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INTRODUCTION 

Magnetohydrodynamics (in short MHD) is an essential science that deals with the 

mutual interaction between the magnetic f elds and moving conducting fluid. Many research 

work done in this field have revealed that it is immense important for the growth and 

development of living being. Earlier works done in this field were mostly numerical and 

steady - state approach. But it is a known fact that the fluid flows. whether Newtonian or Non- 

Newtonian by and large. are imsteady or 1 transient. Steady-state assumptions are only due to 

the fact that it makes the solution of the problem simple and inability of available analytical 

tools to expressed governing equations of all kinds of flow fields. Laplace transforniation is 

one of the most sophisticated analytical techniques, which can solve many problems arising in 

tlie study of fluid mechanics. Also, Laplace transform technique is best fitted for time 

dependent initial and boundary value problems. Moreover, the solution of 

magnetohydrodynamics problem using Laplace transform technique is rarely seen in the 

literature. This is the motivation of this thesis. 

In this thesis, we have endeavoured to discuss a few two-dimensional (which 

circumstances makes one-dimensional) temperature dependent problems in presence of 

imposed magnetic field. However, two and three-dimensional steady as well as unsteady 

problems can also be solved under valid restrictions by this method. Basic concept of MHD, 

its uses; heat and mass transfer rate, transient flow; governing equations; various 

approximations of MHD; Laplace transform techniques, its uses etc have been discussed in 

this introductory note in a nutshell. 

1.1 Basic concept of MHD: 

Fluid dynamics is a11 important science used to solve many problems arising in 

aeronautical, chemical, and mechanical and civil engineering field. It also enable us many 

natural phenomena such as t l ~ e  flying of birds, swimming of fishes and the development of 

weather conditions to be studied scientifically. 



The study of tlle laws that govern the conversion of energy from one form to another, 

the direction in which the heat will flow, and the availability of energy to do work is the 

subject the Thermodynamics. It is based on the concept that in an isolated system, anywhere 

in the university, there is a measurable quantity of energy called the internal energy (U) of the 

system. This is the total kinetic and potential energy of the atoms and molecules of the system 

of all kinds tl~at can be transfel-sed directly as heat; it therefore excludes chemical and nuclear 

energy. 

The study of charge particle in motion, the forces created by electric and magnetic 

field, and the relationship between them give rise to the subject Electrodynamics. 

The combined effects of these three important branches of science namely, Fluid 

dynamics, Thermodynamics and Electrodynan~ics give rise to the subject Magneto-fluid 

dynamics (MFD) which in the fornl of definition read as The science of motion of 

electrically conducting fluid in the presence of a magnetic field". It has two subtopics: 

Magnetohydrodynatnics (MHD) and Magnetogasdynatnics (MGD). MHD deals with 

electrically conducting liquids whereas MGD deals with ionized con~pressible gases. 

1.2 Magnetohydrodynamics and its uses: 

The Magnetohydrodynamics phenomena is a complex situation of the mutual 

interaction of magnetic field: j (say) and fluid velocity field, ii (say), which arises partially 

as a result of the laws of Fasaday and Ampere, and partially because of the Lorentz force 

experience by a cursent carrying body. This situation can coinfortably be described splitting 

the process into three parts - 

(i) The relative movement of a conducting fluid and a magnetic field causes an 

electromagnetic force (of order 1; x Bl in accordance with the Faraday's law of 

induction. In general, electrical currents will ensue, the current density being of 

order a(ii x B ) ,  o being the electrical conductivity. 

(ii) These induced currents must? according to Ampere's law, give rise to a second 

magnetic field. This adds to the original magnetic field and the change is such that 

the fluid appears to 'drag' the magnetic field lines along with it. 

(iii) The combined magnetic field (imposed and induced) interacts with the induced 

currents density. j ,  to give rise to a Lorentz force (per unit volunle), 1 x 8 .  This 



acts on the conductor and is generally directed so as to inhibit the relative 

movement of the magnetic field and the fluid. 

These last two effects have similar consequences. In both cases the relative movement 

of fluid and field tends to be reduced. Fluids can 'drag' magnetic field lines, and on the other 

hand magnetic fields can pull on conducting fluids. It is this partial 'freezing together' of the 

magnetic medium and the niagnetic filed which is the hallmark of MHD. The situation of 

freezing together is usually strong in Astrophysics, significant in Geophysics, weak in 

Metallurgical MHD and utterly negligible in electrolytes. However, the influence of on ii 

can be important in all four situations [19]. 

Magnetic field influence Inany natural and man-made flows. To say the scope of 

MHD, we should say that MHD operates on every scale from vast to the minute. Let us first 

look at the heavenly bodies. 'Solar magnetohydrodynan~ic' (E.R. Priest, 1984) [88], the 

monograph of Geophysics and Astrophysics, intensively speaks about how MHD is 

associated with the sun and its different phenomena. In the 'old days' the solar atmosphere 

was regarded as a static plane parallel structure, heated by the dissipation of sound wave and 

with its upper layer expanding in spherically symmetric manner as the solar wind. Outside the 

sunspots the magnetic field was thought to be utiimpol-tant with a weak uniform value of a 

few gauss. Recently. however, there has been a revolution in basic understanding. High- 

resolution ground-based instrument have revealed a photosphere fill1 of structure and with 

small-scale magnetic fields that are probably concentrated into intense kilogauss flux tubes. 

The chromosphere is now known to be of cool jets, and space experiments have shown the 

corona to be a dynamic, highly complex structure consisting of myriads of hot loops. At small 

scale in the corona, hundreds of X-ray bright points are seen where new flux is emerging from 

below the solar surface and causing mini-flares. Also, coronal heating is now thought to be 

niagnetic, either via various wave modes or by direct currents dissipation, and the solar wind 

has been found to escape primarily from the localized regions knows as coronal holes, where 

magnetic lines are open. Many of these new features are dominated by the magnetic field. 

Indeed, much of the detailed structure we now see owes its very existence to the filed and so 

solar MHD is at a most exciting stage as we attempt to explain and model the magnetic sun. If 

we look towards the earth we see that the fluid motion in the earth's core maintains the 

terrestrial niagnetic field. Similarly, we see many uses of MHD in cosmic problem. 

As.trophysical MHD, a branch of science, has developed intensively after Alfven's ideas used 

in cosmic problem. MHD is also an intrinsic part of controlled thermonuclear fusion. Here, 



high plasma temperature is maintained. and magnetic forces are used to confine the hot 

plasma away from the reactor walls. In the metallurgical industries, magnetic fields are 

routinely used to heat. pump, stir and levitate liquid metals. The earliest application of MHD 

is the electromagnetic pump. Now, in fast-breeder nuclear reactor it is used to pump liquid 

sodium coolant through the reactor core. The most widespread application of MHD in 

engineering is the use of electroniag~ietic stirring. Here the liquid metal, which is to be stilred, 

is placed in a rotating magnetic field. The resulting effect is an induction motor. This is 

regularly used in casting operation to homogenize the liquid zone of a partial ingot. In another 

casting operations, magnetic fields are used to dampen the motion of liquid metal. Since the 

magnetic field is static here, so, it can convert kinetic energy into heat via Joule dissipation. 

The magnetic levitation or confinement relies on the fact that a high-frequency induction coil 

repels conducting material by inducing opposite currents in any adjacent conductor. MHD is 

also iniportant in electrolysis, particularly in those electrolysis cells used to reduce aluminium 

oxide to aluminium. This process is highly energy intensive. This is due to the fact that 

electrolyte is high electrical resisting. For example, in the USA, around 3% of all generated 

electricity is used for aluminium production. There are many other applications of MHD in 

engineering and n~etallurgical industry. Theses includes electromagnetic casting of 

aluminium, vacuum-arc remelting of titanium and nickel-based super alloys, electromagnetic 

removal of non-metallic inclusions from melts, electromagnetic launchers and the so-called 

'cold-crucible' induction melting process in which the melt is protected from the crucible 

walls by a thin solid cnist of its own material. This latter technology is currently finding 

favour in the nuclear waste. MHD is using in military arena as a propulsion mechanism for 

submarine. All in all, it would seem that MHD has now found a substaitial and pennanei~t 

place in the world of material processing [19]. MHD principles are using in medical sciences, 

particularly for the treatment of those diseases, which are related with the blood flow. Hence 

Biomathematics is the branch of science in whicli MHD principles would be used for the days 

to come. 

1.2.1 Some other aspects of MHD: 

The whole theory of magnetohydrodynamics rests on some fundamental hypothesis in 

particular, approximation in general. Under these assumptions, the fundamental equations 

governing the flow field a id  temperature distribution in MHD can be formulated from the 

corresponding fundamental equations of motion of ordinary hydrodynamics with suitable 



- modifications using Maxwell's equations and Ohm's law. Some of them are considered 

below: 

(a) Hydrodynamic and Electromagnetic con.siderations: 

(i) The fluid is treated as continuous and l~on~ogeneous in all respect, and describable in 

teims of local properties such as pressure, temperature, velocity, density, viscosity, 

etc. 

(ii) The conducting fluid will be in local equilibrium and transport processes will be 

isotropic. 

(iii) Intermolecular gaps are ignored, and are such that the fluid properties are defined as 

average over elements. They are large when compare with the microscopic structure 

of matter and small when compare with the scale of macroscopic phenomenon. 

Under these considerations the differential equations are used to describe these local 

fluid properties. 

(iv) A relatively collusion free situation is considered. 

(v) All velocities are much smaller than c, the velocity of light which is equal to 3 x 10' 

mlsec (approx.). Hence non-relativistic electroniagnetic theory is considered in 

MHD, and relativistic corrections are not necessary. 

(vi) The acts of expressiilg the differential equations of Magneto-fluid dynamics in terms 

of divergences and curls are treated as dangerous because these conceals the essence 

of electromagnetism whereby charges at rest or in motion (also the magnetic 

material if present) act upon one another at a distance. Rather one must consider the 

con~plete theory of electromagnetism. 

(vii) The electrical field, which may be characterized by E is  of the same order of 

magnitude as the induced electric field pe(V x H).  In other words the non- 

dimensional parameter R,. = E I[p,(V x H ) ]  is of the order of unity or sinaller, where 

H is the characteristic magnetic field strength. Therefore, it may be shown that the 

displacement current ~ ~ ( d E l d t )  and the excess electric charge are negligible in our 

fundamental equations, and that the energy in the electric field is much smaller than 

that in the magnetic field. As a result. all the electron~agnetic variables may be 

expressed in ternls of magnetic field. 



(b) Electrical properties o f  flze fluid: 

Magnetohydrodynamics differs fiom ordinary hydrodynanlics in the sense that the 

fluid is electrically conducting. It is not magnetic; it affects a magnetic field not by its mere 

presence but only by dint of electric current flowing in it. The fluid conducts because it 

contains free charges (ions or electrons) that can move indefinitely. Tt can be a dielectric and 

contain bound charges, which can move only a limited extent under electric fields. This 

migration of bound charges gives rise to polarization vector. The electrostatic part of the 

electric field is due to the free and bound charges distributed in and around the fluid. 

(c) The electric and ma.cnetic fields: 

A charged particle such as an electron suffers forces of the following kinds: 

(i) It is attracted or repelled by other charged particles. The total force on the 

particle per unit of its charge due to all the other charges present is the 

electrostatic field L?. . From Coulomb's law it follows that % is irrotational 

(i.e. V x  8\ = O), and 8 ,  = -VV.  where V is the electrostatic potential. This 

means that L?, is solenoid in regions devoid of charge while elsewhere 

V  0 ES = q l ~ ,  . where q  is the net charge per unit volume and c0 = 8 . 8 5 4 ~  10-l2 

in MKS units. 

(ii) A vector quantity 8 ,  called the magnetic field intensity. is produced when the 

charged pa~*ticles are in motion. It has two effects, forces additional to L?. 

- A charged particle moving with velocity relative to a certain frame of 

reference suffers a magnetic force e x  s per unit of its charge. The force is 

perpendicular to and 8 . The direction of is that in which the particle 

must travel to feel no magnetic field. 

- If the magnetic field is changing with time relative to a certain frame of 

reference, per unit of its charge a particle will suffer an induced electric 

field . This is defined by 

- 
VoE,  = O  V x El = -38 l  at  (Faraday 's law) (1.2-1) 

v o L 0  (1.2-2) 

Equation (1.2-2) shows that the magnetic field lines can never end though they 

do not form closed loops. 



It is defined that the suin of ,l?yand 6 is I?, the electric field, which states that a 

charged particle suffers forces of this kinds due to its presence per unit of its charge. Adding 

with it the later part of (ii), we get the total force experienced by a charged particle per unit of 

its charge, as 

( F = >  E + P x B  (1.2-3) 

This is known as Lorentz force. 

(d) Low frequency u-~pr~oximutio~z: 

(i) The charge distribution appears unimportant in low-frequency electromagnetism and 

MHD. The Ampere-Maxwell law relating the magnetic field with the moving 

charges and the changing electric field is 

v x B = p ( j  + &,aE I at) (1.2-4) 

where, j is the current density vector representing the net flow of all charges free or 

bound, ,u is constant and equal to 4n x lo-' in MKS unit, &,(aElat) is Maxwell's 

contribution which states how the change of total electric field ,!?affects 8 .  The magnitude of 

ratio (Vx B l , u ) l (~~aE la t ) i s  of the order of A* I d 2 .  This means that the Maxwell term in 

(1.2-4) is negligible unless frequency is very high. Hence, at low frequency, the Ampere- 

Maxwell law becomes 

V X B = J  (1.2-5) 

Thus contribution of Maxwell term to j is negligible. 

(ii) The polarization current (@I at) is of the same order as &,(aEi at), and hence has 

no contribution to j . 

(iii) The ratio of magnitude of convection current (qv)  to the total current ( j )  is v2 l c2 ,  

which is very small. Hence under low frequency approximation neglecting the 

convection current, the conduction current is taken as total current. So, the 

neglecting aF / dt and q 7 , the current density j can be found as 

j = o ( E + P x B >  (1.2-6) 



(iv) The ratio of electric and magnetic parts of the body force lqL? + j x B' is v2 / c 2 ,  

which is very small. As a result the effect of q , and consequently of qE is omitted in 

MHD. 

From these assumptions, it appears that the charge distribution has no importance in MHD 

under low frequency approximations. 

1.3 Transient Flows: 

By a transient is meant a solution of a differential equation when there is no force 

present, but when the system is not simply at rest. Suppose oscillation starts in a way such 

that it is driven by a force for a while, and then turned the force off. The system what we 

called the flow, will be non-uniform. It will be time dependent, oscillatoly surviving for a 

small interval of time. All the 'start-up' flows from rest and 'shut-down' flows where the 

flows dies away in time are transient flows. It is also knows as unsteady flow. It can also be 

produced by periodic boundary conditions (oscillating wall, periodic conditions for the 

velocity or pressure). When a wall is suddenly set into motion with a constant velocity, the 

flows close to the wall will become unsteady by 'start-up' nature. 

Again turbulent flows are by nature unsteady [106]. Hence it leads to 'unsteady 

turbulent flows'. It is made up of two parts - one part is time dependent and other part is time 

independent. The former one is due to fluctuations, which varies in time and latter one is due 

to decomposition of turbulent flows into the flow obtained after time averaging. The turbulent 

flows with time dependent 'mean' motion occur very frequently in practice. All start-up and 

shutdown processes belong to this group, as do the transition from one steady flow to another. 

These are called transient flows. Concentration diffusion also makes the flow phenomena 

unsteady. which give rise to phenomena of unsteady free convectioii flow. 

1.4 Transient Solution: 

In literature, transient solution is rare and perhaps relatively a new approach. The 

reason for existence of such solution is the existence of unsteady problems together with 

initial and boundary conditions. The complete solution for transient or unsteady problems 

requires two parts of solutions: one steady-state solution and other transient solution. Though 

Stokes forwarded the exact solutions for his unsteady plane problems, it was not the coinplete 

solutions. After the gap of nearly hundred years, R. Panton [77] got the complete solution by 



finding the transient solution. However, in practice, it is happen that the transient solutions 

become unimportant after a short amount of time. For this reason, it is the steady-state 

solution that is most important in many applications 'and researchers seem to give more 

important on this solution. But, still there are other many applications like; heating (or 

cooling) of various blanks and articles, glass manufacture, bricks burning, vulcanization of 

rubber, and during starting and shaping of various heat-exchangers, power installations etc., 

where transient solution is a must. One prerequisite is that for transient solution there must be 

given the initial condition together with boundary conditions that comes along with partial 

differential equation/ equations governing the problem under consideration. 

1.5 Heat Transfer Processes: 

Heat Transfer, is gaining ever-greater importance in many branches of engineering 

and technology. In the design of heat exchangers such as boilers, condensers, radiators, etc., 

for example, heat transfer analysis is essential for sizing such equipment. In the design of 

nuclear reactor cores, heat transfer analysis is inlportant for proper sizing of fuel elements to 

prevent burnout. In aerospace teclmology, the temperature distribution and heat transfer 

problems are crucial because of weight limitations and safety considerations. In heating and 

air conditioning applications for buildings, a proper heat transfer analysis is necessary to 

estimate the anlount of insulation needed to prevent excessive heat losses or gains. 

So, in the light of these shinning approaches, we are very much anxious to discuss 

about how heat transfer processes takes place in the following few lines. 

The science of heat transfer is concerned with the analysis of the rate of heat transfer 

taking place in a system. The energy transfer by heat flow cannot be measured directly, but 

the concept has physical meaning because it is related to measurable quantity called 

temperature. It has long been established by observations that, when there is temperature 

distribution in a system, heat flows from the region of high telnperatilre to the region of low 

temperature. If the temperature distribution in the flow is known, the amount of heat transfer 

per unit area per unit time is readily determined. 

It is the spontaneous irreversible process of heat propagation in space. By a process of 

heat propagation is meant the exchange of internal energy between the individual elements, 

regions of the medium considered. In this process, we have three modes of heat transfer, in 

general. They are - conduction, convection and radiation. 



In a solid body the flow of heat is the result of the transfer of internal energy from one 

molecule to another. This process is called conduction. The same process takes place for 

liquids and gases. In these substances, however, the n~olecules are no longer confined to a 

certain point but constantly change their position, even if the substance is in a state of rest. For 

an incon~pressible fluid at rest, the transfer of energy takes place entirely by thermal 

conduction. 'The flow of heat in the relatively stagnant boimdary layer, which adheres to the 

wall, is therefore by conduction only, and can be calculated from (Fourier's law) 

q = -K, (dT I an), (1.5-1) 

where (dT Ian), is the temperature gradient in the fluid immediately adjacent to the 

wall K, is the thermal conductivity of the fluid and q is the heat flux ? 

Heating or cooling of the walls of a building is one of the examples of this type of heat 

transmission. 

Convection occurs when voliunes of liquids or gases (of fluid medium) moves from 

regions of one temperature to those of another temperature. The transport of heat is 

inseparably linked here with the movement of the medium itself. Convection is possible only 

in a fluid medium. It is well known that a hot plate will cool faster when it is placed in front 

of a fan than exposed to still air. Convection involves a movement of fluid masses, and the 

buoyancy and gravity forces are the key factors for fluid motion. It has long been observed 

that heat transfer by convection occurs between a fluid and a solid boundary, when there 

contains a temperature difference between them. 

Radiation, often known as thermal radiation. is the process of heat propagation by 

means of electromagnetic waves, depending only on the temperature, and on the optical 

properties of an emitter. with its internal energy being converted into radiation energy. Heat 

transfer by radiation is significant at high temperature. 

Theses various basic process of heat transfer are often combined both in nature and in 

engineering applications. Heat transfer by convection is always accompanied by conduction. 

The combined processes of heat transfer by convection and conduction is referred to as 

conveclive heuf transfer. There are other combined processes of heat transfer, namely, 

rudiulion-conduction, radiation-conveclion; but these are not important in our problems. So, 

we keep it off from our discussion. 



Processes of heat transfer may occur in various media, in pure substances and in 

mixture, with and without changes of phase of the working medium, etc, and accordingly will 

differ in character and be described by different equations. 

Transfer of mass acconlpanies many of the processes of heat transfer. As water 

evaporates, for instances, heat transfer is accompanied by transport of the vapor formed 

through an air-vapor mixture. The transport of steam generally occurs both through molecular 

interaction and convection. The combined molecular and convective transport of mass is 

called coizvectzve nza.ss ~ r c ~ n . ~ r .  With mass transfer the process of heat transfer becomes more 

complicated. In addition, heat may be transported together with the mass of diffusing 

substances. 

1.6 Free Convective Flow: 

section 1.5, we have outline about l-leat transfer. In this section, we turn our 

attention to free convection flow, a subtopic of convective heat transfer. We have emphasized 

011 this topic due to the fact that the problems that we have considered for thesis are of about 

transient or unsteady free convective flows. The convective heat transfer is of two types: 

.forced convection and .free convection. In case of convection of both types. we have the 

following expression: 

P = P O D  -P(T-TO)]  (1.6-1) 

where the density p  varies slightly frorn point to point because of the variation in the 

temperature T . Here p is the coefficient of thermal expansioii and po is the density at some 

reference temperature To. 

Free convection originates due to the non-uniform distribution of mass (volume) forces 

in the fluid being considered. Forces of this kind include the force of gravity, centrifugal force 

and the force appearing when a high-intensity electromagnetic field is induced in the liquid. 

The best understood is free convection caused by gravity. 

Gravitational forces are taken into account in the flow equations by the term pij, 

whose unit is force reduced to unit volume. Fluid temperature changes during heat transfer, 

which leads to the appearance of differences in density and, consequently, of differences in 

gravitational forces representing a buoyant (descending) force. 

The salient differences of free convection frorn forced convection can be found from 

its behavior. In free convection the flow pattern is determined solely by the buoyant effect of 



heated fluid, the velocity profiles and temperature profiles are intimately connected, the 

Nusselt number depends on  a ash of number and Prandtl number. 

1.7 Mass Transfer Processes: 

Like the heat transfer, mass transfer is also one of the domains of conten~porary 

science. It is of great practical interest in evaporation, condensation, adsorption, sublimation, 

etc. In many branches of Modern Technology, particularly. in atomic power engineering, 

space research, power plait, industrial power engineering. chemical engineering, construction 

industry, etc. this mass transfer processes (together with heat transfer processes) automatically 

appears. Due to this reason, we have the mind to outline briefly the theory o f  the processes 

Mass Transfer. 

