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We discuss a fcw problems of' tlic ctTccl of heat lrnnsfc~' :tnd incolnpl.cssil?lc 

electrically conducting flilid flows specially paying 0111- itt~elition when a i~niliwm 

transvcrsc magnctic liclcl is applied. Magnctoliyclrocly~lam~cs is dclincd as rhal wll~ch 

deals with tlie dytianiics of an electrically condi~cting fluid flocv (c.g. 111crct1i.y. copl>cr 

sulpliatc solution, etc.) in prcsciicc of' a magnctic ficld. Tlic motion of' thc clcctrically 

conducting fluid through tlic magnctic licld cspcricnccs clcctric cur'rcnls which changc 

the niagnctic ficld, and in Ihc prcscncc ol' m;~gnctlc liclcl on tllcsc. ci~t.rciils. i l  gives 1.1xc 

to n~cclianical forces wh~ch n~odily Ilic llo\v oI'tlic ~ ~ i i d ~ l c t i i i g  Iliiicl. 

Magnctic ficlds iriflucncc many naturi~l ancl mati-iiiatlc Iloc\ls. 'Tlicy ; I I . ~  

routincly used in industry to licat, IJLIIII~), stir ant1 Icvitatc liqu~d n~etals. l'licrc is tlic 

terrestrial ~iiagnetic ficld which is ma~ntainccl by lluid motion in thc cat-th's cot-c, tlic 

solar magnetic field which gclicratcs sunspots ancl solar flares. and the g:\l:~clic 

magnetic ficld which is thought to inflilcncc tlic formation ol' stars 1.1-om ill~crstcll;~~. 

clouds. The study of tlicsc flows is citllctl ~iiagnctohydrodynamics. I-ornicl-ly. MI I l l  i h  

conccrncd with thc niutual interactloll of'tlic lluicl flow and magnclic ficlcls. Tllc flil~cls 

must bc clcctrically conducting and non-tnagnclic, which liniits 11s lo Iiqu~d mclals. 1101 

ioniscd gases (plasmas) and strong clcctrolytcs. Maglictoliydrcldy~~;tmics (MI- I l l  li,~. 

short) is the study of tlie interaction bctwccn nlagnctlc ficlds ancl moving, condi~clintl, 

fluids. I t  is of importance in connection \ \ l i t l i  many cnglnccring p~.ohlc~iis ;IS well ;IS i l l  

geophysics and astronomy. 



Tllc ml~tual interaction of a m;~g~ictic licld B and a \~clocity liclcl i i  iIVIScS 

I partially as results of tlic laws of 1;ar;tday's and Anll~crc, and parti:~lly hccailsc ol'thc 

Lorenti., forcc cxperienccd by a cun-cnt-c:trrying body. I t  is convcnicnl 10 spl~l lhc 

process into the follow~rig tlircc parls: 

( I )  Tlic rclativc niovcnicnt of a co~itlucting I l i ~ ~ d  and magnetic licld c;~tlscs a n  c.ll1.l'. ( 0 1 '  

order ii x B ) to devclop in accordance with Filraday's law 01' ~nduction. 111 gcnc~;~l, I -I 
when the current density is of order o(N x i j ) ,  wlicrc o is thc clcctr~ic;illy condt~ct~ng. 

clcctric currents will ensue. 

(ii) According to Amp'erc's law, tlicsc intlucctl currcnts niust give r ~ s c  to :I sccond. 

induccd magnetic ficld. This adds to tlic original magnctic liclcl and llic ch;\ngc is 

i~sually such that tlie fluid appcars to "drag'' lhc magnctic ficltl lilics along witlt 1 1 .  

i i i )  Tlic combined magnetic ficld (i~iiposccl ~dt ls  ~nduccd) interacts wit11 tlic ~~ltlucctl 

currcnt density, . j  to givc risc to a 1,orentz forcc (per unit volunic), (.7 x R )  . l'liis ;IL.(S 

on the conductor and is generally dircctcd so :IS to inliibit tlic iclativc nio\~crnclit ol'thc 

magnetic field and tlie fluid. 

If the fluid i s  non-conducting or tlic vclocity is ncgligiblc, tllcrc will hc no 

significant induced magnetic field. Con\~c~.scly, i l '  o or ii' arc I;~rgc (111 some scnsc), 

tlicn tlic induccd magnctic ficld may su l~s t ;~~i t~ ;~ l ly  alter tlic iniposccl n~agnctic licld. 1 1 '  I I  

is a poor conductor or nioves very slowly, tlicn tlic induccd cul.~.cnt and ~ l i c  associ;~lcd 

magnctic ficld will bc wcak. Conducl~ng lluid i~sunlly contains ~icut~.:~l ~,al.ticlcs ;11icI 

positivc and ncgativc cliargcs. So the tluici is ncuti.al in the largc and  tlic gaseous Iluicl 

rcfened as plasma. Tlius tlie unifol.111 of tlic plasma docs not cotistitutc tlic clcct~.~c 

current. 



T11c thcsis will bc dealt witli tlic tIicol.ctical invcstrgatrons ol' clcclr.rc:~lly 

fluid flow and the cl'l'cct 01 '  heat transfer- in m a g n c t o h y d r - t ~ c I ) ~ ~ i : ~ ~ l l ~  

problems. In most of tlic fluid flows. tlic vclocity ficlcl and tcnipcrat~~rc liclcl I ~ I I I ~ L I ~ I I I Y  

interact wliicli nicans that tlic tcmpcraturc tlistribution dcpcncls o n  the \/clocrty 

distribution. Conversely, thc vclocity clislribution dcpcnds on tlic I C I I I I ) C I . ~ I ~ I I I . C  

distribution. 

111 these cases wlierc tlic buoyancy f'or.ccs arc disr.cgardccl and tlic ~>r.opc~.lrcs 01' 

the fluid niay bc assumcd to bc indepcnclcnl 01' tcnipcl-at~rr-c, the velocity liclcl tlocs not 

depcrld 011 tlic tcmpcraturc ficlcl, c\/liilc tlic dcpcndcncc of' tcmpcrntur.c licld on Ilic 

vclocity field persists. Such flows :II.C rcrmctl ;is li>rcccl Ilo~v ; ~ n d  llic pr.occss 0 1  l l c ~ ~ l  

transfcr in sucli flows 1s dcscr.ihcd ;IS li)rccil convcclion. 1710ws in which I,r~oy:~ncy 

forces are dominant arc callcd n;tltrral Ilocv irntl corresponding hcat transf'cr 11i1-orrgh 

such natural flow is known as ni~tural co~~\lcction. If  tlic natural C O I ~ \ / C C I I O I I  1s 1101 

constrained to a finitc region by boundaries, i t  1s callcd ti-cc convcctioli. 

In mag~ietoliydrody~in~iiics, thc flow of'clcctr.ic;\lly conducting Ililicl in 131-cscncc 

of an applied magnctic field is corisidcrcd. I'hc magnctic licld induccs c~rr.r.cnt tluc lo 

thc motion of thc conducting fluids which in ti11.11 niodifics tlic ;~pplicd mirgncllc licltl. 

while the elcctromagnctic Lor-cntz liwcc rcsrsts thc Iluitl motion. Tlic wick applicat~oll 

of thc subjcct has been sccn in Gcopliysics, Astrophysics, Acronairtics ant1 m:lliy olllcr. 

engineering branclics. 

Thc thesis will consist of scvcn cliaplcrs. Tlic chaptcr-l is going to hc clc:~ll w ~ l l i  

tlic iritl~od~rctio~~ of thc thesis. 'fhc oirtli~lc 01' tlic magnctoliydrodyli:~mics. 115 

developnient and applications, firndanicntal equations of elcctr-ically conducting ll{r~cl 

flow and effect of heat transfcr in MI-IT) li;~vc bccn discusscd in this clii~ptci.. 



During tlic past two dccadcs. n ni~~iihcr ol 's~g~iil ici~nt cspc~.~mcnts li;~\/c heell ci~~.~.ictl o11l 

rcvcaling non-Newtonian characteristics ol' licl~~itls wlicrc a nurnbc~. 01'  nc\\; 

plienonienon have been observed in n large ~ii~nibcr 01' liquids, 01' great tc~linologici~l 

and industrial importance. A bricl' clcscription of tlicsc licl~tltls is also g~vcli i l l  11114 

cliaptcr. Lastly, a brief review ofc;~l.licr wo~~kcrs and scope of this work I I ~ I V C  also hccn 

explained in this chapter. 

The laminar free convection flow of an incomprcssiblc clcctrically conducting 

second order fluid under the acttori of' ilni1i)l-m trans\icrsc Inagnctlc field over a pli~tc 

lias been discussed in the chapter-ll. I-Zsi~cl solutions of the fluid vclocity i;(r9,1) and 

- 
tcmpcraturc profile 7'(.i:, 1 )  can he obt;1111cd witli tlic Iiclp of pcrti~rbation tccliniclt~c, 

wliere y is tlic distancc riicasurcd of the pliitc and  t is tlic time. It hiis hccn obscr\~ctl rl1i11 

this problerii is useful in nlany engineering ~)roblcnls ancl Iicncc our I-cscarch may I,c 

useful. 

The unsteady Couctte f l o ~ \ ~  01' a v~scous incomprcssiblc ancl clcct~.ically 

cor~ducting fluid with the licat transfcr I>ctcvccn two hot-izontal parallel plates i l l  tlrc 

presence of a uniforni transverse magnct ic ficltl lias been cliscussccl i n  tlic c11:lptcr-l l I .  

wlicn in the case- I, tlic platcs arc at different tcmpcraturcs and i n  tlic case-2, tlic upper 

platc is considered to move with thc constant vclocity wlicrc the lower plate 1s 

adiabatic. Our results are useful in gcopliysical and astropliysical problc~ns ;IS the 

sirnultancoi~s effects of Iiydron~agrictic, buoyancy forces and coriollis for-ccd al-c 

observed in various types ol'problcnis 111 tlicsc I J I ~ ; I I ~ C I I C S  o l ' s ~ i c n ~ e s .  



A tileoretical and ni~liicrici~l analysis ol' ulistcady t ~ v o  dimcnsion;~l li-cc 

convection flow of a visco~ts ii~colnprcssiblc clcctrically contlucting Il~lld t l i ~ . o ~ ~ g l ~  ; I  

porous medium due to infinitc vcrticiil plate witli ~lnifol-rn suction ancl constallt Iic:~l 

flux ~lndcr rhc action of a ~lnifol-m magnetic liclcl hi~s hccll ilivcstigi~tcd in the c1i;rplcr- 

IV. The effects of Prandtl nurnbcl., Grashol'f number, magncllc p:il'aliictc~ ant1 llic 

variable pernieability of porous ~iicclium o n  tlic vcloclty and tcml>cratul.c 121-olilc h:~vc 

bcen discussed and sliowt~ grapliici~lly. 

In cliapter-V, wc liavc discussed rhc ~iiotlon 01' ~ l i c  ilnstcndy MI-11) Ilow 01'  ; I I I  

inconipressible electrically conclucting viscous fluid bctwccn two horizont:tl parallcl 

porous plates on the timc-valying motioli. The velocity prolilc and skin-liic~io~i ; ~ r c  

obtained due to the effect ol'tlic clcllcclioll ol'a strong tilagnctlc liclcl o n  tllc MI 113 Ilo\\ 

past bctwccn two parallel platcs and thc rcsults at-c obtaincd alld plottcd gri~plilcally by 

taking the different valucs of thc niagnctic licld paramctcl.. 

We have discussed in tlic cliaptcr-VI, the MI-ID unsteady llow o l ' i~  visco-clastic 

(Kivlin-Ericksen) tluid tliroi~gh a11 illclinccl chanlicl cvitli two par-allcl l l a ~  p l i~~cs  w111i 

heat transfer including heat gcncrating so~~l.ccs or licat absorbing sinks, when lllc pl;~tcs 

are moving witli the transicnt vclocily wliilc the one ol' tlicsc two plr~tc is atllalxltlc. 

Here thc fluid velocity arid tlic tcrnpcl;rti~r-c profile arc obtainc(l by tlic I 'c~-tu~.l>i~t~o~~ 

tccliniquc and discussed by intcrprctlng thc graphs will1 thc help 01' cliflct.cnt valitcs 01'  

some appcarcd non-dinicnsional pal;tmctcr-s. 



In the chaptcr-VII, we l i ;~ \~c  studicc.l thc unste;~dy Ilo\\~ 01' ;in incotiil>rcssil>lc 

electrically conducting second ordcr Iluid ~Iit.ougli the ~>orous tiietlium dltc t o  inlitiitc 

I~orizontal plate in the presetice ol'~tniform 11-ansvet-sc magnetic lield wliicli i~icluclcs tlic 

heat generatirig soiirces or heat absorbing sinks. I-1er.c (lie plates are nlaint;iinecl ;i t  

temperatures whilc one plate is kept at a constant tempcr;it~tr-e gradient. The valucs 0 1 '  

the velocity and tenlperature distribution ;it-c li.)i~ticl out ti~.~n~et-ically ;~ncl intct-pi.ctctl witli 

the help of graph. 
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1 INTRODUCTION 

1 . 1  Magnetohydrodynamics (MbII)), i t s  flows and applications 

We have discussed in this thcsis a few problcms of thc cffcct of hcat transfkr 

and electrically conducting fluid flows specially paying our attcntton whcn a transverse 

magnetic field is applied. Hence in this chaptcr, wc llavc glvcn a brlcl'accoirnl ot' lhc 

effect of heat transfer and magnetohydrodynaniics flows. We Iiavc also mcnlioncci tlic 

works of other Scientists related to the problcms attempted in this thcsis. In thc last 

article of this chapter, we have givcn thc motivation, extent and scopc OSOLII- works. 

MHD is defined as that which deals with the dynamics of i ~ n  clcctrlcally 

conducting fluid (e.g. mercury, copper sulphatc solution, etc.) i l l  prcscncc ol'a ~nagnctic 

field. The motion of the electrically conducting fluid through thc niagnclic ficld 

experiences electric currents which change the magnctic field, and in the prcscncc of' 

magnetic field on these currents, it gives rise to mechanical forccs whlcli modily thc 

flow of the conducting fluid. 

Magnetohydrodynamics (MI-ID for short) is the study of the Intclactlon 

between magnetic fields and moving, conducting fluids. Magnctic ticlds i~illucncc 

many natural and man-made flows. For~iially, MI-Ill is concerned with tlic. mutual 

interaction of fluid flow and magnetic ticlds. Thc fluid must bc clcctrically con~li~cting 

and non-magnetic, which limits us to liquid rlletals, hot ionised gases (plastiias) and 

strong electrolytes. 



The mutual interaction of a niagnctic field 6 and a velocity licld ii ariscs 

partially as a results of the laws of Faraday's and ~ n i ~ ~ ' e r e .  and parti;llly hccausc of tlic 

Lorentz force experienced by a current-carrying body. It is convcnicnt to split tlic 

process into the following three parts: 

(i) The relative movement of a conducting tluid arid niagnctic ficld causes an c.ni.1.. (of' 

order l u x  81) to develop in accordance witli Faraday's law of induction. In gcncr;ll. 

when the current density is of order o(17 x i), wlierc a is tlic clcctrically conductivity. 

electrical currents will ensue. 

(ii) According to ~ m ~ / e r e ' s  law, these iriduccd currcnts ~iiust give rise to i I  second, 

induced magnetic field. This adds to the original magnetic field and tlic cliangc is 

usually such that the fluid appears to 'drag' the niagnctic field lines along witli i t .  

(iii) The combined magnetic field (iniposcd plus induced) interacts with tlic inducctl 

current density, J to give rise to a Lorcntz force (per unit volunic), ./ x f i  . This i~cts 011 

the conductor and is generally dirccted so as to inhibit thc rclativc niovcmcril of tlic 

magnetic field and the fluid. 

If the fluid is non-conducting or the velocity is negligible, tlicrc will he n o  

significant induced magnetic field. Converscly. if a or ii are largc (in some sense). 

then the induced magnetic ficld may substantially alter the iniposcd magnetic ficld. I f  i t  

is a poor conductor or moves very slowly, then thc induccd currcnt and the ;issocialctl 

magnetic field will be weak. 



Conducting fluid usually contains neutral par-ticlcs and positivc ;111tl ~icg;~t~vc 

charges. So the fluid is neutral in tlie large and thc gaseous fluid rcfcrrcd as plasma. 

Thus the uniform of the plasma does not constitute tlie clectric currcnt. 

In 1942, the Engineer-Astrophysicist ~ l f v ' e ~ i  expressed that ~f a ll~glily 

conducting fluid is moving through the magnetic ficld, the induced clcctric currents 

will tend to inhibit the relative motion of tlic fluid and tlie niagnctic field, so that tlic 

magnetic field is convected by the fluid. 

I .  1 a Basic characteristic of M H D  

If the solid or fluid materials arc moving tlirougli thc magnetic liclcl, tlicn i t  

experiences electromagnetic forces and also if tlie niaterials arc clcctrically contlucr~ng 

and tlie current path is available, tlien tlic clectric cu~rents cnsue. 

Alternatively, currcnts may bc induced by thc change ol'thc magnctic fielcl \\lit11 

time. There are two consequences, which are givcn as follows: 

(i) An induced magnetic field associated with the currents appears, pcr-turh~ng tlic 

original magnetic field. 

(ii) An electromagnetic force due to the interactions of currents and the licld rippcal-s, 

perturbing the original motion. 

1 . 1  b MHD approximation 

The following postulates are considercd to dcrivcd equations for MI-ID flo~v 

(a) Hydrodynamic and electromagnetic considerations 

( i )  The fluid is treated as continuous and dexcribablc in  tcrms of local psopcstics such ax 

pressure, velocity, temperature, viscosity. ctc. 



(ii) The system of our investigation is dcfined as avcragcs ovcr clcmcnls large 

conlpared with the microscopic stri~cti~re of' riiattcr but small c~iough in co~npi~riso~i 

with the scale of the macroscopic phenonicnon to permit the use ol' tlic dilli.~cn~ii~l 

calculus to describe them. 

( i i i )  For the good MHD results, relating collision-free sit~lations arc considered. 

(iv) All velocities are much smaller than the velocity of light, c ( 3 x  10S ri~lscc. 

approx.), hence the non-relative electromagnetic theory is considered in MI-ID flow ilntl 

the relative condition is not necessary. 

(v) A purely local view can be misleading, because tlic local statement conceals the 

essence of electromagnetism wlicre by charges at rcst arid in niot ion, and also magnct ic 

niaterials act upon one another at a distancc. 

I . l c' Electrical properties of the magnetohyd rodynamics 

If the fluid is electrically conducting, then tlic M H D  will bc dil-fcrcd fr-on1 11ic 

ordinary hydrodynamics. I t  is not magnetic; i t  effccts a nlagnetic field not by its nicrc 

presence but only by virtue of elcctric currcnts flowing in it. Tlic fluid co~iclucts 

because it contains free charges (ions or electrons) that can rnovc indcfinitcly, hut  i t  

may also be a dielectric and contain bound clii~rges (e.g. in thc form of n i o l ~ c i ~ l ; ~ ~  

dipoles), which can only move a limited cxtcnt under clcctrio fields. TIic clcctrost;~tic 

part of the electric field is due to the free and bound charges distribi~tcd in and around 

the field. 

I .  l d Electric and magnetic field effect on M HD 

A charged particle such as an elcctron sul'fers as the given forces: 



1. A charged particle is repelled or attracted by othcr charged particles, thc total force 

on the particle per unit of its charge d i ~ c  to all tlic otlicr charges present hcing rhc ' 

electrostatic field E .  From the Coulomb's law, it follows that is irrotational (i.c. 

cur/,$ = 0) and ,$ can be represented by tlic ncgative gradient of an clcctrosta~ic 

- 
potential 3,i.e. E = -gt-acl3. 

2. Charged particles in the motion of the fluid and also magnetic materials produce tlic 

phenomenon of magnetism, to describc which the econoniically i t  is convcnicntly to 

invent another magnetic field vector H . I t  Iias tlic following effccts of two forces. 

( i )  A charged particle nioving with thc velocity 6 m/scc. relative to a certain lii~nic ol' 

reference suffers a magnetic forcc G x B (Ncwton) per units of its charge. The li,rcc is 

perpendicular to 6 and B ,  and the direction of H is that in which the particle must 

travel to feel no magnetic force. 

( i i )  If the magnetic field B is changing with tinic relative to a certain li.anic 01. 

reference, then a particlc will suffer an induced clcctric forcc 2, per i~nits 01. its cliargc,. 

which is defined by div& = 0 and Faraday's law givcs us as 

But there is a stronger condition on B , namely d i v ~  = 0. ( I .  I . 2 )  

This shows that the magnetic field lines can never cnd; though tlicy do not forni closcd 

loops. 





j: 
3. The total charge density q is determined by difi,~E and is of ordcr I;,, - or or ordcr 

c/ 

Bv 
c,, - . Thus the cor~vection cusse~~t i s  takcn to hc ~lcglcctcd il' d 

v 
(E,,BV' ld)/(B/,ud) = - , which is very small. Thus neglecting thc convection ctrrrcnt 

c 

aj 
( q S )  and the polarization current -, the current density can bc written as 

dl 

j = a ( E + ~ x B ) .  ( I .  I .4) 

4. The ratio of the magnitudes of electric a n d  n~agnctic parts of thc body fbrcc 

E I  B?,)? &1 
7 - - -  1) - 

qE -t J x B is  of order (E,, - or E,, -)/- = - wliich is vcry small 1111lcss thc 
d d I c 2 ' 

frequency is very high. Thus the effect of q (i.e. q is nct chargc pcr unit voli~mc) and 

the electric body force qE is negligible in MI-1D. 

From these above conditions, we h a v e  noticed that thc chargc dis~r~bution ill 

MHD has no importance under the low-frccluo~uy approxin~ation. 

I .  1 f Applications of M HD 

MHD operates on every scale, froni the vast to the minute. For cxamplc, 

magnetic fields pervade interstellar spacc and aid the formation 01' stars by rcmoving 

excess aiigular momentum from the collapsing ii~tcrstcllar clouds. Closcr to hornc, 

sunspots and solar flares are nlagnetic in origin, sunspots being caused by buoyanr 

magnetic flux tubes, perhaps lo4 Kni in diamctcr and 10"nl long, crl~plirlg I'ro~n the 

surface of the sun. 



MHD is also an intrinsic part of controlled tlier~iio-nuclear firsion. Hcrc plasma 

temperatures of around IO'K must be maintained, and magnetic I'orccs arc used to 

confine the hot plasma away from the reactor walls. 

In the metallurgical industrics, magnetic fields are roi~tinely used to hci~t, 131111113, 

stir and levitate liquid metals. Perhaps thc earliest application of MI-11.1 is thc 

electromagnetic pump. This simple device consists of mutually pcrpendiculur magnetic 

and electric fields arranged normal to the axis of a duct. Provided the duct is f"ilcd with 

a conducting liquid, so that currents can tlon~, tlic resulting Lorcntz force provides tlic 

necessary pumping action. Firstly, i t  was proposed back in 1832 ~irid tlic 

electromagnetic pump has found its ideal application in fast-breedcr nircIc;ir rc;ictors. 

where it is used to pump liquid sodium coolant through the reactor core. 

