on representation of printed Assamese characters using 

scale invariants of Legendre and Tchebichef moments is presented. 

M. K. Hu [58] first introduced moment invariants which are invariant with 
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respect to translation, scale and rotation. These invariants are widely used in 

image analysis and pattern recognition. These moment invariants are derived 

from geometric moments. However, kernel functions of geometric moments are 

not orthogonal. Therefore, they contain high degree of information redundancy 

and are sensitive to noise at high moment orders [149], [100]. Orthogonal 

moments are proved to be better than the geometric moments for image analysis 

because of the use of orthogonal kernel functions. Different invariant functions 

of these orthogonal moments are also proposed in the literatures by various 

researchers. Conventionally, there are two approaches used to obtain translation 

and scale invariants of orthogonal moments [68], [100], [28]: 

1. Image normalization method (INM) 

2. Indirect method (IDM) 

The image normalization method first computes the normalization 

parameters. These normalization parameters are used to compute the moments 

of the standard image from the given image [68], [111], [4]. The normalization 

is done by using either geometric moments or complex moments. This method 

standardizes the images by setting its zeroth order moments to a predetermined 

value and then moments of the standard image is computed from its centroid by 

redefining the image coordinates. 

In indirect method, the scale and translation invariants of moments are 

computed using the corresponding invariants of geometric moments. First, the 

orthogonal moment functions are expressed in terms of geometric moments and 

then the scale and translation invariants are derived by replacing the geometric 

moments with the corresponding invariants of geometric moments [121]. 

Both the above two methods derive translation and scale invariants of 

orthogonal moments indirectly using moments other than the corresponding 

orthogonal moments. The invariant functions are not derived using corresponding 

orthogonal kernels. These two methods also suffer from some drawbacks. 

The normalization parameters in INM may not always correspond to an exact 

transformation of the scaled image and therefore, the computed moments may 

differ from the true moments of the standard image. On the other hand, IDM is 
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computationally expensive [28]. 

Recently, a new set of translation and scale invariants of Legendre moments 

based on orthogonal Legendre polynomials have been introduced in [28]. 

Similarly, another set of translation and scale invariants of Tchebichef moments 

based on discrete orthogonal Tchebichef polynomials have been introduced 

in [160]. The translation invariants are derived from the respective central 

moments. The scale invariants are derived by algebraically eliminating the 

scale factors contained in the scaled Legendre or Tchebichef moments. The 

invariance properties of these scale and translation invariants are also established 

experimentally in these papers. However, to the best of author's knowledge, no 

extensive study on classification accuracy of these invariants has been reported. 

Some experimental results on classification accuracy of the two sets of invariants 

are reported in [160], but the experiments were done on a small subset of English 

alphabet only. Therefore, it is necessary to examine the representation and 

classification aspects of these invariants on a large data set. In this chapter, a 

study on representation aspects of the scale invariants of Legendre and Tchebichef 

moments is presented. The following two sections present the derivations of 

scale invariants of Legendre and Tchebichef moments proposed in [28] and [160] 

respectively. This is followed by experimental results and conclusions. 

4.2 Scale Invariants(SI) of Legendre moments 

The scaled Legendre moments of an image f(x, y) of size N x N, which is non

uniformly scaled with different factors, a and b, along x and y-axes respectively, 

can be defined as [28]: 

. (2p + 1)(2q + 1) 1+1 1+1 

Lpq = 4 -1 -1 Pp(ax)Pq(by)f(x, y)dxdy 
(4.1) 

(a =1= b) E (R - {O} ). 

where Pp(ax) and Pq(by) are the scaled Legendre polynomials along x-axis 

and y-axis respectively, and R is the set of real numbers. 

The scaled Legendre polynomials along x-axis can be expressed as a series of 
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decreasing powers of x as follows: 

(4.2) 

where k = 1 if P is odd, and 0 otherwise. 

The Legendre polynomial coefficient, Bpk is defined as 

_ _ (p-k)/2~ (p + k)! 
Bpk - (1) 2P ((p _ k)/2)!((p + k)/2)!k! (4.3) 

The relationship between the original and scaled Legendre polynomials can 

be obtained by rearranging Equation 4.2 as shown below: 

p p 

L 'f}pkPk(ax) = a
P L 'f}pkPk(X); 

k=O k=O (4.4) 

(p - k) = even 

where 'f}pk is given by 

p-2 
_ '" - B(p-r)k'f}p(p-r). 

'f}pk-L B ' 
r=O kk (4.5) 

p - r = even; p = (p - k) 2: 2. 

and 'f}pp = 1 

Similarly, the scaled Legendre polynomials along y-direction can be obtained 

by using Equations 4.4 and 4.5 as follows: 
q q 

L 'f}qdPd(by) = b
q L 'f}qdPd(y); 

d=O d=O (4.6) 

(q - d) = even 

The Equations 4.4 and 4.6 form the kernel of the scale invariants of Legendre 

moments. The invariants are expressed as a series of (p + q)th, (p + q - 2)th, 

(p + q - 4)th, etc. orders of original or scaled Legendre moments. The (p + q)th 

order invariants, denoted by 'I/J{;q, are defined as [28]: 

'I/J;q = tt [TPq'f}Pk'f}qdLkd] = a
p+1

b
q+1 tt [TPq'f}Pk'f}qdLkd] (4.7) 

k=O d=O Tkd k=O d=O Tqd 
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where Tpq is the normalizing constant of Equation 3.6 and is given by, 

(2p + 1)(2q + 1) 
Tpq = (N _ 1)2 (4.8) 

The scale factors, a and b present in Equation 4.7 can be canceled out using 

the following relations: 

L . 
1. 'l/Joo = abLoo , 

and subsequently the normalized scale invariants of Legendre moments, 

denoted by w{:q, are derived as follows: 

./,L (./,L )Hl 
L ~pq ~oo 

Wpq = ./,L ./,L 
~(pH)O ~O(qH) (4.9) 

p, q, e = 0, 1,2,3, .... 

_ The w{:qS defined in Equation 4.9 are also called aspect ratio invariants. They 

can be applied to images with uniform as well as non-uniform scaling. For 

negative values of a and/or b, the above equation is used for inverted or reflected 

images. 

The computation speed of these invariants is affected by the factorial 

functions in the coefficients 'f}pq. The following recurrence relations, proposed in 

[28], can be used to avoid the factorial functions and to get better computational 

performance: 
-(p - k) 

B(p-2)k = P + k _ 1 B pk , 

-k(k - 1) 
B p(k-2) = (p + k _ 1)(p _ k + 2) B pk ' 

(4.10) 

(4.11) 

Using these relations the entire set of polynomial coefficients Bpk , of fixed 

order p or index k, can be computed inside a single loop. 
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4.3 Scale Invariants (SI) of Tchebichef moments 

The scaled Tchebichef moments of an image f(x, y) of size N x N, which is non

uniformly scaled with different factors, a and b, along x and y-axes respectively, 

can be defined as [160]: 

N-l N-l 

Tpq = ab L L t:(ax){q(by).f(x, y) 
x=O y=o ( 4.12) 

(a =f: b) E (JR. - {O} ). 

where t:(ax) and t~(by) are the scaled Tchebichef polynomials along x-axis 

and y-axis respectively, and JR. is the set of real numbers. 

The discrete Tchebichef polynomial of Equation 3.15 can be written as: 

where 

and 

p (p+k)! 
tp(x) = £; (p _ k)!(k!)2 < P - N >p-k< X >k 

p 

= LAp,k< x >k 
k=O 

(p + k)! 
Ap,k = (p _ k)(k!)2 < p - N >p-k 

< X >k = (-1)k(-xh = x(x - 1)(x - 2) ... (x - k + 1) 

k 2': 1, < x >0 = 1 

From Equations 3.14 and 4.15, we get the following 

p 

t:(x) = L Ap,p-k< x >k 
k=O 

where 
- _ Ap,k 

Ap,p-k - f3(p, N) 
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(4.16) 
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As given in [29], < x > k of Equation 4.15 can be expanded as 

k 

< X >k = Ls(k,l)X~ 
~-o 

( 4.18) 

where s (k, l) are the Stirling numbers of the first kind satisfying the following 

recurrence relations 

with 

S(k,l) = s(k - l,l -1) - (k -l)s(k -l,l) 

k ~ 1, l ~ 1 

s(k,O) = s(O, l) = 0 

k ~ 1, l ~ 1, 8(0,0) = 1 

From Equations 4.19 and 4.16, we get 

p 

t~(x) = L Ap,p-k< x >k 
k=O 

p k 

= L L Ap,p_kS(k, l)X~ 
k=O ~=O 

p n-~ 

= L L Ap,p_kS(P - k, l )XZ 
Z=O k=O 

p 

= LC(p,l)X t 

~=O 

where 

p-~ 

C(p, l) = L Ap,p_kS(p - k, l) 
k=O 
p-~ 

= LCk(P,l) 
k=O 

with 
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Similarly, the scaled Tchebichef polynomials along x-axis can be expressed 

as follows 
p 

tp(ax) = L C(p, i)atxt (4.24) 
t=O 

The relationship between tp(x) and tp(ax) can be derived from Equations 

4.21 and 4.24 as follows 

p p 

L Ap,ktk(ax) = aP L Ap,ktk(X) (4.25) 
k=O k=O 

where 

p-k-l ) 
A _" C(p - r, k Ap,p-r 

p,k - ~ C(k, k) (4.26) 

O~k~p 

and 

Ap,p = 1 (4.27) 

Using a similar approach, the scaled Tchebichef polynomials along the y-axis 

can be deduced as 
q q 

L Aq,ltl(by) = b
q L Aq,zi'I(Y) (4.28) 

1=0 1=0 

Then, the relationship between the original and scaled Tchebichef moments 

can be established as 

p q p q 

'IjJ~ = L L Ap,kAq,ITkl = ap+1b
q
+1 L L Ap,kAq,ITkl (4.29) 

k=O 1-0 k=O 1=0 

Finally, the following scale invariants of Tchebichef moments can be obtained 

by eliminating the scale factors a and b as follows 

.j,T (.j,T )Hl 
T o/pq 0/00 

Wpq = .j,T .j,L 
o/pH,O o/O,qH 

p, q = 0, 1,2, ... , 

e = 1,2,3, ... 
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These scale invariants (SI) of Tchebichef moments can be used for images 

with uniform as well as non-uniform scaling. For negative values of a and/or b, 

the above equation is used for inverted or reflected images. 

