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ABSTRACT

Over the past few decades, there has been an increasing demand for the development of
sophisticated technologies in medical field to evaluate patient conditions. These
technologies can assist the health care professionals to study patient condition in
reasonable time and response to therapies more rapidly and with relative ease. Diseases
in the human cardiovascular system are one of the main issues in modern health care.
These cause the majority of deaths and also often impair people in their most productive
age. According to the report of the World Health Organization (WHO), about 9.4 million
deaths are caused every year in the world due to heart disease. Out of these deaths, 16.5%
can be attributed to high blood pressure [1]. This includes 51% of deaths due to strokes
and 45% of deaths due to coronary heart disease [2]. Some of the heart diseases require
immediate attention when they are difficult to be identified at an early stage (such as
premature ventricular contraction (PVC)) due to their occasional appearance. These
problems faced by cardiologists have emerged as a great motivation to research in
engineering. The study of relationship between electrical and mechanical events of

cardiac cycle can greatly enhance the study of dynamics of heart beat [3].

The human physiological processes produce biomedical signals and phenomenon which
describe their nature and actions. One of the most common biomedical signals is the
Electrocardiogram (ECG) obtained in real time by non-invasive technique that reflects the
cardiac activity. This signal comprises of repetitive sequence of P, Q, R, S and T waves,

each representing a particular event or activity of the heart.

Although the electro-physiological phenomenon of the heart is well known and mostly
assessed by cardiologists with the help of ECG, there are two other biomedical signals very
closely associated with the blood circulatory system such as the Arterial Blood Pressure
(ABP) and Central Venous Pressure (CVP) which provide a better understanding in critical
and complex heart situations. Generally, blood pressure is measured with the help of a cuff
sphygmomanometer which describe cardiac health in terms of systolic and diastolic values.

Arterial blood pressure waveform is rich in the estimation of cardiovascular function as
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compared to systolic and diastolic readings obtained by cuff sphygmomanometer. These
readings may not be representative of the patient's usual blood pressure. Therefore,
continuous waveform of blood pressure is useful to acquire more meaningful information
about its range and variability [4]. Continuous arterial pressure monitoring not only
provides information in regards to blood pressure, it also provides a means to assess the
cardiovascular status by observing waveform characteristics since the waveform has close

correlation with ECG .

ABP waveform is the combination of systolic peak, diastolic onset, dicrotic notch and
dicrotic peak. If ABP and ECG waveforms are recorded simultaneously, systolic peak
follows ECG R wave, diastolic onset follows ECG T wave and systolic peak to peak
interval is equal to RR interval of ECG. There are physiological relations among the onset
and offset of the above mentioned waves [5]. Abnormal condition of heart displayed in

ECG signal is also present in ABP and CVP signals.

A combined investigation on ECG, ABP and CVP signals have prognostic significance as
well as help to pinpoint the offending lesion when multiple obstructions are present and can
thus be used to improve the treatment approach. Therefore, parallel analysis of ECG, ABP
and CVP signals can be used to illustrate the cardiac signatures efficiently and leads to

development of robust algorithms for the analysis of cardiac health.

Cardiologists look for life threatening disturbances in the intervals, amplitudes and areas of
the waves recorded from the ECG. Long term ECG recording such as Holter ECG in ICU
comprises of thousands of beats. Visual interpretation of the anomalies from the huge data
by the experts is a tedious task and requires a lot of time in the interpretation of the ECG
record. This requires development of signal processing techniques for feature extraction to
reduce the workload of the cardiologists in detection of abnormalities such as cardiac
arthythmia etc. The errors occurred in the subjective interpretation of biomedical signals

can be overcome by computer aided feature extraction techniques [6].

Although, ECG, ABP and CVP signals are believed to be faithful independent signatures of
the cardiac system, many unseen and hidden correlating facts of the relevant signals can be
revealed. The signals - ECG, ABP and CVP - comprise of a great deal of cardiac

information that shows a high level of inter-relationship among these biomedical signals.
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This inter-relationship motivates to generate one signal from other signal or from the
combination of two or more simultaneously recorded signals available for a particular
subject. When one of the physiological signals such as ECG under continuous observations
is corrupted with noise, missing for certain duration or not possible to acquire (e.g surgical
dressing of patients does not permit to position the sensors at the desired place for
particular signal acquisition), the prediction of the desired signal using the combination of
other available signals can suffice the requirement. Therefore, the ability of prediction of

unavailable signals using computer based methods is an innovative idea in this field.

In the last decade, Various ECG feature extraction techniques have been developed so far
which include wavelet transform [7-12] histogram and genetic algorithms [13], Artificial
Neural Networks [14], moving average filter [15], differentiation and correlation [16]
comprising of their own merits and demerits. Of these methods [7-16], the advanced signal
processing methods using time-frequency analysis and filtering using wavelet transform
have proved to be a veryA useful tool in determining the precise location of the QRS
corr.lplex. Wavelet transform is popul:ar l;ecause it satisfies energy conservation law and

original signal can be reconstructed (8]

In these [7-12] wavelet based methods, ECG peak detection has been carried out by authors
by selecting different detail signals. However, selection of detail signals in the above
literature is not sufficiently justified by any of these authors. Most of the QRS detection
algorithms mentioned above [15,11,12] are developed on ECG lead-II signals of MIT-BIH
database as the QRS complexes are outstanding in lead II. In [17], author has included two
ECG signals from leads V5/V2 but accuracy reported is 94% and 92% respectively.

Although a considerable amount of research has been carried out for feature extraction of
ECG signals but there are very few algorithms reported for feature extraction of ABP signal
and no algorithm is reported in literature for feature extraction of CVP signal. Most of the
algorithms on ABP signal are developed on proprietary datasets from selected patients
[19,20]. These methods are based on continuous independent assessment of refractory
period (RP), analysis of signal by means of producing two moving averages [19], template
matching [20], rank filter and decision logic [21], windowed and weighted Slope Sum

Function (SSF) [22], peak and trough detection methods [23], heart rate, amplitude and
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inter beat intervals [24] and combinatorial analysis of ABP waveforms and their derivatives
[25].

The researchers have paid major attention on the detection of systolic peaks [24], onsets
[18, 22], dicrotic notches [19] and three features (systolic peak, onset, dicrotic notch)
together [25]. Dicrotic peak is also an important feature of ABP signal, however, no

attempt has been made to detect dicrotic peak in ABP signal.

Similar to development of algorithm for feature extraction of ECG, ABP and CVP,
development of techniques for modeling and synthesis of ECG is also a field of interest for
researchers. Previous works on modeling and synthesis of ECG include a method for
generation of RR-tachograms [26], a dynamical model that mimics the real ECG signal of a
normal person [27], use of this model to generate realistic ECG, BP, respiration signals [28]
and modeling an arbitrary ECG without in band noise [29] are also sugg;sted. Further a
three-dimensional dynamic model is proposed for ECG modeling that is generalized to
model maternal and fetal ECGs [30]. Models for generation of multi-lead ECGs [31] and
simulation of abnormal rhythms [32] are also reported in literature. Gaussian wave-based
state space model is used for generating synthetic ECGs as well as separate characteristic
waves (CWs) such as the atrial and ventricular complexes [33] and extended Kalman filter
based dynamic algorithm is proposed for tracking the ECG characteristic waveforms [34].
Mathematical modeling of electrical activity of heart [35] and computer simulation of

qualitative ECG are also suggested [36].

The inherent shape of Hermite Basis Functions (HBF) bearing resemblance to ECG signals
is used for shape determination of ECG [37, 38]. In addition to this, piece wise modeling of
ECG is also suggested [39]. A modified Zeeman model using radial basis network is
proposed for ECG modeling but this model is able to generate single cycle of ECG [40].
Methods including Gaussian Combination Model [41], Hilbert transform [42], Hidden
Markov models [43] and data flow graph method [44] are also known in literature for ECG

modeling.

In physionet challenge 2010 [45], reconstruction of ECG, ABP, respiratory, fingertip
plethysmogram (PLETH) signals using ANN [46-50] and wavelet based approach [51] has

been suggested. ANN has been found to be a promising technique for ECG reconstruction
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as suggested in [46-50], however the technique needs at least one ECG signal from other

leads.

Although a considerable amount of research has been carried out for ECG modeling and
synthesis, however, a parametric ECG model based on measured phenomenological cardiac
data such as ABP and CVP has not been attempted so far. Synthesis of ECG from ABP and
CVP signals is found to be a promising modeling approach in this research. We have used
parameter estimation and system identification to develop the linear time invariant (LTI)
model of the heart which can synthesize ECG from ABP and CVP.

Objectives of the proposed research

On the basis of the above literature review, the motivation towards development of
technique for feature extraction and modeling of ECG, ABP and CVP is based on the

following objectives —

1. Feature extraction of ECG signal by wavelet technique supported by signal energy,

frequency spectrum and correlation analysis.

2. Feature extraction of ABP and CVP signals by wavelet technique supported by

signal energy, frequency spectrum and correlation analysis.

3. Modeling and synthesis of ECG by system identification technique using measured
physiological data of ABP and CVP signals.

4, Modeling and synthesis of ECG by Artificial Neural Network paradigm.
With the above quoted objectives, the research work is carried out as stated below —
Objective 1: ECG Feature Extraction

An algorithm for ECG feature extraction using wavelet (Daubechies) technique supported
by signal energy, frequency spectrum and correlation analysis is proposed. Another
algorithm for ECG peak detection using energy analysis technique is also proposed. The
merit of both of these algorithms motivated us to apply these algorithms for the detection of

life threatening heart disease - premature ventricular contraction (PVC) beats in ECG.

Methodology: We present ECG peak detection by two methods - wavelet based
method and energy analysis of ECG signal. The wavelet based approach described in
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this objective is robust and simple to implement with no requirement of
preprocessing. The selection of detail wavelet component has been justified by
energy, frequency and correlation analysis. Since, there are wide variations in
amplitudes of wavelet decomposed signals; a fixed threshold does not work for
R peak detection. Therefore, we have adopted a ‘window based threshold’ where the
threshold value is adjusted depending upon the signal amplitude over a certain
duration. The selected detail signal is first thresholded then the maximum amplitude
levels of all the peaks are detected. The signal is then filtered by applying a
refractory period to select the R peaks. The R peaks detected by wavelet method are
used for the detection of remaining features of ECG signal such as P, Q, S and T

waves.

In the energy analysis technique for R wave detection, energy calculation of ECG
signal under test has been performed by dividing the signal records into a number of
windows. The techniques used include window shifted by window size and window
shifted by one sample. Energy analysis of detail coefficients show that d4 signal
containing highest energy content comprise of maximum information of QRS
complexes. This concept motivates us to detect ECG peaks if the window based
energy analysis of ECG signal is performed and the resultant energy signal is further
analyzed using thresholding and refractory period concepts for detection of ECG
peaks. Therefore, window based energy analysis of ECG signal may result in the

higher energy amplitudes wherever ECG peaks exist.

The detected R peaks are applied to detect PVC beats in ECG. The method for
detecting the abnormal PVC complexes is based on the calculation of RR interval of
detected R peaks and energy analysis of ECG signal. We have proposed a combined
method for PVC detection where, RR interval calculation by wavelet and energy is
supported by intersection of energy analysis technique on the ECG signal. The
algorithm proposed for PVC detection includes detection of R peaks using window
based energy analysis of ECG signal using a window of 100 ms duration that
incorporate window shift by one sample and further energy analysis of ECG signal

using a window of 600 ms duration where window is shifted by window size.
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Results:

Wavelet based ECG feature extraction method has been performed on 44 records of
MIT-BIH arrhythmia database mostly from lead-II as well as from other leads each
of 30 minutes duration. The overall sensitivity, positive predictivity and accuracy
obtained are 99.62%, 99.87% and 99.48% respectively. The accuracies obtained for
records 102 and 104 are 99.86% and 99.77% respectively which are higher than the
result of [17] (94% and 92% respectively) where the author has included two ECG
signals ( records102 and 104) from other leads.

In energy based peak detection algorithms, five minute segments of ;ach of the forty
four records from MIT- BIH database have been tested for R peaks including records
from other than lead II. The method achieves an accuracy, sensitivity and positive
predictivity 98.17%, 98.82%, 99.36% respectively using window shifted by window
size and 98.63%, 99.36%,99.28% respectively using window shifted by one sample.

The algorithm for PVC detection is applied on 37 records of the database. The
accuracy, sensitivity and positive predictivity reported for PVC detection are
96.79%, 98.31% and 98.48% respectively.

Objective 2 : ABP and CVP Feature Extraction

This part of research enumerates (i) Extraction of all features of ABP and CVP signals and
(ii) energy based approach for peak detection of ABP signal. The merit of wavelet based
method applied for ECG feature extraction has motivated us to apply this technique for the
analysis of ABP and CVP signal.

Methodology:

The wavelets used for decomposition of ABP signal are daubechies db4 and
symmetric sym4. Selection of detail coefficients after wavelet decomposition has
been justified by energy, frequency and correlation analysis of detail coefficients.
Further, it is found that application of ‘window based threshold’ overcomes the
setback of missing peaks due to large variations in the signal amplitude at any

particular instant.
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In this objective, an algorithm for the automatic detection of systolic peaks in the
ABP signal using energy analysis is also proposed. The ABP signal under test
undergoes window based energy analysis by selecting a window of 100 ms
duration. Similar to ECG peak detection technique, the areas in ABP signal where
systolic peaks are available appear as high energy zones. Window based
amplitude threshold and interval threshold are applied to reject the unwanted

peaks.

The detection of features in CVP signal is carried out using db4 wavelet and
selection of relevant detail coefficient has been validated based on energy,
frequency and correlation technique. Here, negative amplitude thresholding is

used.
Results:
ABP feature extraction

The algorithm of ABP waveform delineation using wavelet technique has been
applied on 1 minute segment of 22 signals of MGH/MF waveform database, 14
signals of Fantasia database, 15 signals of MIT-BIH polysmographic database and
1 signal of CSL database. The performance of the algorithm is given in terms of
percentage of accuracy (Ac), sensitivity (Se) and positive predictivity (PP) and

€rror.

In terms of type of wavelet used - sym4 wavelet is found to result better
accuracy and positive predictivity as compared to db4 for all the four components

of ABP signal, however the sensitivity in both cases are comparable.

In terms of the database used for the analysis-accuracy and sensitivity is found to
be highest in MGH/MF database while MIT-BIH polysmographic database
outperforms the other database in positive predictivity. Performance of both the
wavelets for all the features on CSL database is found to be better than other three

database since we have used only one signal from CSL database.
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The energy based peak detection algorithm has been tested on 9 records of
MGH/MF waveform database. The algorithm reported an accuracy of 99.53%,
sensitivity of 99.98% and positive predictive value of 98.14%.

CVP Feature Extraction

CVP feature extraction has been performed on selected segments of two records
in which all the features are available and can be annotated. The algorithm
reported highest values in accuracy of 85.07%, sensitivity of 93.95% and positive
predictivity of 91.70%.

Objective 3 : Modeling and synthesis of ECG using system identification technique

This part of research aims at system identification based modeling and synthesis of ECG
for 7 records — mgh003, mgh004, mgh005, mgh007, mgh008, mgh029 and mgh031 of
MGH/MF waveform database where three signals (ABP, CVP and ECG) are available for

system identification. We attempt to model the cardiac system of both healthy subjects (i.e.

normal) and having PVC and SVPB (Supraventricular premature beat i.e. abnormal) and

then we simulate the models using cross-validation inputs (ABP, CVP) i.e.

a) Normal ABP, CVP inputs to normal model

b) Normal ABP, CVP inputs to abnormal model

¢) Abnormal ABP, CVP inputs to abnormal model
Methodology:

We present a system identification based approach for modeling of ECG using
ABP and CVP signals in autoregressive models and state space models using
prediction error minimization (PEM) and subspace algorithms. The inputs to the
model are simultaneously acquired ABP and CVP signals and synthesized output
is ECG signal. The input and output signals of the model are preprocessed before
testing and validation of the model. One cycle of ABP, CVP and ECG from 7
records are used for estimating the state space model. The model generates two
transfer functions related to each input signal. Initially, a higher order model is

obtained which is reduced to a significant order.
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The accuracy of the synthesized and original ECG is evaluated by a universally
accepted metric given by ‘best fit’ percentage. When a model is developed with
normal ABP/CVP of a normal heart, and validated using normal data, a better fit
percentage is obtained, while the best fit percentage goes down if the model is
validated by an abnormal data. An interesting inference can be drawn to relate the
condition of heart (i.e. a normal or having abnormal PVC/ SVPB) to the stability
of the model transfer function. A stable transfer function is obtained if the ECG
cycles of the model are normal, whereas an unstable transfer function is obtained
from an abnormal ECG cycle. Therefore, the generated transfer functions are

analyzed for stability using pole zero plots and step responses.
Results

By using subspace method of identification in state space model, we have
achieved a maximum best fit percentage c;f‘80.4852% for normal ECG model
validated by normal ABP & CVP data of mgh008 record, while a maximum fit
percentage of 75.5584% was achieved when an abnormal ECG model (having
SVPB) validated by ABP and CVP data having SVPB in mgh004 record.

Moreover, the state space modeling by PEM method, the technique reported a
highest best fit percentage of 74.58% when a normal ECG model was validated by
normal data in mgh029 signal.

In case of autoregressive modeling, we have achieved a maximum of 76.2032%

fit percentage while validating a normal ECG model by normal data of mgh031
signal.

Further, comparative study of all the three models shows that subspace method of
system identification results in higher fit percentage for all the seven records.
Therefore, it is concluded that the system generates a stable transfer function
when model is simulated using normal data, while an unstable transfer function is

generated when simulated using abnormal (PVC and SVPB) beats.
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Objective 4: Modeling and synthesis of ECG using artificial neural network
(ANN)

The ANNS s are found to be most successful modeling technique adopting the capability

of non-linear learning and multi-dimensional mapping. Non-linear connectivity

between the pressure signals (ABP & CVP) and the ECG signals is utilized in this

objective to model and synthesize ECG using ANN.

Methodology

The proposed technique utilizes one of the most popular ANN algorithm —
Radial basis function (RBF) to map the synchronously sampled pressure signals
(ABP & CVP) as input and the corresponding ECG as the output. Normalization
is one of the most important step in ANN modeling where the real engineering
units are normalized in the scale of -1 to +1. We have done ANN modeling in

the following two phases —

i) On 16 records each comprising 20,000 samples of ABP, CVP and ECG
signals of MGH/MF waveform database to model and synthesize the ECG
from which R peaks are detected. The RBF structure used in this case has

spread constant of 110 and number of neurons 250.

ii) On 16 records each comprising 1,00,000 (85,000 for training and 15,000 for
testing) samples of MGH/MF waveform database to model and synthesize
the ECG which was used for comparison with original ECG by ‘cosine
measure’ and ‘cross-correlation’ techniques. In this approach we have used

RBF structure of spread constant of 10 and number of neurons 500.
Results

In our first approach of ANN modeling with 20,000 samples, the numbers of
peaks obtained in the synthesized ECG are compared with expert annotations
for ECG peaks available from the database. The overall accuracy, sensitivity
and positive predictivity for 16 records are 95.96%, 97.05% and 98.99%

respectively.
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In the second approach on 1,00,000 samples for modeling of ECG, the
suynthesized ECG signals are tested by cosine measure and cross-correlation for
resemblance with original ECG signals. The highest cosine measure and cross-

correlation achieved are 0.9493 and 0.9498 in mgh006.
Thesis outline

Chapter 1 describes the background and introduction to the biomedical signals of cardiac
system and their detection techniques and review of literature as the basis of objectives
achieved in this research. Chapter 2 presents algorithms for ECG feature extraction using
wavelet and energy analysis techniques with justification of selection of the wavelet detail
coefficients. In this chapter application of wavelet and energy technique to PVC detection
is also proposed. Chapter 3 illustrates the application of a wavelet and energy analysis
based technique for ABP and CVP feature extraction. Chapter 4 presents system
identification based approach for modeling and synthesis of ECG using measured ABP and
CVP signals for normal and abnormal conditions of the heart. The stability analysis of the
developed models is also explained using pole zero plots and step response. In chapter 5, a
technique using ANN for modeling and synthesis of ECG using measured ABP and CVP

signals has been described.
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CHAPTER

Introduction

1.0. Introduction

Over the past few decades, there has been an increasing demand for the development of
sophisticated technologies in medical field to evaluate patient conditions. These
technologies can assist the health care professionals to study patient condition in reasonable
time and response to therapies more rapidly and with relative ease. Diseases of the human
cardiovascular system are one of the main issues in modern health care. These cause the
majority of deaths and also often impair people in their most productive age. According to
the report of World Health Organization (WHO), about 9.4 million people die every year
due to heart disease. Of these deaths, 16.5% can be attributed to high blood pressure [1].

This includes 51% of deaths due to strokes and 45% of deaths due to coronary heart disease
[2].
The first IEEE Life Sciences Grand Challenges Conference was held on October 4-5, 2012

at the National Academy of Sciences in Washington DC. The conference was sponsored by
the National Science Foundation (NSF) at the Institute for Engineering and Medicine of the
University of Minnesota, and was endorsed by the International Academy of Medical and
Biological Engineering. The keynote lecture by Nobel laureate Dr. Phillip Sharp articulated
the view that advances in information technology are required for the realtime acquisition,
storage and processing of large, often massively parallel datasets, more complete
understanding of normal and disease conditions through quantitative models, which in turn

could lead to better informed and engaged patients [3].

Some of the heart diseases such as cardiac arrhythmia etc. can be silent killer and require
immediate attention after considerable change is noticed in the signals associated to heart

activity and symptoms of the patient. It puts forth a challenge to the cardiologists to cure
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the patient at an advance stage when the primary episodes of arrhythmia is difficult to be
identified at an early stage such as premature ventricular contraction (PVC)) due to their
occasional appearance. These problems faced by cardiologists have emerged as a great

motivation to research in engineering.

The prevalence of chronic diseases such as heart disease and stroke are the major cause of
death in almost all countries, and such cardiovascular diseases present challenging
problems in early diagnosis and treatment, repair or replacement. Engineering has played a
vital role in understanding the cardiac electrodynamics, elastomechanics and in the
development of diagnostic instruments, prosthetic valves, pacemakers, implantable
cardioverters/ defibrillators (ICD) and automated external defibrillators (AED). Of all these
diagnostic methods for cardiovascular diseases, the great need is for a comprehensive,
computational and systematic approach to diagnose and describe the cardiovascular

system [3].

These approaches comprise of the comprehensive information of many experts pertaining
to a specific diagnosis. These methods can help to develop a robust and precise method for
the diagnosis of a particular cardiovascular disease using cardiac signals along with the

opinion of medical specialists.

The study of relationship between electrical and mechanical events of cardiac cycle can
greatly enhance the study of dynamics of heart beat [4]. As a result, it is possible to carry

out complete hemodynamic assessment with relative ease at the patient’s bedside [5].

In intensive care units (ICU), where, continuously monitoring of physiological signals is
required, there are various cardiac conditions and features which need to be detected on a
large data of signal record and validation of abnormal ECG alarms using other cardiac
signals. Situation may arise when actual ECG signal is missed or corrupted due to
malfunctioning in sensors or due to external disruption. These disruptions in actual signals
result in a great difficulty for precise diagnosis. At times, acquisition of ECG may not be
possible due to surgical dressing of patients. So the synthesis of ECG using ABP and CVP
signals can be used to supplement the information when actual ECG is either missing or

corrupted. Also, a single lead ECG information need to be expanded to multilead
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information using the information derived from other cardiovascular signals such as ABP,

CVP, pulmonary artery pressure (PAP) etc.
1.1. Human cardiovascular system

The cardiovascular system is resulting from the motion of blood. It consists of the heart,
blood and blood vessels. The function of the cardiovascular system is to circulate blood
throughout the body’s tissues so it can deliver certain substances to cells and remove other
substances from them. The heart pumps the blood throughout the body through three types
of flexible tubes called blood vessels viz arteries, capillaries and veins. The arteries pass the
blood from the heart to all parts of the body. Then the blood circulates through the narrow
blood vessels called capillaries. Many substances and some blood cells mixed with other
substances pass into and out of the blood by moving through the thin porous capillary
walls. The blood is then conceded through the veins, which return the blood to the heart.

1.2. The heart

The heart is the central organ of the cardiovascular system. It is a hollow, cone shaped
muscular organ, little larger than fist size that contracts at regular intervals and thus forces
the blood through the circulatory system. On an average a heart beats 100,000 times and
pumps about 2,000 gallons of blood each day. The heart is enclosed in a protective
membrane like sac called the pericardium, which surrounds the heart and secretes a fluid
that reduces friction as the heart beats. The heart is divided in two sides by a wall, known as
the septum. The left side of the heart pumps blood rich of oxygen and nutrients to all parts
of the body and right side of the heart pumps blood depleted of oxygen and nutrients to
lungs for oxygenation. The septum prevents the mixing of oxygenated and deoxygenated
blood. The circulating blood brings oxygen and nutrients to all the body’s organs and
tissues, including the heart itself. It also picks up waste products from the body’s cells.

These waste products are removed as they are filtered through the kidneys, liver and lungs
[6].
1.2.1. The heart’s structure

The heart’s structure as shown in Figure 1.1 consists of four chambers for pumping of the

blood throughout the body. The upper two chambers are called left and right atria and lower
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two chambers are called left and right ventricles. Unidirectional flow of blood is maintained
with opening and closing actions of four valves of the heart. These valves are located
within the openings leading from the atria to the ventricles and from the ventricles to the

arteries. The positions of the valves in the heart are -

L The tricuspid valve is between the right atrium and right ventricle.

ii.  "The pulmonary or pulmonic valve is between the right ventricle and the
pulmonary artery.

iii. The mitral valve is between the left atrium and left ventricle.

iv. The aortic valve is between the left ventricle and the aorta.

Each valve has a set of flaps (also called leaflets or cusps). All the valves of the heart have
three flaps except mitral valve which has two flaps. Under normal conditions, the valves
allow blood flow in just one direction. Blood flow occurs due to building up of the pressure

gradient across the valves that cause them to open.

The heart’s wall is composed of three layers: the endocardium, myocardium, and
epicardium. The inner lining of the heart is called endocardium. This layer is smooth and
has no gaps that allow blood to contact the underlying collagen. The smoothness of this
layer prevents blood from clotting and thus prevents the movement of clots into arteries and
block blood flow. The middle thick layer is myocardium that constitutes most of the wall of
the heart. The myocardium consists \mostly of heart muscle (cardiac muscle), though it may
also contain fat tissue and collagen fibers. The outer layer of the heart is the epicardium
that contains some connective tissue coated with a smooth, slippery layer of epithelial cells.

This coating allows the beating heart to move easily within the pericardial cavity.
1.2.2. Functioning of the heart

The heart pumps blood by a highly organized sequence of contractions of its four
chambers. The right atrium receives partially deoxygenated and nutrient depleted blood
from the veins. Venous blood is darker than arterial blood because of the difference in
dissolved gases such as carbon dioxide (CO,) which is absorbed from body’s tissues. When
the heart is relaxed, venous blood flows through the ]open tricuspid valve to fill the right

ventricle. An electrical signal starts the heartbeat thus causing the atria to contract. This
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contraction “tops off” the ﬁlling of the ventricle. Shortly after the atrium contracts, the right
ventricle contracts. As this occurs, the tricuspid valve closes and the partially deoxygenated
blood is pumped through the pulmonary valve, into the pulmonary artery and on to the
lungs for oxygenation. This newly oxygenated blood is bright red. At the same time when
the right atrium contracts, the left atrium also contracts, topping off the flow of oxygenated
blood through the mitral valve and into the left ventricle. Then a split second later the left
ventricle contracts, pumping the blood through the aortic valve, into the aorta and on to the

body’s tissues.

The organized contraction of all the four chambers is governed by an electrical impulse
called action potential. Movement of this action potential across a heart chamber results in
its contraction. This action potential is generated in the sinoatrial node (SA node) which is a
small bundle of highly specialized cells in the right atrium. The SA node is called the

natural “pacemaker” that generates action potential at regular intervals.
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Figure 1.1 The heart’s structure

The action potential generated by the SA node move throughout the right and left atrium,
causing the muscle cells to contract. The atrial contraction is followed by the ventricles

contraction. The ventricles contract together in a wringing motion, squeezing blood from
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them. Thus, the movement of action potential results in the coordinated, sequential

contraction of the heart’s four chambers.
1.3.  Electrical activity of the heart

The SA node, atrioventricular node, atrioventricular bundle, right and left bundle
branches, and Purkinje fibers comprise the conduction system of the heart. All of these
cells of the electrical conduction system are able to produce action potentials but at a
slower rate as compared to SA node. The cardiac muscle of the SA node possesses the
property of self-excitation. Under normal conditions, electrical activity is spontaneously
generated by the SA node. The action potential generated by SA node is propagated
throughout the right atrium, and through Bachman's Bundle to the left atrium, stimulating

the atrial contraction.

The action potential propagates from SA node to atrioventricular (AV) node via specialized
pathways known as internodal tracts. The AV node is situated between two sets of
chambers of atria and ventricles. After a pause of about 1/10 of a second, the atrial
depolarization wave reaches the AV node. This pause assists the atria to complete their
contraction and empty their blood into the ventricles before the ventricles contract.
Following their contraction, the ventricles begin to relax. After the ventricles have
completely relaxed, another action potential originates in the SA node to begin the next
cycle of contractions. The coordinated, sequential contraction of the heart’s four chambers
is governed by the movement of action potential throughout the cardiac muscle. This

sequence of events is known as cardiac cycle.
1.4. The Cardiac cycle

Cardiac cycle is related to any of the events subjected to the flow of blood that occurs from
the beginning of one heartbeat to the beginning of the next and spans an interval of
approximately 0.8 second. During each cardiac cycle, all the four chambers of the heart go
through a contraction and relaxation phase due to the action potential generated by the SA
node. Ordinarily, this occurs about 60 —100 times each minute for a person above 18 years
of age. Schematic representation of sequence of events in a cardiac cycle is shown in

Figure 1.2.
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The cardiac cycle has two basic components:

i. A contraction phase called systole during which blood is ejected from the heart’s

chambers.

ii. A relaxation phase called diastole during which the chambers of the heart are filled
with blood.

In the first phase of the cycle both atria contract, the right atria contracts first followed
almost instantly by the left atria. This atrial contraction results in filling of the relaxed
ventricles with blood. Then both ventricles contract and force their blood to pulmonary
artery and aorta respectively in a powerful surge. During ventricular contraction, the atria
relax and are filled by blood once again by the veins. This cycle lasts, on the average
800 ms. The pressure and volume in atria, ventricles and arteries increase and decrease
during each cardiac cycle [5]. These changes in the pressures and volumes at different

locations (aorta, pulmonary artery, both atria and ventricles), thoracic vena cava
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Figure 1.2 Schematic representation of cadiac cycle showing the changes in ventricular volume,
ventricular pressure, aortic pressure, atrial pressure and ECG waveform
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near the right atrium in the heart, are recorded by electronic device to assess the
performance of cardiac function. The normal range of pressure signals is listed in

Table 1.1.
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Pressure Signal Associated cardiac Normal diastolic Normal systolic
muscle pressure/ range pressure/ range
(mmHg) (mmHg)
Aotric pressure Aorta 70 (60-90) 120 (100-140) N
Right atrial pressure Right atrium 2 8
Pulmonary artery Pulmonary artery <10 <25
pressure (PAP)
Left ventricular Left ventricle 3-12 100-140
pressure
Central venous Thoracic vena cava 3 8
pressure near right atrium

In the normal heart, electrical activity produces the mechanical activity of systole and
diastole. There exists a time difference between these electro-mechanical coupling, or the
excitation-contraction phase. In the simultaneous recordings of the electrical and
mechanical tracings, the changes in the activity of cardiac muscles are reflected first in

electrical tracing before these changes are noticeable in pressure tracings [5].
1.5. Electrocardiogram

The spontaneous contraction and relaxation of atria and ventricles due to propagation of
action potential produce electrical currents that can be measured at the surface of the body.
Changes in the action potential of all the cardiac muscles are detected by the electrodes
placed on the body surface attached to the recording device. The recorded tracing is called
an electrocardiogram (ECG, or EKG). ECG or EKG is abbreviated from the German word
“Elektrokardiogram”. A normal ECG waveform consists of repetitive sequence of P, Q, R,
S and T waves. ECG indicates the overall rhythm of the heart, and weaknesses in different
parts of the heart muscle. Each heartbeat is the result of distinct cardiological events,
represented by distinct features in the ECG waveform. ECG is the best way to measure and
diagnose abnormal rhythms of the heart, particularly abnormal rhythms caused by damage
to the conductive tissue that carries electrical signals, or abnormal rhythms caused by levels

of salts, such as potassium, that are too high or low.
1.5.1. ECG waves

i. P wave — The spread of action potential throughout the atria is seen as the

P wave on the ECG. P wave is a slow, low amplitude wave with an amplitude
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of about 0.1-0.2 mV and a duration of about 60-80 ms.

ii. QRS complex — The ventricular depolarization results QRS complex in ECG
tracing and rapid depolarization of the right and left ventricles. The ventricles
have a large muscle mass compared to the atria, so the QRS complex usually
has a much larger amplitude than the P-wave. It is of about 1 mV amplitude and

40-100 ms duration [7]. The QRS complex consists of three distinctive waves:
Q,Rand S.

iii. T wave —Ventricular repolarization (relaxation) is represented by a slow T wave
which has an amplitude and duration of 0.1-0.3 mV and 120-160 ms
respectively. Atrial repolarization wave is not seen in ECG as it appears during

ventricular contraction.

iv. U wave — This wave is more often completely absent in ECG tracing. It

normally has a low amplitude and always follows the T wave.

v. J point — It is the point at the end of QRS complex and beginning of ST

segment. It is used to measure the degree of ST elevation or depression present.
1.5.2. ECG intervals

i. PQ Segment — This is an isoelectric segment of about 60-80 ms after the

P-wave.

ii. ST Segment — Ventricular muscle cells possess a relatively long action
potential of 300-350 ms. The Plateau portion of the action potential causes an
iso-electric after the QRS complex, called ST segment which is about 80-120

ms.

ili. RR interval — It is interval between an R wave to the next R wave. It is

generally 0.6 to 1.2 sec.

iv. PR interval — The PR segment represents the interval between beginning of P
wave to beginning of QRS complex. It is mainly because of delay of action
potential at AV node. It is generally 0.12 to 0.20 sec [7]. This appears flat on the

ECG tracing. During this interval, the atria contract and begin to relax. At the
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end of the PQ interval the ventricles begin to depolarize. The PR interval is more

clinically relevant.

v. QT interval — The QT interval is measured from the beginning of the QRS
complex to the end of the T wave. It is less than 0.3 sec [8]. A prolonged QT

interval is a risk factor for ventricular tachyarrhythmias and sudden death.

A normal ECG waveform with its constituent components is shown in

Figure 1.3.

i RA interval

D
L

0.5
4 ST
E Segmen 7 P
0
— PR~ Q
interval
—STi e S
HRS ST interval
umefva! -
— QT interval

mm'mV 1 square = 0.04 sec/0.1mV

Figure 1.3 A normal ECG waveform
1.5.3. ECG leads

An electrode called ‘lead’ is used to record the electrical signals of the heart from a certain

positional combination which are placed at specific points on the patient's body.

e Movement of depolarization wavefront (or mean electrical vector) towards a
positive electrode is reflected as positive deflection on the ECG in the

corresponding lead.

e Movement of depolarization wavefront away from a positive electrode is

reflected as the negative deflection on the ECG in the corresponding lead.
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e Perpendicular movement of depolarization wavefront to a positive electrode,

appears an equiphasic (or isoelectric) complex on the ECG.

Modern ECG includes 12 leads I, II, IIT (limb leads), aVg, aVL, aVg, (augmented limb
leads) and Vi, V,, V3, V4, Vs, Vg (chest leads). Out of these 12 leads, the first six are
derived from the same three measurement points. Therefore, any two of these six leads

comprise of exactly the same information as the other four.
1.5.3.1. Limb leads

Leads I, II and III are called limb leads or standard leads of modern 12 lead ECG. They
form the basis of Einthoven's triangle. The Wilson central terminal provides a virtual
ground by comprising the sum of three lead electrodes connected to the central terminal
through three resistors of SKQ. It is assumed that the heart lies as a point source at the

centre of Einthoven’s triangle [8].

The Einthoven limb leads (standard leads) are defined as -

Lead I: Vi=Ve-WM
Lead II: V[] = V]: - VR
Lead I1I: Vn=Ve-TL

Where, V1, V1 and Vyy are the voltage of lead I, lead II and lead III respectively and V1, Vg
and Vg is the potential at the left arm, right arm and left foot respectively. The layout of

limb leads in Einthoven’s triangle is shown in Figure 1.4.
1.5.3.2. Augmented limb leads

Leads aVR, aVL, and aVF are called augmented limb leads. They are obtained from limb
leads I, II, and IIi. The negative electrode for these leads is a modification of Wilson's
central terminal, which is derived by adding leads I, II, and III together and plugging them
into the negative terminal of the ECG machine. These leads describe the electrical activity
of heart from different angles (or vectors). This zeroes out the negative electrode and
allows the positive electrode to become the "exploring electrode" or a unipolar lead. This is

possible because Einthoven's Law states

[+I=00
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Wilson's central terminal is the basis of the development of the augmented limb leads aVR,
aVL, aVF and the precordial leads (V1, V2, V3, V4, V5, and V6).

Right Amn = | Lead 1 + Lefam

- Wilson's
central
termina)

Lead MM

Rught Lex
Reference Left Lea

Figure 1.4 Einthoven’s triangle and the axes of the six ECG leads formed by using four limb leads

1.5.3.3. Precordial leads

The precordial leads are used to measure the potential difference very close to the heart.
Wilson's central terminal serves as negative electrode and these leads are considered to be
unipolar. These leads record the heart's electrical activity in a horizontal plane. The heart's

electrical axis in the horizontal plane is referred to as the Z axis.

Leads V1, V2, and V3 are referred to as the right precordial leads and V4, VS5, and V6 are
referred to as the left precordial leads. The position for placement of these precordial leads
. is shown in Figure 1.5. Modern four lead and 12 lead ECGs use an additional electrode

(usually green). This is called the ground lead and is placed on the right leg by convention.
1.5.4. Clinical significance of ECG

The analysis of the ECG signal is the most readily available method for diagnosing cardiac
thythms. ECG effectively presents valuable clinical information regarding the rate,
morphology and regularity of the heart while being a low cost and non-invasive test.
Arrhythmias are one kind of dysfunctions or disturbances in the behavior of the heart.
These disturbances produce abnormality in rate, rhythm and the site of impulse formation;
factors that may in turn alter the normal sequence of atrial and ventricular activation. In

ECG such arrhythmias manifest themselves as deformations in the observed waveform.
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Deformation in the ECG waveform is a manifestation of the abnormality of the heart due to
such arrhythmia. Some diseases which are diagnosed by the cardiologists in ECG tracing

are listed in Table 1.2.

z
W
=

7.
U

7,
“

@

Figure 1.5 Positions for placement of precordial (chest)

leads V1-V6 for ECG

1.6.  Arterial blood pressure

Blood pressure is an important cardiac variable and considered as a good indicator of status
of cardiovascular system. Blood returning to the left atrium is at a low pressure, rising with
contraction to 3 or 4 mm Hg. The left ventricle delivers blood to the body with considerable
force. When the left ventricle pumps blood into the aorta, the aortic pressure rises to about
120 mm Hg with contraction, the same as the pressure in the arteries of the body. This
maximum aortic pressure following ejection of blood into the aorta is termed as systolic
pressure (Pgysioic). As the left ventricle relaxes and refills, the pressure in the aorta falls to
about 80 mm Hg. The lowest pressure in the aorta, which occurs just before the ventricle
pumps blood into the aorta, is termed the diastolic pressure (Pgiaswolic) [9]. A typical

"normal" blood pressure is 120/80.

