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ABSTRACT 

In this thesis, we deal with esplicit evaluations of Ran~anujan's continued fractions ancl 

theta-functions. 

Ran~anujan's general theta-function f (a, b) is defined by 

where Jab] < 1. If we set a = qe2", b = qe-2iz, and q = eTiT, where z is complex and Im(r)  > 0, 

then f (a, b) = Q3(z, T ) ,  where d3(z, T )  denotes one of the classical theta-functions in its standard 

notation. 

Three special cases of f (a, b) are 

and 
m 

n n(3n-1)/2 f (-9) := f (-9, -q2) = C (-1) 9 
n=-m 

If q = ezTif with Im(z) > 0, then f (-9) = q-1/24r1(z), where q(z) denotes the classical 

Dedekind eta-function. 

In her thesis, J. Yi (2001) considered two parameterizations ~ k , ~  and r;,, of f (-q), defined 

and 

where n and k are positive real numbers. Using these parameters, she then evaluatecl many olcl 

and new explicit values of the famous Rogers-Ranlanujan continued fraction R(q), defined by 

In this thesis, by using a method similar to that of Yi, we find some general theorems for the 

explicit evaluations of Ramanujan's cubic continued fraction G(q), defined by 



In the unorganized portions of his second notebook (published by TIFR in 1957), R m m u j a n  

recorded, without proofs, 23 beautiful identities involving quotients of only et~fiinctions m d  no 

other theta-functions. The identities can be divided into two categories. In the first category, 

each identity involves four argunents and the second category involves eight arguments. Unlike 

the first category, the second category identities have not been applied before. In this thesis, 

we apply some newly proved and some old eta-function identities involving eight ugt~rnents to  

find some new values of the Rogers-Ramnujan continued fraction and the parameters p,, and 

A, connected with Ramanujan's cubic continued fraction. The new values of p, and An also 

lead to some new Ramanujan-type series for l ln.  In this thesis, we show how the new values 

p,, and An combined with some old and newly found modular equations in cubic theory can be 

applied to  find some new series for l/r by appealing to a formula established by J. M. and P. 

B. Borwein (1987) and later modified by H. H. Chan and W. C. Liaw (2000). 

Next, Ramanujan-Selberg continued fraction Z(q) is defined by 

which is closely related to  continued fraction H(q), defined by 

In this thesis, by using some transformation formulas and modular equations, we present several 

relations connecting the continued fractions H ( f  q) and H ( f  qn), Z ( f  q) and Z ( f  qn), and 

H ( f  qn) and Z ( f  qn), for some positive integers n. We also prove some general theorems for 

the explicit evaluations of H (q) and Z(q) and find some explicit values. 

Ramanujan-Gollnitz-Gordon continued fraction K (q) is defined by 

In 1997, Chan and Huang (1997)) derived many identities involving Rrunanujan-Gollnitz- 

Gordon continued fraction K(q), which are analogous to R(q) and G(q). In particular, they 

found explicit values of ~ ( e - " f i / ~ ) ,  for several positive integers n, by using Weber-Ramanujan - 

clacs invariants G, and g,, defined by 

114 -1124 G, = 2-114g-1121X(q) and g, = 2- q x(-q), 

where ~ ( q )  = nT=o(l  t q2*+l). 



In this thesis, we establish formulas for the explicit evaluations of ~ ( e - " f i / ~ )  and ~ < ( e - " f i / ~ )  

by using parameterizations h2,n and s4,,, respectively, where h2,,, for k = 2, is a special case 

of hk,, and s4,,, for k = 4, is a special case of the parameter sk, ,  introduced by YI (2001) and 

Bruce C. Berndt (2000), respectively, and defined by 

hk,, = and st,, = 
f (Q) 

k1I44(qk) k1/4q(k-l)/24 f (-(-l)kqk) ' 
where q = e - " m .  

We find several explicit values of the parameter s4,,, by establishing general formulas. We 

also evaluate some new values of the parameter h z ,  by establishing some new theta-function 

identities. 

Yi (2001) also introduced one more parameter hi,,, defined by 

where k and n are positive real numbers. She then evaluated several values of $(q), f (q) and 

their quotients. Motivated by Yi's work, we introduce the following two new parameterizations 

of the theta-function $(q) .  For any positive real numbers k and n, we define 

7)(-s) 
9k,, := kl/4q(k--')/87)(-qk) ' and g;,, := kl/4q(" -')/87) (qk) ' +(4) where q = e - " f l .  

We prove several properties of the paran~eterizations gksn and g;,, and show how they are 

connected to Yi's parameters rk,, ,  r;,,, hk+, h;,,, and Weber-Ramanujan class-invariants G, 

and g,. By employing some old and newly established theta-function identities, we present some 

general theorems for the explicit evaluations of gk,,, g;,,, hk,,, and hi,, and find many explicit 

values. We also offer vplici t  formulas for $(e-n") and $(-e-n") for positive real number n and 

deduce some explicit values. In addition, we establish formulas for the explicit evaluations of 

the Rogers-Ramanujan continued fraction and Ramanujan's cubic continued fraction in terms 

of parameterizations gk,,, g;,,, hk,,,, and h;,n from which particular values can be obtained. 

Ramanujan's class invariants G, and g, were often applied for the explicit evaluations 

of continued fractions, theta-functions etc.. In his notebooks, Ramanujan recorded several 

Schlafli-type modular equations for prime as well as composite degrees. These were proved by 

Berndt(1998). fBaruah (2003) also found three new equations for composite degrees. In this 

thesis, we use some Schlafli-type modular equations to evaluate some class invariants. 



In Rtunanujan's cubic theory of elliptic fiinctions, or in the theory of signature 3, the theta- 

fiinctions a(q), b(q), and c(q), are defined by 

m,n=-00 

These functions were fitst introduced by J.M. and P.B. Borwein (1987). Similarly, in Ramanu- 

jan's quartic theory, or in the theory of signature 4, the theta-functions A(q), B(q), and C(q), 

are defined as 

which were first introduced by Berndt, Bhargava and G w a n  (1995). While proving the explicit 

values of $(q) and $(q), recorded by Ramanujan in his notebook, Berndt and Chan (1995), 

explicitly determined the value of cubic thetahnction a(e-2"), namely 

where q5(e-") = ~ ' / ~ / r ( $ )  is well known. Berndt, Chan and Liaw (2001) evaluated some 

quotients of quartic thetaJunctions by using Weber-Ramanujan class invariants. In this thesis, 

we find some general formulas for the explicit evaluations of cubic and quartic theta-functions 

and their quotients. We also give some explicit values. In the process, we also establish several 

transformation formulas of theta-functions in cubic and quartic theory. 
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Chapter 1 

Introduction 

1.1 Introduction 

It is tacitly assumed throughout the thesis that (ql < 1 always. Also, as usual, for any complex 

number a ,  we define 

n 00 I 

( ~ ; q ) ~  = 1 ,  ( a ; q ) ,  := n(l - aqk-l) for n >_ 1, and ( a ; q ) ,  := n(l - aqk-I).  (1.1.1) 
k=l k= l  

Now, Ramanujan's general theta-function f ( a ,  b) is given by 

where lab[ < 1. If we set a = qe2", b = qe-2iz, and q = en", where z is complex and Im(r) > 0 ,  

then f ( a ,  b) = f13(z1 T ) ,  where f13(z, T )  denotes one of the classical theta-functions in its standard 

notation (65, p. 464) 

We also define the following three special cases of f ( a ,  b): 

and 
00 

n n(3n-1)/2 = 
f ( - 4 )  := f ( -9 .  -q2) = C (-1)  9 (9 ;  9 )m .  ( 1  1 5 )  

n=-m 

If q = e2"" with I m ( z )  > 0 ,  then f ( - q )  = g-1/2477(z), where q ( z )  denotes the classical 

Dedekind eta-function. 



The above theta-functions satisfy the following five transformation formulas. I11 these for- 

mulas it is assumed that cr and p are such that the n~odulus of each exponential argument is 

less than 1. 

Theorem 1.1.1. (Berndt [15, p. 43, Entry 27 (i)]). If crp = .rr then 

f i$ (e-a2)  = &4(e-"). 

Theorem 1.1.2. (Berndt 115, p. 43, Entry 27 (zz)]). If op = 7r then 

2 f i ~ ( e - ~ ~ ~ )  = fie"14+(-e-PI. 

Theorem 1.1.3. (Berndt 115, p. 43, Entry 27 (iiz)]). If aP = .rr2 then 

e - a / 1 2 f i f ( - e - 2 a )  = e-Pl12 0 ~ ( - ~ - 2 " .  

Theorem 1.1.4. (Berndt 115, p. 43, Entry 27 (iv)]). If a@ = .rr2 then 

e-a/24 f i  f ( e -a)  = e-P/24 0 f (e-4). 

Theorem 1.1.5. (Adiga et al. [3]. If ap = .rr2 then 

e-a/8fi$(-e-a) = e -P/' o$ (- e-0). 

Ramanujan recorded several continued fractions and some of their explicit values in his 

second notebook [54] and his lost notebook [56]. Some of his continued fract~ons can be ex- 

pressed in terms theta-functions. The best known continued fraction is the Rogers-Ranlanujan 

continued fraction R(q),  defined by 

This continued fraction satisfy the following beautiful relations discovered by Ramanujan (15, 

p. 267) and proved by Watson 162): 

and 

In his notebooks [54], lost notebook [56] as well as in his first two letters to Hardy (301, Ramanu- 

jan also recorded several explicit values of R(q) and S(q)  := -R(-q).  We refer to a paper by 



S -Y Kang [45], in whlch she recorded a table of all known values of the Rogers-Ramanujnn s 

continued fractlon up until the time of her paper was published In 1999 More recently, J YI 

[66, 68) found many values, including several new, of ~ ( e - ~ " f i )  and ~ ( e - " f i )  by using (1 1 7) 

and (1 1 8), and finding the explicit \dues of her new parameters rk,,  and r;,,,, defined bj 

where q = e- 2rrdn/k1 and 

where q = e-+lk 

Motivated by her work, in Chapter 2 of this thesis, we use her method to find some general 

theorems for the explicit evaluations of Ramanujan's cubic continued fractlon G(q), defined by 

We do thls by first defining several parameters of quotients of theta-functions $(q), $(q) and 

f (q) for speclal values of q For example, after K G Ramanathan [51], we define the parameter 

From the definitions of rk,,  and pn, ~t is to be noted that T,~,,=P, The modular transformation 

formula In Theorem 1 1 3 then lmplles that PI/, = l /pn ,  and we evaluate many values of pn 

by appealing to theta-function identities, specializing the value of q and solving the resulting 

polynomial equations Thls chapter is almost Identical to our paper [12] It is worthwhile to 

nlentlon that Ramanujan recorded thls continued fraction on page 366 of hls lost notebook [56] 

and remarked that there are many results of G(q), which are analogous to R(q) Motivated by 

Ranlanujan's remark, several results ~ncluding expliclt values were found by Chan [35] [26], 

Yi [66], N D Baruah (91, C Adiga et a1 [I ,  31, and S Bhargava et a1 [32] 

In the unorganized portions of hls second notebook, Ramanujan (541 recorded, without 

proofs, 23 beautiful identltles lnvolvlng quotients of only eta-functions and no other theta- 

functions The ldentltles can be dlvlded lnto two categories In the first category, each idelltity 



involves four arguments and in the second category, each identity involves eight arguments. The 

first category identities have been used to find explicit values of the famous Rogers-Ramanujan 

continued fraction [22], Ramanujan's class invariants [29], a certain quotient of eta-functions 

[24]. These types of identities were also used to find explicit values of Ramanujan's cubic 

continued fraction in [I] and by us in Chapter 2. Unlike the first category the second category 

identities have not been applied before. In Chapter 3, we apply some new and old e t~funct ion 

identities involving eight arguments to find some new values of the Rogers-Ramnujan continued 

fraction and the parameters p,, and A,, connected with Ramanujan's cubic continued, fraction, 

where pn is defined in (1.1.12) and An is defined by 

F'rom the definitions of r',,, and p,,, we note that <,=An. In fact, An was defined by Ramanujan 

on page 212 of his lost notebook [56]. He also provided a list of eleven recorded values of An and 

ten unrecorded values of A,. All 21 values of A, and several new were established by Berndt, 

Chan, Kang, and L.-C. Zhang [24]. Yi [66] also found several values of parameters A, and p,. 

The new values of p, and A, evaluated by us also leads to some new Ramanujan-type series 

for l/r. In Sections 3.5-3.6 of Chapter 3 of this thesis, we show how the new values of p, and 

An combined with some old and newly found modular equations in cubic theory can be applied 

to find some new series for 1 / r  by appealing to the formula established by J. M. Borwein and 

P. B. Borwein [33] and later modified by Chan and W.-C. Liaw [40]. This chapter is almost 

identical to our paper [13]. 

Another well-known continued fraction of Ramanujan is Ramanujan-Selberg continued frac- 

tion Z(q) [15, p. 221, Entry l(i)], defined by 

Ramanathan [48] also proved the above equality (1.1.14). If we define 



then T 8 ( q )  = - Z S ( - q ) ,  which is easily deducible from (70, equations (1.7)  and (1 .9)] .  Zhang 

(701 also established general fornlulas for explicit evaluations of the continued fractions Z ( q )  

and T ( q )  in terms of Ramanujan's singular modulus cr,, which is that unique positive number 

between 0  and 1  satisfying 
~ F I  (!j,$;l; 1  -an) & =  
2F1 ( i , ! j ; l ;an )  ' 

where n is a positive rational number. Closely related to continued fraction Z ( q )  is the continued 

fraction H ( q )  [59, p. 821, defined by 

In Chapter 4, we establish several relations connecting the continued fractions H ( q )  and H(qn) ,  

Z ( q )  and Z(qn ) ,  and H ( f  q ) ,  Z ( q ) ,  and T ( q )  by using some transformation formulas and mod- 

ular equations. It is obvious that by evaluating H ( q ) ,  we can easily evaluate Z ( q )  and T ( q )  

also. Employing modular equations and modular transformation formulas, K.  R. Vasuki and 

K. Shivashankar [59] found explicit values of H ( e - " 6 )  for n = 3 , 1 / 3 , 5 , 1 / 5 , 7 , 1 / 7 , 1 3  and 

1/13. In Section 4.7 of Chapter 4, we establish general formulas for finding the explicit values 

~ ( e - " f i ) ,  for any positive real number n, in terms of the parameter J,, defined as 

We note here that Jn = rd , ,  We prove some general theorems for the explicit evaluation of J,, 

by appealing t o  Ramanujan's modular equations. We find some specific values of J ,  to arrive 

at some new explicit values of H ( q ) .  In addition, we prove formulas for the explicit evaluations 

of ~ ( e - " 6 )  and Z ( e - " l f i )  and present some examples. 

Next, the Ramanujan-Gollnitz-Gordon continued fraction K ( q )  is defined as 

Chan and S.-S. Huang [37], derived many identities involving the continued fraction K ( q ) ,  

which are analogous to R ( q )  and G ( q ) .  They also evaluated explicitly ~ ( e - " f i / ~ )  for several 



positive integers n by using Weber-Ramanujan class invariants G, and g,, defined by 

where q = e - " 6 .  In Chapter 5, we establish formulas for the explicit evaluations of ~ ( e - " f i / ' )  

and ~ ( e - " f i / ~ )  by using paranleterizations h2,, and s4,,, respectively, where h2,,, for k = 2 

is a special case of hk,, defined in (1.1.21) below and s4,,, for k = 4 is a special case of the 

parameter sk,+, where sk,, is introduced by Berndt [18], and defined by 

By establishing some general formulas, we calculate several explicit values of the parameter s4,,. 

Also, we evaluate some new values of the parameter h2,, by establishing new theta-function 

identities. 

In his first notebook, Ramanujan (54, Vol. I, p. 2481 recorded many elementary values of 

$(q), q5(q), and f (9). Particularly, he recorded +(e-"') for n= l ,  2, 4, 8,  112, and 114, $(e-"") 

and $(-e-"") for n = l ,  2, 4, 8, 112, and 114, and f(-e-"") for n=1,2,4, and 8. All these values 

were proved by B. C. Berndt (17, p. 3251. Ramanujan also recorded non-elementary values of 

$(e-"") for n =  3, 5, 7, 9, and 45. Berndt and H. H. Chan [20] found proofs for these. In (661, 

Yi also introduced the following two parameterizations hk," and hi,, along with ~ k , ,  and Ti,,: 

and 

where I; and n are positive real numbers. Employing modular transformation fornlulas Theo- 

rems 1.1.1, 1.1.3-1.1.4, and some theta-function identities, she evaluated several values of &(q); 

f ( q )  and their quotients. In particular, she evaluated +(e-"") for n = l ,  2, 3, 4, 5, and 6 and 

$(-e-"") for n = l ,  2, 4, 6, 8, 10, and 12, f(-e-"") for n=3, 5, 6, 7, 8, 10, 12, 113, and 213, 



and f (e-"") for n = l ,  2, 3, 4, 5, 6, and 7. Motivated by her work, for any positive real numbers 

I; and n ,  in Chapter 6, we define the parameters gk,,, and g;,, by 

and 

We prove many properties of the parameterizations gk,, and g;,, defined in (1.1.23) and (1.1.24) 

and show how they are connected to Yi's parameters rk,,, r;,,, hk,,, h;,,, and Weber-Ranlanujan 

class-invariants G, and g,. By employing some old and newly established theta-function iden- 

tities, we present some general theorems for the explicit evaluations of gk,,, g;,,, hk,,, and hi,, 

and find several explicit values. We also offer explicit formulas for $(e-"") and $(-e-"") for 

positive real number n and deduce some explicit values. In addition, we provide fornlulas for 

the explicit evaluations of Rogers-Ramanujan continued fraction and Ramanujan'c cubic con- 

tinued fractbn in terms of the parameterizations gk., g;,,, hk., and h;,,, from which particular 

values can be determined. This chapter is almost identical to our paper [14]. 

There are many applications of Weber-Ramanujan class invariants G, and g, defined in 

(1.1.19). H. Weber (641, was motivated to calculate class invariant so that he could construct 

Hilbert class fields. On the other hand Ramanujan calculated class invariants to approximate 

.ir, and probably for the finding explicit values of Rogers-Ran~anujan continued fractions, theta- 

functions, etc.. Berndt et al. utilized class invariants for the explicit evaluations of Ramanujan's 

cubic continued fraction, Rogers-Ramanujan continued fraction, theta-functions, and quotients 

of eta-functions An etc. For details, we refer to (221, (251, (241, [26], and (281. An account of 

this work can also be found in [17]. In his notebooks, Ramanujan recorded several Schlafli- 

type modular equations of prime as well as of composite degrees. Berndt (171 proved all these 

modular equations via modular form. Baruah (101, gave elementary proofs of seven of these 

equations and also found three new modular equations of the,same nature. Also, Baruah [8], 

had used some of these modular equations of composite degrees, combined with the prime 

degree modular equations, recorded in (15, p. 231, 282, 3151, to find class invariant G',,. 



In Chapter 7, we use some Schllifii-type modular equations of composite as weU rrs of prime 

degrees to find some new and old class invariants Gn and gn. 

In his famous paper [53], [55, p. 23-39], and on the pages 257-262 of his second notebook 

[54] Ramanujan gave a outline of of the theories of elliptic fimctions to alternative bases. The 

results in these theories were first proved by Berndt et al. [19] in 1995, who gave these an 

appellation, the theory of signature r (T =3, 4, 6). An account of this work may also be found 

in Berndt's book [17]. Some of the results in alternative theories were also previously examined 

by K. Venkatachalienger [61, p. 84951 and Borweins [33, 341. 

In classical theory, the theta-functions $(g) and $(q) play key role.. In cubic theory, or in 

the theory of signature of 3, the corresponding theta-functions are a(q), b(q), and c(q), and are 

defined as follows: 

For w = exp(2ni/3), 
00 

= C g 2 + m n + n 2  

and 

The functions defined in (1.1.25) - (1.1.27) are called cubic theta-functions, first introduced by 

Borweins [34]. 

In the theory of signature of 4 or in the quartic theory, taking place of a(q), b(q), and c(q) 

in cubic theory are A(q), B(q), and C(q) (231 and are defined, respectively, as 

and 

C(9) = 8,m2(q)11r2(q2)1 

where +(q) and $(q )  are defined in (1.1.3) and (1.1.4)~ respectively. 



Berndt and Chan [17, p. 328, Corollary 31, explicitly determined the value of cubic t11ct.a- 

function a(e-2"), namely 
a(e-?') -- - 1 

rn2(e-') ( 1 2 ) 1 1 8 J G 1  

where 4(ed")  = 7r1l4/I'(:) is well kno\\rn. Also, Berndt et al. (231 evaluated some quotients 

of quartic theta-functions by using GVeber-Ramanujan class invariants while deriving the series 

for 1 / ~  associated with the theory of signature 4. 

In our last chapter, we find some new explicit values of cubic and quartic theta-functions and 

their quotients by pararneterizations. GVe establishing some general formulas for the explicit 

evaluations of these theta-functions and then find their special values. In the process, we also 

establish some transformation properties of theta-functions in cubic and quartic theory. 

In the next two sections,we record all the values of the parameters rk,, and T; , ,  evaluated by 

Yi (661, which we will use in this thesis. We also note that rk,l = 1 ,  rk,lln = l / rk , , ,  T k , ,  = r,,k, 

T ; , ~  = 1 ,  = l / r ; , , ,  and r;,, = r;,k. 

1.2 Values of Tkln 

r1,1 = 1 







where 03 = (54& - 6 f i ) l I 3  and b3 = ( 5 4 ~  + 6 f i ) l I 3  



1 /3 

where a. = (& + 9) '" and b = (A - q) 

113 

where a1 = (i ( 2 2 5 1 ~  + 9- )) and b l = ( i ( 2 2 5 1 & - 9 6  

where a2 = 1497 + 651& + 565f i  + 247& 



1.3 Values of r;,, 



113 113 

where a4 = (i (17& + 3 6 ) )  and b4 = (i ( 1 7 ~  - 3 ~ ) )  

where a5 = 1497 - 651 & + 565& - 247& 

and b5 = 437430 - 1 9 5 5 6 6 A  + 1 6 5 3 3 3 f i  - 7 3 9 1 7 6  



Chapter 2 

Some General Theorems on the 
Explicit Evaluations of Ramanujan's 
Cubic Continued Fraction 

2.1 Introduction 

From (1.1.11) recall the definition of Ramanujan's cubic continued fraction G(q), 

where Iql < 1. This continued fraction was recorded by Ramanujan in his second letter to 

Hardy [30] and on page 366 of his lost notebook [56], and claimed that there are many results 

of G(q) which are analogous to the famous Rogers-Ramanujan continued fraction R(q), defined 

Motivated by Ramanuajan's claims; Chan [35] proved three identities giving relations between 

C(q) and the three continued fractions G(-q), G(q2), and G ( c ~ ~ ) .  Baruah (91 found t\vo new 

identities giving relations between G(q) and the two continued fractions G(q5) and G(q7). Chan 

1351 also found three reciprocity theorems for G(q). He also 'evaluated G(-e-"fi) for n = 1 

and n = 5 and ~ ( e - " f i )  for n = 1: 2, 4, and 219. Berndt, Chan and Zhang (261 have found 

general formulas for G(-e-"fi) and ~ ( e - " f i )  in terms of Weber-Ramanujan class invariants 



G,, and g,,, defined by 

1/4 -1/24 Gn := 2- q (-q;q2), and gn := 2-'/dq- 1/24 ( Q ; Q ~ ) c o ~  q = e -rfi 

where (a; q), := nr=,( l  - aqn), 1q1 < 1. 

They evaluated G(-e-"fi) for n = 1, 5, 13, and 37 and ~ ( e - " f i )  for n = 2, 10, 22, and 58. 

Ranlanathan 1471 has also found ~ ( e - " ~ )  by using Kronecker's limit formula. This value was 

recorded by Ramanujan on page 366 of his lost notebook [56]. By using modular equations and 

transformation formulas for theta-functions Adiga e t  al. [I] and [3], Vasuki and Shivashankara 

[59] have recently found G(-e-"6) for n = 11147, 1/75, 1/27, 1/13, 119, 117, 115, 113, 1, 3, 

5, and 25/3, and ~ ( e - " 6 )  for n = 1/3, 1, 413, 4, 16/3, and 16. Other values of G(q) can be 

found by using the reciprocity theorems given by Chan [35] and Adiga et al. [3]. 

