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ABSTRACT

There has been an increasing demand for accurate, reliable and inexpensive gas sensors that
can discriminate between various types of gases such as CO, NO, NO,, NH,, SO,, CO,,
CH, and other hydrocarbons. Historically, gas sensors were primarily used in coal mines in
the accurate monitoring of hazardous gases however gas sensors began to appear in other
applications such as in chemical industry, environmental pollution monitoring, the health
sector, food industry etc. During the last decade the electronic nose (E-Nose), based on
array of gas sensors for food flavour, environmental monitoring and medical diagnosis etc.

are the more recent embodiments of gas sensing owing to its enhanced analytical power.

The odour recognition process in E-nose begins in the senor system which is responsible '
for the measurement of the odourant stimulus through the sensitivity of its sensors. Some of
the commonly used gas sensors include, metal oxide semiconductor (MOS), conducting
polymer sensors, surface acoustic wave (SAW) sensors, field-effect gas sensors, pellistors,
and fibre-optic sensors. MOS sensors are one of the most widely used devices for E-nose

applications due to their low cost, acceptable response, low recovery times and robustness.

Noise in gas sensors is considered to be any unwanted effect that obscures the detection of
the desired gas. It can arise at various stages of the measurement process - the sensors, the
analog processing system, the data acquisition stage and the digital signal processing
system out of which the noise in the sensors is most harmful as it propagates and can be

amplified through the subsequent stages.

Although the most convectional way of operating the MOS gas sensor is to apply a fixed
voltage to the inbuilt sensor heater, recently, the performance of the MOS gas sensors
has been enhanced by applying modulated temperature to the sensor instead of applying a
fixed temperature. Several approaches have been explored for deriving higher numbers and
better features for enhancing gas classification. Application of periodic heating voltage to

MOS sensors has several advantages:
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i) Different rates of reaction of various gases at different temperatures, providing
a unique signature for each gas.

ii) Sensitivity and selectivity may be enhanced.

Many authors have indicated that modulation of the sensor temperature'™ provides more
information from a sensor than in isothermal operation, allowing improved research works
in gas detection such as - carbon mono-oxide*® and hydrogen sulphide” ®. To discriminate
between different gases, modulating waveforms such as sawtooth, triangular and square
pulse were also applied to the sensors’. The sinusoidal variation in the temperature also
enhanced the identification of different gases. A number of works on the cyclic variations

1 . .
%11 where feature extraction is

of the sensor heater have been reported by many authors
done using various heater voltage functions with different frequencies. The temperature
profile of the sensor surface greatly influence the response behavior due to rapid thermal
fluctuations in respect of its noise and stability. Researchers have tried to improve
selectivity by modulating the heater voltage however analysis of noise and stability of the
sensor responses under modulated heater voltage has not been explored so far. Therefore
the aim of this research is to analyse the baseline noise behavior and stability of MOS gas

sensors by applying pulse voltages to the heater with different frequencies and duty cycles.
Objectives of this research work:

The objectives of this research are cited below:

1. The statistical and frequency analysis of MOS gas sensor noise under pulsed
modulated heater voltage for selection of best pulse frequencies and thereby
improvement of discrimination of different gases.

2. Filtering of noise using Amplitude Demodulation (AD) technique and its
comparison with Wavelet Transform (WT) based technique.

3. Sensor system identification and stability analysis under pulsed temperature
modulation, selection of best pulse frequency and improvement of
classification of gases.

4. Modeling of MOS sensor based on theoritical analysis and system

identification and their comparison.
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Chapter 1 gives a brief introduction on the research work and comprehensive literature.

Baseline noise analysis of the MOS sensors under different pulse temperature modulating
frequency and duty cycle was conducted on three MOS gas sensors- TGS-822, TGS-842
and TGS-2611 from Figaro, INC, Japan used in an array. Data acquisition and online
logging of the responses from the gas sensors is achieved by PC based data acquisition
systems. All data processing work is done in MATLAB 7.4 environment. The
discrimination of the data for ten different gas samples was done using ANN classifiers —
Multilayered Perceptron (MLP) and Radial Basis Function (RBF) for comparison. The
sensor data correlation was tested by Principal Component Analysis (PCA) before applying
to ANN.

With the above listed objectives, the work was carried out as discussed below -
Noise Feature Am;lysis of MOS gas sensors:

In chapter 2, the statistical and frequency analysis of noise in MOS gas sensors is described
and best frequency and duty cycle is selected from the set of experimental data for further

analysis.

a) Experimental: The experimentation was aimed at noise feature analysis of MOS
gas sensor responses with pulsed modulated heater voltage of frequencies - 10mHz,
40mhz, 80mHz and 120mHz and at two different .duty cycles - 50% and 75%
without the application of any gas. The MOS gas sensor noise analysis under signal
inactive period i.e. without application of gas, is important to determine a suitable
time duration of the pulsed heater voltage at four different heater pulse frequencies.
Therefore the frequency and duty cycle of the heater pulse voltage is required to be
correlated to severity of noise. For noise analysis the statistical and frequency
spectrum of the MOS gas sensors that have been performed are - the Probability
Distribution Fur}ction (PDF), signal to noise ratio (SNR), histogram and Fast
Fourier Transform (FFT). Two new noise characteristics- NSF (Noise Spread

Figure) and NPF (Noise Population Figure) have been developed for analyzing
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noise in a signal which is one of the significant contributions of this part of the

research.

b) Results: In this research both statistical and frequency analysis of the noise has
been performed for the three sensors with pulsed heater voltages of the above
mentioned frequencies and duty cycles. The statistical analysis reveals that - the
noise floor level decreases as the duty cycle of the pulsed modulated heater voltage
is increased and pulse frequency is decreased. The same observation is evident for
the FFT of the sensor responses that produces higher noise-bandwidth at higher
heater pulse frequency however at lower duty cycle. The sensor noise is found to be
1/f or pink and it increases with the increase in pulsed heater voltage frequency and
vice-versa. The PDF for the sensor noise signals satisfies the requirement for the
noise to be coloured i.e. with non-zero mean. The newly introduced characteristics -
NSF and NPF ratios also conforms to our previous statistical and FFT results i.e.
decrease at lower frequency and higher duty cycle. Hence we are able to conclude
that the heater pulse frequency and duty cycle considerably influences the noise
behavior of the sensor. This analysis facilitates that for improving the classification
efficiency of the sensor array, sensor responses can be generated by using a suitable
pulse frequency and duty cycle. The method for improvement of classification
efficiency by using the best frequency and duty cycle is discussed in the next

section.
Gas classification with the best heater pulse frequency using dynamic features:

Extraction of dynamic features of the MOS gas sensors is conducted for different heater
pulse modulating temperature in the presence of ten different gases namely ethylacetate,
acetonitrile, ethanol, kerosene, petroleum ether, chloroform, methanol, isopropyl alcohol,
acetone and n-hexane using time constant as the feature for classification. In'? the sensor
response curves were determined using six features which represented the differences of
dynamic behaviour of sensors to different sample gases, in phase space. The degree of
difference was used to evaluate how much information was extracted from the response

curves by the proposed method. Although response voltage is used by many researchers as
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feature, the time constant (z) may be different for the same response voltage. We have
extracted the time-constant of all the response cycles of the sensor modulated by the heater
pulse voltage. Two sets of feature data were generated — one with an arbitrary temperature
pulse frequency of 120mHz and 50% duty cycle, another with the selected pulse frequency
of 10mHz and 75% duty cycle that gives the least noise as already discussed.

We have found that the PCA accounted for upto 98.0004% of the variance for the arbitrary
heater pulse frequency and duty cycle while 99.2687% of the variance with the selected
best frequency and duty cycle. Similarly, an accuracy of 85.62% was achieved in the
classification using RBF network compared to 58.21% using an MLP. The time required

for training with MLP was higher than that required for training the network with RBF.

This part of the research focuses on the development of a heater pulse frequency and duty
cycle selection technique that relies on the fact that frequency and duty cycle of the heater
influences the noise behavior of the sensor response and thereby the classification

efficiency also.
Noise Filtering:

Inspite of having certain advantages of MOS gas sensors such as robust, low-cost etc.,
noise fs one of the most important issues to be addressed for MOS gas sensor based gas
detectors and E-noses. Operating the sensor at a suitable heater pulse frequency and duty
cycle to get the least noise, has been explained in the previous section, however at fixed
heater pulse operation the noise persists. Chapter-3 is dedicated to the development of noise
filtering techniques based on Amplitude Demodulation (AD) and Wavelet Transform
(WT). Different methods have been employed by researchers to eliminate noise in signals'>
22 In one work? an amplitude modulation / demodulation system is proposed to modulate
the 1/f noise in capacitive sensors, where the signal is modulated to a higher frequency and
then the signal is low-pass filtered. In another work, an AD based noise filtering technique
was proposed for an instrumentation amplifier®*. Also, the adverse effects of the amplifier
offset and flicker (1/f) noise of a differential low-noise high-resolution switched-capacitor

readout circuit is minimized using amplitude modulation/demodulation in another work®.
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An AD-based noise reduction algorithm has been applied in multichannel audio

26,27 28 which is capable of increasing the SNR in the overall signal. This

processing
algorithm reduces noise interference by reducing the noise-dominant channels to the overall
signal. Since AD based techniques for noise filtering has been used in a number of
multichannel sensor environment, it shows potential application in multisensor MOS gas

array based E-nose.

Although a number of works have been performed on signals for filtering using Finite
Impulse Response (FIR), Infinite Impulse Response (IIR) or High Frequency Response
(HFR) techniques, these methods may not be suitable in a rapidly changing temperature
condition of MOS gas sensor (due to pulse heater voltage) because these techniques involve
filter parameters, namely center frequency and bandwidth which are situation dependent
and their selection is knowledge demanding. Hence, the objective of this chapter 3 is to
explain two parameter free techniques developed - AD and WT technique to recover the

original signal from the noisy sensor signal as discussed below-

a) Experimental: For filtering we have chosen a very low sensitivity MOS gas sensor
(TGS-2611) so that we get a high noise bandwidth before filtering for justifying the
performance of our developed technique. The sensor signal was at first filtered in
LabVIEW by a smoothing filter and then it was modulated by adding -14dB white
noise and a low frequency sine signal so that we obtain a completely noise buried
sensor signal for applying the AD technique. In wavelet filtering method, the sensor
signal was decomposed by Daubechies’ WT and a level was selected as the filtered
signal based on two analyses - Cross-correlation (CC) with the original sensor
signal and FFT. CC shows which level is highly correlated to the original sensor

signal in time-domain while FFT determines the noise bandwidth.

b) Results: We have found from FFT that the noise bandwidth of the signal before AD
based filtering is 0.0371Hz whereas after AD filtering the noise was filtered out
giving a reduced bandwidth of 0.0086Hz. In the WT (filtering,

approximation/reconstructed levels (a,) was selected as the highest correlated level

with cross-correlation co-efficient as 0.9986. The bandwidth at level 5 was found to
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be 0.0369Hz which clearly shows that the performance of AD filter is better than
the WT filtering.

Hence chapter 3 enumerate a novel technique of filtering MOS gas sensor responses using

AD based algorithm which shows potential application in E-nose signal processing.
Heater pulse frequency selection by System Identification:

Dynamic response of MOS gas sensors plays an important role in gas detection and gas
classification. Among other factors like noise behavior, obtaining a quasi-isothermal
condition of the sensor surface and sensor stability are also important criterions when the
sensor is operated by pulse modulated heater voltage. A quasi-isothermal state provides a
slow change in sensor adsorption kinetics which on the other hand, determines the stability
of the response. Since attainment of a proper isothermal sensor state is determined by the
heater pulse fluctuation, a study on stability of the sensor will lead to a method of selection
of suitable heater pulse frequency and duty cycle. The frequency of modulation is selected
on trial and error method in many of the works based on temperature modulation® ** *,
One method of selecting optimized frequency was based on system identification through
multilevel pseudorandom sequences®’ and pseudorandom binary sequences’>. In these
methods pseudorandom sequences (PRSs) and pseudorandom binary sequences (PRBSs) of
maximum-length sequences (MLSs) was used to identify systems and how these method
could be extended to systematically study temperature-modulated gas sensors, however the
identification of systems using pulsed heater voltage for sensor stability analysis by system
identification technique has not been explored so far. In this research we have determined
the transfer functions of the MOS gas sensors baseline model by system identification
technique. The prediction error minimization (PEM) algorithm was used to derive the
sensor Linear Time Invariant (LTI) model transfer function from measured input-output
data without the application of any gas. The objective of this part of the research was to
analyse the scnsérs’ stability behavior when its temperature is pulsed by a heater pulse
voltage. Therefore, the transfer function derived should relate heater pulse voltage as input
and sensor response voltage as output. The stability of the derived model transfer functions
was tested by determining the overshoot percentage of the step response and from the pole-

zero plots. Based on these two parameters the most stable transfer function was determined
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followed by the model validation. For the most stable transfer function, the frequency and

duty cycle of the heater pulse voltage is considered as the best operating values.

a)

b)

Experimental: For performing system identification using PEM algorithm, we
have applied a large input-output pair of data set for two sensors (TGS-2611 and
TGS-842) each operated by heater pulse of frequencies 10mHz, 40mHz, 80mHz
and 120mHz and duty cycles of 50% and 75%. Moreover we have performed the
same analysis for lower frequency range of frequencies 1mHz, 2mHz, 3mHz, 4mHz
and SmHz and duty cycles of 50% and 75% for two sensors (TGS-2611 and TGS-
822). Lower frequency is preferred because of the following reasons-
i) To attain a quasi-isothermal state a slow change in sensor heater voltage is
desirable such that the sensor dynamics is preserved™’.
ii) At lower frequencies, since the time-period is already high, smaller duty
cycle may lead to attain the stable sensor dynamics.
iii) As the frequency is increased, the duty cycle has to be increased such that
sufficient amount of heating takes place at the sensor surface in order to

preserve the sensor dynamics.

Results: The system identification results higher order transfer functions (order 2 or
more) however we have reduced the order by model order reduction technique to 1.
The overshoot percentage was determined from the step response of the transfer
function while stability was ascertained from the pole-zero plots. From these two
tests, the most stable transfer function was obtained with the following heater pulse
voltage frequency and duty cycle-

Lower frequency range: TGS-822: 1mHz, 50%; TGS-2611: 2mHz, 50%

Higher frequency range: TGS-842: 120mHz, 75%; TGS-2611: 40mHz, 75%

The transfer functions obtained were further simulated for best fit analysis and it
was found that the most stable transfer functions yielded the best fit percentage
namely-

Lower frequency range: TGS-822: 78.81%; TGS-2611: 68.31%

Higher frequency range: TGS-842: 63.43%; TGS-2611: 67.24%
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Once the most stable transfer functions and their corresponding best values of pulse
frequency and duty cycle are obtained, the PCA was worked out with two pairs of sensors:
TGS-822/TGS-2611 and TGS-842/TGS-2611 for ten different gas samples. The PCA
accounted for higher percentage when sensors are operated by the best heater pulse
frequency compared to arbitrary chosen frequency and duty cycle. Further, using these best
suited frequencies and duty cycle for both the ranges of frequencies, the classification of
different gases is performed using two ANN classifiers — MLP and RBF. The ANN

classifier also better classification efficiency when the best frequency is used.

The objectives for developing a technique for selection of heater pulse frequency and duty
cycle based on stability criterion and system identification is achieved in this research. As
stated earlier for chapter 2 we have found that the best pulse frequency and duty cycle for
the three sensors are 10mHz, 75% duty cycle, which is based on noise analysis however,
the stability analysis shows that this value is 40mHz, 75% duty cycle (TGS-2611) and
120mHz, 75% duty cycle (TGS-842) for upper frequency range and for lower frequency
range the stability was found at 1mHz, 50% duty cycle (TGS-822) and 2mHz, 50% duty
cycle (TGS-2611). Therefore selection of best operating frequency of heater pulse voltage
is a trade-off between requirement of noise behavior and stability of the MOS gas sensor

responses.
Modeling of MOS Gas sensors:

Sensor modeling and simulation is an important issue for study, development and analysis
of sensor systems. The modeling of MOS gas sensors helps to describe its dynamic
behavior in the presence of various gases. A thick film MOS gas sensor operates on the
principle of change in conductance due to the chemisorption of gas molecules on the sensor
surface. Several experimental and theoretical analysis describing the electric responses of
the MOS gas sensors have been proposed****. In*® SPICE model for the static and transient
response of resistive gas sensor has been reported. These analysis aims at relating
sensitivity and gas concentration®', a diffusion reaction model*?, electron theory of

43, 44 36-39

chemisorption mechanism** **, absorption desorption noise*’ and thermal modulation®*,

however transfer function derivation under thermal modulation has not been addressed.
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The objective of this research is modeling of the sensor dynamics based on the system
measured input-output data by modulating the heater voltage. We have derived the
theoritical model equation from a simple, reversible, binding Freundlich isotherm equation.
Model parameters have been determined from.the experimental data and the baseline model
equation has been established. The established model has been validated with the model

derived by system identification (as discussed in chapter 4).

a) Experimental results: Two MOS gas sensors (TGS-2611 and TGS-842) were used
to analyze the sensor resistance variation with varying applied hater voltage and
temperature. The temperature of the sensor was indirectly measured by using the
heater filament as the temperature sensor by measuring the heater current. The
heater voltage versus temperature variation characteristics gives the heater model by
a 1¥ order model! transfer function. Further the time constant (z) of the heater model
was determined as 6 seconds (TGS-2611) and 1.3 seconds (TGS-842) to derive the
baseline model of the sensors. Since the theoritical model of the Freundlich
equation is based on the activation energy (E4,) of the sensor material, we have
determined the activation energy from Arrhenius plot of the sensor. The activation
energy of TGS-2611 and TGS-842 sensors is calculated as 0.05eV and 0.058eV
respectively. Using the activation energy and time-constant, the theoretical model

-equation was simulated. The simulated model responses obtained from system
identification were compared with that of the theoritical model and it was found that
the fit percentage for the two sensors TGS-2611 and TGS-842 are 67.24% and
63.43% respectively.

This part of the research fulfills the objective of modeling of MOS gas sensors based on

theoritical analysis and system identification.
Scope of future work:

Noise analysis and filtering under pulsed modulation temperature is explored with selection
of best frequencies and duty cycles. The system identification also proved to be a potential
study area for the selection of suitable frequencies and duty cycles and sensor system

modeling. The optimal thermal modulation of the working temperature of the MOS gas
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sensor based E-nose can significantly increase the selectivity of metal oxide sensors.
Therefore, the systematic optimization process to employ the selection of modulating
frequencies, permits to ensure a remarkable increase in performance for metal oxide based

multisensor systems. .
This research can be extended for further study on the following directions-

i) Systematic optimization technique can be employed for selection of pulse heater
voltage frequency and duty cycle.
ii) The study on modeling can be extended for a condition of application of gas.
iii) Wavelet based filtering can be improved and explored.
Thesis Outline:

Chapter 1 gives the introduction to an inclusive literature as basic knowledge for the
research work. Chapter 2 presents the experimental set-up of the MOS gas sensor based E-
nose of the entire work and the noise analysis (statistical and frequency based) of the sensor
response and selection of best heater pulse frequency and duty cycle. Chapter 3 describes
the techniques of noise reduction in the MOS gas sensors using two different filtering
methods. The AD and WT techniques were analyzed and used in this research to extract the
original signal from the responses of noise modulated low sensitivity sensor signal. Chapter
4 presents the method of system identification in the area of gas sensors. The method
consists of studying the sensor baseline model stability when their operating temperature is
modulated. Chapter 5 gives an analysis on the theoretical modeling of the sensor dynamics

and compared with the measured input output data obtained.
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CHAPTER 1

INTRODUCTION

Over the past five decades, there has been an increasing demand for accurate, portable,
reliable and inexpensive gas sensors that can discriminate between various types of
gases such as CO, NO, NO,, NH;, SO, CO, CH,; and other hydrocarbons.
Historically, gas sensors were first primarily used in coal mines in the accurate
monitoring of hazardous gases. Soon gas sensors began to appear in the chemical
industry, environmental pollution monitoring units and in the human health sector.
Some other important applications of gas sensors include the analysis of organic
vapours, such as toluene, methanol and benzene, for laboratory and industrial safety’
and, breathe analysis for traffic safety’ and disease diagnosis. An electronic nose (E-
Nose), based on an array of gas sensors for testing the smell of food, perfumes and
artificial fragrances etc., is one of the more recent embodiments of gas sensing that has
received much attention owing to its enhanced analytical power. In an optimized gas
sensor design, the power consumption should be as low as possible and the heat losses
owing to convection, conduction or radiation by the sensor heater should thus be
minimized. In order to minimize the power consumption, the mass of both the heater
and the sensor element must be reduced and optimization of the design must be done
for uniformity of heating. With the advancement of micro- and nanofabrication
techniques, sensors evolved from small catalytic bead platinum wire detectors and

Taguchi gas sensors to micro- and nano- solid-state gas-sensing devices.

1.1 Gas measurement

Gases can be measured using objective, quantitative and standardized _scientific
methods in odour testing laboratories, however commercial gas detectors uses
automatic sensing, calibrating and readout devices.

Odour can be measured basically by two methods:
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i) Instrumental Analysis

ii) Chemical Sensor

For gas measurement, there have been instrumental methods which use instruments
such as gas chromatograph to determine the gas concentration in ppm and gaseous
molecules. But instrumental methods of measuring gas samples, such as gas
chromatography/mass spectrometry (GC/MS), are expensive, time consuming and
require trained personnel. As a result, for rapid and inexpensive analysis of gases,
chemical sensors have become popular. Employing chemical sensors in an array form
with pattern recognition capability provides a higher degree of selectivity leading to an
extensive range of applications. When such systems are used for odour analysis they
are termed as ‘Electronic Nose’ (E-Nose) which mimics the human or animal nose.
The concept of biological processes implemented as artificial devices have made the
human interpretation and understanding much easier. E-Nose offers an efficient way to
analyze, compare and classify different odours. It is an instrument that consists of an
array of electronic chemical receptors which detect volatile chemicals or categories of
chemicals then uses the information to predict sensory-like properties. However,
analysis and classification of gases using E-Nose is quite complex and require more

computational effort.

Research is being carried on the development of E-Nose that automatically evaluate
odour category, evaluate the intensity of odour regardless of its category and classify
odours for the identification of odour sources by using unsupervised learning
algorithms. Many research areas are focused on the sensor technology and better
classification algorithm development. But the selection of sensors has often been
ignored in most cases. It is seen that in most cases, a subset of sensors provides better
recognition rate than the whole set of sensors. Hence, the number of sensors can be
minimized for a certain application since the fewer number of sensors offers lesser

cost and less computational time.

1.2  Gas Sensors
The phenomena occurring at the interface between solid and gas are used for operation
of semiconductor sensors for the detection and quantitative determination of the

composition of the gases. These sensors incorporate sensor element that reacts to

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



3

different gases. The odour recognition process in E-Nose begins in the senor system
which is responsible for the measurement of the odourant stimulus through the
sensitivity of its sensors. The area of gas sensors comprises of several different types
of sensing materials that contribute to the gas sensor. Some of the commonly used gas
sensors include, metal oxide semiconductor (MOS), conducting polymer sensors,
surface acoustic wave (SAW) sensors, field-effect gas sensors, pellistors, and fibre-

optic sensors.
1.3 Types of Sensors

Among the different types of sensors, conducting polymers, bulk acoustic devices and

MOS are most commonly used.
a) Conducting Polymer Sensors:

An active material of conducting polymer of the family like polypyrolles, thiophenes,
indoles, or furans is used in this type of sensors. These polymer sensors change their
size and conductance to varying degrees under the influence of different gases. The
polymer material is electropolymerized between two electrodes with a gap of about
10pm to 20um. On application of odourants, the bonding of the molecules changes
and affect the transfer of electrons along the polymer chain, causing a change in the
conductivity. Conducting polymer sensors can work at ambient temperature and they
do not need heaters like MOS gas sensors. However, the major disadvantage of such
sensors is that the manufacturing of sensors by electro polymerization is difficult, time
consuming and prone to be affected by humidity. Fig 1.1 shows a conducting polymer

Sensor.

Metal electrode

Odorant

(N

/&\/

Active elements

Metal electrede heating

Fig. 1.1: Conducting Polymer Sensor.
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b) Acoustic Sensors:

The most common acoustic sensors are- quartz crystal microbalance (QCM) and
surface acoustic wave (SAW) devices as shown in Fig. 1.2 (a) and 1.2 (b) respectively.
These sensors are operated by a mass changing principle. When exposed to the
odourant, the surface of these sensors absorbs the gas molecules decreasing the
resonance frequency of a resonating disc. On exposing to a reference gas the
resonance frequency of the sensor comes back to its original value. The selectivity and
sensitivity of the QCM sensor depends on the type of the polymer material coating.
The size and mass of the quartz crystal can control the response and recovery time of
the sensor. The SAW sensor operates at much higher frequency than the QCM sensor;
hence the change in resonance frequency is also much higher in this sensor. A typical
SAW sensor produces a resonant frequency of several hundred megahertz. Due to
higher operating frequency, the signal-to-noise ratio is found to be less in SAW
sensors. The only drawback of these types of sensors is that they require more

complex electronic processing circuits compared to conductivity sensors.

WAVE

ODORANT DIRECTION

WAVE TRAVEL DISTANCE

~

WAVELENGTH |

PIEZOELECTRIC
SUBSTRATE

Fig. 1.2 (a) SAW sensor.

ODORANT

/ POLYMER COATING

QUARTZ DISC

ELECTRODES

Fig. 1.2 (b) QCM sensor.
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¢) Metal Oxide Semiconductor (MOS) Sensors:

MOS gas sensors have been more widely used to make arrays for odour measurement
than any other class of gas sensors. Although the oxides of many metals such as SnO»,
TiO,, ZnO etc. show gas sensitivity under suitable conditions, the most widely used
material is tin dioxide (SnQ,) doped with a small amount of a catalytic metal such as
palladium or platinum. These sensors are based on change of resistance when exposed
to volatile organic compounds. The cause of the change of sensor resistance is due to
an ionosorption process and explained in terms of electron transfer from the
semiconductor to adsorbed surface species. The adsorption process that is responsible
for the sensor signal is strongly influenced by the presence of the pre-adsorbed species
(like ionosorbed oxygen, hydroxyl groups, carbonates, etc.) and by only measuring the
change of resistance upon exposure to the target gas the electrical effect of quite
complex surface reactions is measured. MOS gas sensors are the most popular in E-
Nose applications because of their low-cost and flexibility associated to their
production, simplicity of their use, higher discriminating power and robustness. Upon
exposure to an oxidizing substance, the surface of the MOS gas sensor undergoes a
chemical reaction, which translates into a measured change in conductance across the
sensor. The value of interest during the collection of data from the sensor is the change
in voltage over a period of time. Although MOS gas sensors respond to a broad range
of volatiles, they have higher affinity for aldehydes, alcohols and ketones and they are

less responsive to molecules like terpenes, aromatic compounds or organic acids.

The basic principle of the device is that it allows gaseous compounds to react with the
catalytic metal and produce species that are able to diffuse through the metal film and
absorb onto a metal insulator. A reversible reaction occurs where the analyte binds to
the surface of the sensing material. The binding is determined by the intermolecular
forces between the analyte and the sensing material but is usually characterised by a
hydrogen bonding. When the odour concentration is removed the analyte does not
change but will dissociate from the sensing material. This type of reaction is similar to
the interaction between odours and receptor proteins in biological systems. When an
analyte undergoes a chemical change at the sensor surface, ie. catalysis, irreversible
reaction occurs. Sensors exhibiting such reactions are mostly the SnO; sensors having

high sensitivity to specific odours. The change in the properties of the sensors causes
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the change in conductivity. A typical response of a MOS gas sensor is shown in Fig.
1.3.

MOS gas sensors operate by bindihg molecules to the device surface through one or
more mechanisms including adsorption, absorption, and chemisorption and co-
ordination chemistry. The choice of binding mechanism has important implications for
the selectivity and reversibility of the sensing system. Chemisorption is preferred
when a highly selective system is required. The high binding strength will, however,
result in poor reversibility. Chemisorption of oxygen molecules in the air environment
takes place in the forms of 0%, O" and O®. An equilibrium state exists among the
chemisorbed species on the surface of SnO, at constant temperature. During the
interaction of the sensing material with gas molecules to be detected, the conductance

of the gas sensors varies. The surface reactions occur at low temperatures
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Fig 1.3: Response curve of E-Nose to the odourant molecules.

while at higher temperatures bulk reactions between point defects in the SnO; lattice
and gaseous oxygen molecules takes place. Therefore the sensor material is heated
upto a temperature of the order of 400°C to 600°C with the help of a heater mounted in
the sensor module. In both cases, adsorption at active sites occurs first followed by
some surface catalytic reactions. Similar reactions also occur at grain boundaries or at
three-phase boundaries (i.e. at metallic contacts on surface metallic clusters). The
differences in response patterns between the sensors are subjected to multivariate
analysis and other statistical data processing, and classification of odour types are

performed.
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MOS gas sensors have attracted the attention of many researchers interested in gas
sensing under atmospheric conditions due to the: low-cost and flexibility; simplicity of
their use; large number of detectable gases/possible application fields®™®. The initial
research on metal oxide-gas reaction effects was conducted by Heiland’, Bielanski et
al® and Seiyama et al’ and the decisive step was taken when Taguchi brought
semiconductor sensors based on metal oxides TiO;, WO;, SnO, and Ga;03; powders
and thick-films in particular to an industrial product Taguchi-type sensors'°.
Nowadays, there are a number of manufacturers producing this type of sensors, such
as Figaro, Fast Ion Sensor (FIS), Magnetospheric Ion Composition Sensor (MICS),
Underground Storage Tank(UST), CityTech, Applied- Sensors, New Cosmos, etc. The
MOS gas sensors are typically used in ventilation control, combustible gas leak

warning, and combustion control and breathe alcohol detection applications etc.

Recently MOS gas sensors are based on the micro hot plates (Fig.1.4(a)) fabrication
using advanced silicon technology while conventional Taguchi gas sensors are based
on ceramic fabrication processes (Fig.(1.4(b)). The advantages of micro hot plate
MOS gas sensors are- faster start-up, faster response, lower power consumption, more

accurate temperature control and more accurate detection and identification

characteristics.
ODORANT .
RESISTIVE ITEATIN
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Fig. 1.4 (a) Micro-hotplate type MOS gas sensor. Fig. 1.4 (b) Ceramic type MOS gas sensor.

a) Field Effect Transistor Sensors:

Field Effect (FE) transistor operating in the diode coupled mode are also recently been
used as gas sensors. THe gas sensitive properties are achieved by depositing a

catalytic metal stack on the device and the gate attains a gas sensing sensitivity. The
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sensitive layer can be designed to be specific and sensitive to hydrogen containing

toxic gases, such as NHj;, HCN and H,S. Combinations of the dual device used are-

a) One FE sensor and one MOS gas sensor on the same header

b) Two different. MOS gas sensors

The ideal gas sensor would exhibit reliability, robustness, sensitivity, selectivity and
reversibility. As high selectivity with high reversibility in the sensors is difficult to
attain, either a compromise is necessary or the sensor’s detection layer must be
regenerated. Today, the Use of chemical sensors to measure and analyze odours is a
growing field that attracts interests from the sensor and pattern recognition
communities. A variety of sensing technologies are available and presently there are
several different kinds of commercial electronic noses which use gas sensors for

different applications.

1.4 Selectivity enhancement in MOS gas sensors:

The ideal MOS gas sensor would exhibit reliability, robustness, sensitivity and
reversibility however; they are poorly selective and are prone to response drift''. Each
metal-oxide sensor is primarily selective to one certain gas but it shows a small
but non-zero cross sensitivity to other gases also '2. Furthermore, it is also known
from previous research work of different groups that the performance of almost all
types of SnO, sensors is sensitive to the change in operating temperature'> '*. This
property of sensitivity to operating temperature has been exploited by researchers to
improve the selectivity of the sensor. This will be discussed in section 1.4.1. Hence,
these properties of metal oxide sensors have to be taken into consideration when
designing a gas measuring system. Moreover, they are influenced by water vapour, so
changes in the moisture content of the atmosphere being monitored interfere with gas

sensing.

In this thesis we have analysed two very important sensor characteristics-Noise
features and Sensor dynamics based on temperature modulation to enhance the

classification percentage of different gases.
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1.4.1 Temperature Modulation

To improve the selectivity of sensor, the operating temperature of the MOS gas
sensors have been widely investigated in many works. Researchers have also explored
different ways to achieve selectivity either by enhancing gas adsorption or promoting
specific chemical reactions via catalytic or electronic effects using bulk dopants,
surface modification methods and by the addition of metallic clusters or oxide
catalysts'> '°. The selectivity of chemical sensors can also be strongly influenced by
the addition of metal clusters like platinum and palladium. These materials increase
the sensor selectivity for reducing gases, e.g. CO'’. Apart from material selection, one
of the most established ways of enhancing the selectivity of MOS gas sensors is by
periodically varying the sensors’ operating temperature. Temperature modulation
alters the kinetics of the sensor through changes in the operational temperature of the
device. As the sensor response changes at different working temperatures, measuring
the sensor response at different temperatures is similar to have an array of different
sensors. Researchers have reported on the advantage of temperature modulation on a
ceramic metal oxide sensor at two different temperatures to detect the presence of
carbon mono-oxide '®%°. Work has been carried on the temperature modulation using
square wave to quantify hydrogen sulphide*" *2. To discriminate between different
gases, modulating patterns of temperature such as sawtooth, triangular and square
waves were also applied to the sensors”™. The sinusoidal variation in the temperature
also enhanced the classification of different gases. A number of works on the cyclic
variations of the sensor heater voltage have been reported by many authors®* . The
response of the gas sensors to modulating temperature primarily depends on the
analytical model which is based on the physical and chemical properties of the sensor
material. The development of micromachined substrates for MOS gas sensors ensured
operating temperature modulated in a more efficient way. Cavicchi et al introduced
the use of micromachined tin oxide gas sensors in temperature modulation
applications®?®. In many works® quantitative analyses of gases with temperature

modulated gas sensors have been reported.
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1.5 Noise in MOS gas sensors:

The temperature profile of the MOS gas sensor surface greatly influence the response
behavior due to rapid thermal fluctuations in respect of its noise and stability. The
interference and noise in sensors and circuits may present a substantial source of errors
and should be seriously considered. Noise in MOS gas sensor seriously influences the
sensitivity and selectivity causing misclassification of gases. It has already been
mentioned in section 1.4 that the MOS gas sensor dynamics basically consists of the
thermal dynamics and the reaction kinetics. Therefore, the noise features are greatly
influenced by the mentioned two factors-the thermal model and the chemical model
inherent to the sensor. There are two basic classifications of noise for a MOS gas
sensor: inherent noise, which is noise arising within the sensor, and transmitted noise,

which is noise picked up from outside the sensor such as the measuring circuit.

1.5.1 Various kinds of Noise and Noise Sources

The odour recognition process in artificial nose begins in the senor system which is
responsible for the measurement of the odourant stimulus through the sensitivity of its
sensors. This odour classification process involves the data preprocessing which may
give rise to a number of problems such as the disturbance of noise, and contamination
of sensor signals by interfering signals present in the environment. Noise can arise at
various stages in the measurement process, including the quantity under measurement
itself; the sensors, the analog processing system, the data acquisition stage and the
digital signal processing system. The noise developed during the early measurement
stages is most harmful since it propagates and can be amplified during the later stages
of the signal pathway. Several types of noise sources such as thermal noise, popcorn
noise, white noise, pink noise, shot noise exists in MOS gas'sensors. Other types of
noise such as fransmitted noise, noise due to improper electric shielding, improper
magnetic shielding, noise due to ground loops, quantization noise and seebeck noise

also exist in gas sensors.

1.5.1.1 Inherent noise

The different types of inherent noises are described as follows:

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



11

i) Thermal noise:

This type of noise arises from the thermal fluctuations in the electron density within a
conductor. It is also known as Johnson or Nyquist noise and arises in any medium that
dissipates energy. The charge carriers have thermal energy and they vibrate randomly
with time and with respect to each other. As the charges move close together, the
repulsion increases the potential energy of the electrons. A conductor with unoccupied
electron shells, tend to lose electrons easily during reactions. The unfilled electron
shells allow a higher energy electron to enter and be easily transferred across the
lattice but with an occasional collision with an impurity atom. These collisions
produce electrical resistance that varies with the change in temperature. At absolute
zero condition, a pure metal forms a perfect lattice with no vibration. Hence, the
electrical resistance is zero resulting in zero thermal noise. Thermal noise has a flat
power spectral density (PSD) and is often termed as white noise. In addition to it, the
amplitude distribution of thermal noise is Gaussian. In a resistor, these thermal
motions cause thermal noise. The mean-square value of noise voltage can be

calculated from the charge as:

— VZ
el = 4kTRAf(—] (1.1)
z
where k =1.38x1072 J/K (Boltzmann constant), T is the temperature (in K), R is the

resistance , and Afis the bandwidth over which the measurement is made (in Hz). For
practical purposes, noise density per </ Hz generated by a resistor at room temperature
may be estimated from a simplified formula: Z ~0.13JR innV[Hz. A simple

resistor can also be a source of noise. It behaves as a perpetual generator of electric
signal. Naturally, relatively small resistors create extremely small noise. In some
sensors, Johnson noise must also be taken iﬁto account. To reduce the noise, the
bandwidths of the interfacing circuits must be just wide enough to pass the minimum
required signal. The noise voltage should be proportional to the square root of the
bandwidth. It means that reducing the bandwidth to 100 times, the noise voltége will

be reduced by a factor of 10.
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ii) Popcorn noise:

It is a type of electronic noise that arises in semiconductors. It is caused by defects that
are dependent on the integrated-circuit manufacturing techniques. It is also termed as
impulse noise, bi-stable noise, or random telegraph signal (RTS) noise. It consists of
sudden step-like transitions between two or more discrete voltage and current levels,
as high as several hundred microvolt, at random and irregular times. Each shift in
offset voltage or current often lasts from several milliseconds to seconds. Its sound
resembles like that of popcorn popping if hooked up to an audio speaker. Popcorn
noise was first observed in contact diodes, and then re-discovered during the
commercialization of one of the first semiconductor op-amps. The most common
cause of popcorn noise is the random trapping and release of charge carriers at thin
film interfaces. In cases where these charges have a substantial impact on transistor
performance the output signal can be noteworthy. These defects can be caused by
manufacturing processes, such as heavy ion implantation, or by unintentional side-
effects such as surface contamination. Individual op-amps can be monitored for
popcorn noise with peak detector circuits, to curtail the amount of noise in a specific

application.

iii) White noise:

Since the spectral density of Johnson noise is constant over a broad range of
frequencies, it is often called white noise because it is similar to white light. White
noise is a random signal with a flat power spectral density. In other words, the signal
contains equal power within a fixed bandwidth at any centre frequency. In statistical
sense, a time series 7, is characterized as having weak white noise if {r;} is a sequence
of serially uncorrelated random variables with zero mean and finite variance. Strong
white noise is also independent and identically distributed, which implies no
autocorrelation. In particular, if 7, is normally distributed with zero mean, the series is
called a Gaussian white noise. The bandwidth of white noise is limited in practice by
the mechanism of noise generation, by the transmission medium and by finite

observation capabilities. A noisy random white noise is shown in Fig.1.5.
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Fig.1.5: Gaussian white noise.

iv) Shot noise:

Another type of noise that arises from the random fluctuations in the n.umber of charge
carriers that cross a potential barrier in the charge flow is the Shot or Schottky noise.
Shot noise is always associated with direct current flow. It is the result of dc currents
across the potential barriers, such as in transistors or vacuum tubes. The noise results
from the emission of electrons from the base of a transistor. It is also spectrally white
Gaussian noise. Its value becomes higher with the increase in the bias current. This is
the reason that field-effect transistor (FET) and CMOS semiconductors current noise

is quite small. A convenient equation for shot noise is,

i, =5.7x107JIAf (1.2)
where [ is a semiconductor junction current in picoamperes and Af is a bandwidth of

interest in hertz.

v) Pink noise:

Pink noise has a spectral envelope which is not flat with frequency but gradually
decreases at higher frequencies. It contains a greater relative proportion of low
frequency energy than white noise. Both the noise voltage and noise current sources
have a spectral density roughly proportional to 1/f. This type of noise occurs in all
conductive materials and hence associated with resistors. At extremely low
frequencies, it is impossible to separate the 1/f noise from dc drift effects. This noise is

also called as flicker noise and usually prominent at frequencies below 100 Hz, where
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many sensors operate and become barely noticeable at frequencies above a few
hundred KHz where the white noise becomes more prominent. It may dominate
Johnson and Schottky noises and becomes a main source of errors at these frequencies.
The magnitude of pink noise depends on current passing through the resistive or
semiconductive material. This type of noise can be reduced significantly. Fig.1.6

shows the spectral distribution of “pink noise”.