Many processes of heat transfer encountered in nature and engineering are accompanied by 

processes of the mass transfer of one component into the other; for instance, in the 

condensation of vapor from a vapor-gas mixture and the evaporation of liquid into a vapor - 

gas flow. The evaporated liquid is distributed throughout the vapor-gas flow by diffusion; the 

process is accompanied by a change in the nature of flow and a variation in heat transfer 

intensity, and this, in turn, influences the process of diffusion. And diffusion means the 

spontaneous process of, spreading or scattering of matter in a binary medium or two - 

component system under the influence of concentration. In a mixture, homogeneous in respect 

of temperature and pressure, diffusion is directed towards equalizing the concentration in the 

system and is accompanied by transfer of mass from the region of higher concentration to the 

region of lower~concentration. Diffusion is characterized by the flow of the mass of a 

component, i.e. by the quantity of mass passing per unit time through the given surface in a 

direction normal to the surface. Mass transfer may be either molecular (microscopic) or molar 

(macroscopic). In gases, molecular diffusion is due to the thermal niotion of molecules. 

In a multi-component system, the concentrations of the various species may be expressed in 

various ways. 

With stationary macroscopic two-component system, homogeneous in respect of 

temperature and pressure, the rate of inass flow of one of the conlponents, due to molecular 

diffusion, determined by Fick's law, is given as: 

J ,  = - D(ap, 1 an) (1.7-1) 

= -pD(dm, I an) (1.7-2) 

, ~ 



where p, = local concentration of the given substance, equal to the ratio of the mass of 

the component to the volunie of tlie mixture; 

m, (= p, 1 p )  = relative mass concentration of the ith component; 

p = Mixture density; 

D = co-efficient of molecular diffusion of one component in respect to the other. 

or, in short, the coefficient of diffusion; 

n = direction normal to the surface of a similar concentration of the coniponent; 

(dp, I dn,dm, 1 dn) = concentration gradient which is always directed to the side of rising 

concentration. 

The concentration gradient is the motive force determining the transfer of matter. In 

heat conduction, it is temperature gradient stands for the motive force. The minus sign of (1.7- 

2) indicates that tlie mass is being transferred in accordance with Fick's law, in the direction 

of diminishing concentration. The process described by Fick's law is knowti as concentration 

diffusion (see [47], pp. 3 12). 

1.8 Fundamental Equations: 

In fluid mechanics we formulate the fundamental equations by considering a control 

volume fixed in space bounded by an imaginary surface and with the help of physical 

principles of mass, momentum, and energy of the isolated portion of the fluid. The principle 

of conservation of mass gives the equation continuity when tliere are no surfaces of 

discontinuity preseilt in the region. The conservation of momellturn gives the equation of 

motion and the conservation of energy gives the equation governing the temperature 

distribution. In case of binary mixture co~iservation of mass of the two species gives the 

equation of mass diffusion. These equations are described briefly below in the vector notation. 

(a) EOIJA.TION OF CON TINUI  TY:  

The principle of conservation of mass gives the equation of continuity, which, for an 

incompressible fluid, can be written as - 

div V E V O V = O  (1.8-1) 

where 

which in 

? is the velocity vector 

Cartesian co-ordinates, 

of a fluid particle 

is given by 
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where, i ,  j, k are unit vectors in the direction of x, y. and z respectively. 

(b) E o u ~ n o ~  OF MOTION: 

The equation of motion originates from the Newton's second law of motion, which is 

known as law of conservation of moincntum, and is written for an incompressible viscous 

fluid in the form 

where the symbols have their usual meaning. 

The equation (1.8-3) subject to the body force must be generalized to include the 

effects of electrical conductivity of the fluid and imposed electric and magnetic fields. 'T'he 

body force per unit volume Fe is replaced by the imposed electromagnetic lields. which is 

(see Shercliff, 1965) 

F e = p e k + ( j x B )  (1.8-4) 

The ratio of electric and magnetic parts of this body ibrce is of order (u' l c 2  ). Then P,Scan 

be omitted. I Ience the equation of motion in magnetohydrodynamic is 

(c) ELECTROMAGNETIC I:II.I.I> LOIJA.I IONS: 

In magnetohydrodynamics, we are nlainly concern with conducting fluids in motion 

and hence it is necessary to consider the electrodynamics field equations of moving media. 

We consider that the velocities occurring in our problem are much smaller than the velocity of 

light, a id  therefore, all the non-relativistic assumptions hold good. With these assun~ptions 

Maxwell's (electrodynamics field) equations are - 

voB = O  (1.8-6) 

V O ~  = p e l &  ( I  .8-7) 
- 

V X ~ = , U ~ J  (1.8-8) 



The buoyancy force 3 and Lorentz force are respectively, given by 

3 = P ( A T ) g  (1.8-10) 

= j x s  (1.8-1 1 )  

For electromagnetic problems, an equation, namely the law of conduction. is added to the 

Maxwell's equation. This equation is known as Ohm's law, and is given by 

~ = o [ Z + P X B ]  

(d) EOUATION OF HEAT ,I KANSFER: 

The equation of heat transfer arises from the principle of conservation of energy, which 

states that the total time rate of change of Kinetic and Internal energies is equal to the sum of 

the works done by the external forces per unit time and the sum of other energies supplied per 

unit time. Froin this principle the equation of heat transfer can be written as 

The dissipation function, a, which arises from viscous action,in Cartesian co-ordinate for 

incompressible, it is given as 

where u, v. w are the components of ? in the X ,  Y. Z direction respectively. 

To get the energy equation in MHD. one extra term is necessary, and this can be derived as 

follows: 

The charge within a material moves under the action of electromagnetic forces 

colliding and exchanging energy with the rest of the material. 'This fact means that electric 

work is done on or by the material. It has been found that the electromagnetic field puts 

energy into the material at the rate ( B  0 ) per unit solume and time [104], where ]can have 

three possible forms - conduction. convection, and polarization. The contribution of 

convection and polarization current on the work done is negligible in MI-ID, only that of the 

conduction current plays a significant role. 

Using Olun7s law in the form of ( 1.8- 12), the rate of electric work done on is given by 

B . ~ = ~ 2 ~ o - ~ o ( P x B >  (1 -8-1 5 )  



The first term on the right hand side of (1.8-15) represents heat dissipation while the second 

term can be written as 

- j o ( V ~ B ) = V o ( j ~ B )  (1.8-16) 

This describes the phenomena of electromagnetic cnergy convcrsion. The term ( v  0 ( j  x B ) )  

is the rate at which the magnetic force (3 x g) does work on the conduction as a whole; the 

term (7 0 ( j x  a)) pushes the fluid either creating kinetic energy or helping it to overcome 

other forces on the reverse if the tern1 is negative. The term j2 l a  is positive and dissipated 

in the form of heat. 

Hence the energy equation in MHD can be written by adding tlie term j2 l o  to the right hand 

side of the equation (1.8- 13) which is given by 

p C , ( a ~ l a t  + ~ o v T ) =  V o ( k ~ T ) + , ~ @ + j ~ l a  (1.8-17) 

(e) MASS TRANSFkK F011A1.10N: 

Though mass diffusion is concern with the conductivity of the medium, the magnetic 

field has little effect on this process. So, ordinary diffusion equation can be applied for MHD 

problems under suitable asst~n~ptions. 'l'he differential equation describing the distribution of 

any component in a moving binary mixture, when the fluid is incompressible and has no inner 

mass source. can be had by Fick's law as 

J A  = -pD(VmA) ( 1  -8-1 8) 

where, A and B represents two individual species of the mixture and DAB = DBA = D .  

This binary diffusion coefficient D is a physical property of the mixture. 'l'he equation (1.8- 

18) states that the species A diffuses in the direction of decreasing mole fraction of A. just as 

heat flows by conduction in the direction of decreasing temperature. 

For a multi-component system under the assumption of negligible effects of thermal and 

pressure diffusion. and of constant p and I), the Fick's law (1.7-1) is written as 

apiat  + p A ( v 0  T ) + ( V 0 v p A )  = D(V'P,)+ R, 

where R, is the molar rate of production of A per unit volume. 

Using the continuity equation V 0 v = 0 and dividing the equation by M A ,  we get 

ac, !at + (V vc,) = D(V~C, )  + R, (1.8-20) 



This equation is usually used for diffusion in dilute solution at constant temperature and 

pressure. 

For R, = 0 ,  the equation becomes 

ac, I at + (9 vc , )  = o ( v 2 c A )  (1.8-21) 

This equation is similar to the enerby cquation for a fluid motion when p is independent oft.  

This similarity is the basis for the analogous that are frequently drawn between heat and mass 

transport in flowing fluids with constant p . 

(f) EO~JA  ION O F  S'TA'TE: 

In solving fluid dynamical problen~s, in addition to the equation of continuity, motion, 

and energy, one should consider a thermodynamic relation of the form 

e = e(T, P) (1.8-22) 

where, e: specific internal energy. T: temperature. p: pressure 

This equation for hydrodynamic case takes the form 

P = P(P,T) 

This relation are known as the equation of state. 

We have considered, in this thesis, problems in which Boussinesq approximations are valid 

1191. It suggests that p is constant in all terms in the equation of motion except that one in 

the external force; therefore, we w-rite 

P =  PO[^ - Q(T -To)] (1.8-24) 

where, a is the voluunetric expansion coefficient of the fluid and the subscript 0 denotes the 

unheated no flow state. 

1.9 Dimensionless Groups: 

Due to the complex form of the governing equations of conventional lluid mechanics 

and MHD. it is extremely difficult to solve convective heat and mass transfer problems except 

fbr idealized, simple situation. Therefore, for most cases of practical interest the convective 

heat and mass transfer is studied experimentally, and the results are presented in the form of 

empirical equation that involve dimensionless groups. The utility of using dimensionless 

groups in such correlation is that scveral variables are combined into a few dimensionless 

parameters. Consequently, the number of variables to be studied is reduced. Therefore. 

establishment of such non-dimensional parameters that are appropriate for a given heat and 



mass transfer problem is most important. We discuss this below in a nutshell through 

equations of motion, energy and mass difIiusion. 

In vector notation these equations for an incon~pressible electrically conducting viscous 

fluid are - 

where the symbols have their usual meaning. 

Here, the cozpling efects that arise between heat transfer and mass transfer processes have 

been dropped from (1.9-2) and (1.9-3) as being very small effects they can produce compared 

to the effects of diffusion and heat conduction. 

We make the quantities non-dimensional with the help of V, , T, , L, po, po , Bo, to, C,, J,  and put 

The subscript "0" refers to the characteristic value of the other quantities. The current density 

j is taken to be of the order (OV 0 Bo) . 

Substituting (1.9-4) in (1.9-1) - (1.9-3), we get 

These three equations are the equations of change for free convection in terms of 

dimensionless variables. For free convection flow only two dimensionless groups, Pr (Prandtl 

number), Re (Reynolds number) appears in the equation of change. Viscous dissipation term 

in the equation of energy is dropped being clearly unin~portant for free convection. Other non- 



dimensional groups appearing in these equations are Gr, M. Sc, and Ec. which, respectively, 

are known as - the Grashof number, the Hartmann nurnber. Schmidt number, and the Eckert 

number. These dimensionless parameters together with some other constants that appears as 

co-efficient in the field equations are listed below with physical meaning. 

" oL ( i )  Reynolds nzunher: Re = - 
v 

There are four dimensionless groups. which regularly appear in MIID literature. The 

first one is Reynolds number. It is ratio of inertia force ((p 0 v)V) to viscous force vv2V, 

which appears in equation of motion. To specify the circumstances in uhich different types of 

fluid occur. we need to introduce the concept of Reynolds nunlber. Reynolds number 

determines the diffusion of vortices along the streamlines. In general, it is very difficult to get 

a solution of the Navier-Stokes equation; hence weightage is given to the consideration of 

limiting cases of very large and very small viscous forces, which are known as the very small 

Reynolds number and very large Reynolds number. In that case the Navier- Stokes equation 

becomes tractable. We have also magnetic Reynolds number R, = VoL I A =  paVoL , known 

as 4th dimensional group in MHD literature. This is being discussed as another topic in a 

nutshell. 

- 
v PW, - - (ii) Prandtl number: Pr = - 

k k 

The relative in~portance of viscosity and heat conduction may be indicated by the 

Prandtl number, which is defined as the ratio of ~~i,scou.s difilsivity or molnentum diffusivity to 

the thermal diffusivity. Thc value of v shows the effect of viscosity of a fluid. If other things 

remain the sane, the smaller the value of v ,  the narrower is the region affected by viscosity. 

The thermal difJ'usivity shows the effect of heat conduction of a fluid. If other things 

remains the same, the smaller the value of k, the narrower will be the region affected by heat 

conduction. Thus Pr gives the relative magnitude of the thermal boundary layer compared to 

the viscous boundary layer. The Prandtl number is just a constant of the material and does not 

depend on the property of the fluid. For gases, it is always of the order of unity and for liquid 

it may vary in a wide range. For air Pr = 0.7, and for water at 6 0 O ~ , ~ r  = 7.0while for 

glycerin Pr x 7250.0 . 



(iii) Grushof'nui~lher: Gr = gm~~ 
v 

This number generally arises in analytical and empirical considerations of free 

convective heat transfer processes. Gr is the ratio of buoyancy force to viscous force and 

gives the relative importance to viscous and inertial effects. For a given fluid Gr indicates the 

type of flow to be expected in which dynamical processes are dominant. whether the flow is 

laminar or turbulent and so on as the Prandtl does for forced flow. When Gris  large. the 

viscous force is negligible compared to the buoyancy and inertia forces. On the other hand it 

tells nothing in the case of small Gr as the apparent prediction that the inertia force is small is 

in contradiction with the original assun~ption that the inertia force is comparable to the 

buoyancy force. 

(iv) Hartinann number: 

It is the ratio of electroinagnetic body force known as the Lorentz force to the 

viscous force (shear force), and is a hybrid of Re and N, the interaction parameter defined by 

N = O B ~ L ~ ~ V , .  It is Ha(= M) = (N ~ e ) ' ' ~  = ~ , , ~ ( a l p v ) " ~  ([I91 pp.96). This number was 

introduced by Hartmann to describe his experiments with viscous Magneto-fluid dynamics 

channel flow. He got that when Ha + 0 ,  the channel flow is parabolic, when Ha + oo, the 

exponential Hartmann layer form on both walls. Here, it is assumed that the Lorentz force 

j x $ = (OVB;), which is true for small or moderate conductivities. Thus the magnitude of the 

Hartmann number M indicates the relative effects of magnetic and viscous drag force. This is 

the third dimensionless group. which regularly appear in the MHD literature. 

v 
(v) L~cFz~~ziU't nunzher: Sc = - 

D 

This parameter frequently appears in the problems of diffusion just as we encounter 

repeatedly the Prmdtl number in problems of heat conduction in flow systems. It is the ratio 

P of viscous diff~ision (v = -) to mass diffusion ( D  = D,,) in case of binary mixture. It 
P 

measures the relative magnitude of the viscous boundaiy lajrer compared to mass diffusion 

layer. This ratio lies between 0.2 and 5.0 for most gas pairs. For gases Sc is independent of 



pressure. It varies with temperature and sometilnes also with concentration. When Sc = Pr , 

the profiles for mass and heat transfer are similar. 

(vi) Eckert number: Ec = - " O  , A T = 7 ; - q  
cpAT 

The ratio of Brinkman number (Br = , U V ~ ~ A T )  to the Prandtl number is a non - 

dimensional group. called the Eckert number. It is directly related to tlie temperature increase 

through adiabatic compression. The quantity Ec can be retained in incompressible flow also, 

but the interpretation with reference to the adiabatic compression ceases to be valid. By 

observing the magnitude to Ec , it is to derive a conclusion that tlie frictional heat and that due 

to compression are important for calculation of the temperature field when the free stream 

velocity V, is so large that the adiabatic temperature increases is of the same magnitude as the 

prescribed temperature difference between the body and the main stream. 

In addition to these, other characteristic numbers also appears in the conventional 

fluid mechanics as well as in MT-ID. They are 

(T, - TR)/TR , the temperature difference that appears in heat transfer problems. 

Pe . the Peclet number which is the product of Re atid Pr , 

Ma, the Mack number, which is related to Eckert number, and is defined by 

cf and Nu, the skin-friction coefficient and Nusselt number, which are related to 

the wall shear stress z, and the heat flux at the wall q, , where 

2rw and Nu = qwL 
Cf = - 

P R ~  A(T, - Tm) 

v L 
(vii) hfagnelic Re-wolds Nzmzber: R, = = pcrVoL 
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It gives the ratio of the convective fluid flux to the diffusive magnetic flux. Also, it is 

a measure of the magnitude of the induced magnetic field compared with the total magnetic 

fleld associated with the MHD flow problem. The magnitude of R, determines diffusion of 

magnetic field along the streamlines, and hence it is a measure of the effects of the flow on 

the magnetic field. A small R,(<< 1)indicates that the induced magnetic field is small 



compared to the total or the applied magnetic field. So, induced magnetic field is neglected, 

where magnetic Reynolds is small. For most of the MFD flow problems where l? = o(? x B )  , 
R, << 1, usually. That is, the magnetic field is not distorted by the flow. But, when R, << 1,  

the magnetic field lines move with the fluid, and the phenomena is known as.frozen-inTfluicl. 

I .10 Initial and Boundary Value Problems (IBVl's) and Laplace Transforms: 

This thesis is about the solution of a few Initial and Bozuzdcrry khlzle Problems 

involving the linear partial differential equations that appear in modeling many natural and 

artifacts phenomena in engincering and the physical sciences. In particular, it is about the 

development and application of Laplace iransformution and related techniques to the solution 

of such problems. It does not. however, present any results on Laplace transformation that are 

directly applicable to the solution of IBVP, nor does it includes some additional techniques to 

solve such problems. Rather, it is an attempt to show that this analytical method can be used 

suitably to solve MHD problems. On the other hand the study of any physical problem 

automatically leads to the boundary value problem. Hence it is immense important to know 

about IBVP and Laplace 'I'ransformation method. 170110wing are some concepts of both of 

these two. 

1.10.1 Initial and Boundury Valzle Problem in Flzlid Ablechnnic.s: 

A problem consisting of finding solutions of a partial differential equation subject to 

some initial and boundary conditions is normally referred to as a hounhry vulue problem. 

Let us consider the temperature distribution in a thin bar (of some conducting material), 

represented by one-din~ensional heat equation or diffusion equation, given by 

U, ( ~ , t )  = ku,(x,t) (1.10-1) 

Besides the trivial solution, u - 0 ,  it is easy to see that it has other four solutions (see [34] pp. 

6). Moreover, it is easily verified that the sum of two solutions and the product of one of them 

by a constant are also solutions. But odd thing is that, none of them able to give the actual 

temperature distribution in the bar. It is due to the fact that the temperature 011 the bar depends 

on several additional conditions. For instance, from a certain time on these temperatures, will 

depend on the initial temperature distribution at the given instant and. on any amount of heat 

that may enter or leave at the endpoints. Therefore, we see that both initial and boundary 



conditions will affect the actual temperature distribution. These conditions can be specified in 

a variety of ways. For example, the temperature may be given at t = 0 as a function of x 

u(x,O) = f (x) 

and it may be further specified that the temperatures at the endpoints u(0,t) and u(a,t) , will 

remain fixed for t > 0 . 
Sometimes the boundary and initial conditions are given as limits as the boundary of the 

domain of definition of the equation. 'The problem of finding a function u : D + R that is of 

class c2 in D and such that 

D = {(x,t) E R2 : 0 < x < a, t  > 0) 
u, = ku, in D where - 

D = {(x,t) E R2 :O I X I  a,t  2 0) 

have the solution 

u(x,t) = (xlt&)exp(-x2 14kt) 

Here, u is not defined t = 0 but has the required limit. 

Boundary conditions are specified under careful observations. To expect a well-posed 

physical problem the solution must be unique. More than one solution implies the insufficient 

boundary conditions. 

There is still another requirement that physical considerations impose on the solution 

of a boundary value problem. Physical measurements or observations of the initial 

temperature of the bar would result in only approximate values. In a similar manner, the 

temperature at the endpoints cannot be maintained with perfect accuracy. Thus, the 

mathematical formulation of a proble~n will contain small errors in the initial and boundary 

values, and the corresponding solution can only approximate the true one. What we must 

require is that, it be a good approximation. 'That is. if the initial or boundary values change by 

a small amount the solution of a well-posed problem should also change only by a small 

anloullt. 

Thus, we see that a good solution of boundary value problem always depends on the 

following requirements: 

(i) there exists a solution 

(ii) the solution is unique, and 



(iii) the solution is stable; that is, it depends continuously on the boundary conditions 

in the sense that a small change in the initial and boundary values results in only a 

small change in the solution. 

A boundary value problem, which satisfies these three requirements, is said to be well posed 

in the sense of Hadrmzard (1 865 - 1963), who introduced this concept in his 1920 lectures at 

Yale Lrniversit)t ([34] pp.8). 

1.10.2 Laplace Transform Techizique (LTT) : 

Many of the concepts of classical analysis had their origin in the study of physical 

problems leading to the boundary value problems. The search for a solution of this IBVP 

leads to the discovery of new mathematical tool - tools that are today of immense use in pure 

and applied mathematics, and other engineering branches, is the Lcrplcrce Trun'Cforrnation. 

(i) Laplace Transform Teclzizique! Why ? 

The branches of science in which Laplace transformations, in use, are - in solving 

linear partial differential equations with constant coef'ficients, some ordinary differential 

equations in which the coefficients are variables, two or more simultaneous ordinary 

differential equations. in mechanics (dynamics and statics), in telegraphy and electrical 

circuits. to analysis the characteristic of beam. various partial differential equations subject to 

boundary conditions, to integral and difference equations etc. 'I'hus, we see that the Laplace 

transform has its tremendous applications in many branches of pure and applied mathematics, 

physics and engineering science. I-lowcver, its application to MllD problems are relatively 

new, is in monograph, yet to take concrete shape. 

(ii) Advantages over other methods: 

This we want to discus, in a nutshell, point-wise as follows: 

Inability of all available analytical tools to solve the governing equations of 

flows of all kinds. 

Analytical tools are more accurate then numerical methods. 

Less time consuming and labour. 

It provides the convenience and effective results. 

Easily portable. 

Most sophisticated and well equipped method. 



For time dependent problems this method is best suitable. 

Open half-plane and closed half-plane problems are fill1 in nature and different 

laboratory experiments. 

Some elementary functions. such as a constant. the exponential, the sine, and the cosine 

functions do not have Fourier transforms (one of the most popular analytical methods) 

because they are not integrable on R . The easiest (suitable) way to overcome these sever 

limitations is the use of 1,aplace transform technique. In particular, one can apply it to deal 

with problems in which one of the variables is time. 

