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ABSTRACT

In this thesis, we deal with Ramanujan’s modnlar equations and mod- -
ular relations for three sets of functions analogous to the famous Rogers-
Ramanujan functions. B. C. Berndt (Ramanujan’s Notcbooks, part II1(1991),
280-282 & 352-358; Ramanujan’s Notebooks, Part V(1998), 370) proved sev-
eral of Rammanujan’s modular equationsof degrees 5 and 9 by using a method
of parameterizations, which requires prior knowledge of the equations. In
this thesis, we find alternative proofs of these modular equations by using
theta-function identities. In the process. we also find more direct proofs of
some of the associated theta-function identities. By employing the mecth-
ods of Rogers (Proc. London Math. Soc. 19(1921), 387-397), Watson (J.
Indian Math. Soc. 20(1993), 57-69), and Bressoud (Ph.D Thesis, Temple
University, 1977), Huang (J. Number Theory 68(1998), 178-216) and Chen
and Huang (J. Number Theory 93(2002), 58-75) found 21 modular relations
involving the Gollnitz-Gordon functions, which are analogous to the well
known forty identities for the Rogers-Ramanujan functions. In this thesis,
we find alternative proofs of these 21 modular relations as well as several
new relations by using Schroter’s formulas and Ramanujan’s theta-function
identities. We also establish many modular equations satisficd hy the nonic
analogues and one more set of functions analogous to the Rogers-Ramaunujan
functions. By the notion of colored partition, scveral interesting partition
theoretic interpretations are derived.
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Chapter 1

Introduction

1.1 Introduction

Ramanujan’s general theta-function f(a,b) is defined by

[(a,b) = i IR (1.11)

k=-oc0

where |ab| < 1.

If weset a = ¢”%, b = ¢7%*, and ¢ = €™, where z is complex and
Im(7) > 0, then f(a,b) = 93(z, 7), where 9¥3(2, 7) denotes one of the classical
theta-functions in its standard notation [37, p. 464). Some basic properties
satisfied by f(a,b) are stated in the following theorem.

mT

Theorem 1.1.1. [11, p. 84, Entry 18]

f(a,b) = f(b,a), (1.1.2)
f(1,a) = 2f(a,d%), (1.1.3)
f(-1,a) =0, , (1.1.4)
f(a,b) = @™+ /20072 f(a(ab)", b(ab)™), (1.1.5)

where n is an integer.

Jacobi’s famous triple product identity [11, p. 35, Entry 19] can be put

in the form
fa,b) = (—a; ab)oo(—b; ab)oo(ab; ab) oo, (1.1.6)
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where as usual, for any complex number a, we define

(a;9)o:=1, (a;qQ)n:= H(l —ag®™), (a;9)e = 1'[(1 —ad*™h, (1.1.7)
k=1 k=1

where it is also assumed here and throughout the sequel that |¢| < 1.
Three special cases of f(a,b) are

K _ q,q ) oo(7?;4%) oo
¢(q) = f(q.q) —1+ZZ Er (1.1.8)
- 3y _ 1 _ N k)2 _ (€450
¥(q) = fla,q°) 2f(l,q) ;q TN (1.1.9)
f(=) = F(=a—) = 3 (- 1)*gH%- ”“+Z 1t = (g1 0),
= (1.1.10)

If we write ¢ = ™" with Im(7) > 0, then f(—q) = e~™"/*25)(7), where (1)
is the classical Dedekind eta-function. Throughout the thesis, we shall use

(1.1.2) - (1.1.10) several times without comments.
We also define

o0
x(@) = (-4:6") = [J(1 + **). (L1.11)

k=0
Next, we give the definition of a modular equation as cmployed by Ra-
manujan. The complete elliptic integral of the first kind K (k) is defined

by
/2 de T 11
K(k):= —_— = _,F —,—;1;k2) , 1.1.12
(k) /o 1 - k%sin2¢ 2° 1(2 2 ( )

where 0 < k& < 1 and where the series representation is found by expanding
the integrand in a binomial series and integrating termwise. The number k
is called the modulus of A, and k' := /1 — k2 is called the complementary
modulus. Let K, K’, L, and L' denote complete elliptic integrals of the
first kind associated with the moduli k, &', I. and !'. respectivcly, where
0 < k,l < 1. Suppose that the equality

e =2 (1.1.13)



holds for some positive integer n. Then a modular equation of degree n is a
relation between the moduli k and ! which is implicd by (1.1.13). Ramanujan
recorded his modular equations in terms of v and 3, where a = k? and 8 = [2.
We say that § has degree noover . The multiplier 7 is defined by me = K/ L.
We also need to define Ramanujan’s “inixed "modular equation or a mod-
ular equation of composite degree. We recall from Chapter 20 [11, p. 325].
Let K, K', L\, LY, Lo, L, Ly, L, denote complete elliptic integrals of first
kind corresponding. in pairs, to the moduli a, /3, A7, /8, and their com-
plementary moduli, respectively. Let n;, ny, and n3, be positive integers such

that ng = ning. Suppose that the equalities
K L] K' L, . K 3

m—== = 27 N =

K L' K7L,y ™KL (1.1.14)
hold. Then a “mixed "modular equation is rclation between the moduli /&,
VB, 7, V8, that is induced by (1.1.14). In such an instance, we say that
8, v, and § are of degrees n,, 1y, and ng respectively. Recalling frow [11, p.
101] that z, = ¢%(¢"). we define the multipliers m and m/ by n = z,/z,, and
m' = z24,/2n,. _

Ramanujan recorded many modular equations of prime degrees as well
as of composite degrees in his notebooks [28] and the lost notebook (29,
pp. 50 and 56]. All of Ramanujan’s modular equations were proved by
Berndt (see [11, Chapter 19-20], [12, Chapter 25], [13, Chapter 36}, and
(14, pp. 55-74]). As Ramanujan did not provide any proofs for his results,
one can only speculate his proofs. It is clear from Chapter 17 of Berndt’s
book (11] that modular equations can be expressed as identities involving
the theta-functions ¢, ¥ and f. Provably Ramauujan first derived a theta-
function identity and then transcribed it into an equivalent modular equation
by using his cataloguc of theta-functions [11, pp. 122-124, Entries 10-12].
Therefore, often one first tries to derive a theta-function identity and then
transcribes it into an equivalent modular equation. But, proofs of some
of Ramanujan’s modular equations given by Berndt are quite unlike this
method. He sometimes reversed the process. Berndt also used a method of
parameterizations in proving some of the modular equations. This method
also requires prior knowledge of the equations.

In Chapter 2 of our thesis, we present alternative proofs of Ramanujan's
modular equations of prime degree 5 by using theta-function identities. First
we find alternative proofs of some of the associated theta-function identi-
tics and then transcribe these and their different comnbinations to arrive at

3



Ramanujan’s modular equations. In the process, we also derlve several new
theta-function identities.

In Chapter 3, we present the proofs of all of Ramanujan’s modular equa-
tions of degree Y, by using theta-function identities. In the process, we also
find new proofs of some of Ramanujan’s theta-function identities. The con-
tents of this chapter are almost identical to [5].

Next, for || < 1, the well-known Rogers-Ramanujan functious are defined
by

= 1

, 1.1.15
Zo e e ) (1115)
© nlin 1

H(g) := Z g (1.1.16)

(@@ (@5 )o@ oo
G(q) and H(q) are called Rogers-Ramanujan identities. In a manuscript
published with the lost notebook [29)], forty modular relations for G(g) and
H(q) were recorded by Ramanujan. These are now known as Ramanujan’s
forty identities. Among the forty identitics, the siinplest and mnost beautiful
one is

G(¢")H(9) - ¢*G(9)H(¢") = 1.

In 1921, Darling (23] proved this identity in the Proceedings of London Math-
ematical Society. In the same issue of the Proceedings, Rogers [32] proved ten
of the forty identities including the one proved by Darling. In 1933, Watson
[36] established eight of the forty identities, two of which had been previously
proved by Rogers. In 1977, Bressoud ([19] & [20]) generalized Rogers’ results
to prove fifteen additional identities. In 1989, Biagioli (17] established 8 iden-
tities of the remaining 9 unproved identities by using the theory of ingdular
forms. The remaining onc identity can also be proved by Biagioli’s method.
The primary disadvantage of Biagioli’s method is that the desired identities
must be known in advance, and the proofs are perhaps more properly called
verifications. On the other hand, Rogers, Watson and Bressoud all employed
the same bare hands approach by viewing the sum as taken over quadratic
forms with variables taken fromn restricted residue classes. Indeed, Rogers
and Bressoud also derived general formulas that were powerful for proving
some of the forty identities. Recently, Berndt et al. [16] have found proofs of
35 of the 40 identities in the spirit of Ramanujan’s mathematics. For each of
the remaining 5 identities, they also offered heuristic arguments showing that
both sides of the identity have the same asymptotic expansions as ¢ — 17.
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Another two well known functions analogous to the Rogers-Ramanujan
functions are the so called Gollnitz-Gordon Functions, defined as

(=4 6%)n = 1
St nz—; (4% ¢4%) (4 4®)oo(4% 4P (471 ¢B)oo (1.1.17)
. = (-—q;q )n n?42n _ 1
T(q) := ;0 T P P P (1.1.18)

Motivated by the similarity between the Rogers-Ramanujan and Gollnitz-
Gordon functions, S.-S. Huang [26] and Chen and Huang [22] derived 21
modular relations involving S(g) and T'(g), one new relations for G(g) and
H(q), and 9 relations involving both the pairs G(g), H(gq) and S(q) and T(q).
They uscd the methods of Rogers [32], Watson [36), and Bressoud [19]. In
Chapter 4 of this thesis, we find proofs of the modular relations involving
only S(q) and T(q) by employing Schroter’s formulas and theta functions
identities. We also derive several new modular relations. The contents of
this chapter are almost identical to our paper [8]

In (24] & [25], H. Hahn defined the septic analogues of the Rogers-
Ramanujan functions as

= ¢ I CUT S CET DI CET
Alq) = . . (1119
(@ ; (4% ¢*)n(=4:9)2n (qZ;q’)c0 ( )
N gl (47 9)00(d% 0 )oo (4%} 4 Voo
B(q) := = . (1.1.20
@ =2 twPn s an (0 Pl (11.20)
- gt (6%000 (44 o0(6% 8 )eo
€@ = 2 m A n (¢ oo (1.1.21)

She derived several analogues of Ramanujan’s forty identities involving A(g),
B(q), and C(q). Some of them are connected with the Rogers-Ramanujan
functions and the Gollnitz-Gordon Functions. She also found partition theo-
retic results from some of her identities. In Chapter 5 of this thesis, we define
the nonic analogues of the Rogers-Ramanujan functions as

i 3nq (qs;qu)oo(q4vq9)oo(q9;q9)oo

— s 1.1.22
n(936%)2n (¢%, ¢*)oo ( )

n=0



Y

B() = i (@ Dan(1 = )@Y (97;¢°)oo (%5 6°)oo (0% 1")oo
(6% 8°n(g% %201 (4% 6%)eo
(1.1.23)
(4:9) 3n+1q3"‘““’ (4% 4°)o0(9: %) o0 (9% 4°) o
Z 3. 4%) 3 = 3.3 (1.1.24)
(2% 0°)n(9% 0%)2nan (9% 4%)oo
We used a variety of methods to establish many inodular relations involving
only D(q), E(g), and F(q) as well as several others involving other analo-
gous functions. By the notion of colored partitions, we able to find several
partition theoretic results from some of our relations. The contents of this
chapter are almost identical to our paper [6].

In Chapter 6, we define another couple of functions analoguts to the
Rogers-Ramanujan functions. These are

X(q) 5=Z( (LIl i | S C 1/ P C i M P C i 0 Y
=0 (9 @)2n+2 (¢ oo
(1.1.25)
y(g) =143 EL @l +¢00" _ (@500 0)o0(g™147)ee
‘ o (¢ 9)2n (9o
(1.1.26)

We establish several modular relations involving only X(g) and Y (q) as well
as several others involving other analogous functions. We also extract parti-
tion theoretic results from some of the relations. The contents of thiy chapter
are almost identical to our paper [7].



Chapter 2

Ramanujan’s Modular
Equations of Degree 5 and
Associated Theta-function
Identities

2.1 Introduction

This chapter is devoted to proving modular equations of degree 5. Ramanu-
jan recorded 27 modular equations of degree 5 on Chapter 19 of his second
notebook (28]. Two of these modular equations were also recorded by Ra-
manujan in a fragment published with the lost notebook [29, p. 351]. B. C.
Berndt proved [11, Entry 13, pp. 280-282} all of these modular equations. He
proved most of these modular equations by a method of parameterizations.
But, as we have already mentioned in the previous chapter that, Ramanujan
might have first derived a theta-function identity and then transcribed it into
an equivalent modular equation. Baruah and Bhattacharyya [4] found alter-
native proofs of three of Ramanujan's theta-function identities associated
with modular equations of degree 5 and used those to derive some theorems
on explicit evaluations of Ramanujan’s theta-functions. Earlier thase iden-
tities were proved by Berndt by using modular equations and a method of
parameterizations. In this chapter, we present alternative proofs of Ramau-
jan's modular equations by using theta-function identities. In the meantime,
we also find new proofs of some of the associated theta-function identities



by using other theta-function identities of Ramanujan. The theta-function
identities which we prove are different from those proved by Baruah and
Bhattacharyya [4]. We also note that Berndt used modular equations and a
method of parameterizations to deduce these theta-function identitios.

In Section 2.2, we state some preliminary results.

In Section 2.3, we state the theta-function identitics and present new
proofs of some of the identities.

In the final section, we prove the modular equations by using results from
the previous two sections. ‘

2.2 Preliminary Results

In this section, we state some results which will be used to derive our theta-
function identities.

Lemma 2.2.1. [11, p. 39, Entry 24] We have

(@ _ [ ¢lg)
P(-q) | 8(~q)’ (22.1)
F(—q) = $*(-q)vla), (2.2.2)

Jl@) . ol _ ole) _ Jl=dY)

X0 = 5 " eg ~ fw = e Y
(=% = o(-a)¥*(q),  x(@)x(—q) = x(—¢"). (2.2.4)
Lemma 2.2.2. [11, p. 40, Entry 25] We have
$(q)d(—q) = ¢*(—¢°), (2.2.5)
Y(Q)v(-q) = ¥(¢*)d(—q*), (2.2.6)
#(9)v(a%) = ¥*(q), (2.2.7)
¢*(q) — ¢*(—q) = 16q*(¢*). (2.2.8)

Lemma 2.2.3. [11, p. 45, Entry 29] If ab=cd, then
fla,b)f(c,d) + f(~a,=b)f{—c,—d) =2f(ac, bd)f(ad, bc), (2.2.9)

and

f(a'v b)f(cr d) - f(—a'v '—b)f(—cv —d)

8



= Qaf( abcd) f (2 Zabcd)

Lemma 2.2.4. [11, pp. 122-124, Entries 10-12] If

1 1
z= 3F (—, =

1; z) and y=m

(3 5 L 1-x

(2.2.10)

2' 9 2Fl (%’ %;
then
I (2.2.11)
Bl—e) =V3(1 — )/, (2212)
H—e™) =31 - )" (2213
(b((f”“) —Vz(1 +:l:1/4), (2.2.14)
d(~e V1) =vz(1 - 2V/4), (2.2.15)
w(eV) =y/773(zeV) ¥, (2.2.16)
) =73zl D)) 8 (2.2.17)
wle™) =5vE(ze) (2:2:18)
(e V) =VE{(1 + VE) 2} P (e, (2.2.19)
Y(-e ) =vZ{(1 - V@) /2 ze*’)"“’, (2:220)
f=e) =va2 P {a(1 - )er} 'V, (2.2.21)
Fle™V) =z Vo {a(1 — w)er} /2, (22.22)
( ~0) =\ /3473(1 — )"/ (zeV) VS, (2.2.23)
—e7¥) =227 V8(1 — z) /¥ (ze¥) (2.2.29)
(e ) =2V (a(1 — g)er) -1/, (2.2.25)
x(—e7¥) =2/9(1 - )/ (ae¥) V4, (2.2.26)
X(—e™®) =2'3(1 — 2)'/*(ze¥) /12, (2.2.27)

2.3 Theta-function identities

In this section, we state and prove some theta-function identities recorded by
Ramanujan. We think that the proofs presented liere are more transparent

9



than those found by Berndt [11]-[13]. We also mention that the identities in
(12] were likely unknown to the author when [11] was written.

Theorem 2.3.1.

20y 20 6y _ x(9)f*(=¢"°)

Proof: Setting a=gq, b= —¢* ¢c= —¢?, and d = ¢*, in (2.2:9) and (2.2.10),
we find that

(@, ) f(—¢*,—¢") =

(2.3.1)

{f(a,—g") (=%, ¢°) + f(—q,9") f(¢*, —¢°

N = DN e

9f(@*. ") (-9, ") = S {f (g, =9V f(~¢". %) = [(—4,4") f(d*, ~¢*)}.

‘ (2.3.3)
We note that [11, Entry 9(vii), p. 258],

4 2 3y __ d’("‘qs)f(—(ls)

[0, =) (~¢* =¢%) = J(=q) ] (—¢°). (2.3.5)

Now, multiplying (2.3.2) and (2.3.3) and using (2.3.4), (2.3.5), and (2.2.3),
we find that

2( .5
49f(¢*, ¢*) f(g*, ¢°) f(~q,—") f(—¢% —¢") = fA(a) f*(g°) {1 LA )} :

(2.3.4)

¢*(q)
(2.3.6)
Again, using Jacobi’s Triple product identity from (1.1.6), we obtain
=0, =) (6%, —4") = (3 8")o(6% 4" (@7 "*)o(@”: ¢*) e (4" ¢*)2%
: ()% ¢'9)2,
(6599w
_ x(=9)/*(=¢")
x(-¢®)
Using (2.2.3) and (2.3.7) in (2.3.6), we arrive at the required identity.
Theorem 2.3.2. [11, p. 276, (12.82)] We have

¢*(~¢'°) Vie%)  ¥(=")) _
a0 * (W(q) wz(—rn) .

(2.3.7)

(2.3.8)

10



Proof : We have [11, p. 278], [3, (2.3)],
¢(—¢°)(a) — ¢(a°)p(—q) = 4qf(—q*) f(—¢™). (2.3.9)
Using (2.2.7) in (2.3.9), we obtain

2 20 _ 5\ _ b 2( Vb2 —ar) = =" (=¢*)
V() (=¢°) — ()P (—9) = 4¢ EEDR

Dividing both sides of (2.3.10) by ¥?(q)¥?(—g), and then using (2.2.6), we
find that

(2.3.10)

v(=¢") e\ _ , 2 =) (=4") .
(e - ) A @
Using (2.2.3) in (2.3.11), we deduce that
PA(=¢") (g% 2X(=¢*) S (=¢%) :
(s - ) = qw>¢2( ) (2312
Now, replacing ¢ by —¢ in (2.3.1), we notc that
¢*(—q) — ¢*(—¢°) = —4qX(—Q)f2(_qm). (2.3.13)

x(—¢°)
Dividing both sides of (2.3.13) by #*(—g) and then replacing ¢ by ¢*, we
obtain

P0) |y ax=a) (=)
¢*(—q?) f(=90)¢*(—¢%)
Thus, we complete the theorem with the help of (2 3.11) and (2.3.14).

1 -

(2.3.14)

Theorem 2.3.3. [11, p. 285]
$()8%(¢°) — $*(~9)#*(=°) — 166°W*(¢*)¥*(q™°) = 8af*(~¢*) /*(~ “’)1'

Proof: We have [11, Entry 9(vi), p. 258], [11, Entry 10(v), p. 262],

¢(—q5)f(—<15)'

¥3(q) - q¥?(e°) = o) (2.3.16)

11



Replacing g by ¢?, we obtain

10) _ ¢(_q10)f(_q10) )
x(—4¢*)
Employing (2.2.3), we rewrite the above identity as
J5(=¢") [ ¥(q®)
VH¢?) — ¢ (q"°) = .
(¢") = ¢*¥*(q") 7=V 9a)
Now, using (2.2.3) in (2.3.1), we obtain

¢(9)f*(=9°)f(¢°)
NOE O
Employing (2.2.3) again in (2.3.19), we deduce that

208 25y _ g | 2@ [15(=4")
¢*(q) — ¢°(¢°) 4q\[/3(q5)\/f(—q2)'

Replacing g by —q in (2.3.20), we obtain

20_ Y — A2 B = — $(—q) [f3(=¢")
¢°(—q) — ¢*(—=¢°) 4q\/¢(_q5)\/ o

Now replacing g by ¢° in (2.2.8), we find that
¢'(¢°) — 8*(—¢°) = 16¢°¥*("").

From (2.2.8) and (2.3.22), we deduce that

(96 (@°) - ¢*(—9)¢*(—¢°) — 160°¢*(a*)¥*(a"")

= L{BgH(a?) — YAq) + ($(-0) = ("))

— (¢*(a) - ¢*(°))*}-
Using (2.3.18), (2.3.20), and (2.3.21) in (2.3.23), we find that
()% (6°) — #*(—9)8* (%) — 16¢°¢*(a*)¥*(¢"°)

7(=¢") [ ¥(d*) ¢(-9)  ¢(q)
(=D {w(qm T4 <¢(—q5> ¢(q5>)}

¥3(q®) - ¢*Y*(q

$*(q) ~ ¢*(¢°) = 4q

12
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(2.3.18)

(2.3.19)

(2.3.20) ~

(2.3.21)

(2.3.22)

(2.3.23)



Now, employing (2.2.5), (2.2.6), and (2.2.7) in (2.3.8), we obtain
U (PN S
¢(g)d(~q) ()  d(-)vle?) '

Multiplying both sides in (2.3.25) by (¢(q)¢(—q)w(q )/(8(0°)¢(~°¥(q™°)),
we deduce that

(2.3.25)

¥(g®) (¢(—q) _ ¢(q)) __$a)(-a)v(a®) ‘
w@® T\ T 6] T S (23.20)
Using (2.2.7) and (2.2.4) in (2.3.26), we obtain
¥(q?) o(—=q9) @)\ _ S(=¢%
ual et o) A e ALY
With the help of (2.3.24) and (2.3.27) we finish the proof.
Theorem 2.3.4. [11, p. 259/
f (‘1) 3 m .
f( 5) = 5¢°(q)¢(q°) s (2.3.28)
Proof: We have (12, p. 202], [4, p. 2152, Theorcin 2.2,
5 w? )
’; (f;gi 1+ 5¢ W(( z )) (2.3.29)
Again, replacing ¢ by —g in (2.3.16), we obtain
5 £( 5
$¥(=q) + qvi(—¢®) = 2L (2.3.30)

x(q)
Dividing both sides of the above identity by 1%(~¢), we deduce that
@Wi(=¢") _ _; . )¢
¥*(-9) x(9)¥*(~q)
Employing (2.2.3) and (2.3.31) in {2.3.29) and then dividing both sides by
F(g®)/ F?(q), we arrive at
f5(f1) s HOV(9)  ¢°(9)
f (¢°) (11)2/}2( RO
Using (2.2.2) and (2.2.3) in (2.3.32) we easily arrive at the proffered identity.

(2.3.31)

(2.3.32)

13
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Theorem 2.3.5. [13, p. 864, Entry 16]

V(g) | ¥(=q) , F3(=q") _  ¥°(¢})
o@) T q>+2 =)~ )

Proof: Multiplying (2.3.18) by 1Ggy(¢%), we obtain

16¢v*(¢*) — 16¢°¢*(¢")¥* (") = 16(1\/ f;g Z:;) \/ v (51(1]0) (2.3.34)

Again, multiplying (2.3.20) and (2.3.21) by #%(¢) and ¢*(—¢), respec-
tively, and then subtracting the resulting identities, we deduce that

¢*(q) — ¢*(—q) — $*(9)9*(¢°) + *(—¢)d*(—4°)

o [FC [ [P@) , [#C)
‘4"\/ 7(=7) {\[ﬁ(qw*\/ ¢(—q5)}' (2:3:39)

Subtracting (2.3. 35) from (2.3.34), and then using (2.2.8), we arrive at
$*(0)0*(¢°) — $*(—0)¢*(=¢°) — 16¢°¥* (¢ )V’ (%)

a a ¢o
—-4q\/j =y { \/1/1 ) 1/¢q5 H q5} (2.3.36)

From (2.3.15) and (2.3.36), we find that

\/wf'(qz) \/¢5(q) \/¢5( q) _ \/ ) (2.3.37)

Multiplying (2.3.37) by /¢%(¢q)/#(¢%) and.using also (2.2.3), (2.2.5), and

(2.2.7) we arrive at the required identity.

Theorem 2.3.6. ( 5)‘(/)2( ) !

562(0%) — o2 =4X‘1' 1

¢°(¢°) — ¢°(q) @)

Proof: Dividing both sides of (2.3.28) by ¢°(q)/#(¢°), we find that
Fa)ele’) _ ¢2(¢°)
J(®)e(g) ¢*(9)
Multiplying both sides of (2.3.39) by ¢*(q), and then employing (2.2.3), we
deduce (2.3.38) to finish the proof.