Noise
L~

Frequency

Fig.1.6: Spectral distribution of pink noise.
vi) Seeback noise

This noise is a result of the ‘Seebeck effect’ which is actually the generation of an
electromotive force (e.m.f) when two dissimilar metals are joined together. The
Seebeck e.m.f. is small and, for many sensors, may be simply ignored. The noise must
be taken into account when absolute accuracy of the order of 10-100 pV is required.
In a sensor the connection of any two dissimilar metals produces a temperature sensor
which is a spurious signal. In electronic circuits, the connection of dissimilar metals
can be found everywhere: connectors, switches, relay contacts, sockets, wires, and so
on. In most cases, Seebeck e.m.f. may be eliminated by a proper circuit layout and
thermal balancing. It is a good practice to limit the number of junctions between the
sensor and the front stage of the interface circuit. Connectors, sockets, switches, and
other potential sources of e.m.f. must be avoided as much as possible. When avoiding
such connectors are not possible the number and type of junctions in the circuit’s front

stage should be such that differential cancellations occur.
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1.5.1.2 Transmitted noise

A signal which is amplified and converted from a sensor into a digital form should be
regarded both in terms of magnitude and spectral characteristics and also in terms of a
digital resolution. In the measuring circuits, noise can be produced by the monolithic
amplifiers and other components which are required for the feedback, biasing,
bandwidth limiting, and so forth. Drift may be caused by input offset voltages and bias
currents. Both noise signals (voltage and current) result from physical mechanisms
within the resistors and semiconductors that are used in fabricating the circuits. In our
measuring circuit, the transmitted noise arises out of the DAQ circuit, sensor biasing
and potential divider circuit. The sources of this type of noise are voltage surges in
power lines, lightning, and change in ambient temperature, sun activity, and so forth.
These interferences propagate towards the sensor and the interface circuit, and finally
appear at the output. However, they also affect the sensing element inside the sensor,
its output terminals, or the electronic components in a circuit. The interferences are
received by the sensor and the circuit. Transmitted noise can be classified depenaing
on how it affects the output signal, how it ent.ers the sensor or circuit, and onwards.
Such noise can be either additive or multiplicative with respect to its relation to the
output signals. Additive noise is added to the useful signal and mixed with it as a fully
independent voltage (or current). Multiplicative noise affects the transfer function of
the sensor or the circuit’s nonlinear components as the voltage (or current) value.
Transmitted noise may be periodic, or random, and it ordinarily may be reduced
substantially by taking precautions to minimize electrostatic and electromagnetic
pickup from power sources at line frequencies and their harmonics, radio broadcast
stations, arcing of mechanical switches, and current and voltage spikes resulting from

switching in reactive (having inductance and capacitance) circuits as discussed below:
1.5.1.3 Mechanical Noise:

Vibration and acceleration effects are also sources of transmitted noise in sensors.
These effects may alter transfer characteristics (multiplicative noise) or they may
result in the generation of spurious signals (additive noise) by a sensor. If a sensor
incorporates certain mechanical elements, the vibration along some axes with a given

frequency and amplitude may cause resonant effects. For instance, most pyroelectric
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detectors also possess piezoelectric properties. The main function of the detector is to
respond to thermal gradients; however, such environmental mechanical factors as fast
changing air pressure, strong wind, or structural vibration cause the sensor generate an

interference signal that is added to normal stimuli.

Transmitted noise may be reduced by proper shielding described below:

1.5.1.4  Electric shielding

Interferences attributed to electric fields can be significantly reduced by appropriate
shielding of the sensor and circuit. It is very important to identify the noise source and
how it is coupled to the circuit. Each shielding problem must be analyzed separately
and carefully. A shielding affects in two ways. First, it limits noise to a small region
which will prevent noise from getting into nearby circuits. However, the problem with
such shields is that the noise captured by the shield can still cause problems if the
return path that the noise takes is not provided through the ground system and making
the connections correctly. Second,if noise is present in the circuit, shields can be
placed around critical parts to prevent the noise from getting into sensitive portions of
the detectors and circuits. These shields may consist of metal boxes around circuit

regions or cables with shields around the center conductors.
1.5.1.5  Magnetic shielding

Noise resulting from electrostatic and electrical fields may be reduced by proper
shielding. It is much more difficult to shield against magnetic fields because it
penetrates conducting materials. A typical shield placed around a conductor and
grounded at one end has little effect on the magnetically induced voltage in that
conductor. As a magnetic field penetrates the shield, its amplitude drops exponentially.
For improving low-frequency magnetic field shielding, a shield consisting of a high-
permeability magnetic material should be used. However, noise still persists at higher
frequencies and strong magnetic fields. An effective magnetic shielding can be
accomplished with thick steel shields at higher frequencies. Since magnetic shielding
is not very successful, the most effective approach at low frequencies is to minimize

the strength of magnetic fields, minimize the magnetic loop area at the receiving end,
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and select the best geometry of conductors. Magnetic fields are much more difficult to

shield against than electric fields because they can penetrate conductive materials.
1.5.1.6 Ground loops and ground isolation

A circuit itself may generate enough noise when it is used for low-level input signals
causing substantial measurement inaccuracy. Usually, conductors between electronic
components are quite specific. They may connect a capacitor to a resistor, a gate of a
JFET transistor to the output of an operational amplifier, and so forth. However, there
are at least two conductors which, in most cases, are common for the majority of the
electronic circuit. These are the power-supply lines and the ground lines. Both may
carry undesirable signals from one part of the circuit to another; specifically they may
couple strong output signals to the sensitive input stages. Grounding at two or more

points may form ground loops; which minimizes the undesirable signals.

Thus to summarize, noise due to interferences such as fluctuations in the dc power
supply, changes in the ambient temperature, capacitive or inductive couplings, and
ground loops can be transmitted. To reduce electromagnetic interference noise, careful
design and construction of electronic circuits, with proper shielding and grounding
must be done. Differential measurements are useful techniques to reduce low-

frequency noise at the expense of amplifying high-frequency components.

The inherent drift and poor repeatability of the gas sensor responses can sometimes be
significantly larger than most other noise sources which effectively reduce the
sensitivity of the electronic nose systems. The noise generated in E-Nose may result
in an inaccurate classification of the tested odours. Some noise also comes from
factors related to the MOS gas sensors themselves such as sensor age, exposure to
water and excess voltage, the bulk dissolution of surface atoms, mechanical wear and
fatigue, self-heating, poisoning, and oxidation. On the other hand, the impact on
various gas sensors from environmental factors is not uniform, therefore, system

parameters should be properly adjusted in the de-noise process™.

The accuracy of a sensor depends on its noise floor. To attain the lowest noise floor
and highest S/N ratio, component-level noise sources must be analyzed and considered

when calculating the overall noise of the system. When a signal is measured through a
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sensor, there is a tendency for the low amplitude part of the signal to be corrupted by
sensor noise. Researchers have tried several attempts for the noise removal and signal
recovery of the sensor systems using different filtering techniques®'>*,
Noise in gas sensors is considered to be any unwanted effect that obscures the
detection of the desired gas. It can arise at various stages of the measurement process
the sensors, the analog processing system, the data acquisition stage and the digital
signal processing system out of which the noise in the sensors is most harmful as it
propagates and can be amplified through the subsequent stages. In this thesis, we
make the statistical and frequency analysis of noise under pulse modulated heater
voltage of MOS gas sensor based electronic nose and noise compensation using

amplitude demodulation technique.

1.5.2 Noise Parameters:

Random processes are best described by their statistical properties. Mostly, noise is
characterised by its statistical parameters such as mean, standard deviation, Probability
Distribution Function (PDF), histogram, Signal-to-Noise Ratio (SNR) etc. Many
works have been reported on the modeling of noise using the statistical features of
noise. In>> the noise was modeled considering the statistical characteristics of the
noise. The analysis of the noise showed that the distribution of the amplitude of the
disturbance is nearly Gaussian. In most of the cases of image processing, we do not
have a priori knowledge on the nature of the noise and its statistical parameters®®. For
this reason the statistical parameters of the noise must be estimated as they state the
quality of the filtering or the analysis of the images®’. The identification of the nature
of the noise is possible by measuring the variations of statistical parameters such as the
standard deviation computed in the homogeneous regions of the observed image®®.
The noise identification is possible by the estimation of the statistical parameters of
noise. The PDF shows how the measured data depends on the parameters to be
estimated, and how the data is corrupted by random errors or noise. Histograms, which
show the probability distribution of parameter values shows the distribution of
amplitude values of noise by plotting the number of values within fixed amplitude
ranges or bins. Statistical analysis is often used to explore the data such as to examine

the distribution of values for a particular aspect. This information is useful for defining
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classes and ranges of data, reclassifying data, or analyzing data errors. Thus, statistical

analysis reveals the characteristics of the noise features as a whole.

1.5.2.1 Probability Distribution Function (PDF)

The behavior of a random variable is characterized by its probability distribution, that
is, by the way probabilities are distributed over the values it assumes. The fluctuations
of a purely random signal, or the distribution of a class of random signals in the signal
space, cannot be modeled by a predictive equation, but can be described in terms of
the statistical average values, and modeled by a probability distribution function in a

multidimensional signal space.

We specify a function P, (x), called the probability density function (PDF) of a random

variable X, such that the probability that the random variable X takes a value in a set 4

(of real numbers) is given by-

PlX e A]={Z,.,./ (x) for all sets A4 if X is discrete

= {I 4 f(x)dx for all intervals 4 if X is continuous (1.3)

If A be the set of all values that are less than or equal to a fixed value ¢ (i.e.,

A=(—0,t]), the probability function P[X <¢] , denoted by F(t) , is called the

distribution function of X.

For the data range —o0 < x <1, the probability lies between 0 to 1, given by,
0<P(x)<l (1.4)

The PDF of a signal always satisfies the condition that-
[ B(xydx=1 (1.5)

If the PDF of a signal is known, the probability of the signal falling within a range

can be determined by-

P(x, <x<x2)=]5Px(x)dx (1.6)

X
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For a sensor system which can develop a large number of noise data, its PDF can be
assumed to be Gaussian, however such statistics may not be obtained for less number
of data. The PDF of Gaussian function with mean p and standard deviation ¢ can be

represented by the Fig.1.7.

f{x)

i
Fig.1.7: PDF of Gaussian distribution.

1.5.2.2 Histogram

When there are a large number of observed data, a histogram is an excellent graphicél

representation of the data, facilitating;

(a) an evaluation of adequacy of the assumed model,

(b) estimation of percentiles of the distribution, and

(c) estimation of the distribution parameters.
The vertical axis of a histogram can represent either the class frequency or the relative
class frequency; in the former case the graph is called a frequency histogram and in
the latter a relative frequency histogram. The construction of the histogram of a

measured data is as follows. Let us denote a generic (univariate) dataset of size » by,

xl,xZ, ,xn

and then the range of the data is divided into intervals called bins denoted by,
BI,BZ, ,Bm
The length of an interval B, is denoted by |B|and is called the bin width. The area

under the histogram on each bin B reflects the number of elements in B,. The

histogram of a random data set results a Gaussian distribution when the number of
samples is large. Hence from definition of histogram, the sum of all the values in the

histogram must be equal to the number of data points », in the signal given by,
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M-l

N=YH (1.7)

1=

where H, represent the histogram and i is an index from 0 to M-I, and M is the

number of possible values that each sample can take. The histogram can be used to

calculate the mean and-standard deviation of a large data set. The mean . and

standard deviation o are calculated from the histogram by the equations:

p=—>iH, (1.8)

M-

1 1

2 . 2

oc°=—r0o - 1.9
Vo (-1 (1.9)
In this study the histogram of the sensor data was used to compute the mean, standard

deviation and variance of the sensor noise for different pulse modulated heater

voltage.
1.5.2.3 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) expresses the relationship between signal and noise
powers, as well as between the root-mean-square (rms) values of signal and noise

voltages given by:

SNR (dB) = 10log,, [%)

n

SNR (dB) = 20 logmUj’E: :3]

where P and P, are the power of the signal and noise respectively and ¥, and V, are

the signal and noise voltage respectively.

The signal-to-noise ratio (SNR) is used to characterize the quality of the signal
detection of a measuring system. It is an important characteristic of a system to
express the quality of the output signal and that the best relation between it and the
input signal is achieved when the ratio of the SNR at the output versus the input is

highest.
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1.5.2.4 Noise Modeling

Noise may be defined as any unwanted signal that interferes with the communication,
measurement or processing of an information-bearing signal. Noise is present in
various degrees in almost all systems and environments. The modeling of noise
characterises the structures and the patterns of a noise process. To model noise
accurately, a structure for modeling is required for both the temporal and the spectral
characteristics of noise. Accurate modeling of noise statistics is the key to achieving

high quality signals.

One of the most useful and vital tools for gaining insight into the structure of a noise
process is the use of Fourier transform for frequency analysis. The FFT of noise
reveals whether the noise is a low frequency noise or a high frequency noise and hence
determines the type of noise. In current practice, the simplest method for noise
modeling used is to estimate the noise statistics from the signal-inactive periods. In
best Bayesian signal processing methods, a set of probability models are trained for
the signal and the noise processes. The models are then used for the decoding of the
underlying states of the signal and noise, and for noisy signal recognition and

enhancement. .

In measurement systems, it is often assumed that the noise is a stationary additive
white Gaussian (AWGN) process. Although for some problems this is a valid
assumption and leads to mathematically convenient and useful solutions, in practice
the noise is often time-varying, correlated and non-Gaussian. This is particularly true
for impulsive-type noise which is non-stationary and non-Gaussian and hence AWGN
assumption is not valid. Non-stationary and non-Gaussian noise processes can be
modeled by a Markovian chain of stationary sub processes. Most sensor noise is non-
stationary in nature i.e. the statistical parameters of the noise, such as its ‘mean,
variance and power spectrum, vary with time and may be modeled using the hidden
Markov models (HMMs). An HMM is essentially a finite state Markov chain of
stationary sub processes by which the noise can be modeled. For a non-stationary
noise, a multistate HMM can model the time variations of the noise process with a
finite number of stationary states. For non-Gaussian noise, a mixture Gaussian density

model can be used to model the space of the noise within each state.
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1.5.2.5 Noise Filtering and Compensation

Noise Filtering is a signal processing operation to retrieve the pure signal from the
corrupted signal. In other words, a filter maps its input signal to another output signal
facilitating the extraction of the desired information contained in the input signal.
Sensor noise compensation mechanisms are important for improving sensor response.
In case of time-invariant filters the internal parameters and the structure of the filter
are fixed, and if the filter is linear the output signal is a linear function of the input
signal. Noise removal or noise reduction can be done by filtering, by wavelet analysis,
or by multifractal ar;alysis. Conventional linear system adaptive filtering techniques
have been widely used in adaptive noise reduction problems. However, because of the
linearity of the operation, the filter cannot change the intrinsic property of the original
noisy signal, such as regularity, etc. However, there are situations where the
specifications are time varying. The solution in these cases is to employ a digital filter’

with adaptive coefficients, known as adaptive filters>>4

. Adaptive filters are used for
non-stationary signals and environments, the applications of which include
multichannel sensor noise reduction, radar/sonar signal processing, and channel
equalization for cellular mobile phones, echo cancellation, and low delay speech

coding. Different adaptive filter schemes include:

a) State-Space Kalman Filters

b) Sample-Adaptive Filters
i) Recursive Least Square (RLS) Adaptive Filters
i)) The Steepest-Descent Method
iii) The Least Mean Square (LMS) Filter

a) State-Space Kalman Filters

These types of filters can be used with time-varying as well as time-invariant
processes. Kalman filter theory is based on a state-space approach in which a state
equation models the dynamics of the signal process and an observation equation model
for the noisy signal. For a pure signal x(m) and noisy observation y(m), the state

equation model and the observation model are defined as-
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x(m) = D(m,m-Dx(m—1)+e(m) (1.10)
y(m) = H(m)x(m)+ n(m) (1.1

where, x(m) is the n-dimensional state parameter of the signal, vector at time m,
@(m,m—1) is an nxn dimensional state transition matrix that relates the states of
the process at times m—1 and m,

e(m) is an n-dimensional uncorrelated input excitation vector of the state equation,
¥(m) is the m-dimensional noisy and distorted signal observation vector,

H(m) is the m x n channel distortion matrix,

n{m) is the m-dimensional additive noise process.

The filter derivation assumes that the state transition matrix @(m,m—1), the channel

distortion matrix H(m).

The Kalman filter is the best estimator for a large class of problems and a very
effective and useful estimator for an even larger class. With a few theoretical tools,
this filter is very easy to use. The Kalman filter is essentially a set of mathematical
equations that implement a predictor-corrector type estimator that is best in the sense
that it minimizes the estimated error covariance provided some presumed conditions
are met. The filter is relatively simple and robust in nature. For nonlinear systems it is
not possible, in general, to implement the best state estimator in closed form, but
various modifications of the Kalman filter can be used to estimate the state. One
disadvantage of this approach is that the physical meaning of the state variables may

be lost.
b) Sample-Adaptive Filters

They have a number of advantages over the block-adaptive filters, including lower
processing delay and better tracking of non-stationary signals. These are essential
characteristics in applications such as echo cancellation, adaptive delay estimation,
low-delay predictive coding, noise cancellation, radar, and channel equalisation in
mobile telephony. An adaptive filter starts at some initial state, and then the filter

coefficients are periodically updated so as to minimise the difference between the filter
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output and a target signal by recursive algorithm. In adaptive filtering the filter type

model and the adaptation algorithm are as follows:
Filter type:

A filter can be a finite impulse response (FIR) filter, or an infinite impulse response
(IIR) filter. FIR filters have good stability and convergence properties and hence often

used in practice.
Filter order:

The maximum delay, in samples, used in creating each output sample is termed as the
order of the filter. It can also be defined as the order of its transfer function. The filter
order is either set by using a prior knowledge of the input and the desired signals, or it
may be obtained by monitoring the changes in the error signal as a function of the

increasing filter order.
Adaptation algorithm:

The two most widely used adaptation algorithms are the RLS error and the LMS
methods. The factors influencing the choice of the adaptation aigorithm are the
computational complexity, the speed of convergence to best operating condition, the
minimum error at convergence, the numerical stability and the robustness of the
algorithm to initial parameter states. The following are the very common adaptation

algorithm:

i) Recursive Least Square (RLS):

The RLS filter is a sample-adaptive, time-update, version of the Wiener filter. For
stationary signals, the RLS filter converges to the same best filter coefficients as the
Wiener filter. For non-stationary signals, the RLS filter tracks the time variations of
the process. The RLS filter has a relatively fast rate of convergence to the best filter
coefficients which is useful in applications such as speech enhancement, channel
equalization, echo cancellation and radar where the filter should be able to track

relatively fast changes in the signal process.
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ii) The Steepest-Descent Method

The meansquare error surface with respect to the coefficients of an FIR filter is
a quadratic bowl-shaped curve, with a single global minimum that corresponds to the
LSE filter coefficients. The steepest-descent search for the minimum mean square
error coefficient is based on taking successive negative gradient of the error surface.
Starting with a set of initial values, the filter coefficients are updated successively in
the downward direction, until the minimum point, at which the gradient is reached at
Zero.

iii) The Least Mean Square (LMS)

A computationally simpler version of the gradient search method is the LMS filter, in
which the gradient of the mean square error is substituted with the gradient of the
instantaneous squared error function. The main advantage of the LMS algorithm is its
simplicity both in terms of the memory requirement and the computational
complexity. The LMS has a disadvantage that for signals with a large spectral dynamic

range the convergence is uneven and slow.

The selection of the noise reduction technique is application dependent. So, it is
necessary to learn and compare the filtering techniques to select the one that is
appropriate for the application in which we are interested. If the features of the filtered
signal are fed into a neural network pattern recognizer, then the rate of successful
classification should determine the ultimate measure by which to compare various
filtering techniques. Another filter is the moving average filter which is a very useful
one for many applications. It is best for a common problem, reducing random white
noise while keeping the sharpest step response. A Kalman filter works similar to a
moving average, except that the lag is much less; and it works by adjusting itself to the
level of noise, rather than a fixed averaging length. A number of works have been
reported in recent years on the reduction of noise by various de-noising methods. A
novel method of noise reduction is proposed for charge amplifiers in imaging and
sensor systems“, which are referred to as zero-pole modulation and demodulation.
Here, the input signal is passed through a zero-pole system without being modified,
the output noise of the charge amplifier being reduced by the demodulation. In another

work*’, numeric amplitude-demodulation based technique was employed to enhance
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simple electromagnetic analyses. The analysis was based on amplitude demodulation
and bandpass filtering processes. It led to the removal of the clock harmonics and
some noise sources hence allowing the efficient disclosiné of the leaking information.
In*®, a new modulation technique that is based on switching on and off the power
supply voltage of the amplifier is employed which can also be applied also to seif-
generating sensors. Here, the chopping of the amplifier gain via the power supply
voltage is done. To reduce the flicker noise, the amplified signal was then
synchronously demodulated and low-pass filtered. A modulation / demodulation
system is also proposed in* to modulate the 1/f noise in capacitive sensors, to a higher
frequency and then the noise modulated sensor signal is low-pass filtered. However,
the recovery of the original signal from the noisy signal by the amplitude
demodulation (AD) technique in case of MOS gas sensors has not been reported so

far.
1.6 Sensor Dynamics

The dynamic behavior of the sensors determines the performance of the sensor.
The sensor response to a variable input is different from that exhibited when the input
signals are constant. The response of gas sensors to odourants is generally regarded as
a first order time response. When the sensor is exposed to the odorant, a change in its
output signal occurs steady-state is reached. After removing the odour the sensor
returns back to its baseline as shown in Fig. 1.8. The time during which the sensor is
exposed to the odorant is referred to as the response time while the time it takes the
sensor to return to its baseline resistance is called the recovery time. The sensor
dynamics gives information about the important parameters i.e. response and recovery
time of the sensor. In fact the reason for dynamic characteristics is the presence of
analogous energy-storing elements such as inertial masses, inductances, electrical and
thermal capacitances. By analyzing the response of the sensor to different variable
input waveforms such as impulse, step, ramp, sinusoidal the dynamic characteristics

are determined.
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Fig.1.8: Sensor response to an odourant.

1.6.1 Adsorption Kinetics

To understand the dynamics of a MOS gas sensor, it is necessary that we analyse how

the sensor works with gas adsorption kinetics which is discussed here.

A MOS gas sensor comprises of a sensitive metal-oxide layer deposited on a substrate
with Pt or Au electrodes for measuring the electrical characteristics of the device. The
sensors posses an in-built heater, separated from the sensing layer and the electrodes
by an electrically insulating layer. The heater elevates the operating temperature of the
sensor to 200°C—400°C. We have used Taguchi MOS gas sensors in our work which
consist of an electrically heated ceramic pellet, onto which a thin porous film of SnO,
doped with metal ions has been deposited”®. The doped SnO,-film behaves as an n-
type semiconductor and due to chemisorption of oxygen at the sensor surface results
removal of electrons from the conducting band, takes place\. The resistance change of
the oxide layer happens due to combustion reactions within the lattice oxygen species
on the surface of metal oxide particles. Fig. 1.9 shows typical changes in conductivity
of n-type MOS gas sensors for O, and CHs. In (a) when oxygen dissolves in the
sensors surface, the resistance increases to the reference or background level. In (b),
the reaction of a volatile compound with the surface is shown that creates a decrease in

resistance,
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Fig. 1.9: Resistance changes due to the interaction of a volatile compound with the surface of a MOS
gas sensor (a) for O; and (b) CH,.

The MOS gas-sensing materials are typically n-type semiconductors that develop an
electron-depleted surface layer. This depletion layer is caused by atmospheric oxygen
and at high temperature oxygen adsorbs electrons from the MOS film surface to form
reactive O 2 or O~ species. The gas molecules in the applied gas react with the reactive
oxygen species at the MOS surface and affect the depletion layer thickness leading to
measurable changes in the resistance of the material. Reducing gases like CO and H;
react with the highly sensitive MOS surface and remove some of the chemisorbed
oxygen as a result electrons are injected back into the MOS, which reduces the
thickness of the depletion layer. Oxidizing gases such as NO,, on the other hand, draw
even more electrons from the sensor surface, /thereby increasing the thickness of the
depletion region’'. Any such infinitesimal changes in the depletion layer thickness
affect the overall resistance of the MOS material, which is measured using simple and

inexpensive electrical circuitry.

The sensing unit of the MOS gas sensor features a heating element that provides the
desired temperature for adsorption and desorption of oxygen gas and for reaction of
the analyte gases with those reactive adsorbed oxygen species. This heating element
which can be a platinum or platinum alloy wire, a resistive metal oxide, or a thin layer
of deposited platinum, is used to regulate the sensor temperature, since the sensors
exhibit different gas response characteristics at different temperature ranges. The

sensor is then elevated at a specific high temperature which determines the specific
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characteristics of the sensor. When the heater is elevated to a sufficient temperature,
the oxygen is adsorbed on the surface with a negative charge. The donor electrons are
transferred to the adsorbed oxygen thus leaving a positive charge in the layer. The
reactions at the heated MOS surface change the concentration of electrons in the MOS
film depletion layer. This in turn changes the conductance of these devices as a
function of the concentration of the gases. In the presence of gases, the metal oxide
causes the gas to dissociate into charged ions or complexes which results in the
transfer of electrons. The built-in heater, which heats the metal oxide material to an
operational temperature range that is best for the gas to be detected, is regulated and
controlled by a specific circuit. Thése gas-induced resistance changes are influenced
by many material-related factors such as the type of semiconductor oxide material,
oxide film thickness, grain size, porosity, material sintering temperature and time,

catalyst type and catalyst particle distribution.
1.6.2 Sensor Models

System Identification aims to determine particular models for dynamical systems
based on observed inputs and outputs. Although dynamical systems in the physical
world are naturally described in the continuous-time domain, most system
identification schemes have been based on discrete-time models without concern for
the merits of natural continuous-time model descriptions. System Identification has
been extensively studied in the past, and is of major importance in diverse fields of
signal processing®>®. The major advantage of system identification technique is how
easily stability and transient response information could be extracted from them. In
other words,'the theory and methods to determine pole location (root locus, lead-lag
blocks) in order to shape a systems response and to determine the system stability

were well understood. There are three basic models used for system identification:

i) Autoregressive with exogenous inputs (ARX)
i) Autoregressive moving average model (ARMAX)
iii) State-space (SS) model.
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i) Autoregressive with exogenous inputs (ARX) models:

The ARX model is the simplest model that incorporates the stimulus signal. However,
this model captures some of the stochastic dynamics as part of the system dynamics. A
multivariable linear, stochastic model is represented by a linear differential equation

as:

YRy = ay(k—i)+3 butk-i)+> c ek i) (1.12)

where n,, ny, and n. are, respectively, AR, X, and MA orders. The function g, is the
pulse response function from the past outputs to the present output y(k), and b, and ¢,
are the pulse response from the past and present inputs u(k) and noise e(k),
respectively, to the present outputs. ARX is a parametric models with ¢, = 0 and with
exogenous inputs (ARX). The linear regression can be used for model parameters
estimation. The identification method for the ARX model is the least squares error
(LSE) method, which is a special case of the prediction error minimization (PEM)

method described later in this chapter.

i) Autoregressive moving average models with exogenous inputs

(ARMAX):

Autoregressive moving average models with exogenous inputs (ARMAX) models are
used for the estimation of the order and the model structure of the system using all
relevant information such as the measurable input/output variables, internal variables
of the system, measurable disturbance, and even the phenomenological information of
the system. For eqn. (1.12), ARMAX is an autoregressive moving average model with
(ARMAX) and all the coefficients a,, b,, and ¢, are estimated. There are various
estimating methods of ARMAX models such as pseudo linear regressive, correlation

methods, subspace methods, etc.%.
iii) State-Space (SS) models:

The state-space model of a continuous-time dynamic system can be derived either

from the system model given in the time domain by a differential equation or from its
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transfer function representation. The state space form is a powerful way to represent a

system®, Let us consider the state space system:

x(t) = Ax(t) + Bu(t

y((t; = Cxit; + Du((t)) (1.13)
This system of first-order differential equations is known as the state equation of the
system and x(¢) is the state vector and u(f) is the input vector. The second equation is
the output equation. Here,

A= state matrix; B=input matrix; C=output matrix; D=direct transition matrix.

The state-space model is useful for the analysis of nonlinear systems. The state
equations may be obtained from an n™ order differential equation or directly from the
system model. Since the system identification has been performed from the discrete

data of input-output, the discrete state space model is more relevant than continuous

time model. The discrete state-space model is given by:

X(KT +T) = Ax(KT) + Bu(KT) (1.14)
Y(KT) = Cx(KT) + Du(KT) (1.15)

where K is the sampling instant and 7 is the sampling interval.

Representing x(K7) as x(k) Eqn.(1.14) and (1.15) reduces to,

x(k+1) = Ax(k) + Bu(k) (1.16)
(k) = Cx(k) + Du(k) (1.17)

Let us consider a scalar differential equation:

yk+ny+aylk+n-0)+a,y(k+n-2)+....a,_ylk+1)+a,y(k)=bu(k) (1.18)

where k denotes the k" sampling instant, y(k) is the system output at the k™ sampling
instant and u(k) is the input at the Kt sampling instant. Here bu(k) is termed as the

forcing function.

Defining the terms as,
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x, (k) = y(k)

x(k+1) = x,(k)

X, (k+1) = x;(k)

X, (k+1) = x, (k)

x,(k+1)=—ax, (k)—a,x,,(k)—....—a,x (k) +bu(k)

Then eqn.(1.18) can be written as-

[ x,(k+1) ] [0 1 - 0 0]] xk) ] [0]
x,(k+1) 0 0o - 0 01| x,(k) 0
: =| : Do : : s u(R)]
i k+1)| {0 0 - 0 1{|x,(k
| x,(k+1) | |-a,-a,, a,—a ||x,(k)y | |b]
EIGE
x, (k)
yky=[1 0 - 0]
X, (k)
%, (8) ]
or x(k +1) = Ax(k) + Bu(k)
(k) =Cx(k)
[ x,(k) ] 0 1.+ 0 0] 0]
x, (k) 0 0 -- 0 0
where, x(k)= : , A=|: : : R B=|: |,
x,_ (k) 0 0 - 0 1 0
EAGN | —a,—a,, -a,-a | | b |

c=ft 0 - 0]

The Linear Time Invariant (LTI) system can be represented in continuous time transfer

function as-
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y(t) = Hu(t) (1.19)
where the transfer function H in Laplace domain can be represented using state-

matrices as-
H(s)=C(sI-A)"'B+D (1.20)

where [ is the identity matrix. This eqn.(1.21) can be reduced to a form,

- " 4b,s" T
Ai(s) = 2 0 Lot by (1.21)
s"+as" +..+a,
Further the z-transform of the LTI model can be represented as-
: "4z .+
H(Z) - bOZn + blzn_1 bm
Z +a]Z +...+an (1.22)

State space model provides a suitable starting point for identification of the nonlinear

dynamics of the system.

1.6.3 Stability and Transfer Functions

An LTI system is stable if the output eventually comes back to its equilibrium state
when the system is subjected to an initial condition. To analyze the stability, the poles
are determined and if the poles lie in the left half of the complex frequency plane and
have negative real parts, the system is stable. The most important characteristic of the
dynamic behavior of a system is its stability. An LTI system is stable if the output
eventually comes back to its equilibrium state when the system is subjected to any

input or disturbance.
1.6.3.1 Step and Impulse Response

Step Response: The step responses are used in practice to capture the transient
responses of a system. It describes how the system reacts to disturbances and,
qualitatively, about the system stability. The response of an LTI system to a unit step

is given by®’:

o

B () = () *u(t) = T Wou(t—7)dr = [ h(z)dz (1.23)

—0
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which shows that the response at any time ¢ of an LTI system stimulated by a unit step
is the integral of the impulse response. If any excitation is changed to its integral, the
response also changes to its integral. Since the first derivative is the inverse of
integration, if the excitation is changed to its first derivative, the response is also

changed to its first derivative as shown in Fig.1.10.

The response of a system to a complex exponential e” is given by:

y({)=h()*e" = ]3 h(t)e’ dr = ]’.’ h(r)e™"dr (1.24)

—on

@

where s is any complex constant. The integral I h(t)e™™dt is called the Laplace

—»

transform of A(?).
Let us consider an input equal to a discrete-time step with magnitude «, i.e.,

0,:<0
= 1.25
u(t) {a,tzo (125)

and let y(#) be the corresponding output, which is called the Step response.

Impulse Response: The impuise response function is the response of a linear system
to a unit-impulse input when the initial conditions are zero. Applying a continuous-

time impulse to the LTI system we have-

Lt=0

u(t) = 5(t) = {0 0 (1.26)

The corresponding output y (f) is called the impulse response and its z-transform is

specifically the system'’s transfer function:

H, ()= 2" y(k) (1.27)
k=0
For a first-order system, the differential equation is-
20+ ()= (0 (1.28)

where 'a' is a constant and the initial condition is, y(0) = 0 and x(¢) is the input.
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Fig.1.10: Relations between integrals and derivatives of excitations and responses for an LTI system.

Taking Laplace transform with impulse input, we get from (1.28)-
sY(s)—y(0)+aY(s)=X(s) (1.29)

The transfer function in s-domain is given by:

Yis) 1

G(s) = - 1.30
= %o " Gra) (130)
In time-domain, the system response is-
y@)y=e™ (1.31)

From Eqn.(1.30) three cases can be considered as-

i) If a>0,y() =0—>then the system is stable.
if) a =0, y() =1-—>then the system is marginally stable.

iii) a <0, y(c0) = 00 —> then the system is unstable.

Graphically the three cases can be represented as shown in Fig.1.11 with polar plots

and impulse response.
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Fig.1.11: Graphical representation of the stability criterion.

The response curves of a first-order system to pulse inputs and impulse inputs are

shown in Fig.1.12.

Considering a first-order system, response to a pulse input of amplitude 1/¢ and

duration/, , two cases can be assumed:

i) Ifthe time duration 0 <f <, ofthe input is sufficiently small compared

with the system time constant 7', then the response is approximately a

unit-impulse response.

ii) If,7, <0.1T, the response of the system is identical to the unit-impulse

response.

1 ' B | 6 1 1 5

. sx)

10 = o]
.&*
a1 Vo O 1 2 3

£¥1,

w -
IN
¢ o o Iz s

L

Fig.1.12: Response curves of a first-order system subjected to pulse inputs and impulse input.
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1.6.3.2 Pole-Zero Plot
An important feature is the strong influence of the choice of boundary conditions on
the dynamics of a system such as pole and zero locations. Stability of a system can be
defined in two ways:
i) A system is stable if a system is subjected to a bounded input and the
response is bounded in magnitude®.
ii) A system is unstable if the natural response approaches infinity as time
goes to Infinity®.
The pole locations of the system give insight into the natural response of a system and,
thus, its stability. For the state-space system as already described is given by,
X=Ax+ Bu

1.32
G (1.32)

Taking the Laplace Transform ignoring initial conditions and solving for X(s) we

obtain,
X(s)=(s]— A" BU(s) (1.33)
where [ is the identity matrix. Using this relation for ¥{(s) and then simplifying we get,
Y(s)=CX(s)=C(sI — A" BU(s) (1.34)
= (1;((?) =C(s[-A)"B (1.35)
Or the transfer function, H(s)=C(sI-A)"'B (1.36)

Solving linear time-invariant systems by the Laplace Transform method we get,

_ K(s+2)(s+2,)..(s+2,) (1.37)

(s+p)s+py)..(s+p)

Y(s)

where m < n (for limited response at high frequency).

The constants z,are called the zeros of the transfer function or signal, and p, are the

poles. When viewed in the complex plane, the magnitude of Y (s) will go to zero at the
zeros, and to infinity at the poles. To determine stability of a system the denominator
of the transfer function is factorized and it is seen if the poles were in the left half of
the complex frequency plane. A system is stable if and only if all of the poles occur in

the left half of the complex plane as shown in Fig.1.13. The marginally stable parts
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correlate with a zero real part, and unstable parts to a positive real part. The
equilibrium state of a continuous-system with constant input is stable if all poles of the
transfer function H(s) have non-positive real parts and all poles with zero real parts are
single. The equilibrium state is asymptotically stable if and only if all poles of the
transfer function H(s) have negative real parts; that is, all poles are in the left half of
the s-plane. Similarly, the equilibrium state of a discrete-system with constant input is
stable if all poles of H(z) have absolute values less than or equal to one and all poles
with unit absolute values are single. The equilibrium state is asymptotically stable if
and only if all poles of H(z) have absolute values less than one; that is, the poles are all
inside the unit circle of the z-plane. Fig.1.13(a) and (b) shows the pole-zero plots of a

stable and unstable system respectively.

15 :
05
S ______ -
T
-1.5 v 0 :
(a) (b)

Fig.1.13: Pole-zero plots for (a) an unstable system; (b) a stable system.

In this work, the best transfer function is selected based on the pole-zero plots. The
distance of the poles from the unit circle is calculated and the frequency that gives the

least distance is considered to be stable.

1.6.4 System Identification

Sensor system identification and modeling is an important area due to its potential
scope for performance analysis, comparison, calibration and compensation. A number
of works have been carried out in the past for modeling sensor dynamics through
system identification. In®® a useful method for improving sensors’ dynamic

characteristics and realizing sensors’ dynamic compensation has been proposed. The
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model parameters were estimated from the differential equation based on numerical
integrals, without iterations. The method was useful in removing to a great extent
measurement noise in the output and also achieving lower model order and higher
accuracy. In another work® the response of the acceleration sensor was reconstructed
using various modeling methods. The reconstructed signal from distorted acceleration
signal also had higher level of accuracy. A least square method based on Walsh
function was also employed for studying the force sensor's dynamic modeling®®. This
method determined the coefficient of either differential equation or transfer function
directly based on the time-domain sensor data. The efficiency of the method was
tested by the identification of the emulating data and the force sensor's pulse respond

curve is modeled by using the method.

Work on the dynamic model identification of sensors based on support vector machine
(SVM) model was also performed in®. The method has prominent advantages as
compared with conventional model identification methods. Simulations and
experimental results show the efficiency and high precision of this dynamic model
identification method. An identification method based on support vector regression
(SVR) for Hammerstein model was also investigated to analyze the nonlinear dynamic
system of transducer’’. In this model, the nonlinear dynamic characteristic of pressure
transducer was expressed by a nonlinear static subunit followed by a linear dynamic
subunit. Compared with conventional identification methods, the proposed method
determines the analytic expressions of nonlinear dynamic transducer and only one
dynamic calibrating experiment was needed. Further, the order of Hammerstein model
built by this method provided a better way for identification for nonlinear dynamic
transducer system. Work has also been carried on the application of the nonlinear
model based on the orthonormal function in dynamic compensation of sensors’'. The
structure of this model and the corresponding algorithm compensated sensor ideal
output and input properties. From experimental results the effectiveness of dynamic

model method was determined.

