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Abstract 

Clustering often forms the first-stage analysis before applying other data mining techniques. By 

performing a cluster analysis, the user can ideally gain an overview on the major characteristics of 

a data set without any previous knowledge. However, in practice, performing a cluster analysis is 

often not easy, since most clustering algorithms require numerous input parameters. The selection 

of seeds for K-Medoids or the numbers of clusters for K-means are a few examples of input 

parameters. Without background knowledge on the data, it is often difficult to find a suitable 

parameterization. Often, parameters need to be adjusted in a time consuming trial and error 

procedure. It cannot be guaranteed that a useful parameterization can be detected by doing so. 

Outliers and noise points in real world data additionally complicate the search for a suitable 

parameterization. 

The performance of several popular clustering algorithms such as K-means also depends on the 

choice of several user-defined parameters such as how the initial points would be selected, or 

which distance measure to use to compute the similarity of the data points. It is in this context that 

we define afree parameter in clustering. Many clustering algorithms have one or more parameters 

that must be set according to the problem at hand. These are free parameters, and influence the 

process of clustering. As an example, the clustering algorithms like CURE, shifting grid, training 

neural networks, global FCM, and evidential C-Means (ECMs) are sensitive to the initial parameter 

settings, namely, the initialization. One can say that the initial parameter choices for these 

algorithms are all free parameters. 

In our work we propose a optimizer augmented clustering (OAC), i.e., a method employing an 

inner optimization loop, in addition to the clustering algorithm, to achieve higher clustering 

performance through a better choice of these free parameters. As a case study, we have tried to 

achieve better centroids for the iterative K-means algorithm. The improvement achieved replacing 

mean computations for new centroids in successive iterations of K-means (and thereafter of 

Maximin) with more optimized values obtained from different optimizing techniques have been 

investigated. An experimental study is presented in the domain of K-means and Maximin. We 

explore four different optimization techniques to optimize the centroids of the two algorithms. 

Initial experiments were conducted in the domain of textual data BIGCHECK. For the document 

source, we used 1060 records created for journal articles from the Information Science and 



Abstracts (ISA) database and computer science technical reports collected from various sites on the 

Internet. This is a comprehensive subset of the entire database. Each document record includes a 

complete abstract, title, author, and subject keywords. BIG CHECK is a text dataset of 1060 records 

of ACM Citations. Four optimizing techniques viz., Genetic Algorithm (GA) Steady State, 

Simulated Annealing, Differential Evolution (DE) & Particle Swarm Optimization (PSO) were 

used in an inner loop to arrive at better centroids compared with an independent K-Means run. The 

performance of these methods and an independent K -means run are observed for a fixed number of 

generations. The results clearly demonstrate that a superior clustering performance (as measured by 

an appropriate, suitably defined metric) is achieved with such an optimization-based clustering 

approach, as compared to a normal single-level clustering using a fixed choice of the parameters. 

Results indicated GA & DE gives the best values, with PSO performing rather poorly. 

To assess the improvement in cluster quality of the methods, we use a quantitative measure 

Silhouette coefficient (SC). Three datasets were used for the experimentation viz., synthetic dataset 

BIGCHECK CACM citation dataset used in earlier experiment), and two standard datasets 

SOYBEAN & WATER PLANT TREATMENT. In addition to the earlier four methods, two more 

GA methods were used: Roulette Method & Grouping GA (GGA). GGA emerges as the most 

effective technique for arriving at better centroids of K-Means for high dimensional datasets. Using 

GGA improves cluster quality by a substantial margin, for instance, from SC value of 0.32 to .78 

for the W ATERPLANT TREATMENT dataset. In general, GA & DE followed by SA gives much 

improved values. As in the first experiment, here too PSO lagged behind the other methods used in 

improving the centroids. 

The experiments reported in the thesis have been done using Euclidean distance for computing the 

similarity of points. For high dimensional data, Pearson Correlation Coefficient is an effective 

similarity measure. The same experiments for computing silhouette coefficients were also 

performed using Pearson distance as the distance measure (instead of Euclidean) for K-Means & 

other hybrid optimized schemes. The results obtained are similar. 



Consequent to the experiments with silhouette coefficient, another well-known validity index, 

Davies Bouldin index, have been used to assess the results. The results obtained by this index also 

confirm that GGA is the best optimizer, while simulated annealing is the second best performer for 

the analyzed problem. 

To estimate the performance of these optimizers on other clustering algorithms, a second clustering 

algorithm, Maximin clustering algorithm, was chosen and the set of experiments with the same set 

of optimizers were performed for two datasets viz., BIGCHECK & WATER TREATMENT 

PLANT. More or less similar results were obtained when Maximin replaced K-Means as the 

algorithm under study. 

Keywords - Clustering, Optimization, GA, SA, PSO, DE, fitness junction, Silhouette Coefficient, 

Davies Bouldin Index, Euclidean Distance, Pearson distance, K-Means, Maximin 
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Chapter 1 

Introduction 

In this chapter, we provide an introduction to our work. The chapter is organized as 

follows. Section 1.1 outlines the motivation of the work. In Section 1.2, we provide the 

problem statement. In the next section, the relevance of the work is highlighted. In Section 

1.4, we deal with the contribution of the thesis. In Section 1.5, we outline the content of 

the dissertation. 

One of the most important tasks in the data mining process is that of clustering. 

Clustering is an unsupervised learning technique and aids in assorting the data into 

similar and dissimilar groups. The groups are called clusters. In the context of data 

mining, where one is handling gigantic sizes of databases, clustering can identify dense 

and sparse regions and therefore discover overall distribution patterns and interesting 

correlations among data attributes. 

Clustering consists of four basic stepsl27: 

1. Feature Selection or Extraction. Feature Selection chooses distinguishing features 

from a set of candidates, while feature extraction utilizes some transformations to 

generate useful and novel features. 

2. Clustering algorithm design or selection. The step is generally combined with the 

proximity measure selection and the criterion function construction. The proximity 

measure directly affects the formation of the resulting clusters. Once it is chosen, the 

clustering criterion construction makes the partition of clusters an optimization 

problem, which is well defined mathematically. 

3. Cluster validation. Effective evaluation standards and criteria are important to provide 

the users with a degree of confidence for the clustering results derived from the used 

algorithms. 



4. Results interpretation. Experts in the relevant fields interpret the data partition. 

Further analysis, even experiments, may be required to guarantee the reliability of 

extracted knowledge. 

There are two major styles of clustering: partitioning (often called k-clustering), in which 

every object is assigned to exactly one group, and hierarchical clustering, in which each 

group of size greater than one is in turn composed of smaller groups. Both hierarchical 

clustering and k-c1ustering had been studied extensively by the mid-I 970s, and 

comparatively little clustering research was carried out in the 1980s. In recent years, 

however, the advent of the World Wide Web search engines (and specifically the problem 

of organizing the large amount of data they produce) and the concept of "data mining" 

massive databases has lead to a renewal of interest in clustering algorithms 3 

1.1 Motivation 

The utility of optimization in data mining algorithms is far-reaching. Take the case of 

Regression analysis which in its simplest form involves building a predictive model to 

relate a predictor variable, X, to a response variable Y through a relationship of the form 

Y= aX+b. The optimization algorithm can be quite simple but nonetheless essential in the 

case of Linear Regression: a and b can be expressed as explicit functions of the observed 

values of 'spending' and 'income' 56. 

Unsupervised learning means that only the intrinsic structure of the data defines the groups 

of data. The difficulty here is that usually there is no a priori information about the 

structure of the data set or potential parameters. To solve this problem, many methods 

make assumptions or select a model to fit the data. Usually, the assumptions are made 

according to the distribution of data set or the shape of data set. For example, typically K­

means algorithms assume that the shapes of clusters are convex. For the same reason, 

another method uses a set of parameters to control the performances of the algorithms. But 

these kinds of parameters are usually set manually and hard to find the ideal values. 

To get the good results, the user needs to run the algorithms several times, moreover, in 

some cases, it is difficult to decide on which is the best result because of the lack of 

information on the data set. All the above reasons can make the clustering algorithms 

inefficient and unstable. 

2 



Clustering often fonns the first-stage analysis before applying other data mining 

techniques. It is important in many (perhaps most) domains that the clustering 

algorithm is fast and must be able to handle very large datasets. In fact, clustering is often 

used as a pruning mechanism so that un-interesting and obvious clusters as well as 

outliers can be discarded before proceeding with further analysis 82. By perfonning a 

cluster analysis, the user can ideally gain an overview on the major characteristics of a 

data set without any previous knowledge. However, in practice, performing a cluster 

analysis is often not easy, since most clustering algorithms require numerous input 

parameters whose values affect the quality of clustering results 91. The selection of 

seeds for K-Medoids and the numbers of clusters for K-means are a few examples of 

input parameters. Without background knowledge on the data, it is often difficult to find 

a suitable parameterization. Often, parameters need to be adjusted in a time consuming 

trial and error procedure. It cannot be guaranteed that a useful parameterization can be 

detected by doing so. Outliers and noise points in real-world data additionally complicate 

the search for a suitable parameterization. 

The perfonnance of several popular clustering algorithms such as K-means 4 also depends 

on the choice of several user-defined parameters such as how the initial points would be 

selected, or which distance measure to use to compute the similarity of the data points. It 

is in this context that we define afree parameter in clustering. Many clustering algorithms 

have one or more parameters that must be set according to the problem at hand. These are 

free parameters, and influence the process of clustering. As an example, the clustering 

algorithms like CURE 10\ shifting grid, training neural networks, global FCM 104, and 

evidential C-Means (ECMs) 103are sensitive to the initial parameter settings, namely, the 

initialization. One can say that the initial parameter choices for these algorithms are all 

free parameters. One can only guarantee that the best clustering solution for a fixed value 

of k would be found if all possible initial configurations of prototypes were evaluated. Of 

course, this approach is not computationally feasible in practice, especially for large data 

sets and large k. Running the algorithm only for a limited set of initial prototypes, in tum, 

may be either inefficient or not computationally attractive, depending on the number of 

prototype initializations to be perfonned. 

In our work we propose a optimizer augmented clustering (OAC), i.e., a method 

3 



employing an optimization loop, in addition to the clustering algorithm, to achieve 

higher clustering performance through a better choice of these free parameters. As a 

case study, we have tried to achieve better centroids for the iterative K-means 

algorithm by means of a combinatorial search. The improvement achieved replacing 

mean computations for new centroids in successive iterations of K-means with more 

optimized values obtained from different optimizing techniques have been investigated. 

The experimental study is presented firstly in the domain of K-means, and thereafter 

tested with another clustering algorithm, viz., Maximin clustering algorithm. We 

explore four different optimization techniques to optimize the centroids of the iterative K­

means algorithm, and that of the Maximin algorithm. 

There exists literature on optimization-based clustering methods. In them, one finds the 

use of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and other 

optimization techniques in optimizing criterion like Sum Squared Error (SSE) and others 

in standard clustering algorithms. The well-known clustering algorithm K-means is one of 

the most popular partition clustering algorithms. There is still a considerable interest in 

this 50 year old algorithm and in its improvement. A couple of criteria influence the 

performance of this algorithm greatly. One of them includes the manner in which the 

initial points are selected, which is largely a random selection technique. This mostly leads 

to the problem of what is known as local convergence in the literature. To overcome this 

problem and to arrive at a solution that converges globally, there has been several attempts 

using GA or simulated annealing. The reason one often uses a conventional clustering 

algorithm like K-means is because they are powerful, time-tested, easy to implement and 

linear in complexity, and also implementations are freely available. How does one 

measure the benefits obtained by use of some of the recent optimization schemes on 

aspects of clustering algorithms like K-Means that requires selection of parameters 

by a trial method, or an algorithm like Maximin that requires the use of a 

thresholding parameter? 

Another interesting study would be to make a comparative performance analysis of a 

few well-known optimizing schemes on sparse! high-dimensional/binary ! standard 

datasets. We have evaluated four optimization techniques viz., GA, Simulated Annealing 

(SA), PSO & Differential Evolution (DE) in an attempt to arrive at better centroids for K­

means and Maximin clustering. 
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The performance of these methods and an independent K-means and Maximin run are 

observed for terminations condition/fixed number of generations. 

1.2 Problem Statement 

The general objective of clustering is to find a set of equivalence classes over a set 

of data points to optimize a suitably defined criterion. More precisely, given a set 

of data points X = {Xl' X 2 , ••• , X n} , the objective is to find a partition 

D = {D p D2, ••• ,Dk }, with D,nDj = <1>,UD, = X, so as to optimize a suitably 

defined criterion f(D). Since the number of possible partitions (the number of 

potential equivalence relations) defined on the set X ofn points is given by the Bell 

number Bn which grows fast with n, an exhaustive search for the optimal D is 

impractical. Numerous heuristic clustering algorithms (such as k-means and 

Maximin) have been proposed that find a good, but sub-optimal partition. 

Frequently, a clustering algorithm has several free parameters a and the resulting 

partition D(a) and the quality of clustering f(D(a))varies significantly with the 

choice of a . An example of such a free parameter is the initial choice of centroids 

in the k-means algorithms. The problem addressed in our investigation is to find the 

optimal choice of the parameters a so as to optimizef(D(a)). 

Even the problem of finding optimal a may be a combinatorially hard one. 

F or example, the number of possible selections of k centroids from a set of n points 

is obviously given by C(n,k) which can grow exponentially with n. We propose to 

use a novel multi-loop optimal clustering approach where the inner loop employs a 

combinatorial heuristic optimization algorithm to improve upon the choice of the 

free parameters to result in higher quality clustering. We experiment with the k­

means and Maximin clustering algorithm and several different optimization 

algorithms such as genetic algorithms, simulated annealing, etc in the inner loop, 

and demonstrate that such an optimizer augmented clustering approach can 

improve the clustering performance (as measured by f(D(a))) significantly over 
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that with regular non-optimized clustering. 

1.3 Relevance of the work 

Most technical fields, including all those in engineering, involve some form of 

optimization that is required in the process of design. Since design is an open-ended 

problem with many solutions, the quest is to find the best solution according to some 

criterion. In fact, almost any optimization process involves trade-offs between costs and 

benefits because finding optimal solutions is analogous to creating designs - there can be 

many solutions, but only a few might be optimum or useful, particularly when there is a 

non linear relationship between performance and cost. Optimization, in its most general 

form, involves finding the most optimum solution from a family of reasonable solutions 

according to an optimization criterion. For all but a few trivial problems, finding the 

global optimum (the best optimum solution) can never be guaranteed 65. 

In large databases where we have hundreds of dimensions and tens of thousands to 

millions of records, better optimized values exhibit the greatest value. The reason is 

simple: a clustering session on a large database is a time-consuming affair. Hence a 

refined point can insure that the time investment pays off. The refinement algorithm 

operates over small sub-samples of the database and hence run-times needed to determine 

a "good" point (which speeds the convergence on the full data set) are orders of magnitude 

less than the total time needed for clustering in a large-scale situation. Optimizing 

techniques have been used for arriving at such 'good' point(s). 

The optimization of iterative K-Means has been studied in the literature, but such a 

comprehensive study for OAC has not been reported to the best of our knowledge. 

Further, the use of three different approaches of Genetic Algorithm for the optimization of 

the objective function of the clustering process is a detailed look and investigation on the 

attempted problem. We further experiment with a second clustering algorithm, Maximin, 

to support the encouraging results of the first set of experiments with the K-Means 

algorithm. 

The use of Grouping Genetic Algorithm (GGA) 92, an effective optimizer in many 

optimization problem like Bin Packing 105, have not been reported (we couldn't find any 
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mention) for clustering problems, and our work highlights the applicability of this method 

as an effective optimizer in clustering algorithms like K-Means & Maximin. 

We list a good number of similar problems in clustering requiring optimization of free 

parameters 

(i) Seed initialization of K-means 

(ii) No of clusters kin K-means 

(iii) The 'distance' measure used in the K-means algorithm 

(iv) Several research work were focused on improving cluster algorithms, such as CURE 

101, shifting grid, training neural networks, global FCM 104, and evidential C-Means 103 

(ECMs). However, these clustering algorithms are sensitive to the initial parameter 

settings, namely, the initialization 32. 

(v) Partitioning around Medoids ( PAM) algorithm which arbitrarily chooses objects as 

the initial medoids or seed points. 

(vi) The leader clustering algorithm chooses a leader as a representative (center) of a 

cluster. The algorithm depend on a threshold value to determine whether an object is 

similar (close) enough to the leader to in order to lie in the same partition. 

(vii) The algorithm CLARA draws a sample from the data set and uses the PAM 

(Partitioning around Medoids) algorithm to select an optimal set of medoids from the 

sample. To alleviate sampling bias, CLARA repeats the sampling and clustering process 

several times and subsequently selects (optimizes) the best set of medoids as the final 

clustering. 

(viii) The initialization of weights during the training phase of Kohonen Self Organizing 

Map (SOM) is done with random values. Kohenen's SOM finds applicability in document 

clustering. 

(ix) Methods for initialization of Reference Vectors are done randomly in LVQ (Learning 

Vector Quantization). Vector Quantization is a standard statistical clustering technique. 

(x) Random initialization of seed of the algorithm fuzzy c-means 

(xi) Initial selection of me do ids in K-medoids clustering algorithm 

(xii) Gaussian Mixture clustering (Expectation Maximization Algorithm) - The clustering 

optimization problem is that of finding parameters associated with the mixture model 

which maximize the likelihood of the data given the model. 

(xiii) ISODATA method is a popular clustering algorithm developed at the Stanford 

Research Institute by G.HBall & D.J.Hall 5. This method requires that the number of 
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clusters 'm' be specified and threshold values t1, t2 & t3 be given or determined/or use in 

splitting, merging or discarding clusters respectively. During the clustering process, the 

thresholds are used to determine if a cluster should be split into two clusters, merged with 

other clusters or discarded (when too small) 57 

(xiv) In Approximation Clustering, clustering within (l+e) of the optimum cost, e is user 

defined tolerance. 

The utility of optimized schemes can be gauged from reported results on the seed 

initialization problem of K-means. 17 have run 20 procedures of k-means algorithm on 

KDD99 data set with parameter k = 4. The results show that 80% of random initial centers 

lead k-means algorithm to some local optimum with cost larger than 110,000, while 10% 

of procedures end with cost smaller than 100,000. Most of the computation time is wasted 

on the useless iterations if the initial centers are not well chosen. To discover such bad 

initial centers as early as possible, 17 focus on deriving a lower bound on the local 

optimums achievable in the future iterations. 

1.4 Contributions of the Thesis 

The first contribution of the thesis is the demonstration of a superior clustering 

performance (using metrics for compactness of clusters) achieved with an 

optimization-based clustering approach, as compared to standard iterative K-Means 

on a Textual dataset. The dataset [SA (BIGCHECK) used for experimentation contains 

approximately 5,000 documents culled from abstracts of ACM. We have experimented 

using a subset of 1060 documents which is a fairly representative subset of the dataset. 

The second contribution is a systematic, in-depth investigation using four recent 

optimizing techniques to improve the well-known iterative K-means algorithm and 

Maximin clustering algorithm and analyze the comparative performance of the 

techniques. The relative comparison of these cutting-edge optimization techniques in the 

optimization loop is very interesting and reveals useful results. 

The third contribution is identifying Grouping Genetic Algorithm (GGA) as the most 

effective technique for arriving at better centroids of K-Means for high dimensional 

datasets. GGA (with Pearson distance) emerges as the most effective optimizer that 
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can effectively be used for augmentation of iterative K-Means. 

The fourth contribution is the revelation of Maximin arriving at better centroids in 

comparison to the popular K-Means, though in tenns of efficiency, K-Means proved to 

be much better. 

The fifth contribution is the discovery that the Silhouette index gives slightly more 

accurate results than the Davies-Bouldin index. However owing to computational 

complexity, Silhouette index may be unsuitable for real-time operation. 

1.5 Outline of the Thesis 

Chapter 1 provides the Introduction, and defines the problem under investigation. The 

thesis includes five more chapters. 

In Chapter 2, a survey of the current state of the art in the field of clustering is presented I 

38930. We investigate optimization based clustering methods 25272& 29 43 4\ and also outline 

the Vector Space Model for text clustering 31. It also provides a basic outline of the four 

optimizing techniques (Genetic Algorithm, Simulated Annealing, Particle Swann 

Optimization, Differential Evolution) used in the experimentation, it underlines how our 

schemes differs from some of the schemes used by other researchers who have used these 

techniques (the differences of our GA with work of Laszlo 28 et aI., for example). It 

provides the background of document clustering with example, Tenn frequency, 

Document Frequency & Inverse Document Frequency. We also look into the K-Means 

algorithm, its areas of improvement, and highlight studies that has been 

made to refine centroids of the K-Means algorithm 10 II 121415161718 

22 23, or related studies on the K-Means algorithm 19 20 21, or initial seed selection of 

clustering algorithms in general 2426. The chapter also provides a description of Cluster 

Validity with particular reference to Silhouette Coefficient (SC) & Davies Bouldin Index 

(OBI), and the datasets that we have worked with during the investigation. 

Chapter 3 contains an introduction to our proposal. We propose a multi-level method 

employing an optimization loop, in addition to the clustering algorithm, to achieve 
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higher clustering performance through an automatic, better choice of the free 

parameters. We provide the Architecture of Optimizer Augmented Clustering (OAC), and 

its potential utility. We opine on the choice of our problem selection, and also highlight 

the differences in our solving techniques with some standard techniques reported in the 

literature. 

Chapter 4 provides the details of the experimental study with K-Means. Initial 

experiments were conducted in the domain of textual data sets. Four optimizing techniques 

viz., Genetic Algorithm (GA) Steady State, Simulated Annealing, Differential Evolution 

(DE) & Particle Swarm Optimization (PSO) were used in an inner loop to arrive at better 

centroids compared with an independent K- Means run. The perfonnances of these 

methods and an independent K-means run were observed for a fixed number of 

generations. The results clearly demonstrate that a superior clustering perfonnance (as 

measured by an appropriate, suitably defined metric) is achieved with such an 

optimization-based clustering approach, as compared to a nonnal single-level clustering 

using a fixed choice of the parameters. 

