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ABSTRACT 

The thesis will consists of seven chapters. Chapter one will be introductory in nature and 

will give an account of rotating and non-rotating fluids in general. While describing the 

background and motivation for taking up the problems, we shall critically review the relevant 

works of other authors. The topics surveyed, by their very nature, will be centered around the 

problems we have to tackle. The study of universes will form the subject matter of each chapter. 

In chapter 11, the dynamics of Lyttleton- Bondi universe involving creation of matter in 

the presence of a scalar field vr;ill be studied considering the Robertson-Walker metric, and their 

properties will be discussed in detail. We will investigate also the role of scalar field and 

electromagnetic field in the process of mass creation. Along with finding out of the-temporal 

restrictions and the singularities ( which may exist), we will study the importance of such models 

in the context of modem cosmology. 

In chapter I11 for obtaining exact solutions of charged viscous fluid distribution, we will 

study the physical and dynamical properties of the model universes emitting radiation and also in 

special cases of those without emitting radiations. The effects of viscosity and the role played by 

radiation and their implications on such models will also be studied. 

Fourth chapter will focus on standard hot big-bang models involving viscous fluid 

leading to new interesting solutions. Their properties will be studied fiom various respective 

thereby obtaining new idea and information's regarding the evolutions of the universe. 

Investigation will also be made as to when the Universe ceased to be radiation- dominated and 

become matter- dominated, pointing out the advantages of our model over the Friedinan-model-. 

Chapter V which is devoted to rotational perturbation of the Robertson-Walker universe 

will be examined in order to substantiate the possibility of the existence of Massive scalar field. 

We will study, the exact solutions for metric rotation R ( r,t ) and the matter rotation w ( r,t ) 

under different conditions, and also study their nature and role fiolh different angles. 



In chapter VI, which is devoted to the vicious fluid distribution cannot be the source for 

generating gravitational field if a spherically symmetric class one metric is considered. Similarly, 

the magneto viscous fluid distribution is incompatible with class me metric. And the same result 

is seen to hold also under certain conditions when the viscous fluid distribution is coupled with 

scalar field. 

In the concluding chapter we will focus on the charged perfect fluid spheres coupled with 

rotation and their behaviors will be studied as a prelude to knowing minutely the characteristics 

of pulsars and neutron stars which are great importance in modem cosmology. The effects of the 

charged field on the rotational motion will be discuss from every possible angles. 
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CHAPTER -I 

INTRODUCTION 

The investigation in the thesis comprises seven chapters. The first chapter is 

introductory in nature reflecting the motivation of our work presented in the later 

chapters. To achieve the main objective of highlighting the important results presented 

in the thesis. The results of the work of various authors have been presented critically 

examined relevant to our studies. 

It is a well-known fact that no real astrophysical object is composed of a perfect 

fluid. Despite this, perfect fluid space-time has been studied as models, for instance, 

Newtron stars. In most astrophysical applications, it seems that perfect fluid models are 

adequate. However , possibly important changes in properties may occur when dealing 

with non-perfect fluid sources in highly compact bodies. In this light it has been 

conjectures [ Ellis (1 97 1) 1 that sometimes during an early phase in the evolution of the 

Universe when galaxies were formed, the material behaved like a viscous fluid. 

In perfect fluid, the mean free paths and times are so short that perfect isotropy is 

maintained about any point moving with the fluid. But for the imperfect fluids, 

pressure, density and velocity vary appreciably over the distances of the order of mean 

free path, or over times of the order of the mean fiee time or both. In such fluids, 

thermal equilibrium is not strictly maintained, and the fluid kinetic energy is dissipated 

as heat. The effect of energy dissipation , occurring during the motion of fluid on that 

motion itself is studies by various authors. This process is the result of the 

thermodynamic irreversibility of the motion. This irreversibility always occurs to some 

extent and is due to internal fi5ction (viscoiity) and thermal conduction. The viscosity 

of a physical distribution of matter is that characteristic of distribution which exhibits a 

certain resistance to altercations of the form. This aspect has motivated us to take 

imperfect fluid as the energy-momentum tensor in Einstein's fluid equations and study 

the consequences in details. 



The word " Cosmology" originates from the Greek word " Kosmos". Hence, 

cosmology means the scientific study of structure of the universe. The study of the 

cosmos has been made through the centuries and in the year 1917 Albert Einstein 

applied his General theory of relativity to the structure of the universe as a whole. 

The study of cosmos does not confine to that of our own galaxy but goes as far 

as exploring further up to the limits of the observable universe by looking back into the 

past to the moment of initial expansion about twelve thousand million years ago. In 

general relativity physicists tried to understand the structure of the universe with the 

help of Einstein's General theory of relativity through Newtonian theory of gravitation. 

It is the initial concept that gravitation plays a vital role in the structure of the universe 

because of the involvement of huge masses in the picture. There are, however short 

range or long range common interactions, not to mention the gravitation alone; this 

plays an important role in universal scale. Electromagnetic theory, through the only 

other long range theory, is of little help because the galaxies and the intergalactic 

medium are believed to be electrically neutral. 

Newtonian cosmology as is known at present does not achieve-much as it is not 

successful in making us arrive at a static model of the universe. Einstein , too faced the 

same problem with his well known relativistic h e  work, that the stationery nature of 

objects in the universe with our knowledge of stars in our own galaxy can be regarded 

as the complete replacement by the red-shift emitted from the extra-galactic nebulae 

showing that the objects in the universe are non-static and moving away from each 

other. 

The general theory of relativity with the cosmological principle and Wely's 

postulate together can lead to the direction of various relativistic cosmological models 

easily. That overall distribution of masses determines @e idea related to inertia was 



successfully learnt by Einstein from Machian. The principle of equivalence incorporate 

the combination of the concept of inertia and gravitation. 

In 1917 both Einstein and de-sitler studied the application to the cosmological 

problem on the basis of Einstein field equations. They assume that the universe is, as a 

whole, spaciously homogenous and isotropic when looked through a large scale view 

point. The study of cosmological model is firstly based on cosmological principle. 

The general theory of relativity is applicable to the whole universe as is shown by 

Einstein in the following way :- 

" On account of our observations on fixed stars we are sufficiently convened that the 

system of fixed stars does not in the main resemble and islands which floats in infinite 

empty space, and that there do not exist anythmg like a centre of gravity of the total 

amount of existing matter. Rather we feel urged towards the conviction that there exists 

an-average density of matter is space which differs from zero". 

The Einstein and de-sitters initial cosmological models can be h e d  within the a 

theoretical h e - w o r k  of general relativity and might correspond to an extent with the 

initial and final states of actual universe. But Einstein and de-sitter's static 

cosmological models were replaced by ndP-static models for the reasons given below :- 

(i) Einstein's model permits no shifts in the wave length of light h m  the nebulae and 

de-sitter's model permits non-existence of matter or radiation in the space. Hence static 

model cannot give a satisfactory picture of the present state of actual universe. 

(ii) The applicability of relativistic mechanics is increased by removing the assumption 

of static model. Really, there are some processes in the universe for example, the 

emission of radiation from the stars that results in the change of gravitation with time 

which leads to the non-static model. 



The non-static line element in the~cosmological model was obtained-at-first by 

Robertson (1929). Based on the cosmological principle, the fundamental properties of 

light and definition of substratum including the assumption (Weyl's postulate) that the 

paths of the particles do not intersect except possibly at one singular point in the past, 

Roberstson (1935) and Walker (1936) obtained the metric independently for the non- 

static cosmological model of the universe. 

In particular the inclusion of the cosmological term allows the existence of a 

static cosmological solution for the gravitational field equations. It follows however, 

that the physical motivation for adding the cosmological term is unfounded and 

therefore there is no need for it. Einstein assumed that A is of the order of 
1R - 10 magnitude of the radius of the uqiverse, namely A- -10 P.C.= loy cm. If A is taken 

to be positive, then the cosmological term Agij contributes a repulsive force term which 

varies as the square of the distance 6ltween the material bodies producing the 

gravitational field. 

Various arguments have at times been given against the inclusion of the 

cosmological term in the general form: 

1. that it was only an after though of Einstein's (but better discoursed late than never); 

2. that Einstein himself eventually rejected it (but authority is no substitute for scientific 

argument); 

3. that with it the well-established theory of special relativity is not a special case of 

general relativity( but locally the A-term is totally unobservable); 

4. that it is ad-hoec(but from the formal point of view it belongs to the field equations 

such as an additive constant belongs to an infinite integral); 



5. that similar modifications could be made to Poisson's equation in Newton's theory 

and-Maxwell's equations in electrodynamics (but in general relativity, matter and space 

are intimately related by the field equations and no mechanical picture is corrected) ; 

6. that one should never envisage a more complicated law until a simpler one proves 

untenable (but in cosmology-especially in the Robertson-Walker case-the technical 

complication is slight and several recent investigations have suggested that the A term 

indeed may be needed to account for the observations ); 

7. and more technically that a A - term in the geometry would destroy the possibility of 

A 
quantilizing gravity (but Zeldovich has suggested that an energy tensor -go k 

may 

arise naturally out of quantum fluctuations in vacuum, so that the A - term could be 

regarded as part of the sources rather than part of the geometry. ) 

These general field equations, then, must be satisfied jointly by the metric of 

space time and by the energy tensor-relative to the metric of the contents of space-time. 

In cosmology we are to formulate to be able to restrict the metric considerably by 

symmetry arguments alone. 

The assumption of large scale homogeneity, all together with the assumption of 

large scale isotropy is called the cosmological principle. The cosmological problem 

within the frame-work of general relativity consists in finding models of the universe as 

a whole which is a solution of Einstein equations. The mathematical test of solving the 

cosmological problem consists in determining a large -scale metric of four dimensional 

world and a corresponding large-scale mass energy distribution satisfying Einstein's 

equations. In order to solve such problems one has to build a cosmological theory 

which is expected to fulfill the following criteria 



1. It must predict an isotropic universe with uniform characteristics everywhere, to 

conform. to the picture of the actual universe uniformally filled with a nearly content 

matter density. 

2. The universe should present the same aspect to all observers, situated in any region 

of the universe at a given time. 