In this chapter, we present some general theorems for evaluating G(-e-"6) and ~ ( e - " 6 )  

by using modular equations and transformation formulas for theta-functions. Our theorems 
\ 

are motivated by Yi's paper (671, in which she evaluates many new explicit values R(q). 

Since modular equations are key in our evaluations of G(q), so we give the definition of a 

modular equation. The complete elliptic integral of the first kind K ( k )  is defined by 

where 0 < k < 1, 2 F 1  denotes the ordinary or Gaussian hypergeometric function and 

(a), = a ( a +  l ) ( a +  2) . . . (  a + n  - 1). 

The number k is called the modulus of K ,  and k' := d- is called the complementary 

modulus. Let K, K', L ,  and L' denote the complete elliptic integrals of the first kind associated 

with the moduli I;, I;', 1 ;  and l ' ,  respectively. Suppose that the equality 

holds for some positive integer n. Then a modular equation of degree n is a relation between 

the moduli k and 1 which is implied by (2.1.3). 



If we set 

q = e r p  (-n:) and qt = exp -a- , ( 3 
we see that (2.1.3) is equivalent to the relation q" = q'. Thus, a modular equation can be viewed 

as an identity involving theta-functions at the arguments q and q". Ramanujan recorded his 

modular equations in terms of a and P ,  where a = k2 and P = 1 2 .  We say that /3 has degree n, 

over a. The multiplier m connecting a and P is defined by 

where 2, = $2(q). Ramanujan also established many "mixed "modular equations in which four 

distinct moduli appear. We will define " mixed "modular equation in next chapter. 

We shall make use some new and old eta-function and theta-function identities in our work. 

We record these results in next section for further reference. Proofs of the new identities are 

also given. 

2.2 Modular equations 

In this section, we state and prove some modular equations which will be used in in finding 

theorems for the explicit evaluations of G(q).  

Theorem 2.2.1. (Berndt (16, p. 204, Entry 511) If 

then 

Theorem 2.2.2. (Berndt (15, p. 246, Entry l(iv)]) If 

then 



Theorem 2.2.3. (Berndt 116, p. 221, En-try 62)) If 

then 

Theorem 2.2.4. (Berndt (16, p. 236, Entry 691) If 

then 

Theorem 2.2.5. (Berndt 117, p. 1271) If 

then 

P )  + (A) + 11 {(PQ). + (&) + 66 { ( P Q ) ~  (6) 3,  

Theorem 2.2.6. (Berndt 116, p. 210, Entry ,561) If 

P =  f (-s1/3) a n d  Q = f (-4J213) 
q1I9.f (-s3) q2I9f (-g6) ' 

then 
p3 + Q~ = p2Q2 + 3PQ. 

Theorem 2.2.7. I f  

P =  f (-s1I3) and Q = f (-4) 
9'I9f (-(I3) g2j9f (-q9) ' 

then 

Proof. This  easlly follows from Theorem 2.2.2. 0 



Theorem 2.2.8. I f  
4(9'13) p=-  4 ( 9 )  
4 ( q 3 )  

and Q = - 
4 ( s 9 ) '  

then, 

Proof. We use the first two identities of Entry 1 (iii) [15, p. 3451 

Theorem 2.2.9. If 
4(4'13) p = -  and Q = - 4(q5I3)  
4(q3> 4(915)  

then ( 5 )  + 5 ( P + Q ) ( 6 + P Q )  

Proof. We use the first two identities of Entry 1 (iii) (15, p. 3451 and Remark 1 of Theorem 2.1 
in [9, p. 245, 2471. 0 

Theorem 2.2.10. I f  

P = $(-9'13> and Q = $ ( - 9 )  
4'/37,9(-93) g1I4$(-q3) 

then 

Proof. We use the first and last identities of Entry 1 (ii) [15, p. 345). 

Theorem 2.2.11. (Bamah[9, p. 2531) If 

then 



Theorem 2.2.12. (Baruah /9, p. 2501) If 

then, 
2 

I ; , (PQ)~ + k2(PQ) = k 3 ( ~ ~ ) ~  + k4 ( 5 )  - 

k 4 = 7 P " ( P ' - 3 )  and k 5 = 2 7 ( ) 4 - 7 ~ ( 3 + 3 ( 5 ) 4 - P 4 )  

2.3 Explicit values of G(q) 

Theorem 2.3.1. We have 

(i) For q = e-"*, let 

Then 
2 1  3 (1 - xi )  = 4w + -, 

W 

where w = G(-q). 

(ii) For q = e-2" f i ,  let 

Then 
1 

3 ( 1  = 4v2 + -. 
v 

where v = G(q). 

Proof. We use the first identity of Entry 1 (iv) [15, p. 345) 

Several values of A, were recorded by Ramanujan on page 212 of his lost notebook [56] 

All of those values were proved by Berndt et al (241. They also evaluated many new values by  

using modular ]-invariants, Weber-Ramanujan class invariants, nlodular equations, Kronecker's 

limit formula, and an empirical process. Thus, one can use Theorem 2.3.1 to find the values of 

G ( - e - " m )  and ~ ( e - " m )  if the corresponding values of p, and A,, are known. 



Theorem 2.3.2. Ijp, and An are as defined in Theorem 2.3.1, then 

1 1 
= - and Alln = -. 

Pn An 

Pmf. We use the definitioils of pn and An,  and Theorems 1.1.3 and 1.1.4, respectively. 

Corollary 2.3.3. pl = 1 and A1 = 1. 

Theorem 2.3.4. If pn is as defined in Theorem 2.3.1. then 

Pmf. The theorem follows from the definition of pn and Theorems 2.2.1-2.2.5. Theorem 2.3.4 
(i)-(iv) were also found by Yi [66]. 

Theorem 2.3.5. We have 

(ii) p4 = 
3 & + 5  

J Z '  



(viii) psg = where a = ~ + ~ ~ f i + ~ f i f i ,  3 

(ix) Ir,, = (1551 + 900& + 4 7 0 f i  + 2 7 0 6 )  'I2. 

Proof. Weset n =  1/2and 1, n =  1/3and 1, n =  1/5and 1, n =  1/7and 1, and?? ,=  1/11, in 
Theorems 2.3.4 (i)-(v), respectively. We obtain the results by appealing to Theorem 2.3.2 and 
Corollary 2.3.3, and then solving the resulting polynomial equations. 

The values of pl/, for n =2, 3, 4, 5, 7, 9, 25, and 49 can easily be found by applying 
Theorems 2.3.2 and 2.3.5. 

Theorems 2.3.5 (i)-(viii) can also be found in [66]. 

Theorem 2.3.6. We have 

(i) For q = e-2"fi, let 

Then 
1 

3 + 3fic: = 4v2 + -, 
v 

where v = G(q). 

(ii) For q = e - " 6 ,  let 

D - f (s1/3) 
" - &iq'/9 f (q3) ' 

Then 
1 

3 -  3 & ~ :  = 4w2 + -, 
W 

where v = G(-q). 

Proof We use Entry 1 (iv) [15, p. 3451 

Theorem 2.3.7. If Cn and D, are as defined in Theorem 2.3.6, then 

1 1 
Clln = - and Dl/, = -. c* Dn 

Proof. We use the definitions of C, and D,, and then Theorem 1.1 3 and Theorem 1 1.4. 

Corollary 2.3.8. C1 = 1 and Dl = 1. 



Theorem 2.3.9. If C, and D, are as defined in Theorem 2.3.6, then 

(i) C i  + CL = & ~ n ~ 4 n ( ~ n ~ 4 n  + I) ,  

(ii) C i  + D i  = &c, D,(c, D, - I ) ,  

(iii) (C,C~,)~ + ( c n L ) 3  + ($)3 + ((8)" 

P w f .  We use the definitions of C, and D, and Theorems 2.2.6 and 2.2.7. 

Theorem 2.3.10. We have 

(i) C2 = ( & + JZ)lI3, 

(ii) D2 = 
J3cr3-J5-& 

JZa 
where a = ( A +  &)'I3 

(iii) C4 = 
4 + 1 + r f i  

2 

(iv) D4 = 2 J 3 0 + 1 5 ~ + 1 6 & + 9 ~ ~ i - 4 - 3 ~ - 2 & -  4 
, 

(vii) Cg = (3 (6 + 3 h  + (738 + 426&)lI3 + (776 + 448&)ll3)) 'I3 , 
113 

(viii) Dg = (3 (6 - 3 h  + (738 - 426&j113 + (776 - 448fi)'l3)) . 

Proof. Putting n = 1/2 and 1 in Theorem 2.3.9(i) and then solving the polynomial equations we 
obtain C2 and Cq . Again setting n =1/2, 1 in Theorem 2.3.9(ii)and then solving the polynomial 
equations we obtain Dz and D4. Setting n =1/3, 1 in Theorem 2.3.9(iii) and then again solving 
the resulting polynomial equations we obtain C3, D3, C9, and Dg. 

The values of GI, and Dl/, for n =2, 3, 4, and 9 can easily he calculated by applying 

Theorems 2.3 7 and 2.3.10. 

Theorem 2.3.11. For q = e-"", let 



Then 
2G(-q) = 1 - &s,. 

Proof. We use Entry 1 (ii) [15, p. 345). 

Theorem 2.3.12. If Sn is as defined in Theorem 2.3.11, then 

P m f .  We use Theorem 1.1.1 and the definition of S,. 

Corollary 2.3.13. S1 = 1. 

Theorem 2.3.14. If Sn is as defined in Theorem 2.3.11 then 

and 

Pmof We use the definition of Sn and Theorems 2.2.8 and 2.2.9. 

Theorem 2.3.15. We have 

(i) S3 = 2 - 6 - 2(-5 + 3fi) + all3, where a = 8 (7 - 4 6 )  , 
a1/3  

(28 - 15fi  + 7Ji5  - 12& + J40530 - 23400fi - 18138J5 + 1 0 4 7 2 ~ )  
(ii) S5 = 

2(2 - a) 
Proof. We set n = 1 in above theorem and then solve the resulting polynomial equations to 
obtain the results. 

The values of SIl3 and SlI5 follow from Theorems 2.3.12 and 2.3.15. 

Theorem 2.3.16. For q = e d n f i ,  let 

Then 
1 

-G(-q) = 
1 + d~,, . 



Proof. We use Entry 1 ( i )  (15, p. 345) 0 

It is clear from the above theorem that to evaluate -G(-e-"\/ii), we need the value of L,,. 

Theorem 2.3.17. If Ln zs as defined m Theorem 2.3.16, then 

Proof. We use Theorem 1.1.5 and the definition of Ln.  . 
/ 

Corollary 2.3.18. L1 = 1. 

Theorem 2.3.19. If Ln zs as defined zn Theorem 2.3.16, then 

Proof. We use the definition of Ln and Theorem 2.2.10. 

Theorem 2.3.20. We have 

1 2 . 2113 2213 
(i) L 3 = - + - + -  

A J3 A' 
(ii) L g  = 2 + + (38 + 22&)1/3 + 2(2 + 
Proof. Setting n =1/3  and n = 1 in the above theorem and then solving the resulting polyno- 
mial equations, we obtain the results. 0 

The values of LlI3  and LlI9  follow from Theorems 2.3.17 and 2.3.20. 

Theorem 2.3.21. For q = e - " m ,  let 

Then 
1 

-G3(-q) = 
1 + 3 B n '  

Proof. We use Entry 1 (i) [15, p. 3451. 

Theorem 2.3.22. If Bn zs as defined zn Theorem 2.3.21, then 

Proof. We use Theorem 1.1.5 and the definition of B, 

Corollary 2.3.23. B1 = 1. 



Theorem 2.3.24. If Bn is as defined in Theorem 2.3.21, then 

1 
B,, B25,, + - ) + 1 5 ( B , + 2 ) + 3 0 ( 1  -+-  1 + B7, + ~ 2 5 , )  + 120 

BnB25n B25n Bn B25n 

(iii) a1 ( B, ~ 4 9 , ) ~ ' ~  - a2 (Bn B4gn)'I4 + a3 (Bn B49n)'I2 + a4 ($)'"+a5 = 0, 

2 

where a1 = (2) - 1, a2 = 14Bn ( - - I ) ,  a s =  A ~ n ( 7 + 3 ~ n ) ,  

a4 = ~&B,(B,+ 1)) and as = 3 & 5 + 7 & ~ ,  (A+ Bn + 1 ) .  
B49n B49n 

Proof. We replace q by -q in Theorem 2.2.11 and 2.2.12 and use the definition of Bn. 

Theorem 2.3.25. We have 

(1 + 
(ii) Bg = 

fi ' 
(iii) B5 = 9 + 4&, 

2 

(iv) B25 = ) where a = (5'761 + d z ) 1 / 3  and b = J68 - 40 + a2,  

Proof. Setting n =1/3 and 1, n =1/5 and 1, and n =1/7, in Theorem 2.3.24 (i), (ii), and (iii), 
respectively, using Theorem 2.3.22 and Corollary 2.3.23, and solving the resulting polynon~ial 
equations, we obtain the results. 

The values of BlIn for n =3: 5, 7, 9, and 25 follow from Theorems 2.3.22 and 2.3.25. 

Remark 2.3.1. (i) Theorem 2.3.4 implies that if we know p,, then we can evaluate p4,, pn14, 
~ 9 n r  P , I /~ ,  p25711 p71/25, ~ 4 9 n ,  pn/49r ~ 1 2 1 n r  01- ~ n / 1 2 1  Thus, by Theorem 2.3.l(ii), if we k ~ ~ o w  

G(e-'"fi) then we can also evaluate ~ ( e - ~ " f i ) ,  G(e-"-), G'(e-'"&), ~ ( e - ~ " @ ) ,  
c(e-'"fi), G(e-2'J.TiS), G(e-""fl), G ( e - 2 " f i ) ,  G(e-22"f l ) ,  or G ( e - 2 " a ) ,  

(ii) Using cubic Russell-type modular equations of degrees p =13, 17, 19, 23, 29, 41, 47, 53, 
and 59, derived by Chan and Liaw (391 and Liaw (46) (see also [30]), one can also find relations 
connecting p,, and p,,2,. 



(iii)Theorem 2.3.9 inlplies that if we know C,, then we can evaluate C4,,, C,,/4, Dll, D4nl 
Dn14, C9,, CnlS, DSnl or Dn19. SO using Theorem 2.3.4, if we know ~ ( e - ~ " f i ) ,  then we can eval- 
uate ~ ( ~ - 4 " f i ) ,  ~ ( ~ - " f i ) ,  G(-~-"&), ~ ( - ~ - ~ " f i ) ,  G( -~-~"J" /~) ,  ~ ( ~ - 6 " f i ) .  G ( e - 2 " G ) ,  

~ ( - ~ - s . f i ) ,  or ~ ( - e - " f i ) .  

(iv)Theorem 2.3.14 implies that if we know that S,, then we can evaluate S3,,, SnI3, S5,,, 
or SllI5: Thus, by Theoreni 2.3.11, if we know G(-e-""), then we can evaluat,e G(-e-3""), 
G(-e-"'-'I3), G(-e-5rrn), or ~ ( - e - " ~ l ' ) .  

(v) Theorem 2.3.19 implies that if we know L,,,then we can conlpute Lgn or Ln19, that is 
by Theorem 2.3.16, if we know ~ ( e - " f i ) ,  then we can also evaluate G(e-"6) or ~(e -" f i13) .  

(vi)Theorem 2.3.24 implies that if we know B,, then we can compute'B9,, Bn19, BnI25, 
B4gn, or Bnll9, that is, by Theorem 2.3.21, if we know G(-e-.-), then we can also evaluate 
G(-~-"&), G(-e-"fi)l G ( - ~ - s " G ) ,  G(-e-'@), G(-e-'"&F)l 0, G ( - e - " m ) .  



Chapter 3 

Some More Explicit Values of 
Ramanujan's Continued Fractions 

3.1 Introduction 

The classical Dedekind eta-function ~ ( z )  is defined by 

Following Ramanujan's notations, we set q = exp(2riz) and 

In the unorganized portions of his second notebook, Ramanujan (541 recorded without proofs 

23 beautiful identities involving quotients of only eta-functions and no other theta-functions. 

Proofs of these can be found in [31], [16] and [7].  The identities can be divided into two 

categories. In the first category, each identity involves four arguments and the second category 

involves eight arguments. The first category identities have been used to find explicit values of 

the famous Rogers-Ramanujan continued fraction [22], Ramanujan's cubic continued fraction 

(121, (11, Ramanujan's class invariants 1291, and a certain quotient of eta-functions (241. Unlike 

the first category the second category identities have not been applied before. In this chapter, 

we use these identities and some new identities of the same nature to find many new explicit 

values of the famous Rogers-Ramanujan continued fraction R(q) as defined in (1.1.6). We also 

find some new values of A, and p, defined in (1.1.13) and (1.1.12), respectively, which can 



be used t o  find the explicit values Ramanujan's cubic continued fraction G(q) as defined in 

(1.1.11). 

In Section 3.2, we state 10 eta-function identities involving eight arguments. We also give 

proofs of the new identities. 

In Section 3.3, we define the parameter s, as defined by Yi [67] and find new explicit values 

of R(q) by using some identities in Section 3.2. 

In Section 3.4, we find some values of A, and p, by using the identities recorded in Section 

3.2. The corresponding values of G(q) can be found by solving a cub& equation as given in 

Theorem 2.3.1. 

The parameters A, and p, are connected with Ramanujan's cubic theory of elliptic functions. 

In Sections 3.5 and 3.6, we show how the new values of p,, and A, combined with some old 

and newly found modular equations in cubic theory can be applied t o  find some new series for 

1 / ~  by appealing to the formula established by J. M. Borwein and P. B. Borwein (331 and later 

modified by Chan and W.-C. Liaw (401. 

We end this introduction by recalling from Berndt's book [15, p. 3251, the definition of 

Ramanujan's "mixed" modular equation or modular equation of composite degrees. Let K ,  

K', L1, L',, L2, L',, L3, and L$ denote complete elliptic integrals of the first kind corresponding, 

in pairs, to the moduli 6, 0, fi, and &, and their complementary moduli, respectively. 

Let n l ,  n 2 ,  and n3 be positive integers such that n3 = nln2. Suppose that the equalities 

K' L', K' L' K' L i  
Y=-  n2- = 2, and n3- = - 

L1: K L2 K L3 

hold. Then a "mixed" modular equation is a relation between the moduli &, f l ,  fi: ancl 

& that is induced by (3.1.1). In such an instance, we say that P ,  y, and 6 are of degrees n,,  

n2, and n ~ ,  respectively, over cr or CY; @, 7,  and 6 have degrees 1, n l ,  n2,  and n3, respect~vely. 

Denoting z,  = q52(q'), where 



the multipliers m,  and m' associated with 0;  0, and y, 6, respectively are defined by 

3.2 Eta-function identities 

In this section, we state and prove some eta-function identities involving eight argun1ent.s which 

will be used in finding explicit values of R(q), p,, and An. 

Theorem 3.2.1. (Berndt [16/, p. 214, Entry 59) If 

then 

Theorem 3.2.2. (Berndt [I 61, p. 230, Entry 65, Bamah 171, Theorem 2.3) If 

then 

Theorem 3.2.3. If 

then. 

Proof. We set 

Employing Entries 12 (i) and (iii) of Chapter 17 of Berndt's book (15, p. 1241, we find that 

and 



where p, 7, and 6 have degrees 5, 7, and 35, respectively, over a.  
From (3.2.4) and (3.2.5), it readily follows that 

and 

where m = t l /z5 and m' = z ~ / z ~ ~  
Now, by Entries 18 (vi) and (vii) of Chapter 20 of [15, p. 4231, we note that 

ab(1- a ) ( l  - 6) 
) l I8+2 ( a6( l  - a) (1  - 6) 

Pr (1 - P)( l  - r )  Pr(1 - P)(l  - 7) Pr(1 - P)(l - r) 
(3.2.8) 

and 

(3.2.9) 
Multiplying both sides of (3.2.8) and (3.2.9) by (Py(1- P) ( l -  7))'18 and (ab(1- a ) ( l  - &))'I8, 
respectively, and then combining the two results, we find that 

(3.2.10) 
Dividing both sides of (3.2.10) by (cr6(1- a ) ( l -  6))'18 and then employing (3.2.4) and (3.2.5), 
we deduce that 

Q'R' + R3 - 2R2Q = Q~ - QR - ~Q'R .  (3.2.11) 

If we replace q by -q then R is converted to -P and Q remains unaltered. Thus, (3.2.11) 
is transformed into 

P'Q' - p3 - 2p2Q = P Q  + Q3 + 2Q2p1 (3.2.12) 

which immediately implies (3.2 3). 
- 

Theorem 3.2.4. (Berndt 1161, p. 18b1 E n t v  34, Baruah [7], Theorem 2.1) If 

u = 
f (-q3)f ( - ( I 6 )  and v = f (-df (-(I2) 

q3'"(-q9)f (-qI8> . q f  (-s9)f (-(?I8) ' 

then 



Theorem 3.2.5. (Berndt / lG] ,  p. 192, En,ty 39) If 

then 
u4 - 3u2v = v3 + 3v2 + 921. 

Theorem 3.2.6. (Berndt /16], p. 218, Entry 61, Barnah [7/, Theorem 2.2) If 

then 

Theorem 3.2.7. (Berndt [16], p. 215, Entry 60) If 

then 

Next three theorems are new. 

Theorem 3.2.8. If 

then 

Proof. We employ the modular equations in [15, p. 401, Entries 13 (i) and (ii)] and proceed as: 
in Theorem 3.2.3. 

Theorem 3.2.9. If 

then 
P3 + Q~ = ( P Q ) ~  + P Q ( 2 P  + 2Q + 3). 

Proof. To prove the theorem we employ the modular equations [15, p. 408, Entries 14 (i) ant1 
(ii)] and proceed as in Theorem 3.2.3. 



Theorem 3.2.10. If 

then 
p3 + Q~ = ( P Q ) ~  + P Q ( 1 -  2 P  - 2Q). (3.2.19) 

Proof. We employ the modular equations in the first case of [15, p. 426, Entry 19 (iv)] and 
proceed as in the proof of Theorem 3.2.3. 

3.3 Explicit values of R(q) 

Recently, Yi [67] has found many explicit values of R ( q )  by using eta-function identities and 

transformation formulas given in Theorem 1.1.3 and Theorem 1.1.4. In this section, we use 

some of the eta-function identities given in Section 3.2 to  find many new explicit values of 

R(q) .  

The following relation was stated by Rarnanujan [15, p. 267) and first proved by Watson 

[621 

Theorem 3.3.1. (Berndt et al. 1261, Proposztion 2.4, Y i  [67], Theorem 2.3.1(z)) 

For q = e - 2 " f i J  let 

S, = f 6 ( - ~ )  

5JSq . f  6(-9". 

Then zf 2a = 5&s, + 11, 
~ ' ( e - ~ ~ f i )  = J;;iTi - a. 

Using the transformation formula given in Theorem 1.1.3, we also have the following theo- 

rem. 

Theorem 3.3.2. ( Y i  [67], Theorem 4.2. ( 2 ) )  We have 

Yi (67) found the values of s, and sl/, for n = 1, 2,  3, 4 ,  5 ,  7 ,  8 ,  and 9. In this chapter, we 

find the values of s ,  and sl/, for n = 6 ,  3 /2 ,  14, 7 / 2 ,  18, 9 / 2  and found some new values of 

R(q) by using Theorem 3.3.1. We will use the Theorems 3 2.1 - 3.2.3 stated in Section 3.2. 



Theorem 3.3.3. (Yi 1671, Theorem 4 .4 )  We have 

Theorem 3.3.4. We have 

Pmof Setting q = e - 2 " f l  in Theorem 3.2.1 and using the definition of sn in Theorem 3.3.1, 
we complete the proof. 0 

Theorem 3.3.5. We have 

s3/2 = (A  + 1 ) ~ ( d 3  - 3), S2 /3  = (A  - ~ ) ~ ( m  + 3). 

Pmf. Setting n = 116 and using Theorem 3.3.2, we find that 

Solving (3.3.2), we deduce that 
= 3 + 2 f i .  

Thus, 
= ,h + 1. 

