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Abstract

In this thesis, we use various dissections of Ramanujan’s theta functions to ob-
tain infinite families of arithmetic identities for t-cores as well as self-conjugate and
doubled distinct t-core partitions for some small ¢. More precisely, we find infinite
families of arithmetic identities for 3-, 4- and 5-cores, for self-conjugate 3-, 4-, 5- and
7-cores, for doubled distinct t-cores for ¢ = 3,...,8, and some arithmetic identities
involving doubled distinct 9- and 10-cores. We also give some interesting relations
between doubled distinct t-cores and self-conjugate t-cores for some small t. By
using Ramanujan’s theta functions and a classical result by L. Lorenz in 1871 [43],
we find a simple proof of a result on 3-cores found earlier by Granville and Ono
[27] using the theory of modular forms. We give alternative simple proofs of some
results of Hirschhorn and Sellers [32], Garvan, Kim and Stanton {24], Baruah and
Berndt [4], and Baruah and Sarmah [7]. In the process, we also obtain new infinite
families of arithmetic identities for 73(n) and t3(n), where r3(n) and t3(n) represent
the number of representations of n as a sum of three squares and as a sum of three
triangular numbers; respectively. In the course of our study on 5-cores, we find a

new proof of Ramanujan’s so-called “most beautiful identity”.
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Chapter 1

Introduction

1.1 Introduction

A partstion A = (Ap, Mg, - -+ , M) of a natural number n is a finite sequence of non-
increasing positive integer parts A, such that n = Zf=1 A,. The number of partitions
of n is denoted by p(n). For example, the partitions of 4 are (4), (3,1), (2,2), (2,1,1),
(1,1,1,1), and hence, p(4) = 5. By convention, p(0) = 1. The generating function
for p(n) is given by

= 1
> pn)g" = ——, (1.1.1)
n=0 (q) q)OO
where, here and throughout the thesis, we assume that |g| < 1 and use the standard
notations
o0
(;9)oo == JJ (1 = ag™),
n=0
and

(01, az, ..., a, Q’)oo = (al; Q)oo(az;CI)oo T (ak;Q)oo-

In 1919, Ramanujan [52], [55, pp. 210-213] announced that he had found three

simple congruences satisfied by p(n), namely,

p(5n + 4) = 0 (mod 5), (1.1.2)
p(Tn + 5) =0 (mod 7), (1.1.3)
p(11n + 6) = 0 (mod 11). (1.1.4)



He gave proofs of (1.1.2) and (1.1.3) in [52] and later in a short one page note [53],
[54, p. 230] announced that he had also found a proof of (1.1.4). In a posthumously
published paper [54], [55, pp. 232-238], Hardy extracted different proofs of (1.1.2)-
(1.1.4) from an unpublished manuscript of Ramanujan {56, pp. 133-177), [18]. In
[52), Ramanujan also offered a more general conjecture which states that if § =

537°11¢ and X is an integer such that 24X =1 (mod §) then
p(nd + A) =0 (mod §). (1.1.5)

Although Ramanujan gave a proof of this conjecture in his unpublished manuscript
[56, pp. 133-177], [18] for arbitrary a and b = ¢ = 0, later on, his conjecture was

needed to be corrected as
p(nd + A) =0 (mod §'), (1.1.6)

where, & = 5°7Y11° with ¥ = bif b =0, 1, 2and ¥’ = [(b+2)/2] if b > 2. In
1938, G. N. Watson [59] published a proof of (1.1.6) for a = ¢ = 0 and gave a more
detailed version of Ramanujan’s proof of (1.1.6) in the case b = ¢ = 0. It was not
untill 1967 that A. O. L. Atkin [2] proved (1.1.6) for arbitrary c and a = b = 0.

A partition is very often represented with the help of a diagram called Ferrers—
Young diagram. The Ferrers—Young diagram of the partition A = (Ag, Az, -+, Ax)
of n is formed by arranging n nodes in k rows so that the ith row has A; nodes. For

example, the Ferrers—Young diagram of the partition A = (3,2,1,1) of 7 is

The conjugate of a partition ), denoted X, is the partition whose Ferrers-Young
diagram is the reflection along the main diagonal of the diagram of A. Therefore,
the conjugate of the partition (3,2,1,1) is the partition (4,2,1). A partition A is
self-conjugate if A = X'. For example, the partition (4,2, 1,1) of 8 is self-conjugate.



The nodes in the Ferrers—Young diagram of a partition are labeled by row and
column coordinates as one would label the entries of a matrix. Let A} denote the
number of nodes in column j. The hook number H(i,7) of the (4, j) node is defined
as the number of nodes directly below and to the right of the node including the
node itself. That is, H(4,5) = A+ A; —j —i+1. A partition ) is said to be a ¢-core
if and only if it has no hook numbers that are multiples of ¢.

Example. The Ferrers-Young diagram of the partition A = (4,2,1) of 7 is

The nodes (1,1), (1,2), (1,3), (1,4), (2,1), (2,2) and (3,1) have hook numbers 6,
4,2, 1,3, 1 and 1, respectively. Therefore, A is a 5-core. Obviously, it is a ¢-core for
t>1.

If a;(n) denotes the number of partitions of n that are t-cores, then the generating

function for a,(n) is given by [24, Equation (2.1)] , [47, Proposition (3.3)]

Zat(n (050) (1.1.7)

ard q, Q)oo
Now, if asc;(n) denotes the number of self-conjugate t-cores of n then Garvan,
Kim and Stanton [24, Egs. (7.1a) and (7.1b)], and Olsson [48, Eq. (2.37)] found the

generating function for asc,(n) as

Zasct —0;0%)oo(q®; ¢%)/2,  for t even, (1.1.8)
and
o e 2 2t. 2ty (t—1)/2
> ase(n)g" = Sl 1 )°°(tq o Jo T fort odd. (1.1.9)
n=0 (—q 4 )oo
Next, given a partition A = (Ay, A2, ---, Ax) of n with distinct parts, the

shifted Ferrers-Young diagram of X, S(}), is the Ferrers-Young diagram of A with
each row shifted to the right by one node than the previous row. The doubled



distinct partition of X is the partition of 2n obtained by adding A; nodes to the
(i — 1)st column of S(A). For example, we consider the partition (4,2,1) of 7 whose

Ferrers- Young diagram is as follows:

The shifted Ferrers-Young diagram of the above partition is given by the following

diagram:

Now adding 4, 2, and 1 nodes respectively to the null, first, and second columns of

the above diagram we obtain the Ferrers-Young diagram

which represents the doubled distinct partition (5,4, 4,1) of 14 corresponding to the
partition (4,2,1) of 7.

The study of self-conjugate partitions and t-core partitions have played roles in
variety of areas. The study of ¢-cores for ¢ prime first arose in connection with
Nakayama’s conjecture [37, 57] in representation theory. At the turn of the last
century, Young discovered that partitions of n label the irreducible characters of the
symmetric group S,. At about the same time, Frobenius also found that the hook
lengths on the diagonal of a self-conjugate partition determine the irrationalities
that occur in the character table of the alternating groups A,. On account of
these connections, t-core partitions find its place in the study of the representation
theorists such as in [44, 45, 57, 60]. Hanusa and Jones [28] observed that self-

conjugate partitions and t-core partitions intersect in several important ways. Also,



R. Nath [46] found that self-conjugate t-core partitions are central to prove some
representation theoretic conjectures in case of alternating groups.

Garvan, Kim and stanton [24, 26] found that t-cores are useful in establish-
ing cranks, which are used to show a combinatorial proof of Ramanujan’s famous
congruences for the partition function. Garvan {25] also proved some “Ramanujan-
type” congruences for a,(n) for certain special small primes p. Hirschhorn and Sellers
[32] proved multiplicative formulas for a4(n) and also conjectured similar multiplica-
tive properties for a,(n) for other primes p.

The t-core conjecture has been the topic of a number of papers (23, 25, 27, 40, 41,
49, 50]. This conjecture asserted that every natural number has a t-core partition
for every integer ¢ > 4. Granville and Ono {27, 49, 50} have successfully completed
the proof of this conjecture using the theory of modular forms and quadratic forms,
and the proof has been simplified by Kiming [40].

Again, Baldwin, Depweg, Ford, Kunin and Sze (3] proved that every integer
n > 2 has a self-conjugate t-core partition for ¢ > 7, with the exception of t = 9, for
which infinitely many integers do not have such a partition. We also refer to [31],
(35], (32], [51], [14], (15], [4], [38], [9], [10] for further results and generalizations on
t-cores.

In 1999, Stanton [58] conjectured the monotonicity proposition that, if n and ¢
are natural numbers such that ¢ > 4 and n # t + 1, then a;41(n) > ai(n). This
conjecture was proved for certain ¢ by Craven [22] and for large n by Anderson [1].
More precisely, Craven [22] proved that if n and ¢ are integers such that ¢t > 4 and
n/2 <t < n—1, then a;(n) < aty1(n), and Anderson [1] found that if ¢, and t,
are fixed integers satisfying 4 < t; < t», then a;,(n) < a4, (n), for sufficiently large
n. Also, Kim and Rouse [39] use combination of techniques to find explicit bounds
for a;(n) and as an application prove that for all n > 0, n # t + 1, a;4+1(n) > a,(n)
provided 4 < ¢ < 198.

Although the monotonicity criterion is conjectured for t-core partitions in gen-

eral, the set of self-conjugate ¢-cores are not found to satisfy a monotonicity criterion



for any n > 5.
However, C. R. H. Hanusa and R. Nath [29] conjectured that

asca+2(n) > ascy(n), for alln > 20 and 6 < 2t < 2|{n/4| — 4,
and

ascar3(n) > ascorq1(n), for allm > 56 and 9 < 2t+1<n-—17.
They also provide the following partial answers to the conjectures:

ascy42(n) > ascy(n), when n/4 < 2t < 2|n/4] — 4,
and

ascy43(n) > ascyq1(n), for alln > 48 andn/3 <2t+1<n—17.

In this thesis, we use various dissections of Ramanujan’s general theta function
in obtaining infinite families of arithmetic identities for the partitions which are ¢-
cores, self-conjugate t-cores, and doubled distinct t-cores for some small ¢. In the
following subsection, we state Ramanujan’s general theta function and a few of its

important properties.

1.2 Ramanujan’s theta functions and some pre-
liminary results

Ramanujan’s general theta function f(a,b) is defined by

fla,b) = Y arm0/2prn=D/2 g < 1. (1.2.1)

n=--oo

Jacobi’s famous triple product identity {16, p. 35, Entry 19] takes the form

f(a,b) = (—a;ab) e (—b; ab)w(ab; ab) . (1.2.2)



It is easy to verify that

f(a,b) = f(b,a),
f(1,0) =2f(a,d®),
f(—]"a) =0,

and, if n is an integer,

f(a,b) = D2V £ (a(ab)", b(ab) ™).

The three most important special cases of f(a,b) are

o(q) = f(g,9) =1+ 2Zq"” = (-4;0")%(d% ¢)oos (1.2.3)
n(n+1)/2 _ (q Q)
¥(q) = ;q o (1.2.4)
and
f(=9) = f(~¢,=*) = Y ()" = (g; @)oo (1.2.5)

The product representation in (1.2.3)-(1.2.5) arise from (1.2.2).
In the following lemmas we state a few elementary results which will be used in

the subsequent chapters of the thesis.

Lemma 1.2.1. [16, p. 40, Entries 25(i) and (ii)] We have
(@) = (q") + 2q9(¢°). (1.2.6)
Lemma 1.2.2. [16, p. 40, Entries 25(iv), (i) and (ii) and (v), (vi) ] We have

() = ¥(¢*)(v(q*) + 2q9¥(¢°)) (1.2.7)

and

¥*(q) = ¥*(¢%) + 499*(¢*). (1.2.8)



Lemma 1.2.3. [16, p. 45, Entries 29(i) and (ii)] If ab = cd, then

f(a,b)f(c,d) + f(—a,—b)f(~c,—d) = 2 (ac, bd) f (ad, bc) (1.2.9)
and
f(@,b)f(c,d) — f(—a,~b)f(~c, —d) = 2af (b/c,ac?d) f (b/d,acd?),  (1.2.10)
and, adding (1.2.9) and (1.2.10), we have
f(a,b)f(c,d) = f(ac,bd)f(ad,bc) + af(b/c,ac’d)f(b/d, acd?). (1.2.11)
Lemma 1.2.4. 16, p. 47, Corollary] If ab = cd then
f(a;b)f(¢c,d)f (an,b/n) f (cn,d/n)
- f(-a,—b)f(—¢c,—d)f (—an, —b/n) f (—cn, —d/n)
= 2af(c/a,ad)f(d/an, acn)f(n, ab/n)(ab). (1.2.12)

Lemma 1.2.5. (16, p. 48, Entry 31] If U,, = a™("t1/2pM(n=-1/2 gnd V,, = oD/ 2pn+1)/2

for each integer n, then

= Un T V‘n—-r
f(U,L,W) =;Urf( U:' T ) (1.2.13)
Lemma 1.2.6. [16, p. 49, Corollaries(i) and (ii)] We have
o(q) = ¢(¢®) + 2¢f(¢%, ¢%), (1.2.14)
o(q) = p(d®) + 2¢f(¢"%,¢*) + 24" f(¢°, ¢*), (1.2.15)
¥(q) = f(d*,d°) + avo(d®), (1.2.16)
and
¥(g) = f(g'°,¢"°) + af (&, d%°) + @y(q®). (1.2.17)

Lemma 1.2.7. [16, p. 39, Entry 24(iii) and p. 51, Example(v)] We have

fla,4°) = ¥(=¢*)¢ w‘p((_q;). (1.2.18)




1.3 Work carried out in this thesis

The thesis consists of six chapters including this introductory chapter. In the
following few paragraphs we briefly introduce the work done in our research.

By using the theory of modular forms, Granville and Ono [27] proved that
a3(n) = d1,3(3n + 1) - d2,3(3n + 1), (131)

where d,3(n) is the number of divisors of n congruent to r (mod 3).
Again, Baruah and Berndt [4] used a modular equation of Ramanujan to prove

that
az(4n + 1) = az(n), for all n > 0. (1.3.2)
Though not explicitly written in [4}, from the same modular equation it follows that
az(4n+3) =0, for all n > 0. (1.3.3)

Hirschhorn and Sellers [35] used some elementary generating function manipula-
tions to prove the result (1.3.1) and then employed that to derive an explicit formula
for az(n) in terms of the factorization of 3n + 1. As corollaries, they derived several
infinite families of arithmetic results involving az(n), including the generalizations
of (1.3.2) and (1.3.3).

In Chapter 2, we use Ramanujan’s theta function identities to prove that u; (12n+
4) = 6a3(n), where u;(n) denotes the number of representations of a nonnegative
integer n in the form z? + 3y? with z,y € Z. With the help of a classical result by
L. Lorenz [43] in 1871, we then deduce (1.3.1). We also show that different proofs
of the results by Hirschhorn and Sellers {35] can also be found without considering
the factorization of 3n + 1.

Baruah and Berndt [4] also proved that if ascz(n) denotes the number of self-
conjugate 3-cores of n then asc3(4n + 1) = ascz(n), which is analogous to (1.3.2).
We generalize this result and prove the following.

Let p = 2 (mod 3) be prime and k be a positive even integer. If ascs(n) denotes

the number of 3-cores of n that are self-conjugates, then for any positive integer n,
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we have

ascz(n) = asc (pkn + (pk; 1)) .

Chapter 3 of this thesis deals with infinite families of arithmetic identities in-
volving 4-Cores.

In [31, 32], Hirschhorn and Sellers used some elementary generating function
manipulations to find certain congruences and the following infinite families of arith-

metic relations involving 4-cores: for k > 1,

3*as(3n) = a4 (32k+1n + §—x§;—k:—5) : (1.3.4)
(2%x3*—1)ay(3n+1)=a4 (32’°+1n + Eﬁ?—_—?) : (1.3.5)
(f%i—l) as(9n+2) = a4 (32’°+2n + 7—53%?—:—5) : (1.3.6)
(ﬁt;—_——l) as(9n + 8) = a4 (32k+2n + 32(—3?1—"—5> : (1.3.7)

Again, if h(—D) denotes the class number of primitive binary quadratic forms
with discriminant —D and a4(n) denotes the number of 4-cores of n, then, for a

square-free integer 8n + 5, Ono and Sze [51] proved that
1
ag(n) = 5h(—32n — 20). (1.3.8)

Employing (1.3.8) and the index formulae for class numbers, Ono and Sze [51]
proved (1.3.4)—(1.3.7) and some general identities conjectured by Hirschhorn and
Sellers [32].
In Section 3.2 of the thesis, we use Ramanujan’s theta function identities to
prove that
w(Bn + 5) = Bag(n) = v(8n + 5) = %7‘3(877, +5),

where u(n) and v(n) denote the number of representations of a nonnegative integer

n in the forms z2 + 4y? + 422 and 22 + 2y? + 222, respectively, with z,y, z € Z and
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r3(n) denotes the number of representations of n as a sum of three squares. With
the help of this and a classical result of Gauss, we find a simple proof of (1.3.8).

We also find new proofs of (1.3.4)—(1.3.7) as well as the following analogous new
infinite families of identities for a4(n).

For k > 1, we have

Tas(5n + 1) = a4(125n + 40),

5a4(5n + 2) = a4(125n + 65),

5a4(5n + 3) = a4(125n + 90),
)

Ta4(5n + 4) = a4(125n + 115),
5k+1 -1 52k+1 -5
( 1 ) a4(25n) = a4 (52’°+2n + ———) ,

8
5k+1 -1 9 52k+1 -5
<—4—) a4(25n + 5) = Q4 (52k+2n + —5—8_—""—) )
k+1 _ 17 2k+1 __
( > ) (25n + 10) = a4 (52’°+2n + ——55—8——‘?) ,

6a4 (25n + 15) = a4 (6251 + 390) + Hay(n),

5k+l 33 2k+1 _
( ) (25n + 20) = a4 (52’°+2n + —X—58———5) :

and

k+1 __ 1 2k+1 __
(3 5 1) a4(In+5) =ay (32k+2n + ﬁ—?’—g—s)

3k+1 -1
2

Qg (n)

In Section 3.4 of the thesis, we also present several infinite families of new arith-
metic identities for r3(n) and t3(n), and some new proofs for the infinite families of
arithmetic identities earlier given by Hirschhorn and Sellers [33, 30].

