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SYNOPSIS

We discuss a few problems of the cffect of heat transfer and incompressible
electrically conducting fluid flows specially paying our attention when a uniform
transverse magnctic ficld is applicd. Magnctohydrodynamics is defined as that which
deals with the dynamics of an electrically conducting fluid flow (c.g. mercury, copper
sulphatc solution, etc.) in presence of a magnetic ficld. The motion of the clectrically
conducting fluid through the magnetic ficld experiences clectric currents which change
the magnctic ficld, and in the presence of magnetic fickd on these currents, it gives rise
to mechanical forces which modify the flow of the conducting Tuid.

Magnctic ficlds influence many natural and man-made Nows. They are
routinely used in industry to heat, pump, stir and lcvitate liqgmd metals. There is the
terrestrial magnetic ficld which is maintained by fluid motion in the carth’s core, the
solar magnetic field which gencrates sunspots and solar flarcs, and the galactic
magnetic ficld which is thought to influence the formation of stars from interstellar
clouds. The study of these flows is called magnctohydrodynamics. Formerly. MHD is
concerned with the mutual interaction of the fluid flow and magnetic ficlds. The Tuids
must be clectrically conducting and non-magnctic, which limits us to hquid metals, hot
toniscd gases (plasmas) and strong clectrolytes. Magnctohydrodynamics (MHD for
short) is the study of the interaction between magnetic ficlds and moving, conducting
fluids. It 1s of importance in connection with many cngincering problems as well as in

geophysics and astronomy.



The mutual interaction of a magnetic ficld B and a velocity ficld i arises
partially as results of the laws of Faraday’s and Amp'ere, and partially because of the
Lorentz forcc experienced by a current-carrying body. It is convenicent to sphit the
process into the following three parts:

(1) The relative movement of a conducting Turd and magncetic ficld causes an et (of

order ‘17>< B|) to devclop in accordance with Faraday’s law of mduction. In general,

when the current density 1s of order o (i x B). where o is the clectrically conducting,
clectric currents will ensue.

(11} According to Amp'ere’s law, these induced currents must give rise to a sccond,
induced magnetic ficld. This adds to the original magnctic ficld and the change s
usually such that the fluid appears to "“drag' the magnetic ficld lines along with 11

i) The combined magnetic ficld (imposcd plus induced) intcracts with the mduced

current density, J to give risc to a Lorentz force (per unit volume), (.J % BY. This acts

on the conductor and is generally directed so as to inhibit the relative movement of the
magnetic field and the fluid.

If the fluid is non-conducting or the velocity is negligible, there will be no
significant induced magnetic field. Converscly, if o or « are large (in somce sensce),
then the induced magnetic field may substantially alter the imposed magnetic field. 1 1t
is a poor conductor or moves very slowly, then the induced current and the associated
magnctic ficld will be weak. Conducting fluid usually contains ncutral particles and
positive and ncgative charges. So the fluid is ncutral in the large and the gascous Nuid
rcferred as plasma. Thus the uniform of the plasma docs not constitute the clectric

current.
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The thesis will be dealt with the theorctical investigations of clectrically
conducting fluid flow and the cffect of heat transfer in magnetohydrodynamics
problems. In most of the fluid flows, the velocity ficld and temperature ficld mutually
interact which means that the temperature distribution depends on the velocity
distribution. Conversely, the velocity distribution  depends  on the  temperature
distribution.

In these cascs where the buoyancy forces are disregarded and the properties of
the fluid may be assumed to be independent of temperature, the velocity ficld does not
depend on the temperature ficld, while the dependence of temperature ficld on the
velocity ficld persists. Such flows are termed as forced flow and the process of heat
transfer in such flows 1s described as forced convection. Flows in which buoyancy
forces are dominant arc called natural flow and corrcsponding hcat transfer through
such natural flow is known as natural convection. If the natural convection s nol
constrained to a finitc region by boundarics, it 1s called free convection.

In magnetohydrodynamics, the flow of clectrically conducting fluid in presence
of an applied magnctic field is considercd. The magnetic ficld induces current duc to
the motion of the conducting fluids which in turn modifics the applicd magneuce ficld.
while the electromagnetic Lorentz foree resists the fluid motion. The wide application
of the subjcct has been scen in Geophysics, Astrophysics, Acronautics and many other
engineering branches.

The thesis will consist of scven chapters. The chapter-1 is going to be dealt with
the introduction of the thesis. The outline of the magnctohydrodynamics, s
development and applications, fundamental equations of electrically conducting flud

flow and effect of heat transfer in MHD have been discussed in this chapter,
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During the past two decades, a number of significant experiments have been carried oul
revcaling non-Newtonian characteristics  of liquids  where a number  of new
phenomenon have been obscrved in a large number of hiquids, of great technological
and industrial importance. A brief deseription of these liquids s also given in this
chapter. Lastly, a bricf review of carlicr workers and scope of this work have also been
explained in this chapter.

The laminar free convection flow of an incompressible clectrically conducting
sccond order fluid under the action of uniform transverse magncetic ficld over a plate

has been discusscd in the chapter-11. Exact solutions of the fluid velocity w(v,r) and

temperature profile 'Iﬂ’(.v, ) can be obtamed with the help of perturbation techmique,
where y is the distance mcasured of the plate and t 1s the time. It has been observed that
this problem is useful in many engincering probiems and hence our rescarch may be
uscful.

The unsteady Couctte flow of a wviscous incompressible and clectrically
conducting fluid with the hecat transfer between two horizontal parallel plates in the
presence of a uniform transverse magnctic ficld has been discussed in the chapter-111,
when in the case-1, the plates arc at different temperatures and in the case-2, the upper
platc is considered to move with the constant vclocity where the lower plate s
adiabatic. Our results are useful in gcophysical and astrophysical probiems as the
simultancous effects of hydromagnctic, buoyancy forces and coriollis forced are

observed in various types of problems m these branches of sciences.
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A theoretical and numerical analysis of unstcady two dimensional free
convection flow of a viscous ihcompressible clectrically conducting Nuid through a
porous medium due to infinite vertical plate with uniform suction and constant heat
flux under the action of a uniform magnetic ficld has been investigated in the chapter-
IV. The effects of Prandtl numbcer, Grashoff number, magnetic paramcter and the
variablc permeability of porous mecdium on the velocity and temperature profile have
been discussed and shown graphically.

in chapter-V, wc have discussed the motion of the unstecady MHD flow of an
incompressible electrically conducting viscous fluid between two horizontal parallel
porous platcs on the timc-varying motion. The velocity profile and skin-friction arc
obtained due to the effect of the deflection of a strong magncetic ficld on the MHD Now
past between two parallel plates and the results arc obtained and plotted graphically by
taking the different valucs of the magnctic ficld paramcter.

We have discussed in the chapter-VI, the MHD unsteady flow of a visco-clastic
(Rivlin-Ericksen) fluid through an inclined channcl with two parallcl flat plates with
heat transfer including hcat gencrating sources or heat absorbing sinks, when the plates
are moving with the transicnt velocity while the one of these two plate is adiabatic.
Here the fluid velocity and the temperature profile arc obtained by the Perturbation
technique and discussed by interpreting the graphs with the help of different values of

some appcarcd non-dimensional parametcers.
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In the chapter-VII, we have studied the unsteady flow of an mmcompressible
electrically conducting second order fluid through the porolus medium due to infinite
horizontal blate in the presence of uniform transversc magnetic field which includes the
heat generating sources or heat absorbing sinks. Herc the plates are maintained at
temperatures whilc one plate is kept at a constant temperature gradient. The values of
the velocity and temperature distribution arc found out numerically and interpreted with

the help of graph.
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1 INTRODUCTION

I.] Magnetohydrodynamics (MHD), its flows and applications

We have discussed in this thesis a few problems of the cffect of hcat transfer
and electrically conducting fluid flows specially paying our attention when a transverse
magnetic field is applied. Hence in this chapter, we have given a brict account of the
effect of heat transfer and magnetohydrodynamics flows. We have also mentioned the
works of other Scientists related to the problems attempted in this thesis. In the last
article of this chapter, we have given the motivation, extent and scope of our works.

MHD is defined as that which dcals with the dynamics of an clectrically
conducting fluid (e.g. mercury, copper sulphate solution, etc.) in presence of a magnetic
field. The motion of the electrically conducting fluid through the magnctic ficld
experiences electric currents which change the magnctic field, and in the presence of
magnetic field on these currents, it gives rise to mechanical forces which modily the
flow of the conducting fluid.

Magnetohydrodynamics (MHD for short) is the study of the interaction
between magnetic fields and moving, conducting fluids. Magnetic ficlds influence
many natural and man-made flows. Formally, MHD is concerned with the mutual
interaction of fluid flow and magnetic ficlds. The fluid must be clectrically conducting
and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas) and

strong electrolytes.
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The mutual interaction of a magnetic ficld B and a velocity ficld & ariscs
partially as a results of the laws of Faraday’s and Ampere, and partially because of the
Lorentz force experienced by a current-carrying body. It is convenient to split the
process into the following three parts:

(i) The relative movement of a conducting fluid and magnctic ficld causes an e.m.l. (of

order 'ﬁxB,) to develop in accordance with Faraday's law of tnduction. In general,

when the current density is of order o(u x B), where o is the clectrically conductivity,
electrical currents will ensue.

(ii) According to Amplere’s law, these induced currents must give rise to a sccond,
induced magnetic field. This adds to the original magnetic field and the change is
usually such that the fluid appears to ‘drag’ the magnetic field lines along with it.

(i11) The combined magnetic field (imposed plus induced) interacts with the induced
current density, J to give rise to a Lorentz force (per unit volume), J x . This acts on
the conductor and is gencrally dirccted so as to inhibit the rclative movement of the
magnetic field and the fluid.

If the fluid is non-conducting or the velocity is negligible, there will be no
significant induced magnetic field. Converscly, if ¢ or u are large (in some sense),
then the induced magnetic ficld may substantially alter the imposed magnetic ficld. It it
is a poor conductor or moves very slowly, then the induced current and the associated

magnetic field will be weak.



Conducting fluid usually contains neutral particles and positive and negative
charges. So the fluid is neutral in the large and the gaseous fluid referred as plasma.
Thus the uniform of the plasma does not constitute the clectric current.

In 1942, the Engineer-Astrophysicist Alfvien expressed that 1f a highly
conducting fluid is moving through the magnetic ficld, the induced clectric currents
will tend to inhibit the relative motion of the fluid and the magnctic field, so that the

magnetic field is convected by the fluid.

|.1a Basic characteristic of MHD

If the solid or fluid materials arc moving through thc magnetic ficld, then it
experiences electromagnetic forces and also if the materials arc clectrically conducting
and the current path is available, then the clectric currents cnsue.

Alternatively, currents may be induced by the change of the magnetic ficld with
time. There are two consequences, which are given as follows:

(1) An induced magnetic field associated with the currents appears, perturbing the
original magnetic field.

(11) An electromagnetic force due to the intcractions of currents and the ficld appears,
perturbing the original motion.

1.1b MHD approximation

The following postulates are considercd to derived cquations for MHD flow
(a) Hydrodynamic and electromagnetic considerations
(1) The fluid is treated as continuous and describable in terms of local propertics such as

pressure, velocity, temperature, viscosity, ctc.



(i1) The system of our investigation is dcfined as averages over clements large
compared with the microscopic structure of matter but small cnough in comparison
with the scale of the macroscopic phenomenon to permit the use of the differential
calculus to describe them.

(ii1) For the good MHD results, relating collision-frec situations arc considered.

(iv) All velocities are much smaller than the velocity of light, ¢ (3x 10" w/scc.
approx.), hence the non-relative electromagnctic theory is constdered in MHD flow and
the relative condition is not necessary.

(v) A purely local view can be misleading, because the local statement conceals the
essence of electromagnetism where by charges at rest and in motion, and also magnctic
materials act upon one another at a distance.

1.1c Electrical properties of the magnetohydrodynamics

If the fluid is electrically conducting, then thc MHD will be ditfered from the
ordinary hydrodynamics. It is not magnctic; it effects a magnetic field not by its mere
presence but only by virtue of electric currents flowing in it. The fluid conducts
because it contains free charges (ions or electrons) that can move indcfinitely, but it
may also be a dielectric and contain bound charges (e.g. in the form of molccular
dipoles), which can only move a limited extent under clectric ficlds. The clectrostatic
part of the electric field i1s due to the free and bound charges distributed in and around
the field.

I.1d Electric and magnetic field effect on MHD

A charged particle such as an elcctron suffers as the given forces:



1. A charged particle is repelled or attracted by other charged particles, the total force

on the particle per unit of its charge duc to all the other charges present being the
electrostatic field £. From the Coulomb’s law, it follows that £ is irrotational (i.c.
curlE =0) and E can be represented by the ncgative gradient of an clectrostatic
potential v.ie. E = —gradv .

2. Charged particles in the motion of the fluid and also magnctic materials produce the

phenomenon of magnetism, to describc which the economically it is conveniently to

invent another magnetic field vector B . It has the following effects of two forces.

(1) A charged particle moving with the velocity v m/scc. relative to a certain frame of
reference suffers a magnetic force ¥ x B (Newton) per units of its charge. The foree is

perpendicular to ¥ and B, and the dircction of B is that in which the particle must

travel to feel no magnetic force.
(i) If the magnetic field B is changing with time relative to a certain frame of

reference, then a particle will suffer an induced clectric force £, per units of its charge, .

which is defined by divE, =0 and Faraday’s law gives us as

- 9B
curlE, = —— (1.1.1)
ot
But there is a stronger condition on B, namely divB = 0. (1.1.2)

This shows that the magnetic field lines can never end; though they do not form closed

loops.
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1.le Low-frequency approximation on MHD

The Amp’ere-Maxwell law states that the magnetic ficld is related to the moving

charges and changing the electric ficld, which 1s defined as

curlB _ . % (1.1.3)
U ot

where J is the current density due to the net flow of all charges, frec or bound, g is
the permeability of free space and &, is the permittivity of the free space. The last term
of right side of (1.1.3) is called thc Maxwecll’s condition, which states that the charge of

the total electric field £ affects B. The charge distnibution appears umimportant in

low-frequency electromagnetism and MHD. The possible appears arc
. . . oL || . o
1. The magnitude of the ratio | curlB/ u)/| ¢, 5 is of order (B/ )/« Ef or of
ot

2

1
order —2—1(2 or of order 7
£

0

where B and E are of the typical magnitudces, d

length scale, f frequency, A wavelength ¢/ f of clectromagnctic radiation of

1 : o
frequency and ¢? =——. This ratio is usually very large and the Maxwell term
EH

oF | . . : : .
£, > is negligible unless the frequency is very high. Thus undcr the low-frequency,

the Amp'ere-Maxwell law becomes curiB = 1 .

: . 0Op . oE : _ =
2. In dielectrics a—p is of the samc order as /3— and its contribution to .J bc
t t

neglected.



. = . D .
3. The total charge density q is determined by divE and is of order «, — or of order
C

Bv . . e
& e Thus the convection current is  taken to  be  neplected o

o

2

(,Bv* 1dY(B/ud)= _v_{ , which is very small. Thus neglecting the convection current
¢

(gv) and the polarization current %’1 . the current density can be writien as
t
J =6(E +VxB). (1.1.4)

4. The ratio of the magnitudes of electric and magnetic parts of the body force

o= = E? B BT ! o
gE +J x B is of order (¢, — or ¢, )/ — =~ which is very small unless the
d d wd ¢

frequency is very high. Thus the effect of g (i.e. g is net charge per unit volume) and
the electric body force gE is negligible in MHD.

From these above conditions, we have noticed that the charge distribution in
MHD has no importance under the low-frequency approximation.

{.1f Applications of MHD

MHD operates on every scale, from the vast to the minute. For examplc,
magnetic fields pervade interstellar space and aid the formation of stars by removing
excess angular momentum from the collapsing interstellar clouds. Closer to home,
sunspots and solar flares are magnetic in origin, sunspots being caused by buoyant
magnetic flux tubes, perhaps 10° Km in diameter and 10° Km long, crupting from the

surface of the sun.



MHD is also an intrinsic part of controlled thermo-nuclear fusion. Here plasma
temperatures of around 10°K must be maintained, and magnetic forces arc used to
confine the hot plasma away from the reactor walls.

In the metallurgical industrics, magnetic fields are routinely used to hecat, pump,
stir and levitate liquid metals. Perhaps thc earliest application of MHD is the
electromagnetic pump. This simple device consists of mutually perpendicular magnetic
and electric fields arranged normal to the axis of a duct. Provided the duct is filled with
a conducting liquid, so that currents can flow, the resulting Lorentz force provides the
necessary pumping action. Firstly, it was proposed back in 1832 and the
electromagnetic pump has found its ideal application in fast-breeder nuclcar rcactors,
where it is used to pump liquid sodium coolant through the reactor core.

Application of MHD to natural cvents received a belated stimulus when
astrophysicists came to realize how prevalent throughout the universe are conducting,
ionized gases (plasmas) and significantly strong magnetic fields. In [889 Bigclow
guessed that there were magnetic ficlds on the sun and Hale and the Babcock‘s later
confirmed this. The final implication was that MHD processes must dominate most
areas .of astrophysics. In 1918 Larmer made the attractive suggestion that the magnetic
fields of the sun and other heavenly bodics might be duc to dynamo action, whereby the
conducting material of the star acted as the armaturc and stator of a sclf-cxciting-

dynamo.
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A related application is the use of MHD acceleration to shoot plasma into
fusion devices or to produce high-encrgy wind tunnels for simulating hypersonic fhght.
Since bodies moving at high specd arc preceded by a sock wave which can ionize the
air, another possibility is the use of MHD to affect the airstream for purposes of thermal
protection, braking, propulsion or control. MHD effects can also arise from the passage
of bodies or waves through the ionosphcere in the presence of the earth’s magnetic ficld.

Other potential applications for MHD include electromagnets with the fluid
conductors, various energy convcersion or storage devices, magnctically controlled
lubrication by conducting fluids, etc. MHD has a pecuhar attraction for
aerodynamicists and mechanical engineers; instcad of being confincd to pushing at the
edges of fluid streams, they are enabled by MHD to grab the fluid in midstream.

Perhaps the most widespread application of MHD in engincering is the use ol
electromagnetic stirring. Here the liquid metal which is to be stirred is placed in a
rotating magnetic field. In effect, we have an induction motor, with the liquid metal
taking the place of the rotor. This is routincly used in casting operations to homogenise
the liquid zone of a partially solidified ingot. The resulting motion has a profound
influence on the solidification process, ensuring good mixing of the alloying clements
and the continual fragmentation of the snow flake-like crystals which form in the melt.
This result is a fine structural, homogencous ingot.

Another common application of MHD in metallurgy is magnctic levitation or
confinement. This relies on the fact that a high-frequency induction coil repels
conducting material by inducing opposing currents in any adjacent conductor (opposite

currents repel each other).
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Thus a ‘basket’ formed from a high-frequency induction coil can be used to levitate and
melt highly reactive metals, or a high-frequency solenoid can be used to form a non-
contact magnetic valve which modulates and guides a liquid metal jet.