3. A theory of the universe must provide an explanation of the linearly increasing red 

shift of light for matters of increasing distance from any observer. 

Due to the nature of  astronomic^ observations, no means is available to verify the 

red shift of spectral lines from the distance galaxies. The cosmological red-shift might 

be assumed to be gravitational in origin but such an assumption violates the first two 

requirements. The viewpoint adopted in cosmological theory has not assumed a 

gravitational explanation for the red shift to be a Doppler shift caused by motion of the 

distant galaxies away from observers on earth. 

The most powerful assumption in standard cosmological theory is the second 

criteria where the universe is spatially homogenous and isotropic, often referred to as 

the cosmological principle. It can be formulated as statement about the existence of 

equivalent co-ordinate systems. 

Bondi and Gold's (1949 ) generalization of cosmological principle termed as " 

perfect cosmological principle" assumes that the universe seems to be the same 

irrespective of position or time of an observer in natural motion. In this-way the perfect 

cosmological principle is satisfied only by the steady state model of the universe. 

COSMOLOGICAL SOLUTIONS :- 

In order to find out the cosmological solutions $ Einstein's theory one usually 

chooses the energy-momentum tensor of matter as that due to a perfect fluid. All these 



models lead to an initial singular state. It is interesting to study cosmological models 

with a more realistic matter source by taking into account dissipative processes due to 

viscosity. The introduction of viscosity counteracts gravitational collapse; hence one 

might expect that the initial state of cosmological models could be change by this 

dissipative processes. 

The main aim to obtain casmo~o&cal solution is to study, how-does-the 

introduction of viscosity effects the singularity problem in Friedrnannian cosmology. 

However, Heller and Klimer (1975) considered the case in which the co-efficient of 

bulk viscosity is a function of density and has shown that all solutions of the considered 

class are regular. In 1983, Banejee and Santosh obtained an exactly solvable Bianchi 

type-I cosmological model with a viscous fluid. It showed that the role of viscosity is 

more important in the initial epochs of the universe and , in that same period, pressure 

is more important than fluid density. Maiti (1982) obtained a cosmological solution of 

Einstein's equations which admits a transitive group of motion for static spherically 

symmetric metric with a viscous fluid distribution as source. 

ROTATION AND PERTUBAT1.N :- 

In the recent years various authd";s Silk and Wright (1969);-Bayin:and 

Cooperstock (1980)] studied the role played by rotation in stellar models. When any 

gravitational body is rotating slowly the rotation can be considered as a small 

perturbation on an already known non-rotating configuration. In Newtonian theory the 

presence of a massive body does not affect the determination of an inertial frame . But 

in GRT, a massive body tend, to drag the inertial fixme along with i t  The lbeerence 

between the angular velocity and the dragging rate (the rate of rotation of the inertial 

frames inside the massive body) govems the centrifugal forces acting on the star [ 

Thining (1918)l Axial and reflection symmetries are resulted from slow rotation of 

configuration, and configuration which minimizes the total mass energy must rotate 

uniformly. Banerj i (1 968) considered dynamics of homogenous rotating cosmoIogical 

models with non-vanishing pressure. It appears fiom these that such model must in 



general be associated with shear if there be a linear relation between the pressure and 

the density except perhaps in the case 

The slowly rotating solid star with a spherical relaxable structure may be 

treated as a perturbations of a rotating star with some elastic structure. The perturbed 

state differs from the spherical state by a purely elastic deformation. This approach has 

the advantage that the equations of the rotating fluid star can be solved instantaneously 

since they are deduced as a perturbation from the same spherical state. According to 

Roy Chaudhuri (1979) the study of the fate of perturbation of isotropic models has 

twofold importance. Firstly, it would be justified to take the isotropic models as affair 

representation of the actual universe only if the models show reasonable-stabiliw 

Secondly, the formation of condensation like the observed galaxies is out of 

homogeneous distribution. 

At the first sight these two requirements- stability on one hand and growth of 

perturbation on the other hand- may appear to be mutually contradictory. However, one 

may make a compromise: a perturbation on a linear scale much larger than the 

dimensions and average separation of the galaxies should be smoothed out while those 

of a certain critical dimension should grow giving to observed galaxies. 

GENERAL FORMULAE USE :- 

FORMULAE :- 

(a) TIMELIKE VECTOR FIELD:- The vector field in four dimensional Riemannian 

spaces are frequently characterized by the properties of their first derivatives 

(covariant) and invariants which can be build from these derivatives . One of the most 

important examples of time like vector field in four dimension is velocity field U (x' ), 

U, U" = -1 of a matter distribution. 



1. ACCELERATION :- The acceleration U ,  = u,,~u~ gives the combined effects of 

the gravitational and inertial force on the fluid. In the absence of non-gravitational 

interactions Ua would vanish . It is space like as Ua Ua = -1 implies that U a  Ua = 0 

2. ROTATIONAL VELOCITY :- The rotational velocity WaB is an antisymmetric 

vorticity tensor which vanishes if the velocity vector is hyper- surface-orthogonal. -It 

determines the rigid rotation of the cluster of galaxies with respect to a local inertial 

rest frame. We may express vorticity by the vorticity vector W where 

The direction of this vector is the axis of the rotation of the matter, since if we 

choose qa in the direction of Wa when the vorticity alone is non zero, we find that this 

direction is left invariant by the rotation . Its magnitude is the vorticity W, where 

As Wap is space like, W 2 0  and W = O a  W a = O a  Wap=O 

If the vorticity vanishes once for an element of the fluid, it will vanish always. 

3. SHEAR VELOCITY :- The shear velocity o , p  = U(a;B) + U ,, p) - 8 h fl 

Gap = K ( UKp H',, + U,;P H',., ) - 113 8 HI, is a second order symmetric tensor, trace 

free, orthogonal to velocity vector and it gives the change of shape of space elements 

orthogonal to up . 



4. EXPANSION VELOCITY:- The expansion velocity 8 = U" ; oc gives the rate of 

dilation of a three space element locally orthogonal to the vector U" . Its magnitude is 

independent of direction ; a volume element is thereby magnified on diminished in size 

with its form preserved. 

5. PROJECTION TENSOR :- The projection tensor h ,p = &p + U, Up is orthogonal to 

the velocity vector uB . 

(b) ENERGY - MOMENTUM TENSOR :- 

(i) PERFECT FLUID :-The energy -momentum tensor for perfect fluid is given by 

TIJ=( -p+P)UIU' -pg"  

Where p is the possession of a proper density , P is a scalar pressure and U' is the four 

velocity vector. 

(ii) VISCOUS FLUID :-The energy-momentum tensor for viscous fluid is given by 

Where p and P are the density and isotropic pressure of the distribution respectively 

and T,E are the co-efficient of shear and bulk viscosity respectively. 

HI, is the projection tensor and o, is the shear tensor. 

(iii) ELECTROMAGNETIC FIELD:- If we take a flowing field of charged matter 

which is described by a proper density e (xi ), a four-vector velocity ULand-a-proper 

electric charge density E (x') , then for this free-electro-magnetic field the energy- 

momentum tenser is given by 



Tu =I I g ~  FkFk - FI'FI along with F\ -EU' ; F~ ij;,] = o 
4nG [ 4 I 

RADIATION FIELD :- A distribution which is non-statics will radiate energy, and 

therefore it will be surrounded by an ever-expanding zone of radiation. So for the 

outside field of a non-static mass, or otherwise for s directed flow of radiation in empty 

space , we have the energy-momentum tensor in the form 

SCALAR FIELD :- Scalar fields help in explaining the creation of matter in 

cosmological theories, represent matter fields with quanta (spinless) and can also 

describe the gravitational fields. For our invertigations we have considered a particular 

scalar field, namely, the scalar mensen field. The scalar meson fields are of two types; 

massive scalar field and zero-rest mass scalar fields. 

The energy-momentum tensor for massive scalar field ( Yukawa field of spin 

zero) is given by 

T P Y =  I' Y 2 2 4 4 - spy ( $a+" - M 4 ) 
Satisfjmg the relativistically inv&ant KleinCorden equation 

g * 4 ; , + ~ ~ p = w  

where 4 ( xi ) is the potential of the scalar field and (xi ) is the source density of the 

scalar field and y, ( x' ) is the source density of the scalar field, and M is related to the 

rn ti 
mass of Zero-spin particle by M = -; where h = - ( h being the Planck's constant). 

ti 2n 

For the zero-rest mass scalar field the expression for energy momentum tensor is 

obtained by putting M =O in the above expression. In this case Klein-Gorden equation 

reduces to the form. 



SPECIAL CASES :- To solve Einstein field equations one often uses the co-moving 

system , Ua = (0,0,0, u4 ) . If the rotation Wap vanishes, then the flow given by U' is 

hypersurface orthogonal and the metric can be brought in the form. 

If one writes down the covariant derivative U, ,p explicity in this metric and 

compares the results with the equations of projection tensor, shear tensor etc., then one 

can show that [ Stephani (1982) 1; 

(I) For Wap = 0 and oap = 0 the metric & I S  of the three space contains time only in a 

factor common to all elements. 

The stress tensor will be $at for a perfect fluid, the universe will be completely 

isotropic and spatially homogeneous. 

(11) For Wap = 0 and 0 = .O the determinant of the three space metric does not depend 

upon time. 

(111) For Wap = 0 and U, = 0 one can transform p4 to c. 

If the expansion and shear vanish (0 = 0 and o,p  = 0 ) but not the rotation ( Wap # 

0) then for the co-moving observer the distances to neighbouring matter elements do 

not change, and-we have a rigid rotation. The dust universes which exhibit the rigid 

rotation and spatial homogeneity are th2 Einstein static universe andhe-~odel .  

stationery model., 



Spatially homogeneous universes having non-vanishing rotation and-expansion 

must have a non-vanishing shear. This is also true-for dust and perfect fluid universes. 

