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Abstract

Mining DNA microarray gene expression data for discovering in silico
biological knowledge is an emerging area of research in computational
biology. Data mining is an important tool that has been applied suc-
cessfully during the last two decades to analyze gene expression data.
Clustering and classification have been widely used to analyze gene ex-
pression data. Association mining is relatively a promising and estab-
lished technique in the area of data mining and knowledge discovery.
However, a very little work has been done using association mining
techniques to analyze expression data to obtain insights from data with
regards to biological relevance. The purpose of this thesis is to study
various association mining as well as clustering techniques and apply
the techniques for gene expression data analysis. Our first contribution
1s a correlogram matrix based one-pass association mining technique
(OPAM) for finding frequent itemsets from transaction database with-
out candidate generation. We apply the correlogram matrix in finding
strongly correlated item pairs (SCOPE) from transaction data using
support based Pearson correlation coefficient. We also contribute an
alternative non-parametric correlation coeflicient measure for calculat-
ing strongly correlated item pairs. Comparison of SCOPE with other
competitive algorithms using several synthetic and real world datasets
shows the superiority of our methods. We have extended the concept
for reconstruction of co-regulated gene co-expression network (GeCON).
We use both synthetic and real dataset to establish that GeCON is su-
perior in predicting gene network compare to other similar techniques

and networks generated are having high Biological significance. Finally,



we contribute a BiClust tree based technique (CoBi) for extracting co-
regulated biclusters from gene expression data. The advantage of CoBi
is twofold. First, it is one-pass in nature, and second, it can extract
biclusters of high biological significance in polynomial time. We evalu-
ated the performance of the proposed method using several benchmark

gene expression datasets and the results are satisfactory.

Keywords: Gene ezxpression, association mining, clustering, bicluster-

ing, co-expression network, microarray
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Chapter 1

Introduction

“Computer Science is no more about computers than astronomy is about tele-

scopes.” — E. W. Dijkstra

With the rapid growth of DNA microarray technology, it is now possible to analyse
expression pattern of several genes in a systematic and comprehensive manner at
the genomic level!. Studying the expression pattern of genes in different exper-
imental conditions, one may be able to understand the behaviour of genes and
various pathways involved in biological processes. A gene expression level is a nu-
merical value to measure how a particular gene is over-expressed or under-expressed
in comparison to activity of the gene in normal conditions. Analysis of expression
patterns can be helpful in discovering group of genes participate in similar biologi-
cal processes or functions. Various biotechnology laboratories and pharméceutical
companies involved in in silico drug design, can identify the molecular targets that
may interact with thé drugs. Microarray analysis can assist drug companies in
choosing the most appropriate candidates for participating in clinical trials of new
drugs. Due to availability of diagnostic DNA microarrays, cancer research becomes
very dominant in comparison to the other developing technologies since they are

relatively easy to make and use.



1.1 Gene Expression Data Analysis

Gene expression data has become very essential in understanding behaviour of
genes, different biological networks and cellular states. Study of such data may
enable us to address various issues like, how a gene participate in a cellular process
and what are the activities of different genes? In which cell and under which
conditions, do the genes become active? How the activity of a gene are influenced
by various diseases or drugs? Similarly, how genes contribute to diseases? One of
the major goals in analyzing expression data is to determine how the expression
of any particular gene may affect the expression of other genes or how one gene
regulates another gene. Genes that affect one another may belong to the same gene
network. A gene network is a set of related genes where expression of one gene
may influence the other gene activity. Biological networks represent the biological
relationships among genes or gene products (in the form of protein complexes). A
group of co-regulated genes may form gene clusters that can encode proteins, which
interact amongst themselves and take part in common biological processes. In
silico reconstruction of such biological networks is essential for exploring regulatory
mechanism and is useful in better understanding of the cellular environment to
investigate complex interactions?. In an organism, co-expression of genes depend
on sharing of the regulatory mechanism by them. It has been observed that genes
with similar expression profiles are very likely to be regulators of one another or be
regulated by some other common parent gene®. Another major goal of expression
data analysis is to determine what genes are over expressed or under expressed
as a result of certain biological conditions, such as, what genes are expressed in
diseased cells that are not expressed in normal cells. Recently, it has been observed
that a small set of genes are co-regulated and co-expressed under certain conditions
and their behaviour being almost inactive for rest of the conditions. Discovering
group of genes with similar or inverted expression profiles has been employed to
identify co-expressed group of genes as well as to extract gene interactions or gene

regulatory networks.



The advent of the microarray technology and availability of large number of ex-
pression datasets led to new challenges in extracting biologically significant knowl-
edge from the gene expression data. As a result, mining such biological data has
become an emerging area of re;search that requires interaction between biological
research and computer science. Data mining is one of the most popular and indis-

pensable computational tools to discover biological knowledge from large datasets.

1.2 Data Mining in Gene Expression Data Anal-
ysis

Data mining provides computational tools for effective mining of patterns or knowl-
cdge from large databases. Data mining involves various techniques from different
computing paradigm such as databases and data warehouse technologies, statistics,
machine learning, high-performance computing, pattern recognition, soft comput-
ing, data visualization, information retrieval, image and signal processing, and
spatial or temporal data analysis. Data mining has become the first choice of re-
searchers working towards biological knowledge extraction from gene expression
data. Different data mining techniques such as classification, clustering and asso-
ciation rule mining are currently used on gene expression data to extract biological
knowledge in the form of co-expressed genes or other relevant patterns. To improve
relevance and utility of extracted knowledge, most of these applications require ex-
tending existing techniques to adapt them to biological data. During the past
several decades extensive research in the field of biological data mining has made
enormous contributions to our understanding of biological data. Publications of
large number of articles points to the truth of this statement. However, not all of
the techniques proposed address all the issues and challenges. Some of these are
evolutionary, enhancements of previously developed work; others are revolutionary,
introducing new concepts and methods. The present trend in research in gene ex-
pression data analysis is to mine expression data to determine genes with common

functional characteristics and to discover how gene(s) regulate each other. Below



we present a few issues related to gene expression data analysis and the use of data

mining techniques to address these issues.

1.3 Motivation
Based on a comprehensive literature survey we come to the following conclusions:

e While it is important to determine which genes are related, we also need to
understand the mechanism of how genes relate and how they regulate one

another in the form of gene networks.

e Most available gene expression data analysis methods are based on clustering
algorithms which attempt to group genes on the basis of their expression
correlation in different biological situations. However, the clustering approach
fails to infer inter-relationship between genes, which is very significant from
system biologys point of view in the reconstruction of biological networks
such as gene regulatory networks. Association mining is an unsupervised
data mining technique evolved with an idea to find relationships among the
items from market basket data. The idea has been attempted to extend for

drawing significant relationships among genes.

e Very little work has used association mining techniques to analyze expression

data to get insight into data with biological relevance.

e The most costly step in association mining is the number of database passes.
Minimizing the number of database passes may improve the performance of

any association mining based gene expression data analysis technique.

e Data mining techniques for finding groups of biologically related genes use
Euclidean distance or Pearson correlation coefficient as a measure of proxim-
ity. Euclidean distance does not score well in handling gene expression data

that includes shifting and scaling patterns or profiles. The correlation coef-



ficient is not robust with respect to outliers, thus potentially yielding false

positives, assigning a high similarity scores to a pairs of dissimilar patterns.

e The most common activity of gene expression analysis is the pair-wise com-
parison among gene expression profiles. Any traditional method needs N?
passes over the dataset for comparison of V gene expression profiles. Com-
putationally effective method, for comparison in limited number of passes,

may improve the overall performance.

e Traditional approaches group genes based on profile similarity as co-expressed
genes. All genes in a group share similar patterns. Recently, researchers have
observed that co-regulated genes also share negative patterns or inverted

behaviours, which existing techniques are unable to detect.

e Often, it is noted that under certain conditions, a small set of genes are co-
regulated and co-expressed, their behaviour being almost independent of the
rest of the conditions. As a result, biclustering techniques have been applied
to gene expression data. Most interesting variants of this problem are NP-
complete requiring either extensive computational effort or the use of lossy

heuristics to short-circuit the calculation.

1.4 Contributions

In this thesis, we systematically study and solve problems that state-of-the-art asso-
ciation mining and data clustering algorithms face when applied to gene expression
data. We use clustering and association mining techniques to discover relationships
among co-regulated genes in the form of gene biclusters, gene clusters and gene co-
expression networks. We explore expression profile based similarity measures in
order to find pair-wise relationships among genes. We propose a method called
OPAM to find frequent itemsets from large transaction databases using a single
pass of the database without the candidate generation step. We solve the problem

1

of strongly correlated pair finding from transactions database using a one-pass ap-



proach. We also propose an alternate support based non-parametric approach to
obtain strongly correlated pairs. We apply the above mentioned concept to com-
pare two genes expression profiles in order to capture gene co-expression networks.
And, finally, we design a polynomial time co-regulated gene biclustering technique.

A brief about the developed techniques are discussed below:

OPAM: An algorithm called OPAM (One-Pass Association Mining), has been
proposed, for finding all frequent itemsets from a transactions database with-
out generating any candidate sets. OPAM uses a data structure called correl-
ogram matrix to generate all two-element frequent itemsets, and then exploit
the vertical layout of the database to generate the remaining frequent item-
sets. OPAM adopts an integrated approach to solve the frequent itemset

finding problem in a single pass over the database.

SCOPE: SCOPE (Strongly COrelated Pair Extraction) is a one-pass technique to
find strongly correlated pairs based on Pearson correlation coefficient from a
large transaction database without using any candidate generation. We also
propose an extension of SCOPE to extract top k strongly correlated pairs.
We use a correlogram matrix for efficiently extracting pair-wise support of
all the itemsets. A support based Spearman rank order correlation finding

technique is also proposed to find strongly correlated pairs.

GeCON: GeCON (Gene CO-expression Network) is proposed to extract co-regulated
gene co-expression networks from microarray data using expression pattern
based local proximity measure. Pair-wise supports are computed for each
pair of genes based on changing tendencies over the dataset in order to calcu-
late the local proximity between pairs of genes. Gene pairs showing similar
expression profiles over a given number of conditions are used to construct
the gene co-expression network. Positive and negative regulation information

are also captured during network construction.

CoBi: CoBi (Co-regulated Biclustering) is an expression pattern based bicluster-

ing technique for grouping both positively and negatively regulated genes

6



from gene expression data. Regulation patterns and similarities in degrees
are taken into account while computing similarity between two genes. Unlike
traditional biclustering techniques which use greedy iterative approaches and
are NP complete, CoBi uses a tree based technique inspired from OPAM, for

finding a set of biologically relevant biclusters in polynomial time.

1.5 Organization of the Thesis
The thesis is organized as follows:

e Chapter 2 gives a background of the study. It discusses in details about
microarray technology and the various patterns available in expression data

and how data mining is helpful in discovering such patterns.

e Chapter 8 discusses various association mining techniques and proposes a
new one-pass association mining technique, referred as OPAM for finding
frequent itemsets from transactions database without the help of candidate

generation step.

e Chapter 4/ presents a correlogram matrix based technique for computing all
strongly correlated item pairs from transactions database. It also proposes

an alternate non-parametric correlation computation techniques.

e Chapter 5 describes a pattern based co-expression networks finding technique

from gene expression data.

e Chapter 6 presents a co-regulated biclustering technique that extracts biclus-

ters in polynomial time.

e Chapter 7 summarizes the work with concluding remarks.

\



Chapter 2

Background

2.1 Molecular Biology

The domains of biochemistry in general and molecular biology in particular, are
concerned with the basic molecular principles of life. Biological objects interact
with each other making possible all different forms of life. A central interest of
molecular biology is the flow of information within an organism. Living organisms
store all information that is necessary for growth, reproduction, and evolution in
so-called genes on the DNA (sometimes RNA in simpler organisms). Deoxyribose
nucleic acid (DNA) or Ribose nucleic acid (RNA) encodes the genetic instructions
used in the development and functioning of all known living organism a:nd thus act
as informational molecules. The genetic information is encoded as a sequence of
nucleotides: A (adenine), C (cytosine), T (thymine) G (Guanine) and U (Uracil).
T appears only in DNA and U appears in RNA molecule. Watson-Crick model
describes DNA molecules as double-stranded helices structure. It consists of two
long polymer chains of nucleotide molecules attached with alternating sugars (de-
oxyribose) and phosphate backbc;ne, which are both winded around a common axis
that gives a double-helical structure to DNA. Each nucleotide molecule from one
chain always bonds with a complementary nucleotide molecule from other chain
and form a nucleotide pair called base-pair (bp). A base-pair is simply an inter-

action between the bases standing opposite of each other. These interactions are
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based on hydrogen bonds. Erwin Chargaff®> suggested base pairing rule. According
to the rule, A binds only to T (A-T) and C binds only to G (C-G), to form a base-
pairs (see Figure 2.1, taken from®). A DNA molecule of 100 bp thus consists of
two antiparallel sequences, each 100 nucleotides (bases) long. The human genome
roughly consists of 1.3 x 10° of such base pairs®.

In contrast to DNA molecule, RNA is a single-stranded chain consists of four
nucleotide molecules A, T, G and U. In living organism, there are four different
types of RNA is available. Ribosomal RNAs (rRNA) are structural components
of multi-protein complexes called ribosomes and protein synthesis takes place at
the ribosomes. Messenger RNAs (mRNA) acts as carrier of genetic information
from the genes to the ribosomes and transfer RNAs (tRNA) play the role of a
translator, that translates the genetic information of the mRNA into a sequence
of special bio-molecules called amino acids. Amino acids are the basic building
blocks of protein. Protein molecules are polymers, i.e. consist of thousands or

millions of atoms and responsible for all major cellular activities. It act as enzyme,

ahttp://wps.prenhall.com/wps/media/objects/3318/8898159/blb2511.html



anti-bodies, regulatory substances, stabilisers, or carriers of other substances.
Genes are nothing but regions of the DNA and act as a repository of biolog-
ical information which is necessary to build and maintain an organism’s cells. It
includes construction and regulation of proteins as well as other molecules that ul-
timately determine the growth and functioning of the living organism and transfer
genetic traits to next generation. This is termed as central dogma of molecular
biology. Entire DNA sequence of an organism do not play active role in cellular
activities. In case of human genome, only 2-3% of the whole human DNA are
functional. The functional part or the coding part of DNA is only responsible for
protein synthesis. The remaining DNA does not encode for any protein. This DNA
is sometimes referred to as “junk-DNA” or Non-coding DNA. Recent research re-
veals that junk-DNA plays critical roles in controlling how cells, organs and other
tissues behave. Genes are templates for protein construction within a cell. Pro-
tein synthesis takes place within the cell through the process of transcription and
translation. In transcription phase, a molecular complex called RNA polymerase-
IT creates a copy of a gene from the DNA to messenger RNA (mRNA) inside the
nucleus. The mRNA travels from nucleus to the cytoplasm for protein synthesis,
where it then binds with ribosome. Ribosome is a complex molecule based on ribo-
somal RNA (rRNA) and proteins. At the ribosome, mRNA is used as a blueprint
for the production of a protein; this process is called translc;tzon. The mRNA moves
along the protein synthesis site i.e. ribosomes, with a set of three-nucleotides called
codons. Transfer RNA (tRNA) provides a compatible anticodon and is hybridised
onto the mRNA. Finally, the amino acids bound to the RNA form polypeptide
chain. This process continues until the translation process reaches a stop codon,
which terminates the polypeptide synthesis. The entire process is called gene ez-
pression. A schematic drawing of the process of protein synthesis is illustrated in

Figure 2.2 taken from National Health Museum?.

2http://www.accessexcellence. org
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2.2 Overview of Microarray Technology

Traditional experimentation system in molecular biology are capable of studying
only a few genes in a single experiment. However, for a traditional methods, it
is difficult to capture the dynamic behaviour or the activities of a gene that is
going on inside a cell. DNA microarray technology provides a convenient and effec-
tive platform for monitoring activity of thousands of genes simultaneously. DNA
microarray analysis is a fast and versatile approach to perform high throughput ex-
plorations of genome structure, gene expression, and gene function at both cellular
and organism levels. Microarray analysis is a complex multi-step process involving
various areas of expertise such as molecular biology, image analysis, computing and
statistics.

There are five majof steps in performing a typical microarray experiment?®. The

steps are illustrated in Figure 2.3 taken from®.

1. Preparation of microarray: In the preparation process, polymerase chain
reaction (PCR) technique is used to amplify the DNA of interest using a
universal primer or gene specific primers to generate thousands to millions of
copies of a particular DNA sequence. The purity of the DNA fragments are
then checked by sequencing or using an agarose gel through the estimation
of the DNA concentration. The next step is spotting the DNA solution onto
special glass slides coated with chemical materials such as polyethyleneimine
polymer p-aminophenyl trimethoxysilane. Precision in spotting is achieved
using precisely controlled robotic pins or other equivalent technology such
as inkjet printing. The last step of manufacturing glass DNA microarrays
is the post-print processing step involving drying of the DNA on the slide
overnight at room temperature and the use of UV cross-linking to prevent
subsequent binding of the DNA, and to decrease the background signal upon
hybridisation of a labelled target.

2http://grf.lshtm.ac.uk/microarrayoverview.htm
Phttp://www.uni-koeln.de/med-fak/biochemie/transcriptomics/07_analysis.shtml
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Sample preparation and labelling: Sample preparation begins with iso-
lation of mRNA copies that represents genes, i.e., coding genes that expressed
during sample collection. It is a very vital step as because the overall suc-
cess of any microarray experiment highly depends on the quality of the RNA
collected. Purity in terms of homogeneity or uniformity of the mRNA is
an important factor for proper hybridization process, particularly when flu-
orescence is used, as cellular proteins, lipids, and carbohydrates can mediate
significant nonspecific binding of labeled cDNAs to matrix surfaces. The
mRNA extracted from both the target and the reference samples are then
converted into- complementary DNA (cDNA) using a reverse-transcriptase
enzyme. To initiate cDNA synthesis, this step also requires a short primer.
Next, each ¢cDNA (target and reference)is labelled with a fluorescent cyanine

dye (i.e. either Cy3 or Cy5).

Hybridisation: Hybridisation is the step of combining two complemen-
tary single stranded-DNA to form a double-stranded molecule. The labelled

cDNAs (target and reference) are purified to remove contaminants such as
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primers, unincorporated nucleotides, cellular proteins, lipids, and carbohy-
drates. After purification, the labelled ¢cDNA is hybridised aganst ¢cDNA
molecules spotted already on a glass slide. Each molecule in the labelled
c¢DNA will only bind to its appropriate complementary target sequence on
the static array. Before hybridisation, the microarray slides are incubated
at a high temperature with solutions of saline-sodium buffer (SSC), Sodium
Dodecyl Sulfate (SDS) and bovine serum albumin (BSA) to reduce the back-

ground due to nonspecific binding.

. Washing: To remove any unhybridized labelled cDNA from the array and
to increase stringency of the experiment by reducing cross hybridisation, the
slides are washed after hybridisation. The latter is achieved by either increas-

ing the temperature or lowering the ionic strength of the buffers

. Image acquisition and Data analysis: The final step of microarray exper-
iments involve image acquisition and data analysis of the array. The slide is
dried at first and then scanned using a laser scanner to determine how much
labelled cDNA (probe) is bound to each target spot. Laser excitation of the
incorporated targets yields an emission with characteristic spectra, which is
measured using a confocal laser microscope. Software used for microarray
analysis often represents green spots as up-regulation a gene compared the
to control, red sport as down-regulation a gene in the experimental sample,
and yellow to represent equal ab‘undance in both experimental and control
samples. In the data analysis phase, the relative expression levels of the genes
in the sample and in the controlled populations can be estimated from the
fluorescence intensities and colour for each spot. Based on the amount of
probe hybridized to each target spot, information is gained about the specific
mRNA composition and the representative in the sample. The logarithm of
the ratio of raw red/green fluorescence intensities are taken to convert thern
into log intensities. In the case of microarray experiments, there are many

sources of systematic variation that affect measurements of gene expression
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levels. The process of eliminating such variations allows appropriate compar-
ison of data obtained from the two samples by using various normalization
processes. The processed data, after normalization, can then be represented

in the form of a matrix, often called gene expression matrix.