MHD is also impbrtant in electrolysis, particularly in those elcctrolysis cplls
used to reduce aluminium oxide to aluminium. These cells consist of broad but shallow
layers of electrolyte and liquid aluminium, with the electrolyte lying on top. A large
current (perhaps 200K Amps) passes vertically downwards through the two layers,
continually reducing the oxide to metal. The process is highly cnergy intensive, largely
because of the high electrical resistance of the electrolyte.

There are many other applications of MHD in engincering and mctallurgy.
These include electromagnetic (non-contact) casting of aluminium, vacuum-arc
remelting of titanium and nickel-bascd super alloys, electromagnetic removal of non-
metallic inclusions from melts, electromagnetic launchers and so-called “cold-crucible”
induction melting process, in which the melt is protected from the crucible walls by a

thin solid crust of its own material.

1.2 Fundamental equation in MHD

Larmor [1919] has initiated the study of the subject in connection with the
astrophysical problems. After Larmor, Cowling [1934], Walen [1944, 1946], Mcnvcl
[1951], Dungey [1953] and others have studicd the presence of the magnetic field
inside the sun and its effects on the sun-spots. Earli\er studies of thc motion of
conducting fluids in the presence of external magnetic fields which deserve mention are
those of Hartmann [1937] on the flow of conduéting fluid across a magnctic ficld and

the theory of magnetic storms has been developed by



Chapman and Ferraro [1931, 1933, 1940]. Though their works contained a few
new ideas but there is no doubt that the development of the subject has followed mainly
from Alfv'en’s work [1949].

The equilibrium of conducting fluids under the action of the magnetic ficld on
the currents and the fluid pressure is of considerable interest in astrophysics and
thermonuclear work. Lundquist [1950] has made the first attempt in this problem of
magnetostatic, while Dungey [!1958] and Menzel [1951] have considered the
application to astrophysical problems.

It 1s possible to attain equilibrium in a conducting fluid if the current is parallel
to the magnetic field. For then, the magnetic forces vanish and the equilibrium of the
gas is the same as in the absence of magnetic fields. Such magnetic fields are called
force free. They were first postulated by Schluter and Lust [1954]. The cxistence of
force free fields has been firmly established theoretically by Chandrasckhar and
Kendall [1957] independently.

Herlofson  [1950] and Hulst [1951] have  demonstrated  that
magnetohydrodynamic waves can also be excited in compressible conducting media.
Attempts to demonstrate the existence of magnetohydrodynamic waves in the
laboratory has been made by Lundquist [1951] and by Lchnert [1954, 1955] In
Lundquist’s experiment, it has becen seen that because of dissipation, true standing
waves can not be excited. Nevertheless, the experiment suffices to demonstrate the
existence of magnetohydrodynamic waves. Lehnert, in his experiment, has replaced '

mercury by liquid sodium and has been able to make more refined measurements,



Teller and Haffman [1950] have discussed the problem of
magnet;)hydrodynamic shock waves. A more detailed discussion for velocities which
are small compared with the velocity of liquid has been given by Helfer {1953]. In
Geophysical problems, the maintenance of carth’s magnetic field and its sccular
variation has been studied by Bullard [1948, 1949], Elsasser [1950, 1956], Parker
[1955], Hide [1965], Vennezian [1967] and others. Karman [1959] has given a revicw
of the work done on the application of magnctohydrodynamics to engincering and
technical problems. Sutton [1959], Curzon [1960], Mounel and Mather | 1962}, Mcgrath
[1963] and many others have discussed the feasibility of magnctohydrodynamic
principles in controlled thermo-nuclecar fusion research. Huges and Elco [1962], Snyder
[1962] and others have studied magnetohydrodynamic lubrication problems and found
that the application of magnetic field causcs the increasce of load bearing capacity.

We consider the flow of an incompressible clectrically conducting fluid
presence of an applied magnetic ficld. The fundamental equations governing the flow
field and the temperature in MHD can be obtained from the corresponding cquations in
ordinary hydrodynamics with the suitable modifications. The extra cquations oceur in
MHD are the Maxwell’s electromagnetic ficld equations.

1.2.1 Maxwell’s electromagnetic equations

In magnetohydrodynamics, we arc mainly concerned with conducting fluid in
motion and hence it is necessary to consider the electrodynamics equations of moving
media. When charges are in motion, the electric and magnetic ficld will be associated

with the motion of the fluid, which will have the space and the time radiation.



This phenomenon is called the clectromagnctism and wc  study the
electromagnetic wave motion. The study will involve time dependent propertics of the
electric and magnetic fields. The behaviour of which is described by a sct of cquations

called Maxwell’s equations. These equations under non-relativistic assumptions are:

curlE = —%1—?— (Faraday’s law in differcntial form) (1.2.5)
curlH = J (Amp/ere-MaxweH cquation) (1.2.6)
divE = % (Gauss’ law) (1.2.7)
divB =0 (Solenoidal nature of B) (1.2.8)
§=;1,,,ﬁ (1.2.9)
D=¢E (1.2.10)

where E, B, H, J, D are the electric field, the magnetic ficld, the magnctic ficld

intensity, the electric current density and the displacement vector respectively: g, . ¢

electric charge density.

1.2.2 Ohm’s law

is added to the Maxwell’s equation. The conduction current density ./ in the stationary

condition is formulated mathematically as
J=cE (1.2.11)

where E is the electric field intensity and o is the electrical conductivity of the

medium.



If a charged particle is moving with the velocity u through thc magnetic ficld
B, it suffers a magnetic force i x B per unit of its charge. That is the induced clectric

field is given by i x B . This force is perpendicular to & and B . Again the total force
on a particle per unit of its charge moving locally in the medium with the velocity «

i.e., the Lorentz force is given by

E+iixB

Hence under a non-relativistic approximation, the electric current denstty can be written

as

J =o(E +iix B)
This equation is known as Ohm’s law.
1.2.3 Hall current

We know that the Lorentz force on a particle (in a conductor) per umt of its
charge due to its motion of its velocity # undcr the action of a transverse magnetic
field B is £+ x B (see, Shercliff, 1965).

Let free charges of negligible inertia be drifting through 1t under the action of
this Lorentz force. The right conclusions cmerge if it is supposed that cach drifting
particle also suffers a drag force due to collisions equal on thc average ki , where & is
a constant for each particle. This represents the dissipative phenomenon of resistivity,

Neglecting the inertia of the frec charge, we have-

OlE +ii x B) = kv '(1.2.12)

Summing over the free charges in the clement of conductor, we get-

e 3 ku :
p.E+J xB= Z—é‘— per unit volume



e B+l X8y K (1.2.13)

n

Pe o,
= . ) pu : "
where J, is the conduction current Z—g— due to the drift of the charges and p is the

net free charges per unit volume. The experiments show that the right hand side 1s

proportional to j,_. Hence we have

Coi

E+J"X

q [

n

P.

duc 1o B

: : . , J.x
where o is the electrically conductivity of the fluid. The extra term ——
P,

is known as Hall effect. If the free charges are clectrons of charge- ¢ and the number

density n, then

>

_J J.
E-2 X2 _Ze (1.2.14)
ne g

Hall effect is merely due to the sideways magnetic force on the drifting frce charges. In
liquid conductors, Hall effects are negligible being the number of free charges infinite.
When the conductor is moving with the velocity @ locally, the velocity of a charge is
u+v if v is its relative velocity to the conductor. Summing over all charges, frec or -
bound, we have-

e(tt +v)

o

Total current J = Z

- ev
=pu+ -6— (1.2.15)

in which the term p,u is the convection current, a non-dissipative effect.
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ev o ) . - . .
The term Z—-g— can split into (1) the convection current J, due to the motion ol free

charges rclative to fluid, which is a dissipative cffect and (it) the polarization current
due to the motion of bound charges relative to the fluid.
The balance of forces on a frec charge is
elE +(ii + V)% B] = kv (1.2.16)

which lcads to the results that Ohm’s law is

- .
E+iux=—- (247
Ie3

if the hall term due to Ze(i‘ x B) 1s negleeted.

With the Hall term, the Ohm’s Law can be written as

J( =G[E+[ix[§|~—(r——(./,xi§). (1.2.18)
ne

1.2.4 Equation of continuity

Let us consider a fluid of density p, moving with a velocity v. Then the mass
conservation cquation, known as the cquation of continuity 1s

divpﬁ:—(jﬁ2 (L.2.19)
2/

or pdivy = ——— (1.2.20)

D . . o
where F denotes the substantive time-derivative.
f

An incompressible fluid is onc where cach travelling fluid clement charges its

. .. . . D _
density negligible, even though p is the non-uniform. Then T)'(—) = () and thercefore
' /

divv =0 (1.2.21)



1.2.5 Momentum conservation equation

Magnetohydrodynamics differs from ordinary dynamics. In MHD. the fluid is
electrically conducting. It is not magnctic; it cffccts a magnetic ficld not by its merc

presence but only by virtue of electric current flowing in it. If an clectrically conducting

fluid moves with a velocity # in presence of magnetic field B . then the body force per

unit volume can be written as (see Shercliff, 1965)-

F=pE+JxB (1.2.22)

¢

-

. . . . . ~ u
The ratio of electric and magnetic parts of this body force is ot the order —, where «
pE

is the characteristic velocity and ¢ is the velocity of light.. Thus p £ can be onutted.

Hence 1in the case of the viscous fluid, the cquation of the motion in

magnetohydrodynamics is

p%i=—vp+jxi}+yv2ﬁ (1.2.23)
t

And also, in case of an incompressible fluid with 4 constant, the equation of the

motion of the fluid is

D—‘ > g R
Pt = —Up+Jx B+ uViii (1.2.24)
Dt
1.2.6 Magnetic diffusion equation
The MHD approximations are grouped togcther below
VxE:—Z—Ij(Faradays’ law) (1.2.25)
J =0(E +iix B) (1.2.20)

and VxB=p J (1.2.27)

"
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Eliminating. £ and J from the cquations (1.2.25)-(1.2.27). we get the magnetic

induction equation as follows

aa_B:Vx(ﬁxB)-UmVx(VxB), (1.2.28)
{

where v, = L is the magnetic diffusivity or thc magnetic viscosity.
oU,
With the help of (1.2.8), the equation (1.2.28) can be written as

%li:vx(axé)wmvzé (1.2.29)
t

when the magnetic Reynolds number is very small, the equation (1.2.29) is called the

magnetohydrodynamics diffusion equation. When the magnetic Reynolds number

nr

(R, =—) is very small compared with unity, ncglecting the term Vx (i x 8), the
v

n

equation (1.2.29) becomes as

aa—[f =v, VB (1.2.30)

This is the equation of diffusion of a magnetic ficld in a stationary conductor, resulting
in the decay of the field.

When the magnetic Reynold’s number R, is the large compared with the unity, the

equation (1.2.29) reduces approximately to

a—B=vX(ax1§) (1.2.31)
ot
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1.2.7 Energy equation in MHD
The charge within a material moves under the action of clcctromagnetic forces
colliding and exchanging energy with the rest of material. This fact mecans that the

electric work can be done on or by the matcrial. It has bcen found that the

electromagnetic field puts energy into thc matcrial at the rate £.J per unit volume and

time (see Shercliff, 1965). The current density J can have three possible forms -
conduction, convection and polarization. Thc contribution of convection and
polarization on the work done is negligible in MHD; only that of the convection current
plays a significant part.

Ohm’s law, without Hall current, is given by the equation (1.2.17). Hence
- g . .
EJ=—-J(uxB) (1.2.32)
o

The first term on the right side of the above equation (1.2.32) represents the Ohmic

dissipation and the second term can be written as
~J(iixB)y=ii(J x B) (1.2.33)
This describes the phenomenon of electromechanical energy conversion. i x B) is

the rate at which the magnetic force J x B docs work on the conductor as a whole, The

term iZ.(J x B) pushes the fluid - cither creating kinetic energy or helping to overcome

: : . JEo
other forces or the reverse if the term is negative. The term ~— is positive and the
o

dissipated part in the form of heat. Therefore for an incompressible fluid, the equation

of energy in MHD is

72

DT - J
pc,—— = kV°T + pg +— (1.2.34)
Dt (o}
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where ¢, is the specific heat at constant pressurc and ¢ is the dissipation function

given by
(Gu)z v [aw)’ ov au) (ow ov) [c?u r')w)2
P=2%—| +|—| +|— | t+| —+— | | —+—| +| —+—
Ox oy 0z ox dy oy oz 0z Ox
2
_é(%+%+%w_) , (1.2.35)
X z

1.3 Non-dimensional parameters in MHD flow

For an unsteady flow of incompressible clectrically conducting viscous fluid,
the equations of motion, magnetic diffusion and cnergy arc followed as

Du

pB—=—vp+JxB+w2a+pvy/ (1.3.36)
t
.a§=vx(axé)+u,,,vzz}' (1.3.37)
ot
T 72
pcl,a—T=kV2f+,u¢+—J— (1.3.38)
ot o

where p is the density of the fluid, o is the electrically conductivity of the flwid, 4 is
the permeability of the medium, ¢, is the specific heat at constant pressure, & is the
thermal conductivity of the fluid, p is the pressure of the fluid, y is the gravitational
potential and ¢ is the dissipation function which is given by (1.2.35).

Let us introduce the non-dimensional quantitics with the helpof 7, L, B, ¢,

H,,J, and put
. oxX ., W v w, ., T ol
xlz._”u':_,v'z__,t’:_—_,T:___‘/7:p2,¢:¢”
L u, u, L T o u’
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D u D ) q/ ry} E [:I F 1! ¢ '7
. =2 — = — B:———:—————:H’J = —, (]339)
V LV ( ,)’ t// Bn Hu ']n

DT L\ Dt gL’

where u, and L is the characteristic vclocity and length respectively, the subscript o'

refers to a characteristic value and i = 1, 2, 3.

Substituting the conditions (1.3.39) in (1.3.36)-(1.3.38), wc get-

_@_:_V'p'+__l.-V'2{'———l——V'(//'——l—2l?l'x(V'x H (1.3.40)
Dt' Re Fr T
@=V'x(g'x§')+._l_v'2§' (1.3.41)
ot’ Rm
' - 2 .
or_ L gep, By ME G (1.3.42)
Dt PrRe Re Re

The non-dimensional parameters which arc appeared as the following co-efficients

these equations:

L .
Re = ﬁé (Reynolds’ number), Rm = il (Magnetic Reynolds’™ number),
v v,
e, v .
Pr = ——k-—(Prandtl number), p.. = — (Magnetic Prandtl numbcr),
L)IY'
172 b
M=BL < (Hartmann number), Fr = -li'—(Froude number),
pU gL
and M, = E/“,—’(Magnetic Mach number), where 4 is the AIfv' en number, A = ﬁ—
up

The equation of magnetic diffusion (1.2.29) has an analogy with the equation governing
the diffusion of vorticity @ of an incompressiblc non-conducting viscous fluid given
by

%?:Vx(ﬂxa"))ﬂ)vzc?) (1.3.43)

where v is the kinematics viscosity of the fluid.
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The imperfection in the analogy is that @ is intimately related to o (i.c.
@ =V xii) in a way that B is not, but it turns out that this docs not prevent the usc of
the analogy to suggest results concerning B . From the cquations (1.2.29) and (1.3.43),
we can make the same kind of statement namely that the local rate of change of B or

w results from the local net effcct of (i) convection {i.c. the term, Vx (i x B)! and
diffusion (i.e. the term v, V2B).

1.3.1 Large magnetic Reynold’s number

In any region of length scale &, wherce the convection and diffusion are equally

important, the two terms on the right hand sidc of the equation (1.2.29) must be

Vx(ixB) _ud
v, VB " v

m "

comparable. Thus- (= Rm) (1.3.44)

v . :
so that 0 must be of order —= . If the wholc ficld of intcrest has a length scale 1. such
u

o

that Rm >>1, then L >>3J, Rm bcing bascd on L only within a limited region of

length &, where B changes significantly, gradients can be high enough for diffusion
and only dissipation matters much; clscwhere it can be neglected. Thus for the large
Rm , convection dominates and magnctic boundary layer approximations arc expected

to work near sources of field and elscwhere the approximations of perfect or infinite

conductivity would be valid, the diffusivity being zcro. So E+iixB=0 and the
convectional one holds away.
Again, if the characteristic time is t, then from the cquation (neglecting the diffusion

term)
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B vx(ixB) (1.3.45)
ot
we have, QE = §i ~ Ei let = A (1.3.40)
ot t L u

o

u

o

Thus the characteristic time in the flow problem, 1s the transit time [——j during which

"

172
) ) ) v ) e
a field disturbance diffuser a distance of order (———-] which 1s much less than L if
u

Rm >> 1. Hence the diffusion is negligible.
1.3.2 Small magnetic Reynold’s number
This is the other extreme case, which occurs when the diffusion is dommant and

any imposed field én is hardly affccted by the fluid motion. It diffuscs as if the fluid is

stationary where there 1s no induced current; the ficld is equal to the imposed ficld.

From Maxwell’s equations
curl H =J (1.3.47)
and B=pu, H (1.3.48)

where u, is the permittivity of the medium.
Due to the absence of induced currents, we get-

curl B, = 0.
From Ohm's law, we have the induced current .J, is of order ow, B, . The induced ficld
B, is determined by

u,J, =curl B,
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and is therefore of order u,0ou L ; thus

"

B
—= u,ou,l (= Rmn)
2| (

[

when Rm is low, the induced field can be ncglected entirely to replace B by the

known imposed field E" in all thc magnctohydrodynamics cquations. In this casc,

u,J =curl B can be ignored but divJ =0 must still be retamed however. As the

. v . Rm : . .
magnetic Prandtl number — is equal to e onc can arrive at a better appreciation of
v c

dissipation phenomena in magnctohydrodynamics from this relation. This ratio is
actually the ratio of heat gencerated by viscous cffects to the heat generation due to the
Joule heat. When it is small, as it is in liquid mctals and low tempcerature plasmas,
magnetic field diffuses much more rapidly than the vorticity and magnctic boundary
layers are much thicker than viscous oncs. This makes for simplifications such as the

neglect of viscosity in the magnctic boundary faycr. Thus when Rmi is small, the
magnetic field decays by Ohmic dissipation. Omitting the term V x (i x B), which is
small, the induction equation becomes

9B u, VB
ot

From this equation, it has been noticed that-since the magnetic ficld 8 always decays,

2
it tends to vanish in a characteristic time (. which is given by = —.
K

In mathematical analysis, it is convenicnt frequently to assume Rm — (0. This
approximation gives the idea of some rcal situations and in this we have solved a few

problems with approximations.



1.4 Boundary conditions on magnetohydrodynamics

When clectrically conducting fluid is in contact with a rigid surfacc (or with
another unmixed fluid), the following boundary condition must be satisficd in order to
maintain contact: the fluid and the surface with which the contact 1s preserved must
have the same velocity normal to the surfacc.

Let 7 denote a normal unit vector drawn at the point of the surface of contact
and let v denote the fluid velocity at that point. When the rigid surface of contact is at
rest, we must have v.i =0 at each point of the surface. This cxpresses the condition
that the normal velocities are both zeroed and hence the fluid velocity is tangential to
the surface at its each point.