In another work’?, the force without expensive force sensor using the pressure
transducer on each cylinder is studied with system identification method. In"* the
problem of carrying out dynamic measurements when the multicomponent gas mixture

undergoes changes with the same time-scale than the gas sensors time-constants is
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studied. To overcome such problems inverse models which allow the reconstruction of
the gas concentrations presented to the gas sensor array are built. Different model
structures, including linear and non-linear, have been tested for verification of the
approach. Further, the experimental identification and modeling of the nonlinear
dynamics of a high performance hydraulic actuator was performed in’* where an
analytical model of the system is formulated. The nonlinear elements of the actuator
model obtained through simulation are shown to predict the behaviour of the real
system's very accurately. In another work”> the output signals obtained from the
pressure sensors are analyzed using the auto-regressive exogenous (ARX) system
identification and the common pole-zero principle. The important dynamic
characteristics including frequency response, transfer function, resonant frequency and
damping ratio of t};e pressure sensors are revealed. Therefore, system identification is
an essential requirement in instrumentation for obtaining a model of a sensor or
transducer of interest or a new sensor to be developed, for sensor performance

analysis, fault diagnosis, etc.

Although a considerable amount of research has been carried out for identification of
transfer function and modeling of different sensor, very little attempt has been made
for MOS gas sensors. In this research an attempt has been made to determine the MOS
gas sensor transfer function by identification method so that the stability of the
response can be analyzed. Most of the dynamical system behavior can be obtained
exploiting system identification techniques. Among other factors like noise behavior,
obtaining a quasi-isothermal condition of the sensor surface and sensor stability are
also important criterions when the sensor is operated by pulse modulated heater
voltage. A quasi-isothermal state provides a slow change in sensor adsorption kinetics
which on the other hand, determines the stability of the response. Since attainment of a
proper isothermal sensor state is determined by the heater pulse fluctuation, a study on
stability of the sensor will lead to a method of selection of suitable heater pulse
frequency and duty cycle. Depending upon input-output relation, the identification of

systems can be divided into two groups:
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i) Static System Identification:

In this type of identification the output at any instant depends upon the input at that
instant. These systems are described by the algebraic equations. The system is

memory less and mathematically it is represented as-

y(n)= f[x(n)] (138)

where y(r) is the output at the #” instant corresponding to the input x(#).

ii) Dynamic System Identification:

In this type of identification the output at any instant depends upon the input at that
instant as well as the past inputs and outputs. Dynamic systems are described by the
difference or differential equations. These systems have memory to store past values

and mathematically represented as-
y(n)=f[x(n),x(n—1),x(n—2) ........ y(n—l),y(n—2),....] (1.39)

where y(n) is the output at the #n* instant corresponding to the input x(r).

The process of system identification deals with the determination of the complete
characteristics of an unknown system from its output with the input being known. The
characteristic of the unknown system can be determined in terms of its impulse
response. Least Square Error (LSE) is one of the methods for performing system
identification. In this method, a model is assumed for the system and the parameters of
the model that minimizes the error energy between the outputs of the actual system
and that of the model. This provides the best parameters of the model for
identification. In general, the mean square error (MSE) is minimized. The method of
linear prediction is a special case of system identification. This method enables the
prediction of future samples based on the present samples. In other words, the future
samples are expressed as the weighted sum of the present samples, the weights of
which are selected such that the prediction error energy is minimum. The prediction
co-efficients form an IIR or Autoregressive (AR) model. Let us consider an unknown
system H(z). By system identification the structure of the system can be determined

using the knowledge of its input x(n) and output y(n) as shown in Fig. 1.14. The
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structure of the unknown system can be quantified in terms of its impulse response

p(n), which is time-invariant.

x(n) G y(n) +/+> e(n)

- A

d(n)

ﬁ(y
/

Fig.1.14: Block diagram of System Identification.

1.6.4.1 Least-Square Error Algorithm (LSE):

In parametric system identification a finite number of unknown parameters can be
determined that characterizes the model of the system. In least squares criterion
algorithm the sum of squares of error between actual observed outputs and estimated
output values of the identified model is minimised. The criterion of the LSE algorithm
has a unique minimum point, provided that the model is not over-parameterized’®. It
produces the estimated parameters with the highest probability (maximum likelihood).

Parametric identification using the method of least-squares involves three steps:

i) Formulation of the parametric transfer function identification problem
it) Line fitting using the least-squares method
iii) Surface fitting using the least-squares method

1. Parametric Identification

The co-efficients a, and b, of the z-transfer function (Eqn.1.23),

m m-1
byz" +bz"" +.+b,
Z"+az" +..+a,

H(z)=
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are determined, assuming that the no. of poles » and the number of zeros m are known.
This can be done using the methods of least-squares which is introduced next, starting

from a simple line fitting.
ii. Least-squares line fitting

The method can be used for solving linear equations:
y, =ax,+b, ‘v’{],2, ..... ,N} (1.40)

The values for parameters a and b can be found for which the left- and the right-hand-
sides of (1.40) differ by the smallest possible error. More precisely, the predicted
values of @ and b leads to the smallest possible sum of squares for the errors over the N
experiments. The values for @ and b are determined that minimize the following SSE:
N
SSE =Y (ax,+b-y,)’ (1.41)
=1

iii. Vector least-squares

Let us consider a linear equation of the form:

m

y=220=20 (1.42)
=1

where y is a scalar, z=[z, z, - z,] an m-vector, and 6=[6 6, - ,]is

also an m-vector whose values are to be determined.
To determine the parameter vector &, N experiments are conducted from which
measurements (z(2), y(i)),i € {1,2,...., N}, are obtained where each z(i)denotes one m-

vector and each y(i) a scalar. The values for @ are formulated that minimize the

following Sum-of-Squares Error (SSE): :
N

SSE =" (z(i)-6 - y(i))’ (1.43)
=1

Least squares and similar techniques have a distinct advantage as compared to
nonlinear search methods. The advantage of least squares methods is that it avoids the

risk of convergence to sub-best minima of the criterion function”’. The least squares
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criterion has important statistical relationship with estimation probability. If
appropriate probabilistic assumptions about underlying error distributions are made,

LSE algorithm produces the maximum-likelihood estimate of the parameters.

Another method of identification involves estimation of model parameters which
minimizes the optimally determined one-step-ahead output prediction error called the

prediction error minimization method.
1.6.4.2 Prediction Error Minimization (PEM)

This method is used for estimating the parameters of a dynamic model based on
measured input-output data. It considers the accuracy of the predictions computed for
the observations, rather than the model mismatch. This technique is perhaps the most
closely connected to systems theory as it explicitly exploits the dynamical structure of

the studied system.
The general properties of PEM are:

1. Prior information on the model structure (model type and orders of each
term) is needed.

2. The structural inconsistency may lead to biased parameter estimates.
The bias is revealed différently for different input excitation.

3. To find a parsimonious model, trial and error procedure with different
orders is usually necessary.

4. Generally, nonlinear equation should be solved to find an estimate.

In principle all systems are stochastic, which means that the output y(z,) at time k

cannot be determined exactly from data available at the time &-1. It is thus important to

know at the time &-1 what the output y(¢,) of the stochastic process is likely to be at

time k. Therefore, it is necessary to determine the model parameter vector 8 , so that

the prediction error defined as,
£, 0) = Y1)~ 3t |t,130) (1.44)
is as small as possible. Ji(z,]r,,;6) is the predicted response at the time k based on the

parameters 6, given by-
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Pt |t:6) = L 0)y(2,) (1.45)
where L(g,0) is a p-variate prediction filter having a pure time delay between y(z,)
and J(t,|r,,;6) . This filter can be constructed in a number of ways, but it will always

be based on the model parameters@. Once the model structure and this filter have
been chosen, the prediction errors are calculated from (1.45). Once the model structure
is chosen, it is necessary to make the following choices to define a prediction error

method for minimization of (¢, ,8)

a) To choose the prediction filter parameter L(g,6) .
b) To choose a scalar-valued function that can assess the performance of the
predictor. .
¢) To choose the procedure for minimization of this performance function.
The PEM algorithm uses numerical optimization to minimize the cost function defined
as a weighted norm of the prediction error. For scalar outputs, the cost function is

defined as:
AI
Vy(G,H)y=Y *(t) (1.46)
1=l

where £(¢) is the difference between the measured output and the predicted output of

the model.

Model validation is the final stage of the system identification procedure. In fact it
overlaps with the model structure selection. Statistical tests on the prediction errors

£(t,,0) are also typically used numerical indicators for model validation. If the
statistical distribution of £(¢,,0) matches the assumed distribution then it can be

concluded that the system dynamics is indeed well represented by the model. Any
different trend in the statistical characteristics, from the original one, is an indication
that either the model or the noise is incorrectly assumed or that the parameters are

incorrectly estimated.

System identification includes the following steps:
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a) Experiment design: It includes the choice of the measured variables and of
the character of the input signals. Its purpose is to obtain good experimental
data.

b) Selection of model structure: A suitable model structure is chosen using
prior knowledge and trial and error.

c) Choice of the criterion to fit: A suitable function is chosen, which shows how
well the model fits the experimental data.

d) Parameter estimation: An optimization problem is solved to obtain the
numerical values of the model parameters.

e) Model validation: The model is tested in order to reveal any inadequacies.

1.7 Detection and Classification of Gases

The idea to portray the natural human senses with artificial systems has been a dream
of human kind. Efforts have been made to develop artificial systems reproducing the
five senses of human beings’®. From this point of view, sensors play an important role
in the reproduction/simulation of the five senses possessed by human beings. The fact
of being able to unbiased analysis and getting results in real time, has propitiated the
research and development of techniques to get better accuracy, in classifying gases.
The ability to mimic the human sensory response led to the development of E-Nose.
As defined by Persaud and Dodd in the early 1980°’s: “An electronic nose is an
instrument, which comprises an array of electronic chemical sensors with partial
specificity and an appropriate pattern-recognition system, capable of recognizing
simple or complex odours”. Currently, E-Nose systems have applications such as
quality assurance of food and drugs, medical diagnosis, and environmental
monitoring”. The E-Nose has become a key element in the food quality analysis of
many industries that manipulate the aroma properties of their manufactured foods. E-
Nose offers an efficient way to analyze and compare different odours. However,
developing artificial olfaction systems is quite complex and more analytical approach

is required for the comparison and classification of odours.
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1.7.1 Biological Olfaction

Human olfaction begins with sniffing, which moves air samples that contain
molecules of odours to the thin mucus layer lining the olfactory epithelium in the
upper portion of the nasal cavity. A simplified schematic view of the human olfactory
system is shown in Fig 1.15. Odour receptors of the human nasal cavity can detect and
discriminate up to 10,000 different chemical traces. The olfactory region of each of the
two nasal passages in humans is an area of about 2.5cm” holding about 50 million
primary sensory receptor cells. Each olfactory receptor consists of 8-20 cilia in the
olfactory epithelium projecting down into a layer of mucus about 60 microns thick.
The mucus lipids help the transportation of the odourant molecules to the olfactory
receptors and produce the signals that our brain receives to interpret the odour.
Information about the stimulus causes a distinctive neuron signal pattern and such
patterns allow discriminating between a vast numbers of different odours. Odourant
particles are polar and can be detected by humans at concentrations below 1ppb. The
detection levels of different materials are different such as rose-0.29ppm, lemon-
10ppb, off-flavor in fish-0.01ppb; grapefruit-0.00002ppb. The human olfactory system
has the limitation of discriminating mixtures of more than three to four components.
The electronic nose technology involves a device that mimics the human olfactory
system with the analogy to an array of olfactory receptors, signal excitation by
neurons, and pattern classification in the brain. The brain then performs processing
and classification operation, resulting in a suitable decision for the next course of
action. This process of classification appears to be a learning process, with new smells
having to be sampled, recognized and remembered subconsciously in the memory of

the individual.

A gas detecting instrument with a single sensor element features the ability to provide
measurement results immediately on-site and to conduct continuous monitoring.
However, such single sensor elements are not able to classify an odour from a group;
rather they can measure the strength or ppm level only of a single odour. To match the
sensitivity of the nose, the E-Nose sensor requires intelligent classification and

discrimination ability.
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Our understanding of biological olfaction has increased rapidly during the past
decades® and attempts have been made to model this process®’. Even though
conventionally the human nose is used to assess odours such as tea, wines or
perfumes, by nature it is subjective and biased. Moreover it is not practical to use the
conventional human testing for industrial applications where dangerous components
are present in the gas or when it is needed to monitor certain volatile compounds for

prolonged periods of time. E-Nose is the alternate technique in such situations.

~ OLFACTORY BULB

. LATEE{: OLFACTORY

ETHMOID BONEY/
- STRIA

OLFACTORY
EPITHELIUM

Fig. 1.15: The Human Olfactory System
1.7.2 Electronic Nose

In the artificial olfactory system, the olfactory receptor cells are replaced by a
chemical sensor array. Employing chemical sensors in an array form with pattern
recognition capability provides a higher degree of selectivity leading to an extensive
range of applications. The basic principle of E-Nose is that each odour leaves a
characteristic pattern or fingerprint on each sensor array. The degree of selectivity and
the type of odours that can be detected largely depend on the choice and number of
sensors in the sensor array. The sensors are often mounted in an air tight chamber
containing gas inlets and outlets to control the gas flow. The signals from each sensor
are measured and processed, usually by an analogue to digital conversion that is
performed by a computer. After the signal processing, the data is transformed by a
variety of pre-processing techniques designed to reduce the complexity of the multi-
sensor response. As shown in Fig. 1.16 the headspace generation ensures the

concentration of volatiles of organic solvents before and during sampling. During the
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collection time, the sensors are exposed to constant flow of gases through pipelines
inside the electronic nose and the response begins. During the purging operation,
sensor heads are cleared with a blow of fresh air so that the sensors go back to their

baseline values.

—_—
AR TO SENSORS

Fig 1.16. A headspace sampling system.

The E-Nose system, comprises of three functional components that works in tandem-

i) an integrated chemical sensor array,
ii) an interfacing electronic circuitry and

iii) a pattern recognition (PARC) software paradigm.

Sensor electronics convert the chemical signal into an electrical signal and also
amplify and condition it. Interfacing electronics circuitry is used to digitize and store
the response signal for processing. Patterns from known odours are used to build a
database and train a pattern recognition system so that unknown odours can
subsequently be classified and identified. The degree of selectivity and the type of
odours that can be detected largely depend on the choice and number of sensors in the
sensor array. Hence the E-Nose is a combined chemical sensing and data analysis

system.

An E-Nose, as the human olfactory system, discriminates new patterns and associates
them to specific odours by training the system using a set of known data samples.
Sample delivery systems are used to transfer the odour from the source (typically by a
miniature pump) to a sensor chamber in which an array of selected gas sensors is

installed. The process of odour delivery can be summarized as follows:
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At the beginning of a sampling process, the odour delivery system drives each sensor
to a known reference state by applying a reference gas (for example, fresh air) to the
sensor chamber. The responses of the sensors in this state are known as baseline level.
Then, the delivery system exposes the sensors to a given odour, producing first a
transient response as the compounds starts interacting with the surface and bulk of the
sensor’s active material. After a few seconds to a few minutes, the sensors reaches a
steady state and, finally, the odour is removed from the system and the sensor is
brought back to the baseline level by pumping the reference gas to prepare the system
for a new measurement cycle. The above mentioned steps are known in the E-Nose
literature as a “three phase sampling process” and they are usually carried out in
chambers where humidity, temperature and exposure to the analyte are controlled®.
Fig. 1.17 shows a typical response of a given array of gas sensors to a three-phase
sampling process. The three phase sampling process has been widely used in
laboratory-based applications with an important amount of success. Many articles on
this subject have been published over the last years, mainly in relation to the food and
beverage industry®*®. Commercial E-Nose systems also invariably employ these basic
stages of operation. Fig.1.18 shows the comparison between the three basic elements

that comprise and electronic nose and a human nose.

Many of these sensing technologies are explored in the research and have also been
implemented on commercially available electronic noses®’®'. The sensing
technologies of gas sensors have certain advantages and disadvantages over their
counterpart to choose the right kind of gas sensor, depends on the type of application.
Among the desired applications of E-Nose, they should be able to react to and recover
from an exposed odour within an acceptable time frame. This is especially important

in applications that integrate E-Nose with a robotic system as in*?.

Another important aspect is that the power consumption of the sensors should be
relatively low. The headspace, containing the sensor array is likely to involve other
electrical equipment such as pumps and valves which often share the same power
supply. Also smaller the sensor sizes higher the possibility of integration of sensors in

a variety of platforms, including portable E-Nose™.
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Fig.1.17 Measured response of an array of E-Nose (TGS-2611, TGS-842 and TGS-822).
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Fig 1.18.Comparison between the three basic elements that comprise and E-Nose and a human

nose .

1.8 Signal processing and Pattern Recognition:

It has already been mentioned that the odour classification and discrimination is
performed by MOS gas sensors with the help of algorithms supported by learning,
training and decision making. These algorithms are basically data and signal
processing that work sequentially. The four sequential stages of E-Nose signal

processing and pattern recognition are as follows:

a) Pre-processing
b) Feature extraction
c) Classification
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d) Decision making
Fig.1.19 shows the different stages of the E-Nose signal processing stages.

The sensor response in terms of variation of resistance in the case of chemoresistive
type and polymer sensors, or variation of mass and resonance frequency in the case of
piezoelectric sensors is converted to a variation in voltage or current using an
electronic circuit. Sensor drift is one of the factors that have to be com.pensated for in

this stage.

One of the most important functions of this stage is the sensor output normalization.
Since the sensors in the array have different sensitivities, the voltage levels of the
output signals from the sensors will be different. The process of separating individual
samples from universal samples space is called classification. The classification helps
to sort out samples to the nearest matching class or even to the absolute class of the
sample as per the flexibility of algorithm rules. When the sensor response data are
projected on an appropriate low-dimensional space, the classification stage is used to
identify the patterns that are representative of each odour. The classification stage is
able to assign to the data a class label to identify the odourant by comparing its
patterns with those compiled during training. The decision making stage makes
judgement to the classification and even determines that the unknown sample “‘does

not belong” or “it belongs” or “it nearly belongs to” any one of the database.

Odorant Raw signals Preprocessed-signals Feature vector
. Feature 2 Feature 2

'.— o
o
o
Feature 1 Feature 1
Sensor armay Pre-Processing  Feature Extraction Classification 5
5
o
=]

Deciston making

Fig.1.19. Block diagram of various stages of odour classification.
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1.8.1 Feature Selection

Feature is the best subset of measurements based on an evaluating criterion. During
the recent years many works related to feature extraction, feature construction, space
dimensionality reduction, sparse representations have been performed by most of the
researchers, the applications of which includes bio-informatics, chemistry, text
processing, pattern recognition, speech processing, vision perception, flavour
discrimination and quality prediction. Feature selection is a preprocessing step to
machine learning and is useful in data visualization and data understanding, reducing
the measurement and storage requirements, reducing training and utilization times,
defying the curse of dimensionality to improve prediction performance. Feature
selection based on static performance data, which are used as the training set, may not
always provide the best classification results in dynamic environments. Hence, to
enable the feature selection to adapt to the dynamic operation, it requires the system to
be able to dynamically update the training set data. Selecting the most relevant
variables is usually subsets for building a predictor, particularly if the variables are
redundant. Conversely, a subset of useful variables may exclude many redundant, but

relevant, variables.

Feature selection is a process of choosing a subset of original features so that the
feature space is reduced according to a certain evaluation criterion. The building of a
feature representation is an opportunity for incorporating domain knowledge into the
data and can be very application specific. Nonetheless, there are a number of generic
feature construction methods such as clustering; basic linear transforms of the input
variables as Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA); more sophisticated linear transforms like spectral transforms (Fourier
transforms), wavelet transforms or convolutions of kernels; and applying simple
functions to subsets of variables, like products to create monomials. Feature selection
has been a fertile field of research and development since ages and has proved to be
very efficient in removing irrelevant and redundant features, increasing efficiency in
learning tasks, improving learning performance like predictive accuracy, and

enhancing comprehensibility of learned results™*®.

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



55

Feature selection algorithms fall into two broad categories, the filter model or the
wrapper model’” 8, The filter model relies on general characteristics of the training
data to select some features without involving any learning algorithm whereas the
wrapper model requires one predetermined learning algorithm in feature selection and
uses its performance to evaluate and determine which features are selected. As for
each new subset of features, the wrapper model needs to learn a classifier. It tends to
find features better suited to the predetermined learning algorithm resulting in better
learning performance, but it also tends to be more computationally expensive than the
filter model®”. The filter model is usually chosen when the number of features
becomes very large because of its computational efficiency. For the purpose of feature
selection, usually the data sets are chosen to span a wide variety of domains. The data
sets that had sufficiently large experimental measurements to create a large enough

test set are chosen. /

Temperature affects the dynamic characteristics of the gas sensors, particularly when

they employ viscous damping. In the works! %12

, the authors described techniques
for extracting and using the steady-state, the slope as well as the transient response
information from the sensor’s response. The dynamic signal extraction techniques and
best array configuration were used to improve the classification performance in'®. The
sensor response curves were determined using six features which represented the
differences of dynamic behaviour of sensors to different sample gases, in phase space.
The degree of difference was used to evaluate how much information was extracted
from the response curves by the proposed method'®.

In this work it was found that when the adsorption process becomes short, the reacting
time i.e. the reaction between the sensor and the sample gets reduced. Research has
been carried out on feature extraction on recovery responses which shows that the
shape of the recovery curves did not change much with the reaction time'®. The
recognition time and response recovery time of sensors were determined and the
feature extraction was done based on these'®. In our experiment, all the responses
from the gas sensor data were formatted for this purpose. Each dataset is split into

training, validation and test set.
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After checking some simple feature statistics, a subset is selected and then trained
using Neural Networks. Further, a feature subset is selected which is then trained by
ANN with full parameter selection. Hence, better classification of data is achieved by

using these algorithms.
1.8.2 Pattern Recognition

Dimensionality reduction and feature subset selection are two techniques for reducing
the attribute space of a feature set, which is an important component of pattern
recognition. Classification is a supervised learning algorithm in contrasts with
clustering, which are unsupervised learning algorithm'”’. In general, supervised
classification is applied due to higher accuracy level achieved and more robust
methods exist, compared to the unsupervised approach. It maps a data into one of
several predefined classes. Data classification is a two-step process. In the first step, a
model is built describing a predetermined set of data classes or concepts. Typically the
learned model is represented in the form of classification rules, decision trees, or
mathematical formulae. In the second step the model is used for classification.

108, 109 Artificial Neural Network

Classification techniques including decision tree
(ANN)''°, Support Vector Machine (SVM)''"" "2 | Rough Set Theory (RST)'** and
other rule based classification systems have been proposed in many works. ANN
classification, which is supervised, has been proved to be a practical approach with
lots of success stories in several classification tasks. Neural classifiers operate directly
on the training data taking each individual pattern into consideration. The
classification stage is able to assign to the data a class label to identify the odourant by
comparing its patterns with those compiled during training. The different tools used

for performing classification work are shown in Fig.1.20.

The judgement to the classification is made by the decision making stage which even
determines that the unknown sample “does not belong” or “it belongs” or “it nearly

belongs to” any oné of the database.

In the conventional ANN classification, a sample from the original data set is mapped
to a space between 0 and 1 (recognition space) by the neural network. The sample is

marked as class 0 if it is more close to 0 than to 1. Otherwise, the sample belongs to
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class 1. If this space can be divided into partitions, then the mapped sample can get
close to these partitions freely, and the mapping relationship could be formed easily
using neural network. Based on this idea, the performance of ANN classification
including training speed and accuracy could be improved. For the conventional
statistical classifiers, the size of training data is an important factor for the

success of an ANN

MLR
Supervised <
Quantitative — PLS
DFA
Statistical Supervised
Pattern pe \PCR
Poattern amalysts PCA
Recognition Unsupervised <
Biological Unsupervised —_ CA
inspired ANN<: Supervised SOM
Fuzzy MLP
PNN
Selr Supervised RBF
Others supervised FIS
LVQ
ART FNN
Self Supervised CM
supervised Fuzzy ART
NFS Wavelets
GA
~ . .
Abbreviations
ANN-Artificial Neural Network NFS-Neuro Fuzzy System
ART-Adaptive Resonance Theory PCA-Principal Component Analysis
DFA-Discriminate Function Analysis PCR-Principal Component Regression
GA-Genetic Algorithm PLS-Partial Least Square
LDA-Linear Discriminant Analysis RBF-Radial Basis Function
MLR-Multiple Linear Regression SOM-Self Organizing Map

Fig.1.20. Tree diagram showing various classification schemes.

classification. Fewer training samples are not sufficient for networks to derive the
characteristics of the classes and also the use of too large number of training samples
may cause networks to overfit to the data, as well as requires more learning time.
However, it should be pointed out that a larger number of training data should be

always preferred as opposed to a smaller number.
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In this thesis, ANNs were used for the classification of MOS gas sensor data. Two
ANN paradigms namely MLP and RBF were used for the training of the data and the

classification accuracy was determined.

1.9 Artificial Neural Network:

An ANN is man’s attempt to mimic the brain computationally. The most commonly
used pattern recognition technique is the ANN. They are highly parallel mathematical
constructs that have been inspired by the biological nervous system. ANN consists of a
number of processing elements called ‘neurons’ which represent the biological
neurons, and their interconnections, the synaptic links. The strengths of these
connections are called ‘weights’ and are determined either during a training phase (or
learning phase) for supervised ANN, or by an algorithm for unsupervised ANN. There
are many different types of ANN structures that have been applied to solve odour
classification problems such as muliti-layered perceptron (MLP), radial basis function
(RBF), linear vector quantization (LVQ) etc. In artificial neurons, this signal transfer
is simulated by multiplication of the input signal, x, with the synaptic weight, w, to
derive the output signal y. The artificial neuron is the heart of every neural network. A
single neuron receives input signals, x,, from » neurons, aggregates them by using the
synaptic weights, w,, and passes the result after conversion by a transfer function
(activation function) as the output signal ¥, (Fig. 1.21). Some important activation
functions are given in Table 1.1. A general neural network consists of an input layer,
one or more hidden layer(s), and an output layer and these layers are fully connected.
Fig.1.22 shows an ANN architecture of 3-6-10 neurons. The Fig. shows that the output
signals (y,) of the neurons of one layer act as the input signals (x;) for the neurons of

the following layer.

The input layer of the ANN interface the signals from the external world to the ANN.
Hidden layers are the real classifiers that works for the classification algorithm of
ANN. The output layer is considered a collector of the features detected and producer

of the target or result.

The main advantages of neural networks are its adaptability in terms of learning, self-

organisation, training, and noise tolerance. ANN is the most commonly used pattern
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recognition techniques with E-Nose. ANNs enable to detect a greater number of

classes than the number of unique sensor types, and the

[
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‘

Fig.1.21. Operation of a single neuron.

less selective sensors can be rendered much more selectivity when used in conjunction

with an ANN.

Table 1.1: Important transfer functions for neural networks:
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Fig. 1.22: Architecture of a neural network.

This is because, once a network is trained for a particular odour, the consecutive
recognition process can occur rapidly and effectively. Learning in a neural network is
accomplished through an adaptive procedure, known as “learning rule’. The weights
of the network are incrementally adjusted so as to improve the performance over time.
The basic learning rules are the supervised learning, unsupervised learning and

reinforcement learning.
i. Supervised Learning:

In the supervised learning, the output response is compared to a desired target
response. If the actual response differs from the target response, the network generates
an error signal which is then used to calculate the adjustment that should be made to
the synaptic weights, so that the actual output matches the target output. The most
common types of networks used to detect odours are the multi-layered perceptron
(MLP) network and radial basis function (RBF).

a. Multi Layered Perceptron (MLP)

Perceptrons are fast and reliable networks especially suited for simple problems in
pattern classification. An understanding of the operations of the perceptron provides

a good basis for understanding more complex networks. A multilayer perceptron
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(MLP) is a ‘feedforward’ ANN model that maps sets of input data onto a set of
appropriate output. Feedforward means that data flows in one direction from input to
output layer (forward). This type of network is trained with the backpropagation
learning algorithm. MLPs are widely used for pattern classification, recognition,
prediction and approximation. Fig.1.23 shows a single layered perceptron architecture.
It (x1, x2...., xn) represents a vector of real-valued inputs weighted with (w;, w,...,wy).

The linear combination of these inputs is given by-

> wx, =w,x, + WX, + e +wx (1.47)

o n“"n
where W, denote the threshold bias value and X, is always 1. The output is 1 if the

result is greater than 1, otherwise —1. MLP using a ‘backpropagation’ algorithm are
the standard algorithm for any supervised learning pattern recognition process and the
subject of ongoing research in computational neuroscience and parallel distributed
processing. They are useful in research in terms of their ability to solve problems

stochastically.

(F)—0
w gwlx,ﬂ)

-1 otherwise

0=

Fig. 1.23: Single layered perceptron architecture.

b. Radial Basis Function (RBF)

Radial basis networks require more neurons than other feed-forward networks. In
principle, they could be employed in any sort of model and any sort of network. Radial

functions are a special class of function. Their characteristic feature is that their
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response decreases (or increases) monotonically with distance from a central point.
The centre the distance scale, and the precise shape of the radial function are

parameters of the model, all fixed if it is linear. Fig. 1.24 shows a radial basis network.

A typical radial function is the Gaussian function which in the case of a scalar input is

given by:

h(x) = exp— ( (x —zc) ) (1.48)

¥

where ¢ is the centre and 7 is the radius. A Gaussian RBF monotonically decreases
with distance from the centre. A multiquadric RBF in the case of scalar input is given
by:

h(x) = Nr (=) (1.49)

¥

It monotonically increases with distance from the centre. For a single layer RBF

network with inputs (xi, x2...., X,) and weights (w;, wa...,w,) the output is given by:

fx)= Z w. I (%) (1.50)

Fig. 1.24: Radial basis network.

ii. Unsupervised Learning:

In unsupervised learning there is no feedback path. Unsupervised learning algorithm is
favoured in sampling odours when the number of possible outputs is unknown. This

type of learning does not require a target output. During the training session, the neural
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net receives the input excitations or patterns and it arbitrarily organizes them into
categories. When a stimulus is later applied, the network provides an output response
indicating the class to which the stimulus belongs. If a class cannot be found for the
input stimulus, a new class is generated. This type of learning ensures the optimization
of some criterion or performance function defined in terms of the output activity of the
units in the network. Here, the weights and the outputs of the network are usually
expected to converge to representations that capture the statistical regularities of the

input data.
iii. Reinforcement Learning:

In this type of learning, the network’s weights are updated in response to an evaluative
teacher signal. It differs from supervised learning, where the teacher signal gives the
correct value. Here the algorithm learns a policy of how to act when given an
observation of the world. This type of learning rules may be viewed as stochastic
search a mechanism that maximizes the probability of positive external reinforcement

for a given training set.

Pattern recognition and classification can be observed as a function approximation
problem. The stage of pattern recognition and classification determines the
relationship between a set of independent variables (the feature vector) and a set of
dependent classes (odour classes). The data may be qualitative, quantitative or both.

There are two types of data structures in pattern recognition:

i) Object data: This type of data are the numerical vectors of » features,
represented by a set of N feature vectors in the n-dimensional
measurement space i.e, x={x,X2,X3,.....Xn}.

ii) Relational data: This type of data bears a numerical relationship of N?,
say {r,}, between different pairs of objects. In other words, r,,
represents the extent upto which the objects i and j are related in the

sense of some binary relationship.

The interpretation of a vast data set is difficult and the analysing of such multivariate
data sets is a multi-step process including data pre-processing, visualising relevant

information, and finally classification of samples. This multi-step process is
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collectively known as pattern recognition. A key concept in the field of pattern
recognition is that of uncertainty which arises both through noises on measurements,
as well as through the finite size of data sets. Probability theory provides a consistent
framework for the quantification and manipulation of uncertainty and forms one of the
central foundations for pattern recognition. In pattern recognition, features are the
individual measurable properties of the phenomena being observed. The E-Nose raw
data might not be the most useful input variables for statistical analysis due to noise,
sensor drift or inconsistency. To obtain better results, data pre-processing is done
which modifies existing raw data with the hope to obtain more quality input variable.
Patterns from known odours are used to construct a database and train a pattern
recognition system so that unknown odours can subsequently be classified and
identified. For achieving better classification results, the choice of discriminating and
independent features is an important criterion. The most commonly used data pre-
processing techniques are normalisation, mean centering and scaling. Normalisation
eliminates quantitative information concentration from a data set; mean centering
eliminates constant drift from a data set and range scaling helps to eliminate the
influence of absolute values by scaling them to values between zero and one. Different
areas of pattern recognition have different features and once the features are
recognized, they are classified into smaller set of algorithms. Classification techniques
are divided in statistical approaches and neural network approaches. The most
common are Bayesian classifiers, KNN classifier. Support vector machines and multi

layer perceptrons.

The process of separating individual samples from universal samples space is called
classification. The classification helps to sort out samples to the nearest matching class
or even to the absolute class of the sample as per the flexibility of algorithm rules.

There are many available statistical techniques that can be applied.
a) Multiple Linear Regression (MLR) -

It is a statistical technique that uses the independent variables or in this case, the
sensor responses to predict the dependent variables by performing least-squares fit of

the data. For E-Nose data, the goal of MLR is to calculate the regression coefficients.

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



65

Despite of many applications of MLR, few drawbacks such as the sensitivity to noise,

and the treatment of co-linearity in then gas sensing array exists.
b) Partial Least Squares (PLS) -

This is another linear regression technique that is based on both MLR and principal
component analysis. PLS is also more precise than MLR. This is because unlike MLR,
in PLS the variables do not need to be orthogonal. Instead PLS can partly contain the
same information, or be collinear and extracts the latent structures in the data which

have the character of the weighted averages.
¢) Cluster Analysis (CA) —

CA helps in finding the natural grouping in the individual observations within a data
set. Cluster analysis is unsupervised technique and can be further subdivided as
agglomerative and divisive cluster analysis depending on how the clustering algorithm
is performed. Agglomeration means that each point is initially considered as a cluster
and then joined with neighbouring clusters to form larger groupings whereas in
divisive the entire data set is considered as one cluster than further divided to form

smaller groupings of data.

d) Principal Component Analysis (PCA) —

PCA is an unsupervised data reduction method. It performs a principal component or
eigenvector analysis of the data and projects the samples into a new co-ordinate
system. The most useful feature of PCA is that it describes major trends in the data by
reducing the dimensionality of the data. During the process the original data set is
reduced in dimensions with as little loss of information as possible. This is achieved
by filtering out the noise in the original data matrix, without removing essential
information described in the variance of the data. As a result, PCA can be used as a

preprocessing technique.

Different nonlinearity functions are used depending on the ANN paradigms and the
algorithms use out of which the two most important nonlinearities are hard limiter and

sigmoid. The details about these will be explained in the later chapters.
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1.10  Outline of the Thesis

The principal aim of this doctoral thesis is to study the noise feature in MOS based gas
sensors by the process of frequency and duty cycle under pulsed modulated heater
voltage. The reduction of noise in sensors by Amplitude Demodulation technique was
also performed in this research. Further the study was extended for best frequency

selection by System Identification followed by the modeling of MOS gas sensor.

The thesis is organized into 5 chapters. Chapter 1 gives a brief introduction on the
research work and comprehensive literature. A comparative study of biological and
artificial olfaction is presented. It reviews the different methods proposed by other
research groups, which have conducted research in the temperatdre modulation field,
in order to increase sensors selectivity. Further various noise and noise sources; the
compensation techniques; the dynamic behaviour of the sensors is also presented. The
sensor dynamics was explained and system identification technique was introduced.
Additionally, this chapter reviews the feature extraction and pattern recognition
methods implemented in the analysis of experimental data from temperature

modulated gas sensors.

Chapter 2 gives a detailed procedure for the design and development of the sensor set-
up. Three types of MOS gas sensors are explored and explained. The design of Printed
Circuit Board (PCB) and interfacing with a PC is also shown. The statistical and
frequency analysis of noise in MOS gas sensors is described and best frequency and
duty cycle is selected for further analysis. The classification for different gas samples
was performed using ANN and results before and after selection of frequency is
compared. Results, discussions and reference list are presented at the end of the

chapter.

Chapter 3 gives a brief explanation of the various kinds of noise in gas sensors
followed by the noise reduction using amplitude demodulation. The wavelet filtering
method was applied to reconstruct the signal from the original extracted sensor signal.
The spectral analysis of the responses obtained from the amplitude demodulation

technique and wavelet filtering were done and the bandwidth was compared for both
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the cases. The results, discussions and reference list are presented at the end of the

chapter.

Chapter 4 introduces the system identification technique for best frequency selection
purpose. Different sensor models are explained and stability criterion for the MOS gas
sensors is presented based on the pole zero plot and the overshoot percentage. After
frequency selection the sensor data was used in the classification by ANN paradigms
(MLP and RBF) and the results before and after selection of frequency was compared
henceforth. At the end the results, discussions and conclusions and reference list are

presented.

Chapter 5 is presented with the detailed procedure of determination of the MOS gas
sensor model by both theoritical and experimental technique. The model dynamics of
the sensor is studied and stable transfer function is determined. Validation of the
model was done by comparing the results with that of the theoretical results of the
system model. The chapter is concluded with the results, discussions, conclusions and

reference list.
1.11 Publication on this chapter

1. Dutta, N., & Bhuyan, M. Chapter 3, Measurement of Odour by Sensor Arrays,
" Odour Impact Assessment Handbook, Wiley Publisher. (In Press).
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CHAPTER 2

NOISE FEATURE ANALYSIS OF MOS GAS
SENSORS

2.0 Introduction:

Electronic nose uses an array of gas sensors with different selectivities towards the
various classes of compounds, and the composite signal of the array is used in
conjunction with chemometrics for the classification and identification of classes of the

samples. There exist several materials to build gas sensors as discussed in Chapter 1.

MOS gas sensors are one of the most widely spread devices used for E-Nose
applications due to their low cost, acceptable response, low recovery times and
robustness. Electronic noses are more widely used in environmental monitoring, food
quality detection and medicine. The odour recognition process in electronic nose begins
in the sensor system which is responsible for capturing or measurement of the odourant
stimulus through the sensitivity of its sensors. Each odourant is presented to the sensor
system, which generates a pattern of resistance values that characterize the odour. This

pattern is presented to the recognition system, which in turn classifies the odour.

The preprocessing of the data is done before the classification of odour. The data
preprocessing is important because a number of different problems can compromise the

performance of the sensor system which are as follows:

i) The odour signal can present disturbance or noise,

ii) The data acquisition may be unstable,

iii) The signal propagation through the communication channel between the
sensor and pattern recognition systems can be contaminated by the

interference signals from the environment.
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The odour responses must be analyzed before the pattern recognition process to
compensate for the concentration drifts in the response arrays, eliminate noise and

normalize data.