Again, setting n = 116 in Theorem 3.3.3, we find that 

Using (3.3.4) in (3.3.5), we obtain 

Solving for (s6/s3/2)1/2 .  we find that 

Combining (3.3.4) and (3.3.7), we derive the values of s6 and s3/2 Then, the vahies of s1/6 and 
$213 follow from Theorem 3.3.2. 



Corollary 3.3.6. We have 

~ " e - ~ " f i )  = 11-261 - 175\/2- 105&- 7 5 f i +  41885 + 1330&+840&+ 5 9 4 0  
2 

Proof. These results follow from Theorems 3.3.1 and 3.3.5. 

T h e o r e m  3.3.7. We have 

Proof. Setting q = e - 2 n m  in Theorem 3.2.2 and employing the definition of sn in Theorem 
3.3.1, we complete the proof. 

T h e o r e m  3.3.8. We have 

Proof. Setting n = 1/18 in Theorem 3.3.7 and using Theorem 3.3.2, we find that 

- 
From (3.3 8),  we deduce that 

Solving (3.3.9) for (s18sg/2)'16, we obtaln 



Again, setking n = 1/18 in Theoreill 3.3.3, we find that 

Using (3.3.10) in (3.3.11)) we find that 

Solving this for ( S 1 8 / S 9 / 2 ) 1 / 2 ,  we deduce that 

From (3.3.10) and (3.3.13), we derive the values of sls and sgp. Then the values of sl/l8 and 
~ 2 1 9  follow from Theorem 3.3.2. 

Corollary 3.3.9. We have 

(i) R 5 ( e - " f i )  = d m  - 6, where 26 = 5&sI8 + 11, 

(ii) ~ ~ ( e - ~ " / ( ~ ~ )  = - b, where 26 = 5&s1/18 + 11, 

(iii) ~ ~ ( e - ~ " f i )  = - b, where 2b = 5 f i s 9 l 2  + 11, 

(iv) ~ ~ ( e - ~ ~ ~ / ( ~ ~ )  = - 6, where 26 = 5&S2/g + 11, 

where sl8, S 1 / 1 8 ,  ~ 9 1 2 ,  and s2lg are given in Theorem 3.3.8. 

Proof. The proofs of these'follow from Theorems 3.3.1 and 3.3.8. 

T h e o r e m  3.3.10. We have 

Proof. Setting q = e - 2 " f i  in Theorem 3.2.3 and employing the definition of s, in Theorem 
3.3.1, we complete the proof. 

Theorem 3.3.11. We have \ 

s,, = ( 3  + q3 (5A + 7) , 



Proof. Setting n = 1/14 in Theorem 3.3.10 and using Theorem 3.3.2, we find that 

( ~ 1 4 ~ 7 ~ 2 ) ~ ' ~  - ~ ( ~ 1 4 ~ 7 ~ 2 ) ~ ~ ~  - 1 = 0. (3.3.14) 

Solving (3.3.14) for (s14s712)1/6, we find that 

( s l 4 ~ 7 / 2 ) ~ / ~  = 3 + fi. (3.3.15) 

Now, setting n = 1/14 in Theorem 3.3.3 and applying Theorem 3.3.2, we find that 

Using (3.3.15) in (3.3.16), we obtain 

Solving this for (s1~/s7/2) l J 2 ,  we deduce that 

From (3.3.15) and (3.3.18), we easily deduce the values of s14 and ~712. Then the values of s l l l 4  

and ~2/7  follows immediately from Theorem 3.3.2. 

Corollary 3.3.12. We have 

(i) R ~ ( e - ~ " m )  = { J2710525 + 1916530fi + 1212120h  + 8 5 7 1 4 2 f i  1 
- (9261 + 6475fi + 4095& + 2 9 2 5 f i ) ,  

(ii) R 5 ( e - " f i )  = J2710525 - 1916530fi + 1212120A - 8 5 7 1 4 2 f i  

- (9261 - 6475fi + 4095& - 2 9 2 5 f i ) ,  

(iii) R 5 ( e - " m )  = 42710525 - 1916530fi - 1212120A + 8 5 7 1 4 2 f i  

Proof. These results follow from Theorems 3.3.1 and 3.3.11. 



3.4 Explicit values of G(q) 

We have already mentioned in Section 2.3 of previous chapter that if we know the An or pn for 

s particular values of n then we can evaluate the val~ies of ~ ( - e - ~ " m )  or ~ ( e - ~ ~ m )  by 

solving a cubic equation. In this section, we find many new values of An and p,, by using the 

eta-function identities with eight arguments stated in Section 3.2. 

Theorem 3.4.1. We have 

Pmof. We set g = e - ~ ~ f i  in Theorem 3.2.1 and use the definition of pn in Theorem 2.3.1. 0 

Theorem 3.4.2. We have 

pl0 = ( J 5  -I- 2)(& + I ) ~ ,  P~~~~ = (& - 2)(& - 113, 

psI2 = (A - 2)(& + I ) ~ ,  P~~~ = (& + 2)(& - q3. 
Proof. Setting n = 1/10 in Theorem 3.4.1 and using Theorem 2.3.2, we find that 

( ~ 1 0 ~ 5 ~ 2 ) ' ~ ~  + ( ~ 1 0 ~ 5 / 2 ) - ~ ' ~  = 6. 

Solving for (pl0p5/2)'/~, we find that  

( P l 0 ~ 5 / 2 ) ~ / ~  = 3 + 2 d 5  = (& + I ) ~ .  

We recall Theorem 2.3.4(i) in Chapter 2 that 

Putting n = 1/10 in (3.4.3) and using Theorem 2.3.2, we obtain 

Using (3.4.1), we deduce that 
PlO + = 18. 
p5/2 p10 

Solving this for plo/p512, we find that 

Thus by (3.4.2) and (3.4.6) we easily deduce the values of plo and p512 The values of pllln 
and P2/5 then follow from Theorem 2.3.2. 0 



Remark 3.4.1. Same values can also be obtained by employing Theorem 3.2.6. 

Theorem 3.4.3. We have 

213 
( ~ 9 1 1 ~ 6 1 ~ )  = {(pnp4nfinP36n)lf2 + ( I ~ ~ I P ~ ~ I / ~ ~ ~ P ~ G I I ) ~ / ~  + (Pap4nP9np3Ga)11.) 

Proof. We set q = e - ' " G  in Theorem 3.2.4 and use the definition of pn in Theorem 2.3.1. 

Theorem 3.4.4. W e  have 

Proof. Putting n = 116 in Theorem 3.4.3 and using Theorem 2.3.2, we deduce that 

Again, setting n = 116 in (3.4.3) and using Theorem 2.3.2, we obtain 

Using (3.4.8) in '(3.4.9), we obtain 

Solving this for ,LL~/ ,LL~/~ ,  we find that  

Thus, by (3.4.8) and (3.4.11) we easily deduce the values of p6 and ~ 1 ~ 1 ~ .  The values of p1/6 
and p2/3 then follow from Theorem 2.3.2. 0 

Theorem 3.4.5. We have 

Proof. We set q = e-2"dn1%n Theorem 3.2.5 and use the definition of pn in'  heo or em 2.3.1. 0 



Theorem 3.4.6. We have 

Proof. Setting n = 1/15 in Theorem 3.4.5 and using Theorem 2.3.2, we find that 

Solving for (p15/p5/3)'/3, we find that 

Now, fiom Theorem 2.3.4(iii), we note that 
I 

Setting n = 1/15 in (3.4.14) and using Theorem 2.3.2, we deduce that 

Using (3.4.13), we obtain 

Solving this for (p15p513)1/2, we find that 

Thus by (3.4.13) and (3.4.17) we easily deduce the values of p15 and pj13. The values of p l / ~ ~  
and ,315 then follow from Theorem 2.3.2. 

Theorem 3.4.7. We have 



Pmof We set q = e - 2 " m  in Theorem 3.2.8 and use the definition of pn in Theorem 2.3.1. 

Theorem 3.4.8. We h.ave 

p14 = ( h +  h ) 3 ( 2 h +  &), P , ~ , ~  = ( h  - f i13(2& - fi), 
p712 = (d5 + h 1 3 ( 2 h  - a)) p2/7 = (A - &13(2\/2 + A). 

Proof. We put n = 1/14 in Theorem 3.4.7 and (3.4.3) and proceed as in the proof of Theorem 
3.4.2 to complete the proof. 0 

Theorem 3.4.9. We have 

Pmof. We set q = e-2"m in Theorem 3.2.7 and w the dehition of p,, in Theorem 2.3.1. 

Theorem 3.4.10. We have 

Pmf. By setting n = 1/20 in Theorem 3.4.9 and (3.4.14) and proceeding as in the proof of 
Theorem 3.4.2, we complete the proof. 

Theorem 3.4.11. We have 

( ~ n ~ 1 2 1 n ) ~ ' ~  + ( ~ 4 n ~ 4 8 4 n ) ~ "  = fi ( ~ n ~ 4 n ~ 1 2 1 n ~ q ~ n )  
113 

+ (2 + 2 ( ~ 4 n p ~ n ) " ~  + 6) . 

Pmof. We set q = e - 2 " G  in Theorem 3.2.9 and use the definition of p,, in Theorem 2.3.1. 0 

Theorem 3.4.12. We have 



Proof. B y  setting n = 1/22 in Theorem 3.4.11 and (3.4.3) and proceeding as in the proof of 
Theorem 3.4.2 we complete the proof. 

Theorem 3.4.13. We have 

Proof By setting n = 1/11 in Theorem 3.4.11 and using Theorem 2.3.2, we deduce that 

Solving (3.4.18) for (p~/Pll/4)1/6, we h d  that 

Now , we recall from Theorem 2.3.4(v) in Chapter 2 that 

Setting n = 1/44 in (3.4.20), we arrive at 



Using (3.4.19) in (3.4.21), we h d  that 

Solving (3.4.22) for P4&11/4, we deduce that 

horn (3.4.19) and (3.4.23) we deduce the values of pu and P11/4. The values of pl/u and j.i4/11 

then follow £rom Theorem 2.3.2. 

Theorem 3.4.14. We have 

P m f .  We set q = e-2"fi  in Theorem 3.2.10 and use the definition of in Theorem 2.3.1. 

Theorem 3.4.15. We have 

p, = ( 3 + 2 ~ i ) ~  ( a + 5 ) ,  

Proof. By setting n = 1/26 in Theorem 3.4.14 and (3.4.3) and proceeding as in the proof of 
Theorem 3.4.2, we complete the proof. 0 

Theorem 3.4.16. We have 

Proof We set y = - e - ~ f i  in Theorem 3.2.5 and use the definition of A,, in Theorem 2.3.1 (i). 
0 



Theorem 3.4.17. We have 

Proof. Setting n = 1/15 in Theorem 3.4.16 and using Theorem 2.3.2, we find that 

Solving for ( X ~ ~ / X ~ / ~ ) ' / ~ ,  we find that 

Now, by [24, p. 278, Theorem 4.31, we note that 

Setting n = 1/15 in (3.4.26) and using Theorem 2.3.2, we deduce that 

Using (3.4.25) in (3.4.27), we obtain 

Solving (3.4.28) for ( X ~ ~ X ~ / ~ ) ' / ~ ,  we find that 

Thus, by (3.4.25) and (3.4.29), we deduce the values of XI:, and X5/, The values of XlIl5 and 
X3/5 then follow from Theorem 2.3.2. 0 



1 3.5 Ramanujan-type series for ; 

The new values of the parameters A, and p,, evaluated above are connected to Ranlanujan's 

cubic theory of elliptic functions and lead to some new Ramanujan-type of series for l /n .  

In his famous paper (531, "Modular equations and approximation to n," Ramanujan offered 

17 beautiful series representation for l /n .  He then remarked that  two of these series 

and 

"belongs to the theory of 9,'" where 

Rarnanujan did not provide details of his proofs of (3.5.1) and (3.5.2). 

Ramanujan's formulas for (3.5.1) and (3.5.2) were first proved by J. M. and P. B. Borwein 

[33, p. 1861 by establishing a general theorem. The following version of that theorem is due to . 
Chan and Liaw [40]. 

Theorem 3.5.1. (Chan and Liaw 133, p. 186)). Let 

dK(x)  K ( z )  :=2 Fl (5'  :; 1;x) and K(x)  := -. 
dx 

For a positive ratzonal number n ,  define the cubic \singular moduli to be the unique number a,  

satzs fying 

Set 

and 



The abo\le theo~em ~ n d l ~ ~ ~ t c s  th<l( for each p o s ~ t ~ v e  ratlonal nunil~cr 1 1 ,  \\e cnn c<ls~l\ t l ( - ~ ~ \ l c ,  

a series for 1/n belonging to the "theory of q2" if the values of a,, nncl ~ ( n )  (1111: 11'51 (If 

the constants can be computed from these) are known. The computat~on of these constants 

for any given n  is far from trivial Using cubic Russel-type modular equations (see (391) and 

Kronecker's Limit Formula, Chan and Liaw [40] discovered new series for l / n  helonglng to 

the " theory of q2 " They also established some new formulas satisfied by ~ ( n )  which lead to 

the calculation of the constant a,  in (3  5 8) They established the follon~ng theorem for the 

calculation of a,, 

Theorem 3.5.2. (139 p 225, Corollary 2 7 1) Wzth a, and H ,  defined zn Theorem 3 5 1 we 
have 

where a, zs related to Ramanathan's parameter p,, defined as zn Theorem 2 3 1, by 

dm 
If p and q are positive integers and n = pq, then the constant -(1 - a,, a,,) can be 

dcr 
calculatecl bj emplojlng (3 5 10) belo\v, \vhlch IS also due to Chan and L I ~ M  [39 11 226 1 ,  
pie\ ~ d e d  \\e have moduld~ equations of degrees p and q a i d  the s~ngulal nloclul~ a ,  ancl a,,,, 

C ~ I , \ I I  ,111(1  I , I , L \ \ ~  [,I01 c(~lct~l,~tetl thc  L O I I \ ~ ~ L I ~ ~ \  ( I , ,  (I,, ' ~ 1 1 ~ 1  I / , ,  101 11 = 2  3 7 10 I I I I 19 2G 



eqoations of degree 3 and the corresponding values of a,. In the next section, we establish two 

new cubic modular equations of degree 3, which then combined with some other cubic modular 

equations of prime degrees and the values of p,,, can be applied to find some new values of the 

constants a,, b,, and H,,. These val~ies and (3.5.8) will lead to some new series for l / ~ .  

3.6 Cubic modular equations of degree 3 

We recall from Chapter 1, the cubic theta-functions 

and 

Also, the transformation formulas [17, p. 101-1031 for the above three cubic theta-functions are 

a(q) = z ,  b(q) = (1 - a)'I3z, and c(q) = (r113z, (3.6.3) 

where z = 2F1 (5 ,  $; 1; a)  . 

Theorem 3.6.1. We have 

(i) m = 
3p1/3 

1 - (1 - a)l/3' 

P m f .  (i) By Entry l(iv)[15, p. 3461, we have 

Cubing both sides of (3.6.4) and bhen employing (3.6.1) and (3.6.2), we obtain 

b(q) + 3c(q3) = a(q). (3.6.5) 

Transcribing (3.6.5) with the help of (3.6.3), we find that 

1 /3 
' (1 - C X ) ' / ~ Z ~  + 30 z3 = zl . (3.6.6) 

Setting m = zl/z3 <and simplifying (3.6.6), we finish the proof. 



(ii) We rewrite the identitty in Theorem 2.2.2 as 

where 

L = f (-9) and 11.1 = f (-q3> 
9'/12f (-q3) 9'I4f (-q9) 

Employing (3.6.1) in (3.6.7), we find that 

Using (3.6.3) in (3.6.8), and then simplifying for (LM)3 and we obtain 

Combining (3.6.7) and (3.6.9), we complete the proof of (ii). 

Remark 3.6.1. From (3.6.8) and (3.6.9), it is clear that if we have eta-function identities of the 
type : 

g(P1 Q) = 0, 
where 

then we always have a cubic modular equation of degree n. Similarly, we can obtain cubic 
" mixed " modular equations from the eta-function identities with eight arguments of the type: 

where 

where p and n are positive integers. For examples, Theorems 3.2.7-3.2.10 give cubic " mixed "mod- 
ular equations for the sets of degrees (1, 2, 5, lo), (1, 2, 7, 141, (1, 2, 11, 221, and { 1, 2, 13, 
26 ), respectively. 

By adopting the method of Chan and Liaw (391, employing the cubic modular equations 

and the corresponding new values of p,, we can obtain the new values of the constants a,, b,, 

and H, for n = 3, 6, 15, and 22. For example, we obtain 

where T = 2&(3 + 2d3) ,  m = (5 + 3&)'13, and k = (104 + 60d3)'I3 

b3 = 
2(4 + 3&) , and H3 = 

9.+ 6& 

(5 + 3 d 3 )  (5 + 3&)2 ' 



Chapter 4 

Explicit Evaluations of 
Ramanujan-Selberg Continued Fraction 

4.1 Introduction 

Let $(q) and $(q) be defined as in (1.1.3) and (1.1.4). For Iql < 1,  Ramanujan-Selberg continued 

fraction Z(q) is defined by 

This continued fraction was recorded by Ramanujan a t  the beginning of Chapter 19 of his 

second notebook (15, p. 221). The equality in (4.1.1) was proved by Ramanathan [48]. 

Closely related to Z(q) is the continued fraction H ( q )  [59, p. 821, defined by 

By [15, p. 115, Entry 8(xii)] and (4.1.2), we find that  

Also, employing (1.1.4) and [15. p. 37, (22.4)], we have 

Again, for Iql < 1, define 



In his notebook [54, p. 2901, Ramanujan asserted that 

This formula was first proved in print by A. Selberg [58]. 

In his lost notebook, Ramanujan [56, p. 441 also stated that, if Iql < 1 and 

l + q  q2 9 + q 3  q4 ( q )  = 7 - - 
+ 1 +  1 + 1 +  

then 

From (4.1.1) and (4.1.5) - (4.1.8), we easily see that 

By setting 

we also note that  

In Sections 4.3-4.5 of this chapter, we find several modular relations connecting the above 

continued fractions in different arguments. 

We observe that  Vasuki and Shivashankr [59] had found explicit values of H(e-"fi) for n = 

3,1/3,5,1/5,7,1/7,13 and 1/13 by using eta-function identities and transformation formulas. 

In this chapter, we also find several new explicit values of ~ ( e - " f i )  by using the parameter 

Jn, defined by 

where n is any positive real number We to note that the parameter Jn is equivalent to Yi's 

parameter r+ defined in Chapter 1. In Sections 4.6 and 4.7, we evaluate several explicit values 

of the parameter J,, and the continued fraction ~ ( e - " f i ) ,  respectively. In Section 4.8, we 

establish general formulas for explicit evaluations of Z(e-"fi) and Z(e-"lfi) in terms of the 



parameter r k , n  We also give some particular examples. Previously, Zhang (70, p. 11, Theorems 

2.1 and 2.21, established general formulas for explicit evaluations of ~ ( e - " f i )  and ~ ( e - " 6 )  in 

terms of Ramanujan's singular moduli. In fact, he proved that 

and 

where q  = e-"& and the singular modulus an is that unique positive number between 0 and 1 

satisfying 

Remark 4.1.1. In [70], Ramanujan-Selberg continued fraction was denoted by Sl(q) .  In this 
thesis, we use the notation Z(q) for Sl(q) . 

4.2 Some eta-function identities and modular equations 

In this section, we record some eta-function identities and modular equations which will be 

used in the subsequent sections of this chapter. 

Theorem 4.2.1. (Yz, /66, p. 36, Theorem 3.5.11) If 

then 

Theorem 4.2.2. (Yz, 166, p. 37, Theorem 3.5.21) If 

then 



Theorem 4.2.3. (Yi, (66, p. 38, Theorem 3.5.31) If 

then 

Theorem 4.2.4. (Berndt, 115, p. 230, Entry 5[iz)]) If @ has degree 3 over a,  then 

(ap)'I4 + ( (1  - a ) ( l  - @)) ' I4  = 1. (4.2.4) 

Theorem 4.2.5. (Berndt, [15, p. 282, Entry 13(m)]) I f P  has degree 5 over a then 

where P = (ap)'I4 and Q = ( p / ~ ) ' / ~ .  

Theorem 4.2.6. (Berndt, [15, p. 314, Entry 19(z)]) If 0 has degree 7 over a ,  then 

Theorem 4.2.7. (Berndt, (15, p. 363, Entry 7(i)]) I f P  has degree 11 over a ,  then 

Theorem 4.2.8. (Berndt, (17, p. 387, Entry 621) Let PI Q, and R be as defined by 

and 

respectively. Then, if P has degree 13 over a ,  

Theorem 4.2.9. (Berndt, [17, p. 385, Entry 531) If 

and 
R = 4{crP(l - ~ ) ( l  - D ) ) " ~  

Then, iJ P has de.qree 15 over a ,  



Theorem 4.2.10. (Berndt, 117, p. 387. Entry 621) Let P, Q, and R be as defin,ed in Theorem. 
4.2.8, then, z f  p has degree 17 over a ,  

Theorem 4.2.11. (Berndt, 117, p. 386, Entry 581) Let, 

and 
R = 16{ap(l - a)(l- o ) ) ' / ~ .  

Then, z f  P has degree 19 over a ,  

Theorem 4.2.12. (Berndt, 115, p. 411, Entry 15(z)]) If P has degree 23 over a,  then 

Theorem 4.2.13. (Berndt 117, p. 385, Entry 541) Let P, Q, and R are as defined zn Theorem 
4.2.9. If P has degree 31 over a. Then 

4.3 Relations between H ( q )  and H(qn)  

In this section, we state and prove some relations between H(q) and H(qn). 

Theorem 4.3.1. We have 

(i) a = 
16 

and (ii) p = 
16 

16 + H8(q) 16 + H8(qn) ' 

where @ has degree n over a .  

Proof. We apply Entry 12(ii) and (iv) (15, p. 1241 in the definition of H (q) in (4.1.2) to conlplete 
the proof. 

Theorem 4.3.2. We have 

- 16 -16 
(i) a = - and (ii) p = 

Ha(-9) ' 
where @ has degree n over a 

Proof. We replace q by -q in the definition of H(q) and then employ Entry 12(i) and (iv)-[l5, 
p. 1241 to a t  arrive a t  the desired result. 



Remark 4.3.1. By Theorem 4.3.1 and for any given modular equation of degree n ,  we can obtain 
a relation between H(q) and H(qn). In the following theorem, we illustrate this with n =3, 5, 
and 7 in (iii), (iv), and (v) respectively. 

Theorem 4.3.3. Let a = H(q), b = H(-q), c = H(q2), u = H(q3)J v = ~ ( q ~ ) ,  and zu = H(q7).  
Then we have 

(i) as + b8 + 16 = 0, 

(ii) 256a8 + 16a16 + 16a8c8 + a16c8 - c16 = 0, 

(iii) a4 - 4au - a3u3 + u4' = 0, 

(iv) a6 - 16av - 5a4v2 - 5a2v4 - a5v5 + v6 = 0, 

(v) as - 64aw - 112a2w2 - 112a3w3 - 70a4w4 - 28a5w5 - 7a6w6 + a7w7 + w8 = 0. 

Proof. From Theorem 4.3.1 (i) and Theorem 4.3.2, we easily arrive a t  (i). To prove (iii)-(v) we 
employ Theorem 4.3.1 in Theorems 4.2.4, 4.2.5, and 4.2.6, respectively. We note that (ii)-(iv) 
can also be proved by employing Theorems 4.2.1-4.2.3. 0 

4.4 Relations between Z(q) and Z(qn) 

Theorem 4.4.1. We have 

(i) a = I ~ Z ~ ( ~ ) ,  (ii) ,O = 1 6 ~ ~ ( ~ " ) ,  and (iii) a = 
16T8(q) 

1 + 16T8(q). 

where 0 has degree n over a. 

Proof. To prove (i) and (ii), we employ Entry 10(i) and Entry l l ( i )  [15, p. 122-1231 in the 
definition of Z(q) in (4.1.1). Proof of (iii) follows easily from (4.1.14). 0 

Remark 4.4.1. For any given modular equation of degree n ,  we can easily obtain the relations 
connecting Z(q) and Z(qn) by using Theorem 4.4.1. We give some examples in the following 
theorem. 