2.3 Gene Expression Data

Microarray is an indispensable technology in molecular biology that helps in as-
sessing expression of a large number of genes under multiple conditions such as
time-series, tissue samples (e.g., normal versus cancerous tissues), and experimen-
tal conditions. With the help of microarray experiments one can monitor simul-
taneously, the expression levels of several genes at a genome scale. To gain better
understanding of a gene and its behaviour inside cell, various patterns can be de-
rived by analysing the change in expression of the genes. An expression profile (of a
gene or a sample) can be represented in vector space’. For example, an expression
profile of a gene can be considered a vector in n dimensional space (where n is
the number of conditions), and an expression profile of a sample with m genes can
be considered a vector in m dimensional space (where m is the number of genes).
In the example given below, the gene expression matrix X with m genes across n
conditions is an m X n matrix, where the expression values for gene % in condition

J is denoted as x,;:

(-731,1 Zi2 - Tin
T21 X222 - T2n

X =
Tm,1 ITm,2 Tm,n

Formally, it can be defined as:
Definition 2.3.1 (Gene Expression Data) : Let G = {G},Gs, - ,Gn} be a
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set of m genes and R = {T1,T3, -+ ,Tn} be the set of n conditions or time points
of a microarray dataset. The gene expression dataset X can be represented as an
m X n matrix, i.e., Xmxn where each entry z,, in the matrix corresponds to the

logarithm of the relative abundance of mRNA of a gene.

The expression profile of a gene 2 can be represented as a row vector:

Gl: [xz,l T2 T3 0 Tomf -

The expression profile of a sample j can be represented as a column vector:

MESY

T2,

G.= |23,

Tmy
A subset of real gene expression data from a Homo-sapiens microarray dataset

is given in Table 2.1.

2.4 Patterns in Gene Expression Data

Microarray data 1s essentially the logarithm of the ratio of raw red/green fluo-
rescence intensities at a certain spot and is continuous in nature. The notion of

pattern in microarray data introduced in® as follows:

Definition 2.4.1 (Expression Pattern) : Given a gene G,, its expression values
under a series of varying conditions or under a single condition form a range of real
values. Suppose this range is [a, ] and an interval [c, d] is contained in [a,b]. Thus
G, is a vector of real numbers within the range [a, b], denoted as G,@]a, b, is called
an item, meaning the values of G, are limited inclusively between a and b.

A set containing one single item is called a pattern. A set of several items,
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which come from different genes is also called a pattern. So, a pattern looks like:

{Gzl@[alla bzl], ct Ty sz@[azk7 bzk]}

where 4, # 15,1 <t,s <k, if k> 1.

Example patterns from a Homo sapiens microarray data (Table 2.1) and its

corresponding profile plots are shown in the Figure 2.4.

It has been observed that from a biological point of view, patterns play an

important role in discovering functions of genes, disease targets or gene interactions.

A number of different patterns have been identified in biologically significant gene

groups.

2.4.1 Shifting and Scaling patterns

In shifting patterns® the gene profiles show similar trends, but distance-wise, they

may be away from, each other (see Figure 2.5 ).

In terms of expression values, gene patterns follow an additive distance between

them. Formally, shifting pattern can be defined as follows.

Definition 2.4.2 (Shifting Pattern) : Given two gene expression profile G; =
JEx}and G, ={E;1, Ep, - -

{Ella Ez?y T
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, Eyx } with k expression values, a profile
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Figure 2.5: Expression profile plot shows Shifting and Scaling patterns

is called as shifted pattern, if expression value of E,; can be related with E,; with

constant additive factor 7 under k** condition. This can be written as follows.

Ey=Ex+m, fori=1tok ’ (2.1)

Similarly, scaling patterns in gene expression follow roughly a multiplicative

distance between the patterns. Scaling pattern can be defined as:

Definition 2.4.3 (Scaling Pattern) : Given two gene expression profile G, =
{Eu,Ewo, - ,Ex}and G, = {E;1, Ep2,- - -, E;x} with k expression valucs, a profile
is called as scaling pattern, if expression value of E, can be related with E
with constant multiplicative factor 7, under k** condition. This can be written as

follows.

Ezk = EJk X 7Tk,fOI' i1=1tok (22)

As shown in Figure 2.5, values of G5 are roughly three times larger than those of
G3, and values of G; are roughly three times larger than those of G,. In nature, it
may happen that due to different environmental stimuli or conditions, the pattern
(3 responds to these conditions similarly, although G; is more responsive or more

sensitive to the stimuli than the other two.
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2.4.2 Coherent patterns

A group of genes showing similar pattern tendency across different conditions is
called coherent. Such a group shows some kind of a co-expression in the expression
profile. Co-expressed genes are likely to be involved in the same cellular processes.
In practice, co-expressed genes may belong to the same or similar functional cat-
egories indicating co-regulated families?. Coherent gene expression patterns may
characterize important cellular processes and may provide a foundation for under-
standing the regulation mechanism in the cells®. The patterns shown in Figure 2.5

are the examples of coherent patterns.

2.4.3 Co-regulated patterns

Often, coherent patterns are divided into two categories namely, positively regu-
lated patterns and negaxtively regulated or inverted patterns. Sometimes, a group of
genes that are positively or negatively regulated also called co-regulated genes. In
Figure 2.4 genes GLANTS and IDH3B show similar pattern or positively regulated
patterns. On the other hand IDH3B or GLANTS5 showing inverted or negative
patterns with APOE. Biologically all three genes are very significant.

Thus, gene expression data analysis involves pattern finding. Data 'mining 1s the
study of techniques that extract patterns from large amount of data. As a result,
data mining provides the major tools for gene expression data analysis. Below we

present a brief discussion of data mining techniques.

2.5 Data Mining

Data mining is a computational technique to analyze large volumes of data for
finding relationship within the data that helps in predicting new fact such as how
components of the data are related to one another. Fayyad, Piatetsky-Shapiro and
Smyth in 19961° defined data mining as: “The non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data”.

American statistician David Hand in 1998!! also defined data mining as: “4 new
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discipline lying at the interface of statistics, database technology, pattern recogni-
tion, and machine learning, and concerned with secondary analysis of large data
bases in order to find previously unsuspected relationships, which are of interest of
value to their ouners”. Data mining is an intermediate step in the KDD (Knowl-
edge Discovery in Databases) process'? that consists of applying data analysis and
discovery algorithms that produce a particular enumeration of patterns (or models)
in the data. In general, the knowledge discovery process consists of an iteration

sequence of the following steps:
e Data cleaning: handles noisy, erroneous, missing or irrelevant data.

e Data integration: where multiple, heterogeneous data source may be inte-

grated into one.

e Data selection: where data relevant to the analysis task are retrieved from

databases.

e Data transformation: where data are transformed or consolidated into forms-

appropriate for mining by performing summary or aggregation operation.

e Pattern evaluation: identifies the truly interesting patterns representing knowl-

edge based on some measures of interestingness.

e Knowledge presentation: where visualization and knowledge representation

techniques are used to present the mined knowledge to the user.

2.5.1 Application of data mining

Today data mining offers value across a broad spectrum of industries.

1. Marketing: In marketing, the primary application!® of data mining is to an-
alyze customer databases to identify potential customer groups and forecast
their behaviour. Another popular application is market-basket data analysis
systems, which extracts interesting patterns such as, “If customer bought X,

he/she is also likely to buy Y and Z”.
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2. Telecommunications: Another application of data mining is the telecommii-
nication alarm-sequence analyzer system (TASA). It was built in collabora-
tion with a telecommunications equipment manufacturer and three telephone
networks!®. Speciality of the system is that, it uses a novel framework for
locating frequently occurring alarm episodes from the alarm stream and pre-
senting them as rules. Large sets of discovered rules can be explored with
flexible information-retrieval tools supporting interactivity and iteration. In
this way, TASA offers pruning, grouping, and ordering tools to refine the

results of a basic brute-force search for rules.

3. Medical Application: Medical applications are another fruitful area. Data
mining can be used to predict the cffectiveness of surgical procedures, medical
tests or medications’®. Recently, it has also been used in Medical imaging
applications® to detect or predict diseases like cancer, which are sometime

impossible for the human specialist to detect.

4. Bioinformatics. Data mining is used in the fields of biology and bioinfor-
matics!?. Currently, data mining is extensively used in the analysis of gene

expression data.

5. Pharmaceutical: Pharmaceutical firms are mining large databases of chem-
ical compounds and genetic material to discover substances that might be

candidates for development as agents for the treatments of diseases!®.

6. Network Security: Data mining is successfully used to predict the usage pat-

terns in network!? to detect intrusion in the networks.

2.5.2 Data mining tasks

In general, data mining tasks can be classified into two categories!?.
Descriptive mining: It is the process of discovering the essential characteris-
tics or general properties of the data in the database. Clustering, association and

sequence mining are some of the descriptive mining techniques.
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Predictive mining: This is the process of inferring patterns from data to
make predictions. Classification, regression and deviation detection are predictive
mining techniques.

There are several widely used data mining techniques. Traditionally, these tech-
niques are used independently. These techniques include: classification, clustering,

association rule mining, prediction and time-series analysis.

Classification: Classification!? is a supervised technique that partitions a given
dataset into disjoint classes using a class attribute. A classifier model is
built based on training data and later the model is used for predicting class
of an unknown sample The goal of classification is to analyze the training
set and to develop an accurate description or model for each class using
the attributes presented in the data. Many classifications models have been

developed including neural networks, genetic models, and decision trees.

Clustering: Clustering'? is an unsupervised technique to group data into clusters
with high intra-cluster similarity and low inter-cluster similarity. A similar-
ity or distance measure is important criteria in deciding the quality of the
cluster. To a large extent, quality depends on the appropriateness of the
similarity measure for the data set or the domain of application. For exam-
ple, clustering can be used to divide a population into distinct groups, such
that each group can be ticated with a different strategy. A number of clus-
tering techniques are available. Partitioning methods, hierarchical methods,
density-based methods, grid-based methods, and model based methods are
some of the well known clustering techniques. The basic difference between
classification and clustering is that classification assumes prior knowledge on

class labels, while clustering does not assume any knowledge of classes.

Association Rules: Association rule mining!? is a data mining technique use to
find interesting associations among a large set of data items. Association rule
mining started with an initial idea to apply on market-basket analysis. In

market-basket analysis, purchasing behaviour of customers are analyzed to
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find association between different items that customers place in their “shop-
ping baskets”. The discovery of such association rules can help retailers in de-
veloping new marketing and placement strategies as well as logistics plan for
inventory management that ultimately leads to business promotion. Associa-
tion rules identify items that are frequently purchased together by customers.
They make attempts to associate a product A with another product B so as
to infer “whenever A is bought, B is also bought”, with high confidence (i.e.,

the number of times B occurs when A occurs).

Prediction: Prediction techniques!? are based on some continuous valued at-
tributes. The previous history of the attributes is used to build the model.

This technique is commonly used for predicting product sales.

Time-Series analysis: Time-series analysis'? analyzes large sets of time series
data to find regularities and interesting characteristics, including similar se-
quences or sub sequences, and sequential patterns, periodicities, trends and
deviations. For example, one may predict trends in the stock values for a com-
pany based on its stock history, business situation, competitor performance

and current market.

2.6 Discussion

The two classical data mining methods, i.e., data clustering and data classifica-
tion, have been widely used to analyze gene expression data. These methods are
valuable exploratory tools in data mining, and used successfully throughout the
last two decades to explore biological knowledge from gene expression data. While
classification helps in identifying genes responsible for diseases based on prior facts,
clustering groups genes based on certain similarity measures into clusters that share
common expression patterns. Unlike classification, clustering is effective in ﬁnd-.
ing biologically significant groups of genes without any prior knowledge. These
groups of genes involved in common functions and biological activities. However,
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they are limited only to placing genes into disjoint groups that share certain char-
acteristics. It has been observed that gene groups shares overlapping structures.
Moreover, sometimes genes share similar expression patterns under a subset of
given conditions. Biclustering?® is an extension of classical clustering, that has
been successfully used in finding groups of genes having similar expressions under
a subset of conditions.

Association rule mining?®' is a relatively new and promising technique in the
area of data mining and knowledge discovery. Association rule mining is a process
that identifies links between sets of correlated objects in large datasets. Frequent
itemset mining (we referred it simply as association mining in remaining of the
thesis)is a sub-process of association rule mining technique, used to find relation-
ship between the objects or items. Originally, the technique has been applied in
market basket database and later extended to other application domains?223:24 in-
cluding neuroinformatics?. However, not much work have been done so far to
apply frequent mining or association mining in gene expression data analysis for
finding gene regulatory networks or biclusters, with both positively and negatively
regulated genes. Extension of classical association mining techniques for gene ex-
pression data analysis may suffer due to costly candidate generation phase and
multi-pass nature of the techniques. Reducing the number of database passes and
by removing the candidate generation phase may computationally improve gene
expression data analysis based on association mining many folds.

In the next chapter, we present a new association mining technique called
OPAM that needs only one pass over the database to generate all the frequent

itemsets without any candidate generation.
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Chapter 3

Association Mining Technique

without Candidate Generation

This chapter presents an efficient One Pass Association Mining technique called
OPAM, which finds all frequent itemscts without generating any candidate set.
OPAM is an integration of two techniques: a correlogram matrix based technique
to generate all frequent 1- and 2-itemsets in a single scan over the database and a
technique that uses a vertical layout concept to generate the rest of the frequent
itemsets. We experiment with several synthetic and real datasets and compare the
performance of OPAM with competitors viz., Apriori and FP-growth and obtained

satisfactory results.

3.1 Introduction

Association rules are of the form “80% of the customers who buy bread also buy but-
ter”. Association rules have numerous applications in real world, such as decision
support, understanding customer behaviour, tele-communication alarm diagnosis.
and prediction. A formal definition of the association rule-mining problem is given

by Agrawal?! is as follows.

Definition 3.1.1 (Association Rule) : An association rule is an implication

in the form of X = Y, where X,Y C [ are sets of items called itemsets, and
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X NY =¢. X is called the antecedent while Y is called the consequent. The rule

simply means that X implies Y.

Two basic measures called support and confidence and two corresponding thresh-
olds, munimum support and minimum confidence, are used to measure the goodness

of an association rule.

Definition 3.1.2 (Support) : The support of an association rule is defined as
the percentage or fraction of records that contain X UY to the total number of
records in the database. The count for each item is increased by one every time the
item is encountered in a different transaction 7" in database D during the scanning

process. Support is calculated as follows:

IXUY|
Dl

Before the mining process, users can specif);f the minimum support as a thresh-

Support(X,Y) = (3.1)

old, meaning that they are interested only in association rules that are generated

from itemsets whose support exceeds that threshold.

Definition 3.1.3 (Confidence) : Confidence of an association rule is defined as
the percentage or fraction of the number of transactions that contain X UY to the
total number of records that contain X. Confidence is calculated by the following
equation:

_ Support(X,Y)

Confidence(X,Y) = Support(X) , (3.2)

If the above percentage exceeds the threshold of minimum confidence, an inter-
esting association rule X = Y is generated. Confidence is a measure of strength
of the association rule. The goal of association rule mining is to discover associa-
tion rules that satisfy the predefined minimum support and confidence for a given
database. A rule that satisfies both a minimum support threshold and a minimum
confidence threshold is called a Strong Rule. The association rule-mining prob-
lem is usually decomposed into two sub-problems. One is to find itemsets whose
occurrence frequency exceeds a predefined threshold in the database; such item-

sets are called frequent or large itemsets. The second sub-problem is to generate
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association rules from large itemsets with the constraint of minimal confidence.
Since the second sub-problem is quite straightforward, most research focuses on
the first sub-problem. The first sub-problem can be further divided into two sub-
problems: generating candidate sets and generating frequent itemsets. Diagram-
matic representation of the association mining technique is shown in Figure 3.1.
The databases of interest are large and users are concerns only about items that
are frequently purchased together (i.e., appear together in a database transaction).
Usually thresholds of support and confidence are predefined by users to drop those

rules that are not interesting or useful.

| Association Mining ]

¥
[ |

[ FrequentltemMinin;I L Rule Generation ]
|
1 [

rCandidate GenerationJ l Frequent Itemset Generatioﬂ

Figure 3.1: Various steps in association mining technique

3.2 Related Work

Association mining came into existence as market basket analysis on boolean
datasets. In association mining, the size of databases are semi-large so that they
can usually be accommodated in main memory. They are static in nature and
sometimes referred as sequential association mining. Several efficient and improved
sequential association mining techniques have been proposed throughout the last
two decades?®. Next, we discuss in brief some contributions in the area of the

sequential association mining.

3.2.1 AIS

The AIS (Agrawal, Imielinski, Swami’93)?! algorithm is the first algorithm pro-

posed for mining association rules. During the first pass over the database, the
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support count of each individual item is accumulated. Those items whose support
counts are less than the support threshold are eliminated from the list of frequent
items. From these frequent items, candidate 2-itemsets are generated by extend-
ing frequent items that occur with other items in the same transaction. To avoid
generating the same itemsets repeatedly the items are ordered. Candidate itemsets
are generated by joining a large item in the previous pass with another item in the
transaction, which appears later than the last item in the frequent itemsets. To
make this algorithm more efficient, an estimation method is introduced to prune
itemset candidates that have no hope of becoming large. Consequently the unnec-
essary effort of counting such itemsets can be avoided. Since all candidate itemsets
and frequent itemsets are assumed to be stored in main memory, memory manage-
ment is necessary for AIS when memory is not enough. The main drawback of the
AIS algorithm is that it generates too many candidate itemsets that finally turn
out to be small, requiring wasted effort In addition, this algorithm requires too
many passes over the whole database. In this algorithm only one item consequent
association rules are generated, which means that the consequents of the rules con-
tain only one item. For example we only generate rules like X NY = Z but not

those rulesas X =Y N Z.

3.2.2 Apriori

Among the popular algorithms to find large itemsets, the Apriori algorithm?’
stands at the top because of its simplicity and effectiveness. The basic property
that characterizes a large itemset is that all subsets of a large itemset are large.
The Apriori algorithm exploits this fact. The algorithm makes many passes over
the data. Each pass starts with the seed set of large itemsets which are used to
generate new potentially large itemsets called candidate itemsets. The support of
each candidate itemset is found during a pass over the data and the actual large
itemsets are determined. These large itemsets become the seed for the next pass.
This process continues till no additional large itemsets are found. The algorithm

uses a function, called apriorigen(Li—-1), which takes the set of all large & — 1
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support count of each individual item is accumulated. Those items whose support
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stands at the top because of its simplicity and effectiveness. The basic property
that characterizes a large itemset is that all subsets of a large itemset are large.
The Apriori algorithm exploits this fact. The algorithm makes many passes over
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itemsets (Lx_1) as input and produces the candidates for large k-itemsets (Ly).
Despite its simplicity, the Apriori algorithm suffers from shortcomings. It is not
scalable with the size of the database because it scans the database in each iteration
to generate large itemsets. It produces a large number of candidate itemsets, out
of which only a few are actually frequent itemsets. As a result, the ratio between
the number of candidate large itemsets and the number of actual frequent itemsets
becomes very high. The same technique is independently proposed by Mannila et

al.?8. Both works integrated later in?°.

3.2.3 SETM

The SETM algorithm®® was motivated by the desire to use SQL to calculate large
itemsets. In this algorithm each member of the set of large itemsets, Ly , is
in the form < TID, Itemset > where TID is the unique identifier of a transac-
tion. Similarly, each member of the set of candidate itemsets, Cy, is in the form
< TID,Itemset >. Similar to the AIS algorithm, the SETM algorithm makes
multiple passes over the database. In the first pass, it counts the support of indi-
vidual items and determines which of these are large or frequent in the database.
Then, it generates the candidate itemsets by extending large itemsets from the pre-
vious pass. In addition, SETM remembers the TIDs of the generating transactions
with the candidate itemsets. The relational merge-join operation can be used to
generate candidate itemsets. The SETM algorithm saves a copy of the candidate
itemsets together with TID of the generating transaction in a sequential manner.
Afterwards, the candidate itemsets by sorted on itemsets, and small itemsets are
deleted using an aggregation function. If the database is in sorted on the basis of
TID, large itemsets contained in a transaction in the next pass are obtained by
sorting Lx on TID. This way, several passes are made on the database. When no
more large itemsets are found, the algorithm terminates. The main disadvantage of
this algorithm is the number of candidate sets C. Since for each candidate itemset
there is a associated TID, it requires more space to store a large number of TIDs.

Furthermore, when the support of a candidate itemset is counted at the end of the
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pass, Cy is not in ordered. Therefore, again sorting is needed on itemsets.