Again, if the rigid surfacc be in motion and « s its velocity at the point, then
we must have-

V.a = Ul
= Wv-u)n=0, (1.4.49)
which expresses the fact that there must be no normal velocity at the point between
boundary and fluid, that is, the velocity of the fluid relative to the boundary is
tangential to the boundary at its cach point.

For inviscid fluid, the above condition must be satisfied at the boundary.
However, for viscous fluid (in which there is no ship), the fluid and the surface with
which contact is maintained must also have the same tangential velocity at the point.

The above mentioned kincmatics boundary conditions must hold independently
of any particular physical hypothesis. In this case of a non-viscous fluid in contact with

rigid boundaries (fluid or moving), the pressurc of the fluid must act normal and

continuous at the boundary.
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The Maxwell’s equations (1.2.25) and (1.2.27) or their equivalent cquations arc
valid only for those points in whose neighbourhood the physical properties of the
medium vary continuously. On the boundary of the flow ficld. the physical properties
of the medium may exhibit discontinuities. For instance, at a solid boundary, the
electromagnetic properties of the MHD will changc abruptly to those of the solid.
Across such a surface of discontinuity of electromagnetic propertics, the following four

conditions hold.

I. The transition of the normal component of magnctic induction B =, H is

continuous, 1.e.,

(By - B,)ii =0 (1.4.50)
where #n is the unit vector normal to the surface of discontinuity. Subscripts | and 2
refer to the values immediately on each side of the surface.
2. The behaviour of the magnctic field A at this boundary is

Ax(H,-H)=J ( (1.4.51)

A}

where j.‘ is the surface current density. For finitc electrically conductivity, o # o, J

is zero; whereas for infinite electrical conductivity, o = m, .7\ may be different from

zero.

3. The transition of the tangential component of the clectric ficld £ is continuous, i.c.,
Ax(Ey—E)=0 (1.4.52)

4. The behaviour of dielectric displacement D = ¢E at this boundary is

i(D,-D,)=p,. (1.4.53)

where p,, 1s the surface free charge density.
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For most of our problems of magnetohydrodynamics. we may neglect the

surface current density J. and the surface free charge density p, . Hence our

boundary conditions become that both the tangential components of H and [, and the
normal components of B and D are all continuous across a surface separating a body
and a fluid or two fluids. The distributions between A and B . and between £ and D

should be noticed here because the values of g1, and ¢ may be different on both sides

m

of the boundary.

1.5 Rivlin-Ericksen fluid

Rivlin-Ericksen (1955) considered the theory of isotropic material for which
they considered that the stress depends on the spatial gradients of velocity, aceeleration,

upto an order (N-1)th acceleration. Using the invariant requirements, they showed that

the stress must be given by an isotropic function of the tensors 4, as
7= LilAus Az e A] (1.5.54)
where f obeys an identity.
0 R Ao 107
= f,104,,,07, QAQM.,QT; ................... NoY IR . (1.5.55)

for all orthogonal tensors Q. The tensors Q' denotes the transpose of Q.
The tensors 4, are called Rivlin-Ericksen tensors and can be generated successive

material differentiation of the squared arc clements ds” as

N

D .
o (ds*) = Ay, dx'dx’ (1.5.56)




where g is the material or substantive derivative defined as
4

Dr 9%,y (1.5 57)
Dt ot

The recurrence formula for 4,,,, may bc written as

Ay, =V, tVv,, = 2eu ,
Dv
m —_ I
Ay, =a,, +a,, +2v"v, | (a =—+ (1.5.58)
Dt
_ k v, D
and A4y, = Anauv., +4 vi+—A4

(N=LH " (N-1)y
Dt

The fluid governed by the constitutive equation (1.5.54) 1s called Rivhin-Ericksen flund
of complexity N . The next important class of Rivhin-Ericksen fluids have the

constitutive equation of the form
T,: = fu[Amkn Aa) (1.5.59)

For isotropic fluids, if ¢’ is considercd as a function of A, and A,, only, then the

equation (1.5.54) and (1.5.55) with the help of (1.5.59) gives us as
ry = U + 0401+ 1[4y 1+ 1[40, 1+ 1,401 + 1A A
+[ A AW+ s A LA [ Ay )+ [A AL+ 1414 A, ) + 145,014, )
A WAL+ A TAG T TAG 1+ AR AT+ 2 LA AL T +T AL 4]
+ Al A VA ) + A, )14, 1) (1.5.60)
where u, (m=0,1,2,............. ,8) arc scalar functions of the nine invariants of tensors

[4,,] and [4,,].
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For viscometric flows, all tensors [A4,,,] cxcept [4,,] and [A,,] vanish. Markovitz

(1957) observed that u, (m=4.5, . ........ .8) may be omitted without affecting the

solutions. So, then -the reduced constitutive cquation takes form,

T, = —pé‘” + ,u,A“W + ,UzA(zw + /‘.‘A(lum"’uw (l.5.6l)A
where p = -y, is the determinate isotropic pressure,

u, = co-efficient of ordinary viscosity,

U, = co-efficient of visco-elasticity

u, =co-efficient of cross viscosity.

A fluid governed by the equation (1.5.61) is called an incompressible second
order Rivlin-Ericksen fluid. We can also writc constitute equations of higher orders in
this way. All three material constants can bc determined from the viscometric equation
of state for any material behaving as a second order fluid. Markovitz and Coleman
[1964] proved that u, is negative (experimentally also, it has been found negative
under thermodynamical considerations).

Although the general Rivlin-Ericksen fluid accounts for shear dependent
viscosity and normal stress effects; yet it sharcs the Newtonian fluid as its special case.
The effect of changes in shear rate with time upon the stresses in a visco-clastic Huid
were incorpdrated into the constitutive equations by Rivlin and Ericksen.

When [4,,]=0, for N=1,2, ... .n) the cxtra stress on a Rivlin-Ericksen fluid

can not change in time, but it does in actual rclaxation cxperiments on visco-clastic

materials such as high polymetric fluids.
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1.6 Non-Newtonian fluids

The physical property that characteristics of the flow resistance of simple fluids
is the viscosity. All real fluids arc viscous, a forcc of intcrnal friction, offering
resistance to the flow that always arises betwecn the layers of a fluid moving at
different velocities in relation to onc anothcr. Fluids which obcys Newton's law of
viscosity are known as Ncwtonian fluids. Common fluids like water, air and mercury
are all Newtonian fluids. Fluids which do not obcy Newton's law of viscosity arc
known as non-Newtonian fluids. Thus, for such fluids the shear stress is not
proportional to the velocity gradient. Fluids Iike paints, coal tar and polymer solutions
are all non- Newtonian fluids. According to Newtonian law, the tangential force acting
at any point of the flow in the planc oriented in the dircction of flow is proportional to
the negative of the local velocity gradient

0
r, = —;J—L ) (1.6.62)

6x/

where u is known as the dynamic viscosity or simple viscosity. Kinds of fluids that
have in this fashion are termed Newtonian fluids.

The equation (1.6.62) which dcfines a Newtonian fluid can be applicd
unidirectional flows only. However, thc dcfinition of Newtonian fluid in which the
stress depends linearity on the ratc of deformation may be generated to three-

dimensional flows using the rate of dcformation tensor.

1{og, 94,
E = —| — + — 1.6.63
' Z(Gx, ax,] 00

where q is the local velocity of the fluid particle.
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We can redefine Newtonian fluid as one that satisfies

T, =-pd,; +2¢, (1.6.64)

I fori=j
0 fori=0

where the Kronecker delta §; = {
There are quite a few industrially important fluids which don’t obey the Newton’s law.
The properties of these fluids are not only function of its state of the substance but also

depends on the process parameters, the variation of velocity and temperature, they are

known as non-Newtonian fluid. The relation between 7, and ¢, are non-linear for non-

Newtonian fluid (such fluids are primarily pastes, slurries, high polymers, blood, jcllies

and similar food product, polymeric melts, etc.).

. . , . ov,
According to the Newtonian law of viscosity, the plot of 7, versus [——’] for

ax,

a given fluid shows a straight line through the origin, and the slope of this line

represents the viscosity of the fluid at a given temperature and pressure. Experiments

. . ov,
have shown that 7, indeed proportional to (— EKI—) for all gases and for homogeneous

X

non-polymeric liquids. The non-Newtonian flow of fluids is the “Science of
deformation and flow” which includes the study of the mechanical properties of gases
liquids plastics and crystalline materials.

- Thus the non-Newtonian fluid flow is the part of science of rheology where
both Newtonian fluid mechanics and Hookean elasticity are considered. The steady
state rheological behaviour of most fluids can be- generalized as

B ov,
z-ij - _luapp —a_x— (1665)

J
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where u, s the apparent viscosity, is not a constant, it may be expressed as a

) . ov
function of either —é—’ or7,.

X,

In order to explain the steady state relation for Newtonian and non-Newtonian

. ov
fluid between 7, and - —a—’- at constant temperature and pressure several models were

X,

proposed, such as power law model, Bingham model, Prandt] Erying model, Reiner-
Philippoff model, etc.

Under steady state conditions a number of additional types of non-Newtonian
behaviour are possible, for example thixotropic, rheopectic, viscoelastic, etc.
1) Time independent fluid that are where the rate of shear at a given point solely
dependent upon the instantaneous shear stress at that point. Time independent non-
Newtonian fluids are also non-Newtonian viscous fluid or purely viscous fluid.
i1) Time dependent fluids are those for which the shear rate is function of both the
magnitude and the duration of shear. Time dependent non-Newtonian fluid classified
into two groups: Thixotropic fluid and Rheopectic fluids depending upon whether the
shear stress decreases or increases with time at given shear rate at constant temperature.

Fluids that show limited decrease in u with time under a suddenly applied constant
stress 7, called Thixotropic. The Thixotropic properties have been found in the

material such as some solutions or melts of high polymers, oil well drilling muds,
greases printing inks, many food materials, paints, etc. The fluids that show limited

increase of y with time under a suddenly applied stress 7 called Rheopectic fluid.
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Rheopectic fluids are antithixotropic fluids that exhibit a reversible increase in shear
stress with time at a constant ratc of shear under isothermal conditions. Examples of
these types are bentonite clay, suspension, vanadium pentoxide suspension. gypsum
suspension and certain solutions in many pipc problems, etc.

ii1) Visco-elastic fluids are those which show partial elastic recovery upon the removal
of a deforming shear stress, such materials posscss properties of both fluids and elastic
solids. These materials exhibit both viscous and elastic propertics. In a purcly Hookcan
elastic solid the stress corresponding to a given strain is independent of time whereas
for visco-elastic substances the stress will gradually dissipate with time. A part of the
deformation of the visco-clastic fluids flow when subjected to stress. Examples of this
type are Bitumen, flour dough. Naplam and similar jellies, polymer sand, polymeric
melts such as Nylon and many polymeric solutions.

In order to take account of the mechanism of non-Newtonian fluids number of
mathematical models were proposed at different time by different mathematicians. In
our research working, we have discussed a problem of flow and hcat transfer on Rivlin-
Ericksen second order visco-elastic fluid. A bricf description of Riviin-Ericksen sccond

order fluid is mentioned above.

1.7 Heat transfer in fluid motion

The heat transfer is devoted for the steady of processes of heat propagation in
the solid, liquid and gaseous bodics. Simply it statcs that heat is a form of cnergy,
which is transferred from one body to another body at a lower temperature by virtuc of
the temperature difference betwecn the bodics. In this problem, we consider with the

rate at which the heat is transferred.
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The rate of heat transfer may be constant or variable, depending on whether the
conditions are such that the temperatures rémain the same or change continually with
time. Temperature differences in a body are reduced by heat flowing from regions of
higher temperature to those of lower temperaturc. This process takes place in all
substances, which are found in nature-solids, liquids and gases. Heat 1s transfcrred n
three ways, which are known as conduction, convection and radiation.

In conduction, the flow of hcat is the result of the transfer of internal cnergy
from one molecule to another. The flow of heat in solids takes placc exclusively by
conduction process, while in liquids and gases the processcs of conduction, convection
and radiation occur simultaneously. In cases, where the heat exchange by convection is
prevented and exchange by radiation 1s minimized, the principles of heat conduction
can be applied to liquids and gases as well. l',n these substances, however, molecules are
no longer confined to a ccrtain point but constantly change their relative position cven
if the substance is a state of rest.

The heat transfer by convection has been seen generally in liquids and gascs. By
this process, heat may be transported from one noint to another by being carried along
as internal energy with the flowing medium

Hence the velocity field and the temperature field mutually intcract which
means that the temperature distribution depends on the velocity distribution and
conversely, the velocity distribution depends on the temperature distribution. In special
cases when buoyancy forces are disregarded and the fluid propertics arc independent of
temperature, the velocity field docs not depend on the temperaturc ficld while the

dependence of temperature field on the velocity field persists. Such flows arce termed as
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forced flow aﬁd the process of heat transfer in such flows is described as forced
convection. Flows in which buoyancy forces are dominant are called natural flow and
corresponding heat transfer is known as natural convection. If the natural convection is
not constrained to a finite region by boundaries, it is called free connection.

In radiation, solid bodies as well as liquids and gases arc capable of radiating
thermal energy in the form of electromagnetic waves and of picking up such energy by |
absorption. All heat transfer processes are, therefore, more or less accompaniced by a
heat exchange by radiation.

If the working medium begins to move due to the differcnce between the
densities of individual parts of the fluid upon the heating, then mode of heat transfers if
referred to as free or natural convection. But if thc working medium is put into the

motion artificially (by means of a fan, compressor, mixer, etc.) to as forced convection.
1.7a Fundamental equations in heat transfer

We consider a fluid in which the density p is a function of the position x'(; =1,2,3)
and the velocity u’(j =1,2,3).

1.7.1 Equation of continuity

The conservation of mass is given by the cquation of continuity, which can be written

Dp ;
as _D_t + pu"/ =0 (1.7.66)

Where a comma denotes a covariant differentiation with respect to x’ and ¢ denotes

time. The equation of continuity for the incompressible fluid is
u' =0 (1.7.67)

In this case, the velocity field is therefore, Solenoid.
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1.7.2 Equation of motion

The 7, be the stress tensor acting in the dircction of x' per unit arca on an clement of

surface normal to x'. In terms of stresses r, . the hydrodynamic cquations of motion

can be written as

p 2P oF vr, g (1.7.68)

Dt

where F is the ith component of the body force per unit mass and g™ is a component
of the metric tensor. The stress tensor is a function of the ratc of strain tensor ¢, , which
1s given by

!

l
e =—2—(u, , ) (1.7.69)
The constitutive equation of a fluid gives the relation between 7, and ¢, . The simplest
relation between these two tensors is lincar and has been proposcd on experimental
basis by Newton as

r, ==po, +2ue, —i;'-,u()‘ul, (1.7.70)

where pu is the co-efficient of viscosity, p is the undetermined hydrostatic pressurc,
I(= ¢, +ey, +e;,) is the first invariant of the strain ratc tensor, o, is the Kronecker
delta. This constitutive equation is true for most of the fluids as water, air, etc. and
these fluids are known as Newtonian fluids. The equation (1.7.70) can not explain the
behaviour of many fluids ke oil, paint, mud, blood, etc. and hence many nonlincar

constitutive equations have been proposed to explain the behaviour of these fluids.



One of the constitutive equations, which can explain many of the behaviours of these
fluids and have sound mathematical basis, is that of a second-order fluid proposcd by
Coleman and Noll (1960).
1.7.3 Equation of energy

The law of conservation of energy requires that the difference in the rate of
supply of energy to a volume V fixed in space with a surfacc S and the rate at which
energy goes out through § must be cqual to the net rate of increasc of cnergy in this
volume. Thus the law of conservation of energy gives the following cquation where the

summation convection is used with 7, j = 1,2,3.

Ju,(r,/n, )ds ~ J'E,pu,n/ds + _[ELI,JV + Jk %T—n,ds = —g—[ J;_)E,dV (1.7.71)

s

1 . . .
where £, (= Euiu’ +p, + E), u, arc respectively the total energy (i.c. sum of kinctic

energy, potential energy and intcrnal energy) and the ith component of the velocity: 7,
and n, are the ijth components of the viscous stress and jth component of the outer

normal of the surfaces respectively; F, is the ith component of the cxternal

conservative force and k is the co-cfficient of heat conductivity. The first term on the
left hand side of the equation (1.7.71) is the ratc of heat produced by various stresses in
contact with outside; the second term represents the energy loss by convection; the
third term is the energy loss by the heat conduction. The loss duc to the radiation is
assumed to be negligible. The right hand sidc is the net rate of change of cnergy in the

volume V .



Transforming the surface integration to volume integration and the volume V' being
arbitrary, we get-

or
ox,

) ) 5]
< L PEu )+ fu +—(k

1y

)—Q(E,p):() (1.7.72)
ot

i I
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Using the equation of continuity (1.7.66) and simplifying, we get the cquation (1.7.72)
as

DE D 1 0 oT -
== —(—)] = —(k—)+ (1.7.73)
A Dt +th(p)] ox ( ox )+9

! /

where the dissipation function @ can be written as

du, Ou, 2 du, ou
={p(—+—)— = pu(—)o 1—- (1.7.74)
¢ ['U(ax, ax,) 3'[(&\',( "’]a\-,
For the perfect gas, DE _ C, DT,DH =C, br =cnthalpy
Dt Dt Dt " Dr
and C, —I—)——T— =C, £+£(£), which reduce the equation (1.7.74) to
t Dt Dt p
D Dp o0  , oT
—(C,T)=—"+—(hk—)+ (1.7.75)
th( ) Dt ax,( ax,) ¢

For incompressible fluid, the above cquation simplifics to

D o ar
p=(C,T) = k=~(=— 1.7.7¢
o D=k G (770)

t b}
1.7.4 Equation of state

In solving a hydrodynamic problem together with the cquation of continuity,
motion and energy, we should consider an equation of statc as

/):/_)(/)‘I') (1777)
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It suggests that o is constant in all terms in the cquation of motion except that one n
the external force; therefore, we have-
p=p,1-a(T-T,)].

where a is the volumetric expansion co-cfficient of the fluid and the subscript ‘o’
denotes the unheated no flow statc.
1.7.5 Theoretical similarity of heat transfer in MHD

In the MHD flow where temperature differences bring about differences n
density it is necessary to include buoyancy forces in the cquations of motion of a

viscous fluid and to treat them as imposced body forces. These buoyancy forees are

caused by changes in volume, which arc associated with the temperature differences. If

. : !
we denote the co-efficient of cxpansion by £, that for perfect gases fI= 2 and

denoting the temperaturc difference between a hotter fluid particle and the colder

surroundings by @ =T — T, then we can sce that the relative change in volume of the
hotter particle is S8 so that the lift force per unit volume= pgf36 ., where p s the
density of the fluid beforce heating and g 15 the vector of gravitational acceleration. The
components of the latter will be denoted by ¢, g .., g.. Introducing these body forces

into the momentum conservation cquation (1.2.24) for unstcady incompressible flow

and assuming that the viscosity is constant, we obtain:

D - .
pEl:— =-Vp+Jx8B +,uV2ﬁ + pefio (1.7.7%)
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1.7.6 Thermometric case (i. e. adiabatic wall)
If the transfer of heat by radiation is ncglected, then it can occur only through
conduction. According to the Fourier’s heat conduction law, the flux g (J/m? scc) per

unit area and time is proportional to the temperature gradient along the surface, so that

g=-12L (1.7.79)
on

where n is the direction of the normal to the surface of the body, £ is the thermal
conductivity of the fluid and the negative sign significs that the dircction of the flux is
opposite to that of the temperaturc gradicat (i. €. the ncgative sign signifies that the heat
flux is reckoned as positive in the direction of the temperature gradient).