Theorem 4.4.2. Let U = Z(q)J  V = 2(q3), W = Z(q5), and X = Z(q7). Then, we have 

(i) u4 - UV + 4 u 3 v 3  - V4 = 0, 

(ii) u6 - UW + 5 u 4 w 2  - 5 u 2 w 4  + 16u5w5 - W' = 0, 

(iii) us + x8 - U X  + 7 U 2 x 2  - 28u3x3  + 7 0 u 4 x 4  - 112u5x5  + 112u6x6  - 6 4 u 7 x 7  = 0. 

Proof. Enlploying Theorem 4.4.1 in Theorems 4.2.4 - 4.2.6, we readily deduce (i)-(iii), respec- 
tively. 0 



4.5 Relations connecting H (f q) , Z(q) and T ( q )  

Theorem 4.5.1. Let u = H(q), x = H(-q), U = Z(q), and y = T(q). W e  have 

(i)  u a ~ a  + 16u8 - 1 = 0, 

(ii) xsu8 + 1 = 0, 
1 

(iii) u = 2 )  
Y 

(iv) xay8 + 1 6 ~ '  + 1 = 0. 

Proof. (i) follows from Theorem 4.3.l(i) and Theorem 4.4.l(i). To prove (ii), we use The- 
orem 4.3.2(i) and Theorem 4.4.l(i). To prove (iii), we employ Theorem 4.3.1 (i) and Theo- 
rem 4.4.1 (iii). Finally, employing Theorem 4.3.2(i) and Theorem 4.4.1 (iii) , we easily arrive a t  
(iv) . 

4.6 Theorems on J, and explicit values 

This section is devoted to establishing some general theorems for the explicit evaluations of Jn 

and find some of its explicit values. 

Theorem 4.6.1. If Jn is defined as i n  (4.1.12), then we have 

1 
J1 = 1 and J1/, = -. 

Jn 

Proof. Follows directly from Theorem 1.1.3 and the definition of Jn. 

Theorem 4.6.2. W e  have 
12 4 

(i)  16 ( ( ~ n ~ 4 n ) '  + (Jn J4n)4 " )=(") J4n -16(&)4-16(L) Jn 
J4n , 

(iv) (1 + JnJ49nl8 - (1 + J:) (1 + J:gn) = 0. 

Proof. Employing the definition Jn in Theorems 4.2.1-4.2.3, and 4.2.6, we complete the proof 
of (i)-(iv), respegively. 0 



Theorem 4.6.3. We have 

(i) J~ = 2118 (I + A) lL8, 

(ii) J3 = (2 + 6) ' I 4  , 

1 3114 ,/3 
(vi) Jg=-+-+- 

2 fi 2 '  

P m f -  First we set we set n = 112, 113, 1, 115, 117, 1, 1, and 1 in Theorem 4.6.2(i), Theorem 
4.6.2(ii), Theorem 4.6.2(i), Theorem 4.6.2(iii), Theorem 4.6.2(iv), Theorem 4.6.2(ii), Theorem 
4.6.2(iii), and Theorem 4.6.2(iv), respectively, and then simplify by using Theorem 4.6.1. Solve 
the resulting polynomial equation equations, we readily anive at (i)-(viii). 

Setting n = 2 in Theorem 4.8.3(i), employing the value of J2 in (i) and solving the resulting 
equation, we deduce (ix). U 

Remark 4.6.1. From Theorem 4.6.1 and the above theorem, the values of J,, for n =1/2, 113, 
114, 1/5, 117, 119, 1/25, 1/49, and 118 also follow immediately. 

Theorem 4.6.4. We have 

(i) J6 = r4.6 = (1 h)318 (2(1 + fi + A)) , 

(ii) Jlo = 
(1 + 4'" (2 + 3 f i +  &)1/8 

2 1 

(iii) h 6  = 2318 (1 + &)'I2 (16 + 15 . 2114 + 1 2 ~ 2  + 9 - 23/4) 'I8, 

(iv) J I ~  = 2'" (h+ &) (1 + 3 5 h  - 2 8 ~ ; j ) ~ / ~ ,  

(v) JS6 = 
(JI+ I ) " ~  (--a+ 4 + 2 ~ 5 + 3 ~ f ~  (A+ i ) ) ' I3  ( I  + J?+ A.  3jf*)'I3 

235148 (a - &) 'I3 (A  - 



Proof. First we recd from [66, p. 14, Corollary 2.1.5(i)] that 

fk2,n = rk.nkrk,n/k. 

Setting k = 2 and n = 6 in (4.6.1), we obtain 

7-46 = T2,12 ' r2,3. 

Now, from Section 1.3, we recall that 

116 
2 ,  = 1 + ) and r2,12 = (1 + fi)5'L/u (2(1 + fi + h)) ' I8  . 

Substituting these in (4.6.2), we complete the proof of (i). 
The proofs of (ii)-(v) can be given in a similar fashion. 

Remark 4.6.2. By using Theorem 4.6.1 and the above theorem, we can easily evaluate J1/, for 
n =6, 10, 16, 18, and 36. 

Theorem 4.6.5. We have 

21/3 1 1/3 (19+3&q1/3 
where a = - - + g ( 3 8 - 6 6 )  3 + 3 . 22/3 ' 

(iii) 515 = 
7 - 3 , h  

7 

(iv) 517 = 

(vi) 523 = (1 + :-) 'I4 I 

-1 1 113 (25 + 3 , , ~ l / ~  
where n = - + (i (50 - 6&) + 3 . 21/3 3 . 22/3 ' 



Proof of (2): Using the definition of Jn in Theorem 4.3.1, we find that 

1 
Q=- and 0 = 1 

1 + J,8 1 + J h l n '  

where 0 has degree 11 over a. 

Setting n = 1/11 in (4.6.3) and simplifying by using the Theorem 4.6.1, we find that 

1 a =  ~~p 11 r p=- 1 - a  = p, and a/?= J,8,p2 (4.6.4) 
l+J,s,' 

Substituting (4.6.4) in Theorem 4.2.7 and simplifying, we obtain 

2 (Jflp) 'I2 + qy3 ( ~ f ~ p ) ~ ~ ~  - 1 = 0, 

Solving the above polynomial equation for real positive a := (J~,P)'~',  we obtain 

Then, from (4.6.4) and (4.6.6), we arrive at 

Solving (4.6.7) for J l l ,  we complete the proof of (i) 

Similarly, we can prove (ii)-(vii) by using the definition of J ,  in Theorem 4.3.1, setting 

n =1/13, 1/15, 1/17, 1/19, 1/23, and 1/31, in turn, and then appealing to the Theorems 

4.2.8-4.2.13, respectively. 

Remark 4.6.3. By Theorem 4.6.1 and the above theorem, the values of J1/, for n =11, 13, 15. 
17, 19, 23, and 31 can also be found easily. 

4.7 Explicit values of H(q)  

In this section, we establish a general formula for the explicit evaluation of ~ ( e - " f i )  and find 

some explicit values by using the particular values of J,, evaluated in the above section. 



Theorem 4.7.1. We have 

~ ( e - " ~ )  = h Jn. 

Proof. The proof follows directly from the defitlitions of H(q) and Jn. 

Theorem 4.7.2. We have 

(i) H(e-") = h, 

(ii) ~ ( e - " ~ )  = 2'18 (1 + h) 'I8, 

(iii) H (e-""5) = h (2 + A) 'I4 , 

(iv) ~ ( e - " )  = 213/16 (1 -k f i ) ' I 4 ,  

(vi) ~ ( e - " f i )  = h (8 + 3 ~ i )  'I4 , 

(vii) H (eV3") = 
l+JZ$i+,h 

Jz I 

(viii) H (e-'") = 
3 + S + & + @  

Jz I 

(ix) ~ ( e - ~ " )  = - 

Proof. Employing the value that J1 = 1 in Theorem 4.7.1 we arrive a t  (i). To prove (ii)-(x), 
we employ the values of J,, from Theorem 4.6.3 in Theorem 4.7.1. 

Remark 4.7.1. From Theorems 4.6.1 and 4.7.1, it is obvious that  

So by employing the values of Jn from Theorem 4.6.3 in (4.7.1), we can easily evaluate ~ ( e - " ' A )  
for n =2, 3, 4, 5, 7, 9, 25, 49, and 8. For examples, 

and 
2 



Theorem 4.7.3. We hove 

(iii) H(e-4") = 2'" ( A  + 1) ' I 2  (16 + 15 . + 12Ji + 9 . 23/4) 'I8 , 

(v) H(e-6n) = 
(J3 + 1)2/3 (-JZ + 4 + 2Jj  + 3)14 (Jj + 1))lt3 (1 + J3 + JZ . 3 3 ~ ) ~ ' ~  

2"" (fi - ( ~ i  - 1)5/12 

Pmof. We use the values of J,  from Theorem 4.6.4 in Theorem 4.7.1 to complete the proof. O 

The values of H (e-'16) for n =6, 10, 18, and 36 also follow from Theorem 4.6.4 and (4.7.1). 

Theorem 4.7.4. We have 

2lI3 1 113 (19 + 3&3) ' I3  
where o = -- + - (38 - 6m) + 

3 6 3 .22/3 , 

(ii) ~ ( e - ~ ~ )  = fi 

(iii) ~ ( e - " & )  = fi 
7 - 3 &  

7 

2 +  / 4 - - 4 ( 2 0 + 5 ~ i " ; - 2 ~ 2 0 6 + 5 0 ~ i 7 ) ~  
(iv) ~ ( e - " m )  = 

40 + 1 0 m  - 4J206 + 50J1'5 
j 

(vi) H(e- 
2n6 1 



(vii) ~ ( e - ' f l )  = fi ( 1  + y) ' I 4  I 

-27 + 3& 
113 

1 1 
where d = - + : (  2 6 ) - 22/3(-27 + 3&%)ll3 ' 

Proof. Proof of the theorem follows directly from Theorem 4.6.5 and Theorem 4.7.1. 0 

Remark 4.7.2. Values of ~ ( e - " / f i )  for n =11, 13, 15, 17, 19, 23, and 31 also follow readily 
from Theorem 4.6.5 and (4.7.1). 

4.8 Explicit formulas for Z(q) and explicit values 

Recall the definitions of Weber-Rarnanujan class invariants G, and g, from Chapter 1 as 

114 -1124 Gn := 2-114q-1/24X(q) and 9, := 2- q x(-q), (4.8.1) 

where q := e - " 6 .  The two class invariants satisfy the properties (see [17, p. 187, Entry 2.11, 

[66, p. 18, ~oroll&ies 2.2.4(i), ( i i ) ] )  

94, = 2 1 / 4 g n ~ n ,  9;' = 94/,, and G I / ,  = G,. (4.8.2) 

We also note from [66, p. 13, Lemma 2.1.3(i)] and [66, p. 18, Theorem 2.2.31 that 

T2,2n 
gn = ~ 2 , n / 2  , and G, = - , (4.8.4) 

2 1 / 4 ~ 2 , p  

respectively, where rk,, is the as defined in (1.1.9) and k and n are positive real numbers. 

Now, we state and prove two general formulas for the explicit evaluations of Z(q)  and then 

calculate some specific values. 

Theorem 4.8.1. We have 

where G ,  and g, are Ramawujan's class muanunts as defined in (4.8.1) 



proof. By (15, p. 39, Entry 24(iii)], we have 

Substituting (4.8.5) in (4.1.1), we obtain 

From [15, p. 39, Entry 24(iii)], we also note that 

Now, setting q := e - " 6  and then applying (4.8.6), (4.8.7), and (4.8.1), we complete the proof 
of the the first equality. Employing (4.8.4) to  the first equality, we arrive at the second equality. 
To prove the third equality, we employ (4.8.3) to the second equality. 

Corollary 4.8.2. We have 

(i) Z(e-")  = T5I8 ,  

(ii) ~ ( e - " ~ )  = 2-'I2 (I + A) -'I2, 

(iii) Z(~-"&) = 2-17124 + fi)-ll4 , 

(iv) ~ ( e - 2 " )  = 2-318 (1 + fi) -'I4 , 

( 4  '(e -"A) = (1 + &) - 112 (Jzz + fi) 

(vi) ~ ( e - n f i )  = 2-11~ (1 +'&)-'I4 (1 + fi + &)-'I4, 

(vii) ~ ( e - ~ f i )  = 2-718 (3 + f i ) - l I4  , 

(viii) ~ ( e - ~ " ~ )  = 2- ( + ) 3 1 8  ( 4  l i 4 ,  

2'18 (1 + + 4. 31/4)ll3 
(ix) ~ ( e - ~ " )  = 

(1 + &q2I3 (1 + d3 + Ji 3 3 1 4 ) ~ ~ ~  

(x) ~ ( e - n m )  = 211' (1 + ~ 5 ) - ~ ~ ~  ( 2  + 3 ~ i +  f i ) - l i 4 ,  

(xi) Z(e-4") = 2-7/16 (1 + &)-'I4 (16 + 15 . + 1 2 f i  + g . 23/4)-li4 , 

(xii) ~(e- ' "&) = 2-lI2 (A + d)-' (1 + 35Ji - 28&)-'l4 , 

(xiii) ~ ( e - ~ " )  = 2-1718 ( ~ 5  - 1 ) (  5114 - 11, 



(xiv) ~ ( e - ' " )  = 
211G (a- 1)51G (1 + fi+ ~i 3314)~'~ 

+ l 3  + ) I 3  (1 + - + f i . 3 3 1 4 ~ ) ~ ~ ~  

Proof. The parts (i)-(vi) and (viii)-(xiv) easily follow from Theorem 4.8.1 with the help of the 
values of r k , n  in Section 1.3. To prove (vii). we use the values of G7 and 97 = r2,~12 from [17] 
and Section 1.3, respectively. 0 

Theorem 4.8.3. We have 
9 n  Z(~-T/J;; -- - ~i ,n/2  - - r i , n  

) = 2lI2Gn 21/4r2,2n 21/4rz,2n ' 

Proof. Replacing n  by l / n  in Theorem 4.5.1 and then simplifying by using (4.8.2), we arrive 
at the first equality. To prove the second equality, we employ (4.8.4) to the first. Using (4.8.3) 
to the second equality, we finish the proof of the third one. 

Corollary 4.8.4. We have 

(i) ~ ( ~ - ' l J i )  = 2-3/8 (~5 ;  - 1) 'I8 , 

(ii) Z(e-"Ifi) = 2-718 (A + I) , 

(iv) ~ ( e - " / ~ ~ )  = 2-'18 4 + 2 + 1 0 f i  , ( J-7 -lI8 

(vi) ~ ( e - " I 3 )  = 
(1 + 4 + f i  . 31/41 

2'18 (1 + 8) 'I3 (1 + fi + \/2 - 33/4) 
' 

(viii) z(e-"I4) = 
231~6 (a + 1) 'I4 

(16 + 15 .21/4 + 1 2 f i  + 9 . 2314) 'I8 ' 

(x) Z(eb"/') = 
(h+ 1)lI3 (1 + A+ 3 3 1 4 4 ~ ' ~  

2114 ( A  + (1 + Ji - + 33/4\/i1)113' 

(xi) z(e-"Ia 
(A + 1)318 

= 
23/4 (2 + 3 f i  + A) 'Ii ' 

Proof. With the help of Theorem 4.8.3 and the values of rk , ,  listed in Section 1.3, we readily 
complete the proof. 0 

Remark 4.8.1. From the last equalities of Theorems 4.8.1 and 4.8.3, we have the transformation 
formula for Z(g): Z(e-"/fi) = r,,, ~ ( e - " 6 ) .  



Chapter 5 

Explicit Evaluations of 
Ramanujan-Gollnit z- Gordon 
Continued F'ract ion 

5.1 Introduction 

Let Ramanujan-Gollnitz-Gordon continued fraction K(q) be defined by 

On page 299 of his second notebook [54], Ramanujan recorded a product representation of 

where (a; q), = n:==,(l - aqR). 

Without the knowledge of Ramanujan's work, Gollni tz [43] and Gordon [44], independently. 

rediscovered and proved (5.1.2). Shortly thereafter, Andrews [4] proved (5.1.2) a s  a corollary of 

a more general result. Ramanathan [49] also found an alternative proof of (5.1.2). In addition 

to (5.1.2), Ramanujan offered two other identities [54, p. 2991 for K(q),  namely, 

and 



Proofs of ( 5 . 1 . 3 )  and ( 5 . 1 . 4 )  can be found in Berndt's book [15,  p. 221).  

Chan and Huang [37] found many identities involving the continued fraction I { ( q ) .  They 

derived several relations connecting K ( q )  and K ( q n )  by using modular equations. They also 

evaluated explicitly ~ ( e - ~ f i l ~ )  for several positive integers n by using Weber-Ramanujan class 

invariants G n  and g,. We record the following identity established by Chan and Huang [37,  p. 

7 8 ,  ( 2 . 5 ) ]  for our future use: 

Recently, Vasuki and Srivatsa Kumar (601 derived three new relations connecting the contin- 

ued fractions K ( q )  and the three continued fractions K ( q 5 ) ,  K ( q 7 ) ,  and K ( q H )  by establishing 

some new theta-function identities. They also gave a new approach to the relation between 

K ( q )  and K ( q 3 )  established by Chan and Huang [37] .  

In this chapter, we present some general theorems for the explicit evaluations of K ( g )  by 

parameterizations and also give some examples. We end this introduction by recalling the 

parameters 
7 

+ ( e - n d n / 2 )  
and ~ k , ~  = f ( 9 )  

h21n = 2 1 / 4 + ( ~ - . & )  kl/4q(k-l)/24 f (- (- l )kqk)  ' 

where q  = e - " f i  with k  and n being positive real numbers. We have already mentioned in 

Chapter 1 ,  the parameter ~ k , ~  is due to Berndt [18,  p. 9, (4.7)] and h2,,  is the particular case 

k  = 2 of the parameter hk, ,  defined in (1 .1 .21) .  Employing Theorem 1.1.1 in the definition of 

h2.,, it can be easily seen that 

5.2 Values of G, and y, 

In this section, we state and prove a formula for evaluation of the class invariant g,, in terms 

of parameter Jn and find some new 9,. We also record some known values of G, and g,, which 

will be used in the subsequent sections. 



In the following lemma, we recall some values of J, from the previous chapter. 

Lemma 5.2.1. We have 

(ii) J5 = i (1 + 6 + 4%) , JZ 
(iii) J7 = (8 + 3 ~ i )  'I4 , 

(vi) J17 = 

\ 

(vii) J2, = (3 + & + & + @) , 

For proof see Theorem 4.6.3 and Theorem 4.6.5. 

Lemma 5.2.2. We have 

(ii) G7 = 2lI4, 

(iii) Glo  = 
{(a + 1)(4 + =fi)}'l8 

21/4 1 

(iv) Gls  = 
(16 + 15 . + 1 2 f i  + 9 . 23/4) 

2114 1 

(vii) GL7 = 
m-3 

8 ' 



l + &  
(viii) G25 = - 

2 '  

(xi) G49 = 
7lI4 + J G E  

2 

Proofs of (iii), (iv), and (x) can be found in [66, p. 114-115, Theorem 6.2.21. For the proofs of 

(i), (ii), (v)-(x), we refer to (171. 

In the following theorem, we establish a relation among g,, G, and J,, where J, is defined 

Theorem 5.2.3. For any positive rational number n, we have 

Proof. We note from (4.1.12) that, J,  can be expressed as 

where q := e - " 6 .  
Applying.the definition of g,, we obtain 

Now, from [17, p. 187, Entry 2.11, we note that 

Applying (5.2.3) in (5.2.2), we arrive a t  the desired result. 

In the next lemma, we state some values of gn which will be used in the last section of the 

chapter. 

Lemma 5.2.4. For any positzve rutzonal number n, we have 



, 

21/4 1 + 41 - (20 + 5 m  - 2J206 + 50fi12 
(vii) 917 = ( 2 0 + 5 ~ i i - 2 J -  (JCm + dmZ)ll2 

51/4 + 1 
(viii) 92s = 25/8 ' 

Proof. To prove (i), (iv), (v), (vii), and (xi), we set n=5, 13, 15, 17, and 49 in Theorem 5.2.3 
anh use the values of Jn and G, from Lemma 5.2.1 and Theorem 5.2.2, respectively. The other 
values are established in [17] and [66] 

5.3 Explicit values of K(q)  by using h2,n  

Employing the definition of the parameter h2,, in (5.1.5)' we immediately deduce the following 

useful theorem. 

Theorem 5.3.1. For any posztzve real number n ,  we have 

Remark 5.3.1. Fronl the above theorem, it is obvious that i f  we know the values of hI2,,, for any 
positive real number n ,  then the values of ~ ( e - " f i / ~ )  can be easily evaluated. 



We have already noted in (5.1.7) that h2,1 = 1. In the nest lemma, we recall some inore 

values of h2,n from [66, p. 142, Theorem 9.1.6 ] or (69, p. 13, Theorem 4.71. 

Lemma 5.3.2. We have 

(i) h2,2 = J‘- 2 f i  - 2, 

Next, we prove the following new theta-function identity from which we calculate some more 

values of h2,n 

Theorem 5.3.3. If 

p=- ""d & = - 4(q3) 
4 b 2 )  4(4" 

then 
2 

( 5 ) ' - 6 ( 5 + $ ) + * ( & + P Q )  - (g) =o .  (5.3.1) 

Proof. Transcribing P and Q using Entry 10(i) and (iv)[15, p. 1221 and simplifying, we find 
that 

1 
2 

P2 
and d m = - -  

Q2 
1 , (5.3.2) 

where ,B has degree 3 over a. 
Now, From Entry 5 ( x )  [15, p. 2311, we note that 

Settlng k = 2 ( ( 1  - a ) ( l  - p)}'I8 in (5.3.3)) we find that 

and 



Multiplying (5.3.4) and (5.3.5), and then sin~plifying, we obtain 

where n = \/=' - J1-P and b = 4 J ( 1  - a ) ( l  - p) ,  
Squaring (5.3.6) and substituting I;" = 46, we obtain 

Squaring (5.3.8) and substituting k4 = 4b once again, we arrive a t  

16b - 4(2b2 + a4 + 4a2b) + b3 = 0, (5.3.9) 

Now, from (5.3.7) and (5.3.2), we note that 

a = ( $ - $ )  and b = 4 ( $ - 1 )  ( $ - 1 ) .  

Invoking (5.3.10) in (5.3.9), and then factoring, we find that  

( p 4  - 8 P Q  + 6 P 3 Q  + 6 p Q 3  - 4p3Q3 - Q ~ )  

By examining the behavior near the origin, it can be shown that  the first factor of (5.3.11) is 
non-zero in a neighborhood of the o r i ~ n .  Thus, the second factor vanishes in that neighborhood. 
Hence, by the identity theorem, this factor vanishes identically, i.e., 

Dividing the above equation by P2Q2 and then rearranging, we complete the proof. 

Theorem 5.3.4. For any posztzve real number n, we have 

Proof. The theorem follows directly from Theorem 5.3.3 and the definition of h2," 

Theorem 5.3.5. W e  have 



Proof. Setting n = 1/3 in Theorem 5.3.4 and then simplifying using (5.1.7), we get 

where x = h 2 ~ .  
Solving the above polynomial equation, we complete the proof of (i). Now, (ii) follows imme- 
diately from (i) and the fact that hz,113 = l/hz,3. 

To prove (iii), we set n = 1 in Theorem 5.3.4 and then simplifying using the result that 
hk,l = 1, we find that  

s4 + (6 - 4 f i ) ( s 3  +s) - 1 = 0, (5.3.14) 

where x = h2,9. 

Solving the above polynomial equation, we arrive a t  (iii). Employing the result h2,1/9 = l / h 2 , 9  

in (iii), we readily arrive a t  (iv). 0 

Theorem 5.3.6. We have 

and 

To prove the above theorem, we also used some results from our next chapter. 

Proof. From Theorem 6.4.9 (iii), we have 

Setting n = 2 in Theorem 6.4.3 (vi), using the above value of g;,,, and then solving the 
polynomial equation for g5,2, we get 

where the first equality is due to  Theorem 6.3.l(iii). 

Now, setting q = e- "a and employing the definitions of g x ,  and h r ,  in Theorem 6.2.5, 
we obtain 

Solving (5.3.15), we arrive a t  (i). From ( i )  and (5.1.7): we easily clecluce (ii). 0 



5.4 Explicit values of K(q) by using sr,, 

In this section, we use the parameter s4," to find explicit values of ~ r ' ( e ' " \ ~ / ~ ) ,  where s4,,, for 

1; = 4 is a particular case of the parameter sk,, defined in (5.1.6). 