In a static star model, we have 
g = o = w = o  

In a general fluid flow, both w and o wiII be non -zero. Ellis (1971) has shown 

that there exists a direction left invariant by rotation. Since W@, cr* and 0 determine 

the relative motion of galaxies in a cosmologicaI model we should like to determine the 

values of these quantities in the observed universe. However, in principle it is possible 

to compare the observations with the theoretical expressions for the above quantities at 

the present time to . The value go = 3 I& = 3 x (1.3 x 10" years) is probably correct to 

within a factor 2-[-Scima (1971) and'Burbridge (1971) 1, but we can only obtain rather 

poor limits on wo and 00 h m  direct observation, The condition--that the systematic 

motion of galaxies is away from in all ,dkections (there are 

see a systematic blue shift effect in galactic spectra ) impos 

1 
00 < - QO. 

3 

More detailed examination of the direct evidence gives us the limits [ W a n  

and Sachs (1966) ] 

lDENTIFICATION OF VISCOUS FLUID WITH OTHER Tw : 

Synge (1966) posed a question : Given a metric tensor that does in fact, lead-to a 

T, satisfying the energy conditions, how do we know what type of field this energy 

tensor represents ? To put it in another way, is it possible that Tw is not a uniquely 

viable energy tensor i.e. c& the energy tensors of two ~pparently different fields be 

identical in that they have precisely the same components. 

ACC. NO ............................. 



Griffiths (1972) has shown that energy tensor of the neutrino field can be 

identically zero so that the corresponding space-time is also a vacuum solution. 

This is the case of the so-called " ghost-neutrinos" ; considered as neutrino 

solutions they are pathological. The neutrino energy tensor can also be identical with 

the energy tensor of a null electromagnetic field provided that certain-conditions hold. 

However, the neutrino field is not a classical field, and relating a non-classical field to a 

classical field seems a somewhat dubious procedure. The problem of identification of 

different energy tensors can be discussed in the realm of special relativity with a 

background of Minkowski space-time. However, we are interested in energy tensors 

which are not only identical, but also each of which forms the right hand side of a set of 

field equations of the form G, = k T, with the identical Einstein tensor G, on the left 

hand side, and so we shall confine our attention to the general relativistic problem. 

Tupper (1 98 1) has shown that space-time satisfying the Einstein-Max well equations, 

either in vacua or coupled with a perfect fluid may also satisfy the field equations for a 

viscous fluid. For example, the electrovac solutions of Reissner and Nordstrom as well 

as the Kerr-Newrnan metric may be alternatively interpreted as due to viscous fluid 

distribution. With this in mind, Salia (1983) studied viscous fluid motion in the Kerr- 

Newman black hole in some details and some interesting features of motion in the 

black hole region are pointed out. However Raychauduri and Saha (1981) investigated 

the Tupper's (1977,1981) problem and are led to conclude that the viscous fluid 

interpretation is possible only if the electrovac solution possesses a certain symmetry 

property. Their results allow them to cite a counter example to Tupper's idea fiom 

known electrovac solutions. Novello (1979) noted that Tupper's interpretation allows 

one to discover some cosmological soliditions having some what unusual properties. 

Coley and Tupper (1983 a, b) extended their earlier work and has shown that 

FRW cosmologies, in particular the zero curvature and Einstein-de-Sitter models do not 

necessarily represent perfect fluid solutions but also can be exact solutions of the field 



equations for a viscous fluid, with or without an electro magnetic field and these 

solution can be physically acceptable. 

Recently again Coley and Tupper (1984) gave a solution of Einstein's field 

equations that represents the collapse of realistic matter distributions. The authors have 

exploited their earlier ideas that a given energy-momentum tensor may formally 

represent different types of matter distribution. Obozov (1982 a,b) obtained a necessary 

and sufficient condition for the gravitational fields of a perfect fluid and a viscous fluid 

to be conformal to a flat space-time. 



CEU"3XR - 2 

LYTTLETON -BOND1 UNIVERSE INVOLVING CREATION OF MATTER 

COUPLED WITH A SCALAR FIELD 

2.1 INTRODUCTION 

A cosmological model was developed by Lyttleton and Bondi assuming there is a 

continuous creation of matter on account of the net imbalance of the electromagnetic 

charge. In such type of universe the electromagnetic field is modified taking into 

consideration the process of creation. Lyttleton and Bondi, Burman, and Rao and Panda 

studied the different properties of such a universe. The dynamics of Lyttleton-Bondi 

universe were further investigated by Nduka , Reddy, and Reddy and Rao. As it is well 

known that the creation of particles is connected often with a scalar field, here in this 

-problem the case of Lyttleton- Bondi universe coupled with a scalar field is discussed 

in detailed . Obtaining some new interesting model solutions we study the dynamics of 

such a universe and investigate the role of scalar field in the process of mass creation. 

The temporal restrictions and the conditiods for the existence of these solutions are also 

discussed, taking into account for the singularities which may exist in the course of 

critically examining these different models. With the study of these models-we-may-be 

able to have some interesting information's regarding the early universe. 

2.2 FIELD EQUATIONS AND THEIR SOLUTIONS:- 

For this problem we consider the Robertson-Walker metric. 

a? = d i 2  - R ( r [  dr + r 2 d 0 2  + r 2  sin Bd# ,......... ................. ( 1) 
1-b2 J 

The energy-momentum tensor here is 

Tfl"  = E f l "  + S  ....................................... ( 2 )  
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where E,, is that due to an electromagnetic field and is given by 

1 1 E = ( q g P u  FPu F Y" - F ,  F )  + A A - g P U  A . A  .......... 
2 

A, being the four potential vector and F,, the anti-symmetric electromagnetic field 

tensor. Here in order to incorporate the idea of creation modified form of Maxwell field 

equations are 

F, ,=A, , -  A , ,  ........................ (4) 

where Jp is the current density four vector , q the rate of creation of charge per unit 

proper volume, and h a constant. S, is energy-momentum tensor due to the zero-mass 

scalar field and takes the form 

where 4 is the scalar potential field which satisfies the relation 

Now for Fp, = 0 ( zero electromagnetic field ) , 

we may write, 



E , , = ~ ( K ~ , , A ~ A ~ - A ,  A"),  ............................................................................ (9) 

Here A, takes the form 

. A,=(P,OYO,~) ,......... ....................................... (10) 

Thus F,, = 0 leads to 

Therefore from relations (1) and (1 1) we have 

thereby getting 

On the assumption that the charge created will not affect the dynamical characteristics 

of the matric and the mechanical effect of such creation on the energy-momentum 

tensor is nil, the Einstein's field equations can be used here. Thus corresponding to the 

field equation. 

we get four equations 



Anain fiom relation (8) we get 

which gives 



and 

where a and b are arbitrary constants. 

Now equations (1 5) and (1 6) gives 

which implies 

and 

It may be noted here that in view of the relations (23) and (24), equation (18) is 

automatically satisfied and equations (15) and (1 6) become the same. 

Now adding up equations (1 5) and (1 7) we get 

which gives 

where C is an arbitrary co&t&t. Therefore from (20) , we get 



where Q is an arbitrary constant. 

The equation (17) gives 

As a special case if A= 0, then for a flat universe fiom equation (25) , we obtain 

and 

where a, , A, and Bl are arbitrary constant. And with A=O, we obtain for an open 

universe 



where Bz and a2 are arbitrary constants. In this case equation (17) gives 

-6 A Y ~  + a 2 ( t +  B , )  = 0 ................................................................................. (34) 

2.3 CONCLUSIONS 

For the model obtained in equations (26), (27) and (28), two cases arise. The 
I 

case when R =  r+C is taken to be fmt case here, and that 

R = --($ - k)' t + C is taken to-be Cecond case. It is seen that in both the cases A can 

not be less than 2k. The models 0btained:here are. in general, non-static,-homogeneous 

and isotropic. The model of the first case is found to expand indefinitely with time from 

an initial finite state to that of a universe of infinite radius. In the second case the 

model universe contracts linearly with time until it reaches a singular state after time 
-I  - 
2 

t  = C($ - k) from initial stage of its evolution. If h=2k we get a static universe 

which is not of much interest here. In the model of the first case type the scalar field is 

found to be increasing uniformly with time if % is a positive quantity, until it finally 

takes a finite value ; and thus in this universe the creation of mass goes on 

constantly. In this model h can not be zero as in that case the electromagnetic field 

potential Y is undefined. And it is seen that Y decreases with time until it becomes zero 

at i n f i t e  time-and also it vanislfes when the two arbitrary constants a and Al so happen 

that A,' = 12 n ~ a ~  . In this case the charge field decreases with the increase-of the 

scalar field which shows that the scalar field has a tendency to decrease the rate of 



continuous creation of matter which is due to net imbalance of the charge contained in 

this model. In the model of the second case type the scalar field is found to decrease 

uniformly with time fiom a singular state until it finally takes a constant value ao; thus 

in this case the rate of creation of mass decreases steadily. Here it is also seen that in 

the case of static universe the scalar field does not exist. In the first case model the 

charge potential decreases with time, however it is undefined at infinitely large time 

from the origin of universe. Thus it indicates that the rate of mass creation due to the 

charge decreases with time in this case. In the model of the second case the charge 

potential is found to be negative which is perhaps may be taken as the case of absorbing 

radiation by the model universe. In both the cases the charge potential if not defined 

if h happens to be zero, thus it may be concluded that can not be zero if the model 

universes here are to be realistic ones. 

Next taking up the case of the flat model universe, it is seen that for A1>O and 

B1 >O this model expands indefinitely &om the initial singular state. And for B1 > 0 and 

A, <O the initially finite flat universe counteracts to a singular state in a finite-time; If 

B, happens to be a negative quality, then in the expansion of this model universe there 

B, will be a singularity at a time given by r = - Here the scalar field 4 increases 
A, 

4 infinitely with time ; however at time t = - it is undefined. It is found that if a =O the 
A, 

scalar field does not vanish ; and a 4 implies h = 0 and not necessary yr = 0. Similarly 

h = 0 implies a = 0 and not necessarily 4 = 0. Again for the electric charge to have a 

real value, in this model universe, h is to be a negative quality; and in this case it is seen 

that as the strength of the scalar field increases, the potentiality of the charge field 

decreases which indicates that the scalar field has a tendency to decrease the rate of 

continuous creation of matter which is due to the net imbalance of the charge. 