It is necessary to mention that the variety of possible scts of boundary
conditions is much greater for the temperature field than for the vclocity ficld. The
temperature on the surface of the body may be constant or variable but, morcover, it
also possible to encounter problems for which the hcat flux is prescribed. The cquation
(1.7.79) shows that the tempcrature gradient at the wall appcars as a boundary
condition. This condition is called the adiabatic wall, since there is no heat {lux from

the wall to the fluid i.e. the boundary condition at the wall is

(_6_2) = ( (adiabatic wall).
a’l 1=0)

In this case, it visualises that the wall of the body is perfectly insulated aganst

the heat flow. The heat gencrated by the flow through the friction serves to heat the

wall until the condition (Z—T) = ( 1s rcached.
n n=0
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Thus the temperature of the wall which is called the adiabatic wall temperature

becomes higher than that of the fluid at some distance from it.
1.8 Non-dimensional parameters in heat transfer
In order to understand, the phenomcnon of heat transfer, we should discuss the

non-dimensional parameters, which govern the process. For simplicity we take

cartesian co-ordinates x,(j=12,3) and suppose that the fluid properties are

independent of temperature. The equation of momentum and energy in cartesian tensors

with usual summation conventions are

Du, Op 0 Ou, Ou, 29 Ou,
Du, 9 opgy 0 (O, iy 20 oM 1.8.80
A Dt ] Ox, +reb '“[&\'I. ox; * ox, ) 3 ox, ( ox, rl ( )
D@ d'6 op
d —k Py s 1.8.81
an PC,,[Dt] [ax,.ax,.]w' o + (1.8.81)
. ou; Ou ;
where ¢ = (02t 240y 2 0 Ziyey
ox; ox; oOx; 30x; Ox

Let us make the non-dimensional quantities with the help of u,,d, 8, and put-

’

,_ 0 X; p
u =~ @' =— x =L p=— p= 1.8.82
6. T a TP T | (1:8:52)

where 8 =T -T , d is the characteristic dimension, u, denotes a unique velocity that

characterizes the flow, and the subscript w denotes the wall conditions.
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Substituting conditions (1.8.82) in (1.8.80) and (1.8.81), we get-

¢ ’ o'’ 29 ou op'
Ou, '?ﬁ'.]z_G_r_g'+ [6 (a“ p—ty- 2 (2 2]_£

—+u,; (1.8.83)
o 'ox,” Re*  Reax, ox, ox 30x

o0 06 1 00 3 E ou au O 2o
a2 %% v Eu G 2y (1 8.84)
and [ S Repravor oy T Relor or T ox) 3\ax)

The product PrRe = Pe is called Peclet number. We obtain the Peclet number when

we divide the convection term by the conduction term of the energy equation. The ratio

2

li;_e is called Froude number, it compares the inertia and the body force.
.

1.9 Some worked out problems related to MHD flow

and heat transfer

The steady Poissuille flow of mercury between two parallel walls in the
presence of an applied cross magnetic ficld, was considered by Hartmann. The MHD
flow between two parallel plates under the transverse magnetic field, called Hartmann
flow, has been studied by many authors under various conditions e.g., Sherclitf (1966)
and Cowling (1957). Ospal (1955) has outlined the general principles of the analysis of
two-dimensional and three dimensional ground water flow by electrical analogy and
described the practical applications of that method with a new conductive material
consisting of gelatin, glycerin, water and salt. Srivastava and Sharma (1961) have
studied the effect of a transverse magnetic field on the fluid flow between two infinite
disks, one rotating and the other at rest. This problem has been extended afterwards by
Stephenson (1969). He has obtained the asymptonic solutions for the condition R<<M

and the numerical solution for the arbitrary R and M.



Katagiri[1962] discussed the MHD Couctte flow when one of the plates moves
impulsively and the other is at rest. Muhuri [1963] has generalized Katagirt™s | 1962
work to include the case of acccelerated plate problem. The cffect (;F induced magnetic
field on the same problem has been discussed by Gobindarajulu [1970]. The problem off
steady flow of an electrically conducting fluid through uniformly porous infinite
parallel plates channel in thc presence of a transverse magnetic ficld has been
investigated by Rao [1960], Terril and Shrestha [1963, 1964] and Termil [1964]. Suttan
and Sharma [1965] have discussed the MHD Couette flow between non-conducting,
walls in the presence of an clectric ficld which is normal to the applicd transverse
magnetic field. Agarwal [1962] has discussed the generalized MHD Couctte flow
between two parallel plates with or without porosity. In the above investigations the
plates arc assumed to be clectrically insulated. The effect of suction or mjection and
magnetic ficld on the MHD flow in a straight channcl has been studied by Shrestha
[1967], Reddy and Jain [1967]. Chandrasckhar and Rudraiah [1970] have discussed the
problem of a two dimensional conducting flow between porous disks for R<<1 where
there is uniform suction or injection. This two-dimensional flow by the same authors
[1971] under the assumption that onc of the plate is at rest and the other is rotating,
Chang and Yen [1962] have studied the heat transfer aspect between the walls,
Srivastava and Sharma [1964] have discusscd the heat transfer duc to the flow between
two infinite plates, one rotating and other at rest, under a transverse magnetic ficld.
Chang and Yen’s problem has bec¢n extended by Soundalgckar [1969a). In another
papcr, Soundalgekar [1969b] has studicd the heat transfer aspect in MHD Couctte flow

between conducting walls in the presence of an clectric ficld.
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Gupta[1969] has studied the cffect of combined free and forced convection on
the flow of an electrically conducting liquid under a transverse magnctic ficld i a
horizontal parallel plates channel subjected to a linear axial temperature variation. A.K.
Borkakati and A. Bharali [1979] studied the heat transfer in the flow of a conducting,
fluid between two non-conducting porous disks (one is rotating and other is stationary)

in the presence of a transverse uniform magnetic field and under uniform suction. Here

asymptotic solutions are obtained for R << M*? and also the rate of hecat flux from the
disks and the temperature distribution arc investigated. Taking Hall cffects into account
the steady magnetohydrodynamical flow past an infinite horizontal porous plate 1s
theoretically investigated by A. Bharali and A. K. Borkakati |1980] when o strong
magnetic field is imposed in a direction which is perpendicular to the free stream and
makes an angle a to the vertical dircction. The response of flow and heat transfer to
change of direction of the imposed magnetic field in steady magnetohydrodynamic
laminar free convection flow past an infinite vertical porous plate is studicd by A.
Bharali and A. K. Borkakati [1983]. Hydromagnetic flow and hcat transfer between
two horizontal paralle! plates, where the lower one is a stretching sheet and the upper
one is a porous solid plate is studied by A. K. Borkakati and A. Bharah [1983] in the
presence of a transverse magnctic field. A. K. Borkakati and D.B. Chetri [1989]
investigated theoretically the cffect of the deflection of a strong magnetic ficld on the
oscillatory MHD flow past an infinite horizontal plate, keeping thc Hall parameter
constant. In this problem, they made to study theoretically the cffect of the deflection
on an oscillatory magnetohydrodynamic flow past an infinitc horizontal flat plate,
considering the plate is msulator and the imposed magnetic field makes an angle a to

the free stream velocity.



B. S. Dandapat and A. S. Gupta [1989] discussed the flow of an incompressible
second-order fluid due to stretching of a planc clastic surface in the approximation of
boundary layer theory. An analysis of MHD hcat transfer in hyperbolic time-variation
flow near a stagnation point of a hcated blunt-noscd cylinder whose wall temperature
varies as Ax" was presented by V. M. Soundalgckar, T. V. Ramana Murty and H. S.
Takhar [1990]. The effect of uniform suction or injection on the free convection
boundary layer over a cone was theoretically investigated by T. Watanade [1991]. M.
G. Gourla and Suaham L. Katoch [1991] discusscd about the result of unsteady viscous
incompressible free convection flow of an clectrically conducting fluid between two
heated vertical plates in the presence of the force field of gravity and applicd magnetic
field acting in the horizontal direction and perpendicular to  the  flow.
Magnetohydrodynamic flow of an electrically conducting power-law fluid over a
stretching shect in the presence of a uniform transverse magnctic ficld is investigated
by H. I. Andersson, K. H. Bech and B. S. Dandapat [1992] by using an cxact similarity
transformation. T. Watanabe and 1. Pop [1993] theoretically studied the mam results of
the effects of a uniform magnetic ficld on the frec convection flow of an clectrically
conducting fluid past an isothermal wedge. The cffcct of an axial magnetic ficld on the
flow and heat transfer about a fluid underlying the axy-symmectric spreading surface is
investigated by C. R. Lin and C. K. Chen [1993]. A. Kumar Singh and N. I, Singh
[1995] studied the laminar flow and heat transfer of an incompressible, clectrically
conducting second order Rivlin-Ericksen liquid in porous medium down a parallel plate
channel inclined at an angle 6 to the horizon in the presence of uniform transverse
magnetic ficld. The above problem has been extended by S. Chakraborty and A, K,

Borkakati [1998].
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The commencement of the Couette flow in Oldroyd liquid has been studicd by
S. Biswal and B. K. Pattnaik [1996], in thc presence of a uniform transverse magnetic
field. S. Biswal and S. Mishra [1998] analysis the combined free and forced convection
effects on the MHD flow of a visco-inclastic fluid through a channcl without
considering dissipation energy. The unsteady flow and heat transfer through a viscous
incompressible fluid in the presence of transverse magnctic ficld between two
horizontal parallel plates, the lower platc being a stretching sheet and upper being
porous has been investigated by P. R. Sharma and N. Kumar [1998]. Thc problem of
unsteady flow of an elastic-viscous conducting incompressible fluid through porous
medium between two infinite parallel plates under uniform transverse magnetic l‘;cld
and a uniform body force has been studied by S. K, Ghosh and S. K. Samad [1998].

N. Datta, S. Biswal and P. K. Sahoo [1998] have becn discussed about the
magnctohydrodynamics unstcady flow of a visco-clastic hiquid (Rivlin-Ericksen) near a
porous wall suddenly set in motion with heat transfer including heat generating sources
or heat absorbing sinks. Flow of Rivlin-Ericksen incompressible fluid through an
inclined channel with two parallel flat walls under the influence of magnctic ficld has
been discussed by V. P. Rathod and H. Shrikanth [1998]. The unstcady flow and heat
transfer of a visco-elastic fluid through a circular pipe had been investigated by P. R.
Sharma and H. Kumar [1998]. T. K. Mahato and D. R. Kuiry [1999] studicd about the
flow behavior of a viscous incompressible and clectrically non-conducting fluid due to
the time-varying acceleration of an infinitc porous plate in the presence of a uniform

transverse magnetic field.
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The transient free convection flow of an incompressible visco-elastic fluid past
an infinite vertical plate under uniform surface heat flux conditions has been studicd by
U. N. Das, R. Deka and V. M. Soundalgckar [1999]. An unstcady viscous
incompressible free convection flow of an clectrically conducting fluid between two
heated vertical paralle! plates has been worked out in the p'rescnce of a uniform
magnetié field applied transverscly to the flow, by S. Chakraborty and A. K. Borkakati
[2000]. A thcoretical analysis of frec convective two-dimensional unstcady flow
through porous medium of variable permeability, bounded by an infinite vertical porous
plate with uniform suction and constant heat flux has been prescnted by A. Maharshi
and S. S. Tak [2000]. M. Acharya, G. C. Dash and L. P. Singh{2000] discusscd the
analysis of steady two-dimensional frec convection and mass transfer flow of a viscous
incompressible electrically conducting fluid through a porous mcdium bounded by a
vertical infinite surface with constant suction velocity and constant heat flux in the
presence of a uniform magnctic field.

The general problem of impulsive motion of an clectrically conducting sccond
order fluid under the transverse magnctic ficld over a plate has been formulated and
solved by R. N. Ray, A. Samad and T. K. Chaudhury [2001]. S. Srcckanth, A. S.
Nagaranjan and S. V. Ramana [2001] have discussed the unstcady transient free
convection flow of an incompressible dissipative viscous fluid past an infinite vertical
plate in considered on taking into account viscous dissipative heat, under the influence
of a uniform transverse magnetic ficld. K. D. Singh and R. Sharma [2002] studicd the
effect of period permeability on the free convective flow of a viscous incompressible
fluid through a highly porous medium, when the porous medium is bounded by an

infinite vertical porous plate.
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1.10 Motivation, extent and scope of this thesis

The motivation of this thesis is to study a fcw aspects of the effects of heat
transfer in the incompressible viscous fluid as well as in the clectrically conducting
incompressible viscous fluid. Some problems of magnetohydrodynamics also have
been discussed here.

The chapter-1 is going to be dcalt with the introduction of the thesis. The
outline of the magnetohydrodynamics, its development and applications, fundamental
equations of electrically conducting fluid flow and cffect of heat transfer in MHD have
been discussed in this chapter. During the past two decades, a number of significant
cxperiments have been carried out revealing non-Newtonian characteristics of hquids
where a number of new phenomenon have been observed in a large number of hquids,
of great technological and industrial importance. A bricf description of these hquids
and electrically conducting flutds is also given in this chapter. Lastly, a bricf review of
earlier workers and scope of this work have also been explained in this chapter.

The laminar free convection flow of an incompressible clectrically conducting
second order fluid under the action of uniform transverse magnetic ficld over a plate

has been discussed in the chapter-2. Exact solutions of the fluid velocity sy, 1) and

temperature profile T(y, t) can be obtained with the help of the perturbation technique,
where y is the distance measured between the two plates and t is the time. It has been
observed that this problem is uscful in many cnginecring problems and the unsteady
magnetohydrodynamics free convection flow of an clectrically conducting flutd
between two heated vertical parallcl plates is of considerable interest to the technical

field due to its frequent occurrence in industrial and technical applications.
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The unsteady Couctte flow of a viscous incompressible and clectrically
conducting fluid with the heat transfer between two horizontal parallel plates in the
presence of a uniform‘tran.syerse magnetic field has been discussed in the chapter-3,
when in the case-1, the plates are at different temperatures and in the casc-11 the upper
plate is considered to move with the constant velocity where the lower plate is
adiabatic. Our results are useful in geophysical and astrophysical problems as the
simultaneous effects of hydromagnetic buoyancy forces and coriollis forces are
observed in various types of problems in these branches of sciences.

A theoretical and numerical analysis of unstcady two-dimensional free
convection flow of a viscous incompressible clectrically conducting fluid through a
porous medium of variable permcability, bounded by an infinite vertical porous plate
with uniform suction and constant heat flux under the action of a uniform magnctic
field has been investigated in the chapter-4. The effects of Prandtl number, Grashoff
number, magnetic ficld parameter and the permeability parameter of porous medium on
the velocity and also the effects of Prandtl number on the temperature profile have been
discussed and shown graphically.

In the chapter-5, we have discussed the motion of an unsteady MHD flow of an
incompressible electrically conducting viscous fluid between two horizontal parallel
porous plates on the time-varying motion. The velocity profile and the skin-friction are
obtained due to the effect of the deflection of a strong magnetic ficld on the MHD flow
past between two parallel plates and the results are obtained numerically and plotied |
graphically by taking the differcnt values of the non-dimensional parameter of

magnetic field parameter.
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We have discussed in the chapter-6 the MHD unstcady flow of a visco-clastic
(Rivlin-Ericksen) fluid through an inclined channcl with two parallel flat plates with
heat transfer including heat generating sources or heat absorbing sinks, when the plates -
arc moving with the transient velocity while one of these two plates is adiabatic. Here
the fluid velocity and temperature profile are obtained by the Perturbation technique
and discussed by interpreting the graphs with the help of different values of some
appeared non-dimensional parameters.

In the chapter-7, we ha\./e studied the unstcady flow of an incompressible
electrically conducting second order fluid through the porous medium due to infinite
horizontal plate in the presence of uniform transverse magnetic ficld which includes the
heat generating sources or hcat absorbing sinks. Here the plates are maintained at
temperatures while one plate is kept at a constant tcmperaturc gradient. The values of
the velocity and temperature distribution arc found out numerically and interpreted with
the help of graph. The problems of determining the clectrically conducting fluid flow
and heat transfer through a porous channcl driven by a pressure gradient are
fundamental with obvious applications in physiology and engincering. So, our rescarch

may be useful.
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CHAPTER 2

Unsteady MHD free- convection flow of a seéond order fluid
between two heated vertical plates.

2.1 Introduction

A.Bharali and A. K. Borkakati {1983] discussed about the responsc of the flow ind heat
transfer to the change of dircction ol the imp.osed magncetic hield in o steady
magnctohydrodynamics laminar free convection flow past an infinite vertical porous plate
by taking Hall cffects mto account. The magnetohydrodynamics unsteady  viscons
incompressible free convection flow of an clectrically conducting flurd between two heated
vertical plates in the presence of the force ficld of gravity and apphied magnetic ficld acting
in the horizontal dircction and perpendicular to the flow was discussed by M. G Gourla
and S. L. Katoch [1991]. N. Dutta, S. Biswal and P. K. Sahoo[1998] studicd the
magnetohydrodynamic unsteady flow of a visco-clastic liquid (Rivlin-Ericksen) ncar a
porous wall suddenly sct in motion with the heat transfer including heat generating, sources
or heat absorbing sinks and they found that the temperature of the fluid s targely alfected
by the presence of the heat sources or sinks. The transient free convection How of an
incompressible visco-clastic fluid past an mflimite vertical plate under the uniform surface
heat flux conditions has been studied by U N. Das, R, Deka and V. M. Soundalgekar

11999].



Also, they discussed about the velocity and length ol penctration effect duce to feadmy edge
increasc with the increasing of the clastic paramcter or time o but decrcases when the
Prandt] number increases. S. Chakraborty and A. K. Borkakati [2000] investigated the Tully
developed free convection laminar flow  of an imcompressible  viscous  clectrically
conducting fluid between two heated vertical parallel plates in presence of a unilorm
magnctic field applied transversely to the flow. The general problem of unsteady paralicl
flow of an electrically conducting sccond order ftutd under the transverse magnetic ficld
duc to the impulsive start of a parallel to itself has been formulated by R.N. Ray. A, Samad
and T. K. Chaudhury {2001] and solved by the method of Laplace Transformy for the two
cases of motion corresponding to the so-called Stoke™s first and second problems. The
laminar convection flow of a viscous incompressible clectrically conducting fluid on a
continuous moving flat platc in the presence of untform transverse magnetic Nield, was
studicd by S. Chakraborty and A. K. Borkakat |2002]. Here the flat plate which s
continuously moving in its own planc with a constant speed is considered to he
“isothermally heated.

