


FINITE ELEMENT METHODS FOR INTERFACE
PROBLEMS

A Thesis Submitted in partial fulfillment of the requirements
for the award of the degree of Doctor of Philosophy

Tazuddin Ahmed
Registration No.012 of 2011

DEPARTMENT OF MATHEMATICAL SCIENCES
SCHOOL OF SCIENCE AND TECHNOLOGY
TEZPUR UNIVERSITY, NAPAAM, TEZPUR, ASSAM
DECEMBER, 2011



Dedicated

To my Parents



Abstract

The main objective of this thesis is to study the convergence of finite element solutions
to the exact solutions of elliptic, parabolic and hyperbolic interface problems in fitted
finite element method. The emphasis is on the theoretical aspects of such methods.

Due to low global regularity of the true solution it is difficult to apply the classical
finite element analysis to obtain optimal order of convergence for interface problems (cf.
[5, 11]). In order to maintain the best possible convergence rate, a finite element dis-
cretization with straight interface triangles is considered and analyzed. More precisely,
we have shown that the finite element solution converges to the exact solution at an
optimal rate in L? and H' norms for elliptic problems. Then the results are extended
for parabolic interface problems and optimal order error estimates in L?(L?) and L%*(H?)
norms are achieved. Further, optimal L>(H') and L>(L?) norms error estimates for the
parabolic interface problems have been derived under practical regularity assumption of
the true solutions.

Although various finite element method for elliptic and parabolic interface prob-
lems have been proposed and studied in the literature, but finite element treatment
of similar hyperbolic problems is mostly missing. In this work, we are able to prove
optimal order pointwise-in-time error estimates in L? and H! norms for the hyperbolic
interface problem with semidiscrete scheme. Fully discrete scheme based on a symmetric
difference approximation is also analyzed and optimal H' norm error is obtained.

Finally, numerical results for two dimensional test problems are presented to

illustrate our theoretical findings.
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Chapter 1
Introduction

The purpose of this thesis is to present some results on finite element Galerkin methods

for linear elliptic, parabolic and hyperbolic interface problems.

1.1 Problem Description

Interface problems are often referred as differential equations with discontinuous coef-
ficients. The discontinuity of the coefficients corresponds to the fact that the medium
consists of two or more physically different materials. To begin with, we first introduce

elliptic, parabolic and hyperbolic interface problems.

Elliptic interface problems: Let €2 be a convex polygonal domain in R? with boundary
). Further, let Q; C  be an open domain with C? smooth boundary I' and §, =

O\ (see, Figure 1.1). We now consider the following linear elliptic interface problems

of the form
Lu= f(z) in§ (1.1.1)
with Dirichlet boundary condition
u(x) =0 on o) (1.1.2)
and interface conditions
[u] = 0, [ﬁg—ﬁ] = g(x) alongT. (1.1.3)



Figure 1.1: Domain Q and its sub domains €, Qo with interfaceT.

The symbol [v] is a jump of a quantity v across the interface T, i.e., [v](z) = vi(z) —
va(z), x €T, where v;(x) = v(r) |q,, ¢ = 1,2 and n denotes the unit outward normal
to the boundary 0. Here, £ is a second order elliptic partial differential operator of

the form
Lv=—-V.(3(x)Vv).

We assume that the coefficient function [ is positive and piecewise constant, i.e.,

B(z)=p0 in€, i=1,2.

Parabolic interface problems: We consider the following linear parabolic interface

problems of the form
w4+ Lu = f(z,t) inQ x (0,7] (1.1.4)

with initial and boundary conditions
u(z,0) = up(z) inQ; u(z,t) =0 on N x (0,T] (1.1.5)

and interface conditions

ou

[u] =0, [ﬂa—r—l] = g(z,t) along T, (1.1.6)

The domain €, operator £, symbols [v] and n are defined as before, and 7" < oo.



Hyperbolic interface problems: We shall also consider the following hyperbolic in-

terface problems of the form
uyg + Lu=0 in Q x (0,7 (1.1.7)
with initial and boundary conditions
u(z,0) = uo(z) & w(z,0) = vo(z) in ; u(z,t) =0 ondN x (0,7} (1.1.8)
and interface conditions
[u] =0, [ﬂ%ﬂ = g(z,t) along I (1.1.9)

The domain {2, operator £, symbols [v] and n are defined as before, and T < oc.

The equations of the form (1.1.1)-(1.1.3) are often encountered in the theory of
magnetic field, heat conduction theory, the theory of elasticity and in reaction diffusion
problems (see, [23, 29, 49]). Many interface problems in material science and fluid
dynamics are modeled after above problem when two or more distinct materials or fluids
with different conductivities or densities or diffusions are involved. For the literature
relating to applications of elliptic differential equations with discontinuous coefficients,
one may refer to Ewing [22], Nielsen [37] or Peaceman [38] for the model of the pressure
equation arising in reservoir simulation, Reddy [41] for reactor dynamics, Z. Li et al. [33]
for the model of the potential in the computation of micromagnetics for the ferromagnetic
materials or electrostatics for macromolecules.

The equations of the form (1.1.4)-(1.1.6) involving discontinuous coeflicients are
sometimes called diffraction problems of parabolic types. This type of interface problem
is critical in many applications of engineering and sciences, including non-stationary
heat conduction problems, electromagnetic problems, shape optimization problems to
name just a few. For a detailed discussion on parabolic problems with discontinuous
coefficients, see Dautry and Lions [14], Gilberg and Trudinzer [25], Hackbush [27}, La-
dyzhenskaya et al. [30], Li and Ito [32] and Marti [36].

The model equations of the form (1.1.7)-(1.1.9) involving discontinuous coeffi-
cients are used in many applications such as ocean acoustics, elasticity, and seismology
to model the propagation of small disturbances in fluids or solids. In electromagnetism,
the equation (1.1.7) corresponds to a problem in which the material occupying the in-

terior is a dielectric rather than a metal (cf. [2]). In the study of wave equations for
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some physical problems, such as acoustic or elastic waves travelling through heteroge-
neous media, there can be discontinuities in the coefficients of the equation. As a model,
consider the problem of transverse vibrations of an infinite string, with a discontinuity
in density p at a location r = . Let 1 represent the non dimensionalized displacement

normal to the string. Then we have the equation

p'(/)tt - (TOd)z)z =0

which is equivalent to the problem

e — P(2)¢er = 0

where

=2 if z<a

,62:'[% it z>a

B) = {

along with the initial condition

W(x,0) = f(z). P(z,0)=0.

For this physical model, we have the following jump conditions at the interface x = «

W] =0, [¢.] =0

The interface conditions correspond to the facts that displacement and normal compo-
nent of the tension in the deflected string are continuous. The one dimensional acoustic
wave equation is often used as a model in seismology. For example, consider the one-

dimensional acoustic wave equation
put+px=0 & pt+kuz:07

where p is the density, u is the velocity, p is the pressure and k is compression(bulk)

modulus. At z = qa, the coeflicients are given as

(p=, k") if z<a
(pt, k") if > 0.

(o, k) = {

The velocity and pressure must be continuous across the interface, and therefore the

jump conditions at the interface are

[u] =0, [p]=0.
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The above problem can also be rewritten as hyperbolic problems
k
Pl — kuzz = 07 Pt — ;pzz = 0.

with discontinuous coefficients.

1.2 Notation and Preliminaries

In this section, we shall introduce some standard notation and preliminaries to be used
throughout of this work.

All functions considered here are real valued. Let {1 be a bounded domain
in R?, d—dimensional Euclidian space and J€ denote the boundary of ). Let r =
(z1,Z2,...,24) € Q, and let dz = dry,...,dzy. Further, let @ = (y,...,aq) be a
d—tuple with nonnegative integer components and denote order of « as |a| = a3 + o +
...+ ag. Then, by D*¢, we shall mean the ath derivative of ¢ defined by

o
D= ———-
¢ oz ... 0z "

We shall make frequent reference to the following well-known function spaces.
For 1 < p < oco. L*(Q) denotes the linear space of equivalence classes of measurable
functions ¢ in  such that [, |#(z)|Pdz exists and is finite. The norm on LP(2) is given
by

1
fullirey = ( [ lota)Pdz)”, 1<p< o0
Q

For p = 00, L*®(1) denotes the space of functions ¢ on  such that
|l L) = ess sup |p(x)| < oo.
When p = 2, L?(2) is a Hilbert space with respect to the inner product
(6,) = /ﬂ () () de.

By support of a function ¢, supp ¢, we mean the closure of all points  with ¢(z) # 0,

i.e.,

supp ¢ = {z : ¢(z) # 0}.



For any nonnegative integer m, C™()) denotes the space of functions with continuous
derivatives upto and including order m in Q. C{*(f2) is the space of all C™(2) func-
tions with compact support in . Also, C3°(€) is the space of all infinitely differential
functions with compact support in 2.

We now introduce the notion of Sobolev spaces. Let m > 0 and real p with
1 < p < 00. The Sobolev space of order (m, p) on €, denoted by W™P (), is defined as a
linear space of functions (or equivalence class of functions) in LP(€2) whose distributional

derivatives upto order m are also in LP({2), i.e.,
Wm™P(Q) = {¢: D*¢ € LP(Q) for 0 < |a| < m}.

The space W™P(2) is endowed with the norm

8=

1By = / S |D(z)Pda
0<jal<m

= | X 1peelr) 1<p<o

0<|al<m

When p = oo, the norm on the space W™>(Q) is defined by

|¢llm,c0 = max “Da(b(x)”L“(ﬂ)-

0<lal<m

For p=2, these spaces will be denoted by H™(2). The space H™(f) is a Hilbert space

with natural inner product defined by

(6 0)= Y / D¢ D*ydz, ¢, € H™(Q).
0<laj<m ¢
The sobolev space H™((?) (respectively, HJ*(§2)) is also defined as the closure of C™((2)
(respectively, C§°(€2)) with respect to the norm ||@||lm = ||@|lm2. This result is true
under some smoothness assumption on the boundary 9. Clearly, L*(2) = H°(2) and
H™()) = W™2(2). We also need the fractional space Hz () equipped with the norm
il 3 = inf (ol 2 20w = ),

weHY{(Q)

where v is a trace operator. For a more complete discussion on Sobolev spaces, see
Adams [1].



We shall also use the following spaces in our error analysis. For a given Banach

t < oo
B

space B, we define, for m = 0,1 and 1 < p < o©

Hult
BtJ

Wm’p(O,T;B)z{ (t) € Bfor a.e. t € (0,T) and 2/

1
P
B

We write H™(0,T; B) = W™2(0,T; B) and L*(0,T;B) = H®(0,T; B). When no risk of
confusion exists we shall write L*(B) for L?(0,T; B).
Further, we denote L*(0,T; B) to be the collection of all functions v € B such

equipped with the norm

Mt
8ﬁ

|wllwmrors = <

that

ess sup |lv(z,t)|ls < .
t€(0,71

Below, we shall discuss some preliminary materials which will be of frequent use
in error analysis in the subsequent chapters. The bilinear form A(:,-) associated with

the operator L, given by
A(u,v) = / B(r)Vu - Vudz,
Q

satisfies the following boundedness and coercive properties: For ¢, € H'((2), there

exists positive constants C' and ¢ such that

Ao, ¥) < Cllol @ 1Yl mr (e

and
A(d,9) > cllollin -
From time to time we shall also use the following inequalities (see, Hardy et al.

[28]):

(¢) Young’s inequality: For a,b > 0 and ¢ > 0, the following incquality

holds.



(2) Cauchy-Schwarz inequality: For ¢,b6> 0, 1 < p < oo and % + % =1,
a? b

ab < — + —.
p q

In integral form , if ¢ and 1 are both real valued and ¢ € L? and 9 € L9, then

/Q o0 < [l6llp b1l

For p = ¢ = 2, the above inequality is known as Schwarz's inequality. The

discrete version of Schwarz’s inequality may be stated as:

(#i3) Let ¢,,v,,7 = 1,2,...,7n be positive real numbers. Then
n n I/ n 3
o< (6) (35)
1=1 1=1 1=1

Below, we state without proof, the following two versions of Grownwall’s lemma. For a

proof, see [40].

Lemma 1.2.1 (Continuous Gronwall's Lemma) Let G(t) be a continuous function
and H(t) a nonnegate continuous function on its wnterval to < t < to+a. Ifa

continuous function F(t) has the property

F(t) < G(t) + /t F(s)H(s)ds fort € [to,to + aj,

to

then

/ G(s)H(s)exp [/tH(T)dT] ds for t € [to,tq + al.

In particular, when G(t) = C' a nonnegatwe constant, we have
F(t) < Cexp [/ H(s)ds} for t € [to,to + a.
to

Lemma 1.2.2 (Discrete Gronwall's Lemma) If (y,), (f) and {(g,) are non-negative

sequences and

yn_<_fn+ Z IeYk nZOa
0<k<n

Yn < fnt+ Z gkfkeXp( Z g])a n=>0

0<k<n k<jy<n

then



In addition, we shall also work on the following spaces:
X=H'QNHQ)NH () & Y=L} Q)nH () NH (Q)

equipped with the norms

2 2
lvllx =l + Y lvllay & vy = [ollee + D lvllae,),
=1

=1
respectively.

We now turn to the literature concerning the regularity of elliptic, parabolic
and hyperbolic problems with discontinuous coefficients. Due to the presence of dis-
continuous coefficients the solution u, in general, does not belong to H2(f2) even if the
coefficients are sufficiently smooth in each individual subdomain §2,, i = 1,2. Concern-
ing the elliptic interface problems, we have the following regularity result. For a proof,
see Chen and Zou [11], and Ladyzhenskaya et al. [30].

Theorem 1.2.1 Let f € L*(Q) and g € H3(T). Then the problem (1.1.1)-(1.1.3) has

a unique solutton u € X N H(Y) and u satisfies a priori estimate

fullx < € (Lo + ol )

Regarding the parabolic interface problems (1.1.4)-(1.1.6), we have the following regu-
larity result (cf. [11, 30]).

Theorem 1.2.2 Let f € H'(0,T; L*(Q)). g € HY(0,T; Hi (")) and uo € HX (). Then
the problem (1.1.4)-(1.1.6) has a umque solution u € L*(0,T, X)NH'(0,T,Y)NH}(Q).

We now recall the following regularity result for the solution u of the interface problem
(1.1.7)-(1.1.9) (cf. [13, 30]).

