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ABSTRACT 

111 this thesis, we deal witli Ralrianujan's ~l~odil lar  equatioi~s a ~ i d  111od- 
ular relations for tliree sets of furictions aiialogous to the fal~ious Rog(:rs- 
Rarnanujan functions. B. C. Ber~idt (Rarnarlujari's Notebooks, purl. 1[1(11)1)1), 
280-282 & 352-358; Ra~riailujari's Notebooks, Part \r(199S), 370) prc~vccl sev- 
eral of Ralnanujan's niodular equatioiisof degrees 5 and 9 by usi~ig a iiietliod 
of para~neterizations, which requires prior kiiowledgt: of tlii: eqtiations. In 
this thesis, we find alternative proofs of these nioclular equations by rlsiiig 
tlieta-fuiiction identities. In the process. we also find iriorc d i r ~ c t  proofs of 
some of tlie associated theta-fuiictioli ideiiti ties. By employi~ig tJie i~lctli- 
O ~ S  of Rogcrs (PI'oc. Lo~rdorz Muth. SOC. 19(192 1 ), 387-3971, \Vi~tsOii ( , I .  
Indian Math. Soc. 20(1993), 57 -0 ) )  and Bresso~icl (P1l.D Tliesis, Telllple 
Universit,~, 1977), Huang (J. Nu~rlber Theory 68(1998), 178-216) and Cllell 
and Huaiig (J. Number Theory 93(2002), 58-75) for~lld 21  nodular relatioils 
involving the Gollnitz-Gordon functions, which ale analogous to the wcll 
k~iowli forty ideiitities for the Rogers-Rainari~.ljaii l'uiictioils. 111 t.1iis tl~csis, 
we find alteri~ative proofs of these 21 modular relatio~is as wc'll ;LS sspcral 
new rclat.ions by llsirig Schrot,cr's forrn11la.q nnd Ra~nari~ijari'h tl~ctn-fu~ic*tiori 
identities. We also establish rnany iriodular 'equations satisfictl 11,' thc llolric 
aiialogues aiid one more set of functions all~logous 1.0 the Rogeis-R.fi~ilaiiiijfi~i 
functioris. By tlie liotiori of colol.cd parti tioii, scvcstl.1 iritcrcsti~ig yarti tioii 
theoretic iliterpretatiolis are derived. 
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Chapter 1 

Introduction 

1.1 Introduction 

Ramanujan's general theta-function f (a, 6) is defined by 

where lab( < 1. 
If we set a = q 2 ' z ,  b = q-21i, and q = em", where z is coiil])le>r ~11d 

Im(r)  > 0, then f (a, h)  = 793(z, T ) ,  where $3(z, 7) deriotes one of t l~c  classical 
theta-functions in its standard notation [37, p. 4631. Sorne basic properties 
satisfied by f (a, b) are stated in the following theorem. 

Theorem 1.1.1. [ll, p. 34, Entiy 181 

f (a, b) = f (b, a),  (1.1.2) 

f ( 1 ,  a)  = a f  (fl, a3 ) ,  (1.1.3) 

f ( - l , a )  = 0, (1.1.4) 
f (a, b) = an(n+1)/2bn(n-1)/2 f (~(ab)",  b(ab)-"), (1.1.5) 

where 7z is an integer. 

Jacobi's famous triple product identity [ll, p. 35, Entry 191 can be put 
in the form 

f (a, b) = (-a; ab),(-b; ab),(ab; ah),, (1.1.6) 



where as usual, for any complex number a ,  we defirie 
n w 

(a; q ) ~  := 1, (a; q),, := n ( 1  - aqk-I), (a; qlw := n ( 1  - aqk-I), (1.1.7) 

where it is also assumed here and througllout the sequel that Jql < 1. 
Three special cases of f (a,  b)  are 

If we write q = e2R'7 wit11 I I ~ ( T )  > 0, then f(-q) = e-"'T/1271(~), wliere 4 7 )  
is the classical Dedekind eta-function. Tl~roughout the thcsis, .urc slinll list 

(1.1.2) - (1.1.10) several tiines without comments. 
We also define 

Next, wc give the definition of a rnodular equation as crnploycd by Rn- 
manujan. The  complete elliptic integral of tlie first kind K ( k )  is defiiied 
by 

where 0 < k < 1 and where the series representation is foulid by e x p a i ~ d i ~ ~ g  
the integrand in a binomial series and integrating termwise. The  number k 
is called the modulus of Zi, and k' := d m  is called the coiiipleiiie~ltrlry 
modulus. Let IT, K', L, and L' denote complete elliptic integrals of the 
first kind associated with the modr~li k,  kt, 1 .  and 1'. respectively, whcrc 
0 < I;, 1 < 1. Suppose that the equality 



holds for some positive integer n. Then a modular equation of degree n is n 
relation between the nioduli k and 1 which is iiiiplicd by (1.1.13). Ra~~iaiiujan 
recorded llis  nodular equations in terrns of cu mid P,  where cx = khalid P = 1 2 .  
We say that p has dcgrcc 7~ over u, The multiplier 711 is dcfirled by r r ~  = K / L .  

We also need to define Ramanujan's  nixed "illodular equation or a mod- 
ular equation of co~nposite degree. We recall froill Chapter 20 [ll, p. 3251. 
Let K, K t ,  L1, L:, L2, L',, LJ, L;, denote complete elliptic iiltegrals of first 
kind corresponding. in pairs, to the moduli 6, fi, fi, &, arid their com- 
plelneiltary moduli, respectively. Let n l ,  nz, and 7 1 3 ,  be positive integers such 
that ns = ?~171~2. Suppose that the equalities 

hold. Then a "mixed "modular equatiori'is rulativli between t8hc rnoduli fi, 
fl, fi, &, that is induced by (1.1.14). In sucli an instance, we say tliat 
0, y, and 6 are of degrees 721, 112, and 713 respectively. Recalling from (11, p. 
101) tliat, z, = $2(gr), we define the multipliers 711 a ~ l d  m' by In = zl/z,,, a~iri 
"I' = 2,,, /znJ. 

Ranlanujail recorded many modular equations of priine degrees as well 
as of composite degrees in his notebooks [28] and the lost notebook [29, 
pp. 50 and 56). All of Ramanujan's modular equations were proved by 
Berndt (see (11, Chapter 19-20], [12, Chapter 251, [13, C b ~ p t e r  361, and 
[14, pp. 55-74]). As Ralnarlujan did not provide any proofs for iiis results, 
one can only speculate liis proofs. It is clear fro111 Chapter 17 of Berndt's 
book (111 that modular equations can be expressed as identities involving 
the tlieta-functioils 4, $J and f .  Provably Ranlaliujan first derived a tlieta- 
function identity and then transcribed it into an equivaleut modular equation 
by using his catalogue of theta-functions [ll ,  pp. 122-124, Entries 10-12). 
Therefore, often one first tries to derive a theta-function identity and tlierl 
transcribes it into an equivalent modular equatioli. But, proofs of some 
of Rarnanujari's modular equations given by Bcrl~dt are quitc: urilikc this 
method. He sometimes reversed the process. Berndt also used a method of 
paranleterizations in proving some of the inodular equatiolis. Tliis ~lietllod 
also requires prior knowledge of the equations. 

In Chapter 2 of our tshesis, we present altcrnntivc proofs of Rnmanujnn's 
modular equations of prime degree 5 by using theta-function ideutities. First 
we find alternative proofs of some of the associated theta-function identi- 
tics and then transcribe these and their differerit co~nb ina t~ i~~ i s  to arrive a t  



Ramanujan's modular equations. In the process, we also derive several new 
theta-function identities. 

In Chapter 3, we present the proofs of all of Ramanujan's modular equa- 
tsiorls of degree 9, by usilig theta-furictioli idclitit.ieh. 111 tlic process, wc also 
find new proofs of sonle of Ramanujan's theta-fuiiction identities. Tlie con- 
tents of this chapter are almost identical to [5]. 

Next, for lql < 1, the well-known Rogers-Ramaii~ijan functiol~s are defiiied 
by 

G ( q )  and H (q )  are called Rogers-Ramanujan ideriti ties. In n manuscript 
published with the lost notebook (291, forty liiodular relations for G(q) and 
H(q) were recorded by Ramanujan. These nre now known as Rar~ialiujnn's 
forty idcnti ties. Among tlic forty idcntitics, tlic bilnplcst and   no st Lcau tiful 
orie is 

G ' ( ~ " ) H ( ~ )  - Q ~ G ( ~ ) H ( ~ ' ~ )  = 1. 

Iri 1921, Darling (231 proved this identity ill tllc Procecdirigs of Loxldotl Matli- 
elllatical Society. In the same issue of the Proceedings, Rogers (321 proved ten 
of the forty identities including the one proved by Darliiig. In 1933, Watson 
(361 established eight of the forty identities, two of which liad beell previously 
proved by Rogers. In 1977, Bressoud ([I91 & [20]) generalized Rogers' results 
to prove fifteen additional identities. In 1989, Biagioli [17] establislied 8 iden- 
tities of the remaiiliiig 9 unproved identities by usi~ig the tlieory of ~nqdular 
forms. Thc remaining onc identity con also bc proved by Biagioli's rncthod. 
Tlie primary disadvantage of Biagioli's niethod is that the desired identities 
must be known in advance, and the proofs are perhaps more properly c~l led  
verifications. On the other Iiand, Rogers, Watsori arid Bressoud all elnployed 
the same bare hands approach by viewing the sum as taken over quadratic 
forms with variables taken frotn restricted residue classes. Indeed, Rogers 
and Bressoud also derived general formulas tliat, were powerful for proving 
some of thc forty identitieb. Recently, Bcrnclt et ill. [16] h ~ v c  fo~lnd proofs of 
35 of the 40 identities in the spirit of Ramariujan's mathematics. For each of 
the remaining 5 identities, they also offered heuristic arguments sliowil~g tliat 
both sidcs of the ider~tity have thc same asy~nptot~io expansioris as q --* 1'. 



Another two well known functions analogous to the Rogers-R.amanujan 
functions are the so called Gollliitz-Gordon F'unctio~ls, defined as 

00 

(-9; q2)n ,,2 1 
(q2; q2)n 

q =  7 8  

n=O ((I; ( I ~ ) O ~ ( Y ~ ;  ( I ~ ) ~ ( ( I  ; (I )w 

Motivated by the similarity between the Rogers-Ramanujan and Gollnitz- 
Gordon functions, S.-S. Huang 126) and Chcn and I-lunng 122) derived 21 
modular relations involving S(q) and T(q), one new relations for G(q) a i d  
H ( q ) ,  and 9 relations involvillg both the pairs G(cl), H(q) and S(q) aiid T(q). 
They uscd tlie methods of Rogcrs [32], Mratson [XI, and Brcssoud [I)]. Iri 
Chapter 4 of this tliesis, we fi~id proofs' of the 111odulnr relations i~ivolvi~~g 
only S(q) and T(q) by employing Schroter's formulas and theta fullctio~is 
identities. We also derive several new modular relat,ions. The coiltei~ts of 
this chapter are almost identical to our paper [8] 

In (241 & (251, H. Halin defined the septic aualogues of tlie Rogers- 
R amanujan functions as 

She derived several analogues of Rainanujall's forty identities iiivolving A(q), 
B(q), and C(q). Some of then1 are connected wit11 the Rogers-Rainanujan 
fu~ictions aiid the Gijllnitz-Gordon Functio~ls. Sllc also found partition tl~co- 
retic results from some of her identities. In Chapter 5 of this thesis, we define 
the nonic analogues of the Rogers-Ramanujan fu~~ctions as 

00 

(9; 9)3n$n2 
D(s)  := C 3 3 

- - (q5; Q'J )oo (~4 ,  Q ~ ) O O ( ~ ~ ;  qY)w , (1.1.22) 
n=0 ((I ; 'I )n((13; q3)2n (Q" q3)m 



We used a variety of  neth hods to establisli rnany modular relations irlvolving 
only D(q) ,  E(q) ,  and F(q)  as well as several others involving othrlr anal* 
gous functions. By the notion of colored partitions, we able to fintl several 
partition theoretic results from some of our relations. Tlie contents of this 
chapter are almost identicnl to our paper [6]. 

In Chapter 6, we define another couple of fu~lctions allaloguts to tlie 
Rogers-Ramanujan functions. These are 

(1.1.26) 
We establish several modular relations involving only X ( q )  and Y ( q )  as well 
as several others involving other analogous functions. We d s o  extract parti- 

- 

tion theoretic results from some of the relations. Tlle contelits of thiti chapter 
are almost identical to our paper [7]. 



Chapter 2 

Ramanujan's Modular 
Equations of Degree 5 and 
Associated Theta-function 
Identities 

2.1 Introduction 

This chapter is devoted to proving modular equations of degree 5. ltania~iu- 
jan recorded 27 modular equations of degree 5 on Chapter 19 of his second 
notebook (281. Two of these modular equations were also recordecl by Ra- 
manujan in a fragment published with the lost notebook [29, p. 351). B. C. 
Berndt proved [ll, Entry 13, pp. 280-2821 all of these modular equatio~ls. He 
proved most of these modular equations by a method of parameterizations. 
But, as we have already mcntioncd in the previous chapter that, Rrrmanujnn 
might hhve first derived a theta-function identity aild then transcribed it into 
an equivalent modular equation. Baruah and Bhattacharyya [4] foulid altcr- 
native proofs of three of Ra~nanujan's theta-furiction iderititics wsociatcd 
with modular equations of degree 5 and used those to derive some taheorenis 
on explicit evaluatiolls of Ramanujan's theta-fu~ictions. Earlier tl~ctse iden- 
tities were proved by Berridt by using modular equations and a method of 
parameterizations. In this chapter, we present alternative proofs of Rnmnu- 
jan's  nodular equations by using theta-furiction identities. In the nleanti~~le, 
we also find new proofs of some of the associated theta-function identities 



by using other theta-function identities of Rnrr~anujan. The theta-function 
identities which we prove are different fro111 those proved by Bwuah and 
Bhattacliaryya [4]. We also note that Berndt used modular equatiol~s and a 
rnethod of pararnt:tcrlzt~t~o~is to d~:clucc tllcsc tl~c:trt-f~lrictio~i iclo~ltit,ics. 

In Section 2.2, we state sorile prelimirlary results. 
In Sectioil 2.3, we state the theta-function   den ti tics and prese~it iiew 

proofs of some of the identities. 
In the final section, we prove the modular equations by using results from 

tlie previous two sections. 

2.2 Preliminary Results 

In this section, we state some results which will be used to derive our theta- 
function identities. 

Lemma 2.2.1. 111, p. 39, E n t y  241 We have 

Lemma 2.2.2. [11, p. 40, Enty 251 We have 

Lemma 2.2.3. 11 1, p .  45, E n t y  291 If ab = cd ,  then 

and 
f (a, b ) f  (c1 d)  - f (-a, - b ) f  (-c, -4 



Lemma 2.2.4. [I 1, pp. 122-124, Entries 10-121 If 

2F'' (i, i; 1; 1 - x) 
= ( ; 1 x) and y = n  

P i ( ; ,  t ;  1; 2) 

then 

2.3 Theta-function identities 

In this section, we state and prove some theta-function identi ties recorded by 
Ramanujan. We think that thv prooh prcssntcd here arc: rnorc tra~lsparallt 



than those found by Berndt [I l l - [13] .  We also mention that the identities in 
(121 were likely unknown to the author wlier~ [ll] was written. 

Theorem 2.3.1. 

4 Proof: Setting a = q,  b = -q , c = -q2, and d = q" iin (2.2:9) aild (2.2.10), 
we find that 

4 (i 1 2 3 
. f ( 4  19 If (-q3. -q7) = Z { f  (9 ,  -q4) f  ( -q  1 (l + f (-91 q 4 ) f  ( $ 1  -q3)}1 

(2.3.2) 
2 8 1 2 3 

9 f  ( 9  19 I f  (-91 -0) = $ f  ( q ,  -q4) f  ( -9  ' 9  - f ( -% q 0 f  (q21 -q3)}.  
(2.3.3) 

We note that [ l l ,  Entry S(vii) ,  p. 2581, 

j(-(/, -q4) f  (-q2,  -q3) = J ( - ~ / > J ( - - ( I ~ > .  (2.3.5) 

Now, multiplying (2.3.2) and (2.3.3) and usjlig (2.3.4), (2.3.5), and (2.2.3), 
we find that 

Again, using Jacobi's 'Priple product identity from (1.1.6)) we obtain 

f (-Q,  -9")f  (-q31 -q7) = (9;  q1°)w(q3; 910)m(97; q10)w(9"; q ' O ) o o ( ~ ~ ~ ;  4 1 0 ) L  

Using (2.2.3) and (2.3.7) in (2.3.6), we arrive a t  the required identity. 

Theorem 2.3.2. 111, p. 276, (12.32)] We have 



Proof : We have [ l l ,  p. 2781, [3, (2.3)], 

Using (2.2.7) in (2.3.9), we obtain cs 

Dividing both sides of (2.3.10) by $2(q)$2(-q), and then using (2.2.6), we 
find that 

Using (2.2.3) in (2.3.11), we deduce that 

Now, rcplacing q by -q in (2.3.1), we notc that 

Dividing both sides of (2.3.13) by +2(-g) and then replacing q by q2, we 
obtain 

Thus, we complete the theorem with the help of (2 3.11) and (2.3.14). 