Chapter 4 of our thesis is devoted to obtaining two infinite families of arithmetic
identities for 5-Cores.

Garvan, Kim and Stanton [24] gave one analytic and another bijective proofs of

as(5n + 4) = 5as(n). (1.3.9)
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By using a modular equation of degree 5 recorded by Ramanujan in his second
notebook [16, p. 280, Entry 13(iii)], Baruah and Berndt [4, Theorem 2.5] proved
that

as(4n + 3) = as(2n + 1) + 2as(n). (1.3.10)

From the same modular equation it follows that
as(4n + 1) = as(2n), (1.3.11)

which was missed by Baruah and Berndt {4]. From the above two identities and
with the help of mathematical induction, we also deduce the following two infinite
families of arithmetic identities for 5-cores.

For any positive integers n and k,

k
22k —
as(2%n + 221 1) = (Z 22"“2’) as(2n) 3 ! as(2n) (1.3.12)

r=1

and

k 92k+1 4 |
as(2%* I+ 2% — 1) = [ 1+ ) 2@ ) g (2n) = —5— as(2n). (1313)
r=1

The following two infinite families of congruences for as(n) are apparent from (1.3.12)
and (1.3.13).

For any positive integers n and k,

2% -1
as(2%n + 2% _1)=0 (mod 3 )

and

22k+1
as(2%+n +2% — 1) =0 (mod ——+1) .

3

In the same chapter, in Section 4.3, we use Ramanujan’s theta function identities
to find unified proofs of (1.3.9), (1.3.10) and (1.3.11).

Ramanujan found that, if p(n) is the number of partitions of n, then

e 5. 515
S p(sn+4)g" =5 (‘(Iqj%)gw, (1.3.14)
n=0 1 1/o0
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which immediately implies one of Ramanujan’s famous partition congruences
p(5n+4) = 0 (mod 5). Hardy [55, p. xxxv] says of (1.3.14): “It would be difficult to
find more beautiful formulae than the ‘Rogers-Ramanujan’ identities, but here Ra-
manujan must take second place to Rogers; and, if I had to select one formula from
all Ramanujan’s work, I would agree with Major MacMahon in selecting [(1.3.14)].”
Hence, (1.3.14) is referred as “Ramanujan’s most beautiful identity”.

We find a new proof of (1.3.14) arising from the analytic version of (1.3.9). We
refer to [36] for another elementary proof of “Ramanujan’s most beautiful identity” .

In Chapter 5, we deal with infinite families of arithmetic identities for self-
conjugate 5-Cores and 7-Cores.

Let us recall that ascs(n) denotes the number of 5-cores of n that are self-

conjugates. Garvan, Kim and Stanton [24] gave bijective proofs of

ascs(2n + 1) = ascs(n), (1.3.15)
ascs(5n + 4) = ascs(n), (1.3.16)
ascy(4n + 6) = ascy(n), (1.3.17)

ascy(n) =0, ifn+2=4*8m+1). (1.3.18)

Baruah and Berndt [4] proved (1.3.15). Recently, by applying some deep theo-
rems developed by Cao [19], Baruah and Sarmah (7] proved that

asc7(8m — 1) = 0. (1.3.19)

Now, let ry(n) and r3(n) denote the number of representations of n as a sum
of two squares and three squares, respectively. In our work, we use Ramanujan’s
theta function identities to find relations between ascs(n) and ry(n), and between
asc7(n) and r3(n). We then deduce (1.3.15)-(1.3.19). Interestingly, it turns out that
(1.3.18) and (1.3.19) are equivalent [see Corollary 5.5.4]. We also find the following
new infinite families of arithmetic properties of self-conjugate 5-cores and 7-cores.

For k > 1 and prime p = 3 (mod 4), we have

ascs(n) = ascs (p**n + (p* — 1)),
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(2 x 3F — 1)ascy(3n + 2) = ascr (3%+'n +2(2 x 3% - 1)),

3kascy(3n) = ascr (3%+1n + 2(3% - 1)),
3Ic+1

) ascr(9n + 1) = ascy (3%+2n 4 (3741 - 2)) ,

3k+1

(=
(BkH ) ascr(9n + 4) = ascr (3770 +2(3"* - 1)),
(=

) ascr(9n + 7) = ascy (3%*?n + (3%+2 - 2))
k+1 _
+ (3 2 3) asc-,(n - 1),

and

5ascy(5n) = ascr(175n + 48),
5ascy(5n + 1) = ascr(125n + 73),
Tascy(5n + 2) = ascz(125n + 98),

Tasc7(5n + 4) = asc7(125n + 148),

5k+1 _
( 1 ) ascr(25n + 3) = ascy (52k+2n + 52k+1 _ 2),

5k+1 -
( 1 ) asc7(25n + 8) = ascy (5°+2n + 2 x 5%+ — 2) |

5k+1 -1
(T) ascr(25n + 13) = ascy (5%+2n + 3 x 5%+ — 2) |

5EH -1 2k+2 2k+1
(————4———) ascy(25n + 18) = ascy (5%+%n + 2(2 x 5! —1)),

Bascy(25n + 23) = ascy(625n + 623) + Sascy(n — 1).

In the final chapter we discuss identities for doubled distinct t-cores for ¢t =
3,...,10. '

If add;(n) denotes the number of doubled distinct partitions of n that are ¢-cores
then the generating function for add,(n) is given by Garvan, Kim and Stanton (24,
Eq. (8.1a)] as
)(t 2)/2

Zaddt _ (=% ¢%)o(d™;

, fort even,
(-4 q‘)oo
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and

ad —a2. 42 2t. ,2t\(t-1)/2
Zaddt(n)q” = (=454 )°°2(tq ;tq Joo , for t odd.
~ (—9%; ¢%)oo

We note that add;(n) = 0 if n is odd.
Baruah and Sarmah {7] proved that

asce(8n + 10) = asce(2n), (1.3.20)

and as 2 has no self-conjugate 9-core, there is an infinite sequence of positive integers
having no self-conjugate 9-cores.

Among several results on asc;(n) and add;(n), Baruah and Sarmah (7] proved
that

add3(n) = asc3(4n), (1321)

and

adds(n) = ascs(2n). (1.3.22)

Now, let t3(n) and t3(n) denote the number of representations of n as a sum
of two triangular numbers and three triangular numbers, respectively, and ry(n)
and 73(n) denote the number of representations of n as a sum of two squares and
three squares, respectively. We present simple alternative proofs of (1.3.20)—(1.3.22).
Furthermore, we find several other relations involving ty(n), t3(n), ra(n), r3(n),

add,;(n) and asc,(n), for some small ¢. For example, we deduce the following:
r2(24n + 5) = 8ascy(3n) = 8adds(4n),
r3(16n + 14) = 48addg(2n),
addg(4n) = ascy(3n),
add4(3n) = adds(n),

t2(5n + 1), ifn=0,2,3,4 (mod 5);
t2(5n + 1) — to((n — 1)/5), if n=1 (mod 5).

1

2add5(2n) = {

ts(Tn +4), ifn=0,1,3,4,5,6 (mod 7);

frddrtin) = { ts(Tn +4) — ts((n = 2)/7), if n=2 (mod 7).
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As one of the corollaries, we find the following result.
If h(—D) denotes the class number of primitive binary quadratic forms with
discriminant —D and addg(n) denotes the number of doubled distinct 8-cores of n,

then, for a square-free integer 16n + 14, we have

addg(2n) = ih(—64n — 56).

Finally, we present several infinite families of new arithmetic identities for addz(n),
addy(n), adds(n), ascy(n), addg(n), adds(n), and adds(n) along with a new arith-
metic identity for add;o(n). For example, for any positive integer k, we have the

following infinite families of arithmetic identities for adds(n).

3*adds(6n) = adds (2 x 32+ 1 l?f%—_l‘)') |
(2 x 3¥ — 1) addg(6n + 4) = adds (2  32k+1, o g&#) |
(3k+12_ 1) addg(18n + 2) = adds (2 x 32k+2p 4 5_)_(_112#) |
(3k+12 - 1) adds(18n + 8) = adds (2 « 3242, ¢ %_7) |
(3k+12_ 1) addg(18n + 14) = adds (2 « g2+, 2I—X3?1——7)

k+1 _
+ (3 5 3) addg(2n),

and

5addg(10n) = addg(250n + 42),
5addg(10n + 4) = addg(250n + 142),
7addg(10n + 6) = addg(250n + 192),
7addg(10n + 8) = addg(250n + 242),

5+l _ 1 3 x 52k+1 _

( 1 ) addg(50n + 2) = adds (2 x 5%+ 4 _>E__4___7) ,
5+l _ 1 11 x 52k+1 _

( 1 ) addg(50n + 12) = addg (2 x 52k+2p 4 _X5_4__7_) ,



(
(

5k+1 . 1
4
5k+1 -1

2k+1 _
) addg(50n + 22) = adds <2 x 52k+2 o E3<54—7

2 2k+1 __ 7
) adds(50n + 32) = adds (2 x 5242 4 _7_X_§Z___._

6addg(50n + 42) = addg(1250n + 1092) + 5adds(2n).

).
)
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Chapter 2

Some Results on 3-Cores

2.1 Introduction

We stated in the introductory chapter that by using the theory of modular forms,
Granville and Ono [49] proved that

az(n) = d13(3n + 1) — dy3(3n + 1), (2.1.1)

where d,3(n) is the number of divisors of n congruent to r (mod 3).
Again, Baruah and Berndt [4] used a modular equation of Ramanujan to prove

that
az(4n + 1) = az(n), for alln > 0. (2.1.2)

Though not explicitly written in [4], from the same modular equation it follows

that

az(4n+3) =0, for all n > 0. (2.1.3)

Note: The contents of this chapter has been accepted in Proceedings of the American Mathematical

Society [9].
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Hirschhorn and Sellers [35] used some elementary generating function manipula-
tions to prove the result (2.1.1) and then employed that to derive an explicit formula
for az(n) in terms of the factorization of 3n + 1. As corollaries, they derived several
infinite families of arithmetic results involving a3(n), including the generalizations
of (2.1.2) and (2.1.3).

We recall that if a3(n) denotes the number of partitions of n that are 3-cores,
then from (1.1.7) the generating function for as(n) is given by

; as(n)q"™ %1,—9))— (2.1.4)

We note that, by (1.2.5), the formula (2.1.4) reduces to

Zag i f’_((__q)l (2.1.5)

In the next section, we use Ramanujan’s theta function identities to prove that

n=0

u1(12n + 4) = 6asz(n), where u;(n) denotes the number of representations of a
nonnegative integer n in the form z? + 3y? with z,y € Z. We then deduce (2.1.1)
with the help of a classical result by L. Lorenz [43] in 1871.

We further show that different proofs of the results by Hirschhorn and Sellers
[35] can also be found without considering the factorization of 3n + 1.

We also generalize a result of Baruah and Berndt [4] which states that if asc3(n)

is the number of self-conjugate 3-cores of n, then ascs(4n + 1) = ascs(n).

2.2 Main theorems

Theorem 2.2.1. If u)(n) denotes the number of representations of a nonnegative
integer n in the form x% + 3y? with z,y € Z, and a3(n) is the number of 3-cores of
n, then

u1(12n + 4) = 6as(n). (2.2.1)

In the following process of proving (2.2.1), we also find some other results in-

volving u; (n).
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Proof. We have
Zul n)g" = ¢(q)p(q*), (22.2)

n=0

which we rewrite with the help of (1.2.6) as

Z u(n)g” = ((¢*) + 209(¢")) (v(a"*) +24°%(¢™))

n=0

= (p(g")(g"?) + 4¢*¥(a*)¥(**)) + 2q (¥(a*)(a"®) + g o(g* )W (™)) -
(2.2.3)

Extracting the terms involving ¢ and ¢**!, respectively, in (2.2.3), we find that

D wm(2n)g" = p(g*)p(e°) + 497 (¢*)(e") (2.2.4)

n=0

and

> wi(2n+ 1)g" = 29(¢*)p(g®) + 2g0(a*)¥(¢"?) = 29(g)%(g"), (2.2.5)

n=0

where the last equality of (2.2.5) is proved by several authors, for examples, in [17,
p. 356], 5], [42], and [20].

Now, with the help of (2.2.2) and (2.2.5) we can rewrite the identity (2.2.4) in

the form
Z uy (2n)q" = Z u; (n)g*" + 242 Z uy (2n + 1)g*™ (2.2.6)
n=0 n=0 n=0
Equating the coefficients of ¢>"*!, ¢**, and ¢***2, respectively, from both sides of
(2.2.6), we obtain
w(dn+2) =0, (2.2.7)
u1(8n) = u3(2n), (2.2.8)
u1(8n +4) = 3w, (2n + 1). (2.2.9)

Again employing (1.2.14) in (2.2.2), we have

Zul(")q = 0(¢%) (o(q®) + 24f(¢*,¢")) . (2.2.10)

n=0
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Either extracting the terms or equating the coefficients of the terms involving

", ¢*t? and ¢®"*!, respectively, from both sides of (2.2.10), we find that

u1(3n) = uy(n), (2.2.11)
w(3n+2) =0, (2.2.12)
> w(3n+1)¢" = 20(q)f(2,9°). (2.2.13)

n=0
Now, we find a 2-dissection of ©(q)f(g,¢°). To this end, setting a = —qw and
b = —qw?, where w is a nonreal cube root of unity, in Jacobi triple product identity

(1.2.2), we find that

fl-qw,—gw®) _ (aw;9")oo(aw?; %) (4 %) oo
(%w, ¢*w? ¢*) oo (g*w, ¢?w?; ¢*)oo
(9w 4%)oo (9% 4%)oo
(9%W; ¢*) oo (—qw; %) oo
_ (4 4*)oo
(—qu?; qz)oo(_qw3 7)o ‘

(2.2.14)

Changing the base of the g-products (~quw?;¢%)s and (—qw;q?)w in (2.2.14), we
deduce that

f(—quw, —qu?)

2. 2 ) '
(@Pw, w2 Voo (0% 9% o0 (— 2 6% 00 (—7°; ¢%)oo

_ (6%6%)f(g,¢°)
(9% ¢%)oo

bl

where we also used (1.2.2).

Thus,

sy _ 9(0)f(=qw, —qw?)(q% ¢%)oo
#0)f(a.0) (¢*w, ¢*w?; ¢*) o (9% ¢ oo
_ 9@ f(—qw, —qw*)(¢** ¢'*) o
(¢% ¢ oo
_ fg.9)f(-qw, —qw?) f(=¢"?)
f(=q%) ’

(2.2.15)

where we have used (1.2.3) and (1.2.5).



22

Now, setting a = b= q, ¢ = —qw, and d = —quw? in (1.2.11), we find that
f(a,9) f(—qw, —qu®) = f(—d*w, —¢*w?) + ¢f (—w?, —wg") f(-w, —¢'v?). (2.2.16)

Employing (1.2.2) in the expressions on the right side of (2.2.16), manipulating the

g-products, and then using the resulting identity in (2.2.15), we obtain

3(_ 12
(@)@ ¢°) = B f(gha") + 3q%_—-j-;)—). (2.2.17)

Now, employing (2.2.17) in (2.2.13), we find that

2 (—q'?)

D w(@nt1)g" = 20(¢")1(g",¢") + 60— "

n=0

(2.2.18)

Extracting the terms involving ¢*"*! from both sides of (2.2.18) and then using
(2.1.5), we obtain

00 3(_ .3 bad
> w120+ 4)q" = 6ff§_g)) =6 ay(n)q",
n=0

from which we readily deduce (2.2.1) to complete the proof. (]

n=0

Now the identity (2.1.3) can easily be deduced.
Corollary 2.2.2. The identity (2.1.3) holds good.
Proof. Replacing n by 3n + 2 in (2.2.7), we have

u1(12n + 10) = 0.
By (2.2.8), the above identity is equivalent to
uy (48n + 40) = 0,

which, with the help of (2.2.1), can easily be reduced to (2.1.3). O

With the aid of a result of Lorenz {43], the identity (2.1.1) can also be deduced

easily.
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Corollary 2.2.3. The identity (2.1.1) holds good.

Proof. A classical result of Lorenz [43] states that

U1 (n) = 2(d1,3(n) — dg,g(n)) + 4(d4,12('ﬂ) - dg,lz('n)), (2.2.19)

where d,3(n) is the number of divisors of n congruent to r (mod 3).
Hirschhorn [34] proved the equivalent form of (2.2.19) as
(e o] o0
P(@)p(¢®) =1+ 2 (di13(n) — das(n))g" +4 Y (dara(n) — da1a(n))q™,
n=1 n=1
which can be rewritten in the form

D u(n)g" =1+2 (dis(n) — das(n))g” +4 Y _(dia(n) — dza(n))g™. (2.2.20)

n=0

Equating the coefficients of 12n + 4 from both sides of (2.2.20), we find that
u1(12n + 4) = 2(d1,3(12n + 4) - d2,3(12n + 4)) + 4(d1,3(3n + 1) - d2,3(3n + 1))

Noting that dy 3(12n+4) —dp 3(12n+4) = dy 3(3n+1) —dy 3(3n+1), we immediately

arrive at (2.1.1). g

Employing (2.1.1) and a standard counting argument, Hirschhorn and Sellers
(35] found an explicit formula for az(n) in terms of the factorization of 3n + 1 and
deduced several infinite families of arithmetic results involving ag(n). Now we can
also find different proofs of their results without considering the factorization of
3n + 1. We demonstrate this by proving one of their results in Theorem 2.2.5. First

we prove the following lemma.

