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Stud~es on Hadron structure Functions and GLDAP Evolution Equations 

C hapter-I 

INTRODUCTION 

1.1. Structure of Matter: A Historical Background 

Extensive researches, since the start of nineteenth century, have been carried out by the 

scientists to conclude about the ultimate representatives of the matter that may -be the 

basic building blocks - now a day called as elementary particles [I], also called sub- 

atomic particles. 

In the beginning of nineteenth century, i t  was established that inalter is composed of 

atoms and molecules. But soon it was found that atom has also a rich structure and in 

1897, Joseph John Thomson, a professor of physics at Cambridge University in England, 

established thc cxistence of a parliclc - thc 'clcctron' that slill is classiiicd as an 

elementary particle. Six years later, Ernest Rutherford and Frederick Soddy, working at 

McGill University in Montreal, found that radioactivity occurs wllen atollls of one type 

transmute into those of another kind. The idea of atoms as immutable, indivisible objects 

had become colnpletely untenable. The basic structure of the atom becanle apparent at the 

starting of twentieth century. when experinlent and ideas of Rutherford and Niels Bohr 

established that atom consisted of a positively charged nucleus [2-61 with electrons 

revolving around it. 

In 1932, Jaines Chadwick identified 'neutron' and Werner Heisenberg suggested that 

atomic nuclei consist of 'ne~~trons '  and 'protons' [2-61. Thus atomic picture becomes 

somewhat clear with electron, neutron, proton and 'photon' as the basic building blocks. 

Photon has been added as a field particle for electromagnetic force such as exists between 

the nucleus and electrons in the atom, i.e., it is a quant~un unit of radiation. It has zero rest 

mass and is uncharged. I n  the same year, Carl David Anderson found the positive electron 

or the 'positron' while studying cosmic ray showers. The discoqery of this particle, being 

the antiparticle of electron, predicted the existence of antimatter. With this discovery it 
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was thought that thc atomic picture could bc co~nplctcd, apart from k,ur force - said 

particlcs with tli~ce llossiblc ar~tipaslicles - anticlcctrons, ariliprotons and anti ncutrons. 

thus inclutling scvc~l char.actcrs. While clcctro~i ant1 proton arc stable particlcs, thc 

neutron disintegrates with a lifetime of 18 minutes into a proton with an ejection of p- 
particle and a 'neutrino'. A ncutrino has zero rcst mass and no charge. Study of cosnlic 

ray showers led to the discovery of a number of elementary particles. 

Quark, any of six types of particle that form the basic constituents of the elementary 

particles called hadrons, such as the psoton, neutron and pion. The quark concept- [7-81 

was independently proposed in 1963 by the American physicists Murray Gell-Mann and 

George Zweig. The term 'quark' was taken from the novel by Irish writer James Joyce. 

'Finnegans Wake'. Quarks were first believed to be of three kinds: up, down, and strange. 

The proton, for example, consisted of, two up quarks and one down quark, wliile the 

neutron consisted of two down quarks and one up quark. Later theorists suggested that a 

fourth quark might exist; in 1974 the existence of this quark, named charm, was 

experimetltally confirmed [9-10J. Thereafter a fifth and sixth quark-called bottom and 

top, respectively - were proposed for theoretical reasons of symmetry. Experimental 

evidence for the existence of the bottom quark [9-101 was obtained in 1977; the top quark 

eluded researchers until April 1994, when physicists at Fer~ni  National Accelerator 

Laboratory (Fennilab) announced they had found experimental evidence for the top 

quark's existence. Confirmation came from the same laboratory in early March, 1995. 

Quarks have the extraordinary property of carrying electric charges that are fractions of 

the charge of the electron, previously believed to be the fundamental unit of charge. 

Whereas the electron has a charge of -1, a single negative charge, the up, charm, and top 

quarks have charges of +213, while the clown, strange, and bottom quarks have charges of 

-113. 

Each kind of quark has its antiparticle. Quantum chron~odynamics (QCD) [I  I], physical 

theory of strong interaction, attempts to acconnt for the beliaviour of the elementary 

particles called quarks and gluons, wl~ich form the particles known as hadrons. 

Mathematically, QCD is quite similar to quantum electrodyna~pics (QED). the theory of 

electron~agnetic interactions; it seeks to provide an equivalent basis for the strong nuclear 

force that binds particles into atomic nuclei. The prefix 'chromo' refers to 'colour'. a 
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mathematical plopcrty assigner1 to qualks Accolding to QCD each quark appears in three 

colours [7- 101 - red (R), blue (B) and green (G). Antiquarks carry anticolours. Anti-red 

(Cyan), Anti-blilc (Yellow) ant1 Anti-g~ccn (~nagcnta). i.c, ( I< , 11 , c; ) . Colour llns of 

course no relation to real colours of evely day life; the terlninology is just based on the 

analogy with the way all real colours are made up of three primary colours. Equal mixture 

Yellow B 

Blue B 

Fig. l . I : Colour cornposrtron of hadrons 

of Red, Green, Blue (R, G, B) or Cyan, Yellow and magenta ( R  , B , G-) or equal mixture 
- - -  

of color and complementary colour i .  e. (RR, BB, GG) are white or colourless. This 

explains why observed particle states - baryon and ~nesons in nature are colourless or 

white which means unchanged by rotation in R, B, G space i.e. colour space. It is easy to 

visualize the colour quantum number by associating the three possible colours of a quark 

with the three spots of priul-~ary led, grcen and bluc light focuscd on a screen, as showtl in 

figure 1. I .  The antiqua1 ks alc assigned the colnplementary colours: Cyan R , Yellow 

and magenta?? The colouls assigncd to thc antiquarks appear in figure 1 . I  in those 

parts of the screen where two and only two primary beams overlap. The analogy we have 

developed between the colour quant~un number and colour is not perfect. The three qq 

states R E ,  GG and BE are colourless, but it is only the combination RR + GG - BS , 
unchanged by rotations in R, G, B colour space, which can fonn an observed meson. In 

other words. we use 'colouiless' to mean a singlet representatioll of the colour group. 

The carrier of  the force between quarlts is a particle called the gluon 17- 101. This strong 
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nuclear force is the strongest of the four S~~nda~nculal Sorccs. I t  has an cxtrenicly short 

range of about 1 0 - l ~  111, lcss than thc sizc 01' an atornic nuclcus. 'l'hc properties 01' the 

gluon comc (1111 ol'tl~c standard ~noclcl ll~cory. liviclcncc l i ~ r  gluo~ls co111cs i l l  1978 li.o~n ail 

electron - positron machine at Hamburg in Gernlany. The machine, called PETRA 19- 

101, was able, like its StauSord twin PEP, to observe collisions up to 30 GeV and in the 

pattern of produced particles, the g1uon was read. 

Quarks cannot be separated from each other, for this would require far more energy than 

even the most powerful particle accelerator [2, 9-10] can provide. They are observed 

bound together in pairs, forining particles called mesons, or in threes, forming particles 

called baryons, which include the proton  and neutron. However, at the colossal 

temperatures and pressures of the first millisecond followii~g the birth of the universe in 

the big bang, quarks did exist singly. While the properties of quarks and other kinds of 

particle are partly accounted for by the so-called standard model of present-day physics, 

many problems remain. One of these is the question of why quarks have their particular 

masses. The mass of the top quark is particularly puzzling because i t  is so large. At 

approximately 188 times the mass of a proton, the top quark is as massive as an atom of 

the metal rhenium. 

Elementary quarks, which feel the strong force, and leptons, such as electro~ls, form 

families, each containing two kinds of quarks and two kinds of leptons. Large Electron 

Positron (LEP) collider experin~ents at CERN have shown that there are just three such 

families, a classificatioil encapsulated in the standard model. Three families of quarks and 

leptons [7- 1 0, 121 are as follows: 

Families of Quarks and Leptons 

here u, d, s, c, b, t are up, down, strange, charm, bottom and top quarks and e, / r ,  r, v,, v,, 

prase electron, muon, tau, electron-neutrino, muon-neutrino and tau-neutrino respectively. 

Particles 

Quarks 

Leptons 

First family 

u ,  d 

C ,  V c  

Second family 

S, c 

5 V,, 

Thisd fa~nily 

b ,  

, V r  
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Apart from gravity, particles undergo three seemingly quite dillerent types of 

interactions, the clcctron~agnctic inter;~ction or charged particlcs, the short-range weak 

interaction which is responsible for tlic. /]-decays 13-41 of nuclei. for esanlple, and the 

strong or hadronic force which holds the quarks to one another and binds nucleons into 

nuclei. Because of small nlasses of single atom of particles, gravitational force is 

negligible at this level. Four forces [2-101 and their field particle's ranges, charges etc. are 

given below: 

The Four Basic Forces 

Stable 

system 

0-~"01ar 

system 

None 

Atoms 

Hadrons, 

nucleons 

Range 

Long, i.e. 

F oc llr2 

< 10-~7n1 

Long, i.e. 

F K 1 /r2 

1 0-l5 

Particles 

o f 

exchange 

Proposed 

gravition, 

8* 

Weak 

bosoas, w 
and Z 

Photon, y 

Gluon, g 

Name 

Gravitational 

Weak nuclear 

Electro- 

magnetic 

Strong 

nuclear 

Examples 

Reaction 

induced 

by force 

Object 

falling 

Neutron 

beta decay 

Chemical 

reactions 

Nuclear 

reactions 

Strength 

-1 

1 0-5 

111 37 

1 

Acts 01-1 

All 

particles 

All 

particles 

except y 

Particles 

With 

electric 

charge 

Quarks 

gluons 



Studies on Hadron structur; Functions and GLDAP Evolution Equations 

1.2. Lepton - Nucleon Interactions 

Since the discovcry of partons more than 30 years ago 11 3-14], deep inelastic lepton- 

nucleon scattering experiments 115-161 have provided important information on the 

structure of the hadrons or ultimately the structure of matter, and on the nature of the 

Fig.1.2: The hadron as seen by a 'microscope' =- virtual photon: as Q2 increases, a quark may 

be resolved into a quark and bremsstrahlung gluon or into a quark - antiquark pair. 

interactions bet~vecn leptons and hadrons. When a very low mass virtual photon (@ = 

-q2 << I G ~ v ' )  scatters off a hadron, the photon 'sees' only the total charge and magnetic 

moment of the hadron and the scattering appears point-like (Fig. 1 . 2 (~ )  ) [17]. A higher- 

mass photon of a few hundred M ~ V ~  is able to resolve the individual constituents of the 
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hadron's virtual pion cloud, as shown in Fig.l.2(b) [17], and the hadron appears as a 

composite extended object. At high momentun1 transfers the photon probes the fine 

structure of the hadron's charge distribution and sces its elementary constituents 

(Fig. 1.2(c)) [ I  71. If quarks were 11011-interacting. no lirrtller structure would appear for 

increasing Q* and exact scaling would set in. However, in any renormalizable quantum 

field theory, we have to introduce a Bose-field (gluon) which mediates the interaction in 

order to form bound states of quarks, i.e. the observed hadrons. In such a picture, the 

quark is then always accompanied by a gluon cloud which will be probed as the 

momentuni transfer is increased. The effect of gluons is then two-fold as illustrated in 

Fig. 1.2(d) [ I  71. 

When a lepton is scattered by a hadron, photon mediates interaction with quarks inside 

the hadron. The complete kinematics [18-221 of a deep inelastic scattering (DIS) process 

is given below: 

Fig.l.3: Deep inelastic lepton-nucleon scattering ep-ex, via photon exchange 

between the electron and a quark of the nucleon. 

Here, 

k = four momentum of the initial Icpton, 
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k' = four momentum of the final lepton, 

E = energy of the initial lepton, 

El = energy of the final lepton, 

Ep = energy of the hadron, 

M ,  = rest mass of the hadron, 

P = four momentum of the hadron, 

S = centre of mass energy squared, 

A' = any set of outgoing particles, 

w * = invariant mass squared of the final state hadrons, 

e = angle of the scattered lepton measured with respect to the nucleon direction. 

A quark is carrying a fraction x of' the longitudinal rnon~entum of thc hadron while y 

represents the fraction of the lepton energy transferred to the hadron in the nucleon rest 

frame. The relation between Q ~ ,  x, y and S is Q' = xyS. The differential cross section for 

DIS from a nuclear target is co~npletely calculable and is expressible in terms of two 

wave functions WI and kV2 which is 

where 

t11011 - 4 c r 2 ~ '  o - . [  . 11 = E -  i: r l ~ d  4 a~ ld  0 r e  related by Q = -4. 
Q" 

cx = fine structure constant (dil~~cnsionless measure of strength of this interaction). 

Observable structure functions are given by 
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F; (x) = M ,,W, = /; (x)et2 and I.; (x) - v w, = x C f ;  (x)et2 , 

whcrc, ./, (.u) is tllc probohility clcnsity 01' lintling Ihc i-th parlon \\ t i  t l i  l'sactional 

momentum x and charge e,. The Callan-Gross relation F2 = 2xFI is a direct consequence 

of spin half partons and is strongly supported experimentally. A quark carrying a fraction 

x of the longitudillal momentum of the liadron will be seen by the high-Q' virtual photon 

with a momentum fraction snlaller t l~an x, just because the radiated gluoll carries away 

some of the quark's original momentum. Sinlilarly this plioton may resolve the radiated 

gluon into a quark-antiquarlc pair - a process to be regarded as quark pair creation in the 

strong gluon field of the nucleon. Both effects will distort a given nucleon structure 

function F(x) to lower x, and specifically quark pair creation will enhance the sea 

contribution at small-x. Thus, for a given structure function F(x) of the nucleon, we have 

to calculate its dependence on Q ~ ,  F(x, @), from radiative corrections as depicted in 

Fig. 1.2 (d). To complete the identification of these partons with the quarks of Gell-Mann 

and Zweing, one conlpares electron and neutrino scattering results for FI  and F2 to infer 

the fractional charge assignmcnt of the quark modcl 

1.3. Small-x Physics 

Small-x physics is a new and exciting field of lepton-nucleon scattering. The behaviour of 

the parton distributions of the hadron in this small-,v rcgion is of considerable importance 

both theoretically and phenomenologicaly. First, the predictions of the rates of various 

processes at the high energy hadron colliders depend on the parton densities at small-x. 

From a theoretical point of view, the small-x behaviour is particularly interesting since 

novel effects are expected to emerge such as, at 'very low-,v region (less than to 

quarks and gluons radiate 'soft' gluot~s and thereby new pl~enomei~a with l~igll gluon 

densities - recombination of gluon to for111 higher-x gluons, shading of gluons by each 

other, collectivc effects like condensation or super fluidity or forniation of local region 

(known as hot spots) or solnething else can occur. These may have doininant effect of 

non-pcrturbative physics at small-s. Small-x pliysics rcprescnts an unexplored area in 

deep inelastic structure fi~nction of hadrons. Indced a characteristic expectation of 

perturbative QCD in the small-x regime is the f" behavioi~r, which results from the 

summation of soft gluon cmission via tllc Lipatov (or BICFL) equation 123-251, with A = 

12u.,ln(2/.1) for fixed coupling (A,.  One conscclucncc is that thc gluon and scn q11:lrk 
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distributions are expected to behave as xg(xq,,,) - xc< where I may be as large as 0.5 [26- 

281. As x decreases parton shadowing will become appreciable and suppresses this 

singiilnr growtli; and ~ v e ~ i t i ~ ; ~ I I y  wc will CII(CI ~ I I C  ~ l ~ ~ l - ~ ~ ~ r t t ~ l b i l t i ~ ~  rcgi~ilc. 'I'IIc S O I U ~ ~ O I I  

to this problem is to rcsum thc Icnding logarithmic bcliavior of thc cross section to all 

orders, thus rearranging the peiturbative expansion into a inore rapidly converging series. 

The GLDAP [29-321 evolution is the most faluiliar resummation strategy. Given that a 

cross section involving incoming hadrons is dolninatecl by diagrams where successive 

emissions are strongly ordered in virtuality, the resulting large logarithms of ratios of 

subsequent virtualities can be resumed. The cross section can then be rewritten in terins 

of a process-dependent hard matrix element convoluted with universal parton density 

functions, the scaling violations of which are described by the GLDAP evolution. A new 

kinematics regime has opened up where the very small-x parts of the proton parton 

distributions are being probed. The hard scale, Q ~ ,  is not very high in such events and it 

was expected that the GLDAP [29-321 evolution should break down. To sonle surprise, 

the GLDAP [29-321 evolution has been quite successful in describing the strong rise of 

the cross section with decreasing x. 

At asy~nptotically large energies, it is believed that the tlieoretically correct description is 

given by the BKFL [23-251 evolution. I-lere, each emittecl gluon is assumed to take a large 

fraction of the energy of the propagating gluon, (1-z) for z -, 0, and large logarithms of 

llz are summed up to all orders. Recently, the next-to-leading logarithmic (NLL) 

corrections to the BKFL equation were calculated and found to be large [33]. This is 

related to the fact that at any finite energy, the cross section will also get contributions 

from enlissions of gluons which take only a small fraction of the energy of the 

propagating gluon. 

The CCFM [34-371 evolution cqiiation rcsums also large logaritl~ms of 141-z) in addition 

to the 1/z ones. Here, z denotes the energy fiaction of the enlitted gluon. Furthermore it 

introduces angular ordering of emissions to correctly treat gluon coherence effects. I11 the 

limit of asyn~ptotic energies, it is almost equivalent to BKFL [38-401, but also similar to 

the GLDAP evolution fur large-x and high-v2. The cross section is still transverse 

momentum kl factorized into an off-shell matrix element convaluted with an unintegrated 

parton density, which noby also coiltains a dependellce on the maximum angle allowed in 
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emissions. An advantage ol. thc CC17M evolution, compared to the 13KI:L evolution, is 

that i t  is ihirly well suited for inlplelnelltatioll into on event generator program, which 

Figl.3: Kinematic variables for multi-gluon emission. The t-channel gluon momenta are 
given by ki and the gluons emitted in the initial state cascade have momenta pi. 
The upper angle for any emission is obtained from the quark box, as indicated 
with Z. Here z k i  = k+i  - /k,(iT,) and q i  = pli /(I- z + ~ ) .  

At small-x, the structure function I;i(x, Q') is proportional to the sea quark density, which 

is driven by the gluon density. 'I'he standard QCD fits determine the parameters of the 

initial parton distributions at a starting scale (2:. With the help of the GLDAP evolution 

equations these parton distributions are then evolved to any other scale @, with the 

splitting functions still truncated at fixed O(a,) at leading order (LO) or ~(n . : )  at next-to- 

leading order (NLO). Any physics process in the fixed order scheme is then calculated via 

collinear factorization into the coefficient functions C(x1z) and collinear (independent of 

tiz transverse momentuln ki ) parton density functions/~(r, Q'), o = o, I-- c"(x 1 z) f,(z, e2). 
z 

At large energies (small x) the evolution ol' parton distributions proceeds over a large 

region in rapidity A}) - log (Ilx) and effects of finite transverse momenta of the partons 
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may become increasingly inq~ortant. Cross scctions can then be kl -factorized [4 1-44] 

into an off-shell ( kl dependent) partonic cross section B(x  l z, k l )  and a kl -unintegrated 

dz 
parton density function F ( z ,  k i )  , o = 1- d 'k16(x I z ,  k: )F(z ,  k: )  . The unintegrated 

Z 

gluon density F ( z .  k : )  is described by the BKFL [23-251 evolution equation in the region 

of asymptotically large energies (srnall x). An appropriate description valid for both small 

and large x is given by the CCFM evolution equation [34-371, resulting in an unintegrated 

2 - 2  gluon density A ( z , k l , q  ), which is a f~~nct ion  also of the additional scale g .  The 

coefficient functions and also the GLDAP splitting l'i~nctions leading to ji(z, u2) are no 

longer evaluated in fixed order perturbation theory but supplemented with the all-loop 

resummation of the cx,log(llx) contribution at snlall x. This all-loop resummation shows 

up in the regge form factor A,,,,, for BKFL or in the non-Sudakov form factor A,, for 

CCFM. 

Various high energy dccp inelastic interactions give us different evolution equations [23- 

25, 29-37]. Fronl these evolution equations we can obtain various structure f~lnctions 

which give us information about the nunlber of partons i.e. quarks and gluons involved in 

different scattering processes. Actually structure functioll is a mathematical picture of the 

hadron structure at high-energy region. They are important inputs in many high-energy 

processes. The different evolution equations are: 

A. Gribov-Lipatov-Dokshitzer-Altarelli-Paris (GLDAP) evolution equation, 

B. Balitskij-Kuraev-Fadin-Lipatov (BKFL) evolution equation, 

C. Gribov-l,evin-l<yskin (GLli) evolution ecl~~ation, r~nct 

D. Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolutioll equation. 

The exact form of these equations depends upon the accuracy with which one treats the 
2 2 large logarithms In(Q lA ) or In(llx), where A is thc QCD cut off parameter. The GLDAP 

evolution equation is obtained in the leading 1na2 (LLQ~)  approximation which 

corresponds to keeping only those terms in the perturbative expansion which has the 

leading power of 1ng2 that is n,"ln"Q2. The BKFL equation iS obtained in the leading 

In(l1x) (LL(1Ix)) approxilnation instead of leading 1 1 1 ~ ~ .  The GLR equation is obtained in 
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the leading power of 1nu2 and ln(l/x). GLR evolution equation is a oon-linear integro- 

difl'erential equation lor structure fi~nction. The CC17M 

large logarithms of 1/(1 -z)  in addition to tile l/z ones. 

1.4. Evolution Equations 

A. GLDAP Evolution Equation 

The GLDAP evolution equation is obtained in the ( L L ~ )  approximation which 

corresponds to keeping only those terms in the perturbative expansion which have the 

leading power of h e 2 ,  that i s a  :inn Q ~ .  The GLDAP evolution equation is 

for quark. In the above equation, first term mathematically expresses the fact that a quark 

with momentum fraction x [q( .~,  @) on the left hand side] could have come form a parent 

quark with a larger mornentom fraction y [qb, g2) on the right-hand side] which has 

radiated a gluon. 'The probability that this happens is proportional to usPqq(xly). Second 

term considers the possibility that a quark with momentum fraction x is the result of qq 

pair creation by a parent gluon with monlentunl fraction y (>x). The probability is 

u,P,,(xly). The integral in the equation is the sum over all possible momentum fractions y 

(>x) of the parent [7 ] .  And for gluon we can give a symbolic representation of the gluon 

evolution equation as in Fig. 1.4: 

Fig.l.4: Symbolic representation of the gluon evolution equation. 
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which tells us that 

2 L where f = In(Q /A ) and l'c,b denoting the splitting functions. 'I'l1e S L I I ~ ~  i = 1 ...... 2 t3  ty 

being the number of flavours, runs over quarks and antiquarks of all flavors. Pg, does not 

depend on the index i if the quark masses are neglected [ 7 ] .  

6. BKFL Evolution Equation 

The BKFL evolution equation is obtained in the LL(1Ix) approximation instead of the 

L L ~  approximation. The BKFL evolutioli equation is 

(1.3) 

where, the function Ax, k Z )  is thc nonintegrated gluon distribution, that is 

f ( x ,  k' ) = a ~ ~ ( r .  k 2 )  1 a 111 k' . f u ( + ,  k 2 )  is a suitably defined inhomogeneous t e m ~ ;  k2, k2 
are the transverse momenta squared of the gluon in the final and initial states respectively, 

and kO2 is the lower limit cut-off. The important point here is that, unlike the case of the 

LL@ approximation, the transverse momenta are no longer ordered along the chain. 

C. GLR Evolution Equation 

In the approximatiorl where only lending power of 1ne2 and ln(1lx) are kept, that is the 

double logarithmic approximation (DLA), compact lor~ns of GI,R equations arc shuwn in 

the recent literature [45-471. Further approxiillation is that the coupling of n > 2 ladder to 

the hadron is proportional to the n-th power of a single ladder. As a result, the probability 

of iinding two gluons (at low momentomt)~)  with oiomentum fraction xl and a is 

2 3 proportional to g ( s , ,  Q,, ) .g(s2,  Q; ) .  I t  lcacls to a 11011-linear integro-differe~ztial equation 

for structure function, 
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2 2 with C = ( 3 d 1 4 / l ~ ) . ( ~ ~  Iff ). C representating the relevant coupling strength. A more 

accurate form of GLR equation reads 

where, @ = aF(x, @ ) I ~ Q ~ ,  R denotes the transverse radius of the hadron and V stands for 

the triple ladder vertex. However unlike GLDAP or BKFL equation, approxinlate analytic 

solutions of equations (1.4) and (1.5) are not available. 

D. CCFM Evolution Equation 

The CCFM [34-371 evolution equation with respect to the scale 9;2 can be written in a 

differential form [24]: 

2 -2 where A ( x ,  k L , q  ) is the unintegrated gluon density, depending on longitudinal 

2 monlentunl fraction x, transverse momentum kl and the evolution variable LL 
2 

-1 - -2 (factorization scale) = q . The splitting variables are z = x / x and kl = (1 - z) 1 zij + kl , 
where thc vector (7 is at an azimuthal angle ct, . 'fhc Sudakov forn~ factor A, is given by 

For inclusive quantities at leading logarithmic order the Sudakov form factor canqels 

against the ll(1 z )  collinear singularity of the splitting function. The splitting function 

for branching i is given by: 
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where the non-Sudakov form factor A,,, is defined as: 

2 -2  The uninteprated gluon density A(r, kl, y ) is a function also of the angular variable q 2 ,  
2 ultimately limited by an anglc. if2 = x,,-IS,, . defined by the hard interaction, and the two 

2 - 2  2 - 2  scales kl, q in A ( x ,  kL, q ) . 

1.5. Experimental Overview 

The study of the DIS of leptons on hadrons'l~as been of profound importance to the 

development of particle physics. Electroweak theory, which describes the electromagnetic 

and weak nuclear Sorccs. and QCD, the gaugc thcory o r  the strong nuclcnr Sorce, together 

form what particle physicists call the 'standard model'. The nlodel works well, as far as 

can be measured using present technology, but several points still await experinlental 

verification or clarification. Furthermore, the model is incomplete. Prior to 1994, one of 

the main missing ingredients of the standard model was the top quark, which was 

required to complete the set of three pairs of quarks. Searches for this sixth and heaviest 

quark failed repeatedly, until in April 1994 a team working on the Collider Detector 

Facility (CDF) at Fermi National Accelerator Laboratory (Fermilab), annou~lced tentative 

evidence for the top quark. This was confirmed the following year, when not only the 

CDF team but also an independent team working on a second experiment at Fermi lab. 

code-named DZero, or DO, published Inore convincing evidence. The discovery had 

required the highest-energy particle collisions availablc ~liosc at Fer~ni lab's Tcvatron. 

which collides protons with antiprotons at a total energy of 1,800 GeV, or 1.8 tera 

electron volts (TeV). 

'The discovery of the top quark in a sense not only con~pleted one chapter in the history of 

particle physics but also focused the attention of experinlenters on other questions 

unanswered by the standard model. For instance, why there are six quarks and not more 

or less. It may be that only this number of quarks allows for the subtle difference between 

particles and antiparticles. This asynlnletry between particle and antiparticle could in turn 
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be rclatcd to thc clomillation of mattcr ovcr alltinlnllcr in the univcrsc. Expcri~iients 

studyi~ig ncutral I1 nicsons, whicll contain a 11 c ~ l l ; ~ ~ . k  01. its ;~~~tiqil;lsk, 111;iy cvcntually 

reveal such effects ancl so cast light on this li~ndamental proble~n that links particle 

physics with cosmology and the study of the origin of matter in tlie universe. Much of 

current research, meanwhile, is centred on important precision tests which may reveal 

effects that lie outside the standard model in particular, those that are due to super 

symmetry, 'I-liese studies include measurements based on millions of Z particles produced 

at the LEP collider at CERN and the Stanford Linear Collider (SLC) at the Stanford 

Linear Accelerator Center (SLAC) in California, and on large nunlbers of IY particles 

produced at the l'evatron and later at LEP 19-10]. The precision of these ~ileasurenients is 

such that comparisons with the predictions of the standard model constrain tlie allowed 

range of values for quantities that are otherwise unknown. The predictions depend, for 

example, on the mass of the top quark. and in this case comparison with the precision 

measurements indicates a value in good agreement with the mass ineasured at Fermilab. 

This agreement makes another comparison all the more interesting, for the precision data 

also provide hints as to the mass of the Higgs particle a major ingredient of the standard 

model that has yet to be discovered. The Higgs particle is the particle associated with the 

lilechanisln that allows the sy~nmetry of the electroweak force to be broken. or hidden, at 

low energies and that gives the W and Z particles, the carriers of tlie weak force, their 

masses. Theory provides a poor guide as to the particle's mass or even the number of 

different varieties of I-Iiggs particles involved. However, comparisons with tlie precision 

measuren~ents from LEP suggest that the mass of tlie Higgs particle niay be quite light. 

Further new particles are predicted by theories that include super symmetry. This 

symmetry relates quarks and leptons, wl~ ic l~  have spin 112 and are collectively called 

fermions, with the bosons of t l~c  gauge fields. which have spins 1 or 2. and with tlie Higgs 

particle, which has spill 0. This symmctry appcals to theorists in particular because i t  

allows them to bring together all the particles-quarks, leptons, and gauge bosons-in 

theories that unite the various forces. The price to pay is a doubling of the nuniber of 

fundaiilental particles, as the new symmetry implies that the known particles all have 

super symmetric counterparts with different spins. Thus the leptons and quarks with spin 

112 have supcr symmetric parrncrs, dubbcd slcptons and squarks, with integer spins, and 

the photon, JV, Z, gluon, and gsaviton have counterparts with half-integer spins, known as 
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the photino. wino, zino, gluino, and gravitino, respectively. lS they indeed exist, all these 

new super symmetric particles must be heavy to have escaped detection so far. Theory 

suggcsts t11:lt sonic ol' the lighlcst of thcn~ coirlcl bc crcutcd in collisiot~s nl lllc pnrliclc 

accelerators with the highest energies-that is, at LEP, at the Tevatron, and at the Hadron- 

Electron Ring Accelerator (NERA) and at the DESY (German Electron Synchrotron) 

There is still ;nore chalice of discoveries, including that of one or nlore Higgs particles, at 

the Large Nadron Collider (LHC) planned to start up at CERN about 2005. This machine, 

built in the same tunnel that houses the LEI' collider, is designed to collide protons at 

energies of 7 TeV per beam [9-101. Other hints of physics beyond the present standard 

model concern the neutrinos. In the standard model, these particles have zero mass. So 

any measurement of a nonzero mass, however small, would indicate the existence of 

processes that are outside the standard model. Experiments to ineasure directly the masses 

of the three neutrinos yield only limits; that is, they give no sign of a mass for the 

particular neutrino type but do rule out any values above the smallest mass the 

experiments can measure. 

Within the region where the parton modal is applicable (i.e. for e2 > 3 ~ e ~ ~  or so), the 

small values of x can be measured only in high energy experiments. However. for the 

exciting fixed target experiments, the low-x condition can only be obtained at the expense 

of lowering @ below 1 G ~ V '  This in turn means that the outgoing lepton is scattered at 

very small angles, usually equal a few milliradians, i.c. prac~ically within the lepton beam 

divergence limits. Moreover, the extraction of the inelastic single photon exchange cross 

sections (or extraction of the slructure functions) from the data rcquires corrections of the 

experimental yield for the radiative processes, i.e. separating the cross section due to the 

reaction from the higher order electromagnetic and weak effects faking and distorting the 

interesting events. Radiative processes may account for a substantial part of the measured 

low-x cross-section especially tbr nuclear targets. Listed below are the some experiments 

of the presently available low-s data. 

A. Muon (Electron) Scattering Experiments 

I .  The Cambridge-Chicago-Illinois-Oxford (CHIO) Collaboration experiment performed 
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at the Fermilab accelerator with 96, 147, 219 GcV muons scattering ol'f'hydrogen and 147 

GeV muons ol ' i 'dcu~eriu~~~. 'l'llc structure li~nction 11; was measured L'or 0.0005 < x < 0.7, 

0.2 L)' < 80 ( icv2 ;ind I( l i ,~. 0.003 < s -< 0.10, 0.4 < L)' < 30 C ~ V '  1491. Obscrvc LII;II i o  

this experinlent low values of x were obtained by using data at high values of y where 

systematic effects are most significant. 

2. A dedicated, low scattering angle experiment numbered NA28 performed by the 

European Muon Collaboration (EMC), at the CERN SPS with a positive muon bean1 of 

nominal energy 280 GeV. Structure functions F2 were measured on deuterium, carbon 

and calciunl targets for 0.002 < r < 0.17 and 0.2 < p2 < 8 G ~ V '  150-511. 