In this chapter, we analyzc about the unsteady free convection flow ol a sceond
order viscous, incompressible clectrically conducting fluid between two heated vertical
plates in the presence of uniform transverse magnetic ficld. The uniform magnctic field
applied externally in the direction normal to the fluid motion. Perturbation techmque is
used to solve numerically the cquations of the problem and the numerical results abtamed
arc shown and discussed graphically for the different values of magnetic ficld parameter.

clastic paramcter, Grashof number, Prandtl number.
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The unstcady magnetohydrodynimmics free convection flow ol an clecineally
conducting fluid between two heated vertical parallel plates 1s of considerable interest to
the technical field due to its frequent occurrence in imdustrial and technical applications

2.2 Mathematical formulation of the problem

We consider the unstecady free convection flow of an incompressible viscous-clastic
sccond order clectrically conducting Muid between two heated vertical parallel plates
separated by a distance 2h apart. We now consider the unsteady low starting, from the rest
of an clectrically conducting sccond order flurd over a plate i presence of a umilorm
transverse magnetic ficld. Let the v -axis be taken along the plate with the direction of the
fluid flow and v'-axis normal to the plate. Let o' and v' be the velocities of the fhuid
along the x'-axis and 1" -axis respectively. Then consequently ¢ s a function of v and
t" only, but v' is independent of ", Then the component of the fund velocity are given by

(' (v, 1), 0,0y,
Let w«, be a constant impulsive velocity to the plate i its own plane and let the umiform
magnctic ficld B, be applicd in the direction normal to the plate. In order o derve the
governing cquations of this problem the following assumptions are taken.
(1) The fluid 1s finitely conducting and non-magnetic.
(11) The viscous dissipation and the Joule heat are neglected.
(1) Hall effect and polarization elfect are neglected.
(iv) Initially 1.c. at timec /" =0 the plates and the fluid are at constant temperature (1.¢

T =T!)and there is no flow withm the channcl.
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At time ¢ >0, the temperature of the plate v = +4 changes to 77 =77 and the
temperaturc of the plate v/ = —/i changes according to 77 =77+ (1] = 17)ee™™ where o s
the frequency of the fluctuations with time ¢, 7" is the constant temperature of the fluid
and T is the temperaturc of the fluid at the wall.

(v) The value of magnetic Reynold’™s number s assumed to be of low conductivity, such

that the induced magnetic ficld is neghgibic.
Then the Lorentz’s force is ~oBlu’, where o is the clectrically conductivity of the Duid.
The second order approximation of the general constitutive cquations given by Rivlin-
Ericksen can be written as follows:
r==Pl+ad + 4]+ A, (2.2.1)
where 7 is the stress tensor, /s the unit tensor. P is an intermediate pressure and
a, B,y arc co-cfficicents of viscosity, cross-viscosity and viscous-clasticity respectively.

A, and A4, are given by the symmetric matrices defined by

AV
Al:Vii_H/“:( Lol (2.2.2)
' Todx,
and A, =a, , +2V, .V,
o {DV o (VY _or oF
DA, = | L | 2 (2.2.3)
©oox,\ Dt ox,\ o DA

where «, s arc components of acceleration given by

v .
a, :7+VI"VI./ (l.l ./‘I)I:]. 2,1)
C



The cquation of continuity 1s

where ¥, are components of vclocity.
Hence the flow field of the fluid motion is governed by the following equations

Equation of the continuity

In the abscnce of pressurce gradient, the flow ficld is governed by the third order differential
equation which takes in the following form:

Equation of momentum

o' vk, O ol
= U b e B 1)) (2.2.0)
ot ay's  p Ay 2

Equation of cnergy

oT’ koo’
= (2.2.7)
a - pe,

Where p is the density of the hid, B is uniform magnetic ficld applicd
transversely to the plate, v is the co-clticient of the kinematic viscosity, & is the thermal
conductivity of the fluid, 5, is the co-cflicient of viscosity. ¢, is the specific heat at
constant pressurc of the fluid, /Fis the co-cfficient of thermal cxpansion, ¢ is the

acceleration due to gravity, &, 1s the co-ctticient of clasticity, 7" is the temperature of the

fluid.



The initial and boundary conditions are given by

1<0:u'=0,T=T, lor =<' <+h

U'>0u =u, V==v, T =T +(T =1 )" at y'=-h

' 0, T =T/ at vi=+0

2]

We now introduce the following non-dimensional vartables and paramcters inorder

transform the equations (2.2.5)-(2.2.7) into the non-dimensional form:

' ’ ¢ 2 ) 1

v 7 '’ ko an
V=t = — = Re == s

v u, ) 0 i’

v vgpBr. =1 . 1 -1)] 1,¢
W=—, Gl':-——[j——l——'—--—, /e e Pro= x

- ! v k
“H ”tl ] o '

Consequently, the equation of continuity, motion and encrgy

form arc

ov
oy

ou 9’ ”
o _ ——ITI + Re 9 u7 - Hau+Grl
a o’ o1oy”

where v =-%_1, = pu, Re is the elastic parameter, Ha is the magnetic ficld parametar
0

Gr is the Grashoff number and Pr is the Prandt! number.

(2.2.9)

(2.2.10)

(2.2.11)

imto the non-dimensional



57

The initial and boundary conditions of the dimensionless form arc given by

1<0:4u=0,T=0 for =1 <y <+1
t>0:u=1,T =g at y=—1
u=0,T=0 at v =+1 (2.2.12)

2.3 Solution of the equations

In order to solve equations (2.2.10) and (2.2.11), wc apply small paramcter regular
perturbation technique. Consequently, we assume that to solve the cquations (2.2.10) and

(2.2.11), the sofutions of the cquations of the motion and cnergy as
u=u(y)+u,(yee" (2.3.13)
and T =T (y)+T,(y)ee" (2.3.14)
where @ 1s the frequency of the fluctuations with time ¢ and £(< 1) constant quantity.
The corresponding boundary conditions (2.2.12) arc now modificd as
t>0:u =Lu,=0,T=0,T, =1 at y=-—1
cu,=0,u,=0,7,=0,T,=0 at y=+I (2.3.15)
Now, using the condition (2.3.13) and (2.3.14) in the cquations (2.2.10) and (2.2.11), and

also separating the time-dependent and time-independent terms, we get-

|
=0 (2.3.10)
Ty(y) = PriwTy(y)=0 (2.3.17)
w(y) = Hau,(y) = ~GrT,(v) (2.3.18)

and (1 +iwReny(v) = (Ha +iow,(v) = ~GrT,(v) (2.3.19)
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Solving equations (2.3.16)-(2.3.19) with the help of the condition (2.3.15). we get-

T.(y)=0 (2.3.20)

T.(y) = _sinh(y—l)\/Pria) (2.3.21)

2 sinh 2+/Priw
sinh(y — )W Ha (2.3.22)

u(y)=—
() sinh 2/ Ha

Gr [sinh(_\‘ -OvPriew

ReProw? - Ha—io(t+Pr)]  sinh2/Prio

7 :
sinh(y — 1), 791
_ 1+z.a)Rc 1 (2.3.23)
sinh 2‘/!1({113)
1 +iwKRe
Substituting conditions (2.3.20)-(2.3.23) in the relations (2.3.13) and (2.3.14), we get-

e sinh(y - DVPriw
sinh 24/ Pric

sinh(y - D)V Ha o Gr sinh{v — Dy Pric
-_— ‘()

and u,(v) = {

T=-

(2.3.24)

and u = -
sinh 2+ Ha {Rc Prw™ - Ha —iw(l + Pr)} sinh 2+/Pricww
sinh(y - 1) Ha f_’ﬁ’
_ l+m)Rc] (2.3.25)

sinh2,| A+ i@
I +iwRc

Now, taking the real parts of the vclocity and tempcrature profile from the cquations

(2.3.24) and (2.3.25), wc get-

T = s cos ol sinh(y = 1)vPriw
sinh 24/ Priw

(2.3.20)
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sinh() ~ DVPriw GGy + GLGy
sinh 24/ Priw Gf - Gf !

G,G,-G,G, |- sinh(y — v Hua
G -G} sinh 2+ Ha

and u = Gre[(M, cosawt — M, sin )

+ (M, sinwt + M, coswt) (

RcPrw?® — Ha

where M| = > — S,
(RcPrw” - Ha)" —w (1 + Pr)
3 w(l - HaRc)
' (RePro’ — Ha) = *(1+Pr)*’
Ha + w*R¢
cosf = S 7
w Re™ -1
) w(l — Ha Re)
sinf = ————
W Re™ -1

G, =sin{(y - l)cosg}cosh{(y - l)sing},
G, =cos{(y - l)cosg}sinh Hy - l)sing},
’ 2 2

G, =sin(2cos§)coshczsin—§—),

and G, =cos(2 cosg)sinh(2sin —';-).

Skin-friction

The skin-friction at the plates is given by

2
oe[2] +R{_d }
dy y==%1 dy y=tl
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v Ha v Pro

=t Gre(M, +iM ) ——F=—==
sinh 2/ Ha ( ! [smh 2V Prw

.0 0
G; cosg -G, sin Q) +i(Ggsin - + G, cos --)
- 2 2 - 2 2 1, for vy = +1
Gi -Gy

= — Ha tanh 2 Ha + Gre(M | + iMA)[\/I:;—(; tanh 2vProw — (M +iM )]
+ Rc[Ha + Gre{M M, + M M)+ (M M, ~MM)], for y=-1

Now, taking the real parts of the above skin-friction, we get-

, 0 .6

JVHa M P  MilOscos=Gysin )
=+ Gre[— - 22 :
sinh 2< Ha sinh 2v/Prw G -G,

M (G, sin€+G(, cosg)
* 22 2 = for y =+ (2.3.28)
GS —G()

=~ Ha tanh 2V Ha + Gre[M NJProw tanh 2VPrao - MM+ MM
+ Re(M M4y + M M), for y = -1 (2.3.29)
where My = M| coswt ~ M, sin ar,

My=M sinwt+M,cosat,

)

G, = cos(2sin £,i)sinh(Zcosf—),
: 2 2

G, =sin(2sin ~0—)cosh(2 cosg),
2 2

G, = cos(2sin —?)cosh(2 cos —;‘—),

. .8 .
Gy = sin(2sin 5)5mh(2 COS§>’
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% .0 N 6
M5 = 3 P .
GS .—("(»

0 . 0 )
) G (G, sin§+68 cos—z)—G(,((;‘7 cos 5 -Gy sin 2)

M i A
6 63 —G(?
Rew?{Pr— Ha - (1 - Pr)}
M7 = — !
1-w Re
and Mx = (U{RC(R(‘P].(UZ - Hu)+1-Dr! |

1 —w?Rc?
Heat transfer
The heat flux i.e. rate of heat transfer co-cfficients in terms of Nusselt number (Nu) at the

plates is given by

d'y v+l

&N Prw cos wt

sinh2v/Prow ,
= —gvPrw coswt tanh 24/ Pr o, if y=-1

2.4 Results and discussion

The figure-1 has obtained by plotting the velocity distribution against the variable y
with the various values of Prandtl number Pr= (.71, 1.0, 2.0, when Ha =5, Gr= 0.1, R¢ =
0.02, wt = 45° &£=0.5. The velocity distributions take the greater values when the
variable y has the negative values and less values having the positive values of y varable.

This figure shows that the fluid velocily decreases with the increase ot the Prandtl number.
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The figure-11 has been drawn the velocity distribution with the various valucs of
magnetic field parameter Ha = 5.0, 3.5, 0.5, when Pr=0.71, Gr=0.1,Rc=0.02, wt=45",
& =0.5. The velocity distributions have the maximum values towards the .platc of y<0 and
minimum values towards the platc of ySO. Also we sce that the velocity distribution
decreases due to the increase of the magnetic ficld parameter Ha.

The figure-IIT has been plotted the velocity profile against the variable y in the
interval [-1, 1] with the different valucs of the clastic parameter Re = 0.02, 0.03, 0.006,
when Ha = 5, Gr = 0.1, Pr = 0.71, wt = 45", ¢ =0.5. The velocity distribution takes the
less values in the positive sides of the interval [-1, 1] and greater values in the negative
sides in the mterval [-1, 1]. In this figure also, the fluid velocity increases gradually with
the increase in elastic parameter.

The figure-1V has been found by draiving the velocity distribution with the different
values of Grashoff number Gr = 0.1, 0.2, 0.3, when Ha=5,Pr=0.71, Rc = 0.02, wt=45",
€ = 0.5. The fluid velocity increases gradually due to the increase in Grashoff number, and
also its values take the greater values in the ncgative side of the interval [-1, 1] and less
values in the positive side of the inferval [-1, 1].

The figure-V has been obtained by drawing the velocity profile with the various
values in phase angles of wt = 45°, 60°, 75°, when Ha =5, Pr=0.71, Rc = 0.02, Gr = 0.1,
¢ =0.5. In this figure, we have seen that the velocity profile increases very slowly with the
increase in phase angle w1 The velocity profile takes the greater values when the variable

y has the negative values and less valucs when the variable y has the positive values.
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In the figure-VI; the temperature distribution has been drawn against the variablc y
with the different values of the Prandtl number Pr=0.71, 1.0, 2.0, when wt=45" ¢ =0.5.
In this figure, we have observed that the temperature distribution for the corresponding
negative and positive valucs of the variable y at the interval [-1. 1] decreases very slowly
with the increase of the Prandtl number.

The figure-VII has been obtained by drawing the tempcerature distribution against
the variable y with the various values of phasc angles wt =45, 60", 75°, when Pr=0.71,
€ =0.5. In this figure, herc we notice that the temperature distribution takes the greater
values for the y<O than the y>0 in the interval [-1, 1]. Also, it decreases due to the increase

in phase angle wt.

Figure-| 1.2 4

' —b I Pr=0.71
\ B4 —» . Pr=10

) \Q{# —p Il Pr=20

velocity, u

Fig.l: Velocity distribution versus y when ¢ = 0.5
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Fig.V: Velocity distribution versus y when ¢ = 0.5
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CHAPTER 3

Unsteady Couette flow with heat transfer between two
horizontal plates in the presence of a uniform transverse
magnetic field.

3.1 Introduction

A.K. Borkakati and A. Bharali [1979] has discusscd the flow and heat transfer between
two horizontal parallel plates, where the lower plate is a stretching sheet and the upper
onc 1s a porous solid platc in the presence of a uniform transverse magnctic ficld. The
heat transfer in an axi-symmctric flow between two parallel porous disks under the
cffect of a transverse magnetic ficld is studicd by A. Bharali and A. K. Borkakati
[1983]. Also, they discussed the hydrodynamic flow and heat transfer between two
horizontal parallel plates, where thc lower onc is 4 stretching sheet and the upper onc is
a porous solid plate in the presence of a transverse magnetic ficld. A. K. Borkakati and
1. Pop [1979] studied the problem with the effccts of Hall currents on the unsteady
hydromagnetic flow past an infinitc flat platc when a uniform magnctic field acts in a
plane which makes an angle @ with the plane transverse along to the platc. Recent
studies on the hydromagnetic flows with Hall currents are mainly focussed upon those
where the magnetic ficld is imposed normal to the platc. Taking Hall cffects into
account the steady magnctohydrodynamical flow past an infimte horizontal porous

plate 1s theoretically investigated by A. Bharali and A. K. Borkakati | 1980)],
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when a strong magnetic field is imposcd in a direction which is perpendicular to the
free stream and makes an angle a to the vertical dircction. They discussed the effect of
Hall currents on the flow as well as the heat transfer is studied for various valucs of a .
Also, in 1982 they discussed about the response of flow and heat transfer to change of
direction of the imposed magnetic field in steady magnetohydrodynamic laminar free
convection flow past an infinite vertical porous plate by taking Hall effects into
account. The effect of the deflection of a strong magnetic field on the oscillatory MID
flow past an infinite horizontal plate is studied theoretically by A. K. Borkakati and D.
. B. Chetri [1989] keeping the Hall paramcter constant. In this problem, an attempt has
been made to study theoretically the cflcct of the deflection on an oscillatory
magnetohydrodynamic flow past an infinite horizontal flat plate. The plate s
considercd to an insulator and the imposed magnctic field makes an anglc « to the free
stream velocity. Hall effect is taken into consideration as the applied magnetic ficld is
very strong. Shih-I-Pai [1961] studied an \unsteady motion of an infinite flat insulated
plate sets impulsively into the uniform motion with velocity in its own plane in the
presence of a transverse uniform magnetic ficid.

In this chapter, the unsteady two-dimensional flow of a viscous incompressible
and electrically conducting fluid between two parallel plates in the presence of a
uniform transverse magnetic ficld has been analyzed, when in casc-1 the plates arc at
different temperatures and in case-II the upper plate 1s considered to move with
constant velocity where as the lower plate is adabatic. Fluid velocity and temperature
distribution are obtained numerically with the help of perturbation technique and

interpreted graphically with the various valucs in angle 8.
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The problem shows the influence of imposed magnetic field and the induced magnetic
field. This kind of situation often arises in different practical MHD problems in the
laboratory. This problem is véry importance in many applications such as extrusion of
plastics in the manufacture of Rayon and Nylon, purification of crude oil. pulp, paper
industry, textile industry, in different geophysical and astrophysical situatton.
3.2 Mathematical formulation of the problem

The unsteady laminar flow of an incompressible viscous clectrically conducting
fluid between two horizontal parallel non-conducting plates scparated at a distance 2h
apart is considered under thc action of uniform transverse magnetic ficld. The flwd

flow is assumed to be along the X' -axis in the horizontal dircction through the central
line of the channe] and ¥’ -axis is normal to it. The plates of the channel arc at v’ = 14
and that the relative velocity between the two plates is 2w, and also, there 15 no
pressure gradient in the flow ficld. The uniform magnetic field B, makes an angle
with X' -axis induced a magnctic field B(y) or the imposed magnctic ficld makes an
angle @ to the free stream velocity. At the time (' >0, the platc at v'=-h 1is
maintained at temperature 7,, while the other plate y'=+h is kept at temperature
T.(T, > T,) and the plates are clectrically non-conducting.

The components of the velocities and the magnetic field arce given as follows:

u'=(y, t),v=0,w=0), 8" =(B =AB(y.1), B, =J1-1B,, B. =0)

‘and p =constant, where A1 = cosé is imposed and ¢ is the time,
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In order to derive the governing equations of the problem, we are (o assume the
following conditions:
(i) The fluid is finitely conducting and non-magnetic.
(ii) The viscous dissipation and thc Joule hcat arc neglected
(ii1) The Hall effect and polarization cffect arc negligible.
(iv) The buoyancy force is considered in the cquation of motion of the fluid.
Under the above conditions the governing cquations are as follows:

Du'’

= = Vp+ Vi + I xB+ X (3.2.1)
P o P+
or' . 8T
and pcl’?z a)}lz (3,2.2)

Here the third term in the right hand side of equation (3.2.1) 1s the magnetic body force
and J is the current density due to the magnctic field and X is the force due to the

buoyancy, X = pg (T - T)). Where p is the density of the fluid, o is the clectrically
conductivity, & is the thermal conductivity, v = H s the kinematics viscosity, g is the

co-efficient of viscosity, ¢, is the spccific heat at constant pressure and S is the co-

efficient of thermal expansion.
Using velocity and magnetic field distributions as stated above, the equations
(3.2.1) and (3.2.2) are as followed:

o' 9% oB!