Theorem 1.2.3 Let ug, vy € Hy(2). Then the problem (1.1.7)-(1.1.9) has a unique
solution u € L*(0,T; X N H} () N HY(0,T; H2(Qy) N H%(Q,)) N H2(0,T;Y).

1.3 A Brief Survey on Numerical Methods

In this section, we shall discuss a brief survey of the relevant literature concerning of

elliptic, parabolic and hyperbolic interface problems.
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Solving differential equations with discontinuous coefficients by means of classical
finite element methods usually leads to the loss in accuracy (cf. [5, 11]). One major
difficulty is that the solution has low global regularity and the elements do not fit with the
interface of general shape. For non-interface problems, one can assume full regularities of
the solutions (at least H?(£})) on whole physical domain. But for the interface problems,
the global regularity of the solution is low. So the classical analysis is difficult to apply
for the convergence analysis of the interface problems. Thus the numerical solution to
the interface problem is challenging as well as interesting also.

The standard finite difference and finite element methods may not be successful
in giving satisfactory numerical results for such problems. Hence, many new methods
have been developed. Some of them are developed with the modifications in the stan-
dard methods, so that they can deal with the discontinuities and the singularities. For
the literature on the recent developments of the numerical methods for such problems,
we refer to [15, 35] which includes extensive list of relevant literature. The numerical
solutions of interface problems by means of finite element Galerkin procedures have been
investigated by several authors. One of the first finite element methods treating interface
problem has been studied by Babugka in [5]. In [5], the author has formulated the prob-
lem as an equivalent minimization problem and then finite element methods are used to
solve the minimization problem. Under some approximation assumptions on finite ele-
ment spaces, Babuska has obtained sub-optimal order error estimate in H' norm. The
algorithm in [5] requires the exact evaluation of line integrals on the boundary of the
domain and on the interface, and exact integrals on the interface finite elements are also
needed. In the absence of variational crimes, finite element approximation of interface
problem has been studied by Barrett and Elliott in [6]. They have shown that the finite
element solution converges to the true solution at optimal rate in L? and H' norms over
any interior subdomain. In [6], it is assumed that the solution and the normal deriva-
tives of the solution are continuous along the interface, and fourth order differentiable
on each subdomain. For the problems (1.1.1)-(1.1.3), Bramble and King [8] have consid-
ered a finite element method in which the domains 2; and 2, are replaced by polygonal
domains €2, », and ()3 j,, respectively. Then, the Dirichlet data and the interface function
are transferred to the polygonal boundaries. Finally, discontinuous Galerkin finite el-

ement method is applied to the perturbed problem defined on the polygonal domains.
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Optimal order error estimates are derived for rough as well as smooth boundary data.
Under practical regularity assumptions on the true solution, the convergence of conform-
ing finite element method is studied in [11], [37] and [43]. In [11], Chen and Zou have
considered a practical piecewise linear finite element approximation for solving second
order elliptic interface problem with Lu = —V.(8Vu) in a polygonal domain, where
the coefficient 3 is assumed to be positive and piecewise constant in each subdomains.
They have proved almost optimal order of convergence in L? and energy norms. More
precisely, the error bounds obtained by Chen and Zou [11] are optimal up to the factor
log h. Under the assumptions on the source term f|o, = 0 and the interface function
g = 0, Neilsen [37] has proved optimal order of convergence in H' norm in the presence
of arbitrarily small ellipticity. The algorithm in [37] requires that the interface triangles
follow exactly the actual interface I'. In [43], the finite element solution converges to
the exact solution at an optimal rate in L? and H! norms if the grid lines coincide with
the actual interface by allowing interface triangles to be curved triangles. Further, if the
grid lines form an approximation to the actual interface, optimal order of convergence
in H! norm and sub-optimal order in L? norm are derived for elliptic problems. More
recently, in [16], the author has discussed quadrature finite element method for elliptic
interface problems in a two dimensional convex polygonal domain. Optimal order error
estimates in L? and H! norms are derived for a practical finite element discretization
with straight interface triangles.

We now turn to the finite element Galerkin approximation to parabolic interface
problems (1.1.4)-(1.1.6). Although a good number of articles is devoted to the finite
element approximation of elliptic interface problems, the literature seems to lack con-
cerning the convergence of finite element solutions to the true solutions of parabolic
interface problems (1.1.4)-(1.1.6). For the backward Euler time discretization, Chen
and Zou [11] have studied the convergence of fully discrete solution to the exact solution
using fitted finite element methods. They have proved almost optimal error estimates
in L?(L?) and L?(H') norms when global regularity of the solution is low. Then an
essential improvement was made in [21]. The authors of [21] have used a finite element
discretization where interface triangles are assumed to be curved triangles instead of
straight triangles like classical finite element methods. Optimal order error estimates
in L*(L?) and L?*(H') norms are shown to hold for both semi discrete and fully dis-
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crete scheme in [21]. More recently, for similar triangulation, Deka and Sinha ([19])
have studied the pointwise-in-time convergence in finite element method for parabolic
interface problems. They have shown optimal error estimates in L*°(H') and L*°(L?)
norms under the assumption that grid line exactly follow the actual interface. Similar
results are also obtained by Attanayake and Senaratne in [4] for immersed finite element
method.

Finally, we turn to the numerical methods for hyperbolic interface problems
(1.1.7)-(1.1.9). Numerical solutions of hyperbolic equations with discontinuous coefhi-
cients draws significant attention in a variety of fields such as the oil exploration industry
and mineral finding as well as the study of earthquakes. Numerical simulation of seismic
wave propagation problems in heterogeneous media can be traced back to as early as
Alterman and Karal([3]) in 1968 and Boore([7]) in 1972. Alterman and Karal developed
a finite difference scheme to solve the equations of elasticity in one spatial dimension
and they applied their scheme to the problem of a layered half space with a buried point
source emitting a compressional pulse. The interface between different layers was placed
at z = h on the grid line, where z is the coordinate representing the depth below the
surface of the Earth. A general introduction on the numerical treatment for hyperbolic
interface problems by means of finite difference method can be found in Le Veque’s Book
[31}. Three numerical schemes namely Wendroff, TVD and WENO have been discussed
in [31]. These schemes use values of the sound speed on discrete points or averaged
values on grid cells. As a consequence, they do not describe accurately the position and
the shape of interfaces cutting grid cells. Furthermore, due to low regularity of the true
solution the method leads to the loss in accuracy near the interface. It is then a new
approach called explicit jump immersed interface method was introduced in [48]. These
numerical methods ensure a given accuracy at grid points near interface, but they are
difficult to implement with higher order schemes. To overcome this difficulty an explicit
simplified interface method was introduced by Piraux et al. in [39] for one dimensional

acoustic velocity and acoustic pressure.
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1.4 Objectives

This section elucidates our contributions and motivation for the present study. The
physical world is replete with examples of free surfaces, material interface and moving
boundaries that interact with a surrounding fluid. There are interfaces that separate
air and water (in the case of bubbles or free surface flows) and boundaries between two
materials of different physical properties (in porous media flow or mixing layers). While
the mathematical modelling of the interaction is a difficult problem in itself, another
formidable task is developing a numerical method that solves these problems effectively
and efficiently.

The analysis of finite element methods for interface problem has become an active
research area over the years. The main objective of this work is to establish some new
optimal a priori error estimates in fitted finite element method for interface problem
with straight interface triangles. The achieved estimates are analogous to the case with
a regular solution, however, due to low regularity, the proof requires a careful technical
work coupled with a approximation result for the linear interpolant. Other technical
tools used in this work are Sobolev embedding inequality, approximations properties
for modified elliptic projection, modified duality arguments and some known results on
elliptic interface problems.

In the present work, optimal order error estimates in L? and H* norms are derived
for the linear elliptic interface problems (c.f. [17]) and which improve the earlier results in
the articles [11] and [43]. Then the results are extended for parabolic interface problems
and optimal order error estimates in L*(L?) and L?(H') norms are achieved (c.f. [18]).

Due to low global regularity of the solutions, the error analysis of the standard
finite element method for parabolic problems is difficult to adopt for parabolic interface
problems. In this work, we are able to fill a theoretical gap between standard energy
technique of finite element method for non interface problems and parabolic interface
problems. Optimal L®(H') and L*®(L?) norms error estimates have been derived under
practical regularity assumption of the true solution (c.f. [20]).

Although various FEM for elliptic and parabolic interface problems have been
proposed and studied in the literature, but FEM treatment of similar hyperbolic prob-
lems is mostly missing. In this work, we are able to prove optimal order pointwise-in-time

error estimates in L? and H'! norms for the hyperbolic interface problem with semidis-
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crete scheme. Fully discrete scheme based on a symmetric difference approximation is

also analyzed and optimal L>(H") norm error is obtained.

1.5 Organization of the Thesis

The organization of the thesis is as follows: Chapter 2 deals with the error analysis
for elliptic interface problems in two dimensional convex polygonal domains. Optimal
order error estimates in L? and H' norms are derived for a practical finite element
discretization.

Chapter 3 is devoted to the convergence of finite element method for parabolic
interface problems with straight interface triangles. The proposed method yields optimal
order error estimates in L2(L?) and L?( H!) norms for semi-discrete scheme. Convergence
of fully discrete solution is also discussed and optimal error estimate in L2(H') norm is
achieved.

In Chapter 4, we analyze the continuous time Galerkin method for spatially
discrete scheme for parabolic interface problems. Optimal L®(H!) and L*(L?) norms
error estimates have been derived under practical regularity assumption of the true
solution. Further, the fully discrete scheme based on backward Euler method is also
proposed and analyzed. Optimal L? norm error estimate is obtained for fully discrete
scheme.

Chapter 5 is concerned with a priori error estimates for hyperbolic interface prob-
lems. Optimal error estimates in L>(L?) and L®(H') norms are established for con-
tinuous time discretization. Further, the fully discrete scheme based on a symmetric
difference approximation is considered and optimal order convergence in H! norm is
established.

Finally, numerical results are presented for two dimensional test problems in
Chapter 6 for the completeness of this work.

For clarity of presentation we have repeatedly given equations (1.1.1) — (1.1.3) or
(1.1.4) — (1.1.6) or (1.1.7) — (1.1.9) at the beginning of subsequent chapters.
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Chapter 2

Finite Element Methods for Elliptic

Interface Problems

In this chapter, we have discussed the convergence of finite element solution to the exact
solution of elliptic interface problem. For a finite element discretization based on a mesh
which involve the approximation of the interface, optimal order error estimates in L?

and H' norms are achieved under practical regularity assumptions of the true solution.

2.1 Introduction

Let € be a convex polygonal domain in R? with boundary 952. Let " be the C? smooth
boundary of the open domain €; C € and Qy = Q \ ;. We recall the following linear

elliptic interface problems of the form

Lu= f(z) inQ (2.1.1)
with Dirichlet boundary condition
u(z) =0 on I (2.1.2)
and interface conditions
ou
[u] =0, [ﬁa—n] =0 alongT. (2.1.3)

Here, f = f(z) is a real valued function in Q. The operator £, symbols [v] and n are

defined as in Chapter 1.
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As a first step towards finite element approximation for the elliptic interface
problem (2.1.1)-(2.1.3), we recall the space Hj(Q2) = {¢ € H'(R?) : ¢ = 0 on 9Q}. Then
weak formulation of the problem (2.1.1)-(2.1.3) may be stated as: Find u € H}(2) such

that u satisfies
A(u,v) = (f.v) Vve Hy(), (2.1.4)

where (-,-) denotes the inner product of the L*(2) space.
The solution u € X N H}() satisfies the following a priori estimate (cf. [11])

lullx < C|lfllLzg)- (2.1.5)

The main objective of this chapter is to extend the results of quadrature based finite
element method discussed in [16]. The main crucial technical tools used in our analysis
are some Sobolev embedding inequality, approximations properties for linear interpola-
tion operator, duality arguments, some known results on elliptic interface problems and
some auxiliary projections. For the earlier works on finite element approximation to
elliptic interface problems, we refer to Chapter 1.

The organization of this chapter is as follows. In section 2.2, we describe the finite
element discretization and some known results for elliptic interface problems. Finally,

in section 2.3 error estimates for linear elliptic interface problem are presented.

2.2 Finite Element Discretization

For the purpose of finite element approximation of the problems (2.1.1)-(2.1.3), we now
describe the triangulation 75 of Q as follows. We first approximate the domain ; by
a domain Q* with the polygonal boundary T, whose vertices all lie on the interface I'.
Let Q2 be the approximation for the domain €, with polygonal exterior and interior
boundaries as 0§2 and I'y, respectively.

Triangulation 7 of the domain 2 satisfy the following conditions:

(A2) If Ky, K, € T;, and K; # K», then either K; N K, = @ or K; N K, is common

vertex or edge of both triangles.
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(A3) Each triangle K € 7}, is either in Qf or O and intersects I (interface) in at most

two points. ’

(A4) For each triangle K € T4, let hx be the length of the largest side. Let h =
max{hy : K € Tp}.

The triangles with one or two vertices on I' are called the interface triangles, the set of
all interface triangles is denoted by 77" and we write (If = Ukerz K.

Let V), be a family of finite dimensional subspaces of Hy(f2) defined on 7}, con-
sisting of piecewise linear functions vanishing on the boundary o). Examples of such
finite element spaces can be found in [9] and [12].

For the coefficients 5(z), we define its approximation S,(z) as follows: For each
triangle K € Ty, let Bk (z) = B; if K C QF, i=1 or 2. Then Sy is defined as

Bn(z) = Bx(z) VK € T,

Then the finite element approximation to (2.1.4) is stated as follows: Find u;, € V}, such
that
Ah(uh,vh) = (f, vh) Vo, €Va, (221)

where Ax(-,-) : H'(Q) x H'(2) — R is defined as

Ap(w,v) = Z /KﬂK(:v)Vw - Vudz Yw,v € H'(Q).

KeTy,

The following lemmas will be useful for our future analysis. For a proof, we refer
to [45).

Lemma 2.2.1 For wy, v, € Vi, we have

IAh(wh,vh)—A(wh,vh)| S Ch Z vah”Lz(K)||th”L2(K)-

KeTp

Lemma 2.2.2 If QF is the unton of all interface triangles, then we have
1
|ull g1z < Chz||uf|x.