Application of MHD to natural cvcnts rcccived a bclatcd st i~ni~ lus  wlicn 

astrophysicists came to realize how prevalent throughout thc irriivcrsc arc condi~ctir~g, 

ionized gases (plasmas) and significantly strong magnetic fields. In 1889 Iligclow 

guessed that there were magnetic ficlds on the sun and Hale arid tlic Dabcocks I~rtcr 

confirmed this. The final implication was that MI-ID processes niust doniinatc mosl 

areas.of astrophysics. In 19 18 Larmcr nladc tlic attractivc suggestion tIi;~t the magnetic 

fields of the sun and other heavenly bodies might be duc to dynamo action, wherchy thc 

conducting material of the star acted as thc armature and stator of a sclf-cxciting- 

dynamo. 



A related application is thc use of MHD acceleration to shoot plasmi~ into 

fusion devices or to produce high-encrgy wind tunnels for simulating hypcrsonic flight. 

Since bodies moving at high specd arc preceded by a sock wave which can ionizc [he 

air, another possibility is the use of MI-ID to affect the airstream for purposes ol'thcrnial 

protection, braking, prop~~lsioti or control. MtlD effects can also arise from tlic passiige 

of bodies or waves through the ionosphcrc in the prcsencc of the earth's magnctic ficld. 

Other potential applications for MI-ID include electromagnets w~th  tllc Iluicl 

conductors, various energy convcrsion or storage devices, tnagncttcally controlled 

lubrication by conducting fluids, etc. MtID has a peculiar attraction ror 

aerodynamicists and mechanical engineers; instcad of being confined to pushing at the 

edges of fluid streams, they are enabled by MHD to grab the fluid in midstream. 

Perhaps the most widespread application of MHD in cnginccring is tlic t~sc ol' 

electromagnetic stirring. Here the liquid tnetal which is to bc stirrcd is placcd ill 21 

rotating magnetic field. In effect, we havc an induction motor, with tlic liquid nictal 

taking the place of the rotor. This is routincly uscd in casting operations to lioniogcnisc 

the liquid zone of a partially solidified ingot. Tlic resulting motion has a profi,untl 

influence on the solidification process, ensuring good mixing of thc alloying clcnlcnts 

and the continual fragmentation of the snow flake-like crystals wliicl-, form in rhc tnclt. 

This result is a fine structural, honiogcncous ingot. 

Another common application of MHD in metallurgy is magnetic Icvit:rllon or 

confinement. This relies on the fact that a high-frcquency induction coil rcpcls 

conducting material by inducing opposing currc~its in any adjacent conductor (opposite 

currents repel each other). 



Thus a 'basket' formed from a high-frequency induction coil call be uscd to lcvitate and 

melt highly reactive metals, or a high-frequkncy solenoiil can bc uscd to fcwni a n o n -  

contact magnetic valve which ~iiodulates and guides a liquid metal jct. 

MHD is also important in electrolysis, particularly in those electrolysis cells 

used to reduce aluminium oxide to aluniiniuni. Tliese cells consist of broad but shallow 

layers of electrolyte and liquid alun~inii~ni, with the electrolyte lying on Lop. A largc 

current (perhaps 200K Amps) passes vertically downwards through thc two layers, 

continually reducing the oxide to metal. The process is highly cnergy intensive, largely 

because of the high electrical resistance of tlic electrolyte. 

There are many other applications of Mt lD in engincc~.ing ancl nictallur-gy. 

These include electromagnetic (non-contact) casting of a lu~ i i i~~ iu~ i i ,  vacuu~ii-;~r-c 

remelting of titanium and nickel-bascd super alloys, electromagnetic rcnioval of nun- 

metallic inclusions from melts, electromagnetic launchers and so-called “cold-crucible" 

induction melting process, in which the mclt is protected from tlie crucible walls hy :I 

thin solid crust of its own material. 

1.2 Fundamental equation in MHD 

Larmor [I9191 has initiated the study of tlie subject in connection with thc 

astrophysical problems. After Larnior, Cowling [I 9341, Walen [ 1944, 194(31, Mcnzcl 

[1951], Dungey [I9531 and others have studied the prcscncc of the mi~gnctic liclcl 

inside the sun and its effects on the sun-spots. Earlier studies of thc motion of' 

conducting fluids in the presence of external magnetic fields which deser-vc mention arc 

those of Hartmann [I9371 on the flow of conducting fluid across a magnetic licl(l 2nd 

the theory of magnetic storms has been developed by 



Chapman and Ferraro [1931, 1933, 10401. Though their works contained a f'cw 

new ideas but there is no doubt that the developnient of the subject has followcd ~iiainly 

from ~lfv 'en 's  work [ 19491. 

The equilibrium of conducting fluids under the action of the magnetic ficlct o n  

the currents and the fluid pressure is of' considerable interest in i~stropt~ysics ant1 

thermonuclear work. Lundquist [1950] has made the first attempt in this problcni ol' 

magnetostatic, while Dungey [I9581 and Menzel [I9511 have considcrcd tlic 

application to astrophysical problems. 

I t  is possible to attain equilibrium in a conductilig fluid if the current is parattcl 

to the magnetic field. For then, the magnetic forces vanish and the ecluilibriu~ii of tlic 

gas is the same as in the absence of niagnetic fields. Such niagnetic fields are callcd 

force free. They were first postulated by Scliluter and Lust [1954]. Thc cxislcncc of' 

force free fields has been firmly established theoretically by C 'ha~d~a~ck l i i~ r  i~nct  

Kendall [ 1 9571 independently. 

Herlofson [I9501 and tlirlst [1951] have demonstrated that 

magnetohydrodynamic waves can also be excited in compressible conducting nicclia. 

Attempts to demonstrate the existence of magnetohydrodynamic wavcs in tlic 

laboratory has been made by Lundquist 1: 195 1 ] and by Lehnert 1 1054, 1055 1. In 

Lundquist's experiment, it has bcen seen that because of dissipation, true standing 

waves can not be excited. Nevertheless, the experiment suffices to demonstra~e the 

existence of magnetohydrodynamic waves. Lelinert, in his experimcrit, has rcl~laccd 

mercury by liquid sodium and has been able to makc more refined nlcasurcmcnts. 



Teller and Haffman [I9501 have discussed tlie problcni of 

magnetohydrodynamic shock waves. A more detailed discussion for velocities which 

are small compared with the velocity of liquid has been given by Helfer 110531. In 

Geophyiical problems, the maintenance of earth's magnetic field and its sccular 

variation has been studied by Bullard [I 948, 19491, Elsasser [I 950, IY501, I'arker 

[1955], Hide [1965], Vennezian [ I  9671 and others. Karman [I 9591 has given a review 

of the work done on the application of niagnctohydrody~ia~~iics to cngilic~~.i~ig i11i~I 

technical problems. Sutton [I 9591, Curzo~i [ 19001, Mound and Mather- 1 1002 1, Mcgrilth 

[I9631 and niany others have discussed tlie feasibility 01' ~iiagnctoliydr.odyllamic 

principles in controlled therrno-nuclear fusion research. Huges and Elco [I 9021, Snyder 

[I9621 and others have studied magnetohydrodynamic lubrication problems a n d  Ii)illid 

that the application of niagnetic field causcs the increase of' load bearing ci~pacity. 

We consider the flow of an inconipressible electrically conducting Iluid in 

presence of an applied magnetic ficld. The fundaniental equations governing the flow 

field and the temperature in M H D  can be obtained froni the corresponding cquatiolis in 

ordinary hydrodynamics with the suitablc modifications. The extra equations occi~r in 

MHD are the Maxwell's electromagnetic field equations. 

1.2.1 Maxwell's electromagnetic equations 

In magnetohydrodynamics, we arc mainly concerned with conducting Iluid in 

motion and hence it is necessary to consider the electrodynaniics equations of moving 

media. When charges are in motion, the elcctric and magnetic field will be associated 

with the motion of the fluid, which will have the space and thc tinic radiation. 



This phenomenon is called the clcctromagnctism and wc study the 

electromagnetic wave motion. Thc study will involve time dcpc~idcnt propertics of tlic 

electric and niagnetic fields. The bcliaviour ol'wh~ch is dcscr~bcci by a set o f  c q u a t ~ o n ~  

called Maxwell's equations. These equations under non-relativistic assunipt~oris arc: 

- as 
curlE = -- (Faraday's law in differential fonii) ( 1.2.5) 

at 

- z' divE = 2 (Gauss' law) 
E 

divg = 0 (Solenoidal nature of 6 ) 

B = /I,,, H 

where E,  s ,  H, 1, D are the elcctric field, thc niagnetic ficld, thc niagnctic ficld 

intensity, the electric current density arid the displacement vector rcspcctivcly; c 

and p ,  are the respective perniittivity, pcrnicability of t 

electric charge density. 

1.2.2 Ohm's law 

For electromagnetic problenis, an ccluat~on, namely 

is added to the Maxwell's equation. Tlic conduction current dcnsity .7 in  tlic ati~t~onary 

condition is formulated matliematically as 

J=aE (1.2.1 1 )  

where is the electric field intensity and o is tlic elcctrical conductivi~y of. ~ h c  

medium. 



If a charged particle is moving with the velocity ii thro~~gk tlic magnctic ficld 

B , it suffers a magnetic force 5 x B per un i t  of its chargc. That IS thc intluccd clcclric 

field is given by ii x B . This force is perpendicular to r7 and B. Again thc total forcc 

on a particle per unit of its charge moving locally in the mcdiun~ with the vclocity ii 

i.e., the Lorentz force is given by 

Hence under a non-relativistic approxitnation, thc electric currcnt dcnsity can bc writtcn 

This equation is known as Ohm's law. 

1.2.3 Hall current 

We know that the Lorentz force on a particle (in a conductor) pcr L I I I I ~  of its 

charge due to its motion of its velocity 17 undcr thc action of a transvcrsc magnctic 

field B is E + ii x B (see, Shercliff, 1965). 

Let free charges of negligible inertia be drifting througll ~t i ~ n d c ~  the ;~ction 01' 

this Lorentz force. The right conclusions cnicrgc if it  is supposcd that cach drifiing 

particle also suffers a drag force due to collisions equal on thc averagc k;?, whcrc /i is 

a constant for each particle. This rcprescnts the dissipative phe~ionicnon of resistivity. 

Neglecting the inertia of thc frcc chargc, wc havc- 

Summing over the free charges in the clcnient of conductor, we get- 

kt7 P:Z + j, x B = C- pcr uni t  V O I U ~ C  
6 



P' where j,, is the conduction current x-. due to the drift of tile charges i~nd p,: is t l~c 
6 

net free charges per unit volume. The cxperinients show that the right hand side is 

proportional to j,. Hence we have 

./,, x B 
where a is the electrically conductivity of the fluid. The extra tcr-m I duc to /3 

PC 

is known as Hall effect. If the free cliargcs arc electrons of charge- c ;111d tlic I I L I I ~ ~ C I -  

density n, then 

- 
- J x J,. - E---- 

Hall effect is merely due to the sideways magnetic force on the drifting Frce charges. In 

liquid conductors, Hall effects are negligible being the number of free charges infinile. 

When the conductor is moving with the velocity ii locally, the velocity of a charge i s  

u  ̂ + G i f  C is its relative velocity to the conductor. Stlmnling over all cI1al.g~~. licc or . 

bound, we have- 

e(r7 + 3) 
Total current j = 

cs 

in which the term p,ii is the convection current, a non-dissipative effect 



ev 
The term x-- can split into (i)  thc collvcrtion current .I, ~ L I C  to llic motio~i 01' lirc 

6 

chargcs rclative to fluid, which is ;I dissipative cffcct and ( i i )  thc polarization c\lsrcllt 

due to the motion of bound chargcs sclativc to thc fluid. 

The balance of forces on a tiec cliargc is 

e[E + ( U  + i;) x N]= ki; 

which lcads to the results that 0hri1's law is 

if the liall tcrm due to Cr(ii x I?) IS  iicglcclc~l. 

With the Hall term, the Ohm's L;I\v c;111 hc w ~ . ~ l t c ~ i  as  

- 0 .  
J (  = o [ E + i i x  $ 1 - - - ( . I ,  x E ) .  

I / ( '  

1.2.4 Equation of continuity 

Let us consider a fluid of tlcnsity 1 3 ,  ~noving with a velocity 1; . 'Tlic~i tlic 111;1ss 

conservation cquation, known as lhc C C I L I : I ~ ~ O ~ I  of contir~uity is 

D 
where - denotes the substantive tinic-rlc~.i\lativc. 

Dt 

An incompressible fluid is o~ lc  whcrc cach travelling fluid clcnlcnt cha~.gcs its 

/ J f>  
density negligible, even thoi~gli is the no~~- i~~l i f i ) r~ i i .  Then - = 0 ; I I IC~  IIICI.CI~)I.C 

111 



1.2.5 Momentum conservation equation 

Magnetohydrodynamics differs from ordinary dynamics. In M H D .  thc fluid is 

electrically conducting. I t  is not magnctic; i t  cffccts n magnetic ficld not by its mcrc 

presence but only by virtue of electric currclit flowing in i t .  If an electrically contlucting 

fluid moves with a velocity i in presence of magnetic field R . then the body force per 

unit volume can be written as (see Shercliff, 1965)- 

F = ~ , E + ~ x B  ( 1.2.22) 

11 - 
The ratio of electric and magnetic parts of this body force is of thc ordcr , , wlierc ir 

c - 

is the characteristic velocity and c is tlic vclociry of liglit.. Thus pa can hc omlttcd. 

Hence in the case of the viscous Ilu~d, thc cquation of tlic motion in 

magnetohydrodynamics is 

Dii -. -. 2 - 
p-  = -Vp + J x / I  + ,LIV rr ( 1.2.23) 

Dt 

And also, in case of an incompressible f l ~ ~ i d  with ,LI constant, tlic cqualion of tlic 

motion of the fluid is 

p-  " = -013 + .7 x ii + !~v~ii ( 1.2.24) 
Dt 

1.2.6 Magnetic diffusion equation 

The MHD approximations are grouped togcthcr bclow 

- as 
V x E = -- (Faradays' law) 

at 

J = o ( E + i x B )  

and V x B = p , , , ~  



Eliminating. l? and j from the equations (1.2.2514 1.2.27). wc gct the niagnctlc 

induction equation as follows 

1 
where vnl  = - is the magnetic diffusivity or thc niagnctic viscosity. 

UP,,, 

With the help of (1.2.8), the equation (1.2.28) can be written as 

when the magnetic Reynolds number is vcry sniall, thc equation ( 1.2.29) is called tlic 

magnetohydrodynamics diffusion equation. When the niagnctic licynolcls nunibcr 

Mi 
( R ,  = -) is very small compared with unity,  ncglccting the tcrm V x ( r i  x d ) .  thc 

V n t  

equation (1.2.29) becomes as 

This is the equation of diffusion of a magnetic ficld in a stationary conductor, resulting 

in the decay of the field. 

When the magnetic Reynold's numbcr I<,, is tlic largc compared \ v ~ t h  ~l lc  L I I I I I Y ,  tlic 

equation (1.2.29) reduces approximately to 

- 



1.2.7 Energy equation in M H D  

The charge within a material nloves i~ndcr thc action of clcctromagnctic forccs 

colliding and exchanging energy with the rest of matcrial. This fact means that thc 

electric work can be done on or by the niatcrial. I t  has bccn found that thc 

electromagnetic field puts energy into thc nlstcrial at tlic ratc P..j pcr i l l l i t  YOILI I I IC  and 

time (see Shercliff, 1965). The current dcnsity .7 can havc thr.ce possible forms -- 

conduction, convection and polarization. Tlic contribution of  convection and  

polarization on the work done is negligible in MHD; only that of the convcctioli current 

plays a significant part. 

Ohm's law, without Hall current, is given by the equation ( 1.2.17). I-lcncc 

4 4 J -  - 
E.J = - - ./.(ii x fi) 

The first term on the right side of the above eqi~ation (1.2.32) rcprcscnts tlic Ohmic 

dissipation and the second tern1 can bc writtcn as 

This describes the phenomenon of electromechanical cncrgy conversion. i;.(./ x t i )  is 

the rate at which the magnetic forcc J x fi docs work on tho conductor ;IS a wliolc. Thc 

term i.(j x i) pushes the fluid - either crciiting kinetic energy or hclping to ovcrcolnc 

./ . other forces or the reverse if  thc term is ncgalivc. Tlic term - IS positivc ancl thc 
0 

dissipated part in the form of licat. Tl~crcli)rc Ihr an incomprc~sihlc Il~~iil. ihc ccl~~ation 

of energy in MHD is 



where c,, is the specific heat at constant prcssurc and 4 is tlic d~ssip;~tion fi~nclion 

given by 

1.3 Non-dimensional parameters in M H D flow 

For an unsteady flow of incon~prcssiblc clcctricaliy conducting viscous fluid, 

the equations of motion, magnetic diffi~sion and cncrgy ilrc followcd as 

where p is the density of the fluid, a is thc electrically conductivity ol'thc flu~d, / I  is 

the permeability of the medium, c,, is thc spccilic heat at constant prcssurc, X. is the 

thermal conductivity of the fluid, p is thc prcssurc of thc fluid, I,U is thc gravitat~onal 

potential and 4 is the dissipation function which is givcn by ( 1.2.35). 

Let us introduce the non-dimensional cluantit~cs with thc hclp of 'I:, , L , H,, , I,, , 



-. 
B H - -  ./ B = - = - -  - H ' ,  J ' = - .  ( 1.3.39) 

B,' HI, .J,, 

where u,, and L is the characteristic velocity and icngtb respcctlvcly, thc sohscript 'o' 

refers to a characteristic value and i = 1 ,  2, 3. 

Substituting the conditions (1.3.39) in (1.3.36)-(1.3.38), wc get- 

DU' 1 I I - - 
- = - ~ ' p ' + - ~ ' ~ t r ' - - V ' ~ ' - - N ' x ( V ' x  H ' )  
Dr ' Re Fr /I,: 

a8 - I -- - = V' x (u' x B') + - vi2 B' 
at' R nz 

- 
DT' 1 -=- E M ' E  j.2 V ' ~ T ' + - - - #  + - 
Dt' Pr Re Re Re 

The non-dimensional parameters which arc appcarcd as thc i'ollowlng co-cfficlcnt.\ 111 

these equations: 

u L Re = "- (Reynolds' number), 
U 

U L  
R I ~  = - (Magnetic Ilcynolds' nuriibcr). 

VII' 

PC,, v Pr = - (Prandtl number), pt1, = - (Magnetic I'mndtl 1111nibcr). 
k L)ll' 

I /  2 
11,; 

M = B,,L(;) (Hartmann number). ii = ( F r o u d e  n i l~~~l icr ) ,  
gL 

u,1 7 11,; and M,', = -(Magnetic Mach number), whcrc A is thc Alfv'cn 11~1n1l>cr, ./I- = - 
A / I /  ' 

The equation of magnetic diffusion (1.2.29) has an analogy with the equation govcrnlng 

the diffusion of vorticity c3 of an incornpressiblc non-conducting viscoi~s fluid glvcn 

by 

where u is the kinematics viscosity ol'thc fluid. 



The imperfection in the analogy is that (3 is intimately related to ii (i.c. 

c3 = V x U) in a way that B is not, but it turns out that this docs not prevcnt thc ilsc of 

the analogy to suggest results concerning B . From thc equations ( 1.2.29) and ( 1.3.43). 

we can make the same kind of statement nanicly that rhe local riltc of c11;lngc of or 

5 results from the local net effcct of (i) convection {i.c. thc tcrni, V x (ii x l j ) ;  and 

diffusion (i.e. the term u,,,v2B). 

1.3.1 Large magnetic Reynold's number 

In any region of length scale 8, whcre the convection and diffusion arc cclually 

important, the two terms on the right hand sidc of the equation (1.2.29) ~iii~st be 

v x (U x B) I,,,s comparable. Thus- - = -(= 111~1) 
u,>,v2 B UIII 

U 
so that S must be of order 2. If tlic whole field of intcrest has a length scale 1, such 

u,, 

that Rm >> 1 ,  then L >> 6 ,  RIII bcing bascd on L only within a limitc~l rcgio11 01' 

length 8, where B changes significantly, gradients can bc high enough for diI.fusion 

and only dissipation matters much; clscwhcrc it  can bc neglcctcd. Thus for tlic large 

Rm , convection dominates and magnetic boundary layer approxiniations arc cspcctcd 

to work near sources of field and elscwhere thc approximations of pcrfcct or inlinite 

conductivity would be valjd, the diffusivity being zero. So ,I? + ii x = O and the 

convectional one holds away. 

Again, if the characteristic time is t ,  then li-om tlic cclt~;ition (~icglccting ~ h c  dil'li~sion 

term) 



aii 
- = ~ x ( i i x B )  
at 

dii B, ur,Brl . 
we have, - E - z - 

L 
1.e.t z - 

at t L 1' ,, 

Thus the characteristic time in thc flow problcni, IS the transit time [t] d ~ ~ r i n g  whic11 

a field disturbance diffuser a distance of o r d c ~  whicli 1s nii~cli lcss than L i f  

Rill >> 1 .  Hence the diffusion is ncglig~blc. 

1.3.2 Small magnetic Reynold's number 

This is the other extreme casc, which occurs whcn thc diffusion is do~n~nant  i\nd 

any imposed field B,, is hardly affected by tlic fluid nlotion. I t  cliffi~scs as iftlic Iltrid is 

stationary where there is no induced currcnt; the ficld is equal to the imposed ficld. 

From Maxwell's equations 

curl H = J 

and B = p , ,  H 

where p,,, is the permittivity of the medium. 

Due to the absence of induced currents, we get- 

- 
curl B, = 0. 

From Ohm's law, we have the induccd current .7, is of order cnr,,H,, . Thc inducctl ficlcl 

6 is determined by 

- - 
p,,, J, = curl 13, 



and is therefore of order p,,,a.r,, IJ ; thus 

when Rm is low, the induced field can be ncglcctcd entirely to replacc B by thc 

known imposed field Bo in all thc niagnctohydr;odynamics equations. In this casc, 

,u,,,j =curl B can be ignored but d i v j  = 0 must still be rcta~ncd howcvcr. As thc 

* 

u Rtn 
magnetic Prandtl number - is equal to -, onc can arrive at a bcttcr appreciation of 

Vnl Kc 

dissipation phenomena i n  magnctoliydrody~ianiics from this relation. This ratro is 

actually the ratio of heat gcncratcd by viscous cff'ccts to the licat gcncration duc to tlic 

Joule heat. When it is small, as i t  is in licluid mctals and low tc~iipcraturc plasmas, 

magnetic field diffuses much more rapidly than the vorticity and niagnctic boundary 

layers are much thicker than viscous oncs. This niakcs for siniplifications such as thc 

neglect of viscosity in the niagnctic boundary laycr. Thus when RIII  is s~ii;ill, tlic 

magnetic field decays by Ohmic dissipation. Omitting the tern1 V x (ii x H), which is 

small, the induction equation beconics 

From this equation, it has been noticcd that -since tlic magnetic ficld 13 always decays, 

L~ 
it tends to vanish in a characteristic time 1. wliich is given by I ; -. 

/fl,, 

In mathematical analysis, it is convenicnt freqilcntly to assurnc 1011 -+ 0 .  This 

approximation gives the idea of some real situations and in this wc havc solved a fcw 

problems with approximations. 