Lastly, concerning the open model we have obtained here it is seen that it 

expands linearly with time fiom an initial finite state reaching to that of a universe of 

infinite radius in an infinite time. If B2 happens to be a negative quantity then in the 



course of expansion of this model universe there will be a singularity'after a period of 

time given by t = B2 from the initial state. Here the strength of the scalar field 4 
increases idinitely with time; however at t = - B2 it is undefined. Also from the relation 

(33) we see that even if a = 0 the scalar field does not vanish, but becomes constant. In 

this universe the electromagnetic field, and the scalar field are found to be closely 

interrelated, and it seems that if one of the field also vanishes automatically. 



CHAPTER-3 

EXACT SOLUTIONS OF RADIATING AND NON-RADIATING VISCOUS FLUID 

UNIVERSES COUPLED WITH AN ELECTROMAGNETIC FIELD 

IN GENERAL RELATIVITY. 

3.1 INTRODUCTION. 

Despite the fact, the cosmological solutions of the Einstain field equations given by 

Friedmann have successfully incorporated the expansion, homogeneity and isotropy of 

the universe, and though it is commonly accepted that the Friedmann models represent 

the present state of the universe quite accurately, and whatever deviations may exist are 

expected to be small, they do not explain the homogeneization and isotropization of the 

Universe, which is apparent at scales of the order of 10"ght-~ears. Besides this, 

statistical fluctuations in Freedmann models do not grow fast enough to explain the 

formation of galaxies, which implies the existence of real in homogeneities at all stages 

of the evolutions of the universe, and recent observations of voids pose-&challenging 

problem to be explained by any responsible cosmological model. Thus here we 

consider a metric which can give more in right into the minute study of the models. 

On the other hand, objects with large energy output, either in the forms of 

photons or neutrinos or both in some phases of either evolutions, are very much known 

to exist. A nonstatic distribution would be radiating energy, and so it would be 

surrounded by an ever expanding zone of radiation. It is widely recognized that in the 

distant past the universe was dominated by the radiation and the early universe was an 

undifferentiated soup of matter and radiation in a state of thermal equilibrium. 

This paper appeared in J. Indian Acad. Math. Vol. 19, No. 2 (1997) 



During the photon decoupling stage part of the electromagnetic radiation 

behaved as a perfect fluid co-moving with matter, while another part behaved like a 

unidirectional stream moving with fundamental velocity. And during the neutrino 

decoupling stage a similar situation arose in which apart from streaming neutrinos 

moving with fundamental velocity, there was a past behaving like a viscous fluid co- 

moving with matter. The discovery of quasi-steller objects and their huge energy 

requirements motivated the development of a theory of hob, convective, supermassive 

stars where general relativistic effects are important. It will, therefore be interesting to 

consider a radiating distribution in trying to explore new results and so that useful 

information's about the behavior of a realistic Universe can be obtained &om such 

models. 

In this we obtain four new solutions and try to study them from various angles. 

Even though some numerically computed solutions are available in the literature the 

efficiency of exact solutions for giving a clear understanding of the internal structure of 

a spherical star cannot be reached. With the help of the exact solutions obtained here 

we study the physical and dynamical properties of star models emitting and coupled 

with electromagnetic radiation ; and as special cases, models which have stopped 

emitting electromagnetic radiation are also discussed and examined. The effects of 

viscosity on such models are also investigated with great precision. The importance in 

studying the radiation models lies in the fact that nowadays radiation plays an 

important role in studying many scientific and astrophysical phenomena. Particularly 

investigations on electromagnetically charged models are important in c o ~ e c t i o n  with 

the study of the pulsars and the black holes. The models here are also taken to be 

composed of viscous fluid as so far from the evidences obtained, it is lcnown that no 

astrophysical object is composed of a purely perfect fluid. 

3.2 FIELD EQUATION AND THEIR SOLUTIONS. 

The metric considered here is 

ds' = e ~ p ( 2 ~ ) d t ~  - exp(22)dr2 - y 2 d e 2  - y2 sin2 @dqj2 ............................................. (1) 



where y, h and y are functions of r and t. 

The energy-momentum tensor T, is here given by 

where p is the isotropic pressure; p, the fluid density; q and 6 , the co-efficients of shear 

and bulk viscosities, respectively; and up , the four vector velocity of flow satisfying the 

relation. 

............................................................. g,uP uY =I,. (3) 

Here 

is the energy-momentum tensor due to the electro-magnetic field where Fag are 

electromagnetic field tensors satisfying the relations 

and 

where ~ ( p , t )  is the charge density of the electro-magnetic field (a semi-colon followed 

by a subscript denotes covariant differentiation). 



The H, , s are the projection tensors given by 

Hpv = up uv - gpv 
While 

are the components of the shear tensor where 

0 = ua;= = v u  

is the expansion factor. 

Since the only non-zero component of the electro field is F ~ '  because of spherical 

symmetry, Maxwell's equations reduce to 

Now, in the rest frame of the fluid, defined by up = eVtj4, Equations (7) and (8) can be 

integrated to obtain 
-v-h -2 ............ I? '=-e y Q(r,t) ........................................................... (9) 

Thus Einstein field equation 

gives 



And 

Overhead dot and prime respectively denote partial differentiations with respect to 't' 

and 'r' . We shall now take up four cases. 

CASE- 1. 

From above we see that there are only four equations [equations (1 1)-(14)] out 

of which six unknowns are to be solved. 

Thus here we assume 

Making use of this-relation in equation (12)' we get 



where 'a' is an arbitrary constant. 

Now from equation (1 6) we can conveniently take 

Taking a = cal 

Also from equations (1 5) and (1 7), we have 

1 h = log {t- f(r)) ,................. (19) 

As a particular solution we can take 

h = log @IT r t-' ) ,.............. (20) 

where bl is an arbitrary constant. 

Now making-use of the relations (1 7), (1 8) and (20) we see that equations (1 3) and (14) 

respectively take the forms. 

And 
2 - 2 - 4 2  - 2 - 2 - 4 - 4  b;q  r t + a , {  r t 



Now fiom equation (21) and (22) , we get 

And 
- 

and equation (1 1) gives , making use of relation (23 

In this case we take u to be a function of time only. Then equation (2) gives 

where f is an arbitrary function of r. 

Now we assume 

Y J = f e h = f g  ................................................. (27) 

where 'g' is an arbitrary function of time only 

Then, 

y = fg, .................................................................. (28) 

and h = l o g f + l o g g - l o g f  , .................................................... (29) 



Therefore, equation (1 3) and (1 4) together give 

Q ~ = X P $  ............................................................... (30) 

From equation (1 1) , we get 

As a particular example we may take 

2 f = r  , g = b 2 , ~ = 3  logt, ................................................................. (33) 

in which case we get 

CASE -111 

Here we take up the case in which the metric assumes the form of the Robertson- 

Walker type as Robertson-Walker models are possibly most appropriate for a 

representation of the large-scale structure of the space-time. For that we take. 



3 3 

u =  o ,e2 '=P (r) $ (t), y =  r.g(t) , ......................................................... (3 7) 

where f(r) is a function of r only and g(t) is a function of time only. 

Now it is seen that relation (37) satisfy the equation (12) automatically. And 

equations (1 3), (14) and (1 1) give 

As a particular case we study the solution when 

where a2 and b2 are arbitarary constant. 

And here, 

And 

1 1  
p = - - t  + 3 -  - ~ ( a 2 a 2 ~ F t ) - ' ]  ..................................... 

87r 2 (44) 



CASE IV : 

In this case we take up radiating fluid for which 

Here we assume u to be a firnction of time only and take 

Then from equations (l2), (13) and (14) , we obtain 

A-particular solution of equation (47) is 

2 2 .......................................... u = log ( 1 2 x 5 ~  c t ), (49) 

where c is an arbitrary constant. 

Thus Equation (46) gives 

h = log (dlt),. ..................................................... (50) 

where d is an arbitrary constant or at most an arbitrary function of r. 

Therefore making use of the relation (50 ) in equation (1 1) (13) and (14), 

we get 



3.3 DISCUSSION OF THE RESULTS :- 

In case I, the fluid pressure as well as the fluid density is found to be a 

decreasing function of the time and the radial distance both. In this case, viscosity has 

the tendency to decrease the pressure. On the other hand the bulk viscosity has a 

tendency to enhance the density while the shear viscosity acts the other way. The 

charge field on the other hand is an increasing function of the time and the radial 

distance both ; however the shear viscosity and the bulk viscosity both have tendencies 

to decrease the strength of the electric charge. Thus the models here will gradually lose 

the potentiality of emitting radiation and come to that of a dust era, thus modeling a 

good example which demonstrates the evolution of the Universe. This model will be 

able to explain the early Universe in some ways. 

In case I1 , if we take f(r) and g(t) to be decreasing functions of r and t 

respectively, then the pressure and the density are found to be increasing functions of , 

the time and the radial distance both whereas the electric charge is found to be a 

decreasing function of both. The viscosity has an effect to increase the pressure, while 

both the density and the electric charge'are both unaffected by the viscosity.-h the 

special case obtained when f(r) is an increasing function of the radial distance, and both 

'g' and u are increasing functions of the time, we see that both the fluid pressure and 

the fluid density are decreasing functions of 'r' and 't' whereas the electric charge is 

found to be an increasing function of the time and the radial distance both. In this 

special case also the viscosity has the tendency to increase the fluid pressure, where as 

the electric charge and the fluid density are both unaffected by viscosity. Concerning 



the electric charge there is a singularity at the origin of the epoch and also at the center 

of the model, and at these instances this model will cease to radiate. 

Regarding case I11 , we see that if we take 'f and 'g' to be respectively increasing 

functions of 'r' and 't' then the fluid pressure is found to a decreasing function of the 

time and the radial distance both. The fluid density also here behaves in the same way. 

The electric charge is an increasing function of the time. 

In the particular case where 'f and 'g' are given by the relations (41), the fluid 

pressure is found to be a decreasing function of the time but an increasing h c t i o n  of 

the radial distance. Here the viscosity has a tendency to decrease the pressure and the 

density both. The density also is a decreasing function of the time and the radial 

distance both. But on the other hand the electric charge is an increasing function of 'r' 

and 't' both, and the viscosity accelerates the radiation effect. At t =O that is at the 

origin of the epoch the model is seen to have a singularity. 