(iii) Laplace transforms tecltizique in MHD! WIzy ? 

The physical aspects of any fluid flow are given by the following f~lndamental 

principles: 

Mass is conserved 

F = ma (Newton's second law) 

Energy is conserved 

These fundamental principles are expressed in ternls of mathematical equations (partial 

differential equations), in which Laplace transform technique can be used suitably; as it is the 

art of replacing the governing equations of fluid flow with numbers and advancing these 

numbers in space and/ or time into an ordinary differential equation. which can be solved by 

already established rules and, then Inverse Laplace Transforms techniques are applied to get 

the required results. This method is best fitted for MHD problems, particularly for unsteady 

problems. The high-speed digital computers and inventions of many algorithms ([79], [51], 

[42]) together with Conlputational Methods have allowed the practical growth of I,'T?' in 

MHD. 

(iv) Laplace Trnitsform Technique! What it is ? 

Laplace transform is an operator that transforms f~lnctions into functions. An 

outstanding example is the differential operator D. which transforms each function of a large 

class (those possessing a derivative) into another function. Laplace transform can also be 

called as a mapping. Generally, the operator L is used to represent the Laplace transform 

operator. 

One class of transfonnations, which are integral transformation, may be defined by 



Given a function K(s,t),  called the Kernel of the transformation, equation (1.10-2) associates 

with each F(t)  , of the class of functions for which the above integral exists, a f'unction f ( s )  

defined by (1.10-2). If the kernel K (s , t )  is defined by 

K(s, t)  = 0 for t  < 0 

K (s ,  t )  = e-$' for t  2 0  [94]. then (1 .lo-2) 

f ( s )  = Se-' F (s)dt 
0 

The function f  ( s )  defined by the integral (1 .lo-3), is called the Laplace transform of 

the function F( t )  . and is denoted by 1 ( F(t)  ) or f ( s )  . Thus Laplace transfonn is a function 

of a new variable or parameter s  given by (1.10-3). 

Again Laplace transform can be viewed as a modiiied fornl of Fourier Transform. One 

such Fourier Transfornl is 

Omitting the factor 1 / 2 n ,  adopting the letter t  for the variable, and denoting (a + iw) 

by s  , lead to following modified transformation [341. 

Def .L: Let f  : [0,m) + C he such that f  (t)e-' is integrable on [0,m) for some o in R . 

Then the function F : C -+ Cdefined by 

with domain D, = { s  E C,' : f  (t)e-." is integrable ) , 

is called the Laplace transl'ornl of f .  It is also denoted by L [ f 1. If the Laplace transform of 

an objective function F( t )  is f ( s )  i.e. L { F ( t ) )  = f ( s )  , then F( t )  is called the inverse L.T. of 

f ( s )  , and it is written as F( t )  = 1-I { f  ( s ) )  . It is quite easy to compute the Laplace transforms 

of some elementary functions. 

Examplel. If f  - a on [0,m), where a is a real or complex constant. then 



a3 

i ae-" a 
F(s) = lae-"dt = lim ae-"dt = lim[-1: = - 

E+cO E+O -S  
0 0 

S 

if the real part of s. which we denote by Re(s), is greater than zero. 

Example2. If f (t) = eat on LO,*). where a is a real or complex constant. then 

a3 

~ ( s )  = le("-')'dt = for Re(s) > Re(a) 
0 

It is to be noted that the operator L. like the differential operator D,  is a linear operator. If 

4 (t) and 4 (t) have Laplace transforms, and if C, and C, are any two constant, then 

Using elementary properties of definite integral one can easily prove it. 

The Laplace transform of F(t) is said to exit if the integral (1 .lo-3) or (1.1 0-5) 

converges for some values of s . otherwise it does not exist. Since e-" is an integral function 

7 

of both s and t , it is sufficient for the existence of le-"F(t)dt , that f (t) being intergable 
& 

over interval E I t I T, where (E  -+ 0,T + a). In the neighborhood of t = 0 ,  and for fixed 

s ,  e-"' is absolutely bounded and so the behavior of the Laplace integral in the limit as E + 0 

is essentially the same as the behavior of lim IF(t)dt 
&+O 

& 

If, as t -+ a, the behavior off (t) is worse than eK' for some real constant K. then we could 

find a to so that I ~ ( t ) l  < A4eK' for t > to, and a constant M. 

Again we can get a function, known as Inverse Laplace Transforn~, whose Laplace 

transform is known. Theoretically it is an easy task, because. according to the definition 1 ,  

F(s) is actually a Fourier transform - that of the function that vanishes for t < Oand equals 

2qf(t)e-" for t 2 0.  where a = Re(s) . But practically it is not so. The following definition 

and theorem is sufficient to have an In\lcrsc formula. 

Def .2. : Let L be the set of all locally integrable functions f : R-+ C such that f vanishes 

for t c o and f (t)e-" is integrable for some o in R. 



Theorem: Let f E L have 1,aplace transform F ,  and let o be the real number such that 

f (t)e-'" is integrable on [0,m). Then 

at every point on [0,m) such that f has right-hand and left-hand derivatives at t and f , is 

piece-wise continuous on an arbitrary small interval centered at t . 

Thus the inverse formula is 

C+rm 

f ( t )  = Sf(s)e5'ds, C > 0. 
c - l m  

1.1 1 A brief report on use of Laplace Transforms in MHD: 

The use of the Laplace transform technique in solving hydrodynanlical problems has 

its beginning in the application of Opercrtionul Clulculzts derived by Heavisides (see historical 

epilogue in Appendix) to such problems. 

Employing Laplace transform, &tmarev[l960a] has obtained an exact solution for the 

particular case of non-stationary flow of a conducting viscous fluid between parallel infinite 

conducting walls in the presence of a transverse magnetic field. Using the same 

transform cekmarev [I  960bl again discussed the motion of an electrically conducting viscous 

liquid over an infinite conducting plate in the presence of uniform magnetic field and obtained 

the complete solution. Bhatnagar and Kumar [1960, 19641 have applied Laplace and finite 

and infinite Hankel transforms to study the propagation of small disturbances in a viscous and 

electrically conducting liquid in the presence of a magnetic field. Gupta [I9601 has used 

Laplace transforn~ to investigate the effect of transverse magnetic field on the flow of liquid 

near a plate, which moves with velocity proportional to tn . Rayleigh's problem in 

magnetohydrodynamics has been studied by Rossow [I9601 with the help of Laplace 

transform. Ulfjand 119611 investigated the unsteady hydromagnetic flows in a channel of 

rectangular cross-section. Yen and Chang [I9611 have studied the fluid flows between two 

parallel planes with transverse magnetic field under time dependent pressure gradient. Chang 

and Atabek [I9621 have worked on laminar flow between two co-axial tubes in the entrance 

region. Katagiri [I9621 discussed Couette motion in magnetohydrodynamics. Laplace and 

iinite Hankel transforms have been employed by Kumar 119631 to obtain the complete 



solution of the problem of' propagation of small disturbances in a viscous and electrically 

conducting fluid between two infinite co-axial circular cylinders in the presence of uniform 

magnetic field. Muhuri 119631 worked on the paper of formulation of Couette flow in 

magnetohydrodynamics with suction. Both, Rathy [I9631 and Shilkla [I9631 have studied the 

hydromagnetic flow between two parallel plates, the plates bcing porous in the later case. 

Finite Wankel and Laplace transforms have been used by Singh 119651 to deal with the 

inlpulsive motion of a viscous conducting liquid contained between two porous concentric 

circular cylinders in the presence of radial magnetic field. Hydromagnetic flow of a viscous 

incompressible fluid due to uniformly accelerated motion of an infinite plate in the presence 

of transverse magnetic field has been discussed by Soundalgekar [1965]. Synder [I9651 has 

also applied Laplace transform technique to deal with the flow of viscous and electrically 

conducting liquid in the entrance region of parallel plates in the presence of a transverse 

magnetic field. Datta [I9663 investigated the slip flow of an electrically conducting viscous 

liquid over a porous flat plate elder a uniform transverse magnetic field. Both finite I-Iankel 

and Laplace transforms have been employed by Groves [I9661 to solve the problem of 

unsteady motion of an electrically conducting viscous liquid in a cylindrical vessel in the 

presence of axially symmetric magnetic field of constant strength. Dube and Khan [I9681 

have analyzed the flow of viscous conducting liquid over an infinite harmonically oscillating 

and conducting plate. Kulshrestha and Puri El9691 have got the exact solution of 

hydromagnetic rotating flow. 

The difficulties in obtaining the inverse of l,aplace transforms that appear in problerns 

of physics and engineering decreases considerably when Hetnarski's the classic papers - "On 

inverting the Laplace transform connecting with the error function" in 1964 and "An 

algorithm for generating some inverse Laplace transforms of exponential form " in 1975, had 

appeared for scholars to read and use. He mentioned that such inverses are needed in 

problems of coupled thermoelasticity and heat conduction in solids of the type considered by 

Gridamo [I 9741. Puri and Kythe [1969. 1974. 19761 have used similar techniques to develop 

such formulas for inverses of the above class of functions in problems encountered in 

hydromagnetic rotating flows [58], [84], and in viscoelastic rotating flows [85]. In the 

problem of heat transfer and visco-elastic flows Puri. et a/. have encountered two other 

classes of functions whose inverses were not available in [32]. [75], [95], which leads to the 

publication of the classic paper "Son~e inverse Laplace transforms of exponential form" in 



1988. in which there contains fourteenth new formulas. These formulas are useful in problems 

of fluid mechanics, particularly in Magnetohydrodynamics. 

Pathak [ I  9741 has used integral tr,ansform in the case of unsteady hydromagnetic flow 

along a circular pipe. Das [I9751 has employed 1,aplace transform technique to study the flow 

of a viscous fluid over a rigid plane base. Using 1,aplace transform method, Nye 11 9771 found 

the approximate solution for unsteady magnetohydrodynamic channel flows. Ram and Mishra 

[I9771 studied the unsteady niagnetohydrodynainic flow through a porous medium between 

two parallel plates, and in a circular pipe. Srinivasan and Bathaiah [I9781 have discussed the 

flow of conducting viscous liquid between parallel plates. Soundalgekar and Uplekar [I9791 

have applied Laplace transformation to derive an exact solution of the flow of viscous 

incompressible fluid past an infinite porous plate. Revankar and Konvar [I9801 have studied 

the problem of unsteady MHD flow past a porous infinite plate. Kishore, Tejpal and Tiwari 

[I9811 have worked on hydromagnetic flow past an acceleratcd porous plate in a rotating 

system. Tokis and Pande [I9811 have carried out an investigated on unsteady 

magnetohydrodynamic flow of a viscous liquid near a moving porous plate. Devi Sing11 

119831 presented certain problen~s of MHD flows employing Laplace transform technique in 

his Ph. D. thesis. An exact analysis of MHD stagnation point flow with suction hayebeen 

carried out in two and three dimensions by Soundalgekar and Vighnesam [1985]. Tokis 

1119861 discussed the unsteady MHD free-convection flows in a rotating disc. 

An analysis of MHD heat transfer in h-yperbolic time-variation flow near a stagnation 

point of a heated blunt-nosed cylinder whose wall temperature varies as  AX^ was presented 

by Soundalgekar. Rarnana, Murty and Takhar [1990]. Gourla and Katoch [I9911 have 

discussed about the result of unsteady viscous incompressible free convection tlow of an 

electrically conducting fluid between two heated vertical platcs in the force field of gravity 

and applied magnetic field acting in the horizontal direction and perpendicular to the plate. By 

application of the Laplace transform technique, Srivastava et al. [I9941 presented a 

mathematical model of blood flow in single arteries and arterioles subject to both the pulsatile 

pressure gradient due to normal heart action and a single cycle of body acceleration. 

Soundalgekar, Das and Deka [I9971 have studied the free convection efiects on MHD flow 

past an infinite vertical oscillating plate with constant heat flux. Rathod and Shrikanth [I9981 

have derived the solution of MHD flow of Rivlin-Ericksen fluid through an inclined channel. 

Jordon, Puri and Boros [2000] have presented the valuable paper "A new class of 

Laplace Inverse and their applications". This paper is valuable in the sense that inverse 



Laplace transforms involving nested (double) square roots arise in many areas of applied 

mathematics, specially, in fluid mechanics. 

An exact solution for the transient for MHD Stokes's oscillating plate was presented 

by Deka, Das and Soundalgekar [2001]. Deka and Soundalgekar [2002] have obtained an 

exact solution to transient free convection flow through homogeneous porous medium 

bounded by an infinite vertical isothei~nal plate, in the presence of temperature gradient heat 

source. In a theoretical paper, prepared by Soundalgekar, Deka and Das [2003], there contains 

the generation of flow caused by transient free convection of a viscous incompressible and 

electrically conducting fluid past an infinite vertical plate in the presence of periodic heat flux. 

1.1 2 Motivation, Extent and Scope of this thesis: 

As the powerful instrument. the Laplace transform technique, has a lot of scopes in 

applying it stimulate us to extent its use in Fluid Mechanics, particularly in magneto- 

hydrodynanlic problems. In this thesis. we proposed to study a few problen~ of electrically 

conducting as well as free convective incompressible viscous liquid with heat transfer rate 

employing Laplace transform technique. 

Effects of heat and mass transfer due to unsteady ikee convection ilow between two 

heated vertical plates together with skin friction have been discussed in chapter 2. Exact 

solutions of the fluid velocity C(y,t), the temperature distribution T(y,t)and mass 

diffusionC(y,t). has been obtained with the help of Laplace transformation, where y is the 

distance measured between the two plates and t is the time. Using this method. similar cases 

can be discussed for the problen~s of heat and mass transfer for various geometries. In many 

engineering problems, it has been observed that the mass transfer accompanies heat transfer 
in 

and hence our research may be usefu~netallurgica1 industry, 

In chapter 3. we have discussed the effect of magnetic field with heat transfer rate on 

hydromagnetic flow between two parallel plates - one adiabatic and other isothermal. The 

magnetic field is placed at angles 0' ,30° ,45' ,60° ,90° to the vertical walls and resulting natures 

of the fluid flow have been discussed successively. We feel the need of proper choice of the 

combinations of the values of Pr, n, and t for flow analysis. It has been observed that, the 

effect of the magnetic field slowly decreases as the angle between the directions of the fluid 

velocity field and the direction of the magnetic field decreases from n/2 to 0. This kind of 



investigation has practical importance for the study of those fluid mechanical problems where 

magnetic field is introduced. 

In chapter 4, we have investigated the flow and heat transfer characteristic of a viscous 

incompressible and electrically conducting fluid through a porous medium bounded by two 

long vertical parallel plates. 'I'he effective viscosity of the porous inediurn (material) is larger 

than the viscosity of the fluid. Such material has a Darcy number and viscosity ratio 

parameter of order 10. The effects of the four parameters, namely. Darcy number, Viscosity 

ratio parameter. magnetic Ha~-tmam number, and Prandtl number on temperature and velocity 

field together with skin friction have been discussed through tabular values and graphs. It has 

been observed that this kind of transient free convection problem is found favor in 

metallurgical industry and many others engineering branches. The problem can be extended 

further for investigated by considering both Brinkman and Forchheimer terms that appear for 

permeability of the medium. 

The steady and starting phase velocity profiles has been derived for Stokes's second 

problem in chapter 5. Here the fluid is electrically conducting and viscous incompressible, the 

plate is porous. A uniform magnetic field perpendicular to the plate is applied. The effect of 

magnetic field and suction velocity of the plate is greatly observed in this problem. As this 

problem is of fulldsunental character may perhaps be useful for future study in MHD and may 

have a good number of applications. 

We have discussed in chapter 6. the unsteady magnetohydrodynamic plane Couette 

flow and heat transfer with temperature dependent heat generating source and heat absorbing 

sink. Exact solutions are found for temperature distribution and fluid velocity field with 

effects of magnetic Hartmann number. Reynolds number, Grashof number. Peclet number, 

Prandtl number. We have considered the case of moving the horizontal plates parallely in 

opposite direction. It has been observed that both heat generating source and heat-absorbing 

sink has small effects on flow field, but large effects on temperature distribution. As these 

problems are fundamental in nature, have many applications in different branches of 

physiology and engineering. So, outcon~e of this wok may be fruitful both theoretically and 

practically. 

An exact solution for unsteady free convection ME-II) flow and heat transfer rate 

between two heated vertical plates with heat generating source and heat absorbing sink has 

been derived in chapter 7. Here a uniform magnetic field has been applied in a direction 

perpendicular to the flow. It is seen that the nlagnetic field has no influence on temperature 



distribution but has significant effect on fluid velocity field. It is also observed that heat- 

generating source has effects on both temperature distribution and flow field but no effect of 

heat absorbing sink. This problem can be taken for further study. The study of these types of 

problems can be helpful in metallurgical processes. 



EFFECTS OF MASS TRANSFER ON UNSTEADY FREE CONVECTION 

MHD FLOW BETWEEN TWO HEATED VERTICAL PLATES IN THE 

PRESENCE OF TRANSVERSE MAGNETIC FIELD 

2.1 Introduction: 

It has been seen by long experience that. in many engineering activities. especially in 

chemical engineering. that some processes are considered to be the mass transfer processes, 

which are sometimes accompanied by many other processes like heat transfer, rotation of 

fluids, electron~agiletic forces, etc. The random movement of the molecules, which by their 

mixing tend to equalize existing differences in their energy, causes the heat conduction in a 

gas. By the same movement local differences in concentration of a gas mixture diminished in 

time even if no ~nacroscopic mixing occurs. This processes is known as diffusion. By 

diffusion or convection. in a mixture of local concentration differences, a component is 

transported from one location to another. The niass transport through an interface between 

various phases of the same medium is found to be a special in~portant in engineering sciences. 

The range of free-convection flows that occur in nature and in engineering practices is 

vast and significant. So far, many papers, both theoretical and experimental, has been 

published on free convection heat transfer in view of their interest in astrophysics, geophysics, 

engineering and medical sciences. However, the flow of a fluid is caused not only by the 

temperature differences but also by concentration differences. These concentration differences 

also affect the flow and temperature near the surface of a body embedded in a fluid. In 

engineering applications, the concentration differences are created by either injecting the 

foreign gases or by coating the surface with evaporating material, which evaporates due to the 

heat of the surface. These mass transfer differences do affect the rate of heat transfer. In 



practice H ,  , 0, , CO, etc. are the foreign gases, which are injected in the air, flowing past 

bodies. Thus, for flows past vertical surfaces. there is buoyancy force, which arises due to 

temperature differences and concentration differences. 

In recent years, many research workers have presented analytical as well as numerical 

solutions to such problems of fluid over vertical surfaces. However. unsteady free convection 

flows received little attention. Illiizgworth published the first paper on unsteady laminar flow 

of gas near an infinite flat plate. in 1950. But the results were publislicd for unit Prandtl 

number. Siege1 (1958) studied unsteady free convection near a semi-infinite vertical plate 

under uniform wall temperature. Goldstien and Eckert (1 960) derived experimentally the one 

dimensional unsteady free convectioii flow past a semi-infinite vertical plate. Many papers 

relating to unsteady free convection flow past an infinite vertical plate were published. These 

are by Schetz and Eichhorn ( I  962). Goldstein and Briggs (1 964) etc. 

Gebhart and Pera [I9711 have obtained the solution of the vertical natural convective 

flows resulting from the combined buoyancy effects of thermal and mass diffusion. 

Soundalgekar [I9791 derived the solution of the effect of mass transfer and free convection 

currents on the flow past an impulsively started plate. An analysis of the fluid flow, through a 

porous medium confined between two vertical walls. maintained at different temperature and 

concentration levels. were presented by Trevisan and Bejan 1198.51. Yucel [I9901 studied the 

natural convection heat and mass transfer along a vertical cylindrical surface embedded in a 

porous medium, and which is maintained at a uniform temperature and concentration. A study 

on unsteady free convection MHD flow between two heated vertical parallel plates was 

presented by Gourla and Katoch [1991]. The effects of mass transfer on free convection flow 

past a vertical isothermal cone surface was studied by Kafoussias [1992]. 

In this paper. we have discussed the effects of mass transfer together with skin friction 

on the unsteady free convection flow between two heated vertical parallel plates. In section 

2.2. the mathematical formulation of the problem under consideration is presented and in 

section 3.3, the analytical solutions are set out. The obtained results are shown graphically and 

a quantitative discussion is given in section 2.4. More importance has been given on the 

dimensionless parameters Gr, and Gr, on the velocity, temperature and concentration profiles 

as well as on the skin friction and rate of' heat transfer. It is hoped that the results obtained not 

only provide useful information for applications but also serve as a complement for farther 

studies. 



2.2 Mathematical Formulation: 

In order to formulate the problem mathematically. we consider that the local properties 

of the fluid are not affected by the temperature differcnces except that of the density variation 

in the body force term. Also the influence of the density variations in other terms of the 

momentum, energy and concentration equations and the variation of the expansion 

coefficients p ,  P* with temperature is negligible. The boundary layer is supposed to be thin. 

The level of the species concentration in the fluid is assumed to be so low that Soret and 

Dufour effects can be neglected. The fluid is supposed to be Newtonian, viscous and 

incompressible. The viscous dissipation, the induced magnetic field, the Hall effect, electrical 

effect and polarization effects are neglected. 

We consider a vertical channel bounded by two fixed vertical parallel infinite plates 

and both are at the same tcmperature T i ,  initially. At time t'>o. the plates are supplied heat at 

constant rate, thereby causing the presence of free convection currents in the fluid near the 

plates. As the plates are infinite in extent, the flow-variables are functions of y' and t'. The 

x'-axis is taken along the plates in the vertically upward direction and the y' - axis is taken 

normal to the plates. The uniform magnetic field B, is applied along horizontal direction. i.e. 

in a direction perpendicular to the fluid motion. 

Under the abovc assumptions following Boussinesq's approximation, the flow fields 

are seem to be governed by the following equations: 

Equation of mass conservation: 

Equation of momentum: 

0 + g p ( ~ l - ~ o ) + g p * ( ~ ' - ~ , , ) - - ~ ~ ~ l  
dt' p 8y' P 

Equation of energy: 

Equation of diffusion: 



At time tl>O, the temperature of the plates (y = + h) changes according to 

T' = T' + (T; - T')(l- e-n"'), where n' is a decay factor, 

The concentration of the fluid changes according as C' = C; + (c: - ~;) (1  - e-""). 

At any time t', the velocity, the temperature and the concentration are given by 

(u', o, 0). T' and C' , respectively. 