Theorem 2.3.3. [11, p. 2851 

Proof: We have [ll, Entry 9(vi), p. 2581, (11, Entry 10(v), p. 2621, 



Replacing q by q2,  we obtain 

Elnployiilg (2 .2 .3) ,  we rewrite the above idelitity as 

Now, using (2 .2 .3)  in (2 .3 .1) ,  we obtain 

Employing (2 .2 .3)  again in (2.3.19),  we deduce that 

Replacing q by -9 in (2 .3 .20) ,  we obtain 

Now replacirlg q by q5 in (2 .2 .8 ) ,  we find that 

5 4 10 
9"q5) - $4(-95)  = 169 $ ( 9  ). (2 .3 .22)  

From (2 .2 .8)  and (2.3.22),  we deduce that I 

3 2 2  2 10 
92(q)d7(s") - d2( -q )92( -q")  - 169 ( 9  1, (4  ) 

Using (2 .3 .18) ,  (2 .3 .20) ,  and (2.3.21) in (2 .3 .23) ,  wc find that 



Now, employing (2 .2 .5 ) ,  (2.2'6)' and (2 .2 .7)  i l l  (2 .3 .8) ,  we obtain 

Multiplying both sides it1 (2.3.25) by ( g 5 ( g ) $ ( - q ) 1 / 1 ( r ~ ~ ) ) / ( # ( q ~ ) $ ( - ~ ~ ) $ ( ( ~ ~ O ) ) ,  
we deduce that 

Using (2.2.7) and ( 2 . 2 . 4 )  in (2 .3 .26) ,  we obtaiu 

With the help of ( 2 . 3 . 24 )  and ( 2 . 3 . 27 )  we finish the proof. 

Theorem 2.3.4. /Ill  p. 2591 

Proof: We have [12, p. 2021, [4, p. 2152, Theorem 2.21, 

Again, replacing q by - q  in (2 .3 .16) ,  we obtain 

Dividing both sides of tlie above identity by Q 2 ( - q ) ,  we deduce that 

Enlployilig (2.2.3) and (2.3.31) in (2.3.29) alid tllen divjdi~~g botli sides by 
f j 5 ( 9 ) ,  we arrive at 

Using (2 .2 .2)  and (2.2.3) in (2.3.32) we easily arrive at the proffered iduutity. 



Theorem 2.3.5. [13, p .  364, Entry 161 

Proof: Multiplying (2.3.18) by l C ~ q 1 1 / ~ ( ~ ~ ) ,  wc obtain 

Again, multiplying (2.3.20) and (2.3.21) by rp2 ( q )  and 42 (-ti), rcspcc- 
tively, and then subtracting the resulting identities, we deduce that 

Subtracting (2.3.35) fro111 (2.3.34), and the11 usirig (2.2.8), we arrive at . 

F'rolll (2.3.15) aud (2.3.36), we find that 

Multiplying (2.3.37) by d m  and,usirig nlso (2.2.3) ,  (2.2.5), nncl 
(2.2.7) we arrive at the required identity. 

Theorem 2.3.6. I 
5 2 

~ ( 9  i 4  ('11 
5P(q5) - P ( 9 )  = 4 x s ( q )  

Proof: Dividing both sides of (2.3.28) by r$5(q)/$(q5), we find that 

Multiplying both sides of (2.3.39) by $2(q), and then employing (2.2.3), we 
deduce (2.3.38) to finish ttllc proof. 



Theorem 2.3.7. [13, p. 364, Enty  151 

Proof: Using (2 .2 .3)  in (2 .3 .38) ,  we find tliat 

Replacing q by -q, we obtain 

Multiplying (2 .3 .41)  and (2.3.42) by (b2(q5) and @2( -q5 ) ,  respectively, a ~ i d  
then subtractilig the resulting identities, we deduce that 

Now, replacing q by -q2 in Theorem 2.1 [4], we find'that 

With the help of (2 .2 .3) ,  we rewrite (2.3.44) as 

Multiplying (2.3.45) by 16q3$2(q10), we find that, 



From (2.3.43) and (2.3.46), we deduce that 

R o ~ n  (2.3.15) and (2.3.47), we arrive at 

Multiplying both sides of (2.3.48) by find usiilg (2.2.3), wo fil~d 
that 

5 5 Multiplying both sides of (2.3.49) by ' ($~~(q~)$((7)) / (4  (q )+(g)) and rear- 
ranging the results by employing some identities in Lemma 2.2.1 and Lemma 
2.2.2, we deduce (2.3.40) to finish the proof. 

Theorem 2.3.8. [13, p.  363, Entry 141 

Proof: With the help of (2.3.38) and (2.3.44), wc obtain 

Now, from (2.2.3) and (2.2.4), we notice that 
\ 

Using (2.3.52) in (2.3.51), we deduce that 



Employing (2.2.7) in (2.3.53), we arrive at 

Multiplying both sides of (2.3.54) by ~ j 5 ~ ( ~ ) / 4 ( q ~ ) ,  we find that 

which is equivalex~t to (2.3.50). 

2.4 Modular Equations 
hl this section, we find new proofs of Ramanujan's modular equatiolls of 
degree 5 by using the theta-function identities established in the previous 
section. Berndt proved these equations by a method of parameterizations. 
The proofs given here are seemed to be closer to the provable proofs of 
Ramanujan. Throughout this section, we suppose that /3 has degree 5 over 
cu and nz = z1/z5 is the corresponding multiplicr. 

Theorem 2.4.1. [11, p. 280, Entry 13(i)] We have 

( a )  + 1 - 1 - ) } I 2  + 2 { 1 ( 1  - 1 - ) = 1 (2.4.1) 

Proof: Transcribing (2.3.15), by using (2.2 l l ) ,  (2.2.12), (2.2.18), and (2.2.21), 
we easily deduce (2.4.1). 

Baruah (31 has also found a different proof based on the identity (2.3.9). 

Theorem 2.4.2. 111, p. 280, Entry 13(iz)] We have 

Proof: 'lhl~scribing (2.3.33), by using (2.2.16) - (2.2.18), and (2.2.23), we 
easily deduce (2.4.2). 

Theorem 2.4.3. [I 1, p. 280, Entry 13(zn)j We have 



Proof: Transcribing (2.3.40) by means of (2.2.16) - (2.2.18), and (2.2.23), 
\ we readily deduce (2.4.3). 

Theorem 2.4.4. /11, y. 280, Ent7y lY(iv)] We l ~ u v e  

and 

Proof: Transcribing (2.3.1) with the help of (2.2 21) and (2.2.25), we arrive 
at (2.4.4). 

Tkanscribing (2.3.28) by employing (2.2.11) arid (2  2.22), we easily deduce 
(2.4.5). 

Note that (2.4.5) is also the reciprocal nf (2.4 4) nnd vicovcrsn. 

Theorem 2.4.5. 111, p. 280, Entry 13(1))] We /lave 

1 + ( 1  - 1 - a ) )  1 -  la)'/" - - (2.4.6) 
= 1 + 1 - 1 - ) ; - 1 7 (a38)'18 ' 

, _( 

i ,  

Proofs of the above modular equations have already beell given by Berlidt 
[ll, pp. 282-2133] with tlie liclp of theta-fu~iction iclcntities. 

Theorem 2.4.6. 11 1, p. 280, Entry 13(vz)] W e  have 

These lnodular equations are the reciprocals of the respective modular 
equations in the previous theorem. Here we also o f i r  an alterllativc proof. 
Proof: Transcribing (2.3.50) by employing (2.2 11) and (2.2.16), we easily 

, deduce the first equality of (2.4.7). 
Replacing g by -q, in (2.3.38), we find tliat 



, 
From (2 3 38) and (2 4.81, we obtain 

llanscribing the above identity by einployiiig (2.2 l l ) ,  (2.2.12), (2.2.25), and 
(2 2.26), we find that 

Dividing both sides of the above identity by ((I - @)/(I - a))"', tue cotu- 
plete the proof of the secoild equality of (2 4.7) also. 

Theorem 2.4.7. [11, p.  280, Entry 13(v22)] We have 

Proof: Replacing q by q'/4, in (2.3.9), we find tlmt 

Tkanscrihing this eq~intion by using (2.2.1 I ) ,  (2  2 12),  and (2.2.24), wc obtain 

The reciprocal of the above equation is given by I , 

Berndt et al. [16, lemma 9.1, p. 201 have also given a proof of (2.4.14) 
by using a method of paraneterizations. They used this modular equation 
to prove some results on Ramanujan's famous forty identities for the Rogers- 
Ramanujan functions. 



Multiplying both sides of (2.4.14) by ((1 - a ) ( l  - ~ ) ) ' l "  we find that 

The reciprocal of this equation is givcn by 

( u ~ ~ ) ' I ~  - ( P ~ U ) ~ / ~  = 22/3(ckp(1 - U ) ( I  - B) ) ' I~ .  (2.4.1G) 

From (2.4.15) a r ~ d  (2.4.1G), wc clcducc that 

We rewrite the above identity as 

(a$)'I8 + {(I - a) (1  - B ) ~ } ' ~ '  = ( ~ r ~ / 3 ) ' / ~  + {(I  - 01)3(1 - ,9)}1/8. (2.4.18) 

Now, dividing both sides of (2.4.12) by ( a ~ ) ' / ~ ~ ,  we obtain 

(5)  - (z) 'Iz4 = 22/3((1 - a) (1 - p)) 116. (2.4.19) 

Multiplying both sides of the above identity by 2lI3 ((1 - ~ t ) ~ / ( l  - D ) ) ' / ~ ~ ,  
we find that  

(2.4.20) 
Again, multiplying both sides of (2.4.18) by 2'13 ((1 - ,8)5/(1 - or))'12', 

we arrive a t  1 . 1  - I )  - 1  $ 1  - - [  i , t  I . 1 : )  

The reciprocal of (2.4.21) is given by . 

Adding (2.4.20) and (2.4.22), we deduce that 



Dividing both sides of the first part of (2.4.49) by 2-'l"(o@(l -o ) ( l  -p))'12', 
we obtain 

E~nployi~ig (2.4.24) in (2.4.23), we find that 

p5(1 - a)" 1/24 
(a3p)l18 + - - p)j1/8 = 1 - ( ) . (2.4.25) 

.(I - P )  
Now, multiplying both sides of (2.4.24) by 4'13 ((U(1 - c ~ ) ) ~ / u ( l  - P ) ) " ~ ~ ,  

we obtain 

4 '13 (a~(1  - a ) ( l  - ,f?))1/6+41/3 
(p(1 - a))O l'I2 (p(1 - (l))l ' I2( ( ) = 42/3 ( ) . 

- 0 )  4 1  - P )  
(2 4 26) 

The above identity can also be written as 

Now, we recast (2.4.1) a s  

&om (2.4.27) and (2  4.28), we arrive at 

(2.4.29) 
Thus, from (2.4.18), (2.4.25), and (2.4.29), we obtain (2.4.11) to finish the 
proof. 



Theorem 2.4.8. [I  3, p. 366, Entnj 201 W e  have 

Proof: This identity follows readily fro~n (2 4.1 1) R I I ~  (2.4.28). 

Theorem 2.4.9. [I 1, p. 280, Entry 13(viz?)] I f a  and b are arbitrary complex 
numbers, then 

and 

P5(1 - p)5 05(1 - 0)s '/I2 

m. = (1 - 3{16cup(l 1 - 2 ' m ( n ( l - n ) )  - a ) ( l  - P))l/" - 4 1 ' 3 ( a ( l - a ) )  {lGa~(l - a ) ( l  - P))1/")1/2' 

(2.432) 

Proof: Subtracting (2.4.43) from (2.4.41), we find that 

Now, from (2.4.1) we obtain 

1 - ( a ~ ) ' / ~  - ((1 - a)(l - = 2(160@(1 - a)(l - @))' I6.  (2.4.34) 

Using (2.4.33) in (2.4.34), we deduce that 

Multiplyir~g (2.4.4) by a, wc obtain 



Again, multiplying the numerator and denolninator of the right side of 
(2.4.35) by b, we find that 1 

From (2.4.36) and (2.4.37), we readily deduce (2 4.31). 
Now, from [27, Corollary 2.3, p. 951, we have 

Danscribing this equation by employing (2.2.11). (2.2.21) we find that 

I - {Gm - m2 - 5) = {16ao(1 - a ) ( l  - p)}li6. 
471~ 

(2.4 39) 

Now, 

Again, from (2.4.4); we find that 

Thus, 

Equating (2.4.40) and (2.4.42), ure arrive a t  (2.4.32). 

Theorem 2.4.10. 111, p. 280, E n t ~ y  13(7,~)] WI:  l ~uve  



Proof: We have (2.4.63) 

Squaring both side in the above equation, we fi~id that 

Using (2.4.48), in (2.4.46), we obtain (2.4.43). 
Taking reciprocal of (2.4.43), we arrive at (2.4 44). 

Theorem 2.4.11. 111, p. 280, Entry 13(x)] We have 

{*(I - p)}'l4 + {B(l- a)}lI4 = 4 l l 3 { a ~ ( 1  - a ) ( l  - 
= m{a(l  - a)}'I4 + {P(1 - D)) 'I4 

5 
= { a ( l  - a ) }  'Ii + -{/3(1 - P))'/'. 

m 
1 , ' I "  

(2.4.49) 

Proof: We rewrite (2.4.60) as 

m(a(1  - a))'I4 + (P(1 - p))'I4 = (P(1 - a))'/' + (a(1 - P))'14. (2.4.50) 

Again, from (2.4.61), we obtain 



Now, replacing q by -9, in (2.3.16), we find that 

Tkanscribing this with (2.2.11), (2.2.17), (2.2.22), and (2.2.25), we deduce 
that 

Equating (2.4.50), (2.4.51), and (2.4.53), we obtain (2.4.49). 

Theorem 2.4.12. [ll, p. 280, Entry 13(n)] We have 

and 

Proof: We have (2.4.G) 

Thus, 

and 

Subtracting (2.4.58) from (2.4.57), we find that 

Using (2.4.11) in (2.4.59), we deduce (2.4.54). 
The modular equation (2.4.55) is the reciprocal of (2.4.54). 



Theorem 2.4.13. (11, p. 280, Entry 13(xzifl We have 

Proof: Transcribing (2.3.8)) by elnploying (2.2 13)) (2.2.16)) and (2.2.17)) 
we easily deduce (2.4.60). 

The identity (2.4.Gl) is the reciprocal of (2.4. GO). 
Rarrlanujaii recorded this two modular equatioll ill a fragi~ieilt publisl~ed 

with the lost notebook [29, p. 351). 

Theorem 2.4.14. (11, p. 280, Entry 13(ziii)] We have 

and 
5 m+ - = 2 (2 + ( a ~ ) ' / ~  + {(I - a ) ( l  - i ~ ) } " ~ )  (2.4.63) 
nz 

Proof: Cubing both sides of the equation (2.4.19), we obtain , 

Taking reciprocal of this cqustion, we find that 

Subtractirlg ('2.4.GTj) frorn (2.4.G4), we obtain 



Subtracting (2.4.55) from (2.4.54), we find that 

+ ((f) "" ( 1  - a") "" ($) I/*) 

(1 - P) 

Equating (2.4.66) and (2.4.67), we find that 

Again, transcribing (2.4.38) by employing (2.2.11) and (2.2.21), we obtain 

Employing (2.4.1) in the above identity, we deduce (2.4.63) 

Theorem 2.4.15. [ll, p.  280, Entry 13(xiv)] If 

P = {16ap(l - a ) ( l  - p))'/l2 and Q = (P(1 - P)/cr(l - c ~ ) ) ' / ~ ,  
(2.4.70) 

then 

Proof: We note that 

1 /24 a ( l  - a))' P = 21/3 (( ) . 
Q P(1 - P )  

Now, Adding (2.4.73) and (2.4.72), and using (2.4.4) arid (2.4.5), we fiud 
that 



P nz+ 5 / n 1 -  2 PQ+-= 
Q 2 

Using (2.4.G3), in (2.4 75), we obta~n 

Now, using (2.4.1) in (2.4.76) and simplifying, we obtain that 

Theorem 2.4.16. [ll, p .  280, Entry 13(;cv)] If 

P = and Q = ( ~ / a ) '  j 8 .  

then 

Proof: We note that 
PQ = (@3u)1/6. 

Subtracting (2.4.81), from (2.4.80), we find that ; ; -, , + 

Using (2 4 16), in (2.4.82), we obtain 

Using (2 4.78) in (2.4.83), we obtain 

Cubbing both side in the above equation, we find that 



Fkom (2.4.84) and (2.4.85) we obtain, 

- - - 4 

(ffP) 
{((I - f f ) ( l  - p))l12 + 25/3((1 - 0)(1-  p ) ~ b ) l ) ~ } .  

(2.4.86) 

Now, using (2.4.1), in (2.4.86), we find that 

Using (2.4.78) in (2.4.87),, we obtain (2.471).  



Chapter 3 

New Proofs of Ramanujan's -. 

Modular ~ ~ u a t i o n s -  of degree 9 

3.1 Introduction 

In this chapter, we find proofs of Ramanujan's modular equations of dcgrcc 9 
by using theta function identities. Raxnanujarl recorded 14 rllodular equations 
of degrees 1, 3, 9 in Chapter 20 of his second notebook [28]. He also recorded 
two.morc equations or1 pagcs 2% and 2% of his first notebook [2$], but the 
second equation is incorrect as shown by Berndt [13, p. 370, Eutry 281. All 
of Ramanujan's modular equations of degrees 1, 3, 9 have been proved by 
Berndt (See [ll ,  pp. 352-358, Entry 31 and [13, p. 370, Entry 271). As we 
have already mentioned in Chapter 1, modular equations can be exprwscd 
as identities involving the theta-functions 4, $J and f .  Therefore, often one 
first tries to  derive a theta-function identity . , andcthyd . ,' transcribes it jqto 
an equivalent modular equation. But, proofs of some modular equatidns 
of composite degree 9 given by Berndt are quite unlike this method. He 
sometimes reversed the process. In this chapter 3, we find new proofs of tllese 
modular equations by using theta-function identities. In the mealtime, we 
also find new proofs of some of the theta-function identities. Earlier these 
identities were proved by Berndt by using modular equations and a method 
of parameterizations. 