S ————————————————
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Table 1.2 Heart diseases and corresponding change in ECG pattern

(Source : http://www.merckmanuals.com/)

Characteristics of ECG

Disease

Abnormal P wave

Left or right atrial hypertrophy, atrial escape (ectopic) beats

P wave is Absent

Atrial fibrillation, sinus node arrest or exit block, hyperkalemia

Variations in PP interval

Sinus arrhythmia

Long PR interval

First-degree AV block

Variations in PR interval

Multifocal atrial tachycardia

Wide QRS complexes

Ventricular flutter or fibrillation, hyperkalemia,

Short RR interval and wide
QRS complex

Premature ventricular contraction

Long QT interval

MI (Myocardial ischemia), myocarditis, hypocalcemia,
hypokalemia,

Short QT interval

Hypercalcemia, hypermagnesemia

Depression in ST segment

M]I, ventricular hypertrophy, pulmonary embolism, left bundle
branch block (LBBB), right bundle branch hyperventilation,
hypokalemia

Elevation in ST segment

Myocardial ischemia, acute M1, LBBB, acute pericarditis, left
ventricular hypertrophy, hyperkalemia, pulmonary embolism,
hypothermia

Tall T waves

Hyperkalemia, acute MI, LBBB, stroke, ventricular hypertrophy

Non-specific change in T
wave morphology

Pulsus paradoxus

Small, flattened, or inverted T
wave

M1, myocarditis, left ventricular hypertrophy, pericarditis,
pulmonary embolism, conduction disturbances (eg, Right bundle
branch block (RBBB)), electrolyte disturbances (eg, hypokalemia)

Heart rate > 90 bpm

Sinus tachycardia

Heart rate > 50 bpm

Sinus bradycardia

1.6.1. Measurement of ABP

Commonly, arterial blood pressure is measured by doctors non-invasively with the help
of a cuff sphygmomanometer which describe cardiac health in terms of systolic and
diastolic values. The sphygmomanometer provides only single measurements of the
systolic and diastolic levels [10]. ABP is most accurately measured invasively by
placing a cannula needle in an artery or using a simple fluid filled pressure tubing-
transducer. Direct monitoring of ABP is the only scientifically and clinically validated

method for real time continuous monitoring of blood pressure. From continuous
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measurements, cardiac performance can be further evaluated by calculating derived

parameters [5].
1.6.2. ABP signal features

ABP waveform is rich in the estimation of cardiovascular function as compared to systolic
and diastolic readings obtained by cuff sphygmomanometer. Therefore, continuous
waveform of blood pressure is useful to acquire more meaningful information about its
range and variability [11]. Continuous ABP monitoring not only provides information in
regards to blood pressure, it also provides a means to assess the cardiovascular status by
observing waveform characteristics since the waveform has close correlation with ECG.
Analysis of ABP waveform provide useful diagnostic information, however physicians pay
little attention to the morphology and detail of the ABP waveform and rely more on the
diagnosis of ECG waveform. Morphologic features of individual ABP waveforms provide
diagnostic clues to various pathologic conditions. Observation of arterial waveform patterns

over consecutive heartbeats provides an additional set of diagnostic clues.

A normal ABP waveform comprises of four components such as systolic and diastolic
pressures, dicrotic notch and dicrotic peak. The systolic peak and diastolic onset in ABP
waveform depict maximum and minimum pressure in aorta. The appearance of dicrotic
notch in ABP waveform is due to closing of aortic valve. Dicrotic peak in ABP waveform
is the reflected impulse arising due to closing of aortic valve. A normal ABP waveform
along with its features is shown in Figure 1.6. The recording is acquired from abpl signal

of CSL (Complex systems laboratory) database described later in this chapter [12].
1.6.3. Clinical significance of ABP waveform

Continuous monitoring of ABP waveform can be used to detect various diseases such as
ischemic episodes, aortic stenosis, pulsus paradoxus etc. Analysis of ECG waveform can be
used to diagnose heart diseases to a great extent, however, under certain conditions,
variations in ABP waveform are reflected more clearly. The minimum pressure maintained
by the coronary artery and tissue perfusion is called mean arterial pressure (MAP). This
pressure can be calculated from the systolic and diastolic values obtained from electrical or

manometric measurements using the following formula —
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_ SBP+(2x DBP)
3 (1.1)

MAP

Where,
SBP = Systolic Blood Pressure (mm Hg)
DBP = Diastolic Blood Pressure (mm Hg)
MAP = Mean Arterial Pressure (mm Hg)
The normal value for MAP ranges from 70 to 105 mm Hg.

Characteristics of ABP waveform in different cardiac diseases are summarized in
Table 1.3. Changes in ABP waveform in case of pulse paradoxus disease are shown in

Figure 1.7 along with corresponding ECG waveform.

1.6.4. Relation between ABP and ECG

If ABP and ECG waveform are simultaneously recorded, the systolic components follow
R wave in ECG and consist of a steep pressure upstroke, peak, and decline and correspond
to the period of left ventricular systolic ejection. The downslope of the arterial pressure
waveform is interrupted by the dicrotic notch, then continues its decline during diastole
following T wave in ECG, reaching its lowest point at end-diastole. The difference between

successive systolic peaks is equal to RR interval in ECG from which PR and QT intervals

<
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(Systolic pressure)
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Figure 1.6 Normal ABP waveform and its features
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Table 1.3 ABP waveform characteristics in case of cardiac diseases

Characteristics of ABP signal Disease
A small pulse wave with a delayed Aortic stenosis
peak systolic pressure

. . . Aortic insufficiency or aortic
Higher peak systolic pressure during the next systole. Y

regurgitation
varying amplitudes in the arterial waveform Atrial fibrillation
Decrease in peak systolic pressure Premature ventricular contraction
Regular alteri litu f the peak systoli
egular altering amplitudes of the peak systolic Pulses alternans
pressures

> 10 mm Hg difference in systolic pressures from

e .. Pulsus Paradoxus
inspiration to expiration

can be estimated (13, 14]. It is observed that any abnormality reflected in ABP waveform
due to cardiac disease is also associated with ECG waveform. Diagnosis of cardiac diseases
from ABP waveform and corresponding ECG waveform are summarized in Table 1.4.
Simultaneously acquired ABP and ECG waveforms in case of pulsus paradoxus and artial

fibrillation diseases are shown in Figure 1.7 and Figure 1.8.

Intra thoracic pressures are low during inspiration and higher during expiration. This
pressure change is generally limited to 3-10 mmHg. Under abnormal conditions, this

pressure changes more than 10 mmHg, this condition is referred as pulsus paradoxus as

Table 1.4 Disease diagnosis by ABP signal and corresponding ECG signal

ABP Characteristics ECG Characteristics Disease
Systolic ABP drops after QRS complex is wider and RR | Premature ventricular
PVC and PSC [34] interval is small [15, 16] contraction and premature

supraventricular contraction

MAP <60 mm Hg Variations in ST-T segment Ischemic Episodes

(17]
Decreased systolic blood Change in RR interval, Cardiac arrhythmia (Atrial
pressure and variation in Absence of P wave [18] fibrillation)
systolic peak to peak (Figure 1.8)
interval
Decreased systolic blood P waves are recorded after AV dissociation
pressure QRS complexes

shown in Figure 1.7. ABP waveform reflects changes in systolic blood pressure (>10 mm

Hg) during inspiration and expiration whereas ECG waveform displays non-specific
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changes in T wave morphology. These changes are due to the fact that ventricles are unable

to fill sufficiently due to this disease.
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Figure 1.7 (a) ECG waveform and (b) corresponding ABP waveform in case of pulsus paradoxus
disease [5]

1.7.  Central venous pressure

CVP is the pressure of deoxygenated blood at the junction of thoracic vena cava and the
right atrium of heart that reflects the driving force for filling the right atrium and ventricle.
It reflects the suitability of blood volume owing to capacity of the venous system. It reflects

the amount of blood returning to the right atrium and functional capacity of right ventricle

T T T T T T
2 {a' waves are absent CVP waveform ﬂ

Normalized Amplitudes

'P' waves are absent ECG waveform
.51 1 1 1 ] L 1 -
6.03 6.031 6.032 6.033 6.034 6.035 6.036
Number of Samples 110°

Figure 1.8 Changes in the features of ABP, CVP and ECG in atrial fibrillation
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[19]. In the event of impairment of the contractility of right ventricle, ventricular stroke

output is maintained by higher pressures in the right atrium.

Atrial activity also encompasses the systolic and diastolic phase of hemodynamic events
like ventricles [5]. Blood returning from the right atrium through veins is under a relatively
low pressure of about 1 or 2 mm Hg. The right ventricle increases the blood pressure to

about 20 mm Hg during systole while the blood is transferred to lungs for oxygenation.
1.7.1. Measurement of CVP

CVP can also be measured using a simple fluid-filled mechanical manometer. However, in
clinical practice, electronic pressure trnsducers are preferred because in manometric
measurements continuous display is not possible. Also, CVP measurement by an open
manometer may expose the patient to the risk of infection and venous air embolism. A
CVP waveform comprises of plenty of cardiac information, therefore the continuous
measurement of CVP is preferred using electronic pressure transducer and the waveforms

are displayed on a bedside monitor in ICU.
1.7.2. CVP features

A CVP waveform reflects the events of cardiac contraction. CVP waveform exhibits the
slight variations in pressure occurred during the cardiac cycle. CVP waveform has five
phasic components which are recognized by three upward waves of low amplitudes and
two downward waves appearing between two consecutive R-peaks of ECG. The ascending
waves are characterized as ‘a’, ‘¢’ and ‘v’ waves and descending waves as x’ and ‘y’
waves. Increase in right atrial pressure during right atrial contraction results in ‘a’ wave and
‘c’ wave appears due to closing of AV valve but is not always evident. The increase in
atrial pressure due to right atrial filling results in ‘v’ wave and rapid decline in pressure due
to flow of blood from right atrium to right ventricle resuits in ‘y’ descent in CVP tracing.
These waves have close correlation with ECG. A normal CVP waveform representing all

its five features is shown in Figure 1.9.
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Figure 1.9 CVP waveform and its features
1.7.3. Clinical significance of CVP signal

Variations on the normal CVP waveform can provide information about cardiac pathology
and can be used for the diagnosis of various pathophysiologic conditions of the heart. One
of the most common applications includes the rapid diagnosis of cardiac arrhythmias. Few
cardiac abnormalities are reflected in abnormal CVP tracing as listed in Table 1.5.

Table 1.5 Central venous pressure waveform abnormalities

(Source :http://www.healthsystem)

CVP characteristics Disease
Loss of ‘a’ wave
Prominent ¢ wave

Atrial fibrillation

Atrioventricular

Cannon ‘a’ wave . . .
dissociation

Tall systolic ‘c-v’ wave
Loss of ‘x’ descent

Tall ‘a’ wave
Attenuation of ‘y’ descent
Tall ‘@’ and ‘v’ waves
Steep x’and %’ descents
- Tall ‘a’and v’ waves
Steep x’and ‘y’ descents
Dominant x’descent
Attenuated ‘y’ descent

Tricuspid regurgitation

Tricuspid stenosis

Right ventricular ischemia

Pericardial constriction

Cardiac tamponade

1.7.4. Relation between ECG and CVP

The CVP waves arising due to cardiac activity have a close relationship with ECG. If

simultaneously recorded CVP and ECG signals are available, then following relationship
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between CVP signal features and ECG are observed as shown in Table 1.6. A normal CVP

waveform along with ABP and ECG waveforms is shown in Figure 1.10.

The ABP, CVP and ECG signals also preserve the relationship among their features under
abnormal cardiac conditions such in atrial fibrillation, ‘a’ wave obliterates, amplitude of ‘¢’

wave increases but ‘v’ wave and ‘y’ descent are preserved in CVP signal. Corresponding

Table 1.6 Relation between CVP signal activities and ECG

”CVP signal feature ECG feature —‘
‘a’ wave Offset of P wave
‘c’ wave End of QRS segment
x’ descent Onset of T wave
‘v’ ascent Offset of T wave
N 9y’ descent Onset of P wave
L4 ‘i( (7 Interval between Rufive R Wave Pﬁsitions (238 Samflc:l > o isoniii
— 'a' to 'a’ wave interval (238 han‘llples) . 3435;5’. / CVP Signal
12 Y:1.356 C Y 1.323

C & )/

- X 343405 X 343643
S Y:08365 P Y084 Pk Y:0.9428
E »

E‘O.S R wave location

<« X: 43331 X 343569

] Y: 0.5631 R v.o0set

K06 §<

= i
=1 ABP Signal
504

z
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$ ECG 11 Signal

3.4325 3.433 3.4335 3.434 3.4345 3.435 3.4355 3.436 3.4365 3437

Number of Samples 10

Figure 1.10 Relationship among the features of CVP, ABP and ECG signals

ECG shows absence of P wave and change in RR interval and ABP waveform displays
change in systolic peak to peak interval and drop in systolic pressure. Changes in ABP,
CVP and ECG waveform in atrial fibrillation are shown in Figure 1.8. The changes in ABP,
CVP and ECG signals in certain abnormal conditions are listed in Table 1.7. Therefore, it is
seen that CVP waveform is abundant in physiological of cardiovascular system. This signal

can be used to detect various cardiac diseases like ECG signal.
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Table 1.7 Disease diagnosis by pressure signals and corresponding ECG signal

ABP signal characteristics CVP signal ECG characteristics Disease
characteristics

Decreased systolic blood Absence of ‘e’ wave | Change in RR in Cardiac arrhythmia

pressure and variation in and prominent ‘¢’ interval, Absence of P (Atrial fibrillation)

systolic peak to peak wave (Figure 1.8) wave [18] (Figure 1.8)

interval (Figure 1.8)

Decreased systolic blood Early systolic cannon | P waves are recorded AV dissociation

pressure ‘a’ wave after QRS complexes

1.8. Prior works on feature extraction techniques

Cardiologists look for any abnormal feature in the ECG waves and ECG segments as
discussed in section 1.5.1. and 1.5.2. Although there are many cross-correlations between
various ECG features in the context of disease diagnosis, few critically accepted conditions

of feature values are listed in Table 1.2.

To take decision on cardiac abnormalities, the cardiologists manually calculate the features
from the scale of the ECG trace. However, in case of large digitized data such as Holter

ECG recording, it requires automated computer based techniques to perform the following

tasks —
i) Extract the feature values from the digitized ECG records.
ii) Apply disease diagnosis algorithm to find abnormalities.

Therefore, ECG feature extraction has been identified as a major issue in the research of
biomedical signal processing since long. From Table 1.2, it is clear that components of
ECG waveform such as P, QRS, T waves and their intervals such as PR, RR and QT

comprise of valuable clinical information.
1.8.1, ECG feature extraction techniques

In the last decade, Various ECG feature extraction techniques have been developed so far
which include wavelet transform [20-25] histogram and genetic algorithms [26], Artificial
Neural Networks [27], moving average filter [28], differentiation and correlation [29]

comprising of their own merits and demerits. Out of these methods [20-29], the advanced
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signal processing methods using time-frequency analysis and filtering using wavelet
transform have proved to be a very useful tool in determining the precise location of the
QRS-complex. Other features of ECG such as P, Q, S, T waves are detected in [20, 21, 24,
25] considering R peak as reference. Intervals such as PR, RR, QT, ST etc. can be
estimated from all detected components of ECG waveform. Wavelet transform is popular

because it satisfies energy conservation law and original signal can be reconstructed [21].

In these [20-25) wavelet based methods, ECG peak detection has been carried out by
authors by selecting detail signals ‘dI-d4’ in [20,21], ‘d3-d5’ in [24, 25], ‘d5-d6’ in [23]
and ‘d4’ signal in [22]. In [20], author has selected ‘dI-d4’ signals based on 3 db
bandwidth. It is evident from above literature that the authors have selected detail signals
out of ‘dI- d6’ signals for ECG peak detection, however, selection of detail signals in the
above literature is not adequately justified by any of these authors [20-25]. Most of the
QRS detection algorithms mentioned above [24,25,28] are developed on ECG lead-II
signals of MIT-BIH database as the QRS complexes are outstanding in lead II. In [30],
author has included two ECG signals from leads V5/V2 but accuracy reported is 94% and
92% respectively.

1.8.2. ABP feature extraction techniques

Blood pressure waveform analysis has been well recognized in cardiac physiology for the
assessment of properties of arterial vessel wall [31], cardiac output monitoring [32],
estimation of pressure pulse index [33] and cardiac arrhythmia detection [34,35].
Continuous measurement of mean arterial pressure (MAP) obtained from ABP waveform
has shown that a MAP < 30 mmHg in infants is significantly associated with severe
haemorrhage [36]. Thereby it is well assumed that analysis of arterial blood pressure
waveform can provide better insight of heart in cardiac physiology. Moreover,
mathematical modeling of non-invasive ABP waveform has been used to estimate various
cardiac parameters such as cardiac output, arterial compliance and peripheral resistance
[37,38]. In some cases, parallel analysis of ABP waveform along with ECG has resulted in
reducing false alarms to a certain extent for critical arrhythmias detection [39].
Ramaswamy etal [34,35] suggested that combination of ABP waveform along with ECG
signal gives better results for the detection of ectopic beats than ECG signals only.
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Therefore, analysis of ABP waveform can be used to estimate the cardiac health to certain
stage when ECG waveform is not available and can assist to enhance the comprehensive
knowledge of heart when simultaneously acquired ECG and ABP waveforms are available.
In addition to this, study of systolic pressure variation is used in the early diagnosis of

hypovolemia.

Cardiac signatures due to variations in ABP waveform under normal as well as abnormal
conditions can be better explained if algorithms for feature extraction of ABP signals may
be available. Although a considerable amount of research has been carried out for feature
extraction of ECG signals but there are very few algorithms reported for feature extraction
of ABP signal. Most of the algorithms on ABP signal are developed on proprietary datasets
acquired from rabbits [40] and dogs [41]. These methods are based on continuous
independent assessment of refractory period (RP), analysis of signal by means of producing
two moving averages [40], template matching [41], rank filter and decision logic [42],
windowed and weighted Slope Sum Function (SSF) [43], peak and trough detection
methods [35], heart rate, amplitude and inter beat intervals [44] and combinatorial analysis

of ABP waveforms and their derivatives [45].

The researchers have paid major attention on the detection of systolic peaks [44], onsets
[43,46] and dicrotic notches [41]. There is only one algorithm reported in literature for the
detection of three features (systolic peak, onset, dicrotic notch) together [45]. Dicrotic peak
is also an important feature of ABP signal, however, no attempt has been made to detect

dicrotic peak in ABP signal.
1.8.3. CVP feature extraction techniques

Like ECG and ABP waveform, CVP waveform comprises of plenty of important cardiac
information, therefore, it is of great interest for cardiologists from clinical point of view.
However, no attempt is made for the development of feature extraction technique of CVP
signal.

1.9. Signal processing techniques

The techniques of signal processing involve recovery of information from physical signals.

In the context of biomedical signal processing, the derivation of the information means —
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amplitude, frequency and time duration of the signals which carries signatures of the health
of the subject. As discussed in section 1.1 to 1.8, the cardiac conditions of a subject get
reflected in the recorded ECG and cardiac pressure (ABP and CVP) signals and their

features.

One of the aims of this research is extraction of features of the cardiac signals (ECG, ABP
and CVP) by applications of either newly developed techniqueé or modified algorithm
based on existing techniques. Deriving the features from cardiac signals involves various
techniques such as wavelet decomposition, Fast Fourier Transform (FFT), energy analysis,

correlation analysis, maxima/ minima detection, thresholding etc.

Another objective of this research in modeling and synthesis of ECG where, we have

applied system identification and ANN techniques.

Preprocessing is a vital step in applying the signal and data to the signal processing
algorithms. Filtering, normalization and offset removal are the most common preprocessing
techniques that we have adopted in application of the algorithms. This section explains the
overview of the signal processing techniques which are enumerated in details in the

corresponding chapters of the work.
1.9.1. Wavelet transform

The wavelet transform is defined as the projection of a signal on the set of basis functions,
referred to as wavelets that are derived from a basis function (i.e. mother wavelet) by
dilation and contraction operations. Wavelets have been used for the illustration and
analysis of many physiologic signals such as ECG, EMG because of their compact support
(finite length). Physiologic signals can be reasonably characterized as isolated pulses or as
sequences of pulses. Wavelet transform of a signal results in the concentration of signal
energy in a relatively small number of coefficients that makes wavelet-based techniques
potentially powerful tool for signal processing algorithms [47]. Noise generally
encountered in the clinical environment is automatically eliminated due to inherent
characteristics of wavelet technique, therefore, this technique has been a powerful tool to
enhance signal quality by removal of noise and interference in the physiological signals and

images [48-51]. Wavelet based techniques are also employed for data compression of
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biomedical signals and images for telemedicine applications [52-55]. The wavelet analysis
has also emerged as a very promising technique for feature extraction of ECG signals [20-
25].

1.9.1.1. Wavelets

Unlike Fourier transform, wavelet transforms have an infinite set of possible basis
functions. Thus, wavelet analysis provides immediate access to information that can be
obscured by other time-frequency methods such as Fourier analysis. Figure 1.11 shows the
coverage in the time-frequency plane with one wavelet function, the Daubechies wavelet
(dbl). There are several wavelet families like Harr, Daubechies, Biorthogonal, Coiflets,
Symlets, Morlet, Mexican Hat, Meyer etc. and several other Real and Complex wavelets.
Within each family of wavelets, there are wavelet subclasses distinguished by the number
of coefficients and by the level of iteration. Wavelets are classified within a family most
often by the number of vanishing moments. The names of the Daubechies family wavelets
are written dbN, where N is the order, which represents the number of vanishing moments
and db is the "surname” of the wavelet. The dbl wavelet, as mentioned above, is same
as Haar wavelet. The wavelet functions y of the next nine members of the db family are

shown in Figure 1.12.
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Figure 1.11 Daubechies wavelet basis functions, time-frequency tiles, and coverage of the time-
frequency plane

The wavelet coefficient matrix is applied to the data vector in a hierarchical algorithm,
sometimes called a pyramidal algorithm. The wavelet coefficients are arranged so that odd
rows contain an ordering of wavelet coefficients that act as the smoothing filter, and the
even rows contain an ordering of wavelet coefficient with different signs that act to bring

out the details of data. The matrix is first applied to the original, full-length vector. Then
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Figure 1.12 Daubechies wavelets

the vector is smoothed and decimated by half and the matrix is applied again. Then the
smoothed, halved vector is smoothed, aﬂd halved again, and the matrix applied once more.
This process continues until a trivial number of "smooth-smooth-smooth..." data remain.
That is, each matrix application brings out a higher resolution of the data while at the same

time smoothing the remaining data.
1.9.1.2. Continuous wavelet transform

This transform is based on the convolution of the signal with a dilated filter [56]. Wavelet
analysis divides the signal into different frequency components and depends upon choosing
a mother wavelet. The signal under study is represented as a linear combination of dilation
and translation parameters of this selected mother wavelet. If the scale is continuous then
the transform is called continuous wavelet transform (CWT). If the scale is discrete, the

transform can be either orthogonal or non-orthogonal [57].

The mother wavelet is chosen to serve as a prototype for all windows in the process. All the
windows that are used are the dilated (or compressed) and shifted versions of the mother

wavelet.

We can write a general transformation equation [22] as follows:

o]

x(a,b) = [x(6) wop(t) dt
~ (12)
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Where x(?) is the given signal to be processed. For wavelet transform, the function y(?) is

given by —

l//a,b (t) = L l//(t—j)
Va a (1.3)

Where, y, ,(#)is a window of finite length, ‘4’ is a real number known as window

translation parameter and ‘a’ is a positive real number called as dilation or contraction

parameter.

Thus, CWT of the signal x(2) can be written as —

1 7 1-b
Xy(ab)=—= [ x(t)y* dt
W \a ( a )
~o (1.9)

Where, * denotes the complex conjugation [58]. In other words, it can be viewed as a

measure of similarity between the signal and wavelet.
The admissible conditions for y (¢) as mother wavelet are as follows [59] -

e It must have finite energy i.e.

E= [ ly@f di<w
—© T ¢ )
e If y(f)is the Fourier Transform of y(¢) i.e.
v(N= vyt a
—® (1.6)

Then, the following condition must hold —

~oo (1.7).
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Fourier transform must be real and vanish for negative frequencies. It is convenient to
analyze the signal if the wavelet is dilated and contracted because the time-frequency plane

can be conveniently covered for the dilation and contraction [60].

-

Therefore, CWT shows that the wavelet analysis is a measure of similarity between the
basis functions (wavelets) and the signal itself. Here, the similarity is in the sense of similar
frequency content. The calculated CWT coefficients refer to the closeness of the signal to

the wavelet at the current scale.
1.9.1.3. Discrete wavelet transform

If the wavelet y(?) is the derivative of a smoothing function 8(%), it can be shown that the

wavelet transform of a signal x(?) at a scale a is

W,x(b) = -a :—b [x(r)8,( - o)
= (1.8)

Where g (- p)- ITG( * ) is the scaled version of the smoothing function [61]. It is
a a

evident from the above equation that the wavelet transform at scale ‘a’ is proportional to
the derivative of the filtered signal with a smoothing impulse response at scale ‘a’. Hence
zero crossings of wavelet transform at different scales will result in local maxima or
minima and maximum slopes in the filtered signal will occur at maximum absolute values

of wavelet transform [62].

A dyadic wavelet transform is implemented using the set of high-pass and low-pass filters
that are derived from coefficient wavelet referred as mother wavelet. These filters are called
analytical filters. These high-pass and low-pass filters are related to each other by the

following relation-

glL -1-n]=(-1)" x ln] (1.9)

Where, g[n] and h[n] denote the high-pass and low-pass filter transfer functions
respectively, and L is the filter length expressed in number of points [63]. Both filters are
odd index alternated inversed versions of each other. Low-pass to high-pass conversion is

made by the (-1)" term. Filters satisfying this condition are commonly used in signal
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processing, and they are known as the Quadrature Mirror Filters (QMF). The two filtering

and subsampling operations can be expressed by —
Vignlk]= an[n].g[—n+2k] (1.10)

Viowlk1= D, x[n}h[-n + 2k] (1.11)

Detail signal (y,z,)and average signal (y,,,) are the outputs of high-pass and low-pass

filters respectively. These generated signals cor;sist of lower scale and upper scale
information of the original signal. The low-pass filter coefficient undergoes subsampling to
generate another new detail signal and average signal. Thus the dyadic discrete wavelet
transform (DWT) is the composition of dilated and translated form of mother wavelet. This
process of decomposition of the signal may be continued until the average signal reaches
the length of a single sample or a length that is not applicable for further application of the
analysis filter pair [64]. Every decomposition results in decreasing the time resolution by a
factor of 2 whereas the ﬁequency resolution is doubled. The schematic representation of

wavelet decomposition stages is shown in Figure 1.13.

» gfn] —»cd2

—» g[n] cd1

g[n] —» cd3

h[n] —-o@ »| hjn] h[n] |—» ca3

g[n} p—> Highpass filter

x[n}

A 4

h[n] —> Lowpass filter

Figure 1.13 Schematic representation of wavelet decomposition stages

Perfect reconstruction of the signal is possible only with the ideal half band filters such as
Daubechies set of wavelets. For reconstruction purpose, the decomposition process is
followed in reverse order. The wavelet coefficients obtained at each level are upsampled by

two, and passed through synthesis filters (high- pass and low-pass) and are added.
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Therefore, the signal reconstruction is referred as the inverse DWT and formula for

reconstruction is given by [66] —

x[nl= Y Vhignlkl.gl-n+2k1)+ (o k1 A{-n + 2K1) (1.12)

k=~

The wavelet transform satisfies the energy conservation principle and the original signal
can be faithfully reproduced [21]. Figurel.14 shows an example of wavelet decomposed
signals of ECG signal. The wavelet technique is applied in the feature extraction of ECG,
ABP and CVP signals in Chapter 2 and Chapter 3. This method has been implemented in

the removal of power-line interference in section 2.1.1.4 of Chapter 2.

Detai! Coefficients

Figure 1.14 ECG signal and its detail signals using db6 wavelet

1.9.2. Signal energy analysis

Signals in time domain carries information of the system which is reflected in the signal
amplitude and the time scale it is spread to. Moreover, signals of different amplitudes but
with different spreading time may have similar strengths due to the fact that they carry
equal energies. Such situation arises in biomedical application where the bio-generated
signals are disrupted on their way by some resistance of the nerves. In such cases, the nerve
cells recruit the same energy, however the amplitude gets lowered over a wider time
duration. For biomedical signal processing, therefore, energy analysis gives a promising

clue to analyze the signal strength for detection of some features of the signal.
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In many applications, the signals are directly related to physical quantities capturing power
and energy in a physical system. A signal can be defined as a function of varying amplitude
over a time, so signal strength can be measured by the area under the curve. This area may
have a negative part, but the negative area also contributes to the total signal energy.
Therefore, signal energy is calculated by squaring the absolute value, then finding the area

under that curve [63].

For a real signal energy will be given by —

The total energy for any continuousbtime signal x(z) over the time interval ¢; <t < ¢, is
defined as

1
2
E= [ xfar (1.13)
"
where |x| denotes the magnitude of the signal x(t).

Similarly, the total energy in a discrete time signal x/n] over the time interval n; <n <nj; is

defined as

R2 2
E= ) |x[n]
n=n, (1.14)
The signal energy should be finite. In practice, all time limited signals are called energy
signals. It is essential for a signal to have finite energy that the amplitude x(?) or x/r] must
tend to zero otherwise the signal energy will be infinite. A signal f{#) with its energy
distribution is shown in Figure 1.15.

Figure 1.15 Signal with energy distribution in the shaded region
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1.9.3. Fast Fourier Transform

Discrete Fourier Transform (DFT) corresponds to the computation of N samples of the

Fourier transform of the N equally spaced frequencies (wk =27k N) When DFT is

computed by efficient algorithms, it is called Fast Fourier Transform (FFT). To achieve
highest efficiency, FFT must compute ail N point DFT. The DFT of a finite length
sequence of length N is given by —

. N-1
X(ky=Y x(mwt (1.15)
n=0
Where, Wy =e *C%/N) ang k=0,1,2,...(N—1)

This equation involves N complex multiplications (i.e. N? multiplications and additions) to
get each value of X (k). FFT takes the computations in the order of N log,N computations

instead of N°.

Dividing these summations into even and odd values of » we can write —

N/2-1 N/2-1
X(ky= > xQrWil, + Wk Y xQ2r + DWW, (1.16)
r=0 r=0

Where, x(2r)and x(2r +1) are the sequences given by —
x,(r)=x(2r)and xp(r)=x2r+1), r=01.2,.... N/2-1

Replacing r by n, above equation (1.x) can be written as —

N/2-1 . kN/2—1 "
XY= D, x(mWa+Wx D xogmWii2
r=0 r=0 (1.17)

Therefore, N point DFT of a signal has been expressed as a sum of two DFTs each
comprising of N/2 points [66].

FFT algorithms are used in spectral analysis, filter banks, data compression, solving partial

differential equations, polynomial multiplications, convolution etc. We have used in this
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research for frequency analysis of wavelet detail and approximation coefficients after
decomposition and ECG/ ABP signals affected by baseline drift which are discussed in
Chapter 2 and 3.

1.9.4. Cross-correlation analysis

It often requires that two signal components have to be compared for testing resemblance in
time domain. Cross-correlation is the efficient technique that signifies the degree of

similarity between two signals in time domain.

Let us consider two time domain signals x(¢) and y(¢) which may or may not be periodic and
not restricted to a finite interval. Then the cross-correlation between these two signals x(?)
and y(2) is defined as
1 +T/2
Ciap(0) = Limp oo [x(6) y* (1) (1.18)
-T/2° :
Where, time (2) is a dummy variable. For real valued signals, the conjugate symbol ‘*’ may

be neglected.

The correlation coefficient is given by the following relation -

Correlation coefficient (r) = SSxr
V(SS5x) (SSyy) (1.19)
The sum of squares (SS) for a variable ‘X’ is
SSx = 3 (x, ~ %)
oL (1.20)

Similarly, the sum of squares for variable (Y) is given by —
2
The sum of cross-products SS yy is given by
SSﬂ’:Z(xi—J—C)(yz_y) (122)

Positive or negative correlation is determined by the sign of the correlation coefficient. The
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value of correlation coefficient ranges from +1 to —1. The strength of correlation is
dependent on the magnitude of correlation coefficient. However, following guidelines are

suggested for finding out the strength of correlation.

0< (rl <0.3 weak correlation
0.3< |r] <0.7 moderate correlation
Ir|>0.7 Strong correlation

We have determined cross-correlation coefficients for finding the similarity between ECG/
ABP/CVP signals and their wavelet decomposed detail coefficients described in Chapter 2
and 3 respectively. We have also used to cross-correlation for similarity measures of ECG

(synthesized using ANN) with original ECG which is described in chapter 5.
1.9.5. Thresholding

Thresholding is a technique used for signal and image denoising. In biomedical
applications, it is used for medical image analysis to differentiate structures such as organs
and tumors, so that tissue volumes can be measured and computer-guided surgery can be
performed. Similar methods find their applications for white blood cell classification [67],
recover a function from noisy sampled data [68], image denoising and segmentation

[69,70], compression and filtering of biomedical signals [71].

In thresholding, small coefficients are suppressed by introduction of a threshold. Such a
procedure is called wavelet thresholding. There exist various thresholding procedures such
as soft thresholding and hard thresholding. Wavelet shrinkage is usually performed using

one of two predominant thresholding schemes known as hard and soft thresholding.

Hard threshold filter A# removes coefficients below a threshold value, determined by the
noise variance. This is also referred to as the “keep or kill” method. It has shown that hard
thresholding provides an improved signal to noise ratio. The soft threshold filter Hs shrinks
the wavelet coefficients above and below the threshold. Soft thresholding reduces
coefficients toward zero .The process of thresholding is lossy, therefore the obtained signal

is irreversibly different than the original signal.
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Soft threshold filter is used to achieve smooth signal after thresholdng. However, the hard
threshold filter performs better. It is difficult to choose a threshold value. A small threshold

value creates a noisy result near the input, while a large threshold value introduces bias.

Hard thresholding sets any coefficient less than or equal to the threshold to zero. If x is the
signal which is to be thresholded and ¢4 is the threshold then in case of hard thresholding —

if x())<th

() =0 (1.23)

In Soft thresholding the threshold is subtracted from any coefficient that is greater than the

threshold. This moves the time series toward zero.

if x(i)sth
x()=0
else x(i)=x@{)—th (1.24)

1.9.6. Maxima and minima of signals

In signal processing, detection of maxima and minima is desired when there is a need to see
the locations in the signal where there are sharp variations in signal amplitudes. A maxima
is the highest point in the valley whereas minima is the point where signal amplitude is

lowest. Maxima and minima in a signal are shown in Figure 1.16.

Amplidtue

Mintma

Time

Figure 1.16 Maxima and minima of a signal
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1.9.7. Modeling of dynamic systems

One of the applications of sophisticated monitoring of cardiac signals in ICU is
uninterrupted generation of ECG while ECG is missing or corrupted due to malfunction of
the ECG generation system. Synthesis of ECG can be achieved by modeling of the ECG
from other measured data such as pressure signals. System identification is an efficient
technique by which an approximate model of ECG can be developed. Further, the
developed model can be used to synthesize ECG faithfully for monitoring.

System Identification is the field of building mathematical models of dynamic systems
based on measured data [72]. It is achieved by adjusting the parameters of a developed
mode! until the model output best matches with the measured output. As compared to
mathematical models, system identification based models are less common and comprise of
very small physical insight, however these are easier to construct as compared to
mathematical models. Following are the basic models used for modeling of dynamic

systems —

a) Autoregressive (ARX) model

b) Autoregressive moving average (ARMAX) model
c) Transfer function model

d) State space (SS) model

a) Autoregressive (ARX) model

It is the simplest model that incorporates the stimulus signal. An autoregressive model can
be defined as one of a group of linear prediction formulae that tries to predict an output of a
system based on the previous outputs. The term autoregressive is used as the output is a
function of its past values [73]. For parameter estimation of an ARX model, there are two
methods for parameter estimation - the least squares (LS) method and the instrumental
variable (IV) method. The parameters of the other model structures are estimated by the use

of a prediction error method.

The LS method fits a model by minimizing the sum of square errors for estimating

parameters. LS method is the special case of the prediction error minimization (PEM)
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method described later in this chapter. A general ARX model structure is shown in Figure
1.17.

y(t)

Figure 1.17 ARX Model Structure

In general Autoregressive Model structure may be written as

y@O +ay(t—1)+ary(t —2)...a,,y(t —na) = byu(t — nk) +....byy u(t — nk —nb +1) +e(r)
(1.25)

The parameters na and nb are the orders of the ARX model and »k is the delay.
Where,

y(t) — Output at time ¢

na— Number of poles

nb— Number of zeros plus 1

n(k)— Number of input samples that occur before the input affects the output, also

called the dead time in the system. For discrete systems with no dead time, there is a

minimum 1-sample delay because the output depends on the previous input and nk =1

The difference equation (1.x) can be written as —
A(q)¥(1) = Bq) u(t = nk) + e(2) (126)
‘q’ is s the shift operator. Specifically, .

na: A =1+a g .rveannn. Oy, q (1.27)

nb:  B@)=b+by g e by q "0t (1.28)

Where, 4(q) and B(gq) are unknown polynomials and e(¢) denotes the error. AR models do
not support multiple-output continuous-time models. For multiple output continuous time

models, state space models are used. The input u is the exogenous i.e. no extra input to the
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system is available. The transfer function with input-output relationship obtained from
ARX model may be employed for characterization of the dynamic performance of the
system [73]. Polynomials estimation method in ARX model is the result of solving linear
regression equations in analytical form. Hence, ARX models are recommended when
model order is high. The disadvantage of ARX model is that system dynamics involve

disturbances which can be reduced if a good signal to noise ratio is retained.

The equation of estimated output is given by [74]-
y(t|t=1) = B(q)u(®) +[1- Ag)]y@) (1.29)
b) Autoregressive moving average model with exogenous inputs (ARMAX)

Autoregressive moving average models with exogenous inputs (ARMAX) models include
disturbance dynamics unlike AR models. These models are used for the estimation of the
order and structure of system model using all relevant information such as the measurable
input/output variables, internal variables of the system, measurable disturbance, and even
the phenomenological information of the system. There are various estimating methods of

ARMAX models such as pseudo linear regressive, correlation methods, subspace methods,
etc. [75].

A general ARMAX model structure (Figure 1.18) is given by-

Yy +ay( -1 +axy(t=2)...a,,y(t —na) = byu(t — nk) +....byy u(t —nk ~nb +1) +
e(t)tcie(t =1+ Cpee(t — nc)

(1.30)

y(t)

Figure 1.18 ARMAX model structure
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Which may be written as —

A(q)y(1) = B(q) u(t — nk) + C(q)e(t) (1.31)
Where,

na: Ag)=1+aq q—1 .................. g q ™ (1.32)

nb:  B(@)=b+byq L. by, g ! (1.33)

ne: C(@) =146 g o Cuc € (1.34)

The equation of estimated output is given by [74] —
y{t=DC(q) = B(qu(?) +[C(q) - APy (@) (1.35)

¢) Transfer function model

The linear polynomial models such as ARX model, ARMAX models etc are commonly
used in control engineering as these models describe deterministic and stochastic part of the
system separately. But in classical control engineering, deterministic part of the system is
more preferred than the stochastic part of the system. Transfer function models can
illustrate only the deterministic part of the system. These models can be used to depict both
continuous time and discrete time systems. Transfer function models are good choice for
single input single output (SISO) or multiple input and single output (MISO) physical
systems. For multiple input and multiple output physical systems, state space models are
well suited. These models can also be estimated in the frequency domain with frequency

response function data.