Lemma 2.2.4. If ui(n) denotes the number of representations of a nonnegative
integer n in the form x% + 3y? with z,y € Z and p = 2 (mod 3) is an odd prime,
then

u1 (p°n) = w1 (n). (2.2.21)
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Proof. Let p =2 (mod 3) be an odd prime. Settingn = p and a = b= ¢ in (1.2.13),
we obtain

p—1
o(g) = 9(@) + D _q" f(gPPTN, g T+), (2.2.22)

r=1
With successive use of the trivial identity f(a,b) = af(a™*,a?b), we can rewrite the

above identity in the form

o(q) = p(¢7) + 20 f (D, PPD) 4 2g% f(PP2D), gPP+2D)

+ 2q32f(qp(13—2'3), PPy 44 2q(L;_l)2f(qP, qp(2p—1))‘ (2.2.23)
Replacing ¢ by ¢3 in (2.2.23), we have

2 — .02 —92. .
0(g%) = @(q) + 23 f (g%, g*PP+D)) 4 2¢3% f(g%PP22) gPr(p+22))

+ 23 % f(gPPP2D) P23y 4y 2(13(";—1)2 (g%, g%~ 1)), (2.2.24)

Employing (2.2.23) and (2.2.24) in (2.2.2) and then extracting the terms involving
g™ from both sides of the resulting identity by noting that prime p = 2 (mod 3)

and squares are always congruent to 0 or 1 modulo 3, we find that

Zul( o(g?)p(q*) Zul n)g™. (2.2.25)

n=0 n=0

Equating the coefficients of ¢ from both sides of (2.2.25), we readily arrive at
(2.2.21) to complete the proof. O

Theorem 2.2.5. (35, Corollary 8] Let p = 2 (mod 3) be prime and k be a positive

even integer. If ag(n) denotes the number of 3-cores of n, then for any positive

asz(n) = az (pkn + (pk; 1)) : (2.2.26)

Proof. First we prove the theorem for p = 2.

integer n, we have

Replacing n by 6n + 2 in (2.2.8), we obtain

u; (120 + 4) = 4 (12(4n + 1) + 4). (2.2.27)
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Employing (2.2.1) in (2.2.27), we arrive at (2.1.2), from which (2.2.26) for p = 2 can
be readily deduced by induction.
Next, we prove the theorem for an odd prime p = 2 (mod 3).

Replacing n by 12n + 4 in (2.2.21), we have

21
u(12n +4) =y (p*(12n +4)) = u (12 (p2n + 2 3 ) + 4) . (2.2.28)
Employing (2.2.1) in (2.2.28), we arrive at

21
asz(n) = a3 (pzn + PT) ,

which implies (2.2.26) by induction. O
If asc3(n) denotes the number of 3-cores of n that are self-conjugates, then

Baruah and Berndt [4] proved that asc3(4n+1) = asc3(n). In the following theorem,

we generalize this result by proving a theorem analogous to Theorem 2.2.5, where

az(n) is replaced by ascs(n).

Theorem 2.2.6. Let p = 2 (mod 3) be prime and k be a positive even integer. If

ascy(n) denotes the number of 3-cores of n that are self-conjugates, then for any

positive integer n, we have

asca(n) = ascs (pkn + (pk; 1)) . (2.2.29)

Proof. Let us define s(n) by

0(g) =) s(n)q". (2.2.30)

n>0
Employing (1.2.14) in (2.2.30) and extracting the terms involving ¢***!, we find that
> s(3n+1)q" = 2f(q,¢°). (2.2.31)
n>0
Again, by [16, p. 51, Example (v)], (1.2.4) and (1.1.9) with ¢ = 3, we have
flg,6°) =) ascs(n)q™. (2.2.32)

n>0
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From (2.2.31) and (2.2.32), we arrive at
s(3n + 1) = 2asc3(n). (2.2.33)

Again, employing (2.2.30) in (2.2.23) and then proceeding as in the proof of
Theorem 2.2.5, we obtain

s(p’n) = s(n). (2.2.34)

From (2.2.33) and (2.2.34), we find that

2asca(n) = s(3n+ 1) = s(P*(3n+ 1)) = s (3 (p"‘n + ’%) + 1)

21
=2asc3(p2n+p 3 ),

from which we readily arrive at (2.2.29) by induction. O




Chapter 3

Infinite Families of Arithmetic
Identities for 4-Cores

3.1 Introduction and preliminary results

If a4(n) denotes the number of partitions of n that are 4-cores, then the generating

function for a4(n) is given by (1.1.7) as

4 4)4

f:a4(n)qn = (i—i’—ﬁ (3.1.1)

(2,90

n=0

Manipulating the g-products, and then using (1.2.4), we have

Y au(n)g" = $(q)¥*(d). (3.1.2)

n=0
Let u(n) and v(n) be the number of representations of a nonnegative integer n
in the forms z? + 4y? + 42% and z? + 2y? + 222, respectively, with z,y,2 € Z and
r3(n) be the number of representations of n as a sum of three squares. By employing

simple theta function identities of Ramanujan, in Section 3.2, we prove that

w(8n + 5) = 8aq(n) = v(8n + 5) = %7‘3(871 +5).

Note: A portion of this chapter has appeared in Bulletin of the Australian Mathematical Society

[10].
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Again, with the help of this and a classical result of Gauss, we find a simple proof of
a result on a4(n) proved earlier by K. Ono and L. Sze [51], which states that if h(—D)
denotes the class number of primitive binary quadratic forms with discriminant —D

and a4(n) denotes the number of 4-cores of n, then, for a square-free integer 8n + 5,
1
as(n) = 5h(—32n — 20). (3.1.3)

In Section 3.3, we find new proofs for the results on a4(n) by Hirschhorn and
Sellers [32] along with some analogous new infinite families of identities. We mention
here that Hirschhorn and Sellers also proved the identity 24a4(n) = r3(8n + 5) from
which earlier results of Hirschhorn and Sellers {32] can easily be deduced with the
help of the other results in [33].

In Section 3.4 of the thesis, we also present several infinite families of new arith-
metic identities for r3(n) and t3(n) along with some new proofs for the infinite
families of arithmetic identities earlier given by Hirschhorn and sellers [33, 30).

In Section 3.5, we prove some more infinite families of arithmetic identities that

actually missed by Hirschhorn and Sellers [32] and by us {10].

3.2 Identities connecting u(n), v(n), r3(n) and ay(n)
In this section, we present the relations among u(n), v(n), r3(n) with a4(n).

Theorem 3.2.1. If u(n) and v(n) denote the number of representations of a non-
negative integer n in the forms z? + 4y? + 422 and 2% + 2y* + 222, respectively, where

z,y,z € Z, and a4(n) is the number of 4-cores of n, then
u(8n + 5) = 8a4(n) = v(8n + 5). (3.2.1)

In the following process of proving (3.2.1), we also find some other results in-

volving u(n) and v(n).
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Proof. First we prove the first equality in (3.2.1). Clearly, the generating function

for u(n) is given by

Y u(n)g" = p(q)¥*(g").

n=0
With the aid of (1.2.6), we rewrite the above as

o0

> uln)g® = ©*(q*) (0(g*) + 299(¢%))

n=0

= ©3(¢*) + 2¢¢°(¢")(d°). (3.2.2)

Extracting the terms involving ¢**, ¢***!, ¢*"*2 and ¢'"*3 respectively, in (3.2.2),

we find that
iU(%)q" = ¢°(9), (3.2.3)
i u(dn + 1)g" = 2¢*(g)¥(g?), (3.2.4)
. u(dn +2) =0,
u(dn + 3) = 0.

Now, with the help of (1.2.6), we can rewrite the identity (3.2.3) in the form

Y u(in)g™ = ¢*(g*) + 69p* (¢)P(a®) + 126%0(a* )Y (a") + 8a°P(¢®).  (3.2.5)

n=0

4n+1 . 4n+2 _4n+3

Equating the coefficients of ¢**, ¢
(3.2.5), we obtain

respectively, from both sides of

y 4 » 4

u(16n) = u(4n),

> u(16n + 4) = 60*(q)¥(q?), (3.2.6)

o0

> " u(16n + 8) = 120(g)¥*(¢%), (3.2.7)

n=0
oo

D " u(16n +12) = 8¢°%(¢?). (3.2.8)

n=0
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From (3.2.8), it further follows that

oo

D u(32n +12) = 8y3(g), (3.2.9)

n=0

u(32n + 28) = 0.
Again, from (3.2.4) and (3.2.6) it follows that
3u(dn + 1) = u(16n + 4). (3.2.10)

Now, employing (1.2.8) in (3.2.4), we have

o0

> u(dn + 1)g" = 20(¢*)¢(¢®) + 8av(a?)¥*(a*). (3.2.11)

n=0
Extracting the terms involving ¢ and ¢®™*! from both sides of (3.2.11), we respec-
tively find that

o0

Y uldn+1)g" = 2%(q)¥*(q), (3.2.12)

n=0
00

Y u(8n+5)¢" = 84 (q)¥*(¢)- (3.2.13)

n=0

Employing (3.1.2) in (3.2.13) and then equating the coefficients of ¢" from both
sides, we readily deduce the first equality of (3.2.1).
Now we prove the second equality of (3.2.1). To this end, we note that the

generating function for v(n) is given by

o0

> v(n)g" = p(q)e*(g). (3.2.14)

n=0
With the help of (1.2.6), we rewrite (3.2.14) as

o0

> v(n)g" = ©* (@) (w(g*) + 2¢9(q%))

= 0 (De(g") + 200% ()% ().

Extracting the even and odd terms of the above, we obtain

00

Y v(2n)d" = P*(g)p(d?), (3.2.15)
n=0
Y v(2n+1)q" = 20*(g)y(g"). (3.2.16)

n=0
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Now, applying (1.2.8) in (3.2.15), and then extracting the even and odd terms,

we find that
) vlan)g" = ¢*(q), (3:217)
n=0
> w(dn +2)q" = 4p(g)y* (7). (3.2.18)
n=0

Next, employing (1.2.6) in (3.2.17) and then extracting the terms involving ¢*",

4n+1 4n+2
3

, and ¢*"*3 respectively, we find that

q q

v(16n) = v(4n),

> v(16n +4)g" = 60*(a)1(g), (3.2.19)

n=0
oo

Y v(16n +8)¢" = 120(g)9*(¢%), (3.2.20)

n=0
[>)

> v(16n + 12)q" = 8¢°(g?). (3.2.21)

n=0
It follows from (3.2.21) that

o0

> " w(32n +12)¢" = 84°(q), (3.2.22)

n=0

v(32n + 28) = 0.

Now, employing (1.2.8) in (3.2.16), and then extracting the even and odd terms,
we find that

o0

Y vldn+1)g" = 26°(q)u(e?), (3.2.23)
> v(dn +3)¢" = 84%(¢"). (3.2.24)
n=0

It follows from (3.2.24) that

o0

Zv(Sn + 3)¢" = 8¢*(q), (3.2.25)

n=0

v(8n+T7) =0.
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Also, from (3.2.19) and (3.2.23), we have
3u(dn + 1) = v(16n + 4). (3.2.26)

On the other hand, employing (1.2.8) in (3.2.23) and then extracting the odd
and even terms of the resulting identity, and with the aid of (3.1.2), we find that

oo

> v(8n+ 1)g" = 2%(q)¢*(9), (3.2.27)
> " vu(8n +5)g" = 81h(q)v(¢") =8 _ as(n)q"™. (3.2.28)
n=0 n=0

From (3.2.28), we easily deduce the second equality of (3.2.1) to finish the proof.
O

Corollary 3.2.2. If r3(n) denotes the number of representations of n as a sum of

three squares, then
r3(8n + 5) = 3u(8n + 5) = 3v(8n + 5) = 24a4(n). (3.2.29)

Proof. We note that

Y ra(n)g” = ¢*(q). (3.2.30)

n=0

From (3.2.3), (3.2.17) and (3.2.30), we deduce that
r3(n) = u(4n) = v(4n). (3.2.31)

Now, replacing n by 2n+1 in (3.2.10) and (3.2.26), then employing (3.2.31), we

obtain
3u(8n + 5) = u(32n + 20) = r3(8n + 5) and 3v(8n + 5) = v(32n + 20) = r3(8n + 5),

from which, with the help of (3.2.1), we easily deduce (3.2.29). a

Next, we deduce the formula given above as (3.1.3) due to Ono and Sze [51,
Theorem 2].



33

Corollary 3.2.3. (Ono and Sze [51, Theorem 2]). Formula (3.1.3) holds.
Proof. A classical result due to Gauss states that if n is square-free and n > 4, then

24h(—n), for n =3 (mod 8);
r3(n) = ¢ 12h(—4n), forn=1,2,5,6 (mod 8);
0, for n = 7 (mod 8).

Now (3.1.3) readily follows from Corollary 3.2.2. O

We end this section by giving two more corollaries arising from the proof of the

above theorem.

Corollary 3.2.4. We have

u(8n + 1) =v(8n + 1), (3.2.32)
u(16n + 8) = v(16n + 8) = 3v(4n + 2). (3.2.33)

Proof. 1dentity (3.2.32) follows from (3.2.12) and (3.2.27), and (3.2.33) follows from
(3.2.7), (3.2.18) and (3.2.20). O

Corollary 3.2.5. We have
u(32n + 12) = r3(8n + 3) = v(32n + 12) = v(8n + 3) = 8t3(n), (3.2.34)

where t3(n) is the number of representations of n as a sum of three triangular num-

bers.

Proof. We note that
D ta(n)g™ = ¢*(q). (3.2.35)
n=0

Now (3.2.34) follows easily from (3.2.35), (3.2.9), (3.2.22), (3.2.25), (3.2.3), and
(3.2.30).
O
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3.3 Infinite families of arithmetic properties of

aq4 (’I’L)

In this section, we prove some infinite families of arithmetic identities for a4(n) by
using the results from the previous section. First, we deduce the following infinite

families of arithmetic identities.

Theorem 3.3.1. [Hirschhorn-Sellers [32]]. If aq(n) denotes the number of 4-cores
ofn, and k > 1 then

3ka4(3n) = a4 (3”‘+1 i 3: — 5) , (3.3.1)
(2x3*~1)ay(Bn+1) = a4 (32’°+1 13 38% 5) : (3.3.2)
(3k+12‘ 1) as(9n +2) = a4 (32’°+2 7x 32’:1 5) , (3.3.3)
(3k+12— 1) as(9n + 8) = ay (32k+2n + ?lq’i‘g—?;i—é) : (3.3.4)

Proof. Cooper and Hirschhorn [21] found the following arithmetic properties of
r3(n).

For any nonnegative integer n and any integer £ > 1, we have

3*r3(6n + 5) = r3(9%(6n + 5)), (3.3.5)
(2 x 3% — 1) r3(24n + 13) = r3 (9%(24n + 13)), (3.3.6)
(BH;_ 1) r3(72n + 21) = 73 (95(72n + 21)) , (3.3.7)
(3k+12_ 1) r3(72n + 69) = r3 (9%(72n + 69)) . (3.3.8)

Replacing n by 4n in (3.4.1), we have

2k
3*r3 (8(3n) +5) = r3 (8 (32’°+1n + 5—><—3'8——§) + 5) ,

from which we readily deduce (3.3.1) by employing (3.2.29).
In a similar fashion, (3.3.2)—(3.3.4) follow from (3.4.2)—(3.4.4), respectively. O
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In the next theorem we give some more infinite families of arithmetic identities

for as(n).

Theorem 3.3.2. If ay(n) denotes the number of 4-cores of n, and k > 1 then

5a4(5n + 2) = a4(125n + 65), (3.3.9)

5a4(5n + 3) = a4(125n + 90), (3.3.10)

(SHL' 1) a4(25n) = a4 (52k+2n + 5—25%?—5) , (3.3.11)
(5k+14— 1) a4(25n + 5) = a4 (52'°+2n + g—fi::l—“—é) : (3.3.12)
(5k+14_ 1) aq(25n + 10) = a4 (52’°+2n + Ef%———s) : (3.3.13)
(5“14— 1) ag(25n + 20) = a4 (52k+2n + Mzi——s) . (3.3.14)

Before proving the theorem, we prove the following lemma concerning r3(n).

Lemma 3.3.3. If r3(n) denotes the number of representations of n as a sum of

three squares, then

5ra(5n + 1) = r3 (25(5n + 1)), (3.3.15)

5r3(5n + 4) = 73 (25(5n + 4)) (3.3.16)

skH ) (25n + 5) = r3 (255(25n + 5)) , (3.3.17)
(5“14 1) r3(25n + 10) = 13 (25%(25n + 10)) , (3.3.18)
(5k+;— 1) r3(25n + 15) = 73 (25%(25n + 15)) (3.3.19)
<5k+l_ 1) r3(25n + 20) = 3 (25%(25n + 20)) . (3.3.20)

Proof. Employing the five dissection of ¢(g) from (1.2.15) in (3.2.30) and then ex-

tracting the terms involving ¢®*" for 7 = 0, 1, 2, 3, 4, respectively, we find that
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27‘3(5n)q" = *(¢°) + 2490(¢°) f(q,¢°) f(d*, 47), (3.3.21)
2 r3(5n + 1)g" = 6¢°(¢°) F(¢%, ") + 249 % (9,4°)(¢% 4), (3.3.22)
io ra(5n + 2)¢" = 120(¢°) f*(¢°,97) + 8¢° *(q, "),

i_o:o ra(5n + 3)g™ = 8f°(¢°,4) + 1290(¢%) (g, 4°),
iors(% +4)g" = 6¢°(¢°) f(9,9°) + 249 f2(q,4°) f(¢*, ") (3.3.23)

Now, from [16, p. 262, Entry 10(iv)], we note that

©*(q) — ¥*(¢°) = 44f(q,¢°) F(*, @) (3.3.24)

Employing (3.3.24) in (3.3.21), we obtain

> ra(5n)g™ = 60%(9)(a®) — 5¢°(¢°), (3.3.25)

n=0
which we rewrite , with the aid of (3.2.30), as

o0

> r3(5n)g" = 662 (q)e(q®) = 5D ra(n)g”™. (3.3.26)

n=0 n=0

Similarly, employing (3.3.24) in (3.3.22) and (3.3.23), we obtain

irs(f’" +1)g" = 6¢°(q)f(¢*,q"), (3.3.27)
n=0

and
i ra(5n +4)¢" = 6¢*(9) f(g,¢°), (3.3.28)
n=0

respectively.