Noise in gas sensors is considered to be any unwanted effect that obscures the
measurement of the desired signal. Noise can arise at various stages in the measurement
process, including the sensor signal under measurement, the sensors, the analog
processing system, the data acquisition stage and the digital signal processing system out
of which the noise in the early measurement stages is most harmful as it propagates and
can be potentially amplified through the subsequent stages in the signal pathway. Noise
can also arise in the latter stages of the signal pathway, primarily during the analog-to-
digital conversion, when the continuous sensor signals are converted into a discrete
subset of values and stored in the computer memory. On the other hand, the inherent
drift and poor repeatability of sensor responses can also sometimes be significantly
larger than most of the other noise sources effectively limiting the sensitivity of

electronic nose systems.
2.1 Temperature Modulation:

The selectivity of MOS gas sensors is greatly influenced by the operating temperature of
the device, since the reaction rates for different volatile compounds and the stability of
adsorbed oxygen species are a function of surface temperature. The performance of the
MOS gas sensors can be enhanced by improving the temperature-selectivity dependence.
The temperature of the sensor may be cycled during the exposure to an odourous
compound to obtain multivariate dynamic responses. Several approaches have been
explored for deriving higher numbers of features by applying modulated temperature to

t14-117

the sensor instead of applying a fixed temperature . Application of periodic heating

voltage to MOS gas sensors has several advantages:

i) Because of different rates of reaction of various gases at different
temperatures, a cyclic variation of temperature gﬁves a unique signature
for each gas.

ii) Sensitivity and selectivity may be enhanced.
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Usually it is seen that applications such as pattern recognition and multi-component
analysis are done with fixed temperature of the sensor heater, which leads to lack of
selectivity and discrimination capability of the sensor. Many authors have indicated that

modulation of the sensor temperature''*"'

provides more information from a single
sensor than in isothermal operation, allowing improved research works in gas detection.
Authors have reported on the advantage of temperature modulation of MOS gas sensor
at two different temperatures to detect the presence of carbon mono-oxide'™ ' ''°,
Work has been carried on the temperature modulation using square wave to quantify
hydrogen sulphide by many researchers®” 2. To discriminate between different gases,
modulating waveforms such as sawtooth, triangular and square were also applied to the
sensors>. The sinusoidal variation in the temperature also enhanced the identification of
different gases. A number of works on the cyclic variations of the sensor heater have
been reported by many authors '2* 2!, In the temperature cycling technique, the heating
element of the gas sensor is connected to a waveform generator that periodically changes
the working temperature of the device.The development of micromachined substrates for
MOS gas sensors ensured operating temperature modulated in a more efficient way.
Cavicchi et al introduced the use of micromachined tin oxide gas sensors in temperature

modulation applications?®2®

. The temperature profile of the sensor surface greatly
influence the response behavior due to rapid thermal fluctuations in respect of its noise
and stability. Researchers have tried to improve selectivity by modulating the heater
voltage however analysis of noise and stability of the sensor responses under modulated
heater voltage has not been explored so far. Therefore the aim of this research is to
analyse the baseline noise behavior and stability of MOS gas sensors by applying pulse

voltages to the heater with different frequencies and duty cycles.
2.1.1 Experimental set-up:

In this research work, noise feature analysis of MOS gas sensors under pulse
temperature modulation is achieved. Three MOS gas sensors, TGS-2611, TGS-822 and
TGS-842 of FIGARO INC, Japan (Table 2.1) are used to carry out the experiments for
noise feature analysis. Based on its sensitivity to different odours such as alcohol,
volatile organic compounds (VOCs) etc the sensors are selected. The three MOS gas
sensors are supplied with the gases through the teflon pipes. The different gases used in

the experiment are ethyl acetate, acetonitrile, ethanol, kerosene, petroleum ether,
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chloroform, methanol, isopropyl alcohol, acetone and hexane. The description of each of

the gases is tabulated in Table 2.2.

Table 2.1: Details of the Sensors used in Experiments

Sensors Manufacturer Specific Use Detection
Range Range
Combustible gas detection.| 500 to 10,000
TGS- | Figaro Engineering Inc. | Sensitive to Methane, | ppm
2611 Acetonitrile, Kerosene,
Petroleum ether, Chloroform,
Methanol, Acetone, Hexane
etc.
Organic solvents such as| 50 to 5,000ppm
TGS-822 | Figaro Engineering Inc. | alcohol (ethanol,
isopropylalcohol,  methanol
etc.), toluene etc.
Combustible gas detection.| 500ppm to
TGS-842 | Figaro Engineering Inc. | Sensitive to  acetonitrile, | 10,000ppm
chloroform, methanol,
acetone hexane etc.
Table 2.2: Composition of the ten sample gases:
Sl No. Gases Used Description
1. Ethyl-acetate It is an organic compound and is the ester of ethanol
(CH;COOCH,CH;)] and acetic acid.
2. Acetonitrile It is the simplest organic nitrile and also termed as
(CH;CN) methyl cyanide.
3. Ethanol It is a 2-carbon alcohol and also termed as ethyl-
(CH;CH,0OH) alcohol.

4, Kerosene It is a combustible hydrocarbon liquid constituting of n-
dodecane, alkyl benzenes, and naphthalene and its
derivatives. ’

5. Petroleumether It is a light hydrocarbon comprising of a mixture of
alkanes, e.g., pentane, hexane, and heptanes.

6. Chloroform It is an organic compound produced by heating a

(CHCly, mixture of chlorine and either chloromethane or
methane.

7. Methanol It is the simplest alcohol and also termed as methyl-

(CH;OH) alcohol.
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8. Isopropylalcohol It is the simplest example of a secondary alcohol, where
(C3HgO) the alcohol carbon is attached to two other carbons. It is

a structural isomer of propanol.

9. Acetone It is also termed as dimethyl-ketone and is produced
((CH;),CO) directly or indirectly from propylene.
10. Hexane It is a hydrocarbon or an alkane with six carbon atoms.
(CeHia

The sensor TGS-2611 has a very high sensitivity to methane gas. The target gases for
this type of sensor are methane and natural gases. So the sensor has sensitivity towards
gases such as acetonitrile, kerosene, petroleum ether, chloroform, methanol, acetone and
hexane. TGS-822 has high sensitivity to the vapors of organic solvents as well as other
volatile vapors. It also has sensitivity to a variety of combustible gases. Hence the sensor
has good sensitivity towards the gases such as ethanol, isopropylalcohol, and methanol.
Similarly, TGS-842 has high sensitivity and selectivity to methane and natural gases
(naturally occurring hydrocarbon gas mixture). The gases such as acetonitrile,

chloroform, methanol, acetone and hexane therefore are sensitive to this sensor.

Diaphragm pumps are used to direct the sample gas and the clean air flow into the
sensor headspace. The pumps are controlled by the PC through a driver circuit
consisting of relays and transistor switches. The sequence of “purging’ and ‘refreshing’
with proper time duration was controlled through the DAQ card by the PC using
LabVIEW programming. The sensors used are shown in Fig.2.1. The experimental set-
up consists of these three sensors and a diaphragm pump system with flow control

devices.

e &

o
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i

TGS-2611 TGS-822 TGS-842

Fig. 2.1. Three Taguchi Gas Sensors from Figaro Inc. Japan, used in this Research Work.
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The experiment is conducted on the MOS gas sensors for different pulse modulating
temperature. The modulation patterns of heater voitage (frequency and duty cycle) of the
sensors are controlled by a PC through a Data Acquisition (DAQ) card PCI6024E,
National Instruments) and data acquisition software-LabVIEW. Analog output of the
card was applied to the gate of a MOSFET which supplies the pulse modulating voltage
to the heaters of the sensors. Therefore, the heater voltage (+Vyu ) accordingly followed
the pulse signal to excite the sensor. The sensor output was interfaced to the PC through
the DAQ card. The sensors are kept inside a sensor head chamber away from interfering
gas so that the baseline is established with clean air. Before each run of data acquisition,
the baseline was verified and when found deviated, it was corrected by applying clean
air. It was found in each run of experiment that on application of clean air the sensor
baseline settles to a fixed level ensuring absence of any interfering gas. When the pulse
signal generated by the PC switches on the MOSFET, the heater voltage is switched on
to +5 V with the same frequency as that of the pulse applied. As a result the sensor
temperature becomes pulsating with different frequencies. Fig 2.2 shows few typical
signals used for modulating the heater temperature; however the pulse (b) signal was

used for the experiment.

Pulse Voltage
Pulse Voltage
Pulse Voltage

JAVAVAN

Time Time Time -

(a) (b) ©

Fig. 2.2 Typical signals (a) ramp, (b) puise and (c) sinusoidal used for modulating the heater temperature .

v
v

Ideally, the reference and sample vessels are placed in controlled room environment at
about 25°C temperature and 65% humidity with deviation less than £2%. The switching
circuits are developed using 12 V relay (Series 511, SPDT) for alternately switching
between reference vessel and sample vessel. The sequence of “purging’ and “refreshing’
with proper time duration was controlled through the DAQ card by the PC using
LabVIEW programming. The two transistors used for switching are BD139. Two
diaphragm pumps (SB-548A) are used for constant supply of sample vapour and room
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air as desired by the programmed options. Data acquisition of the sensor signals is
performed by High Performance data Acquisition Card (PCI-6024E, National
Instruments). The card has also been used to condition the data in required format and
convert into digital form to make it compatible with computer processing. The

photograph of the sensor set-up is shown in Fig.2.3.

3 Sensor Head
>

L i

vessel vessel
E-Nose set-up — L —

Fig. 2.3: MOS Gas sensor Experimental set-up, Department of Electronics & Comm.Engg., Tezpur

University, India.

2.2 Noise parameters analysis:

122123 and different techniques have

Research has been carried out on the noise in sensors
been developed for selectivity detection of gases'**. Determination of noise features
such as Probability Distribution Function (PDF) and power density spectrum estimation
has been performed for several typical gas sensors'®’. The noise feature analysis for
typical gas sensors have been performed by many researchers during the past years.
Fengchun Tian et al'® determined the noise features of gas sensors due to fixed sensor
temperature; however noise analysis under modulated temperature has not yet been
performed. The reason for analyzing the sensor noise behavior at different frequencies
and duty cycles is that we need to know a suitable pulse frequency and duty cycle at
which the sensor can be used with the best signal to noise ratio (SNR). This is important

in circumstances where a sensor has to discriminate or classify odours in a noisy

environment. In this work, pulse modulated heater voltage with different frequencies and
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duty cycles were applied to the heater of the MOS gas sensor heater to achieve the
modulation in the sensor temperature for studying the type of noise. The frequency
spectrum of noise was determined by FFT analysis and noise dependency was verified
by PDF, histogram and SNR under different frequencies and duty cycles of pulse heater
voltage. Fig.2.4 shows the pulse modulating and DAQ system.

Sensor Ouiput
NENSOY
+Veeo
—
+y
Data
Acquisition
Card
GIND o

Fig. 2.4. Pulse modulating and DAQ system.
2.2.1 Data Acquisition:

In this research, we have conducted sensor noise analysis by two different experiments-

a) In the first part of the experiment, the data acquisition and storage was done
without the application of any input odour to the MOS gas sensor.

b) Based on the experiment (a), the best selected frequency and duty cycles are used
to show the classification efficiency. The analysis is conducted on the acquired
signals by applying ten different gases- acetone, acetonitrile, chloroform,
ethanol, ethyl acetate, isopropylalcohol, kerosene, methanol, n-hexane and

petroleumether.

The flow rates are kept constant for both of the two experiments. The schematic diagram
for the flow control and alternate switching for sample and reference gases is shown in

Fig.2.5. The gases were selected based on the fact that the MOS gas sensors used (TGS-
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2611, TGS-822 and TGS-842) have good sensitivities to the families of the gases as

described in Section 2.1.1.

q
+Vee(12V) g 1 +Vee(12V)

Relay
X Alr

II Pump rl
| Pump }

| bl 4

Sample gas

{1002 } a)
+WVee(12vy 1 — Q BD 139

1N 4007 ZS

DAQ Card

J

Fig. 2.5. Pump control driver circuit for switching between sample and reference vessels.

2.2.1.1 LabVIEW Environment

LabVIEW features interactive graphics, a state-of-the-art user interface, and a powerful
graphical programming language. In the LabVIEW DAQ VI Library, a series of virtual
instruments for using LabVIEW with National Instruments DAQ hardware, is included.
The devices have three different input modes—non referenced single-ended (NRSE),
referenced single-ended (RSE), and differential (DIFF) input. The single-ended input
configurations provide up to 16 channels while the DIFF input configuration provides up
to eight channels. Input modes are programmed on a per channel basis for multimode
scanning. Connection of these analog input signals to the device depends on the type of
input signal source and the configuration of the analog input channels used. When

configuring the input channels and making signal connections, we determine whether
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the signal sources are floating or ground-referenced. A ground-referenced signal source
is connected to the building system ground and is, therefore, already connected to a
common ground point with respect to the device, assuming that the computer is plugged
into the same power system. In our case we configure the input channel in the RSE
mode. The devices have a bipolar input range that changes with the programmed gain.
The devices can scan multiple channels at the same maximum rate as their single-
channel rate. They supply two channels of analog output voltage at the I/O connector.
The bipolar range is fixed at £10 V. Data written to the digital-to-analog converter
(DAC) is interpreted in two’s complement format. The block diagram configured in
LabVIEW is shown in Fig 2.6. For measurement task, the simulated signal was
configured as ‘Output to DAQ assitant2’. The “Write to Measurement file’ was
configured for storing the data which was saved as LVM files. The sensor responses

were observed in the front panel.

.
¥
DAQ.
Assistants
v data
» ervor lyrﬂr
b stop (T)
tash out | 3
&
Write To
Measurem
ent File
Signals
Commen
X
@ H m‘:’"‘” stop)
DAQ_ sen . Lan = “
A Cvy e B ;
P ervorin o L@
P _stop (T)
Primeout (sec)
m | SunvAwm—. weme—

Fig. 2.6 Block diagram configured in LabVIEW.

2.2.1.2 Heater Voltage Modulation

A pulse signal whose duty cycle and frequency can be controlled was generated in the
LabVIEW environment and applied to the sensor heater through a MOSFET. As a result
the sensor temperature becomes pulsating with different *on” and “off” durations. The

sensor output signal captures noise developed inside the sensor which is mostly thermal
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noise. The sensor response was analyzed without applying any gas for noise with the
pulsed heater voltage applied. The frequency and the duty cycle of the heater ‘on’/ ‘off®

sequence was varied to analyze the noise behavior.

The sensor temperature was pulsed at four selected frequencies of 10mHz, 40 mHz, 80
mHz and 120 mHz to generate noise. Further the noise behavior was analyzed with two
different ‘on’ and ‘off> time durations i.e. duty cycle of the pulse signal- 50 % and 75 %
duty cycles without the application of any gas. The MOS gas sensor noise analysis under
signal inactive period i.e. without application of gas is important to determine suitable
time duration of the pulsed heater voltage at four different heater pulse frequencies.
Therefore the frequency and duty cycle of the heater pulse voltage is required to be
correlated to severity of noise. The sensor responses were acquired at a sampling
frequency of 1 kHz over duration of about 15 min, so that sufficient data is available for
analysis. The pulse frequency and duty cycle were varied for each experiment after
correcting the baseline. In order to avoid non-uniformity, data for a single pulse cycle

was extracted and analyzed in MATLAB.

Normalization of data was performed to highlight the noise spectrum over a positive
scale. FFT, PDF, histogram, other statistical parameters (mean, standard deviation and
variance) and SNR were calculated. The total data points for the signals with frequencies
of 10 mHz, 40 mHz, 80 mHz and 120 mHz were 100x10°, 25x10°%, 12.5x10°, 8x10°

respectively at the sampling frequency used in the experiments.
2.2.1.3 Measuring Circuit

The application circuit diagram for measuring the MOS gas sensors response is shown in

Fig.2.7. The resistances and power supplies indicated in Fig.2.7 are as follows:
i) Sensor Resistance (R)

This is the characteristic resistance of the sensor surface normally defined by the
manufacturer in a range under standard ppm of certain sample and other circuit
conditions of load resistance and power supply (¥e). The value R changes on exposure
to different sample vapors. The typical values are (1-5)kQ for TGS-2611, (1-10)kQ for
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TGS-822 and (3-15)kQ for TGS-842. The output response is generated by the change in

the resistance of the sensor surface on application of a gas.
ii) Load Resistance (R;)

The load resistance is selected based on the condition that the power dissipation does not
exceed the limit specified by the manufacturer for the sensors. The resistance values are
calculated for the three sensors based on the maximum current under minimum sensor
resistance (R). The values are indicated in the circuit diagram of Fig.2.7 and listed in
Table 2.3.

iii) Circuit Power Supply (V)

The maximum circuit power supply specified by manufacturer for the three sensors is

24V, In this circuit, the used value of V. is 12V.
iv) Heater Voltage (V)

The heater voltage is a uniform value of 5V for all the three sensors which keeps the

sensors at elevated temperature of 200 to 400°C (approx.) to have better response.
v)  Output Voltage (Vo)

The output voltage is measured as the sensor response across the load resistance R;

which varies from a fraction of a volt to few volts.
vi) Power Dissipation (Ps)

The maximum power dissipation takes place when the sensor resistance (R) is minimum

for chosen load resistance and power supply. The power dissipation is given by -

P, =(V.*xR,)/(R; +R,)’
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Fig. 2.7 Measurement Circuit for MOS gas sensor responses.

2.2.1.4 E-Nose set-up

The E-Nose system of this work comprises of three MOS gas sensors namely TGS-
2611, TGS-822 and TGS-842. The interfacing with the PC is done in order to
achieve the online acquisition of E-Nose sensor responses in real time and providing
control signals to the E-Nose electronic circuits for various operations such as switching

and time setting. The E-Nose set up interfacing with PC is shown in Fig.2.8.
2.2.2 Data Pre-processing:
The pre-processing of the data is done for the following reasons-

i) to reduce the amount of data which are irrelevant to the study;
ii) to enhance sufficient information within the data to achieve the desired
goal;

iii) to transform the data to a form suitable for further analysis.
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Various analytical methods are used for the pre-processing of data out of which the

common one is the vector normalization method. Since the sensors in the E-Nose array

have different sensitivities, the voltage levels of the output signals from the sensors will

be different. Hence the signal levels need a standardization or normalization.

Normalization removes sample-to~sample absolute variability and transforms vector

length to be one. It assumes that the extracted features linearly correlate with signal

intensity. Various methods of normalizations are available such as-

a) Liberalization:

"R 7 max 7 min
X, =log|(x;"™ -1,"")

X, = [(

7

7 max 7 min
&= =5™)

)

b) Vector Normalization:

"

R’I = X'/ /Z(X.-/)h

c) Sensor Normalization:

_ X,
R, = max(X)

@2.1)

2.2)

(2.3)

(2.4)
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d) Sensor Auto Scaling:

R’J — 1(X’/ _ XUIHU("’I) O_] (2'5)

where o is the standard deviation. X's are the calculated or preprocessed values and Y's
are the observed or measured values for sample odour and ¥,™ and Y™ are its

maximum and minimum values,

Table 2.3: MOS gas sensor parameters.

Sensor | Vy V. | Sensor Heater Heater R Max.Power | Target
(V)| (V) | Resistance | Resistance | Current | (k Q) | Dissipation | Gases
R(k Q) Ry (QQ) Iz (mA) (P,), for R
(min)
(Worst
condition)
TGS- 5 5 0.68 to0 6.8 59 56+5 1 12.5mW | Methane,
2611 in 5000 Natural
ppm Gas
TGS- 5 Sor [ 1t0 10 38 132 1 12.5mW | Alcohol
822 10 | in 300ppm Organic
solvents
TGS- 5 Sor | 5to20 30 167 1 4.68mW | Methane
842 10 |in Natural
1,000ppm gas

The normalised data are stored in the memory for pattern recognition. Most widely used
normalization technique is the vector normalization where each feature vector is divided
by its mean so that it is transformed to lie on a hyper-sphere of unit value. We have used
sensor normalization technique (eqn.2.4) to normalize the sensor data for noise feature

analysis.
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2.3 Statistical analysis:

The MOS gas sensor noise analysis under signal inactive period i.e. without application
of gas is important to determine a suitable time duration of the pulsed heater voltage at
four different heater pulse frequencies. Therefore the frequency and duty cycle of the
heater pulse voltage is required to be correlated to severity of noise. Here we have tried
to observe and analyse the noise in the MOS gas sensors with the sensor excited by its

power supply (¥.) and pulse modulated heater voltage (V) without applying any gas.

From the sensor data response, a single data set X is constructed for all the four different
frequencies i.e. 10mHz, 40mHz, 80mHz and 120mHz and two duty cycles of 50% and
75%. The LabVIEW display of sensor TGS-822 for 10mHz and 50% duty cycle is
shown in Fig. 2.9. The noisy responses of the gas sensors TGS-822, TGS-842 and TGS-
2611 for all the four frequencies and two duty cycles, in MATLAB are shown in
Fig.2.10.
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Fig. 2.10. Noisy responses of TGS-822, TGS-2611 and TGS-842 at 50% and 75% duty cycles for (a)
10mHz, (b) 40mHz, (c) 80mHz and (d) 120mHz.
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The data vector has been constructed for each sensor comprising of two columns- the
time-column (x-axis) and the sensor voltage (y-axis). The y-column vector was used to

compute the FFT of the sensor data in MATLAB.
2.3.1 Probability distribution function (PDF):

PDF is an important statistical tool to analyze the noise characteristics of a sensor
signal. The theory of probability gives us the basic tools for constructing and analyzing

mathematical models for random phenomena such as noise.

In this chapter, noise analysis under modulated temperature is performed. Pulse
modulated heater voltage with different frequencies and duty cycles are applied to the
MOS gas sensor heater to achieve the modulation in the sensor temperature for studying
the type of noise. The frequency spectrum of noise is determined by FFT analysis and
noise dependency is verified by PDF, histogram and Signal-to-Noise Ratio (SNR) under
different frequencies and duty cycles of pulse heater voltage. The normalized data from
the sensors is used to compute the PDF estimation and histogram. The noise PDF shows
that for all cases of pulses, the distribution is Gaussian however with different mean,
variance and standard deviation. The PDF for the sensor noise signals satisfies the
requirement for the noise to be coloured i.e. with non-zero mean. Fig. 2.11 shows the
PDF of TGS-822, TGS-842 and TGS-2611 at 10mHz, 40mHz, 80mHz and 120mHz
each at 50% and 75% duty cycles respectively.

Noise Value

(a)
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Fig. 2.11. The PDF of TGS-822, TGS-2611 and TGS-842 sensor noise signals at 50% and 75% duty
cycles for (a) 10 mHz , (b) 40 mHz, (c) 80mHz and 50% duty cycle, and (d) 120mHz.
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2.3.2 Histogram:

Histogram is a graphical representation showing a visual interpretation of the
distribution of data. The histogram is used to group sensor response voltages together
that have the same value. The histogram method, which has been proved to be an
unbiased estimation for a random variable, is used to estimate the PDF of noise'?’.
Typically, the histogram results a Gaussian distribution when the number of samples is
large. Hence from definition of histogram, the sum of all the values in the histogram

must be equal to the number of points A, in the signal given by eqn.1.7.

The histogram is used to calculate the mean and standard deviation of very large data

sets. The mean ( x )and standard deviation (o) are calculated from the histogram by the

equations (1.8) and (1.9).

Mathematically, a histogram is a mapping m; that counts the number of observations that
fall into various disjoint categories (known as bins), whereas the graph of a histogram is
merely one way to represent a histogram. Thus, if # is the total number of observations

and k be the total number of bins, the histogram m; meets the following conditions:

n=

1

m (2.6)

k
=1

Fig. 2.12, Fig. 2.13 and Fig. 2.14 shows the histograms of the sensor TGS-822, TGS-
842 and TGS-2611 for the same respective frequencies and duty cycles.
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Fig. 2.12. The histogram of TGS-822 sensor noise signals at (a) 10 mHz and 50% duty cycle, (a) 40 mHz
and 50% duty cycle, (c) 80mHz and 50% duty cycle, (d) 120 mHz and 50% duty cy(;Ie, (e) 10 mHz and
75% duty cycle, (f) 40 mHz and 75% duty cycle, (g) 80mHz and 75% duty cycle, (h) 120 mHz and 75%
duty cycle
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Fig. 2.14. The histogram of TGS-2611 sensor noise signals at (a} 10 mHz and 50% duty cycle, (a) 40 mHz
and 50% duty cycle, (¢) 80mHz and 50% duty cycle, (d) 120 mHz and 50% duty cycle, (¢) 10 mHz and
75% duty cycle, (f) 40 mHz and 75% duty cycle, (g) 80mHz and 75% duty cycle, (h) 120 mHz and 75%
duty cycle.

The mean value of the noise data showed that it is non-zero, depicting that the noise is
colored and 1/f type. Higher standard deviation and variance was observed when the
pulse frequency was increased which showed that the signal becomes noisier for the
three sensors when pulsed heater voltage frequency is increased. The duty cycle of the
pulse also changes the noise level with reverse dependency i.e. noise level increases
when duty cycle is reduced. Table.2.3 shows the mean, variance and standard deviation
calculated for various frequencies and duty cycles for all the three sensors. From Table
2.3 it is observed that for all the three sensors, the most convenient results i.e. lowest

noise is obtained at 10mHz frequency and 75% duty cycle.
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2.3.3 Signal-to-Noise Ratio (SNR):

The signal-to-noise ratio (SNR) is the ratio of the signal amplitude to the noise signal
amplitude at a given point in time. SNR is usually expressed in dB and in terms of peak
values for impulse noise and root-mean-square values for random noise. When a signal
is constant or periodic and the noise is random, it is possible to enhance the SNR by
averaging the measurement. In this research, the ratio of the sensor response signal for
pulsed heater voltage to the noise in the average power level is termed as the Signal-to-
Noise ratio (SNR) of the sensor given by-

SNR = % 2.7)

N

where Pgis the power of the sensor response signal and Py is that of the noise present in
the signal. Measuring the SNR usually requires that the noise be measured separately, in
the absence of signal. Depending on the type of experiment, it may be possible to
acquire readings of the noise alone, for example on a segment of the baseline before or
after the occurrence of the signal. However, if the magnitude of the noise depends on
the level of the signal, then the experimenter must try to produce a constant signal level
so as to measure the noise on the signal. In a few cases, where it is possible to model
the shape of the signal exactly by means of a mathematical function, the noise may be

estimated by subtracting the model signal from the experimental signal.

In this work, the SNR is calculated for all the three sensors during signal inactive period
i.e. without application of gas and is tabulated in Table 2.3. It can be seen, that at a
particular frequency of 10mHz and 50% duty cycle, the SNR of sensor TGS-822 and
TGS-842 ranges from about 45.63dB to 56.88dB. Within this particular range for the
said frequency and duty cycle, the two sensors produces noise differently which is same
as in the case for a different set of frequencies and duty cycle. Therefore, this analysis
can be used for comparing the noise immunity of the two sensors: Similar is the case
when we compare all the three sensors. From Table 2.4 it can be seen that at a frequency
of 10mHz and 75% duty cycle, TGS-2611 shows the highest SNR with a value of
59.22dB as compared to TGS-822 and TGS-842.
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2.3.4 Noise spread and population behavior:

In this study, two newly introduced noise characteristics are analyzed with the help of
the histogram components of the signal and the corresponding histogram ratios. This
study is found to be an additional statistical noise feature to confirm the noise

dependency on the frequency and the duty cycle of the pulse modulated heater voltage.

2.3.4.1 Signal spread and population behavior of MOS gas sensor

A histogram is a mathematical tool that gives only the number of samples for different
signal levels. However, it is not possible to compare two histograms in terms of spread
and population of the samples. In this study a new characteristic has been defined which
determines the noise behavior of the three sensors at different sensor signal levels. We
have introduced two terms namely Noise Spread Figure (NSF) and Noise Population
Figure (NPF) with the help of various histogram components. The noise characteristics
of the sensors are therefore studied with the help of the following histogram

components of the signal and their ratios as depicted in Fig.2.15.

N
)
Nll
N
Ny %
Nl
> X
X[ XNL XN,, Xll

Fig. 2.15. Histogram showing signal spread and population.

The following histogram components can be defined as —

X, = Highest value of signal component.

X, = Lowest value of signal component.
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Table 2.4. Bandwidth, mean, variance , standard deviation and SNR of sensor data for different frequencies and duty cycles (best

suitable values are shown in bold).

Sensor Duty cycle Pulse Mean Variance Standard deviation Signal-to-Noise Noise Bandwidth
Frequency Ratio(dB) (mHz)
( mHz)
10 0 4830 00316 01777 45 63 7
40 04542 00735 02711 4190 19
50% 80 05189 0 0989 03145 3429 383
TGS-822 120 0 5067 01290 0 3592 2732 70
10 0.6057 0.0230 0.1515 52.04 3.63
40 06270 0 0606 02461 45 84 163
75% 80 0 6683 00743 02726 44 88 327
120 0 6632 00911 03018 29 18 64
10 0 4603 00776 03214 56 88
40 04275 0 1241 03523 48 05
50% 80 04893 01403 03746 4403 de
TGS-842 120 04700 01540 03924 2782
10 0.6846 0.0605 0.3149 57.50
40 06454 01058 03252 5549 d
75% 80 0 6699 01201 03465 4976 ¢
120 07028 0 1287 03545 46 61
10 0 5267 00492 02218 4830
40 05398 00543 02330 4103 d
50% 80 05221 00582 02374 3352 ¢
120 05188 0 0605 02413 30 79
TGS-2611 10 0.8270 0.0458 0.2110 59.22
40 0 8239 0 0489 02139 49 53 d
5% 80 038312 0 0566 02279 3999 ¢
120 0 8463 00576 0 2336 3375
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X, = Signal value corresponding to the highest number.
Xy = Signal value corresponding to the lowest number.
N, = Signal population for highest signal spread.

N, = Signal population for lowest signal spread.

N X, = éamples corresponding to highest signal value.

N, = Samples corresponding to lowest signal value.

The following ratios are also defined as follows-

X Spread ratio of the highest to lowest components of signal value level in
]

the histogram. (2.8)

N,

= Spread ratio of the signal values corresponding to the highest
N,

to lowest numbers. (2.9)
]—;i = Ratio of the highest to lowest signal population. (2.10)
!
N
N—X“ = Ratio of signal population for highest to lowest signal spread (2.11)
.

i

To analyze the signal spread and population behaviour, the following two terms are

defined as:

Noise Spread Figure (NSF) = X)X, (2.12)
XNh /XNI
Noise Population Figure (NPF) = N /Ny, (2.13)
N, /N,

To explain the two figures introduced in eqn. (2.12) and (2.13), we consider a pure and
a noisy signal as shown in Fig. 2.16 (2) and (b) and the components of the pure and

noisy signal in 2.16 (c) and (d) respectively.
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Fig. 2.16. (a) Pure Signal, (b) Noisy Signal, (c) Histogram components of a pure signal and (d) Histogram

components of a noisy signal.

Four cases can be considered for the two cases of signals shown above:

* (Case I: For a pure signal, Xy, >> Xy, , so from eqn. (2.12) NSF will tend

to zero.

s Case II: For a noisy signal, Xj >> X; and Xy, = Xy, so from eqn. (2.12)
NSF will be high.

Case III: For a pure signal, Nx, = Nx; and Na>>NI so from eqn. (2.13)
NPF will tend to zero.

= (CaseIV: For a noisy signal, N, = N; and Nx;, >> Nx;, so from eqn. (2.13)
NPF will be high.

Again let us consider two histograms shown in Fig.2.12 (e) and (h). Fig.2.17 (a) and (b)
represent two histograms at frequency 10mHz and 75% duty cycle and at 120mHz and
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75% duty cycle respectively for sensor TGS-822. These two histograms were taken
because from the experimental results the histogram given by Fig. 2.12 (e) for 10mHz
and 75% duty cycle provided the best suitable results in the statistical noise feature
analysis whereas the histogram given by Fig. 2.12 (h) for 120mHz and 75% duty cycle

yielded more noise than at other frequencies and duty cycles.
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Fig. 2.17. Histogram of sensor TGS-822 (a) at frequency 10mHz and 75% duty cycle and (b) at frequency
120mHz and 75% duty cycle.

The two ratios NSF and NPF for the two figures are calculated as follows:

For better accuracy we consider a threshold size of histogram as 200 samples and signal
value as 0.34 i.e. we discard the values below these threshold levels. The histogram

components for Fig. 2.17(a) are-

X,=073; X, =034; X, =0.71; X, =038 N, =41850; N, =686; N, =3000;

N, =11000
X, N
Therefore, X =2.1; —=18; -Ai= 61; —X==0.2727
X, Xy, N, Ny
X, /X,
Hence, (NSF) 10muz, 75% = —Hm=l =117
XNh /XNh

and (NPF) 1omhz 75% = Mx_, =(.004
N,/N,
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The histogram components for Fig. 2.17(b) are-

X, =0388; X, =0.12; X, =0.84; X, =0.74; N, =4633; N, =480; N, =1200;

N, = 1300
X. N
Therefore, LI 73; L=1135; N, - 9.652; —%»=0.923
X, N, N, NX,
X,/X
Hence, (NSF) 120mHz, 75% — 41 =643
- Xv/\’,l /XN,

and (NPF) 120mHz, 75% = M =(0.095
Nh /NI

Thus comparing the values of NSF and NPF for both, Fig. 2.17 (a) and 2.17 (b) we find
that at 10mHz and 75% duty cycle, the values of NSF and NPF are higher than at
120mHz and 75% duty cycle indicating that the noise spread is high and with high
population i.e. signal is less noisy in case of the former. It is also observed that the high
spread with more population as given in Fig. 2.17 (b) is noisier than low spread with

high population.

Hence, for a particular noise or noisy signal, as the noise level increases, the spread
ratios shown in eqns. (2.8), (2.9), (2.10) and (2.11) increases and as a result the NSF of
eqn. (2.12) and NPF of eqn. (2.13) increases. Hence these two noise figure terms can be
used to indicate the noise level of a signal. The NSF and NPF calculated from eqn.
(2.12) and (2.13) respectively are tabulated in Table 2.4 for all the four different
frequencies and duty cycles. From Table 2.5 it is observed that the NSF and NPF ratios
for all three sensors increase as the pulsed heater voltage frequency is increased. Also
for higher duty cycle, the NSF and NPF ratios decrease. This conforms to the results of
other statistical features obtained from Table 2.4. It is observed that at low heater pulse

frequencies the noise spread and noise population is smaller.
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Table 2.5 Noise Spread Figure and Noise Population Figure variation with pulse

frequency and duty cycle (best suitable values are shown in bold).

Sensor Duty cycle Pulse Frequency NSF NPF
(mHyz)
10 280 00067
50% 40 449 00115
80 574 0125
TGS-822 120 646 2818
10 1.17 0.004
5% 40 165 0026
80 185 0065
120 643 0095
10 267 0012
50% 40 312 0014
80 366 00164
TGS-842 120 452 0032
10 132 0.01
5% 40 239 0025
80 2389 003
120 356 044
10 1315 0017
50% 40 1492 0019
80 197 016
TGS-2611 120 204 0287
10 1.08 0.011
75% 40 112 0209
80 14 0261
120 198 1313

2.4 Frequency analysis: '

The frequency spectrum of a time-domain signal is a representation of that signal in the

frequency domain which is determined by FFT analysis.
2.4.1 Fast Fourier Transform (FFT):

A fast Fourier transform (FFT) is an efficient algorithm for computing the discrete

Fourier transform (DFT) and its inverse. Fourier’s representation of functions as a
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superposition of sines and cosines are common in the analysis of communication signals
and systems. The usefulness of Fourier Transform (FT) lies in its ability to analyze a
signal in the time domain for its frequency content. The DFT estimates the Fourier
Transform of a function from a finite number of its sampled points. The FFT can be used
only when the samples are spaced uniformly. When a continuous-time signal such as the
sensor response is sampled at a uniform rate, the resulting sample values may be treated
as a discrete-time signal and processed using the FFT. The applications of FFT include
systems analysis, digital filtering, simulation, power spectrum analysis, communication

theory, etc.

For a response sequence x of length n, the DFT is a vector X of length n, whose elements
are defined as:

n=l —|2xkp

X(k)y=Y x(p)e (2.14)

,7=()

where £=0,1,....n-1. -

A common use of FFT is to find the frequency components of a signal buried in a noisy
time domain signal. It gives the spectrum of the signal. The measurement of noise levels
depends on the bandwidth of the measurement. The noise floor of a power spectrum is

actually the narrowband noise level in each FFT bin.
2.4.2 Random White Noise Behavior

White noise is a random signal with a flat power spectral density containing equal
power within a fixed bandwidth at any center frequency as shown in Fig.2.18. It shows
equal amount of fluctuations at all frequencies and its fluctuation at any instant of time is

independent of the fluctuations at other times.

A noise signal x[#] is white if it has zero mean; E (x[n]) = 0 for all n, with E (x[n]) being
the expected value of the random variable x[#]. Further, white noise have unit variance;
E(x[n]x[n]) = 1, for all n, and lastly it can be said that the noise signal x[#] is white if it is
independent from sample to sample, i.e. not correlated in time; E(x[n]x[n — k]) =0, for k

# 0 and for all n. The analysis of a white noise signal in the frequency domain poses
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several problems such as it is not periodic, has no finite extent and has infinite energy.

Power spectral density function can be used to handle such problems.

3 dB/octave

Pink noise

Corner frequency

/r

Noise density

White noise

LOGf
Fig. 2.18. White noise power spectral density.

The power spectrum of white noise is homogeneously distributed across the frequencies.
Since random signals are non-periodic in nature their spectra varies from time to time
and a large number of samples or a long time period is necessary to characterize their
average spectral properties. A white noise signal may have Gaussian amplitude
distribution or it may have some other distribution i.e. the statistical properties do not
determine the shape of the spectrum. The spectra of white noise become flatter with

frequency as larger number of samples is used to compute it.

In this study, the frequency spectrum of the sensor signal falls off steadily into the
higher frequencies as depicted in Fig.2.18 and the flat part of the noise graph i.e. the

noise floor becomes constant over a frequency termed as white noise.
2.4.3 Bandwidth

In general, bandwidth is the difference between the upper and lower frequencies in a
continuous set of data typically measured in hertz. The characteristic of bandwidth is
that a band of a given width can carry the same amount of information, regardless of
where that band is located in the frequency spectrum. Most commonly, bandwidth is

measured as the 3-dB bandwidth, that is, the frequency range within which the spectral
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density is above half its maximum value or the spectral amplitude is more than 70.7% of

its maximum.

In this work the noise bandwidth of the sensor response is determined for four different
frequencies and two duty cycles of the pulsed heater voltage. FFT was performed for the
determination of the bandwidth as tabulated in Table 2.4. Fig. 2.19 shows the FFT of
TGS-822, TGS-842 and TGS-2611 at 10 mHz, 40mHz, 80mHz and 120 mHz each at
pulsed duty cycles of 50 % and 75 % respectively. The frequency component of noise in
case of the sensors TGS-842 and TGS-2611 is smaller at higher frequencies and the

noise bandwidth is close to dc as seen from the table.

~——FFT:TGS-822,10mHz,50%

=—FFT:TGS-822,10mHz,75% |
—FFT:TGS-2611,10mHz,50%
~—FFT.TGS-2611,10mHz,75% | -
~==FFT:TGS-842,10mHz,50%
—— FFT:TGS-842,10mHz,75% | -

8+ J
6.
4..
2t - o
“A 'VIV-W-
1 1.2
(a)
' ' ' " [—FFT.TGS $22,40mBLS0% |
0.035H) —FFT:TGS-822,40mHz,75% | -
\ ——FFT:TGS-2611,40mHz,50%
0.03H ~—FFT:TGS-2611,40mHz,75% | |
* ——FFT:TGS-842,40mHz,50%
~—FFT:TGS-842 40mHz,75%
0.025
<
E 0.02
[-%
g
< 0.015
0.01+
0.005
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Fig. 2.19. The FFT of TGS-822, TGS-2611 and TGS-842 sensor noise signals at 50% and 75% duty
cycles for (a) 10mHz , (b) 40mHz , (c) 80mHz and (d) 120mHz.

From the FFT a higher noise bandwidth was observed when pulse frequency was
increased. Similarly it is seen that the duty cycle of pulse also contributes to the noise
bandwidth with reverse dependency i.e. noise bandwidth decreases as duty cycle

increases.
2.5 Discussions

In this study, the noise features of MOS gas sensor applying pulse modulated
temperature with different frequencies and duty cycles are analyzed. To verify the noise
dependency on the frequency and duty cycle of the modulated heater voltage, the PDF,
SNR, histogram and FFT of the MOS gas sensor noise was performed. The statistical
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analysis reveals that - the noise floor level decreases as the duty cycle of the pulsed
modulated heater voltage is increased and pulse frequency is decreased. The same
observation is evident for the FFT of the sensor responses that produces higher noise-
bandwidth at higher heater pulse frequency however at lower duty cycle. The sensor
noise is found to be 1/f or pink and it increases with the increase in pulsed heater voltage
frequency and vice-versa. The PDF for the sensor noise signals satisfies the requirement
for the noise to be coloured i.e. with non-zero mean. This part of the research deals with
the study of noise in the MOS gas sensors without application of gas but under
application of pulsed heater temperature. It was observed in this experiment that the
characteristics show different behaviour for different patterns of pulsed heater voltage

(i.e. heater temperature) with variable frequency and duty cycle.

The noise behavior of the three MOS gas sensors TGS-2611, TGS-822 and TGS-842
was studied with the help of the two newly introduced characteristic figures- NSF and
NPF at four different frequencies namely 10mHz, 40mhz, 80mHz and 120mHz and at
two different duty cycles namely 50% and 75%. NSF and NPF ratios alsé conforms to
our previous statistical and FFT results i.e. decrease at lower frequency and higher duty
cycle. Hence we are able to conclude that the heater pulse frequency and duty cycle

considerably influences the noise behavior of the sensor.