Theorem 5.4.1. For q := e-"&I2, recall from (5.1.6) that 

Then 
K(~-"J;;I~) = -s2 4,. + JG. 

Proof. Replacing q by q1/2 in (5.1.3), we find that 

Employing (4.8.5) in (5.4.3), we deduce that 

Using the definition of s4,, in (5.4.4), we arrive a t  

Now (5.4.2) is apparent from the above. 

From the above theorem, we need only to find the values of the parameter s4,, to get the 

explicit values of ~ ( e - " f i / ~ ) .  The remaining part of this chapter is devoted to the explicit 

evaluations of Sq,,. 

In the next theorem, we establish a relation connecting s 4 ,  with r k , ,  and g,. 

Theorem 5.4.2. We have 

Proof, We can rewrite s,,,, as 

where q := e-"fi/2. 



Applying the definitions of the class invariants Gn md gn in (5.4.6), we find that 

S4,n = Gn/dgn. (5.4.7) 

Now, from (4.8.4)) we recall that 

Combining (5.4.7) and (5.4.8)' we complete the proof. 

Corollary 5.4.3. We have 

(i) '431 = 25/16 7 

(ii) s q , ~  = 
(1 + 

(iii) s4,4 = 21/8, 

(iv) s4,8 = ( I+ &)'I4, 

(x) s 4 3  = (1 + J Z )  (1 + ,h + A) 'I4 , 

(xi) S4,32 = 2-'I8 

(xii) s ~ , 3 ~ = 2 - S ~ 8 ( 1 + ~ ) 2 / 3 ( 1 + f i + 3 ~ 4 \ / 1 ) 1 i J ,  

(xiii) ~ 4 , 7 2  = ( ~ i  + A) (1 + 3 5 4  - 2 8 ~ )  ' I 4 .  

Proof. Easily follow from Theorem 5.4.2 and the values of r k , n  stated in Section 1.3. 

In the next, we present a relation connecting sj,,,,, with G,, and gn. 



Theorem 5.4.4. For any positzve real number ) I ,  we have 

Proof. We replace n by 4n in Theorem 5.4.2 and simplify by using (5.2.3) to complete the 
proof. 0 

Corollary 5.4.5. We have 

(iii) sdc0 = 23/4 (1 + &l3I4 (2 + 3&+ &)'I4, 

(iv) ~ 4 , ~ ~  = 2-'/16 (1 + A) 'I2 (16 + 15 . 21J4 + 1 2 f i  + g . 2314)2 , 

( v  4 , ~ 2 = 2 - l / ~  ( 1 8 + 5 & + 6 J 1 8 + 5 f i ) 1 1 8 ( 3 + & ) 3 1 8 1  
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(vi) s4fio = (1 + &)Ii2 I I 

Proof. We employ the values of C', and y, from Lenlnla 5.2.2 and L e m n ~ a  5.2.4 in Theorem 
5.4.4. 0 



Our next theorem is almost similar t.o the Theorem 5.4.2. 

Theorem 5.4.6. For any positzve real number n,: we have 

where J,, zs as defined in (4.1.12). 

Proof. Replacing n by 4 n  in Theorem 5.4.2, we obtain 

Applying the result rk,,~, = ~k,,, ,~r;;kl, ,  166, p. 13,Lemma 2.1.3(i)], in (5.4.9): we prove the first 
equality. 

Second equality follows immediately from the first equality and the result Jn = ~ 4 , ~ .  0 

Corollary 5.4.7. We have 

(ii) ~ 4 , l p  = T 3 I 8  4 + 2 + 1 0 f i  , ( J1'" 
27/8 (127 + 4 8 ~ 5 ) ~ "  

(iii) ~ 4 , 4 1 7  = 
(3 + J?) 3/4  

> 

(1 + d q 3 I 8  
(iv) ~ 4 . 4 1 5  = 

Prooj. ( i )  Setting n = 116 in Theorern 5.4.6, we find that  



where we also used the result rk.l/,, = l/rk,,,. 
Fro111 [66, p. 14, Corollary 2.1.5(i)], for any positive real number k and n ,  we have 

rk2,v = Tk,nkTk,rz/k 

Setatping k = 2 and n = 6 in (5.4.1 I) ,  we find that 

r 4 , ~  = T2,12f2,3. 

Combining (5.4.10) and (5.4.12), we obtain 

Substituting the values of 7-2,s and 7-2,~2 from Section 1.3, we complete the proof. 
The proofs of the (ii)-(vjjj) are identical to the proof of (i). 

Theorem 5.4.8. If Jn and s4,, are as defined zn (4.1.12) and (5.4.1), respectzvely, then 

Proof. From Theorem 4.2.1, we find that 

where 

Replacing q by -q ,  we note t,hat L8, and Ad4 transform to -(RM)8, -R8, and -M4,  
respectively, where 

Thus, we deduce that  

R8 { ( R A ~ ) ~  - 44) = MIG + 1 6 ( ~ ~ 4 ) ~  - 16R16. (5.4.15) 

Setting q = e-"fiI2 and employing the definitions of s4,,, and Jn, we find that 

R =  AS^,,, and M = &J,. (5.4.16) 

Invoking (5.4.16) in (5.4.15) and then simplifying, we obtain 

Solving the above polynon~ial equation for s4,, and considering the real posit~ve root on]?:. we 
complete the proof. 

Remark 5.4.1. From Theorer~~ 5 4.8 it is obvious that iI we know the values of the paranleler .I,, 
we can easily evaluate the values of .sq,,,. Many explicit values of .I,, are eval~.~i~t.ed in Chapler 
4. Also since JI l , ,  = l /J , , :  .54,,/ , ,  ~ L I S U  I'OIIOWS in~n~ctliately. In Coroll~ry 5.4.9; \ye give f c \ ~  
examples. 



Corollary 5.4.9. We have 

(1 + k + 2 h ) l I 8  
(iii) 54,s = 21/4k1/16 ' where 

(1 + k1 + 2 h 1 ) 1 1 8  
(iv) S4,1/5 = , where 21/4k.-/16 

(viii) $4,1125 = 
(1 + ml + 2 f i l ) l l 8  

21/4~1116 1 , where r n l = 1 + ~ ( 3 + & -  256 JGGZ)~, 
(1+n+2Ji i )1 /8  where n = l +  (ix) s4313 = 21/4nl/16 , 

(303 - 2 1 6  + 167 + 28,/- - 12 d-)ll8 
(xi) S4,ls = , where r = Jz. 

2'/16 (7 - 3 ~ )  'I8 (16 + r)lI6 

Proof. We only give the proofs of (i) and (ii) only. Proofs of the remaining values follow 
similarly. To prove (i) and (ii): we employ the value of J3 from Lemma 5.2 . l ( i )  and Jll3 = 1/.13 
in Theorem 5.4.8. 



Chapter 6 

Two Parameters for Ramanujan's 
Theta-functions and Their Explicit 
Values 

6.1 Introduction 

In his first notebook [54, Vol. I, p. 2481 Ramanujan recorded many elementary values of $ ( q )  

and $(q) .  Particularly, he recorded $(e-"") for n = l ,  2, 4, 8, 112, and 114 and $(e-"") and 

$(-e-"") for n = l ,  2, 4, 8, 112, and 114. All these values were proved by Berndt 117, p. 325). 

Ramanujan also recorded non-elementary values of $(e-"") for n= 3, 5, 9, 7, and 45. Berndt 

and Chan [20] found proofs for these. They also found new explicit values of $(e-"") for n= 

13, 27, and 63. Recently, Yi (66, 691, evaluated many new values of $(q)  and f ( q )  by using 

modular identities, transformation formylas for theta-functions and the parameters r k , n l  r;,,. 

hk,n; and h;,* which we also recall from Chapter 1 that 



In particular, she evaluated 4(e-"") for n = l ,  2,  3, 4, 5, and 6 and $(-e-"") for n = l ,  2. 4, 

6 ,  8, 10, and 12. Motivated by Yi's work, we define, for any positive real numbers k and n,. the 

t.wo parameters gk,, and gL,ll of the theta-function $(q), by 

and 

In this chapter, we establish many general properties of these parameters, which are analo- 

gous to those of hk,n and hi,,. We also find several general theorems for the explicit evaluations 

of these parameters by using theta-function identities. In particular, we obtain several new 

explicit values of the theta-function $(q) and quotients of $(q) and of q5(q). We will use the 

explicit values of ~k, , ,  and I-;,, from (661 and listed in Section 1.3 for finding some of the explicit 

values of gk,n and g;,,. In addition, we will establish some theorems for the explicit evaluations 

of Rogers-Ramanujan continued fraction and Ramanujan cubic continued fraction using the 

parameters gk,n, g;,n, hk,n, and h;,n 

6.2 Theta-function identities 

In this section we state and prove some theta-function identities which we will use in the 

subsequent section. Proofs of the new identities are also given. 

Theorem 6.2.1. (Ramanujan 154, p. 3271; Berndt [I 6, p. 233, Entry 661)) If 

then 

Theorem 6.2.2. If 
P = '(-') and Q = 

3(-s3) 
q7b(-q9) q3$(-qZ7) ' 



Proof. The  proof of the theorem follows directly from [15, Entry 1 ( i i ) ,  p. 3451. 

Theorem 6.2.3. (Adiga et al. [3, p.  10: Theorem 5.11; Baruah & Bhattachayya (11, p. 
21 57")) Let 

then 
Q% P4Q4 = 9 + P 4  

Theorem 6.2.4. (Adiga et al. [3, p. 10. Theorem 5.21; Baruah & Bhattacharyya 111, p 
21561)) Let 

then 
& + P Q = 3 + P .  (6.2.4) 

Theorem 6.2.5. (Adiga et al. [3, p. 10, Theorem 5.31; Baruah & Bhattacharyya 111, p. 
21 561)) Let 

P = @(-q)  4 ( 9 )  and Q = - 
9'/2$(-95) 94(q5)  ' 

then 
Q2 -I- P ~ Q ~  = 5 + p2. 

Theorem 6.2.6. If 

then 

Proof. Using 

we find that 

P = f 2 ( - q 2 ) f  ( - q 3 )  and Q = f2(-9"f  (-(I6) 
q'14.f(-s)f  2(-q6)  ~ " ~ f  ( - q2 ) f  2(-9'2) 

We set 

A[) := 
I(-c/') and M* .- ,,, f 2 ( - q 4 )  - 

'/'lG.f ( - q 6 )  l . - 9  f (  Y )  

Then ,  from (6.2.7),  (6 .2 .8) ,  and (6.2.9); we have 



Now from (6.2.8), (6.2.9), and 116, p.204. Entry 511, we have 

Replacing L1 and M2 in (6.2.11) and (6.2.12), respectively by using (6.2.10), we find that 

and 

n4,G = 
Q6 - 9Q2 
Q4-1  ' 

respectively. Thus, from (6.2.13) and (6.2.14), we have 

Simplifying the above equation (6.2.15), we obtain 

By examining the behavior of the first and the last factors of the left hand side of (6.2.16) near 
q = 0, it can be seen that there is a neighborhood about the origin, where these factors are not 
zero. Then the second factor is zero in this neighborhood. By the identity theorem this factor 
is identically zero. Thus, we have . 

Dividing the above equation by P2Q2,  we complete the proof. 

Theorem 6.2.7. If 

then 

Proof. Replacing q by -q in Theorem 6.2.6, we complete the proof. 

Theorem 6.2.8. If 

then 



Proof. Using 

we find that 

We set 
f (s) f 2(-92) 

L1 := q1/12 f ($1 and L2 -= 1/3 2 I 

4 f (  

M1 := '(-') and M 2 : =  f2(-q2) 
s1I6f (-(I3) 9'13 f2(-s6) ' 

Then, we have 
L2 h/r, P=- ,  Q = -  

M1' 
and L2 = M2. (6.2.23) 

L 1 

Now by applying (6.2.21) in [16, p. 204, (51.3)], we obtain 

Replacing L1 in the above equation using (6.2.23)) and simplifying using the result L2 = M2 , 
we find that 

n4; = 
P I 2  + 9P8 

(6.2.25) 
P4+1 . 

Again,from (6.2.22) in [16, p. 204, Entry 511, we obtain 

Replacing L1 in the above equation using (6.2.23), and simplifying using the result L2 = M2 , 
we find that 

From (6.2.25) and (6.2.27), we have 

Simplifying, we get 

Dividing the above equation P4Q4 and rearranging the terms, we complete the proof. 

Theorem 6.2.9. I f  



Proof. We employ [16,  p. 206, Entry 53 and (53.2)]  and proceed as in the proof of Theorem 
6.2.6.  

T h e o r e m  6.2.10. If 

P = $ ( - ! I )  $ ( q 2 )  and Q = - 
q1I2$(-q5)  q$(slO) ' 

then, 

Proof. We replace q by -q in Theorem 6.2.9.  

T h e o r e m  6.2.11. I f  

then 

Proof. We use (16,  p. 206, Entry 53) and proceed as in the proof of Theorem 6.2.8.  0 

T h e o r e m  6.2.12. If 

P = @(') and Q = + ( q 2 )  
4'l8@(q2) q' l4@(q4)  ' 

then 

Proof. From (66, p. 21, Theorem 3.2.21, we note that 

where 

Let 
f 2 ( - q 2 )  f ' ( - q 4 )  and M2 := 113 - . , L2 := q 1 / 6  f 2 ( - q 4 )  4 f ( 9 )  

Now, we proceed as in the proof of Theorem 6.2.6 with applications of (6 .2 .34)  instead of 
(16, p. 204, Entry 511 to complete the proof. 

T h e o r e m  6.2.13. If 

p = -  and Q = - $ ( - ( I )  
( t ( q 5 )  4 ( - q 5 )  



Proof. From 115, p. 39, Entry 24(iii)]. we note that 

Thus, P and Q can be written as 

Setting 

we find that 
L2 p = -  M2 
I )  Q=- , and M1 = L1. MI 

Now, from (6.2.40) and [16, p. 207, (53.3)], we have 

From (6.2.42) and (6.2.43), we obtain 

Again, from (6.2.41) and [16, p. 206, Entry 53) 

M ~ A ~ Z  + 5 ~ : A 4 2  = M: f M;. 

From (6.2.42) and (6.2.45), we find that 

Since L1 = M I ,  so from (6.2.44) and (6.2.46), we deduce that 

Simplifying (6.2.47), we arrive a t  

( P  + Q)(5 - f2 - 4PQ - Q~ + P * Q ~ )  = 0. 

Siuce the first factor is non-zero in a neighborhood of the origin, we deduce that 

5 - p2 - 4pQ - Q~ + p2&2 = 0, 

Dividing the i~hove equation by PQ, we complete the proof. 



Theorem 6.2.14. If 

then. 

Proof. En~ploying (6.2.38), we note that 

Setting 

we deduce that  
L2 p = -  h.r, & = -  and M2 = L:. (6.2.54) 
L1' All, 

Now, from (6.2.52) and [16, p.206, Entry 531, we deduce that  

Applying the results in (6.2.54) and simplifying, we find that  

Similarly, from (6.2.53) and (16, p. 206, (53.3)], we obtain 

From (6.2.56) and (6.2.57), we find that 

Simplifying the above equation, we obtain 

Now; proceeding as  in Theorem 6.2.6, it can be shown that  the first factor of (6.2.59) is 
non-zero In a neighborhood of zero. Thus, \ire have 

5p2 - p4 - ~ P ~ Q ~  - Q4 + P ~ Q ~  = 0. (6.2.60) 

Dividing the above equation by P2Q2,  we conlplcte the proof. 



Theorem 6.2.15. If 

then 

p = -  4(-q2) and Q = 4(-q10) 1 

4(q5> 

Proof Replacing q by -q in Theorem 6.2.14, we readily complete the proof. 

Theorem 6.2.16. (Berndt 115, p. 306, Entry l8(vz)/) If 

then 
2p = 7(v3 + 5v2 + 7v) + (v2 + 7v + 7)(4v3 + 21v2 + 28v)'I2. (6.2.62) 

6.3 Properties of g k I n  and g;,, 

Theorem 6.3.1. For all posztzve real numbers k and n, we have 

Remark 6.3.1.. By using the definitions of $ ( q )  and gk,,, it can be seen that gk,, increases as 
n increases when k > 1. Thus, by Theorem 6.3.l(i), gk,n > 1 for all n > 1 if k > 1. 

Proof Using the definition of gk,, and Theorem 1.1.5, we easily arrive a t  gkSl = 1. Replacing n 
by l / n  in gk,,, and using Theorem 1.1.5, we find that gk,, gk,l/n = 1. Interchanging n and k in 
gk,,,, we complete the proof of (lii). 0 

Theorem 6.3.2. For all posztzve real numbers k ,  m, and n 

- 1 
gk,$ = gmk,n Qnk,nl 

Proof B y  the definition of gk,,, we find that 

Employing Theorem G 3 l(11) and (ill), we complete the proof 

Theorem 6.3.3. f i r  all posztzve real numbers a ,  b, c, and d ,  ~ i ~ e  have 



Proof Applying Theorem 6 3 l(ii1) 111 Theorein 6 3 2, we deduce that, for all positive 1ecd 
numbers a ,  b, and n 

- 1 
g f  n = gn ~ I I  gb 0 7 1  (6 3 2) 

Again employing Theorem 6 3 2 and Theorem G 3 l(ii1) in (6 3 2), we arrive < ~ t  (6 3 1) 

T h e o r e m  6.3.4. For all posztzve real numbers A rind n, we have 

Proof Settlng a = k, b = l /k ,  c = n,  and d = 1 In Theorem 6 3 3, we deduce that 

Employing Theorem 6 3 l(i1) and (ill), we readily complete the proof 

T h e o r e m  6.3.5. For all posztzve real numbers a and b, we have 

Proof Let a and b be any positive real numbers By uslng Theorem 6 3 3 and Theorem 6 3 l(ii), 
we find that 

g f , ?  = gb b gu,$ (6 3 3, 

So we complete the proof of (1) Similarly, we find that 

Fkom (6 3 3) and (6 3 4), we derive (11) By using Theorem 6 3 l(1i) and Theorem 6 3 2, we find 
that 

- 1 
9% f = gb,b gab2 a ga2,b2 (6 3 5, 

Similarly, we find that  
- 1 ga a = Sa,a Ya2b b gb2,a2 

a n 

From (6 3 5)) (6 3 G), and Theorem 6 3 l ( i 1 )  and (ill), we complete the proof of (111) 

T h e o r e m  6.3.6. For all posztzve real numbers k u, b, c,  and d wzth ab = cd, we have 

Proof Froill the clefinitlon of g k 7 ,  and uslng ub = cd, we clerive that for all positive numbel5 
L, C I ,  6, c, and dl  

qka kb 9;; = gkr  krl ~jc~) 
Rea~rang~ng the terms, we conlplete the proof 



Theorem 6.3.7. For all positive real numbers I? and p, we have 

Proof. The result follo~rs immediately from Theorem 6.3.l(i) and (iii), and Theorem 6.3.6 with 
a =  P2, b = 1, c = d = p ,  and k = n. 0 

Now, we give relations between the parameters gk,nl givn, Tk ,n l  and r;,, and then use these 

relations to determine the values of gk,,, and g;,, by using known values of r k , n  and r;,,, where 

r k , n  and r;,, are given by (6.1.1) and (6.1.2). 

Theorem 6.3.8. Let k and n be any positive real numbers. Then 

r2,* 
(ii) 9 ,  = - Tk,n. 

r2 ,+  

Prwf. (i) Let q = e-"@. From (15, p.39, Entry 24(iii)] 

Replacing q by -q in (6.3.7) and using the definitions of gk,n and rk,,, we find that 

where the class invariant Gn is given by 

where q := e - " 6 ,  n is a positive real numbei, and ~ ( q )  = (-9; q2)00. 
By (66, p. 17, Theorem 2.2.11, we note that 

Using (6.3.9) in (6.3.8), we conlplete the proof of (i). 

(ii) Let q := e - n m .  Employing (6.3.7) and the definitions of g;,, and T , , ~ ,  we find that 

where the class invariant g,, is given by 



where q := e - " 6 ,  n is a positive real number and ~ ( q )  = (-4; Q * ) ~ .  
Also, by [66, p. 18, Theorem 2.3.3(i)], we have 

Using (6.3.11) in (6.3.10), we complete the proof of (ii). 0 

Theorem 6.3.9. For every positive real number n, we have 

Proof. From [66, p. 13, Lemma 2.1.3(i)], we note that 

Employing (6.3.13), Theorem 6.3.8(ii) and Theorem 6.3.1 (i), we complete the proof. 0 

Theorem 6.3.10. For all positive real numbers k and n, we have 

Proof. These are (6.3.8) and (6.3.10), respectively. ' 

Theorem 6.3.11. For every positive real number n, we have 

Proof. (i) With k = n in Theorem 6.3.8 (i) and then using [66, p. 17, Corollary 2.2.21, we 
complete the proof. 
(ii) Setting k = n in Theorem 6.3.8(ii) and using the value 7-2,2 = 2lI8 from [66, p. 42, Theorem 
4.1.2(i)], we complete the proof of (ii). 

6.4 General theorems for explicit evaluations of g k l n  and 
I 

gk,n 

In this section, we find some general theorems on g k , ,  and gk,, and then use these theorems 

to find soine explicit values of gk,n and y;.,. 



Theorem 6.4.1. W e  have 

8 

where k, = (*) - 1, k2 = 2 ( (  - I) , k3 = -39&,(7 + 39&,), 
93,49n 93,49n 

( ) 63g& (1 + (*) - g;,n) , k4 = 63934,n(g&., + 1), and k5 = 27 - 
93,49n Q3,49n 

Proof. Proof of (i) follows from [15, p. 345, Entry l(ii)] and the definition of gk,n. (ii)-(v) follow 
from Theorems 6.2.1, 2.2.1 1,2.2.12, and 6.2.2, respectively, and the definition of gk,,. 

Theorem 6.4.2. For any posztzve real number n, we have 

8 

where kl = (*) 1 k2=42g3,n  I 4 f 4 
l4 ( (&) - 1) , ki = 39 i,,L(7 - 31 , 

93,49n 93,4971 
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(v) (" + f ig : ,gn  - 3 )  (" + hgbsn - 3) = (2) 
99,9n 94,n 

Proof. Proof of (i) follotvs easily from 115, p. 345, Entry 1(i)j and the definition of g;,,,. Proofs 
of (ii) - (v) follow from Tlieorems 6.2.1, 2.2.11,2.2.12, and 6.2.2, respectively, and the detirlition 

of g;,,. 

Theorem 6.4.3. We have 

Proof. Proofs of (i) - (vii) follow from Theorems 6.2.6 - 6.2.12, respectively, and the definitions 
of gk,n and g;,,. 0' 

Theorem 6.4.4. We have 

and 

Proof. Setting n = 113 in Theorem 6.4.l(i) and employing Theorenl 6.3.l(ii), we obtain 

which readily gives ( I ) .  Again, setting .n = 1 in Theorem 6.4.l(i) and recalling the value yk,, = 1 
from Theorenl 6.3 . l ( i ) ,  we find that 

Solving (6.4.1) and using the remark given after Theorem 6.3.1, we prove (ii). 



Theorem 6.4.5. We have 

and 

(ii) 95,s = ( 1 7 6  + 38)lI6. 

Proof. Setting n = 1 in Theorem 6.4.l(ii) and recalling that gk,l = 1 from Theorem 6.3.l(i), 

Solving (6.4.2) and using the fact that g k ,  > 1 from the remark after Theorem 6.3.1, we prove 
(i). Again, setting n = 113 in Theorem 6.4.l(ii) and recalling gkSlln = l/gk,n from Theorem 
6.3.l(ii), we find that ,  

(d., - +) - 3 (g:,, + &) = 2Jj. 
95.3 

Solving (6.4.3) and employing gk,n > 1 again, we prove (ii). 0 

Theorem 6.4.6. We have 



(a' + 2d% + J(al + 2 d 3 ) 2  - 64)2 
(viii) 925,49 = 

8(d + 2 a  + J-) 
where a' = 1497 + 651 6 + 5 6 5 d  + 247&, b' = 437430 + 195566A + 165333fi + 73917&, 

c' = 1497 - 6 5 1 6  + 5 6 5 d  - 247d%, and d' = 437430 - 1955666 + 165333fi - 73917&. 