In Chapter 5, in 'Results and Discussion' we discuss the results of the experiments with 

K-Means. The findings clearly demonstrate that a superior clustering perfonnance (as 

measured by an appropriate, suitably defined metric) is achieved with such a multi-level, 

optimization-based clustering approach, as compared to a nonnal single-level clustering 

using a fixed choice of the parameters. 

Chapter 6 provides the details of the experimental study with Maximin algorithm. The 

perfonnance of Maximin and the same set (used earlier with K-Means) of optimizers 

augmented Maximin were compared to validate the claims made earlier during the 

experiments with K-Means. In general, the results obtained using Maximin support our K­

Means results discussed in the earlier chapter. 

Chapter 7 discusses the experimental results with Maximin algorithm. 

Chapter 8 presents the final conclusion of the dissertation. 
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Chapter 2 

Literature Survey 

In this chapter, we provide the background to our work The chapter is organized as 

follows. Section 2.1 gives a comprehensive survey of clustering. In section 2.2, we discuss 

the four optimization based schemes used for investigation. Section 2.3 deals with Text 

Clustering and various related concepts. Section 2.4 outlines the K-Means algorithm, its 

local convergence problem and approaches used to overcome it. Section 2.5 contains the 

description of the datasets used in the experiments. Section 2.6 outlines two quantitative 

measures of cluster quality - silhouette coefficient & Davies Bouldin Index used in the 

experiments. Section 2.7 discusses the two similarity measures used in the experiments­

Euclidean and Pearson distance. 

2.1 A Survey of Clustering 

The most important role of clustering is in achieving data abstraction. Clustering is one of 

the dominant techniques of exploratory data analysis. The literature on clustering is 

enormously rich; one may refer to some classical references such as 2 56 13 as well as the 

ones that concentrate on knowledge based approaches 58. Clustering is usually performed 

when no information is available concerning the membership of data items to pre-defined 

classes. Clustering discover patterns within data of large sizes. In its early days the main 

emphasis has been to cluster with precision. This made the lIO cost high. Therefore, 

classical clustering algorithms developed in statistics were not relevant in the context 

of data mining where devising efficient clustering algorithms which minimize I/O cost 

became essential. 

Clustering techniques consider data tuples as objects. They partition the objects into 

groups or clusters, so that objects within a cluster are 'similar' to one another and 

'dissimilar' to objects in other clusters. Similarity is defined in terms of how close the 

objects are in space, based on a distance function. The quality of a cluster may be 

represented by its diameter, the maximum distance between any two objects in the 
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cluster. Centroid distance is an alternative measure of cluster quality and is defined as 

the average distance of each cluster object from the cluster centroid. Clusters can be seen 

either as compact sets or as dense sets separated by low-density regions. Unlike density, 

Compactness usually has strong implications on the shape of the clusters, so methods that 

focus on compactness should be distinguished from methods that focus on the density. 

2.1.1 Categories of Clustering Algorithms 

The various categories of clustering algorithms are shown in Table 2.1. Hierarchical 

Clustering builds a cluster hierarchy, a tree of clusters, also known as a dendrogram. 

Every Cluster node contains Child cluster; Sibling clusters partition the points covered by 

their common parents. Such an approach allows exploring data at different levels of 

granularity. They can be agglomerative (bottom up) or divisive (top-down) 2 7. The 

sequence of partitioning operation can be done bottom-up, performing repeated 

amalgamation of groups of data until some pre-defined threshold is reached, or top-down 

where recursively the data is divided until some pre-defined threshold is reached. 

Hierarchical Clustering is frequently used in document and text analysis. Advantages of 

Hierarchical clustering include embedded flexibility regarding the level of granularity, 

ease of handling of any forms or distance and applicability to any attribute types. The 

disadvantage of hierarchical clustering is vagueness of termination criteria, and no re­

tracing of once constructed clusters (intermediate) for improvement. 

Given a set ofN input patterns X = {xv ... ... , Xj' •.•..• , XN }, where Xj = 

( Xjl , Xj2 .................. , Xjd ) T £ Rd and each Xji measure is said to be a feature 

(attribute, dimension or variable), Hierarchical clustering 127attempts to construct a tree-

like nested structure partition of X, {H= H1 , ..... ,HQ } (Q ~ N), such that 

Ci E Hm, Cj E Hl , and m > limply Ci E Cj or 

i,j *" i,m,l = 1, ....... ,Q. 

Clusters are either isotropic or non-isotropic. A cluster is isotropic when it has equal 

tendency to growth in all directions or when the variance of samples in the cluster is 

nearly the same in different directions. The hierarchical algorithms are more 

versatile than the partitioning algorithms. For example the single-link clustering 

algorithml28 works well on data sets containing non-isotropic clusters including well-
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separated, chain-like & concentric clusters, whereas a typical partitioning algorithm like 

the K-Means algorithm works well only on data sets having isotropic clusters 30. On the 

other hand, the time and space complexities of the partitioning algorithms are 

typically lower than those of the hierarchical algorithms. It is possible to have a hybrid 

algorithm that exploits the good features of both categories. One of the most remarkable 

developments of hierarchical algorithm is the algorithm BIRCH 33. Scalability is the major 

achievement of this strategy. In BIRCH, a data structure is used to store relevant 

information like centroid, variance of patterns in a cluster. Hierarchical clustering of large 

data sets can be sub-optimal, even if data fits into memory. Compressing data may 

improve performance of hierarchical algorithms. 

Partitioning algorithms learn clusters directly. They try to discover clusters by iteratively 

relocating points between subsets, or try to identify clusters as areas highly populated with 

data. Algorithm of the first kind, Partitioning Relocation Method, is further classified into 

probabilistic clustering (EM framework, algorithm SNOB, AUTOCLASS 112, MCLUS1), K­

medoids methods (algorithms PAM, CLARA, CLARANS 119 and its extension) and K-

Means methods. In K-Means, given a pre-specified k, the algorithm partitions the data 

set into k clusters, which optimizes an objective function. The objective function tries to 

minimize the sum of the squared distances of objects from their cluster centers. Given a 

set of N input patterns X = {Xl> ......• Xj' ••..•.• XN }. where Xj 

( Xj1 • Xj2 •.••.••..•••.•••..• Xjd l e Rd and each Xji measure is said to be a feature 

(attribute, dimension or variable), Hard partitional clustering 127attempts to seek a K-

partition of X, C = {C1 .......... CK } (K :5 N). such that Ci =1= 0. i = 1 ............ K; 

Uf=l Ci = X; Ci n Cj = 0, i.j = 1 ......... K and i =1= j. The various 

deterministic and stochastic search approaches to solve partitioning clustering mostly use 

the squared-error criterion function. The clusters generated by these approaches are not 

as versatile as those generated by hierarchical algorithms. Hierarchical algorithms 

are computationally expensive I. Another approach for partitional clustering is to allow 

splitting and merging of clusters. Here merging is performed based on the distance 

between the centroids of two clusters. A cluster is split if its variance is above a certain 

threshold 64. One proposed algorithm performing this is called ISODAT A. 
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lIierarchicalntethod 

• AgglomeratIve algonthtn 

• DIVIsive algonthtn 

Ophffilzed for 

large (BIRCH Ill) & 

smail data sets 

(ROCK 10'), able to handle Outhers, arbItrary 

shaped clusters 

Grid-based ntethod 

OptimIzed for 

high dImensIOnal 

large data sets, 

CompleXlty 0 (n) 

Clustering AlgorithnfS 
used in ntachine learning 

• Gradient Descent & 

ArtifiCial Neural Networks 

·Evolutlonary methods 

(GA & others) 

Globahsed sol" convergence 

Partitioning ntethod 

RelocatIOn algonthms 

• ProbabilIstic clustenng 

• K-medOlds method 

• K-Means method 

OptImIZed for small(P AM) & 

large 

data sets(CLARA), sphencal 

clusters 

Method based on Co-occurrence 
of 
Categorical data 

CACTUS 

Categoncal Data 
Usmg Summanes) !O8 

(Clustermg 

Algonthm STIRR (Slevmg 

Through 

Iterated Remforcement) 107 

Scalable clustering a/gorithnfS 

BIRCH 

Table 2.1: Types of clustering algorithms 

Density based ntethod 

• DenSity based 

COffilectlvlty 

clustermg 

• Density functIOns 

clustenng 

OptimIZed for large data 

sets, able to 
Complexity IS 0 (n log n) 

Constraint based clustering 

The COD (Clustering with 
Obstructed Distance) 
algorithm 110. 

AlgorithnfS for high 
dintensional 

data 

• Subspace Clustenng 113 

• Projection techniques 

• Co-clustenng techmques 

Density Based partitioning (Fig. 2.1) try to discover dense connected components of data, 

which are flexible in tenns of their shape. Density based connectivity is used in the 

algorithms DBSCAN 9°,OPTICS 114, DBCLASD 115, whereas the algorithm DENCLUE 117 

exploits space density functions. These algorithms are less sensitive to outliers and can 

discover clusters of irregular shapes. They usually work with low-dimensional data of 

numerical attributes, known as spatial data. They quantize the space of the data items into 

a finite number of cells and only retain for further processing the cells having a high 

density of items; isolated data items are not considered. Quantization steps and density 
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thresholds are common parameter for these methods, and these are also free parameters for 

these clustering algorithms. Some interesting recent work on density based clustering is 

using I-class support vector machines 59. Many of the graph clustering methods is related 

to density based clustering. The data items are represented as nodes in a graph and the 

dissimilarity between two items is the 'length' of the edge between the corresponding 

nodes. However, some other graph theoretic methods are more related to squared error 

methods. Graph based clustering has paved the way for significant interest recently in 

Spectral Clustering 59. Grid based methods frequently use hierarchical agglomeration as 

one phase of processing. Algorithms BANG, STlNGIJ8 and WAVECLUSTER \l6are ofthis 

type. Grid based methods are fast and handle outliers well. Grid based methodology is also 

used as an intermediate step in many other algorithms (for example like CLIQUE /13, 

MAFIA). 
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Fig 2.1 Density based clustering depicting clusters of arbitrary shapes 

The methodology of clustering and subsequent techniques calls for a number of 

enhancements to become fully operational in the setting of data mining. The first 

enhancement comes in the form of context-oriented clustering in which contexts are 

regarded as useful hints delivered by the user and helping to develop a certain point of 

view of the data; in this sense we make the notion of interestingness more operational. The 

second modification comes in the form of partial supervision in which some hints needs to 

be incorporated as an important part of the clustering algorithm. 

The most general approach to clustering is to view it as a density estimation problem. We 

assume that in addition to the observed variables for each data item, there is a hidden, 

unobserved variable indicating the "cluster membership" of the given data item. Hence the 

data is assumed to arrive from a mixture model and the mixing labels (cluster identifiers) 
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are hidden. Many methods assume that the number of clusters K is known or given as 

input. The clustering optimization problem is that of finding parameters associated 

with the mixture model M (W; and parameters of components Ci ) which maximize the 

likelihood of the data given the model. The probability distribution specified by each 

cluster can take any form. The EM algorithm 142 is a well-known technique for estimating 

the parameters in the general case. K-Means clustering is a popular method 

(historically also known as Forgy's method 85, or MacQueen's 4 algorithm. It is really a 

special case of EM that assumes: 

1. Each cluster is modeled by a spherical Gaussian distribution; 

2. Each data item is assigned to a single cluster; 

3. The mixture weights (WJ are equal. 

2.1.2 Clustering Using Soft Computing Approaches: 

2.1.2.1 Neural Networks for Clustering 

Neural networks have been successfully applied in a wide range of supervised and 

unsupervised learning applications. Neural network models are not commonly used for data 

mining tasks because they produce incomprehensible models and require long training times. 

However, of late neural-network learning algorithms are able to produce comprehensible 

models, which do not require excessive training times. They're inherently parallel and 

distributed and learn the weights adaptively. ANN processes numerical vectors. This restricts 

the representing of patterns by quantitative features only I. The well-known examples of ANN 

used for clustering are Kohonen's learning vector quantization (L VQ) and self-organizing map 

60. These are single layered nets. Patterns are presented at the input and are associated with the 

output nodes. The weights between the input nodes and the output nodes are iteratively 

changed until a termination criterion is satisfied. 

In competitive neural networks, active neurons reinforce their neighborhood within certain 

regions, while suppressing the activities of other neurons. These includes Learning Vector 

Quantization (LVQ) and Self-Organizing Feature Maps (SOFM) 131 132. Intrinsically, L VQ 

performs supervised learning, and is not categorized as a clustering algorithm 132 133. The 

learning properties of L VQ provide an insight to describe the potential data structure using the 

prototype vectors in the competitive layer. By pointing out the limitations of LVQ, including 
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sensitivity to initiation and lack of a definite clustering object, Pal, Bezdek and Tsao proposed 

a general LVQ algorithm for clustering, known as GLVQ 133. They constructed the clustering 

problem as an optimization process based on minimizing a loss function, which is dependent 

on the locally weighted error between the input pattern and the winning prototype. 

Adaptive resonance theory (ART) was developed by Carpenter and Grossberg 134135 ART can 

learn arbitrary input patterns in a stable, fast and self-organizing way, thus overcoming the 

effect of learning instability that plagues many other competitive networks. ART is not a 

neural network architecture. It is a learning theory, that resonance in neural circuits can trigger 

fast learning. Extension includes ARTl (binary input patterns) \34, although it can be extended 

to arbitrary input patterns by a variety of coding mechanisms. ART2 extends the applications 

to analog input patterns 136 and ART3 introduces a new mechanism originating from elaborate 

biological processes to achieve more efficient parallel search in hierarchical structures 137. By 

incorporating two ART modules, which receive input patterns (ART a) and corresponding 

labels (ART b) respectively, with an inter-ART module, the resulting ARTMAP system can 

be used for supervised classifications \38. The match tracking strategy ensures the consistency 

of category prediction between two ART modules by dynamically adjusting the vigilance 

parameter of ART a. One of the big challenges of clustering is organization and retrieval of 

documents from archives. 60 have demonstrated the utility of a self-organizing map (SOM) 

with more than one million nodes to partition a little less than seven million patent abstracts 

where the documents are represented by SOO-dimensional feature vectors. 

2.1.2.2 Evolutionary Approaches for Clustering 

From an optimization perspective, clustering can be formally considered as a particular kind 

of NP-hard grouping problem 92. This has stimulated the search for efficient approximation 

algorithms, including not only the use of ad hoc heuristics for particular classes or instances of 

problems, but also the use of general-purpose metaheuristics 139. Particularly, evolutionary 

algorithms are metaheuristics widely believed to be effective on NP-hard problems, being able 

to provide near-optimal solutions to such problems in reasonable time. Under this assumption, 

a large number of evolutionary algorithms for solving clustering problems have been proposed 

in the literature. These algorithms are based on the optimization of some objective function 

(i.e., the so-called fitness function) that guides the evolutionary search. 

Evolutionary approaches make use of evolutionary operators and a population of solutions to 
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obtain the globally optimal partition of the data. The most commonly used evolutionary 

operators are selection, recombination and mutation 34. The most well known evolutionary 

algorithms are genetic algorithms (GA), evolution strategies (ES) and evolutionary 

programming (EP). Of the three approaches, GA has been most frequently used for clustering 

In GA, the solutions are as binary strings. Selection operator reproduces solutions 

(chromosomes) to the next population depending on their fitness value. Crossover takes as 

input a pair of chromosomes (called parents) and outputs a new pair of chromosomes (called 

children or offspring). After a certain crossover point, it exchanges the parts of the parents. 

Mutation complements the bit value at an arbitrary selected location of the input chromosome 

resulting in a new chromosome. GA depends on the crossover operator to explore the search 

space and mutation is used in GA to ensure no part of the search space is left unexplored. 

Evolutionary approaches are globalized search techniques, whereas the other approaches like 

the statistical algorithms like the K-Means algorithm, fuzzy clustering algorithms and tabulate 

search are localized search techniques. ANN and GA are inherently parallel and so they can 

be implemented using parallel hardware to improve the speed of processing. Evolutionary 

approaches are population based and they search using multiple solutions at a time and the 

others are based on using a single solution at a time. ANN and GA are sensitive to the 

selection of various learning/control parameters. 130 141presents a survey of evolutionary 

algorithms designed for clustering tasks. 140 provides an extensive review of evolutionary 

algorithms for data mining applications, but the work focuses on specific evolutionary 

approaches (GAs and Genetic Programming) and is mainly intended for classification tasks, 

clustering being just slightly touched in a peripheral section. 

2.1.2.3 Fuzzy Clustering 

The degree of membership of a data item to a cluster is either in [0, 1] if the clusters are fuzzy 

or in {O, I} if the clusters are crisp. For fuzzy clusters, data items can belong to some degree 

to several clusters that don't have hierarchical relations with each other. The clustering result 

changes depending on its fuzziness/ crispness. The output of such algorithm is a clustering, 

but not a partition. Crisp Clusters can always be obtained from fuzzy clusters. 

When a fuzzy clustering algorithm is applied to a data set with N objects, the final result is a 
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partition of the data into a certain number k offuzzy clusters, such that 

{ 
P = [Jlij] k x N 

Ilij E [0,1] ..................... (2.1) 

where P is a k x l'! fuzzy partition matrix whose element J.lij represents the fuzzy 

membership of the jth object to the ith fuzzy cluster. When J.lij is limited to the extreme 

values of its feasibility interval, i.e., J.lij E; {O, I}, then P degenerates to a soft partition. 

Besides, if the additional constraint Li J.lij = I is imposed to every columnj of the 

matrix, then P degenerates to a standard hard partition. A fuzzy partition matrix provides 

additional information about the data that is not available in its soft or hard counterparts. 

In fact, the fuzzy membership values J.lij can help discover more sophisticated relations 

between the corresponding data objects and disclosed clusters 127. 

Fuzzy version of methods based on the squared error was defined, beginning with the Fuzzy 

C-Means. When compared to their crisp counterparts, fuzzy methods are more successful in 

avoiding local minima of the cost function and can model situations where clusters actually 

overlap. To make the results of clustering less sensitive to outliers several fuzzy solutions 

were put forward, based on robust statistics or the use of a 'noise cluster'. 

In fuzzy clustering, each cluster is a fuzzy set of all the patterns. Fuzzy K-Means algorithm 

though betters the K-Means algorithm in avoiding local minima; it still converges to local 

minima of the squared-error criterion 61. The design of membership function is the most 

important problem in fuzzy clustering. 

Regardless of the fixed or variable nature of the number of clusters, the evolutionary 

algorithms for fuzzy clustering are mostly based on extensions - to the fuzzy domain - of the 

fundamental ideas for hard partitional clustering. This is in conformity with the fact that most 

fuzzy clustering algorithms are based on generalizations of traditional algorithms for hard 

clustering, as it is the case of the well-known Fuzzy C-Means (FCM) algorithm and its variants 

145 146147. These are essentially generalizations ofthe classic k-means algorithm. 

Recent research into subspace 84 and online clustering algorithms has been performed. 
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'Online' implies that the algorithm can be perfonned dynamically as the data are generated, 

and thus it works well for dynamic databases. Additionally, some adaptive algorithm allows 

the user to change the number of clusters dynamically. These adaptive algorithms avoid 

having to completely re-c1uster the database if the users' needs change. One recent online 

approach represents the cluster by profiles such as cluster mean and size. These profiles are 

shown to the user, and the user has the ability to change the parameters (number of clusters) 

at any time during processing. One recent clustering approach is both online and adaptive, 

(OAK Online Adaptive Clustering). OAK can handle outliers effectively by adjusting a 

viewing parameter, which gives the user a broader view of clustering and help in obtaining 

the desired clusters. For clustering algorithms embedded within World Wide Web search 

engines, time efficiency is imperative because search engine users want results very fast. 

There have been others efforts of clustering using competitive agglomeration 83 and at 

parallelization and distributed clustering 62 63 with promising results. This comprises a brief 

survey of the various clustering approaches 81 (see Table 2.2) and the trends within the 

clustering community. Choosing a clustering algorithm for a particular problem can be a 

daunting task. There are no single algorithms that can effectively perform tackling all the 

major challenges of clustering like high dimensionality, scalability & outlier detection 

that is so crucial while choosing a clustering algorithm. Some scores over the others in 

some respect while lacking in other aspects of clustering. 

Perhaps the most important criterion for matching an instance of a clustering problem 

to a clustering algorithm is the nature of the data and the anticipated clusters. Analysis 

and results have shown that if the data is numerical and the clusters are believed to be 

spherical or ellipsoidal, then approaches based on mixture models may be appropriate. On the 

other hand, if data is non-numerical, and little is known a priori about the geometry of the 

clusters, one of the graph-based approaches may be most appropriate. 

The context of clustering plays an important role in discovering knowledge nuggets -

rare yet essential pieces of infonnation. Without any direction imposed by the user, 

one could be easily washed away in a mass of useless but frequent data (which is 

statistically meaningful). The filtering of data accomplished by the context prevents 

this from happening. 
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Algorithm Type Space Time Remarks 
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O(n

2
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2 
) 

Not mcremental 
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O(nl O(k n

2 
) 

Not mcremental 
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O(k n

2
) 

Not mcremental 

O(n
2
) 

MST HlerarchlcalJ O(n
2
) 0( n

2 
) Not mcremental 

PartlttonaI 

Squared error ParttttonaI Iterative 
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Table 2.2 Comparison of various clustering algorithms 

2.2 Optimization based clustering methods 

2.2.1 Genetic Algorithm 
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2.2.1.1 Genetic Algorithms 

Genetic algorithms are general purpose search algorithms inspired by Darwin's principle of 

the 'survival of the fittest' to solve complex optimisation problems 3476. An initial population 

of possible solutions evolves over time to converge to an optimal solution. Although it is not 

guaranteed to find the optimum, the use of a population helps to avoid local maxima. 

A solution is represented by a chromosome, consisting of several genes. A genetic algorithm 

begins with an initial population of randomly generated chromosomes. During successive 

iterations, called generations, the initial chromosomes advance towards stronger 

chromosomes by reproduction among members of the previous generation. New 

generations are created by three genetic operators: selection, crossover and mutation. 