The following recurrence relations can be used to compute Ck(p, i) in 

Equation 4.23 in order to reduce the computational complexity in calculating 

C(p, i) defined in Equation 4.22. 

(4.31) 

and 

. k(2p - k + 1) s(p - k + 1, i) . 
Ck - 1(p,1,) = (p _ N _ k + 1)(p _ k + 1)2 s(p _ k, i) Ck (p, 1,) 

(4.32) 

i :::; p - k; 0:::; k :::; p - 1 

with 

(4.33) 

4.4 Experimental Results 

The first set of experiments is conducted to examine the invariance property of the 

scale invariants of Legendre and Tchebichef moments. An Assamese character 

of size 32 x 32 is expanded with a set of scaling factors a and b along x and 

y directions respectively. The values of scale invariants of Legendre moments, 

for some selected orders, are computed using Equation 4.9 as proposed in [28] 

and shown in Table 4.1. Similarly, the values of the scale invariants of Tchebichef 

moments, computed using Equation 4.30 as proposed in [160], are shown in Table 

4.2. The deviation of the invariants, represented by the percentage spread from 

the corresponding means of the scale invariants (sd/mean) as proposed in [28], 

are also shown in this table. Here sd and mean respectively denote the standard 

deviation and mean of the scale invariants. From the Tables 4.1 and 4.2, it can be 

seen that the values of the scale invariants of Legendre and Tchebichef moments 

remain almost unchanged under different uniform and non-uniform scaling. 
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Table 4.1: The scale invariants of Legendre moments for a non-uniformly scaled 

A h ssamese c aracter 
Image Scale Scale Invariants 

(a, b) 

w50 wro W{j2 wfl wrl Wf2 wfo w{ja 

<fi original 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

<:p 
(1.5, 1) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

~ (1, 1.5) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

~ (1.5, 1.5) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0059 

<:p 
(2, 1) 0.0131 0.0049 0.0077 0.0016 0.0032 0.0053 0.0038 0.0058 

~ (1, 2) 0.0131 0.0049 0.0076 0.0017 0.0032 0.0053 0.0038 0.0058 

<li (1.5, 2) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

~ (2, 1.5) 0.0131 0.0049 0.0077 0.0016 0.0032 0.0053 0.0038 0.0059 

<P (2, 2) 0.0131 0.0049 0.0077 0.0016 0.0032 0.0053 0.0038 0.0058 

c:q. 
(3, 1) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

~ (1, 3) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

~ (3, 2) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

<p 
(2, 3) 0.0131 0.0049 0.0077 0.0016 0.0032 0.0053 0.0038 0.0058 

<P (3, 3) 0.0131 0.0049 0.0077 0.0017 0.0032 0.0053 0.0038 0.0058 

mean 0.0131 0.0049 0.00769 0.00167 0.0032 0.0053 0.0038 0.00581 

sd 0 9.0E-19 2.7E-05 4.7E-05 9.0E-19 0 9.0E-19 3.6E-05 

(sd/mean) % 0 1.8E-14 0.3474 2.8048 2.8E-14 0 2.4E-14 0.6246 

Average (sd/mean) % 0.472100439 
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Table 4.2: The scale invariants of Tchebichef moments for a non-uniformly scaled 

Assamese character 
Image Seale Scale Invariants 

(a,b) 

w60 wio w62 Wil Wil Wi2 wIo w63 
~ original 0.2044 -0.0937 0.2145 0.0508 0.1513 -0.0317 -0.0741 -0.1192 

<P (1.5,1) 0.2024 -0.0929 0.2244 0.0499 0.1487 -0.0331 -0.0734 -0.1158 

<fi (1,1.5) 0.2001 -0.0922 0.21 0.0508 0.149 -0.0317 -0.0737 -0.1167 

~ (1.5,1.5) 0.1982 -0.0914 0.2196 0.05 0.1463 -0.0331 -0.0731 -0.1134 

<P (2,1) 0.2014 -0.0925 0.2302 0.0495 0.1474 -0.0339 -0.0731 -0.114 

~ (1,2) 0.1979 -0.0915 0.2076 0.0509 0.1478 -0.0317 -0.0735 -0.1154 

<F (1.5,2) 0.196 -0.0907 0.2171 0.05 0.1452 -0.0331 -0.0729 -0.1122 

~ (2,1.5) 0.1972 -0.091 0.2253 0.0495 0.1451 -0.0339 -0.0728 -0.1116 

<fi (2,2) 0.1951 -0.0903 0.2228 0.0496 0.144 -0.0339 -0.0725 -0.1104 

c::::p 
(3,1) 0.2006 -0.092 0.2367 0.0489 0.1459 -0.0347 -0.0727 -0.112 

~ (1,3) 0.196 -0.0907 0.2055 0.0509 0.1467 -0.0317 -0.0733 -0.1143 

~ (3,2) 0.1942 -0.0898 0.229 0.049 0.1425 -0.0347 -0.0722 -0.1085 

<p 
(2,3) 0.1931 -0.0895 0.2206 0.0496 0.1429 -0.0339 -0.0723 -0.1093 

<P (3,3) 0.1923 -0.0891 0.2267 0.049 0.1414 -0.0348 -0.0719 -0.1074 

mean 0.00362 0.00134 0.00903 0.00072 0.00275 0.00118 0.00062 0.00333 

sd 0.19778 -0.0912 0.22071 0.04989 0.14601 -0.0333 -0.0730 -0.1129 

(sd/mean) % 1.83058 1.46398 4.09150 1.44522 1.88648 3.53232 0.84418 2.94875 

Average (sd/mean)% 2.255377105 
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Since the scale invariants are invariant to uniform and non-uniform scaling, 

it is expected that they can identify elongated, contracted and reflected non

symmetrical as well as symmetrical images. But, how well these descriptors can 

discriminate between different images is important for any pattern recognition 

problem. As reported in [160], these scale invariants of Legendre and Tchebichef 

moments can provide 100% recognition accuracy in a noise-free condition. 

The recognition accuracies for noisy images with 4% salt-and-pepper noise 

are reported to be 66.5% and 75.7% for the scale invariants of Legendre and 

Tchebichef moments respectively. For images with 1 % salt-and-pepper noise, the 

recognition accuracies are 84.24% and 98.53% respectively for scale invariants 

of Legendre and Tchebichef moments. However, the experiments in [160] were 

done on a small subset English characters only. Further, the above results may 

not hold for another character set. Therefore it is worthwhile to examine the 

recognition or classification performance for the Assamese character set. The 

next two sets of experiments are conducted to examine the performance of these 

scale invariants in representation of printed Assamese characters. The first set of 

experiments are for noisy character and the second set for characters of different 

font sizes. 

An experiment similar to the experiment conducted in Chapter 3 is done to 

see the clusters formed by the noisy images of different characters, represented 

by the scale invariants, are distinguishable or not. The database consists of 9800 

noisy images used in Chapter 3 of 98 characters of Figure 3.1. The feature vectors, 

denoted by Xri (r = 1,2, ... ,98; i = 1,2, ... ,100), consists of d = (t+ 1)(t+ 2)/2 

scale invariants of order 0 to t of the ith sample of the rth character, where t 

is the maximum order of scale invariants used in the feature vectors. The scale 

invariants of Legendre and Tchebichef moments are computed using Equations 

4.9 and 4.30. Then the centroids Xr and the radii Rr of each class are computed 

using Equations 3.42 and 3.43 respectively by replacing the moments with the 

corresponding scale invariants. Then the values de(Xn Xs) and (Rr + Rs) are 

computed for all pairs of clusters to find out the closest pair clusters and then 

the weighted distance between the closest pair of clusters Dw is computed using 

Equation 3.45 as explained in Section 3.3. 

The experiment is repeated at different noise levels determined by the 

67 



standard deviation in the range of 5 - 50 in steps of 5 and considering moment 

vectors of order 1,2, ... ,30. 

From the results of these experiments, the maximum value of Dw , at noise 

level (J = 5, is found to be -31.29 using the scale invariants of Legendre moments. 

This indicates overlapping clusters formed by noisy images of different characters. 

The values of Dw decrease with increasing noise and the clusters at higher noise 

level are more indistinguishable. It has been observed, from results presented in 

Table 3.1, that the maximum value of Dw at (J = 5 using Legendre moments is 

11.24 and the clusters were disjoint up to a noise level (J = 35. Therefore, it is 

found that, the performance of the scale invariants of Legendre moments are not 

as good as the Legendre moments in distinguishing noisy images of different 

characters and are not suitable for representation of noisy printed Assamese 

characters. 

