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ABSTRACT

In this thesis, we deal with explicit evaluations of Ramanujan’s continued fractions and
theta-functions.

Ramanujan’s general theta-function f(a,b) is defined by

o<
f(a,b) = z k1) 2pk(k-1)/2

k=-o00
where |ab] < 1. If we set a = ge®*, b = ge~%* and g = e™", where z is complex and Im(7) > 0,
then f(a,b) = 93(z, ), where 93(z, 7) denotes one of the classical theta-functions in its standard
notation. '

Three special cases of f(a,b) are

¢@):=flg9)= )

¥(g) - = flg,¢°) = D_ gHk+D/2,
k=0

and
(o 0]

f(=q) = f(=q,=¢°) = > (-1)"q"C"1r2,

n=-co
If ¢ = ™ with Im(z) > 0, then f(—q) = ¢~/**n(z), where n(z) denotes the classical
Dedekind eta-function.
In her thesis, J. Yi (2001) considered two parameterizations 7, and r§ , of f(—g), defined

as

e f(_Q) __ =27\/n/k
Thn = K/4qk=1)/24 f(—gk)’ q=¢€ )

and

f(g) —n/n/
/ - - w+/n/k
Tkn = K 1/agk=1)/24 f (gkY’ g=¢ ,

where n and k are positive real numbers. Using these parameters, she then evaluated many old

and new explicit values of the famous Rogers-Ramanujan continued fraction R(q), defined by
1/5 2 3
q a9 9 g
R(g) = — = — — | <1
@ =7 1. 7.7,

In this thesis, by using a method similar to that of Yi, we find some general theorems for the
explicit evaluations of Ramanujan’s cubic continued fraction G(q), defined by

g+¢* ¢ +q¢" ¢#+4¢°
+ 1 4+ 1 + 1 4./

q1/3
G(q) := T lg] < 1.
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In the unorganized portions of his second notebook (published by TIFR in 1957), Ramanujan
recorded, without proofs, 23 beautiful identities involving quotients of only eta-functions and no
other theta-functions. The identities can be divided into two categories. In the first category,
each identity involves four arguments and the second category involves eight arguments. Unlike
the first category, the second category identities have not been applied before. In this thesis,
we apply some newly proved and some old eta-function identities involving eight arguments to
find some new values of the Rogers-Ramnujan continued fraction and the parameters y, and
An connected with Ramanujan’s cubic continued fraction. The new values of u, and A, also
lead to some new Ramanujan-type series for 1/7. In this thesis, we show how the new values
iy and A, combined with some old and newly found modular equations in cubic theory can be
applied to find some new series for 1/7 by appealing to a formula established by J. M. and P.
B. Borwein (1987) and later modified by H. H. Chan and W. C. Liaw (2000).

Next, Ramanujan-Selberg continued fraction Z(q) is defined by

1/8

2(q) =1 9 q ' q
Tl +l4q 14+ @ 1+ 1464,

4

, el <y,

which is closely related to continued fraction H(q), defined by

H(q) = f("q) = q1/8 _ q7/8 q2 q3 q4 )
¢'Bf(~q%) 1-g,1+¢*_ 1—¢® 1+q*_.

In this thesis, by using some transformation formulas and modular equations, we present several

relations connecting the continued fractions H(+q) and H(xq¢™), Z(%q) and Z(+q"), and

lg] < 1.

H(+q") and Z(4q"), for some positive integers n. We also prove some general theorems for
the explicit evaluations of H(g) and Z(q) and find some explicit values.
Ramanujan-Gollnitz-Gordon continued fraction K (g} is defined by

1/2 2 4

q g q
K(q) .= < 1.
(9) 149,140, 1+¢,. lal

In 1997, Chan and Huang (1997), derived many identities involving Ramanujan-Gollnitz-
Gordon continued fraction K(g), which are analogous to R(g) and G(g). In particular, they
found explicit values of K (e~"v™?), for several positive integers n, by using Weber-Ramanujan -

~

class invariants G, and g,, defined by
Gn=2""'qg7¥x(q) and g, =27"*q7"*x(-q),
where x(q) = [T, (1 + ¢2*1).

n=0

il



In this thesis, we establish formulas for the explicit evaluations of K (e="V™/2) and K (e~ "V"/4)
by using parameterizations hon and s4n, respectively, where hy,, for k = 2, is a special case
of hin and s4.,, for k = 4, is a special case of the parameter sk, introduced by Y1 (2001) and
Bruce C. Berndt (2000), respectively, and defined by '

b = %)
" RA(g)

We find several explicit values of the parameter s,, by establishing general formulas. We

— f(q) —-my/n/k
and sgn = K1 AqUe=10724 f(—(—1)kgF)’ where g = ¢ :

also evaluate some new values of the parameter h,, by establishing some new theta-function
identities.

Yi (2001) also introduced one more parameter hj ,, defined by

k,n

, (=9 _ -2ny/nlk
h‘k,n T k1/4¢(_qk)i qg=e€ )

where k and n are positive real numbers. She then evaluated several values of ¢(g), f(g) and

their quotients. Motivated by Yi’'s work, we introduce the following two new parameterizations

of the theta-function 1(q). For any positive real numbers k£ and n, we define

¥(=q) . ¥(g) _
Jkm = T (— ")’ and gj = where g =e

- w\/nfk
k1/aq0=1)/83) (g%’ :

We prove several properties of the parameterizations grn and g;, and show how they are
connected to Yi’s parameters T n, Ty ., Rkn, L_n, and Weber-Ramanujan class-invariants G,
and g,. By employing some old and newly established theta-function identities, we present some‘
general theorems for the explicit evaluations of gi n, gi ., Akn, and hj . and find many explicit
values. We also offer explicit formulas for ¥(e™"") and ¥ (—e~"") for positive real number n and
deduce some explicit values. In addition, we establish formulas for the explicit evaluations of
the Rogers-Ramanujan continued fraction and Ramanujan’s cubic continued fraction in terms
of parameterizations gk.n, Gk n» ftkn, and Ry, from which particular values can be obtained.
Ramanujan’s class invariants G, and g, were often applied for the explicit evaluations
of continued fractions, theta-functions etc.. In his notebooks, Ramanujan recorded several
Schlafli-type modular equations for prime as well as composite degrees. These were proved by
Berndt(1998). ‘Baruah (2003) also found three new equations for composite degrees. In this

thesis, we use some Schlafli-type modular equations to evaluate some class invariants.
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In Ramanujan’s cubic theory of elliptic functions, or in the theory of signature 3, the theta-
functions a(q), b(q), and ¢(q), are defined by

co oo
a(q) - Z qm7+vnn+n2’ b(q) - Z wm—nqm7+mn+n7’ (w - 621"/3),
m,n=-00 mn=-—0oo

and
2 n 2
( ) E : q(m+1/3) +(m+1/3)}(n+1/3)+(n+1/3) .

mmn=-00

These functions were first introduced by J.M. and P.B. Borwein (1987). Similarly, in Ramanu-
jan’s quartic theory, or in the theory of signature 4, the theta-functions A{q), B(g), and C(g),
are defined as

Alg) = ¢*(q) + 16qy*(¢*), Blq) = ¢'(q) — 16q¥*(¢*), and C(q) = 8,/g6*(q)¥*(¢%),

which were first introduced by Berndt, Bhargava and Garvan (1995). While proving the explicit
values of ¢(g) and #(q), recorded by Ramanujan in his notebook, Berndt and Chan (1995),
explicitly determined the value of cubic theta-function a(e~%"), namely

ale™®) 1

¢*e™) (12831

where ¢(e™*) = ='/4/I'(3) is well known. Berndt, Chan and Liaw (2001) evaluated some
quotients of quartic theta-functions by using Weber-Ramanujan class invariants. In this thesis,

we find some general formulas for the explicit evaluations of cubic and quartic theta-functions
and their quotients. We also give some explicit values. In the process, we also establish several

transformation formulas of theta-functions in cubic and quartic theory.
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Chapter 1

Introduction

1.1 Introduction

It is tacitly assumed throughout the thesis that [q| < 1 always. Also, as usual, for any complex
number a, we define

n

(@;9)o =1, (a;9)s:= H(l —ag®™?) for n>1, and (a;qQ)e := ﬁ(l — aqk/“). (1.1.1)
k=1

k=1
Now, Ramanujan’s general theta-function f(a,b) is given by

f(a,b) = Z g+ 2phlk=1)/2 (1.1.2)
k=~c0

where |ab| < 1. If we set @ = ge**, b = ge~%2 and g = ¢™", where z is complex and Im(7) > 0

thenf(a,b) = 93(z, 7), where 93(z, 7) denotes one of the classical theta-functions in its standard
notation (65, p. 464).

We also define the following three special cases of f(a,b)

2
oS-G o
w(g) : = qu("“/ (‘ITE%_ (1.14)
and
f(=q) = f(—q,~¢") = Z )2 N2 = (g9) . (115)

If ¢ = €™ with Im(z) > 0 then f(—q) = q~'/?*n(z), where n(z) denotes the classical
Dedekind eta-function.



The above theta-functions satisfy the following five transformation formulas. In these for-
mulas it is assumed that « and § are such that the modulus of each exponential argument is
less than 1.

Theorem 1.1.1. (Berndt [15, p. 43, Entry 27 (i)]). If a3 = 7 then

f

Vag(e') = V/Bg(e™™).
Theo;'em 1.1.2. (Berndt [15, p. 43, Entry 27 (v)]). If a3 = 7 then
/el ™) = /Ber M g(—e").
Theorem 1.1.3. (Berndt [15, p. 48, Entry 27 (ii1)]). If o3 = n? then |
| e af(~e7*) = e B i (—e ).
Theorem 1.1.4. (Berndt [15, p. 48, Entry 27 (iw)]). If o8 = n? then
e M Yaf(em) = e P YBS(e).
Theorem 1.1.5. (Adiga et al. [3]. If aff = 72 then

e Yay(~e™®) = Y By(—e?).

Ramanujan recorded several continued fractions and some of their explicit values in his
second notebook [54] and his lost notebook [56). Some of his continued fractions can be ex-
pressed in terms theta-functions. The best known continued fraction is the Rogers-Ramanujan
continued fraction R(q), defined by

ql/5

R(q) == —

2 3

qg 9 q

- = = < 1. 1.1.6
T Ta T lq| (1.1.6)

This continued fraction satisfy the following beautiful relations discovered by Ramanujan (15,

p. 267] and proved by Watson [62):

1y o L2
R(q) 1= Rlo) g% f(—q°) (117)
and
L psy o L9
R5(q) 1= /) qf(=¢%)’ (1:18)

In his notebooks [54], lost notebook [56] as well as in his first two letters to Hardy [30], Ramanu-

jan also recorded several explicit values of R(g) and S(g) := —R(—q). We refer to a paper by



S-Y Kang [45], in which she recorded a table of all known values of the Rogers-Ramanujan s
continued fraction up until the time of her paper was published 1n 1999 More recently, J Y1
(66, 68] found many values, including several new, of R(e=2"V") and S(e~"V") by usmng (11 7)

and (11 8), and finding the exphcit values of her new parameters i, and 7 ,,, defined by

f(—=q)
k1/4q(k-1)/24f(_qk)’

Thn =

(119)

where ¢ = e""V™/k and

= f(a)
k,n kl/4q(k-1)/24f(qk)’

(11 10)
where g = e""V"/k
Motivated by her work, in Chapter 2 of this thesis, we use her method to find some general

theorems for the explhcit evaluations of Ramanujan’s cubic continued fraction G(g), defined by

q+q2 q2+q4 q3+q6
+ 1 + 1 4+ 1 4+

G B ql/3
() =T lgl <1 (1111)

We do this by first defining several parameters of quotients of theta-functions ¢(q), ¥(g) and
f(q) for special values of ¢ For example, after K G Ramanathan [51], we define the parameter

Hn 88
[ = 1 fs(_q) = 27 n/3
VARV A GO

From the definitions of 7, and pin, 1t 15 to be noted that 7§ =, The modular transformation

(1112)

formula in Theorem 11 3 then imphes that p,/, = 1/u,, and we evaluate many values of p,
by appealing to theta-function identities, specializing the value of ¢ and solving the resulting
polynomial equations This chapter 1s almost 1dentical to our paper [12] It 1s worthwhile to
mention that Ramanujan recorded this continued fraction on page 366 of his lost notebook [56]
and remarked that there are many results of G(g), which are analogous to R(q) Motivated by
Ramanujan’s remark, several results including explicit values were found by Chan [35] [26],
Y1[66], N D Baruah [9], C Adigaetal [1,3], and S Bhargava et al [32]

In the unorgamzed portions of his second notebook, Ramanujan [54] recorded, without
proofs, 23 beautiful identities mvolving quotients of only eta-functions and no other theta-

functions The 1dentities can be divided into two categories In the first category, each 1dentity



involves four arguments and in the second category, each identity involves eight arguments. The
first category identities have been used to find explicit values of the famous Rogers-Ramanujan
continued fraction [22], Ramanujan’s class invariants {29], a certain quotient of eta-functions
[24). These types of identities were also used to find explicit values of Ramanujan’s cubic
continued fraction in [1} and by us in Chapter 2. Unlike the first category the second category
identities have not been applied before. In Chapter 3, we apply some new and old eta-function
identities involving eight arguments to find some new values of the Rogers-Ramnujan continued
fraction and the parameters u, and A, connected with Ramanujan’s cubic continued fraction,
where u, ig defined in (1.1.12) and A, is defined by
A = 5_1\/_5___\/5&‘213); g=e™VP (1.1.13)
From the definitions of r} , and p,, we note that 75, =A,. In fact, A, was defined by Ramanujan
on page 212 of his lost notebook [56]. He also provided a list of eleven recorded values of A, and
ten unrecorded values of A,. All 21 values of A, and several new were established by Berndt,
Chan, Kang, and L.-C. Zhang [24]. Yi [66] also found several values of parameters A, and pin.
The new values of u,, and A, evaluated by us also leads to some new Ramanujan-type series
for 1/7. In Sections 3.5-3.6 of Chapter 3 of this thesis, we show how the new values of p, and
An combined with some old and newly found modular equations in cubic theory can be applied
to find some new series for 1/7 by appealing to the formula established by J. M. Borwein and
P. B. Borwein [33] and later modified by Chan and W.-C. Liaw [40]. This chapter is almost
identical to our paper [13].
Another well-known continued fraction of Ramanujan is Ramanujan-Selberg continued frac-

tion Z(q) [15, p. 221, Entry 1(i)], defined by

18( _ 2. g2 1/8 2 3 4
Z(q) = "—Lq—zﬂﬁ S T 1 lgl < 1. (1.1.14)
(=4;6%)0 1 +14+q,14+¢2, 146, 14+¢*,.
Ramanathan [48] also proved the above equality (1.1.14). If we define
1/8 2 3
-q¢ —g+¢* —g
T(q):=1- 2 479 73 lg] < 1, (1.1.15)

1414+ 1 41 4



then T8(q) = —Z8(—q), which is easily deducible from (70, equations (1.7) and (1.9)]. Zhang
[70] also established general formulas for explicit evaluations of the continued fractions Z(q)
and T'(q) in terms of Ramanujan’s singular modulus «,,, which is that unique positive number

between 0 and 1 satisfying
2F1 (3,351~ ap)
oF1 (3,4 an)

where n is a positive rational number. Closely related to continued fraction Z(g) is the continued

V=

fraction H(q) [59, p. 82}, defined by

_ 7/8 2 3

TEsf T 1-q,1+q2_ 1-¢3,14+¢_

4

(1.1.16)

In Chapter 4, we establish several relations connecting the continued fractions H(q) and H(q"),
Z(q) and Z(q™), and H(%q), Z(q), and T(q) by using some transformation formulas and mod-
ular equations. It is obvious that by evaluating H(q), we can easily evaluate Z(q) and T(q)
also. Employing modular equations and modular transformation formulas, K. R. Vasuki and
K. Shivashankar [59] found explicit values of H(e="V*) for n = 3,1/3,5,1/5,7,1/7,13 and
1/13. In Section 4.7 of Chapter 4, we establish general formulas for finding the explicit values

H(e~™V"), for any positive real number n, in terms of the parameter J,, defined as

N ) B
Jn—m, =€ , (1.1.17)

We note here that J, = r4,,. We prove some general theorems for the explicit evaluation of J,
by appealing to Ramanujan’s modular equations. We find some specific values of J, to arrive
at some new explicit values of H(g). In addition, we prove formulas for the explicit evaluations
of Z(e=™V") and Z(e~™V") and present some examples.

Next, the Ramanujan-Gollnitz-Gordon continued fraction K(g) is defined as

1/2 2 4

q q q
K(g) =
@ l+g,u 1+, 1+¢%,.

lg] < 1. (1.1.18)

Chan and S.-S. Huang (37], derived many identities involving the continued fraction K(g),

which are analogous to R(q) and G(g). They also evaluated explicitly K (e™™v"*/?) for several



positive integers n by using Weber-Ramanujan class invariants G, and g,, defined by
Gn =277 (01", ga 1= 271471 (g;¢%) e, (1.1.19)

where ¢ = e™™v™. In Chapter 5, we establish formulas for the explicit evaluations of K (e~"V/2)
and K (e‘”‘/’_‘/ 4) by using parameterizations hs, and s,,, respectively, where hy,, for £ = 2
is a special case of ki, defined in (1.1.21) below and sq,, for k = 4 is a special case of the

parameter Sk ,, where s, is introduced by Berndt [18], and defined by

f —ny/m
Sk = k1/4q(k-l)/24§]()_(_1)qu); q:=€ Vi, (1.1.20)

By establishing séme general formulas, we calculate several explicit values of the parameter s4 .
Also, we evaluate some new values of the parameter hy, by establishing new theta-function
identities. .

In his first notebook, Ramanujan (54, Vol. I, p. 248] recorded many elementary values of
¥(q), #(q), and f(g). Particularly, he recorded ¥(e™™") for n=1, 2, 4, 8, 1/2, and 1/4, ¢(e™™")
and ¢(—e ") for n=1, 2, 4, 8, 1/2, and 1/4, and f(—e™™") for n=1,2,4, and 8. All these values
were proved by B. C. Berndt (17, p. 325]. Ramanujan also recorded non-elementary values of
#(e™™") for n= 3, 5, 7, 9, and 45. Berndt and H. H. Chan [20] found proofs for these. In [66],

Yi also introduced the following two parameterizations hx, and hy , along with 7, and ry

#(q) ey
hign = kl/4g(gk)’ g=¢ Ik, (1.1.21)
and
/ d)(—Q) ~2n+/n
Mo = Tragiqry 1= (1.122)

where k£ and n are positive real numbers. Employing modular transformation formulas Theo-
rems 1.1.1, 1.1.3-1.1.4, and some theta-function identities, she evaluated several values of ¢(q),
f(g) and their quotients. In particular, she evaluated ¢(e™"") for n=1, 2, 3, 4, 5, and 6 and

¢(—e ™) for n=1, 2, 4, 6, 8, 10, and 12, f(—e™"") for n=3, 5, 6, 7, 8, 10, 12, 1/3, and 2/3,



and f(e™™") for n=1, 2, 3, 4, 5, 6, and 7. Motivated by her work, for any positive real numbers

k and n, in Chapter 6, we define the parameters g, and g; , by

. IL/)(_(]) —-my\/n/k
T = a0 (—gb) q=e ¥, (1.123)

and

r, ¢(Q) -wy/n/k
Thn = TG /8y (k) q=eVR (1.1.24)

We prove many properties of the parameterizations gx , and g ,, defined in (1.1.23) and (1.1.24)
and show how they are connected to Yi's parameters rx n, 7 ., fkn, A ,, and Weber-Ramanujan
class-invariants G, and g,. By employing some old and newly established theta-function iden-
tities, we present some general theorems for the explicit evaluations of gy n, g,',cln, hin, and hy
and find several explicit values. We also offer explicit formulas for ¥(e™"") and ¥(—e™"") for
positive real number n and deduce some explicit values. In addition, we provide formulas for
the explicit evaluations of Rogers-Ramanujan continued fraction and Ramanujan’c cubic con-
tinued fraction in terms of the parameterizations g ,, Gkns Pikns and Ay, from which particular
values can be determined. This chapter is almost identical to our paper [14].

There are many applications of.Weber-Rarna,nujan class invariants Gn. and g, defined in
(1.1.19). H. Weber [64], was motivated to calculate class invariant so that he could construct
Hilbert class fields. On the other hand Ramanujan calculated class invariants to approximate
7, and probably for the finding explicit values of Rogers-Ramanujan continued fractions, theta-
functions, etc.. Berndt et al. utilized class invariants for the explicit evaluations of Ramanujan’s
cubic continued fraction, Rogers-Ramanujan continued fraction, theta-functions, and quotients
of eta-functions A, etc. For details, we refer to [22], [25], [24], [26], and [28]). An account of
this work can also be found in [17]. In his notebooks, Ramanujan recorded several Schlafli-
type modular equations of prime as well as of composite degrees. Berndt {17] proved all these
modular equations via modular form. Baruah [10], gave elementary proofs of seven of these
equations and also found three new modular equations of the same nature. Also, Baruah [8],
had used some of these modular equations of composite degrees, combined with the prime

degree modular equations, recorded in {15, p. 231, 282, 315|, to find class invariant G,,.



In Chapter 7, we use some Schléfli-type modular equations of composite as well as of prime
degrees to find some new and old class invariants G, and g,.

In his famous paper [53], [55, p. 23-39], and on the pages 257-262 of his second notebook
[54] Ramanujan gave a outline of of the theories of elliptic functions to alternative bases. The
results in these theories were first proved by Berndt et al. [19] in 1995, who gave these an
appellation, the theory of signature r (r =3, 4, 6). An account of this work may also be found
in Berndt’s book [17]. Some of the results in alternative theories were also previously examined
by K. Venkatachalienger [61, p. 89-95] and Borweins [33, 34].

In classical theory, the theta-functions ¢(q) and 1(q) play key roles. In cubic theory, or in
the theory of signature of 3, the corresponding theta-functions are a(q), b(gq), and c(g), and are
defined as follows:

For w = exp(27i/3),

oo
alg)= Y g (1.1.25)
mn=-—00
(=]
blg)= D wrngrirmen (1.1.26)
mn=—o0o
and
oo
c(q) = Z g3 HmA1/3)(n+1/3) +(n+1/3)? (1.1.27)
mn=—o0o

The functions defined in (1.1.25) - (1.1.27) are called cubic theta-functions, first introduced by
Borweins [34].
In the theory of signature of 4 or in the quartic theory, taking place of a(g), b(g), and c(q)

in cubic theory are A(g), B(g), and C(q) (23] and are defined, respectively, as

Alg) = ¢%(q) + 16¢9*(¢*).  B(a) = ¢*(g) — 16¢*(¢%), (1.1.28)

and
Clq) = 8\/4¢*(9)¥*(¢), (1.1.29)

where ¢(q) and 1(q) are defined in (1.1.3) and (1.1.4), respectively.



Berndt and Chan (17, p. 328, Corollary 3}, explicitly determined the value of cubic thcta-

—Zw)

function a(e™*"), namely

a(e™ ) 1

$*(e™) 28/ V3-1

where ¢(e") = n/4/T(3) is well known. Also, Berndt et al. (23} evaluated some quotients

of quartic theta-functions by using Weber-Ramanujan class invariants while deriving the series
for 1/ associated with the theory of signature 4.

In our last chapter, we find some new explicit values of cubic and quartic theta-functions and
their quotients by parameterizations. We establishing some general formulas for the explicit
evaluations of these theta-functions and then find their special values. In the process, we also
establish some transformation properties of theta-functions in cubic and quartic theory.

In the next two sections,we record all the values of the parameters ry , and 7 , evaluated by
Yi [66], which we will use in this thesis. We also note that 7y = 1, Tk 1/n = 1/Tkn, Thn = Tak,

/ —_— ! — ' / e !
Tka = 1, Tk,l/n - 1/rk,n’ and Tkm = Tn,k'

1.2 Values of r;,

Tl,l =1
T2 =
22 = 2!/8

1/6
T23 = (1 + \/2-)
1/8
T24 = 21/8 (1 + \/§>
1++/5

2
1/4
To6 = 21/24 (\/§+ 1)

<\/§+1+\/2\/§—1>”2
2

r25 =

To7 =

1/4
ra =22 (1+2)



T29 = (~/§ + \/§) v
rz,mr—( 1+\/_(\/_+1+\/—>)
= (14 8) ™ (2 (4 59) "

1/4 /8
T316 = 21/8 (1 + \/i) (4 +V2+ 10v2 )

1+ v3)'"7 (1 +V3+ V2374

/4

218 =
9211/24
rom = A VD) (243VE+ vE)”
' V2

1/3

= (1+ \/5)5""{\/24 Va(14v3) "+ (14 \/:7.)2’3}

ram =29 (14 \/')1/4 (16+15-2%4 + 12vZ+ 9. 23/“)'/8
_{2(1+35v2-28v3)}""

(V3-v2)"
mg_1+\/7+2 \,/\/_+\/7+2\/_
' 2v2 2
25/8
T2,50 = B { 1
o= (24 V3) P (VI 4+ 2vE+ 3 (V34 1))
213/48 (/2 — 1)5/12
1/4
1++3
7‘2‘3/2 = (—_2_7/\/—74)_,_
1/4
(\/\/5 F1+ ﬁ)
T25/2 =
21/4
(3+ \/7')”4

T2,7/2 = __._2T/_8__,_

(L Ee VI
T29/2 = 213724 °
5141
25/8
(1+m1/12 (1_\/,'3‘_'_22/3\/5)1/3

T =
2,27/2 3/ (21/3 B 1)1/3

T2,25/2 =

10



(7-2v3+ V2T + (3+ V) \/§+16\/2_—27\/?)1/3

e 013/24 (\/5 _ 1)2/3 (3 _ \/7)1/12
(-1+35v2 + 28v3)""°
T2,9/4 = 7
218 (V2 + V/3)
raoss = 05/48 (\/5_ 1)5/12 (\/3 _ 1)1/3 (\/'j._ \/5)1/3

(—1 - \/2_+ \/§+ 33/4\/5_ \/6)1/3
1/6
3= g1/12 (3 n 2\/5) 1/12 _ 31/8 (1 + \/3-’)

91/12

Cp V3+1
34 —
. 7

r (\/5+1> (11+5\/5>1/6

3,5 = 5 5

; (f \/_> |

¥ \2(z-V3)

T3,8=(\/_+1> (\/§+\/§)1/4
3

T39 = 1/6 (1 + 21/3 22/3)1/3 _

OO

31/6

.
r325=—<1+\/_+ﬁ+2\3/16+m>

r 3+ V22T + Y2V + V49 + 13V22T + 82V
349 —
: s

1/4
rgq = 2%/ (1 + \/5)

reg =24 (1 4 \/5)3/8 (4+ m>l/s
T

rs2 = (2 + \/5)1/6

rsaz = (\/5 - 2)1/6

1/6
~11+5V5
T5,1/3 = —

11



o <1+\/5+\/§+\/W5>1/2
54 = 5
) /_<1+¢5—¢§+¢1‘+75)‘”
51/4 — 2

ros = (25 + 10\/5)1/6 NERRE

2
1/6
Ts1/5 =

25

X 1/2
Ts7 = (2—16 (3\/5 +az+ b3+ \/57 + 6\/-5-(0'3 + b3) + ag + b%))

216
1/3 1/3
where a3 = (54\/5 — 6\/2_1-) and by = (54\/5 + 6\/2_1)

1/2 /
rss = { B+ ‘/5)2(1 +v2) } = (63+45v2+28v5 + 20\/10)1/6

1 1/2
re1 = (— (—3\/5 —a3—by+ \/57 +6v/5(as + b3) + a3 + b§)>

2

1/2
Ts1/8 = { (3-v5) (1-v2) } = (—63 +45V3 + 28/5 — 20\/10)1/6

1/6
rso = (104 + 603 + 45v/5 + 26\/1_5)

1/6
rsaso = (104 — 60v/3 + 45v/5 — 26v/15)

o _V5+V5
520 = e
23 +2 54

T5,4/5 = {—————5(-1:_ \/5) }

3 B1(1+ 3+ V2 3
766 = 7 013/24

V114 V13+ V31 V13
T133 = 2\/5
rise = % (<\/§+1) (\/§+\/ﬁ) +2\/<3+2\/§> (4+ \/ﬁ))

2
r25,z=%(a+b+\/a2+b2—§>

12
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To5,1/2 =

1/3 1/3
where a.=(\/5+—\/9-§—6> and b=(\/——@>

1
rasg =5 (1+ V10 + \/5+2\/3 10 + V/ 102)
3 3 3 9
T25,1/3 = -1-vV10+y5+2v10+ V10

1
2
(3+<75+\/§+\‘/55)= g_gii

4 \4/5"'1
T251/4 = (3—\/5_{.\/5_\‘/5—3): \75+l

1
2
1 2
Ts7 = & (4\/5+al+b1+\/(4\/5+a1+b1) —36)

1 2
T251/7 = 5 (4\/5"' ap+b — \/@\/5-+0,1 + b1> - 36) ,

1/3 1 1/3
where ay = (% (2251\/5 + 9\/105)) and b = (5 (2251\/5 - 9\/105))

. _ V60+2-V3+5
BT YR -2+ V35
. _ VE0-2+v3-V5
25,1/9 T2 3 s
T25.16 = % (2 + <‘/'2_0> (17+ 11V5 +7V5 + 5\‘/5_3)

rasa/i6 = 711 (2- v20) (17- 1195+ 75 - 5V/5)

/ 2
T2549 = ‘é‘ <a2 + 5b2 + (GQ -+ 2\/ 5b2) - 64)
1 2
T95,1/49 = 3 ag + /by — <a2 + 2/ 5b2> — 64

where g = 1497 + 651V/5 + 565V/7 + 247V/35

[ X I
TN
o
+
o
|
2
%]

+
e
|
[ISY )
N——

] =

To54 =

by = 437430 + 195566v/5 + 165333v/7 + 73917V/35

Ql1/2431/8 (1 4 \/5)1/6
TJ/Q, 3/2 - (1 + \/§+ \/§ 33/4)

_[s0+ve) "
T5/2,5/2 = \/5(3+2 51/4)

—-

{CENTRAL LIBRARY, T. U.




1.3

!/
Values of Tkn

riy=1
1/4
Fha = 95/16 (\/5 _ 1)
B 31/8 (\/'3‘_ 1)1/6

T33 = 21/12
1/6
, 1+5
T35 = )
1/4
, _(2e+v3)\"
Ty, = | ———
7 V3+VT
73.9 = 3!/¢
, _1+V6
T3925 = 5
, V3 +V7
T3,49 = — 5
, 29/16
Taq =

(9 2/ + 47 — 3 23/4)'/°

1/6
, V5+1
53 = )

1/6
' \/5 —1
Ts5.1/3 = g

rhq = (2 + \/5) v

b= (VB - 2)1/6

rho = (104+ 603 —45v5 - 26\/ﬁ)1/6
b1 = (104 - 60v3 - 45v/5 + 26\/—1_5)1/6

_ 011/1631/8 (\/5_ 1)1/12 (\/'3"+ 1)1/6
(2-3v2+3 314 4 33/4)'°

, V5 +V13+ /133
Ti33 = 2\/§

Te6

14
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) V5 +1
T2353 = 5
' \/5_1
Tos,173 = 5

1 2
T’zs,7=g (2\/3+a4+b4+\/(2\/3+a4+b4) —36)

1 2
T;5,1/7 =% (2\/5-1-&4 +bs — \/(?\/5+a4 +b4) - 36) ,

1 1/3
where a4 = (5 (17\/5+ 3V 105)) and by = (

T;w:\‘/fY)+2+\/§—\/5
Y Ve0-2~V3+5
o _V80-2-V3+V5
25,1/9—\,./%_*_2_‘_\/5_\/5

Tas2r =2+ V5 + (1 + \6/5) (20 + 9\/5) e
Thsajr = —2 + V5 + (-20 + 9\/5)1/3 _ % (3 N \/5) (_20 N 9\/5)2/3

T95.49 = % (as +24/5bs + \/(as + 2\/5b5)2 - 64)
! 1 2
51709 = g | G5t 24/5bs — (as + 2\/51;5) - 641,

where as = 1497 — 651V/5 + 5657 — 247/35

1
2

(17\/5 - 3@))1/3

and  bs = 437430 — 195566+/5 + 1653337 — 73917/35



Chapter 2

Some General Theorems on the
Explicit Evaluations of Ramanujan’s
Cubic Continued Fraction

2.1 Introduction

From (1.1.11) recall the definition of Ramanujan’s cubic continued fraction G(g),

g+¢® ¢+¢" P+

+ 1 + 1 4+ 1 4. .0

1/3
Glg) = L (2.1.1)

where |g] < 1. This continued fraction was recorded by Ramanujan in his second letter to
Hardy [30] and on page 366 of his lost notebook [56], and claimed that there are many results
of G(q) which are analogous to the famous Rogers-Ramanujan continued fraction R(g), defined
by

1/5 2 3
q q q
(q) 1 1+1+. lql

g
+1+
Motivated by Ramanuajan’s claims, Chan [35] proved three identities giving relations between
G(q) and the three continued fractions G(—q), G(¢?), and G(¢3). Baruah (9] found two new
identities giving relations between G(g) and the two continued fractions G(¢°) and G(¢”). Chan
(35] also found three reciprocity theorems for G(g). He also ‘evaluated G(—e"’\/’—l) forn =1
and n = 5 and G(e‘"‘/ﬁ) for n = 1, 2, 4, and 2/9. Berndt, Chan and Zhang (26} have found

general formulas for G(—e""/’_‘) and G(e™™v™) in terms of Weber-Ramanujan class invariants

16
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G, and g, defined by
Gn =247 (~qi¢")0  and  gn:=2"4g7M(g;¢) 0, gq=e VT

where (a; )0 := IIT24(1 — agq™),|q| < 1.