Selection of the best chromosomes makes sure that only the best chromosomes can crossover 

or mutates by rating the individual chromosomes by their adaptation or associated fitness. 

There have been clustering techniques based on the use of genetic algorithms 97.A genetic 

algorithm performs a parallel, non comprehensive search for the global optimum 

values. To determine how to perform clustering with genetic algorithms, we must first 

determine how to represent each cluster. One simple approach would be to use a bit map 

representation for each possible cluster. Given a data base with four items {W, X, Y, Z} we 

could represent one solution to creating two clusters as 1001 and 0110. This represents the 

two clusters {W, Z} and {X, Y}. 

Algorithm 2.2 shows an iterative refinement technique for clustering that uses a genetic 

Algorithm 2793. An initial random solution is given and successive changes to this converge 

on a local optimum. A new solution is generated from the previous solution using crossover 

and mutation operations. The new solution must be created in such a way that it represents a 

valid clustering. Crossover is the most popular recombination operator. 

2.2.1.2 Basic Steps in GA The basic steps are outlined in Algorithm 2.1 

In GA, Mutation is used to make sure that no part of the search space is left unexplored. 

Crossover and Mutation are applied with some pre-specified probabilities, which depend on 

the fitness values. A fitness solution must be used and may be defined based 
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Algorithm 2.1 Genetic Algorithm 

Input: a random initial population of possible solution 

Output: optimized solution for the problem 

Begin 

1. t= 0 

2. initialize population P(t) 

3. compute fitness P(t) 

4. t= t+ 1 

5. if termination criterion achieved go to step 10 

6. select P(t).from P(t-1) 

7. crossover P(t) 

8. mutate P(t) 

9. go to step 3 

10. Output best and stop 

End 

on an inverse of the squared error. Because of the manner in which 

crossover works, genetic clustering algorithms perform a global 

search rather than a local search of potential solutions. The basic 

steps of GAs, which are also followed in the GA-clustering 

algorithm \02, are shown in Algorithm. 2.2. 
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Algorithm 2.2 GA Clustering Algorithm 

Input: D= {n}. n 21 •• ••• n.} II set of elements 

k number of desired clusters 

Output: K II set of clusters 

Randomly create an initial solution; 

Repeat 

Use crossover to create a new solution; 

Until termination criteria is met 

2.2.1.3 Population initialization 

Each individual (chromosome) represent a possible solution to a given problem. Creating the 

initial population provides the starting point for the algorithm. Typically, this process is done 

by creating chromosomes randomly, but it can also be done by seeding the population with 

known fit chromosomes. One important constraint to this algorithm is that the initial 

population must be diverse. Diversity can be checked by running an additional step to confinn 

that each chromosome is different to some degree. Without reasonable diversity, the algorithm 

may not produce good solutions. 

2.2.1.4 Fitness computation 

The evaluation step provides a way to rate how each chromosome (candidate solution) solves 

the problem at hand. The step involves decoding the chromosome into the various space of the 

problem and then checking the result of the problem using these parameters. The fitness is 

computed from this result. 

2.2.1.5 Selection 

24 



The selection process selects chromosomes from the mating pool directed by the survival of 

the fittest concept of natural genetic systems. In the proportional selection strategy, a 

chromosome is assigned a number of copies, which is proportional to its fitness in the 

population, and which goes into the mating pool for further genetic operations. Roulette wheel 

selection is one common technique that implements the proportional selection strategy. 

2.2.1.6 Crossover 

Crossover is a probabilistic process that exchanges information between two parent 

chromosomes for generating two child chromosomes. The crossover operator takes two 

chromosomes, separates them at a random site in both chromosomes, and then swaps the tails 

of the two, resulting in two new chromosomes. Cutting the chromosome at one location, called 

single-point crossover, is often used. Multipoint crossover can also be used. The crossover 

operator does not create new material within the popUlation but inter-mixes the existing 

population to create new chromosomes. This allows the genetic algorithm to search the 

solution space for new candidate solutions to solve the problem at hand. The crossover 

operator is generally accepted as the most important operator. 

2.2.1. 7 Mutation 

The mutation operator introduces a random change into a gene in the chromosome (sometimes 

more than once). The mutation operator provides the ability to introduce new material into the 

population. Because chromosomes intermix with existing chromosomes, mutation provides the 

opportunity to shake up the population to expand the solution space. 

2.2.1.8 Termination criterion 

The termination criterion could be a fixed number of iterations, or a condition where the fitness 

value remains the same over a few successive iterations. 

2.2.2 Simnlated Annealing 

Simulated annealing (SA) is a heuristic based probabilistic method for the global optimization 

problem. It provides a good approximation to the global minimum of a given function in a 

large search space 98 99. It is often used when the search space is discrete (e.g., centroid 

selection from a set of points of the dataset). For certain problems, simulated annealing 
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may be more effective than exhaustive enumeration - provided that the goal is merely 

to find an acceptably good solution in a fixed amount of time, rather than the best 

possible solution. 

Annealing, a technique in metallurgy, involves heating and controlled cooling of a material to 

increase the size of its crystals and reduce their defects. The heat causes the atoms to wander 

randomly from their initial positions (a local minimum of the internal energy) through states of 

higher energy; the slow cooling gives those more chances of finding configurations with lower 

internal energy than the initial one. Each step of the SA algorithm replaces the current solution 

by a random 'nearby' solution, chosen with a probability that depends on the difference 

between the corresponding function values and on a global parameter T (called the 

temperature), that is gradually decreased during the process. The dependency is such that the 

current solution changes almost randomly when T is large, but increasingly 'downhill' as T 

goes to zero. The allowance for 'uphill' moves saves the method from converging at local 

minima. 

The method has been independently described by 70 in 1983, and by V. Cerny 71 in 1985 . The 

method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to 

generate sample states of a thermodynamic system, invented by N. Metropolis et al. 72 in 1953. 

2.2.2.1 Overview 

In the simulated annealing (SA) method, each point s of the search space is analogous to a state 

of some physical system, and the function E(s) to be minimized is analogous to the internal 

energy of the system in that state. The goal is to bring the system, from an arbitrary initial 

state, to a state with the minimum possible energy. 

2.2.2.2 The basic iteration 

At each step, the SA heuristic considers some neighbour S' of the current state s, and 

probabilistically decides between moving the system to state S' or staying in state s. The 

probabilities are chosen so that the system ultimately tends to move to states of lower energy. 

Typically this step is repeated until the system reaches a state that is good enough for the 

application. 

2.2.2.3 The neighbors of a state 
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The neighbors of each state (the candidate moves) are specified by the user, usually in an 

application-specific way. For example, in clustering problem each state may be represented by 

a fitness value and neighbors represent potential solution state in the neighborhood with its 

associated fitness value. 

2.2.2.4 Acceptance probabilities 

The probability of making the transition from the current state s to a candidate new state s' is 

specified by an acceptance probability function P (e, e', T), that depends on the energies e = 

E(s) and e' = E(s') of the two states, and on a global time-varying parameter T called the 

temperature. 

One essential requirement for the probability function P is that it must be nonzero when e' > e, 

meaning that the system may move to the new state even when it is worse (has a higher 

energy) than the current one. It is this feature that helps the method from converging to a local 

minimum-a state that is worse than the global minimum, yet better than any of its neighbors. 

On the other hand, when T goes to zero, the probability P (e, e', T) must tend to zero if e' > e, 

and to a positive value if e' < e. For sufficiently small values ofT, the system will tend to move 

'downhill' (to lower energy values), and bypass moves that go 'uphill'. In particular, when T 

becomes 0, the procedure will reduce to the greedy algorithm-which makes the move only if 

it goes downhill. The P function is usually chosen so that the probability of accepting a move 

decreases when the difference e' - e increases (small uphill moves are more likely than large 

ones). 

The evolution of the state s depends on the temperature T, and is sensitive to coarser energy 

variations when T is large, and to finer variations when T is small. 

2.2.2.5 The annealing schedule 

The SA method reduces the temperature gradually. Initially, T is set to a high value (or 

infinity), and it is decreased at each step according to some annealing schedule--which may be 

specified by the user, but must end with T = 0 towards the end of the allotted time. The system 

is expected to wander initially towards a broad region of the search space containing good 

solutions, ignoring small features of the energy function; then drift towards low-energy regions 
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Algorithm 2.3 Simulated Annealing 

Input: a random initial population 0/ possible solution 

Output: optimized solution/or the problem 

s +- sO; e +- E(s) // Initial state, energy. 

sb +- s; eb +- e 1/ Initial "best" solution 

k +- 0 /1 Energy evaluation count. 

while k < kmax and e > emax II While time remains & not good enough: 

sn +- neighbor(s) II Pick some neighbor. 

en +- E(sn) II Compute its energy. 

if en < eb then II Is this a new best? 

sb +- sn; eb +- en II Yes, save it. 

ifP(e, en, temp(kJkmax)) > randomO then II Should we move to it? 

s +- sn; e +- en II Yes, change state. 

k+-k+l II One more evaluation done 

return sb II Return the best solution found. 

that become narrower and narrower; and finally move downhill according to the steepest 

descent heuristic. For any given finite problem, the probability that the simulated annealing 

algorithm terminates with the global optimal solution approaches 1 as the annealing schedule is 

prolonged. 

2.2.2.6 Pseudocode 
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The pseudo code (see Algorithm75 2.3) implements simulated annealing, starting from state sO 

and continuing to a maximum of kmax steps or until a state with energy emax or less is found. 

The call neighbor(s) should generate a randomly chosen neighbor of a given state s; the call 

random 0 should return a random value in the range [0,1). The annealing schedule is defined 

by the call temp(r), which should yield the temperature to use, given the fraction r of the time 

spent thus far. Saving the best state is not necessarily an improvement, since one may have to 

specify a smaller kmax in order to compensate for the higher cost per iteration. However, the 

step sb- sn happens only on a small fraction of the moves. Therefore, the optimization is 

usually worthwhile, even when state-copying is an expensive operation. 

2.2.2.7 Selecting the parameters 

In order to apply the SA method to a specific problem, one must specify the following 

parameters: the state space, the energy (goal) function E 0, the candidate generator procedure 

neighbor 0, the acceptance probability function P 0, and the annealing schedule temp 0· 

These choices can have a significant impact on the method's effectiveness. Unfortunately, there 

are no choices of these parameters that will be good for all problems, and there is no general 

way to find the best choices for a given problem. 

2.2.2.8 Diameter of the search graph 

Simulated annealing may be modeled as a random walk on a search graph, whose vertices are 

all possible states, and whose edges are the candidate moves. An essential requirement for the 

neighbor 0 function is that it must provide a sufficiently short path on this graph from the 

initial state to any state which may be the global optimum. (In other words, the diameter of the 

search graph must be small). 

2.2.2.9 Transition probabilities 

For each edge (s, s') of the search graph, one defines a transition probability, which is the 

probability that the SA algorithm will move to state s' when its current state is s. This 

probability depends on the current temperature as specified by temp 0, by the order in which 

the candidate moves are generated by the neighbor 0 function, and by the acceptance 

probability function PO. 

2.2.2.10 Acceptance probabilities 
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The specification of neighbor 0, P 0, and temp ° is partially redundant. In practice, it's 

common to use the same acceptance function PO for many problems, and adjust the other two 

functions according to the specific problem. In the formulation of the method by Kirkpatrick et 

aI., the acceptance probability function P (e, e', T) was defined as I if e' < e, and exp « e - e') / 

T) otherwise. This formula corresponds to the Metropolis-Hastings algorithm, in the case 

where the proposal distribution of Metropolis-Hastings is symmetric. However, this acceptance 

probability is often used for simulated annealing even when the neighbor 0 function, which is 

analogous to the proposal distribution in Metropolis-Hastings, is not symmetric, or not 

probabilistic at all. As a result, the transition probabilities of the simulated annealing algorithm 

and the long-term distribution of states at a constant temperature T need not bear any 

resemblance to the thermodynamic equilibrium distribution over states of that physical system, 

at any temperature. Nevertheless, most descriptions of SA assume the original acceptance 

function, which is probably hard-coded in many implementations of SA. 

2.2.2.11 Efficient candidate generation 

When choosing the candidate generator neighbor 0, one must consider that after a few 

iterations of the SA algorithm, the current state is expected to have much lower energy than a 

random state. Therefore, as a general rule, one should skew the generator towards candidate 

moves where the energy of the destination state s' is likely to be similar to that of the 

current state. This heuristic (which is the main principle of the Metropolis-Hastings 

algorithm) tends to exclude "very good" candidate moves as well as "very bad" ones; 

however, the latter are usually much more common than the former, so the heuristic is 

generally quite effective. 

[n the traveling salesman problem, for example, swapping two consecutive cities in a low­

energy tour is expected to have a modest effect on its energy (length); whereas swapping two 

arbitrary cities is far more likely to increase its length than to decrease it. Thus, the 

consecutive-swap neighbor generator is expected to perform better than the arbitrary-swap one, 

even though the latter could provide a somewhat shorter path to the optimum (with n - I 

swaps, instead ofn (n -I) / 2). A more precise statement of the heuristic is that one should try 

first candidate states s' for which P (E(s), E(s'), T) is large. For the standard acceptance 

function P, it means that E(s') - E(s) is on the order of T or less. Thus, in the traveling 

salesman example, one could use a neighbor 0 function that swaps two random cities, where 

the probability of choosing a city pair vanishes as their distance increases beyond T. 
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2.2.2.12 Barrier avoidance 

When choosing the candidate generator neighbor 0 one must also try to reduce the number of 

"deep" local minima - states (or sets of connected states) that have much lower energy than 

all its neighboring states. Such closed catchment basins of the energy function may trap the 

SA algorithm with high probability (roughly proportional to the number of states in the basin) 

and for a very long time (roughly exponential on the energy difference between the 

surrounding states and the bottom of the basin). It is generally impossible to design a candidate 

generator that will satisfY this goal and also prioritize candidates with similar energy. On the 

other hand, one can often vastly improve the efficiency of SA by relatively simple changes to 

the generator. 

2.2.2.13 Cooling schedule 

The physical analogy that is used to justifY SA assumes that the cooling rate is low enough for 

the probability distribution of the current state to be near thermodynamic equilibrium at all 

times. Unfortunately, the relaxation time-the time one must wait for the equilibrium to be 

restored after a change in temperature-strongly depends on the "topography" of the energy 

function and on the current temperature. In the SA algorithm, the relaxation time also depends 

on the candidate generator, in a very complicated way. All these parameters are usually 

provided as black box functions to the SA algorithm. Therefore, in practice the ideal cooling 

rate cannot be determined beforehand, and should be empirically adjusted for each problem. 

The variant of SA known as thermodynamic simulated annealing tries to avoid this problem by 

dispensing with the cooling schedule, and instead automatically adjusting the temperature at 

each step based on the energy difference between the two states, according to the laws of 

thermodynamics. 

2.2.2.14 Restarts 

Sometimes it is better to move back to a solution that was significantly better rather than 

always moving from the current state. This is called restarting. To do this we set sand e to sb 

and eb, and perhaps restart the annealing schedule. The decision to restart could be based on a 

fixed number of steps, or based on the current energy being too high from the best energy so 

far. 

2.2.3 Particle Swarm Optimization 
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The particle swarm optimization (PSO) is a type of derivative free, direct search method used to 

find an optimal solution to an objective function (fitness function) in a search space. They 

depend only on the evaluation of the objective function. PSO is a stochastic, population-based 

computer algorithm inspired by swarm intelligence, which is based on social-psychological 

principles providing insights into social behavior proving useful for engineering problems95
• 

The method was first proposed in 1995 73
• 

Social influence and social learning enable a person to maintain cognitive consistency. People 

solve problems by interacting with other people and consequently their beliefs, attitudes, and 

behaviors change. The individuals move toward one another. PSO simulates this kind of social 

optimization. Given a problem, some mechanism to evaluate a proposed solution to it exists in 

terms of a fitness function. A communication or social network is established by assigning 

neighbors for interaction of each individual. Initialization of candidate solutions is done as a 

population of individuals through random guesses of the solution of the problem. A particle is a 

candidate solution. An iterative process to improve these candidate solutions is set in motion. 

The particles iteratively evaluate the fitness of the candidate solutions. They memorize the 

location where they had their best success. The individual's best solution is called the 

particle best or the local best Each particle conveys this information to their neighbors. They 

are also able to see where their neighbors have had success. The solution is guided by these 

successes, with the population usually converging at a better solution in comparison to a non­

swarm approach. 

The swarm is modelled by particles in multidimensional space. The particles have a position 

and a velocity. These particles fly through hyperspace (i.e., Rn 
) and have two essential 

reasoning capabilities: their memory of their own best position and knowledge of the global 

or their neighborhood's best. They communicate good positions to each other, and adjust 

their own position and velocity based on these good positions. A particle has the following 

information to adjust its position and velocity: 

A global best immediately updated when a new best position is found by any particle in the 

swarm. 

A Neighborhood best the particle obtains by communicating with a subset of the swarm. 

The local best, the best solution witnessed by the particle. 

The particle position and velocity update equations in the simplest form are given by 

Vij +- COVi + C1Tl(globalbestj - xij) + C2T2(localbestij - Xij) 

+ C3 T3 ( neig hboThoodbest j - Xij) 
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The iteration of the swarm improves the fitness of the global best solution. The fitness may hit a 

plateau despite repeated runs if all particles being influenced by the global best eventually 

approach the global best. The particles may also exhibit 'convergence' by moving about in the 

search space in close proximity to the global best leaving the rest of search space unexplored. If 

the inertial coefficient of the velocity is small, all particles could slow down until they approach 

zero velocity at the global best. The selection of coefficients in the velocity update equations 

affects the convergence and the ability of the swarm to find the optimum. Reinitializing the 

particles positions at intervals or when convergence is detected can overcome this situation. 

Some research approaches investigated the application of constriction coefficients and inertia 

weights. There are numerous techniques for preventing premature convergence. Many 

variations on the social network topology, parameter-free, fully adaptive swarms, and some 

highly simplified models have been created. PSO in its basic form is best suited for continuous 

variable, Le., the objective function can be evaluated for even the tiniest increment. The method 

has been adapted as a binary PSO to also optimize binary variables whlch take only one of two 

values. Several methods exist to handle discrete variables which may be in one of multiple 

states. 

The algorithm below uses the global best and local bests but ignores neighborhood bests. 

Neighborhood bests allow parallel exploration of the search space and help to avoid local 

convergence, but it slows down the speed of arriving at good solutions. A new best position 

discovered by a particle's neighborhood would be communicated to another particle's 

neighborhood at the next iteration of the PSO algorithm. Smaller neighborhoods lead to slower 

convergence, while larger neighborhoods to faster convergence, with a global best representing 

a neighborhood consisting of the entire swarm. 

A single particle by itself is unable to accomplish anything. The power is in interactive 

collaboration. 

Lett: ~ Rm be the fitness function 

Let there be n particles, each with associated positions x, s Rmand velocities v, s Rm , i= l, ..... ,n, 

Let y be the current best position of each particle and let g be the global best. 

Initialize x, and VI for all L One common choice is to take XIJ s U[ aJ,bJ] and VI =0 for all i and 

j=l, .... ,m, where aJ, bJ are the limits of the search domain in each dimension, and U represents 

the Uniform distribution (continuous). 
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~ d A minf( ) . - 1 Y +- xian 9 +- arg Xi Xi ,l - , .... , n ...... (2.4) 

While not converged: 

For each particle 1 ~ i ~ n 

Create random vectors rb T2 : T1 j and T2j and for all j, by taking Tlj, T2 j E U[0),1] 

for j== 1, ... ,m 

Ty 
Update the particle velocities: 

...... (2.5) 

Update the particle positions: 

Update the local bests If f(xD < f(Y), y +- Xi (2.7) 

Update the global best If f(xi) < f(§), 9 +- xi ... (2.8) 

9 is the optimal solution with fitness f(§) 

w is an inertial constant. Good values are usually slightly less than 1. 

CI and C2 are constants indicating how much the particle is directed towards good positions. 

They represent a "cognitive" and a "social" component respectively. They affect how much the 

particle's personal best and the global best respectively influence its movement. Usually we 

take 

r(, r2 are two random vectors with each component generally a uniform random number 

between 0 and 1. 
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The pseudo code of the basic PSO (see Algorithm 2.4) with random vectors r), r2 implemented 

as scalars inside the dimension loop is given below. 

By studying this algorithm, we see that we are essentially carrying out something like a discrete 

time simulation where an iteration of it represents a tick of time. The particles communicate 

information they find about each other by updating their velocities in terms of local and 

global bests. When a new best is found, the particles will change their positions 

accordingly so that the new information is broadcast to the swarm. The particles are always 

drawn back both to their own personal best positions and also to the best position of the entire 

swarm. They also have stochastic exploration capability via the use of the random multipliers 

r}, r2. The vector, floating-point nature of the algorithm suggests that high-performance 

implementations could be created that take advantage of modem hardware extensions 

pertaining to vectorization. 

Typical convergence conditions include reaching a certain number of iterations, reaching 

a certain fitness value, and so on. 

There are a number of considerations in using PSO in practice; say one might wish to limit the 

velocities to a certain maximum amount. The considerable adaptability of PSO to variations 

and hybrids is seen as strength over other robust evolutionary optimization mechanisms, 

such as genetic algorithms. For example, one common, reasonable modification is to add a 

probabilistic bit-flipping local search heuristic to the loop. Normally, a stochastic hill-climber 

risks getting stuck at local maxima, but the stochastic exploration and communication of the 

swarm overcomes this. Thus, PSO can be seen as a basic search that can be adapted as 

needed for the problem at hand. 