Transfer function model for a continuous time and discrete time model is denoted by —
(1) = G(s)u(t) (1.36)
y(k) = G(z)u(k) (1.37)

Where, G(s) denotes the transfer function of continuous time system with input u(¢)and
output y(¢)and G(z)denotes the transfer function of discrete time system with input u(k)

and output y(k).
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d) State space model

State space models are used to describe the complex systems which are of higher order and
consist of several parameters as input and output and a large number of measurements.
State space structure is the powerful way to represent a system. The state-space
representation is the most reliable Linear Time Invariant (LTI) model used for computer

analysis.

In a linear time invariant sense, a discrete time state space model appears as the first order

finite difference model [76] -
%(1) = Ax(f) + Bu(t) (1.38)
y(t) = Cx(£) + Du(t) (1.39)

The system of first-order differential equations (equation 1.38) is known as the state

equation of the system and equation 1.39 is called output equation. Here, 'u(s)' denotes
input vector or control vector, y(t)and x(¢) are output vector and state vector respectively.

Matrices A4, B, C are state matrix, input matrix, output matrix and matrix D is feed through
or feed forward matrix. D is often selected as zero matrix for the purpose of simplicity. In

other words, system is chosen not to have direct feed through.

\

The discrete state-space model is given by:
x(KT +T) = Ax(KT) + Bu(KT) (1.40)
V(KT +T)=Cx(KT) + Du(KT) (1.41)
Where, X is the sampling ingtant and 7 is the sampling interval.
Replacing x(KT)by x(k)above equations (1.40) and (1.41) reduce to,
x(k +1) = Ax(k) + Bu(k) (1.42)
y(k +1)=Cx(k) + Du(k) (1.43)

This equation can also be written as —
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xq(k+1) 0 0 0 0 x1(k) | o
x5 (k+1) 0 0 0 0 x3 (k) 0
: = E S 3 I E R 03]
Xp_1(k+1) 0 0 0 0 Xp-1(k)| |0
xp(k+1) ~4n “Op-1 v T4y Tq xy, (k) b (1.44)
x1(k)
x2(k)
yky= 0 0 - 0}
xn—l(k)
*n (k) (1.45)
x1 (k) 0 0 0 0 0
x (k) 0 0 0 0 0
Where, x(k) = A= : B=|:
xp_1(k) 0 0 0 0 0
x,, (k) —a, —ap-i —a; -aq b
And C=[1 0 0 - 0]

Here, u(k)and y(k)represent the system input and output at K sampling instant.
The transfer function of a LTI system in continuous time is given by —
y(t) = Hu(t) (1.46)
The transfer function H in Laplace domain in terms of state matrices is given by —
H(s)=C(sI-4)'B+D (1.47)
Where, [ is the identity matrix, this equation can also be written as —

m m—1
boS +b0S Feeene +b,,

H(s)= (1.48)
s" a4 +a,
And Z transform of this system is given by —
m m-1
H(z) = boZ +boz : + +b,, (1.49)
2"+ a T +a,

The state space equation of multiple input and single output system is represented as the

matrix of single input of output transfer function.
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1.9.8. System identification

System identification techniques can exemplify the physiologic mechanisms by studying
measured input — output data of a system, therefore this approach is an important aspect in.
the study of cardiovascular system [77]. System Identification studies have extensively
used in the diverse fields of signal prdcessing [78,79]. System identification has been used
in the study of biomechanics to construct the models of joint dynamicé [80], modeling of
respiratory acoustics [81], processing of noisy biomedical signals [82], construction of
functional biomedical images [83]. Subspace methods are employed to identify the state
space models from short transients of ankle joint stiffness experiment using ensemble data
[84]. A flow chart of the iterative system identification cycle is shown in Figure 1.19.
System identification based approach deals with the selection of best parameters using the
technique such as least-squares error, prediction error minimization etc.. If the obtained
model is supposed to fulfill the intended application, predictions are made using the

resultant model else the model class is revised and process is repeated [85].

Depending upon input-output relation, the identification of systems can be divided into two

groups:
a) Static system identification

In this type of identification the output at any instant depends upon the input at that instant.
These systems are described by the algebraic equations. The system is memory less and

mathematically it is represented as-
y(n) = flx(m)] (1.50)
Where y(n) is the output at the n™ instant corresponding to the input x(n).

b) Dynamic system identification

In this type of identification the output at any instant depends upon the input at that instant
as well as the past inputs and outputs. Dynamic systems are described by the difference or
differential equations. These systems have memory to store past values and mathematically

represented as-

y(n) = flx(n),x(n—1),x(n—2)------ y(n=1),y(n=2),+](1.51)
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Where y(n)is the output at the n™ instant corresponding to the input x(n). The process of

system identification deals with the determination of the complete characteristics of an
unknown system from its output with the input being known. The characteristic of the

unknown system can be determined in terms of its impulse response.

(Data

( Preprocessing J
Unsuitable model

Preprocessed .Model structure .. Structure
data selection

A
~

) Model estimation .
Model i
[ Model validation t Independent data J '
Unsuitable model E
smodel™, _No____ . algorithm =
OK
Yes

Figure 1.19 Flow chart of system identification cycle

1.9.9. Methods of system identification

Parameter estimation in dynamic systems is regarded as subpart of system identification to
develop dynamic models from the measured data. There are the following methods used in

system identification for estimation of model parameters —
a) Prediction error minimization (PEM) method

The objective of prediction error minimization (PEM) method is to build a predictor and

compare its predictions with available data using some suitable measure [86]. The PEM
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algorithm uses the measured data and reduces the prediction error to a large extent. The

prediction error approach is shown in Figure 1.20.
The general properties of PEM method are —

a)  This method requires prior information regarding the model structure such as type of

model and orders of each term.

b) Biased parameter estimates are obtained owing to structural inconsistency. For

different input excitations, different bias is shown.

¢) Trial and error procedure with different orders is generally followed to find an

economical model.
d)  Generally, nonlinear equation should be solved to find an estimate.

Thus the input—output data to be used for identification are assumed to be generated in the

following way [74]-
(k) =G(q)u(k) + H(q)e(k) (1.52)

Where e(k) is independent from u(k). The terms G(g) and H(g) represents- deterministic

and stochastic part of the system. If the system matrices of this algorithm depends on the
parameter vector ‘6’ we can define the model as - Given a finite number of samples of the

input signal u(k) and the output signal y(k) and the order of the predictor
x(k +1) = Ax(k) + Bu(k) + K(y(k) — Cx(k) — Du(k)) (1.53)
y(k) = Cx(k) + Du(k) (1.54)

The system matrices A, B, C, D, and constant K in this predictor are to be determined such

that the output y(k) approximates the output of 1.52.

b) Least square error (LSE)

LSE is used to fit a model by minimizing the sum of square errors for estimating

parameters between the observed data and expected data [87].

Let us consider that a system with input u(f)and output y(¢)at time ‘¢’ with N number of

measurements such that ¢ =0,1,2,.......N. The output of the model y(f) is given by —
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e(k)

u(k)

e(k, 6)
( )
| A(8) B(6) K(6)
_co b |
Figure 1.20 Model estimation by PEM method
y(t) = hou(t) + qu(t = 1) + hyu(t —2) + -+ +h,u(t —n) (1.55)
The notations hg,hy,hy,------ h, are the parameters of the model. The model represented is a

moving average model with ‘n’ delays.

The error (E) between predicted and observed output given by the relation —
. V4
E=| 2> ((®0-51) (1.56)
t=n

P!

N
E= {Z (hou(t) + Mu(t = 1) + hou(t = 2) +--+--- +hyu(t-n) - HOP | (1.57)
t=n

The model in selected in such a way that the error E is minimized. The method of least

squares is computationally suitable measure of fit.
¢) Subspace system identification

System identification algorithms that estimate state space models based on subspace
approximations are called subspace system identification. Subspace algorithms are useful
for both time domain as well as frequency domain data. In subspace approximation, an

iterative parameter optimization is not required as in classical prediction error minimization
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techniques and also identification of multivariable systems is dealt in the simpler ways as
scalar systems [88]. Subspace identification technologies are used to estimate the state
space model of a dynamical system directly from input and output measurements as state
space realizations. These methods are fast and can be used to estimate the system
proficiently even in presence of noise [89)]. These methods can estimate a state space model
without any previous information of the system [90]. These models are used for the
analysis, simulation, prediction, detection of abnormalities, training and validation of

developed algorithms.

Mathematically, the subspace models are represented by following difference equations
[91]

Xpa1 = Axg + Buy +wy : (1.58)
Y = ka + Duk +vy (1.59)
With
Wp Q S
E [ W0 D)) = (ST R) 8pq 20 (1.60)

The matrices Q& R™",SeR™ and ReR™ are the covariance matrices of the noise

sequences wy and v, . The vectors u; £ R™ and yj eR' are the measurements at time
instant ‘4’ of the process for ‘m’ inputs and ‘I’ outputs respectively. The vector x; is the
state vector of the process at discrete time instant ‘k’ and comprise of numerical values of n
states. v £ R’ and wy € R™ are unobserved vector signals, vy is called the measurement

noise and wy is called the process noise. The vectors v; and w; are assumed as zero

mean, stationary, white noise vector sequences.

A& R™™ is the system matrix that describes the dynamics of the system, B&R™™ is the

input matrix, C&R™” is the output matrix while D &R, is the direct feed-through

matrix. For continuous time systems D is often considered as zero but in case of discrete

time systems, it is not zero due to sampling.
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Since for deterministic systems, the process noise and measurement noise are identically

zero, therefore, we can rewrite equation (1.58) and (1.59) as
xk+1=Axk + Buy, (1.61)
Vi = Cxy + Duy, (1.62)

The matrix pair {A, C} is considered to be assumable which means that all modes in the

system can be observed in the output y, and thus can be identified.

In subspace system identification method, Kalman filter states are obtained from input —
output data using QR factorization and singular value decomposition (SVD) tools of linear
algebra. After these states are known, the identification method is converted to linear least

square problem. The salient features of subspace algorithm are -

i.  The subspace algorithms include advantage over prediction error method as

these methods have conceptual and algorithmic simplicity.

ii.  Subspace algorithms are faster than prediction error methods because these do
not include iterative approach. These algorithms are robust as these include well

known algorithms from linear algebra.

iii. A reduced order model can be obtained directly using these methods without
having the need to get a higher order model first and then reducing it to a lower
order model as done in classical prediction error approach.

Input-output data
(uki b4 k)

Subspace identification

4

State sequence { Extended observability J

Xk

matrix (F l)

1

\
[ System matrices ]

A,B,C, D

Figure 1.21 Overview of deterministic subspace identification procedure [92]
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An overview of deterministic subspace system identification algorithm is shown in

Figure 1.21.

Following the theorem of [93], the linear state space equations (1.61) and (1.62) can be

written in matrix form as below —
Xp=A'X,+AU, (1.63)
Yr=IiX;+HUy (1.64)
Where, U p,U f,Y f,H,-,A,- are past and future inputs, Y £ is future output, H;is the lower

block triangular Toeplitz matrix and A; is the reverse extended observability matrix. X,

and X  denote past and future state sequences.

Subspace algorithm involves the following steps [92] —

Step 1: Calculate the oblique projections:

oi=T. % W, (1.65)
/
Oi—1=Yf%f W (1.66)

Where, Urand Y are the future input —output matrices and W, is Hankel matries

containing past values.

Step 2: Calculate the singular value decomposition (SVD) of the weighted oblique
projection:

Let us consider that two weighing matrices #] & R"*# and W, & R7*J such that W] is of
full rank and W, obeys that rank (Wp) = rank (Wp,Wp) where W » block Hankel Matrix
containing past inputs and outputs. ,

SVD is obtained from the following relation

WO, =USVT (1.67)
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Where, T & R™"is an arbitrary non-singular matrix representing a similarity

transformation. S may be partitioned into U and S;. The number of singular values in S

defines the order of the system.

Step 3: Now we define extended observability matrices I; as below —

1
T, = Wl'lUlsIA (1.68)
C
def| CA .
Where, I; =| C4? £ R™J (1.69)
c A’i—l

The subscript ‘i’ denotes the number of block columns.

And T, =T,
Where, I'; is the extended observability matrix without last ‘1’ rows.

Step 4: The state sequences X; and X;,; are defined as
X; =170, (1.70)

And X1 =170, (1.71)

Step 5: The state variables 4, B, C and D are obtained by solving the following set of linear

(e o))
- (1.72)
a C D)\Uy;

1.9.10. Stability analysis of transfer function models

equations

Stability of a system implies that a small change in input does not result in large change in
system behaviour. If a system is applied with bounded input and produces an unbounded
response, the system is said to be unstable. In terms of measured input-output cardiac

model, stability indicates change in the behaviour of the heart when obstructions to flow of
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affect the pumping action of the heart which is displayed as abrupt change in characteristic
waves of ECG, ABP and CVP signals. These changes can be reflected in terms of stable/

unstable response and location of poles of transfer functions of the model.
a) Step response and pole zero plot

The step response describes the transient response of a system. It describes the system
behaviour with respect to disturbances and qualitatively gives an idea about the system

stability.
Let us consider the step function

f()=0  for t<0

1.73
=4 for t>0 (1.73)

and let y(f) be the corresponding output, which is called the step response. Step function

whose height is unity is called unit step function.

The response of an LTI system to a unit step is given by [Roberts, M. J, 2007] —

O=hO*u)= [h(e)u@t-7)dr= [h(z)dr
0 o (1.74)

Therefore, when an LTI system is stimulated by a step input, the response of the system at

any time t is defined as the integral of impulse response.

The response of a system to a complex exponential e* is given by —

YO =h)*e = [h(x) e’ dr= [h(r)e™dr

—® —® (1.75)
o o]
Where s is any complex constant. The integral J.h(t)e_“dt is called the Laplace transform
-0

of h(f).

- _ . 0 01
Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |52

b) Pole-zero plot
The poles of the transfer function of a system provide an insight into the natural response of

the system. The stability of a linear system can be determined from the location of poles in

s-plane.
From equation (1.53), solving by the Laplace Transform method we get,

_ K(s+z)s+z)..(s+z,)
(s+p)s+p,)..(s+p,)

Y(s) (1.76)

where m < n (for limited response at high frequency).

The constants z, are called the zeros of the transfer function or signal, and p,are the poles. In

complex plane, when viewed in the complex plane, the magnitude of ¥ (s) will go to zero at

the zeros, and to infinity at the poles.

The location of poles is viewed in complex plane to determine the system stability. A
system is stable if and only if all of the poles occur in the left half of the complex plane.
Simularly, the equilibrium state of a discrete-system with constant input is stable if and only
if all poles of H(z) have absolute values less than one; that is, the poles are all inside the unit
circle of the z-plane. Figurel 22 (a-b) shows the pole-zero plots of a stable and unstable

system respectively. If any of the poles lie in the right half of s-plane or outside the unit

-
i
1
i

-1.25 L i i i i ] " . s
1125 1.0.75 050250 02505 0.75 1 125 o3
Real axis Real axis

(2) (b)

Figure 1.22 Pole-zero plots of (a) a stable system and (b) an unstable system

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |53

circle in z-plane, then with increasing time, they give rise to the dominant mode, that results
in increase in transient response monotonically or oscillations with increasing amplitude
will occur. This represents an unstable system. Therefore, closed-loop poles in the right-half
of the s-plane are not permissible in the usual linear control system. If the closed loop poles
lie to the left-half of the jw axis, any transient axis, any transient response eventually
reaches equilibrium [94]. The system stability criteria for stable, unstable, marginally stable
system using pole zero plots and system response are shown in Table 1.8. It is clear from
Table 1.8, that the system is stable if all of the poles have negative real parts and lie in the
left half of the complex plane.

¢) Routh’s stability criterion

The stability of ECG model can also be analyzed by Routh’s stability criterion. This
approach is applicable to polynomial with only a finite number of terms. According to
Routh’s stability criterion, coefficients of the characteristic equation can be used to provide
the information regarding the stability of the system [94]. Most of systems have transfer

function of the form —

Y(s) _bos™ +bs™ 4. +b,_15+b, _B(s)
= - =
U(s)  aps" +as" ™ + s +a,_1s+a, Als) a.m
Where, 405815 +we %n and bosbys oo by are coefficients and m <n.

The procedure in Routh’s stability criterion is as follows —

i.  The s-domain transfer function is written in the following form-

Where, the coefficients are real quantities and a, =0, i.e. any zero root has been

removed.

ii.  If any of the coefficients are zero or negative in presence of at least one positive
coefficient, there is a root or roots that are imaginary or that have positive real part.

Therefore, in such a case the system is not stable.
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iii.  For absolute stability, all the coefficients must be positive and all the coefficients

must be present.

Tablel.8 Closed loop poles, step response and stability [95]

Nature of closed loop Location of closed loop Step response Stability
poles poles in s-plane condition
Real —ve i.e. in L.H.S of
t
s-plane 4
Absolutely
R . stable
Pure exponential
Complex conjugate with 1)
;vel an::l part in L.H.S. of o Absolutely
P 3 4oy X stable
Damped oscillations
Real positive i.e. in o dtyy =
R.H.S. of s-plane (any one
closed loop pole in RHS . Unstable
of s-plane irrespective of 48, 1 ey 1
number of poles in left Exponential but increasing
half of s-plane) towards .
Complex conjugate with et) &
positive real part i.e. in ™
R.H.S. of s-plane joog
-G d 1 Unstable
—
A2 Oscillations with increasing
amplitude
Non-repeated pair on joo cit)
imaginary axis without Jwy
any pole in R.H.S. of s- p
plane +_}%
-+
]u?r Frequency of oscillations = w1 Marginally or
!;‘z > {)) critically
oy ° stable system.
20
Two non-repeated pairs t
on imaginary axis. Sustained oscillations with two
frequency components ®l and
w2
Repeated pair on t
imaginary axis without j“j)m o)
any pole in R.H.S. of s- !
plane X Unstable
s > ¢
+ —ity Oscillations of increasing
amplitude
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1.9.11. Artificial neural network

Artificial Neural Networks (ANNs) are non-linear mapping structures inspired by the
function of the human brain. ANNs can identify and learn correlated patterns between input
data sets and corresponding target data. These can be used to predict the result of new
independent data after training. ANN mimic the learning process of human brain, therefore
these can be used to resolve the problems of non-linear and complex data. They are
powerful tools for modeling, especially when the underlying data relationship is unknown
These networks perform well with multiple inputs and multiple outputs. This capability of
ANNSs is well suited for modeling of biomedical signals which are non-linear and affected

by noise most of the time.

ANN has been used extensively in biomedical applications, such as signal reconstruction
[96-99], modeling of electrical activity of human heart [100] and EEG [101]. These are also
used in the diagnosis of breast cancer [102, 103], prediction of the occurrence of coronary

artery disease [104] and diagnosis of Down’s Syndrome in unborn babies [105].

Different ANN paradigms such as MLP and RBF (multilayer perceptron and radial basis
function network have been employed for the diagnosis of pathological conditions in serum
electrophoresis [106], classification of PVC beats in ECG signals [16, 107], segmentation
and classification of multi-spectral MRI images[108]. In addition, RBF have been used for
the diagnosis of myocardial infarction [109]. Application of ANN in modeling of ECG
using ABP and CVP signals will be discussed in chapter 5.

ANNs consist of a large number of simple, highly interconnected processing elements
called neurons. An artificial neuron computes a weighted sum of its N input nodes, x,,
where, i=1, 2, 3...... N and generates an output depending upon the activation function.

The function of a neuron is shown in Figure 1.23. Mathematically, it can be represented as

N

net=Zw,- X; — H (1.78)
i=1

y = f(net)
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Where, y is the output, x; is the ith input to the node, and w, is the weight associated with
input x; . The terms g is the threshold or bias of the node and f is the transfer function

called activation function. Output of the neuron depends on these activation functions.
There are various activation functions such as step, sigmoid, linear, Gaussian etc. Sqme
commonly used activation functions are shown in Figure 1.24. These activation functions
decide the output of a neuron. The learning capability of an artificial neuron depends upon

the adjustment of weights according to learning algorithm.

# (bias)

Xy :
X
9
xs——“—la—’ 1 'r— y
-
. A
X Al: ’

N J

Figure 1.23 Function of an artificial neuron

These neurons are organized into a sequence of layers with full or random connections
between the layers. Such an arrangement is called artificial neural network as shown in
Figure 1.25. An artificial neural network consists of three layers — input layer, one or more
hidden layers and output layer. The input layer is a buffer that presents the data to the
network. The top layer is called output layer which gives the output response to the given
input. Hidden layers are the real classifiers that work for the classification algorithm of

ANN.

3
+14
L
_-z .3._) n
-1 -
iomoid 1 o
linear a¥8mot =
a = l+e™ radbas —n2
a =e
(a) Linear (b) Sigmoid (c) Radial basis function

Figure 1.24 Activation functions
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Output layer
Input layer

Hidden layer

Figure 1.25 Architecture of a neural network

1.9.11.1. Neural network architectures

There are various types of architectures of neural networks. Following two types of neural

network architectures are most commonly used —
a) Feed forward networks

These networks employ unidirectional flow of information along connecting pathways i.e.
information flows from input layer to hidden layer and then to output layer and there is no
feedback from input to output. In these networks, the output of any layer does not affect

the previous layer output. A multilayered feed forward neural network is shown in
Figure 1.26.

Input layer Hidden layer Output layer

Figure 1.26 A multilayered feed forward neural network
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b) Recurrent neural networks

Recurrent neural networks have different network architectures than feed forward neural
networks. In these networks, there is a feedback loop from output to input. Therefore, these
networks may comprise of one or more layers with feedback connections (Figure 1.27) or
output of a neuron is feedback to its input. In some applications, the activation values of
neurons acquire equilibrium state or the activation values of the output neurons may change

such that the dynamic behaviour constitutes the output of the network.

Input layer Hidden layer OQutput layer

Figure 1.27 Recurrent neural network

ANN s are capable of disease diagnosis, modeling [100, 101} and reconstruction [96-99] of
physiological time series data, because, once a network is trained for a particular pattern of
the signal, it generates a pattern on testing with independent data which is more close to the

input to which it was learnt.

1.9.11.2. Learning paradigm

Learning in a neural network is accomplished through an adaptive procedure, known as
‘learning rule’. The weights of the network are incrementally adjusted so as to improve the
performance over time. The basic learning rules are the supervised learning, unsupervised

learning and reinforcement learning.

a) Supervised learning

In supervised learning, an input vector is presented at the inputs together with a set of

desired responses, one for each node, at the output layer. It involves the comparison of

E e |
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actual response to the desired response. If the actual response differs from the desired
response, an error signal is generated and network weights are adjusted so as to achieve the

desired response.
b) Unsupervised training

In unsupervised learning, there are no explicit targets associated with each input and there
is no feedback path. In this type of learning, neural network organizes the received input in
to some categories during training. When an external independent input is applied to the
network, it generates an output depending upon the class to which the input belongs. In
general, unsupervised learning performs the same task as an auto-associated network by
compressing the information from the inputs.
¢) Reinforcement leaning

In this type of learning, the complete detailed information is not available as the target
output. This method of learning differs from supervised learning, where there is a target
value for each input value. It is one kind of learning in which some feedback from the

environment is given but the feedback signal is only evaluative not instructive.
1.9.11.3. Radial basis function network

There are various types of neural networks and their architectures such as multi-layer
perceptron, radial basis networks, learning vector quantization etc. Out of these ANN
structures, RBF is capable of fast learning than back propagation networks and MLP. RBF
networks are least affected with non-stationary inputs and these networks have been
successfully used in biomedical applications [106-109] and in the prediction of time series
data [110,111]. We have used RBF network for modeling and synthesis of ECG from ABP
and CVP signals as discussed in Chapter 5.

The Radial Basis Function (RBF) network is a three-layer feed-forward network that uses
non-linear transfer function for hidden layer and a linear transfer function for the output
units [112]. The RBF networks require more neurons compared to standard feed forward
networks. The performance of these networks is better when trained with a large amount of

data. These network employ supervised learning.

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |60

A radial basis function (RBF) is a real-valued function whose value depends only on the

distance from the origin, so that ¢(x)=¢(|x|)or alternatively on the distance from some
other point x called a center, so that ¢(x,u)=(|x - ). Any function '¢' that satisfies the

property ¢(x)=g(|x]) is a radial function.
A radial basis function is typically used to build up function approximations of the form

z(x) = p(|x - 4 (1.79)

Where, x is an n dimensional vector, 'y is an n-dimensional vector called the centre of the
radial basis function. The norm G[”) denotes Euclidean distance, and is a univariate function

also referred as profile function, defined for positive input values. The model is built up as

a linear combination of ‘N’ radial basis functions with ‘N’ distant centers. Given an input

vector ‘x’, the output of the RBF network is the activity vector ') given by

N
0= w, olx 1)
= (1.80)

N
Jx) =Y w2z, (x)
J=1 (1.81)

Where, 'w, 'is the weight associated with jth radial basis function centered at ' 'and

z(j) = (o(ﬂx— U, H) The output '}’ approximates a target set of values denoted by ' as a
sum of N-radial basis functions, each associated with a different center 'x," and weighted by
an appropriate coefficient'w,'. This type of approximation schemes are mainly used in

time series prediction and control of nonlinear systems those display sufficiently simple
chaotic behaviour. The sum can also be elucidated as a rather simple single-layer type of
artificial neural network called a radial basis function network, with the radial basis

functions taking on the role of the activation functions of the network.

A commonly used the transfer function for radial basis networks is Gaussian function

which in case of scalar input is given —
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a2
h(x)= exp‘((erﬁ)—] (1.82)

Where, '4'is the centre of radial basis function and 'r'is the radius. The Gaussian RBF

monotonically decreases with its distance from centre. A multiquadric RBF in the case of

scalar input is given by —

h(x) = VP +(x - )’
r

(1.83)

A radial basis function network is shown in Figure 1.28. In RBF networks, the hidden layer
has radial basis neurons, and calculates its weighted inputs with distance, and its net input.
The output layer has linear n;:urons and calculates its weighted input and its net inputs.
Both layers have biases. Initially the radial basis layer has no neuron. The following steps
are repeated until the network mean squared error falls below the predefined goal or the
maximum number of neurons are reached —

a)  The network is simulated.

b)  The input vector with the greatest error is found.

¢) A radial basis neuron is added with weights equal to that vector.

d) The linear layer weights are redesigned to minimize the error.

Oatput layer

Input layer Hidden layer

Figure 1.28 Radial basis function network
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If (x;, x3, X3 ... .. x,) are the inputs and (wj, wy, w; ......... wy) are associated weights, then
the output of an RBF with single hidden layer and Gaussian activation function

(Figure 1.28) is given by —

fx) =2 wh(x) (1.84)
J=1

1.9.12. Prior works on modeling and synthesis of ECG

Previous works on modeling and synthesis of ECG include a method for generation of RR-
tachograms [113], a dynamical model that mimics the real ECG signal of a normal person
[114], use of this model to generate realistic ECG, BP, respiration signals [115] and
modeling an arbitrary ECG without in band noise [116] are also suggested. Further a three-
dimensional dynamic model is proposed for ECG modeling that is generalized to model
maternal and fetal ECGs [117]. Models for generation of multi-lead ECGs [118] and
simulation of abnormal rhythms [119] are also reported in literature. Gaussian wave-based
state space model is used for generating synthetic ECGs as well as separate characteristic
waves (CWs) such as the atrial and ventricular complexes [120] and extended Kalman filter
based dynamic algorithm is proposed for tracking the ECG characteristic waveforms [121].
Mathematical modeling of electrical activity of heart [122] and computer simulation of

qualitative ECG are also suggested [123].

The inherent shape of Hermite Basis Functions (HBF) bearing resemblance to ECG signals
is used for shape determination of ECG [124-125]. In addition to this, piece wise modeling
of ECG is also suggested [126]. A modified Zeeman model using radial basis network is
proposed for ECG modeling but this model is able to generate single cycle of ECG [127].
Methods including Gaussian Combination Model [128], Hilbert transform [129], Hidden
Markov models [130] and data flow graph method [131] are also known in literature for
ECG modeling.

Although a considerable amount of research has been carried out for ECG modeling and
synthesis [113-131], however, a parametric ECG model based on measured

phenomenological cardiac data such as ABP and CVP has not been attempted so far.
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In physionet challenge 2010 [132], reconstruction of ECG, ABP, respiratory, fingertip
plethysmogram (PLETH) signals using Artificial neural network (ANN) [96-99, 134] and
wavelet based approach [138] has been suggested. ANN has been found to be a promising
technique for ECG reconstruction as suggested in [96-99, 134], however the technique

needs at least one ECG signal from other leads.

1.10. Preprocessing techniques

The ECG electrodes as well as the pressure transducers pick up various types of noise from
the electronic circuit, power-line and environment which corrupts the actual signal to a
great extent. Signals available in the database are raw signals; therefore the signals must be
filtered before processing. We have used two types of filters for this application — moving
average filter for remove high frequency noise and a Butterworth high-pass filter to remove

low frequency noise.

1.10.1. Moving average filter

It is a smoothing filter to remove random noise in the signal which attenuates the high
frequency components. It involves the computation of temporal statistics filtered using
samples of signals during a certain window length. The window is moved to obtain filtered

output at different time locations.

General equation of a moving average filter can be written as —

N
y(n)= D by x(n—k)
k=0 (1.85)

Where, x and y are the input and output signals respectively and N is the number of points
used for moving average, called the order of the filter. The b, values are the filter

coefficients. A 20 point moving average filter is implemented in removing the high
frequency components present in 7 records of ECG, ABP and CVP signals in section 4.1. of
Chapter 4.

1.10.2. Butterworth high-pass filter

The Butterworth filter is perhaps the most commonly used frequency-domain filter due to

its simplicity and the property of a maximally flat amplitude response in the pass band. A
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Butterworth filter is specified by its cut-off frequency and order. As the order increases, the
filter response becomes more flat in the pass-band, and the transition to the stop-band
becomes faster or sharper. Selection of cut-off frequency (fc), order (N) of the filter is

crucial because an improper value of fc and N causes distortion of the signal.

The magnitude squared function for a continuous time Butterworth high-pass filter is given
by —

1

o 2V
1+ =<
o

| H(a,)|2 = (1.86)

with w normalized to the range (0, 2 n) for sampled or discrete time signals; in such a case,
the equation is valid only for the range (0, ©). The cut-off frequency w, should be specified
in the range (0, m). As the order N increases, the filter characteristics become sharper i.e.

remain close to unity over the pass band.

If the discrete Fourier transform (DFT) is used to compute the Fourier transforms of the

signals being filtered, above equation 1.86 may be modified to —

1

2N
1+ (—0)
k (1.87)

Where £ is index of DFT array standing for discretized frequency. With K being number of

) =

points in the DFT array, k. is the array index corresponding to the cut-off frequency w, i.e.

k=K

Ds (1.88)
The equation above is valid for £=0,1,2...... K/2 with the second half over
(K/2+1,K —1) being a reflection of first half. We have used Butterworth highpass filter to
remove low frequency noise such as base line drift in ECG as well as ABP signals in
record 100 in section 2.1.2.2 and mghOO1 in section 3.1.2.1 of Chapter 2 and Chapter 3

respectively.
1.10.3. Detrending

A non-linear system may be linearized to obtain a linear model in the selected operating
range at equilibrium point. The resultant linear model may be used to estimate the non-

linear system near to the point of linearization in the selected operating range. Therefore,
- . ]
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detrending or offset nullification is defined as a method of removal of constant levels from

a dataset to bring the signal to the equilibrium

If 4, yand X represent the input, output, and state of a model at the equilibrium point and X
is the deviation of the state sequence from the equilibrium value x, the linearized state space

model can be denoted by —
X(k +1) = A% (k) + B(u(k) — ) (1.89)
y(k)=Cx(k)+y (1.90)

The unknown offsets @, and ¥ can be dealt by the following methods in system

identification [92] -

The offsets 1, and y are estimated as the mean of the measured sequences and given by the

following relation —

1 N
=— > u(k)
N (1.91)
1 N
y =7V—Zy(k)
k=1 (1.92)

These offsets values of u and y at equilibrium are subtracted from the input and output

sequences u and y before starting the system identification process.
1.11. Database of cardiovascular signals

Analysis, modeling and synthesis of cardiovascular signals require a large amount of data
obtained from the subjects under normal and abnormal conditions. This stored data enables

the researchers to develop and validate their algorithms.
1.11.1. PhysioBank database

PhysioBank [135] is the collection of digital recordings of complex physiological signals. It
comprises of several multi-parameter database such as MIT-BIH arrhythmia database,
Fantasia database, MIT-BIH Polysmographic database, MGH/MF waveform database etc.

which include recordings of cardiovascular, cardiopulmonary and other physiological
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signals. These signals are acquired from patients under various pathological conditions
which include arrhythmia, neurological disorders etc. The cardiovascular signals consist of
ECG signals from multiple leads, arterial blood pressure, central venous pressure,
respiratory, pulmonary artery pressure etc. It is revealed that these signals comprise of
valuable information about the cardiovascular function which may not be possible to
extract using conventional methods of analysis such as forecasting of sudden cardiac death
in ambulatory patients. These cardiovascular signals are freely available and therefore, it is
a source of attractions for the researchers in biomedical field to develop new algorithms for
study of different heart diseases [135]). ECG signals in all these databases are annotated by
two or more cardiologists independently and computer readable annotations were prepared
after resolving the disagreements among the cardiologists. Annotations are the labels that
describe the locations of the event in an ECG record. This facilitates the researchers to

validate their algorithms developed using normal as well as abnormal ECG signals.
1.11.1.1. Physiobank annotations

Physiobank database signals have standard set of annotation codes defined for ECG
recordings. These annotation codes are defined for beat as well as non-beat annotations.

Both types of annotation codes are listed in Table 1.9.
1.11.1.2 MIT-BIH arrhythmia database

The MIT-BIH Arrhythmia Database is the collection of 48 records extracted from two
channel ambulatory ECG recordings. Each recording is of 30 minutes duration. These

recordings are digitized at 360 samples per second.

ECG signals are described by- a text header file (.hea), a binary file (.dat ) and a binary
annotation file (.atr). Header file consists of detailed information such as number of
samples, sampling frequency, format of ECG signal, type of ECG leads and number of
ECG leads, patients history and the detailed clinical information. In binary data file, the
signal is stored in 212 format which means each sample requires number of leads times 12
bits to be stored and the binary annotation file consists of approved beat annotations. In
most records, the upper signal is from modified limb lead II (MLII) and the lower signal is

usually from modified lead V1 (occasionally V2 or V5, and in one instance V4). This
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configuration was routinely used by the BIH Arrhythmia Laboratory-as normal QRS
complexes are usually prominent in the upper signal. Records 102 and 104 do not have lead
II signal because signal acquisition was not possible for this lead due to surgical dressings
on the patients, hence modified lead V5 was used for the upper signal in these records
[136].

ECG signals from upper lead of 44 records of this database are used for the development
and testing the performance of ECG feature extraction and PVC detection algorithms

described in chapter 2.
1.11.1.3. Fantasia database

Fantasia database is the collection of 40 recordings obtained from 20 young (21-34 years of
age) and 20 elderly (68-85 years of age) rigorously screened healthy subjects [137]. The
records from old subjects are named as fIlo0Il, flo02.......flol10 and f2001,
f2002.......2010 while the recordings from young subjects are labeled as fIy0l,
SfIy02.......flyl0 and f2y01, f2y02........f2y10. Each record consists of ECG and respiratory
signals. The record f2001, f2002........f2010 and f2y01, f2y02.......f2y10 consists of
invasive arterial blood pressures signals along with ECG and respiratory signals. Each
signal is of 120 minutes duration. These signals were recorded from subjects in resting state
in sinus rhythm while watching the movie Fantasia to keep the subjects in awake state. The
continuous ECG, respiration, and blood pressure signals were sampled at 250 Hz. Each
ECG beat is annotated by visual inspection. This database also has three files, .dat, header
and annotation files. The dat file comprise of signals. The header file has the information
about age, sex, length of signal, sampling frequency, type of signals and calibration units

required for conversion of signals from raw units to physical units.

ABP signals from 14 records of this database are used for testing the performance of ABP

feature extraction described in chapter 3.
1.11.1.4. MIT-BIH polysmographic database

The MIT-BIH Polysomnographic Database consists of 18 recordings of multiple
physiologic signals during sleep [138]. The data are collected from patients in Beth Israel
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Table 1.9 Beat and non-beat annotation codes for ECG signal [135]

Beat annotations Non-beat annotations
Code Description Code Description
N Normal beat { Start of ventricular flutter/fibrillation
L Left bundle branch block beat ! Ventricular flutter wave
R Right bundle branch block beat ] End of ventricular flutter/fibrillation
B Bundle branch block beat (unspecified) X Non-conductef:(-:\)wave (blocked
A Atrial premature beat ( ‘Waveform onset
a Aberrated atrial premature beat ) Waveform end
J Nodal (junctional) premature beat P Peak of P-wave
S Supraventﬁcu(l:trri];;e:::::(ri: 1c)>r ectopic beat ¢ Peak of T-wave
A% Premature ventricular contraction u Peak of U-wave
r R-on-T premature ventricular contraction PQ junction
F Fusion of ventricular and normal beat ! J-point -
e Atrial escape beat A (Non-captured) pacem;a.ker artifact
j Nodal (junctional) escape beat Isolated QRS-like artifact
n Supraventricular escape beat (atrial or nodal) ~ Change in signal quality
E Ventricular escape beat + Rhythm change
/ Paced beat s ST segment change
f Fusion of paced and normal beat T T-wave change
Q Unclassifiable beat * Systole
D Diastole
= Measurement annotation
? Beat not classified during learning
" Comment annotation
@ Link to external data
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Hospital for evaluation of chronic obstructive sleep apnea syndrome. Each record consists
of ECG signal, an invasive blood pressure signal (measured using a catheter in the radial
artery), an EEG signal, and a respiration signal. ECG signal in each record is annotated
while EEG and respiration signals are annotated with respect to sleep stages and apnea.
Some records consists of six or seven channel recordings which include respiration signals,
EOG (Electrooculogram) , EMG (Electromyogram), cardiac stroke volume (SV) signal and
earlobe oximeter (SO2) signal. Each record consists of four files - .dat file, header file and
two annotation files. The dat file comprise of signals, header file has information about
age, gender, length of recording, weight of subject (in Kg), types of signals. The header file
also consists calibration constants which are required for conversion of signals from raw
units to physical units. The annotation files contain beat and sleep apnea annotations. ABP
signals from 15 records are used for testing the performance of ABP feature extraction

algorithm described in chapter 3.
1.11.1.5. MGH/MF waveform database

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Wa\;eform
Database is a comprehensive collection of electronic recordings of hemodynamic and
electrocardiographic waveforms [139]. The signals in the database comprise of a broad
spectrum of physiologic and pathophysiologic states. The signals in the database are
sampled at 360 samples/second. Each record consists of .dat file, .hea file and .ari file.
Header file consists of information regarding the types of signals and type of leads in case
of ECG signal, sampling interval, sampling frequency, duration of the signal and units. It
comprises of the information to convert the recorded signals from raw units to physical
units. The ari file consists of ECG annotations whereas dat file comprise of 8 signals. The
recorded signals vary in duration of 12 to 86 minutes whereas the certain recordings are one
hour long. The recorded physiological signals contain ECG signals from three leads, ABP,
CVP, PAP, respiratory impedance, and airway CO2 waveforms. Some recordings include

intra-cranial, left atrial, ventricular and/or intra-aortic-balloon pressure waveforms.
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1.11.2. CSL database

Complex systems laboratory (CSL) database is the collection of recording of ABP, ICP
(intracranial pressure) and pulse oximetry signals acquired from pediatric intensive care
unit. Each recording consists of two signals from two different patients (e.g. abp1, abp2 for
ABP record). This database is now the part of biomedical signal processing laboratory [12].
The database has three sets of annotations for ABP, ICP and pulse oximetry signals. Two
sets of annotations are created by the medical experts by visual inspection and annotations
from beat detector proposed in [44] are also available. The signals in the database are
sampled at 125 Hz. The abp1 signal of this database is used for development and testing of

ABP feature extraction algorithm described in chapter 3.
1.12. Objectives of the research

On the basis of the above background and literature review, the motivation towards
development of technique for feature extraction and modeling of ECG, ABP and CVP is

based on the following objectives —

i.  Feature extraction of ECG signal by wavelet technique supported by signal energy,

frequency spectrum and correlation analysis.

ii. Feature extraction of ABP and CVP signals by wavelet technique supported by

signal energy, frequency spectrum and correlation analysis.

ili.  Modeling and synthesis of ECG by system identification technique using measured

physiological data of ABP and CVP signals.
iv.  Modeling and synthesis of ECG by Artificial Neural Network paradigm.
1.13. Thesis outline

Chapter 1 describes the background and introduction to the biomedical signals of cardiac
system and their detection techniques and review of literature as the basis of objectives
achieved in this research. Chapter 2 presents algorithms for ECG feature extraction using
wavelet and energy analysis techniques with justification of selection of the wavelet detail
coefficients. In this chapter application of wavelet and energy technique to PVC detection

is also proposed. Chapter 3 illustrates the application of a wavelet and energy analysis
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based technique for ABP and CVP feature extraction. Chapter 4 presents system
identification based approach for modeling and synthesis of ECG using measured ABP and
CVP signals for normal and abnormal conditions of the heart. The stability analysis of the
developed models is also explained using pole zero plots and step response. In chapter 5, a
technique using ANN for modeling and synthesis of ECG using measured ABP and CVP

signals has been described.
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CHAPTER

ECG Feature Extraction and its
Application to PVC Detection

2.0. Introduction

In recent years, there has been an increasing demand for early diagnosis of cardiac
abnormalities from biomedical signals originating from the heart. The advancement of
information technology has accelerated the growth of the signal processing techniques.
Modern era of medical science is supported by computer aided feature extraction and
disease diagnostics in which various signal processing techniques have been employed in
extracting features from the biomedical signals and analysis of these features. The objective
of computer aided digital signal processing of ECG signal is to assist the cardiologists by
reducing the time in interpreting the results. Most clinical diagnosis of ECG is based on
limb leads and chest leads. The errors occurred in the subjective interpretation by visual
and manual examination can be overcome by computer aided ECG feature extraction

techniques incorporated along with ECG instruments.