In Section 3.2, we statc some preliminary results. 
In Section 3.3, we state the theta-function identities and preselit new 

proofs of some of the identities. 



In the final section, we prove the modular equations by using results from 
the previous two sections. 

, 3.2 Preliminary Results 

In this scction, we s t ~ t e  some results which will be uscd t,o dcrivc 011s t,llctn- 
function identities. 

Lemma 3.2.1. [I 1, p. 51, Example (v)] We have 

Lemma 3 -2.2. 11 1, p. 350, (2.3)] We have 

Lemma 3.2.3. /11, p. 49, Entry 31 {Corollary ( a )  and (ti)}] We have 

3.3 Theta-function identities 

In this sc~t~ion,  we state and prove some theta-function identities rc:cortl(xl by 
Ramanujan. We think that the proofs presented here are more transparent 
than those found by Berndt (111-(131. We also mention that the identities in 
[12] were likely unknown to the author when [ll] was written. 

Theorem 3.3.1. 11 1, p. 345, Entry l(i)] 

and 



Here we present a proof of (3.3.1) slightly different from Berridt [ l l ,  p. 
345). 
Proof: By (3.2.4) and (3.2.2)) we find that 

Dividing both sides by q+(q9) and then usiilg (2.2.3), we obtain 

Replacing q by q'/3, we easily arrive a t  (3.3.1). 
For a proof of (3.3.2) see [I 1, p. 346, Entry l(i)]. 

Theorem 3.3.2. [ll, p. 345, Entry l(iz)] 

Bcrndt (11, p. 3471 provcd that this thcorcn~ followb frorr~ (3.3.1) ru~d 
(3.3.2). 

Theorem 3.3.3. 111, p. 345, Entry I&)] 

Berndt (11, p. 218 and p. 3471 offered two proofs for this theorem. Here 
we offer an alternative proof. 
Proof: Berndt [12, Entry 8, pp. 144-1461 proved the following beautiful 
theta-function identity due to Ramanujan. 

Putting a = b = q in (3.3.7), we find that 



Simplifying (3.3.8), we obtain 

Replacing q by q1t3 in (3.3.9), we cfin easily firrive a t  (3.3.6). 

Theorem 3.3.4. [ll ,  p. 349, Entnj 2(i)] 

2 3 
4(9>4(q9) - 4 (9 ) = 2q$(-q2)~$((le)x((I3). (3.3.10) 

Proof: At first, we prove the following lenlma. 

Lemma 3.3.5. 

Tkanscribing by using (2.2.11), (2.2.16), (2.2.18), (2.2.25), and (2.2.27) it 
can be seen that the above theta-function idexltity is equivalent to  a lnodular 
equation of degree 3 [ l l ,  Entry 5(iii), first equatiol~, p. 2301. Here we present 
a more direct proof of this theta-function identity. 
Proof: Putting a = q2, b = q4, c = q, and d = q v n  (2.2.9), and then using 
(3.2.1), (3.2.2), (1.1.9), (1.1.10), and (2.2.4), we find that 

Using (2.2.6) and (2.2.3), we can rewrite the above identity as 

Replacing q by -q in (3.3.13) and then ernployillg (2.2.7), wc ohtail1 

Similarly, putting a = q2, b = q4, c = q, and d = q5 in (2 2.10), and then 
proceeding as above, we find that 



Multiplying (3.3.14) and (3.3.15),  and then using (2 .2 .3 ) ,  we obtain 

Now, using the Jacobi triple product identity ( 1  1 .6 ) ,  we find that 

f (-$, -q7 ) f  ( - q ,  -ql ')  
= (q ;  412)w(r15; 9 1 Z ) w ( ~ 7 ;  4 1 2 ) ~ ( q 1 ' ;  G ' 1 2 ) ~ ( 4 1 2 ;  q12)& 

Using (1 .1 .11) ,  (1 .1 .9 ) ,  and then (1 .1 .10) ,  we obtain 

Now, from (2 .2 .3) ,  we note that 

f ( - q 2 )  = x ( - ~ ) @ ( Q )  = $'Gwm. (3 .3 .19)  

Replacing q by q q n  (3.3.19),  we deuce that 

f3( -912)  = & - q 6 h b 2 ( q G ) ,  (3.3.20) 
f 

Using (2 2 .6 ) ,  we find that 

f 3 ( -g '2)  = $(93)$(-83)@(96)s  (3.3.21) 

Thus, (3.3.18) can be written as 

Ernployi~ig (3.3.22) in (3.3.1G), and then wing (2 .2 .4 ) ,  we arrive a t  (3 .3 .11) ,  
which completes the proof of the lemma. 
Proof: From (3 .2 .3)  and (3 .2 .1) ,  we find that 

#(q )  = 4 ( q 9 )  + ~ ~ $ ( - Q ~ ) x ( Q ~ ) .  (3.3.23) 

Multiplyi~ig both sides of (3.3.23) by r$(q9), we obt~i l i  

4(r1)4(q9) = 42(qY) + 2 ~ 4 ( ( 1 ~ ) $ (  - T I ~ ) x ~ ~ ~ . ) .  (3.3.24) 



Now, by (2.2.6) and (2.2.7), we deduce that 

4(9)$(-9> = $(11)4(-!12). (3.3.25) 

Replacing q by q9 in (3.3.25) and then using (3.3 24), we find that 

9(9>4(q9) = 42(q9) + ~ C / $ ( Q ~ ) + ( - Q ' ~ ) X ( ~ ~ ) ,  (3.3.26) 

Using (3.3.23) in (3.3.26), we obtain 

Employing (3.3.11) in (3.3.27) we easily arrive at Theorem 3.3.1 to coniplete 
the proof. Berndt et al. [16, lemma 9.1, p. 201 have also given a proof of 
Thmrern (3.3.1). They wed this modular cquatiou to prove so;orne results or\ 
Ramanujan's famous forty identities for the Rogers-Ramanujan ful~ctiol~s. 

Theorem 3.3.6. 111, p. 349, Entry 2(ii)] 

Proof: Replacing q by -q in l(3t3.23) and then using the'resulting identity 
in (3.3.3)' we easily deduce (3.3.28). 

Theorem 3.3.7. (13, p. 357, Entry 41 

Proof: Replacing q by -q in (3.3.231, we find that 

4(-q9) - 4(-4) = 211@((r9)>x(-(I3>. (3.3.30) 

Using (2.2.3)) this can be written as 

Now, using (2.2.3) in (3.3.3), we deduce that 
! i I '  I I (  



Using (3.3.32) in (3.3.31),  we find that 

So, we complete the proof by cubing (3.3.33).  

Theorem 3.3.8. [11, p. 349, Entry 2(iii)] 

9 ( 9 ) 9 ( q 9 )  + 42(93)  = 2 @ ( ~ ) 4 ( - - 9 ~ ~ ) ~ ( 9 ~ ) .  (3.3.34) 

Proof: Replacing q by q3 in (3 .3 .6)  and then siniplifylng, we obtain 

Now, (3.3.23) can be rewritten as 

Again, replacing q by -q in (3.3.33) and then using ( 2 . 2 . 3 ) ,  we deduce 
that 

34(q9)  - $((I)  = 2 @ ( - 9 ) x ( q 3 ) .  (3 .3 .37)  

Multiplying (3.3.36) and (3 .3 .37) ,  we obtain 

2 3 342(g") + 4 2 ( 9 )  = 44(9)4(9? - 49@(-cl)@(-q?x ( 9  1. (3.3.38) 

Using (3.3.38) in (3 .3 .35) ,  we find that 

With the aid of (3.3.10) the above identity can be written as 

We complete the proof by elnploying (3.3.25) in (3 .3 .40) .  

Theorem 3.3.9. 111, p. 358, Entiy ,$(ill 



Berndt 111, p. 3591 proved this by using the modular equation (3.4.12). 
Here we give an alteruative proof. 
Proof: Replacing q by -q in (3.3.3), we obtain 

From (3.3.3) and (3.3 42), we obtain 

Now, adding (3.3.10) and (3.3.34), we obtain 

d(q)4(qg) = 1Cl(9)4(-q18)~(~3) +'q4(-g2)Nqg)x(q3). (3.3.44) 

Using (2.2.5)) we obtain 

Employing (2.2.1) in (3.3.45), we find that 

Replacing q by -q in (3 3.46)) we obtain 

Using (3.3.46) and (3.3.47) in (3.3.43), we dcduce (3.3.41) to  cornplcte thc 
proof. 

Lemma 3.3.10. 111, p .  358, Entry 4 ( 2 2 ) ]  



This identity was proved by Berndt (11, p. 3591 by using the modular 
equation (3.4.13). Here, we present an altern~tive proof. 
Proof: Replacing q by -9, in (3.3.28)) we obtain 

F'rom (3.3.28) and (3.3.49), we find that 

Using (2.2.5) and (2.2.1) in (3.3.51), we find that 

Replacing q by -9, we obtain 

Using (3.3.52) ~ n d  (3.3.53) in (3.3.50), we obtain (3.3.48). Thus, we colnpletc 
the proof. 

The theta-function identities in the following theorem were recorded by 
Ralnanujan in the unorganized portions of his secolid notebook [28, p. 3101. 
Berndt [12, p. 185) proved this theorem by usiilg para~netcrizatiolw. Hen: 
we give alternative proofs by using other,si~u$e theta-hlction identities,of 
Ramanujan. , ; 

Theorem 3.3.11. [12, p. 185, Entry 331 For Iql < 1 

(2) 

(ii) 



Proof of (i): Replacing q by q1l3 in (3 .3  9), we find that 

Multiplying both sides of (3 .3  56) by 4 3 ( q 3 ) / 4 ( 9 ) 1  we obtain 

Now, replacing q by q1I3 in (3.3.23),  we obtalrl 

$(9L/3 )  = 4 ( q 3 )  + 2 9 1 / 3 ~ ( q ) ~ ( - q 3 ) 4  (3.3.58) 

Employing (3.3.58),  we deduce from ( 3  3.57) that 

From (2.2.3), we note that 

x(q>  1 -=- xCq) 1 and -- = - 
4(9>  f (9) f C9) f ( -q2) '  

Using (3.3.60),  (2.2.2)  and (2.2.4)  in (3.3.5!)) ,  we arrive a t t  , I f  

wliicli coinpletes the proof of (3.3.54).  
Proof of (ii): From (3 3.5) ,  we obtain 

Multiplying both sides of (3.3.62) by q$3(- -q3) /+(-q) ,  we deduce that 



Replacing q by -9, in (3.3.62) we find that 

Now, by (3.2.4) and (3 2 2), we obtain 

Replacing q by q1j3, we rewrite (3.3.64) as 

Employirig (3.3.65), we obtain from (3.3.63) that 

From (2.2.3), we now note that 

Using (3 3.67), (2.2.2) and (2.2.4), we conclude t l i ~ t  

which is (3.3.55) 

3.4 Modular Equations 
In this section, we find, except.'for twd'modplar -- equa'ii60s, - -- - hew prqofs pE 
Ramanujan's modular equations of composik? degree 9. ~ h r o u ~ 1 ~ o u t " t h i s  
section, suppose P axid 7 are of the third and ninth degrees, respectively, 
with respect to cu and nt = ~ ~ 1 . 2 ~  and nz' = z3 /z9  are the corresponding 
multipliers. 



Theorem 3.4.1. [l 1, p.  352, E n t y  3(z)] IVe have 

Proof: Froin (3.3.29), we obtain 

Replacing q by -q. we obtain, 

Trar~scribii~g (3.4.3) by usil~g (2.2.11) and (2.2.17), we readily obtai~i  (3 4.1). 

Theorem 3.4.2. [ I  1, p 352, Entry 3(2i)] 

Proof: By using (3.2 3) and (3.2.1), we fiud that 

Transcribing this by clnployirig (2.2.11), (2.2.17), arid (2.2.25). we e&dy 
deduce (3.4.4). 

Theorem 3 - 4 3 .  [l 1, y .  352, E n t y  3(i2z)] We /lave 

Proof: Multiplying (3.3 10) aild (3.3.34), and tlien transcribing the resulting 
idcnt.it.y by using (2.2 1 I ) ,  (2.2.13), (2.2.1G), arid (2 2 25), we cksily arrive ut. 
(3-4.6). 

Theorem 3.4.4. 111, p .  352, E n t y  3(?1*i:' I+'e haue 



' 

For a proof, see [ll, p. 3551. 

Theorem 3.4.5. 111, 1). 352, Entry 3(2r)] We h,ave 

( ~ y ~ ) ' / ~  + ((1 - C Y ) ( ~  - 
+ 2{4b(1 - ~ ) } l / ~  = 1 + 8{/jr(l - /3)}'14{(xy(l - ~ ) ( 1  - Y)) ' /~ .  (3.4.8) 

Proof: Usirig (3.4.G) i l l  (3.4.36): wc obtain 

(LYy) 'I2 + {(I - LY)  (1 - Y) j li2 

Simplifying this, wc c:nsily nrrivc at (3.4.H). 1.0 complcte our proof. 

Theorem 3.4.6. [ill 11. 352, E I L ~ I ~  3('1~1)1 WL' ILUVCJ 

{a( l  - y))'/8 + {?(I - a))li8 = 21/3{[?(1 - P ) } ~ / ~ ' .  (3.4.10) 

Proof: Adding (3.3.10) uild (3.3.34); wo fii~d that 

Transcribi~lg tellis via (2.2.1 1) , (2.2.13), (2.2. l G ) ,  and (2.2.25), we d(-:c.luc:c-: 
(3.4.10) to colnplete the proof. 

Theorem 3.4.7. [ I  1, p. 352, Entry 3(x)] We have 

Proof: We traqscribe (3.3.41) by (2.2.1:1), (2.2.16) and (2.2.17) to arrive at 
(3.4.12). 

Theorem 3.4.8. [I 1, p .  352, Entry 9(25)] 

(;) + (1 - a)  - ( ~ ( 1  - a))  'I8 - -- 3 (3.4.13) 
1 - 7  - 7)  Jm;;;i' 

Proof: I11 this case, wc txanscribc (3.3.48) to deduce (3.4.13) 



Theorem 3.4.9. 111, p. 352, Entry 3(xzz)] We huve 

Proof: Replacing ql/'  by -q  in (3.3.5) ; L I ~  cubing both sides, we obtain 

Simplifying this, we fillet that 

Replacing q by -9.  in (3.4.16), we obtaili 

F'rom (3.4.16) and (3.4.17), we deduce that 

E~llployillg (3.3.41) ali~t (3.3.48) in (3.4.18), we find that 

Now, replacing ql/' by q in (3.3.6) and the11 silnplifyiug, we deduce that 

Replacir~g q by -q2, ill (3.4 20), we obtain 



Now, using (3.4.21) in (3.4.19), we f i l ~ c l  t l ~ a t  

TPrallscribi~lg this by usi~lg (2.2.13), (2.2.17) and (2.2.17), we easily deduce ' 

(3.4.14). 

Theorem 3.4.10. 111, p. 352, Entry 3(n'ii)] W e  have 

Proof: Replacing q by q3 in (3.3.5) and then sil~~plifying, we find that 

Again, multiplying (3.3.42) and (3.3.49), we find that 

Fro111 (3.4.24) and (3.4.25), we obtain 

Multiplying (3.3.39) arid (3.4.26), we find that 

We transcribe this by enlploying (2.2.11) u~lcl (2.2.17) to ariive at 

Using the expression of -3~n./in! frorn (3.4.14) ill (3.4.28): wc readily deduce 
(3.4.23) to complete the proof. 



Theorem 3.4.11. [ l l ,  p. 352, Ent7y 3(xzv)] We have 

Proof: Subtracting (3.3.10) from (3.3.34)) dividing the result by 2, we obtain . 

Transcribing (3.4.30) via (2.2.11), (2.2.13), (2 2.16), and (2.2.25), we easily 
arrive at  (3.4.29). 

Theorem 3.4.12. /11,  y .  352, Erhy  Y ( x 4  W e  huve 

Proof: ho rn  (10, p. 3381, wc i~o tc  thc followir~g gcrleral rcsult of Rarnai~ujsn: 
If the modular equation of degree n - 1 is 

then 

is a ~liodular equation of degree (n - 1)'. 
Now, we know froni Eritry 5 [ l l ,  p. 2301 that 

wliere P lias degree 3 over a. Tlius, 

114 4 (0'14 - y1/4)4 + ((1 - - (1 - a) } 
114 4 

= ({+ - 7)I1l4 - {?(I - a ) }  1 1 (3.4.35) 

where y has degree 9 over a .  This completes the proof. 

Theorem 3.4.13. [I 1, p. 352, Ent y 3(xvi)] We huz~e 



Proof: The proof of this modular equation is sornc\vhat different in nature 
from the other proofs 

Setting p = 5, Y = 4 ,  A = 1 ,  B = -1 in Schoter's formula (4 .3 .20 ) ,  we 
deduce that 

where Q = q9. Nowl G'(q) and H ( q )  are known as the Rogers-Ramanujan 
functions defined in (1.1.15) and (1.1.16) . Rama~iujan [29, pp. 236-237) 
found forty modular relations for G ( q )  and H ( q ) ,  which are called Ralnanu- 
jan's forty identities. The sixth of these forty identities is 

where f ( - 9 )  is as defined in (1 .1 .10) .  The first proof of ( 3  4 .38)  was gi~ren' 
by Rogers [32].  Berndt et al. (161 and Baruali et al. [S] also found several 
new proofs. 