1.4 Boundary conditions on magnetohydrodynamics 

When electrically conducting fluid is in contact with a rigid s~trl'i~cc (or with 

another unmixed fluid), the following boundary condition m u ~ t  be satisficd i n  order to 

maintain contact: the fluid and tlic surfilcc with ivhich tlic contact 1s prcsc~.vcd must 

have the same velocity normal to the surface. 

Let f i  denote a normal uni t  vcctor drawn at the point of the surfiicc of'contact 

and let 3 denote the fluid vclocity at that point. Wlicn thc rigid silrfilcc ofconti~ct is at 

rest, we must have 3.n = 0 at each point of the surfilcc. This expresses the conditioli 

that the nornial velocities are both zeroed atid licncc thc fluid vclocity is tangcnt~al to 

the surface at its each point. 

Again, if the rigid surface bc in motion and ii is its vclocity at the point, then 

we must have- 

which expresses the fact that thcrc n ~ i ~ s t  be no normal vclocity at thc point bctwccn 

boundary and fluid, that is, the velocity of the flilld relative to thc boilndary is 

tangential to the boundary at its cach point. 

For inviscid fluid, the above condition niust be satisfied at the boundary. 

However, for viscous fluid (in which there is no s l~p) ,  thc fluid and the surl;rcc witli 

which contact is maintained must also I~avc tlw sanic tangcntlal vclocity at the point. 

The above mentioned kincmatics boundary c.ondlttons nii~st liold ~ndcpc~idclitly 

of any particular physical hypothesis. In this casc of n non-viscous fluid in contirct witli 

rigid boundaries (fluid or moving), thc pressure of thc fluid must act norm;il and 

continuous at the boundary. 



The Maxwell's equations (1.2.25) and (1.2.27) or thcir cqi~ivalcnt equations arc 

valid only for those points in whose neiglibourhood tlie physical properties of tlic 

medium vary continuously. On the boundary of the flow ficld, tlic physical propcrtics 

of the medium may exhibit discontini~ities. For instance, at a solid boundary, the 

electromagnetic properties of the MHD will changc abruptly to thosc of tlie solid. 

Across such a surface of discontinuity of clcctroniagnetic propcrtics, the following fi,ur 

conditions hold. 

1.  The transition of the normal component of rnagnctic induction I? = p,,,ij is 

continuous, i.e., 

where ii is the unit vector norniai to the surfhcc ol'discontinuity. Subscripts I and 2 

refer to the values immediately on each side of the surface. 

2. The behaviour of the magnctic field H at this boundary is 

- 
i x ( H ,  - H , )  = J ,  (1.4.51) 

where j,, is the surface current density. For linitc electrically conductivity, o t m, ,jA 

is zero; whereas for infinite electrical conductivity, a = rn, ./, may hc diffcrc~it fro111 

zero. 

3. The transitidn of the tangential component of thc clcctric ficld ,? is continuoi~s, i.c., 

i x ( E 2  - E , ) = o  ( 1.4.52) 

4. The behaviour of dielectric displaccnicnt fi = L'E at this boundary is 

- d 

i . ( D 2  - ) = p,., 

where p ,  is the surface free charge density. 



For most of our problems of niag~ietoliydrodyna~iiics. we may neglect thc 

surface current density j ,  and the surface fiee charge dcnsity p,,, . tlcnce our 

boundary conditions becbnie that botli the ti~ngcntial componclits of i/ and 1;. and tllc 

normal components of B and D are all continuous across a surfi~ce separating a body 

and a fluid or two fluids. The distributions bctwecn f i  and E .  and bctwccn and I) 

should be noticed here because thc valucs of jr , , ,  and c may be diffcrcnt on both sidcs 

of the boundary. 

1.5 Rivlin-Ericksen fluid 

Rivlin-Ericksen (1955) consiclercd rlic Ihcory of isotropic material li)r \\lhicl~ 

they considered that the stress depends on the spatial gradients of vclocity, accclcration, 

upto an order (N-1)th acceleration. Using thc invariant rcquircments, tlicy showcd t h ; ~ ~  

the stress must be given by an isotropic function of the tensors A,,,,,,, as 

- rIi - . f i j [A , , ) , ,  . .................. A ( , V J A l l  ( I s . 5 4 )  

where f obeys an identity. 

1' Qf i i [A, l ,k l  9 A ( 2 ) r l  , .......a*.......... , IQ 

= . f i , [ Q ~  ,,,,, Q'. QA,~,,,Q" ..................... Q,4, ,v 1 C) " I 

for all orthogonal tensors Q . The tensors 0' denotes tlic transpose of Q . 

The tensors A,,,, are called Rivlin-Ericksen tensors and can bc gcneratccl succcssi\lc 

material differentiation of the squared arc clenicnts cis' as 



D 
where - is the material or substantive dcrivativc dcfined as 

Dt 

The recurrence formula for A,,,,, nlay bc wrlttcn as 

A D 
and A(,), = A,N-l),,v: + A(N-I,bv., + A ( N - I , I l  

The fluid governed by the constitutive cc1u;ltion ( 1  S.54) IS called Rivlln-Erick\e~~ (li~ld 

of complexity N . The next important class of R~vl~n-Erickscn Ilutds lii~vc the 

constitutive equation of the form 

rIl = . f , / [ A ( ~ ) , ~ ,  A,, , , ,  I ( 1.5.59) 

For isotropic fluids, if r' is considercd as a function of A , , ,  and A,? ,  only, the11 tlic 

equation ( 1  S.54) and ( 1  S.55) with tlic liclp ot'( 1.5.59) gives us as 

',', = ~ ~ , ~ + P l [ A , l ) l + ~ 2 [ A , 2 , l + / ~ , , ) [ ~ , l , l '  + / l , [ ~ , ' ) l '  + / ~ ~ I ~ A ( l , l l A , I , l  

+ [ A 1 2 ) I [ A ( I ) l }  + P ~ { [ ~ ( I ) ] ~ [ ~ ( ~ ~ I + [ ~ ( ~ ~ I [ A ( ~ ~ I ~ ~  + / 1 1 ~ [ ~ ( 1 ) 1 [ ~ ( 2 ) 1 2  + [ A ( 2 , 1 2 ~ A i I I l )  

+ [ A , 2 ) I [ A ( l ) l l +  P ,  { [ A ( , ) I ' [ A , , , ] + I A , ~ ,  l l A i l , I 2  l+ ~ [ A , ~ , I [ A ( ~ , I '  + I ~ ( ? , I ' l 4 1 , 1 :  

+ P , ~ [ A ( I , I ~ I A , , ) I ~  + [ ~ , 2 , 1 ~ [ ~ , , , 1 ' 1  ( I . S . h O )  

where ,urn (m  = 0,1,2 ,.............., 8) arc scalar functions of the nine invariants of tensors 

[ A , , , ]  and [ A , , ) ] .  



For viscometric flows, all tensors [A,,,] cxcept [A,,,] and [A ,? ,  vanish. Markovitz 

( 1  957) observed that p,,, ( m  = 4.5, .............., 8)  may be omitted without affecting the 

solutions. So, then the reduced constitutive cquation takcs form. 

r.. !I = -p6;, + PI Am;, + ~ 2 ~ , 2 1 ; j  + k1.IA(l ,;,I, A( I j~,!j 
( I  .5.61) 

where p = ~r - p,) is the determinate isotropic pressure, 

p ,  = co-efficient of ordinary viscosity, 

p2 = co-efficient of visco-elasticity 

p, = co-efficient of cross viscosity. 

A fluid governed by t1i.c equation (1.5.01) is called an incompressible second 

order Rivlin-Ericksen fluid. We can also write constitute equations of higher orders in 

this way. All three material constants can bc determined from the viscometric equation 

of state for any material behaving as a second order tluid. Markovitz and Colcman 

[I9641 proved that p, is negative (expcrimcntally also, i t  has been Sound negative 

under thermodynamical considerations). 

Although the general Rivlin-Erickscn fluid accounts Sor shear dcpendcnt 

viscosity and normal stress effects; yet i t  sharcs tlic Newtonian fluitl as its special c;isc. 

The effect of changes in shear rate with time upon the stresses in a visco-clastic tluitl 

were incorporated into the constitutive ecliiations by Rivlin and Ericksen. 

When [A,,,] = 0 ,  for N = 1,2, .............., 1 1 )  tlic extra strcss 011 a Rivlin-Erickscn fluid 

can not change in time, but i t  does in actual rclaxation cxpcriments on visco-elastic 

materials such as high polymetric fluids. 



1.6 Non-Newtonian fluids 

The physical property that charactcristics of thc flow rcsistancc of siniplc fluids 

is the viscosity. All real fluids arc viscous, a forcc of intcnial friction, offcring 

resistance to the flow that always arises betwecn tlic layers of a fluid moving at 

different velocities in relation to one anothcr. Fluids which obcys Ncwton's law of 

viscosity are known as Ncwtonian fluids. Coni~non fluids likc water, air and nicrcury 

are all Newtonian fluids. Fluids which do not obcy Ncwton's law of viscosity arc 

known as non-Newtonian fluids. Thus, for such fluids tlic slicar strcss is not 

proportional to the velocity gradicnt. 171uitls 11kc pa~nts. coal tar and polyn~cr soltlt~ons 

are all non- Newtonian fluids. According to Newtonian law. tlic tangcntii~l Ihrcc acting 

at any point of the flow in the planc oricntcd in thc dircction of' flow is proportional to 

the negative of the local velocity gradicnt 

where p is known as the dynamic viscosity or siniple viscosity. Kinds of lli~ids that 

have in this fashion are termcd Ncwtonian flu~ds. 

The equation (1.6.62) which dcfi~ics a Newtonian fluid can bc applicd 

unidirectional flows only. However, tlic definition of Newtonian fluid in wli~ch thc 

stress depends linearity on the rate of tlcformation niay bc gcncratcd to tllrcc- 

dimensional flows using the rate of dcforniation tcnsor. 

where q is the local velocity of thc fluid particlc. 



We can redefine Newtonian fluid as' one that satisfies 

T .  r/ = -p6, + 2&, 

I fori= j 
where the Kronecker delta 8, = 

0 fori=O 

There are quite a few industrially important fluids which don't obey the Newton's law. 

The properties of these fluids are not only function of its state of the substance but also 

depends on the process parameters, the variation of velocity and temperature, they are 

known as non-~ewtonian fluid. The relation between r, and E, are non-linear for non- 

Newtonian fluid (such fluids are primarily pastes, slurries, high polymers, blood, jcllies 

and similar food product, polymeric melts, etc.). 

According to the Newtonian law of viscosity, the plot of rii versus [ - - for 

a given fluid shows a straight line through the origin, and the slope of this line 

represents the viscosity of the fluid at a given temperature and pressure. Experiments 

have shown that r ,  indeed proportional to [ - - i:) for all gases and for liomo~meous 

non-polymeric liquids. The non-Newtonian flow of fluids is the "Science of 

deformation and flow" which includes the study of the mechanical properties of gases 

liquids plastics and crystalline materials. 

- Thus the nowNewtonian fluid flow is the part of sciencc of rheology where 

both Newtonian fluid mechanics and Hookean elasticity are considered. Thc steady 

state rheological behaviour of most fluids can be generalized as 



where p,, is the apparent viscosity, is not a constant, it may be expressed as a 

a), function of either - or r ,  . 
8x1 

In order to explain the steady state relation for Newtonian and non-Newtonian 

av, fluid between r ,  and - - at constant temperature and pressure several models were 
3x1 

proposed, such as power law model, Bingham model, Prandtl Erying model, Reiner- 

Philippoff model, etc. 

Under steady state conditions a number of additional types of non-Newtonian 

behaviour are possible, for example thixotropic, rheopectic, viscoelastic, etc. 

i) Time independent fluid that are where the rate of shear at a given point solely 

dependent upon the instantaneous shear stress at that point. Time independent non- 

Newtonian fluids are also non-Newtonian viscous fluid or purely viscous fluid. 

ii) Time dependent fluids are those for which the shear rate is function of both the 

magnitude and the duration of shear. Time dependent non-Newtonian fluid classified 

into two groups: Thixotropic fluid and Rheopectic fluids depending upon whether the 

shear stress decreases or increases with time at given shear rate at constant temperature. 

Fluids that show limited decrease in p with time under a suddcnly applied constant 

stress r,  called Thixotropic. The Thixotropic properties have been found in the 

material such as some solutions or melts of high polymers, oil well drilling muds, 

greases printing inks, many food materials, paints, etc. The fluids that show limited 

increase of p with time under a suddenly applied stress r , ,  callcd Rheopectic fluid. 



Rheopectic fluids are antithixotropic fluids that exhibit a rcversiblc incrcrlsc in slicar 

stress with time at a constant ratc of shear under isothcrnial conditions. I~xa~ilplcs of 

these types are bentonite clay, suspension, vanadiuni pentoxide suspension. gypsum 

suspension and certain solutions i n  Inany pipc problems, etc. 

iii) Visco-elastic fluids are those wliich sliow partial elastic rccovcry upon tlic rcmoval 

of a deforming shear stress, such niaterials posscss properties of both fluids and elastic 

solids. These materials exhibit both viscoi~s and elastic propcrtics. I n  a purely Hookcan 

elastic solid the stress corresponding to a given strain is indcpcndent of timc wlicrcas 

for visco-elastic substances the stress will gradually dissipate with timc. A pii1.1 ol'tlic 

deformation of the visco-clastic fluids floc\~ when subjected to strcss. Exi i~i~pI~s  oStl1is 

type are Bitumen, flour dough. Naplam and siniilar jellies, polynicr sand, polynicric 

melts such as Nylon and many polynicric solutions. 

In  order to take account of the mcclianisni of non-Newtonian fluids riu~i~bcr of 

mathematical models were proposed at diffcrcnt time by diffcrcnt mathematicians. In 

our research working, we have discussed a problem of flow and hcat transfcr on Rivlin- 

Ericksen second order visco-elastic fluid. A bricf dcscription of Rivlin-Lrickscn sccond 

order fluid is mentioned above. 

1.7 Heat transfer in fluid motion 

The heat transfer is devotcd for thc stcady of processes of hcat propagation in 

the solid, liquid and gaseous bodics. Sin~ply it statcs that heat is  a form of cncrgy. 

which is transferred from one body to another body at a lower tcmperaturc by virtue of 

the temperature difference betwecn tlic bodics. In this problem, \vc considcr with the 

rate at which the heat is transferred. 



The rate of heat transfer may be constant or variable, depcndirig on wlicthcr the 

conditions are such that the temperatures rtmain the same or change continually wtth 

time. Temperature differences in a body are redilccd by heat flowing from rcglons of 

higher temperature to those of lower temperature. Tlits proces takcs placc in all 

substances, which are found in nature-solids, liquids and gases. Heat IS  transfcrred 111 

three ways, which are known as conduction, convection and radiat~on. 

In conduction, the flow of hcat is the result of the transfer of internal cncrgy 

from one molecule to anothcr. The flow of heat in solids takes placc exclusivcly by 

conduction process, while in liquids and gases the processes of'coiiduction. convection 

and radiation occur simultaneously. In cases, where tlic heat exclia~igc by co~ivectton IS 

prevented and exchange by radiation 1s niininiizcd, the principles of hcat contluct~on 

can be applied to liquids and gases as well, i,n thcsc substances, liowcvcr. ~i~olccolc\ arc 

no longer confined to a ccrtain point but constantly change t h c i ~  relative posltlon c\/c~l 

if the substance is a state of rest. 

The heat transfer by convection has been seen generally in liquids and gascs. By 

this process, heat may be transported from one noint to anothcr by bcing carricd along 

as internal energy with the flowing nicdium 

Hence the velocity field and the temperature field iiiutually iiitcract which 

means that the temperature distribution depends on the velocity distribution and 

conversely, the velocity distribution dcpcnds on thc tcnipcraturc d~s t r~but~oi i .  I n  spccial 

cases when buoyancy forces are d~sregardcd and the fluid propcrtlcs arc indcpcndcnt of 

temperature, the velocity field docs not depend on tlic tempcraturc licld while the 

dependence of temperature field on tlic vclocity field persists. Such flows arc tcrmcd as 



forced flow and the process oflicat transfcr in such flows is described as forced 

convection. Flows in which buoyancy forces are doniinant are called ~iatural flow and 

corresponding heat transfer is known as natural convection. If the natural convcction is 

not constrained to a finite rcgion by boundaries, it  is callcd frcc connection. 

In radiation, solid bodies as wcll as liquids and gases arc capable of radiating 

thermal energy in the form of electroniagnetic waves and of picking up such energy by 

absorption. All heat transfer ljroccsses are, thereforc, niorc or less accotnpanicd by a 

heat exchange by radiation. 

If the working medium begins to niove due to the difference bctwccn thc 

densities of individual parts of the fluid upon thc heating, thcn mode of hcat translkrs i I '  

referred to as free or natural convection. But if thc working nicdiuni is ~ L I I  into the 

motion artificially (by means of a fan, compressor, mixcr, etc.) to as forccd convcction. 

1.7a Fundamental equations in heat transfer 

We consider a fluid in which the density p is a filnction of the position . u l ( , j  = 1,2.3) 

and the velocity u ' ( j  = 1,2,3). 

1.7.1 Equation of continuity 

The conservation of mass is given by the equation of contin~~ity, which can bc written 

Where a comma denotes a covariant differentiation with respcct to x '  and / dcnotcs 

time. The equation of continuity for the inconipressible fluid is 

u l ,  = 0 

In this case, the velocity field is therefore, Solenoid. 



1.7.2 Equation of motion 

The I,, be the stress tensor acting in the direction of x '  pcr unit  arca on an clcmcnt of' 

surface normal to x ' .  In terms of stresses rl, . tlic liydrodynariiic equations of motion 

can be written as 

where F, is tlie ith componcnt of the body force gcr uni t  mass and g"'' is ;I componcnt 

of the metric tensor. The stress tcnsor is a function of thc ratc of strain tcnsor c),,, which 

is given by 

The constitutive equation of a fluid gives the relation between t,, and el , .  The sitnplcst 

relation between these two tensors is linear and has been proposcd on cxperimcntal 

basis by Newton as 

2 
r,, = -pSf, + 2pe, - - pSfl 1 , 

3 

where p is the co-efficient of viscosity, p is thc undctermincd hydrostatic prcssurc, 

I(= ell  + e,, + e,,) is the first invariant of the strain ratc tcnsor, o',, is tlie Kroncckcr 

delta. This constitutive equation is true for most of the fluids as water, air, etc. and 

these fluids are known as Newtonian tluids. The cqnation (1.7.70) can not explain thc 

behaviour of many fluids like oil, paint, niud, blood, etc. and hcnce many nonlinear 

constitutive equations have been proposed to explain the behavlour of thcse fluids. 



One of the constitutive equations, which can explain Illany of the bchaviours of these 

fluids and have sound mathematical basis, is that of a second-order fluid proposed by 

Coleman and No11 (1960). 

1.7.3 Equation of energy 

The law of conservation of energy requires that the difference in the ratc of' 

supply of energy to a volume V fixed in space with a surface S and the rate at w11icI1 

energy goes out through S must bc equal to the net rate of increase of cncr-gy in this 

volume. Thus the law of conservation of energy gives the following equation where tlic 

summation convection is i~sed with i,,j = 1,2.3. 

1 
where E,(= - u i u l  + p,, + E), 2 1 ,  arc rcspcctively the total energy (i.c. sun1 of kinutic 

2 

energy, potential energy and internal energy) and the ith conlponcnt of the velocity; r,, 

and n l  are the ijth components of the viscous stress and jth componcnt of' thc outcr 

normal of the surfaces respectively; F, is the it11 component of the cxtcrnal 

conservative force and k is the co-efficient of heat conductivity. The first tcrm on the 

left hand side of the equation (1.7.7 1 ) is the ratc of heat prodi~ccd by various strcsscs in 

contact with outside; the second tcrm rcp~.cscnts the ciiergy loss hy convection; tlic 

third term is the energy loss by thc heat conduction. The loss due to tlic radiation is 

assumed to be negligible. The right hand side is the net rate of change ofcncrgy in t11c 

volume V .  



Transforming the surface integration to volume integration and thc volumc I/ being 

arbitrary, we get- 

\ 

Using the equation of continuity (1.7.66) and sin~plifying, we gct the cquation (1.7.72) 

where the dissipation function 4 can be writtcn as 

DE 
Far the perfect gas, - 

DT DN 
= C, - 

11 T - = C,' - = cntlialpy 
~t DI ' n i  III 

l)T DT I 1  p 
and C,, - = C', - + - (-), wliich rcducc thc ccluation ( 1.7.74) to 

Di Dt Dt p 

For inconipressible fluid, thc abovc ccluatio~~ siniplifics to 

1.7.4 Equation of state 

In solving a hydrodynaniic problem together witli tlic cquation or continutty, 

motion and energy, we should consider a n  equation o f  statc as 

= p( 11.1') ( 1.7.77) 



I t  suggests that p is constant in all tcrnis in tlic cquation of motion cxccpt that onc 111 

the external force; therefore, we liavc- 

p = p,,[1 -a(7'-71,)1, 

where a is the volumetric exparision co-efficient of tile fluid and thc silbhcripl '0' 

denotes the unheated no flow state. 

1.7.5 Theoretical similarity of heat transfer in M H D  

In the M H D  flow whcrc tcnipcratnrc dif'fcrcnccs bring about diflcrcnccs In 

density i t  is necessary to include buoyancy forccs in the cclurltions of motion of a 

viscous fluid and to treat tlieni as iniposcd body forccs. Tlicsc buoyancy fhrccs arc 

caused by changes in volume, wli~cli arc associatcci with tlic tcnipcraturc cliffcrcnccs. 11' 

I 
we denote the co-efficient of expansion by /?, that for pcrfcct gascs /3 = ;-, ;itid 

1- 

denoting the temperatiu-c dif'fcrencc bctwccn a hotter fluid particle and tlic colclcr 

surroundings by B = T - T,  , then wc can scc that tlic rclativc changc in volunic of thc 

hotter particle is pB so that the lift force per unit volume= pgP0, whcrc p is thc 

density of the fluid beforc heating and g IS  tlic vcctor of'gravitation:ll accclcration. Thc 

components of the latter will be dcnotcd by g ,  , g ,. , g ,  . Introducrng thcsc body forces 

into the momentum conservation equation (1.2.24) for unsteady i~~coniprcssiblc flow 

and assuming that the viscosity is constant, we ol~tain: 



1.7.6 Thermometric case (i. e. adiabatic wall) 

If the transfer of heat by radiation is ncglcctcd, thcn i t  can occur only through 

conduction. According to thc Fourier's hcat conduction law. tllc llux y ( . I  /r,r2scc) pcr 

unit area and time is proportional to tlie tcmpcrature gradicnt along tlic surktcc, so that 

where n is the direction of thc normal to thc surfacc of t11c body. k is Ilic tlicrmal 

conductivity of the fluid and the negative sign significs tliat tlie dircction of tlic f l ~ x  is 

opposite to that of the temperature gradient (i. e. thc ncgative sign significs tliat thc hcat 

flux is reckoncd as positivc in tlic dircction of'tlic tcmpcrat~~rc gradient). 