The initial and boundary conditions are given by- 

u f=O.  Tf=T, ' .  C1=CL for all y s [- h,hlt l  = 0 

u1 = 0, T' = T; + (TL - ~ 1 1 -  e-"'") for y = f h 

c'=c; +(c: -~ ; ) ( l -e -" '~ ' )  for y=kh  

The dimensionless quantities which we used are- 

pUCp Gr, = gph 3h)( '(T: - Ti)  Gr, = 
gp'h3(c; - c;) 

Pr = - 
K u v 

Using the dimensionless quantities (2-6), the equations (2-2) - (2-4) together with the 

boundary conditions (2-5), are found as follows: 

u=O,  T = O ,  C E O  for all y s  [-1,+1]. t =O 

u=O, T = 1- e-"I, C: = 1- e-"' for Y = f 1 



2.3 Solution of the equations: 

Taking the Laplace Transform of equations (2-7) - (2-1 O), we get 

where 

together with boundary conditions 

Since, the equations (2-11) - (2-13) are of 2nd order ordinary differential equations in ;,T 

and C. the solutions of the equations by use of boundary conditions (2-14), are found as - 

+ Grm 
~ ( 1 -  ~ c )  + M' 1 cash cosh hFGy 4 s  

+ cosh fiy + Grm CO" GY] (2- 1 7) 
cosh& s(1-SC)+M" cosh& 

The inverse Laplace Transform of (2-1 5 )  - (2-1 7). gives the actual solution as - 



, (-1ycos (2k + 1)w cos my exp(-nt) 4n .exp(-(2k + 1)'n2t 14%) 
C = l -  +,C 2 (2- 1 9) 

cos ,& k =O 

4Sc 

u =  
cosh M cos JnPr cOs"yl 

- COSJ~SCY] + Inn 
cos Jnsc 

Gr, + Grm 
(1 - Pr) - {M' l(M2 + (2k + ~ ) ~ n '  14)) (1 - Sc) - {M' l(M2 + (2k + 1)'n2 14)) 1 + 

4n " (-l)k cos((2k + 1)ny I 2) Gr, exp(-(2k + 1)' n2t  / 4 Pr) -C + n k=o 2k+1 '[{(Zk +l)'n2 1 4 P r  n) {M2 ( I  - ~ r ) ( 2 k  +1)'n2 / 4 ~ r }  

2.4 Results and Discussion: 

In this section, we summarize the nlost important findings uncovered in this 

investigation and present the supporting results through graphs and tabular values. All figures 

and tables appearing in this work were generated directly from the exact solution 1 

expressions given in $ 2.3 using scientific calculator first. and later on by C - program. Both 

the obtained results and data have almost same in all cases. 'To simplify our discussion, we 

choose the decay factor n and Magnetic Flartmann number M in such a way that there does 

not come negative number under the square roots. I-tence. based on certain and standard 

values of different parameters and numbers, we state the following. 

Figure 2-1 has been obtained by plotting the temperature distribution 'r against y at 

different times when 11 = 1, Pr = .025. This figure shows that the temperature at any point 



increases with the increase o f t .  It is seen that the difference of distribution of temperature in 

between t =1 and t = 2 is large while in between t = 2 and t = 3 is small. It seems that there 

will be no increase of temperature distribution though time would be increased. 

The temperature profiles have been drawn for t = . l ,  Pr = .025. and for different values 

of temperature decay factor n. in figure 2-2. It is found from this figure that the temperature at 

any point inside the vertical channel increases with the increase of 11, and it flows with higher 

values at and near the walls than at the middle of the channel. This values of T unifollnly 

decreases from the wall and minimum value occurs at y = 0. 

Figure 2-3 has been drawn to show the effect of Prandtl number (Pr) on temperature 

distribution. This investigation shoms that for any value of Pr, at the closed region of the 

walls, the values of the temperature distribution is the same; but at the middle of the channel it 

varies significantly. Towards the middle of the channel. the tempcrature distribution decreases 

as Prandtl number increases. 

In figure 2-4. we have investigated the mass diffusion (C) against y inside the channel 

in the presence of temperature decay factor n (=I) and Schmidt number Sc (=. 22) with 

respect to small time (t = .1) and large time (t = 1, 2, 3). A clear dif'ference of mass diffusion 

for small and large time ha been noticed. The difference is about to end after time t = 3, also 

diffusion rate is slow at the middle of the channel. 

The figure 2-5. has been drawn to show the effect of temperature factor (n) on mass 

diffusion at time t = .5 and Schmidt number Sc = .22. The graph obtained for n = 5, shows 

that the diffusion difference is very high, highest near the walls. This means that at the center 

of the channel the diffusion rate is v e v  slow. Most intriguingly. however, for n = 15, the 

diffusion processes is same at all regions of the channel. Perhaps the mass diffusing processes 

come to an end for values of n greater than 15. 

The figure 2-6 has been drawn to show how various species diffuses at same time (t = 

.5, here). and temperature factor (n = 1, here). It has been observed that as the values of the 

Schmidt number, Sc. increases the diffusion difference increases. For Sc = 0, the rate of mass 

diffusion is similar in all regions of the channel. 

We have considered the figure 2-7 to show the effect on velocity profiles caused at 

different times with respect to standard tixed values of the parameters considered. Froin the 

iigure. it is observed that Ibr smaller times the flow distribution differs greatly than the larger 

times inside the channel; even for t = 2 and t = 3, the differences in values of u are very 



negligible. Moreover, the difference appears only af'ter 3 digits of decimal place, which as a 

result ca' not be seen any difference in the figure. 

In figure 2-8, we have shown the effect of magnetic field parameter M on velocity 

profiles for standard fixed values of different parameters as shown in figure. It is seen that as 

M increases u decreases. I-iowever, this is interesting to note that the flow field neither 

depends solely on M but also on n. This can be seen in analq-tical result in 5 2.3, under radical 

sign and on graphical visioil in the figure. 

Figure 2-9 has been drawn to show the effect of temperature factor (n) on velocity 

profiles at small time as well as at large time for fixed values of different parameters that 

appears under assumption. It is clearly observed that for t = .1 and n = 5, the flow distribution 

differs greatly than for t = 1 and n = 5. From this we confer that as time advances the flow 

distribution difference decreases. Again we see the effect of temperature decay factor n on 

velocity field. As the values of 11 increases, the cot-responding values of u first increases, later 

on decreases; even at the middle of the channel. It is also the sign of stream -lines flow 

situation. 

The velocity profiles have been plotted against y for n = 1. Pr = .025, Sc = .22, M = .5 

and for various values of Grashof number (Gr,) in figure 2-1 0. The profiles are studied at two 

different times. It is seen that as the values of Gr, increases the values of velocity field also 

increases at time t = .5 ;  but at time t = 2 and for Gr, = 4. it seems to decrease. Thereby it 

ineans that the flow field seems to attain the fully developed situation after time t = 2. For 

small time the calculation shows that the increase of concentration also increase the difference 

of diffusion. 

The view taken in figure 2-1 1 is one looking down upon the two different values of 

Prandtl number (Pr) at two different times. The plotted graphs clearly show that as Pr 

increases in turn the velocity field decreases. If we look down upon the time factor, it clearly 

suggest the idea that as time increases, the difference of flow distribution decreases 

irrespective of the kinds of electrically conducting fluid. It gives hints of matured mixture and 

fully developed situation at large time. 

Figure 2-12 illustrates the temporal evaluation of the llow pattern caused by varying 

values of Prandtl number (Pr) and magnetic Hartman number (M), simultaneously at fixed 

values of other parameters and time. It is seen that as Pr and M increases simultaneously. the 



values of u decreases at the center of the channel. However, any change of Prandtl and 

Hartmann number do not affect on the velocity distribution near the two walls. 

Figure 2- 1 : T versus y for Pr = .025, n = 1 at time t = 1.2, 3 

Figure 2-2: T versus y for Pr = .025, t = . l ,  at n = 5, 10, 15 
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Figure2-3: T versus y for Pr = .025, 2 5 .  .5 at t = 1. n = 1 



Figure 2-5: C versus y for t = .5, Sc = .22, n = 5 ,  10. 15 

Figure2- 6: C versus y for t = .5 ,  n = 1 at different values af Sc 
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Figure 2-7: u versus y for n = 5, M = 1. Sc = .22, Pr = .025, Gr, = 10,Grm = 4 

Figure2- 8: u versus for 11 = .5. t = . l  , Pr = .025. Sc = .22, Gr, = 10,Grm = 4 
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Figure 2-9: u versus y for Pr = .OX, M = .5, Sc = .22, Gr, = 10,Gr, = 4 
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Figure2-10: u versus y for n = 1,  Pr = .025, Sc = .22. M = .5 



Figure2-11: u versus y for n =5, M = .5, Sc = .22 Gr, = 10,Gr, = 4 

Figure2-12: uversusy f o r n =  1, t =  1, Sc=.22, Gr, =10,Gr, = 4  



2.5 Skin Friction (C,) : 

For engineering purposes, one is usually less interested in the shape of the velocity, 

temperature or concentration profiles than on the values of Skin friction, tIeat transfer or 

Mass transfer parameter. All the values of these letter ones are conventionally described by 

appropriate coefficients. Tile following relations dcfine thein 

2rw Nu, = C -- xqw Nm, = hmx ' - pu; ' k(TW -GI' D,"(CW - C,) 

But, we have only the skin friction here, as Nu, (the local Nussell number) and Nm, (the local 

Shenvood number) become zero for ?' and C being the function o f t  instead of being function 

of y. 

Using (2-6), (2-20) and (2-22). we have (2-21) as 

tanh(M) + Gr, e -"I 

n(1- Pr) - M 2  
(fi tan G - J Z  tan 4n-M') 

+ Gr, e-"' 

n(l -SC) - M 2  
(&tan f i  - ./Z tan 4 2 )  

G rm 

(1 - Sc) - 
4~~ + (2k + 1127r2 

4 M 2  J 



We have obtained the result of skin friction ibr the plate at h = + 1.  All the results that 

would be found for h = -1 would have been seemed to be opposite to the results found in 

tables ( 1 )  - (5). I-lere we have observed the effects of the following dimensionless parameters 

and decay factor. 

(a) The effect of Re: From the table I ,  it is seen that the effects of the Reynolds number 

Re. the dimensionless parameter of the ratio of the inertial motion to the viscous 

resistance, is promillent in the skin friction. For Re = 1. skin friction is the l~ighest, 

and then it decreases as Reynolds number increases. Other parameters are assumed 

fixed. 

(b) The effect of n: Table 2 has been obtained for various values of n, the temperature 

decay factor, starting from 1 to 25. It is secn that n plays an important role in the 

increase or decrease of skin friction. It is difficult to predict the situation that for 

increasing values of n there would be any increase or decrease in skin friction. This 

situation particularly depends on magnetic parameter M. 

(c) The effect on M: In the table 3 the effect of M on the skin friction has been shown. It 

is seen that as M increases from .025 to .5, skin friction decreases. However, for other 

greater values this kind of prediction cannot be done; even we will face domain error 

if we would consider the values, which are greater than square root values of n. 

(d) The effects of Pr and Sc: We have deduced the values of skin friction for different 

values of Pr and Sc at twro values of Re and fixed values of other parameters in table 

4. It is obvious froin the table that for Reynolds number = 1300 skin friction is 

negligible, while for Re = 1,  it is significant. Moreover, for different pair values of Pr 

and Sc. we see different skin friction. For higher values of these two, C,  is negative. 

Altenlately, for smaller and standard values, it is positive and remarkable. 

(e) 'The effects of Gr, and Gr, : I,astly, in table 5, we have given the variation in Gv, 
- - 

and Gr, to show its effect on skin friction. For high Reynolds number, the effects of 

these parameters are not significant, but for small Reynolds numbers these parameters 

are countable. 



Table 1. Values of Cf for different values of Reynolds number (Re) when - 
n = 5 ,  t = . I ,  Gr, = IO,Gr, = 20, P r =  .025, Sc= .22, M =  .5 

Table 2. Values of Cf for different values of decav factor (n) at - 

Table 3. Variation of skin friction C, for different values of M at - 



Table 4. Skin friction C, for various values of Pr and Sc when - 
Gr, = lo ,  Gr, =20, M=.5,  1 1 ~ 5 .  t =  1 ,Re=  1. 1300 

C, (Re = 1) 

Table 5. Variation of skin friction C,  for different values of Gr, and Gr, at - - - 



MAGNETIC FIELD EFFECTS ON UNSTEADY FREE CONVECTION 

MHD FLOW BETWEEN TWO HEATED VERTICAL PLATES (ONE 

ADIABATIC) 

3.1 Introduction: 

During the last few decades intensive research works, both theoretical and experimental, 

have been devoted to problems of free convection heat and mass transfer in view not only of 

their own interest but also of their application to astrophysics, geophysics, engineering and 

medical sciences. 

Moreover free convection flows play an important role in different technological 

processes. The flow of a fluid is not only steady but it is also unsteady. Transient free 

convection occurs in a fluid when the temperature changes caused density variation which 

give rise to buoyancy forces. 

Many papers were published on steady free convection flows past a semi-infinite 

vertical plate under different physical conditions during 1960 - 1970s. However, unsteady 

Gee convection flows received little attention. Illingworth published the first paper on 

unsteady free collvection in 1950 for a uniform plate temperature, but the results were 

presented for unit Prandtl number. Siege1 [1958], later on, studied unsteady free convection 

flow near a semi-infinite vertical plate under uniform wall temperature or constant heat flux 

conditions. The problem was solved by momentum - integral method and he showed for the 

first time that the initial behavior of temperature and velocity fields for a semi-infinite vertical 

plate is the same as for a doubly infinite vertical plate in which case temperature field is given 

by unsteady one-dimensional heat conductioll equation. Hence, it was concluded that the 

transition to convection begins only when some effect from the leading edge has 

propagated up the plate to a particular point depending upon the physical circumstances. 

These findings were confirmed experimentally by Goldstein and Eckert [1960]. Later on 



many papers were published in 1960's on unsteady free convection flow past an infinite 

vertical plate. These are by Schetz and Eichhom [1962], Goldstein and Briggs [1964]. The 

unsteady free convection flow past a semi-infinite vertical plate was studied by Chung and 

Anderson [I 9611. Sparrow and Gregg 11 9601, I Iellums and Churchill [1961,1962], where 

boundary layer coilcept was utilized. The fluid considered in all these studies was a 

Newtonian fluid like air or water. Gebhart and Pera [I9711 studied the transient free 

convection problem and they found excellent results on it. The unsteady free convection 

laminar flow past an infinite plate in the presence of a uniform magnetic field has been 

studied by Brar. Sreekant et al. [2001] investigated the unsteady free convection flow of an 

incompressible dissipative viscous fluid past an infinite plate under the influence of a uniform 

transverse magnetic field. 

On the other hand. many authors have presented the unsteady flow between two plates, 

horizontal or vertical. Sharma and Kumar [I9981 investigated the unsteady flow and heat 

transfer which arises in fluids due to buoyancy forccs and temperature differences in the 

presence of transverse magnetic field between two horizontal plates, lower plate being a 

stretching sheet and upper being porous. Borkakati and Bhattacharjee [I9841 studied the heat 

transfer in the flow of a conducting fluid between two non-conducting porous disk-one 

rotating and other at rest in the presence of a uniform magnetic field. the lower disk being 

adiabatic. Gourla and Katoch [I9911 studied an unsteady free convection MHD flow between 

two heated vertical plates in the presence of the force field of gravity and applied magnetic 

field acting in the horizontal direction and perpendicular to the flow. 

The general MHD flow problems are studied considering the imposed magnetic field in 

a direction perpendicular to the direction of the flow. But here we are interested to investigate 

the nature of a problem of electrically conducting fluid past between two vertical plates where 

one of the plates is adiabatic and other plate is of variable temperature. in the presence of a 

magnetic field placed at different angles 6 (where 6 varies from 0 to n / 2 ) to the motion of 

the fluid. The analytical solution for velocity and temperature distributions for different time t, 

decay factor n, Magnetic number M and Prandtl number Pr have obtained and shown through 

graphs and discussed in detailed. 



3.2 Formulation of the Problem: 

Fig-3.1 : ~ e o i e t r y  of the flow 'field 

The physical configuration illustrating the problem under consideration is shown in fig. 

3.1. The vertical plates are fixed and the fluid flows between the two plates pointing to 

vertical upward direction. The x-axis, taken as the axis of the channel, is pointing to vertical 

upward direction through the middle of the two plates. The y-axis is along the horizontal 

direction. The plates of the channel are kept at y = f h .  acts in the vertical downward 

directions while B, acts at an angle 8(0 < 8 < n / 2), to the y-axis. The velocity components 

u' and v' are respectively, along x-axis and y-axis. Consequently u' is a function of y ' and 

t'only, but v'is independent of y' . In fornlulating the problem mathematically. we assume 

that the fluid properties are not affected by the temperature differences except that of the 

density of the body force term. 

The basic equations of magnetohydrodynamics and ordinsuy fluid dynamics are 

different by only additional body force term due to electromagnetic field in the momentum 

equation and a tern1 due to Joule heating in the energy equations. 

In order to derive the fmdarnental equations we assume that 

(i) the fluid is Newtonian, viscous, incompressible. 

(ii) the Mall effect. electrical effect and polarization effect, are neglected 

(iii) the variation of expansion coefficient p and thermal conductivity K with 

respect to temperature difference are considered negligible, 

(iv) the boundary layer is assumed to be thin relative to the distance between 

the two plates, 

(v) the pressure gradient across the boundary layer is neglected. 

(vi) the induced magnetic field is assumed to be very small, 

(vii) the viscous dissipation is neglected. 



Under the above assumptions the unsteady free convection flow of an incompressible viscous 

fluid through a vertical channel is formulated by the following equations (3-1 ) - (3-3) with the 

boundary conditions (3-4). 

av ' - = o  (continuity equation) 
sit ' 

(3-1) 

du' d2u' OB; cos2 6 
- = U - + ~ P ( T ' - T ~ ) -  ur (momentum equation) 
atr dy12 P 

(3-2) 

(energy equation) (3-3) 

when t' = 0; u' = 0, T' = T, Vy ' E [- h, h] 

when t' > 0; u' = 0. T' = T, + (T. - e-"'") for y = -11 

for y = .th 

At time t > 0, the temperature of the plate at y = - h changes accordingly as 

T  = To + (T, - To 11 - e-"'I' ), where, T, and To are the temperature at the plates y = - h and y = + 

h respectively, and n'(> 0), a real number, denotes the decay factor. 

On introduction of the dimensionless variables 

the system of equations (3-1) - (3-3) and boundary conditions (3-4) become 

when t = 0; u = 0, 1' = 0 t/, E [- l,+l] 



3.3 Solution of the Problem: 

Taking the Laplace Transform of equations (3-5) and (3-6), we get 

m 

where F(y, s) = [e-' ~ ( y ,  s)dt 

Similarly, using Laplace Transform on the bounda~y conditions (3-7), we obtain - 

Since the equations (3-8) and (3-9) are 2"d order differential equations in ii a n d r .  the 

solution of the equations by use of the conditions (3-1 0) are given by. 

- 
U = 

- n sinh J K ( y  + 1) n sinh J%(y - 1) 

s(s + nXM + ~ ( 1 -  P,)}sinh 2 J G  + s(s + ~ X M  + s(1- ~ , ) )s inh 2 G  

ncosh JP,S(~ - 1) 

Taking Inverse Laplace Transform on both sides of (3- 1 1) and (3- 12). we get, 

( 2 k + 1 ) ~ n '  
(2k + lbrb - 1) ---KT-! 

cos m ( y  - l)e-"' 4 ( - I ~ C O S  e 
T=l- ',C 4 (3-13) 

cos 2 z  (2k + I)( (2k + 112n2 
16Cn 

sin Jn-M(y+l) sin Jn-M(u-l) - c o s m ( y - 1 )  

sin 2 J n - M  cos 2 f i  - sin 2 J n - M  cos 2m I 



- COS 
(2k + l b ( ~  - 1) 

4 1 X 

L 

3.4 Results and Discussion: 

The solutions obtained in (3-13) and (3-14) describing the present problem are 

sin ,/ (2k + l r n 2  
1 6 4  

- M ( Y + ~ )  

OB,~ h * 
discussed graphically considering - - -2(fixed), a part of Magnetic Hartmann number 

UP 

o-B: cos2 6h 9r 7t 9r 7t 
M =  and supposing 6 = 0, - ,- ,- , - . When 6' = 0, the magnetic field is 

UP 6 4 3 2  

i7 
perpendicular to the direction of the flow of the fluid and when 8 = - the magnetic field is 

2 

parallel to the flow field, and in this case magnetic field has no effect on temperature field. 

The variation of temperature field in respect of changing time t, the Prandtl number P, and 

7t 
decay factor n (> 0) has been shown through the figures (3-1) - (3-3). As 6 = - i.e. M = 0, 

2 

makes the values of the velocity profile infinite. it is not shown in the figure. For other 

standard values of 6 .  the velocity distribution profiles are shown for different values oft. P, , 

and n. Here, we have assumed the adiabatic plate at y' = +h(i.e.y = 1)and temperature 

function plate at. y' = -h(i.e.y = -1). A quantitative discussion has been given below in a 

nutshell for each of the values of 8 and through every figure. 

Figure (3-1) has been obtained by plotting the temperature distribution 'r against y for 

t = .l ,  .5: 1, 4 at n = 1, P, = 0.025 (fixed). It is observed that as t increases the values 01' T 

increases. For small time the temperature function plate receives higher temperature than the 



adiabatic plate, whereas for large time each plate acquires same temperature. Though not 

shown in the picture, the calculated value obtained for T, are almost similar f i~r  t = 3.4, 5. 

Figure (3-2) of temperature field is obtained for various values of decay factor n (n = I ,  

5, 10, 15) when t = 0.1 and P, = 0.025. It is seen that the values of temperature distribution 

decreases towards the adiabatic plate. An increase in the values of n leads to the increase in 

the values of 'I- to a certain limit. After that it ceases to increases. In this case the effect of 

adiabatic plate is significant. 

Figure (3-3) has been obtained by plotting the temperature distribution T against y at 

the Prandtl number P r = l .  0.5, 0.25. 0.125 and at n = 5 and t = 0.1. This figure shows the 

significant effect of the Prandtl and adiabatic plate. For the fluid whose Prandtl number is 

.025, the temperature distribution is less affected, though it has a tendency towards the 

adiabatic plate. For other iluids that have been considered in this work, the effect of 

temperature distribution inside the channel increases as P, increases towards the temperature 

function plate. But towards the adiabatic plate all values tends to 0. 