Now, using the Jacobi triple product identity (1 .1 .6)  in (1.1.15) and 
(1 .1 .16) ,  we easily find that 

Employing (3 .4 .39)  in (3.4.37)' we find that 

Replacing q by q4 in (3 .4 .38 ) .  and then using the resultant identity in 
(3.4.40).  we deduce that 

Rcplacing q by g1/2, wo obtain 

We complete the proof by transcribing (3.4.42) by employing (2.2.14)' (2.2.15) 
and (2.2.21).  



Theorem 3.4.14. (13, p .  370, Entry 271 

114 ((p + (3) )' . (3.4.43) j 8 ( )  G+-= 
mm' 

Proof: From (3.3.3) and (3.3 28), we deduce that 

( i ) 4 ( - 9  - 1 - 1 )  = - 1  - ( 1 - i  (3.4 44) 

Elnploying (2.2.6) in (3.4.44), we obtain 

Transcribillg this by e~uployillg (2.2.12), (2.2.16), (2.2.19)) and (2.2.20), we 
easily arrive at (3.4.43). 



Chapter 4 

Some New Proofs of Modular 
Relations for the 
Gollnitz-Gordon Functions 

4.1 Introduction 

We recall from Chapter 1;  that for 1q1 < 1 ,  the Rogers-Ran~a~lujan fu~ictiolis, 
are dcfiried by 

when the later equalities are the famous Rogers-Ranlanujan identities. Ra- 
manujan recorded forty ]nodular relations for G ( q )  and H ( q )  in a manuscript 
published with the lost notebook [29]. These are now known as Ramanujan's 
forty identities. Darling [23] established o ~ i e  of the identities in 1921 ill tlic 
Proceedings of London h/Iathelnatical Society. Rogers (321 established tell of 
the forty idcritities incluclir~g tclle orle provccl l ~ y  Darl i11g. Wtit,soll [3G] pi ovscl 
eight of the forty identities, two of them froni the list that Rogers proved. In 
1977, Bressoud ([19] .  [20]) generalized Rogers' results to prove fifteen from 
the list of forty. 111 1989, Biagioli [17] used rllodulal forrns to  prove swell of 
the remaining nine identities. Recently, Berrldt et al. (161 have found proofs 



of'35 of the 40 identities in the spirit of Ramanujnn's mathematics. For the 
remaining 5 identities, they also offered heuristic arguments showing that 
both sides of the identity have the sarne asymptotic expansions as q -+ 1-. 

Now, wc recall the dcfiriitions of Gollni tsz-Gordori F'unctions, 

Many of the Gollnitz-Gordon identities are similar ill character to the Rogers- 
Ramanujan's identities. For example, the quotient of C(q) and H(q) gives tlse 
Rogers-Ramanujan continued fraction, while the quotient of S(q) and T(q) 
gives the Ramanujan-Gollnitz-Gordon coiitiiiued fraction (28, Vol. 2, p. 2291. 
Clian and Huang [21] succeeded in obtaining several relations iuvolving tlie 
Ramanujan- Gollnitz-Gordon continued fraction. Motivatcct by the similnl-ity 
betweeii tlie Rogers-Ranianujan aiid Gollnitz-Gordon functions, S.-S. Huang 
[26] and Chen and Huailg [22] derived 21 modular relations involving S(q) 
ar!d T(9), orie new relatioris for G(9) arid H(q), aiid 9 rclatiosis ilivolving both 
the pairs G(q), H ( q )  and S(q) and T(q). They used the methods of ~ o ~ e r s  
[32], Watson [36], alld Bressoud (191. In this Chapter, we find alternative 
proofs of the modular relations involving oiily S(q) and T(q) by employing 
S~hrot~er 's formulas and theta functions identities. We also find several new 
modular relations, alld Illany inore can be foulid by using the same method. 

In Section 4.2, we give the list of the modular relations for the Gollnitz- 
Gordori functions wl~ic l~  will bc proved in this chapter. 

In Section 4.3, we state some preliminary results. 
In Sections 4.4-4.12, we present the proofs of the identities listed in section 

4.2. 
In our last section, we present the new n~odular relations for the Gollnitz- 

Gordon functions. 



4.2 Modular Relations for the Gollnitz-Gordon 
Functions 

For convenience, we dcnotc f (-qn) by f,. 



4.3 Preliminary Results 

Lemma 4.3.1. [I  1, p. 40, Entry 251 We have 

Lemma 4.3.2. [I  1, p. 48, Entry 31 with A: = 21 We have 

f ( a ,  6)  = f (a3b,  ab3) + a f (b la ,  a5b3). (4.3.5) 

Lemma 4.3.3. 111, p.  461 W e  have 

f ( a ,  6) + f ( - a ,  -6) = 2 f (a", ah3). (4.3 6) 

Lemma 4.3.4. 111, p. 461 We have 

f ( a ,  6 )  - f (-a, -b )  = 2a j ( b / a ,  a5bJ).  (4.3.7) 

Lemma 4.3.5. 111, p. 46) W e  have 

f ( a ,  b )  f (-a, -6) = f ( -a2,  -b2)4(-ab). (4.3.8) 



Lemma 4.3.6. [11, p. 51, Example (iv), with q replaced b y  -q] We have 

Lemma 4.3.7. 126, Lemma 3.11 We have 

Lemma 4.3.8. We have 

Proof: These identities easily follow froni Entries 24-25 [ l l ,  pp. 39-40]. 

Lemma 4.3.9. We have 

and 
7 - !If4 f (-99 -9 1 - - j y ( q ) .  (4 .3 .14)  

Proof: By [22, Lemrna 2.61 and (1 .1 .9 ) ,  we note that 

and 

Using (4.3.12) we coniplete the proof. 

Lemma 4.3.10. [I l l  Corollary, p. 491 We have 



Replacing q by -q 11-1 (4 3 17), we have the follow~ng useful result 

Lemma 4.3.11. We have 

In the iollowing six Scllloter's formulas, wc assurnc that p arid v arc: 
integers such that p > v 2 0 

Lemma 4.3.12. [I 1, p. 67, (36. I ) ]  We have 

Lemma 4.3.13. 111, p GS, (3G 2)] We hnz~e 

Lemma 4.3.14. 111, p 69, (36 7)] If p zs odd, then 



Lemma 4.3.15. / I  1, p. 69, (36.8)] If p zs even, then 

$(9"+u)1C1(~~L-u) 

Lemma 4.3.16. [ l l ,  p. 69, (36.9)j If p zs odd, then 

Lemma 4.3.17. 111, p. 69, (36.1 O)] If p is even, then 

4.4 Proofs of (4.2.1) and (4.2.2): 

Proof of (4.2.1): Adding (4.3.9) and (4.3.10), we f i l d  that 

Elnployilig (4.3.13): (4.3.14), (4.3.11), ar~d (4.3.12) i n  (4.4.1), we casily arrive 
at (4.2.1). 
Proof of (4.2.2): Subtracting (4.3.10) fro111 (4 3.9), we obtain 

Elriployi~lg (4.3.13), (4 3.14), (4.3.11), and (4.3.12) in (4.4.2), we easily de- 
duce (4.2.2). 



4.5 Proofs of (4.2.3) - (4.2.5): 

Proof of (4 .2 .3) :  Putting p = 4 ,  v = 3  in (4.3.221, it can be shown (11, p. 
315, (19 .1 ) ]  that 

Replacing q  by -9 in (4 .5 .1 ) ,  and then subtracting tlie resulting identity from 
(4 .5 .1 ) ,  we find that 

Using (4.3.17)  and (4.3.18) in (4 .5 .2) ,  we obtain 

Replacing q2 by -q in ( 4 . 5 . 3 ) ,  we deduce that 

f (-q1 - q 7 ) f  (-q211 -q37  - q 3 f  ( -q3 ,  - q t ) f  (-q71 -q4? = @(-q7) l ( i ( - -q) .  
( 4 .5 .4 )  

Employing (4 .3 .13) ,  ( 4 .3 .14 )  and (4 .3 .12 ) ,  we obtain (4 .2 .3 ) .  So, we complete 
the proof. 
Proofs of (4 .2 .4 )  and (4 .2 .5 ) :  Putting p = 2  and v = 1 ill (4.3.22), we find 
that 

+(s>+(q3> = 4(q6 )$ (q4 )  + Q $ ( Q ~ ~ ) ~ ( Q ~ ) .  ( 4 .5 .5 )  

Replacing q  by -q in (4 5 . 5 ) ,  we obtain 

Adding (4 .5 .5 )  and ( 4 . 5 . 6 ) ,  we arrive at 

Using (4.3.17)  and (4 .3 .18 ) ,  this can be written as 

Replacir~g q2 by -q ill ( 4 . 5 . 7 ) ,  we find that 



Using (4 .3 .13) ,  (4 .3 .14 ) )  (4 .3 .11)  and (4.3.12) in (4.5.8), we easily obtain 

Thus, we complete the proof of (4.2.4) .  
Now, subtracting (4 .5 .6)  froin (4 .5 .5 ) ,  we find that 

Using (4.3.17) and (4.3.18) on the left hand side, this can be written as  

Replacing q2 by -q  in (4 .5 .  lo),  we obtain 

f ( -q9 ,  -ql"f ( - 9 ,  -q7) - q f  ( -q3 ,  - 9 2 1 ) f  ( - q 3 ,  -8) = V3(-9)$(q0). 
( 4 . 5  11) 

By use of (4.3.13),  (4 .3 .14))  (4 .3 .11) ,  and (4 .3 .12)  in (4 .5 .11) ,  wc casily alrivc 
at (4.2.5)  to coirlplete the proof. 

4.6 P r o o f s  o f  (4.2.6) and (4.2.7): 

Proof of (4.2.6):  Usirlg (2.2.7)  in (2.3.8), we find that 

Employing (2 .2 .5) ,  this car1 be written as 
I 

With the help of (2 .3 .9 ) ,  we deduce froill (4 .6 .2)  that 

Replacing q2 by q in (4 .6 .3) ,  we find that 



Replacing q by -q in (4 6.4), we obtain 

Subtracting (4.6.5) from (4.6.4), and then using (2.2.6) and (4.3.3), we find 
that 

(4.6.G) 
Replacing q by q4 in (2.3.16) and using in (4.6.6), we deduce that 

Employing (4.3.17) and (4.3.18) in (4.6.7), and the11 replacing q2 by - q  in 
the resulting identity, we deduce that 

Employing (4.3.13), (4.3.14), (4,3.1 I), and (4.3.12) jn (4.6.8) we easi1.y deduce 
(4.2.6) to complete the proof of (4.2.6). 
Proof of (4.2.7): Adding (4.6.4) and (4.6.5), and then using (2.2.6) and 
(4.3.4), we find that 

Using (4.3.12) in (2.3.1), we find that 

$2(~1) - 4'(q5) = ~ Q X ( ( ~ ) ~ ( - Q ~ ) / ( - ( I ~ ~ ) .  (4.6.10) 

Replacing q by q2 in (4.6.10) and using in (4.6.9), we find that 



Employing (4.3.17) and (4.3.18) in (4.6.11)) and then replwing q2 by -q  in 
the resulting identity, we obtain 

Einployilig (4.3.13)) '(4.3.14), (4.3.11), atid (4.3.12), we easily deduce (4.2.7). 

4.7 Proof of (4.2.8): 

We recall from (4.3.18)'that 

6 10 2 14 
' @(- (?>=f (q  ,(? ) - Q / ( Q  1 9  ). (4.7.1) 

Using (4.3.8), we write (4.7.1) as 

Employing (4.3.13), (4.3.14), (4.3.11)) and (4.3.12) we easily arrive at (4.2.8). 

4.8 Proofs of (4.2.9)-(4.2.10): 

Proof of (4.2.9): Using (3.2.2), with q replaced by $, in (3.2.4), we find 
that 

This can also be writtell as 

Exnployi~lg (3.2.1) in (4.8.2), wc obtain 



Replacing q by -9. we find that 

Adding (4.8.3) and (4.8.4), and thcu using (1.1.8), we deduce that 

Employing (2.2.10) arid (4.3.8), with a = q3, b = q15, c = d = -qg, in (4.8.5), 
we deduce that 

Using (2.2.6), this can be written as 

$(d$(-qg) - $(-q)3(qg) = 2q$(q18){d(-918),+ q2f(-q" - q 3 0 ) }  (4.8.7) 

Employing (3.2.3) in (4.8.7), we deduce that 
, 

Now, using (3.2.1) ill (3.2.3), wc deduce that 

Using (4.8.1), we rcwrit,e this as 

Thus, 
3$(-q9) - cb(-9) = 2 $ ( 9 ) ~ ( - q ~ ) .  (4.8.11) 

Replacing q by q2 in (4.8.11), and tlien using i t  ill (4.8.8); we find that 



Invoking (4.3.17) and (4.3.18)' and then replacing q2 by -9: we deduce from 
(4.8.12) that 

Exnployixig (4.3.13), (4.3.14), and (4.3.12) in (4.8.13), we easily deduce (4.2.9). 
Proof of (4.2.10): Subtracting (4.8.4) from (4.8.3), and then using (1.1.8), 
we obtain 

Exnploying (2.2.9), with a = s3, b = q15, c = d = -qg, and (3.2.1)) in (4.8.14), 
we deduce that 

where we have also used from (11, p. 39, Entry 24(iv)], that ,y(q)x(-q) = 
x(-q2). Now, enlploying (4.3.17) and (4.3.18)) and then replaciilg q2 by -9, 
we derive from (4.8.15) that 

Employing (4.3.13), (4.3.1'4), and (4.3.12) in (4 8.16), ure easily arrive at 
(4.2.10). 
Remark: The sixth of Rarnanujan's 40 identities is given by 

where G(q) and H(q) are as defined in (4.1.1) and (4.1.2). 
For proofs of (4.8.17), see [32] axid [lG]. Wit.11 the help of (4.8.12) nr~cl 

(4.8.15), we now present a new proof of this identity. 



First, putting 1.1 = 5, v = 4, A = 1, and B = -1 in (4.3.20), and then 
einploying Entry 18 (iv) [ll, p. 341, it can be deduced that 

Using (2.2.7) this can be rewritten as 

Elnployillg (4.8.12) and (4.8.15) in (4.8.19), we arrive at 

Using (3.4.39) in (4.8.20), we obtain 

Replacing q4 by q in (4.8.21), we easily deduce (4.8.17). 

4.9 Proofs of (4.2.11)- (4.2.13): 

Proof of (4.2.11): From Elltry 9(iv) [ll, p. 3771, we note that 

Using (4.3.17) and (4.3.18) in (4.9.1), and then replacing (7" by -9. we obtain 

f(-q3, -q5) j(-q45, -q75) + q8f (-9, -q7)f (-q15, -q105) = 1Cl(-q3)1Cl(-q5). 
(4.9.2) , 

Ernployillg (4.3.13), (4.3.14), and (4.3.12) in (4.9.2): we conlplete the proof 
of (4.2.11). 



Proof of (4.2.12): F'rom Entry 9(i) [ll, p 377). we have 

The rest of the proof is same as the previous one. 
Proof of (4.2.13): Putting p = 4, v = 1 in (4.3.22), we find that 

Replacing q by -q i11 (4.9.4), and then adding the resulting identity with 
(4.9.4): we deduce that 

Using (4.3.1) and (4.3.2) on the right of (4.9.5), we deduce that 

Employing (2.2.7) we can rewrite this as 

Thus, 

Elnploying (4.3.17) arid (4 3.18) in (4.9.8), replacing qQY -q in the resultlrig 
identity, and then using (4.3.13), (4.3.14) and (4.3.12), wc ensily decluco that 

(4.9.9) 
Now, an application of (4.2.11) easily yields (4.2.13). 

- 

4.10 Proofs of (4.2.14)-(4.2.16): 

Proofs of (4.2.14)-(4.2.-16) are similar in nature. So, we give details only for 
(4.2.14). 



Proof of (4.2.14): In (4.3.22), we put p = 8, v = 5 to  obtain (See [11, p. 
75, (37.4)] for details) 

Using (4.3.17) and (4.3.18) in (4.10.1), replaciilg q2 by -9, we find that 

Employing (4.3.13) aiid (4.3.14), we arrive at  the desired result. 
Proofs of (4.2.15) and (4.2.16): To prove (4.2.15) and (4.2.16); we put 
(11, v) = (8 ,3)  and (11, v) = ( 8 , l )  , respectively, in (4.3.22) and proceed as ~ I L  

the above proof. 

4.11 Proofs of (4.2.17) and (4.2.18): 

Proof of (4.2.17): Putting p = 5,  v = 2, A = 1, B = -1 in (4.3.20)) we 
find that 

Using (2.2.7) this can be written as 

We now employ (4.3.17) and (4.3.18) on the left hand side of (4.11.2) and 
then replace g2 by -9. Tlien we use (4.3.13), (4.3.14), and (4.3.12), to obtain 



Employing (3.4.39) in (4.11.3)' we obtain 

Now replacing x by q2 in the fifteeiith of Ramanujan's forty identities 
for the Rogers-Rarna~ilijan functions [29, p. 2361 (scc also [2G, (R.15) and 
(R.16)]), we note that 

Using (4.11.5) in (4 11.4) we easily find (4.2.17) to complete the proof. 
Proof of (4.2.18): R.c:placirig (1 by rill3 in (4.11. 1)' we find that 

Now, replacing q by f q7l3 in (3.2.3), we obtain 

Again, from Entry l O ( i i i )  and 10(iv) [ l l ,  p. 3791, we note that  

and 

Replacing q by q4 in (4.11.8) and (4.11.9), we obtain 

1(-~8/3, -q4) = I ( - ~ ~ * ,  -q32) - q4f(-q8, -q52) - q8/3/(-q'2, -q4'). 
(4.11.10) 

and 



respectively. Employing (4 .11 .7) ,  (4 .11 .10) ,  and (4.11.11) in (4.11 6), and 
then equating the rational parts froin both sides of the resulting identity, we 
deduce that 

Using (2 .2 .7)  this can be rewritten as 

Employiilg (4  3.17) and (4.3.18) on the left liaiid side of ( 4  11.13), and then 
replacilig q2 by -q in the resulting identity, we arrive a t  

Using (4 .3 .13) ,  (4 .3 .14) ,  (4 .3 .12) ,  and (3 .4 .39) ,  we easily deduce that 

Enlploying (4.11.5)  in (4.11.15),  we arrive a t  (4 .2 .18) .  Hence the proof is 
complete. 