Let [T, : C(Q) — Vj be the Lagrange interpolation operator corresponding to
the space Vj,. As the solutions concerned are only in H!(f2) globally, one cannot apply
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Figure 2.1: Interface Triangles K, S, along with interface I' and its approzimation T'p,.

the standard interpolation theory directly. However, following the argument of [11] it is
possible to obtain optimal error bounds for the interpolant II, (see Chapter 3, [15]). In
[15], the authors have assumed that the solution « € X NW1°(Q;NQ)NW L2 (2,N0Q),
where () is some neighborhood of the interface I'. The following lemma shows that

optimal approximation of IT; can be derived for u € X with [u] = 0 along interface I'.

Lemma 2.2.3 Let I, : C(Q) — Vj be the linear interpolation operator and u be the
solution for the interface problem (2.1.1)-(2.1.3), then the following approzimation prop-
erties

lu — M|l gm@y < CR> ™|ullx. m = 0,1,

hold true.

Proof. For any v € X, let v; be the restriction of v on €2, for i = 1,2. As the interface is
of class C?, we can extend the function v; € H?(£2,) on to the whole §) and obtain the

function 9, € H*(Q) such that 9, = v, on €, and
0.2y < Clluillaza,y, i =1,2. (2.2.2)

For the existence of such extensions, we refer to Stein [46]. Further, we have a C?

function ¢ in [C, B] such that (c.f. [24])
|p(x)] < Ch*? (2.2.3)

and hence

B B
meas(K>) = / |p(x)|dz < Ch2/ dx < Ch®.
C c
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Then, for K € T, we now define

Myi, it K C Qb

Myu =
§ {Hha2 if K C Qb

*Then it is easy to verify that Hyu € V;, (cf. [17]).
Now, for any triangle K € 7,\77, the standard finite element interpolation theory

(cf. [9, 12]) implies that
lu — Dpul| gy < CR* ™| u|l w2k), m =0, 1. (2.2.4)

For any element K € 77, we write K; = K N §;,% = 1.2, for our convenience. Further,
using the Holder’s inequality and the fact meas(K3) < Ch? we derive that for any p > 2,

and m = 0,1,

3(p=2)
lu— Mpullamiey < Ch™% |lu— Hpullwme(x,)
3(p-2)
< Ch % | — Tpw||wm.a (k)
3(?“2)+]_m
< Ch = ||u||W1,p(K), (225)

in the last inequality, we used the standard interpolation theory (cf. [12]). On the other
hand

lu — Dpullgmiy = o1 — Dpt || amixg)

VAN

Cllar — Waptua || e
Ch*™™ |l || r2xey
Ch* ™ ||u|lx, (2.2.6)

IN

IA

in the last inequality, we used (2.2.2). In view of (2.2.5)-(2.2.6), it now follows that

l|lu — Hhu”%{m(n;)

. . 3(p—2) .
<CR = ™ullk +C 30 5 2l
KeTg
—9m—8
SCRT™Mul% +C D R ullfa
KeTr
_ —om—8
<Ol +C D BT {([ullioe) + lullvisn )
KeTt
< Ch4—2m 2 C }7’572'rn—g ~ 112 ~ 112 2 2 7
< lulk +C Y P{llallwrs,) + B2llwe ) - (2.2.7)
KeTyr
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We now recall Sobolev embedding inequality for two dimensions (cf. Ren and Wei [42])
0]l Loy < Cp?||v]| gy Vo€ HY(SQ), p>2. (2.2.8)
Now, setting p = 6 in the Sobolev embedding inequality (2.2.8), we obtain

|y < |l < Cllllai,),

Vil < Vs, < ClVlma,)-
In view of the above estimates, it now follows that
[tllwisy < Cllaallnz,)-
This together with (2.2.7), we have
|| — Hhu||%,mm;) < CR*™™||u||%, m=0.1. (2.2.9)

Then Lemma 2.2.3 follows immediately from the estimates (2.2.4) and (2.2.9). O

2.3 Convergence Analysis for Elliptic Interface Prob-
lem

In this section, we will establish some new optimal error estimates for linear elliptic
interface problem which will be useful in the subsequent error analysis of parabolic

interface problems.
From (2.1.4) and (2.2.1), we note that

A(up —pu,vp) = A(u — Hpu,vp)
+{A(uh, Uh) —_ Ah(uh, ’Uh)}
= I+ ) (2.3.1)

By Lemma 2.2.3, we can bound the term (I); by

(D]

IA

C'||u — HhU”Hl(Q)vah||L2(Q)
Chljullx|lvnll o) (2.3.2)

IA
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For the term (I)s, use Lemma 2.2.1 to have

(D)2

IA

Ch||Vun|| L2 [| Von 2@

IA

Ch||Vun| L2@)llvell o)
< Ch| fllrz@llvnll arg (2.3.3)

where we have used the inequality

1VurliLe@) < Cllfll2 o)

which follows directly from (2.2.1) by taking v, = uy and using coercivity.
From the estimates (2.3.2)-(2.3.3), we conclude by taking v, = up —Ipu in (2.3.1)
that

Jun — Mll sy < Chllullx + 115 zagen). (2.3

The above estimate (2.3.4) together with Lemma 2.2.3 and (2.1.5) leads to the following

optimal order error estimate in H' norm.

Theorem 2.3.1 Let u and uy, be the solutions of the problem (2.1.1)-(2.1.8) and (2.2.1),
respectively. Then, for f € L2(2), the following H'-norm error estimate holds

lu — upllm1@) < ChlfllLz@)- O

For the L? norm error estimate we shall use the Nitsche’s trick. We consider the

following elliptic interface problem
-V - (fVw)=u—up inQ
with Dirichlet boundary condition
w(z) =0 on N
and interface conditions
[w] =0, [ﬁg_::] =0 alongT.
Then clearly w € X N Hy()) and satisfies the weak form

A(w,v) = (u— up,v) Vv € Hy(Q). (2.3.5)
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Further, w satisfies the a priori estimate (cf. [11])
|wllx < Cllu — uallL2)- (2.3.6)
We then define its finite element approximation to be the function wy, € V}, such that
Ap(wp,vp) = (u — up,vp) Yo, € V. (2.3.7)

Arguing as in the derivation of Theorem 2.3.1 and further using the a priori estimate

(2.3.6), we have
H’LU - wh”Hl(Q) S ChHu - Uh“LZ(Q). (238)
Setting v = u — u;, € Hg(€) in (2.3.5) and using (2.1.4) and (2.2.1), we obtain

lu— Uh||%2(n) = A(w,u — up)
= A(w — wp,u— up) + A(wn, u — up)
= A(w — wp,u — up) + {An(up, wp) — A(up, wy)}
(1) + (11)2 (2.3.9)

By Theorem 2.3.1 and (2.3.8) we immediately have
Arguing as deriving (2.3.3) we can deduce

(1)) < Ch > V|2 | Vewnll 2

KeTyx

Chl|Vun |2z IVwnl| 2oz
Ch|IV(u — up)l r2op)
+Ch||Vul| L2 |V (w — wn)| 20z
+Ch||Vull 2o [ Vol 129z

< O fllz@yllu — unllza@

IA

IA

V’LUhlle(Q;)

5
+Ch |lul x[lu — unll 2@ + CR?|lullx|lwllx
where we have used Theorem 2.3.1, Lemnma 2.2.2 and (2.3.8), and the following inequality
”V?l)h”Lz(Q) S C”’ll, - uh“Lz(Q).
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Thus, for the term (II),, we have

|(I1)a| < CE|fll L2y llu — unll Lz
+Ch?|lul x lv — unll L2
S Ch2||f”L2(Q)||’U, - U'h“Lz(Q)- (2311)

Finally using (2 3 10)-(2.3.11) in (2.3.9), we obtain

I = unl| 22y < OB2|| fll2@lle — uallL2)-
Thus, we have proved the following optimal order estimates in L? norm.

Theorem 2.3.2 Letu and uy, be the solutions of the problem (2.1.1)-(2.1.3) and (2.2 1),

respectwely. Then, for f € L*(Q), there ewst a positwe constant C independent of h
such that

lu — wnlliz@) < CR||fliLz) O

Remark 2.3.1 Under certain hypotheses. the error of approximation of solutions of
certain nonlinear problems 1s basically the same as the error of approzymation of solutions
of related linear problems [10, 26]. Therefore an essential improvement of the results of
[11] for the linear elliptic wnterface problems have been obtawned wn this work. Further,

the results are also extended for the semalinear problems (cf. [17])

A(u,v) = (f(u),v) Vve H(Q).
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Chapter 3

L*(L?) and L?(H') norms Error
Estimates for Parabolic Interface

Problems

In this chapter, we extend the finite element analysis of elliptic interface problems dis-
cussed in Chapter 2 to parabolic interface problems. Optimal order error estimates in

L*(L?) and L?(H') norms are derived for the linear parabolic interface problems.

3.1 Introduction

In this chapter, we consider a linear parabolic interface problem of the form
u + Lu= f(z,t) inQx(0,7T] (3.1.1)
with initial and boundary conditions
w(z,0) =up inQ; wu(z,t)=0 on N x (0,7 (3.1.2)

and jump conditions on the interface

ou
[u] =0, [ﬁd—n] = g(z,t) alongT, (3.1.3)
where, f = f(z.t) and g = g(r,t) are real valued functions in © x (0,7, and u; = %%.
Further, ug = up(x) is real valued function in Q2. The domain 2, operator £, symbols

[v] and n are defined as in Chapter 1, and T < oo.
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To derive O(h™) (m > 0) error estimates for non-interface parabolic problems in
the literature generally require v € L2(0,T; H™"(Q)) N H'(0,T; H™'()), see, [47].
The purpose of the present chapter is to extend the convergence analysis of fitted finite
element method for elliptic interface problems to parabolic interface problems. The
convergence of finite element solution to the exact solution has been discussed in terms
of L?(H') and L?(L?) norms. The main crucial technical tools used in our analysis
are Sobolev embedding inequality, approximation result for the linear interpolant and
elliptic projection (see, Lemma 3.2.2), parabolic duality arguments and some known
results on elliptic interface problems. The previous work on finite element analysis for
parabolic interface problems can be found in Chapter 1.

The outline of this chapter is as follows. In section 3.2, the approximation prop-
erties related to the auxiliary projections ar presented and section 3.3 is devoted to the
error analysis for the semidiscrete scheme. Finally, in section 3.4, a fully discrete scheme

based on backward Euler method is proposed and optimal L?(H') norm is established.

3.2 Preliminaries

In this section, some approximation properties related to the auxiliary projection is
obtained. Due to the presence of discontinuous coefficients the solution wu, in general,
does not belong to H%(f2). Regarding the regularity for the solution of the interface
problem (3.1.1)-(3.1.3), we have the following result (cf. [11, 30, 44]).

Theorem 3.2.1 Let f € H'(0,T; L%(R)), g € H'(0,T; H:(T")) and uo € HL(). Then
the problem (8.1.1)-(3.1.3) has a unique solution uw € L*(0,T; X)NH'(0.T;Y). Further,

u satisfies the following a priori estimate

lull20rx) < C {||f||L2(o,T;L2(Q)) +[luoll ey + 119(2- )l 4

+llg(z, T)|| (3.2.1)

wiry T ”g“HI(o,T;H%(r))} '
Now, we shall recall the finite element space Vi, C Hy(2) consisting of piecewise
linear polynomials vanishing on the boundary 0} where interface triangles are straight

triangles as discussed in Chapter 2. Further, we assume that Vj, satisfy the inverse

estimate
o) < Ch7Y@ll2) ¥ & € Vi (3.2.2)
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Approximating the interface function g(z) by its discrete specimen g, = Z]m:"l 9(P)
where {@7};’;"1 is the set of standard nodal basis functions corresponding to the nodes
{PJ};”:"1 on the interface I', we have the following approximation result. For a proof, we

refer to [11].

Lemma 3.2.1 Let g € H*(T'). If Qf 1s the union of all winterface triangles then we have

/gvhds—/ grupds
r Ty

We now define an operator P, : X N Hy(2) — V;, by

3
< Ch2||gllirzyllvnll sy Yon € Vi

Ap(Pyv, ¢) = A(v.¢) Vo € Vi, v € X 0 Hy(Q). (3.2.3)

Earlier, in [11], the approximation results obtained for P, in L? and H'-norms are not
optimal. However, the loss in accuracy for the H' norm is recovered in [45] under the
assumption that the solution u € X N W (4 N Q) N WL2(Qy N Q). The following
lemma shows that optimal approximation of P, in L? and H'-norms can be derived for

u € X N H}(Q) only. This lemma is very crucial for our later analysis.

Lemma 3.2.2 Hawing the projection P, fized i (3.2.8), there 1s a positwe constant C

independent of the mesh size parameter h such that
lluw = PrullLa + hllu — Patll ey < Ch*lullx.
Proof. We first split u — Pyu as
u— Pyu = (u— Hpu) + (Mxu — Pyu).
From Lemma 2.2.3 of Chapter 2 and (3.2.3), we note that
ITThu — Ph“”i]l(n)
< Ap(Mpu — u, Mpu — Pyu) + Ap(u — Pyu, u — Pyu)
< Chllul|x||TThu — Paul| g1y + {An(u, Tau — Pyu) — A(u, Hu — Pru)}
= Chllullx|ITpu — Poull ayqy
+Ap(u — Upu, Myu — Pyu) — A(u — Hyu, lju — Pyu)
+{Ar(pu, Mpu — Pyu) — A(TTyu, Hpu — Pyu)}
< Chllullx | Thu — Paull i)
+{Ay(Ipu, Mpu — Pyu) — Apu, Hyu — Pyu)}
=: Chl|ul|x||Tlhu — Phul| gy + (1) (3.2.4)
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Then using Lemma 2.2.1 of Chapter 2 for the term (I) to have

|(D)]

IA

Ch“HhU”HI(Q)”HhU — Phu”Hl(Q)

A

Ch(|[Thw — ull () + l[ull @) IThu — Prulliq)

< Chllullx|Myu — Pyullm(g)-
This in combination with (3.2.4) now leads to
IMhu — Poull o) < Chllullx.
By Lemma 2.2.3 and using triangle inequality, we obtain
lu — Prul|l g < Chlluflx. (3.2.5)

For L?-norm error estimate, we consider the following interface problem: Find

w € H} () such that

A(w,v) = (u— Pyu,v) Yv € Hy(S2), (3.2.6)
and let wy € V}, be its finite element approximation such that

Ap(wp,v) = (u— Pyu,vp) Yo, € V. (3.2.7)
Note that w € H}() is the solution of (3.2.6) with jump conditions

ow
[w] =0 and [ﬂa—n]= 0 alongI.