The study confirms that the noise immunity of the sensors is more at higher pulse
frequency but less at higher duty cycle. This is because a comparatively fast change in
temperature produces spurious output signals. Recently, researchers are trying to extract
higher degree of features by applying pulsed heater temperature; there must be a
compromise between the highest heater pulse frequency and lowest duty cycle to get the

best SNR for a particular sensitivity of the sensor.

This analysis facilitates that for improving the classification efficiency of the sensor
array, sensor responses can be generated by using a suitable pulse frequency and duty
cycle. The method for improvement of classification efficiency by using the best
frequency and duty cycle is discussed in the next section. The best frequency and duty
cycle for all the three sensors TGS-822, TGS-842 and TGS-2611 is found to be 10mHz
and 75% duty cycle.
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2.6 Gas classification with the best heater pulse frequency using

dynamic features:

In the first part of this research work (Section 2.3 and Section 2.4), the noise
characteristics of an E-Nose array consisting of the same MOS gas sensors TGS-822,
TGS-842 and TGS-2611 are studied at four different frequencies and two duty cycles for
ten gas vapours. This study determined the best suitable heater pulse frequency and duty
cycle for a particular sensor which was used as the operating temperature for the second

part of the experiment.

In the second part of this study, the dynamic behavior of the MOS gas sensors are
studied at these best selected temperatures and duty cycle and the classification of gas is
performed using artificial neural network (ANN) to compare the results before and after

the frequency selection.
2.6.1 Dynamic analysis of MOS gas sensors

Dynamic behavior of sensor is the criterion on the basis of which the performance of the
sensor can be judged. The faster the dynamic response of the sensor the better is the
performance of the sensor. Under static conditions, a sensor is fully described by its
static sensitivity and signal amplitude, however, when we vary a stimulant say the heater
voltage, the sensor response generally does not follow with perfect fidelity. The reason
is that both the sensor and its coupling with the source of stimulus cannot always
respond instantly. In other words, a sensor may be characterized with a time-dependent

characteristic, which is called a dynamic characteristic.

2.6.2 Effect of pulse modulation frequency on noise behavior

By operating the MOS gas sensors in dynamic mode and characterizing their transient
responses the selectivitylof MOS gas sensors can be increased'?®. The dynamic operation
of a sensor can be done by — AC operation mode modulation of the gas concentration
and modulation of the sensor operating temperature. A periodic waveform is applied to
the sensor input in the AC operation mode instead of a fixed DC power supply, while the
sensor heater voltage (V) is kept constant. Gutierrez et al. 129, 130 have found that the

peaks appearing in the impedance plots of tin oxide gas sensors in the presence of
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reducing gases are a function of the nature of the adsorbed species. Amrani et al."*' have
found that for a single sensor element, characteristic patterns can be found over a very
wide frequency range. The modulation of the gas takes place when analyte molecules
interact (adsorption/desorption) with the sensor surface. This process consists in the
controlled modulation of the gas concentration which produces an output signal
containing information on the dynamic adsorption and desorption processes taking place
in the sensor surface. Because of this, the transient signals carry information about these
processes that are generated when the controlled modulation of a sensor input parameter
is performed. The frequency spectrum of these transient signals can be a source of
information containing details on the dynamics of the interaction process and have the
potential for gas identification. The transient response of gas sensors in gaseous

132135 1t has been shown that

101, 136, 137

concentration have been performed by many researchers

the dynamic sensor response increases the selectivity of a sensor array

Research has also been conducted combining both effects simultaneously, analyte

concentration modulation and working temperature modulation'*®,

This process
increases the resolving power of metal oxide sensors. Furthermore, its simplicity makes

it especially suited for low-cost applications.

Metal Oxide materials such as SnO, and ZnO are widely used as sensitive layer for gas

sensors in electronic nose. The electronic nose technology with MOS based gas sensors

139-141

have been widely applied in odour analysis as well as in industries focusing on the

improvement of performance. Accordingly, the development of gas sensors for the
detection of single gases has seen an increasing interest within the research community.
Besides such advantages, gas sensors exhibit a series of unpleasant characteristics such
as cross-sensitivity, drift and humidity effects, ageing, poisoning etc. Temperature also
affects the dynamic characteristics, particularly when they employ viscous damping. A
comparatively fast temperature change may cause the sensor to generate a spurious
output signal. Feature extraction using both the steady state and dynamic response of the

100-102

sensor has been widely used for gas sensors applications. In , the authors described

techniques for extracting and using the steady-state, the slope as well as the transient

142

response information from the sensor’s response. In"°, dynamic signal extraction

techniques and optimal array configuration were used to improve the classification

104

performance. In"™ the sensor response curves were determined using six features which
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represented the differences of dynamic behaviour of sensors to different sample gases, in
phase space. The degree of difference was used to evaluate how much information was
extracted from the response curves by the proposed method. In this work it was found
that when the adsorption process becomes short, the reacting time i.e. the reaction
between the sensor and the sample gets reduced. In'® research has been carried out on
feature extraction on recovery responses which shows that the shape of the recovery

curves did not change much with the reaction time. In'%

recognition time and response
recovery time of sensors were determined and the feature extraction was done based on

these.

In all the research works mentioned above, analysis were performed on the dynarhic
responses of the gas sensors. Similar to response time, recovery time etc. time constant is
also an important parameter that describes the response behaviour of a MOS gas sensor
to a particular gas. Fig. 2.20 shows the dynamic characteristics of a sensor response.

In this part of the research work, we have made an analysis on odour classification using

time constants of the sensor response as a feature. The time constant, z is a measure of

the sensor’s inertia. [n analogous electrical systems, it is equal to the product of
capacitance and resistance: 7=CR. In thermal terms, it is equal to the product of

thermal capacity and thermal resistance. In a first-order system, the response is given by,

Y& =y, (- %y, 2.15)

where y,, is steady-state output, £ is time. Substitutings =z, we get,

DA PvS (2.16)
y"l e

In other words, after an elapse of time equal to one time constant, the response reaches
about 63% of its steady-state level. To explain the relation between the dynamic

features- slope, response-time and time-constant we consider Fig. 2.21 as shown below:
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Fig. 2.21: Typical sensor response (a) with constant response time and (b) with constant response voltage.
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where V= Response voltage
T,= Response time

K = A constant

Now From Fig. 2.21 (a) where the response time 7, is same but response voltages are

different, the slope and time-constant can be written as-

Slope =¥ (for response voltage V) (2.172))
KV -
and Slope = - (for response voltage KV) (2.17b)
. ~
Time- constant ,
\

r= 0.63V _0.63¥ 7. =0.637, (for response voltage V) (2.17¢)

T 14

r

__ 063KV _0.63KV
T KV

r

and

T =0.63T, (for response voltage KV)  (2.17d) }

7
Similarly from Fig. 2.21 (b) where the response time T, is different but response

voltages are same, the slope and time-constant can be given as-

Slope = % (for response time 7;) (2.18a)
and Slope = EV]T (for response time K 7;) (2.18b)
Time-constant,

T, = 9% = 0'6%17 =0.63T (for response time T}) (2.18¢)

_0.63¥ _ 0.63KV
v

and 7, KT =0.63KT. (for response time K T;) (2.18d)
Case I: When the response time is same but response voltages are different, the time-
constant is same as given by eqn. (2.17¢) and (2.17d). In such cases, the time-constant

cannot be a feature for classification.
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Case II: When the response time is different but response voltages are same, the time-
constant is different although with different slopes as given by eqn. (2.18). In such cases,

the time-constants can be used as a feature for classification.

Hence time-constant is an important parameter that can be used as a feature for
classification of different gases using MOS gas sensors. In our study we have considered
the time-constants for each of the ten sample gases as shown in appendix A2.1. These
time constants depend on the dynamic behaviour of the sensor responses. During the
adsorption process, the sensor response reaches up to a steady state from which the time

constants could be determined.

The technique involves pre-processing and feature extraction and of the sensor response,
principal component analysis (PCA) and then classification using ANN. The
experimental procedures, data acquisition and analysis, results and discussions are
described in this chapter. The time constants vary with different sample gases due to the
different gas adsorption and heater thermal behaviour. On exposure to the organic gas,
the conductance of the sensing element changes while the response time is dependent on
the kind of sample gases. The selectivity of MOS gas sensors is greatly influenced by
temperature modulation since the rate of reaction for different volatile compounds and
the stability of adsorbed oxygen species are dependent on surface temperature. Since the
optimum oxidation temperatures vary from gas to gas, a sensor operated at different
temperatures behaves as different sensors. The average power consumed by the sensor
with the modulated temperature can also be lowered in comparison to sensors working at

a constant temperature.
2.6.3 Experimental Procedure

The dynamic analysis of MOS gas sensors (TGS-822, TGS-842, TGS-2611 of Figaro,
Japan) was conducted for different pulse modulating temperature in the presence of the
gases. The experimental set-up has already been described in Section 2.1.1.Two vessels
were used as gas sample and room air vessels as shown in Fig.2.2. The sample gas and
the clean air flow were directed into the chamber containing the sensors through two

pumps, which were connected by teflon pipes. The gases from the sample vessel

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



111

containing sample gas and the fresh room air were sampled in a sequence for the pre-

defined time duration.

The experiment was conducted on the MOS gas sensors with the application of ten
different gas samples- ethylacetate, acetonitrile, ethanol, kerosene, petroleum ether,
chloroform, methanol, isopropyl alcohol, acetone and n-hexane. Measurements were
performed for 100 complete cycles (response and recovery) and a total of 100 data
vectors were obtained for each of the 10 sample gases for the three sensors. The
measurement was performed for 10 minutes for response followed by 25 minutes for
recovery. The heater voltage was modulated at a frequency of 120mHz and 50% duty
cycle and then at 10mHz and 75% duty cycle during the sample measurement cycle.
The sensor response to fresh air was used as the baseline response for the experiments.
Any variations in the baseline, which may occur due to various volatiles present in the
room air, were monitored. It was found in each run of experiment that on application of
clean air the sensor baseline settles to a fixed level ensuring absence of any interfering
gas. The time constants were determined for each cycle and these time responses were
used as the sample vectors for the odour classification. The sample measurements were
stored in the data file in LabVIEW for further processing in MATLAB.

In the first part of experiments, the sensor temperature was pulsed at an arbitrary
selected frequency of 120mHz and duty cycle of 50% to generate the sensor responses
in the presence of the ten gases and then the time constants were determined. The
sensors were then operated at the best selected pulse modulated frequency and duty
cycle i.e. 10mHz and 75% duty cycle to generate the sensor responses in the presence of
the 10 gases. The best selected frequency and duty cycle determination was based on
the noise analysis as discussed in Section 2.5. The classification of data was performed
using ANN. Fig2.22 shows an example of the sensor response in LabVIEW for ethanol

and acetonitrile showing different response time.
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Fig. 2.22. The sensor response (TGS-822) in LabVIEW in presence of (a) ethanol and (b) acetonitrile for

showing different response time.
2.6.4 Data Acquisition

Data acquisition refers to the process of recording sensor response in a prescribed format
at a predefined rate. In this research sufficient amount of data sets were acquired in the
long series of experiments. For the sensor data collection, a total time of 175 hrs was

required for 100 data vectors from 10 measurement cycles.
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2.6.5 Data Cluster Analysis

The cluster analysis of sensor data was applied to explore the existence of clusters in

feature space within the datasets.
2.6.5.1 Feature Extraction Using Principal Component Analysis

PCA is a linear method that has been shown to be effective for the discrimination of
sensor data '*. PCA is a method consisting of expressing the sensor response vectors in
terms of linear combination orthogonal vectors. Each principal vector accounts for a
certain amount of variance in the data, with a decreasing degree of importance. This was
done to reduce the dimensionality of the measurement space, and to extract relevant
information for ‘pattern recognition’. This dimensionality reduction stage projects the
initial feature vector onto a lower dimensional space in order to avoid potential problems
associated with high-dimensionality, sparse datasets and so on. Moreover, optimum
feature extraction helps in removing a major portion of redundant data, which may be
perceived as noise in the signal. The resulting low dimensional feature vector was then
used for the classification of the data. It reduces the vector dimension of the dataset and
thus makes it possible to identify the most important, or the principal, components. In
particular, the first significant component explains the largest percentage of the total
variance, the second one, the second largest percentage, and so forth. It is useful for
visualizing any patterns existing in the response of a multisensory array data, hence

facilitating the detection of odours'*.

In this analysis, PCA was used to observe the correlation of the sensor data to the
classification of the gases. The results of the PCA, using the normalized data vectors at
arbitrary frequency of 120mHz and 50% duty cycle is shown in Fig.2.23. The first three
principal components were considered for analysis because they accounted for

95.6563% of the variance in the data set.
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Fig. 2.23. PCA plot for the time constants for one gathering cycle of 100 data vectors with heater pulse
frequency 120mHz and 50% duty cycle.

- The variance and load values for each of 3 principal components (Fig. 2.23) are shown

in Table 2.6.

Table 2.6 The results of PCA for the time constants before selection of frequency and

duty cycle.
PC % Eigen Principal Components
Variance | Values Sensor, Sensor, Sensor;
PC,| 95.6563 0.3143 -0.9826 0.1538 0.1040
PC,| 3.1172 0.2999 -0.1784 -0.9370 -0.3002
PC;| 0.2269 0.0152 0.0513 -0.3136 0.9482

It was observed that some samples were easily separated from the rest and form distinct
clusters. But some other samples are not easily separable and overlap with other
samples. This may be due to the variations of differentiability which are characteristic of
the odour of these gas samples. Such results reveal the performance of the gas sensors in
finding both the similarity as well as dissimilarity of aroma profiles for the different gas

samples.
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The results of the PCA, using the normalized data vectors for the selected frequency

(10mHz frequency and 75% duty cycle) is shown in Fig.2.24.

+ 1. Ethylacetate
+ 2. Acetonitrile
+ 3. Ethasol
* 4. Keroseae
+ 5. Petroleumether
+ 6. Chioroform
7. Methasol
v 8. Isopropylalcohol
Q 9, Acetone
10. n-Hexane

PCA#3

Fig. 2.24. PCA plot for the time constants for one cycle of 100 data-vectors with heater frequency 10mHz

and 75% duty cycle.

The first three principal components were considered for analysis after selection of
frequency and duty cycle because they accounted for 97.4176% of the variance in the
data set. The variance and load values for each of 3 principal components (Fig. 2.24) are

shown in Table 2.7.

Table 2.7 The results of PCA for the time constants after selection of frequency and

duty cycle.
PC % Eigen Principal Components
Variance Values Sensor, Sensor; Sensor;
PC, 97.4176 0.3761 -0.1023 -0.5411 -0.2133
PC, 1.0112 0.2719 -0.0117 -0.6129 0.3422
PC; 0.8399 0.0554 0.8210 0.0544 -0.0128

The results of PCA data visualization after selection of frequency and duty cycle
indicate that there are ten distinctly separable clusters in the dataset and the sensor data

has a better correlation.
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2.6.5.2 Gas Classification Using Artificial Neural Network

Pattern recognition techniques based on artificial neural networks (ANN) approaches are
very widely used for gas sensors'*. During the learning phase of this approach, sensor
response patterns are first trained and presented to the ANN along with respective class
affiliations. Performance is then measured as the percentage of odours classified
correctly when presenting a test set of new patterns to the ANN. Neural networks learn
from examples through iteration, without requiring a priori knowledge of the
relationship among variables under investigation. Two different ANN structures namely
MLP and RBF were adopted for this stage of data classification. Training of the neural
networks was performed with 50% of the whole data set and the rest 50% of the data
sets were used for testing the neural network paradigms. A total of 30 data sets of
dimensions (1x100) for each sensor were formed, thus 15 data sets were used for
training and remaining 15 data sets were used to test the performance of the ANN
paradigm. The two ANN paradigms were used for the analysis of the comparative
results of the sensor data. The structures of the two ANNs are shown in Fig.2.25 (a) and
Fig.2.25 (b) and the architecture of the two ANNs used in this experiment is tabulated in
Table 2.8.

Table 2.8 Architecture of the two ANN paradigms (MLP and RBF):

Neural Networks Architecture

Multi-layer Perceptron | 3 input neurons, 6 hidden neurons, 10 output
(MLP) neurons, 0.5 adaptive learning rate with

momentum 0.42 (one for each sample type).

Radial Basis 3 input neurons, 10 neurons in the output layer,

Function(RBF) spread constant 0.8.

a) Multi Layer Perceptron (MLP):

An MLP network was programmed in MATLAB environment with an adaptive learning
rate of 0.5 and a momentum equal to 0.42. The architecture is shown in Fig.2.24 (a). It
has 3 input neurons, from the three sensors, 6 hidden neurons and 10 output neurons
chosen for the ten sample gases. The activation function for the neurons in the hidden

layers employed is the “logsig® function and for the input and output neurons the
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activation function is also the “logsig’ function. The weights were trained with the back
propagation algorithm. The network was able to reach a classification rate of 51.9%
before the selection of frequency and duty cycle i.e. at 120mHz and 50% duty cycle.
After the selection of frequency and duty cycle i.e. at 10mHz and 75% duty cycle the

network achieved the classification percentage of 58.21% was obtained.

(Input-neurons) (Output-neurons)

\ G1
—> G2

TGS-2611
w{L1} —> G3
3> G4
TGS-842 —> G5
L3 G6
—3 G7
TGS-822 b {1} —> g:
> G10

3 10
G1 - Ethylacetate
G2 - Acetonitrile
G3 - Ethanol
G4 - Kerosene
GS5 - Petroleumether
G6 - Chloroform
G7 - Methanol
G8 - Isopropylalcohol
G9 - Acetone
G10 - n-Hexane

Fig. 2.25 (a). The architecture of MLP for ten sample gases.

The MLP network completed its training for approximately 3000 epochs taking about
Thour training time. Since MLP is poor in adapting the uneven distribution of samples,
the classification by MLP was less in comparison to RBF. Table 2.9 shows the training
and testing of the data sets on MLP network and its correct classification results for ten

sample gases.
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Table 2.9 Training and testing of sensor data on MLP network after the selection of

frequency and duty cycle:

Sample Gases Data vectors for | Data vectors for | % Classification(for
training testing 100 data-vectors)

Ethyl Acetate

Acetonitrile

Ethanol

Kerosene

PRV 101 o
Petroleum Ether 15G3%300) 15(3x300) 58.21%

Chloroform

Methanol

Isopropyl Alcohol

Acetone

N-Hexane

b) Radial Basis Function (RBF):

The RBF network has been found to be an efficient approach for interpolating scattered
data and has been applied in various fields'*®. It has a similar architecture to the MLP,
exhibiting fully inter-connected layers. It differs structurally from the MLP in that the
hidden layer employs a different type of neuron, called the Radial Basis (RB) neuron.
Like MLP, RBF also adopts the supervised learning method, being presented with the
input patterns and the associated targets. The RBF network architecture is shown in
Fig.2.25 (b). The neurons are added to the network until the sum-squared error (SSE)
reduced to a specified error goal which was set as 10x10. The spread constant was set
at 0.8. The network was able to reach a classification rate of 75.9% before the selection
of frequency and duty cycle. After the selection of frequency and duty cycle the network
performed the classification of 85.62% was obtained. The training was completed in 100
epochs with a training time of approximately 26 minutes, hence showing better

performance and less training time than MLP.
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Fig. 2.25 (b). The architecture of RBF for ten sample gases.

2.6.5.3 ANN Performance and Classification Enhancement Results

The training performances of MLP and RBF used in the experiments are shown in Table
2.10. The time required to complete the iterations in case of MLP was more (1 hr

approx.) than that for RBF (26 minutes).

Table 2.10 Training performance of Artificial Neural Network paradigms:

Neural Networks Training time
Multi-layer Perceptron (MLP) 1 hour
Radial Basis Function(RBF) 26 minutes

The classification of the sensor data (time constants) was performed using the two ANN
paradigms. It is seen that the classification is higher in case of RBF than in case of MLP.
The classification also improved after selection of the frequency and duty cycle. Table

2.11 shows the classification results of the sensor data for the two ANNSs.
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From Table 2.11 it is seen that the results of classification improves considerable after
the selection of frequency and duty cycle. The classification percentage enhances upto
85.62% using best selected frequency and duty cycle of 10mHz and 75% duty cycle for
RBF. Also, the classification with RBF is much higher than that using MLP which
improves from 58.21% to 85.62% using the former.

Table 2.11 Classification results in percentage before and after pulsed frequency

selection:

Classification mode MLP RBF
Before selection  of 51.9% 75.9%
frequency and duty cycle

After selection of frequency 58.21 % 85.62 %
and duty cycle

2.6.6 Results and Discussions

In this part of experiments on the dynamic analysis of MOS gas sensors under pulsed
modulated heater voltage, it was found that different sample gases could be classified
with the utmost accuracy when the classification of the data was done using best
selected temperature i.e. best selected frequency and duty cycle of 10mHz and 75% duty
cycle. This frequency was chosen because as per the analysis done in the first part of the
experiments, out of the four chosen frequencies of 10mHz, 40mHz, 80mHz and 120mHz
and duty cycles of 50% and 75%, the noise was found to be lowest at 10mHz and 75%
duty cycle.

It is also concluded that the sensor responses are linearly correlated. A reasonable
correlation exists between different sample gases (ten gases used in this case), hence

showing that the odour established by PCA is consistent with different sample gases.

The results are tabulated in the Table 2.10. The experiments were performed to classify
ten sample gases based on the time constants of the sensors i.e. using time constant as
the feature for classification. The classification results of the gases were then compared

for data extracted before selection of frequency and duty cycle and for data extracted
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after selection of frequency and duty cycle. The classification methods used were PCA,
MLP and RBF. From these results (Table 2.7 through Table 2.10), it is evident that the
three MOS gas sensors are capable of discriminating the odour of ten sample gases
analyzed by the data processing ANN techniques. An accuracy of 85.62% was reached
in the classification using RBF network corr;pared with 58.21% using an MLP, thus
showing that RBF was much better compared to MLP.

2.7 Conclusion:

This part of the research focuses on the development of a heater pulse frequency and
duty cycle selection technique that relies on the fact that frequency and duty cycle of the
heater influences the noise behavior of the sensor response and thereby the classification
efficiency also. Different data preprocessing and data analyzing techniques were
employed. In the first part of experiments-both statistical and frequency spectrum of
MOS gas sensor applying pulse modulated temperature with different frequencies and
duty cycles are analyzed to study the noise feature. Under statistical analysis-PDF, mean
and standard deviation, SNR and histogram was determined. Two new noise
characteristic figures- NSF and NPF were introduced at four different frequencies
namely 10mHz, 40mhz, 80mHz and 120mHz and at two different duty cycles namely
50% and 75%. It is observed that for a rapid temperature change of sensor temperature,
the NSF and NPF ratios increases indicating the rise in the noise level of the signal.
Also, it is observed that with the increase in the duty cycle, the NSF and NPF ratios

decreases indicating that the level of noise falls off in comparison to the signal level.

Under frequency analysis of sensor data, the FFT analysis of the MOS gas sensor noise
is performed to verify the noise dependency on the frequency and duty cycle of the
modulated heater voltage by the determination of the noise bandwidth. The study
determined the best selected frequency and duty cycle at which the noise was minimum.
In the second part of the experiments, the dynamic analysis of the sensor data was done
and the discrimination of ten different sample gases was performed using two sets of
frequency and duty cycle. At first, the analysis was done using a frequency of 120mHz
and 50% duty cycle and then the data was extracted using the best selected frequency
and duty cycle of 10mHz and 75% duty cycle. The time constant was used as the feature

in this case. LabVIEW (National Instruments) was used to acquire and display the
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results. The feature extraction was done using PCA. Thé PCA results using the
normalized data vectors were encouraging, which accounted for upto 98.0004% (Table
2.6) of the variance in case of sensor data before selection and 99.2687% (Table 2.8) of

the variance for data after selection of frequency and duty cycle.

Two different ANN structures namely MLP and RBF were adopted for this stage of data
classification. Training of the data sets was performed with 50% of the datasets and the
rest 50% of the datasets was used for testing the ANN paradigms. The time required for
training with MLP was longer than that required for training the network with

RBF. Also RBF resulted in a better classification percentage than MLP.

This study is helpful to determine the best suitable heater pulse frequency and duty
cycle for a particular sensor. Also from the results of dynamic analysis, it can be
concluded that odour classification based on the dynamic responses can be realized
using neural networks using gas sensors. Hence, such an approach should have a major

role to play in other similar areas of application.
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CHAPTER 3

NOISE REDUCTION BY AMPLITUDE
DEMODULATION

3.0 Introduction:

Metal oxide gas sensors for gas sensing have been intensively used during the last
decades''®. Commercial MOS gas sensors are commonly used in electronic noses because
of their low cost and high sensitivities inspite of their disadvantages such as lack of
stability, low selectivity and are mostly affected by noise. The noise from the gas sensors
comprises of several odorant gas sensors which may result in inaccurate cluster analysis of
the tested odour'*’. The noise in MOS gas sensors and the various kinds of noises have
already been discussed in Chapter 1 (Section 1.5). Since, the impact of noise on various
gas sensors is not uniform, therefore, system parameters should be properly adjusted in the
de-noise process'*®. The commercial MOS gas sensors exhibit 1/f noise that dominates
usually at low frequencies. The variation of temperature and humidity changes the baseline

of the sensor signal with time which must be recovered at the time of data acquisition.

But before discussing noise in MOS gas sensors, noise in circuits and sensors are discussed
in this chapter. Noises are classified into two types: inherent and transmitted noises as
already discussed in Chapterl. Inherent noises are of different types such as popcomn,
white, thermal, pink, shot, schottky noise whereas transmitted noise are either additive or
multiplicative depending on the behavior of transmitted noise. For example —when noise

propagates toward the sensors and interface circuit, they are added with the actual signals
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and eventually appear at the output signals. When noises are multiplied with the actual

signals, noises affect the transfer function of the sensors.

Different noise filtering techniques have been discussed in Chapter 1 (Section 1.5.2.5).
The selection of the noise reduction technique being application dependent, it is necessary
to analyse and compare the filtering techniques to select the one that is appropriate for the

application in which we are interested.

The moving average filter is one of the most commonly used filters in signal processing
which “is optimal for reducing random noise. It is a simple Low Pass Finite Impulse
Response (FIR) filter used for smoothing a noisy signal. As the filter length increase the
smoothness of the output improves, whereas the sharp transitions in the data are reduced
increasingly implying that this filter has excellent time domain response but a poor

frequency response. A moving average filter can be expressed as-

N

1 .
= +
YD = 3 3l a

where x(n) and y(n) are input signal and output signal of the moving average respectively,
and N specifies the number of data points and observation window length equal to 2N+1.
As the number of points in the filter increases, the noise becomes lower; however, the
edges becoming less sharp. The moving average filter provides the lowest noise possible
for a given edge sharpness. Different methods have been employed ’by researchers to
eliminate noise in signals. Conventional linear system adaptive filtering techniques have
‘been widely used in adaptive noise reduction problems. However, because of its linearity,
the filter cannot change the intrinsic property of the original noisy signal, such as regularity,
etc. The linear filter tends to remove or keep both noise and wideband components in the
signal because both of them may have similar appearance in spectrum. The FIR filter based
noise reduction techniques in the transform domain have also been investigated'* ' in
many works. Several denoising techniques including wavelet thresholding methods have
also proved to be powerful tools for noise removal'*!*®, Noise suppression in sensors tends

to reduce the dimensionality of multichannel data, caused by various noise sources. In' it
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is seen that to reduce noise in multiple-channel recordings such as magneto
encephalography (MEG) or electroencephalography (EEG), each sensor is projected on the
subspace spanned by its neighbours and replaced by its projection. In recent years, work
has been carried on the elimination of noise in Electrocardiogram (ECG) signals'®. Two
methods were used to remove the signal noise: polynomial fitting and high-pass filtering.
The first approach uses a polynomial interpolation to estimate the baseline which is fitted

161

from some fiducially points that are determined from P-R intervals™®', whereas these points

are difficult to locate accurately before noise is removed from the ECG signal. As a result,

this approach was ineffective'®?

if the ECG signal is contaminated by noise. In another
- work, moving average filter'®® and the ECG signal is contaminated by noise. In another
work moving average filter'®® and wavelet translation'®® were used to construct a high-pass
filter. However, the high-pass filter would inevitably introduce distortions in various parts
of the ECG signal, especially in the ST segment. Also, there have been many ways to

represent linear or nonlinear high-pass filters'®®

, such as infinite-impulse response (IIR) and
FIR. The performance of IIR filters is generally undesirable due to a nonlinear phase
response, which introduces distortion into an ECG signal. Though by sampling rate
decimation FIR complexity could be reduced drastically, the time delay introduced by an
FIR filter is still unacceptable, especially when FIR is applied in short-lasting signals.
Therefore, both the moving average filter and wavelet package translation were used in this
work'®. In another work'®® a modified Bessel filter for amplitude ‘demodulation of
respiratory electromyogram (EMG) signals has been studied containing a rectifier and a
low-pass filter called a modified third-order Paynter filter. A moving averager was
constructed around the Paynter filter. The properties of this filter were studied and it was
found that the filter had poor high-frequency attenuation which permitted higher frequency
signal components to pass through to the output-demodulated waveform as interfering

noise.

A high frequency resonance (HFR) technique involving bandpass filtering and amplitude
demodulation (AD) prior to spectral analysis are used in many research fields. Researchers
have developed efficient and robust methods to estimate the proper center frequency and

optimum bandwidth of the bandpass filter. The minimal Shannon entropy was used in'®" !¢

— —_— — —
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by Qiu et al where a bandwidth was chosen and periodicity detection method was applied
for center frequency selection. In'® these parameters were selected based on a kurtosis
maximization criterion. On the other hand, in method'’® smoothness index was applied to
guide the selection of these parameters. An online resonance frequency estimation
algorithm was also further developed'’' which was used as the center frequency of a

wavelet based filtering method.

Although a number of works have been performed on signals for filtering using FIR, IIR,
HFR techniques, but these methods may not be suitable in a rapidly changing temperature
condition of sensor (due to pulse heater voltage) because these techniques involve filter
parameters, namely center frequency and bandwidth which are situation dependent and
their selection is knowledge demanding. Hence, the objective of this chapter is to explain
two parameter free techniques developed - AD and wavelet transform (WT) technique to

recover the original signal from the noisy sensor signal.

In our work we have tried to recover the original signal from the noisy signal by the AD
technique. There are several ways of demodulation depending on how parameters of the
base-band signal are transmitted in the carrier signal, such as amplitude, frequency or

phase.

The process of demodulation is the act of extracting the original information-bearing signal
from a modulated carrier wave. For example, for a signal modulated with a linear
modulation, like AM (Amplitude Modulation), a synchronous detector can be used.
Different kinds of circuits perform these functions. An AM signal encodes the information
onto the carrier wave by varying its amplitude in direct approval with the analogue signal to

be sent. There are two methods used in the demodulation of amplitude modulated signals:

i) The simplest method of demodulation is the envelope detector. It consists of a
rectifier and a low-pass filter. The rectifier may be in the form of a single diode,
or may be more complex.

ii) The product detector multiplies the incoming signal by the signal of a local

oscillator with the same frequency and phase as the carrier of the incoming
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signal. After filtering the original signal will be obtained. This method will
decode AM.

An AM signal can be rectified without requiring a coherent demodulator. The output will
follow the same curve as the input baseband signal. There are forms of AM in which the

carrier is reduced or suppressed entirely, which require coherent demodulation.
3.1. Noise in MOS gas sensors

The temperature profile of the MOS gas sensor surface greatly influences the response
behavior of the sensor due to rapid thermal fluctuations in respect of its noise and stability.
We have observed that the noises in MOS gas sensors are additive where the noise
magnitude does not change when the actual signal changes. The additive noise magnitude is
totally independent of the signal magnitude as long as the sensor and interface electronics
are linear. If the signal is equal to zero, the output noise will still be present. If we have a
noise free signal 7, then the signal added by an independent ambient noise e, is given by:

V., =V +e, (3.2)

onl

Fig. 3.1(b) shows an example of such a noisy signal corresponding to a pure signal 3.1 (a).
It is seen that the noise magnitude does not change when the actual signal changes. As long
as the sensor and interface electronics are linear, the additive noise magnitude is
independent of the signal magnitude, and if the signal is equal to zero, the o{Jtput noise will

exist.

out
out

(a) (b)
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Fig. 3.1. Types of noise: (a) noise-free signal; (b) additive noise; (c) multiplicative noise.

Multiplicative noise affects the sensor signal or the nonlinear components of the circuit in
such a way that the signal’s value becomes altered or modulated by the noise given by:
Vou =[1+ NIV, (3.3)

where M(¢) is a function of noise. An example of such noise is shown in Fig. 3.1(c).

These types of noises at the output vanishes or becomes small or becomes additive when
the signal’s magnitude approaches zero. Multiplicative noise grows together with the
signal’s magnitude. Its name implies that it is a result of multiplication (which is a
nonlinear operation) of two values where one is a useful signal and the other is a noise-

dependent value.

Extrinsic noise is usually modeled as an unbounded white or colored Gaussian stochastic
process, even‘though realistic stochastic perturbations are clearly bounded. Gaussian noise
is evenly distributed over the entire signal. This type of noise has a Gaussian distribution,
which has a bell shaped probability distribution function given by,
P(x)= —l—e_;(%J (3.3)
x o \/2—7;
where P (x) is the probability density function for Gaussian distribution of signal x, u is

the mean or average of the function, and ¢ is the standard deviation of the noise.

Graphically, it is represented as shown in Figure 3.2.
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P(x)}

X —p
Figure 3.2: Gaussian distribution.

3.1.1 Experimental procedure

The low sensitivity signal from the MOS gas sensor (TGS-2611) was acquired for pulse
modulating temperature by the data acquisition (DAQ) system. The MOS gas sensor signal
was at first filtered in LabVIEW by a smoothing filter and then the experiment on noise
analysis and filtering was performed without the application of any gas. The reason for
choosing a low sensitivity sensor signal was that we wanted a signal completely buried in
noise. The heater voltage was switched on to +5V when the pulse switches the MOSFET
with the same frequency as that of the pulse applied. In our case, the pulse frequency used
was 1Hz. The sensor output signal, without applying any gas, captures noise developed in
the sensor due to various and mostly thermal related. The sensor was tested for noise with
pulsed modulated heater voltage. The sensor temperature was pulsed at 1Hz frequency and
50% duty cycle to analyse the noise. The sensor noise signals were acquired at a sampling
frequency of 1 kHz for time duration of about 15 min so that sufficient data is available for
analysis. The data acquired was normalized to highlight the noise spectrum over a positive
scale. The spectrum of the noisy signal was then analyzed and then by amplitude
demodulating the signal-noise mixture, the envelope of the original signal could be
determined and the spectrum analysis was performed. The original low sensitivity noisy
signal of TGS-2611 filtered in LabVIEW is shown in Fig. 3.3.
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Fig.3.3: The original low sensitivity LabVIEW filtered sensor signal of TGS-2611.
3.1.2 White Gaussian noise addition

In order to analyse the efficiency of our proposed analog demodulation based noise
filtering, we have used a MOS gas sensor of very low sensitivity so that the amplitude of
the sensor signal is dominated by the noise i.e. the SNR ratio is deliberately made very low
in the order of -14dB. The sensor signal was obtained by pulse modulating the heater
voltage using a train of square pulses. This work emphasises on amplitude demodulation of
the noisy sensor signal and recovery of the original low sensitivity sensor signal acquired
by pulsed modulated temperature. After extracting the signal by using LabVIEW based
smoothing filters, it was modulated with white noise as well as a low frequency sine signal.
The resultant signal was then used for the analysis of noise reduction by the amplitude

demodulation technique.

Continuous white noise has a correlation time of zero, a flat power spectral density (PSD),
and infinite total energy. In practice, physical systems are never disturbed by white noise,
although it is useful for theoretical approximation when the noise disturbance has a
correlation time that is very small relative to the natural bandwidth of the system. Noise
signals from two independent sources are uncorrelated. When white noise is added to a
signal, the resultant signal will be the same form and size as the original signal but with

Gaussian noise added. The addition of white noise to nanomechanical systems'’? showed a
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marked amplification of the coherent signal strength. The determination of errors associated
with frequency spectra produced by the CLEAN i.e. softiware based transformation of
Roberts et al was performed by Monte Carlo based method that utilized three different
types of simulation involving a data stripping operation and the addition of white and red

noise to the analysed time series'”.

It is seen that noise in MOS gas sensor signal is generally spread uniformly across the
spectrum. The amplitude of the noise varies randomly at different frequencies. The change
in amplitude can actually modulate the sensor signal and be picked up in the AM system.

Inl 74

a modulation / demodulation system is proposed to modulate the 1/f noise in
capacitive sensors, to a higher frequency and then the noise modulated sensor signal is low-
pass filtered. Also in another work, an AD based noise reduction technique was proposed
which appeared at an instrumentation amplifier input'”®. A square-wave signal was used
which was modulated with signal from sensor (input signal). The modulated signal was
applied at instrumentation amplifier and then the amplified signal was modulated again
with the same signal type. The noise and offset voltage which appeared due to the amplifier
were modulated only once by the final multiplier and translated to the harmonics of the
square-wave signal while, by using a low-pass filter, the filtered signal was obtained. The
AD-based noise reduction algorithms are capable of increasing the SNR in the overall
signal but not the SNR within a signal processing channel. These algorithms reduce noise
interference by reducing the noise-dominant channels to the overall signal. These
algorithms, therefore, do not enhance speech intelligibility in noise'”® '”’. If, however, the
algorithm has more signal processing channels than the signal delivery channels,
demodulation-based noise reduction algorithms can potentially increase the SNR within a
signal delivery channel and improve speech intelligibility'’®. In another work'”, the
adverse effects of the amplifier offset and flicker (1/f) noise of a differential low-noise
high-resolution switched-capacitor readout circuit is minimized using amplitude
modulation/demodulation. Since AD based techniques for noise filtering has been used in a
number of multichannel sensor environment, it shows potential application in multisensor

MOS gas array based E-nose.

— P —

—— —
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Although a number of works have been performed on signals for filtering using Finite
Impulse Response (FIR), Infinite Impulse Response (IIR) or High Frequency Response
(HFR) techniques, these methods may not be suitable in a rapidly changing temperature
condition of MOS gas sensor (due to pulse heater voltage) because these techniques involve
filter parameters, namely center frequency and bandwidth which are situation dependent
and their selection is knowledge demanding. Hence, the objective of this chapter 3 is to
explain two parameter free techniques developed - AD and Wavelet transform (WT)

technique to recover the original signal from the noisy sensor signal.

The sensor signal was at first filtered in LabVIEW by a smoothing filter and then it was
modulated by adding -14dB white noise (Fig.3.4) and then both with white noise and a low
frequency sine signal (Fig.3.5) so that we obtain a completely noise buried sensor signal for
applying the AD technique. In our work, we have used the FFT analysis to confirm the
validity of the AD process in the frequency domain.
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Fig.3.4: The noisy sensor response added with white noise of -14dB.
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Fig.3.5: The noisy sensor response added with white noise of -14dB and a low frequency sine signal.
3.2. Amplitude Modulation and Demodulation

Modulation is an elementary requirement of communication system and can be defined as a
process by which some characteristics of a signal termed as carrier is varied according to
the instantaneous value of another signal known as the modulating signal. Modulation may
be classified as continuous wave modulation and pulse modulation. If the carrier waveform
is continuous in nature then the modulation process is termed as continuous wave
modulation and if the carrier waveform is a pulse type waveform, then the modulation
process is termed as pulse modulation. Amplitude Modulation (AM) is a type of continuous

wave modulation.