They evaluat;/ed G(—e~™") for n = 1, 5, 13, and 37 and G(e™™V?) for n = 2, 10, 22, and 58.
Ramanathan (47| has also found G (e“"m) by using Kronecker’s limit formula. This value was
recorded by Ramanujan on page 366 of his lost notebook [56] By using modular equations and
transformation formulas for theta-functions Adiga et al. {1} and (3], Vasuki and Shivashankara
[59] have recently found G(—e~"v") for n = 1/147, 1/75, 1/27, 1/13, 1/9, 1/7, 1/5, 1/3, 1, 3,
5, and 25/3, and G(e"V?) for n = 1/3, 1, 4/3, 4, 16/3, and 16. Other values of G(g) can be
found by using the reciprocity theorems given by Chan [35] and Adiga et al. [3].

In this chapter, we present some general theorems for evaluating G(—e™™V™) and G(e~™v7")
by using modular equations and transformation formulas fo;‘ theta-functions. Our theorems
are motivated by Yi’s paper [67], in which she (\evaluates many new explicit values R(q).

Since modular equations are key in our evaluations of G(g), so we give the definition of a

modular equation. The complete elliptic integral of the first kind K (k) is defined by

/2 do m (3)? 0 11
K(k):= —_— = E g = Py (2, = 1k 2.1.2
*) /0 1 — k?sin2¢ 2 (n!)? 2° 1(2’ 2 ) ( )

n=0

where 0 < k < 1, 2 F) denotes the ordinary or Gaussian hypergeometric function and
(@) =ale+1)(@+2)---(a+n—1).

The number k is called the modulus of K, and k' := /1 — k? is called the complementary
modulus. Let K, K’, L, and L’ denote the complete elliptic integrals of the first kind associated

with the moduli &k, k¥, [, and !, respectively. Suppose that the equality

K L
n— = —

= = = (2.1.3)

holds for some positive integer n. Then a modular equation of degree n is a relation between

the moduli k& and ! which is implied by (2.1.3).
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If we set

K'\. , L
q = exp <—7r7(-> and ¢ =exp <—1rf> , (2.1.4)

we see that (2.1.3) is equivalent to the relation ¢" = ¢’. Thus, a modular equation can be viewed
as an identity involving theta-functions at the arguments ¢ and ¢". Ramanujan recorded his
modular equations in terms of & and 3, where a = k? and § = (2. We say that 3 has degree n

over . The multiplier m connecting o and 3 is defined by

m =

K
=, (2.1.5)

where z, = ¢?(gq). Ramanujan also established many “mixed "modular equations in which four

distinct moduli appear. We will define “ mixed ”modular equation in next chapter.
We shall make use some new and old eta-function and theta-function identities in our work.
We record these results in next section for further reference. Proofs of the new identities are

also given.

2.2 Modular équations

In this section, we state and prove some modular equations which will be used in in finding
theorems for the explicit evaluations of G(q).
Theorem 2.2.1. (Berndt [16, p. 204, Entry 51]) If

72— A=)
P =q1/6f2(3)qa) ond Q= gy

then o o\ i
Parpg=(3) +(3) - 221
Theorem 2.2.2. (Berndt [15, p. 246, Entry 1(iv)]) If
F2 (=9 (=4°)
- ql/“fg'(zfﬂ) and @ = qa/“fa(q—qg)’
then

<1+_9_)3=1+Z, (2.2.2)



Theorem 2.2.3. (Berndt [16, p. 221, Entry 62)) If

_ f(=9
gl /12f(—¢d)

f(=4°)
¢*12 f(—¢")’

(PQ)* +5-+ (g = <%>3‘ (g)a'

Theorem 2.2.4. (Berndt [16, p. 236, Entry 69/) If

and Q=

then

f_ AT
P =

=8 (8) 7 (5)- ()
(PQ) +(PQ)3 7 7 2 +7 0 o)
Theorem 2.2.5. (Berndt [17, p. 127]) If

f(= f(=q"
= q1/12(f((z.)q3) and Q= qll/lgf?_;%)’

(PQ)5+(73%>5+11{(PQ) <P3Q)4}+66{(PQ) (P3

then

then

+253{(1—'>Q)2 (P3Q)2}+693{PQ+P1Q}+1386_<) (g

Theorem 2.2.6. (Berndt [16, p. 210, Entry 56)) If

S(=a)

f(=¢*)
)

wnd Q= gy

then .
P+ Q= P’Q* + 3PQ.
Theorem 2.2.7. If

then

(PQ)* + (%)3 + 27 (<g>3 + (%)3> +9(P® + QY
+243< . 53) +81 = (g)s.

Proof. This easily follows from Theorem 2.2.2.

<O
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(2.2.3)

(2.2.4)

(2.2.5)

(2 2.6)

(2.27)



20

Theorem 2.2.8. If

$(a'?) #(9)
P= d Q= ,
@ 9T )
then 9
9 P Q 1 _(Q
PQ+——Q-+3<Q P) 9(P Q>-3(P+Q)+9 (P) 29
Proof. We use the first two identities of Entry 1 (iii) {15, p. 345]. O
Theorem 2.2.9. If
#(a'%) ¢(&*")
P= d Q=811
i@ " 0T e

then
3 3
(g) + (%) + 15 (6+Q—2+3@+3—g‘> + 5(P + Q)(6 + PQ)

+45(}13 612) <2+£§>=(PQ)2+(155) +10(P + Q)? + 90 (P 22>2

+15 ((g)2+ (g)z) +45 <g g) + 40, (2.2.9)

Proof. We use the first two identities of Entry 1 (iii) [15, p. 345] and Remark 1 of Theorem 2.1

in [9, p. 245, 247]. O
Theorem 2.2.10. [f )

_ _¥(=¢'") _ (=9

S O )
then )

9 P Q 11 Q
= ) 2.2.1
PQ + Q+3(Q P>+9(P Q>+3(P+Q)+9 (P) (2.2.10)
Proof. We use the first and last identities of Entry 1 (ii) [15, p. 345]. D
- Theorem 2.2.11. (Baruah/9, p. 253)) If
R C) _ %)
P= g o 9= Fayny

then )
(PQ)* + }%)4 +15 ((%) + (5) ) +120 - 10(P* + Q)

o) G (B (@) onl®) ) o



Theorem 2.2.12. (Baruah (9, p. 250)) If

¥(q) ¥(q")
g @S gy
then
P\ ?
ki (PQ)? + k2(PQ) = ka(PQ)? + ky (@') — ks,
where

8 4
k1=<g> -1, k2=14P4(<g) —1), k3 = PY(7 - P?),

P\* PY*
k4=7P4(P4—3), and k5=27<6) —7P4<3+3<—Q‘> ‘—P4).

2.3 Explicit values of G(q)

Theorem 2.3.1. We have

(i) For ¢ = e"'\/’%) let
_ 1 /%)
" 3VBaAfs(¢d)
Then
3= — g2 4 X
w
where w = G(—gq).
(it) For g = e“"’"\/'%, let

Then

where v = G(g).
Proof. We use the first identity of Entry 1(iv) [15, p. 345].
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(2.2.12)

O

Several values of X, were recorded by Ramanujan on page 212 of his lost notebook [56)

All of those values were proved by Berndt et al [24]. They also evaluated many new values by

using modular y-invariants, Weber-Ramanujan class invariants, modular equations, Kronecker’s

limit formula, and an empirical process. Thus, one can use Theorem 2.3.1 to find the values of

G(—e "V™3) and G(e™"V™3) if the corresponding values of p, and ), are known.



Theorem 2.3.2. If p,, and )\, are as defined in Theorem 2.5.1, then
1 1
M = ;t— and A1/n = '/\—

n n

Proof. We use the definitions of y,, and ),, and Theorems 1.1.3 and 1.1.4, respectively.
Corollary 2.3.3. iy =1 and A\, = 1.
Theorem 2.3.4. If u, is as defined in Theorem 2.3.1, then

. ' 1 Hn Han
1 (i ) -2
() ((# ¢ ) (/“'nﬂ4n)1/3 Han Hn

172\ 3
(i) 3 1+(——3—> =1+—l2—,
Finbign Hi

1/3 1 _ [ H2sn 13 Hn 3
(iii) 3 { (unpsasn)® + ) th= - )
(“n#%n) Hn $25n

196 s ) (52 () 52) o

(linmgn)l/ 2 Hn H49n

1 1
v 9\/3'( n5/6+-____)+99( nb1210)7? + —— )
v) (pntz1n) (Bntir215)5/8 (¢nb121n) (Hnbi1210)?/3

1 1
-+ 198\/5 ( n, n 1/2 + —_‘) + 759 ( n n 3 + >
(Bmpi1zin) - (Bnti1215) a3

1 n n
+693v/3 ((unumn)’/“ + ———'"'—1/—6) +1386 = ("—”‘—) + ( a ) .
. (ll'mU'IZIn) Hn Hi121n

22

a

Proof. The theorem follows from the definition of y,, and Theorems 2.2.1-2.2.5. Theorem 2.3.4

(i)-(iv) were also found by Yi [66].
Theorem 2.3.5. We have

(i) p2=vV2+1,

(i) _3V3+5
Hg = \/-2- )
(iii) ps=\/6V3+9,
(iv) pto= —eo—

H9 = (\:75—1)2,
11+5V5
(V) ps=—7—,

6, "

. 1 , =\""

(vi) ,,25=ﬁ<1+\/10+\/5+2\/‘10+\/102) ,
3/2
. 3423+ 2v7+ VALY
(vii) py = )

2

O
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Vaa =4\’ 43 1
(Vi) a9 = (%—) where a = ?3 + -53\3/1\3/74- 2\3/5\3/4_9,
1/2

() puar = (1551 + 900v/3 + 470V/11 + 270\/33)

Proof. Wesetn =1/2and 1, n=1/3and 1,n=1/5and 1,n=1/7 and 1, and n = 1/11, in
Theorems 2.3.4 (i)-(v), respectively. We obtain the results by appealing to Theorem 2.3.2 and
Corollary 2.3.3, and then solving the resulting polynomial equations.

The values of py/, for n =2, 3, 4, 5, 7, 9, 25, and 49 can easily be found by applying
Theorems 2.3.2 and 2.3.5. |

Theorems 2.3.5 (i)-(viii) can also be found in [66].
Theorem 2.3.6. We have
(i) For g = e=2™V7 let
o - 12"
V34 ()
Then
1
3+3V3CE =4 + =

where v = G(q).
(ii) For g = e ™V™, let
p, - J1@”
" V3 f(g)

Then
3-3v3D3 = 4uw? + %

where v = G(—q).
Proof We use Entry 1 (iv) {15, p. 345]. 0

Theorem 2.3.7. If C, and D, are as defined in Theorem 2.5.6, then

1 1
Cl/n = .C— and Dl/n = 5—

Proof. We use the definitions of C,, and D,, and then Theorem 1.1 3 and Theorem 11.4. O

Corollary 2.3.8. C;, =1 and D; = 1.
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Theorem 2. 3 9. If C, and D, are as defined in Theorem 2.3.6, then
(i) C%+C3, = V3CaCin(CnCin + 1),

(i) C3+ D3 =V3C,Dn(CuD, —1),
(i) (CaCon)® + (Ca é‘g,,)3 ( %)3 * <C_9")3
+f(c3+03 ln )+3”<f§95,.)’

ot

c3

(iv)  (DnDon)* + (D- 1139")3 (_> ( )

1 D
- D} + D} ===
\/_( + D3, D,3,+D3>+3 <\/§D,.)
Proof. We use the definitions of C,, and D,, and Theorems 2.2.6 and 2.2.7. ]
Theorem 2.3.10. We have

i) C=(V3+V2)'"”~,

(ii) D2=\/—303—\/§—\/§ where = (V3 + V3)?
V2a
v3+1+v2V3
(i) Cq= >
(iv) D __2\/5+15\/2\/§+16\/§+9\/2\/§7_4_3,/2\/3_2\/5_\/m
v 4 )

(v) C3= (\/5(1 +o13 4 22/3)) ,

(vi) Dy =3"°,

(vii) Cy = (3 (6 + 3v/3 + (738 + 426V/3)"/3 + (776 + 448\/5)1,3))1/3 |
(vili) Dy = (3 (6 — 3vV/3 + (738 — 426V/3)'/3 + (776 — 448\/5)1/3))1/3

Proof. Putting n = 1/2 and 1 in Theorem 2.3.9(i) and then solving the polynomial equations we
obtain C, and Cy4. Again setting n =1/2, 1 in Theorem 2.3.9(ii)and then solving the polynomial
equations we obtain D, and D,. Setting n =1/3, 1 in Theorem 2.3.9(iii) and then again solving
the resulting polynomial equations we obtain C3, D3, Co, and Ds. [

The values of Cy/n and Dy, for n =2, 3, 4, and 9 can easily be calculated by applying

Theorems 2.3 7 and 2.3.10.
Theorem 2.3.11. For g =e™™, let
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Then
2G(—q) =1 - V38,
Proof. We use Entry 1 (ii) [15, p. 345)]. O
Theorem 2.3.12. If S, is as defined in Theorem 2.3.11, then
Sin = 31-
Proof. We use Theorem 1.1.1 and the definition of S,. O

Corollary 2.3.13. 5, = 1.
Theorem 2.3.14. If S, is as defined in Theorem 2.5.11 then

_ 1 S, S 1 ' _(Sn)?
(i) 3(3"53"+—Sn33n>+3<83,. Sn) 3\/—(5,“ Ssn+S,,+S3,,)+9—(Sn> ,
and
.. Sn 3 SSn 2 1 1
(i) (:9-;) + (—ST> +15v3 (s 32) (Ss,, 5 10) +15V3

<5+~ S2+—1—+2 + 60 { S, +—-—1 15 (3 2+ 5522
n Sn 5n Sgn n5n Sn SSn SSn Sn

1 Sn S 1 1
+9(5%282 + — 1 +45 2n) 43082 + = 3{ S5 + 40.
( "5t 5 S?,,) + ( s + 2 4 5T +30v3{ S; 5 +
Proof. We use the definition of S,, and Theorems 2.2.8 and 2.2.9. |
Theorem 2.3.15. We have

(i)Sg;Z—\/§—~(—-5—ﬂQ a3, where a=8(7—4\/§),

al/3

(28— 16v/3 + 7v/15 - 12v/5 + /40530 — 234003 — 18138V/5 + 10472v/15 )
(i) S5 =
2(2 — V3)
Proof. We set n = 1 in above theorem and then solve the resulting polynomial equations to
obtain the results. O

The values of S; 3 and S5 follow from Theorems 2.3.12 and 2.3.15.

Theorem 2.3.16. For ¢ =e™"V", let
_ (=4
V3! Py (~¢*)
Then

1
—G(~gq) = —a—.
(=9) 1+ 3L,
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Proof. We use Entry 1 (i) [15, p. 345) 0

1t is clear from the above theorem that to evaluate —G’(—e"’ﬁ), we need the value of L,,.

Theorem 2.3.17. If L,, 1s as defined in Theorem 2.8.16, then

1
Ll/n = Z’:
Proof. We use Theorem 1.1.5 and the definition of L. - 0O

Corollary 2.3.18. L, = 1.
Theorem 2.3.19. If L,, s as defined in Theorem 2.5.16, then
1 L., Lo, 1 1 Lo\’
3\ L.L — —_—+— 3{ —+—+L,+L == .
( 9,.+LnLgn>+3<L9n+Ln>+3\/_(Ln+L9n+ o+ gn>+9 ( )
Proof. We use the definition of L, and Theorem 2.2.10. a

Theorem 2.3.20. We have
1 2.21/3 923
i) Ly=—x4+ —— + =,
W L=+ =57
(i) Lo =2+ V3 + (38+22v3)3 +2(2 + V3)%3.

Proof. Setting n =1/3 and n = 1 in the above theorem and then solving the resulting polyno-
mial equations, we obtain the results. O

The values of Ly/3 and L9 follow from Theorems 2.3.17 and 2.3.20.

Theorem 2.3.21. For g =¢e "V™3, et

_ _¥(=9)
T 3gyi(—¢®)
Then X
G0 =135
Proof. We use Entry 1 (i) [15, p. 345]. O

Theorem 2.3.22. If B, 1s as defined in Theorem 2.3.21, then

1
Bipm = —.
1/ .
Proof. We use Theorem 1.1.5 and the definition of B,,. O

Corollary 2.3.23. B, = 1.
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Theorem 2.3.24. If B, is as defined in Theorem 2.3.21, then

. Bn 1/2
. ﬁ(“n&’v) ’4+_1>_w>+3=(‘§?) ’

(Bn Bgn

1 B, stn> < 1 1 >
+ 15 +—}+30 =+ +B,I+B =) +120
BnB%n) (Bm—m B, Bn ' Basn »

Bos,, 3/2 3/2 1/2 1/2
(7)) () () (&) )
Bn B25n Bn B?Sn

1/2
(it) @1(BnBaon)¥* — a2(B,Bagn)"* + a3(BnBaga)"? + a4 (BBn ) +as =0,
49n .

(i) 9 (B,lesn +

Ba \?
where a; = (B ) -1, ay=14B, ( B - 1) , a3 = \/§Bn(7+ 3B,),
49n

as = 7V3B, (B, +1), and as= 3\/51;3" +7V3B, (ﬁ‘— + B, + 1) .
49n

Proof. We replace ¢ by —q in Theorem 2.2.11 and 2.2.12 and use the definition of B,. 0
Theorem 2.3.25. We have

(i) Bs=V3(2+V3),
(1+¢2)°

(i) By = —=—,

V3
(iii) Bs =9+ 4V/5,

2(a —17)\°
(iv) Bas = (ﬁ___)) where @ = (5761 + V421121)® and b= V68 — 4a + d?,
\

a+b
(v) By

1
C9—-6v3+2V49 — 283

Proof. Setting n =1/3 and 1, n =1/5 and 1, and n =1/7, in Theorem 2.3.24 (i), (ii), and (iii),
respectively, using Theorem 2.3.22 and Corollary 2.3.23, and solving the resulting polynomial
equations, we obtain the results. O

The values of By, for n =3, 5, 7, 9, and 25 follow from Theorems 2.3.22 and 2.3.25.

Remark 2.3.1. (i) Theorem 2.3.4 implies that if we know p,, then we can evaluate pn, pin/s,
Kon, Enj9, M2sm, Mnj25, Hagn, Hnjag, H12in, OF Hnsi21. Thus, by Theorem 2.3.1(ii), if we know
G(e'Q"\/"_/B) then we can also evaluate G(e""'\/;/—:’), G’(e'"\/’m), G’(e'Q”‘@;), G(e‘Q"‘/’W),
G(e"lo”\/’m), G(e—27l’\/‘n—/:73), G(e-M-n n/3), G(qu"\/m), G(e—22WM), or G(e~21r\/;1/_36—3).

(i) Using cubic Russell-type modular equations of degrees p =13, 17, 19, 23, 29, 41, 47,'53.,
and 59, derived by Chan and Liaw {39] and Liaw [46] (see also [30]), one can also find relations
connecting p,, and pu,2,.
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(iii)Theorem 2.3.9 implies that if we know C,,, then we can evaluate Can, Cyjay Dny Dan,
Dyysy Con, Cry9y Don, or Dyjg. So using Theorem 2.3 .4, if we know G(e‘z"ﬁ), then we can eval-
uate G(e"‘"‘/ﬁ), G'(e”"/’—‘), G(_e—n\/?z), G(—e'%‘/ﬁ), Gf(_e—Qw\/r_z/Q)‘ G(e‘ﬁ"‘/’_’). G(e_Z"‘/n/g),
G(=e73"V™), or G(—e "V,

(iv)Theorem 2.3.14 implies that if we know that S,, then we can evaluate Sin, Sn/3, Ssn,

or Suss: Thus, by Theorem 2.3.11, if we know G(—e™™), then we can evaluate G(—e™*™),
G(—e~™/3), G(~e~>™), or G(~e~™/%).

(v) Theorem 2.3.19 implies that if we know L, then we can compute Lg, or L,s, that is
by Theorem 2.3.16, if we know G(e~"V7), then we can also evaluate G(e™3"V") or G(e~"V™/3).

(vi)Theorem 2.3.24 implies that if we know B, then we can compute Bop, Bnjo, Basn, Brjas,
Bygn, or Bpjag, that is, by Theorem 2.3.21, if we know G(—e™"V "/3), then we can also evaluate
G(_e—vr 3n)’ G(—e’"‘/"/”), G(—e‘s"‘/"’_"), G(_e-‘ﬂ'\/ﬂ/75)’ G(_e—71r\/n/3), or G(—e—ﬂ‘/n/l47).



Chapter 3

Some More Explicit Values of
Ramanujan’s Continued Fractions

3.1 Introduction
The classical Dedekind eta-function 7(z) is defined by
n(z) = e™/1? ﬁ(l —e?™"%)  Imz > 0.
n=1
Following Ramanujan’s notations, we set ¢ = exp(2miz) and

f(=q) = g7 ¥ n(2).

In the unorganized portions of his second notebook, Ramanujan {54] recorded without proofs
23 beautiful identities involving quotients of only eta-functions and no other theta-functions.
Proofs of these can be found in [31], [16] and [7]. The identities can be divided into two
categories. In the first category, each identity involves four arguments and the second category
involves éight arguments. The first category identities have been used to find explicit values of
the famous Rogers-Ramanujan continued fraction [22], Ramanujan’s cubic continued fraction
(12], {1], Ramanujan’s class invariants {29], and a certain quotient of eta-functions [24]. Unlike
the first category the second category identities have not been applied before. In this chapter,
we use these identities and some new identities of the same nature to find many new explicit
values of the famous Rogers-Ramanujan continued fraction R(g) as defined in (1.1.6). We also

find some new values of A, and p, defined in (1.1.13) and (1.1.12), respectively, which can

29
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be used to find the explicit values Ramanujan’s cubic continued fraction G(g) as defined in
(1.1.11).

In Section 3.2, we state 10 eta-function identities involving eight arguments. We also give
proofs of the new identities.

In Section 3.3, we define the parameter s, as defined by Yi [67] and find new explicit values
of R(q) by using some identities in Section 3.2.

In Section 3.4, we find some values of A, and p, by using the identities recorded in Section
3.2. The corresponding values of G(g) can be found by solving a cubic equation as given in
Theorem 2.3.1.

The parameters A, and p, are connected with Ramanujan’s cubic theory of elliptic functions.
In Sections 3.5 and 3.6, we show how the new values of p, and A, combined with some old
and newly found modular equations in cubic theory can be applied to find some new series for
1/7 by appealing to the formula established by J. M. Borwein and P. B. Borwein [33] and later
modified by Chan and W.-C. Liaw [40].

We end this introduction by recalling from Berndt’s book [15, p. 325], the definition of
Ramanujan’s “mixed” modular equation or modular equation of composite degrees. Let K,
K', Ly, L}, La, L3, L3, and Lj denote complete elliptic integrals of the first kind corresponding,
in pairs, to the moduli /o, /B, V7, and V8, and their complementary moduli, respectively.

Let n;, n9, and n3 be positive integers such that ny = njny. Suppose that the equalities

K L, K L K L
2oh S Lk a8 11
MK T KT YK T, (3.11)

hold. Then a “mixed” modular equation is a relation between the moduli /&, /5, V7. and
V6 that is induced by (3.1.1). In such an instance, we say that 3, v, and ¢ are of degrees n,,
ng, and ng, respectively, over o or a, £, 7, and J have degrees 1, n,, no, and ng, respectively.

Denoting 2, = ¢*(q"), where

g =exp(—7K'[K), ¢(q) = f(g,9), lg| <1;
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the multipliers m, and m’ associated with a; 8, and v, §, respectively are defined by

m= =t m = 22, (3.1.2)

Zn, Zny

3.2 Eta-function identities

In this section, we state and prove some eta-function identities involving eight arguments which
will be used in finding explicit values of R(q), iy, and A,.
Theorem 3.2.1. (Berndt [16], p. 214, Entry 59) If

f(=@)f(= 5)
1/“f( q)f(=9*)

f(-*)f(=4")
R f(—¢*)f(—g%)’

1 Q 3 P 3
ror - (93]

Theorem 3.2.2. (Berndt [16], p. 230, Entry 65, Baruah [7], Theorem 2.3) If

FE) oy oo e )
P16 f(~4") P f(=g) f(=)’

25 (Q\' (P _.[(Q, P
PQ+1—35—<'§) +(a) —3<ﬁ+5+2>. (3.2.2)

@7 ( 27 (=4
P=0corce® ™ T aearcy)

and Q=

then

then

Theorem 3.2.3. If

then.
P+ Q%+ PQ(2P +2Q + 1) = P2Q%. (32.3)
Proof. We set
_ f&)f(d)
af(q9)f(a*)

Employing Entries 12 (i) and (iii) of Chapter 17 of Berndt’s book (15, p. 124], we find that
oo [ (BB - 7))1/24 (3:2.4)
21235 \ ad(1 — )(1 = 6) o

(ﬁv(l - /)1 - 7)) iz
z212z35 \ ad(l — a)(1 - §) '

and

Q= (3.2.5)
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where 3, v, and é have degrees 5, 7, and 35, respectively, over c.
From (3.2.4) and (3.2.5), it readily follows that

Q _ (B =B -7\
R (a5(1 —a)(1- 5)) (3:2.6)
and \
R m’
5=V (3.2.7)

where m = 21/25 and m' = 27/235.
Now, by Entries 18 (vi) and (vii) of Chapter 20 of [15, p. 423], we note that

()" ()" A=) ey - 2
and

(8)"(5=56=9) - (5=0n=8) (=820 -7

(3.2.9)
Multiplying both sides of (3.2.8) and (3.2.9) by (8v(1 - 8)(1 —7))"/® and (ad(1 —a)(1 —§))"/8,
respectively, and then combining the two results, we find that

. ab(1-a)(1=06)\"®" _[as(l—a)1-&\V? [m
("”“'5)(1’””m{(zfv(l«ﬂ)(l—v)) (i) E}

ad(l —a)(1-46) ad(l — a)(1 —90) m!
(3.2.10)
Dividing both sides of (3.2.10) by (ad(1 — a)(1—6))/® and then employing (3.2.4) and (3.2.5),
we deduce that

= (ad(1 — a)(1 — §))/® { (57(1 - B)(1 - 7))1/8 _ o (ﬁ7(1 - B)(1 - 7)>1/12 ) _Tﬁ}

Q’R*+ R* - 2R%°Q = Q* - QR - 2Q*R. (3.2.11)

If we replace ¢ by —¢q then R is converted to —P and @ remains unaltered. Thus, (3.2.11)
is transformed into
P2Q? — P® - 2P%Q = PQ + Q* + 2Q*P, (3.2.12)

which immediately implies (3.2 3). a
Theorem 3.2.4. (Berr:dt [16], p. 186, Entry 34, Baruah [7], Theorem 2.1) If

_ = o (=9 f(=e?)
(=) f(=¢'%) 9/ (—¢°) f(~q'8)’

then
ul = 1% + 30 + . (3.2.13)
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Theorem 3.2.5. (Berndt [16/, p. 192, Entry 39) If

yo SO (=9 (=g)
@32 f(—q) f(~q*) a2 f(—q°) f(—q*®)’

then .
ut = 3ulv = v® + 3% 4 Qu. (3.2.14)

Theorem 3.2.6. (Berndt [16], p. 218, Entry 61, Baruah [7], Theorem 2.2) If

(=) f(=¢°) . (=) (="
= TR =g " C S PR~

14+ —=[(=X - . 2.1
Po+1+55=(3) +(5) (32.15)
Theorem 3.2.7. (Berndt [16], p. 215, Entry 60) If

(=9 f(=¢%) (=g f(=q")
= A ™ 0T e )

then

then

9 (Q\® (P\* @ P
PQ+~P—Q'— <-]3> + (5) —4-1—5—-46. (3.2.16)
Next three theorems are new.
Theorem 3.2.8. If
f(=a*)f(=4") f(=4°)f(=q")
= d = 3
Py ey e B ey )y ey
then . o 5 P\ o P
rov 5= (3) +(5) ++(3+3) .
Proof. We employ the modular equations in [15, p. 401, Entries 13 (i) and (ii)] and proceed as
in Theorem 3.2.3. O
Theorem 3.2.9. If
po LI oo JE(6")

9f(=4°)f(=¢%) 7 f(—¢°)f(~q%)’

then
P+ Q% =(PQ)* + PQ(2P +2Q + 3). (3.2.18)

Proof. To prove the theorem we employ the modular equations [15, p. 408, Entries 14 (i) and
(i1)] and proceed as in Theorem 3.2.3. a
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Theorem 3.2.10. If
_ f(=*)f(=¢") _ f(=¢°) f(=q*)
= UCr® O A )

then
P+ Q" = (PQ)*+ PQ(1 - 2P - 2Q). (3:2.19)

Proof. We employ the modular equations in the first case of (15, p. 426, Entry 19 (iv)] and
proceed as in the proof of Theorem 3.2.3. 0

3.3 Explicit values of R(q)

Recently, Yi [67] has found many explicit values of R(g) by using eta-function identities and
transformation formulas given in Theorem 1.1.3 and Theorem 1.1.4. In this section, we use

some of the eta-function identities given in Section 3.2 to find many new explicit values of

R(q).

The following relation was stated by Ramanujan [15, p. 267] and first proved by Watson

[62] \
1 (=)
—— —11-R(g) = 22 3.3.1
R (q) @) =25 (33.)
Theorem 3.3.1. (Berndt et al. [26], Proposition 2.4, Yi [67], Theorem 2.3.1(1))
For g = e~ ¥"V™/5 et

R i ) I
5v/5¢./%(—¢%)
Then 1f 2a = 5v/5s, + 11,
‘ R¥(e™ V%) = Va2 +1 ~a.
Using the transformation formula given in Theorem 1.1.3, we also have the following theo-

rem.