(2.3.33)

(2.3.38)

1+4

(2.3.39)
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Theorem 2.3.7. [13, p. 564, Entry 15]
V(=¢®)  ¥°(¢®) _ ., [A(=d") , , 3¥°(¢")

W e TS T e B0
Proof: Using (2.2.3) in (2.3.38), we find that
5 5(—g2
¢*(q) — 5¢2(‘75) = ‘4\/¢;(((i])) \/-;(EQ?O; (2.3.41)
Replacing ¢ by —¢, we obtain
20\ 52 —nd) — — o(=¢°) [/°(=¢%) .
7m0 = 5=) 4\/ =0 \| Fl=a%) (23.42)

Multiplying (2.3.41) and (2.3.42) by ¢*(¢°) and ¢?(—¢®), respectively, and
then subtracting the resulting identities, we deduce that

$*(0)*(a°) — ¢*(—q)d*(—q°) — 80¢°y*(¢"")

f5 ) [F@) L
{\/ ) \/¢<q> } (2.3.43)

Now, replacing q by —q? in Theorem 2.1 [4], we find’that

2/.2\ _ g 2.2( 10\ _ ¢2('f12)
¥(¢°) = 5¢°9%(¢7) = v G e g (2.3.44)
With the help of (2.2.3), we rewrite (2.3.44) as
20,2\ _ B202( 10} — ¥(g'°) $(—-¢?) .
¥(q°) —5¢"¢*(q™) \/w(cﬁ) =) (2.3.45)

Multiplying (2.3.45) by 16¢%y?(q'°), we find that

16¢°%%(¢*)¥*(¢"°) - 80¢°v*(¢'%) = 16¢ \/ il w)\/ = w). (2.3.46)

1 e
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From (2.3.43) and (2.3.46), we deduce that

— ¢*(9)¢%(q°) + #*(—q)b*(—4°) + 166°¥2(¢*)¥*(¢")
(=) |, s [¥(g"0) ¢°(¢°)  [¢°(=¢°) .
D {“" \/ e +\/ W\ o } (2347

From (2.3.15) and (2.3.47), we arrive at

¥5(¢') ¢%(¢°) f(= q“’)
\/w(q \/ \/¢( -7 yicra) (23.48)

Multiplying both sides of (2.3.48) by v/#°(¢°)/¢(q) and using (2.2.3), we find

that s s s 0

PN C 0D Rl o B ol P f"(q)
v  dla)  d(-¢?) i)

Multiplying both sides of (2.3.49) by '(¥°(¢®)é(q))/(#°(¢°)¥(q)) and rear-

ranging the results by employing some identities in Lemma 2.2.1 and Lemma

2.2.2, we deduce (2.3.40) to finish the proof.

(2.3.49)

Theorem 2.3.8. [13, p. 363, Entry 14]

¢°(q) +4w5(q)
A C) N CO I (0 2550
% (q°)  H(q)93(q®) + 492y(q)¥3(¢%) .

Proof: With the help of (2.3.38) and (2.3.44), we obtain
$*(q) — 56%(¢°) 2 X(@)x(=4")

V@) 5@ T x@x =) (2351)
Now, from (2.2.3) and (2.2.4), we notice that
x(~x(a) = 22, (2.3.52)

¥(q)
Using (2.3.52) in (2.3.51), we deduce that

i R, s

16
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Employing (2.2.7) in (2.3.53), we arrive at

5 5 3( 5
-GS
Multiplying both sides of (2.3.54) by ¢3(q)/#(¢"), we find that
¢5(Q) "»[’5(0) _e43 5 2u0(a) 3 (4P ¢2(f]) 5
5 T ot = 2 @9@) + 2049 () g (2.3.55)

which is equivalent to (2.3.50).

2.4 Modular Equations

In this section, we find new proofs of Ramanujan’s modular equations of
degree 5 by using the theta-function identities established in the previous
section. Berndt proved these equations by a method of parameterizations.
The proofs given here are seemed to be closer to the provable proofs of
Ramanujan. Throughout this section, we suppose that 3 has degree 5 over
a and m = 2, /25 is the corresponding multiplicr.

Theorem 2.4.1. [11, p. 280, Entry 13(i)] We have ‘
(@B)?+ {(1-a)(1 - B)}'2+2{16aB(1 —a)(1 - B}/ = 1. (24.1)

Proof: Transcribing (2.3.15), by using (2.2 11), (2.2.12), (2.2.18), and (2.2.21),
we easily deduce (2.4.1).
Baruah (3] has also found a different proof based on the identity (2.3.9).

Theorem 2.4.2. [11, p. 280, Entry 13(ii)] We have

5\ 1/8 _ N5\ 1/8 501 _ ~\5\ 1/24
(1) _ (___(1 @) ) 142/ (__—___-a 1-a) ) L (242)
B 1-8 p(1-5)
Proof: Transcribing (2.3.33), by using (2.2.16) - (2.2.18), and (2.2.23), we

easily deduce (2.4.2).
Theorem 2.4.3. [11, p. 280, Entry 18(1)] We have

<(L:_ﬂ)_“")’/8 _ (%ﬁ)”s PENPYY (M)W, (2.4.3)

l-a a(l — a)
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Proof: Transcribing (2.3.40) by means of (2.2.16) - (2.2.18), and (2.2.23),
we readily deduce (2.4.3).

Theorem 2.4.4. [11, p. 280, Entry 13(iv)] We have

1/24
m =1+ 23 (ﬂag : D ) / (2.4.4)
and
Sy ( )1/24 (2.4.5)
m B(1 - '
Proof: Transcribing (2.3.1) with the help of 2.2 21) and (2.2.25), we arrive

at (2.4.4).

Transcribing (2.3.28) by employing (2.2.11) and (2 2.22), we easily deduce
(2.4.5).

Note that (2.4.5) is also the rcciprocal of (2.4 4) and vice-versa.

Theorem 2.4.5. [11, p. 280, Entry 13(v)] We have

1+ (1= =a)® 1= (6%)a)"®
T 14 {(1-a)(1 _ﬁ)}l/s ‘ 1= (aB) 8

(2.4.6)

Proofs of the above modular equations have already been given by Berndt
(11, pp. 282-283] with the help of theta-function identities.

Theorem 2.4.6. [11, p. 280, Entry 18(v1)] We have

.?. —_ 1+ (aﬁ/ﬁ)]/s _ 1- ((1 —_ 0)5/(1 _ ﬂ))l/B
m 1+ (@)  1-{1-a)1-p)B3}/8"

(2.4.7)

These modular equations are the reciprocals of the respective modular
equations in the previous theorem. Here we also offer an alternative proof.
Proof: Transcribing (2.3.50) by employing (2.2 11) and (2.2.16), we easily
deduce the first equality of (2.4.7).

Replacing ¢ by —g, in (2.3.38), we find that

$(~q) - 5¢%(~¢°) = &(__q()%__)l (2.4.8)

18



From (2 3 38) and (2 4.8), we obtain
¢°(—-9) = 5¢°(~¢°) _ x(=¢°)x{0)
¢2(q) — 5¢*(¢°) X(—¢)x(¢®)

Transcribing the above identity by employmg (2.2 11), (2.2.12), (2.2.25), and
(2 2.26), we find that

(1 -2 —5/m(1- )" _ (1 - ﬂ)%.

1-5/m l-a

(2.4.9)

(2.4.10)

Dividing both sides of the above identity by ((1 — 8)/(1 — a))"/®, we com-
plete the proof of the second equality of (2 4.7) also.

Theorem 2.4.7. [11, p. 280, Entry 18(vi)] We have

1/24
(@8 + {1 - )1 - gy =1 -2 (£ 2L

= (aB)2 + {(1 - a)’(1 ~ B)}/®

_ <1+(a/3)1/2+{ 1-a)(1 _ﬁ)}1/2>1/2
2

(2.4.11)
Proof: Replacing ¢ by ¢'/4, in (2.3.9), we find that
$a (=) — $(=¢*)8(a") = ~4¢'" () f(-¢").  (2412)
Transcribing this equation by using (2.2.11), (2 2 12), and (2.2.24), we obtain
M~ g = 2%(aB) (1 - a)(1 — B))°. (2.4.13)
The reciprocal of the above equation is given by v
(1=B)* = (1= )/t = 22(af) S (1~ )1 - @)™, (24.14)

Berndt et al. {16, lemma 9.1, p. 20] have also given a proof of (2.4.14)
by using a method of parameterizations. They used this modular equation
to prove some results on Ramanujan'’s famous forty identities for the Rogers-
Ramanujan functions.
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Multiplying both sides of (2.4.14) by ((1 ~ a)(1 — 8))!/#, we find that
(=B (1—a)) /= (1= )} (1-P))"/® = 223 (0 B(1 — ) (1= B)) /6. (2.4.15)
The recipi‘ocal of this equation is given by
(oP®B)M8 — ()8 = 23(af(1 - a)(1 - BY)VC. (2.4.16)
From (2.4.15) and (2.4.16), we deduce that
(=8P =a)® = (1 - a1 = B)® = (a®B)"/® - (Ba)'/®. (2.4.17)

We rewrite the above identity as

(@88 + {(1 = a)(1 = B)°}/8 = (®B)E + {(1 - a)*(1 - B)}/8. (2.4.18)
Now, dividing both sides of (2.4.12) by (aB)/?4, we obtain
ob 1/24 ﬂ5 1/24 '
(F) - <—a-> =2"3((1 - a)(1 = B))V8. (2.4.19)

Multiplying both sides of the above identity by 21/3 ((1 — @)®/(1 — 8))"/*
we find that

s (1= )\ s (BQL = )3\ V*
213( BI=7D) ) : 3( ) > = 21— ey -
(2.4.20)

Again, multiplying both bld(b of (2.4.18) by 2’/3 ((1 - [3) /( a))'’*,
we arrive at P e R

_ 1/24 — A5 1/ 1
s (____(0;}((11 =4 ) _ g (%) —2((1- g1 - ).
(2 4.21)

The reciprocal of (2.4.21) is given by -
1= B\ (a1 ~ 2))>)
. 2!/3 (E‘(—-——- - =2(c®)"8.  (24.22
A= o) BI=7) @ 242)
Adding (2.4.20) and (2.4.22), we deduce that

(a(1 = B))*\ /™ )
e (Grar) - ()

= 2{(@*0)"8 + (1 -0’ (1 - B))%).  (24.23)

)
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Dividing both sides of the first part of (2.4.49) by 2-'/3(af(1 —a)(1 -8))"/%,
we obtain

_ANSY 1/24 | _ 5 1/24
o/ ((623((11 _i)))) oo (%) , (2.4.24)

Employing (2.4.24) in (2.4.23), we find that

5 5y 1/24
(asﬂ)l/s + {(1 - a)a(l _ ﬂ)}l/S =121/ (’Bag :Z; ) . (2.4.25)

Now, multiplying both sides of (2.4.24) by 43 ((8(1 - ))®/x(1 — ﬂ))\m,
we obtain

3Bl 1 — (1 — AVV/6 s 413 (ﬁ(l—a))ﬁ)"” Y ((ﬁ(1~a‘))5)‘m
43 (af(l-a)(1-70))/C+4 ( 20 =7) 4 a(1-ﬂ)(24%‘
The above identity can also be written as

1/12
1 - (16aB(1 ~ a)(1 — B))° = 1 + 413 (('%(EIT—?%))X) |

(B —a))>\*
'221/3( (1= 5) )

(81— o)\’
=(1_21/3 (_a—(i':—ﬂ_)—) ) . (2.4.27)

14 (aB)V2 + (1 - a)(1 - A)2 1/2
2 :

Now, we recast (2.4.1) as

1 - (16aB(1 — a)(1 ~ B))H° = (

(2.4.28)
From (2.4.27) and (2 4.28), we arrive at

F= P\ (14 (@) 4 (1 - a)a - )|
1”2”3(a<1-m> "( oz -

(2.4.29)
Thus, from (2.4.18), (2.4.25), and (2.4.29), we obtain (2.4.11) to finish the
proof.
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Theorem 2.4.8. [18, p. 366, Entry 20] We have

(@aB%)% + {(1 = a)(1 = B)°}/8 = \/1 = (aB(1 — a)(1 - B))S. (2.4.30)
Proof: This identity follows feadily from (2 4.11) and (2.4.28).

Theorem 2.4.9. [11, p. 280, Entry 13(viu)] If a and b are arbitrary complez
numbers, then

a+23(a - b) <55(1 ﬂ)s)lm o (M) 1/12
(2.4.31)

m = (1-a) ol ~a)
a— 6{160f(1 — a)(1 = A)}1/
and
s (BL= BN s (850 -8\
—— o () (G g)
(1 -3{16aB(1 — a)(1 = B)}V/6 + {16af(1 — a)(1 — B)}/3)1/2
(2.4.32)

Proof: Subtracting (2.4.43) from (2.4.41), we find that

A1 - >\ /¥ B5(1 - B)*\ /"
24/3( a(l=a) ) -2 ( a(l—a) )

= {1 (@B)? = (1 - )(1 = )7} (2433)
Now, from (2.4.1) we obtain
1= (aB)? - (1 - a)(1 - A)* = 2(16aB(1 - a)(1 - AYV/°.  (2434)
Using (2.4.33) in (2.4.34), we deduce that

94/3 (@’_%{_g))_) 1/24 _gn (%)1/12

{16aB(1 ~ a)(1 - B)}P/°
Multiplying (2.4.4) by a, we obtain ’

1/24
ma =a (l 4 4/3 (ﬁ:El - i;s) ) ] (2.4.36)

22
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Again, multiplying the numerator and denominator of the right side of
(2.4.35) by b, we find that !

) ﬁs(l—ﬁ)s 1/24 ﬂa(l__ﬁ)s 1/12
e (Tmay) 2 (Gas) )

b{16a4(1 — a)(1 - B)}/°

From (2.4.36) and (2.4.37), we readily deduce (2 4.31).
Now, from {27, Corollary 2.3, p. 95}, we have

(8°(q) — $*(8°))(36°(¢°) — #%(q)) = 169/%(—¢*) f*(=¢"°).  (2.4.38)
Transcribing this equation by employing (2.2.11). ‘(2.2.21) we find that

m =

(2.4.37)

2 {6m — m? - 5} = {16aB(1 - a)(1 ~ A)}" (2.4 39)

4m

Now,
(1 - 3{16aB8(1 ~ a)(1 — B)}® + {162B(1 — a)(1 — B)}'/*)

1 2 1 2 :
=1—3— —m? =5} 4+ —{6m —m?* -5
1 34m{6m m* — 5} (4 { m —m }>

- (er; 5)2. ' ST (2.4.40)
Again, from (2.4.4), we find that
1’_‘_2:_2 _ 1/ (ﬂ;g :5_;5> . , (2.4.41)
Thus,
L g3 (55(1 - /3)5) LY. ([35(1 - 5)5) M_mb 4
a(l — a) a(l - a) 4

Equating (2.4.40) and (2.4.42), we arrive at (2.4.32).
Theorem 2.4.10. [11, p. 280, Entry 13(ur)] W huve

5 5N 1/12
14 41/3 (M) = lm (1+(a,3)1/2+{(1"a)(1“/3)}1/2)
a(1-a) 2 (2.4.43)
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and .

1/12
14 (M) = (14 (@) + (1L~ )1 - BT,

B(1 - () 2m
(2.4.44)
Proof: We have (2.4.63)
5
mt —~ =2(2+ (@B)?+ {(1 - a)(1 - B)}'1?). (2.4.45)
m? +5 = 2m (2+ (af) 2+ {1 - )(1 - B)}'/?). (2.4.4G)
Again, from (2 4 41), we obtain
5(1 ~ g)° 1/24
—1 =293 U~ B) ( , 4.
m 2 (a(l_a) (2.4.47)
Squaring both side in the above equation, we find that
501 _ @5\ /12
m?+1=2m+2%° M) . (2 4.48)
a(l — )

Using (2.4.48), in (2.4.46), we obtain (2.4.43).
Taking reciprocal of (2.4.43), we arrive at (2.4 44).

Theorem 2.4.11. [11, p. 280, Entry 18(z)] We have
{a(l = B} + {B(1 — )}/ = 4% {af(1 — a)(1 = B)}/*
=m{a(l - )} + {B(1 - B)}/*
= {a(l - @)}/ + (B0 - A
o (2.4.49)
Proof: We rewrite (2.4.60) as
m(a(l - @)/ + (B(1 ~ B))/* = (B(1 = a))/* + (a(1 = B)Y*. (2.4.50)

Again, from (2.4.61), we obtain
%wu—mr“+wu—mr“=mu-ﬁwﬂ+wa-aww (2.4.51)
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Now, replacing q by —q, in (2.3.16), we find that

2/ _ 20 _ .5\ $(¢°)/(¢°)
Vi(—q) + q¥*(-¢q°) o (2.4.52)

Transcribing this with (2.2.11), (2.2.17), (2.2.22), and (2.2.25), we deduce
that

43{aB(1 - a)(1 = B)}/* = m{e(l - )}/ + {B(1 - B)}/4.  (2.4.53)
Equating (2.4.50), (2.4.51), and (2.4.53), we obtain (2.4.49).
Theorem 2.4.12. [11, p. 280, Entry 13(z1)] We have

((i‘_ﬁﬁ)”s + (ﬁ_s)l/s . (1 + (@) + {(1 —a)(1 - ﬂ)}1/2)1/2

l—-« « 2
(2.4 54)
and
05)1/8 L (A=aP\ 5 (14 (@B 4+ {(1-a)(1 - B\
5) +(5F) -=l z )
(2.4.55)
Proof: We have (2.4.6)
1+ (=8P =a)) 11— (8" -
™ T (I e AN~ 1= (@A (2.4.56)
Thus,
3 18 (1-p8)°\""
m{l+((1-a)’(1-08))"}=1+ ( 1 a) (2.4.57)
and
5\ 1/8
m{l — (a®p)/®} =1~ (E) . (2.4.58)
Subtracting (2.4.58) from (2.4.57), we find that
1/8 1/8
((11—_[25) + (%5) =m{(e*8)"® + {(1 - a)*(1 - B)}'/%}. (2.4.59)

Using (2.4.11) in (2.4.59), we deduce (2.4.54).
The modular equation (2.4.55) is the reciprocal of (2.4.54).
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Theorem 2.4.13. [11, p. 280, Entry 13(zii)] We have

m = (g)m + (i :5)1/4 - (gg—:—%)m. . (2.4.60)
()" ()G e

Proof: Transcribing (2.3.8), by employing (2.2 13), (2.2.16), and (2.2.17),
we easily deduce (2.4.60).

The identity (2.4.61) is the reciprocal of (2.4.60).

Ramanujan recorded this two modular equation in a fragment published
with the lost notebook [29, p. 351].

Theorem 2.4.14. [11, p. 280, Entry 138(ziii)] We have

5 A(af)? = {(1 - a)(1 - B)}V/%)

m—-—=

m ((1 + (aﬁ)l/Z + {(1 —a)(l - 'B)}l/g)/2)l/2

(2.4.62)

and
m + 7% =202+ (B2 + {(1 - a)(1 - B)}2). (2.4.63)

Proof: Cubing both sides of the equation (2.4.19), we obtain

5\ 1/8 5\ 1/8 :
(%) - (£) " -s2@pa - ) - o) = 401 - )1 - 5

(2.4.064)
Taking reciprocal of this cquation, we find that

((1 - ﬂ)S)l/S _ ((1 0)5) 3,22/3(aﬂ(1 - a)(1 - ﬂ))l/ﬁ - 4(()’&)'/2.

(1-a) B
(2.4.65)
Subtracting (2.4.65) from (2.4.64), we obtain
(1 _ﬂ)5 1/8 9-5- 1/8 ~ (1 _ 0)5 1/8 9_5 1/8
(=%) &) -(=%) ()
= 4{(aB)"? - (1 - &)(1 - B))"/?}. (2.4.66)
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Subtracting (2.4.55) from (2.4.54), we find that

(=5 ()" ((6=5)"+(5)")

5 1/2 _ _ 172\ V2
- (m_ ?ﬁ) (1 + (af)' 2 + {(; «)(1 - 8)} )  (2407)
Equating (2.4.66) and (2.4.67), we find that
_5 4B - {(1-a)(1 -/} (2.4.68)

ML+ (@B) 2+ {(1 - o)1 - pY)/2)
Again, transcribing (2.4.38) by employing (2.2.11) and (2.2.21), we obtain
m+ % = 2{2(1 - {16a8(1 — a)(1 - B)}/%)} + 2. (2.4.69)
Employing (2.4.1) in the above identity, we deduce (2.4.63).
Theorem 2.4.15. [11, p. 280, Entry 13(ziv)] If
P = {16af(1 - a)(1~ B)}'/"* and Q= (B(1 - B)/e(l - )",

(2.4.70)
then ) )
Q+§+2(P-—]-5> =0. (24.71)
Proof: We note that
s (B = BT\
PQ = 2V/® (..a____(l - ) , (2.4.72)
P s (el = a))® ) e .
0="? ( B0-p) ) (24.15)

Now, Adding (2.4.73) and (2.4.72), and using (2.4.4) and (2.4.5), we find
that

PQ+£=m_1 5/m-1‘

5 s+ (2 4.74)
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P m+5/m-2
P = = —
Using (2.4.63), in (2.4 75), we obtain

PQ+Q 5

Now, using (2.4.1) in (2.4.76) and simplifying, we obtain that

1 1
Q+§+2(P—'-}3> = 0.
Theorem 2.4.16. [11, p. 280, Entry 13(zv)] If

P=(af)* and Q= (f/a)’®

-4) slo-5)<(4)

Proof: We note that

then

Subtracting (2.4.81), from (2.4.80), we find that

o
ot f

_1 — (BB _ (33)1/8
P(Q Q) (Ba)® - (a*B)' .

Using (2 4 16), in (2.4.82), we obtain

-7 (Q- ) =2PP(apl - a)(1 - o)

Using (2 4.78) in (2.4.83), we obtain

1 ((1—a)(1 - B))'/
Q- '(5 = 2% (aB)1/12 ’

Cubbing both side in the above equation, we find that

1V (A= -p)
(Q cz) = e

28

5 —_ -2+ 2((aﬁ)'/2 +24+ (1 -a)(l - ﬁ))1/2)

(2.4.75)

(24 76)

(2.4 77)

(2.4.78)

(2.4.79)

(2.4.80)
(2.4.81)

(2.4 82)

(2.4.83)

(2.4.84)

(2.4.85)



From (2.4.84) and (2.4.85) we obtain,

-2) 1e-3)

= — gyl (= @)1 = )+ 21 - (1 - B)ad) ).

(2.4.86)
Now, using (2.4.1), in (2.4.86), we find that

(Q - é—)s +8 (Q -5)= i @) (248

Using (2.4.78) in (2.4.87), we obtain (2.4.71).
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Chapter 3

New Proofs of Ramanujan’s
Modular Equations of degree 9

3.1 Introduction

In this chapter, we find proofs of Ramanujan’s modular equations of degree 9
by using theta function identities. Ramanujan recorded 14 modular equations
of degrees 1, 3, 9 in Chapter 20 of his second notebook {28]. He also recorded
two . morc equations on pages 286 and 296 of his first notebook [28], but the
second equation is incorrect as shown by Berndt {13, p. 370, Entry 28]. All
of Ramanujan's modular equations of degrees 1, 3, 9 have been proved by
Berndt (See (11, pp. 352-358, Entry 3] and (13, p. 370, Entry 27]). As we
have already mentioned in Chapter 1, modular equations can be expressed
as identities involving the theta-functions ¢, ¥ and f. Therefore, often one
first tries to derive a theta-function identity and: thgn transcribes it into
an equivalent modular equation. But, proofs of some tnodular equations
of composite degree 9 given by Berndt are quite unlike this method. He
sometimes reversed the process. In this chapter 3, we find new proofs of these
modular equations by using theta-function identities. In the meantime, we
also find new proofs of some of the theta-function identities. Earlier these
identities were proved by Berndt by using modular equations and a method
of parameterizations.

In Section 3.2, we statc some preliminary results.

In Section 3.3, we state the theta-function identities and present new
proofs of some of the identities.
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In the final section, we prove the modular equations by using results from
the previous two sections.

3.2 Preliminary Results

In this scction, we state some results which will be used to derive our theta-
function identities.

Lemma 3.2.1. [11, p. 51, Ezample (v)] We have

f(a:6°) = ¥(-¢*)x(a)- (3.2.1)
Lemma 3.2.2. [11, p. 350, (2.3)] We have
fa.¢) = ‘i((‘_";)). (322)
Lemma 3.2.3. (11, p. 49, Entry 81 {Corollary (+) and (ii)}] We have
¢(q) = ¢(¢°) + 24 (4", "), (3.2.3)
¥(9) = f(g*, &) + av(d’). (3.2.4)

3.3 Theta-function identities

In this section, we state and prove some theta-function identitics recorded by
Ramanujan. We think that the proofs presented here are more transparent
than those found by Berndt [11]-{13]. We also' mention that the ideutities in
[12) were likely unknown to the author when [11] was written.

Theorem 3.3.1. [11, p. 845, Entry 1(3i)]

(4% _ (@)
q"3x(—-q)  ¢'3Y(¢%)’

(3.3.1)

and
X(=¢°) _ ¥'(q)
ox*(-9)  q¥t(e®)

(3.3.2)
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Here we present a proof of (3.3.1) slightly different from Berndt [11, p.
345).
Proof: By (3.2.4) and (3.2.2), we find that

$(—¢°
(—¢*

¥(q) — q¥(q’) = : (3.3.3)

>

Dividing both sides by qi(¢°) and then using (2.2.3), we obtain
vle) _, _ x(=4)
7(q°) ax(—¢°)

Replacing g by ¢'/3, we easily arrive at (3.3.1).
For a proof of (3.3.2) see [11, p. 346, Entry 1(i)].

(3.3.4)

Theorem 3.3.2. [11, p. 845, Entry 1(i1)]
¥(=g) _ (1+ ¥4(~q) )"3
¢'3(~¢%) e (-¢%))

Berndt [11, p. 347] proved that this thcorem follows from (3.3.1) and
(3.3.2).

1+ (3.3.5)

Theorem 3.3.3. [11, p. 845, Entry 1(ii)]

6@°) _, ( #'(a) _ 1) v
¢(g*) ¢*(q*)
Berndt [11, p. 218 and p. 347] offered two proofs for this theorem. Here
we offer an alternative proof.

Proof: Berndt [12, Entry 8, pp. 144-146] proved the following beautiful
theta-function identity due to Ramanujan.

f(@%, %)
f(a%b8, ad3b6)

Putting a = b = ¢ in (3.3.7), we find that

{6(g) - H) = ggf—g;&(q‘*) s (338)
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(3.3.6)

{f(a,b) - f(a®b®,a%%)}® = f3(a®b,ab*) - f3(a%b?, a®"). (3.3.7)



Simplifying (3.3.8), we obtain

$(q) _,8%0) (0 _ ¢
(%) ¢H¢®)  (e®) 4%

Replacing ¢ by ¢'/% in (3.3.9), we can easily arrive at (3.3.6).
Theorem 3.3.4. [11, p. 849, Entry 2(i)]

(@)P(4°) — ¢*(¢*) = 2q(—a" )0 (¢®)x(4%). (3.3.10)

Proof: At first, we prove the following lemma.

+3 (3.3.9)

Lemma 3.3.5.

¢*(9) — #°(¢%) = 4ax(a)x(-9*)v(a°)u(c®). (3.3.11)

Transcribing by using (2.2.11), (2.2.16), (2.2.18), (2.2.25), and (2.2.27) it
can be seen that the above theta-function identity is equivalent to a modular
equation of degree 3 [11, Entry 5(iii), first equation, p. 230]. Here we present
a more direct proof of this theta-function identity.