Then apply Theorem 2.3.2 for the above interface problem to have
|lw — wa||mr @) < Chllw|lx < Chllu— Pyul|r2q)- (3.2.8)

In the last inequality, we have used regularity estimate for elliptic interface problem
(3.2.6). Now, setting v = u — Pyu in (3.2.6) and, using (3.2.5) and (3.2.8), we have

lu— Poullf2q = A(w—wh,u— Pyu)+ A(ws,u) — A(wn, Pyu)
Alw — wp,u — Pyu) + {A(u, wp) — A(Pru, wy) }
Alw — wp,u — Pyu) + (1)

IA

Cllw — wh|lgr (@ llv — Paulla @) + (1)
Ch*||Ju|x |lu — Poull L2 + (I1). (3.2.9)

A
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For the term (IT), we use (3.2.3) and Lemma 2.2.1 of Chapter 2 to have

|(11)] = |An(Pau, wn) — A(Pru, wp)| < Ch|| Pou| moy lwnllmrop)
< Ch(|Phu — ullar e + llull o) (lwn — wllmep + wllmien)
< Chh}|lullxChHwlix < Ch2ullx || Pos — ull 2. (3.2.10)

In the last inequality, we have used Lemma 2.2.2 of Chapter 2. Then combining the
estimates (3.2.9)-(3.2.10), we can conclude that

lu — Prull 2y < Ch2[lullx. (3.2.11)

This completes the proof of Lemma 3.2.2. [
We need the standard L? projection Ly, : L2(2) — V}, defined by

(Lyv, ¢) = (v,¢) Vv e L*(Q), ¢ € W, (3.2.12)
satisfying the stability estimate
HLhU“Hl(Q) S C”U””l(Q) Yv € H(} (Q) (3213)

It is well known that Lyv € Vj, is the best approximation of v € L*(f2) with respect to

the L? norm. Thus Lemma 3.2.2 immediately implies

Lemma 3.2.3 Let Ly be defined by (3.2.12). Then, for m = 0,1, we have
| Lrv — ]| gm@) < CR*™|v|lx Vv € Hy(2) N X.

Proof. The L?norm estimate follows immediately from the fact that Lyw € Vj is the
best approximation in the L? norm to w € L?(Q2) and Lemma 3.2.2. For H'-norm

estimate, we use the inverse inequality (3.2.2) and Lemma 3.2.2 to have

lv = Luvllarey < llv— Pavllaie) + [|1Pav — Lyvllave

Chllvllx + Ch™ [Py — Lyv|l 120y

< Chlvlx + Ch™H{||Pav — vl 2() + [lv — Lol 12y}
Chlv||x-

A

IA

This completes the rest of the proof. O
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3.3 Continuous time Galerkin Method

This section deals with the error analysis for the spatially discrete scheme for parabolic
interface problems (3.1.1)-(3.1.3) and derive optimal error estimates in L*(0,T; H') and
L*(0.T; L?) norms.

The weak formulation of the problem (3.1.1)-(3.1.3) is stated as follows: Find
u€ H} () such that

(ug,v) + A(u.v) = (f,v) + {g,v)r Vv € Hy(S2), t € (0,T] (3.3.1)

with u(0) = uy. Here, (-,+) and (-,-)r are used to denote the inner products of L*(Q)
and L?(T") spaces, respectively.
The continuous in time Galerkin finite element approximation to (3.3.1) which

may be stated as follows: Find uy, : [0,T] — V4 such that u;(0) = Lyup and satisfies
(uht, Uh) + Ah(uh, vh) = (f, Uh) + (gh, Uh)r‘h Vopb € Vi, t € (0, T]. (3.3.2)

We shall need the following Lemma for the semidiscrete solution u, satisfying (3.3.2) for

our future use. For a proof, we refer to [15].

Lemma 3.3.1 Let f € L*(N2) and g € H*(T'). Then we have

t t
[ Tl < o( [+ oy s + uuo||22(m)-

Now, we are in a position to discuss the main results of this section which is

stated in the following theorems.

Theorem 3.3.1 Let u and up, be the solutions of (3.1.1)-(8.1.3) and (3.3.2), respec-
twely. Then, for uo € HY(Q), f € L*(2) and g € H*(T'), there 1s a positwe constant C
windependent of h such that

lw = wnl| 120,711 (0)) < Cluo, u, f, g)h.

Theorem 3.3.2 Let u and up be the solutions of (3.1.1)-(8.1.8) and (3.3.2), respec-
twely. Then, for ug € HY(Q), f € L*(Q) and g € H*(T'), there 1s a positwe constant C
windependent of h such that

lu — unll20,7,2(0)) < Cluo, u. f. g)h>.
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Proof of Theorem 3.3.1. Subtracting (3.3.2) from (3.3.1), for all v; € V},, we have

(us — upe, o) + Alu — up,vp) = (9, vn)r — (gn, vn)r,,

+Ah(uh,vh) — A(uh,vh). (333)

Define the error e(t) as e(t) = u(t) — up(t). Setting v, = Lpu in (3.3.3) and using
(3.2.12), we obtain
1d

5%”‘3@)”%2(9) + Afe, )

=1+ D2+ D)3 + 57 llw — LyullZzq), (3.3.4)

1

2 dt

where the terms (/),, ¢ = 1,2, 3 are given by
(1 = (g, Lnu — up)r — {gn, Lau — up)r,,
(1)2 = Ah(uh, Lhu - uh) - A(uh, Lhu — uh),
(1)3 = A(uh —Uu, Lhu - u)

Now, we estimate the terms (I);, (I); and (I); one by one. By Lemma 3.2.1, Lemma

3.2.3 and the triangle inequality, we obtain

3
|(Drl Chz||gll w2yl Lru — unl ()

Ch3

IA

IA

3
9l llullx + Ch2{|gllm2ylle®)]la @)

IA

5 . . 1
Ch2||gll uzy||ul| x + Ch“”guiﬂ(r) + Z”‘f(t)nirl(m

1 s
CR>(lull% + lgllFrzqr) + Zlle@lin q)- (3.3.5)

In the last inequality, we used Young’s Inequality. Similarly, for (I),, using Lemma 2.2.1

A

and Lemma 3.2.3 to have

[(1)e]

IA

C'h||uh||H1(Q)||Lhu —u+u-— uh||H1(Q)

< Chllun|lm ol Lau — vl o) + [Ju — vnll o)
1
< Ch2||uh||311(n) + C|| Lpu — u”%ﬂ(n) + ZHU - uh”?ﬂ(ﬂ)
1
< Ch2||uh||i11(9) + Ch?||ull% + Z”‘g(t)”%l(n)- (3.3.6)

Then, the last term (I)3 can be bounded by using Lemma 3.2.3

[(Ds] < Chllullxlle®)]m @)
1 €
< CR|lulk + Zlle® Iz e (3.3.7)
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Integrating the identity (3.3.4) from 0 to ¢ and using the estimates (3.3.5)-(3.3.7), we

obtain

t t t ‘ t
3
/HEH%JI(Q)CZS < ChQ/ ||U||§(d'3+0h2/ ||Uh||§11(n)d3+1/0 ||€H%11(Q)d3
0 0 0

+llu - Lh“”%?(n),

This, together with Lemma 3.2.3 and Lemma 3.3.1 completes the rest of the proof of
Theorem 3.3.1. O

Proof of Theorem 3.3.2. For the L? norm error estimate we shall use the parabolic
duality trick. For any time ¢ > 0 and ¢ = u — uy, let w(s) € HY{(Q) and wy(s) € Vi,

respectively, be the solutions of the backward problems

(p.ws) — A(p,w) = (¢,e) Vo€ Hy(f), s<t, (3.3.8)
w(t) = 0

(bn, Whs) — An(dn,wn) = (Pn,e) Voo € Vi, s<t, (3.3.9)
wp(t) = 0

with [w] = 0 and g(z,t) = 0 across the interface I'. From (3.3.8) and (3.3.9), we obtain

(@, ws — Whs) — A(dn, w — wp) = A(dn, wr) — Ap(Pn, wr) (3.3.10)

for all ¢, € V. Following the standard argument of [34], it is easy to show that

t i
/0 s — whlZayds < C /0 lelZageyds. (3.3.11)

Further, we assume that the following identity

¢ t
/ (h—2||w — whllip(m) ds < C’/ ||e||iz(ﬂ)ds (3.3.12)
0 0

holds true. The estimate (3.3.12) is obtained by reversing time in the proof of Theorem
3.3.1 and further using Theorem 3.2.1 for the problem (3.3.8)-(3.3.9). Set ¢ = e in

31



(3.3.8). Then, using the identity (3.3.3), we obtain

”6”%2(9) = (e, ws) — Ale, w)

= (e, wns) + (e, ws — wps) — Ale,w — wp) — Ale, wp)

= %(e, wy) + (e, ws — wps) — Ae, w — wp,)
_(esy wh) - A(ea 'U)h)

d
= “‘(9, '“’h) + (f’, Ws — whs) - A(e, w — wh)

ds
+{A(un, wn) — An(un, wr)} + {{gn, wr)r, — (9, wr)r}.

With an aid of (3.3.10), the above equation may be rewritten as

lellZ2) = Eg(e,wh) + (u ~ Phu, ws — wps) — A(u — Pru, w — wy)

+(Pru — up, ws — wps) — A(Phu — up, w — wp)
+{A(un, wn) — An(un, wn)} + {{gn, wr)r, — (g, wa)r}

= d—dS(e, wp) + (u — Pyu, ws — wps) — Alu — Pyu,w — wy)
+{A(Pyu — up, wy) — An(Pru — up, wp)}
+{A(un, wn) — An(un, wa)} + {{gn, wr)r, — (9, Wa)r}

= g(e, wp) + (4 — Pyu, ws — wps)
—A(u — Pyu,w — wy) + (I1)1 + (I1),, (3.3.13)

where (11), = A(Pyu, wy) — An(Prhu, wp) and (1) = {{gn, wr)r, — (g, wn)r}
We integrate (3.3.13) from 0 to ¢ to obtain

1 i
/ lellZaqds = / {(u = Pty wy — whe) — Al — Py, w — wp)}ds
0 J0
i t
0 0
t
< [l Prullicey e = wnl ayds
0
t
e / lu — Puall syl — wn Lz s
0

+ /0 (s + /0 (IT)ads.
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We, now use the Young’s inequality to obtain

t t
/ ||P|\izm)d5 < 6/ {llws — whs”il(n) + h_2||w - wh”fﬂ(n)}dﬁ’
0 8}

C t
+2 [l = Pralfa + 12— Prallys o s
0

+/0t(II)1ds + /Ot(II)gds.

Apply (3.3.11) and (3.3.12) to have
! 2 t 2 C ' 2 2 2

[ Wellisaids < Ce [ lelas + C [ (= Pl + hu— Pl o}
0 0

+ / (s + / (ID)ads. (3.3.14)

0
The term (II); can be bounded by using Lemma 2.2.1 and Lemma 2.2.2 of Chapter 2

|(IT1| < Ch||Bullayap llwalla;
< Ch||Pyu~— “HH‘(QF)“whHHl(Q ) + Chllull g oz lwall @)
< Chllu— Poullmaplwnllmn g + ChE ullxllw — whl o)
+Ch ||u x||wl]| sz
<

Ch||u - Phu”H1(Q* ||w — wh”Hl(Qt) + Ch||u - PhU”Hl(QI{)”'LU”HI(Q;)

+Ch3 ||ul| x |Jw — w1 an) + Ch*|lullx[lw]lx.

Integrating this identity from 0 to ¢ and using Young’s inequality, we obtain

t t
/ |(I1)|ds < Ch/ 1w — Poull 1o lw — wal|uron)ds
0 0

t
3
+Ch2/ ”u—PhU“Hl(Q;) ’U)”XdS
0
. [ ¢
+0nt [ ullxlo — wnlpapds + O [ lulxlwlxds
0 0
C 4 ! 2 €, 2 : 2
——h [l — P[5 (s + —h ||w — w1 (@3
+— hS/ |l — Phu||H1(Q)ds + = / |lw||3 ds

+500 [ s + 502 [ = wnlf s

ot [ s + 5 [ i
0 0
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Further, using the regularity result (cf. Theorem 3.2.1), (3.3.8) and (3.3.12), we obtain

t C t t
/0|(II)1|ds < ;17,3/0 ||u—P,,u|;§,1(Q)ds+ce/0 lel|20ds
Cou [ty 12
+?h lu||%ds. (3.3.15)
Q

Finally, Lemma 3.2.1 and similar argument leads to

4 C t t )
/0 [(T1)alds < 1t / g12p2eyds + Ce /O lellZands. (3.3.16)
. 0 .

Thus, combining the estimates (3.3.15)-(3.3.16), together with (3.3.14) and Lemma 3.2.2
completes the rest of the proof of Theorem 3.3.2. O

Remark 3.3.1 The convergence results for the linear parabolic interface problems are
also extended for the semilinear problems (cf. [18]) into the Brezzi- Rappaz- Raviart ([10])

framework.

3.4 Error Analysis for Fully Discrete Scheme

A fully discrete scheme based on backward Euler method is proposed and analyzed in
this section. Optimal L?(0,T; H'(§))) norm error estimate is obtained for fully discrete
scheme. For the simplicity, we have assumed g(z,t) = 0.

We first partition the interval [0, T] into M equally spaced subintervals by the
following points

O=ty<ti<...<ty=T

with t, =nk, k= %, be the time step. Let I, = (t,-1,t,] be the n-th subinterval. Now

we introduce the backward difference quotient

n _ 4n—1
Ak¢”=—¢ k¢ ;

for a given sequence {¢"}M  c L?(Q).
The fully discrete finite element approximation to the problem (3.3.2) is defined
as follows: Forn=1, ..., M, find U™ € V,, such that

(AkUn,’Uh) + Ah(Un,Uh) = (f",vh) Yo, € Vi, (341)
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with U% = Lyug. For each n =1, ..., M, the existence of a unique solution to (3.4.1)
can be found in [11]. We then define the fully discrete solution to be a piecewise constant

function Up(z,t) in time and is given by
Up(x,t) =U"(x) Vtel,, 1<n<M.
We now prove the main result of this section in the following theorem.