Theorem 3.3.2. (Yi [67], Theorem 4.2.(1)) We have
Sl/'n = I/Sn.
Yi [67] found the values of s, and sy, forn =1, 2, 3, 4, 5,7, 8, and 9. In this chapter, we

find the values of s, and s,, for n = 6, 3/2, 14, 7/2, 18, 9/2 and found some new values of

R(q) by using Theorem 3.3.1. We will use the Theorems 3 2.1 - 3.2.3 stated in Section 3.2.
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Theorem 3.3.3. (Yi [67], Theorem 4.4) We have

3 1/2 s 1/2
Bt sty ()" ()"

S4n Sn

Theorem 3.3.4. We have

1/6 1/6 1/2 1/2
S9nS36n nS4n SnS36n S4nS
() () - (o) +(s2) e
SnS4n S9nS36n S4nSon Sn336n
Proof. Setting ¢ = e~2*V™/5 in Theorem 3.2.1 and using the definition of s,, in Theorem 3.3.1,
we complete the proof. g

Theorem 3.3.5. We have

se = (V2 + 1)3(V10+3), s1/8 = (V2 — 1)}(V/10 - 3),
s3j2 = (V24 1)3(V10 - 3), sy3 = (V2 = 1}(V10 + 3).
Proof. Setting n = 1/6 and using Theorem 3.3.2, we find that
(8633/2)1/3 + (3583/2)-1/3 = 6. (332)
Solving (3.3.2), we deduce that
(ses3j2)!/® = 3+ 2V2. (3.3.3)
Thus,
(8683/2)1/6 = \/§+ 1. (334)
Again, setting n = 1/6 in Theorem 3.3.3, we find that
s \ /2 s )1/
(—') + (——) = \/5{(3633/2)1/6 + (8653/2)—1/6}. (3.3.5)
8372 83/2

Using (3.3.4) in (3.3.5), we obtain

se \'/? s \ "2
(—6—) + (-—‘—‘—) = 2V10. (3.3.6)
S3/2 S3/2

Solving for (ss/ s3/2)1/2. we find that
1/2
(—“’6—) = VI0+3. (3.3.7)
53/2

Combining (3.3.4) and (3.3.7), we derive the values of ss and s3/,. Then, the values of s,/5 and
5273 follow from Theorem 3.3.2. O
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Corollary 3.3.6. We have
. 1
RS(e~2"V/6/3) = {—261 ~ 175v/2 — 105V/5 — 7510 + \/1885 +1330V2 + 840V/5 + 594\/E} ,

]

Rs(e‘"m) =

{—261 +175v2 — 105V5 + 75V10 + \/1885 ~1330V2 + 840V/5 — 594\/F)} 1
S ——1r\/(-iﬁ _ 1
RS(e )= {261 - 175v/2 + 105v/5 + 75v10 + 1/ 1885 + 1330v/2 — 840v/5 — 59410 § ,

DI =

1
RS(e~2"V?/15) = 5 {—261 +175V2 + 105v5 — 75V10 + \/1885 — 1330v/2 — 840V/5 + 594@} .

Proof. These results follow from Theorems 3.3.1 and 3.3.5. O

Theorem 3.3.7. We have
3 {(3n34n39n536n)l/6 + (Sns4n39'ns36n)—l/6}

3 3 1/6
— (39n336n)1/ + ( SnS4n )l/ _3 (3911336n) / + ( SnS4n )1/6 +92
S9nS36n SnSdn SgnS36n

SnS4n

Proof. Setting ¢ = e~2"V ™5 in Theorem 3.2.2 and employing the definition of s, in Theorem
3.3.1, we complete the proof. a

Theorem 3.3.8. We have

S1g = (2+\/6+\/9+4\/6)3(2\/3+\/%+\/49+20\/6),

sups = (2 V6 Jorevs) (25 + VAo~ a9+ 2008).
So/2 = (2+\/6+ \/9+4\/5>3 (2\/3+\/-3_— \/49+20\/5) ,

suo = (24 V6 - \/9+4¢a)3 (20584 VB3 + /192016

Proof. Setting n = 1/18 in Theorem 3.3.7 and using Theorem 3.3.2, we find that

(51859/2)"% + (51850/2) "> — 8 ((51850/2)" /% + (81850/2) /%) =6 =10 (338)
From (3.3 8), we deduce that )
(31839/2)1/6 + (81859/2)_1/6 =4 + 2\/6. (3 3 9)

Solving (3.3.9) for (s1859/2)'/%, we obtain

(51850/2)° = 2+ V6 + /9 + 4V6. (3.3 10)
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Again, setting n = 1/18 in Theorem 3.3.3, we find that

(i@.)l/z
Sg/2
Using (3.3.10) in (3.3.11), we find that

<ig)m+<i£)”3=m@+zﬁﬁ_ (3312)

S9/2 Sg/2

-1/2
S
* ( 18) = V5{(s1850/2)"/® + (s1859/2) "/°}. (3.3.11)

S9/2

Solving this for (318/39/2)1/2, we deduce that

(ﬁi) v =2v5 + V30 + /49 + 20v6. (3.3.13)

S9/2

From (3.3.10) and (3.3.13), we derive the values of 515 and sg/2. Then the values of 5,/;5 and
979 follow from Theorem 3.3.2. O

Corollary 3.3.9. We have

(1) R"’(e's"\/'”_s‘) =Vt +1—b, where 2b=5V5s5+11,

(ii) Rs(e“/i”/(g“/g) =vV2+1—b, where 2b= 5\/531/13 + li,
(i) R(e¥"V2) = VB4 1~b, where 2b= 5\/539,2 +11,
(iv) Rs(e_2‘/§"/(3‘/3) =Vbh2+1-b, where 2b=>5V5sy+11,

where sig, 5118, So/2, and sy/9 are given in Theorem 3.3.8.

Proof. The proofs of these follow from Theorems 3.3.1 and 3.3.8. O
Theorem 3.3.10. We have

1/2 -1/2 1/6 1/6 ~1/6 1/3
s s S49n.S196n S49n s 549n5196n
(wﬁ +(m) +(QM%> %(m) +<wﬁ +%:(ml%)
Sn Sn SnS4n Sn Sn SnS4n
Proof. Setting ¢ = e"?"V™5 in Theorem 3.2.3 and employing the definition of s, in Theorem
3.3.1, we complete the proof. O

Theorem 3.3.11. We have \ '

S1a = (3+ ﬁﬁ)s (5\/§+7> ,
sine = (VI0-3) (5v2-7),
S12 = (3 + \/_15)3 (5\/5— 7) ,

- sp= (VI-3) (32 +7).




Proof. Setting n = 1/14 in Theorem 3.3.10 and using Theorem 3.3.2, we find that
(s1a57/2)"/> = 6(s1457/2)'/ =1 = 0.
Solving (3.3.14) for (s1457/2)"/¢, we find that
(31437/2)1/6 =3+ V10.

Now, setting n = 1/14 in Theorem 3.3.3 and applying Theorem 3.3.2, we find that

S14 1z S14 ~i2 1/6 ~1/6
2 + { — = V5{(s1457/2)"/® + (s1457/2)7"/}.

S7/2 S7/2

Using (3.3.15) in (3.3.16), we obtain

s 1/2 s -1/2
(—‘i> + (i) =10v2.
S7/2 S7/2
Solving this for (s14 /37/2)1/2, we deduce that

s 1/2
(—‘i) =5V2+7.

S7/2
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(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

From (3.3.15) and (3.3.18), we easily deduce the values of 514 and s7/;. Then the values of s;/14

and s,/7 follows immediately from Theorem 3.3.2.

Corollary 3.3.12. We have

(i) R3(e~2mV14/5) {\/2710525+1916530f 2 + 1212120V/5 + 857142V/10 }

— (9261 + 6475V/2 + 4095V/5 + 2925V/10),
{\/ 2710525 — 1916530v/2 + 1212120v/5 — 857142\/—}

— (9261 — 6475v/2 + 4095v/5 — 2925/10),

(i) R3(e~™V/%) =

N

(iii) R3(e~"V14/%) \/ 2710525 — 1916530v/2 — 1212120v/5 + 857142/10 }

l\')lv—l

— (9261 — 6475V/2 — 4095V/5 + 2925V/10),
(iv) RS(e~2V2I"/V3) = % {\/2710525 +1916530v/2 — 12121205 — 857142\/_}

— (9261 + 6475v/2 — 40955 — 2925V/10).

Proof. These results follow from Theorems 3.3.1 and 3.3.11.

O
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3.4 Explicit values of G(q)

We have already mentioned in Section 2.3 of previous chapter that if we know the A, or u, for
a particular values of n then we can evaluate the values of G(—e‘2”\/"_/3) or G(e"z”\/’m) by
solving a cubic equation. In this section, we find many new values of A, and pu, by using the
eta-function identities with eight arguments stated in Section 3.2.

Theorem 3.4.1. We have
fiasnld 1/6 s 1/6 s 1/2 Lo 1/2 -
( 25n 10011) + ( nHdin ) — ( n 100n> + < 4dn 25n) + 4.
HnH4n H25nH100n HanHasn Hnf100n
Proof. We set ¢ = e"2*V™/3 jn Theorem 3.2.1 and use the definition of y, in Theorem 2.3.1. O
Theorem 3.4.2. We have
po = (VB+2)(V2+1)%, po = (V5= 2)(V2 - 1)},
psj2 = (V5 - 2)(V2+1)%, pys = (VB +2)(vV2 - 1)
Proof. Setting n = 1/10 in Theorem 3.4.1 and using Theorem 2.3.2, we find that
(Mlous/z)l/3 + (N10#5/2)_1/3 = 6. (3.4.1)
Solving for (u10p5/2)1/3, we find that

(/110#5/2)1/3 =3+ 2\/5 = (\/5 + 1)2 (342)
We recall Theorem 2.3.4(i) in Chapter 2 that

3 {(/"mu“ln)l/3 + (Nmu'4n)_l/3} = :Tn + % (3-4~3)

Putting n = 1/10 in (3.4.3) and using Theorem 2.3.2, we obtain

- [ Hs /2
3 ((N10M5/2)1/3 + (p1okts/2) 1/3) =0 by (344)
Hs/2 Hip
Using (3.4.1), we deduce that
Fio B2 g, (3.4.5)
Hs/2  Hio
Solving this for pig/us/2, we find that
£ _ 94 4v5 = (V5 +2)? (3.4 6)

H5/2

Thus by (3.4.2) and (3.4.6) we easily deduce the values of p9 and psj. The values of 1)/
and py/5 then follow from Theorem 2.3.2. O
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Remark 3.4.1. Same values can also be obtained by employing Theorem 3.2.6.

Theorem 3.4.3. We have

2/
(/-1'911#3671) & =3 {(/"'n/f'4n/1'911/v“'36n)1/2 + (#nuflnﬂgnﬂ'l}ﬁn)us + (u11“4nﬁL9nU3611)l/6} .

Proof. We set ¢ = e"*"V™/3 in Theorem 3.2.4 and use the definition of p, in Theorem 2.3.1. O

Theorem 3.4.4. We have

b= VAV 4VE), = LBV2

3v3
V3 + V2
_3VA(i-V3), _ V342
H3/2 ( ) Ua/3 3\/?—’
Proof. Putting n = 1/6 in Theorem 3.4.3 and using Theorem 2.3.2, we deduce that
(u6u3/2)2/3 =9 (3.4.7)
Thus,
1
(neps2) " = V3. (348)
Again, setting n = 1/6 in (3.4.3) and using Theorem 2.3.2, we obtain
- m
3 ((u6ﬂ3/2)1/3 + (potiase) 1/3) =t B2 (3.4.9)
K372 He

Using (3.4.8) in¥(3.4.9), we obtain

Ko Bz (3.4.10)
K32 Ko
Solving this for ug/us/2, we find that
£ —542v6 = (V3+V2) (3.4.11)

H3/2

Thus, by (3.4.8) and (3.4.11) we easily deduce the values of pg and p3s2. The values of p/6
and pg/3 then follow from Theorem 2.3.2. O

Theorem 3.4.5. We have

1/6
(#9nﬂ225n)2/3 -3 (Ngnu225n)l/3 (Knttontosn hozsn) /

3 )
=3 {(lf'nﬂgnlfQSn/-’QQSn)l/z + (#n#gnuzsnuzzsn)l/ + (#nﬂgnﬂzsn#wsn)l/b} .

Proof. We set ¢ = e~*"V™/3 in Theorem 3.2.5 and use the definition of i, in Theorem 2.3.1. 0O



Theorem 3.4.6. We have _
o= 222 (V54 v3) (3v3+5) VB +2,

p}/xs=$(ﬁ—\/§> (3\/5—5) \/\/5-—2,

Psyz = 1 (\/5-*— \/5) (3\/3.4-5) \/\/5_-*2,

6v/3
#3/5=i——\2/§(\/5—\/§) (3\/5'—5) \/\/5+2.

Proof. Setting n = 1/15 in Theorem 3.4.5 and using Theorem 2.3.2, we find that

(ﬁa)m_3(ﬁgyN=g
Hs/3 H5/3
Solving for (115/uss3)'/?, we find that
(ﬁayﬂziﬁii@
Hs/3 2

Now, from Theorem 2.3.4(iii), we note that

!

3 {(tnpizsn)® + (fnpiasn) V?} +5 = (ﬁzﬂ’-)w - (-"L) 7

Bn
Setting n = 1/15 in (3.4.14) and using Theorem 2.3.2, we deduce that

ms \? Hs/3 13 12 =172
3 { (__) + (—) } +5= (Hlsﬂs/B) - (“15“5/3) :

Hs/3 Bis

Ha5n

Using (3.4.13), we obtain
(#15#5/3) Vi (u15,u5/3)_1/2 =5V5+09.
Solving this for (p15p5/3)1/2, we find that
) 9+ 5v3 + 5v5+ 3V15
= 5 )

(/115#5/3
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(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

Thus by (3.4.13) and (3.4.17) we easily deduce the values of (5 and pusj3. The values of y, 45

and p3/5 then follow from Theorem 2.3.2.
Theorem 3.4.7. We have

6 1/2 1
<p49n/‘196n>‘/6+ < Hnlldn )]/ - (#47.114%) / + (#nﬂwsn) 12
Hnlian Hagnfl196n fniiigen Hanftaon

fanttson \"® [ tnttrsen )70
4 < an 49n) +< n ]96n> ‘
Hnlt196n Hanfa9n

d
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Proof. We set g = e~2*V™3 in Theorem 3.2.8 and use the definition of y,, in Theorem 2.3.1. O
Theorem 3.4.8. We have

e = (V3 + V22 (2V2 + V7), s = (V3 = V23 (2v2 - V),
Hrz = (V3+v2)32v2 - V), payr = (V3 — V2 (2V2 + V7).
Proof. We put n = 1/14 in Theorem 3.4.7 and (3.4.3) and proceed as in the proof of Theorem

3.4.2 to complete the proof. ]
Theorem 3.4.9. We have '

3 {(unmnuzsnuwon)l/ ® + (Bnbtanbasntioon) 6}
1/2 1/2 1/6 1/6
_ (#m#m()n) + ( Pinizsn ) _4{(u4nﬂloon) + ( Fon 251 ) }
Hnfi2sn HKanfi100n Bnlé25n HanHh100n
Proof. We set q = e'z"\/"/—a in Theorem 3.2.7 and use the definition of y,, in Theorem 2.3.1. O
Theorem 3.4.10. We have

1 3
oo == (\/5+ \/5) (29+ 13\/5) p1ym = 4\/ (f \/‘) (13\/5~29)
1 3
b= 17 (V5-v3) (29+13V5)  pays = 4\[ (V5+ f) (13v5 - 29)
Proof. By setting n = 1/20 in Theorem 3.4.9 and (3.4.14) and proceeding as in the proof of
Theorem 3.4.2, we complete the proof. 0

Theorem 3.4.11. We have

(nb1210)2 + (ttantiasan)'® = V3 (tnprantirzinasen)'”>
+ (i hanfirz1nfhagan) ° {2 (knpt121n) 8 + 2 (pranpiasan)/® + \/5} .

Proof. We set g = e"2"V™3 i Theorem 3.2.9 and use the definition of y,, in Theorem 2.3.1. O
Theorem 3.4.12. We have

/ =\ 3 3/2
u22=(\/§+‘/1—“; 2\/53_2) (6+\/3—3+'\/68+12\/§)/,
\/_+\/——\/—_

3/2

6+\/3_— 68 +12v33|

Hij2 =

Hiye = (‘/_+‘/__“ ) 6+\/§-_3+\/68+12\/3—3)3/2,

\/_+\/_+\/—— 6+\/3_-— 68+12\/3—3>3/2.

H2/1y =
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Proof. By setting n = 1/22 in Theorem 3.4.11 and (3.4.3) and proceeding as in the proof of
Theorem 3.4.2 we complete the proof. 0

Theorem 3.4.13. We have

= <3+\/§+\/8+6\/§
“- 2

3 1/2
) (31020 +17910V3 + \/1924544699 + 1111136400\/5) ,

3 1/2
— V8
Pajas = (3 +v3 > + 6‘/5) (31020 +17910v/3 — \/ 1924544699 + 1111136400\/5) :
3 1/2
—V8+6
pje = (3 +V3 > + ¢§) (31020 +17910vV3 + \/ 1924544699 + 1111136400\/5) :
3 1/2
V8+6
B = (3 * ‘/§+2 ha \/5) (31020+ 17910v/3 — /1924544699 + 1111136400\/5) .
Proof. By setting n = 1/11 in Theorem 3.4.11 and using Theorem 2.3.2, we deduce that
1/6 1/6
(’i‘) + (’—‘M) =3+ V3. (3.4.18)
H11/4 Haa

Solving (3.4.18) for (pas/p11/a)"’®, we find that

(u« )1/6=3+\/§+\/8+6\/§ (3.4.19)
Hi1/4 2 ) .
Now , we recall from Theorem 2.3.4(v) in Chapter 2 that
9v3 ((#n#lzln)s/s + “_1—56) +99 ((#n#lzln)2/3 + —1“—3)
(#nlllzln) / (Bnti121n)¥
1 1
+198\/§( n ,.1/’+————)+759( n ,,‘/3+———>
(u faat ) (ﬂ'nunln)l/z (l‘l‘ faz ) (Ilr\/~l'12lrx)1/3
1 n n
+693v3 ((unumn)‘/“ + —16) +1386 = (“‘2‘ ) + ( K ) . (3.4.20)
(ﬂn#lZln) / Hn Hi21in

Setting n = 1/44 in (3.4.20), we arrive at

5/6 5/6 2/3 2/3
9\/5(( K44 ) " (l‘ll/«i) ) +99 (( K44 ) " (Nn/4> )
Hi/4 Haa H11/4 Hay
1/2 1/2 1/3 1/3
+198v3 ( Had ) + (——“”’4) + 759 (——“‘“ > + (””“)
K134 Hag Hi1/4 Hag
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1/6 1/6
+693\/§ (( Has ) + (M> > + 1386 = Baatirnys + . (3421)
Hi1/4 Lag Haalb11/4
Using (3.4.19) in (3.4.21), we find that
Paatinn/e + =60 (1034 + 597\/5) . (3.4.22)
Baaftr1/4
Solving (3.4.22) for pieqp11/4, we deduce that
1/2
Baapirnye = 31020 + 17910vV3 + (1924544699 + 1111136400\/5) . (3.4.23)

From (3.4.19) and (3.4.23) we deduce the values of 144 and p11/4. The values of /44 and pam
then follow from Theorem 2.3.2. : O

Theorem 3.4.14. We have
(ﬂ169n)1/2+ (#676»)1/2 - (#169nﬂ676n)1/3+ (/‘16971/16761:)‘/6
n Man Hnlhan Hnfan
6
xd1-2 (“16%)1/ -9 (ﬂ67sn)1/2 '
Hn Han

Proof. Weset ¢ = e2"V™3 in Theorem 3.2.10 and use the definition of y, in Theorem 2.3.1. O

Theorem 3.4.15. We have

liag = (3+2\/§.)3 (\/56+5),

s = (3~ 2\/5)3 (v26-5),
phaj2 = (3 + 2\/5)3 (\/56 - 5) ,
w23 = (3 - 2\/5)3 (\/56+ 5) .

Proof. By setting n = 1/26 in Theorem 3.4.14 and (3.4.3) and proceeding as in the proof of
Theorem 3.4.2, we complete the proof. a

Theorem 3.4.16. We have
(Agn/\225n)2/3 - 3 (Agn’\225n)l/3 (/\n’\gnAZSn/\225n)l/6
=3 {(/\n/\gnf\l’in/\225n)1/2 + (’\n)\gn’\25nA225n)1/3 + (/\n/\gn)os"/\nsn)l/e} .

Proof. We set g = —e~"V™/3 in Theorem 3.2.5 and use the definition of A, in Theorem 2.3.1(i).
a
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Theorem 3.4.17. We have

no = 202 (VB v3) (3v3+5) V-2,
+v3

)\1/15=6—\1/§(\/5 ) (3v3-5) VB +2,
,\5/3=6—\1/§(\/5—\/§) (3\/§+5> VV5+2,
3V3

Ayjs = 23(\/5+\/:§) (3v3-5)yvE-2.

Proof. Setting n = 1/15 in Theorem 3.4.16 and using Theorem 2.3.2, we find that

A 2/3 A 1/3
(—‘5-) +3 <—15> =9. (3.4.24)
As/3 As/3 ,

Solving for (/\15//\5/3)1/3, we find that‘

ALs )1/3 3(vV5—1)
= . 3.4.25
(32 2 (3.425)
Now, by {24, p. 278, Theorem 4.3], we note that
s e s\ V2 A\ 172
AN Dasn) Y =5 = (2B} _ ([ e . 4.
3{(Aatasn)® + (Andasn) ™%} = 5 < " > (/\25”) (3.4.26)
Setting n = 1/15 in (3.4.26) and using Theorem 2.3.2, we deduce that
Ao\ 1/3 Ao 1/3 )
3 (—“"-) + (i/s-) —5=(Ashssa) " = (Aishsss) 2 (3.4.27)
As/3 A1s
Using (3.4.25) in (3.4.27), we obtain
(/\15/\5/3)1/2 - (/\15/\5/3)_V2 =5V5-9. (3.4.28)
Solving (3.4.28) for (A1sAs/3)*/?, we find that
5—v3)(3v3
(/\15/\5/3)1/2 = (v5 \/_;( V34 5). (3.4.29)

Thus, by (3.4.25) and (3.4.29), we deduce the values of A\;5 and As/3. The values of A5 and
Az/s then follow from Theorem 2.3.2. O
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3.5 Ramanujan-type series for 1

The new values of the parameters A,, and p, evaluated above are connected to Ramanujan’s
cubic theory of elliptic functions and lead to some new Ramanujan-type of series for 1/7.
In his famous paper [53], “Modular equations and approximation to 7,” Ramanujan offered

17 beautiful series representation for 1/7. He then remarked that two of these series

o0 1 1 2 m
_2_77; _ 2_:0(2 + 15m)(2)M((T:;l)!')';(3)m (%) (3.5.1)
and

“belongs to the theory of ¢q;,” where

om o F1 (3,211 - kz))
V3 2Fi(5,3:1,k%)

Ramanujan did not provide details of his proofs of (3.5.1) and (3.5.2).

g2 = €Xp ("

Ramanujan’s formulas for (3.5.1) and (3.5.2) were first proved by J. M. and P. B. Borwein
[33, p. 186] by establishing a gener/al theorem. The following version of that theorem is due to
Chan and Liaw [40].

Theorem 3.5.1. (Chan and Liaw [83, p. 186]).Let

- 12 oy . GK(@)
K(z):= Fy (3,3,1,x>, and K(z):= et
For a positive ratronal number n, define the cubic singular moduli to be the unique number an
satisfying
K(l-an)
O V. (3.5.3)
Set
3v3 » 3 K (o)
€ = o n - son(l—ap)——<~an |, 5.4
(n) = S22 (K (an) w‘z(zu o) (35.4)
Uy = 8—9\/—§ (e(n) — Vnan), (3.55)
and

b, = 2\{33—71 Vv1-H,, (3.5.6)



A7

where
/In = 4”11(1 - ”n) (‘ 5 7)
Then - 1 .
! - (_)m(_)(_)m
- = .4 b, APEAMAR EAN TALS 158
- ;)(n ) i (158)

The above theotem indhicates that for each positive rational number n, we can casiiy derve
a series for 1/m belonging to the “theory of ¢,” 1if the values of a, and z(n) (the rest of
the constants can be computed from these) are known. The computation of these constants
for any given n 1s far from tnivial Using cubic Russel-type modular equations (see {39]) and
Kronecker’s Limit Formula, Chan and Liaw [{40] discovered new series for 1/m belonging to

)

the “ theory of g, ” They also established some new formulas satisfied by £(n) which lead to

the calculation of the constant a, in (3 58) They established the following theorem for the
calculation of a,

Theorem 3.5.2. (/39 p 225, Corollary 2 7 |)With a,, and H, defined in Theorem 351 we
have

H, dm
23 da

where oy, 15 related to Ramanathan’s parameter pu,, defined as in Theorem 2 3 1, by

(1 - an)an)v

Qp =

1
— =42 +1 (359)
Qn

dm
If p and g are positive integers and n = pq, then the constant —d—(l — an @,) can be
o

calculated by employing (3 5 10) below, which 1s also due to Chan and Liaw (39 p 226 |,

provided we have modular equations of degrees p and ¢ and the singular moduh a,, and a4,

i{%ﬂ(l = Qg Opg) = ’”V(Orl/m(‘w)%(l = Oy Qqzp) + Mgl =0y ”q/p)% %(“q p Q)
(3510)

Chan and Liaw [39] calculated the constants a,, b, and #H, foo n=2 5 7 10 11 11 19 20

SL 31 59 35 55,70 91 [10, 119, 119, 151 and 455 We note that the mumbers which are

multiples of 3 e nussimg above This 1s probably due to the non avatabilits of cubie modula
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equations of degree 3 and the corresponding values of a,,. In the next section, we establish two
new cubic modular equations of degree 3, which then combined with some other cubic modular
equations of prime degrees and the values of y,, can be applied to find some new values of the

constants a,, b,, and H,. These values and (3.5.8) will lead to some new series for 1/7.

3.6 Cubic modular equations of degree 3

We recall from Chapter 1, the cubic theta-functions

_ Pl-q) 3PP

b(q) - f(_q;;)’ C(Q) - f(_q) ’ . (361)
and ,
_ [ £2(=q) + 279~

R e e (362)

Also, the transformation formulas [17, p. 101-103] for the above three cubic theta-functions are
a(g) =z, b(g) = (1 —a)'z, and c(q) = 'z, (3.6.3)

where z =,F (},%;1;a).
Theorem 3.6.1. We have
3[31/3

- (1-a)F |

~ Proof. (i) By Entry 1(iv)[15, p. 346], we have

Pe) _ =g\
1+ 9q ) (1 + 27q 72(=q) ) . (3.6.4)

Cubing both sides of (3.6.4) and then employing (3.6.1) and (3.6.2), we obtain

(i) m=

b(q) + 3c(q®) = alg). (3.6.5)
Transcribing (3.6.5) with the help of (3.6.3), we find that
" (1- a)'/sz, +38'3z = 2. (3.6.6)

Setting m = z;/z3 and simplifying (3.6.6), we finish the proof.
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(i) We rewrite the identitty in Theorem 2.2.2 as

. 3 6
(LM)® + (-L%) = (%) -9, (3.6.7)
where f(=a) J=¢)
_ —q __f(=q
S M MRy
Employing (3.6.1) in (3.6.7), we find that
3b(q) 3b(¢%)
L= d M* = : 6.8
Zr ) (368)

Using (3.6.3) in (3.6.8), and then simplifying for (LM)* and (M/L)®, we obtain

(LM)? = 392 ((—IW)W and (A—Z)S _ (H)lﬂ. (3.6.9)

Combining (3.6.7) and (3.6.9), we complete the proof of (ii). a

Remark 3.6.1. From (3.6.8) and (3.6.9), it is clear that if we have eta-function identities of the
type :
g(Pi Q) =0,
where (=) f=q")
—q —q
I I T )

then we always have a cubic modular equation of degree n. Similarly, we can obtain cubic
“mixed ” modular equations from the eta-function identities with eight arguments of the type:

9(P,Q) =0,
where
__ f(=9)f(=¢") i Q= f(=¢")f(=¢")
72 f(=a*) f(=q%) 2 f (=) f(=g*)
where p and n are positive integers. For examples, Theorems 3.2.7-3.2.10 give cubic “ mixed "mod-
ular equations for the sets of degrees {1, 2, 5, 10}, {1, 2, 7, 14}, {1, 2, 11, 22}, and { 1, 2, 13,
26 }, respectively.

By adopting the method of Chan and Liaw [39], employing the cubic modular equations
and the corresponding new values of u,, we can obtain the new values of the constants a,, by,

and H, for n = 3, 6, 15, and 22. For example, we obtain

_r {72734 2B/3 - 10m? — 6/3m® + k}
as = m8(22/3 — 2m)? '

where 7 = 2v/3(3 + 2v/3), m = (5 + 3V3)!/3, and k = (104 + 60v/3)%/3

b 2(4 + 3V3) 9.+ 6v/3

S—W, and H\;=m




Chapter 4

Explicit Evaluations of
Ramanujan-Selberg Continued Fraction

4.1 Introduction

Let ¢(q) and ¢(q) be defined as in (1.1.3) and (1.1.4). For |¢| < 1, Ramanujan-Selberg continued

fraction Z(q) is defined by

1/8 1/8 2 3
_9™e) _ 4" g q q lql < 1. (4.1.1)

Z(q) :
@ #(q) 1 +1+g,1+¢*,1+4%, .

This continued fraction was recorded by Ramanujan at the beginning of Chapter 19 of his
second notebook [15, p. 221]. The equality in (4.1.1) was proved by Ramanathan [48].
Closely related to Z(q) is the continued fraction H(g) [59, p. 82], defined by

7/8 2 3 4

f(=9) s _ 4 q q q :
Hia) = — /8 _ , 412
@ I R P ey I S (4.12)
By [15, p. 115, Entry 8(xii)] and (4.1.2), we find that
¢(-a*)
H{qg) = ——7=. 4.1.3
9= gcg) (413)
Also, employing (1.1.4) and [15. p. 37, (22.4)], we have
(4 9%)oo
H(q) = —7———. 41.4
(@) 7'%(~4% ¢%)oo (4.14)
Again, for |g| < 1, define
2 3 2, 4
Ng)=1+4 418 & T 79 (4.1.5)
1+ 1 +1+ 1 4
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In his notebook (54, p. 290], Ramanujan asserted that

(=9:0%)oo
N(q) = ———. (4.1.6)
(4% %) w
This formula was first proved in print by A. Selberg [58].

In his lost notebook, Ramanujan [56, p. 44| also stated that, if |g| < 1 and

l1+q9 ¢ qg+¢® ¢
_ ) q 41
L(q) T T T LT, (4.1.7)
then
2
—q;q
o) = (i (418)

From (4.1.1) and (4.1.5) - (4.1.8), we easily see that

q1/8 B q1/8 B ql/S(_qz;qz)oo

20= 3 "1~ o (19)
By setting
T(q) := gllﬁ+—_1—(1-+—_il+—q2+_qu+ , (41.10)
we also note that
i) = q\/8 ¢ g3 (—g% ¢Y)en i)

NEe) L) (@6
In Sections 4.3-4.5 of this chapter, we find several modular relations connecting the above
continued fractions in different arguments.
We observe that Vasuki and Shivashankar [59] had found explicit values of H (e=™V?) forn =
3,1/3,5,1/5,7,1/7,13 and 1/13 by using eta-function identities and transformation formulas.
In this chapter, we also find several new explicit values of H(e~™v") by using the parameter

Jn, defined by

f(_q) -ry/n
Jn = ———’ =
Vaghf(—g) 1T °

where n 15 any positive real number We to note that the parameter J, is equivalent to Yi’s

(41.12)

bl

parameter r;,n defined in Chapter 1. In Sections 4.6 and 4.7, we evaluate several explicit values
of the parameter J, and the continued fraction H(e ™V™), respectively. In Section 4.8, we

establish general formulas for explicit evaluations of Z(e ") and Z(e~™/V™) in terms of the
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parameter ri,. We also give some particular examples. Previously, Zhang (70, p. 11, Theorems
2.1 and 2.2}, established general formulas for explicit evaluations of Z(e~"v%) and T'(e”"v") in
terms of Ramanujan’s singular moduli. In fact, he proved that

1/8
an/

and
o 1/8
T(q) = —\}—5 (1—_-_"7') , . (4.1.14)

where ¢ = e=™V" and the singular modulus ay, is that unique positive number between 0 and 1
satisfying
Ja= oFi (3,411 - o)
2F1 (3,31 0)
Remark 4.1.1. In [70], Ramanujan-Selberg continued fraction was denoted by S;(g). In this
thesis, we use the notation Z(g) for S;(g) .

4.2 Some eta-function identities and modular equations

In this section, we record some eta-function identities and modular equations which will be
used in the subsequent sections of this chapter.

- Theorem 4.2.1. (Y1, [66, p. 36, Theorem 3.5.1]) If

__f(-9 _ _f(=4)
P—ql/sf(—fr‘) and 4 g4 f(—g8)’

L 4t (Q 12 Q\* P4
(PQ) + 1—35 = (F) - 16 <F> - 16 (5) . (4.2.1)
Theorem 4.2.2. (Y1, [66, p. 37, Theorem 3.5.2]) If

() RN O
P=rf=q ™ O @Ry

then

then s 0 ) P\ 2
v (8) ()"



Theorem 4.2.3. (Yi, [66, p. 38, Theorem 8.5.8]) If

__f(=9 _ J(=¢")
P_q”sf(—q“) and Q a3 f(—q*°)’

oo (52) - (8)-+(3+5) - &)

then

Theorem 4.2.4. (Berndt, [15, p. 230, Entry 5(ii)]) If B has degree 3 over a, then

(@B) + (1~ o)1~ B) = 1.
Theorem 4.2.5. (Berndt, [15, p. 282, Entry 13(xv)]) If B has degree 5 over a then

(a-5) +#(2-3)=+(>-3)
where P = (aB)Y* and Q = (B/a)'8.
Theorem 4.2.6. (Berndt, [15, p. 314, Entry 19(i)]) If B has degree 7 over a, then
@)+ (1 -a)1- B =1.
Theorem 4.2.7. (Berndt, [15, p. 369, Entry 7(i)]) If B has degree 11 over a, then
(@B)* + {(1 - a)(1 - A} +2{160B(1 = a)(1 — A/ = 1.
Theorem 4.2.8. (Berndt, [17, p. 387, Entry 62)) Let P, Q, and R be as defined by
P=1-+af-/([1-a)1-5),
Q=64 (Vofi+VI- )i -5 - VaB(l- )1 -§)),

and

R =32v/aB(1 - a)(1 - 0),
respectively. Then, if 3 has degree 13 over a,
VP(P? + 8R) — VR(11P* + Q) = 0.
Theorem 4.2.9. (Berndt, [17, p. 385, Entry 53]) If
| P=1+(af) +{(1- )1~}
Q=4((aB)® + {(1 - o)1 - B}'/® + {aB(1 - 2)(1 - B)}'®),

and
R =4{aB(1 - a)(1 - B)}'/2.
Then, if 3 has degree 15 over ¢,

P(P*— Q)+ R=0.