Again, using (3.3.24) in (3.3.25), and then extracting the terms involving ¢°",

we deduce that

o0

> ms(25n)g™ = 60(q)¢*(¢°) + 48a(9) f(9,0°) (. 4") — 5¢°(a),  (3.3.29)

n=0
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Employing (3.3.24) once again in (3.3.29), we find that

o0

Y " r3(25m)q™ = T9°(q) — 60(9)¢"(¢%),

n=0

which we rewrite, with the help of (1.2.15) as

D rs(25m)g™ = 79°(q) — 60°(¢°) {0(d®) + 29f(¢*%,4%) + 24* F(¢°,4*°) } .

n=0

(3.3.30)

Now, employing (3.2.30) in (3.3.30), and then extracting the terms involving ¢°",
we find that

Y r3(125n)g™ =7 ra(5n)g” — 60*(9)e(q”). (3.3.31)
n=0 n=0

Employing (3.3.26) in (3.3.31), we arrive at

Sng(n)qs" = Gng(Sn)q” - Zr3(125n)q". (3.3.32)
n=0 n=0 n=0

we are now in a position to prove (3.3.15)—(3.3.20). First we prove (3.3.15) and
(3.3.16). Equating the terms involving ¢°**+! and ¢°™*+4, respectively, from both sides

of (3.3.30), we obtain

E r3(125n + 25)¢"™ = 7Zr3(5n +1)q™ — 12¢0%(q) f(¢*, d), (3.3.33)
n=0 n=0

and
> r3(125n +100)g™ = 7Y _ r3(5n + 4)¢" — 120*(9)f(9,¢°), (3.3.34)
n=0 n=0

respectively. Employing (3.3.27) and (3.3.28) in (3.3.33) and (3.3.34), respectively,
and then equating the coefficients of ¢" from both sides of the resulting identities,
we readily deduce (3.3.15) and (3.3.16).

Next, we prove (3.3.17). Equating the coefficients of ¢°**! from both sides of
(3.3.32), we deduce that

6r3(25m + 5) = r3(25(25n + 5)), (3.3.35)
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which is (3.3.17) for k = 1.
Again, equating the coefficients of ¢?*"*1) from both sides of (3.3.32), we find
that

5r3(25n + 5) = 6r3(5%(25n + 5) — 3(25%(25n + 5)),
which, with an aid from (3.3.35), reduces to
31r3(25n + 5) = r3(25%(25n + 5)),

which is nothing but (3.3.17) with k = 2. We complete the proof of (3.3.17) by
mathematical induction.

We now prove (3.3.18). Equating the coefficients of ¢®**? from both sides of
(3.3.32), we obtain

6r3(25n + 10) = r3(25(25n + 10)), (3.3.36)

which is (3.3.18) for k = 1.
Again, equating the coefficients of ¢?¢"*?) from both sides of (3.3.32), we find
that

5r3(25n + 10) = 673(5%(25n + 10) — 73(25%(25n + 10)),
which, by (3.3.36), reduces to
31r3(25n + 10) = r3(25%(25n + 10)),

which is (3.3.18) with k = 2. Now the proof of (3.3.17) can be completed by
mathematical induction.

In a similar fashion, equating the respective coefficients of ¢°"*3 and ¢**** from
both sides of (3.3.32), and proceeding as in the proofs of (3.3.17) and (3.3.18), we
can prove (3.3.19) and (3.3.20). Thus, we complete the proof of the lemma. a

Proof of Theorem 3.3.2. Replacing n by 8n + 4 in (3.3.15), we find that

5r3(8(5n + 2) + 5) = r3(8(125n + 65) + 5). (3.3.37)
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Employing (3.2.29) in (3.3.37), we readily deduce (3.3.9).

Next, replacing n by 8n + 5 in (3.3.16), and then using (3.2.29), we deduce
(3.3.10).

Again, replacing n by 8n in (3.3.17), we have

( 1 ) r3(8(25n) + 5) = 3 (8 (52’°+2 + ——8—) + 5) :

which implies (3.3.11) with the aid of (3.2.29).

Similarly, replacing n by 8n + 3, 8n + 6, and 8n + 1 in (3.3.18), (3.3.19), and
(3.3.20), respectively, and then employing (3.2.29), we deduce (3.3.13), (3.3.14), and
(3.3.12), respectively, to finish the proof. a

3.4 Infinite families of results involving r3(n) and

t3(n)

In this section, we give new proofs for the infinite families of arithmetic identities
involving sum of three squares given by Hirschhorn and Sellers [33], and by Baruah

and Boruah (8].

Theorem 3.4.1. For any nonnegative integer n and any integer k > 1, if ra(n)

denotes the number of representation of n as a sum of three squares, then

(2% 35— 1) r3(3n + 1) = r3(9¥(3n + 1)), (3.4.1)

3Fr3(3n +2) = r3 (9*¥(3n +2)) , (3.4.2)

(3k+12— 1) r3(9n + 3) = r3 (9¥(9n + 3)) , (3.4.3)

<3k+12— 1) r3(9n +6) = r3 (9¥(9n +6)) , (3.4.4)
k+1 _ k+1 __

(3 3 1) r3(9n) =73 (Qk(gn)) + (3 5 3) r3(n). (3.4.5)

Proof. Employing (1.2.14) in (3.2.30), and then extracting the terms involving ¢*",
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¢, ¢**2 from both sides of the resulting identity, we find that

o0

Y rs(3n)g” = ¥*(¢°) + 8af%(9,4"), (3.4.6)

n=0

r3(3n + 1)¢" = 6¢*(¢°) f(¢,4°), (3.4.7)

NE

n=0

r3(3n +2)¢" = 12p(¢°) f2(9, ¢°). (3.4.8)

L

Il
o

n

Employing (1.2.18) and (3.2.30) in (3.4.6), we obtain

> ra(am)g® = Y- ran)g® + 8qp¥(—¢%) 2L (349)

Now, from a result of Baruah and Ojah [6, Theorem 2.1], we note that
1 _ ¥(=¢) <¢2(q9) il
¥(—q)  P*(—¢%) \x*(¢®) x(¢3)

Employing (3.4.10) and (1.2.14) in (3.4.9) and then extracting the terms involving

+ q2¢2(—q9)) . (3.4.10)

¢>™ only from both sides of the resulting identity, we find that

Zr3(9n)q" = Zr;;(n)q” + 24q?f_(_;Tqi___)q‘P)(‘f)’ (3.4.11)

where we have also used (1.2.18). Employing again (3.4.10) in (3.4.11) and then

n=0 n=0

extracting the terms involving ¢°*, ¢®**!, ¢®*+2 from both sides of the resulting

identity, we deduce that

> rs(2Tn)g* = r3(3n)g™ + 2491%(q, ¢°), (3.4.12)
n=0 n=0
D 132+ 9)g" =53 ry(3n +1)g", (3.4.13)
n=0 n=0
D r3(27n+18)q" =3 ry(3n +2)q", (3.4.14)
n=0 n=0

where (1.2.18), (3.4.7) and (3.4.8) are also used.
Employing (3.4.6) in (3.4.12), we obtain

o0 o0 o0

Y ra(27n)g" =4 rs(3n)g" ~ 3 ra(n)g™ (3.4.15)

n=0 n=0 n=0
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Again, equating the terms involving ¢3**1, ¢**2 and ¢*", from both sides of (3.4.15),
g q g q

we find that
r3(81n + 54) = 4r3(9n + 6) (3.4.17)
r3(81n) = 4r3(9n) — 3rz(n). (3.4.18)

From (3.4.13)~(3.4.18) and by mathematical induction, we complete the proof. O

We now show that the results of Hirschhorn and Sellers [30] and Baruah and
Boruah [8] on sum of three triangular numbers given in the following theorem easily

follow from Theorem 3.4.1.

Theorem 3.4.2. For any nonnegative integer n and any integer k > 1, if t3(n)

denotes the number of representation of n as a sum of three triangular numbers,

then

2k __

3Ft3(3n+1) =t (32k+1n + “—X%—3) , (3.4.19)
1 2k _
(2x3*—1)t3(3n +2) =13 (32k+1 + %ﬁ) , (3.4.20)
k+1 __ 2k+1 __

(3 5 1) t3(9n) = t3 (32’°+2 + -3-8—3) , (3.4.21)

k+1 _ 1 2k+1 __
(3 5 1) t3(9n +6) = t3 (32'°+2 + _75_3.8___3> (3.4.22)

3k+1 -1 2k+2 __ 1 3k+1 -3
t3 (9’/1 + 3) =13 32k+2n + ‘Bi?_) + t3(n)
2 8 2

(3.4.23)

Proof. Employing (1.2.6) in (3.2.30) and then equating the terms involving ¢?"+3
from both sides of the resulting identity, we find that

[= o]

D ra(dn +3)g" = 8y3(¢?),

n=0

Hence, we have
o0

D ra(8n+3)g" =8y3(q) =8 ts(n)q",

n=0 n=0
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and consequently,

r3(8n + 3) = 8t3(n). (3.4.24)

Now, replacing n by 8n + 6 in (3.4.1), we obtain

8
Employing (3.4.24)in (3.4.25), we easily arrive at (3.4.20).

k
(2x3*=1)r3(8(3n+2)+3) =73 (8 (32’°+1n + M) + 3) . (3.4.25)

In a similar fashion, replacing n by 8n+3, 8n, 8n+5 and 8n+3 in (3.4.2)-(3.4.5),
respectively, we deduce (3.4.19), (3.4.21)—(3.4.23). 0

Some more infinite families of arithmetic identities for ¢3(n) are presented in the

following theorem.

Theorem 3.4.3. For any nonnegative integer n and any integer k > 1, we have

5t3(5n + 1) = t3(125n + 34), (3.4.26)
5t3(5n + 2) = t3(125n + 59), (3.4.27)
Tt3(5n + 3) = t3(125n + 84), (3.4.28)
7t3(5n) = t3(125n + 9), (3429)
5k+1 -1 7 2k+1 __ 3
(25 +4) =t (52’°+2n + X—SS——) : (3.4.30)
6t3(25n + 9) = t3 (625n + 234) + 5t3(n), (3.4.31)
5k+1 - 2 2k+1 __ 3
7 is(2n +14) =t (52k+2n + —“——58—> : (3.4.32)
5k+1 _ 2k+1 __
1 t3(25n + 19) = t3 (52k+2n + 31x—58——3) : (3.4.33)
5k+1 - 2k+1 __
t3(25n + 24) = t3 (52’°+2n + 3_9_><_58_3) : (3.4.34)

Proof. From (3.3.15)—(3.3.20), we note that, for any nonnegative integer n and any
integer k > 1,
5r3(5n + 1) = 73 (25(5n + 1)), (3.4.35)
5r3(5n + 4) = r3 (25(5n + 4)), (3.4.36)

(5“14_ 1) r3(25n + 5) = 13 (25(25n + 5)) , (3.4.37)
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k+1 _
> " ) r3(25n + 10) = 73 (25%(25n + 10)), (3.4.38)
5k+1

( 1 ) r3(25n + 15) = 13 (25%(25n + 15)) , (3.4.39)
5k+1 -1

( 1 ) r3(25n + 20) = r3 (25%(25n + 20)) . (3.4.40)

Again, from (3.3.30) and (3.3.32), we note that

) ra(25n)q™ = 7¢%(g) — 6¢%(¢°) (0(a™°) + 20£(¢"°, ¢®) + 2 (¢, ¢*)) , (3.4.41)

n=0

5 Zm(n)qs" =6 Z r3(5n)q" — Z r3(125n)q™. (3.4.42)

n=0 n=0

Using (3.2.30) and equating the coefficients of ¢°**2 and ¢°**3, respectively, from

both sides of (3.4.41), we deduce that

. Trs(5n+2) = r3(25(5n + 2)), (3.4.43)
Tr3(5n + 3) = r3(25(5n + 3)) . (3.4.44)

On the other hand, equating the coefficients of ¢°* from both sides of (3.4.42),

we obtain
673(25n) = 73 (625n) + 5r3(n). (3.4.45)

Now, replacing n by 81+ 2, 8n 4+ 3, 8n+ 5, 8n, 8n + 3, 8n + 6, 8n + 1, 8n + 4,
and 8n + 7 in (3.4.35), (3.4.36), (3.4.43)—(3.4.45), (3.4.37)—(3.4.40), respectively, we
deduce (3.4.26)—(3.4.29), (3.4.31), (3.4.33), (3.4.30), (3.4.32),(3.4.34). O

3.5 Some other new arithmetic identities for a4(n)

We found new proofs for the identities earlier given by Hirschhorn and Sellers
[32] and also obtain some analogous new infinite families of arithmetic identities for
a4(n). We notice that the identities stated in the following theorem were missed by
Hirschhorn and Sellers [32] and by us [10]. Here we prove these by using the results
from Section 3.4.
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Theorem 3.5.1. For any nonnegative integer n and positive integers k, we have

3k+1 -1 15 2k+1 __ 5 3k+1 -1
( 5 ) as(In +5) = aq (32k+2n + 2 5 ) + aq(n). (3.5.1)

8 2

Proof. Replacing n by 8n + 5 in (3.4.18), we have
4r3(8(9n + 5) + 5) = r3 (8(81n + 50) + 5) + 3r3(8n + 5),
which can be rewritten, with the aid of (3.2.29), as
4a4(9n + 5) = a4 (811 + 50) + 3aq(n). (3.5.2)
Iterating (3.5.2) and by mathematical induction we easily arrive at (3.5.1). O

The identities stated in the following theorem were missed by us in [10].

Theorem 3.5.2. For any nonnegative integer n, we have

7Ta4(5n + 1) = a4(125n + 40), (3.5.3)
Taa(5n + 4) = aq(125n + 115), (3.5.4)
6aq(25n + 15) = aq (6250 + 390) + Saq(n). (3.5.5)

Proof. Replacing n by 8n + 2 in (3.4.44), we find that
7r3(8(5n + 1) + 5) = r3(8(125n + 40) + 5). (3.5.6)

Employing (3.2.29) in (3.5.6), we readily deduce (3.5.3). Next, replacing n by 8n+7
in (3.4.43), and then using (3.2.29), we deduce (3.5.4). Again, replacing n by 8n+5
in (3.4.45), we have

673(8(25n + 15) + 5) = r3 (8(625n + 390) + 5) + 57r3(8n + 5),

which implies (3.5.5) with the aid of (3.2.29). O



Chapter 4

Two Infinite Families of
Arithmetic Identities for 5-Cores

4.1 Introduction

If as(n) denotes the number of partitions of n that are 5-cores, then from (1.1.7)

the generating function for as(n) is given by

o
(4% 4°)%
as(n)q" = ——=. 4.1.1

,,z::(, () (¢ 9)oo (41.1)
We note that, by (1.2.5), the formula (4.1.1) reduces to

o _ (=)
Zas T (4.1.2)

By using a modular equation of degree 5 recorded by Ramanujan in his second
notebook {16, p. 280, Entry 13(iii)], Baruah and Berndt [4, Theorem 2.5] proved
that

as(4n + 3) = as(2n + 1) + 2as(n). (4.1.3)
In fact, they first transcribed the said modular equation into the equivalent form
5(_ a5 5(__ 20 5( 5 5
A Q)_4q3f( g”) f(<1)+2 (= qz)’
f(=9) f(=¢*)  flg) f(=4%)
which can be rewritten, with the aid of (4.1.2), as

(Zas n)q" —Z( 1)"as n)q)—qZ% q2“+2q32a5(n . (4.1.4)

n=0 n=0 n=0 n=0

45
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Then by equating the coefficients of ¢***® on both sides of (4.1.4), they readily
arrived at (4.1.3).
Now, by equating the coefficients of ¢*"*! on both sides of (4.1.4), we deduce
that
as(4n + 1) = as(2n). (4.1.5)

The above identity was missed by Baruah and Berndt [4].
In the next section, we give some preliminary results, which will be used in

Section 4.3 to prove our main results on as(n).

4.2 Preliminary results

In the following lemmas, we state some properties satisfied by Ramanujan’s theta

functions, which will be used in the subsequent section.

Lemma 4.2.1. [16, p. 278] We have

o(a®)e(—q) — o(-¢°)p(q) = —4qf(—q¢*) f(—d*). (4.2.1)

Theorem 4.2.2. We have

Y} (@)9(e°) — (@ (@®) = ) as(n)g" +q Y as(n)g™. (4.2.2)

n=0

Proof. From [16, p. 262, Entry 10(v)], we note that

¥*(q) ~ a¥*(¢°) = fla,a") f(d*, ). (4.2.3)
Multiplying both sides by %:8;) and employing (1.2.2), we find that
35 _ @) _ f(=¢")
Y@ () — ¢ @ - fea (4.2.4)
Again, squaring both sides of (4.2.3), and then multiplying by fp((f)), we obtain
3 5 29°(¢°) _ 3¢5\ _ ff(=¢°)
¥ (@)¥(d°) + ¢ E0) 2q9(a)y°(q°) = EnE (4.2.5)
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where we have repeatedly used (1.2.2).
Multiplying (4.2.4) by ¢, adding with (4.2.5), and then using (4.1.2), we arrive
at (4.2.2). d

Theorem 4.2.3. We have

(—4;6%)3.(=¢% ¢ oo — (4;8%)3.(6%; 9% oo
_ 4q )5
(4%%; ¢) s (g% ¢%)3, (¢%%; ¢*)%,

Proof. Settinga=g¢q,b=¢° c=¢% d=¢", and n = g% in (1.2.12), we have

(4.2.6)

f@a°) (% d) (@ ¢ — F(—4,—a°) FA(—-¢*, —a") F(—¢*, —¢°)
=29/%(¢% ¢*)f(q*, ®)¥(a"™). (4.2.7)
Applying (1.2.2) in (4.2.7), and then manipulating the g-products, we find that
(—48))eo(=4*, —¢°, 0" 4% o0 = (4:4%)e0(¢’18°, 473 4'%)w
=2¢(—¢% ¢))oo(-7*, —¢*, ~¢'% ") co- (4.2.8)
Again, settinga = ¢!, b=q', c=¢% d = ¢, and n = ¢* in (1.2.12), and then
using the trivial identity f(a,b) = af(a™?,a%b), we obtain
(=4 6%)oo(—9, —0°, 0% €% + (4580 (2, 0 ¢°; 4%) o0
=2(—¢% ¢%)oo(—4*, —¢°, ~¢"% ¢"*) . (4.2.9)
Furthermore, setting a = —q, b = —¢°, ¢ = ¢%, and d = ¢, in (1.2.10), we find
that
(9:9°,~¢% =4"10")0 — (-2, =4, 6%, 4"; ¢"%)ow
= -29(~¢"%¢"9%(¢%,¢% ¢, 9% ¢ )w.  (4210)

Multiplying (4.2.8), and (4.2.9) and then using (4.2.10), we arrive at (4.2.6) to finish
the proof. O
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Remark 4.2.4. The g-series identity (4.2.6) is equivalent to the modular equation
[16, p. 281, Entry 13(vii))

5(1 — o5 /2
(Oz?’ﬂ)lls + {(1 —_ a)3(1 - ﬂ)}l/s =1~ 21/3 {%—8——_,5—%—}

where 0 has degree 5 over a.