Similarly, the performance of the scale invariants of Tchebichef moments in 

distinguishing noisy printed Assamese characters are also found to be worse than 

the Tchebichef moments. The maximum value of Dw using scale invariants of 

Tchebichef moments is found to be -2.36 at noise level (J = 5. As expected, 

the values of Dw decrease with increasing noise level and the clusters are more 

indistinguishable at higher noise level. Form Table 3.2, it can be seen that the 

maximum value of Dw at (J = 5 using Tchebichef moments is 12.16 and the 

clusters were disjoint up to a noise level (J = 40. Therefore, similar to the scale 

invariants of Legendre moments, the scale invariants of Tchebichef moments 

are also not found to be suitable for representation of noisy printed Assamese 

characters since the clusters are found to be overlapping at all noise levels. 

In order to examine the recognition performance of the scale-invariants, the 

dataset used in Subsection 3.3.2 of 19600 noisy images of 98 characters of Figure 

3.1 is used. The recognition is done using a minimum distance classifier. The 

Euclidean distances of the vector containing the scale-invariants of moments of 

each character image of this dataset from the centroids Xr of the clusters Cr 

(r = 1,2, ... ,n) are computed. The input image is then assigned to the cluster 

of nearest cluster centroid and is recognized to be the character corresponding 

to that cluster. From these experiments, the recognition performances of the 
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scale-invariants of both Legendre and Tchebichef moments are found to be very 

poor. Highest recognition accuracy using scale-invariants of Legendre moments 

at noise level (J = 10 is found to be 15.9%. The recognition accuracies reduces 

with increasing noise level. At noise levels (J = 20,30,40, and 50 are respectively 

10.1 %,8.4%,8.0%, and 7.3%. Similarly, the highest recognition accuracy using 

scale-invariants of Tchebichef moments at noise levels (J = 10, and 20 are 13.5% 

and 9.2% respectively. As expected, the recognition accuracy reduces when noise 

level increases. 

Table 4.3: Number of Unambiguous Clusters (MR - Moments computed after 

Resizing the images to 32 x 32) 

Order Legendre moments Tchebichef moments 

Scale Invariants Moments MR Scale Invariants Moments MR 

3 12 44 38 30 30 39 

4 9 45 41 37 39 41 

5 10 47 47 38 43 47 

6 11 46 45 40 47 44 

7 10 46 44 39 46 44 

8 10 44 46 37 46 45 

9 11 44 44 30 46 43 

10 9 44 44 26 44 44 

11 10 45 44 24 45 44 

12 7 45 46 21 44 46 

13 9 42 43 17 44 43 

14 8 43 40 12 43 40 

15 8 42 38 11 38 38 

16 11 40 38 4 40 39 

17 9 39 34 5 41 34 

18 9 38 34 4 37 33 

19 10 32 32 3 38 31 

20 10 31 27 3 34 27 

The next set of experiments is conducted to see the performance of these scale 

invariants in representation of printed Assamese characters of various font-sizes. 
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For these experiments, a database of 364 character images 52 Assamese characters 

(first four rows of Figure 3.1) is considered. The dataset contains 7 images of 

varying font-sizes of each character. The character images are represented by 

vectors, each consisting of the scale invariants of order 0 to t computed from the 

images, in ad (d = (t + l)(t + 2)/2) dimensional Euclidean space. Ideally, these 

vectors are clustered into 52 clusters using a hierarchical clustering algorithm. 

Each of these 52 clusters is assigned to characters of the alphabet depending on 

their constituent images. A cluster that contains images of a single character is 

assigned to that character. On the other hand, a cluster that contains images 

of more than one character is assigned to all those characters whose images are 

in that clust"er. The clusters which are assigned to single characters are termed 

as unambiguous clusters and the other clusters which are assigned to multiple 

characters are called ambiguous clusters. The clustering and assigning them 

to characters of the alphabet are repeated for different values of t from 3 to 20 

in steps on 1. The representations are compared on the basis of the number 

of ambiguous clusters. A representation, which results in smaller number of 

ambiguous clusters, is considered to be better than another with more number of 

ambiguous clusters. The number of unambiguous clusters in the representation 

with scale invariants of Legendre moments and Tchebichef moments along with 

the moments themselves are shown in table 4.3. The table also shows the 

number of unambiguous clusters obtained from representation with moments 

(Legendre and Tchebichef) of the character images resized to a predefined size 

(32 x 32). It can be observed from this table that the performances of the 

scale invariants in representation are very poor in comparison to the moments 

themselves. Among the two scale invariants, the Tchebichef moment based scale 

invariants are better than the scale invariants of Legendre moments. On the 

other hand, the performance of Legendre and Tchebichef moments are almost 

equal. It can also be observed that, for both Legendre and Tchebichef moments, 

there is no significant difference between the representation with moments from 

original images and resized (to a standard size) images so far as the number of 

unambiguous (or ambiguous) clusters is considered. 
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4.5 Conclusion 

From the above discussion it may be concluded that the scale invariants (SI) 

of Legendre and Tchebichef moments are not suitable for representation of a 

large number of characters having minor variations. It is also observed that, 

in representation of printed Assamese characters of varying sizes, the moment

based representations result in less number of ambiguous clusters in comparison 

to scale invariant-based representations. The moments of different orders 

represent different spatial characteristics of the image intensity distribution. 

From Equations 4.7,4.9,4.29 and 4.30, it is seen that, these scale invariants are 

obtained as functions of corresponding moments of different orders and thereby 

they are unable to retain the individual characteristics of the moments. Therefore, 

though they are invariant to uniform and non-uniform scaling transformation, 

their performance in distinguishing similar characters images is very poor. It is 

also observed that, the effect of scaling of images on Legendre and Tchebichef 

moments are not very significant in terms of number of ambiguous clusters. 
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Chapter 5 

Recognition of Printed Assamese 

Characters by Splitting of 

Characters using Orthogonal 

Moments 

5.1 Introduction 

An optical character recognition system should recognize characters of different 

font-types and font-sizes. It is observed, from the results of the experiments 

presented in the previous chapter, that the scale invariants of Legendre and 

Tchebichef are not good in distinguishing different printed Assamese characters. 

On the other hand, the performance of the moments is found to be better than the 

scale invariants in representation of printed Assamese character of different font

sizes. Therefore, it is necessary to develop new methods to recognize characters 

of multiple font-types and multiple font-sizes using moments. 

In practical situations, we cannot expect exact match of the moment values, 

even for two images of the same character of same size, due to many factors like 

noise. Moreover, in pattern recognition problems, the feature spaces are divided 

into some regions during the training phase, and recognition of an input pattern 

is made according to region (rather than a point) to which it maps. Keeping 
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these points in mind, in this chapter we propose some methods for recognition of 

printed Assamese characters of multiple font-sizes and multiple font-types using 

orthogonal moments. 

5.2 Limitations of Moment-based Methods 

A pattern recognition system generally consists of two phases: training (learning) 

and recognition (classification). The training phase of a character recognition 

system identifies the appropriate features for representing the characters from 

a set of training images of each character of the alphabet and establishes 

the decision boundaries in the feature space which separate character images 

belonging to different characters. The moment vectors constitute the feature 

space in a moment-based character recognition system. In the recognition or 

classification phase, the trained system computes moments for an input image 

and determines the point in the feature space to which it maps. Depending upon 

the mapping of the point within a decision boundary the system identifies the 

image to correspond to one of the characters. 

Theoretically, the recognition accuracy of moment-based methods should 

increase with the number of moments used to represent the characters. But, 

computational requirement also increases with the number of moments. Apart 

from computational requirement, the more serious problem is the approximation 

error contained in computation of higher order moments. The inaccuracy in the 

computation causes error in the mapping of the images leading to overlapping of 

the clusters for different characters. It is also evidenced from our experiments that 

the performance of the moment vectors (feature set) in representation of character 

images does not improve beyond a certain level by increasing the size of the 

moment vectors. It can be mentioned here that the performance of a feature set 

(representation space) is determined by how well patterns from different classes 

can be separated [61]. The approaches, presented in this chapter, attempt to 

overcome these limitations by splitting similar characters, which ordinary moment 

methods fail to distinguish, into multiple segments and extracting moments from 

some of these segments as distinguishing features. 
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Figure 5.1: Three groups of similar Assamese characters (first row) and vertical 

splitting of them( second row) 

5.3 Recognition by Splitting of Character 

Images 

In character recognition, like many other pattern recognition problems, it has 

been observed that the distinguishing features, in many cases, are localized 

in small parts of a group of similar characters while the other parts are 

indistinguishable. For example, in recognition of characters of Assamese 

alphabet, the characters ~ and ~, 1J and 1f etc. are some instances of such cases. 

In these cases, we can split the images, either vertically or horizontally or in both 

directions. The minute details of the images will be more prominent in one or 

more of the smaller parts. The Figure 5.1 shows three pairs of such characters of 

Assamese alphabet (first row) and their vertical splitting (second row). It can be 

observed from the second row this figure, that the right halves of the first two 

characters ~ and ~ are not distinguishable, whereas the left half of ~ is clearly 

distinguishable from the left half of~. On the other hand, the right halves of 1J and 

1f are distinguishable but their left halves are not. Similarly, the right halves of 

<l and ~ are also distinguishable but their left halves are not. The moment-based 

methods, generally, fail to distinguish such characters having minor, localized 

differences because the moments, in general, describe global features. If such 

characters are split into two or more parts, the localized distinguishing feature 

of them may become global in some of these small parts. Therefore, if the parts 

containing distinguishing feature ( s) of the groups of similar characters are known 
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and moments are computed only from these parts, the moment-based methods 

will be able to distinguish these similar characters [127]. The Table 5.1 gives 

a list of groups of similar Assamese characters having localized distinguishing 

feat ure ( s) in small parts. The halves containing distinguishing feature( s) of the 

the groups are indicated in the last column of this table. The list may vary 

depending on the moments and their order being used, because the distinguishing 

capabilities of different moments are not same and vary with order of moments. 