3. The New Muon Collaboration (NMC) perfonled experiment at the CERN SPS with 

muon beams of energies 90, 120. 200 and 280 GeV. The target lllaterials were 'H, *D, 
1 208 He, 6 ~ i ,  12c. 4 0 ~ ~ 1 ,  5 6 ~ e ,  1 2 0 ~ ~ ~ .  pb, and the kinematical range of measurements 0.006 < 

r < 0.6. 0.8 < Q' < 75 (kv2 for F2(II) and IT2(D) 152). 0.003 < s < 0.7. 0.12 < < 100 

G ~ V '  for the ratio F2(D)/ F2(M 153-551 and 0.007 < x < 0.8,0.6 < @ < 18.3 G ~ V ~  for the 

F2(Ca)I F2 (Li), F2(C)/ F2 (Li) and F2(Ca)I F2 (C) ratios [56] and 0.0035 < x < 0.65, 0.5 < 

@ < 90 Gev2 for the F2(1-Ie)l f i i(D), I;i(C)l F2 (I)) and I;i(C~r)l F2(D) [57]. 

4. The experiment of the EGG5 Collaboration under way at FNAL uses a 490 GeV 

positive muon beam and 'H, 'D .  I2c, 4 0 ~ a ,  131xe and 2 0 8 ~ b  targets. Prelin~i~lary results for 

the F2(Xe)l F2(D) structure function ratio at Q2 down to 0.01 G ~ V ~  and x down to 

0.00002 have been presented [58-59). 

Several low energy electro production experiments have been done both on hydrogen and 

nuclear targets [60]. In particular, extensive studies were carried out in 1970-1985 at 

SLAC experiments E49a [61], E62 [62], E87 [63], El39 [64], El40 [65] using a variety 

of targets. 'I'he data were recently reanalyzed [66] using the improved versions of the 

radiative correction procedure and wcre normalized to thosc from thc high-precision 

experiment E l 4 0  The reanalysis permitted to extract R(x,  Q2) and F2(x, @) for proton 

and deuteron over the range 0.1; s < 0.9.0.6 < Q' < 20 G ~ V ~  [66]. 

6. Neutrino Scattering Experiments 

1. The C a l i f o r n i a - C o l u m b i a - F N A L - R o c h e s t e ~ l l e r  (CCFRR) Collaboration 
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rneasirr.ccl 1l1c ncutri~io (a11 t i~~cu~l . ino)- i ro~~ sca ttcring i l l  tllc I;NAI, clilnd~.upolc li)cuscd 

beam ol'cocrgics 120, 140, I O X ,  200 ~llld 200 (IcV 1571. I*> and ~ 1 . ' ~  wcrc cslr;lctcd lbr 

0.015 < x < 0.65 and 1.3 < Q' < 200 Gev2.  New, precise res~llts in thc same kinematic 

limits were presented recently by the Wisconsin-Chicago-Col~1111bia-FNAL-Rocl~ester 

(CCFR) Collaboration [68]. 

2. The CERN-Dortul~lund-Iieidelberg-Saclay-Warsaw (CDHSW) Collaboration 

performed the neutrino (antineutrino)-iron scattering experill~ents at the CERN SPS using 

the wide-band bean1 of energy up to about 280 GeV. Measured were F2, xF3 for 0.01 5 < x 
- 

< 0.65 and 0.19 < Q~ < 196 heV2 and FLY qU in solllewllat narrower e2 intervals [69]. 

3. The Big European Bubble Chamber (BEBC) Collaboration at CERN measured the 

neutrino (antineutrino)-deuteron interaction using the wide-band bean1 of energy up to 

200GeV. Both F2 and xF3 isoscalir functions were measured in the range 0 < @ < 64 

G ~ v ~ ,  0.028 < x < 0.7 on neon in 13GBC (701. 

Some Important Experimental Research Centres 

1. CERN (Conseil Europeen pour la Recherche Nucleaire) 

byname of ORGANISATION E U R O P ~ E N E  POUR LA RECHERCHE NUCLEAIRE, 

formerly (1952-54) CONSEIL E U R O P ~ E N  POUR LA RECFIERCI-IE N U C L ~ A I R E ,  

English EIJROI'EAN ORGANIZA'I'ION FOR NUCLEAR RESEARCH, is the 

international scientific organization established for the purpose of collaborative research 

in sub-nuclear physics (high-energy, or particle physics). The organization operates 

expressly for research of a 'pure scientific and fundamental character', and the results of 

its experi~nental and theoretical work arc made ger~crally available. 1 Icadquarter oTCERN 

is in Geneva, Switzerland. In the late 20th century, it had a membership of 14 European 

nations, in addition to several nations those maintained 'observer' status. CERN has the 

most powerful and versatile facilities of its kind in the world. The site covers more than 

100 hectares in Switzerland and, since 1965, Inore than 450 hectares in France. The 

activation of a 600-mega volt synchrocyclotron in 1957 enabled CEI<N physicists to 

observe the decay of a pion, into an electron and a neutrino. The event was instrumental 

in the development of the theory of weak interaction. The laboratory grew steadily, 

activating the particle accelerator known as the Proton Synchrotron (1959), which used 

'strong focusing' of particle beams; the Intersecting Storage Rings (ISR; 1971). enabling 
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head-on collisions between protons; and the Super l'roton Synchrotron (SI'S; 1976), with 

a 7-kilomctrc ciscuinl'crcncc. With the addition 01' ail Antiproto~l Acctunlulator Iting, thc 

SPS was converted into a proton-antiproton collider in 1981 and provided experi~lle~lters 

with the discovery of the I.V and Z particles in 1983 by Carlo Rubbia and Simon van der 

Meer. In Novenlber 2000 the Large Electron-Positron Collider (LEP), a particle 

accelerator installed at CERN in an underground tunnel 27 km in circumference, closed 

down after 1 1  years service. LEP was used to counter-rotate accelerated electrolls and 

positrons in a narrow evacuated tube at velocities close to that of light, making a complete 

circuit about 1 1.000 tinies per second. Their paths crossed at four points around the ring. 

DELPHI, one of the tour LEP detectors, was a horizontal cylinder about 10 m in 

diameter, 10 n~ long and weighing about 3,000 tones. It was made of concentric sub- 

detectors, each designed for a specialized recoiding task. The LEP tunnel will now house 

the Large Hadron Collider (LHC), a proton-proton collider due to bc conlpleted in the 

early years of thc 2 1 st century 17 1-72]. 

2. FNAL (Fermi National Accelerator Laboratory) 

also called FERMILAB, centre for particle-physics research located at Batavia, Illions in 

USA, about 43 km west of Chicago. The laboratory is named after the Italian-American 

physicist Enrico Fern~i, who headed the team that first achieved a controlled nuclear 

reaction. The facility is operated for the United States Departinent of Energy by the 

Universities Research Association, a consortiunl of American and Canadian institutions. 

The major components of I~csrl~ilab arc two large pasticlc accclcra1or.s callcci proton 

synchrotrons, configured in the form of a ring with a circumference of 6.3 k111. The first, 

which went into operation in 1972, is capable of accelcrating particles to 400 billioll 

electron volts. 'rhe second. called the Tevatron, is installed below the first and 

incorporates more powerf~ll superconducting magnets; it can accelerate particles to 1 

trillion electron volts. The older instrument, operating at lower energy levels, now is used 

as an injector for the Tevatron. The high-energy beams of particles (notably muons and 

neutrinos) produced at the labosatosy, have been used to study the structure of protons in 

terms of their most ft~ndan~ental components, the quarks. In 1977 a team led by Leon 

Lederman disco\,esed the irpsilon mcson, which sevcalcd the existence of the bottolll 

quark and its accompanying antiquark. Since 1987 the Tevatron also has operated as a 

proton-antiproton collider and can achieve total collision energies of 2 TeV. Antiprotons 
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are produced and storccl in a s~naller ring belore being injected into tile main rings for 

acceleration and collision with protons circulating in the opposite direction. In 1972 a 

tcalil 01' scic~itists at I:cl.l~iilal> isolatctl 11ic bottom q~larli and its associated anticluark. 'l'hc 

existence of the top quark. thc hcavicsl ar~cl rnost clusive quark predicted by the standard 

model, was established at Fermilab, and announced in March 1995 [7 1-73]. 

3. SLAC (Stanford Linear Accelerator Center) 

acronym of STANFORD LINEAR ACCELERATOR CENTER is located in Stanford. 

California, USA. An exemplar of post World War II Big Science, SLAC is a labofatory 

for research in particle physics. It is run by Stanford University for the U.S. Department 

of Energy, but used by physicists from across the United States and from other countries. 

It houses the longest linear accelerator (linac) in the world-a machine 3.2 km long that 

accelerates electrons up to encrgies of 50 giga electron volts. 'fhe concept o f a  multi-GeV 

electron linac grew from the successful developlnent of slnaller electron linacs at Stanford 

University, culminating in the early 1950s in a 1.2 GeV machine. I11 1961 plans for the 

new machine, designed to reach 20 GeV, were authorized, and the 3.2 krn linac was 

completed in 1966. In 1968 experiments at SLAC found the first direct evidence for 

further structure (i.e., quarks) inside protons and neutrons. As early as 196 1, design work 

began for an additional machine at SLAC, an electron-positron collider called SPEAR 

(Stanford Positron-Electron Asymn~etric Rings). Construction did not begin until 1970, 

but the machine was completed within two years, produciilg collisions at energies of 2.5 

GeV per beam. In 1974 SPEAR was upgr-adcd to reach 4.0 GeV per beam, and physicists 

working with it soon discovered a new type of quark, which became known as charnl, and 

a new, heavy lcptons relative of the clcctron, callccl tlic tau. SI'I',AI1 was Sollowcd by a 

larger, higher-energy colliding-beam machine, the PEP (Positron-Electron Project), which 

began operation in 1980 and took electron-positron collisions to a total energy of 36 GeV. 

The SLAC Linear Collider (SLC) was conlpleted in 1987. SLC uses the original linac, 

upgraded to reach 50 GeV, to accelerate electrons and positrons before sending then1 in 

opposite directions arouncl a 600-metre loop, where they collide at a total energy of 100 

GeV. This is sufficient to produce the Z particle, the neutral carrier of the weak nuclear 

force that acts on f'ilndamcntal particles [7 1-73]. 
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4. DESY (Deutsches Elektronen-Synchrotron) 

byname of L)I:UrFSCIIES IILEKrI'RONEN-SYNCI-lI<OTRON, English Gernlail 

ELECTRON-SYNCHROTRON, the largest centre for particle-physics research in 

Germatly, is located in Ilamburg. D!:SY is ti~ndcd jointly by the Germall federal 

government and the city of I-lamburg; in addition, scientists from other countries who 

participate in the experiments there donate equipments. The laboratory was founded in 

1959, when construction began on an electron synchrotron, which was completed in 1964 

and eventually could generate an energy level of 7.4 billion electron-volts. The Double 

Ring Storage Facility (DORIS) was co~llpleted 10 years later and was capable of colliding 

beams of electrons and positrons at 3.5 GeV per beam; in 1978 its power was upgraded to 

5 GeV per bcam. DOl<IS is no longer uscd 21s a colliclcr. but its electron bcatn provides 

synchrotron radiation (mainly at X-ray and ultraviolet wavelengths) for experiments on a 

variety of materials. A larger collider capable of reaching 19 GeV per bcam. the Positron- 

Electron Tandem Ring Accelerator (I-'E'J7RA), began operation in 1978. Experiments with 

PETRA in the following year gave the first direct evidence of the existence of gluons, the 

particles that carry the strong force between quarks. The laboratory's newest facility, 

completed in 1992, is the IHadron-Electron Ring Accelerator (HERA), the first n~achine 

capable of colliding electrons and protons. HERA consists of two rings in a single tunnel 

with a circumference of 6.3 km, one ring accelerates electrons to 30 GeV and the other 

protons to 820 GcV. It  is bcing used to continue thc study of quarks [71-731. 

5. KEK (Koh - Ene -   en) 

stands for 'KOH-ENE-KEN, an abbreviation for a Japanese name of NATIONAL 

LABORATORY FOR HIGlI ENERGY PIIYSICS. The I-Iigh Energy Accelerator 

Research Organization (KEK) hcilitates a wide range of research programs based on 

high-energy accelerators for users fronl universities. Both proton accelerators and 

electronlpositron accelerators, including storage rings and colliders, are in operation to 

support various activities, ranging from particle physics to structure biology. Besides the 

operation of thesc accclerators, the laboratory began construction work of newly 

approved high-intensity proton accelerators in collaboration with Japan Atomic Energy 

Research Institute for the fiiture development of current research activities. KEK is one of 

the fourteen Inter-University Research Institutes belonging to MECSST (Ministry of 

Education, Culture, Sposts, Science and Technology). I t  consists of two rescnrch 
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institutes, Institute of Particle and Nuclear Studies (IPNS) and Institute of Materials 

Structure Scicncc (IMSS), and two laboratories, Accelerator Laboratory and Applied 

Research Laboratory, as well as the Engineering Departnlent and the Admillistration 

Bureau. IPNS carries out research progralns in particle physics and nuclear physics. The 

Belle collaboration at the KEK B-factory was highlighted by its observation of the CP 

violation of B-mesons. While most of these experiments are being carried out by 

international collaborations. international cooperation at oversea institutions is also an 

important activity of the institute in order to expand the research frontiers for the 

university staff. The theory group continued activities in fundamental field theory, 

particle and ni~clear phenomenological theory, and conlputational physics. IMSS offers 

three types of probes for research progra~ns in material science. The pl1oto1.r hctory 

operates two storage rings (or synchrotron radiation, the 2.5 GeV ring with 61 

experimental stations and the new 6.5 GeV ring with 6 stations, which was used to be the 

positron accumulator ring for 'I'RISTAN in fornler days but was converted to a 

synchrotron radiation ring. l'he new ring has a unique capability for single-bunch 

operation. The Accelerator Laboratory achieved an outstanding success in operating and 

improving the running accelerators, in designing and constructing the new High Intensity 

Proton Accelerator (HIPA) project and in pushing R & D work for the future linear- 

collider project. The lunlinosity of the KEKB electron-positron collider was steadily 

improved and its own world-rccord was kept being renewed. The 8 GeV electron linac 

was operated cxtrcn~cly cllicicntly, whilc provitling beams periodically into 3 facilities: 

KEKB and the 2 SR rings. The Applied Research La1~0ratory, which has four research 

centers (Radiation Science Center, Colnpiiling Rcsearch Center, Cryogenics Science 

Center and Mechanical Engineering Center), provide basic technical support for all KEK 

activitics with their high-lcvcl tcchnologics. 111 addition to I~asic support tasks, they also 

played key roles in front-end programs. One year has already past since KEK became an 

Inter-University Research Institute Corporation. In 2004, they focused on the construction 

of the crab cavity which doubles tile performance of KEKB electron-positron collider. By 

the early spring in 2006, they will construct the two crab cavities, which will bring further 

improvements 011 KEKD pcrformancc 1741. 

6. VECC (Variable Energy Cyclotron Centre) 

acronym of VARIABLE ENERGY CYCLOTRON CENTRE located in Kolkata, India is 
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a national centre Tor accelerator based scsearch. 'Tlic variable energy cyclotron (VEC) set 

up here is used I t ~ r  researcli in nuclcar scicnccs, condensed nlatler physics, accelerator 

physics. colnputer science and theoretical physics. Operated by the Department of Atomic 

Energy (DAE), tlie centre liouscs tlie variable-energy cyclotron built in 1978 and is 

building a KV500 super conducting cyclotron in coi~junction with Bliabha Atonlic 

Research Centre (BARC). VECC is also a major producer of accelerator-generated 

radioisotopes. The centre is setting up a Superco~iducting Cyclotron and a Radioactive 

Ion Beam Facility. VECC is used to conduct primarily peaceful scientific research but the 

facility's cyclotrons have potential for weapons-related research. In VECC, the production 

of exotic nuclei in deep inelastic collisio~~s and structure of proton halo nuclei -were 

studied. The effectiveness of stochas~ic resonances in enhancement of signals over tlie 

noise was investigated with interesting results. Relativistic Mean Field tlieory was used to 

investigate shape transitions and liquid to gas phase transitions in nuclei. A11 accurate 

description of fission width of  nuclei usiilg tlie Longeviii dynamics was obtained. The 

year 2001-2002 marked a major advance towards the global recognition of the Indian 

built Photon Multiplicity Detector (PMD) in the STAR Experiment at the Relativistic 

Heavy Ion Collides (RHIC) at B1.ookhaven national Laboratory (USA) and the signing of 

the MoU with BNL. The STAR PMD, a smaller version of tlie PMD detector for the 

ALICE Pro-ject at CERN LI-IC, was installed in September-October, 2002. Fabrication of 

the detector is in progress at VECC [75].1-1 
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Chapter-2 

COMPLETE AND PARTICULAR SOLUTIONS OF FIRST 

ORDER LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

We solve GLDAP evolution equations to obtain t and x distributions of various structure 

functions using Taylor expansion method. For these, we use method of solution of first 

order linear partial differential equation to obtain complete and particular solutions, and 

for x evolutions we use numerical integration. In this chapter, we explain different 

methods, which are used to obtain the results of our works. 

2.1. Taylor Expansion Method 

If a function f is such that 

(i) the (n-1)th derivative f "-' is continuous in [a, a + h] ,  

(ii) the nth derivative f" exists in ]a, a + h[ ,  and 

(iii) p is a given positive integer, 

then there exists at least one number, 8, between O.and 1 [76-771 such that 

The condition (i) implies the continuity of f ,  f ', f "  ,......... ..... f n  in [a, a + h] .  Let a 

function @ be defined by 

where A is a constant to be determined such that @(a) = @(a + h). Thus A is given by 

12 11- 1 

f ( a  + h )  = f ( a )  + hf ' ( a )  + - f " (a)  + ....... + 
2! 

f "-'(a) + AhP . 
( n  - l)! (2.2) 
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The function @ is continuous in [a, a + k], derivable in ] a, a + h [ and @ (a) = @ (a + h). 

Hence, by Rolle's Theorem [76], there exists at least one number, 0, between 0 and 1 

such that @'(a + Oh) = 0 .  But, 

(a + h - n)"-I 
@'(x) = f "  (x) - pA(a + h - x ) P - ' .  

(n - l)! 

hn-" (1  - o ) ~ - P  
= A =  - . f H ( a  + O h ) ,  for (1-Q)#O and h # 0 .  

p . ( n  - I)!  

Substituting the value of A in (2.2), we get the required result (2.1). 

Let x be a point of the interval [a, a + h].  Let f satisfy the condition of Taylor's theorem 

in [a, a + h] so that it satisfies the conditions for [a, x] also. Changing a + h to x that is, h 

to x - a ,  in (2. I )  we obtain 

( X  - a) 
2 

( X  - a) 
3 

f ( x )  = f (0)  + ( X  - a ) f  ' ( X I  + f "(x) + f "(x) + ... . . . . + 
2! 3! 

( x  - a)"-' 
f "-' (X) + (X - a)"(l  - B)n-p 

f " [ a + e ( x - a ) ] ,  0 .=B< 1. 
( n  - I)! p.(n - I)! 

The remainder after n terms can thus written as 

where, c lies between a and x, and depends on the selection of x. We have seen that 

h hn-l 
f (a  + h) = f (a)  + hf '(a) + - f "(a) + ....... + --- f "-' (a) + R,, . 

2! (n  - I)! 

The result can be interpreted in two ways: 

(i) The value f (a  + h)  of the function at a point may be approximated by a summation of 

the terms like (hrlr-!),f" ( a )  involving values of the function and its derivatives at some 

other point of the domain of definition, and 

(ii) The value f (a + h)  of the function may be expanded in powers of h. 
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Ilere we use l'aylor cnpnnsio~i nictliod lijr solving (il.l)AI' cvolutio~i cquation in Icading 

ordcr and ncxt-lo-leading ortlcr. 

2.2. Complete and Particular Solutions of First Order Linear Partial 

Differential Equations 

The standard form of linear partial differential equation of first order [78-801 involving x 

and y as independent variables and z as dependent variable is 

Pp+ Qq = R ,  (2.3) 

where P, (2, I< are f~~nctions of x, y. z and p = az/a,\-, q = 8z/ay. We have seen that 

Lagrange's method [78-821 of solving a linear partial differential equation of the first 

order leads to the general integral 

@ ( U ,  V ) =  0, (2.4) 

where G', is an arbitrary function of the arguments U(x, y, z)  and V(x, y, z )  and U = a, V = 

b are two independent integrals of the subsidiary equations 

In some instances, we can deal with particular solutions more conveniently than wilh the 

general integral. The most inlportant type of particular solution obtainable from the 

general integral is that containing two arbitrary constants, say a and P. Such a solution 

[8 l ]  of equation (2.3) may be denoted by 

which is called a complete integral. 

If U = a and I/= b are two independent solutions of tlie subsidiary equation (2.5), then the 

complete integral [SO-811 nlay be taken as 

C'= (JU +/I. (2.7)  

Because, since IJ  and T I  separately satisb equation (2.3), then equation (2.7) will be a 

solution and since equation (2.7) contains two arbitrary constants a and B, it is a complete 

integral. Complete solution (2.7) represents a two parameter family of surfaces which 

does not have an envelope, since the arbitrary constants enter linearly [go]. 

Differentiating equation (2.7) with respect to P we get 0 = 1, which is absurd. Hence there 
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is no singular solution. From this two-parameter family of surfaces, select a one- 

par;~nctcr I'al~lily by scllillg /I - 'y ((I). wl~crc g is :I given I'i111ctic)n ~ I ' ( I .  'l'llc~\ 

V = a U + g ( a ) .  (2.8) 

This relation gives a solution of the partial differential equation (2.3) and the surfaces 

(2.8) will in general possess an envelope. If we differentiate equation (2.8) with respect to 

a we get 

0 = u + ~ ( ( c x ) .  (2.9) 

From equation (2.9), cx may usually be obtained in terms of U, and inserting this value of 

a in equation (2.8) we fined a relation 

v= Y ( U )  (2.1 0) 

which is merely a particular solution of the general solution Q> (U, V) = 0 and it will 

satisfy thc I>agrangc's ccluatio11 (2.3). So i t  docs not Si~rnish us wit11 a new solution. 'fhus 

situation here is different from that of ordinary differential equation. In case of ordinary 

differential equation of first order, the envelope, when it exists in a one parameter family 

of curves (or surfaces), gives a singular solution which is not a part of the general 

solution. 

It  is to be noted that when /) is an arbitrary function of a, then the elimination of a in 

equation (2.8) and (2.9) is not possible. Thus the general solution can not be obtained 

from the complete solution [80-811. Actually, the general solution of a linear partial 

differential equation of order one is the totality of envelopes of all one parameter Sanilies 

(2.8) obtained from a complete solution. We use this method to obtain t and x-evolutions 

of structure functions. 

2.3. Numerical Integration 

In applied n~athen~atics, the solution of problems generally co~lsists of numbers which 

satislj. some kind of equation. 'fheoretically these numbers may be specified by the 

equation; but in practice, it is found that even in the sinlplest cases it is not possible to 

write down an exact decilnal representative of the solution. Nunlerical methods are very 

important tools to provide practical nlethods for calculating the solutions of problems in 

applied ~nathematics to a desired degree of accuracy. The wide use of electronic 
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computers for solving problems in various fields of engineering, scientific, industry etc. 

has fi~rther etihancecl thc scopc of numerical mcthods. Before doing discussion about 

nun~erical integratiot~, i t  is necessary to know differences, interpolation and interpolation 

formula. 

Differences: I f  y,,, yl, y2, . . . . . . . . . . . . .., y,, dcnote a set of any function y (x), then y l  -)),, y2 

- Y I ,  . . . . .. . . . . .., y,, - y,,.~ are called the first differences of the function y [83-851. Denoting 

these differences by Ay,, Ayl, . . . . . . . . ..., Ay,,. The differences of first differences are called 

second differences. Denoting them by A ~ ~ , ,  etc. we have dfy0 = Ayl - Ay., = Ay2 

- Ayl etc. In like manner, the third differences are = d2yl - d2y,. d3yl = A2y2 - A ~ ~ ~  

etc. 

Interpolation and interpolation formula: Interpolation means insertion or filling up 

intermediate terms of a series. I t  is the technique of estimating the value of a function for 

any intermediate value of the independent variable when the values of the function 

corresponding to a ni~lnber of the values of the variable are given. Let y =Ax) be a 

function given by the values y,, yl, y ~ ,  . . . . . . . . . ....., y, which it takes for the values x,, xl, 

x2, .............., x,, of the independent variable x respectively, and let @(x) denote an 

arbitrary sinlpler function so constructed that i t  takes the same values as .f(x) for the 

values x,, X I ,  x*, . . . . . . . . . . . ..., s,,. Then iffix) is replaced by @(x) over a given interval, the 

process constitutes interpolation, and the function @(x) is a for~nula of interpolation [83- 

851. 

Numerical integration: It is the process of computing the value of a definite integral from a 

set of numerical values of the integrand. When applied to the integration of a fiinction of 

a single variable, the process is sometin~es called mechanical quadrature; when applied to 

the computation of a double integral of a f~inction of two independent variables it is called 

mechanical cubature. 'l'lic problem ol' niumerical integration is solved by representing 

integrand by an interpolation rormula and then integrating this formula between the 

desired limits. We have a variety of quadrature formulas [83-851, like General quadrature 

formula, The 1-rapezoidal rule. Simpson's one - third rule, Simpson's three - eight rule, 

Weddle's rule, Cotes method, The Euler - Maclaurin's, Summation and Quadrature 
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formula, The central Difference Quadrature formula, Gauss's Quadrature formula, 

Labatto's O ~ I I I I  rl'clicbycllcS1's r i l ,  I'riso~noid;~l l'ornlula (Spcciol and oldcsl 

form of Simpson's role.) etc. We shall now mcntion some quadrature forlnolas as an 

example. 

General quadrature formula for equidistant ordinates: Let 11s consider a function y = f ( x ) .  

We interpolate y by a Newton's forwarded interpolation formula as 

where u = (x-xu)//? and tllr = (1lh)~rjc. Now, wc intcgratc (2.1 1)  over r i  equidistant 

intervals of width h (= Ax-). The limits of integration for x are x, and x, + nh. Therefore, 

the corresponding limits for 11 arc 0 and 11.  We now have, 

This is called general quadra~ure forn~ula [83-851. From this general fornlula we can 

obtain a variety of quadrature formulas by putting n = 1,  2, 3..... etc. The best two are 

found by putting 11 = 2 and 11 = 6. 

Simpson's one - third rule: Putting 11 = 2 in ccluation (2.12) and neglecting all differences 

above the second, we get 
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For the next two intervals from xz to xn + 2h we get in like manner 

Similarly for the third pair of intervals we have 

Xq + 211 
h 

SYdx = - --[y 4 + 4 + Jf6] ;  and so 011. Adding all such expressions as these fro111 
XS 

3 

x, to .u,, where M is even, we get 

Therefore, 

This formula is known as Simpson's one third rule and we use this for~nula to obtain x 

evolution of structure functions in leading and next-to-leading orders. 

Weddle's rule: Putting n = 6 in equation (2.12) and neglecting all differences above the 

sixth, we have 
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Suppose it is chosen in sucb a way that (A11 40) ~ 4 . ~ 1  is negligible. The (411140) is 

replaced by (31 1 0 1 i16pye end tllus we have 

For the next set of six intervals from x6 to xlz ,  we get in the sanle way 

X I  3 h 
Iydr  = -[y6 + 5 y 7  + y8  + 6 y 9  + y l u  + 5 y l I + y 1 2 ] a n d s o o n .  Addingall such 

6 
10 

> 

expressions as these from x, to x,,, where n is now a multiple of six, we get 

This formula is known as Weddle's rule. It requires at least seven consecutive values of 

the fu11ction.n 
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t AND X-EVOLUTIONS OF GLDAP EVOLUTION 

EQUATIONS IN LEADING ORDER 

In this chapter, we obtain particular solutions of Gribov-Lipatov-Dokshitzer-Altarelli- 

Parisi (GLDAP) [29-323 evolution equatioils computed from complete solutiofis in 

leading order (LO) at low-x and thereby we obtain t and x-evolutions for singlet and non- 

singlet structure functions and -hence t-evolutioi~s of deuteron, proton, neutron, difference 

and ratio of proton and neutron structure functions and x-evolutions of deuteron structure 

functions. In calculating structure functions, input data points have been taken from 

experimental data directly unlike the usual practice of using an input distribution function 

introduced by hand. Results of proton and neutron structure functions are compared with 

the HERA low-x low-@ data and those of deuteron structure functions are cornpared with 

the NMC low-s l o w - ~ l  data. Comparisons are also niade witli the results of earlier 

approximated solutions [86-881 of GLDAP evol.ution equations. We also compare our 

results of I-evolution of pl-oton structure functions witli a recent global parameterization. 

3.1. Theory 

The GLDAP evoliltion equations in LO for singlet and non-singlet structure functions in 

the standard forms are [89J 

and 

F . )  
- 3 + 4 ( I  - ) ( x )  + 1 ( l )  = 0. 

dl I .  I 
where 
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and 

2 2 Mere, 1 = In(Q /A ) and A/ = 4/(33-2NJ), N/- being the number of flavours and A is the 
, 

QCD cut off parameter. 

Let us introduce the variable u = l-w and note that [90] 

The series (3.6) is convergent for lul < 1.  Since x < MI < 1, so 0 < u < 1-x and hence the 

convergence criterion is satisfied. Now, using Taylor expansion method [80] we can 

rewrite G (x/lt), 1 )  as 

which covers the whole range of 11, 0 < t l  < 1-x. Since x is s~iiall in our region of 

discussion. the tert~is containing x2 and higher powers of x call be neglected [86-88, 91- 

931 and G(.Y/\v, t )  can be approximated for stnall-x as 

Similarly. F?(X/\V. r )  and I.'~~(,Y:\I~. I) can hc npproxiiiiated for small-x as 

and 
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Using eqilatio~is (3.8), (3.9) and (3.10) in eqilations (3.3), (3.4) and (3.5) and performing 

u-integrations we get 

and 

Now using equations (3.1 1 )  and (3.12) in equation (3.1) we have, 

3F-- (x, I )  
,i(.K)~f (,Y, 1) + I l ( .Y)  a ~ ( x , t )  

-1 c '(.Y)G(.K, ,) + D(,~)---] = C). (3.14) 
81 I dx dx 

Let us assunle for simplicity [86-881 

G(x, I )  = K(s) f i x  (x. t ) ,  

where K(s) is a fitnction of x. Then equation (3.14) gives 

where 

A(x )  = 3 + 4 111 (1-X) - (1-s) (3 -t x), 

~ ( x )  = x (I-.u2) + 2s In (11 x), 

2 C(x) = ( 1 12) A', ( 1 -.I-) (2-xi-2x ), 

D(s)  = N[.Y [-(112) (]-.I-) (5-4.~+7.1-2, + (312) In (11 x), 

~ K ( s )  
L )  = I ( )  + ( ( Y )  + ( x )  -- ""d 

8-K 
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M(s) = B(s) + K(s )  D(.u). 

Secondly using ecl~~ation (3.13) in equation (3.2) wc have 

~FP' (1. I ) (x, I )  
I ( )  ( ) + ( x )  - -  

at 8.x 

where 

P(x) = 3 + 4 in ( I  -.s) - (1-x) (r+3) and Q(s) = x (1-x2) -2x lnr. 