QRS complex is the most prominent feature in electrocardiogram because of its specific
shape, therefore it is taken as a reference in ECG feature extraction. R-wave detectors are
also very useful tools in analyzing ECG features thus form the basis of ECG feature
extraction. The other features of ECG are extracted by considering R-wave as the reference
point. Therefore, ECG analyzers require the reliable and precise R-wave detection
maintaining accuracy as well as giving the results promptly. The detection of QRS complex
in ECG requires special and complex algorithms due to the varying morphologies of
normal and abnormal complexes and because the ECG signal experiences different types of

disturbances with complex origin.
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Signal processing techniques can extract appropriate and useful information from
biomedical signals such as ECG, ENG, EMG signals etc. that is not usually at hand in the
raw signal [23]. For example, frequency analysis of EEG signal can be done to identify 6, 6,
a and B wave;s depending upon the different frequency components associated with each
wave. Therefore, signal processing has emerged as an important division in the biomedical
signal analysis. The advanced signal processing methods using time-frequency analysis and
filtering using wavelet transform has proved to be a very useful tool in determining the
underlying properties of physiological signals such as the precise location of the QRS-
complex.

Wavelet transform divides a continuous-time signal into different scale components [58]. A
time-scale representation of the signal is obtained using digital filtering. In DWT, ﬁlters of
different cut-off frequencies are used to analyze the signal at different scales. The signal is
passed through a series of highpass and lowpass filters to analyze the high and low
frequency components of the signal respectively. In using traditional analog and digital
filters, the ECG signal may still contain noises like residual power-line interference.
Although power-line interference is removed by traditional analog and digital filters, the
desired components of ECG such as Q and R waves with frequency matching with
power-line may be suppressed [140]. Wavelet transform has been effectively used for
removal of power-line interference [141, 142] and base line drift [143] in ECG signals
without suppressing the desired components. In case of wavelet transform, the resulting
detail coefficients are band pass filtered. By selecting a detail coefficient at a certain level
depending upon frequency range of ECG signal, an ECG signal free from both high as well
as low frequency noise is obtained. Wavelet transform is popular because it satisfies energy

conservation law and original signal can be reconstructed [21].

Among the wavelet based techniques [20-25], the detection of R wave in ECG in [20],
involves the decomposition of ECG signal using quadratic spline wavelet and selection of
detail coefficients d1-d4 using 3 db band width and application of detection rules
(thresholds) to the modulus maxima of d1-d4. In [21], decomposition of ECG signal by first
derivative of Gaussian smoothing function and application of thresholds to the detail
coefficients d1-d4 is suggested for R peak detection. Newly constructed wavelets are

suggested for ECG signal decomposition and detection of R peak is done by applying
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threshold to d4 signal in [22]. In [24], authors suggest decomposition of ECG signal using
db4, db6 wavelet and selection of d3-d5 signals using detection rules. In [23], mexican hat
wavelet is used for decomposition and detail coefficients d5-d6 after thresholding are used
for detection of R peaks. In [25], Haar, db4 and db6 wavelets are used for decomposition
and d3-dS signals are analyzed using decision rules for detection of R peak. The remaining
features P.Q,S,T waves are detected considering R peaks positions as reference in [20-21,
23-25]. The authors in [24,25] proposed that the performance of db6 is better than other
wavelets. Also, most of the QRS detection algorithms mentioned above [28,24,25] are
developed on ECG lead-II signals on MIT-BIH database as the QRS complexes are
outstanding in lead II. Some of the authors included ECG signals 102, 104 from leads V5
and V2 respectively but accuracy reported for these records was 94 % and 92 %
respectively [30]. In all these wavelet methods [20-25], authors have selected detail
coefficients out of d1-d6 from the wavelet decomposition stages but the selection of
relevant detail coefficient is not adequately justified by the authors. Sometimes, situation
may arise such that ECG signals from lead-II may not be available due to surgical dressing
of patients or some other reason as in case of record 102 and 104 as stated in
section 1.11.1.2. This may happen at any time in medical observations; therefore the

detector must be capable of detecting the R-peaks from all type of leads.

In this chapter, we propose an algorithm for ECG feature extraction using wavelet
(Daubechies) technique supported by signal energy, frequency spectrum and cross-
correlation analysis. Another algorithm for ECG peak detection using energy analysis
technique is also proposed. Both these algorithms are equally applicable for detection of R
peaks from ECG signals of lead II as well as other leads such as V2, V5. The merit of both
of these algorithms motivated us to apply these algorithms for the detection of life

threatening heart disease - premature ventricular contraction (PVC) beats in ECG.

We present ECG peak detection by two methods - wavelet based method and energy
analysis of ECG signal. The wavelet based approach described in this objective is robust
and simple to implement with no requirement of preprocessing. The selection of detail
wavelet component has been justified by energy, frequency and cross-correlation analysis.
Since, there are wide variations in amplitudes of wavelet decomposed signals; a fixed

threshold does not work for R peak detection. Therefore, we have adopted a ‘window based

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page 75

threshold’ where the threshold value is adjusted depending upon the signal amplitude over
a certain duration. The selected detail signal is first thresholded then the maximum
amplitude levels of all the peaks are detected. The signal is then filtered by applying a
refracto'ry period to select the R peaks. The R peaks detected by wavelet method are used

for the detection of remaining features of ECG signal such as P, Q, S and T waves.

In the energy analysis technique for R wave detection, energy calculation of ECG signal
under test has been performed by dividing the signal records into a number of windows.
The techniques used include window shifted by window size and window shifted by one
sample. Energy analysis of detail coefficients show that d4 signal containing highest energy
content comprises of maximum information of QRS complexes. This concept motivates us
to detect ECG peaks if the window based energy analysis of ECG signal is performed and
the resultant energy signal is further analyzed using thresholding and refractory period
concepts for detection of ECG peaks. Therefore, window based energy analysis of ECG
signal may result in the higher energy amplitudes wherever ECG peaks exist.

The detected R-peaks are applied to detect PVC beats in ECG. PVC is the premature beat
that occurs in ventricular region of heart. The method for detecting the abnormal PVC
complexes is based on the calculation of RR interval of detected R peaks and energy
analysis of ECG signal. We have proposed a combined method for PVC detection where,
RR interval calculation by wavelet and energy is supported by intersection of energy
analysis technique on the ECG signal. The algorithm proposed for PVC detection includes
detection of R peaks using window based energy analysis of ECG signal using a window of
100 ms duration that incorporate window shift by one sample and further energy analysis of

ECG signal using a window of 600 ms duration where window is shifted by window size.

2.1. ECG feature extraction

Feature extraction of ECG signal involves detection of constituent components of ECG
waveform such as P, Q, R, S, T waves. Detection of ECG peak is carried out using wavelet
technique and energy analysis. Further, remaining features (P, Q, S and T) of ECG are
detected using wavelet technique considering locations of detected R peaks as reference as

described in the following sections —
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2.1.1. ECG peak detection using wavelet technique

ECG signals (.dat files) downloaded from MIT-BIH database are first converted in to
Matlab readable format (.mat files). The signals from both leads now become readable
separately. Then the signals from upper lead as stated in section 1.11.1.2 in the record are
taken for analysis. Detection process is performed on 44 out of total 48 downloadable
records from the database. The block diagram of ECG feature extraction using db6 wavelet

is shown in Figure 2.1.

ECG Wavelet Wavelet Detail coefficient ﬂ‘:r; igﬁ?r?g
Signal selection analysis selection (Window based)

Y
ECG Refractory period Maxima
Peaks application detection

Figure 2.1 Block diagram of ECG peak detection using Daubechies (db6) wavelet

2.1.1.1. Wavelet selection

The selection of relevant wavelet is an important task before starting the detection process.
But there is no universal method suggested to select a particular wavelet. The choice of
wavelet selection is accorded on the type of signal to be analyzed. The wavelet having
similar look to the signal being analyzed is usually chosen [22]. There are several wavelet
families like Harr, Daubechies, Biorthogonal, Coiflets, Symlets, Morlet, Mexican Hat,
Meyer etc. and several other Real and Complex wavelets. However, Daubechies (db6)
family of wavelets has been found to give details more accurately than others [28,24,25].

Moreover, this wavelet show similarity with QRS complexes and energy spectrum is

1

Amplitude

-1
0 S 10
Number of coefficients

Figure 2.2 Wavelet function (y) of Daubechies (db6) wavelet

concentrated around low frequencies [22]. Therefore, we have chosen the above mentioned
wavelet for extracting ECG features in our application. Wavelet function of Daubechies

(db6) wavelet is shown in Figure 2.2.
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2.1.1.2. ECG signal decomposition

The first step in ECG feature extraction is the detection of R wave which being the highest
amplitude wave in ECG signal forms the basis of ECG feature extraction. R wave detection

in ECG involves the following steps —

The signal under test is decomposed up to a required level depending upon dominant
frequency components in the signal. The choice of required level of decomposition depends
on the frequency components of interest available in the wavelet coefficient at a particular
level. The maximum number of decomposition levels depends upon the total number of

samples present in the signal. The relationship can be expressed as -

2" =N 2.1)
Where, n = total number of levels of decomposition,
N = total number of samples in the signal to be expressed as power of 2 for

full decomposition of the signal.

As an example, ECG signal description of record 100.dat is shown in Table 2.1. The
wavelet decomposition structure of 100.dat and 123.dat using db6 wavelet is shown in
Figure 2.3 (a-b). The waveform shows signals decomposed up to 8 levels only. Although
the original signal is of 30 minutes duration, for better illustration, details are scaled and
signal is shown for 5 seconds duration only. The approximation coefficients at level 8 of
ECG signals from record 100 and record 123 are shown in Figure 2.3(c). It is clear from
Figure 2.3(a-b) and Figure 2.3(c) that none of the features of ECG signals such as P, Q, R,

S and T waves resemble in approximation coefficients at level 8 of records 100 and 123.
2.1.1.3.  Selection of detail coefficient by energy analysis

It has already been discussed earlier that selection of detail coefficient has not been
adequately justified in the literature. It is assumed that most of the researchers select the
detail coefficient when there is a similarity in the waveform of the detail coefficient with
the original ECG. In this chapter, we propose a new method of selecting the detail
coefficient based on energy content, the frequency analysis and cross-correlation

coefficient. This technique proves to be a robust justification for selecting the detail
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described below —

"Table 2.1 Details of record 100 (MLII, V5) and record 123 (MLII, VS)
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technique is

Record Sex Age Beats Before 5:00 min | After 5:00 min | Total
No. (Years)
Normal 367 1872 2239
APC 4 29 33
100 Male 69 Ve - T 7
Total 371 1902 2273
Normal 249 1266 1515
123 Female 63 PVC - 3 3
Total 249 1269 1518
: ; T T ! ™ T '
as 5 f — —

Detail Coefficients

d2

dl

ECG —4

3 TS
| | I ] (. 1 1
05 1 15 25 3 35 4 4.5 5
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Figure 2.3(a) Decomposition of ECG signal (record 100, lead-II) using db6 wavelet

Most of the energy of a normal ECG signal is concentrated within QRS complex interval of

about 80 ms and having a frequency range of 3-40 Hz [25,144], Normally isoelectric

segments — PQ, ST and TP contain insignificant energy and the signal amplitudes are

almost zero over these corresponding intervals. Definition and determination of signal

energy is explained in detail in section 1.9.2.

The signals have been decomposed up to a certain approximate level using the selected

wavelet and the energy content of each level is determined for the 8 decomposed levels of
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ECG lead II signals from record 100 and record 123 and shown in Table 2.2. The plots for
the energy distributions of the signals are shown in Figure 2.4(a-b).

The energy plots Figure 2.4(a-b) show that the energy is highest for detail signal at level 4
among the detail coefficients d1 to d8. Therefore, we consider that d4 carries the dominant
- details of QRS complexes. It is clear from Table 2.2 that the sum of energy of all detail
coefficients and the remaining one approximation is equal to the energy of a single ECG
record under test. Therefore, this energy level diagram of decomposition structure proves
the energy conservation principle of wavelet transform. [t means that original signal can be
* faithfully reproduced from the decomposed components and the information in the original
signal is preserved maximally in the d4 component. It is also observed from Table 2.2 that
energy is observed highest for a8 but as seen from Figure 2.3(c) that approximation

coefficient at level 8 has no relevance with ECG features so it is not selected.
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Figure 2.3 (b) Decomposition of ECG signal (record 123, lead-II) using db6 wavelet
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Figure 2.3 (c) Approximation coefficients of ECG signals at level 8 from
(a) record 100 and (b) record 123

Table 2.2 Energy content of detail and approximation coefficients

Signal Energy content (%)
Record 100 | Record 123
dl 0.0171 0.0031
d2 0.3574 0.0385
d3 41817 1.2069
d4 9.7255 3.8376
ds 6.5342 2.7949
dé 2.8434 1.8000
d7 1.4699 0.5596
dg 1.1600 0.3458
a8 73.7108 89.4136
Total energy 100 100
content (%)

2.1.1.4. Selection of detail coefficient by frequency analysis

Time-amplitude representation of the signal is not always the best representation of the
signal for most signal processing related applications. In many cases, the most
distinguished information is hidden in the frequency content of the signal. In order to
ensure that the frequency components available in the original ECG signal are preserved by
the detail component, the only way is to analyze the signals in frequency domain. We

propose here the second method of selecting the detail coefficient by frequency analysis as
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Figure 2.4 Energy plot of detail coefficients (d1-d8) of records (a) 100 and (b) 123

discussed below —Fourier transform of a signal shows how much of each frequency exists
in the time domain signal. A fast Fourier transform (FFT) is an efficient algorithm to
compute the discrete Fourier transform (DFT) and its inverse. FFTs are of great importance
to a wide variety of applications in digital signal processing. Therefore, FFT of the detail
coefficients and ECG signal is performed for records 100 and 123 and FFT plots for ECG
signals from records 100 and 123 along with detail coefficients (d1-d8) are shown in
Figure 2.5 (a-b) respectively. More clear FFT plots of ECG signals for records 100 and 123
along with their detail coefficients d4 are shown in Figure 2.6(a-b) and Figure 2.7(a-b)
respectively.

Since in an ECG signal, except QRS complex, other complexes are mostly dc in nature and
therefore, the frequency of the ECG is dominated by QRS frequency. A normal clinical
cardiac signal has a maximum frequency of 40 Hz [145, 24]. The frequency ranges of all
the detail coefficients are shown in Table 2.3. The frequency range of d4 signal for record
100 and 123 is found to be 1.994 Hz — 39.35 Hz and 1.056 Hz - 40.23 Hz respectively
which is almost same as that of a QRS complex. Therefore we have chosen d4 signal of
ECG of record 100 and record 123 for further analysis. It is also clear from Figure 2.6(a)
and Table 2.3 that the original ECG signal (Figure 2.6(a)) is affected with power-line
interference whereas d4 signal (Figure 2.5(a), Figure 2.6(b) and Table 2.3) is free from

power-line interference.
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Detail signal Frequency content (Hz)
Record 100 Record 123
dl 26.24-180 23.73-180
d2 12.56-131.4 14.06-133.3
d3 3.967-66.61 3.32-67.78
d4 1.994-39.35 1.056-40.23
ds 1.508-17.56 1.588-18.08
dé6 0.8278-8.765 0.8712-8.737
d7 0.5931-4.253 0.5228-4.322
ds 0.3111-2.123 0.2221-2.248

2.1.1.5. Cross-correlation analysis

In addition to the above two analysis, cross-correlation analysis between all the
decomposed signals individually with the original ECG signal was performed. This
provides us the time domain relationship between the original and the decomposed signals.

The cross-correlation between two different signals may be defined as the measure of
match or similarity between one signal and time-delayed version of another signal. The
cross-correlation coefficient takes on values ranging between +1 and -1. The mathematical
equations of cross-correlation coefficients are discussed in section 1.9.4. The values of
cross- correlation coefficients are shown in Table 2.4. From Table 2.4, it is clear that value
of cross-correlation coefficient is highest for d4 for both records 100 and 123. Therefore, it

is evident that d4 is highly correlated with the original ECG signal in time domain.

Table 2.4 Cross-correlation coefficients

Cross-correlation
Detail coefficients
. Inference
coefficients
Record 100 | Record 123
dl1 0.0246 0.0162 Weak
d2 0.1122 0.0574 Weak
d3 0.3838 0.3214 Moderate (low)
d4 0.5851 0.5732 Moderate (high)
ds 0.4785 0.4891 Moderate (low)
dé 0.3165 0.3925 Moderate (low)
d7 0.2275 0.2187 Weak
d8 0.2020 0.1719 Weak

E e ___|
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2.1.1.6. Window based thresholding

The selected detail coefficient d4 is used to perform of R-wave detection in ECG. In
thresholding, small coefficients are suppressed by introduction of a threshold. Such a
procedure is called wavelet thresholding. There exist various thresholding procedures such
as soft thresholding and hard thresholding which are discussed in details in section 1.9.5.
In [65], author used hard thresholding method to remove high amplitude coefficients
generated by ectopic beats from RR interval signals. In this case, we apply hard
thresholding in which the samples below a predetermined threshold are set to zero. The
threshold is selected as a percentage of maximum value of signal amplitude over certain
duration as discussed below —

Let the length of signal be L that has to undergo window based thresholding and w is the
window size. If the length of the signal is not divisible by the window size, zero padding
can be done to make the signal length divisible by window size. The number of samples in
the signal is divided by the window size and remainder value is obtained. If the signal
length is defined as —

y=a:b (2.2)

Where, 'a’ and 'b'the start sample and end sample number of the signal respectively. Let
R denotes the number of samples obtained after dividing length of signal by window size,

the new signal after adding zeros on the right side can be represented as

The total number of windows in the signal be N then
N:L+R
w 2.4

Where, w denotes the window size. The new signal is represented as the segments of

window size. Let the total number of windows in the sample be' N', then we can write

yy=(@w), [(w+1):2w],[@w+1): 3w} [ (N - Dw+1): Nw] 25)

Let thy,thy,thy---- thy be the threshold for each window, then

thy = Ax[max(yy (N -Dw+1): Nw)] (2.6)
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Where, A is a constant that that is fixed for overall process. A4 is defined as the percentage
of maximum amplitude of d4 signal over the duration of the predefined window. In this
case, we have used 4=10and w =720 which is equivalent to 2 second duration of signal.
The signal d4 before and after thresholding is shown in Figure 2.8. It is clear from
Figure 2.8 that the threshold varies for each window depending upon the amplitudes of
samples falling in the window. The samples with amplitude below predefined threshold are

set to zero and we get signal in the positive side of X-axis only.

— d4 before applying window based thresholdiné
0.6+ — d4 after applying window based thresholding
’ —— Threshold for each window
04K .
3
2 02r 1 | r— t A
£
< O'OA— ”1‘)5 MVI\V A RV P Bome A&V
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-041 A

] J 1 ) 1 L 1 1 1 L 1
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Number of samples

Figure 2.8 Signal d4 before and after window based thresholding

This method of thresholding leads to adaptive thresholding. In this method of thresholding,
the signal is segmented in to equal segments by defining a window of particular duration in
terms of samples and a distinct value of threshold is selected from each segment of the
signal. This type of thresholding strategy limits any large variation in the signal amplitude
at a certain instant to a particular segment of the signal due to which the true peaks with
lower amplitudes may be ignored in other segments if threshold is defined for the entire
signal.

2.1.1.7. Maxima detection and R-wave positions

The numbers of remaining coefficients of d4 after thresholding as shown in Figure 2.8

undergo maxima detection. The signal d4 after thresholding and maxima detection is shown
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in Figure 2.9. A maxima is detected if the signal amplitude at any instant is higher than the
amplitudes of previous and succeeding samples. Mathematically, this condition may be

represented as —
if dak)>dak+1) and d4(k)<dak-1)
d4(k)=maxima

08F T : . —= T : — 7
| =™ d4 before applying window based thresholding
— d4 after applying window based thresholding
0.6 i
—— Detected maxima
xam 1% ?33‘/\ (X:2704,2729)

S 04l i ~
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3 Y:0.3874 lY:0.2315
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Figure 2.9 Maxima detection in signal d4 after window based thresholding

The remaining number of d4 coefficients after maxima detection are taken as the number of
R waves and their positions are taken as the R peaks locations. Since R wave has the
highest peak in QRS complex and hence no two QRS complexes can be found during less
than 200 ms, a refractory period of 200 ms is applied after detection of first peak which
gives rise to actual number of R-waves [21]. Detected peaks positions in ECG lead II signal
from record 105 after application of refractory period of 200 ms is shown in Figure 2.10.
The positions of the R peaks has been detected and marked on the original signal. The
waveforms with the positioned R peaks for ECG signals of records 100, 101, 102 and 123
are shown in Figure 2.11 (a),(b) & (c) respectively.
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Figure 2.10 Signal d4 of ECG lead II signal from record 105 after thresholding
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Figure 2.11(a) Positioned R-peaks in ECG (record-100, lead-II) signal
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2.1.2. ECG peak detection using energy analysis technique

As discussed in section 2.1.1.3 that the detail signal d4 generated from ECG signal after
wavelet analysis comprise of maximum information of QRS complexes and consequently
used for the detection of R peaks. It is further established in section 2.1.1.7 that detail
coefficient d4 after supplementary analysis resulted in the detection of R peaks in ECG
signal. This concept motivates us to detect ECG peaks if the window based energy analysis
is performed and the resultant energy‘ signal may be further analyzed for detection of ECG
peaks. R wave is the highest amplitude wave in ECG; therefore it is presumed that window
based energy analysis of ECG signal will result in the higher energy values wherever ECG
peaks exist. Converting the ECG signal into energy signal facilitates suppression of lower
peaks (P and T waves) and resulting a comparatively distinct and smooth signal facilitating
the ease of peak detection. In this section, we represent the detection of ECG peaks by

energy analysis.
2.1.2.1. Method of detection

The ECG signals from upper lead of all the forty four downloadable records (5 minute
duration) are taken for detection of peaks by energy analysis. The algorithm of ECG peak

detection using energy analysis technique is shown in Figure 2.12.

The detection process is performed by two methods —

a) Window shifted by window size

b) Window shifted by one sample

2.1.2.2. Data preprocessing

Most of the ECG signals used in this work are affected at source itself by low as well as
high frequency artifacts such as baseline drift, power-line interference etc, therefore it is
necessary to remove these artifacts before starting the detection process. Base-line drift
may be caused in chest lead ECG signals by coughing or breathing with large movement of
chest, or when an arm or leg is moved in case of limb lead ECG acquisition. Poor contact of
electrodes may also cause low frequency artifacts. Base-line drift may sometimes be caused

by variations in temperature and bias in the instrumentation amplifiers as well.
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Figure 2.12 Block diagram of ECG peak detection algorithm by energy analysis

A large base-line drift may cause the positive or negative peaks in ECG to be clipped by the
amplifiers or the ADC [146]. Since energy calculation of a signal is directly related to
absolute amplitude of the signal being analyzed and base line drift causes a large variation
in signal amplitude energy as stated in equation (1.13-1.14), henc.;e removal of base line
drift is the key step before starting the detection process. The baseline drift frequency is 0.5
Hz as mentioned in [148] and FFT of ECG signal of record 109 in Figure 2.13 shows a
peak at 0.0006466 Hz.

As stated in 2.1.1.3 that most of the energy of a normal ECG signal is concentrated within
the interval of about 80 ms spanned by QRS complex and having a frequency range of 3-40
Hz [25,144], the information below 2 Hz is redundant for R-peak detection. Therefore, the
ECG signal under test is filtered by fourth order Butterworth high-pass filter with cut-off
frequency 2 Hz to remove baseline drift. The ECG signal from record 109 affected by base
line drift and filtered ECG signal is shown in Figure 2.14. From Figure 2.14, it is clear that

the filtered output retains the characteristics of QRS complex but distort the P and T waves
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to some extent and base-line drift is removed which ensures the correct calculation of
energy.

However, if the signal under study is affected with high frequency noise such as power-line
interference, energy distribution of the signal does not result in high peaks at lower
amplitudes. Energy distribution of the signal (record 100) affected with power-line
interference is shown in Figure 2.15(a-b) and FFT of the signal is shown in Figure 2.6(a).
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Figure 2.13 FFT of ECG signal of record 109
2.1.2.3. Signal energy analysis by moving window

The filtered ECG signals are then processed for energy calculation for a window equivalent
to the duration of the QRS complex (approximately 100 ms for 36 samples). Further,
window is shifted by the following two methods —

a) Window shifted by window size

If the length of the signal is not divisible by the window size, zero padding can be done to
make the signal length divisible by window size. But in this case, zero padding is not
required as length of five minute segment of each record of the database is divisible by
window size. Further, the window is shifted by the window size and energy of samples

falling in the succeeding window is calculated. This process is repeated for the whole signal
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length. Thus first calculated energy value corresponds to first 36 samples (100 ms) and the
next calculated energy value corresponds to next 36 samples i.e. 37-72 samples of ECG

signal and so on. The calculated energy values are then expanded to the whole length of the
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Figure 2.14 ECG signal from record 109 with (a) base line drift (Top) and
(b) filtered ECG (bottom) after filtering with fourth order Butterworth highpass filter

signal by repeating each calculated window energy value by the number equivalent to
window size. Mathematically, this method of window shift can be represented as mentioned

below —

The total number of windows (m) in the entire signal length is given by —

¢

_n+n

Q.7)

w
Where,
n = Number of samples in ECG signal
n'= Number of zeros required to be added to make the signal length divisible by window
size

w = Number of samples in one window (i.e. window size)

if m= is an integer

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page 94

The number of samples (n), can be distributed in each window as per window size to the
entire signal length as follows-

=N Ny Ny N, (2.8)
Where,

N,=a'w
Ny=(a+w):2w
Ny =(a+2W) 1 3Wociiie e i v

N, =[{{a+(m-1)w)}: mw]
Where ‘a’ refers to start of window and is usually taken as 1 since we start from the

beginning of the signal and N N2 N3 .ccoovnniiricienne Ny,denote the start sample

number and end sample number of corresponding window. Total calculated window energy
values E for the entire signal length can be written as —

E=E,E) By E 2.9)

Therefore, calculated energy value of first window value (E;) corresponds to energy of N,
samples in the signal falling in the first window; calculated energy value of second window
(E,) corresponds to energy of N, samples in the signal falling in the second window and so
on.

This calculated energy of individual windows are expanded to the entire length of ECG
signal. Thus, a new energy signal is formed whose length is equal to the length of the ECG
signal under test. This energy distribution for record 100 is shown in Figure 2.15(a). It is
clear from Figure 2.15(a) that energy of the certain window is higher where QRS

complexes are prominent than the other windows.
b) Window shifted by one sample

In this case of energy calculation, window is shifted by one sample and energy of samples
falling in the next window is calculated. Thus, energy of first window is the energy of first
1-36 samples and energy of succeeding window is the energy of 2-37 samples and so on.
But in this method of energy calculation, zero padding of number of samples equivalent to
window size (w) is essential factor to calculate the energy of samples falling in the last

window. For this purpose, half of the number of zeros required to be added, are pad to both
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sides of the signal. This process of energy calculation with ECG record 100 under test with
its window energy distribution is shown in Figure 2.15(b). Here also it is clear that higher
energy values correspond to QRS complex.

Thus a new signal is formed whose length (L) is given by-

L=Yin+ X (2.10)
2 2

Where, ‘n’ is the number of samples in ECG signal under test and ‘w’ is the window

size.
In this case, equation (2.8) can be rewritten as-

L=N|,Np, N3 N, (2.11)
Where,

Ni=a:w

Ny=@@a+1:(w+l)

Ny=(a+2):(W+ 2o e v

N, =[{a+n-1)}:{(w+(n-1)}]
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Figure 2.15(a) ECG signal from record 100 and its energy distribution using
window shifted by window size
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Figure 2.15(b) ECG signal from record 100 and its energy distribution using
window shifted by one sample
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Figure 2.16(a) ECG signal from record 100 and its energy after thresholding
(window shifted by window size)
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Flgure 2.16 (b) ECG signal from record 100 and its energy after thresholding
(window shifted by one sample)

Here, also ‘a’ refers to beginning of window and is usually taken as 1 since we start from

the start of ECG signal and N, N,,Nj..coevnvninnnnnnne N,, comprise of the first and last

sample numbers of corresponding window.

The resulting energy signal comprises of length equal to the length of ECG signal.
Figure 2.15(b) shows the energy distribution of record 100 by using this method of window
shift. It is clear from F igﬁre 2.15(b) that the energy is observed higher in the areas where
the QRS complexes exist.

2.1.2.4. Thresholding

The generated energy~ signals obtained after energy analysis of ECG signal described in
section 2.1.2.3 (a-b) undergo thresholding to remove lower energy values. For this purpose,
a small value of threshold is applied to the generated ECG signals. The energy samples
below this threshold are set to zero and the samples with higher amplitudes are assigned the
value equal to 1.2. A threshold value of 5% of maximum amplitude of the signal has been
folmd to be suitable. ECG signal from record 100 and energy signals obtained after
thresholding are shown in Figures 2.16(a-b) respectively.
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2.1.2.5. R wave positions

The onset samples of remaining thresholded energy windows provide an idea of
approximate number of peaks available in the signal and their positions are assumed as
R peaks. As no two QRS complexes can be found during less than 200 ms, a window
equivalent to 200 ms (72 samples) is skipped in the signal after detection of first peak
which gives rise to actual number of R-waves [21]. ECG signal with its energy distribution
after thresholding and application of refractory period is shown in Figure 2.17. From
Figure 2.17, it is clear that application of refractory period eliminates the centre peak which
may occur in thresholded energy signal within the interval of 200 ms. The ECG waveform
with the positioned R peaks by windowing method mentioned in section 2.1.2.3(b) for

record 100, lead-II is shown in Figure 2.19.
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Figure 2.17 ECG signal with its energy distribution after thresholding and
application of refractory period
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Figure 2.18 Positioned R-peaks in ECG (record-100, lead-II) signal

2.1.3. Q and S wave detection

The selected detail coefficient d4 is further analyzed to detect Q and S wave positions

considering R peak positions as reference. Generally, Q and S waves occur in ECG signal

as minima before and after R peaks positions. Detection of Q and S wave in d4 signal

involves the following steps as shown in the flow chart in Figure 2.19.

ii.

iii.

iv.

Detail coefficient d4 is obtained.

All minima positions are found if the previous and subsequent samples in the d4 signal
have higher amplitude than the sample amplitude between them. Mathematically, this

condition can be expressed as -

if da(i)<d4i-1) & da(i)<dai+1) (2.12)

Zero crossing points of d4 are detected and their positions are marked along with
ECG peaks positions.
The minima that occur between two zero crossing points before the detected ECG

peak position is registered and marked as Q wave.
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Figure 2.19 Flow chart of P, Q, S and T wave detection algorithm

v.  The minima that occur between two zero crossing points after the detected ECG peak

position is registered and marked as S wave.

vi.  The detected Q and S wave positions are marked on the d4 signal. Detected Q and S
wave positions in d4 and original ECG signal along with all minima, ECG peaks and

zero crossing points for ECG lead 1I signal of record 123 are shown in Figure 2.20.
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Figure 2.20 Q and S wave positions in the original ECG signal and d4 signal along
with all minima, ECG peaks and zero crossing points

2.1.4. P and T wave detection

Detection of P and T waves is performed using approximation coefficient at level 3 (a3).
The signal a3 preserves the shape of P and T wave; however, higher frequency components
are removed. Also, it is evident that decomposition of a3 results in d4, therefore, a3 also has
entire information of d4 along with P and T waves. Detection of P and T waves in a3 signal

involves the following steps as shown in the flow chart in Figure 2.19.

The signal a3 is analyzed to detect all maxima positions if the previous and subsequent
samples in the resulting signal have lower amplitude than the amplitude of sample

between them. Mathematically, this condition can be expressed as -

if ay(k)>a3(k~1)& a3(k)> a3k +1) (2.13)

Zero crossing points of a3 are detected and their positions are marked in the a3 signal'
along with detected ECG peaks positions.

The maxima between two zero crossing points (excluding the maxima detected as ECG
peak) that occur before the detected ECG peak position is registered and marked as

P wave.
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The maxima between two zero crossing points (excluding the maxima detected as ECG
peak) that occur after the detected ECG peak position is registered and marked as

T wave.

v. Detected P and T wave positions in a3 signal and original ECG signal are marked along

with detected maxima as shown in Figure 2.21.
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Figure 2.21 Plot of approximation coefficient at level 3 (a3), maxima between two zero crossing points,
selected maxima between two zero crossing points, ECG peaks, original ECG signal and detected P and
T wave positions in original ECG signal

Although the technique for detection of P,Q,R,S and T wave location on record 100 of the
database individually, the techniques are jointly applied to records 115, 123 of MIT-BIH
database and one record mgh007 of MGH/MF waveform database to validate the
technique. The detected ECG peak positions by wavelet method along with P, Q, S and T
wave positions in ECG signal from record 115 and 123 are marked on the original signal
and are shown in Figures 2.22(a-b) respectively. The performance of the algorithm is also
tested on ECG signal from MGH/MF waveform database for record mgh007 of female
patient of 60 years of age. The patient has normal sinus rhythm with first degree heart block
@ 85 beats per minute and hemodynamic arterial pressure of 120/80 as specified in the
annotation file by expert for ECG signal in mgh007 record. The positions of P, Q, R, S and
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T waves are marked on the original ECG lead II signal from record mgh007 and are shown
in Figure 2.22(c).
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Figure 2.22(a) ECG signal from record 115 along with marked P, Q, R, S and T wave positions
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Figure 2.22(b) ECG signal from record 123 along with marked P, Q, R, S and T wave positions
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Figure 2.22(c) ECG signal from mgh007 record of MGH/MF waveform database along
with marked P, Q, R, S and T wave positions

2.2. PVC detection

The normal heart conduction system is accomplished by the specialized pacemaker cells
situated at the sino-atrial node. Sometimes, abnormal conduction of heart may originate in
atrial or ventricular region which is independent of the pace set by sino-atrial node.
Premature beats may be atrial, atrioventricular (A-V) junctional or ventricular in origin, and
may be found in apparently healthy individuals but these beats may become clinically
significant if they occur too frequently, originate from multiple foci or found in individuals
with proven heart disease. The most common cause of cardiac arrhythmias is the coronary

artery disease.

The occurrence of an arrhythmia is unpredictable. Automated systems provide clinicians
the tools to be altered in real time if the life threatening conditions surface in their patients.
As a result, automatic detection and classification of cardiac electrophysiology using
biomedical signal processing techniques have become a critical aspect of clinical

monitoring. The purpose of this study is to develop a method to distinguish healthy and
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abnormal subjects with premature beats using the combination of RR interval and energy

analysis of ECG signal.

2.2.1. Premature ventricular contraction

Premature beats that occur in the ventricular region are called as premature ventricular
contractions (PVC) or ventricular premature beats (VPB). PVC is evident in ECG
waveform as an abnormal wave shape of QRS complex. Spontaneous occurrence of PVCs
in the ECG waveform is the hallmark of drug toxicity and cardiac abnormal conduction.
PVCs are diagnosed by prematurity, wide QRS complexes in ECG waveform. The
occurrence of these beats is occasional and is accessible in ECG signal as wider or
prolonged and premature beats. The sporadic appearance of these beats is not a cause of
worry but these beats become of utmost importance when they occur too frequently and
require immediate treatment to avoid the problems of consequent life threatening
arrhythmias [35]. Figure 2.23 shows two ECG signals from lead Il and lead V1 of record
105 of MIT-BIH database with normal (‘dot’) and PVC (‘V’) beats annotated by the

cardiologist.

[17%. (Y . . v . . . . . . . . . . 030

Crid intervals: 0.2 sec, 0.5 mV

Figure 2.23 ECG signals from record 105 of MIT-BIH database with normal (*dot’) and PVC(*V?)

annotated by the cardiologist

Many PVC detection and classification algorithms have been developed so far. The PVC
detection algorithms include Discrete Cosine Transform (DCT) and autoregressive
modeling [148], symbolic dynamics [149], correlation coefficient in ECG signal [15],
Bayesin network framework [150], while the PVC classification algorithms are developed
mainly using fuzzy neural network [151], Artificial Neural Networks considering timing

information between the detected peaks as a feature set for classification [16].
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Other methods of PVC detection include QRS template matching [152, 153], Kth nearest-
neighbours rule [154], artificial neural networks, discriminant analysis, Fuzzy logic [153,
155], Karhunen- Loeve transform [156], pattern recognition and optimal parameter

selection [157] and fast approximation of vectorcardiogram loop [158].