53

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)
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Theorem 4.2.10. (Berndt, [17, p. 387. Entry 62]) Let P, Q, and R be as defined in Theorem
4.2.8, then, of B has degree 17 over «,

P® — R'3(10P? + Q) + 13R**P + 12R = 0. (4.2.10)
Theorem 4.2.11. (Berndt, [17, p. 386, Entry 58]) Let,

P=1-(af)* = {(1-a)(1 - B},
Q =16 ((aB)* + {(1 = &)1 — B)}* — {aB(1 - a)(1 - B)}'/*),

and
R = 16{af(1 — a)(1 - B)}/*.

Then, 1f B has degree 19 over «,
P’ - 7P’ R—-QR=0. (4.2.11)
Theorem 4.2.12. (Berndt, [15, p. 411, Entry 15(1)]) If B has degree 23 over «, then
(@B)® +{(1 = a)(1 = AP/ + 2P {aB(1 — a)(1 — B)}/* = 1. (4.2.12)

Theorem 4.2.13. (Berndt [17, p. 385, Entry 54]) Let P, Q, and R are as defined in Theorem
4.2.9. If B has degree 81 over a. Then

P*-Q=+VPR. (4.2.13)

4.3 Relations between H(q) and H(q")

In this section, we state and prove some relations between H(q) and H(q").

Theorem 4.3.1. We have
16 16
. ___ 1 d (i __ 1
W o=y ™ W = grmey
where § has degree n over a.

Proof. We apply Entry 12(ii) and (iv) (15, p. 124] in the definition of H(q) in (4.1.2) to complete
the proof. 0

Theorem 4.3.2. We have

. —16 .. —16
(i) a= and  (ii) /szT(——(E’

where (3 has degree n over ¢.

Proof. We replace g by —q in the definition of H(g) and then employ Entry 12(i) and (iv) (15,
p. 124] to at arrive at the desired result. O
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Remark 4.3.1. By Theorem 4.3.1 and for any given modular equation of degree n, we can obtain
a relation between H(q) and H(q"). In the following theorem, we illustrate this with n =3, 5,
and 7 in (ii1), (iv), and (v) respectively.

Theorem 4.3.3. Leta = H(q), b= H(—q), c= H(q?),u = H(¢®), v = H(¢%), andw = H(q").
Then we have

(i) a®+8®+16 =0,

(i) 256a8 + 16a'® + 16a%c% + a'®c® — ¢! =0,

(iii) a* — dau — a®u® +ut =0,

(iv) a® — 16av — 5a%*v® — 5av* — a®v® + % = 0,

(v) a® - 64aw — 112¢°w? — 112a3w® — 70a*w? — 28a%w® — 7a%uw® + a"w” + w® = 0.

Proof. From Theorem 4.3.1(i) and Theorem 4.3.2, we easily arrive at (i). To prove (iii)-(v) we
employ Theorem 4.3.1 in Theorems 4.2.4, 4.2.5, and 4.2.6, respectively. We note that (ii)-(iv)
can also be proved by employing Theorems 4.2.1-4.2.3. O

4.4 Relations between Z(q) and Z(q")

Theorem 4.4.1. We~ have

16T%(q)

(l) a = 1628((]), (ll) ,8= 16Z8(qn), and (ll]) a = H—IGTB(E)-
where 8 has degree n over a.

Proof. To prove (i) and (ii), we employ Entry 10(i) and Entry 11(i) {15, p. 122-123] in the
definition of Z(q) in (4.1.1). Proof of (iii) follows easily from (4.1.14). O

Remark 4.4.1. For any given modular equation of degree n, we can easily obtain the relations
connecting Z(q) and Z(g¢") by using Theorem 4.4.1. We give some examples in the following
theorem.

Theorem 4.4.2. Let U = Z(q), V = Z(¢®), W = Z(¢*), and X = Z(q"). Then, we have

(i) U*-UV+4U°V?-V*=0,
(i) U®—UW +5U*W? - 5U?W* 4 16U°W° — W® =0,
(iii) U+ X8 —UX +7U2X2 - 28U3X3 + 70U X4 — 11205 X5 + 11205 X6 — 6407 X7 = 0.

Proof. Employing Theorem 4.4.1 in Theorems 4.2.4 - 4.2.6, we readily deduce (i)-(iii), respec-
tively. a
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4.5 Relations connecting H(+q), Z(q) and T'(q)
Theorem 4.5.1. Let u = H(q), = = H(~q), U = Z(q), and y = T(q). We have
(1) «*U®+16U% -1 =0,
(i) 282 +1=0,
(i) w=,
(iv) 288 + 168 +1=0.

Proof. (i) follows from Theorem 4.3.1(i) and Theorem 4.4.1(i). To prove (ii), we use The-
orem 4.3.2(i) and Theorem 4.4.1(i). To prove (iii), we employ Theorem 4.3.1(i) and Theo-
rem 4.4.1(iii). Finally, employing Theorem 4.3.2(i) and Theorem 4.4.1(iii), we easily arrive at
(iv). O

4.6 Theorems on J, and explicit values

This section is devoted to establishing some general theorems for the explicit evaluations of J,
and find some of its explicit values.

Theorem 4.6.1. If J, is defined as in (4.1.12), then we have

1
J1 =1 and 'Jl/n = I
Proof. Follows diréctly from Theorem 1.1.3 and the definition of J,. a

Theorem 4.6.2. We have

. ‘ 1 A 12 Jun 4 7. 4
(l) 16 ((JnJ:in) +——(JnJ4n)4)= '—4;> —16 —J—n- —16 In N

) 1\ _ (Jon), [ In)
(i) 2 <JnJ9n+ JnJ9n> = <Jn) + <J9n) .

1 J25n 5 J25n Jn JTL 3

(et o) = () -5 (5) - (3) + (32)
(nl) (( 25) (Jn']‘?.Sn)2 Jn 'Jn J25n J25n
(

Proof. Employing the definition J, in Theorems 4.2.1-4.2.3, and 4.2.6, we complete the proof
of (1)-(iv), respectively. O




Theorem 4.6.3. We have
1/8
(i) Jy =28 (1+\/§) ,
1/4
(i) Ja=(2+v3)",
(i) Jo =2 (1+ \/5)1/4 ,

@) o= (1 VB V204 B)

) Jr=(8+ 3\/’7')1/4,

1 1/4
(vi) J9=—+§—-— Vi

2T T

2
(vili) Jp = i (\/4+\/'—1+\/21+8\/7+\/\/’7+\/21+8\/’7)
(ix) Jg=2Y4 (1 + \/5)3/8 (4+ V2+10v2 )lls.
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Proof. First we set we set n=1/2,1/3, 1, 1/5, 1/7, 1, 1, and 1 in Theorem 4.6.2(i), Theorem
4.6.2(ii), Theorem 4.6.2(i), Theorem 4.6.2(iii), Theorem 4.6.2(iv), Theorem 4.6.2(ii), Theorem
4.6.2(iii), and Theorem 4.6.2(iv), respectively, and then simplify by using Theorem 4.6.1. Solve

the resulting polynomial equation equations, we readily arrive at (i)-(viii).

Setting n = 2 in Theorem 4.8.3(i), employing the value of J, in (i) and solving the resulting

equation, we deduce (ix).

a

Remark 4.6.1. From Theorem 4.6.1 and the above theorem, the values of J, for n =1 /2, 1/3,

1/4,1/5,1/7,1/9, 1/25, 1/49, and 1/8 also follow immediately.

Theorem 4.6.4. We have

(i) Js=re6= (1 + \/5)3/8 (2(1 e \/6))1/8’

1+ vB)*”* (2+3v2+v5)""

(i) Jio= 5

1/2 1/8
(ifi) Jig = 28 (1 + \/5) (16 +15- 2744 12v24+9.24)

(v) e =2 (V3+v2) (1+35v2-28V3) v

(v) Jss = (

V3+ 1) (-vE+ 4+ 23+ 334 (VB4 1)) (14 VB4 V3. 3y
035/48 (\/§—\/§)1/3 (\/5_1)5/12 .
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Proof. First we recall from [66, p. 14, Corollary 2.1.5(i)] that

Tk3,n = TknkTkn/k- (4-6-1)
Setting k = 2 and n = 6 in (4.6.1), we obtain

Ti6 = T212 " T23 (4.6.2)

Now, from Section 1.3, we recall that

T23 = (1 + \/5) v and 13,2 = (1 + \/5)5/24 (2(1 +V2+ \/(-5))1/8.

Substituting these in (4.6.2), we complete the proof of (i).
The proofs of (ii)-(v) can be given in a similar fashion. O

Remark 4.6.2. By using Theorem 4.6.1 and the above theorem, we can easily evaluate J,, for
n =6, 10, 16, 18, and 36.

Theorem 4.6.5. We have

1+ +1—4a® /4
(i) Ju= (T) )

T 15 (19+3v33)"°
'UIheTe a——T+E(38“6\/3_3) +T22/'§——,

1/4
(i) Jiz= (18+5Ji§+6\/18+5\/1_3) ,

_ [16+V3(7+V5) e
(111) ']15_( 7_3\/5 ) »

1/4
2
2+ \/4 —4 (20+ 5v17 — 21/206 + 50\/1—7)
(IV) J17 =
40 + 10v/17 — 44/206 + 50/17
1/4
Jro = 14+ v1—4k?
(V) 19 — 2k2 )
1/3 1/3
where k= — (_zo + (2944 - 384\/5—7) +4 (46 + 6\/5_7) ) :
24

) 14 V1 —4n% e

O) T =~ ) >

where n =

1/3
+ 1 (s0-oves)" 4 L2V

-1
3.21/3 3.92/3 ’
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) 1+ vI—ad\ "
(vii) Jgy = —og ;

1/3
1 1(-27+3v93 1
where d=—+6 — - 75
2 22/3 (~27 + 3/93)

Proof of (i): Using the definition of J, in Theorem 4.3.1, we find that

1 1
= d = 4.6.
@ 1+ J8 and § 1+ I8, (4.63)
where 8 has degree 11 over a.
Setting n = 1/11 in (4.6.3) and simplifying by using the Theorem 4.6.1, we find that
a=J83, f=——, l-a=4, and af=JF (4.6.4)
1+ J3
Substituting (4.6.4) in Theorem 4.2.7 and simplifying, we obtain
2(J48) + 2B (4B -1 =0, (4.6.5)
Solving the above polynomial equation for real positive a := (Jflﬁ)l/ 6, we obtain
3 1 13 (19+3v33)"”°
= ——+=(38- : 0.
a=-"+z(38-6vVE)  + =5 (4.6.6)
Then, from (4.6.4) and (4.6.6), we arrive at
abJP - Jf +a® =0, (4.6.7)

Solving (4.6.7) for Jy;, we complete the proof of (i).
Similarly, we can prove (ii)-(vii) by using the definition of J, in Theorem 4.3.1, setting
n =1/13, 1/15, 1/17, 1/19, 1/23, and 1/31, in turn, and then appealing to the Theorems

4.2.8-4.2.13, respectively.

Remark 4.6.3. By Theorem 4.6.1 and the above theorem, the values of J,/, for n =11, 13, 15.
17, 19, 23, and 31 can also be found easily.

4.7 Explicit values of H(q)

In this section, we establish a general formula for the explicit evaluation of H (e ™v™) and find

some explicit values by using the particular values of J,, evaluated in the above section.
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Theorem 4.7.1. We have
, H(e™™™) = v2,.
Proof. The proof follows directly from the definitions of H(q) and J,,. a

Theorem 4.7.2. We have
(i) H(e_ﬂ) = \/5’

() He™?) =25 (14v2)"

(i) H(e™%) = V2 (2+ \/5)1/4

(v) H(e™) =25/ (14 V)",

(v) H(e™") = <1+\/_+\/_ 1+ v8) ,
) B = V3 (s43v) ",

. Lsmy 1+ V2V3+ VB
(vii) H(e™®") = 7 ,

ey 3+ V5+ V5 + V5
(viii) H(e ) = 7 ,

2
(ix) H(e—7w)=%ﬁ(\/;1—}-\/'7-1-\/214-8\/74-\/\/'7'5"\/214-8\/’7) ,
(x) H(e V%) = 2% (1+\/_) <4+\/2+10x/§)1/8.

Proof. Employing the value that J; = 1 in Theorem 4.7.1 we arrive at (i). To prove (ii)-(x),
we employ the values of J, from Theorem 4.6.3 in Theorem 4.7.1. O

Remark 4.7.1. From Theorems 4.6.1 and 4.7.1, it is obvious that

H(e™™ V™ = Va2, = ‘f (4.7.1)

So by employing the values of J, from Theorem 4.6.3 in (4.7.1), we can easily evaluate H (e~"/V")
forn=2,3,4,5 7,9, 25, 49, and 8. For examples,

H(e™™/?) = 2%/16 (\/5—1)1/4, H(e ™3y = <1+¢5_\/§m>1/ﬂ

H(e""/7)=2—\1/§ (\/;r V741214 8V7 - \/?/7+\/21+8\/?> .

and
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Theorem 4.7.3. We have
() He™®) = VA1 + V2 (20 + V2 + s/G))’/s,
1+ 8 2+3v2+ vB)'*
7 ,
(iii) H(e") = 27/8 (\/5 + 1)1/2 (16 +15-2"4 + 122+ 9. 23/4)1/8 ,
(iv) H(e3?) = 25/8 (\/ﬁ + \/5) (1 +35V2 ~ 28\/5)1/8,
(V3+ 1) (V2 +4+2V3+ 34 (V3+1))" (1 + V3+ V3. 34)"
248 (V3 - D) (V2 - 1) |

Proof. We use the values of J,, from Theorem 4.6.4 in Theorem 4.7.1 to complete the proof. 0

(i) H(e™™) =

(v) H(e™) =

The values of H(e=™/V") for n =6, 10, 18, and 36 also follow from Theorem 4.6.4 and (4.7.1).
Theorem 4.7.4. We have

— 13 1/4
O Her™ = V(R
1/3 1

2 s (19+3v33)"°
where a = -——3~+6(38—6\/—3§) +———m3-———~,

1/4
@) HEe™5) =2 18+5\/1"§+6\/18+5\/i§> ,
(6 \/3 (54 + 145 v
1
(i) H(e-"““g)=\/§( HysBr ‘O) ,

7 ~3V5

1/4

2
2+,/4—-4(20+5\/ﬁ—2 206+50\/i—7)
40 + 10v17 — 44/206 + 5017

(v) He ™) = V2

(v) He ™™ =2 (ﬂ>1/4,

2k2
1 1/3 1/3
where k = — (—20 ¥ (2944 - 384\/5_7) +4 (46 + 6\/5—7) ) :
24
1+ vI—aniz\"*
(Vl) H(e—ﬂ\/2_3) —_ \/5 (——t——l_ﬁ__’,}—> R
2n
1/3
-1 1 13 (25+ 3\/6_9)
where 71='3—2~]7;+6(50'—6\/@) +—'—W——-,
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i e =3 (L)

244
1/3
1 1 (-27+3v93 / 1
where d==+ < ——————— - )
2 6 2 22/3(—27 + 3,/93)1/3
Proof. Proof of the theorem follows directly from Theorem 4.6.5 and Theorem 4.7.1. a

Remark 4.7.2. Values of H(e‘"/ﬁ) for n =11, 13, 15, 17, 19, 23, and 31 also follow readily
from Theorem 4.6.5 and (4.7.1).

4.8 Explicit formulas for Z(q) and explicit values
Recall the definitions of Weber-Ramanujan class invariants G, and g, from Chapter 1 as
G, = 2'1/4q_1/24x(q) and g, := 2‘1/4q_1/24x(-—q), (4.8.1)

where g := e~"V™. The two class invariants satisfy the properties (see {17, p. 187, Entry 2.1],
[66, p. 18, Corollaries 2.2.4(i), (ii)})

9an =2Y49,Gn, 97" = gasn, and Gijn = Ga. (4.8.2)
We also note from [66, p. 13, Lemma 2.1.3(i)] and [66, p. 18, Theorem 2.2.3] that
Tkn/m = T\mk,n"'.,zkl,m) (483)

T2,2n
gn = 7‘2,n/2) and Gn = m, ‘ (484)

respectively, where 7, is the as defined in (1.1.9) and & and n are positive real numbers.
Now, we state and prove two general formulas for the explicit evaluations of Z(g) and then
calculate some specific values.

Theorem 4.8.1. We have

1 T T
N _ 2n/2 4n
Zl(e ) = BAGLg,  2UArZ, T oA

where G,, and g, are Ramanujan’s class imvariants as defined in (4.8.1)
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Proof. By (15, p. 39, Entry 24(iii)], we have

_ =4 _ )
Substituting (4.8.5) in (4.1.1), we obtain
f(=4*) f(=¢°)
Z(q) = 9-1/2 -1/12f2( ) x 2-1/4g=1/2% f(—q) (4.8.6)
From [15, p. 39, Entry 24(iii)}, we also note that
x(q) = @) : (4.8.7)

f(=4%

Now, setting ¢ := e""V™ and then applying (4.8.6), (4.8.7), and (4.8.1), we complete the proof
of the the first equality. Employing (4.8.4) to the first equality, we arrive at the second equality.
To prove the third equality, we employ (4.8.3) to the second equality. O

Corollary 4.8.2. We have
(i) Z(e™) =275,

(i) Z(e” V) = 9-1/2 (1 + \/—) 1/2
(iil) Z(e™ \/') 0-17/24 (1+\/—) 1/4
1/4

(iv) Z(e™m) =278 (1+\/’ )

(v) Z(e™5) = (1+\/—> (\/—\/5—+1+\/§>_m7
o) 2 =2 (14 vE) ™ (1 v 4 vE)
(vii) Z(e " )_2—7/8 <3+\/-) 1/4

-3/8 -1/4
(viii) Z(e 2"V2) =273/ (1 + \/5) (4 +y2+10v2)

28 (14 3+ v2-314)"
1+ V3 1+ V3+ V2 34"

() 20y =24 (14V5) " (243V245)

(xi) Z(e™*")=27"/1¢ (1 + \/5)—1/4 (16 +15-2Y4 +12V2+9. 23/4)”1/4 ,
(xii) Z(e~¥"VF) = 2-1/2 (ﬁ + \/5)_1 (1 +35v/2 — 28\/5)_1 !

(i) Z(e7™) =277/ (VB 1) (54 - 1),

(ix) Z(e™¥) =
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25 (v~ 1) (1 + VB + V2 -34)"
(V3+1)" (V2+ v3)" (14 V2 - VB + V3. 3946)°

Proof. The parts (i)-(vi) and (viii)-(xiv) easily follow from Theorem 4.8.1 with the help of the
values of 4, in Section 1.3. To prove (vii). we use the values of G; and g7 = 472 from [17]

(xiv) Z(e®) =

and Section 1.3, respectively. O
Theorem 4.8.3. We have 2 9
Z(e Ry = o T2 __Tin

NG, 2Ary,,  2V4rd,)

Proof. Replacing n by 1/n in Theorem 4.8.1 and then simplifying by using (4.8.2), we arrive
at the first equality. To prove the second equality, we employ (4.8.4) to the first. Using (4.8.3)
to the second equality, we finish the proof of the third one. a

Corollary 4.8.4. We have
1/8
(i) Z(eVy =27 (V3i-1)",

(i) Z(e™/V3) =27/ (\/3 + 1)1/4 ,
)

1/4
(iii) Z(e~™/?) = 2316 (\/5 ~1

-1/8
(iv) Z(e™/?V2) =2~1/8 ( +\/2+10\/')
V5 —

(V) Z(e—vr/.S) = 2—17/8 ( ) (51/4 + 1) )
(14 V3 + V2314
27/8 (14 v3)"* (1 + V3+ V2. 394) />

1/8
vii —n/VBY _ 9-3/8 V2 +1

23/1‘6 (\/-2'+ 1)1/4
(16 + 15 21/4 +12/3 + 9. 23/4) "/’

(ix) Z(e—n/:'.\/i) — 9-3/8 (1 + 3573 — 28\/5)—4/8,
(V3+ 1)1/3 1+v3+ 33/4\/5)2/3

(vi) Z(e7™°) =

(viii) Z(e™™/%) =

(x) Z(e7%) = 73 i7"
. 24 (V2 +V3) 7 (1+ V2 - V3 +334/12)
3/8
5+1
(xi) Z(e™™/V10) = (5+1) VER
23/4 (2 + 3v/2 + V/5)
Proof. With the help of Theorem 4.8.3 and the values of 7, listed in Section 1.3, we readily
complete the proof. a

Remark 4.8.1. From the last equalities of Theorems 4.8.1 and 4.8.3, we have the transformation
formula for Z(g): Z(e™™/V7) = 4 Z(e™").



Chapter 5

Explicit Evaluations of
Ramanujan-Gollnitz-Gordon
Continued Fraction

5.1 Introduction

Let Ramanujan-Gollnitz-Gordon continued fraction K(g) be defined by

1/2 2 4

q q q
K(q) :=
(@) 14g,14+¢3,14¢%,.

, gl < 1. (5.1.1)

On page 299 of his second notebook [54], Ramanujan recorded a product representation of

K(g), namely

' .48 7. .8
K@= ((gg;qq“);:o(((]q;;qq*?;:o’ (512)

where (a; @)oo = [1%0(1 — ag").

Without the knowledge of Ramanujan’s work, Gollnitz [43] and Gordon [44], independently.
rediscovered and proved (5.1.2). Shortly thereafter, Andrews [4] proved (5.1.2) as a corollary of
a more general result. Ramanathan [49] also found an alternative proof of (5.1.2). In addition

to (5.1.2), Ramanujan offered two other identities [54, p. 299] for K(g), namely,

L g = $(¢%)

K(q) qY2(q%) (5:1.3)
and

1 4(q) i

Rig) "KW = gy (5:1.4)
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Proofs of (5.1.3) and (5.1.4) can be found in Berndt’s book [15, p. 221].

Chan and Huang {37] found many identities involving the continued fraction K(g). They
derived several relations connecting K(q) and K(g*) by using modular equations. They also
evaluated explicitly K (e="V™/2) for several positive integers n by using Weber-Ramanujan class
invariants G, and g,. We record the following identity established by Chan and Huang (37, p.

78, (2.5)] for our future use:
_¢d)
K*q) = ——M. : (5.1.5)

#(q)

Recently, Vasuki and Srivatsa Kumar [60] derived three new relations connecting the contin-
ued fractions K'(q) and the three continued fractions K(¢°), K(¢”), and K(g'!) by establishing
some new theta-function identities. They also gave a new approach to the relation between
K(q) and K (q®) established by Chan and Huang [37].

In this chapter, we present some general theorems for the explicit evaluations of K(q) by
parameterizations and also give some examples. We end this introduction by recalling the

parameters

f(q)

M Gkl
2m k1/4qGk=1)/24 f(—(=1)kgk)’

nm 21/4¢(e""/2_")

and Sk, = (5.1.6)

where ¢ = e”"V™* with k and n being positive real numbers. We have already mentioned in
Chapter 1, the parameter s, is due to Berndt (18, p. 9, (4.7)] and h,, is the particular case
k = 2 of the parameter hy , defined in (1.1.21). Employing Theorem 1.1.1 in the definition of

han, it can be easily seen that

hg)l =1 and hg,l/n = 1/h2'n. (517)

5.2 Values of G, and g,

In this section, we state and prove a formula for evaluation of the class invariant ¢, in terms
of parameter J,, and find some new ¢,. We also record some known values of G,, and ¢, which

will be used in the subsequent sections.



In the following lemma, we recall some values of J,, from the previous chapter.

Lemma 5.2.1. We have

0 Js=(2+v3)",

(i) Js = % (1 + V5 + \/2(1'+ \/5))1/2,

(iii) Jr = (8 + 3\/7)1/4,

1/4
(iv) J13=(18+5\/ﬁ+6\/18+5\/ﬁ) ,
1/4
16+,/3(54+14\/5))

(V) J15:< 7_3\/5'

2
1+\/1— (20+5J1_7-2 206+50\/ﬁ)
Jl7=
1
2

1/4

20 + 5v/17 — 2/206 + 50\/17

(viii) J4g=:11-(\/4+\/7+\/21+8\/7+\/;+\/21+8ﬁ) .

For proof see Theorem 4.6.3 and Theorem 4.6.5.
Lemma 5.2.2. We have

. 1+ 5\
(i) Gs=( 5 ) :

(i) G,=2Y*,

1/8

{V2+ 1)+ Vo 10v2) }
21/4 !

(16 4+ 1521/ + 122 + 9. 2%4)
21/4 !

(lll) GlO =

(lV) 16 =

1/4
(v) G = <3+‘/ﬁ> ,
2
1/3
1 5
(i) Gig=2" (‘%ﬁ) |

y 5+V17T  [V17-3
(Vll) G[7=\/ 8 +\/ ) y

67
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1+

2 b
-1/3
(ix) Ggr = 2V/12 (\/5 - 1) ,

(2 - 3v/3 + 34 1 397
911/48 (\/5 _ 1)1/12 (33/4- V2-\3— 1)1/3'

TV A+ VT
: .

(Vlll) 025 =

(x) Gz =

(xi) Gy =
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Proofs of (iii), (iv), and (x) can be found in 66, p. 114-115, Theorem 6.2.2]. For the proofs of

(i), (ii), (v)-(x), we refer to [17].

In the following theorem, we establish a relation among g., G, and J,, where J, is defined

in (4.1.12).

Theorem 5.2.3. For any positive rational number n, we have

1[I\
gn = 5‘175 (G—n) .

Proof. We note from (4.1.12) that, J, can be expressed as

_ 2
J = 2—1/4q—1/24 f(=9) % 2-1/4q—1/12f( q )’
" f(=¢) f(=¢)
where ¢ := e "V,
Applying the definition of g,,, we obtain

Jn = gnGan.
Now, from (17, p. 187, Entry 2.1], we note that
Gan = 2149, G,.
Applying (5.2.3) in (5.2.2), we arrive at the desired result.

(5.2.1)

(5.2.2)

(5.2.3)
0

In the next lemma, we state some values of g, which will be used in the last section of the

chapter.

Lemma 5.2.4. For any positwe rational number n, we have

(1+¢5+\/2ﬁ175)”4

91/4 (1 + \/5)1/8

1/4
() g (1+ V3)
g7 - 27/24 )

(i) gs =
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=

1/2
(i) g0 = | —
I dio = 2 )

8
) 18+ 5vI3+6v18 4 5v13 )
v = ,
913 3+ V13
1/8
(16+ /3 (54 + 14\/5)>

oz (7 - 3E) Y (14 VB

1/4
(vi) g6 = 23/16 (1 + \/5) ,

(v) s

1

1/8
) 91/4 1+ \/1 ~ (20 + 517 — 2/206 + 50y/17)?
(\/5+\/'1_7+\K/ﬁ_3) 20 + 5v/17 — 21/206 + 5017

. 514 41
(vill) gos = —5E

(1+\/-3-)1/l2 (1—\/§+22/3‘/§)1/3

(IX) ga7 = 03/8 (21/3 — 1)1/3 )
(1+v3)" (1+V3+34. 3"

(x) g3 = 11722 ’

) \/4+\/7+ 21+8\/7+\/\/7+\/21+8\/7

Xl)  Jag = 172 .

25/8 (1 4+ 1+ V7)

Pr9of To prove (i), (iv), (v), (vii), and (xi), we set n=5, 13, 15, 17, and 49 in Theorem 5.2.3
and use the values of J, and G, from Lemma 5.2.1 and Theorem 5.2.2, respectively. The other
values are established in [17] and [66) O

5.3 Explicit values of K(q) by using Ay,

Employing the definition of the parameter hy , in (5.1.5), we immediately deduce the following
useful theorem.

Theorem 5.3.1. For any positive real number n, we have

~myn 21/4}7‘2” -1
K2(€ “/—/2) = _—21/4h : .
2n +1

Remark 5.3.1. From the above theorem, it is obvious that if we know the values of Ay, for any
positive real number n, then the values of K(e""/ﬁ/z) can be easily evaluated.
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We have already noted in (5.1.7) that hyy = 1. In the next lemma, we recall some more
values of hy, from {66, p. 142, Theorem 9.1.6 | or {69, p. 13, Theorem 4.7].

~ Lemma 5.3.2. We have

() hoa=\2V2-2,

. V2+1
(ll) h2,1/2 = D) )
(i) hoa=vV2+1-yV2+1,
(V) Aoy = T Vv2-1
2,1/4 \/2- Ty
2+v2
hog = ,
(v) hog Bl
242

) hgyjs = Yo Y2
(vi)  haze 731

Next, we prove the following new theta-function identity from which we calculate some more

values of hy,,.

Theorem 5.3.3. If

p o 29 and Q_fﬁ(q“)

a2 8(¢°)’
then ) y
P P Q\- 2 Q
Proof. Transcribing P and @ using Entry 10(i) and (iv)[15, p. 122] and simplifying, we find
that
2 2
\/l—a=-ﬁ§'—1 and Vi1- =@—1, (532)

where # has degree 3 over a.
Now, From Entry 5(x) [15, p. 231}, we note that

m(1—a)? + (1 - )2 = %(1 - - (1—a) P =2{1-a)1 -3} (5.3.3)

Setting £ = 2{(1 - a)(1 — ﬁ)}l/8 in (5.3.3), we find that

mVl—a+\1-f=k (5.3.4)

and

%\/1 “f=k+VIa (5.3.5)
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Multiplying (5.3.4) and (5.3.5), and then simplifying, we obtain
k* ~ b= —ka, (5.3.6)

where a=vV1—a—+1-0 and b=4y/(1 -a)(1-0). (6.3.7)

Squaring (5.3.6) and substituting k* = 4b, we obtain
4b+ b* = k2(a® + 2b). (5.3.8)
Squaring (5.3.8) and substituting k* = 4b once again, we arrive at
16b — 4(2b* + a* + 4a%) + b° = 0, . (5.3.9)

Now, from (5.3.7) and (5.3.2), we note that

a= (%—é) and b=4(F22-—- 1) (gz-— 1) . (5.3.10)

Invoking (5.3.10) in (5.3.9), and then factoring, we find that
(P* - 8PQ+6P°Q+6PQ* —4P*Q* ~ Q%)

x (P*+8PQ - 6P°Q — 6PQ* + 4P3Q% — Q*) = 0. (5.3.11)

By examining the behavior near the origin, it can be shown that the first factor of (5.3.11) is
non-zero in a neighborhood of the origin. Thus, the second factor vanishes in that neighborhood.
Hence, by the identity theorem, this factor vanishes identically, i.e.,

P*+8PQ-6PQ -6PQ3+4P*Q3-Q* =0. (5.3.12)
Dividing the above equation by P2Q? and then rearranging, we complete the proof. O

Theorem 5.3.4. For any positwe real number n, we have

h2n>2 (h2n h'ZQn) < 1 ) <h29n)2
) 6 2R ) b aV2 [t hgnhagn | - [ 22) =0
(h2,9n h2,9n h?,n h?,n h2,9n 228 hg,n

Proof. The theorem follows directly from Theorem 5.3.3 and the definition of A, , O

Theorem 5.3.5. We have
1/2

() has=(1+ Jé)”z (v3a-v2)",
(1) hgis = (\/5 - 1)1/2 (\/5 + \/§>1/2,
(1ii) hgg = (\/5'*' \/5) (2 - \/g) )

(iv) hayje = (\/—— \/§> (2 + \/ﬁ) .
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Proof. Setting n = 1/3 in Theorem 5.3.4 and then simplifying using (5.1.7), we get
4 L 2, 1
- =462+ ) -8V2=0, (5.3.13)
z T

where x = ho 3.
Solving the above polynomial equation, we complete the proof of (i). Now, (ii) follows imme-
diately from (i) and the fact that hoy/3 = 1/ho3.

To prove (iii), we set n = 1 in Theorem 5.3.4 and then simplifying using the result that
hey = 1, we find that

2+ (6 -4V2) (2 + 1)~ 1 =0, (5.3.14)

where = hyg. ' ‘
Solving the above polynomial equation, we arrive at (iii). Employing the result hy 19 = 1/hag
in (iii), we readily arrive at (iv).

Theorem 5.3.6. We have

(i) hos = lﬂ
2oV T+ 5+ /10

and

. 1++v5+ V10
(1) hoyys =14 ——F=——=.
1+v2+5

To prove the above theorem, we also used some results from our next chapter.