Theorem 3.4.1 Let u and U be the solutions of the problem (4.1.1)-(4.1.8) and (4.5.1),
respectiwely. Assume that U° = Lyug and ug 18 sufficiently smooth. Then there emsts a

constant C' independent of h and k such that

1U(tn) = ul(tn)ll2@
2

<C+k)> {||U0||H2(nz) + lluell z20,7.120,) + ||utt||L2(0,T;L2(Q,))}
=1

Proof. For simplicity of the exposition, we write u® = u(r,nk), e® = u™ — U™ and
w" = u"” — Pyu™. Using (3.3.1) and (3.4.1), it follows that

(Age™ ™)+ A(e™, ") = (Ape™,w"™) + A", w") + (Apu”™ — uf, Pyu™ — U™)
+H{AL(U™, Pyu™ — U™) — A(U™, Pyu™ — U™)}

4
= C)Y I. (3.4.2)
1=1
where

Il = (Ake",w"), ]2 = A(e",w”), 13 = (Aku" - U?, Ph’U,n — Un)
I = {Ay(U™, P — U™) — A(U™, Pau™ — U™)).

Summing (3.4.2) over n from n = 0 to n = M, we have

M M
1 | . 1
5|I€Mlliz<m +kY A(c" e )+§ZIIAW T2 < 5|Ie°|lizm)
n=0 n=0
M
+k> (h+ L+ I+ ). (3.4.3)
n=0
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Using Lemma 3.2.2 and Young'’s inequality, we obtain

M M M
kY L <O Jurli + 3 > Ak 2q)-
n=0 n=0 n=0
Similarly,
M M M
EY L <COREY_ Ilutllx + ek Y [l
n=0 n=0 n=0

To estimate k ZQ’IZO I, we first note that

n tn
Agu® — Ou = —l‘ / (s — tn—l)USS(s)ds'
tno1

and hence using Lemma 3.2.2, we obtain

M M M
kZI:; < CK?||uall 20020 + CthZ llu™|[% + kZ lle™|72q)-

n=0 n=0 n=0

Using Lemma 2.2.1, we obtain

M M
0 < onk Y {0 lmal P - Ul }
n=0 n=0
M €
< Ok Y U sy + 1P = Uy}
n=0

M M
< ChE Y [le™3ng + ChE D lu”llk-

n=0 n=0

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

In the last inequality, we have used Lemma 3.2.2. Combining (3.4.3)-(3.4.7) and using

the standard kickback argument, we arrive at

M

IN

M
||9M||2L2(n) + k z ||en||?11(n)
n=0

n=0
M
+ CkY e 3a-
n=0

For sufficiently small k, we obtain

M
”eM”iz(n) +k Z ”e"}}fﬂ(m

n=0 n=0

M-1
+ Ck Y €72
n=0

IA
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An application of discrete version of Gronwall’s lemma leads to

M M
||€M||%2(n) + kz ||€"||311(n) < Ok?HUtJﬁz(o,T;p(n)) + Ch(kz ||Un||2¥) (3.4.8)

n=0 n=0
Finally, by a simple calculation we have

M
n n 1
lu = Unllzao.rin ey < Chllwllzoryy + C Y [w™ = U™ |3nq))?. (34.9)

n=0

Since k = O(h), (3.4.9) combine with (3.4.8) leads to the desired result. [
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Chapter 4

L®(L?) and L*®°(H") norms Error
Estimates for Parabolic Interface

Problems

The purpose of this chapter is to establish some new a priori error estimates in finite
element method for parabolic interface problems. Optimal L*(H') and L>(L?) norms
error estimates have been derived under practical regularity assumption of the true

solution for fitted finite element method with straight interface triangles.

4.1 Introduction

In Q= Q, UT'UQ,, we shall again recall the following parabolic interface problem
u + Lu= f(z,t) inQx(0,7T) (4.1.1)

with initial and boundary conditions

w(z,0) =uy inQ; wu(zr,t)=0 on o x (0,7 (4.1.2)
and jump conditions on the interface
Ju
[u] =0, [ﬁa—n] =0 alongT, (4.1.3)

where, f = f(z,t) is real valued functions in 2 x (0, T}, and u; = %—‘t‘. Further, uy = ug()
is real valued function in Q. The operator £, symbols [v] and n are defined as in Chapter

1,and T < 0.
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Due to low global regularity of the solutions, it is difficult to achieve optimal
L*®(L*) and L>(H") error estimates for parabolic interface problems. More recently,
Deka and Sinha ([19]) have studied the pointwise-in-time convergence in finite element
method for parabolic interface problems. They have shown optimal error estimates in
L>®(H') and L°°(L?) norms under the assumption that grid line exactly follow the actual
interface. This may causes some technical difficulties in practice for the evaluation of
the integrals over those curved elements near the interface. Therefore, in present work
an attempt has been made to extend the results obtained in [19] for a more practical
finite element discretization discussed in [11]. In this chapter, we are able to show that
the standard energy technique of finite element method can be extended to parabolic
interface problems under the assumptions that solution as well as its normal derivative
along interface are continuous. Optimal order pointwise-in-time error estimates in the L?
and H! norms are established for the semidiscrete scheme. In addition, a fully discrete
method based on backward Euler time-stepping scheme is analyzed and related optimal
pointwise-in-time error bounds are derived. To the best of our knowledge, optimal point-
wise in time error estimates for a finite element discretization based on [11] have not
been established earlier for the parabolic interface problem.

A brief outline of this chapter is as follows. In section 4.2, we introduce some
standard notations, recall some basic results from the literature and obtain the a priori
estimate for the solution. In section 4.3, we describe a finite element discretization
for the problem (4.1.1)-(4.1.3) and prove some approximation properties related to the
auxiliary projection used in our analysis. While Section 4.4 is devoted to the error
analysis for the semidiscrete finite element approximation, error estimates for the fully

discrete backward Fuler time stepping scheme are derived in section 4.5.

4.2 Preliminaries

The purpose of this chapter is to introduce some new a priori estimates for the solutions
of parabolic interface problems.

In order to introduce the weak formulation of the problem, we now define the
local bilinear form A!(.,.): HY(}) x H*() — R by

Aw,v) = / G Vw-Vudz, 1=1,2.
Q
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Then the global bilinear form A(-,-) : H}(2) x H}(Q) — R is defined by
Alw,v) = / B(z)Vw - Vudx
0
= AY(w,v) + A*(w,v) VY w, v € Hy(S).

Then weak form for the problem (4.1.1)-(4.1.3) is defined as follows: Find u: (0,7] —
H(Q) such that

(ug,v) + A(u,v) = (f,v) Yo € Hy(Q), a.c. t € (0,T] (4.2.1)
with u(r, 0) = uy(r).

Remark 4.2.1 Let f(z,0) = fo(z). Then it is clear from (1.1.1) that u,(0) € H*(Q)
provided uy € HL(Q) N H*(QY) and fy € H*(Q). From therein, we assume that uy €
H}(Q)N HY(Q), f e H(0,T; L%)) and fo € H*().

Under the assumption f € HY(0,T; L*(€))), we have
uy — V- (B(x)Vu) = fr inQy, i =1,2. (4.2.2)
Further u,, satisfies the following initial and boundary condition
ug(z,0) = 4, (0) and wy(z,t) =0 on 9N x (0,7] (4.2.3)

along with the jump conditions

[ue] =0 and {ﬁ—aa%} =0 along T. (4.2.4)

Thus v = u; € ;, i = 1, 2 satisfies a parabolic interface problem (4.2.2)-(4.2.4). There-
fore, for f, € H'(0,T; L*(Q)) and u,(0) € H?(2), apply Theorem 3.2.1 to have the

following result.

Lemma 4.2.1 Let f € H*(0,T; L*(Q)), fo € H*(Q) anduy € HY(Q)NH*(Q). Then the
problem (1.1.1)-(1.1.8) has a unique solution w € H'(0,T; H*(Q;) N H2(Q)) N H(Q) N
H?(0,T; L*(Q)). Further, u, satisfies the following a priori estimate

lwell 2(00) + luel| 2000y < C{II fell L2y + luell 2}
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Proof. The proof of the existence of unique solution v € H(0,T; H*(2;) N H3(,)) N
H}(Q) N H?*(0,T; L*()) follows from the assumptions and Theorem 3.2.1.
Next, to obtain the a priori estimate we consider the following elliptic interface
problem: For a.e t € (0,7], find w = w(z,t) € Hy(2) N X satisfying
V. (B(z)Vw(z,t)) = fi(z,t) —uy(z,t) inQ, (4.2.5)
w = 0 ondf,

[w] = 0, [ﬁ%} = 0 along I.

From the elliptic regularity estimate for elliptic interface problem (cf. [11]), it follows
that

lwll 2@ + lwllaze,) < Clllfill e + llull 2o} (4.2.6)

Now, multiplying (4.2.5) by ¢ € L*(Q) n H} () N HY(Q) N {y € L*() : o =
0 on 99, [w] =0on T} and then integrating over €2; and 5, we get

Al(w, @) + A*(w, ¢) = (fi — un, ¢). (4.2.7)

Similarly from (4.2.2), we get
Aluy, @) + A (us, ¢) = (fi — un. 8). (4.2.8)
Thus, for all such ¢, we have
Al(w — uy, @) + A% (w — g, $) = 0.

Again, u; € LA Q)N HY (W) N HY Q) N {yp € L3 () : ¢ = 0 on 89, [w] = 0 on T'}.
Finally, setting ¢ = w — u, in the above equation and using the coercivity of each local

bilinear map, we have w = u; in §);, ¢ = 1, 2. Then the desire estimate follows from
(4.26). O

4.3 Some Auxiliary Projections

In this chapter, we introduce linear interpolant and some auxiliary projections. Fur-
ther, the convergence of such operators are obtained under global minimum regularity

assumption of the true solutions.
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Since the global regularity of the true solution is low, it is not favorable to work
on H'() in estimating pointwise-in-time error estimates. Therefore, we introduce X*
be the collection of all v € L?(f2) with the property that v € H2(Q;) N H*() N {e :
¥ =0 on dN} and [v] = 0 along T'. Let II, be the Lagrange’s interpolation operator
defined in Chapter 2. Then, for K € 7, and v € X*, we now define

5, if K CQh
’01:{

4.3.1
.9, if K C Qb ( )

For a finite dimensional space V, C H}(Q) discussed in Chapter 2, it is easy to verify
that v; € V.

Following the lines of proof for Lemma 2.2.3, it is possible to obtain the following
optimal error bounds for linear interpolant v; in X*. We include the proof for the

completeness of this work.
Lemma 4.3.1 For any v € X*, we have
lv —vrllmen + v = villm@,) < Ch(|vllmz@y) + 10l H2i0s))-

Proof. For H! norm estimate, we have

llv — UI”Hl(Ql) + llv— UIHHI(Qz)

< Y Mo—ullma + D Allv = villmgy + v = vrll ) }

KeT\Tx KeTy
< Ch{||v]|2(0y) + [10]| 200 }
+ Z {llv = vill gy + lv = vill k) }- (4.3.2)
KeT?

Here, K1 = KNy and K, = KNQ,. Again, for any K € T, either K C Q* or K C Q4.

Let K C Q% then v; = II,9; and hence, we have

v =villaiwy = 1910 = Mabillmryy < 00— el |l

< Ch”’f)l”HZ(K) S Ch||U1||H2(91)~ (433)
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Again, since v € H?(Q,) and K, C 2, with meas(K,) < Ch?, we have

3(p—2)

lv—villmg,y < Ch % |l —villwrsk,) Vo> 2

Ch”’U — 'UI”WLG(Kz) = Ch”UQ — Hh'Dl||W1,6(K2)

< Chl|oz = Osllwrsgey + Chllor — Wati flwis(ky)

< Chl|ty — 01 |lwrex) + Ch||9r — a9y |lws (k)

< Chl||by — 01l w2y + ChllD1 || H2(k)

< Chl|tillig) + Chl|oz]| n2)

< Ch(|lvll a2y + vl m2@s))- (4.3.4)

Then Lemma 4.3.1 follows immediately from the estimates (4.3.2)-(4.3.4). 0O

In the error analysis of parabolic problems the term p = u— Pyu and p, = u;— Phuy
plays very crucial role, where Py is the standard elliptic projection (c.f. [47]). But in
our present case solution u € H(Q2) and u, € L*(Q), and therefore the standard elliptic
projection P, at u; is not defined in usual manner. Therefore a modification in the

definition of elliptic projection has been proposed and analyzed in this work. For any
v € X* with [#0v/dn] = 0 along I, we define
. [ -V (81Vv) in

/ _{ —V - (62Vv) in Q.
Clearly f* € L*(£2). We denote X** to be the collection of all such v € X*. Then define
Ry, : X* >V, by

An(Rpv,vp) = (f*,vn) Yoy € V. (4.3.5)
The existence and uniqueness of such Rpv can be verified by setting Ryv = > ¢;®; in
(4.3.5) and then applying the coercivity of A,(.,.). Here, ®; represents basis function
corresponding to the éth grid. Again,

(f*5on) = — | V-(6Vo)opde — | V- (6aVo)upde
Q, o

)
— / Bievpds + | BiVv- Vopdz
r on Q

0
+ / 52-—vvhd8 + GoVv - Vupdz
r Oon 2

= B1Vuv - Vupdx + ,HQVU - Vupdx + / [ﬁ@-} vpds
Q1 Q, rl on

= A'(v,v) + A% (v, vp). (4.3.6)
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In the last equality, we have used the fact that [ﬂg—z] = 0 along I'. Combining (4.3.5)
and (4.3.6), we have

Ah(RhU, ’Uh) = Al(U,’Uh) + AQ(U, Uh) Vv, € V4. (437)

Regarding the approximation properties of Rj operator defined by (4.3.7), we have the

following results

Lemma 4.3.2 Let Ry, be defined by (4.3.7). then for any v € X** there 1s a positive

constant C independent of the mesh parameter h such that
[Bho = vllaray) + [1Bav — vl ) < Ch([0]ln2@y) + [0l H202))-
Proof. Coercivity of each local bilinear map and the definition of R, projection leads to

v = Brolay + v~ Brolna,

< C{A'(v — Ryv,v — vp) + A*(v — Ryv,v — vp)}
+CA' (v, v, — Rpv) — CA'(Rpv,vn — Rpv)
+CA%(v, v, — Rpv) — CA*(Rpv, vy — Ryv)

= C{A' (v — Ryv,v — vp) + A*(v — Rpv,v — vp)}
+C{A}(Ryv, vy, — Rpv) — AN (Rpv, v — Ryv)}
+C{A2(Ryv. vy — Rpv) — A*(Rpv, vy — Rpv)}

= C{A"'(v — Ryv,v — v3) + A*(v — Rpv,v — vp)}
+C{An(Rpv, vy, — Rpv) — A(Rpv, v, — Rpv)}.