AM is defined as a process in which the maximum amplitude of the carrier wave is made
proportional to the instantaneous amplitude of the modulating signal. Let us consider a
sinusoidal carrier wave ¢(f) given as-

c(t)=Acosa 1 3.4
where 4 is the maximum amplitude of the carrier wave and ®, is the fixed carrier

frequency. Let

——
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m(t) be the modulating signal, then according to AM, the amplitude 4 of the carrier will
have to be made proportional to the instantaneous amplitude of modulating signal m(z). The

amplitude modulated signal can be expressed as-

y(t)y=m(t)ycosw t+ Acosw,.l (3.9
=)= [A +m(i)]cos oy (3.6)

Fig.3.6 shows the block diagram of modulation and Fig. 3.7 shows the waveforms. The

carrier signal given by eqn.(3.4) is a fixed frequency signal having frequency w, .

> ¥(®
Modulated
c{t) Camer

Figure 3.6: AM of the carrier signal c(¢) with the modulating signal m(¢).
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Figure 3.7: AM signal waveforms.
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The AM signal of eqn.(3.6) has a constant frequency @, and amplitude 4+ m(f) which

implies that the amplitude of the signal changes around 4 in accordance with m(#). The

frequency of the AM signal remains unchanged and is equal to @, . The AM wave has time-

varying amplitude called the envelope of the AM wave. The envelope of the modulated

carrier has the same shape as the message signal m(f). From eqn.(3.6) A+m(¢t) represents

the envelope of the AM wave containing the message signal m(f). Hence, the modulated

signal may be recovered from an AM wave by detecting the envelope.

In our analysis, the sensor signal is considered as the carrier signal ¢(#) where the amplitude
is modulated by the white Gaussian noise (m;(#)) and a low frequency sine signal (m(?)).
By adding noise to the sensor signal we obtain a completely noisy signal so as to perform
the Amplitude Demodulation (AD) technique and obtain the accuracy of the noise

reduction technique. The AM wave in this case can be expressed as-

Y0) =)+ m(©)e(t) (3.7)
Y(0) = et) +m (D) + my(D)e(d) (3.8)
YO =[1+(m,+m)]e® (3.9)

where (m,+m,) represents the noise signal added to the sensor signal.

Demodulation is the process of extracting the message signal m(#) from the modulated
carrier signal ¢(f). Demodulation rectifies the modulated wave i.e. negative half of the
modulated wave is removed (Fig.3.8). The demodulation methods include envelope
detection, square-law demodulation, and synchronous demodulation. A block diagram

illustrating the various demodulation techniques is shown in Figure 3.9.
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Figure 3.8: Demodulated signal output.
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Figure 3.9: Methods of demodulation.

AM signals without overmodulation can be detected using the demodulator followed by a
low-pass filter as shown in Fig.3.9. The square law detector is used for detecting modulated
signal of small magnitude. A square-law demodulator squares the AM signal and then
passes it through a lowpass filter as shown in Fig.3.9. To achieve better performance, a
form of demodulation known as synchronous demodulation can be used. This system uses
an oscillator signal to mix with the incoming signal to convert it down to the baseband
signal. If the local oscillator signal has exactly the same frequency as the carrier within the
AM signal, it will appear as a DC component at the output. The sidebands of the AM signal

will appear relative to zero frequency, i.e. as the other modulating signal. Fig.3.10 shows
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the block diagram of the AD technique used in our work to extract the noise free signal

from the original sensor signal.

white noise + low frequency noise

The message |
signalm(9 | r=cttnty)
——eeee———3{ modulator : demodulator
|
additive noise rfy*n(f)

output signal {(f) €—— Low-pass ilte

Figure 3.10: Block diagram showing the analog modulation-demodulation.

The demodulation process is explained by the flow diagram shown in Fig.3.11.

Sensor Signal (1)
Fc¢ = Carrier Frequency
Fs = Sampling Frequency

v

Signal modulated with noise
n()
) =c®) x n()
n(f)= white noise + low
frequency noise

Y

Demodulation process:
Multiply () by n(r)
s(ty=r) x n(#)

3

Filter the signal s(/)

¥

Filtered signal

Figure 3.11: Flowchart showing the AD technique.
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The original LabVIEW filtered signal recovered after amplitude demodulation is shown in
Fig. 3.12. AD was also performed on white noise modulated sensor response and on the
response added with both white noise and low frequency noise shown in Fig. 3.13 and

Fig.3.14 respectively.
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Figure 3.12: Amplitude Demodulated Signal of the original sensor signal.
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Figure 3.13: Amplitude Demodulated Signal of the white noise added signal.
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Figure 3.14: Amplitude Demodulated Signal of the white noise and low frequency noise added signal.

Applying the AD technique to the noise added signals as shown in Fig.3.4 and Fig.3.5, we
obtain the filtered signals shown in Fig.3.13 and Fig.3.14 respectively.

3.2.1 Frequency Spectrum Analysis

To determine the accuracy of the AD technique the FFT analysis of the noisy and

demodulated signals was performed. The bandwidth was compared for all the cases as
tabulated in Table.3.1.
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Figure. 3.15: The (a) FFT of original extracted sensor signal, (b) FFT of white noise added signal, (c) FFT of
signal added with white noise and low frequency sine signal (d) FFT of amplitude demodulated signal of the
original signal, (e) FFT of amplitude demodulated signal added with white noise, and (f) FFT of amplitude

demodulated signal added with white noise and low frequency noise.

Fig. 3.15(a) shows the FFT of the original sensor signal. It is seen that a sharp spectrum is
observed at 1Hz. The FFT of sensor response added with white noise is shown in Fig.
3.15(b) while Fig. 3.15(c) shows the FFT of sensor response added with white noise and
low frequency noise. The FFT was also performed for the verification of the demodulation
technique applied to the noisy sensor response. Figure 3.15(d) shows the FFT for the
amplitude demodulated signal of the original sensor signal. From Fig.3.15 (d) it is observed

that the temperature pulse frequency component is observed at 1Hz. Fig. 3.15(e) shows the
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FFT corresponding to the amplitude demodulated version of response added with white
noise and Fig. 3.15(f) shows that of amplitude demodulated version of response added with

white noise and low frequency sine signal where the 1Hz spectrum is reduced in amplitude.

Since the sensor response is a low frequency (1Hz) pulsed temperature signal, the signal
bandwidth is mostly spread by noise. Hence, the signal bandwidth is important for
predicting noise behavior. We have determined the bandwidth of all the six spectrums

corresponding to Fig. 3.135 (a) to (f).

Table 3.1: Table showing the Bandwidth before and after the amplitude demodulation:

Comparision of bandwidth
SI. No Bandwidth of | Bandwidth of sensor | Bandwidth of sensor
sensor signal | signal with white | signal with  white
Sensor TGS-2611 noise added noise and low
frequency noise
added
(Hz) (Hz) (Hz)
1. Before Amplitude Demodulation 0.0371 Very high Very high
2. After Amplitude Demodulation 0.0086 0.0383 0.0398

From Table 3.1 it is observed that the noise bandwidth is improved after the AD was
performed. From this it can be concluded that the AD technique was able to remove the
noise and recovers the original sensor signal. This parameter free technique could be very
important as it helps in the removal of noise thus ensuring the proper use of the sensor in
various gas detection applications. In addition to the AD technique, Wavelet filtering

method is also applied to reconstruct the sensor signal.

3.3 Wavelet Transform Analysis

The wavelet transform (WT) is a time-scale representation successfully used in a number of
applications. Its analyses the time—frequency analysis using a single transformation, which
makes it feasible in applications such as signal de-noising, wave detection, data

compression, feature extraction, etc. 180-183 ywwavelets can also model speech, music, video
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and non-stationary stochastic signals in terms of time and scale distribution. In this work
the WT was used as a filter for noise reduction of the signal generated by the MOS gas
sensor system. The results of this wavelet filter were then used to perform the FFT and then

the results were compared with the AD based spectral analysis.

The Fourier transform cannot provide any information of the spectrum that changes with
respect to time because it assumes the signal to be stationary. Wavelets provide some
advantages over Fourier transforms. They are effective in approximating signals with sharp
spikes or signals having discontinuities. Unlike other traditional filtering methods, the WT
preserve the temporal locality of sharp transitions within time-domain signals. The signal
processing with wavelets decomposes the signal into its component elements. The basis
functions in case of Fourier analysis are the sine and cosine waves. In wavelet analysis, the
basis functions consist of the wavelet scale function, as well as scale and shifted versions of
the mother wavelet function. The general information on the signal is captured by the
wavelet scale function whereas the details of the signal are captured by the mother wavelet

function. The wavelet transform is given by-

dy, =(8(0),4()) (3.15)
d,,=(g(t)¥ (1)) (3.16)
j=1l. N, k=1,...... !

where d,, are the wavelet coefficients, g(¢) is the signal to be transformed, ¢(¢) is the scale
function and ¥, ,(¢) is the scaled and shifted version of the mother wavelet function % (¢)
which is given by-

Y, (=2"y2t-k) (3.17)
and N is the number of wavelet scales over which the WT is generated. The inverse WT can
be given by-

g(t) =d, () + dej,kyf” 0 (3.18)

—
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3.3.1 Noise reduction Using Wavelets

The discrete wavelet analysis removes noise components from the signal through a de-
noising approach. The procedure includes decomposing the signal into the detail
components, identifying the noise components, and reconstructing the signal without these
components. In this de-noising approach, the random errors in a signal are present in all co-
efficients, while deterministic changes occur in a small number of relatively large
coefficients. As a result a few larger coefficients representing the underlying signal is
present in the non-linear thresholding function in the wavelet domain with the noise
coefficients reduced to zero. The advantage of the wavelet de-noising method over classical
linear filtering methods is that it removes all noise present and retains the signal present
regardless of the frequency content of the signal. In such a de-noising process, a regular
signal component can be accurately approximated by using a small number of
approximation coefficients (at a suitably chosen level) and some of the detail coefficients.
In de-noising and data compression process the choice of the mother wavelet plays a very

significant role.

Wavelet analysis is a measure of similarity i.e. having similar frequency content between
the basis functions and the signal itself. Therefore, in this case, the mother wavelets must be
highly localized in time and frequency. One of the most popular orthonormal wavelets is
Daubechies” wavelet. In such type of wavelets larger filter coefficients generate more
localized wavelets in both time and frequency dimensions. In this work we have employed
the order five wavelet transform of the Daubechies’ family'®*,

The wavelet filter was implemented through the multi-resolution pyramid decomposition
technique'®. The original extracted noisy signal is decomposed into two sets: a set of
wavelet coefficients known as details and a set of coefficients known as approximation.
using a bandpass and a lowpass filter for the decomposition. Thus, the pass band filtered
signal is a detailed version of the signal and with high frequency components, while the
other signal a low pass filtered with low frequency components. The low pass filtered
signal is further decomposed into another set of high frequency and low frequency

components and so on. The decomposition of the sensor signal can be described as:
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s=a,+y.d (3.19)
i=1
where a,, is the low pass filtered component and ¢, is the high pass filtered component, m

is the greatest decomposition level.

In this work we have performed wavelet decomposition on the original extracted noisy
sensor signal (Fig. 3.3) using Daubechies’ wavelet. The signals free of noise were found in
the component of lowest frequency of a tree with five approximation levels (g, —ay). The
fifth order wavelet transform is employed in our case to recover the signal. The correlation
of approximation level with original signal was analysed by Cross-correlation technique.
We have found the cross correlation values at level 1 to level 8 and we have found that
from level 6 the values decrease much abruptly as tabulated in Table 3.2. Therefore we
have chosen the decomposition at level 5 for the analysis. Fig.3.16 (a) displays the
decomposition tree of the analyzed signal and Fig.3.16 (b) shows the approximation
components from level ¢ toa;. Fig. 3.16 (c) shows the original noisy signal and wavelet

filtered signal.
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2000 4000 6000 8000 10000
x 10" Approximation at level 5 (reconstructed).
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(©)
Fig. 3.16: (a) Tree of decomposition used to decompose and de-noise the sensor signal, (b) approximation
components, @, toda; and (c) original noisy signal and wavelet filtered signal at level 5 (a; ).

Table 3.2: Cross-correlation coefficients:

Approximation | Cross correlation
coefficients coefficients
a, 0.9999
a 0.9997
a; 0.9996
as 0.9993
as 0.9986
g , 0.9971
a; 0.9938
ag 0.9696

From Table 3.2 it is seen that upto the level 5 (as), the values are consistent and from as to

as the values decreases abruptly. Hence the signal at level 5 is selected for the analysis.

Noise Feature Analysis, System ldenti ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



146

Further, the FFT analysis was performed and the bandwidth of the decomposed signals at
all the levels was determined.

.

3.3.2 FFT Analysis of the Wavelet Filtered Signal

The performance of the wavelet technique was analysed by FFT analysis. Fig.3.17 shows
the FFT of the wavelet filtered sensor sighal. The bandwidth was determined for all the five
detailed components and the bandwidth of all of them was calculated. The results of the

bandwidth obtained by AD and wavelet analysis are tabulated in Table.3.3.
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Fig. 3.17: The FFT of wavelet filtered sensor signal at (a) level-1 (a,), (b) level-2 (a,), (c) level-3 (a;), (d)

level-4 (a,), and (e) level-5 (a;).

Table 3.3: Table showing the Bandwidth of sensor signal with AD and Wavelet Transform
analysis:

Comparision of bandwidth
S1. No Bandwidth of sensor signal
Sensor TGS-2611
(Hz)
1. By Amplitude Demodulation 0.0086
By Wavelet Transform

atlevel-1 (a,) 0.0373

9 atlevel-1(a,) - 0.0371
| at level-1 (a,) 0.0371

at level-1 (a,) 0.0370

at level-1 (ay) 0.0369

From Table 3.3 it is seen that the bandwidth of noise is more in case of wavelet filtered
signal than the AD signal. The filtering by AD technique is therefore found to be better
than the wavelet filtering method in our case, however the wavelet technique is better than
AD filtering technique since it recovers the original information with minimal loss.

U

Noise Feature Analysis, System Identi ication and Modeling for Selection of Puise Temperature
Frequency of MOS Gas Sensors




148

Wavelet analysis provides immediate retrieval of information that can be obscured by other

time-frequency method analysis.
3.4 Conclusion

The AD technique is applied for the extraction of the original signal from the noise
modulated sensor signal. The extracted low sensitivity signal was added to white noise and
a low frequency sine signal. This was done so that the original signal was completely
buried in noise. The AD was done on the signal and the original signal was recovered. Also
spectral analysis of the signals before and after the amplitude demodulation was performed

for the verification of the process.

The extracted noisy sensor signal was also decomposed using the wavelet filtering method.
The reconstructed signal was analyzed by performing the FFT analysis. The bandwidth was

determined and the results for AD and wavelet analysis were compared.

It is seen that the original signal was recovered without much loss of information after the
amplitude demodulation was performed. The bandwidth of the sensor response before and
after the AD shows that the noise could be removed effectively in this technique. The
bandwidth of the signal using wavelet transform is found to be more than that performed
using AD technique. Since AD based techniques for noise filtering has been used in a
number of multichannel sensor environment, it shows potential application in multisensor
MOS gas array based E-nose. Hence this work enumerate a novel technique of filtering
MOS gas sensor responses using AD based algorithm which shows potential application in

E-nose signal processing.
3.5 Publication on this chapter

1. Dutta, N., & Bhuyan, M. Amplitude Demodulation and Spectrum Analysis of Noise in
MOS Gas Sensor Based Electronic Nose, in International Conference on Advances in

Communication, Network, and Computing (CNC’2010), Calicut, 160-162.
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CHAPTER 4

HEATER PULSE FREQUENCY SELECTION BY
SYSTEM IDENTIFICATION

4.0 Introduction:

In this chapter the basic issues of MOS gas sensor modeling by system identification
and analysis of the MOS gas sensor stability criterion have been explained. Henceforth,
based on the sensor stability, best suited transfer function was chosen for the MOS gas
sensors and classification enhancement was done using Artificial Neural Network
(ANN). The experimental procedures, and the modeling techniques with experimental
results are the topics described in this chapter. The experiment was performed for three
MOS gas sensors from Figaro (TGS-2611, TGS-842 and TGS-822) for two ranges of
frequencies and the classification .percentage for both the ranges of heater pulse

modulating frequencies were determined.

The approach to system identification for a physical system using available data'®¢1% j

S
called a ‘backward modeling” while modeling from system equations is called ‘forward
modeling’. Generally, identification is usually performed by finding the “best” set of
parameters for a given model class, according to a chosen criterion such as least-squares
error. If the resulting model is adequate for its stability analysis, predictions are made
using this best model or else the model class is revised. System identification deals with
building of mathematical models of dynamical systems based on the observed data from
the system. To build mathematical models of dynamical systems from informative
measured data for fitting such models system identification has been performed. A
system can be linear or nonlinear and, depending on the type of the system, linear or
nonlinear models can be estimated. In practice, linear models are very common and they
are often used although the system is nonlinear. In these cases, the model can only give

an approximate description of the system. This data-driven approach helps to observe

the MOS gas sensor as a dynamic system and employ suitable methods so that its

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



150

behavior at different conditions can be modeled. We can interpret from the physical
phenomenon of the sensor that the MOS gas sensor models rely on the following

cascaded mechanisms-

i) adsorption of gas molecules by the sensor film,
ii) elevation of temperature of the sensor surface and

iii) the change in the electrical conductance of the sensor material.

The above stages, though looks distinct, physically it is difficult to distinctly segregate

the whole model into such distinct stages.

System ic_lentiﬁcation includes the following steps'®®: Firstly the experiment is
performed to obtain good experimental data. Secondly, using a ‘prediction error
minimization’ (PEM) technique a suitable model structure is chosen. Thirdly, a suitable
input is chosen which shows how well the model fits into the experimental data. Finally,

model validation is performed.

One of the most established ways of improving the selectivity of MOS gas sensors is by
periodically varying the sensors’ operating temperature and researchers have reported
on the advantage of temperature modulation as discussed earlier. The response of the
gas sensors to modulating temperature primarily depends on the analytical model which
is based on the physical and chemical properties of the sensor material. By choosing the
best heater modulating function with the best frequency to achieve a stable dynamics
that follow the concentration of the analyte will be an important optimization strategy of

MOS gas sensor.

The frequency of modulation is selected on trial and error method in many of the works
based on temperature modulation''> *'1%8 One of the methods of selecting most suited
frequency was based on system identification through multilevel pseudorandom
sequences'>® and pseudorandom binary sequences®®. In these methods pseudorandom
sequences (PRSs) and pseudorandom binary sequences (PRBSs) of maximum-length
sequences (MLSs) was used to identify systems and how these method could be
extended to systematically study temperature-modulated gas sensors, however the
identification of systems using pulsed heater voltage for sensor stability analysis by

system identification technique has not been explored so far. In this research we have
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determined the transfer functions of the MOS gas sensors baseline model by system
identification technique. The prediction error minimization (PEM) algorithm was used
to derive the sensor Linear Time Invariant (LTI) model transfer function from measured
input-output data without the application of any gas. Since pulse modulation is a
popular method of feature extraction of MOS gas sensors, selection of parameters of
pulse modulation will be a remarkable strategy in this area. To overcome the problem of
choosing the best frequency of the temperature modulating signal of the MOS gas
sensor, a new technique based on, system identification has been developed to select the
sensor model that provides the most stable and desired sensor response. We have chosen
a set of most suited frequencies for the first time in MOS gas sensors using system
identification theory for sensor modeling®®" 202, By using the system identification
theory we determine the transfer functions of the MOS gas sensors during the signal-
inactive period i.e. when the sensors were not exposed to any kind of gases. Based on
the overshoot percentage of the step-response and the pole-zero plots the most stable
transfer function was chosen. The aim is to find the stable transfer function that shows
better percentage of fit than the other unstable transfer functions. Hence, the best fit
stable transfer function obtained from the analysis was chosen to be optimum and the
frequency and duty cycle at which this result was obtained was used for the

classification of different gases.

The work therefore focuses on the most suitable temperature modulation based on the
system identification technique. The most suitable transfer function was chosen for the
MOS gas sensors based on the stability tests and then the sensors were operated at the
respective best frequencies and duty cycles. The classification of various gases was
performed by an array of gas sensors consisting three MOS gas sensors using Artificial

Neural Network (ANN).

4.1 Experimental procedure

The photographic view of the experimental set-up connected to PC through DAQ card is
shown in Chapter 2 (Section 2.2.1.4, Fig.2.8).
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4.1.1 Data Acquisition

Three MOS gas sensors (TGS-2611, TGS-842 and TGS-822 of Figaro, Japan) were
used for acquiring data for different pulse modulating temperature. The heater voltage
pulse modulation patterns (frequency and duty cycle) of the sensors were controlled by
a PC through a Data Acquisition card (PCI16024E, National Instruments) and LabVIEW.
The details have been explained in Chapter 2 (Section 2.2).

In the first phase of this experiment the system identification was performed by using
the sensor input-output data of the three MOS gas sensors without the application of any
gases. For performing system identification using PEM algorithm, we have applied a
large input-output pair of data set for two sensors (T'GS-2611 and TGS-842) each
operated by heater pulse of frequencies 10mHz, 40mHz, 80mHz and 120mHz and duty
cycles of 50% and 75%. Moreover we have performed the same analysis for lower
frequency range of frequencies 1mHz, 2mHz, 3mHz, 4mHz and SmHz and duty cycles
of 50% and 75% for two sensors (TGS-2611 and TGS-822). Lower frequency is

preferred because of the following reasons-

i) To attain a quasi-isothermal state a slow change in sensor heater voltage
is desirable such that the sensor dynamics is preserved”®.

ii) At lower frequencies, since the time-period is already high, smaller
duty cycle may lead to attain the stable sensor dynamics.

iii) As the frequency is increased, the duty cycle has to be increased such
that sufficient amount of heating takes place at the sensor surface in

order to preserve the sensor dynamics.

The data-preprocessing was done as per the eqn. (2.4) as described in Chapter 2
(Section 2.2.2).

4.2 Sensor Model Representation

The problem of building mathematical models of dynamical systems based on observed
input-output MOS gas sensor data from the system is termed as system identification.
This chapter presents system identification using the PEM method. As already described

in Chapter 1 (Section 1.6.2) there are three basic models for system identification:
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i) Autoregressive with exogenous inputs (ARX)
ii) Autoregressive moving average model (ARMAX)

iii) State-space model.
The details of the above models are described in Chapter 1 (Section 1.6.2).

In dynamic measurement, when the sensor temperature is modulated, the complicated
response transients are considered to be related to different reaction kinetics of the gas
molecules. At room temperature the gas molecules reacts with sensor surface of metal
oxide while at elevated temperatures bulk reactions between point defects in the
semiconductor lattice and gaseous oxygen molecules takes place. In both cases, the
adsorption at active sites occurs first and then catalytic reactions take place. The oxygen
adsorbates are partly consumed by oxidation of target gases on the semiconductor
surface during the static measurement. The amount of chemisorbed oxygen decreases
and hence the conductance increases. Therefore the resistance change of MOS gas
sensors shows that the concentration of chemisorbed oxygen changes at the grain
boundary. In the adsorption process the conductance increases with decrease in the

concentration of chemisorbed oxygen.

The gradual variation of conductance of the sensor is a dynamic process governed by
two factors:
i) thermal dynamics of the heater to sensor surface, and

ii) chemisorption kinetics.

The thermal dynamics of the heater is found to be mostly a stable process determined by
the first-order transfer function’®, while the chemisorption kinetics is governed by
reaction kinetics determined by various physical and chemical factors. From this aspect,
the model of variation of conductance of the sensor is proposed with a combinational
model as shown in Fig.4.1. The modeling of the MOS gas sensor dynamics has been

performed and will be discussed in Chapter-5.
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Fig. 4.1: Block diagram of metal-oxide gas sensor model.
4.3 Sensor System Identification

System identification deals with the mathematical modeling of dynamic systems based
on measured input-output sensor data. The use of measured data makes the method
inherently experimental whose objective is to obtain a model that describes the
behaviour of the original sensor system sufficiently well for the model to serve its
purpose. Work has been carried to model the gas sensor behaviour at different
conditions as a dynamic system employing suitable system identification techniques'®
19 The model estimation from measured input and output signals is done using system
identification. Parameter estimation of MOS gas sensor is employed to estimate the
state-space structure from experimental input and output data. The reason for parameter
estimation of the sensors is to determine best values of parameters for a humerical
sensor model that predicts dependent variable outputs of the transfer functionl based on
observations of measured inputs. This is necessary for the analysis of the various
transfer functions of the three MOS gas sensors used in the experiment via system
identification using sensor system input-output data at two different ranges of
frequencies and duty cycles. The estimation of the various transfer functions ‘was done
using the prediction error method (PEM). The idea of PEM is to minimize the
difference between the measured output and the prediction output based on past data.
This method is described in details in Chapter 1 (Section 1.6.4.2). The co:mparison
between the simulated and the measured results are done and the percentage of the best
fit was chosen as the most stable transfer function for that particular frequency and duty

cycle.
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As mentioned earlier, the sensor transfer functions have been derived for the following

two ranges of pulse frequencies:

i) Lower frequency range of 1mHz, 2mHz, 3mHz, 4mHz and 5mHz and
two duty cycles of 50% and 75% (for TGS-2611 and TGS-822).

il) Upper frequency range of pulse frequencies of 10mHz, 40mHz, 80mHz
and 120mHz, and two duty cycles of 50% and 75% (for TGS-2611 and
TGS-842).

Thus, the system identification was performed for these two different ranges of

frequencies at two different duty cycles using MATLAB.

The input signal of +5V was applied to the heater circuit. The input signal used in this
work is the train of pulses. Fig.4.2 and Fig. 4.3 shows sample input and output
responses of the two MOS gas sensors for lower frequency range and for upper

frequency range respectively.

<103 SENSOR VOLTAGE —=TGS-2611
9

6r ~

Fig 4.2: The input and output response of TGS-2611 and TGS-822.
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Fig 4.3: The input and output response of TGS-2611 and TGS-842.
Sensor input-output data:

The input heater pulse of +5V used for all the three sensors for a particular frequency
and duty cycle is same for all the three sensors used in the experiment. A sample of the
input and response for a lower frequency of 2mHz and 50% duty cycle and for a upper
frequency of 40mHz and 75% duty cycle is shown Appendix A4.1 and Appendix A4.2
respectively. The data vector for each sensor is divided by the maximum response value
for the corresponding sensor for normalisation using eqn. (2.4) given in Chapter 2. The
new vector is called the normalized vector for the particular sensor. Total samples used

for the lower frequency and upper frequency range are tabulated in Table 4.1.

Table 4.1: Data samples for lower and upper frequency range:

Range Frequency (For TGS-2611, TGS-822 and TGS-842 for 50% and 75%
(mHz) duty cycles)
Total data Samples for Samples for
samples identification simulation
1 700,000 1:500,000 600,000:700,000
2 200,000 1:100,000 100,000:150,000
Lower 3 135,000 1:66,666 99,999:133,332
Frequency
4 100,000 1:50,000 75,000:100,000
Range
5 80,000 1:40,000 50,000:70,000
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10 600,000 1:300,000 400,000:500,000
40 200,000 1:75,000 100,000:125,000
Upper
80 100,000 1:50,000 75,000:87,500
Frequency
Range 129 50,000 1:24,999 33,332:41,665

The system-identification flowchart is shown in Fig.4.4. The sequence of operation for

system identification in MATLAB is as follows:

i) The input/output measurement data for the experiment performed is
stored.

i) The data structures are constructed as output-input for a particular
sampling frequency.

ili) A continuous-time state-space model object is constructed containing all
the information about a state-space model and specifying the parameters
that are going to be estimated from given data.

~iv) The parameter estimation is performed upon state-space objects, which
requires both data (output data structure) and the state-space model.

v) The step response of the model is estimated for determining the stability
of the model by calculating the overshoot percentage from the step
response.

vi) To test the best fit of the estimated model, the model response is
simulated and the model output is compared with measured output by
selecting a portion of the original data that was not used in building the
model.

vii) The pole-zero plots is then obtained to test the stability of the transfer

function.
4.3.1 Transfer function determination

The most stable transfer function was selected by computing the pole-zero plots, the
overshoot percentage and the best fit of the step response. The transfer functions thus
obtained were proposed to work best with the specified frequency and duty cycle. The
classification was then performed with the best chosen frequency and duty cycle and the

classification enhancement results were obtained.

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



158

In the first part of the experiment, the heater pulse frequencies that were chosen are,
1mHz, 2mHz, 3mHz, 4mHz and SmHz. Two duty cycles of 50% and 75% were chosen
to generate the responses. Two MOS gas sensors namely TGS-822 and TGS-2611were

used for conducting the experiment.

The estimated transfer functions of the two sensors (both in the s-domain and z-domain
given by eqn. (1.21) and (1.22) respectively) for the above frequencies and duty cycles
are tabulated in Table 4.2.

In the second part of the experiment, the frequencies chosen were-10mHz, 40mHz,
80mHz and 120mHz. Similarly two duty cycles of 50% and 75% were chosen to
generate the responses. Two MOS gas sensors namely TGS-2611 and TGS-842 were
used for conducting the experiment. The transfer functions of the MOS gas sensors (both
in the z-domain and s- domain) for the above frequencies and duty cycles are tabulated
in Table 4.3.

Enau collection and ;wringJ

l Choose model update J

r Pmmzmﬁnn J

I Erxror ulcula&;n‘l

Modal validation

Fig 4.4: The system-identification flowchart.

System identification resulted the parametric models in transfer function for each of the

sensors performed using MATLAB. The transfer functions were tested for their stability
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analysis by determining the pole-zero plot and overshoot percentage as discussed in
Section 4.4.1. This helps in finding the best transfer function at a specific frequency and

duty cycle for each of the sensors.

4.4 Sensor Stability Analysis

The most important characteristic of the dynamic behavior of a system is its stability. An
LTI system is stable if the output eventually comes back to its equilibrium state when
the system is subjected to any input or disturbance, which is already described in

Chapter 1 (Section 1.6.3).

The MOS gas sensor stability under inactive period of the gas input is important to
determine suitable time duration of the heater pulse voltage. The sensor transfer function
is excited by the heater pulse either by a step pulse or an impulse determined by the
frequency and duty cycle of the pulse. For short duration heater pulses when the

frequency is high, the impulse response is more prominent than step response.

Hence, the dynamics of the sensor is greatly influenced by the frequency and duty cycle
of the pulse temperature signal. Physically, this is because of the fact that the time for
the reaction kinetics should match to the time for the sensor heating process. Fig 4.5 (a)
and (b) shows two typical patterns of a MOS gas sensor responses where in (a) the
sensor behaves as in transient mode with an overshoot before coming to a stable and
equilibrium response level of 0.02 volt, whereas in (b) the sensor response is fairly

stable.
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Fig4.5. Sensor baseline response on pulse temperature modulation (a) Unstable response with overshoots

(b) Stable response (both without application of gas).
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Table 4.2. Transfer function model parameters of the MOS gas sensors for different frequencies and duty cycles for lower frequency

range:
Sensors Frequency | Duty Cycle Transfer Function
mHz % 7 o
( ) () H I [findicates the heater pulse frequency
z-domain s-domain
5.756x1077 )(z - 0.9984 (5.756 %10~ )(s + 0.9984
i@ _ (5.756x )(z —0.99834) fi(s) _G (s +0.9984)
1 ImH: (2 -0.996)(z - 0.9982) Imit: (5 +0.996)(s +0.998)
e, o 550 1077 )(z - 0.9989) ey, - 5902 1074)(s +0.9989)
2 “amt: T (7 20.995)(z - 0.996) Tlami: (54 0.9958)(s +0.9969)
50 o, o 0085 10~8)(: - 0.9977) i, O 107)(s +0.997)
“ miil - 2 - T —_ S 2 =
3 T (2-0.998)(z - 0.9997) 3mHe  (5+0.998)(s +0.9997)
i o QoTx107) 10y ) (2.0017x1075 )(s +1.03)
“ = 5 =
4 4mhz  (7-0.9996)(z —0.9999) AmH: (s +0.996)(s +0.999)
PN cE L 1077 )(s +1.001) PO CEEs Y 1074 )(s + 1.001)
TGS-2611 5 SmHz (5 +1.0008)(s +0.9998) Smilz (5 4+1.0008)(s +0.9988)
i, o BT )e-) PNENCE SN )
1 “Tims (2 20.999)(z - 0.9998) ImHz (s +0.999)(s +0.9998)
i@ _ (6.13x1077)(z ~1.0001) A _(6.13x107%)(s +1.0001)
2 bz (2 -0.9998)(z — 0.9999) S)ZmH: - (5 +0.9998)(s +0.9999)
0 PN 11 1078)(z - 1.003) o) (7.2192x 107> )(s +1.003)
= “3mitz - 7 — - 3 S). =
3 o (2-0.999)(z-1.0003) dmtte (54+0.9998)(s +1.0003)
. (8.5514x1078)(z - 1.008) i) (8:5514x107°)(s +1.008)
F4 = 5 =
4 “amtt: ~ (2 Z0.9998)(z - 0.9999)

ambz (54 0.9998)(s + 0.9999)
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35997x1077)(z 1)

H =
R (2 —1.0002)(z - 1.0005)

H(s)

_ (3:5997x10~ )5 +1.0001)

SmHz ~(541.0002)(s +1.0005)

TGS-822

I?(z)

(2.791x1077 )(z —1.00035)
i (7-0.992)(z - 0.9938)

H (s)

_ (2791x107%)(s+1.0003)
e (540.992)(s +0.9938)

_ (53083x1077)(z-1)

H(z =
@ (= —0.9993)(z - 0.9997)

H(s)

~(5:3083x10~ (s +1.0001)
e (54.0.9993)(s +0.9997)

-7
- 1.414x107 )(z~1
. = (1414x10° " )(z-1)

(1.414x1074) (s +1)

Sz (2~ 0.9995)(z ~ 0.9999) HO, = (5 +0.9993)(s + 0.9999)
-7 -4
50 Gy | o Laxio )(z-1.001) . (4.039x 107" )(s+1.001)
Ambz (z-1)(2-0.9999) miz (5.4 1,0001)(s +0.9999)
dw - (4.4405x107)(z 1) i _ (@4405x10) s +1)
miz  (2-1.0003)(z - 1.0005) s = (5+1.0003)(s + 1.0005)
i G19x103)z -1) i) (3.793x 107 )(s +1)
z = — 5 =
“imts (7 -0.9996)(z - 0.9999) lmHe (5 +0.9996)(s +0.9999)
5 -8 -5
| - 80382x10 )(z —0.998) i (6.0382x107)(s + 0.998)
Imbe (z-0.996)(z -0.9998) © 2 = (5 +0.996)(s + 0.9998)
- (6125x1078)(z - 0.9%9) - (6.125x107)(s + 0.999)
75 HG), ~—=——————————— H(s) =

Wl (2 -0.999)(z —1.0002)

3mH: (s +0.999)(s +1.0002)

il(z)

(4.8715x10~%)(z ~1.007)

ambz — (7-0.999)(z - 1.0009)

H(s)

(@ 8715x107)(s + 1.007)

amiz (5 40.999)(s + 1.0009)

 (®1379x1077)z =)

H =
s (z - 1.0005)(z — 1.0009)

 @1379x10%) (s +1)

H =
© s (s +1.0005)(s +1.0009)
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Table 4.3. Transfer function model parameters of the MOS gas sensors for different frequencies and duty cycles for upper frequency range:

Sensors Frequency Duty Cycle
(mHz) (%) Transfer Function
H e [findicates the heater pulse frequency
z-domain s-domain
o @612x1078) o) _ (3612x107%)
10 omt: =77 Z0.999) omH: (5.4 0.999)
i _(1.6313x10‘7) fits) _(1.6313x10‘4)
40 2 somu: = (z-0.999) WOmHz (5 40.999)
i - (1.3699%1077) i _(13699x107%)
80 50 eomi: = (2-0.999) 80mH: (s+0.999)
S <715
- (1257x107°) - (1.257x107°)
H = — H( = ——
120 (Z)IZOMH: (Z—‘) (T)IZOmH: (.\‘+1)
-8 -5
- 4.903x10°°) ~ (4.903x10 )
TGS-2611 gy E28x10) i L )
10 H(L)mez z-1 (S)IOmH: (s+1)
i _(L7x1077) s - (1.7x10™4
40 “aumtt: (7 - 0.996) BmHz (540.996)
-7 —4
75 i@, = (1.599x10™") Ay, = (1.599x107)
80 sombz — (7-0.999) SomH:  (5.40.999)
i _(12567x1077) PN () 107
120 @ o, = (z-0.99) 120m#: (5 +0.999)
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i, o820 107%)(z - 1.0007) e 2520 1073) (s +1)
10 10mHz (z—l)(z—l) Viomer: (S+])(.\‘+|)
) =L*‘°'7)(_-m i _ (1.53x 107 )(s +1.005)
40 40mH; (z-1.001)z-1) (s)wmﬂt N (s+1.001)s+1)
50
i - (52714x1078)(z -1) PO - i, 1073+ 1)
80 “somtz (2 Z1.005)(z - 0.9995) SomH: (4 41.005)s +0.9995)
TGS-842 i _(26915%1077)(z - 0.963) o) 691510 )(5+0.963)
120 “aomse (z-0.9995)(z — 0.9996) “haomtz T (5.40.9995)(s + 0.9996)
. (52477x1078)(z -1y - (52477%10 " )(s +1)
10 i@, = e, o
mHz (7 ~1.002)(z - 1.006) 10mHz —(54.1.002)(s +1.006)
i - (2.1647x1077 )(z - 0.9861) Aoy - (2.1647x10~4)(s + 0.9861)
40 sombiz ~(7-1.005)(z - 1.0006) Haomie T (541.005)(s +1.0006)
-8 -5
. 52072 -0.9 N } $+0.
’s i, _G20mx107e-00086) | L (520721070 )5 +0.9986)
80 miz (7~ 0.9995)(z - 0.9997) OmHz (54 0.9995)(s +0.9997)
e ~ (42481x1077)(z - 0.9639) i) _ (4.2481x107)(5+ 0.9639)
120 1omH: (7-0,9995)(z - 0.9992) 120mits (54 0.9995)(s + 0.9992)
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4.4.1 Pole-Zero Plots and Step Responses

Lower Freeluency Range:

164

Fig.4.6 and Fig. 4.7 shows the zoomed view of the position of pole-zero of the transfer

functions that are tabulated in Table 4.2 for sensor TGS-2611 and TGS-822 respectively

at all the frequencies and duty cycles. The distance of the poles from the unit circle is

calculated from the transfer function and is tabulated in Table 4.4.
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Fig4.6. Zoomed part of the pole-zero plot of transfer function in z-domain of sensor TGS-2611 at (a)
1mHz and 50% duty cycle, (b) 2mHz and 50% duty cycle, (¢) 3mHz and 50% duty cycle, (d) 4mHz and
50% duty cycle, (e) 5SmHz and 50% duty cycle, (f) 1mHz and 75% duty cycle, (g) 2mHz and 75% duty
cycle, (h) 3mHz and 75% duty cycle, (i) 4mHz and 75% duty cycle, and (j) 5SmHz and 75% duty cycle.
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Figd.7. Zoomed part of the pole-zero plot of transfer function in z-domain of sensor TGS-822 at (a)
1mHz and 50% duty cycle, (b) 2mHz and 50% duty cycle, (c) 3mHz and 50% duty cycle, (d) 4mHz and
50% duty cycle, (¢) 5SmHz and 50% duty cycle, (f) 1mHz and 75% duty cycle, (g) 2mHz and 75% duty
cycle, (h) 3mHz and 75% duty cycle, (i) 4mHz and 75% duty cycle, and (j) SmHz and 75% duty cycle.

One of the most important criterions for choosing the most stable transfer function is the
overshoot percentage calculated from the step responses of the two sensors at the above
mentioned frequencies and duty cycles. For the step response the overshoot percentage

is shown in Table 4.4 and the step response diagrams are shown in Fig.4.8.
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Figd.8. Step response of frequencies ImHz, 2mHz, 3mHz, 4mHz and 5mHz of (a) sensor TGS-2611 at
50% duty cycle, (b) sensor TGS-2611 at 75% duty cycle, (c) sensor TGS-822 at 50% duty cycle, (d)
sensor TGS-822 at 75% duty cycle.