——_!_U 12
ot o'’

(- A"+ (T -T,) (3.2.3)

e 250
and aaT’ = k g)'rz (3.2.4)
t pc, oy




71

We consider here two different cases: (1) when the plates are maintained at different

remperatures: (i)Y when the lower plate is adiabatic and the upper plate is maintained

at a constant temperaturc.

Case (i) when the plates are at different temperature, the mitial and boundary

conditions arc
(=0 4=0,7T=0, for —h < v <+h

>0 =0, T =T, at v =+l

= eu T =T al v ==l

Let us consider the non-dimensional vanables and parameters as

i' ' tu =T oB’v
1/:—1—,_)'=i)—‘ =t et Ha o= e
u, h h /-7, o
P(T =T v
Gr=S8 T2l
v* 194

Using the conditions (3.2.6) in the cquations (3.2.3) and (3.2.4), wc get-

1 9% Gr
W LU e Ay Sy
o Recoy Re
or [ 8T

and — = — ——

N Pe v’

(3.2.0)

. : hu, :
where Hu 1s the Magnetic ficld parameter, Re = —= is the Reynolds number, Gr s

v

the Grashoff number, a = —— is the thermal diffusivity, Prois the Prandth number

{X"II

and Pc = PrRe is the Peclet number.



For the relation (3.2.6). the initial and boundary conditions (3.2.5) beecome

(1 =0:u=0,T=0, for ~1 < v <+l
t>0:u=1,T=1 at v o=+1
cu=-=1,T=0 ar v o=-1 (3.2.9)

3.3 Solution of the equations

In order to solve cquations (3.2.7) and (3.2.8), we consider

u=f(e™  and T = g(v)e ", (3.3.10)
where n is the decay constant.
Substituting (3.3.10) in equations (3.2.7) and (3.2.8), the equations become

) : Gr
STy =ReiHaRe(l = A7) =ni f(v) = -*—lil—g(_\') (3.3.11)

C
and ¢"(»)+nPeg(v)y=0 (3.3.12)
Thercfore the corresponding boundary conditions arc given by

ni

1>0: f=c",g=¢ al v =l
:./.:_elu,g:() at -“:-—] (}3]})

Solving the equations (3.3.11) and (3.3.12) with the help of boundary conditions

(3.3.13). and substituting in the rclations (3.3.10), we get-

l [2Re(a] +a}) = Grisha,y Grcha, y
{ = R = - 4
2Re(al + al)sha, 2Re(a)l +a;)cha,
(.i,- sin(J + "‘2”' A1)
Resin2a, | af +a;
sin(l + y
and T:M (”;"([S)

sin2a,
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where a, = VnPe and a, = Re!HaRe(l= A7)y~ n) .

e
Case (ii): when the lower plate is adiahatic, then the imtial and boundary conditions

arc
'=0:u'=0,7T" =0, for ~h< v <+h
'>0:0 =u, . T =1, at v =+h
' (97" '
' =—u,, —=0 at v ==l (3.3.10)
ov

For the relation (3.2.6). the mitial and boundary conditions (3.3.16) become

=0 u=0,7T=0, for =< v<tl
1>0:u=1,T=1 af v =+l
T
U= ‘a—:() at vo=-—1 (3.3.17)
oy

For the relation (3.3.10), the corrcsponding boundary conditions arc given by

i

1>0: f=¢" g=¢ at v =+1

. og¢
f=—e .—}:() ar v -1 (3.3.1%)
o

Solving the equations (3.3.11) and (3.3.12) with the help of (3.3.18), and substituting in

the relations (3.3.10), we get-

Gr(l-cos2a,) !
"= — + sha, v
2Re(a +ay)cos2a, sha,  sha,

Gr )
~ - - sha, v
2Re(a; +ay)cosa, cha, )




Gr cos(l + v)a, . (3.3.19)
Recos 2a, (1,2 +d;
and T:M, (3.3.20
cos 2d,

3.4 Results and discussion

In the casc-1, numerical solutions of cquations (3.3.14) and (3.3.15) arc obtained
for different values of A, wherc A =cos@) which varics as ¢ =45", 60", 75". The
figurc-1 shows that the naturc of the flurd velocity with the various values of Reynolds’
number Re. The values of the velocity distribution decrease with the mercase for the
values of Re. The velocity distribution increases for the positive variable y and also
decrcases for the negative valucs of the variable y, depending upon the values of Re.

The figure-1l is obtained by blolling the velocity distribution against the
variable y for different valucs of Prandtl number Pr, while Pr=0.71, 1.0 and 2.0. The
velocity distribution between the plates deercases gradually with the incrcase of Pr.
But the values of velocity increasc towards the plate v >0 and decrcases towards the
plate y < 0. Also the valucs of the velocity due to the increase of Prois very closed that
is why the plotted graphs arc touching among the three curves which are drawn by
taking the values of Pr=0.71, 1.0 and 2.0,

The figure-111 is found by plotting the velocity distribution with the different
values of magnetic ficld parameter Ha versus the variable y. The velocity profile
decreases duc to the increase of Ha. Its values are maximum towards the posttive side

of plate and minimum towards the negative side of the plate.
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In the figure-1V, the fluid velocity is drawn against the vartable y with the
various valucs of the Grashoff number Gr. The velocity profile increases with the
incrcasc of Gr.

The figure-V is obtained by plotting the velocity profile against the vartable y
with the vartous values of #. The velocity profile deercases due to the increase of the
angle @. In this figure also, the values of the velocity are maximum towards the
positive values of the variable y and minimum towards the negative values ol the
variable y.

The figure-VI is found by plotting the temperature distribution agamst the
variable y with the different valucs of the Peclet number Pe = 1.07, 1.5, 3.0, The
temperaturce distribution incrcases very stowly with the increase in Peclet number.

In the casc-11, numecrical solutions of the cquations (3.3.19) and (3.3.20) arc
obtaimed for different values of A, where 4 = cos€) which varies as 0 =457, 60", 75",
The figure-VII shows that the naturc of the fluird velocity with the various values of
Reynold’s number and the values of the velocity distribution decrease with the increase
of the valucs of the Reynold's number Re.

The figurc-VIII 1s found by_plolling the velocity distribution against the varable
y duc to the various valucs of Prandtl numbcer Pr. The velocity distribution between the
two plates decrcases gradually with the increase ol Pr.

By the casc-1, in the higure-1X of casc-, the velocity distribution deercases
gradually with the increase of the magnetic ficld parameter Ha. In the figure-X of casce-
11, the conditions of the velocity distribution are same as the given in the case-1 of
figurc-1V. In the figure-XI of casc-I1 also, the veloeity distribution varies same as the

given in the figurc-V of casc-1.
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The figure-XII is found by plotting the temperature distribution against the
variable y for different values of Peclet number Pe = 1.07, 1.5, 3.0. The temperature
distribution between the two plates increases gradually with the increase of Pe.

In the table-1, we have noticed that the values of the Nusselt number at the plate
of the variable y = -1 increase gradually with the increase in Peclet number Pe. But the
values of the Nussclt number at the plate of the vanable y = -1 decrcase very slowly
with the increasc in Peclet number.

In the table-11, we have obscerved that the values of the skin-friction co-efticient
decrease with the increase in Proat the plates y =4 1. Skin-friction increases with the
increase in Re at y =% 1 and it also decrcases with the incrcase in Ha at y =+ 1. The
skin-friction co-cfficicnt increases due to the incrcase in Groat y =+ | and decercases
with the increasc in @ at the vanabley =+ 1.

In the table-111, we notice that the values of the nussclt number at the vatues of
the variable y = -1 become zero with the diffcrent values of the Peclet number. But the
nussclt numbers decrease at the values of the variable y = +1 with the increase in Peclet
number.

In the table-1V, wc have scen that the values of the skin-friction co-cfficient
decrease with the increase in Pr at the plates y =+ 1. Skin-{iiction decrcases with the
increase in Re at y =+ [ and it also increcases with the increase in Ha at y =+ 1. The
skin-friction co-cfficient decreascs due to the incrcase in Groat y =+ 1 and increascs

with the increase in @ at the variable y =-1, but it decreases at y=+1.
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Figure-I: velocity at the plates: I. Re = 7.5, II. Rc = 3.5, Ill. Re=1.5
Pr=0.71,Ha=5,Gr=3,n=1, §=45°.
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Figure-1II: velocity at the plates: 1. Pr=0.71,11. Pr= 1.0, IlI. Pr = 2.0,
Re=1.5,Ha=5,Gr=3,n=1, §=45".
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Figure-1l1: velocity at the plates: 1. Ha= 5, [Il. Ha = 10, HI. Ha = 15,
Re=15Pr=0.71,Gr=3 n=1, §=45".
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Figure-IV: velocity at the plates: I. Gr=3,11. Gr =4, 111. Gr = 6,
Re=15,Pr=0.71,Ha=5n=1, §=45".
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Figure-VI: Temperature at the plates: Pe=1.07, Pe = 1.5, Pc=3.0,n= 1.0.

79



80

FOR CASE-II
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Figure-VII: velocity at the plates: [. Re = 1.5, Il. Re = 3.5, Ill. Re = 7.5,
Pr=0.71,Ha=35,Gr=3,n=1, 0=45".
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Figure-VIII: velocity at the plates: 1. Pr=0.71, 1. Pr= 1.0, HlIl. Pr = 2.0,
Re=15,Ha=5Gr=3,n=1, §=45°
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CASE-I

Table-1: values of Nusselt number at the plates:

Pe n (Nu)-1 (Nu)+1 |
1.07 1.0 28.6541164 28.6354393 |
150 | 1.0 ‘ 28.6566185 © 28.6304345
- 300 1.0 28.6653506 28.6129748
Table-11: values of Skin-friction co-cfficient at the plates:
Pr Re Ha 6 Gr (C.y h
(C
0.71 1.5 5.0 45° 3 13.25679819 12.48422318
1.00 1.5 5.0 45° 3 13.17025848 12.35343098%
2.00 1.5 5.0 45° 3 11.43753306 10.78539197
071 | 15 10 [ 45° 3 8.755653085 R. 705577072
071 | 15 E 45° 3 6.090770880 5930020109
0.71 | 35 50 | 45° 3 11.62361463 11.58909340
0.71 7.5 5.0 45° 3 12.91562283 l2.75£8(»44()
0.71 1.5 5.0 60° 3 10.14728014 9.462274368
0.71 1.5 5.0 75° 3 8.914997877 8.2974788906
0.71 1.5 5.0 45° 4 17.17686149 16.08776882
0.71 1.5 5.0 45° 6 25.19008350 23.55644450)




CASE-II

Table-111: values of Nusselt number at the plates:

R4

{ " Pe N (Nu)-1 (Nu)+1 3
L7 1.0 0.000000 | -0.03736629 |
| - e e _ R e !
; 1.50 1.0 0.000000 0.05239180 |
] 3.00 1, 0.000000 -0.10484739
| . . !
Table-1V: values of Skin-friction co-cfficient at the plates:
Pr Re Ha 0 Gr (Ch)-i
(C)
071 | 1.5 | 50 | 45° 3 2.914250420 1438632508
100 | 1.5 | 50 | as° 3 2.868405574 1.322784632
200 | 15 | 50 | 45° 3 2.743707830 1300698366
071 | 1.5 10 | 45° 3 8.746873196 8.249099447
071 | 15 15 | 45° 3 12.71230515 12.249099447
071 | 35 | 50 | 45° 3 11.57240906 1139471959
071 | 75 | 50 | 45° 3 3.368916613 5.047345910)
071 | 1.5 | 50 | 60° 3 3.629556079 2.394250926
071 | 15 | 50 | 75° 3 3.726341957 1.972990533
071 | 1.5 | 50 | a5° 4 3.343298483 1006198890
071 | 15 [ 50 | 45 6 3.184947601 (.4582 18889
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CHAPTER 4

Magnetic field effects on the fluid and free convection flow
through porous medium due to infinite vertical plate with
uniform suction and constant heat flux.

4.1 Introduction

The study of the electrically conducting fluid flow problems taking into account
of the simultaneous effects of the magnetic field on the fluid and frce convection flow
through porous medium due to infinite vertical plat@: with ux‘n'form suction and constant
heat flux is important because of their applications in many problems of geophysical
and astrophysical fields.

Acharya, Dash and Sing [2000] studicd the stcady two-dimensional free
convection and mass transfer flow of a viscous incompressible clectrically conducting
fluid through porous medium bounded by a vertical infinite surface with constant
suction velocity and constant heat flux in the presence of a uniform magnetic ficld. The
fluctuating free convection through porous medium duc to infinitc vertical plate with
constant hecat flux has becen analysed by Maharshi and Tak [2000]. Kumar [2000]
studied the stability of two superposed Riviin-Ericksen elastic-viscous fluids permitted
with suspended particles in the porous medium. Sing [{1996] devoted to an important
study of an unsteady clectrically conducting stratificd viscous fluid flow through a
porous medium between two parallel plates in the presence of transverse cxponentially
variable magnetic induction when the strcam velocity at the lower plate fluctuates with

time.



h g

The magnetohydrodynamic unstcady flow of a visco-clastic hquid (Riviim-
Ericksen) near a porous wall suddenly sct in motion has been studicd by Datta, Biswal
and Sahoo [1998] with the heat transfer including hcat generating sources or heat
absorbing sinks. The transient free convection flow of an incompressible visco-clastic
fluid past an infinite vertical plate under uniform surface heat flux conditions 1s studicd
by Das. Dcka and Soundalgekar {1999].

In this chapter, a theorctical analysis of unstcady two-dimensional free
convection flow of a viscous incompressible clectrically conducting fluid lhrpugh a
porous mcdium of variable permcability, bounded by an infinite vertical porous plate
with uniform suction and constant heat flun under the action of a uniform magnctic
ficld is studied. The constitutive cquations ol this problem have been derived by takimg
all the physical variables dependent on the variable ‘y" only. The cquation of
continuity, the¢ momentum equation and the cnergy cquation arc solved by non-
dimensionalysing the cquations first and then by applying the method of perturbation
technique. The expressions for the fluid velocity, temperaturce profile and skin-friction
arc obtainced. The cffects of Prandtl number, Grashof number, magnetic ficld parameter
and the variable permeability of porous medium on the velocity are interpreted

graphically, and also, temperaturc profilc arc discussed and shown graphically.
4.2 Mathematical formulation of the problem

To formulate the governing cquations in this chapter, lct us consider a two-
dimensional unsteady free convection flow of an incompressible clectrically conducting
fluid through porous medium bounded by an infinitc vertical porous plate in the

presence of uniform magnetic filed.



It is assumed that there is a uniform suction vclocily of the fluid and the
constant heat flux through the porous plate. Here X' -axis s cronsndcrcd to be taken
along the plate and Y'-axis is taken normal o it Letu” be the veloaity of the fuid along
the X'-axis and let v/ be the velocity of the lwd along the Y'-axis. So consequently,
is a function of the variable y" and ¢ only. But v/ 1s independent of the varable v

To derive the governing cquations of the problem, the f‘olllowing conditions arc
considered:

(1) The plates arc infinitcly long, so that the {luid /vclocity u' s the function of y' and
1" only.

(11) The buoyancy force 1s considered i the equation of motion of the fluid.
(111) The flow between the plates is fully developed.

(iv) The Joulc heat and viscous dissipation arc assumed (o be neglected.

(v) The Hall effect and polarization cffect arc ncglected.

(vi) The fluid is supposed to be of low conductivity, such that the induced magnetic
field 1s negligible.

(vii) Only electro-magncetic body force (Lorentz force) is considered.

Then the Lorentz's force is —oB u', when the fluid velocity «'is given to the plate m

its own planc and a uniform magnectic ficld B, is applicd transverscly to the plate.
Thus the flow ficld is governed by the following cquations:
Equation of continuity

My
ay



Equation of momentum

¢ ¢ 2 0 13
@{7+"'@7=va 1,'2 +g/3(’/"—'/i,")~l—)u’—(r “u’ (4.2.2)
ot (')y a)" k N

Equation of energy

aT' . oT k' 0T
+v

o' o' pe, N

where p s the density of the fluid, v s the kinematic viscosity of the Huid, By 1s a
untform magnetic ficld applied transversely to the plate, o 1s the clectrical
conductivity of the fluid, k 1s the permcability of the porous medium, k" is the thermal
conductivity of the fluid, g is an acceleration duc to gravity, S is the co-clTicient ol the
thermal expansion, ¢, is the specific heat of the fluid at constant pressure, T s the
tempcraturc of the fluid and 77 1s the temperaturc of the fluid at infinity from the plate.

Let & be of the form k(r) =k, (1™ ). where Kk, is the mcan permeabhility of
the porous medium, @ 1s the frequency of the Nuctuations with tme t and &(< 1)
constant quantity.

The relevant inttial and boundary conditions are given b
£ y

'<0:0 =0T =T for all '
7’
f’>0:u'=0,§—=—i at v' =0
a})l l‘l -
=0, T"=T at v = (4.2.4)

From the cquation (4.2.1), we get

v' =constant.
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For the constant suction, let us take

where the negative sign indicates that the suction towards the plate.

Introducing the following non-dimensional variables and parameter quantitics:

' r 2 ’ 2 2
v, Vi oBlv g
Vo= tE— oy =—, MHu=—", (:l‘:-——j‘-‘r—,
v v v, e kv
L (T =T k' e, / vk,
T=-rtlBf ppalor Mo e (4.2.0)

qu k' ) 1"
then the cquations (4.2.2) and (4.2.3) with the help of the conditions (4.2.6), reduce to

the following form:

2 ')Z .
g M O oy (4.2.7)
o Oy dy- ol + ")
T T
and éz—a— —l—a (4.2.8)

where Gr s the Grashol” number, Pr is the Prandtl number, o is the permeability

parameter and Ha is the magnetic ficld parameter. But magncetic ficld parameter is not
- o
defincd same as the Hartmann number Hr = B I |— .
7

The corresponding initial and boundary conditions arc given by

1£0:u=0,T=0 for all »
l>():z1=0,—(3—7;:—] at y=1)
dy

=0, T=0 at y=w (4.2.9)
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4.3 Solution of the equations

To solve the cquations (4.2.7) and (4.2.8). et us break up the velocity (i) and
temperature (7)) into two parts, one time-dependent and other time-independent
respectively. Thus we assume that the following series expressions for the velocity and
temperature profile:

u=u (v)+au (v)e" + (4.3.10)

and T =T (v)+ el (v)e"™ + i, (4.3.11)

Now, substituting the cquations (4.3.10) and (4.3.11) m cquations (4.2.7) and (4.2.8).
and scparating the harmonic and non-harmonic terms of like powers of « 1o sero, the

following partial differential cquations arc obtamed.