The general solutions of equations (3.16) is 180-81 ( F ( U ,  V) = 0, where F is an arbitrary 

function and U(x. I ,  f iS )  = CI and V(x, I ,  /;is') = C2 for111 a solution of equations 

Solving equation (3.18) we obtain, 

( t ,  ) = t  and ( r  LF;) = F;(x,t)ex{ 
Af M(x-) 

If U and I/ are two independent solutions of equation (3.18) and if a and are arbitrary 

constants, then V = crU + /I may bc takcn as u complcte solutio~-1 of equation (3.17). We 

take this form as this is the simplest forin of a colnplete solution which contains both the 

arbitrary constants cx and /?. Earlier few papers r86-881 considered a solution AU + B I T =  

0, where A and B are arbitrary constants. But that is not a complete solution having both 

the arbitrary constants as this equation can be transformed to the forin V = CU, where C = 

-A/B, i.e., the equation contains only one arbitrary constant. Now the coniplete solution 

[SO-8 1 ] 

is a two-parameter fanlily of' surfaces, whicll does not have an envelope, since the 

arbitrary constants enter linearly [go]. I>ill'crentiating equation (3.19) with respect to /? we 

get 0 = 1. which is absurd. tlence there is no singular solution. The one parameter fanlily 

deternlined by taking a = a2 has equation 
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S /, ( I-) F2 I x , l l c x ~ ~ -  A d ( x )  - d j = u l c + -  A, - ~ i .  /\I(.t-) 1 +u- 
Differentiating equation (3.20) with rcspcct t o  rr ,  wc get 

r 1 

Putting the value of a in equation (3.20), we obtain the envelope 

which is merely a particular solution of the general solution. Unlike the case of ordinary 

differential equations, the envelope is not a new locus. It is to be noted that when /3 is an 

arbitrary filnction of cn. then tllc eli~nination 01' tx in cquation (3.20) is not possible. 'Thus 

the general solution can not be obtained lio111 the complete solution [81]. Actually, the 

general solution of a linear partial differential equation of order one is the totality of 

envelopes of all one parameter fanlilies (3.2 1) obtained from a colllplete solution. 

Now, defining 

S 1 2  
F2 ( x , t O ) = - - t o  4 exp 

2 2 at t = to,  where, to  = In (go /A ) at any lower value of (J = Qo, we get from equation (3.2 1) 

which gives the t-evolution of singlet structure function F:(x. t). Proceeding exactly in 

the same way, and defining 
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N S  
which givcs thc I-evolution ol‘nun-singlet S I ~ L I C I L I S C  l'i~nction F2 '(A, I ) .  

Again defining 

x =xo, we obtain from equation (3.21) 

which gives the x-evolution of singlet structure fi~nction F?(X, I ) .  Similarly defining 

1 2  NS (IO , t )  = - - t  exp j F2 4 [ - %qdX] Q(xl  x=x0 ? 

we get 

which gives the x-evolution of non-singlet structure function F ~ ~ ' ( X ,  I). 

Deuteron, proton and neutron structure functions measured in deep inelastic electro- 

production can be written [7] in terms of singlet and non-singlet quark distribution 

functions in leading order as 

Fzd(x, t )  = (519) fiS(x, I), (3.26) 

Ff(xI 1 )  = (511 8 )  f iS (x ,  1 )  + (311 8) fix' (.r, I ) .  (3.27) 

F2"(x, I )  = (511 8 )  ~ ~ " ( x ,  I )  - (311 8) ~ 2 " "  (x, / )  (3.28) 

and 

Ff(x, f) - F2I7(x: I )  = (113) F2," (x, f ) .  (3.29) 

Now using equations (3.22) and (3.24) in equation (3.26) we will get t and x-evolutions of 
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deuteron struct~11.c fiinction F?"(.Y, I )  at low-x as 

and 

where the input functions are 

'l'he corresponding results for a particular solutions li-om the linear combination of U and 

V of general solutions F (U,  V )  = 0 of GLDAP evolution equations obtained earlier [86- 

881 are 

and 

d d F2 ( x ,  t )  = F2 ( ro ,  t )  exp 
1 

These were obtained by taking arbitrary lineal- combination AU + BV = 0 of general 

solution F (U,  V) = 0, where A and B are two arbitrary constants as discussed earlier. 

Similarly using equations (3.22) and (3.23) in equations (3.27), (3.28) and (3.29) we get 

the I-evolutions of proton, neutron, and difference and ratio of proton and neutron 

structure functions at low-x as 
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and 

where R(x)  is a constant for fixed-x. Mere the input functions are 

S 3 5 S NS x,[ ) and F.f(x . t0)  =--F2 (",to) + - F f s ( x , l 0 ) ,  $ ( x , l O ) = -  F Z  ( x 3 f 0 ) - - F 2  ( 0  
18 18 18 18 

The corresponding results for earlier solutions of GLDAP evolution equations [86-881 are 

and 

where R(x )  is a constant for fixed-x. 

But the s-evolutions of proton and neutron structure fu~~ctions like those of deuteron 

strt~cture function is not possible by this method, because to extract the x-evolutions of 

proton and neutron structure f~inctions we are to put equations (3.24) and (3.25) in 

equations (3.27) and (3.28). But as the functions inside the ihtegral sign of equations 

(3.24) and (3.25) are diSferent, we need to separate the input fii~lnctions e ( x o ,  t )  and 
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- 

( I )  from tlic data paints to extract the s-cvoluhons of the proton slid ne~ltron 

structure liinctions, which will contain Iargc errors. 

For the particular solution of equation (3.16), we take P = a2 in equation (3.19). If we take 

= a in equation (3.19) and differentiating with respect to a as before, we get 

from which we can not determine the value of a. But if we take P = a' in equation (3.19) 

and differentiating with respect to a, we get 

which is imaginary. Putting this value of a in equation (3.19) we get ultimately 

Now, defining 

s 3 / 2 [ (  - - :)" ( ) [( 312  L ( x )  
F2 ( x , fO  ) = t o  + -- exp 

A,I. M (x) M (x) 

we get, 

Proceeding exactly in the same way we get lor non-singlet structure function also 

Then using eciuations (3.26). (3.27), (3.28) and (3.29) we get I-e\~olulions of deuteron, 

proton, neutron and dil'l'crcnce of' proton and neutron structure lialctions 
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A,I. M (.') M (s) 

But the determination of x-evolutions of proton and neutron structure functions like those 

of deuteron structure function is not possiblc by this method as discussed earlier. 

Proceeding exactly in the same way we can show that if we take /I = a4 we get 

and 

and so on. So in gcneral, if we take /I = (it", wc gct 

and 

which are 1-evolutions of deuteron, proton, neutron and difference of proton and neutron 

structure functions ancl s-evolution of dc11lc1.011 slructure filnction for /,' = (it". We observe 

that if  y -4 rn (very large), j)/@-l) -+I.  

Thus we observe that if'we take ,!I = a in equation (3.19) we can not obtain the value of a 

3 . 1 -  and also the required solution. But if we takc // = trL, cr . cx , ar-'. . ... and so on, we see that 

the powers of (1/1(3) in I-evolutions of deuteron, proton. neutron and difference of proton 

and neutron structure functions are 2, 312, 413, 514 .... and so on respectively as discussed 

above. Similarly, for x-evolutions of deuteron structure fiinctions, we see that the 
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numerators of the first t e m ~  inside the ititcgral sign are 2, 3/2, 4/3, 5/4 .... and so on 

respectively for tlic salilc v;ilues of (A. Wc obscrvc that if i n  tlle relation /l = d', y varies 

between 2 to a maximum value, the powcrs and the numerators o r  tlic first terili in 

the integral sign vary bctween 2 to I .  'fhen i t  is u~~dcrstood t l i r ~ t  the solutions of ccluations 

(3.16) and (3.1 7) obtained by this method are not unique and so the t-evolutions of 

deuteron, proton and ~leutron structure functions, and x- evolution of deuteron structure 

function obtained by this metllodology are not uniclue. Thus by this methodology, instead 

of having a single solution we arrive a band of solutions, of course the range for these 

solutions is reasonably narrow. 

3.2. Results and Discussion 

We compare our results of r-evolutions ol' dculcron. proton, ncutron and differcncc n~id 

ratio of proton and neutron structure functions from equations (3.30), (3.34), (3.35), 

(3.36) and (3.37) respectively \\lit11 the I-ERA and NMC low-x, low-Q' data [94-951. Here 

proton structure functions F ~ ( . Y ,  Q ~ ,  z) measured in the range 2 5 Q2 5 50 G ~ v ' ,  0.73 5 z 

5 0.88 and neutron structure fiinctions F';(r. @, z) measured in the range 2 5 Q~ 5 50 

G ~ V ~  , 0.3 5 z 5 0.9 have becn used. Mol.cover here PI.< 200 MeV, where P7. is the 

transverse inomentum of the final state baryon and z = l-q.(pd) 1 (q  . p) ,  where p, q are 

the four momenta of the incident proton and tlie exchanged vector boson coupling to the 

positron and d is the four-momentuni of. t l~c  final state baryoo. And also we compare our 

results of I-evolution of proton structure I'u~ictions with a recent global paranleterization 

[96]. This parameterization includes data from HI ,  ZEUS, NMC, E665 experiment [95, 

97-1021. Though we compare our results with y = 2 in = a'' relation with data, our 

results with y maximum, which are equivalent lo earlier results of approximate solutions 

[86-881 are equally valid. For /-evolutions of deuteron, proton, neutron and difference of 

proton and neutron structure filnctions, the rcsults will be the range bounded by the 

curves for y = 2 and y = maximum (= infinity). But for x- evolutions of deuteron structure 

futlctions, both results have not any significant di rfcrcnce. 

In figure 3.1. u c  present our results of  I-cvolulions of clcutcron str~icturc lili~ctions ~ 2 "  

(solid lines) for the representative values ol'x given in the figure for y = 2 in the /l = d' 

relation. Data points at lowest-Q~ values in  tlie ligure are taken as inputs to test tlie 
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evolution equation (3.30). Agreement is Sound to bc good. In the sanx  figure, we also 

plot the rcsiilts 01. I-evolutions of r l c u t c ~ o ~ ~  st~.i~ctt~sc lhc t iuns  I<>'' (dashcd lines) lor y 

maxinlunl in the /3 = K' relation. The results of approximate solution [86-881 from 

equation (3.32) of GLDAP evolution equations are similar to that of ou1- LO results for y 

maximum in p = d' relation. We observe that the LO results for y = 2 are of better 

Fig.3.1: t-Evolution of deuteron structure functions in leading order. 

agreement with expel-imental data in general. For convenience, value of each data point is 

increased by adding 0.2i, where i = 0. 1. 2. 3. . .  are the number;ngs of curves counting 

from the bottom of the lowcsmost curve as the 0-111 order. 
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In figure 3.2, we present our results of /-evolutions of proton structure fiinctions fiP (solid 

lines) for thc rcprcscntutivc values of x givcn in thc figure for y = 2. Data points at lowest- 

@' values in the lipi~re are taken as input to tcst the evolution equation (3.34). Agreement 

is Sound to be cxccllcnt. In thc same 1igt11.c wc also plot thc rcsults of/-evolutions of 

Fig.3.2: t-Evolution of proton structure function's in leading order 

proton structure functions Ff (dashed lines) for y maximum in /I = a" relation. The results 

of earlier approni~ll;~te solution 186-88) liom uqi~ation (3.38) of GLDAI' [29-32) evol~~tioo 

equations are similar to that of our LO rcsults for y maximurn in the P = d' relation. We 

observe that the LO results for y = 2 are of better agreement with experimental data in 

general. For convenience, value of each data point is increased by adding 0.2i, where i = 
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0, 1, 2, 3... are the n~uilberings of curves counting from the bottom of the lower~nost curve 

as tlie 0-tli order 

Fig.3.3: t-Evolution of proton structure functions in leading order . 

In figure 3.3, we compare our results of t-evolutions of proton structure ft~nctions F2P with 

recent global para~neterization 1961 (long daslled lines) for the representative values of x 

given in tlie figures for J) = 2 (solid lines) and y maximtun (dashed lines) in the P = a" 
2 relation. Data points at lo\vest-Q values in  the figures are taken as inputs to test the 

evolution equation. Agreement is found to be good. For convenience, value of each data 

point is increased by adding 0.5i, where i = 0, 1.2, 3 ... are tlle nunlberings of curves 
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counting from tlie bottom oftlie lowennost curve as the 0-tli order. 

Fig.3.4: t-Evolution of neutron structure functions in leading order. 

In figure 3.4, we prescnt our results of /-evolutions of' neutron slructure li~nctions 

F2"(solid lines) for the representative values of x given in the figure for y = 2. Data points 

at lowest-Q' values in the figure are taken as illputs to test the evolution equation (3.35). 

Agreement is found to be excellent. In the same figure, we also plot the results of r- 

evolutions of neutron structure lilnctions &" (dashcd lines) for y masimum in tlie P = a' 

relation. The results of approximate solution [86-881 of GLDAP evolution equations are 

similar to that of our LO results for y nlaximu~n in P = a" relation. We observe that tlie LO 

results for y = 2 are of better agreement with experimental data in general. For 
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convenience, valuc of each data point is incrcascd by adding 0.2i, where i = 0,  1 ,  2. 3. . .  

arc the numberings of cl~r\/cs counting li-om thc bottom ol'thc lowermost curve as the 0-th 

ortlcr. 

Fig. 3.5: 1-Evolution of difference of proton and neutron structure functions in leading order. 

In figure 3.5, we present our results of I-evolutions of difference of proton and neutron 

structure fiinctions 172"-l';" (solid lines) l'or tlic representative values of s given in the 

figure for y = 2. Data points at lo\\rest-~* values in the figure are taken as inputs to test the 

evolution equation (3.36). Agreement is found to be excellent. In'the same figure, we also 

plot the results of 1-evolutions of difference of proton and neutron structure functions fip- 
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(dnslied lincs) for y ~ l i i ~ ~ i ~ i l l ~ ~ l i  i l l  tlie / I  = (I" relatioll. '1'11~ rcsi~lts of approxi~llate 

solution I 86-88 1 I'l.oni ecliiatioli (3.40) o f  C; I ,I>Al' evolution cc~uations arc similar to that 

ol'our 1 . 0  rcsulls l i , r~ l  ~ i i i ~ s i ~ l i u ~ i i  in tlic / I  - rr" 1.clatio11. Wc obscrvc that tlic I,O rcsulls l i ~ r  

y = 2 are ol'bctlcr agrcenlent will1 cxpcrimclllnl daln in gcticri~l. For convenicnce, value of 

each data point is increased by adding 0.4i, where i = 0, 1, 2, 3. . .  are the numberings of 

curves counting f'ro~n thc bottom of thc lowcrniost curvc :is tlic 0-lli order. 

Fig.3.6: t-Evolution of ratio of proton and neutron structure functions in leading order. 

In figure 3.6, Lve present our results of I-cvolutions of ratio of proton and neutron 

structure functions F f l F i '  (solid lines) for the representative Galues of x given in the 

figures. Though according to our theory the ratio should be independent of r. due to the 
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lack of sufficient amount of data and due to large error bars, a clear cut conclusion can 

not bc drawn. 

For a q~~antitative analysis of x-distributions of structure functions, we calculate the 

integrals that occurred in equation (3.31) using Simpson's one - third rule for N f  = 4. 

I 

3 - T 

GI2 = 7Gev2 

I 

= 5.5Gev2 

I 

GI2 = 4 . 5 ~ e ~ ~  

I 

1 
I 

GI2 = 3.5Gev2 

Q' = 0.75Gev2 
I 

K = constant 
K = axb 
K = ce-dx 

I 

Fig.3.7: x-Evolution of deuteron neutron structure functions in leading order 

In figure 3.7, wc prcscnt our rcsul ts of s-distribution of dcutcron structure li~tictions 1;2" 
for K(x) = co11st;unt (solid lines), K(x) = axh (dashed lines) and for K(r) = ce4' (dotted 

lines), where o, h. c and d are constants and for rcprese~ltative vilues of Q* given in each 

figure for 11 = 2 in /l = d' relation. and ~~~~~~~~~e tllctn witli NMC deuteron low-x low- @ 
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data [95]. In each curvc, tlie data point f i~r  s-value just bclow 0 1 has bccli tclkcn as input 

F ( I). lf we take K(x)  = 4.5 in equatiol~ (3.31) then agreement of the result, with 

expcrimcntal data is Sound to he excellent. On the otlss Ilil~ld, iS  wc take K(s)  = mh , tllcll 

Fig.3.8: Sensitivity of our results for different values of 'k'. 

agreement of the results with experimental data is found to be good at c7 = 4.5, b = 0.01. 

Again if we take K(.Y) = cc-"'. then agreemelit of the results with experimental data is 

found to be good at c = 5, h = 1. We obscrvc that therc is no signilicant dil'lkrence 

between the results for y = 2 and y maximum value in the = d' relation. For 

convenience, value of each data point is increased by adding 0.2i, where i = 0, 1. 2. 3 ,  . . . 
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are thc nu~nhcri~lgs of cut-vcs countitlg linm tlic hottom of thc lowcr~~~os t  curve ns the 0- 

th order. 

In figure 3.8, wc present the sc~lsitivity ol'our results Ivs difl'erent constant values of K(x).  

We observe that at K(s) = 4.5. agrccn~ent of tlic rcsults with experimental data is found to 

be excellent. I f  value 01' K(x)  is increased, tlic curve goes upward direction and if value of 

K(x) is decreased, the curve goes downward direction, but the nature of the curve is 

similar. 

- -- 
0 0.02 0.04 0.06 0.08 0.1 

X 

Fig.3.9: Sensitivity of our results for different values of 'a' at fixed value of 'b'. 

In figure 3.9, we present the sensitivity of our resi~lts for different values of 'a' at fixed 
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value of 'h ' .  IIerc we takc h = 0.01. We observe that at LI = 4.5, agreement of the results 

with cxpcri~ncntal data is Iound to bc excellent. If' value of 'a' is increased, the curve goes 

upward direction and if valuc of  ' c ~ '  is dccrensed, the curve goes downward direction. but 

the nature of the cul-vc is similar. 

Fig.3.10: Sensitivity of our results for different values of 'b' at fixed value of 'a'. 

In figure 3.10, we pscscnt the sensitivity ol' out- I-csults l i~s  c1illc1-cnt vr~lucs of 'h '  at 1ised 

value of 'N'. Here we take tr = 4.5. We observe that at b = 0.01, agreement of the results 

with experimental data is found to be excellent. If value of '6' is inkreased then the curve 

goes downward direction and il'valuc of 'h' is dccrcased the curve goes upward direction. 
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But wc observe that dill'erenccs ol'the curvcs Ihr h -. 0.01, 0.001 atid lowcr values are 

very small and all these curves are almost overlapped. Here also the nature of the curve is 

si~iiil:~r, 

Fig.3.11: Sensitivity of our results for different values of 'c' at fixed value of 'd' 

In figure 3.11, we present the sensitivity of our results for different values of 'c' at fixed 

value of '8 .  Here cve take d = 1 .  We observc that at c = 5 ,  slgreeii~ellt of the results with 

experin~ental data is found to be excelle~~t. If value of 'c '  is increased the curve goes 

upward direction and if value of 'c' is decreased the curve goes down~vard direction. But 

the nature of the curve is similar. 
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In figure 3.12. we prcsent sensitivity of our results for different values o f  d' at fixed value 

of 'c'. Here we take c = 5. We observe that at d = 1 ,  agreement of the results with 

Fig,3.12: Sensitivity of our results for different values of Id' at fixed value of 'c'. 

experi~nental data is fbund to be excellent. If value of 'd' is increased then the curve goes 

downward direction a t~d if value of '8 is decreased the curve goes upward direction. 

Here also the nature of the curve is similar. 

Traditionally the GLDAP evolution provide a tileans of calculating the manner in which 
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thc parton distributions cllangc at lixcd-.i as p2 v;lrics. 'Illis change conles about because 

of the various types of  parton branching emissioi~ processes and the x-distributions are 

modified as the initial momentum is shared among the various daughter partons. 

However. the exact rate of nlodifications of x-distributions at fixed-@ can not be obtained 

from the GLDAP equations since it depends not only on initial x, but also on the rate 

of change of parton distributions with respect to x, J'lT(x)l ~" (n = 1 to a), up to infinite 

order. Physically, this implies that at high-x, the parton has a large momentum fraction at 

its disposal and as a result it radiates partons including gluons in innunlerable ways, sollle 

of them involving complicated QCD n~echanisms. However for low-x, many of the 

radiation proccsscs will ceasc to occur duc to momcntum constraints and the x-evolutions 

get simplified. It  is then possible to visualize a situation in which the modification of the 

x-distribution simply depends on its initial value and its first derivative. In this simplified 

situation, the GLDAP equations give information on the shapes of the x-distribution. The 

clearer testing of our results of x-evolution is actually the equation (3.25) which is free 

from the additional assumption equation (3.15). But non-singlet data is not sufficiently 

available in low-x to test our result. 

3.3. Conclusion 

In this chapter, we obtain con~plete and particular solutions of singlet and non-singlet 

structure functions at low-x using by Taylor's expansion n~ethod fro111 GLDAP evolution 

equations and t and x-evolution of singlet and non-singlet structure functions in LO. 

Hence ,-evolutions of deuteron, proton, neutron and difference and ratio of proton and 

neutron structure functions and x-evolutions of deuteron structure fi~nctions in LO have 

been calculated. These evolutions are non-unique. We colnpare our results with HERA, 

NMC low-x low e2 data and a recent global parameterization. In all the result from 

experimental as well as global fits, it is seen that deuteron structure functions increases 

when x decreases and Q' increases for fixed values of Q~ and x respectively, and proton, 

neutron, difference and ratio of proton and neutron structure functions increases when @ 
increases for fixed value of x. I t  is clear from the figures that the LO results of t -  

evolutions for = 2 in tlic relation /? = a". are of  better agreement with experimental data 

and parameterization in general. 
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t AND X-EVOLUTIONS OF GLDAP EVOLUTION EQUATIONS 

IN NEXT-TO-LEADING ORDER 

In the previous chapter, particular solution of the Gribov-Lipatov-Dokshitzer-Altarelli- 

Parisi (GLDAP) evolution equations [29-321 for 1 and x-evolutions of singlet and non- 

singlet structure functions in leading order (LO) at low-x have been discussed. The same 

technique can be applied to the GLDAP evolution equations in next-to-leading order 

(NLO) for singlet and non-singlet structure functions to obtain t-evolutions of deuteron, 

proton, neutron, and difference and ratio of proton and neutron structure functions and x- 

evolution of deuteron structure functions at low-x. These NLO results are conlpared with 

the HERA HI [94] and NMC [95] low-x, low-@ data and with those of particular 

solution in LO and we also compare our results of t-evolution of proton structure 

functions with a recent global parameterization [96]. 

4.1. Theory 

The GLDAP evolution equations with splitting functions [103-1051 for singlet and non- 

singlet structure functions in NLO are in the standard fornls [106-1091 

and 
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( I )  - - (~~(1) 

where 

306-38N 
and Pl = f 

3 
I 

Nf being the number of flavours. Here, 

and 

The explicit forms of higher order kernels are [103- 1051 

w)lnw+4(1- w), 
k k 

2 0 
F (\v)=--2+6iij-- 2 

94 9 ~ 3  9  ln~v-(l+iv)ln is. 
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and 

2 where P,(w) = w + (l-lv)', CA = Cc = Nc = 3, Cr = (N$ - 1)/ 2Nc and TR = 112. 

Now, using Taylor expansion method [80] and neglecting higher order terms of x as 

discussed in the Chapter-3 we can write ~ 2 ~ ( x l w ,  I), G(x I r, t )  and F~~'(x I W ,  1) as 

and 

where u = 1-rv. 

Using equations (4.3) and (4.4) in equation (4.1) and performing u-integrations we get, 
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where 

I 

4 (x) = x j f (w)dw- 9 
3 f 

0 317 

and 
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Let us assume for simplicity 186-88, 106-1 101 

G(x, I )  = K(x)  1;f5 (.u, 1 ) .  

where K(x)  is a futlction of x. Now equation (4.6) bccoliies 

where 

aK (x) 
L, ( x )  = 4 ( x )  + K ( x )  5 ( x )  + A4 ( x )  -- , 

dx 

and 

M I  (X j = B1 ( x )  + K ( x )  B2 ( x )  + B4 ( x )  - , 
dx 

For a possible solution, we assume [106-1091 that 

where To is a numerical paralneter to be obtained fiom the particular @-range under 

study. By a suitable choice of To we can reduce the ell-or to a minimum. Now equation 

(4.8) can be recast as 

where 

a. 
ps (x. ') = + [ L ~  (X) + r0 Ad2 ( x ) ]  
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and 

Q~ (x.!) = m[~l ( x )  + 7 b ~ 4  (r)]. 
27r 

Secondly, using equations (4.5) and (4.9) in equation (4.2) and perforn~ing icintegratioo 

we have 

where 

and 

with 

X I 

A6 (.r) = (3 + 4 In (1 - x) + (.r - l )(r + 3)). and B6 (x) = - j. f (1u)dw + x J$ f ( I ~ ) ~ I V .  
3 

0 0 

The general solutions [80-811 of equations (4.10) is F (U, V) = 0, where F is an arbitrary 

function and U(x, t ,  F?) = CI and V(x, I ,  F?) = C2 where, CI and C2 are constants and they 

form a solution of equations 

We observe that the 1,agrange's auxiliary system of ordinary differential equations [80- 

811 occurred in the formalism can not be solved without the additional assumption of 

linearization (equation 4.9) and introduction of an ad hoc paranleter To. But this 

parameter does not effect in the results of /-evolutions of structure functions. Solving 

equation (4.12) we obtain, 
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where 

2 
a=--- b = q, N (x)= 5 d i  dx, and MS(x) = I 4 (4 + &MI (x) dr. 
6' Po S 4 (XI  + GM, (XI  L2 (4 + q,Ay2 (x) 

If U and V are two indepenclcnt solutions of equation (4.12) and if a and b are arbitrary 

constants, then V = aU + p may be taken as a complete solution of equation (4.1 1). Then 

the complete solution [80-8 11 

is a two-parameter family of planes. The one parameter family determined by taking @ = 

a2 has equation 

[ + ) e x p [ + )  2 ~f (x, f ) e x p [ ~ ~  (x)] = a r + a .  

Differentiating equation (4.14) with respect to a, we obtain 

Putting the value of u again in equation (4.14), we obtain the envelope 

Therefore, 

wllicll is merely a particular solution of the gcncml solution. Now detillillg 
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2 2 
at t = to, where. to = In (Qu /A ) at any lower value Q = Qo, we get from equation (4.15) 

n 

which gives the ,-evolution of singlet structure function F/(x, t )  in NLO for = a2. 

Proceeding exactly in the same way, and defining 

where 

dx and MNS (x) = 5 A5 (XI + G B 5  ( 4  &, NNs(x) = J 
A5 (x )  -I- To fi5 (4 A6 (x) + & 136 

we get, 

which gives the i-evolution of non-singlet structure function F ~ ~ ' ( x ,  t) in NLO for P = a2. 

In the previous chapter, we obtained that for low-x in LO for P = a2, 

and 

We observe that i f  h tends to zero, then equation (4.16) and (4.17) tends to ecluatiotl 

(4.1 8) and (4.19) respectively, i.e., solution of NLO equations goes to that of LO 

equations. Physically h tends to zero means number of flavours is high. 

Again defining, 



Studies on Hadron Structure Functions and GLDAP Evolution Equations 

we obtain from equation (4.15) 

which gives the s-evolution of singlet structure function F:(x, 1 )  in NLO for P = a2. 

Similarly defining, 

we get 

which gives the x-evolution of non-singlet structure fu~lction F ~ ~ ' ( x ,  1 )  in NLO for P = a2. 

In the previous chapter, we obtaincd that for low-x i l l  LO forP = a2, 

and 

where 

A / =  41(33-2N'), P(x) = 3 + 4 In ( 1  -x)-(1 -x) ( x  + 3). Q(x) = x (1-x2)-2x Inr, 

aK(x)  and M(x)  = Q(x) + K(x) D(s).  L ( x )  = P ( x )  + K ( x ) C ( x )  + D(x) --- 
ax 

where again. 

C(x)  = (112) N'( 1 -I)( 2-.x t 2,~') and D(x) = h/,rl(-- 11 2) ( 1--.~)(5-4x+ 2x2) + (31 2)h1(11x). 

Of course, unlike for the I-evolution equations, we could not have for the x-evolution 

equations in LO as some limiting case of NLO equations. 
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Deuteron, proton ~uld ncutron structure li~nctions can bc written in terms of singlet and 

non-singlet quark distribution f~illnctions [7] as 

F~'/(x, 1 )  = (519) l/z.'(x, 1) ,  (4.24) 

/;zP(x, I) = (5118) I,'?(X, 1) + (3118) F > ~ " ( . Y ,  I), (4.25) 

F2"(x, t )  = (511 8) F ~ ( x ,  1) - (311 8) F~~~ (x, t), (4.26) 

F2P(~ ,  t) - FZ))(x, t) = (113) I;~I'" (x, t). (4.27) 

Now using equations (4.16) and (4.20) in equation (4.24) we will get t and x-evolution of 

deuteron structure function F ~ ( x ,  t) at low-x in NLO for P = a2 as . - 

and 

where the input funclions are $(x,tO) = (5/9)$(x,t0) and $(x0, t )  = (5 / 9)If(x0, 1). 
The corresponding results for a particular solution of GLDAP evolutio~l equations in LO 

for p = a2 obtained earlier [I  101 given in equations (3.30) and (3.3 1) in the Chapter-3. 

Sin~ilarly using equations (4.16) and (4.17) in equations (4.25), (4.26) and (4.27) we get 

the t-evolutions of proton, neutron, and diffcrcnce and ratio of proto~l and neutron 

structure functions at low-x in NLO as 

P. 
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/ \ 2 

and 

where R(x) is a constant for fixed-x. And the input functions are 

and 

The corresponding results for particular sol~~tions of GLDAP evolution equations in LO 

for /? = a2 have been give11 in equations (3.34). (3.35), (3.35), (3.36) and (3.37) in the 

Chapter-3. It is observed that ratio of protoll and neutron is same for both NLO and LO 

and it is independent of r for fixed-x. But the determination of x-evolutions of proton and 

neutron structure functions like those of deuteron structure function is not possible by this 

method as is discussed in the Chapter-3. 

For the particular solution of equation (4.10). we take P =  a2 in equation (4.13). If we take 

/7 = a in equation (4.13) and differentiating with rcspect to a as before, we get 

O = r  + I  Srom whicli we can not determine thc value of a. But 

if we take = a' in equation (4.14) and dif'fcrentiating with respcct to a. nJc get 
- ' [(",+I) [; :'At~)) a =  -- d exp - + - . Putting this value of a in equation (4.14) we get 
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Now, defining 

we get 

Proceeding exactly in the same way we get for non-singlet structure function also 
' 

Then using equations (4.24), (4.25) and (4.26) we get f-evolutions of deuteron, proton and 

difference of proton and neutron structure functions 

312 
F: ,~ ,n ,~- i l  (x, 1) = F2 a', p, 11,p - n ( ~ , r ~ ) [ ~ : ( " ~ "  (b l tO + I )  " 1 exp[zb(! - L)]. 

2 t to 

Proceeding in the same way, we get x-evolution of deuteron structure function as 

d ~f (x, t)  = F~ (xO,  f )  exp I . 1 - [-I(? L2 (XI + 7 b A f f 2  (x) 

4 Proceeding exactly in the same way we can show that if wc take /3 = cx we get 

and 

and so on. So in general. if we take /J' = (1". we get 
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and 

which are !-evolutions of deuteron, proton, neutron, and difference of proton and neutron 

structure functions and x-evolution of deuteron structure li~nction respectively for /I = a". 

We observe if y+m (very large), y/@-1) + 1 .  

Thus we observe that if we take P = cn in equation (4.14) we can not obtain tlie value of a 

and also the required solution. But if we take /? = a2, a3, a', a'.,. ... and so on, we see that 

the powers of i / t o  h " ~ " I  and co-efficient of b{(ll!) - ( l l t , ))  of exponential part in 

!-evolutions of deuteron, proton, neutron, ancl dil'lkrence 01' proton and neutron structure 

functions are 2, 312, 413, 514 .... and so on respectively as discussed above. Similarly, for 

x-evolutions of deuteron structure functions we see that tlie nunierators of the first term 

inside the integral sign are 2, 3/2, 4/3, 514.. ..and so on respectively for the same values of 

a. Thus we see that if in the relation P = rx". J! varics between 2 to a maximum value, the 

powers of t b i ' + ' / t O  h l f , ,+I  
, co-efficient of t " "+'  / l o  

h I / , ,  + I of expoilential part in t -  

evolution and the numerator of the first tern1 in the integral sign in x-evolution varies 

between 2 to 1. Then it is understood that the solutions of equations (4.10) and (4.11) 

obtained by this mcthod are not unique and so the 1- evolutions of deuteron. proton and 

neutron structure fi~nctions, and x-evolution of deuteron structure function obtained by 

this method are not uniquc. 