The research literature has uncovered many heuristics and variants determined to be better with 

respect to convergence speed and robustness, such as clever choices of (0, c" and r,. There are 

also other variants of the algorithm, such as discretized versions for searching over subsets of 

Z" rather than R". There has also been experimentation with co-evolutionary versions of the 

PSO algorithm with good results reported. Very frequently the value of (0 is taken to decrease 

over time; e.g., one might have the PSO run for a certain number of iterations and decrease 

linearly from a starting value (0.9, say) to a final value (0.4, say) in order to facilitate 

exploitation over exploration in later states of the search. The literature is full of such 
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Algorithm 2.4 Particle Swarm Optimization 

Input: a random initial population of possible solution 
Output: optimized solution for the problem 
II Initialize the particle positions and their velocities 
for I = I to number of particles n do 

for J = I to number of dimensions m do 
XlI} [J} = lower limit + (upper limit - lower limit) * uniform random number 
V[I}[J} = 0 

enddo 
enddo 
fitness --.JJbest = in/; I I Initialize the global and local fitness to the worst possible 

for I = 1 to number of particles n do 
fitness _lbest[I} = inf 

enddo 
II Loop until convergence, in this example afinite number of iterations chosen 
for k = 1 to number of iterations to do 
II evaluate the fitness of each particle 

fitness J = evaluate Jitness(X) 
II Update the local bests and their fitness 
for I = 1 to number of particles n do 

if (fitness _ X[I) < fitness _lbest[I}) 
fitness _lbest[l} = fitness _ X[I} 
for J = I to number of dimensions m do 

X_lbest[I][J} = X[I][J} 

enddo 
endif 

enddo 
II Update the global best and its fitness 

[minJitness, minJitness_index} = min(fitnessj{) 
if (minJitness < fitness --.JJbest) 

fitness --.JJbest = min Jitness 

endif 

for J = 1 to number of dimensions m do 
X--.JJbest[J] = X(minJitness_index,J) 

enddo 

II Update the particle velocity and position 
for I = I to number of particles n do 

for J = I to number of dimensions m do 
RI = uniform random number 
R2 = uniform random number 

V[I][J] = w*V[I][J] + CI*RI*(X_lbest[I][J] -X[I][J]) 
+ C2*R2*(X--.JJbest[J] -X[I][J]) 

X[I][J] =X[I][J] + V[I][J] 
enddo 

enddo 

enddo 
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heuristics. In other words, the canonical PSO algorithm is not as strong as various 

improvements which have been developed on several common function optimization 

benchmarks and consulting the literature for ideas on parameter choices and variants for 

particular problems is likely to be helpful. 

Significant, non-trivial modifications have been developed for multi-objective optimization, 

versions designed to find solutions satisfYing linear or non-linear constraints, as well as niching 

versions designed to find multiple solutions to problems where it is believed or known that 

there are multiple global minima which ought to be located. There is also a modified version of 

the algorithm called repulsive particle swarm optimization, in which a new factor, called 

repulsion, is added to the basic algorithm step. Although a relatively new paradigm, PSO 

has been applied to a variety of tasks, such as the training of artificial neural networks and for 

finite element updating. Very recently, PSO has been applied in combination with grammatical 

evolution to create a hybrid optimization paradigm called "grammatical swarms". 

2.2.3.1 Comparisons between Genetic Algorithm and PSO 

Most of evolutionary techniques have the following procedure: 

1. Random generation of an initial population 

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to the 

optimum. 

3. Reproduction of the population based on fitness values. 

-I. If requirements are met, then stop. Otherwise go back to 2. 

From the procedure, we can see that PSO shares many common points with GA. Both 

algorithms start with a group of a randomly generated population, both have fitness 

values to evaluate the population. Both update the population and search for the 

optimium with random techniques. Both systems do not guarantee success. However, 

PSO does not have genetic operators like crossover and mutation. Particles update 

themselves with the internal velocity. They also have memory, which is important to 

the algorithm. Compared with genetic algorithms (GAs), the information sharing 

mechanism in PSO is significantly different. In GAs, chromosomes share information 

with each other. So the whole population moves like a one group towards an optimal 
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afea. In PSO, only gBest (or lBest) gives out the information to others. It is a one 

way information sharing mechanism. The evolution only looks fOf the best solution. 

Compared with GA, all the particles tend to converge to the best solution quickly 

even in the local vefsion in most cases. 

2.2.4 Differential Evolution The global optimization pfoblem minimize j(x) subject to x € 

0, where x is a continuous variable with the domain D C O~, and j(x): 0 --. R is a 

continuous function. The domain D is defined by specifYing lower (aJ) and upper (bJ) limits of 

each component Xl' 0= IIdJ~l raj, bJ] , 

aJ < bJ , j= 1,2, .... , d. This specification of D is also called the boundary (box) constraints. The 

global minimum point x* = arg min xE oj(x) is the solution of the problem. The algorithm of 

differential evolution in pseudo-code is given as Algorithm 2.5. 

2. 2.4.1 Differential evolution and its control parameters 

The differential evolution (DE) introduced by Storn and Price has become one of the most 

frequently used evolutionary algorithms for solving the continuous global optimization 

problems in recent years. 

A new trial point y (line 4 in Algorithm) is generated by using mutation and crossover. There are 

various strategies, how to create the mutant point u. The most popular strategy called 

DE/rand/V generates the point u by adding the weighted difference of two points u= fl+ F(f2 

- f3), where fl, f2 and f3 are three mutually distinct points taken randomly from population P, 

not coinciding with the current x,, and F>O is an input parameter. 

Another strategy called DE/bestl2/ generates the point u according to formula u = Xmm + F(fl 

+ f2 - f3 - f4) , where Xmm is the point of P with minimal function value, fl, f2, f3, f4 are four 

mutually distinct points taken randomly from P not coinciding with the current x, or Xmin, and 

F>O is an input parameter. The efficiency of differential evolution is very sensitive to the 

setting of values F and CR. The values recommended in literature are F=O.8 and CR=O.5, but 

even Storn and Price in their numerical tests set up values of F and CR depending on the results 

of preliminary tuning, O.5q~1, and O~R~l. Several papers deal with the setting of control 

parameters. Zaharie derived the critical intervals for the control parameters. Some other 

attempts to the adaptation of DE control parameters are summarized in Liu and Lampinen. 
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Algorithm 2.5 Differential Evolution 

Input: a random initial population of possible solution 

Output: optimized solution for the problem 

1 generate an initial population P = (x), X2, ..•••. , XN), XI E D 

2 repeat 

3 for i== 1 to N do 

4 generate a new trial vector y 

5 if fry) <f(XI) then insert y into new generation Q 

6 else insert xlinto new generation Q 

7 endif 

8 endfor 

9 P:=Q 

10 until stopping condition 

2.3 Text Clustering 

Text mining applies data mining techniques, such as clustering, classification or association rule 

search to textual information. Typically high-dimensional (or irreducible to a simple vector 

representation) data, Text mining is highly dependent on document representation, or index. 

Background knowledge on information retrieval is required. Data preprocessing (=feature 

selection) is essential (stopword filtering, term stemming). 
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Among the text mining tasks are (a) Data preparation and pre-processing (feature selection) 

which includes tokenization, stopword filtering, term stemming, vectorization, and dictionary 

compilation (b) Prediction by methods such as naive Bayes and advanced linear models (c) 

Information retrieval by k- nearest neighbors and document matching (d) Document 

clustering and (e) Information extraction of named entities. 

In the case of document clustering, high dimensionality is not a problem for computing the 

distance of two documents. Their vectors are sparse, so that only a small fraction of the 

theoretically possible M component wise differences need to be computed. Centroids, however, 

are dense since they pool all terms that occur in any of the documents of their clusters. As a 

result, distance computations are time consuming in a naive implementation ofK-Means. 

2.3.1 Vector Space Model 

A starting point for applying clustering algorithms to unstructured text data is to create a vector 

space model, alternatively known as a bag-of-words model. The core idea is (i) extract distinct 

content bearing words from the collection of documents and consider these words as features 

(ii) Thereafter represent each document as a vector of certain weighted word frequencies in the 

feature space. 

The vector space model computes a measure of similarity by defining a vector that represents 

each document, and a vector that represents the query 77. The meaning of a document is 

conveyed by the words used. If one can represent the words in a document by a vector, it is 

possible to compare documents with queries to determine how similar their content is. If a 

query is considered to be like a document, a similarity coefficient (SC) that measures the 

similarity between a document and a query can be computed. Documents whose content, as 

measured by the terms in the document, correspond most closely to the content ofthe query are 

judged to be the most relevant. 

The model involves constructing a vector that represents the terms in the document and another 

vector that represents the terms in the query. Next, a method must be chosen to measure the 

closeness of any document vector to the query vector. One could look at the magnitude of the 

difference vector between two vectors, but this would tend to make any large document appear 
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to be not relevant to most queries, which typically are short. The traditional method of 

determining closeness of two vectors is to use the size of the angle between them. This angle is 

computed by using the inner product (or dot product); however, it is not necessary to use the 

actual angle. Any monotonic function of the angle suffices. Often the expression "similarity 

coefficient" is used instead of an angle. Computing this number is done in a variety of ways, 

but the inner product generally plays a prominent role. Underlying this is the idea that a 

document and a query are similar to the extent that their associated vectors point in the same 

general direction. 

There is one component in these vectors for every distinct term or concept that occurs in the 

document collection. Consider a document collection with only two distinct terms, a and ~. All 

vectors contain only two components, the first component represents occurrences of a, and the 

second represents occurrences of~. The simplest means of constructing a vector is to place a 

one in the corresponding vector component if the term appears and a zero if the term does not 

appear. Consider a document 0 1, that contains two occurrences of term a and zero occurrences 

of term ~. The vector <1, 0> represents this document using a binary representation. This 

binary representation can be used to produce a similarity coefficient, but it does not take into 

account the frequency of a term without a document. By extending the representation to include 

a count of the number of occurrences of the terms in each component, the frequency of the 

terms can be considered. In this example, the vector would now appear as <2, 0>. 

Instead of simply specifying a list of terms in the query, a user is often given the opportunity to 

indicate that one term is more important than another. This was done initially with manually 

assigned term weights selected by users. Another approach uses automatically assigned 

weights-typically based on the frequency of a term as it occurs across the entire document 

collection. The idea was that a term that occurs infrequently should be given a higher 

weight than a term that occurs frequently. Similarity coefficients that employed 

automatically assigned weights were compared to manually assigned weights 77. It was shown 

that automatically assigned weights perform at least as well as manually assigned weights. 

Unfortunately, these results did not include the relative weight of the term across the entire 

collection. 

This example illustrates the use of weights based on the collection frequency. Weight is 

computed using Inverse Document Frequency (IDF) corresponding to a given term. To 

construct a vector that corresponds to each document, we define 

t= number of distinct terms in the document collection 
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tfif = number of occurrences of term If in Document D,. This is the referred to as the term 

frequency. 

d/;= number of documents which contain t}" This is the document frequency. 

The vector for each document has n components and contains an entry for each distinct term in 

the entire document collection. The components in the vector are filled with weights computed 

for each term in the document collection. The terms in each document are automatically 

assigned weights based on how frequently they occur in the entire document collection and how 

often a term appears in a particular document. The weight of a term in a document increases 

the more often the term appears in one document and decreases the more often it appears 

in an other documents. 

A weight computed for a term in a document vector is non-zero only if the term appears in the 

document. For a large document collection consisting of numerous small documents, the 

document vectors are likely to contain mostly zeros. For example, a document collection with 

10,000 distinct terms results in a 10,000-dimensional vector for each document. A document 

with only 100 distinct terms will have a document vector that contains 9,900 zero-valued 

components. 

.. 

Fig 2.2: Document Clustering 
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The weighing factor for a term in a document is defined as a combination of term frequency, 

and inverse document frequency. That is, to compute the value of the jth entry in the vector 

corresponding to document i, the following equation is used: 

(2.9) 

Document clustering is done by utilizing mathematical algorithms against document content. 

The resulting values are then compared to one another such that documents with like content 

can then be grouped together. Document clustering algorithms can be hierarchical or 

partitioned. Hierarchical algorithms find successive clusters using previously established 

clusters, whereas partitioned algorithms determine all clusters at once. 

Once data is loaded after the conversion to numeric values, the documents can now be 

processed and clustered together based upon like content via the algorithms like K-Means. 

The clustering process actually involves the following steps: 

(a) converting the text documents into its numeric equivalent dataset (pre-process to 

form the vector space model) 

(b) read the numeric dataset from disk 

(c) Use a particular clustering algorithm 

2.4 K-Means 

K-Means is the most commonly used partition clustering algorithm. The challenge of designing improved 

versions of this 50 year old algorithm is still being folt as the size of datasets and databases continues to 

grow. Numerous approaches have been employed on K-means to better its performance. This demonstrates 

the importance of K-means as a clustering technique. Some of these approaches like the standard K-means, 

FCM or KSOM converge to a local minimum. All the reported findings of the optimization based methods 

overcome the limitations of local convergence, and provide a global minimum. This proves the superiority of 

the optimization based approaches. An excellent article highlighting the relevance ofK-Means in comparison 
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to other clustering algorithms can be found in the paper 9, whereas Table 2.3 below lists some approaches 

used on K-Means to improve its performance. 

Input Parameter Structure Convergence Optimised for Search Time 

Algorithm technique complexity 

K-means No of clusters Hyper- Convergences to locally Separated clusters, LocalIsed o (nk!) 

sphencal optunal solutions Large data sets 

clusters Dependent on mltlal seed 

selection 

FCM No of clusters Non convex Converges to local Large data sets LocalIsed O(n) 

clusters mlDJma of the squared 

error cntenon Dependent 

on mllIal seed selection 

GA based AutomatIc Non Convex Parameters dependent One dImensIOnal Globahsed Execution time 

FCM clusters (p0I?u1atlOn SIZe, IS very hIgh for 

crossover and mutation Small data sets large data sets 

probabilIties) 

KSOM Automatic Hyper Parameters dependent Large data sets Locahsed Execution time 

sphencal (leammg rate and IS very hIgh for 

clusters neIghbourhood of the large data sets 

wmnmgnode) 

SImulated Acceptance Compact Fmds global mmlma, and SIgnIficant GlobalIsed ExecutIon time 

Annealmg probablhtles, global Clusters overcomes the problem of Improvement of IS dependent on 

parameter T local convergence of k perfonnance over K mput parameters 

(temperature), means even for sunple Means m the case of 

annealmg schedule, datasets overlappmg and 

state space, Energy complex data sets 

(goal) function E 

Table 2.3: K-Mean vis-a-vis improvement techniques (Assorted K-means improvement techniques) 

The K-Means algorithm is simple and fast 100. Sensitivity to initial points and convergence to 

local optima are usually among the problems affecting the interactive techniques such as K­

Means 4 ". K-Means is one of the simplest unsupervised learning algorithms. The procedure 

follows a simple and easy way to classifY a given data set through a certain number of clusters 

(assume k clusters) fixed a priori. The main idea is to define k centroids, one for each cluster. 

These centroids should be placed in a cunning way because different location causes different 

result. So, the better choice is to place them as much as possible far away from each other. The 

next step is to take each point belonging to a given data set and associate it to the nearest centroid. 
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When no point is pending, the first step is completed and an early grouping is done. At this point 

we need to re-calculate k new centroids as centers of the clusters resulting from the previous step. 

After we have these k new centroids, a new binding has to be done between the same data set 

points and the nearest new centroid. A loop has been generated. As a result of this loop we may 

notice that the k centroids change their location step by step until no more changes are done. In 

other words centroids do not move any more. Finally, this algorithm aims at minimizing an 

objective function, in this case a squared error function. 

Although it can be proved that the procedure will always terminate, the K-Means algorithm does 

not necessarily find the most optimal configuration, corresponding to the global objective 

function minimum. Minimizing this objective function is known to be an NP-hard problem (even 

for K = 2) 74. Thus K-Means, which is a greedy algorithm, can only converge to a local 

minimwn, even though recent study has shown with a large probability K-Means could 

converge to the global optimum when clusters are well separated 916 . 

The K-Means algorithm is also known to be too slow for practical databases 20. The K-Means 

algorithm can be run multiple times to reduce this effect. Unfortunately there is no general 

theoretical solution to find the optimal number of clusters for any given data set. A simple 

approach is to compare the results of multiple runs with different k classes and choose the best 

one according to a given criterion. The K-Means algorithm 69 is as shown as Algorithm 2.6. The 

objective function which is a chosen distance measure between a data point and the cluster centre 

is an indicator of the distance of the n data points from their respective cluster centers. The 

objective of K-Means is to minimize the average squared Euclidean distance of objects or 

documents from their cluster centers where a cluster center is defined as the mean or centroid. 

The first step of K-Means is to select as initial cluster centers k randomly selected points, the 

seeds. The algorithm then moves the cluster centers around in space in order to minimize squared 

Euclidean distance. This is done iteratively by repeating two steps until a stopping criterion is 

met: reassigning points to the cluster with the closest centroid; and re-computing each centroid 

based on the current members of its cluster. One can apply one of the following termination 

conditions: 

( i) AflXed number of iterations has been completed. This condition limits the runtime of the 
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Algorithm 2.6 K-Means Algorithm 

1. Select K points as initial centroids 

2. repeat 

3. Form K clusters by assigning each point to its closest centroid 

4. Re-compute the centroid of each cluster 

5. until Centroids do not change 

clustering algorithm, but in some cases the quality of the clustering will be poor 

because of an insufficient number of iterations. 

(ii) Assignment of points to clusters (the partitioning function) does not change between 

iterations. Except for cases with a bad local minimum, this produces a good 

clustering, but runtime may be unacceptably long. 

(iii) Centroids do not change between iterations. This IS equivalent to 

partitioning function not changing. 

(iv) Terminate when error value falls below a threshold. This criterion 

ensures that the clustering is of a desired quality after termination. In practice, 

we need to combine it with a bound on the number of iterations to guarantee 

termination. For small threshold, this indicates that we are close to convergence. 

Again, we need to combine it with a bound on the number of iterations to 

prevent very long runtimes. 

There are two main problems for K-Means algorithm. First, in each iteration step, 

much computation time is spent on assigning every point in the data set to its new 

nearest center. Second, the algorithm is easy to be trapped in some local optimum, which 

can be much worse than the global optimum. 

For the first problem, there have been several works on accelerating the nearest center 

search Procedure based on triangle inequality or indexing structures, which can work 
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well in low dimensional space. Compared with the first problem, the second problem 

has not been well addressed yet. Although there are some studies on the choices of 

initial centers to avoid those local optimums, these methods do not show too much 

advantage over the simple random selection in the data set. Hence, a study employing 

different optimizing scheme on improving the iterative K-Means can bring out the 

relative strength and weaknesses of the optimizing techniques and interestingly reveal 

the best method to use for this very well-known problem. 

The complexity ofK-Means algorithm can be estimated as below 

Assume computing distance between two instances is O(m) where m is the dimensionality of 

the vectors. 

Reassigning clusters: O(kn) distance computations, or O(knm). 

Computing centroids: Each instance vector gets added once to some centroid: O(nm). 

Assume these two steps are each done once for I iterations: O(Iknm). 

Linear in all relevant factors, assuming a fixed number of iterations, 

more efficient than O(nJ than HAC 

3 

2 

1 

o 

o 1 2 

Fig 2.3 The outcome of K-Means depends on its initial seed. For seeds D2 and D5, K­

Means converges to {Dt, D2, D3} & {D4,D5,D6}, a sub optimal clustering. For seeds D2 

and D3, it converges to {Dl,D2,D4,D5} & {D3,D6}, a global optimum for K=2. 
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The K-Means algorithm is an iterative algorithm for minimizing the sum of distance between 

each data point and its cluster center (centroid). There are various ways of measuring distance 

such as squared Euclidean distance, city-block, cosine dissimilarity, Hamming distance 

and a few others. Squared Euclidean distance is the most widely used distance 

measure for K-Means, and the corresponding criterion function that a Euclidean K-Means 

algorithm optimizes is the sum-squared-error (SSE) criterion. K-Means clustering and 

Gaussian mixture clustering may not converge to the global optimum. The performance of K­

Means and Gaussian mixture clustering strongly depends on the initial starting points 10. 

Several random initialization methods for K-Means have been developed. Two classical 

methods are random seed and random partition. Random seed randomly selects k instances 

(seed points), and sends each of the other instances to the cluster with the nearest seed point. 

Random partition assigns each data instance into one of the k clusters randomly. To prevent 

from getting stuck at a local minimum, one can apply r random starts. One can perform either 

of the above methods to initialize K-Means, repeat the process r times, and select the final 

clustering with the minimum SSE from the r runs. The problem with random methods is that 

they're not repeatable (unless one stores all the starting points applied or the seeds of the 

random number generator), and they may still lead to a solution with bad quality unless we 

allow r to be very large making the clustering time-consuming for large data sets. 

12 have outlined a procedure for computing a refined starting condition from a given initial 

one that is based on an efficient technique for estimating the modes of a distribution. The 

refined initial starting condition leads to convergence to better local minima. 

Refinement run time is considerably lower than the time required to cluster the full 

database. The method is scalable and can be coupled with a scalable clustering 

algorithm to address the large-scale clustering in data mining. By initializing a general 

clustering algorithm near the modes, not only are the true clusters found more often, but it 

follows that the clustering algorithm will iterate fewer times prior to convergence. 

Effective heuristics for seed selection include 

(i) excluding outliers from the seedset; 

(ii) trying out multiple starting points and choosing the clustering with lowest cost; and 

(iii) obtaining seedsfrom another method such as hierarchical clustering. 
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Since deterministic hierarchical clustering methods are more predictable than K-Means, a 

hierarchical clustering ofa small random sample of size ik (e.g., for i=5 or i=lO) often provides 

good seeds (Buckshot algorithm). Other initialization methods compute seeds that are not 

selected from the vectors to be clustered. A robust method that works well for a large variety of 

document distributions is to select i (e.g.,i=lO) random vectors for each cluster and use their 

centroid as the seed for this cluster. 

Because of the problems with using randomly selected initial centroids, which even repeated 

runs may not overcome, other techniques are often employed for initialization. One effective 

approach is to take a sample of points and cluster them using a hierarchical clustering 

technique. K clusters are extracted from the hierarchical clustering, and the centroids of these 

clusters are used as the initial centroids. This approach often works well, but is practical 

only if (1) the sample is relatively small, a few hundred to a few thousand as 

hierarchical clustering is expensive & (2) k is relatively small compared to the sample size. 