I t  is necessary to mention that thc variety of possil~lc scts ol' hounclai-y 

conditions is much greater for the tenipcrature field than for the vclocity ticld. The 

temperature on the surfacc of tlie body niay be constant or variablc but, niorcovcr. it  

also possible to encounter problems for wliicli tlic hcat flux is prcscribcd. The cquation 

(1.7.79) shows that the tenipcrature gradient at the wall appears as a boundary 

condition. This condition is callcd tlic adiabatic wall, since tlicrc is no heat Ilux ti0111 

the wall to the fluid i.e. the boundary condition at tlic wall is 

= 0 (adiabatic wall). 

In this case, it  visualiscs that fhi. wall of the body is pcrfcctly i~ist~latcd aga~nst 

thc heat flow. The hcat gcncralccl by thc Ilow through t11c friction scrvcs to hc;~t thc 

wall until the condition = 0 is rcaclicd. 



Thus the temperature of the wall which is called the adiabatic wall temperature 

becomes higher than that of the fluid at some distance from it. 

1.8 Non-dimensional parameters in heat transfer 

In order to understand, the phenomcnon of heat transfer, we should discuss the 

non-dimensional parameters, which govern the process. For simplicity we take 

cartesian co-ordinates x ,  ( j  = 1,2,3) and suppose that the fluid properties are 

independent of temperature. The equation of nlomentum and energy in cartcsian tcnsors 

with usual summation conventions are 

DU. 8~ a all. au, 2 a a l l j ,  
p [ ~ ]  = --+ ~g,pe+~.~[-( -"+-)- - - ( - )  1 

~t axj a a ax, 3 ax, ax; 

D e  a2e 
and pc,, [-I = k[-] + u, - + / I @ ,  

~t axi ax, ax ,. 

a du. aui  2 a aui , 
where 4 =[-(L+--)---(--) 1. 

ax, axj ax, 3axi axi 

Let us make the non-dimensional quantities with the help of u,,,d, 8,, and put- 

where 8 = T - To, d is the characteristic dimension, u,, denotes a unique velocity that 

characterizes the flow, and the subscript w denotes the wall conditions. 



Substituting conditions (1.8.82) in (1.8.80) and (1.8.81). we get- 

a ~ :  . a ~ ;  cr , I a aul a ~ ;  2 a a ~ ;  apt 
[dt' +ui71=-e +-[- (++7)---(7) ]-- ax, ~ e *  Re ax; ax, a,~, 3 ax; ax, a,~,' 

ael ,ael 1 ater , apt E au1 aul aul 2 aul 
and [-+ui-I=-- + Eu, + -[+(+- + 2) - -(")I ( I  .8.84) 

at' ax; Re Pr i3x,'ax; ax, Re ax, ax, ax,' 3 axl 

The product PrRe = Pe is called Peclet number. We obtain the Peclet number when 

we divide the convection term by the conduction term of the energy equation. The ratio 

~e - is called Froude number, it compares the inertia and the body force. 
Gr 

1.9 Some worked out problems related to MHD flow 

and heat transfer 

The steady Poissuille flow of nwrcury between two parallel walls in tlie 

presence of an applied cross magnetic field, was considered by Hartmann. Thc MHL) 

flow between two parallel plates under the transverse magnetic field, called 1-lartmann 

flow, has been studied by many authors under various conditions e.g., Shercliff (1960) 

and Cowling (1957). Ospal (1955) has outlined the general principles of tlic analysis of 

two-dimensional and three dimensional ground water flow by electrical analogy and 

described the practical applications of that method with a new conductive material 

consisting of gelatin, glycerin, water and salt. Srivastava and Sharma (1 961) have 

studied the effect of a transverse magnetic field on the fluid flow between two infinite 

disks, one rotating and the other at rest. This problem has been extendcd afterwards by 

Stephenson (1969). He has obtained the asyrnptonic solutions for the condition R<<M 

and the numerical solution for the arbitrary R and M. 



Katagiri[1962] discussed tlic MI-ID Coucttc flow whcn onc ol'tlic platcs niovcs 

inipulsively and the other is at rcst. Mi111~ll.i 110031 I I ~ I S  gcricralizcd Katagiri's 110621 

work to irlcludc the case of accelerated 1-1latc problcni. The clTcct of induced magnetic 

field on the same problem has bccn drsci~ssed hy Gobindarajulu [ 19701. Tlic problcnl ol' 

steady flow of an electrically conducting Il~lid through unifornily poroils intinitc 

parallel plates channel in tlic prcscnce 01' a transvcrsc riiagnctlc licld Iias hccli 

investigated by Rao [1960], Terril and Sllrcstlia 11 963, 19641 ancl Tcrril 1 1003 1. S~rll;lrl 

and Sharnia [I9651 have discusscd tlic MI-lL) Couettc flow bctwccn tion-conclucling, 

walls in the presence of a n  clcctric ficlcl \\lhicli is nor~nal to the applied tr.ans\:cl.sc 

niagnetic field. Agarwal [Ic162] has discusscd tlic gcncralizcd MI-I0 ('oucttc Ilo\\l 

between two parallel plates with or witliout porosity. In thc above investigations the 

platcs arc assumed to bc clcctrically insulated. Tlic effcct of suction or ~njcction and 

magnetic ficld on the M H D  flow in a straight cliarir~cl lias bccn stuclicd by Sh~.csrlia 

[1967], Reddy and Jain [1967]. Cliandrasckliar and Rudraiah [I9701 liavc discusscd the 

problen~ of a two dirnel~sional cond~ccting flo\v bctwccn porous disks I'or R<-:I ~r.Iicr-c 

thcrc is irriiforrii suction 01. injection. 7'liis t\vo-dilncnsional l l o ~ \ ~  by tllc x1111c ;111111o1> 

[I9711 under the assumption that oric o l ' ~ h c  plittc is at rest ant1 the otlicr. is I-oraril~g. 

Chang and Yen [I9621 have studied tlic heat transfcr aspect bctwccn the \\l;~lls. 

Srivastava and Sharnia [I 9641 have tlisc~~ssctl rhc hcat transfcr duc to tlic Ilo\v I - I C ~ \ \ ~ C ~ I I  

two infinite plates, one rotating and other a1 rcst, unclcr a transverse magnetic licltl. 

Chang and Yen's problen~ lias becn estcndcct by So~tndalgckar rl960aJ. 111 another 

papcr, Soundalgekar [1969h] has stitdied (lie 1ic;lt transfer ;ISIICC~ in  MI-ID C'ol~cttc I l o ~  

between conducting walls in the prcscncc of'ati ciectl-ic ficld. 



Gupta[1969] has studied tlic cff'cct of'combined free and forced con\lcclion on 

tlie flo\v of an electrically conduc~i~ig liquid under a transverse niagnclic liclct in :I 

horizontal parallel plates channel suL?jcctccl to a linear axial temperature vari~itiori. A . K .  

Borkakati and A. Bharali [I9791 stilclicd the heat transfer in tlie flow of a conduc~ing 

fluid between two non-conducting porous disks (one is rotating and othcr is stationary) 

in the presence of a transverse unifortii niagnctic ficld and undcr u~iifi,r~ii ~ l c t ~ o n .  I Icrc 

asymptotic solutions are obtaincd for I? << M I  and also tlie rate of heat flux liom the 

disks and the temperature distribution arc invcstigated. Taking Hall cffccts into :~ccoilnt 

tlie steady ~iiagnetohydrody~ia~iiical flo\\l past an infinite horizontal porous pli~tc is 

theoretically investigated by A.  Rh;lrali and A. K. Borkakari [IOXOJ whcn it  strorlg 

magnetic field is imposed in a direction wli~cli is perpendicular to tlic ficc stream ant1 

makcs an angle a to the vertical direction. The response of flow and licat transl'cr to 

change of direction of the imposed magnetic field in steady magnetoIiydl~ody~i:~~iiic 

laminar free convection flow past an infinite vertical porous plate is studied hy A.  

Bharali and A. K. Borkakati [1983J. Flyctromagnetic flow arid licat transf'cr bctwccn 

two horizo~ital parallel plates, where tlie lowcr one is a stretching slicet and tlie uppcr 

one is a porous solid plate is studied by A.  K.  Borkakati and A.  Bliaral~ [ 1083) in the 

presence of a transverse magnctic lielti. A.  K. Borkakati atid D.U. <.'lictri ( I O X O I  

, investigated theoretically tlie cffcct ol'tlic dcllcction of a strong magnctic liclJ o n  11ic 

oscillatory MHD flow past an infinitc horizonla1 plate, keeping thc Hall I>;~r;lnlctcr 

constant. In this problem, they niadc to sti~cly theoretically tlic cffcct of tlic dcllcction 

on an oscillatory magnetohydrody~ianiic Ilow past an infinite horizontal Il;~t pl;~tc, 

considering the plate is insulator- and the iniposcd magnetic field makcs an anglc n to 

the free stream velocity. 



B. S. Dandapat and A. S. Gupta [I9891 discussed the llow ol'an i~ ico l~ i l~~~css i l~ le  

second-order fluid due to stretching of a plane elastic surFdcc in tlie approximat~on ol' 

boundary layer theory. An analysis of MHD hcar transfcr i n  liypcrbolic tinic-\lari;~tion 

flow near a stagnation point of a hcatcd blunt-noscd cylinder whose wall lcmy>cratllrc 

varies as A . Y ~  was presented by V .  M .  Sound;~lgckar, T. V.  Ra~liana Murty a~id  1-1. S. 

Takhar [199O]. The effect of unik~rni suction or irijcctiori o n  thc lice convcction 

boundary layer over a cone was thcoretically investigated by T. Watanadc I ICIOI I .  M .  

G. Gourla and Suaham L. Katocli [I9911 discussed about the rcsult of unstcady \/iscot~s 

inconiprcssible free convcction llow of an clcctrically conducting ll~~icl hcrwccn two 

licated vertical platcs in the prescncc of the fi)rcc Iicld of gravity and applied m;~gnctic 

field acting in tlie horizontal direction and perpendicular to thc flow. 

Magnetohydrodynamic flow of an elcctricnlly conducting power-law Ili~itl over. a 

stretching sheet in the presence of a ~~n i fo r~ i i  tt.i~~iSVerSe magnetic ficld is in\lcsiigatcd 

by H. I .  Andersson, K. H. Bech and B. S. Dandapat [I9921 by using an cxact siniil i~rit~ 

transformation. T. Watanabe and I .  Pop [ 1093 1 tlieo~.etically stcldied the main ~.csults ot' 

the effects of a uniform niagnetic ficld on the fiec convection flow of an clcctrically 

conducting fluid past an isothernial wedge. The effect of an axial magnetic ficld o n  tllc 

flow and heat transfer about a fluid ~~nderlying the axy-syn~mctric spreading surfitcc is 

investigated by C. R. Lin and C. K. Chcn 119031. A .  Kumar Singh and N.  1'. Singli 

[I9951 studied the laniinar flow and hcat transfer of an iliconiprcssihlc, clcctr,ic;~lly 

conducting second order Rivlin-Erickscn liquid in porous medium down a pi~r;~llcl pl;~ic 

channel inclined at an angle 6 to the horizon i n  tlie prcscnce of uniform t~.;~ns\.crsc 

magnetic ficld. The above problem has bccn cstcndcd by S. C'hakl-aborty i r ~ i t l  A .  I(. 

Borkakati [ 1 9981. 



The commencement of the Couette tlow in Oldroyd liquid has bcen stucl~cd by 

S. Biswal and B. K. Pattnaik [I 9961, in thc prcsence of a uniform transvcrsc ~iiagnctic 

field. S. Biswal and S. Mishra [I9981 analysis tlie combined free and fcwced convection 

effects on the M H D  flow of a visco-inelastic Iluid through a clianncl witlio~~t 

considering dissipation energy. The unsteady flow and heat transfcr through a viscoits 

incompressible fluid in tlie prcsence of tsansverse nlagnctic field bctwccn two 

horizontal parallel plates, the lower platc bcing a stretching slicct ancl npl,cr hcii~g 

porous has been investigated by P. R.  Sharnia and N .  Kuniar [1998]. Thc problcni 01' 

unsteady flow of an elastic-viscous conducting incolnpressiblc Iluid ~Iiroi~gl~ POI.OLIS 

niedium between two infinite parallel plates L I I I ~ C ~  i~nifortii transvcrsc magnetic field 

and a uniform body force has been studied by S. K,  Gliosh and S. K. Samad [IC)OXl. 

N.  Datta, S. Biswal and P. K. Salioo 119981 have becn discusscd about tlic 

n~agnctohydrodynan~ics unstcady flow o f a  visco-elastic liquid (Rivlin-Erickscn) ncilt. ; I  

porous wall suddenly set in motion with heat transfcr including licat gcncrating sourccs 

or heat absorbing sinks. Flow of Rivlin-Erickscn inco~iiprcssiblc fluid through iln 

inclincd channel with two parallel llat walls ilndcr thc inllucnce of' niagnctic ITcld hi~s 

been discussed by V. P. Rathod and Id. Shrikantli [19C>8j. Thc unstcady flow and I~citt 

transfer of a visco-elastic fluid through a circular pipc had bcen investigated by 1'. R .  

Sharma and 1-1. Kumar [1998]. T. K. Mahalo and D. R .  Kuiry [I9991 studicd about rhc 

flow behavior of a viscoi~s i~icompressiblc and clcctrically non-conducting Iluicl duc to 

the time-varying acceleration of an infinite porous plate in the presence ol' a unifi,rm 

transverse n~agnetic field. 



The transient free convcction flow of an inco~iipressible visco-elastic fluid past 

an infinite vertical plate under uniform surfacc heat flux conditions has been studicd by 

U. N. Das, R. Deka and V. M .  Soundalgckar [ I  9991. An i~tistcady viscous 

incompressible free convection flow ol' an clcctrically conducting f l ~ ~ i d  bctwccn two 

heated vertical parallel plates lias been workcd out in the prescnce of a ~lniforni 

magnetic field applied transversely to the flow, by S. Cliakraborty and A.  K .  I3ork;1k;1ti 

[2000]. A tlicoretical analysis of' frec convective two-diliicns~onal unstcatly flow 

through porous mediuni of variable pernicability, bounded by an infinite vcrtical porous 

plate with uniform suction and constant heat flux lias been prescntcd by A .  Maliarslii 

and S. S. Tak [2000]. M. Acharya, G.  C. [)ash and L,. P. SingIi[20001 disc~~ssccl tlic 

analysis of steady two-dinicnsional frec corivcction and niass transfcr flow of a viscous 

incompressiblc electrically conducting fluid thro~~gli  a porous rncdium bounticd by a 

vertical intinitc surficc with constant suction vclocity and constant hcat Ilux in  tlic 

prcsence of a ~~ni form magnetic ficld. 

The general problem of inipulsivc motion of an clcctrically conducting sccond 

order fluid under the transverse magnetic ficld ovcr a plate Iias bcen fi~rniulatcd irnd 

solved by R. N.  Ray, A. Sariiad and T. K.  C'h;~udlii~ry [2001]. S. S~.cckirntIi, A .  S. 

Nagaratijan and S. V.  Ramanr.1 [2001] Iiavc discussccl thc ~~nstcady transient l'rcc 

convection flow of an incompressible dissip;~tivc viscous fluid past an infinite vcrtic;~l 

plate in considered on taking into account viscous dissipative hcat, ~ ~ n d c r  tlic ~ I ~ ~ ~ L I C I ~ C C  

of a uniform transverse niagnetic ficld. K. D. Singh and R. Sllar~iia L2002I st~~ciicd the 

effect of period permeability on tlic frce convective flow of a viscoi~s incomprcssiblc 

fluid through a highly porous m c d i ~ ~ ~ i i ,  when the porous mcdiurn is boi~~idcd by a11 

infinite vertical porous plate. 



1.10 Motivation, extent and scope of this thesis 

The motivation of this thesis is to study a fcw aspects of tlic cffccts of hcat 

transfer in the incompressiblc viscous fluid as wcll :is in tlic clcctrically conducting 

incompressible viscous fluid. Sonic problc~~is of magnetoliydrodynamics also Iiavc 

been discussed here. 

The chapter- l is going to bc dcalt wltli thc introduction of the tllcsis. l'lic 

outline of the niagnetohydrodynaniics, its dcvclopmcnt and applications, fiindamcntal 

equations of electrically conducting fluid flow iind cffcct of lieat transl'cr i i i  MI-ID h;~vc 

been discussed in this chapter. During t l~c  past two dccaclcs, a ni~nibcr of significant 

cxpcrinicnts havc bccn carrlcd oil1 rcvcaling nori-Ncwtoriian characteristics ol' llilili~ls 

where a numbcr of new phenonicnon havc bccn obscrvcd in a largc number ol'liquids, 

of great technological and industrial irnpol-tancc. A br~c f  descrlpt~on of tlicsc 11qi11ds 

and electrically conducting fluids is also givct~ in this cliaptcr. Lastly, a brlcf rcvicw of' 

earlier workers and scope of this work havc rilso been cxplaincd in t h ~ s  chaptcr-. 

The laminar free convection flow of an iiicon~pressiblc clcctrically conducting 

second order fluid under the action of uniforni transvcrsc niagnctic ficld ovcr a plate 

has been discussed in the chapter-2. Exact solutions of'thc fli~id velocity 11(,1., I ) ~ I I C I  

temperature profile T ( y ,  I )  can bc obtaincd with tlie hclp of thc perturbation tcchniquc, 

where y is the distance measured bctween the two plates and t is tlic timc. I t  has bccn 

observed that this problcm is uscfiil in niany cnglnecring prohlciiis and tlic irlistcacly 

magnetohydrodynaniics free convection flow of an clcctrically conducting fluid 

between two heated vertical parallcl platcs is of considerablc intcrcst to tlie technical 

field due to its frequent occurrence in industrial and technical applications. 



The unsteady Co~lette flow of a viscous incompressible and clccll.ically 

conducting fluid with the heat transfer between two Iiorizontal parallcl plates in the 

presence of a uniform'transverse magnetic field has been discussed in the chapter-3. 

when in the case-l, the plates are at different temperatures and in the casc-ll tlic L I P ~ C S  

plate is considered to move with tlie constant velocity where tlie lowel plate is 

adiabatic. Our results are useful in geophysical and astrophysical problcms as the 

si~iiultaneous effects of hydromagnctic buoyancy forces illid coriollis threes are 

observed in various types of problerns in these br:inches ofscicnces. 

A theoretical and numerical analysis of ~iiistcady two-clinicnsiori~~l li-cc 

convection flow of a viscous incoi~ipressiblc electrically conducting Iluid tliro~~gli ;I 

porous medium of variable permeability, bountlcct by an infinite vcrtical ~,orous ~ ~ l a t c  

with uniform suction and constant heat tlux under thc action 01' a unifc)l.rn riiagnctic 

field has been investigated in the cliaptcr-4. Thc effects of Prandtl nunibcr, Cirashol'l' 

number, magnetic field paraiiieter and thc pcrmcability paranictcr of porous mcdi~im on 

the velocity and also the effects of Prandtl numher on thc tcrnpcratule potilc bnvc hccll 

discussed and shown graphically. 

In the chapter-5, we have disciisscd thc ~iio(ion of an ~instci~dy MI-IL) flow ol':111 

incompressible electrically conductil~g viscoirs tl~rid bctween two horizontal ~~;irallel 

porous plates on the time-varying motion. The velocity profile and tllc skin-I'riction arc 

obtained due to the effect of thc dcflectioli o f a  strong n~agnetic field on the M tll) flow 

past between two parallcl plates and llic rcs~rlts are obtailicd nulneric;~lly arid 1,1011ccl 

graphically by taking tlie different values 01.' the non-dimensional pararlictcr of 

magnetic field parameter. 



We have discussed in the cliaptcr-6 the M H D  u~istcacly llow o f  a visco-elastic 

(Rivlin-Ericksen) fluid through an inclined clianncl witli two par-allcl flat platcs witli 

heat transfer including heat generating sources or hcat absorbing sinks, when thc plates - 

arc moving with the transicnt vclocity whilc one of tliesc two platcs is adiabatic. I-lcrc 

the fluid velocity and temperature profile are obtained by the I'erturbation tcchniqiic 

and discussed by interpreting the graphs with tlic help of diffcscnt valilcs of so~iic 

appeared non-dimensional parameters. 

In tlic chapter-7, we have studied the il~istcady flow of' an inconiprcssihlc 

electrically conducting second order fluid tliroi~gli the porous medium cluc to infinitc 

horizontal plate in the presclice ol ' i~ni l i~r~n tr:insvcrsc magnetic ficlcl which incluclcs tllc 

lieat generating sources or Iieat absorbing sinks. I-1c1-c the pl:itcs arc ~iiaint:ill~ccl :it 

temperatures while one plate is kept at a constant tcmpcraturc gradicnt. The values of' 

the velocity and temperature distribution arc f(;ilnd out numerically and intcrprctcd with 

thc help of graph. The problems of dctcrmining thc clcctr-ically conducting tluid flow 

and heat transfer through a porous cliiilincl drivcn by a prcssurc gradicnt iirc 

fundamental with obvious applications in physiology and cng~ncer-ing. So, oiir rcscascli 

may be useful. 



CHAPTER 2 

Unsteady MHD free convection flow of a second order fluid 
between two heated vertical plates. 

2.1 Introduction 

A.Bliarali and A. K.  Borkrtkati 110831 cliscussccl ;thour tlic response (,I'IIic Ilo\\' ;rricl I I C ; I I  

tralisfel- to the clialigc of dil-cctic:)n ol' tlic imposed mi~g~ictic licltl in  slc;lcly 

1iiagnctoIiydl-ociy1ii1111ics laminrt~. 1.1.cc co~i \~cclro~i  Ilo\\l ~~i rs t  ~ I I I  ilili~iilc \ J C I . I I C ; I I  ~ ) O I . O ~ I S  ~ ? I ; I I L -  

by taking I - 1 ; r l l  cl'fccts irilo :rccolrnl. 'I'l~c n i ;~gr ic lo l~ydr~o~ly~i ;~~i i ic~s  L I I ~ S I C ; I ( I Y  V I S ( : ~ I I S  

inco~iipressible frce convection Ilo\\l of all clcclr-ic;~lly conducting Iluid bc [ \ \ / c c~~  I \ \ / ( )  I~calcil 

vertical plates in tlic presence of the 1i)rcc liclcl ol'gl-avity and  :~pplied mag~rclic liclcl ;1cli11g 

in tlic liol.izontal dircctio~i and 1?cl.l~cndicul;11. to 11ic flow \\;as cliscusscd by M .  ( i .  (io111.1;r 

and S. L. Katocli [I99I].  N .  Dulta, S. I3is\val ancl P. K .  Salioo[lOVXI sl~~cliccl 11ic 

niagnetoliydrodyiiamic unsteady flow of' a visco-clastic licluitl (Rivlin-I-ll.ickscn) near ; I  

porous wall suddcnly sct in  motion with rhc Iicat tritnsli'~. includin~ licat gcncl.;~ting so~r~.ccs 

01- licat absorbing sinks olid tlicy 1i)untl I I I ~ I I  Ilic ~ c n ~ l ~ c r : ~ t i ~ r e  ol'tlic Iluid ih I;~~.gcly ;~l'li'clcel 

by tllc prcsencc of thc lici~l se)~r~.ccs or sinks. 'The tr;~nsicrit li.cc corr\~cc*lio~~ Ilo\\. 01'  ; I t 1  

ilicon~pr-cssiblc visco-elastic Iluitl past ; I I I  ~ I I ~ ~ I I I I C  \:cl.tic;~l I J I ; I I C  unclcr t l~c  u ~ ~ i l i ) ~ . n ~  st~r.liicc 

licat fli~x co~iditions 1i;ts bccn sli~cliccl I,y 1 1 .  N .  Ilas, 11. Ucka itncl V .  IL1. So~~~iclalp~cI;;~~. 