4.2. Results and Discussion 

We compare our rcsults of 1-evolution of deuteron, proton, neutron and difference and 

ratio of proton and neutron structure functions with tlie I IERA [94] and NMC [95] low-x 

and l o w - ~ '  data. In case of H E M  data [94j proton and neutrbn structure functions are 

measured in the range 2 5 Q' i 50 (3ev2. Marcovcr here I ' r  5 200 MeV. wllcrc I'r is tlie 
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transverse morncntu~n ol' the final state baryon. In case ol' NMC data, proton and deuteron 

structure functions are measured in the raiigc 0.75 < Q~ < 2 7 ~ e ~ ~ .  We coiisider nun~ber 

of flavours N ,  = 4. We also compare our rcsults of 1-evolution of proton structure 

Fig.4.1: t-Evolution of deuteron structure functions in leading order (dashed lines) and 

next-to-leading order (solid lines). 

functions with a rccent global parameterization [961. This paraineterization i~lcludes data 

from I l l .  ZIIIIS. NMC a t ~ d  1'665 cxpcrinic~il 105. 07-1021. 'Ihc rcsult of s-cvolulion ol' 

deuteron structure fi~l~ction llns heen co~npered with NMC low-x and low-Q' data, and 

also our results of s and I-evolutions have been compal.ed with those of LO results. 

In figure 4.1. we present our results of 1-evolutions of deuteron structore f~~nctions F~'' for 
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the representative values of .u given in the figure for .v = 2 (upper solid lines) and y 

111axinli1lll ( J U W C I  solid lints) i l l  the /I - u" relation. 11;1t;1 points at lowest-Q' values in the 

figures are taken as inputs to test the evolutioli equation. Agreement with the data [95] is 

found to be good. In the same figure we also plot the results of t-evolutions of deuteron 

Fig.4.2: 1-Evolution of proton structure functions in leading order (dashed lines) and 

next-to-leading order (solid lines). 

structure functions F'i" (dashed lines) for the particular solutions in LO. Here, upper 

dashed lines are for y = 2 and lower dashed lincs for y ~naximum in the = d. relation. 

We observe that /-evolutions are slightly steeper in LO calculations than those of NL,O. 

But NLO results ibr y == 2 arc o l  better agreemelit wit11 I*'~'' expcrin~cntol data i l l  gc~icrol. 

72 
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For convenience, value of each data point is increased by adding 0.2i, where i = 0, 1, 2, 

3.. . are the numberings of curves counting from the bottom of the lowermost curve as the 

0-th order. 

Fig.4.3: t-Evolution of proton structure functions in leading order (dashed lines) and next-to- 

leading order (solid lines). 

In figure 4.2, we present our ~.esults of I-evolutions of proton structure functions F f  (solid 

lines) fbr the representative values o fx  given in the figure for y = 2 (upper solid lines) and 

y maximum (lower solid lines) in the /? = rx" relation. Data points at lowest-@ values in 

the figures are taken as inputs to test the evolution equation. Agreement with the data [94] 
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is found to be cxcellcnt. In the same figure, wc also plot the results of t-evolutions of 

proton structure functions FZp (dashed lines) for the particular solutions in leading order. 

I lcre, ilppcr d;ishcd li~lcs ;~rc lilr JI = 2 and lowcr rl;islicd lilics lbr y ~i iaxi~l l t~~i l  i n  tllc /I = N" 

relation. We observe that (-evolutions are slightly steeper in LO calculations than those 

of NLO. But differences in the results are small. For co~lvenience, value of each data 

point is increased by adding 0.2i, where i = 0, 1. 2, 3 ... are the numberings of curves 

counting from the bottom of the lowerlnost curve as the 0-th order. 

In figure 4.3, we compare our results of i-evolntions of proton structure functions FZp with 

a recent global parameterization [96] (long dashed lines) for the representative values of x 

given in the figures for y = 2 (upper solid lines) and y maximum (lower solid lines) in the 

/? = d relation. Data points at lowest-@ values in the figures are taken as inputs to test 

the evolution equation. In the same figure, we also plot the results of t-evolutions of 

proton structure functions Ff (dashed lines) for the particular solutions in LO. Here, 

upper dashed lines are for y = 2 and lower dashed lines for y maximum in the P = d 

relation. We observe that t-evolutions are slightly steeper in LO calculations than those 

of NLO. Agreement with the NLO results is found to be better than with the LO results. 

For convenience, value of each data point is increased by adding 0.5i, where i = 0, 1,  2, 3 

... are the numberings of curves counting from the bottoln of the lowermost curve as the 

0-th order. 

In figure 4.4, we present our results of t-evolutions of neutron structure functions Fzn 

forthe representative values of x given in the figure for y = 2 (upper solid lines) and y 

maximum (lower solid lines) in the /? = d relation. Data points at lowest-@ values in the 

figures are taken as inputs to test the evolution equation. Agreement with the data [94] is 

found to be excellent. In the same figure, we also plot the results of t-evoliitions of 

neutron structure functions 5" (dashed lines) for the particular solutions in LO. I-Iere, 

upper dashed lines are for y = 2 and lower dashed lines for y maxi~num in the /3 = d' 

relation. We observe that I-evolutio~~s arc sligl~tly stccpcr in LO calculations than those 

of NLO. But differences in the results are small. For convenience, value of each data 

point is increased by adding 0.2i, where i = 0, 1, 2. 3 ... are the numberings of curves 

counting from the bottom of the lowerniost curve as the 0-th order. 
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Fig.4.4: 1-Evolution of neutron structure funclions in leading order (dashed lines) and 

next-to-leading order (solid lines). 

In figure 4.5, we present our results of !-evolutions of difference of proton and neutron 

structure functions F f - f i n  wllich is a non-singlet combination, for the representative 

values of x given in the figures for y = 2 (upper solid lines) and y lllaxilllu~n (lower solid 

lines) in the = u' relat io~~.  Data points ;it lowest-Q' values in the figures are taken as 

inputs to test the evolution equation. Agreement with the data [94] is found to be 

excellent. In the same figure, we also plot the results of !-6volutions of difference of 

proton and neutron structure ii~nctions F2p-Z72n (dashed lines) for the particular solutions 
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in LO. Here, upper dashed lines for y = 2 and lower dashed lines for y maximiuii in the /3 

= CrY relation. We observe that I-evolutions are slightly steeper in LO calculations than 

Fig.4.5: t-Evolution of difference of proton and neutron structure functions in leading order 

(dashed lines) and next-to-leading order (solid lines). 

those of NI .0  For co~ivcnicncc. value of cacli d;lt;l point is incrcascd by adding 0.4;. 

where i = 0. 1,  2, 3 ... are the oumberings of curves couliting from tlie bottoni of the 

lower~nost curve as the 0-th order. 
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In figure 4.6, wc prcscnt our rcsults of I-cvolutio~is ol' ratio o r  proton and ncutron 

structure functions F'2pll;i" (solid lines) for the representative values of x given in the 

Fig.4.6: t-Evolution of ratio of proton and neutron structure functions in next-to-leading order 

figures. Though according to our theory the ratio should be independent o f t ,  due to the 

lack of sufficient amount of data and due to large error bars, a clear cut conclusion can 

not be drawn. 

Though we compare our results which y = 2 and y maximum in the /3 = a''re1ation with 

data. agreement of the result with experitnental data is found to be excellent with y = 2 for 

t- evolution in NLO. 
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For a quantitative analysis of x-distributions of structure functions, we calculate the 

integrals that occurred in equation (4.29)  using Simpson's one- third rule for N' = 4. In 

this case, we neglect first and second terrns of thc fi~nction Dl(s) as .Y is s~nnll. 111 figure 

Fig.4.7: x-Evolution of deuteron structure functions in next-to-leading order for K(x) = axb 

(dashed lines) and K(x) = cedx(solid lines). 

4.7, we present our results of x-distribution of deuteron structure functions ~2~ for K(x) = 

axb (dashed lines) and for K(x) = ce-" (solid lines) in the relation = a" for y minimum (= 

2 ) ,  where a, b,  c and d are constants and Tor representative values of @ given in each 

figure, and cornpare them with NMC deuteron low-x  low-^^ data [ 95 ] .  Each data point 

for .u-value just below 0.1 has been taken as input F?" (.yo. t ) .  If we take K(x) = nub it1 
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equation (4.29), then agreement of the result with experimental data is found to be 
-dx 

excellent at a = 10, b = 0.016. On the other hand, if we take K(x) = ce then agreement 

of the results with experimental data is found to be good at c = 0.5, d = -3.8. I11 this 

connection, earlier we observed [I 101 that agreement of the results with experimental 

data 

Fig.4.8: x-Evolution of deuteron structure function for K(x) = axb in the relation P=ay, for y 

minimum (solid lines) and maximum (dashed lines). 

is found to be excellent for K(x) = 4.5 (constant), cr = 4.5, h = 0.01, c = 5, t l=  1 for low-.~ 

in LO. But in the case of NLO, agreement of the results with experi~neiltal data is found 

to be very poor for any constant value of K(x). Therefore we do not present our result of 
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x-distribution at K(x)  = constant in NI.0. For convenience, value of each data point is 

increased by adding 0.2i, where i = 0, 1, 2, 3 ... are the numberings of curves counting 

from the bottom of the lowermost curve as thc 0-th ordcr. 

In figure 4.8, we compare our results of x-evolution of deuteron structure function for 

K(x) = axb in the relation p = 2, for y = 2 (solid lines) and maximum (dashed lines) at 

Fig.4.9: x-Evolution of deuteron structure function for K(x) = cedx in the relation P=aY. 

for y minimum (solid lines) and maximum (dashed lines). 

same parameter values, a = 10, b = 0.016 and for representaiive values of Q* given in 

each figure, and compare them with NMC deuteron low-x low-@ data [95]. Each data 
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point for x-value just below 0.1 has been taken as input ~i~ (xo, 1) .  We observe that 

difference between the lines is very small. In this connection, earlier we observed that 

there is no any significant difference between the lines in LO [110]. For convenience, 

value of each data point is increased by adding 0.2i, where i = 0, 1, 2, 3 ... are the 

numberings of curves counting from the bottom of the l o ~ e r n ~ o s t  curve as the 0-th order. 

Fig.4.10: x-Evolution of deuteron structure function for K(x) = axb in the relation P=aY, for y 

= 2 (solid lines) and maximum (dashed lines). 

In figure 4.9, L1.e compare our results of x-evolution of deuteron structure function for 

K(x) = ce-dK in the relation /l = 2, for y = 2 (solid lines) and lnaxinium (dashed lines) at 

same parameter values, c = 0.5, d = -3.8 and for representative values of & given in 
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each figure. and compare them with NMC deuteron low-x low- e2 data [95] .  Each data 

point for x-value just below 0.1 has been taken as input F: (xO, 1) .  We observe that 

difference between the lines is small. In this connection, earlier we observed that there is 

no any significant difference between the lines in LO [ l  101. For convenience, value of 

each data point is increased by adding 0.2i, where i = 0, 1, 2, 3 ... are the numberings of 

curves counting froill the bottom of the lowerlnost curve as the 0-th order. 

0 0.02 0.04 0.06 0.08 0.1 

X 

Fig.4.11: x-Evolution of deuteron structure function for K(x) = cx--jx in relation = ay, 

for y = 2 (solid lines) and maximum (dashed lines). 

In figure 4.10 and figure 4.1 1, we present our results of x-evolution of deuteron structure 

function for K(x) = cixb and K(x) = c e d X  in the relation /? = 2, for y = 2 (solid lines) and 
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lnaxilnum (daslied lines) at different parameter values and for representative valiies of (f 
given in each figure, and compare them with NMC deuteron low-x low-@ data [95].  Each 

data point Ibr .u-valuc just bclow 0.1 has bcen takcn as input l.;'l (so, I ) .  We ol>scrvc that 

result of x-evolution of deuteron structure function in relation B = CtY, for y maximum 

(dashed lines) coincide with result of x-evolution of deuteron structure fiinction for y = 2 

(solid lines) when a = 5.5, b = 0.016 and c = 0.28, d = -3.8. That means i f y  varies from 

X 

Fig.4.12: Sensitivity of our results in the relation P=aY for y = 2 for different values of 

'a' at fixed value of b = 0.016. 

minimum to niaximum. then value of parameter 'a' varies fro111 10 to 5.5 and 'c' varies 

from 0.5 to 0.28. In tliis case, values of parameters 'h' and 'ti' remain constant. For 

convenience, value of each data point is increased by adding 62i, where i = 0, 1, 2, 3 ... 
are the numberings of curves counting from the bottom of the lowermost curve as the 0-th 
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order. 

In figure 4.12, we present the sensitivity oS our results for different values of 'a' at fixed 

value of 'b' in the relation = ct", for y =2. Idere we take b = 0.016. We observe that at a 

Fig.4.13: Sensitivity of our results in the relation P=av for y = 2 for different values of 

'b' at fixed value of a = 10. 

= 10, agreement of the results with experimental data is found to be excellent. If  value of 

'a' is increased. the curve goes upward direction and if value of 'a' is decreased, the 

curve goes downward direction. Though the nature of the curve is similar, curvature of 

the curves is decreased and difference of the curves is smhll when value of 'a' is 

increased. 
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In figure 4.13, we present the sensitivity oi'our results for difterent values of 'b' at fixed 

value of 'a' in the relation = 2, for y = 2. Here we take a = 10. We observe that at h = 

().(I! 6 ,  ~ \ ~ s c c I ~ \ c I \ ~  o!' { I I C  S C S ~ I I I S  will\ c s ~ ~ c r i ~ \ \ c ~ ~ ~ i \ I  <Ii\li\ is li\111\<! LO 1~ CXCCIICIIL. 11' V ~ ~ L I C  of 

'b' is increased the curve goes upward direction and if value of 'b' is decreased, the curve 

goes downward direction. But the nature of the curves is siniilar and difference of the 

curves is small. 

Fig.4.14: Sensitivity of our results in the relation P=aY for y = 2 for different values of 

'c' at fixed value of d = - 3.8. 

In figure 4.14, we present the sensitivity of our results for diffeient values of 'c' at fixed 

value of '8 in the relation /3 = cc", for y = 2. Mere we take d = -3.8. We observe that at c = 
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0.5, agreement of the results with experimental data i s  found to be excellent. If value of 

'c' is increased, the curve goes upward direction and if value of 'c' is decreased, the curve 

goes downward direction. Though the nature of the curves is similar. curvature and 

difference of the curves are decreased when value of 'c' is increased. 

Fig.4.15: Sensitivity of our results in the relation P=aY for y = 2 for different values of 

'd' at fixed value of c = 0.5. 

In figure 4.15, \ye present the sensitivity of our results for different values of '8 at fixed 

value of 'c' in the relation = a", for y = 2. Here we take c = 0.5. We observe that at d = 

-3.8, agreement of the results with experinlental data i s  found to be excellent. If value of 
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'd' is increased, the curve goes downward direction and if value of 'd' is decreased, the 

curve goes upward direction. But the nature of the curves is similar and difference of the 

Fig.4.16: Sensitivity of our results of x-distribution of deuteron structure function for 

different values of To at best fit of K(x) = axb in the relation P=aY for y = 2. 

In figure 4.16 and figure 4.17. we present the sensitivity of our results for To = 0.024 (@ 

= 50 oev2) ,  To = 0.027 (0' = 15 G~v ' )  and To = 0.049 ( Q ~  = 0.5 G ~ v ' )  at best fit of K(s)  

= axb and K(x) = cedx in the relation /I = d', for y = 2. Here a = 10, b = 0.016, c = 0.5, d =  

-3.8. We observe that if the value of To is increased, the curved goes slightly upward 



Studies on Hadron Structure Functions and GLDAP Evolution Equations 

direction and if the value of 2; is decreased, the curve goes slightly downward direction. 

But the nature of the curves is similar and difrerence of curves is extrenlely snlall in both 

cases. 

Fig.4.17: Sensitivity of our results of x-distribution of deuteron structure function for different 

values of To at best fit of K(x) = cx-'jX in the relation p = ay for y = 2. 

In figure 4.18 and figure 4.19, we present the results of x-evolution of deuteron structure 

function in the relation f l  = d'. for y = 2 in LO and NLO for x(x) = ~ r d  and K(x) = r P '  

respectively for representative values of Q' given in each figure, and compare them with 
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NMC deuteron low-x low-e2 data [95]. Each data point for x-value just below 0.1 has 

been taken as input F; ' (X~.  I ) .  We have already discussed that agree~nent of the result 

Fig.4.18: x-Distribution of deuteron structure functions for K(x) = axb in the relation P=ayfor 

y = 2 in next-to-leading order (solid lines) and leading order (dotted lines). 

with experimental data is found to be excellent for a = 4.5, b 0.01, c = 5, d = 1 in LO 

and n = 10, b = 0.016, c = 0.5, d = -3.8 in NLO. For convenience, value of each data 
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point is increased by adding 0.2i, where i = 0, 1,  2, 3, ... are the nu~nberings of curves 

counting from the bottom of the lowermost curve as the 0-th order. 

Fig.4.19: x-Distribution of deuteron structure functions K(x) = cedX in the relation P=ay for y 

= 2 in next-to-leading order (solid lines) and leading order (dotted lines). 

In figure 4.20, we plot T(t) ' (solid line) and TOT([) (dashed line), where T(t) = a, 12n 

against @ in the 8'-range 0 < @ < 50 G~v ' .  We observe ihat for To = 0.027, error 

becomes minimum in the @-range 0 5 Q' < 50 G ~ v ~ .  



Studies on Hadron Structure Functions and GLDAP Evolution Equations 

Fig.4.20: T(t)2 (solid line) and ToT(t) (dotted line), where T(t) = as(t)/2n against Q2 

in the @-range O<Q2<50 GeV2. 

4.3. Conclusion 

In this chapter. we obtain complete and particular solutions of singlet and non-singlet 

structure functions at Ion-x using Taylor's expansion method fro111 GLDAP evolution 

equations and t and x-evolution of singlet and non-singlet structure f~~nct ions  in NLO and 

hence t-evolutions of deuteron, proton, neutron, and differenre and ratio of proton and 

neutron structure functions and x-evolutions of deuteron structure functions in NLO. 
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These evolutio~ls are non-unique. We compare our results with HERA and NMC low-x 

data, and also compare our results with those of LO results. In all the results from 

experiniental as well as global fits, it is seen that deuteron structure f i~nc t io~~s  iucreases 

when x decreases and g2 increases for fixed values of Q~ a~ld  x respectively, and proton, 

neutron, differcncc and ratio of proton and neiitl-on struclurc liiilcliol~s illcrcascs whcn Q' 

increases for fixed value of x. It is clear from the figures that the NLO results of f- 

evolutions for y = 2 in the relation p = cx", are of better agreement with experimental data 

in general. ill 
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UNIQUE SOLUTIONS OF GLDAP EVOLUTION EQUATIONS IN 

LEADING AND NEXT-TO-LEADING ORDERS 

In previous chapters, particular solutions of the Gribov-Lipatov-Dokshitzer-Altarelli- 

Parisi (GLDAP) evolution equations [29-321 for r and x-evolutions of singlet asd non- 

singlet structure functions in leading order (LO) and next-to-leading order (NLO) at low-x 

have been presented. These are non unique solutions. In this chapter we report unique 

solutions of GLDAP evolution equations computed from complete solutions in LO and 

NLO at low-x and calculation o f t  and x-evolutions for singlet and non-singlet structure 

hnctions, and hence I-evolution of deuteron, proton, neutron, difference and ratio of 

proton and neutron structure functions and x-evolution of deuteron structure functions. 

These results are compared with NMC [95], HERA [94] low-x low Q* data and also 

compare our results of I-evolution of proton structure functions with a recent global 

parameterization [96]. 

5.1. Theory 

The GLDAP evolution equations with splitting functions [103-1051 for singlet and non- 

singlet structure functions are in the standard forn~s [89, 106-1 101 

for LO, and 
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for NLO, where 

33 - 2 N j -  306 - 38Nj- 
P O  = 3 and p 1 = 3 

9 

N'being the number of flavours. I-Ierc, 

S S 1 Fqq (w) = 2CFTR N Fqq (w) and Fqg ( l v )  = CFTR N Fqg (w) + CGTR N F~ qg (IV). 

The explicit forms of higher order kernels [ I  03- 1051 P ~ ( J v ) ,  P' (M)) , P (14)) , P ~ ( I v ) ,  
N~ 

1 2 Fqq (w) - Fqg/"tl, Fq&! J are given in the Chapter-4. 

Now, using Taylor expansion method [80) and neglecting higher order terms as discussed 

in the Chapter-3 we can write I?(xlw, 1 )  as 
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Similarly, G(xlw, 1)  and fiNS(x/w, I )  can be approximated for small-x. Then putting these 

values of F ~ ~ ( . Y / \ I ' .  I), C;(.Y/\tj. I) ant1 fiNS(.~/\t~. I) in cquation (5.1) and (5.3) and pcrfonning 

u-integrations we get, 

a ~ f ( ~ . t )  - %, ( 1 )  ( x ,  (1 
A, (x)F$ ( x ,  1) + A 2 ( x ) G ( x ,  t )  + A3 ( x )  aG(xyr)  = 0 , ( 5 . 5 )  

at 2 x  ax  +A,&) ax I 
in LO and 

in NLO, where 

I 
S B ( x )  = (tv)dn: 

I 1 - I t 1  S 
B ~ ( X ) = X ~  I;yg (~j)d~t l .  

I t '  
I 

Let us assume for simplicity [86-88, 106-1 101 
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where K(x) is a t'iinctio~i of x. In this co~i~iection, earlier we considered [108-110) K(x) = 

k ,  trxh, c-e-"', \ V I I C ~ C  k ,  t,, /I, C ,  (/ ;ITC COI~SL;III~S. A ~ ~ C C I I I C I ~ L  of tlie results with experi~ilerital 

data is found to be excellent for k = 4.5, n = 4.5, h = 0.01, c = 5, d = 1 for low-x in LO and 

a = 10, b = 0.016, c = 0.5, d = -3.8 for low-x in NLO for y = 2 in the /? = d' relation. 

Therefore equation (5.5) and (5.6) becomes 

in LO and 

in NLO. For simplicity, we can write equation (5.8) as 

where 

a K ( x )  L1 ( x )  = A1 ( x )  + K(x)A2  ( x )  + A4 ( x )  ---, 
ax 

L2 (-4 = A3 ( 4  + K(x)Aq (4, 

aK ( x )  M I  (x) = BI ( x )  + K ( x )  B2 (x) + B4 ( x )  -- , 
ax 

M ;. (x) = B3 ( x )  + K ( x )  B4 (x). 

as, (0 
L l i (  x,t)=--- 

2 n 
L]  ( X I ,  

1 a,, (0 
L (1.1) 

= ---- 
2 n 

L2 (XI. 

For a possible solution of equation (5.9), we assume [106-1091 that 
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where, To is a numerical paranleter to be obtained from the particular @-range under 

study. Ry a suitable choice of 7;) we call reduce the error to a olinin~uol. Now cqtlation 

(5.9) can be recast as 

in NLO, where 

P(x,t) = a,o (x) + T ~ M *  (x)] and Q(x, r )  = - 
2n 

as ( I )  [ L ~  (x) + T ~ M ~  (x)] 
27T 

The general solutions [80-8 1 ] of equation (5.10) is F (U, V) = 0. where F is an arbitrary 

function and U (x, r ,  1%') = CI and V (x , .~ ,  172") = CZ where, and C2 are constants 

and they form a solutions of equations 

dx - dl d / f  (x. l )  - 
~ j ( ~ , t )  - I - L{(,~,QF?(~,~) 

Solving equation (5.13) we obtain, 

1 L, (XI 
U(X,~,F~) =tex{--!- A, J-clx], L 2 ( 4  and V(xt, F;)= F ~ ( X , ~ ) ~ X { ~ - & ] ,  L2 

where A,-= 4/(33-2N/). Since U and V are two independent solutions of equation (5.13) 

and if a and p are arbitrary constants, then V = aU + P may be taken as a complete 

solution of equation (5.12). Then the complete solution [80-811 

is a two-parameter family of planes. 

Due to conservation of the electron~agnetic current, F2 must vanish as @ goes to zero 17, 

11 11. Also R-0 in this limit. Here R indicates ratio of longitudinal and transverse cross- 

sections of virtual photon in DIS process. 'This implies that scaling should not be a valid 

concept in the region of very IOW-Q~. The exchanged photon is then almost real and the 

close similarity of real photonic and hadronic interactions justifies the use of the Vector 

Meson Dominance (VMD) concept [112-1131 for the description of F2. In the language of 



Studies on Hadron Structure Functions and GLDAP Evolution Equations 

perturbation theory, this concept is equivalent to a statement that a physical photon 

spends part of its time as a 'bare', point-like photon and part as a virtual hadron (s) [I 111. 

The power and beauty of explaining scaling violations with field theoretic methods (i.e., 

radiative correctioils in QCD) remains, however, unchallenged it1 as much as they provide 

us with a framework for the whole x-region with essentially only one free para~neter A 

[17]. For @-values mi~ch larger than A ~ ,  the effective coupling is small and a perturbative 

description in terms of quarks and gluons interacting weakly makes sense. For & of order 

n2, the effective coupling is infinite and we cannot make such a picture, since quarks and 

gluons will arrange themselves into strongly bound clusters, namely, hadrons [7] and so, 

the perturbation series breaks down at small-Q~ [7-81. Thus, it can be thought of A as 

marking the boundary between a world of quasi-free quarks and gluons. and the world of 

pions, protons, and so on. 'I'he value of A is not predicted by the theory; it is a free 

parameter to be determined from experiment. It should expect that it is of thc order of a 

typical hadronic rnass 171. Sincc the value of A is so small we can assume at Q = A, fiS(s, 

1) = 0 due to conservation of the electromagnetic current [7, 11  11. This dynamical 

prediction agrees with most ad hoc parameterizations and with the data [17, 11 I]. Using 

this boundary condition in equation (5.14) we get = 0 and 

Now, defining 

2 2 at 1 = l o ,  where, l o  = I11 (Qo / A  ) at any lower value Q = Qo, we get fro111 equation (5.15) 

which gives the r-evolution of singlet structure function F ~ ~ ( x ,  t) in LO. Proceeding in the 

same way we get from equation (5.15) 
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which gives the I-evolution of singlet structure function ~ ~ " ( x ,  t )  in NLO, where b = 

/I~//I,,~. Wc o1~sc1.v~ I I ~ ; I (  (Ilc I ,:1gr:111gc's ; ~ ~ ~ s i l i : ~ r y  S ~ S ~ C I I I  O S  o~.cli~~;~~.y cli~fkt.c~~(i:~l cclt~;~tio~ls 

(5.12) occurred in the fi)rmalism can not he solved without the additional assumption of 

linearization (equation 5.11) and introduction of an ad hoc parameter To [106-1091. This 

parameter does not effect in the results of t-evolution of structure functions. 

Proceeding exactly in the same way, we get 

and 

which give the t-evolutions of non-singlet structure functions F~~'(x, t) in LO and NLO 

respectively. We observe that if b tends to zero, then equations (5.17) and (5.19) tend to 

equations (5.16) and (5.18) respectively, i.e., solution of NLO equations goes to that of 

LO equations. Again defining, 

we obtain from equation (5.15) 

S S L1 ( 4  F2 (x, t) = F2 (-yo, [ )  ex{i A j L2 (x) --)LY], L2 (x) 

which gives the x-evolution of singlet structure function F'*"(x, I) in LO. Si~nilarly we get 

which gives the x-evolutions of singlet structure function F;(X, t )  in NLO, where a = 

2%. 



Studies on Hadron Structure Functions and GLDAP Evolution Equations 

Proceeding in the same way, we get 

and 

which give the x-evolutions of non-singlet structure functions F~~'(X, t) in LO and NLO 

respectively. Here, 

In our particular solutions [108-1101, we observed that in the relation P = d', if y varies 

between minimunl ('y = 2) to a maximum value, the powers of (t/to) in LO, and powers of 

, b l l + ' / r , h l ~ n + '  and CO-efficient of b(lll- INo)  of exponential part in NLO in t-evolutions 

and the numerator of the first term in the integral sign in x-evolution in both LO and NLO 

varies between 2 to 1.  Then it is understood that the particular solutions of GLDAP 

evolution equations in LO and NLO obtained by that method were not unique and so the 

t-evolutions of deuteron, proton and neutron structure functions, and x-evolution of 

deuteron structure function obtained by that method were not unique. Thus by that 

method, instead of having a single solution we arrive a band of solutions, of course the 

range for these solutions is reasonably narrow. 

Now deuteron, proton and neutron structure li~nclions ~neasured in deep jl~elastic electro- 

production can be writtcn in terms of singlet and non-singlet quark distribution functions 
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and 

where R(x) is a constant for fixed-x. It is observed that ratio of proton and neutron is same 

for both NLO and LO and it is independent o f t  for fixed-x. We also observed that unique 

solutions of GLDAP evolution equations in LO and NLO are same with particular 

solutions in LO and NLO for y maximum in the P = crY relation [108-1 101. 

5.2. Results and Discussion 

In the present chapter, we compare our results of t-evolutions of deuteron, proton, and 

neutron and difference and ratio of proton and neutron structure functio~is with the H E M  

[94] and NMC [95] low-x and low-@ data and results of x-evolution of deuteron structure 

functions with NMC low-x and low-e2 data. I11 case of HERA data, proton and neutron 

structure functions are measured in the range 2 5 @ j 50 G~v' .  Moreover here P r s  200 

MeV, where Pr is the transverse momentum of the final state baryon. In case of NMC 

data proton and neutron structure functions are measured in the range 0.75 5 @ < 27 

G ~ v * .  We consider number of flavours Nf= 4. We also compare our results of t-evolution 

of proton structure ftlnctions with a recent global parameterization 1961. This 

parameterization includes data fro111 I-I I ,  ZEUS, NMC, E665 experiment [95, 97- 1021. 

In figure S.l(a), (b), (c). (d), we present our results of I-evolutions of deuteron, proton, 

neutron, and difference of proton and neutron structure functions (solid lines for NLO and 
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dashed lines for L,0) for the representative values of x given in the figure. Data points at 

Fig.5.l (a-d): t-Evolution of deuteron, proton, neutron, difference of proton and 
neutron structure functions. 

lowest-e2 values in the figures are taken as inputs to test the evolution equations. 

Agreement with the data [94-951 is found to be good. We observe that /-evolutions are 
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slightly steeper in LO calculations than those of N1,O. For convenience, value of each 

data point is increased by adding 0.2i for dcuteron, proton, ncutron alld 0.4i for difl'erence 

of proton and neutron structure functions, where i = 0, 1,  2, 3 ... are the nurnberings of 

curves counting from the bottom of the lowermost curve as the 0-th grder. Data points at 

lowest- @ values in the figures are taken as inputs. 

Fig.5.2: t-Evolution of proton structure functions. 

In figure 5.2, we compare our results of t-evolutions of proton structure functions F f  

(solid lines for NLO and dashed lines for LO) with a recent global paran~eterization [9G] 

(long dashed lines) for tlie representative values of x given in the figure. Data points at 

lowest-@ values in the figures are taken as input to test the evolution equation. We 
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observe that I-evolutions are sligi~tly steeper in LO calcuiations than those of NLO. 

Agreement with t l~e LO scsi~lls is found to hc bcttcs l l ~ a ~ l  will1 thc NLO rcsults. For 

convenience, value of each data point is increased by adding 0.5i, where i = 0, 1,  2, 3 ... 
are the numberings of curves counting from the bottom of the lowermost curve as the 0-th 

order. Data points at lowest-Q' values in the figures are taken as inputs. 

Fig.5.3: t-Evolution of ratio of proton and neutron structure functions. 

In figure 5.3, we present our results of I-evolutions of ratio of proton and neutron 

structure functions F f I  F2" (solid lines) for the representative iralues of x given in the 

figures. Though according to our theory the ratio should be independent o f t ,  due to the 
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lack of sufficient amount of data and due to large error bars, a clear cut conclusion can 

not be drawn. 

I. 
= 7 G ~ V '  

I 

GZ2 = 5.5 Gev2 

- I 
Q' = 4.5 Gev2 

I 

'IE 
Q2 = 3.5 G ~ V '  

QZ = 0.75 G ~ V '  

K = constant 
K = axb . 

K = 

I M I I 

Fig.5.4: x-Evolution of deuteron structure function in leading order. 

In figure 5.4, we present our results of x-distribution of deuteron structure functions F: in 

LO for K(r)  = constant (solid lines), K(x) = uxb (dashed lines) and for K(x)  = cedr (dotted 

lines), where a. b, c and d are constants and for representative values of @ given in each 

figure, and compare then1 with NMC deuteron low-x low-e2 data (951. Each data point 

for x-value just below 0.1 has been taken as input fid (xO, f ) .  If we take K(x)  = 4.5, then 

agreement of the result with experimeiital data is foiuid to be excellent. On the other 
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hand, if we take K(x) = oxb, then agreement of the results with experimental data is found 

to be good at n = 4.5, h = 0.01. Again if we take K(x)  = ce"', then agreement of the 

results with experimental data is found to be good at c = 5, h = 1 .  For x-evolutions of 

deuteron structure fi~nction, rcsults of unique solutions atld I.CSCIIIS of pa~.ticular solutiotis 

have not any significant difference in LO [110]. 