In case IV , we see that the fluid pressure and the fluid density are decreasing 

functions of the time t and the radial distance r both, whereas the electric charge is an 

increasing function of the time. Here the viscosity decelerates the pressure and the 

density both, but it has a tendency to accelerate the electric charge and thereby the 

radiation. We also see that the relation between the co-efficient of the bulk and shear 

viscosities are such that 35 can not be equal to 877; for in that case the charge density 

become imaginary, and both the pressure and the density cannot exist. 



CIELAPTER - 4 

HOT BIG BANG VISCOUS FLUID MODEDL UNIVERSES 

COUPLED WITH A SCALAR FIELD. 

4.1 INTRODUCTION 

Einstein thought that for positive equations, 

1 8nG 
R, -?Rg, +Ag,  =-T,,(i, j = 1,2,3,4,) had no solutions for T,, = 0, that is, for 

C4 

empty space. He was of the opinion that Mach's principle had been incorporated into 

his theory of gravitation. But this result due to Einstein was shown to be wrong by de 

sitter(l9 17) who found a solution of the above equations for empty space. This solution 

represents an "expanding" universe, in which test particles of negligible mass would 

continually recede from each other with everincreasing velocity. There upon Einstein 

abandoned the cosmological tern calling it the biggest blunder of his life. 

Big-Bang-model is the most commonly accepted model of the universe. With 

this view in fact , proposing a modification of the cosmological constant introduced by 

Einstein and assuming A as a function of the "Cosmical time" the evolution of the 

Universe according to the "Standard hot big -bang model" is being studied using the 

modified field equations obtained therefrom. From such a study it will be possible to 

get more accurate information about the evolution of the Universe, for example, the 

prediction of the helium abundance, which has not been predicted accurately by any 

other theory of gravitation (Ryan et al-1975). Also it is commonly accepted that no real 

astrophysical object is composed of a perfect fluid. In this context the viscous fluid 

model is considered for our study here. Moreover it is known that a scalar field plays an 

important role in the evolution of the Universe and some theories already exist to that 

effect. We thus introduce here a scalar filed. 

This paper appeared in Bulletin of Pure and Applied Science, Vol. 15 D(No.1) 1996, P. 
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4.2 FORMULATION AND STUDY OF THE DIFFERENT MODELS. 

From astronomical observations it is known that the Universe is homogeneous 

and isotropic on scales of - los.light year and larger (Sanadage et al, 1972). By taking 

such a large-scale viewpoint one can treat galaxies as "particIes" of a "gas" that fills the 

Universe. The energy-momentum tensor for this "cosmic fluid" may be taken as 

where p is the isotropic pressure, p the density 4, the zero -mass scalar field, q and 5, 
the co-efficients of shear and bulk viscosities, respectively, and up the 4- velocity 

vector of the cosmic fluid which satisfied the relation 

H, is the projection tensor defined by 

1 1 
And o,, = -(u,,~H,B + u , , ~ H ~ ) - - B H , ,  

2 3 

is the shear tensor where 

is the expansion factor. 

Here the scalar field + satisfies the relation 



Einstein's field equations in general relativity are given by 

1 R, - - Rg, + Ag, = -8fiT', ...................................... 
2 

(4) 

Where A is the cosmological constant which has the dimensions of a space 

curvature, narnely,(length)" . Taking into account two correspondence limits, the 

Newtonian limits and the special theory limit, Chandra(l977)proposed a modification 

of the above field equations as 

1 
R, -I.  Rg, + A(,)g,  = -8&T', (i, j = 1,2,3,41 ........................... ( 5 )  

where A(,,) are different functions of the "Cosmical time" for i-j = 1,2,3 (space 

components), and the rest of the components( time components) are constants. 

The field equations (5) can be written in contravariant and mixed forms 

respectively as 

1 
R' - - Rgr + ~ ( ~ ) g ( ' )  = -8&Ty (i, j = 1,2,3,4) ...................................... 

2 (6) 

1 
R; - Rg; + ~ ( i ! ) ~ :  = -86~: (i, j = 1,2,3,4) ................................. (7) 

The invariant nature of tEe qk t i t i e s  &i,) and symmetric property of the field 

equations suggest that 



Taking into consideration the special theory limit the field equations (5) yield 

the diagonal values of Aij as (Chndra,l977) 

and 

Under these conditions the Newtonian limit of the field equations (5) is given by 

which gives a variable density 

in the presence of homogeneous matter ,namely 4 = constant. 

In case Mach's principle is satisfied by the modified field equations we cannot 

have the homogeneous universe that is empty , that is , the metric of a space- time for a 

homogeneous universe is not possible when Tij = 0. In general the metric of a space- 

time for a homogeneous universe in a co-moving co-ordinate system (which is always 

possible in the case of homogeneous universe) is given be 

where the g,, are functions of the co-ordinates. 



Here we consider the Robertson-Walker metric. 

Where k is the curvature index and takes the values +, - or 0, when the universe 

is closed ,open, on flat, respectively . R(t) is the scale factor for measuring distances in 

the nonstatic universe. This metric is applicable to all homogeneous and isotropic 

model universe with the condition that the cosmic fluid is at rest relative to the 

comoving observer (Robertson, 1935,1936: Walker,1936) whence u, =(O,O,O,l). 

Now making use of the relations (1),(9),(10) and (14) into the field equations (5) we get 

Here from Equations (1 5) and (16) we see that 

Again using Equation ( I  8) in relation (3) we have 

which gives 

where C is an arbitrary constant. 



By virtue of (1 9), Equation (1 5) and (1 7) become 

Equations (20) is a dynamic equation that gives the second derivative of the 

scale factor and thereby governs the dynamic evolution away from initial moment of 

time .On the other hand an Equation(21) nlay be taken as an "initial value equation" 

which gives the relation of R with R and p at the origin of the epoch of time. From 

these two equations, we get 

Thus taking for granted that the variation of A(t) and the equations of state for 

the cosmic fluid are known, Equations (21) and (22) together will give the dynamic 

evolution of Universe according to the "standard hot big- bang models" 

Again the difference of the Equations (20) and (2 1) gives 

in which the right hand side is essentially the force producing the acceleration (Milne 

and Mc Crea, 1934; Schlutor, 1955). The force terms, 

8nG 4 - R - ~  , 4 f i p ~ , 1  2zG5 R , - G ~ R  and 
3 

R 
3 2 



are due to scalar field pressure, viscosity ,gravity, and the cosmological terms, 

respectively. Hence the quantities 5, B and A(t) can be treated as the force parameters 

counteracting the gravity. 

Only when we know the equation of state and the dependence of A(t) on t 

Equation (22) is integrable, but both are not known. Here it is seen that A(t) is a 

positive decreasing function of time. Therefore, it is better to take the variation of 

pressure as a linear function of A(t) to avoid complications. Thus without loss of 

generality we can assume 

where to is the time at the present epoch from the beginning of the Universe. 

Why we assume the pressure in this manner is that with the help of this pressure 

we will be able to get a differential equation governing uniform model uoii.erses, lvhich 

are best suited with the observations. - 

Next we take up boundary conditions. Taking tl as the time when the universe 

ceased to be radiation dominated and became matter dominated , it is seen that for the 

radiation-dominated phase of evolutions the boundary conditions can be taken as 

t = t l  , p = p l  , p = p l  , R = R 1  ,A(t )=A(t l )  ......................... (25) 

and T = TI ( absolute temperature ) 

For the radiationdominated phase of evolutions (0 I t I tl) we see that (Misner 

et a1 1973) 



For the matter-dominated phase of evolution the boundary conditions can be taken as 

The pressure is taken to be zero for the present moment, according to the 

observations. It may be noted that the pressure equation (24) is also consistent with this 

conditions . Since if we take two different pressure equations, one for the radiation- 

dominated phase of evolution and the other for the matter-dominated phase of 

evolutions, then we cannot follow the boundary conditions(25) strictly; here we assume 

the validity of the pressure equation (24) in both phase of evolution. 

Now making use of Equation (24) into Equation (22) We get 

where a is constant of integration which is obtained, using the boundary condition (25) 

,as 

- 4n~c R,) + [ A ( ~ O ) + B ]  Ri +a -- - S S P  .............................................. 
3 3 3 

Ro' , (29) 

Then Equations (28)'and (29) imply 

'&P - R-3 - [8-R3- 0 

3 3 3 3 
(R: - R) )+  sC2 (Ri3 - y........... 

which expresses the variation of density with scale factor. Equation (30) can also be 

written in the form 



from which it is seen that form an expanding universe we must have 

Under this condition Equation (29) implies that the constant of integration a 

must be a positive quantity. 

Making use of Equation (28) into Equation (2 1) we obtain an equation identical 

with "Friedmann's differential equation" (Friedmann, 1922,1924) 

there being a slight change that here we get a positive quantity A(h) in place of A. The 

variation of the scale factor with time is given by the solution of this differential 

equation. 

Next we proceed to determine A (to) and B . In te rm of the observed 
- 

parameters .(= i] and .[= -It+] the Equations (20) and (21) can be as. 



These two equations determine the parameters A(to) and B under the conditions 

(27) as 

2 2 3k and B = 8nGpo -t- 47zGC Ri6 - 3Ho - - , .................................................. (37) 
R: 

where Ho and qo are respectively the values of the parameters H and q at the 

present epoch. 

k 
But since the parameters H, , q, ,-andp, can be determined numerically 

R,Z 

fiom observations (Sandage, 1972), it ism possible to determine the numerical values of 

A (to) and B from the relation (36) and (37). 

Again using relations (27) in equation (24) we obtain the value of 5 as 

Next we determine the numerical value of the constant of integration a by substituting 

the numerical values of A(b) , B, po and R into Equation (29).And then we substitute 

the value of A(to) , k and a into the Equation (33) , which gives the variation of R1 in 

terms of tl after integration between the limits R =O and R = R1. With the help of 

Equation (30) , this value of R gives the density pl at time tl in the form 

with this value of pl we obtain, fiom relation (26) , using the condition (25) 



with the help of these known parameters use will be able to study the history of the 

evolution of the universe in the radiation -dominated phase of evolution. 

We can get the numerical value of the time to at the present epoch by integrating 

equation (33) between the limits R=O and R = R,-,. This gives the age of the Universe, 

and here as a special case if we take the arbitrary constant a = 0 then we get the age of 

the universe as 

The history of the evolution of the universe can be studied from the physical quantities 

thus obtained. 