4.3 Main results on as(n)

At the beginning of this section, we prove (4.3.1) by showing the equivalence of their

generating functions.

Theorem 4.3.1. If as(n) denotes the number of 5-cores of n, then

5) as(n)g" = as(5n+4)g". (4.3.1)

n=0 n=0

Here we present two proofs of the above theorem.

First Proof of Theorem 4.3.1. Let t(n) be defined by

P}Q)v(¢®) — qv(a)v*(¢®) = io t(n)q"™. (4.3.2)
Then it is clear from (4.2.2) that )
io t(2n)q" = i; as(2n)q" (4.3.3)
and
f:o t2n+1)¢" = i@ as(2n + 1)¢" + f% as(n)q™. (4.3.4)
Now, employin; (1.2.17) in (4.3.2—), we have i
i@ t(n)g" =v(a®) (f(a'%4") + af(¢°,4™) + ¢*v(@®))’

- g*(¢®) (F(d"°, ¢"°) + af (¢°,4%) + ¥ (d%)) . (4.3.5)



49

Extracting the terms involving ¢°*** from both sides of (4.3.5), we find that

i t(5n + 4)g" = 69(g)1(¢°) (¢, 8°) f (9, 4*) — (¥*(Q)¥(a°) ~ ¥ (9)¥°(a)).
” (4.3.6)
Employing (4.2.3) in (4.3.6), we obtain
it(5n +4)q" = 5(¥*()¥(¢®) — g¥(@)¥*(¢°)) = 5 i t(n)q". (4.3.7)
From (4?3) and (4.3.7), we find that -
5 i as(2n)q" = i as(10n + 4)q™. (4.3.8)

n=0 n=0
To complete the proof, we need to show that (4.3.8) also holds when 2n is replaced
by 2n + 1. To this end, extracting the odd parts from both sides of (4.3.7), we have

i t(2(5n+4)+1)¢" =5 f: t(2n + 1)g™. (4.3.9)
n=0 n=0

From (4.3.9) and (4.3.4), we find that

o0 [o o}
5) as(2n+1)g"+53 as(n)g” = D as(10n+9)g" + ) _ as(5n + 4)g".
n=0

n=0
(4.3.10)
Extracting the even parts from both sides of (4.3.10), and then using (4.3.8), we
obtain
o o0
5 as(dn+1)q" =Y as(5(4n + 1) + 4)q™ (4.3.11)
n=0 ) n=0
Again, extracting the terms involving ¢***! from both sides of (4.3.10), and then
using (4.3.11), we find that

5 i as(8n + 3)q" = i as(5(8n + 3) + 4)q™. (4.3.12)

n=0
We continue the process, and find by mathematical induction that, for any integer

k>2,

oo 00
5) as(2n+ 251 —1)¢" = > a5 (5(2%n + 281 — 1) +4) g™, (4.3.13)

n=0 n=0
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Since any odd integer can always be written in the form 2*n + 2¢1 -~ 1, n > 0,

k > 2, we conclude from (4.3.13) that

5) as2n+1)g" =Y as(10n +9)g". (4.3.14)

n=0 n=0
From (4.3.8) and (4.3.14), we arrive at (4.3.1) to finish the first proof of Theorem
4.3.1. O

Second proof of Theorem 4.3.1. Let w(n) be defined by

> w(n)g" = p(—g)¢*(—4°). (4.3.15)

n=0
Replacing g by —¢ in (1.2.15), using it in (4.3.15), and then extracting the terms
involving ¢°**" for r = 0, 1, 2, 3, 4, respectively, from both sides of the resulting

identity, we obtain

o0

2; w(5n)g" = o> (—q)p(~¢°), (4.3.16)
iw@" +1)¢" = ~2¢°(~9) f(~¢*, —4"), (4.3.17)
" w(5n +2) =0, (4.3.18)
w(5n +3) =0, (4.3.19)
and
iw(m +4)g" = 20°(—q) f(—¢, —¢°), (4.3.20)
respectively. -

Now, employing (1.2.15) in (4.3.16), we have

Y w(En)q" = o(=¢°) ((—¢%°) — 2af(—9"°, —4®) + 2¢* f(—¢°, —¢*))". (4.3.21)

n=0

Extracting the terms involving ¢°® from both sides of (4.3.21), we find that

Y w(25n)g" = o(-q)¢*(—¢°) ~ 249p(—a)p(—¢°) f(—¢°, —a") f(—q, —¢°). (4.3.22)

n=0
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Now, from (16, p. 262, Entry 10(iv)], we note that
¢*(q) — ¥*(@°) = 44f(0,4°) f(@*,d")- (4.3.23)
Replacing g by —¢ in (4.3.23), we have
¢*(~q) — ¢’ (—4°) = ~4af(~9,—¢") f(-4*, —"). (4.3.24)

Employing (4.3.24) in (4.3.22),

E w(25n)¢™ =6 Z w(5n)g" — 5 Z w(n)g™, (4.3.25)
n=0 n=0 n=0

which may also be written as

Z w(25n)q™ — Z w(bn)q" =5 (Z w(5n)q™ — Z w(n)qn) . (4.3.26)

n=0 n=0 n=0 n=0

3
Next, multiplying both sides of (4.3.24) by i) , and then employing (1.2.2),

we find that . (=0’ ]
(¥*(—9) — ¥*(—4")) %E—:—Z)—) 4! fE Z)) (4.3.27)
Furthermore, squaring both sides of (4.3.24), and then multiplying by ﬂ(—_q;)),
we obtain
(9% (~q) — ¥*(—¢%))" o=q) _ 16q2—f5—(ﬁ (4.3.28)

¢(=q) f(=¢%)
where we have repeatedly used (1.2.2). Adding (4.3.27) and (4.3.28), and then using

(4.1.2), we arrive at

*(-9)p(~a°) — p(~)p*(~¢°) = 164> D _as(n)g™™ — 49 ) as(n)g*.  (4.3.29)

n=0 n=0

Employing (4.3.15) and (4.3.16) in (4.3.29), we have

oo

iw n)q" —zw 5n)q"™ —4q2a5 (n)q" —16q2Za5 . (4.3.30)

n=0 n=0 n=0 n=0

Extracting the even and odd terms from both sides of (4.3.30), we find that
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Zw 2n)q" —Zw (10n)q™ =4Za5 (2n - 1)q" —IGZaS n—1)q",

n=0 n=0 n=0
(4.3.31)
oo [o <] o
Y wn+1)g" - ) w(l0n+5)g" =4 as(2n)q™ (4.3.32)
n=0 n=0 n=0

Now, extracting the terms involving ¢*"*! from both sides of (4.3.26), and then
employing (4.3.32), we arrive at (4.3.8).

As in the case of the first proof, to complete the proof, we need to show that
(4.3.8) also holds when 2n is replaced by 2n + 1.

To this end, extracting the terms involving ¢?" from both sides of (4.3.26) and
then using (4.3.31), we have

5 Za5(2n - 1)q¢" — Za5(10n —1)q

n=0 n=0

=4 (SZas(n - 1)g" - za5 (5n ~ 1)q" ) (4.3.33)

n=0

Replacing n by (2n+1) in (4.3.33), and then employing (4.3.8), we find that

5 i as(4n+ 1)q" = ias(%n +9)¢" = ia5(5(4n + 1)+ 4)q™ (4.3.34)

n=0 n=0 n=0
Again, replacing n by 4n + 2 in (4.3.33), and employing (4.3.34), we arrive at
(4.3.12). The remaining part of the proof is similar to that of the first proof. 0

We now deducc Ramanujan’s “Most Beautiful Identity.”

Corollary 4.3.2. The following identity

Zp (5n+4)g" = 5 ((q ;)5 (4.3.35)

holds.

Proof. Since
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by (4.1.2), we have

> as(n)g" = f(—¢°) Y p(n)a". (4.3.36)

n=0 n=0

Extracting the terms involving ¢°*** from both sides of (4.3.36), we find that

> as(5n +4)g" = f°(—q) Y _p(5n + 4)g™. (4.3.37)

Employing (4.3.1) in (4.3.37), we obtain

o0 1 x
m+4)q" =5 ———— ) as(n)qg",
n2;013( ) e nz=o s(n)g
from which, with the aid of (4.1.2) again, (4.3.35) follows readily. O

In the next theorem, we present various arithmetic properties of as(n).

Theorem 4.3.3. If as(n) denotes the number of 5-cores of n, then

5a5(4n + 3) — as(8n + 7) = 8as(n) + 2a5(2n + 1), (4.3.38)
5as(4n + 1) — as(8n + 3) = 2as(2n), (4.3.39)
as(2n) = 4as(4n + 1) — as(8n + 3), (4.3.40)
as(4n + 1) — a5(16n + 7) + 4a5(8n + 3) = 8as(2n), (4.3.41)
as(4n + 3) — as(16n + 15) + 4a5(8n + 7) = 8a5(2n + 1) + 4as(n). (4.3.42)

Proof. Let v,(n) be defined by

Y ui(n)g" = 49p(9)e(d®) f(a,4°) f(a°, 4. (4.3.43)

n=0

Applying (1.2.2) and (1.2.3) in (4.3.43) and also using (1.2.5), we obtain

o0

D ()" = 49(—q;0%)% (0% 1) f2 (") f(—?). (4.3.44)
n=0
Replacing g by —q in (4.3.44),

o0

D (=1 u(n)g" = —4q(g; ¢*)% (6% 6o f2 (—°) (= P). (4.3.45)

n=0
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Adding (4.3.44) and (4.3.45), we have

o0 o0

Zvl q"+z vy (n)g"

n=0 n=0
= 49f(—=0")f*(=¢") ((-4:8")3(=4% 0")oo — (4:97)%(0% 4" )e) - (4.3.46)
Employing (4.2.6) in (4.3.46), we find that

o (10" = SO | 49f(-9)f (=) (4 ¢)5
> u(2n)g" = M o . (4.3.47)

Manipulating the g-products and recalling the product representation of ¢(q) from

(1.2.3), we rewrite the above in the form

o(=¢°)
o(—q)

which, with the aid of (4.3.45), implies

> n(2n)g" = 8¢ (—¢*) f2(~4") +49(g;¢*)%. (6% ) F(-¢") ("),

n=0

Y n@ne + 3 (<1 n(n)e” = 8af(—g e s

Replacing ¢ by —q in (4.3.48), we have

S (U + 3o nln)e” = -8ef(-A) OB (4349)
n=0 n=0

Adding (4.3.48) and (4.3.49), and then using (4.2.1) and the trivial identity ¢(q)¢(—q) =
©*(—q?), we find that

S u g + 3 -+ 3 nme + 3 (-1 )

n=0 n=0 n=0 n=0
£(=4)f(=¢"
= 32¢° (=" fA(—¢") ;zg_gz)q )

Extracting the terms involving ¢*" from both sides of (4.3.50) and then replacing 7’

(4.3.50)

by q, we deduce that

[o ]

S nlan)g™ + 3o (20" = 160~ 12~ AL,



55

which, by (4.3.48), reduces to

Zvl(4n)q" = Z v1(2n)q" + 2 Z(—l)”vl(n)q”. (4.3.51)

n=0 n=0 n=0

Now, employing (4.3.23) in (4.3.43), we have

o o}

Y ui(n)d" = 0*(@)e(d’) - v(9)¢* (@) (4.3.52)

n=

From (4.3.52) and (4.3.29), we obtain

(=]

Zvl (n)q™ = 164° Z as(n)g®™ + 4q Z(—l)"as(n)qn. (4.3.53)
n=0

n=0 n=0

Using (4.3.53) in (4.3.51), we deduce that

5 Z as(2n — 1)q¢" — Za5(4n - 1)¢" = 42 as(n — 1)q" + 8¢° Z as(n)g*"

n=0 n=0 n=0 n=0

- Qans(n)q". (4.3.54)

n=0
Equating the coefficients of even and odd terms, respectively, from both sides of
(4.3.54), we arrive at (4.3.38) and (4.3.39), respectively.
Next, employing (1.2.6) in (4.3.52), and then extracting the terms involving ¢*"
we find that

[o 0} [o o]

> un(dn)g" =D mn(n)g" +16¢° (¥ (@*)P(a™°) — *P(d)¥*(¢") . (4.3.55)

n=0 n=0
Extracting the terms involving ¢?™ and ¢***!, respectively, from both sides of (4.3.55),

we obtain

Y ui(Bn)g" = Y w(2n)g" = 16q (2 (g)9(e°) — a()¥*(¢°) (4.3.56)

n=0
and
> un2n+1)g" =Y u(8n+4)q", (4.3.57)
n=0 n=0

respectively. From (4.3.57) and (4.3.53), we easily deduce (4.3.40).
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Again, employing (4.2.2) and (4.3.53) in (4.3.56), we find that

(f: as(2n — 1)q" — 4§:a5(n - l)q“) - (i as(8n — 1)q¢" — 4Za5(4n - l)q")

n=0 n=0 n=0

= 4q (Z as(n)q" +q Z as(n)qzn) : (4.3.58)

n=0 n=0

Equating the coefficients of ¢?**! and ¢?"*2, respectively, from both sides of (4.3.58),
we arrive at (4.3.41) and (4.3.42), respectively, to finish the proof.

0
Finally, we are in a position to prove (4.1.3) and (4.1.5).
Theorem 4.3.4. Identities (4.1.3) and (4.1.5) hold.
Proof. Employing (4.3.40) in (4.3.39), we find that
as(8n + 3) = 3as(4n + 1). (4.3.59)
Employing (4.3.59) in (4.3.40) we readily arrive at (4.1.3).
Next, replacing n by 2n + 1 in (4.3.38), we have
as(16n + 15) = 5a5(8n + 7) — 8as(2n + 1) — 2a5(4n + 3) (4.3.60)
Employing (4.3.60) in (4.3.42), we obtain
3as(4n + 3) — a5(8n + 7) = 4as(n). (4.3.61)
Using (4.3.38) in (4.3.61), we easily deduce (4.1.5) to complete the proof. a

With the aid of (4.1.3), (4.1.5), and mathematical induction, we easily prove the

following two infinite families of arithmetic identities for as(n).

Theorem 4.3.5. Let as(n) denote the number of 5-cores of n. Then, for any positive

integers n and k, we have

k 2%k __
as(2%n + 2% —1) = (Z 22k_2’> as(2n) = 2 3 ! as(2n) (4.3.62)

r=1

and

: 92k+1 4 ]
as(2¥*n 4+ 2% — 1) = [ 1+ Z QR+)=2r } 4 (2n) = —3 as(2n). (4.3.63)

r=1
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From (4.3.62) and (4.3.63), we readily arrive at the following two infinite families

of congruences for as(n).

Corollary 4.3.6. For any positive integers n and k, we have

2k _ 1
as(2¥n 4+ 2% 1) =0 (mod 2 3 )

and

2k+1
as(2¥tn 4+ 2% 1) =0 (mod 2—3—+l) :



Chapter 5

Infinite Families of Arithmetic
Identities for Self-Conjugate
5-Cores and 7-Cores

5.1 Introduction

In the introductory chapter, we have discussed in detail self-conjugate t-core par-
titions and indicated the contributions of Garvan, Kim and Stanton [24], Baruah
and Berndt [4], Baldwin, Depweg, Ford, Kunin and Sze (3], Baruah and Sarmah [7],
and Hanusa and Nath [29].

By employing (1.2.2) and manipulating the ¢g-products, and then using (1.1.9),

we have
Y ases(n)a” = fg,4°)f (¢, 4"), (5.1.1)
n=0
) "aser(n)g” = f(g,4"*)f (g%, ¢") f (g, ") (5.1.2)
n=0

In Sections 5.2 and 5.3 of this chapter, we use Ramanujan’s theta function iden-
tities to find relations between ascs(n) and ry(n), and between ascy(n) and r3(n).
We then deduce several results proved earlier by Garvan, Kim and Stanton [24],
Baruah and Berndt [4], and Baruah and Sarmah [7].

In Sections 5.4 and 5.5, we also find new infinite families of arithmetic identities

for self-conjugate 5-cores and 7-cores.
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5.2 Relations between asc;(n) and r3(n)

Theorem 5.2.1. If ry(n) is the number of representations of a nonnegative integer

1 as a sum of two squares and ascs(n) is the number of self-conjugate 5-cores of n,

then
gascs(n) — { ra(5(n + 1)), ifn=0,1,2,3 (mod 5); 62
r2(5(n+ 1)) — r2((n + 1)/5), ifn =4 (mod 5).
Proof. We have
> ra(n)g" = ©*(q). (5.2.2)
Employing (1.2.8) in (5.2.2), we obtain
Zm(n)q" = Zrz(n)q2" + 4q9%(g%). (5.2.3)

n=0 n=0
Equating the coefficients of ¢°" from both sides of (5.2.3), we immediately deduce

the elementary identity
r2(2n) = ra(n). (5.2.4)

Again, with the help of (1.2.15), we may rewrite (5.2.2) as

oo

) “ra(n)g® = (v(¢®) + 2af(¢"%, ¢®) + 2¢* £ (°, 4*))*. (5.2.5)

n=0
Extracting the terms involving ¢°" from both sides of (5.2.5), we find that

oo

Y _ra(5r)g” = ©*(¢°) + 8af(a*,4") f (9, 4°), (5.2.6)

n=0

which, with the help of (5.1.1), can be written as

Z ro(5n)q" = Z r9(n)g" + 8¢ Z ascs(n)q™. (5.2.7)
n=0 n=0 n=0

Equating the coefficients of the terms ¢°**", r = 1,2, 3,4 and 0, respectively, from



both sides of (5.2.7), we have

T9(25n + 5) = Bascs(5n),

r2(25n + 10) = 8ascs(5n + 1),

(

(
r2(25n + 15) = 8ascs(5n + 2),
9(25n + 20) = 8ascs(5n + 3),
(

72(25n) — ry(n) = 8ascs(5n — 1).