The list may also vary for datasets having characters of multiple font-types. Two 

moment-based approaches, based on these observations, are presented in next 

two sections. 

Table 5.1: Groups of similar Assamese characters having minor, localized 

differences 

S1. No. Similar characters Parts containing 

distinguishing feature ( s) 

1 ~,~ left 

2 ~,<r right 

3 <l",~,~ right 

4 ~,~ top 

5 ~,~ left or top 

6 "[,'iT right 

7 '5,15 top 

8 ~,~ top 

9 (3,~ left or top 

10 "4i,~ left 

11 'f,liji left or top 

12 .,,~ left 

13 'iT, 'I left 

14 ~,"lf left or top 

15 '3,(3 left or top 

16 ~,i left 
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5.4 Recognition of Characters of Single Font 

with Multiple Font-sizes (Split-character 

approach) 

The success of a pattern recognition method depends on the distinctiveness of 

the extracted features. These distinguishing features, for example, are extracted 

by applying the filters in different directions in the Gab or-filter based approaches 

[191. Our approach is based on splitting each ambiguous character into multiple 

segments and extracting moments from these segments as distinguishing features. 

The proposed approach uses two different representation spaces (moment 

sets). In the first representation space, the points are the moment vectors 

computed from the character images. The points in the other representation space 

are also moment vectors but these moment vectors are computed from one half 

of each character image. Both training and recognitions are done in two stages. 

The training phase identifies the disjoint clusters in the first representation space 

and assigns each of them to one or more characters of the alphabet during 

the first stage. The second representation space is used in the second stage. 

This representation space is used for the characters whose corresponding clusters 

contain character images from other characters. The training and recognition 

procedures of the proposed approach are described below. 

5.4.1 Training Phase (Learning) 

Suppose the alphabet contains n characters. For each character k different 

character images are used to train the system. 

5.4.1.1 First Stage 

During the first stage of training phase, moments are computed from the character 

images of the training dataset. Each character image is represented by a vector, 

consisting of moments of order 0 to t computed from the image, in the first 

representation space. Ideally, these moment vectors are clustered into n clusters, 

denoted by Ci (i = 1,2, ... , n), using a hierarchical clustering algorithm. Each 
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Training Dataset 

1 
COMPUTE MOMENT VECTORS AND 

CLUSTER THEM INTO n CLUSTERS 

Clusters Ci 

ASSIGN THE CLUSTERS TO CHARACTERS 

OF THE ALPHABET 

Unambiguous Clusters 

COMPUTE CENTROIDS 

Cluster Centroids }J 
1 

and Assigned Characters c
1 

(i = 1,2, ... , n) 

Ambiguous Clusters 

Figure 5.2: First stage of the training phase of the proposed split-character 

approach 

of these n clusters are assigned to characters of the alphabet depending on 

their constituent images. A cluster that contains images of a single character 

is assigned to that character. On the other hand, a cluster that contains images 

of more than one character is assigned to all those characters whose images are in 

that cluster. The clusters which are assigned to single characters are termed as 

unambiguous clusters and the clusters which are assigned to multiple characters 

are called ambiguous clusters. The clustering and assigning them to characters 

of the alphabet are repeated incrementing t by 1 from an initial value till there 
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is improvement in clustering. An improved clustering means smaller number of 

ambiguous clusters. The moment order, beyond which there is no improvement 

in clustering, is termed as optimal order of first stage (t opt ). After that, the final 

assignment of the clusters is done and the mean vectors J-ti (i = 1,2, ... , n) of 

the clusters are computed. These mean vectors are used as representatives of 

the respective clusters in the testing or recognition phase. The final assignment 

of the clusters to characters is represented by an array Ci (i = 1,2, ... , n). A 

non-zero positive value Ci of this array indicates that the cluster Ci is assigned 

to the Cith character of the alphabet. On the other hand, an ambiguous cluster 

is indicated by a zero in this array. The first stage of the training phase (after 

deciding t opt ) is illustrated in Figure 5.2. 

5.4.1.2 Second Stage 

The second representation space is used in second stage and is required for the 

characters in the ambiguous clusters. Since moments represent global shapes of 

the images, therefore the characters in the ambiguous clusters have similar global 

shapes having minor local variations. Depending on the location of the minor 

variations, the images of these characters are split either vertically or horizontally 

into two equal parts. The parts which contain the distinguishing feature( s) are 

used in the second representation space. The location of the distinguishing feature 

is determined by visually observing the characters in the ambiguous clusters. For 

example, suppose an ambiguous cluster contains images of the two characters '\5 

and ~ whose left halves are different but right halves are similar. Therefore, the 

left halves of these two characters are used in the second representation space 

by splitting the characters vertically. After determining the appropriate halves 

for the characters in all the ambiguous clusters, moments (of order 0 to tf) are 

computed from these partial images. The values of the array Ci for ambiguous 

clusters are modified to indicate the appropriate halves used in second stage. The 

values -1, -2, -3 and -4 are used to indicate left, right, top and bottom halves 

respectively. The appropriate halves to be used in the second stage of recognition 

phase can be determined from these values. After computing the moments, these 

images are represented as moment vectors in the second representation space. 
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Character images in ambiguous clusters 

SPLIT VERTICALLY OR HORlZONTALL Y 

SELECT THE HALVES CONTAINING DISTINGUISHING FEATURES 

One half of each character image 

COMPUTE MOMENT VECTORS 

Moment vectors 

CLUSTER AND ASSIGN THEM TO CHARACTERS 

Unambiguous clusters C;' 

Cluster centroids /l; 
and Assigned Characters c/ 

G = 1. 2 •...• I) 

Figure 5.3: Second stage of the training phase of the proposed split-character 

approach 

These moment vectors are clustered into I clusters, denoted by Cj (j = 1,2, ... ,1), 

where 1 is the total number of characters in all ambiguous clusters. The clusters 

are assigned to characters as done in the first representation space. The clustering 

and assigning of clusters to characters is repeated by increasing the moment order 

tf by 1 from an initial value till all clusters become unambiguous clusters or if 

there is no improvement of clustering after a certain number of repetitions. The 
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order, at which all the clusters become unambiguous or beyond which there is no 

improvement in clustering, is termed as optzmal order of second stage (t~pJ In 

the second representation space also, each cluster is represented by a mean vector 

I-£~ (j = 1, 2, ... , I). It is observed that, all clusters become unambiguous in the 

second representation space at very low moment orders. The assigned characters 

in the second stage are represented in an array c~, (J = 1,2, ... , l). The second 

stage of the training phase (after deciding t~Pt) is illustrated in Figure 5.3. 

5.4.2 Recognition Phase 

In this phase, we propose to use a minimum distance classifier. The two-stage 

recognition procedure is presented in Algorithm 5.1 and is described below. 

5.4.2.1 First Stage 

In the first stage of the recognition phase, the moment vector x (consisting 

of moments of order 0 to t opt ) of the input image I of an unknown character, 

is computed. After computing the moment vector x, the Euclidean distances 

" x - I-£~ " of x from each of the n mean vectors I-£~, (z = 1,2, ... , n) of the 

first representation space are computed and x is assigned to the cluster Cm~nl of 

the nearest mean vector I-£mml' If the assigned cluster Cm~nl is an unambiguous 

cluster, the character image is recognized as the character to which C mm1 was 

assigned during the training phase. The assigned characters of the clusters of 

first stage are given in the array C~, therefore, the input image I is recognized as 

the Cmml th character of the alphabet. On the other hand if Cmm1 is an ambiguous 

cluster, indicated by a negative value of Cmml, recognition is done in second stage. 

5.4.2.2 Second Stage 

The second stage of recognition is required for the input character images which 

are assigned to ambiguous clusters in the first stage. In this stage, the input 

character image is split either vertically or horizontally into two equal halves. 

The types of split (vertical or horizontal) and the appropriate halves to be used in 

second stage of recognition (for the ambiguous clusters) are already determined in 
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Algorithm 5.1 Recognition phase of proposed split-character approach 

Input: (J),t, <;) {(Cluster centroids, assigned characters) of first stage}, 

(J.L~, C;) {(Cluster centroids, assigned characters) of second stage}, 

f (input image); ~ = 1,2, ... , n; J = 1,2, ... ,1 

Output: r (input image is recognized as the rth character of the alphabet) 

{*** FIRST STAGE ***} 

x := moment vector of the input image I 

de(z) := II x - J-tt II, 1, = 1,2, ... , n 

mm1 := arg [min(deC/'))), "11, = 1,2, ... , n {* Find out the minimum distance 
t 

cluster Cmtn1 *} 

if (Cmtnl > 0) then 

r := Cmtnl {* recognize I to be the Cmtnl th character of the alphabet *} 

return r 

end if 

{*** SECOND STAGE ***} 

if (Cmtnl = -1) then 

fa := left half of I 

else if (Cmtnl = -2) then 

fa := right half of f 

else if (Cmml = -3) then 

fa := top half of I 

else 

fa := bottom half of f 

end if 

x' := moment vector of fa 

d~(J) :=11 x' - J.L~ II, J = 1,2, ... ,1 

mm2 := arg [min(d~()))], V) = 1,2, ... , I {* Find out the minimum distance 
J 

cluster C:ntn2 *} 

r = C~tn2' {* recognize I as the c'mtn2th character of the alphabet *} 
return r 

the training phase and are given in Ct. After splitting the input character image 

I, a moment vector x' (consisting of moments of order 0 to t~Pt) is computed 
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from the appropriate half of the character image. Then, the Euclidean distances 

II x' - J.L~ II of x' from each of the I mean vectors J.L~, (j = 1, 2, ... ,I) of the 

second representation space are computed, and x' is assigned to the cluster 

C:nm2 of the nearest mean vector J.L'mm2' Finally, the input character image is 

recognized as the c'mm2th character of the alphabet. The recognition phase is 

presented in Algorithm 5.1. In this algorithm the input CtS indicate the characters 

assigned to the clusters Cts, represented by /-LtS of first stage, as described above. 