4.3 CONCLUSION :- 

Though the Friedmann's model of the 'standard hot big-bang universe' is 

remarkably powerfid and accords well with observations , an exact study of -the 

variation of pressure can not be made in such a model. Though for an expanding 

universe the pressure must be a decreasing function of time this functional relation is 



not known in this case. Thus the radiation-dominated phase of evolution and the 

matter-dominated phase of evolution are studied separately in the Friedrnann, 

cosmology , and therefore in that model it is very difficult to know the time when the 

universe ceased to be radiation-dominated and become matter-dominated. However in 

our model these difficulties have been removed, and thus more details about the 

evolution of the universe can be obtained from it. 



CHAPTER-5 

ROTATIONAL PERTUBATION OF MASIVE 

SCALAR FIELD UNIVERSES 

5.1 INTRODUCTION 

The studies of rotating astrophysical bodies coupled with gravitational field in 

presence of other fields are so far done by Bayin ( 198 1,1985) ; Krori it al. ( 1983); Van 

den Bergh and Wils ( 1984); Islam ( 1985); Tiwari it a1 ( 1986) and Koijarn ( 1987, 

1988). Many authors have obtained models of rotating objects without expansion and 

expanding object without rotation. Thus it will be of great interest to find out explicitly 

solved models of expanding as well as rotating objects so that information's about the 

behavior of the universe can be obtained from such models. Thus here we investigate 

rotating as well as expanding models. 

The Robertson-Walker models are believed to be appropriate for a 

representation of large scale structure of the space-time, we consider this type of metric 

here for our problem. Furthermore, as object of our study, we take up rotational 

perturbation of Massive scalar field as it will be very stimulating to make investigations 

on such models in trying to obtain new information's concerning rotating astrophysical 

objects in this universe and we can draw many conclusions for a realistic universe from 

such studies. In many respects our problem will be very interesting as, though in most 

of the Robertson Walker metric can be used for general relativity solutions with 

rotating and massive scalar field, and many stimulating findings for further research 

may be obtained from it. The study of the rotational perturbations of these models are 

also made in order to substantiate the possibility that the universe is endowed with 

slight rotation in the course of presentation of several analytic solutions. 

5.2 FLELD EQUATION 

The metric considered here is the perturbation from of the Robertson-Walker 

metric viz. 



dr2 
ds2 = dt2 - R (t) [ + r 2 d a 2  + r 2 s in@d+  l ] +  

1 - kr2 

+ 2 R ( r , t ) ~ l ( t ) r l s i n ~  @/d$dt,  ............................ (1) 

where R (r,t) is the metric rotation function which is related to the local dragging of the 

inertial forms. 

The energy momentum tensor taken up for this problem is that of the massive 

scalar field given by 

Where the scalar potential 6, satisfied the Klein- Gordon equation. 

g", , ,+M2$= E , ........................................ (3) 

Here E is the source density of the scalar field and M is related to the mass owe-spin 

particle by. 

h 
M= % where A = - 

2?r 

( h being the Plank's constant) 

Here the spatial velocity distribution is given by 

and this in this case 

u, = ( o,o, -g33 ,Q , 1 ) , ....................................... (4) 

Now considering terms up to the first order in R , the Einstein field equation gives 



From Equation (5) and (6) , we have 

4i - --0 , ................................................... 
4 

(1 0) 

Again Equations (6) and (7) gives with the help of relation (10) gives 

Now equation (9) with the help of relation (1 1) we get 

Again Equation (8) gives 

n ( r , t )  = L ( ~ ) R "  + ~ ( t ) ,  ..................................................... (1 3) 

Now making use of-the relation (1 3) in equation (12) , we get 

CASE I :- 

Now considering k = 1 which corresponding to closed models. Here using the 

substituting y = k? in (14) , we get. 



We see that equation (1 5) is similar to the hypergeometric equation 

of which the general solution is given by 

..................... F = A. F (a,p;u;u) + Al yl* F (I-u+a, I-u+p, z-u;y), (17) 

where A. and A1 are arbitrary constants and 

Thus in this case we get the general solution of equation (1 5 ) as 

since the second term is not regular at y = 0 
we take A! = 0 , then we get 

Now we give some of the explicit solutions : 



(i) If 

In this case we get 

9 5 (ii) If a = -,p = -- then we have 
2 2 

In this case, we get 

for a = 4 . p = -2 ; and here 



In case (1) , there , for z = ~ G M ~ .  we get 

CASE 2:- 

In this case, we consider open models which correspond to k = -1. we obtain here 

different value of R corresponding to different value of M. 

3 
If we take M = - , then fiom equation (14) we get 

2G 

where Co and CI are arbitrary constants. 

Therefore, 

Again if M~ = 5/G , we get 

where C2 and C3 are arbitrary constant. 

Therefore, 



Therefore 

where C4 and C5 are arbitrary constants. 

CASE 3 :- 

In this case we consider the flat model for which k =O and here equation (14) 

becomes 

which gives 

where Al and A2 are arbitrary constants, and x = 2 G M ~  

In this case 

~ ( r  , t )  = r -' [x{ A exp(xir) + A, ex p(- x;~]} - xir-' { A ,  exp(xir) - A2 x:~)}]R-~ + N(tj 

Now if M =0, then we get,  from equation (29) 

L(r) = ml + mi r'3 

where m, and nl are arbitrary constants . 

Thus in this case we have 



-3 - .............................................. Q ( r , t ) = ( m l + n l  r )R"+N (t) , (31) 

which is incidentally corresponding to the case of perfect dragging 

Now here R(t) , making use of equation (1 1) ; is found to be 

113 R = ( m 2 t + n 2 )  , ................................................................... (32) 

where m2 and n2 are arbitrary constants. 

Thus here 

-3 -3 .................................................. R(r,t)= (mi + nl r ) R +N(t) , (34) 

where N(t) is an arbitrary function of time. 

5.3 CONCLUSION : 

Case I . 

In this case, the rotational perturbation decay with the increase of the time for 

all the models obtained. It is also observed that the smaller the value of A. the smaller 

are the value of R (r,t) and w (r,t) which means that the massive scalar field slow down 

the rotation . In this case the expanding factor is given by 

and since it is positive, our model universes here are expanding ones. Thus , the models 

are rotating as well as expanding one which may be taken as examples of realistic 

models. 



CASE 2 : -  

In this case, in all the two open models obtained , we find that the rotational 

perturbations decay as r increases and also with the increase of time if N(t) is a 

decreasing function of the time. For the model obtained for M' = - 41G we get the 

expansion factor as 

Thus we get a rotating as well as expanding model which can be thought of as one of 

the value of R (r,t) becomes smaller which shows that the presence the massive scalar 

field decreases the rotational motion. When M~ = 51G the solution is restricted within 

the range -15 r 5 1 ) 

CASE 3:- 

For all the models obtained in this case the rotational perturbation falls rapidly with 

the increase of r. In the case of perfect dragging the matter rotation w(r,t) and the 

rotational velocity SZ (r,t) is independent of the massive scalar field. 



CHAPTER 6 

ON n\JCOMPATTBILITY OF VISCOUS AND MAGNETOVISCOUS FLUID 

DISTRIBUTION WITH CLASS ONE METRIC. 

6.1 INTRODUCTION 

As most of the astrophysical objects in the universe are composed of viscous 

fluid, physicists take great interest in studying the viscous fluid models from 

different angles. Heller and Susycki, Heller and Klimek, and Heller et-a1 obtained 

some solutions for imperfect fluid, considering the Robertson-Walker metric. Roy 

and Rao found that, for the axially symmetric Einstein-Rosen metric, the stress 

tensor of a scalar meson field associated with meson of rest mass p cannot be the 

source term for generating gravitation and also that the same result holds even 

when this meson field is coupled with and electromagnetic field. A study of the 

spherically symmetric class one cosmological model based on Lyra's geometry 

was presented by Bharnra and it was pointed out that the nonstatic model parallels 

Lemaitri's in Riemannian case , but the law of mass-energy conservation does not 

hold Maiti derived a cosmological solution of Einstein's equation which admit a 

transitive group of motions for static spherically symmetric metric with a-viscous 

fluid distribution as source. Banerjee and Santosh obtained an exactly solvable 

Bianchi type-I viscous fluid cosmological model. 

Manihar Singh, Manihar Singh and Bharma, and Manihar Singh and Jugeshwor 

studied viscous and non-viscous fluid distribution under conditions when the 

distribution are interacting or not interacting with other fields, and also when they 

are rotating as well as non-rotating different types of spherically symmetric 

metrics in Einstein universe. But so far hardly any author found viscous fluid 

distribution taking into account spherically 

- - 
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symmetric class one metric. Thus, here, we considering such a metric and 

investigate the behavior of viscous fluid distribution, and also that of magneto- 

viscous fluid distribution and viscous distribution coupled with a scalar field 

respectively. It is found that viscous fluid as well as magneto- viscous fluid 

distribution cannot be the source term for generating gravitational field for a 

spherically symmetric class one metric. Also viscous fluid distribution coupled 

with a scalar field is found to be incompatible with class one metric under certain 

conditions. 

6.2 FIELDS EQUATIONS AND THEIR SOLUTIONS. 

The flat metric in spherically polar co-ordinates is given by 

ds2 = dt2 - d? - r2de2 - ?sin2 @dm2 , . . . . . . . (1) 

The introduction of a gravitational disturbance function y ~ ,  where y~ is a 

function of r and t only, converts the flat metric to the form 

ds2 = dt2 - d? - ?d02 - ?sin2 @dm2 - [dy (r,t)12 ,. . . . . . . (2)  

This is a spherically symmetric non-static line element of class one which 

can be written as 

a prime and a dot respectively denoting partial differentiation with respect to r and 

t. 