From (5.2.8)-(5.2.12), we readily finish our proof.

5.3 Relations between asc;(n) and r3(n)
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(5.2.8)
(5.2.9)
(5.2.10)
(5.2.11)
(5.2.12)

Theorem 5.3.1.  Ifrz(n) is the number of representations of a nonnegative integer

n as a sum of three squares and ascy(n) is the number of self-conjugate 7-cores of

n, then
r3(7(n + 2)), ifn=0,1,2,3,4,6 (mod 7);
48ascy(n) =
r3(7(n+2)) = r3((n+2)/7), ifn=75 (mod 7).
(5.3.1)
Proof. We have
oo
Y ra(n)g” = ¢%(g), (5.3.2)
n=0
which we rewrite with the aid of (1.2.6) as
}: ra(n w0(g") + 299(¢%))*. (5.3.3)
n=0
Equating the coefficients of ¢*” from both sides of (5.3.3), we find that
r3(4n) = r3(n), (5.3.4)

which, of course, is a well-known classical result.
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Again, setting n = 7 and a = b = ¢ in (1.2.13), we obtain

0(q) = 0(¢*°) +29f(¢%,4%) + 29" F(¢*',4"") + 2¢°f(¢", ¢"). (5.3.5)
Employing (5.3.5) in (5.3.2) and equating the terms involving ¢"", and then replacing
q’ by g, we find that

> rs(Tn)g™ = ¥¥(q") + 484*f(¢%,¢°) £(a*, ¢") (9, 4"%), (5.3.6)

n=0

which, with the help of (5.1.2), can be written as

Z ra(7n)q Z r3(n q7" + 484> Z ascr(n)q" (5.3.7)
n=0 n=0 n=0

Equating the coefficients of ¢™*", r = 1,2,3,4,5,6, and 0, respectively, from both
sides of (5.3.7), we have

73(49n + 7) = 48ascy(Tn — 1), (5.3.8)

r3(49n + 14) = 48asc;(7n), (5.3.9)

r3(49n + 21) = 48ascy(7n + 1), (5.3.10)

r3(49n + 28) = 48ascy(Tn + 2), (5.3.11)

73(49n + 35) = 48asc7(7n + 3), (5.3.12)

r3(49n + 42) = 48ascy(Tn + 4), (5.3.13)

r3(49n) — r3(n) = 48ascy(7Tn — 2). (5.3.14)

From (5.3.8)—(5.3.14), we arrive at (5.3.1) to finish the proof. O

5.4 Infinite families of arithmetic properties of
ascs(n)
Theorem 5.4.1. (Garvan, Kim and Stanton [24]). The identity

ascs(2n + 1) = ascs(n) (5.4.1)

holds.
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Proof. Replacing n by 25n + 5 in (5.2.4), we have
r2(50n + 10) = r5(25n + 5). (5.4.2)
Employing (5.2.8) and (5.2.9) in (5.4.2), we deduce that
ascs(5n) = ascs(10n + 1). (5.4.3)

Again, from (5.2.4) and (5.2.8)—(5.2.11), we find that

ascs(5n + 1) = ascs(10n + 3), (5.4.4)
ascs(5n + 2) = ascs(10n + 5), (5.4.5)
ascs(5n + 3) = ascs(10n + 7). (5.4.6)

Furthermore, with the aid of (5.2.4), we write
72(25n) — 72(n) = r2(50n) — r2(2n). (5.4.7)
Applying (5.2.12) in (5.4.7), we obtain
ascs(5n + 4) = ascs(10n + 9). (5.4.8)

Now from (5.4.3)~(5.4.6), and (5.4.8), we arrive at (5.4.1) to complete the proof. O

Iterating (5.4.1) and by mathematical induction, we immediately have the fol-

lowing result.
Corollary 5.4.2. For any positive integer k, we have ascs(2*¥n+(2F —1)) = ascs(n).
Theorem 5.4.3. (Garvan, Kim and Stanton [24]). The identity

ascs(5n + 4) = ascs(n) (5.4.9)
holds.

Proof. From [16, p. 262, Entry 10(iv)], we note that

©*(q) — ¥*(¢°) = 44f(q,4°) F(d*. ). (5.4.10)
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Employing (5.4.10) in (5.2.6), we find that

Y _ra(5n)g” = 26%(q) — ¥*(4"), (5.4.11)

n=0

which can be rewritten, with the aid of (5.2.2), as

Y ra(5n)g" =2 ra(n)g® — Y ra(n)g™. (5.4.12)
n=0 n=0 n=0

Equating the coefficients of ¢5" from both sides of (5.4.12), we find that
79(25n) = 2ry(5n) — ra(n). (5.4.13)

Again, adding (5.2.7) and (5.4.12), and then equating the coefficients of g™ from

both sides of the resulting identity, we obtain
T9(5n) = ro(n) + 4ascs(n — 1). (5.4.14)
Employing (5.2.12) and (5.4.14) in (5.4.13), we deduce that
ascs(5n — 1) = ascs(n — 1), (5.4.15)
which is equivalent to (5.4.9). O

Theorem 5.4.4. Let p = 3 (mod 4) be a prime. If ascs(n) denotes the number
of self-conjugate 5-cores of n, then for any positive integer n and any positive even

integer k, we have
ascs(n) = ascs (p*n + (p* — 1)). (5.4.16)
First we prove the following lemma.

Lemma 5.4.5. If ra(n) denotes the number of representations of a nonnegative

integer n as a sum of two squares and p = 3 (mod 4) is a prime, then

r2(p*n) = ra(n). (5.4.17)
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Proof. Setting n =p and a = b = q in (1.2.13), we obtain

p—1
olg) = (g™) + g7 f(g7®~, g ®+N). (5.4.18)

r=1
With successive use of the trivial identity f(a,b) = af(a™!,a?b), we can rewrite the

above identity in the form

0(q) = (") + 2¢f (P2, g?P*D) + 2¢ f(gPP~2D), PP+22))
—112
+2¢% f(@P72, @) 4 29T ) f(g7, D), (5.4.19)
Employing (5.4.19) in (5.2.2) and then extracting the terms involving ¢** from

both sides of the resulting identity by noting that prime p = 3 (mod 4) and ry(4n +
3) = 0, we find that

Y ra(en)g" = ¢*(¢?) = Y ma(n)g™. (5.4.20)

Equating the coefficients of ¢P" from both sides of (5.4.20), we readily arrive at
(5.4.17) to complete the proof. of the lemma. a

Proof of Theorem 5.4.4. Sincé pfime p = 3 (mod 4), we note that p? is either of
the form 5m + 1 or 5m + 4. At first, lct p? be of the form 5m + 1. Replacing n by
25n + 5 in (5.4.17), we find that

21
ro (25 (p2n + Ti?—) + 5) = 15(25n + 5). (5.4.21)

Employing (5.2.8) in (5.4.21), we obtain
ascs (5p°n + p* — 1) = ascs(5n). (5.4.22)

Similarly, replacing n by 25n + 10, 25n + 15 and 25n + 20, in turn, in (5.4.17),
and then employing (5.2.9)-(5.2.11), respectively, we deduce that

ascs (5p°n + 2p° ~ 1) = ascs(5n + 1), (5.4.23)
ascs (5p’n + 3p? ~ 1) = ascs(5n + 2), (5.4.24)

ascs (5p°n + 4p> — 1) = ascs(5n + 3). (5.4.25)
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Again, from (5.4.17), we have
ra(p?(25n)) — T2(p*n) = 12(25n) — r2(n),
which, with the aid of (5.2.12), reduces to
ascs (5p°n — 1) = ascs(5n — 1). (5.4.26)
From (5.4.22)—(5.4.26), we find that
ascs (p’n + p? — 1) = ascs(n). (5.4.27)

Iterating (5.4.27) and by applying mathematical induction, we arrive at (5.4.16)
when p? is of the form 5m + 1.

Next, let p? be of the form 5m + 4.

Replacing n by 25n + 5 in (5.4.17), we find that

2
ra (25 (p2n +2 : ) + 20) = r5(25n + 5). (5.4.28)

Employing (5.2.8) and (5.2.11) in (5.4.28), we obtain
ascs (5p*n + p* — 1) = ascs(5n). (5.4.29)
Again, replacing n by 25n + 10 in (5.4.17), we find that
Ty (25 (p2n + 2—("’2-5}9 + 1) + 15) = 12(25n + 10). (5.4.30)
Employing (5.2.9) and (5.2.10) in (5.4.30), we deduce that

ascs (5p°n + 2p* — 1) = ascs(5n + 1). (5.4.31)

Similarly, replacing n by 257 + 15 and 25n + 20, in turn, in (5.4.17), and then
using (5.2.9), (5.2.10) and (5.2.11), and (5.2.8) in the resulting identities, we obtain

ascs (5p°n + 3p* — 1) = ascs(5n + 2), (5.4.32)

ascs (5p°n + 4p* — 1) = ascs(5n + 3). (5.4.33)
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Finally, we note that (5.4.26) also holds when p? is of the form 5m + 4.
Now, from (5.4.26), (5.4.29), and (5.4.31)-(5.4.33), we arrive at

ascs (p’n + p® — 1) = ascs(n), (5.4.34)

which, upon iteration implies (5.4.16) by mathematical induction, when p? is of the

form 5m + 4. Thus, we complete the proof.

5.5 Infinite families of arithmetic properties of
ascr(n)

In this section, at first, we present a simple proof of an identity given by Baruah

and Sarmah [7].
Theorem 5.5.1. (Baruah and Sarmah [7]). The identity
ascr(8m ~ 1) = 0. (5.5.1)
holds.
Proof. For any nonnegative integer n, it is well known that
r3(8n +7) = 0. (5.5.2)
Replacing n by 8n + 7, with n= 0,1,2,3,4,6 (mod 7), in (5.3.1), we find that
48ascy(8n + 7) = r3(8(7(n + 1)) + 7). (5.5.3)
Employing (5.5.2) in (5.5.3), we readily deduce that
asc7(8n+7) =0, forn= 0,1,2,3,4,6 (mod 7). (5.5.4)
Again, replacing n by 8n + 7 in (5.3.14), we find that

48ascr(8(Tn + 5) + 7) = r5(8(49n + 42) + 7) — r3(8n + 7). (5.5.5)
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Employing (5.5.2) in (5.5.5), we have asc7(8(7n + 5) + 7) = 0, which means
asc7(8n+7) =0, forn = 5 (mod 7). (5.5.6)
From (5.5.4) and (5.5.6), we immediately arrive at (5.5.1). O
Theorem 5.5.2. (Garvan, Kim and Stanton [24]). The identity
ascr(4n + 6) = ascy(n), (5.5.7)
holds.
Proof. Replacing n by 49n + 7 in (5.3.4), we have
r3(4(49n + 7)) = r3(49n + 7). (5.5.8)
Employing (5.3.11) and (5.3.8) in (5.5.8), we obtain
ascy(7n — 1) = ascy(28n + 2) (5.5.9)

Again, from (5.3.4) and (5.3.8)—(5.3.13), we find that

ascy(7n) = ascy(28n + 6), (5.5.10)
ascy(Tn + 1) = ascy(28n + 10), (5.5.11)
ascy(Tn + 2) = ascy(28n + 14), (5.5.12)
ascy(Tn + 3) = ascy(28n + 18), (5.5.13)
ascy(7n + 4) = ascy(28n + 22). (5.5.14)

Next, employing (5.3.4), we may write
73(49n) — r3(n) = r3(4(49n)) — r3(4n). (5.5.15)

Applying (5.3.14) in (5.5.15), we find that
ascy(Tn — 2) = ascy(7(4n) ~ 2) = ascy(28n — 2). (5.5.16)

Now, from (5.5.9)—(5.5.14) and (5.5.16), we deduce (5.5.7) to complete the proof.
O
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Corollary 5.5.3. If asc;(n) denotes the number of self-conjugate 7-cores of n and

k is a positive integer, then
ascr(n) = ascr(4F(n + 2) — 2). (5.5.17)

Proof. lterating (5.5.7) and by mathematical induction, we deduce (5.5.17). O
Corollary 5.5.4. (Garvan, Kim and Stanton (24]). The identity

asc;(n) =0, ifn+2=4Bm+1) (5.5.18)
holds.
Proof. Replacing n by 8m — 1 in (5.5.17), we find that

ascy(8m — 1) = asc,(4%(8m + 1) — 2). (5.5.19)
Employing (5.5.1) in (5.5.19), we arrive at (5.5.18). d

Theorem 5.5.5. If ascy(n) denotes the number of self-conjugate 7-cores of n, then

for any integer k > 1, we have

(2 x 3% — 1)ascs(3n + 2) = ascr (3%*'n + 2(2 x 3% ~ 1)), (5.5.20)
3kascs(3n) = ascy (3%*+n + 2(3% ~ 1)), (5.5.21)
3k+1
( ) ascr(9n + 1) = ascy (3% 2n + (3% - 2)), (5.5.22)
3k+1
( ) asc7(9n + 4) = ascy (3%+2n + 2(3%+1 — 1)), (5.5.23)
3k+1
( ) asc7(9n + 7) = ascy (3%+%n + (3%+? — 2))
3k+1 -3
+ ( 5 ) ascy(n —1). (5.5.24)

Proof. Hirschhorn and Sellers [33] found the following arithmetic properties of r3(n).

For any nonnegative integer n and any integer k > 1, we have

(2 x 3 —1) r3(3n + 1) = r3(9*(3n + 1)), (5.5.25)
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3Fr3(3n+2) =3 (9¥(3n + 2)), (5.5.26)
<3k+12— 1) T‘3(9TL + 3) =T3 (9’“(9n + 3)) y (5527)
(3k+12_ 1) 7'3(911 + 6) =73 (9k(9n + 6)) . (5528)

Replacing n by 49n + 2 in (5.5.25), we have
(2 x 3* = 1)ry (7(3 x Tn + 1)) = ry (7 (3% x Tn + 3%)),
which on employing (5.3.1) may be written as
(2 x 3¥ — 1)ascy (3(7n + 6) + 2) = ascy (3% (7Tn + 6) +2(2 x 3%* —1)). (5.5.29)

In a similar way, replacing n by 49n + 9, 49n + 23, 49n + 30, 49n + 37, 49n + 44,
respectively, in (5.5.25), we find that

(2 x 3F — 1)ascy (3(7n) + 2) 3%+ (7n) + 2(2 x 3% - 1)), 5.5.30)

(
(2 x 3% — 1)ascy (3(7n + 2) + 2) = ascy (3%+!(7Tn + 2) + 2(2 x 3% — 1)), (5.5.31)

(

)y
(2 x 3F = 1)ascy (3(7n + 3) + 2) = ascy (3%*!(7Tn + 3) +2(2 x 3% — 1)), (5.5.32)

(

)
cr (3% (Tn + 4) + 2(2 x 3% ~ 1)), (5.5.33)
)

(
(

= asc
)
)
(2 x 3* — 1)asc; (3(Tn +4) +2) =
(2 x 3F — 1)ascy (3(7Tn +5) + 2) = ascy

3% (Tn +5) +2(2 x 3%* ~ 1)) . (5.5.34)
Again, by employing (5.5.25), we have
(2 x 3¥ ~1) (r3 (49(3n + 1)) — r3(3n + 1)) = 3 (49 (9¥(3n + 1))) — r3 (9*(3n + 1)),
which on employing (5.3.1) may be written as
(2 x 3% — 1)ascy (3(7n + 1) + 2) = ascy (3% (Tn + 1) + 2(2 x 3% — 1)) . (5.5.35)

From (5.5.29)—(5.5.35), we arrive at (5.5.20).
In a similar way, from (5.5.26)—(5.5.28), respectively, we deduce (5.5.21)-(5.5.23).
Hirschhorn and Sellers [33] also found the following arithmetic properties of r3(n).

For any nonnegative integer n, we have

4r5(9n) = 3(81n) + 3r3(n). (5.5.36)
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Replacing n by 7n, we have
4r3(7(9n)) = r3(7(81n)) + 3rs(7n). (5.5.37)
For n =1,2,3,4,5,6 (mod 7), by employing (5.3.1), in (5.5.37), we have
4ascr(In — 2) = ascy(81n — 2) + 3ascr(n — 2). (5.5.38)
Again, replacing n by 49n in (5.5.36), we have
473(49(9n)) = r3(49(81n)) + 3r3(49n). (5.5.39)
Subtracting (5.5.37) from (5.5.39), we have

4 (r3(49(9n)) — r3(9n)) = (r3(49(81n)) — r3(81n))

Employing (5.3.1), the above can be written as
4ascy(63n — 2) = ascy(561n — 2) + 3ascy(7Tn — 2), (5.5.41)
which is (5.5.38) for n = 0 (mod 7). From (5.5.38) and (5.5.41), we readily arrive at
4ascy(9n + 7) = ascy(81n + 79) + 3ascy(n — 1). (5.5.42)
Iterating (5.5.42), and by mathematical induction we arrive at (5.5.24) O

Theorem 5.5.6. If ascy(n) denotes the number of self-conjugate 7-cores of n and

k> 1, then

5ascy(5n) = ascy(125n + 48), (5.5.43)
5ascy(5n + 1) = ascy(125n + 73), (5.5.44)
Tascy(5n + 2) = ascy(125n + 98), (5.5.45)
Tascy(5n + 4) = ascy(125n + 148), (5.5.46)

5k+1 -1
( 1 ) asc7(25n + 3) = ascy (5%*%n + 5%+ — 2) (5.5.47)



(=
5k+1_1
(=
5k+1_1
(=

) ascy(25n + 13) = ascy (5%+2n + 3 x 5241 - 2) |

) asc7(25n + 18) = ascy (5%2n + 2(2 x 5%+! — 1)),

6ascy(25n + 23) = ascy(625n + 623) + Sascy(n — 1).