4.12 Proofs of (4.2.19) - (4.2.21): 

Proof of (4.2.19):  Putting a = 1, b = -q4 ,  c = q and d = -q3 in (2 .2 .9 ) ,  
we obtain 

f ( I l  - q 4 ) f  (99 -q3) = 2 f  ((Il q 7 ) f  ( - q 3 ,  -q5 ) .  (4.12.1)  

Replacing q by -9, we have 



Adding (4.12.1) and (4.12.2), we find that 

Using (4.3.6) in (4.12.3), we obtain 

3 5 f (1 ,  -q4) f  (-q6, -qlO) = {f ($71 q7 ) f  (-q31 -q5) + f ( - ( 1 1  -q7) f  ( r l  19 1). 
(4.12.4) 

E~nploying (1.1.9) in (4.12.4), we deduce that 

3 5 {f (q ,  q 7 ) f  ( - g 3 ,  -q5) + f (-9,  -q7) f (q  q )I  = ~ ( - g ~ ) r ( - q ~ ~  -9l4). 
(4.12.5) 

Using (4.3.13), (4.3.14) and (4.3.12), we deduce (4.2.19). 
Proof of (4.2.20): Subtracting (4.12.2) frorn (4.12.1)) we obtain 

Using (4.3.7) in (4.12.6), then using (1.1.9), we find that 

3 5 
( f  (y l  q7 ) f  (-q3? -q5) - f (-9, -q7)f  (9 , q 1) = 29@(-q4)f ( - g Z 1  -914)+ 

(4.12.7) 
Invoking (4.3.13), (4.3.14) and (4.3.12), we easily deduce (4.2.20). Thus, we 
colnplete the proof. 
Proof of (4.2.21): Putting a = q, b = -q" c = q2 a i d  d = -r12, in (2.2.9) 
and (2.2.10), we obtaiil 

2 2 f (9 ,  - $ I f  (q2,  -g2) - f (-q,  q3) f  (-9 ,9  = 29f (-41 -q7)f  (91 q7). (4.12.9) 

Subtracting (4.12.9) from (4.12.9), we find that 

Using (4.3.5), we obtain 

Eniploying (4.12.11) in (4.12.10), and then using (4.3.13), (4.3.14) arid (4.3.12) 
we complcte the proof. 



4.13 New modular relations for the Gollnitz 
Gordon functions: 

Making different choices for p ,  v, A, and B in the Schrotcr's formulas (4.3.19)- 
(4.3.24), and then using the methods as in the previous 11i11e sections, one 
call find many other relations for S(q) and T(q). In the following, we give 
solnc cxarnples. 

Proofs of (4.13.1)-(4.13.5): To prove (4.13.1) and (4.13.2), we set p = 6 and 
v = 5 in (4.3.22), and t,licr~ procced as in the proofb of (4.2.4) and (4.2.5). 

To prove (4.13.3), (4.13.4) and (4.13.5), we use Entry 17(ii), (i) (11, p. 
4171 and Elltry 4(iv) [ l l ,  p. 3591, respectively, and proceed as in the proof of 
(4.2.17). It is worthwliile to note that Berndt [ll] used Schroter's forinular; 
(4.3.19) and (4.3.20), and also other theta-function identities of Ramanujnn 
to establish these entries. One can also get inany other analogous identities 
from (4.3.19)-(4.3.24). 

Remark: I am grateful to my mathematical brother Nipen Saikia for giving 
the idea of proofs of identities (4.2.19)-(4.2.21). 



Chapter 5 

Nonic Analogues of the 
Rogers-Ramanuj an Functions 
with Applications to Part it ions 

5.1 Introduction 

As mentioned in Chapter 1, H. Hahn [24] - 125) defined the septic analogues 
of the Rogers-Rarnanujall functions as 

and 

where the later equalities are due to Rogers (301, (311 (These appear in the list 
of L. J. Slater [34, p. 155, equations (33), (32) and (31)l). Hahn found many 
identities iilvolving only A(q) ,  B(q),  and C(q)  as well as identities which are 
connected wit11 the Rogers-Rnmanujan and Gollnitz-Gordon functions. 



Now, we define the following nonic analogues of the R,ogers-Ramanujan 
functions 

where the later equalities arc due tto W. N. Bailey [2, p. 422, equations (1.6)) 
(1.8), and (1.7)]. It is worthwhile to mention that, Balley used non-standard 
notation in the paper where these identities first appeared. All three of these 
identities appear in the list of Slater [34, p. 1561 as equations (42)) (41), and 
(40) in that order. However, all three contain misprints. Thcse misprints nre 
corrected as given in (5.1.4)-(5.1.6) by A. V. Sills (331. In this cllapter, we 
establish several 111odular relations involving D(q), E(q)  and F(q), which are 
analogues of Rarnanujari's forty identities. Wc also cstallish several other 
modular relations involving quotients of D(g), E(q) and F(q). Some of these 
are connected with the Rogers-Ranianujan functions, Gollnitz-Gordon fuuc- 
tions and Septic Rogers-Ralnai~ujail-type functions. Furthermore, by the 
notion of colored partitions, we are able to extract partition interpretations 
from some of these identities. 

In Section 5.2, we list our modular relations. 
In Sections 5.3-5.9, we present the proofs of the modular relations stated 

in Section 5.2. 
In our last section of this chapter, we find applications of some of our 

modular relations to the theory of partitions. 

5.2 Main Results 
In this section, we present the modular relations for the fuilctions D(g), E(q ) ,  
and F(q), which we prove in this chapter. It is worthwhile to note that by 
replacing q by -q in each of the following relatiorls one can get more relations. ' 
For simplicity, we define, for positive integer 71, D,, := D(qn), En := E(gn), 
and Fn := F(qn).  We also define fa := f (-qa). 



The identities (5.2.1)-(5.2.23) involve D(g) ,  E(q) ,  and F(g) .  

D ; E ~  + q ~ , 2  F~ - q ~ l  F; = 1, 

D ~ F I  - E : D ~  + qFfE1 = 0 ,  

0 3  - 9E3 - q2F3 = f l / f 9 ,  

f l f l l  Dll El - q4E11~l + ~ ~ ~ 1 1 ~ 1  = - 
f 3 f 3 3  

+ 9, 



The identities (5 .2 .24) - (5 .2 .32)  involve quotients of the nonic analogues D ( q ) ,  
E ( q ) ,  and F ( 9 ) .  

The followi~lg identities are relations involving some colnbinations of D ( q ) ,  
E ( q )  and F ( q )  with the Rogers-Ramanujan functions G ( g )  and H ( q ) .  Here, 
for positive integer n, we define G, := G ( q n )  and Hn := H ( q n ) .  



The following identities are relations involving some combinations of D(q) ,  
E(q), and F(q) with the Gollnitz-Gordon functions S(q) and T(q) .  For sim- 
plicity, for positive integer n, we define S, := S(qn) and T, := T(qn). 



The following ideiiti ties are relation involving some co~nbinations of D(q) ,  
E(q), and F(q) with thc Septic analogu~s A(q), B(q) and C(q). Here NISO, 
for positive integer n, we define A,, := A(ql'), B,, := B(ql') and C,, := C(ql') .  



5.3 Proofs of (5.2.1)-(5.2.4) 

First of all, irivoking (1.1.10) and (l.l.G) in (5.1.4)-(5.1.G), we inllndiatoly 
arrive at the following lemma 

Lemma 5.3.1. We huve 

Proof of (5.2.1): R o m  Entry 2(viii) [11, 'p. 3491, we find that 

Using (5.3.1) in (5.3.2), we obtain 

Again, from Entry 2(vi) [ll, p. 3491, we note tl~itt 

f (-9)f3(-q9) f (-91 -98)f(-92 - q7)1 (-(I4, -q5) = (_+) (5.3.4) 
- 

Wit11 tile aid of (5.3.1), the above identity car1 bc written as 

flfi DlElF1 = - 
f34 ' 

(5.3.5) 

Using (5.3.5) in (5.3.3) we easily arrive at (5.2.1). 
Proof of (5.2.2): From Entry 2(vii) [ll, p. 3491 

Usirlg (5.3.1) and (5.3.5) in (5.3.G), we obtain (5.2.2) to cornplcte the proof. 



Proof of (5.2.3): Replacing q by q3 in Entry 2(v) [ I  I ,  p. 3491, we obtain 

Dividing both sides by f (-q9) and using (5.3.1), we complete the proof. 
This result can also be obtained from Tlieoreil~ 5.4 1 in Section 5 by 

se t thg  €1 = 1. €2 = 0, a = q = b, c = 1, d = q,  Q = 1, f l  = 3 ,  and 771. = 9. 
Proof of (5.2.4): Replacing q by q3 in Entxy 2(iv) (11, p 3491 <md us111g 
(3.2.2) and (3.2.4), we find that 

Eiriployilig (4.3.8)) (5.3. I ) ,  and (4.3.12), we complete the proof. 

5.4 Second proof of (5 .2 .3 )  and proofs of ( 5 . 2 . 5 ) -  
(5.2.7) 

To present a second proof of (5.2.3) and proofs of (5.2.5) - (5.2.7), we use a 
formula of R. Bleckmith, J. Brillhart, and I. Gerst [18, Theorem 21, providiilg 
a representation for a prodlict of t,wo theta filnctions as a sum of nb products 
of pair of theta functioiis, under certain conditions. This formula generalizes 
forrnulas of H. Schroter [ l l ,  p. 65-72). Define, for E E { O , l )  and lab( < 1, 

Theorem 5.4.1. Let a ,  b, c ,  and d denote posztive numbers wzth labl, (cdl < 
1. Suppose that there exist positive zntegers a ,  /3, and In such that 

Let €1, €2 E {O,l), und defirie dl, d2 E {O,l) by 

6, = €1 - ae2(mod 2) and 62 r P E ,  + pc2(mod 2), (5.4.3) 
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respectzvely, where p = m - crp. Then zf R denotes any complete reszdue 
system modulo m, 

frl (a, b) f,, (c, d) = x ( - 1 ) c 2 r f ( r + l ) / 2 f l ( " 1 ) / 2  

rER 

a(Cd)a(a+l-2r)/2 b(Cd)~(a+i+2r)/2 
x f61 ( cQ 1 do 

Second proof of (5.2.3): Applying Theorem 5.4 1 with the paranlctcrs 
8 ~ ~ = 1 , ~ ~ = 0 , a = 1 , b = q , c = q , d = q ~ , a = 2 , ~ = 3 , a ~ i d 1 n = 9 , w e  

firld that. 

where we also used (1.1.9). 
Again, applying Theorem 5.4.1 with €1 = 1, €2 = 0 ,  a = q4, b = q4, c = q, 

d =  q3,  N = 2, /jl = 3, arld rn = 9, we obtain 

Multiplying (5.4.5) by q and adding with (5.4.6), wc dedllcc that 



Employing in turn a = -qb and b = q21; a = -q12 and I = q'" a = qqj a ~ ~ d  
b = -q24 ill (4.3 5),  we find that 

Applying (5.4.8), (5.4 9), (5.4.10) in (5.4.7), we obtain 

Again, putting a = q2, b = q4, c = q, d = q5 i11 (2.2.9) and (2.2.10), we 
find that 

and 

Employiilg (1.1.9), (1.1.10). (3.2.1)) and (3.2 2), in tlie above two identities 
call be written as 

and 
5 7 

2f  (9 , 9  = 11/2(-93)/$(qb)~(-9) + f (-q2)x(-9). (5.4.15) 
Replacing q by -q in (5.4.14) and (5.4.15). and the11 using (2.2.7) and (2.2.3), 
we find that 

2f  (-q5, -q7) = #(q3) /~(q)  + f (9) (5.4.1G) 

and 
2(1r(-(1~ -(1l1) = #(q3)/x((~) - r ( ~ ) .  (5.4.17) 

Addirig (5.4.16) and (5.4. I?), we obtain 

Replacing q by g2 in (5.4.18), and then using the resulting identity (5.4.11), 
we deduce that 



Dividing both sides by f(q9), using (4.3.11), (4.3 12)) (5.3 I ) ,  and replacing 
9 by -9, we arrive a t  (5.2.3) to finish the proof 
Proof of (5.2.5): Applying Theorem 5.4.1 with the parameters c1 = 1, 
t 2  = 0, a = q10 = b,  c = (I, d = 1, cr = 5, /3 = 1, i~lid nz = 9 ,  wc find that 

Using (4.3.11) and (4.3.12), in (5.4.20), we readily arrive at  (5.2.5). 
In a similar way, we call obtain the identitics (5.2 7) and (5 2.6) by settilig 

2 7 n = 9 , ~ ~ = 1 , c 2 = O , ~ ~ = b = q , ~ = q ~ , ~ 1 = 1 , ~ 1 = 1 , l j = 5 a r 1 d n 7 ~ = ~ ,  
9 

€1 = 1, €2 = 0, a = b = q ,  c = 1, d = q, cr = 6 ,  P = 1. respectively, in 
Theorem 5.4.1. 

5.5 Proofs of (5.2.8)-(5.2.23) 

I11 this section, we use the results of Rogers 132) a ~ i d  Bressoud [19]. We adopt 
Bressoud's notation, except that we use qn124 f (-f) instead of P,,, and the 
variable 9 instead of z. Let gbP'n) and $a,O,m,p be defined a 

For any positive odd integer p, integer n, and natural nunlber a ,  let 

wherc cu, p, and p arc n a t m d  numbers, and tra is an odd positive intcgcr. 
Tlleii we can obtain iriiiriediately the following propositions. 

Proposition 5.5.1. 11 9, equutrons (2.12) ( 1 7 ~ d  (2.13)) 1Yc lluue 



Proposition 5.5.2. 124, equatzons (6.3), (6.4), and (6.5)) We have 

Proposition 5.5.3. We have 

Proof: Taking y = 9, and n = 1 in (5.5.1), wc find that 

Therefore, we obtain gF.') = q-a /36  f f 3 ~ " /  JU 

In a similar fashion, we can prove (5 5 9) - (5 5 11). 

Lemma 5.5.4. [19, P7.oposztion 5.11 W e  have 

Theorem 5.5.5. 119, Propositzon 5.41 For odd p > 1, 



Lemma 5.5.6. /26, Lemma 5. I ]  We have 

~ e m k a  5.5.7. 119, Lemma 6.51 We have 

Lemma 5.5.8. [24, Lemma 6.61 We have 

Lemma 5.5.9. We have 



' Proof: Applying Theorem 5.5.5 with m = 1 and p = 9, we find that 

Using (5.5.8) - (5.5.11) in (5.5.25) and then simplification, we arrive a t  
(5.5.21). The identities (5.5.22), (5.5.23), and (5.5.24) can be proved irk a 
similar way by setting m = 3, 5 ,  and 7, respectively, and p = 9 ill Theorem 
5.5.5. 

Corollary 5.5.10. 11 9, Corollary 5.5 and 5.61 I~C$,?J ,,,,, is  defined by ( 5  5.2) ,  
then 

$a,R,m,l = 01 (5.5.26) 

(ba,~,1,3 = 2q(a+o)/24f ( -qa) f ( -q f l ) .  (5.5.27) 

Corollary 5.5.11. 11 9, Corollanj 5.111 If u and 0 are even posztzve integers, 
then 

Theorem 5.5.12. 119, Co7.ollaiy 7.3) Let cr,, P,, rrr,, T I , ,  wheic i = 1,2 
be positive integers wzth m l ,  m2 be odd. Let X I  := (crlm: + p l ) /p l  und 
X 2  := (crzm% + P2)/p2.  If the conditions 

X1 = X Z ,  alpl = a2@2, and crlml = f a27n2(7nod X I )  
- hold, then @a, , ~ , , m ,  ,P, - C$a2,o2,m2,~2. 

Ncxt,. lct. N tlcr~ot~c thc sct, of positive irit.c*gcrs, ar~tl No denote thc set, of 
non-negative integers. 

Proposition 5.5.13. For P E N ,  we have 

Furthermore, the identity (5.2.8) holds. 

Proof: By setting crl = p, P1 = 2p, ml = 5 ,  pl = 9 ,  a2 = 2p, 0 = p, mS2 = 1,  
and 712 = 1 ,  we see that the equality (5.5.29) holds by Theorem 5.5.12. 

Using (5.5.26) in (5.5.29) we obtain 

In particular, by taking p = 1 in (5.5.30) and then using (5.5.23)) we obtain 
the identity (5.2.8). 



Proposition 5.5.14. [19, Propositzon (8. I)] Let p be an odd integer 2 5, 
then 

@l,p-4,p-2,p = 0. (5 5.31) 

Furthermore, the identity (5.2.9) holds. 
Proof: Settiiig p = 9 and using (5.5.24), we readily obtain (5.2.9). 

5 This rcsult car1 also bc provcd by settirig c l  = 1, c2 = 1, n I I ,  b = q , 
c =  1, d = q, a = 2, 0 = 2, and m = 9  in Theorem 5.4.1 . 

Proposition 5.5.15. 126, Pl.oyosztion (5.4)] For p > 1, 

Furtherniore, the identity (5.2.10) holds. 
Proof: Setting p = 9 and using (5.5.21), we readily obtain the ide~itity 
(5.2.10). 