Proof. From Theorem 6.4.9 (iii), we have

3/2
, V5 +1
952 = 5 -

Setting n = 2 in Theorem 6.4.3 (vi), using the above value of g5,, and then solving the
polynomial equation for gs., we get :

gs2=gas =\ 1+ \/5,

where the first equality is due to Theorem 6.3.1(iii).
Now, setting g = e~V /5 and employing the definitions of gi, and Ak, in Theorem 6.2.5,

we obtain
R, (1 + \/5935) - (V5+ gg,s) = 0. (5.3.15)

Solving (5.3.15), we arrive at (i). From (i) and (5.1.7), we easily deduce (ii). O



5.4 Explicit values of K(g) by using s4,
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In this section, we use the parameter s,, to find explicit values of K(e“"\/'?/“), where s4 5, for

k = 4 is a particular case of the parameter si defined in (5.1.6).

Theorem 5.4.1. For g := e~ ™V*/2 recall from (5.1.6) that

PO i )
T V2g R f(~g)

K(e™ ) = —sf + /st + 1.

Proof. Replacing g by ¢'/? in (5.1.3), we find that

1 _ 1/2y _ ¢(q)
k@R ~ K9 = gy

Then

Employing (4.8.5) in (5.4.3), we deduce that

1 f*(a)
e ~ K(g'?) =
K™ M e
Using the definition of s4, in (5.4.4), we arrive at .

1

L g(en/AIy _ 92
K (o) K(e ) = 254,

Now (5.4.2) is apparent from the above.

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

a

From the above theorem, we need only to find the values of the parameter s, to get the

explicit values of K (e"’\/’_‘/“). The remaining part of this chapter is devoted to the explicit

evaluations of s4.

In the next theorem, we establish a relation connecting s4, with 74, and g,.

Theorem 5.4.2. We have

2
o = T2 9z
4 2I/("FQ,n/S 21/4(/71/4 ’

Proof. We can rewrite s, ., as

San = 2—1/4q—1/24 /(q) % 2—1/4q-1/12 f(=4*)

[(=4%) [(=q*)’

where g 1= e""V/2,

(5.4 6)



Applying the definitions of the class invariants G,, and g, in (5.4.6), we find that
Sgn = Gn/4gn-

Now, from (4.8.4), we recall that

Combining (5.4.7) and (5.4.8), we complete the proof.

Corollary 5.4.3. We have

1/4
) ses = (1+v2)
4,1 ~— 25/16 i
1/8
42 — 21/8 b

(ili)  s4q = 28,
(iv) s48= (1 + \/5)1/4,
_(1+v3+ V23" (<1- v+ VB + V2 3/ - VG
228 (3 - 1)"" (vV3-1) (V3 - v)**
(1+v5)'" (2+3v2+ v5)"*
274 ((3+V5) (1+ V)"
(Vi) 8412 = 21/8 (1 + »/5)1/4,
(Vi) sq16 = (1 + \/5) "
_ (V2 + V3)
218 (—1 + 35v/2 + 28v/3)/*
(0 san=(14v2)" (1+v2+VE) ",

3/8 1/4
(xi)  S45 =278 (1 + \/5) (4 +1/2+10v2 ) ,

() 540 =27 (1 + ‘/5) " (1 +V3+ 33/4\/5)]/3,
(xdii) Sa,72 = (\/§+ \/§) (1 4+ 35V2 — 28\/5)1/4.

(v) 34,9

(vi) sqp0=

(ix) 8418

Proof. Easily follow from Theorem 5.4.2 and the values of r ,, stated in Section 1.3.

In the next, we present a relation connecting s44, with G, and g,.

74

(5.47)

(5.4.8)
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Theorem 5.4.4. For any posttive real number n, we have

S4.4n = 21/4gnG3x'

Proof. We replace n by 4n in Theorem 5.4.2 and simplify by using (5.2.3) to complete the
proof. O

Corollary 5.4.5. We have

(i) s40 = 9-1/2 <1 + \/5>3/8 (1 e \/m)-> 1/4 |
(i), S48 = 93/8 (3 n \/’7) 1/4,
(iii) 5440 = 29/ (1 + \/5)3/4 (2 +3v2+ \/5) "

1/2 2
(iv) segq =271/ (1 + \/5) (16 +15-2Y4 4122 49 23/4) ,

1/8 3/8
(v) sag =27V (18+5\/1_3+6\/18+5\/ﬁ) (3+vE)™,
6+ /3 (54 + 14V5) e
12 [ 16+ 54 + 14v5
(vi) 460 = (1+\/5)

7-3V5 ’
3/2
(Vll) 54,68 = 2—9/4 (\/5 + \/ﬁ + \V \/ﬁ - 3) y

1/8

2
1+\ﬁ—(20+5\/i7—2 206+50\/ﬁ)
20 + 517 — 24/206 + 50/17

X

2
(viil) s4100 = 27198 (1 + \/5) (5% +1),

21/24 (1 4 \/5)1/12 (1- V34923 \/5)1/3
(213 - 1) ’
-2/3 1/3 3/4\1/3 5/4 4 23/a\2/3
273 (14 v3) (1+ VB + V2 3¥4)7 (2 - 32 + 3%/ 4 33/4)
(V2-1)"* (V2334 — 3 - 1)° ;

(xi) Sq106 = 27'9/8 (71/4 N my/z
x (\/4+\/7+W+\/ﬁ+\/;1—+.8—ﬁ).

Proof. We employ the values of &, and g, from Lemma 5.2.2 and Lemma 5.2.4 in Theorem
5.4.4. O

(ix) $4,108 =

(X) 54144 =




Our next theorem is almost similar to the Theorem 5.4.2.

Theorem 5.4.6. For any positwe real number n, we have

3 3
O T2on  _ T22n
4.4n 21/47‘4;1 21/4-]11’

where J,, s as defined in (4.1.12).

Proof. Replacing n by 4n in Theorem 5.4.2, we obtain
r%,Zn

S44n = T
n 21/47‘2,"/2

76

(5.4.9)

Applying the result 7 n/m = 'rkm_nr;kl‘m [66, p. 13,Lemma 2.1.3(1)], in (5.4.9), we prove the first

equality.

Second equality follows immediately from the first equality and the result J, = r4n. a

Corollary 5.4.7. We have

) (1+V2+V6 e
1 S4,2/3 = 2+2\/§ )

1/8
6) sqip=2"8(4+/2+10v2)
Y

27/8 (127 + 48/7)"°
3+v7)*
(1+v5)""

<1+\/5+ \/2_(I+_\/S_))1/4,

(v)  sqae = 2%,

(iii) S44/7 =

B

(iV) 54‘4/5 =

213/8
(5174 — 1) (51/4 +1)*

(7 + VAT V)"

(Vi)  Saa/25 =

(Vii) S4,4/49 =

24 (24 3v2 + v5)"
1+vB)”

Proof. (i) Setting n = 1/6 in Theorern 5.4.6, we find that

(Vll]) 54,2/5 =

] . Tas
.54,'2/3 - 21/41‘% 37

23/8 (\/4+ﬁ+ V21 + 87 + \/\/7+ \/21+8\/7>‘

(5.4.10)
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where we also used the result 7y y/n = 1/rkn.
From {66, p. 14, Corollary 2.1.5(i)], for any positive real number & and n, we have

Th2n = Tk.nk'rk,n/k- (5411)
Setting k = 2 and n = 6 in (5.4.11), we find that
T46 = T2,12T2,3- (5.4.12)

Combining (5.4.10) and (5.4.12), we obtain

72,12
$4,2/3 = m. (5.4.13)

Substituting the values of 753 and 79 ;2 from Section 1.3, we complete the proof.
The proofs of the (ii)-(viii) are identical to the proof of (i). b

Theorem 5.4.8. If J, and s4, are as defined mn (4.1.12) and (5.4.1), respectively, then

2+ B2 TE B\
S n: .
b 4T+ 8

Proof. From Theorem 4.2.1, we find that

M16
(LM)® +4* = 5 - 16M8 — 1618, © (5.4.14)
where (=) A 2) )
—-q -q
L=———— and M = ——~—"_.
g}/ f(—q*) g4 f(—q®)

Replacing g by —q, we note that (LM)8, L8 and M* transform to —(RM)®, —R® and — M1,
respectively, where
. flg)

@V f(=qY)
Thus, we deduce that
R {(RM)® — 4*} = M"® 4 16(RM)® — 16R'S. (5.4.15)
Setting g = e~"V™?2 and employing the definitions of s4, and J,, we find that
R= \/554,,1 and M = V2J,. (5.4.16)
Invoking (5.4.16) 1n (5.4.15) and then simplifying, we obtain
M0 +16s5, +16J5s3, — 1655 — 16855, = 0. (5.4.17)

Solving the above polynomial equation for s4, and considering the real positive root only. we
complete the proof. |

Remark 5.4.1. Irom Theorem 5 4.8 it 15 obvious that 1f we know the values of the parameter J,
we can easily evaluate the values of s4,. Many explicit values of J,, are evaluated in Chapter
4. Also since Jip = 1/J,,, sqip also follows immediately. In Corollary 5.4.9, we give few
examples.
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Corollary 5.4.9. We have

(9 +4V3+ 4m)1/8
23/8 (2 4 /3) /'
(9-4v3+ 4\/5—_ﬁ)”8
23/8 (2 — v/3)/"°
1+ k+ 2@)1/8

( 1 4
(iii) s45 = IITRVIT , where k=1+1—6(1+\/5+\/2+2\‘/5) ,

1/8
(1 + ky + 2\/E1) ' 1 4
(iv) say/5 = SRl , where ki =1+ 16 (1 +V6— V2+ 25 ’ ,
. 1

(129 4487 + V128 + 48\/7)1/8

(i) s43 =

1

(ii) S4,1/3 =

(V) s47 = ,
21/4 (128 + 48/7) /"
1/8
) (129—48ﬁ+ \/128—48\/7)
(Vi S4,1/7 = )

21/4 (128 — 48v/7)'/"
iy 1+ m+2y/m)"® 1 ’
(v11)s4,25=( m+ 2ym) , where m=1+-—(3+vV5+1/10+6V5) ,

01/4m1/16 256

(14 my +2y/m,)"® 1
a1/ ' where my =1 +ﬁ 3+V5—1/10+6V5
1

_ 1+n+2yn)"® / )2
(ix) s413 = ( 27}/4711/\1/65) , where n=1+ (18 +5V13 + 61/18 + 5V13 ,

1 9 1/8 2
(%) sapp13 = Q+m+2vn) , where ni=1+ <18 +5V13 — 6y 18 + 5V13 ’ ,

21/4,,1;/16

8
(Vlll) 54‘1/25 = s

’ 1/8
(303— 215 + 167 + 2832 7 2 ~ 12\/5(32—%—27')) v
, where v =1/162 +42V5.

2716 (7~ 3/5)'/* (16 + r)'/°

(Xi) S4,15 =

Proof. We only give the proofs of (i) and (ii) only. Proofs of the remaining values follow
similarly. To prove (i) and (i), we employ the value of J; from Lemma 5.2.1(i) and J;/3 = 1/J
in Theorem 5.4.8. g



Chapter 6

Two Parameters for Ramanujan’s
Theta-functions and Their Explicit
Values

6.1 Intfoduction

In his first notebook {54, Vol. I, p. 248] Ramanujan recorded many elementary values of ¢(g)
and 1(g). Particularly, he recorded (e ") for n=1, 2, 4, 8, 1/2, and 1/4 and ¢(e™"") and
qﬁ(—e""") for n=1, 2, 4, 8, 1/2, and 1/4. All these values were proved by Berndt [17, p. 325].
Ramanujan also recorded non-elementary values of ¢(e™™") for n= 3, 5, 9, 7, and 45. Berndt
and Chan [20] found proofs for these. They also found new explicit values of ¢(e""") for n=
13, 27, and 63. Recently, Yi (66, 69], evaluated many new values of ¢(g) and f(q) by using
modular identities, transformation formulas for theta-functions and the parameters i, 7} ,.

hin. and hy , which we also recall from Chapter 1 that

e f(=q) ) _ _—2ny/n/k
T == K /aqUe=1)/24 f(—gk)’ g=¢€ ) (6.1.1)
7 - f(q) . — —m\/n/k
Tk = k1/4q(k—l)/24f(qk)’ g=¢ \/—) ) (612)
_d)(_q)__ q___e""\/"/_k’ (613)

T R

and

d)(—(/) —on/n/k
h = —_—_—— = i n/;‘_ 1.4
kn kl/l‘(f)(_qk)’ (l e (6 Z)
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In particular, she evaluated ¢(e™"") for n=1, 2, 3, 4, 5, and 6 and ¢(—e™"") for n=1, 2. 4,
6, 8, 10, and 12. Motivated by Yi’s work, we define, for any positive real numbers k and n. the

two parameters g and g; , of the theta-function y(q), by

— l/)(—Q) —-my/n/k =
Jen = [Ty gty 17 , (6.1.5)

and

, ¥(q) ~ny/m
Tkin = L 1aq=1)/By(gky’ g=eVE (?~1-6)

In this chapter, we establish many general properties of these parameters, which are analo-
gous to those of hx, and h; ,,. We also find several general theorems for the explicit evaluations
of these parameters by using theta-function identities. In particular, we obtain several new
explicit values of the theta-function 1(q) and quotients of ¥(q) and of ¢(g). We will use the
explicit values of x5, and 7}, from [66] and listed in Section 1.3 for ffnding some of the explicit
values of g and g ,. In addition, we will establish some theorems for the explicit evaluations
of Rogers-Ramanujan continued fraction and Ramanujan cubic continued fraction using the

! 1
parameters gk n, Gk n» Mkn, a0d A .

6.2 Theta-function identities

~

In this section we state and prove some theta-function identities which we will use in the

subsequent section. Proofs of the new identities are also given.

Theorem 6.2.1. (Ramanujan [54, p. 327]; Berndt [16, p. 238, Entry 66])) If
- 3
po_ Y9 _ oo YO

T 97 (F) q*24p(q"®)’
then : o\? P2 o P
rarps=(3) -(3) +2(3+5) o2
Theorem 6.2.2. If o) s
_ Pl=¢ _ ¥(=¢)
F= q(—¢°) and Q= PY(—¢*7)’

then

Gro)Ger)-@ e
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Proof. The proof of the theorem follows directly from (15, Entry 1 (ii), p. 345]. O

Theorem 6.2.3. (Adiga et al. [3, p. 10, Theorem 5.1]; Baruah & Bhattacharyya [11, p.
2157)))  Let :
¥(=q) ¢(g)
= ———"— and = ,
a'/*9(-¢*) < #(q%)

then
Q'+ PQ =9+ P (6.2.3)

Theorem 6.2.4. (Adiga et al. [3, p. 10. Theorem 5.2]; Baruah & Bhattacharyya (11, p
2156))) Let ‘

_ Y(=q) _ ¢(q)
P= q¥(~¢°) ond Q= $(¢°)’
then
Q+PQ=3+P ' (6.2.4)

Theorem 6.2.5. (Adiga et al. (3, p. 10, Theorem 5.3]; Baruah & Bhattacharyya [11, p.
2156])) Let

_ Y(=q) )
©qV(—¢d) and Q= ap(q®)’
then
Q@+ PQ* =5+ P (6.2.5)

Theorem 6.2.6. If \
P = —l—bﬂ— and Q = __'(p.(_q_)_

- gy(g?) g'/%p(qt)’
then N s o2 .
(a) + 2 P? 4 (F) = 0. (6.2.6)
Proof. Using
22
o) = L=,
find that ’
R __LPEAICR) oo L) 627)
g'/* f(=q) f*(=4°) ¢'2f(~¢?) f*(-q"?)
e set /(=0) (=)
—4 o —q
Ll = m and LQ = m, (628)
f(=4) (=4 .
My = m and M, = WQ—(——_QI_?S (629)

Then, from (6.2.7), (6.2.8), and (6.2.9), we have

Ly My 3 -
P=2 Q=—=, [ M, =M} 6.2.10
Ll, 4 Ml 2 1 ] ( )
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Now from (6.2.8), (6.2.9), and [16, p.204. Entry 51], we have

3\ /M\® [L\®
LM+ [ —] == = 2.11
(i) +<L1M) (L) +(M,) ! (6211
9 M\°* (Lo \?
LoM = | == —= 6.2.12
2 (L2Mz> <L2> " (Mz) ’ ( :
Replacing Ly and M, in (6.2.11) and (6.2.12), respectively by using (6.2.10), we find that
P _gps
112 _
MP = ——, (6.2.13)
and 05— 0g?
6 Q@5 —
M= St (6.2.14)

respectively. Thus, from (6.2.13) and (6.2.14), we have
p12 _gps (Qs_ng 2
-1 \Tgi-1 ) ‘
Simplifying the above equation (6.2.15), we obtain
(P'=3Q°+ P'Q+ Q) (-P* = 3Q* + P*Q* - QY9 - P* — Q* + P*Q*) =0.  (6.2.16)

By examining the behavior of the first and the last factors of the left hand side of (6.2.16) near
g =0, it can be seen that there is a neighborhood about the origin, where these factors are not
zero. Then the second factor is zero in this neighborhood. By the identity theorem this factor
is identically zero. Thus, we have

(6.2.15)

P +3Q* - PUQ*+ @ =0. (6.2.17)
Dividing the above equation by P2Q?, we complete the proof. . o
Theorem 6.2.7. If
¥(=4) ¥(g®) -
=———  and = ——r
g'/*%(—¢°) “ 9'/2(¢%)
then
P\* 3 . [(Q\*
(5> + 57+ PP (F) =0. (6.2.18)
Proof. Replacing g by —g in Theorem 6.2.6, we complete the proof. a
Theorem 6.2.8. If
¥(—9) ¥(q)
=——2 _ . 4nd =\
g4 (=g%) “ q"*9(q°)

then

&)@ (- @) (G -var)-wmo e
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Proof. Using

_ (=4
¥(q) o
e find thet PP ) P (=)
—q q —q —q
d = 2.2
A= ™ C = A ) (6:220)
e set f@) £(=q")
o J\3 — —9
Ll = 1/12f(q3) and L2 = 31_/3f2(——qﬁ)’ (6221)
(=9) A (=¢%)
M1 = W and A/fg = m . (6.2.22)
Then, we have
pP= %3 Q=17 and Ly=M, (6.2.23)
1
Now by applying (6.2.21) in {16, p. 204, (51.3)], we obtain
LEME — OLAM2 = MS — 12, (6.2.24)

Replacing L, in the above equation using (6.2.23), and simplifying using the result Ly, = M, ,
we find that

P24 9p8
M= ———— .
b3 ) (6.2.25)
Again,from (6.2.22) in (16, p. 204, Entry 51}, we obtain
9 3 6
MMy + —— My | M, (6.2.26)

MM, ME T M
Replacing L, in the above equation using (6.2.23), and simplifying using the result Ly = M, ,

we find that Q%(0° — 00
qo = X A T T )
Mp = T (6.2.27)
From (6.2.25) and (6.2.27), we have
P12 4 gp8 606 _ 02
A C Rl (6.2.28)
P41 Q-1
Simplifying, we get
9P + P8 —9Q* — 10P'Q* - PRQ* + Q* + P'Q% = 0. (6.2.29)
Dividing the above equation P*Q? and rearranging the terms, we complete the proof. O
Theorem 6.2.9. [f
¥(q) ¥(4%)
P=——"— and =
"% (q°) “ g¥(q'%)

then

o\ 2 2
@ -pra@)es
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Proof. We employ (16, p. 206, Entry 53 and (53.2)] and proceed as in the proof of Theorem
6.2.6. O

Theorem 6.2.10. If

__¥(=9) 0 =Y
q'2¥(-¢%) q(q'0)’
then ) )
PY' U5 _pp (Q) _4c 9
<Q) 55— PPt (P> 4=0. (6.2.31)
Proof. We replace ¢ by —q in Theorem 6.2.9. 0
Theorem 6.2.11. If
P(-q) ¥(g)
P=———"— and = ,
9'/*%(-¢°) ° q¥(¢®)
then ) )
P Q P Q 5 _
(Q) +(P) +(Q P><PQ—PQ) 6=0. (6.2.32)
Proof. We use [16, p. 206, Entry 53] and proceed as in the proof of Theorem 6.2.8. O
Theorem 6.2.12. If
¥(q) ¥(¢°)
P=——"— and =—
775(¢) © = )
then ) 5 X
2 Q
2 —_— —— — — = N
P (PQ) (P) 0. (6.2.33)
Proof. From [66, p. 21, Theorem 3.2.2], we note that
. 2 \4 M\ 2
_—) = — .2.34
(LiMy)* + (L1M1 I , (6.2.34)
where f(=q) £~
— 9 — -9
L= YTy B and M, = T2 (g7 (6.2.35)
- =) F(=q")
Ly:= and My .= 4 V97 . (6.2.36)

g'/% f*(-q*) g2 f*(—¢8)
Now, we proceed as in the proof of Theorem 6.2.6 with applications of (6.2.34) instead of
(16, p. 204, Entry 51} to complete the proof. O

Theorem 6.2.13. If

¢(q) )
F e Q=

then

4= % + (6.2.37)

L
o



Proof. From {15, p. 39, Entry 24(iii)]. we note that

)
Hla) = f(=¢?)
Thus, P and @ can be written as ‘
_ @) o LEaf(=d)
P=Tear@ ™ T o rce)
Setting \ \
f(=¢*) _ A9
bo=gnegm * 1= grp gy
f(=4%) R i )
M= g 2 M gy
we find that L M.
P=—L'%, =—A—J‘—j‘, and M1=L1.

Now, from (6.2.40) and [16, p. 207, (53.3)), we have
L2 — 5L L, = L§ - L3
From (6.2.42) and (6.2.43), we obtain

5P — p3
3—__.__-—
L= T

Again, from (6.2.41) and {16, p. 206, Entry 53)
MEME +5M2EM, = MY + M3,
From (6.2.42) and (6.2.45), we find that

Q° —5Q
-1
Since Ly, = M,, so from (6.2.44) and (6.2.46), we deduce that

5P-P®  Q°-5Q
PP-1 @-1

M} =

Simplifying (6.2.47), we arrive at

(P+Q)(5~ P —4PQ~ Q>+ P’Q*) =0.

Since the first factor is non-zero in a neighborhood of the origin, we deduce that

5— P —4PQ - Q*+ P*Q* =0.

Dividing the above equation by PQ, we complete the proof.
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(6.2.38)

(6.2.39)

(6.2.40)

(6.2.41)

(6.2.42)

(6.2.43)

(6.2.44)

(6.2.45)

(6.2.46)

(6.2.47)

(6.2.48)

(6.2.49)
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Theorem 6.2.14. If

¢(—q) ¢(—9°)
P = and Q= ,
¢(—q°) $(—q'%)
then ) )
P Q\" s O
il 2) 02— = +4=0. 2.
(Q) +<P> Q Q2+ 0 (6.2.50)
Proof. Employing (6.2.38), we note that .
fA(-9)f(=4") f2(=a*)f*(=4%)
P==——>"—"2L and Q= : 6.2.51
f(=a)f*(=¢%) f(=a")f*(=¢"°) (62351
Setting .
f(=4*) N (),
Ll = W and L2 = m, (6252)
__f(=d) N ')
M1 = W‘_—qéo—) and My = W, (6253)
we deduce that L M
=22 =2 = L2 :
P= . Q M and M, = Lj. (6.2.54)
Now, from (6.2.52) and [16, p.206, Entry 53|, we deduce that
5 M\ L \?
LM, + —— = [ — —) . .2.55
1 1+L1M1 (L1) +<M1) (6.2.55)
Applying the results in (6.2.54) and simplifying, we find that
Q° - 90!
LS = o1 (6.2.56)
Similarly, from (6.2.53) and {16, p. 206, (53.3)], we obtain
P3—-5P
From (6.2.56) and (6.2.57), we find that
P?—5P\* Q5 -9Q"
( 7 > =1 (6.2.58)
Simplifying the above equation, we obtain
(5 — P2 — Q% + P?Q%)(~5P* + P* + 4P?Q* + Q* - P?Q%) = 0. (6.2.59)

Now, proceeding as in Theorem 6.2.6, it can be shown that the first factor of (6.2.59) is
non-zero 1n a neighborhood of zero. Thus, we have

5P? — p4 4P2Q2 _ Q“ 4 P2Q4 = 0. (62()0)

Dividing the above equation by P2Q?, we complcte the proof. O
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Theorem 6.2.15. If

_ 4la) o _ H=0?)
¢(g°) $(—q'%)’
then ) )
P Q s O
— =] —-Q*—= +4=0. .
(Q> +(P) Q Q2+ (6.2 61)
Proof Replacing g by —¢ in Theorem 6.2.14, we readily complete the proof. 0

Theorem 6.2.16. (Berndt [15, p. 306, Entry 18(wn)]) If

) f(=4"")
S . ) R RS L . a0 Ay
ST ¢ f(-q")
then
2u = T7(3 +50% + Tv) + (V2 + Tv + T)(40° + 2107 + 281)1/2, (6.2.62)

6.3 Properties of g; and g,

Theorem 6.3.1. For all positve real numbers k and n, we have
(1) gka =1,

(1) g1 = Gom»

(i1) gkm = Gnk-

Remark 6.3.1.. By using the definitions of ¥(q) and gkn, 1t can be seen that gx, increases as
n increases when k > 1. Thus, by Theorem 6.3.1(i), gxn > 1 foralln > 1if k > 1.

Proof Using the definition of gi, and Theorem 1.1.5, we easily arrive at g, = 1. Replacing n
by 1/n 1 gk, and using Theorem 1.1.5, we find that gk.n gk,1/» = 1. Interchanging n and k in
gk, We complete the proof of (iii). a

Theorem 6.3.2. For all positwe real numbers k, m, and n

Gk2 = Gmkin Ik
Proof By the definition of gi ,, we find that
Gk Ik m = G L
Employing Theorem 6 3 1(n) and (u1), we complete the proof O

Theorem 6.3.3. For all positwe real numbers a, b, ¢, and d, we have

g - Gad,bc (6 3 1)

n
xr
Gac,bd

(31
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Proof Applying Theorem 6 3 1(m) in Theorem 6 3 2, we deduce that, for all positive 1eal
numbers a, b, and n

g";n': Ga bn gb_(l‘n (632)
Agan employing Theorem 6 3 2 and Theorem 6 3 1(1n) m (6 3 2), we arrive at (6 3 1) O

Theorem 6.3.4. For all positive real numbers A and n, we have
Gh2n = Ghnk Gr 3

Proof Setting @ =k, b=1/k, c=mn, and d = 1 in Theorem 6 3 3, we deduce that

9k,2
gktn =
g;},nk
Employing Theorem 6 3 1(1) and (m), we readily complete the proof a

Theorem 6.3.5. For all positwe real numbers a and b, we have

() 932 = 9ob9az
(ll) ga,a ga ﬁ = gb,b gb 4_13’
‘a b
(111) Ga a 9b a?b = Gbb Ga,ab?

Proof Let a and b be any positive real numbers By using Theorem 6 3 3 and Theorem 6 3 1(u1),
we find that

92,4 = 9bb 90,5 (633)
So we complete the proof of (1) Similarly, we find that

928 =Gaaf, 2 (634)

From (6 3 3) and (6 3 4), we derive (1) By using Theorem 6 3 1(11) and Theorem 6 3 2, we find
that

9¢ 2 = 9bp Gab? a 9,:21‘,,2 (6 3 5)
Similarly, we find that

9t b = Jaa Ja2bb 9,,_2112 (6 3 6)
From (6 3 5), (6 3 6), and Theorem 6 3 1(u) and (1), we complete the proof of (i) a

Theorem 6.3.6. For all positwe real numbers k a, b, ¢, and d with ab = cd, we have
Ga b Gheckd = Gra hb Yec d

Proof From the definition of g4, and using ab = cd, we denive that for all positive numbers
h,a,b,c, and d,
-1 -1
Gka kb Ja b = Gkekd Yoo

Rearranging the terms, we complete the proof a
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Theorem 6.3.7. For all positive real numbers n and p, we have

Gnpnp = Gnop? Gpp-
Proof. The result follows immediately from Theorem 6.3.1(i) and (iii), and Theorem 6.3.6 with
a=p’ b=1,c=d=p, and k =n. a
Now, we give relations between the parameters gk, g »» Tk, and 7} ,, and then use these
relations to determine the values of g, and g; ,, by using known values of i, and 7} ,, where
Tkn and 7}, are given by (6.1.1) and (6.1.2).

Theorem 6.3.8. Let k and n be any positive real numbers. Then
2

. Tk,n
i = =
( ) gk." T;cyn
. To,nk
() gn = N .
7"2_%‘:

Proof. (i) Let g =¢€""V "/k_ From (15, p.39, Entry 24(iii)]

w(q) = f;g:g;). (6.3.7)
Replacing ¢ by —¢ in (6.3.7) and using the definitions of g, and 7% ,, we find that
Ok = %‘frk,,,, (6.3.8)
where the class invariant G, is given by
Gn = 2747/ %x(g),
where ¢ := e~™V", n is a positive real number, and x(q) = (—¢; ¢*)oo-
By [66, p. 17, Theorem 2.2.1], we note that
O _ Ton, (6.3.9)
Gnk  Tkn

Using (6.3.9) in (6.3.8), we complete the proof of (i).
(ii) Let g := e~"V™*_ Employing (6.3.7) and the definitions of Gk and 7, we find that

Gk = LT (6.3.10)
%
where the class invariant g, is given by
gn =270 x (),



where g := e”™V™, n is a positive real number and x(q) = (—¢; ¢%)co-
Also, by [66, p. 18, Theorem 2.3.3(i)], we have

In =T2,2.
Using (6.3.11) in (6.3.10), we complete the proof of (ii).
Theorem 6.3.9. For every positive real number n, we have
g,'m = T4n-
Proof. From [66, p. 13, Lemma 2.1.3(i)}, we note that

Tmk,n

Tkn/fm = .
Tnk,m

Employing (6.3.13), Theorem 6.3.8(ii) and Theorem 6.3.1(i), we complete the proof.

Theorem 6.3.10. For all positive real numbers k and n, we have
) gen = 5 Tkn
k
(ll) g;c,n = - Tk,n-

Proof. These are (6.3.8) and (6.3.10), respectively.
Theorem 6.3.11. For every positive real number n, we have

(1) Gan = an Tan

(II) g:z,n = 21/8 rg_% Tnn = 21/8gn7 Tan-

90

(6.3.11)

(6.3.12)

(6.3.13)

Proof. (i) With k& = n in Theorem 6.3.8 (i) and then using [66, p. 17, Corollary 2.2.2], we

complete the proof.

(ii) Setting k = n in Theorem 6.3.8(ii) and using the value 752 = 2'/8 from [66, p. 42, Theorem

4.1.2(i)], we complete the proof of (ii).

O

6.4 General theorems for explicit evaluations of g;, and

!
gk,n

In this section, we find some general theorems on gy, and g, ,, and then use these theorems

to find some explicit values of gx, and g}c‘n.
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Theorem 6.4.1. We have
3
(l) (1 + \/§g3,ng3,9n) = (1 + 3gg,9n) y
5 ) 2\
i) \/ggs,ngf),gn 4 V5 _ (95,9 ) _3 <95,9n> _3 <95,n) _ (95, ) ’
g5n959n gs5n Gs5.n gs,.9n gs5.9n
(iii) 3 (g3.nga.25 )2+ 3 +5 <93.25n)2+5< g3n )2
nf3,25n
(93.n93.25n)2 93n 93,250
— <93,25n)3 _ ( 93,n )3 +5 (93,25n _ 9 )
93 n 93,250 93n 33,250 ' R
3 ) 2
(iv) ki (\/593,1193,4971) + ko (\/§g3,ng3,49n) = k3 (\/—93 ng3 49n) + k4 (ggS,n ) — ks,
3,49n

8
where k; = ( Jan ) -1, k= —429§,n ( - 1) , ky = —393,(7 +3g3.,),
g3,49n ’

4
ks = 6393 .(93,. + 1), and k5—27( Fan ) ~63g3, 11+ (_;%_“> —gi 1,
‘ ' g3,49n ' 93, 49n ?