) BSC7(25'n, -+ 8) = ascy (52k+2n + 2 % 52k+1 _ 2) ,

71

(5.5.48)
(5.5.49)

(5.5.50)

(5.5.51)

Proof. We recall the following results involving r3(n) from Chapter 3 [Eqgs. (3.3.15)-

(3.3.20)].

5r3(5n + 1) = 13 (25(5n + 1)) ,
5r3(5n +4) = r3(25(5n + 4)),

5k+1 -1
( y ) r3(25n + 5) = r3 (25%(26n + 5))

5k+1 -1
( 1 ) r3(25n + 10) = r3 (25%(25n + 10)) ,

s5k+1 _ 1
( 1 ) r3(25n + 15) = 73 (25%(25n + 15))

5k+1 -1

Replacing n by 49n + 4 in (5.5.52), we find that

5r3(7(35n + 3)) = r3(7(875n + 75)),

which on employing (5.3.1) may be written as

5ascy (5(7n) + 1)) = ascy (125(7n) + 73).

(5.5.52)
(5.5.53)

(5.5.54)
(5.5.55)

(5.5.56)

(5.5.57)

(5.5.58)

In a similar way, replacing n by 49n + 11, 49n + 18, 49n + 25, 49n + 32, 49n + 46,

respectively, in (5.5.52), we obtain

Sascy (5(Tn+ 1) +1 ascy (125(Tn + 1) + 73),

Sascy (5(Tn +2) +1 ascy (125(7n + 2) + 73),

ascy (125(7n + 3) + 73),

Sascr (5(Tn+4) +1

ascy (125(Tn +4) + 73),

)

)

Sascy (5(7Tn + 3) + 1))
)

)

5ascy (5(7Tn + 6) + 1)) = ascy (125(7n + 6) + 73) .

(5.5.59)
(5.5.60)
(5.5.61)
(5.5.62)
(5.5.63)
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Again, by employing (5.5.52) and (5.5.53), we have
5 (r3 (49(5n + 4)) — r3(5n + 4))
= 73 (49(125n + 100)) — r3 (125n + 100),
which on employing (5.3.1) may be written as
Sascy (5(7Tn + 5) + 1) = ascy (125(7n + 5) + 73) . (5.5.64)

From (5.5.58)—(5.5.64), we readily deduce (5.5.44). In a similar way employing
(6.5.52), (5.5.53), and then using (5.3.1), we deduce (5.5.43).
Again, replacing n by 49n + 4 in (5.5.54), we have

g5k+1 _ 1
( " ) r3(7(175n + 15)) = 13 (7 (7 x 5%+2n + 3 x 5%+1)) |
which on employing (5.3.1) may be written as
bascy (25(7n) + 13)) = ascy (5%12(7n) + 3 x 5%+ ~2). (5.5.65)

In a similar way, replacing n by 49n+ 11, 49n + 18, 49n + 25, 49n + 32, 49n 4 46,
respectively, in (5.5.54), we find that

5k+1 -1
( 1 )aSC7 (25(7Tn 4+ 1) + 13)

= ascy (5%*2(Tn 4+ 1) + 3 x 5%+ —2) (5.5.66)

5k+1 -1
( 1 >a507 (25(7Tn + 2) + 13)

= ascy (5%%(7Tn + 2) + 3 x 5%+ —2), (5.5.67)

5k+1 -1
( 1 )asc-, (25(Tn + 3) +13)

= ascy (5%*%(7n + 3) + 3 x 5%+ — 2) (5.5.68)

5k+1 -1
( 1 )asc7 (25(7n + 4) + 13)

= ascy (5%2(7n + 4) + 3 x 5%+ — 2) (5.5.69)

5k+1 -1
( y )asc-,- (25(7Tn + 6) + 13)

= ascy (5%*%(7n + 6) + 3 x 521 —2). (5.5.70)
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Again, by employing (5.5.54) and (5.5.57), we have

(5“1_ 1) (r3 (49(25n + 20)) — 73(25n + 20))

= 73 (49(25*(25n + 20))) — 3 (25*(25n + 20)) ,

which on employing (5.3.1) may be written as

5k+1 -1
( 2 )asq (25(7n + 5) + 13))
= ascy (5%7%(7n + 5) + 3 x 5%+ —2). (5.5.71)

Again, from (5.5.65)—(5.5.71), we readily deduce (5.5.49).
Next, we recall the following results involving r3(n) from chapter 3 [Egs. (3.4.43)~
(3.4.45)).

7r3(5n + 2) = 13 (25(5n + 2)), (5.5.72)
Tr3(5n + 3) = r3(25(5n + 3)), (5.5.73)
6r3(25n) = 13 (625n) + 5r3(n). (5.5.74)

Using (5.5.73) and (5.5.72), and with the aid of (5.3.1), we easily deduce (5.5.45)
and (5.5.46). In a similar way, employing (5.5.54)—(5.5.57), and then using (5.3.1),
we deduce (5.5.47), (5.5.50) and (5.5.48). Finally, using (5.5.74) and (5.3.1), and
proceeding as in the proof of (5.5.24), we arrive at (5.5.51) to finish the proof. O



Chapter 6

Infinite Families of Arithmetic
Identities for Doubled Distinct

t-Cores for t =3,4,---,10

6.1 Introduction

We recall that if add;(n) denotes the number of doubled distinct partitions of n

that are t-cores then the generating function for add,(n) is given by Garvan, Kim

and Stanton [24, Eq. (8.1a)] as

0 22 2t. ,2t\(t-2)/2
Eaddt(n)q" _ e )°°(tq t,q Joo , for t even, (6.1.1)
~ (—4¢% ¢")oo
and
o0 . . (t-1)/2
(—q2) q2)00(q2t> q2t)°°
add;(n)q" = , 6.1.2
f‘;o (e (4% 4%)oo (6.1.2)
Note that add;(n) = 0 if n is odd.
Baruah and Sarmah {7] proved that
asce(8n + 10) = ascg(2n), (6.1.3)

and as 2 has no self-conjugate 9-core, there is an infinite sequence of positive integers

having no self-conjugate 9-cores.

By applying some deep theorems developed by Cao [19], Baruah and Sarmah [7]

74
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proved that
asc7(8m — 1) = 0. (6.1.4)

Baruah and Sarmah [7] also found some interesting relations connecting self-
conjugate and doubled distint t-core partitions. Motivated by these, we put our
efforts to see more results in their direction including some of our own.

By employing (1.2.2) and manipulating the g-products, and then using (6.1.2),
(6.1.1) and (1.2.4), we have

o0

> adds(n)q" = f(q,q*), (6.1.5)

n=0

D _adds(n)g" = 9(¢?), (6.1.6)

n=0
o0

> adds(n)g” = f(¢*,¢*) f(g*,¢°), (6.1.7)

n=0

D adds(n)g” = ¥(a°) f(a*, 4*), (6.1.8)

n=0
=)

Y add(n)g" = £(a%, 4" (@, ") F(°, ¢*), (6.1.9)

n=0

Z adds(n)g™ = ¥(¢*)¥(g")¥(¢%), (6.1.10)

Zaddg f@* 9" f(a*, ) f(¢% ¢*) F(d®, ¢*°), (6.1.11)

n=0

and

o0

Y addio(r)q” = f(q®,¢")f(¢%, 9" f(a*, 4" f (0, ¢'"%). (6.1.12)

n=0
Again, by employing (1.2.2) and manipulating the ¢g-products, and then using
(1.1.9), (1.1.8) and (1.2.4), we have

) " ascs(n)g” = f(q,4%), (6.1.13)
n—0
Z ascy(n »(@)¥(gh), (6.1.14)

n=0
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E%Cs(n)q" = f(a.4°)f(d’,4"), (6.1.15)

28807(71)& = f(g,4"°)f (%, ¢") f(¢*, &), (6.1.16)
and

ioaSCg(n)Q" = flg,4'")f (% ¢"°) f(*,¢*) f(a"4")- (6.1.17)

Now, let ta(n) and t3(n) denote the number of representations of n as a sum of
two triangular numbers and three triangular numbers, respectively, and r3(n) and
r3(n) denote the number of representations of n as a sum of two squares and three
squares, respectively.

In Sections 6.2 and 6.3 of this chapter, we use Ramanujan’s theta function iden-
tities to find relations among adds(n), ta(n) and ascs(n), and addg(n), r2(n) and
ascy(n), respectively.

Section 6.4 is devoted to finding relations between add;(n) and t3(n), and be-
tween add;(n) and asc7(n). As a corollary, we also deduce (6.1.4). In Sections 6.5
and 6.6, we find relations between addg(n) and r3(n), and between addg(n) and
ascg(n).

In the process, we also find a simple proof of (6.1.3). In Section 6.7, we find new
infinite families of arithmetic identities for doubled distinct 3-cores and 4-cores and
also observe a new proof of a result given by Baruah and Sarmah [7] which states
that if adds(n) and ascs(n) denote the number of doubled distinct and self conjugate

-
3-cores of n, respectively, then

addg(n) = 3.803(4’)1). (6118)

In Sections 6.8-6.11, we present infinite families of new arithmetic identities for
adds(n), ascy(n), addg(n), adds(n), and addg(n).

In the final section, we find a new arithmetic identity for add,o(n).
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6.2 Relations between adds(n) and t3(n), and be-
tween adds;(n) and ascs(n)

Theorem 6.2.1. If ty(n) is the number of representations of a nonnegative integer
n as a sum of two triangular numbers and adds(n) is the number of doubled distinct

5-cores of n, then

2acdy(2n) — { ta(5n + 1), fn=0234(meds);
t2(5n + 1) — t2((n — 1)/5), ifn =1 (mod 5).
Proof. We have
> ta(n)g” = 93(g). (6.2.2)
n=0

Employing (1.2.17) in (6.2.2) and extracting the terms involving ¢°"*! from both
sides of the resulting identity, dividing both sides by ¢ and then replacing ¢° by g,
we find that

Y ta(5n+1)q" = 2f(4%,¢°) f(9,0*) + ¥*(2°). (6.2.3)
n=0
Using (6.1.7) and (6.2.2) in (6.2.3), we have
Z ta(bn+ 1)q" = 2 Z adds(2n)q" + q Z ta(n)g™™. (6.2.4)
n=0 n=0 n=0

Equating the coefficients of ¢°**" for r = 0, 2, 3, 4 and 1, respectively, from both
sides of (6.2.4), we obtain

t2(25n + 1) = 2adds(10n),
t2(25n + 11) = 2adds(10n + 4),
t2(25n + 16) = 2adds(10n + 6),
t2(25n + 21) = 2adds(10n + 8),
t2(25n + 6) — t2(n) = 2adds(10n + 2), (6.2.5)

which readily implies (6.2.1). O
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Theorem 6.2.2. (Baruah and Sarmah (7]). If adds(n) and ascs(n) denote the
number of doubled distinct and self conjugate 5-cores of n, respectively, then
adds(n) = ascs(2n). (6.2.6)
Here we give an alternative proof of (6.2.6).

Proof. Define uy(n) by

> ua(n)g" = ¥*(q) — ¥*(¢°). (6.2.7)

n=0
Now, from [16, p. 262, Entries 10(iv) and 10(v)], we note that
©*(@) — ¢*(¢°) = 44f(4,¢°) f(d%,d), (6.2.8)
¥ (q) — ¢¥*(¢°) = fl9,4")f(d*,d°). (6.2.9)
Employing (6.1.15) and (6.2.7) in (6.2.8), we have

Z uz(n)q™ = 4q Z ascs(n)q", (6.2.10)

n=0

Again, employing (1.2.8) on the right side of (6.2.7), and then extracting the
coefficients of ¢*"*! from both sides of the resulting identity, we obtain

D wa(2n+1)g" =4 (¥2(¢?) - *¥*(d")),

n=0

which, with the aid of (6.2.9) and (6.1.7), implies

Y up(2n+1)g" =4 adds(n)g™. (6.2.11)
n=0 n=0
From (6.2.10) and (6.2.11), we deduce (6.2.6). O

6.3 Relations among addg(n), ascy(n) and ry(n)

Theorem 6.3.1. Ifry(n) is the number of representations of a nonnegative integer n
as a sum of two squares and addg(n) and ascy(n) are the number of doubled distinct

6-cores and self-conjugate 4-cores of n, respectively, then

%r2(24n + 5) = asc4(3n) = addg(4n). (6.3.1)
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In the following process of proving (6.3.1), we also find some other well-known

results involving ro(n).

Proof. Since

Y ra(n)g" = ¥*(q), (6.3.2)
n=0
we rewrite (1.2.8) in the form
o0 o o]
Y ran)g" = ra(n)g™ + 4q9?(q").
n=0 n=0

Extracting the terms involving ¢°* and ¢>"*! from both sides of the above identity,

we obtain
r2(2n) = r3(n),
and
i ra(2n + 1)g" = 49*(¢%). (6.3.3)
n=0

From (6.3.3), it readily follows that

oo}

Y_ra(dn+1)q" = 49%(9), (6.3.4)

n=0

ro(4n +3) = 0. (6.3.5)

Now, employing (1.2.7) in (6.3.4), extracting the terms involving ¢***! from both
sides of the resulting identity, and using (6.1.14), we find that

o0

3 ralEn + 5)g" = 8(a)0(e") =8 asca(m)a” (6.3.6)

n=0 n=0
Next, employing (1.2.16) in (6.3.4), extracting the terms involving ¢***! from
both sides of the resulting identity, and using (6.1.8), we obtain

Zrz 12n + 5)g™ = 8¢(¢°) f = SZ adds(2n)q (6.3.7)

n=0

From (6.3.6) and (6.3.7), we arrive at (6.3.1) to finish the proof. O
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6.4 Relations between add;(n) and t3(n), and be-
tween add;(n) and ascr(n)

Theorem 6.4.1. If t3(n) is the number of representations of a nonnegative integer
n as a sum of three triangular numbers and add-(n) is the number of doubled distinct

T-cores of n, then

6addy(2n) = { t3(7n + 4), ifn=0,1,3,4,56 (mod 7); (6.4.1)
t3(Tn+4) — t3((n—2)/7), ifn=2 (mod 7).
Proof. We have
3 t(m)a” = v(q), (6.4.2)
n=0

Setting n =7 and a = 1, b = ¢q in (1.2.13), we also have

¥(g) = f(d*,d®) +af(@",d*) + ¢ F(d", ¢*) + ®¥(¢*). (6.4.3)

Now we employ (6.4.3) in (6.4.2), extract the terms involving ¢"** from both
sides of the resulting identity, divide both sides by ¢* and then replace ¢’ by g, to
find that

D tas(n+4)g" = ¢* Y ts(n)g™ +6f(g,4°) f(a*, ) (4", a*).

n=0 n=0

With the help of (6.1.9), the above identity can be written as

Z t3(Tn +4)¢" = ¢° Z t3(n)g™ + 6 Z addz(2n)gq". (6.4.4)

n=0 n=0 n=0
Equating the coefficients of ¢'**" with r = 0,1, 3,4, 5,6, and 2, respectively, from
both sides of (6.4.4), we arrive at the identities
t3(49n + 4) = 6add;(14n),
t3(49n + 11) = 6add(14n + 2),
t3(49n + 25) = 6add;(14n + 6),
t3(49n + 32) = 6addr(14n + 8),
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£3(49n + 39) = 6add;(14n + 10),
t(49n + 46) = 6add;(14n + 12),
t3(49n + 18) — t3(n) = 6add;(14n + 4),

which readily implies (6.4.1). a

Theorem 6.4.2. If add;(n) and ascy(n) denote the number of doubled distinct 7-

cores and self-conjugate 7-cores, respectively, of n, then
add7(n) = asc;(4n + 3). (6.4.5)
Proof. First recall that the generating function of asc;(n) is given by (6.1.16).

Next, from [16, p. 46, Entries 30(ii) and 30(iii)], we have

f(a,b) = f(a%b,ab®) +af (3—, %a4b4) : (6.4.6)

Setting, in turn, a = qand b=¢3; a = ¢* and b = ¢*'; and a = ¢° and b = ¢%; in

(6.4.6), we find that

f(a,4"%) = £(¢*%,¢") + ¢f(¢"%, ™), (6.4.7)
f(g® ¢") = f(¢®,¢%) + @ f(¢8,¢%), (6.4.8)
f(@®,¢%) = f(@*,d*) + ¢ f(g*, ¢*2). (6.4.9)

Employing (6.4.7)—(6.4.9) in (6.1.16), and then extracting the terms involving g**+3
from both sides of the resulting identity, we obtain

> ascr(d4n + 3)g™ = £(¢%, ¢ f(a*, ¢°) f(d°, ¢°). (6.4.10)

n=0

Employing (6.1.9) in (6.4.10), and then comparing the coefficients of ¢", we readily
arrive at (6.4.5). a

Corollary 6.4.3. Identity (6.1.4) holds.

Proof. Since add7(2n + 1) = 0, (6.1.4) readily follows from (6.4.5). O
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6.5 Relations between addg(n) and r3(n)

Theorem 6.5.1. If r3(n) 1s the number of representations of a nonnegative integer

n as a sum of three squares and addg(n) s the number of doubled distinct 8-cores of

n, then
r3(16n + 14) = 48addg(2n). (6.5.1)
Proof. We have
> rs(n)g" = ¢ (q). (6.5.2)
n=0

Employing (1.2.6) in (6.5.2) and then equating the terms involving ¢***2 from both
sides of the resulting identity, we find that
oo
> “ry(dn + 2)g" = 120(q)9*(¢%). (6.5.3)
n=0
Employing (1.2.6) once again in (6.5.3) and then extracting the terms involving

q?"*! from the resulting identity, we obtain

o0

D> _7s(8n+6)g" = 249%(q)(q")- (6 5.4)

n=0
Employing (1.2.7) in (6.5.4) and then equating the terms involving ¢>"*!, and also
using (6.1.10), we arrive at (6.5.1) to complete the proof. |

Corollary 6.5.2. If h(—D) denotes the class number of primitive binary quadratic
forms with discruminant —D and addg(n) denotes the number of doubled distinct

8-cores of n, then, for a square-free integer 16n + 14, we have
1
addg(2n) = Zh(—64n — 56). (6.5.5)
Proof. A classical result due to Gauss states that if n is square-free and n > 4, then

24h(—n), for n =3 (mod 8);
r3(n) = 4 12h(—4n), forn=1,2,5,6 (mod 8);
0, for n = 7 (1nod 8).