Proof. The proof of the theorem follows from Theorem 6.3.8(i) and the corresponding values 
of rk,n and r ; ,  from Sections 1.3 and 1.4, respectively. 0 

Theorem 6.4.7. We have 

f i + l  
( i i i  , = {-, 

f i  

i%+l 
(viii) gi5,1 = - G- 1 

Proof. The proof of the theorem follows from Theorem 6.3.9 and the corresponding values of 
r4,* from Section 1.3. 

Theorem 6.4.8. We have 

( i ,  ,;,, = (JZT + JX) lI2 I 



where k = 9623566 + 55561688h  + 36373663fi + 2 1 0 0 0 3 4 4 h i  

(xii) g5,3 = 
fi - 6 (38 + 1 7 ~ 5 ) ~ ' ~  + fi (38 + 1 7 ~ 5 ) " ~  + fi 

-2 + 2&(38 + 1 7 ~ ) " ~  
, 

where r = -675 - 304& + 19 (38 + 1 7 ~ ~ )  'I3 + 77& (38 + 17&) li3 + 22 (38 + 1 7 ~ 5 )  ' I3,  

(xiii) g&,g = 
132 + 76f i  + 59& + 34& + 2 h 6 4 0 6  + 9 4 7 2 d  + 7 3 3 7 A  + 4236& 

8 + 5 & + 4 & + 2 6  
) 112 . 

Proof. To prove (i) and (ii), we set n = 1 in Theorem 6.4.3(vii) and use the value of g;,, from 
Theorem 6.4.7(ii) and the value of g;,, = 23/8 from Theorem 6.5.7(ii), respectively. 

To prove (iii), we set n = 1 in Theorem 6.4.3(i) and use the value of g$,, from Theorem 
6.4.7(iii). 

To prove (iv) and (v), we set n = 4 and 16, respectively in Theorem 6.4.3(i) and successively 
use the values of g$,, and g$ 16 from the same theorem. 

To prove (vi)-(viii), we s l t  n = 3,9 ,  and 5 in Theorem 6.4.3(ii) and use the value of g3,3, g3.9, 
and 9 3 , ~  from Theorem 6.4.4(i), (iii), Theorem 6.4.5(iii), and Theorem 6.3.1 (iii), respectively. 

We set n =7 and 9 in Theorem 6.4.3(iii) and use the values of g3,, and g3,9 from Theorem 
6.4.6(iii) and Theorem 6.4.4(iii), respectively, to complete the, proof of (ix) and (x). 

We set n, = 1 in Theorem 6.4.3(iv) and use the value of g;,, from Theorem 6.4.7(v) t20 prove 
(xi). 

To prove (xii) and (xiii), we set n = 3, and 9 in Theorem 6.4.3(vi) and use the values of y;;, 
and gsS9 from Theorem 6.4.5(iii) and (i), respectively. 



Theorem 6.4.9. W e  have 

(i) gj,, = (1 + J2)112, 

(ii) g;,, = 23/8(1 + \/2)3/4, 

(viii) g;,, = 2'/16 (1 + &)314 (16 + 15i/i + 1 2 h  + 9 . 23/4)3/4. 

Proof. The proof of the theorem follows directly from Theorem 6.3.8(ii) and the values of rk,, 
from Section 1.3. 

Theorem 6.4.10. W e  have 

( 114 J-) ( g  + 7 8  + 1 , , /Fa + ,/=a) 'I4 , (i) 97.7 = 5 7 + 4 + J7 
2 2 

and Gsg = 
7lI4 + JCfi 

where 949 = 
2 

Proof. First we find the explicit values of r7,7 and ~ 5 , ~  in the following Lemma. 

Lemma 6.4.11. We have 

\ / (ii) T;,, = 
7114 + d 3  

Proof of the lemma. We set q := e-'" in Theorem 6.2.16 and then apply Theorem 1.1.3, to 

obtain 



and 

Using (6.4.4) and (6.4.5) in (6.2.62), we obtain 

to complete the proof of (i). 

From [66, p. 17, Corollary 2.2.21, we have 

Setting n = 7 and using the value of G49 [17, p. 1911 and (6.4.6) in ((6.4.7), we complete the 

proof of (ii). 

Proof of Theorem 6.4.10. Using Theorem 6.3.11 and the above lemma, we easily complete 

the proof. 

6.5 Explicit values for $(&q) 

In this section, we find explicit formulae for the theta functions $(e-""), $(-e-""), $(e-*ln), 

and for any positive real number n and give some examples. 

Lemma 6.5.1. Let a = 7~'/~/I '(i).  Then 

(ii) $(-e-") = a2-3/4e"/8. 

Proof. See [15, p. 123, Entry l l ( i )  and (ii)]. 

Theorem 6.5.2. For every positive real number n, we have 

a2-3/4enn/8 a2-3/4en;1/8 
(i) $(-e-n") = - - 

n1l4gn,n n1/4Gn2~n,n 
.2-5/Senn/8 a2-3/4ena/8 

( i i )  $(e-"") = - - 
n'/49A,n n1/4r2 ' ~ r , , ,  2 ' 

Proof. Using the definitions of g,,,; y:,,,,, Lemrna 6.5.1, ilntl Theorem 6.3.11, we complete (.he 
proofs of ( i )  and (ii) .  



Theorem 6.5.3. For every positzve number n ,  we have 

anl/42-3/4en/8n an1/42-3/4em/8n 
(i) ~ ) ( - e - ~ / ~ )  = - - 

Sn,n Gn2rn,n 
an1/42-5/8e~/8n an1/~2-3/4T2,2n2er/811 

(ii) $(e-m/n) = - - 
9'11 rn,n 

n ' n  

Proof. Replacing n by l l n  in Theorem 6.5.2(i) and (ii), and using the fact that gl/n,l/n = gn3, 
and 7-k,lln = T;,: [66> p. 12, Theorem 2.1.21, we complete the proof of (i) and (ii). 

In Theorem 6.4.4(i) and Theorem 6.4.10(i) and (ii), we have evaluated 93,3, 97,7, and 9+,71 

respectively. Now, we give some more explicit values of g n ,  and gk,, and then use these values 

to determine some values of theta-function +(q). 

Theorem 6.5.4. We have 

(1) 91,l = 1, 

(ii) g z , ~  = 2-'/l6(&+ 1)ll4, 

(iii) 94,4 = 21/16(1 + f i ) l l2(9  . 2ll4 + 4 f i  - 3 . 23/4)118, 

(vi) 99.9 = 2 + h + 47 + 27& + 

Proof. The value in (i) readily follows from Theorem 6.3.1. The proofs of (ii) - (v) follow from 
Theorem 6.3.8 (i) and the values of rk , ,  and T;,, given Sections 1.3 and 1.4, respectively. 
Next, we set n = 1 in Theorem 6.4.l(v) and use the value gk,l = l l  to obtain 

Solving equation (6.5. I ) ,  we easily arrive a t  (vii). 
Adiga et  al. [3] also found the value of y9,g. The same value is also evaluated in Chapter 2 

of this thesis. 

Theorem 6.5.5. We have 



a2-3/4e3"/8 
(iii) 4,(-e-3") = 

3ll4(3 + 2fi)1/4' 
a2-21/'6(JZ - 1)l/2e"/2 

(iv) J I ( - ~ - ~ " )  = 
( 9 f i + 4 &  - 3 .  23/4)1/8' 

(v) .1//(-e-5*) = 
ae5"l8(5 - &)3/2 

29/455/4 
ae3~/4237/48 

(vi) $(-e-6") = &(a+ I)"/ (1 + &+ & . 33/4)213 (2 - 3&+ 3514 + 3314)"~' 
a21/2e7"/8 

' (vii} q!(-e-7T} = 

71/4 (71/4 + J )  (35 + 1 4 ~  + 7 ~ 2 1 + 8 ~ 5  + 
a2-3/4eQ"/8 

(viii} 7,l~[-e-~"} = where g9,g is a s  given in Theorem 6.5.4[vi}. 
fi99,9 

Proof. The proof of the theorem follows from Theorem 6.5.2 (i) and the values of g,, from 
Theorem 6.4.4(i), Theorem 6.4.10(i) and Theorem 6.5.4. 0 

Theorem 6.5.5(iii), (v) and (viii) were also proved by Baruah and Bhattacharyya 1111. 

Theorem 6.5.6. We have 

a 31/42-3/4e-"/24 
(ii) ~ , h ( - e - ~ / ~ )  = 

(3 + 2&)1/4 I 

a 2-5/'6e"/32(JZ - 1)1/2 
(iii) $~(-e-*/~) = 

( 9 .  2l/4 + 4 f i -  3 .  23/4)1/8' 
a 23/453/4e"/40 

(iv) $(-e-"I5) = 
(4 + 5)3/2 

a 261/4Se*/48 
(v) $(-e-"I6) = (a + 1)5/6(1 + + fi. 33/4)2/3(2 - 3 h  + 35/4 + 33/4)1/3 ' 

a 21/2 71/4e*/56 
(vi) $(-e-"I7) = 

(7114 + d m )  (35 + i 4 J j  + 7 J21+87? + 2 J-) I 

a 2-3/de"/72 
(vii) $(-e-"/9) = I 

99,9 

where gg,g zs as yzven zn Theorem 6.5.4(vi). 

ProoJ The proofs follow from Theorem 6.5.3(1) ant1 the values of y,,,, from Theorem 6.4 4(r); 
anti Theoren1 6.4.10(i), and Theorem 6.5.4. 



Theorem 6.5.7.  We have 
I 

(i) g;,1 = 1, 

(ii) g;,, = 2v8,  

31/3(1 + + a.  33f4)lf3(1 + 
(iii) g;,, = Jz 7 

(iv) gk,4 = 23/8(1 + f i ) l I 2 ,  

(5 + J5)1/2(5'/4 + 1) 
(4 9:,5 = 2 1 

3ll8(1 + &)5/6(1 + fi + 8. 3314)*/3 
9:,6 = 229124 I 

(vii) gkv9 = 
a + (2(b - 2c))'I3 + (2(b + 2c))'I3 

2 1 

where a =  2 +  4 - 3 ' 1 4 + 2 & +  &-3314, b = 8 2 + 4 5 f i + 4 8 f i + 2 5 f i . 3 3 / 4 ,  

and c = /3 (88 + 4 7 4  + 3'1' + 50& + 2 7 f i  33/4) 

Proof. The proof of (i)-(vi) follow from Theorem 6.3.11 (ii) and the values of ~ k , ~  listed in 
Section 1.3. 
Next, we set n = 1 in Theorem 6.4.2(v), to obtain 

Substituting the value of g;,, from Theorem 6.4.7(vii) in (6.5.2) and solving the resulting poly- 
nomial equation, we complete the proof of (vii). 

Theorem 6.5.8.  We have 

a 2-'/8e3"/8 
(iii) $(e-") = 

3ll3(1 + + fi. 33/4)113(1 + &)1/6' 

(iv) 4(e-4") = a 2-2(2 - &)'I2, 

a 21/4e3"/4 
(vi) ~ ( e - ~ " )  = 

33/8(l + &)5/6(1 + fi + fi. 33/4)2/3' 
a 7- l/42-l/2e7~/8 

(vii) $(e-7") = 1 



a2-5/8e9"/8 
(viii) $(e-'") = 

fig;,, 

where g17,7 and gf9,g are as  gzven zn Theorems 6.4.10(zz) and 6.5.7, respectively. 

Proof. The proof of the theorem follows from Theorem 6.4.2(ii) and the values of g;,, from 
Theorem 6.4.10(ii) and Theorem 6.5.7. 0 

Theorem 6.5.8(i) and (ii) were also proved by Berndt [17, p. 325). 

Theorem 6.5.9. We have 
(1) $ ( e - ~ / ~ )  = a 2-7/16(J2 + 1)1/4en/16, 

(iii) $(e-"I4) = a 2-7/8(16 + 15 . 2ll4 + 12& + g . 23/4)1/8 

a 23/8e"/40 
(iv) 7+h(e-"I5) = 

(5 + &)'/2(51/4 + 1) ' 
a 2-11/12e7r/48 ((,h + &)(A + 1) (1 + \/? - 8 + 2 . 35/4))1'3 

(v) $(e-"I6) = 
3u8(1 + J-j)1/2(1+ J-j + JZ 33/4)1/3(J2 - 1)5/12 

Proof. The proof of the theorem follows from Theorem 6.5.3 (ii) and the values of r k , n  listed in 
Section 1.3. 0 

Theorem 6.5.9(i) and (iii) were also proved by Berndt (17, p. 3251. 

Remark 6.5.1. Many non-elementary quotients of theta-function $(q) can be evaluated by 
employing the values of Jn from Theorems 4.6.3-4.6.5 in Theorem 6.3.9. 

6.6 Explicit values of quotients of the theta-function $ ( q )  

In this section, we give theorems for the explicit evaluations of quotients of the theta-function 

$(q) In terms of the parameter g;,, and then use these theorems to find some new explicit 

values. 

Theorem 6.6.1. For any posztzve real number n, we have 



Proof. We set g = - e w n f i ,  - e - . G .  and -e-"@ in Theoreins 6.2.3 - 6.2.8, respectively 
and use the definition of gh,,, to complete the proofs. 

Theorem 6.6.2. We have 

36 - 3912 (1 + &l2I3 (1 + & + &.  3314)413 
(ii) 4(-e-3n) m(-e-r) = (4-3912 ( I +  &)213(l + A+ 4 .3314)413  ) 'I4 , 

where b2 = fig&,o and gLVg is given by Theorem 6.5.7(vii). 

(vii) J J + , E + / ~ - ~  
& + ~ J f i + 3  

) I '  , 

Proof. Proofs of (i)-(iii) directly follow from Theorem 6.6.l(i) and the values of g;,, from The- 
orem 6.4.7(iii), git3 from Theorem 6.5.7(iii), and gi,, from Theorem 6.4.9(i), respectively. 

Similarly, proofs of (iv)-(vi) follow from Theorem 6.6.l(ii) and the values of g;,, from Theo- 
rem 6.4.7(vii), g;,, from Theorem 6.5.7(viii), and gb,2 from Theorem 6.4.9(v), respectively and 
proofs of (vii)-(ix) follow from Theorem 6.6.l(iii) and the values of g;,, from Theorem 6.4.7(v), 
gk,5 from Theorem 6.5.7(v), and gk2 from Theorem 6.4.9(iii), respectively. 

Several other quotients of $ ( q )  and @(q)  are also evaluated in Chapter 2 of this thesis. 

Theorem 6.6.3. For any po.~zt ive real number n, we have  



1 
i i  ( )  + ( )  - ( + -) + 4 = 0, 

hQ,4n hb,n '$Jn 

i i i  ( )  + ( )  - .j ( h t n  + &) + 4 = 0. 
h4,n h5,n 

Proof. The proof follows from Theorellls 6.2.13-6.2.15 and the definitions of h.k.,, and hi,, from 
(6.1.3) and (6.1.4), respectively. 

Theorem 6.6.4. We have 

(i) h5,l = 1 1  

(ii) h5,3 = 
JizT 

JZ 1 

(iii) h 5 , ~ / 3  = 
J* 

J z '  

For proofs see [66, p. 134, 146, 1481. 

Theorem 6.6.5. We have 

(i) hL,1/4 = 
2 +  JX 

& - I  l 

(ii) h;,, = 
2 - JG ' I 2  ( - 1  ) . 

(iii) hk,, = 

(iv) h',,, = 
3 - 4 5  

(vi) hj,, = 
5 & + 4 k - 2 J i 3 - 8  



Proof. (i) Setting n = 1 in Theorem 6.6.3(i) and then using Theorem 6.6.4(i), we find that 

Solving the above polynomial equation (6.6.1) for x, we complete the proof. 
(ii) Setting n = 1 in Theorem 6.6.3(iii) and then using Theorem 6.6.4(i), we deduce that 

Solving the above polynomial equation (6.6.2), we complete the value of (ii). 
(iii) Setting n =1 in Theorem 6.6.3(ii), substituting the value of h',,, from (ii) and solving 

the resulting polynomial equation for h',,, we readily complete the proof. 
(iv) - (vii) Setting n =3, 113, 9, and 119 in Theorem 6.6.3(iii) and employing the values of 

h5,3, h5, ,pr h5,9, and h5,119 from Theorem 6.6.4, respectively, and then solving the corresponding 
polynomial equations, we complete the proofs. 

Remark 6.6.1. Yi [66, 691 also found the value of h',,,. 

6.7 Explicit evaluations of the Rogers-Ramanujan con- 
tinued fraction 

In this section, we discuss about the applications of the parameters hk,,, h;,+, gk,,, and g;,n 

to the explicit evaluations of the famous Rogers-Ramanujan continued fraction R(q) defined in 

(1.1.6). 

Theorem 6.7.1. [I 1, p. 2157, (3.4211 We have, 

and 

Now, we recall from (1.1.8) that 

Replacing q by q2 and - ( I ,  in succession, we find that 



and 

where S(q) = -R(-q). 

Employing (6.7.1) - (6.7.5) and the definitions of hk>,, h;,,, gk,n, and gl,,,,, we easily find the 

following theorem. 

Theorem 6.7.2. We have 

1 
(iii) + 11 - S5 e - " G  = 5hg:,,h&,. 

,55 , ( e - r f i )  ( ) 
( n&), F'rom the above theorem, it is clear that we can find explicit values of R e- 

R (e-2"fl) and S ( e d n f l )  by using the known values of hp,n, hi,,, g,,,, and g;*,. For 

example, setting n = 4 in Theorem 6.7.2(i) and using Theorem 6.4.8(xi) and Theorem 6.6.5(ii), 

or setting n = 1 in Theorem 6.7.2(ii) and using Theorem 6.3.l(i) and Theorem 6.6.4(i), we find 

that 

Solving (6.7.9) for R5 e-2*/A we conclude that ( ) 

This was first evaluated by Yi [67, Corollary 4.31, 

Similarly, setting setting n = 1 in Theorem 6.7.2(iii) and using Theorem 6.3.l(i) and The- 

orem 6.6.4(i), we obtain 



Solving (6.7.10) for S5 (e -" /A) ,  we deduce that 

This was recorded by hrnanujan [56, p. 2101 and the first proof was given by Berndt, Chan 

and Zhang (26). Kang [45] and Yi [67] also established this value. 

6.8 Explicit evaluations of Ramanujan's cubic continued 
fraction 

In this section, we discuss about the applications of the parameters hk,,, hi,*, gk,,,, and g;,, to 

the explicit evaluations of Ramanujan's cubic continued fraction G(q) defined in (1.1.11). 

From Theorem 2.3.21 and the definition of gk,, and g:,, the following theorem is apparent. 

Theorem 6.8.1. W e  have 

Employing the values of g3,n for n = 1, 3, 113, 9, 1/9, 5, 115, 25, 1/25, 7, 1/7, 13, 1/13, 49, 

and 1/49 from Theorems 6.4.4 - 6.4.6 in Theorem 6.8.l(i), the values of G - e - n m )  can be 

found by solving a cubic equation. 

Yi [66] and Adiga et al. [I] also found the values of G (-e- "fi) for n = 1, 3, 113, 9, 119, 

5, 115, 25, 1/25, 7, and 117 . The same values are also evaluated in Chapter 2 of this thesis. 

Employing the values of g;,, for n = 1, 2, 3, 4, 7, 9, 12, 16, 20, 36, and 64 from Theorems 

6.4.7 - 6.4.9 and Theorem 6.5.7 in Theorem 6.8.l(ii), the values of G e - " m )  can be found ( 
by solving a cubic equation. 

Ramanathan [47] and Yi [66] also evaluated G ( e 7 " a )  for n = 1, 2 :  3; 4, 9, and 36 

Remark 6.8.1. Theorem 6.4 3(1) - (i i i)  imply that if we know g~,, ,  then yh ,,,, and hence y6,,, 

can be evaluated. Thus, by Theorem 6.8.1, if we know G ( - e - " 6 ) )  then G ( e - " m )  and 
\ / \ / 

G ( e - ' " G )  can also be evaluated. 



Tlie next theorem follows easily frolorn Entry l ( i )  115, p. 345) and the definitio~ls of g;,,, niid 

hk,n .  

Theorem 6.8.2. We have 

(ii) G (-e-"fi) = 1 - fibs,,, 
2 .  (6.8.4) 



Chapter 7 

Some New Weber-Ramanujan 
Class-Invariants G, and g, 

7.1 Introduction 

Let Weber-Ramanujan class invariants Gn and gn be as defined in (4.8.1). Since from [15, 

P 1241, x(q) = { ~ ( l  - a)/q} 
- 1/24 and x(-q) = 2ll6(1 - a)1/12(a/q)-1/24, it follows from 

(4.8.1) that 

G, = {4a( l  - and 9, = 2-'/12(1 - Cu)1/12rr-1/24. (7.1.1) 

Also, if ,!3 has degree r over a, then 

G,z, = {4P(1 - p))-1/24 1/12 -1124 and g,.~, = 2-1/12(1 - P )  /3 (7.1.2) 

t 

In his notebooks (541 and paper [53], Ramanujan recorded a total of 116 class invariants. An 

account of Ramanujan's class invariants can be found in Chapter 34 of Berndt's book [17]. The 

table a t  the end of Weber's book (64, p. 721-7261 contains the values of 107 class invariants. 

In 2001, Yi [66, p. 120-1241 evaluated several class invariants g, by using her parameter rk , ,  

defined in (1.1.9). In particular, she established the result 

For our future use, we also note from [66] that 

~ k , l  = 1, ~ . k ,  ,IT, = l/rk,l, and r k , l r  = ~,, ,k.  



Adiga et al. [2] also evaluated some values of g,. 

Again, on pages 86 and 88 of Notebook I [54, Vol. I], Ramanujan recorded 11 Schlafli- 

type "mixed" modular equations or modular equations of composite degrees, which were not, 

recorded in Notebook I1 [54, Vol. 111. One of these 11 equations follows from a modular equation 

recorded by Ramanujan in Chapter 20 of Notebook 11. This was observed by K. G. Ramanathan 

[52. pp. 419-4201. But the corresponding modular equation was proved by B. C. Berndt [15, p. 

423, Entry 18(v)] by using the theory of modular forms. Berndt [17, p. 382-384 ] also proved 

the other 10 equations by invoking to the theory of modular forms. Baruah [6, 10) proved nine 

of these equations by employing some theta-function identities and modular equations. In the 

process, he also found three new Schl&Ai-type "mixed " modular equations of the same nature. . 

B a u a h  [8] also used Schlafli-type modular equations of composite degrees combined with the 

prime degrees to prove some values of Rarnanujan's class invariants G,. 

Motivated by the above work, in this chapter, we present alternative proofs of some of the 

class invariants by using Ramanujan's Schlafli-type modular equations. In the process, we also 

find some new class invariants. 

In Section 7.2, we record the Schlafli-type modular equations which will be used in the 

subsequent sections of this chapter. 

In Sections 7.3 and 7.4, we find the values of g, and G,, respectively. 

We end this introduction by recalling from [15, p. 124, Entry 12(i), (iii)], that 

f (q) = fi2-116(a(l - Q ) ~ ) ' / ~ ~  and f (-q2) = &2-1/3(a(l - a)q)'/'2, (7.1.5) 

where f (-9) is as defined in (1.1.5). 

7.2 Schlafli-type modular equations 

This section is devoted to recording some Schlafli-type modular equations. 

In the following four lemmas, we sel 

P(1 - P) 
1/24 

L := 2'/"(afl(l - &)(I  - P) ) " '~  and S : = (  ) . C Y ( ~  - Q) 



Lemma 7.2.1. (Berndt [ I  7, p. 375'. Entry 411) If ,f3 has degree 11 over a ,  then, 

Lemma 7.2.2. (Berndt 117, p. 378. Entry 411) I f P  has degree 13 over a ,  then 

Lemma 7.2.3. (Berndt [I 7, p. 378, E n t y  411) If P has degree 17 over a,  then 

Lemma 7.2.4. (Berndt 117, p. 378, E n t y  411) If ,f3 has degree 19 over a,  then 

In the remaining lemmas of this section, we set 

and 



Lemma 7.2.5. ( Berndt [17, p. 381, Endry 501; Baruah 110, p. 274, Theorem 61) If a, 0, y,  
and 6 have degrees 1, 5, 7, and 35, respectively, then. 