L’]”“"+ 7'=0 (4.3.12)
Pr
] ~n 1] .
177' +T~iwTl, =0 (4.3.13)
r
" ' 1 ~ g ’
w, +u, ~(—+Hay, =-GrT, (4.3.14)
a
oo ] .
and  u/+uy ~(—+Ha+iow, =-Gr, . (4.3.15)
a a

The inittial and boundary conditions (4.2.9) arc now modificd as

(<00, =0=u,7 =0=1,, forall y
7
1>0:u,=0, u, =0, a—T’L: -1, Q—»‘- = () at y =0
v o '

=0 al v =00 (4.3.16)
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Now. solving the equations (4.3.12)-(4.3.15) by using the conditions (4.3.16), we get

T (y)= —l—e’P" (4.3.17)
Pr
T(v)=0 (4.3.13)
u,(y)= %[e“"‘ —e™'], (4.3.19)
GrG,e™

and u,(v)=

(aM M, cos¢, v+ M simg,v)
aMl(Mf—/\/lf)[ { 3 ¢l 4 l

—i(aM M sing,y — M cosg, v)] (4.3.20)

l+Jl+4(~l—+Ha)
a

2

where a, =
M, = PriPri- Pr—(l+ Ha)},
a

M, =Pria? —a, ~ (= + Ha)l,
(94

M,=MM,-w’Pr?
M, =wPr(M, +M,),

G, = Pr*(Pr—a,)(Pr+a, - 1),

11 . .0 1
cos@=z+—+Ha, sind = w, ¢, :smg, and a, :—+cosg.
a

Thus substituting the solutions (4.3.17)-(4.3.20) m the rclations (4.3.10) and (4.3.11),

we get



i - ) G‘G )"”ll'
and u = —(ir—[e'"" ~e"" )+ ge™ ! '2( —[(aM M, cos ¢,y
M, aM (M; -M])
+ M, sing, y)—ilaM M sing vy — M, cosg,v)i : (4.3.22)

Now, taking the only real parts of the velocity, we get

u= _(;_r_[e—rln —G_P”'].f. EG"GLQ : [aM|M3 COS((UI _¢|y)
M, aM (M} -M})
+ M, cos(wt + ¢, )] (4.3.23)

Skin-friction
The skin-friction at the plates is given by

ou

7, = ().
EY 0
:—GL[(Pr— a,)————=——laM M (a, cosw! — ¢ sin wl)
M, U oami-myn !
+ M (a,cosmt + ¢, sinwt)}] (4.3.24)

4.4 Results and discussion

The velocity distributions of the fluid are shown by the curvces of figures-1. 1, 111
and IV. In the figure-I, the velocity distribution is obtained by drawing against the
variable y for the different values of the magnetic field parameter Ha = 1.5, 3.5, 7.5,
when Pr=0.71, Gr=5.0, a=1, w=0.10, wt=45", £=0.2. Herc we havc noticed that
the velocity distribution increases gradually near the plate (0 <y<1) and then decreases
slowly far away from the plate (y>>1). Also, the values of the velocity distribution

decrease for the increasing of valucs of the magnetic ficld parameter Ha.
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The figurc-11 is obtained by drawing the vclocity distribution against the
variable y with the various values of Prandt! number Pr=0.71, 1.2, 2.3, when Ha = 1.5
as the values of Gr, a, wt, @, £ remain same as taking on the plotted figurc-I. Here
the velocity distribution increases gradually necar the plate (0<y<1) and then decrease
slowly far away from the platc (y>>1). Also, the velocity distribution decrcases with
the increase in Pr.

The figure-I11 is obtained by plotting the velocity distribution against y with the
different values of the Grashoff number Gr = 5, 10, 15, when Pr=0.71, Ha = 1.5, «,
wt, w, & remain same as considering on thc plotted figure-I. Here also, we sce that the
velocity increases gradually towards the platc (0<y<l) and the decreascs slowly far
away from the plate (y>>1). The velocity distribution increascs duc to the increase in
the Grashoff number.

The figure-1V is found by drawing the velocity distribution against the variable
y with the various values of thc permcability parameter o = 1.0, 2.0, 3.0, when Pr =
0.71, Gr = 5.0, Ha = 1.5 as the values of wt, @, ¢ remain same as considering in the
figure-1I. In this figure also, we have scen that the velocity distribution increascs
towards the plate (0 <y<!) and then decreases slowly far away to the platc (y>>1). The
fluid velocity increases graduaﬂy with the increasc of permcability parameter.

The solution of the temperature distribution is similar to that followed by
Maharshi and Tak [2000]. Herc the tempcrature distribution is plotted against the
variable y (0 < y < o0). From the figure-V, it is observed that the temperature increascs
near the plate for the different values of the Prandtl number Pr = 0.71, 1.2, 2.3 against
the variable y (0<y<l) and dccrcases far away from the plate for the variable
(1< y <o), But the temperature distribution decreases with the increase in Prandtl

number Pr.
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From the table-1, Il and [, we havc observed that the skin-friction incrcascs

due to the increase in Gr, but decreases gradually duc to increasing values of Prandtl

number and pcrmeability parameter.

velocity, u

12 figure-1

| Ha=15

bHa=35
:Ha=7.5

4

Fig.I: Vclocity profile versus y when o =0.10 and ¢ =0.2.
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Table I: Values of Skin-friction 1, at the plate'

Gr

1.0
5.0
10
15

|

Ha=1.5
0.7464
3.7319
7.4637
11.1956

Tw

Table II: Values of Skin-friction Tw at the plate

Pr a
071 | 10
0.71 1.0
0.71 1.0
0.71 1.0

Pr o

1.0 2.0

1.0 2.0

10 20
1.0 2.0

Gr

1.0

5.0

10

15

Ha=1.5
0.7336
3.6680
7.3360
11.0041

Tw

Ha=7.5
0.4433
2.2167
4.4447
6.6563

Ha=7.5
0.3487
1.7434

" 3.4868

5.2302
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Table lll: Values of Skin-friction 1, at the plate

Pr o
2.0 3.0
2.0 3.0
20 30
2.0 30

Gr

1.0
5.0

10

15

Tw

Ha=7.5
0.1353
0.6767
1.3534
2.0301

98



99

CHAPTER 5

The motion of the electrically conducting fluid with the time-
variation through the non-conducting porous plate under
the action of magnetic field.

5.1 Introduction

Borkakati and Bharali [1980] discussed the stcady magnctohydrodynamics flow
past an infinite horizontal porous plate 1s thecoretically investigated by taking Hall
effects into account, when a strong magnctic ficld 1s imposed i a direction which 1s a
perpendicular to the free stream and makes an angle a to the vertical dnection.
Borkakati and Chetri [1989] have respectively studicd the effect of the deflection of a
strong magnctic ficld on the oscillatory MHD flow past an infinite horizontal plate s
studicd theoretically, keeping the Hall-paramcter constant. Recently, Mahato and Kuiry
[1999] have discussed the flow behaviour of a viscous incompressible and clectrnically
conducting fluid due to the time-varying acccleration of an infinitc porous plate 1s
analyzcd mn the presence of a uniform transverse magnetic ficld. Also, Shaima and
Kumar [1998] discussed the unstcady flow and heat transfer through a viscous
incompressible fluid in the presence of transverse magnetic filed between two
horizontal parallel plates, the lower plate being a stretching shect and upper plate being

porous.
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The objective of this chapter is to analyze and discuss about the results of an
unsteady viscous incompressible flow of an incomprcssible electrically conducting
fluid between two horizontal parallel porous plates in the presence of a uniform
transverse magnetic field of which the directiqn is deflected. Exact solutions of the
governing equations have been obtained and plotted thrpugh graphs. The vclocity
profile and the skin-friction are found due to the effect of the deflection ol a strong
magnetic field on the MHD flow past bctweg;n two parallel plates and the results are
obtained numerically and plotted graphically. The magnetic field parameter effects on

the electrically conducting fluid flow are shown by plotting graphs.
5.2 Mathematical formulation of the problem

Let us consider an unsteady flow of an electrically conducting incompressibice
viscous fluid between two horizontal porous plates in the prescnce of a uniform

transverse magnetic field. The electrically conducting fluid flow is assumcd to be in the

X' -axis which is along the plate and Y'-axis is normal to it. We assumc that the fluid
is finitely conducting and non-magnetic. A strong and uniform magnetic ficld B s

imposed on the MHD flow between two parallcl plates, when it makes an angle « to

the free stream velocity. The components of the magnetic field are given by
B, =(B,A B~ 0).
where A =cosa and the velocity distribution is v = (u( v), v, 0).
All physical quantities except pressure are functions of ' and (', as the plate
is extended infinitely and the porous plate is moving with time-varying velocity. As the

magnetic Reynolds number is small, the induced magnetic field is neglected.



101

Under these assumptions, the governing equations of the problem are given as
follows:

Equation of continuity

» o (5.2.1)
oy’

Equation of motion

' ' 2 2
O L M O I TR - aw) (5.2.2)

a oy’ ' p

where p is the density of the fluid, o is the electrically conductivity of the fluid, v s
the co-cfficient of the kinematics viscosity.

Let the fluid velocity change to zero velocity situating the plate 3" =0 be at rest
and the velocity at the plate y'=+h be moving on thc time-varying motion with a

constant velocity v,, for the time (' > 0. Then the initial and boundary conditions are

given by
1'<0:u" =0, forall '
t'>0:u"=0, for y' =0
cu'=ve™, Jor y'=+h (5.2.3)

Now, solving the equation (5.2.1), wc obtain
v = constant,
For the constant suction, lct us consider
V=-v, (5.2.4)

where the negative sign indicates that the suction towards the platc.
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Then the equation (5.2.2) in the help of equation (5.2.4) bccomes

' ' 2.t 2
oy OB TR T = A+ v (5.2.5)

o "yt p

We now introduce the following non-dimensional variables and paramcters in order to

transform the equation (5.2.5) into non-dimensional form:

' ' v 2 2
Vv u 1'v, oB>v v,
y=" u=—, t=—=, Ho=—"—, —==]| (5.2.6)
U ‘}f) U p‘)” U

Using the condition (5.2.6) in the equation (5.2.5), we get-

2
@i-gﬁ=§’—z‘-m(1—mu—/—/M\h—f (5.2.7)
o dv Oy

The initial and boundary conditions of the non-dimensional form are given by

1<0:u=0, for all y
(>0:u=0 at v =90
u=e " at y = +1 (5.2.8)

5.3 Solution of the equations

To solve the equation (5.2.7), we considcr that
u= f(yvye™ (5.3.9)
Substituting (5.3.9) in the equation (5.2.7), we get-

2 .
g { +§£—— {Ha(l - /12)—;1}_/' =" HaAJl - A? (5.3.10)
7y Y

The corresponding boundary conditions arc given by
/=0 at v=0

and [ =1 at y =+1 (5.3.11H
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Solving the equation (5.3.10) with the help of the condition (5.3.11), we get-

. 2(14 M,e™) "M, cosha, . .
f(¥)y=e? [Me" cosha,y]+[( .( .+ )¢ .'cosm']smha,y
sinha, sinh a,
- Me" (5.3.12)
! 2
where @, :E\/l +4{Ha(l— A2)-n}
HalJ1- A’
and M, =T -
Ha(1-A")-n
Substituting (5.3.12) in the relation (5.3.9), we get-
l .
s 3o |
w=e? [Mcoshay]+ [E6— M) M ooy - u, (5.3.13)
sinha, sinha,
5.4 Computation of the skin-friction
The skin-friction C, at the upper and lower platcs are given by
¢ = #(?fi]
a'y y=0.1
!
_ e(e™ + M) M, cosha, " _&] for y =0
sinha, sinha, o2 o
!
_ el(e™ +M;) M, cosha, ' cosha
sinha, sinha, o !
}
-Mpe? {—z-cosh a,—a,sinha,{] for v =+1
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5.5 Results and discussion

The figure-1 has been obtained by plotting the velocity distribution u agamnst the
values of the variable y with the different values of the magnetic field paramcter Ha =
2.5,3.5,4.5 when @=45° nt = 1.0, n = 1.0. Here n this figure, we have scen that the
velocity distribution decreases duc to the incrcase of the valucs in Ha agamst the
positive values of the variable y.

The figure-II has been found by drawing the velocity distribution u against
variable y with the various values of anglc#=45° 60°, 75° when Ha =25 nt=1.0,n
= 1.0. In this figure, we have noticed that the velocity distribution decreases gradually
due to the increase of the angle 4.

From thc table, we obscrve that the valucs of the skin-friction co-cfficient

(C,),., Increase very slowly with the increasc in magnetic ficld parametcr Ha and also
increase with the increase of the angle @. But the skin-friction co-efficient (C',), |

decrcases with the increasc in Ha at the plate y = +1 and also decreases duc to the

increase of the angle 8.



105

velocity, u

1.67
1.4 -

1.2 -

T

0.6 1

& ptHa=25
s lHa=35
_,lHa=45

L

1.2

Fig.l: Velocity distribution versus y for the different values of Ha when n=1.0.
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2 figure-ll
15-
S~ 0=45
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s
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-05 4 > 0=75"
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Fig.Il Velocity distribution versus y for the different values of @ when n=1 0



Table: Values of skin-friction co-efficient at the plates
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Ha 0 nt n L (C,)\20 (G N

2.5 45° 1.0 1.0 0.2 0181178117 0.566074632
35 45° 1.0 10 | 02 -0.141169949 0.339101223
4.5 45° 1.0 1.0 0.2 -0.089946544 0.288357991
2.5 60° 1.0 1.0 0.2 -0.017022186 0.25352058S
2.5 75° 1.0 1.0 0.2 0.028271017 0.205206853
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CHAPTER 6

MHD flow and heat transfer of Rivlin-Ericksen fluid through an
inclined channel with heat sources or sinks.

6.1 Introduction

The hcat transfer in the flow of a conducting fluid between two non-conducting
porous disks-one rotating and thc other at rest, in the presence of a transverse uniform
magnetic field, the lower disk being adiabatic (which is given and well-known by
Schlichting [1968]), was studied by Bhattacharjcc and Borkakati [1984]. Singh and Singh
[1995] discussed the laminar flow and heat transfer of an incompressible, clectrically
conducting second order Rivlin-Ericksen liquid in porous medium down a parallel plate
channel inclined at an angle@ to the horizontal in the presence of uniform transverse
magnetic field. The commencement of thc Couctte flow in Oldroyd liquid in the presence
of a uniform transverse magnctic ficld with heat sources/sinks has been studied by Biswal
and Pattnaik [1996]. Rathod and Shrikanth [1998] have studied the unstcady MHD flow of
Riviin-Ericksen incompressible fluid through an inclined channcl with two paralicl flat
walls under the influence of magnetic ficld. The magnetohydrodynamic unstcady flow of a
visco-elastic liquid (Rivlin-Ericksen) ncar a porous wall suddenly sct in motion with the
heat transfer including hecat gencrating sources or heat absorbing sinks has been studied by

Datta, Biswal and Sahoo [1998].
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Chakraborty and Borkakati [1998] have investigated the laminar convection flow of
an electrically conducting second order visco-clastic fluid in porous medium down an
inclined parallel plate channel in the presence of uniform transverse magnctic ficld. The
unsteady flow and heat transverse magnetic ficld betwcen two horizontal parallel plates.
the lower plate being a stretching sheet and upper being porous was investigated by Sharma
and Kumar [1998].

In this chapter, we investigate that thc magnetohydrodynamics unsteady flow of a
visco-elastic (Rivlin-Ericksen) fluid through an inclined channel with two parallcl flat
plates under the influence of a uniform magnctic field with heat transfer including heat
generating sources or heat absorbing sinks, when the plates are moving with the transicent
velocity while the one of these two plates is adiabatic. The constitutive cquations for
continuity, motion and energy of visco-clastic liquid are obtained, and to obtain the
numerical expression for the velocity and temperature distribution, the perturbation method
is applied. The effects of sources/sinks paramcter on the fluid motion and heat transfer of
visco-elastic fluid through an inclined channel have not been studicd yet. So, our aim here
is to analyse the magnetohydrodynamic unsteady flow and heat transfer of an
incompressible electrically conducting fluid through an inchined parallel plate channel in
the presence of a uniform transverse magnctic field, when the plates are moving with
transient velocity while the one plate is adiabatic. The cffects of magnctic ficld parameter,
elastic parameter, Reynolds’ numbcer, Grashoff number, Froude number, Prandt! number
and source sink term on the velocity distribution is discussed with the help of graphs. Also,
the effects of Prandtl number and source or sink paramcter on the temperature distribution

is expressed with the aid of graphs.
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6.2 Mathematical formulation of the problem

Let us consider two dimensional incompressible elcctrically conducting Rivlin-
Ericksen fluid flowing through an inclined channcl between two parallel flat plates which
are at a distance 2h apart under the influcnce of a uniform transverse magnctic ficld. We

assume that the x'-axis along the straight linc mid-way between the two plates, the v' -axis
perpendicular to it. A magnetic field of uniform strength B, 1s assumed to be applied in the

v’ -direction. Let u' be the velocity component along the direction of the x'-axis and the
other components of the velocity be zcro.

To write down the governing cquations of the problems, the following conditions
are considered:
(1) The plates are infinitely long, so that the ﬂl‘lid velocity u’ is the function of ' and /'
only.
(i1) The temperature is uniform within the fluid particles and the buoyancy force is
considered in the equation of motion of the fluid.
(111) The flow between the plates is fully developed.
(1v) The conductivity of the fluid is assumed to be very low, so that the induced magnetic
field is neglected.
(v) The Polarization effect and heat Joulc are neglected.
(vi) The Hall effect and viscous dissipation arc assumed to be neglected.
(vii) Only electro-magnetic body force (Lorentz force) is considered.

(viii) Initially i.e. at time ¢ =0, the plates and the fluid arc at constant temperature (i.c.

T' =T, ) and there is no flow within the channcl. Where T, is constant temperature.



et

. , . ' ¢
At time ' >0, the temperaturc of thc platc ' =+/fchanges to —?——,-z(), and the
o

temperature of the plate y' = —h changes accordingto 7' =T, +(T, - T, e ™", where T,
is the temperature of the fluid at the wall, and n' > 0 1s a rcal number, denoting the decay
factor.

Under these above assumptions, the governing cquations of continuity, motion and

cnergy for the unsteady flow of a visco-clastic mcompressible clectrically conducting fluid

between two non-conducting parallel plates in the presence of magnetic ficld are

@l—,:O (6.2.1)
ox
1 ' 2t 1o [2 )
a_u'=~laL), ua 142 +& a!ulz L u'+gsing+gf(7r'-T)) (6.2.2)
ot 0 Ox oy': p ot'oy Jo, i
' 2t
and aT, = k o 7; +S'(T'-T,) (6.2.3)
ot pc, oy :

where p = density of the fluid,
B, =uniform magnctic field applicd transverscly to the plate,

o = electrical conductivity of the fluid,

v = co-efficient of kinematics viscosity,

k = thermal conductivity of the fluid,

¢, =specific heat at constant pressurc of the fluid,
B = co-efficient of thermal expansion,

g =acceleration due to gravity,

p' =pressure of the fluid,
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k,, =co-efficient of the elasticity,
n, = co-efficient of viscosity

S’ =the heat source or sink term.