The results from previous works suggest that the combination of waveform shape and
timing interval features is critical for robust detection. We have already proved that window
based energy analysis of ECG signal results in a energy signal in which low amplitude
peaks are suppressed. Following this fact, it is presumed that energy analysis of ECG signal
with PVC beats will result in higher energy'values compared to QRS complex. Energy
based technique for PVC detection is not reported in literature. Finally, a proficient PVC
detection algorithm has been developed which combines RR interval features of ECG by R
wave detection in ECG using either wavelet analysis or window based energy analysis of
ECG signal using window of 100 ms followed by energy analysis of ECG signal using a
window of 600 ms duration. The combination of RR interval feature using either wavelet or
energy analysis method using a window of 600 ms contribute to the development of an

expert PVC detection algorithm.
2.2.2. Method of PVC detection

Both RR interval and energy analysis techniques are used to detect PVC beats in ECG
signal under test. The block diagram of PVC detection algorithm is shown in Figure 2.24.

2.2.2.1. PVC detection based on RR interval

Detection process is performed on the first five minute segment of record 102 and 105, the

details of which are given in Table 2.5 and completed in the following steps —

As already stated in section 2.2.1 that PVC appears in the form of abnormal shape of QRS
complex and the resulting QRS complex is wider and RR interval between PVC beat and
next beat is high. Therefore, RR interval is considered as the prominent feature for PVC
detection in ECG signal. An ECG signal with increased RR interval at the location of PVC

beats is shown in Figure 2.25.

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page 107

RR Interval window by wavelet method

Window Based Amplitude Signal with
SE:CG’- Energy Analysis Thre;ol ding Energy
igha (600 ms window) Window

Preprocessing

The detected R peaks by any of the methods mentioned in section 2.1.1 and section 2.1.2
(a-b) can be used to calculate RR interval. In this case, we consider the R peaks detected by
energy method which comprise of energy analysis of ECG signal using a window of 100
ms and window shifted by one sample as mentioned in section 2.1.2(b). At first, RR
interval is calculated between all the consecutive R peaks and a threshold of 75% of the
maximum value of RR interval is found suitable. Two consecutive R peaks with peak to
peak interval greater than threshold are selected and remaining peak to peak interval values

are discarded. A window is placed between these two selected peaks as shown in

(100 ms window)

Wavelet Detail Coefficient Thresholding Maxima Thresholdin ECG

Analysis Selection (Amplitude) Detection (Interval) R Peaks
RR-interval RR interval
calculation window

Intersection
of Windows

A A

RR interval window by energy method

Window Based
Energy Analysis

Peak to Peak
(RR) Interval
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ECG
Peaks

Amplitude
Thresholding

H

Figure 2.24 Block diagram of PVC detection algorithm

Figure 2.26.
Table 2.5 Details of record 102 and record 105
Record No & Age Sex Number of PVC beats (annotated)

lead information Type of beats Before 5:00 min | After 5:00 min | Total

Normal 98 01 99

102, lead V5 84 Years | Female PVC 01 03 04
Paced 243 1785 2028

Pacemaker Fusion 24 32 56
Normal 405 2121 2556

105, lead I 73 years | Female PVC 12 29 41

Unclassifiable - 05 05

Detected
PVCs
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Figure 2.25 ECG signal from record 105 with detected peaks showing increased
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Figure 2.26 ECG signal from record 105 with RR interval windows at the location of PVC beats
The onsets of these windows are selected as possible number of PVCs and their positions

are marked. ECG signals from records 102 and 105 with energy distribution using a

window of 100 ms duration, energy thresholded signal along with selected RR interval
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windows are shown in Figures 2.27 and Figure 2.28 respectively. In this case, two PVC
beats are found in record 102 lead V5 and twelve PVCs are found in record 105 lead-II in

five minute duration of signal.
2.2.2.2. PVC detection based on energy analysis

Generally the duration of normal QRS-T wave is 350-400 ms. In case of PVCs, this
duration is prolonged and QRS-T complexes become wider than normal. PVCs have their
energy distribution over longer time interval than normal QRS-T duration. The concept RR
interval cannot only be applied to find the premature beats in ECG since there may be other
type of beats in the signal such as paced beats. It is not possible to select the two
consecutive R peaks having maximum RR interval if the signal possesses more than one
PVC beat and also ECG signal characteristics differ from patient to patient. RR interval
concept does not work in case of record 102 where RR interval concept detects false PVC

as shown in Figure 2.27.
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Figure 2,27 ECG signal from record 102 with energy distribution using a window of 100 ms duration,
energy signal after thresholding and selected RR interval windows at the possible location of
beats
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Figure 2.28 ECG signal from record 105 with energy distribution using a window of 100 ms duration,
energy signal after thresholding and selected RR interval windows at the possible location of PVC beats
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Figure 2.29 ECG signal from record 102 with energy distribution using a window of 600 ms duration,
energy signal after thresholding and selected energy windows at the possible location of PVC beats
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"Figure 2.30 ECG signal from record 105 with energy distribution using a window of 600 ms duration,
energy signal after thresholding and selected energy windows at the possible location of PVC beats

Therefore, RR interval concept has to be correlated with some other concept to take a
decision of actual number of PVCs. It is clear from section 1.9.2 that energy is defined as
the area under the curve and also since PVC is wider in shape, the region associated with
PVC in the calculated energy of ECG signal is apparent as higher energy compared to other
QRS complexes in the signal under test. Therefore, we propose a new method of energy
analysis of ECG signal with extended window size for the detection of PVC beats. The
filtered ECG signal is processed for window based energy analysis using a window of 600
ms duration. Energy is calculated for this signal duration and an energy signal is generated
as stated in section 2.1.2.3 (a). The length of new energy signal formed is the same as the
length of ECG signal under test. The lower energy values are eliminated by applying a
threshold value of 65% of maximum amplitude of energy signal.

The resulting signals with possible PVCs for records 102 and 105 are shown in Figure 2.29
and Figure 2.30 respectively. In the energy distribution of record 102, lead V5 in
Figure 2.29, energy is observed higher at 6 more locations whereas PVCs do not exist at
those locations. It is evident from Figure 2.30 that the energy is higher in the region where

PVCs exist. The onsets of energy windows are considered as PVCs in the signals. The
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onsets of energy windows give fourteen PVCs in record 105 lead-II and seven PVCs in the
record 102, lead V5.

2.2.23. PVC detection based on intersection of RR interval and energy analysis

As already stated in section 2.2.2.1 and Figure 2.28 that RR-interval concept for PVC
detection hold good for one signal (record 105) but does not work as in case of record 102
(Figure 2.27). Similarly, window based energy analysis using 600 ms window results in 06
and 02 false PVCs for records 102 and 105. Therefore, intersection of both RR-interval and
energy windows is considered suitable for the detection of actual number and position of
PVCs.

Hence in this approach, RR interval window obtained in section 2.2.2.1 is superimposed
over energy window as discussed in section 2.2.2.2 and an intersection window is found
which gives the actual number and positions of PVCs in the signal as shown in
Figure 2.31.
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Figure 2.31 Plot of ECG signal and all detected PVC beats by RR interval
and energy analysis method
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Figure 2.32 Plot of ECG signal from record 105 and all detected PVC beats (12) by RR interval
and energy analysis method
The onsets of all the intersection windows are registered as positions of PVCs and their
numbers gives rise the number of PVCs in the signal. In Figure 2.32. the location of all
twelve PVCs are marked in the original ECG lead II signal from record 105. By using this
intersection method one PVC is detected in record 102 and remaining six false PVC beats

detected by energy method are discarded.

2.3. Results and conclusion

The results of developed algorithms for feature extraction and PVC detection are presented

in the following sections —
2.3.1. ECG peak detection using wavelet technique

The algorithm has been tested on MIT-BIH arrhythmia database in which each recording is
of 30 minutes duration. Forty four records from first lead signal (lead II signal) including
records 102 and 104 (which have lead V5 signal as first lead) are tested for R peaks

detection. All beats positions in MIT-BIH database are annotated by experts. The
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performance of the developed algorithm is tested with expert annotations available on the
database. The beat positions that are correctly detected are named as ‘true peaks’ whereas
the beats positions that are missed by the algorithm are named as ‘missed peaks’. ‘False
peaks’ are the peaks which are not actually available but reported as the algorithm output.
The overall accuracy obtained using db6 wavelet, out of total 102869 peaks, 102773 true
peaks are detected and 396 peaks are missed by the algorithm whereas 138 false peaks are

detected. The algorithm performance is judged based on three measures viz accuracy (4),
sensitivity (S,) and positive predictivity (Pp) [159].
The overall accuracy for R-wave detection is given by the relation [16]

A=(l——N—e]x100 (2.14)
Ny

Where 4 denotes the average accuracy for all the forty four records under test and the

variables N, and N, represent the total number of detection errors and peaks available in

the records. The detection error N, is the sum of missed peaks (Mp)and false peaks (Fp).

The sensitivity and positive predictivity of detector are given by the following relation [45]-

S, T 100 (2.15)
TP +MP

Pp = T 100 (2.16)
TP +FP

Where 'Tp' denotes the number of correctly detected peaks where as 'Mp' denotes the

peaks missed by the detector and 'Fp' represents the number of detected false peaks.

Sensitivity measures how successfully the detector recognizes the peaks and positive
predictivity measures how exclusively the detector detects the peaks in the signal. The
algorithm achieved an accuracy of 99.48 %, sensitivity of 99.62 % and positive predictivity
0f 99.87 % respectively over all the forty four records of MIT-BIH database. The results for

R-wave detection using db6 wavelet are given in Table 2.6.
2.3.2, ECG peak detection using energy analysis technique

The algorithm has been tested on first 5 minute segments of forty four downloadable
records out of total forty eight records of MIT-BIH database. The records 102 & 104 do not
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have modified lead II signals. The accuracies obtained for these records individually using
energy analysis when window energy analysis is done as per section 2.1.2.1(a) is 99.73 %
and 98.93 % respectively. The accuracies obtained for these records are 100 % & 98.15 %

respectively when the energy analysis of ECG signal is followed as per section 2.1.2.1(b).

The overall accuracy, sensitivity and positive predictivity using all forty four records of
database for section 2.1.2.1(a) are found to be 98.17 %, 98.82 %, 99.36 % and 98.63 %,
99.36 % and 99.28 % respectively for energy calculation as per section 2.1.2.2(b). The -
summary of results by window shifted by window size and window shifted by one sample

is given in Table 2.7.

The consolidated results of wavelet based and energy based peak detection are shown in
Table 2.8. From Table 2.8, it is clear that wavelet based technique outperforms to energy

based peak detection method.

It is mentioned in literature survey in section 2.0 that ECG feature extraction has been
carried out by several researchers using different techniques [20-29]. Further, a comparison
of the results of proposed wavelet based technique with the techniques mentioned in
[21,24,30] has been carried out in terms of accuracy, sensitivity and positive predictivity.
The details of comparative study are mentioned in Table 2.9. It is clear from Table 2.9 that
proposed wavelet based technique performs better in terms of accuracy compared to results
of Sahambi et al.[21] for 8 records analyzed in their work. The results of the proposed
technique are better in terms of sensitivity and positive predictivity (98.37 % and 98.15 %)
for 22 records as compared to that of Mahmoodabadi et al. [24]. Lee R.G. et al. [30]
reported an accuracy of 95.26 % for 42 records whereas our algorithm achieves an accuracy
0f 99.53 % on 42 records of database excluding the records 108, 233 which are not tested
by Lee R.G. et al.

2.3.3. PVC detection

The performance of the algorithm is evaluated for thirty seven records on MIT-BIH
database in which PVC beats exist. Eleven records 101, 103, 112, 113, 115, 117, 122, 212,
220, 222 and 232 do not have PVC beats. The overall accuracy of detection is determined
by using the equation 2.14.
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Where, N, states for the detection errors which is defined as the sum of the missed and
false beats and N, stands for the total number of PVC beats in five minute segment of

ECG signal from MIT-BIH database. Out of total 1183 PVCs, 1164 PVCs are correctly
detected whereas 20 PVCs are missed and 18 false PVCs are detected. Therefore, achieved
overall accuracy of detection is 96.79 %. The sensitivity and positive predictivity are
calculated from equations 2.15 and 2.16 respectively. The achieved values of sensitivity
and positive predictivity are 98.31 % and 98.48 % respectively. The results for PVC
detection using the combination of energy analysis of ECG signal by 100 ms and 600 ms
windows are displayed in Table 2.10.

As stated in section 2.2.1, PVC detection has been performed by many authors in [152-
158]. It is to be noted that PVC detection has been carried out by the authors on 37 records
in [152 -155, 157-158), however, Herrereo et al. [156] has performed PVC detection on 33
records. Therefore, to justify the results of our proposed technique of PVC detection, a
comparison of results of proposed method is carried out with other techniques [152-158].
The results of comparative study are shown in Table 2.11. From Table 2.11, it is clear that
the proposed method performs better than the results shown in [153-154, 157-158] in terms
of sensitivity for all 37 records under study. However, the obtained sensitivity value is close
to the results shown in [152]. In terms of sensitivity and positive predictivity values shown
in [155], the proposed method has shown better sensitivity value and the positive predictive

values are nearly matching.

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page 117

Table 2.6 Results of R-wave detection using Daubechies (db6) wavelet

Record No. Beat True Missed False
Annotations peaks peaks peaks
from database | detected

100 2273 2270 03 -
101 1865 1864 01 -

102 (V5) 2187 2186 01 02
103 2084 2080 04 01

104 (VS) 2229 2227 02 05
105 2572 2521 51 04
106 2027 2004 23 01
107 2137 2137 - 08
108 1774 1741 33 10
109 2532 2532 - 13
111 2124 2124 - -
112 2539 2520 19 -
114 1879 1878 01 10
115 1953 1953 - -
116 2412 2412 - 03
118 2288 2283 05 01
119 1987 1987 - 14
121 1863 1850 13 -
122 2476 2472 04 -
123 1518 1518 - -
124 1619 1608 11 02
200 2601 2601 - 06
202 2136 2135 01 02
203 2980 2830 150 10
205 2656 2650 06 09
207 2332 2328 04 -
208 2955 2951 04 01
209 3005 3005 - 16
210 2650 2949 01 01
212 2748 2748 - 03
213 3251 3249 02 -
214 2262 2259 03 01
215 3363 3350 13 -
217 2208 2198 10 -
219 2287 2286 01 02
220 2048 2048 - -
221 2427 2427 - 03
222 2483 2481 02 -
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223 2605 2600 05 -

228 2053 2053 - 05

230 2256 2256 - 03

. 231 1573 1573 - 02

233 3079 3069 10 -

234 2573 2560 13 -
Total number 102869 102773 396 138
of records = 44
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Table 2.6 concluded

Table 2.7 Results of R-wave detection using energy analysis technique

Performance Window shifted | Window shifted
by window size by one sample
Accuracy 98.17% 98.63%
Sensitivity 98.82% 99.36%
Positive Predictivity 99.36% 99.28%

Table 2.8 Comparison of results of wavelet and energy based R peaks detection

Performance Wavelet method | Window shifted | Window shifted

. by window size by one sample
Accuracy 99.48 % 98.17% 98.63%
Sensitivity 99.62 % 98.82% 99.36%
Positive Predictivity 99.87 % 99.36% 99.28%

Table 2.9 Comparison of results of proposed wavelet based R wave detection method

with other techniques
Performance For 8 records For 22 records For 42 records
(100, 101, 102, 103, 104, (100, 101, 103, 105, 106, 107 (All records
105, 106, 107) 118, 119, 200, 202, 203, 205, mentioned in Table
207, 208, 209, 210, 212, 213, 2.5 except 108, 233)
214, 215, 217, 219)
Sahambi Proposed | Mahmoodabadi Proposed | Lee R.G. | Proposed
et al.[21] method et al.[24] method et al.[30] method
Accuracy 98.94 % 99.38 % - - 95.26 % 99.53 %
Sensitivity - - 98.37 % 99.46 % - -
Positive - - 98.15 % 99.81 % - -
Predictivity
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Record | Age/ Lead Number | Detected PVCs True Missed False
No Sex information | of PVCs | RR PVC by | PVC by | PVC PVC
In 5 min | Interval | energy combining
method both
methods
100 69/M MLIL, V5 01 01 182 01 01 - -
102 84/F V5/V2 01 01 07 01 01 - -
104 66/F V5/V2 01 02 03 02 01 - 01
105 73/F MLII/V1 12 12 14 12 12 - -
106 24/F MLI/V1 60 58 56 55 55 05 -
107 63/M MLII/V1 02 03 02 02 02 - -
108 87/F MLII/V1 03 05 04 04 03 - 01
109 64/M MLI/V1 06 12 10 09 06 - 03
111 47/F MLII/V1 01 01 333 01 01 - -
114 72/F V5/ML I 13 12 14 11 11 02 -
116 68/M MLI/V1 11 10 10 10 10 01 -
118 69M MLI/V1 03 05 04 03 03 - -
119 SI/F MLII/V1 80 110 94 81 80 - 01
121 83/F MLII/V1 01 01 289 01 01 - -
123 63/F MLII/VS 01 01 02 oF 01 - -
124 77M MLII/V4 20 19 21 19 18 02 01
200 64/M MLII/V1 126 135 205 127 127 - 01
201 68/M MLII/V1 20 23 204 21 16 04 05
202 68/M MLII/V1 04 08 12 04 04 - -
203 43/ M MLII/V1 71 79 ' 95 72 71 - 01
205 59'M MLI/V1 06 15 18 06 06 - -
207 89/F MLII/V1 101 135 120 102 101 - 01
208 23/F MLII/V1 168 202 292 168 168 - -
209 62/M MLII/V1 01 01 87 01 01 - -
210 89/M MLII/V] 30 32 58 30 29 01 -
213 61/M MLII/V1 25 24 32 23 23 02 -
214 53/M MLII/V1 44 48 54 45 43 01 01
215 81/M MLII/V1 33 39 94 33 33 - -
217 65/M MLII/V1 22 25 35 23 22 - 01
219 NA/M MLII/V1 13 15 15 13 13 - -
221 83/M MLII/V1 80 105 134 80 80 - 01
223 73/M MLII/V1 18 22 24 18 18 - -
228 80/F MLIVV1 60 72 62 60 60 - -
230 32/M MLII/V1 01 03 14 01 01 - -
231 72/F MLI/V1 04 04 05 04 04 - -
233 5IM MLI/V1 139 205 165 138 137 02 -
234 56/F MLII/V1 01 02 22 01 01 - -
Total number of PVCs 1183 1164 20 18

- _____________ - ________________ . _________ . _____________}
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Table 2.11 Comparison of results of proposed PVC detection method with other authors work

Proposed Krasteva Christov Bortolan Herrero Jekova Jekova Jekova
Method et al. [152] et al. [154] et al. [153] et al. [156] et al.[157] et al.[155] et al. [158]
(37 records) (37 records) (37 records) (37 records) (33 records) (37 records) (37 records) (37 records)
Se% | PP% | Se% | PP% | Se% | PP% | Se% | PP% | Se% | PP% | Se% | PP% | Se% | PP% | Se% | PP%
98.31 | 98.48 | 98.40 - 97.3 - 97.7 - 99.62 - 90.5 - 97.99 [ 98.96 | 93.3 -

Publication on this chapter

[1]

(2]

[3]

[4]

Pachauri, A., & Bhuyan, M. Robust detection of R-wave using wavelet technique, in
International Conference on Signal Processing, Communication and Networking
(ICSPCN’ 2009), Singapore, 335-339, World Academy of Science, Engineering and
Technology 56, 2009, 901-905.

Pachauri, A., & Bhuyan, M. Wavelet and energy based approach for PVC detection,
in IEEE International Conference on Emerging Trends in Electronic and Photonic
Devices & Systems (ELECTRO’ 2009), Varanasi, India, 258-261.

Pachauri, A., & Bhuyan, M. PVC detection by energy analysis”, in 2™ International
Conference on RF and Signal Processing Systems (RSPS’ 2010), Guntur, India, 380-
384.

Pachauri, A., & Bhuyan, M. A new approach to ECG peak detection, in International
Conference on Biomedical Engineering and Assistive Technologies (BEATS’ 2010),
Jalandhar, Punjab, India.
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CHAPTER

Feature Extraction of Arterial
Blood Pressure and Central
Venous Pressure Signals

3.0. Introduction

Present trend of cardiac diagnosis is conceded manually by the cardiologists using mainly
ECG waveform. So far ECG has been used to diagnose the heart condition by the
cardiologists. Like ECG, ABP and CVP waveform are also rich in pathological information
about cardiovascular function. As stated in section 2.2, that life threatening disturbances
such as PVC are diagnosed by studying the change in the intervals and amplitudes of ECG
signal components. Analysis of arterial blood pressure and central venous waveforms can
help to supplement the information required by the cardiologists. It is already stated in
section 1.6.4 and 1.7.4 (Table 1.6 and 1.7) that ECG as well as hemodynamic waveforms
(ABP and CVP) depicts cardiac physiology. In certain cases, abnormal conduction of heart
displayed in one signal waveform i.e. ECG signal, is also present in other signal waveform
such as ABP, CVP (Figure 1.8). Analysis of ectopic beats is generally carried out using
ECG signal but changes in ABP waveform are also present in case of these ectopic beats
[34,35]. Therefore, analysis of ABP waveform in addition can be used to illustrate the
cardiac signatures efficiently in the diagnosis of cardiac health. Parallel analysis of ABP
waveform can help to develop robust method for the diagnosis of certain heart diseases
such as ectopic beats those result in sudden decrease in systolic blood pressure [34,35].

As seen from the literature [40-46], that most of the ABP feature extraction developed so
far include the detection of either peaks [44] or onsets [43,46] or dicrotic notch [41] only
and there is only one algorithm in which detection of all three features is proposed [45].

There is no algorithm reported in literature for detection of all four features of ABP signal.
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Wavelet and energy based feature extraction technique applied on ECG signal have been
found suitable as discussed in chapter 2. The merits of these techniques have motivated us
to apply for ABP and CVP signals. Systolic peak is the most prominent feature in ABP
waveform that is apparent as the highest amplitude, thereby it is considered as the basis for
the detection of all other features such as onset, dicrotic notch and dicrotic peak of ABP
signal.

In this chapter, we suggest a wavelet transform based technique for full characterization of
ABP waveform that is robust to physiological interferences and varying signal amplitude,
does not require any preprocessing of signals, developed and validated on open access
MGH/MF waveform database [139], Fantasia database [137], MIT-BIH polysmographic
database [138] and CSL database [12]. Moreover selection of detail coefficients after
wavelet decomposition has been justified by energy, frequency and cross-correlation
analysis of detail coefficients. Further application of window based threshold overcomes
the setbacfc of missing peaks due to large variations in the signal amplitude at any particular
instant. The developed algorithm is applicable to any signal length. We have implemented
the algorithm in Fantasia database, MIT BIH Polysmographic database and selected
segments of MGH/MF and CSL databases for manual validation of algorithm.

In this chapter, another algorithm for the detection of systolic peaks in the Arterial Blood
Pressure (ABP) signal using energy analysis of ABP signal is also proposed. The proposed
algorithm deals with the implementation of energy based approach for the detection of
systolic.peaks in ABP signal. Energy based peak detection algorithm has been developed
on five minute segment of ABP signals for the duration for which ECG signals are also
available. The algorithm has been validated with the available expert annotations for ECG
lead II signal for five minute segment.

Like ECG and ABP signals, a great deal of cardiac physiological information is available in
CVP signal. CVP monitoring is used for assessment of blood volume and right heart
function. Normal mechanical events of the cardiac cycle are responsible for the sequence of
waves seen in a typical CVP trace. CVP signals are used to know normal and abnormal
heart behaviour more precisely than ABP waveforms by the analysis of constituent five
phasic events, three peaks (‘a’, ‘¢’, v’) and two descents (x’, y’). To address a few

abnormal heart condition, atrioventricular dissociation, tricuspid regurgitation, tricuspid
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stenosis, right ventricular ischemia, pericardial constriction, cardiac tamponade etc. can be
characterized with the variations in its constituent signal components which are discussed
in Table 1.5. However, present trend of cardiac diagnosis is dependent more on the analysis
of ECG signal whereas there is physical correlation with ABP signal to some extent but
there is no attempt reported in literature pertaining to feature extraction of CVP signal. The
reason why CVP analysis is helpful is - In certain conditions ECG signals may be
excessively noisy or ECG acquisition may not be possible due to surgical dressing of
patients. The noise in CVP which is a pressure signal, is mechanical in nature whereas
electrical noise interferes more in ECG [42]. The cardiac signatures can be well understood
to a great extent if an algorithm for CVP features is also available which can assist the
cardiologists to know cardiac state precisely. Parallel analysis of ECG signal with ABP
signal or CVP signal or a combination of all these three signals can formulate robust
algorithms for reducing the false alarms for arrhythmia or other diseases in intensive care
units. These algorithms can not only reduce the time taken by the cardiologists to a great
extent but also can assist them to update the knowledge of cardiac internal signatures to a
large extent. In normal central venous pressure waveform, x-descent is the most prominent
feature which has least amplitude compared to other features in the signal, therefore, it sets

up the basis of CVP feature extraction.

The use of wavelet based technique by changing the wavelet for the analysis and selection
of appropriate detail/ approximation coefficient is again found to be a promising method for
CVP feature extraction in this research. We present a wavelet based technique for CVP
waveform delineation using daubechies db4 wavelet. The selection of relevant detail
coefficient is again supported by energy, frequency and cross-correlation analysis of detail
coefficients with the original CVP signal. Here, window based negative amplitude
thresholding is used to detect ‘x’-descent precisely which is further used to mark remaining

[P I SR B A |

peaks (‘a’, ‘¢’, v’) and descent () waves of CVP signal.

]
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3.1. ABP feature extraction

Feature extraction of ABP signal is carried out using wavelet and energy analysis technique

as mentioned below —
3.1.1. Wavelet based ABP peak detection

We have used mgh007 record of MGH/MF waveform database with 8 signals, the plot of
which is shown in Figure 3.1 and description of record is given in Table 3.1. The raw
signals are converted to physical units by using the following conversion rule.

Physical Unit = Raw Signal Amplitude — Base

Gain (3.1)
It is clear from Figure 3.2 that raw ABP signal has amplitude -400 to 600 on Y-axis
whereas signal after conversion into physical units has amplitude 80-140 mm Hg. In the
database, ECG signals are available for complete duration of the signal whereas ABP
signals are missing in certain duration. Therefore, the samples of ABP and ECG II for the
duration when both signals are available are used for analysis for matching the number of
peaks in ABP signals using ECG annotations by expert. ABP signal is processed for
wavelet analysis and selected relevant detail coefficients are used for window based
amplitude thresholding. Maxima are detected in the signal obtained after common point
detection in two selected detail coefficients and an threshold is applied to detect the ABP
peaks. The block diagram of ABP peak detection algorithm is shown in Figure 3.3 and
schematic representation of steps involved in the detection method is given in Figure 3.4.
The detection process is performed on ABP signal of mgh007 record of MGH/MF database

and ‘abp1’ signal of CSL database and completed in the following steps —
Table 3.1. Description of mgh007 record of MGH/MF waveform Database

Record Signal Gain | Base Units
ECG leadI | 1341 | 242 mV
ECG lead T | 1382 | -618 mV

ECG lead V | 1295 | -452 mV

ABP 12.17 | <1218 | mmHg

Mgh007 (p5p 1926 | -1016 | mmHg
CVP 19.04 | -1007 | mmHg
Resp. Imp. 1000 |0 mVY
co, 1000 |0 mv
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Figure 3.1 Plot of all signals of mgh007 record
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Figure 3.2 (a) ABP signal in raw units and (b) ABP signal after conversion into physical units
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Figure 3.3 Block diagram of ABP peak detection algorithm using wavelet technique

3.1.1.1. Wavelet analysis

For wavelet analysis, the choice of wavelet depends upon type of application. Generally, a
wavelet similar in shape to the signal being analyzed is considered suitable for the analysis
[24,22]. Symlets (sym4) and Daubechies (db4) family of wavelets have been found to give
details more accurately than others for ABP feature extraction in this research. Wavelet

function (i) of sym4 and db4 wavelets are shown in Figure 3.5(a-b) respectively.

The ABP signals are decomposed to the required level using db4 and sym4 wavelets
depending upon the dominant frequency components present in the signal. The detailed
wavelet components (d1-d9) and approximation coefficient at first level is shown
decomposition structure of ABP signal (mgh007 record) and approximation coefficient at
first level is shown in Figure 3.6. From this decomposition structure, the relevant detail
coefficient is selected based on the energy, frequency and cross-correlation analyses as

mentioned below —

3.1.1.2. Selection of detail coefficients by energy analysis

Applying the same analysis as was done for peak detection of ECG signal, it is decided that
maximum energy of an ABP signal is available in its higher amplitude and wider systolic
complex. Other segments of the signal such as onset and dicrotic notch possess lower
energy. It is observed that d7 possess highest energy for mgh007 while d6 has maximum
energy for abpl signal of CSL database as shown in Table 3.2. It is observed from
Table 3.2 that the sum of energy of all detail coefficients and remaining one approximation

coefficient is equal to the energy of ABP signal under test, which proves the energy
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conservation principle of wavelet transform. It means that original signal can be faithfully
reproduced from the decomposed components and the information in the original signal is

distributed at different scales but remain preserved during decomposition.

[ Read ABP signal and corresponding ECG lead II signal ]

Select the;no. of samples when both ECG and ABP signal are
available

[ Select the wavelet almost similar to ABP signal J

v

Perform wavelet decomposition using selected wavelet up to 9

levels Figure 3.6
‘/{rmfreqtency analysis Perform cross-
Perform energy analysis on (FFT) on all the detail correlation analysis on
all the detail signals signals and original ABP all the detail signals
Table 3.2 signal Figure 3.7 & Table 3.4
Table 3.3
Y L 2 ¢
Select the detail signal Select the detail signal in Sele‘ct the detail signal with
with maximum energy the frequency range of hlghe'st value of cross-
and detail signal with ABP signal and detail correlation coeff. and detail
next lower energy value signal at next lower scale signal with next lower value
of cross-correlation coeff.
e

{ Selected detail coefficients j

[ Thresholding j

Select common points greater than zero in both the selected
detail signals and generate a new signal
Figure 3.8

v

Contd..
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Figure 3.8

L

/a. The ) \ /b. Two \ fc Three \ /d. Four \

[ Detect maxima in new signal J

¢. Go to next
detected corresponding corresponding corresponding sample and
;]r}amma has samples s:llmples possess samples possess repeat the
a;lggleiiude than possess the :Jr?:l?tzge values the sz?me process till
previous and same but Ist & Vth amplitudes but maxima is
succeeding amplitudes but samples have Ist & Vith detected
sample Ist & TVth lower amplitudes samples have
Figure 3.8 have lower Figure 3.9 lower amplitudes

amplitudes
-

[ Valid Maxima Detection

v
Interval thresholding J

Figure 3.10

v
Detected Peaks
Figure 3.11

Figure 3.4 Schematic representation of steps.involved in ABP peak detection algorithm
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Figure 3.5 Wavelet function () of (a) symmetric (sym4) wavelet and (b) daubechies (db4) wavelet
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Figure 3.6 Decomposition of ABP signal of mgh007 record using db4 wavelet

Table 3.2 Energy content of detail and approximation coefficients

Signal Detail Energy contents Energy contents
Coefficients Using symd4 Using db4

dl 0.0000 0.0000

d2 0.0001 0.0001

d3 0.0025 0.0023

d4 0.0405 0.0377

ds 0.2521 0.2505

mgh007 d6 1.0197 1.0019
d7 2.5670 2.5178

d8 0.9724 0.9523

d9 0.0212 0.0184

a9 95.1246 95.2190

dl 0.0001 0.0001

d2 0.0018 0.0018

d3 0.0901 0.0870

d4 0.9122 0.9260

ds 2.1670 2.1364

abpl dé 2.3076 2.3362
d7 0.1158 0.1026

d8 0.1398 0.1604

d9 0.1127 0.0984

a9 94,1528 94.1512

e ——————
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3.1.1.3. Selection of detail coefficients by frequency analysis

Another justification of selecting d7 for mgh007 and d6 for abpl is its available frequency
components correlated with that of ABP signal. In pressure signals, most of the signal
power is in the frequency range of 0.7-3.5 Hz in humans [44]. Therefore, the Fourier
analysis of ABP signal, al signal and all its decomposed detail signals is computed as
shown in Figure 3.7. From Figure 3.7, it is observed that d7 for mgh007 record and dé6 for
abpl signal matches in frequency content of the original ABP signal. Frequency range of
all the detail signals (d1-d9) obtained from FFT plot is shown in Table 3.3.

Table 3.3 Frequency content of detail coefficients

Signal Detail Frequency content | Frequency content
coefficients | (Hz) using sym4 (Hz) using db4
dl 40.99 - 180 39-180 -
d2 27.5-126.9 25.41 - 126.7
d3 10.85 - 69.68 10.62 - 68.05
d4 5.573-34.92 5.583 -35.63
mgh007 I35 2.123- 17.86 2.17-18.02
dé 0.8001 -9.127 0.8533 - 8.997
d7 0.3533 - 4.567 0.45-4.423
d8 0.16 - 1.923 0.6033 - 1.833
d9 0.09667 - 1.123 0.2267 - 1.107
dl 10.94-62.5 12.38 -62.5
d2 5.399 - 48.68 4.305 - 46.68
d3 2.832-25.71 3.005 —24.38
d4 1.873-11.98 1.504 — 12.92
abpl ds 0.6275 — 5.939 0.7567 - 5.861
d6 0.3331 — 3.432 0.2411 — 3.403
d7 0.1514-1.581 0.1453 - 1.599
d8 0.04889 — 0.8556 0.05306 — 0.8056
d9 0.0125 - 0.4042 0.04389 - 0.3922

e —
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Figure 3.7 FFT of ABP signal from mgh007 record, approximation coefficient at
first level (al) and detail coefficients (d1-d9)

3.1.1.4. Selection of detail coefficient by cross-correlation analysis

In addition to above two analyses, cross-correlation analysis of detail coefficients
individually with the original ABP signal is also performed. The results of correlation
analysis of detail signals with ABP signals are given in Table 3.4. It is observed that the
cross-correlation coefficient is highest at d7 for mgh007 record while it is in d6 for abpl
signal. This fact is observed while wavelet decomposition is followed using both sym4 and
db4 wavelets in mgh007 and abp1 signals.

From Table 3.4, it is evident that d7 for mgh007 ABP signal and d6 of abpl are highly
correlated with the original ABP signals in time domain. The results from the above
mentioned three analyses show that d7 for mgh007 and d6 for abp1 signal carries maximum
information in regard to the ABP peaks signals in terms of energy content, frequency
content and time domain similarity. It is clear from Table 3.3 that both d6 and d7 for
mgh007 comprise of required frequency component of ABP signal. Similarly, d5 and d6 for
abpl regord also encompass required frequency component. Hence, in this case, we

propose to use two most nearest detail coefficient [d6, d7] and [d5, d6] pairs for mgh007
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and abp1 records respectively which are also close to original signals in terms of energy

content and cross-correlation coefficients.

Table 3.4 Cross-correlation coefficients

Signal Detail Cross-correlation Cross-correlation Inference
coefficients | coefficients using sym4 coefficients using db4
dl 0.0012 0.0011 Weak
d2 0.0042 0.0043 Weak
d3 0.0215 0.0211 Weak
d4 0.0871 0.0851 Weak
ds 0.2171 0.2185 Weak
dé 0.4371 0.4370 Moderate low
mgh007 d7 0.6930 0.6927 Moderate high
d8 0.4253 0.4256 Moderate low
d9 0.0465 0.0466 Weak
dl1 0.0039 0.0039 Weak
d2 0.0157 0.0157 Weak
d3 0.1106 0.1088 Weak
d4 0.3522 0.3548 Moderate low
ds 0.5427 0.5388 Moderate high
d6 0.5599 0.5633 Moderate high
abpl d7 0.1249 0.1174 Weak
d8 0.1361 0.1469 Weak
d9 0.1198 0.1123 Weak

3.1.1.5. Window based thresholding and maxima detection

The selected detail coefficients undergo window based thresholding as mentioned in
section 2.1.1.6. A threshold value 18% of maximum signal amplitude within the window is
found suitable. Then, a technique of feature intersection is adopted for maxima detection. A
new signal is generated by selecting the intersecting samples with positive amplitude values
in both d6 and d7 after thresholding. Detection of common samples in d6 and d7 signals is
shown in Figure 3.8. It is clear from Figure 3.8 that the amplitude of intersecting samples
are equivalent of sample amplitude in original ABP signal.

In this newly generated signal, a maxima d(k) is detected when the amplitude of previous
and the succeeding sample are lower than the middle sample following condition (3.2) for
maxima detection. It is possible that the newly formed sigﬁal may comprise of two or more
maxima of same amplitude because of the fact that pressure signals are slow varying. So

detection of maxima is difficult among three consecutive samples. In such cases, the
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algorithm looks for the third sample or next sample if it possesses lower amplitude. This
process is repeated till a valid maxima is detected. An example for valid maxima selection
is shown in Figure 3.9. The rules for valid maxima d(k) detection are given below —

a) If d(k) > dk-1) and d(k) > d(k+1) (3.2)

b) Iftwo corresponding samples have same amplitude i.e. d(k) = d(k+1)

Then valid maxima condition

d(k) > d(k-1) and d(k) > d(k+2) (3.3)
¢) If three corresponding samples have same amplitude i.e. d(k) = d(k+1) and
dk) = d(k+2)
Then valid maxima condition
d(k) > d(k-1) and d(k) > d(k+3) (3.4)

3.1.1.6. Interval thresholding and peak positions

The numbers and position of detected maxima denote the approximate number of systolic
peaks and approximate systolic peaks positions. As already stated that peak to peak interval
in case of ECG and ABP is same (Figure 1.10). Therefore, a physiological refractory period
of 200 ms should exist before next ABP peak appears. Assuming this fact, an interval
threshold of 200 ms is applied after detection of first peak in the signal that gives rise to
actual number and positions of peaks [21, 160]. Application of interval thresholding is
shown in Figure 3.10. It is clear from Figure 3.10 that the second maxima detected as peak
is eliminated by the application of interval threshold. ABP signal with positioned systolic
peaks for mgh007 record and ‘abpl’ signal are shown in Figure 3.11 (a-b) respectively.
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Figure 3.9 Detected maxima when the three corresponding samples possess the same amplitudes
but first and fifth sample possess lower amplitudes
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Figure 3.10 ABP signal along with common points after redundant maxima elimination
and application of interval thresholding (Refractory period)
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Figure 3.11 Detected peaks positions in ABP signal of (a) mgh007 record of MGH/MF
waveform database and (b) abp1 signal of CSL database
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3.1.2. ABP peak detection using energy analysis

As already stated in section 2.1.2 that window based energy analysis of ECG signal has
been efficiently used for the detection of R peaks in ECG signal. Like R wave in ECG
signal, systolic peak in ECG signal is also the highest amplitude peak. Following this fact,
window based energy analysis of ABP signal is computed using a window of 100 ms
duration. This energy domain offers an easy interpretation of the ABP signal for the
detection of systolic peaks in ABP signal. The block diagram of ABP peak detection using
energy analysis is shown in Figure 3.12. The detection process is performed on ABP signal

of mgh001 record as discussed below —

3.1.2.1. Preprocessing

Variations in signal amplitude may result in the erroneous calculation of energy as energy
calculation includes the absolute value of signal amplitude. The biomedical signals are
corrupted by artifacts such as base line drift, power-line interference etc. Base line drift

causes sharp variation in signal amplitude. That is why removal of base line drift is the key

ABP Signal

Preprocessing

Energy
Analysis

Window based
amplitude thresholding
Interval
thresholding

Detected
Peaks

Figure 3.12 Block diagram of ABP peak detection algorithm using energy analysis

step before starting the detection process by this method. Blood pressure signals have
frequency range from 0.7-3.5 Hz [44]. It is further noticed from FFT of ABP signal shown

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |137

in Figure 3.13 that the frequency of baseline drift is 0.0018 Hz. The signal under test is
filtered by fourth order Butterworth highpass filter with cutoff frequency of 0.5 Hz to

eliminate base line drift [147].
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Figure 3.13 FFT of ABP signal

3.1.2.2. Energy analysis by moving window

The energy of filtered ABP signal is calculated considering a window of 100 ms. then
undergoes energy analysis by windowing approach considering a window of 100 ms. To
match the window to the signal length, zero padding is done in both start and end of the
signal equally. The length (L) of the new signal is given by equation 2.10 and number of
samples are distributed in each window according to equation 2.11. Energy distribution of
the ABP signal using a window of 100 ms duration is shown in Figure 3.14(a). It is ciear

from Figure 3.14(a) that energy is higher at systolic peaks locations.
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3.1.2.3. Thresholding

A threshold value is applied to the generated energy signal as discussed in The generated
energy signal now undergoes window based thresholding as discussed in section 2.1.1.6. A
threshold value of 5 % of the maximum amplitude of the signal within the predefined
window of 2 sec duration is found suitable for the detection of peaks by this method. The

ABP and thresholded energy signals are shown in Figure 3.14(b).