In K-Means, the process of centroid selection is done randomly. This leads to sub optimal 

solutions, especially for complex datasets 143. In large databases where we have hundreds of 

dimensions and tens of thousands to millions of records, better centroids exhibits the greatest 

value. The reason is simple: a clustering session on a large database is a time-consuming affair. 

Hence a refined centroid can insure that the time investment pays off. The refinement algorithm 

can operate over small sub-samples of the database and hence run-times needed to determine 

"good" centroid points (which speeds the convergence on the full data set) are orders of 

magnitude less than the total time needed for clustering in a large-scale situation. 

Our initial experiments were conducted in the domain of textual clustering. Fast and high-quality 

document clustering algorithms play an important role in effectively navigating, summarizing, 

and organizing information. In recent years, it has been recognized that the partitional clustering 

technique (like K-Means) is well suited for clustering a large document dataset due to their 

relatively low computational requirements 3536. One algorithm for enhancing the text clustering 

process by reducing the dimensionality of feature space and thus reducing time for processing and 

enhancing clustering procedure is Vector-Space Model. The algorithm has used the document as 

a document to term matrix for calculation procedure. 
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What is the time complexity of K-Means? Most of the time is spent on computing vector 

distances. One such operation costs 6 (M). The reassignment step computes KN distances, so its 

overall complexity is 6 (KNM). In the re-computation step, each vector gets added to a centroid 

once, so the complexity of this step is 6 (NM). For a fixed number of iterations I, the overall 

complexity is therefore 6 (IKNM). Thus, K-Means is linear in all relevant factors: iterations, 

number o/clusters, number o/vectors and dimensionality o/the space. This means that K-Means 

is more efficient than the hierarchical algorithms. In most cases, K means quickly reaches either 

complete convergence or a clustering that is close to convergence. In the latter case, a few points 

would switch membership if further iterations were computed, but this has a small effect on the 

overall quality of the clustering. Even a linear algorithm can be quite slow if one of the arguments 

of 6 ( ... ) is large, and M usually is large. 

2.4.1 Local Convergence of K-Means and its Avoidance 

The K-Means algorithm requires three user-specified parameters: number of clusters K, 

cluster initialization 126, and distance metric 9. The most critical choice is K. While no perfect 

mathematical criterion exists, a number of heuristics 66 are available for choosing K. 

Typically, K-Means is run independently for different values of K and the partition that 

appears the most meaningful to the domain expert is selected. 

Different initializations can lead to different final clustering because K-Means only converges 

to local minima. One way to overcome the local minima is to run the K-Means algorithm, for a 

given K, with multiple different initial partitions and choose the partition with the smallest 

squared error. Here we look into some efforts using different approaches towards overcoming 

the local convergence ofK-Means 

2.4.2 Lloyd, K-Means and the Continuous K-Means 

A fundamental problem in cluster analysis is although the algorithm will produce the desired 

number of clusters, the centroids of these clusters may not be particularly representative of the 

data. What determines a good or 'representative' clustering? In a cluster, if the data 

points are tightly clustered around the centroid, the centroid will be representative of all 

the points in that cluster. The standard measure of the spread of a group of points about its 

mean is its variance, or sum of the squares of the distance between each point and the mean. If 

the data points are close to the mean, the variance will be small. A generalization of the 
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variance, in which the centroid is replaced by a reference point that mayor may not be a 

centroid, is used in cluster analysis to indicate the overall quality of a partitioning; specifically 

the error measure E is the sum of all the variances 

where x,J is the jtb point in the itb cluster, Z. is the reference point of the ith cluster, and n, is the 

number of points in that cluster. The notation II x,J - z. II stands for the distance between x,J 

and z.. Hence, the error measure E indicates the overall spread of data points about their 

reference points. To achieve a representative clustering, E should be as small as possible.· 

The error measure provides an objective method for comparing partitioning as well as a test for 

eliminating unsuitable partitioning. Finding the best partitioning (clustering most 

representative of a data set) requires generating all possible combinations of clusters and 

comparing their error measures. This can be done for small datasets with a few dozen points, 

but not for large sets - the number of different ways to combine 1 million data points into 256 

clusters, for example, is 256 X 1,000,000 / 256!,where 256! = 256 X 255 X ... ..... X 2 X 1 

This number is greater than 1 followed by 2 million zeros 14. 

When clustering is done for the purpose of data reduction, the goal is not to find the best 

partitioning. It is desirable to want a consolidation ofN data points into k clusters, and some 

efficient way to improve the quality of the initial partitioning. 

Iterative algorithms begin with a set ofk reference points whose initial values are usually 

chosen by the user. Initially, the data points are partitioned into k clusters: a data point x 

becomes a member of cluster i if Zi is the reference point closest to x. The reference 

points and the assignment ofthe data points to clusters are then adjusted during successive 

iterations. Iterative algorithms are thus similar to fitting routines, which begin with an 

initial guess for each fitted parameter and then optimize their values. Algorithms within 

this family differ in the details of generating and adjusting the partitions. Lloyd's algorithm, 

the standard K-Means algorithm and a continuous K-Means algorithm first described in 1967 

by J. MacQueen belong to this category 14. In Lloyd's algorithm 67 all the data points are 

partitioned into k clusters by assigning each point to the cluster of the closest reference 

points. Adjustments are made by calculating the centroids of each of those clusters and then 

using those centroids as reference points for the next partitioning of all the data points. A 
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local minimum of the error measure E corresponds to a 'centroidal Voronoi' configuration 

where each data point is closer to the reference point of its cluster than to any other 

reference point, and each reference point is the centroids of its cluster. The purpose of 

iteration is to move the partition closer to this configuration and thus to approach a local 

minimum for E. 

For Lloyd's and other iterative algorithms, improvement of the partitioning and 

convergence of the error measure E to a local minimum is generaJly very fast, even 

when the seed points are badly chosen. Different initial partitioning generally does not 

produce the same set of final clusters. No doubt the final partitioning would better the initial 

cluster, but it will not necessarily be the best possible partitioning. 

The standard K-Means algorithms differ from Lloyd's in its better use of information at every 

step. Reference points are chosen and all the data points are assigned to clusters. 

As with Lloyd's, the K-Means algorithm then uses the cluster centroids as reference points in 

subsequent partitioning- but the centroids are adjusted both during and after each partitioning. 

There are a number of variants of the K-Means algorithm. In some versions, the error measure 

E is evaluated at each step, and a data point is reassigned to a different cluster only ifthat 

reassignment decreases E. The K-Means algorithm constantly updates the clusters (assign data 

points to cluster, re-compute the centroids, shift the reference point to the centroids) is unlikely 

to require as many iterations as the less efficient Lloyd's algorithm and is therefore 

considerably faster. 

The continuous K-Means algorithm is faster than the standard version and has proved scalable 

for larger datasets. It differs from the standard version in how the initial reference points are 

chosen and how data points are selected for the updating process. In the standard algorithm the 

initial reference points are chosen more or less arbitrarily. In the continuous algorithm, 

reference points are chosen as a random sample from the whole population of data points. If 

the sample is sufficiently large, the distribution of these initial reference points should reflect 

the distribution of points in the entire set. The standard algorithm examines all the data points 

in sequence. The continuous algorithm, on the other hand, examines only a random sample of 

data points. If the dataset is very large and the sample is representative of the dataset, the 

algorithm should converge much more quickly than an algorithm that examines every point in 

sequence. 
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The modification to the standard algorithm greatly accelerates the clustering process. Since 

both the reference point and the data points for the updates are chosen by random sampling, 

more reference points will be found in the densest regions of the dataset and the reference 

points will be updated by data points in the most critical regions. The initial reference points 

are already members of the dataset and require fewer updates. Even when applied to a large 

data set the algorithm normally converges to a solution only after a small fraction (10 to 15 

percent) of the total points have been examined. 

This rapid convergence distinguishes the continuous K-Means from less efficient algorithms. 

Clustering with the continuous K-Means algorithm is about ten times faster than 

clustering with Lloyd's algorithm. Two features of the continuous K-Means algorithm -

convergence to a feasible group of reference points after very few updates and greatly 

reduced computer time per update - are highly desirable for any clustering algorithm. 

2.4.3 Kaufman Approach (KA) has been proposed by 7. Here the initial clustering is obtained 

by the successive selection of representative instances until K instances have been found. 

The first representative instance is the most centrally located instance in the database. 

The rest of the representative instances are selected according to the heuristic rule of 

choosing the instances that promise to have around them a higher number of the rest of 

instances. 

In a comparative study of four K-Means initialization methods 15, KA demonstrates its 

capability to induce to the K-Means algorithm a more desirable behavior than the other 

three methods. 

2.4.4 Buckshot Algorithm 

Buckshot algorithm tries to improve the performance of K-Means algorithm by choosing 

better initial cluster centroids. It uses Hierarchical Agglomerative Clustering (HAC) 

algorithm, and considers each point as a separate cluster and combines the cluster 

with the maximum similarity. Similarity between clusters is measured as a group 

average. When the no. of clusters left equals the no. of required clusters, the algorithm 

is stopped. And the centroids of these clusters are taken as initial centroids for the K-Means 

algorithm. 
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Fig 2.4 clarifies the distinction between a local minimum and a global minimum. In the fig. 

one finds the graph of a function and points A and B. The overall or global minimum as one 

can see is at point B, which is smaller than point A, so A corresponds only to a local minimum. 

It is desirable to get to B and not get stopped at A itself, in the pursuit of a minimum for the 

function. If point C is reached, one would like the further movement to be toward B and not A. 

Similarly, if a point A is reached, the subsequent movement should avoid reaching or settling 

at A but carry on to B. Perturbation techniques are useful for these considerations. 
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Fig 2.4: Local and Global Minima Src: 67 
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2.4.5 Comparative Table of Approaches in improving K-Means 

# Technique of Reported Research work Comments on methods and Performance 

initial seed 

selection in K-

Means 

I Iterative Keter Wll Retines clusters Iteratively 

· Clusters points using Voronoi partitioning of 
the centers 

· Centroids of the clusters detennine the new 

centers Local convergence is achieved very fast 

Refer [85] l'orgy IOltlallzatlOn: choose k, POlOtS at random as 
starting center locations. Not a very good method. 

Standard K-Means, Continuous See description against technique 2 below as 
K-Means randomized based approach. 

2 Randomized Continuous K-Means Uses a sample of data points for initial seed selection 
based and even for subsequent updates. Two features of 

continuous K-Means algorithm - convergence to a 
feasible group of reference points after very few 
updates and greatly reduced computer time per 
update - are highly desirable for any clustering 

algorithm. Continuous K-Means is 10 times faster 
than Lloyd's aleorithm. 

Standard K-Means Similar with Lloyd's, in standard K-Means algorithm 

the centroids are ruljusted both during and after each 
· . Consinernnlv faster than Llovd's a\l.o 

Random partitions 

Divides the data Qoints randomly into k subsets. 
3 Sampling based (i)Continuous K-Means, 1. As above 

(ii) Refer [II] 
2. II discuss ways to refine the selection of 

starting centers through repeated sub-sampling and 
(iii) Subset Furthest First (SFF) smoothing. Use K-Means M times for M random 
Algorithm subsets of the original data. 

(iv) Refer [12] 3.A random sample includes many representative 
points, but few outliers found by algorithm Furthest 
First (FF). 

4. 12 indicates that the solutions obtained by clustering 

over a small subsample may provide good refined 
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initial estimates of the true means or centroids in the 

data. 

4 Clustering based Buckshot It uses HAC algo for arriving at better initial centroids 

5 Heuristic based (i) Refer [24] ~lJ Ine "runnesl nrSI wgornnrn ~rr): 

(ii) An approach to finding 
1. Pick fIrst center randomly. 

2. Next is the point furthest from the first center. 
the c-cluster 3. Third is the point furthest fr~ both previous 

starting point from centers. 

the solutions to the 4. In general: next center is argmaxx min,4(x,c) 

(c-l) cluster 
This is a smart initialization procedure 

(ii) The solution for the one-cluster problem is the tota 
problem Refer [86] sample mean; the starting point for the c-cluster 

problem can be the final means for the (c-l) 

cluster problem plus the sample that is farthest 

from the nearest cluster center. 

6 Statistical based 

(i) Refer [23] 

In 23, a kd-tree used to calculate an estimate ofthe 

density of data and to select the number of clusters. 

(ii) Refer [19] 

(iii) Refer [22] 
The paper 12 presents a procedure for computing a refined 

(iv) Refer [12] 
starting condition from a given initial one that is based on 
an efficient technique for estimating the modes of a 
distribution. The refmed initial starting condition leads 
to convergence to "better" local minima. 

7 Optimization Refer [25] 

based Genetic K-Means algorithm. Hybrid scheme based 

on Genetic Algorithm - Simulated annealing with 

new operators to perform global search and rapid 

convergence. 
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8 Density based Kaufman Approach. Refer [7]. 

Here the initial clustering is In a comparative study offour K-Means 

obtained by the successive selection initialization methods [15], KA demonstrates 

of representative instances until its capability to induce to the K-Means algorithm 

K instances have been found. a more desirable behavior than the other three 
The first representative instance is methods. 
the most centrally located instance 

in the database. The rest of 

the representative instances are 

selected according to the 

heuristic rule of choosing the instance 

that promise to have around them a 

higher number of the rest of instances. 

9 Hybrid based Refer [87] The work 87 does not depend on the initial centers. Algorithn 

PSO-SA-K combines the algorithms "Particle Swarm 

Optimization ,"Simulated Annealing" and K-Means. 

Refer [88] 
10 Recursive 

A recursive method for initializing the means by 
running K clustering problems is mentioned in 86 

for K-Means. A variant consists oftakin& the mean of the 
entire data and then randomly perturbing It K times 88 

-
Refer [24] (I) Furthest Frrst (FF) finds outhers. by defimtlon not 

II Outlier based good cluster centers To make the results of c1ustenng less sensltlve to 

outlIers several fuzzy solutIOns were put forward. based on robust 

stabstlcs or the use of a 'noise cluster' 

Table 2.4 Improvement Approaches of K-Means 
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2.5 Datasets used in experimentation 

2.5.1 ISA DATASET (BIGCHECK)- Synthetic dataset over ACM Citations. For the 

document source of the first experiment, we used 1060 records created for journal articles 

from the Information Science and Abstracts (lSA) database and computer science technical 

reports collected from various sites on the Internet. This is a comprehensive subset of the 

entire database. Each document record (sample shown below) includes a complete abstract, 

title, author, and subject keywords. 

BEHA VIOR-/INFORMA TION-SYSTEMSIPERCEPTION-/RESEARCH-IUSAGE-STUDIESN ALIDA TION­
Subject: Biosignal pattern recognition and interpretation systems. 
Part 2 of4: 
Methods for feature extraction and selection. 

The wide variety of techniques existent for feature extraction presents two problems: 1) which techniques should 
be used and 2) how to select from among the features that each extraction technique generates. Selected features 
are "best" only by some standard (i.e., criterion); therefore techniques for generation of features tend not to be 
very portable from one pattern processing problem to another. Production of salient features is the connecting 
link between prototypical and symbolic representations of a class. Often, thresholds govern the selection of 
features. Many techniques do not generate independent features; therefore there is redundancy in the data, which 
potentially affects both efficiency and accuracy in pattern recognition. 
Ciaccio, EJ.llDunn, S.M.lIAkay, M. 
IEEE-Engineering-in-Medicine-and-Biology Vol. 12, Issue 4, p. 106-113, Dec 1993,22 

2.5.2 SOYBEAN 84_ Standard dataset of 307 records over 35categorical attributes 

There are 19 classes, only the first 15 of which have been used. The last four classes are unjustified 

by the data since they have so few examples. Of the categorical attributes, some are nominal and some 

ordered. The soybean dataset is one of the largest among crop species. 

2.5.3 WATER TREATMENT PLANT 121_ Standard dataset of527 records over 38 attributes. 

This dataset comes from the daily measures of sensors in a urban waste water treatment plant. All 

atrributes are numeric and continuous. The attributes are integer and real, and the dataset has been 

used generally to estimate the task of clustering. 
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2. 6 Measures of Cluster Quality: 

2.6.1 Silhouette Coefficient 149 

Silhouette Coefficient (SC) is based on the idea that a good clustering should consist of well­

separated, cohesive clusters. For an individual point i 

Calculate a = average distance of i to the points in its cluster 

Calculate b = min (average distance of i to points in another cluster) 

The silhouette coefficient for a point is then given by 

Fig 2.5 Silhouette Coefficient 

s = 1 - alb if a < b, (Or s = b/a - I if a 2: b, not 

the usual case) 

Typically SC lie between 0 and 1. 

Higher the Silhouette Coefficient, more compact the cluster. The closer the values are 

to 1 the better. 

2.6.2 Davies Bouldin Index 144 

The Davies-Bouldin index is a measure of the uniqueness of clusters in a given clustering. A 

measure for dispersion of a single cluster and dissimilarity between a pair of clusters is required. 

A simple definition for each is that the dispersion of a cluster S is the average Euclidean 

distance of all points to the cluster center. The dissimilarity D is defined as the distance between 

the two cluster centers. 

It is a function of the ratio of the sum of within-cluster ( i.e. intra-cluster) scatter to between 

cluster (Le. inter-cluster) separations. Let C= (C!, ..... , OJ be a clustering of a set of N objects: 

with 
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where C, is the ,.tt. cluster and c, is the centroid for cluster i 

Numerator ofR'J is a measure of intra-cluster similarity while the denominator is a measure 

of inter-cluster separation. Note, R.J=RJ, 

A low scatter and a high distance between clusters lead to low values of R'J ; therefore 

for a compact cluster a minimization of DB index is desired 

2.6.3 Inter Cluster Distance 

Distance between the centroids measures the inter cluster distance. 

2.7 Distance measure 

2.7.1 Euclidean distance 

Definition: A distance measure between two points. In a plane with pI at (XI, YI) and p2 at 
(X2' Y2), it is ..J«x1 - x2i + (YI - Y2)2). 

N 

Note: In N dimensions, the Euclidean distance between two points p and q is "(L (PrQi) 2) 
where p. (or qJ is the coordinate olp (or q) in dimension i. i=/ 

2.7.2 Pearson Correlation distance 122 

Pearson Correlation measures the similarity in shape between two profiles. The formula for 
the Pearson Correlation distance is: 

d = 1 - r 

where r = Z(x)·Z(y)/n is the dot product of the z-scores of the vectors X and y. The z-score ofx 

is constructed by subtracting from X its mean and dividing by its standard deviation. 
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Chapter 3 

Optimizer augmented clustering (OAC) 

3.1 Why Optimization in Clustering? 

MANU • • ALLY 
°0 SET 

THIS 
... C4 

;:::::>" 
,,/ 

Fig 3.1 Benefit of optimization in determining the right number of clusters 

The diagram highlights the utility of optimization in the context of clustering. If one need to cluster 

the set of given points depicted in the figure, what should be the right number of clusters? This is a 

subjective issue, and as witnessed in the diagram above, should have ideally stopped when the number of 

clusters is three (3), as increasing the number of clusters (4 or 5) tends to make the clusters look rather 

sparse. In algorithms like K-Means, the user has to specify the number of clusters k. 

3.2 Focus of Investigation The central thrust of the dissertation is to investigate the benefits of 

employing heuristic and other evolutionary based optimization techniques such as genetic algorithm, 
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particle swarm optimization, differential evolution, simulated annealing among many others on free 

parameters of clustering. We propose a multi-level method employing an optimization loop, in addition 

to the clustering algorithm, to achieve higher clustering performance through an automatic, better 

choice of these free parameters. 

As a case study, we have studied it on the benefits obtained for the iterative centroid improvement of K­

Means, and thereafter on another clustering algorithm Maximin to estimate the recurrence of the 

improved results obtained using K-Means. Some initial experiments have been performed in the area of 

text clustering. For the document source, we used 1060 records created for journal articles from the 

Information Science and Abstracts (ISA) database and computer science technical reports collected from 

various sites on the Internet. This is a comprehensive subset of the entire database. The dataset ISA used 

for experimentation contains approximately 5,000 documents culled from abstracts of ACM We have 

experimented using a subset of 1060 documents (referred as Bigcheck) which is a fairly representative 

subset of the entire dataset. Each document record includes a complete abstract, title, author, and subject 

keywords. 

After the initial experiments conducted in the domain of textual data sets, we have later extended our 

experiments to standard dataset SOYBEAN and WATER TREATMENT PLANT. Four optimizing 

techniques viz., GA, SA, DE and PSO were used to arrive at better centroids compared with an 

independent K-Means and Maximin. The performances of these methods and an independent K-Means 

(& later with Maximin) run were compared and studied using metrics for compactness of clusters. To 

assess the improvement in cluster quality of the methods, we use two quantitative measure Silhouette 

coeffICient and Davies Bouldin Index. 

3.3 Optimizer Augmented Clustering (OAC) 

Section 3.2 contains an introduction to our investigation. In this section, we represent pictorially the 

basic OAC scheme and the proposed work. We provide the architecture of Optimizer Augmented 

Clustering (OAC). The basic schematic of the OAC technique is shown in Fig. 3.2. Algorithm 3.1 

depicts K-Mean algorithm vis-a.-vis OAC. 

As can be observed from Table 2.3, a comprehensive systematic study of recent optimization based 

methods (evolutionary and heuristic based) on free parameters of some important clustering 

algorithms (like K-means & Maximin) can reveal useful information about performance related 

issues of such optimizer augmented algorithms. This is the prime objective of this investigation. 
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Dataset 
Initial set of 
Centroids 

New set of 
Centroids 

Fig 3.2: Basic schematic of OAC 

3.4 Optimization Approaches Used For Experimentation 

3.4.1 Genetic Algorithms: 

Optimizer 
(GA/SA/ 
DEIPSO) 
based K­
Means 

Iteration / 
Termination 
Criteria 

By using exhaustive search techniques, we can solve small problems to optimality, although the time 

complexity may be enormous. For certain applications, it may well pay to spend extra time to be certain 

of the optimal solution %. The use of Genetic Algorithms (GA) in improving the K-means clustering 

process has already been reported 2728. 27 exploits the searching capability of genetic algorithms in order 

to search for appropriate cluster centers in the feature space such that a similarity metric of the resulting 

clusters (within cluster spread) is optimized. 28 present a genetic algorithm for selecting centers to seed the 
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Algorithm 3.1 K-Mean algorithm vis-it-vis OAC 

The K-Mean algorithm's major steps can be summarized as follows: 

Step 1 - begin with an arbitrary assignment of samples to the clusters; 

Step 2 - compute the sample mean of each cluster; 

Step 3 - reassign each sample according to the nearest mean; 

Step 4 - if the classification of all samples has not changed, stop; else go to step 2. 