The results for the velocity u for 0 = oO(M = 2), are shown in figures (3-4) to (3-6). 

Figure (3-4) has been obtained for different time t = 0.1, 0.5, l , 4  at P, = 0.025 and n = 5. It is 

seen that for small time u increases when t increases with indication of no rise of temperature 

towards the adiabatic plate. Rut for large time this increasing rate becomes negligible, and 

also no difference of rise of temperature between the two plates. The flow distribution is 

highest at the middle of the channel at large time. Figure (3-5) has been obtained for different 

values of n, keeping t and P, fixed at 1 and 0.025 respectively. Here we find that though there 

cannot be seen any effect of the adiabatic plate the effect of increase of n can be observed. 

But, it cannot go fi~rther. For values of n greater than 15. the values of u are almost equal 

leading to fully developed situation. Considering n = 5, t = 1 and varying Pr at 0.025. 0.125. 

0.25, we obtained the graphs for velocity profiles as shown in the figure (3-6). It is seen that 

as eincreases, the values of 11 decreases. The flow distribution fbr any fluid at and near the 

plate is almost same. but different at the middle of the channel only. We failed to get the flow 

distribution for the iluid whose P, = .71,1 due to the presence of the square root domain error. 

The results for the flow field u for 0 = 30' are shown through the figures (3-7) - (3-9). 

Here, it is found that the velocity profiles are similar to the figure (3-4) for t = 0.1, 0.5. 1, 4, 

and P, = 0.025 and n = 5. However. in each case the values of u are greater than got in figure 



G-4)for 6 = 0'. This shows the effect of M. Supposing n = 1, 10, 15-25, and Pr = 0.025. t = 1, 

we obtained the figure (3-8). It is seen that the velocity profiles found in the figures (3-5) and 

(3-8) have their similarity in their origin. Exception is that these values are greater than the 

values got in (3-5). Figure (3-9) has been obtained considering t = 1. n = 5, and P,= . O X ,  

,125, .25. This figure is similar to the figure (3-6). But these values are higher than the values 

got in figure (3-6).  Moreover, the effect of adiabatic plate can be observed for high Prandtl 

number. The investigation cannot be carried out for 4 = .71 and 1 due to the domain error 

appeared in square roots terms. Also clear effect of Prandtl number is depicted rather than the 

effect of isomorphic plate. 

Figures (3-10) - (3 12) have been obtained by placing the magnetic field at Q = 45'. In 

all these three figures an excellent effect of magnetic number has been seen. The velocity 

distribution found in each figure is parabolic at positive quadrant of the rectangular axes, for 

different values of t ,  Pr and n though the variation oft. n and Pr at different stages can - not be 

neglected. However. in this case each obtained values are more higher than the values got 

earlier for M = 2, 1.5. 

Considering the magnetic field at an angle 19 = 6o0to the horizontal direction, we have 

found the velocity distribution as shown in iigures (3-13) - (3-15). Figure (3-13) has been 

obtained by assuming Pr = 0.025, n = 5 and t = 0.1, 0.5, 1. 3. In the figure it is found that the 

velocity profiles are parabolic in the positive quadrant of rectangular axes. The values are 

more higher than the values got in figures (3-4) and (3-10). For small times the flow 

distribution near the two plates are different. The figure (3-14) is for n = 1, 5, 10, 20, and for 

fixed values of P, = 0.025 and t = 1 .  Here. it is seen that the fluid velocity is maximum at y = 

0, and as n increases u also increases up to a certain limit. The flow distribution dif'iers 

slightly for large n. The figure (3-1 5) has been obtained varying only Pr , and assuming t = 1 

& n = 1. It is significant to note that fbr P, = .71,& 1, the velocity fields can be drawn 

comfortably, which we failed to have for Q = 0',30',45'. The effect of adiabatic plate is 

clearly vipfgible in this case. The values of velocity distribution are higher than in each case 

than got for 6' = 0' ,30° ,45'. 



Figure 3-1 : T versus y for n = 1. Pr = .025 at different+ 

Figure 3-2: T versus y for Pr = .025. t = . l  at different n 



Figure 3-3: T versus y for n = 5, t = . l  at different Pr 

Figure 3-4: u versus y for M = 2 (0  = oO), n = 5, Pr = ,025; at t = . l .  .5,1.4 



Si. 1.: n 
Si. 2.: n 
Si. 3.: n 
Si. 4.: n 

1 

Figure 3-6: u versus y for M = 2 ( 8 = 0' ), n = 5, t = 1 at Pr = .025, .125, .25 



Figure 3-7: u versus y for M = 1.5 (0 = 30'). Pr = .025, n = 5 at different time 

Figure 3-8: u versus y for M = 1.5 (6' = 30°), Pr = .025. t = 1, n = 5,10, 15.20 



Figure 3-9: u versus y for M = 1.5 (6 = 30°), t = 1, n = 5, Pr = .025, .125, .25 

Figure 3-10: uversusyfor M = 1 (6  =45O), Pr = .025, n =  5, t = .l ,  .5. 1, 3 



Figure 3-1 l.:u versus y for M = 1 (0  = 45'), ~r = .025. t = 1, n =5, 10, 15,25 

Figure 3-12: u versus y for M = 1 (0 = 45'), t = 1, n = 5, Pr = .025, .125, .25, .50 



Figure 3-13: u versus y for M = .5 (8 = 60°), Pr = .025. n = 5. t = .l, .5. 1 , 3  

Figure 3-14: u versus y for M = .5 (8 = 60°), n = 1, 5. 10.20, t = 1, Pr = .025 



Figure 3-15: uversusy for M = .5 (8 = 60°), n =  5, t =  1. Pr = .025, .125, .71, 1.0 

3.5 Conclusion: 

The above analysis shows that if the same amount of magnetic field is applied at 

different angles to the direction of the fluid velocity, the different nature of velocity profiles 

are obtained. The effect of the magnetic field is stronger if it is placed at 8 = 90' to the 

directions of the fluid than that if it is placed at any other angle. This effect slowly decreases 

as the angle between the direction of the fluid velocity and direction of the magnetic field 

7T 
decreases from -to 0. When 19 = 60' (i.e. M= .5) .  we are able to get the velocity distribution 

2 

for the electrolyte solution. The present problem is best fitted for Copper sulphate solution, 

though it is not a good conductor. For M = 2, 1.5. 1, the flow analysis cannot be under taken 

for the fluid whose P, = .71,1. At the onset of free convection flow the effect of the adiabatic 

plate is significant. But as time increases or decay factor increases, the effects becomes 

unclear. Perhaps this lead to fully developed situation. The above analysis also indicates that 

there should be a proper combination of the choice of values of M, P, , n and t to have a good 

result. 



TRANSIENT FREE CONVECTION MHD FLOW THROUGH A 

POROUS MEDIUM BETWEEN TWO VERTICAL PLATES 

4.1 Introduction: 

Many researchers studied the transient free convection flows past an infinite vertical 

plate in 1960,s because of their industrial applications in cooling process. These are by Seigel 

(1958). Gebhart (1961), Chung and Anderson (1 961). Schertz and Eichhorn (1  962). Goldstein 

and Briggs (1964) etc. Siege1 studied for the first time that the initial behavior of temperature 

and velocity fields for a semi-infinite plate is the same as for a doubly infinite vertical plate 

and here the temperature field is given by the solution of unsteady one-dimensional heat 

conduction equation. Goldstein and Eckert (1990) later on confirmed these theoretical results 

through experiments. 

Singh et al. (1996) have studied similar type of transient free convection flow between two 

long vertical parallel plates. But transient free convection flow through a porous medium 

bounded by two long vertical parallel plates has received vely little attention. As it has good 

application in geothermal system, thermal insulation in buildings. heat exchangers, many 

authors have extensively studied this topic of steady free convection or transient free 

convection past different types of bodies. Nakayama et 01. (1993) studied the transient free 

convection flow through porous medium bounded by two long vertical parallel plates. They 

considered Brinkman-Forchheimer extended Darcy momentum equation following Vafai and 

Tien's (1989) model. They presented the solutions for small and large time approximation 

analytically whereas at intermediate times, finite difference solution was presented. Vafai and 

Tien's model is based on normal permeability. However. recently. Lage's research group 

(1 996) has discovered porous material with high permeability. Rajasubramaniu~n et ul. (1 994) 

have developed a material of high permeability. It is based on a biocompatible material. 

which is a blend of poly-lactic acid and poly-capralacton. Nakayama et al. (1993) have 

studied transient free convection flow through a porous medium such that the viscosities of 



porous medium and the fluid are same. For small time, they neglected the effects of both 

Brinkman and Forchheimer terms and for long time. these two terms were considered, and the 

equations were solved numerically. 

The main objective of this chapter is to study the flow of a viscous incompressible and 

electrically conducting fluid through a porous medium whose effective viscosity is larger than 

the viscosity of the fluid and bounded by two long vertical parallel plates, in the presence of a 

uniform magnetic field applied transversely to the plates. Such material has a Darcy number 

and viscosity ratio parameter of order 10. Such an analysis for a horizontal channel flow 

through high permeability porous medium, on taking into account both the Brinkman and the 

Forchheimer terms was recently presented by Nield et ul. (1996). We have neglected 

Forchheimer terni and retain only the I3arcy term. Series solution is presented and the results 

are shown graphically. 

4.2 Formulation of the Problem: 

We consider here. the flow of the fluid through a porous medium whose effective 

viscosity (pefl) is far greater than the viscosity of the fluid flowing in the vertical upward 

direction through the channel, which is bounded by two long vertical parallel plates. The 

plates are maintained at same temperature. One plate is considered at y = 0 along which 

x' -axis is taken, and the other plate is at y = h, in the vertical upward direction. The - axis 

is taken normal to the plate. I tere, y' E [o, h ] .  Here B, acts in a direction normal to the flow. 

To write down the governing equations following assumptions are made: 

(a) the plates are infinitely long. So, flow variables are functions of y' and t' only, 

(b) Hall effects, Polarization effect and Induced Magnetic field are neglected. 

(c) the external electric field is zero, 

(d) the pressure gradient terni and gravity term are entirely expressed by 

buoyancy force term, 

(e) the viscous dissipative heat and the effects of the thellnal and longitudinal 

dispersion are neglected. 

(f) the flow motion is very slow, and non - fully developed. 

Under the above assumptions the governing equations are as follows: 



the initial and boundary conditions are 

u' = 0, T' = T,' for all 0 5 y' 5 h, t' 5 0  

u' = 0, T' = T,' at y l = h ,  t '>O (4 -3) 

The velocity and magnetic field distributions are ij = [U(~,~),O,O] and B = (0, Bo ,o]. 

We now introduce the following non-dimensional quantities: 

Then in view of (4-4), equations (4-1) and (4-2) reduce to the following form: 

with the following initial and boundary conditions 

u=O, T=O for all 0 I y I I, t I 0 

u=O, T = l  at y=O, t>O 

u=O. T = O  at y =  l , t > O  

4 . 3  Solution of equations: 

Taking the Laplace transform of (4-5) and (4-6), we get 

Similarly, using Laplace transformation on the boundary conditions (4-7). kve obtain 

i(0,  s )  = i(1, s )  = 0, T(0, s )  = 1. and T(l, s )  = 0 (4 -10) 



Since, the equations (4-8) and (4-9) are ?"' order differential equations in ii and T ,  the 

solutions of the equations by use of conditions (4- 10) are 

Again, taking inverse Laplace transform of (4- 1 1) and (4- 12), we get 

sinh m(1- y) 

1 1 
where A = - + M , B = -  

Da Z 

4.4 Results and Discussion: 

We have computed numerical values of T and u, and these are shown through the 

figures (4-1) - (4-6). In figure (4-1). the temperature profiles are obtained for Pr = .71, 7.0. 

100. and we see that it decreases for increasing values of Prandtl number. In figure (4-2), 

the velocity profiles are shown for different values of Darcy number keeping viscosity ratio 

parameter, magnetic field parameter and Prandtl number fixed, respectively, at 0.1, 01, and 

0.71. Here, we consider t = 0.5. In this figure we see that as Darcy number increases the 

fluid velocity also increases. Figure (4-3) is drawn for variable viscosity ratio (Z) at fixed 

Darcy number (Da = .01), magnetic field parameter (M = 01), Prandtl number (Pr = .71) and 

time t = 0.5 to give velocity distribution. Tt is observed that an increase in viscosity ratio 

parameter leads to a decrease in the velocity. Figure (4-4) is drawn for different values of 

Prandtl number at (fixed) Da = 0.1, M = 01, Z = 0.1, and t = 0.5 to give the nature of the 

velocity distribution curve. It is seen that Prandtl number remarkably influences the fluid 

velocity field. For Pr = 100, the velocity curve fluctuates greatly. Figure (4-5) is obtained 



for different Hartmann number (M) and for Pr = .71, Z = 0.1. Da = 0.1. t = 0.5, and we 

observed that an increase in Hartmann nunlber leads to a decrease in the velocity. There is a 

curve in figure (4-5), which is free from magnetic field. If, we go through this two set of 

curves, we see that there is the influence of magnetic field on velocity profiles. Figure (4-6) 

is drawn to show the effect of Darcy number and viscosity ratio parameter simultaneously at 

constant values of Prandtl number (Pr = .71) and time (t = 0.2) in the absence of magnetic 

field. We observed that the obtained all numerical values of the velocity are lesser than 

unity for small time (t = 0.5), and for 4 - parameter values, which we have considered. This 

is the significance of transient free convection flow. Again the values of the velocity are 

highest at the middle position of the channel, except slight deflection towards the plate 

situated at y = 0. We think that this is due to presence of the magnetic field. All 

investigations undertaken here are for small time. 

4.5 Skin friction: 

From the velocity field. we now study the skin - friction. which is given by 

Now, in view of equation (4-4). (4-1 5) reduces to 

where r = - TI 

y =o P P ~ ~ ( T : .  - T,') 

Which is finally obtained as (by use of (4-14)) follows 



T A B L E - I  

Values of z 



Fig. 4-1: Variation of temperature profiles for t = .5 
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Fig.4-2: Variation of velocity profiles for Z = . I ,  M = 1. Pr = .71, t = .5 



Fig. 4-3: Variation of velocity profiles for Ila = .O l ,  Pr = .71. t = .5 

Fig. 4-4: Variation of velocity profiles for Da = . I ,  M = 1, Z = . I ,  t = .5 



Fig. 4-5: Variation of velocity profiles for Pr = .7 1, Z = . I ,  Da = . 1 , t = .5 

- - - - 

Fig. 4-6: Variation of velocity profiles fur Pr = .71, M = 0, t = .2 



4.6 Conclusion: 

In this paper we have analyzed thc effect of Darcy number, viscosity ratio parameter 

and the Prandtl number on free convection flow of viscous incompressible tluid through a 

porous medium bounded by two long vertical parallel plates whose effective viscosity is 

larger than the viscosity of the fluid. Series solutions are provided for velocity and 

temperature distributions in terms of the Darcy number, viscosity ratio parameter, the prandtl 

number and the Hartmann number. Graphs drawn for velocity and temperature profiles show 

that these parameters have influence on these profiles. So, in order to predict accurately the 

flow behavior of the electrically conducting fluid, all this parameters must be taken into 

consideration. In table I. a series of values of shear stress h a x  been given for different 

values of magnetic field parameter, viscosity ratio parameter, Darcy number and the Prandtl 

number. It is observed that as the values of the Prandtl number increases, the skin friction 

also increases for fixed values of Z (= 0.1) and for smaller values of Da and M. Here. for M 

= 0, (when Da = .01) the values of skin friction increases. For increasing values of Prandtl 

number, we get the highest values of z for Z = 0.1. Da = 2, M = 1. As Pr increases, we see 

the decreasing values of skin friction when magnetic Hartmann number is maximum (in table 

I) and Z = I. Da = 2. When Z takes the maximum value (Z = 10 in table I), skin friction 

decreases for increasing values of Pr. 'I'he first two values of table I shows that as M 

increases from zero (at fixed values of % and Da) onwards, the values of skin friction 

decreases. Thus, it shows that the effects of increasing M decrease the skin friction. For 

standard combination of values of these four parameters, we can get an expected skin 

friction. On the other hand as the values of all these parameters increases the skin friction 

decreases. Hence, the porosity of the medium and magnetic field are the factors that can 

influence a great deal the flow field of fluid. 



THE TRANSIENT FOR MHD STOKES OSCILLATING POROUS 

PLATE: A SOLUTION IN TERMS OF TABULATED FUNCTIONS 

5.1 Introduction: 

Stokes first studied the problem of unsteady free convection flow of a viscous 

incompressible fluid past an infinite horizontal flat plate. The plate was of two characters - 

one of in~pulsively starting of suddenly set into motion which creates a start-up flow to the 

fluid and other one was of oscillating, oscillating in its own plane. H. Schlichting (2000) 

named the former one as 'Stokes's First problem' and later one as 'Stokes's Second problem'. 

Stokes presented the exact solutions to both the problems. Stokes's result for an oscillating 

plate was the steady- state solution, which applies after the effect of any initial velocity profile 

has died out. But this solution was not a conlplete solution since it does not satisfy the initial 

condition. When the plate starts from rest in a still fluid a transient solution must be added to 

Stokes's well known steady-state result. Panton (1968) first presented a closed form 

expression for the transient solution. which contains exponentials and error functions of a 

complex argument. He presented the transient and starting phase velocity distributions for the 

plate either oscillating as sin (T) or - cos (T). Later on. Deka et uI (2001) studied this problem 

of a semi-infinite incompressible viscous fluid bounded by a flat plate in the presence of a 

uniform magnetic field applied transversely to the plate. 

Stokes's second problem is not only of ftiidamental theoretical interest but it also 

occurs in many contexts of applied problems. It arises in acoustic streaming around an 

oscillating body. It is important in unsteady boundary layers, in the imposed fluctuation in the 

fiee stream velocity, on the boundary layer flow past a body etc. In this case Stokes's result is 

considered as a perturbation in the high frequency limit. This is because for an incompressible 

fluid flow, it is immaterial whether the plate oscillates in a stagnant fluid or the plate is fixed 

and the fluid oscillates. 



The magnetohydrodynamic transient free convection flow of a viscous incompressible 

fluid caused by the sinusoidal oscillation of a plane flat porous plate has been studied in this 

chapter. The constitutive equations of continuity and mass conservation of electrically 

conducting liquid are obtained in Cartesian co-ordinates. The well-known Laplace transform 

technique is used to solve the equation. 'The solution has been obtained in exact form. The 

answer presented herein contains cxponential and crror function of complex arguments. 'Tl~ese 

functions are readily available in newer inathematical tables. Graphs of the transient solution 

are presented for sin (T) boundary conditions. Velocity distributions in the fluid are also 

plotted. It is seen that magnetic parameter (M) and small effect of' the porosity of the plate 

largely affects the fluid velocity field. 

5.2 Mathematical formulation of the Problem: 

'I'he fluid is taken to occupy the upper half-plane with the plate. The plate is porous 

and semi-infinite horizontal in extent. 'I'he X' -axis is taken along the plate while the Y' -axis 

is taken normal to the plate. u'and v' are the components of fluid velocity along X' - and Y' - 
axis respectively. Since the plate is semi-infinite in extent, u'is a function of Y'and t'only 

while v' is independent of Y'. Suppose the fluid is electrically conducting and the plate is 

non-conducting. Let a uniform magnetic field H,  be applied in a direction pei-peildicular to 

X'- axis. The fluid is assumed to be of low conductivity so that the induced magnetic field 

can be neglected. The Lorentz force is - OH~U'. At time t' < 0 .  the plate and the fluid are in a 

state of rest. At tl>O, the plate starts oscillating in its own plane. For boundary condition it is 

assumed that there is no slip at the wall. 

Under these assumptions, the flow field governing equations (equations of continuity 

and mass conservation) can be written as- 

du' , auf aZu' OH;U' - +v-=u-- -  
at' at' ayf2 p 

And the initial and boundary conditions are 

U'(~',O) = 0 

ul(m,t') c m 

~ ' ( 0 ,  t') = u sin(wtt') 



All the physical variables are defined in List of synzhol.\. 

We nou introduce the fbllowing non-dimensional variables and parameters in order to 

transform Equations (5-1) and (5-2) and the boundary conditions (5-3) into dimensionless 

form: 

Hence, the equations of continuity, mass conservation and boundary conditions reduces to 

5.3 Solution of the equations: 

Solving equation (5-9, we obtain 

V = constant. 

For constant suction we consider V = -V, 

The negative sign appeared in (5-8) indicates that the suction is towards the plate. Hence the 

equation (5-6) becomes 

The velocity may be decomposed into a steady state and a transient component satisfying 

equation (5-9) as- 

The steady state component is found in the following form 

Us = exp(- a~ l  sin(^ - b Y l A) 

Where a = Jm,b 



This solution (5-1 1) satisfies the boundary conditions (5-7b) and (5-7c) but not the initial 

condition (5-7a). For transient solution we require additional boundary conditions. The 

ultimate conditions are as follows: 

Where C is the complex constant defined by C = a - i b. 

The composition of both transient and steady state solutions completely satisfies the equations 

(5-9) and (5-7a) - (5-7c). 

Now we use the Laplace transform technique to have the transient solution of equation 

(5-9) and in the boundary conditions (5-1 2a) - (5-1 2c). Ilence the solution of the equation (5- 

9) subject to the boundary conditions (5-12a) - (5-12c) is 

w 

Where 0 = JUe-"dt . Re (p)>O 

Taking inverse Laplace transfoim of (5-1 3), we get 

V C  
Where 1 = A + i and L-' is the inverse Laplace transformation operator. 

45 
The equation (5-1 4), after some tough calculations found in this following fomi 

It is to be noted that each term in (5-15) satisfies the differential equation (5-9) 

separately. To obtain the answer in real variables. equation (5-1 5) should be separated into its 



real and imaginary parts. But it is very difficult due to the presence of the complementary 

error function in complex argument fonn in equation (5-15). However, the standard 

mathematical functions given in Abranowitz and Stegum's llandbook (1964) [ I ]  made it 

possible to be separated into real and imaginary parts. 

For this the auxiliary function, which allows accurate interpolation, given below, is 

used: 

W(Z) = exp(- z2 )erfc(- iz) ( 5 -  1 6 )  

Making use of (5-16), the equation (5-1 5), finally found as- 

Where 

The imaginary part of (5-17) applies when the boundary condition is sin ('I') while the real 

part is for - cos (T) boundary condition. 