3.2.4 SEAR

SEAR (Sequential Efficient Association Rules) algorithm?3! is identical to Apriori,
except that SEAR stores candidates in a prefix tree instead of a hash tree. In a
prefix tree (also called a trie), each edge is labeled by items. Common prefixes are
represented by tree branches, and unique suffixes are stored at the leaves. SEAR
uses a pass-bundling optimization, where it generates candidates for multiple passes

if the candidates fit in memory.

3.2.5 DHP

Shortly after the Apriori algorithm was published, Park et al. proposed another
optimization algorithm, called DHP (Direct Hashing and Pruning) to reduce the
number of candidate itemsets®?. During the k** iteration, when supports of all
candidate k-itemsets are counted by scanning the database, DHP looks ahead and
gathers information about candidate itemsets of size k + 1 in such a way that all
(k + 1)-subsets of each transaction are stored in a hash table. Each bucket in the
hash table consists of a counter to represent how many itemsets have been hashed
to that bucket so far. When a candidate itemset of size k+ 1 is generated, the hash
function is applied on that itemset. If the counter of the corresponding bucket in
the hash table is below the minimal support threshold, the generated itemset is
not added to the set of candidate itemsets. During the support counting phase
of iteration k, every transaction is trimmed in the following way. If a transaction
contains a frequent itemset of size k + 1, any item contained in that k£ + 1 itemset
will appear in at least k of the candidate k-itemsets in Ck. As a result, an item in
transaction 7" can be trimmed if it does not appear in at least k of the candidate
k-itemsets in C%. These techniques result in a significant decrease in the number
of candidate itemsets that need to be counted, especially in the second iteration.

Nevertheless, creating the hash tables and writing the adapted database to disk,
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at every iteration, causes significant overhead.

3.2.6 Partitioning approach

The partition approach® divides the database into small partitions such that each
partition can be handled in the main memory. Let the partitions of the database
be Dy, Dy, -+, D,. In the first scan, it finds local large itemsets in each partition
D, (1 £ < p). Alocal large itemset, L,, can be found by using an algorithm such
as Apriori. Since each partition can fit in the main memory, there is no additional
disk I/O for a partition after the partition is loaded into the main memory. In
the second scan, it uses the property that a large itemset in the whole database
must be locally large in at least one partition of the database. The union of the
local large itemsets found in each partition is used as candidates and are counted

through the whole database to find all the large itcmsets.

3.2.7 Sampling

Sampling* reduces the number of database scans to one in the best case and two
in the worst. A sample which can fit in main memory is first drawn from the
database. The set of large itemsets in the sample is then found from this sample
using Apriori. Let the set of large itemsets in the sample be PL, which is used as
a set of probable large itemsets and used to generate candidates which are to be
verified against the whole database. The candidates are generated by applying the
negative border function, BD, to PL. Thus the candidates are BD(PL) U PL.
The negative border of a set of itemsets PL is the minimal set of itemsets which
are not in PL, but all their subsets are. After the candidates are generated, the
whole database is scanned once to determine the counts of the candidates. If all
large itemsets are in PL, i.e., no itemsets in BD(PL) turn out to be large, all large
itemsets are found and the algorithm terminates. Otherwise, there are misses in
BD(PL); some new candidate itemsets must be counted to ensure that all large

itemsets are found, and thus one more scan is needed. In this case, L N PL # ¢,
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and the candidate itemsets in the first scan may not contain all candidate itemsets

of Apriori.

3.2.8 DIC

DIC (Dynamic Itemset Counting)3® initially identifies certain ‘stops’ in the database.
It is assumed that we read the records sequentially as we do in other algorithms,
but pause to carry out certain computations at the ‘stop’ points. It defines four
different structures: Dashed Box, Dashed Circle, Solid Box, Solid Circle. Each of
these structures maintains a list of itemsets. Itemsets in the ‘dashed’ category of
structures have a counter and the stop number with them. The counter is to track
of the support value of the corresponding itemsets. The stop number is to keep
track whether an itemset has completed one full pass over a database. The itemsets
in the ‘solid’ category structures are not subjected to any counting. The itemset in
the solid box is the confirmed set of frequent sets. The itemsets in the solid circle
are the confirmed set of infrequent sets. The algorithm counts the support count
of the itemsets in the dashed structure as it moves along from one stop point to
another. During the execution of the algorithm, at any stop point, the following

events take place,

o Certain itemsets in the dashed circle move into the dashed box. These are
the itemsets whose support-counts reach minimum threshold value during

this iteration.

o Certain itemsets enter afresh into the system and get into the dashed circle.
These are essentially the supersets of the itemsets that move from the dashed

circle to the dashed box.

e The itemsets that have completed one full pass, move from the dashed struc-
ture to the solid structure. That is, if the itemset is in a dashed circle while
completing a full pass, it moves to the solid circle. If it is in the dashed box,

it moves into the solid box after completing a full pass.
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Though this method drastically reduces the number of scans of the database,

its performance is heavily dependent on the distribution of the data.

3.2.9 FP-growth

FP-growth®¢ finds frequent itemsets without candidate generation. The algorithm
is based on a special data structure called FP-tice, which is a prefix tree of the
transactions of the database such that each path represents a set of transactions
that share the same prefix. The algorithm works as follows. The algorithm first
scans the database once to find the one-element frequent itemsets in the database.
Infrequent items are removed from the database and items in the transactions are
rearranged in the descending order of the frequencies of items. Then, all trans-
actions containing the least frequent item are selected and the item is removed
from the transactions, resulting in a reduced (projected) database. This projected
database is processed to find frequent itemsets. Obviously, the removed item is
prefix of all frequent itemsets. The item is removed from the database and the pro-
cess 1s repeated with the next least frequent item. It is to be noted that FP-tree
contains all the information about the transactions and the frequent itemsets. So,
to find any information e}bout the transactions and frequent itemsets, one needs to
just search the tree. FP-Growth is one of the fastest frequent itemsets finding algo-
rithms. It is robust enough to find the complete set of frequent itemsets: Although

the algorithm has many advantages, it suffers from two significant disadvantages.

1. The time taken to construct the FP-tree is quite large, particularly when the

dimensionality is large.

2. With the decrease in minimum support threshold value, its performance de-

grades and at certain instance of time it becomes almost similar to Apriori.

A summary of the algorithms discussed above is given in Table 3.1.
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Table 3.1: Characteristics of different Sequential AM Techniques

Algorithm  Database Data No. of DB Candidate

Layout Structure Scan generation
AIS Horizontal None K Yes
Apriori Horizontal Hash Tree K Yes
SETM Horizontal None K Yes
SEAR Horizontal Prefix Tree K Yes
DHP Horizontal Hash Tree K Yes
Partitioning  Vertical None 2 Yes
Sampling  Horizontal None 2 Yes
DIC Horizontal Tries <K Yes
FP Growth Horizontal  FP-Tree 2 No

(K: size of the longest frequent itemset, DB: database.)

3.3 DMotivation

All these algorithms are based on candidate generation and suffer from the following

two major problems.

1. They need to scan the database multiple times, which is costly, particularly

when the database is very large.

2. They generate huge candidate sets in comparison to the actual frequent item-

sets.

So, it is desirable to develop an algorithm, which not only obviates scanning the
database repeatedly but also does not generate candidate sets. We present an one-
pass association mining technique that addresses this problem by introducing an

integrated approach to find the frequent itemsets.

3.4 OPAM: One Pass Association Mining Tech-
nique

OPAM adopts an integrated approach to solve the frequent itemset finding problem
in a single pass over the database. Initially, it attempts to generate all frequent 1-

and 2-itemsets directly using a correlogram matriz based technique. In the next
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Table 3.2: Sample market 1 2 3 4 5 ¢

basket, dataset

Transaction | Item 115 3 3 3 3 2 Support
1d Purchased 2 6 3 4 3 2 L— count3)
T1 11,12,14,15,16 3 @‘”’1 1 2| guopon
T2 12,14 a a @‘f"'{ Count (4,5)
T3 12,13,16 5 3 1

T4 11,12,14,15

T5 11,13,16 6 3

T6 12,13

T7 113 Figure 3.2: Correlogram matrix showing sup-
T8 11’12 31415 port counts of itemsets

phase, to find the remaining higher order frequent itemsets, it exploits a vertical
layout concept for the database. Next, we provide the background of each of these
techniques.

3.4.1 Correlogram matrix based technique

Correlogram matrix is a co-occurrence frequency matrix. It is a matrix of size,
N x (N +1)/2, for a transaction database with N items. Each cell of the matrix
contains the frequency of co-occurrence of an item pair. Item pairs are specified
by the row index and the column index of the cell.

For example, to specify the frequency of co-occurrence of item pair {4,5}, cor-
responding to the sample market basket dataset depicted in Table 3.2, the content
of the cell (4,5) in the correlogram matrix (see Figure 3.2) with an index of row 4
and column 5 will indicate the co-occurrence frequency of the item pairs {4,5}. On
the other hand, a cell for which, the row and column indices are the same, specifies
the occurrence frequency of a single item. Thus, seen in Figure 3.2, the cell (3,3)

indicates the occurrence frequency of the single itemset {3}.

3.4.2 Construction of correlogram matrix

The correlogram matrix is constructed by a single scan of the database. In order to

construct the correlogram matrix, we model the situation graph theoretically. All
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items participating in a particular transaction are considered nodes. As items ap-
pear in the transaction in a lexicographical order, we say that they form a directed
graph mvolving all items as node of the graph. Each item is linked by a single link
or edge. Thus, only a directional path exists between any two nodes. To illustrate,
let us consider sample market basket dataset given in Table 3.2. Items I1, 12, 14
and I5 participate in transaction T4. Thus, they form a directed graph as shown
in the Figure 3.3.

To count the co-occurrence frequency of all items participating in a particular
transaction, we count links among all pairs of nodes and correspondingly increment
the content of a cell with the corresponding indices. Thus, if we consider the
example in Figure 3.3, we increment the contents of cells (1,2), (1,4), (1,5), (2,4)
and (2,5) We also increment the count of first node of a pair. For example, when
incrementing the count for the pair (1,2), we also increment the content of the'
cell (1,1) for storing the frequency of item I1. The scenario after incrementing
the content of correlogram matrix becomes the one shown in Figure 3.4. Thus
by following the procedure discussed above, one can construct the correlogram
matrix by scanning the database only once. From the correlogram matrix, we can
extract the frequent 1- and 2-itemsets with a given minimum support threshold in
a straightforward manner.

The advantages of this technique are as follows.
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Table 3.3: Vertical layout of sample market basket data

Item Transaction
Purchased | 1d

11 T1,T4,T5T7T8

12 T1,T2,T3,T4,T6,T8
13 T3,T5,T6,T7, T8

14 T1,T2,T4,T8

15 T1,T4,T8

16 T1,T3,T5

1. Candidate generation step is no more required to find 1- and 2- frequent

itemsets.

2. Unlike other algorithms, it require only one scan over the database for finding

all the frequent 1- and 2-elements itemset.

3. Since it is memory based, it is fast.

3.4.3 Mining frequent itemsets using vertical transaction

layout

Transaction layout is a method that can be used to format items in a transaction
database. Currently, there are three approaches: horizontal?!, vertical®” and the
hybrid*. Horizontal layout combines items in a transaction row-wise. This layout
suffers from the problem of superfluous processing since there is no index on the
items. In a vertical layout, each item is associated with a column of values repre-
senting the transaction in which it is present. A vertical layout creates an index on
the items and reduces the effect of large data sizes since there is no need to rescan
the whole database each time. The technique we propose adopts the vertical layout
approach for mining the remaining higher order frequent itemsets.

To take the advantages of the vertical format, we transform our database into
vertical form for mining frequent itemsets. The corresponding vertical layout of
the sample market basket data given in Table 3.2 is presented in Table 3.3.

Once we create the vertical layout of the original transaction database, the next
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Table 3.4: 2-element
frequent item sets

Item "Transaction Table 3.5: 3-element
Set List frequent item sets
{I1,12} | T1,T4,T8 Item Transaction
{11,13} | T3,T5,T8 Set List
{I1,14} | T1,T4,T8 {11,12,14} | T1,T4,T8
{1115} | T1,T4,T8 {I1,12,15} | T1,T4,T8
{12,13} | T3,76,T8 {11,14,I5} | T1,T4,T8
(12,14} | T1,T2,T4,T8 (12,1415} | T1,T4,T8
{12,15} | T1,T4,T8

{14,I5} | T1,T4,T8

Table 3.6: Largest
frequent item sets

Item Transaction
Set List
{11,12)14,I5} | T1,T4,T8

phase is straightforward. We intersect two item records from the vertical table. If
the resultant record contains number of transaction IDs greater than or equal to
a given minimum support threshold, the item pairs in the intersection form the -
frequent itemset. Support counting is performed simply by counting.the number
of transaction IDs that are common in both item records in the intersection. We
term such an intersection as a successful intersection.

To avoid unnecessary computation of intersection we use the same union and
prune step as used in Apriori algorithm. We intersect two records if both the target
itemsets pass through the union and pruning steps successfully. As the possible
number of 2-element itemsets are huge, to avoid working with them directly, we
use correlogram ratrix as introduced in previous section to find all frequent 1- and
2-element, itemsets directly. After generating all the 1- and 2-element frequent sets
using the correlogram matrix, we simply update the vertical table by eliminating
all the records corresponding to non-frequent itemset of size one. Next, we perform
intersection among the pair of records from l-element frequent set, which are ac-

tually in frequent 2-element itemset. The intersection of transaction records then
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Maximum Transaction Id = ¢ TransList 1= (2,3, 4,6,7, 8] BCD1 :356

M=3 TransList 2= [2, 4, 5,6, 7] BCD2 :275
BCD array size D 9A=3 BCDI and BCD2 = 2 5 4 (bitwise and operation)
Transaction Lists 1[2,3,4,6,7,8] Bit vector form = 010{ 101 | 100
Bit Vector s (1{101(110] Thus, total no. of bits present in the resultant BCD arvayis 4,
BCD array . 1356 which is the support count of new itemsets.
Figure 3.5: Illustration of Figure 3.6: Illustration of intersection
BCD scheme and support counting method

continue until no successful intersection is possible. For illustration, intermediate
results during iterations to obtain all the frequent itemsets from market basket in

Table 3.2 with minimum support threshold 3 are shown in tables 3.4, 3.5, 3.6.

3.4.4 Proposed algorithm and its implementation issues

This section presents the algorithm for the proposed integrated approach (see Al-
gorithm 1). It also discusses some of the issues related to efficient implementation
of the algorithm. The algorithm accepts the market-basket database D and min-
imum support o, as input and it generates all the frequent itemsets as output.
Steps 1 to 4 of the algorithm are dedicated to the first phase of the approach, i.e.,
finding of 1- and 2-element frequent itemsets using correlogram matrix of the orig-
inal database. After step 4, we get an alternative representation of the database
as discussed above in the second phase of the approach. Generally, compared to
the number of transactions the numbers of items or dimensions are relatively much
lower. Thus such a vertical database can be easily stored in main memory. How-
ever, if the number of transactions are very large, it becomes very difficult to store
such transaction list in main memory. To handle such cases, we use a compact
representation of the transaction list.

At line 9, the union operation returns the new itemset if union is possible,
otherwise it returns null. Following downward closure property, pruning operation
returns false if all the subsets of the new itemset generated by union operation, are

frequent. In step 12, the intersection between two item record sets are carried out.
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input : D (Original Dataset), o (Minimum Support)
output: L (List of frequent itemsets)

1 Generate Correlogram Matrix M from D;

2 Construct vertical database V from D;

3 Traverse the M to generate one and two element frequent itemsets ;
4 Write all the one and two frequent itemsets to L;

5 Update V with frequent two element itemsets ;

6 while successful intersection possible do
7
8
9

for : < 1 to |V| do
for j <~2+1 to |V| do
NewltemSet =Union (V [i].ltemSet, V [j].ItemSet) ;
10 if NewltemSet # Nuil then
11 if Pruning (NewltemSet)=False then
12 NewTransList =Intersection (V [i].TransList, V
[j]- TransList) ;

13 if Count (NewTransList)> o then
14 Write the NewltemSet and NewTransList into L;
15 ‘ Update V;
16 end
17 end
18 end
19 end
20 end
21 end

Algorithm 1: OPAM:The Algorithm

To perform intersection, we apply simple bit wise and operation. It is very fast
compare to normal intersection; which is performed by comparing elements from
both participating records. In line 13, Count returns support count of the new
itemset. All the itemsets satisfy minimum support criteria are stored in the list L.
The vertical database V is updated by eliminating all the no-frequent itemsets. The
process of intersection continues with new records until no successful intersection
is possible.

For compact representation of transaction list, we adopt the .concept used in
creating binary coded decimal (BCD) representation for integers. OPAM initially
stores the transaction list associated with a itemset record in a bit vector. It is
then converted into BCD of M bit size. Thus, if the maximum transaction ID is

T, it requires T//M sized array of a data type that can accommodate M bit data.
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For example, let us consider a transaction that has maximum transaction ID i.e.
T =9 and a BCD scheme of 3 bits (i.e., M). For a transaction list {2, 3,4,6,7,8},
the compact BCD representation is shown in Figure 3.5. After converting the item
records into BCD form, one can easily count the support as shown in Figure 3.6.
Intersection between two BCD array is performed through bitwise and opera-
tion. It is very fast and effective. The interesting fact is that as the iteration moves
to a higher level, the number of the transaction IDs per records goes down. The
number of records also gradually decreases. This is because of the fact that the
higher order frequent itemsets (itemsets of size 3 or more) are normally fewer com-
pared to possible lower order itemsets. Thus, the performance gradually increases

and consumption of memory space decreases.

3.5 Analysis of Our Algorithm

Here, we present proof of correctness and completeness of OPAM and then we

analyse our algorithm in terms of computational complexity.

3.5.1 Completeness and correctness
/

Lemma 3.5.1. Correlogram matriz based technique genmerates all the 2-element
itemsets which are frequent w.r.t. minimum support (minsup), o user defined

threshold.

Proof. Correlogram matrix based technique computes support counts of all the 2-
element itemsets by using exhaustive search in the transaction database. Next, it
extracts only those 2-element itemsets which satisfy the msnsup condition. Hence,

the proof. O

Lemma 3.5.2. OPAM 1s complete, i.e., OPAM extracts all the frequent itemsets

w.r.t. minsup.

Proof. 1t can be proved in two steps. First, the 2-element frequent itemsets gen-

erated is complete, which is evident from Lemma 3.5.1. Second, OPAM generates
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all those itemsets of size > 2 based on the output of first step and their support
counts, satisfy the mansup condition. Similarly, it is true for any itemsets of size
>'k. Thus OPAM generates all the frequent itemsets which satisfy the minsup
condition and hence the proof.

O

Lemma 3.5.3. OPAM 1s correct, 1.e., frequent itemset generated by OPAM satisfy

min-sup criterion.

Proof. This lemma can be proved by contradiction. Let us assume that an itemset
I.41 is frequent, generated by intersecting itemset Xy, with transaction record 7,
where cardinality of T, is above or equal to mansup, i.e., |T;| > minsup and itemset
Y, with |{T,| < mansup. Since |Ty| < mansup, resulting intersection between X
and Yj never satisfy minimum support criterion, i.e., |T; N T # minsup, which

contradicts the assumption, hence the proof. tl

3.5.2 Complexity analysis

Below we present analysis of OPAM in terms of space and time complexity.

3.5.2.1 Space complexity

OPAM requires space for correlogram matrix and transaction records of all the
itemsets in each iteration. Thus, space complexify for the two data structures can
be calculated as follows.

a) Space for correlogram matrz: For a transaction database with N items, the

fixed space requirement for correlogram matrix is:

SPACEcy = O(N*(N +1)/2)
~ O(N%/2).

b) Space for frequent itemset: Assume that k is the number of frequent itemsets
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in each iteration. T is the number of transactions in the database. If we consider,

M as the bit size for BCD scheme, the space required in each level is:

SPACEr; = O(kx(T/M))

The value of k is normally very high in case of two element frequent itemsets
and it decreases with the increase in iteration level.

It is worth mentioning that requirement of both the data structures is not simul-
taneous. Correlogram matrix is needed at the early stage of the algorithm. Once
vertical layout is constructed based on two element frequent itemsets, correlogram

matrix can be deleted from the memory.