This identity can also be proved by setting 6 ,  = 1, c2 = 0, a = 9'' = 6, 
c = 1, d = q ,  a = 1, @ = 1, and Tn = 9 in Tlieorenl 5.4.1. 

Proposit ion 5.5.16. 119, Propositzon (8.5)] Let p be an odd i n t e g e ~  2 7, 
then 

41.3~- 1 6 ~ ~ - 4 . y  = 41,3,,-16.1,3. (5.5.33) 

Furtherniore, the identity (5.2.11) holds. 
Proof: Setting p = 9 in (5.5.33) and then using (5.5.23) and (5.5.27), we 
obtain the required identity. 

Proposition 5.5.17. 119, Proposition (8.11)] Let p be an odd integer 2 3, 
t l ~ e n  

Furthermore, the identity (5.2.12) holds. 
Proof: Setting p = 9 in (5.5.34), we find that 

Einploying (5.5.21), (2.2.3), in (5.5.35), we easily arrive at (5.2.12). 
This result call also be proved by applying Tlieorem 5.4.1 with 117 = 9, 

7 ~ 1 = 1 , c ~ = O , n = b = q  , c = l , d = g , a = 2 , a n d p = l .  



Proposition 5.5.18. 119, Proposztzon (8.8)] Let p be an odd znteger > 3, 
then 

Furthcrrnore, thc idcntity (5.2.13) holds. 
Proof: Setting p = 9 in (5.5.36), we find that 

I~lvoking (5.5.24). (2.2.3). in (5.5 37), we deduce the requited identity. 
Tliis result can also proved by eillployii~g Theoren1 5 4 1 with 711 = 9, 

7 ~ ~ = 0 , ~ ~ = 1 , a = 1 , b = q , c = q , d = q , a = 1 , n 1 i d ~ = 2  

Proposition 5.5.19. [19, Proposztzon (8.3)) Let p be an odd znteger 2 5, 
then 

$173p-4,p-2.p = $1,3p-4,1,3. (5.5.38) 

Furthermore, the identity (5.2.14) holds. 
Proof: Setting p = 9 in (5.5.38) and using (5.5 24) and (5 5.27), we easily 
dcducc (5.2.14). 

Proposition 5.5.20. For P E N ,  we have 

$p+14,p,1,2 = $1,p2+ 1.1],,7,~,+7. (5.5 39) 
\ 

Furthermore, the identity (5.2.15) holds. 
Proof: The equality (5.5.39) follows fro111 Tlieorc~n 5.5.12 with X1 = X2 = 
p + 7. Furthermore, by setting p = 2, and using (5 5.24) and (5.5 28), we 
readily arrive at  (5.2.15). 

Proposition 5.5.21. For p r N ,  we f ~ u v e  



Furthermore, the identity (5.2.16) holds. 
Proof: The equality (5.5.40) follows fro111 Tlleorei~i 5.5 12 with XI = X2 = 
p + 2. I11 particular, if we set p = 6 and use (5.5.21) arid (5.5 27), we deduce 
the proffered identity. 

Proposition 5.5.22. 119, Equation (8.12)] Let p be aiz odd znteger 1 5. 
Then 

42 ,~p- ( l ,p -~ .p  = +1,1bp- lb ,1 ,3 .  (5.5.41) 

Furthermore, the identity (5.2.17) holds. 
Proof: Setting p = 9 in (5.5.41), we derive the ide l~ t i t j~  (5 2.17) by employirlg 
(5.5.24) and (5.5.27). 

Proposition 5.5.23. /19, Proposition (8.13)] Let p be un  odd 7nteger 2 5. 
Then 

42,3p-8,1,3 = &, t~p -~ t i , p - l , p  (5.5.42) 

F~rt~herrnore, tlie identity (5.2.18) liolds. 
Proof: Setting p = 9 in (5.5.42), wc obtain the identity (5.2.18) by usirig 
the identity (5.5.23) and (5.5.27). 

Proposition 5.5.24. 124, Proposition (6.19)] For VE N 

Furthermore, the iclentity (5.2.19) holds. 
Proof: Setting p = 8 in (5.5 43), we obtsiri the  identity (5.2.19) by using 
(5.5.21) and (5.5.27). 

Proposition 5.5.25. 124, Proposition (0'.19)] f i r p c N ,  wc huvc 

F~irtkicrmore, the idcntity (5.2.20) holds. 
Proof: Setting p = 4 in (5.5.44) and the11 using (5 5.23) and (5.5.28), we 
immediately obtain (5.2.20). 

Proposition 5.5.26. 119, Equation (8.14)] Let p be an odd integer 2 5. 
Then 

$3,4~-12,~-2 ,p  = (b2,Gp-18,1,2 (5.5.45) 



Furthermore, the identity (5.2.21) holds. 
Proof: Setting p  = 9 in (5.5.45), we easily arrive at, (5.2 21) with the help 
of (5.5.24) and (5.5.28). 

Proposition 5.5.27. For P E N ,  we have 

Furthermore, the identity (5.2.21) holds. 
Proof: The equality (5.5.46) follows from Thcorcm 5.5.12 with XI = X2 = 
6 p +  7 .  In particular, if we set p  = 2 and proceed as in the above proposition, 
we obtain (5.2.21). 

Proposition 5.5.28. For p c N ,  we have 

Furthermore, the identity (5.2.22) holds. 
Proof: The equality (5.5.47) follows from Theorem 5.5.12 with XI = A 2  = 
p + 9. In particular, if we let p = 0 and use (5.5.21) and (5.5 25). we deduce 
(5.2.22). 

Proposition 5.5.29. [Z4, Proposition (6.26)] For pe N ,  we have 

Furthermore, the identity (5.2.23) holds. 
Proof: Setting p = 2 irl (5.5.48) and thcn using (5.5.23) and (5.5.26), wc 
obtain (5.2.23). 

5.6 Proofs of (5.2.24)-(5.2.32) 

Propositian 5.6.1. For an odd number p ,  we h,a~ie 

Furthermore, the identity (5.2.24) holds. 
Proof: The equality (5.6.1) follows from Theorem 5.5.12 with XI = X2 = 
p + 2. Furthermore, by setting p = 1 and using (5.5.22), we e~si ly  deduce 
(5.2.24). 

Remark: Thc identit,y (5.2.24) also follows horn (5.2.3). 



Proposition 5.6.2. Let p be an even number and p > 3 .  Then 

Furt,hermore, the identity (5 .2 .25)  holds. 
Proof: The equality ( 5 . 6 . 2 )  follows from Theore111 5.5 .12  with A I = A2 = 2 ~ .  
Further~nore by setting p = 6 and then employing (5 .5 .22)  and ( 5 . 5 . 23 ) ,  \\re 
deduce (5 .2 .25) .  

  em ark: The identity (5 .2 .25)  also follows from ( 5 . 2 . 3 )  aud (5 .2 .11) .  

Proposition 5.6.3. 125, Proposition (3.4. I)] For pc N ,  we have 

. Furthermore, tlle identity (5 .2 .26)  holds. 
Proof: Setting p = 6 ,  in ( 5 . 6 . 3 )  and then using (5 .5 .21)  and ( 5 . 5 . 22 ) ,  we 
obtain the identity (5 .2 .26) .  

Remark: The identity (5 .2 .26)  also follows from ( 5 . 2 . 3 )  and ( 5 . 2 . 16 ) .  

Proposition 5.6.4. 119, Proposition(8.16)] Let p be an odd integer > 5 .  
Then 

61,3p2-36,lp-61,p = 63,p2-12,p-2,p. (5.6.4) 

Furthermore, the identity (5 .2 .27)  holds. 
Proof: Setting p = 9 in ( 5 . 6 . 4 )  and then using (5 .5 .22)  and ( 5 . 5 . 24 ) ,  we 
obtain the identity (5 .2 .27) .  

Remark: The identity ( 5 . 2 . 27 )  also follows from ( 5 . 2 . 3 )  and ( 5 . 2 . 14 ) .  

Proposition 5.6.5. 11 9, Corollary (9.2)] Let p be an odd integer 2 3 .  Then 

Furthermore, the identity (5 .2 .28)  holds. 
Proof: Settingp = 9 in ( 5 . 6 . 5 )  and then using ( 5 . 5 . 21 ) ,  ( 5 . 5 . 24 ) ,  and ( 5 . 5 . 2 7 ) ,  
we easily arrive at (5 .2 .27) .  

Proposition 5.6.6. 119, Propositin (8.17)] Let p be an odd integer 2 5 .  
Then 

(b1,2p2-16,p-4,p = (b2,p2-8,p-2,p. ( 5 . 6 . 6 )  



Furthermore, the identity (5.2.29) holds. 
Proof: If we set p = 9 in (5.6.6), we arrive a t  (5.2.29) by nleans of (5.5 23) 
and (5.5.24). 

Proposition 5.6.7. 119, Propositin (8.1811 Let y be an odd znteger > 3. 
Then 

d p - 1 , p ~ - 4 p + 4 , p - ~ , p  = 41 ,d - 5 p 2 + 8 p - 4 , p - 2 . p .  (5.G.7) 

Furthermore, the identity (5.2.30) holds. 
Proof: If we set p = 9 in (5.6.7), we arrive a t  (5.2 30) by using (5.5.24). 

Proposition 5.6.8. For p be an odd pos\ztive integer avd p > 4, we have 

Furthermore, the identity (5.2.30) holds. 
Proof: Equality (5.6.8) holds by Theorem 5.5.12 with X I  = X2 = (p - 4)2. 
Taking p = 11 and proceeding in the same line as in the previous proposition, 
we obtain easily (5.2.30). 

Proposition 5.6.9. For pcN, we have 

Furthermore, the idcntity (5.2.31) holds. 
Proof: Equality (5.6.9) holds by Theorem 5.5.12 with XI = X2 = 13p. If we 
set p = 1, we obtain (5.2.31) with the aid of (5 5.23) and (5 5.24). 

Proposition 5.6.10. For pcN, we have 

Furthermore, the identity (5.2.32) holds. 
Proof: Equality (5.6.10) holds by Theorem 5.5.12 with XI = X2 = 29p. If wc 
set p = 1, we obtain (5.2.32) with the aid of (5.5.21) and (5.5 24). 

5.7 Proofs of (5.2.33)-(5.2.41) 

Proposition 5.7.1. ForpcN, we have 

4 5 p , 5 p + 4 0 , 3 , 5 p + 4  = 4 5 p  5 p + 4 0 , l , p + 4  1 
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Furthermore, the identity (5 2.33) holds. 
Proof: Equality (5.7.1) holds by Tlleoreln 5.5 12 with XI = Xz = 10. Setting 
p = 1 in (5.7.1), using (5.5.16) and (5.5 22), and then replacing q5 by q ,  we 
arrive at (5.2.33). 

Remark: From (5.2 3) and (5.2.33), we find that, 

which is the sixth identity of Ramanujan's forty identities [16]. 

Proposition 5.7.2. For pcN, we have 

Furthermore, the identity (5.2.34) holds. 
Proof: Equality (5.7.2) holds by Theorem 5.5.12 with XI = Xz = p + 1. 
Setting p = 5, usirig (5.5.16), and (5.5.21), mid then replacing qZ by q ,  we 
obtain (5.2.34). 

, Propositio& 5.7.3. [25, Proposition ('3.4.11)) For prN, we have 

Furthermore, the identity (5.2.35) holds. 
Proof: Setting p = 6 in (5.7.3), we obtain the identity (5.2.35) by means of 
(5.5.21) and (5.5.16), and finally replacing q2 by q .  

Proposition 5.7.4. 125, Propositaon (3.#.21)] For pcN, we have 

Furt herniore, the identity (5.2.36) holds. 
Proof: Setting p = 7 in (5.7.4) and using (5.5.21) and (5.5 16)' and t,hen 
replacing q2 by q, we finish the proof. 

Proposition 5.7.5. For pcN, we have 



Furthermore, the identity (5.2.37) holds; 
Proof: Equality (5.7.5) holds by Theore111 5.5.12 with A1 = A2 = p 3 1. If 
we set p = 2, we obtain (5.2.37) with the aid of (5.5.16) and (5.5.21). 

Propos i t ion  5.7.6. For pcN, we huve 

Furthermore, the identity (5.2.38) holds. 
Proof: Equality (5.7.6) holds by Theoren1 5.5.12 with A1 = X2 = 6. If we 
set p = 1, we obtain (5.2.38) by means of (5.5.1G) and (5.5.23). 

Propos i t i on  5.7.7. For P E N ,  we have 

Furthermore, the identity (5 2.39) holds 
Proof:  Equality (5.7.7) holds by Tlieorer~l 5 5 12 with XI = A2 = llp. If we 
set p = 1, we obtain (5.2.39) by means of (5 5 17) and (5.5 23) 

Propos i t ion  5.7.8. For pcN, we have 

Furthermore, the identity (5.2.40) holds. 
Proof: Equality (5.7.8) liolds by Theorem 5.5.12 with A1 = A2 = 13p. If we 
set p = 1, we obtain (5.2.40) by means of (5.5.17) and (5.5.21). 

Propos i t ion  5.7.9. For pcN, we have 

Furthermore, the identity (5.2.41) holds. 
Proof: Equality (5.7.9) holds by Theorem 5.5.12 with A1 = A2 = 14p If we 
set p = 1, we obtain (5.2.41) by means of (5.5.17) and (5.5.21). 

5.8 Proofs of (5.2.42)-(5.2.53) 

Propos i t ion  5.8.1. 126, Proposition(7.7)] For PEN and y even, we have 

d '4 ,12p+~1,~+1,2~+5 = #~,8p+l4 ,1 ,4 .  (5.8.1) 



Furthermore the identity (5.2.42) holds. 
Proof: Setting p = 2 in (5.8.1) and employing (5.5.22) and (5.5.14), then 
replacing q3 by q in the resulting identity, we coinplete the proof. 

Remark: The identity (5.2.42) also follows from (5.2.3) and (4.2.6). 

Proposition 5.8.2. 126, Proposition(7.5)j For p c N  and p even, we have 

Furthermore, the identity (5.2.43) holds. 
Proof: Settingp = 4 in (5.8.2) and using (5.5.22) and (5.5.15), and replacing 
q3 by .Q in the resulting identity, we deduce (5.2.43). 

Remark: The identity (5.2.43) also follows from (5.2.3) and (4.2.7). 

Proposition 5.8.3. 126, Proposition(7.3)l For p c N  and y even, we have 

Furthermore, the identity (5.2.44) holds. 
Proof: Setting p = 4 in (5.8.3) and using (5.5.24) and (5.5.15), we readily 
arrive at (5.2.44). 

Proposition 5.8.4. [26, Proposition(7.4)I For pcN and p even, we have 

Furthermore, the identity (5.2.45) holds. 
Proof: Setting p = 4 in (5.8.4), we obtain the ideiitity (5 2 45) by means of 
(5.5.23) and (5.5.15). 

Proposition 5.8.5. [2G, Propositin (7.G)] For pcN and p even, we have 

Furthermore, the identity (5.2.46) holds. 
Proof: If we let p = 4 iri (5.8.5), we arrive at (5.2.46) with tlic hclp of 
(5.5.24) and (5.5.14). 

Proposition 5.8.6. [2G, Proposition(B.l)] For p c N  and p cven, we huve 



Furthermore, the identity (5.2.47) holds. 
Proof: Setting p = 6 in (5.8.6), we find that 

@2,90,3.4.$3,60,7,9 = $6,30,1,9&2,90,1,2, (5.8.7) 

Using (5.8.5) with p = 4 in (5.8.7), we deduce that 

Employing (5.5.21), (5.5.28), (5.5.14) and (5.5.15), we deduce the required 
identity. 

Proposition 5.8.7. Foi* P E N ,  we have 

Furthermore, the identity (5 2.48) holds. 
Proof: Equality (5.8.9) holds by Theorem 5.5.12 with X1 = X2 = 7p. If we 
set p = 1, we obtain (5.2.48) via (5.5.14) axld (5.5.21) 

Proposition 5.8.8. 126, Proposition (7.9)] For peN and y even, we have 

Furthermore, the identity (5.2.49) holds. 
Proof: Setting p = 4 in (5.8.10) and then using (5.5.21) and (5.5.15), wc 
arrive at (5.2.49). 

Proposition 5.8.9. 126, Proposition (7.1 O)] For pc N and p even, we have 

Furthermore, the identity (5.2.50) holds. 
Proof: If we let p = 4 in (5.8.11), we arrive at (5.2.50) witah the help of 
(5.5.23) and (5.5.14). 

Proposition 5.8.10. 126, Pi-opositzon (7.5)] ForpcN und p even, we huvc 

Furthermore, the identity (5.2.51) holds. 
Proof: Setting p = 4 in (5.8.12), we obtain (5.2.51) by invoking (5.5.24) a i ~ d  
(5.5.15). 



Proposition 5.8.11. [24, Proposition(6.23)l For P E N ,  we have 

Furt-hermore, the identity (5.2.52) holds. 
Proof: Scttingp = 4 in (5.8.13), we deduce (5.2.52) via (5.5.23) and (5.5.14). 

Proposition 5.8.12. For pcN, we have 

Furthermore, the identity (5.2.53) holds. 
Proof: Equality (5.8.14) holds by Theorem 5.5.12 with XI = X2 = 41p. If we 
set p = 1, we obtain (5.2.53) via (5.5.15) and (5.5.24). 

5.9 Proofs of (5.2.54)-(5.2.64) 

Proposition 5.9.1. 125, Proposition (3.4.12)] For p tN ,  we have 

. Furthermore, the identity (5.2.54) holds. 
Proof: Setting p = 3 in (5.9.1) and then using (5.5.22) and (5.5.18), we 
easily obtain (5.2.54). 

Remark: The identity (5.2.54) also follows from (5.2.3) and onc of thc scptic 
identities of Hahn [24]. 