1.19991. 



Also, they discussed about the \ ~ c l o c i t y  ancl Ic l ig t l i  o l '~,cnctrat io l i  el'l'cct clue 10 Ic;~tl i l ig, c*tlgc 

increasc w i t h  the increas ing o r  t l ic  elastic ~,al.arnctcl' 01' t ime  I. IILII ~ C C I . C ~ I S C S  w1ic.11 (IIC 

PI-ancltl n i ~ m b c r  increases. S. CIi;~kr.ahol.ty ;111d 14. K .  I301,kak;lti 12000 1 i~ i \ /cst ig;~t i :c l  ~ l ic .  1.111 I!' 

de\/c lopcd f rcc  convect ion lanii11;lr Ilo\\: o l '  ~III incoml,~.cssihIc v i s c o i ~ s  c lcc l l . ic ;~ l  l y 

conduct ing fluid bc twecn  t w o  l icatud \ /cr l ical  para l lc l  plates i n  ~ ~ ~ ~ c s c n c c  ol '  ;I u r ~ i l i ) r ~ i i  

magt ict ic f ield appl ied tl.nnsvcl.scly to  t l ic I l o w .  1-lic gcner-al 131-oblem 01' u l~s lc ;~c ly  ~>ara l l c l  

t lo\\ l  o f  an electrically condi lc t i r ig  sccol id ol.tlcl. I l u i d  i lndcl-  rhc tl.allsvc~.sc ni :~gncl ic l i c l t l  

due to the in ipu ls i ve  start o l 'a  p;11.;1llcl to  i l s c l l ' l i : ~ ~  hcen I'C)I.II~LII;I~C(I I)y I<. N. I<;ly. A. S;IIII;I~~ 

and T. K. C l iaudhury  I20011 alicl so lvc t l  b y  l l i c  ~ i i c l l i o c l  o f  Lapl; lcc T l . : ~ ~ i ~ l i ) ~ . ~ i i  l i)~. ( l ie  I\\ lo 

c:~scs 01' n io t ion  corl.csl,oritling l o  I l ic  so-c i~ l lcc l  Stoke's l i r s l  i111tI sccol i t l  ~,~.ol , lc~i~s. I ' l r c  

laminar  convection flo\\/ of' 21 \ / iscous i ~ i c o ~ ~ i l i ~ . c s s i b l  CICC~I.~C~IIIY c o l i d ~ ~ c l i ~ i g  I l u i t l  OII ;I 

cont inuous m o v i n g  f lat  p la tc  ill l l rc pl.cscncc 0 1 '  ~ ~ ~ i i l i ) r ~ i i  Il.alisvcl.sc ni ; lg l lc l lc l ic l t l ,  \\,;IS 

studiccl b y  S. Cl iakrabol- ty alit l  A. K .  I3orli;1liilti )20021. I - lcrc l l i c  Il;rl ~,l:rtc \\;liicli is 

cont ini~ousSy m o v i n g  ill i ts o\\lri p l ; ~ ~ i c  \\lit11 a col istant sl7cccl is co~lsiclcl-ctl l o  l,c 

isothermal ly  l icated. 

I n  this cl iaptcr, \iic analy/.c ; rboi~t IIIC LIIIS~C;I~Y l'1.c~ c ~ n \ l c c l i o n  I lo\ \ /  01' ;I SCCOII(I 

order \liscous, inconipl-cssiblc c lcc t l . ic ;~ l ly  c o r l d ~ ~ c t i n g  I luicl bc twccn  I\\/o l i c ; ~ ~ c d  \:cl.lic;ll 

platcs i n  t l ic  prcscnce o f  ~ ~ n i f o r n i  trarisvcr.sc !nagnotic f ic ld .  'l'lic i l ~ i i l o r n ~  ni;rgnctic l i c l t l  

appl ied externally i n  t l ic  d i rect ion norma l  to  t l ic I luicl ~ i i o t i o n .  I ' c r I i ~ rh ;~ t i o~ i  ICCIIIII~IIC is 

uscd to sol\ lc ~ i i ~ n i c l - i c a l l y  thc cclil;rtiolis 0 1 '  t l ic l v o l ~ l c r n  ~IIICI t l ic  ~ i u ~ ~ i c l . i c i ~ l  ~ . cs r~ l t s  o l - ) l ; ~ ~ ~ l c t l  

arc s l i o \ \ ~ ~ i  and  d isc~ lsscd  gr.~~l, l i ically 1i)l- t l lc c.l~l'li.~.c~il \/;~lucs o l '  n~; lgl ict ic.  l iclcl II;II.;IIIICICI.. 

clastic parameter, G ras l i o f  nuliibcl., I'l.;rntlll I I I I I ~ ~ ~ C I . .  



Tlic ~lnstcady rnagnc to l l yd~-o i I~~~ i ;~ l~ i~~ :s  li-cc convccl~on IIo\\/ 0 1 '  ; I I ~  clcclt-lc;~lly 

conducting fluid between two Ilcntccl vcl.lic;~l parallcl plates IS  ol' considcr;llllc intcr.csl lo 

the tcclinical field due to its ~'I.CCILICIII O C ' C I I I . I . ~ I I ~ C  111 I I ~ C I L I S L I ~ ~ ; I I  ; I I I ~  ~ ~ c l l ~ i i c ; ~ I  ;~l~l)lic;llioli\ 

2.2 Mathematical formnlation of the proble~n 

Wc consider tlic unstcildy li-cc. convcc~ion flow ol'all inconlpl-csslhlc vihcot~s-cl;\sllc 

sccond ordcr clcctrically contluclinl; I111ld I>ctwccn t\vo hci~rcd vcrllc;~l ~~~l ; l l l c l  ~?l;llcs 

separated by a clistance 211 ; I ~ L I I . ~ .  \Ye no\ \ /  cc~l~sldcr the ilnstcady Ilo\v ~ ~ ; I I . I I I I ~  li.o~ll I I I C  I .C\I  

of an clcctr~cally conducting sccond ol.clcl. Iluld over a plate In pt.csc~lcc 01'  a I I I I I I ~ ~ I I ~  

transvcrsc niagnctic field. Lct the .v' -;Isis Ilc taken along tlic plalc \\/it11 tlic cllrcction ol'lllc 

fluid no\\/ and 11' -axis normal lo the pl;~tc. I,cl 11'  ;~nd  1:' be ~ l i c  \~cloci~ich 01' r l l ~  l1111tl 

along thc .vl-axis and .I.' -asis rcsl~cc~~vcly.  'I'llcli conhcclilcntly 1 1 '  IS  a 1i111~1ioli 01'  1 . '  ;111(1 

I '  only. but 11' is indcpcndcnt ol' ,r;' . l'hcn tllc component ol' tllc Ilultl vc loc~~y  ; I I . ~  g i \ ~ c l ~  hy 

( I ! ' (  I , ' ,  1 ' ) .  0, 0 )  . 

Lcl ~ r , ,  bc a constant iliil~i~lsi\/c \/cIocily lo I I I C  I J I ; I I C  in  its own plallc i ~ l l t l  Icl llic i~~l~Ii)l.lll 

niagnctic ficld B,, bc applied i l l  tlic clil.c~*tio~i nornial to the plate. In o~~ lc r .  10 clcl.~\/c Ilic 

govcsntng equations of this pro11lc111 t l~c  li)llo\\,ing ~ I S ~ L I I I ~ ~ J ~ ~ U I ~ ~  i11.c ti1kc11. 

( I )  The fluid is finitcly conducting ,::~tlcl no~~-n~;lg~lct ic .  

(ii) The viscous dissipation and tI1c .loulc Ilc;lr ; ~ r c  ncglcctcd. 

( i i i )  Hall clfcct and polariziition cl'kcl ; ~ r c  I I C ~ , I C C I C C I .  

(iv) Initially i.c. at timc / '  = 0 tllc 12l;11ch ; ~ l l c l  llic Iluid arc at const;lnl ~clnl~cr.i~~il~.c ( I . L ,  

T' = T : )  and tlicre is no flow witlil~i tllc C I I ~ I I ~ I I C I .  



,,. :111cI ll1c At timc 1 ' > 0 ,  tlic tempcl-atul.c or tlic plate . 1 " =  -tlr cl~r.~ngcs to 7 " =  7" 

temperatur-c of' the platc ,r.' = -11 charigcs ;~ccol-(ling to 7" = 7:: -t ( I "  ,, -- I")I;~~'"" , ,  . \vIlcrc (o is 

the frequency of thc fluctuations ~ \ l i l l ~  timc 1 ' .  I,',' is llic conslanl ICI I I I>CI . ; I~LI I .C~  01' tlic 1 1 ~ 1 1 ~ l  

and T:. is tlic temper-aturc ot'tlic Ili~id at  the \ v i ~ l l .  

(v) The value of magnetic I<cynol(l's nrrn~l)cl is assirliicd to hc 01' lo\u col~cluc~i\~ily. sr~c.l~ 

that  the i~iduccd ~iiag~ietic field is ncgliglhlc. 

Then tlic Lorentz's force is -o~,fl, ' .  \vhcr.t: cr is the clcctt.ically conductiv~ty ol'tlic Iluitl. 

The second order approximation 01' tllc p,cllct.;~l constiti~ti\lc cclu;~tions given I,y I<i\lli~~- 

Ericksen can bc written as follocvs: 

r = - 1'1 i- u4, -I-  /i./l: -I-  yl , (2.2.1 ) 

whcrc r is the slrcss tensor, I is tlic 11ni1 tensor. 1' is a n  ilitct.mcdi;~tc pr.cssur-1: ar~d 

a ,  p, Y arc co-cfficict~ts of viscosity, ct.oss-viscosity ancl viscous-elasticity 1.cs1wccivcly. 

A,  and A ,  arc given by lhc synlmcl~.ic ~i~;ll~.icc's clclinccl by 

and Az = + 21/ ,,,, ;l/",. 

whcrc ~ , ' s  arc components ol'acc~clcr;~liori givcli l ~ y  



The ccluation of contini~ily is 

v,., = 0 

where Vf are coniponents of velocity. 

Hcncc thc Ilo\v field of tlic tluid 11io11on is go\lc~.llcd by 11ic li>llo\vilig cclu;~~ion~; 

E q i ~ a t i o l ~  of l l ~ c  c o i l l i ~ ~ ~ ~ i l y  

In thc abscnce of prcssurc gradicllr, 11ic I ~ o \ \ ~  1iclc.l is govc~.ncd by tllc 11lil.cf orctcl. cfil'ic~.c~iti;~l 

equation which takes in thc follo\viilg liwnl: 

Equation of' I I I ~ I ~ I ~ I I ~ I I I I I  

Equation of' c . l ~ ~ t - g y  

Where p is thc dcnsily 01'  I I I ~ .  I l~~i t l ,  I),, is unif'orln n1;lgnctic licltl ;ily>lic-.tl 

transversely to the platc, v is the. co-cl'lic:icill 01' Ihc kinematic viscosi~y. Ii i h  t l l c .  I I ~ ~ I - I I I ; I I  

conducti~lity of the fluid. I ] , ,  is 111c (lo-.cl'licicr~~ 01' viscosity. (.,, is ~ h c  sl>ccific h c ; ~ ~  ;I I  

constant prcssurc of thc fluid, /I is lllc co-cl'licicnt of' thc~.mal cspansioii, ,y is ~ l i c  

acceleration due to gravity, I(,, is Ihc co-cf'licicllt ol'cli~sticity. 7" is tllc I C I ~ I I > ~ I . ; I I L I I . C  ol'tllc 

fluid. 



The initial and bour1dal.y corlditions ; I I T  g i \ ; c ~ ~  I,y 

transform the equations (2.2.5)-(2.2.7) illto lllc 11011-dimcnsio~lal Ibrm: 

U\I" ugy(q:. - 'I;:, 7 "  - 1" /l,#(',l 
),' = - GI.  = -... 7 '  :: ..- -- - " , =. 

7 '  7 

11 i: ";, '1;; - '1;; li 

Consequently, thc equ~~tion of corrlirl~rity. 111olion ;111cl cncl-gy illto 1 1 . 1 ~  ~~oll-climcnsiol~;~I 

form arc 

d T  I a ? ~  
and --- = -- 

at Pr (?y2 

GI. is the Grashoff number and PI. is t l~c  I'1.;11i(iiI I ~ L I I I ~ ~ C I -  



Thc initial and boundary conditions of the dimcnslonlcss form arc grvcn by 

t 2 O : I r  = O , T = O  for - I  5 .\: 5 -1-1 

t > 0 :  u  = I ,  T =ceU'" at )> = - 1 

: u = O , T = O  at = + I  (2.2.12) 

2.3 Solution of the equations 

In order to solve equations (2.2.10) and (2.2.1 I ) ,  wc apply sriiall pararnctcr rcgul;lr 

perturbation technique. Consequently. wc assunie that to solve the cquat~on\ (2.2.10) and 

(2.2.1 I ) ,  thc solutions of the cquattons o f  tlic 1110t1011 and cncrgy a h  

L{ = u,  ( y )  + u2 ( ~ : ) & e ~ ' ' *  (2.3.13) 

and T  = q ( y )  + T2 (y)cel"" (2.3.14) 

wl~crc (0 is t l~c  freq~~ency of tlic flucti~ations w1t11 time / and c(< I )  constant clur~ntity. 

Thc corresponding boundary conditions (2.2.12) arc now modificd as 

t>O:zr,  =1,u2 =0,T,  =O,T2=1 at ! )= - I  

: U ,  =o ,  u2  = o ,  7; =O, T2 = o  at y = + l  (2.3.15) 

Now, using the condition (2.3.13) and (2.3.14) in thc equations (2.2.10) and (2.2.1 I ), and 

also separating the time-dependent and timc-independent tcrnis. wc get- 



Solving equations (2.3.16)-(2.3. 19) with tllc hell' of'tlic condi(~on (2.3. 15). wc gcl- 

sinh(j; - I)&% 
L ~ , ( J ~ )  = - 

sinh 2& 

Gt. sinh( 1 % -  1 ) J ~ r i c o  
and u,(jl) = 

{ ~ c  p r o 2  - HU - i o ( l  + ~'r)]' sildl z ~ ~ r i o  

Substituting conditions (2.3.20)-(2.3.23) in  thc relations (2.3.13) i11ic1 (2.3.1.1). ~ v c  gcr- 

sinh(j1- I)& + c',l"X 
GI- 

and u = - 
sin11( 1. - I )  JG- 

sinh 2% {RC p r o 2  - I-/[, - ilo(l+ PT)}' sin11 2 JfTG 

Ha + ico 
sinh(jr - I )  

- I + ioRc , 

Now, taking the real parts of the vclocity and tempcraturc profile from 11ic cquation.s 

(2.3.24) and (2.3.25), wc get- 

sin11(,1: - 1 
T = -C cos tot 

sinh 2 



I - I J G,G, + c;,c;, 
and LI = Grc [ (M ,  cos u/ - M SIII wt ) I -- - - I 

I 
sin11 2 J i G  G: - G: 

G,G, - G,G, s ~ n h ( ~  - 1 ) J ~ r r  + ( M ,  sin wt + M ,  coswt) ( 
c;; - G.: ) I -  s i n 1 1 ~ ~  

Rc PI-@' - /-lo 
where M, = --- 

(RcPrw2 - Ha), -CO'(I  -I- PI.)? ' 

w(1- Ha Rc) 
sin 8 = 

W * K C . ? - I  ' 

8 0 
and C, = cos(2cos-)sinh(2sin--). 

2 2 

The skin-friction at the plates is given by 



- -  - JHul + G,.c(M, + iM, I[ 
JPro 

siuh 2 G  sinh 2 6  

8 0 0 Q 
G, cos- - G ,  sln -) + i (G,  sill - -I- G ,  cos --) 

- 2 2 2 ' 1 ,  f o r y = + l  
G: - G; 

= -a tanh 2& + Grc(M, + i ~ , ) j J 6  tan11 2 6  - ( M ,  + iM,,)] 

+Rc[/-/a+G~.~(M,M,+M,n-.l,)+i(n//,/tf,-M,M,)j], f o r , \ > = - 1  

Now, taking the real parts of the a l~ovc skill-liiction, wc get- 

0 
M,K nr,(r;,cos -  sin') r = -  a + Grc[ 2 2 

' sin11 2 G  sinh 2 G - - - - - -  (7: - G: 

8 0 
M, (G, sin 2 + G ,  cos --) 

+ IIc(M3M7 + M 4 M 8 ) ] ,  for y = -I (2.3.20) 

where M 3  = M I  cosut - M 2  sin mt, 

M, = M I  sin wt + M ,  cosad, 

e (9 G, = cos(2 sin -) sinIi(2 cob-), 
2 2 

8 8 
G7 = cos(2 sin -) cosh(2 cos -), 

2 2 



U { R C ( R C P I . ~ *  - N U )  + I - PI.: 
and M, = 

1 - w 2 ~ c 2  

Heat transfer 

The heat flux i.e. rate of hcat transfcr co-cl'licicnts i n  tcrms of Nussclt numl>cr ( N u )  r ~ t  tlic 

plates is given by 

- - - E J P ~  co cos cot 

sinh 2& ' 

= -C& cos cot tan11 2 6 ,  if ? :=- I  

2.4 Results and discussion 

The figure-] has obtained by plotling tlic velocity distribution against thc variable y 

with the various values of Prandtl numbcr PI- =- 0.7 1, 1 .O, 2.0, when Ma = 5 ,  Gr = 0. I ,  Hc - 
0.02, cot = 45', E = 0.5. TIic velocity distrib~~tions takc tlic greatcr valircs whcn thc 

variable y has the negative values and Icss valucs having thc posit~vc valucs oi'y \/ar.~i~hlc. 

This figure shows that the fluid velocily dccr-cascs with thc increase of the Prandtl nunibcr. 



The figure-11 has been drawn the velocity distribution with tlie various values of '  

magnetic field parameter Ha = 5 .O, 3.5, 0.5, when Pr = 0.7 I ,  Gr = 0.  I ,  Rc = 0.02, o t = 45". 

E = 0.5. The velocity distributions Ilave the niaxin~uni values towards the platc of y<O ant1 

minimunl values towards the plate of  y>O. Also we sce that tlie velocity distribution 

decreases due to the increase of the magnetic field parameter Ha. 

The figure-111 has been plotted the velocity profile against thc variable y in thc 

interval [-I ,  I] with the different valucs 01' thc clastic parameter Rc = 0.02. 0.03, 0.00, 

when Ha = 5, Gr = 0. I ,  Pr = 0.71, w t = 45", s = 0.5. The velocity distribution rakcs lhc 

less values in the positive sides of the interval [-I ,  I] and greater values in  the ncgativc 

sides in the interval [ - I ,  I]. In this figure also, the fluid velocity incrcascs ~ I . ; I C ~ L I ; I I I ~  \ \ l i t11  

the increase in elastic parameter. 

The figure-IV has been found by drawirig the velocity distribution with the dill'crcnt 

values of Grashoff number Gr = 0.1, 0.2,0.3, when Ha = 5, Pr = 0.7 1 ,  Rc = 0.02, co t = 45", 

E = 0.5. The fluid velocity increases gradually due to the increase in Grashoff n ~ ~ n ~ b e r ,  and  

also its values take the greater values in the ncgative side of the interval [-I, 11 and lcss 

values in the positive side of the interval [-I, I]. 

The figure-V has been obtained by drawing the velocity prot7lc with tllc various 

values in phase angles of LO t = 45", GO", 75', when Ha = 5, Pr = 0.7 1, Rc = 0.02, Gr = 0.1, 

E = 0.5. In this figure, we have seen that the velocity profile increases very slowly with tllc 

increase in phase angle w t. The velocity profilc takes the greater values when tlle vari:lhlc 

y has the negative values and less valucs whcn thc variablc y has the positive values. 



In  the figure-VI., the tenlpcralurc distribution has been drawn against the variable y 

with the different values of the Prandtl numhcr I'r = 0.7 1, 1 .O, 2.0, when cot = 4S0, c = 0.5 .  

In this figure, we have observed that tlic tenlpcrature distribution for the corresl~onding 

negative and positive valucs of tlic variablc y at thc interval 1- 1. 1 J decrcascs vc1.y slowly 

with the increase of the Prandtl ntttnber. 

The figure-VII has been obtained by drawing the temperature distribution againsl 

the variable y with the various values of phase angles o t = 45", 60", 75". when Pr = 0.7 1, 

E = 0.5. In this figure, here we notice that the temperature distribution takcs the grcatcr 

values for the y<O than the y>O in the interval [ - I ,  I ] .  Also, it decreases due to tlic incrcasc 

in phase angle w t .  

Fig.!: Velocity distribirtion versus y when c = 0.5 



F1g.11: Veloclty d~strlbutlon vcrsus y when L -= 0.5 

Fig.111: Veloc~ty d~strlbutlou vcrsus y when c = 0.5 



Fig.IV: Velocity clistrihution vcrsus y whcii c = 0.5 

Fig.V: Velocity distribulion versus y when c = 0.5 



Flg.VI: Tcmpc~ature cI i s l~-~h~~t~on vcrsus y wlie~i c = 0.5 

Fig.VI1: Temperature distr~butlon vcrsus y when L = 0.5 



Unsteady Couette flow with heat transfer between two 
horizontal plates in the presence of a uniform transverse 
magnetic field. 

3.1 Introduction 

A.K.  Borkakati and A. Bharali [I0791 has discussed thc tlow and hcat translkr hctwccn 

two horizontal parallel plates, wlicrc tlic lowcr platc is a strctch~ng shcct and thc L I ~ ~ C I .  

one is a porous solid platc in thc plcscncc of' a unifortii transverse niagnctic ficltl. Tllc 

heat transfcr in an axi-symmetric tlow bctwccn two parallel porous disks i111dcr tlic 

effect of a transverse magnetic field is stildicd by A. Bharali and A.  K .  13ork;lkati 

[1983]. Also, they discussed the hydrodynamic tlow and hcat transfcr bctwccn two 

horizontal parallel plates, where thc lowcr. onc is a st~.ctcliing shcct and thc L I ~ I J C ~  011c is 

a porous solid plate in the prcsencc of a trallsvcrse n~agnetic ficld. A. K. Borkakat~ i111d 

1. Pop [I9791 studied the problem with the effects of Hall currents on the i~nstcady 

hydromagnetic flow past an infinite flat platc \vhcn a unifornl niagnctic lield ilcts ill ;I 

plane which makes an angle 8 with thc plane transverse along to the platc. Itcccnc 

studies on the hydromagnetic flows with I-[all currcnts are mainly focusscd upon tlioac 

where the magnetic ficld is iniposcd normal to the platc. Taking Hall cff'ccts into 

account the steady niagnctohydrodyna~iiical tlow paat an intin~te lio1.i/o11~11 J)OI-OLIS 

plate is tlieoretically investigated by A .  1311a1.al1 and A .  K .  Borkakati [19801. 



when a strong magnetic field is imposccl in a direction which is perpcnclic~llal- to tllc 

free stream and makes an angle n to tllc vertical direction. They discussed tlic efkct 01' 

Hall currents on the flow as well ;IS the heat transfer is studied for vario~ls valllcs of  a .  