3.1.2.4. Interval thresholding and peak positions

The onset or offset samples of remaining thresholded energy windows provide an idea of
approximate number of peaks available in the signal and their positions as systolic peaks.
An interval threshold of 200 ms duration is applied after detection of first peak in ABP
signal under test [21,160]. ABP waveform with the positioned systolic peaks is shown in
Figure 3.15(a) and corresponding ECG lead II signal with approved beat annotations by
expert is shown in Figure 3.15(b).
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(b)
Figure 3.14 (a) Energy distribution of ABP signal of mgh001 record and
(b) Energy after thresholding
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Figure 3.15 (a) ECG lead II signal with expert annotations for peaks and (b) ABP waveform with
positioned systolic peaks for mgh001 record

3.1.3. ABP onset, dicrotic notch and dicrotic peak detection

After the detection of peaks of ABP waveform, the remaining features such as onset,
dicrotic notch and dicrotic peak are detected using approximation signal at first level (‘a;’)
The detected peaks positions serve as the reference for detection of remaining features of
signal. As discussed earlier in section 2.1.1.2, wavelet decomposition of the signal using the
selected wavelet at first level results in detail coefficient and average coefficient. The
approximation signal (a;) obtained after wavelet analysis is shown in Figure 3.6 along with
detail coefficients. This approximation coefficient comprises of all features of ABP signal
and the shape of ABP signal is also retained. The analysis of (a;) has been found suitable
for extracting the remaining features of ABP signal. Flow chart of ABP onset, dicrotic
notch and dicrotic peak detection algorithm are shown in Figure 3.16. The onset positions
of ABP waveform are determined after eliminating the redundant minima obtained from
approximation signal by thresholding. For this purpose, detected peaks positions in the
ABP signal are taken into account. Amplitude threshc;lding is applied to a; signal. After

thresholding, minima in the signal are detected if the previous and subsequent samples in
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the signal have higher amplitude than the sample amplitude between them. The resulting
signal with minima positions undergoes window based amplitude thresholding. The minima

below the threshold are kept and remaining minima are discarded.
i) Onset detection

Out of all these minima, only those minima are taken into account which appear between
the detected peaks. If several minima are detected between two peaks, minima with the
minimum amplitude is registered as ABP onset. The detected peaks and onset positions in
the ABP signal are now used to detect the dicrotic notch in ABP signal. The method of

onset detection is shown in Figure 3.16 and Figure 3.17.
ii) Dicrotic notch detection

The dicrotic notch is found between the peak of first ABP cycle and onset of next ABP
cycle. For this purpose, the algorithm looks for the minima between detected peaks and
onset locations. If there are several minima found between a certain peak and onset, the
algorithm takes into account the minima with maximum amplitude and register the minima

as dicrotic notch.
iii) Dicrotic peak detection

Dicrotic peak appears as a peak with weak amplitude between the dicrotic notch and onset
of next ABP pulse. It is the result of reflected waves from the lower extremities and the
aorta. For the detection of dicrotic peak, the algorithm takes into account the detected onset
and dicrotic notch positions. All the maxima in the average signal at first level are
determined. The maxima with maximum amplitude appearing between dicrotic notch and
onset of next ABP pulse are registered as dicrotic peaks. The method of dicrotic peak

detection is shown in Figure 3.16 and Figure 3.18.

The detected four signal components (peak, onset, dicrotic notch and dicrotic peak) for
ABP signals of MGH/MF waveform database, Fantasia database, MIT-BIH
polysmographic database are shown in Figures (3.19-3.23) respectively. ABP peak
detection is proposed by author in [44] on abp1 signal of CSL database.
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Figure 3.16 Flow chart of ABP onset, dicrotic notch and dicrotic peak detection algorithm

Annotations for peaks from author [44] and expert are available for abpl signal. Therefore,

we have compared the detected with the annotations of author and expertl. Figure 3.24

shows author and expert] annotations for peaks along with detector annotations for the four

signal components. It is clear from Figure that annotations by our method are the same as

that for author and expert] annotations.
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Figure 3.17 Detection of ABP onset and dicrotic notch in approximation coefficient at first level
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Figure 3.18 Detection of dicrotic peak in approximation coefficient at first level
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Figure 3.19 Detected peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal of mgh007 record of
MGH/MF waveform database using db4 wavelet
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Figure 3.20 Detected peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal of mgh010 record of
MGH/MF waveform database using sym4 wavelet
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Figure 3.21 Detected peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal of {2004 record of
Fantasia database using db4 wavelet. One DP and onset is missed by the algorithm
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Figure 3.22 Detected peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal of f2y0S record
of Fantasia database
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Figure 3.23 Detected peaks, onsets, dicrotic notch and dicrotic peaks in ABP signal (one minute
segment) of slp02am record of MIT BIH polysmographic database using sym4 wavelet
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Figure 3.24 Detected peaks, onsets, dicrotic notch and dicrotic peaks in abp1 signal of CSL database

e ———————
Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |146

3.2. CVP feature extraction

Central Venous Pressure (CVP) is an important physiological parameter, and a clinically
relevant diagnostic tool for heart failure patients. As already stated in section 3.0 and
Figure 1.9, 1.10 that CVP waveform is five phasic with three upward (‘a’, ‘¢’ and V’)
waves and two downward waves (‘x’, y’). For feature extraction of any signal, it is
essential that a prominent component is identified (such as peaks in ECG and ABP signals)
so that time locations of other signal components are spot out with respect to the prominent
feature. Although ‘a’ wave is regarded as prominent wave in CVP waveform but there is
very small difference in the amplitudes of all three upward waves and consequently make it
difficult to identify by thresholding methods. On the other hand, among the downward
components, x’ descent has least amplitude. Therefore, ‘x’ descent is chosen as the
reference to extract other features such as ‘a’, ‘c’, ‘v’ and ‘y’ waves. Detection of ’
descent is carried out by wavelet technique. Among the available wavelet families
daubechies db4 wavelet is found suitable for feature extraction of CVP signal. Block
diagram and flow chart of x’ descent detection algorithm are given in Figure 3.25 and
Figure 3.26 respectively. The flow chart for detection of ‘¢’, v’, ‘a’ and ‘y’ wave detection
is shown in Figure 3.27. Detection of five phasic components in CVP waveform is carried

out using wavelet technique as mentioned below —

Wavelet Detail Coefficient
Analysis Selection

Amplitude
Thresholding

Wavelet
Selection

CcvP
Signal

Detected Interval Minima New signal by common
x-descents Thresholding Detection point detection

Figure 3.25 Block diagram of ‘x’ descent detection in CVP waveform

3.2.1. Detection of ‘x’ descent

i.  Wavelet decomposition of the signal using ‘db4’ wavelet up to 9 levels (Figure 3.28
and 3.29)."
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ii.

iii.

iv.

3.2.2.

ii.

iii.

iv.

vi.

Selection of detail coefficient based on energy (Table 3.5), frequency (Figure 3.30,
Table 3.6) and cross-correlation analysis (Table 3.7).
Application of threshold value of 10% of minimum amplitude of the samples in the
window. The samples in d6 and d7 with amplitude higher than threshold are
discarded as shown in Figure 3.31.
To select common samples with negative amplitude in selected detail coefficients to
generate a new signal with the common samples and detection of the minima
(Figure 3.32).
Application of a refractory period of 200 ms to eliminate the redundant minima to
detect actual x’ descent positions (Figure 3.33).
Detection of ‘c’ and ‘v’ waves
Selection of aﬁproximation coefficients at level 1 (‘al’) and level 2 (‘a2’)
(Figure 3.29).
Application of threshold value of 5% of maximum amplitude of the signals ‘al’
and ‘a2’ to remove lower amplitude values and generation of new signal by
selecting intersecting samples.
Detection of maxima in new signal.
Application of an interval threshold of 20 samples to eliminate the redundant
maxima and to select the maxima with higher amplitude.
Selection of the maxima those occur at an interval of 80 to 150 ms around ‘x’
descent positions. If several maxima occur within this interval, the maxima at
the maximum distance around ‘x’ descent are selected (Figure 3.34). As seen in
Table 1.6 that ‘c’ wave represents end of QRS complex. The onset and offset of
T wave in ECG correspond to x’ descent and v’ wave in CVP. Therefore, it can
be concluded that the segment ‘c-x’ is equivalent to ST segment of ECG which is
generally 80 -120 ms duration. The duration of T wave is generally 160 ms.
Assuming this fact, an interval threshold of 80 — 150 ms is applied before and
after detection of x’ descent position.
The selected maxima before x’ descent position is registered and marked as ‘c’
wave, while the maxima after x’ descent position is registered and marked as v’

wave (Figure 3.34).

S ———————
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Figure 3.26 Flow chart of ‘x’ descent detection in CVP signal with relevant figures and tables marked
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Figure 3.27 Flow chart of ‘c’, v’, ‘a’ and ‘p’ wave detection in CVP signal with relevant figures and
tables marked
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Figure 3.29 Plot of approximation coefficients at level 1,2 and 3 obtained after decomposition of CVP
signal of mgh007 record by db4 wavelet
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3.2.3. Detection of ‘a’ waves

1. To combine all maxima detected in generated new signal after eliminating ‘c’
and ‘v’ wave positions.

il. To arrange the maxima retained in (i) and ‘x’ descent positions.

iii. To search for maxima within the interval of 150 ms to 250 ms after x-descent
positions. If several maxima exist, maxima at the maximum distance from x-
descent position is registered and marked as ‘a’ wave (Figure 3.34). The interval
threshold of 150 -250 ms is selected because x’ descent and ‘v’ wave represent
onset and offset of T wave in ECG which has a duration of 160 ms. So ‘a’ wave
would appear atleast after 160 ms interval of x’ descent.

3.2.4. Detection of ‘y’ descent

1. To arrange ‘a’ and ‘v’ waves positions in ascending order and ensure that ‘v’
wave position occurs first followed by ‘a’ wave position.

ii. To detect minima in ‘a3’ and select the minima between v’ and ‘a’ wave
positions. If several minima exist, the minima with minimum amplitude is
registered and marked as ‘y’ descent (Figure 3.35). Detection of ‘y’ descent can
also be done in ‘al’ and ‘a2’ but ‘a3’ is found most suitable because minima
detection in ‘a3’ gives less number of redundant minima and consequently

reduces computational complexity.

On the application of above mentioned steps, detected all components of CVP waveform

are marked on the original signal and shown in Figure 3.36 and Figure 3.37 respectively.

Table 3.5 Energy content of detail coefficients and
remaining approximation coefficient

Signal Energy content (%)
dl 0.0006
d2 0.0023
d3 0.0023
d4 0.0286
ds 0.3503
dé 0.5018
d7 0.8289
ds 0.3897
d9 0.0448
a9 97.8507
Total energy 100
content (%)

e —————
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Figure 3.30 FFT of CVP signal from mgh007 record and detail coefficients (d1-d9)

Table 3.6 Frequency content of detail coefficients

Signal Detail Frequency content | Frequency content
Coefficients (Hz) using db4 (Hz) using sym4

dl 40.99 — 180 31.22-179.6
d2 27.5-126.9 17.6 —141.7
d3 10.85 - 69.68 83.09 -71.22
d4 5.573 -34.92 4.612-45.79

mgh007 ds 2.123-17.86 2.408-17.38
dé6 0.8001 —9.127 0.9352- 8.868
d7 0.3533 —4.567 0.6665 —4.078
ds 0.16 —1.923 0.2687 — 2.225
d9 0.09667-1.123 0.07525-1.494

e e T S———
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Table 3.7 Cross-correlation coefficients

Detail Cross- Inference
Signal coefficients correlation
coefficients
d1 0.0165 Weak
d2 0.0315 Weak
d3 0.0316 Weak
d4 0.1118 Weak
mgh007 ds 0.3918 Moderate (low)
d6 0.4693 Moderate (low)
d7 0.6014 Moderate (high)
ds 0.4091 Moderate (low)
d9 0.1351 Weak
3- — d7 Signal before window based negative ampllitude thresholding | |
— d7 after applying window based negative amplitude thresholding
Threshold for each window
2 i -
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Figure 3.31 d7 signal of CVP (mgh007) signal after window based thresholding

e ——————————
Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |154

16 CW Signal
14 d6 after thresholding
d7 after thresholding
12 — New signal after common samples detection
C
=10
i
E 8
EN V| ;ﬂ/’q
=
E 4 ‘
<
2‘
0 L == =
-2
1300 1400 1500 1600 1700 1800 1900
Number of samples
Figure 3.32 CVP detail pair for thresholding
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Figure 3.33 Detected ‘x’ descent positions of CVP signal from mgh007
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CVP Signal
All detected maxima in new signal generated using 'al' and 'a2’
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Figure 3.34 Detected ‘c’, ‘v’ and ‘a’ wave positions of CVP from mgh007
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Figure 3.35 CVP signal record and all detected features along with detected
minima positions in a3 for mgh007
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Figure 3.36 All detected components in CVP waveform of mgh007 record
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Figure 3.37 All detected components in CVP waveform of mgh008 record
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3.3. Results and conclusion

There are several databases on the physionet namely Fantasia database, MIT-BIH
Polysmographic database and MGH/MF waveform database etc. but the pressure signals
are not annotated so far in any database. It is possible to annotate short segments of the
signals manually but annotating large segments of number of signals is a tedious task. Both
ABP and ECG signals are available for the same duration for the same patient in MGH/MF
waveform database, Fantasia database [137] and MIT BIH Polysmographic (SLP) database

[138]. ECG signals in all these databases are annotated by experts. Fantasia database
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consists of non-invasive ABP waveform along with synchronously sampled ECG recording
with approved beat annotations. On the contrary, SLP database is the collection of invasive
ABP signals as well as synchronously sampled ECG recordings with approved beat
annotations. Therefore same data segment of the ABP signal is selected for the analysis for
which both ECG and ABP signals are available. Also, it has been observed that any
abnormality in ECG waveform at particular instant is also available in ABP signal so the
approved ECG annotations are helpful in evaluéting the detector’s performance to some
extent {35, Figure 1.8].

Li etal [45] evaluated the performance of their algorithm on Fantasia database and
Polysmographic (SLP) database. So far evaluation of beat detection algorithm on MGH/MF
waveform database is not reported. Li etal [45] employed the strategy if ABP waveform is
clear and corresponding ECG annotation is available, the beat annotation is considered as
TP or FN based on its presence or absence. Otherwise the beat annotation is considered as
FP if there is no clear ABP waveform or ECG annotation. W Zong etal [43] also employed
the same technique for the performance evaluation of their algorithm based on ECG
annotations.

However, it is observed practically that although recorded simultaneously, sometimes ECG
annotations do not correspond to effective ABP waveforms and number of beats between
both ABP and corresponding ECG differs as shown in Table (3.8 — 3.12). Table 3.11 and
Table 3.12, show that there is a 23 beats difference between manual annotations of ABP
peaks and ECG peak annotations for 22 signals of MGH/MF database whereas both the
waveforms are clear. ECG annotations from MGH/MF database along with our manual
annotations for ABP peaks for same duration of record mgh0Ol are shown in
Figure 3.15(a-b). The selected signal segment for record mgh001 has same number of beats
(12 beats) for ABP signals. This anomaly is also observed in Fantasia and MIT-BIH
polysmographic database signals as shown in Table 3.12 and Table 3.13 respectively. This
difference of one beat in the same duration of ABP and ECG signals is due to the fact that
systolic peak in ABP waveform follows R peak of ECG.
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3.3.1. Wavelet based ABP feature extraction

The algorithm has been applied for one minute segments of 22 signals from MGH/MF
waveform database, first minute segments of 14 of Fantasia database, first minute segments
of 15 signals of MIT-BIH polysmographic database and first 50,000 samples of abp1 signal
of CSL database. CSL database is chosen because of the fact that it comprises of expert
annotations for both the ABP signals. This database consists of annotations from two
experts and also annotations from author are available [44]. This type of openly available
database can help the researchers to validate their algorithms but ABP signals only -from
two patients may not be sufficient to have different artifacts and pathophysiological
complexity of ABP waveform. Secondly, expert annotations only for peaks of ABP signals
are available for both the recordings in CSL database whereas annotations for other features
are not reported.

We have selected a certain segment of the signal records where all the features of ABP
signal are prominent and can be annotated while the distorted portion of the signals are
discarded for analysis.

The accuracy (A), sensitivity (Se) and positive predictivity (PP) [45] of detector is given
by the relation mentioned in section 2.3.1. The formula for calculating the accuracy,
sensitivity and positive predictivity are given in equations 2.14, 2.15 and 2.16 respectively.
In addition to accuracy, sensitivity and positive predictivity, error is also calculated which
is given by equation —

w_)_x 100
(TP+FP) (3.5)

error =

Where TP stands for the number of true positives, #N and FP denote the number of false
negatives and the false positives. True positives are the beats those have been detected
correctly while false positives are the beats which are detected as beats but actually do not
exist. False negatives are the beats that are missed by the detector. The sensitivity depicts
the percentage of true beats to overall beats those were correctly detected by the algorithm.

The positive predictivity states the percentage of true beat detections to overall annotations.

The results of ABP feature extraction algorithm for each database (MGH/MF, Fantasia and
MIT-BIH polysmographic) are given separately in Table 3.8 to 3.10 individually.
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The results of overall performance of the algorithm on all the four database signals using
‘db4’ and ‘sym4’ wavelet is summarized in Table 3.11 and Table 3.12 respectively. It is
clear from Table 3.11 and Table 3.12 that analysis with ‘db4’ wavelet results in more false
detections for all the four components of ABP signal as compared to ‘sym4’ wavelet as a
result reducing positive predictivity for MGH/MF and fantasia database signals. In terms of
sensitivity, results by both the wavelets on both databases are comparable. On the contrary,
performance of ‘db4’ wavelet is better on MIT-BIH polysmographic database signal in
comparison to ‘sym4’ wavelet for all four parameters of performance evaluation such as
accuracy, sensitivity, positive predictivity and error analysis of the delineator. Performance

of both the wavelets is similar on CSL database signals.
3.3.2. ABP peak detection by energy analysis

The number of actual beats is counted from expert annotations for ECG signal of same
duration as the ABP signal under test and beat positions are validated manually. The
algorithm has been tested on the first nine records of MGH/MF waveform database. The
algorithm achieved an accuracy of 99.53% for ABP signal of mgh0O1 record whereas the
overall accuracy of detection is 98.05%. Out of total 4121 beats 4043 beats were correctly
detected. The algorithm reported 78 peaks missing whereas 01 peak is detected as false
beat. In addition to accuracy, two other measures of detector’s performance such as
sensitivity and positive predictivity are also studied. The algorithm reported sensitivity of

99.98% and positive predictive value of 98.14%.
3.3.3. CVP feature extraction

Almost all the CVP signals in MGH/MF waveform database represent abnormal
waveforms and it is not possible to identify the five phasic components manually. The
algorithm of CVP feature extraction is validated on two signals of MGH/MF waveform
database. CVP signals of MGH/MF waveform database are not annotated by the experts
and so far no other annotations from researchers are available for validation of the
algorithm. Therefore, the performance of the algorithm is tested manually for CVP signals
from record mgh007 and mgh0O08. The CVP signal from record mgh007 record has
classical hemodynamic waveforms whereas CVP signal from mgh008 record has been

affected by tricuspid regurgitation. The segments of CVP signal of mgh007 and mgh008
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record are chosen in which all components of CVP waveform could be manually identified.
The locations of ‘¢’ and ‘v’ waves are identified with respect to the available ECG signal.
The positive waves left to ECG peak positions are identified as ‘c’ waves whereas the
positive waves on the right side of ECG peak positions identified as ‘v’ waves. The
locations of ‘c’ and ‘v’ waves are easily identified with respect to ECG signal in mgh007
record whereas in mgh008, ECG signal is slightly shifted. The algorithm is applied on the
selected segments of mgh007 and mgh008 records. The results of individual waves of CVP
signals are presented in Table 3.13 and Table 3.14.
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Table 3.8 Performance of ABP feature extraction algorithm on MGH/MF waveform database

Selected Analysis using Analysis using
. Selected detail No of beats | No of beats db4 wavelet Sym4 wavelet
Signal amples coefficie ECG counted
samp nts annotations | manually TP | FN| FP | TP | FN | FP
PK | 72| 72 - 10 72 - 02
oS 72| 72 - 10 72 - 02
mgh002 | 395601:417200 | d6-d7 79 DN |72 1 72 - 09 7 - ol
DP | 72| 72 - - 72 - -
PK | 98 | 98 - 01 97 01 | 01
. 08§ 99 | 99 - 01 98 01 | 01
mgh006 | 203801:225400 | d6-d7 102 DN 1931 o3 - - 9% ol T o1
DP |98 | 98 - - 96 - -
PK |93 | 93 - 06 93 - 01
0S 93 | 93 - 07 93 - 02
mgh007 | 266701:288300 | d6-d7 93 DN 921 92 - 06 ) - o1
DP | 92| 89 03 - 87 - 05
PK | 81| 81 - 07 81 - 02
. . OS 81 | 81 - 08 81 - 03
mgh008 | 188301:209900 | d6-d7 82 DN 181 81 - 06 31 - o1
DP 81| 81 - 03 81 - -
PK {113} 113 - - 112 | 01 -
. OS 113 113 - - 113 - -
mgh009 | 154001:175600 | d6-d7 115 DN 131 112 T o - TR -
DP |113| 112 | 01 - 111 | 02 -
PK |105] 105 - 01 105 - -
. OS [105] 105 - 02 [ 105 - 01
mgh010 | 205201:226800 | d6-d7 105 DN 11051 104 - 0l 04 T o1 -
DP |105]| 92 13 - 93 12 -
PK (90| 90 - 03 90 - -
. 0s 89 | 89 - 04 89 - 01
mgh012 | 183401:205000 | d6-d7 91 DN 39 | 89 - 03 29 - -
DP |8 | 89 - 02 89 - -
PK 92| 92 - - 92 - 01
. [ON] 93 | 93 - - 93 - 01
mgh014 | 293701:315300 | dé6-d7 92 DN 192 | o1 ol - 02 - -
DP | 92| 84 08 - 86 06 -
PK |93 ]| 93 - 07 93 - -
. 08§ 921 92 - 09 92 - 02
mghO15 | 338701:360300 | d6-d7 94 DN 192 1 92 - 07 % - -
DP | 92| 92 - 02 92 - -
PK | 54| 54 - - 54 - 01
i d7-d8 0S 54| 54 - 01 53 01 -
mgh016 | 209501:231100 54 DN 1541 53 ol - 53 ol -
DP | 54| 53 01 - 53 01 -
Contd..
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Selected Analysis using db4) Analysis using
. Selected detail No of beats | No of beats wavelet Symd4 wavelet
Signal . ECG counted
samples coefficie tati I
ats annotations | manually TP N |FP | T | N | FP
PK (102| 97 01 05 | 101 01 -
. OS 1101| 98 - 04 | 101 - -
mgh018 1554: 23154 d6-d7 102 DN o1l 97 M 04 1 100 T 01 -
DP (101 97 - 04 | 100 | 01 -
PK 53 53 - - 53 - -
. (OX] 52 52 - 01 52 - -
mgh025 | 197501:219100 | d7-d8 52 DN T 52 55 n - 52 - -
DP 52 51 01 - 51 01 -
PK (97| 95 02 02 97 02 -
mgh026 . 0S 9 | 95 01 02 95 01 -
05501:27100 d6-d7 100 DN 196 [ 95 - oL 95 01 -
DP 9 | 95 - 01 95 01 -
PK 82 82 - 05 82 - 02
mgh027 . ) (O} 81 81 - 06 81 - 03
200501:222100 ] d6-d7 83 DN | 81 20 0l 06 31 - 02
DP 81 80 01 04 81 - 01
PK 68 68 - - 68 - -
. 0S 67 | 67 - 02 67 - 02
mgh028 | 156001:177600 | d7-d8 71 DN 1671 67 - A 67 - -
DP 67 | 67 - - 67 - -
PK 98 | 95 - 03 97 01 -
. OS 98 95 - 03 97 01 -
mgh029 15360‘1 1175200 | d6-d7 99 DN 1971 94 - 03 96 o1 -
DP 97 85 - 12 90 07 -
PK 81 81 - 19 81 - 06
o oS [82] & - J19] 82 - | o6
mgh030 | 153801:175400 | d6-d7 81 DN | 81 31 - 13 31 - 05
DP 81 81 - 05 81 - 02
PK |116]| 113 - 03 | 113 | 03 -
. OS |116] 114 - 02| 114 | 02 -
mgh031 | 368001:389600 | d6-d7 116 DN 11151 112 - B 112 1 03 -
DP |115} 112 - 03 | 112 | 03 -
PK 78 78 - 14 78 - 02
) 0S 791 79 - 13 79 - 02
mgh032 | 197201:218800 | d6-d7 79 DN |78 73 - 3 78 - 0l
DpP 78 78 - 12 78 - 01
PK 99 | 99 - - 99 - -
. 0S 99 | 99 - - 99 - -
mgh033 | 292901:314500  d6-d7 99 DN |98 08 - N 03 - -
DP 98 | 97 01 - 97 01 -
Contd..
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Selected Analysis using | Analysis using
. Selected detail No of beats | No of beats db4 wavelet Sym4 wavelet
Signal samples coefficie ECG counted
P ats annotations | manually TP |FN|TP| FN |TP|FN
PK | 59 59 - - 59 - 103
0S 58 58 - - 58 - 103
mgh034 | 206201:227800 | d7-d8 58 DN | 58 53 - - 58 103
DP | S8 58 - - 58 - -
PK | 49 48 01|07 49 - -
. OS | 48 47 101109 48 - |02
mgh035 45911:67511 d7-d8 49 DN | 48 27 1ol o7 28 - -
DP | 48 47 |01 )02 48 - -
MGH Total ECG | pK | 1873 | 1862 | 03 | 93 | 1866 | 09 | 42
signals. | Total samples annotations
for peaks OS | 1868 | 1858 | 03 |112| 1862 | 07 | 31
22 4,75200 1896 DN | 1860 | 1843 | 06 | 87 | 1848 | 12 | 15
DP | 1860 | 1810 | 31 | 50 | 1818 | 36 | 09
Table 3.8 concluded
Where -
e PK - Peaks

e  ON - Onsets
e DN - Dicrotic Notches
e  DP — Dicrotic Peaks
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Table 3.9 Performance of ABP feature extraction algorithm on Fantasia database

Selected Analysis using | Analysis using
. Selected detail No of beats | No of beats db4 wavelet Symd wavelet
Signal . ECG counted
samples coefficie .
ats annotations | manually | TP {FN| FP | TP | FN | FP
) PK 571 56 | 01| 03 57 - -
. 0OS 57| 56 | 01} 03 57 - -
2003 00001:15000 d7-d8 61 DN 57156 To1 1 02 56 101 -
DP 57| 56 | 01 | O1 55 | 02 -
PK 61 | 60 | 01 07 61 - 04
. (O} 62| 61 | 01| 07 62 - 04
2004 00001:15000 d6-d7 62 DN 1611 60 1 o1 | 06 6l - 03
DP 61 | 60 | 01 - 61 -+ 01
PK 76 | 76 - - 76 - -
) . : OS 77 | 77 - - 77 - -
2005 00001:15000 d6-d7 77 DN 26 1T 75 o1 - 75 T o1 -
DP 76 | 75 | 01 - 75 | 01 -
PK 59 | 59 - 01 54 | 05 -
) . i 0OS 59 | 59 - 01 55 | 04 -
2008 00001:15000 d6-d7 66 DN ss | 32 | 26 n 53 105 -
DP 58 | 32 - 13 53 [ 05 -
PK 53| 50 | 03 - 47 | 06 -
. (O} 54| 51 | 03 - 47 | 07 -
2009 00001:15000 q7-d8 63 DN 53 48 | 05 - 46 107 n
DP 53 | 48 | 05 - 46 | 07 -
PK 78 | 78 - - 78 - -
. 0S 78 | 78 - - 78 - -
2010 00001:15000 d6-d7 82 DN 78 [ 77 101 - 77 101 -
DP 78 | 77 | 01 - 77 | 01 -
PK 67 | 67 - - 67 - 01
. 0S 68 | 68 - - 68 - 01
f2y01 00001:15000 d6-d7 72 DN 167 1 66 101 - 67 - -
DP 67 | 65 | 02 - 63 - 04
PK 40 | 40 - 01 38 - 02
. (O} 40 | 40 - 02 39 - 01
2y02 00001:15000 d6-d7 45 DN 20 | 40 - - 37 - 03
DP 40} 39 | 01 - 37 - 03
PK 76 | 76 - 03 76 - -
. 0S 77 | 77 - 02 77 - -
f2y04 00001:15000 d6-d7 80 DN 76 1 76 - 02 75 101 -
DP 76 | 76 - - 73 | 03 -
PK 76 | 76 - 07 76 - -
. 0S 76 | 76 - 07 76 - -
f2y05 00001:15000 d6-d7 81 DN 76 1 76 - 06 75 101 -
DP 76 | 76 - 02 75 | 01 -
Contd...
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. Selected Analysis using Analysis using
. Selected detail No of beats | No of beats db4 wavelet Symd4 wavelet
Signal sambles coefficie ECG counted
P ats annotations | manually | TP | FN| FP | TP | FN | FP
“PK 62 62 - 01 62 - 03
. oS 62 62 - 02 62 - 04
f2y06 00001:15000 d6-d7 64 DN |62 ) - - ) - 02
DP 62 59 | 03 - 62 - -
PK 55 55 - 03 50 05 -
. 0S 55 55 - 04 51 04 -
2y07 00001 .150007 ds-dé 63 DN 35 55 - 02 49 06 -
DP 55 51 | 04 - 47 08 -
PK 63 63 - 04 61 02 -
. 0S 63 63 - 0s 62 01 -
f2y08 00001:15000 d6-d7 66 DN | 62 ) - 04 50 02 -
DP 62 62 - - 57 05 -
PK 61 61 - 03 61 - 04
. 0S 61 61 - 03 61 - 04
f2y10 00001:15000 d6-d7 67 N | 60 0 - 03 60 - 04
DP 60 60 - 02 60 - 02
Fantasia Total ECG | pK | 884 (879 | 05 | 33 | 864 | 18 | 14
signals Total samples annotations
for peaks OS ) 889 (884 | 05 | 36 | 872 | 16 13
‘ DN | 881 [ 845 36 | 25 [ 853 | 25 | 12
14 2,10,000 949 DP | 881 | 836 | 18 | 18 | 841 | 33 06

Table 3.9 concluded
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Table 3.10 Performance of ABP feature extraction algorithm on MIT-BIH polysmographic database

Selected No of Analysis using | Analysis using
Sienal Selected detail Nogél&eats beats db4 wavelet Sym4 wavelet
g samples coefficie annotations counted
nts manually TP | FN [ FP | TP | FN | FP
PK [ 66 | 65| 01 - 63 | 03 -
) OS | 65164 | 01 - 62 [ 03 -
slp0lam 00001:15000 dé6-d7 67 DN |65 (64 [ o1 - 2 1 03 -
DP | 65| 64 | 01 - 62 | 03 -
PK | 61 | 61 - 01 | 61 - 05
slp01bm . 0S | 61 | 61 - - 61 - 04
00001:15000 dé6-d7 60 DN 60 160 T - 1011 60 - 05
DP [ 60 | 60 [ - 01 | 60 - 05
PK [90 |90 ] - 01} 88 | 02 -
. OS [ 89 {8 [ - 01| 87 | 02 -
slp02am 00001:15000 deé-d7 93 DN 189 (80 | - ol 87 1 02 -
DP |89 |8 ]| - 01| 87 | 02 -
PK [ 79 | 79[ - - 77 | 02 -
. OS {78 | 78| - - 76 | 02 -
slp02bm 00001:15000 d6-d7 79 DN |78 [ 78 - - 26 T 02 -
DP |78 | 78 - - 76 | 02 -
PK |72 |72 - - 72 - -
OS |73 (71| 02| - 71 | ‘02 -
slp03m 00001:15000 d6-d7 73 DN 71 71 - _ 71 - _
DP |71 | 70 | 01 - 71 - -
PK [ 75| 74| 01 - 73 | 02 | 01
OsS {7574 01 - 75 - -
slp04m 00001:15000 d6-d7 74 DN 174 (73 1 01 - 73 101 -
DP |74 | 73 | 01 - 73 | 01 -
PK | 68 | 65| 03 - 67 | 0l -
ipl4 00001:15000 | d6-d7 68 0S 168,661 02 | - &7 Ol ~
spiam ' : DN |67 64|03 | - 66| 01| -
DP [ 67 |63 | 04 | - 64 | 03 -
PK {87 | 84 | 03 - 84 | 03 -
slpl16m . OS [87 (85 02 | - 85 | 02 -
00001:15000 d6-d7 68 DN | 86 183 | 03 . 83 | 03 .
DP | 8 | 83| 03 - 83 | 03 -
PK {71 |67 | 04 | - 69 | 02 -
slp32m . OS [71 (67| 04 | - 70 | 01 -
00001:15000 d6-d7 71 DN |70 66 | 02 | - 68 | 02 i
DP | 70 | 65| 05 - 68 | 02 -
PK | 68 | 68 | - - 67 | 01 -
OS [ 68 |68 - - 68 - -
slp41lm 00001:15000 de-d7 69 DN 167 1371 30 | - 56 | o1 i
DP [ 67 | 37| 30 | 13| 65 | 02 -
Contd..
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Selected

Analysis using

Analysis using

No of beats | No of beats
i db4 let Sym4 let
Signal S::;c;ee: c:::; lclie ECG counted wayee yo o waree
p ats annotations | manually TP |FN| FP | TP |[FN | FP
PK | 81 78 |03 | 01 79 [ 02 ] 01
slp45m . 0S 81 79 | 02| 01 81 - -
00001:15000 d6-d7 83 DN | 80 78 102 - 79 101 -
DP | 80 78 | 02 - 77 | 03 -
PK| 79 79 - - 77 [ 02 ] 01
slp60m . 0S 79 79 - 01 78 | 01 01
00001:15000 d6-d7 80 DN | 78 78 - - 77 n n
DP | 78 78 - - 77 - -
PK | 72 72 - 01 70 | 02 -
slp61m . 0S 72 72 - 02 71 | 01 -
00001:15000 d6-d7 73 DN | 71 71 - ol 9 102 -
DP | 71 71 - 01 69 | 02 -
PK | 73 73 - - 69 | 04 -
slp66m . 0S 74 74 - - 70 | 04 -
00001:15000 d6-d7 74 BN | 72 7 - - 68 104 -
DP | 72 70 | 02 - 68 | 04 -
PK | 68 66 | 02 - 67 | 01 -
sp67xm . i 0S| 69 67 | 02 - 68 | 01 -
00001:15000 d6-d7 69 DN | 68 65 103 n 66 102 -
DP | 68 65 | 03 - 66 | 02 -
Total ECG | PK | 1110 | 1093 | 17 | 04 | 1083 | 27 | 08
Signals | Total samples annotations
for peaks OS | 1110 | 1094 | 16 | 05 [ 1090 | 20 | 05
DN | 1096 | 1049 | 47 [ 03 | 1071 | 24 | 05
15 2,25,000 1101 DP | 1096 | 1044 | 52 | 16 [ 1066 | 29 | 05

Table 3.10 concluded
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Table 3.11 Overall performance of the ABP feature extraction algorithm with db4 wavelet

Manual

ECG . A Se PP Error
Database Features annotations Atli]::sta TP | FN | FP (%) (%) (%) (%)
P W1 136 [1sss |03 | 11 | osse | ooms | oast | 5o
(;/;Gsm) 1())1?1 1860 1843 | 06 | 2 | 95.00 | 99.67 | 95.49 438
DP 1860 1810 | 31 | 87 | 95.64 | 98.31 | 97.31 435

50
PK 949 884 879 | 05 | 33 | 95.70 | 99.43 | 96.38 | 4.1
Fantasia (O} 889 884 [ 05 | 36 | 95.38 | 99.43 | 96.08 445
(14 Signals) DN 881 845 | 36 | 25 | 93.07 | 95.91 | 97.12 6.9
. DP 881 836 | 18 | 18 | 9591 | 97.89 | 97.89 4.21
MIT-BIH PK 1101 1110 1093 | 17 | 04 | 98.10 | 98.46 | 99.63 1.91
Polysmograp (O 1110 1094 | 16 | 05 | 98.10 | 98.55 | 99.54 1.91
hic DN 1096 1049 ) 47 | 03 | 99.53 ] 95.71 | 99.71 4.75
(15 Signals) DpP 1096 1044 | 52 | 16 | 93.79 | 95.25 | 98.49 6.41
CSL PK M Expert 602 602 - - 100 100 100 0.00
(01 Signal) oS Aboy 602 602 - - 100 100 100 0.00
(1:50000) DN 602 602 601 600 | 01 | 01 | 99.67 | 99.84 | 99.84 0.34
samples DP 601 600 | 01 | 01 | 99.67 | 99.84 | 99.84 0.34

Table 3.12 Overall performance of the ABP feature extraction algorithm with sym4 wavelet

Manual
ECG A Se PP Error
Database Features annotations An:::nti TP FN | FP (%) (%) (%) %)
PK 1873 1866 | 09 42 | 97.27 |1 99.52 | 97.79 | 2.67
MGH/MF os 1896 1868 1862 | 07 31 | 97.96 | 99.62 | 98.36 | 2.007
(22 Signals) DN 1860 1848 | 12 15 | 98.54 | 99.35 | 99.19 | 1.449
DP 1860 1818 | 36 09 | 97.58 | 98.05 | 9950 | 2.46
PK 884 864 18 14 | 96.38 | 97.95 | 98.40 | 3.64
Fantasia oS 949 889 872 16 13 | 96.73 | 98.19 | 98.53 | 3.27
(14 Signals) DN 881 853 25 12 | 96.93 | 97.15 | 98.61 | 3.12
DP 881 841 33 06 | 95.57 | 96.23 | 99.29 4.6
MIT-BIH PK 1110 1083 | 27 08 | 96.84 | 97.56 | 97.56 3.2
Polysmograp ()] 1101 1110 1090 | 20 05 | 97.74 | 98.19 | 99.54 | 2.28
hic DN 1096 1071 | 24 05 | 97.35 | 97.80 | 99.53 | 2.69
(15 Signals) DP 1096 1066 | 29 05 | 96.89 | 97.35 | 99.53 | 3.17
CSL PK M Expert 602 602 - - 100 100 100 0.00
(01 Signal) oS Aboy 602 602 - - 100 100 100 0.00
(1:50000) DN 602 602 601 600 01 01 | 99.67 | 99.84 | 99.84 | 0.34
samples DP 601 600 01 01 | 99.67 | 99.84 | 99.84 | 0.34
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Table 3.13 Performance of CVP feature extraction algorithm

Analysis using db4
MGH/MF Selected No of beats wavelet
Database detail counted
Signal No. | coefficients | manually TP MP FP
a 142 123 19 16
c 142 126 15 16
Mgh007 d6-d7 X 142 131 11 11
\ 142 121 02 21
y 142 115 27 15
a 59 54 05 09
c 59 52 07 11
Mgh008 d6-d7 X 59 57 02 06
v 59 50 09 10
y 59 48 11 12

Table 3.14 Summary of results for CVP waveform components

CvpP Manual True wave | Missed waves | False wave | Accuracy | Sensitivity Positive
waves | Annotations detected | detection detection (%) (%) predictivity(%)
a 201 177 24 25 75.62 88.05 87.62
c 201 178 22 27 75.62 89 86.82
X 201 188 13 17 85.07 93.53 91.70
v 201 171 11 31 79.10 93.95 84.65
y 201 163 38 27 67.66 81.09 85.78
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CHAPTER

Modeling and Synthesis of ECG using
System Identification Technique

4.0. Introduction

The human physiological processes are naturally interesting phenomenon when they
produce biomedical signals that describe their nature and actions. These signals may be in
the form of secretion of hormones, electrical in the form of potential or current, and
physical in the form of pressure or temperature etc. One of the most common biomedical
signals is the Electrocardiogram (ECG). Although the electro-physiological phenomenon of
the heart is well known and mostly assessed by cardiologists with the help of ECG, there
are few other biomedical signals generated by the blood circulatory system such as ABP,
CVP, PAP signals etc., those provide sufficient understanding in critical and complex heart
situations. If a system is well known, it is possible to assess the system dynamics by

studying the corresponding input-output sfgnals.