Proof: Puttinga = ¢% b=¢* c=gq, and d = ¢° in (2.2.9), and then using
(3.2.1), (3.2.2), (1.1.9), (1.1.10), and (2.2.4), we find that

¢(—a° W (-¢)
x(—q)
Using (2.2.6) and (2.2.3), we can rewrite the above identity as
¥2(—¢%)
¥(¢®)x(-9)
Replacing ¢ by —¢ in (3.3.13) and then employing (2.2.7), we obtain

#(q°)
x(q)

+ f(=g)x(—a)w(d®) = 2¢(¢*) f (%, ¢'). (3.3.12)

+ f(=q) = 2f(",4"). (3.3.13)

]

+ flg) = 2f(—q‘5,‘—q7)-’ | (3.3.14)

Similarly, putting a = ¢%, b=¢* ¢ =g, and d = ¢° in (2 2.10), and then
proceeding as above, we find that

_¢(d%)

x(q)

+ f(9) = 2¢f(~9,—¢"). (3.3.15)
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Multiplying (3.3.14) and (3.3.15), and then using (2.2.3), we obtain
¢*(9) = 6°(¢°) = 4ax*(9) f(~¢*, ~4") f(=a, ~¢""). (3.3.16)
Now, using the Jacobi triple product identity (1 1.6), we find that
f(=¢*,~a") f(~9.—¢")

= (¢ '@’ §9)o0(@"; ¢'%)o(d™; ¢"%)w(a"; ¢'%)%
(7, 3)oolg'?; ¢'2)3,

T 0ol 0Dl 0 ¢ oo’ (3:3.17)
Using (1.1.11), (1.1.9), and then (1.1.10), we obtain
f(=a*~q")f(=q,=¢")= X(—ZJ)(T;STH)- (3.3.18)
Now, from (2.2.3), we note that
F(=¢") = x(=)¥(a) = V/$(-)¥*(a). (3.3.19)
Replacing g by ¢° in (3.3.19), we deuce that
) (=4 = ¢~ (). (3.3.20)
Using (2 2.6), we find that
£ (=4'%) = ¥(P)(-¢°)v(d%). (3.3.21)
Thus, (3.3.18) can be written as
f(=¢°, =) (=4, =¢") = X(=)%(¢’ )b (~¢")¥(d"). (3.3.22)

Employing (3.3.22) in (3.3.16), and then using (2.2.4), we arrive at (3.3.11),
which completes the proof of the lemma.
Proof: From (3.2.3) and (3.2.1), we find that

#(q) = 8(¢°) + 2q(—¢")x(¢°)- (3.3.23)
Multiplying both sides of (3.3.23) by ¢(q°), we obtain
$(9)8(q°) = 6°(°) + 299(¢°)¥(~4")x(g%). (3.3.24)
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Now, by (2.2.6) and (2.2.7), we deduce that

$(g)¥(~q) = ¥(9)(~4"). (3.3.25)
Replacing g by ¢° in (3.3.25) and then using (3.3 24), we find that
$(0)h(¢°) = ¢*(¢°) + 2q9(a")(—4"")x(4°). (3.3.26)

Using (3.3.23) in (3.3.26), we obtain

#(9)d(q°) = ¢*(¢°) + 2q9(a°)x(®*){d(— %) + 2¢°¥(a"®)x(—¢")}. (3.3.27)

Employing (3.3.11) in (3.3.27) we easily arrive at Theorem 3.3.1 to complete
the proof. Berndt et al. [16, lemma 9.1, p. 20] have also given a proof of
Theorem (3.3.1). They used this modular equation to prove seme results on
Ramanujan’s famous forty identities for the Rogers-Ramanujan functions.

Theorem 3.3.6. [11, p. 349, Entry 2(ii)]

¢(=9)
X(=¢°)
Proof: Replacing ¢ by —¢ in:(3:3.23) and then using the resulting identity
in (3.3.3), we easily deduce (3.3.28).

Theorem 3.3.7. [18, p. 357, Entry 4]

¥(g) — 3g9(q°) = (3.3.28)

)

— %) — A= )13 =843 ¢(~q 3.9
{3¢(=¢°) — #(—q)}° =84°(q) TR (3.3.29)
Proof: Replacing q by —q in (3.3.23), we find that
¢(=¢°) — ¢(-q) = 2q¥(¢°)x{(=¢"). (3.3.30)
Using (2.2.3), this can be written as
Y — Amp) = 939/’(_3) Qo
¢(~q°) — ¢(—q) = 2q¥(q") R (3.3.31)
Now, using (2.2.3) in (3.3.3), we deduce that
PV NV N 4O
¥(q) —q¥(q) = ¢(—¢") Yot (3.3.32)
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Using (3.3.32) in (3.3.31), we find that

9y __ —n) = 3 ¢("(I3) .
36(—¢q°) — é(—q) = 2¥%(q) PTCOR (3.3.33)

So, we complete the proof by cubing (3.3.33).
Theorem 3.3.8. [11, p. 849, Entry 2(iii)]

$(9)¢(q°) + ¢*(a°) = 2¥(9)8(~q"*)x(&)- (3.3.34)
Proof: Replacing q by ¢® in (3.3.6) and then simplifying, we obtain

¢*(9)¢°(¢°) _ #(a)¢(a°)
¢*(¢%) ¢*(¢°)

Now, (3.3.23) can be rewritten as

¢(q) — #(¢°) = 299 (-¢")x(q")- (3.3.36)

Again, replacing ¢ by —¢q in (3.3.33) and then using (2.2.3), we deduce
that

143

(¢*(q) + 36°(%)) . (33.35)

3¢(7°) — ¢(q) = 2v(-9)x(¢%)- (3.3.37)
Multiplying (3.3.36) and (3.3.37), we obtain
36(¢") + ¢*(q) = 46(0)9(¢°) — 4qv(— )Y (—a")x*(¢%). (3.3.38)

Using (3.3.38) in (3.3.35), we find that
| @) _ _, ¢ (-a)¥(=¢")x*(g")

3.3.39
¢*(¢%) ? ¢*(q%) ( )
With the aid of (3.3.10) the above identity can be written as
$()¥(—9)¢(¢°)¥(=¢°)
) + ¢*(¢*) = 2x(¢® : 3.3.40
?(9)0(q”) + ¢°(q°) = 2x(q°) pTEPm) ( )
We complete the proof by employing (3.3.25) in (3.3.40).
Theorem 3.3.9. [11, p. 358, Entry 4(i)]
| #(="*) (w(q*’) _ w(-qg)) _ 3541
o) H I\l ") Tt (3341
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Berndt {11, p. 359] proved this by using the modular equation (3.4.12).
Here we give an alternative proof.
Proof: Replacing q by —g in (3.3.3), we obtain

9
W-0) + qul-¢") = 20 (83.42)
From (3.3.3) and (3.3 42), we obtain
(@) (=) _,_ _e(=¢*)  ¢(¢°) .
S0 Yo} = e T e @9
Now, adding (3.3.10) and (3.3.34), we obtain
$(0)6(q°) = ¥(@)$(~a"*)x(¢®) + gb(—a*)¥(a°)x(q*)- (3.3.44)
Using (2.2.5), we obtain
18
D 0(e") = b0 ST (&) + () (33.45)
Employing (2.2.1) in (3.3.45), we find that
oy _ X(@®)(=a*N(=q) , ¥(¢’)x(a*)¥(-q)
#(¢°) = P e . (3.3.46)
Replacing ¢ by —q in (3 3.46), we obtain
b(—g?) = XLV 0la) _ v )xX(=7)(a) (3.3.47)

#(—¢%) T (=)

Using (3.3.46) and (3.3.47) in (3.3.43), we deduce (3.3.41) to complete the
proof.

Lemma 3.3.10. [11, p. 858, Entry 4(u)]

¢(=¢*)  1(¥(@ _¥(=9 )\ _
o= T3 (z/»(qg) w(—(f*)) 5

(3.3.48)
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This identity was proved by Berndt {11, p. 359] by using the modular
equation (3.4.13). Here, we present an alternative proof.
Proof: Replacing ¢ by —g¢, in (3.3.28), we obtain

¢(q)
Y(—q) + 3q¥(—q") = @) (3.3.49)

From (3.3.28) and (3.3.49), we find that
wle (=9 _o. =0 ¢

P e e ey ) ot et R
Now, from (3.3.44), we deduce that
9 —n2Vah (DN f 3
———ﬁa (i(lz)) = wlox(e") + 22 ¢)(1f(qu))X(q ) (3.3.51)
Using (2.2.5) and (2.2.1) in (3.3.51), we find that
o) Plg) . B(—¢Y) .
X@OW=) ~ a0 T o=q®) (8.3.52)
Replacing g by —q, we obtain
d=a) _ _ bl=0) _ =) 3353

ax(=°)¥(e*)  qb(=¢°) &(-¢'®)
Using (3.3.52) and (3.3.53) in (3.3.50), we obtain (3.3.48). Thus, we complete
the proof.

The theta-function identities in the following theorem were recorded by
Ramanujan in the unorganized portions of his second notebook [28, p. 310].
Berndt [12, p. 185] proved this theorem by using paramneterizations. Here
we give alternative proofs by using other simple theta-function identities, of
Ramanujan. co

Theorem 3.3.11. [12, p. 185, Entry 83] For |q| < 1

: (,253((]1/3) $*(q) 1/3f3(‘] ) 2/3f (—-4°)
() o e o R RS 3)354
(ii) P3(g') =¢3(Q)+3 1/3f( ‘1)+3 2/3f (( %) )
vig)  ¥(g®) f(—9) f(-(s)a )
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Proof of (i): Replacing g by ¢'/3 in (3.3 9), we find that

$*(@'?) %) | L9 4Ya) ‘
() 3 () +3 pYsy = (q) (3.3.50)
Multiplying both sides of (3.3 56) by ¢*(¢°)/#(q), we obtain
$°(¢'%) _ ¢*(a) | 0a/*)¢(g%) ‘,,3 . 13“ .
2 9@ T e (9a) = (0" - (3.3.57)
Now, replacing ¢ by ¢*/® in (3.3.23), we obtain
$(a/°) = 8(4*) + 24" x(q)w(~¢*). (3.3.58)

Employing (3.3.58), we deduce from (3 3.57) that
$%a'%) _ 859 | o sV |, 2 X (@VH(=1)8(e°)

= 6
o) o) o) T #a)
(3 3.59)
From (2.2.3), we note that
XO_ L od) 1
e R B [ Rl s (33.60)
Using (3.3.60), (2.2.2) and (2.2.4) in (3.3.59), we arrive at:
453(0!/3) _ ¢*(q) 1/3&‘7_3) 2/3f3("qﬁ)
s e T T R
which completes the proof of (3.3.54).
Proof of (ii): From (3 3.5), we obtain
3 (~¢'7?) +3 ¥ (=¢'%) Y(=¢'%) _ (=q) (3:3.61)

+3 = .
3 (—¢%) " T¢PY(=4%) " TaRY(-¢®)  qyi(-¢%)
Multiplying both sides of (3.3.61) by q¥*(--¢%)/%(—q), we deduce that

¥(=0") _¥=9) 5 as¥ (=0 )=e")
Y(-q)  ¥(-¢%) P(~q)

(W(=4"%) + ¢'o(=¢%)) .
(3.3.62)
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Replacing ¢ by —¢, in (3.3.62) we find that
¥ (¢'%) _ ¢*9)

v(@)  Y(e) ¥(q)
Now, by (3.2.4) and (3 2 2), we obtain
_ #(—4°) 9
¥(q) = Eroh q(q’).

Replacing q by q'/3, we rewrite (3.3.64) as

P(g'®) = i(( (2)) +¢"%y(¢%).

Employing (3.3.65), we obtain from (3.3.63) that

@) W) L s ERED) . 2P )b =)
2@ e T e T w(ax=a)

From (2.2.3), we now note that

(Qx(-9g) = f(-¢*) and x(-9)f(-¢*) = f(-9).
Using (3 3.67), (2.2.2) and (2.2.4), we conclude that

1/)3((]1/3) ¥*(q) 1/3f( q°) 2/3f( %)
s = T e Y e

which is (3.3.55)

3.4 Modular Equations

+ 3q1/3¢(q1/3)w(q3) (,w(ql/B) _ ql/3,¢1(q3)) )

(3.3 63)

(3.3 64)

(3 3 65)

(3.3.66)

(3.3.67)

In this section, we find, except. for two mod;,xlar equatlons hew prc%ofs of
Ramanujan’s modular equations of composite’ degree 9. Throughout this
section, suppose @ and v are of the third and ninth degrees, respectively,
with respect to a and m = z;/z;3 and m' = z3/2z9 are the corresponding

multipliers.
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Theorem 3.4.1. [11, p. 352, Entry 3(x)] We have

13 cv3(1—a):‘\'1“ 3 ,
1+4 (————ﬂ(l_ﬂ) ) — (3.4.1)

Proof: From (3.3.29), we obtain

i

_ 3
(39(-4") - 9(-0))* = 8*() 51 (3.4.2)
Replacing g by —g. we obtain,
3 1/3
36 - () = 20(-0) { £ (343)

Transcribing (3.4.3) by usiug (2.2.11) and (2.2.17), we readily obtain (3 4.1).
Theorem 3.4.2. [11, p 352, Entry 3(ii)]

1/3 73(1 -7)? et _ ; .
1+4 (—————ﬁ(l —7) ) = vaiun'. (3.4.4)
Proof: By using (3.2 3) and (3.2.1), we find that
¢(q) = ¢(¢°) + 2ax(¢°)¥(~¢"). (3.4.5)

Transcribing this by cinploying (2.2.11), (2.2.17), and (2.2.25). we easily
deduce (3.4.4).

Theorem 3.4.3. [11, p. 852, Entry 3(iu)] We have
VY ) e R (3.4.6)
B(1 - B)? T B

Proof: Multiplying (3.3 10) and (3.3.34), and then transcribing the resulting
identity by using (2.2 11), (2.2.13), (2.2.16), and (2 2 25), we casily arrive at
(3.4.6).

Theorem 3.4.4. [11, p. 352, Entry 3(1}! We have

33 1/24 31 _ 1/24
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For a proof, see [11, p. 355)].
Theorem 3.4.5. (11, p. 352, Entry 8(v)] We have

()2 + {(1 = a)(L =)}
+2{48(1 - B = 1+ 8{B(1 - B)}/*{av(l = a)(L —¥)}'/B.  (34.8)

Proof: Using (3.4.6) in (3.4.36), we obtain
(@) + {(1 = a)(1 =~ N}
1/24
+2{4p(1 = B)}/° {1 — /3 <a373(1 — o)1 - 7)3) } =1. (34.9)

(- A7
Simplifying this, we casily arrive at (3.4.8). to complete our proof.

Theorem 3.4.6. [11, p. 352, Entry 3(un)] We have

{a(l = NP+ {31 — a)}/E = 2Y3{p(1 - p)}/*, (3.4.10)
Proof: Adding (3.3.10) and (3.3.34), we find that
$(0)8(q°) = ¥(0)d(—a"*)x(¢®) + a¢(—a*)¥(a°)x(¢%). (3.4.11)

Transcribing this via (2.2.11), (2.2.13), (2.2.16), and (2.2.25), we deduce
(3.4.10) to complete the proof.

Theorem 3.4.7. [11, p. 352, Entry 3(z)] We have

8 (1= \" (A=)

7 - = r 4.12
(a) * (1 - a) a(l — ) mm 3 )
Proof: We transcribe (3.3.41) by (2.2.13), (2.2.16) and (2.2.17) to arrive at
(3.4.12).

Theorem 3.4.8. [11, p. 552, Entry 9(zi)]

(2)"+ (222)"- (=) " sy

Proof: In this case, we transcribe (3.3.48) to deduce (3.4.13).
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Theorem 3.4.9. [11, p. 352, Entry 8(zu)] We have

(ﬁ)”“+( (1 - By )‘“_( F2(1 - 6)? )""__3'_@
oy (=T =) ol -a)(i=7/) ~
(3.4.14)

Proof: Replacing q'/3 by —q in (3.3.5) aud cubing both sides, we obtain

 9(g) )’“‘_ ) .
(1 w@®) =T ) (3.4.15)
Simplifying this, we find that
v (q*) We) . vle) _
@eR@ M T e T (3:410)
Replacing g by —q. in (3.4.16), we obtain '
__ Y'(=¢’) ¥(—¢°) ¥(-q)
I = 3.4.17
cnbz(—q}dﬂ(—q“)Jr3 ¥(-9) RS (3410

From (3.4.16) and (3.4.17), we deduce that
P )
W (Q¥*(¢®) v (—q)¥?*(—¢°)

_a (V) U= L) w0 _ |
"Sq(ww) w<—q>>+q(<p<qv> w(—qg)) 6 (418)

Employing (3.3.41) and (3.3.48) in (3.4.18), we find that

¥4(¢%) _ Vi(—¢%) _ d(—g'®) B é(=q%) |
(11/)2((1>1/)2((]9) qt/)z(—q)'(/;2(_q9) = -3 ¢(_q2) (fJ(—(]‘B)' (34 19)

Now, replacing ¢'/¢ by g in (3.3.6) and then simplifying, we deduce that

o(7°) | ¢la) _ ¢*(¢*) .
5 5 = (3:420)
Replacing g by —¢?, in (3.4 20), we obtain
3800 L A=)y, (=0) (3.4.21)

#(—q¢%) &~ 1118) P ~q?)P?*(—¢'®)
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Now, using (3.4.21) in (3.4.19), we find that
V) ) #(=d)
a2 () (¢®) ¢ (—q)¥*(—¢") ¢*(—¢?)¢*(—q'®)

Transcribing this by using (2.2.13), (2.2.17) and (2.2.17), we easily deduce
(3.4.14). '

(3.4.22)

Theorem 3.4.10. [11, p. 852, Entry 3(xiii)] We have

(B () - () -5 o

Proof: Replacing g by ¢* in (3.3.5) and then simplifying, we find that

' P2 (—g)?(—¢° b(=q)p(—¢%) , , 2,2 :
1 - 3q (w‘?()%q(ﬁ) ) _ (1/1:1()11(03)(1 ) (¥*(=q) +3¢"y*(=¢")) . (3.4.29)

Again, multiplying (3.3.42) and (3.3.49), we find that

9
V(=q) + 3¢9 (~¢°) = M‘j—’ ~dg(-g(=a").  (34.25)

x*(q®
From (3.4.24) and (3.4.25), we obtain

VA=) (=¢%) _ v(=a)d(=¢")$(4)d(¢°)
Yi(-¢°) PU=g)x(e®)
Multiplying (3.3.39) and (3.4.26), we find that
Y=g (=¢") _ $*(a)4*(¢°) ( , W(—q)w"(—qQ)) :
= . 1-3 . : 3.4.27
Pi(—¢*) ¢*(¢°) Pi(=¢%) ( )
We transcribe this by employing (2.2.11) and (2.2.17) to arrive at

1+q (3.4.26)

l+g¢

m_ (el g (- )= ) o

m (B(1 = p))'/? m' (B(1 = pB))1/2

Using the expression of —3m/m’ from (3.4.14) in (3.4.28), we readily deduce
(3.4.23) to complete the proof.
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Theorem 3.4.11. [11, p. 352, Entry 8(zw)] We have

213{p(1 — p)}H/™ _/m
{al=N}B - {yOA -}~ V"

Proof: Subtracting (3.3.10) from (3.3.34), dividing the result by 2, we obtain
¢*(@°) = v(0)¢(~a"*)x(¢°) — a¢(—a")¥(a°)x(g%). (3 4.30)

Transcribing (3.4.30) via (2.2.11), (2.2.13), (2 2.16), and (2.2.25), we eastly
arrive at (3.4.29).

(3.4.29)

Theorem 3.4.12. [11, p. 352, Entry $(sv)] We huve
(al/4 _ 71/4)4 + {(1 _ ,7)1/4 _ (1 _ a)l/4}4
. = ({a(l = M)} = {(y(1 = )} /4 (3.4 31)

Proof: From (10, p. 338], we note the following general result of Ramanujan:
If the modular equation of degree n — 1 is

{aBY" + {1 -a)1 =B}/ =1, (34.32)
then
{{a(1 =8P/ = {B(1 = )} /"y
— {al/n _ ﬁl/n}n + {(1 _ ﬂ)l/n _ (1 _ a)l/n}n' (3 433)

is & modular equation of degree (n — 1)2.
Now, we know from Entry 5 [11, p. 230] that

(@) + {(1 - a)(1 - B}V = 1. (3.4.34)
where 3 has degree 3 over a. Thus,
(@ =y {1 =) = (1= )4}
= ({a(1 =N} = (71 = P4, (3.4.35)

where v has degree 9 over a. This completes the proof.

Theorem 3.4.13. [11, p. 852, Entry 3(zvi)] We have

L= (a2 +{(1 - a)(1 =1} + 24801 - ﬁ)}‘”% (3436)
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Proof: The proof of this modular equation is sornewhat different in nature
from the other proofs

Setting u = 5, v =4, A =1, B = —1 in Schéter’s formula (4.3.20), we
deduce that

1
518(Q)¢(~q) — ¢(-Q)¢(9)} = - 20f(-Q% Q") (—¢% —¢'?)
-2 f(-Q* Q") f(~¢", ~¢'°), (3.4.37)
where Q = ¢°. Now, G(q) and H(q) are known as the Rogers-Ramanujan
functions defined in (1.1.15) and (1.1.16) . Ramanujan (29, pp. 236-237]

found forty modular relations for G(q) and H(q), which are called Ramanu-
jan’s forty identities. The sixth of these forty identities is

f*(=4%)
(=) f(=¢%)
where f(—q) is as defined in (1.1.10). The first proof of (3 4.38) was given'
by Rogers (32]. Berndt et al. [16] and Baruah et al. [8] also found several
new proofs.

Now, using the Jacobi triple product identity (1.1.6) in (1.1.15) and
(1.1.16), we easily find that

G(Q)G(a) + ¢*H(Q)H(9) = (3 4 38)

f(=¢ —¢°)

Gq) = ——————
@ f(=9)

Employing (3.4.39) in (3.4.37), we find that

and  H(q) = [0 -4Y) (3.4.39)

{#Q)p(~0) - $(-Q)s(0)}
= ~20{G(Q")0(¢") + PHQVHEN [~/ (=), (3.4.40)

Replacing ¢ by ¢* in (3.4.38). and then using the resultant identity in
(3.4.40). we deduce that

{6(@)6(=q) - ¢(-Q)b(@)} = —24/*(—¢"). (3.4.41)

Replacing ¢ by ¢'/2, we obtain
{#(Q)9(=4"") - d(~QV")9(¢")} = —2¢'2f*(=¢").  (34.42)

We complete the proof by transcribing (3.4.42) by employing (2.2.14), (2.2.15)
and (2.2.21).
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Theorem 3.4.14. [15, p. 370, Entry 27]

1/8 1 — 1/4 1/8 1— 1/4
@ o vim' + i =(& + al .
0% 11—« mm/ v 1—7

Proof: From (3.3.3) and (3.3 28), we deduce that

P(q)p(—q") — 3qv(¢°)b(—a°) = ¥(Q)d(—q) — q¥(¢°)b(—q).
Employing (2.2.6) in (3.4.44), we obtain

(3.4.43)

(3.4 44)

b(9)$(—q") = 3q9(¢”*)P(=¢""%) = Y(g"")p(~¢"*) — ¥ (¢°)¢(—q). (3.4 45)
Transcribing this by employing (2.2.12), (2.2.16), (2.2.19), and (2.2.20), we

easily arrive at (3.4.43).
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Chapter 4

Some New Proofs of Modular
Relations for the
GoOllnitz-Gordon Functions

4.1 Introduction

We recall from Chapter 1, that for |¢| < 1, the Rogers-Ramanujan functions,
are defined by

- 1

= . 41.1
Z: q,q)n (9:0°)oc (9% 4°) oo (4.1.1)
00 n 24n 1

- 4.1.2
;(q Do (6% 7%)e0(9% 6% oo (4.1.2)

when the later equalities are the famous Rogers-Ramanujan identities. Ra-
manujan recorded forty modular relations for G'(q) and H(q) in a manuscript
published with the lost notebook [29]. These are now known as Ramanujan’s
forty identities. Darling (23] established one of the identities in 1921 in the
Proceedings of London Mathematical Society. Rogers [32] established ten of
the forty identities including the one proved by Darling. Watson [36] proved
_ eight of the forty identities, two of them from the list that Rogers proved. In
1977, Bressoud ([19]. [20]) generalized Rogers’ results to prove fifteen from
the list of forty. In 1989, Biagioli {17] used modular forms to prove seveu of
the remaining nine identities. Recently, Berndt et al. [16] have found proofs
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of 35 of the 40 identities in the spirit of Ramanujan’s mathematics. For the

remaining 5 identities, they also offered heuristic arguments showing that

both sides of the identity have the same asymptotic expansions as ¢ — 1-.
Now, we recall the definitions of Gollnitz-Gordon Functions,

(4,090 1 .
S(q) =Y 2 llngnt o , 4.1.3
@)= G~ G P P (.13
m ]
(_q;qz)n 242 1
T(q) =) ~—ihgw+2n . 4.1.4
(@) — (g% 9%)n I (7% 6%)oo(9%; ¢%) o (9% ¢8)co (4.1.4)

Many of the Géllnitz-Gordon identities are similar iu character to the Rogers-
Ramanujan’s identities. For example, the quotient of G(q) and H(gq) gives the
Rogers-Ramanujan continued fraction, while the quotient of S(g¢) and T'(q)
gives the Ramanujan-Gollnitz-Gordon continued fraction [28, Vol. 2, p. 229].
Chan and Huang [21] succeeded in obtaining several relations involving the
Ramanujan- Gollnitz-Gordon continued fraction. Motivated by the similarity
between the Rogers-Ramanujan and Gollnitz-Gordon functions, S.-S. Huang
[26] and Chen and Huang {22] derived 21 modular relations involving S(g)
and T(q), one new relations for G(q) and H{q), and 9 rclations involving both
the pairs G(q), H(q) and S(¢) and T(gq). They used the methods of Rogers
[32], Watson [36], and Bressoud {19]. In this Chapter, we find alternative
proofs of the modular relations involving only S(q) and T'(g) by employing
Schréter’s formulas and theta functions identities. We also find several new
modular relations, and many more can be found by using the saine method.

In Section 4.2, we give the list of the modular relations for the Gollnitz-
Gordon functions which will be proved in this chapter.