Lemma 7.2.6. ( Berndt [I 7, p. 381, Entry 481; Bamah [lo, p. 274, Theorem 41) If a ,  P,  y, 
and 6 have degrees 5, 1, 7, and 35, respectzvely, then 

Lemma 7.2.7. ( Berndt [l 7, p. 380, Entry 431) If a, 0, y,  and d have degrees 3, 1, 5, and 15, 
respectively, then 

Lemma 7.2.8. (Berndt [I 7, p. 381, Entry 511) If a, P, y ,  and 6 have degrees 1, 13, 3, and 39, 
respectively, then 

Lemma 7.2.9. (Berndt [I 7, p. 380, Entry 471) If a, 0, y,  and 6 have degrees 3, 1, 11, and 33, 
respectively, then 

Lemma 7.2.10. (Berndt  117, p. 380, Entry 441; Baruah [lo, p. 273, Theorem 11) If alp, y, 
and 6 have degrees 5, 1, 3, and 15, respectively, then 

Lemma 7.2.11. (Bar-ah [lo, p.  277, Lemma 3.11) If alp, y,  and 6 have degrees 1, 3, 7, an,d 
21, respectzvely, then 

Lemma 7.2.12. (Bamah [lo, p.  283, Theorem 4.11) If alp, y, and 6 have degrees 1, 3, "/, and 
21, respectzvely, then 



7.3 Evaluations of gn 

In this section, we find some values of g,, by using the Schlafli-type modular equations recorded 

in the previous section. 

Theorem 7.3.1. We have 

Proof. We set 

A := f (9) and B := f (q l1)  . 
41/24f (-q2) q l l / 2 4  f ( - q 2 2 ) '  

so that, by (7.1.5), we have 

A ' 

A = and B = 
( ~ ( 1  - a))1124 ( P ( 1  - P ) ) ~ ~ ~ ~  ' 

where p has degree 11 over a. 
Now, from (7.2.1) and (7.3.2), we find that 

2112 
L = -  and A s = -  

( A B )  B' 

where L and S are related by Lemma 7.2.1. 
Replacing q by -q in the definition of A and B, we observe from (7.3.3) that L2 and S12 are 
transformed into -L; and -St2, respectively, where 

2112 
L1 = - and A1 

(AlBl)  
S1 =-, 

B1 

where 

Al = f (-9) and f (-411) 
f (-q2) ' B1 = q11/24 f ( -q22 )  

Squaring (7.2.2) and substituting - L? and -Si2 for L2 and S12, respectively, we obtain 

Now, setting q = e - 2 ' f i  and applying the definition of rt,,, in (7.3.4), we obtain 



Setting n = 1/11 in (7.3.7) and using (7.1.4), we find that 

1 
tl = \ ancl S1 =-. 

.;,I 1 

So, invoking (7.3.8) i l l  (7.3.6'). we find that 

Solving (7.3.9) for r2,111 we deduce that 

Using (7.1.3) and (7.1.4), we complete the proof. 

Theorem 7.3.2. We have 

and 92/17 = (9 + 2 f i  2J=)lf6 

Proof. We set. 

A := f (4) and B := f (4") 
q1/24 f (-$) q'7/24 f (-q3') 

nanscribing (7.3.11) by using (7.1.5), we find that  

2116 , 21/6 
A = and B = 

(a(1  - a))lI2' (PO - P)) 
1/24 ' 

where 0 has degree 17 over a. 
From (7.2.1) and (7.3.12), we find that  

2112 
L = -  and A s = -  

(AB) B' 

where L and S are defined in (7.2.1) and are related by Lemma 7.2.3. 
Replacing q by -q in the definition of A and B, we observe from (7.3.13) that L4 and S3 are 
transformed to -L; and S f ,  respectively, where L1 and S1 are given by 

f (-9) and B1 = f (-9") 
where A1=q1/24f(-q2)' q17/24 f ( - p )  

Replacing -L; and S; for L4 and S3,respectively, in (7.2.4), we obtain 



Now, setting q = e-2"@ aild applying tlre definition of r * ,  in (7.3.14) and (7.3.15). we find 
that. 

Jz 
and r2,n L1 = Sl  =-. (7.3.17) 

\/Zr2,nT2,289n T2,289n 

Setting n = 1/17 in (7.3.17) and using (7.1.4), we deduce that 

So, invoking (7.3.18) in (7.3.16), we arrive a t  

Solving the above equation for real positive ~ 2 . 1 7 ~  we obtain 

Employing (7.1.3) and (7.1.4), we easily complete the proof. 

Remark 7.3.1. B y  setting n = 1 in (7.3.17) and noting ~ 2 , ~  = 1 from (7.1.4), and then proceeding 
similarly as in the above proof, we can also evaluate the values of 9578 and 921289. 

Theorem 7.3.3. W e  have 

where m = 8 + (359 - l 2d%) l I3  + (359 + 1 2 a )  ' I 3  

Transcribing this by using (7.1.5), we find that 

' 5 ,  L .  

A = and B = 
(a(1 - ( P O  - P I )  1/24  ' 

where /3 has degree 13 over a. 
From (7.2.1) and (7.3.22), we obtain 

where L and S are defined Irr (7.2.1) aritl are related by Lenlma 7.2.2. 



R.eplacing q by -q  in the definition of A and B, we observe from (7.3.23) t.hat. LI2 i d  S2 
are t,ransformed into - Li2 and -S:, respectively, where L1 ancl S I  are given b y  

where 
f ( -9)  and f ( -913) 

= q 1 / 2 4 f ( - 9 2 ) 1  B1 = q17/24j(-926) ' 

Squaring (7.2.3) and substituting -Liz  and -S: for L12 and S 2 ,  respectively, we obtain 

+10244Sf - 4888s: + 1508s: - 273s:' + 2 6 ~ : ~  - s : ~  = 0.  (7.3.26) 

, Now, setting q = e - 2 " f l  in (7.3.24), we find that  

Jz 
and r2,n 

Ll = A s1 =-. (7.3.27) 
r2,nT2,169n r2,169n 

Taking n = 1/13 in (7.3.27) and using (7.1.4), we find that  

Enlploying (7.3.28) in (7.3.26), we deduce that 

where .z: = f2,13. Since the first two equal factors have no real root for 7-2.13, we arrive at. 

Setting z = ~ : , , 3  + r<f3 in the above equation, we find that  

Solving the above equation for real positive z ,  we have 



Reii~nrk 7.3.2. The values of 920 and 92/13 can also be obtained by using the eta-function identity 
En t ry  57 [16, p. 211) instead of Lemma 7.2.2. 

Theorem 7.3.4. We have 

Proof. We define 

With the help of (7.1.5)) the above expressions can be written as 

and 

where a, p, 7 ,  and 6 have degrees 1, 5 ,  7, and 35, respectively. Thus, from (7.2.7)) and (7.2.8), 
we find that 

Q~ = - and A B  
~2 = - 

A D  C D '  
where Q and R are related by Lemma 7.2.5. 

Replacing q by -q, we observe that Q2 and R4 transforms to -Q: and -Rt, respectively, 
with 

where 

BIC1 and A1 Bl 
Q : = G  R; = - 

ClDl '  

Replacing Q%ancl R4 by -Q? and - R;', respectively, in Lemma 7.2.5, we obtain 



Setting q = e-'.fi and applying the definition of rk,,, in (7.3.37) and (7.3.38). we find that 

Q; = r2,25nr2,49n and r2,nr2,25n R: = (7.3.40) 
r2,nr2.1225n r2,49nr2,1225n 

Setting n = 1/35 in (7.3.40) and using (7.1.4), we obtain 

Invoking (7.3.41) in (7.3.39), we deduce that 

Solving the above equation for positive real r2,5/7/r2,35r we obtain 

Again, if a ,  0, y, and 6 are of degrees 5, 1, 7, and 35, respectively, then from (7.3.35), 
(7.2.6), and (7.2.7), we find that 

2 
p2 = - BC 

ABCD 
and Q2 = - 

AD' (7.3.44) 

where P and Q are related by Lemma 7.2.6. 
Replacing q by -9, we observe from (7.3.44) and the definition of A, B,  C, and D in (7.3.34) 
that P2 and Q6 are converted to P,2 and Q:, respectively, where P; and Q: are defined by 

2 B2C1 
p2 - - A ~ B ~ C ~ D I  and Q:=mj 

where Cl ,  and Dl are given in (7.3.38) and A2 and B2 are defined as 

Now, squaring (7.2.11) and substituting P; and Qz for P2 and Q6, respectively, we obtain 

Setting q = e - ' " m  and employing the definition of r k ,  in (7.3.45), we. find that 

2 T ~ , r r r 4 ~ 1 1  pZ = 
I and Q; = (7.3 48) 

2~2,1~r2,25nr2,49n~2,122511 7'2,25nT2,1225n 



Setting n = 1/35 ant1 invoking to (7.1.4), we obtain 

1 
P,? = 1 and Qi = 2 '  

( ~ 2 , 5 / 7 ~ 2 , 3 5 )  

Applying (7.3.49) in (7.3.47), we have 

G G 
(r2,5/7r2,35) + ( ~ 2 , 5 / 7 ~ 2 , 3 5 ) -  - 198 = 0. 

Solving the above equation for positive real r2,5/7r2,35, we obtain 

With the help of (7.3.43), (7.3.51), (7.1.3) and (7.1.4), the values of g10/tlg14/5, 970, and 92/35 
readily follow. 0 

Theorem 7.3.5. We have 

7 - 3 d 5  
1 /a 

3A 
(19 + 6 0 )  , and 92/15 = ( ) (19 - 6 f i )  . 930=( 2, )'la 

Proof. Set 

E := f ((I3> 
1 A := f (9)  , B := f (915) (") and H := 518 - 95/24 f (-q'O) ' (7.3.52) 

q1l8f ( -99  41/24f  (-q2) 4 f( 4 

so that, by (7.1.5), we have 

21/6 21/6 21/6 21/6 
E = 1/24 ' A = 1/24 ' = 1/24 I and = (4 - 0)) @ ( I  - 0)) ( ~ ( 1  - 7)) (6(1 - 6) )1 /24  ' 

(7.3.53) 
where a, 0, -y, and b have degrees 3, 1, 5, and 15, respectively. 

From (7.3.54), (7.2.6), and (7.2.7), we find that 

2 p2 = - AB 
A B E H  

and Q~ = - 
E H '  

where P and Q are related as in Lemma 7.2.7. 
Replacing q by -q in the definition of El A ,  B, and H ,  we observe from (7.3.52) and (7.3.54) 
that P2 and Q4 are transformed to -P: and -Qi, respectively, where P; and Q$ are given by 

2 Al Bl 
p 2  2 - - A ~ B ~ E ~ H I  and Q:=-' 



wt~crc  A ,  ancl 8, are defined in (7.3.38)) and El and H I  are defined as 

So. ~ ~ : ~ , l ~ c l n g  P2 and Q4 by -P2' and -Qi, respectively, in Lemma 7.2.7, we have 

Now, we set q = e - 2 ' m  and apply the definition of r l ,  in (7.3.55), to ohtam 

2 
P2 - 

T2,nT25n 
and Q: = 

- 2~2,nr2,9n~2,25n~2,225n T2,9nT2,225n 

Setting n = 1/15 in (7.3.58) and using (7.1.4), we deduce that 

Invoking (7.3.59) in (7.3.57), we arrive a t  

Solving the above equation for positive real T ~ , ~ / ~ / T ~ , ~ ~ ~  we obtain 

Now, if we consider a, p, 7, and b of degrees 5, 1, 3, and 15, respectively, then (7.3.53), (7.2.6), 
and (7.2.7)) implies that  

2 2 p =- AB 
A B E H  

and Q~ = - 
E H '  

where P and Q are related by Lemma 7.2.10. 
Replacing q by -9,  we observe from (7.3.62) and the definitions of E ,  A, B, and H in (7.3.52) 
that P2 and Q6 are converted to -P: and Qi, respectively, where P; and Qi are defined by 

2 A1 B3 P~~ = AlB3E2Hl and Q:==I 

where E2 = B1, B3 = El, and All  and H1 are given in (7.3.38) and (7.3.56), respectively. 
Substituting Pz and Q: for P2 and Q6, respectively, in Lemma 7.2.10, we obtain 



Setting rl = e - ' " m  and employing the definition of rt,, in (7.3.63), we obtain 

2 2 r2,nrSn P2 = ancl Qi = (7.3.65) 
2r2,~~r2,9nr2,257zr2,22571 r2.25nr2.225,~ 

Set.t,ing n. = 1 / I  5 above and employing (7.1.4) in (7.3.64): we obtain 

1 
P~~ = 1 and Q:= 2 '  

( ~ 2 , 5 / 3 ~ 2 , 1 5 )  

Applying (7.3.66) in (7.3.64), we find that 

Solving (7.3.67) for positive real T2,5/3r2,15, we obtain 

Employing (7.1.3) and (7.1.4), the values of g10/3, g6/5: 930, and 92/15 follow from (7.3.61) and 
(7.3.68). 

Theorem 7.3.6. We have 

Proof. We define 

A := f ( 4 )  E := f (q3> C := f (q7) and G := q'/24 f (+) ' (-q6) ' q7/24 f (-q'4) ' ("') (7.3.69) 
~ ~ / ~ f  (-942)' 

so that, by (7.1.5)' 

2116 21/6 21/6 21/6 
A =  

1 / 2 4 ,  = C =  
1/34 and G = 

( 4 1  - 4) ( P O  - ' (70 - 7 ) )  ( (6(1 - 6 ) )  
1/24 ' 
(7.3.70) 

where a ,  p, 7 ,  and b have degrees 1, 3,  7 and 21. 
F'rom (7.3.70), (7.2.7)) and (7.2.8), we find that 

C E  Q~ = - and AE 
~2 = - 

AG CG ' 

where Q and R are related by Lemma 7.2.11. 



Replacing q I>,y -q  in the definitions of A ,  E,C ,  ancl C,  we ohsr:rvr: f'ru~~r (7.3.71) that. 1'1' 
iLlld Q4 arc t.ransforn~ecl t,o -R; and -0:) with 

Iteplacing R2 and Q 4  by -Rj and -Qi in Lemma 7.2.11, we obtain 

Now setting q = e-2"m and applying the definition of 3,n/2 in (7.372)) we find that 

%= r2 ,nT2,9n and Q: = (7.3.74) T2,9nT2,49n 

T2,49nr2,441n T2,nT2,441n 

Setting n = 1/21 and using (7.1.4) in (7.3.74)) we obtain 

R: = ( r ? , 3 / 7 / r 2 . 2 1 ) 2  and Q: = 1. (7.3.75) 

Invoking (7.3.75) in (7.3.73), we deduce that ' 

('2.3/7/'2,21)2 + ( r 2 , 3 / 7 / ~ 2 , 2 1 ) - ~  - 5 = 0. 

Solving the above equation for real positive T ~ , ~ / ~ / T ~ , ~ ~ ~  we obtain 

Again, considering cr, P,  y, and d to be of degrees 1, 3, 7 and 21, from (7.2.9) and (7.3.70), 
we notice that 

2 2 p =- 2 AC 
AECG 

and T = - 
EG ' 

Replacing q by -q in (7.3.69) we observe from (7.3.78) that P6 and T6 are transformed to P: 
and c, where P and T are related by Lemma 7.2.12 and 

P2 - 
2 

and 2 AICI  
- AIEICIGl  

T l  = - 
ElGI ' 

Squaring (7.2.17) and replacing Pt and T;6 by P6 and P ,  respectively, \\re obtain 



Setking again q = e- 2"fl and applying the definition of I-2,,p in (7.3.79)) we find that 

1 2 T2,ixT2,49i~ 
pf = and rl = 

7'2,it r~,'~irr2,4'~irr2,44 I rr T2,0~r r2 ,14  1 ? L  

We set n = 1/22 in t.he above equation and apply (7.1.4) to arrive a t  

f-f = 1 and T: = (~2,3/7~2,21) -2 . (7.3.82) 

Invoking (7.3.82) in (7.3.80), we obtain 

where x = (r2,317~2,21). Solving the above equation for x and noticing that T ~ , ~  > T ~ , , ~  for 
n > m, we derive that 

116 
2 := (7-2 J/7~2,21) = (15 + 4 f i )  . (7.3.84) 

The values of g6/7rg14/3,g421 and gzpl follow from (7.3.77)) (7.3.84) and the properties (7.1.3) 
and (7.1.4). 

Theorem 7.3.7. We have 

and 
2714 

Proof. Define 

Transcribing these with the help of (7.1.5)) we find that 

2116 2116 2116 2116 
L = 1/24' = N =  1/24 ' and K = 

( 4 1  - 4) (@(I - P ) ) ~ ~ ~ ~  ' ( ~ ( 1  - 7))  (6(1 - 6))1/24 ' 
(7.3.86) 

where a ,  0, 7, and 6 have degrees 3, 1, 11, and 33, respectively. 



Theorem 7.3.8. Wc l~uve 

Prool. We set 

L' := f ( q )  M' := f ( 4 1 3 )  N~ := f (q3) and K' := f (q39)  
q1 /24  f ( - q 2 )  ' q13/24 f ( - q 2 6 )  ' q1I8f  (-q6) ' q13/8 f ( - q 7 8 )  ' 

(7.3.96) 
With the help of (7.1.5), we rewrite the above expressions as 

2116 2116 2116 2116 
L' = M' = N' = 

1/24 ' 1/24 ' and K' = 
( 4 1  - 4) (P (  1 - P))1 /24  ' ( ~ ( 1  - 7 ) )  ( b ( 1  - s ) ) ' / ~ ~  ' 

where a ,  /3, 7 ,  and b have degrees 1 ,  13, 3,  and 39, respectively. 
Proceeding as in the case of the previous theorem, we have 

M'N' 
Q~ = - and 

LIN' T2  = - 
L'K1 M'K" 

where Q and T are related by Lemma 7.2.8. 
Replacing q by -9, we see that Q2 and T2  are transformed to -Q: and T:, where 

M 2 N 2  L 2 N 2  
Q: = and T: = m, 

with 

f ( -4)  f ( - 9 1 3 )  N~ := f (-q3> and K 2  := f (-939) 
L2 := q1/24 f ( -q2)  ' M2 := q13/24 f ( - q 2 6 )  ' 

q118f ( - @ I  ' q13/8 f (-qT8) ' 
(7.3.100) 

So, replacing q by -q in Lemma 7.2.8 and substituting -Q: and T: for Q2 and T 2 ,  respectively, 
we have 

Setting q = e ~ ~ ~ f i  and applying the definition of ~ 2 ,  in (7.3.99)' we find that 

Q; = T2,169nT2,9n and 2 T2,nT2,9n Tl = 
T2,nT2,1521n T2,169nT2,1521n 

Now, setting n = 1/39 and applying (7.1.4) in (7.3.102), we obtain 

2 

Q: = 1 and T: = (-) 



Invoking (7.3.103) in (7.3.101), we deducc t.hat 

Solv~ng the above equation for ~ ~ , ~ / 1 ~ / ~ 2 , 3 ~  and noting that T Z , ~  > 1 and g,, = ~ 2 , n / 2 ,  we find 
that 

Now, from (17, p. 2021, we recall that 

Combining (7.3.105) and (7.3 106), we obtain the value of 9 6 1 1 ~  In a similar way. employing 
(7.1.3) and (7.1.4)) we arrive a t  the value of y26/3 

7.4 Evaluations of Gn 

In this section, we use some of Schlafli-type modular equations listed in Section 7.2 to find some 

class invariants G,. We note that GI/, = l /Gn,  which will be used throughout this section 

without further comment. 

Theorem 7.4.1. We have 

where a = (17 + 3&)'16 and b = -2 + 2a2 +a4.  

Proof. kpplying the definition of Gn in Lemma 7.2.1, we find that  

L = 
1 Gn 

and S =  -. 
GnGl2ln G121n 

Setting n = 1/11 in (7.4.1), we obtain 

1 L = -  and S = 1 
GT 1 

Invoking (7.4.2) in (7.2.2), we deduce that 



Setting 

Solving the above polynomial equation for u, we get 

Thus, 

where a = (17 + 3 d 5 ) ' l 6  and b = -2 f 2a + a4. Thus, we complete the proof. 

Theorem 7.4.2. We have . 

GI3 = (18 + 5fi) ' ' l2.  

Proof. Applying the definition of G, in Lemma 7.2.2, we find that  

L = 
1 G* 

and S = -. 
GnG1697a G169n 

Setting n = 1/13 in (7.4.8), we obtain 

1 L = -  and S = 1. (7.4.9) 
G?3 

Employing the above expressions in (7.2.3), we deduce that 

1 
GI2 13 - - G : J + ~ ~ = ~ .  (7.4.10) 

Solving the above equation and noting that G, > 1, we readily finish the proof. 0 

With the help of Lemmas 7.2.3 and 7.2.4, the next two theorems can be proved similarly. 

Theorem 7.4.3. 
1 /a 

G17 = 



Nest, we use a couple of Schlafli-type "mixed"modular equations listed in Section 7.2 to 

find tile class invariants G3:, and G7p. 

Theorem 7.4.5. We have 

G:,:, = 2- 

where 
a = 5 $ (62 - 6&) ' I 3  + (62 -+ 

and 
b = 2 f i  + ( 1 4 2 f i  - 6&)'13 + ( 1 4 2 A  + 6 m ) ' I 3  

Proof. Applying the definition of Gn in Lemma 7.2.5, we obtain 

Q~ = G25nG49n and R~ = GnG25n 
GnG352n G49nG35'n 

Setting n = 1/35 in (7.4.11), we deduce that 

2 

and R~ = 1. 

Invoking (7.4.12) in (7.2.10), we find that 

Setting 

in (7.4.13), we arrive at  
2 

Y3 - 5y + 7y - 7 = 0. 

Solving the above polynomial equation, I& get 

Thus, we have 



where a, = 5 + (62 - 6 m ) ' 1 3  + (62 + 6 . m ) ' I 3 .  
Again, applying the definition of G,, in  Lemma 7.2.6, we f i ~ ~ c l  that 

p' = 
1 

ancl Q2 = 
GnG49n 

G'nG~5nG40nG'3.j2n G25rlG3~n 

Setting n = 1/35,we obtain 

p2 = 
1 

and Q' = 1 
( G S J ~ G ' ~ ~ ) '  

Invoking (7.4.19) in (7.2.11), we find that 

Setting t = G5/7G35 + (G5/7G35)-1 in (7.4.20), we deduce that 

4 2 + 5 f i . z  + 82' - 22 = 0. 

Solving the above polynomial equation for 2: we get. 

r = 6 ( 2 h  + ( 1 4 2 ~  - 6 6 )  'I3 + ( 1 4 2 4  + 6 6 )  'I3) (7.4.22) 

Therefore, 
1 

G517G35 = 12 (b + m) , (7.4.23) 

where 

Dividing (7.4.23) by (7.4.17), and then simplifying, we obtain the class invariant G35. Sim- 

ilarly multiplying (7.4.23) and (7.4.17), and then simplifying, we derive the value of G5/7. 

In his paper [53] and also on page 294 of his second notebook [54, Vol. 111, Ramanujan 

recorded two simple formulas relating the class invariants gn and Gn, namely, for n > 0, 

Thus, if we know gn and 94, or only g, then the corresponding Gn can be calculated by the 

above formulas. But, the values may not be as elegant as we expect. As for examples, in the 

following theorem, we list sollle class invariants, which we find by using this process. 



Theorem 7.4.6. We have 

(J2178 + 1540fi + dl9601 + 13860fi) 'I8 
G22 = 

2'18 (19601 + l 3860f i ) ' ' ~~  
I 

where m = (297 + 7 2 m  + 3 6 d T n  + 8\/629 + 153fi)  ; 

where ml = (297 + 7 2 m  - 3 6 d m f i  - 8J629 + 1 5 3 m )  ; 

where a = (436896 + 308980fi - 195426& - 1 3 8 1 8 0 m )  ; , 

where a1 = (436896 - 308980fi + 1954266 - 1 3 8 1 8 0 m )  ; 

where a2 = (436896 + 308980.fi + 1954266 + 1 3 8 1 8 0 m ) .  