Proposition 5.9.2. 125, Proposition (3.4.15)] For y t N ,  we have 

Furt.hermore, the identity (5.2.55) holds. 
Proof: Setting p = 6 in (5.9.2)) we obtain the identity (5.2.55) by means of 
(5.5.22) and (5.5.18). 

Remark: The identity (5.2.55) also follows from (5.2.3) and another septic 
identity found by Hall11 [24]. 

Proposition 5.9.3. 124, Proposition (6.20)] For pcN, we have 



Furthermore, the identity (5.2.56) holds. 
Proof: Setting p = 5 in (5.9.3), we obtain 

Using (5.5.13) and Lemma 7 1 in the above equatio~l, we find that, 

Now, using (5.5.5) - (5.5.11) in the above ~.clatiorl mid rnultlplying both sidcti 
by q, we obtain (5.2.56). 

Proposition 5.9.4. Foi- PEN and p odd, we liuve 

Furtticrrnore, the iclcritity (5.2.57) holds. 
Proof: ~ ~ u a i t ~  (5.9 6) holds by Theorem 5.5.12 wit11 X1 = X2 = y + 5. 
Setting p = 7, employilig (5.5.20) and (5.5.24), aiid then replacilig q2 by q i11 

the resulting identity, we obtain (5.2.57). 

Proposition 5.9.5. 125, Proposition (3.4.19)] For P E N ,  we have 

Furthermore, the identity (5.2.58) holds. 
Proof: Setting p = 4 in (5.9.7), we obtain the ideiltity (5.2 55) via (5.5.23) 
and (5.5.18). 

Proposition 5.9.6. For pcN, we have 

Furthermore, the identity (5.2.59) holds. 
Proof: Equality (5.9.8) holds by Theorem 5.5.12 with X1 = X2 = 22. Sctting 
p = 2, using (5.5.19) and (5.5.21), and then replacing q2 by q, we readily 
deduce the required identity. 

Proposition 5.9.7. 125, Propositzon (3.4. ld)] For P E N ,  we have 



Furthermore, the identity (5.2.60) holds. 
Proof: Putting p = 3 in (5.9.9) ,  we obtain (5.2.60) via (5.5.21) and (5.5.18). 

Proposition 5.9.8. [25, Proposition (3.4.7)l For pcN,  tue have 

- Furthermore, the identity (5.2.61) holds. 
Proof: Setting p = 7 in (5.9.10), we obtain (5.2 61) with the help of (5.5.21) 
and (5.5.20). 

Proposition 5.9.9. 125, Proposition (3.4.23)] For pcN,  we have 

Furthermore, the identity (5.2.62) holds. 
Proof: Puttingp = 4 in (5.9.11), we obtain (5.2 62) via (5.5.21) and (5.5.19) 

Proposition 5.9.10. For PEN, we have 

Furthermore, the identity (5.2.63) holds. 
Proof: Equality (5.9.12) holds by Theorem 5.5.12 with X1 = X2 = 21y. If wc 
set p = 1, we obtain (5.2.63) via (5.5.20) mid (5.5.21). 

Proposition 5.9.11. For pcN, we huve 

Furthermore, the identity (5.2.64) holds. 
Proof: Equality (5.9 13) holds by Theorem 5 5.12 ~ r r i  ti1 X1  = X2 = 31p. If we 
set p = 1, we obtain (5.2.G4) with the help of (5.5.19) and (5.5.24). 

5.10 Applications to the Theory of Partitions 
The identities (5.2.1) - (5.2 23) have applicatioiis to the theory of partitions. 
We demonstrate this by giving combinatorial interpretations for (5.2 1)- 
(5.2.3), (5.2.8), and (5 2 9) .  In the sequel, for si~nplicity, we adopt the stan- 
dard notation 

n 



and define 
((Ir*; qY)0o := (qrr Q - " - ~ ;  qL1)ml 

where r and s are positive integers and r < s. 
We also need the notion of colored partitions A positive integer n l~ns 

k colors if there are k copies of n available nr~d all of tli~srn are viewcd LLS 

distinct objects. Partitioils of positive integers mto parts with colors use 
called colored partztions. For example, if 1 is allowed to have 2 colors, say r 
( ~ e d ) ,  and g (green),  then all colored partitions of 2 are 2, 1, + I,, 1, + l,, 
and 1, + 1,. An important fact is that 

is the generating function for the number of partitions of 71 ,  where all the 
parts are congruent to 11 (mod 7 1 )  nrld have C colors. 

Theorem 5.10.1. Let pl (n)  denote the number of partitzons of n in to  parts 
congruent to f 1,  f 2,  f 3 (mod 9) with f 1 (mod 9 )  having 2 colors and f 3 
(mod 9) having 3 colors. Let p2 (n )  denote the nunzler of partitions of n into 
parts congruent to  f 1, f 3, f 4 (mod 9) vnth f 3 (mod 9) having 3 colors and 
f 4 (mod 9) having 2 colors. Let p3(n) denote the number of partztions of n 
into pa7ts congrzcent to  f 2,  f 3, f 4 (7rtod 9) wzth f 2 (mod '3) havzng 2 colo7.s 
and f 3 (mod 9) having 3 colors. Let p4 (n )  denote the number of partztzons 
o j n  into parts congruent to  f 1 ,  f 2, f 4 (mod 9) hnvzng 2 colors each. Then,  
for any positive znteger n 1 1,  we have 

Proof: The identity (5.2.1) is equivalent to 

Noting that (q3; q3) ,  = (q3*; g9), (q9;  q9),, we call rewrite (5.10.1) as 



The four quotients of (5.10.2) represent the generating functions for p , ( r~ ) ,  
p2 (n ) ,  p3(n),  and p4 (n)  , respectively. Hence, (5.10.2) is equivalent to 

where we set p1 ( 0 )  = p2(0) = p3(0) = p4(0) = 1. Equating coefficients of qn 
on both sides yields the desired result. 
Example: It  can easily be seen that p1 ( 5 )  = 24, p2(4) = 6, p3(4) = 4,  and 
p4(5) = 26, which verifies the case n = 5 in Theorem 5.10.1. 

Theorem 5.10.2. Let y l ( n )  denote the number of partitzons of n into pat-ts 
congruent to  f 1,  f 2 (mod 9) with f 2 (mod 9 )  having 2 colors. Let lh(n) 
denote the number of partitions of n intq parts congruent to f 2 ,  f 4 (mod 9 )  
with f 4 (mod 9 )  h u v z ~ ~ g  2 c0107.s. Let p3 (71)  denolc l l ~ e  nvrnbe~.  of paitztroias 
of n znto parts congruent to  f 1 ,  f 4 (mod 9 )  wzth f 1 (mod 9 )  having 2 colol-s. 
Then,  for any  positive integer n 2 1,  we have 

Proof: Tlie identity (5.2.2) is equivalent to 

Note that the three quotients of (5.10.3) represent the generating functions 
for p1 (n) , p2 (n)  , and p3 (71)  , respectively. Hence, we have 

where we set p2(0) = 0.  Ecluatir~g coefficients of qn on both sides yields tile 
desired result. 
Example: The following table illustrates tlie case n = 5 in Theorem 5.10.2. 



Theorem 5.10.3. Let y l ( n )  denote the number of partitzons o f n  into p a d s  
not congruent to f 12, 27 (mod 27). Let ~ ( n )  denote the number of partztzons 
of n into parts not congruent to f 6 ,  27 (mod 27). Let p3(7c) denote the 
nwnber of partitions of 11 znto ~ ( L I ~ S  cong17~ent to f 3, 27  nod 9). Then, for 
any positive integer n >_ 2,  we have 

Proof: The identity (5.2.3) is equivalent to 

Note that the three quotients of (5.10.4) represent the generating fuilctiol~s 
for pl(n), yz (n ) ,  and y3(n) ,  respectively. Thus, wc have 

where we set pl(0) = p2(0) = p3(0) = 1. Equating coefficients of qn on both 
sides, we arrive at the desired result. 
Example: We note that p1(7) = 15, p2(G) = 10, arid p3(5) = 5 ,  wl~icll 

' verifies the case n. = 5 in the Theorem 5.10.3. 

Theorem 5.10.4. Let p1(7i) denote the number of partitions of n into parts 
congruent to  f 1, f 3 ,  f 4,  f 5, f 6 (mod 18) with f G (mod 18) havzng 2 



colors. Let p2(n)  denote the number of partztzons of n znto parts congtr~ent 
to f 1, f 3, f 6, f 7, f 8 (mod 18) with f 6 (mod 18) havzng 2 colors. Let 
p3(n) denote the number of partztions of n znto parts congruent to f 2 ,  f 3, 
f S ,  f G, &7 (mod 18) unth f G (.mod 18) lzuvin,g 2 colois. Let p4(n) denote 
the number of partztions of n into parts congruent to f 1, f 2, f 4, f 5, f 7, 
f 8 (mod 18). Then, for any posztzve integer 7~ 2 1, we have 

Proof: The identity (5 2.8) can be writteri as 

Writing the products by the common base qI8, for cxa~nples, writing ( q ;  q9), 
10. 18 3 3 as (q; ~ " ) ~ ( q  , q ), and ( q  ; q ) ,  as ( q ' f ~ b f ~ Y ~ l g ;  q'8)w B I I ~  cancelling the 

common terms, we obtain 

Note that the four quotients of (5.10.6) represent the generating functions 
for p l ( n ) ,  pz(n) ,  p3(n) ,  and p4(n)  respectively. Tlius, we have 

where we set pl (0 )  = p2(0) = p3(0) = p4(0) = 1. Equating coefficients of qn 
on both sides, we arrive at thc dcsired result. 
Example: The following table illustrates the case n = 7 in Theorem 5.10.4. 



Theorem 5.10.5. Let p1(71.) denote the number of partitions of n into purls 
not congruent to f 1, k8, f 10, f 17, f 19, f 20, 45 (mod 45) with f 15 (mod 
45) hawing 2 colors. Let m(n) denote the number o j  partilzons of n into parts 
not congruent to f 4,f 5, f 10, f 13, f 14, f 22, 45 (mod 45) wzth f 15 (mod 
45) havzng 2 colors. Let ~ ~ ( 7 1 )  denotc the nvrnbci. of pal-tztzons of 1-1. into par-ts 
not congruent to f 2 , f  5, f 7, f 11, f 16, f 20, 45 (mod 45) vnth f 15 (mod 
45) having 2 colors. Let p4(n)  denote the number of partztions of n into parts 
not congruent to f 3,f 6, f 10, f 11, f 15, f 21, 45 (inod 45). Then, fui. uny 
positive integer n 2 3, we have 

Proof: We proceed as in the proof of Theorem 5.10.4 to colllplete the proof. 



Chapter 6 

Another couple of functions 
analogous to the 
Rogers-Ramanujan Functions 
and Part it ions 

6.1 Introduction 

In this chapter, we deal with another couple of functions a~ialogous to the 
Rogers-Ramanujan functions. We recall from Chapter 1 that 

(6.1.2) 
where the later equalities are due to Slater [34, pp. 156-157, equations (49) 
and (54)l. Note that, Sills (331 corrected a misprint ill Slater's equation (54). 
Also, the formulation of (6.1.1) and Slater's equation (49) are equivalent,. 

Now, using (1.1.10) and (1.1.G), we car1 rcwritc (G 1.1) and ( G . l  2) a 

f (-9, -Q") and Y(q)  = f (-(I5. -q7) (6.1,3) , 

= f(+ f(-cl) . 



By applying the same methods as in the previous chapter, we find several 
modular identities for X(q) and Y(q) .  Some of these relations are connected 
with the Rogers-Ramanujan functions and their analogues defined in the 
previous two chapters. 

In Sections 6.2-6.5, we state and prove our modular relatiorls involving 
X ( 9 )  and Y(q). 

In Sections 6.6 and 6.7, we state and prove tlie identities involving quo- 
tients of X ( q )  and Y ( q )  as well as the Rogers-Ramanujan functions and their 
other analogues. 

In our last section, we apply some of the  nodular relations to the theory 
of partitions. 

6.2 Modular Relations For X ( q )  and Y(q) 

In this section, we present a list of modular relat,ions for X(q) and Y ( q ) .  
For simplicity, for positive integer n, we sct f n  = f (-qn), X, := X(qn), and 
Yn := Y(q7'). We also note that, some more relatioils can ewily be obtairied 
by replacing q by -q in each of the followiilg relations. 



6.3 Proofs of (6.2.1), (6.2.2), and (6.2.5): 

Proof of (6.2.1):  Putting a = q and b = g2 in (4 .3 .6)  and (4.3.7)'  we find 
that 

5 7 f (9 ,  q2)  + f ( - 9 ,  -q2) = 2f (q I 9 (6 .3 .1 )  

and 
f ( 9 1  q2)  - f ( - 9 1  -q2) = 29f ( 9 ,  911),  (6 .3 .2)  

respectively. Subtracting (6.3.1) and (6 .3 .2) ,  and then replaciilg q by -q, we 
find that 

1 ( - q 5 ,  -(i7) + 9f ( - ( I 3  - ( i l l )  = f ((i,  - ( I 2 ) )  = f b i ) ,  (G.3.3) 

where the last equality follows from (1.1.10).  
Dividing both sides of (6.3.3) by f ( - q ) ,  we arrive at 

Employing (6.1.3) and (4.3.12) in (6 .3 .4) ,  we easily arrive at ( 6  2.1). 



Proof of (6.2.2): Adding (6.3.1) from (6.3.2), and then replacing q  by -9, 
we obtain 

+((13) f (-q5, -q7) - q f  (-9, -9") = ! ( - ( I ,  q2) = - (63.5) 
x(q )  

where the last equality follows from (3.2 2) 
Employing (6.1.3), (4.3.11), and (4.3.12) in (6 3.5), we easily deduce (6.2.2). 
Alternative Proof of (6.2.2): F'rom [ll, Entry 31, Corollary(ii)], we have 

Replacing q3, by -9, and employing (3.2.4), (3.2 2), (6.1 3) in (6.3.6), we 
easily arrive at (6.2.2). 
Proof of (6.2.5): F'rom (35, p. 3061. we have, for lab( < 1, 

Putting a = q, b = q3, ill (6.3.7), we obtaill 

Rxplacing q, by -q, in (G.3.8)) we find that 

Using (4.3.12) and (6.1.3) in (6.3.9), we easily arrive at (6.2.5) 

6.4 Proofs of (6.2.6) - (6.2.5): 

Proof of (62.6): Wc apply Theorem 5.4.1 with the pnramctcrs c l  = 1, 
€2 = 0, a = b = q4, c = 1, d = q, cr = 2, = 1, m = 6. Colisequently, we find 
that 



Now, using (6.1 3) and (4.3.12), we deduce (6.2.6). 
In similar way, we prove the identi ties (6 2 7) and (6.2 8) To prove (6.2.7)) 

we apply Theorem 5.4.1 with the parameters €1 = 1, €2 = 0, a = 1, 6 = qg, 
2 c = q, d = q , ~u = 1, /3 = 1, m = 4 and to prove (6.2.8)) we again apply 

Theorem 5.4.1 with the parameters E, = 1, c2 = 0 a = b = q", c = q4, d = 1, 
a = 3 , / 3 = 1 , m = 6 .  

6.5 Proofsof (6.2.3), (6.2.4), and (6.2.9) - (6.2.16): 

We will apply the method given by Bressoud in his thesis [19]. Here, we use 
jn instead of Pn, and the variable q instead of x which stands for q2 in (191. 
The letters a ,  P ,  In, 11, p always denote positive integers, and In. must be 
odd. Following Bressoud (191, we define % 

Proposition 6.5.1. [I  9, Proposition 5.91 

and 

where S(q) and T(q) are as defined in (1 1.17) and (1 . l .  18), respectively. 

Proposition 6.5.2. 

Proof: Take p = 6, and 18 = 1 in (6.5.1). The11 

Using (1.1.6) and (6.1.3), in (6.5.7) we obtain the result. Similarly we can 
prove (G.5.5) arid (G.5.G). 



Proposition 6.5.3. [I  9, Proposition 5.81 

g ( p * n )  = g ( ~ * - n + l ) ,  g ( ~ l n )  = - g ( ~ t n - ~ )  and g ( ~ . n )  = -g(p.p-n+l) 
-a -a -4 --Q R -Q . (G.5.8) 

Theorem 6.5.4. [19, Proposition 5.101 For even p, 

d a , P , m , p  = 2 ~ ( ~ ~ - ~ ) (  a + P ) / 2 4  

(6.5.9) 

Proposition 6.5.5. 

- 2 q ( a + P ) / 2 4  fa f P  
6 a , 4 , 1 , 6  - 

( a + ~ ) / 3 f 3 0 f 3 e f 1 2 a f 1 2 f i  + d ( 1 + f i ) x a x B  

fa f ~ f ~ a  f 2 ~  

Cba,p,3,ti = 2q ( 9 a + P ) / 2 4  f ~ f 3 a f l 2 a  qPxP} . (6.5.11) 
f6a 

- 2q("+"/24f ,  f p  
6a , f i ,5 .6  - 

(a+13)/3 f 3 a f 3 0 f l ~ a f  1 2 ~  + p f l ~ f i ~ a )  . (GG 12) 
fafDfGrrfG/3 

Proof: Applyirlg equation (6.5.9) with 7rr = 1 arid y = 6,  we have 

Now, using (6.5.4)) (6.5.5)) (6.5.6), in (6.5.13)) we obtain the result after 
simplification. The eqlintion (6.5.11) and (G.5.12) can bc proved in a si~nilar 
way applying equation (6.5.8) with rn = 3, 5 respectively and p = 6. 

Theorem 6.5.6. 119, Proposition 5.101 



Proof: Applying equation (6.5.9) with m = 5 and p = 2 ,  we have 

Now, using (6.5.8) and (6.5.2) in (6.5.15), we obtain the result. 