In Section 4.3, we state some preliminary results.

In Sections 4.4-4.12, we present the proofs of the identities listed in section
4.2.

In our last section, we present the new modular relations for the Gollnitz-
Gordon functions.
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4.2 Modular Relations for the Gollnitz-Gordon
" Functions

For convenience, we denote f(—¢") by fn.

3

S(q)S(q)+qT(q>T(q>={§-j-%} | (4.2.1)
$(@)S(0) - T (@)T(0) =20 {%} , (42.2)
S(¢"T(q) - ¢*S(g)T(¢") =1, (423)
S(g*)S(q) + ¢*T(¢*)T(q) =ff]3ffl42 (4.2.4)
S(@)T(q) - ¢S(@T(¢") = ffaff (4.25)
S(¢*)5(a) + ¢*T(¢)T () =§j§;‘j, (426)
S()T(q) - ST (¢") =ff§, (42.7)
S(T() - 4T :%— (4.2.8)
S(@)T(@) - ¢*S(@)T(¢") = f}f (429)
S(¢°)S(q) + ¢T(¢")T(g) =ifl;—ff7f (4.2.10)
ssto ¢ LBl
) - - Ealdulse o

S(g®)S(¢®) + ¢*T(*)T(¢°) _

S@OT@) 7 S@TES) (4.2.13)
S(g*)S(q) + ¢*°T(¢*)T(q) =f2f3f12f13f52f78 (4.2.14)
S(qls)T(q3) - qss(qs)T(qls) h f4fbf2b'f39f15(),

S(QSS)S(Q) +q28T( 55) (Q) =f2f5fuf20f44f110 (4 9 15)
S(gMT(g°%) — ¢*S(¢®)T(¢"")  fifafr0f22fs5 220" '
S(g®)T(q) — *'S(Q)T (%) _ fafrfofas fso frae (4.2.16)
S(Q) (‘17)—C15( ) ( flf4fl4f18f63f‘252’

)
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{8(¢")S(¢%) + ¢°T(¢"T(¢*)HS(q")T(¢°) — ¢*S(¢*)T(q")}
- _ 1 {fzfzfzfmfmfmfzx _ Nfefefefarfaafaz }
29 \ fifafifihafasfes  fafshiafizfafusfea )’
{S(¢®)S(q) + "' T(®)T(9)}{S(¢*")T(q) — ¢'°S(9)T(¢*")}

(4.2 i7)

_ 1 {f2f2f2f3f14f14f14 _ JeJoSoS1JanSaafaz } (4.2 18)
29 | fifaifafafrfosfae  fafafiafufafeafsa )’ '
S@T(=0)+S(-0T@ = L2, =), (4219)
S(@)T(~q) = S(~q)T(g) = 2}?2’}‘8%(—(;2. —g"), (4.3 20)
2
S(q)S(—q) — qT(9)T(—q) = fz‘ff:/mf(_q’qs)' (4.2.21)

4.3 Preliminary Results
Lemma 4.3.1. [11, p. 40, Entry 25/ We have

é(a) + ¢(—q) = 26(¢%), (
6(q) — d(—q) = 4q¥(¢®), (
¢*(q) — #*(—q) = 8q¥*(¢"), (4.3.3)
#*(q) + ¢*(—q) = 24°(¢°)- (
Lemma 4.3.2. [11, p. 48, Entry 31 with k = 2] We have

f(a,b) = f(a®b,ab®) + af(b/a,a’’). (4.3.5)

Lemma 4.3.3. (11, p. /6] We have
f(a,b) + f(—a, =b) = 2f(a’b,ab?). (4.3 6)

Lemma 4.3.4. [11, p. /6] We have
fla,b) = f(—a,—b) = 2af(b/a,a’t?). (4.3.7)

Lemma 4.3.5. [11, p. 46] We have
f(a,b)f(=a,—b) = f(—a?, ~b")¢(—ab). (4.3.8)
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Lemma 4.3.6. [11, p. 51, Example (iv), with q replaced by —q] We have

2y _ ¢ f2(_q3’ __qS)
#(q) + ¢(¢°) = 2T (4.3.9)
and /2 .
_ 2) — 2 —4,—9q .
¢(q) — ¢(q°) iy (4.3 10)
Lemma 4.3.7. [26, Lemma 8.1] We have
2 S 2
S(@)T(g) = f%f; #(q) = f?g, ad w) =2 43
Lemma 4.3.8. We have
ety = fife _f _Ji
¢(—q) = 7 Y(—q) = T f(q)—flf4, and x(q)..flf4. (4.3.12)

Proof: These identities easily follow from Entries 24-25 [11, pp. 39-40].
Lemma 4.3.9. We have

7~ —¢) = 2is(g), (4313)

fa

and LS
fl—q,-q") = —}2—4T(Q)- (4.3.14)

Proof: By [22, Lemma 2.6] and (1.1.9), we note that
¥(=¢*)f(-¢% —¢°)

S(q) = 4.3.15
(9) T (4.3.15)
and . ,
f1fs
Using (4.3.12) we complete the proof.
Lemma 4.3.10. [11, Corollary, p. 49] We have
¥(g) =f(¢°¢"°) + af(¢*,¢"). (4.3.17)
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Replacing q by —qg 1n (4 3 17), we have the following useful result

Lemma 4.3.11. We have
¥(-q) = [(¢% ¢"°) — af(d*. ¢") (4 3.18)

In the following six Schioter’s formulas, we assume that w and v arc
mtegers such that u > v >0

Lemma 4.3.12. [11, p. 67, (96.1)] We have

A [[+U u.+u Ji— u q /1+u -—q;u-u _ H—v qu—u
A, T (B, L) + f(=Ag+, -0 (- B, - L))
= Z ( ) g (A“—quﬂﬂmxuz-un B"”q(?u-ano(m—v”>
‘ Butv T Au-v
m=
_— q2u-—4um
u+4vm 3 1C
xf(ABq T ) (4319)

Lemma 4.3.13. [11, p 68, (36 2)] We have

1 grty uy 447

S, Ty (B, T) - f(=Ag™,

u=1
=A Z(AB)mq(Zm+l)(u+u)+2un12

(2p—dm~-2)(p? ~1?)
p—v putv (2p+4m+2)(p? -v?) q
X f (A B q ! ! Au-v Butv )
x /- 4;t+2u+4um Eq—'zu—lium ) (43 20)
"A
Lemma 4.3.14. [11, p 69, (86 7)] If p 1s odd, then

V(@)@ ) = Sy ()

(u-1)/2

+ Z qymz—umf(q(u+2m)(“3—u7)’ q(u-2m)(p7—-u2))
m=1
x f(g™™, g™ (4321)
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Lemma 4.3.15. [11, p. 69, (36.8)] If u 1s even, then
(@)Y ™)

p/2-1

_ ¢(qp(p -v ) 1/} 2;: Z q;ml —-vm

m=1

X f(q(#+21u)(# -v?) q(u 2m)(p? —uz)) (q2um’q2u-2um)
+ @A 2y (g “NF(@*, ). (4.3.22)
Lemma 4.3.16. [11, p. 69, (36.9)] If u 1s odd, then

YA+ W) =g (D) (g gt )

\ (u-3)/2
+ Z qum(m+1)f(q(p+'2m+l')(p2—u2), q(p—2m—-1)(p2—u7))
m=0
v /(qu+u+2um’q;;-—u-2um). (4-3'23)

Lemma 4.3.17. [11, p. 69, (36.10)] If u is even, then
P(g (")

u/2-1
- Z (Ium(m+l)f(q(u+2m+1)(;;2-uz), q(u—2m-—1)(;17—u2))/'(qu+u+2um, qu-u—Qum).

m=(

(4.3.24)

4.4 Proofs of (4.2.1) and (4.2.2):

Proof of (4.2.1): Adding (4.3.9) and (4.3.10), we find that
FA(=d*=¢") + af* (=9, —¢") = ¥(—a)¢(q) (4.4.1)
Employing (4.3.13), (4.3.14), (4.3.11), and (4.3.12) in (4.4.1), we casily arrive

at (4.2.1).
Proof of (4.2.2): Subtracting (4.3.10) from (4 3.9), we obtain

FA=¢% —d") —af*(—q, —q") = v(—9)b(¢?). (44.2)

Employing (4.3.13), (4 3.14), (4.3.11), and (4.3.12) in (4.4.2), we easily de-
duce (4.2.2).

o4



4.5 Proofs of (4.2.3) - (4.2.5):

Proof of (4.2.3): Putting u = 4, v = 3 in (4.3.22), it can be shown (11, p.
315, (19.1)] that

Y(Q)w(q") = ¢(a**)W(q®) + v (g")v(a®) + ¢®¥(d*)p(q*). (4.5.1)

Replacing q by —q in (4.5.1), and then subtracting the resulting identity from
(4.5.1), we find that

Y(@Y(g") — P(—)w(-q") = 2q%(qa" ) (q?). (4.52)
Using (4.3.17) and (4.3.18) in (4.5.2), we obtain
F(@E ) (@20 + ¢ (60,00 (", 6%%) = w(a*)u(4?). (4.5.3)

Replacing ¢% by —¢ in (4.5.3), we deduce that

f(=a,=a"Vf(=¢"" ~®) = @ f(-¢*, —¢*) [ (~¢", ~¢*) = w(—ff)zﬁ(?q} )
4.5.4
Employing (4.3.13), (4.3.14) and (4.3.12), we obtain (4.2.3). So, we complete
the proof.
Proofs of (4.2.4) and (4.2.5): Putting 4 = 2 and v = 1 in (4.3.22), we find
that

()¥(a®) = d(¢°)(e") + av(g'*)e(g*). (4.5.5)
Replacing ¢ by —q in (4 5.5), we obtain
P(—)¥(=¢%) = d(°)W(a") — av(q™?)e(q?). (4.5.6)

Adding (4.5.5) and (4.5.6), we arrive at

()¥(a®) + Y(~9)¥(—¢°) = 26(¢°)u(q").
Using (4.3.17) and (4.3.18), this can be written as

£(g%a) f(a"%,¢*) + ¢*f(d% ") f(a°, ¢*) = &(¢®)w(q"). (4.5.7)

Replacing ¢? by —q in (4.5.7), we find that

(=, —-®) f(=¢*, =0 + f(—a, —4") f(—¢*, —¢*") = &(—a*)¥(q?).
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Using (4.3.13), (4.3.14), (4.3.11) and (4.3.12) in (4.5.8), we easily obtain

_hh

S(¢%)S(q) + ¢*T(¢*)T(q) = i

Thus, we complete the proof of (4.2.4).
Now, subtracting (4.5.6) from (4.5.5), we find that

P(@)¥(q*) — Y(—gv(—¢*) = 2q¥(q'?)d(q?)

(1.5 9)

Using (4.3.17) and (4.3.18) on the left hand side, this can be written as

£(a'%, ) f(¢% a") + £ (d% ¢ (g%, 4'°) = b(a®)v(g"?).

Replacing ¢% by —q in (4.5.10), we obtain

(4.5 10)

f(=¢®, =) f(~0.—q") — ¢/ (-¢*, - ) [(—¢*, —¢°) = d(—q)¥(¢").

(4.511)

By use of (4.3.13), (4.3.14), (4.3.11), and (4.3.12) in (4.5.11), we casily airive

at (4.2.5) to complete the proof.

4.6 Proofs of (4.2.6) and (4.2.7):
Proof of (4.2.6): Using (2.2.7) in (2.3.8), we find that
#(=¢") | (¢(05)w(q‘°) ¢(—q5)w(q‘°)> _1

¢*(—¢%) $@p(@)  $(-9v(ed)

Employing (2.2.5), this can be written as

10
L (9-0)0l6) ~ Ha(~47) = P(=¢") = #(=4").
With the help of (2.3.9), we deduce from (4.6.2) that
¥(g')

W) (4¢° F(—q") f(=%)) = ¢*(—=¢"") — &*(—¢*).

Replacing g2 by q in (4.6.3), we find that
5
%-(((L—)) (49f(=*)f(=4")) = #*(=¢°) — ¢*(~9).
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Replacing ¢ by —¢ in (4 6.4), we obtain

J/v)ﬁ((—_f)) (4a/(=¢")f(=4")) = ¢*(4°) - 6"(0). (4.6.5)

Subtracting (4.6.5) from (4.6.4), and then using (2.2.6) and (4.3.3), we find
that

2\ £ 10
LCE) bawt-a) + 9(-aie?) = 2 (07(a") - 0H(a™)

(4.6.6)
Replacing ¢ by ¢* in (2.3.16) and using in (4.6.6), we deduce that

2 2 20 20
Q=) + o 5 = o=)Y()E(~¢) [ (—¢"") 46T
(@)Y(—¢°) + P(~q)(q®) ) f =)= (4.6.7)
Employing (4.3.17) and (4.3.18) in (4.6.7), and then replacing ¢* by —q in
the resulting identity, we deducc that

(-8 =) (=4, -®) + @ f(~q, -0 f(-¢°, —¢%)
_ Sa(=0)é(=a")/(~¢")
f(@f(@®)x(—¢) '

Employing (4.3.13), (4.3.14), (4.3.11), and (4.3.12) in (4.6.8) we easily deduce
(4.2.6) to complete the proof of (4.2.6).

Proof of (4.2.7): Adding (4.6.4) and (4.6.5), and then using (2.2.6) and
(4.3.4), we find that

29f(-*) f(=¢") Sy b V(o BY) . A2(2Y _ 42( 10
p Qs Yo (W(Q)%(=¢°) — Y(~9)v(d)) = ¢°(¢°) ~ ¢*(¢"). (4.6.9)

(4.6.8)

Using (4.3.12) in (2.3.1), we find that
¢*(q) — 6°(¢°) = 4ax(9) S (—4°) [ (= ). (4.6.10)

Replacing ¢ by ¢? in (4.6.10) and using in (4.6.9), we find that

W) - wi-gu(e?) = MEUOHLIETD (g1
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Employing (4.3.17) and (4.3.18) in (4.6.11), and then replacing ¢ by —q in
the resulting identity, we obtain
f(=0, =) f(=0", =0%) = ¢ f(~¢*, =¢°) [ (~4°, —4°)
_ x(=9)¥(-a)#(q)/(~¢%)
f(q)
Employing (4.3.13), ‘(4.3.14), (4.3.11), and (4.3.12), we easily deduce (4.2.7).

(4.6.12)

4.7 Proof of (4.2.8):
We recall from (4.3.18) that

C (=) = f(¢°q°) ~ af(¢*,¢"). (4.7.1)
Using (4.3.8), we write (4.7.1) as

—q) = f(=4" —¢*) _ f(=a* -¢*) 16 7.
vma) = { f(—q% —q'%) qf(—q2,_q14)}¢( q°) (4.7.2)

Employing (4.3.13), (4.3.14), (4.3.11), and (4.3.12) we easily arrive at (4.2.8).

4.8 Proofs of (4.2.9)-(4.2.10):

Proof of (4.2.9): Using (3.2.2), with q replaced by ¢°, in (3.2.4), we find

that (=)
P(g) — qv(q°) = ﬁ(_ga). (4.8.1)
This can also be written as
P(g) . o(=4") :
—_— =l 4.8.2
qy(q°) - q¥(q%)x(—¢%) (4.82)
Employing (3.2.1) in (4.8.2), we obtain
¥(q) o(—q°)
—_ =l —_— 4.8.
(%) * af(-q¢%, —q'%) (483)



Replacing g by —q. we find that
Y(=q) $(q°)

e T d@e (484
Adding (4.8.3) and (4.8.4), and then using (1.1.8), we deduce that
Y(@)¥(=¢°) - v(=q)¥(q°)
Y(e)W(~¢°)
= 9g4 @9 (4 =0) = [(=0°, ~4")f(a’. ") (4.8.5)

f(¢%,9)f(—¢* —4*°) '

Employing (2.2.10) and (4.3.8), witha = ¢, b =¢'®, c=d = —¢°, in (4.8.5),
we deduce that

YQY(=¢°) — ¥(=q)¥(d®)
¥(q°)¥(—q°)

Using (2.2.6), this can be written as
V(@P(=¢") = Y(=)¥(q’) = 2q9(qg"*){b(~¢") + ¢ f(=¢", =¢™)}. (48.7)
Employing (3.2.3) in (4.8.7), we deduce that ‘
PQOP(~0") — B(-a)¥(¢®) = gu(g"®) (36(=¢"*) — #(-¢")}.  (4.88) -
Now, using (3.2.1) in (3.2.3), we deduce that
(—q°) — ¢(—q) = 2qu(¢")x(—4°). (4.8.9)

Using (4.8.1), we rewrite this as

3 f(=¢%, —¢%)
G

=2q+ 2q (1.8.G)

$(~q") — #(—q) = 2(g)x(—¢") — 2¢(—¢"). (4.8.10)
Thus,
3¢(~¢") = ¢(=9) = 29(g)x(~7"). (4.8.11)
Replacing g by ¢% in (4.8.11), and then using it in (4.8.8), we find that
P(@¥(=¢°) - ¥(—9)¥(d®) = 2q9(q**)%(¢")x(~¢"). (4.8.12)
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Invoking (4.3.17) and (4.3.18), and then replacing ¢* by —g, we deduce from
(4.8.12) that

(=", —a®) (=0, =q") = ¢ F (=, =) f (=", —¢*)
= %(=¢")v(-9)x(¢°). (4.8.13)
Employing (4.3.13), (4.3.14), and (4.3.12) in (4.8.13), we easily deduce (4.2.9).

Proof of (4.2.10): Subtracting (4.8.4) from (4.8.3), and then using (1.1.8),
we obtain

(¥ (=¢°) + ¥(=q)¥(q°)
Y(¢°)¥(—¢°)
_ f@®d%)f(=¢*, =) + f(=¢*. ="} f(¢®, ¢")
Employing (2.2.9), witha = ¢, b= ¢!, c = d = —¢°, and (3.2.1), in (4.8.14),
we deduce that

(4.8.14)

_9 _ 9y _ fA(=¢")
Y((=q) + ¥(-q)¥(q) = 2——, (48.15)
x(—q°%)
where we have also used from (11, p. 39, Entry 24(iv)}, that x(g)x(—¢) =

x(—¢?). Now, employing (4.3.17) and (4.3.18), and then replacing ¢* by —g¢,
we derive from (4.8.15) that

27T As\p(_ 3 5 5e(_ . T __9_63=f2(_q6) 4
f(=¢*, ="V (-4, —¢") + ¢ f(=q,-¢") [ (-q", —¢™) @) . (4.8.16)

Employing (4.3.13), (4.3.14), and (4.3.12) in (4 8.16), we easily arrive at
(4.2.10).

Remark: The sixth of Ramanujan’s 40 identities is given by

2(_ 3
G(Q)C() + PH(QH(S) = f(—fq()——f(i_% (4817)

where G(q) and H(q) are as defined in (4.1.1) and (4.1.2).
For proofs of (4.8.17), see [32] and [16]. With the belp of (4.8.12) and
(4.8.15), we now present a new proof of this identity.
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First, putting u = 5, v =4, A =1, and B = -1 in (4.3.20), and then
employing Entry 18 (iv) [11, p. 34], it can be deduced that
¢(@)6(—¢°) ~ $(~9)8(g°)
=49 {f(=¢*, =) f(=a", —¢"®) + ¢’ f(=¢*, ~9'*) f(=¢**, —¢'*™") } .

(4.8.18)
Using (2.2.7) this can be rewritten as
V2 (9)v*(—q%) — V2 (—q)¥*(¢®)
‘ Y(g*)v(q'®)
=4q{f(-¢*, - f(=a"%, —¢'"®) + ¢ f(—¢*, —¢'®) f (—¢*°, ~¢"**)}
(4.8.19)

Employing (4.8.12) and (4.8.15) in (4.8.19), we arrive at

f(=¢% =4 f(~9"% ~q¢'®) + ¢ f(—¢*, —¢") f(—¢%, —¢'**) = [*(=¢'?).
(4.8.20)

Using (3.4.39) in (4.8.20), we obtain

4 36 8 4 36y _ fz(—qu)

Replacing ¢ by g in (4.8.21), we easily deduce (4.8.17).

4.9 Proofs of (4.2.11)- (4.2.13):
Proof of (4.2.11): From Entry 9(iv) {11, p. 377], we note that

V(@)P(g"®) + Y(—g)v(~¢") = 20(¢")¥(q"). (4.9.1)
Using (4.3.17) and (4.3.18) in (4.9.1), and then replacing ¢g* by —q. we obtain

f(=0*, =) f(=¢", ~0") + ¢ f(=a, ~¢") f(=4"°, —¢'®) = ¥(~g¢ )«p(( 7°). )

4.9.2)

Employing (4.3.13), (4.3.14), and (4.3.12) in (4.9.2), we complete the proof
of (4.2.11).
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Proof of (4.2.12): From Entry 9(i) {11, p 377]. we have
P(eIW(G®) = Y(=¢")(=¢) = 2¢°%(a")%(d™). (4.9.3)

The rest of the proof is same as the previous one.
Proof of (4.2.13): Putting 4 =4, v = 1 in (4.3.22), we find that

P(@)P(g®) = ¥(g®)B(¢®) + *Y(d®)B(d®) + ¢ Y(@"*)d(g*).  (4.9.4)

Replacing ¢ by —¢q in (4.9.4), and then adding the resulting identity with
(4.9.4), we deduce that

W(@)W(G®) + w(=")¥(~a%) = 20(¢*)$(d%) + 20" ¢(a')p(q*).  (4.95)
Using (4.3.1) and (4.3.2) on the right of (4.9.5), we deduce that
W) + =0 W=5") = 5 (DOla) - 6-0)0(~¢")).  (490)

Employing (2.2.7) we can rewrite this as

, _ PH@PA(g"®) — ¥ (=) (—¢") c
1/’(‘15)1/’(‘13) + "/’(—‘15)‘/1(“13) = 2qv(¢2)¥(q%) . (4.9.7)
Thus,
W) +Y(=PW) _ $@ule) +oav(=e) o
PY(q)¥(g'®) — P(—q)¥(—¢"°) 2q9(g?)¥(¢*°) ' '

Employing (4.3.17) and (4 3.18) in (4.9.8), replacing ¢* by —q in the resulting
identity, and then using (4.3.13), (4.3.14) and (4.3.12), we easily deducc that

S(¢°)S(¢%) + ¢*T(¢°)T(q°) _ {5(¢°)8(q) + ¢°T(¢"*)T(q }fzfsfsfnfzofao
S(q'®)T(q) — q"S(q)T(q"®) fifafofrofisfoo

Now, an application of (4.2.11) easily yields (4.2.13).

(4.9.9)

4.10 Proofs of (4.2.14)-(4.2.16):

Proofs of (4.2.14)-(4.2:16) are similar in nature. So, we give details only for
(4.2.14).
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Proof of (4.2.14): In (4.3.22), we put 4 = 8, v = 5 to obtain (See [11, p.
75, (37.4)] for details)

B(a®)p(q®) — p(=a*)¥(-¢%)
=20 f(¢**, ¢")(¢", ¢"°) + 24" [ (a™, ) f(¢*,¢*). (4.10.1)
Using (4.3.17) and (4.3.18) in (4.10.1), replacing ¢* by —q, we find that
f(=¢"*, —¢"")(—=¢% —¢°) + ¢*°f(~¢%, —¢°") /(~q, =)
J(=4%,—¢®) f(~¢*, ~¢*) — ¢*f(—q"%, —¢*') [(~¢°, —q'5)
Employing (4.3.13) and (4.3.14), we arrive at the desired result.
Proofs of (4.2.15) and (4.2.16): To prove (4.2.15) and (4.2.16), we put

(p2,v) = (8,3) and (i, v) = (8,1), respectively, in (4.3.22) and proceed as in
the above proof.

=1 (4.10.2)

4.11 Proofs of (4.2.17) and (4.2.18):

Proof of (4.2.17): Puttingp =5, v =2, A=1, B= -1 in (4.3.20), we
find that

{8(a")(~¢*) - 7} = —4¢°{f(=¢"*, —¢"**)(—¢"°, —¢*)
q‘sf( 4, ) f(—q% ~ 1‘2)} (4.11.1)

Using (2.2.7) this can be written as
{w(@")(=¢") + ¥(¢*)W(—a" ) Hw(q" (- q ) = ¥(®)e(-¢")}
= —4¢*%(q" " )(d"){f (4™, —¢ l"8)( -q'°, —q")
- ¢ f(-q*, -¢"°) f(-¢*, —¢'))}. (4.11.2)

We now employ (4.3.17) and (4.3.18) on the left hand side of (4.11.2) and
then replace ¢% by —q. Then we use (4.3.13), (4.3.14), and (4.3.12), to obtain

(S(@)S(@) + PT@T@EHSE@T) - #S(g ">T<q’)}
-7 ff’f{‘z“fm{f(—q”“,—q (=% —?) — ¢ F(=g2 —"®*) f(~g*, —¢%)).