Fig.5.5: x-Evolution of deuteron structure function in next-to-leading order. 

In figure 5.5. we compare our results of x-evolution of deuteron structure function in 

NLO for K(x) = or"solid lines) and for K(x)  = ced' (dashed lines) with NMC [95] low-x 
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I O W - Q ~  data and for representative values of @ given in each figure. Each data point for 
h 

x-value just below 0.1 has been taken as input p2" (xo, I). If we take K(x) = m , then 

agreement of the result with experimental data is found to be excellent at a = 5.5, b = 

0.016. On the other hand, if we take K(x) = ce4', then agreement of the results with 

experimental data is found to be good at c = 0.28, d = -3.8. But in the case of NLO, 

agreement of the results with experimental data is found to be very poor for any constant 

value of K(x). Therefore we do not present our result of x-distribution at K(x) = constant 

in NLO. 

5.3. Conclusion 

In this chapter. we obtain complete and unique solutions of singlet and non-singlet 

structure functions at low-x using by Taylor's expansion method from GLDAP evolution 

equations and t and x-evolution of singlet and non-singlet structure functions in leading 

and next-to-leading orders and hence r-evolutions of deuteron, proton, neutron and 

difference and ratio of proton and neutron structure functions and x-evolutions of 

deuteron'structure functions. We compare our results with HERA, NMC low-x low-@ 

data and a recent global parameterization. In all the result from experi~llental data as well 

as global fit, it is seen that deuteron structure functions increases when x decreases and @ 
increases for fixed values of Q' and x respectively and proton, neutron. difference and 

ratio of proton and neutron structure functions increases when Q~ increases for fixed 

value of x. It has been observed that, though we have derived a unique r-evolution for 

deuteron, proton, neutron, difference and ratio of proton and neutron structure functions 

in LO and NLO, yet we can not establish a con~pletely unique x-evolution for deuteron 

structure function in LO and NLO due to the relation K(x) between singlet and gluon 

structure functions. K(x) may be in the forms of a constant, an exponential function or a 

power function and they can equally produce required x-distribution of deuteron or gluon 

structure functions. But unlike many parameter arbitrary input x-distribution functions 

generally used in the literature, our method requires only one or two such parameters. 

Explicit form of K(x) can actually be obtained only by solving coupled GLDAP evolution 

equations for singlet and gluon structure ft~nctions, and works are going on in this regard. 

Li 
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C hapter-6 

t AND X-EVOLUTIONS OF GLUON STRUCTURE FUNCTIONS 

In the previous chapters, particular and unique solutions of the Gribov-Lipatov- 

Dokshitzer-Altarelli-Parisi (GLDAP) [29-321 evolution equations for r and x-evol~~tions 

of singlet and non-singlet structure functions in leading order (LO) and next-to-leading 

order @LO) at low-x have been reported. The sanle technique can be applied to the 

GLDAP evolution equations for gluon structure functions in LO to obtain t and x- 

evolutions of gluon structure functions. These LO results are compared with a recent 

global parameterization [96, 1 141. 

6.1. Theory 

The GLDAP evolution equation for gluon structure function has the standard form in LO 

[89] as 

where 

r = ln (Q ' J A' ) and A /  = 36 J(33 - N,- ), Nf being the number of flavours. 

NOW, using Taylor expansion method [SO] and neglecting higher order terms of x as 

discussed in the Chapter-3, we can write G(xllv, t) as 
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Similarly. F;(,V/IV, 1) can bc approxiil~atcd fur small-x. Putting these values of G(x/MJ,  t )  

and l . i " ( . ~ / \ ~ j ,  t ) .  in  equation ( 6 . 2 )  and ( 6 . 1 )  and perlormi~~g u-integrations we get 

where 

For simplicity we assume [86-88, 106-1 101 G(x,  t )  = K(x)  FzS (x ,  t), where K(x)  is a 

function of x.  Therefore 

~ : ( x , f )  = K l  ( x ) G ( x , t )  . 
where Kl(.u) = 11 K(x).  

Now equation (6.3) becomes 

aK x  
where P ( x )  = A, ( x )  K ,  ( x )  + Bl ( x )  ------ I (  ) + c l ( x )  and Q ( x )  = B l ( x ) K l ( x )  + D l ( x ) .  

ax 

The general solution of equation (6.5) is [80-811 F (U, y) = 0, where F is an arbitrary 

function and U(x .  t ,  G) = CI and Tf(x, t ,  G) = C2 form a solution of equations 

Solving equations (6.6) we obtain, 
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and 

If U and V are two independent solutions of equations (6.6) and if a and /? are arbitrary 

constants. then I' = aU + may be taken as a complete solution of equation (6.5). Now 

the complete solution [80-8 11 

is a two-parameter family of surfaces, which does not have an envelope, since the 

arbitrary constants enter linearly [go]. Differentiating equation (6.7) with respect to /? we 

get 0 = 1 ,  which is absurd. Hence there is no singular solution. The one parameter fallily 

determined by taking 13 = a2 has equation 

Differentiating equation (6.8) with respect to a, we get 

Putting the value of n in cquation (6.8), wc obtain the cnvclope 

which is merely a particular solution of the general solution. Now, defining 

at t = to. where to = In (Q;/A') at any lower value Q = Qo, we get from equation (6.9) 
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which gives the t-evolution of gluon structure f~~nction G(x. 1). Again defining. 

we obtain from equation (6.9) 

G(x, r )  = G(xo, r )  exp 

which gives the x-evolution of gluon structure function G(x, t ) .  

For the particular solution of equation (6.5), we take P = a* in equation (6.7). If we take /3 

= a in equation (6.7) and differentiating with respect to a as before, we get 

from which we can not determine the value of a.  But if we take /I = a3 in equation (6.7) 

and differentiating with respect to a,  we get 

from which we get, 

and 

as before which are t and x-evolutions respectively of gluon structure function for P = a3. 

Proceeding exactly in the same way we can show that if we take P = a4 we get 
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and 

and so on. So in general, if we take P = a", we get 

and 

which give t and x-evolutions respectively of gluon struct~~re function for /? = cx". We 

observe if y-co (very large), y/(y-1) -1. 

Thus we observe that, if we take /? = a in equation (6.7) we can not obtain the value of a 

and also the required solution. But if we take P = a2, a3, a4, a5.. ... and so on, we see that 

the powers of ((/to) in I-evolutions of gluon structure functions are 2, 3/2, 413, 514.. ..and 

so on respectively as discussed above. Similarly, for x-evolutions of gluon structure 

functions we see that the numerators of the first term inside the integral sign are 2, 3/2, 

4/3, 5/4 .... and so on respectively for the same values of a. Thus we see that, in the 

relation = a", if y varies between 2 to a maxilllum value, the powers of ([/to) and the 

numerators of the first term in the integral sign vary between 2 to 1.  Then it is understood 

that the solution of equation (6.5) obtained by this method is not unique and so the t and 

x-evolution of gluon structure function obtained by this method is not unique. Thus by 

this method, instead of having a single solution we arrive a band of solutions, of course 

the range for these solutions is reasonably narrow. 
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Again the value of A is so small that we can take at Q = A, F~'(x, t) = 0 due to 

conservation of  the clcctroniagnctic current l 1 11 as discussed in thc Chapter-5. Since the 

relation between gluon and singlet structure li~nctions is G(x, t) = ~l(x)ki"(x, 0, therefore 

G(x, f )  = 0 at Q - A. T11is dy~l;l~llical prcdictio~i R ~ S C C S  with ~iiost ad hoc para~iictcrizations 

and with the data [17, 1 1 I]. Using this boundary condition in equations (6.7) we get = 0 

and 

Now, defining 

2 2 at t = 10, where 10 = In ((lo / A  ) at any lower value Q = Qo, we get from equation (6.12) 

which gives the r-evolution of gluon structure function G(x, t) in LO. Again defining, 

we obtain from equation (6.12) 

which gives the.x-evolution of gluon structure function G(x, t )  in LO. We observed that 

unique solutions (equations (6.13) and (6.14)) of GLDAP evolution equation for gluon 

structure function are sanle with particular solutions for y n~axinlum in P = cx" relation in 

LO. 

6.2. Results and Discussion 

In this chapter, we present our result of I-evolution of gluon structure function 

qualitatively and compare result of x-evolution with the recent global parameterizations 
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196, 1 141. These paralneterizations illclude datd from MI, ZEUS. DO, CDF, NMC, 

BCDMS, SLAC, E665, CCFR, E605, CI'EQ experiments [97-102, 115-1 301. Though we 

compare our results with y = 2 and y maximum in the 13 = cx" relation with the 

parameterizations, our result with j) maximum is equivalent to that of the utliqiie solution. 

F'ig.6.1 (a-b): t-Evolution of gluon structure functions. 

In figure 6.1 (a-b). we present our results of t-evolutions of gluon structure functions G(x, 
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t )  qualitatively for the representative values of x given in the figures for y = 2 (upper 

solid and dasllcd lincs) and y maxilnutii (lower solid and dashed lines) in the f i  = a" 

relation. 

Fig.6.2 (a-b): x-Evolution of gluon structure functions and sensitivity of 'a'. 

We have taken arbitrary inputs from recent global parameteriz'ations MRST2001 (solid 

lines) and MRST2001 J (dashed lines) in figure 6.1 (a) at Q:= 1 G ~ V ~  1961 and MRS data 
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in figure 6.l(b) at ee2 = 4 GCV' [ I  141. I t  is clcar fiom figures tllal 1-evolutions of gluoa 

<I IICS. slrucli~rc f'i~nctions dcpcncl upon inpul G(x, lo) v' 1 

- -  (a) K,(x) = axb -- i - -' - 
b Q' = 1 G ~ V '  

\ ",:",: 4,4.1 ' 
\ 

I 

Fig.6.3 (a-b): x-Evolution of gluon structure functions and sensitivity of 'b' 

For a quantitative analysis of x distributions of gluon structure functions G(x, t ) ,  we 

calculate the integrals that occurred in equation (6.14) for NJ= 4. In figure 6.2(a-b), we 

present our results of x-distributiol; of gluon structure functions for K l ( x )  = oxb, where 'a' 
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and 'by are constants, for representative values of Q' given in each figure, and compare 

them with a recent global parameterization 1961 Tory = 2 in the rclation /) = cx". In figure 

6.2 (a), we observe that agreement of the results with parameterization is found to be very 

poor for any values oS L ~ ~ '  and 'h' at low-x and agreement is found to be good at high-,Y at 

a = 372 and b = 4 (thick solid line). In figure 6.2(b), agreement of the results with 

parameterizations is found to be good at n = 135 and b = 1.8 (thick solid linc) in the P = a" 

relation. In the same figures, we present the sensitivity of our results for different values 

of 'a' (thick solid lines) at fixed value 'h ' .  Here we take h = 4 in figure 6.2(a) and h = 1.8 

in figure 6.2(b). We observe that if value of 'a' is increased or decreased, the curve goes 

upward or downward direction respectively. But the nature of the curves is similar: Here 

thin solid and dotted lines are MRST2001 and MRST2001 J [96] parameterizations. 

In figure 6.3(a-b), we present the sensitivity of our results for different values of 'b' at 

fixed value of 'a'. Here we take a = 372 in figure 6.3(a) and n = 135 in figure 6.3(b). We 

observe that, agreemelit of the results (thick solid lines) with paran~eterizations is good in 

figure 6.3(a) at b = 4 and in figure 6.3(b) at b = 1.8. If value of 'b' is increased or 

decreased the curve goes downward or upward directions. But the nature of the curves is 

similar. 

In figure 6.4(a-b), we present our results of x-evolution of gluon structure function G(x, t )  

for Kl(x) = axb for y = 2 ( lower thick solid lines) and maximom (upper thick solid lines) 

in the relation p = d at same parameter values a = 372, b = 4 in figure 6.4(a) and a = 135, 

b = 1.8 in figure 6.4(b) and for representative values of @ given in each figure. and 

compare them with a recent .global parameterization [96]. We observe that result of x- 

evolution of gluon structure function for y maximum (long dashed lines) coincide with 

result of x-evolution of gluon structure function for y = 2 (lower thick solid lines) when a 

= 375, b = 4.7 in figure 6.4(a) and a = 134, b = 2 in figure 6.4(b). That means if y varies 

from minimum to maximum, then value of parameter 'a' varies fi-om 372 to 375 and '6' 

varies from 4 to 4.7 in figure 6.4(a) and 'a' varies from 135 to 134 and 'b' varies from 1.8 

to 2 in figure 6.4(b). 
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Fig.6.4 (a-b): x-Evolution of gluon structure functions at different parameter values of a, b. 

In figure 6.5(a-b). we present our results of x-distribution of gluon structure functions 

G(x, 0 for Kl(x) = ~ e - ~ '  . wherc 'c '  and 'd' are constants for representative valucs of ~3 
given in each figure, and compare them with a recent global parameterization [96] for y = 

2 in the relation /? = d.  In figure 6.5(a), we observe that agreemknt of the results with the 

parameterization is found to be very poor for any values of 'c '  and 'd' at low-x and 
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agreement is found to be good at high-x at c = 300 and d = -3.8 (thick solid line). In 

figure 6.5(b), agreement of the results wit11 para~neterizations is found to be good a1 c = 5 

Fig.6.5 (a-b): x- Evolution of gluon structure functions and sensitivity of 'c'. 

and d = -28 (thick solid line). In the same iigures, \vc prcscnt the sensitivity of our rcsi~lts 

for different values of 'c' by thick dashed lines at fiscd value 'a. Iiere we take d = -3.8 

in figure 6.5(a) and d = -28 in figure 6.5(b). We observe that, if value of 'c' is increased 
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or decreased, the curve goes upward or downward direction respectively. But the nature 

of the curve is sinlilar. 

L 

N (a) K, (x) = C X - ~ '  
\ 
\ Q' = 1 G ~ V ~  I 

\ c = 300 

d = 4, -3.8, -3.6 
* 

* 

L 

Fig.6.6 (a-b): x-Evolution of gluon structure functions and sensitivity of 'd'. 

In figure 6.6(a-b), we present the sensitivity of our results for different values of 'd' at 

fixed value of 'c'. Here we take c = 300 in figure 6(a) and c = 5 in figure 6.6(b). We 

observe that, agreement of the results (thick solid lines) with the para~lleterizatio~l is good 
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in figure 6.6(a) at d = -3.8, and 6.6(b) at d = -28. If value of 'd' is increased or 

decreased, the curvc gocs downwa~'d or upward direction in figure 6.6(a), if value of 'd' is 

increased or decreased the curve goes upward or downward direction in figure 6.6(b) . 

But the nature of the curves is similar in both cases. 

Fig.6.7 (a-b): x-Evolution of gluon structure functions at different parameter values of c, d 

In figure 6.7(a-b), we present our results of x-evolution of gluon structure function G(x, t )  
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for Kl(x) = ce"' for y = 2 (lower thick solid lines) and maximum (upper thick solid lines) 

in the relation /I = d' at same parameter valucs c = 300, d = -3.8 in figure 6.7(a) and c = 

5, d = -28 in figure 6.7(b) and for representative values of given in each figure. and 

compare them with a recent global para~neterization [96]. We observe that, result of X- 

evolution of gluon structure function, for y maximum (long dashed lines) coincide with 

result of x-evolution of gluon structure function for y = 2 (lower thick solid lines) when c 

= 300, d = -3.6 in figure 6.7(a) and c = 5, d = -25.3 in figure 6.7(b). That means if y 

varies from minimum to maximum, then value of parameter 'd' varies from -3.8 to -3.6 

in figure 6.7(a) and from -28 to -25.3 in figure 6.7(b). In these cases, value of parameter 

'c' remains constant. It is to be noted that, agreement of the results wifh the 

parameterization is found to bc very poor for any constant value of Kl(x). Therefore, we 

do not present our result of x-distribution at Kl(x) = constant. Moreover, in general, the 

agreement of our results with the paran~eterization at snlall-x is poor lbr  low-^^ value and 

excellent for high-@ value which is quite expected. 

It is to be noted that, agreement of the results with experimental data is found to be very 

poor for any constant value of Kl(x). Therefore we do not present our result of x- 

distribution at Kl(s) = constant in LO. 

6.3. Conclusion 

In this chapter, we obtain complete and unique solutions of gluo~l distribution function at 

low-x using Taylor's expansion method from GLDAP evolution equations and t and x- 

evolution of gluon structure functions in leading order. We conlpare our results with a 

global parameterization. In all the results from global fits, it is seen that, gluon structure 

functions increases when I decreases and @ increases for fixed values of Q~ and x 

respectively. It has been observed that, though we have derived a unique t-evolution for 

gluon in LO, yet we can not establish a co~npletely unique x-evolution for gluon structure 

functions in LO due to the relation Kl(x) between singlet and gluon structure functions. 

Kl(x) may be in the forms of an exponential function or a power function and thcy can 

equally produce required x-distribution of gluon structure functions. But unlike many 

parameter arbitrary input x-distribution functio~ls generally uSed in the literature, our 

method requires only one or two such parameters. El 
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t AND X-EVOLUTIONS OF LIGHT SEA AND VALENCE 

QUARK STRUCTURE FUNCTIONS 

In the previous chapters, particular and unique solutions of the Gribov-Lipatov- 

Dokshitzer-Altarelli-Parisi (GLDAP) [29-321 evolution equations for t and x-evoiutions 

of singlet, non-singlet and gluon structure functions in leading order (LO) and next-to- 

leading order (NLO) at low-x have been reported. The same technique can be applied to 

the GLDAP evolution equations for light sea and valence quark structure functions in LO 

to obtain t and x-evolutions of light sea and valence quark structure functions. These LO 

results are compared with a recent global parameterization [96]. 

7.1. Theory 

The GLDAP evolution equations for sea and valence quark structure functions in the 

standard forms are 113 11 

and 

where h S ( x ,  @) = xus, xd, or xs,, /i2'(x, e2) = xu, or xd, and 
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Taking t = In ( @ / A ~ )  and Af = 4/(33-2Nf), NJ being the number of flavours and A is the 

QCD cut off parameter, equations (7.1) and (7.2) become 

and 

where 

and 

Now, using Taylor expansion method [80] and neglecting higher order terlils of s as 

discussed in the Chapter-3, we can write G(x/w, t )  as 

Similarly, F2S (xlw, t )  and .FzV(xlw, t )  can be approxinlated for small-x. Then putting these 

values of F; (x/I~,  I), G(.Y/W, i) and Fg(x/w, t )  in equations (7.9, (7.6) and (7.7) and 

performing 11-integrations we gct 
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and 

Using equations (7.8) and (7.9) in equation (7.  I )  we have 

- - 

Let us assume for si~nplicity [86-88, 106-1 101 

G(x, I )  = K(x)  1.2' (x, t), 

where K(x)  is a function of x. Now equation (7.1 1 )  gives 

a$ (4 ) A f 
- - [L(X)F; (x, t  ) + M(x)  

8% (x, t )  

a & 
I = 0, 

t  

where 

A ( x ) = 3  + 4  In(1-x)-(1-x)(3+x),  ~ ( x ) = x ( l - x 2 ) + 2 x l n ( 1 / x ) ,  

C(.r) = (114) ( 1  -x) (2-.x-1 2x2), D(x) =x [(- 114) ( 1  -x) (5-4r+ 2x2) + (31 4 )  In ( I  1 .I-). 

Secondly, using equation (7.10) in equation (7.2) we have 

where 

P(x)=3+4In( l -x ) - ( I - .u ) (x+3)  and 

The general solution of equation (7.13) is [80-811 F (U, 0 = 0 ,  where F is an arbitrary 

function and IJ(.u. t ,  F2) = CI and V(x, t, fi) = C2 form a solution of equations 
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Solvirlg equations (7.15) wc obtain 

and V(x,t,Fl) = F';(x;t)ex 

If U and V are two independent solutions of equations (7.15), and if a and P are arbitrary 

constants, then V = a U  + /I may be taken as a conlplete solution of equation (7.14). Now 

the complete solution [80-8 11 

is a two-parameter family of surraces. 'l'he one parameter family determined by taking = 

a' has equation 

1 
F; (x, t) ex { r a d x ] = a t e x { i  ~ ( x )  

A, j-cix]+a2. ~ ( x )  

Differentiating equation (7.17) with respect to cx, we get 

Putting the value of cx in equation (7.17), we obtain the envelope 

1 
F ~ ( X , I ) = - - ~ '  exp 2 4 

which is merely a particular solution of the general solution. Now, defining 

2 2 at t = to. where lo = In (Qo /A ) at any lower value Q = Qo, we get fro111 equation (7.18) 

which gives the I-evolution of light sea quark structure function F2S(x, t). Proceeding 
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exactly in the sanle way, and defining 

we get 

which gives the t-evolution of valence quark structure function FzV(x, t). Again defining 

we obtain from equation (7.18) 

F; (x, t )  = F$ (xO,  t )  exp I ----- - 
. A 

which gives the .x-evolution of light sea quark function F2'(x, t) .  Similarly defining 

we get 

which gives the x-evolution of valence quark structure functio~l F2"(x, t). 

For the particular solution of equation (7.13), we take = a2 in equation (7.16). If we take 

p = a in equation (7.16) and differentiating with respect to a as before, we get 

r -7 

from which we can not determine the value of cx. But if we take /? = a3 in equation (7.16) 

and differentiating with respect to cx, we get 
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a = i*i;;;/,Y] . 

Putting this value of cn in equation (7.16), we get ultinlalely 

F; (x, t )  = t 

Now. defining 

we get 

which gives the I-evolution of light sea quark structure function FIS(x, t ) .  Proceeding 

exactly in the same way we get 

which gives the t-evolution of valence quark structure function F2"(x, t ) .  

Proceedirig in the same way we get x-evolutions of light sea and valence quark structure 

functions as 

312 L(x)  

and 

general. if we take = d , we get 
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and 

which are I and x-evolutions respectively oi' light sca and valence quark structure 

functions for /Y = rx" respectively. We observe, if y--too (very large), y/(y-1) -4 1. 

Thus we observe that if we take P = a in equation (7.16), we can not obtain the value of a 

and also the required solution. But if we take P = a2, a3, a', as.. ... and so on, we see that 

the powers of ( / / t o )  in t-evolutions and the ~luliierators of the first term inside the integral 

for x-evolutions of' valence and light sea quark structure functions are 2, 312, 413, 

514.. ..and so on respectively as discussed above. 'Thus we see that if in the relation P = 2, 

varies between 2 to a rnaxitnum value, the powers ol'(!/lo) varies between 2 to 1,  and the 

numerator of the first term in the integral sign varies between 2 to 1. Then it is understood 

that the solutions of  equalions (7.13) and (7.14) obtained by this method are not unique 

and so the t-evolutions and s-evolutions of valence and light sea quark structure fiunctions 

obtained by this methodology are not unique. 'Thus by this methodology, instead of 

having a single solution wc arrivc a band of solutions, of course thc range Sor these 

solutions is reasonably narrow. 

Since the value of /I is so small that we can take at Q = A, fiS (s, t )  or F2" (x, t )  = 0 due to 

conservation of the electromagnetic current [I 1 I] and at small-s valence quark structure 

function must vanish. This dynamical prediction agrees with nlost ad hoc 

parameterizations and with the data [17, 1 1  I]. llsing this boundary condition in equation 

(7.16) we get / j  = 0 and 
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Now, delining 

at t = lo, where. to = In (L)(:/A~) at any lower value Q = Po. we get from equation (7.23) 

which gives the /-evolutions of light sea quark structure function in LO. 

Again defining, 

we obtain from equation (7.23) 

which gives the x-evolutions of light sea qua1.k structure functions in LO. Similarly we 

get for valence quark 

and 

We observed that unique solutions (equations (7.24). (7.25), (7.26) and (7.27)) of G1,DAI' 

evolutiot~ equations for valcnc:~ and light sea quark s'tructure functions are same with 

particular solutions for y maximum in the /? = cx" relation in LO. 
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7.2. Results and Discussion 

In this chapter, we present our result of I-evolution of light sea and valence quark 

structure hc t ions  qualitatively and compare result of x-evolution with a recent global 

Fig.7.1 (a-c): t-Evolution of light sea and valence quark structure functions. 

parameterization [96]. This parameterization includes data frdm H1, ZEUS, NMC. 

BCDMS, SLAC, E665, CCFR, E605, and CDF experiments [95, 97-102, 117-1241. 
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Though we present our resul~s 01' I-cvolutioll with y = 2 and y = maxi mi in^ in tllc /I - d 

relation. our resi11i wit11 y = 1ii i ixi1li l1111 is c~~i~ iva lc~l t  to tll;lt of i~nique solt~lion ant1 rcsuhs 

of x-cvolt~tio~l li,r 1) = 2 iulcl 1ni1siiir111,l i t )  Il~c /I -- rx' rclation lla\lc not any sigililicnnt 

difference 

In figure 7.l(a-c), we present our rcsults of r-cvolutio~~s of light sea and valence cltiark 

structure li~nctions qualitatively 1i)r the rcp~.cscntative values of x given in the figures for 

y = 2 (solid lines) and y maximum (dashctl lines) in the P = cx" relation. We have taken 

arbitrary illputs from a recent glohi11 paramctcrization MRST2001 1961 at Q:= 1 Cicv2. It 

is clear fronl figures that I-cvoluiions of light sea and valcnce quark structure li~~lclions 

depend upor1 input &'(x, lo) ant1 /+>'(.I-, 1,)) VL~IUCS. Uniqi~e solutions of I-evolution 1i)r light 

sea and italence quark struciu1.c. li~nciiolis iwc sanic with particul:~r solutions l i~r  

n~axinluni in the /l - cr' relati011 i l l  I ,(.I. 

For a quantitative analysis or x-distributions of light sea quark structure functions, we 

calculute thc integrals that occ\~~.r.crl in ccluittion (7.2 1) Sor N f =  4. In figure 7.2 (a-b), we 

present our results for K(x) = const;~~it for representative values of e2 = 10 G ~ V ~  (figure 

7.2(a)) and @ = 10' G ~ V '  (figure 7.:L(h)) and compare them with n recent global 

pararncteri~i~tion (thin solid liircs) 1001 i n  the relation /3 = cx" for y =2 (thick solid lir~cs). 

Since our theory is in small-.r regio~i and tlocs not explain the peak portion for u & tl, so a 

point for A--value just below 0.1 li)r s and 0.0 I lor u & d has been taken as input to test the 

evolution ccluation. We obscrvc t l i ; i t  agrccnient of the results (thick solid linc) with 

para~nctcr~~il l iw is Ibuntl to I)c p o o 0  i ~ t  A'(\ ) O H .  500 liw 11 LYL (/ aild K(s) 2 10, 520 li)r .Y 

in figure 72(a )  and ligiire i'.?.(l)) ~cspcclivcly. In the same ligures we presclii the 

sensitivity ol' our results (dashcct lillcs) li)r dil'krcnt constant values of Kt.\-). Wu ol~scrvc 

that i l  v;duc of K(x) is incrcascd 01 tlccrct~scd, the curve goes upward or downward 

direction resl~ectively. But thc natulc oftlic cwve is similar. 

In figures 7.3(a-b) anrl 7.4(:1-h), wc plcscnt otlr results of x-distribution of'light sea 1j11nrk 

structure lil~ictions 1 K )  - [ir". tvlicrc and 'bl are constants ibr represcnlotive 

values 01' v2 = 10 (iev2 (lig:urc 7.  ( I  I Q~ = lo4 ~ e v ~  (figorc 7.4(a-h)) and 

comparc 10cm with rcccnt global ~ ) i i ~ . ; ~ ~ i l c - l ~ ~ . i / ~ ~ t i o l l ~  ( th in  solid lincs) (061 i l l  the rclaiion 
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/I=(? for J.' = 2 (thick solid lines). Sincc our theory is in small-x region atid docs not 

explain the peak portion for 1, & d, so a point for x-value just below 0.1 for s and 0.01 for 

(a) = 10 G ~ V ~  
K = 66,68,70 for u & d 
K = 200,210, 220 for s 

I 

(b) Q' = 1 o4 G ev2 
K = 580,590,600 for u & d 
K = 510,520,530 for s I 

Fig.7.2 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'K'. 

& d has been taken as input to test the evolution equation (7.21). We observe that 

agreement of the results (thick solid line) with the paranleterization is found to be good at 
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rr = I  35 & h = 0.33 for r ,  & r l  and rr = 130 & h = 0.35 for s at Q' = 10 GCV' in ligi~rc 7.3(n- 

b)andr r -211  & b = 0 . 2 5  i b r i r & d a n d a = 2 6 0 & h = 0 . 2 9 i b r s a t ~ ~ = l 0 ~ ~ e ~ ~ i n  

figure 7.4(a-b). In the same figures, we present the sensitivity of our results (dashed 

lines) for different values of 'a' and 'b'. Here we take b = 0.33, 0.35 in figure 7.3(a) and b 

(a) K = axb, GI2 = 10 Gev2 
a = 130,135,140 & b =  .33 for u & d 
a = 120,130,140 & b  = .35 for s 

I 

(b) K = axb, GI2 = 10 Gev2 
a = 135 & b = .36, .33, .3 for u & d 
a = 130 & b = .4, .35, .3 for s 

I 

Fig.7.3 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'a' and 'b'. 

= 0.25, 0.29 in figure 7.4(a). We observe that if value of 'o' is iticreased or decreased. tile 

curve goes lipward or downward direction. But the nature of the curve is similar. I11 
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figure7.3 (b) and figure 7.4(b), we present the sensitivity of our results (dashed lines) for 

dii'ferent values of 'h' at flxecl value of 'N ' .  Ilere we take a = 135, 130 in figure 7.3(b) and 

a = 21 I, 260 in figure,7,4(b). We observe that at h = 0.33 & 0.35, agreement of the results 

a = 191,211,221 & b =  .25foru & d  
a = 250,260,270 & b = .29 for s I 

I 

(b) k = axb, Q*=  l o 4  G ~ V '  
a = 211 & b =  -15, .25, .35 for u & d 

.I 

a = 260 & b = .27, .29, .31 for s 

0.0001 0.001 0.01 0.1 1 
X 

Fig.7.4 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'a' and 'b'. 

(thick solid lines) with the parameterization is found to be good in figure 7.3(b) and at b 

= 0.25 & 0.29, agreement of the results (thick solid lines) with parameterizations data is 
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found to be excellent in figurc 7.4(b). IT valuc of 'h' is i~lcreascd or decreased tilt. curve 

goes dowowarci or upward direction. But the nature orthe curve is si~nilnr. 

2 7 

(a) K = ce-dx, Q~ = 10 Gev2 
c = 46.8, 47.8, 48.8 & d = -1 for u & d 
c = 31.5, 32.5, 33.5 & d = -20 for s 

I 

(b) K = ceAx, CI2 = 10 Gev2 
c = 47.8 & d = -.5, -1, -1.5 for u & d 
c = 32.5 & d = -15, -20, -25 for s 

I 

Fig.7.5 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'c' and 'd'. 