The OAC algorithm can be summarized as follows: 

Step 1 - begin with an arbitrary assignment of initial population 

Step 2- compute fitness values of individuals 

Step 3- Use fitness (maximize) to generate candidate solution! improve solution, forming a new set of 

population 

Step 4- If termination criteria is met, stop; else go to step 2 

popular K-means method for clustering. Using a novel crossover operator that exchanges neighboring 

centers, the GA identifies superior partitions using both benchmark and large simulated data sets. 

Though essentially our work can be considered as similar with Laszlo et al. in that the objective of 

investigation is the same i.e., finding good centers for K-means, yet the approach adopted is vastly 

different. With reference to 28 'A genetic algorithm that exchanges neighboring centers for k-means 

clustering', the following difference was observed 

l. Laszlo et al. uses a novel region based crossover operator that exchanges neighboring centers. 

However, in our crossover approach, we're using a random 5-point crossover approach. 

2. Laszlo et al. have used a crossover operator that exchanges subsets of centers that occupy the 

same region of space. Whereas our crossover operator exchanges random subsets of centers 

between parents. 
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3. As their GA proceeds, Laszlo et al. evolves individuals with different no. of genes. In our case, 

the no of genes in individual evolution remains the same 

4. For selection, Laszlo et al. uses a roulette-wheel sampling with replacement, whereas we have 

used steady ~tate replacement based on mating pool and higher fit values for selection 

5. Laszlo et al. have used mutation with a low probability, whereas we have not used mutation. 

6. The work of Laszlo et al. is inspired by a data structure oriented approach, being based on their 

earlier work employing hyper-quadtrees which they claim gave good results for low dimensional 

data. 

We are using GA to arrive at better selection of centroids in the inner loop. Thereafter, the K-Means 

algorithm is applied and clustering is performed. In our method, we have used a random 5-point crossover 

approach, exchanging random subsets of centers between parents for crossover, and keeping the number 

of genes in individual evolution the same. We have used steady state replacement based on 20 % mating 

pool and higher fit values for selection. Specific to our work on using Steady GA, it may be mentioned 

that our work is vastly different from the commonly cited works on using GA to clustering using K­

Means. Some of these, employed GA for clustering, and instead of crossover used K-Means as a genetic 

operator for clustering 25 A few other approaches used a novel region based crossover operator that 

exchanges neighbouring centers, evolving individuals with different number of genes using a roulette­

wheel sampling with replacement, and also use mutation with a low probability 28 .. 

3.4.2 Particle Swarm Optimization (PSO): 

PSO is another computational intelligence method that we have used. It has already been applied to 

image clustering and other low dimensional datasets [Y. D. Merwe et aI., 2003][ M. Omran et aI., 2002]. 

However, to the best of the author's knowledge, PSO has not been used to cluster text documents [Xiaohui 

Cui et aI., 20051. In this investigation, in the initial experiments, the corpus of documents have been 

reduced to an equivalent numeric dataset on which PSO augmented K-Means clustering algorithm 

have been implemented and evaluated for performance. Compared with genetic algorithms (GAs), the 

information sharing mechanism in PSO is significantly different. In GAs, chromosomes share 

information with each other. So the whole population moves like a one group towards an optimal 

area. In PSO, only gBest (or IBest) gives out the information to others. It is a one -way information 

sharing mechanism. The evolution only looks for the best solution. Compared with GA, all the particles 

tend to converge to the best solution quickly even in the local version in most cases. 
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In our PSO optimizer, we have considered the set of centroids (fifteen for k=15) as a particle. A 

collection of fifty such particles, the same set that was used during the experimentation with GA, forms 

the collective population or the swarm. During initialization of the parameters, we set the max iteration to 

50 to find the particle best position. Each iteration updates the particle position and its velocity. 

Thereafter, the particle best and global best values are computed. The fitness value of the swarm is 

computed for successive iterations and compared. We terminate the procedure when the fitness value 

doesn't improve over five generations / iterations. 

Contrary to the localized searching of the K-means algorithm, the PSO clustering algorithm performs a 

globalized search in the entire solution space. In the experiments we conducted, we applied the PSO in 

the inner loop before application of the K-Means clustering algorithm to obtain be,tter centroids for 

iterative K-Means. The results highlight that the hybrid PSO algorithm can generate more compact 

clustering results than the K-Means algorithm. 

3.4.3 Simulated Annealing: 

The third optimizer we used, Simulated Annealing (SA) optimizer, uses an iterative procedure. Each 

step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a 

probability that depends on the difference between the corresponding function values and on a global 

parameter T (called the temperature), that is gradually decreased during the process. The dependency is 

such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T 

goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima­

which are the bane of greedier methods. The perturbation operator used in general annealing has a simple 

meaning in clustering: it amounts to a relocation of a point from its current to a new randomly chosen 

cluster (very similar to k-means scheme). 

In our experiments, the Maximum number of iterations before the cooling schedule is applied has been set 

to 10. The global parameter T have been set to 100, and thereafter a cooling schedule ofti = ti * 0.95 was 

used. The 'uphill' (bad) solutions were accepted with a probability of 0.9 to overcome local convergence. 

The convergence criteria taken was T=O. Since a particular iteration required a number of cooling 

schedules, taking quite a good amount of time with each cooling schedule, fitness function was computed 

after clustering with values obtained after each cooling schedule. 
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Fig 3.3 SA Structure 89 

3.4.4 Differential Evolution: 

The fourth optimizer, Differential Evolution, has become very popular recently as an effective method 

for global optimization problems. In this technique, a new trial point y is generated by using mutation 

and crossover. There are various strategies on how to create the mutant point u. One of the most popular 

strategy called DE/rand/ll generates the point u by adding the weighted difference of two points 

u= rl+F (r2-r3) where rl, r2 and r3 are three mutually distinct points taken randomly from population P, not 

coinciding with the current XI and F>O is an input parameter. Another strategy called DE/bestl2/ 

generates the point u according to formula u = Xmm + F (rl + r2 - r3 - r4) where Xmm is the point of P with 

minimal function value, rl, r2, r3, r4 are four mutually distinct poirts taken randomly from P not coinciding 

with the current XI or Xnnn and F>O is an input parameter. In our experiments, we have used IDElbestl2/ 

method. The efficiency of differential evolution is very sensitive to the setting of values F. The values 

recommended in literature are F=O.8 and we have used this value in our experiments. 

3.4.5 Cluster Quality: 

To assess the improvement in Cluster Quality from the use of these optimizer methods, we use a 

quantitative measure Silhouette coefficient (SC). Three datasets were used for the experimentation 

viz., synthetic text dataset (ISA dataset, named as BIGCHECK & used in the earlier experiment), 

and two standard datasets SOYBEAN & WATER TREATMENT PLANT. In addition to the earlier 
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four methods, two more flavors of GA methods were used: Roulette Method & Grouping GA 

(GGA). The number of instances in SOYBEAN dataset is 307, and the number of attributes is 35. 

The number of instances in WATER TREATMENT PLANT dataset is 527, and the number of 

attributes is 38. The Silhouette Coefficient values of the resulting clusters were computed for each 

of these three datasets (lSA, SOYBEAN & WATER TREATMENT PLANT) for each of the 

following seven methods: K-Means, GA Steady State K-Means, GA Roulette Wheel K-Means, 

Grouping GA K-Means, PSO K-Means, SA K-Means & DE K-Means. 

The results obtained were further verified using another quantitative measure, the popular Davies 

Bouldin index. The same three datasets (BIGCHECK, SOYBEAN & WATER TREATMENT 

PLANT) and the seven methods (K-Means, GA Steady State K-Means, GA Roulette Wheel K-Means, 

Grouping GA K-Means, PSO K-Means, SA K-Means & DE K-Means) were used for the 

experiments. The experimental results are discussed in the next chapter. 
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Chapter 4 

Experiments with K-Means 

4.1 Introduction 

In this chapter, we provide the details of the experimental study. Initial experiments were conducted in 

the domain of textual data sets. The programs developed were mostly under Matlab 7.1 120, and also e++ 
and Data Mining software Weka were used for some results. Why work with documents? This is 

because large collections of data are becoming increasingly common. The public internet currently has 

more than 1.5 billion web pages, while private intranets also contain an abundance of text data. There 

exists an information goldmine in the gigantic volume of important scientific data appearing as technical 

abstracts and paper. It is important to organize such large document collections into structured ontology. 

The necessity is felt of automatic methods such as clustering to organize unlabelled document collections 

into clusters of related documents. It is a contemporary challenge to efficiently preprocess and cluster 

very large document collections 38. 

Firstly, we converted the document dataset to its numeric equivalent dataset using the Vector Space 

Model; thereafter the numeric dataset was reduced to a binary dataset for computational simplicity. 

The investigation unfolded the following: (1) It clearly establishes the marked benefits of using 

optimizing schemes in the clustering process (2) It provides an insight and a comparative assessment into 

the performance benefits of using four well-known optimizing techniques on a textuallbinary data set. 

For the document source, we used 1060 records created for journal articles from the Information Science 

and Abstracts (ISA) database and computer science technical reports collected from various sites on the 

Internet. This is a comprehensive subset of the entire database. Each document record includes a complete 

abstract, title, author, and subject keywords. We used a text dataset of 1060 such records. Four optimizing 

techniques viz., Genetic Algorithm (GA) Steady State, Simulated Annealing, Differential Evolution (DE) 

& Particle Swarm Optimization (PSO) were used in an inner loop to arrive at better centroids compared 

with an independent K-Means run. The performances of these methods and an independent K-means run 

were observed for a fixed number of generations. The results clearly demonstrate that a superior 

clustering performance (as measured by an appropriate, suitably defined metric) is achieved with such an 

optimization-based clustering approach, as compared to a normal single- level clustering using a fixed 
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choice of the parameters. Results indicated GA and DE give the best values, with PSO performing rather 

poorly. 

The thesaurus used for the experiments is listed below 

PROGRAM 0 OPERATING 5 MEMORY 9 DATABASE IS 

PROGRAMS 0 SYSTEM 6 MEMORIES 9 DATABASES IS 

PROGRAMMING 0 SYSTEMS 6 DISTRIBUTED 10 MANAGEMENT 16 

LANGUAGE I SCHEDULE 7 AUTOMATA II INDEX 17 

LANGUAGES I SCHEDULES 7 AUTOMATON II INDEXES 17 

GRAMMAR 2 SCHEDULER 7 COMPLEXITY 12 INDEXING 17 

GRAMMARS 2 SCHEDULING 7 COMPLEXITIES 12 QUERY 18 

SYNTAX 3 CONCURRENT 8 DETERMINISTIC \3 QUERIES 18 

SEMANTIC 4 CONCURRENCE 8 DETERMINISM [3 QUERYING [8 

SEMANTICS 4 CONCURRENCY 8 COMPLETENESS 14 FILE 19 

FILES 19 INTELLIGENCE 22 LEARNING 25 NETWORKING 27 

RETRIEVE 20 INTELLIGENT 22 
PARALLEL 26 

HUMAN 28 

RETRIEVAL 20 KNOWLEDGE 23 PARALLELISM 26 
HUMANS 28 

EXPERT 24 NETWORK 27 
RETRIEVING 20 LEARN 25 COMPUTER 29 

ARTIFICIAL 21 LEARNS 25 NETWORKS 27 
COMPUTING 29 

Thesaurus Adaptation: We used the ACM Computing Reviews Classifications Scheme and the 

ASIS Thesaurus to choose what we believe to be an adequate thesaurus for the domain of 

computer and information science. When such standardized sources are not available or are not 

believed to be adequate, there is a need to incorporate new terms automatically. Standard 

statistical approaches exist for automated thesaurus generation 77. Several other approaches based 

on machine learning and NLP techniques have also been reported in the literature for automatic 

term discovery 7879 and refinement 80. Of course, users should also have the option to introduce 

new terms to suit their individual needs. Whenever there is a change in the thesaurus, there is also 

a need to update the centroids of the document clusters and/or reclustering. 

4.1.1 Term Frequency Obtained for the Textual Dataset ISA (BIGCHECK) 

{program, programs, programming} = 194+129+256 = 579 

{language, languages} = 270+163 = 433 

{grammar, grammars} = 36+43 = 79 

{syntax} = 15 

{semantic, semantics} = 58+95= 153 

{operating} = 112 

{system, systems} = 770+972= 1742 

{schedule, schedules, scheduler, scheduling} = 16+8+ 1+56= 81 

{concurrent, concurrence, concurrency} = 75+0+35= 1\0 

{ memory, memories} = 411 +2 = 413 
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{ distributed} = 212 

{automata, automaton} = 50+ 12 = 62 

{complexity, complexities} = 93+3 = 96 

{deterministic, determinism} = 33+6= 39 

{completeness} = 10 

{ database, databases} = 271 + 144 = 415 

{management} = 204 

{index, indexes, indexing} = 57+38+69 = 164 

{query, queries, querying} = 161+53+2 = 216 

{file, files} = 125+56= 181 

{retrieve, retrieval, retrieving} = 8+ 192+ 18= 218 

{artificial} = 173 

{intelligence, intelligent} = 168+62 = 230 

{knowledge} = 234 

{expert} = 115 

{learn, learns, learning} = 12+2+ 179 = 193 

{parallel, parallelism} = 244+ 18= 262 

{network, networks, networking} = 219+ 196+ 12= 427 

{human, humans} = 101+1= 102 

{computer, computing} = 807+ 149 = 956 

In the same manner, document frequency and term weights were computed for 

generating the numeric dataset equivalent to BIG CHECK. 

4.2 Using GA: In the first experiment, we have compared the results obtained using K-Means 

independently, and using GA to arrive at better selection of centroids in the inner loop followed 

by clustering using the K-Means algorithm. We have taken 50 individuals (each individual 

consists of 15 centroids, one each for the assumed fifteen clusters) as population. Thereafter K­

Means was run for 50 iterations, and in each run its fitness value (inverse of Euclidean 

distance) is computed. Thereafter, while implementing GA augmented K-Means, the algorithm 

started with the same population of individuals as was used by K-Means at the outset. Mating 

individuals has been picked using the best fitness values (mating pool is taken to be about a fifth 

of the size of population), new population is created retaining old population plus 10 off-springs 

resulting from the mating pool using 5 point random crossover, exchanging random subsets of 

centers between parents for crossover, thus forming new population of sixty which was 

eventually trimmed to fifty (original size of population) based on its fitness value (high fit values 

retained). We kept the number of genes in individual evolution the same. 
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Iteration# Fitness Fitness Iteration# Fitness Fitness 
values ofK- values of values of K- values of 
means GA K- means GA K-

means means 
1 780 773 29 783 881 
2 782 789 30 773 881 
3 757 810 31 780 882 

4 770 815 32 764 882 

5 773 819 33 775 883 

6 774 825 34 767 883 

7 760 834 35 779 883 

8 778 839 36 771 883 

9 767 839 37 766 885 

10 784 843 38 768 885 

11 773 848 39 757 885 

12 768 851 40 782 885 

13 777 853 41 763 885 

14 777 859 42 777 885 

15 774 862 43 770 886 

16 766 865 44 771 888 

17 762 865 45 769 888 

18 771 867 46 752 888 

19 783 868 47 772 889 

20 782 870 48 769 889 

21 773 873 49 774 892 

22 782 876 50 781 893 

23 767 878 

24 794 878 

25 777 879 

26 779 879 

27 780 879 

28 776 880 

Table 4.1: Fitness Values of K-Means & GA K-Means for 50 iterations 
(BIGCHECK i.e., ISA) 

In brief, we have used steady state replacement based on 20 % mating pool and higher fit 

values for selection. After implementation of GA using steady state replacement, we have 

obtained fitness results which is given in Table 4.1 
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Fig 4.1 Fitness values vs. Iteration for K-Means K=15; Dataset - BIGCHECK 
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Fig 4.2 Fitness values vs. Iterations for GA K-means K=15; Dataset - BIGCHECK 

Fig. 4.1 & Fig. 4.2 show plots of fitness values against the number of successive iteration 
for the two algorithms, K-Means & GA K-Means. 

The results thus far obtained clearly demonstrate (Fig. 4.1, 4.2 & 4.3) that a superior clustering 

performance (as measured by an appropriate, suitably defined metric such as Euclidean distance) 
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is achieved with such a multi -level , optimization-based clustering approach, as compared to a 

normal single-level clustering using a fixed choice of the parameters. 
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Fig 4.3 reveals Euclidean distance is less in case of GA K-means. Fig 4.4 reveal fitness value is 
more in case of GA K-Means i.e., GA K-Means has obtained better centroids for DATASET 
B1GCHECK. 
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In Table 4.1, the fitness values of K-Means and GA K-Means for 50 iterations for the textual 

dataset we have experimented with is shown. The improvement achieved using GA K-Means 

over K-Means is depicted in Fig. 4.4. 

4.3 Using Particle Swarm 

4.3.1 Experimental Results 

Since our objective is to find better centroids for K-means, we have taken 50 individuals (each 

individual consists ofk centroids, one each for the assumed k clusters) as population. Thereafter 

K-means was run for 50 iterations, and in each run its fitness value (inverse of Euclidean 

distance) is computed. 
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Fig 4.5 Fitness values obtained using K-means & PSO K-means (K=15) 
Dataset - BIGCHECK 

Thereafter, while implementing PSO, the algorithm started with the same population of 

individuals as was used by K-means at the outset. The fitness values obtained for K-means and 

PSO based K-means are provided in Table 4.2. Fig. 4 .5 & Fig. 4.6 demonstrate the benefit of 

using the PSO method. 
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K-5 K-IO K-15 K~20 

S# K-means PSO K-means K-means PSO K-means PSO K-means PSO 
I 1652 1656 1070 1041 780 780 590 587 
2 1626 1656 1083 1051 782 780 595 615 
3 1619 1656 1062 1088 757 780 587 615 
4 1667 1656 1040 1088 770 780 603 615 
5 1638 1656 1063 1088 773 780 604 615 
6 1646 1656 1052 1088 774 780 596 615 
7 1672 1656 1044 1088 760 780 586 615 
8 1638 1656 1051 1088 778 785 591 615 
9 1647 1656 1067 1088 767 785 586 615 
10 1663 1656 1053 1088 784 785 609 615 
II 1667 1657 1082 1088 773 785 600 615 
12 1635 1657 1052 1088 768 785 597 615 
13 1639 1663 lOSS 1088 777 785 597 615 
14 1658 1663 1060 1088 777 785 603 615 
15 1654 1663 1041 1088 774 785 597 615 
16 1664 1663 1037 1088 766 785 602 615 
17 1621 1664 1054 1088 762 788 605 615 
18 1645 1664 1040 1088 788 585 615 
19 1662 1664 1044 1088 783 788 606 615 
20 1666 1664 1056 1088 782 788 597 615 
21 1653 1664 1064 1088 773 793 592 615 
22 1630 1664 1049 1088 782 793 600 615 
23 1622 1666 1036 1088 767 793 595 615 
24 1650 1666 1034 1088 794 793 590 615 
25 1644 1666 1058 1088 777 793 601 615 
26 1671 1666 1047 1088 779 793 593 615 
27 1639 1666 1029 1088 780 793 602 615 
28 1644 1666 1033 1088 776 793 604 615 
29 1647 1666 1051 1088 783 793 610 615 
30 1630 1671 1059 1088 773 793 596 615 
31 1666 1671 1057 1088 780 793 590 615 
32 1626 1671 1050 1088 764 793 597 615 
33 1650 1671 1057 1088 775 793 601 615 
34 1655 1671 1063 1088 767 793 602 615 
35 1645 1671 1066 1088 779 7933 592 615 
36 1652 1671 1064 1088 771 793 598 615 
37 1638 1671 1048 1088 766 793 596 615 
38 1685 1671 1060 1088 768 793 609 615 
39 1633 1671 1056 1088 757 793 588 615 
40 1653 1671 1059 1088 782 793 598 615 
41 1623 1671 1054 1088 763 793 613 615 
42 1642 1671 1048 1088 777 793 604 615 
43 1646 1671 1047 1088 770 793 590 615 
44 1636 1671 1051 1088 771 793 589 615 
45 1663 1671 1051 1088 769 793 594 615 
46 1656 1671 1063 1088 752 793 593 615 
47 1651 1671 1061 1088 772 793 608 615 
48 1636 1671 1053 1088 769 793 601 615 
49 1651 1671 1060 1088 774 793 604 615 
50 1632 1671 1071 1088 781 793 591 615 

Table 4.2: PSO results Fitness values for different K 
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Fig 4.6 Fitness values obtained using K-means & PSO K-means for k=5, 10, 
15 & 20. DATASET - BIGCHECK 

Fig 4.6 shows clearly that PSO K-means can obtain better centroids. 