Chapter 8 

Explicit ÿ valuations of Cubic and 
Quartic Theta-Functions 

8.1 Introduction 

In his famous paper [53], [55, p. 23-39], Ramanujan offered 17 elegant series for 1 / ~  and 

remarked that 14 of these series belong to the "corresponding theories" in which the base q in 

classical theory of elliptic functions is replaced by one or other of the functions " 

1 r-1 

qr := qr(x) = exp 2 F l  (;, T, 1,l.- x )  
1 r-1 

2F1(;, y, 1, x) 

where r =3, 4, and 6, where 2F1 denotes the Gaussian hypergeometric function. In the classical 

theory the variable q = 92. Ramanujan did not offer any proof of these 14 series for l l n  or any 

of his theorems in the " correspondingnor " alternative" theories. In 1987, J.M. Borwein and 

P.B. Borwein (331 proved the formulas for l l n .  However, in his second notebook [54, Vol. 111, 

Rarnanujan recorded, without proof, some of his theorems in alternative theories which were 

first proved by Berndt, Bhargava and Garvan (191 in 1995. These theories are now known as 

the theory of signature r ,  where r =3, 4, and 6. In particular, the theories of signature 3 and 4 

are called cubic and quartic'theories, respectively. An account of this work may also be found 

in Berndt's book [17]. 

In Ramanujan's cubic theory, the theta-functions a(q), b(q), and c(q) are defined by 



and 

where w =exp(2xz/3). Thesc, theta-functions were first introduced by Borweins (341, who also 

proved that 

a" (q) = b3 (q) + ic" (q) . (8.1.4) 

Cubic theta-fiinctions b(q) and c(q)  are related with the Dedekind eta-function by 117, p. 109; 

Lemma 5.11 

The Borwein brothers [34, (2.2)] also established the following three transformation formu- 

las: 

and 

where Re(t) > 0. Cooper [42] also found alternate proofs of (8.1.6)-(8.1.8). 

h quartic theory, Berndt, Bhargava, and Garvan [19] (see also [17, p. 146, (9.7))) established 

a " trarkfer "principle of Ramanujan by which formulas in this theory can be derived from those 

of the classical theory. Taking place of a(q), b(q), and c(q) in cubic theory are the functions 

A((?), B(9), C(9) [231, defined by 

and 

which also satisfy the equality 

(i) = B2 (q )  + C2 (q)  . 



Berndt, Chan, and Liaw 1231 used (8.1.11) to establish the inversion formula 

where q := q4 is given by (8.1.1). Therefore, they did able to prove the theorems in the quartic 

theory directly. 

The quartic analogues of (8.1.5) is given by [23, p. 139, Theorem 3.11 

In this chapter of our thesis, we find explicit values of cubic and quartic theta-functions 

and their quotients by using some parameterizations defined in the previous chapters. In the 

process, we also find some transformation formulas of these theta-functions. 

While proving the explicit values of +(q) and $ ( q )  recorded by Ramanujan in his notebooks, 

Berndt and Chan [17], explicitly determined the value of cubic theta-function a(e-2") [17, p. 

328, Corollary 31, namely 

where 4(e-") = 7r1l4/r(i) is classical [65]. Certain quotients of A(q) ,  B(q) and C(q) were also 
1 

evaluated by Berndt et al. [23] while deriving the series for - associated with the theory of 
7r 

signature 4. 

In Sections 8.2 and 8.3, we deal with explicit evaluations of cubic theta-functions and their 

quotients. 

The last two sections of this chapter are on explicit evaluations of the quartic theta-functions 

and their quotients. 

8.2   he or ems on explicit evaluation of a(q) ,  b(q) and c(q) 

In this section, we present some general formulas for the explicit evaluations of cubic theta- 

functions and their quotients by parameterizations given in previous chapters. In the process, 

we also establish some transformation fornlulas of quotients of cubic theta-functions. 



Theorem 8.2.1. For any positive real number n, we have 

where r k , n  and pn are as defined in (1.1.9) and (1.1.12), respectively. 

Proof. Using the definitions of b(q) and c(q) from (8.1.5), we have 

Setting q = e - l " f l  and then employing the definitions of T * ,  and p., we finish the proof. O 

Remark 8.2.1. Replacing n by l / n  in Theorem 8.2.1 and noting that rarlln = I / T ~ , ~ ,  we also 
have 

b(e-2"&E) c(e-2"/6)  - - 
c ( e - 2 = f i )  b(e-2./6) ' (8.2.2) 

Thus, if we know the value of one quotient of (8.2.2) then the other quotient follows readily. 

From Theorem 8.2.1 and (8.1.4), the following theorem is apparent. 

Theorem 8.2.3. For any positive real number n, we have 

Proof. From the definitions b(q) and c(q) in (8.1.5), we observe that  

Setting q = e k 2 " m 3  in (8.2.3) and then employing the definition of rk,, we arrive at the desired 
result. 0 

Remark 8.2.2. Noting that r g , ~ / ~  = l/rg,n from (7.1.4) and using Theorem 8.2.3 , we find that 

Now, from (8.2.4) it is obvious that if we know the value of one quotient then the other quotient 
can easily be evaluated. 



In the next theorem, we give a relation between c(q)  and the parameter hk,n as defined in 

(6.1.4). 

Theorem 8.2.4. For an,?) pos~,tzve real number n,, we have 

Proof. From [23, p. 111, Lemma 5.51, we note that 

Now applying the definition of with k = 3, in (8.2.5), we complete the proof. 

The next theorem connects a(q)  with the parameter rk,n defined in (1.1.9). 

Theorem 8.2.5. For any posztive real number n, we have 

Proof. From [36, p. 196, (2.9)] ,  we note that 

where cr(q) = c3(q)/a3(g) .  

Setting q = e-2r@ and then applying (8.2.2) in (8.2.6), we obtain 

which on simplification gives the required result. 

Theorem 8.2.6. We have 

1 
~ ( e - ~ " ~ )  = - {a(e-"") + 2b(e-"9)  . 

3 

Proof. From [17, p. 93, (2.8)] ,  we have 

1 
b(9) = 5 {3a(q3) - a(9 )J  . 

Setting q = e-n" in (8.2.7), we readily complete the proof. 



Theorem 8.2.7. For any positrve real number n, we have 

3 -e-nfl) 
( i )  b(e-"") = ( 

f (-e-3~77) 

and 

Proof. Setting q = e-n" and q = -e-"" in (8.1.5), we readily arrive at  (i) and (ii), respectively. 
0 

Theorem 8.2.8. For all positive real numbers n, we have 

and 

(ii) b ( - e - " m )  = 3 1 / 4 e - " f i / 1 2 f i ~ ( e - " ~ ) r ~ , n ,  

where the parameters ~ 3 , "  and r $ ,  are defined in (1.1.9) and (6.1.2), respectively. 

Proof. We rewrite b(q) in (8.1.5) as 

Setting q = e - l " G  and employing the definition of ~ 3 , ~ ~  we arrive at  (i). To prove (ii), we 
replace q by -q in (8.2.8) and then use the definition of T:,~. 0 

Theorem 8.2.9. For all positive real number n, we have 

and 

Proof. Follow readily from (8.1.5) with q = e-"" and q = -e-"". 

 h he or em 8.2.10. For all positive real number n, we have 

Proof. We set q = e-2"m in (8.1.5) and then employ the definition of the parameter r k ,  to 
finish the proof. 0 



8.3 Explicit values of a(q), b(q)  and c(q) 

In this section, we find explicit values of cubic theta-functions and their quotients by using the 

results established in the previous section. 

Theorem 8.3.1. We /lave 

b(e-2nfi) 213 
(ii) = ( I+&)  , 

C(e-2n@) 

b(e-2r) 3'l2 (1 + ~ j ) ~ ~ ~  
(iii) - - 

~ ( e - ~ " )  - 21/3 1 

(v) 

(4 

(vii) 

b e )  
= ( J-7 ~ ( e - l o ~ l f i )  16 

I + G +  5 + 2 f i + m  , 

Proof. Follows directly from Theorem 8.2.1 and the corresponding values of rs,,, listed in Section 
1.3. 



More values can be calculated by employing Theorem 8.2.1 ancl the corresponding values of 

pn evaluated i l l  Chapters 2 and 3 of this thesis. 

Theorem 8.3.2. We have 

(ii) = (2 + \/i) ' I 3  , 
c ( e - 2 n m )  

a(e-2"") - (( A + fi )' + 

(vi) C(e -~n \ / i j j )  2(2 - a) , 

(vii) 
c(e-4"@) 

= + fi)4 (A  + q4 + 
113 

a(e-lOn/fi) 
(viii) 

= (( 1 + m + ~ ~ + 2 m + m ) ' ~ + ~ )  
c(e-lo"/fi) 2 , 

a(e-6s) 
(xi) - = 

c(e-6=) ~ ( l + f i ) 1 0 1 3 @ + f i ( ~ + f i ) 4 + ( ~ + f i ) 8 )  

Pmof. ~ o l l o d  easily from (8.2.2) and the corresponding values of r 3 ,  listed in Section 1.3. 

Theorem 8.3.3. We have 



Proof. Follows from Theorem 8.2.3 and the corresponding values of r9,, In Section 1.3. 

Lemma 8.3.4. We have 

(ii) h = 2 JZ - 1 , ( ) 
21/331/8 (4 - 

(iii) hLS3 = 

+ a+ A@)"~'  
\ 2114 

(iv) hk,, = 

(16 + 1 5 f i  + l 2 f i  + 9@)'lB1 

21/431/8 (4 - 1) '/12 (& + 1) 'I6 (- 1 - f i  + fi . 3314) 'I3 
(vi) h;i,6 = 

(2 - 3JZ + 3514 + 33/4)lI3 
I 

For proofs (i)-(vi), see [69, p: 21, Theorem 5.61 or [66, p. 152 ,Theorem 9.2.61. For proof of 

(vii), see 169, p. 15, Theorem 4.11) or 166; p. 145, Theorems 9.1.10) . 

Theorem 8.3.5. We have 

Proof. We set n = 1 and 3 in Theorem 8.2.4 and then employ the values of hi,, and his3 from 
Lemma 8.3.4(vii) and (iii), respectively to  finish the proof. 0 

For the remaining part of this chapter, we set a := @(e-") = ~ ' / ~ / I ' ( 3 / 4 ) .  



Lemma 8.3.6. We have 

(vii) f (-e-12") = a e'l2 
2 s / 2 4 3 3 / 8 d r f i  ( 1  + \/5 + \/i . 33/4) ' I 3  ' 

a 27/2431/ae"/72 
(viii) f (-e-"I3) = 

For a proof of the lemma, we refer to [17, p. 326, Entry 61 and [66, p. 125-1291. 

Theorem 8.3.7. We have 

(i) b(e-") = 
a233/8 (1 + ,6) ' I 6  

25/12 (1  + + & .33/4) ' I 3  ' 
a233/8 

(ii) b(eb2") = m' 
a22s/433/8 

( iv )  b(e-"I3) = 

(1  + ( 1  + fi + Ji 3314) ' 

( v )  b(e-2K/3) = 
a23'I8 (A  - 1) ' I 3  

213/12 (a + 1)ll6 ' 



3318 
(vi) b(-e-") = 

25/12 (fi + 1) 'I6 ' 

(vii) b(-e-2n) = 
u2331a (& + ll3l4 (& - l ) I ' l 2  (fi + 1)ll6 

2312 (2 - 3\/ii + 3514 + 3314) 'I3 

Proof. To prove (i)-(v), we set n = 1, 2, 4, 113, and 213, respectively, in Theorem 8.2.7(i) and 
use the corresponding values of f (f e-"*) from Lemma 8.3.6. 

To prove (vi) and (vii), we set n =1 and 2, respectively in Theorem 8.2.7(ii) and then use 
the corresponding values f (f e-"*) from Lemma 8.3.6. 0 

Theorem 8.3.8. We have 

(i) ~ ( e - ~ " / ~  
a237/8 (1 + &)I/' 

) = 
217112 (1 + &+ 4. 33/4)1131 

,233/8 
(iv) ~ ( e - ~ " )  = 

2114 (1 + (1 + \/j;+ ~ % 3 ~ 1 4 ) '  

(v) ~ ( e - ~ " )  = 
a2 (a - 1)li3 

33/8213/12 (a + 1) 'I6 ' 

(vi) c(e-") = 
aZ (1 + fi + fi . 33/4) 

- 31182714 (1 + a) 'I2 ' 

Proof. To prove (i)-(v), we set t =1/2, 1, 2, 116, and 113, respectively in (8.1.7) and then apply 
the corresponding values of b(e-"") from Theorem 8.3.7. 

To prove (vi), we set n = 1 in Theorem 8.2.9 and use the corresponding values of f (-e-"") 
from Lemma 8.3.6. At last, (vii) follows from Theorem 8.3.8(v) and Theorem 8.3.5(ii). 0 

Remark 8.3.1. Setting t = 1/2 in (8.1.8) and then employing the value of c(e-") from Theorem 
8.3.8(vi), we can also evaluate b(e-4*/3). 

Theorem 8.3.9. We have 

(i) a(e-'") = 
a2 (10 + 6\/j;)'I3 

2(3+2&)'" ' 

(ii) ~ ( e - ~ " ' ~  
a2& (10 + 6&)'13 

) = 
2(3+2&)'14 



(iv) u(e 

Proof. To prove (i), we set n =3 in Theorem 8.2.5 and use f (-e-2n) from Lemma 8.3.6 and 
the values of ~ 3 , ~  from Section 1.3. 

To prove (ii), we set t = 1 in (8.1.6) and then employ Theorem 8.3.9(i). 
To prove (iii), we set n = 2 in Theorem 8.2.6 and then employ the values of ~ ( e - ~ " )  and 

b(e-2") from Theorems 8.3.9(i) and 8.3.7(ii), respectively. 
To prove (iv), we set t = 3 in (8.1.6) and use the value of ~ ( e - ~ " ) .  

8.4 Theorems on explicit evaluations of A(q),  B(q), and 

C(P) 
' 

In this section, we use the parameters ~ k , ~ ~  hk,nr g;,,, and Jn, defined in (1.1.9)~ (1.1.21)~ 

(1.1.24), and (4.1.12), respectively, to establish some formulas for the explicit evaluations of 

quartic theta-functions and their quotients. 

Theorem 8.4.1. For any posztive real number n, we have 

Proof. Employing the definition of B(q) and C(q) given in (8.1.13), we find that  

Setting q = e - ' " G  in (8.4.1) and then using the definition of T*,,, we arrive a t  the first 
equality. Second equality readily follows from (1.1.19) and (8.4.1). 0 

Remark 8.4.1. From Theorem 8.4.1 and (7.1.4), we have the following transformation formula 

Thus, if we know the value of one of the quotient of (8.4.2) then the other one follows imme- 
diately. 



Theorem 8.4.2. We have 

Prooj, Theorem follows easily from (8.1.13) and the definition of J ,  in (4.1.12). 0 

Remark 8.4.2. Using the fact that J1/ ,  = l / J n  from Theorem 4.6 1, in Theorem 8.4.2 we have 
the following transformation formula 

Hence, if we know one quotient of (8.4.3) then the other quotient follows immediately. 

Lemma 8.4.3. W e  have 

a 
(ii) +(e-nr) = - aG;, -- 

n1/4hn,n I T ~ / ~ ~ ~ , ~ '  

an1/42-3/4r2,2n2 en"l8 
(iv) +(e-"1") = - , 

where the parameters Tk ,n1  hk ,n l  hi,,, g&,, and Gn are as defined in  (1.1.9), (1.1.21), (6.1.4), 

(1.1.24), and (1.1.19), respectively. 

For proofs of (i) and (ii), we refer to [66, p. 1501 or (69). For proofs of (iii) and (iv), we refer 

to Theorem 6.5.2(ii) and Theorem 6.5.3(ii), respectively. 

Theorem 8.4.4. For any positive real number n, we have 

a4 4 4 

(i) B(e-2"n) = - - a 7-2, Zn, 

& n h$, 2 n r&, ' 

(ii) ~ ( e - ~ ~ " / " )  = a4n r:, 2 /n2  

2 rA,n ' 

where h;,, zs as defined in (6.1.4). 

Proof. From [15, p. 39, Entry 24(iii)], we note that 



Sct.tlng q = c-~"" in (8.4 5) and then cmploy~r~g Lvr11~ni1  8 4 3(1), we ariive a t  ( I )  

To provc (ii), we replace n, by l / n  In (1) ancl cmploy the result rl/,,l/,, = r,,,,,, whlch IS c < ~ s ~ l y  
cler~vable from (7.1.4). D 

Theorem 8.4.5. We have 

where hi,, zs as defined zn (6.1.4). 

Proof Replacing q by -q in (8.4.5) and setting q = e-"", we have 

Enlploying Lemma 8.4.3(ii) in (8.4.6)) we finish the proof of (i). 
To prove (11)) we replace n by 1/71 in (i) and use the results h,,, = hlln,lln [69] and GI/, = 

Gn., 

Remark 8.4.3. The following transformation formula is apparent from Theorem 8.4.5(1) and 

Theorem 8.4.6. For any posztzve real number n, we have 

where g;,, zs as defined zn (1.1.24). 

Proof. From [15, p. 39, Entry 24(iii)], we notice that 

Thus, from (8.4.8) and (8.1.13), we find that 

C(e-n") = 8e-nn/2~4(e-nn),  (8.4.9) 

Setting q = e-"" in (8.4.9) and employing Lemma 8.4.3(iii), we easily complete the proof. 

T h e o r e m  8.4.7. We have 

Proof. Applying (8.4.8) in the definition of C(q) given in (8.1.13) and setting q = e-"In, \ire 
find that 

c(~-"/") = 8e-"/27t.$,4(e-n/n), (8 4.10) 

Now, employing Lemma 8.4.3(iv) in (8.4.10)' we finis11 the proof. 



8.5 Explicit values of quartic theta-functions 

111 t 111s ~ C C ~ I O I I ,  IYC hnd exp11~1t valuc~ of the quarl I C  tllct,~-fi~nct~ons A(q), R(q),  dncl C(q) anrl 

dl50 I I ICIT cluol~ents by using the results cstabllshcd I ~ I  I hc prcv~ous 3ect1on 

Theorem 8.5.1. We have 

~ ( e - " ~ )  
(1) = 1,  

c ' ( e - ~ 4 )  



(xvi )  

~ ( e - ' " )  312 
(svii)  (:(c-~") = 2 ( -1. ~ i ) "  (I(;-!- I .!j .2'/ '+ 1 2 ~ ? + 9 2 : ' / "  , 

B(e-7T7&) 
(xix) + 

~ ( e - " ~ & )  2 
1 

B(e-12") - ( ( A  + &)(& + 1)(1+ - + fi. 33/4&))4 
C(e-12r) 

- 
5 

22lI4 (a - 1) 
1 

B(e-3') (1 + fi + a 3'1')~ 
(xxii) - 

C(e-3*) 21312 1 

(xxiii) 
~ ( e - ~ " l ~ )  - ( - 1 + 3 5 f i + 2 8 f i ) ~ / ~  

- 
~ ( ~ - 3 " l J i )  23/2 ( A  + fi)' 1 

(xxiv) 
~ ( e - " ~ )  - (a + 
~ ( e - r  J j )  2712 7 

(xxvi) 
~ ( e - " ~ )  - (3 + d) - 
~ ( e - ~ f i )  29/2 

~ ( e - " ' ~ )  ( 7 - 2 \ / 5 + ~ i i + ( 3 + ~ j ) ~ 3 + 1 6 ~ z i - 2 7 ~ j ) ~  
(xxvii) - - 

c(edn3Ji) 213/2(& - q 8 ( 3  - 8) . 

Proof. We employ the values of ~ 2 , ~  from Section 1.3 in Theorem 8.4.1 to finish the proof. 0 

Theorem 8.5.2. We have 

112 

(ii) 

(iii) 
~ ( e - ~ " ~ )  = - ( & + & ) .  1 

~ ( e - r f i )  2 



(viii) 

Proof. Follows easily from Theorem 8.4.2 and the values of J,, from Theorem 4.6.3. D 

Theorem 8.5.3. We have 

a4 (I + a+ & ~ Y ? F ) ~ ~ ~  
(iii) ~ ( e - ~ " ) =  

21116.33/2(&-1)2/3 

(iv) ~ ( e - ' " )  = 2-7/2a4(16 + 1 5 f i  + 1 2 f i  + 9*)lI2, 

(vi) ~ ( e - ' ~ " )  = 
a4 (2 - 3 4  + 351' + 3314) 

33/2219/12(fi - 1)ll3(& + 1)2/3(- 1 - 6 + \/i . 3310413 ' 

a 4  (1 + Jj+ Ji .3ll4)'I3 (1 + a+ fi .33/4)4 
(vii) ~ ( e - ~ " )  = 

24 - 3312 (1 + &)2/3 
) 

(viii) ~ ( e - ' " )  = 
a' (5lI4 + 1)4 ((3 + 2 5114) 

52 * 22 (1 + A) 
Proof. (i)-(vi) follow readily from the first equality of Theorem 8.4.4(i) and the corresponding 
values of h;,,, in Lenlma 8.3.4(i)-(vi), respectively. To prove (vii) and (viii), we enlploy the 
corresponding values of i.k,,, listed in Section 1.3 to the second equality of Theorem 8.4.4(i). 



Theorem 8.5.4. We have 

a4 
( i )  B(e-*) = - 

2 '  

Proof. We set n =2, 3,  and 6, respectively, In Theorem 8 4 4(ii) and then use the corresponcllng 
values of ~ k , ~  from Section 1.3 to conlplete the proofs. 0 

Lemma 8.5.5. We have 

114 3 1 / 8 J n  
(iii) h3.3 = ( 2 ~  - 3 )  = 

2'14 
2314 

( iv)  h4,4 = - 
q5+ 1' 

We refer to (69, p. 19, Theorem 5.41 or [66, p. 150, Theorem 9.2.41 for proofs of the above 

assertions. 

Theorem 8.5.6. We have 

( i )  B(-e-") = a4, 

(ii) B(-e-'") = 
a4 

8(* - 2)2 

(iii) B(-e-") = 
2a4 

312 a- 112' 

a 4 ( E + 1 ) 4  
, ( iv)  B(-e-4R) = 

32 ' 
a4 

( v )  B(-e-5" 
) = 5(5 - 2 J j ) 2 .  

a4 (-4 + 3 J i  + + 2 fi - 33/4 + 2 4  . 33/4)413 
(vi) B(-e-6") = 

24 .33 ((4- 11)''~ 



ProoJ We employ the values of h,,, given in the above lemma in Theorem 8.4.5(i) to finish the 
proof. 0 

Theorem 8.5.7.  We have 

a, 
( i )  ~ ( - e - " / ~ )  = 

2 (4 - 21Z1 

a4  
(iii) B(-e-"i4) = - ( ~  + 1)4, 

2 

(iv) B(-e-*IS) = 
5a4 

(5 - 24532 ' 

(v) B(-e-"l6) = & a 4  (-4 + 3 J Z +  35/4 + 2 J j  - 33/4 + 2 J Z .  33/4)4/3 
z2& ((a - I)(& - 1)l2l3 

Proof. We use the values of h,,, from Lemma 8.5.5 in Theorem 8.4.5(ii) . 

Theorem 8.5.8. We have 

(i) C(e-") = h a 4 ,  

a4 
(ii) C(e-'") = - 

. 4 '  
25/Za4 

(iii) ~ ( e - ~ " )  = 
3713 (1 + Jj + JZ . 33/4)413 (1 + &)2/3 ' 

a4 
(iv) C(e-4") = 

23 (1 + Ji)" 
29/2a4 

(v) C(e-5") = 
5 (5 + JS)~ (5114 + 1)" 

213/3a4 
(vi) C(e-6") = 

33/2 (1 + &)loJ3 (1 + &+ fi. 33/q8j3' 

a4JZ  
(vii) ~ ( e - ' " )  = - , where gk,g is given i n  Theorem 6.5.7(vii). 

9g;:9 

Pmof. The proof of t h ~  theorem follows from Theorem 8.4.6 and the values of g;, from Theorem 
6.5.7. n 

U 

Theorem 8.5.9. We have 

(ii) ~ ( e - ' / ~ ) = 2 - ~ / ~ h a ~ ( 1 + & ) ~ / ~ ( ~ i . ~ 3 1 4 + & + ~ ) ~ ' ~ ,  



Proof. We seL n =2, 3, 4, 5, and 6 in Theorem 8.4.7 and then employ the corresponding values 
of rk,n listed in Section 1.3. I7 
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