(v) ( v3 +\/—999n+3> <£+\/§99,n+3> = (%9—")2.

go.on 99n

33,49n

Proof. Proof of (i) follows from [15, p. 345, Entry 1(ii)] and the definition of gk . (ii)-(v) follow
from Theorems 6.2.1, 2.2.11,2.2.12, and 6.2.2, respectively, and the definition of gi ». O

Theorem 6.4.2. For any positwe real number n, we have

3
. V3 3
(1) 1- 7 7 =|1- 14 )
93n93,9n 939n
5 / 2 ’ ' ’ 2
(i) Vodhghon + L = (B2=) va(Be) 45 () - (L2
9509590 I5n 50 5,90 95,90
2 ’ 2 ’ 3
.. 2 3 91/3,2571. 93n 93,
(i) 3 (g3nF325n) + 7 3 +5< , ) -5( , ) = < ,25")
( 3n93 25n) 93n 93,25n 93n
_ ( 9an ) (gé )
g(li,‘ZSn 93 25n ’
2
. ’ 937
(iv) & (\/ggili,ng&tign) <\/_93 3 4971) = k3 <\/—93 n93 49n> + Ky (g : ) — ks,
3,491

! 4
where ki = ( i ) -1, k2=42g’§_n(<;f’3’") ~1), ks = 3¢"4,0(7 = 39'5,),

93,49n 93.49n

4 4
ke =639'3,(g'sn — 1), and ks = 27( %o ) + 6393, (1 + ( T ) + gy ) ,
' 93 40n '

93 49n
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3 ’ 3 , ’ " 2
(V) \’/— + 399,971 -3 4-. + \/ggg‘n -3 = (ggl,g ) ‘
gQ,Qn gg‘" gQ.n

Proof. Proof of (i) follows easily from (15, p. 345, Entry 1(i)) and the definition of gy . Proofs
of (ii) - (v) follow from Theorems 6.2.1, 2.2.11,2.2.12, and 6.2.2, respectively, and the definition
of gl . O

Theorem 6.4.3. We have
0 () +8 (g )+ (52) =0
2 2
o () (i) (o
(i) (gs_n> (gan) {(szsn (93:>}{ gsnysn (gé‘"gs‘_")z}-10=0’
2
o (8 () (52) o
o (=) - (<5n>2 95")2)+( ) -
o (32) ¢ (52 8 (- ) (g shonn) -

Vll ((g ) 2 > _ (gé,4n)2 _
(92 n92 4n)2 9 év"

Proof. Proofs of (i) - (vii) follow from Theorems 6.2.6 - 6.2.12, respectively, and the definitions

/

3,n
’
3,4

E]

é?\
‘-Q
.a.
:

o~
]

‘Qéﬁ)\

o~

a.~|‘°

of Jkn and g;c,'n.' o
Theorem 6.4.4. We hgve

| Y 1/4

i) g5 = 31/ m/ag(—e-3m) (3 + 2\/5)
and

Y(=e=") (1L+ 27’
(i) gs39 = = —
' 31/46—7r\/§/41p (_6—3\/577) V3

Proof. Setting n = 1/3 in Theorem 6.4.1(i) and employing Theorem 6.3.1(ii), we obtain
A+V3)° =01+ 3933),

which readily gives (1). Again, setting n = 1 in Theorem 6.4.1(i) and recalling the value g, =1
from Theorem 6.3.1(i), we find that

(1+V3g50)° = (1 +343). (6.4.1)

Solving (6.4.1) and using the remark given after Theorem 6.3.1, we prove (ii). O
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Theorem 6.4.5. We have

(i) gs,9=%(3+\/§+\/5+\/ﬁ)
and

(ii) gs3 = (17V/5 + 38)'/S.
Proof. Setting n = 1 in Theorem 6.4.1(ii) and recalling that gx; = 1 from Theorem 6.3.1(i),

we find that \
1 1 1
V5 (gs,g + —) = (959)° ~ 3 (959 + ——) - (——) . (6.4.2)
959 95,9 95,9 )

Solving (6.4.2) and using the fact that gkn > 1 from the remark after Theorem 6.3.1, we prove
(i). Again, setting n = 1/3 in Theorem 6.4.1(ii) and recalling gr,1/m = 1/gkn from Theorem

6.3.1(ii), we find that,
1
5,3 953

Solving (6.4.3) and employing gx. > 1 again, we prove (ii). a
Theorem 6.4.6. We have
| (1+€/T5+\/5+23/16+W)2
(i) g3ps = G ,
(V3+ V7)™
93/4 (2_ \/5)1/4,

( 11+ 13+ 3+\/'1§)2

2\/5(\/5+\/ﬁ+f\/i§—3)’
(3+€/Z-3/?+€/§-€/Z§+\/49+13-€/Z-€/?+8-€/§-€/Z§)2
(v) g349 = ) ,

) (VB0 +2 - VB + VBA(VE0 -2~ VB + V)
0 T (YR -2+ V3 f>2r+2+f V5)

2
<(\/§ +1)(V3+V13) + 2\/(3 +2V3)(4 + \/ﬁ))
4 ((\/§+ 1)(V13 - V3) + 2\ﬂ3 +2V3)(4 - \/1_33)> )

(ii) ga7 =

(1) qu33 =

(V1) gu39 =

(4\/'5+a+b+ \/(4\/5+a+b)2—36>2

6<2\/§+c+d+\/z2—\/5+c+d)2——36>’

(Vll) g5,7 =
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1/3

where a = (%(2251\/5+ 9@))1/3, b= (%(2251\/5— 9\/ﬁ)€)) ,
1 1/3 1 1/3
c= (5(17\/5+3f10—5)) , and d= (5(17\/5—3\/135)> ,
(o' +2v/B + /(o + 2VB0)? — 64)?
8(c + 2v5d' + \ﬂd +2v/5d")2 — 64)’
where o’ = 1497 +651/5 +565+/7 + 247v/35, ' = 437430 + 195566/5 + 165333v/7 + 73917+/35,
¢ = 1497 — 651/5 + 565/7 — 247/35, and d' = 437430 — 195566+1/5 + 165333/7 — 73917/35.

Proof. The proof of the theorem follows from Theorem 6.3.8(i) and the corresponding values
of 7x» and 7, from Sections 1.3 and 1.4, respectively. O

Theorem 6.4.7. We have

(Viii) 925,49 =

(1) g;,l = 1v

1/8
i) g5y = 22(

+\/§) ,

+

[y

H

1/4
(iv) gy, = 2% (1+\/§) :

C+ﬁ+ﬁﬂ?ﬁy2
. ,

—
=
Ne)
©_
-i—l
il
< P
[\&)
—

(v) 9&,1

3/8 1/8
(vi) g, = 2 (1+\/§) <4+\/2+10\/§} ,

N 1 4
(viil) go5;, = —\‘VE_) 1
925,1 o1
Proof. The proof of the theorem follows from Theorem 6.3.9 and the corresponding values of
T4 from Section 1.3. ) |

Theorem 6.4.8. We have

(i) ghy = (\/\/5—1+ \/§+1)1/2,

(i) 925 = V2 + V2,

(itl) gy 4 = \/§+1
934 = \/—2- )




(V) gl = (1+V3)(vV2+1)
93,16 = /2 )

- 1/2
(V) ghgs = <102 + 72V2 + 59v/3 + 426 + \/41680 +29472v/2 + 24064V3 + 17016\/6) ,

1/2
(vi) g3 10 = <3+2\/_+\/24+14\/§' ,

1/2
(vii) gh 56 = (13\/5 +10-23V3 4+ 8-2%/3. V3 +21/373 + 296 - 21/3 + 235 - 22/3)

1/2
oy g 1 2/3 2/3 4/3
(viii)ghao = —= | V3+ V3 (38+17vB)  + \/3 +10(38+ 17V5) " +3 (38 +17V5) ,
’ 1/4
() g, = [ 12208+ 7048+/3 + 4614v/7 + 2664v/21 — VBE \
9a7 582 + 333v/3 + 218v/7 + 12721 ’

where k = 9623566 + 55561688v/3 + 36373663v/7 + 2100034421

() g, = 146+ 592v/3 + 4704 + /1641279 + 1302684/3 + 1033941f
939 = 19 4 15v/2 + 12V/4

(xi) ghq = (% (4 +2v5 + \/2(1 +V5) + \/10(1 + \/5)))1/2,

(xil) g} = (‘/5"6(3’8‘*17\/5)1/3+\/3(38+17\/5)”‘°’+ﬁ)l/2 |
5.3 —2+2\/§(38+17\/3)1/3 ,

1/3 1/3 1/3
where T = —675 — 304v/5 + 19 (38 + 17\/5) + 7715 (38 + 17\/5) +22 (38 + 17\/3)

(i) gt o — [ 232 76v/3 + 59v/5 + 34v/T5 -+ 21/16406 + 9472v/3 + 7337v/5 + 4236+/15 )
950 = 8+5v3 +4v5 +2V15

Proof. To prove (i) and (ii), we set n = 1 in Theorem 6.4.3(vii) and use the value of g5, from
Theorem 6.4.7(ii) and the value of g}, = 2%/ from Theorem 6.5.7(ii), respectively.

To prove (iii), we set n = 1 in Theorem 6.4.3(i) and use the value of g5, from Theorem
6.4.7(iii).

To prove (iv) and (v), we set n = 4 and 16, respectively in Theorem 6.4.3(i) and successively
use the values of g3, and g3 )6 from the same theorem.

To prove (vi)-(viii), we set n = 3,9, and 5 in Theorem 6.4.3(ii) and use the value of g3 3, g9,
and g3 5 from Theorem 6.4.4(i), (iii), Theorem 6.4.5(iii), and Theorem 6.3.1(ii1), respectively.

We set n =7 and 9 in Theorem 6.4.3(iii) and use the values of g37 and g3 9 from Theorem
6.4.6(iii) and Theorem 6.4.4(iii), respectively, to complete the proof of (ix) and (x).

We set n = 1 in Theorem 6.4.3(iv) and use the value of g5 | from Theorem 6.4.7(v) to prove
(xi).

To prove (xii) and (xiii), we set n = 3, and 9 1n Theorem 6.4.3(vi) and use the values of ¢ 4
and ¢s ¢ from Theorem 6.4.5(iii) and (i), respectively. O
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Theorem 6.4.9. We have
(i) gho = (L+V2)?
(i) gho = 281+ V2",
<\/5 + 1)3/2

5 )
(iv) gog = Q1/4 (1 + \/5)1/2,
(V) 992 = V2 + /3,

5/8 1/8
(vi) ghg = 2%8 (1 + \/5) <4+ V2 + 10\/5) ,
3/4
(vii) gp 6 = 2%/® (1 + \/5) (4+ /2 + 10V2)*8,

3/4 . ) 3/4
(viii) ghp = 2°/'% (14 V2) (16+15¢2+12v2+9- 2/4)"

I

(ii1) g5

Proof. The proof of the theorem follows directly from Theorem 6.3.8(ii) and the values of r4
from Section 1.3. O

Theorem 6.4.10. We have

- YAy 35 7 1/4

(i) gr7 = 2(? +V/4+V7) (2 +7\/’-/+2\/21+8\/7+\/147+56\/7 :
1/4

() g, = 278 gy (35+14\/7+2\/147+56\/:/+\/7(147+56\/7)> ,

1/8
GlZ G24 -1 71/4 4 7
where g = ( 0t 49 > and Gy = + +\/—.

2G1, 2
Proof. First we find the explicit values of 77 and 77, in the following Lemma. O

Lemma 6.4.11. We have

(i) r17 = <% (35+ 14ﬁ+2\/147+56ﬁ+ \/7(147+56\/7)))1“,

1/4
93/4 (35 147 + 7V21 + 87 + 24/147 + 56\/’7)
(i) 5, = : o
) Te VA Va+ VT

-2n

Proof of the lemma. We set ¢ := e™" in Theorem 6.2.16 and then apply Theorem 1.1.3, to

obtain
f(_e—21r/7)

v= e/ f—e-im) V7 (6.4.4)
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and

_ Sz
P e f(menn)

Using (6.4.4) and (6.4.5) in (6.2.62), we obtain

re7 = (% (35 + 14V7 + 21/ 147 + 56V + \/ 7(147 + 56\/7)>) " : (6.4.6)

to complete the proof of (i).

=77, (6.4.5)

From [66, p. 17, Corollary 2.2.2], we have
Pan = Grary, (6.4.7)

Setting n = 7 and using the value of Gy {17, p. 191} and (6.4.6) in ((6.4.7), we complete the
proof of (ii).
Proof of Theorem 6.4.10. Using Theorem 6.3.11 and the above lemma, we easily complete

the proof.

6.5 Explicit values for ¥(+q)

In this section, we find explicit formulae for the theta functions ¥(e™""), ¥(—e~""), ¥(e~™/™),
and ¥(—e~"/") for any positive real number n and give some examples.

Lemma 6.5.1. Let a = n'/*/T(3). Then

(l) d)(e—n) — a2—5/881r/8 f

(ii) Y(—e ™) = a27%e™/8

Proof. See [15, p. 123, Entry 11(i) and (ii)}. O

Theorem 6.5.2. For every positive real number n, we have

a2—3/4en7r/8 a2-3/4enﬂ/8

. _ -nm —_ =
(i) ¥(—e™") n1/4gnm n1/4Gn2Tn,n
(1) p(e™™) a2=5/8enm/8  0=3/4¢nn/8
b = = ’
n'/igl /AT, w2 Tan
12

Proof. Using the definitions of g, g,,,, Lemma 6.5.1, and Theorem 6.3.11, we complete the
proofs of (i) and (ii). O
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Theorem 6.5.3. For every positive number n, we have

an1/42—3/4e1r/8n anl/42—3/4e1r/8n

(i) p(—e/") = -

Inn Gp2 Tan

(ll) w(e—w/n) _ an1/42’5/86ﬂ'/8n _ a,’n,1/42—3/4.r2‘2n261r/8n.

'
gy Tnn
n'n

Proof. Replacing n by 1/n in Theorem 6.5.2(i) and (ii), and using the fact that gi/n,1/n = gnmn
and Tx,1/n = T4, [66, p. 12, Theorem 2.1.2], we complete the proof of (i) and (ii). O

In Theorem 6.4.4(i) and Theorem 6.4.10(i) and (ii), we have evaluated g33, g7,7, and g7,
respectively. Now, we give some more explicit values of g, and g/, ,, and then use these values
to determine some values of theta-function ¥(q).

Theorem 6.5.4. We have
(i) g1 =1,
(ii) goz = 27Y'8(V2+ 1)V/4,

(ili) gaq = 218(1 + V2)/2(9 - 21/% + 4y/2 — 3. 23/4)1/8
(v) gss = SO
g55 = 23/2\/5 ,

B 31/4(\/5 + 1)5/6(1 +vV3+V2- 33/4)2/3(2 ~3V2+3.3/4 4 33/4)1/3
(V) 96,6 = 85/48 )

1 1/3 1/3
(vi) goo =2+ V3+ 3 (1269 +729v3 - 27\/156 + 90v3 ) + (47 +27V3 +1/156 + 90\/§> .

Proof. The value in (i) readily follows from Theorem 6.3.1. The proofs of (ii) - (v) follow from
Theorem 6.3.8 (i) and the values of ¢, and r} ,, given Sections 1.3 and 1.4, respectively.
Next, we set n = 1 in Theorem 6.4.1(v) and use the value gx; = 1, to obtain

<\/§ (gg,g + —1—> + 3) <2x/§ + 3) = g2, (6.5.1)

99,9

Solving equation (6.5.1), we easily arrive at (vi1).
Adiga et al. 3] also found the value of gog. The same value is also evaluated in Chapter 2
of this thesis. O

Theorem 6.5.5. We have
(1) P(—e™™) = a2‘3/4e"/8,

(ii) w(_e—‘h) — a2—15/16(\/§ _ 1)1/4e1r/4’
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i a2—3/4837r/8
(i) w(=e""") = s T
(iv) ¥(—e*") = i V2 - 1) e
(9V2 +4v/2 ~ 3 23/4)1/8’
ae5"/8(5 _ \/5)3/2

(v) ¥(—e™*") = 29745574 ’
(Vi) w(_e—ﬁﬂ') _ aeBn/4237/48
V3(VE3+ 1) (14 VB4 V3 - 334 (2 - 33 4 35/4 4 33/4)' /%
a2l/2e7/8

(vii) $(~e"T") = ,
71/4 (71/4 +v/4+ ﬁ) (35 +14V7 + 7V/21 + 8v/7 + 2v/147 + 56\/’7')1/4

_opy _ Q273/4e%7/8 : : : :
(viii} Y(—e™"") = T where ggg s as given in Theorem 6.5.4(vi).
99,9

Proof. The proof of the theorem follows from Theorem 6.5.2 (i) and the values of g, from
Theorem 6.4.4(i), Theorem 6.4.10(i) and Theorem 6.5.4. a

Theorem 6.5.5(iii), (v) and (viii) were also proved by Baruah and Bhattacharyya [11].
Theorem 6.5.6. We have
(i) z./)(—-e"'/z) — 02—7/1687r/16(\/§_ 1)1/4’

a 31/42—3/48—1r/24
(3+2v3)1/4
a 275/16¢7/32( /3  1)1/2
(9-21/4 + 42 -3 23/4)1/8’
a 23/453/4e7r/40

(\/g + 5)3/2 !

i

(i) ¥(—e"™"3)

(iil) (~e™™*) =

(iv) $(~e") =
@ 261/48 g7 /48

(V3 +1)5/5(1 + /3 + /2 - 33/4)2/3(2 — 3/2 + 35/4 4 33/4)1/3"
a 21/2 71/4871'/56

/)
(71/4+ 4+\/?) (35+14\/7+7\/21+8\/?+2\/147+56\/7)1 ‘

~3/4 7 /72
(vii) Y(~e /%) = ____\/§a2 e’/ ,
99,9

() w(=e) =

(vi) Y(=e™™7) =

where gg g 15 as gwen wn Theorem 6.5.4(vt).

Proof The proofs follow from Theorem 6.5.3(1) and the values of g, , from Theorem 6.4 4(1),
and Theorem 6.4.10(i), and Theorem 6.5.4. a
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Theorem 6.5.7. We have

(l) g’l,l = 11

(il) 9'2,2 = 23/8’

(“1) gl _ 31/3(1 + \/§+ \/-2'_33/4)1/3(1+ \/§)1/6
33 \/’2‘ )

(iv) giy = 2581+ V2)12
. (54 VB84 4 1)

(V) 955 2 ,
N 31/8(1 + \/5)5/6(1 + \/§+ V2 33/4)2/3
(vi) 966 = 929/24 .
Gy a+ (2(b—2¢))3 + (2(b + 2c))'/3
(vii) goo = (2( ) > (2( ) ’

where a =2+ v2-3Y4+2V3+ V2.3¥4 b=82+45V2 + 48V3 + 25v/2 - 33/4,

and ¢ = \ﬁ (88 + 4723174 4 5073 + 272 33/4).

Proof. The proof of (i)-(vi) follow from Theorem 6.3.11 (ii) and the values of ry, listed in
Section 1.3.
Next, we set n = 1 in Theorem 6.4.2(v), to obtain

(ﬁ +Vighs - 3) (gﬁ + Vg, - 3) - (&2 (652

/ ' '
G99 9,1 99,1

Substituting the value of gg ; from Theorem 6.4.7(vii) in (6.5.2) and solving the resulting poly-
nomial equation, we complete the proof of (vii). O

Theorem 6.5.8. We have
() w(e™) = a2,

(i) Y(e™*7) = a 27",

Camy a 2-1/86371'/8

W) = ST i+ Va s 1 A
(iv) P(e™*) = a 2722~ V2)!72,

a 23/857/8
51/4(5 + \/5)1/2(1 + 51/4)’
a 2V/4g3n/4
33/8(1 + \/5)5/6(1 + \/§ + \/5 . 33/4)2/3’
o 7-1/49-1/2,1r/8

(vii) w(e™™™) = ; ;

97,7 g

¥

(v) ¥(e™™) =

(vi) P(e*7) =
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a2—5/8891r/8
(viii) (™) = ——r,
\/-3-96,9
where g/7 7 and gl g are as gwen in Theorems 6.4.10(n) and 6.5.7, respectively.

Proof. The proof of the theorem follows from Theorem 6.4.2(ii) and the values of g, , from
Theorem 6.4.10(ii) and Theorem 6.5.7. 0

Theorem 6.5.8(i) and (ii) were also proved by Berndt [17, p. 325).

Theorem 6.5.9. We have
(i) Y(e ™?) = @ 277/18(\/2 4 1)H4em/16,

(11) w(e—w/:}) — a2—27/243—1/8(\/§+1)1/6(1+\/§+\/§_33/4)1/3e1r/24,

(iii) w(e™™*) = a2 7/8(16 4+ 15- 24 +12v2 + 9. 23/4)1/8
a 23/8¢7/40
(5+ VB)/2(51/4 + 1)’
a 2~ 11/12,m/48 ((\/5+ \/5)(\/5_{_ 1) (1 + \/_ _ \/§+ 2. 35/4))1/3
31/8(1 + \/5)1/2(1 +vV3+ V2 33/4)1/3(\/5 — 1)5/12 '

Proof. The proof of the theorem follows from Theorem 6.5.3 (ii) and the values of ry , listed in
Section 1.3. 0

(iv) Yle™™%) =

(v) 9(e7™®) =

Theorem 6.5.9(i) and (iii) were also proved by Berndt [17, p. 325].

Remark 6.5.1. Many non-elementary quotients of theta-function 1(q) can be evaluated by
employing the values of J, from Theorems 4.6.3-4.6.5 in Theorem 6.3.9.

6.6 Explicit values of quotients of the theta-function ¢(q)

In this section, we give theorems for the explicit evaluations of quotients of the theta-function

¢(q) 1n terms of the parameter g; , and then use these theorems to find some new explicit

values.

Theorem 6.6.1. For any positiwve real number n, we have
p(—e"V) (9—3gg‘fn>l’4

(—emVin) 1-3g5./)

i) oV ) (3 - \/ﬁgé,n> |
$(—e Vo) 1 - V345,

#=e V) (5 - ﬁg&) -

¢(_e~7r 571)

1— V52,

(i)

(i)
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Proof. We set ¢ = —e "V™3 _e=™V7/9 and —e~"V™5 in Theorems 6.2.3 - 6.2.5, respectively
and use the definition of g}  to complete the proofs. O

Theorem 6.6.2. We have

o(=e%)  (9-32+v3))"
d(—e-™B)  \1-32+3)/) '

$(—e ™) (36 — 3 (14 v3)" (14 Va4 V334N
¢(—e3m 4-372(1+v3) (1+ 3+ V2. 34)"°

) 8 7 _ [ _3v2 v
$(—e-7VE) 4+3v2

(iv) d(—e~"/V9) _ V3 +V6v3-3
p(—e-™%)  V34+B6v3+1

) $(—e™) _(3-b
s \1-b,)"
where by = \/§g§’g and ggq s given by Theorem 6.5.7(vii),

vy 220 g,

(i)

(ii)

1/2

(vii) =
V5 +v51/2(1+ V/5) + 3
$(—e ") _( 5(1+54 + V5 +5%4) )‘/2

B(—e/V5) (\/5 + V5201 + VE) - 5)

viil =
(vit) ¢(—e=5) 13+5-574 +5\5+5-53/4

1/2
L W Y TN
$(-eV10)  \2++v5)
Proof. Proofs of (i)-(iii) directly follow from Theorem 6.6.1(i) and the values of g5, from The-
orem 6.4.7(iii), g3 5 from Theorem 6.5.7(iii), and g3 , from Theorem 6.4.9(i), respectively.
Similarly, proofs of (iv)-(vi) follow from Theorem 6.6.1(ii) and the values of gy, from Theo-
rem 6.4.7(vii), gy ¢ from Theorem 6.5.7(viii), and gy, from Theorem 6.4.9(v), respectively and

proofs of (vii)-(ix) follow from Theorem 6.6.1(iii) and the values of g5, from Theorem 6.4.7(v),
g3 5 from Theorem 6.5.7(v), and g5 , from Theorem 6.4.9(iii), respectively. a

Several other quotients of 1(¢) and ¢(q) are also evaluated in Chapter 2 of this thesis.

Theorem 6.6.3. For any posiulive real number n, we have

(i) \/5 hs h! +; —4 = h/5»71/‘l + h'5,n
TS /4 hslnh’:',,n/q h‘5,n h‘g’n/‘i)
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NN , 1

0 () + () - VB (Mt ) +a=0
N b\, (P52) e (s L) aa
nl) ;1}5._71 " h‘5-“ 5,71 },5271 * -

Proof. The proof follows from Theorems 6.2.13-6.2.15 and the definitions of Ay, and hj , from

(6.1.3) and (6.1.4), respectively. O
Theorem 6.6.4. We have

(l) h5‘1 = 1,

@) hos =D,

(lll) h5|1/3 = %‘ly

V3+1
) hsgg= ——=,
W) hse =7k
V345

i h = .
( V) 5,1/9 \/— 1
For proofs see (66, p. 134, 146, 148].
Theorem 6.6.5. We have

) R = 2+vV2V5-2
5,1/4 \/5_1 )

1/2
(ii) h‘lﬁ,l = ('2;\/5—)2—_\/51.——2> )

(=2 +2v5 — 1/10(-1+ V5) + —2+2\/S—2\/1+\/5+2\/—2+2\/5)

1/2

(i) hy, =
44 1/10(1 + V5) — 5v/ -2+ 2V/5

o —2 425 +1/6(3 — V5) v
(iv) h5‘3= 3-5 )

/ 2425+ 1/6(3 + V5) v
(v) h5,1/3 = 3+ 5 )
(i) B = 8 +4v/3 + 3v/5 + 2V/T5 + 2/46 + 32v/3 + 255 + 12v/15 )
v e = 5v/3 + 45 — 2/15 — 8

(vil) B g = 8+ 4v/3 + 3V5 + 2V/15 + 2/46 + 32v/3 + 25v5 + 12v15
Y Bsaye = 4+3\/_+4\/—+2\/—
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Proof. (i) Setting n = 1 in Theorem 6.6.3(i) and then using Theorem 6.6.4(i), we find that
1
(V5 -1) (z+;) —4=0. (6.6.1)

Solving the above polynomial equation (6.6.1) for z, we complete the proof.
(ii) Setting » = 1 in Theorem 6.6.3(ii1) and then using Theorem 6.6.4(1), we deduce that

(1 - V) <z2 + ﬁ;) +4=0. (6.6.2)

Solving the above polynomial equation (6.6.2), we complete the value of (ii).

(iii) Setting n =1 in Theorem 6.6.3(ii), substituting the value of hj, from (ii) and solving
the resulting polynomial equation for hy, we readily complete the proof.

(iv) - (vii) Setting n =3, 1/3, 9, and 1/9 in Theorem 6.6.3(iii) and employing the values of
hs3, hs1/3, hs,9, and hs )9 from Theorem 6.6.4, respectively, and then solving the corresponding
polynomial equations, we complete the proofs. a

Remark 6.6.1. Yi (66, 69] also found the value of hj ;.

6.7 Explicit evaluations of the Rogers-Ramanujan con-
tinued fraction

In this section, we discuss aboﬁt the applications of the parameters hy ,, hj ., gkn, and g; ,
to the explicit evaluations of the famous Rogers-Ramanujan continued fraction R(g) defined in
(1.1.6).

Theorem 6.7.1. [11, p. 2157, (3.42)] We have,

fola) _ ¥*(=q) , %a)

= 6.7.1
af8(q®)  a¥*(=¢®)  ¢*(¢®) 671
and
ff(=¢®) _ #le) _ _¥(=9)
= . 6.7.2
1549~ @) " PH(—¢) (67.2)
Now, we recall from (1.1.8) that
1 fo(=q)
—— —11- R%g) = 6.7.3
R*(q) @ 9f%(—4%) (673)
Replacing ¢ by ¢? and —q, in succession, we find that
5(_ 2
1 — 11— R5(q2) _ fb(_q ) (674)
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and

_L__ — G5 () = f%(q)
S5(q)+11 S°(q) ——qfs(q5)’ (6.7.5)

where S(q) = —R(—q).
Employing (6.7.1) - (6.7.5) and the definitions of A, h} ., gk, and g; .. we easily find the

following theorem.

Theorem 6.7.2. We have

N S Sy~ -3 S R
(1) RS (e_" f_n/s) 11-R (e ) = 5\/59 S,nh’ 5,n/4) . ’ (676)
(i) = — 1= R (e'z” "’5) = 5V5g8 A . (6.7.7)
R5 (6—21r n/S) ' n'“5n
1
+11-8° (C_" A 5) = 5V5g% b3 .. (6.7.8)

i) —————

( ) S5 (e—w n/5>
From the above theorem, it is clear that we can find explicit values of R (e‘”V"/ 5),

R (6'2"\/“/5) and S (e"’\/”/s) by using the known values of hin, A, gcna, and gi,. For
example, setting n = 4 in Theorem 6.7.2(i) and using Theorem 6.4.8(xi) and Theorem 6.6.5(ii),
or setting n = 1 in Theorem 6.7.2(ii) and using Theorem 6.3.1(i) and Theorem 6.6.4(i), we find

that

__1___ _ps{f -2r/VBY\ _
() 11-R (e )_5\/5. (6.7.9)

Solving (6.7.9) for R® (e‘z”/ ‘/5), we conclude that

RS (e721Y5) = % {\/10 (25+11v5) - (5v5+ 11)} .

This was first evaluated by Yi [67, Corollary 4.3].

Similarly, setting setting n = 1 in Theorem 6.7.2(iii) and using Theorem 6.3.1(i} and The-

orem 6.6.4(i), we obtain

__ — 55 [e=™/VBY — 5/5 .
S TS (e/v5) =5V, (67 10)
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Solving (6.7.10) for S° (e"‘/‘/g), we deduce that

§° (e71) = -;- {\ﬁo (25 - 11v5) - (5v5 - 11)}.

This was recorded by Ramanujan [56, p. 210} and the first proof was given by Berndt, Chan

and Zhang (26]. Kang [45] and Yi [67] also established this value.

6.8 Explicit evaluations of Ramanujan’s cubic continued
fraction

In this section, we discuss about the applications of the parameters hin, b} ,,, gkn, and gj , to
the explicit evaluations of Ramanujan’s cubic continued fraction G(q) defined in (1.1.11).
From Theorem 2.3.21 and the definition of gk, and g ,, the following theorem is apparent.

Theorem 6.8.1. We have

() 6 (-eViF) = T+_—31§g_; (6.8.1)
(i) G (e"’\/m) = @1—_1. (6.8.2)

Employing the values of g3, forn =1, 3, 1/3, 9, 1/9, 5, 1/5, 25, 1/25, 7, 1/7, 13, 1/13, 49,
and 1/49 from Theorems 6.4.4 - 6.4.6 in Theorem 6.8.1(1), the values of G (—e"'\/;/_3> can be
found by solving a cubic equation.

Yi [66] and Adiga et al. [1] also found the values of G (—e‘"\/m) forn=1,3,1/3,9,1/9,
5,1/5,25,1/25, 7, and 1/7 . The same values are also evaluated in Chapter 2 of this thesis.

Employing the values of g3, for n =1, 2, 3, 4, 7, 9, 12, 16, 20, 36, and 64 from Theorems
6.4.7 - 6.4.9 and Theorem 6.5.7 in Theorem 6.8.1(ii), the values of G (e"' "/3> can be found
by solving a cubic equation.

Ramanathan [47] and Yi [66] also evaluated G (67”\/7%) forn=1,2 34,9, and 36

Remark 6.8.1. Theorem 6.4 3(1) - (iri) imply that if we know g3, then g}, and hence ¢4,
can be evaluated. Thus, by Theorem 6.8.1, if we know G (—e’"V "/3>, then G (e“"V"/3) and

G <e“2”V ”/3) can also be evaluated.
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The next theorem follows easily from Entry 1(i) (15, p. 345] and the definitions of g; , and
hin-
Theorem 6.8.2. We have

(i) G (e‘”"‘) = 73—576_1\?; (6.8.3)

(i) G (-e-"ﬁ) - l:{% (6.8.4)



Chapter 7

Some New Weber-Ramanujan
Class-Invariants G, and g,

7.1 Introduction

Let Weber-Ramanujan class in.va.riants G, and g, be as defined in (4.8.1). Since from [15,
p. 124], x(g) = 26 {a(1 — a)/q}""** and x(—q) = 2/5(1 — a)*/'2(a/q)"/?, it follows from
(4.8.1) that

Gp={da(1—0)}"V* and g, =271 — @)/ 124"V, (7.1.1)

Also, if 3 has degree r over «, then

G2y = {4ﬁ(1 _ ﬂ)}_1/24 and Gran = 2-1/12(1 . ﬂ)l/lQﬂ—l/M. (7.1.2)

L

In his notebooks {54] and paper [53], Ramanujan recorded a total of 116 class invariants. An
account of Ramanujan’s class invariants can be found in Chapter 34 of Berndt’s book {17]. The
table at the end of Weber’s book (64, p. 721-726] contains the values of 107 class invariants.

In 2001, Yi 66, p. 120-124] evaluated several class invariants g, by using her parameter 7,

defined in (1.1.9). In particular, she established the result
Gn = Ton/2. (7.1.3)
For our future use, we also no-te from [66] that
Tk =1, Tham = 1/Tka and Tk = Tok- (71.4)
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Adiga et al. [2] also evaluated some values of g,.