It is evident from Table 4.4 that the frequencies and duty cycles at which the transfer
function was most stable for TGS-2611 and TGS-822 are 2mHz and 50% and 1mHz
and 50% respectively on the basis of rwo observations:

i) The first observation was that the overshoot percentage was lowest (6.6%) for
TGS-2611 at 2mHz and 50% duty cycle as shown in Fig.4.8 (a). Similarly for
TGS-822 it was lowest (20%) at 1mHz and 50% duty cycle given in Fig.4.8 (c).

ii) The second observation was that the poles were inside the unit circles (having
values 0.995, 0.996) at 2mHz and 50% duty cycle for TGS-2611 as shown in
Fig.4.6 (b). Similarly, for TGS-822, the distance of the poles were inside the unit
circle (having values 0.992, 0.9938) at 1mHz and 50% duty cycle as shown in
Fig.4.7 (a).

Hence, the most stable transfer function selected for TGS-2611 is:

(5.902x1077)(z~0.9989)
(z—=0.995)(z—-0.996)

]:[(:)Zmllz
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Table 4.4. Transfer function model parameters of the MOS gas sensors (TGS-2611

(The most stable model parameters are shown in bold):

and TGS-822) for different frequencies and duty cycles

Sensors Frequency Duty Percentage of Position of pole Stable Transfer Function
(mHz) Cycle overshoot from center Stability (Based on percentage overshoot
(%) (%) & pole-zero distance)
1 333 0.996.0 9982 Stable
2 6.6 0.995,0.996 Most Stable
3 50 36.66 0.998,0.9997 Stable
4 40 0.9996,0.9999 Unstable
5 86.6 1.0008,0.9998 Unstable
TGS- 2611 l 40 0 ()(),(“] 9998 ft'flhlc o, - (5.902x10™7)(z — 0.9989)
2 86.6 0.9998.,0.9999 Stable 2mHz (z—0.995)(z —0.996)
3 75 53.33 0.999,1.0003 Stable
4 76 .66 0.9998.0.9999 Stable
S 9333 1.0002.1.0005 Unstable
1 20 0.992,0.9938 Most Stable
2 26.67 0.9993,0.9997 Stable
3 50 46 .66 0.9995.0.9999 Stable
4 60 1.0.9999 Unstable
5 368 1.0003,1.0005 Unstable =7 R
(2.791x 10" " )(z = 1.00035)
TGS-822 1 40 0.9996.0.9999 Stable (@) e = (2= 0.992)(z — 0.9938)
2 35 0.996,0.9998 Stable
3 75 533 0.999.1.0002 Stable
4 733 0.999.1 0004 Stable
5 933 1.0005,1.0009 Unstable
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and that for TGS-822 is:

_(2.791x1077)(z~1.00035)
W (7-0.992)(z - 0.9938)

H(z)

These transfer functions will be used for simulation later.
Upper Frequency Range:

Similarly for upper frequency range of frequencies and duty cycle the best transfer
function is selected based on the overshoot percentage and pole-zero plots. Fig.4.9
shows the close view of the position of pole-zero of the transfer functions that are
tabulated in Table 4.5 for sensor TGS-2611 at all the frequencies and duty cycles. Fig.
4.10 shows the zoomed visualization of the pole-zero diagrams of the transfer functions
that are tabulated in Table 4.6 for sensor TGS-842 at all the frequencies and duty cycles.
The distance of the poles from the unit circle is calculated from the transfer function and

is tabulated in Table 4.5.
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Figd.9. Zoomed part of the pole-zero plot of transfer function in z-domain of sensor TGS-2611 at (a)
10mHz and 50% duty cycle, (b) 40mHz and 50% duty cycle, (c) 80mHz and 50% duty cycle, (d) 120mHz
and 50% duty cycle, (e) 10mHz and 75% duty cycle, (f) 40mHz and 75% duty cycle, (g) 80mHz and
75% duty cycle, and (h) 120mHz and 75% duty cycle.
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Figd.10. Zoomed part of the pole-zero plot of transfer function in z-domain of sensor TGS-842 at (a)
10mHz and 50% duty cycle, (b) 40mHz and 50% duty cycle, (c) 80mHz and 50% duty cycle, (d) 120mHz
and 50% duty cycle, (e) 10mHz and 75% duty cycle, (f) 40mHz and 75% duty cycle, (g) 80mHz and 75%

duty cycle, and (h)

120mHz and 75% duty cycle,
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The stable transfer function is again chosen from the overshoot percentage calculated
from the step responses of the two sensors at the above mentioned frequencies and duty

cycles. The overshoot percentage is shown in Table 4.5 and the step response diagrams

are shown in Fig.4.11.
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Figd4.11 Step response of frequencies 10mHz, 40mHz, 80mHz and120mHz of (a) sensor TGS-2611 at
50% duty cycle, (b) sensor TGS-2611 at 75% duty cycle, (c) sensor TGS-842 at 50% duty cycle, (d)
sensor TGS-842 at 75% duty cycle.

For the upper range of pulsed frequencies, it is seen that the frequencies and duty cycles
at which the transfer function was most stable for TGS-2611 and TGS-842 was obtained
at 40mHz and 75% and at 120mHz and 75% respectively on the basis of rwo
observations:
i) The first observation was that of the overshoot percentage which showed
that the overshoot was lowest (26.6%) for TGS-2611 at 40mHz and
75% duty cycle. Similarly for TGS-842 it was lowest (19.04%) at
120mHz and 75% duty cycle.
ii) The second observation was that the poles were inside the unit circles
(having values 0.996) at 40mHz and 75% duty cycle for TGS-2611.
Similarly, for TGS-842, the poles were inside the unit circles (having

values 0.9992, 0.9995) at 120mHz and 75% duty cycle.

The best transfer function selected for TGS-2611 was:

e (1.7x1077)
z -
40mHz (Z _0'996)
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Table 4.5. Transfer function model parameters of the MOS gas sensors (TGS-2611 and TGS-842) for different frequencies and duty cycles

(The most stable model parameters are shown in bold):

Sensors Frequency Duty Cycle Percentage of Position of pole Stability Best transfer function
(mHz) (%) overshoot (%) from center
10 583 0.999 Stable
40 50 29.62 0.999 Stable
80 423 0.999 Stable
120 93.75 I Unstable A = 07x107")
“miz (7 0.996)
TGS-2611 10 36.66 1 Unstable
40 75 26.6 0.996 Most Stable
80 433 0.999 Stable
120 80 1.007 Unstable
10 46.2 1,1 Unstable
40 50 81.5 1.001,1 Unstable
80 533 1.005,0.9995 Unstable
120 333 0.9995,0.9996 Stable 7
- (4.248x10 " )(z—0.9639)
TGS-842 10 86.9 1.002,1.006 Unstable | H@, . = (2 0.9995)(z - 0.9992)
40 75 52.17 1.005,1.0006 Unstable
80 35 0.9995.0.9997 Stable
120 19.04 0.9992,0.9995 Most Stable

S
T ———————————————
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And that for TGS-842 was:

s (4.248x1077 )(z - 0.9639)
Z =
mme —(2_0.9995)(= —0.9992)

After determining the best frequency and duty cycle, the best fit transfer function was
selected by the simulation of the transfer function for both the ranges of frequencies and

duty cycles.

The objectives for developing a technique for selection of heater pulse frequency and
duty cycle based on stability criterion and system identification is achieved in this
research. As stated earlier for chapter 2 we have found that the best pulse frequency and
duty cycle for the three sensors are 10mHz, 75% duty cycle, which is based on noise
analysis however, the stability analysis shows that this value is 40mHz. 75% duty cycle
(TGS-2611) and 120mHz, 75% duty cycle (TGS-842) for upper frequency range and for
lower frequency range the stability was found at ImHz, 50% duty cycle (TGS-822) and
2mHz, 50% duty cycle (TGS-2611). Therefore selection of best operating frequency of
heater pulse voltage is a trade-off between requirement of noise behavior and stability

of the MOS gas sensor responses.

4.5 Transfer Function Selection

In this part of the analysis, the transfer functions shown in Table 4.2 and Table 4.3 were
simulated for selection of the most stable transfer function. For simulation we have used

the input data as shown in Table 4.1.
4.5.1 Best Fit Analysis:

In section 4.4 the most stable transfer functions were determined using percentage
overshoot and pole-zero plot analysis. In addition to these tests, another test has been
conducted by simulating the estimated models with a portion of the measured input and

comparing the model responses ( J ) with the measured responses (y).

The simulation results for different frequencies and duty cycles for lower frequency
range of frequency are shown in Fig.4.12 and 4.13 for TGS-2611 and TGS-822

respectively.
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Fig. 4.12. Sensor responses measured and simulated for TGS-2611 at (a) ImHz and 50% duty cycle, (b)
2mHz and 50% duty cycle, (c) 3mHz and 50% duty cycle, (d) 4mHz and 50% duty cycle, (¢) SmHz and
50% duty cycle, (f) ImHz and 75% duty cycle, (g) 2mHz and 75% duty cycle, (h) 3mHz and 75% duty
cycle, (i) 4mHz and 75% duty cycle, and (j) SmHz and 75% duty cycle.
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Fig. 4.13. Sensor responses measured and simulated for TGS-822 at (a) ImHz and 50% duty cycle, (b)
2mHz and 50% duty cycle, (¢) 3mHz and 50% duty cycle, (d) 4mHz and 50% duty cycle, (¢) SmHz and
50% duty cycle, (f) ImHz and 75% duty cycle, (g) 2mHz and 75% duty cycle, (h) 3mHz and 75% duty

cycle, (i) 4mHz and 75% duty cycle and (j) SmHz and 75% duty cycle.

The simulated and the measured results for sensor TGS-2611 and TGS-842 are shown in

Fig.4.12 (a)-(j) and Fig.4.13 (a)-(j) respectively. The percentage of fit from the simulated

results is tabulated in Table 4.6 and the best fit is computed for both the sensors. Fig.
4.12(b) and Fig. 4.13 (a) shows the best fit results the values for TGS-2611 and TGS-

822 respectively which are shown in bold in Table 4.6.

Table 4.6: Table showing the percentage of best fit for low range of frequency:

Sensors

Frequency

(mHz)

Duty Cycle
(“o)

Percentage of best fit
(%)

TGS- 2611

1

2
3
4
5

50

59.23
68.31
53.42
33.92
31.67

BNV S ]

hn

75

16.46
17.45
52:5
31.51
43.67

78.81
24.45
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50 37.926
55.76
43.23
1 31.04
46
75 40.06
63.43
32.2

TGS-822

wn A~ W

(O, I S US B )

From Table 4.6 it is evident that the fit percentage for TGS-2611 is best at 2mHz
frequency and 50% duty cycle which is 68.31%. Similarly, for TGS-822, the fit
percentage is best at 1mHz and 50% duty cycle which is 78.81%. Thus it is seen that
the frequency and duty cycle at which the transfer function is most stable yields the best
fit percentage. Using the respective best selected frequency and duty cycle for both the
sensors the classifications of different gases have been performed as discussed in

Section 4.6.

Similarly, for the upper frequency range of 10mHz, 40mHz, 80mHz and 120mHz and
duty cycles of 50% and 75% the transfer functions were simulated to determine the best
fit percentage. The simulation results for different frequencies and duty cycles for this

range of frequency are shown in Fig.4.14 and 4.15 for TGS-2611 and TGS-842

respectively.

B T T T T T T | it ey . T T T ————— ey
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Fig. 4.14. Sensor responses measured and simulated for TGS-2611 at (a) 10mHz and 50% duty cycle, (b)
40mHz and 50% duty cycle, (c¢) 80mHz and 50% duty cycle, (d) 120mHz and 50% duty cycle, (¢) 10mHz
and 75% duty cycle, (f) 40mHz and 75% duty cycle, (g) 80mHz and 75% duty cycle, and (h) 120mHz
and 75% duty cycle.
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Fig. 4.15. Sensor responses measured and simulated for TGS-842 at (a) 10mHz and 50% duty cycle, (b)
40mHz and 50% duty cycle, (c¢) 80mHz and 50% duty cycle, (d) 120mHz and 50% duty cycle, (¢) 10mHz
and 75% duty cycle, (f) 40mHz and 75% duty cycle, (g) 80mHz and 75% duty cycle, and (h) 120mHz
and 75% duty cycle.

The simulated and the measured results for sensor TGS-2611 and TGS-842 are shown in
Fig.4.14 (a)-(h) and Fig.4.15 (a)-(h) respectively. The percentage of fit from the
simulated results is tabulated in Table 4.7 and the best fit is computed for both the
sensors. Fig. 4.14(f) and Fig. 4.15(h) shows the best fit results which are shown in bold
in Table 4.7.

Table 4.7: Table showing the percentage of best fit for upper range of frequency:

Sensors | Frequency Duty Percentage

(mHz) Cycle of best fit Best transfer function

(%) (%)

10 29.51

40 50 57.25

80 59.75
TGS-2611 120 23.8 P _ (7 |0—7)
10 28.79 otz (7 —-0.996)

40 75 67.24

80 55.5

120 39.71

Noise Feature Analysis, System Identi ication and Modeling for Selection of Pulse Temperature
Frequency of MOS Gas Sensors



186

10 1.01
40 50 4.4
80 7.926
120 55.76

TGS-842 10 1.04 iy 28 1077 )(z—0.963
40 75 46 120wtz (z~0.9995)(z — 0.9992
80 40.06
120 63.43

It is seen that the frequencies and duty cycles at which the transfer function was most
stable for TGS-2611 and TGS-842 is obtained at 40mHz and 75% and at 120mHz and
75% respectively. The fit percentage for MOS gas sensor TGS-2611 is also observed to
be best at 40mHz frequency and 75% duty cycle which is 67.24%. Similarly, for MOS
gas sensor TGS-842, the fit percentage is highest at 120mHz and 75% duty cycle which
is 63.43%. The results of the preceding sections (4.4 and 4.5) corresponds to stability
analysis of the MOS gas sensors during its signal inactive period i.e. without applying
any gas, however the adsorption kinetics takes place with atmospheric oxygen. The
chemisorption of O, at the sensor surface results in the removal of electrons from the
conduction band. The model will behave in a similar manner with reference to stability
for reducing and oxidizing gases. Therefore, the classification percentage has been
analyzed for ten gas vapors using the most stable transfer function operated at the

specified pulse frequency and duty cycle.

The experiment was followed by the gas classification and on the achieving of better
classification percentage of the sample gases with the most suitable temperature
modulation for both ranges of frequencies. The time constant of sensor response has
been used as a feature of ANN classifier as discussed in Section 2.6 of Chapter 2. The

results of the experiment before and after the selection were compared.

4.6 Improvement of Classification

In this part of experiment the dynamic analysis was conducted for different pulse
modulating temperature with the application of ten different gas samples namely

acetone, acetonitrile, chloroform, ethanol, ethyl acetate, isopropylalcohol, kerosene,
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methanol, n-hexane and petroleumether. The frequency and duty cycle of the sensors
were controlled by a PC through the DAQ card and LabVIEW as discussed in Chapter
2, Section 2.2.1.4, Fig.2.8.

In this section, the classification enhancement by selecting the suitable frequency of
heater pulse voltage and using time-constant as a feature has been discussed. At first, the
sensor temperature was pulsed arbitrarily at a frequency of 10mHz and duty cycle of
50% to generate the sensor responses in the presence of the gas. The sensor signals were
acquired at a sampling frequency of 1 kHz. The time constants were determined for each
cycle which was used as the sample vectors for the gas classification. Next, the sensor
temperature was pulsed at the selected frequencies and duty cycles to generate the sensor

responses.
The sizes of the data matrices used for ANN classification are:

Lower Frequency Range:

Arbitrary frequency (SmHz & 50% duty cycle):

mxnxN = 2x10%x200

Best frequency (2mHz & 50% duty cycle for TGS-2611):
mxnxN = 1x10x100

Best frequency (1mHz & 50% duty cycle for TGS-822):
mxnxN = 1x10x100

Upper Frequency Range:

Arbitrary frequency (10mHz & 50% duty cycle):

mxnxN = 2x10%x200

Best frequency (40mHz & 75% duty cycle for TGS-2611):
mxnxN = 1x10x100

Best frequency (120mHz & 75% duty cycle for TGS-842):
m>xnxN = 1x10x100

where, m = No. of sensors; n= No. of gases; N= no. of data cycles.

Once the most stable transfer functions and their corresponding best values of pulse

frequency and duty cycle are obtained, the PCA was worked out with two pairs of
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sensors: TGS-822/TGS-2611 and TGS-842/TGS-2611 for ten different gas samples.

4.6.1 Classification Enhancement (Lower Frequency Range):

Before Selection- The data obtained from the two sensors for the 10 sample gases were
analyzed by PCA and ANN using MATLAB. The results of the PCA before the selection
of modulation are shown in Fig. 4.16. The first three principal components were
considered for analysis because they accounted for 92.1749% of the variance in the data
set. The variance and load values for each of 3 principal components (Fig. 4.16) are

shown in Table 4.8.

Table 4.8. The results of PCA for the time constants before selection of frequency and

duty cycle.
PC | % Variance Eigen Principal Components
Values Sensor, Sensor; Sensor;
PC, 92.1749 0.2156 0.9245 0.2722 -0.2311
PC, 5.3328 0.1821 -0.1367 0.7631 -0.3182
PC; 2.1323 0.0823 -0.0572 -0.1893 0.6322
1. Ethylacetate
2. Acetonitrile
3. Ethanol
1 4. Kerosene
* 5. Petroleumether
6. Chloroform
0.5 7. Methano!
" 8. Isopropylalcohol
It 5 s 9. Acetone
: 0 = Q' £ o 10, n-Hexane
-0.5
=
2
( \ , 5
0 h ) T
PCA#2 -5 PCA#1

Fig. 4.16. PCA with frequency SmHz and 50% duty cycle for TGS-2611 and TGS-822.
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After Selection- The first three principal components were considered for analysis after
selection of frequency and duty cycle because they accounted for 95.4216% of the
variance in the data set. The variance and load values for each of 3 principal components

(Fig. 4.17) are shown in Table 4.9.

Table 4.9. The results of PCA for the time constants after selection of frequency and

duty cycle.

PC | % Variance | Eigen Values Principal Components

Sensor, Sensor; Sensor;

PC, 95.4216 0.1856 -0.1036 -0.5213 -0.1334

PC, 2.1084 0.0637 0.0112 -0.3212 0.2765

PC; 1.7644 0.0188 -0.7650 0.1254 -0.0178

¢ 1. Acetone
« 2. Acetonitrile
: . ¢ 3. Chikroform
- e o " < 4. Etbanol
= i + 5. Ethylacetate
: ¢ 6. Isopropylakeobol
Th 7. Kerosene
BT 8. Methanol
© 9. pHexane
10, Petrob ¢h

ot

Fig. 4.17. PCA with frequency 2mHz & 50% duty cycle for TGS-2611 and 1mHz & 50% duty cycle for
TGS-822.

The classification of data performed using MLP and RBF were used for the
classification purpose. Training of the neural networks was performed with 50% of the
whole data set and the rest 50% of the data sets were used for testing the neural network
paradigms. A total of 30 data sets of dimensions (1x100) for each of the sensors were
formed, thus 15 data sets were used for training and remaining 15 data sets were used to
test the performance of the ANN paradigm. The architecture of the two ANNs used in

this experiment is tabulated in Table 4.10.
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Table 4.10 Architecture of the two ANN paradigms (MLP and RBF):

Neural Networks Architecture
Multi-layer Perceptron 2 input neurons, 6 hidden neurons, 10 output
(MLP) neurons, 0.5 adaptive learning rate with

momentum 0.42 (one for each sample type).

Radial Basis 2 input neurons, 10 neurons in the output layer,

Function(RBF) spread constant 0.8.

a) Multi Layer Perceptron (MLP):

An MLP network was programmed in MATLAB environment with 2 input neurons,
from the two sensors, 6 hidden neurons and 10 output neurons chosen for the ten sample
gases. The activation function for the neurons in the hidden layers employed is the
‘logsig’ function and for the input and output neurons the activation function is also the
‘logsig’ function. The weights were trained with the back propagation algorithm. The
network was able to reach a classification rate of 74.6% before the selection of
frequency and duty cycle i.e. at SmHz and 50% duty cycle. The system identification
determined the most stable transfer function based on the best fit, the overshoot
percentage and the pole-zero plot of the transfer function. After the selection of
frequency and duty cycle i.e. at 2mHz & 50% duty cycle for TGS-2611 and ImHz &
50% duty cycle for TGS-822, the network achieved the classification percentage of
91.5%.

b) Radial Basis Function (RBF):

RBF adopts the supervised learning method with architecture of 2 input neurons, 10
neurons in the output layer and spread constant 0.8 as given in Table 4.10. The neurons
are added to the network until the sum-squared error (SSE) reduced to a specified error
goal which was set as 10x10”. The network was able to reach a classification rate of
87% before the selection of frequency and duty cycle. After the selection of frequency
and duty cycle the network performed the classification of 94.1% was obtained. The

training was completed in 130 epochs with a training time of approximately 32 minutes,
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hence showing better performance and less training time than MLP. The training

performances of MLP and RBF used in the experiments are shown in Table 4.11.

Table 4.11 Training performance of Artificial Neural Network paradigms:

Neural Networks

Training time

Multi-layer Perceptron (MLP)

118mins

Radial Basis Function(RBF)

32 minutes

The comparison of the classification percentage before and after the best modulation

frequency determination is tabulated in Table 4.15. Similar classification was also

performed and tested for the upper range of frequencies and duty cycles.

4.6.2 Classification Enhancement (Upper Frequency Range):

Before Selection- The data was analyzed in a similar way as described in the earlier

section. The results of the PCA before the selection of modulation are shown in Fig.

4.18. The first three principal components were considered for analysis because they

accounted for 93.7735% of the variance in the data set. The variance and load values for

each of 3 principal components (Fig. 4.18) are shown in Table 4.12.

Table 4.12. The results of PCA for the time constants before selection of frequency and

duty cycle.
PC % Variance Eigen Principal Components
Values Sensor; Sensor; Sensor;
PC, 93.7735 0.3271 0.8266 0.2163 0.0121
PC, 3.8586 0.1152 -0.0865 -0.7373 -0.5328
PC; 2.1679 0.0528 -0.0943 -0.1104 0.6552
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+ 1. Ethylacetate
+ 2. Acetenitrile

* 4.Keroseae
+ 6. Chiercform
7 8. Isoprepylsicebol

' 10. n-Hesane

3. Ethanel

5. Petrolcumether

7. Methanol

9. Acetone

Fig. 4.18. PCA with frequency 10mHz and 50% duty cycle for TGS-2611 and TGS-842.

After Selection- The first three principal components were considered for analysis after

selection of frequency and duty cycle because they accounted for 96.8477% of the

variance in the data set. The variance and load values for each of 3 principal components

(Fig. 4.19) are shown in Table 4.13.

iner
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PCA#2 ST PCAHI

1. Acetone

2. Acetonitrile
+ 3. Chloroform

4. Ethanol

+ 5. Ethylacetate

6. Isopropylalcohol
7. Kerosene
8. Methanol
9. n-Hexane
10. Petroleumether

Fig. 4.19. PCA with frequency 40mHz & 75% duty cycle for TGS-2611 and 120mHz & 75% duty cycle

for TGS-842.
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Table 4.13. The results of PCA for the time constants after selection of frequency and

duty cycle.
PC | % Variance | Eigen Values Principal Components
Sensor, Sensor; Sensor;
PG, 96.8477 0.3422 -0.0988 -0.7551 -0.2512
PC, 2.2525 0.1477 0.2312 -0.5122 0.1983
PC; 0.0668 0.0821 -0.8631 0.0952 -0.1523

The architecture of the two ANNs (MLP and RBF) used in this experiment is tabulated
in Table 4.11.

a) Multi Layer Perceptron (MLP):

The network was able to reach a classification rate of 76.2% before the selection of
frequency and duty cycle i.e. at 10mHz and 50% ciuty cycle. The system identification
determined the most stable transfer function based on the best fit, the overshoot
percentage and the pole-zero plot of the transfer function. After the selection of
frequency and duty cy'cle i.e. at 40mHz & 75% duty cycle for TGS-2611 and 120mHz
& 75% duty cycle for TGS-842, the network achieved the classification percentage of
86.7% was obtained.

b) Radial Basis Function (RBF):

The network was able to reach a classification rate of 88.5% before the selection of
frequency and duty cycle. After the selection of frequency and duty cycle the network
performed the classification of 93.4% was obtained. The training was completed in 142
epochs with a training time of approximately 38 minutes, hence showing better
performance and less training time than MLP. The training performances of MLP and

RBF used in the experiments are shown in Table 4.14.

Table 4.15 shows the PCA results and the classification percentage for both (lower

frequency and upper frequency) range.
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Table 4.14 Training performance of Artificial Neural Network paradigms:

Neural Networks Training time (min)
Multi-layer Perceptron (MLP) 139
Radial Basis Function(RBF) 38

Table 4.15. PCA results and comparison of the classification percentage for both (lower
frequency and upper frequency) range:

Operating conditions PCA ANN Classifier
results

(“o) MLP RBF

Arbitrary frequency S5mHz, 50% duty cycle
(for TGS-2611 and TGS 92.1749 74.6% 87%

(Lower Range) 822)

Selected Frequency 2mHz, 50% duty cycle
(for TGS-2611) 95.4216 91.5% 94.1%

(Lower Range) ImHz and 50% duty

cycle (for TGS-822)

Arbitrary frequency 10mHz, 50% duty cycle

(for TGS-2611 and TGS 93.7735 76.2% 88.5%
(Upper Range) 842)
Selected Frequency 40mHz, 75% duty cycle
(for TGS-2611) 96.8477 86.7% 93.4%
(Upper Range) 120mHz and 75% duty

cycle (for TGS-842)

Thus we find that the classification performed using the best set of frequencies and duty
cycle gives better classification results in both the cases. It is seen that the system
identification technique could effectively find the best modulation frequencies to obtain
good results in the identification of the gases studied. The selection ensured the
classification enhancement by a maximum of 91.5% for MLP and 94.1% for RBF.

4.7 Conclusions

In this work a study aimed at the selection of most suitable frequencies and duty cycles

based on system identification technique is presented. The method is applied to study
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the stability of MOS gas sensors and the transfer function determination based on the
pole-zero plots and the overshoot percentage. The sensor temperature was pulsed at two
ranges of frequencies: lower frequency range of 1mHz, 2mHz, 3mHz, 4mHz and 5mHz
and duty cycles of 50% and 75% and upper frequency range of 10mHz, 40mHz, 80mHz
and 120mHz and duty cycles of 50% and 75%, to generate the sensor responses. The
transfer functions obtained thus are proposed to work best with the specified frequency
and duty cycle. The classification was done for comparison with the arbitrarily chosen
frequency and duty cycle operated transfer functions. The classification has been

performed by using time constant of response curve of the dynamic classification.

Once the most stable transfer functions and their corresponding best values of pulse
frequency and duty cycle are obtained, the PCA was worked out with two pairs of
sensors: TGS-822/TGS-2611 and TGS-842/TGS-2611 for ten different gas samples.
The PCA accounted for higher percentage when sensors are operated by the best heater
pulse frequency compared to arbitrary chosen frequency and duty cycle. Further, using
these best suited frequencies and duty cycle for both the ranges of frequencies, the
classification of different gases is performed using two ANN classifiers — MLP and
RBF. The ANN classifier also better classification efficiency when the best frequency is

used.

The objectives for developing a technique for selection of heater pulse frequency and
duty cycle based on stability criterion and system identification is achieved in this
research. As stated earlier for Chapter 2 we have found that the best pulse frequency
and duty cycle for the three sensors are 10mHz, 75% duty cycle, which is based on
noise analysis however, the stability analysis shows that this value is 40mHz, 75% duty
cycle (TGS-2611) and 120mHz, 75% duty cycle (TGS-842) for upper frequency range
and for lower frequency range the stability was found at 1mHz, 50% duty cycle (TGS-
822) and 2mHz, 50% duty cycle (TGS-2611). Therefore selection of best operating
frequency of heater pulse voltage is a trade-off between requirement of noise behavior

and stability of the MOS gas sensor responses.

The system identification technique could therefore effectively find the modulation

frequencies to obtain good results in the identification of the gases studied.
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Chapter 5

MODELING OF MOS GAS SENSORS

5.0 Introduction:

Metal oxide films are highly sensitive and are being used in solid-state gas sensors and
electronic noses’®. The adsorption of gas molecules on gas sensitive MOS films leads
to a large change in its electrical resistivity. Different parametric models developed
based on the transient responses help in the design of new devices and interpretation of
new data'?® 2, Moreover the dynamic responses have shown to provide information
which shows the improvement of gas recognition'®" '*2. A mathematical model of the
gas sensor system can be constructed either from the observed input-output data or from
the physical model. To build mathematical models of dynamical systems from
measured data, system identification techniques can be employed which includes the
optimal design of experiments for generating efficiently informative data for fitting such
models. The system identification approach helps to observe the gas sensor as a
dynamic system and employ suitable methods to model its behavior under different
conditions. MOS gas sensors change their electrical resistances upon oxidative
reactions, or with adsorption of reducing gases. Several attempts were usually made to
overcome selectivity of MOS gas sensors such as- by using chromatographic columns
to separate components, by operating at different temperatures, by choosing different
burning-in procedures, dopants, surface chemical modification etc?2% Among the
different approaches to overcome these drawbacks, modulating the temperature of gas

sensors have been remarkably successful in many applications'?% 1#121%2!1,

Research has been carried out on the modeling of the gas sensor response characteristics
using a number of variables in an attempt to classify gases and to detect gas

concentration®'>*'"*, SPICE models for the static and transient response of resistive gas
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sensors have also been reported®'> 2'°, Work has also been carried out on the modeling
of gas sensor, for detecting individual components of gas mixtures and for measuring the
concentrations of the component gases, presenting a systematic study for the
enhancement of all the parameters of a neural network, including the pre-processing

27 But the modeling of the gas sensor using measured input-output data has

techniques
not been attended so far. The aim of this study is to simulate the sensor dynamics when

the operating temperature of the sensors is modulated using by temperature pulses.
5.1 MOS gas Sensor Modeling: Necessity and benefits:

The model of a system describes the essential behavior of the system. Sensor modeling
and simulation is required to support the development and verification of sensor system.
A thick film MOS gas sensor operates on the principle of change in conductance due to
the chemisorption of gas molecules on the sensor surface. Several experimental and
theoretical analysis have been proposed earlier for understanding the sensing
mechanisms of tin-oxide sensor’'® 2'°, In another work, an empirical relationship
between the sensitivity and concentration of gas was proposed?°. A non-linear diffusion
reaction model was proposed in?®® %! for analyzing the change in conductivity. A
microscopic model based on the electron theory of chemisorption of thin-film gas
sensors was proposed in??* *%, In a recent work”*, a model of adsorption—desorption
noise in MOS gas sensors was proposed. This model was based on the simplest
adsorption isotherm which is derived from Langmuir’s theory. This model was intended
to be a first step towards an overall modeling of noise in metal oxide gas sensors. The
development of a simple dynamic model for sensors helps in designing experiments,
and also in deeply understanding the behavior of such sensors. In recent years, many
studies have been carried out with the aim of understanding the surface reactions of
MOS gas sensors, considering simple cases such as interaction with mixtures of oxygen

199, 225-233,

(Oy), carbon monoxide (CO) and water vapor . Many works have discussed

about about the development of some simplified models by different researchers'®” #**
24 1t is therefore seen that the modeling of MOS gas sensors was successful in
predicting the behavior of such sensors when the characteristics of the sensor electrodes
are varied. The modeling of such sensors helps to describe its dynamic behavior in the

presence of various gases. The modeling treats the entire system including the surface
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reactions, adsorption-desorption processes occurring at the sensor surface presenting a

complete description about the physical and chemical process of the sensor system.

In this work, modeling of the sensor dynamics is carried out based on the system
measured input output data obtained by modulating the heater temperature. The
response of the gas sensors to modulating temperature primarily depends on the
analytical model which is based on the physical and chemical properties of the sensor
material and the heater. Several numerical models describing the electric responses of
the resistive metal-oxide gas sensors to temperature changes have been proposed235'238.
How stable a gas response \;ve get from a MOS gas sensor primarily depends on the
temperature profile over the sensor surface that depends on the thermal conductivity
model of the heater to the sensor surface. This model primarily concerns with the sensor
under ambient air condition without application of any gas, which can be termed as a
baseline model of the sensor. The baseline model is dominated by the heater
construction and the heater to sensor surface thermal conductivity. Identifying a
baseline model of the sensor can help simulating the sensor dynamics for different
arbitrary temperature functions and frequencies. Choosing the best function and the best
frequency to achieve a stable dynamics that follow the concentration of the analyte is an
important optimization strategy of the gas sensor. In most of the works where
modulating temperature has been adopted, the frequency of modulation is selected on

19, 21-23, 27 <121, 193-1 -
q'® 21-23, 27, 28, 115, 119-121, 95239241 We have chosen a set of best

trial and error metho
frequencies for the first time in MOS gas sensors based on system identification based

sensor baseline modeling.
5.2 Model Dynamics of MOS gas sensor:

The MOS gas sensor model can be broadly divided into two stages, the heater model
and the sensor model. The sensor model comprises of the chemical and physical law of
adsorption and the conductance model. The sensing mechanism is divided into two
parts: the chemical system, which changes due to its interaction with the sample gas,
and the electrical system, which transduces the change in the chemical system into an
electrical signal. In principle, these systems can be easily determined by fitting the
model to a few simple experiments. The interaction of gas molecules with solid-state

sensors takes place by absorption, adsorption or chemical reactions with thin or thick
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films of the sensor material. The sensor device detects the physical and/or chemical

changes incurred by these processes.
5.2.1 Heater temperature dynamics:

Metal oxides work on the principle that a change in some property of the material
occurring due to the interaction with odour leads to a change in the resistance of the
sensor. The mechanisms that lead to these resistance changes are different for each
material type however, the structure and layout of conductivity sensors prepared using
these materials are essentially the same. Figure 5.1 shows a schematic of a typical

micro-hotplate type MOS gas sensor design.

Sensing material
Electrodes /

— Heater

Substrate

Top view \

u & Sensing material

Electrodes

Bottom view E‘ Heater

Figure 5.1: Typical schematic of a micro-hotplate type metal-oxide sensor.

A sensor element normally comprises the following parts:
a) Sensitive layer
b) Substrate
) Electrodes and
d) Heater

The sensing layer is deposited over the substrate that is provided over the electrodes for
the measurement of the electrical characteristics. The device is heated by its own heater
which is separated from the sensing layer and the electrodes by an electrical insulating

layer. The performance of the sensor depends on the measurement parameters, such as
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sensitive layer polarization or temperature, which are controlled by using different
electronic circuits. The elementary reaction steps of gas sensing will be transduced into
electrical signals measured by suitable electrode structures. The sensing itself can take
place at different sites of the structure depending on the morphology. As described
earlier, the changes in composition of the ambient atmosphere will determine the
changes in the resistance of the sensing layers. In general, the relationship between
sensor resistance and concentration of the target gas usually follows a power law given
by:

R=KC* (5.1

where C is the concentration of the target gas, K is a measurement constant, and » has
values between 0.3 and 0.8. The positive sign is used for oxidizing gases and the

negative sign for reducing gases.

The metal-oxide film is kept at an elevated temperature (300 — 400 °C) in order to
enhance reactions with gases. This temperature prerequisite is the basis of surface
chemical reactions induced gas sensitivity and also the main reason for the consumption
of power. The characteristic feature of the current state-of-art MOS gas sensors is that
they are based on the micro hot plates fabricated using advanced silicon technology®™.
On the other hand, the conventional Taguchi gas sensor is always based on ceramic
fabrication processes. Apparently, micro hot plate platform has several advantages over
the conventional ceramic MOS gas sensors. They provide faster start-up, faster
response, lower power consumption, and more accurate temperature control and thus
provide more accurate detection and identification characteristics. However, one of the
crucial issues that determine sensitivity and selectivity to gases in both sensor types is

the sensor material.

The operating principle of the gas sensors is based on the change in the electrical
conductivity of heated metal oxide layers as a function of the composition of the gases
applied. The most common sensing layer is a porous thick film of polycrystalline SnO,.
In normal ambient air, oxygen and water vapor-related species are adsorbed at the
surface of the SnO, layer. There are two types of MOS gas sensors; »n-type (zinc oxide,

tin dioxide, titanium dioxide or iron (III) oxide) which respond to reducing gases and p-
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type (nickel oxide, cobalt oxide) which respond to oxidizing gases”'. Under normal
atmospheric conditions and typical working temperatures of 300-600°C n-type MOS
gas sensors develop an electron-depleted surface layer. This electron depletion layer is
caused by atmospheric oxygen that at high temperature adsorbs on the surface and grabs
electrons from the MOS film surface to form reactive O™ or O~ species. The gas
reaction mechanism causes energetic bands in the grain boundaries which influence the
conduction property of sensitive layers. The interaction of the sensing material with gas
molecules causes change in the conduction property of sensitive layers. Reducing gases
like CO and H, react with the highly sensitive MOS surface and remove some of the
chemisorbed oxygen while infusing electrons back into the MOS, which causes a

reduction in the thickness of the depletion layer thereby increasing the conductivity.

The p-type sensors respond to oxidizing gases like Oz, NO,, and Cl; as these gases
remove electrons and produce holes (charge carriers). The reaction that takes place with
the pre-adsorbed oxygen and water vapor-related species decreases the resistance of the
sensor. The magnitude of the changes depends on certain aspects such as: the
microstructure and composition/doping of the base material, on the morphology and
geometrical characteristics of the sensing layer and substrate, as well as on the
temperature at which the sensing takes place. Any change in these parameters allow foy
the alteration of the sensitivity towards different gases ‘or classes of gases as shown in

Fig.5.2. The equations (5.2) and (5.3) describe the surface reactions:
1 - -
502+e —> 0 (s) (5.2)

R(g)+O (s) > RO(g)+e (5.3)

In our experiment of modeling of the MOS gas sensor, the sensor temperature is
modulated during the dynamic measurement and the complicated response transients are
considered to be related to different reaction kinetics of the gas molecules. The
temperature modulation does not cause any equilibrium among the surface oxygen
species and hence reactions between reducing and oxidizing gases are drastically
influenced. Recently different dynamic models have been formulated where the gas

molecules diffuse into the sensing film and adsorbed at fixed sites throughout the metal
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_ ) 0, heterogeneous
chemisorpt catalysis: (e.g. CO!
oxidation)

electrodes

grain boundaries

0 C 525

U |

Fig.5.2: Schematic of a MOS gas sensor illustrating the resistance change of the sensing layer when
molecules react on the surface. (Courtesy: Thesis on An Artificial Neural Network Based Electronic-Nose
System: Tea and Spice Flavour Discrimination and Drift Parameter Determination by K.R.Kashwan,

Tezpur University, India)

132, 206

oxide film simultaneously . The transient behavior of gas sensors in response to

abrupt changes in the gaseous concentration have been studied and modeled in previous

5
works' 313

. The dynamic response of the sensors is influenced by the operating
temperature especially when the temperature is modulated. The sensor temperature
modulations help in gas reactions in different regions of heating. In most of our
experiments it is seen that the sensor response to heater pulse is characteristic of a first

L 202
or second order system like in™ ",

On application of a heater pulse, without applying any stimulant gas the sensor
produces a transient response (step like) which was observed in our experiments.
Therefore, it can be perceived that the sensor adsorption to conductance variation model
is also a lower order (first order or second-order) one. This gives us a total model order
of two for the MOS gas sensor. Fig. 5.3 (a) and (b) shows a typical transient response
for the sensor TGS-2611 and TGS-842 in the presence of dry air.
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Fig.5.3. Typical transient responses of sensor (a) TGS-2611 at 40mHz and 75% duty cycle and (b) TGS-

842 at 120mHz and 75% duty cycle.

5.3 Theoritical Modeling:

Research on the behavior of analytical models has suggested that the static responses

i.e. conductance G, of the sensor devices follow a simple, reversible, binding

132,242,243,

Freundlich isotherm in the presence:of gases given by-

G, =G, +kC’ (5.4)
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where C is the maximum concentration of the gas pulses, G, is the . baseline
|

conductance, k is the sensitivity coefficient and r is the power law exponent for oxides.