Then it follows from Lemma 2.2.1 of Chapter 2 and Young’s inequality that

[lv — Rh’””%ﬁ(nl) + |lv - Rh“”%{l(nz)

< Cllv = Bpvl| e llv — vnll e, + Cliv — Buvllnyog v — vall i @a)
+Ch|| Bpv| meyllvn — Brvlla e

< ello = Ruolfinan + <llo = wnllin ey + ello ~ Rollys o

C Ch?
+?||U - Uh“%{l(nz) + T”RhU“?{l(n) + €l|vn — Rh””%{l(m'
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Again applying the fact || Rpv||m1q) < C(||v||lm1(a,) + [[v||la1(0,)) and for suitable € > 0,

we have

lv = Ruvllingay + Ilv = Bavllin, < Cllo = vallin,) + Cliv = vallin e,

+Ch2{”U|l%n(Ql) + ||U||§11(92)}-

Now, setting v, = v; and then using Lemma 4.3.1, we have

llv — Ruollaren) + v = Buvlimiey) < Ch{livllaza,) + vl rza)-
This completes the proof of Lemma 4.3.2. [

Corollary 4.3.1 Let u be the exact solution of the interface problem (4.1.1)-(4.1.8),
then

lu — Rpullnr@y) + lv — Rrullpig,) < Ch(llullaz@,) + lullazay))-

Proof. Since the solution u € X N Hy () with [u] = 0 and [,83—’7;] = 0, thus v € X** and

hence the result follows from the previous result.

Corollary 4.3.2 Let u be the exact solution of the interface problem (4.1.1)-(4.1.8),
then

s — Rpuell o) + e — Bouell pen) < Ch(lluellmzay) + lluellm2ey))-
Proof. Again u; = uy and ﬁl%?l = ,62% along I', therefore taking time derivative, we
have

3ut

Ou;  Ouy Ouyy Ouay = [u] =0 and [ﬁa_] =0 along T.
n

ot ot oy P2 on

Therefore, u; € X** and hence an application of Lemma. 4.3.2 leads to the desired result.

Lemma 4.3.3 Let Ry, be defined fized in (4.3.7), then for any v € X** there 1s a positive

constant C independent of the mesh size parameter h such that

| Rrv — U||L2(n) < Ch2(“v”H2(Ql) + ||UHH2(92))-
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Proof. For L? norm error estimate, we will use the duality argument. For this purpose,

we consider the following interface problem
-V (V@) =v— Ryv

with the boundary condition ¢ = 0 on 99 and interface conditions [¢] = 0, [[3%%] =0
along I'.

Now multiply the above equation by w with w € L2(Q)NH (Q,) N H () N {v :
¥ = 0 on 952} and [w] = 0 along ', and then integrate over (2 to have

(v — Rpv,w) = /Q V- (3V¢)wdz

= — [ V- (iVP)wdzx — V - (6Vo)wdx

Q] Qz
= 61V Vwdxr — /m%wds + 3.V . Vwdx
(93 r 87’ Q9
+ ﬂggéwds
r o on

= A1(¢,w)+A2(¢,w)+/F[ﬂwgis]ds.

Again w; = wy and (3,0¢,/0n = P20¢2/0n along I' implies [ﬂwa(j)/@n] = 0 along I.

Thus, the above equation reduces to
Al(p,w) + A%(¢,w) = (v — Ry, w). (4.3.8)
Let ¢ € V}, be the finite element approximation to ¢ defined as: Find ¢, € V}, such that
Ap(én, wp) = (v — Rpv,wp) Ywy € V. (4.3.9)
Arguing as deriving Lemma 4.3.2, it can be concluded that

¢ — Sullur@y + o — dnllua,
< C(ll¢ — wnllargy) + Il¢ — willaray))
+Ch(|All 2 + 1Bl H2(02)) Vwn € Vi

Let ¢; be defined as in (4.3.1) and then set w;, = ¢; to have

|6 — dullaron) + 1|16 — drllmr@s, < Ch{||dll w2 + Dl H2(00)
S Ch||v —_ Rh’U”Lz(Q).

46



In the last inequality, we used the elliptic regularity estimate ||¢||x < Cllv — Rpv||12(q)
(cf. [11]). Thus, we have

¢ = onllnq) < Chilv — Bpvl| e (4.3.10)

Since [v— Rpv] = 0 along T and v— Ryv € L2(Q)NHY ()N H ()N {e : v = 0 on 9O},

therefore we can set w = v — Rpv in (4.3.8) to have

lo — Ravllfoqy = Al(d,v— Ruv) + A (¢, v — Ryv)
= A'(¢ — ¢n,v — Ruv) + A*(¢ — ¢n,v — Ryv)

+{A (¢n,v — Ryv) + A*(¢n,v — Ryv)}
Cll¢ — onllmm @ llv — Brvllmay)
+C ¢ — ¢nllar @ llv — RuvllH1ay)
+{AN(¢n,v) + A*(¢n,v)} — {A'(¢n, Bav) + A* (¢, Rrv)}
Chllv — Ryvll12(q) - Ch(|[vll 20y + [Vl H2(02))
+An(Rnv, ¢n) — A(Rpv, dn)
= Ch?||lv — Ravl|r20) (vl m2(y) + [0l i222))

+{An(Rpv, ¢p) — A(Rpv, ¢n)}
= Ch?|lv = Ryoll2y (o]l sz + [vllmagy) + (7). (43.11)

IA

IA

Now, we apply Lemma 2.2.1 to have

(DI < Ch Y | Ruvllanae) lbmll e e

KeTy

< Ch Y N\ Ruvll a1l

KeTt

+Ch Y Bl o llénllm e

KeTy

= (I + ()2 (4.3.12)
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Again, using Corollary 4.3.1 and estimate (4.3.10), we have

| Rl e () |l i)
< A{IIRwv — vl b1 (xy) + 0l o) Hlldn — Dl (aey) + 1@l iz }
< {IIRhv — vl y) + 192l 5 (k) Hllfn — Dl () + |0l (2}
< C{hllvll 2y + Rllv] 20s) + 192l 0}
x{hllv — RpvllL2@) + 16l a0 }- (4.3.13)

Setting p = 4 in the Sobolev embedding inequality (2.2.8), we obtain

el = IBallaey + 1VEellac
Cha|[all Lagiey + Ch# || Val oy
ChE (|Gl sy + Ch2 |Vl a2 )
Chi ||tal 2y < Ch3|va pr2(cy) (4.3.14)

(A A

IA

where we have used the fact that meas(K) < Ch?. Similarly, for ||¢||g1x). we have
[$llm) < Ch2lgllx < Chllo = Ruvl 2. (4.3.15)
Combining (4.3.13)-(4.3.15), we have

| Broll s oo l|dnll 1 (1)
< Ch{||vllm2ga,) + IVl a2 HIv — Rav||L2e)-

Therefore, for (J)2, we have

(72 < CH{ollinian) + [0l o = Ruollzocay (4316)
Similarly, for (J),, we have

(D1 < Chllollmsgany + 02y Hlo — Raollzacey. (4:3.17)
Then, using the estimates (4.3.16) and (4.3.17) in (4.3.12), we have

(D) < CH o = Ryollzzgay (1olecany + Nolleny) (43.18)
Finally, (4.3.11) and (4.3.18) leads to the following optimal L? norm estimate

lo = Rpoll 2y < CR* ([0l 20y + 10] m20n)-

This completes the rest of the proof.
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Corollary 4.3.3 Let u be the exact solution of the interface problem (4.1.1)-(4.1.3),
then
[ — Ryull 120y < Ch?|Jullx,

[ us — Rl 2y < CR*(Jluel gz + lluell mzas))-

4.4 FError Analysis for the Semidiscrete Scheme

In this section, we discuss the semidiscrete finite element method for the problem (4.1.1)-
(4.1.3) and derive optimal error estimates in L? and H' norms.
The continuous-time Galerkin finite element approximation to (4.2.1) is stated

as follows: Find uy(t) € Vi such that u,(0) = Rpue and
(uht,vh) + Ap(un,vp) = (f,vn) Yop € Vi, te€ (0, T). (4.4.1)
Subtracting (4.4.1) from (4.2.1), we have
(’U,t — Upt, Uh) + A(u, ’Uh) — Ah(uh, ’Uh) = 0. (442)
Define the error e(t) = v — up = v — Rpu + Rpu — up, = p + 6, with p = u — REpu and
6 = Rpu ~ uy. Again, using (4.3.7) for v = u € X** and further differentiating with
respect to t, we have
An((Rpu)i, vn) = Al(utavh) + AQ(Ut,Uh)-
Also,
Ah(Rhuta Uh) = A] (uta Uh) + AQ(ut’ Uh.)'
From the above two equations, we have
Ah((Rhu)t — Rhut,vh) =0 Vvh S Vh.
Setting vy, = (Rpu); — Rpu, in the above equation, we obtain (Ryu): = Rpus.

Now, by the definition of Ry, operator and (4.4.2), we obtain

(6:,v8) + An(6,vn) = ((Rpu)e — une, vn) + An(Rpu — up, vp)

Ryuy, vp) — (upt, vn) + Ap(Rpu, vp) — Ap(tn, vp)

(
(
= (u — pt,vn) — (Unt, V) + A(u, vp) — Ap(un, vn)
(=pt, vn) + (ur — tne, va) — (ue — Unt, Un)

(=

Pt, Uh)
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For v, = 8, we have

(61,6) + Cll61I31 (0

IA

o2l L2 [10]] 20y

A

: €
< Cellpdlzi + 5”9”?11(9)-

Integrating the above equation form 0 to ¢t and using Corollary 4.3.3, we obtain
000 < © [ lodaands + 18O
< ¢ [ Inlfxads
< Ot [ ulunay) + oo - (143

Now, combining Corollary 4.3.3 and (4.4.3), we have the following optimal pointwise-in-

time L?-norm error estimates.

Theorem 4.4.1 Let u and uy be the solution of the problem (4.1.1)-(4.1.8) and (4.4.1),
respectively. Assume that un(0) = Ryug. Then there exists a constant C independent of
h such that

t :
le(®)lla@ < Ch2{Jlullx + ( / (el + luallzian)?ds) * }.

For H'-norm estimate, we first use Corollary 4.3.1 to have

2

Z Il a1, < Ch Z ||| r2(q,).- (4.4.4)

i=1 1=1

Applying inverse estimate 2.2 of Chapter 3, we obtain

2 2
S 0O m@) < CHY 1602w,
i=1 1=1

’ 1
< on ] [ Uy + o)}

1

2

i
= on{ [ ullmon + el wea)?} (4.4.5)

Combining (4.4.4) and (4.4.5), we have the following optimal pointwise-in-time H'-norm

error estimates.
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Theorem 4.4.2 Let u and uy be the solution of the problem ({.1.1)-(4.1.8) and (4.4.1),
respectively. Assume that un(0) = Rpug. Then there exists a constant C independent of
h such that

2 t 1
el < Ch{ 3 llullx + / (Il + el )?) -

4.5 FError Analysis for the Fully Discrete Scheme

A fully discrete scheme based on backward Euler method is proposed and analyzed in
this section. Optimal L? norm error estimate is obtained for fully discrete scheme.

We first partition the interval [0, T] into M equally spaced subintervals by the
following points

O=ty<ti<...<ty=T
with t, = nk, k = %, be the time step. Let I,, = (¢,_1,t,] be the n-th subinterval. Now
we introduce the backward difference quotient

¢n _ d)n_l

Ak¢ = k )

for a given sequence {¢"}M, C L?(Q).
The fully discrete finite element approximation to the problem (4.2.1) is defined

as follows: Forn =1, ..., M, find U™ € V}, such that
(AkUn,’Uh) + Ah(Un,’Uh) = (f”,vh) Yo, € Vj, (451)
with U® = Rpug. For each n = 1. ..., M, the existence of a unique solution to (4.5.1)

can be found in [11]. We then define the fully discrete solution to be a piecewise constant

function Up(z,t) in time and is given by
Up(z,t) =U"=x) Vtel,, 1<n<M.
We now prove the main result of this section in the following theorem.

Theorem 4.5.1 Letu and U be the solutions of the problem (4.1.1)-(4.1.8) and (4.5.1),

respectively. Assume that U® = Ryug. Then there exists a constant C' independent of h
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and k such that

|U(t.) — u(tn)”LZ(Q)

2

<Ch*+k)) {||u°||112<nz) + luell 2,7 1200) + HUttllu(o,T,u(nm}
1=1

Proof. We write the error U™ — u" at time ¢, as
Ut —u" = (U" — Rpu™) + (Rpu”™ —u™) =: 0™ + p

where " = U™ — Rpu”™ and p" = Rpu™ — u™.

For 0™, we have the following error equation

(A", v) + An(67, vn)

— (—ARRpU™ + AU™, vp) + An(—Rat® + U™, 03)

= (AU, vp) + Ap(U™. vy) — (A Rpu™, vp) — Ap(Rpu™, vp)

= (f" vn) — (ApRpu™, vn) — A(u™, vp)

= (f",vn) = (AxRpu, va) + (uz’, va) — (f7, vn)

=: —(w", vy) (4.5.2)

where w™ = ApRpu™ — up. For simplicity of the exposition, we write w"™ = w + wj,
where w] = Ry Agu”™ — Agu” and wf = Agu™ — uf.

Now, setting v, = 6™ in (4.5.2), we have
(A", 0™) + Ay (07, 0") = —(w™.67) (4.5.3)
Since Ap(0™,6™) > 0, we have
162 < Kllw™||L2) + 16" | 2@

n n
< 1N + 6 Y Il + £ wdlm.  (454)
1=1 71=1

In ©Q;, the term w} can be expressed as
w{ = RhAkul Akul = (Rh - ( )

1 1
= (Rh_])}g_/ ’U,ltdt E/ Rhult—u”)dt
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where u;, ¢ = 1,2 is the restriction of u in 2; and u;; = %1.