(4.11.3)
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Employing (3.4.39) in (4.11.3), we obtain

{S(g")S(¢®) + T (d")T(®*HS(¢)T(@®) - $*S(¢*)T(¢")}
=%§%}%§{G<q42)mq )~ G()H (g™)}. (411.4)

L

Now replacing = by ¢? in the fifteenth of Ramanujan’s forty identities
for the Rogers-Ramanujan functions [29, p. 236] (sce also [26, (R.15) and
(R.16)]), we note that

G(g'YH(¢®) + ¢* H(¢')H(¢®) = G(¢") H(d®) — *G(¢*) H(¢®)

_1 {f2f2f3f14f14f21 _ Nifefsfrfafar, }
2 \ Nifafsfrfasfae  fafshafufafsa )

Using (4.11.5) in (4 11.4) we easily find (4.2.17) to complete the proof.
Proof of (4.2.18): Replacing ¢ by ¢'/3 in (4.11.1), we find that

¢(q"*)b(—q) — d(q)p(—q""°)
— —4(]{f(-(]84, _q56)f(__q16/3, _(14/3)

(4.11.5)

—q16/3f(_(]28,—qllz)f(_(ls/3;“q4)}- (4116)
Now, replacing g by £¢7/3 in (3.2.3), we obtain
$(£¢"%) = ¢(xq™) £ 20f(¢",¢%). (4.11.7)

Again, from Entry 10(iii) and 10(iv) [11, p. 379), we note that
f(= =q) = f(=q",~¢") = ¢/ (=8, =) = " f(=¢*, =¢"). (4.11.8)
and
f(=4',—¢*?) = f(=¢*, =¢°)~¢"*{f(=¢", —q")+af(-q, —¢')}. (4.10.9)
Replacing q by ¢* in (4.11.8) and (4.11.9), we obtain

J(=¢*3 —¢*) = [(=d®, —¢*%) - ¢* f(~¢", —¢*%) = ¢**[(—¢"%, —¢*®). -
(4.11.10)

and
(=3, —¢"%3) = f(=¢*, =% — ¢*P{f(~¢"%, =¢*") + ¢*F(—¢*, —=7°%)},
(4.11.11)
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respectively. Employing (4.11.7), (4.11.10), and (4.11.11) in (4.11 6), and
then equating the rational parts from both sides of the resulting identity, we
deduce that

o(—q)o(g*") — dlg)d(—¢*)
= —4g{f(~¢*, )/ (—=¢*, —¢*°) + ¢* f(—¢®, —¢"'*) F(—¢"%, —¢**)}.
(4.11.12)

Using (2.2.7) this can be rewritten as

{w(=)¥(a™) + V(Qv(-gHHY(~0)v(d™) ~ v()v(~¢*")}
= —4gp(¢)V(g){f(=¢*, =¢*) [ (=¢", ~¢*) _
+ ¢ f (-4, ~¢"") [ (=g, —¢**)}. (4.11.13)
Employing (4 3.17) and (4.3.18) on the left hand side of (4 11.13), and then
replacing q? by —gq in the resulting identity, we arrive at

{f(=¢%, - ) (=4, =¢"®) + ¢" f(—q. ="V F(=¢*, =¢'"")}
x{f(~q,~¢") f(- q qm) 7°f(-¢", -9 (=", —¢"")}
= ¢(—q)¥(—¢ ){ (—-¢* ,—q”)f( 2, —-¢'%)
+4'f(-q “ -¢*)f(=¢° —¢*)}. (4.11.14)
Using (4.3.13), (4.3.14), (4.3.12), and (3.4.39), we easily deduce that
{S(¢®")S(q) + ¢"'T()T(q)H{S(¢*)T(q) - ¢"°S(q)T(¢*)}

_ fafefiafaa ;14 A 14 .
= T T B G() + g H (GO H(). (4.11.15)

Employing (4.11.5) in (4.11.15), we arrive at (4.2.18). Hence the proof is
complete.

4.12 Proofs of (4.2.19) - (4.2.21):

Proof of (4.2.19): Puttinga =1,b= —¢* c=qand d = —¢® in (2.2.9),
we obtain

f,-a"f(a.~-4%) =2f(q.4") f(-¢°, =¢°). (4.12.1)
Replacing g by —q, we have :
F(1,-q")f(~q,¢%) = 2f(-q,—q") [(d*, ¢°). (4.12.2)
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Adding (4.12.1) and (4.12.2), we find that
FQ, =g flg, 9" + f(=4,4")} = 2{f(a, 7)f( ~q ,~q') |
+ f(=9,~9) f(¢*,d°)}.  (4.123)
Using (4.3.6) in (4.12.3), we obtain
F =g f(=6° =4") = {£(0.9") (=", =¢°) + (=0, —a") f(*, ¢} }.

(4.12.4)
Employing (1.1.9) in (4.12.4), we deduce that

{Hg.d"V (=0, =¢") + [(~¢,~4)[(¢*,¢")} = 2¥(=¢") [ (~¢°, ~¢"*).
(4.12.5)
Using (4.3.13), (4.3.14) and (4.3.12), we deduce (4.2.19).
Proof of (4.2.20): Subtracting (4.12.2) from (4.12.1), we obtain

fQ,-¢"Y{f(g,—q -4,¢°)} = 2{f(9,9")f(-4*, —¢°)
- f(-9,~¢")f(¢%,¢>)}.  (4126)

Using (4.3.7) in (4.12.6), then using (1.1.9), we find that

{fla.4")f (=%, ~¢°) = J (=4, ~4")f(¢*,¢")} = 2q¥(~¢") f(—¢*, —q"").
(4.12.7)
Invoking (4.3.13), (4.3.14) and (4.3.12), we easily deduce (4.2.20). Thus, we
complete the proof.
Proof of (4.2.21): Putting a =g, b = —¢% c=¢% and d = —¢?, in (2.2.9)
and (2.2.10), we obtain

fla,-a*)f(@% —a*) + f(—4,6*) f(-¢*,¢") = 2f(¢*,¢°) f(~¢°, —¢°). (4.12.8)
£(g, - f(¢% —4") = f(=4,8°) f(-¢* &) = 2af(~q,~q") f(g,q). (4.12.9)
Subtracting (4.12.9) from (4.12.9), we find that
f(=4,6") (¢ =) = f(&, ") f(~¢*, ~¢°) — af(~9,~q") f(q,q"). (4.12.10)
Using (4.3.5), we obtain
fg* =¢%) = f(=¢%, —¢") = &(~7"). (4.12.11)
Employing (4.12.11) in (4.12.10), and then using (4.3.13), (4.3.14) and (4.3.12)

we complete the proof.
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4.13 New modular relations for the Gollnitz
Gordon functions:

Making different choices for , v, A, and B in the Schroter’s formulas (4.3.19)-
(4.3.24), and then using the methods as in the previous nine sections, one
can find many other relations for S(g) and T(¢). In the following, we give
some examples.

11 6 uy _ f2fiefufofafs 7 JoJo6 Jso Jos
S@)Ste™) + T fifafsfufafes  © fifiofsfa’ (4.13.1)
T(9)S(q") — ¢*S(q)T(q") = fefefesfos 7 faf3fsfaafraafia (4132)

B f3f4fuflaz I fxﬁafofufqafm !
{S(a")S(¢°) + 4" T(¢") T(¢°) }{S(q") ~ qT(q")S(¢°)}
= f2f2f2f10f14f70f70f70 _
{f1f4f5f7fzof28f35fz4u 1}' (4.133)
{S(¢®)S(q) + ¢"*T(q)T(¢*)}H{S(¢®*)T(q) — ¢""T(q°°)S(q)}
_ fefwfiw/wha/ishafo | 4 .
= Fhifofilmfulahe T4 4134

{S(9)S(¢™) + ¢“T(QT (" YHT(9)S(¢"") — ¢**S(9)T(¢"")}
_ fzfsfcfcfxsf:aflafsa —F
S1fafafo fr2f27 f36 fros ‘

Proofs of (4.13.1)-(4.13.5): To prove (4.13.1) and (4.13.2), we set u = 6 and
v =195 in (4.3.22), and then proceed as in the ploofs of (4.2.4) and (4.2.5).

To prove (4.13.3), (4.13.4) and (4.13.5), we use Entry 17(ii), (i) [11, p.
417] and Entry 4(iv) [11, p. 359, respectively, and proceed as in the proof of
(4.2.17). It is worthwhile to note that Berndt [11] used Schréter’s formulas
(4.3.19) and (4.3.20), and also other theta-function identities of Ramanujan
to establish these entries. One can also get many other analogous identities
from (4.3.19)-(4.3.24).

(4.13.5)

Remark: I am grateful to my mathematical brother Nipen Saikia for giving
the idea of proofs of identities (4.2.19)-(4.2.21).
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Chapter 5

Nonic Analogues of the
Rogers-Ramanujan Functions
with Applications to Partitions

5.1 Introduction

As mentioned in Chapter 1, H. Hahn [24] - [25] defined the septic analogues
of the Rogers-Ramanujan functions as

-\ ¢ {59 ) (6% 97)o(a g )oo
Ata) = ,Z;,(q%q n(—Gi @an (4% 9%)oo (5.1.1)
R N G C T S C T R C i e
Pla) = ,,ch:, (0% )n(~@ Qan (9% 0%)oo - 612)
and
_ = inint1) (q q )oo(q (17 oo(qsyq )oo
Cq) —;0 o ,.( P CIrom . (5.13)

where the later equalities are due to Rogers [30], [31] (These appear in the list
of L. J. Slater (34, p. 155, equations (33), (32) and (31)]). Hahn found many
identities involving only A(g), B(g), and C(q) as well as identities which are
connected with the Rogers-Ramanujan and Gollnitz-Gordon functions.
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Now, we define the following nonic analogues of the Rogers-Ramanujan
functions

Z q,q)an _ (4% 9%)o0(d%; 8°)oo(4”; 8°)eo (5.1.4)
4 )n(@% ¢%)on (% ¢%)o0 ’ o
B(q) i ¢ Q)sn(l — g z"*"’)q""("*" (7% 6°)oo(9": 8°)oo(9”; 8°)co |
(0% e (qJ;q3)oo
(5.1.5)
o) i=i (CT 1SS e U T W T W ELC A WS
n=0 (6% ¢®)n(4% ¢)2n1 (4% ¢*)oo

where the later equalities are due to W. N. Bailey (2, p. 422, equations (1.6),
(1.8), and (1.7)]. It is worthwhile to mention that, Bailey used non-standard
notation in the paper where these identities first appeared. All three of these
identities appear in the list of Slater [34, p. 156] as equations (42), (41), and
(40) in that order. However, all threc contain misprints. These misprints are_
corrected as given in (5.1.4)-(5.1.6) by A. V. Sills {33]. In this chapter, we
establish several modular relations involving D(q), E(q) and F(gq), which are
analogues of Ramanujan’s forty identities. We also establish several other
modular relations involving quotients of D(g), E(g) and F(gq). Some of these
are connected with the Rogers-Ramanujan functions, Gollnitz-Gordon func-
tions and Septic Rogers-Ramanujan-type functions. Furthermore, by the
notion of colored partitions, we are able to extract partition interpretations
from some of these identities.

In Section 5.2, we list our modular reiations.

In Sections 5.3-5.9, we present the proofs of the modular relations stated
in Section 5.2.

In our last section of this chapter, we find applications of some of our
modular relations to the theory of partitions.

5.2 Main Results

In this section, we present the modular relations for the functions D(q), F(g),
and F(gq), which we prove in this chapter. It is worthwhile to note that by
replacing ¢ by —gq in each of the following relations one can get more relations. -
For simplicity, we define, for positive integer n, D,, := D(q"), E, := E(q"),
and F, := F(q"). We also define f, := f(—¢°).

69



The identities (5.2.1)-(5.2.23) involve D(q), E(g), and F(q).

D!E, + qEXF, — gD\ F? =
DfF) Ele + QF2E1 =
—qE; ~¢F =

D¢E3F3 + qE¢D3F3 + ¢* FsD3E3 =
D5D4 + q E5E4 + q F5F
D¢D3 + ¢°E¢E3 + ¢°FyFy =

DyE, — ¢"ExFy + ¢ FyD, =

D:E, - qE3F\ + qF, D, =
F\Ds + qD\Es — ¢*F\Fy =

D\Dsg+¢°E\Ey + ¢°F Fy =
DnwE, - ¢*EyF +q FuD, =
DyDr + ¢ By By + ¢ R Fy =
DyF + ¢*D\Eyy — ¢°E\Fyy =
D33Fi + q'EpsDy — ¢ FygEy =
D33 Fy + ¢"°Eg; Dy — ¢ FE, =
D\Ds3s + q'*E\ E35 + ¢** F1 Fys =
¢ DaEyg + DiyFp — ¢ FyE, =
DyE, - ¢¥EssFy + ¢ F33D, =

DDy + ¢ E\Eyy + ¢ Fyy =
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0)
fl/ff))

f2f3 fisfar fsa
ffsfs
_ i
Fifufisfn 0
VD iy
hffs 7
f2f10
fafafsfeo
1,
1,
I
??kh4 ¢
1J11
fafa T
B
Fifshafn ~ ©
St
fafsfifa
fifes | 2
e
1J4 8f32 3
faofafiofu T
fof7
f3f105
f1f3s
fofsr
f2f10
f3fna
f4f11 5
fofim

+ ¢,

+q,

- g,

+4q,

+g*,



Ds¢Ey — ' EsgFy + ¢* " Fyg Dy = Safrfofs + ¢8, (5.2.20)
fafafiafres

DqyF3 + q6E24D3 - q15F24E3 = Mfl—s +q (5.2.21)
fafofso

Dy Dso + "' E\Ego + "' Fgo Fy = Salshofn _ ¢, (5.2.22)
fafafr0f200

Digss By — ¢%2Eg55 F) + "% Fio5sDy = ¢*'7. (5.2.23)

The identities (5.2.24)-(5.2.32) involve quotients of the nonic analogues D(q),
E(g), and F(q).

D3 — qE3 — ¢*F3 _ f1far.

Dy —*Ey — ¢°Fy  f3fo' (5.224)
DnwEy —q—-¢*EnFy + ¢'F,y Dy — S1foo (5.2.25)
D33 — q" E33 — q%2F33 fsfas' ’
Dy Dss + ¢* + ¢ EssEy + ¢* P\ F3s  fs fes (5.2.26)
Dy, — q"Ey — @M Fy, "~ fafuws’ o
Dy, — > 4 q" B3 Dy — qP¥ Py By _ hifawr (5.2.27)
Dgg — g2 Eg9 — q*6 Fgg fafes’ -
DyDos + ¢* + ¢°ErEas + ¢ FoFas — [a[3f25f150 (5.2.28)
DsoFy — ¢° + ¢'F5oDy — ¢BFoEy  fifsfsofrs o
D73F; - q" + ¢2Ep3Dy — ¢* FryEy _ fafass (5.2.29)
DigEy — q'% — ¢¥Ew6F1 + ¢ Flas D1 fefare’ o
DywFs —q+q"EsDs — ¢ FioEs _ fsfum (5.2.30)
D3goFy — g% + ¢'¥E300D; — ¢?1F300Ey  fou frar’ o
DesF\ — q" + ¢2Es D) — ¥ FsEy  fiafn (5.231)
DitEy— q— q'ErFs+ qOF 1Dy f3faod' o
D\ Dago + ¢*° + ¢ E1Eago + ¢'"* Fi\ Faso _ f12f105 (5.2.32)

DesFy — q® + q¥EesDy — q2FsEy fafws0

The following identities are relations involving some combinations of D(g),
E(q) and F(g) with the Rogers-Ramanujan functions G{g) and H(g). Here,
for positive integer n, we define G, := G(¢") and H,, := H(q¢").

Dy — Q3Es - 0659 — Nfy
GyG1 + ¢*HoH, f3far’

(5.2.33)
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DysDy + ¢° 4+ °Eos By + ¢ Fos I J5f10
GsGio +q*HsHyg "~ fofrs'
DyD33 + ¢* + ¢ EsEgs + ¢* F3Fyy _ [
GoGn + q*HyHyy T e
DDy +q° + 9P EsEqn + ¢°F3Fy;  fisfr
G18G7 + ¢°HigHy = fofizs'
D\ Doy + ¢ + °E\Eys + ¢®F\Fos _ fofis
G13G2 + ¢*Hy3H; "~ fafrs'
DBy — ¢° = ¢ EypFy + ¢'°F39 D, _hhs
G29G1 + q®Hog Hy " fafer
DBy — ¢ ~ ¢ EnFy + q°FuDy _ fsfon
GarHy — ¢"GaHyy " fafs’
D1Dyis + ¢ + ¢ E By + ¢ FiFuis _ fafss
GaHy — ¢°GaHyg "~ f3fass’
D1Dyas + ¢** + ¢**E  E1gs + ¢** F1 Figs - [sfes
GasHs — ¢*GsHyg fafsrs

(5.2.34)
(5.2.35)
(5.2.36)
(5.2.37)

(5.2.38)
(5.2.39)
(5.2.40)

(5.2.41)

The following identities are relations involving some combinations of D(g),
E(q), and F(q) with the Gollnitz-Gordon functions S(g) and 7'(g). For sim-
plicity, for positive integer n, we define S, := S(¢") and T,, := T'(¢").

Dys — ¢°Ers — ¢'°Fys _Nfsfn
SsS1 + ¢*TsTh fafwfes’
Dgo — ¢**Ego — " Fo _ Jafsfw
SsTy — ¢?T5S, fafrwfiso’
DeFy — q" + ¢**Es Dy — ¢®Fs By [ifafirfss
Si7Ty — ¢8T175, " f2fafsafa0d’
DyggEy — ¢ + q* E1osFy — ¢®Fis Dy fafsf16foa
S16T2 — q"S2The B fsfafsafaaa’
DeoFs — ¢° + q'®Ego D3 — ¢* Fgo B3 _Nifsfss
S4551 + q2TysT) Jofofoo’
{S15S1 + ¢®TsTi}H{SasTh — ¢2TsS1}  fofrsf

DsDyo + ¢* + q2EsEsg + q¥FsFyg  fifafssfiso’
D3Dgo + q° + ¢*' E3Eeo + ¢** F3Fgo

JsJ20f3

Sg Ss + q7T9T5
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(5.2.42)
(5.2.43)
(5.2.44)
(5.2.45)
(5.2.46)
(5.2.47)

(5.2.48)



D\ Dyys + % + P B\ Exgg + ¢"° I Foas fa)1a)r6 /56

S14Ta — ¢°T1454 "~ fafsfesfer2' (5.2.49)

DysE3 — q'° — ¢ Egs F3 + ¢% Fys Dy _ J2JsfasSraa (5.2.50)
S36S2 + q19T36T fafofr2fass' -

DyF; — q+ q"EyD7 — ¢*' P By _ f1fafr1[a08 (5.2.51)
STy — q8T7: 5, Jofafisafisa’ o

Dt Es — ¢° — ¢® Esa Fs + q*' FuuDs _ Jafsfafivo (5.2.52)
52840 + ¢*' 2Ty fafisfaofron’ o

D3y Fi = q% + ¢'%®E3 D, ~ ¢**E\Faay _ faf10f32fa0 (5 2.53)
S10Ts — ¢*SsTho " faFicffeso '

The following identities are relation involving soine combinations of D(q),
E(q), and F(q) with the Septic analogues A(g), B(q) and C(y). Here also,
for positive integer n, we define A,, := A(q"), B, := B(¢") and C,, := C(q").

Dy — ¢°Ey — ¢°Fy _ Jafs (5.2.54)
AlAyr + ¢*B\Byr + q12C\Cr fofor’ o

Dys - quls - qu9 _ fafao (5 2.55)
AjAn + ¢@B1By + ¢°C1Cn  fafas' o

DyEy — ¢° — ¢ L Fy + ¢ Fir D, _ J2Jaa (5.2.56)
Ay7B) — ¢"B47C) — ¢Cyr Ay fsha' o

DsyFy — ° + q'° Esg D1 — ¢*° F5y Ey _ 2fus (5.2.57)
AseCi — 8 BsgCy + ¢*°Cs9 B, fahn' o

E;Dsy — ¢* — ¢""Ey Fy + *°F5, D, - f2f12a (5.2.58)
As2A1 + ¢°Bga By + ¢¥7C\Cyo Jofos' o

D, Dy + "' + ¢*E\ Egg + q°° F\ Fyy _ Jufa (5.2.59)
AuBq - ¢*B1yCr — ¢°Clu A, f3fasd o

DDyo + ¢° + q"° EgE3g + q°° Fs Fyg _ (5.2.60)
AzsAg + @° By By + q1°C26Cy Jur’ o

Dy Dyy5 + ¢** + ¢ E Ens + ¢* Fy Fyy5 _ Jiofes (5.2.61)
Ag3Cs — ¢*BazAs + q'"Cy3Bs fafsas’ o

D;Dyy5 + ' + ¢ By Bns + " FoFuys - S10f92 (5.2.62)
AyBs — g8 B4sCs — ¢19C s As fofaas’ -

D) Dygs + ¢*' + ¢ E E1gs + ¢'*° F1 Figg _ Jfafea (5.2.03)
AsrCs — ¢°Bar Ay + ¢19C41 By fafoss' -
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DozoFy — g% + q® Lago Dy — ¢* B3 Fy50 B, _ J20/16
AyoBa3 — ¢8B19Cas — qCr0 A2 J3foso’

(5.2.64)

5.3 Proofs of (5.2.1)-(5.24)

First of all, invoking (1.1.10) and (1.1.6) in (5.1.4)-(5.1.6), we imunediatcly
arrive at the following lemma

Lemma 5.3.1. We have

_4 _
plg) = L5 =2) pigy =

~a% g7 o
f(—¢%) Lq—’—ﬂ, and F(q):M_q_)

f(=¢%)

Proof of (5.2.1): From Entry 2(viii) [11, p. 349], we find that

f=at=¢")  F==q) _ flma~a)) | )
Co < e e T Teares O3

Using (5.3.1) in (5.3.2), we obtain

4
D?El + quFl = QD1F12 + D]Elpl%g. (533)
1Jg

Again, from Entry 2(vi) [11, p. 349], we note that

(=0, -V f(~¢" = ") f(-¢*, ~¢°) = ; (5.3.)
J(=¢%)
With the aid of (5.3.1), the above identity can be written as
3
f3 ‘
Using (5.3.5) in (5.3.3) we easily arrive at (5.2.1).
Proof of (5.2.2): From Entry 2(vii) [11, p. 349]
—at —g% —_n —n8 2 _ 7
f(q,q)+ f(=49,-¢°) _ f(=¢* —q") (53.6)

q = =
f(_q21 _q7) f(_q41 _qS) f('_q - qé)
Using (5.3.1) and (5.3.9) in (5.3.6), we obtain (5.2.2) to complete the proof.
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Proof of (5.2.3): Replacing ¢ by ¢ in Entry 2(v) [11, p. 349], we obtain
f(=4"% =) = af (=", =¢") = ¢ f(~¢*, —¢*") = f(~q)- (5.3.7)

Dividing both sides by f(—¢°) and using (5.3.1), we complete the proof.

This result can also be obtained from Theorem 5.4 1 in Section 5 by
settinge) =l.ea=0,a=¢q=bc=1l,d=q,a=1,0=3, andm=09.
Proof of (5.2.4): Replacing g by ¢® in Entry 2(iv) [11, p 349] and using
(3.2.2) and (3.2.4), we find that

F(@'%,0%) + af (@%, ¢*) + £ (, 6**) = ¢(—a°)/x(=q). (53.8)

Employing (4.3.8), (5.3.1), and (4.3.12), we complete the proof.

5.4 Second proof of (5.2.3) and proofs of (5.2.5)-
(5.2.7)

To present a second proof of (5.2.3) and proofs of (5.2.5) - (5.2.7), we use a

formula of R. Bleckmith, J. Brillhart, and . Gerst (18, Theorein 2], providing

a representation for a product of two theta functions as a sum of m products

of pair of theta functions, under certain conditions. This formula generalizes
formulas of H. Schroter {11, p. 65-72]. Define, for € € {0,1} and |ab] < 1,

oo

fl@b) = > (=1)™(ab)""/*(a/b)""2. (5.4.1)

n=—00

Theorem 5.4.1. Let a, b, ¢, and d denote positive numbers unth |abl, |cd| <
1. Suppose that there exist positive integers a, 3, and m such that

(ab)? = (cd)lm—ah), (5.4.2)
Let €, €3 € {0,1}, and define 6, 62 € {0,1} by

0 =€ — aey(mod 2) and 6 = PBe; + pea(mod 2), (5.4.3)
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respectwely, where p = m — aff. Then if R denotes any complete residue
system modulo m,

fEl (a, b)fc: (c’ d) = Z(_l)ezrcr(r+l)/2dr(r—1)/2

r€R
a(cd)a(a+1—2r)/2 b(cd)¢(a+l+2r)/2
X fs ( ; >
@ de
(b/a)ﬁ/Z(cd)p(m+l-2r)/2 (aﬁ)ﬁ/Z(Cd)p(m-{-l—i-Zr)/Z
X fon ( > , 7 > :

(54 4)

Second proof of (5.2.3): Applying Theorem 5.4 1 with the paramcters
6=l e=0a=1b=¢lc=qd=¢"a=2 8=3 andm=09, we
find that

f(=4" =g {f (=%, -¢*) - af (-4, q"‘) ¢"'f(—q l"5)}

+Qf(—q2) ~q22){f(_ ) _qSl) sf( ) q ) 7f( 93)}

(=) {f(=4*, ~¢%) = ¢ f(—=¢", - 9 )—qu( 7 - 81)} =0, (5.4.5)
where we also used (1.1.9).

Again, applying Theorem 5.4.1 withe; =1, =0,a=¢*, b=¢* c=gq,
d=¢q* a=2,0 =23, and m =Y, we obtain

Y(@)d(—¢*) = (=" —¢"“WNf(—=¢"", —¢"") = ¢ (0", —¢*")
—q"f(=4", —¢")} + ¢ f (% —* )N f(—¢**, —¢*)
- " f(-¢%, -¢%) = ¢S (=¢®, =¢")}
+ qp(—°){f(—4*°, %) - 9f(— %, —q%)
- f(-¢"",—¢°H)}. (5.4 6)
Multiplying (5.4.5) by ¢ and adding with (5.4.6), wec deduce that

P(@)d(—q*) =qf (=a"°, =" ){f(=4%, —¢%) = &°f(—4"%, —¢*°)}
= (=" =" {f (=%, —¢) + S (="', —¢*")}
—{f(=¢", —¢"") — ¢**f(—¢*, —¢'®)}]
+ @ f (-5, =N (=%, =¢%) = ¢ (=", —-¢®)}q
- ¢ f(~ —q22 M{Sf(=¢%, - 75) + ¢ f(—¢*, —¢*")}¢’
- {f(- q"", ) - 12f( 5,—¢" M. (5.4.7)

76



Employing in turn a = —¢® and b = ¢*'; a = —¢*? and b = ¢'°; @ = ¢* and
b= —¢* in (4.3 5), we find that

J(=¢% ") = J(=¢*, =¢%) - ¢* F(—¢"®, —¢*), (548)
f(—¢' ,q“) = f(-¢"", —¢"") = ¢’ f(—¢*, ~¢'®), (5.4 9)
(@ —a*) = F(=¢®, =) + ¢ f(—¢*', —¢*") (54.10)
Applying (5.4.8) (5.49), (5.4.10) in (5.4.7), we obtain
(¥ d(—q*) = {f(=4"°, —¢") + ¢* f(—4*, —¢?*)}

X{flf °, @) - f(¢ ~a*") + f(=¢"%.¢"®)} (5411

Again, putting a = ¢*, b =¢*, c = ¢, d = ¢° in (2.2.9) and (2.2.10), we
find that

F(@%af(a, %) + f(—*, —a") f(—q,—¢°) = 2f(¢*,¢) f(d°,q"), (54.12)
and
(@4 d") f(a,6°) — F(=a* —a") f(—q,—¢°) = 2f(¢°, ¢°) f(q™",¢"%). (54.13)

Employing (1.1.9), (1.1.10). (3.2.1), and (3.2 2), in the above two identities
can be written as

29f(q,9") = ¥*(—4")/v(®)x(—q) — F(—a*)x(~q), (5.4.14)
and
2f(¢°,q") = ¥*(=¢*)/¥(q°)x(~q) + f(—4*)x(—q). (5.4.15)

Replacing g by —q in (5.4.14) and (5.4.15). and then using (2.2.7) and (2.2.3),
we find that

2f(—¢°, —q") = #(¢®)/x(q) + f(q) (5.4.16)
and

29/ (=4, —4"") = ¢(¢*)/x(q) = J(q). (5.4.17)
Adding (5.4.16) and (5.4.17), we obtain

f(=¢°. -4") + q¢f (-¢.—¢"') = f(q). (54.18)

Replacing ¢ by ¢? in (5.4.18), and then using the resulting identity (5.4.11),
we deduce that

Y(@®)p(—qY) = Fd){af(=%. ") = ¢ F(@*, —¢*) + f(=4'%,4")}. (5.4.19)
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Dividing both sides by f(g°), using (4.3.11), (4.3 12), (5.3 1), and replacing
q by —q, we arrive at (5.2.3) to finish the proof

Proof of (5.2.5): Applying Theorem 5.4.1 with the parameters ¢, = 1,
€2=0,a=¢%=b,c=¢q,d=1,a=5 =1, and m =9, we find that

$(—=q")p(q) = f(—¢*°, —¢°) f(—4"°, —=¢*°) + ¢ f1s /12
+¢*[(¢" g 35)f(—q =q) + ¢ f(=d, —¢") [ (=¢%, —¢™%).
(5.4.20)

Using (4.3.11) and (4.3.12), in (5.4.20), we readily arrive at (5.2.5).