Experienced physicians can outline the cardiac condition by the examination of
physiological signals such as ECG, ABP and CVP of a patient. As stated in section 1.7,
ABP, CVP and ECG signals represent the heart function and possess sufficient
correspondence among their constituent waveforms components. Therefore, it is possible to
synthesize one signal from the other two signals if all the signals are synchronously
sampled and acquired from the same patient. In intensive care units, where these signals are
monitored continuously, there may be instances when actual ECG signal is missed or
corrupted due to errors in sensors or due to external interruption. These interruptions in
actual signals result in a great difficulty for precise diagnosis. At times, acquisition of ECG
may not be possible due to surgical dressing of patients. So the synthesis of ECG using
ABP and CVP signals can be used to supplement the information when actual ECG is

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |171

either missing or corrupted. Also, a single lead ECG information can be expanded to
multilead information using the information derived from other cardiovascular signals such
as ABP, CVP etc.

A combined investigation on ECG, CVP and ABP signals have prognostic significance as
well as help to pinpoint the offending lesion when multiple obstructions are present and can

thus be used to refine the treatment approach.

Although ECG, ABP and CVP are believed to be faithful independent signatures of the
cardiac system, many unseen and hidden correlating facts of the relevant signals are yet to
be revealed. This has led to a new area of cardiovascular research - the ‘modeling of the
heart’. A model is used to replicate a system in order to give best possible results in the
same way as the original system [161]. Of late the cardiovascular system has been modeled
by researchers in various ways — mathematical modeling, parametric modeling, knowledge
based modeling and so on. Mathematical models of heart have proved useful in

understanding the heart from different point of view [162].

There are various techniques applied for modeling of ECG as stated in section 1.9.12. So
far in the work, [113-131], authors have suggested ECG generation that mimics real ECGs.
In physionet challenge 2010 [132], reconstruction of biomedical signals using ANN [96-99,
133] and wavelet based approach [134] has been suggested. But the main drawback of
these approaches is that missing ECG signal reconstruction in one lead needs at least ECG

of another lead as input [96-99, 133].

Although a considerable amount of research has been carried out for ECG reconstruction
and synthesis, however, the techniques based on measured ABP and CVP signals has not
been reported literature. Synthesis of ECG from measured ABP and CVP signal has been
shown to be a potential modeling approach undertaken in this research. This approach to
ECG modeling is inspired in view of the fact that there are sufficient correlation of features
of ABP and CVP signals to that of ECGs and efficacy of system identification technique

that encompasses a unique input — output relationship.

Apart from the modeling techniques described above, there is a strong tool for modeling of

dynamic systems — the system identification. System Identification is the field of building
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mathematical models of dynamic system based on measured data [72]. A model can be
used to explain the system completely using input-output relationship. It is achieved by
adjusting the parameters of a developed model until the model output best matches with the
measured output System identification techniques can exemplify the physiologic
mechanisms by studying measured phenomenological input -output data of a system with
less physical insight. The study involves conversion of measured data to the mathematical
representation of a system including analysis and transformation of developed model. This
method can also be used for the prediction of future output by means of the developed

model.

System identification helps in simulation of the output of a system for a given input and
analyzes the system's response. System identification has been used in wide range of linear
and nonlinear models such as linear non-parametric models, polynomial models, state-
space models and non-linear ARX structures etc. The nonlinear system identification of

dynamical systems involves structure selection, input sequence selection, noise modeling,

parameter estimation and validation of model using independent dataset.

For physiological interpretation of the ECG generation method, it can be perceived that the
generated ECG from the depolarization and repolarization of the potential waves in atria
and ventricles stimulate the ventricle and aorta to produce pressure signals. In this chapter,
we present a system identification based approach for modeling of ECG using ABP and
CVP signals by autoregressive model using least square method and state space model

using prediction error minimization (PEM) and subspace algorithms.

This approach for modeling and synthesis of ECG has been applied on 7 records — mgh003,
mgh004, mgh005, mgh007, mgh008, mgh029 and mgh031 of MGH/MF waveform
database where three signals (ABP, CVP and ECG) are available for system identification.
The inputs to the model are simultaneously acquired ABP and CVP signals and synthesized
output is ECG signal. The input and output signals of the model are preprocessed before
testing and validation of the model. The model generates two transfer functions related to
each input signal. Initially, a higher order model is obtained which is reduced to a
significant order. The accuracy of synthesized ECG with measured ECG is given in terms

of best fit percentage. Further, the modeled transfer functions are analyzed for stability
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using pole zero plots and step responses. An interesting inference has been drawn to relate
the ECG condition (i.e. normal or having a PVC or SVPB (Supraventricular premature
beats)) to the stability of the model transfer function. A stable transfer function is obtained
if the ECG cycles of the model are normal whereas an unstable transfer function is obtained
for an abnormal ECG signal. The abnormal cycles of ECG comprise of PVC and SVPB.
A supraventricular premature beat is an ectopic beat that appears in the upper chambers
such as atrium, atrioventricular node or atrioventricular junction in contrast to rhythms
arising in the ventricles themselves. In community prospective studies, atrial premature
complexes are not related to sudden death, as are ventricular premature beats in coronary
disease. Normal and SVPB annotated by cardiologist in ECG II signal of mgh004 record
are shown in Figure 4.1. The normal beats are shown by a dot () sign whereas the

supraventricular beats are labeled as *S.

: - 3
ECG it 1 s ) ,r‘!éﬁl&r ‘v, Sy i\ ,a—iL 'L A her 4L = A Faa P>

§
) 1k %
(i intemvals: 0.2 e 3 mV {ECG)

Figure 4.1 Supraventricular premature beats in ECG (lead II) signal of mgh004 record [139]

4.1. Dynamic cardiovascular model

We have used electronic recordings database (MGH/MF) of hemodynamic and
electrocardiographic waveforms of patients in critical care units. The typical recordings of
our interest include - ECG (lead-II), ABP and CVP signals with a sampling frequency of
360 Hz. The baseline shift and gain of each record is used for converting the signals to real
engineering unit using equation 3.1. Table 4.1 shows an example of mgh004 record with

ABP, CVP and ECG II signals of a patient that comprises of normal, PVC and SVPB.
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Table 4.1. Description of record mgh004 of MGH/MF waveform database [139]

Record Signals Gain Base Units
ECG lead I 1225 -964 mV
mgh004 ABP 11.98 -1213 mm Hg
CVP 19.94 -1999 mm Hg

The input-output sample datasets are selected such that all three signals — ABP, CVP and
ECG are available. There are various model structures which can be used such as -
autoregressive model, autoregressive moving average models, state space models etc which
are discussed in detail in section 1.9.7. In addition to these models, transfer function models
are well suited for single input and single output or multiple input and single output
systems. We have used autoregressive and state space models for ECG modeling and
synthesis. Among these model structures, it is possible to acquire a reduced order model
directly using subspace method however we have opted model order reduction to a
significant order for all type of models which is useful to examine the performance of

model at each order level.

Considering the cardiac system as a state space model, we can take a two-input/one-output

model with the following notations-

Input1=u1 =PABP 4.1)
Input 2= U2 = PCVP (42)
Output 1 = = VECG 4.3)

The general form of discrete state-space model can be written as-

x(k +1) = Ax(k) + Bu(k) 4.4)

y(k +1) = Cx(k) + Du(k) (4.5)

Where, x is the state, u is the input and y is the output; 4 and C are state matrices; B and D
are the output matrices. The state-space representation of the two-input/single-output

cardiac model can be written as —

x1(k+1) ailr a2 a3 a4 | [x1(6) b1 b12
xk+D|_tax1 ax a3 an||xM®| |21 b2 [PABP(k)}
x3(k+1)| |a31 a32 a33 a34 | |x3(k) b31 b32 | Pevp (k)
x4(k+1) 41 a42 a43 aq4] {x4(K)| |ba1 ba3

(4.6)

Q

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page |175

x, (k)

VECG(k+1)=[cl ¢ G 04] izzg + [dl dz]liiABng:l 4.7)
3 cvp
x, (k)

Considering the cardiac system as two distinct discrete ARX models relating to each input,

equivalent ARX models can be written as -
VieceD) + a, Vi (2) + ay Vi (3).nee. ay Vicg(k) = by Ppp(1) + e b, Pzp(m) (4.8)
VeiccD) +a, Vg (2) + ay Ve (3).eee.. @ Vecg (k) = b, Popp(D) + . b, Pp(m) (4.9)

Where k and m are sampling instants of ECG and CVP/ABP respectively, however, in our
case we have taken k = m.

Before system identification of the parametric models and simulation, ABP, CVP and ECG
signals in the input-output datasets are preprocessed by 20 point moving average filter to
reduce the noise and preserve a sharp step response. Then the offset levels in each dataset
are removed to bring the signal to equilibrium by subtracting the offsets of input and output
signals from the actual input-output values using equations 1.91, 1.92.

The offset nullification operation removes the linear trend in the data and thus helps to
estimate the non-linear system near to the point of linearization in the selected operating
range. A common flowchart of system identification based modeling using PEM and
subspace method is shown in Figure 4.2. The structure of state space model is selected
depending upon the number of inputs and outputs in the test dataset. Initially a 6" order
state space model is obtained. This estimated higher order model captures most of the
information in the data. The model reduction step then extracts the most significant states
of the model. The model order can be reduced by the visual examination of poles and zeros
of estimated state space model or the response to stimulated inputs. Poles and zeros that
practically cancel each other are due to over parameterization in the high-order model
whereas the poles and zeros that do not overlap are assumed to correspond to actual system

dynamics.

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques 4



Page [176

ABP, CVP Signals

? Preprocessing
(Validation data input) |

Offset
nullification

- Offset State Space Reduced Model Model output Best Fit %

ABP, CVP Signals Offset l(l?g::’:ion
(Measured data input) nullification _—

Preprocessing

Preprocessing

ECG Signal

ECG Signal ; '
(Validation data input)

(Measured data output)

Figure 4.2. Flow chart of ECG modeling using system identification

Modeling of ECG from ABP and CVP signals in performed for normal, PVC and supra-
ventricular premature beats (SVPB) as stated below —

4.1.1. Modeling with normal data

In this part, a state space model of ECG has been simulated using expert annotated data of a
normal subject. The segments of ABP and CVP signals those represent a normal sinus
cycle of ECG are applied as input to the model whereas the corresponding normal ECG
data are applied as output for simulating the model. Using the record mgh004 with normal

data, the following 4" order state space model is obtained applying subspace algorithm and

model order reduction with an error (£) value of 6.59x107°.

x(k+1) 09908  0.16379 -0.015092 -0.0011223] | *1(k) -0.18387 13201
xp(k+1)|_| 017269 091385 -0.17428 -0.032923 | | x2(k) |, | 047547 -5.832 || Papp(k)
x3(k+1)|T|-0.022546 0.078189 0.85418  —0.39799 | | x5(k) 0.65775  =10.09 || ppo(k)
xg(k+1)| | 0040978 0013527 046235 022968 | |x,(k)| [-0070118 -2.1175
(4.10)
Xy (k)
Vecg(k+1)=[-2.0502 -0.16245 0.015888 0.0010386] x3 (k) (4.11)
ECG : : : : x3(k) '
x4(k)

e
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Where, x,u, yhave the same meaning as defined in equation (4.1 — 4.5). In the study of

linear time-invariant systems, it is of great advantage to use the Laplace transform and
z-transform techniques [163]. The state space equation represented in equations (4.10-4.11)
is the matrix of two transfer functions relating each input to output signal. These transfer
functions are denoted és Vece! Pagp and Vece! Peove.

The obtained transfer functions for modeling of normal beats in z-domain are given by —
Vece! Pasp: (

Vicg  037234(z-1419) (z2 -2.142z +1.154
Gy (z)=—ECC - (4.12)
Pagp (22 —1.929z+0.9469) (z> —1.483z +0.8173)

Vece! Pcyp:

_Vpcg _ 0.86292(z+0.1587 ) (z2 —2.084z+1.113) (4.13)

G)=7""==— 5
cvp  (z° -1.873z+0912)(z° -1.573z+0.8515)

Corresponding transfer function in Laplace domain is given by —

Vece! Pagp:
Gusy=VEce 2148545 (s —1144) (s> ~53275+1481)
 (5)=—ECC -
Pagp (57 +1965s+2413)(s? +72625+49410) (4.14)
Veca! Peve:
G, (s) = VECG _ ~1521646 (5+1048) (s> ~38595+3580)
5 (s) = 250 =
Peyp  (s? +33.155+5325) (s> +57.855 +40040) (4.15)

ECG and ABP are the functions of time (t). If we represent ECG as V¢ and ABP as P, then
as time (t) increases the amplitude of both ECG and ABP change, therefore the differential

equation corresponding to transfer function (4.14) for input ABP to output ECG is given

as . -
3 2 3 2
Ca> +9227%7E | 5395097YE L 114x100 PE 112318V = 214 8574 _ 360247 FA 11623100 LA _363x107 Py
at d d dt e P dt

(4.16)
Similarly, differential equation corresponding to transfer function (4.15) for input CVP to

output ECG is given as —
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4 3 2 3 2
43P, P
Ve 908 E L472x10* FVE 1163108 DVE 42.13x10%5 = -152.16 22C 4 15359072C. _5.6x105 C._5 75108 P
dr* dr dr? dt ar? dr? dt

4.17)
From equations (4.16) & (4.17), it is clear that all the coefficients in L.H.S of the equation
are present and have the positive values. Therefore, according to Routh Hurwitz stability
criterion described in section 1.9.10(c), it can be concluded that model of normal heart is
stable. Further, stability analysis of this model is done using pole zero plots and step

responses described in section 4.2.2.
4.1.2. Modeling with PVC and SVPB beats

Like any other arrhythmia condition of the heart, PVC and SVPB are also an indication of
an abnormal heart conditions. We have chosen expert annotated ECG signals having PVC

and SVPB for modeling an abnormal heart condition in state space domain.
4.1.2.1. Modeling with PVC beat

Using the PVC beat of mgh004, the following 4™ order state space model is obtained using

subspace algorithm and model order reduction with an error (£) value of 1.288x1076—

x)(k+1) 098943 -0.11671 0.006669 0.0001612] | X1(K) | [-0.32163 0.5006
xk+D|_| 011924 098444 -0.10416 0.0063682| |x2(k)|,| ~6.8394 508592 || Pasp(k)
x3(k+1)| 7| 0.0003631 0.089774 091861  0.15804 | |x;(k)|"| =489 34267 || p. ()
xg(k+1)| [0.055251 -0.061119 —0.58496 —0.077513| |y, (k)| | 28026 -19582

(4.18)
x1(k)
Vico(k+1)=[3.5453 —0.19165 0.011216 0.00034256 ] 283 4.19)
x4 (k)
Vece/ Page:
Gy ()= VECG _ _093508(z- 05546 (22 =197z +1.02)
1 P 4pp (z2 -1.952+0.9924) (z2 —1.808z +1.023) (4.20)
Vece! Pcyvp:
Gy 2y = VECG _ 0419412 =09078) (22 ~1.881z +1.08)
2 Pop (22 -19492+09919 (22 ~1.808z+1.023) 4.21)
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Corresponding transfer functions in Laplace domain are given by

Vece! Pasp:
Gy(s) = VECG. _ 2716585(5+2029) (s —7.2655+6431)
1 = =
Papp (5% +2.755+5568)(s* —8.207s +28080) (4.22)
Vece! Pcve:
G (5) = VECG 15027215 +3467) (s2 -27965+25170)
2 = =
Peyp (s +3.0815+5612) (s> —8.207s +28080) (4.23)

Therefore, the differential equation corresponding to transfer function (4.22) for input ABP
to output ECG in case of modeling of PVC beat is given by —

a*v, a, a%v, av, d3P d*P
E —545—F -33625—E -45696—L +1.56x10°V = 2716 —2 - 531464
dt dr dr? dt dr dr?

+4957ﬂ+1.30><106PA
dt
(4.24)
Similarly, differential equation corresponding to transfer function (4.23) for input CVP to
output ECG in case of modeling of PVC beat is given by —

d*v v, axv.
E _s5120="E 133667-—£ +4o457§;—5
t

+1.57x108 ¥ = 150 2
dr* ar dr?

3 2
The _10089fc _3.63x108 5P£+1.31x108PC
dr? dr dt

(4.25)
From equation (4.24) and equation (4.25), it is clear that all coefficients in L.H.S. of the
equation are present, but in equation (4.24), three coefficients are negative and similarly in
equation (4.25), one coefficient is negative, therefore, following the same criteria of

stability, it can be-stated that model of abnormal heart with PVC beat is unstable.
4.1.2.2. Modeling with SVPB

Using the SVPB of mgh004, the following 4™ order state space model using subspace

algorithm is obtained after model order reduction with an error (£) value of

1.00924 x107° -

x (k+1) 095402 —0.15783 0.004918 0.0004241| xi(k) | [-0.34027 0.12906
xp(k+D|_| 01585  1.0041 -0.066568 —0.00224( x2(k)|,|-0.66074 0.072927| Panp(k)
x3(k+1)| 7| -0.01944 0.092555 0.80828 —0.25101(|x3(k)|"| —0.2206  0.5472 || p.,(k)
xy(k+1)| (000511 -0.00336 0.14092  0.59891 | x, (k) 3.9743 -0.15361

(4.26)
e e S —————————
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xy (k)
Veco(k+1)=[1.6866 —0.12317 0.004007 13222105 ’22’8 (4.27)
x4(k)

The obtained transfer functions for modeling of SVPB beats in z-domain are given by —
Vece/ Pagp :

G,(z)=VECG __ 0.708(-3706) (z% -2.12:+1.126)
Pagp (22 -1.8862+09232)(z2 -1.7832+1.187) 428)

Vece! Peve:

Gy (2) = VECG _ —0:46924(2 - 3.106) (22 -2.0012+1.023)
2 = =
Pcyp (22 —1.8712+0.9087) (z2 —1.783z +1.187) (4.29)

Corresponding transfer functions in Laplace domain are given by

Vece! Pagp:
Gy (s) = VECG. __652065(s - 396.4) (s> — 4327 5 +6989)
1 - =
Papp (s +28.78s+5043)(s? —61.685+49500) (4.30)
Vece! Peyvp:
Vecg  —3584381(s—357.8)(s? —8.405 +2801)
Gy(s)= =

Pcyp (52 +34.455+5180) (s% — 61685 +49500) (4.31)

Therefore, the differential equation corresponding for transfer function (4.30) for input

ABP to output ECG in case of modeling of SVPB beat is given by -

3 2 3 2
v,
d4l;E ~21239YE 53555 8VE 38106 VE 4138x100 v = 65274 _286693% T4 11.18x107 YA _a36168 P,
d df dr* dt dr d dt

(4.32)
Similarly, the differential equation corresponding to transfer function (4.31) for input CVP
to output ECG in case of modeling of SVPB beat is given by —

3 2
d'Vg 27234 VE 430554 VE

dr
ar ar dr

-1.002x1¢° P,
dt

3 2
P
#1381 PE 2 56x167; = ~3.58x168 LEE _131x10° FFC 43005
dt dr dar

(4.33)
Similarly, in case of modeling with SVPB beat, following the equations (4.32) and (4.33), it

is evident that the model of abnormal heart in case of SVPB is also unstable.
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4.2. Results and validation

The modeling approach is applied on the seven records - mgh003, mgh004, mgh005,
mgh007, mgh008, mgh029 and mgh031 of MGH/MF waveform database. System
identification tries to approximate the model by minimizing the error. This error (E) is a
measure of model quality obtained by simulating the model by different inputs. The error

( E) is given by the following relation —

d
1+—
E=v|— N
d

l_ﬁ (4.34)

Where, ‘V’ is the loss function, ‘d’ denotes the number of estimated parameters and ‘N’ is
the number of values in the estimated dataset. The errors (¢) between the measured and the

modeled outputs are weighed at specific frequencies (4,) during the minimization of the

following loss function which is given by —

Loss Function (V)= %; ¢;*
g (4.35)
The obtained 4% order reduced model is validated using other cycles of ABP and CVP

signals of the same patient.

4.2.1. Accuracy of synthesized ECG cycles

A medical application algorithm for disease diagnosis needs full proof detection criterion
which will ensure that the identification algorithm provides an acceptance level of
confidence to doctors. An universally accepted metric is used to compare the synthesized

and actual signals given by ‘Best fit’ in percentage (%) —

Best Fit (%) = (1 - ‘L{
y-y

] x 100 (4.36)

Where,
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y = Estimated model output

y = Measured output

¥y = Mean of measured output
It is observed that a better fit percentage is obtained when a developed ABP/CVP of normal
heart model is validated using normal dataset. On the other hand,, the fit percentage goes
down when the model of a normal heart is validated with abnormal beat (PVC/SVPB).
Similarly, a model of an abnormal heart results a better fit percentage if it is validated by

abnormal dataset.

First , we have used seven number of records for developing transfer function models using
the signals — ABP, CVP and ECG. From each record, both normal and abnormal cycles

were used for modeling as stated in Table 4.2 —

Table 4.2. Records used for modeling and validation

Record No. | No of model of normal cycle No of model of abnormal cycle
Model | Validation | Validation | Model | Validation | Validation
normal abnormal normal abnormal
mgh003 1 2 1 1 x 1 (PVC)
mgh004 1 1 1 (PVO) 1 (PVQO) x 1 (PVO)
1 (SVPB) | 1(SVPB) x 1 (SVPB)
mgh005 1 3 X X x x
mgh007 1 3 x x x x
mgh008 1 3 x x x x
mgh029 1 5 x x x x
mgh031 1 16 1 (PVC) x x X

The estimated transfer functions of normal and abnormal models are shown in Table 4.3.
The synthesized ECG using normal and abnormal model of mgh004 are shown in

Figure 4.3 (a-e).

The best fit for synthesized ECG cycles for a record is defined as the average of best fit of
each synthesized cycle. The average best fit obtained for five cycles of mgh029 record and
seventeen cycles of mgh031 record are 75.3557% and 63.3793% respectively. Using this
method any length of ECG signal can be generated if corresponding ABP and CVP signals
of same duration are known. Synthesized ECG cycles for records mg029 and mgh031 are

shown in Figure 4.4 (a-b) respectively.
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Figure 4.3 Original and synthesized ECG for mgh004 record, modeling with normal and validating
with (a) normal (b) PVC (c) SVPB, (d) modeling with PVC and testing with PVC and (e) modeling with
SVB and testing with SVPB
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Figure 4.4 Original and synthesized ECG for (a) mgh029 record (5 cycles) and
(b) mgh031 record (17 cycles)
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Table 4.3 Results of ECG modeling by subspace method

Record Modeling Validation
No Beat Transfer function (z-domain) Stability | Beat Transfer function (z-domain) Fit (%) Stability
type Type
Veca! Pagp:
Gae) =379 12=2787) (22 20652 +1075)
(22 -14382+05382) (2 -1 7772409132
Normal 63 6651 Stable
Vece! Peve:
Ga(z)= =0 703862 +04169 (22 -2139+1165)
(22 <1753 240819) (22 -1 7732+09137)
Vec/ Pase:
Vece! Page: )
2 ~60556(z~1021)(z2 -2 3792 +1 482)
~17594(z—1042) (2% -222+1 489) Gs(2)=— .
G =— 3 086 (z° -1811z+08561)(z“ —1 683 +09374)
Normal (z° ~1805z+08675)(z“ —1652z+ S Stable Normal Vecd Peve: 61 5860 Stable
Veea! Peve: Ge(2)= ~0063075 (z+1306 )(z-1081)(z+03207)
Gy(z)=—=>2181(2=1093) (% -1427:+08157) (22 =18572+08924) (22 -1 676 2+09201)
(2 -18522+09038) (22 -1 697 +0 8633)
Mgh003 VECG/ P ABP*
098282(z~09966) (2% ~2 121z+1 129)
(2-1008) (-0 7104)(z% -2 022z +1 046)
PVC VECG/ Pcyp: -5355 Unstable
Ga()= 0045032 (z—3416 )(z2 ~1997 2+1001)
(z—1008 ) (z-08779 (2 -2022 z+1 046)
Vece! Pasp: Vece! Pasp:
021313(z+2 779) (22 ~2059z +1 062) 58797(z—0344) (22 —1 852+08962)
@9(2)= 3 Cne=— >
(z-1053) (z—04555(z= -2 17%+119) (2©-2056z+1083) (z° -0 9401z +1 025)
PVC | Ve Peve: Unstable PVC | Vgeo! Peve: 610222 Unstable
064683(z—1192)(z% - 2028z +1031) ~0029921 (z+0 5035 ) (% ~1 6772 +0 8035)
G 0(2) = o) Gl X2)=
(z-1053) (z-09027) (z° =2 173z +119) (22 -2056 z+1083) (2 ~09401 2 +1025)
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Vece! Pase:
Ga(2)=— 033927 (z - 5.77) (z - 0.8924)(z — 0.6722)
T2 2_
Nowat | (2 ~1.8082+0879) (z° ~1.5232+0.7038) | 00 | o0
EcG! Fevps
Ga(y 223706 (21687) (2-1059)(:-05241)
Vece! Pagp: (22 -1807 z+087)(z% -1 728 z+0 8502 )
61 ()= _O3TAC=1419 (22 2142241 154) Vece! Pagp:
(22 -19292+09469) (22 -1 4832+0 8173 Gs(e) = 0084572 -1.052) (z% ~1.872+0.8905)
Vece! Peve: e (z-0.9763) (z—1.57) (22 ~1.97z+0.9777) Jors | Unsay
S
Normal Gole)= (:286292(z+0 1587) (2222 —-2084z+1113 Stable Veco Pevet nstable
(7~ 18732+0912) (=" -1 573 +08513 () = = 0014666 ~9967) (2% -1.9552+0.957)
(z-0.9765 (z-1.57) (22 -1.907z+0.9217)
Vece! Panp:
Gr (=21 315-142) (22 -2.018+1.031)
SVPB (z—l.]02)(2—0.7415)(22-—l.963z+|.1002) 6 9157
Veee! Pove: ) Unstable
Mgh004 Gg(ay = 049521089 (22 ~1.961z + 0.9977)
(z-1.102) (2= 0.7427) (22 —1.963 +1.002)
Vece! Pasp :
Vece! Pagp: 2
2 1.9247 (z - 1.063) (2 - 1.952z +0.9535)
G ()= _29308(z 05546 (° -1 97z +102) G, (2)= >
e 9 (2 1952 +09924) (22 -1 8082 +1 023 (z-0.3918) (z - 1.007) (z= ~ 1.917z +0.9239
Veood P Unstable | PVC Vece! Peve: 68 6857 Unstable
ECG! T Cvp.
2 0.93425(z - 1.024) (22 - 2.001z + 1.004)
Gy (2)= O 41941z=09078) (2 -1 8812 +108) Gl2(z) =— ' = :
100 2 402209919 (21 808241023 (z~0.7568) (z - 1.007) (22 —1.906z +0.919)
Vece! Pagp:
Vece! Pagp: 2
) _—0.70751(z — 1.417) (z* - 2.086z +1.133)
Gia(e)= 0708(z—3706) (z° -2 12z +1 126) Gi5(@)= 5 2
_— 13 21 8862 +09232) (2 —1 78341 187 (z© = 1,991z +1.032) (z* - 1.7562 + 0.9542)
T Unstable | SVPB Vice! Peve: 755584 | Unstable
ECG' T Ccyp-
2 0.66185(z + 0.1105) (22 — 197 + 0.9938)
O a2y =—246924(2=3 106) (2 =2 001z +102) Gy (D)= 2 : 5 : :
(22 -1871z+09087 (22 -1783z+1187) (z® -1.991z + 1.032) (z= - 1.756z + 0.9534)

]
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Vece! Pasp:
~089891(z-05071)(z—105)(z—1179
ey =N )1 05)(z=1 179)
(2 -19182+0945)(" ~16682+08678) | |
N
ormal Vece Peye: 0 95 Stable
Ga(y= 200054126205 25) (% -2 0482 +1076)
(2% 19082 +09381)(z% - 16762 +08815)
Vece! Pagri Vece! Pagp:
(2 = 063081 (:-2445) (2-09441)(-09365) Gs(2)= '02346'4(2" 864)(2‘2029196 }z-08799)
(z-02618) (z-06754) (2 -1 889 2+09165) (z7-19462+09739) (271523 2+07761)
Mgh005 | Normal Vece! Pevr: Stable | Normal Vece! Peve: , 50 1025 | Stable
Gy =203 104)(z2 ~2053z+1 081) Gglz)=——2046274 ¢ =1169) (= 2‘2219”' 248)
(2-03238) (-0 9832) (22 -1 8952+09211) (z-08158)(z-09955)(z" - 1943z +09727)
Vece! Pasp:
~12848 (z~1251)(z-09205)(z -0 8861)
(@)= .
(22 ~19312+09603)(22 —1 633z +08236)
N 4 I
ormal Vecd Povp: 277 Stable
G(zy=— 007601z ! 112) (22 —19812+1004)
(22 -1937+09382)(z% - 18942 +0 9523
Vece! Pasp:
Gate)= —0037107(z=3235) (2 22132 +1226)
(22 <1912 2 +09683)(z% 1769z + 0 8672
Vece! Pagp: Normal Vece Peve 619850 | Stable
- 2_ 2
Gi(2)= (;60709(z 1344)(z 21 1112+06645) Ga(a)= 000089884 (z —123)(z” —2202z +1 251)
Normal (% ~18892+09601)(z* -1 0412+0 9568) (2% 19132 409693 (2 —1 7752+ 0 8763)
Mgh007 Stable
Vece! Pevr Vece! Pase:
Gy(2)= 0036813(z-0 8606) (22 -3084z+3924) Gs(z)= 3603 (z -02122)(z - 0 9495)(z — 1 098)
(22 —19062+0971)(22 —1 0412 +09591) Normat (22 = 1852+ 09303)(z2 -1 078z + 0 7482) 192377 | sty
orma Vece! Peve: table
071334(2+0768) (z2 -1 823z +1 16)
Ge(2)=— 3
(22 -1 8422 +09407)(z% ~1 1722 +09127)

- o 1]
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Vece! Pase :
Grte)= 022381(z -0 6189 (22 -2 31z+1 335
(2% ~ 1322 +04629)(z% ~ 1 892z +09597)

Vece! Peve
_ 063259(2—0998])(22 -2007z+1031)
(22 1 9682+09848)(z2 —1 92 +09491)

Ga(2)

Vece! Peyp :
059618(z—103) (22 —1 8772 +0906)
(22 —19282+09383(z2 —1 9192 +0 9692)

Gy(z)=

Normal 5736 Stable
Vece! Peve :
Gatzy=— 2114321 083) (22 =2 512z+1 754
(2% - 1904 z +09705)(z2 — 1 6422 +07967)
Vece! Pagp :
G52y = =1 0605(z=0 2858) (22 —1 942 2 +09479)
(22 -17732+0811) (22 —13332+05957) | °
Normal 76 2298 Stable
Vece! Peve :
~014312(z—=2871)(z2 -2 116z+1 133)
Ga(2)=— 5
(2 <1852 +08685(z% —1 3642 +0 5969)
Vece! Pagp: Vece! Pagp :
Gi(2)= 08552(z +1 178) (=2 -2 063z +1067) Gs(zr)=— L9247z =1 11§ (z%-17952+0807)
(2-0922)(z-0615)(z2 -1 68% +0853) (2% -13152+04715(z% ~ 18772 +0926))
Mgh008 Normal | Vgee/ Peyp ¢ Stable Normal Vece! Pevp & 753023 Stable
Gy 239923 =09891) (22 -2069z+1077) Ggtey= 1 66581 008) (22 =2 124z +1226)
2(2)= =
(2-09621)(z-09972)(z2 ~1 7492 +0 8761) (2% - 18672 +09177)(z2 — 085782 +02639)
Vece! Page :
Ortry =3 322(=105) (22 -18362+08575
(2 —18512+08949)(z% —1631z+08194)
Normal 804852 | Stable
Vece! Peve :
Gz = 243017z -] 12)(z2 -1 801z + 0 9906)
(2 =1 842 +09007)(z% — 1 6222 + 0 8429)
Vece! Pagp: Vece! Page :
Gi(2)= 000025613(z—1 13) (2% =1 9092+0 9239 ()= 00014319(z — 0 8464) (22 2 023z +1 026)
(22 -1 9662+09836)(z2 —1 82%+0 8909 (2% —19282 +09383 (22 — 1919z +09692)
Mgh029 | Normal Normal 783040 | Stable

Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous Pressure Signals by Signal Processing Techniques



Page | 188

Stable

Normal

Vece! Pase :
Gs(z)= 000016991(z-1271)(z-113)(z-09588)

(22 19482 +09516(z2 ~1 9472 +09947)

Vece! Peve :
Ge)= 044177(z —103)(2—09533) (z—07571)

(22 ~19482+09516)(22 ~ 1 9472 +09947)

75 9092

Stable

Normal

Vece! Pase :

000046518(z—09574) (2% 2 116z +1 13)
G1@&=—> 2
(22 — 18332+ 0 89)(2% — 1 948z + 0 9946)

Vece! Peve -
Ga(z)= 049038(z—1017)(z-09086)(z —07299)

(22 —1 8332 +0 89)(22 — 1 9482 +09946)

74 0555

Stable

Mgh031

Normal

Vece! Pagp 2
_ —0012627(z~1066) (22 ~2022z+1 035)
(22 -19122+09467)(z2 ~1 4752+06029

Gi(2)

Vece! Peve 2
~200837 (z~1067) (22 —2049z+1 08)
(22 19192409557 (=2 -1 5912+07069)

Ga(2)=

Stable

Normai

Vece! Page -
9= ~55x1073 (z=1511)(z=1031) (22 -1 969z +09741)
(2-09651)(z2 —1934z+09785(z% ~ 1 4182 +0 6544)
Vece! Peve:
~1855 (2~ 1005)(z~09671) (% -1 969z +1 028)
(z-09651) (22 —1934z+09785(z% ~14182+0 6544)

G4(z)=

76 0562

Stable

Normal

Vece! Page:
~607x1073 (22 —19982+1002) (2 2223z +131)

Gs(z)= 3
(z-09827)(z — 06638)(z -0 5938)(z* — 1 886z +09291)

Vece! Peve :
-158(z-1008) (z-05866) (z2 -1896z+09103

Gp(2)= 5
(z-09827)(z - 0 6638(z -0 5938)(z“ —1 8862 +09291)

651145

Stable

Normal

Vece/ Pase :
—4 2
—-504x107(z+27170z-09951)(z“ -1 987z +0 989
Gr(a)= (¢ X X 7

(2-09782)(z% —1492+0 5598)(z% —1 9312+ 09787
Vece! Peve:

Ga(e)= ~11x1072(2 -1 065)(z~1)(z% -2 0282 +1417)
(2-09782)(22 1 492 +0 559822 —1 9312 +09787)

621158

Stable
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PVC
X
cycle)

Vece! Pagr :
617x1073(z - 0.8934)(z — 0.194)(z2 — 1963z +0.9667)

Gi@)= 5 3
(z-0.416)(z° —1.8992+0.9153(z° —1.989z +1.045)

Vece! Peve ¢

4.57(z-1.02)(z - 02414)(z% 21752 +1.185)
G(2)= 7 5
(2-0.416)(z2 —1.8992 +0.9153(z% ~1.989z +1.045)

42.1339 Unstable

Table 4.3 concluded

e —
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4.2.2. Stability analysis
Stability of a system implies that a small change in input does not result in large change in
system behaviour. If a system is applied with bounded input and produces an unbounded

response, the system is said to be unstable.

The normal flow of blood in the heart is maintained by the contraction of highly organized
sequence of its four chambers. During this normal blood flow, electrical conduction system
of heart is also normal. This is reflected as a normal ECG cycle. When any of the chambers
of heart does not function properly or its organized sequence of contraction is disturbed
such as there is block or obstruction in blood flow, normal sinus rhythm of ECG is also lost
and the output pressure signals also reflect a large change in the behaviour of the heart.
Therefore, electrocardiographic manifestations reveal the abnormal behaviour of the heart.
These changes are also revealed in terms of variations in blood pressure. The obstruction of
the blood flow affect the pumping action of the heart. Therefore, we can say that consistent

behaviour of heart is also affected.

As stated in section 1.9.10(a-b) that an LTI system is stable if its output attains a steady
state value if the system is subjected to an initial condition or disturbance. To analyze the
stability, the poles of the transfer function must lie in the left half of s-plane or inside the
unit circle in z-domain. As an example, if transfer function of a system with complex

conjugate poles in z-plane is —

_ —0.064772(z—09812)
(2% -1.912+0.9833) (4.38)

G(2)

This transfer function has complex conjugate poles i.e. (0.955+0.176i) and (0.955-0.176i)

in z-domain. The above transfer function in s-domain is written as —

) ~219132 (s+6.801)
(s® +21.015+4427) (4.39)

This transfer function has complex éonjugate poles i.e. (-10.5+65.7i) and (-10.5 - 65.7i) in
s-domain. The pole zero plots of G(z) and G(s) are shown in Figure 4.5 (a) and Figure

4.5(b) respectively. From Figure 4.5(a), it is clear that poles of z-domain transfer
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Figure 4.5 Pole zero plots of second order transfer function in (a) z-plane (b) s-plane with their
corresponding ste[; responses in (c) step response of Figure (a) and (d) step response of Figure (b)
function lie in right side of unit circle but are inside the unit circle and the poles of
s-domain transfer function lie in lefthalf of s-plane indicating that both transfer functions
represent the stable response. Any system can be tested for its stability by applying a step
input and observing the response. An unstable system produces transients and oscillates
while a stable system produces a stable output response. So we have also tested the transfer
functions with step response to examine the steady state performance. The step response

(Figures 4.5 (c-d)) of both transfer functions are same and represent a stable response.