3.5.2.2 Time complexity

We compute the time complexity based on three different computational costs.

a) Construction of correlogram matriz: Assume that the database contains T’
transactions and a maximum of N items in each transaction. For storing and up-
dating support count of item pairs in the correlogram matrix with respect to each
transaction, it requires O(T * N?) time. The time requirements for accessing the
correlogram matrix is (N X (N +1)/2) = N2. The cost for construction as well as
to find the 2-element frequent itemsets from the correlogram matrix is O(T * N 2)

+O(N?), which become O(T x N?).

b) Construction of vertical layout: To represent each itemset with transaction
list using BCD scheme, it requires to process each transaction ID from the list.

Thus for N items and T transactions, the complexity is Cy, = O(T * N).

¢) Cost of intersection: Assume that there are k frequent itemsets in each it-
eration and ¢ is the maximum level of iteration. For each iteration it considers

all pair of items for intersection. Since we are using bitwise AND operation for
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intersection, it is very fast as compared to other operations and thus ignored. The
cost incurred for intersection is Cj,, = O(£ * k?)

8

The total cost of OPAM is

Costopam = Com + Cver + Crns
= O(T*N*) +O(T * N)+ O(£ x k).

Since, we are reading T transactions in a single scan over the database, thus the

performance of OPAM mostly depends on number of items, N, in the database.

3.6 Performance Evaluation

To evaluate the performance of OPAM in comparison to other techniques, we use
two popular techniques, Apriori and FP-growth. We implemented OPAM using
Java 1.6 on Windows 7 platform running in 2.53 GHz machine. For other two algo-
rithms, Apriori and FP-growth, we used Java based SPMF? tool. SPMF (Sequen-
tial Pattern Mining Framework) is an open-source data mining platform written in

Java and distributed under the GPL v3 license.

3.6.1 Dataset used

We have generated synthetic datasets according to the specifications given in Ta-
ble 3.7. The synthetic datasets were created with the data generator in ARMiner ®
software, which follows the basic spirit of well-known IBM synthetic data generator®
for association rule mining. The size of the data (i.e., number of transactions), the
number of items and the number of unique patterns (incase of synthetic dataset)

in the transactions are the major parameters in data generation. We also used

2http:// www.philippe-fournier-viger.com
bhttp: / /www.cs.umb.edu/laur/ARMner/ ,
Cwww.almaden.tbm.com/cs/quest/
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two real life Mushroom® and Chess dataset taken from FIMIP. Below we present

experimental results that use these synthetic and real datasets.

Table 3.7: Details of Transaction Dataset

Data Set No.of No. of Avg. size of No. of
Transactions Items Transaction Pattens
T101400D100K 100,000 400 10 20
T101600D100K 100,000 600 10 20
T10I800D100K 100,000 800 10 20
Mushroom 8124 128 - -
Chess 3196 75 - -

3.6.2 Experimental results

Performance of the three algorithms is compared in terms of execution time for
different minimum support values. For different synthetic datasets the performance
of the three algorithms degrades gradually along with decrease in the minimum
support value. Apriori always needs very high computational time for all the
datasets. Compare to other two algorithms, the performance of OPAM is found
effective, especially in synthetic datascts. Howcver, in case of real datasets, FP-
growth performs well compare to other algorithms, especially when data is dense.
From the Figure 3.7 and 3.8, it can be observed that FP-growth always needs
certain computational time even when number of frequent items are zero (when
minimum support is high). This is required because of the minimum time needed
to construct the tree. For the same situation, OPAM also requires minimum time

for scanning the database once and constructing the correlogram matrix.

3.7 Discussion

In this chapter, we have presented an efficient frequent itemset finding technique.

The technique works in two phases, a correlogram matrix technique to generate

2http: //www.rcs.uct. edu/mlearn/MLR Repository. himl
bhttp://fims ua ac.be
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those 1- and 2-element frequent itemset, and a vertical layout technique to generate
higher order frequent itemsets. The technique is able to generate all frequent
itemsets in one scan of the database. Another advantage of OPAM is that it also
supports interactive mining of 1- and 2-element itemsets. Experiments have shown
that OPAM performs well in comparison to Apriori and FP-growth algorithms.
We have explored the advantage of the correlogram matrix for extracting 1-
and 2- element frequent itemsets 1n finding strongly correlated item pairs from a

transaction database. This is discussed in the next chapter.
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Chapter 4

Finding Strongly Correlated Item
Pairs in Large Transaction

Databases

Correlation mining is an approach that allows one to draw statistical relationships
among items from transaction data. Existing techniques either generate large num-
ber of candidates or build huge trees and require multiple passes over the database.
This chapter presents an effective and fast Strongly COrrelated Pairs Extraction
technique called SCOPE, and its extension to extract k most strongly correlated
pairs from large transaction databases. Many existing techniques use Pearson’s
correlation coefficient as a measure of correlation, which may not always perform
well when data is noisy and binary. As an alternative to Pearson’s correlation
coeflicient, we present a method of computing Spearman’s rank order correlation
coefficient from the transaction data. We find that the proposed technique per-
forms satisfactorily in terms of execution time when tested with several real and

synthetic datasets compared to other similar techniques.
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4.1 Introduction

Starting from market basket data analysis, association mining is now applied in
a wide variety of domains such as machine learning, soft-computing and com-

putational biology. Standard association mining technique extracts all subset of
items satisfying a minimum support constraint. The traditional association rule

mining technique?!3°

is based on a support-confidence framework. However, the
support-confidence framework can be misleading; it can identify a rule (A = B) as
interesting (strong) when in fact, the occurrence of A might not imply the occur-
rence of B. Thus, the support and confidence measures are insufficient in filtering
out uninteresting association rules3%%. It has been observed that item pairs with
high support value may not imply high correlation. Similarly, a highly correlated
item pair may exhibit low support value. To tackle this weakness, correlation
analysis can be used to provide an alternative framework for finding statistically

interesting relationships 40

. It also improves the understanding of some associa-
tion rules. In statistics, relationships among nominal variables can be analyzed
with nominal measures of association such as Pearson’s correlation coefficient and
measures based on Chi Square*!. The ¢ correlation coefficient*! is a computational
form of Pearson’s correlation coefficient for binary variables. An equivalent support
measure based ¢ correlation coefficient computation technique is introduced in42:43
to find correlation of item pairs in a transaction database based on their support
count. For any two items X and Y in a transaction database, the support based ¢

correlation coefficient can be calculated as:

Sup(X,Y) — Sup(X) * Sup(Y)

HXY) = VSup(X) * Sup(Y) * (1 — Sup(X)) * (1 — Sup(Y))

(4.1)

where Sup(X), Sup(Y) and Sup(X,Y) are the individual supports and the joint
support of item X, Y, respectively.

Unlike traditional association mining, the all-pair-strongly correlated query is
to find statistical relationships among pair of items from a transaction database.

The problem can be defined as follows.
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Definition .4.1.1 (Strongly correlated pair) : Assume a market basket
database D with T transactions and N items. Each transaction, T is a subset of
I, where I = {X,,X5,..., Xy} is a set of N distinct items. Given a user-specified
minimum correlation threshold 6, an all-strong-pairs correlation query (SC) finds
a set of all item pairs (X,, X,) (for ¢, = 1 ... N) with correlation, Corr(X,, X,),

above the threshold #. Formally, it can be defined as:

SC(D,9) = {{X,, X;}{X.. X,} €I, X, # X, ANCorr(X,, X,) > 0} . (4.2)

Besides providing a statistical meaning for the traditional association mining
problem, correlation mining can play a major role in addressing various issues
such as how sales of a product are associated with sales of other products, which
in turn may help in designing sales promotion, catalog design and store layout.
Correlation mining can be helpful in efficient finding of co-citations and term co-
occurrences during document analysis. Functional relationship* among pairs of
genes based on gene expression profile and changes in functional relationship in
different diseases and conditions may be indicative of disease mechanism for diseases
like cancer. It has been observed that a simple pair-wise correlation analysis may

be helpful in revealing new gene-gene relationship4®4¢

, which again in turn are
useful in discovering gene regulatory pathways or gene interaction networks.

To determine the appropriate value of 8, a prior knowledge of data distribution
is required. Without specific knowledge of the target data, users will have difficulty
in setting the correlation threshold to obtain required results. If the correlation
threshold is set too large, there may be only a small number of results or even no
result. In such a case, the user may have to guess a smaller threshold and perform
the mining again, which may or may not give better result. If the threshold is
too small, there may be too many results for the user; too many results need an

exceedingly long time to compute, and also extra effort to filter the answers.

An alternative solution to this problem could be to change the task of mining
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correlated item pairs under pre-specified threshold to mine top-k strongly corre-
lated item pairs from transaction database, where k is the desired number of item
pairs that have largest correlation values. Recently the idea of top-k strongly cor-
related pairs has been applied in graph databases to find top-k frequent correlated
subgraph®’. The top-k correlated- pairs query problem in market-basket can be

defined as follows.

Definition 4.1.2 (Top-k strongly correlated pairs) : Given a user-specified
threshold £ and a market basket database D of T' transactions where each trans-
action T; is a subset of I (set of N distinct items), a top-k correlated-pair query,
TopK (D, k), finds list of k top most item pairs based on correlation coefficient
value. Thus, TopK (D, k) can be represented as follows:

TopK(D, k) = {{Xa, Xjn}, { X2, Xjo}, -, { Xk, Xje} } (4.3)

where, Corr(Xi, X;1) 2> Corr(Xiz, Xj2) 2 ... 2 Corr(Xuk, Xji) , for all {Xik, Xj} C
I and Xilc # Xjk

Thus, top-k is a sorted list of £ item pairs based on any suitable correlation

coefficient, Corr.

4.1.1 Computing support based correlated pairs: an illus-

tration

The task of strongly correlated item pair finding generates a list of pairs from the
database where Corr value of a pair is greater than the user specified 8. Similarly,
the task of top-k correlated-pair finding generates a sorted list of k pairs in the order
of Corr from the database. An illustration of both correlated-pairs query problems
is given in Figures 4.1 and 4.2. In the example, we denote Corr as correlation
coefficient. The input to the strongly correlated query is a market basket database

containing 8 transactions and 6 items. The value of 8 is set to 0.05. Similarly, for
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Figure 4.1: Illustration of Strongly Correlated Pairs Query Problem

the top-k problem the value of k is set to 8. Since the database has six items, there
are (§) = 15 item pairs for which correlation coefficient ¢ is calculated. To compute
#(4, 5) using Equation (4.1), we need the single element supports Sup(4) = 4/8 and
Sup(5) = 3/8, and joint support Sup(4,5)=3/8, to compute correlation coefficient,
#(4,5), which is 0.77. Finally, all pairs that satisfy 6 constraint are extracted, and
the list of strongly correlated pairs is generated as output. Similarly, the list of k&
most strongly correlated pairs is generated as an output for the second problem

(irrespective of any 8 value).

4.2 Related Work

We now discuss some of the state-of-the-art approaches towards finding strongly
correlated item pairs and top k strongly correlated item pairs from transaction

database.

4.2.1 TAPER

TAPER %% is a candidate generation based technique for finding all strongly cor-

related item pairs. It consists of two steps- filtering and refinement. In the filtering
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Figure 4.2: Illustration of Top-k Correlated Pairs Query Problem.

step, it applies two pruning techniques. The first technique uses an upper bound
of the ¢ correlation coefficient as a coarse filter. The upper bound upper(¢(X,Y))

of ¢ correlation coefficient for (X,Y) is:

sup(Y) \/1 — sup(X) (4.4)

¢(X7 Y) < uppe?’((b(X, Y)) = \/S’U,p(X) 1— sup(Y)’

If the upper bound of the ¢ correlation coefficient for an item pair is less than
the user-specified correlation threshold 8, the item pair is pruned right away. To
minimize the effort to compute upper bounds of all possible item pairs, TAPER
applies the second pruning technique based on the conditional monotone property
(1-D) of the upper bound of the ¢ correlation coefficient. For an item pair (X,Y),
if the upper bound is less than 6, all item pairs involving item X and rest of the
target items having support less than Y will also give upper bound less than 8. In
other words, for item pair X, Y, if sup(X) > sup(Y) and we fix item X, the upper
bounds upper(¢(X,Y)), is monotone decreasing with decreasing support of item Y.
Based on this 1-D monotone property, straightaway one can avoid computation of
upper bound for other items. In the refinement step, TAPER computes the exact
correlation for each surviving pair and retrieves the pairs with correlation above .

It is understood that in comparison with single element item sets, usually the
|
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two element candidate sets are huge. The upper bound based pruning technique
is very effective in eliminating large numbers of item pairs during the candidate
generation phase. However, when the database contains a large number of items

and transactions, testing even the remaining candidate pairs is expensive.

4.2.2 Tcp

FP-tree®® based technique, Tcp*® is a milestone in strongly correlated item pair
extraction, that overcome the bottlenecks of TAPER. Strongly correlated item pairs
are generated without any candidate generation. Tcp includes two sub processes:
(1) construction of the FP-tree, and (ii) computation of correlation coefficient of
each item pair using the support count from the FP-tree and extraction of all
strongly correlated item pairs with correlation greater than 6. The efficiency of
the FP-tree algorithm can be justified as follows: (i) The FP-tree is a compressed
representation of the original database, (ii) the algorithm scans the database twice
only, and (iii) the support value of all item pairs is available in the FP-tree.
Although the algorithm is based on an efficient FP-tree data structure, it suffers

from the following two significant disadvantages.

1. Tcp constructs the entire FP-tree with an initial support threshold of zero.
The time taken to construct such an FP-tree is quite large, especially when

the dimensions are large.

2. Moreover, it requires a large amount of space to store the entire FP-tree in

the memory, particularly when the number of items is very large.

Below we discuss some of the top-k correlated pair finding techniques. Almost
all the techniques proposed so far are minor extensions of strongly correlated pair

finding techniques.

4.2.3 TOP-COP

TOP-COP* is an upper bound based algorithm for finding top-k strongly corre-
lated item pairs and is an extended version of TAPER. TOP-COP exploits a 2-D
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monotone property of the upper bound of ¢ correlation coefficient for pruning non-
potential item pairs, i.e., pairs which do not satisfy the correlation threshold . The
2-D monotone property is as follows: For a pair of items X, Y, if sup(X) > sup(Y)
and we fix item Y, upper(¢(X,Y)) is monotone increasing with decreasing support
of item X. Based on the 2-D monotone property a diagonal traversal technique,
combined with a refine-and filter strategy is used to cfficiently mine top-k strongly
correlated pairs.

Like TAPER, TOP-COP is also a candidate generation based technique. The 1-
D monotone property, used in TAPER provides a one dimensional pruning window
for eliminating non-potential item pairs. Moving one step further, TOP-COP ex-
ploits the 2-D monotone property, which helps further in eliminating non-potential
pairs from two dimensions instead of one dimension. Compared to 1-D monotone
based pruning, the 2-D pruning technique 1s more effective in eliminating a large
number of item pairs during the candidate generation phase. Like TAPER, TOP-
COP also starts with a sorted list of items based on support in non-increasing
order, which needs a scan of the database once for creating such a list. Since it is a
candidate generation based technique and has structural similarity with TAPER,
it also suffers from the drawback of expensive testing of remaining candidates after

pruning and filtering steps.

4.2.4 Tkcp

Tkep®?, is an extension of Tcp to extract top-k strongly correlated item pairs
using an FP-tree®® based approach. Tkep also includes two sub processes: (a)
construction of the FP-tree, and (b) computation of correlation cocflicient for each
item pair using support count from the FP-tree and extraction of all the top-k
strongly correlated item pairs based on the correlation coefficient value, ¢. Tkep

are also suffers from the same limitations as Tcp.
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4.3 Motivation

Existing correlated pair finding techniques require multiple passes over the database,
which 1s too costly for large transaction databases. It would be more effective if
both strongly correlated pairs as well as top-k strongly correlated item pairs can be
extracted using a single pass over the database and without generating any large
tree or candidate itemsets. Majority of correlation mining techniques use Pearson’s
corrclation coefficient for finding strongly correlated item pairs. These are para-
metric techniques that work well with continuous variables. Since typical market
basket data are binary in nature, a parametric approach may not always perform
well for binary data. Further, the parametric correlation coefficient is sensitive to
outliers in a data set.

To address the above issues, we present two fast and effective techniques, (i)
SCOPE, which extracts all strongly correlated item pairs, for any large database
and (ii) k-SCOPE, an extension to SCOPE, to extract top-k strongly correlated
item pairs in only one pass over the database, without generating any candidate
set. To overcome the problems associated with Pearson correlation, non-parametric

1 can be considered as better alternative in this

techniques like Spearman’s p °
regard. Below, we present an approach for computing Spearman’s p between an

item pair from market basket data.

4.4 Computing Spearman’s Rank order correla-
tion

Parametric techniques like Pearson’s correlation are sensitive to the distribution
of the data®?%. Parametric techniques may not be effective when data is noisy
and binary in nature., The alternative solution is to apply non-parametric correla-
tion. If two variables X and Y are metric (e.g., interval or ratio scale measures)
and they are to be correlated, a parametric technique like Pearson’s correlation

coefficient is suitable. While desirable, it is not always possible to use a paramet-
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ric test such as the Pearson’s method. In case of non-parametric (e.g., nominal
or ordinal mcasures) variables, correlation can be dotermined effectively by using
a non-parametric correlation technique. Non-parametric correlation coefficients,
such as Chi-square, Point biserial correlation®, Spearman’s p°!, Kendall’s 75,
and Goodman and Kruskal’s A% may perform better than parametric correlation
coefficient when outliers are present. The most frequently used is the rank order
based Spearman’s p correlation. In principle, Spearman’s p is simply a special
case of Pearson’s product-moment coefficient in which two sets of data X,’s and
Y,’s are converted to rank z,’s and y;’s before calculating the coefficients. The raw
scores are converted to ranks, and the differences D,’s between the ranks of the
observations on the two variables are calculated. If there are no tied ranks, then p

1s given by:

63 D;

NV ) (4.5)

p=1-

whére, D, = x, — y,, is the difference between the ranks of corresponding values X,
and Y;, and N is the number of samples in each dataset (same for both sets).

If tied ranks exist, each tied score is assigned a rank equal to the average of all
tied positions. For example, if a pair of scores are tied for the 2nd and 3rd rank,
both scores are assigned a rank of 2.5 ((243)/2=2.5). In case of binary variables,
a large number of tied cases are present. Binary market basket data contains score
0 and 1 only. To compute the ranks of 0 and 1, their natural ordering can be used
to compute tied ranks. For computing the tied ranks, we assign 0 with greater
priority than 1 and use simple frequency counts of 1 and 0. Below, we discuss the
technique for calculating Spearman’s p with tied cases between binary variables.

Assume a binary variable I with /V values. The frequency of score 1 in variable
I is denoted as f(I). To determine the appropriate rank of tied cases, we need to
add the rank positions and divide by the number of tied cases. Since the number

of scores of a binary variable is only two, the tied rank of score 0 and 1 can be
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calculated as:

N-f(I) i

=1

Similarly, the rank of score 1 can be calculated as:

N
Rank, = Z . (4.7)
S fd)

Once the ranks of 0 and 1 are calculated for the,targét variables (item pairs), say
I, and I, whose correlation is to be calculated, the difference of their ranks is then
used to compute D2. In case of two binary item sets, the only possible combination
of scores are (0,0), (0,1), (1,0) and (1,1). Thus just by counting the frequencies of
the above patterns and using the rank of 0 and 1 for both item sets, the sum of

square differences of ranks (D?) can be easily calculated as:

> D! = Pgy(Ranko(I1) — Ranko(12))* + Poiy(Ranke(I1) — Ranky(I2))* +
Puoy(Rank: (1) — Ranko(13))? + Pu1y(Rank:i () — Rank:(I5))%4.8)

where, Poo, Po1), Plaoy and Py are the frequencies of (0,0), (0,1), (1,0) and (1,1)
patterns, respectively. Ranko(l;) and Rank;(I;) correspond to the ranks of 0’s and
I’s in item I; and Ranky(I) and Rank;(I3) are the corresponding 0’s and 1’s rank
in item I, respectively.

For a long sequence of binary data occurring in a large transaction dataset,
sometimes it is costly to find Pgg), Po1), P10y and Fyyy for each pair of items. It
would be more effective if these can be computed with minimal information. One
possible way is given below, especially when frequency of score 1 in item I; and

I, ( f(I1) and f(I3)) and joint occurrences in both item pairs (f([1, I5)) are known.