Similarly, input values ss indicate the characters assigned to the corresponding 

unambiguous clusters of second stage. 

5.4.3 Experimental Results 

5.4.3.1 Training Phase 

A subset of Assamese alphabet, containing 79 most commonly used characters, is 

taken as the alphabet for the experiments. It consists of 11 vowels, 41 consonants 

and 27 conjunct (Yuktakshar) characters (Figure 5.4). The training dataset 

comprises of 395 character images of these 79 characters in 5 different font-sizes 

(14 points to 22 points in steps of 2 points). All the character images are taken of 

the same font. The size of the character images varies from 30 x 30 to 100 x 100. 

These 395 character images are represented in the first representation space 

and clustered into 79 clusters as described in Subsection 5.4.1. Assigning these 

clusters to different characters of the alphabet and labeling them as ambiguous 

or unambiguous clusters are also done as described in Subsection 5.4.1. This is 

repeated by varying the moment order t from 3 to 15. The number of ambiguous 

clusters against moment orders up to order 15 for Legendre, Tchebichef and 

Krawtchouk moments are presented in Figure 5.5. 

Legendre Moments: It is observed from Figure 5.5 that, for Legendre 

moments, the clustering results improve initially for values of t from 3 to 6 and 

then remain unchanged for values of t from 6 to 15. The characters in ambiguous 

clusters for values of t from 3 to 8 are shown in Table 5.2. Clustering results for 

the values of t higher than 8 are not shown in this table because they are same as 
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Figure 5.4: The Assamese characters used in the experiments; first two rows -

conjunct characters, third and fourth rows - consonants and last row - vowels 

20 

'" 18 
Ai 
~ 16 

C3 
'" 5 14 
::> 
0> 

~ 12 
« 
~ 10 
E 
§ 8 " z , 

6 , 

4 

2 

b- - - -1J. 

<> 

, , 

- 8 - Legendre 
-e- Tcheblchef 
o Krawtchouk 

'fJ- - - -Q-- - - -0- - - -[3- - - -G- - - -$-- - - $ - - - ~-- - ~ - -
¢ <> <> ¢ <> 

OL---~--~--~--~--~---L--~--~--~~--~--~~ 

4 5 6 7 8 9 10 11 12 13 14 15 
Moment Order 

Figure 5.5: Number of Ambiguous Clusters using Legendre, Tchebichef and 

Krawtchouk Moments 
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the results at t = 8. More than one clusters may be formed by a set of characters 

and, in such cases, the number of ambiguous clusters is shown within brackets. 

Since there is no improvement in the clustering beyond t = 6, the value of t opt 

is taken as 6 and the final assignment of the clusters is done at topt = 6 and the 

mean vectors #-ti' i = 1,2, ... , 79 are computed for use as representatives of these 

clusters in the recognition phase. 

Table 5.2: Characters in Ambiguous Clusters using Legendre Moments 

S1. Order of moments 

No. 3 4 5 6 7 8 

1 '@,~ '@,~ '@,~ '@,~ '@,~ '@,~ 

2 <l",~ <l",~ <l",~ <l",~ <l",~ <l",~ 

3 '1,~ '1,~ '1,~ 

4 ';, ~(2) ';,~ 

5 (3,~ '8,~ 

6 ';,~ ~,""i 

7 <JI",V 

8 "I,"'" 
9 ~,~ 

There are two ambiguous clusters for t 2: 6 containing two characters in each 

cluster. Visual inspection reveals that the left halves of the two characters '@ 

and ~ in one of the ambiguous clusters are different whereas the right halves of 

these two characters are similar. On the other hand, the right halves of the two 

characters <l" and ~ in the other ambiguous cluster are different but the left halves 

are similar (Figure 5.1). Therefore, the left halves of the 10 character images of 

'@ and \5 and the right halves of the 10 character images of <l" and ~ are used in the 

second representation space. These 20 partial images of the four characters in two 

ambiguous clusters are represented in the second representation space using the 

moment vectors computed from them. Clustering and assigning the clusters to 

characters of the alphabet is done as described in the second stage of Subsection 

5.4.1. It is found that, for t = 4, all the four clusters become unambiguous 
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clusters each assigned to one character. Therefore, the value of t~Pt is taken as 4 

and the final assignment of the clusters is done at t~Pt = 4 and the mean vectors 

Mj, j = 1,2, ... ,4 are computed to represent these four clusters in the second 

representation space. 

Tchebichef Moments: It is observed from Figure 5.5 that, for Tchebichef 

moments, the clustering results improve for values of t from 3 up to 14 and then 

remain unchanged for values of t = 15. The characters in ambiguous clusters for 

values of t from 7 to 15 are shown in Table 5.3. Number of ambiguous clusters, in 

cases where more than one clusters are formed by a set of characters, are shown 

within brackets. The value of t~Pt is taken as 14 and the final assignment of the 

clusters is done at t opt = 14 and mean vectors Mi' i = 1,2, ... ,79 are computed 

for use as representatives of these clusters in the recognition phase. 

Table 5.3: Characters in Ambiguous Clusters using Tchebichef Moments 

Sl. Order of moments 

No. 7 8 9 10 11 12 13 14 15 

1 ~,~ ~,~ ~,~ ~,~ ~,~ ~,~ ~,~ ~,~ ~,~ 

2 <I,~ <I,~ <I,~ <I,~ <I,~ <I,~ <I,~ <I,~ <I,~ 

3 <l', ~ <l', ~ <l', ~ <l', ~ <l', ~ <l',~ <l',~ <l', ~ <l',~ 

4 ~,~ ~,~ ~,~ ~, ~ ~,~ ~,~ ~,~ 

5 ~,~ ~,~ ~,~ 

6 "'f,'Il "'f,'Il "'f,'Il 

7 \5,\5 \5,\5 \5,\5 

8 ';,~ ';, ~(2) ';, ~(2) 

9 (3,~ (3,~ 

10 ~,oq ~,oq 

11 'i,~ 

12 '1,~ 

13 <r~~ <r~~ 

There are three ambiguous clusters, each containing two characters, at t = 14. 
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Two of these clusters are same as those obtained with Legendre moments. It 

is seen from Figure 5.1 that the right halves of the two characters q and ~ in 

the third ambiguous cluster are different whereas the left halves of these two 

characters are similar. Therefore, the left halves of the 10 character images of ~ 

and ~, and the right halves of the 20 character images of <1, ~, q, and ~ are used 

in the second representation space. These 30 partial images of the six characters 

in three ambiguous clusters are represented in the second representation space 

using the moment vectors computed from them. Clustering and assigning the 

clusters to characters of the alphabet is done as described in Subsection 5.4.1. It 

is found that for t = 7, all the six clusters become unambiguous each assigned to 

one character. Therefore the value of t~Pt is taken as 7 and the final assignment 

of the clusters is done for t~Pt = 7 and the mean vectors J..L~, j = 1, 2, ... ,6 are 

computed to represent these four clusters in the second representation space. 

Krawtchouk Moments: Krawtchouk moment-based representation results in 

the lowest number ambiguous clusters at all moment order. Like the Legendre 

and Tchebichef moments, Krawtchouk moment-based representation results in an 

ambiguous cluster containing ~ and ~ at all moment orders. Two other ambiguous 

clusters are found at t = 3. One of them consists of <1 and "l'f and the other consists 

of~, ~ and ~. At t = 4, there are two ambiguous clusters. The second ambiguous 

cluster consists of~ and t. There is only one ambiguous cluster for t = 5 to 9, two 

for t = 10 to 14 and it becomes three at t = 15. Since there is no improvement in 

clustering performance beyond t = 5, the value of topt is taken as 5 and the final 

assignment of the clusters is done at t opt = 5 and mean vectors J..Lll i = 1,2, ... , 79 

are computed for use as representatives of these clusters in the recognition phase. 

Considering the dissimilarity of the parts of ~ and ~ of the single ambiguous 

cluster at t = 5, the left halves of the 10 character images of these two characters 

are used in the second representation space. In the second representation space, 

it is found that the two clusters becomes unambiguous at t = 1 and therefore 

the value of t~Pt is taken as 1 and the final assignment of the clusters is done at 

t~Pt = 1 and the mean vectors J..L~, j = 1, 2, ... , 2 are computed to represent the 

four clusters in the second representation space. 

86 



5.4.3.2 Recognition Phase 

We conducted an experiment to test the proposed system. The test dataset 

consists of 1106 character images comprising all the 79 characters of Figure 5.4 

in 14 different font-sizes varying from 14 point to 27 point. The size of the 

character images varies from 30 x 30 to 130 x 130. 

Legendre Moment: The recognition accuracy with Legendre moments is 

found to be 99.64%. Recognition errors are found in the first stage ofrecognition. 

4 character images out of 1106 are wrongly recognized in the first stage. All the 

56 character images of~, ~, 14 and <T are correctly assigned to the corresponding 

ambiguous clusters in the first stage and then they are correctly recognized in the 

second stage. This shows 5.05% increase in recognition accuracy due to splitting 

of the characters of the ambiguous clusters. 

Tchebichef Moment: The Tchebichef moment-based method also correctly 

recognizes 1102 character images out of 1106, resulting 99.64% recognition 

accuracy. The recognition errors occur in the first stage itself. All the 84 character 

images of the three ambiguous clusters are correctly recognized in the second stage 

indicating 7.59% increase in recognition accuracy due to splitting. 