Proof of (6.2.3): We set p = 1,  in (5.8.13): we easily arrive at (6.2.3) by 
employing (6.5.12) and (5.5.26). 
. In the sequel, let No denote the set of nonnegative integers. 

Proposi t ion 6.5.7. [26, P~opositzon 6.31 F07.pcNO, and p even, 

Furthermore, the identity (6.2.4) holds. 
Proof: If we set p = 2,  in (6.5.16), we obtain (6.2.4) by using (6.5.12) mid 
(5.5.28). 
Proof of (G.2.9): If we set p = 6 ,  in (5.5.32), we obtairi (G.3.9) by usil~g 
(6.5.10) and (4.3.12). 

Proposi t ion 6.5.8. [ZG, Proposition 6.21 For ycNo, and p even, 

Furthermore, the identity (6.2.10) holds. 
Proof: If we set p = 2 ,  in (6.5.17), we obtain (6.2.10) by using (6.5.12) ai1c.l 
(5.5.27). 

Proposi t ion 6.5.9. [26, Proposztion 6.91 For pcNo, and p even, 

Furthermore, the identity (6.2.11) holds. 
Proof: If we set p = 2 ,  in (6.5.18), we obtain (6.2.11) by using (6.5.12) and 
(5.5.27). 
Proof of (6.2.12): If we set p = 1,  in (5.5.44) we obtain (6.2 12) by using 
(6.5.12) and (5.5.28). 





6.6 Further identities for quotients of the func- 
tions X (q) and Y (q) 

In this section, we dcrivc further identities for qrioticnts of the functions X ( q )  
and Y (9) .  

The following identities are relatioils ii~volving some corribinations of X ( q )  
and Y (q )  with the Rogers-Ra~nanuj an functions: 

The following identities are relations involving some cornbinations of X ( q )  
and Y (q) with the Gollnitz-Gordon functions: 

f i f e  - 
f 2 f l 6  



The following identities are relations involvirig some cornbinations of X ( q )  
and Y (q)  with the septic a~ialogues A(q), B(g), and C(q) :  

The following identities are relations involving sorne combinations of X (9 )  
and Y (q)  with the nonic analogues D(q) ,  E(q) ,  a i d  F(q):  

6.7 Proofs of (6.6.1)-(6.6.19): 

Proposition 6.7.1. For prN ,  

d5p,9p,3,6 = &,45p,3,6, 
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Furthermore, the identity (6.6.1) holds. 
Proof: Equality (6.7.1) holds by Theorem 5.5 12 with XI = X2 = 9p. Fur- 
thermore, by putting p = l, in (6.7.1), we obtain (6.6.1) by using (6.5.11). 

Proposition 6.7.2. For prN, 

Furthermore, the identity (6.6.2) holds. 
Proof: Equality (6.7.2) holds by Theorem 5.5.12 with XI = X2 = 2Gp 
Furthermore, by putting p = 1, in (6.7.2), we obtaili (6.6 2) by using (6.5 10) 
and (6.5.12). 

Proposition 6.7.3. For P E N ,  

Furthermore, the identity (6.6.3) holds. 
Proof: Equality (6.7.3) holds by Theorem 5.5.12 wit11 XI = X2 = 34. Fur- 
thermore, by putting p = l, in (6.7.3), we obtain (6 6.3) by using (6.5.10) 
and (6.5.12). 

Proposition 6.7.4. For PEN, 

Furthermore, the identity (6.6.4) holds. 
Proof: Equality (6.7.4) holds by Theoretn 5.5.12 with XI = X2 = Sop. 
Furthermore, by putting p = 1, in (6.7.4), we obtain (6.6.4) by using (6.5.12). 
Proof of (6.6.5): Setting p = 2 in (5.7.2), we obtain (6.6.5) by using (6.5.10) 
and (5.5.16). 
Proof of (6.6.6): If we set p = 3 in (5.7.3), we rtrrivc at. (6.6.6) by employing 
(6.5.10) and (5.5.16). 
Proof of (6.6.7): We set p = 4 in (5.7.4), to obtain (6.6.7) wlth the help of 
(G.5.10) alld (5.5.1G). 



Proposition 6.7.5. For pdV, 

Furthermore, the identity (6.6.8) holds. 
Proof: Equality (6.7.5) holds by Theorem 4.5.12 with A 1  = A2 = 6p. h r -  
thennore, by putting p = 1, in (G.7.5) we obtsin (6 6.8) by using (6.5.10) and 
(5.5.14). 

Proposition 6.7.6. For prN ,  

Furthermore, the identity (6.6.9) holds. 
Proof: Equality (6.7.6) holds by Theorem 5.5.12 with A 1  = A2 = p + 1. 
Furthermore, by putting p = 3, we obtain (6.6.9) with the help of (6.5.1 1) 
and (5.5.14). 
Proof of (6.6.10) : If we set p = 2 in (5.9.3), we obtain 

(61,23,7,~ = 41,23,4.4. (6.7 7 )  

Employiilg (6.5.9) and (6.5.8) in (6.7.7), we find that 
(6 1 )  (6 3) (6.2) (6.2) - (6.3) (6.1)) p7{-g(4* l )p~.2)  (472)9(471) 

2q11{-&i I + e3 -23 9 9 -1 -23 + 923 -1 1' 
(6.7.8) 

Applying (6.5.4), (6.5.5), (6.5.6), and (6.5.3) in (6.7.8), we readily arrive at 
(6.6.10). 

Proposition 6.7.7. 125, Proposition 3.4.31 For P ~ N ,  we have 

Furthermore, the identity (6.6.11) holds. 
Proof: If we set p = 1, in (6.7.9), we obtain 

$95,1,1,6 = $5,19,3,4, (6.7.10) 

Now, usirig (6.5.10) and (5.5.15) in (6.7.10), we easily obtain (6 6.11). 
Proof of (6.6.12): If we set p = 1 in (5.9.11)~ we find that 

d l , ]  19,l,(i = 47,17,3,1. (6.7.11) 

We deduce (6.6.12) with the help of (6.5.10) and (5.5.15). 



Proposi t ion 6.7.8. 126, Proposition 6.81 For p even, we have 

Furthermore, the identity (6.6.13) holds. 
Proof: If we set p = 2, in (6.7.12)) we obtain 

Employing (6.5.12) and (5.5.14) in (6.7.13), we deduce (6.6.13). 

Proposi t ion 6.7.9. 126, Proposition 6.7.1 Ebr pcNo and p even, we have 

Furthermore, the identity (6.6.14) holds. 
Proof: If we set p = 2, in (6.7.14), we obtain 

Cb3,21,5,~ = 41 ,~3 ,1 ,4 .  (6.7.15) 

Applying ((3.5.12) arid (5.5.14) in (G.7. IS), we deduce (G.G. 14). 

Proposi t ion 6.7.10. 126, Pi~oposition 6.91 For pc N, we brave 

Furthermore, the identity (G.G. 15) holds. 
Proof: If we set p = 2, in (6.7.16), we obtain 

Employing (6.5.12) and (5.5.15) in the above identity, we readily arrive a t  
(6.6.15). 

Proposi t ion 6.7.11. For pcN, 



Furthermore, the identity (6.6.16) holds. 
Proof: Equality (6.7.18) holds by Theorem 5.5.12 with XI = A2 = 3. Further- 
more, setting p = 1 in (6.7.18), we obtain (6.G.16) with t l ~ e  help of (6.5.10) 
and (5.5.18). 
Proof of (6.6.17): If we set p = 3 in (5.9.10), we hid that 

Employing (5.5.20) and (6.5.10) in the above identity, we i~r~mediately arrive 
at (6.6.17). 

Proposition 6.7.12. /25, Proposition 9.4.251 For p& N ,  we have 

$p,2~+18,l,p+ti = 4p+9,2p, l,p+3 1 (6.7.20) 

Furthermore, the identity (6.6.18) holds. 
Proof: If we set p = 3 in (6.7.20), we obtain 

563,24,1,9 = 412,li,l,(i. (6.7.21) 

Using (5.5.21) and (6.5.10) in (6.7.21), we readily obtain (6.6.18). 

Proposition 6.7.13. For pcN, 

Furthermore, the identity (6.6.19) holds. 
Proof: Equality (6.7.22) holds by Theorem 5.5.12 with XI = X2 = 30p. 
Setting p = 1 in (6.7.22), we obtain (6.6.19) with the help of (6.5.12) and 
(5.5.23). 

6.8 Applications to the Theory of Partitions 
In this section, by the notion of colored partitions, we extract some partition 
theoretic results from some of our identities. We recall fro111 .Chapter 5 that 

1 

(qU; qV)& 
is the generating function for the number of partitions of n, wliere all the 
parts are congruent to u (mod v) and have k colors. 



Theorem 6.8.1. Let pl(n) denote the nurnlei. of partztzons of n znto parts 
congruent to f 1, f 2, f 4, 6 (mod 12) wzth f 2, 6 (mod 12) having two colors. 
Let pz(n) denote the number of partitions of  n znto parts congruent lo f 2, 
f 4, f 5, G (mod 12) uwzth f 2, G (mod 12) liuvmg two colo7s. Let p3(n) denote 
the number of partitzons of n into parts congruent to f 1, f 3, f 5 (mod 12) 
with f 1, f 5 (mod 12) having two colors. Then, for any posztive znteger 
2 1,  PI(^) + p2(n - 1) = p3(74. 

Proof: The identity (6.2.1) is equivalent to 

Rewriting the products of tlie above idcritity subject to tllc cornlnoll ljnsc 
q12, we deduce that 

The three quotients of (6.8.2) represent the generatirig functions for pl (n), 
p2(n), and p3(n), respectively. Hence, (6.8.4) is equivalent to 

where we set pl(0) = p2(0) = p3(0) = 1. Equating coefficie~lts of qn on both 
sides yields the desired result. 
Example: The following table illustrates the case n = 9 in Theorem 6.8.1. 



Theorem 6.8.2. Let p , (n)  denote the number of partztzons of n znto parts 
congruent to  f 2, f 3 ,  f 5, f 6 ,  f 7 ,  f 9 (mod 24). Let pz (n )  denote the nunzber 
of partztzons of n in to  parts congruent to  f 1, f 3, f G ,  f 9, f 10, f 11 (mod 
24). Let y 3 ( n )  denote the nuinbe7- of paitztzons of 11 ztzto puits congiuent to  
f 1, f 2 ,  f 5 ,  A7, f 10, f 11, (mod 24). Then,  for any posztzve zntegern 2 2 ,  
p l (n )  + p2(n - 2 )  = ~ 3 ( n ) .  

Proof: The identity (6  2 3 )  is equivalent to 

This identity can be written as 

Rewriting all the products by the common base q24, for examples, writlng 
I f  24 l l f .  24 3 3 (ql*; 9l2)W ( 9  ; 9 ),(q , q  )w and ( 9  ; 9 )m as (r l  

3 f  ,Gf , 9 f  ,12,24; q24) and 

car~celling the comrnorl tcrrns, wc obtain 

The three quotients of (6.8.5) represent the ger~eratillg functions for p l ( n ) ,  
p z ( n ) ,  and p3(n) ,  respectively. Hence, (6.8.5) is cqilivalcnt t-o 

where we set p l (0 )  = p2(0) = p3(0) = 1. Equating the coefficients of q" on 
both sides of (6.8.6), we arrive at  the desired result. 



Example: The following table illustrates the ca5e n = 9 in Theorem 6.8.2. 

Theorem 6.8.3. Let p,(n) denote the number of partitions of n into parts 
congruent to f 3 ,  f 5 ,  f 6, f 7, f 17, 18 (mod 36) wzth parts congruent to f G ,  
18 (mod 36)  hawing two colors. Let p2(n) denote the number of  partitions of 
71 into P U I ~ S  cong7uent to f 1, f G,  f 11, f 13, f 15, 18 (7nod 3G) und pu7-t~ 
congruent to f 6 ,  18 (mod 36)having two colors. Let pJ(n) denote the nuinber 
of partitions o f n  into parts congruent to f 2, f 3 ,  f 10, f 14, f 15 (mod 36) 
with parts congment to  f 3, f 15 (mod 36) having two colors. Then, for any 
positive integer n > 2,  pl (n) + p2(n - 2)  = p3(n,). 

Proof: The identity (6.2.4) is equivalent to 

Rewriting all the products in (6.8.7) by the common base q3', for exariiples, 
l lf  13% 36 3 3 3 6  6 6  writing (ql*. q12)m as (qlf , q q ; q )_ alld (q ; q ), as (9 19 )m(q ; o 1 ,  

and ca~lcelling the colnlnon terms, we obtain 

1 + q2 
((I 3f  ,Sf ,6f ,6f  ,7f  ,17f .18,18; q36) (qlf ,6f  ,6f , l l f  ,13f , l 5 f  ,18,18; 436) 

- - 1 
2 f  ,3f ,3f , l O f  , 1 4 f  ,15f 436) ' 

(6.8.8) 
( Q 



The three quotients of (6.8.8) represent the generating functions for p l ( n ) ,  
p2(n), and p3(n), respectively. Hence, (6.8.8) is equivalent to 

where we set pl(0) = pz(0) = p3(0) = 1. Equating the coefficie~lts of qn on 
both sides of (G.8.9), we obtain the required result. 
Example: The bllowing table ill~strat~es the case n = 16 in Theorern G.S.3. 



Theorem 6.8.4. Let p l ( n )  denote the number of partitzons of n into pai-ts 
congruent to f 1, f 4 (mod 12) having three colors and parts congruent to 
6 (mod 12) having two colors. Let p2(n) denote the number of partitzoiu of 
n into pu~ t s  congruent to f 4 ,  f 5 (7norl 12) hiving thwe colo7.s and G (~nou' 
12) having two colors. Let p3(n) denote the nrrmber of pal-titions of 72 zuto 
parts congruent to f 1 ,  f 3, f 5 (mod 12) with f 1, f 5 (mod 12) havi~ag three 
colors, Then, for any positive integer n > 3 ,  pl ( ? r )  + p2(7i - 3 )  = ~ ~ ( 7 1 ) .  

Proof: The identity (6 .2 .5)  is equivalent to 

6 6  Noting that ( q  ; q ), = (q" Q ' ~ ) , ( ~ ' ~ ;  q lh )m,  and rewriting all the products 
by the comrnon base g12,  and cancelling the cornmoll terms, we can rewrite 
(6.8.10) as 

The three quotients of (6.8.11) represent the generating functions for pl ( n )  , 
~ ( n ) ,  and ps(n), respectively. Hence, (6.8.11) is equivalent to 

where we set pl (0 )  = p2(0) = p3(0) = 1. Equating the coefficients of qr' on 
both sides of (G.8.12), we obtain the desired result. 
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CONTRIBUTIONS TO RAMANUJAN'S THETA-FUNCTIONS 
AND MODULAR EQUATIONS 

Doctoral thesis by JONALI BORA 

Corriqendum 

I. The theta-function identities wh'ich we proved in Chapter 2 are in fact 
different from those proved by Baruah and Bhattacharyya [4] (i.6. 131 
in the previous version). We have rewritten the first paragraph of the 
introduction of Chapter 2 in support of this fact. 

2. The idea of proofs of the three identities (4.2.19)-(4.2.21) are due to Mr. 
N. Saikia and for this reason we have written our paper 181 ([5j in the 
previous version) together. The other proofs came out from a joint work 
with the author's supervisor Dr. N. D. Baruah. We have added a remark 
at the end of Chapter 4 to acknowledge the help received from Mr. Saikia. 

3. In fact, the iilentities (5.1 . I) ,  (5.1.2), (5.1.3) are due to L. J. Rogers (301, 
[31]. These appear in L. J. Slater's list [34] of 130 Rogers-Ramanujan type 
identities. We have, properly given reference of Rogers' pape'rs and 
as suggested by one of the refereesriarked these identities according to 
Slater's list. Also the identities (5.1.4); (5.1.<5), (5.1.6) are due to W. 
N. Bailey [ 2 ]  These also appear in Slater's list, but all three contain 
misprints. These misprints are corrected by A. V. Sills [33]. We havg 
incorporated these changes in the rewritten Introduction of Chapter 5. 
Sills also corrected one misprint in Slater's formulation of (6.1.2). It is to 
be noted that the formulation of (6.1 . I )  with that of Slater are equivalent. 
In summary, we have corrected all the misprints in p.68, (5'. 1 .I)-(5.1.3), 
p.69, (5.1.4)-(5.1.6) and p. 100, (6.1.2). It is worthwhile to note that 
these misprints1 corrections do not change our modular relations. 

4. p.2 , In Eq. (1.1 7 ) ,  we have defined (a; q),. 

5. p.6, In Eqs. (1.1.26) and p.100, In Eq (6.1.2) we have changed 

C?=" to 1 + CT=I 

6. p.4, p.49, We have changed all llln q 4 1- t o  liin q -. 1- 



7. We have corrected the misprints pointed out by one of the referees in his 
comments are listed below : 

a) Abstract page, L6 : Knowledge -+ Knowledge of 
b) Declaration page, L2 : has -+ have 
c) p.4, L1 : Ramaujan's -, Ramanujan's 
d) p.4, Lg : Proofs all of -, Proofs of all 
e) p.4, L6 : is -, are 

8. We have also corrected the misprints pointed out by one of the other two 
referees.[ p.83, Eq ( 5.5.36 ) & Eq ( 5.5.37) ] 

9. Since the submission of our previous version of the thesis, the contents 
of Chapters 5 and 6 have been accepted for publication by the Journal of 
Number Theory and Integers, respectively. We have added these papers 
[6] and [7] in the Bibliography of the thesis. 

We are extremely grateful to the referees for their helpful comments. 
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