Povy = f(lL) — f(Ih, I2), Pagy = f(Ih) — fUy, I2), Pay = f(I1, I2),
Pooy = N — (Po1y + Paoy + Pay)-
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4.4.1 . Computing Spearman’s p: an illustration

In this section we demonstrate how to compute Spearman’s p with tied cases for
binary market basket data. For example, let us consider the following item pairs I,

and [, with NV = 6 transactions (71,72, --- ,T6) with similar occurrence patterns.

Table 4.1: Sample market basket data with two items and six transactions

T1 T2 T3 T4 T5 T6

L 1 1 1 0 0 ©
L 1 1 1 0 0 0

In the above data, it is obvious that the frequency of 1 in I; and I, and
joint occurrences of 1 in both I; and Iy are f(I;) = 3, f(L,) = 3, f(I1,L2) =
3, respectively. Using Equations (4.6) and (4.7) the value of Ranko(l;) and
Rank, () for I) become Ranko(lr) = (1+2+3)/3 =2 and Rank:([;) = (44 5+
6)/3 = 5 Similarly, Ranky(ls) and Rank,(Il3) of I are 2 and 5, respectively.

The next step is to calculate Foo), Plo1), Pao) and FP1y using joint frequency
count f(Iy, ).

Poyy = f(I2) = f(I1,I;) =3-3=0, Pagy = f(lh) = f(I1, ) =3-3 =0,
P(ll) =f(11,.[2)-:3, P(oo) ZN—(P(01)+P(10)+P(11) =6—’(0+0+3)=3

The summation of square rank difference D? is:

ZDE = P(Oo)(Ranko(Il) — Ranko(lz))2 + P(m)(Ranko(Il) - Rankl(lg))Q +
P(lo)(RCI.nkl(Il) — Ranko(lg))2 + P(n)(Rank:l (Il) — Ra'flkl(lz))z.

=3(2-2)2+0(2-5)2+0(5-2)%+3(5-5)?

=0.
Thus, Spearman’s p can be calculated as: p=1—-(6x0)/6(62~1)=1-0=1.
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In a transaction database, computing f(I1), f(I2) and f(I;,I;) for any item
pair is nothing but finding their individual and joint supports (1- and 2- element
item sets).

A traditional approach for counting the support for item pairs need at least two
scans over the entire dataset. We present a one-pass strongly correlated item pair
finding technique called SCOPE and its extension k-SCOPE. We use a correlogram
matrix for counting individual and joint supports for item pair in a single pass
over the database. Using support count and the method discussed above, it is

straightforward to compute the correlation coeflicient ¢ or p between an item pair.

4.5 SCOPE: Strongly COrrelated Pair Extrac-
tion Technique

SCOPE attempt to find all strongly correlated item pairs and k-SCOPE extracts
k top most correlated pairs from any transaction database using a single scan over
the database without generating any candidates. We use a correlogram matrix to
store the support counts of all 1- and 2- element itemsets. Later, the matrix is
used to calculate correlation coefficients of all item pairs.

SCOPE accepts the market-basket database D and the correlation coefficient
threshold € as input, and generates all strongly correl.ated item pairs as output.
Step 1 of SCOPE (see Algorithm 2) is dedicated to the construction of the correlo-
gram matrix using a single scan of the original database. In step 3, the correlation
coefficient of each item pair is computed and in step 5, all item pairs whose coef-
ficient values are greater than or equal to 6, are extracted. Finally, the algorithm
returns a list of all strongly correlated item pairs.

An extended version of this algorithm for generating top-k correlated pairs, viz,
k-SCOPE is presented in Algorithm 3. The algorithm accepts the market-basket
database D and k as input and generates a list of top-k strongly correlated item

pairs, L, as output. The first phase of the algorithm is the same as that of SCOPE.
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input : D (Original Dataset), § (Correlation coefficient threshold)
output: L (List of strongly correlated item pairs)

1 Generate Correlogram Matrix M from D;

2 for each item pair (i,7) € D do
3 Compute Corr (3, j) using support from M;
4 if Corr (¢,7) > 0 then
5 | L=LU(3);
6 end

7 end

8 Return L;

Algorithm 2: SCOPE: Strongly COrelated Pair Extraction

In steps 8 to 12, topmost k correlated item pairs are extracted and added to the
top-k list. Top-k list L is a sorted list (descending order) of item pairs based on
value of the correlation coefficient. Any pair whose correlation coefficient is lower
than the k" pair’s correlation coefficient is straightaway pruned. Otherwise, the
algorithm updates the list by eliminating the k' pair and inserting the new pair

in its appropriate position in the list. Finally, the algorithm returns top-k list L.

input : D (Original Dataset), &
output: L (List of k strongly correlated item pairs)

1 Generate Correlogram Matrix M from D;

2 for each item pair (i,7) € D do

3 Compute Corr (7, 7) using support from M;
4 if |L| < k then

5 | Li=LU(@,7);

6 end

7 else

8 if Corr (4,j) > Corr (L[k]) then

9 L [k]:=L [k U(4y7);

10 Sort L in descending order on Corr of each pair ;
11 end

12 end

13 end

14 Return L;
Algorithm 3: k-SCOPE: Top k strongly correlated Pair Extraction
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4.6 Analysis of Our Algorithms

Here, we analyse SCOPE and k-SCOPE in terms of completeness, correctness and

computational complexity.

4.6.1 Completeness and correctness

Lemma 4.6.1. SCOPE 1s complete, 1.e., SCOPE finds all strongly correlated paurs.

Proof. Since SCOPE is based on exhaustive search and computes correlation co-
efficients of all pairs without pruning any item pair, SCOPE extracts all strongly
corrclated item pairs with coefficient greater than the threshold §. This fact ensures

that SCOPE is complete in all respects. O

Lemma 4.6.2. SCOPE 1s correct, i.e., the correlation coefficient of all pairs, ez-

tracted by SCOPE, 15 above threshold 6.

Proof. The correctness of SCOPE can be guaranteed by the fact that SCOPE
calculates exact correlation of each pair present in the database and prunes all

pairs whose correlation coefficient is lower than the user specified threshold . O

Lemma 4.6.3. k-SCOPE 1s complete, .e., k-SCOPE finds top-k strongly correlated

pairs.

Proof. Like SCOPE, k-SCOPE is based on exhaustive search and computes the
correlation coefficient of all pairs without pruning any item pairs. Therefore, k-
SCOPE extracts k top most strongly correlated item pairs based on the value ¢.
This fact ensures that k-SCOPE is complete in all respects. (]

Lemma 4.6.4. k-SCOPE 1s correct, 1.e., correlation coefficients of the extracted

pairs are the k top most correlation coefficients.

Proof. The correctness of k-SCOPE can be guaranteed by the fact that, k-SCOPE
calculates exact correlation of each pair present in the database and creates a
sorted list (descending order) of item pairs based on the correlation coefficient and
prunes all pairs whose correlation coefficient is lower than the k** pair’s correlation

coefficient. 0
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4.6.2 Complexity analysis

Since k-SCOPE is an extension of SCOPE, we analyze only k-SCOPE in terms of

space and time complexity.

4.6.2.1 Space complexity

TAPER and TOP-COP need memory for keeping the top-k list and support count
of all itemns, and a huge number of candidate item pairs depending on the value of
the 6 upper bound. TOP-COP maintains a list with the pruning status of all item
pairs out of NV items, requiring memory space of order (N?). Tkep creates an entire
FP-tree in the memory with initial support threshold zero (0). This tree is normally
huge when the number of transactions as well as the dimensions are large. Its size
also depends on the number of unique patterns of items in the database. Sometimes
it is difficult to construct such a tree in the memory. However, k-SCOPE always
requires a fixed memory of size, N x (N +1)/2 to construct the correlogram matrix
and array of size k to store top-k strongly correlated item pairs. Thus, the total

space requirement 1s:

SPACEk_ScopE = O(N * (N + 1)/2) + O(k)
O(N?) + O(k).

Q

4.6.2.2 Time complexity

The computational cost for &-SCOPE consists of two parts: (%) correlogram matrix
construction cost (Ccops) and (43) the cost for extraction of tdp—k strongly correlated

item pairs (Cgx)-

a) Construction of correlogram matriz: Cost can be calculated as describe in

section 3.5.2.2 of chapter 3.

b) Extraction of top-k strongly correlated item pairs: To calculate the correlation
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of each pair, k-SCOPE must traverse the correlogram matrix once. Thus, the time
requirement for extracting the correlation coefficient of all item pairs is O(N?).
To create the top-k list, for each item pair the algorithm compares the correlation
coefficient (Corr) of the new pair with (k — 1)* pair in the list. If Corr of the new
pair is greater than that of the k** pair, the k** pair is eliminated from the list and
a new pair is inserted and placed in the list in descending order of Corr. Thus,
for placing a new pair, it requires at most & number of comparison and swapping.
Since, the problem is to find & top most item pairs out of NV (N —1)/2 item pairs,

the time requirement for creating list of top k item pairs can be denoted as:

Cox = O(N?)+0(k+ (N x(N - 1))/2)
O(N?) + O(k * N?)
O(k * N?).

Q

Q

Thus, in the worst case total cost incurred by k-SCOPE is:

COSTy-score = Ccm +Cex
= O(T * N*)+ O(N*) + O(k * (N * (N —1))/2)

Q

O(T * N?) + O(N?) + O(k = N?).

The computational cost of the TOP-COP and TAPER algorithms are almost sim-

ilar, except that the cost of computing the exact correlations for remaining candi-
dates may be less in the case of TOP-COP, as it prunes more non-potential item
pairs based on the 2-D monotone property. The cost of TOP-COP can be modeled
as,

C'()ST‘TOP—COP = C.S'ort + CBound + CEzact + Ck—lzst

where Csort, Counds CEzact and Cr_p are the costs of creating a sorted list of items
in non-increasing order of support, the cost of computing upper bounds, computing

the cost of exact correlation of remaining pairs, and k-top list maintenance cost,
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respectively. After simplifying the above cost computation, we get
COSTrop_cop = O(NlogN) + O(N?) + O(N?) + O(k?).

However, this cost model, does not consider the cost of scanning the database. It
requires one scan for creating the initial sorted item list and at least another whole
scan (when any hash based data structure is used) of the database for computing
exact correlation of existing pairs after pruning. After adding this cost, the total

becomes

COSTrop-cor = O(T % N)+ O(NlogN) + O(T * N) + O(N?) + O(N?2) + O(k?)

Q

2% O(T « N) + O(NlogN) + 2 * O(N?) + O(k?).

Similarly the cost of Tkep algorithm can be modeled as:

COSTrry, = Csort+ Cp sort + Crp + Crotis
= (O(T * N) + O(NlogN)) + O(T * N*)(O(T * N) + Crp_Tree)
+ (O(N) * CCond_base + O(P * k}2)

where Cs,.; is the cost of creating the initial sorted list of items based on support
count using one pass of the database, Cp_gors is the cost incurred during sorting the
database in descending order of item support, and Crp is the total cost of creating
the FP-tree. The creation of the complete FP-tree requires one complete scan over
the database and the cost of creating the pattern tree is Crp rree. T0 compute
the correlation of each pair and to maintain the k-top list, it requires additional
cost Ccoond_sase fOr creating the conditional pattern base (P) for each item. We see
that the cost of scanning a database is much larger than the other computational
parameters. So, the computational savings of k-SCOPE, i.e., (O(T * N?)) is larger

when the number of records in a transaction database is very high.
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4.7 Performance Evaluation

To evalu\ate the performance of SCOPE and k-SCOPE and to compare them with
other techniques, we test them using several synthetic as well as real-life datasets.
Since, TAPER. in its original form cannot generate the top-k list, we modified
TAPER, so that it can generate such a top-k strongly correlated item pair list.
As TAPER is dependent on the correlation threshold 6, in order to generate the
same result using TAPER we set # as the correlation coefficient of the k-th pair
from the top-k list generated by k-SCOPE. The ideal § value for TAPER for
different datasets are presented in Table 4.7.1. We also provide results showing the
performance of Spearman’s p as correlation coefficient, compared to Pearson’s ¢
when used with market basket data.

We implemented our techniques using Java 1.6 on Windows 7 platform running
in 2.53 GHz machine. We used same environment for implementation of SCOPE,
k-SCOPE, TAPER, and the modified version of TAPER. For TOP-COP, we used
the code as provided by the original author. Since performance of Tcp and Tkep
is highly dependent on FP-tree implementation, we use a third party FP-tree im-

plementation from®” for Tcp and Tkep to avoid any implementation bias.

4.7.1 Dataset used

To generate synthetic dataset, we used ARMiner® software and generate several
synthetic datasets. The details of the synthetic dataset is given in Table 4.2. We
also used market basket version of three real datasets, Mushroom, Pumsb and
Chess. Mushroom dataset® is taken from FIMIC, the Pumsb? dataset from IBM,
corresponding to a binarized versions of a census dataset. Pumsb is often used as
the benchmark for evaluating the performance of association mining algorithms on

dense datasets. The details of real transaction datasets are given in Table 4.3.

2 http:/ /www.cs.umb.edu/laur /A RMmer/

P http: //www.ics.uct. edu/rilearn/ML R Repository. html
Shitp://fimiua ac.be

dhttp://fimi.cs. helsinks. fi/data/



Table 4.2: Synthetic Transaction Dataset

Data Set No.of No. of Avg. size of No. of
Transactions Items Transaction Pattens
T101400D100K 100,000 400 10 20
T10I600D100K 100,000 600 10 20
T101800D 100K 100,000 800 10 20
T10I11000D100K 100,000 1000 10 20
T10P1000D100K 100,000 1000 10 1000

Table 4.3: Real Dataset

Data Set No.of No. of Source
(Market Basket) Transactions Items
Mushroom 8124 128 http://fimi.ua.ac.be
Pumsb 49046 2113 http://fimi.cs.helsinki.fi
Chess 3196 75 http://fimi.ua.ac be

4.7.2 Experimental results

To evaluate the performance of the proposed algorithms, we compare them with
other similar techniques in terms of execution time for different values of # and k.
We find that Tcp and Tkep, consume a lot more time compared to other two tech-
r‘liques, since Tcp and Tkep generate the entire FP-tree with the initial minimum
support value of 0. We also observe that Tcp and Tkep do not work when the
number of items is more than 1000. In case of T10P1000D100K dataset, both Tcp
and Tkep failed to mine, due to the large number of items and unique patterns.
However, in all cases, SCOPE exhibits better performance than TAPER and Tcp.
With decrease in the value of 8, the running time of TAPER also increases, since
low 6 value generates a large number of candidate sets. But, SCOPE and Tcp
keep stable running time for the whole range of correlation thresholds in different
datasets. We further confirm the fact that like Tcp, SCOPE is also robust with
respect to input parameters (Figure 4.3).

From the performance graph in Figures 4.3 and 4.4, we easily observe that modified
TAPER performs much better than TOP-COP, even though TOP-COP is an im-

proved and modified version of TAPER. It is because of the use of an efficient hash
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Table 4.4: Suitable 8 vaiue for different datasets

Data Set ' k values
100 200 300 400 500

Mushroom 0.49 0.37 0.31 0.25 0.23
Pumsb 0.97 0.869 0.764 0.703 0.647
T101400D100K  0.51 0.027 -0.006 -0.011 -0.016
T10I600D100K  0.81 0.27 0.001  -0.006 -0.009
T10I800D100K 0.63 0.290 0.001 -0.003 -0.005
T1011000D100K 0.96 0.95 0.94 0.93 0.89
T10P1000D100K 0.95 0.92 0.87  0.83 0.80

data structure, which is lacking in the original TOP-COP implementation. This
further indicates that the performance of correlation mining algorithms can be im-
proved through efficient implementation. However, in all cases, k-SCOPE exhibits
better performance than TAPER (modified), TOP-COP and Tkep. TOP-COP
exhibits an exponential performance graph (Figures 4.3 and 4.4) as the number of
items increases. But £-SCOPE and Tkcp maintain stable running time in different
datasets, since both algorithms are independent of §. It further confirms the fact

that SCOPE and k-SCOPE are robust with respect to input parameters 4 and k.

4.7.2.1 Scalability of k-SCOPE

The scalability of the k-SCOPE algorithm with fespect to the number of trans-
actions and number of items in the databases is shown in Figure 4.6. We used
ARMiner to generate four datasets with the number of transactions ranging from
1,00,000 to 5,00,000. In each case, we kept the number of test items at 1,000 as
we tested for scalability in terms of number of transactions. To test scalability
in terms of number of items, we gene‘rated another five transaction datasets with
numbers of items ranging from 2,000 to 10,000 keeping number of transactions
equal to 1,00,000. We observe the execution time increases linearly with increase
in the number of transactions and items at different k values. Figure 4.6 shows the

scalability test results for £ ranging from 500 and 2500. From the graph, it is clear
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Figure 4.5: Execution time comparison of k-SCOPE on real dataset

that the performance of k-SCOPE is not sensitive to input parameter k. Thus,
k-SCOPE is robust in handling large transaction databases for different values of

k.

4.7.2.2 Pearson’s ¢ vs. Spearman’s p in correlated item pair findings

Now we provide a few results to establish that Spearman’s p is superior in com-
parison to Pearson’s ¢ over market basket dataset in terms of (i) finding number
of correlated item pairs and (ii) correlation coefficient values for different k values.

For measuring the performance of ¢ and p as correlation coefficient for finding
correlated item pairs, we used the Mushroom and Chess datasets. We measured
the number of possible correlated item pairs for various 8 values, generated by both
Pearson’s ¢ and Spearman’s p. In the Figure 4.7 and 4.8, we easily observe that
Spearman’s p generates more correlated pairs compared to Pearson’s ¢. Similarly,
when we measure k* correlation coefficient value for different k values, we find that
Spearman’s p gives higher values than Pearson’s ¢. We conclude that Spearman’s
p is able to detect hidden correlated pairs undetected by Pearson’s ¢. Moreover,
in some cases, p gives higher correlation value compared to ¢, for a particular pair.
We feel that this is due to the problems associated with Pearson’s ¢, as already

discussed.
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dataset

4.8 Discussion

We have presented two effective techniques for finding strongly correlated item pairs
and top-k strongly correlated item pairs from market basket data, in this chapter.
We have also presented an alternative way of measuring correlation coefficient be-
tween item pairs from market basket data using Spearman’s rank order correlation.

The advantages of these techniques compared to existing similar techniques are (i)
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Figure 4.8: Performance comparison of Pearson’s ¢ and Spearman’s p on Chess
dataset
they require single pass over the whole database, and (ii) they require no candidate
generation. We evaluated both the techniques using several synthetic and real life
datasets and found that the results are quite satisfactory.
In the following chapters, we present potential application of above data mining
techniques in gene expression data analysis. Next chapter presents a pattern based

gene co-expicession uetwork finding technique using correlogram matrix.
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Chapter 5

Expression Pattern Based
‘Reconstruction of Gene

Co-expression Networks

Biological networks connect genes or gene products to one another. A network of
co-regulated or co-expressed genes may form gene clusters that can encode proteins
and take part in common biological processes. The most preliminary form of net-
work is gene co-expression network which basically describes the inter-relationships
between different genes. Existing techniques generally depend on proximity mea-
sures based on global similarity to draw the relationship between genes. It has
been observed that expression profiles are sharing local similarity rather then global
similarity. In this chapter, we propose an expression pattern based method called
GeCON to extract Gene CO-expression Networks from microarray data. Pair-
wise supports are computed for each pair of genes based on changing tendencies
“and regulation patterns of gene expression. Gene pairs showing negative or posi-
tive co-regulation under a given number of conditions are used to construct such
gene co-expression network. The genes in a network with high pattern similarity
form a coherent group. We construct a co-expression network with signed edges
to reflect up and down regulation between a pair of genes. We apply GeCON on

both real and synthetic gene expression data. Publicly available gene expression
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datasets are used to generate gene co-expression networks and measure biological
significance of the nctwork modules in terms of gene ontology. We reconstruct in
stlico gene regulatory networks using DREAM3 and DREAM4 Challenge data and
evaluate the predicted networks against the actual networks. We compare our re-
sults from DREAM data with three well known algorithms, viz., ARACNE, CLR
and MRNET. Experimental results show that GeCON can extract biologically rel-
evant networks as well as effectively infer of in silico gene regulatory networks. It

outperforms other algorithms based on n silico regulatory network reconstruction.