* In asimilar way, we can obtain the identitics (5.2 7) and (5 2.6) by setting
m=9e=1e6=0a=b=¢,c=¢,d=1a=1,f=5andm =09,
&=l e=0a=b=¢"c=1,d=gq, a =26 8 =1 respectively, in
Theorem 5.4.1.

5.5 Proofs of (5.2.8)-(5.2.23)

In this section, we use the results of Rogers [32] and Bressoud [19]. We adopt
Bressoud’s notation, except that we use ¢"/%* f(—¢") instead of P,, and the
variable q instead of z. Let g™ and @ 5.m, be defined as

g¥™(q) := g¥™(q)
0(12"2—2142"+3—B) ﬁ (1 —_ (qa)pr+(p—2n+1)/2)(l - (qo)pr+(p+2n-l)/2)
p .
720 roa(1 = (go)rr k)

=4q
(5.5.1)
For any positive odd integer p, integer n, and natural number a, let
Do Bmp = ¢u B.m p(Q)
‘ — Z Z r+s l/2{pa(r+m(2n 1)/2p)2+pB(s+(2n—-1)/2p)? } (5.52)

n=1 T 8==00

where «, B, and p arc natural numbers, and 71 is an odd positive integer.
Then we can obtain immediately the following propositions.

Proposition 5.5.1. [19, equations (2.12) and (2.13)] We have

gl = ge/%0G (5.5.3)
g3 = g 1e/s0py (5.5.4)
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Proposition 5.5.2. [24, equations (6.3), (6.4), and (6.5)] We have

gl = 72 fr0 Ao/ fa, (5 5.5)
g7 = ¢°/% £, Ba/ fa, (556)

g((: J3) q17a/42f C /fa

Proposition 5.5.3. We have

o8P = q7/* f3, Do/ fa, (558)
992 = ¢*2 £ [ fa, (559)
g = "% f3, Ea/ fa, (5.5 10)
90" = g% f3o Fo/ fa (55 11)

Proof: Taking p =9, and n =1 in (5.5.1), we find that

go» __q-—a/BSH (1= (g*)° (1 - (¢%)°*°)
1 Hk (1= (qo)7r+)
q—a/36
0% %) (@2 %) (%% %) (q°%; ¢%0) (q7%; 4% ) (¢°%; ¢°°)

Therefore, we obtain g&" 1 = =q /38 f2,Dy/ fu
In a similar fashion, we can prove (559) - (55 11).

(55.12)

Lemma 5.5.4. (19, Proposition 5.1] We have

g"p (pn) — g(pn 2p), gr(p n) g(p —-n+1)

gc(xp ) g(p \2p~ n+1), gc()p.n) = _gt(ap.n—p)’

g((xpm) — 9¢(f p—ﬂ+1) and gf,” (p+1)/2) - .
Theorem 5.5.5. [19, Proposition 5.4] For odd p > 1,

(p-1)/2
¢a.;3.m.p - ‘2qa+6/24 fafﬁ) Z g(p ") (P (27"”1 m+])/2) . (5 5.13)

n=1
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Lemma 5.5.6. [26, Lemma 5.1] We have

(a+B)/32 f20:f23fa/2f/3/2

fafﬁ
x {S(q7/%)S(q°/?) + q'**PVAT(gP12YT (¢*/%)}. (5.5 14)

¢a.[3.1.4 = 2(]

(9a+p)/32 J20f2n o2 for2
fa fﬁ

X {S(qﬁ/2)T(qa/2) _ q(B—a)/2S(qo/‘2)T(qB/2)}. (5'5.15)

ba,B,34 = 29

Lemma 5.5.7. (19, Lemma 6.5] We have

bup1s = 20 f, f5{GpGa+ ¢ HyH,Y. (5.5 16)

o835 = 24V f5{GpHa — ¢ PP HpGo ) (5.517)

Lemma 5.5.8. [24, Lemma 6.6] We have

Pap17 = 2(](Q+m/56f2af2ﬁ{Ang + (](""'B)/-"BﬁB0

+ qC* TGy Cal, (5 5.18)
Gapar = 2q0PVE £, fos{ApBy — ¢ P By C,

— qetChA, ), (5.5.19)
Papsr = 2q(25°+ﬂ)/56f2afzp{AaCa _ q(’3°+ﬂ)/7BgAa

+ ¢ PTGy B} (5.5.20)

Lemma 5.5.9. We have

Bapi9 = Zq(°+ﬁ)/72f3afsa{DaDa + q(a+B)/9 + q(°‘+3)/3EuE5

+ ¢*+P3F, Fy). (5.5.21)
Pap39 = 2q° BV [y, fa5{ Dy — P Eg — ¢ Fp}. (5.5.22)
bapso = 2q(25u+ﬂ)/72f3af3ﬁ{DﬁEa _ q(ﬁ—Qa)/‘J _ q(u+ﬁ)/3EBFa
+ q@P=PFa Dy ). (5.5.23)
¢u,/3,7,9 — 2q(49u+ﬂ)/72f30f3ﬂ{DﬁFa _ q(ﬁ—Sa)/‘J + q(ﬁ»Qu)/SEﬁDa
— W BFsE,}. (5.5.24)
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Proof: Applying Theorem 5.5.5 with m = 1 and p = 9, we find that

—2q<°+")/2“f( ) f(=g"){g5 Mgl + g g0 4¢P gl

g gln}, _ (5.5.25)

Using (5.5.8) - (5.5.11) in (5.5.25) and then simplification, we arrive at
(5.5.21). The identities (5.5.22), (5.5.23), and (5.5.24) can be proved in a
similar way by setting m = 3, 5, and 7, respectively, and p = 9 in Theorem
9.9.5.

Corollary 5.5.10. [19, Corollary 5.5 and 5.6] If ¢ g.m.p is defined by (5 5.2),
then

¢aﬁ19

®apma1 =0, , (5.5.26)
baprs = 2¢OV f(—q%) f(—¢"). (5.5.27)

Corollary 5.5.11. [19, Corollary 5.11] If « and 3 are even positive inteqgers,
then
{a+8)/16 f2af2[3fa/2fﬂ/2

oz =2 A7 (5.5.28)
Theorem 5.5.12. [19, Corollary 7.3] Let «,, B, m,, p, where i = 1,2
be positive integers with my, my be odd. Let A\, := (aym? + 31)/p, and

Az = (agmi + 2)/pa. If the conditions
/\1 = /\2, a1ﬁ1 = azﬁz, and aym) = :tazmg(mod /\1)
hold, then ¢ou.ﬁ1,m1,m = ¢a2.ﬂ2.M2.p2'

Next. let N denote the set of positive integers, and Ny denote the sct of
non-negative integers.

Proposition 5.5.13. For peN, we have
¢p,2p,5,9 = ¢2p,p,1.1' (5529)
Furthermore, the identity (5.2.8) holds.

Proof: By settingoy, =p, 51 =2p,m1 =5, =9, =2p, B =p, my =1,
and p; = 1, we see that the equality (5.5.29) holds by Theorem 5.5.12.
Using (5.5.26) in (5.5.29) we obtain

Ppapse = 0. (5.5 30)

In particular, by taking p = 1 in (5.5.30) and then using (5.5.23), we obtain
the identity (5.2.8).
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Proposition 5.5.14. (19, Proposition (8.1)] Let p be an odd integer > 5,
then
®1p-4p-2p =0. (55.31)
Furthermore, the identity (5.2.9) holds.
Proof: Setting p =9 and using (5.5.24), we readily obtain (5.2.9).
This result can also be proved by setting ¢ =1, o = 1, a = 1, b = ¢°,
c=1,d=q,a=2,0=2,and m =9 in Theorem 54.1 .

Proposition 5.5.15. [26, Proposition (5.4)] For p > 1,
br1p-110 = ¢/ f(1, ) f (=" —¢"7Y). (55 32)

Furthermore, the identity (5.2.10) holds.
Proof: Setting p = 9 and using (5.5.21), we readily obtain the identity
(5.2.10).

This identity can also be proved by setting ¢, = 1, ¢, =0, a = ¢* = b,
c=1,d=q,a=1,0=1, and m =9 in Theorem 5.4.1.
Proposition 5.5.16. [19, Proposition (8.5)] Let p be an odd integer > 7,
then

PL3p-16p-4p = D1,3p-16.1,3- (5.5.33)
Furthermore, the identity (5.2.11) holds.

Proof: Setting p = 9 in (5.5.33) and then using (5.5.23) and (5.5.27), we
obtain the required identity.

Proposition 5.5.17. [19, Proposition (8.11)] Let p be an odd integer > 3,
then

oo
brp-21p = 2¢*° H(l + g 21 — g1 = (¢P%) P21 - (¢PTE)Y).

n=0
(5.5.34)
Furthermore, the identity (5.2.12) holds.
Proof: Setting p =9 in (5.5.34), we find that

[o o}
_ (1 — (aT\2n+1 _ R
drrae =07 ]] T—(Z<_)>_>) = x(=0")/x(~0)-  (5.5.35)

n=0

Employing (5.5.21), (2.2.3), in (5.5.35), we easily arrive at (5.2.12).
This result can also be proved by applying Theorem 54.1 with m = 9,
a=1l,e=0a=b=q,c=1,d=q,a=2,and 3 =1.
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Proposition 5.5.18. [19, Proposition (8.8)] Let p be an odd integer > 3,
then

o0
brap-ap-2p = 2077/ [T (1P DO+ (1 -+ (1 g2+ (1 g?2).
n=0

(5.5.36)

Furthermore, the identity (5.2.13) holds.
Proof: Setting p = 9 in (5.5.36), we find that

o
11479 = 2‘]7/8 H(l + q7(n+l))2(1 - q7(n+l))(1 - ‘72"“)2(1 - ‘]2n+2)

n=0

=20 f f1x* (= 9) /X (—q).- (5.5.37)

Invoking (5.5.24). (2.2.3). in (5.5 37), we deduce the required identity.
This result can also proved by employing Theorem 541 with m = 9,
6=0,e=1l,a=1,b=q",c=q,d=q,a=1,and f =2

Proposition 5.5.19. [19, Proposition (8.3)] Let p be an odd integer > 5,
then

¢l,3p—4,p-2.p = ¢l,3p—4,1.3- (5538)

Furthermore, the identity (5.2.14) holds.
Proof: Setting p = 9 in (5.5.38) and using (5.5 24) and (5 5.27), we easily
deduce (5.2.14).

Proposition 5.5.20. For peN, we have

¢p+l4,p.l.2 = ¢l,])2+14p,7,;:+7- (5‘) 39)

Furthermore, the identity (5.2.15) holds.
Proof: The equality (5.5.39) follows from Theorcin 5.5.12 with A} = \; =
p + 7. Furthermore, by setting p = 2, and using (5 5.24) and (5.5 28), we
readily arrive at (5.2.15).

Proposition 5.5.21. For pcN, we have

GD2p+2,p+4,1,3 = P2,p245p+4,1,p+3 (5 5.40)
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Furthermore, the identity (5.2.16) holds.
Proof: The equality (5.5.40) follows from Theorem 5.5 12 with A} = A\, =
p + 2. In particular, if we set p = 6 and use (5.5.21) and (5.5 27), we deduce
the proffered identity.

Proposition 5.5.22. [19, Equation (8.12)] Let p be an odd nteger > 5.
Then

¢2,3p-8,p~2,p = ¢1,lbp—-lb,l.3~ (5541)

Furthermore, the identity (5.2.17) holds.
Proof: Setting p = 9 in (5.5.41), we derive the identity (5 2.17) by employing
(5.5.24) and (5.5.27).

Proposition 5.5.23. [19, Proposition (8.13)] Let p be an odd wnteger > 5.
Then

¢2.3p-—8,1.3 = ¢1,bp—lb’.p—4,p- ‘ (5542)

Furthermore, the identity (5.2.18) holds.
Proof: Setting p = 9 in (5.5.42), we obtain the identity (5.2.18) by using
the identity (5.5.23) and (5.5.27).

Proposition 5.5.24. [24, Proposition (6.19)] For peN

G202 43p.1p+1 = DP2p+6.p.1,3» (5.5.43)

Furthermore, the identity (5.2.19) holds.
Proof: Setting p = 8 in (5.5 43), we obtain the identity (5.2.19) by using
(5.5.21) and (5.5.27).

Proposition 5.5.25. [24, Proposition (6.19)] For pcN, we have
¢1.p2+10p.5,p+5 = ¢p+10.p,1.2~ (5-5~44)

Furthermore, the identity (5.2.20) holds. :
Proof: Setting p = 4 in (5.5.44) and then using (5 5.23) and (5.5.28), we
immediately obtain (5.2.20).

Proposition 5.5.26. [19, Equation (8.14)] Let p be an odd integer > 5.
Then

3,4p-12p-2.p = P2,6p-18.1,2- (5.5.45)
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Furthermore, the identity (5.2.21) holds.
Proof: Setting p = 9 in (5.5.45), we easily arrive at (5.2 21) with the help
of (5.5.24) and (5.5.28).

Proposition 5.5.27. For peN, we have

¢p+l,b’p7,7,p+7 = ¢P,6P(p+l).l,p- )(5546)

Furthermore, the identity (5.2.21) holds.
Proof: The equality (5.5.46) follows from Thecorcm 5.5.12 with A} = Ay =
6p+ 7. In particular, if we set p = 2 and proceed as in the above proposition,
we obtain (5.2.21).

Proposition 5.5.28. For peN, we have

D192 4+18p+80,1,p49 = Dp+8,p+10,1,2- (5.5.47)

Furthermore, the identity (5.2.22) holds.
Proof: The equality (5.5.47) follows from Theorem 5.5.12 with A} = Ay =

p + 9. In particular, if we let p = 0 and use (5.5.21) and (5.5 28). we deduce
(5.2.22).

Proposition 5.5.29. [24, Proposition (6.26)] For peN, we have

— 4
¢1,16p3+172p2+472p+195,2p+1.p+7 =0, (0-5 48)

Furthermore, the identity (5.2.23) holds.
Proof: Setting p = 2 in (5.5.48) and then using (5.5.23) and (5.5.26), we
obtain (5.2.23).

5.6 Proofs of (5.2.24)-(5.2.32)

Proposition 5.6.1. For an odd number p, we have

Gp1,p2 +4p+4,p+2,(p+2)2 = D1 (p+1)(p+2)2.p+2,(p+2)?- (5.6.1)

Furthermore, the identity (5.2.24) holds.
Proof: The equality (5.6.1) follows from Theoremn 5.5.12 with Ay = Ay =

p + 2. Furthermore, by setting p = 1 and using (5.5.22), we easily deduce
(5.2.24).

Remark: The identity (5.2.24) also follows from (5.2.3).
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Proposition 5.6.2. Let p be an even number and p > 3. Then

1,32 9p-3,2p-3 = P3p?-3p-1,2p-3- (5.6.2)

Furthermore, the identity (5.2.25) holds.
Proof: The equality (5.6.2) follows from Theorem 5.5.12 with A, = A = 2p.
Furthermore by setting p = 6 and then employing (5.5.22) and (5.5.23), we
deduce (5.2.25).

Remark: The identity (5.2.25) also follows from (5.2.3) and (5.2.11).
Proposition 5.6.3. [25, Proposition (9.4.1)] For peN, we have

Pp+a,2p2+9p3.p+3 = Pp,2p+17p+36,1,p+3 (5.6.3)

. Furthermore, the identity (5.2.26) holds.
Proof: Setting p = 6, in (5.6.3) and then using (5.5.21) and (5.5.22), we
obtain the identity (5.2.26).

Remark: The identity (5.2.26) also follows from (5.2.3) and (5.2.16).

Proposition 5.6.4. [19, Proposition(8.16)] Let p be an odd integer > 5.
Then

¢1.3p2—36,|p-6|.p = ¢3,p7—12,p—2,p' (5-6-4)

Furthermore, the identity (5.2.27) holds.
Proof: Setting p = 9 in (5.6.4) and then using (5.5.22) and (5.5.24), we
obtain the identity (5.2.27).
Remark: The identity (5.2.27) also follows from (5.2.3) and (5.2.14).

Proposition 5.6.5. [19, Corollary (9.2)] Let p be an odd integer > 3. Then

$1,3p-2,1,p-P1,60-4,1,3 = P2,3p-2,1,301,6p—4,p~2,p- (5.6.5)

Furthermore, the identity (5.2.28) holds.
Proof; Settingp = 9in (5.6.5) and then using (5.5.21), (5.5.24), and (5.5.27),
we easily arrive at (5.2.27).

Proposition 5.6.6. [19, Propositin (8.17)] Let p be an odd integer > 5.
Then

1,202 16,p-4p = P2.p2-8,p-2,p- (5.6.6)
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Furthermore, the identity (5.2.29) holds.
Proof: If we set p =9 in (5.6.6), we arrive at (5.2.29) by mecans of (5.5 23)
and (5.5.24).

Proposition 5.6.7. [19, Propositin (8.18)] Let p be an odd integer > 3.
Then

¢p— 1,p%-4p+4,p-2p = ¢1 P -5p4-8p—4,p—2.p- (‘)67)

Furthermore, the identity (5.2.30) holds.
Proof: If we set p =Y in (5.6.7), we arrive at (5.2 30) by using (5.5.24).

Proposition 5.6.8. For p be an odd positive integer and p > 4, we have

¢p—3,p7-—8p+lb,p—4,p—2 = ¢l,p"—11p7+40p—48,p—-4,p—2 (5 6 8)

Furthermore, the identity (5.2.30) holds.
Proof: Equality (5.6.8) holds by Theorem 5.5.12 with A\, = A\, = (p — 4)%.
Taking p = 11 and proceeding in the same line as in the previous proposition,
we obtain easily (5.2.30).

Proposition 5.6.9. For peN, we have

®p.68p.7.9 = Pap,17p,5,9- (5.6.9)

Furthermore, the identity (5.2.31) holds.
Proof: Equality (5.6.9) holds by Theorem 5.5.12 with A\; = A; = 13p. If we
set p = 1, we obtain (5.2.31) with the aid of (5 5.23) and (5 5.24).

Proposition 5.6.10. For peN, we have

¢p.260p,1.9 = ¢4p.65p.7,9- (5-6- 10)

Furthermore, the identity (5.2.32) holds.
Proof: Equality (5.6.10) holds by Theorem 5.5.12 with A; = Ay = 29p. If we
set p = 1, we obtain (5.2.32) with the aid of (5.5.21) and (5.5 24).

5.7 Proofs of (5.2.33)-(5.2.41)

Proposition 5.7.1. For peN, we have

O5p,5p+40,3.5p+4 = P5p 5p+40,1,p+4, (6.71)
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Furthermore, the identity (5 2.33) holds.
Proof: Equality (5.7.1) holds by Theorem 5.5 12 with A, = A, = 10. Setting
p = 1in (5.7.1), using (5.5.16) and (5.5 22), and then replacing q° by g, we
arrive at (5.2.33).

Remark: From (5.2 3) and (5.2.33), we find that

G(¢")G(q) + ¢*H(¢*)H(q) = 7{—’;;

which is the sixth identity of Ramanujan’s forty identities [16].

Proposition 5.7.2. For peN, we have

Ga,p(p+5),1.p+4 = Dpr5.ap.1,5- (572)

Furthermore, the identity (5.2.34) holds.
Proof: Equality (5.7.2) holds by Theorem 5.5.12 with A} = A = p+ 1.

Setting p = 5, using (5.5.16), and (5.5.21), and then replacing ¢* by q, we
obtain (5.2.34).

Proposition 5.7.3. (25, Proposition (3.4.11)] For peN, we hove

®6 p245p,1,0+3 = DP2p+10,3p,1,5 (5.7.3)

Furthermore, the identity (5.2.35) holds.
Proof: Setting p = 6 in (5.7.3), we obtain the identity (5.2.35) by means of
(5.5.21) and (5.5.16), and finally replacing ¢* by q.

Proposition 5.7.4. [25, Proposition (8.4.21)] For peN, we have

P6.p3+5p,1,p+2 = D3p+15.2p.1,59 (5.7.4)

Furthermore, the identity (5.2.36) holds.
Proof: Setting p = 7 in (5.7.4) and using (5.5.21) and (5.5 16), and then
replacing ¢? by g, we finish the proof.

Proposition 5.7.5. For peN, we have

¢p,4p+5,1,5 = ¢4p1+5p,1,1,4p+1 . (5~7-5)
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Furthermore, the identity (5.2.37) holds.
Proof: Equality (5.7.5) holds by Theorem 5.5.12 with A} = XA, = p+ 1. If
we set p = 2, we obtain (5.2.37) with the aid of (5.5.16) and (5.5.21).

Proposition 5.7.6. For peN, we have

¢p.5p+24,5.5p+4 = ¢5p-+24.v.1.p+4 (0 7~6)

Furthermore, the identity (5.2.38) holds.
Proof: Equality (5.7.6) holds by Theorem 5.5.12 with A} = A, = 6. If we
set p = 1, we obtain (5.2.38) by means of (5.5.16) and (5.5.23).

Proposition 5.7.7. For peN, we have

¢p.74p.5,9 = ¢2p.37p,3,5- (5-7-7)

Furthermore, the identity (5 2.39) holds.
Proof: Equality (5.7.7) holds by Theorem 5 5 12 with Ay = Ay = 11p. If we
set p = 1, we obtain (5.2.39) by means of (55 17) and (5.5 23)

Proposition 5.7.8. For peN, we have

Gp.116p,1,9 = Pap,20p,3,5- (5.7.8)

Furthermore, the identity (5.2.40) holds.
Proof: Equality (5.7.8) holds by Theorem 5.5.12 with A; = A, = 13p. If we
set p = 1, we obtain (5.2.40) by means of (5.5.17) and (5.5.21).

Proposition 5.7.9. For peN, we have
$p125p,1,9 = Pop25p,3,5- (5.7.9)

Furthermore, the identity (5.2.41) holds.
Proof: Equality (5.7.9) holds by Theorem 5.5.12 with A\; = Ay = 14p. If we
set p = 1, we obtain (5.2.41) by means of (5.5.17) and (5.5.21).

5.8 Proofs of (5.2.42)-(5.2.53)
Proposition 5.8.1. [26, Proposition(7.7)] For peN and p even, we have

-

Ba.12p+21 p+1,2p45 = P6,8p+14,1,4- (5.8.1)
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Furthermore the identity (5.2.42) holds.
Proof: Setting p = 2 in (5.8.1) and employing (5.5.22) and (5.5.14), then
replacing ¢3 by ¢ in the resulting identity, we complete the proof.

Remark: The identity (5.2.42) also follows from (5.2.3) and (4.2.6).
Proposition 5.8.2. [26, Proposition(7.5)] For peN and p even, we have

®1,24p+84,p— 1,045 = P6.4p+14,3.4- (6.8.2)

Furthermore, the identity (5.2.43) holds.
Proof: Setting p = 4 in (5.8.2) and using (5.5.22) and (5.5.15), and replacing
¢® by g in the resulting identity, we deduce (5.2.43).

Remark: The identity (5.2.43) also follows from (5.2.3) and (4.2.7).
Proposition 5.8.3. [26, Proposition(7.8)] For peN and p even, we have

1,8p+36.p+3.p+5 = D2,4p+18,34- (5.8 3)

Furthermore, the identity (5.2.44) holds.
Proof: Setting p = 4 in (5.8.3) and using (5.5.24) and (5.5.15), we readily
arrive at (5.2.44).

Proposition 5.8.4. [26, Proposition(7.4)] For peN and p even, we have

®1,16p+64,p+1,p+5 = Pd.4p+16,3.4- (5.8.4)

Furthermore, the identity (5.2.45) holds.
Proof: Setting p =4 in (5.8.4), we obtain the identity (5 2 45) by means of
(5.5.23) and (5.5.15).

Proposition 5.8.5. [26, Propositin (7.6)] For pcN and p even, we have

$3,8p+28,p+3,p+5 = D2,12p+42,1 4- (5.8.5)

Furthermore, the identity (5.2.46) holds.
Proof: If we let p = 4 in (5.8.5), we arrive at (5.2.46) with the help of
(5.5.24) and (5.5.14).

Proposition 5.8.6. [26, Proposition(8.1)] For peN and p cven, we have

$2.12p+18,3,4- 93 8p+12,p+1.p+3 = P6,4p+6,1,p+3P2,12p+18,1.2- (5.8.6)
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Furthermore, the identity (5.2.47) holds.
Proof: Setting p = 6 in (5.8.6), we find that

$2,90,3.4-93.60,7,9 = 6,30,1,9$2,90,1,2, (5.8.7)
Using (5.8.5) with p =4 in (5.8.7), we deduce that

$2,90,3,4-92,90,1.4 = D6,30,1,992,90.1,2, (5.8.8)

Employing (5.5.21), (5.5.28), (5.5.14) and (5.5.15), we deduce the required
identity.