Again, on pages 86 and 88 of Notebook I [54, Vol. I], Ramanujan recorded 11 Schlafli-
type “mixed” modular equations or modular equations of composite degrees, which were not
recorded in Notebook II {54, Vol. II]. One of these 11 equations follows from a modular equation
recorded by‘ Ramanujan in Chapter 20 of Notebook II. This was observed by K. G. Ramanathan
[52. pp. 419-420]. But the corresponding modular equation was proved by B. C. Berndt {15, p.
423, Entry 18(v)] by using the theory of modular forms. Berndt [17, p. 382-384 ] also proved
the other 10 equations by invoking to the theory of modular forms. Barl;ah [6, 10] proved nine
of these equations by employing some theta-function identities and modular equations. In the
process, he also found three new Schlafli-type “mixed ” modular equations of the same nature.
Baruah [8] also used Schlafli-type modular equations of composite degrees combined with the
prime degrees to prove some values of Ramanujan’s class invariants G,,.

Motivated by the above work, in this chapter, we present alternative proofs of some of the
class invariants by using Ramanujan’s Schlafli-type modular equations. In the process, we also
find some new class invariants.

In Section 7.2, we record the Schlafli-type modular equations which will be used in the
subsequent sections of this chapter.

In Sections 7.3 and 7.4, we find the values of g, and G, respectively.

We end this introduction by recalling from (15, p. 124, Entry 12(i), (iii)], that
Fla) = V22 (a1 - a)g)* and f(~¢") = V227Vl - a)q) "/, (7.1.5)

where f(—q) is as defined in (1.1.5).

7.2 Schlafli-type modular equations

This section is devoted to recording some Schlafli-type modular equations.

In the following four lemmas, we set

1/24
L =25 (af(1 - a)(l— )" and S:= <H) | (7.2.1)



Lemma 7.2.1. (Berndt [17, p. 878. Entry 41]) If B has degree 11 over «, then

2 11 22 .
56+£E_2\/§<—L—5_ﬁ+1—_22L+11L3_2L5> = 0.

Lemma 7.2.2. (Berndt [17, p. 378. Entry 41]) If B has degree 13 over «, then

1 1 1 1 1
Ty 54— 34— ol I 6 _ __—} =
S +S7+13(S +Ss)+52(3 +S3)+78(S+S> 8<L LG)—O.

Lemma 7.2.3. (Berndt [17, p. 878, Entry 41]) If B has degree 17 over a, then
9, 1 6, 1 3, 1 4 4
S+§5—34 S+§6 + 17 S+‘§ 'I?+7+4L

16 136 ) .
—<Z§——L4——340—136L +16L)=0.

Lemma 7.2.4. (Berndt [17, p. 378, Entry 41/} If B has degree 19 over a, then

o 1 1 1 1
S +3,]—0+114(56+§ —190v/2 S+ )\ L

1 4 1
+19<32+§) (%—5+8L6) —4ﬁ(—ﬁ+£5—19L3—4L9> =0.

-3

In the remaining lemmas of this section, we set

P = (2560f73(1 - a)(1 - B)(1 — 7)(1 — &))"/,

(ab(l—a)(1-8)\*®
Q'_<,37(1—ﬁ)(1—7)> ’
(=) - 8) \
R'“(aﬁ(l—a)(l—ﬁ)) ’

and

T .= (ﬁé(l - B)(1 - 5))1/48.

ay(l —a)(1 -7)
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(7.2.2)

(7.2.3)

(7.2.4)

(7.2.5)

(7.2.6)

(7.2.7)

(7.2.8)

(7.2.9)
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Lemma 7.2.5. ( Berndt [17, p. 381, Entry 50/; Baruah [10, p. 274, Theorem 6]) If a, 8,7,
and § have degrees 1, §, 7, and 85, respectively, then

Rw%—<Q6+615>+5<Q4+$>—10(Q2+-Ql—2)+15=0. (7.2.10)

Lemma 7.2.6. ( Berndt [17, p. 881, Entry 48/; Baruah [10, p. 274, Theorem {J) If a,8,7,
and § have degrees 5, 1, 7, and 85, respectwely, then

Q6+221—6+5\/§(Q3+Z)13) <P+1—13)—4<P4+%)+10=0. (7.2.11)

Lemma 7.2.7. ( Berndt [17, p. 380, Entry 43/) If o, 3,7, and § have degrees 3, 1, 5, and 15,
respectively, then

Q p?

Lemma 7.2.8. (Berndt [17, p. 381, Entry 51]) If a, 8,7, and § have degrees 1, 13, 3, and 59,
respectively, then

1 1
Q4+7'2<P2+“—) +3=0. (7.2.12)

Q4+_le_3<Q2+221—2>-<T2+%)+3=0. (7.2.13)

Lemma 7.2.9. (Berndt (17, p. 880, Entry 47]) If o, 8,7, and § have degrees 3, 1, 11, and 33,
respectively, then

1 1 1
ot 3 <Q2 + 22—2) -2 (P2 + ﬁ) =0. (7.2.14)

Lemma 7.2.10. ( Berndt [17, p. 880, Entry 44/; Baruah [10, p. 273, Theorem 1]) If a,f3,,
and § have degrees 5, 1, 3, and 15, respectively, then

Q*+

1 1 1
Q6+———4<P"+—ﬁ>+10<P2+ﬁ—1)=0. (7.2.15)
Lemma 7.2.11. (Baruah [10, p. 277, Lemma 3.1]) If o, B,v, and § have degrees 1, 3, 7, and
21, respectively, then '
2, 1 4, 1

R +E5=Q +a—3. (7.2.16)
Lemma 7.2.12. (Baruah (10, p. 283, Theorem 4.1]) If o, 3,7, and § have degrees 1, 3, 7, and
21, respectwvely, then

, 1 1 , 1 , 1 S
T”+T§—18 <T°+Fg)+18\/§ (T“+§F—3> <P"+F§> -8 (P"Jrﬁ) —-54 = 0. (72.17)
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7.3 Evaluations of g,

In this section, we find some values of g,, by using the Schlafli-type modular equations recorded
in the previous section.

Theorem 7.3.1. We have

1/24 1/24
022 = (19601 +13860v2) " and gy = (19601 - 13860v2) "

Proof. We set

1
A= ql_/z;f%lz_) and = ;1%(}1(1);27)-‘ (7.3.1)
so that, by (7.1.5), we have
2/8 21/6
A= m and B = W, . (7.3.2)
where 3 has degree 11 over .
Now, from (7.2.1) and (7.3.2), we find that
L= (ig) and S = -g, (7.3.3)

where L and S are related by Lemma 7.2.1.
Replacing ¢ by —¢ in the definition of A and B, we observe from (7.3.3) that L? and S'? are
transformed into —L? and —S}2, respectively, where

21/2 Al
L= and Sy = —, 7.3.4
'S TABY =B, (73.4)
where "
4 = 19 and B =20 (7.3.5)

T’ = T (g
Squaring (7.2.2) and substituting —L? and —S}? for L? and S'?, respectively, we obtain

9746 + 32 + 352 + 1672 N 4576 4 8096
O T IE T I T I

+ 8096L% + 4576L]

1
+1672L8 + 35218 + 32L1% - 57 Sz =0. (7.3.6)

Now, setting ¢ = e~2"V™2 and applying the definition of 4., in (7.3.4), we obtain

\/‘2 T2n

L =——— and Sy = . (7.3.7
: \/2—T2,nr2,121n ' T2,121n )
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Setting n = 1/11 in (7.3.7) and using (7.1.4), we find that
‘ 1

IJI = 1‘ and SI == (738)
T2.11
So, mvoking (7.3.8) in (7.3.G§. we find that
1
T34 + = — 39202 = 0. (7.3.9)
T2.1
Solving (7.3.9) for 79,11, we deduce that
1/24
ran = (19601 + 13860v2) . (7.3.10)
Using (7.1.3) and (7.1.4), we complete the proof. O

Theorem 7.3.2. We have

1/6 1/6
934=(9+2\/ﬁ+2\/37+9\/ﬁ’ and 92/17=(9+2\/ﬁ—2\/37+9\/ﬁ>

Proof. We set,

f(q) f(q'7")

=W, and B = WCIT‘) (7.3.11)
Transcribing (7.3.11) by using (7.1.5), we find that
21/6 : 21/6
A= W and B = W, (7.3.12)
where [ has degree 17 over a.
From (7.2.1) and (7.3.12), we find that
L= (ig) and S = %, (7.3.13)

where L and S are defined in (7.2.1) and are related by Lemma 7.2.3.
Replacing ¢ by —q in the definition of A and B, we observe from (7.3.13) that L* and S are
transformed to —L}{ and S}, respectively, where L; and S, are given by

21/2 Al
Ly = and 5 = —, 7.3.14
'= (4B 1=, (7.3.14)
_ 17
where A= (=) and B, ___f(_q_)_ (7.3.15)

M f(—¢?) QT f(—g%)
Replacing —L{ and S? for L* and S3,respectively, in (7.2.4), we obtain

1 1 1 4
Sy +——34 (S8 4+ — ) —17( S} + =) (4Lt + — -
I 3(“5?) (“‘s%)( T 7)



16 136
~ (L_*% + yr 340 + 136L7 + 16L§‘) = 0.
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(7.3.16)

Now, setting ¢ = e~2"V™?2 and applying the definition of Tkn in (7.3.14) and (7.3.15), we find

that Y
2
Ll = —_—— and Sl = "2 .
ﬁrz,nfz,zsgn 72,289n
Setting n = 1/17 in (7.3.17) and using (7.1.4), we deduce that
1
Li=1 and S =—.
72,17

So, invoking (7.3.18) in (7.3.16), we arrive at

1 1 1
T%.SU + ,,.18 -17 <rg,17 + T—6_> - 34 (T%‘z” + -’Fl—2—> + 36 =0.

2,17 2,17 2,17

Solving the above equation for real positive r5;7, we obtain

1/6
T2|17=<9+2\/ﬁ+\/37+9\/i_7’ .

Employing (7.1.3) and (7.1.4), we easily complete the proof.

(7.3.17)

(7.3.18)

(7.3.19)

(7.3.20)

O

Remark 7.3.1. By setting n = 1in (7.3.17) and noting ro; = 1 from (7.1.4), and then proceeding

similarly as in the above proof, we can also evaluate the values of gs7s and go/289.

Theorem 7.3.3. We have

6

1 1/4 1 1/4
926 = (6 (m +V=36+ m2>> and ga/13 = (— (m - \/_—m>>

where m =8+ (359 — 12v/78)""° + (359 + 12v/78) /°.
Proof. We set

_ g , {C)
Somp—g QTR (=g
Transcribing this by using (7.1.5), we find that
21/6 21/6
A= /2 and B = /23"
(a(l - a)) B(1-75)
where 3 has degree 13 over a.
From (7.2.1) and (7.3.22), we obtain
2!/ A
L= ?A—B—) and S = 'E,

where L and S are defined in (7.2.1) and are related by Lemma 7.2.2.

(7.3.21)

(7.3.22)

(7.3.23)



‘ Replacing g by —q in the definition of A and B, we observe from (7.3.23) that L'? and S*
are transformed into —L}? and — S}, respectively, where L, and S, are given by

2!/ A
L= and S| = —, 7.3.24
' (ABy) "7 B ( )
where 3
4 = 19 and B =—207) (73 25)

- q/¥ (¢ gl f(—g%)
Squaring (7.2.3) and substituting ~L}2 and ~S? for L'2 and S?, respectively, we obtain

64 1 26 273 1508 4888 10244 15574
18044 + — + 64L17 — — + — - == - -
TP TEE ST T TS TS TS
+10244S; — 488855 4 150855 — 27351° 4 26512 — S}4 = 0. (7.3.26)

, Now, setting q = e=2"V"™2 jn (7.3.24), we find that
\/i Ton

| = and S = —— (7.3.27)
\/§T2,nr2,169n

L .
72,169n
Taking n = 1/13 in (7.3.27) and using (7.1.4), we find that

1
Ll =1 and Sl = . (7328)
72,13

Employing (7.3.28) in (7.3.26), we deduce that
(1 - 9z* + 2078 |3 — 92'% + 2'%)” (1 — 8z* + 82° — 182'2 + 820 — 82% + 2¥) =0, (7.3.29)
where © = r5,3. Since the first two equal factors have no real root for 7,3, we arrive at
1 — 8r5 13 + 8313 — 18ryi; + 87385 — 8r3%; + 724, = 0. (7.3.30)
Setting z = 735 3 + r{“fs in the above equation, we find that
22 -8 +52-2=0. (7.3.31)
Solving the above equation for real positive z, we have

1
3

o=

(8 + (359 — 12v78)1/3 + (359 + 12\/7_8)”3) (7.3.32)

Thus.

1
’"‘2‘.13 = 5 (777 + vV-=36+ m2> . (7 333)

whete =8 (359 ~ 12\/7@)1/J + (359 + lQ\,/ﬁ)'/J Using (7 1.3) and {7.1.4), we complete
the proof 0
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Remark 7.3.2. The values of ga5 and g2,13 can also be obtained by using the eta-function identity
Entry 57 {16, p. 211} instead of Lemma 7.2.2.

Theorem 7.3.4. We have

1/8
47 — 215 1/12
g7 = (___2 ‘/—> (99 + 70\/§> ,

1/8
47 + 215 1/12
Jra/s = (————) (99 - 70\/5) ,

2
1/8
47 + 215 1/12
o = <..____2 f) (99-+70v2) ",
1/8
: 47 — 21v5 1/12
and go/3s = (——gi) (99 — 70\/-2-)

Proof. We define

f(g) () __ f@") _ _ f@®)
A= gy BT gy © T g gy D= gy (3

With the help of (7.1.5), the above expressions can be written as
o1/6 91/6 o1/6

A=—2 __ B=—"* __ C=—"
(a1 — o))/ (B(1 - B))/* (v(1 =)™

and
21/6
(-
where a, (3, v, and § have degrees 1, 5, 7, and 35, respectively. Thus, from (7.2.7), and (7.2.8),
we find that BC

2 _ BC 2 _ A5
@=2p ™ F=zp

where @ and R are related by Lemma 7.2.5.
Replacing ¢ by —g, we observe that Q2 and R* transforms to —Q? and —R?, respectively,

(7.3.35)

(7.3.36)

with
B, C A B
2 211 2 151
d R = 7.3.37
where
. fl=9) (=¥ f(=4) f(=¢*)
A= gy B = gy O = gy 2 D = gy (19%)

Replacing Q% and R* by —Q? and — R}, respectively, in Lemma 7.2.5, we obtain

R} + m - <Q6 Qﬁ) - (Q“ Qq) - <Q2 Q?) -15=0. (7.3.39)
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Setting g = e”?"V™? and applying the definition of 7y, in (7.3.37) and (7.3.38), we find that

2 72,25n72,49n T2nT225
Ql = o AT and Rf = 2R TR (7.3.40)
T2,n72,1225n 72,49n72,1225n

Setting n = 1/35 in (7.3.40) and using (7.1.4), we obtain

2
QRi=1 and R: = (72‘5/7) . (7.3.41)
72,35

Invoking (7.3.41) in (7.3.39), we deduce that

a5\ ras\
( S/ ) + (—/—) —47=0. (7.3.42)
T2,35 72,35
Solving the above equation for positive real r95/7/7235, we obtain

1/4
T2,5/7 _ <47 - 21\/5)

2

(7.3.43)
72,35

Again, if a, 8, v, and ¢ are of degrees 5, 1, 7, and 35, respectively, then from (7.3.35),
(7.2.6), and (7.2.7), we find that

P AB2CD and Q= ﬁ_g., (7.3.44)

where P and @ are related by Lemma 7.2.6.
Replacing q by ~q, we observe from (7.3.44) and the definition of A, B,C, and D in (7.3.34)
that P? and QS are converted to P? and Q$, respectively, where P} and Q3 are defined by

2 BQC]
P2 _ _ d 2 _ 345
= 4LEGD W @=gpn (7.3.45)
where C), and D, are given in (7.3.38) and A, and B, are defined as
P -
Ay = _f(__q__)__ and Bj:= _f_(q_)_ (7.3.46)

P PP f(—gi0) ¢ f(—q%)

Now, squaring (7.2.11) and substituting P and Q% for P? and QS, respectively, we obtain

2
1 1 1 1
{Q§+Q—g —4 (P“F;T) +10} =50 <Q§+é§+2> (Pf+73?+2) : (7.3.47)
Setting g = e~2"V"™? and employing the definition of 7, in (7.3.45), we find that

B 2 Tt i3
P2 = and Q= ——2nlhm (7.3 48)

2T nT2,25n72,49n72,1225n 72,250T2,1225n
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Setting n = 1/35 and invoking to (7.1.4), we obtain
1
PP=1 and Qi=—m . (7 3.49)
(T2,5/77”2,35)

Applying (7.3.49) in (7.3.47), we have

6 -6 .
(ras/irass) + (rassirass)  — 198 =0. (7 3.50)
Solving the above equation for positive real ro5/772 35, we obtain

1/6

T2,5/772,35 = (99 + 70\/5) (73.51)

With the help of (7.3.43), (7.3.51), (7.1.3) and (7.1.4), the values of g19/7, g14/5, 970, and gz;35
readily follow. O

Theorem 7.3.5. We have

1/8 1/8
7—3V5 1/12 74 3V5 1/12
Jioy3 = ( 5 \/_) (19 + 6\/10) ) ge/s = ( 7 \/—> (19 — 6V 10) ,

1/8 /8
7+3V5 112 7-3v5 1/12
950 = ( +2 ‘/—) (19 n 6\/10) . and gos = (—T‘/—_) (19 - 6\/10) :

Proof. Set

__Je) . __ fl) o f(e®) O H)
= ql/sf(—qﬁ)’A = q1/24f(—q2)’B = P/ f(—q10) and H := ——_q5/8f(_q30)’ (7.3.52)

so that, by (7.1.5), we have

21/6 21/6 21/6 91/6
E= VA= ,B= ,andH = ————
(a(l _ a))1/24 (ﬁ(l _ 6))1/24 (7(1 _ 7))1/24 (6(1 _ 6))1/24
(7.3.53)
where «, 0, v, and é have degrees 3, 1, 5, and 15, respectively.
From (7.3.54), (7.2.6), and (7.2.7), we find that
2 AB
2 _ 4 2 _ 40
“BEH and Q TH’ (7.3.54)

where P and @ are related as in Lemma 7.2.7.
Replacing ¢ by —¢ in the definition of F, A, B, and H, we observe from (7.3.52) and (7.3.54)
that P? and Q* are transformed to — P} and —Q3, respectively, where P# and Q3 are given by

2
~ AB\E\H)

and Qi = ABy (7.3.55)

P2 ,
2 EvH,
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where A, and B, are defined in (7.3.38), and E; and H, are defined as

3 _ 15
= J(=q) and H, = qTf;(szq—z’“—)' (7.3.56)

B = T)
LT g\ Bf(—¢F)

So. 1eplacing P? and Q* by —PZ and —Q43, respectively, in Lemma 7.2.7, we have

1 1
4 2
Now, we set ¢ = e~ 2"V™?2 and apply the definition of 7, in (7.3.55), to obtan
2 n n
and 2 T2nT2on (7.3.58)
T2,9n72,225n

pP? =
272
T2,n72,9n72,25n72,2250

Setting n = 1/15 in (7.3.58) and using (7.1.4), we deduce that

2
PP=1 and Q= (”’5/3) . (7.3.59)
T2,15

Invoking (7.3.59) in (7.3.57), we arrive at

(7‘2.~’>/3/T2,15)4 + (r25/3/T2,15) (7.3.60)

4 _7=0.

Solving the above equation for positive real ry5/3/72 15, we obtain

1/4
7—3V5
T2,5/3/T2,15 = ( 5 \/—) . (7.3.61)

Now, if we consider @, 8,7, and ¢ of degrees 5, 1, 3, and 15, respectively, then (7.3.53), (7.2.6),

and (7.2.7), implies that
AB (7.3.62)

2
2 _ e
P ABEH and Q BH

where P and Q are related by Lemma 7.2.10.
Replacing q by —gq, we observe from (7.3.62) and the definitions of E, A, B, and H in (7.3.52)

that P? and Q° are converted to —P? and QS, respectively, where P? and Q? are defined by

A48, (7.3.63)

2
and Q2 = B

Ple ———

27 A1B3EyH,

where F, = By, B3 = Fj, and A;, and H, are given in (7.3.38) and (7.3.56), respectively.
Substituting P? and QS for P2 and QF, respectively, in Lemma 7.2.10, we obtain

1 1 1
Q46+Q—§—4<P«;+P—24)—10<P22+1—323+1>=0.

(7.3.64)
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Setting ¢ = e~ 2"V™? and employing the definition of r¢, in (7.3.63), we obtain

P2 = 2 and Q2 = [2nTm (7.3.65)

2T'2,7LT2,9nT2.2511T2,22511 T2,25n72,2251 ’
Setting n. = 1/15 above and employing (7.1.4) in (7.3.64), we obtain
1

P}=1 and Qf= . (7.3.66)
2
(7‘2.5/3T2,15)
Applying (7.3.66) in (7.3.64), we find that
-6
(T2,5/37”2,15)6 + (rop/arans)  —38=0. (7.3.67)
Solving (7.3.67) for positive real 7 5/372,15, we obtain
1/6
T2,5/372,15 = (19 + 6@) : (7.3.68)

Employing (7.1.3) and (7.1.4), the values of g10/3, g6/5. 930, and gz;15 follow from (7.3.61) and
(7.3.68). O

Theorem 7.3.6. We have

1/4 1/4
5— V31 112 5+ /21 1/12
9677 = ( - ) (15+4v12) ", g = < - ) (15- W),

1/4 1/4
5 21 1/12 - 1/12
gz = ( ki ‘/—> (15+4\/171) . and gym = (5 ‘/2_1> (15—4\/1_4) .
2 2
Proof. We define
/(@) /(&) £(@") £
=— = (= —————, and G := ———2—, (7.3.69
g /% f(~¢%) g'/8f(~¢®) g'/* f(—q") g/ f(—¢*?) (7:3.69)
so that, by (7.1.5),
91/6 21/6 : 21/6 21/6
A= — E= , C= , and G = ——————,
(o1 = )2 (81 — B))"/* (V1 =) (6(1 - 8))1/*
(7.3.70)
where a, £, v, and § have degrees 1, 3, 7 and 21.
From (7.3.70), (7.2.7), and (7.2.8), we find that
, CE o AE
Q AC an olel (7.3.71)

where (Q and R are related by Lemma 7.2.11.
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Replacing ¢ by —¢ in the definitions of A, E,C, and G, we observe from (7.3.71) that /2

and Q* are transformed to —R2 and —@Q5, with
. C'l E] 2 A]E]
0 = and R, = 7.3.72
% AG e GG ( )
where A, and €} are defined in (7.3.38), E; is defined in (7.3.56), and (/) 15 given by
o = J=a")
LB (=)
Replacing R? and Q* by — R} and —Q‘; in Lemma 7.2.11, we obtain
+R2 Q“+—+3 (7 3.73)
Qs
Now setting ¢ = e~ 2"V™? and applying the definition of Tan/2 in (7.3.72), we find that
2 _ _TanT29n and Q§ _ T‘2,9n'r2,49n' (7.3.74)
72,49n72,441n T2,n72,441n

Setting n = 1/21 and using (7.1.4) in (7.3.74), we obtain
R: = (raan/ram)’  and  Qi=1. (7.3.75)
Invoking (7.3.75) in (7.3.73), we deduce that  ~

-2

(T2,3/7/T2,21)2 + (T2,3/7/T2,21) -5=0. (7.3.76)

Solving the above equation for real positive r43/7/75 91, we obtain

i 1/2
5—+/21
7‘2,3/7/7”2,21 = )

Again, considering «, 3,7, and § to be of degrees 1, 3, 7 and 21, from (7.2.9) and (7.3.70),
we notice that
2 AC

2——._
acce @ T =%

Replacing ¢ by —g in (7.3.69) we observe from (7.3.78) that P% and T® are transformed to Py
and Tf, where P and T are related by Lemma 7.2.12 and

(7.3.77)

p? =

(7.3.78)

2 AC
Pl=—r— and T? = ElGl.

AECC, (7.3.79)

Squaring (7.2.17) and replacing P? and T? by PS5 and T®, respectively, we obtain

{7]2+Fﬁ 18<TG+ )—8(]3\s P6>—54} =648(TG+F+2><P§ P°+2>

(7.3.80)
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Setting again g = e~ ?"V"/2 and applying the definition of 7o/ in (7.3.79), we find that

1 T2.n72,49n

P = and T = : (7.3 81)
' TomT29072,49072.441n T20mT2441n
We set n = 1/21 in the above equation and apply (7.1.4) to arrive at
PP=1  and  T?=(raapmam) - (7.3.82)
Invoking (7.3.82) in (7.3.80), we obtain
1 1 ? 1
{a:” +—5—18 (3:6 + —6> - 70} = 2592 (zﬁ + —6> + 5148, (7.3.83)
T T z

where z = (7"2'3/77"2'21). Solving the above equation for x and noticing that ry, > 7, for

n > m, we derive that
1/6

T = (T2‘3/77‘2'21) = (15 + 4\/1_4> (7384)

The values of ge/7, g14/3, ga2, and gz follow from (7.3.77), (7.3.84) and the properties (7.1.3)
and (7.1.4). 0

Theorem 7.3.7. We have

1
gzz/3=§(3+\/3_— 26+6\/:§

1/2

(V2 +V3) * (rva+avin)

\/7+\/I§ \/\/33—1 v
X g\ 3

and
27/4
ge/11 =
(3+ V33~ Va6 + 6\/Z§)1/12 2+ V3 (1v2 +3v10)"
1
X 17z
(\/7+ V33+v/V33-1)
Proof. Define
fl¢ flg) fg"! f(g*
L= T M o= gy = gy K ey (1389

Transcribing these with the help of (7.1.5), we find that

-21/6 21/6 N 21/6 4 K 21/6
T e-a) T T ma - T a7 T T —ay
(7.3.86)

where a, (3, v, and § have degrees 3, 1, 11, and 33, respectively.
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Theorem 7.3.8. Wc have
1/2
-3+ 13 1/6
Gos = (————2 ) <5+ \/26)

and

2

G26/3 = .
(5+v26)/° V=6 +2V/13

Proof. We set

/| flg) /) f(g") , o f@® . /(g*)
b= gt/ f(—q%)’ M= g f(—gB) T B f(—gb)’ and K= g8 f(—¢™8)
(7.3.96)
With the help of (7.1.5), we rewrite the above expressions as
21/6 21/6 91/6 21/6
" , r T N/=-————'——, andK'=' )
(a1 — )/ (81 - B))"* (v(1 = )™ (8(1 - 8))"/*
(7.3.97)

where «, 3, 7, and § have degrees 1, 13, 3, and 39, respectively.
Proceeding as in the case of the previous theorem, we have

M'N’ L'N'
2 _ 2
Q"= TE and T o (7.3.98)
where @ and T are related by Lemma 7.2.8.
Replacing g by —g, we see that @* and T? are transformed to —Q? and T?, where
MgNg L2N2
2 - T? = 3.
Q7 L.K, and LS LK, (7.3.99)
with
__f(=9) __f(=¢® _ _f(=¢% __f(=¢%)
b= gy M Ry M gy 2 = gy
(7.3.100)
So, replacing g by —¢ in Lemma 7.2.8 and substituting —Q? and T? for Q? and T?, respectively,
we have ) )
1
2 2
Q§+5§+3(Ql+a¥) - <T1 +§?>+3=0. (7.3.101)

Setting ¢ = e~2"V™2 and applying the definition of Toq in (7.3.99), we find that

Qg _ 72,169n72,9n and le _ T2nT2,9n (7.3.102)

T2:n72,1521n 72,169n72,1521n

Now, setting n = 1/39 and applying (7.1.4) in (7.3.102), we obtain

2
Q=1 and T3=<M>. (7.3.103)
72,39
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Invoking (7.3.103) in (7.3.101), we deduce that

2
<r2,3/13> +( 1 _i=0 (73 104)

2
T2,39 T2,3£13)

72,39

Solving the above equation for 795/13/7239 and noting that r2,, > 1 and g, = 7y, we find

that 12
r2313 . 96/13 _ 11 - 3v/13 (73 105)
72,39 g7s 2
Now, from [17, p. 202], we recall that
1/2
3+ V13 1/6
ors = ( Qf) (5 + \/%) . (7.3.106)

Combining (7.3.105) and (7.3 106), we obtain the value of gs/13. In a similar way. employing
(7.1.3) and (7.1.4), we arrive at the value of gog/3. 0

7.4 Evaluations of G,

In this section, we use some of Schlafli-type modular equations listed in Section 7.2 to find some
class invariants G,. We note that Gyn = 1/G,, which will be used throughout this section
without further comment.

Theorem 7.4.1. We have

1 1/2
= 4
G zﬁa{\/ib+\/144a +2b2} ,

where a = (17 + 3v/33)1/6 and b= —2 + 242 + a*.

Proof. Applying the definition of G, in Lemma 7.2.1, we find that

1 Gn
L= and S = . 74.1
GnGiain Giain ( )
Setting n = 1/11 in (7.4.1), we obtain
1
L=— d S=1. 4.
. an (7.4.2)

Invoking (7.4.2) in (7.2.2), we deduce that

1 1 1
1—\/5{(6“0———)—11(05—-——)+22<G2———)}:0. 7.4.3
11 Gi(l) 11 G(lil 11 G%l ( )



Setting
9 1
U = (G“ - F?I‘)

1+ V2u + V2u* —2vV2u° = 0.

Solving the above polynomial equation for u, we get

in (7.4.3), we antive al

Lo T2+ 3v/33)1/3 4 (17 4 3/33)%/°
3v/2(17 + 3/33)1/3 '

Thus,

G2 = —= (\/2' b+ V144a® + 2b2> ,

12a2

where @ = (17 + 3v/33)Y/6 and b = ~2 + 2a + a*. Thus, we complete the proof. -

Theorem 7.4.2. We have

Gis = (18+ 5\/3)”12.

Proof. Applying the definition of G, in Lemma 7.2.2, we find that

1 G
L= and S = ——.
GnGigon 169n
Setting n = 1/13 in (7.4.8), we obtain
L= = and S=1
Gh o

Employing the above expressions in (7.2.3), we deduce that

1
G2 — — +36 = 0.
8GR

Solving the above equation and noting that G, > 1, we readily finish the proof.
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(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)

O

With the help of Lemmas 7.2.3 and 7.2.4, the next two theorems can be proved similarly.

Theorem 7.4.3.

1/8
o _ (17+5\/ﬁ+ 698+17om) /
17 — 4
Theorem 7.4.4. e
19 — e —— y
3

where a = 38 + (20528 — 1296v/57)"/3 + 2(2566 + 162v/57)"/3.
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Next, we use a couple of Schlafli-type “mixed” modular equations listed in Section 7.2 to
find the class invariants Gy; and Gys.

Theorem 7.4.5. We have

N (e U R 1
% a—v—36+a?
and ] 4
Grfs = T {(a Y/ T a2) (b +V1da bz)}
where
a =5+ (62 — 6/105)V3 + (62 + 6/105)"/3
and

b=2v2 + (142v2 — 6V/210)'/3 4 (142V/3 + 61/210)'/%.

Proof. Applying the definition of G, in Lemma 7.2.5, we obtain

GosnG G.G
2 2517 49n 2 n\725n
- Z¥nTn 4 = 4.
¥ = GG ™ M = GG (7421
Setting n = 1/35 in (7.4.11), we deduce that
G 2
Q= ( 5”) and R?=1. (7.4.12)
G3s
Invoking (7.4.12) in (7.2.10), we find that
6 -6 4 -4
G
(G ) () @
Gss Gas Gis Gis
Gy \2 [ Gspr\ M
-10 (—ﬂ> + (i/l) +15=0. (7.4.13)
Gss 35
Setting i
Gsﬁ)2 Gs/7) -2
={—=—1 + 7.4.14
Y ( Gss ( Gss ( )
in (7.4.13), we arrive at
. y -5y + Ty —7=0. (7.4.15)
Solving the above polynomial equation, we get
1 /3 1/3
y=3 (5 + (62~ 6V105)  + (62+ 6\/105) ) . (7.4.16)
Thus, we have .
Gs;7 a— V36t az\ "
= , (7.4.17)
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where o = 5 + (62 — 6v/105)"* + (62 + 6v/105) """,
Again, applying the definition of G, in Lemma 7.2.6, we find that

2 1 GnG' on
P = ot ™ @ = e (7:4.18)
nr25n n\7354n 256N 354n
Setting n = 1/35,we obtain
1
PP= ——— and Q" =1. 7.4.19
(Gs/7G15)? and ¢ ( )

Invoking (7.4.19) in (7.2.11), we find that

1
(Gs/7G3s)

Setting z = G5/7G3s + (G5/7G35)'1 in (7.4.20), we deduce that

1 + 5\/5 ((05/76'35) -+ ) - 2 ((C;’5/7G'35)4 + ;)_4> + 5 = 0 (7420)

(Gs/7Gas

24+ 5v2z+82% — 224 = 0. (7.4.21)

Solving the above polynomial equation for z, we get.
1 1/3 1/3
=z {2\/5 + (142\/5 - 6\/210) + (142\/5 + 6\/210) } (7.4.22)

Therefore,

1
GsrGas = 7 (b+ v=Taz+ ®)., (7.4.23)

where

b=2v2 + (i42\/§ - 6\/5'1_0) oy (142\/5 + 6\/2_1_0)1/3
O

Dividing (7.4.23) by (7.4.17), and then simplifying, we obtain the class invariant Gj5. Sim-
ilarly multiplying (7.4.23) and (7.4.17), and then simplifying, we derive the value of Gs;7.
In his paper [53] and also on page 294 of his second notebook {54, Vol. II], Ramanujan

_ recorded two simple formulas relating the class invariants g, and G,,, namely, for n > 0,

1
94 =2'/'9,G, and (9,G,)" (Gr —g7) = 7.