An application of Corollary 4.3.3 leads to

tJ 2
kllwi |2, < Chz/ {Z ||ut||H2(Ql)}dt
t-1 " =

Similarly, we obtain

17 2
i < O [ { Sl
b1 "=

Using above two estimates, we have

kZ i |2y < Ch? / {znutum o Jdt. (4.5.5)

Jj=1
Similarly, for the term w3, we have
. tJ
j -1
kwh = — w7 — kul = —/ (s —tj_1)unds
t;-1

and hence t
7
blugleny <k [ lalioayds

tJ—l

Summing over j from j = 1 to j = n, we obtain

n tn 2
k> w2 < Ck/ {Z ||Uu||L2(Q,)}dt- (4.5.6)
j=1 0 i=1

Combining (4.5.4), (4.5.5) and (4.5.6), and further using the fact that ° = 0, we obtain

2 tn
s < O RS [ (ol + oy Ja
=1
2
< C(h*+k) Z{ [well 20, m200.)) + Nwwll 2025220, ))} (4.5.7)

i=1

An application of Corollary 4.3.3 for p™ yields

16" 2@y < Ch2Z||u l2(0,)-

1=1

53



Again, it is easy to verify that

tn
ooy < oy + [ ot
0

Thus, we have

2
10" |22y < CRZ Y {Iluollmmn + IIUzHLZm,T,HZ(nz))} (4.5.8)

1=1

Combining (4.5 7) and (4.5.8) the desired estimate is easily obtained. [

Remark 4.5.1 Although the error analysis of Sections 4.4-4.5 depends on standard p
and 6 argument gwen wn Thomee’s monograph ([47]) for non wnterface problem, the
novelty of this chapter are contained wn Section 4.3, where we have wntroduced mods-
fied elliptic projection and approrimation properties of such projection under minimum
regqularity assumption of the solution. Due to low global reqularity of the solution the
classical analysis 1s difficult to apply for the convergence analysis of the interface prob-
lems. Section 4.3 bridges the gap between standard finite element technique for non

interface problems and interface problems.
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Chapter 5

Finite Element Method for
Hyperbolic Interface Problems

A finite element method is proposed and analyzed for hyperbolic problems with discon-
tinuous coefficients. The main emphasize is given on the convergence of such method.
For a finite element discretization discussed in Chapter 2, optimal error estimates in
L>(L?) and L*®(H") norms are established for continuous time discretization. Further,
a fully discrete scheme based on a symmetric difference approximation is considered and

optimal order convergence in L>®(H') norm is established.

5.1 Introduction
In Q = Q; UT'U,, we consider the following hyperbolic interface problem
up — V- (B(x)Vu) =0 in Q x (0,7 (5.1.1)
with initial and boundary conditions
uw(z,0) =up & w(z,0) =vp inQ; u(z,t)=0 on 9N x (0,7 (5.1.2)

and jump conditions on the interface
o
[w] =0, [ﬁa—z] —0 alongT. (5.1.3)

Here, ug = ug(zr) & vg = vo(z) are real valued functions in Q. The domain §2, symbols

[v] and n are defined as in Chapter 1, and T < oo.
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The main objective of this chapter is to extend the results obtained in previous
chapter to hyperbolic interface problems. More precisely, we are able to prove optimal
order pointwise-in-time error estimates in L? and H! norms for the hyperbolic interface
problem (5.1.1)-(5.1.3) with semidiscrete scheme. Fully discrete scheme based on a sym-
metric difference approximation is also analyzed and optimal H! norm error is obtained.
To the best of our knowledge there is hardly any literature concerning the convergence
of finite element solutions to the true solutions of hyperbolic interface problems.

The rest of the chapter is organized as follows. In section 5.2, we recall some basic
results from the literature. Further, we define some auxiliary projections and discuss
their approximation properties. Section 5.3 is devoted to the error analysis for the
semidiscrete finite element approximation. Finally, error estimates for the fully discrete

scheme are derived in section 5.4.

5.2 Preliminaries

Due to the presence of discontinuous coefficients the solution u of the interface problem
(5.1.1)-(5.1.3), in general, does not belong to H2?(Q2). However, the solution is assumed to
be smooth in each individual subdomain §2,, ¢ = 1, 2. More precisely, the problem (5.1.1)-
(5.1.3) has a unique solution u € L*(0,7;X N H()) N HY0.T; H2({4) N H3(3)) N
H?*(0,T;Y) (cf. [13, 30]).

As a first step towards the finite element approximation, the weak form for the
problem (5.1.1)-(5.1.3) is defined as follows: Find w: (0,T] — H,(2) such that

(ug, v) + A(u,v) =0 Yv € Hy(Q), a.e. t € (0,T] (5.2.1)

with u(0) = up and u¢(0) = vg.
Let IT;, : C(Q) — V}, be the Lagrange interpolation operator corresponding to the
space Vj. As the solutions concerned are only on H'(§2) globally, one can not apply the

standard interpolation theory directly. However, working in the space
X ={vel*N):ve HX (M) UH*(Q)}N{y:9 =0 ondN & [v] = 0 along T},

we have derived the optimal error bounds for the interpolant II; in the previous chapter.
Further, the results are also extended for elliptic projection Ry defined by (4.3.7) in the
space X** = {v € X*: [30v/On] = 0 along T'}. The following results for the linear

interpolant and elliptic projection are recalled for our convenience.
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Lemma 5.2.1 For any v € X*, we have
v = Tavllaay) + [lv = Davllaige,) < CR(Pllk20,) + vl F2(02)-

Lemma 5.2.2 Let Ry, be defined by (4.3.7), then for any v € X** there is a positive

constant C independent of the mesh parameter h such that

| Rrv — vl gy + | Rro — vl puq,) < Ch(||lvlla200) + [0l H2002))
| Rhv — |20y < CR*(Io| 2y + 0]l 200))-

Remark 5.2.1 Let u be the solution for the problem (5.1.1)-(5.1.3). Then clearly

u, uy € X*™ and hence above results are also holds true for v = u, u;.

Then, the following result for L? projection, which is an extension of Lemma

3.2.3, is an immediate consequence of previous Lemma 5.2.2.

Lemma 5.2.3 Let L, be defined by (3.2.12). Then, for v € X**, there is a positive

constant C independent of the mesh size parameter h such that

@ o= Laollz) < OB (ol + 0y ),

() v = Lav|lgiqy) + llv = Lpv||ar ey < Ch(”””lﬂ(nl) + |]U||H2(Qz))-

Proof. Part (a) follows from the fact that Lyv is the best approximation to » in Vj, with
respect to L? norm and Lemma 5.2.2.

For H' norm estimate, we use inverse inequality (3.2.2) to have

2

2
Dol = Luvlluray < D llo = Ruvllusy + | Rwv — Luvll ey
=1 =1

2
< > v = Ruvllay + Ch7Y|[Buv — Lol 2oy

=1

IA

2
S llv — Ruvllmay + Ch™ (uth ~ vz
=1

+”’U — LhU”Lz(Q))

which together with Lemma 5.2.2 leads to Part (b) of Lemma 5.2.3.
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5.3 Error analysis for the Semidiscrete Scheme

This section deals with the pointwise-in-time error analysis for the spatially discrete
scheme. Optimal order of convergence in L®(L?) and L®(H"') are established.

The continuous time Galerkin finite element approximation to (5.2.1) is stated
as follows: Find wu,(t) : [0,T] — Vj such that

(uhtt,vh) + Ah(uh,vh) =0 VopbeW, te (O,T] (5.3.1)
with up(0) = Rpuo and ups(0) = Lyve. We assume that ug € HL(Q) N H* () & vy €
H(Q).

Regarding the stability for uy, we have the following result. The proofs involve
standard energy arguments and therefore the proof is omitted.
Lemma 5.3.1 Let uy, satisfy (5.3.1). then. fori=1,2,3,4, we have

2 2

ai az—l 2 ) 5
”%uh(t) 2(9)+Ha_tz—_1“h(t)‘ Q)5CIZ_;{”“O”H’(QI)+||U0||Hz—1(nz)}'

L HY(

Now, subtracting (5.3.1) from (5.2.1), we have
(utt — Uptt, ’Uh) -+ A(u — Up,. ’Uh) = Ah(uh,vh) — A(uh, ’Uh) Vl‘h c Vh. (532)
Define the error e(t) as e(t) = u(t) — ux(t). Then we have the following error equation
(ett, Uh) + A(e, Uh) = Ah(uh, Uh) — A(uh, Uh) Yoy, € Vh. (533)
Setting vp, = Lpu, in (5.3.3) and using (3.2.12), we obtain the following error equation
(e, er) + Ale,er) = {An(un, Lnus) — A(un, Lpus)}
+(uss — Unst, Uy — Lpty) + A(u — up, up — Lpuy)
—{(w — Unse, upe) + A(u — up, upy)}
= {An(un, Lrus) — A(up, Lywy)}
+(uy — Loy, wy — Lpuy) + (Lt — Unes, y — Lpuy)
+A(u — up, uy — Lyuy) — {An(un, unt) — Aun, une)}
= {Ap(un, Lyuy) — A(up., Lyuy)}

1d

5 37 (0 = Intae, e ~ Liue) + Al — un, vy~ Lyue)
1d

_ﬁﬂ{Ah(Umuh) — A(un, up)}-
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Integrate the above equation from 0 to ¢, we get
1 2 2
_HetHLZ(Q) + Cllellz g
1
< Sllec(Olzaq) + ClleO) 1z ey + / |An(un, Lnus) — A(un, Lnus)|ds
t
+§||ut — LhutHiz(Q) — QHUt(O) — Lhut(0)||2Lz(Q) + /0 A(u — up, us — Lpus)ds
1 1
+5 {An(un, un) — Alun, un)} = 5{An(un(0), un(0)) — A(un(0), un(0))}-

With Uh(o) = Rjuyg, u,ht(O) = Lpvg and the fact that HetHLz(g) > “Ut — LMM“I}(Q), and

further using Lemma 5.2.3 we obtain

2
||€||%11(Q) < C}LQ(HUOH?{%Q]) + HUOH%Z’(QQ)) + CZ [|vo — LhUOH%Z(Ql)
=1

t
+/ {Ah(uh, Lhut) — A(’U,h, Lhut)}ds
0
t
+C/ {”’lts - Lhusnip(gl) + ”US - Lh'll,s”?p(gz)}ds
0

+C/O ||e||3{1(9)d8 + C{Ah(uh, uh) — A(uh, uh)}
+C|An(ur(0), up(0)) — A(up(0), ux(0))|. (5.3.4)

Using Lemma 2.2.1 and Lemma 2.2.2, we obtain

| An(un, Lput) — A(un, Low)| < Chllupl| g on

(@)

< Ch||u - uh||H1 Q) LhutHHl(Q*) + Ch||u||H1 Qx) LhutHHl(Q )

< Chanh“t“HI(Q;) + Ce'le“Hl(Ql’:)
3
+Ch||ullx > (I Lnvell iy + | Dnttell o)}

KeTy
< Chz”Lhut”irl(n;) + Ce”e“?ﬁ(sz;)

3
+COha|lullx Y {I1Lxu ~ wllan ko) + el }
KeTy

3
+Ch2 (lullx > {ILnue — el sy + el s -

KeTpx
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We now recall the extension i, € H2(Q), | = 1,2 of uy = u¢|q, satisfying (2.2.2) to have

| An(un, Laug) — A(un, Lyug)|
2

3
< CR| Liualis py + Cellelliniazy + Ch3llullx 3 1 Ewie — el s sy
=1

3 ~ ~
+Ch2ullx Y {Ilanllm ) + el o o)}
KeTr

< Ch2(| w3z + Cellelinniap) + ChEllullx D fluefl 20y

=1

2
3 ~
+Ch2 ||ullx Y il an)

=1

2
5
< CthLhUt”f{l(n;) + Cellff“?{l(n;) + Chz|ul|x Z el 20,
1=1

2
+Ch?|lul|x Z %l m2(s2)

=1

2
5
< Ch2||Lhut”%Il(Q;) + CE”e“%il(Q;) + Ch?||ul|x Z “Ut||H2(Qz)
=1

2
+CR?|[ullx ) lluel 2

=1

2
< CRA(llullk + Y lluelleqn) + Cellelin . (5.3.5)

=1
Similarly arguing as in (5.3.5), we obtain
IAh(th uh) - A(Uh, uh)l

< |Ah(uh, Up, — Lhu) — A(uh, up — Lhu)| + |Ah(uh, Lhu) — A(uh, Lhu)|

< Ch”Uh”Hl(Q;)

up — Lpullmiozy + Chllunl| g @p) I Lavl| g1z

< Chllunll gy {llu — unllmrop) + 1w — Laullayepy }
+Ch{||un — ullmoq) + llullm @) HI Loull rag)

< Ch(||lunl g

+Chllel oz | Luull oz + Chllullmian | Laull rap)-

ellmop + lunllmep llu — Luullmep)
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Then apply Young’s inequality to have
|Ap (up, up) — Aup, up)|
< Chz““hnin(n;) + CEHGllQHl(Q;) + Ch2||“h||f11(ﬂ;)||u||x
+Ch2||sz“||2;11(9;) + Ce”e”%ﬁ(n;) + Ch- h%”U”X . h%”U”X
< Chz']“h“iﬂ(a) + CC”P”?JI(Q) + Ch?”“h”fﬂ(m + Ch?||u)l%
+CR*[[ull% + Ch*|[ul%
< Cl2lluplip ) + CB*[lullx + Cellellfna
< Ch(|luollty @y + llvoll72() + Ch*[lull’ + Cellellq)- (5.3.6)
Finally,
4n(1n(0), un(0)) — A(ua(0),un(0)
< |An(us(0), un(0) — Lyug) — A(un(0), un(0) — Lypuo)|
1 An(un(0). Lnug) — A(un(0), Lyuo)|
< Chllun(0) (0) — Lauoll o) + Chlun(0) ]| a0
< Chlun )Ly (| Bt = ol -+ o — Ll

r)

+Ch{||Rhuo — uollar(as) + lluoll iz HI Latol mras)