5.1 Introduction

Microarray technology makes it available a large numbers of expression data over
protein and metabolite activity. It allow us to study the dynamic behaviour of a
gene inside cell. Reverse engineering is a promising area of research in Systems
Biology, tries to recreate the cellular system for better understanding of biological
mechanism. The development of suitable reverse engineering method is necessary
to get insight into gene-gene relationships, which may further lead to discovery
of functional gene modules. Gene-gene relationships can be described through
biological pathways, which can be represented as networks and broadly classified*
as metabolic pathways, signal transduction pathways and gene requlatory networks.
The most preliminary network is the gene co-expression network, which describes
inter-relationships among genes.

A gene co-expression network is an undirected graph, where the nodes corre-
spond to genes or gene activities, and undirected edges between genes represent
significant co-expression relationships®%°. In a co-expression network, two genes
are connected by an undirected edge if their activities have significant association
over a series of gene expression measurements. Compare to regulatory networks,
a gene co-expression network does not attempt to draw direct causal relationships
among the participating genes in the form of directed edges. A co-expression net-

work may form co-regulated gene clusters that can encode proteins, which interact

74



among themselves and take part in common biological processes. Co-expression
network analysis plays vital role in inferring relationship among biological pro-

s
cesses” .

5.2 Related Works

A number of techniques have been proposed for such network construction 44:60:61.62,63,64

Existing techniques for finding gene networks can be broadly categorized as (i)
Computational approaches, and (ii) Literature based approaches. The computa-
tional approach mainly uses statistical, machine learning or soft-computing tech-

~

niques %%:6°

as discovery tools. On the other hand, a literature based approach
gathers relevant published information on genes and their inter-relationships and
constructs networks based on such documented information. The literature based
approach is capable of building networks with high biological relevance but is com-
putationally expensive. A biomedical literature search based technique is used in%®
to construct gene relation networks by mapping literature knowledge into gene
expression data.

Network models such as Bayesian®” and boolean networks®® are used to infer
interrelationships among genes. Kwon et al.%, extract gene regulatory relation-
ships for cell cycle-regulated genes with activation or inhibition between gene pairs.
Regulatory relationships have also been deduced from correlation of co-expressions,
between DN A-binding transcription regulator and its target gene, by using a prob-
abilistic expression model . Although standard statistical techniques for extract-
ing relationships can come up with multiple models to fit the data, they often
require additional data to resolve ambiguities. Soft computing tools like fuzzy sets,
neuro-computing, evolutionary computing and their hybridization are alternatives
for handling real life ambiguities. Mitra et al.%! propose a bi-clustering technique
to extract simple gene interaction networks. They use continuous column multi-
objective evolutionary bi-clustering to extract rank correlated gene pairs. Such

pairs are used to construct the gene network for generating relationship between
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a transcription factor and its target’s expression level. Similarly, Jung and Cho®?
also propose an evolutionary computation based approach for construction of gene
(interaction) networks from gene expression time-series data. It assumes an artifi-
cial gene network and compares it with the reconstructed network from the gene
expression time-series data generated by the artificial network. Next, it employs
real gene expression time-series data to construct a gene network by applying the

46,71 or correlation coefficient 446354 based

proposed approach. Mutual information
approaches have been proposed for extracting gene-gene interaction networks. It
has been observed that a pair of genes with high mutual information are non-
randomly associated with each other biologically or with biological significance.
Butte et al.#® compute comprehensive pair-wise mutual information for all genes
in an expression data set. By picking a threshold mutual information and using
only associations at or above the threshold, they construct Relevance Networks.
A number of additional mutual information-based approaches have been also pro-

posed. Some of the well known algorithms in this category are CLR7?, ARACNE™,
MRNET™.

5.3 Motivation

Most existing computational approaches extract networks based on global similar-
ity such as correlation or mutual information. This is computationally expensive
and sometimes, may not be able to obtain biologically relevant groups of genes or
networks. Pairwise correlation or mutual information may not reveal the proper
relationships. Existing approaches compute similarity considering expression val-
ues in all dimensions. It is well known that gene expressions may match each
other under some conditions or samples, when correla,tion score is penalized due to
mismatch in a condition. Moreover, expressions may contain scaling and shifting
patterns™, which also may affect the correlation measure in drawing true associa-
tion among genes. Mutual information based techniques are effective alternatives

to correlation measures. However, most such work discretizes the expression values

76



GDS3702 (Rat)

Yeast

500

50 T T ¥ T T T
50l ~—4— Mrps26 i —G— YALOC2W
—e YRLOGIC
yBLoo6® ||

ol —5— P2 )\ weol
- \\ v —
AN Y
250 E

200
150+
100 |

50 . ”ﬁ/

2 4 B B 10 12 200l

Isak

Expression level
Exprossion lovel

2 4 6 8 10 12 14

Conditions Conditions/Time Poincs

Figure 5.1: Expression profile of RAT
genes showing negative or inverted reg-

: tive and negative regulation
ulation

before computing mutual information. Discretization may lead to information loss.
We note that two genes may be related to each other even when their expression
patterns show negative or inverted behaviour™. In Figure 5.1, expression patterns
of Rat gene Mrps26 and Pfn2, taken from NCBI dataset, GDS3702, clearly show
negative behaviour. Gene ontology suggests that both are responsible for regu-
lation of interferon-beta production. Again, we easily observe that in the Yeast
datsets given in 20, genes YBLOO2W and YBL0O0SC have a similar pattern and
gene YBLOO6W has an inverted behaviour with respect to the other two genes.
If we observe Figure 5.2 more closely, we see that expression patterns also)share
mixed regulation (i.e., both positive and negative). As suggested by gene ontol-
ogy all three genes are involved in nucleosome organization, protein-DNA com-
plex sub-unit organization, chromatin and chromosome organization and cellular
macro-molecular subunit organization. A group of genes may share a combination
of both positive and negative co-regulation under a few conditions or at a few time
points. Majority of existing approaches capture genes with similar tendency as
co-expression but ignore the patterns like the ones we discuss above.

In computing similarity, many well known techniques do not consider positive-
or negative- regulation patterns as presenting co-expression or co-regulation with

associated biological significance In our work, we capture pair-wisc similarity
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Figure 5.2: Yeast genes showing posi-



purely on pattern matching followed by construction of the co-expression network.
We consider both positive and negative regulation as co-regulation’ Unlike avail-
able measures, we use a support based approach to compute similarity between
two expression patterns. We also consider the case where two genes show similar
patterns only under some conditions or time points. Available co-expression net-
work finding techniques discover only limited association between the genes. Since
creating a co-expression network is a preliminary step towards gene regulatory
network discovery, we use signed edges between the genes to represent positive
and negative regulations, an important component in gene regulatory networks.
Computing correlation or mutual information for all possible pairs is a compu-
tationally expensive task. The few approaches developed so far to discover gene
co-expression networks are computationally expensive. We compute the similarity
between expression patterns of two genes using a one-pass support count based
approach without discretizing the expression database. Gene pairs showing high
support, i.e., high pattern similarity are used to construct a gene co-expression
network. We apply our approach to several real expression datasets. Since genes
participating in a network form gene groups with high co-regulation, we assess our
results by evaluating the gene groups against biologically significant gene ontology

terms associated with a group.

5.4 Expression Pattern based Co-expression net-
working

Clustering based on global similarity measures, like Euclidean distance or Pearson
correlation, may not always capture true gene-gene relationships . On the other
hand, most existing techniques give low emphasis on pattern matching based on
local similarity. It has been observed that genes share local rather global functional
similarity in their gene expression profiles®!. Moreover, another observation is that
most existing techniques are computationally expensive.

In this section, we develop a pattern similarity based approach to construct co-
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expression networks with signed edges to represent regulatory relationships among
genes. In general, comparing pair-wise genc profiles require multiple passes over the
database, which often is quite expensive, especially for database with large numbers
of genes (or rows). In this work, we perform pair-wise comparison using a one-pass
approach, and we compute supports using single scan of the database. Pairs of
gene showing similarity above a user-defined threshold # are used to construct the
adjacency matrix which is used in turn to construct and visualize the network.

To capture the pattern of an expression profile, the edge between two consecu-
tive expression values of a gene profile is used. Thus, for an expression data with
M conditions or time points, there are (M — 1) edges. To repreéent the edge we
use two measures, degree of’ fluctuation and regulation pattern of the edge. The
degree of fluctuation of an edge is the angular deviation of the edge on the 180-
degree normal plane. Regulation pattern represents the up and down regulation of

a pattern or edge.

5.4.1 Terminology used

Let G = {G1,Ga, - ,Gn} be the set of N genes and R = {0;,0,, -+ ,0p}
be the set of M conditions or time points of a micro array dataset. The gene
expression dataset D is represented as a N x M matrix Dyxps where each entry
d,, corresponds to the logarithm of the relative abundance of mRNA of a gene.

Following definitions and lemmas provide the theoretical basis of the proposed

GeCON algorithm.

Definition 5.4.1 (Pattern Similarity) : Given degrees of fluctuation A =
{a1,aq, -+ ,ap—1} and regulation patterns R = {ry, 7o, -~ ,7pr_1} of a gene, de-
rived from the gene expression profile, two genes’ k** expression patterns are similar
if the difference in the degrees of fluctuation of the two genes’ k** edges is less than
some given threshold 7. In calculating similarity between edges of two genes, we
consider two patterns: Positive similarity, Pos_sim, when the regulation patterns
are the same (in case of up regulation) and Negative similarity, Neg_sim, when the

patterns are inverted (in case of down regulation) for a particular edge (inverted
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pattern) To calculate the degree of fluctuation based on the 180 degree plane,

similarity can be defined as follows:

1, if G,(T‘k) = GJ(Tk)
Pos_sim(Gy, G,x) = and |G,(ax) — G,(ax)| < 7 (5.1)

0, otherwise,

1, if GI(T'/C) 7é G](’I”k)
Neg-sim(Guy, Gi) = and {180 — G,(ax) + G,(ax)| < 7 (5.2)

0, otherwise.

Definition 5.4.2 (Support) : It is the ratio between the number of edges for
which genes G, and G, are similar and the total number of edges |E|. We consider
both positive and negative support to measure the number of edges where both
genes have similar or inverted pattern tendencies, respectively. The formulas are

given below.

[E|

Pos_support(G,,G,) = Z Pos_sim(G,,G,)/|E| (5.3)
1,7=1
|E|

Neg_support(G,,G,) = Z Neg_sim(G,,G,)/|E| (5.4)

1,9=1
Definition 5.4.3 (Strongly Connected) : Two genes G, and G, are said to be
Strongly Connected {(or have an inter-relationship) if Pos_support(G,,G,) +
Neg_support(G,, G,) > 6, where 8 is a uscr defined threshold to indicate the mini-

mum number of edges of two expression profiles must match.

Definition 5.4.4 (Co-expression Network) : Co-expression network is a graph
T = {G', E'} containing a subset of genes that are strongly connected. If two genes
(G.,G,) € G’ are connected by an edge E,, € E, then G,,G, are strongly connected
to each other.

Here, E = {(E,,,Sk), - (Emn, Sk)} is a set of pairs, where F,, represents an
edge connecting G, and G,, and Sy represents the sign of the edge E,;. A value
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of Sy = +1 indicates up or positive regulation and -1 indicates down or negative
regulation. To calculate the value of S¢ of edge £;;, we use Pos_support and

Neg_support. This is defined as:

+1, if Pos_support(G,,G;) > 6 _
Se(Ey) = <. ’ (5.5)
-1, if Neg_support(G;,G;) > 0.

Lemma 5.4.1. For any two genes G;,G,, if G; € T, a gene co-expression network,

and G; is strongly connected to G;, then G, € T.

Proof. The above lemma can be proved by contradiction. Assume, G; and G; are
two strongly connected genes and G; € T, but G; ¢ T. As per Definition 54.4, T
is a subset of strongly connected genes and since G; and G are strongly connected,

Gj € T, which contradicts and hence the proof. a

Similarly the following lemma is trivial based on the Definitions 5.4.1 through

5.4.4 and Lemma 5.4.1.

Lemma 5.4.2. Let G; and G, be two genes, and Ty and T, be two gene co-

expression networks. If G; € Ty and G; € Ty, then G; and G; are not connected.

Lemma 5.4.3. Genes belonging to the same gene co-expression network are co-

regulated or similar.

Proof. This lemma can also be proved by contradiction. Let us assume that any
two genes G; and G; € T are not co-expressed. If G; and G, are in same net-
work, they are strongly connected (as per Definitions 5.4.3 and 5.4.4), and hence
G; and G; are strongly connected. Again, any two strongly connected genes are
similar or co-expressed (as per Definitions 5.4.1 through 5.4.3), which contradicts

the assumption, hence the proof. ' O

Similarly, the proof of the following lemma (the reverse case of lemma 5.4.3) is

trivial.

Lemma 5.4.4. Genes belonging to different gene networks are not co-expressed.
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5.4.2 Capturing expression pattern

To capture patterns of each gene expression, researchers use either angles between
the edges for every pair of conditions™ or regulation patterns in terms of up-

or down- regulation™.

Angles or regulation patterns between the edges of two
conditions, alone, are ineffective in capturing the true expression pattern of a gene.
We compare two gene expressions both in terms of degrees of fluctuation and
regulation patterns between two adjacent conditions (edges), simultaneously. To
capture both regulation patterns and degree of fluctuations of each gene, we read
rows of original data with M number of expression values or conditions and convert
them into another row of (M —1) number of columns, each column of which contains
the degree of fluctuation and the regulation pattern of two adjacent conditions.
We consider regulation information 1 and -1 to represent up-regulation and down

regulation respectively. Regulation value in the ki, edge of a gene G, , G;(ry),

based on two consecutive conditions (say, Ox_1 & Oy) can be calculated as:

G (7‘ ) 1 if Ok—l < O (5 6)
k) = .
-1 if Ok—-l > Ok.

For calculating the degree of fluctuation we compute the arc tangent between
two adjacent expression levels (z,y) as in™® based on 180 degree plane. For com-
puting arc tangent, we used two-argument atan2 function. atan2(y, z) is the angle
between the positive z-axis of a plane and the point (z,y) on it, with positive

sign for counter-clockwise angles and negative sign for clockwise angles. Next, we

convert the angle in 180 degree plan as follows:

180 — abs(arctan2(y, fy<z
DegreeO f Fluctuation(z,y) = ( v.2)) Y (5.7)

abs(arctan2(y, x)) otherwise.

The fact is illustrated in Figure 5.3 taking an example of a gene expression

G = {343,314,409} with three conditions. After preprocessing G it become G =
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Figure 5.3: Degree of fluctuation for three expression values of a gene

{138, ~1; 52,1}.

5.4.3 Construction of co-expression network

This section discusses the counting of pair-wise support between genes using only
one pass over the database to construct the co-expression network of connected
genes. We use a correlogram matrix based approach® for computing similarity be-
tween two target genes based on the degree of fluctuation and regulation between
them. Later, similarity values are used to calculate the support values needed to
construct the co-expression network. We first transpose the preprocessed database
(obtained using the above technique) by placing edges as rows and the genes as
columns. We read each row from the database, and check whether two consecu-
tive genes (say, G, and G,) satisfy the similarity criterion (in terms of degree of
fluctuation and regulation information) or not, using Equations (5.1) and (5.2). If
two genes are similar, the content of the correlogram matrix cell with index (7,7) is
increased. This step is repeated for all pairs of genes in each row. This continues
for all the rows to be processed.

From the correlogram matrix, it is very simple to extract the support count
of gene pairs. Using these support counts, we compute all connected genes that

satisfy the given 6 constraints.
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Our approach is good because (i) It constructs the network in single scan of
database and hence it is faster, (i1) no discretization 1s needed, and (iii) our ap-
proach does not use any standard proximity measures.

Based on all strongly connected pairs, an adjacency matrix is computed as:

+1 if G, and G, are strongly connected and Si(E,)) = +1
A(r,7) =< -1 if G, and G, are strongly connected and Sx(E,,) = ~1 (5.8)

0 otherwise

where 0 indicates the lack of any relation between the genes. A gene co-expression
network connecting various genes is constructed based on the adjacency matrix.
GeCON is given as an algorithm depicted in Algorithm 4. It takes preprocessed
database D’ and # as input. Step 1 deals with construction of the correlogram
matrix. In step 2 to 7, all connected genes are extracted based on # and adjacency
matrix is constructed using Equation (5.8). Finally, the algorithm returns the

adjacency matrix A.

input : D’ (Preprocessed Database), § (Support threshold)
output: A (Adjacency matrix)

Generate correlogram matrix from D’;

foreach gene pair (G,,G,) € D’ do

if then

| (

end

G,,G,) 1s Strongly Connected wrt. §;

Update adjacency matriz A with (G,,G,) and Sk(E,,);
8 [end
Return A;

N O R W N

Algorithm 4: The GeCON Algorithm

5.4.4 Complexity analysis

GeCON uses correlogram matrix for storing support for pair of genes. Thus for N
genes, GeCON require fixed memory of size SPACEg.con = O(N?). In terms of

computational cost, GeCON needs time for preprocessing and network construction
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using correlogram matrix. For a dataset with N genes and C' conditions, prepro-
cessing step require O(N * C?) time. To construct network, it has to traverse the
correlogram matrix. Thus, the time required for network construction is O(N?).

The total computational cost of GeCON is:

Costgecon = O(N *C?) + O(N?)

~ O(N?)(compare to size of N, normally C < N, so we can ignore C).

5.5 Performance Evaluation

This section provides the details of experiments conducted, the data sets used and
the validation of the results. We apply the GeCON on real and synthetic gene
expression data consisting of pﬁblicly available seven benchmark gene expression
datasets and thirteen wn siico dataset. We used Java 1.6 running on a Windows

7, 2.53 GHz machine for implementation.

5.5.1 Dataset used

We used DREAM (Dialogue for Reverse Engineering Assessments and Methods)
Challenge synthetic data on n siico regulatory network construction, provided
by Marbach et al.8!. Dream3 and Dream4 are the two Challenges that are avail-
able. Dream3 involves fifteen benchmark datasets, five each of various sizes (10, 50
and 100). The structures of the benchmark networks are obtained by extracting
modules from real biological networks. At each size, two of the networks are ex-
tracted from the regulatory network of E. coli and Yeast. Dream4 is very similar
to Dream3 containing a total of 10 networks, five of each size, 10 and 100. The n
silico datasets generated based on Marbach et. al.®! platform for our experiments
are characterized in Table 5.1. We analyze the results from various real datasets

for biological significance in terms of the GO annotation database. The details of
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the datasets are presented in Table 5.2.

Table 5.1: In silico DREAM Challenge datasets

Challenges Dataset

In silico network Size of the network

D1 Ecolil 10
D2 Ecoli2 10
D3 Ecolil 50
D4 Ecoli2 50
Dream3 D5 Yeast1 10
D6 Yeast2 10
D7 Yeastl 50
D8 Yeast2 50
D9 insilicol 10
D10 insilico2 10
Dream4 D11 insilico3 10
D12 insilicol 100
D13 100

insilico?2

Table 5.2: Short description of the datasets

Organism  Dataset No. of No. of  Source
genes  samples
Yeast Yeast 474 7 http://cmgm stanford.edu/
Sporulation pbrown/sporulation
Yeast Yeast KY 237 18 http://faculty. washington.edu
/kayee/cluster/
Yeast Yeast 384 18 http://faculty.washington.edu
cell cycle kayee/cluster
Human GDS825 277 8 NCBI
Mouse GDS958 308 12 NCBI
Rat GDS3702 1000 12 NCBI
(Subset)
Rice Thaliana 138 8 http://homes.esat.kuleuvan.be/

thijs/Work/clustering.html
/kayee/cluster

5.5.2 Experimental results

As discussed, we use the concept of support to draw links or inter-relationships

among genes. A gene pair satisfying support criterion with respect to a user de-

fined threshold § is considered connected. We display only those genes that are
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linked to others with support higher than the threshold. We use the in silico regu-
latory network construction platform provided by Marbach et al.8! for simulation
of our results. In the network, nodes represent genes and lines between nodes repre-
sent hypothesized associations among genes. A blue colored arrow head edge shows
positive regulation, whereas a red colored blunt head edge indicates negative regu-
lation between a pair of genes. We present some of the networks in Figure 5.4 and
5.5. The genes participating in a co-expression network form a group of coherent or
co-expressed genes responsible for common biological activities. We consider such
a group a module and analyse the biological significance of the modules in terms
of the Gene Ontology in the next section. Figure 5.4 and 5 5 also show the profile
plot of selected modules and the corresponding heat map of the modules. The
cluster profile plot shows the normalized gene expression values of the genes within
that cluster with respect to the conditions or time points for each co-expressed
group. From the profile, it is evident that GeCON is able to detect both positively
and negatively co-expressed gene groups as well as identify Scaling and Shifting

patterns in the expression.