Thus, if we know g, and g4, or only g, then the corresponding G, can be calculated by the
above formulas. But, the values may not be as elegant as we expect. As for examples, in the

following theorem, we list some class invariants, which we find by using this process.
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Theorem 7.4.6. We have

(\/2178 + 15402 + /19601 + 13860\/5)

1/8

G = )
” 21/8 (19601 + 13860/2) "/ *
1/8
(\/5178 ~1540v/2 + /19601 — 13860\/5)
Gz 1 = )
7 91/8 (19601 ~ 13860v/2)"/*
” 1/8
(m+ \/1+ (9+2\/1'7‘+2\/37+9\/I7> )
G34 = )

21/8 (9 + 217+ 237+ gx/ﬁ) i

where m = (297 +72v/17 + 36V/37 + 9V17 + 8v/629 + 153\/1_7) ;

1/8
4
<m1 +4/1+ (9+2\/17—2 37+9\/17) )

/12
91/8 (9+2\/1_7~ 2 37+9\/ﬁ)

Goypr =

where m, = (297 + 7217 — 36v/37 + 917 — 8/629 + 153\/1_7) :

1/8
(a + \/ 376 — 168+/5 + 4 (99 + 70v/2)” (2207 — 987\/5)2>

24 (47 - 21V8)"® (99 + 70v/2) V>

Gyr =

where a = (436896 + 308980+/2 — 195426+/5 — 138180v/10) ; .

1/8

ay+ \/ 376 + 168/5 + 4 (99 ~ 70v2)” (2207 + 987\/5)2>

21/4 (47 + 21v5)"® (99 — 70v/2) "/

Gm/s =

where a; = (436896 — 308980v/2 + 195426v/5 — 138180+/10) ;

. 2 1/8
'<a2 + \/ 376 + 168v/5 + 4 (99 + 70v/2)” (2207 + 987\/5)2>

21/4 (47 + 21V5)"® (99 + 70/3) /%

G =

)

where az = (436896 + 3089802 + 195426V/5 + 138180+/10).



Chapter 8

Explicit Evaluations of Cubic and
Quartic Theta-Functions

8.1 Introduction

In his famous paper [53], [55, p. 23-39], Ramanujan offered 17 elegant series for 1/7 and
remarked that 14 of these series belong to the “corresponding theories” in which the base ¢ in

classical theory of elliptic functions is replaced by one or other of the functions ”

2F1(.1."_‘l,1’1_x)
i (z) = ezp | - AN , 8.1.1
& =a(2) ezp( reselr /) R T 8.11)

where r =3, 4, and 6, where 5 F; denotes the Gaussian hypergeometric function. In the classical
theory the variable ¢ = ¢;. Ramanujan did not offer any proof of these 14 series for 1/7 or any

&

of his theorems in the “ corresponding”or “ alternative” theories. In 1987, J.M. Borwein and
P.B. Borwein {33] proved the formulas for 1/m. However, in his second notebook (54, Vol. II],
Ramanujan recorded, without proof, some of his theorems in alternative theories which were
first proved by Berndt, Bhargava and Garvan {19} in 1995. These theories are now known as
the theory of signature r, where r =3, 4, and 6. In particular, the theories of signature 3 and 4
are called.cubic and quartic theories, respectively. An account of this work may also be found

in Berndt’s book [17].

In Ramanujan’s cubic theory, the theta-functions a(q), b(q), and c(q) are defined by

o0 00
§ m2+mn+n? j : - 24 mntn?
a(q) —_ q +mn+ , b(q) —_ w™ nqm +mn+n , (812)
m,n=-00 mn=-—00

130
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and

o}
c(q)= Z q('m+|/3)2+(m+l/3)(n+1/3)+(n+l/3)2, (8.1.3)
m,n=-—o0

where w =exp(2m2/3). These theta-functions were first introduced by Borweins {34], who also
proved that
a*(g) = b'(g) + *(q)- . (8.1.4)

" Cubic theta-functions b(¢) and c(q) are related with the Dedekind eta-function by {17, p. 109,

Lemma 5.1]
fA(-9) 323 (—¢%)
blg) = and ofg) = A2 147 (8.1.5)
=g ="y
The Borwein brothers [34, (2.2)] also established the following three transformation formu-
las:
—2mt 1 —2m/3t
= , 8.1.6
a(e™™) =+ 7 a(e™™"™) (8.1.6)
1
b —omty .~ -2 /3t , 81.7
(€)= 55 ™) 8.17)
and
~2xt 1 —2m /3¢t
=—b , 8.1.8
ofe™) = = e (8.1

where Re(t) > 0. Cooper [42] also found alternate proofs of (8.1.6)-(8.1.8).

In quartic theory, Berndt, Bhargava, and Garvan [19] (see also [17, p. 146, (9.7)]) established
a “ transfer "principle of Ramanujan by which formulas in this theory can be derived from those
of the classical theory. Taking place of a(g), b(g), and ¢(q) in cubic theory are the functions
A(g), B(q), and C(q) [23], defined by

A(q) = ¢*(q) + 16q¥*(¢*),  B(g) = ¢*(q) — 16q¥*(¢%), (8.1.9)
and
C(q) = 8V4¢* (9)¥*(¢%), (8.1.10)

which also satisfy the equality ‘
A%(q) = B*(q) + C%(q). (8.1.11)
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Berndt, Chan, and Liaw [23] used (8.1.11) to establish the inversion formula

13
24 (=2 Fl —,—;1,117 = A(q), (8 112)
4 4
where ¢ := g4 is given by (8.1.1). Therefore, they did able to prove the theorems in the quartic
theory directly.

The quartic analogues of (8.1.5) is given by [23, p. 139, Theorem 3.1}

_ (=9 _ A=)\’
B(q) = (f(—q2)> and C’(q)—8\/§< f(—q)) . (8.1.13)

In this chapter of our thesis, we find explicit values of cubic and quartic theta-functions

and their quotients by using some parameterizations defined in the previous chapters. In the
process, we also find some transformation formulas of these theta-functions.

While proving the explicit values of ¢(g) and (q) recorded by Ramanujan in his notebooks,
Berndt and Chan [17], explicitly determined the value of cubic theta-function a(e™?") [17, p.

328, Corollary 3], namely
a(e™®) 1
$*e™) (121831

where ¢(e™™) = 7'/ /T'(2) is classical [65). Certain quotients of A(g), B(g) and C(g) were also

(8.1.14)

evaluated by Berndt et al. [23] while deriv_ing the series for % associated with the theory of
signature 4.

In Sections 8.2 and 8.3, we deal with explicit evaluations of cubic theta-functions and their
quotients.

The last two sections of this chapter are on explicit evaluations of the quartic theta-functions

and their quotients.

8.2 Theorems on explicit evaluation of a(q), b(q) and c(q)

In this section, we present some general formulas for the explicit evaluations of cubic theta-
functions and their quotients by parameterizations given in previous chapters. In the process,

we also establish some transformation formulas of quotients of cubic theta-functions.
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Theorem 8.2.1. For any positive real number n, we have
ble VM) R T
c(e—Qﬂ\/n/S) 3in n

where 7, and u, are as defined in (1.1.9) and (1.1.12), respectively.

Proof. Using the definitions of b(q) and c¢(gq) from (8.1.5), we have

36(9) _ [ f(=q9) '
clg) (q1/12f(—q3)> ' (8.2.1)

Setting g = e~ 2"V™3 and then employing the definitions of Tkn and pn, we finish the proof. O

Remark 8.2.1. Replacing n by 1/n in Theorem 8.2.1 and noting that T3,1/m = 1/r3,, we also

have
b(e—21r\/n/3) c(e—2n/\/§ﬁ)

c(e V) blehn /Yy

Thus, if we know the value of one quotient of (8.2.2) then the other quotient follows readily.

(8.2.2)

From Theorem 8.2.1 and (8.1.4), the following theorem is apparent.
Theorem 8.2.2. We have

a(e™ v n/3) _ (réz + 1)1/3'

o(e2"V//3) B

Theorem 8.2.3. For any positive real number n, we have

b(e'2”‘/'7) _ Ton
c(e—zw\/ﬁ/a) - \/g
Proof. From the definitions b(q) and c¢(g) in (8.1.5), we observe that
b(g’) _ _ f(=q)
cg)  3¢3f(-¢°)

Setting ¢ = e~2mVn/3 ip (8.2.3) and then employing the definition of 7y ,, we arrive at the desired
result. 0

(8.2.3)

Remark 8.2.2. Noting that rg /s = 1/rgn from (7.1.4) and using Theorem 8.2.3 , we find that

3ble™VR)  c(em2/3VA)
C(e-znﬁ/a) - b(e—zn/ﬁ) )

(8.2.4)

Now, from (8.2.4) it is obvious that if we know the value of one quotient then the other quotient
can easily be evaluated.
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In the next theorem, we give a relation between c(g) and the parameter h, s defined in
(6.1.4).

Theorem 8.2.4. For any posilwe real number n, we have

etV 1 ,
6(6—211-\/773-) = Z (1 - \/3_)(}7,3’”)2) .

Proof. From (23, p. 111, Lemma 5.5], we note that

4 _ 2
c(q) ¢(-¢%)
Now applying the definition of hj ,, with k =3, in (8.2.5), we complete the proof. O

The next theorem connects a(q) with the parameter ri, defined in (1.1.9).

Theorem 8.2.5. For any positive real number n, we have

4 _ LEVAD =2/ N
a]2(e‘2” ’_—n/s) _ 27 (ré?n+1) e~ 2"V /3f24(—e 2ry/ /3).
3o,
Proof. From [36, p. 196, (2.9)], we note that
279*(~¢) = a'*(a)(1 — a())*«(q), (8.2.6)

where a(q) = (g)/a3(q).

Setting g = e"2*V™/® and then applying (8.2.2) in (8.2.6), we obtain
3
276‘2”‘/"/3f24(—e"2”‘/"/3) — a12(e—21r,/n/3) 1-— 21 ) ( 1 ,
rint1) \r3n+1
which on simplification gives the required result. 0

Theorem 8.2.6. We have

a(e=3"m) = % {a(e™) + 20(e™™)} .

Proof. From (17, p. 93, (2.8)], we have

b() = 5 {3a(e’) - a(a)} (827)

Setting ¢ = e™™" in (8.2.7), we readily complete the proof. ]
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Theorem 8.2.7. For any positwe real number n, we have

. oy f3(~e—-n1r)
(]) b(e )_ f(_e—.Smr)
and
. I G|
(i) b(—e™"") = Fle=mmy
Proof. Setting ¢ = e™™" and ¢ = —e™"" in (8.1.5), we readily arrive at (i) and (ii), respectively.
: a
Theorem 8.2.8. For all positive real numbers n, we have
(l) b(e-Zw\/n/3) — 31/46—1r\/1_1/6\/§f2(_6—271'\/11/3)7.3‘"
and
(i) b(__e—-m/n/:i) - 31/4e—7r\/ﬁ/12\/5f2(e—1r n/S)Té‘m
where the parameters r3, and 3, are defined in (1.1.9) and (6.1.2), respectively.
Proof. We rewrite b(g) in (8.1.5) as \
b(g) = f*(—g)g'/** A (8.2.8)

Setting ¢ = e"2"V™3 and employing the definition of 3, we arrive at (i). To prove (ii), we
replace ¢ by —q in (8.2.8) and then use the definition of 5 . 0

Theorem 8.2.9. For all positive real number n, we have

(i) c(e—mr) = 3e~""/3 f3(__e—3mr)

f(=emm)
and
3(,—3nnm
i) c(—e) = —3e'"”/3£—(e——).
( ) ( ) f(e_n.,r)
Proof. Follow readily from (8.1.5) with ¢ = e™" and ¢ = —e™"". O

'Theorem 8.2.10. For all positive real number n, we have

c(e"’“”'\/;%) _ 33/46—1r\/ﬁ/2\/§f2(_e—21rm)‘

T3n

Proof. We set ¢ = e™#"V*/3 in (8.1.5) and then employ the definition of the parameter rx, to
finish the proof. 0
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8.3 Explicit values of a(q), b(q) and c(q)

In this section, we find explicit values of cubic theta-functions and their quotients by using the
results established in the previous section.

Theorem 8.3.1. We have
b(e=2/V3)
c(e=27/V3)

Gy V) =(1+\/§)2/3,

=1,

c(e~2"V)
-2r 1/2 2/3

Gi) b(e~2") 312 (1+ /3)
c(e=r) - 91/3 ’

(i) be?)  (1+v3\
v c(e=4nv3) V2 '

b(e‘z"\/gﬁ) 3 1+V5 1073
(V) 0(5_2"\/5%) - 2 y

b(e—21r 7/3) _ \/3'+‘/7

0(6—2" 7/3) 2 (2 —_ \ﬁ}-) !

L beTt V) 43

(Yu) (et 2/3) - (1 + \'/5) (\/—2-+ \/5) ’
N ) B

(viii) 6(6”2"‘/5) - (21/3 — 1)4/3’

(vi)

4/3

———-—iz:: \/Z_z; =3 (1+V2) e (2 +V2 (14 \/5)1/3 + (1+v5) 2/3) ,
) be2 VIR (114 i3+ 3+ /13
c(e“z"\/EE) - 2v2 ’

b(e-—101r/\/§)

. 1 : )
) A (1 + Y10+ 542910+ J—J) ,

by (34 YIYT + YIVT 4+ 49+ 13VEYT + 8VRIT
(xi) mrymyy .
c(e~14v/V3) 2V3

Proof. Follows directly from Theorem 8.2.1 and the corresponding values of 3, listed in Section
1.3. O

¥
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More values can be calculated by employing Theorem 8.2.1 and the corresponding values of

tin evaluated in Chapters 2 and 3 of this thesis.
Theorem 8.3.2. We have

) a(e—‘21r/\/'3) a3

0) c(e—2ﬂ/¢§) -_\/5’

(11) M = Ql/3 <2 + \/_2')1/3)
C(e~21r 2/3)

i a(e—zw) ~ (33/2 (1+\/_) 1)1/3’

C —21r -
) a(e—w\/‘ (((1+ ) )1/3

e 47r/f !
) 1/3

A (59 )
(vi) _21'\/_ (( 3t +1) :

-

-((

>

N

—21 5/

&.

1+

—211'

-2"\/7/_ 3) 2(2 —

4 2/3
(vil)

—41r 3

1+ v3)' (VB4 VB + )/3,

—101r/f

(viii) _m"/\/_

1+\‘71_+\/5+2\/_+\/1—0—> 1)1/3
5 ,

' a(e -—61r/\/_ 13

(ix) o _6”\,-) ((21/4_1) +1) ,

0 a(e147/VB) ((3+\/'\/_+\/_f75+\/219+13\/—\/'+8\/‘\/_) )
C(e—l41r/\/§) - 273 ,

(xi) % = (3“ (1 + \/5)10/3 <2+ \/5(1 + \/5)4 + (1 + \/5)8> + 1)1/3.

Proof. Follows easily from (8.2.2) and the corresponding values of 3, listed in Section 1.3. O

Theorem 8.3.3. We have
o ATl -L
c(e-27/3) T /3’ :
e (V3+vR)'

c(em2mv2/3) V3

(i)
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L bleT3y 1 .
W e T3 E-Y)

. ble™™™) 1 /4
(iv) (e 23 (1 +V2 31 4 \/5) )
b(e—2\/5 7:)

1 1/6
b2 L 2%6VI5) .
) o \/3_(104+60\/§+45\/5+ VI5)

Proof. Follows from Theorem 8.2.3 and the corresponding values of 79, 1n Section 1.3. 0

Lemma 8.3.4. We have

(i) hlm =1,

(ii) h,2,2 = 91/16 (\/5 B 1)1/4,
21/331/8 (/3 — 1)1/6

(1+v3+ \/ix‘/?ﬁ)l/a’

\ 21/4

1/8?
(16 F 15934122 + 9{‘/55)

(v) hg,5=%(\75—1) \/5+ V5,
91/431/8 (\/-2-_1)1/12 (\/§+1)1/6 (_1_\/-3-4_\/5‘33/4)1/3

(2~ 3V/2 + 3574 + 33/4)'/° ’
(vii) hy,=2"Y4/V3-1.

For proofs (i)-(vi), see [69, p. 21, Theorem 5.6] or [66, p. 152 , Theorem 9.2.6]. For proof of

(i) hgz =

(iv) hfu =

(vi) heg =

(vii), see [69, p. 15, Theorem 4.11] or [66; p. 145, Theorems 9.1.10] .
Theorem 8.3.5. We have

c(e=8/V3) 1 (\/§+\/§—3)

c(e=2/V3)y 4 V2
-8 2/391/4 1/3
. cle™®) 1 22/331/4 (/3 - 1)
(i) c(e~) =1 1= 2/3
(14 V3+V2VE)
Proof. We set n =1 and 3 in Theorem 8.2.4 and then employ the values of h3; and hj 4 from
Lemma 8.3.4(vii) and (iii), respectively to finish the proof. O

For the remaining part of this chapter, we set a 1= ¢(e™™) = 71/4/T(3/4).
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Lemma 8.3.6. We have

() f-e ™) = a2-¥8em/?,
) e =a RAPLIES
(i) f(—e"?) = a2 V22

ae* (1+V3+V2- 33/4)‘/3
33/8217/24(1 + \/;‘);)I/G )
(v) f(__e—41r) —a 2_7/8€7r/6,

1/4
Vi) f(~e ) =a 0-7/123-3/8 ;n/4 (\/3-_ 1) ’

(w) Jl-e7?")=

a e1r/2

25/2433/8,/1+\/5(1_*_\/3‘_*_\/2-.33/4)1/3’

a 27/2431/8e1r/72

VI+V3(1+V3+v2-3m)
1/6
(X) f(—e ) =g 0=7/1231/8 o7 /36 (\/g _ 1) ,

1/4
() fle) =a 2702 (V3 41)",
1/6
() f(e) =028 (VBr1)
ae™? (2-3v2+ 3/ +394) 7
915/1633/8 (\/f« I} 1/12 (\/§+ 1) 1/6 -’

For a proof of the lemma, we refer to {17, p. 326, Entry 6] and [66, p. 125-129].

(vii)  f(-e"27) =

(vill)  f(-e™™) =

(xii) f(e™®) =

Theorem 8.3.7. We have
223/8 1/6
() blem =St UEVE)
25/12 (1 + V3 + V2 . 33/4)
293/8

(i) o) = ——

2112 (/3 ~ 1} 6

1/2

(i)  be™*") = a20~29/1233/8 (1 + \/g) (1 a4+ V3 3’3/4)1/3’
1+ VD (14 v3+ VB 399)
a231/8 (\/'3‘ - 1)1/3
213/12 (/3 + 1)1/6 ’

(iv) b(e ™) =

(V) b(e—21r/3 =
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4233/8
= 2 (3 7 1)1/6,
L2508 (\/5_*_ 1)3/4 (\/fz'-. 1)1/12 (V3 + 1)1/6
23/2 (2 — 3/Z + 35/4 4 39/4)'7° ’
Proof. To prove (i)-(v), we set n =1, 2, 4, 1/3, and 2/3, respectively, in Theorem 8.2.7(i) and
use the corresponding values of f(ze™™) from Lemma 8.3.6.

To prove (vi) and (vii), we set n =1 and 2, respectively in Theorem 8.2.7(ii) and then use
the corresponding values f(£e~") from Lemma 8.3.6. a

(vi) b(~e™)

(vii) b(~e ") =

Theorem 8.3.8. We have /i 1/6
2378 (1+ /3
(1) c(e-41r/3) = a ( )

217/12 (1 +vV3+ N 33/4)1/3’
1/6
(11) C(e—-21r/3) — 022—13/1237/8 (\/-3- + 1) ,

1/2 1/3
(i) c(e™™3) = 2-17/1237/842 (1 + \/5) (1 +V3+ V2. 33/“) ,

a233/8

(iv) c(e““") =

= 91/4 (1+ \/3')3/2 (1+\/§+ ﬂ,33/4):
@ (V3 - 1)1/3

 33/8913/12 (V3+ 1)1/6’

) = o? (1+V3 ++2-3%4)

318274 (1 + \/3) /2

22/3 . 31/4 (/3 — 1)1/3 4 a? (V3 - 1)1/3
X :
(1+V3+ 2+ \‘/—35)2/3 3/ 21912 (V3 +1)"°

Proof. To prove (i)-(v), we set t =1/2, 1, 2, 1/6, and 1/3, respectively in (8.1.7) and then apply
the corresponding values of b(e™"") from Theorem 8.3.7.

To prove (vi), we set n = 1 in Theorem 8.2.9 and use the corresponding values of f(~e™"")
from Lemma 8.3.6. At last, (vii) follows from Theorem 8.3.8(v) and Theorem 8.3.5(ii). O

1-v3

(vii) c(e8) =

W=

Remark 8.3.1. Setting t = 1/2 in (8.1.8) and then employing the value of c(e™™) from Theorem
8.3.8(vi), we can also evaluate b(e=4"/3),

Theorem 8.3.9. We have
2y a? (10 + 6\/5)1/3
2(3+2v3)""
sy _ V3 (10+6v3)"
2(3+2v3)"*

(i) a(e

(it) a(
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) ateom) = @ (e e (10+6v3)"
(]']1) a(e 6 ) = —3— (31/ (1 + \/—2-) + W) )

: 1/3
(iv) a(e—21r/9) _ \/§a2 { (31/4 <1 + \/5) /8 + (10 + 6\/5) 1/4) } .
2(3+2v3)

Proof. To prove (i), we set n =3 in Theorem 8.2.5 and use f(—e~2?") from Lemma 8.3.6 and
the values of r3 3 from Section 1.3.

To prove (ii), we set t =1 in (8.1.6) and then employ Theorem 8.3.9(i).

To prove (iii), we set n = 2 in Theorem 8.2.6 and then employ the values of a(e™*") and
b(e~?") from Theorems 8.3.9(i) and 8.3.7(ii), respectively.

To prove (iv), we set t = 3 in (8.1.6) and use the value of a(e™5"). O

8.4 Theorems on explicit evaluations of A(q), B(q), and

C(q)

In this section, we use the parameters rxn, hkn, g, and Jn, defined in (1.1.9), (1.1.21),
(1.1.24), and (4.1.12), respectively, to establish some formulas for the explicit evaluations of
- quartic theta-functions and their quotients.

Theorem 8.4.1. For any positive real number n, we have

Ble™™) _
Cle~mv2n) .

Tim = 9on-
Proof. Employing the definition of B(g) and C(q) given in (8.1.13), we find that

B(g) _ fea) )
Clq) (21/4q1/24f(_q2)) : (8.4.1)

Setting ¢ = e”2"V™2 in (8.4.1) and then using the definition of Tkn, We arrive at the first
equality. Second equality readily follows from (1.1.19) and (8.4.1). 0

Remark 8.4.1. From Theorem 8.4.1 and (7.1.4), we have the following transformation formula

Ble™YT) _ olem/)
C(e™™ 2/n) B B(e"".’\/2—n)' (8.4.2)

Thus, if we know the value of one of the quotient of (8.4.2) then the other one follows imme-
diately.
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Theorem 8.4.2. We have
Ble™*v?)  J4

e
Proof. Theorem follows easily from (8.1.13) and the definition of J, in (4.1.12). 0

Remark 8.4.2. Using the fact that Jy/n, = 1/J, from Theorem 4.6 1, in Theorem 8.4.2 we have
the following transformation formula

4 B(e—21r/\/7-1) _ C(e—n\/ﬁ)
Cle~™/V?) — Ble=?mVR)’ (8.4.3)

Hence, if we know one quotient of (8.4.3) then the other quotient follows immediately.

Lemma 8.4.3. We have

__p—2nmy __ a — (17'2,2712

() ¢(-e )= Ql/zsnl/(:h;hn T onl/ayap,
a Q«G22

i e ) = = A

( 1) ¢( ) ﬂthn‘n 77-1/47'71,71

e a2Bs gg=3/agns

(i) P(e™) = —m— = n ’
LY N T2,n2/2Tnn

() geminy = LT Erazee™?

Tnn

where the parameters Tiq, hin, Ry py 9knr and Gy are as defined in (1.1.9), (1.1.21), (6.1.4),
(1.1.24), and (1.1.19), respectively. )

For proofs of (i) and (ii), we refer to [66, p. 150] or [69]. For proofs of (iii) and (iv), we refer
to Theorem 6.5.2(ii) and Theorem 6.5.3(ii), respectively.

Theorem 8.4.4. For any positive real number n, we have

4 4,4
a ATy on2

: B -2y —
(i) B(e™™) Vinhi. T,

4 4
a*nr 2
i) B /m) = 22
(i) Bl = —5 2,

where hj , 15 as defined in (6.1.4).
Proof. From [15, p. 39, Entry 24(iii)], we note that

IR ),
¢(—q) = (8.4.4)
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Employing (8 4.4) in (8.1.13), we obtain
B(q) = ¢" (=) (845)

Setting ¢ = ¢~*™ 1n (8.4 5) and then employing Lemma 8 4 3(1), we anive at ()
To prove (n), we replace n by 1/n1n (1) and employ the result ry/n1/m = T, which 15 casily

dervable from (7.1.4). 0
Theorem 8.4.5. We have
at aG8
(1) B(-e™) = ——= 471’,
n'h‘n,n NTan
4 4,8
na a*nGe,
(n) B(—e ™™= = ——n
hitn  Tham

where ki, 15 as defined in (6.1.4).
Proof Replacing ¢ by —q in (8.4.5) and setting ¢ = e™"", we have
B(_e—mr) — ¢4(e—mr), (84 6)

Employing Lemma 8.4.3(ii) in (8.4.6), we finish the proof of (i).
To prove (u), we replace n by 1/n in (i) and use the results hnn = Ry/n,1/n [69] and Gi/n =
Gh. O

Remark 8.4.3. The following transformation formula is apparent from Theorem 8.4.5(1) and

(in),

A

n?B(~e ") = B(—e™™"), (8.4.7)

Theorem 8.4.6. For any positive real number n, we have

\/§a4en1r/2

14
"Gnn

Cle™)

)

where g ,, s as defined i (1.1.24).

Proof. From (15, p. 39, Entry 24(iii)}, we notice that

_ fA(=4%)
¥(g) = o (8.4 8)

Thus, from (8.4.8) and (8.1.13), we find that
C(e™™) = Be "™/ Zyp(e7""), (8.4.9)
Setting ¢ = e~"" in (8.4.9) and employing Lemma 8.4.3(iii), we easily complete the proof. O

Theorem 8.4.7. We have e
C(e—"\'/ﬂ) — na T2‘2n2

4
Tan

Proof. Applying (8.4.8) in the definition of C(g) given in (8.1.13) and setting ¢ = e™™/", we
find that
Cle™™™) = 8e~ ™2y (e=™/™), (8 4.10)

Now, employing Lemma 8.4.3(iv) in (8.4.10), we finish the proof. a
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8.5 Explicit values of quartic theta-functions

In this sechion, we ind explict values of the quartic theta-functions A(q), B(g), and C(q) and
also therr quotients by using the results established in the previous section

Theorem 8.5.1. We have
B(e="V?)
C’(e—rr\/i)
B(e—er) 3

T T 93/2

V6
() Ble™) _ 3+ 2V2,

() =1,

C’( ﬂ\/_)
B(e”'?‘/-) 3/2
(v) Gl = 23/ <1+\/—)
) B (145 i
C(e-™V10) 2 ’
B(e- 1r2f
(Vl) W \/_(\/_-I- 1) ,
) Bl (Vi+1Voi-1\'
Y ey T 2 '

(vi) gﬁ:_:"; = 2%/ (1 + \/_)

(1x) % (\/_+\/_)

3

(x) %%Q 8 1+f ( 5+1+ 2),
(xa) ————gge_:zj.;i =(1+v2 ) 2(2 )3/ ’
(xu) —%—2” 1+ )3< 21 10v3)

(1) gge%n; 91172 (1+\/—)4 (1+\/§+\/2- 33/4) ’

% =27 (1+ V5) o (2+3v2+ \/5>3/2 ,

—57 1/4 12
(xv) B(e™") _ (614 +1)
C(e~5m) 915/2 )

(x1v)




(xvi) Bl (1 + \/ﬁ)m/a {\/54- V2(1 + ﬁ)”" +(1+ \/5)2/:5}“‘

C(c—ﬂ(j\/(—i)
—8n 3 ) 3/2
(xvii) ?Ee _ ; = 9/ (1 n \/Z) (m 152 412249 - 2-*/4)
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B(e-™V7) (7 ~2V3+ V2 + (3+ V3)V3 + 16V21 — 27\/?)4

Proof. We employ the values of 7, from Section 1.3 in Theorem 8.4.1 to finish the proof. O

Theorem 8.5.2. We have

. Be™™ 1

(@) C(e"' BE)

3 —rr2\/-

o G (% )

. B(e™3)

(iii) C(e‘"‘/i) =3 (\/_-i‘ \/—) )
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(iv) ———ggz:“) =21 (Vi+1),

(v) %‘,__—Zn:fc%:é(] 4-\/5+\/?(1+\/3)>2,

Ble>) (127 +48V7)"

(Vl) C’(e—‘ﬂ\/?) = 2 3
B 11 31 3
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Proof. Follows easily from Theorem 8.4.2 and the values of J,, from Theorem 4.6.3. 0

Theorem 8.5.3. We have
(1) B(e—zﬂ') — 2_1/20-4,
(i) B(e™) =2""a%(1+ V2),
4/3
a’ (1 +V3+V2- \753)
21176 33/2 (/3 — 1)2/3
(iv)  B(e®) = 277/%6*(16 + 15vV/2 + 12v2 + 9v/23)/2,
_ a427/2
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ot (1+V3+ V23V (14 3+ 2. 39/4)"
2¢.3%2 (14 v3)™°
! (51/4 + 1)4 (3+2. 51/4)
5222 (1+ V/5)
Proof. (i)-(vi) follow readily from the first equality of Theorem 8.4.4(i) and the corresponding

values of A, in Lemma 8.3.4(i)-(vi), respectively. To prove (vii) and (viii), we employ the
corresponding values of 7, listed in Section 1.3 to the second equality of Theorem 8.4.4(i). O

(vi) B(e™*) =

(vii) B(e™®") =

bl

(viii) B(e™®") =
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Theorem 8.5.4. We have
4

() Ble™) =7,
1 —m/?) = ______a4
() B = o /e

24\/5044
(1+ V3)20/3(1 + /3 4 /2 - 33/4)8/3

(ni) B(e™™/?) =

Proof. We set n =2, 3, and 6, respectively, in Theorem 8 4 4(1i) and then use the corresponding
values of r, from Section 1.3 to complete the proofs. 0

Lemma 8.5.5. We have
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ya 3831
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(V) h5,5 = 5— 2\/5,
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(—4+3v2+354 4 3/3 - 33/4 +-2/2 . 33/4)'/°

We refer to (69, p. 19, Theorem 5.4] or (66, p. 150, Theorem 9.2.4] for proofs of the above

(Vl) hs,e =

assertions.

Theorem 8.5.6. We have
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Proof. We employ the values of A, , given in the above lemma in Theorem 8.4.5(i) to finish the
proof. a

Theorem 8.5.7. We have

a?
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2v3-3’
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Proof. We use the values of A, , from Lemma 8.5.5 in Theorem 8.4.5(ii) . O
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Theorem 8.5.8. We have
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(vii) C(e™%) = Qg\'{_’ where gy is given in Theorem 6.5.7(vii).
9.9

Proof. The proof of the theorem follows from Theorem 8.4.6 and the values of Gn.n from Theorem
6.5.7. 0

Theorem 8.5.9. We have
() Cle™?) =20t (14 V2),

2/3 4/3
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(i) Cle™") = 2%%* (16+ 1521 + 12V2 +9 . 2%*) -
5.99/2,4
(5+ v5)" (51/4 — 1)
217331268 (V2 + V3) (1+V3) (1 + V2 - V3 + V12 - 3%4))*
(1+ \/3_)2 (1+V3+V2- 33/4)“/3 (V3 ~ 1)5/3

Proof. We set n =2, 3, 4, 5, and 6 in Theorem 8.4.7 and then employ the corresponding values
of r 5 listed in Section 1.3. O

(iv) C(e ™) =

(v) Cle™™% =

* * k k%
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