Also, in 1982 they discussed about tlle response of flow and heat transfcr to change 01' 

direction of the imposed ~iiagnctic field in steady ~iiag~ietoliydrodyniic laminar li.cc 

convection flow past an infinite VCI-tical porous platc by taking I-la11 ef'fi.cts it~to 

account. The effect of the defleclion of'a strollg magnetic field on tlie oscillatory MI ID 

flow past an infinite horizontal plate is st~ltlicd theoretically by A. K.  Borliakati ;~nd D. 

t B. Chetri [I9891 keeping tlie Hall paranictcr constant. 111 this problcm, an at(c111pt has 

been made to study tlieoretically the cffcct of tlic deflection 011 an oscillatory 

niagnetohydrodynamic flow past an infinite horizontal flat plate. Thc plate is 

considercd to an insulator and the imposed magnetic field niakes an anglc u to the fixc 

stream velocity. Hall effect is taken into consideration as the applied maglictic licltl is 

very strong. Shih-I-Pai [I9611 stitdied an ~lnsteady niotion of an infinite flat i~lsulatcd 

plate sets impulsively into the unilbrni motion with velocity in its ohln plat~c in llic 

presence of a transverse uniform magnetic licld. 

In this chapter, the unsteady two-clinierisional flow of a visco~~s inconiprcssihIc 

and elcctrically conducting f lu id  betwcc1.1 two parallel plates in thc prcsencc ol' a 

uniform transverse magnetic ficld has been analyzed, when in casc-l the plates arc at 

different temperatures and in case-Il the upper plate is considered to niovc with 

constant velocity wherc as tlie lower platc is adiabatic. Fluid velocity and tcntpcsatirrc 

distribution are obtained numerically with the help of perturbation lccliniqt~c ;111rl 

interpreted graphically with the various values in anglee. 



The probleni shows the influence of iniposcd ~iiagnetic field and the induccd magnetic 

field. This kind of situation often arises in different practical M H D  problc~iis in thc 

laboratory. This problem is very importance in many applications such as extrusion ol' 

plastics in the manufacture of Rayon and Nylon, purification of crude oil, pulp, paper- 

industry, textile industry, i n  diffcrcnt geophysical and astrophysical situation. 

3.2 Mathematical formulation of the problem 

The unsteady laminar flow of an incompressible viscous clcctrically conclucting 

fluid between two horizontal p;u.;~llcl no~i-conducting platcs scparatcd at a disti~ncc 211 

apart is considered under the action of uniform transvcrse magnetic ficld. Thc Iluid 

flow is assumed to bc along the S t  -axis in the horizontal direction tlirough thc cc~ltr;~l 

line of tlic channel and Y1-axis is norni;~l to it .  The platcs of tlic clianncl arc ill .v l  = klr 

and that the relative velocity bctwecn Ilic two platcs is 211,, and also, thcre is no 

pressure gradient in the flow ficld. Thc ~~niforni niagnetic field /I,, makes an angle0 

with XI-axis induced a magnctic field n(y) or tlie imposed niagnctic liclcl 111i1hcs ill1 

angle 8 to the free stream velocity. At tlie time t' > 0, tlic plate at ,\)' = -11 is 

maintained at temperature T,, , while tlie other plate y' = + / I  is kept at tcmperai~~rc 

T, (T, > T,)  arid the plates are clcctrically lion-conducting 

The components of the velocities arid lllc magnetic field arc givcn as fi)llows: 

' and p =constant, wherc R = cosO is imposed and t is tlic time. 



In order to derive the governing equations ol'thc problcm, we arc lo assunic lhc 

following conditions: 

(i) The fluid is finitely conducting and non-n~i~gnctic. 

(ii) The viscous dissipation and tlic Joule licat arc neglected 

(iii) The Hall effect and polarization cf'fcct arc negligible. 

(iv) The buoyancy force is considered in the cclilation of motion of the fluid. 

Under the above conditions tlie govcming cq~~at ions are as follows: 

Dii ' 
p 7 = - ~ p + l r ~ 2 i i t + j x U r - i  

Dl 

Here the third term in the right hand side ol'eqi~ation (3.2.1) is the magnetic body 1i)l-cc 

and 5 is the current density due to the magnetic field and 2 is tlic force due to tlic 

- 
buoyancy, X = @ ( T I -  T I ) .  Where p  is tlic dc~isity of the fluid, n is tlic clcctric;~lly 

l' . conductivity, k is tlie thcrnial conductivity, u = - IS tlic kinematics viscosity, / I  is tlic 
P  

coefficient of viscosity, c,, is the specific licat at constant pressure and p is tlic co- 

efficient of thermal expansion. 

Using velocity and magnetic field ctistrihutions as statcd abovc, the eclu;~tio~is 

(3.2.1) and (3.2.2) are as followed: 

a?' - k a2T t  
and - - -- 

att pc,, * I 2  



I,cl us consider the 1io11-dinic~lsio~i:~l \/;~r-i:~hlcs a~ld  p;~r-;tmctcl-s ;IS 

Usi11g thc conditions (3.2.0) in tllc ccltri~liorls (3.2.3) ancl (3.2.4). \vc get- 

1111 
wl1er.e f f ~ r  is the Magnetic ficlcl 17al.arnclcr. Rc = -2 is tlic I<cynolcls nt~~iihcr., ( ; I .  is 

U 

/i , 

the Graslioff nulilbcr, n = IS  tllc Ihcl-nial ciif'li~si\iity, 1'1- is tlic l ' ~ . ; \ n c I ~ l  n1111ihc1. 
P-,# 

and PC = Pr Re is tlic Pcclct numl?c~.. 



l'or thc relation (3.2.6). the initial ;111il ~ o ~ I I I ( . ~ ; I I . ~  conclit 1011s (3.2.5) hcconlc 

I = 0 : 11 = 0, T = 0, li)~. -- 1 .< . I -  5 -I- I 

/ > 0 : 1 1 = 1 ,  T = l  ( 1 1  1. = - I -  1 

: 1 1  = - I .  T = O  ( I /  , I .  =I - I 

fl lolls 3.3 Solution of the equ 1' 

I n  order to solve equations (3.2.7) and (3.2.X), wc consiilcr 

1 1  = /'(.l:)'~-'fl ~111~i 7' = K(. \ ! ) ( !  111 . 

where n is the decay constant. 

Tl~ercfore the corresponding bouncl;~ry cnndiiior~s i1l.c given by 

Solving the equations (3.3.1 1 ) and (3.3. I?) witti thc help of' houni1ar.y contlitiorls 

(3.3.13). and substituting in t l~c  relations (3.3.10). \vc gct- 

sin(1 + .!:)(I,  
and T = 

sin 2n,  



-- - 
whcre o, = & and o? = 4-1 - A' ) - 1 1 ;  . 

0 

Casc (ii): 1\:11c)11 thc lo\\iP~. /)l(llc i . ~  rltlitrhtrtic'. tllcl~ tllc in~tial i~nc l  boi~ndal-y col~tiitiol~h 

arc 

I' = 0 : rr' = 0, T' = 0, [;)I. - / I  5 , I ] '  5 + / l  

For thc relation (3.3.1 0), the corrcspolitling bo11nd;lry co~~ditions arc: given by 

I > 0 :  / = P I " ,  g = 0"' (11 1 ,  = -1-1 

Solvi~ig the equations (3.3.1 I )  and (3 .1 .12)  \vll l l  1l1e hell> ol '(3.3. 18). ilnd suhsl~~i~ting il l  

thc l-clations (3.3.10). \+lc gel- 

C;I.(~ - cos 20, ) 
. Y / l ~ 1 2 ~ l ~  

2 RC(LI: + a:)cos 2nl .slra, . s / I ~ I ,  



COS(I + ) : ) ( I ,  
and T = 

cos 2u, 

3.4 Results and discussiorl 

for different values of A ,  wlierc A = cosO \\/liicli \/at-ics as 0 = 45", 00". 75". ' 1 ' 1 1 ~  

figure-l slio\vs that the naturc of tlic Ilu~d \icloci~y with tlic \/arlnus valilcs ol'I<cy~iolils' 

tiuti~bcr- Rc. 1-lie valucs of' the vcloci~y c l~s~~. i l~r r r~o~i  clcc~.c:~sc \villi  Ihc I I I ~ I . ~ : I ~ C  I ~ ) I .  ~ l ic  

valucs of Rc. The veloc~ty distl.il~~~lion incl.c.i~scs fi)r tlic l,os~l~\lc \~ ; t~ . i ;~ l~ l c  y ;11i(I ;11ho 

dccl.cascs for tlic ncgativc values of lllc v;ll~i;~l~lc y. clcpcniling ul,oli Ilic \~alucs 01' Ixc. 

Tlic lig~rre-11 is obtaincd by plotling ~ l i c  vclocity d ~ s t ~ . i l ~ ~ ~ t i o n  agi~insl tlic 

variable I: for diffcrcnt valucs of Prilndll numhcr PI.. wliilc 1'1. - 0.71, 1 .O and 2 .0 .  Tlic 

vclvcity distribution bctwcun tlic plates dccl.c:tscs graci~~ally \villi the inci.ci~sc of' 1'1 . .  

But the values of vclocity increasc tow;t~.tls thc pl;ttc .v > O and  dccrcascs to\vards tlic 

platc .v < 0 .  Also thc \~alucs of tlic vclocity tlt~c lo 111c incrcasc of' 1'1- is very closed Ilia[ 

is cvhy the plotted graphs arc touching arnolig tlic tht.cc cu~.vcs \vh~cli arc tll;~\\~n I,!/ 

taking tlic \~nlues of 1'r = 0 .7  1 ,  1 .O ancl 2.0. 

Thc figure-Ill is found by plotting thc vcloc~ty dis l~. ib~~tio~l  \\lit11 the d~l'li.l.c~ir 

values of magnetic ficld parameter 1-13 vcssus ~ h c  variablc y. The vcloc~ty p~.olilc 

dccrcascs duc to the incrcasc of Ha. Its values arc ~n:~xirnum tow:ll.ds tlic ~x)s~ti\!c S I ~ C  

of plate and minimum towards Oic ncgativc sick ol'tlic platc. 



In thc figure-IV. tlic tlittd vclocity is dt.:twn ; ~ g a ~ n s l  llic v;lt.i;~hlc y \ \~t l l i  tlic 

various values of' tlic Gt.aslioff n~~tiibcr Cir. 'flic velocity 171.olilc Inctuscs \ v i l l i  t l~c 

iticrcasc of Gr. 

Tlic figitrc-V is obtaincd hy 11Iol(1t\g tllc vclocity pl.oIilc ;~gaitisl tlic v;lt.l;~hlc y 

with tlic V ; I ~ ~ O L I S  V ~ I ~ L I ~ S  o f  0 .  Tlic vclocity 171.olilc d~crc;ises cluc to rllc inct.c;~sc ol'lllc 

atiglc R .  In this figure also, tlic valitcs 01' llic vclocilp arc Iiiaslnii11ii lo\v;~~'(ls llic 

pos~tivc values of tlic variahlc y ;rlicl mi~iit~ittni towl;~t.cls thc t ~ c ~ a t t v c  vali~cs 01'  ~l ic  

variable y. 

Tlic figut-c-VI is foit~id by l,lott~ttg the tc~i~l,c~;ilut.c cltslt'il>itl ion itg;ltnxt llic 

variablc y witli thc dil7~1-crit valucs 01' tlic I'cclcl ~i i~~i ibct .  I'c = 1 .07. 1.5. 3.0. -I'Iic 

tcmpcraturc distri lsi~ti~t~ incrcascs very slowly with tlic inct'c;isc In I'cclcl tli~rnhcr. 

I n  the c;lsc-ll, n~tmct.ical sol~~lions ol' 1111. cqi~alions (3.3. 10) i ~ n i l  (3.3.70) ; I I Y  

obta~ncd fbr diffcrcnt values of 1, \vhcrc A = cos0 wli~cli \larich as 0 = 45". 00". 75". 

Tlic figure-VII shows that the na1ut.c ol' tlic flu~cl vclocity \vttIi the varioi~s vi~lucs ol' 

Reynold's number and thc valilcs of the vclocity distrihi~tion dcct-casc will1 the inct.c;txc 

of tlic vali~cs of the Reynold's tii~nibct. Ilc. 

Tlic figure-Vlll is found by plotting tlic vclocity dislrtbi~lioti agiltnst lllc v:~t.~;lhlc 

y due to the various values of Pratidtl number I'r. Tlic vclocity distribution Isct\\/ccti tlic 

two platcs dcct-cases gradually with tlic i t i~rc;~se 01' I'r. 

By tlic case-I, 111 the ligut.e-IS ol' cast-ll, tlic velocity d~stt-ihution clcc~.cascs 

gradually witli tlic increase of the magtictic Iicld p;~t;~mctct I-la. In the ligitrc-S ol'casc- 

11, thc conditions of tlic vclocity clistr~I>i~tiori ;Ir.c satnc ;IS tlic gtvcli In 11ic c;~sc-l o f  

tigurc-IV. In thc figitre-XI ol'casc-ll ;~lso, tlic \/cloc~ly clislt.ibitlion V ; I I - I ~ S  satlic ;IS tllc 

given in tlic figi~re-V of casc-I. 



The figure-XI1 is found by plotti~ig llic tcmpcsaturc clist~'ihl~tio~i ag;~insl 1l1c 

variablc j1 for different valucs ol' f'cclct nillnhcl I'c = 1 .07, 1 . 5 ,  3.0. -Plic tcmpcsat~~rc 

distl-ibution bctwecn the two platcs ilicl.c;~scs gl.;~dually will1 llie ilicrc;~sc ol' I'c. 

In thc tablc-I, we have noticed t l i ; ~ t  tlic valucs of'tlic Nusselt nunil>cr ;I{ tlic pl;~lc 

of tlie variablc y = -I ir~crcase graclirally \vitli thc increase in Pcclct nurnhc~. I'c. 13ut ~ l ic  

values of tlie Nussclt numbcr at the plate 01' the variahlc y = -1-1 CICCI.C;ISC V C I . ~  slo\vly 

with tlie incrcasc in Pcclct nuliiber. 

In tlie table-ll, wc havc ohscr\/ed t l i ; ~ ~  tllc \l:~lucs ol'tlie kill-li.iction co-cl'licicn~ 

decreasc with the increase in PI. at tlie plates y =t- I .  Skin-liiction increases with the 

increase in Rc at y =-t 1 and i t  also decreases \\/it11 ~ l i c  incr.casc i l l  I - I ; I  : I /  y -k I .  .l'l~c 

skill-friction co-cfficicnt increases tluc to the incl.casc in C~I. a1 y =-t I an<l tlcc~.cascs 

with tlic incrcasc in 0 at tlic variable y =-I- I .  

In tlie table-Ill, wc notice thal the v;~lilcs ol'thc nussclt ~iurnhcl. ; I t  11ic \ ia l~~cs  ol' 

tlie variable y = -I become zero witli tlic dill'cl.cllt valucs of tlic S'cclct nu~iihcl-. l 3 u t  ~ h c  

riirssclt numbers dccr-casc at tlic v;ilt~cs oI'~lic \/i~l.iahIc y - -1-1 \,villi t l~c  irlcr.cilsc in I'cclc~ 

numbcl-. 

In the table-IV. wc have sccn that tlic values ol' tlic sliili-li.iction co-cl'licien~ 

decrease with the increase in Pr at ~ l ic  ~,l:~tcs y -=k I. Skin-['I-iction (Iccr.c:~scs witll tlic 

incl-case in Re at y =If: 1 and it  ;~lso ilicl.c;lscs witli the increase in Ila at y =A- I .  'rllc 

skin-friction co-cfficicnt dccreascs due lo tlic incr.casc ill C;r at y =-i- I i~nd iric~.cascs 

with the increase in B at  the varial~lc y = - I ,  Ix~t i t  C ~ C C ~ C ~ I S ~ S  ;it y--+ I .  



FOR CASE-I 

Figure-1: velocity at thc platcs: I .  Rc = 7.5, 11. Rc = 3.5, I l l .  Rc- 1.5 
P r = 0 . 7 l , H a = 5 , G r = 3 , n =  I, B=45". 

figure-ll 

3 

b 

Figure-11: velocity at the platcs: I .  1"r = 0.7 1 .  11 .  PI- = 1.0, 111. PI- = 2.0, 
Re = 1.5, Ha = 5, Gr  = 3, n = I .  B=45". 



Figure-111: velocity at the plates: I .  I-la = 5 ,  I I .  Ha = 10, 111. 1-13 = 15, 
Re = 1.5, PI- = 0.71, Gr = 3, n = I ,  0=45". 

Figure-IV: velocity at the plates: I. GI- = 3, 11. Gr  = 4, 111. C;r = 6, 
Re = 1.5, Pr = 0.71, Ha = 5 ,  n = 1, 8=45". 



Figure-V: veloclty at the platcs: I .  0 = 4 9 ,  11. B = 60°, 111. 0 = 75", 
R e =  1 . 5 , P r = 0 . 7 l , H a = 5 , 1 1 =  l , G r = 3 .  

Figure-VI: Temperature at the platcs: PC = 1.07, Pe = 1.5, PC = 3.0, n = l .O. 



FOR CASE-I I 

Figure-V11: velocity at the plates: I .  Re = 1.5, 11.  Rc = 3.5, I l l .  lie = 7.5, 
Pr = 0.7 1, Ha = 5, Gr = 3,11 = I ,  0 =45". 

Figure-VIII: velocity at the plates: I .  I'r = 0.7 1 ,  11. Pr = 1 .O, 11 1.  Pr = 2.0, 
Re = 1.5, Ha = 5, Gr = 3, n = 1, B=45'. 



Figure-IX: velocity at the platcs: I .  I-la = 5, 11. Ha = 10, I l l .  I - In  = 15, 
Re = 1.5, PI-=  0.71, Gr = 3, n = I ,  Q=45". 

Figure-X: velocity at thc platcs: I .  Gr = 3, 11. Gr  = 4, 111. Gr = 0. 
R e  = 1.5, Pr = 0.71, I-la = 5, n = I ,  8=45'. 



Figure-XI: veloc~ty at the plates: I .  6 = 45", I1  B = 60°, I 1  1 0 = 75", 
Re = 1.5,  Pr = 0.71, I-la = 5.11 = 1, Gr = 3. 

Figure-XII: Temperature at the plates: n = I .O. 



CASE-I 

Table-I: values of Nussclt number at the plates: 

(Nu)-1 

28.654 1 164 

28.6566185-- 

28.6653506 

Pe n 

T a b l r ~ l l  values of Skinifriction co-efficient at t l ~ r  plates: 

1.07 
-- - -- - - 

- - - - .- - - - -- - 
3.00 

- -- --- 

I .O 
-- - - .- - 

1 .O 
- - 

1 .o- 
. - . . -. - 



Table-Ill: values of Nusselt nr~mher at the plates: 

Table-IV: values of Skin-friction co-efficient at the plates: 



Magnetic field effects on the fluid and free convection flow 
through porous medium due to infinite vertical plate with 
uniform suction and constant heat flux. 

4.1 Introduction 

Tlic study of tlic electrically conducting fluid flow problcms taking into accou~i( 

of the siniultaneous effects of tlic niagnetic field on tlic fluid and frcc convcction flow 

through porous mediu~ii due to infinitc vcrtical plate with uniform suction and constant 

hcat flux is important bccause of thcir applications in niany prohlcms of geophysical 

and astrophysical fields. 

Acliarya, Dash and Sing [2000] sti~dicd thc stcady two-dimensional l i w  

convcction 'and mass transfer flow of a viscous incomprcssiblc clcctrically condi~c~ing 

fluid through porous mediu~ii bounded by a vcrtical infini tc surface witli constant 

suction velocity and constant heat flux i n  tlic prcscncc of a unifor~n magnetic ficld. Tlic 

fluctuating free convection through poroils mcdiuni duc to infin~tc vcrtic;~l platc witli 

constant hcat flux has bcen analysed by Maliarslii and Tak [2000]. Kumal- 12000) 

studied the stability of two superposed Rivlin-Ericksen elastic-viscous fluids pcrniittcd 

with suspended particles in the porous nicdiuni. Sing [ 19961 dcvotcd to ill1 important 

study of an unsteady clcctrically conducting stl-atificd viscous lluid {low through a 

porous medium between two parallel plates in tlic presence of transvcrsc cxpo11cnti;llly 

variable magnetic induction whc~i the strcam velocity at the lowcr plate fluctuates with 

tlme. 



Tlic riiagnetoliydrodyria~iiic unstcady flow of a visco-elastic Irq~rr(l (l<ivlir~- 

Ericksen) near a porous wall suddenly sct 111 motion has becn studicd by r h t t ; ~ ,  Uis\\lal 

and Sahoo [I9981 with tlic heat transfer ~nclucling heat generating sources or- lieat 

absorbing sinks. Tlic transient frce convection flow ol' a n  ~ncomprcssiblc vrsco-elastic 

fluid past an infinite vertical plate ~lridcr ~rniforni surf;lcc heat flux conditions is stucliccl 

by Das. Dckn arid Sounctalgckar [ 19991. 

In tliis cliaptcr, a tlicorctical analysis of' unstciidy two-dimcns~o~ial Ircc 

convection tlow of a viscous inconipressil~lc clcctrically conclcrcting Iluid 1111.okrgI1 ;I 

porous nictliuni of variriblc pcrmcability. boundccl by an iriliriilc \~crtic;~l I,OI.O~IS 11l;lte 

with ilniforni suction and consl;lrit hc;~t Ilirx i~ritlcr tlic ;~ction 01' ii irriili~l.r~i II I ; I I ; I ICII ( .  

licld is studied. Tlic constitutive ccltl;~tiorls ol'this problcm have bccri clcrrvctl I,y lak111l: 

all the physical variables dcpcnclcnt on lllc variahlc 'y' olily. The ccl1r;ltron 01' 

continuity. tlic nionicntnni equation and thc energy ccliration arc solvcd hy non- 

dimcnsionalysing the ccluations first and tlicn by l~pplying tlic mctliod of pcr1111.0ii1i01l 

tcchniquc. The cspressioris for tlic fluid velocity, (cmpcraturc pr.ofilc aricl skill-fi-ictlon 

arc obtained. Tlic cffccts of Prandtl numbcr, Grasliuf ~ i ~ ~ n i b c r ,  magnctrc licld parariictcr 

arid rhc variablc permeability of porous nicdr~rni or1 the velocity arc ~ntcr-l7rctcd 

graphically, and also, teriiperaturc profilc arc discusscd and sho\vn gr;~pliici~lly. 

4.2 Mathematical forniulatinn of the problem 

To formulate tlic governing equations in this cliaptcr, Ict us consrclcl. :I (\\lo- 

dimensional unsteady free convection flow of an incompressible clcctrically conducririg 

fluid throirgh porous rncdium bounded by an rrilinitc V C I - ~ I C ; I I  [ I O ~ ~ L I S  17Iiiic ill iI1e 

presence of iinifor.ni magnetic filcd. 