The initial and boundary conditions of the problem are given by

'<0:u'=0,T"=T, for —h <y <+h
(>0 =-u,, T'=T,+(T, -T,)e"" at y'=—h
oT’
u' =4u,, — =10 at y' = +h (6.2.4)
6%

In order to bring out the essential featurcs of the cquation of this problem. We now

consider the following non-dimensional parametcrs as given by Shih-1 Pai [1961]:

’ ’ ’ ’ 2 2 !
X'u u u t'u oB‘v T'-T
x= ”,y=y L u=—,t=—2 Ha= =, T= -,
v v u v pul T, T,
e, vn S'v veB(T ~T o'
pr=te o 5200 oo BN P
k l: Ll” LI’P pllll
2 2
k u uh hu
Fr=-—, Rc=-—22 Re=—4- —2 =] (6.2.5)
g n,v v v

Substituting the non-dimensional variables and parameters in the equations (6.2.1)-(6.2.3),

we get-
0
5%:0 (6.2.6)
2 3
%z—?—e+i—u{+ Rc u2 — Hau + - 0 +GrT (6.2.7)
ot ox oy otoy FrRe
or 1 9'T

—=——+S5T 2.
a  Proy’ (6.2.8)



13

where Rc is the elastic parameter, Ha is the magnctic field parameter, Fr is the Froude
number, Re is the Reynolds number, Gr is thc Grashoff number, Pr is the Prandtl
number and S 1s the source or sink tcrm.

The initial and boundary conditions of the non-dimensional form arc given by

t<0:u=0,T=0, for —1<y<+1
1>0:u=-1,T=¢" at y=-1
oT
u=+l,—=0 at y =+1 (6.2.9)
dy

6.3 Solution of the equations

The equation (6.2.6) shows that « s a function of y and t only and constant. Also, the

equation (6.2.7) shows that the velocity « 1s independent of x and therefore w15 a function

op . .
of y and t only. Thus, the term —aL must bc a constant or the function of't only.
X

Let us assume that Z—p =~h(t) (6.3.10)
X

Then the equation (6.2.7) becomes

2 3
@:h(z)+az+kc auz—Hau+Sm6 +GrT (6.3.11)
ot oy Otdy FrRce

In order to solve the equations (6.2.8) and (6.2.11) under the boundary conditions (6.2.9),

we consider-
u=f(y)e™
!

T=g(ye™

and h=he™" (6.3.12)
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The corresponding boundary conditions arc given by
S(=D)=-e" g(-) =1
and f(+1)=+e™, g'(+1) =0 (6.4.13)

Substituting (6.3.12) in the equation (6.2.8) and (6.3.11), we get-

2
0 ‘2g+ Pr(S+n)g =0 (6.3.14)
oy
o' f sm@e ™
and (1-nRe)—-—-(Ha-n)f=~h ——— ~Grg 6.3.15
(1= nRe) =5 = (Ha=m)f = ~h, - ===~ Grg (6.3.15)

Now, solving the equations (6.3.14) and (6.3.15) using thc boundary conditions (6.3.13),
and substituting in the equations (6.3.12), we gcet-

-m COsa,(1-y)

gly)y=e (6.3.16)
cos 2a,
1 Gre™ 1
u=|{— + . I~ sihb, y
sinhb,  2M sinhb, cos 2q,
Gre™ ! M,
- 1+ + coshh v
2M cosh b, cos2a, ) (Ha-n)coshbh,
N M, +Gre cosa,(1-y) (6.3.17)
Ha—-n M, cos2a,
cosa,(l -
and 7 = $84U=Y) (6.3.18)
cos2aq,

where a, = \[Pr(S + n),

b = fHa—n’
1 -nRc




M, =Pr(S +n)(1-nRc)+ Ha~n

sin @
FrRe

and M, =h,e™ +

5.4 Results and discussion

The figure-I is obtained by plotting the vclocity distribution for the different values
of magnetic field parameter Ha = 1.5, 2.5, 7.5 against the variablc y considering the
parameters values as Pr=0.5,S =05, Rc=03,Fr=30,h, =10, Rec=1.0,n=10.t=
1.0, Gr = 5.0 and 6 = 30°. In this figurc, thc velocity decreases with the increase of
magnctic field parameter Ha and it is maximum ncar the platc y = 41 and minimum
towards the platey = - 1.

The figure-11 is drawn for the fluid velocity for the different valucs of Prandt!
number Pr=0.5, 0.25, 0.025 for the valucs of Ha= 1.5, S =0.5, Rc = 0.3, Fr = 3.0, h,=1.0,
Re =1.0, n =1.0, t =1.0, Gr = 5.0 and 6 = 30" against thc variablc y. So, it is observed that
the velocity of the fluid increascs with the decrcasc of Pr and its valuc is maximum ncar the
plate y =+1 and minimum towards y = -1.

The figure-II1 has been obtained By plotting the velocity distribution u against the
variable y for various values of source or sink term S, when Ha = 1.5, Pr= 0.5, Rc = 0.3, I'r
= 3.0, hy=1.0, Re =1.0, n =1.0, t =1.0, Gr = 5.0 and 0 = 30°. This figurc shows that the
velocity increases as S increases.

The figure-IV depicts the velocity profiles against the variable y for different
values of elastic parameter Rc, when Ha = 1.5, S = 0.5, Fr = 3.0, h,=1.0, Re =1.0. n =1.0,

=1.0, Gr= 5.0 and 6 = 30°.
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From the figure-1V, we observce that the velocity is maximum ncar the plate y = +1 and
minimum towards the plate y = -1, and when Rc incrcascs, the velocity also increases.

The figure-V has been found by drawing the velocity distribution for various
values of Grashoff number Gr when Ha = 1.5, Pr=0.5, Rc = 0.3, Fr = 3.0, h,=1.0. Re =1.0.
n=1.0,t=1.0, S =0.5and 8 = 30°. So, we noticc that the velocity increascs duc to the
increase in Gr.

The figure-VI has been plotted to represcnt thc velocity distribution against the
variable y for different values of Froude number Fr, when Ha= [.5, Pr=0.5,Rc = 03,8 =
0.5, hy=1.0, Re =1.0, n =1.0, t =1.0, Gr = 5.0 and 0 = 30°. From this figurc, wc have scen
that the velocity decreases with the increasc of F'roude number.

The figure-VII has been obtained by plotting the velocity profiles against y for
different values of Reynolds’ number Re, when Ha = 1.5) Pr = 0.5, Re = 0.3, F'r = 3.0,
ho=1.0,S=0.5,n=1.0,t=1.0, Gr = 5.0 and 0 = 30". So, i1t is scen that the vclocity of the
-fluid decreases due to the increase of Reynolds’ number.

The figure-VIII has been obtained by plotting the temperature distribution T agaimst
the variable y for the different values of Prandtl number Pr= 0.5, 0.25, 0.025, when n =1.0,
t=1.0, S=0.1. It is found from this figure that the temperature decreases gradually with the
decrease of Prandtl number.

In the figure-IX, the temperature distribution has been drawn against the variable y
for various values of S, when Pro= 0.5, n =1.0 and t =1.0. From this figurc-1X, it 18
obscrved that the temperature increases for the mcrcasing of the valucs of the source or

sink term S.
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CHAPTER 7

Magnetohydrodynamics unsteady free convection flow and
heat transfer of a visco-elastic fluid through a porous
medium past an impulsively started porous flat plate.

7.1 Introduction

Datta, Biswal and Sahoo [1998] studied the magnetohydrodynamic unstcady
flow of a visco-elastic liquid (Rivlin-Ericksen) ncar a porous wall suddenly set in
motion with the heat transfer including heat generating sources or heat absorbing sinks.
The commencement of the Couette flow in Oldroyd liquid in the presence of a uniform
transverse magnetic field with heat sources or sinks has been studied by Biswal and
Pattnaik [1996]. Maharshi and Tak [2000] discussed the theoretical analysis of frce
convective two-dimensional unsteady flow through porous medium of variable
permeability, bounded by an infinite vertical porous plate with uniform suction and
constant heat flux. An analysis of steady two-dimcnsi.onal free convection and mass
transfer flow of a viscous incompressible clectrically conducting fluid through a porous
medium bounded by a vertical infinite surface with the constant suction velocity and
constant heat flux in the presence of a uniform magnetic field is presented by Acharya,
Dash and Singh [2000]. The flow of Rivlin-Erjcksen incompressiblc fluid through an
inclined channel with two parallel flat walls under the influence of magnctic ficld was

studied by Rathod and Shrikanth [1998].
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Sharma and Kumar [1998] were made an interesting analysis of the unstcady
flow and heat transfer of a visco-elastic fluid through a circular pipe. In this chapter, we
have studied that the unsteady flow of an incompressible electrically conducting sccond
order Rivlin-Ericksen fluid through the porous mcdium due to infinite horizontal plate
in the presence of uniform transverse magnetic field which includes the heat gencrating
sources or heat absorbing sinks. The plates are maintained at differcnt tempcratures
while any one of these two plates is kept at a constant temperature gradicnt. Using the
perturbation technique, the obtained constitutive equations of continuity, motion and
energy are solved at which the velocity and temperature distribution arc found. The
effects of magnetic field parameter, visco-elastic parameter, permeability paramcter,
Prandtl number, source or sink term and Grashoff number on the velocity distribution
are discussed with the help of graphs. Also, the effects of Prandtl numbcer and sourcc or
sink parameter on the temperature distribution arc expressed with the aid of graphs. So,
here the main purpose of this chapter is to analyze the magnetohydrodynamic unstcady
flow and heat transfer of an incompressible electrically conducting visco-clastic
(Rivlin-Ericksen) fluid through the porous medium duc to infinite platcs channcl, whilc
one plate remains constant of temperature gradient. The problems of determining the
electrically conducting fluid flow and heat transfer through a porous channcl driven by
a pressure gradient are fundamental with obvious applications in physiology and

Engineering.



124

7.2 Mathematical formulation of the problem

Here we consider the unsteady MHD flow and heat transfer of a visco-clastic
incompressible electrically conducting fluid through the porous medium bounded by an

infinite porous plate. It is assumed that the x'-axis is taken along the plate and y’ -axis
is taken normal to the plate. Let u’ be the velocity of the fluid along the x'-axis and v'
the fluid velocity along the y'-axis. Consequently, u’ is a function of y' and /' only,
but v' is independent of y'. Then the components of the fluid velocity are given by
'y, ), v, 0).
Let u, be the constant impulsive velocity along the plate in its own planc and

B, be a uniform magnetic field applied transversely to the plate. The fluid is assumed

to be of low conductivity, so that the induced magnetic field is neglected. Thus the
Lorentz’s force is given by - —oB’u’.

To obtain the governing equations of the problem, the following conditions arc
assumed:
(1) The plates are considered to be infinite and all the physical quantities arc functions
of y' and ¢’ only.
(11) The fluid is finitely conducting and the viscous dissipation and thc Joule heat is
neglected.
(111) The buoyancy force is considered in the equation of the fluid motion.

(iv) Hall effect and polarization effect are negligible.

(v) Initially (i.e. at time ¢' = 0) the plates and the fluid are at the temperature 7' =7,

and there is no flow within the channel.
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(vi) At time ¢ >0, the temperature of the platc(y' =0) 1s kept at a constant

!

temperature gradient [i,e, =A (constant)] and thc temperature for (v — o)

!

changes to T, where 7. is the temperaturc of the fluid at infinity.

Under the above assumptions, the flow ficld is governed by the third order
diffcrential equation which takes the non-dimensional form. Hence the fluid flow 1s
governed by the following cquations:

Equation of continuity

o'
a-y,

=0 (7.2.1)

Equation of motion

ar 'a r lal 2.1 l\ 1o ' 2
Qo Yo, 0wk O OBa gy (722)
ot oy p Ox oy p Ot'dy ok P

Equation of energy

or' ,oT’ k orT ., .,
,+V P 2+S(T—T,,") (723)
or ' pc,

where v = £ is the co-efficient of the kinematics viscosity,
Yo,

p = density of the fluid,
4 = viscosity of the fluid,
o = electrical conductivity of the fluid,
k, = co-cfficient of elasticity,
" B, = uniform magnetic field applied transversely to the platc,

k' = permeability of the porous medium,
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g = acceleration due to gravity,

B =co-efficient of thermal expansion,

c, =specific heat at constant pressurc of the fluid,
k = thermal conductivity of the fluid,

T' = temperature of the fluid,

S’ = the heat source or sink parameter.

The initial and boundary conditions of the problem is given by

'<0:u'=0,T"=T) for yv' 20
£'>0:u =u, — = A (constant) Jor y'=0
oy
U -0, T ->T! Jor y'— o (4.2.4)

We now consider the following non-dimensional variables and paramcters in order

to transform equations (7.2.1)-(7.2.3) into non-dimensional form:

', 2

x'u ' ' ' ('u oB’v T -T'
X = ”’y:y ",u:i,v:—‘-)—,tz—/L,Ha= 02’7': - rr;‘
v v u, u, v pu, r,.-T,
He, S'v vg(T' -T! ' kou’ ku?
Prz_—_[_’S:—z.-, G,‘:-gﬂ(*1_m2’ /)—_—_[_2., RC: ’a’: 2” ) (725)
k u,, u,., puu ’701) v

Now, substituting the above non-dimensional parameters in (7.2.1)-(7.2.3), we get-

QY—:O (7.2.6)
oy
2 3 ]
.(_?fl__}. aT__Q[i+a u.;.Rcﬂ_(]-/(j-F——)I/-i-Gl'T (7.2.7)
a

Y— =
ot oy ox oy’ ooy’

2
and _(31+V_0_Z=_1__0__72_"+ST (7.2.8)
ot dy Proy
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Where Rc is the elastic parameter, Ha 1s the magnctic field paramcter. Grois the
Grashoff number, a is the permeability parameter, Pr is the Prandt! number and .S 1s
the source or sink parameter.

The boundary conditions of thc dimensionlcss form arc given by

t>0:u=l,—81=z for y=0
y
u—>0,7T->0 fory — o (7.2.9)
LA
where y = ————.
(T, - T,

Note: When y =0, then there is no heat flux from the plate to the ﬂuid re. the

boundary condition at the plate y =0 is adiabatic.
7.3 Solution of the equations

From the equation (4.2.6), we have-
v = constant.
For the constant suction, let us takc

v=-v, (7.3.10)

Here the negative sign indicates that the suction towards the plate.

Thus the equations (7.2.7) and (7.2.8) with the aid of condition (7.3.10) bccomes

a T 2 3
u O P O R O (Har LT (7.3.11)
ot oy Ox dy otdy a
2
and or or_129 T+ST (7.3.12)

—_—y —— =
ot "oy Proyt
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The equation (7.3.11) shows that the fluid velocity u is independent of x, and

this is equation of the function of y and t only. Hence from the equation (7.3.11), it

follows that the term g_p 1s a function of t alone.
X

Suppose @z—h(!) (7.3.13)
ox

Therefore using the condition (7.3.13) in the equation (7.3.11), we have-

2 3
My O hey+ Sy g2

0 —(Ha+i)u+GrT (7.3.14)
ot oy oy

o1oy* a

To solve the equation (7.3.12) and (7.3.14) under thc boundary condition, let us

consider
u= (e . T=gve™ and h=he™ (7.3.15)

The corresponding boundary conditions are given by-

g
f' :e/”’ L - Xel” /‘Or}) = O
%
-0, g-0 for y — o (7.3.16)

Now, using the conditions (7.3.15) in the equations (7.3.12) and (7.3.14), wc have-

aZ
—%+Prv”§§+Pr(S+n)g=O (7.3.17)
oy o

-

Gre
4 X

2
and (1-nRc) or +v, gﬁ (Ha + L n)f =-h, (7.3.18)

ay’ y ) a a
Solving the equations (7.3.17) and (7.3.18) with the help of the boundary conditions

(7.3.16), we have-

(7.3.19)
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and u=e" + M
Ha+—~n :
a

Prv, +Pr’ v, ~4Pr(S + n)

where a, = >
5 1
v, +4(1-nRc)(Ha+——-n)
o
b, = > s
\%
b, =—zi+bl

1
and M, =a,{(1-nRc)al —v,a, - (Ha+—-n)}.
(04

7.4 Results and discussion

______hoe’"’ [1 - e"’”']+ A [e‘”"' - e”"”'] ,
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(7.3.20)

The figure-1 has been plotted to interpret the velocity distribution against the

variable y>0 for the different values of the Prandtl number Pr = 0.71, 2.0, 3.0, when Gr

=5,Rc=0.10,Ha=2,5S=-050,n=0.05 a =I, y=I, h,=I, v,=l and t = I. The

values of the fluid velocity remain fixed at y = 0 and the fluid velocities decrease near

the plate y = 0. Also, it increases slowly for the increase of the variable y as well as the

increase of the Prandtl number. But the values of the velocity are very closed among

the other for the greater values of the variable y.

The figure-II can be obtained by plotting the velocity against the variable y duc

to various values of source or sink term S = -0.50, -0.30, -0.10 having Gr = 5, Rc =

0.10,Ha=2,Pr=0.71,n=0.05, a =1, y=1, 4, =1, v, =l and t = I.

A\



130

In the figure-II, the fluid velocity decreases first for the greater values of the variable y
and increase gradually for the more greater values of the variable y. Also, the fluid
velocity distribution increases with the increase of the source or sink parameter.

The figure-1II, we have drawn to represent the curves of the fluid velocity for
the different values of the magnetic field parameter Ha against y when Gr = 5, Rc =
0.10, S = -0.50, Pr = 0.71, n = 0.05, a =1, y=1, h,=1, v,=1 and t = 1. For the
ascending values of the variable y, we notice that the values of the fluid velocity remain
fixed at y = 0 and decreases first for the ascending values of y, and also increases for
the more ascending values of the variable y. But the fluid velocity decreases with the
increasing values of the magnetic field parameter.

The figure-IV has been found by plotting the velocity distribution with the
various values of the elastic parameter Rc against the variable y, when Gr= 5, S = -

0.50,Ha=2,Pr=0.71,n=0.05, a =1, y=1, A,=1, v,=1 and t = 1. In this figurc we

can observe that the velocity decreases with the increase of the elastic parameter
considering with the different values of variable y.

The figure-V has been drawn to represent the velocity distribution for the
various values of Grashoff number Gr against the variable y, when S = -0.50, Rc =

0.10,Ha=2,Pr=0.71,n=0.05, a =1, y=1, A =1, v, =1 and t = 1. The values of the

fluid velocities decrease with the increase of the values of Grashoff number depending
upon the variable y.

The figure-VI can be obtained by drawing to show th;: velocity distribution
against the variable y with the various values of permeability parameter a =1, 2, 3,

when S =-0.50, Rc =0.10, Ha=2, Pr=0.71,n=0.05,Gr=5, y=1, h =1, v =|
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and t = 1. From this figure-VI, we observe that the velocity decreases with the increase
of the permeability parameter depending upon the values of the variable y.
The figure-VII has been obtained by drawing the temperature distribution

against the variable y with the various values of the source or sink parameter S = -0.50,
-0.30, -0.10, when Pr = 0.71, n = 0.05, y =1, v,=1. The temperature decreases due to
the increase of the values of the source or sink term S depending upon the values of the
variable y.

In the figure-VIII, we have seen that the temperature distribution increases due
to the increase of the Prandtl number Pr = 0.71, 2.0, 3.0 against the variable y, when S

=-0.50,n=0.05, x=1, v =I.
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Fig.I: Velocity distribution against y for different values of Pr.
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Fig.11: Velocity distribution against y for different values of S.
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Fig.V: Velocity distribution against y for different values of Gr.
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Fig.VI: Velocity distribution against y for different values of o.
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