5.4 Characteristic of the Solution: 

It is easy to see how much the transient is affected due to the oscillating porous plate, 

and that is what we have investigated here. The transient dies out so rapidly that its every 

character shown in the graphs is clearly visible. The transient component of the velocity for 

the case when the wall velocity varies as sin ('I'), has been given in figure (5-1). 'The 

maxin~un~ velocity in this figure is slightly less than 0.3 and occurs in between Y = 1 and Y = 

2. We have investigated the transient cornpollent of velocity for the time T=. 1 and T=. 3, and 

for magnetic parameter M = 0.0, 1.0 and 2.0 while the suction parameter V, is assumed as 

0.1. It is seen that as T increases, the fluid velocity decreases. Again. as M increases. the value 

of the fluid decreases. On the other hand as Y increases from 0 to 5, transient velocity dies out 

rapidly. 

The complete starting phase velocity profiles are shown in the figure (5-2). In order not 

to confuse between the steady-state prof les and starting phase profiles, the steady-state 



profiles are plotted as continuous lines while dashed lines represents the starting phase 

profiles. This velocity profiles are for the case when the fluid is initially still and the plate is 

inoved so that the velocity varies as sin (1'). The first curve at ?' = 0.3 shows the viscous 

'wave' has penetrated only slightly into the fluid. On t l~e  other hand the steady- state velocity 

profiles shows that the fluid has negativc velocities. It is seen that the penetration is lesser 

when magnetic field parameter has higher values. The second curve is draw- at T = 1.5. It is 

seen that a deeper penetration and decay in the difference between the starting and the steady- 

state solutions occur. The difference is only remarkable when M = 0.0. In case of M = 2.0, the 

starting and the steady-state profiles coincides. The third curve is drawn at T = 5.0. In this 

case, it is seen that the plate velocity reverse and penetrates from negative to positive into the 

fluid, the result of which is just like that it's completing a positive half circle. For M = 0, a 

difference between the transient and steady-state curves is visible. But for M = 2.0, the 

difference is small and often this two curves superimposed. It is observed that both the 

transient and steady- state cun~cs dies out rapidly from around the boundary of the plate as Y 

varies from 0 to 5. On the other hand the difference between the steady-state curve and 

transient increases. We think that this difference is due to presence of the suction parameter. 



U' -+ 
Figure 5-1 : Transient velocity distribution. Plate velocity sin (T) 
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Figure 5-1. Starting phase velocity profiles, plate velocity sin (T) 

5.5 Conclusion: 

If we go through, closely. at the figures presented by Panton (1 968) [77] and Deka el 

ul. (2001) [21] in their respective valuable papers with our obtained figures, a clear difference 

can be seen. We can see the effect of the magnetic parameter and the porosity of the plate on 

the flow field. However, it is seen that all the figures presented in the already published 

papers and our paper have their similarity in shape and characteristic. It is easy to see in our 

paper that all the velocity profiles have its depletion towards the plate. We feel that this is due 

to the suction velocity of the plate. We think that if the value of suction parameter would 

increase, the depletion rate of velocity profiles towards the plate would have also increase, 

and the steady- state profiles would be Inore effectible than the transient flow. 



EXACT SOLUTION FOR UNSTEADY PLANE MHD COUETTE FLOW 

AND HEAT TRANSFER WITH TEMPERATURE DEPENDENT HEAT 

SOURCE 1 SINK 

6.1 introduction: 

R. L. Panton (1 984) [78] first presented a series expansion of the solution to the Navier 

- Stokes equation for Couette flow for large time approximation. This solution is for the flow 

of a viscous incon~pressible fluid between two horizontal parallel plane walls, when one of 

this two is fixed. Exact solutions of unsteady Couette flow have been computed by J. 

Steinheuer (1965)[see pp. 13 1 of [ I  0611 for the case where the walls at rest in the steady state 

is abruptly brought to a constant velocity. A special case of these solutions is the case of the 

sudden halting of the moving wall. These problems being of fundamental nature, these are 

referred in all the textbooks of viscous flow. e.g. Schlichting 611. Gersten (2000). Bharali and 

Borkakati (1983) have discussed the flow and heat transi'er between two horizontal parallel 

plates, where the lower plate is a stretching sheet and the upper one is a porous solid plate 

subjected to a transverse magnetic field. 'The above-cited problem was solved by numerical 

method. The exact solutions for the unsteady plane Couette flow of a dipolar fluid was 

presented by P. M. Jordan and P. Puri (3002) [48] analytically by application of Laplace 

Transform technique. 

This chapter considers the problem of unsteady, one-dimensional MHD plane Couette 

flow between two infinite horizontal parallel plates. This problem is of f~lndamental interest, 

and it has many useful applications in different branches of fluid Mechanics particularly for 

Magnetohydrodynamic problems; also the presence of heat generating sources1 absorbing 

sinks in the fluid influences the flow field to a great extent as well as produces remarkable 

effects on the rate of heat transfer. So, we make up our mind to study this Initial and 

Boundary Value Problem (IBVP). analytically. 



The layout of the present article is as follows. 111 section (6-2), the problem is 

formulated with assumptions and boundary conditions. In section (6-3). the solutions are 

derived through use of Laplace transfornl technique. In section (6-4). the results are given 

through graphs and tables following a quantitative discussion. Finally, in section (6-5). the 

findings are shorted out through concluding note. 

6.2 Statement of the Problem: 

Taking the positive y-axis of a Cartesian coordinate system in the vertical upward 

direction let an incompressible viscous and electrically conducting fluid be fill the space 

between two infinite horizontal parallel plates. The x-axis is then considered along the 

horizontal direction through the central line between the plates. Here, the plates are at a 

distance 2h apart, where- h 5 y I h .  As the plates move parallelly in opposite direction with 

velocity U,, the relative velocity of the plates is 2U0. We assume that the pressure in the 

entire fluid is constant. So, the pressure gradient term appearing in the equation of motion 

becomes zero (Bird el al. 1994) [7]. We apply a uniform magnetic field Bo in the vertical 

upward direction. So, it is perpendicular to the flow as well as to the walls. The heated wall at 

y = h is maintained at a temperature T2, and the cooled wall at y = - 11 is maintained at a 

temperature T, (< T,). Let thc plates be electrically non-conducting. The above assumptions 

give the components of velocity and magnetic field as: 

~ l = { ~ . v , w ) = { u ( y , f ) , ~ , ~ )  B'=(B,,B,,B,)={O,B~,O) 

We have assumed that the fluid is of low conductivity so that the induced magnetic 

field can be neglected. The viscous dissipation. the 1-{all and Polarization effects are ignored. 

The fluid and medium properties are assumed to be isotropic and constant. 

Without writing the equation of continuity (as it is automatically satisfied). the 

governing equations of motion based on the above assumptions are found as - 

aul a2u1 
P Y = P -  + J x 8 + @(TI - ) (momentum equation) 

at ?yr2 

(energy equation) 

Here the second term in the right hand side of (6-1) is the magnetic body force term which 

whence simplified gives (-OB~U') [p35 of (P. A. Davidson. 2001)], and the third term is due 



to buoyancy force which absorbed the pressure gradient term [p320 of [6]].  The second term 

in the right hand side of equation (6-2) is due to heat generating source or heat absorbing sink. 

The corresponding initial and boundary conditions are 

t ' I O ;  ul=O T1=T ,  vYys[-h,h] 

t' > 0; ur  = U ,  T' = T2 at y' = +h 

Introduction of non-dimensional variables 

and parameters 

v S'h P r = -  s=- Pe = Pr Re 
a POC, 

in (6- 1 ) - (6-3) yields 

t S O ;  u=O,  T = O  VY fE [- l,l] 

t>O; u = 1 ,  T = 1  at y = + l  

u=-1 ,  T = O  at y = - 1  

Here the symbols have their usual meaning. 

6.3 Exact solution of the problem: 

Assuming homogeneous initial conditions and applying the Laplace transform 

technique to equations (6-5) & (6-6), we obtain 



The corresponding boundary conditioils are 

where p is the parameter of the Laplace transform and a bar over a quantity denotes its image 

in the transform domain. 

Subject to the boundary conditions (6-lo), the general solutions of equations (6-8) & (6-9) are 

~ s i n h  J A + p ( l  + y) + B sin ,/-)(I + y)  

p { ~ e ( ~ - p ) + ( A + p ~ e ) ) s i n h 2 , / ~  p ( ~ e ( ~ - p ) + ( A + p ~ e ) } s i n 2 , / -  

Applying the inversion formula for the Laplace transform, eqns. (6-1 1) and (6-12) yields 

.(Y,t) = 
sinh f i y  B sinh(fi(1 + y)) B sin(=(l+ y)) + 
sinh f i  - (P~S  + ~)sinh(2&) + (A + PeS)sinh(2&%?) 



6.4 Results and discussions: 

In this section, we summarizc the most important findings uncovered in this 

investigation and present the supporting numerical results through graphs and tables. All 

figures appearing in this work were generated directly from exact solutions1 expressions and 

programming C++ language. For plane Couette flow the lower limit of critical Reynolds 

number is 1300 and upper limit of which is 3000 [pp.104 Of (106)l. Hence, based on this 

analysis and the values of the parameters considered, we state the following. 

(1) In figure 6-1. we have shown the effect of Reynolds number (Re) varying from Re = 

1300 to Re = 3000 on temperature profiles. 'l'his is a T versus y profile. As y varies from -1 to 

.8, the values of 'T are very small, nearing zero. As a result the corresponding temperature 

profiles is seen flowing along y-axis (i.e. vertical according to the construction). But, as y 

tends to 1 fi-om .6, the curve seems taking a right angle turn. When the values of T vary from 

.000014 and .000046 (at y = .6) to 1 (at y = 1). at the turning point the curves are seen going 

down y-axis. This is the same case as happened in the case of air. dust particle moving behind 

the car. bus or supersonic flight when it takes a right angle turn suddenly. In all the cases the 

values of T are under boundary conditions. 

(2) In figure 6-2, we have studied the effect of Praildtl number (Pr) on temperature 

profilcs keeping all other paraincters fixed (fixed parameters are given just below the figure). 

It is seen that as Pr increases the amplitudes of vibration also increases on the x-axis. Also, as 

y varies from -1 to +I ,  the values of T increase from 0 to 1. T satisfies the boundary 

conditions in every case. 

(3) We have investigated the temperature profiles against y for various values of source 

parameter (S), in figure 6-3. It is seen that T = 0 for y = -1 and T = 1 for y = 1 in all cases. As 

y varies from -1 to .8, the vibrating amplitudes slowly increases fiom 0 to -.094882. and as y 

approaches 1, the values of '1' coincides at 1. It is seen that there is the small variation of the 

values of T for varying values of S from .O1 to 1.5. It is also seen that if one value of T is 

positive. the next neighboring value is negative for corresponding values of y. 

(4) Figure 6-4 shows the effects of Re and Pr on temperature profiles against y. An 

exception of vibrating temperature profile is seen for Re = 10 and Pr = 100. For Re = 100, Pr 

= 7 and Re = 1000, Pr = .7 1. we have seen the sane curve in the figure. Nevertheless there are 

slight differences in values of T for corresponding values of y. But, for Re = 3000 and Pr = 



.025, the values of T's are zeros from y = -1 to .4. As y approaches 1 from y = .4 (approx.), 

the values of T increases to 1. 

(5) In figure 6-5, we have investigated the nature of temperature profile against y for 

varying values o f t  in the presence of other parameters. For all three values of t ,  the T values 

are nearly zeros, though there are alternately positive and negative values for t = .01. It is seen 

as if it is the vibrating string. The string starts at 0 and ends at 1 .  'I'l~e time t = .5 gives non- 

vibrating curve. 

(6) Figure 6-6 illustrates the temporal evaluation of the value of velocity profiles 

against y for varying values of Re. It is seen that for Re = 3000, the values of u are 

approximately equal to zero when y varies froin -.8 to +. 8 (approx.) But, when y tends to 1 

from this assumed point. u + -1. Similar is the case when y approaches 1 from .8. We have 

alternately positive-negative values of u for Re = 1300 and 2000, which gives vibrating 

curves as shown in the picture. 

(7) In figure 6-7, it is seen that the flow field is coiiicident for t = .O1 and . l .  However, 

it is different and oscillating type in the region between y = -.8 (approx.) and y = .8 (approx.). 

Moreover. though it is not shown in the figure, we can have (already verified) conformable 

velocity profiles for the time varying from .001 to .5. For t > .5, the velocity profiles do not 

satisfy the boundary conditions (i.e. u >> 1 or 11 <<-I). 

(8) Figure 6-8 is drawn to show the effect of Pr on velocity field against y. We can see 

no difference of values of u corresponding to every value of y for Pr = 7. .71. .025. Only in 

the difference of the values of u are for Pr = 100. It is not clearly visible in the picture. Thus it 

is seen that variation of Prandtl number is not prominent for this kind of flow when other 

parameters are present. or when both tlie horizontal plates moves parallel in opposite 

directions with same velocity. 

(9) In the presence of four physical parameters (i.e. Pr, Re. Gr, Ha), we see from figure 

6-9 that the behavior of velocity field for t = . I  is exactly the sane for S = .01, .2, 1.5, 10. The 

cause may be for the parallel motion of two horizontal plates in opposite directions with equal 

velocity. Perhaps it may be different in the absence of any one or two of the above four 

parameters. The non-distinct character may also be for higher values of Re and Pr. 

(10) Each curve shown in figure 6-10 has been plotted from a data-set found by 

changing Pr and Re simultaneously, and for fixed valucs of other parameters (i.e. Gr, Ha, S) at 

t = .5. For Pr = 100 and Re = 10, the values of u increases fi-om -1 to +1 gradually for 

increasing values of y from -1 to +I .  It is apparent that there are differences in values of u for 



(Pr = 7, Re = loo), (Pr = .71, Re = 1000). and (Pr = . O X ,  Re = 3000). but nature is the same 

in each case. 

(11) Of the five physical parameters (i.e. S ,  Pr, Re, Gr. I-la), we use Ha for table I that 

gives of values of the Newtonian fluid. It changes alternately positive to negative, and 

negative to positive for different values of I-Ia. For IIa = .001, these values are higher (or 

lower) than the values when IIa = . I .  We have assumed here S = .2, Pr = .025. Re = 1000 and 

Gr = .5. For Ha = .5, we get an overflow error in sine hyperbolic function. So. it is not shown 

in the 1-igure. Here t = . l .  This investigation shows that the Magnetic Hartmann number must 

be less than .5, to have the value of u satisfying the self-sufiicient boundary conditions. 

(22) In order to show the effect of Grashof number, the table I1 is given below table I. 

Of the five parameters (i.e. S, Pr, Re. Ha). we have uscd the variation of Gr and Re. It is seen 

that for Re = 1300. and for Gr = .001, .01, the same values of u (up to six decimal places) for 

every value of y are occurring. Again for Re = 100 and for Gr = .001, .01. we get another set 

of same values (up to six decimal places) corresponding to every value of y. 'I'hese letter 

values of u are smaller than the former values. 



Figure 6-1: T versus y for S = .2, t = .5, 13r = .05. I-Ia = .Ol a11d for various values of Re 

Figure 6-2: 'r versus y for t = . l ,  Re = 1000. S = .2, Gr = 5 ,  tIa = .1 and for 

various values of Pr 



Figure6-3: Tversusyfor t=  . l , R e =  1000 .Pr= .71 ,Gr=5 ,Ha=. l ,  and for 

various values of S 

Figure 6-4: T versus y for t = .5, S = .2, Gr = 5. Ha = .O1 and for different values of 

Pr and Re 
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Figure 6-5: T versus y fort = .01, . l .  .5; S = 2, Pr = .025, Re = 2500, Gr = 5, Ha = .Ol 
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Figure 6-6: u versus y for Re = 1 300,2000, 3000, S = .2. t = .5, Pr = .05, Ha = .0 1. 

G r = 5  
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Figure 6-7: Re= 2500, Pr = .025, Gr = 5, S = .2 Ha= .01. in Si.l. t = .01. in Si. 2. t = . l ,  

in Si. 3. t =.5 
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Figure 6-8: u versus y for S = .2, t = . l ,  Gr = 5, Ha = . 1 . Re = 1000 

in Si. 1 .  Pr = 100, in Si. 2. Pr = 7 ,  in Si. 3 .  I)r = .71. in Si. 4. Pr = .025 
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Figure 6-9: uversus y fort = . l ,  Pr = .71, Gr = 5, H a =  . l ,  Re = 1000, and 

in Si.1. S = .2, in Si 2. S = .01. in Si.3. S = 1.5, in Si.4. S = 10 

- - -  - 

Figure 6-10: u versus y for t = .5. S = .2, Gr = 5, Ha = .O1 and for different values 

of Pr. [<e 



Table I 

Y I-Ia=.001/ Iia=.Ol/ H a =  .1 

- I  -0.999986 -0.999999 - 1 

-0.8 0.032655 0.003565 -0.000003 

-0.6 -0.0 14605 -0.00 1573 0.000007 

-0.4 0.007708 0.00083 -0.0000 1 1 

-0.2 -0.003448 -0.000373 0.00001 4 

0 0.000005 0.000004 -0.0000 19 

0.2 0.003441 0.000365 0.000023 

0.4 -0.007701 -0.000821 -0.000027 

0.6 0.01 4594 0.00 1 564 0.000028 

0.8 0.032646 -0.003556 -0.000023 

1 0.999986 0.999999 I 

Table i fur S = .2, t = . I ,  Pr = ,025, Gr = 5, Re = I300 

Table I1 

Re = 1300 Re = 100 

Gr = .001 Gr = .O1 Gr = .001 Gr = .O1 

- 1 - 1 - 1 - 1 

0.001 77 0.001 77 0.000073 0.000073 

-0.000783 -0.000783 -0.000033 -0.000033 

0.0004 12 0.0004 12 0.0000 17 0.0000 17 

-0.000 1 84 -0.0001 84 -0.000008 -0.000008 

0 0 0 0 

0.000 1 84 0.000184 0.000008 0.000008 

-0.0004 12 -0.00041 2 -0.00001 7 -0.00001 7 

0.000783 0.000783 0.000033 0.000033 

-0.001 77 -0.001 77 -0.000073 -0.000073 

1 1 1 1 

Table I1 for f = .I ,  Hrr = .01, Pr = ,025, S = .2 



6.5 Concluding Note: 

In all the figures the variation of y is seen to be horizontal though it is vertical 

according to the construction. Also the plates are horizontal moving parallel in opposite 

directions at y = 1 and -1. 

For time t > .5, both the temperature and velocity profiles does not satisfy the boundary 

conditions, i.e. gives vely large and small values outside the [-1 .1]. 

In all cases, we observed the effects of Reynolds number, Prandtl number, Grashof 

number, Magnetic Hartman number and Heat source parameters. The heat-absorbing sink is 

not valid for this problem. 

Under these five parameters heat transfer rate is prominent for MHD plane Couette flow 

problem. 

The investigation is carried out for small tilnc (< .5) .  Large time consideration leads to 

the overflow error. not satisfying the boundary conditions of u. The problem is clearly time- 

dependent and time-restricted. 

In every case considered drawn to show the velocity profiles against y, it is observed 

that the two plates has its influence on velocity profiles. If the plates would have moved in the 

same parallel direction, we would be able to see other types of the profiles. This situation is 

left for further study. 



UNSTEADY FREE CONVECTION MHI) FLOW AND HEAT TRANSFER 

BETWEEN TWO HEATED VERTICAL PALTES WITH HEAT SOURCE: 

AN EXACT SOLUTION 

7.1 Introduction: 

Transient free convection occurs in a fluid when the temperature changes cause density 

variations which gives rise to buoyancy forces. A lot of free convection heat transfer problems 

can be seen in literature. It is due to its numerous applications in lnetallurgical engineering 

such as magnetic levitation or confinement. thermonuclear fusion etc. In the metallurgical 

industries magnetic fields are routinely [19] used to heat pump, stir and levitate the liquid 

metals. Free convection flows with heat transfer rates have found a substantial and permanent 

place in the world of material processing through MHD processes. Moreover, this type of 

flows has parallel applications in Astrophysics, Medical sciences, Geophysics. and 

Aerodynamics. Researchers notably Rrar, Borkakati 181. Riswal 11 21, Choudhury et al. [17], 

Deka [2 1, 221, Kafoussias [ 55 ] ,  Merkin [66]. Soundelgekar [ I  02, 103, 1071, Teipel [113] etc. 

did work on transient as well as on steady free convection flows. Many of them studied this 

type of flows in the presence of a magnetic field. 

Datta et crl. [20] studied the problem of Magnetohydrodynamic unsteady free 

convection flow and heat transfer of a visco-elastic fluid past an impulsively started porous 

flat plate with heat sources1 sinks. Ojha and Singh [76] analyzed the heat source 1 sink effects 

on free convection flow and mass transfer of visco-elastic fluid past an infinite vertical porous 

flat plate. Their studies have shown that the presence of heat generating sources or heat 

absorbing sinks in the fluid influence the flow field to a great extent as well as produce 

remarkable effects on the rate of heat transfer. Hence, owing to its numerous applications, in 

the paper of Gourla and Kaloch [37], we have considered the effect of heat source with heat 

transfer rate for farther study. 



7.2 Mathematical Formulation: 

We assume that a viscous incompressible and electrically conducting fluid flows 

between two heated vertical long non-conducting plates. At time t 5 0,  the fluid is at rest and 

the plates are also at temperature To (reference temperature). At time t > 0 ,  the motion of the 

fluids takes place and the temperature of the plate's changes according as 

T' = To + (T: - To 11 - e-"'I' ), where n' is the decay factor. 

Here. x'- axis is taken along cach plate, which in the vertical upward direction and 

y ' -  axis is taken normal to the plate. We consider the origin of the axes at the middle point 

between the plates. A uniform magnetic field of strength B, is applied in a direction transverse 

to the direction of the vertical plates. Therefore, action of the magnetic field is in the 

horizontal direction and thus perpendicular to the flow while of the fluid velocity field is in 

the vertical upward direction. 

We make the following assumptions to derive the governing equations of n~otion: 

The fluid is assumed to be of low conductivity, so that the induced magnetic field is 

negligible. 

The fluid is isotropic and Newtonian. 

The strength of the magnetic field is not very large such that the generalized Ohm's law 

is negligible. 

For the boundary condition it is assured that there is no-slip at the wall. 

Viscous dissipation and Polarization effects are neglected. 

The viscous fluid flows with constant physical properties (p, p, k, C, )in between two 

vertical walls, a distance 2h (- h < y < h) apart. 

It is assumed that the plates are very long in the x-direction so the temperature (T') and 

velocity field (ul)are functions of y' and t'alone. and velocity colnponents v' and 

W' are zero. 