Here, for this metric, the components of fluid velocity is co-moving co- 

ordinate system are obtained as 

with the relation 

gpvup uv = 1,. . . . . . . . . . .. . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. .. . .. . ( 5 )  



CASE 1:- 

Einstein's field equations for viscous fluid are given by 

G.. = R.. - '/z gijR 
U - ?I 

- ..................................... - K [P U, Uj - 0, . 58 ) Hij + TOij I,, (6)  

1 
where k = - . Here is the fluid pressure, p the density q and 5, the 

8nG 

coefficients of shear and bulk viscosities respectively. H, ' s are the projection 

tensors given by 

Hij = U, uj - gij 

While oij = 'h ( ui;, ITj + uj;, ITi ) - 113 OHij are the components of shear tensors where 

8 = u", , = V, is the expansion factor. 

Now for the line element (3) the corresponding field equations are 



Here in this case the expansion factor is given by 

Thus equations (1 1) and (12) give 

0 = 0  

But this equation (13). Equations (7) -( 11) reduce to those corresponding 

equations for perfect fluid. Hence we can conclude that viscous fluid distribution 

is incompatible with class one metric. 

CASE : 2 

In Lichnerowicz Universe, one considers an electrically charged fluid with 

infinite conductivity so that the electric field vanishes in the rest frame of the fluid but 

there is a non-vanishing magnetic field. Here .we consider magneto-viscous fluid, for 

which the Einstein's field equations are given by 

~ h e r e ? i , = ~ u i ~ ~ - ( ~ - ~ 0 ) ~ ,  + r l o , j + p I q I ' ( ~ i ~ j + % g i j ) - q l ~ ,  ........( 15) 

p being the magnetic permeability and qi's are the magnetic field vectors defined by 



and Iq12-=q,qK20 , ............................ (17) 

where *FiJ is the dual electromagnetic field tensor given by 
Fklll * F =  '/ZYjikrn , .................................. (1 8) 

F, being the skew-symmetric electromagnetic field tensor. 

We assume the incident magnetic field to be in the direction of the X-axies. As 

we consider here magnetoviscous fluid distribution, we find that the only non-vanishing 

component of electromagnetic field tensor is F23. 

The first set of Maxwell's equations are 

i where J' = EU' +ere ,. ................................................. (20) 

5 being the energy density of electromagnetic field. In the magnetohydrodynamic 

universe , the charge density a+ K, and the thermal conductivity ei+ 0 so as the 

electric current J essentially remains finite. Thus eq. (1 9) reduces to the form. 

Fjij = 4 *tUi 
That is 

1R ij 
(-g)'R [ (-g) F 1; = 4 n<ui 

which gives us 

a~~~ a~ 23 - 23 and - + F  cotO=O ............................................... 
a4 a0 

(21) 

Also from the second set of Maxwell's equations namely, 

F[ij,k] = 0 

we get 



Now from equations (21) and (22) we get 

F23 = I sin o ,... ...................................................... (23) 

where 1 is an arbitrary constant. 

Thus the only existing component of the magnetic field here is 

sin OF,, 
where Z = , ........................................................................ 

P 
(25) 

Therefore the Einstein field equation (1 4) gives 

Where 

But , here the expansion factor 



Thus comparing Equations (30) and (3 1) we see that 

e = o  , ....................................................... (32) 

Also here we find that 

which implies that the shear tensor is zero. 

Thus we can conclude that magneto-viscous fluid distribution is incompatible 

with class one metric. 

CASE 3 :- 

Here we consider the case of viscous fluid distribution couple with a zero-mass 

scalar field whose energy -momentum tensor T, is given by 

where 4 is the scalar potential which satisfies the relation. 

d ......................................................................... -[& axJ (3 5 )  

Thus Einstein's equation 

GI Rlj - % gljR = - k Tlj,.. ............................................................. (3 6). 

gives in this case 



[( I - Y  ] Y ' + Y ' Y Y  0 0 ] 1 : [ [  7-- 1 - Y 2  ) 4 ' 4 + ~ ' Y 4  ' " ]  ......................... 
(41) 

0 2  

where S = 1 + Y l 2  - Y ............................................................ ..(42) 

If we take the scalar potential 4 to be independent of time and to be a function of 

position only, then equation (41) gives 

But as the expansion factor in this case is given by 



we see that here using equation (431, 

8 = 0 

with this relation equations (37) to (41) reduce to those corresponding equations for 

perfect fluid. 

Thus we see that viscous fluid distribution coupled with a zero-mass scalar field is 

incompatible with class one metric if the scalar field happens to be a function of 

position only 

6.3 CONCLUSIONS : 

From the results obtained above it may be concluded that viscous fluid distribution 

cannot be the source term for generating gravitational field for a spherically symmetric 

class one metric. Similarly, the magneto-viscous fluid distribution is seen to be 

incompatible with the gravitational field generated by this type of metric. Further it has 

been obtained also that there cannot exist any solution for the viscous distribution 

coupled with a zero-mass scalar field in the case of the above class one metric if the 

scalar field is a function of position only. 



ChfAPTER NO -7 

ROTATING PERFECT FLUID UNIVERSE COUPLED WITH LECTROMAGNETIC 

CHARGE INTERECTINGWITH GRAVITATIONAL FIELD. 

7.1 INTRODUCTION 

It is well known that almost all the astrophysical objects in this Universe has 

some form of rotation whether differential or uniform. Over the past few years the 

possibility of the entire universe being endowed with some rotation has attracted many 

physicists (Birch, Sistero, Bietenholz and Kronberg). From recent observations it is 

believed that the universe may be rotating at the rate of 5 10-' rad s-'. The existence of 

such a small rotation, when taken into consideration during the early stages of the 

universe, would play a prominent role in the dynamics of the universe as well as in the 

processes that involve the formation of the galaxies and others cosmological objects. 

Rotation plays an important role in the structure and equilibrium configuration of 

elementary particles as well as the astrophysical objects. The equilibrium configuration 

of rotating fluid can be considered as a small perturbation on a non-rotating 

configuration. That is why during the last few years there has been considerable effort 

in introducing rotation in the General Theory of Relativity so that it can be applied to 

realistic astrophysical situations. 

Lense and Thirring were the first to attempt the study of the gravitational field due 

to a rotating body. Thereafter some physicists investigated on the rotational motion of 

the cosmological objects. Das eta1 . Hartle and Sharp Ellis , Stewart and Ellis, 

Hawking, Silk and Wright, Chandrasekhar and Friedman, Adarns et al, Kamini et al , 

Bayin and Cooperstock, Bayis , Krori et a1 , Van Den Bergh and Wils, Whiteman, 

Islam , Tiwari et a1 , Maniharsingh , Maniharsingh and Bharnra, Maniharsingh and 

Mohanty studied the rotating fluid distributions under different conditions in trying to 

understand the structure and equilibrium, the nature and role of rotating astrophysical 

objects in this universe. 



A number of detailed studies of the structure of relativistic stars have been 

initiated by the discovery of pulsars and their identification with rotating neutron stars. 

All known pulsars are observed to satisfy the conditions of slow rotation, that is 

tangential velocity of all fluid elements are much less than the speed of light and the 

centrihgal force is much less than the gravitational force. The observed frequencies of 

pulsars and their likely angular velocities during ,most of their lifetime, perhaps with 

the exception of a very short span immediately after birth, allow a slow rotation 

approximation to be used. An important feature of pulsar models is the strong magnetic 

field anchor in the rotating neutron star and they are known to enrich electromagnetic 

pulses at regular and extremely short intervals. Evidence suggests that pulsars contain 

extremely strong magnetic fields, among the strongest anywhere in the Universe; so 

they provide a unique opportunity for the study of complex electromagnetic processes. 

Thus in trying to obtain new information concerning pulsars in particular and- rotating 

astrophysical objects in general , it is essential and appropriate to take up rotating 

charged models for our study. 

In this problem, we take up slowly rotating charge perfect fluid distribution 

interacting with gravitational field as the object of our study, as it will be very 

stimulating to make investigations on such models in trying to obtain new 

information's concerning rotating astrophysical objects in this universe and we draw 

many conclusions for a realistic universe from such studies. Though it is believed that 

Robertson-Walker models are possibly most appropriate for representation of the large- 

scale structure of the space time, in most of these models are non-accelerating and non- 

shearing as well as non-rotating. Therefore , one has to investigate more general models 

than the Robertson-Walker ones. Thus here we consider a special type of metric and 

with this new metric there is the possibility'of obtaining many stimulating results for 

further research. The study of the rotational perturbations of these models are also made 

in order to substantiate the possibility that the universe is endowed with some kind of 

rotation. Some authors had already obtained models of rotating universe without 

expansion and also model of expanding universe without rotation. Therefore, it will be 



of great interest to find out explicitly solved models of expanding as well as rotating 

cosmological objects, so that useful information about the behaviour of the universe 

can be obtained from such models. Thus we investigate and study here rotating as well 

as expanding models and it will be very helpful in exploring new ideas and results. 

Here we obtain some new interesting types of solutions and study their physical and 

geometrical properties mainly from rotational point of view. 

7.2 DERIVATION OF FIELD EQUATIONS : 

In this problem we consider the perturbed metric 

ds2 = dt2 - exp [ h(r) + k(t) ] d? -exp [k(t)] (r2 d O2 + ? sin2 O d@ ) 
2 +2?exp[k(t)sin OR(r, t)d$dt .............................................. (1) 

where h(r) is an arbitrary function of r ; k (t) is an arbitrary h c t i o n  of time ; SZ(r,t) , 
the metric rotation function which is related to the local dragging of inertial frames. 

The energy momentum tensor T, is given by 

TM=PN+EPy,  ..................................... (2) 

where P, is the energy-momentum tensor due to perfect fluid and takes the form. 

P,=(p+p)u,u,-pg ,,.......................... (3) 

where p is the isotropic pressure; p, the fluid density; and u, , the four-flow vector 

satisfying the relation 
PY-1 gpy u U - ,,. .......................................... (4) 

E, is the energy-momentum terisor due to electromagnetic field where Fap are the 

electromagnetic field tensors satisfying the relarions. 

F". .= - <T U' , ........................................... 
9J ( 5 )  

And F[,,,kl=O , ............................................... (6) 

where o(r,t) is the charge density of the electromagnetic field. 

Here, in our problem, the only non-zero component of the electric field is F14 because 

of spherical symmetric (Papini and Weiss, 1986). 