In figures 7.5(a-b) and 7.6(a-b) we present our results of x-distribution of light sea quark 

structure functions for K(x) = cewd', where 'c' and 'd' are constants for representative 

values of @ = 10 G ~ V ~  (figure 7.5(a-b)) and @ = 10' G ~ V ~  (figure 7.6(a-b)) and 
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compare them with a recent global parameterization (thin solid lines) 1961 io the relation P 
= d' for y = 2 (thick solid lines). Since our theory is in small-x region and does not 

explain t l~c peak portion for r i  & cl, so a point for x-valuc just bclow 0. I li,r s n~id 0.0 1 for 

u & d has bee11 taken as input to test the evolution equation (7.21). We observe that 

c = 460,465,470 & d = -.4 for d & u 
c = 380,385,390 & d = -25 for s 

c = 465 & d = -.39, -.4, -.41 for d & u 
c = 385 & d = -24, -25, -26 for s 

0.0001 ' 0.001 0.01 0.4 I 
X 

Fig.7.6 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'c' and 'd'. 

agreement of the results (thick solid line) with parameterizatioli is found to be good at c = 

47.8 & d = - I  for u, d and c = 32.5 & d = -20 for s a t  Q* = 10 G ~ V *  in figure 7.5(a-b) 
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and c = 465 X r l r -  - .3 for I ,  . ( /  iind t - 385 & d - -25 Tor s at Q* = lo' ( i e ~ '  i l l  figure 

7.6(a-h). In the snnic ligurcs w:c. p~.t:!ic~~l Ihc scnsilivily of'our rcs~~l ts  (by tlilshcd 1ir1c.s) li)r 

different valt~cs 01' 'c' and 'd'. I Icrc- wu take f /  = - 1 ,  -20 in figure 7.5(a) and tl - <LI. -25 

in figure 7.6(a). We observe 1l1i1l i l  vi~lt~c o f  'c' is increased or decreascd. the cur\lc gocs 

upward or down\vard direction. Ilul thc liaturc of tile curve is similar. In figure 7.313) and 

figure 7.6 (b), we present the sensitivity of our results (dashed lines) for differe~~t values 

of '8 at fixed value of ' c ' .  I lcre wc take c = 47.8, 32.5 in figure 7.5(b) and c = 405, 385 

in figure 7.4(b). We observe that at J = - 1 ,  & -20, agreement of the results (tliick solid 

lines) with paramcterizations (lala is Ihtmd to be good in figure 7.5(b) and at (/ .4 & 

-25, agreement of the results (tlliclc solid lines) with the parameterization is foutd to be 

excellent in figure 7.6(b). I f  vali~e of' ' t l '  is increased or decreased the curve gocs ullwnrd 

or downward direction. Dul 111c n;~lur.e of the ctrrve is similar. We observe t1111r for .\-- 

evolutiot~s of light sea quark structr~rc lilnctions. results for y = 2 and rn:lxin~um il l  ( I I ~  /I = 

ct" relation in I,O have not any signilicant difference. It is to be noted tliat unique 

solutions of evolution equations for light sea llnd valence quark structure functions are 

same with particular solutions Tor y ~i~nxi~iium in [ j  = a'' relation in LO. 

From our above discussion, i t  has bccn observed that though we can derive a con~plete 

unique /-evolution for light sci~ iui t l  valcnce quark structure f~~nctiotis in LO, ye! wc can 

not establish a colnplete unicli~c x-c~voltition lor light sea quark structure function in I,O 

due to the presence of K(x). K( r ) ,  lllc rclirlion bctwcen light sea quark and gluon *clrr~cture 

functions, may hc in thc f r111s ol'n co11slati(, Irn exponential function o fx  or a po\vcr in x 

and they can equally produce rcclui~cd r-clistribution of light sea quark. On the othcr hi~nd, 

the explicit form of K(x) call i~c t~~a l ly  be obtained only by solvir~g coupled (;I,I)AP 

evolution equations for singlct antl gluon str.ucture fttnctions, and works are going on in 

this regarti. 

7.3. Conclusion 

In this chapter. we obtain cornl>lclc. p:~t.ticr~lal and uniqtre solutions of light sea q~~;lrli and 

valence qiral-k distribution f i~~~c l io~ l s  i i I  low-s using I'aylor's expansion methotl fium 

GLDAP cvolutio~i equatiot~t; i ~ l l c l  /-cvoltlrio~i of light sea and valence cluark :clructure 

f~lnctions il11i1 .Y- evolution 01 '  11!1111 C I I I ~ I I . I \  :;1riicti11.e r~11icfio11 i l l  LO. Wc COIIII>III.C our 
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rcsl~lts with a glob:ll paramctcrizatio~l 111 all tlic results Srom global tits. i t  is s c c ~  tllilt 

liglll sc;~ ;~nd v;~lcncc q o i t r l  SI 1.111: t I I I  c li~nclions i~icreilscs \vlien r decrcsscs i111d Q' 

increases Ibr fixed values of' c)' ~11111 .\ I . C S P ~ C L ~ V C I ~ .  I t  has been observed that, tllr~ugh we 

have derived a unique I-evolu~io~l 1'01 ligl11 sea and valence quark structure functions in 

LO, yct \\c can not establish i \  c:c~~nlrlrtcly unique x-evolution for light sea quark structure 

fi~nclions in LO due to the I L \ ~ . I I ~ O I I  A(. \  ) I>ct\vcen singlet and gluon structure lilnctions. 

K ( x )  Inay I)e i n  the forms ol'n ~:on!:ta~~l. ill1 exponential function or a power function and 

they can equally produce recli~i~.etl .\.-ilistribr~tion of light sea quark structure flunctions. 

But ~lr~likr many parameter arbitr;.tr-y i r ~ l ~ o t  s-distribution functions ger~erally used in the 

literature. our method requires o111y ~ I I C  o r  two such parameters. 
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CONCLUSION 

This thesis deals with proton, neutron as well as deuteron structure functions determined 

from deep inelastic scattering experiments approximated for low-x region. Structure 

functions are calculated from complete, particular and unique solutions of GLDAP 

evolution equations which are deduced from pertubative quantum chromodynamics. r and 

x-evolutions of structure functions at low-x region are predicted. Theoretical predictions 

are compared with experimental data and recent global parameterizations. 

In the Chapter-], we present a brief introduction of the problem. Quark and gluon 

distribution functions at low-x are important for understanding of the inner structure of 

liadrons and for examination of quantum Chroniodynamics, the underlying dynamics of 

quarks and gluons. Gluons are expected to be donlinant in the low-x region. In addition to 

that. quark and gluon distributions are important inputs in many high energy processes. 

On the other hand, gluon distribution cannot be measured directly from experiment. It is 

therefore, important to measure gluon distribution function indirectly from quark 

structure function. In this chapter, we discuss about structure of matter. lepton-nucleon 

interactions, small-,u physics, evolution equations and experimental overview of structure 

functions. In the Chapter-2, we discuss about the Taylor expansion method, complete and 

particular solutions of Lirst order linear partial clifl'crcntial cquation and several ~iietliocls 

of numerical integrations which will be used in subsecluent chapters. In the Chapter-3, we 

discuss briefly about the I-evolutions of deuteron, proton, neutron, difference and ratio of 

proton and neutron and x-evolution of deuteron structure functions at low-x. We consider 

the leading order GLDAP evolution equation for singlet and lion-singlet structure 

functions and obtained complete and particular solution by solving it  by applying Taylor 

expansion method. We compare our resiills will1 recent standard parametrizations 2nd 

make predictions for the NMC and HERA data. And also we compare our results with 

those of earlier approximate solutions of GLDAP evolution eqbations. In the Chapter-4, 

we discuss briefly ahout the 1 cvolulions of deuteron, proton. neutron. dil~krencc and ratio 
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of proton and neutron and x-evolution of dc~~tcron str~~cture r~lnctions at low-.I- as it1 thc 

Chapter-3. I3ut here we consider- the next-to-leading order GLDAP evolution eqtlation for 

singlet and non-singlet structure funclions and obtained co~nplete and particular solution 

by solving it applying 7'aylor cxpansion mcthod. Wc cotnparc our rcsults will1 recent 

standard paran~etrizations ant1 make predictions for the NMC and HERA data. And also 

we compare our results with those of leading order results. In tile Chapter-5, we discuss 

briefly about the I-evolutions ol' deuteron, proton, neutron, difference and ratio of proton 

and neutron and x-evolution 01' deuteron structure filuctions at low-x as in the Chapter-3. 

But here we consider thc Icatling order and next-to-leading order GLDAP evolution 

equation for singlet and non-singlet structure Iunctions and obtained con~plete and ilnique 

solutions by solving i t  applying 'I'aylor cxpansion mclhod and applying boundary 

conditions. We compare our results with recent standard parametrizations and make 

predictions for the NMC and I IERA data. In the Chapter-6, we discuss briefly about the t 

and x-evolutions of gluon structiue lilnction at low-x. We co~lsider the leading order 

GLDAP cvolution equation Ihr gluon distribulion function and obtained complete, 

particular and unique solutions by solving it applying Taylor expansion method and 

boundary conditions. We comparc our rcsults with recent standard parametrizations. In 

the Chapter-7, wc discuss briclly about thc r and x-evolutions of light sea and valence 

clilark stri~ctul-e functions at low-x. We consider the leading order GLDAP evolution 

equation Ihr light sea and valence quark structure iilnctions and obtained complete, 

particular and unique solutions by solving it applying Taylor expansion method and 

boundary conditions. We compare our results wit11 recent standard parametrizations. 

I n  all thc rcsults lion1 expcrimcnts as well as global [its, il is seen that all the mclllioncd 

structure functions increase when x decreases and Q' increases for fixed values of Q' and 

x respectivcly i n  general. I t  is obscrvcd that l l~e results from our methods are also 

generally coniparable with thosc of experiments as well as global fits. We observe that x- 

cvolution rcsi~lts of deutcron and liglit sca cluark struclusc functions for y = 2 and y 

maximum in  the /I' = (1'' relalion in lending order have not any significant differences. It 

lias been ohserved that tl~ougli wc have derivctl unique /-evolutions for deuteron. proton, 

neutron. and difference and ratio of proton and neutron structure functions in leading 

order and next-to-leading ortlcr and gluon, sea and valence quark structure functions in 

leading order , yet we can not cstal>lisl~ completely unique x-evolutions for deutcron 
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structure fitnction in leading order and next-to-lending order and gluon and sea quark 

structure I'unctions in leading order due to the relation K(x)  between singlet and glrlon 

structure litnctions. K(x )  may bc in the for~ns of a constant. an exponential fr~nction or a 

power function and they can cclirally pr-oducc recluired x-disiribrrtion of deuteron or gliton 

structure functions. But unlike Inany parameter arbitrary input x-distribution functions 

generally used in the literature, our method requires only one or two such parameters. On 

the other hand, our methods are mathe~natically simpler with less number of 

approxin~ations. Explicit form of K(x)  can actuillly be obtained only by solving coupled 

GLDAP evolution equations for singlet and gluon structure functions, and works are 

going on in this regard as mentioned in the Chapter-5.0 
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Programme-I: Integration programme to obtain x distribution of 
deuteron structure function in leading order 

#include<co~iio.h> 

#define a(x) (3+(4* log( 1 -x))-((1 -x)*(3+x))) 

#define b(x) ((x*( 1 -(x*x)))-!-(2*x* log(\ lx))) 

#define Nf 4 

#define c(x) ((.5)*(Nf)*(I -x)*(2-x+(2*x*x))) 

#define d(x) (Nf*x*(((-.5)*(l -x)*(5-(4*~)+(2*~*~)))+((1.5)*log(l/x)))) 

#define Af .I6 

#define t 100 

#define w 1 

#define j 5 

#define k j*exp(-w*x) 

#define I(x) (a(x)+(k*(c(x)))-(w*k*d(x))) 

#define m(x) (b(x)+(k*d(x))) 

#define f(x) (2/(APm(x))-(l(x)/m(x))) 

main() 

{ 

int i; 

float h,ul,lm,s,sa,sb,u,e,x; 

clrscr(); 

printf("\n upper limit: "); 

scanf("%f", &ul); 

printf("\n lower limit: "); 

scanf("%f", &Im); 

h=(ul-lm)/t; 

s=f(ul)+f(lm); 

for(i=l ;i<=t-1 ; i=i+l  ) 

{ 

sa=(lm+(i *h)); 

s=s+(2* (f(sa))); 
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for(i=l ;i<=t-1 ;i=i+2) 

{ 

sb=(lm+(i $11)); 

s=s+(2*(f(sb))); 

1 
u=(s* h)/3 .O; 

printf("\n integral=%fl, 11); 

e=exp(u); 

printf("\n exponential=%f', e); 

getch0; 

return(0); 

} 

*It is to be noted that in case of constant and power value of k, following few lines 

#define w 1 

#define j 5 

#define k j *exp(-w* x) 

#define I(x) (a(x)+(k* (c(x)))-(w* k* d(x))) replaced by 

#define k 4.5 

#define l(x) (a(x)+(k* (~(x)))) 

for constant value of k and 

#define w -.01 

#define j 1.8 

#define k j*pow(x,w) 

#define I(x) (a(x)+(k* (c(x)))+(w*j *d(x)* pow(x,w- 1))) 

for power value of k .  

Proqramme-2: Integration programme to obtain x distribution of 
deuteron structure function in next-to-leading order 
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#define A 1 (x) (.666667*(3+(4* Iog(1 -x))-((1 -x)* (3+x)))) 

#define A2(x) (1.33333*(1 -x)*(2-X+(~*X*X))) 

#define A3(x) (.666667*((x*(I -(x*x)))+(2*x*log(l/x)))) 

#define A4(x) (4*x*(((-.33333)*(l-x)*(5-(4*x)+(2*x*x)))+(log(l/x)))) 

#define Fqq l (x) ((-log(x)*((2.222222) +(3*x)+(3*x*x)+ (.8888888*x*x*x))) +(.5*x* 

(l0g(x)*l0g(x))*(2+x))+(5*x)-(1.5*x*x)+(2.37037037*x*x*x)- 

5.87037037) 

#define Fqq2(x) ((log(x)*((4.222222)-(4*x)+(1.66666*x*x)+(.8888888*x*x*x)))-(.5* 

(log(x)*log(x))*(l +(x*x)))+((.333333)*pow(log(x),3))+(2.2222222/x)- 

(4*~)+(5.277777778*~*~)-(2.37037037*p0~(~,3))-1.12962963) 

#define Fqgl (w) 4-(9* w)-((I -(4*w))*log(w))-((l-(2*w))*log(w)*log(w))+(4*log(l -w)) 

+((2*log((l -w)/w)*log((l -w)/w))-(4*log((l -w)/w))+ 3.4 14367333)*(w 

*w+((l -w)*(I -w))) 

#define y(w) (-log(log(1 +w))-(log(w)*log(l +w))+(log(log((l/w)+l))) +(log( l/w)* 

log( 1 +( l/w)))) 

#define F l (w) 20.222222+(1.555556* w)+(4.444444/~)+(((45.333333*~)- 12.666667) * 
log(w))-4* log( 1 -w)-((2+(8*w))* Iog(w)* log(w)) 

#define F2(w) (-(log(w)*log(w))+(14.666667*log(w))-(2*log(l -w)*log(l -w))+ (4* log 

(1 -~))+(3.2928 13)-72.666667)*((~*~)+((1 -w)*(l -w))) 

#define F3(w) 2*((w*w)+((l+w)*(l +w)))*y(w) 

#define Fqg2(w) (F 1 (w)+F2(w)+F3(w)) 

#define Fqg(w) ((2.66666666*(Fqg 1 (w)))+(G*Fqg2(w))) 

#define Fqgl l(x) (-log(x)*((9*x)-(5*x*x)+(3.5555556*x*x*x))+(((3*x)-(3*x*x) + 
(1.33333333*x*x*x))*log(x)*log(x))-3.7153777778+ (.017511111 *x) 

+(5.982488889*x*x)) 

#define Fqg22(x) ((-2.284622222*~*~*~)+(((3.5555555*~*~*~)-(4.66666666*x*x)+ 

(2.66666667*~)-1.55555556)*10g(1-~))+((1.33333333-(2*~)+ (2* x* 

x)-(1.33333333*x*x*x))*log(l -x)*log(l -x))) 

#define Fqg9(x) Fqg 1 1 (x)+I:qg22(x) 

#define Fl 1 (x) -1 2.04971 852+(10.26902222*~)-(16.7690222*x*x) + (1 8.54971 8 *x* 
x*x)+((-4.4444444-(8*x)-(I 1 *x*x)-(lO.2222222*x*x*x))*log(x)) 

#define F22(x) (((3*~)+(3*~*~)+(.6666666*x*x*x))*log(x)*log(x))+((1.555555- 

(2.6666666*~)+(4.66666667*~*~)-(3.555555*x*x*x))*log(l -x))+ 

((-l.333333+(2*x)-(2*x*x)+(1.333333*x*x*x))*log(l-x)*log(l -x)) 
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#define Fqg8(x) (1;11 (x)+J:22(x)) 

#define Pf(w) (((-2*(1 +(w*w))/(l -w))*log(w)*log(l -w))-((@/(I -w))+(2*w))*log(w))- 

(.5*(l +w)*log(w)*log(w))-(5*(l -w))) 

#define Pg(w) ((((1 +(w*w))/(l -w))*((log(w)*log(w)) +((3.666667) *log(w))+ 

(1 9.0468)))+ (2*(l+w)*log(w))+((I 3.333333)*(1 -w))) 

#define Pnf(w) ((.666666)*((((1 +(w*w))/(l -w))*(-log(w)- 1.666666))-(2*(1 -w)))) 

#define Pa(w) ((2*((l +(w* w))/(l +w))*y(w))+(2*11 +w)*log(w))+(4*(1 -w))) 

#define f(w) (((I .777778)*l'f(w))+(2*Pg(w))+(2.66667*Pnf(w))+((.222222)*Pa(w))) 

#define fl (w) (((I -w)/w)*f(w)) 

#define f2(w) ((( 1 -w)/w)* Fqg(w)) 

#define n 10000 

#define u12 1 

#define u13 1 

#define u14 1 

#define p -170 

#define q 2 

#define k p*cxp(-x*q) 

#define L 1 (x) (A 1 (x)+(k* A2(x))-(k* q* (A4(x)))) 

#define L2(x) (A3(x)+(k*A4(x))) 

#define Bl(x) (5.333333*Fqql(x)) 

#define B2(x) ((2.66666666*(Fyg9(~)))+(6*(Fqg8(~)+~2))) 

#define B3(x) (x*(u3)+(5.333333*x*Fqq2(x))) 

#define B4(x) (x*(u4)) 

#define M 1 (x) (B 1 (x)+(k*B2(x))-(k*q*(B4(x)))) 

#define M2(x) (B3 (x)+(k* B4(x))) 

#define f3(x) (1 /(122(x)+(.026*M2(x)))*(8.3333 33-(L 1 (x)+(.026*M 1 (x))))) 

main() 

int i; 

float h2,h3,h4,h5,s2.s3,s4,s5.sa2,sa3,sa4,sa5,u2,ii3,i14,u; 

float sb2,y.sb3,sb4,sl~5,i115,l11i2.l1113,lm4,1~115.x,w,e ; 

clrscr(); 

printf("\n value of upper lin1it5: "); 

scanf("%f ', &u15); 
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printf("\n value of  lower limit2: "); 

scanf("%f ', &lm2); 

printS("\n valuc of lowcr l i l~ i t3 :  "); 

scanf("%f ', &11113); 

printf("\n value of lower liniit4: "); 

scanf("%f ', &lm4); 

printf("\n value of lower limit5: "); 

scanf("%f ', &&l1n5); 

h2=(u12-lm2)/n; 

h3=(u13-ln13)/n; 
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e=exp(u); 

printf("\n exponel1lial=%f", e) ;  
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*In case of powcr valuc o f  k. li~llowing fcw lincs 

#define p -1 70 

#define q 2 

#define k p*exp(-x*q) 

#define L 1 (x) (A l (x)+(k*A2(?c))-(k*qq*(A4(x)))) replaced by 

#definep 30 

#define q -0 14 

#define k p*pow(x,q) 

#define L 1 (x) (A 1 (x)+(k*(A2(x)))+(p*q*pow(x,q- 1))*A4(x)) 

Proqramme-3: Integration programme to obtain x distribution of 
gluon structure function in leading order 

#include<math.h> 

#include<stdio.h> 

#include<conio.l~> 

#define a(x) (.694+(log(l-x))-(2*(1-x))+(.5*(l-x)*(l-x))-(.3333*(1-x)*(I-x)*(l-x))- 

log (XI) 

#define b(x) ((-.2222222)*(( 1 -x)+(.5*(1 -x)*( 1 -x))+(2*log(x)))) 

#define c(x) (x*(2*(1-x)+((.33333)*(1-x)*(l-x)*(l-x))+(2*log(x))+(l/x)-l)) 

#define d(x) (x*(.222222)*(((.5)*(1 -x)*(1 -x))+(2 *(I -x))+(4*log(x))+(2/x)-2)) 

#define Af 1.24 

#define w -4 

#define j 300 

#define k j*exp(-w*x) 

#define In1 .9 

#define t 100 

#define p(x) (a(x)+(k *(b(x)))-(w* k*d(x))) 

#define q(x) (c(x)+(d(x)* k)) 

#define f(x) (2/(Af*cl(x))-(p(x)/q(x))) 

main() 

{ 
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itit  i; 

float h,ul,s,sa,sb,u,e,x; 

clrscr(); 

printf("\n upper limit: "); 

scanf("%f ', &ul); 

h=(ul-lm)/t; 

s=f(ul)+f(lm); 

for(i=l;i<=t-1 ; i = i + I )  

{ 

sa=(lm+(i *h)); 

s=s+(2 * ( f(sa))); 

1 
for(i=l ;i<=t-1 ;i=i+2) 

{ 

s b=(lm+(i * h)); 

s=s+(2* (f(sb))); 

1 
u=(s* h)/3 .O; 

printf("\n integral=%fl, u); 

e=exp(u); 

printf("\n exponential=%f I, e); 

getch0; 

return(0); 

1 

*It  is to be noted that in casc of power value of k, following few lines 

#define p(x) (a(x)+(k*(b(x)))-(w*k*d(x))) replaced by 

#define w 1.8 

#define j 135 

#define k j*pow(x,w) 

#define p(x) (a(x)+(k*(b(x)))+(w*j*d(x)* pow(x,w- 1))) 
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Proaramme-4: Integration programme to obtain x distribution of light 
sea quark structure function in leading order 

#define f(x) (2/(Af*m(x))-(l(x)/m(x))) 

main() 

{ 

int i; 

float h,ul,lm,s,sa,sb,u,e,x; 

clrscr(); 

printf("\n upper limit: "); 

scanf("%f I, &ill); 

printf("\n lower limit: "); 

scanf("%f ', &lm); 

h=(ul-lm)/t; 

s=f(ul)+i'(ln1); 

for(i=l ;i<=t- l ; i = i - t  I ) 

{ 

sa=(lm+(i *h)); 

s=s+(2 * ( f(sa))); 
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1 
for(i= 1 ;i<=t- l ;i=i-t 2) 

{ 

sb=(lm+(i*h)): 

s=s+(2 * ( f(sb))); 

1 
u=(s* h)/3 .O; 

printf("\n integral=%f', u); 

e=exp(u); 

printf("\n exponential=%f", e); 

getch0; 

return(0); 

1 

*It is to be noted that in case of constant and power value of k, following few lines 

#define w I 

#define j 5 

#define k j *exp(-w*x) 

#define I(x) (a(x)+(k*(c(x)))-(w*k*d(x))) replaced by 

#define k 210 

#define l(x) (a(x)+(k*(c(x)))) 

for constant value of k and 

#define w .25 

#define j 221 

#define k j*ppow(x,w) 

#define I(x) (a(x)+(k*(c(x)))+(w*j *d(x)* pow(x,w- 1 ))) 

for power value of k. I J 
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Particular solutions of GLDAP evolution equations in leading order and structure 
functions at low-x 

R Rajkhowa and J K Sarma* 

Abstract We present part~rular solutronr of srnglet and non slnglet Gr~bov Lrplrov Dokshrlzer Allarelli Paris1 (GLDAP) evolutron equalions 
rn leadlng order (LO) a1 low r We obtaln I evolutrons of proton and neutron structure funclrons and r evolutrons of deuleron slruclure funclrons a1 low 
x from GLDAP evolutron cquatronc The rc\ults of r cvolulronr lrc cornplretl wlth tiCRA low r arid low Q1 d?l? and lhosc of r evolultons are complrcd 
wrth NMC low r and lou Q2 dam 

Keywords Particular solulron complete solutlon Altcrcll~ Parrrr equalron structure funcllon 

PACS Nos 12 38  Ilx I2  39 x 13 60 11b 

I. Introduction 

T h e  Gr~bov-L~patov-Dokslrltzer-Altarelll-Pars (GLDAP)  
evolutron equat~ons[l-41 a re  fundamental tools to study the 

r (= I~(Q'/A')) a n d x  evolutlon5 of structure funct~ons,  where 

x and Q? are Bjorken scallng and four momenta transfer In a 
deep lnelastlc scattering (DIS) Process 151 respectively and A 
IS the Q C D  cut off paranicter O n  the other hand. the study of 
structure func t~ons  at low-x has become toplcal In view [6] of 
h ~ g h  energy coll~der and supercoll~der experiment5 [7] Solut~ons 
of  GLDAP evolu t~on  equatlons glve quark and gluon structure 
f u n ~ t ~ o n s  w h ~ h  produce  u l t ~ m a t e l y  proton,  neutron and 
deuteron structure func t~ons  Though nurncr~cal  so lu t~ons  a re  
available In the lrterature 181, theexplora t~on\  of  the posb lb~l~ ty  
of obtalnlng analytlc.11 so lu t~on\  of  GI,DAP evolutlon equa t~on\  
are always Interesting In t h ~ s  connectloll, s o m e  partlcular 
solutrons computed from general so lu t~ons  of  GLDAP evolut~on 
equatlons at  low-x ~n leadrng order have already been o b t a ~ n e d  
by a p p l y ~ n g  Taylor expansion method 191 and t-evolut~ons [ 101 
and  x-  evolutions [ I l l  o f  s t ruc ture  f u n c t ~ o n s  h a v e  been 
presented 

The present paper report\ p a r t ~ ~ u l a r  \olut lo~rr  of GLDAI' 
e v o l u t ~ o n  equation5 computed from comple te  solutcons In 
leadlng order at low-r and c,~lculatron o f t  and r-evolutrons for 

s l n g l e t  a n d  non-singlet s t r u c t u r e  f u n c t ~ o n s  a n d  h e n c e  
1-evolut~ons of  proton and neutron structure functlons and 
x-evolut~ons o f  deuteron structure functlons In some Instance, 
we cdn dcal w11h partlcular solutions more conven~ently thdn 
w ~ t h  the generdl so lu t~ons  [I21 In calculdt~ng structure functrons, 
Input data polnts have been taken from the exper~mental  data 
d~rect ly,  u n l ~ k e  the  usual practlce of  u s ~ n g  a n  Input d ~ s t r ~ b u t ~ o n  
functton Introduced a r b ~ t r a r ~ l y  Results o t  proton and neutron 
structure f u n c t ~ o n s  arecompared wlth the HERA low-r  lo\\-Q2 
data and those o f  deuteron structure func t~ons  are compared 
w ~ t h  the NMC low-x low-Q2 data Comparisons are also made 
w ~ t h  the results of  earlrer s o l u t ~ o n s  [ l o ,  11,  131 of G L D A P  
evolutlon equatlons In S e c t ~ o n  2, necessary theory has been 
dlscussed S e c t ~ o n  3 glves results and d ~ s c u s s ~ o n  

Though the baslc theory has been dlscussed elsewhere [ l o ,  11 ,  
131, the essential steps of  the theory have been presented here 
for c la r~ ty  The  G L D A P  evolu t~on  cquatlons for singlet and Iron- 
s ~ n g l e t  structure functlons In the standard forms are [I41 

Corrc~pondrng Author 



and IJslng eqs (8) (10) ~n eqs (7)-(5) and pcrform~ng u- 

where. 

S 7 I  I -  N I - } ~ I , I ~ ,  (4) 
1 

and 

Here, r = In { Q ~ / A ' }  and Aj = 4/(37-2Nj), N, belng the 

number of flavours dnd A ts the QCD cut off par,1111ctcr 

Let us Introduce the varlahle rc = I-w and note that [I 51 

The serles (6) 1s convergent for I r r ]  i 1 S ~ n c c  < ~t < I so O 

and 

lN' =-[(I-- i ) ( \+3) ]  ~ ~ ~ ( r , l )  

Now uslngccls ( I  I )  ,lnd (12) 111cq (I) ,  \vc I\,lve 

< u < I-x and hence the convcrgcncccrltcrton 1s \ , I I I \ I I L ~  No\v. 
1,er us assume for \ ~ m p l ~ c ~ l y  

uslng Tajlor expansion method 191. \be cdn rcwritc G(\llc 1) .IS 

- G(r.1) = K(A) F;(\. f ) ,  

G ( r l , v , ~ ) = G  r + x  , I  ( k - I  
whclc K(\) ts 'I I U I I L [ I O I I  of I No\\, c(1 ( 14) gi\c\  

d ~ , S ( \ . t )  - * - 2 [ L ( , )  F:(\,T)+M(\)--- = o .  (I@ 
=G(x , f )+  T X t d k -  d t  I a x 

I-I d x 2  
wherc 

I 
whtch covers the whole rdnge of 11.0 < r e  < I-\ Stncc t 1s small 

A ( \ ) = 3 + 4 I n ( l -  r ) - ( I -x)(3+ I),  
in our reglon of d~scusslon, the terms contatnlng x Z  rind htgher 
powers of x can be neglected as the ftrst ,~pproxirnatlon as B ( 1 )  = \ ( I -  1:) t 2 t  l11(1/ t ) ,  

d~scussed in our edrlter works 11 1, 12, 14) and G ( \ / I ~ ,  1 )  can be 
approxtmated for small-x a5 C ( x ) = 1 1 2 N I ( I - 1 ) ( 7 - - x + 2 ~ 2 ) ,  

Stmllar)y, FzS(r / ,r, I)  and F:' ( \ I I) can be ,~pp~o~itn.ttCd 
d R ( 1 )  

for small r as / , ( \ ) = A ( \ ) +  K ( \ ) C ( \ ) +  I?(\)----- 
8 1 

- L d t ; ( \ . l )  
@ ( r / ) r , l )  z f;(r I ) +  \Err ---- (9) and h l ( ~ ) = I l ( \ ) + K ( ~ ) f l ( ~ )  

1 d \ ' 
Secondly, uslng ey ( 17) t t i  cq (2), we have 

and 
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where 

P ( x ) = 3 + 4  In ( l -1 ) - ( I -x ) (x+3) ,  

and 

Q ( t ) =  I ( ] -1 ' )  21 111, 

Dlflelent~atrng eq (20) w ~ t h  respect to a ,  we get 

1 
a = - - I  exp - - 

2 [jf M;x) dx] 

The general colutlons of eqc (16) 1s 19, 121 F (U V) = 0, 1 
. ( . I )=-- t2exp 

whcrc f 1s nn drb~trdry lunctlon ,~nd 4 

and 

whlch 1s merely a pa~tlcular solut~on of the general solutlor~ 
Un l~ke  the case of ord~nary d~fferentlnl equations, the envelope 
1s not .I new locu\ It 1s to bc noted th.~t \I I ICII  0 IS .III ,~rbltr,~ry 

funct~onot a ,  then the el~mrnatron ot  a In q (20) rs not possrble 
Thus, the general solutlon can not be obtalned from the complete 

form a solut~on of equat~on solutlon 191 Actually, the general solutlon of a Itnear partla1 
d~ttcrentral equ,~tlon of  order one IS the total~ty of envelopes of  

dr r(t all one-pilrameter famllles (21) obta~ned from a complete solutton --- = - z 
c/@( 1 ,  f) 

AfM(r)  -t - A ~ L ( Y ) @ ( x , ~ )  (I8) Now, def~nlng 

and 

I f  U and V ~ r c  two ~ndcpcndelit solut~ons of cq ( 18) ~ n d  I I  a 
and p are arb~trary constants, then V = a U  + P rndy bc t'tkcn 

as a complete solut~on of eq ( 18) We take t h ~ s  form as t h ~ s  IS the 
s~mplest form of a complete solut~on whtch conta~ns both the 
arb~trary constants a and p Earl~er [ 10, 1 1, 131, we cons~dered 

a solut~on AU + BV = 0, where A and B arc arbltrdry constants 
But that 1s not ,I complete solut~on havlng both the nrbitr'lry 
constants as t h ~ c  equatlnn can be tmn<forrncd to the form V = 
CU, H hcre C =  -A//?, r e Ihc cc]u,ltlon cont.llns only onc .\I brtr,lry 
constant 

Now, the complete solut~on 19, 121 

1 

4 
r;)(,,.r)=--ti exp 

'11 r = t,, w h c ~ e  r, = In ( & / A 2 )  '11 ,my lowel v,due = L),,. \ \ r  

get from eq (2 1 ) 

whlch glves thet evolution of slnglet \tructure function F;( , .  r) 

P r o ~ c e d ~ n g  exactly In the same w,~y. .lnd det~nlng 

we get for non-srngkt structure functlon 

whlch g ~ v c s  the t-evolutton of 11011-vnglet structure till~ctlon 

F;'( \ , I )  

1s a two-parameter fdm~ly of surfd~es.  \ V ~ I L I I  ~ O C F  not hdve an 
envelope, s ~ n c e  the arb~trary  constant\ enter l~nedrly [9] ( , r ) = - r e x p [ J [ - ~ ) ~ ~ ~ ]  4 AfM(r )  M(x) , 