Now (6.5.5) readily follows from (6.5.1). a
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6.6 Relations between ascg(n) and addgy(n)

The following theorem was found by Baruah and Sarmah [7, Theorem 5.8]. Here we

give another simple proof.

Theorem 6.6.1. If addg(n) and ascg(n) represent the number of doubled distinct

9-cores and self-conjugate 9-cores, respectively, of n, then
addg(n) = asce(4n + 6) ~ asce(n — 1). (6.6.1)

Proof. First recall that the generating functions of addg(n) and asce(n) are given
by (6.1.11) and (6.1.17).
Next, setting, in turn, e = gand b= ¢'"; a = ¢® and b = ¢*%; a = ¢° and b = ¢*3;

and @ = ¢’ and b = q'!; in (6.4.6), we find that

f(a,4"") = £(d%,¢%) + af(¢"%, %),
£, d%) = f(¢®,d*®) + ¢*F(¢*,¢%),
f(d*,d®) = f(a®,q*) + ¢ f(¢®,¢™),

fld',d") = f(¢*,¢*) +d" f(a*,¢®).

Employing the above identities in (6.1.17), extracting the terms involving ¢***2 from
both sides of the resulting identity, and then using again (6.1.17) and (6.1.11), we
deduce that

Z ascg(4n + 2)¢" = ¢ Z adde(n)q"™ + ¢ Z ascg(n)q™.
n=0 n=0 n=0

Equating the coefficients of ¢"*! from both sides of the above, we easily arrive at

(6.6.1) O
Corollary 6.6.2. Identity (6.1.3) holds.

Proof. Since addg(2n + 1) = 0, identity (6.1.3) follows easily from (6.6.1) when n is
replaced by 2n + 1. O
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6.7 Infinite families of results on adds(n) and add,(n)

In this section, we find relations among adds(n), adds(n) and ascs(n) from the
coefficients of (g). We also find infinite families of arithmetic identities for add(n)
and add,(n).

Theorem 6.7.1. Let p > 3 be prime and k be a positive even integer. If adds(n)

denotes the number of doubled distinct 3-cores of n, then

-1
addz(n) = adds (pkn + —12—) . (6.7.1)
Proof. Let us define s(n) by
olg) =Y s(n)g™. (6.7.2)
n>0

Employing (6.7.2) in (1.2.14), and then extracting the terms involving ¢***! from
both sides of the resulting identity, we find that
Y " s(Bn+1)g" =2f(q,"). (6.7.3)
n>0
Employing (6.4.6), with a = ¢, b = ¢°, on the right hand side of (6.7.3), and then
equating the terms involving ¢*" from the resulting identity, we obtain

> s(12n+1)g" = 2£(?, ¢*),

n>0

which, by (6.1.5), implies
s(12n + 1) = 2addz(n). (6.7.4)

Now, setting n = p and a = b = ¢ in (1.2.13), we have

p—1

0(q) = p(@) + D _q" f(gP, g®+), (6.7.5)
r=1

With successive use of the trivial identity f(a,b) = af(a™!,a?%b), we can rewrite

(6.7.5) in the form

<p(q) = (p(ql’z) + 2qf(qP(P—2), qp(p+2)) + 2q22f(q”(p'2'2), qp(p+2-2))
p—1

+mﬁwwwﬁwwn~+m(2)ﬂﬁwww (6.7.6)
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Employing (6.7.2) in (6.7.6) and equating the coefficients of ¢P’™, we find that
s(n) = s(p*n). (6.7.7)
Replacing n by 12n + 1 in (6.7.7), we have

p’-1
3(12n+1)=s(12 (p2n+ 7 )+1>.

Employing (6.7.4) in the above and by mathematical induction, we readily arrive at

(6.7.1) to complete the proof. O
Corollary 6.7.2. (Baruah and Sarmah [7]) Identity (6.1.18) holds.
Proof. 1dentity (6.1.18) follows easily from (6.1.13), (6.7.3) and (6.7.4). O

Theorem 6.7.3. If addy(n) denotes the number of doubled distinct 4-cores of n,

then for any odd prime p and any positive even integer k, we have
-1
add4(n) = add, (pkn + —4——) . (6.7.8)
Proof. From (1.2.6) and (6.7.2), we have

> s(n)g” = o(g*) + 2q9(q®). (6.7.9)

n>0

Extracting the terms involving ¢***! from both sides of (6.7.9), we find that

D s(dn+1)g" = 2¢(¢?), (6.7.10)
n2>0
which, by (6.1.6), implies
s(4n + 1) = 2addy(n). (6.7.11)

Now, replacing n by 4n + 1 in (6.7.7), and then employing (6.7.11) and mathe-
matical induction, we deduce (6.7.8). O

Corollary 6.7.4. We have
addy(3n) = adds(n). (6.7.12)

Proof. Replacing n by 3n in (6.7.11) and then employing (6.7.4), we easily arrive at
(6.7.12). O
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6.8 Infinite families of arithmetic identities for
adds(n)

Theorem 6.8.1. If adds(n) is the number of doubled distinct 5-cores of n, then

k1
adds(2n) = adds (2 - 5%n + > 5 ) . (6.8.1)

Proof. Employing (6.2.9) in (6.2.3), we find that

D ta(5n+1)g" = 20%(q) — ¢¥*(¢),

n=0

which can be rewritten, with the aid of (6.2.2), as

D tBn+1)g" =2 ta(n)q" —q ) ta(n)g™ (6.8.2)

n=0 n=0

Equating the coefficients of ¢°**! from both sides of (6.8.2), we find that
t2(25n + 6) = 2t2(5n + 1) - tg(n). (683)

Again, adding (6.2.4) and (6.8.2), and then equating the coeflicients of ¢" from
both sides of the resulting identity, we obtain

t2(5n + 1) = ty(n) + adds(2n). (6.8.4)
Employing (6.2.5) and (6.8.4) in (6.8.3), we find
adds(2n) = adds(10n + 2).

Iterating the above and using mathematical induction, we arrive at (6.8.1) to finish

the proof. O

Theorem 6.8.2. Let p = 3 (mod 4) be a prime. If adds(n) denotes the number of
doubled distinct 5-cores of n, then for any positive integer n and any positive even

integer k, we have

k_
adds(2n) = adds <2p’“n +2 5 ) . (6.8.5)
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First we prove the following lemma.

Lemma 6.8.3. If to(n) denotes the number of representations of a nonnegative

integer n as a sum of two triangular numbers and p = 3 (mod 4) is a prime, then

ta(rn + P Pl ). (6.8.6)

Proof. First we note from (6.3.4) that

o0

ZT2(4n+ 1)g" = 4*(g) = 4Zt2 (n)q",

n=0 n=0

from which we arrive at

ro(4n + 1) = 4t3(n). (6.8.7)

Next, employing (6.7.6) in (6.3.2) and then extracting the terms involving ¢
from both sides of the resulting identity by noting that prime p = 3 (mod 4) and
r9(4n + 3) = 0 from (6.3.5), we find that

Y ra(pn)g” = *(g?) = Y _ma(n)g™. (6.8.8)
n=0 n=0
Equating the coeflicients of ¢"™ from both sides of (6.8.8), we readily arrive at
ra(p*n) = 73(n). (6.8.9)
Replacing n by 4n + 1 in (6.8.9), we have
2
2 p -1
ro {4 p°n+ 2 +1) =r(dn+1). (6.8.10)
Employing (6.8.7) in (6.8.10), we arrive at (6.8.6) to finish the proof of the lemma.
Q
Proof of Theorem 6.8.2. Replacing n by 25n + 1 in (6.8.6), we find that
pP-1
to (5 (5p2n + ——4——> + 1) = t5(25n + 1). (6.8.11)

Employing (6.2.1) in (6.8.11), we obtain

21
adds (2p2(5n)+p > >=a.dd5(10n). (6.8.12)
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Similarly, replacing n by 25n + 11, 25n + 16 and 25n + 21, in turn, in (6.8.6),
and then employing (6.2.1),respectively, we deduce that

2 _
adds (2p2(5n +2)+ P 5 1) = adds(10n + 4), (6.8.13)
p*—1
adds <2p2(5n +3)+ 5 ) = adds(10n + 6), (6.8.14)
p-1
adds (2p2(5n +4)+ ) — adds(10n + 8). (6.8.15)

Again, from (6.8.6), we have
2 1 2 _ 1
t2(25(p°n + 13—4—) + 6) — to(p*n + ”—4——) = t5(25n + 6) — ta(n),

which, with the aid of (6.2.1), reduces to

2
adds (2p2(5n +1)+ 4 1) = adds(10n + 2). ~ (6.8.16)
From (6.8.12)—(6.8.16), we find that
2, PP 1
adds | 2p*n + 5 = adds(2n). (6.8.17)

Iterating (6.8.17) and by applying mathematical induction, we arrive at (6.8.5). O

6.9 Infinite families of results on asc4(n) and addg(n)

Theorem 6.9.1. Let p = 3 (mod 4) be prime and k be a positive even integer. If

ascy(n) denotes the number of self-conjugate 4-cores of n, then

asc4(n) = ascy (pkn + &k—s‘—l)) . (6.9.1)

Proof. Replacing n by 8n + 5 in (6.8.9), we have

T9(8n +5) =1y (8 (p2n + 5;028— 5) + 5) . (6.9.2)

Employing (6.3.6) in (6.9.2), we find that

ascq(n) = ascy (p2n + 5_(1’_28:&) ’

from which, by mathematical induction, we arrive at (6.9.1). ]



89

Theorem 6.9.2. Let p = 3 (mod 4) and p > 3 be prime. If addg(n) denotes the

number of doubled distinct 6-cores of n, then

addg(2n) = addsg <2p2n + i“-”%) ‘ (6.9.3)

Proof. Replacing n by 12n + 5 in (6.8.9), we have
ro(12n + 5) = 15 (12 (p2n + 5”21; 5) + 5) . (6.9.4)
Employing (6.3.7) in (6.9.4), we readily arrive at (6.9.3). O

6.10 Infinite families of results on add;(n)

Theorem 6.10.1. If add;(n) denotes the number of doubled distinct 7-cores of n,

then for any positive integer k, we have

2%k _
3*add(6n) = addy (2 x 3%+ 4 (—5%—5)) , (6.10.1)
2k _
(2 x 3% — 1)add;(6n + 2) = add; (2 x 3%+ 4 (1—3—)51——15—)> . (6.10.2)
k+1 __ 1 2k+1 __
(3 5 ) add,(18n + 4) = add, (2 x 3%+2n 4 (Tx3 1 5)) ,  (6.10.3)
K+l _ 1 2k+1 __
(3 5 ) add;(18n + 10) = add; (2 x 3%+2p 4 5137——5)
3k+1 -3
+ ( 5 ) addz(2n), (6.10.4)
k+1 _ 4 2k+1 _
(3 5 ) add;(18n + 16) = addy, (2 x 3%+ 4 (23 %3 1 5)) . (6.10.5)

Proof. We first recall the results involving t3(n) from Chapter 3 [Egs. (3.4.19)-
(3.4.23)].
Replacing n by 49n + 1 in (3.4.19), we have

2% _
Bt (T(21n) + 4) = 14 (7 (32'=+1 X Tnt .5.@8—1_)) + 4) |

5(3% — 1)

3 =0,1,5 (mod 7), on employing (6.4.1), the above may be written

3*addy (6(7n)) = add; (2 x 32+ (7p) + E(L’;_—l—)) : (6.10.6)
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In a similar way, replacing n by 49n + 8, 49n + 15, 49n + 29, 49n + 36, 49n + 43,
in turn, in (3.4.19), we find that '

k 2k+1 5(32k 5(3* -1)
3*add7 (6(Tn + 1)) = add7 [ 2 x 3**7 (Tn + 1) (6.10.7)
3*addy (6(7n + 2)) = addy (2 x 3%+1(7n + 2) 42 1)> (6.10.8)
3*addy (6(7n + 4)) = addy (2 x 3%+ (Tn 4 4) + ) (6.10.9)
k 2k+1 32k — 1)
3*add; (6(7n + 5)) = add; ( 2 x 3% (Tn + 5) + (6.10.10)
k 2k+1 5(32k

respectively. Furthermore, replacing n by 49n + 22 in (3.4.19) and then subtracting
(3.4.19) from the resulting identity, we obtain

3k (t3 (49(3n + 1) + 18) — t3(3n + 1))
2k _ 2k __
= ts (49 (32k+1n + 1—1-i38——3) + 18) —t (32’°+1n + H—XZ;——3) ,
which, with the aid of (6.4.1), reduces to
k 2k+1 5(32k - 1)

From (6.10.6)-(6.10.12), we arrive at (6.10.1).
Next, putting £ = 1 in (3.4.23), we have

4t3(9n + 3) = t3(81n + 30) + 3t3(n). (6.10.13)
Replacing n by 7n + 4 in the above identity, we note that
4t3(7(9n + 5) + 4) = t3 (7(81n + 50) + 4) + 3t3(Tn + 4). (6.10.14)
Forn=0,1,3,4,5,6 (mod 7), by employing (6.4.1) in (6.10.14), we find that
4add,(18n + 10) = add(162n + 100) + 3add;(2n). (6.10.15)
Again, replacing n by 49n + 18 in (6.10.13), we have

4t3(49(9n + 3) + 18) = t3(49(81n + 30) + 18) + 3t3(49n + 18). (6.10.16)
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Subtracting (6.10.14) from (6.10.16) and then employing (6.4.1), we find that
4add;(126n + 46) = add;(1134n + 424) + 3add;(14n + 4), (6.10.17)

which is (6.10.15) for n = 2 (mod 7).

From (6.10.15) and (6.10.17), for any nonnegative integer n, we arrive at
4add;(18n + 10) = add;(162n + 100) + 3add-(2n). (6.10.18)

Iterating (6.10.18), and by mathematical induction, we deduce (6.10.4).
In a similar way, we can derive (6.10.2), (6.10.3), and (6.10.5) by using (3.4.20)—
(3.4.22), respectively. (]

Theorem 6.10.2. If add;(n) denotes the number of doubled distinct 7-cores of n
and k > 1, then

5add(10n + 2) = add,(250n + 80), (6.10.19)
7add,(10n + 4) = add,(250n + 130), (6.10.20)
7add;(10n + 6) = add(250n + 180), (6.10.21)
5add7(10n + 8) = add(250n + 230), (6.10.22)
5k+1 -1 52k+1 -5

( 1 ) add;(50n) = add;, (2 x 5%+2n 4 ——-—4——-) , (6.10.23)

k+1 _ 1 2k+1 _
(5 I ) add7(50n + 10) = add; (2 x 5%+ 4 9_)2_4__5) ,  (6.10.24)

k+1 _ 52k+1 —
(5 " 1) add,(50n + 20) = add; (2 x 5%+ 4 37——"—4-—5) ., (6.10.25)
6add;(50n + 30) = add;(1250n + 780) + 5add(2n), (6.10.26)

k+1 _ 2k+1 __
(5 1 1) add7(50n + 40) = add; (2 x 5%+2n + §3—X5—Z———§> . (6.10.27)

Proof. We recall the results involving t3(n) from Chapter 3 [Eqgs. (3.4.26)—(3.4.34)].
Replacing n by 49n + 2 in (3.4.26), we have

5t3(7(35n + 1) + 4) = t3(7(875n + 40) + 4),
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which, by (6.4.1), gives
5addy (10(7n) + 2)) = addy (250(7n) + 80). (6.10.28)

Similarly, replacing n by 49n+ 9, 49n + 16, 49n + 30, 49n 4 37, 49n + 44, in turn,
in (3.4.26), we deduce that

5add; (10(7n + 1) + 2)) = addy; (250(7n + 1) + 80), (6.10.29)

5add; (10(7n + 2) + 2)) = add; (250(7n + 2) + 80), (6.10.30)

5addy (10(7n + 4) + 2)) = addy (250(7n + 4) + 80) , (6.10.31)

5add; (10(7n + 5) + 2)) = addy (250(7n + 5) + 80), (6.10.32)

5add7 (10(7n + 6) + 2)) = add; (250(7n + 6) + 80), (6.10.33)
respectively.

Furthermore, replacing n by 49n + 23 in (3.4.26) and combining with (3.4.27),

we have
5(t3 (49(5n + 2) + 18) — t3(5n + 2)) = t3 (49(125n + 59) + 18) — t3 (125n + 59),
which, by (6.4.1), may be recast as
5addy (10(7n + 3) + 2) = addy (250(7n + 3) + 80) . (6.10.34)

From (6.10.28)-(6.10.34), we deduce (6.10.19).

In a similar fashion, employing (3.4.26), (3.4.27), and then using (6.4.1), we
deduce (6.10.22). Again, from (3.4.28) and (3.4.29), with the aid of (6.4.1), we
easily arrive at (6.10.20) and (6.10.21), respectively.

Next, replacing n by 49n + 5 in (3.4.33), we have

(5k+1 — 1)t3(7(175n +20) + 4)

4
33 x 52t1 _5\ .
= 1, (7 (7 x 5%+2, 4 ——x—g———> +4) ,
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which, with the help of (6.4.1), can be written as

(SHZ' 1)add7 (50(7n) + 40))

(6.10.35)

2k+1 __
=add, (2 x 52+2(Tn) + 3—3—’2-—5) .

4
Similarly, replacing n by 49n + 12, 49n + 19, 49n + 26, 49n + 33, 49n + 40, in
turn, in (3.4.33), we find that

(5“;_ 1)add7 (50(7n + 1) + 40))

2k+1 __
=add, (2 x 5%+2(Tn + 1) + -33—{5—4——3) : (6.10.36)
5k+1 -1
( 1 )add7 (50(Tn + 2) + 40))
2k+1 __
=addy (2 x 525+2(Tn + 2) + ﬁi‘%———% , (