Krawtchouk Moment: The Krawtchouk moment-based method also results 

in 99.64% recognition accuracy. Like the other two moment methods the 

recognition errors occur in the first stage itself. All the 28 character images of the 

single ambiguous cluster are correctly recognized in the second stage indicating 

2.53% increase in recognition accuracy due to splitting. 

From the above results, it is found that the proposed split-character 

approach can recognize printed Assamese characters where ordinary moment

based methods fail and can correctly recognize characters having minute 

differences in their shapes. So far as the recognition accuracy is considered, 

all the three moments perform equally well. On the other hand, if the 

number of moments or equivalently the dimension of the representation space is 

considered, performance of Krawtchouk moments is the best followed by Legendre 
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and Tchebichef moments. Compared to the other two moments, Krawtchouk 

moments results in less number of ambiguous clusters in the first representation 

space at all moment orders. Therefore, dimensions of the representation spaces 

are minimum for Krawtchouk moments. 

However, the performance of the split-character approach is not found to be 

satisfactory in recognition of characters of fonts other than those used in training. 

The recognition accuracies of this approach, when tested on a set of 395 characters 

images of a font other than training font, are found to be 66.3%, 77.2% and 68.6% 

using Legendre, Tchebichef and Krawtchouk moments respectively. It is also 

observed that, the split-character approach results in large number of ambiguous 

clusters in both first and second representation spaces even at very high moment 

orders when the training dataset includes character images of different font-types. 

5.5 Recognition of Characters of Multiple 

Font-types and Multiple Font-sizes (split

character-with-LDA Approach) 

A modified split-character approach, called split-character-with-LDA, is proposed 

to improve the performance in recognizing characters of multiple font-types. 

The proposed split-character-with-LDA approach performs Linear Discriminant 

Analysis (LDA) on the moment vectors to determine an appropriate projection of 

the moment vectors in order to improve the recognition accuracy. The approach 

also uses the concept of Euler Numbers to recognize characters in ambiguous 

clusters in some cases. 

Similar to the split-character approach, the split-character-with-LDA 

approach is also based on splitting each ambiguous character into multiple 

segments and extracting moments from these segments as distinguishing features. 

The proposed approach also works in two stages. A common representation space 

is used for all character images in the first stage. The points in this space are 

the feature vectors obtained by performing Linear Discriminant Analysis (LDA) 

on the moment vectors computed from the character images. The training phase 
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identifies the disjoint clusters in this representation space, and assigns each of 

them to one or more characters of the alphabet. In the second stage, a separate 

representation space is used for each ambiguous cluster. The points in these 

representation spaces are the moment vectors computed from one half of the 

character images of the corresponding clusters. The approach also uses Euler 

Numbers of the character images of the ambiguous clusters to distinguish them 

in some cases. The training and recognition procedures of the proposed approach 

are described below. 

In the next subsection, we briefly describe the concept of Euler Numbers 

and then we present the training phase, the recognition phase and the 

experimental results of proposed split-character-with-LDA approach in the 

remaining subsections. 

5.5.1 Euler Number in Pattern Recognition 

Euler Number (EN) or genus is one of the widely used topological descriptors used 

in many image analysis and visual inspection applications including document 

image analysis [30], [151]' [90], [71]. For planar image, the Euler number is 

defined as the number of connected components minus the number of holes 

[57], [115]' [50], [60]. In the proposed system, the Euler numbers are used to 

distinguish the characters in ambiguous clusters. For example, it is found in 

many representations that the images of the characters <r, ~ and ~ are mapped to a 

single cluster. The Euler numbers of these characters are 0, -1 and 1 respectively 

and therefore they can be easily differentiated by these numbers. 

5.5.2 Training Phase (Learning) 

Suppose the alphabet contains n characters. For each character, k character 

images of different font-types are used to train the system. The two stages of the 

training phase are illustrated in Figures 5.6 and 5.7 and also described below. 
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OF THE ALPHABET 

Unambiguous Clusters Ambiguous Clusters ----------, 

COMPUTE CENTROIDS 

Cluster Centroids ~ , 

and Assigned Characters c, 

IDENTIFY CHARACTERS RECOGNIZABLE BY 
EULER NUMBERS 

Character recognizable by 
Euler Numbers 

Character not recognizable by 
Euler Numbers 

ASSIGN DISTINCT EULER NUMBERS 
TO THE CHARACTERS 

Euler Numbers of the Character 
to be used in recognition 

(i = 1, 2, ... , n) 

Figure 5.6: First stage of the training phase of the proposed split-character-with

LDA approach 
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5.5.2.1 First Stage 

In the first stage of the training phase, the moments of order 0 to t are computed 

from each of the character images of the training dataset. New feature vectors are 

derived by performing LDA on these moment vectors and these feature vectors 

are used in the first representation space. Ideally, these feature vectors are 

clustered into n clusters, denoted by Ci , using a hierarchical clustering algorithm. 

Assigning these n clusters to the characters of the alphabet and identifying them 

as ambiguous or unambiguous clusters are done in the same way as done in 

split-character approach presented in Section 5.4. The clustering and assigning 

them to characters in the alphabet are repeated incrementing t by 1 from an 

initial value till there is improvement in clustering or up to a pre-specified order. 

As before, an improved clustering means smaller number of ambiguous clusters 

and an optimal order of .first stage (topt ) is taken as the moment order beyond 

which there is no improvement in clustering. Sometimes, a lower moment order 

may be chosen as t opt , if the number of ambiguous clusters obtained at this 

moment order is comparable with the minimum number of ambiguous clusters. 

Final assignment of the clusters is done at this optimal moment order (topt). 

After the final assignment, the mean vectors JLi and the array Ci, indicating the 

characters assigned to the clusters Ci (i = 1,2, ... , n), are obtained in the same 

way as done in Section 5.4. The JLiS are used as representatives of the clusters 

in the recognition phase. Finally, the characters in the ambiguous clusters are 

observed to see if they can be distinguished using Euler Numbers (EN). The 

ambiguous clusters, whose all constituent characters are distinguishable with 

EN, are now considered as unambiguous clusters. On the other hand, if all the 

constituent characters are not distinguishable by EN, the characters, which are 

clearly distinguishable by their EN from rest of the characters in an ambiguous 

cluster, are removed from the corresponding ambiguous cluster. In this case, the 

clusters with the remaining characters are still considered as ambiguous clusters. 
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For each AmbIguOUS Cluster C; 
Characters not recogmzable by Euler Numben 

SPLIT VERTICALLY OR HORlZONTALL Y 

SELECT THE HALVES CONTAINING DISTINGUISHING FEATURES 

One half of each character Image 

COMPUTE MOMENT VECTORS 

Moment vectors 

CLUSTER AND ASSIGN THEM TO CHARACTERS 

UnambIguous clusters c,/ 

Cluster centrOIds J.1;k 

and ASSIgned Characters cJ~ 

[) = 1, 2, ,1; k= 1,2, ,m, 

(Each AmbIguouS Cluster has mdlVldual representabon) 

Figure 5.7: Second stage of the training phase of the proposed split-character

with-LDA approach 

5.5.2.2 Second Stage 

The second stage of the approach is required for characters in the ambiguous 

clusters which are not distinguishable by Euler Numbers. Depending on the 
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location of the distinguishing features, the images of these characters are split 

either vertically or horizontally into two equal parts and the parts which contain 

the distinguishing feature(s) are used in the representation spaces of second stage 

as done in Section 5.4. Similarly, the values of the array Ct for the ambiguous 

cluster are also modified to indicate the appropriate halves used in the second 

stage. The location and accordingly the appropriate split (vertical or horizontal) 

are determined by visually observing the characters. After determining the 

appropriate halves for all the characters in the ambiguous clusters which are 

not distinguishable with EN, moments (of order 0 to tf) are computed from 

these partial images of the characters. These moment vectors are used to 

represent the character images of each ambiguous cluster in a Euclidean space. 

The character images are clustered into as many clusters as the number of 

characters assigned to the corresponding ambiguous clusters. For example, the 

moment vectors of character images of the ambiguous cluster CJ are clustered 

into mJ clusters denoted by C;k (k = 1,2, ... , mJ ), where mJ is the number 

of characters assigned to CJ • The clusters are assigned to characters as done 

in the first representation space. These clustering and assigning of clusters to 

characters are repeated by increasing the moment order tf till all clusters become 

unambiguous clusters or there is no improvement of clustering after a certain 

number of repetitions. In this approach, each ambiguous cluster has an optimal 

order of second stage denoted by t~Pt'J (j = 1,2, ... , land l is the number of 

ambiguous clusters), which are decided based on number of ambiguous clusters 

as done in first stage. The final assignment is done at these optimal orders. In 

the second representation space, the clusters are represented by the mean vectors 

J.L~k (j = 1,2, ... , l, k = 1,2, ... ,m1), where l is the number of ambiguous clusters 

and m1 is the number of characters assigned to the jth ambiguous cluster CJ • The 

characters assigned to the clusters are represented by an array C;k' 

5.5.3 Recognition Phase 

In this phase, we propose to use a minimum distance classifier. The two-stage 

recognition procedure is presented in Algorithm 5.2 and described below. 
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Algorithm 5.2 Recognition phase of proposed split-character-with-LDA 

approach 

Input: U.-tt' C;) {(Cluster centroids, assigned characters) of first stage}, 

(It~k' Sk) {(Cluster centroids,assigned characters) of second stage}, 

f {(input image)}; G {(LDA transformation matrix of training phase)} 

i = 1,2,000, n; j = 1,2,000, l; k = 1,2,000, m J 

Output: r (input image is recognized as the rth character of the alphabet) 