The pressure term is balanced by gravity force term to give rise buoyancy force term. 

Ilnder the above assumptions the governing equations of motion are found as follows: 

V.q' = 0 (continuity equation) (7-1) 

ad a 2 d  
p ~ =  p- + pflg(~'-To)-a B ~ U '  (moment~im equation) 

% I 2  



aT' a2T' 
p ~ , - = K - +  s'(T'-T,) (energy equation) 

at ' *I2 

(7-3) 

In equation (7-2). the gradient of temperature is due to the weight of the fluid in the slit 

( =  - )  and viscous forces are just balanced by the buoyan~y forces [7/ only These 

equations are to be solved with the following initial and boundary conditions: 

At t l=O:  ul=O, Tr=T, V y ' ~ [ - h , h ]  

~t t' > o : u1 = 0, T' = T, + (T, - T,)(I- e-n't') for y' = ~h (7-4) 

We now introduce the follouring dimelisionless quantities 

and dimensionless characteristic numbers [I 061 

in equations (7-2) - (7-3) and boundary conditions (7-4), and have the following 

dimensionless forms of them: 

t S O :  0=0, T = O  V y ~ [ - ~ , + l ]  

t > O :  u=O, T = l -  e-''I for y = T 1  

7.3 Solution of the equations: 

Taking Laplace transform of equations (7-6) & (7-7), and boundary conditions, (7-8). 

we have the following equations: 



where F (y , p) = Je -pf F (y , t )dt . 
0 

The solution of the equation (7-10) subject to the boundary conditions (7-1 1) is 

Again, the solution of the equation (7-9) with the help of eqns. (7-1 1 )  and (7-12) becomes 

g =  n cos ,/my n cosh , / G y  

(P~(s - p)+  M + p)p(p + n ) c o s , / F )  - (P~(s - p)+  M + p)p(p + n)cosh ,/% 

Inverting (7- 12) and (7- 1 3). we get 

T(Y,~)  = 
cos my - cos ,/Pr(S+n)y e-"f 

c o s G  cos,/Pr(S+) 

2n cos 

.(y,t) = 
1-Pr 

SPr+ M 
1-Pr 1-Pr 

cos JS pry 

[ c o s m  

e -"I cos ,/?@G)y 

{.(I - pr) - (S pr+ M)] [ cos ,/-I 
- 

cos Jn-M 

C O S ~  J M  
cosh 

I 



7.4 Results and Discussion: 

Figure 7-1 has been obtained by plotting the temperature distribution T against y at 

different values of the heat source parameter S for fixed time (t = 2). decay factor (n =I), 

and Prandtl number (Pr = .025). As the values of S increases from 0 to 1. the values of T also 

increases at x-axis (i.e. the axis of parabola as the figure shows) fioni ,607866 (approx) to 

.615325 (approx) (corrected up to six decimal places). Nevertheless, the curves are 

homogeneous parabolic with x-axis as its axis in each case. This shows that the temperature 

distribution is uniform - highest near tlie walls, and lowest in between the plates. 

Figure 7-2 has been drawn to show the effect caused by Pr at different values for fixed 

values o f t  (= .2). n (= 5), S (= .5) on temperature distribution. It is seen that temperature 

distribution changes and gets its new shape according as the change of Prandtl number. For 

small values of Prandtl number the temperature distribution changes negligibly. But for Pr = 

7, T changes remarkably. and it distributes with small change away from the plates. For Pr = 

1, we have a fine parabolic curve. 

Figure 7-3 depicts the temperature profiles for different values of n when t = .2, S = .5, 

Pr = .025. It is found form this figurc that the temperature at any point inside the vertical 

channel increase uniformly with increase of 11. 

We have considered the figure 7-4 to show the temperature distribution T against y for 

different time at fixed values of Pr (= .025), n (= 5), S (= .5). It is seen that there is negligible 

change of distribution of temperature between the channel for time t = 1, 2, 3. But for t = .2. 

though this distribution curve is similar with earlier three. there is difference with earlier 

three values. In each of the above case all value of T is nearly equal to 1 and all T - curves 

are parallel to y-axis. 

Figure 7-5 has been obtained by plotting the value of the velocity u against y at 

different magnetic Hartrnann number. Series1 & 2 are for t = . I  and n = 1. Series3 & 4 are 

for t = .5 and n = 10. In every case we have considered Pr = .025, S = .05. It is seen that for 



small time (t = .I) the cuives 1 & 2 are almost parallel to the y-axis between the channel, and 

the values of u are positive zeros. For time t = .5 and n = 10, the distribution of velocity is as 

if it is a right circular arc. At y = 0, the value of u is minimum, and at y = f 1, it is maximum. 

Figure 7-6 is drawn for different values of heat source parameter S and for fixed n. Pr, 

M. Series1 & 2 for t = . l ,  and series3 & 4 for t = .5. It is seen that for small time the flow of 

the velocity is not hl ly developed, but for time t = .5,  the velocity field is seemed to be 

developed, and its shape are homogeileous right circular arc. In each case. near the walls the 

velocity is the highest while at the center of the channel the fluid velocity is lowest. 

The velocity profiles have been plotted against y for M = 1. S = .05, t = . I ,  n = 1 and 

for various values of Prandtl number as shown in figure 7-7. This Iigure shows that the 

velocity profiles take the shape of positive parabolic curves with x-axis as its axis in each 

case. It is seen that as Prandtl number increases the velocity curves turns from just forming 

parabolic to fine uniform and symmetric parabolic curves. 'Theses are symmetric in x-axis. 

This signifies the effect caused by different values of Prandtl number. 

Figure 7-8 has been drawn for different values of decay factor n and at fixed values of 

Pr (= .025), S (= .05) and M (= .5). In series1 & 2, we have considered t = .1 whereas in 

series 3 & 4, this value is .5. It is seen that for small time the value of the velocity is slightly 

greater than zero. But for time t = .5, the velocity distribution curve is right circular arc. 

Again, in each case. the value of the velocity is highest at the walls while it is lowest at the 

center of the channel. 

Figure 7-9 depicts the velocity profiles for different combinations of values of Prandtl 

number, magnetic Hartmann number and Heat Source Parameter at fixed values o f t  (= .5) 

and n (= 10). It is seen that in each case the curve is a right circular arc. This means that the 

velocity is highest near the walls and lowest at the center position of the walls. This figure 

shows, how different fluids behaves in different environment. 



Figure 7-1 : T vs. y series1 for S=O. series2 for S= .05, series3 for S=.5, series4 
for S=l at t = .2, n = 5 ,  Pr = .025 

Figure 7-2: T vs. y I for Pr = .025. I1 for Pr = .25. I11 for Pr = 1. IV for Pr = 7 
at t = .2, n = 5, S = .5 



Figure 7-3: T vs. y for n = l , 5 ,  l0,20 at Pr = .025, S = .5. t = .2 

Figure 7-4: T vs. y: series1 for t = .2. series2 for t = 1, series3 for t = 2, 
series 4 for t=3 at Pr = .025, S = .5, n = 5 



Figure 7-5: u vs. y; seriesl for M = .5. series2 for M = 1 at t = . l ,  n = 1, S = .05, 
Pr = .025, series3 for M = 2, series4 ior M = 4 at t = .5. n =lo, S = .05, Pr = .025 

Figure 7-6: u vs. y; seriesl for S = 0, series2 for S = .05 at t = . l ,  M = .5, n = 1, 
Pr = .025, series3 for S = .5, series4 for S = 1 at t = .5, M = .5, n = 1, Pr = .025 



Figure 7-7: u vs. y for Pr = .025, 25. .5, .71 at M = 1 ,  S = .05, t = . l .  n = 1 

Figure 7-8: u vs. y; series1 for n = 1, series2 for n = 5 at t = . l ,  M = .5, Pr = .025, 
S = .05. series3 for n = 10, series4 for n = 20 at t = .5 ,  M = .5, Pr = .035. S = .05 



Figure 7-9: u vs. y; I for Pr = .25, M = 1. S = .5; I1 for Pr = .025, M = .5, S = .05 
IIIfor Pr= .5. M = 2 ,  S = 1 IV for Pr= .71, M =4.  S = Oat t =.5. n =  10 



7.5 Observations: 

(1)  Decay factor '11' and magnetic field parameter 'M' has a balancing relation. The 

graphs drown in figure 7-5 for n = 1 'and M = .5,  1, and also for n = 10 and M = 2, 

4; has shown this characteristic. When 11 is fixed and at the same time M increases, 

the values of the velocity decreases. We can also get the values of the velocity for 

equal values of 11 and M. But we cannot get a real value of u for the values of M 

which is higher than n. So, this is a restriction in our problem. 

(2) Naturally, the fluids are to flow in such a way that its velocity is the highest at the 

middle position of the channel. But in our case this phenomena is completely 

opposite. For ready reference the paper of Gourla and Katoch (that we have 

investigated), can be cited. We think that this is due to the Heat Source applied at 

the plate. 

(3) The velocity distribution is sharp near the two plates than at the center between the 

plates. 

(4) As time increases the temperature is also increases. As a result the value of tlie 

velocity also increases. This is seen in all figures. 

(5) In each case, the investigation is carried out for small time (t = . l ,  .5). So, the 

solution can be thought of as the onset of free convection. 

(6) We have studied the problem for the fluid with prandtl number less than unity. 

(7) This problem left scope for further study. 
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Appendix 

Historical Epilogue: 

In 5 1.10.2 of the chapter 1. we have discussed briefly about Laplace 'Sransforn~ation. 

Here we are narrating a short history about how Laplace Transforn~ation originate and of 

those genius scholars of who's contributions made it possible to have it in the present form. 

The name "Laplace Transformation" used for the integral 

was first appeared in Laplace's Thdorie analytique des probabilities of 18 12. I-Iowever, its re- 

introduction and importance in solving differential equations and boundary value problems 

only go back to the 1920s when it replaced Oliver Heaviside's opelwtionul calculz~s in 

applications to electrical engineering. Heaviside had developed a strong interest in long 

distance telegraphy when he worked as an operator. To solve many problems posed by 

telegraphy, he perfected a method to solve ordinary and partial differential equations that 

regards differentiation as an operator. For instance, to solve the simple differential equation 

y" - y = 1 for t > 0 subject to initial conditions y(0) = y'(0) = 0 ,  Heaviside used p for the 

differential operator dldt  and obtained the equation p2y-  y = 1, where 1 denote the 

function that vanishes for t < 0, and has value 1 for t 2 0 .  

Hence, treating p as an algebraic quantity. one finds 

This cannot be the end of the line, of course. To obtained the actual solution from this 

operational calculus the geometric series expansion is assumed as valid for this operator and 

then 

Since p represents differentiation, Heaviside regarded 1 l p as integration from zero to 

t. In this m'anner 



for any positive integer n, leading to the actual solution 

which, perhaps, surprisingly. was the correct solution. 

Heaviside's methods were unrigorous and even more confusing when applied to partial 

differential equations. His pioneering works, both practical and theoretical, was the object of 

frequent and serious opposition. but his genius tvas eventually recognized by Lord Kelvin and 

Sir Oliver Lodge. Attempts were made by other researchers to justify Heaviside's Operationu1 

Calcultls in solving a differential equation with 1 on the right-hand side. As early as 1915, 

Thomas John I'A. Bromwich (1875-1 929). an English mathematician. did it by resorting to 

the theory of Complex integration, but in 1927 he admitted that I-Ieaviside's method is easier 

to use. However. at that time he developed a second method, soon favored by many engineers, 

in which he followed Heaviside to obtain the operational solution, but then used complex 

integration to recover the actual solution from it. Meanwhile, John R. Carson, of the 

American Telephone and Telegraph Company. had come up with some idea of his own in 

1917. He also obtained the operational solution first a la Heaviside, call it G(p),  and then 

showed that the actual solution y(t) is a solution of the integral equation 

The right-hand side is the Laplace transform of y except for the notation and the extra p in 

front of the integral. The first one to regard this equation as a transfornlation of y(t) into 

G(p) , and then Bromwich's complex integration as the inverse transfornlation that obtains 

y(t) from G(p) , was Balthasar van der Pol (1 889-1959), of the Philips Gloeilampenfubriken 

in Holland, in 1929. Harry Bateman (1882-1946) was the first to use the Laplace Transform 

method in its present form in a 1910 paper on the equation of radioactive disintegration, but it 

seems that this publication didn't make an impact at the time. Later on the book named 

'Tables of Integral Transforms', published in 1954. This was the outconie of Betaman's 

Manuscript Project. 

Bromwich, Carson and several other workers (in the field) followed Heaviside's 

method to find the operational solution. For this they were to be taken to task by the German 

Mathematician Gustav Doetsch (1 892-)-who had already been using the Laplace transform for 

some time in solving integral and differential equations-in his 1930 review of Carson's 1926 



book Electrical Circuit Theory and Operationul Culcu1u.s. Doetsch view was that Carson 

should have transformed the equations from the start instead of using Heaviside's unrigorous 

method to obtain the operational solution. Doetsch also stressed the importance of the 

corresponding inversion formula - already anticipated by Poisson in 1823 - and went on to 

develop the properties and applications of the transform in his 1937 book Theorie und 

Anlvengdun der Laplace-Transjormution. the first of several hc wrote on the subject. 1 le also 

switched to the letter s as the variable for the transform, stating as a reason that p looks like 

a positive constant while s looks like a variable and just next to t ,  the variable for f , in the 

alphabet. 

Here is how Doetsch's method replaces Heaviside's operators in solving the initial 

value problem y" - y = 1. y(0) = yl(0) = 0. First multiply the equation by e-'I, where s is 

real and positive, and then assume that y(t)e-" and yr(t)e-" approach zero as t -+ oo, and 

integrate fiom 0 to m. Assuming also that the integrals below converge, integrating by parts, 

and denotes the transform of y by Y .  we obtain 

Then, the given initial value problem is transformed into s2y(s) - Y(s) = L [l] (s),  that is 

Which is a more palatable version of (I), and this is what we at present get. It is seen that 

there are some differences in computing the Laplace Transforms of new fimctions from those 

of old ones. Several properties of this method were then known as generating function as 

proposed by Abel. 

Life and Work of Oliver Heaviside (1 850- 1925) 

Oliver Heaviside, the miracle-ironed man who was behind such marvelous discovery, 

had to spent a miserable life during the time of new discoveries and other part of his life. How 

he had faced obstacles in the discoveries, are the following some sketch. 



He had no university degree, and worked as an operator at the Great Northern 

Telegraph Company in Newcastle from 1868 until his resignation in 1874. This was the only 

employment he ever held in his life, which he largely spent in dire poverty and seclusion. On 

the basis of his pioneering work, he was elected Fellow of the Royal Society in 1891. 

Heaviside published two papers in the Proceeding of the Royal Society, but when no more of 

them were accepted because his methods were unrigorous - although he always obtained 

correct results. Heaviside had a natural scientific habit. So, though his works were not 

recognized at the time, he went on doing research works and resumed publishing in the 

Electrician. He was made referee of the Royal Society and other scienticulists guilty of 

looking at the gift horse in the mouth. His numerous journal articles - which he started 

publishing at the age of 22 - were eventually gathered in two collections: Electrical papers 

(EP), in two volumes, in 1892 and Electromagnetic theory (EMT), in three volumes, in 1899 

and 1912. Second volume of EMT starts with an assertion of Heaviside's belief that 

mathematics is an experimental science - the only Mathematical work that he truly admired 

was Fourier's - and then he put his view of mathematical rigor in a nutshell by asking: 'Shall 

I refuse my dinner because I do not fully understand the process of digestion ?' 

Oliver Heaviside's legacy to mathematics and electromagnetism is impressive. In 

addition to perfecting the operational calculus that later inspired the Laplace Transform 

method, he developed vector calculus in 1885, starting with the definition of scalar and vector 

products as used today. In the same year he formulated what has become the cornerstone of 

electromagnetic theory. Heaviside refers to his discovery as follows: 

I here introduce a new method of treating the subject [Maxwell S theory of 

Electromagnetism], which may perhaps be appropriately named the Duplex 

method, since its main characteristic is the exhibition of the electric, magnetic, 

electromagnetic equations in a duplex form. 

This was the first appearance in print of the famous Maxwell's equations of electromagnetism 

theory. 

Heaviside's contribution to telegraphy and telephony was invaluable but for the 

longest time they fell on deaf ears in his own country. He found a formidable obstacle in 

William Henry Preece, Electrician to the post Office. Heaviside was a very strong, brave, 

deterministic, and clear-cut man. The following remarks put against W. H. Preece showed this 

characteristic. 

Either, firstly, the accepted theory ofelectromagnetism must be most profoundly 



modz3ed; or, secondly, the view expressed by Mr. Preece in his paper are profoundly 

erroneous ....... . Mr. Preece is wrong, not merely in some points of detail, but 

radically wrong, generally speaking, in methods, reasoning, results, and conclusions. 

W. H. Preece and Sir William did not accept Heaviside's comments on "Inductance". Even 

they gave trouble in publishing his papers. But Mihajlo Idvorsky Pupin, a Serbian immigrant 

from the Australia village, a professor of mathematics at Columbia University, acknowledged 

the Heaviside's contribution by stating the following: 

Mr. Oliver Heaviside of England, to whose profound researches most of the 

existing mathematical theory of electrical wave propagation is due, was the 

originator and most ardent advocate of wave conductors of high inductance. 

Soon afterwards, the American Telephone and Telegraph Company succeeded in establishing 

coast telephone communication by using increased inductance. 

Heaviside was good with words in many ways. To him we owe, for instance, the 

terms inductance, attenuation, and magnetic reluctance and the use of voltage for 

electromagnetic force. He was a colorful, entertaining and opinionated writer, as shown by the 

following additional quotations: 

Self-inductance is salvation; As critics can not always find time to read more 

than the preface, ....; Electric and magnetic force. May they live for ever and 

never be forgot ... ... ; Different men have different opinions - some like apples, 

some like onions. 

Mathematician at large, electrician, philosopher, acid humorist, iconoclast extraordinaire, he 

was awarded - but declined - the Hughes Medal of the Royal Society in 1904, received a Ph. 

D. honoris causa from the University of Gottingen in 1906, was made an honorary member of 

the Institution of Electrical Engineers of Great Britain in 1908 and of the American Institute 

of Electrical Engineers in 191 8, and was awarded the first Faraday Medal of the Institute of 

Electrical Engineers in 1923. 

At his country home in Torquay, where he spent the' last seventeen years of his life, 

mostly alone and in great financial trouble. He got a small government pension and that too 

accepted on the condition that it must be in recognition of his scientific work - things were 

less rosy. For lack of payment the bank was after his home, and the gas company cut off his 

gas. A victim of lumbago and rheumatic gout, he had to eat cold food and live in a cold house. 

On arriving at his door in the winter of 1921, a prominent visitor found a note stating 

that Heaviside had gone to bed to keep warm. Stuffed in the cracks of the door, to prevent any 



cold drafts, there was an assortment of papers: some a advertisements, an invitation by the 

President of the Royal Society, threats from the gas company about cutting off gas ... . The 

following Spring Headiside wrote: 

Could not wear boots at all. Could not get proper bed socks to walk about in. 

Buried under all the blankets I have. Now and then I scribbled a sort of diary 

about my persecution by the Poor the Gas and others. 

Irrepressible in his writing, he continued working on his scientific papers, many of which 

were found posthumously. He died in a nursing home on February 3, 1925.' 

' Courtesy o f  "Fourier Analysis and Boundary Value Problems " by Enrique A. Gonzdlez- Velasco. 



R E F E R E N C E S  

1. ABRAMOWITZ, B. M.; STEGUM, I. A. (1964): Handbook of Mathematical Functions 

with Formulas, Graphs, and Mathematical Tables, Washington, U .  S. Govt. printing 

office. 

2. ACHARYA, M.; DASH, G. C.; SINGH, L. P. (2000): "Magnetic field effects on the free 

convection and mass transfer flow through porous medium with constant suction and 

constant heat flux", Indian J. Pure Appl. Math., Vol. 3 l(1) Pp. 1 - 1 8. 

3. AZIz, A.; DAS, U. N.; AHMED, S.; RAHMAN, M. (2001): "Oscillatory free convection 

MHD flow past through a porous medium with constant heat flux", The Bulletin 

G U M ,  Vol. 6 (1999), Pp. 1-9. 

4. ACHARYA, M.; DASH, G. C.; SINGH, L. P. (2001): "Hall effect with simultaneous 

thermal and mass diffusion on unsteady hydromagnetic flow near an accelerated 

vertical plate", Indian J. Phys. Vol. 75B (1) Pp. 37-47. 

5. ANANTHARAMAN, N.; BEGUM, K. M. M. S.; HOSSIAN, S. K. M.; IBRAHIM, S. H. 

(2002): "Viscosity correlation for alcohols", J. Curr. Sci. 2(1) Pp. 1-4. 

6. AYRES, F. JR. (1 98 1): Differential Equations, SI metric edition, McGraw-Hill 

International Book Company, First edition. 

7. BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. (1994): Transport Phenomena, John 

Willy & Sons (SEA) Pte Ltd Pp.320. 

8. BORKAKATI, A. K.; BODOSA, G. (2002): On some unsteady pee convection MHD 

flow of a second order fluid between two heated vertical plates, "Indian Journal of 

theoretical Physics", Vol. 50, N0.4, Pp.287-296. 

9. BHATTACHARJEE, A.; BORKAKATI, A. K. (1984): Heat transfer in MHDflow and 

Hall effect between two infinite plates; one is at rest and other is rotating, "Bulletin of 

Calcutta Mathematical Society", Vol. 76, Pp. 209-215. 

10. B o ~ o s A ,  G.; BORKAKATI, A. K. (2003): MHD Couette flow with heat transfer 

between two horizontal plates in the presence of a uniform transverse magnetic field, 

"Theoret. Appl. Mech.", Vol. 30, No. 1 Pp. 1-9, Belgrade. 

11. BETAMAN, H. (Betaman Manuscript Project, 1954): "Tables of Integral Transforms", 

Vol. 1, Hill-Hill Book Company, Inc, New York. 



12. BISWAL, S.; MISHRA, S. (1998): Combine free and force convection effect on the 

magnetohydrodynamics jlow of a visco-inelastic jluid through a channel in the 

absence of dissipation, "Indian Journal of Theoretical Physics", Vol. 46, No. 2, Pp. 

109- 124. 

13. BATCHELOR, G. K. (1993): "An Introduction to Fluid Dynamics", Cambridge 

University Press. 