Proposition 5.8.7. For peN, we have

®18p.10p,1,4 = D3p.60p.1,9- (589)

Furthermore, the identity (5 2.48) holds.
Proof: Equality (5.8.9) holds by Theorem 5.5.12 with A}, = A, = 7p. If we
set p = 1, we obtain (5.2.48) via (5.5.14) and (5.5.21)

Proposition 5.8.8. [26, Proposition (7.9)] For peN and p even, we have

b1,32p+96,p-3,p+5 = P8.ap+12,3.4- (5.8.10)

Furthermore, the identity (5.2.49) holds.
Proof: Setting p = 4 in (5.8.10) and then using (5.5.21) and (5.5.15), we
arrive at (5.2.49).

Proposition 5.8.9. [26, Proposition (7.10)] For peN and p even, we have

?3,16p+32,p+1,p+5 = D4,12p+24,14- (5.8.11)

Furthermore, the identity (5.2.50) holds.

Proof: If we let p = 4 in (5.8.11), we arrive at (5.2.50) with the help of
(5.5.23) and (5.5.14).

Proposition 5.8.10. [26, Proposition (7.8)] For pcN and p even, we have

G7.8p+12.p+3.p+5 = D2.28p+42,3.4- (58.12)

Furthermore, the identity (5.2.51) holds.

Proof: Setting p = 4 in (5.8.12), we obtain (5.2.51) by invoking (5.5.24) and
(5.5.15).
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Proposition 5.8.11. [24, Proposition(6.23)] For peN, we have

¢p+1.4p2.5.p+5 = ¢p,4p(p+'1),1,p- (5‘8'13)

Furthermore, the identity (5.2.52) holds.
Proof: Sctting p = 4 in (5.8.13), we deduce (5.2.52) via (5.5.23) and (5.5.14).

Proposition 5.8.12. For peN, we have

$p,3209,7.9 = P16p,20p3.4- (5.8.14)

Furthermore, the identity (5.2.53) holds.
Proof: Equality (5.8.14) holds by Theorem 5.5.12 with A; = Ay = 41p. If we
set p = 1, we obtain (5.2.53) via (5.5.15) and (5.5.24). ’

5.9 Proofs of (5.2.54)-(5.2.64)
Proposition 5.9.1. [25, Proposition (8.4.12)] For peN, we have

¢P+5~p2+61’.3.p+6 = ¢p.(p+6)’.l.p+4- (5'9- 1)

 Furthermore, the identity (5.2.54) holds.
Proof: Setting p = 3 in (5.9.1) and then using (5.5.22) and (5.5.18), we
easily obtain (5.2.54).

Remark: The identity (5.2.54) also follows from (5.2.3) and one of the septic
identities of Hahn [24].

Proposition 5.9.2. [25, Proposition (8.4.15)] For peN, we have

¢p+2,2p7 +3p3.p+3 = ¢p.2p7 +7p46,1,p+1- (592)

Furthermore, the identity (5.2.55) holds.
Proof: Setting p = 6 in (5.9.2), we obtain the identity (5.2.55) by means of
(5.5.22) and (5.5.18).

Remark: The identity (5.2.55) also follows from (5.2.3) and another septic
identity found by Hahn [24].

Proposition 5.9.3. [24, Proposition (6.20)] For peN, we have

B1,8p+7.2p+3.p+4 = P18p+72p+10+2- (5.9.3)
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Furthermore, the identity (5.2.56) holds.
Proof: Setting p = 5 in (5.9.3), we obtain

$147,139 = brarn17- (5.9.4)

Using (5.5.13) and Lemma 7 1 in the above equation, we find that,

9.1 9,3 9,2 9,2 9,3 9,4 9,4 9,1 7.1 7.2 7.2 7.3
—gi g 4 gD B 4 3N gBA) _ gl gl) = _gliN gt 4 g7 gl
7.3 71
+ 95 (5.95)

Now, using (5.5.5) - (5.5.11) in the above relation and multiplying both sides
by g, we obtain (5.2.56).

Proposition 5.9.4. For peN and p odd, we have

¢1,7p+10,p,p+2 = ¢1,71)+10,5,7- (596)

Furthermore, the identity (5.2.57) holds.
Proof: Equality (5.9 6) holds by Theorem 5.5.12 with A\, = X\, = p + 5.
Setting p = 7, employing (5.5.20) and (5.5.24), and then replacing ¢* by g in
the resulting identity, we obtain (5.2.57).

Proposition 5.9.5. [25, Proposition (8.4.19)] For peN, we have

J— [
Pp+4,4p2+15p,5.p45 = Pp.dp3+31p+60,1,p+3 (6.9.7)

Furthermore, the identity (5.2.58) holds.
Proof: Setting p = 4 in (5.9.7), we obtain the identity (5.2 58) via (5.5.23)
and (5.5.18).

Proposition 5.9.6. For peN, we have

G21p+154,p,1,p+7 = P7p,3p+22,3.3p+1- (5.9.8)

Furthermore, the identity (5.2.59) holds.
Proof: Equality (5.9.8) holds by Theorem 5.5.12 with A\; = A; = 22. Sctting
p = 2, using (5.5.19) and (5.5.21), and then replacing ¢* by g, we readily
deduce the required identity.

Proposition 5.9.7. [25, Proposition (3.4.14)] For peN, we have

$2p.3p+30,1,p+6 = P2p+20,3p,1,p+4- (5.9.9)
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Furthermore, the identity (5.2.60) holds.
Proof: Putting p = 3 in (5.9.9), we obtain (5.2.60) via (5.5.21) and (5.5.18).

Proposition 5.9.8. (25, Proposition (3.4.7)] For peN, we have

¢2.5p’+23p+24,1.p+2 = ¢p+3,10p+16.5,7- (5-9-10)

- Furthermore, the identity (5.2.61) holds.
Proof: Setting p = 7 in (5.9.10), we obtain (5.2 61) with the help of (5.5.21)
and (5.5.20).

Proposition 5.9.9. /25, Proposition (3.4.23)] For peN, we have

¢p,’2p2+27p+90.l,p+5 = ¢p+6.’2p7+15p‘3.p+3- (5 9-11)
Furthermore, the identity (5.2.62) holds.
Proof: Putting p = 4 in (5.9.11), we obtain (5.2 62) via (5.5.21) and (5.5.19)

Proposition 5.9.10. For peN, we have

®p.188p.1,9 = Papa7p,5.7- (5.9.12)

Furthermore, the identity (5.2.63) holds.
Proof: Equality (5.9.12) holds by Theorem 5.5.12 with A, = A\ = 21p. If we
set p = 1, we obtain (5.2.63) via (5.5.20) and (5.5.21).

Proposition 5.9.11. For peN, we have

©5,230p,7,9 = $23p,10p,3.7: (5.9.13)

Furthermore, the identity (5.2.64) holds.
Proof: Equality (5.9 13) holds by Theorem 5 5.12 with A\; = Ay = 31p. If we
set p = 1, we obtain (5.2.64) with the help of (5.5.19) and (5.5.24).

5.10 Applications to the Theory of Partitions

The identities (5.2.1) - (5.2 23) have applications to the theory of partitions.
We demonstrate this by giving combinatorial interprctations for (5.2 1)-
(5.2.3), (5.2.8), and (5 29). In the sequel, for simplicity, we adopt the stan-

dard notation "

(al)a2y' . ,ani(I)oo = H(aJ’q)OO

J=l
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and define
(@90 = (0", ¢" 10" )cx,

where 7 and s are positive integers and r < s.

We also need the notion of colored partitions A positive integer n has
k colors if there are k& copies of n available and all of them are viewed as
distinct objects. Partitions of positive integers mto parts with colors are
called colored partitions. For example, if 1 is allowed to have 2 colors, say r
(red), and g (green), then all colored partitions of 2 are 2, 1, +1,, 1, + 1,
and 1. + 1,. An important fact is that

1
(g% 9*)%
is the generating function for the number of partitions of n, where all the
parts are congruent to u (mod ) and have & colors.

Theorem 5.10.1. Let p,(n) denote the number of partitions of n into parts
congruent to £1, 2, +3 (mod 9) with £1 (mod 9) having 2 colors and +3
(mod 9) having 3 colors. Let py(n) denote the number of partitions of n into
parts congruent to 1, £3, £4 (mod 9) wrth 3 (mod 9) having 3 colors and
+4 (mod 9) having 2 colors. Let p3(n) denote the number of partitions of n
into parts congruent to £2, +3, +4 (mod 9) unth 22 (mod Y) having 2 colors
and £3 (mod 9) having 3 colors. Let ps(n) denote the number of partitions
of n into parts congruent to £1, £2, +4 (mod 9) having 2 colors each. Then,
for any positive integer n > 1, we have

p1(n) + pa(n — 1) — ps(n — 1) = ps(n).
Proof: The identity (5.2.1) is equivalent to
(4% ¢°)°
(0" 6°)%(4*: %) + 9(a™*: ¢°)°(¢'%: ¢°) — 9(a*5: °) (@™ %)% = o0
(5.10.1)

Noting that (4% ¢¥)e = (6°%;¢%)0(¢%; ¢°) o, We can rewrite (5.10.1) as

1 q
+
(%5 09)2(0%%;¢°)(6%%;6°)° (0% ¢%)(q'%; 0°)2 (g%, ¢°)3
q 1

- (%% )% (g% ¢°) (g% °)3 = (qiE2EAE; g9)2 (5.10.2)
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The four quotients of (5.10.2) represent the generating functions for p;(n),
p2(n), p3(n), and py(n), respectively. Hence, (5.10.2) is equivalent to

pr n)q" +qsz n)g" —qZps n)g" —Zm n)q

n=0 n=0

where we set p;(0) = p2(0) = p3(0) = pa(0) = 1. Equating coefficients of ¢"
on both sides yields the desired result.

Example: It can easily be seen that p;(5) = 24, p,(4) = 6, p3(4) = 4, and
pa(5) = 26, which verifies the case n = 5 in Theorem 5.10.1.

Theorem 5.10.2. Let p;(n) denote the number of partitions of n into parts
congruent to £1, £2 (mod 9) with £2 (mod 9) having 2 colors. Let py(n)
denote the number of partitions of n into parts congruent to £2, +4 (mod 9)
with 24 (mod 9) having 2 colors. Let ps(n) denoic the number of partitions
of n into parts congruent to 1, £4 (mod 9) wnth £1 (mod 9) having 2 colors.
Then, for any positive integer n > 1, we have

pi(n) + pa(n — 1) = p3(n).
Proof: The identity (5.2.2) is equivalent to

1 q 1
—+ - = - :
(g'%;¢°)(¢%*;¢%)% * (¢*%:¢°)(g**:¢°)%  (¢'%;¢%)%(q%*: ¢°)

Note that the three quotients of (5.10.3) represent the generating functions
for p1(n), p2(n), and p3(n), respectively. Hence, we have

Zpl n)q" +Q}:pz n)q" —Zps i

n=0 n=0 n=(

(5.10.3)

where we set p2(0) = 0. Equating coefficients of ¢" on both sides yields the
desired result.
Example: The following table illustrates the case n = 5§ in Theorem 5.10.2.
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pi(5) =6 p2(4) =3 | ps(5)=9

2% +2, + 1 4, 5

2% + 2, + 1 4, A+ 1,

g+ 2+ 1 2+2 i+ 1,

2, +1+1+1 L+1,+1+1,+1,
2 +1+1+1 L+, +L+1,+1,
T+1+1+1+1 L+, +L +1,+1,

L+, +1,+1,+1,
L+ L+ 1+ 1, +1,
o+ 1+ 1,+1,+ 1,

Theorem 5.10.3. Let pi(n) denote the number of partitions of n into parts
not congruent to £12, 27 (mod 27). Let po(n) denote the number of partitions
of n into parts not congruent to £6, 27 (mod 27). Let p3(n) denote the
nutnber of partitions of n wnto parts congruent to £3, 27 (mod Y). Then, for
any positive integer n > 2, we have

pi(n) = pa(n — 1) + p3(n — 2).
Proof: The identity (5.2.3) is equivalent to

1 q
(ql:t,Zi.--- ,11&:.13&.‘ q27) (qli:,2:i:.--~ St 7£, ‘13:1:-’ q27)

q2

(qli,Zi,di.-- ,IIH:; q27)

=1 (5.10 4)

Note that the three quotients of (5.10.4) represent the generating functions
for p1(n), p2(n), and p3(n), respectively. Thus, we have

> m(n)g" - g p(n)g" =" D pa(n)g" =1,

n=0 n=0 n=0

where we set p;(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢” on both
sides, we arrive at the desired result.

Example: We note that py,(7) = 15, p2(6) = 10, and p3(b) = 5, which
" verifies the case n = 5 in the Theorem 5.10.3.

Theorem 5.10.4. Let p;(n) denote the number of partitions of n into parts
congruent to +1, £3, £4, £5, £6 (mod 18) with £6 (mod 18) having 2
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colors. Let pa(n) denote the number of partitrons of n wnto parts congruent
to 1, £3, £6, £7, +8 (mod 18) with £6 (mod 18) hawving 2 colors. Let
p3(n) denote the number of partitions of n wnto parts congruent to £2, %3,
5, £6, 27 (nod 18) unth £6 (mod 18) having 2 colors. Let py(n) denote
the number of partitions of n into parts congruent to +1, £2, x4, 5, £7,
+8 (mod 18). Then, for any positive integer n > 1, we have

pi(n) + pa(n — 1) = ps(n — 1) + pa(n).
Proof: The identity (5 2.8) can be written as
(a**:0°)(¢**:9"°) + a(g™*; ¢°)(¢°*; ¢"°) — a(a™*: ¢")(g"*; ¢"°)
_ (£18)(d% ¢°)oo
(9% 9%)o0(9'%; 9"%) o0

Writing the products by the common base ¢'%, for examples, writing (g; ¢°)oo
a5 (9;3"®)00(9'% "% and (¢% ¢%)eo as (g3F0E918: 018)  and cancelling the
common terms, we obtain

(5.10.5)

1 q
(ql:i:.3:l:.4:!:5:h6:§:6:i:; q18) + (ql:t,S:i:.G:hG:tH:S:t; q18)

q _ 1
- (P2 3ESE8£63TE, q18) ~ (gI£2£ 4 5ET48E, (18) (5.10.6)

Note that the four quotients of (5.10.6) represent the generating functions
for py(n), pa(n), p3(n), and ps(n) respectively. Thus, we have

o0 [ o] e o] [e o]
Y nmg +9) p(n)g" — g _ps(n)d" =Y pa(n)q”,
n=0 n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = p4(0) = 1. Equating coefficients of ¢"
on both sides, we arrive at the desired result.
Example: The following table illustrates the case n = 7 in Theorem 5.10.4.
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n(7) =8 p2(6) =5 p3(6)=4 | pa(7)=9
6, + 1 6, 6, 7
6, + 1 6, G, 5+ 2
443 3+3 3+3 o+1+1
5+1+1 3F¥1+1+1 2+2+2 |4+2+1
A4+ 1+14141 | T+ 1+1+1+1+1 d+1+1+1
3+3+1 2424241
3+1+1+1+1 2+24+1+1+1
1+1+1+1 2+1+1+1+1+1
+14+1+41

1414141414141

Theorem 5.10.5. Let p1(n) denote the number of partitions of n into parts
not congruent to 1, +8, £10, £17, +£19, +20, 45 (mod 45) with £15 (mod
45) having 2 colors. Let po(n) denote the number of partitions of n into parts
not congruent to +4,+5, £10, £13, £14, £22, 45 (mod 45) with £15 (mod
45) hawning 2 colors. Let p3(n) denote the number of partitions of n into parts
not congruent to £2,%5, £7, £11, £16, +20, 45 (mod 45) with £15 (mod
45) having 2 colors. Let py(n) denote the number of partitions of n into parts

not congruent to +3,+6, £10, £11, +£15, £21, 45 (mnod 45). Then, for any
positive integer n > 3, we have

pi(n) + pa(n — 1) = pa(n — 3) + ps(n).

Proof: We proceed as in the proof of Theorem 5.10.4 to complete the proof.
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Chapter 6

Another couple of functions
analogous to the
Rogers-Ramanujan Functions
and Partitions

6.1 Introduction

In this chapter, we deal with another couple of functions analogous to the
Rogers-Ramanujan functions. We recall from Chapter 1 that

O (2.2 1 - g™*! n(n+2) . ql2 11. 12 12, 12
X(‘J)’=Z( ¢ ¢")n(1 - " )g G P i P e g

e (¢ Q)2n+2 a (4 9)oo ’
(6.1.1)
(=% a1+ 99" (%0 oo(d7: 0" o0(0'% 4w
Y(q) := =
@)=1+ ; (¢:9)2n (7, 9o ‘
(6.1.2)

where the later equalities are due to Slater [34, pp. 156-157, equations (49)

and (54)]. Note that, Sills [33] corrected a misprint in Slater’s equation (54).

Also, the formulation of (6.1.1) and Slater's equation (49) are equivalent.
Now, using (1.1.10) and (1.1.6), we can rewrite (6 1.1) and (6.1 2) as

fze=d) L v =LET (61

X = =5 e
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By applying the same methods as in the previous chapter, we find several
modular identities for X (¢) and Y (g). Some of these relations are connected
with the Rogers-Ramanujan functions and their analogues defined in the
previous two chapters.

In Sections 6.2-6.5, we state and prove our modular relations involving
X(q) and Y(q).

In Sections 6.6 and 6.7, we state and prove the identities involving quo-
tients of X(¢) and Y (g) as well as the Rogers-Ramanujan functions and their
other analogues.

In our last section, we apply some of the modular relations to the theory
of partitions.

6.2 Modular Relations For X(¢q) and Y(q)

In this section, we present a list of modular relations for X(g) and Y(q).
For simplicity, for positive integer n, we sct fr, = f(—q"), X, := X(q"), and
Y, :=Y(¢"). We also note that, some more relations can easily be obtained
by replacing q by —q in each of the following relations.

Yi+gX: = flf2f (6.2.1)
f4fb
Y — X = b, 6.2.2
1~ g4 f2f3f ( )
X,Ys + Xz, = L0 (6.23)
fifs
2 — f4f6f9f3b 2.4
Xl}/3+q X3),1 f22f§f122f18, (6 . )
3 3 f4fb
Y2+ X} A (6.2.5)
3 _ ffafa  fsfa
Wt XX = TR (6.2.6)
2 _ hafy f4fufmfn
XY XN = e (6.27)
)/:3‘2+qﬁxs2 f9f4 2 fl8 (628)

Treff2 TS
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6 _ Jafafs o fsfiafisfeo
YW+ X1 Xs = i fafe q AT (6.2.9)

XiYa+ gxe¥s = 22y plifubuln (62 10)
5 _ Sifse | JofarSaafea
Xt g XN = fafr e fafrhafe’ (6.211)
S
YiYia + ¢ X X1 = ffffi _ f;f }zﬁﬁf, (6.2.13)
21 _ fshe  7fifufefue

Wt XX = T R bl (6.2.14)

3 _ Jisfufeofss  fifafssfiao
TXr¥s +qXs¥r = Jsfrfaafz0 fafsfrfr’ (6:2.15)
Y, Yss + ¢% X, Xg5 = g2 fsfiafrosfazo  fs5S7fa01f28 (6.2 16)

fifsfssfao  fifwfiafss
6.3 Proofs of (6.2.1), (6.2.2), and (6.2.5):

Proof of (6.2.1): Putting a = g and b = ¢? in (4.3.6) and (4.3.7), we find
that

f(@.6°) + f(=9,-¢*) = 2f(¢°.q") (6.3.1)
and

f(Q1 q2) - f(_'Qv __qZ) = ZQf(qa qll)’ (632)
respectively. Subtracting (6.3.1) and (6.3.2), and then replacing q by —q, we
find that

J(=¢° =d") + af (=0, —¢"") = [(4,=4*)) = [ (q), (6.3.3)

where the last equality follows from (1.1.10).
Dividing both sides of (6.3.3) by f(—q), we arrive at

f(=¢~q) | (e —d) _ fl9)
f(=9) f(=9) f(-q)

Employing (6.1.3) and (4.3.12) in (6.3.4), we easily arrive at (6 2.1).

(6 3.4)
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Proof of (6.2.2): Adding (6.3.1) from (6.3.2), and then replacing g by —q,
we obtain

9la)

5 Ty _ —q - = f(—q.q%) =
f(=¢°,—4") —qf(=9,—¢") = f(~q,q") @)

(6.3.5)
where the last equality follows from (3.2 2)

Employing (6.1.3), (4.3.11), and (4.3.12) in (6 3.5), we easily deduce (6.2.2).
Alternative Proof of (6.2.2): From [11, Entry 31, Corollary(ii)], we have

F@® ) + @ f(,6%) = ¥(a) — quld®). (6.3.6)
Replacing ¢*, by —q, and employing (3.2.4), (3.2 2), (6.1 3) in (6.3.6), we

easily arrive at (6.2.2).
Proof of (6.2.5): From (35, p. 306]. we have, for |ab| < 1,

FP(ab?, a®b) — bf3(a,a®h®) = %%@ f3(~ab). (6 3.7)

Putting a = ¢, b = ¢®, in (6.3.7), we obtain
£24° ") — *f3g,q") = f/(jaf))fs(—f‘). (6.3.8)

Replacing g, by ~q, in (6.3.8), we find that
£(-¢=a) + ¢ f*(-q,—¢") = z((:?;)) (=4 (6.3.9)

Using (4.3.12) and (6.1.3) in (6.3.9), we easily arrive at (6.2.5).

6.4 Proofs of (6.2.6) - (6.2.8):

Proof of (6.2.6): We apply Theorem 5.4.1 with the paramcters ¢, = 1,
e2=0,a=b=¢g" c=1,d=¢q,a=2, 3=1,m=6. Consequently, we find
that

T 20(~g(9) = 2{f (4", —°) F(=g", —¢"°)
+ g~ )W(=¢%) + @ f(~a,—¢") f(—¢*, —¢**)}. (6.4.1)
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Now, using (6.1 3) and (4.3.12), we deduce (6.2.6).

In similar way, we prove the identities (6 2 7) and (6.2 8) To prove (6.2.7),
we apply Theorem 5.4.1 with the parameters ¢, = 1,6, =0, a =1, b = ¢°,
c=q,d=¢, a=10=1m= 4 and to prove (6.2.8), we again apply
Theorem 5.4.1 with the parameters¢; =1, o =0a=b=¢8, c=¢', d=1,
a=3,=1,m=6.

6.5 Proofs of (6.2.3), (6.24), and (6.2.9) - (6.2.16):

We will apply the method given by Bressoud in his thesis [19). Here, we use
[n instead of P,, and the variable g instead of z which stands for ¢? in {19].
The letters «, 8, m, n, p always denote positive integers, and m must be
odd. Following Bressoud [19], we define

(q(p+1—2n)a; q2po)°°(q(p—-1+2n)a; q2pa)oo

(pm) _ { (1zn2-1zn+3-p(p-1)/2)/(1zp>a}
9P =iq

(9%:4°*) oo
(6.5.1)
Proposition 6.5.1. [19, Proposition 5.9/
(21) =
g =1, (6.5.2)
g0 =g fege), ang gun =g ler, (659)

f8a
where S(g) and T'(g) are as defined in (1 1.17) and (1.1.18 , respectively.

Proposition 6.5.2.

gOl = ga/i2y, T2 fau (6.5 4)
= f12a

(62) _ ~a/12J20f3a 6.5.5
J'a 1 fafbu . ( )
(63) — gTa/12x S 6.5.6
g"' q lea ( )

Proof: Take p =6, and n =1 in (6.5.1). Then

(6.1) - —5a/12(q 100 (0750200 (012%; 017 oo
’ (9% 9%) (9" 4o '

Using (1.1.6) and (6.1.3), in (6.5.7) we obtain the result. Similarly we can
prove (6.5.5) and (6.5.6).

g, (6.5.7)
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Proposition 6.5.3. [19, Proposition 5.8/

gt(’p.ﬂ) —_ g‘(’l).—n+l), g(P-ﬂ) — __g(apvn—p), and g‘()p’n) = ——g{(!p'p—"-’-l). (6.5.8)

=

Theorem 6.5.4. [19, Proposition 5.10] For even p,

Ba = zq(Zp—l)(a+ﬁ)/24 S/z: g(p.n) g(p,mn-((m-l)/fz)) JapaS2psfafB
a,pgm,p — '

(6.5.9)
Proposition 6.5.5.

Ga,6,16 = 29(a+ﬂ)/24 Jafs

X {Yayﬁ + q(“+f’>/'~‘-—————f safsphaafiag q<“+f’>xaxﬁ} . (65.10)
fcxfﬂf2af2ﬂ

Papas = 2q(9a+ﬁ)/24&f_;°’.£12_°‘ {yﬁ — o3 [;ﬂ_f@_ -#X ﬂ} _ (6.5.11)
6a 0f6/3

bapss = 2022 f £,

x {anaYﬁ _ glomys foasofrzahan | qf’x[,ya} . (6.512)
fafﬁf(inf(i/i

Proof: Applying equation (6.5.9) with m =1 and p = 6, we have

— ggla+8)/24 f2na f2p0 fato
=2g S
faafop

x { gV g0 4 g8Dgl02) 4 g6 (65 13)

ba.8,1,6

Now, using (6.5.4), (6.5.5), (6.5.6), in (6.5.13), we obtain the result after
simplification. The equation (6.5.11) and (6.5.12) can be proved in a similar
way applying equation (6.5.8) with m = 3, 5 respectively and p = 6.

Theorem 6.5.6. (19, Proposition 5.10]

(a+ﬁ)/8f4uf45fafﬁ (6-5 14)

a,8,5,2 = -2
¢ f52 1 f?af?B
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Proof: Applying equation {6.5.9) with m = 5 and p = 2, we have

= 9g(@+B)/8 5(2.5) (2,3)&%&, 6.5.15
Pa.5.5,2 q 95 Ia Joaf2p ( )

Now, using (6.5.8) and (6.5.2) in (6.5.15), we obtain the result.
Proof of (6.2.3): We sct p = 1, in (5.8.13), we casily arrive at (6.2.3) by

employing (6.5.12) and (5.5.26).
In the sequel, let Ny denote the set of nonnegative integers.