4.4 Using Differential Evolution Results of our experiments using IDElbestl2/ are 

given below in Table 4.3 and shown in Fig 4.7. 
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Fig 4.7 Fitness values obtained using K-means & DE K-means for k=5, 10, 15 
& 20. DATASET - BIGCHECK 

K 5 K-IO K-15 K-20 

s# K-means DE K-means K-means DE K-mean K-means DE krnean K-means DE 
1 1652 1650 1070 1200 780 800 590 700 
2 1626 1650 1083 1200 782 800 595 700 
3 1619 1650 1062 1200 757 800 587 700 
4 1667 1800 1040 1200 770 800 603 700 
5 1638 1800 1063 1200 773 800 604 700 
6 1646 1800 1052 1200 774 800 596 700 
7 1672 1800 1044 1200 760 850 586 700 
8 1638 1800 1051 1200 778 850 591 700 
9 1647 1800 1067 1200 767 850 586 700 
10 1663 1800 1053 1200 784 850 609 700 
11 1667 1800 1082 1200 773 850 600 700 
12 1635 1800 1052 1200 768 850 597 700 
13 1639 1800 1055 1200 777 850 597 700 
14 1658 1800 1060 1200 777 850 603 700 
15 1654 1800 1041 1250 774 850 597 700 
16 1664 1800 1037 1250 766 850 602 700 
17 1621 1800 1054 1250 762 850 605 700 
18 1645 1800 1040 1250 850 585 700 
19 1662 1800 1044 1250 783 850 606 700 
20 1666 1800 1056 1250 782 850 597 700 
21 1653 1800 1064 1250 773 850 592 700 
22 1630 1800 1049 1250 782 850 600 700 
23 1622 1800 1036 1250 767 850 595 700 
24 1650 1800 1034 1250 794 850 590 700 
25 1644 1800 1058 1250 777 850 601 700 

Table 4.3: DE results Fitness values for different K for 25 iterations 
DATASET- BIGCHECK. 

4.5 Using Simulated Annealing 

The results obtained using the method is incorporated in Table 4.4 

4. 6 EXPERIMENTAL RESULTS: A COMPARATIVE STUDY 

Table 4.4 below depicts the movement of fitness values of the various methods for 25 iterations. 

Fig. 4.8 shows the plot ofthese values and exhibits the relative performance. 
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Iter# K-means GAK-means PSOK-means DEK-means SAK-means 
1 780 782 780 800 787 

2 782 795 780 800 787 

3 757 806 780 800 791 

4 770 809 780 800 791 

5 773 820 780 800 791 

6 774 830 780 800 791 

7 760 834 780 850 791 

8 778 836 785 850 791 

9 767 842 785 850 791 

10 784 845 785 850 791 

11 773 848 785 850 791 

12 768 848 785 850 791 

13 777 850 785 850 791 

14 777 851 785 850 791 

15 774 853 785 850 791 

16 766 856 785 850 791 

17 762 859 788 850 791 

18 863 788 850 791 
771 

19 783 863 788 850 791 

20 782 866 788 850 791 

21 773 866 793 850 791 

22 782 868 793 850 791 

23 767 871 793 850 791 

24 794 873 793 850 791 

25 777 873 793 850 791 

Table 4.4: Comparative results of K-Means Vs. 40ptimizers 
DATASET -BIGCHECK. 

In fig. 4.8 random centroid selection method K-Means is compared with four optimizer based 

techniques (GA/SAIPSOIDE) for evolving better centroids iteratively. The four optimizer based 

methods were found to have brought about a significant improvement as compared to K-Means 

(as can be seen from the graph of fig. 4.8). 
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Fig 4.8 Comparison of performance of the various methods for k=15 
dataset - BIGCHECK 

It was known that free parameters could have major impacts on the standard K-means 

performance. With a more sophisticated procedure, using optimization techniques like GA or 

PSO, the K-means results ought likely to be better. Experiments with our textual datasets show 

that GA and DE arrived at better values whereas the least improvement was witnessed 

using the swarm technique PSO. 

4.6.1 Initial Observations: The Experimental results justify the use of optimizing methods in 

improving the centroids of the iterative K-Meansalgorithm. All the optimizers improve the 

solution in comparison to random selection methods li ke K-Means. In the first experiments on 

text dataset, GA Steady State emerges as the best optimizer of the four methods. 

4.7 Cluster Quality: 

To assess the improvement in Cluster Quality from the use of these optimizer methods, we 

use a quantitative measure Silhouette coefficient (SC). Three datasets were used for the 

experimentation viz., synthetic text dataset (ISA dataset, named as BIGCHECK & used in 

the earli er experiment), and two standard datasets SOYBEAN & WATER TREATMENT 

PLANT. In addition to the earlier four methods, two more flavors of GA methods were used : 
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Roulette Method & Grouping GA (GGA). The number of instances in SOYBEAN dataset is 

307, and the number of attributes is 35. The number of instances in WATER TREATMENT 

PLANT dataset is 527, and the number of attributes is 38. The Silhouette Coefficient values 

of the resulting clusters were computed for each of these three datasets (ISA, SOYBEAN & 

WATER TREATMENT PLANT) for each of the following methods: K-Means, GA Steady 

State K-Means, GA Roulette Wheel K-Means, Grouping GA K-Means, PSO K-Means, SA K­

Means & DE K-Means. 

Below is shown some data containing the values of experiments related to determining silhouette 

co-efficient (SC). The following abbreviations were used 

KM K-Means 

GASS GA Steady State 

GAR GA Roulette 

GGA GroupingGA 

PSOKM PSOK-Means 

DEKM DE K-Means 

SAKM SA K-Means 

DATASET KM GASS GAR GGA PSOKM DEKM SAKM 

Bigcheck(ISA) 0.15 0.22 0.17 0.22 0.21 0.15 0.18 

SOYBEAN 0.34 0.56 0.65 0.67 0.5 0.55 0.61 

WATER TREATMENT 

PLANT 0.32 0.7 0.67 0.78 0.67 0.7 0.68 
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The experiment with Silhouette Coefficient for K = 15 and usi ng EUCLIDEAN Similarity 

measure is given above in Fig 4.9 

The experiment with Si lhouette Coefficient for K = 15 and using PEARSON Si milarity measure 

is given below in Table 4.5 and depicted in Fig 4. I O. 

K-Means GA Steady GA Roulette GGA K- PSO K- DE K- SA K-Means 

State Means Means Means 

B1GCHECK 0.229298021 0.204755042 0.286028558 0.181910273 0.2 12482658 0.209 103676 

0.14545 1 

WATER 0.674580835 0.6649423 1 0.79 129 146 1 0.666407021 0.692 104934 0.681505693 

PLANT 0.432237 

SOYBEAN 0.3227 173 0.628285016 0.60317329 0.72 1212052 0.507436482 0.58429609 0.6300013 

Table 4.5: SC Values (Pearson) 
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Fig 4.10 SC (pearson) Vs. Clustering algorithms 

For the above experiments, on observation it becomes clear that GGA outputs the best 

optimized values. The other optimizers improve appreciably upon the results obtained 

using K-Means independently. 

Thereafter, we also experimented with another quantitative cluster validity index, viz. , Davies 

Bouldin Index (DBI). Table 4.6 and Fig. 4.11 is a result corresponding to the SOYBEAN dataset 

using the Davies Bouldin Index. Low values of OBI indicate a good perfonnance, and Grouping 

GA also appears as the best optimizer from this experiment. 

K= 15 DA VI ES BOULDIN INDEX SOYBEAN 

K-Means GA Steady GA Grouping PSO K-Means DE K-Means SA K-Means 
State Roulette GA 

Euclidean 

0.98434 0.834427 0.68593 0.623 0.80431 0.79348 0.75452 

Pearson .63335 .4831 .4569 0.4208 0.47028 0.4528 0.46232 

Table 4.6: DB Index for SOYBEAN dataset 
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The comprehensive results corresponding to DB Index for three datasets is shown in Table 4.7 
and Fig 4.12. 

DATASET 

BIGCHECK (ISA) 

SOYBEAN 

WATER 

TREATMENT 

PLANT 

KM 

0.99564 

0.98434 

GASS GAR GGA 

0.89574 0.74723 0.743 

0.834427 0.68593 0.623 

PSOKM DEKM SAKM 

0.84561 0.8247 0.88581 

0.80431 0.79348 0.75452 

0.97214 0.64224 0.58373 0.5208 0.7021 I 0.681 28 0.66232 

Table 4.7 OBI for 3 datasets 
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The comprehensive result, corresponding to the WATER TREATMENT PLANT dataset, 

which has the best cluster structure of the three datasets that we have considered for our 

experiments, is shown below in Table 4.8 and Fig. 4.13. 

K= 15 DA VIES BOULDIN INDEX WATER TREATMENT PLANT 

K-Means GA GA Grouping PSO K-Means DE K-Means SA K-Means 
Steady Roulette GA 
State 

Euclidean 0.97214 0.64224 0.58373 0.5208 0.7021 1 0.681 28 0.66232 

Pearson 0.77223 0.60273 0.5 1218 0.4 128 0.552 18 0.49332 0.4841 1 

Table 4.8 DB Index values for WATER TREATMENT 
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GGA emerges as the most effective technique for arriving at better centroids of K-Means 

for high dimensional datasets. Using GGA improves quality of cluster obtained by a substantial 

margin, for instance, from SC value of 0.32 to 0.78 for the WATERPLANT TREATMENT 

dataset. In general, GA and DE followed by SA gives much improved values. PSO lagged 

behind the other methods used in improving the centroids. GGA (with Pearson distance) 

emerges as the most effective optimizer that can be effectively used for augmentation of 

iterative K-Means. 

The significance of all the above experiments can't be overlooked. Overall, all the optimizers 

have successfully brought about an appreciable improvement in reaching better centroids after a 

few iterations. As the sizes of data sets continues to grow rapidly these days with easy availability 

of relevant data for analysis via better data acquisition tools and the Internet, as well as the 

urgency for mining them, the use of these recent cutting edge optimizers would befit the 

optimization of the objective function of complex modem applications. Also of note is that most 

of these optimizers quickly reach an improved state, approximately close to the best 

solutions, after just the first ten iterations, it would make sense to run such optimizers for 

about 10-12 iterations for discovering the good centroid points for large scale, data 

clustering problems. 
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Chapter 5 

K-Means: Results and Discussion 
The objective of our investigation is to estimate the benefit of using optimization on free 

parameters of clustering. As a case study, we decided to improve upon the centroids of iterative 

K-Means. Firstly, we experimented with a textual dataset of 1060 records which was converted to 

a numeric dataset using the Vector Space model. Estimating term frequencies of about 30 terms, 

each term comprising an alternative of 2 or 3 near similar terms (e.g., computer and computers) 

from the perspective of categorization was difficult from programming point of view. Such large 

array sizes were not supported in C++. A divide and conquer approach was used. Thereafter, one 

needed to multiply term frequencies by inverse document frequencies. That is, count n (k), the 

number of documents that contain term k. Then multiply the frequency of the kth term in each 

document by log (N/n (k». The resulting weight vectors are ready to generate the corresponding 

equivalent numeric dataset. After the numeric dataset was generated, we have converted it to a 

binary dataset for the sake of simplicity. 

In the initial experiment, we made an estimate of the benefits resulting from using GA in 

clustering. Fig 5.1 & Fig 5.2 depict an instance of clustering using K-Means independently and 

using GA augmented K-Means clustering respectively. From the figures, it does appear that the 

points are more uniformly spread among the clusters in Fig 5.2. 

The experimentation with GA augmented K-Means showed improvement in the fitness values 

obtained in comparison to K-Means. The results are depicted in Table 4.1, and Fig 4.1,4.2,4.3 & 

4.4 as shown in the previous chapter. Thereafter, we also experimented with three more cutting 

edge optimizers, viz., Particle Swarm optimizer, Simulated Annealing & Differential Evolution 

on the textual dataset BIGCHECK, and these results are shown in Fig 4.5, 4.6, 4.7 & 4.8, and 

Tables 4.2, 4.3 & 4.4. 
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We also conducted an experiment using GA augmented K-Means varying the number of clusters 

to measure inter-cluster distance (cluster quality). A few problems was encountered during GA 

implementation 

1. The code was becoming 110 intensive as there are no concepts of pointers in MA TLAB. 

2. Inclusion of highest fit individuals into the next generation was not yielding expected results 

initially. Ideally, fitness should increase, or remain the same if crossover is not bringing about 

improvements in the solution. The problem was resolved when we added the best fit solutions 

into the population, and then truncated the population to keep the size of the population 

constant at fifty (size of population initially decided upon). These fifty individuals were the 

highest fit among the aggregated group. 

For GA augmented k-means, results varying the number of clusters and finding inter-cluster 

distance for measuring clustering quality, the result of the experiment is depicted in Table 5.1 

The results of Table 5.1 confirm the fact that better centroids (estimated using higher 

fitness value) in case of lesser number of clusters such as k=3 actually results in better 

clustering quality, measured by inter-cluster distance in the subsequent step which is least 

when k=3. (Distance between the centroids measures the inter cluster distance. The centroids 

were determined by running the inner GA loop for the mentioned number of iterations). The 

better centroids obtained through GA in the K-Means can actually be used for 

determination of optimal clusters as well. However, this requires further investigation; which 

we conduct in terms of compactness of clusters. 

Estimation of inter-cluster variation of fitness value and inter-cluster distance with variation in K 

in GA K-Means is depicted in Fig 5.3 & 5.4. 
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Iterll K=3 K=S K~10 K=IS K~20 

Fitness Value Fitness Value Fitness Value Fitness Value Fitness Value 

1 1%1 1633 1066 782 610 

2 1979 1652 \072 795 620 

3 2()()() 1669 \082 806 628 

4 2014 1687 \089 809 632 

5 2016 1703 1 \03 820 634 

6 2017 1706 1111 830 637 

7 2020 1716 1122 834 639 

8 2023 1732 1124 836 640 

9 2024 1741 1141 842 641 

\0 2024 1746 1145 845 645 

II 2025 1754 1146 848 650 

12 2026 1755 1149 848 651 

13 2027 1760 1149 850 653 

14 2027 1762 1154 851 654 

15 2031 1763 1158 853 657 

16 2032 1768 1160 856 665 

17 2035 1773 1169 859 665 

18 2037 1777 1172 863 665 

19 2037 1777 1175 863 666 

20 2037 1777 1175 866 667 

21 2038 1778 1176 866 668 

22 2040 1778 1176 868 669 

23 2041 1778 1180 871 669 

24 2041 1778 1181 873 670 

25 2043 1779 1182 873 671 

26 2044 1787 1182 874 672 

27 2045 1789 1182 874 672 

28 2047 1795 1184 875 672 

29 2047 1798 1184 875 673 

30 2048 1800 1185 875 674 

31 2048 1800 1185 875 675 

32 2049 180\ 1187 877 675 

33 2050 1803 1188 877 676 

34 2050 1804 1188 877 678 

35 2050 1804 1188 877 678 

IDter~luster distance Inter-cluster distance Inter-cluster distance Inter-cluster distance Inter-cluster distance 

For k=3 For k=S Fork=10 Fork=IS For 1<=20 

8.3208 32.6797 163.2386 377.9324 791.9232 

Table 5.1: Inter-Cluster distance using GA 
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The experimentation with the four optimizers on the textual dataset yielded positive results. 

Thereafter, we decided to investigate the improvement in cluster quality through a 

quantitative measure, Silhouette Coefficient. The results were not all that encouraging. The 

improvement was marginal. We next decided to experiment again with Silhouette 

Coefficient, and added two more standard datasets for our experiments. 

To assess the improvement in cluster quality of using these techniques, three datasets were used 

for the experimentation viz., synthetic dataset BIG CHECK (ACM citation dataset used in earlier 

experiment), and two standard datasets SOYBEAN & WATER TREATMENT PLANT. In 

addition to the earlier four methods, two more GA methods were used: Roulette Method & 

Grouping GA (GGA). The Silhouette Coefficient values of the resulting clusters were computed 

for each of these three datasets (BIGCHECK, SOYBEAN & WATER TREATMENT PLANT) 

for each of the following methods: K-Means, GA Steady State K-Means, GA Roulette Wheel K­

Means, Grouping GA K-Means, PSO K-Means, SA K-Means & DE K-Means. Results indicate 

that GGA comes up with the best values, while in general GA & DE followed by SA gives 

much improved values. Using GGA improves cluster quality by a substantial margin, for 

instance in the W ATERPLANT TREATMENT dataset, the SC value improves from 0.33 to 0.78. 

The working of GGA is as follows. An initial population is generated. The population size, n
Pop

, 

is a parameter of the GGA. According to this approach, each newly generated pair of offspring is 

inserted immediately into the current population where it replaces the two worst individuals. This 

incremental approach ensures the survival of the best solution over the whole search and prevents 

the occurrence of duplicate individuals. Thus, it often reveals higher performance than 

generational replacement (Davis, 1991). In order to detect duplicates, a simple comparison of 

objective values proved satisfactory for GGA, so it was preferred over any other time consuming 

procedure seeking genotypical or phenotypical differences between individuals. The crossover 

and mutation are employed in a sequential fashion. The crossover operator is applied to each 

selected pair of parent chromosomes with probability pcross, whereas the mutation operator 
mul mul 

is applied to each offspring with probability p. Both pcross and p are parameters of 

the GGA. If the crossover operator is not applied according to its execution probability pcross, 

the children are simply clones of their parents. Similarly, if the mutation operator is not applied, 

the offspring leave the mutation operator unchanged. The search terminates after a given total 

number, n max, of individuals has been generated without improvement but no later than 

92 



Algorithm 5.1 Grouping Genetic Algorithm (GGA) 

Input: a random initial population of possible solution 

Output: optimized solution for the problem 

initialize population P and evaluate all individuals in P ; 

while not (termination criterion is met) 

select a pair of individuals 

generate two children 

probability pcross; 

x, y from P as parents; 

~', y' applying the crossover operator to 

y with 

x and 

generate two modified children x.", y." applying the mutation operator 

to ~' and y', respectively, with probability p mUI; 

evaluate :x." and y''', insert them into P and in turn remove the two worst 

individuals from P; 

return best individual from P as solution. 

Algorithm 5.1 describes the general search scheme ofGGA 92. 

after a given maximum number, n max, of generated individuals has been reached. 

Falkenauer 92 describes a high-level paradigm (metaheuristic) that can be adapted to deal with 

grouping problems broadly defined, showing that it is useful for several applications - e.g., bin 

packing, economies of scale, conceptual clustering, and equal piles. Data partitioning problems 

are not the primary focus of Falkenauer's book 92. Nevertheless, it is worth mentioning that, in 

order to pave the way for the proposed paradigm, the author investigates, among other issues, key 

aspects of some genetic algorithms designed for data partitioning problems until 1998. Most 

importantly, the concepts underlying such a paradigm allow delving into important features of 

evolutionary algorithms for data partitioning problems. 
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GGA emerges as an effective technique for arriving at better centroids of K-Means for high 

dimensional datasets. Fig 5.5 plots the variation of Silhouette Coefficient for 25 iterations for 

the two algorithms, K-Means & GGA K-Means for the SOYBEAN dataset using Euclidean 

distance. 
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Fig 5.5: K-Means vs. GGA K-Means using Silhouette Coefficient for 25 

iterations (k=15) 

All the experiments reported till now have been done using Euclidean distance for computing the 

similarity of points. It is generally accepted that Euclidean doesn ' t perform well in high 

dimension. For high dimensional data, Pearson Coefficient is an effective similarity 

measure. The same experiments for computing silhouette coefficients were also performed using 

Pearson distance as the similarity measure (in stead of Euclidean) for K-Means & the six other 

hybrid optimized schemes. The results attest to the above claims made about GGA and the other 

methods, and the results improve from the Euclidean measure. Fig 5.6 plots the variation of 
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Silhouette Coefficient for 25 iterations for K-Means & GGA K-Means for the SOYBEAN dataset 

using Pearson distance. 
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Y -Axis: Silhouette Coefficient X-Axis: no of iterations 

Consequent to the experiments with Silhouette Coefficient, another well-known validity index, 

the Davies Bouldin index (DBl) , have been used to assess the results. The results 

obtained using index also confinns that GGA is the best optimizer. For example, for SOYBEAN 

dataset (k=15), the results obtained using OBI is shown in Fig 4. 11 . 

Shown in the following pages the graph in Fig 5.7 & 5.8 compares the variation of K-Means & 

GGA K-Means using Davies Bouldin Lndex, varying the number of specified clusters k in the 

first experiment, and for success ive number of iterations for k= 15 in the next. 

The following are the observations vis-a.-vis DB index 

• The results obtained using this index also confonns generally to the results 

obtained earlier using silhouette coefficient. 
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• The experimental values indicate WATER TREATMENT PLANT has a better 

cluster structure as compared to the other two datasets used, since it gives better 

values as compared to SOYBEAN. 

• Earlier experiment with silhouette coefficient showed SOYBEAN has a better 

structure than Textual dataset BIGCHECK. 

3 

2.5 

2 

1.5 --........,.... 
1 -------

0.5 

0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of clusters 

-- K-Means - GGA K-M eans 

Fig 5.7 K-Means vs. GGA K-Means using DBI for varying no. of clusters; 
dataset - Soybean 

96 



1.2 

1 

i>< 0.8 
~ 

"'0 

= 0.6 .... 
~ 
~ 0.4 

0.2 

0 
N m ~ ~ ~ ~ 00 m 0 ~ N m ~ ~ 

M c-t M M M M 

Iterations 

- K-Means 

- GGA K-Means 

Fig 5.8 K-Means vs. GGA K-Means using DB Index for specified no. of 
iterations; dataset - Water Treatment Plant 

To summarize briefly, the core objective of this research sought to measure the benefits 

obtained by use of recent optimization schemes on aspects of clustering that requires 

selection of free parameters by a trial method. At the initial stage of the research, an attempt to 

orient the investigation process by experimenting with Textual Dataset and create a base for 

future work in the Text Mining / Web Mining areas was made. Text Mining requires knowledge 

of Information Retrieval techniques like Vector Space Model. A voluminous collection of 

documents requiring investigation is first ly pre-processed involving concepts like Term 

Frequency, Document Frequency and Vocabulary (Thesaurus) generation and converted into an 

equivalent numeric dataset. The converted dataset is now ready for data mining tasks such as 

clustering & classification. Thjs forms the basis to explore document clustering. However, since 

our central thrust was to estimate the utility of optimizer augmented clustering on free 

parameters, we decided to experiment further with standard datasets thereafter, since the 

synthetic textual dataset that we experimented with didn't exhibit a good clustering quality. 

Another objective of this research was to make a comparative performance analysis of the 

recent well-known optimizing schemes on sparse, moderately high-dimensionallbinary 

dataset. The thesis presents the results of a comprehensive study using four optimization 

techniques viz., Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization & 

Differential Evolution in an attempt to arrive at better values for centroids of K-means clustering. 
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The performance of these methods and an independent K-means run are observed for a fixed 

number of generations/termination criteria. 