We attempt to model the cardiac system of both healthy subjects (i.e. normal) and having
PVC and SVPB (Supraventricular premature beat i.e. abnormal) and then we simulate the

models using cross-validation inputs (ABP, CVP) i.e. normal to abnormal.

In this process, the model generated with normal data was validated with (a) model of
normal data (b) model of abnormal data. Similarly, the model generated with abnormal data
was validated with (¢) model of abnormal data. It will be proved that in case of (a) the
model will be stable and fit percentage will be obviously high, however in case of (b)
although the fit percentage is high but the model is unstable.
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Considering this fact, the generated transfer functions for test and validation data consisting
of normal, PVC and SVPB beats mentioned in Table 4.3 for mgh004 record are studied

using pole zero plot and step response as stated below —
a) When both test and validation data are normal

First we form the models (G1, G2) with normal data and then validate the model with
another set of models (G3, G4) of normal data. The pole zero and step response plots of the
transfer functions are shown in Figure 4.6 (a-b) respectively. It is observed from Figure
4.6(a) that the poles of both model and validated transfer functions lie inside the unit circle
stating that the estimated model is stable when both model and validation data are normal.
It is also clear from step response plot of both transfer functions shown in Figure 4.6(b) that

both model and validated transfer functions are stable.

1.5 T T T T T
G1(Normal)
G2 (Normal)
G3 (Normal)
1t G4(Normal) 7
2 057 X b
: o
e %
g X Q
(@]
& of o 6 o o G o 4
!
X ’%
-0.5+ X g
-1 [ , 4
-1 -0.5 0 0.5 1 15
Real Axis

Figure 4.6(a) Pole zero plot of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh004 record
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Figure 4.6(b) Step response of transfer functions - G1, G2 for normal model and G3, G4 of normal
validation data of mgh004 record

b) When model data are normal and validation data consists of PVC and SVPB
beats

When the model transfer function is developed with normal input-output data and validated
using abnormal input (PVC), it generates two stable transfer functions (G1, G2) for normal
test data and two transfer functions (G5 and G6) for validation data as PVC beat. The pole
zero plots of transfer functions of normal model and validation data are shown in
Figure 4.7 and step response are shown in Figure 4.8 (a-b). It is observed from Figure 4.7
that the system simulated with PVC beat comprise of two overlapping poles associated with
each transfer function lying outside the unit circle which indicates that the system simulated
with PVC beat is unstable. It is also clear from step response plot of transfer functions of
test and validation data shown in Figure 4.8 (a-b) that the model output comes back to
equilibrium state for test data whereas the system output is continuously decreasing and
never attains a steady state value for PVC beat. It further confirms the fact that the

estimated model for PVC beat is unstable.
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Figure 4.7 Pole zero plot of transfer functions - G1, G2 for normal model and (G5, G6) of abnormal
(PVC) validation data of mgh004 record

Pole zero and step response plots of obtained transfer functions (G7 and G8) in case of
SVPB beats are aiso analyzed for stability. It is observed from the pole zero plots
(Figure 4.9) and step response plots (Figure 4.8(c)) that estimated model for the ECG with
SVPB beat is also unstable. Hence it can be concluded that modeling of normal beats of
ECG using ABP and CVP signals gives a stable model and model estimated using

abnormal data are unstable.
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Figure 4.8 Step response plot of transfer functions for (a) normal model (G1, G2) and abnormal
validation data (b) PVC (G5,G6) (c) SVPB (G7,G8) of mgh004 record
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Figure 4.9 Pole zero plot of transfer functions - G1, G2 for normal model and (G7, G8) of abnormal
(SVPB) validation data of mgh004 record

4.2.3. Comparative study of ECG modeling

For comparison of the models and identification techniques, we have used only normal
beats of seven records — mgh003, mgh004, mgh005, mgh007, mgh008, mgh029, mgh031
records. We present here least square technique for autoregressive and PEM and subspace
technique for state space models of ECG. The results for comparative study of these models
for seven records are given in Table 4.4. It is found that state space model shows better
modeling with higher fit percentage compared to autoregressive model. For example, in
terms of highest fit percentage in mgh029, state space model shows 78.3040 %, while
autoregressive model shows 62.0156 % of fit percentage. Similarly, for the minimum fit
percentage condition in mgh008, state space model shows 76.2298% while autoregressive

shows 1.9167% of fit percentage. ,

Similarly, if we compare the identification technique, subspace technique is found to be
better than least square and PEM except for mgh00S, in all records, subspace technique
outperforms the least square and PEM technique. For example — for highest fit percentage
in mgh029, the fit percentage is 78.3040 %, 74.5805 % and 62.0156 % for subspace, PEM
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and least square respectively. Similarly, for minimum fit percentage case in mgh008, the fit

percentage76.2298 %, 66.7466 % and 1.9167 % respectively for subspace, PEM and least

square respectively. We conclude that subspace identification technique is better than PEM

and least square technique.

The synthesized ECG cycles using normal data of mgh007 record for above mentioned

identification techniques are shown in Figure 4.10(a-c). The pole zero and step response

plots of generated transfer functions using autoregressive modeling and state space

modeling using PEM and subspace methods are shown in Figures 4.11(a-b), 4.12(a-b) and

4.13(a-,b) respectively.

Table 4.4 Results of comparative study of ECG modeling by autoregressive model and state space

models using PEM and Subspace method

Validation
Record Autoregressive State space Model (PEM State space Model
No. Type Model method) (Subspace method)
Model (least squares)
and Best Fit (%) | Stability | Best Fit (%) | Stability | Best Fit (%) | Stability
validation

data
Mgh003 Normal 21.2506 Stable 61.0302 Stable 63.6651 Stable
Mgh004 Normal 49.23 Stable 60.7404 Stable 67.2842 Stable
Mgh005 Normal 24.44 Stable 63.6515 Stable 60.95 Stable
Mgh007 Normal 53.4849 Stable 59.4684 Stable 61.9850 Stable
Mgh008 Normal 1.9167 Stable 66.7466 Stable 76.2298 Stable
Mgh029 Normal 62.0156 Stable 74.5805 Stable 78.3040 Stable
Mgh031 Normal 76.2032 Stable 72.7455 Stable 76.0562 Stable
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Figure 4.10 Original and synthesized ECG for mgh007 record for both normal model and validation

data by (a) Least square (b) PEM and (c) subspace method
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Figure 4.11(a) Pole zero plot of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by least square method
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Figure 4.11(b) Step response of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by least square method
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Figure 4.12(a) Pole zero plot of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by PEM method
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Figure 4.12(b) Step response of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by PEM method
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Figure 4.13(a) Pole zero plot of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by subspace method
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Figure 4.13(b) Step response of transfer functions - G1, G2 for normal model and (G3, G4) of normal
validation data of mgh007 record by subspace method
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4.3. Conclusion

A system identification based approach for ECG modeling and synthesis using the
combination of normal ABP and CVP signals is discussed in this chapter. This approach of
ECG modeling may be applied in intensive care units where ECG signals are monitored
along with hemodynamic signals such as ABP and CVP signals and thus may enable
monitoring of ECG without the positioning of leads for ECG acquisition. There may be a
- case when patient suffers from severe injury and surgical dressing of patient does not
permit to position ECG acquisition leads at the desired places. This approach of modeling
ECG may also be regarded as soft sensor acquisition of ECG. The generated transfer
functions mentioned in Table 4.3 are also analyzed for stability analysis using pole zero and
step response plots. It is concluded that the system generates a stable transfer function when
model is simulated using normal data. On the other hand, system generates an unstable
transfer function by simulating using abnormal (PVC and SVPB) beats. It is observed in
terms of model stcuctures, state space model performs better than autoregressive models.
Also, it is observed that subspace identification technique is better than PEM and least

square technique.

Publication on this chapter

[1] Pachauri, A., & Bhuyan, M. Modeling of ECG using ABP and CVP signals : A system
identification based approach, International Journal of Engineering, Science and

Innovative Technology, 2(6), 321 -330, 2013.

Publication under review

(1] Pachauri, A., & Bhuyan, M. System identification based modeling and synthesis of

electrocardiograms, International Journal of Modeling and Simulation.

e ——————————
Feature Extraction, Modeling and Synthesis of ECG from Arterial Blood Pressure and Central Venous
Pressure Signals by Signal Processing Techniques



Page [203

CHAPTER

Modeling and Synthesis of ECG
using Artificial Neural Network

5.0. Introduction

The introduction to the basis and background of modelling and synthesis of ECG from
ABP and CVP has been discussed in section 4.0. In this section, it was discussed that
modeling of the cardiac system has been done by various researchers [113-131], while
many have done synthesis [128)] and reconstruction of ECG [96-99, 133-134]. It was
discussed that modeling or reconstruction of ECG signal has been performed by various
techniques such as wavelet based approach [134], ANN [96-99, 133] etc. In these

techniques, ANN based reconstruction has shown promising results.

In physionet challenge 2010 [G B Moody], reconstruction of 3750 samples of biomedical
signals using ANN [96-99, 133] and wavelet based approach [134] has been suggested.
The signal reconstruction was followed only for last 3750 samples of the cardiovascular
signals those appear as last segment in the signal to be reconstructed. For reconstruction of
ECG signal, some authors have taken ECG signals from other two leads as input to ANN
[98] while some have considered all the available signals such as respiration (RESP),
fingertip plethysmogram outputs (PLiSTH) etc and along with ECG signals from two other
leads [97,99].Thus, at least one input ECG signal from other lead is used for reconstruction
of ECG signal [96-99, 133].

So far in the work [96-99, 133], authors have suggested ECG reconstruction using different
approaches and ECG signal reconstruction using ECG from other leads [96-99, 133].

In all the above mentioned literature, generation of ECG is considered as ‘reconstruction’,
since the aim is to generate missing ECGs of one of the leads. However, this research aims
at synthesis of ECG from ABP and CVP without knowing a priori; the ECG pattern in any

of the leads. The reason is that we intend to prove that there is obvious correlation between
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ECG and pressure signals — ABP and CVP. In this chapter, we propose an ANN based
approach for modeling and synthesis of ECG using ABP and CVP signals.

ANN is the most commonly used pattern recognition technique. There are many different
types of ANN structures that have been applied to resolve complex problems such as
multi-layered perceptron (MLP), radial basis function (RBF), learning vector quantization
(LVQ) etc. Out of these ANN structures, RBF is capable of fast learning than back
propagation networks, MLP etc. RBF networks are less susceptible to problems with non-
stationary inputs and these networks have been successfully used in the prediction of time
series data [110-111]. Our goal is to model and synthesize the ECG using ABP and CVP

signals; hence RBF networks are better suited for our application.

The artificial neural network used for modeling and synthesis is radial basis network. The
proposed method utilizes synchronously sampled ABP and CVP cycles of a patient for the
synthesis of ECG cycles of that patient.

ECG synthesis using ABP and CVP signals as inputs by ANN modeling has been
performed to validate that our synthesized ECG is faithfully conforms the actual ECG. To

do that, we have adopted two validation procedures —

i) Validation by peak detection

ii) Validation by similarity measures

A total number of 16 records — mgh003, mgh004, mgh006, mgh007, mgh009, mgh011,
mgh013, mgh015, mgh016, mgh020, mgh022, mgh025, mgh029, mgh032, mgh034 and
mgh035 from MGH/MF waveform database are chosen for ECG modeling and synthesis.
These records are chosen because they have 100000 samples length of each of
simultaneously recorded ABP, CVP and ECG signals without any missing segment in this
duration. All these signals are sampled at 360 samples/ sec and ECG signals are annotated
by experts. As an example, details of record mgh003 are given below in Table 5.1 —

At first, the radial basis neural network is trained using large segments consisting of 10000
samples of ABP and CVP signals as input and ECG lead II signal as target signal for 16
records of the database mentioned above. Other segments of ABP and CVP signals of the

same duration are used for testing the trained ANN. In this process, the trained ANN
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Table 5.1. Description of record mgh003 of MGH/MF waveform database [139]

Record Age/Sex Signals Gain Base Units
ECG lead II 1170 -163 mV
mgh003 47/ Female ABP 12.08 -1227 | mm Hg
CVP 20.96 -992 mm Hg

synthesizes ECG which has clear ECG peaks whereas other components of ECG waveform
such as P and T waves are not clear for certain records. The number of peaks available in
original ECG signal from database and ECG signal synthesized from ANN output are
compared to determine accuracy, sensitivity and positive predictivity of synthesized ECG

peaks.

In the second approach, a total number of 100000 samples of ABP, CVP and ECG signals
of each of the 16 records mentioned above are considered for modeling and synthesis of
ECG. The length of each signal is divided into 40 datasets comprising of 2500 samples of
each signal. First 34 segments of ABP and CVP signals are given as input to radial basis
network and corresponding ECG signals as target signals. The trained ANN outputs
synthesized ECG while testing with remaining 06 segments of ABP and CVP signals which
is compared with actual ECG signal available from the database. The synthesized ECG
signals possess resemblance with actual ECG signals available from the database. The
accuracy of this synthesized ECG is given in terms of cosine measure and cross correlation

coefficient with respect to original ECG.
5.1.  Synthesis of ECG and peak detection

A radial basis network is used to synthesize ECG from ABP and CVP signals. The network
architecture is the combination of an input layer, a hidden layer fully connected with the

input layer and an output layer. .

In general hidden layer provides the network its ability to'generalize. Theoretically, a
neural network with one hidden layer comprising of sufficient number of hidden neurons is
capable to approximate any continuous function. In practice, neural networks having two
hidden layers are widely used and have performed well. Increase in the number of hidden

layers also increase the computation time and may lead to over fitting and results in poor
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prediction of output performance. The ANN based algorithm suggested here utilizes one

hidden layer.

There is no way to select the optimum number of hidden neurons. The choice of desired
number of hidden neurons depends on the experiment being performed. Generally, more
number of neurons is given to ensure better training. The number of output neuron is one in
this case. Schematic illustration of used network architecture is shown in Figure S5.1.
Parameters of radial basis function network used for training are shown in Table 5.2. Flow
chart of ANN based ECG peak detection algorithm is shown in Figure 5.2. In this part,
synthesis of ECG and peak detection from ABP and CVP signals is accomplished in the

following steps —

ABP

Signal
ECG
Signal

Output Layer

(Linear)

CvpP

Signal

Input layer
Hidden Layer

(Non-linear RBF
activation functions

Figure 5.1 Architecture of radial basis network

5.1.1. Data preprocessing

Data preprocessing or normalization refers to analyzing and transforming the input and
output signals to minimize the noise, highlight the important relationships, detect trends
and flatten the distribution of the variable to assist the neural network in learning the
relevant patterns. At the very least, the raw data must be normalized between the upper and
lower bounds usually between -1 to +1. The signals under study are pressure (ABP, CVP)
signals and ECG 1I signals those have different noise properties. ABP, CVP signals are
chosen as input to the neural network and ECG as target. An example of normalized input
(ABP, CVP) signals and target (ECG) signals are shown in Figure 5.3. A total number of
20000 samples of ABP, CVP and ECG signals are considered for the purpose of synthesis
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of ECG and peak detection. The network is trained with 10000 samples and remaining
10000 samples of ABP and CVP signals are given as input to test the trained ANN.

Table 5.2. Parameters of proposed RBF network for peak detection in synthesized ECG

Number of Number of Number of | Performance Ephos Goal Spread
input output neuron hidden function constant
neuron layers
02 01 01 MSE 250 107 110

5.1.2. Training and testing

ANN training is generally accomplished by using transfer functions which are also called
activation or threshold functions. These activation functions are mathematical formulae
that decide the output of a neuron. Most of the neural networks use sigmoid (S-shaped)
function while some use step, ramping etc functions. These activation functions limit the

output of neural network to attain a very high value which can paralyze neural network and

thus inhibit training. We have used f(n)= e’"2 as the activation function which is
Gaussian function. In radial basis function networks, the activation of hidden layer is
determined by the distance between input vector and a vector using non-linear radial basis
function. The maximum number of neurons to be added in the hidden layer is equal to the
dimension of input vector. Choice of spread constant plays a very important role in the
training and testing of the radial basis network. If the value of spread constant is large, the
function approximation is smooth and more numbers of neurons are required to fit a fast
_changing function. If the value of spread is very small, more numbers of neurons are

required for fit a smooth changing function.
5.1.3. Performance function

The performance of ANN training is judged by calculating mean square error (MSE). The
least mean square error (LMS) algorithm is an example of supervised training, in which the
learning rule is provided with a set of examples of desired network behaviour such as —

{pl,tl}’{pz,tz},... ere aes aee sas san {pq’tq},

(5.1)
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- Here, p,is an input to the network, and 1, is the corresponding target output. As inputs are

applied to the network, the network output is compared with the target iteratively. The
error is calculated as the difference between the target output y(k) and the network output

y(k) and MSE is evaluated as —

Q g
mse = lZ:e(k)2 = lZ(}’(k) - P(k))*
Q= Oia 5.2)

Where, ‘ 0’ denotes the number of predictions.

ABP cvP ECG
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Figure 5.2 Flow chart of ANN based ECG synthesis and peak detection algorithm
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The goal is to minimize the average of the sum of these errors. The training algorithm
adjusts the weights and biases of the network so as to minimize this mean square error.
Fortunately, the mean square error performance index for the linear network is a quadratic
function. Thus, the performance index will either have one global minimum, a weak
minimum, or no minimum, depending on the characteristics of the input vectors.
Specifically, the characteristics of the input vectors determine whether or not a unique
solution exists.

In our case, we have chosen spread constant value of 110 by observing the ANN
performance using different spread constants. The number of epochs given for training is
250. The goal for training is 0.0000001 but the network is trained by 22 epochs with a
performance value of 1.115337x102 in 31.476068 seconds. The training performance plot
of ANN is shown in Figure 5.4.
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Figure 5.4 Training performance of ANN for ECG synthesis and peak detection algorithm

5.1.4. Results and discussion

The synthesized ECG signals obtained by this method has prominent R peaks whereas
other components of ECG waveform such as P and T waves are not clear as shown in
Figure 5.5 (b). Also the amplitude of synthesized ECG signal is varied from the original
signal amplitude. The number of peaks obtained in the predicted ECG are compared with
expert annotations for ECG peaks available from the database. The accuracy, sensitivity
and positive predictivity are calculated using the equations 2.14, 2.15 and 2.16
respectively. The results of peak detection on synthesized ECG are presented in Table 5.3.
The overall accuracy, sensitivity and positive predictivity for 16 records shown in
Table 5.3 are 95.96%, 97.05% and 98.99% respectively. Original and synthesized ECG
signals for record mgh011 and mgh09 records are shown in Figure 5.5 (a-b) and Figure 5.6
(a-b) respectively.

e ]
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Figure 5.5 (a) Original and (b) synthesized ECG signals of mgh011 record
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Figure 5.6 (a) Original and (b) synthesized ECG signals of mgh009 record
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Table 5.3 Results of ECG peak detection of synthesized ECG (10,000 samples)

Record | Age/Sex Expert Peaks counted
No annotations
T | FP" | FN

Mgh003 47F 60 60 01 -
Mgh004 64F 34 33 - 01
Mgh006 72M 48 46 - 02
Mgh007 60 F 44 44 - -
Mgh009 56 M 54 54 - -
Mgh011 70 F 19 19 - -
Mgh013 73M 35 33 - 02
Mgh015 73M 43 43 01 -
Mgh016 82M 26 25 - 01
Mgh020 60 F 38 38 02 -
Mgh022 74 M 40 40 01 -
Mgh025 69 M 50 40 - 10
Mgh029 84 M 37 36 - 01
Mgh032 78 F 38 38 02 -
Mgh(34 66 M 55 54 - 01
Mgh035 68 M 23 22 - 01

Total 644 625 07 19

*Where, TP, FP and FN denote true positives, false positives and false negatives as
discussed in section 2.3.1.

5.2. Synthesis of ECG and similarity measures

In this part of ECG synthesis, same radial basis function network as shown in Figure 5.1 is
used to synthesize ECG from ABP and CVP signals by segmenting the input and target
signals. The aim is to test the synthesized ECG by using two similarity measures. The
parameters of proposed RBF network are listed in Table 5.4 and the flow chart of ECG
synthesis for calculation of similarity measures is shown in Figure 5.7.

Table 5.4. Parameters of proposed RBF network for ECG synthesis and similarity measures

Number of Number of Number of | Performance Ephos Goal Spread
input output neuron hidden function constant
neuron layers
02 01 01 MSE 500 107 10

5.2.1. Preprocessing

The input and target signals of all the 16 records mentioned above are segmented into 40
datasets after data normalization. The network is trained with 34 datasets and remaining 6

datasets from each record are considered for the purpose of testing the model. More
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number of datasets are used to ensure better training. Each input dataset consist of 2500
samples of ABP signal, 2500 samples of CVP signal and 2500 samples of ECG II signal
are taken as target. First one segment of input and target signals of mgh007 record used for

training ANN is shown in Figure 5.8.
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Figure 5.7 Flow chart of ANN based ECG synthesis and similarity measures algorithm
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The mean square error given for training is 0.0000001 and the obtained value for MSE are
0.00716627. A total of 500 epochs are given for training with a spread constant value of
10. The training is completed in 5 hrs 41 min 36.24 seconds. The training performance plot
of ANN is shown in Figure 5.9.

0.6F T T T 3
Te Input ABP
Ne
23
E —g 0.4
z <
0.2 I | L | .
0 500 1000 1500 2000 2500
Number of samples
(2)
0.5 -~ L T LN =
T Input CVPI
ST 041
V
‘; = 0.3 \ T
Zz <
0.2 l ]
0 1000 1500 2000 2500
Number of samples
T T h T T
E-E L5r Target ECGJ
i
(-9
z< 0r
1000 1500 2000 2500
Number of samples
(©)
Figure 5.8 An example of input ABP, CVP and target ECG signals of mgh007 record used for training
ANN

5.2.2. Similarity measures

The accuracy of the synthesized ECG with actual ECG is evaluated given in terms of
cosine measure and cross-correlation of predicted ECG with respect to actual ECG signals

for 16 patients available from the database.
5.2.2.1. Cosine measure

Cosine angle distance is used for similarity measurement of signal records in time domain.
The distance between two vectors X and Y is measured by cosine of angle '¢' between

them. To make quantitative measurement between the actual ECG and predicted ECG
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signals, cosine measure [164] between actual and predicted ECG signals for each of 16

records is computed. The similarity using cosine measure between actual ECG (4;;) and

predicted ECG (Pg;) for each record is given by the following relation —

- -
AECG : PECG

sim (Agcg s Peeg ) = . -
\/Z(AECG ) ,{Z(PECG )?
=1 =1 (5.3)

Here, n=15000,. The larger the value of sim (A, Pecg) in above equation, more the

similarity between actual and predicted ECG signals. The accuracies of synthesized ECG
using radial basis network in terms of cosine measure between two signals are given in
Table 5.5. It is clear from Table 5.5 that predicted ECG signal for mgh006 has the highest

value of cosine measure.
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Performance
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208 68 2
Figure 5.9 Training performance of ANN used for ECG synthesis after segmenting the input and
target signals

5.2.2.2. Cross-correlation

As another method for validation of synthesized ECG with original ECG signals, the cross-
correlations between the predicted and actual ECG signals for 16 records from the database

are computed. It is stated in section 1.9.4, that the correlation coefficient takes on values
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ranging between -1 and +1 which denote the perfect negative and perfect positive linear

relationship between two signals.

The value of cross-correlation coefficient of the predicted ECGs with respect to actual
ECG signals for 16 records available from the database is given in Table 5.5 along with the
values of cosine measures. It is further confirmed wherever cosine measure is high, the
value of cross-correlation coefficient is also high in most of the cases or in some cases
these are either equal (mgh015, mgh025) or approximately equal (mgh006, mgh022).
Several combinations of training parameters such as number of epochs, spread constant,
are employed for training the RBF network. The better results are obtained using number
of epochs = 500, spread constant = 10 which are shown in Table 5.5. The actual and
predicted ECG signals for records mgh003, mgh007 and mgh025 are given in Figure 5.10,
5.11 and 5.12 respectively.

Table 5.5 Results of ECG synthesis using radial basis network

Cosine Cross-
Record No. Age/Sex Measure correlation

Mgh003 47F 0.8391 0.8408
Mgh004 64 F 0.8855 0.9562
Mgh006 72 M 0.9493 0.9498
Mgh007 60 F 0.5560 0.6108
Mgh009 56 M 0.8682 0.8789
Mgh011 70 F 0.7814 0.8409
Mgh013 73 M 0.6614 0.7530
MghO15 73 M 0.7294 0.7294
Mgh016 82 M 0.5005 0.7824
Mgh020 60F 0.7824 0.7863
Mgh022 74 M 0.8050 0.8090
Mgh025 69 M 0.9021 0.9021
Mgh029 84 M 0.4854 0.5542
Mgh032 78 F 0.6215 0.6245
Mgh034 66 M 0.7152 0.7182
Mgh035 68 M 0.3250 0.5223

- = 1]
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Figure 5.10 Original and synthesized ECG signals for mgh003 record
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Figure 5.11 (a) Original and (b) synthesized ECG signals for mgh007 record
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Figure 5.12 (a) Original and (b) synthesized ECG signals for mgh025 record

5.3. Conclusion and discussion

An algorithm for modeling and synthesis of ECG using the combination of ABP and CVP
is developed. The algorithm can be used for modeling of other invasively acquired
biomedical signals and even for the signals comprising of random fluctuations. So far
authors have discussed modeling of ECG with different approaches but for patient specific
reconstruction of ECG signals, ECG signals from other leads are used as input to ANN
[96-99, 133]. Our algorithm highlights the importance of relevant features of ABP and
CVP with that of ECG signals. The radial basis network trained with fewer neurons
outputs ECG signals with clear ECG peaks only that can be employed for estimation of
heart rate. The algorithm performance is further enhanced with the segments of inputs and
target signals used for training. This trained ANN results in clear ECG signals. In general,
better accuracy of predicted ECG signal was obtained if noise free ABP and CVP signals
are input to ANN for validation. This method may be useful to derive ECG signals in
critical care units when surgical dressing of patients may not allow placing the required
leads at the desired position. In our case, we have obtained better results with radial basis
network. However, other approaches such as genetic algorithm may also be applied to

obtain further better results.
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[1] Pachauri, A., & Bhuyan, M. Modeling of ECG from arterial blood pressure and central
venous pressure using artificial neural network, in IEEE International conference on
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CHAPTER

Conclusion and Future Scope

6.0. Introduction

The prevalence of chronic diseases such as heart disease and stroke are the major cause of
death in almost all countries, and such cardiovascular diseases present challenging
problems in early diagnosis and subsequent treatment. Engineering has played a vital role
in understanding the cardiac electrodynamics and in the development of diagnostic
instruments. However, there is a requirement for a comprehensive computational and
systematic approach to understand the cardiovascular systems for applications in the
diagnosis [3]. It has already been mentioned that in intensive care units, where,
continuously monitoring of physiological signals is required, there are various cardiac
conditions and features which need to be detected on a large data of signal record and
validation of abnormal ECG alarms using other cardiac signals. There may be instances
when actual ECG signal is missed or corrupted due to errors in sensors or due to external
interruption. These interruptions in actual signals result in a great difficulty for precise
diagnosis. At times, acquisition of ECG may not be possible due to surgical dressing of
patients. So the synthesis of ECG using ABP and CVP signals can be used to supplement
the information when actual ECG is either missing or corrupted. Also, a single lead ECG
information need to be expanded to multilead information using the information derived

from other cardiovascular signals such as ABP, CVP, PAP etc.

The problems faced by cardiologists such as detection of features in ECG and the pressure
signals (ABP and CVP), synthesis of ECG using ABP and CVP signals when actual ECG
is either missing or corrupted have emerged as a great motivation to research in
engineering. The objectives of this research have been achieved with satisfactory results as

discussed in the following sections —
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6.1. Feature extraction of ECG

We have proposed ECG peak detection techniques by two methods - wavelet based and
energy analysis of ECG signal. The wavelet based approach is robust and simple to
implement with no requirement of preprocessing. The selection of detail wavelet
component has been justified by energy, frequency and correlation analysis. Since, there
are wide variations in amplitudes of wavelet decomposed signals; a fixed threshold does
not work for R peak detection. Therefore, we have adopted a ‘window based threshold’
where the threshold value is adjusted depending upon the signal amplitude over a certain
duration. The selected detail signal is first thresholded then the maximum amplitude levels
of all the peaks are detected. The signal is then filtered by applying a refractory period to
select the R peaks. The R peaks detected by wavelet method are used for the detection of

remaining features of ECG signal such as P, Q, S and T waves.

In the energy analysis technique for R wave detection, energy calculation of ECG signal
under test has been performed by dividing the signal records into a number of windows.
The techniques used include window shifted by window size and window shifted by one
sample. Energy analysis of detail coefficients shows that d4 signal containing highest
energy content comprise of maximum information of QRS complexes. This concept is

proposed to detect ECG peaks.

We have also proposed a technique to detect PVC (premature ventricular contraction) beats
in ECG. The method for detecting the abnormal PVC complexes is based on the
calculation of RR interval of detected R peaks. We have utilized a combined method for
PVC detection where, RR interval calculation by energy method is supported by
intersection of energy analysis on the ECG signal with extended window size. The
algorithm proposed for PVC detection includes detection of R peaks using window based
energy analysis of ECG signal using a window of 100 ms duration that incorporate
window shift by one sample and further energy analysis of ECG signal using a window of

600 ms duration where window is shifted by window size.

In wavelet based feature extraction method, the overall sensitivity, positive predictivity and

accuracy obtained on 44 records of MIT-BIH database are 99.62%, 99.87% and 99.48%
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respectively. The accuracies obtained for records 102 and 104 are 99.86% and 99.77%
respectively which are higher than the result of [30] (94% and 92% respectively).

In energy based peak detection algorithms, on the said forty four records we have achieved
an accuracy, sensitivity and positive predictivity of 98.17%, 98.82%, 99.36% respectively
using window shifted by window size and 98.63%, 99.36%,99.28% respectively using
window shifted by one sample. This method reported accuracies of 99.73% and 100% in
using window shifted by window size technique; 98.93% and 98.15% in window shifted
by one sample technique for records 102 and 104 respectively. Both the techniques
resulted higher accuracies than the result of [30] (94% and 92% respectively).

In case of PVC detection on 37 records of MIT-BIH database, the accuracy, sensitivity and
positive predictivity achieved are 96.79%, 98.31% and 98.48% respectively.

6.2. Feature extraction of ABP and CVP

Since the wavelet based method applied for ECG feature extraction resulted promising
results we have applied this technique for the analysis of ABP and CVP signal also. In this
part of our research, we have performed - (i) Extraction of all features of ABP and CVP
signals and (ii) energy based approach for peak detection of ABP signal.

6.2.1. Feature extraction of ABP

The wavelets used for decomposition of ABP signal are daubechies (db4) and symmetric
(sym4). Since justification of selection of detail coefficient by energy, frequency and cross-
correlation analysis is found to be successful in ECG feature extraction, in this part also
selection of wavelet detail coefficients has been justified by energy, frequency and cross-
correlation analysis. Further, it is found that application of ‘window based threshold’
overcomes the setback of missing peaks due to large variations in the signal amplitude at

any particular instant.

This algorithm of ABP wa\}eform delineation has been applied on 1 minute segment of 22
signals of MGH/MF waveform database, 14 signals of Fantasia database, 15 signals of
MIT-BIH polysmographic database and 1 signal of CSL database. We have selected a
certain segment of the signal records where all features of ABP signals are prominent and

can be annotated while the distorted portion of the signals are discarded for analysis. The
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performance of the algorithm is expressed in terms of percentage of accuracy (Ac),

sensitivity (Se) and positive predictivity (PP) and error.

In terms of type of wavelet used - sym4 wavelet is found to result better accuracy
(97-98%) and positive predictivity (97-99%) as compared to db4 (93-99%) for all the four

components of ABP signal, however the sensitivity in both cases are comparable.

In terms of the database used for the analysis — accuracy and sensitivity is found to be
highest in MGH/MF database while MIT-BIH polysmographic database outperforms the
other database in positive predictivity. Performance of both the wavelets for all the features
on CSL database is found to be better than other three database since we have used only

one signal from CSL database.

We have also developed a framework for the detection of systolic peaks in the ABP signal
using energy analysis. The energy calculation of the ABP signal is performed by taking a
window size of 100 ms duration. Similar to ECG peak detection, the area in ABP signal
where systolic peaks are available appear as high energy zones. Window based amplitude

threshold and interval threshold are applied to reject the unwanted peaks.

Energy based peak detection algorithm has been applied on a 5 minute segment of ABP
signals for the duration for which ECG signal is also available. The number of actual ECG
beats is counted from expert annotations of same duration as the ABP signal and beats
positions are validated manually. The algorithm has been tested on the first 9 records of
MGH/MF waveform database. We have achieved an accuracy of 99.53% for ABP signal
of mgh001 record whereas the overall accuracy of detection is 98.05%. Out of total 4121
beats 4043 beats were correctly detected. The result shows that 78 peaks were missing
whereas 01 peak is detected as false beat. In addition to accuracy, we have achieved a

sensitivity of 99.98% and positive predictive value of 98.14%.
6.2.2. Feature extraction of CVP

The detection of x!descent in CVP signal is carried out using db4 wavelet and selection
of relevant detail coefficient has been validated based on energy, frequency and correlation
technique. Here, negative amplitude thresholding is used to detect x’ descent precisely
which is further used to mark remaining peaks (‘a’,’ ‘¢’, v’) and descent (y’) waves of
CVP signal.
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Since most of the CVP signals in MGH/MF waveform database represent abnormal
waveforms, therefore, we have used only two records — mgh007, mgh008 for analysis
since all components are available and can be annotated. Further, CVP signals of this
database are not annotated by experts and researchers so far for validation of the algorithm.
The CVP signal from record mghO07 record has classical hemodynamic waveforms

whereas CVP signal from mghO08 record has been affected by tricuspid regurgitation.

The result shows accuracies of 75.62% for both ‘@’ and ‘c’ waves detection; 85.07%,
79.10% and 67.66% for x’, v’ and ‘y’ waves respectively. On the other hand, the
sensitivities obtained for ‘a’, ‘c’, x’, v’ and ‘y’ waves are 88.05%, 89%, 93.53%, 93.95%
and 81.09% respectively. In terms of positive predictivity, the algorithm reported 87.62%,
86.82%, 91.70%, 84.65% and 85.78% respectively for the five mentioned features.

6.3.  Modeling and synthesis of ECG

ECG modeling and synthesis has been performed by other researchers, however, a
parametric ECG model based on measured phenomenological cardiac data such as ABP
and CVP has not been attempted so far. We have used system identification technique to
develop the linear time invariant (LTI) model of the cardiac system which can synthesize
ECG from ABP and CVP. Two different models were attempted for modeling-

Autoregressive and State Space models.
6.3.1. Modeling and synthesis using system identification technique

We have used system identification based modeling and synthesis of ECG for 7 records —
mgh003, mgh004, mgh005, mgh007, mgh008, mgh029 and mgh031 of MGH/MF
waveform database where all three signals (ABP, CVP and ECG) are available for system
identification. The models of the cardiac system of both healthy subjects (i.e. normal) and
having PVC and SVPB (Supraventricular premature beat i.e. abnormal) were developed

and then the models were cross-validated using inputs (ABP, CVR).

We present a system identification framework for modeling of ECG using ABP and CVP
signals in autoregressive and state space models using prediction error minimization
(PEM) and subspace algorithms of system identification. One cycle of ABP, CVP and

ECG from 7 records are used for estimating the state space models.
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The accuracy of the synthesized and original ECG is evaluated by a universally accepted
metric given by ‘best fit’ percentage. An interesting inference was drawn to relate the
condition of heart (i.e. a normal or having abnormal PVC/ SVPB) to the stability of the
model transfer function. A stable transfer function is obtained if the ECG cycles of the
model are normal, whereas an unstable transfer function is obtained from an abnormal
ECG cycle. Therefore, the generated transfer functions are analyzed for stability using pole

zero plots and step responses.

By using subspace method of identification in state space model, we have achieved a
maximum best fit percentage of 80.4852% for normal ECG model validated by normal
ABP & CVP data of mghO08 record, while a maximum fit percentage of 75.5584% was
achieved when an abnormal ECG model (having SVPB) validated by ABP and CVP data
having SVPB in mgh004 record. ‘

Moreover, in the state space modeling by PEM method, the technique reported a highest fit
percentage of 74.5805 % when a normal ECG model was validated by normal data in

mgh029 signal.

In case of autoregressive modeling, we have achieved a maximum of 76.2032% fit

percentage while validating a normal ECG model by normal data of mgh031 signal.‘

Further, comparative study of all the three models shows that subspace method of system
identification results in higher fit percentage for all the seven records. Therefore, it can be
concluded that the system generates a stable transfer function when model is simulated
using normal data, while an unstable transfer function is generated when simulated using
abnormal (PVC and SVPB) beats.

6.3.2. Modeling and synthesis using artificial neural network (ANN)

Due to universal acceptance and advantage of ANN for modeling non-linear systems, we
tried to establish a non-linear connectivity between the pressure signals (ABP & CVP) and
the ECG signals and thereby synthesizing ECG.

The proposed technique utilizes one of the most popular ANN algorithm — Radial basis
function (RBF) to map the synchronously sampled pressure signals (ABP & CVP) as input
and the corresponding ECG as the output. We have done ANN modeling on 16 records
each comprising 20,000 samples of ABP, CVP and ECG signals of MGH/MF waveform
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database to model and synthesize the ECG from which R peaks are detected. We have also
done ANN modeling on 16 records each comprising 1,00,000 (85,000 for training and
15,000 for testing) samples of MGH/MF waveform database to model and synthesize the
ECG which was used for comparison witﬂ original ECG by ‘cosine measure’ and ‘cross-

correlation’ techniques.

In our first approach of ANN modeling with 20,000 samples, the number of peaks obtained
in the synthesized ECG are compared with expert annotations for ECG peaks available
from the database. The overall accuracy, sensitivity and positive predictivity are 95.96%,
97.05% and 98.99% respectively. In the second approach on 1,00,000 samples for
modeling of ECG, the suynthesized ECG signals are tested by cosine measure and cross-
correlation for testing resemblance with original ECG signals. The highest cosine measure

and cross-correlation achieved are 0.9493 and 0.9498 in mgh006.
6.4. Scope for future work

We have attempted to develop the frameworks for feature extraction of ECG, ABP and
CVP signals and thereby modeling and synthesis of ECG, but due to limitations beyond the
scope of this research, the research could not cover many very interesting and important
issues as stated below. In view of this, we propose that future researchers can take up the

extended parts of this work as stated below —

a) Although the use of window based amplitude thresholding algorithm reduce the
accuracy due to of missing peaks or false peaks detection, however the detection
accuracy can be further improved if the thresholding method can be further modified to

add more adaptability within the predefined window.

b) The performance of PVC detection algorithm described in Chapter 2, can be further
enhanced if energy feature for various data records can be used as input to the artificial
neural network (ANN) to train it and classification of a record can be obtained. Energy
feature can also be combined with correlation and the algorithm performance can be
further enhanced.

c¢) The proposed algorithm for ABP feature extraction can be employed to detect

myocardial ischemia, detection of premature ventricular contraction (PVC) and
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premature supra-ventricular contraction (PSC) beats along with ECG signal to enhance

the accuracy of disease identification.

d) Performance of . CVP feature extraction algorithm can be further enhanced by
constructing new wavelets. The algorithm ‘after further modifications can be used to
detect different diseases such as atrial - fibrillation, tricuspid stenosis, cardiac

temponade etc.

e) Modeling of ECG proposed in Chapter 4 and 5, can be extended to synthesize other
biomedical signals such as CVP, ABP and PAP which are acquired invasively.
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