Therefore, Eistein's field equation 

Et, =8xG(T,-'/ZgPYT)gives 



.................................. 1 2  
(p - p)r2 exp(k)+ =r exp(-h) F,, , I (8) 

i 1 
r2sin20exp(k (pip)@-o)+-(p-p)Q} 

sin O = -8nG 
2 ,................. 

1 - -r2 exp(- h)sin2 @F,:R 
8nG 

Also from relations (5) and (6 )  we get 

F,, =a .............................. (12) 

The overhead dot and prime denote, respectively, partial differentiations with respect to 

"t" and "r" and a semi colon followed by a subscript denotes covariant differentiation. 

7.3 SOLUTION OF THE FIELD EQUATIONS 

Use of Equation (7) in Equation (8) gives 

........................................ 1 
1 - exp(- h) - - rh' exp(- h)] exy(h), 

2 (1 3) 



And Equation (7) and (9) together gives 

and 

Thus by virtue of Equation (1 3), Equation(l4) and (1 5) become 

and 

5 -1 I 3 1 6 7 ~ G p = ( ~ r  h r - " ) e x p ( - h - k ) + r - ' e x p ( - k ) + - k  2 ....................................... (1 7) 

By use of Equations (16) and (1 7) , now (1 1) takes the form 

CASE 1:- 

In this case we-assume 

Then equation (1 9) becomes 



But Equation (1 0) gives 

where M( r ) is an arbitrary function of 'r' and N(t) is an arbitrary function of 't' which 

is set equal to zero for this case. 

If we now make use of relation (21) in equation (20) 

we get 

Here we see that the left-hand side of equation (22) is a function of 'r' only, therefore 

the right-hand side must be either a function of 'r' only or a h c t i o n  of 't' only. Thus 

here we take 

........................................................... r-'exp(-h) h' = - a, (23) 

where 'a' is an arbitrary constant. 

This gives 

And with this value of 'h' , Equation (22) takes the form 



which can be separated as 

where Z1 is an arbitrary constant 

A solution of Equation (26) is 

where CI and C2 are arbitrary constants 

Using the substitution y = - %a 2 in equation (25) we have, 



Here we see that Equation (32) is similar to the hypergeometric equation 

of which the general solution is given by 

F = AaF (a,P;y; y)  + A, y'-Y F(l-y+oc, 1-y+P; 2-y;y ) ,... ................................... (33) 

where & and A, are arbitrary constants and 

Now we get the general solution of Equation (33) as 

Here since the second term is not regular at y =O 

We take A, = 0 

Thus we get M (r  ) = A, 1 
n 

Taking different values of a andJ3 we get different values of M(r 1 and thereby, 

different value of Q. Thus for example, taking a = - 1 ,  J3 = 3 then we get 

Thus M ( r )  = & ( i + q r 2 )  



In this case we get 

1 

and ~ ( r , t ) = d ~ ( l + ~ ) ( l + f r ~ ) [ i - ~ ( a - l ) i t + C ,  I' ........................... (3 7) 

Here we see that the solution for M( r) shown in relation (35) above is a series 

solution. Therefore we try underneath to get some interesting exact solutions by taking 

some particular relations between 'a' and 'b' and by giving some particular values to 

z1. 

CASE I a :- 

Here we take up the case of open models by taking a = - and obtain three 

different expressions for C2 (r,t) corresponding to three different values of Zl 

Taking Z1 = 4 we obtain, fiom Equation (25), 

M (r) = r-3 [ c3 r -C3(1+ )IR sin-' r + C4 (14-3 )IR], 

where Cj  and C4 are arbitrary constants. 

Thus ,here, 

and 

1 

( a - t  

Next. if we take Z1 = -3 , we get 

where C5 and C6 are arbitrary constants. 

Thus here 



and 

And taking ZI = -5 we get 

where C7 and C8 are arbitrary constants. 

Therefore, here 

and 

CASE 1.b. 

Here we consider the case of closed model universes by taking a = b and obtain 

different values of SZ (r,t) corresponding to different values of ZI. 

Taking Z1 = -3, Equation (25) gives 

c9 - C9 
I 

~ ( r ) =  -r  sin-' r - - r - , ( l+r2)~ +C10r-3 
2 2 

where C9 and Clo are arbitrary constants. 

In this case 

and 



For ZI  = 0 , we have 

where C1l and CIZ are arbitrary constants, 

Thus here 

[ 
I 

................................................................................................... x 2 - X ( a - 1 ) i t + c 2  , I (47)  

And if Z3 = 5 we obtain 

~ ( r ) = % ( r - ~  +4r-' - 8 r ) + c I 4 ( l - r 2 $  

where C13 and C14 are arbitrary constants 

In this case we get 



and 

CASE 1.c. 

If we take Q(t) = t in equation (19) then it reduces to the case of perfect 

dragging . In this case equation (20) reduces to the form. 

But Equation (1 0) gives 

If we make use of this relation in Equation (50) we get 

which gives 

......................................... M = f(r) + SIP. .  (52) 

S I being an arbitrary constant; and 

where S2 is an arbitrary constant. 

We obtain in this case, 

CASE. 2 . 
In this case we assume 

....................................................... Q - o = b o ~ "  , (55) 

where bo is an arbitrary constant 



Thcn equation (1 8) takes the form 

1 h)Q" - 

2 
(56) 

Rut from Equation (1 0) we get 

Making use of this relation the above equation (56), we get 

1 M' 00 

- - - - em(-h) - h' - exp(- h )  = t+, [ r  -' exp(- h)hl exp(k)k], .................. 
2 (1 3) (57) 

Mere we have 

Then Equation (56) becomes 

Since here the left-hand side of Equation (59) is a function of 'r' only whereas the right 

side is a function of 't' only therefore we can equate both of them to a constant. 

Thus here we take 

and 

where Z2 is an arbitrary constant 

Here equation (6 1) g;ives 



bl being an arbitrary constant. 

Thus in this case we get 

I 

CJ = 2 - % r X ( b  + 2)i(ar - b); [20r(ar2 - b)-I (r - 2) -  r(ar2 - bXl+ sin2 8)+ 11 .............. (66) 

Again Equation (60) gives 

where b2 is an arbitrary constant, thus giving different values of M corresponding to 

different values of Z2, a and b. Thus in this case, we get 



In this case we assume 

o = do k(n - gX ................................................................................... (70) 

.............................................................. so that ~ = f ( ~ ) + ~ ( t ) , o = - k  f(r), (71) 

where 'f; is an arbitrary function of 'r' and 'g' is an arbitrary function of 't'. 

Then in this case (1 8) takes the form 

where 1 + k = dog 

do being an arbitrary constant. 

Here also since the left-hand side of (72) is a h c t i o n  of 'r' only, therefore, the right- 

hand side must be either a function of r only or a function of 't' only. Thus now in order 

that the right hand side may a function of time only , we assume. 

I r - I  exp(- h)h = -a ,... ......................................................................... (73) 

where 'a' is an arbitrary constant. 



This gives 

where 'd' is an arbitrary constant. 

Then Equation (72) assume the form 

A solution of Equation (75) is of the form 

where a, is an arbitrary constant. 

Thus from equation (71) and (76) we obtain 

and 

Here in this case-we have 



7.4 DISCUSSIONS :- 

In case 1, it is obtained that the rotational velocities decay with the increase 

of the time if N(t) is a decreasing function and k(t) is an increasing function of the 

time. For all the models obtained in this case, the expansion factor found to be 

which shows that these model universes are rotating as well as expanding one which 

may be taken as realistic models useful for studying the properties of rotating 

cosmological objects here have to satisfy the condition a> 1. 

For the model universes obtained in case l(a) the rotational velocities are not 

defined at the centers of these models . For the case when ZI= - 3 the solution is 

restricted within the range -1 < r < 1. Again, also in all the models obtained in cqse I (k) 

urhich may be taken as closed models, we observes that the solutions are not rem)p a( 
$ 0  I ,  

the origin, and therefore the solution can be considered only in the regions excluding 

the origin; thus the rotational velocities are found to be arbitrary at the centers of these 

models. For the case when ZI = 0 and Z1= 5, the solutions are not to be valid beyond 

the range -1s r 2 1. 



In case 2, the metric rotation Cl(r,t) as well as the matter rotation o(r, t) decay 

with the time if N(t) happen to be a decreasing function of the time; however the matter 

rotation is found to be arbitrary at the centre of the model . Here the expansion factor is 

found to be 

Thus here we see that the model universes are expanding though the rate of 

expansions decrease with the time and thus in this case we get expanding as well as 

rotating models which may be taken as good example of real astrophysical situations. 

In case 3, the metric rotation is the increasing function of time and decreasing 

b c t i o n  'r' and also matter rotation is the decreasing function of both 'r' and 't' . In 

this case also the expansion factor comes out to be a decreasing function of time . Thus 

, here also our model universes comes out to be expanding as well as rotating models. 

Here in this problem, we find that for all the models, to the first order in Q, the 

pressure and the density are unperturbed. In some of the models, the electric field and 

the source density of the electric field are found to be functions of 'r' only, thereby 

being in dependent of the time; and they are found to be decreasing functions of 'r'. 

Thus the effect of the electric field in these cases are independent of the time. Again 

from the studies-made to reveal the intrinsic nature of the rotation and to elucidate the 

role of SZ, we come to know that although C2 plays a role in the dragging of local 

inertial frames it is not the angular velocity of these frames except when it concides 

with 'a' which is the angular velocity of matter. Even in this case the nature of the 

rotation is still intrinsic if it is differential. Also the field equations show that if the 

solutions of charged fluid distribution are known, the solutions of the slowly rotating 

model universes can be known. Here in each case the integration constant may be 

determined by matching the interior value of SZ with the exterior one on the boundary. 



Again in the absence of the fields the field equations automatically reduce to those of 

slowly rotating perfect fluid distribution It may also be noted that the solutions'to the 

field equations (7) - ( I  1) may be useful in understanding the equilibrium structure of 

the pulsars in particular and the rotating stars in general. Finally to sum up, fiom the 

results obtained in connection with our study it may be concluded that there is very 

much the possibility of the existence of slowly rotating cosmological objects coupled 

with electromagnetic field models obtained by us in the different cases will have 

considerable importance in the study of rotating astrophysical objects in this Universe. 
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