I t  is assunlcd that thcr-c is a ~lriifol-in suction \~clocity of the Il~l~cl ant1 the 

constant heat flux throi~gh tlic porous pliitc. I-lcrc XI-;,xis 1s consldcl-ctl to I>c takcli 

along thc platc and Y'-;\XIS is tnkc~i ~iol .~n:~l  10 i t .  I..ct L I '  1~ the vcloc~ty ol'thc Iltlitl ;1l011g 

the >('-axis and Ict v' bc tlic vcloc~ty ol ' t l~c lltt~d :\long thc Y'-as~s.  So consccl t~c~~~ly.  t i  

is a function of tlic variablc y ' i t~~cl  /'011ly. 13~1t V' IS  i~ldc~xlldcnt ol.the V ; I I . I ; I I > I C  I . '  . 

To dcrive the governing ccluations of' the problcm, the f'ollo\ving cond~tiol~s arc 

( i )  Thc platcs arc infinitely long, so that the fli~id velocity 11' is tllc fi~nctioli ol' ,I.' ancl 

/ '  only. 

( i i )  Tlic buoyancy I'o~.cc IS considcl-cd in the ccl~ratio~l 01'  mollon ol'lllc flilitl. 

( i i i )  Tlie [low bctwccn the plates is li~lly ~lcvclopctl. 

(iv) The .loulc heat and viscous ciissil~;t~ion arc assumed to be ncglcclcd. 

(v) Thc Flall cffect and polar-ization cffcct ; ~ r c  ~~cglcctcd. 

(vi) The fluid is supposed to bc of low co~iductivity, such that the induccti 111;1g11clic 

field is negligible. 

(vii) Only electro-magnctic body force (Lorcntz li)r-cc) is co~~siclcr-cd. 

Thcn the Lorc~itz's force is - 0~,:11', wIle11  lie ilulcl  vclocity 11' is givcn to (Ilc plate In 

its own plant and a unifor-111 magnctic ficltl B,, is applicd transvcrscly to thc plate. 

Thus tlic flow ficld is governcd by tlic following ccluations: 

Equation of continr~ity 



cvhcre p is thc dcnsity of the nilid, r, 15 tllc kinematic vtscosity ol'thc 11~11tl .  IJ,, 1.4 ;I 

i~niforrii niagnctic field appliccl 11-ans\/crscly to tllc plate, o 1s tlic clcc11.1c;ll 

condi~ctivity of tlic fluid, k is tlic pcrmcabilily ol'thc pot-oils nicdium, k' is the tlict.m;rl 

conductivity of thc Iluid, g is all accelct;ltion clue to gt.avity, /? i h  the co-cl'lictctit ol'tlic 

thermal expansion. c,, is Ihc specilic hcat 01' thc fli~icl at constant prcssurc. 1" i x  thc 

tempcraturc of thc fluid and Trt, is the ten1peratut.c of tllc flllid at ~nlintty from the pl;rtc. 

Let k be of tlic form A ( / )  = /it, ( I  -I- t:c,"'" ) . wllcr-c k,, is Ihc nicirti pcrnic:~l>ility 01' 

the porous n~cdiittii, (0 is thc I'l.ccli~cncy ol' tlic I l ~ t c t t ~ i t I i ~ ~ l ~  w~tli t ~ m c  t ;111cl I:(.; I )  

constant quantity. 

Tlic rclcvarlt initial and ho11110:1ry L ~ O I ~ ~ ~ I I I O I ~ S  ill-e ~ I I I C I I  I)y 

1' 5 0 : 1 1 '  = 0, T' = 7': lhl. 2111 1.' 

: l i t  0, T t  = rt ( 1 1  1' , ' rf2 

I-rotii tlic ecliiation (4.2.1 ). we gct 

1)' =constant. 



For tlic constant suction, let 11s take 

I 
1) = -\I 

I 

wliel-e the negative sign indicates that the suction lowarcls tlic 1,I;lte. 

Introducing tlic following 11on-di1iicnsioli;~l \/ariables and parametcl. clunntitics: 

tliel~ tlic cquations (4.2.2) and (4.2.3) will) ~ l lc  11cIp o f  llic collililiol~s (4.2.0). I . L ' ~ I ~ I C C  10 

tlic f'ollowing form: 

dT dT I d ' ~  
and - 

df (?I. P I - ? ) : ~  

mlicrc Gr is tlic ~ ~ l s l l o i '  liumbcl., I'r is tlic i'l-i~lid~l iiilli~bc~+. a is t l~c  1>~1~111cilI)ility 

paranieter and Ha is tlic magnetic Iiclcl paranictcr. R u t  magnctic licltl ~,al.;lmctcl- is no1 

defined samc as the IHartmann 1i~1111l)cl- / - / I .  .I Ll,,h - . $% 
T11c c~rrcs l~ondi~ig  initial and boundary conclit ions arc gi vcn hy 

1 5 0 : 1 1 = 0 , T = O  for all J: 



i3 .lolls 4.3 Solution of the equ 1' 

To solve Ilic cquiltions (4.2.7) ; 1 1 1 ( 1  (4.2.8). I c I  11s I)rc;~k 1117 I I I C  \ ~ C I O C I I ~  ( 1 1  ) ;111t1 

tempcraturc ( 7 ' )  into two pal-ts, OIIC ti~iic-~Ic~)c~idcnt alicl other ti~iic-inclcl-rcntlcnt 

rcspcctivcly. Tliils wc assumc tllar thc li)llowlng scrics csl71-cssions I'ol thc velocity ant1 

tcmpcrature profile: 

......................... and T = 7;) (ji) + cT, (.l:)d"'" -1- (4.3.1 I ) 

Now, substituting thc cquations (4.3.10) ;11icI (4.3.1 I ) In cquations (4.2.7) arltl (4.2.8). 

atid scparatilig thc hal-monic ;111(1 I ~ o ~ ~ - I I ; I ~ . I I I ~ ~ ~ ~ c  ( C I . I I ~ S  of' likc I)O\\/CI.S 01 '  ,. to /CI.O. 111c 

fi~llowing j>arli;ll d~flcl.cnti;ll ccl~~;~iions ; I I Y  ohtal~ictl. 

I I 1  
and 11," i- 1 1 ;  - (- + Fltr + i c r , ) ~ ~ ,  = -GI.'/', - 2 

a cx 

Tlic initial and houlldary cond~tiol~s (4.2.0) ;II.C no\\,  nloclilicd ;ls 

I < O : i r , ,  = O = u , ,  7;, = O = q ,  fi1r 2111 .\I 

i t , ,  = 0, ~ t ,  = 0, T ,  = 0, 7; .= 0 rrl ,I; = WJ 



Now. solving tlie equations (4.3.12)-(4.3.15) by using the conditions (4.3.16). wc gct 

1 - P r \  T,  ( ~ 7 )  = - e  (4.3.17) 
P r 

r, ( , v )  = 0 (4.3. I X )  

GI. u,,(j)) = -[e-"" - e-"' I 1, (4.3.19) 
MI 

G,.G, c.-"" 
and u ,  ( j i )  = [ ( ~ M I M , c o s ~ l ~ ~ + M , s ~ ~ i g S , ~ ~ )  

~ M , ( M ;  - ~ 4 : )  

I 
1 + I + 4(- + H n )  

where uI = J a 
2 

M, = M,M, - w 2  pr2,  

M, = toPr(M, + M,) ,  

GI = pr2 ( ~ r -  a, )(Pr+ a ,  - 1). 

TIILIS substitilting thc S O I L I ~ I O ~ S  (4.3.17)-(4.3.20) 111 thc r-clalions (4.3.10) and (4.3.1 1 ). 

we get 



Gr -,,,v - e - l > r v l + E e i < t M  Gr GI '?-('> I' 
and u = -[e [ ( a M  , M ,  cos 4, y 

M I  C X M , ( M :  - M ; )  

+ M ,  s in(6 , j~) - i (aM,M,s in(6 , .~~-  Ad, cosgl,):)1 . 

Now. taking thc only real parts of the velocity, we gct 

Skin-friction 

The skin-friction at the platcs is given by 

Gr 
= -[(Pr- a,  ) - -{aA/l ,A/ l , (n ,  cos(o/ - 4, sin (of) 

MI a ( ~ f  - M i )  

4.4 Results and discussion 

The velocity distributions of the fluid are shown by the curvcs of figurcs-I. 11. 111  

and IV. In the figure-I, the velocity distribution is obtaincd by drawing against ~ h c  

variable y for the different values of the maglietic field parameter Ha = 1.5, 3.5, 7.5, 

when Pr = 0.71, Gr = 5.0, a =I ,  co =0.10, o t = 4S0, c = 0.2. I-fcrc wc havc noticcd t l i i ~ t  

the velocity distribution increases gradually near the plate (O_<y<I ) and then dccrcascs 

slowly far away from the plate (y>>l). Also, the values of the velocity distl.ibution 

decrease for the increasing of valucs of thc magnetic ficld parameter I-la. 



Tlie figure-11 is obtained by drawing the vclocity distribution against the 

variable y with the various values of Prandtl nil~iiber Pr = 0.7 1 ,  1.2, 2.3, when !-!;I = 1.5 

as the values of Gr, a , w t, o, c reniain same as taking on tlic plotted figure-I. I-lcrc 

the velocity distribution increascs gradu;illy near the plate (O<y<:I ) and then decrease 

slowly far away from tlie platc (y>>l).  Also, thc vclocity distribution dccrcascs with 

the increase in Pr. 

The figure-Ill is obtained by plotting the velocity distribution against y with the 

different values o f  the Grashoff nuniber Gr  = 5, 10, 15, when Pr = 0.71, 1-la = 1.5. rx , 

w t, o, E remain same as considering on the plotted figure-I. I-let-e also, mlc scc that tlic 

velocity increases gradually towards the platc ( 0  _< y< 1 )  arid tlie decreases slowly fir 

away from tlic plate (y>>l) .  Tlie velocity distribution increascs due to tllc incrci~sc in 

the Grashoff number. 

The figure-IV is found by drawing the velocity distribution against thc variahle 

y with tlie various values of the pernicability parameter n = 1.0, 2.0, 3.0, when Pr = 

0.71, Gr  = 5.0, Ha = 1.5 as the values of w t, 111, L. remain same as considering ill ~ l i c  

figure-11. In this figure also, we have seen tliat the velocity distribution increascs 

towards the plate (O<y<l)  and then decreases slowly far away to the platc (y>> 1 ). Tlic 

fluid velocity increases gradually with thc increase o f  pernicability paratnetcr. 

The solution of the temperature distribution is similar to that li)llowcd by 

Maharshi and Tak [2000]. Herc the temperature distribution is plotted against the 

variable y (0 I y < cn). Froni tlie figure-V, i t  is observed tliat the tempcraturc incrci~scs 

near the plate for the different valucs of tlic Prancttl nu~nber  Pr = 0.7 1 ,  1.2. 2.3 ;~g;iinst 

the variable y (O<y<l) and dccrcascs far away from tlic plate for tlic vi~riahlc 

(1  < j! < 00). But the teniperati~rc distribution decreases with tlie incrcase in I'r:~ndtl 

nuniber Pr. 



From the tablc-I, 11 and I l l ,  we liavc obscrvcd that thc skin-f'riction incrcascs 

due to the increase in Gr, but decreases gradually duc to incr-casing valucs ol' Prandtl 

number and permeability paramctcr. 

Fig.1: Vclocity pr-olile vcrsus y when co =O. I0 and c =0.2. 
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Fig.11: Velocity profile vcrsus y whcn cc, =O. I0 and c 4.2. 
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Table I: Values of skin-friction r, atthe plate- 

~ a b l e i l :  Values of Skin-friction r, at the plate 
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Table I l l :  Values of ~kin-friction r,  at the plate 



The motion of the electrically conducting fluid with the time- 
variation through the non-conducting porous plate under 
the action of magnetic field. 

5.1 Introduction 

Borkakatl and Bliat-all [ I  9801 discusscd the stcady ~iiag~ictoliydt-ocly~i:~~~i~cs flow 

past an infinite horizontal porous plate 1s tlicoret~cally ~~ivcs t~gatcd  by tak~ng I-lall 

effects into account, when a strong rnagnctrc ficld IS ~mposcd in a d~t-cct~oti wli~ch IS  ;I 

perpendicular to the free stream and niakcs an anglc a to the vertical d ~ ~ c c t ~ o ~ l .  

Borkakati and Chetri [I9891 have respectively studied the effect of the dcilcct~on of ;i 

strong magnct~c ficld on the osc~llatory MtII> Ilow past an ~ ~ i l ' i ~ i ~ t e  l i o r ~ ~ o t ~ ~ ; ~ J  pl;~tct 15 

studlcd tlieoretlcally, keep~ng tlic Hall-pat-amctcr constant. Rcccntly, Maliato a~lcl Ku~l-y 

[I9991 have discussed tlie flow behaviour of a viscous inconiprcssiblc and clcctr~cally 

conducting fluid due to tlie time-varying accclerat~on of an ~nfinltc porous platc 1s 

analy~cd In the prcscnce of a un~form tt-iinsvct-\c magnet~c ficld. Also, Sha~nia alitl 

Kuniar [I9981 drscussed tlie unstcady (low and hcat transfcr through :I v~scol~h 

inconipressible fluid in the presencc of transverse magnetic filed bctwccn two 

horizontal parallel plates, the lowcr plate bung a strcfclii~ig sliect and uppct- platc hung 

porous. 



Tlie objective of this chapter is to analyze and discuss about tlie rcsults of  an 

unsteady viscous incompressible flo,w of 2111 inconlpressible electrically conducting 

fluid between two horizontal parallel porous plates in the presence of' a ~lnifor~ii  

transverse magnetic field of which the direction is deflected. Exact solutiotis of' thc 

governing equations have been obtained and plotted through graphs. Tlic vclocity 

profile and the skin-friction are found due to tlie effect of tlic deflection 01' a strong 

magnetic field on the M H D  flow past betwecn two parallel plates and tlic rcsulls i11.c 

obtained nun~erically and plotted graphically. Tlic niagnetic field parametel cl'f'cc~s oli 

tlie electrically corldl~cting fluid flow are shown by plotting graphs. 

5.2 Mathematical formulation of the problem 

Let us consider an unsteady flow o f  an electrically conducting inconiprcssil,Ic 

viscous fluid between two horizontal porous plates in the prescnce 01' a unifi)rlii 

transverse magnetic field. The electrically conducting fluid flow is assunied to bc in  the 

XI-axis which is along tlie plate and Y'-axis i s  normal to i t .  We assunic that tlic fluid 

is finitely conducting and non-magnetic. A strong and uniform ~iiagnetic licld lr',, is 

iniposed on tlie M H D  flow between two parallcl plates, when i t  makes an ;~nglc (1 10 

the free streani velocity. Tlie components o f  tlic magnetic field are given by 

B,, = ~,,rn. 0). 

where R = c o s a  and the velocity distribution is i! = (u( . ! ; ) ,  \ I ,  0)  

All physical quantities except pressure are functions of y' and t ' ,  as the plate 

is extended infinitely and tlie porous plate is moving with time-varying velocity. As the 

niagnetic Reynolds nuniber is sniall, tlie induced magnetic field is neglected. 



Under these assuiiiptions, the governing equations of the problem arc givcn ax 

follows: 

Equation o f  continuity 

Equation of motion 

where p is the density of the fluid, o is tlie electrically conductivity of the tluid, v is 

tlic co-cfficicnt of the kineniatics viscosity. 

Let tlie fluid velocity change to zero vclocity situating the plate }I' = 0 bc at rest 

and the velocity at the plate I,' = + / I  be nioving on the tiiiie-varying molion with a 

constant velocity v,, for tlic tinic I' > 0 .  Thcii the initial and boundary conditions are 

given by 

/ '  5 0 : u' = 0, forall 1. '  

1'.  0 : u' = 0, ,/ill. y' = 0 

Now, solving the equation (5.2. I ) ,  cvc obtain 

v = constant. 

For the constant suction, Ict LIS consider 

v = - v ,  

where tlie negative sign indicates that the suction towards tlic platc. 



Then the equation (5.2.2) in the help of eqt~atiori (5.2.4) becomes 

We now introduce the following non-dinicnsional variables and paranicters in 01-dcr to 

transform the equation (5.2.5) into non-dimensional form: 

Using the condition (5.2.6) in the equation (5.2.5), wc get- 

The initial and boundary conditions ofthe non-ciimcnsional fol-m are given by 

1 < 0 : u = O ,  for all ) -  

/ > O : i 4 = 0  u /  1: = 0 

-111 : ~ i = e  at ): = + I  

5.3 Solution of the equations 

To solve the equation (5.2.7), we consider that 

u  = f'(.\i)e-"' 

Substituting (5.3.9) in the equation (5.2.7), wc get- 

The corresponding boundary conditions arc givcn by 

,I .  = 0 u/  ,\: = 0  

and ,J'= 1 at ? ; = + I  



Solving the equation (5.3.10) with the help of the condition (5.3.1 I ) ,  we get- 

- .- I ,  e2(1  + MIe"') e"'M, cosha, 
((y) = e * [MleJ" C O S ~  a I j ) ]  + [ . , 

- Isinh n,.\: 
s ~ n h  tr, sinli t r ,  

and MI  = 
~ a n . I F 7  

Ha(1- A2 ) - I I  ' 

Substituting (5.3.12) in the relation (5.3.9). \we gct- 

I 
I 

- 
- - 2 ( e - ~ '  + M I )  M , c o s h ~ ,  

LI = e [M cosh a ,  y ]  + [ - ] sinh (1, y - M I  
sinli a,  sinh n,  

5.4 Computation of the skin-friction 

The skin-friction C, at the upper and lower plates are given by 

p2(e-"I + M , )  M, cosha, 
= P[{ - la ,  - -1, MI . ~ o I -  ) )  = 0 

sinh a ,  sinh GI, 2 

2 ( e - ~ ~ ~  + M I )  M,cosha  
= P[{ - I ) a ,  cosh tr ,  

sinh u,  sinh N ,  



5.5 Results and discussion 

The figure-I has becn obtained by plottlng tlic vclocity d~stribution LI against thc 

values of the variable y with the different values of tlie niagnetic field paranictcr. I-la = 

2.5, 3.5, 4.5, when 0=45", nt = 1.0, n = 1.0. Herc In this figurc, wc have sccn that thc 

velocity distribution decreascs dilc to thc incrcasc of tlic valucs in I-la against thc 

positive values of the variable y. 

The figure-I1 has been found by drawing the velocity distribution u against 

variable y with tlie various values of anglcQ= 45', 60°, 75", when Ha = 2.5, t i t  = 1 .O, 11 

= 1 .O. I n  this figure, wc havc noticed that thc velocity d~strlbut~on dccreascs g~.adually 

due to the increase of tlie angle 0 .  

From the table, wc obscrvc that tlic values of thc skin-friction co-ct'ticicnt 

(C, ),=,, increase very slowly with tlic incrcasc in magnctic ficld paranietcr !-la and also 

increase with the increase of the angle 0 .  But the skin-friction co-efficient ( C ' ,  ) ,  , 

decreases with the increase in Ha at the plate y = + I  and also dccreascs due to thc 

increase of the angle 0 .  



fig u re-l 
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t -. I: Ha = 2.5 

Fig.1: Velocity distributiorl versus y for the different values of Ha when n= I .O. 





Table: Values of skin-friction co-efficient at the plates 



CHAPTER 6 

MHD flow and heat transfer of Rivlin-Ericksen fluid through an 
inclined channel with heat sources or sinks. 

6.1 Introduction 

The hcat transfcr in the flow of a concluct~ng fluid between two noti-conducting 

porous disks-one rotating and the other at rcst, II I  tlic prcscnce of a transvcrsc nnilhrni 

magnetic field, the lower disk being adiabatic (which is givcn and well-known by 

Schlichting [1968]), was studied by Bhattacharjcc and Borkakati [1984]. Singti and Slrlgli 

[I9951 discilssed the laminar flow and hcat transfcr of an incompressible, clcctrically 

conducting second order Rivlin-Erickscn liquid in porous niediuni dowti a parallcl platc 

channel inclined at an angleB to the horizontal In the presence of uniforni tran\vcrsc 

magnetic field. The conimencement of the Coucttc flow in Oldroyd liquid in tlic prcscrlcc 

of a uniform transverse 111agnctic field with heat sourccs/sinks has bcen stitdiccl hy 13ihwal 

and Pattnaik [1996]. Rathod and Slirlkanth [ 19981 have studied tlic unsteady MI-Ill flow or 

Rivlin-Ericksen incomprcssiblc fluid tlirougl~ an inclined channel with two parallcl flat 

walls under the influence of magnetic ficld. Thc niagnctohydrodynamic unstcady flo\v ol'a 

visco-elastic liquid (Rivlin-Erickscn) near a porous wall suddcnly set in motion with thc 

heat transfer including heat generating sources or licat absorbing sinks has been stird~cd by 

Datta, Biswal and Sahoo [1998]. 



Cliakraborty and Borkakati [I 9981 have investigated the laniinar convection llow 01' 

an electrically conducting second order visco-elastic fluid in porous niediuni down an 

inclined parallel plate charinel in tlic prcscnce of uniform transverse niagnctic field. Tlic 

unsteady tlow and heat transverse magnetic field betwcen two horizontal parallcl platcs. 

the lower plate being a stretching sheet and ilplxr being porous was investig>ited hy Sliarma 

and Kumar [1998]. 

In this chapter, we investigate that the niagnetohydrodynaniics unsteady flow of a 

visco-elastic (Rivlin-Ericksen) fluid through an inclined channel witli two parallcl flat 

plates under the influence of a i~niforni niagnctic field witli heat transfcr including heal 

generating sources or heat absorbing sinks, when the platcs are moving wit11 tlic ~ri~nsicnl 

velocity while the one of these two plates is adiabatic. The constitutive cclu:rtions l i ~  

continuity, motion and energy of visco-elastic liquid are obtained, and to obtain the 

numerical expression for the velocity and tempcraturc distribution, the pcrturl>i~tion ~ncthod 

is applied. The effects of sources/sinks paranicte~. on the fluid motion and 11c;it transl'cr ol' 

visco-elastic fluid through an inclincd cl~annel have not been sti~dicd yet. So, our aini hcrc 

is to analyse the magnetollydrodyna~iiic unsteady flow and heat transfcr of an 

incompressible electrically conducting fluid thro~~gh an inclincd parallcl p1;11c cli;lri~icl in 

thc presence of a uniform transvcrse magnetic field, when thc plates arc movi~ig with 

transient velocity while the one plate is adiabatic. The cffects of niagnctic licltl paramctcr, 

elastic parameter, Reynolds' number, GrashofT number, Froude number, Prandtl ni~rnbc~. 

and source sink term on the velocity distribution is discussed with tlic liclp of'gr;iplis. Also, 

the effects of Prandtl number and source or sink paran~cter 011 the tcmpcratu~-c dis~rihi~tion 

is expressed with the aid of graphs. 



6.2 Mathematical formulation of the problem 

Let us consider two dimensional incompressible elcctrically conducting liivlin- 

Ericksen fluid flowing through an inclincd clianticl bctwcen two parallcl flal plates wliicli 

are at a distance 2h apart undcr thc influcncc of a ilniforni transverse niagrictic licld. Wc 

assume that the x'-axis along the straight linc niid-way between the two platcs, the 1%'  -axis 

perpendicular to it. A magnetic field of u~iilhrni strcngth U,, is assunied to bc applied i n  thc 

?;'-direction. Let u' be the velocity component along the direction of Ihc .\.I -asis i ~ n d  the 

other components of tlie velocity be zcro. 