D~fferentlatlng eq (19) w ~ t h  respect to 0. \\e get O =  1 which 1s ' = '0 

absurd Hence, tlierc 1s no c~ngul'lr \olut~on 7 hc one-par.uiteter 
famrly determ~ned by tnkrnp = h ~ s  cqu.ltion weoht.11n l~o rncq  (31) 



which glves the x-evolution of singlet structure functlon 7 hese were obtalned by tahlng arb~trary Ilnear cornblnntlon 
F:(x, I) Slmllarly defining, AU -I flV= Oof generdl solul~on r ( U ,  V) =0, whercA and B ,\re 

two a rb~t r~~ry  constants '1s discussed earher 

1 
( x ,  I )  - - t 2 e x p [ J ( ~ - ~ ) ~ / t ]  4 Slrn~lnrIy us~ng eqs (22) ,~nd (23) In eqs (27) and (28). \ \c gct 

A,Q(x) Q(x) 
I - r  

the I- evolut~on\ or protoll and neutlon 5tru~tule ~ L I I I L ~ I O I I \  . ~ t  

low \ .IS 

we get 

which glves the x-evolut~on of non-singlet structure functron 

F~~'(X, t) Deuteron, proton and neutron structure functions F; (x,f) = Fl (x, l o )  [-!-I 
measured In deep ~nelastlc electro-product~on, can be wrltten In 
terms of singlet and non-s~nglet quark dlstrlbut~on functlons In where tile functions are 
leading order as 

F: (x, I) = 519 fl (x, 1) , 

and F; (x, I) = 511 8 F: (x, I) - 311 8 F? (x, r)  (28) 
5 3 NS 

~ , " ( x , t , ) = - ~ ; S ( x , t , ) - - ~ ,  (x.1,) 
18 18 

Now uslng eqs (22) and (24) In eq (26), we will get r .~nd x The ~orrespondlng results for earher solutlons of GLDAP 
evolut~on of deuteron structure functlon F;'(x, r )  at low-x as evolution equat,ons are 

and 
and 

hd (x, I )  = @(x,, t) exp [ ( A , x  ---- - - ~ ( Y ) ) x J  (30) 

where the lnput functlons are 

5 
~ ; ' ( x . r ~ ) = - ~ ~ ( r , t , )  

9 

and 

The corresponding results for a particular solutlons from 
the h e a r  comblnatron of U and Vof genrral solut~ons F (U. V) 
= 0 of GLDAP evolution equations obtalned earher [lo, 11, 131 
are 

and 

But the x evolut~ons of proton and neutron structure 
fun~tlons l ~ k e  those ot deuteron itructure functlon 1s not 
posslble by this methodology, because to extract thex-evolution 
of proton and neutron structure functlons, we are to put eqs 
(24) and (25) In eqs (27) dnd (28) But as the filnctlorls lrlsldc the 
Integral slgn of eqs (24) and (25) are d~fferent, we need to separate 

the Input funct~ons F;(t0, I) and ~ ~ ~ ' ( r , , t )  from the data 

po~nts to extract the x-evolut~ons of the proton and neutron 
structure functlons, which will contaln large errors 

For the complete solutlon of eq (16), we take B = a2 In eq 
(19) Ifwe t.lhc p = a III  eq (19) ,~ndd~flc~cnt~.~tc  \\ 1t11 ~ e q x c t  to 
a as before, we get 

from which we can not determine the valueof a 
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But ~f we take p = a2 In eq (19) and dlfferentlate with Proceed~ngexactly In the same way, we can show that ~f we 

respect to a .  we get take p = a*, we get 

wh~ch 1s lmaglnary Puttlng t h ~ s  value of a In eq (19) we get and 

ultimately 

3 F;(x,I)= F;(xo,t)exp 

AjM(x) M(x) 

S~m~larly, ~f we take f l =  a5,  we get 
Now, defin~ng 

we get 

and 

and so on 
3 

, Thus, we observe that ~f we take P = a In eq (19). we can 
F:(x,~) = f:(x,tO) - (; Ii not obtaln the value of a and also the requ~red solut~on But ~f 

we take p = a2 ,  a3,a4,  a5 and so on, we see that the 
Proceeding exactly In the same way, we get for non singlet powers of (t/to) In t-evolut~ons of deuteron, proton and neutron 

structure funct~on also structure funct~ons are 2,3/2.4/3.5/4 and soon respect~vely. 
as d~scussed above Slm~larly, for x- evolut~ons of deuteron 

1 structure functions, we see that the numerators of the flrst term 

Fts(x.t) = F ~ ' ( x . r 0 )  ~nc~de  the ~ntegr,~l slgn are 2,7R, 413,514 and so on rcsp~t~vely. 
for the same values of a Thus, we see that ~f In the rel&~t~on 

p = a) ,  varres between 2 to a maximum value, the powers of 
Then uslng eqs (26)-(28) we get r- evolut~ons of deuteron, 

proton and neutron structure funct~ons (I/%) varles between 2 to 1, and the numerator of the first term In 
the lntegrnl sign varles between 2 to 1 Then ~t IS underclod 

3 that the-solut~ons of eqs (16) and (17) obta~ned by thls 

F;P"(x,~)= F : ~ " ( X . ~ ~ )  - (; Ii methodology are not unlque and so the t-evolut~ons of deuteron, 
proton and neutron structure funct~ons, and r- evolut~on of 
deuteron st~ucture functlon obtalned by thls methodology are 

Proceeding In the same wdy we getx- evolutions of deuteron not unlque They become eqs (29). (30), (33). (34) for y = 2, but 
structure funct~on they reduce to eqs (31), (32). (35) and (36) respect~vely, wh~ch 

are our earller results for a maxlmum value of \ 
r /  ? 1 1 

Thus by t h ~ s  methodology, Instead of hav~ng angle 
solut~on, we arrlve at a band of solut~ons, of course the range 
for these calutrons 17 reacon.~bly n,Irro\\ 

But thedetermlnatlon ofx- evolutions of proton and neutron 3' discussio" 
structure funct~ons llke those of deuteron structure funct~on 1s In the present paper, we compare our results of r-evolut~ons of 
not possrble by thls methodology '1s dlscucccd earlier proto11 ,111d ncutron structulc f~rnct~o~i\  Ilo~n eels (73) .~nd (14) 



respectively, w ~ t h  the E R A  low-r, low Q'd,ttd I 16) I Icre, proton 

structure functlons F;(r ,  Q ~ ,  z )  rnedsured I n  thc r.tngc 

2 5 e2 1 5 0  GeVZ , 0 73 5 0 88 and neutron structurc 

functlons F'(x, Q ~ ,  z) measured I n  the range 2 5 Q' 2 50 
GeV2 . 0 3 < ,- < 0 9 have been used Morcovcr, llcre P, < 
2OObleV. where P,.ls the trdnsverre momcnturn o f  the ftnnl \tatc 
baryon and z = 1-q @ - ~ 3 l ( q  p). wherep, q ale the four momenta 
o f  the lnctdent proton and the exchanged vector boson coupltng 
to the posltron and 1s the four-momentum o l  tltc frn.~l \t,ttc 

baryon Though we compare our results w ~ t h  y = 2 In 0 = a' 

relatron wrth data, our results wrth y rnaxrrnunl, whrch are 
equrvalent toour earlrer results ale equdlly vdlrd For 1-evolut~o~t\ 
o f  deuteron, proton and neutron structure runctlon\. the rc\ult\ 
wrl l  be the range-bounded by our ncw ant1 old re \ t~ l t \  13111 lor x 
evolut~ons of deuteron structure lunctton, rtcw ,111d old rc\trlt\ 
have not any srgntficance drfference 

I n  Frgure 1, we present our results of  I-evolut~ong o f  proton 
structure functrons F: (so l~d Irnes) for the rep~esen tn t~~e  v'tlues 
o f  r  glven In  the figure Data pornts at lowest-Q2 value\ In the 
figure are taken as rnput to test the evoltrtron equcltron (31) 
Agreement 1s found to be excellent I n  the sdme f~gurc,  we ~ l s o  

Figure 1. r evolutrons of proton strucrurc funcl~ons r: (solid Ilncc) for 
the representatrve valuer of x Data polntr at loucrt Q~ vvalocs arc t ~kcn 
as lnpul to tcsl the evolut~on cqunl~on ( l 3 )  Wc .IIW ploc IIIC ~L~IIIIF of I 

e~olutlons of proton structure funcllonc r{ (dlchcd I ~ n c s )  for our L l r l l ~ r  

solul~ons from eq (35) of GLDAP cvolul~on equallone For tonvcnlcncc 
baluc of each data polnt IS ~ncreascd by addlng O 21 wllerc r = O I 2 1. 
are the numknngs of curves countlng from tllc tmttom of the lowermoct 
curve as the 0 th order 

plot the rewlts o f  I-evolutron\ o l  proton structure fitnclrons 
r," (d.~\ltcd Itncs) t o r o u ~  c.trltc~ \olutlon\ I tom eq (35)oI GL.Il/\I' 
cvolut~on cqu~ t l ons  We ob \e~ve  th,tt our new ~csul ts ,trc I n  
better agreenient w ~ t h  data than the o ld  ones 

I n  17~glrrc 2, wc ptc\cnt ot11 rc\ult\ o l  t-evolut~on\ o l  ncutron 

c t~~ lc ture  Iunct~ons 61 (4011d I I ~ c ~ )  for the reptcscnt,tttve v,~lues 

o f  x glven In  the figure Data po~nts  at lowest- Q' values In  the 
figure are t'tken .IF Input to test theevolutron eq (34) Agreement 
ts lountl to be cxccllcnt I n  the w n c  I lg i t~e .  \vc plot l l lc 

results ot I-evolutrons o f  neutron structure funct~ons F; (ddshed 

Irnes) for our earlrer soluttons from eq (36) o f  GLIIAP evolut~on 
equ'tllon\ We observe th,~t 111 1111s case ,tlso. our new rc\ults 
,Ire In bcttcr ,tgrccri~ent w ~ t h  d.tt,t than the old oncs 

Frgurc 2. t cvol~~t~oris of protoll ctructure functtons r" (sol~d Irncs) for 
5 thc rcprcrc~~t~t~vc valucc of 1 I h l a  po~nls at  lowesl Q vali~cs are lalcn 

as lnpul lo tc\t the evolut~o~r cclu I~IOII (74) We also plot t l ~ c  rcwllc ol I 
cbolul~o~is of ncurron structure r~lnctlons I ;  (dashcd Ilncs) for  oil^ c.~rl~cr 
solul~onr rro~n cq (30) of GLDAI' iv~>luc~on equations For con\cnltncc 
balue of L I L ~  da1.1 porn! IS ~~lcrmsirl hy adtllng 0 ?I \\hcrc I = 0 I 2 3 
.Ire l l ic ~ ~ l ~ l n l n r l l l p  of cIIr\L$ CLIIIIIIIII~ 1ro11l 11ii I>o11(1111 t l i ~  IO\!~IIIIOCI 
c o ~ \ c  .I\ t11c 0 111 tr~dcr 

1 or ,I qt~ .~ i i t~ t .~ l tvc  ,I~.II~\I\ o l  1-distr~hutlons o l  \ t ~ t t ~ t u r c  
l l t l l~ t lo l l \ ,  \ {c c,llctll,lte lI1c l l l l c ~ l ~ l l \  l l l ~ l t  o ~ ~ t t r l c l l  Ill eq (10)  lo1 
N, = 4 I n  1.1gttrc 7, we Ivc\cnt our results ot 1 d~s t r~buuon  o l  

deuteron structure functlons F: f o ~  K( I )  = constant (sol~d Itncz). 

K ( I )  = (11" (d.t\ltcd IIIIC\) ,trtd 1 0 1  A(\) = LC-"' (~Iot tcd IIIIC\). 
whelc n / I ,  c .tnd (1 ale con\t,lrlt\ ,~nd fol rel?rescnt.tlrve \.~lires 
of Qzglven In each figu~e, and cornpdle them w ~ t h  NMCdeuteron 
low-x low- Q' ddtnj171 I n  e x h ,  the datd p o ~ n t  for  1 value just 

below O 1 has bcen t'thcn .I\ tliput ril (+,. 0 



If we take K(x) = 4 5 In eq (JO), then ,Igreement of the result In Flgure 4, we  present the senslttvlty of  our  results for 
wtth experlrnental data 1s lound to he excellent On the other dlllcrcnt constant values o t  K(\), \ \ e  observe tIi.it i ~ t  K(1) = 4 5. 
hand, ~f we take K(x) = m", then agreement of  the results with agreement of  the results wlth expertrnental data 1s found to be 
expertmental data ts found to be  good at n = 4 5 , b  = 0 0 1  Agaln excellent If value of K(x) 1s Increased, the curve goes upward 
tf we take K(x) = ce4', then agreement of  the results wtth d ~ t c ~ t l o n  ,111d 11 v.11ue ol K ( I )  I \  c l c ~ l e , ~ \ c d ,  the ci lr \e  got\ 

experimental delta rs found to be good ,tt c = 5, b = 1 downward d i r e ~ t ~ o n  But the nature o t  the curve 15 s~mrlar  

Flgurc 3 r d ~ r l r ~ h u l ~ o n c  of d ~ u t c r o n  ctruclure f ~ l n c t ~ o ~ ~ c  I;' for  k ( r )  = 
conslant (sol~d Ilncc) h(r)  = n8' (dachcd Iln'c) and for X(x) = r c  "' (dolt~d 
Ilnes) where n b r and d are conctnnts, and compare lhem w ~ t h  NMC 
deuteron low x low Q2 data In each. the data polnt for x value just 
below 0 I has been taken as Input $ (x,, r )  For convenlcnce value of 
each &la potnl 1s lncrcaced hy addlng 0 21 whcre r = 0 1 2, '3 arc the 
number~ngs of curves iountlng from the bottonl of the lo~cr~nosl  curve 
as the 0 t h  order 

In I-lgure 5, w e  pregent the sensltlvtty of our  results for 
dlfferent values of n at flxed value of B Here, we  t a l e  1) = 0 01 
We observe t h ~ t  at n = 4 5, dgreclnelit of  thc rcsults wlth 
experlrnent'll d ~ t , ~  1s tound to  be excellent If value o t  n IS 

increased, the curve moves upward and ~f value of  a IS decreased, 
thecurve goeg downward But the nature of the curve IS s ~ m i l a r  

O d 6  6 

Ialgure 5 Sc~is~t~v~ty of our rcsulls for dlffcrcnl values of n at fixed value 
o r b  = 001 

In Flgure 6, w e  present the sensltlvlty of our  results tor 
dlfferent values of 6 $t fixed value of n Here, we taken = 4  5, we 
observe  that at  6 = 0 0 1 ,  agreement  o f  the  results with 
expcrrment.ll d.ltn is excellelit If v.11ueot b 1s 1ncre.lscd. the11 the 
curve goes downward and tf value of 6 IS decreased, the curie 

goes upward But we  observe that difference of the curves for 6 
= 0 0 1 ,  0 0 0 1 .  0 0001 1s very smdll atid all these curves are 
overlapped Here also the nature of  the curves 1s stnillar 

In Flgure 7, w e  present the sens~tlvl ty of  our  results for 
d~fferent values of 'c' at fixed value of 'd Here, \%e ta le  d =  I We 
ohwrvc th.~t ,I( c =  5, .Igrccmetit of  t l ~ c  ~ c \ u l t \  wltti c.cl~ertnlct~tal 
data ~sexcellcnt  It v,llue of c' IS rncre,~sed. the curve goes upw,lrd 
and tf value of  'c is decreased. the curve goes  do\\ nward 
dlrcctlon But the nature of the curves 1s \~rilllar 

0 3 In Ptgure 8, we  present sens~ttvl ty of our results fordltlerent 
o 002 004  006 008 0 1  values of d at fixed value of  c Here, we take c = 5, we observe 

x that at d=  I ,  agreement of the results wlth experimental data IS 

I lgure 4 ' j ~ n c ~ r ~ v ~ t y  of ou r  rccnltc Tor d ~ l l c r c l ~ t  cc,nrll~tl V I I I I C \  (,I' A ( , )  c ~ c c l l c l l ~  If v.llLle 0 1  '(it I \  lncll..l\Cd, then the LLIrkc gee\ 



downward and ~f value of d 1s de~rc~iscd the curve gocs upw,~rd 
IIerc also the nclture ol the curves 1s \ ~ m ~ l ~ ~ r  

0 48 

0 3 
0 002 004 006 008 01 

X 

F~gure 6 Scnclllvlty of our  rcwltc for d l f f ~ r ~ 1 1 1  V I I U C I  o f  11 71 ~ I ' L L ~  v I I U L  
of n =4 5 

0 5 

0 3 

0 002 004 006 008 01 
X 

Figure 7. Sensltlv~ty of our rcsulLr for d ~ f l ~ ~ c n l  v n l u ~ r  of c I I  I l x i t l  v q h ~ c  

of d = I  

From our above dlscusslon, ~t has been observed th,~t we 
can not establrsh a unlque rclatlon bctnccn s~llglct .lnd gluon 
structure funct~ons I e a unlque expresalon for K(r) In cq (15) 
by thrs method, K(x) In the forms of a constant, an exponentla1 
funct~on of x or a pov.cr In x can eqr1.1lly produce reqrilrcd \ 
d~str~butlon of deuteron structure fun~tlons But unl~hc nt~lny 

parameter Input r d~str~but~oli  functions generally used In the 
I~tcr,~lu~c, our ~nclhod ~cclu~rctl only one or two ~ L I L I I  p.il.lnirlcl\ 
1 he expll~lt lorln ol K(x) L~ln a~tually bc obt,~lncd only by \olv~rtg 
coupled GLDAP evolution equations for s~nglet and gluon 
S I ~ U L I U I C  f~~r tc t r~ns  .~nd \ \ o ~ h s  .IIC go~rtg on In t h ~ \  d~~eclron 

0 002 004 006 008 01 

X 

11fl1111 8 \ C I ~ \ I I I \ I ~ Y  o f  0111 I L ~ I I I ~  lo r  I I I I I L I ~ I I I  \ ~ I I I C \  111 (1 11 I I \ L ~  \ 11111 

orr  = 5  

Trad~t~onally, the GLDAP equations provrde a means of 
~ '~ lcu la t~ng  the manner In whlch the parton dtstr~butlons change 
rlt l~xed I, .I\ e2 V C I I I ~ S  11115 C I ~ . I I I ~ C  OCCLIIS ~ C L ~ L I S C  ~t the 
VJI-IOUT types of parton branchrng emrsslon processes and the 
r dlstr~but~ons are modrfied due to sh'lrlng of ln~tlal momentum 
arnong the varlous daughter partons Houe\er, the exact r,lte of 
modrflcatlons ofx-d~str~but~ons at frxed Q ' C ' I ~  not be obta~ned 
from the GLDAP equ.lt~ons slnce ~t depends not only on the 
~nltldl x but also on the rate of change of parton distrrbut~ons 
with respect to r, d " ~ (  1) /dl" (11 = 1 to ,), up to lnfinlte order 
P h y s ~ ~ ~ ~ l l y .  this ~mplrc\ that .I[ h~gh  t ,  tltc parlon 11.1s .I ldrge 
momentum fract~on at I ~ F  d~sposal and as a result, it rad~ates 
partons rncludrng gluons rn Innumerable ways, some of them 
~nvolv~ng cornplrc,~tctl QCD rnccli~~~i~srns Ilo\\cver for lo\\-t. 
ni.lny of the rad~at~on proce\seq w~ll  cease to O L L U ~  due to 
momentum constratnts and the r-evolut~ons get srrnpl~f~ed It 1s 
then poss~ble to vlsunllze n sltuatron In which the mod~flcat~on 
ol thc \ d~\ t~~bul lon  \~mply dcpcncl\ on 11.. ~nltl.tl v.~luc ,lnd I [ \  

11r~t dcr~vatlve In 1111s srmplrf~ed sltuatlon, the GLDAPequ,ttrons 
glve rnformatlon on the shapes of the x d~s t r rbu t~on  as 
cl~n~on\t~,~tcd In ~ h r \  p.~pct The cIc.~~cr tcqtlng o f  0111 rcwlls of 

c\olut~ori rsa~lu~~lly t l i cc~~ (25) \\111c11 I \  llee Ilom ~heddd~t~on,ll 
assumption [eq (1 5 ) ]  But non singlet data 1s not suff~c~ently 
,~va~l.~ble In low-x to test our result It IS observed In general that 
tlic rr\~lll\ of ~ . I I  t~cul,lr \olut~o~i\ ot GL DAP evolution equ.lllons 



Partrcrrlar to l~~t ro r r s  of CLDAP e~olrctror~ eqrmtror~r etc  375 

have lmproved over t h m e  of  our  e,,rl~er solutions, eqpccrally In 

t - evo lu t~on  calculations O f  course,  t h ~ s  1s a l e ~ d ~ ~ i g  ordcr  

calculat~on Its natural Improvement w ~ l l  be  the calcul.1tlon 

c o n s ~ d e r ~ n g  next to leading order terms and o u r  prellmrndry work 

[ I S ]  shows some Ilnprovcrncnt In till\ rcg.trd 
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Particular solution of IIGLAP evolution equation in next-to-leading order and 
structure functions at low-x 

R Rajkhowa and J K Sarma* 

I>rparl~ncnl of t'hy?~c?. Tc7pur Ilntverstty, Nnpnnm. Tc7pur-784 028. At~am, lnha 

Abrtract We present pnrt~cular solultons of s~nglct and non r~nglcl Doksh1l7cr-Grlhov L~palov Altnrcll~ Pnr~qr (DGLAP) cvolut~on cqllaaons 
In next to leatl~ng ordcr (N1.O) at low r Wc ohtn~n r cvolut~n~t~ or dculcrm, prtnlm nclllroa and d~ITcnncc end rnllo of pr17ton JIIJ ncutrlm \tructlire 
It~ncltons a l  low x from IXiLAI' ~vohr11o11 cqtl.tttons Ihe rcsullc of r cvolut~o~~r nre co~np.~rcd w~lh IIBKA and NMC low r dnd 10\\ C)' d.tta and ~ ~ l h  
those of lead~ng ordcr (LO) soluc~ons of VGLAP evolul~on equallons We also compare our result of r-evolut~on of proton structure runclton W I I ~  a 

recent global paramcterlrntlon 

Keyword? I'.trt~~ulnr sttlut~~)n. LI)III~I~IC TUIUIIIIII, htIdrct\l I'.I~I\I ~'~~11.111011. slrutturc IUIICIIO~. IOW 1 ~II)FIC\ 

PACS Nos. 12 18 Dx. 12 39 x. 13 GOlIb 

1. Introduction 

In arecent paper [I 1, p~rttcular solut~on o l  the Dokshlt7xr-Ortbov- 

Llpatov-Altarellt-Parts1 (DGIAP) evolutton cquatlons 12-51 lor t 

and x-evoluttons ot stnglet and non stnglet structure functions I 

In leadtng order at low-x have been reported The same technique ~ r - ~ ) ~ ~ ( . r , ~ ) J j ( , t ~ ) ~ ~ l t  
can be applted to the DGLAP evolutton equattons tn next-to- o 

leadtng order (NLO) for srnglet and non-singlet structure 
I 

functtons to obtatn t-evoluttons o f  deuteron, proton, neutron. 

d~fference and ratto of  proton and neutron structure functions 
r I 

These NLO result5 are compared wtth the HERA H1 16) and 

NMC [7] low-x, low Q'data and wtth those o f  partrcular solutton 

. In LO and we also compare our reeulte o f  t-evolut~on o f  proton 

etructure funct~ons wtth recent global p:iramclcrtzatton 181 

2. Theory and 

Though the neceswry theory has been dtccursed clscwlicre 

[9j, here we mentton somecssent~al steps forclartty '111~ W L A P  d l  
evolutton equattoris wtth splttt~ng funct~ons 110, 11) for stnglet 

and non-stnglet structure funcltons tn NLO are In the standard 

forms [I21 



where 

306 - 3811~ 
and BI = 9 

J 

N, being the number o f  flavour5 

111+1 , - 2!!, rlz 1-2 
3 7 (11)) t ( ti ) nil+,t J y I n r .  

whcre y l l ( n ) = ~ ~ 2 + ( l - n ) ' ,  C,=C, ,  = N ,  = 3 .  

I C, = (N: - I ) ~ N ,  lllld i R =  112 
Here, f ( w )  = c:[PF(I~)- P,(IC)] + - c~c,[P,,(I(.)+ c,(~v)]  

2 Let us rntroducc thc v,~rl.ll~le rr = I I I  ilitl note that 1 17) 

+CFTRN, PN, (H 1 

and 

F;(H)=~C~T~N~F~,(IO The above \el lcs 1s Lonvergent tol 1111 < 1 Since r < 11 < I. so 

0 < rr < 1 - Y and hence the convergence crrterlon 19 satlsf~ed 
and F;(W) = c~T~N,F,',(II)+c,T~N,~~~(I~) 

Now usrng T,rylorexp~nvron method wecnn rewrrte G(,~/II , I )  

The explrc~r forms of hlghcr order Lernels .Ire 10. 1 I I 'I \ 

I 
- - ( 1 + n ) l n 2 n  - 5 ( l - t i )  

2 
A I 

u I ~ ~ c l l c o v c r \  Ilic who l c~ .~ngco l  rr O <  rr < I-\ \~ncc  ~\ \ ln. i l l  
In our regon ofd~ccu\;~on, the {elms cont.~lnlngx' and h~gher 

4 0 pouers of x c.ln be neglected In the first .tpproxlmaflon ac 
+ 2 ( l + ~ ) l n t v + - -  (I-n) 

3 d~scussed ~n our earlier works [I, 14 161, F,'(r/n ,I) ran be 

approxlmated for small x as 

- I dr:(r,t) F:(~/IV. r) zf:(x. I)+ I ~ I ,  
A ,  d 

(3) 

2(1 + 2) ~I"+H) 

PA (w) = ------ I $ln-!$+2(l+n)ln11 +4(1-lr), Snn~ l~~ r l y ,  G(\/II 1 )  and f;'( t/,v r) can be approx~rnated for 
If H / ( ~ + H )  

s111.1Il x .I\ 

-(I + u ) l n 2  ,v. - I ar:(\,l) 
and /;N'(,t/w.~)z&N'(\ ~ ) + Y ~ I I  -- 

F ~ ~ ( w ) = ~ - ~ w - ( I - ~ I ~ ) I ~  I( - ( I -2w) ln2 11 +41n( I -W)  
(5) 

A I a r  

Us~ngeq\ (7) and (4) 111 cq ( I )  ,uld ~ x r l o ~ m l n g  rr Intcgr,lt~on\, 
+ [ 21n2 ( ' ~ ) - ~ I ~ ( ~ ) - ~ x ' + I o ] P , ~ ~ ~ )  - we get 

and 
at 

182 14 40 (1:6 y )  
h;(w)=--+--MI+-+ -cv-- In,c-4ln(l-1v) 

9 9 9w -[(~;~A2~r,+(~;),'02~.,]ti~..~) 



Pnrtrc~tlnt rolrrtrort of DGLAP el olrr~rorr eq~tntror~ rrl rrext-10-lendrrrg order elc 

where 

a h ( \ )  
I r ( \ ) = A I ( ~ )  t h ( \ )AJ( \ )+ / l J ( \ ) - .  

( I \  

where L,(4)= A,(\)+ K(\)A,(\) .  

2 M ~ ( x ) =  B ~ ( A ) + K ( \ )  Bd(r) 
A, ( \ )=- {3+41n( l -  u)+( \ - l ) (x+3)) ,  

3 For a possrble solutron, we assume [9, 121 

I whcre To 1s a nume~rcal p~rrarnctcr to be obt.r~ncd troni the 
u + 2 r 2 )  , partrcular Q2-range under study By a su~table cho~ce o f  To we 

can reduce the error to a mrnrmum Now, eq (8) can be recast as 

where 

, Secondly. usrng eqs (5) and (9) In eq (2) and perform~ng 
r ) (5 -4x+2x2)  it-lntegratron, we have 

and 

Let us assume for s ~ r n p l ~ ~ ~ t y  114 161 

where K(r) rs a funct~c~n o f  \ I n  t h ~ \  conncctlon, earlrer we 

consrdered [I] K(x) = i. (rr". ce-"' , wherc k, n I), c, r l  .Ire 

constants Agreement of the results wrth experrmental data IS 

found to beexcellent fork = 4 5, n = 4 5 ,  b = 0 O l ,  c=  5, d =  1 for 
low-x rn leadrng order But correct form o f  K(x) can actually be 
obtarned only by solvrng coupled DGI,AP evolutrcm cquntlons 
for srnglet and gluon structure functrons, and wor ks are gorng 
on In th~s repdrd Therefore, eq (6) bccomes 
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The general solutions ( 17, 181 of eq (10) I\ I' (U V ) = 0 uhlcli I\ tne~ely $1 p.l~t~cul,ir \olutton (11 the gener.\l \o lu t~<i~\  

where F 15 an arbrtrary functlon dnd I J ( ~ ,  I. G) = CI "fld No~v.dellnlng 

~ ( x ,  1. f;) = C2, u hcrc C, .rnd Cz .Ire corlst.lrlt . ~ r r t l  tllcy lo1111 .I 

solut~on o f  equatlonc I 
'I2) at I = lo, wherc 1,) = l n ( ~ 3 l A ' )  .I! .Ink l o \ \ c ~  value Q = Qo \be 

gct lrom eq ( I 5)  Weobserved that the Lagrange 9 auxlllary system oford~nnry 
dtfferenttal equatrons [17, 181 occurring tn the formal~srn, can 
not be solved wtthout the add~tlonal assumption of Ilnearlzatlon 
(eq (9)) and ~ntroductton of an ad hoc parameter To T h ~ s  

@ ( v  I) = c( l , i l ) [ f$j  exp[2(r -~) ] ,  (16) 

parameter does not affect the results o f  1-evolutron o f  ctructurc 
fun~tlons Solvlng eq (12), we obtarn i \ l l ~ l t l  CIVL\ tllc t c v o l ~ ~ t ~ o t ~  01 t l~c  \111gIet \IIIIL~LIIC I t~r ict~on 

and V ( X . ~ , F . ~ ~ )  = ~ ; ( ~ , r ) e x p [ ~ ~ (  t)], 

where 

L l ( ~ ) + T , ~ ~ l ( ~ )  (/v and M,(x)=j----- 
[,(XI+ TOM2( 1) 

I > ( \  I )  1riN1 0 

Procecdlng exactly rn the same w,~y and dehnrng 

wc gel lor non s~nglct \ttuLtutc lunctton III N I  0 
If  Uand Vare two lndcpendent solutton5 ol cq ( 12) ,lnd rf a 

and /3 are arb~trary conctantc, then V = all t /1 may bc t'lkcn 
as a complete solution o f  eq (12) Thcn the complcte sololron l 2  N\ (&l)=fi:'(\ I")[-) c x p [ i / ~ [ ~ - ~ ) ] .  (17) 
117.181 

1s a two-parameter fam~ly of planes The one p'trameter tamrly In  an cnrl~crcornrnun~~at~on 111, we wggested that for lo&-x 

determined by taklng /? = a2 has equntlon r n ~ O / j = a '  

Dlfferent~atlng eq (14) wtth re\pcct to a, we obt.t~n .~nd 

Puttlng the value of a agnln In eq (14). we ohtarn cnvclope We ob5ervc that ~f h tends to 7cro [lien eqs (16) and (17) 
tend to eqs (18) and (19) rcapcctr\ely r c , solutlc~li 01 N I -0  

F~(x.t)exP[MS(x)] = - - ~ [ I ( W ~ ' ~ ) C ~ ~ ( ~ +  y)] equations goer to tlut ot LO cc~udttot~\ l ' l i ~ \~~ , t I I ) .  h tend\ to 
4 

7ero means that the number of I1.1vours 1s hrgh 

Therefore. Agatn dcflnrng. 



we obtaln from eq (1 5) 

whlch gtves the x-evolutton ol slnglct stluclrlte lunct~oli I;'( ,,I) 

In h T 0  

we get 

whtch glves the x evolution o l  non-s~nglet sttuctute lunct~on 

F;'(X.O ~n NLO 

In anearl~er cornrnuntc~t~c~n I I I, we suggested that lor low-x 

tn LO for = a2 

and 

where 

A,-4/({7 2 N / ) ,  /'(I) 71~1111(l ,) ( I  , ) ( i l l ) .  