{*** FIRST STAGE ***} 

x := moment vector of the input image f 

ld := G T x {* Compute the LDA feature vector *} 

dc(i) := IIld - Itt II, ~ = 1,2,00 on 

minI := arg [min(dc(i))], V~ = 1,2,000, n {* Find out the minimum distance 
t 

cluster Cmm1 *} 

if (Cmtnl > 0) then 

r := Cmml {* Recognize I as the Cmml th character of the alphabet *} 

else if (Cmtn1 contains characters recognizable by Euler Number) then 

en := Euler Number of I 

if (en is equal to one of the Euler Numbers assigned to Cmm1 ) then 

r := the character assigned to en in Cmm1 

return r 

end if 

end if 

{*** SECOND STAGE ***} 

fa := the half of I containing distinguishing feature {* Select the appropriate 

half based on the value of Cmml *} 

x' := moment vector of fa 

d~(k) :=11 x' - It'mml,k II, k = 1,2,000, mJ 

min2 := arg [min(d~(k))], Vk = 1,2,000, m J {* Find out the minimum 
k 

distance cluster C:nml,mm2 *} 

r = C'mml mm2 {* Recognize f as the c'mml mm2th character of the alphabet *} , , 

return r 
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5.5.3.1 First Stage 

To recognize an image I of an unknown character, the moment vector x 

(consisting of moments of order 0 to t opt ) of I is computed and then a new feature 

vector ld is obtained by transforming x by the LDA transformation matrix G 

of training phase. After this, the Euclidean distances II ld - I-Lt II, of ld from 

each of the n mean vectors I-Lt (t = 1,2, ... , n) of the clusters of first stage 

of training phase, are computed and ld is assigned to the cluster Cmm1 of the 

nearest mean vector I-Lmtnl' If the assigned cluster Cmm1 is an unambiguous cluster 

(Le. Crmnl > 0), the character image I is recognized as the Cmmlth character of 

the alphabet. If the assigned cluster is an ambiguous cluster whose constituent 

characters are distinguishable by EN, then it is recognized by EN computed from 

the image. On the other hand, if it is an ambiguous cluster, recognition is done 

in second stage. 

5.5.3.2 Second Stage 

Let, the input character image I is assigned to an ambiguous cluster CJ in the 

first stage. The moment vector x' (consisting of moments of order 0 to t~t,J) is 

computed from the appropriate half of the character image. The appropriate 

halves for the ambiguous clusters are determined in the training or learning 

phase and can be obtained from the values of Cz. Then, the Euclidean distances 

II x' - I-Ldk II from x' to each of the mJ mean vectors I-L~k' k = 1,2, ... , mJ of the 

second representation space are computed. The moment vector x' is assigned 

to the cluster C:mn1,mm2 of the nearest mean vector l-L~ml,mm2 and the input 

character I is recognized as the C~ml,mm2th character of the alphabet. 

5.5.4 Experimental Results 

5.5.4.1 '!raining Phase (Representation) 

The alphabet for this set of experiments is same as the alphabet used in the 

Subsection 5.4.3 (Figure 5.4). The dataset for training phase comprises of 395 

character images of the character of this alphabet in five different font-types. 
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Figure 5.S: Number of ambiguous clusters using Legendre moments and LDA 

features of Legendre moments 

These 395 character images are represented in the first representation space 

and clustered into 79 clusters as described in Subsection 5.5.2. Assigning these 

clusters to different characters of the alphabet and labeling as ambiguous and 

unambiguous clusters are also done as described in Subsection 5.5.2. This is 

repeated by varying the moment order t from 3 to 30. It has been observed that, 

the features obtained by LDA significantly improves the clustering performance 

in training phase. This is evidenced by the reduced number of ambiguous clusters 

obtained by the LDA features in comparison to the moment features. The results 

for Legendre, Tchebichef and Krawtchouk moments are presented in the following 

subsections. 

Legendre Moments The clustering results for Legendre moments are 

presented in Figure 5.S. The plots in this figure show the number of ambiguous 

clusters against moment order. It is found that LDA features results in 
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Table 5.4: Characters in Ambiguous Clusters(AC) using LDA features of 

Legendre Moments up to order 12 

81. Characters No. Recognizable Characters Halves used 

No. in AC of AC with EN to be split in 2nd stage 

1 ~,~ 1 ~,~ Left 

2 ~, ~ 1 ~, ~ Top 

3 15, ~ 1 15, ~ 

4 'iJ,~,Jf,~,~ 1 ~,~ 'iJ,~,Jf Left 

5 <r,'iJ,~,'ij,~,~ 1 <r,'iJ,~,'ij,~,~ Left 

6 "1", \'3'i, "f 1 "f "1",\'3'i Left 

7 "1", 'I, "f 1 "f "1", 'I Left 

8 .,.,~ 1 .,.,~ Left 

9 <r,~,~ 1 <r,~,~ 

10 ~,'ij,~,~ 1 ~,~ ~,'ij Left 

11 D, U 2 D, u 

12 "i,liji 1 'i,liji Top 

13 ~,~ 1 "S:,~ Top 

14 ~, "0, ~, ~, 'l5T, ~ 1 ~, "0, ~, ~, 'l5T, ~ Left 

15 G,~ 1 G,~ Left 

16 ~,~ 1 "S:,~ 

17 Ci/,~,~ 1 Ci/,~,~ 

18 i,~ 2 i, ~ 
19 ~, 'l5T 1 ~,'l5T 

20 13,0 2 13,0 Left 

21 %,~,13,~,~ 1 %,~ ~,13,~ Right 

22 ~,"i,'i,~ 1 ~,"i,'i,~ Top 

23 G,~,~ 1 ~ G,~ Left 

24 G,~,~ 1 G,~,~ Left 

25 ~,~,'l1 1 ~,~,'l1 

26 '11,011 1 '11,011 

27 ~,ff 1 ~,ff 
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Figure 5.9: Number of ambiguous clusters using Tchebichef moments and LDA 

features of Tchebichef moments 

significantly less number of ambiguous clusters than the moments. From the plot 

of LDA features, it is found that the number of ambiguous clusters is decreasing 

from order 3 to 8 and then it goes up at orders 9, 10 and 11. After that, it 

sharply decreases from 37 to 30 at order 12 and again it goes up after that. 

The number of ambiguous clusters shows a downward trend from order 18, but 

beyond order 19 the rate of decrease is very slow. Therefore, considering both 

number of ambiguous clusters and the size of the moment vectors, the optimal 

order of first stage (topt) is taken as 12 and the final assignment is done at order 

12. The characters in ambiguous clusters, using LDA features of moments up 

to order 12, are shown in the Table 5.4. Each row of this table shows a set of 

characters that forms one or more ambiguous clusters. The set of characters that 

forms the cluster(s) is shown in the second column and the third column gives 

the number of such ambiguous clusters. The characters, which can be recognized 

by Euler Numbers, are shown in the fourth column and the characters to be split 
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in second stage are shown in the fifth column. The last column shows the halves, 

containing more prominent distinguishing features than the other parts, used in 

second stage. 

Tchebichef Moments The clustering results for Tchebichef moments are 

presented in Figure 5.9. The plots in this figure show the number of ambiguous 

clusters against moment order. It is found that LDA features results in 

significantly less number of ambiguous clusters than the moments. From the 

plot of LDA features, it is seen that the number of ambiguous clusters has a 

steady decreasing trend from order 3 to 30 with minor fluctuations. It decreases 

fast from order 3 to 15 and then from order 15 to 30 the decreasing rate is 

slow. Though the minimum number of ambiguous clusters is observed at order 

30, the optimal order of first stage (t opt ) is taken as 15 considering the size of 

moment vectors. The final assignment is done at order 15. The characters in 

ambiguous clusters, using LDA features of moments up to order 15, are shown 

in the Table 5.5. Similar to the Table 5.4, each row of this ta1?le shows a set of 

characters forming one or more ambiguous cluster in the first column and the 

number of such ambiguous clusters in the second column. The fourth column 

shows the character that can be recognized by EN and the fifth column shows 

the characters that are to be split in second stage. The last column shows the 

half of the characters, of the respective ambiguous clusters, used in second stage. 

Krawtchouk Moments The clustering results for Krawtchouk moments are 

presented in Figure 5.lD. The plots in this figure show the number of ambiguous 

clusters against moment order. It is found that LDA features results in 

significantly less number of ambiguous clusters than the moments. As in the 

case of Legendre and Tchebichef moments, the optimal order of first stage (topt) 

is decided considering both numbers of ambiguous clusters and size of the moment 

vectors. In this case, t opt is taken as 14 in order to make the size of the moment 

vectors small, though lesser number of ambiguous clusters are observed at some 

higher orders. The characters in ambiguous clusters, using LDA features of 

moments up to order 14, are shown in the Table 5.6. Similar to the Tables 

5.4 and 5.5, this table also shows the characters that can be recognized by Euler 
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Table 5.5: Characters in Ambiguous Clusters (AC) using LDA features of 

Tchebichef Moments up to order 15 

SI. Characters No. Recognizable Characters Halves used 

No. in AC of AC with EN to be split in 2nd stage 

1 ~,~ 1 ~,~ Left 

2 ~,~,~ 1 ~,~ Left 

3 ~,~ 1 ~,~ Top 

4 15,\S 1 15,\5 Top 

5 1:1,~,~ 1 1:1,~,~ 

6 <1", 'il, 1:1, ~, ~ 1 <1", 'il, 1:1, ~, ~ Left 

7 'if,"f 1 'if,"f 

8 'if, '1, "f 1 "f 'if, '1 Left 

9 .,,~ 1 .,,~ Left 

10 <I",~,~ 1 <I",~,~ 

11 D, 11 2 D, 11 

12 ~,v: 1 ~,v: 

13 ~,~,~,R 1 >r,~,~,R Top 

14 '3, \5, "f) 1 '3, \5, "f) Top 

15 ~,~,~ 1 ~,~,~ Left 

16 ~,~ 1 ~,~ Right 

17 (3,13 2 (3,13 Left 

18 1S,1.'3 1 1S,1.'3 

19 ~,~,~ 1 ~,~,~ Left 

20 ~,(j,~ 1 ~,(j,~ Top 

21 (j,~ 1 (j,~ Bottom 

22 ~,'i!>l 1 ~,'i!>l Left 

23 "1",~,~ 1 ~ ~,~ Top 

24 ~,~ 1 ~,~ 

25 ~,..;; 1 ~,..;; 

26 -3,15 1 -3,15 

27 ~, ~ 1 ~,~ 
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Figure 5.10: Number of ambiguous clusters using Krawtchouk moments and LDA 

features of Krawtchouk moments 

N umbers, characters to be split in the second stage and the appropriate half to 

be used for recognition for characters in the ambiguous clusters in the respective 

columns. 