244, 245 -

|
The dependence of G,, k and 7 in eqn. (5.4) on the temperature is given bv-

—E 4, -E4 nk
G, =Gyre Vi + (ke Kv)x cm (5.5)

where, G,, = pre-exponential factor (represents the bulk intra-grain conductance) «hH,

k = Sensitivity coefficient, )
K= Boltzmann constant (electron-volt/Kelvin),
T= Temperature of the sensor (Kelvin),
E 4o=Activation energy of the baseline conductance (eV),
E4=Activation energy of the change in conductance caused by gas (eV).
C=Maximum concentration of the gas pulses (mol/m’).

n=Pre-factor of the power law exponent for oxides.

Eqn. (5.5) is applicable to static temperature profile, however for dynamic temperature
condition, the temperature has to be expressed in dynamic model. The heatefr pulse to

I*°2 \Wwhere the

baseline response of the sensor can be described by a first order mode
response is exponential. We have experimentally verified that the heater templlerature of
the MOS gas sensors show an exponential response given by a first order mpdel. The
temperature of the heater was indirectly determined using the heater as a terfnperature
sensor. The heater current was measured using the circuit shown in Fig. 5.4. |From the
current and the applied voltage the heater resistance R, was calculated from which the

change in heater temperature A7 was determined given by eqn.-

e

where « is the positive resistance temperature co-efficient (PTC) of the platinum heater
i

(3500x107°/°C); Ry is the heater resistance, R,, is the heater resistance at room

temperature i.e. at 30°C ( in our case). At the same time we have measured the sensor
resistance (R;) on application of heater voltage. At first the heater voltage was varied

gradually to a maximum of 5V and the heater currents were measured. The measured
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and calculated values are tabulated in Table 5.1 and Table 5.2 for TGS-2611 and TGS-

842 respectively.

Fig. 5.4: Circuit for measuring heater current and sensor resistance

We have found the initial resistances of heater and sensor as-

For TGS-2611, R,, = 59Q and for TGS-842, R,, = 30.0 £ 3.0Q.

(5.15)

For TGS-2611, Ry, = 350kQ; and for TGS-842, Ry, = 995kQ;

R, is the sensor resistance at room temperature.

Table 5.1: Values of heater current, heater resistance, sensor resistance, change in

temperature, and temperature w.r.t varying heater voltage for TGS-2611:

Heater Heater Heater Sensor Change in Temperature
Voltage(V) | Current | Resistance for | Resistance for | temperature N
) TGS-2611 (R,) | TGS-2611 (R,) AT (Kelvin)
(volts) (mA) ) (k) ¢C)
1.3 21.7 59.90 220 13.6400 316.6400
1.4 23 60.86 216 18.1553 321.1553
1.5 24.6 61.97 214 23.3761 326.3761
1.6 25.7 62.25 212 24.6931 327.6931
1.7 26.8 63.43 211 30.2432 333.2432
1.8 28.3 64.6 209 35.7462 338.7462
2.1 31.7 66.24 195 43.4599 346.4599
2.2 32.3 67.11 187 47.5519 350.5519
24 35 68.57 178 54.4189 357.4189
25 36.3 68.87 175 55.8299 358.8299
2.6 37.2 69.89 170 60.6274 363.6274
27 38.4 70.31 161 62.6029 365.6029
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2.8 39.3 71.24 156 66.9771 369.9771
2.9 40.4 71.78 150 69.5170 372.5170
3.0 41.6 72.11 145 71.0691 374.0691
3.1 42.7 72.59 138 73.3267 376.3267
3.2 43.6 73.39 132 77.0895 380.0895
3.3 44.7 74.82 122 83.8154 386.8154
4.3 52.1 82.53 71 120.0790 423.0790
4.5 53.6 83.95 69 126.7579 429.7579
4.6 54.4 84.55 64 129.5800 432.5800
4.7 55.2 85.14 61 132.3550 435.3550
4.8 56 85.71 58 135.0360 438.0360
4.9 56.8 86.26 44 137.6229 440.6229
5.0 57.3 87.26 35 142.3263 445.3263

Table 5.2: Values of heater current, heater resistance, sensor resistance, change in

temperature, and temperature w.r.t varying heater voltage for TGS-842:

Heater Heater Heater Sensor Change in
Voltage(V}) Current Resistance for | Resistance for | temperature | Temperature
1) TGS-2611 (R;) | TGS-842 (R,) AT )]
(volts) (mA) ) (kQ) °C) (Kelvin)
1.5 0.0497 30.1642 495 1.4674 304.4674
1.8 0.0567 31.7720 423 15.8356 318.8356
2.0 0.0609 32.8278 401 24.6931 328.2708
2.4 0.0708 33.9100 303 34.9419 337.9419
2.5 0.0716 34.9400 220 44.1466 347.1466
2.8 0.0783 35.7700 140 51.5639 354.5639
2.9 0.0784 36.9900 98 62.4665 365.4665
3.1 0.0837 37.0500 87 63.0027 366.0027
4.0 0.1050 38.1000 51 72.3861 375.3861
4.5 0.1113 40.4208 48 93.1260 396.1260
4.6 0.1109 41.4800 35 102.5916 405.5916
5.0 0.1163 42,9800 26 115.9964 418.9964

The heater voltage (V3) to heater temperature (T) transfer function was determined

which can be modeled by a first order transfer function given by-

T K

V. (l+sz)

(5.16)

Where K is the static sensitivity and 7 is the time constant. To determine the static

sensitivity (K), the slope of the plot between V, and T characteristic as shown in Fig. 5.5

was determined given by-
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For TGS-2611, K, resoasn = (31 6.6—445.3)/(1.3-5)
= 34.783 Kelvin/Volt

For TGS-842, K, rosuin = (304.5-419)/(1.5-5)
= 32.57 Kelvin/Volt

Further we have observed the step response of the heater current dynamics by applying

a 5V heater pulse as shown in Fig. 5.6.
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Fig.5.5: Variation of temperature with heater voltage (a) for TGS-2611 and (b) for TGS-842.
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Fig.5.6: Variation of heater current with time (a) for sensor TGS-2611 and (b) for sensor TGS-842.

From these responses the value of 7 is found to be approximately 6 s for TGS-2611 and
1.3 s for TGS-842.

The heater temperature profile can thus be expressed as the first order response for T

and T, given by,

TON = ]:nax (] - e_%l ) (5.17)

T = Ty (€7%) (5.18)

where 7, is the maximum heater temperature and 4 is the heater time constant.

Substituting (5.17) and (5.18) in (5.5) and writing a voltage equation we get,
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I kS
A Ay
I/O — [V; e %Tmm( (""_/1) +V e //Tl{mx (l“’_%.) % C"KTH_].'L\ ] +

max s max

) ~E4s
[V e %Tmax(‘-’_%l) +V e Armax(e_%l) XCnKTmax] (519)

bmax smax

Rearranging eqn. (5.19) we get,

-E Ay -/3,4%
[e KTmax (1=¢=43) te KTmax (c‘%)] +

V;) = vamm(
—Ey, —Ey,
V; - [e /plmax (""’_%1) +e %’Tmax (‘-’_%{) ] x CuI\'TmZL\ (5 203)
=V, +V, (5.20b)

Since the sensor surface is not stimulated by any gas, the baseline model can be written

by putting the term ¢ =0 and writing ¥, =V, the equation for baseline voltage

reduces to-

_E/y - S’y
Vb = V’Jl'nax [e Klmax (l_‘-'_%) +e Kln'la.\' (L’_A) ]

(5.21)

where ¥, . is the highest baseline voltage level.

Eqn. (5.21) therefore describes the surface reaction of the sensor in the presence of dry
air without the interaction of any gases. Fig.5.7 shows the block diagram of the sensor-
heater and response model for metal oxide gas sensors. The input to the baseline model
block is only the device operating temperature which is set by the heater model. In our
case, the experiments were performed in the absence of gases and only the sensor
baseline model is taken into account. The heater model block elevates the temperature
of the sensor and sets the operating temperature. The baseline model block emulates the
sensor baseline conductance which is given by Eqn. (5.21). In this work the modeling of

the sensor baseline has been done without the affect of any gases on the sensor surface.
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Fig. 5.7 Sensor-Heater and response model.

5.4 Sensor Activation Energy:

The activation energy is the minimum extra amount of energy absorbed by the reactant
molecules so that their energy becomes equal to threshold value. At room temperature,
most of the reactant molecules have less energy than the threshold value. However, if
the energy is supplied in the form of heat, this energy is absorbed by the reactant
molecules and becomes equal to or greater than threshold value. The activation energy

is usually expressed in kilojoules per mole.

As the temperature increases, the velocity of gas molecules' (or kinetic energy) also
increases. This means that as temperature increases, more molecules will have higher
kinetic energy, and hence the fraction of molecules that have high enough energy to
exceed the minimum energy needed for a reaction also increase. The fraction of
molecules that has energy equal to or greater than Ey4, is given by the exponential term

in the Arrhenius equation:

.
k=Ae X7 (5.22)

where k is the rate constant
K= Boltzmann constant = 86x10° eV/K
E 4= Activation energy of the baseline conductance (eV),

T = Heater temperature (Kelvin)

A is the Arrhenius factor.
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Taking the natural log of both sides in eqn. (5.22),
EAO
Ink=lnd-—— (5.23)
KT

Eqn (5.23) has the form of a straight line, y = mx + b. Plotting Ink vs 1/T, the equation

represents a straight line with a slope of m=—?”°and a y-intercept of In4 as shown in

Fig.5.8.

y-intercept
(In4)

Ink Slope
(Ead/K)

1000/T
Fig. 5.8 Arrhenius Plot for Eqn.(5.23).

The heater voltage was modulated while performing the experiments with a maximum
heater voltage of 5V. To determine the activation energy for TGS-2611 and TGS-842
the relative values of the sensor resistance drift (dRy/R;) of the sensor material at each
individual temperature ‘7" obtained from Table 5.1 and Table 5.2 were plotted as a

function of 1/T.

The Arrhenius plot for determining the activation energy of sensor TGS-2611 and TGS-

842 used in our experiment is shown in Fig. 5.9 (a) and (b) respectively.
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Fig. 5.9. Activation energy for MOS gas sensor, (a) TGS-2611 and (b)TGS-842.

For TGS-2611, the activation energy is given from the slope of Fig. 5.8 (a) as-
E 40, 165:2611= K x m x1000

where K is the Boltzmann constant and m is found as,
m=(-0.34+1)/ (3.2-2.2)

=0.66

Hence, using eqn. (5.24)-
Es0, 1652611 = 86%107° x 0.66 x1000

=0.05eV

For TGS-842, the activation energy is given from the slope of Fig. 5.8 (b) as-
E 40, 165-842= K x m <1000

where K is the Boltzmann constant and m is found as,
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(5.24)

(5.25)
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m = (-0.02+0.7)/ (3.3-2.3)
=0.68
Hence, using eqn. (5.25)-
E40, 165842 = 86x10° x 0.68 x1000
=0.058¢V

The experimentally determined sensor parameters as shown below were used to

simulate the sensor response for a time duration of heater pulse voltage ¢,, and ¢

OFF
using eqn.(5.21).

For TGS-2611, For TGS-842,

E4=0.05eV E4=10.058eV

T . =445K T ..=420K

Y max = 0.0088V Vymax =0.04V

T=26s 7=13s

toy=18.75s toy=6s

Lopr =6.25s topr =28

The simulated results of sensor responses are shown in Fig. 5.10 (a) and (b) for TGS-
2611 and TGS-842 respectively.

2107
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Figure 5.10: Response of sensor obtained from theoretical results for (a) TGS-2611 at 40mHz and 75%
duty cycle and (b) TGS-842 at 120mHz and 75% duty cycle.

From Fig. 5.10 (a) and (b) it is seen that the simulated response is an ideal MOS gas
sensor baseline response. The baseline model simulates the behaviour of the sensor
when operating at pulsed frequency. It is observed that the sensors behaves as a first
order system with a first-order transfer function for sensor TGS-2611 and as a second-
order transfer function for sensor TGS-842 since behavior of both the systems are

different with different system parameters.
5.5 Transfer Function Validation from System Identification:

The measured input-output data of the MOS gas sensor is used to build the sensor
model which is chosen with the best dynamic performance based on the stability
analysis hence determining the corresponding best frequency and duty cycle. We
compare here the simulated results of the theoretical models of the MOS gas sensors

discussed in Section 5.3 with the model obtained from system identification.

In our work the transfer function 6f the sensor TGS-2611 determined by the system
identification technique was found to be most stable and generated the best fit
percentage. The determination of the most stable transfer function was done based on
the pole zero plot and overshoot percentage as described in Chapter 4 (Section 4.4).”

The transfer function that was most stable was then simulated for the best fit percentage
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(Section 4.5). The most stable transfer function for TGS-2611 was determined at
40mHz and 75% duty cycle given as:

fey, - 07x107)
40mH:=,75% (Z — 0996) (5.25)
In Laplace form:
0.00016999
H(S)somtzz5m = 7 oo
(S)4O/;1H4,75ﬂ: (S+008627) (5.26)

For TGS-842, the stable transfer function was determined at 120mHz and 75% duty

cycle which is given as:

-7
~ 4.24 —Y.
P _(4248x10 ")(z—0.9639) (5.27)
omieI% (7 -0.9995)(z — 0.9992)

In Laplace form:

_(4.248x10™%)(s+0.9639)

A _ (5.28)
w1 (540,9995)(s +0.9992)

The models can be simulated to observe the behaviour of the sensor when the operating
temperature is modulated by applying pulse signal to the heating element. Fig.5.11
shows the simulated responses of the sensor TGS-2611 when subjected to pulsed
temperature modulation obtained from system identification compared with that
obtained from the theoritical analysis. From Fig.5.11 (a) it is seen that the system
identification returns a model of first order at 40mHz frequency and 75% duty cycle for
TGS-2611, given by Eqn.(5.25) and (5.26). From Fig.5.11 (b) it is seen that the system
identification returns a model of second order at 120mHz frequency and 75% duty cycle
for TGS-842, given by Eqn.(5.27) and (5.28).
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Fig 5.11. Response of (a) sensor TGS-2611 and (b) sensor TGS-842 by simulation of the transfer function
obtained from system identification and that obtained from theoritical analysis.

From Fig.5.11 (a) it is seen that the sensor responses are first order responses with a
time constant of approximately 6s and from Fig.5.11 (b) it is seen that the sensor
responses have a time constant of approximately 1.3s. The best fit percentage for TGS-
2611 at 40mHz and 75% and for TGS-842 at 120mHz and 75% duty cycle is found to
be 67.24% and 63.43% respectively. The responses and model parameters are similar

with the actual sensor responses given in Fig. 5.3 (a) and (b).
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5.6 Conclusions:

Though MOS gas sensors are widely used, yet their sensing mechanisms are not
completely understood. In this chapter we present a baseline model of the MOS gas
sensor TGS-2611 and TGS-842 which accurately depicts the dynamic responses of the
sensor. The model equation was derived from the Freundlich isotherm equation by
finding the unknown sensor parameters- activation energy. In our experiment, the
sensor was excited by the heater voltage to develop the temperature which was
measured indirectly by using the heater filament as the temperature sensor i.e. the heater
current was used to determine the temperature and heater resistance. The heater model
was found to be a first order one and the time-constant and sensitivity was determined.
Further, Arrhenius plot was made for the sensor to determine the activation energy of
the sensor material. With this derivation, we concluded the theoritical model equation of
the MOS gas sensors (TGS-2611 and T(GS-842). The theoritical model derived was
compared with the model obtained by system identification and it was found that the fit
percentage were 67.24% and 63.43% for TGS-2611 and TGS-842 respectively. The
model presented in this work can be extended to other resistive sensors based on

conducting polymers.

5.7  Publication on this chapter

1. Dutta, N., & Bhuyan, M. Modeling of MOS Gas Sensor Based Electronic Nose
Using System ldentification, International Journal of Engineering Systems

Modelling and Simulation. (Under Communication)
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

This thesis presents a descriptive and analytical report on the noise feature analysis,

compensation and modeling of MOS gas sensors under pulsed temperature modulation.

The dynamic analysis of the sensor responses and classification of different gases is also

performed using a novel technique of Artificial Neural Network based Electronic Nose

(E-nose).

This research can be divided into six boarder areas in the field of noise feature analysis,

its reduction and modeling. These areas are as follows:

1.

Review of literature of the recent works carried out in the field of noise
analysis, noise reduction and modeling of MOS gas sensors based E-
nose;

Development of the MOS gas sensor set-up;

The statistical and frequency analysis of noise under pulsed modulated
heater for selection of best pulse frequency and discrimination of
different gases using best frequency and duty cycle ;

Reduction noise using Amplitude Demodulation (AD) technique and
Wavelet analysis;

Sensor system identification and stability analysis under pulsed
temperature modulation for selection of best pulse frequency and
classification of gases using best frequencies and duty cycles; and

Sensor modeling based on theoritical analysis of MOS sensors and

system identification on.
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Chapter 1 gives the introduction to an inclusive literature as basic knowledge for the
research work. The different types of gas sensors with a detailed description of MOS
gas sensors are described in parallel. To address the improvement of selectivity of MOS
gas sensors, the temperature modulation is described. The chapter throws light upon
different types of noise in MOS based gas sensors along with different statistical
parameters of noise such as Probability Distribution Function (PDF), histogram and
Signal-to Noise ratio (SNR). A new noise feature- NSF and NPF were introduced at
four different frequencies namely 10mHz, 40mhz, 80mHz and 120mHz and at two
different duty cycles namely 50% and 75%. Modeling of the noise process has been
discussed in the light of Fast Fourier Transform (FFT) for frequency analysis. A
detailed review of the different noise filtering techniques followed by the advantage of
the proposed Amplitude Demodulation (AD) technique and its comparison with wavelet
filter has been presented. The dynamic behaviour of the MOS gas sensors followed by
sensor modeling using system identification is also described. A systematic method to
determine the best suitable temperature modulation frequencies to solve a given gas
analysis problem using stable transfer functions was developed. The E-nose is described
in details and concluded that it is an operated with suitable pulse frequency of the heater
voltage. It is able to fit its pulse frequency for the most stable dynamics. The odour
classification and discrimination performed by MOS sensors is achieved by using
Artificial Neural Network (ANN). Multi-layered perceptron (MLP) and Radial Basis
Function (RBF) were used for ANN classification.

Chapter 2 presents the experimental set-up of the MOS gas sensor based E-nose of the
entire work and the noise analysis (statistical and frequency based) of the sensor
response. The techniques of temperature modulation, data acquisition, feature
extraction, feature selection, and classification are described. Three MOS based gas
sensors, TGS-2611, TGS-822 and TGS-842 of FIGARO INC, Japan were used which
are sensitive to odours such as alcohol, volatile organic compounds (VOCs) etc. A
computer controlled switching and diaphragm pumps were designed. The data
acquisition and online logging of the data was performed by using Data Acquisition
(DAQ) card (PCI6024E, National Instruments) and data acquisition software-
LabVIEW. The chapter presents a complete analysis-both statistical and frequency

analysis of the noise in MOS gas sensors based E-nose by pulsed heater modulation
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under different frequencies and duty cycles. The study determined the best frequency
and duty cycle at which the noise was minimum. This is followed by the dynamic
analysis of the sensor data and the discrimination using ANN of ten different sampie

gases performed using two sets of frequency and duty cycle.

The experiment has two parts- one the noise analysis i.e. for baseline noise without the
application of gas and the other the dynamic analysis in presence of gas. The frequency
and duty cycle of the heater pulse at which the noise was minimum was determined
based on the noise behaviour. Classification of ten different gases using this best
frequency and duty cycle was performed using ANN (MLP and RBF) to verify the
selection of best frequency and duty cycle obtained from noise analysis. The PCA
identified successfully ten gas sample clusters and shows better classification when best
selected pulse frequency is used. It was found that the RBF network provided better
classification accuracy with lesser training time than the MLP network. ANN based E-
nose system provided better classification rate for the ten sample gases when the sensors

were pulsed using best frequency and duty cycle.

Since noise in MOS gas sensors and the measuring circuit is a pertinent problem of E-
nose systems we have attempted to suggest possible measure to suppress and filter the
noise. Chapter 3 describes the techniques of noise reduction in the MOS gas sensors
using different filtering methods. The AD technique was analyzed and used in this
research to extract the original signal from the responses of noise modulated low
sensitivity sensor signal. A low sensitivity sensor (TGS-2611) produced responses
which were mostly dominated and buried with noise and hence it was used to perform
the AD process. The signal was added with white noise and a low frequency sine signal
and then the filtering was carried on. The feasibility of the AD technique was observed
by using another filter named wavelet filter. Further the wavelet based filter was also
used to denoise the sensor responses and it was found that this technique has less
denoising capability compared to AD technique. The spectral analysis of signal
components obtained from both the methods was performed using FFT and the
bandwidth was determined. Hence it was concluded that the AD technique can be

suggested for removal of noise from MOS gas sensor responses.
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Chapter 4 presents the method of system identification in the area of gas sensors. The
method consists of studying the sensor baseline response when their operating
temperature is modulated. A detailed procedure of the determination of the most stable
transfer functions and the best fit transfer function using system identification is
described. Validation of the best frequency and duty cycle obtained from the system

identification is examined.

In the first experiments, the system identification was performed for a lower range of
frequencies 1mHz, 2mHz, 3mHz, 4mHz and SmHz with duty cycles of 50% and 75%.
The transfer functions were determined and the most stable transfer function was chosen
based on the pole-zero plots and the overshoot percentage which was found to be 2mHz
and 50% duty cycle for TGS-2611 and 1mHz and 50% duty cycle for TGS-822. In the
experiments that followed the first ones, the stable transfer functions for a higher set of
frequencies i.e. 10mHz, 40mHz, 80mHz and 120mHz with duty cycles of 50% and 75%
were determined with the stability chosen under the same conditions of shorter distance
of the poles in the pole-zero plot and lesser overshoot percentage. It is seen that the
frequencies and duty cycles at which the transfer function was most stable for TGS-
2611 and TGS-842 was obtained at 40mHz and 75% and at 120mHz and 75%
respectively. A slow change in sensor heater voltage helps to attain a quasi-isothermal
state leading to the preservation of sensor dynamics and hence the experiment was
performed for two ranges of frequencies. Once the most stable transfer functions and
their corresponding best values of pulse frequency and duty cycle are obtained, the PCA
was worked out with two pairs of sensors: TGS-822/TGS-2611 and TGS-842/TGS-
2611 for ten different gas samples. It-was observed that the most stable transfer function
also showed the best fit percentage. The enhancement of the suitable results for both the
ranges of frequencies was proved by the discrimination of ten different sample gases
using ANN. The results of classification using the selected set of frequencies and duty
cycles were encouraging. The classification was done with the help of MLP and RBF.
From the results, it was evident that MOS gas sensor based E-nose was capable of
discriminating the ten sample gases by the ANN techniques. A classification percentage
of 94.1% was reached in case of RBF for lower frequency range than in case of MLP

(91.5%). Similarly, for higher range of frequency, the RBF performed better yielding a
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classification percentage of 93.4% compared to MLP (86.7%). We observed that RBF

was much faster compared to MLP network.

As stated earlier for chapter 2 we have found that the best pulse frequency and duty
cycle for the three sensors are 10mHz, 75% duty cycle, which is based on noise analysis
however, the stability analysis shows that this valu¢ is 40mHz, 75% duty cycle (TGS-
2611) and 120mHz, 75% duty cycle (TGS-842) for upper frequency range and for lower
frequency range the stability was found at 1mHz, 50% duty cycle (TGS-822) and
2mHz, 50% duty cycle (TGS-2611). Therefore selection of best operating frequency of
heater pulse voltage is a trade-off between requirement of noise behavior and stability

of the MOS gas sensor responses.

Chapter 5 gives an analysis on the modeling of the sensor dynamics based on the
measured input output data obtained. The thesis presents a theoritical analysis on the
system kinetics of the MOS gas sensor. Based on a mathematical model obtained from
MOS gas sensor theory as well as from system identification theory, the simulation was
performed. This research work gives a layout of the dynamic behavior of the MOS gas
sensor without the application of any stimulant gas and determines the baseline model.
The baseline model proposed can simulate the behavior of the sensors (TGS-2611 and
TGS-842) when the operating temperature is modulated by applying an arbitrary

function (pulse sequence in our case) to the heating element.

In the conclusion a novel intelligent E-nose has been developed with the capability of
the classification of different sample gases using best frequency and duty cycle obtained
from noise feature analysis as well as from system identification technique under pulsed

temperature modulation.

6.1 Future Scope:

During this research, a quite accurate and capable E-nose is developed, despite of the
fact that further work is necessary to assess the long term reliability of the MOS gas
sensor based E-nose system. The use of the E-nose in the selection of frequencies and
duty cycles can be suitable for commercial applications for continuous monitoring of

different sample gases. When the sensors were temperature modulated by a signal with
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a frequency content that corresponded to the best values, the gases could be perfectly
discriminated. The selected thermal modulation of the working temperature of the MOS
gas sensor based E-nose can significantly increase the selectivity of metal oxide sensors.
Therefore, the systematic process to employ the selection of modulating frequencies,
permits to ensure a remarkable increase in performance for metal oxide based
multisensor systems. The simplicity of the methods implemented can ultimately lead to
the development of intelligent e-noses. The method can be used in any gas analysis

problem or extended to other types of sensors also.

The E-nose technology will play a crucial role in the field of medical sciences enabling
a low cost substitute to the more costly diagnosis method for most of the diseases at
present. The combination of E-noses with other electronic medical instruments will
facilitate the development and availability of improved real-time information of patient
conditions, leading to even more effective decisions and treatments by physicians. Now,
the E-nose industry is at the stage where the designing and manufacturing have been
explored and the path forward has shifted to designing e-noses that are smaller, less
expensive, more application-specific, easier to be handled, and produce results that are
easily interpreted by the user due to limited data outputs.

To conclude, E-nose has enormous potential area for further exploration in research and

study. It is undoubtedly a high challenging field to be investigated.

The scientific contributions of this thesis are collected in four journal papers, four

international conference proceedings and one book chapter.
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Table A2.1: Time constants for various gases used in the experiment at |0mHz frequency and 75% duty cycle.

X1X

Sensors Time constants of Gases at 10mHz frequency and 75% duty cycle (shown for 10 cycles)
Ethylacetate | Acetonitrile Ethanol Kerosene | Petroleumether| Chloroform | Methanol | Isopropyl-alcohol | Acetone N-Hexane
(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)
8 14 12.5 11.7 14.4 11.4 12.9 9 10 13
12 12.3 16.3 13.2 13.1 13.5 16.4 124 13.3 11
10 14.5 11.7 19 13.9 12.9 19.3 11 13.9 10.8
12 13.3 13 11.9 15.1 13.9 15 11.4 12.8 12.1
18 16.3 17.6 15.8 18.4 19.3 14 16.6 11.8 9.9
14.5 12.1 12.7 13.2 14 15 14 11.2 14.7 11.9
TGS-2611 15 15.5 14.6 15.9 15.8 16.7 15.5 13.5 15.2 12.8
18.2 17 13.1 18.3 12.9 18.2 18 14 12.9 18
14.6 15.2 15 14 14.5 13.2 14.6 14.2 12.9 12.8
15 15.1 123 15.5 153 18.1 15.8 125 13.1 13.9
123 13 11 13.6 14.4 11 10.3 11.2 12.5 11.9
14 15 13 18 11.3 13.5 1.3 13.1 13.01 15.8
13.9 11.9 14.8 15 14.1 10 12.1 10.3 1.2 13.2
11.6 12 12.8 12.2 12.5 12 12.1 12.8 15.4 159
11.9 13.6 12 14.6 13.01 13.4 13 11.9 13.4 18.3
12 18 11.2 13 11.2 11 11.4 19 10.3 14
TGS-822 13.6 15 16 13 15.4 12.3 14.1 13.8 11.4 15.5
18 12.2 13 12 13.4 15.1 13.1 14.7 15 11.5
13 14.6 11 11.1 10.3 11.3 1.3 15.7 16 12.9
12 13 17.1 10.4 11.4 13.4 13 13 15.1 13
14.8 14.1 15 11 13.4 13 10.3 11.6 13.1 11.2
12.8 12.5 14 11.2 14 17.6 11.9 11.9 12.1 13.1
12 13.01 14 10.8 15.8 12.7 10.7 12 9.8 9.8
11.2 11.2 15.5 9.4 12.9 14.6 11.9 13.6 10.4 11.3
16 15.4 18 12.4 14.5 13.1 11 18 12.7 11.9
13 13.4 14.6 11 153 15 10.5 13 13.2 13.9
TGS-842 11 10.3 15.8 11.4 10.2 12.3 13.9 12 13.6 13.2
17.1 11.4 15 16.6 11.7 12.2 12.9 1.1 17 12.8
12.6 12.9 1.8 11.2 11.5 11.6 13.1 102 12.6 14.1
15 10.3 11 13.5 13 14.4 11.1 13.1 14.5 12.9
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Table Ad4.1: Table showing the step input-output of sensor TGS-822 at ImHz and 50%

duty cycle.
Step Input (For iImHz TGS-822 at 1mHz Sensor Output (For ImHz TGS-822 at
and 50% duty cycle) 1mHz and 50% duty cycle)

Time Voltage Time Voltage Time Voltage Time Voltage

(secs) (volts) (secs) (volts) (secs) (volts) (secs) (volts)
0000000 5 000000 0 640000 5 000000 0000000 00012 0 640000 0009012
0010000 5 000000 0 650000 5 000000 0010000 00013 0 650000 0009013
0020000 5 000000 0 660000 5 000000 0020000 00014 0 660000 0009117
0030000 5 000000 0670000 5000000 0030000 00015 0670000 0009213
0040000 5 000000 0 680000 5 000000 0040000 00016 0 680000 0009215
0050000 5 000000 0 690000 5 000000 0050000 00017 0 690000 0009337
0060000 5 000000 0 700000 5 000000 0 060000 00019 0 700000 0009345
0070000 5 000000 0710000 5 000000 0070000 00020 0 710000 0009213
0080000 5 000000 0 720000 5000000 0 080000 00021 0 720000 0009188
0090000 5 000000 0 730000 5 000000 0090000 00023 0730000 0009934
0100000 5 000000 0 740000 5 000000 0100000 00024 0 740000 0 009529
0110000 5 000000 0 750000 5 000000 0110000 00025 0 750000 0009532
0120000 5 000000 0 760000 5 000000 0120000 00026 0 760000 0009621
0 130000 5 000000 0 770000 5000000 0 130000 00027 0 770000 0009623
0 140000 5 000000 0 780000 5 000000 0 140000 00028 0 780000 0009712
0 150000 5000000 0 790000 5 000000 0 150000 00029 0 790000 0009715
0160000 5 000000 0 800000 5000000 0 160000 00030 0 800000 0009878
0170000 5 000000 0 810000 5 000000 0 170000 00031 0 810000 0009912
0 180000 5 000000 0 820000 5000000 0 180000 00032 0 820000 0009986
0190000 5000000 0 830000 5 000000 0 190000 00033 0 830000 0009993
0200000 5 000000 0 840000 5000000 0200000 00034 0 840000 00111
0210000 5 000000 0 850000 5 000000 0210000 00035 0 850000 00112
0220000 5 000000 0 860000 5 000000 0220000 00036 0 860000 00113
0230000 5 000000 0 870000 5000000 0230000 00037 0 870000 00114
0240000 5 000000 0 880000 5 000000 0240000 00038 0 880000 00115
0250000 5000000 0 890000 5000000 0250000 00040 0 890000 00116
0260000 5 000000 0900000 5 000000 0260000 00041 0900000 00117
0270000 5 000000 0 910000 5 000000 0270000 00042 0910000 00118
0280000 5 000000 0920000 5000000 0280000 00043 0920000 00119
0290000 5 000000 0930000 5 000000 0250000 00045 0930000 00120
0300000 5 000000 0940000 5 000000 0300000 00046 0940000 00122
0310000 5 000000 0 950000 5000000 0310000 00047 0950000 00123
0320000 5 000000 0 960000 5000000 0320000 00048 0960000 00124
0330000 5 000000 0970000 5000000 0330000 00049 0970000 00125
0 340000 5000000 0980000 5 000000 0 340000 00050 0980000 00126
0350000 5 000000 0990000 5 000000 0350000 00051 0990000 00127
0360000 5 000000 1000000 5000000 0360000 00052 1000000 00128
0370000 5 000000 1 010000 5 000000 0370000 00053 1 010000 00129
0380000 5 000000 1 020000 5000000 0380000 00056 1 020000 00130
0390000 5 000000 1 030000 5000000 0390000 00058 1 030000 00132
0400000 5000000 1 040000 5 000000 0400000 00059 1040000 00133
0410000 5 000000 1 050000 5000000 0410000 00060 1 050000 00135
0420000 5 000000 1 060000 5000000 0420000 00061 1 060000 00137
0430000 5 000000 1 070000 5000000 0430000 00062 1 070000 00138
0440000 5000000 1 080000 5000000 0440000 00063 1 080000 00140
0450000 5000000 1 090000 5000000 0450000 00065 1 090000 00142
0460000 5 000000 1 100000 5 000000 0 460000 00066 1 100000 00143
0 470000 5000000 1110000 5000000 | 0470000 00067 1110000 00145
0 480000 5 000000 1120000 5000000 0480000 00068 1120000 00146
0490000 5 000000 1 130000 5 000000 0490000 00069 1 130000 00147
0 500000 5 000000 1 140000 5000000 0500000 00070 1 140000 00148
0 510000 S 000000 1 150000 5000000 0510000 00071 1 150000 00150
0 520000 5000000 1 160000 5000000 | 0520000 00072 1 160000 00151
0 530000 5 000000 1 170000 5000000 0 530000 00073 1170000 00153
0 540000 5 000000 1 180000 5 000000 0 540000 00076 1 180000 00154
0 550000 5 000000 1 190000 5 000000 0 550000 00078 1 190000 00155
0 560000 5 000000 1 200000 5000000 0 560000 00079 1 200000 00157
0 570000 5 000000 1 210000 5000000 0570000 00080 1210000 00160
0 580000 5000000 1 220000 5 000000 0 580000 00083 1220000 00167
0 590000 5 000000 1 230000 5 000000 0 590000 00086 1230000 00166
0 600000 5 000000 1 240000 5 000000 0600000 00088 1 240000 00168
0610000 5000000 1250000 5 000000 0610000 00089 1250000 00169
0 620000 5 000000 1 260000 5 000000 0 620000 0 0090 1 260000 00170
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Table A4.2: Table showing the step input-output of sensor TGS-842 at 80mHz and

50% duty cycle.
Step Input (For 80mHz TGS-842 at iImHz Sensor Output (For 80mHz TGS-842 at
and 50% duty cycle) 1mHz and 50% duty cycle)

Time Voltage Time Voltage Time Voltage Time Voltage

(secs) (volts) (secs) (volts) (secs) (volts) (secs) (volts)
0 000000 5 000000 0 640000 5 000000 0 000000 00033 0 640000 00124
0010000 5 000000 0 650000 5 000000 0010000 00035 0650000 00125
0 020000 5 000000 0 660000 5 000000 0020000 00034 0 660000 00127
0030000 5000000 0670000 5 000000 0030000 00037 0670000 00128
0040000 5 000000 0 680000 5 600000 0 040000 0 0040 0 680000 00129
0050000 5 000000 0690000 5 000000 0050000 00045 0 690000 00130
0 060000 5000000 0 700000 5000000 0 060000 00047 0 700000 00132
0070000 5 000000 0710000 5 000000 0070000 00048 0 710000 00134
0 080000 5 000000 0720000 5 000000 0080000 00049 0 720000 00136
0090000 5 000000 0 730000 5 000000 0090000 00050 0 730000 00138
0 100000 5 000000 0 740000 5 000000 0100000 00052 0 740000 00140
0 110000 5 000000 0 750000 5 000000 0 110000 00054 0 750000 00141
0 120000 5 000000 0 760000 5 000000 0120000 00056 0 760000 00142,
0130000 5 000000 0770000 5000000 0 130000 00057 0770000 00145
0 140000 5000000 0 780000 5000000 0 140000 00059 0 780000 00147
0150000 5 000000 0 790000 5 000000 0150000 00060 0 790000 00148
0 160000 5 000000 0 800000 S 000000 0 160000 00061 0 800000 00149
0170000 5000000 0 810000 5 000000 0170000 00062 0 810000 00150
0 180000 5 000000 0 820000 5 000000 0 180000 00063 0 820000 00151
0190000 5 000000 0 830000 5 000000 0190000 0 0064 0 830000 00152
0200000 5000000 0840000 |- 5000000 0200000 00067 0 840000 00154
,0 210000 5 000000 0 850000 5 000000 0210000 00068 0 850000 00155
0220000 5 000000 0 860000 5 000000 0220000 00069 0 860000 00157
0230000 5000000 0 870000 5 000000 0230000 00070 0 870000 00159
0 240000 5 000000 0 880000 5000000 0 240000 00071 0 880000 00162
0 250000 5000000 0 890000 5 0006000 0250000 00072 0 890000 00163
0260000 5000000 0900000 5000000 0260000 00073 0900000 00164
0270000 5000000 0910000 5 000000 0270000 00074 0910000 00l6s
0280000 5 000000 0920000 5 000000 0280000 00075 0920000 00167
0290000 5 000000 0930000 5 000000 0290000 00076 0930000 00170
0300000 5 000000 0940000 5 000000 0300000 00079 0940000 00173
0310000 5 000000 0950000 5 000000 0310000 00080 0950000 00178
0320000 5 000000 0 960000 5 000000 0320000 00081 0 960000 00180
0330000 5 000000 0970000 5 000000 0330000 00082 0970000 00182
0 340000 5 000000 0980000 5 000000 0340000 00084 0980000 00183
0350000 5 000000 0990000 5 000000 0350000 00085 0 990000 00185
0360000 5000000 1 000000 5 000000 0360000 00086 1 000000 00186
0370000 5 000000 1010000 5 000000 0370000 00088 1010000 00187
0 380000 5000000 1 020000 5 000000 0380000 00090 1 020000 00188
0390000 5 000000 1 030000 5 000000 0 350000 00091 1 030000 00189
0400000 5000000 1 040000 5 000000 0400000 00092 1 040000 00193
0410000 5 000000 1 050000 5 000000 0410000 00096 1 050000 00194
0420000 5 000000 1060000 5 000000 0 420000 00098 1 060000 00195
0430000 5 000000 1 070000 5000000 0430000 00101 1 070000 00197
0 440000 5 000000 1 080000 5 000000 0 440000 00102 1 080000 00201
0450000 5 000000 1 090000 5000000 0450000 00103 1 090000 00203
0460000 5000000 1 100000 5 000000 0 460000 00104 1 100000 00208
0470000 5 000000 1 110000 5000000 0 470000 00105 1 110000 00209
0480000 5 000000 1 120000 5 000000 0 480000 00105 1 120000 00211
0490000 5 000000 1 130000 5 000000 0490000 00106 1 130000 00213
0 500000 5 000000 1 140000 S 000000 0 500000 00109 1 140000 00216
0510000 5 000000 1150000 5000000 0510000 00110 1 150000 00220
0 520000 5 000000 1 160000 5 000000 0520000 00111 1 160000 00223
0530000 5 000000 1 170000 5000000 0 530000 00112 1 170000 00228
0 540000 5 000000 1 180000 5 000000 0 540000 00113 1 180000 00230
0550000 5 000000 1 190000 5000000 0 550000 00114 1 190000 00232
0 560000 5 000000 1 200000 5 000000 0 560000 00115 1200000 00234
0 570000 5 000000 1210000 5 000000 0570000 00116 1210000 00235
0 580000 5 000000 [ 220000 5000000 0 580000 00118 1 220000 00238
0 590000 5000000 1 230000 5 000000 0590000 00119 1230000 00243
0 600000 5 000000 1 240000 5 000000 0 600000 00120 1 240000 00246
0 610000 5 000000 1 250000 5 000000 0610000 00121 1 250000 00249
0 620000 5 000000 1 260000 5 000000 0 620000 00122 1260000 00258
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