14. CAMBEL, A. B. (1963): "Plasma Physics and Magneto-fluid Mechanics", McGraw- 

Hill Book Company. 

15. CHAKRABORTY, S.; BORKAKATI, A. K. (2003): Effect of uniform magneticfield on an 

unsteady flow due to an exponentially decay source between two infinite parallel 

discs, "Theoretical and Applied Mechanics", Vol. 24, Pp. 13-27, UDK 532, 5 17.2 

16. CARSLAW, H. S.; JAEGER, J. C. (1963): "Operational Methods in Applied 

Mathematics", Clarendon Press, Oxford. 

17. CHAUDHURY, T. K.; SAMAD, A.; RAY, R. N. (2001): On some unsteady MHDflows 

of a second orderfluid over a plate, "Indian Journal of Mathematics", Vol. 43, No.1 

Pp. 119-128. 

18. CHUNG, P. M.; ANDERSON, A. D. (1961): Unsteady laminar free convection, "J. Heat 

Tr. (Trans. ASME)", Vol. 83, Pp. 474-478. 

19. DAVIDSON, P. A. (2001): "An Introduction to Magnetohydrodynamics", Cambridge 

University Press, first publication. 

20. DATTA, N.; BISWAL, S.; SAHOO, P. K. (2003): Magnetohydrodynamic unsteady free 

convection jlow past an infinite vertical plate with constant suction and heat sink, 

"Indian Journal of Pure and Applied Math.", Vol. 43(1), Pp. 145-155 . 
21. DEKA, R. K.; DAS, U. N.; SOUNDALGEKAR, V. M. (2001): The transient for MHD 

stokes 's oscillatingplate-an exact solution, "J. Fluid Engineering ", Vol. 123, Pp. 705- 

706. 

22. DAS, U. N.; DEKA, R. K.; SOUNDALGEKAR, V. M. (1999): Transientfree convection 

flow past an infinite vertical plate with periodic temperature variation, "Journal of 

Heat Transfer", Vol. 12 1, Pp. 109 1 - 1094. 

23. DAS, U. N.; AZIZ, A. (1998): Unsteady rotational MHD motion of a dusty viscous 

jluid contained in the semi-inflnite circular cylinder due to an initially applied impulse 

on the surface, "The Bulletin, GUMA", Vol. 4, Pp. 15-26. 



24. DEKA, R. K.; GUPTA, A. S.; TAKHAR, H. S.; SOUNDALGEKAR, V. M. (1999): Flow 

past an accelerated horizontal plate in a rotating fluid, "ACTA Mechanic", Vol. 138, 

Pp. 13-19. 

25. DOETSCH, G. (1971): "Guide to the Application of the Laplace Transforms", 2" 

edition, Van Nostrand-Reinhold, London. 

26. DAS, P. S. (September, 2000): The unsteady flow of visco-elastic Maxwell fluid of 

second order due to a transient pressure gradient through a rectangular duct, "Pure 

and Applied Mathematica Sciences", Vol. LII, No. 1-2, Pp. 3 1-37. 

27. DEKA, R. K.; SOUNDALGEKAR, V. M. (1999): Transient free convection flow of a 

visco-elastic fluidpast an inJinite vertical plate with unform surface heal flux, "Bull. 

Cal. Math. Soc." Vol. 91(6), Pp. 461-468. 

28. DEKA, R. K.; SOUNDALGEKAR, V. M. (2000): Transientfree convectionflow past an 

infinite vertical plate embedded in a porous medium with temperature gradient 

dependent heat source, "J. Rajasthan Acad. Phy. Sci.", Vol. 1, No.3, Pp. 145-1 54. 

29. DAVIES, B. (2002): "Integral transforms and their applications", 3rd edition, Springer- 

Verlag, New York. 

30. FERRARO, V. C. A.; PLUNTON, C. (1961): "Magnetofluid Mechanics", Oxford 

University Press London. 

31. GOTTFRIED, B. S. (2003): "Programming with C", Tata McGraw-Hill edition 21'' 

reprint. 

32. GRADSHTEYN, I. S.; RYZHIK, I. M. (1994): "Tables of Integrals, Series and Products", 

fifth edition, Academic Press. 

33. GRIFFITHS, D. J. (1 995): "Introduction to Electrodynamics", 2nd edition, Prentice-Hall 

of India Pvt. Ltd. 

34. GONZALEZ-VELASCO, E. A. (1995): "Fourier Analysis and Boundary Value 

Problems", Academic Press, United Kingdom edition. 

35. GOLDSTEIN, R. J.; BRIGGS, D. G. (Nov.1964): Transient free convection about 

vertical plates and circular cylinders, "ASME Journal of Heat transfer", Pp. 490-500. 

36. GEBHART, B.; PERA, L. (1991): "Int. J. Heat Mass Transfer", Vol. 14, Pp. 20-25. 

37. GOURLA, M. G.; KATOCH, S. L. (1991): Unsteady free convection MHD flows 

between heated vertical plates, "Ganita", Vo1.42, No.2. 



38. GOLDSTIEN, R. J.; ECKERT, E. R. G. (1 960): The steady and transientfree convection 

boundary layer on a uniformly heated vertical plate, "Int. J. Heat Mass Transfer", 

Vol.1, Pp. 208-218. 

39. GIVLER, R. C.; ALTOBELLI, S. A. (1994): A determination of the effective viscosity for 

the Brinkman-Forchheimerflow model, "J. Fluid Mech." Vol. 258, Pp. 355-370. 

40. GEBHART, B.  (1961): Transient p e e  convection @om vertical plates, "ASME, J. Heat 

transfer", 83C. Pp. 61-70. 

41. GRIDAMO, P. B. (1974): The transient temperature field in a composite semi-space 

resultingfiom an incident heatflux, "Quart. Appl. Math.", 3 1, 379-393. 

42. HETNARSKI, R. B. (1964): On inverting the Laplace transforms connected with the 

error function, "Zastowania Matem 7,  Pp 399-405. 

43. HETNARSKI, B. R. (1975): An algorithm for generating some inverse Laplace 

Transform of exponential form, "Journal of Applied Math. Physics (ZAMP)", Vol. 26, 

Pp 249-254. 

44. HELLUMS, J. D.; CHURCHILL, S. W. [1961]: Computation of natural convection by 

flnite difference methods, "ASME Int. development in heat transfer", Pt. V. Sec B, 

985. 

45. HORNBY, A. S .  (1985): "Oxford Advanced Learner's Dictionary of Current English", 

Oxford University Press, gth edition. 

46. ILLINGWORTH, C. R. [1950]: Unsteady laminar flow of a Gas Near an infznite flat 

plate, "Proceeding of the Cambridge Philosophical society", Vol. 46, part 4, Pp. 603- 

613. 

47. ISACHENKO, V. P.; OSIPOVA. V. A.; SUKOMEL, A. S. (1987): "Heat Transfer", 31d 

edition Mir Publishers, Moscow. 

48. JORDAN, P. M.; PUN, P. (2002): Exact solutions for the unsteady plane Couetteflow 

of a dipolarfluid, "Proc. R. Soc. Lond. A.", Vol. 458, Pp. 1245-1 272. 

49. JORDAN, P. M.; PURI, P. (2001): Thermal Stresses in a spherical shell under three 

thermo-elastic models, "Journal of thermal stress", Vol. 24, Pp. 47-70. 

50. JORDAN, P. M . ;  PURI, P. (1 999): Stokes 's Jirst problem for a dipolar fluid with non- 

classical heat conduction, "Journal of Engineering Mathematics", Vol. 36, Pp. 219 - 

240. 



51. JORDAN, P. M.; PURI, P.; BOROS, G. (2000): A new class of Laplace Inverses and 

Their Application, "Applied Mathematics letters", Vol. 13, Pp. 97-104, Pergamon 

Press. 

52. JORDAN, P. M.; PUN, P. (1999): Exact solutions for theflow of a dipolarfluid on a 

suddenly acceleratedflat plate, "ACTA Mechanica", Vol. 137, Pp. 1 83- 194. 

53. JAEGER, J. C. (1940): The solution of boundary value problem by double Laplace 

Transformation, "Bulletin of the American Mathematical Society", Vol. 46, Pp. 687- 

695. 

54. KOTHARI, C. R. (1995); "Research Methodology, Methods & Techniques", 2nd 

edition, Wishwa Prakashan. 

55. KAFOUSSIAS, N .  G. (1992): Effects of mass transfer on free convective flow past a 

vertical isothermal cone surface, "Int. J. Engng. Sci.", Vol. 30, No-3, Pp. 273-281, 

Pergamon press. 

56. KAFOUSSIAS, N. G.; WILLIAMS, E. W. (1995): Thermal- diffusion and Diffusion- 

thermo effect on mixedfree-forced convective and mass transfer boundary layer flow 

with temperature dependent viscosity, "Int. J. Engng. Sci.", Vol. 33, No. 9, Pp. 1369- 

1384, Pergamon press. 

57. KULSHRESTHA, P. K.; PURI, P. (1983): Wave structure of oscillatory Couetteflow of a 

dusty gas, "ACTA Mechnica", Vol. 46, Pp. 127- 13 5, Springer-verlag. 

58. KULSHRESTHA, P. K.; PUN, P. (1969): An exact solution of hydromagnetic rotating 

flow, "Proc. 1 lth Midwestern Mech. Conf., Development in Mech.", Vol. 5, Pp 265- 

271. 

59. KALITA, B. (1999): "M. Phil. dissertation submitted to Dibrugarh University". 

60. KAFOUSSIAS, N. G. (1992): Effects of mass transfer on free convective flow past a 

vertical isothermal cone surface, "Int. J. Engng. Sci."Vol. 30, No.3, Pp. 273-281. 

61. LAGE, J. L.; PRICE, D. C.; WEBER, R. M.; SCHWARTZ, G. J.; DANIEL, J. M. (1996): 

Improved cold plate design for thermal management ofphased array radar system, U. 

S. Patent Office. 

62. LEE, D.; CHOI, H. (2001): Magnetohydrodynamic turbulentflow in a channel at low 

magnetic Reynolds number, "J. Fluid Mech.", Vol. 439, Pp. 367-394, Cambridge 

University Press, United Kingdom. 

63. LAMB, S. H .  (1 932): "Hydrodynamics", Sixth edition, Cambridge University Press. 



64. LANDAU, L. D.; LIFSHITZ, E. M. (1989): "Fluid Mechanics", 2nd edition, Maxwell 

Macmillan International edition. 

65. MISRA, J. C.; PAL, B.; PAL, A.; GUPTA, A. S. (1999): Hydromagneticflow of a visco- 

elastic fluid in a parallel plate channel with stretching walls, "Indian Journal of 

Mathematics", Vol. 4 1, No.2, Pp. 23 1-247. 

66. MERKM, J. H.; CHAUDHARY, M. A. (1994): Free convection boundary layers on 

vertical surfaces driven by an exothermic surface reaction, "Q. JI. Mech. Appl. 

Math.", Vol. 47, Pp. 405-428, Oxford University Press. 

67. MATHEWS, P. C. (1999): Asymptotic solutions for non-linear magnetoconvection, "J. 

Fluid Mech.", Vol. 387, Pp. 397-409, Cambridge University Press, United Kingdom. 

68. MAHATO, T. K.; KUIRY, D. R. (1997): MHDflow of an equal kinematic and magnetic 

viscosity through parallel porous plates, "Pure and Applied Mathematica Sciences", 

Vol. XLV, No. 102, Pp. 45-53. 

69. MURNEGHAN, F. D. (1962): "Laplace Transform" Spartan books, A3A MURN 

Anglais. 

70. MERKM, J. H.; CHAUDHURY, M. A. (1994): Free-convection boundary layers on 

vertical surfaces driven by an exothermic surface reaction, "Q. J. Mech. Appl. Math.", 

Vol. 47, Pp. 405-428. 

71. NAKAYAMA, A.; KUWAHARA, F.; KOYAMA, H. (1993): Transient non-Darcy free 

convection parallel vertical plates in a fluid saturated porous medium, "Appl. Sci. 

Res.", Vol. 50, Pp. 29-42. 

72. NIELD, D. A.; JUNQUEIRA, S. L. M.; LAGE, J. L. (1996): Forced convection in afluid 

saturated porous medium channel with isothermal or isoflux boundaries, "J. Fluid 

Mech.", Vol. 322, Pp. 201-214. 

73. NOSHADI, V.; SCHNEIDER, W.(1999): Natural convection flow far from a horizontal 

plate, "J. Fluid Mech." Vo1.387, Pp.227-254, Cambridge University Press, United 

Kingdom. 

74. NAKAYAMA, A.; SHENOY, A. V. (1993): Combined forced andfree convection heat 

transfer in power low fluid saturatedporous media, "Appl. Sci. Res.", Vol. 50, Pp. 83- 

94. 

75. OBERI-IETTINGER, F.; BADU, L. (1973): "Tables of Laplace Transforms", Springer- 

Verlag, New York. 



76. OJHA, B. K.; SINGH, S. (2003): Hall effect on oscillatory hydromagnetic free 
convection flow of a visco-elastic fluid past an inJinite vertical porous plate with mass 

transfer and source/ sink, "Journal of Indian Acad. Math.", Vol. 25, No. 1, Pp. 109- 

124. 

77. PANTON, R. (1 968): The transient for Stokes S oscillating plate: a solution in terms of 

tabulated functions, "J. Fluid Engineering", Vol. 3 1, Pp. 8 19-825. 

78. PANTON, R. L. (1984): Incompressibleflow, John Wily & Sons, New York. 

79. PUN, P.; KYTHE, P. K. (March 1988): Some inverse Laplace transforms of 

exponential form, "Journal of Applied Mathematics and Physics (ZAMP)", Vol. 39, 

Pp. 149- 156. 

80. PUN, P. (1984): Impulsive motion of aflatplate in a Rivlin-Erickenfluid, "Rheologica 

ACTA", Vol. 23, Pp. 45 1-453. 

81. PURI, P.; KYTHE, P. K. (1994): Nonclassical thermal effects in Stokes's second 

problem, "ACTA Mechanica", Vo1.112, Pp. 1-9, springer-verlag 

82. PUN, P. (1975): Fluctuating flow of a viscous fluid on a porous plate in a rotating 

medium, "ACTA Mechanica", Vol. 21, Pp. 153- 158. 

83. PURI, P.; JORDAN, P. M. (1999): Wave structure in Stokes's second problem for a 

dipolar fluid with nonclassical heat conduction, "ACTA Mechanica", Vol. 133, Pp 

145-160. 

84. PUN, P.; KULSHRESTHA, P. K. (1976): Unsteady hydromagnetic boundary layer in a 

rotating medium, "Trans. ASME, J. Appl. Mech.", Vol. 98, Pp 205-208. 

85. PUN, P.; KULSHRESTHA, P. K. (1974): Rotating flow of non-Newtonian fluids, 

"Applicable Anal.", Vol. 4, Pp 13 1 - 140. 

86. POP, I.; GORLA, R. S. R.; RASHIDI, M. (1992): The effect of variable viscosity onflow 

and heat transfer to a continuous movingflat plate, "Int. L. Engng.", Vol. 30, No.1, 

Pp. 1-6, Pergaman Press. 

87. PRIEST, E. R. (1984): "Solar Magnetohydrodynarnics", D. Reidel Publishing 

Company. 

88. PAI, S. I .  (1962): "Magnetohydrodynamics and Plasma Dynamics", Wien Springer- 

verlag . 
89. PITTS, R. D.; SISSOM, E. LEIGHTON (1999): "Heat Transfer", 2nd edition, McGraw- 

Hill International edition. 



90. PNUELI, D.; GUTFINGER, C. I. (1992): "Fluid Mechanics", Cambridge University 

Press. 

91. MJASUBRAMANIAM, G.; MEIDELL, R. S.; LANDAU, R. S.; DOLLAR, M. L.; HOLT, D. 

B.; WILLARD, J. E.; PRAGER, M. D.; EBERHART, R. C. (1994): Fabrication of 

reasonable microporous intravascular stents for gene therapy application, "ASAIO 

J.", VO~.  40, Pp. 584-589. 

92. RAY, R. N.; SAMAD, A.; CHAUDHURY, T. K. (2001): On some unsteady MHD 

flows of a second order fluid over a plate, "Indian Journal of Mathematics", Vol. 43, 

No.1, Pp. 119-128. 

93. RAISINGHANIA, M. D. (1991): "Advanced Differential Equation", 4h edition, S .  

Chand & Company. 

94. RAINVILLE, E. D. (): "Laplace Transform". 

95. ROBERTS, G. E.; KAUFMAN, H. (1966): "Tables of Laplace Transforms", W. B. 

Saunders Co., Philadelphia. 

96. RYZHIK, I. M.; GRADSHTEYN, I. S.; JEFFREY, A. (1994): "Tables of Integrals, Series, 

and Products", 5h edition, Academic Press. 

97. ROSS, S. L. (1984): "Differential Equations", 3" edition, John Wiley & Sons. 

98. SMIRNOV, B. M. (1987): "Introduction to Plasma Physics", Arnold-Heinemann 

Publication, 1 St edition. 

99. SINGH, K. P. (1996): Unsteady flow of a stratified viscous fluid through a porous 

medium between two parallel plates with variable magnetic induction, "Indian Journal 

of Theoretical Physics", Vol. 44, No.2, Pp. 141-147. 

100. SHARMA, P. R.; KUMAR, N. (1998): Unsteadyflow and heat transfer between 

two horizontal plates in the presence of transverse magnetic field, " Bulletin of Pure 

and Applied Sciences", Vol. 17E, No. 1 Pp. 39-49. 

101. SNEDDAN, I. N. (1951): "Fourier Transforms", Hill-Hill book company, New 

York. 

102. SOUNDALGEKAR, V. M.; DAS, U. N.; DEKA, R. K. (1996): Unsteady forced 

and p e e  convective flow through a porous medium past an infinite vertical plate with 

variable plate temperature- an exact solution, " Proc. Math. Soc. B. H. U.", Vol. 12, 

Pp. 15-18. 



103. SINGH, A. K.; DEKA, R. K.; SOUNDALGEKAR, V. M. (1999): The transient for 

flow past an infinite vertical oscillating plate with constant heat flux- an exact solution 

in terms of tabulated functions, (to be appear). 

104. SHERCLIFF, J. A. (1965): "A text book of Magnetohydrodynamic", Pergaman, 

Press, London. 

105. SPIEGEL, M. R. (1986): " Laplace Transformation", Schaum's Outline Series 

in Mathematics, Hill-Hill book company. 

106. SCHLICHTING, H.; GERSTEN, K. (2000): " Boundary Layer Theory", 8'h 

revised and enlarged edition, Springer publication. 

107. SOUNDALGEKAR, V. M.; DEKA, R. K.; DAS, U. N. (1999): Transient p e e  

convection flow of a visco-elastic fluid past an infinite vertical plate with uniform 

surface heatflux, "Bull. Call. Math. Soc.", Vol. 91, Pp. 461 -468. 

108. SINGH, A. K.; GHOLAMI, H. R.; SOUNDALGEKAR, V. M. (1991): Transient 

p e e  convection flow between two vertical plates, " heat and Mass Transfer", Vol. 3 1, 

Pp.329-33 1. 

109. SIEGEL, R. (1 958): Transientfiee convectionfrom a verticalflat plate, "Trans. 

Amer. Soc. Mech. Engng.", Vol. 80, Pp. 347-359. 

11 0. SCHETZ, J. A.; EICHHORN, R. (1962): Unsteady natural convection in viscosity 

of a doubly infinite vertical plate, "ASME J. Heat Transfer", Vol. 84C, Pp. 334-358. 

111. SPARROW, E. M.; GREGG. J. L. [1960]: Nearly quasi-steadyfree convection 

heat transfer in gases, "Journal of heat transfer, Trans, ASME, Series", Vol. 82, Pp. 

258-260. 

112. SREEKANT, S.; NAGARJUN, A. S.; VENKATARAMAN, S. (2001):"Indian 

Journal of Pure & Applied Mathematics", Vol. 32(7), Pp. 105 1-1058. 

113. TEIPEL, I. (1 98 1): The impulsive motion of a flat plate in a viscoelastic fluid, 

"ACTA, Mech.", Vo1.39, Pp. 277-279. 

114. TOKIS, J. N. (1 986): Unsteady magnetohydrodynamic flee-convection flows in 

a rotatingflows, "Astrophys. Space Sc.", Vol. 1 19, Pp 305-3 13. 

115. TOKIS, J. N.; PANDE, G. C.(1981): Unsteady hydromagnetic flow near a 

movingporousplate, J. Appl. Mech. Vol. 48, Pp. 255 - 258. 



11 6. VAFAI, K.; TIEN, C. L. (1 989): Boundary and inertia effects on flow and heat 

transfer in porous media, "Int. J .  Heat Mass Transfer", Vol. 30, Pp. 1391-1405 

117. WARSI, Z. U. A. (1999): "Fluid Dynamics Theoretical and computational 

Approach", 2nd edition, CRC Press. 

118. WOLFRAM, S. (1996): "The Mathematica book", 3rd edition, Wolfram Medial 

Cambridge University Press. 



V I T A  

Bhaskar Kalita was born in a very poor family of Kshudradadhi village 

of Mouza Hajo of Kamrup (Assam, India) district in the month of January of 

1968. He started his school education at Pach Gaon H. S. School (ventured 

High School at that time) and passed H.S.L.C. examination in 1983 as a 

private candidate. He did his Higher Secondary Schooling from Damdama 

Higher Secondary and passed the same course in the year 1985. He admitted 

to Arya Vidyapeeth College, Guwahati, in the same year for B. Sc. Course 

(T. D. C.) and qualified as a Major Graduate in 1 988. After appearing T. D. C. 

final year examination, he did join in an honorary B. Sc. Post in the same 

school where he studied for H. S.L. C, and continued till the admission to the M. 

Sc. Course in the Mathematics Department of Gauhati University, in 1989. In 

1992, he qualified for M. Sc. degree with norms and in the same year, i. e. on 

02/ 11/ 92, he joined as a Lecturer in the department of Mathematics of 

Tyagbir Hem Baruah College, Jamugurihat against a non-sanctioned post. His 

sewice came into force as a regular (permanent) employee in 17th May'95. He 

did his Bachelor of Education (B. Ed) degree in 1997 as a private candidate 

from Biswanath College of Education of Sonitpur. He did join for M. Phil. 

program at Dibrugarh University with a fellowship under FIP scheme of UGC 

in March 1999, and qualified it in 2000. He started his Ph. D. program 

towards the last part of 2002 as a part time research scholar. So far he has 

completed ten ( I  0) research papers, and all has been sent for publication. 