< Ch|[Ryuol| 110y {Chlluollx + Chlluollx} + Ch{Chlluollx + lluollzrrag) Hh?[luollx
< Ch? - hi|lugl% + Ch? - halfuol% + Ch - 1 |luollx - b2 fluollx

< Ch?||luo%- (5.3.7)

Using (5.3.5)-(5.3.7) in (5.3.4), we obtain

lelZne < Ch*(luoll% +vao||m,> )+ CR? / ol ds

t
+Ch? / Z||Ut”H2(Ql)dS+C/ ||€“§11(n)d3

011

+CN? Z el 2o, w2y + CH2(Jluollk + llull%)

=1
t
+ClelZnq + C / lell2 s

An application of Gronwall’s lemma leads to the following optimal H!'-norm error esti-

mate
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Theorem 5.3.1 Let u and uy, be the solution of the problem (5.1.1)-(5.1.3) and (5.3.1),
respectively. Assume that uy(0) = Ryug and up(0) = Lpve. Then, for sufficiently smooth

ug, vo i $Y, 1=1,2 we have

le@lme < Ch{lluollx + lullx

2
+ 3 ol + lull o rsman) + lulizerx b O
=1

For any function 1 in [0, 7], we define &(t) as
a0 = [ oo
Clearly 1/Ajt = 4. For L? norm error cstimate, we integrate (5.3.1) from 0 to ¢ to have
(@pee, v) + An(fip, vy) = (Lpvo,vp) Yo, € Vi, t € (0,7 (5.3.8)
with ip(0) = up(0) = Lpvg. Similarly, integrating (5.2.1) from 0 to ¢, to obtain
(Te, vp) + A, v) = (vo,vn) Yup € Vi, t € (0,T). (5.3.9)
Subtracting (5.3.9) from (5.3.8), we obtain
(Tnee — Uge, vn) + Ap(Qp, vn) — A(G, vn) = (Lpve — vo,vn) Yo, € Vi, t € (0,T].
For optimal error estimate, we split the error e = up — u as
e=up— Rpu+ Rpu—u=20+np.
Then, for 8, we have the following error equation

(Bur, vn) + An(8, vp) = (Gne — Rutu, vn) + An(tn — Rpti, vp)
= (Ung — U + Ggg — Rpthes, vn) + Ap(Gin, vn) — A4, vp)
= —(Pee, vn) + (Unee — Gge. vn) + Ap(@n, vn) — A(Q, vp)

= —(pu,vn)- (5.3.10)

Here, we have used the fact that (Lpvo — vo,vn) = 0. Setting v, = 6, in the above
equation, we have

Ld
2t

1d

“étHiz(Q) + 'éEAh(é»é) < Cllpdi T2y + Cllét“iz(n)-
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Integrating from 0 to ¢ and further applying Lemma 4.3.3 of Chapter 4, we obtain
16]72) + An(6,6)
1 t
< Ot [ (s + s+ C [ 101Frards.
0

Here, we have used the fact that u;(0) = Ryug and 9(0) = (. Further, a simple applica-

tion of Gronwall’s lemma leads to
2
1012y < CP* > Nl z2orsm2(0,))- (5.3.11)
i=1
This together with Lemma 5.2.1 gives the following optimal L? norm error estimate
Theorem 5.3.2 Let u and uy, be the solution of the problem (5.1.1)-(5.1.3) and (5.3.1),
respectively. Assume that up(0) = Rpuo and up(0) = Lpve. Then, for sufficiently smooth
ug, vg n $Y;, i=1,2, we have
2
le(®)ll 2y < Ch* > (lull s,y + ludll2o:m2(0,y)- O
i=1

5.4 Error Analysis for the Fully Discrete Scheme

A discrete-in-time scheme based on a symmetric difference approximation around the
nodal points is considered and analyzed in this section.

We first divide the interval [0.T] into M equally spaced subintervals by the points
O=ty<ti <...<tyy =T

with ¢, = nk, k = T/M being the time step. Let U™ = U(t,) be an approximation
of u(t,). Then the fully discrete finite element approximation to the problem (5.3.1) is
defined as follows: For given U° and U', seek a function U™ = U(t,) such that

(atétU",vh) + Ah(Un,Uh) =0, n>1, v, €V (541)
with

oU™ = k=Y (U™ —U™), QU™ = k(U™ ~ U™') and
Un — (Un+l U™ + Unxl)/4 _ (Un+1/2 + Un—1/2)/2'
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We write * = U™ — u}. Then (5.3.1) and (5.4.1) leads to the following error

equation in &
(DDE™, vn) + An(E™,v8) = An(uff — T2, vn) + (7", 0n) v4 € Vi (5.4.2)
where 7" = u?,, — 6,0,u}. Setting v, = 9,€"*32 in the above equation, we have
(DDE™ €™ %) + An(€" Bi&™2) = An(uy = T, BE™3) + (1, 06™1).  (5.4.3)
Again, it is easy to verify that
(D:D:£™, D™+ 3) = (8,9,™, %(a@n +9£™)) = égt”atfn”izm) and

AE B = SBANETE ) - SD A e )
Substituting these expressions in (5.4.3), we obtain
1~ 2 1= 1 1 = 1
§at”at§n”L2(Q) + EatAh(§n+2,§n+2) = Ap(up — Uy, 0,67 7)
+(r™, 8,6 7)
FoBAE e

1- 1
n+p+ 5c’)t,cl(gn—%,gfl*:).
Further, applying the coercivity of Ap(...), we have

1 ny 2 n—1 C n+i2 n—=2
S 10 ey = 106 MMy b+ o { 1€ H ey — €™ 3 }

1—
S+ I3+ SDAE5,670).

Summing over n from n = 1 to n = [, we obtain

1 C 1 1
S 10€ ey = 19 ey } + 5 {1 Hi0) — IEF Bco}

1 l
1 — 1 1
SEY U7+ )+ gk Y BAE2,675). (5.4.4)
n=1 n=1

For I7', we use Taylor’s expansion to obtain

1 [t O%uy, 1 [a+d O%uy,
Ex—u;::—/ (t, — ) 52 ds—l—i/ (tn+%—s) 52 ds
t 1 tn

2

"z

64



which immediately implies
[dy — upll o) < Ck?|ungell oo (g))- (5.4.5)
Thus,
KIP < CHID&™ 2| m @i — uplle
< C{lIE ) + 1€ 2 oy Helluneel oo a2 @) (5.4.6)

Here, we have used the estimate (5.4.5).
1 1
Define A; = mazocpl|[€"*3[|], where [||€"2||* = §8:£"172(q) + 1€ 21131 q)-

Then summing (5.4.6) over n from n = 1 to n = [, we obtain

!
kY IF < CAR? [unl| oo - (5.4.7)
n=1
Next, for I3, we note that
KT < Ol ooy 10 oy + 196" oo ). (5.4.8)

For 7%, we have the following expression

3
”"'nHLZ‘(Q) < Ck> ||Uhtttt“L°°(L2(Q))- (5.4.9)

Summing (5.4.8) over n from n = 1 to n = [ and further applying (5.4.9), we have

1
kZ I3 < CAlk2||“htttt||L°°(L2(Q))- (5.4.10)

n=1

Then applying (5.4.7) and (5.4.10) in the equation (5.4.4), we obtain

1 1
||at§l||iz(n)+||§l+2||?11(n) < C||Bt§0||%2(n)—I—C||§2||f,1(9)

+C A (|Junsseel| zoo(r2e)) + lunsel| Lo ()
-1
1
N sl
n=1
Further, applying Young’s inequality for ¢ > 0, we have

1 1
NE*=? < ClOL® G2y + CllER T g
+eC A} + C(e)k* (|[wnessel| LooL2(0)) + [uneell =1 (0y))?

-1
1
+k ) |llen* ]2,
n=1
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The above relation hold true from [ > 1. Thus, for a suitable ¢, we obtain

A2 < Ol N2 + ClIE 2 q)

2
(K Nl ooy + el }
-1
1
+EY lllem 311
n=1
and hence

2
An < C{((@é‘)((m(m + [(5%“111(0)} + C(f)kQZ {HUOHH‘*(QL) + “U()“m(m)}
=1

1-1
+Ck > |ljgm*=1]]. (5.4.11)
n=1

Now, replacing |l|§"+%||] in the sum on the right by A,, and applying discrete Gronwall’s

lemma, we obtain the following estimate which is crucial for our error analysis.

Lemma 5.4.1 Let & satisfy (5.4.2). Then, there exists a positive constant C' indepen-
dent of h and k such that

, 1
10 22y + 11€7 2 || 2 ey

2
1
< C{lI8e Lo + 1€ ey} + CR* D {lluollzrsay + llvollsay -
=1
For the convergence analysis, we need to fix U® and U. Let U?, P, and P, be appropriate
projections of ug = u(0), vy = u;(0) and w; = wuyu(0), respectively. Now, we set
l]1 = UO + kﬁl + %2-?2 with UO = RhUO, ﬁl = Lh’UO and ]32 = Lhwl. We now have the

following theorem:

Theorem 5.4.1 Letu and U™ be the solution of (5.1.1)-(5.1.8) and (5.4.1), respectively.
Let up € HY () N HA(Q) N HYS) and vo € H¥ (W) N H3(Q) N LAQ) N { : o =
0 on 00}, and k = O(h). Then there exst a constant C such that

1
1043 —u(ty )l

2
< C(h+k?) ( > {lluollzsy + ol @y + llull 2o,

gt} + lultn llx ).
=1

n+
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Proof. Clearly, £ = U® — u;,(0) and 8,£° = (§' — £)/k = (U' — un(t1))/k.

Using Taylor’s expansion, we have

k2 1 t1 83
up(t1) = un(0) + kup:(0) + —unu(0) + '/ (t—s)° Zh ds.

Now
1T — un(t) | ) < CK?|| Ly (0) = une(O)| o) + k2 l|untell oo (e) -
Using (5.2.1), (5.3.1) and the definition of L? projection, we note as t — 0 that

(Lats:(0) — upe(0),vn) = (Lpuwe(0), va) — (unet(0), vn)
= (u(0),vn) — (une(0), vp)
= An(un(0),vn) — A(u(0), vn)
= Ap(un(0),vr) — A(un(0), va) + A(us(0), va)
—A(u(0), va)

A

Ch||Rruol| a1 0

Va1 (n)

+C|| Rpuo — ol #r ey l|vnll 51 (e

IA

Chlluoll iy (e llvnll (e

2
+Ch2 ) lluoll @y lvnl o)
=1

2
< Ch2z||u0||H3(Ql)”Uh”H1(Q)'
=1

Applying inverse inequality and setting vy = Lpus(0) — upy(0), we have

2
1L (0) — wnee(0) ey < CA™™ Y lfuoll gy, m = 0,1
=1

and hence,

1
162y = €' e = 10 = un(t)ll e
2

< Ok (ol + lvollmaan)-

=1
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Ap(Rpug, vp) — A(Rpug, vn) + A(Rpuo — g, vp)

(5.4.12)

(5.4.13)



In the last inequality, we have used Lemma 5.3.1. Similarly, we write

1
10| 2y = EHUl—uh(tl)”L?(ﬂ)
2

< Ck*Y (lfuoll sy + llvoll2e). (5.4.14)

=1

Finally, a simple application of Lemma 5.4.1, Theorem 5.3.1 and the triangle inequality
1 nal
102 = u(tnr )Lz < W€ ) + etz

leads to the desired result. O
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Chapter 6
Numerical Results

In this chapter, we shall present some numerical experiment of a two-dimensional prob-
lems to illustrate our theoretical findings. All computations have been carried out using
the software MATLAB-6.

For each example, we compute the error between the exact solution and the finite
element solution in L? and H' norms. Numerical results for fitted finite element method

is presented in this chapter.

6.1 Example 1

We consider the following two point boundary value problem in {2

u,=0 on NN, i=1,2, (6.1.2)
ui|r = uglr,  (61Vur - mi)|r + (B2Vus - ng)|r = 0, (6.1.3)

where n; denotes the unit outer normal vector on €);, 1 = 1,2. Here, the domain is the
rectangle 2 = (0,2) x (0,1). The interface occurs at z = 1 so that , = (0,1) x (0, 1),
2, = (1,2) x (0,1) and the interface I' = £; N Q.

For the exact solution, we choose
u(z,y) = sin(rz)sin(ry), (z,y) €

and

us(z,y) = —sin(2nz) sin(wy), (r,v) € Q.
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The right-hand sides f1 and f; in (6.1.1) are determined from the choice for u; and us,,
respectively with g; = 1 and , = 5

Let h, and h, be the discretization parameters along x and y axes, respectively.
Then we choose our mesh parameter h such that h? = h,% + hyz. From Table 6.1, we see

the convergence of the finite element solution to the exact solution in L? and H! norms.

h? (ha, hy) llu = unllL20) | llw — unllnq)
1/8 | (1/2,1/2) | .056165 158861
1/32 | (1/4,1/4) | .014041 079430
1/128 | (1/8,1/8) | .003510 039709
1/512 | (1/16, 1/16) | .000877 019854

Table 6.1: Numerical results for the test problem (6.1.1)-(6.1.5).

6.2 Example 2

We consider the following parabolic interface problem in €

u—V-(BVu)=f in Qx(0,1], 1=1,2, (6.2.4)
u(z,y,0) = up(z,y) inQ, u(z,y,t) =0 on 9N x (0,1] (6.2.5)
wifr = uzlr,  (51Vuy-ng)|r + (82Vuy - na)|r = 0, (6.2.6)

where n, denotes the unit outer normal vector on €,, i = 1,2. For the exact solution,

we choose

sm t

w(z,y) = sin(mz) sin(mry) in Q4 x (0,1]
and
uz(z,y) = —e""'sin(27z) sin(ry) in Q, x (0,1].
Then the source function f and the initial data u, are determined from the choice for
u, and uy with 8, =1 and 3y = =
The L?*norm and H'-norm errors at ¢t = 1/130 for various step size h are pre-
sented in Table 6.2 for the fully discrete solution. The convergence rates are found to

be within our expectation.
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h | llu=Uillizg | llu= Ul
1/8 | 2.06247 x 1073 | 5.17359 x 1072
1/16 | 5.28838 x 107* | 2.72294 x 1072
1/32 | 1.36298 x 1074 | 1.36831 x 1072
1/64 | 3.47701 x 107 | 6.94573 x 103

Table 6.2: Numerical results for the test problem (6.2.4)-(6.2.6).
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