5.5.3 Biological significance

Biological significance of the results can be assessed by functional annotation of the
genes participating in a module or cluster. We determine the biological relevance
of the modules comprising of all the genes participating in a common co-expression
network, in terms of p* and Q8% values against statistically significant GO terms
validated using the GO annotation database. In this annotation database, genes are
assigned to three structured, controlled vocabularies (ontologies) that describe gene
products in terms of associated biological processes, components and molecular
functions in a species-independent manner. Statistical significance is evaluated
for the genes in each group by computing p-values, which signify how well they
match GO categories. A smaller p-value (close to zero) indicates better match
which in turn indicates more close and compact cluster structure. For evaluating

functional enrichment of a module in terms of p values we use FuncAssociate®3.
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The @-value is the minimal False Discovery Rate (FDR) at which this gene appears
significant. The GO categories and Q-values from a FDR corrected hypergeometric
test for enrichment are obtained using GeneMANIA ®'. Q-values are estimated
using the Benjamini Hochberg procedure®. We report here p and Q-values of
selected modules from several datasets. Along with @Q-values, GeneMania also
provides Co-expression, Physical and Genetic interaction scores for the networks.
The co-expression percentage indicates the level of similarity in expressions across
conditions. On the other hand, the physical interaction percentage shows the
level of protein-protein interaction within a module. In Table 5.3. we present
results from GeneMANIA for selected modules. A module obtained from the Yeast
Sporulation network is mainly responsible for cytosolic ribosome formation with

Q score 1.11e-47 and it also exhibits good co-expression. On the other hand,
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modules responsible for sporulation activities show very high expression but the
protein-protein interaction is nil. A very high physical interaction can be observed
in the module responsible for DNA replication. Kayee’s Yeast dataset shows a very
high Q value of 2.16E-130. However, the same module shows very poor physical
interaction. We also observe 100% co-expression from GDS3702 where modules
are responsible for oxidoreductase activities, aging regulation and lipid catabolic

process.

Table 5.3: Q-value, Co-expression and Physical interaction score for different mod-
ules from different datasets

Dataset Mod GO- Q Value Co-expr-  Physical
ule  Annotation ession(%) Inter-
action(%)
1 cytosolic ribosome 1.11E-47 74.71 7.24
2 nucleolus 2.32E-30 72.46 8.96
Sporulation 3 sporulation 9.87E-20 96.96 0
4 DNA replication 2.92E-09 3.07 95.08
preinitiation complex
1 cytosolic ribosome 2.16E-130 69.1 3.56
2 structural constituent 2.64E-126  69.1 3.56
Yeast KY of ribosome
3 DNA-dependent, 2.38E-27 65.05 8.08
DNA replication
1 mitochondrial 8.29E-07 68.5 5.41

inner membrane
2 oxidoreductase activity  3.29E-02 100

aging 1.55E-01 100
GDS3702 regulation of
3 lipid catabolic process 1.40E-03 100
4 iron-sulfur 5.51E-03 43.75 9.72
cluster binding
1 vacuolar proton- 4.67E-16 27.59 32.75
transporting
GDS958 V-type ATPase complex
cell cortex 5.01E-03 27.59 32.75
1 negative regulation 2.19E-04 29.41 29.41
of cellular process
Thaliana 2 response to wounding 1.36E-08 92.48 5.63
3 receptor binding 2.49E-03 29.41 29.41

Table 5.4 presents p scores obtained by FuncAssociate for selected modules
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submitted from different datasets. For Kayee's dataset, GeCON shows better per-
formance in terms of high enrichment with p-value, e.g., p-value 5.20E-96. Simi-
larly, GDS825, GDS958 and Sporulation datasets also contain modules with good

functional enrichments.

Table 5.4: p-values for different modules from different datasets

Dataset Module GO Annotation p value
1 folic acid and derivative 3.10E-15
biosynthetic process
GDS825 2 cullin-RING ubiquitin 5.40E-08
ligase complex
3 chemoattractant activity 5.60E-07
4 biotin binding 8.30E-07
Yeast KY 1 cytosolic ribosome ' 5.20E-96
2 DNA replication 9.64E-20
1 response to neutrient 1.47E-05
GDS3702 2 hydrolase activity 1.60E-05
3 protein complex , 8.00E-04
1 intracellular part . 9.83E-19
GDS958 2 intracellular membrane- 2.5TE-05
bounded organelle
1 cytoplasmic translation 2.22E-22
2 anatomical structure formation 1.25E-17
Sporulation 3 ribonucleoprotein complex biogenesis 1.07E-10
4 cell cycle phase 2.36E-06
5 cellular component assembly 4. 66E-06

5.5.4 Performance comparison

We compare our predictions using DREAM Challenge dataset with three well
known gene regulatory network reconstruction algorithms, ARACNE"™, CLR"™
and MRNET™. R implementation of all the three algorithms are available in%.
Prediction effectiveness is compared against the actual networks generated from
in slico DREAM Challenge data, using three different metrics for evaluating ac-
curacy: AUPVR (Area under Precision vs Recall curve), AUROC (Area under
Receiver-Operator Characteristics curve) and Fp score. The ROC is also known as

a relative operating characteristic curve, because it is a comparison of two oper-
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ating characteristics (True Positive Rate and False Positive Rate) as the criterion
changes®. ROC curves may not be the appropriate measure when a dataset con-
tains large skews in the class distribution, which is commonly the case in transcrip-
tional network inference. As an alternative, precision vs. recall (PvR) curves are
considered for measuring prediction accuracy®. ROC curves are commonly used
to evaluate prediction results. However, PvR curve may be more sensitive when
there is a much larger negative set than positive set. Computing the area under the
curve (AUC) of a ROC or PvR is a way to reduce ROC or PvR performance to a
single value, representing expected performance. A compact representation of the
PvR diagram is the maximum and/or the average F score3®, which is a harmonic

average of precision and recall. The general formula for non-negative real g is:

precision X recall
(B2.precision) + recall

Fp=(1+p5% (5.9)

Two other commonly used F' measures are the F, measure, which weights recall
higher than precision, and the F 5 measure, which puts more emphasis on precision
than recall. The F-measure measures the effectiveness of retrieval assuming recall
is B times more important than precision. In our experiments we preferred Fj s
score. Prediction effectiveness of GeCON is compared with other algorithms and
the results are shown in Figure 5.6.

From the figures it is evident that GeCON outperforms all other algorithms
in terms of network prediction on three different scores. In case of dataset D6,
GeCON achieved a very high AU(PvR) score of .84, AUROC of 78 and Fjp score
of .86. Other algorithms exhibit consistent and almost similar trends in all ex-
periments. To justify our claim on one-pass nature of GeCON, which is fast in
general, we perform execution time comparison of GeCON with ARACNE. Due to
unavailability of executable codes of all other target algorithms on a Java platform,
we used only the Java version of the original ARACNE code ? for comparison with
GeCON. The result given in Figure 5.7 clearly shows that GeCON is much faster

than ARACNE.
*http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ ARACNE
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Figure 5.6: Performance comparison of four algorithms on in silico dataset

5.6 Discussion

In this chapter, we have presented an effective gene co-expression network ﬁnding'
algorithm called GeCON for discovering biologically related gene pairs that may
form a network of co-expressed genes. We have established that the genes par-
ticipating in a network have similar functional behaviour. The GeCON algorithm
exploits a fast correlogram matrix based technique for capturing the support of
each gene pair in order to compute the relationship between gene pairs. Gene
pairs with strong relationship are used to construct the association network. When
constructing the networks, GeCON exploits the regulation relationship among the

genes. We have shown that GeCON performs well in determining the gene-gene re-
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Figure 5.7: Execution time comparison of GeCON with ARACNE on different
sized networks

lationiship network in both wn silico and real datasets. Our literature survey reveals
that most existing techniques do not emphasize on computational efficiency. We
report results to show that GeCON is effective to predict in slico networks based
on DREAM Challenge data. We validate the claims that the simple gene-gene re-
lation based co-expression networks are capable of detecting biologically significant
set of genes. We provide results to show that co-expressed groups formed from
the network have high biological significance. Moreover, we further establish that
the simple expression pattern matching is helpful in finding biologically relevant
genes. Gene co-expression networks can be used further to predict more complex

biological networks.
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Chapter 6

Pattern Based Approach for
Co-Regulated Biclustering of

Gene Expression Data

Co-regulation is a common phenomenon in gene expression. Finding positively
and negatively co-regulated gene clusters from gene expression data is a real need.
Existing techniques based on global similarity are unable to detect true up- and
down-regulated gene clusters. This chapter presents an expression pattern based
biclustering technique, CoBi, for grouping both positively and negatively regulated
genes from microarray expression data. Regulation pattern and similarity in de-
gree of fluctuation are accounted for while computing similarity between two genes.
Unlike traditional biclustering techniques, which use greedy iterative approaches,
it uses a BiClust tree that needs single pass over the entire dataset to find set of bi-
ologically relevant biclusters. Biclusters determined from different gene expression

datasets by the technique show highly enriched functional categories.

6.1 Introduction

In the last two decades, clustering has become a popular data-analysis tool in ge-

nomic studies, particularly in the context of gene-expression microarrays8%:90:91.92,
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Each microarray provides expression measurements for thousands of genes and
clustering is a useful exploratory technique to analyze gene expression data since it
groups similar genes together and allows biologists to identify groups of potentially
meaningful genes which have related functions or are co-regulated, which in turn
helps in finding the relationships among them in the form of gene regulatory net-
works®. Another common use of cluster analysis is the grouping of samples (arrays)
by relatedness in expression patterns, i.e., finding groups of co-expressed genes.

A cluster is a group of objects that are similar to one another within the group

but dissimilar to the objects of other groups?%

. Clustering normally partitions
genes into disjoint groups according to the similarity of their expressions across
all conditions. However, it has frequently been observed that subsets of genes are
co-regulated and co-expressed under a subset of environmental conditions or time
points%. Biclustering algorithms tackle the problem of finding a set of submatrices
where each submatrix or bicluster meets a given homogeneity criterion. This special
instance of clustering was originally introduced by Hartigan® and later applied by
Cheng and Church® in expression data to capture the coherence of a subset of
genes and a subset of conditions. Several techniques have been proposed so far to

find quality biclusters from expression data. Below we present a brief discussion

on some of the techniques already proposed.

6.2 Related Work

In Cheng and Church’s approach, the degree of coherence is measured using the
céncept of mean squared residue (MSR) and the algorithm greedily inserts/removes
rows and columns to arrive at a certain number of biclusters achieving some pre-
defined residue score. The lower the score, stronger the coherence exhibited by the
bicluster, and better is the quality of the bicluster. Followed by Cheng and Church,
a number of biclustering techniques have been proposed 20:75:79:97,98,99,100,101,102,103,104
to determine quality biclusters.

A greedy iterative search?®’ based approach finds a local optimal solution with
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an expectation to obtain finally a globally good solution. A divide and conquer®

approach divides the whole problem into sub-problems and solves them recursively.
Finally, it combines all the solutions to solve the original problem. In exhaustive
biclustering™, the best biclusters are identified using exhaustive enumeration of
all possible biclusters extant in the data, in exponential time. A detailed catego-
rization of heuristic approaches is available in%. A number of techniques based on
metaheuristics such as evolutionary and multi-objective evolutionary framework
have been explored®® while generating and iteratively refining an optimal set of
biclusters. All of them use MSR as the merit function.

An MSR based technique is effective in finding optimized maximal biclusters.
From a biological point of view, the interest resides in finding biclusters with subsets
of genes showing similar behaviour and not similar values. Interesting and relevant
patterns from a biological point of view, such as shifting and scaling patterns
may not be detected using this measure as it considers only expression values,
not the pattern or tendency of gene expression profile. It is important to discover
this type of patterns because, frequently the genes can present similar behaviour
although their expression levels vary in different ranges or magnitudes. Aguilar-
Ruiz"® proved that the MSR is not a good measure in discovering patterns in data
when the variance of gene values is high, that is, when the genes present scaling
and shifting patterns. To detect biologically relevant biclusters with scaling and
shifting patterns, a scatter search based approach is proposed'®. This method uses
a fitness function based on the linear correlation among genes and an improvement
method to select just positively correlated genes.

Often, it has been observed that genes share local rather than global similarity
in their gene expression profile and only under a few conditions or time points.
Thus, correlation based technique may not be effective while deciding pair wise
similarity between two gene expression profiles. Other than that, various pattern-
based approaches have also been proposed!01:102105.106 for discovery of biclusters
where expression levels of genes rise and fall in a subset of conditions or time

points.
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Recently it has been observed that "® co-regulated genes also share negative pat-
terns or inverted behaviours, which existing pattern based approaches are unable

to detect.

6.3 Motivation

Biological processes are regulated in many ways. Examples include the control
of gene expression, protein modification or interaction with protein or substrate
molecules. Expression patterns with similar tendency or behaviour are normally
termed positively regulated and inverted behaviour as negatively regulated. As
described in Amigo®, negative regulation or down regulation stops, prevents, or
reduces the frequency, rate or extent of a biological process and positive regula-
tion or up-regulation does the reverse. To illustrate the fact we consider examples
of co-regulated clusters from real microarray Human datsets, GDS825 given in
NCBIP. The proﬁle plot is given in Figure 2.4. From the figure, we easily observe
that genes GALNTS5 and IDH3B show similar pattern or positive co-expression
patterns. On the other hand IDH3B or GALNTS5 showing inverted or negative
pattern with APOE. As suggested by gene ontology three genes are involved in
requlation of plasma lipoprotewn particle levels and triglyceride-rich lipoprotewn par-
ticle remodeling. More prominent inverted or negative patterns can be observed
in Figure 5.1 taken from NCBI Rat dataset GDS3702. As mentioned earlier, both
the genes are responsible for regulation of winterferon-beta production. A group of
genes may share a combination of both positive and negative co-regulation under
a few conditions or at some time points. A majority of existing approaches try to
capture genes with similar tendency.

In this work, we capture biclusters of both positively and negatively regulated

7 a bicluster can be

genes as co-regulated genes. Moreover, as mentioned in'®
considered a quality bicluster when participating genes exhibit consistent trends

and similar degrees of fluctuation under consccutive conditions. We consider both

2http://amigo geneontology.org/cgi-bin/amigo/term_details?term=G0:0048519
> www.nchbi nlm.nih.gov
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up- and down-regulation trends and similar degree of fluctuations under consecutive
conditions for expression profiles of two genes as a measure of similarity between
the genes. We use a new BiClust tree for generating biclusters in polynomial time

that needs single pass over the dataset.

6.4 Biclustering of co-regulated genes

Let G = {G1,G,,---Gn} be aset of N genes and R = {1, T, - - ,Tam} be the set
of M conditions or time points of a microarray dataset. Given a gene expression

dataset Dy xas, biclusters can be defined as follows.

Definition 6.4.1 (Biclusters) : A set of sub-matrices {([1,J1), -, (Ix, J&)} of
the matrix D = (N, M) (with [, C N, J, C M Vi{l,--- , k}), where each submatrix

(bicluster) meets a given homogeneity criterion.

Unlike the usual clustering of genes, biclustering tries to cluster a set of genes
which are similar under a subset of conditions or time points. Traditional bicluster-
ing techniques normally use global similarity measures such as Euclidean distance,
Pearson correlation or MSR. These measures sometimes fail to capture the true
grouping. On the other hand, most existing techniques have been found to give
less emphasis to pattern matching based on local similarity. It has been observed
that the genes share local rather than global functional similarity in their gene
expression profiles. Moreover, they share co-regulation in terms of up- and down-
regulation. While computing the similarity, well known techniques do not consider
positive or negative regulation pattern as co-expression or co-regulations which
having biological significance. We consider both positive- and negative- regulation
as co-regulation. In this chapter, we develop a local expression pattern match-
ing based approach to find biclusters among co-regulated genes. The following

terminologies are used to describe the proposed technique.
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6.4.1 Terminology used

Definition 6.4.2 (Pattern Similarity) : Given degrees of fluctuation A =
{a1,a9, -+ ,apm-1} and regulation patterns R = {ry,r9,--- ,Tm-1} of a gene, de-
rived from gene expression profile, two genes’ k' expression patterns are similar
if the difference in degrees of fluctuation of two genes’ k'" edge is less than some
given threshold 7. In order to compute the differences in the degrees of fluctuation,
we consider two cases: when the regulation patterns are the same (in case of up
regulation) and when the patterns are different (in case of down regulation) under

a particular edge. Mathematically it can be defined as follows:

(1 if|Gu(a) ~ Gylan) < 7

when G,(rx) = G,(7«)

s1m(Gak, Gi) = ¢ and if |180 — G,(ax) + G,(ax)| < T
when G,(r¢) # G, (%)

0 Otherwise.

(6.1)

Definition 6.4.3 (Co-regulated bicluster) : Given a gene expression dataset
D of N genes and C conditions, a co-regulated bicluster is a sub-matrix of n genes
and ¢ conditions where the number of genes, n satisfies a user specified MinGene
criterion and the number of edges, ¢, in the bicluster is greater than a threshold,
¢, and all pairs of gene in the bicluster satisfy pattern similarity (sim) across all ¢

edges.

{DaxclVGizi n € Dnxe, |n| > MinGene,|c| > 0

A sim(Gu, Gye) = 1,Vk=1---(c— 1)}.
) (6.2)

CorBiClust(Dyxc, MinGene, 0) =
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Table 6.1: Sample Yeast gene expression dataset

ORF{T1 | T2 | T3 | T4 | T5 | T6 | T7
G1 | 248 | 294 | 399 | 438 | 451 | 364 | 366
G2 |343 | 314 | 409 | 426 | 455 | 366 | 401
G3 | 304 | 309 | 289 | 289 | 330 | 283 | 309

6.4.2 Preprocessing

Now, we discuss the preprocessing steps involved in capturing the degree of fluc-
tuation and regulation pattern for each expression profile. We compare two gene
expressions both in terms of degree of fluctuation™ and pattern of regulation be-
tween two adjacent conditions {edges), simultaneously. To capture both regulation
pattern and degree of fluctuation of each gene, we use the same preprocessing
technique as discussed in section 5.4.2 from the previous chapter. We represent
regulation information as a triplet of values [1, 0, -1] to denote up-regulation, no
change and down regulation, respectively. The regulation value in the k** edge
of a gene G, , G,(ry), based on two consecutive conditions (say, Or_1 & O) is

calculated as:

1 if Ok—l < Oy
Gz("'k) = 0 if Ok—l =0 (63)
-1 if Ok—l > Ok.

The corresponding preprocessed data from sample Yeast dataset given in Ta-
ble 6.1 is shown in Table 6.2. The columns in table represent the edges between

two consecutive expression values from original dataset.

Table 6.2: The transformed expression dataset after preprocessing
Gene | El E2 E3 | E4 E5 E6
Gl 49,1 93,1 | 47,1 45,1 142-1| 45,1
G2 | 138-1| 52,1 | 46,1 46,1 | 142,-1 47,1
G3 45,1 | 137,-1 | 45,0 | 48,1 | 140,-1 | 47,1

To find co-regulated biclusters based on pattern similarity we use a BiClust tree

based technique. The main advantage of the proposed technique is that it requires
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Figure 6.1: Initial BiClust tree

only single scan of the database for finding biclusters.

The following section discusses the way to find co-regulated biclusters.

6.4.3 Co-regulated biclustering using BiClust tree

BiClust tree is a m-way tree where each non-leaf node represents an edge or a set
of edges and a leaf node represents gene or a group of genes that are co-regulated
or co-expressed under the edge or set of edges. CoBi starts with creating an initial
BiClust tree as shown in Figure 6.1.