Proposition 6.5.7. [26, Proposition 6.3] For pcNy, and p even,

®6,4p+10,p+3,p+4 = P2,12p+30,1,2, (6 5.16)

Furthermore, the identity (6.2.4) holds.
Proof: If we set p = 2, in (6.5.16), we obtain (6.2.4) by using (6.5.12) and
(5.5.28).
Proof of (6.2.9): If we set p = 6, in (5.5.32), we obtain (6.2.9) by using
(6.5.10) and (4.3.12).

Proposition 6.5.8. [26, Proposition 6.2] For peNy, and p even,

®2,3p+10p+3,p+4 = P1,6p+20,1,3 (6.5.17)

Furthermore, the identity (6.2.10) holds.
Proof: If we set p =2, in (6.5.17), we obtain (6.2.10) by using (6.5.12) and
(5.5.27).

Proposition 6.5.9. [26, Proposition 6.8/ For peNy, and p even,

Pa,3p+8p+3p+4 = P1,12p432,1,3, (6.5.18)

Furthermore, the identity (6.2.11) holds.
Proof: If we set p = 2, in (6.5.18), we obtain (6.2.11) by using (6.5.12) and
(5.5.27).
Proof of (6.2.12): If we set p = 1, in (5.5.44) we obtain (6.2 12) by using
(6.5.12) and (5.5.28).
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Alternative proof of (6.2.12): Applying (4 3.24), with 4 =6, v = 5 and
using (1.1.5), we find that

2q9(9)¥(q"") = 20{f(q,0"")f (7%, ") + ¢*P(d*)W(¢g*)
+9"°f(¢°, q") (g, ¢"*")}. (6.519)

Replacing q, by —g¢, and dividing both sides by f(—gq)f(—q'), and using
(6.1.3) and (4.3.12), we obtain the result.

Proposition 6.5.10. [24, Proposition 6.13] For peN,

P2p(p+3).1.p+2 = Pp+3.2p.1,3: (6.5.20)

Furthermore, the identity (6.2.13) holds.
Proof: If we set p = 4, in (6.5.20) we obtain (6.2.13) by using (6.5.10) and
(5.5.27).

Proof of (6.2.14): If we set p = 5, in (5.5.43), we obtain (6 2.14) by using
(6.5.10) and (5.5.27).

Proposition 6.5.11. For peN,

D1p.5p,5.6 = Pp.35p,5.2) (6.5 21)

Furthermore, the identity (6.2.15) holds.
Proof : Equality (6.5.21) holds by Theorem 5.5.12 with A; = Ay = 30p.
Furthermore, by putting p = 1, we obtain (6.2.15) by using (6.5.12) and
(6.5.14).

Proposition 6.5.12. For peN,

Gp+1,p+312 = D1 p24dap+3,1,p+2) (6.5.22)

Furthermore, the identity (6.2.16) holds.
Proof : Equality (6.5.22) holds by Theorem 5.5.12 with A} = A, = p + 2.
Furthermore, by putting p = 4, we obtain (6.2.16) by using (6.5.10) and
(5.5.28).
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6.6 Further identities for quotients of the func-
tions X(q) and Y (q)

In this section, we derive further identitics for quoticnts of the functions X(g)
and Y(q).

Yis = ¢ (far fro8)/ (f15f54) — ¢'% X1 _ Nifafrhis
Ys — q(fofss)/(fsfis) — ¥ X fafsfofao

(6.6.1)

XsYa — q7(f15f60f93f372)/(f5f30f31f186) + 0261\’31}/5 — J1fiss (6.6 2)
Y1Yiss + @5 fafiafacs fisoo)/ (fifo fiss foso) + 420 X1 Xyss  fofar W °

X1Yao — @ (far foafor faas)/ (fr fao faz frna) + 4 XaoYr  _ J1faos (6.6.3)
Y1Y203 + q%(f3 f12 fooo f2a36)/ (f1fs fa03 frars) + @204 X0 X0 fofae '

X1Yars = ¢°'(f1 frz fozs faz00) [ (f1 fo fors frezo) + ¢** XarsYi _ fufas (6.6.4)

X11Yes — q(faa frs fraa faoo)/ (i fos fes frso) + a4 XasYnr  fifars

The following identities are relations involving some combinations of X (g)
and Y-(¢) with the Rogers-Ramanujan functions:

G+Gs + ¢*°H, Hy f2

Y2Yr + 3(fofa feafoa) [ (fafr fraf) + @ Xo X7~ fs' (6.6:5)
G9Grs + ¢°HoH s _ Jofis (6.6.6)

YsYia + ¢ (fof3 f1aa)/ (fsfrafisfr) + ¢'° X3 X2 fafia' o
GsGar + q'HgHyz _ [3f1s (6.6.7)

YaYis + ¢ (fofas foafas) [ (faffafra) + @ XsX1s  fafar'

The following identities are relations involving some combinations of X(g)
and Y (¢) with the Gollnitz-Gordon functions:

YaV1+ ¢*(fafaa)/(f1fo) + ° X1 Xs _ fife

S5452 + ¢*TT, T fafis (6.68)
Yis — ¢°(fasfie0) /(frsfao) = ¢° X35 _ fifafefoo (6.6.9) -
Si1581 + ¢®ThsTh fafsfafs’ o
X1Yas — q"(f3 frafeo fo16)/ (f1 fo fa3 fras) + §°2Y1 Xaa _ fafuafoafire (6.6.10)
T1 523 — ¢TS5, fafsfeshsa '
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YosY1 + ¢*2(f3 12105 fr80)/ (1 fe fos Jaso) + °° X1 X5 - [5J10f20 76

51975 — q'SsThe B fxfxofssfss'
(6.6.11)
YiY110 + ¢°(f3 fr2 fasr frazs)/ (fifo fuafria) + @20 X X119 - frf11fas fes
SviTr = T2 Sq fifrafaafi’
(6.6.12)
XsYie — ¢*(fus foo fs7 f228)/ (fs rafao fira) + 45 Xne _ Sifafosfas0
Sg5S, + 8Ty Ty fofsfiofise’
(6.6.13)
X3Ya1 — @(fofs0fe3 fas2)/ (f3fis far fizs) + @*8Y3 X _ F1Jafe3fas2
Se3S1 + 32T Th fafsfa fras’
(6.6 14)
X7Y17 — q(far for fea faoa) [ fr fra faa fro2) + Y2 Xoz _ Sifaf e fare
SneTy — 955, Thye foftfirfas
(6 6 15)

The following identities are relations involving some combinations of X(q)
and Y (q) with the septic analogues A(q), B(g), and C(q):

YsYa + ¢* (1215 fas foo) / (fafs faafao) + @° Xs Xa _ faafro

= , 6.6.16

AsAjs + ¢*Bs By + q°CsChe fafs ( )

Y1Yas + g3 (fa fizfaoa frveo) [ (f1 fs fos foss) + ¢7° X1 Xos _ fHiafuz (6.6.17)
AscCr — ¢°Bsg A7 + ¢*2Cs6 By fifes o

7/
The following identities are relations involving some combinations of X(g)
and Y (g) with the nonic analogues D(q), E(q), and F(q):

YiVa+ q(fafaa)/(f1f2) + X1 Xe  f3faa

= , 6.6 18
D\Dg+q+ @3E By + ¢°F\ Fy fifa ( )
X1Yso — ¢*%(f3f12f150 feo0)/ (1 fe fs0 fa00) + ¢*°Y1 Xso _ faafs (6.6.19)
DysEg — q — q1 EgsFy + q14Fy5Dg fifso o
6.7 Proofs of (6.6.1)-(6.6.19):
Proposition 6.7.1. For peN,
50.9p.3.6 = Pp,45p.,3.6, (6.7.1)
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Furthermore, the identity {6.6.1) holds.
Proof: Equality (6.7.1) holds by Theorem 5.5 12 with A; = A, = 9p. Fur-
thermore, by putting p = 1, in (6.7.1), we obtain (6.6.1) by using (6.5.11).

Proposition 6.7.2. For peN, ‘

Pp.155p,1,6 = P5p,31p,5.61 (6.72)

Furthermore, the identity (6.6.2) holds.
Proof: Equality (6.7.2) holds by Theorem 5.5.12 with A; = A, = 20p
Furthermore, by putting p = 1, in (6.7.2), we obtain (6.6 2) by using (6.5 10)
and (6.5.12).

Proposition 6.7.3. For peN,

Pp,203p.1,6p = D7p.29,5.6> (6.7.3)

Furthermore, the identity (6.6.3) holds.
Proof: Equality (6.7.3) holds by Theorem 5.5.12 with A} = A; = 34. Fur-
thermore, by putting p = 1, in (6.7.3), we obtain (6 6.3) by using (6.5.10)
and (6.5.12).

Proposition 6.7.4. For peN,

Gp,2715p,5,6 = 119,259,561 (6.7 4)

Furthermore, the identity (6.6.4) holds.

Proof: Equality (6.7.4) holds by Theorem 5.5.12 with A; = A; = 50p.
Furthermore, by putting p = 1, in (6.7.4), we obtain (6.6.4) by using (6.5.12).
Proof of (6.6.5): Setting p = 2in (5.7.2), we obtain (6.6.5) by using (6.5.10)
and (5.5.16).

Proof of (6.6.6): If we set p = 3 in (5.7.3), we arrive at (6.6.6) by employing
(6.5.10) and (5.5.16).

Proof of (6.6.7): We set p =4 in (5.7.4), to obtain (6.6.7) with the help of
(6.5.10) and (5.5.16).
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Proposition 6.7.5. For peN,

D16p.8p,1,4 = P32pap.1.6 (6.7.5)

Furthermore, the identity (6.6.8) holds.
Proof: Equality (6.7.5) holds by Theorem 5.5.12 with A\; = A; = 6p. Fur-
thermore, by putting p = 1, in (6.7.5) we obtain (6 6.8) by using (6.5.10) and
(5.5.14).

Proposition 6.7.6. For peN,

P14p+3pp+3 = P1,4p+3.14» (6.7 6)
Purthermore, the identity (6.6.9) holds.
Proof: Equality (6.7.6) holds by Theorem 5.5.12 with A; = A\; = p + L.
Furthermore, by putting p = 3, we obtain (6.6.9) with the help of (6.5.11)
and (5.5.14).
Proof of (6.6.10) : If we set p = 2 in (5.9.3), we obtain
$1,23,7.6 = P1.23,54 (6.77)
Employing (6.5.9) and (6.5.8) in (6.7.7), we find that
2q11{_2§§,1)2§6,3) +g§§.2)g§6.2) _ Qgg.s)gis,x)} = q7{_gg;,1)gi4,2) + ng,z)gi(zl;}é)

Applying (6.5.4), (6.5.5), (6.5.6), and (6.5.3) in (6.7.8), we readily arrive at
(6.6.10).

Proposition 6.7.7. [25, Proposition 3.4.3] For peN, we have

P15p+80,p,1,p4+5 = Psp,3p+16,3,3p+15 (6.7.9)

Furthermore, the identity (6.6.11) holds.
Proof: If we set p = 1, in (6.7.9), we obtain

Bo5,1,1,6 = Ps5,19,3.4- (6.7.10)

Now, using (6.5.10) and (5.5.15) in (6.7.10), we easily obtain (6 6.11).
Proof of (6.6.12): If we set p =1 in (5.9.11), we find that

dr119,1,6 = P7.17,34- (6.7.11)
We deduce (6.6.12) with the help of (6.5.10) and (5.5.15).
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Proposition 6.7.8. [26, Proposition 6.8] For p even, we have

®5,4p+11,p+3,p+4 = ¢1.20p+55,1,4, (6.7.12)

Furthermore, the identity (6.6.13) holds.
Proof: If we set p = 2, in (6.7.12), we obtain

$5,19,56 = $1,95.1.4. (6.7.13)

Employing (6.5.12) and (5.5.14) in (6.7.13), we deduce (6.6.13).

Proposition 6.7.9. [26, Proposition 6.7.] For peNy and p even, we have

®3.4p+13.p+3.p+4 = P1,12p+39.1.4, (6.7 14)

Furthermore, the identity (6.6.14) holds.
Proof: If we set p =2, in (6.7.14), we obtain

$321,56 = $1,63,1.4- (6.7.15)

Applying (6.5.12) and (5.5.14) in (6.7.15), we deduce (6.6.14).

Proposition 6.7.10. [26, Proposition 6.9] For peN, we have

D7,4p+19,p43 044 = D128p+63,3 4 (6.7.16)

Furthermore, the identity (6.6.15) holds.
Proof: If we set p = 2, in (6.7.16), we obtain

$717.56 = D1119,3,4, (6.7.17)

Employing (6.5.12) and (5.5.15) in the above identity, we readily arrive at
(6.6.15).

Proposition 6.7.11. For peN,

®1r0p.sp16p = ¢16p,3p,1,7p, (6.7.18)
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Furthermore, the identity (6.6.16) holds.
Proof: Equality (6.7.18) holds by Theorem 5.5.12 with A; = A, = 3. Further-
more, setting p = 1 in (6.7.18), we obtain (6.6.16) with the help of (6.5.10)
and (5.5.18). .
Proof of (6.6.17): If we set p = 3 in (5.9.10), we find that
$7,5657 = P2,196,1,6- (6.7.19)

Employing (5.5.20) and (6.5.10) in the above identity, we immediately arrive
at (6.6.17).

Proposition 6.7.12. [25, Proposition 8.4.25] For peN, we have

Bp2p+18,1,p46 = Dp+9.2p,1,p4+3 A (6.7.20)
Furthermore, the identity (6.6.18) holds.
Proof: If we set p = 3 in (6.7.20), we obtain
$3,2419 = 12,6,1,6- (6.7.21)
Using (5.5.21) and (6.5.10) in (6.7.21), we readily obtain (6.6.18).

Proposition 6.7.13. For peN,

B2p,100p,5.6 = P8p,25p,5.91 (6.7.22)

Furthermore, the identity (6.6.19) holds.
Proof: Equality (6.7.22) holds by Theorem 5.5.12 with A; = A, = 30p.
Setting p = 1 in (6.7.22), we obtain (6.6.19) with the help of (6.5.12) and
(5.5.23).

6.8 Applications to the Theory of Partitions

In this section, by the notion of colored partitions, we extract some partition
theoretic results from some of our identities. We recall from Chapter 5 that

1
. (4% ¢")%
is the generating function for the number of partitions of n, where all the
parts are congruent to u (mod v) and have k colors.

113



Theorem 6.8.1. Let p;(n) denote the number of partitions of n wnto parts
congruent to 1, 2, +4, 6 (mod 12) wath £2, 6 (mod 12) having two colors.
Let pa(n) denote the number of partitions of n wnto parts congruent {o £2,
4, £5, 6 (mod 12) unth £2, 6 (mod 12) huving two colors. Let p3(n) denote
the number of partitions of n into parts congruent to £1, £3, £5 (mod 12)
with £1, £5 (mod 12) having two colors. Then, for any positive integer
n 21, pi(n) + pa(n — 1) = pa(n).
Proof: The identity (6.2.1) is equivalent to
(¢°%; ¢'%)(¢'% ¢'?) .\ q(qni;qxz)(qn;qlz) _ (qz;q2)3’

(g:9) (g:9) (9:9)%(q ¢*)
Rewriting the products of the above identity subject to the comimon basc
q'?, we deduce that

1 g 1
(ql:t,2:i:.2:!:.4:i:.b'.6;q12) + (q2:t.2:h.4:h,5:t,5.6;q12) = (qli.l:t.3:£,5:!:.5:t;ql2)' (682)

(6 8.1)

The three quotients of (6.8.2) represent the generating functions for p;(n),
p2(n), and p3(n), respectively. Hence, (6.8.4) 1s equivalent to

Y nmd +q> p(n)g" =Y ps(n)g",

n=0 n=0 n=0
where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" on both
sides yields the desired result.
Example: The following table illustrates the case n = 9 in Theorem 6.8.1.

pi(5) =7 p2(4) =4 p3(5) = 11
4+1 2, + 2, Or
%+ 2 1 2 + 2 G
2+ 2, F1 % + 2, 3+ 1,11,
5+ 2, + 1 1 I+1, 11,
2 T 1+1F1 371, +1,
5 +1+141 L+L L 7L +1,
T+141+141 L+ L +L ¥, +1,
_ L+ L +1, +1,+1,
L+ 1, +1,+1, + 1,
L 71, +1, %1, +1,
T+ L+ 1, + 1, +1,
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Theorem 6.8.2. Let p,(n) denote the number of partitions of n wnto parts
congruent to £2, £3, £5, £6, £7, 9 (mod 24). Let p2(n) denote the number
of partitions of n into parts congruent to =1, £3, £6, £9, £10, £11 (mod
24). Let p3(n) denote the numnber of partitions of 1 wnto parts congruent to
+1, £2, £5, &7, £10, +11, (mod 24). Then, for any positive integer n > 2,
pi(n) + p2(n — 2) = p3(n).

Proof: The identity (6 2 3) is equivalent to
(g'*; ¢'2) ("% ¢2)(g*°%; ¢2) (g?%; ¢*4)

(¢:9)(q% %)
N q2(qa:i:; q12)(q12; q12)(q2i; q24)(q24; q24) _ (q.'i, q3)(q24; q24)

= . 68.3
(7:9)(¢% ¢%) (9, 9)(g% ¢*) (683)
This identity can be written as
1+ 12, .12 10, 24 5+ ,12. 12 2%, .24
(07,979 )e™%q™) | 200507 a0 e (6.8.4)

(43 ¢%) (2% 4%

Rewriting all the products by the common base ¢%*, for examples, writing
(0% ")oo 85 (§'F; 4%) oo (¢11F; ¢ oo and (g% ¢%)oo as (3H0 911224, 024) 5ng
cancelling the common terms, we obtain

1 N q?
: O 9%, 108, 11E 24
(PERESEGETEIE, q2) T (k3% )

1

= (@ EREPETENOENE, g28) (6 8.5)

The three quotients of (6.8.5) represent the generating functions for p,(n),
p2(n), and p3(n), respectively. Hence, (6.8.5) is cquivalent to

Y mmg" +¢ im(n)q" =Y p(n)g", (6.8.6)

n=0 n=0 n=0

where we set p;(0) = py(0) = p3(0) = 1. Equating the coefficients of ¢" on
both sides of (6.8.6), we arrive at the desired result.
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Example: The following table illustrates the case n = 9 in Theorem 6.8.2.

p(9) =5 p2(7) =4 p3(9) =9
9 I1+14+14+14+14+ (24+24+24+2+1
1+1

9+2+2 3+14+14+14+1]5+24+2

74+ 2 6+1 T+2

3+3+3 3+3+1 24+2+2+4+1+1+1

3+2+4+2+2 T+14+1
S+1+4+1+1+1
5+24+1+41
2424+141+141+1
241414+ 1414+1+1+1

Theorem 6.8.3. Let p,(n) denote the number of partitions of n into parts
congruent to £3. £5, £6, £7, £17, 18 (mod 36) with parts congruent to +6,
18 (mod 36) having two colors. Let py(n) denote the number of partitions of
n into parts congruent to £1, £6, £11, £13, £15, 18 (mod 36) and purts
congruent to £6, 18 (mod 36 )having two colors. Let p;(n) denote the number
of partitions of n into parts congruent to £2, +£3, +£10, £14, £15 (mod 36)
with parts congruent to £3, £15 (mod 36) having two colors. Then, for any
positive integer n > 2, py(n) + p2(n — 2) = p3(n).

Proof: The identity (6.2.4) is equivalent to
(a'%; '3 (¢'%; ) (9"%%; ¢°%)(¢%; ¢*°) . a(a°%; ') (9% ') (6**; °°)(¢%; ¢°°)
(g;9)(q% ¢3) (q; 9)(d% ¢°) o
%) (% ¢%)°(q°; 4°)(¢%%; ¢°°)
3.

_ _(¢%q%)
(@ 0)2(¢% )3 (a'%; 2)2(q'%; g18)
(6.8.7)
Rewriting all the products in (6.8.7) by the common base ¢*¢, for examples,

writing (¢'*,¢'?)co 85 (¢'%,¢'1%,¢'3*; ¢%)oo and (%5 4°)o0 85 (2%, 4%) oo (9% 0%) o
and cancelling the common terms, we obtain

1 q2
+
(PESESEBLTENTEBIB, 36) ' (qlE6%,6% 11,13%,15%,18.18, 436)
1

= (q?E3%.3%10%,14%,15%,15%; 36)° (6.8.8)
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The three quotients of (6.8.8) represent the generating functions for p,(n),
p2(n), and p3(n), respectively. Hence, (6.8.8) is equivalent to

Y )+ ) = psln)g", (6.8.9)

n=0 n=0 n=0

where we set p;(0) = p2(0) = p3(0) = 1. Equating the coefficients of ¢" on
both sides of (6.8.9), we obtain the required result.
Example: The following table illustrates the case n = 16 in Theorem 6.8.3.

n(16) =6 r2(14) =8 pa(16) = 14
34+3+4+3+7 [6,+6,+1+1 14 +2
54+5+3+3 [6,+6,+1+1 10 + 3, + 3,
6-+5+5 6,+6,+1+1 - [1043,+3,
6,+5+5 I1+14+141 10+ 3, + 3,
6, +7+3 13+1 10+2+2+2
6,+7+3 6 +1+14+14+14+14+ |3, +3, +3,+3, +2+2
1+1+41
g +1+1+14+14+1+ )3, +3,+3, +3,+2+2
1+1+1 )
T41+14+1414+14+14 | 3, + 3, + 3, +3, +2+2
1+1+141+1+1+1
3 +3,+3,+3,+2+2
3g+3,+3,+3,+2+2
3G +3 +2+2+2+2+2
3 +3,+2+2+2+2+2
3 +3+2+2+2+2+2
24+2+4+24+2+4+2+2+2+2
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Theorem 6.8.4. Let p;(n) denote the number of partitions of n into parts
congruent to 1, 4 (mod 12) having three colors and parts congruent to
6 (mod 12) having two colors. Let po(n) denote the number of partitions of
n into parts congruent to +4, 5 (mod 12) having three colors and 6 (mod
12) having two colors. Let p3(n) denote the number of partitions of n wmto
parts congruent to £1, £3, 5 (mod 12) with £1, £5 (mod 12) having three
colors. Then, for any positive integer n > 3, p1(n) + p2(n — 3) = ps(n).

Proof: The identity (6.2.5) is equivalent to

(¢°%;¢'2)%(q"% ¢'2)® +q3(q‘*;q‘2)3(q”;q”)3 _ (6% d%)(e% ¢Y)° |
(g:9)3 (g;:9) (4;9)*(d%; ¢%) (g%, ¢'?)?
(6.8.10)

Noting that (¢ ¢5)o = (¢%; 4" (q'%; ¢*2)eo, and rewriting all the products
by the common base ¢'2, and cancelling the common terms, we can rewrite
(6.8.10) as

1 4 ¢
TEAL AT AL66. AL AL,5% 5% 5,66, g12
(qIFIETE AT AETAE66, g12) © (gaE AT AT £68; g12)

1

= (qIEIEIEIESESESE, qiay’ (6.8.11)

The three quotients of (6.8.11) represent the generating functions for p, (n),
p2(n), and p3(n), respectively. Hence, (6.8.11) is equivalent to

S pin)g* +¢* D pa(n)a* =) pa(n)g (6.8.12)

n=0 n=0 n=0

where we set p;(0) = p,(0) = p3(0) = 1. Equating the coefficients of ¢" on
both sides of (6.8.12), we obtain the desired result.
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CONTRIBUTIONS TO RAMANUJAN'’S THETA-FUNCTIONS
AND MODULAR EQUATIONS

Doctoral thesis by JONALI BORA

Corrigendum

1. The theta-function identities which we proved in Chapter 2 are in fact
different from those proved by Baruah and Bhattacharyya {4] (i.e. [3]
in the previous version). We have rewritten the first paragraph of the
introduction of Chapter 2 in support of this fact.

2. The idea of proofs of the three identities (4.2.19)-(4.2.21) are due to Mr.
N. Saikia and for this reason we have written our paper [8] ([5] in the
previous version) together. The other proofs came out from a joint work
with the author's supervisor Dr. N. D. Baruah. We have added a remark
at the end of Chapter 4 to acknowledge the help received from Mr. Saikia.

3. In fact, the identities (5.1.1), (5.1.2), (5.1.3) are due to L. J. Rogers [30],
[31]. These appear in L. J. Siater’s list [34] of 130 Rogers-Ramanujan type
identities. We have properly given reference of Rogers' papers and
as suggested by one of the referees;'marked these identities according to
Slater's list. Also the identities (5.1.4); (5.1.5), (6.1.6) are due to W.
N. Bailey (2]. These also appear in Slater’s list, but all three contain
misprints. These misprints are corrected by A. V. Sills [33). We have
incorporated these changes in the rewritten Introduction of Chapter 5.
Sills also corrected one misprint in Slater's formulation of (6.1.2). Itis to
be noted that the formulation of (6.1.1) with that of Slater are equivalent.
In summary, we have corrected all the misprints in p.68, (5.1.1)-(5.1.3),
p.69, (5.1.4)-(5.1.6) and p.100, (6.1.2). It is worthwhile to note that
these misprints/ corrections do not change our modular relations.

4.p.2,In Eq. (1.1.7), we have defined (a; g)..

5.p6, InEgs. (1.1.26) and p.100, In Eq (6.1.2) we have changed
Smzo to 14+ 3500, .

6. p.4, p.49, We have changed all lun ¢ — 1— to lin ¢ — 1°

To\,\\)v‘\ QO“L\



7. We have corrected the misprints pointed out by one of the referees in his
comments are listed below :

a) Abstract page, Ls: Knowledge — Knowledge of
b) Declaration page, L,: has — have

c) p.4, Li: Ramaujan’s — Ramanujan’s

d) p.4, Ls: Proofs all of —» Proofs of all

e)p4d, ls:is— are

8. We have also corrected the misprints pointed out by one of the other two
referees.[ p.83, Eq (5.5.36 ) & Eq (5.5.37) ]

9. Since the submission of our previous version of the thesis, the contents
of Chapters 5 and 6 have been accepted for publication by the Journal of
Number Theory and Integers, respectively. We have added these papers
[6] and [7] in the Bibliography of the thesis.

We are extremely grateful to the referees for their helpful comments.

Signature: TorodL. Rone

(Jonali Bora)

Date: ¢.11.0¢