There were several papers in the past which dealt with the use of PSO, GAs, in solving the K­

Means clustering problem; specifically, there were papers on selecting initial seeds for the K­

Means algorithm based on a variety of stochastic search algorithms including GAs, Simulated 

annealing and Tabu Search. Also, there were recently proposed algorithms like the KMEANS++ 

which have guaranteed behaviour 46. Ours is a systematic study of the approach of combining 

efficient optimization algorithms with time-tested clustering algorithms, in a multi-loop iterative 

technique. As a case study, we explored the benefit of optimization in the iterative K-Means 

algorithm and thereafter for Maximin, for obtaining compact clusters (over a fixed number of 

clusters) through minimization of Euclidean & Pearson distance of cluster points from centroid of 

a given cluster. The relative comparison of several cutting-edge optimization techniques in the 

inner optimization loop of K-Means was also very interesting. Finally, the experimental study 

with real-world text clustering problem and two standard data sets unraveling important pointers 

on performance issues of some of the very popular optimizers is also an important practical 

contribution we feel. 

The first experiment on BIGCHECK revealed encouraging results for GA Steady as an optimizer. 

It improved upon K-Means on metrics such as fitness function and sum of squared Euclidean 

distance. Proceeding with the next optimizer, Particle Swarm, it brought about a marginal 

improvement in the values of fitness function, but soon hit a plateau. Experimenting with DE 

optimizer did produced impressive results in comparison with PSO, but GA Steady remained a 

notch better. Using SA optimizer, a particular iteration required a number of cooling schedules, 

taking quite a good amount of time with each cooling schedule, and so the fitness function was 

computed after clustering with values obtained after each cooling schedule. The result with SA 

couldn't match that of DE, and was way below what GA Steady achieved with the BIGCHECK 

dataset. 

We decided to assess the improvement in cluster quality on BIGCHECK achieved by these 

optimizers incorporating two more flavours of GA viz., Roulette wheel based GA & Grouping 

GA through the use of a popular quantitative measure, Silhouette Coefficient. The improvement 

witnessed was marginal, from 0.15 for K-Means to 0.22 which was obtained when the GGA 

optimizer was used. It was felt that BIGCHECK didn't exhibit a good cluster structure, and so we 
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decided to experiment further with two standard datasets, viz., SOYBEAN & WATER 

TREATMENT PLANT. With SOYBEAN, the improvement achieved using the cluster validity 

index Silhouette Coefficient with the best optimizer was nearly two-fold, while in WATER 

TREATMENT PLANT, it surpassed even that mark and was nearly a two-and-a-half fold 

betterment for the experiment with Euclidean distance similarity. The SC values for the three 

datasets improved marginally with the use of Pearson similarity. In this set of experiments with 

Pearson, the most significant improvement was seen in the case of SOYBEAN. In the case of 

experiments with the second quantitative measure, Davies Bouldin index (OBI) almost all the 

optimizers brings about a significant betterment, and the best optimizer brings about nearly a two­

fold improvement. WATER TREATMENT PLANT proved a better dataset for optimization 

and achieved lower valnes for OBI (signifying enhanced performance) among the three 

datasets. The results obtained using Pearson vis-it-vis Euclidean was indicative of a marginal 

improvement. A comparative performance between the best optimizer and K-Means for 25 

iterations showed a near two-fold improvement for the SOYBEAN dataset (Euclidean), while 

with Pearson the improvement was even more than the double mark. 

As a conclusion, Grouping GA emerges as the best optimizer of the methods that have been 

used in the experiments with three datasets (one synthetic and two standard datasets). Further, 

though optimization of iterative K-Means have been studied in the literature, such a 

comprehensive study exploring four recent optimizing techniques for OAC have not been 

reported. 
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Chapter 6 

Experiments with Maximin 
The encouraging results obtained with K-Means intrigued our curiosity to experiment with 

another clustering algorithm. We choose the Maximin Clustering Algorithm. 

6.1 Maximin Clustering Algorithm 

This is an iterative algorithm that eliminates some of the problems of the threshold 
based clustering algorithm. Secondly, the threshold value is adaptive. 

Let {xv X2 , •••••••••• XN} be the given set of patterns of unknown classes. 

I) Choose an appropriate similarity (distance) 

2) Choose ZI = XI (cluster center 1). Nc = 1 (number of clusters) 

3) Compute all inter-pattern distances 

4) Find the farthest sample from XI and assign that pattern as cluster center Z2. 

SetN = 2. 
c 

5) Compute distances between all other samples to _Zl, ... , ZNc. 

Compute d i = Min Zjll for i = 1,2, ....... N 

Compute Max 

1 ~ i ~ N 

6)IfdK > K(lIzi- ZjID, i,j=I,2, ... ,Nc,ii=j.ThenNc=Nc+l, 

Go to 5. 

Else assign remaining patterns to closest cluster center. 

Stop. 
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(II Zi - Zj II) is a "typical" intercluster distance and may be chosen to be the smallest 

intercluster distance or average intercluster distance. K is a fraction that is determined by the 

user according to the problem. 

Firstly, we computed the fitness value (using inverse of Euclidean distance) for the Maximin 

algorithm for the dataset BIGCHECK using the same set of initial centroids that was used for 

experiments with K-Means reported in an chapter 4. The comparative values for the two 

algorithms K-Means and Maximin are shown in Table 6.1 

Iteration# Fitness Fitness Iteration# Fitness Fitness 
values ofK- values of values ofK- values of 
means Maximin means Maximin 

1 780 924 29 783 933 

2 782 926 30 773 933 
3 757 926 31 780 933 

4 770 927 32 764 934 

5 773 929 33 775 934 

6 774 929 34 767 934 

7 760 929 35 779 934 

8 778 929 36 771 934 

9 767 930 37 766 935 

10 784 930 38 768 935 

11 773 930 39 757 935 

12 768 930 40 782 935 

13 777 931 41 763 935 

14 777 931 42 777 935 

15 774 931 43 770 936 

16 766 932 44 771 936 

17 762 932 45 769 937 

18 771 932 46 752 937 

19 783 932 47 772 937 

20 782 932 48 769 939 

21 773 932 49 774 939 

22 782 932 50 781 941 

23 767 932 

24 794 932 

25 777 933 

26 779 933 

27 780 933 

28 776 933 

Table 6.1: Fitness values of K-Means & Maximin; dataset - BIGCHECK 
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Fig 6.1 shows the comparative performance of the two algorithms. 
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Fig 6.1: K-Means Vs. Maximin; dataset - BIGCHECK 

The results corresponding to the experiments with the optimizers being used for 

investigation of improvement are shown in Table 6.2 and Fig. 6.2 
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Iteration# Maximin GA Steady PSOMaximin DE Maximin SA Maximin GGAMaximin 

I 924 1041 1000 1050 995 

2 926 1073 1000 1050 995 

3 926 1091 1000 1100 995 

4 927 1103 1000 1250 995 

5 929 1117 1000 1250 1016 

6 929 1121 1010 1250 1016 

7 929 1130 1010 1300 1016 

8 929 1144 1010 1300 1024 

9 930 1148 1010 1300 1024 

10 930 1153 1010 1300 1024 

11 930 1160 1010 1300 1025 

12 930 1161 1010 1300 1043 

13 931 1165 1010 1300 1043 

14 931 1167 1010 1300 1043 

15 931 1171 1010 1300 1043 

16 932 1176 1010 1300 1043 

17 932 1182 1010 1300 1043 

18 932 1182 1010 1300 1043 

19 932 1185 1010 1300 1043 

20 932 1186 1010 1300 1043 

21 932 1186 1010 1300 1043 

22 932 1199 1010 1300 1043 

23 932 1203 1023 1300 1043 

24 932 1208 1023 1300 1043 

25 933 1213 1023 1300 1043 

Table 6.2: Fitness values of Maximin & Optimizer augmented Maximin; 
dataset -BIGCHECK 
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The experiments with the Silhouette Coefficient yielded the values as shown in Table 6 .3 and in 
Fig. 6.3 

Algorithm SC Values 

Maximin 0.094675 

GA Steady 0.18381 

GA Roulette 0.220203 

GGA 
Maximin 0.266851 

SA Maximin 
0.127282 

DE Maximin 
0.233653 

PSO Maximin 0.128508 

Table 6.3: Silhouette Coefficient values of Maximin & Maximin augmented 
optimizer 
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Fig 6.3: Silhouette Coefficient Vs. clustering algorithms; dataset ­
BIGCHECK 

The experiments with the Davies Bouldin index yielded the values as shown in Table 6.4oand Fig 
6.4 
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AI~orithm OBI Values 
2.58 

Maximin 

GA Steady 1065 

Maximin 

GA Roulette 1.77 

Maximin 

GGA 1.28 

Maximin 

SA Maximin 1.87 

DE Maximin 1.58 

1092 

PSO Maximin 

Table 6.4: Davies Bouldin index values of Maximin & Maximin augmented 
optimizer 
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The experiments with the Silhouette Coefficient for Water Treatment Plant dataset yie lded the 
values as shown in Table 6.5 and Fig 6.5 

AI20rithm SC Values 

Maximin 0.4319 

GA Steady Maximin 0.5974 

GA Roulette Maximin 0.5764 

GGA 0.6081 
Maximin 

SA Maximin 0.5475 

DE Maximin 0.5946 

PSO Maximin 0.5319 

Table 6.5: Silhouette Coefficient of Maximin & Maximin augmented optimizer 

0.7 

0.6 -I:: 
~ .;; 0.5 

!.:: ..... 
~ 0.4 0 
U 
~ 

0.3 --~ = 0 0.2 ..c: -00 
0.1 

0 

1 

maximin GA steady GA GGA 
roulette maximin 

PSO DE water SA water 
maximin 

Clustering Algorithms Water Treatment Plant K= 15 

Fig 6.5: SC vs. clustering algorithms; dataset - WATER TREATMENT PLANT 

\06 



Chapter 7 

Discussion on Maximin results 
The set of experiments with Maximin revealed that Maximin arrived at better centroids in 

comparison to the popular K-Means, though in terms of efficiency, K-Means proved to be 

much better. This is quite reasonable, because the complexity of K-Means is linear whereas that 

of Maximin is quadratic. For experiments with Maximin, the threshold was varied from 100 to 

10,000 in steps of 100 while computing Max distance dk and evolving subsequent clusters. 

In Table 6.1, in the previous chapter, it is shown that Maximin continuously improves upon the 

previous solution, whereas K-Means doesn't. Where efficiency is not a major issue, Maximin 

would be preferable over K-Means. In the following Table 6.2 we report the results with the 

optimizer(s) augmented clustering using Maximin as the base algorithm instead ofK-Means. The 

results clearly bring out the superiority of the optimizer augmented clustering approach. Table 6.2 

unfolds the sudden improvement brought about by an optimizer like DE (say after 10 iterations), 

whereas GGA have demonstrated its superiority as the number of iterations increases. 

The experiments with the Silhouette Coefficient yielded some improvement as shown by the 

values in Table 6.3 and in Fig. 6.3. GGA, DE & GA Roulette performed significantly well. 

The experiments with OBI only indicate a strong performance by GGA Maximizer. 

For the second dataset WATER TREATMENT PLANT, the experiments with Silhouette 

Coefficient shows a comparable performance by all the optimizers. 

The experimental results show that the strategy that uses the Silhouette index gives slightly more 

accurate results than the strategy that employs the Davies-Bouldin index. Fig 4.9 and Fig 4.12 

clearly shows that Silhouette Coefficient can capture the separation between the curves for 

the three datasets in a better fashion than DB Index where the separation between the 

curves is minimal. However, the computation of the Davies-Bouldin index is much less complex 

than the computation of the Silhouette index, which is a very important advantage regarding 

eventual real-time operation. 
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The time complexity of the Silhouette index computation is quadratic in the number of vectors 

involved in the clustering, whereas the time complexity of the Davies-Bouldin index computation 

is linear in the number of clustered vectors. In the case of the algorithm that uses the Silhouette 

index, a relatively small improvement in correctness of the results over the algorithm that uses 

the Davies-Bouldin index is penalized with a significant increase in computational complexity. 

This may make the algorithm that uses the Silhouette index unsuitable for real-time operation 148. 

As seen in the experiments with K-Means, here GGA and DE scores over the other 

optimizers for the two data sets viz., BIGCHECK & WATER TREATMENT PLANT used 

for the experiments. 
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Chapter 8 

Conclusion and Future works 
In this Chapter, we summarize our work briefly, and highlight future work in this direction. 

Evolutionary algorithms essentially evolve clustering solutions through operators that use 

probabilistic rules to process data partitions sampled from the search space 92. Roughly speaking, 

more fitted partitions have higher probabilities of being sampled. Thus, the evolutionary search is 

biased towards more promising clustering solutions and tends to perform a more computationally 

efficient exploration of the search space than traditional randomized approaches (e.g., mUltiple 

runs of K-Means). Besides, traditional randomized approaches do not make use of the 

information on the quality of previously assessed partitions to generate potentially better 

partitions. For this reason, these algorithms tend to be less efficient (in a probabilistic sense) than 

an evolutionary search. In spite of the theoretical advantages (in terms of computational 

efficiency) of evolving clustering solutions, much effort has also been undertaken towards 

showing that evolutionary algorithms can provide partitions of better quality than those found by 

traditional algorithms. In fact, this may be possible provided that the parallel nature of the 

evolutionary algorithms allows them to handle multiple solutions, possibly guided by different 

distance measures and different fitness evaluation functions. 

Despite the simplicity involved in these and other related approaches, plenty of computational 

resources may be wasted to figure out and/or fix invalid solutions. The real impact of such 

computational burden into the efficiency of the evolutionary search relies on several factors that 

are hard to theoretically assess, such as the overall design of the evolutionary algorithm and the 

application in hand. Therefore, it is more conservative not to make any sharp claims concerning 

the generalization of the efficacy provided by any algorithm and/or application 130. 
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8.1 Conclusion and Major Achievements: 

We have done the following: 

1. We investigated the benefits of optimization on free parameters of the clustering 

algorithm. Case Study: Iterative K-Means algorithm, Maximin algorithm. 

2. Initial experiments were conducted in the domain of textual data. 1060 records of ACM 

Citations were converted to numeric values for experimentation. Four optimizing 

techniques viz., GA Steady State, Simulated Annealing, Differential Evolution & Particle 

Swarm Optimization were used in an inner loop to arrive at better centroids compared 

with an independent k-means run. Results indicate GA & DE gives the best values, with 

PSO performing rather poorly. 

3. To assess the improvement in cluster quality of using these techniques, we use a 

quantitative measure Silhouette coefficient (SC). Three datasets were used for the 

experimentation viz., synthetic dataset BIGCHECK (ACM citation dataset used in earlier 

experiment), and two standard datasets SOYBEAN & WATER PLANT TREATMENT. 

In addition to the earlier four methods, two more GA methods were used: Roulette 

Method & Grouping GA (GGA). Results indicate that GGA comes up with the best 

values, while in general GA & DE followed by SA gives much improved values. 

4. Using GGA improves cluster quality by a substantial margin, for instance in the K-Means 

experiment with W ATERPLANT TREATMENT dataset, the SC value improves from 

0.33 to .78 

5. GGA emerges as an effective technique for arriving at better centroids of K-Means for 

high dimensional datasets. 

6. The experiments were firstly done using Euclidean distance for computing the similarity 

of points. For high dimensional data, Pearson Coefficient is an effective similarity 

measure. The same experiments for computing silhouette coefficients has been done 

using Pearson distance as the distance measure (in stead of Euclidean) for K-Means & 
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other hybrid optimized schemes. The results attest to the above claims made, and the 

results improve from the Euclidean measure. 

7. Consequent to the experiments with silhouette coefficient, another well-known validity 

index, Davies Bouldin index have been used to assess the results. The results indicate 

that GGA ( with Pearson distance) emerges as the most effective optimizer that can 

effectively be used for augmentation of iterative K-Means. 

o This is an interesting observation, as even though GGA has been used in 

optimization problems, no mention/reference is found in the literature 

regarding its usage in augmentation of iterative K-Means. 

GGA (with Pearson distance) can effectively be used for augmentation of iterative K­

Means. This is a significant contribution of this investigation, as because even though 

Grouping GA has been used in optimization problems, no mention/reference was found in 

the literature regarding its usage in augmentation of iterative K-Means. The benefits 

employing DE & SA and the other two GA based methods viz., GA Steady State & GA Roulette 

are comparable in terms of their improvement factor, and can form a second choice, next to GGA. 

In brief, the contributions of the investigation are: 

(1) It clearly establishes the marked benefits of using optimizing schemes in the clustering 

process 

(2) It provides an insight and a comparative assessment into the performance benefits of 

using four well-known optimizing techniques on a textual/binary/numeric data set. The 

same set of initial centroids was provided to both K-Means and optimizer augmented K-Means, 

and after iteration of the algorithm the fitness value (indicator of the quality of the centers) was 

determined. Independent K-Means run came up with poor centroids which would affect large 

scale clustering problems. If we use the inner optimizer loop to find better centroids by running 

the optimizer based algorithm for a reasonable amount of time, say for 10-15 iterations or exit 

beforehand upon some termination criteria such as no improvement reported for five successful 

iterations, we can eventually come up with far better clusters. The computational cost for larger 
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datasets would be a cause of concern for any method, but this method can work effectively for 

mid-size datasets, typically in the range of 1000 - 1,00,000 points. 

(3) GGA (with Pearson distance) can effectively be used for augmentation of 

iterative K-Means. This is a significant contribution of this investigation, as because 

even though Grouping GA has been used in optimization problems, no 

mention/reference was found in the literature regarding its usage in augmentation 

of iterative K-Means. 

(4) The fourth contribution is the revelation of Maximin arriving at better centroids in 

comparison to the popular K-Means, though in terms of efficiency, K-Means proved to be 

much better. 

(5) The fifth contribution is the discovery that the Silhouette index gives slightly more 

accurate results than the Davies-Bouldin index. However owing to computational 

complexity, Silhouette index may be unsuitable for real-time operation. 

6.2 Further Work: 

A lot of interesting possibilities still remain to be explored in the future. Bag-of-words model 

used for experimentation is not a good model for text clustering. Semantic relationships are 

ignored in VSM. Experimenting with Semantic model can overcome the limitations that we faced 

in our experiments with Textual dataset. 

As an extension to the present study, one may attempt to estimate the benefits of using such 

optimizing schemes on more free parameters of clustering algorithms sensitive to the initial 

parameter settings, namely, CURE, shifting grid, training neural networks, global FCM, and 

evidential C-Means (ECMs). 

There are also several other techniques and papers that talk about hyper-parameters screening and 

optimization and we have not referred to any of them 25 123 124 125 
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The paper by Bengio 123 'Gradient based ... ' presents a methodology for optimizing several hyper­

parameters and is far too mathematical in nature as well. The paper "R. Kohavi and G.H. John 

124. Automatic Parameter Selection by Minimizing Estimated Error' deal mostly with a statistical 

cross validation technique to arrive at optimal values of the parameters, and the experimentation 

have been performed employing a mix of best first search and decision-tree and modifying 

Quinlan C4.S algorithm. The paper 125 is basically a novel incremental approach of solving the 

local convergence problem of K-Means by adding centroids, one at a time, in an orderly 

optimized manner in the clustering process. It may also be mentioned that our method is vastly 

different from the cited work by 25 on using GA to clustering using K-means. 25 employed GA for 

clustering, and instead of crossover used K-means as a genetic operator for clustering. We have 

used GA as a meta-clusterer to arrive at better selections of centroids in the inner loop. 

Thereafter, the clustering algorithm K-means was applied. 

Future work can investigate other potential optimization techniques. There are a plethora of 

optimization techniques/ methods which may also be probed for their ability to optimize free 

parameters to improve clustering/iterative K-MeanslMaximinlother clustering algorithms. 

1. Ant Colony 94 106 

2. Hybrid techniques like fuzzy genetic, hybrid PSO 

3. Bacterial Foraging 

4. Tabu search 

5. Evolutionary K-means 

6. Memetic Algorithms 

7. Quantum Annealing 

8. Adaptive simulated annealing 

9. Biogeography based optimization (BBO) 

10. Other GA based methods (Elitist, Tournament Selection) 

11. Learning Automata 

12. Best First Search 

13. Harmony Search 

14. Integer Programming 

15. Dynamic Programming 

16. Branch and Bound 

17. Cellular Automata 

18. Modified PSO using a new concept 'repulsion', called repulsive particle swarm 

optimization 
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19. Graphical Techniques, which reportedly have proved successful in overcoming the local 

convergence of K-Means. 

One may also like to experiment with more standard datasets. We have concentrated only on the 

improvement of numeric datasets. The improvement achieved using these techniques on other 

types of datasets may further be investigated. We have experimented using a single objective 

function i.e., we tried to optimize the centroids of iterative K-meanslMaximin. One can also study 

the effect of Multi-Objective optimizers e.g., Multi Objective GA (MOGA) on the free 

parameters of the clustering process. Multi-objective could be Optimization of (1) centroid of 

iterative K-Means (2) Selection of seed for K-Mean, or the number of clusters for K-Means(user 

specified), or the minimization of within cluster spread of the objects for compactness (Inter & 

Intra Cluster distance). 

K-Means and Maximin were specific instances of a clustering algorithm that we have considered. 

One can explore results of more such free parameters for the clustering algorithm k-medoid for 

instance. There have been studies employing some of these optimizers like GA & SA on popular 

clustering algorithms like K-Means, and we have not done comparisonibenchmarking. 

Further, a variety of clustering algorithms has been proposed and known in many different 

domains of applications. How such a framework can be adapted to these OAC algorithms and 

applications needs to be investigated. Finally, in many domains, prior or experiential knowledge 

may be available in many cases about a good, but not necessarily optimal guess concerning many 

free parameters. How to combine such prior knowledge with an automatic optimization algorithm 

to achieve fast convergence with high performance is an open question at the current time. 
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