5.5.5 Recognition Phase 

The dataset for testing the proposed split-character-with-LDA approach consists 

of 1975 character images of the 79 printed Assamese characters given in Figure 

5.4. The dataset contains 25 character images for each character of Figure 

5.4 in 5 different font-types and in 5 different font-sizes. The summary of 

the recognition results using Legendre, Tchebichef and Krawtchouk moments 

is presented in Table 5.7. The first five rows of the table show the results of first 

stage, next two rows show the results of second stage and the combined results 

are shown in the last two rows. It is observed from this table that, the proposed 
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Table 5.6: Characters in Ambiguous Clusters(AC) using LDA features of 

Krawtchouk Moments up to order 14 

81. Characters No. Recognizable Characters Halves used 

No. in AC of AC with EN to be split in 2nd stage 

1 "@,~ 2 "@,~ Left 

2 ~,~ 1 ~,~ Top 

3 15,15 1 15,15 Top 

4 lJ,~,1J,<l",~,~ 1 lJ,~,1J,<l",~,~ Left 

5 <l",'(J",lJ,~,~ 1 <l",'(J",lJ,~,~ Left 

6 'if,"f 1 'if, "f Left 

7 .,,~ 1 .,,~ Left 

8 <l",~,~ 1 <l",~,<l" 

9 D, 1) 2 D, 1) 

10 'ii, 1J, Ff 1 'ii,1J,Ff Top 

11 ~,~,~ 1 ~ ~,~ Left 

12 ~,Vi 1 ~, Vi 

13 1!13, ~, ~, ~, ~ 1 1!13, ~, (3, ~, ~ Left 

14 ~,~,'3 1 ~, ~,'3 Right 

15 ~,tII 1 ~, til Left 

16 ~,~ 2 ~,~ Right 

17 (;',~ 1 (;',~ Left 

18 ~,~,~ 1 ~,~,~ Right 

19 \3,13 1 \3,13 Left 

20 ';,~ 1 ';,~ Top 

21 ~,~,~ 1 ~ ~,~ Left 

22 ~,'iJ,~,~ 1 ~ ~,'iJ,~ Right 

approach using Krawtchouk moments give the best results followed by Tchebichef 

and Legendre moments. Almost 97% recognition accuracy is achieved by the 

approach using Krwatchouk moments in this dataset. On the other hand, 95.19% 

and 96.56% recognition accuracy is achieved by the approach using Legendre 
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Table 5.7: Recognition results of split-character-with-LDA approach in a 

database of 1975 character images 

Legendre Tchebichef Krawtchouk 

Number % Number % Number % 

Recognized 925 46.84 1041 52.71 1153 58.38 

First 
using LDA 

feature of 
stage 

moments 

Recognized 363 18.38 389 19.7 168 8.51 

using EN 

Characters 642 32.51 522 26.43 627 31.75 

In 

ambiguous 

clusters 

Correct 1288 65.22 1430 72.41 1321 66.89 

recognition 

Wrong 45 2.28 23 1.16 27 1.37 

recognition 

Second Correct 592 29.97 477 24.15 594 30.08 

stage recognition 

Wrong 50 2.53 45 2.28 33 1.67 

recognition 

Correct 
Combined 

1885 95.19 1907 96.56 1915 96.96 

recognition 

Wrong 95 4.81 68 3.44 60 3.04 

recognition 

and Tchebichef moments respectively. Approximately, 30% character images 

are correctly recognized in second stage using both Legendre and Krawtchouk 

moments, while approximately 24% character images are correclty recognized 

using Tchebichef moments in second stage. On the other hand, the percentage of 
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characters recognized in first stage is more in case of Tchebichef moments than 

Legendre and Krawtchouk moments. It is also observed that a good number of 

characters are recognized by Euler numbers (18.38% using Legendre, 19.7% using 

Tchebichef and 8.51% using Krawtchouk moments). 

5.6 Conclusion 

In this chapter, two new approaches are presented to improve the recognition 

accuracy of moment-based methods. Both the methods utilize moment features 

from parts of the character images containing prominent distinguishing features 

to distinguish characters that are very similar in their shapes. Moment-based 

methods generally fail to distinguish characters having minor, localized variations 

in their shapes because the moments are global features. Therefore, improved 

recognition accuracy is obtained by taking the parts having more prominent 

distinguishing feature(s) and eliminating the parts having similar features in 

computing moments. Out of the two approaches, split-character approach uses 

moment vectors of the character images for representation and recognition of the 

characters and the split-character-with-LDA approach performs LDA and use 

the LDA features for representation and recognition of the character images in 

first stage and use the moment vectors in the second stage. Split-character-with

LDA approach also uses Euler numbers to recognize characters in some cases in 

first stage. Another aspect of the split-character-with-LDA approach, which is 

different from split-character approach, is the use of individual representation 

space for each ambiguous cluster in second stage. Clearly, the split-character 

approach is simpler than the split-character-with-LDA approach, but the former 

is not suitable for characters of multiple font-types and can recognize characters 

of mUltiple font-sizes of single font-types only. On the other hand, the split

character-with-LDA approach is suitable for both multiple font-sizes and multiple 

font-types. The proposed approaches can be extended to consider multiple splits 

of a character images and taking parts smaller than one half, in some cases, 

to improve representation and recognition accuracy. The improved approaches 

may also consider splitting of characters in non-rectangular and non-symmetrical 

parts. The study can also be extended to consider all characters of the script. 
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Chapter 6 

Conclusions and Future Work 

This chapter summarizes the major works done in this thesis and gives directions 

to further works. The thesis presents a study on some aspects of representation 

and recognition of printed Assamese characters using three orthogonal moments, 

namely, Legendre, Tchebichef and Krawtchouk moments. Experimental results 

on datasets of printed Assamese characters are presented. The datasets include 

all vowels and consonants and some commonly used conjunct (Yuktakshar) 

characters. The following two sections briefly describe the major achievements 

of this study and scopes for further work. 

6.1 Major Achievements 

6.1.1 Representation of Printed Assamese characters 

using Orthogonal Moments 

A study on performance of Legendre, Krawtchouk and Tchebichef moments 

for representation of printed Assamese characters was taken up using a simple 

representation scheme. It was observed that) the performance of Krawtchouk 

moments is the best followed by Tchebichef and Legendre moments. It is also 

observed that, PCA and LDA can be used for better representation. For Legendre 

moments, LDA is found to give better class separability than PCA, whereas for 

Tchebichef and Krawtchouk moment, similar results are obtained using both 
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PCA and LDA. 

6.1.2 Representation of Printed Assamese characters 

using Scale Invariants of Legendre and Tchebichef 

Moments 

In this study, it was observed that the scale invariants of Legendre and Tchebichef 

moments are not good in distinguishing different printed Assamese characters 

from a large dataset in comparison to the respective moments. It is also observed 

that, effects of scaling on the moments in distinguishing different characters are 

not very significant and therefore the moments may be more suitable than the 

scale invariants for an OCR problem. 

6.1.3 Development of new moment-based methods for 

recognition of printed Assamese characters 

Two new moment-based methods for recognition of printed Assamese characters 

are proposed. Th~ new methods can distinguish similar characters, having 

minor localized differences, which ordinary moment methods fail to distinguish. 

The observed recognition accuracies are in the range of 95% to 97%, which is 

comparable to many existing OCRs. However, the frequency of occurrence of all 

characters is same in the dataset for the experiments. Therefore, the accuracies 

may vary in a dataset, where the frequencies of occurrence of the characters in 

different documents are taken taken into account. 

6.2 Further Work 

There are many avenues for further work. Some of these avenues are outlined 

here. 

Generally, LDA is better in class discrimination than PCA. However, there are 

some cases where PCA gives better class discrimination than LDA, particularly 

when the class samples do not adequately represent the classes. It was observed 
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in this study that, LDA gives better class discrimination for Legendre moments, 

whereas both LDA and PCA give almost similar results for Tchebichef and 

Krawtchouk moments. Further study may be taken up to find out the reasons 

for getting similar results using both PCA and LDA. 

Representation of printed Assamese characters using scale invariants of 

Legendre and Tchebichef moments are studied here. Similar study may be taken 

up for scale invariants of Krawtchouk moments. 

The new moment-based methods for printed Assamese characters split 

character images, in some cases, either vertically or horizontally and compute 

moments from one half having distinguishing feature(s). Further study may 

be taken up to consider multiple splitting, in some special cases, and compute 

moments from smaller parts. One may also consider splitting the characters in 

non rectangular or non symmetric parts. 

In this study, vowel modifiers (also called matras) are not considered and 

may be included in future work. 

Finally, similar studies may also be conducted using other moments and for 

other scripts. 
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