To write down the governing equations of the problems, tlie following conditions 

are considered: 

( i )  The plates are infinitely long, so that tlic lli~id velocity L I '  is the fi~nction ol' 1.' a ~ ~ d  I '  

only. 

(ii) The temperature is uniforni within tlic flilid particles and tlic buoyancy hrcc is 

considered in the equation of motion of the fluid. 

(iii) The flow between the plates is fully dcvelopcd. 

(iv) The conductivity of the fluid is assunied to be very low, so that tlic induccd magnetic 

field is neglected. 

(v) The Polarization effect and heat Joulc are neglected. 

(vi) The Hall effect and viscous dissipation arc assumcd to be ncglcctcd. 

(vii) Only electro-magnetic body force (Lorcntz forcc) is considcred. 

(viii) Initially i.e. at time r '  = 0, the plates and tlic fluid arc at constant tcnipcr:~turc (i.c. 

T' = T I )  and tliere is no flow within the channcl. Wlicre T, is constant tempcraturc. 



(37'' 
At time t' > 0, the temperature of tlic plate \,' = +/ I  cliangcs to - = 0, and tlic 

(?I.' 

temperature of the plate ji' = -h changes according to T r  = T, + (TI, - T I  )e-""', wlierc T,, 

is the teniperature of the fluid at tlic wall, and 11' 2 0 IS  a rcal numbcr, denoting t11c dcciiy 

factor. 

Under these above assumptions, the governing ccluations of continuity, motion ant1 

cncrgy for thc   in steady flow of a visco-clast~c ~nconipressiblc clcctrically conducting fluid 

between two lion-conducting parallel plates 111 the prcscnce of magnettc ficltl arc 

d T '  - k d 2 ~ '  
and - - -- + S ' (Tt  - T,,) 

atr a y t 2  

wlicre p = dcnsity of the fluid, 

B, =uniform magnetic field applied transvcrscly to thc plate, 

a =electrical conductivity of the fluid, 

u = co-efficient of kinematics viscos~ty, 

k = thermal coi~ductivity of the tluid, 

c ,  = specific heat at constant pressure of the fluid, 

p = co-efficient of thermal expansion, 

g = acceleration due to gravity, 

/I' =pressure of the fluid, 



k ,  = co-efficient of the elasticity, 

q,, = co-efficient of viscosity 

S' = the heat source or sink term. 

The initial and boundary conditions of thc problcm are given by 

t' 5 0 : u' = 0, T' = T, , for - h 5 1'' < +i f  

In  ordcr to bring out the essential featurcs of thc cquation 01' this p r o b l c ~ ~ ~ .  Wu now 

consider the following non-dimensional parameters as givcn by Shih-I Pai [ I00 I ] :  

P I  1 un S ' u  Pr=- ,  11 = -  s = -  GI .=  [),sP( 7;, - 7;) 1 12' 
7 '  2 '  1 / 7 = -  k u,; '4,' L',, Pll,? ' 

Substituting the non-dimensional variables and paranleters in the equations (0.2.1 )-(0.2.3). 

we get- 

a ap a 2 ~  - = -- d3u sin 8 +-+ Rc7- Hull+- + G1.T 
at ax ay2 at* FI.  Re 

aT I 3 ' ~  
and -=--+ST 

at Pr ay2 



where Rc is the elastic parameter, Ha is thc magnetic field paranieter, FI.  1s Ihc Froudc 

number, Re is the Reynolds number, GI .  is the Grashoff ~ i ~ ~ n i b e r ,  Pr i s  tlie Prandtl 

number and S is the source or slnk tcrni. 

The inltial and boundary cond~tlons of tlic 11011-tl~~iicns~o~ial form arc glvcn by 

t I O : u = O , T = O ,  for - 1  5 ) )  5 + I  

6.3 Solution of the equations 

The equation (6.2.6) shows that rt IS a lirrictlon of y and t only and constant. Also, t l~c 

equation (6.2.7) shows that tlie velocity u IS indcpcndcnt of x and thcreforc it a li~nctror? 

811 of y and t only. Thus, the term - must bc a constant or the f~~nctloti o f t  only 
8.Y 

ap Let us assume that - = -h( l )  (0.3. 10) ax 

Then the equation (6.2.7) becomes 

In order to solve the equations (6.2.8) and (6.2.1 1 )  undcr tlic boilndary C O I I ~ I ~ I O I ~ S  (6.2.0), 

wc consider- 

u = . f (y)e-" '  

T  = g(y)e-"' 

and h = h,,e-"' 



The corresponding boundary conditions arc givcn by 

and f ' (+l )  = +e+"', gf (+ l )  = 0 (6.4.13) 

Substituting (6.3.12) in the equation (6.2.8) and (6.3.1 I ) ,  we get- 

a' f Sill n c ~ - l l l  and ( I  - rtRc)? - (Ha - r z ) f  = - / I , ,  - - GI. g 
(3 /.-I- Rc 

Now, solving the equations (6.3.14) and (6.3.15) L I S ~ I I ~  thc boundary condit~ons (0.3.13). 

and substituting in the equations (6.3.12). ~ v c  gct- 

Gr e-"I 
slnh h, 11 

sinh b, 2 M ,  sinh b, 

M 2  + 
c,. e-"' cos a, (1  - y) 

+- 
Ha-n MI cos2a, 

cos a, (1 - y )  
and T = 

cos 2a, 

where a ,  = 



sin B 
and M ,  =hoe-"' +-. 

Fr Re 

5.4 Results and discussion 

The figure-1 is obtained by plotting the velocity distrjbution for thc difli-rent valucs 

of magnetic field parameter Ha = 1.5, 2.5, 7.5 against the variable y considering thc 

parameters values as Pr = 0.5, S = 0.5, Rc = 0.3, Fr = 3.0, h,, = 1.0, Rc = 1.0, 11 - 1.0, t = 

1.0, Gr = 5.0 and 0 = 30". 111 this figi~rc, the vclocity dccrcases with the incrcasc of 

magnctie field paratmeter Ha and i t  is mi~xinluni near the plate y = -1-1 i~nd ~ninimum 

towards the plate y = - 1. 

The figure-11 is drawn for thc fluid vclocity for the diffcrcnt valucs of I'ra~ldtl 

number Pr = 0.5, 0.25, 0.025 for thc valucs of Ha = 1.5, S = 0.5, Rc = 0.3, Fr = 3.0, h,,= 1 .O, 

Re = I  .O, n = I  .0, t =1.0, Gr = 5.0 and 0 = 30" against thc variablc y. So, i t  is obscrvcd that 

the velocity of the fluid increases with the dccrcase of Pr and its value is n~axiniilm near thc 

plate y = + I  and minimum towards y = - 1. 

The figure-111 has been obtained by plotting the velocity distribulion 11 against thc 

variable y for various values of source or sink tcrm S, whcn Ha = 1.5, Pr = 0.5, Kc := 0.3, 1:1. 

= 3.0, h ,=I  .O, Re = I  .O, n =I -0, t = I  .0, Gr  = 5.0 and 0 = 30". This figurc siiows that tlic 

velocity increases as S increases. 

The figure-IV depicts the velocity profiles against thc variable y for diffcrcnt 

values of elastic parameter Rc, when Ha = 1.5, S = 0.5, Fr = 3.0, 11,= 1 .O, Rc = I .0, 11 = I  .O, I 

=1 .O, Gr = 5.0 and 8 = 30" 



From the figure-IV, we observc that tlic vclocity is maximum 11ci1r the pl;~tc y = t- 1 ant1 

mininium towards the plate y = - 1, and when Rc incrcascs, the velocity also incrcascs. 

The figure-V has been found by drawing the velocity distribution for various 

values of Grashoff number Gr when Ha = 1.5, Pr = 0.5, Rc = 0.3, Fr = 3.0, !I,,= I .O. Re = I  .O. 

n =1.0. t =1.0, S = 0.5 and 0 = 30". So, we notlcc that the velocity increascs duc to the 

increase in Gr. 

The figure-VI has been plotted to represent tlic velocity distribution against thc 

variable y for different values of Froude nuniber Fr, whcn tla = 1.5, Pr = 0.5, lic = 0.3, S - 
0.5, h,=1.0, Re = I  .O, n = I  .O, t = I  .O, Gr = 5.0 arid O = 30". Froni this figure, wc have sccn 

that the velocity decreases with the increase of Froudc ni~nibcr. 

The figure-Vll has been ohtaincd hy plotting tlic vclocity profilch ;~gitinsI y liw 

different values of Reynolds' nurnber Re, wlicli I-la = 1.5, Pr = 0.5, Kc: = 0.3, 1-1- 3.0, 

h,=I .0, S = 0.5, n =1.0, t = I  .O, Gr = 5.0 and O = 30". So, ~t is sccti that thc vcloc~ty of thc 

.fluid decreases due to the increase of Reynolds' number. 

The figure-VIII has been obtained by plott~ng tlic tempel-ature distr~bution T aga~nst 

the variable y for the different values of Prandtl ~iumber Pr = 0.5, 0.25, 0.025, whcn ti = I  .0, 

t =I .O, S = 0.1. I t  is found from this figure that the tc~iiperature dccrcases grad~~ally with tlic 

decrease of Prandtl number. 

In the figure-IX, the temperattirc distribution has bccn tlrawn against thc variablc y 

for various values of S, whcn I'r = 0.5, n -1.0 ancl t =l.O. From this fig~~rc-lX. i l  1s 

observed that the temperature increascs for thc ~ncrcasing of the values of the sourcc 01. 

sink term S. 



Fig.1: Velocity distribution vcrs~ls y for diffcrcnt vall~cs of I-la. 

figure-!! ? ,, I P r = O 5  
11. Pr = 0 25 

3 

s * .- 
0 
0 - 
a,' > 1 5  0 5 I 

0 5 -  

I - 

.I 5 -  Y 

Fig.11: Velocity distribution vcrsus y for diffcrcnt values of 1'1.. 



Fig.111: Velocity distribution vc~.sus y for different valucs of S. 

Fig.IV: Velocity distribution versus y for difrcrent values ol' Rc. 
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Flg.VI1: Veloc~ty d~str~butlon agatn\t y rot dlffcrcr~t valucs of' Rc 

Fig.VII1: Temperature d~stribut~on against y for different valucs of 1'1 
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CHAPTER 7 

Magnetohydrodynamics unsteady free convection flow and 
heat transfer of a visco-elastic fluid through a porous 
medium past an impulsively started porous flat plate. 

7.1 Introduction 

Datta, Biswal and Sahoo [I9981 studied the magnetohydrodynamic unstcady 

flow of a visco-elastic liquid (Rivlin-Ericksc~i) ncar a porous wall sudclcnly scl in 

motion with the heat transfer including heat generating sources or heat absorbing sinks. 

The commencement of the Couette flow in Oldroyd liquid in the presence of a i lnifc~rni  

transverse magnetic field with heat sources or sinks has been studied by Biswal and 

, Pattnaik [1996]. Maharshi and Tak [2000] discussed the theoretical analysis of fi-ce 

convective two-dimensional unsteady flow through porous medii~nl of variable 

permeability, bounded by an infinite vertical porous plate with uniforni suction and 

constant heat flux. An analysis of steady two-dimcnsional frcc convection and mass 

transfer flow of a viscous incon~pressible clcctrically conducting fluid thi-ougl~ a poroi~s 

medium bounded by a vertical infinite surface with the constant suction velocity ancl 

constant heat flux in the presence of a uniform magnetic field is presented by Acharya, 

Dash and Singli [2000]. The flow of Rivlin-Ericksen incompressible tluid tliroi~gh 1111 

inclined channel with two parallel flat walls under the influence of magnctic ficld was 

studied by Rathod and Shrikanth [1998]. 



Sliarma and Kumar [I9981 were made an interesting analysis of thc ~~tlstc:~cly 

flow and heat transfer of a visco-elastic fluid through a circi~lar pipe. 111 this chaptcr, wc 

have studied that the unsteady flow of an inconipressible electrically conducting sccotitl 

order Rivlin-Ericksen fluid through the porous nicdii~m due to infinite horizontal ~>l i~ tc  

in the presence of uniform transverse magnetic field which includes the heat gcnc~.ating 

sources or heat absorbing sinks. The plates are maintained at different tempc~.ntut-cs 

while any one of these two plates is kept at a constant teniperature gradient. Using thc 

perturbation technique, the obtained constitutivc equations of continuity, motion and 

energy are solved at which the vclocity and tcmperaturc distribution arc (i)i~nd. TIic 

effects of niagnetic field parameter, visco-elastic parameter, pernieability paramctct-, 

Prandtl nuniber, source or sink term and Grashoff number on the velocity distribution 

are discussed with the help of graphs. Also, the effects of Prandtl nunibcr and source o r  

sink parameter on the temperature distribution arc expressed witli thc aid of graphs. So, 

here the main purpose of this chapter is to analyze the niagnetohydrodynaniic unstcady 

flow and heat transfer of an incompressible electrically conducting visco-elastic 

(Rivlin-Ericksen) fluid through the porous medium due to infinite platcs channcl, whilc 

one plate remains constant of tcmperature gradient. Thc problcms of dctcrniinillg thc 

electrically conducting fluid flow and heat transfer through a porous channcl clr~vcn hy 

a pressure gradient are fundamental witli obvious applications i n  physiology ant1 

Engineering. 



7.2 Mathematical formulation of the problem 

Here we consider the unsteady MHD flow and heat transfer of a visco-elastic 

incompressible electrically conducting fluid through the porous medium bounded by an 

infinite porous plate. It  is assumed that the .x' -axis is taken along the plate and 1:' -axis 

is taken normal to the plate. Let u' be the velocity of the fluid along the .r' -axis ancl v' 

the fluid velocity along the yr-axis. Consequently, 11' is a fi~nction of y' and 1' only, 

but v' is independent of y' . Then thc componcnts of the fluid velocity are givcn by 

(u'O>, t ) ,  v', 0) 

Let u,  be the constant impulsive velocity along the plate in its own plant and 

B,, be a uniform magnetic field applied transversely to the plate. T l ~ c  fluid is assumcd 

to be of low conductivity, so that the induced magnetic field is neglected. T ~ L I S  tllc 

Lorentz's force is given by . - OB,;~ ' .  

To obtain the governing equations of the problem, the following conditions arc 

assumed: 

(i) The plates are considered to be infinite and all tllc physical quantities arc fi~nctions 

of y '  and 1' only. 

(ii) The fluid is finitely conducting and the viscous dissipation and thc J o ~ ~ l e  heat is 

neglected. 

(iii) The buoyancy force is considered in the equation of the fluid motion. 

(iv) Hall effect and polarization effect are negligible. 

1 

(v) Initially (i.e. at time 1' = 0 )  the plates and the fluid are at the tenlperature 7" = T,, 

and there is no flow within the channel. 



(v i )  At tinie f '  > 0 ,  the temperature of tlie platc(!il = 0) IS  kcpt at a constant 

dT' 
temperature gradient [ i ,e ,  = A  (constant)] and tlic tcnipcraturc for ( + m) 

ay 

changes to T d ,  where TL is the temperature of the fluid at infinity. 

Under the above assumptions, thc flow ficld is govenicd by tlic tli~rd ordcs 

differential equation which takes the non-dimc~isional forni. Hcncc tlic Iluid Ilow IS  

governed by the following equations: 

Equation o f  continuity 

Equation of motion 

a d  , au' I a f ~ )  a Z u r  k,, ~ ' L I ~  1 1 ~ 1 1  OD,; - +\I  -=---+up + - ------ - - - - [ I '  + gP(T1 - T,') (7.2.2) 
at' ayt p ax1 ayt2 p I p 

Equation o f  energy 

P .  where u = - IS  the co-efficient of the kinematics viscos~ty, 
P 

p = density of tlie fluid, 

p = viscosity of the fluid, 

o = electrical conductivity of the fluid, 

kl,  = co-efficient of elasticity, 

B,= uniform magnetic field applied transvcrsely to tlic plate, 

k t =  permeability of the porous medium, 



g = acceleration due to gravity, 

p = co-efficient of thermal expansion. 

c,, =specific heat at constant pressure of the fluid, 

k =thermal conductivity of the fluid, 

T' = temperature of the fluid, 

S f  =the heat source or sink parameter. 

Tlie initial and boundary conditions of the problem is given by 

t' L 0 : u' = 0, T' = TL f&. yf 2 0 

aT f  
t' > 0 : u' = uo, = A (constant) 

: u f - + 0 ,  T f +  T i  ,/iw ,!1' -3 cn (4 .2 .4)  

We now consider the following non-dinlcl~sio~lal variables and paran~ctcrs in order 

to transform equations (7.2.1)-(7.2.3) into tlon-din1ensional form: 

Now, substituting the above non-dimensional prati~ctci-s in (7.2.1 )-(7.2.3), wc get- 

dT aT 1 d 2 ~ + , ,  
and - + v - = - -  

at aL, Pray2  



Where Rc is the elastic parameter, Ha IS the magnctic field para~nctcr-, 6'1. IS  thc 

Grashoff number, a is the permeability parameter, Pr is the Pr-andtl numbcr and ,'? IS 

the source or sink parameter. 

The boundary conditions of the diniensionlcss form ar-c given by 

uA 
where ,y = 

CT: - T:)li,, 

Note: When x = 0 ,  tllen there i.r no lleat fluu Ji.o/n the plat(. to /he flrtitl 1.c). /lro 

houndat-): condition at tlie plcrte y = O is trtlic~l>crtic*. 

7.3 Solution of the equations 

From the equation (4.2.6), we have- 

\) = constant. 

For the constant suction, let us take 

v = -V 
<I (7.3.10) 

Here the negative sign indicates that the suction towards the plate. 

Thus the equations (7.2.7) and (7.2.8) with the aid of condition (7.3.10) bccomcs 

au ar ap aZu - - v  -=--+- a ]  u I + Rc7 - (Hcr + -)zr + GrT 
at " a y  ax ay2 atall a 



The equation (7.3.1 1) shows that thc fluid velocity i i  is independent of s, and 

this is equation of the function of y and t only. Hcncc from thc equation (7.3.1 I ) ,  i t  

ap . follows that the term - 1s a function o f t  alone. 
ax 

8~ Suppose - = -h(t) (7.3.11) 
ax 

Therefore using the condition (7.3.13) in the equation (7.3.1 I), wc have- 

To solve the equation (7.3.12) and (7.3.14) under thc boundary condition, Ict us 

consider 

11 = ,f()))e-"' , T = g(),)e -"' NII[/ /I = /1,,0-~'' (7.3.15) 

The corresponding boundary conditions are given by- 

Now, using the conditions (7.3.15) in the equations (7.3.12) and (7.3.14). wc liavc- 

a2f af I XGl~e-"l ' and (1 - IZRC)? + v,, - - ( H a  + - - tz),J' = -/I,, + 
av 3)) Q 0, 

Solving the equations (7.3.17) and (7.3.18) with the help of the boundary conditions 

(7.3.16), we have- 



hoe-n' - e - h 2 y ] +  xGre-' [ e - a l )  - e-h2),  and u = e-*"' + 
1 MI 

Ha+--n  

Pr v, + , /pr2  v: - 4 Pr(S + n )  
where a,  = , 

2 

1 
and M I  = a,  ((1 - n ~ c ) a :  - v,a, - (Ha + - - n ) ]  

a 

7.4 Results and discussion 

The figure-I has been plotted to interpret the velocity distribution against the 

variable y>O for the different values of the Prandtl number Pr = 0.71, 2.0, 3.0, when Gr 

= 5, Rc =0.10, H a =  2, S = -0.50, n = 0.05, a =1, x = l ,  h,,=l, v,,=I and t = I .  Thc 

values of the fluid velocity remain fixed at y = 0 and the fluid velocities decrease near 

the plate y = 0. Also, it increases slowly for the increase of the variable y as well as the 

increase of the Prandtl number. But the values of the velocity are very closed among 

the other for the greater values of the variable y. 

The figure-11 can be obtained by plotting the velocity against the variable y due 

to various values of source or sink term S = -0.50, -0.30, -0.10 having Gr = 5, Rc = 

0.10,Ha=2,Pr=0.71,n=0.05,  a =I,  ,y=l,  h,,=l, vo= l  and t =  I .  



In the figure-11, the fluid velocity decreases first for the greater values of the variable y 

and increase gradually for the more greater values of the variable y. Also, the fluid 

velocity distribution increases with the increase of the source or sink parameter. 

The figure-111, we have drawn to represent the curves of the fluid velocity for 

the different values of the magnetic field parameter Ha against y when Gr = 5, Rc = 

0.10, S = -0.50, Pr = 0.71, n = 0.05, a =I,  ~ = 1 ,  h,=l, v,,=l and t = 1. For the 

ascending values of the variable y, we notice that the values of the fluid velocity remain 

fixed at y = 0 and decreases first for the ascending values of y, and also increases for 

the more ascending values of the variable y. But the fluid velocity decreases with the 

increasing values of the magnetic field parameter. 

The figure-IV has been found by plotting the velocity distribution with the 

various values of the elastic parameter Rc against the variable y, when Gr = 5, S = - 

0.50, Ha = 2, Pr = 0.71, n = 0.05, a =1, x =1, h ,= l ,  v,=1 and t = 1. In this figure we 

can observe that the velocity decreases with the increase of the elastic parameter 

considering with the different values of variable y. 

The figure-V has been drawn to represent the velocity distribution for the 

various values of Grashoff number Gr against the variable y, when S = -0.50, Rc = 

0.10, Ha = 2, Pr = 0.71, n = 0.05, ar =1, x = l ,  h,=l, y ,= l  and t = I .  The values of the 

fluid velocities decrease with the increase of the values of Grashoff number dcpcnding 

upon the variable y. 

The figure-VI can be obtained by drawing to show the velocity distribution 

against the variable y with the various values of permeability parameter a = l ,  2, 3, 

w h e n S = - 0 . 5 0 , R c = 0 . 1 0 , H a = 2 , P r = 0 . 7 1 , n = 0 . 0 5 , G r = 5 ,  x = l ,  lz,,=l, v0=l 



and t = 1. From this figure-VI, we observe that the velocity decreases with the increase 

of the permeability parameter depending upon the values of the variable y. 

The figure-VII has been obtained by drawing the temperature distribution 

against the variable y with the various values of the source or sink parameter S = -0.50, 

-0.30, -0.10, when Pr = 0.71, n = 0.05, x =1, v, = l .  The temperature decreases due to 

the increase o f  the values o f  the source or sink term S depending upon the values o f  the 

variable y. 

In the figure-VIII, we have seen that the temperature distribution increases due 

to the increase of the Prandtl number Pr = 0.71, 2.0, 3.0 against the variable y, when S 

= -0.50, n = 0.05, x =1, v,,=l. 



Fig.1: Velocity distribution against y for different values of Pr. 

Fig.11: velocity 'distribution against y for different values of S. 



Fig.111: Velocity distribution against y for different values of Ha. 

Fig.IV: Velocity distribution against y for different values of Rc. 
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Fig.V: Velocity distribution against y for different values of Gr. 

Fig.VI: Velocity distribution against y for different values of a. 
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Fig.VI1: Temperature distribution against y for different values of S. 
d 

Fig.VII1: Temperature distribution against y for different values of Pr 
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