In the figure, four edges are shown as non-leaf nodes E'l, E2, E3 and E4. We use
the dataset D’ to construct the initial BiClust tree, BT. D’ is a transformed dataset
generated from original dataset D to capture degrees of fluctuation and regulation
information from the expression pattern of each gene. The initial BiClust tree
contains (M — 1) number of edges as initial non-leaf nodes for a dataset with
M number of conditions or time points. The leaf nodes are created by forming
a k" cluster of genes based on similarity of genes under the k** edge by using
Equation (6.1). For each gene, it tries to form a cluster with other genes belonging
to a particular cluster. Otherwise, it creates a new cluster when there are no
matching clusters. Thus, multiple clusters or leaf nodes may be formed under a

particular edge. The same process is repeated for all the edges. G1,G2 and G3
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Figure 6.2: BiClust tree after expanding
initial tree

form a cluster C;, whereas G4 and G5 form another cluster Cy under E1. While
forming the k**cluster, we transpose the dataset D', so that each row represents the
degree of fluctuation and regulation pattern of all genes under each edge. By doing
this we can compare easily all gene’s expression patterns under £** edge. Thus,
for creating the initial BiClust tree, it requires a single pass over the dataset. No
further consultation of the dataset is required in the following steps. To maintain
a moderate number of gene clusters under an edge or a set of edges, it performs
a pruning step. Cluster C, is pruned if the cluster size is less than a user given
threshold §. Next, BT is expanded to get biclusters using FzpandCluster function.
The proposed technique, CoBi is shown in Algorithm 5.

In the cluster expansion phase, iteratively tree branches are merged to get higher
order biclusters. While merging two sub-trees, we apply merging in two ways, one
at a non-leaf level and the other at the cluster level. Thus, from the initial BiClust
tree, edges E1 and E2 are combined to form a new node { E1, E2 }. Next, cluster
leaf nodes under both nodes F1 and E2 are merged to get a new cluster node
for {E1, E2 }. The cluster C; is compared with C3 and Cy. A new cluster node
(G1, G2] is formed with all the elements that are common in both C; and C3 or C)
and Cy. In other words, it performs a intersection operation between two clusters.
Since the number of genes in a dataset is normally high compared to the number

of conditions, the cluster list in the subtree is expected to be large. This is more
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critical especially in the initial stages of the tree. To handle the situation, we use
a bit vector for storing gene IDs as a cluster. For merging we use bitwise AND
operation. It is very fast compared to ISerform normal intersection between two
clusters. In order to merge two non-leaf edges, we use the concept of union taken
from?”. The BiClust tree thus formed after the expansion of the initial BiClust
tree is shown in Figure 6.2. The clusters that do not contain a minimum number
of genes are pruned from the tree. During the merging of clusters under a non-leaf
node, there may be a chance that a new cluster is formed such that its superset
cluster is already present under the same non-leaf. Such subsets are redundant and
removed. The process of sub-tree expansion continues until no further expansion
is possible and all the biclusters are stored in a list with a minimum number of
condition #. After the final expansion of a sub-tree, the biclusters are extracted
from the list. The same process is applied to all the sub-trees in BiClust tree. A
final BiClust tree is shown in Figure 6.3 where the minimum number of genes is
two. The node {E1, E2, E4} will be pruned from the final tree as it contains a
cluster with size one only. Other nodes are not shown in the final tree as they will
be pruned as well. The biclusters formed are: {F1, E2, E3 } [G1,G2], {E1, E3, F4
} [G2,G3).

input : D’ (Transformed Dataset), MinGene (Minimum number of Gene),
(Minimum number of edge)
output: BiClust (List of Biclusters)

1 Construct initial BiClust tree, BT,

2 Prune cluster C, from BT, if |C,] < MinGene;
3 BiClust = ExpandCluster (BT, MinGene,0) ;
4 BiClust = RemoveSubCluster (BiClust);

Algorithm 5: CoBi: Co-regulated Biclustering

The proposed method is shown in a compact manner in Algorithm 5. At first,
CoBi, constructs an initial BiClust tree using the transformed database D’. The ini-
tial BiClust tree is pruned based on user threshold MinGene. Next, the algorithm
iteratively expands the tree to get all biclusters. The expand procedure is given in

Algorithm 6. Two subtrees are merged and pruned when the number of genes in the
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input : BT (BiClust tree), MinGene (Minimum number of Gene), ¢
(Minimum number of edge)
output: BiClust (List of Biclusters)

Create a new BiClust tree BT’ ;
foreach non-leaf node £, =1 — E,_; of BT do
Create a subtree S of BT’ ;
foreach non-leaf node £, = E;1, — E, of BT do
V = Merge(E,, E;, MinGene) ;
Prune subset of V ;
AddVtoS;
end
Add S to BT';
end
foreach subtree S,ofBT' do

© 00 N G kW N e

e
= o

12 if S, can expands further then

13 | BiClust = BiClust U ExpandCluster(S,, MinGene, §);
14 else

15 | return GetBiClusters(S;, 6);

16 end

17 end

Algorithm 6: ExpandCluster

merged tree is less than MinGene. Once the subtree reaches the end of expansion so
that no further merging is possible, it then extracts biclusters from the final BiClust
subtree. The same process repeated for all subtrees. At the end, FzpandCluster
sub-function returns list of all biclusters generated. The biclusters returned may
contain some redundant clusters, where genes in the clusters are same, however,
conditions or time points are subset of the other. RemoveSubCluster function

takes the list of biclusters and eliminate such clusters from the final list.

6.4.4 Complexity analysis

The complexity of the biclustering problem depends on the exact problem for-
mulation, and particularly on the merit function used to evaluate the quality of a
given bicluster. However most interesting variants of this problem are NP-complete
requiring either large computational effort or the use of lossy heuristics to short

circuit the calculation®®. Our approach deterministically finds all biclusters usirng

105



a non-greedy approach in a polynomial time. The cost of our algorithm consists
of two parts: initial BiClust tree construction from D’ (C;p) and the cost for ex-
panding the BiClust tree and extracting biclusters (Cgx).

(a) Construction of initial BiClust tree: Let us assume that the preprocessed
dataset D', contains N genes and M edges. So, to scan the database, the cost
is (M = N). For creating clusters under a edge node it requires calculation of pat-
tern similarity among all genes under an edge. Thus, the time requirement for
creating clusters is N2. The total time complexity for construction of initial Bi-
Clust tree is C;g = O(M * N?) .

(b) BiClust tree expansion: Let us consider that the maximum number iterations
for the algorithm is k, which is the number of edges in the final bicluster. Let (
be the number of edges or non-leaf nodes per iteration and the number of clusters
under an edge be C. Now, the cost of merging two clusters is O(C?). We observe
that with the increase in k, normally C decreases. The reason behind this is that
compared to the number of clusters in (k£ — 1) steps fewer clusters take part in the
intersection in k™ step. Thus the worst case complexity for bicluster expansion is
no more than Cpyx = O(k x { * C?).

Most real microarray datasets contain large numbers of genes compare to num-
ber of conditions. Scanning of the database is the costly activity. All though
the complexity of the algorithm is polynomial, however compared to the cost of
database scanning, it is negligible.

In the next section, we establish how co-regulated biclusters are relevant from

a biological point of view.

6.5 Performance Evaluation

This section provides the details of the experiments conducted, the data sets used
and the biological validation of the results. We used Java 1.6 running on a Windows

7, 2.53 GHz machine for implementation.
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6.5.1 Dataset used

We applied‘ our biclustering approach on nine benchmark gene expression datasets.
Since it is difficult to present all results, we present some of the significant results
from each dataset generated by the approach. The details of the datasets are given

in Table 6.3.

Table 6.3: Short description of the datasets

Organism Dataset No. of No. of  Source
genes  samples
YeastDB 2884 17 http://arep.med.harvard.edu/
biclustering/yeast.matrix
Yeast Sporulation 474 7 http://cmgm.stanford.edu/
pbrown/sporulation
Yeast KY 237 17 http://faculty.washington.edu
/kayee/cluster/
YeastCho 384 17 http://faculty.washington.edu
(cell cycle) kayee/cluster
Rat Rat_CNS 112 9 http://faculty. washington.edu/
kayee/cluster
Human GDS3712 325 12 NCBI
Fibroblast 517 13 http://www.sciencemag.org/
Serum feature/data/984559.hsl/
Mouse GDS958 308 12 NCBI
Rice Thaliana 138 8 http://homes.esat.kuleuven.be
/Sistawww /bioi/thijs

/Work /Clustering.html

6.5.2 Experimental results

We analyze the results in terms of biological significance with the help of the GO
annotation database and cluster profile plots. In Figure 6.4, we present the profile
plot of some of the obtained biclusters. From the figure it is clearly evident that
positive and negative co-regulations are common in biological data and it is well

captured by our approach.

107



Yeast1 Yeasts

1000
_ _ 800
[ [
] 3
=
S &
2 4
g s
> >
wi w

o] 2 4 6 8
Conditions/Time Points Conditions/Time Points
Sporulation1 Sporulation2

Expression leve!
Expression leve!

1 2 3 4 5 6 7
Conditions/Time Points Conditions/Time Points

RatCNS1 RatCNS3

a
-

Expression level
(=]
Expression level
o

[}
-
|

a

)
N
|

N

-

2 3 4 5 1 2 3 4 5
Conditions/Time Points Conditions/Time Points

Human (GDS3717) Human (GDS3717)

2
15
B
2
2
5
@& 1
a
e
a
Pl
0s
0
1 2 3 4 5 6 7 8 1 2 3 - s [ 7 [} ® 10 u
Conditions/Time Points Conaitiona/Time Points
Human Serum Human Serum
2
15
1
5 =
3 os g
<
g o §
g g
S -05
3 3
-1
-15
-2
1 2 3 4 5 6 7 8

Conditions/Time Points Conditions/Time Points
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RatCNS, GDS3717 and Fibroblast Serum data
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6.5.3 Biological significance

We use gene ontology (GO) and compute p-values to evaluate the results. To de-
termine the statistical significance of the association of a particular GO term with
a group of genes in a cluster, we use various online tools from the GO Project?.
These tools use the hypergeometric distribution to calculate the p-value, which
evaluates whether the clusters have significant enrichment in one or more function
groups. In our experirﬁents we use the following tools: FuncAssociate®, Fatigo®,
GOTermFinder? and OntoExpress®. Table 6.4 shows the information on selected
biclusters from the different datasets obtained by applying our biclustering tech-
nique. For each bicluster an identifier of the bicluster, the number of genes, the
number of conditions, the volume and MSR score are presented. The MSR score
is reported to establish a comparison of the quality of biclusters with other algo-
rithms. We also report ) value and the associated GO terms out for some of the
functionally enriched groups provided by online tool GeneMANIA83 in Table 6.5.

To evaluate biological significance of the results produced by our technique
in terms of associated biological processes, cellular components, and gene func-
tion, we applied Yeast GO term finder to some of the biclusters from sporula-
tion data. Of 22 genes from the cluster Spoi, the genes {YDR523C, YLR227C,
YGRO59W, YDR218C, YGL170C, YLR341W, YJL038C, YLR213C} are involved
in the process of sporulation, anatomical structure formation involved in morpho-
genesis and cell differentiation, while genes {YDR523C, YGL170C, YLR341W,
YGRO059W, YLR213C, YDR218C} are involved in sexual reproduction and sexual
sporulation process resulting in formation of a cellular spore. On the other hand
genes {YCR002¢c, YGR059W, YDR218C} are involved in GTP binding and guanyl
ribonucleotide binding and genes {YGL170C, YCR002¢, YLR227C, YGR059W,
YDR218C} take part in structural molecular activity. With respect to cellular com-
ponent ontology, terms associated with genes {YDR523C, YCR002c, YGR059W,

2http://www.geneontology.org

bhttp://llama.mshri.on.ca

http://fatigo.bioinfo.cnio.es

dhttp://go.princeton.edu, http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
http://vortex.cs.wayne.edu
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Table 6.4: Biclusters results from Yeast, Sporulation and Rat CNS data

Dataset Bicluster No. of No. of Volume MSR p value GO

1d Gene  Cond. attribute
Yeast1 268 17 4556 654.41  2.075e-9  Cytoplasmic
translation
Yeast Yeast?2 343 15 5145 664.20 3.318¢-7  Ribosome
Yeast3 430 13 5590 608.91  8.960e-7  Structural
constituent of
' ribosome
Spol 22 7 154 0.01557 4.543e-9  Cellular
development
process
Sporul Spo2 69 5 345 0.1285  4.476e-19 Anatomical
ation structure
formation for
morphogenesis
Rat CNS RatCNS1 9 5 45 0.051 6.81e-4 Male sex
determination
RatCNS3 12 4 48 0.233 4.71e-4 Insulin receptor

substrate binding

YDR218C} are ascospore-type prospore, intracellular immature spore, prospore
membrane, septin complex. Similarly, from Spo2 ({YDR523C, YGR225W, YLR227C,
YPLO27W, YLR343W, YDR516C, YDR218C, YNL204C, YGL170C, YIL0O99W,
YCRO002¢, YDR260C, YJL038C, YLR213C, YOR242C, YNL225C, YGRO59W,
YLR054C, YNL128W, YOL132W, YLR308W, YMRO17W, YLR341W}), the most
significant biological processes are sporulation and anatomical structure formation
involved in morphogenesis with p-value 4.476e-19. GO terms observed in molec-
ular function categories are glucanosyltransferase activity and 1,3-beta-glucanosy!
transferase activity. In case of cellular components, genes {YDR523C, YMRO17W,
YCR002¢, YGR059W, YLR314C, YPL027W, YLR054C, YDR218C} are involved
in prospore membrane, intracellular immature spore and ascospore-type prospore
formation. In case of YeastKY dataset, it is observed that majority of the genes
are involved in ribosome constituent activity with @ value 1.01e-119 (Table 6.5).
To venfy the biological significance of the results from RatCNS data, we submit-
ted our resulting biclusters to Onto-Express, and obtained a hierarchy of functional

annotations in terms of GO for each cluster. An example of the GO tree for a co-
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Table 6.5: Q-values and GO attributes from different biclusters

Dataset  Bicluster @ value GO attribute
Id
Mousel  2.18e-12 cytosolic part and
ribosomal subunit formation
GDS958 Mouse2  5.57e-7 nuclear DNA-direct RNA
polymerase complex
Mouse3  1.76e-6 proteasome complex
Ratl 1.82¢-14 regulation of
neuron apoptosis
Rat CNS Rat2 3.59%-14 regulation neurological
system process
Rat3 1.14e-13 positive regulation
of glucose import
Rat4 5.27e-10 growth factor
binding
Chol 4.03e-10 chromosomal part
YeastCho Cho2 2.38e-10 DNA repair
Cho2 4.23e-6 protein glycosylation
SP1 4.48e-19 anatomical structure formation
Sporul SP2 8.86e-18 cellular component
ation assembly involved
in morphogenesis
SP3 4.54e-9 cellular developmental
process
YeastKY KY1 1.01e-119 Structural constituents
of ribosome
KY2 1.83e-110 ribosome
Thil 4.19e-13 glutathione transferase activity
Thaliana Th2 6.69e-08 toxin catabolic process,
glutathione transferase
activity
Th3 1.32e-6 glutathione transferase
activity
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regulated gene cluster RatCNS1 is shown in Figure 6.5. We further investigated the
genes in the clusters for RatCNS3. A majority of genes in RatCNS3 are involved
in the protein binding process and the rest of the genes are involved in activities
like calcium ion binding, growth factor activity, and transferase activity.

? Gene_Ontology o©
(2 rpolecular_function o
?— catalyhc actmity 2 p=0 11594
o binding 2 p=0 43864
- auxiliary transpor protein activity 1  p=0 14208
o moiecuiar transducer activity 2 p=p 2317
9~ biological_process o
reproduction 4 p=0 3302
metabolic process 2 p=0 26463
cellular process 3 p=0 14208
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multicellular organmismal process 3 p=0 48529
developmental process 1 p=0 26463
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Figure 6.5: Significant GO terms on molecular function, biological process and
cellular component from RatCNS1

Results show that our algorithm is capable of identifying biologically signifi-
cant gene biclusters. Each group of genes in these clusters shows co-regulation

(positive/negative) under a subset of conditions.

6.5.4 Performance comparison

To evaluate performance of CoBi in comparison to other algorithms, we consider
three biclustering techniques Bimax'%, Cheng and Church (CC)? and OPSM%
for the purpose. We use four Yeast datasets and BicAT tool!% for analysis. We
compare the performance based on functional enrichment of the biclusters. For
the purpose of comparison, we set the parameter values of other algorithms as
recommended in the original papers. The functional enrichment of each biclusters

are measured based on @-value associated with GO category. For each bicluster,
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we calculate average of the percentage of number of genes from the biclusters with
a given function against all genes in the genome with the function. Figure 6.6
shows average of functional enrichments of each biclusters obtained by different

N

biclustering algorithms on four different datasets.
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Figure 6.6: Companson on functionally enriched biclusters from different biclus-
tering techniques

From the graphs it is clearly evident that CoBi outperforms all three algorithms
in obtaining functionally enriched biclusters. However, in case of YeastCho dataset,

Cheng and Church (CC) approach performs better than other algorithms.

6.6 Discussion

In this chapter, we present a biclustering technique that is capable of detecting
positively as well as negatively co-regulated genes. Unlike traditional proximity
measures such as MSR, Euclidean distance or correlation, it uses a pattern based

approach for finding the similarity between the genes To generate biclusters it
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uses a tree based algorithm called BiClust. The results establish that co-regulated

hiclusters are significant from the biological point of view.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

In this thesis we applied association mining and clustering techniques in gene ex-
pression data analysis. We developed an one-pass association mining technique.
Proposed technique uses a correlogram matrix for generating two element frequent
itemsets and bitwise intersection approach for generating rest of the frequent item-
sets from transaction database. We tested our technique using several synthetic
and real datasets and compared the results against two well known techniques Apri-
ori and FP-growth and found satisfactory. The advantage of correlogram matrix
is used to find strongly correlated item pairs from transaction database using sup-
port based Pearson correlation coefficient. Experimental rcsults are presented to
establish that correlogram matrix based approach is effective in extracting strongly
correlated item pairs compared to other similar techniques. Pearson correlation co-
efficient is not suitable when data are binary in nature and noisy. We proposed an
alternative way of calculating correlation between item pairs using non parametric
Spearman rank order correlation. Our results further reveal that Spearman rank or-
der correlation allow to find more number of correlated pairs which are undetected
by Pearson correlation approach. We extended the technique of finding pairwise
relationship among item pairs using correlogram matrix, in finding co-regulated co-

expression networks from gene expression data. We used a pattern based approach
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for capturing both positive and negative co-regulations in gene expression data. We
used several real gene expression data to test the effectiveness of our approach in
extracting biologically significant co-expression networks. We compare our results
with three well known gene regulatory network finding techniques ARACNE, CLR
and MRNET in light of DREAM challenge datasets. Our approach outperforms
all the three techniques. Finally, we contributed a BiClust tree based biclustering
technique for clustering gene expression data. Pattern based similarity are calcu-
lated among the genes and biclusters are formed if genes are similar under few
conditions. Various gene expression datasets are used and results are evaluated
using gene ontology terms based on p and @ values associated with GO attributes.
Three popular biclustering techniques BiMax, OPSM and CC (Cheng-Church) are

used to compare effectiveness of our approach and found satisfactory.

7.2 Future work

The work presented in this thesis can be extended in diverse directions. Below we

list some ideas for future work.

¢ In real world, categorical data as well as mixed data containing categorical
and numerical variables are more abundant compared to binary data. The
technique proposed to find frequent 1temsets from market basket data can
be extended to perform one-pass qualitative association mining without bi-

narization of the data.

e Sequential association mining techniques assume that data are static in na-
ture. However, in reality majority of the data.séts are dynamic and incremen-
tal in nature. Existing techniques including our approach for finding frequent
itemsets may not be suitable for finding association among incremental data.
A technique that computes frequent new itemsets based on incremental data
with minimal information and less computation is an important research is-
sue. As a future work, our approach can be extended to handle dynamic data

for finding frequent itemsets.
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e Currently, we have presented a technique for reconstruction of co-expression
network from microarray data. A gene regulatory network is a co-expression
network with causality information, which is absent in our present work.
Work is going on to extend our work for reconstruction of complete gene

regulatory network with causality and regulation information.

e A good clustering algorithm should be capable of handling highly connected 1!
and highly intersected or overlapping structures or even embedded structures
prevalent in most of the gene expression data. We are working on density

based approach for detecting intrinsic gene clusters from gene expression data.

e In recent study, Patrik D’haeseleer et al.!!? suggested that a single gene could
be a member of multiple co-expressed groups, each reflecting a particula:r as-
pect of its function and control. A possible solution is to develop a clustering
method that partitions genes into non-exclusive clusters. Traditional clus-
tering approaches are unable to detect non-exclusive clustering. As a future
work, one can use co-expression network to construct non-exclusive clusters

from gene expression data.

e Though we are explicitly using data mining for gene expression data analysis,
however as future work it is aimed to explore the applicability of prediction

techniques in finding gene-gene relationship.
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