~ n d  M ( t ) = Q ( t )  t K ( i ) I ) ( \ ) ,  

where agatn, 

C ( r ) = 1 / 2 N I ( I -  t ) ( 2 - x + 2 x 2 )  

and ~ ( \ ) = ~ , ~ [ - 1 1 2 ( 1 -  t ) ( 5 - 4 ~ + 2 , ' ) + ( 3 / 2 ) l n ( l l r ) ]  

Of course, unllke for the I-evolut~on equ,it~ons. \\e could 
not have for the x-evolut~on eqitatlons In LO as some Itm~ttng 
case of NLO equattons 

Dcute~on. ploton ;~nd neutron structure lu~ict~ons mc.i\urcd 
111 clccp ~ t~c l : i \ t~c  c lcct~o- l>roc l t~~t~o~i .  t .I~I lic \\ t 1tti.11 111 tc111i\ 01 
FIII~ICI ;iri(I n~ti-\tngIct qudtlr d ~ \ t t ~ h u t ~ o n  lunctton\ I 101 .I\ 

Now ustng eqs (16) and (20) In eq (24). \\e \v111 get I .ind 

x-evolution o f  deuteron structure tunct~on F;'( r.1) at IOW-r In 

NLO as 

where the ~nput  functions are 

5 5 5 
I ; ; ' ( ~ , l o ) = - - ~ ~ ( ~ . l ~ )  9 and 1;2"(.to,t)=- 9 F2 (to,!) 

7 he coneslw)ndtng rc\ult\ lor ~~. i t t~c i t l .~ t  solutton\ of I)<iI.AP 
evolut~on equntlons III LO lor = a' oht:ilned c.irl~cr ( I I are 

and 

S~t~ i~ lar ly .  ltblngcqq (16) and (17) tn cqs (25) .  (26) and (27). 
wc get the t - evolut~ons of proton, ncutlon. ;ilid dtlfcrc~itc .111d 
ratlo o f  proton and neutron structure filnctlons at low-r In NLO 
a S 



and 

where R(r) rs a constant for f~xed r The Input function\ .Ire 

The correspondtng results for partrcular solutrons of DGL AI' 

evolution equattong rn LO lor p = a' arc 

Ff(x.0 - F:(x,I~) - 
and 

F F;(x.t0) 
R(A ) 

where R(x) 1s a constant for I~xed-x 

I t  1s observed that the ratlo of proton ,ind neutron I\ same 
for both NLO and LO and rt rs Independent of r for f~xed r 

For the complete solutron o f  eq (10). we take /I = a' In cq 

(13) Ifwetake = a rneq (13)anddlfferentl~te wlth respc~tto 

a as before, we get 

from whlch we can not determrne the value o f  a 

But takrng 0 =a' In eq (1 3) and d l l k ~ e n t ~ ~ ~ t ~ n g  w ~ t h  ~ c \ p c ~ I  

t o a ,  ueget 

whlch 17 tmdgln.lry Puttrng th~s vdlue o l  cr In eq (13), we get 
ultimately 

b N (I) 
XcXP[(;+, ) Y 2 - M , ( , ) ]  

Now. defrnlng 

we get 

Pro~eeding exactly In  the yame we get for non-s~nglet 
\tructure fitnctlon a lw  

1' [ ( I  

I 

)] ex17 -11 
2 I I,, 

1 hen uslng eq\ (24). (25) (26) .~nd (27) we get r -  evolutlonr 
o f  deuteron, proton, neutron and d~llerence o f  proton and 
ncl~tron structure function\ 

I'rocecd~ng III the wlnc M,I~. \\e gct e\olutrcrn\ot tlcr~le~on 

ztruclure funclron 

But the r-evolutrons ot plotnn and neutron structure 
functtnn? l ~ h e  thozr o f  dculerori \ttuclule tr~ncrlon c.rn not bc 
obta~ned by thrg methodology as d~\cu\\ed earller 



Proceeding exactly rn the \ m e  way, we cdn \how that ~f we 

take = a4, we get 

and 

Slmllarly, ~f we take /j = a5, wegct 

x e x p  - h  --- [ I :)I 

Thus we observe that ~f we take 0 = a In eq (17). we cdn 
not obtaln the value of  a and a150 the required solutlon But if 

we take f l =  a2 ,  a', a4,  a' and so  on, we  see that the 

powers of r Y r t l / f ~ / ' ~ ~ * l  and coefficrent of b(l/t - I/!,,) of  the 
exponentla1 part In t-evolut~ons of deuteron, proton and neutron 
structure functlont are 2 ,3 /2 ,4 /7 ,5 /4  and g o  on  respectlvely, 
a s  d~scu\sed above S ~ m ~ l a ~ l y .  for x c v o l u t ~ o ~ i s  ol deutcron 
structure functlons we see that the numerators of tlie first term 
lns~de the ~ntegral slgn are 2,3/2,4/3,5/4 and so  on respectlvely, 
for the tame values of a  Thus we \ee that ~t In tlie relat~on 
p = a". y VCII let bctwccn 2 .~nd .I m~lxlmum v,~luc, tllc ~)owcls  of  

t* / rc l / ,~ l r~ t l  and coefficient of b(l/r - Ilt,) of the exponent~al  
part In I- evolut~on varles between 2 and I ,  and the numerator of 
the first term In the Integral sign In x-evolut~on varles between 2 
and I Then 11 1s understood that the solut~ons of eqs (10) and 
( 1  I )  obtalned by thls methodology are not unlque and so  the 
t-evolutron~ of deuteron, proton, neutron and d~ffe rence  of  
proton and neutron structure func t~ons ,  and r-evolut~on o t  
deuteron qtructure functlon obtnlncd by t h ~ ?  methodology are 

also not unlque They become eqs (28). (29). (32). (33), (34) tor 
y = 2. but they reduce to equations 

for a maxlnium value of v 

Thus by t h ~ s  methodology, Instead o f  havlng a slngle 
tolutlon. we arrrve 31 a band of solutions. of  courte the range 
f o ~  tlicw \olutlons 15 1 c , ~ \ o ~ i ~ ~ h l )  11.11 1 0 ~  

3. Results a n d  discussion 

In the prescnt p,\pcr, we c c ) l ~ i p , ~ ~ c  0111 rc\ult\ ol !-c~olullo~i  of 
deuteron, proton, neutron J I I ~  d ~ l l ~ ~ e n c c  atid ratlo 01 proton 
and neutron structure functlons w ~ t h  the HERA 161 and NMC 
171 low-rand l o w - ~ ' d , ~ t a  In caseof HEKA data 16). proton and 
ncutron \tcucture l u ~ i c t ~ o ~ i s  ,lie mc.~\urcd In the raripe o t  
2 < Q' 1 5 0  GcV2 Morcovc~.  hcrc 5 3(K) hleV. I\ here t', 1s 
the transverse momentum of tlie fln.11 state baryon In case of 
NMC data,  protoll and  d c u t c ~ o ~ i  s t lucture l u n c t ~ o n s  .\re 
measured In the range of  0 75 < Q, 5 27 GcV2 \Ve cons~dcr  
number of flavours N, = 4 We a l to  comp.tre our results of  
t evolution of proton structure functront w ~ t h  recent global 
pnrameter~zatlon [8] 1111s par,1riieteriz,it1on l~icludes datd from 
111-96\99,ZEUS-96197(XO 98). NMC, E665 d d t ~  

In F ~ g u r e s  l(a-d), we present our results of I-evolut~ons of 
deute~on,  protog, neutron . ~ n d  d~lference of proton ,~nd  ncutro~i 
s t r u c t u r e  f u n c t ~ o n s  ( s o l ~ d  I ~ n e s )  respec t lve ly ,  to r  t h e  
representatwe values of r glven In the flgures for u = 2 (upper 
solid 1111~s) .~~wl v =  m.lrlliium (lower \oltd Ilncs) 111 0 = n ' n.l.~t~oti 

Data pwnts at lowest Q' value\ In tlic ttgurcs are t , ~ h e ~ i  .I< 111put 
to test theevolutron equatlon Agreement w ~ t h  the data 17.61 is 
found to be good In the came figurer, \be also plot the results of 
I e v o l u t ~ o ~ ~ \  of  d c ~ ~ t c ~ o ~ i ,  proton. Ilrutlon anti t l t l l c ~ c ~ i c c  (if 
proton and neutron \tructure lunctlon\ (d'1s11ed IIIIC\) lor the 
particular solut~ons In leadlng order Here, the upper dashed 
l ~ n e s  are for v = 2 and lower dashed Ilnes, for = maxlmum In 

= a' relCttlon We obsert c t h ~ t  f-cvol~rt~ons ,Ire sl~ghtl) steeper 
In LO calculations thdn t h o x  of NLO But d~flerences In results 
for proton and neutron structure function\ are s m ~ t l e r  and NLO 
tesults for y = 2 are In better ngreenielit 1111 evperlmerital data. 
In general 



In F lgu re  2. \ re  comp,tre o u r  re\ul!s of i e \ o l u u o n \  o l  I l t o t c~n  111 1 t g ~ ~ e  3. t t e  l ~ t c ~ t l t  o t t ~  tc\tt11\ (11 t c \ o l t ~ t ~ o t i ~  (11 t.1110 (11 

s t r u c t u r e  f u n c t ~ o n s  FZP ( s o l ~ d  I t nes )  w t t h  r e c e n t  g l o b ~ l  p ro ton   rid neut ron s t ~ u c t u ~ c  t u n ~ t ~ o r i s  F Z I ) / / ; I  ( s o l ~ d  l ines)  

parameter lzatton (81 (long dashed l lnes) f o r  the reprcsenlal lvc fot the re1,resent'ltlvc v ~ l u c s  o f  I g l ven  I n  thc  l i gu tes  1 I iougI i  

, t ~ c o r d l n g  t o  o u r  theory, the r.ttlo shou ld  b e  ~ndc l ) cndcn t  ( 

4 
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04 -- ~ = ~ m o m  z.05 rcprcsenlittvc value? o f  r glvcn III llic f ~gu r i \  I11h p(1111tc .I[ Io\\ccl C)' 
v,~litcs In the figctrcs are talcn as ~nput In IIIL r i ~ n ~  ligurc \\c .I\\o plot lhc a 1.0 GW33, z=07 
rcs~~l ls  of I c \ c ~ l ~ ~ l ~ ( i n c  o f  prOlon \lrtlclllrc f l~ t~ t t lon \  I I r  (clichtcl 111110 for 

0 0 *, :z0m3.z-003 111, p~r11c111.u so11111o11q 111 IC.ICIIII~ or(1cr I or ioII\cnItIIcc \.IIIIL of  t.1~11 
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dntd pc1t111 1s ~ncre,~\cd hy adding 0 51 wllerc I = 0 I 2 3 arc ~IIL 

20 30 40 nun~hcrlngs of curvLr cou~ttlng frwn ~IIL 0otIc11i1 o f  the Iowcrlnosl cur\' 
~ ' ( ~ e v ' )  o'(G~v') as Ilic 0 Ih orde~ 
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F ~ g u r e  l(a-d) Results o f  1 evolut~ors o f  deuleron prolon neullon and 
d~fference of proton and neutron structure fu~ict~onc (soltd I~neq) for the 
reprcsenlatlve \dues o f  r In next to leading order for NMC and I i F l tA  
dam For convcnlence value of each data polnt 19 tncr~arcd hy addllig 0 21 
(a c) and 0 41 (d) where I = 0. 1 2 3 ?rc llie n u l n h ~ r l ~ ~ g %  of Lttrvcc 6 

countlng from the boltom of Ihc Inwcrrt~o\l LlrrvL .IF lllc O Ih ( I I ~ L ~  111 
the same figures we also plot the rkcultc n f  1 LV~IUIIOII\ o f  i Icu Icro~~ 
proton nculron and dtlfcrence of prolon and nculron ctrllctun r~lntttons 
(dashed Ilncc) for the part~rular colutlonr In I r n d l n ~  t~rclcr I)I~I II~IIII~~ at 
lowc\c Q2 values In the figure? arc tdkcn r\ III~II~ 

i- 4 
u" 

values of r gtven tn  the figures f o r  \ I =  2 (upper \ o l l d  I lncs) and 

a t  lowest-Q2 vdlues r n  t he  l ~ g u r e s  arc t'tkcn '1s Input  t o  ~ c s t  111e 
2 

e v o l u t ~ o n  equatton In the  same figure, we a l w  plot t he  results 

of t - evo lu t~ons  of p ro ton  structure funct tons I;!' (dashed Itnec) 

for the part tcular soluttonq ~n l ead lng  o rde r  %ere, the upper  

dashed ltnes are  for y = 2 and the l o w e r  dashed ltnes Jre  for 
y = rnaxlrnurn t n P  = a' re la t~on  W e  observe that the t -evo lu t~ons 

are  slightly steeper In LO ca lcu la t long t han  t h o ~ e  o f  NI,O 1~1gnre 3 Rcsults o f  1 c\o lu t~nns or  t l r i  r l t w  o f  ploton and nctttron 

A~~~~~~~~ with the NLO found to be better thJn ,,,!th SI~UCIU~C ~ I I ~ ~ L ~ I O ~ ~ S  //'//;I (COIICI IIIICF) 101 1111 t~llrtstl lt. l l l \c I~IIICL o f  1 

the  LO results 
glvcn III Ihc fig~lrcc t).~la polnfr . ~ t  loucst Q' v ~ l u ~ s  In lhc f~gurcs ere 
taken as 11iput 



due to the I,lck of sttlltclcnc ,Ilncmnt o l  cl1t.t ,tnd tluc to I,lrgc 
error bars .I clcdr rtlt conclu\ion c In not hc c11.1wn 

I n  Flgure 4, we plot ~ (1 ) '  .lntl 1,,7(1) \\ h ~ r e  7 (I) = tr, (1)/2n 

ag,llnst Q' In the Q' r'tngeof 0 5 5 Q'< IOOO CleV\is tcqui~cd by 

the datd used by us Tli(itrgh the cxp l~c l t  v.tluc of TO 19 not 
necessar) tn c,tlculallng 1 e \o lu t~on yet wc observe th'tt Tot 
7, = 0 027 errors become mtn~nium In the Q'rdnge of 0 5 5 Q' 5 

~OOOC~V '  

0 2W 400 6W 800 1000 

Q' (GeV7) 

trgure 4 ~ ( r ) ?  ind I,l(O whcrc I(r)-rx,(0/2n I~IIIISI QZ In the Q' 
range of 0 5 < Q2 5 IOOO GeV2 

Though we compdrc our results for v =  2 dnd y = mavtmunl In 

p=a '  relatton w l th  d'tta, ,~gteentent o f  the result wtth 

expenmental data 1s found to be excellent wlth J = 2 for 1 evolutlon 
tn next to leadtng ordcr 

Wecan n l ~ o c a l c u l ~ ~ t e  r evolutlon o t  non slnglct and s~ttglet 
structure functlon dt IOW r f lom cqs (22) .lnd (23) But it tnvolves 

compl~cdlcd ~ntcpt.tl\ .I\ eqs (22) .1nt1(21) ~nvo lvc  L'(I), 
Ml(x), and M,(I) whtth are dg,ltn functionsol AI( \ )  A2(r )  A,(4), 
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Particular solution of DGI,AP evolution equation in next-to leading order and 
x-cli.itri1)ution.i of clcutcro~i structure fi~nctioris at low-.u 

Abclract We prercnt pir11~1113r rolut~one of \ tne lc l  ontl no11 clnglct Dokelt1t7er C~r~hov Ltpalov Allarellt Parts1 (DGLAP) evolul~un ctqualtons 
In ncxl lo lcidlng ordcr (NLO) a1 low 1 We ohlam r evnlutlonr of deulcron rtroclure funcllonc a1 low x from DGLAP evolul~on cquarlons The rcsulls 
of r cvolut~ons are colnpircd w11l1 NMC 10% r and low (2' dn11 and with rhocc of lcid~ng ordcr (LO) solut~ons of DGLAP cvolul~on cquallons 

I'ACS Noc 21 7 0  Y ?I 45 +v 

1. Introduction 

The Doksh~tzer-Gr~bov-LI~~IIOV-Alt,~rellr l ' . ~ r ~ s ~  (L)Gl,AP) 
evolutron equatlons [ I -41 ale fundamental tools to study the 

I(= I~(Q'/A')) and r e\olutrons o f  structure funct~ons, where 

x and Q' are Bjorken vdrlahle .~nd four niomcnt,l tr.~n\lcr 
respectively I n  a deep ~ n c l . ~ \ t ~ c  scntter~ng (11IS) process 15 I .lnd 

A IS the QCD cut ofl pararncter On  the otller Iund. thc study ol' 
structure functlons '11 Ion  \ tiCls hcconie toplc,ll In vlew 101 of 

h ~ g h  cncrgy colllder and supcr collltlcr exl,c~~~ncnts 171 Solullon\ 
o f  DGLAP evolutlon equdtrons glve qu.11 k .lnd glrlon \tructulc 
funct~ons \rhrch u l t~matc ly  producc, proton, neutron and 
deuteron structure functlons Thosc \tluctrlrc flrnctlon\ .IIC 

Important Inputs In mdny h ~ g h  energy plcIce\\c\ Motcover thc 
determ~natlon o f  llietr I and 1 evolut~cln\ I\ .I tcst for QCD the 
under l )~ng dvn.lrnrc\ 01 qudrks ,~nd gluons ~ n v d c  h,ld~on\ 
Though ~ o m e  nurnc~ rc.11 solutrorrs ,Ire .~\.~~l,r ldc 11) the l ~ f c ~  IIIIIC 

[8,9], theexplorat~ons o l  the poss~brllty of oht.11n11ig ,~n~~lytlc,l l  
solut~ons o f  DGLAP evolutcon equatrons are always lnterestlng 
I n  this connection p a r t ~ c u l ~ ~ r  solution\ o f  DG1,AP evolntlon 
equatlons rlt IOW r In lending ordcr (1 0 )  have r ~ l r ~ . ~ d y  hcen 
obtalned by applylng I;lylorexp.lnslon method (101 and t ,lnd r 
evolutlonc [ I  1 151 o f  structure fnnctlons for ~ntcrmcdrate dnd 
low-r  hnve been prc\ented Ilere. the p,~rtrc~~l .~t  solution\ have 

been obta~ned e~ther by a h e a r  conib~natlon ot  U and V o f  the 
gener,~l solut~onf(U, V )  = 0 [I 1- 131 or from tlie complete solutron 
114. 15) of theequatlon We also haveobtalned part~cular solution 
of DGLAP evolutlon equatlon from the complete solutron In  
next to-lending order (NLO) for non-s~nglet and stnplet structi~re 

fr~nct~onc ( 15. 161 alld comp,lred our results \ \ ~ t l i  I lCRA ill [ 171 
and N M C  I I SI d'1t.1 

Thc present p.lper reports part~cul,lr solutions o f  DGLAP 
cvolutron cclu'tllons coniputcd Irorii complete solutions In N L O  
nl low I ,~nd ca lc~ l la t~on o f f  and r - e v ~ ~ l u t ~ o n s  for srnglet and 
non-51nglct structure functlons, and hence I - e ~ o l u t ~ o n s  o f  
dei~tcron strrlclurc lunctrons I n  some rnst.ln~c \ \e r.111 tle,ll 
14 1111 11~1 ~I~III.II so11111on\ I~IOICLOII\CIIICI~I~\ t l i ~ ~ i  1111 IIIC gcricr.11 
solutions 1191 I n  calcul.~trng structure filnctlons Inplct d.~t,~ 
polnts ha\e heen tdlen frorii evper~mentnl data d~rect ly unllhe 
~ l i c  r1sr1.11 p1.1c111c o t  LI\III~ ,111 1rip111 C~ IS~ I I~U I IO I~  luncl lon 
rntroduccd by 11.1nd 1 hc\c N1,O ~e\u l ts  .Ire conip.lrcd \\ 1111 tlie 
N M C  low-r, low-Q'data and w ~ t h  those o f  pnrtlcular solutlon I n  
L O  Ilere, Sectlon 1.  Sectron 2. nnd Sectton 7 present the 
~ntrotluct~on, therelev.lnt theory and the results ,111d ~ISLII\FIO~. 

~ecpccl~vely 

2. Theory 

I Iiotrgli the h.~\lc thcory h.~\ hccn tl~\cu\scd cl\cwticrc 115. 
Cnrrc%pondlng A111hor 
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161, here we have ment~oncd \omc c\\cnt~al \tcps lor ~ I J I I I ~  I 
The DGLAP evolutton equattons w~th  \p l~r t~ng Irtniflons 120.  --(I + l l ~ ) l t 1 2  11*-S(I - 111). 

2  
211 for singlet and non-s~nglet structure luncttclr~\ 111 NI 0 .Ire In 
the standard form5 (221 

- and 

3 0 6 -  7 E N ,  33 - 2 N ,  and /I, = --- 
whc~c I' ( 1 1  ) = 11 ' +(I - 11 )'. C I = C(, = Nc = 3. 

where Do = - . N, hc~ng  the ' I  I 

3 3 
number of flavours = (N(' - 1 )  / 2 N f  ~nc l  I , ,  = I/? 

F;(IV) = 2CFTRNfI;,,(~t*) The serlcs (7) 1s convergent lot 1111 < I S ~ n c e  I < ) I>< 1 .  so 0 
< ri < 1 - \ ,~nd Ilcncc rhc ctrn\eigcnce crlrcrlon I \  \ .~l~\licil 

and F ; ' , ( ~ ) = c ~ T ~ N , T ; ~ , , ( \ \ ) + C , , I ~ N , ~ , ? , ( I I )  No\v. uclng Illylor eup,~n\~on ~netlrcltl ( IOI, we c,~n I C \ \ I I I C  

fi;( \/llf, t )  .I\ 
The expltc~t forms of hrgher order hc~ncls .~rc  120-2 1 I 

/ - \  



In our reglon ol tll\cu\\lon thc I C I I I I \  cont.Ilnlng \' ,~ntl I11ghcr 
powers of r c,tn he ncgle~tcd , I \  our Ittst .~pl>rour~n.ltlc~r~ . l i  8 I 
dtscu\sed ~n our enrller wotks 1 11 12, 14-161 f;(r/lr. I )  cnA 

+ - \ I ) + - \ ( 2 +  9 2 \ ) l n 2 \ t 5 \ - - ~  2 t- 27 I -- 54 

be dpprovlrnnted for srnclll r 4s 

4 )  ( 
1 ; -  8 14) 

S~rntldrly, G ( \ / N  , I )  .lnd 1 ~ ~ ' ( 1 / 1 1  , I ,  C'II~~)C.II)PI~XI~I,I~C[I -I 31 - I \ :  i - \' 111- I +  t '  -- \ -  + -  \ -- l l l ( l -  I )  
1 3 9 

for small-r as 

" ( ~ G ( \ I )  
G ( ~ / I I , I ) ~ G ( T I ) + ~ ~ , ~  -- - 

d \ (6) 
A - I  

11 tntcgratlon\, \ \c gct 

) 
( I 4  8 I4 - 32 I )  

+ + I  n t - - - - I - -  I r l ( l -  t )  
0 9 3  3 9 

3 r 

177 1 ( i n 2 ) \  l ( ~ A ' - ) \ ( - f  r ' ) t l ]  

[ a c ( , )  + [ a , ( / ) ) '  ] c ~ r ; ( t  1 )  - -  - h" ( \ )  - 
2 n ?IT (I\ 3 

+ - N , ~ ? ( H  ' +  ( I J I I ) ' ) [ - I ~  I I I ( I + I ~ ) - I I I  I, In([ + I \ )  
1 

where 

2 
A , ( \ ) = - { 3 + 4 1 n ( l - 1 )  t ( 1 - l ) ( r t 7 ) } ,  

3 



1x1 u\ asrurne tor slmpllc~ty I I I - 1.1) 

G ( r  / )=  K ( r )  c5( ,  1). 

uhere K(r)  n iunct~on o i  t No\\ ccl (8)  hccc~nc s 
I I I ~  11,~11- J,~,I,.~II I , i , ( I I ) (~I  

V ( , .  t. f:) = CZ WIICIC Cl .lnd C? are conet'~nts .lnd they form 

2 n (")) ,I solullon o f  equ,~t~on\ 

where 

rlK( t ) 
l < l ( v ) = A l ( l ) t  K ( t ) A 2 ( r ) i  A.,(l)- 

0 1  

~ ( r ) = A , ~ r ) + K ( r t A , ( O  

and M z ( r ) = U , ( \ ) + K ( t ) B 4 ( ~ )  

For a posslhle solution. uc  .ts\ume ( 15.221 th.11 

We ohscr\ctl t11.1l the I .IgI,IIlge 5 .I~IYI~I,II y stenl o l  o~tl~n,lry 

dl l le~ent l .~ l  equdtlon\ 1 10 191 o~curred In thc forrnnl~cm cdn not 
he solved w~thout the .~dt l~l lon.~l  .r\eilmptlcln of I ~ n e . l ~ ~ z . ~ t l ~ n  
(eq (I 1)) ,111tl II~IIO~IILIIOII 01 .in or1 11o( ~iC1~.lmetcr IN, \\'IIIL~I 
tlt!c\ 1101 .IIILLI IIIC IC\UII\ 111 I e\olutlol) of ~II~ILI\II~ IUI~LIIOI~\ 

Solvlngcq ( 14). we obt<11n 

where TO 15 3 numer l~d l  p.1rC\lnetcl 10 Ilc oht,~~l\cd 110111 ~IIC 
particular ~ ' - r a n ~ e  under stud\ R v  ,I su~t,~hle cholcc o f  TI, we 

can reduce the error toa mlnlnlum Now cq (10) c.111 he ICL,I\I ,I\ 

ff ( 1 )  
where ~ ~ ( r , r ) = ~ [ & ( r ) + ? ~ , i ~ l ~ ( \ ) ]  

2n 

a,(!) 
and Q ~ ( Y .  1 )  =-[lAl(l)+ I,)AfIf \ )I  

2n 

Secondly uclngeq\ (71 (7) .lnd ( I I ) In eel (2)  .III~ 1x1 1 0 1  mlng 

u-~ntegrat~on, we habe 

a ( I )  
and ~ h ~ ( ~ ~ O = - [ ~ , ( ~ ) + 7 , j f l ( , O ) ]  

2 n 

~ndel~cndcnt \olutlons (11 eq ( 14) and ~f a and ,Ire ,~rh~t r .~r \  

coll\l'lllts, Illell I/ - all I [I lll.l\ 1)~. t.1ke11 .I\ ,I coll l~l lele s0l1111011 
o f  eq (14) We t.lhe thl? lorm ,I\ th~e  IS the \lmple\t l o ~ m  ot ,I 
complete solution which cont.ilnc both the '~ rb~t rn lv  const'\nt\ 

11 ,\IICI I 11 l ~ c r  1 I I, 121 \ \C 'L~~I I \ IL~CICL~ ,111 c~~\I. I~I~)II  

A ( /  t H \ / -  0 \ ~ h c ~ c  I\ 'tntl I? ,uc ,II~I~I.II\ ccl11\t~111\ Hut 111.11 I\ 
not .I ~omp lc t c  \olutlon 11.11 t r ~ g  h o ~ h  the .II~>I~I.III con\t.lnl\ .I\ 

1111s cqu.ltton <.In he t r . ~ n \ l o ~ ~ ~ l r t l  to Ihc l o ~ m  I' = Cil \\ l1c.1~ 
C =  -/\/I1 I (, IIIC C(~II.I~IOII LOII~.IIII\ OIII\ olic ,t1li111,1r~ LOII\~.IIII 

I hcn the colnple~e $(>lullon 1 10 19) 

1s ,I t\\o I>.II.II~~CICI I . \m~l)  o l  pl,tncs \ \ h~c I i  does not h.l\e .In 

cnvelope m c e  the '~rbrt~dry con\[,lnts enter l ~ n e ~ r l y  ( 101 A p ~ n  

d ~ f l c ~ c n t ~ . ~ t ~ n g c c l  (15) \ \ ~ t h ~ r \ p c c t  to \ \c  r c tO=  I \\luch I\ 

,1h\111il ~ICIICC. I~ICIC 1s 110 \III~~II.II \o lu t~on I IIC one p.lr.lrnctcr 

f. lm~ly clete~~ntned by t'lhlng P = a' h ~ s  equC1tlcln 



Ptrr ~ r c  rrl(o ~olrctrorr of I1C;IAP CI ollrlrorc ttlrrcrlrorr rrr rrerr-lo-1ctrtl111,q ortier LIC 

2 (211 

Pirttlng the v,llue o l  n .Igmn in  cqlr.itron ( 16). u c  oht,lin the 
envelope We oh\e~vc rI1.1c il h tcntls to ~ c l o .  cqc ( 18) ,~nd ( 19) tend to 

ccp (70) 21x1 (2 l ). rc\l iectr\cl\~, r t9 \ollrtron\ o l  N I  Occlrr.rtron\ 
go o \ c i  to thaw o l  1-0 cclu,ttion\ I'l~y\rc,~lly. 17 rends to tcro I.;'( \.r)exp[h4,( t)] = 
nle~lns numher o f  fl,~vours is 111gl1 

1 - (h l r+ l )  217 2N5( \ )  
F:(\ I) = --I exp -+-- 

[ I  <I 

( ) ]  ( 7 )  
3 

\! hich I\ merely ,i p . i r t ~~~ r I .~ r  \oI~rtroii \vc ol1l.1111 l r ( > r ~ l  ccl ( 17) 

= I,,. ahcre to = In (Q,; / A ' )  at .In, lower v.iluc Q = Q,, \ \e  

from eel (17). 

1 ,l,,,+Il 
1nN1.0 foi /I = a' Sim~l.~ily.detcn~ng r?Z'5(io.1) = --I 

3 

n which gibes rhc t-evolut~on o f  51nglet \tructurc luncrlon f,'( , , I )  ' 

rn NLO for 0 = a' 

Proceeding exdctl) In the s,lnic \\,iy, dnd defining 

and ~ , % ( ( \ ) = j  Af , ( \ )+T lDO(~)  
t l t  

A5(f1+7,)115(t) 

which gives the x-evolution o f  non slnplet ctructure lunrtion 
N\ I;'? ( \ . I )  In NLO'I~I p = a' 

I n  nne'lrlrer cornmun~c.ltic~n [ 141. \\e sugge\ted th,~t lor lo\\- 

u i o ~ O f i > r  n= a'. 

\\e get for nori-vnglct \trtrclurc It~rictron In NI 0 'i\ 
7 i . ( t )  

h\ r? ( ! * I )=  r;~(..l,)) 
,llltl 

uhrch grres the 1-e\c~ltitron of non-\inglct sl~ucture ftrnctrc?n 

r;'( t ,  I) N~,O C(,I p - (2 2 

I n  an earlrer cornrnr~n~c,~t~on 1 141. \\c \upgc\tcd III,II lor lo\tJ 
where 

u i n ~ ~ f o r p = a ? .  



and M(xj = a x ) +  K(x)D(A) .  \\here r ~ g . ~ ~ ~ ~  

and D(x)=N,r[-1/2(1- 1) (5-4r+2\ "+(312)111(1 /  ,)] 

O f  course, unllhe for the r e\olutlon cqu.~lton\, we coclld 
not hdve for the r-evolut~on ecltr.lllons In I 0 .I\ \OIIIL 111n1111ig 

case o f  NLOequat~ons Deuteron, proton 'tnd neutron structure 

functtons measured In  deep cnel,~<t~c elect~cl ptoducttcin c,tn he 

written In term5 o l  singlet and non s~nglct qu,t~k ~I\~II~ILIIIOII 

funct~ons (51 as 

and 

Now uslng eqs (22) In eq (26). u e  w ~ l l  get A evolut~on ol 

deuteror ctrd~ture fu~lctlon [,\( \,I) .el lo\\ u 111 NI 0 r o ~  /I = cx' 

as 

5 
where, the lnput functton IS I:'(\,,, I ) -  -r,'(,,, 1 )  Fhc 

9 - 
cnrrespond~ng result fnr .I p d r l ~ c ~ ~ l ~ r  so lu t~on o f  DCil AP 

evolut~onequatlon\ In LO for /1 = n 2  obt.t~ncd c.lrller 1141 I\ 

The deterrn~natlon o f  x evolut~on\ ol ploton and ncut~on 

structure functions l ~ k e  those o f  deuteron structure ftrnc tlon 1s 
not poss~ble by t111s mrthodologv ~CL.ILI\C lo extr.tct the 

r e\olutlon o f  protron and neutron structure functions we ,tie 

to useeqs (22) and (23) In eqs (77)  .~nd (28) Rut the functro~is 

~nslde the tntegrdl stgn ot eqs (22) and (23) are t l~flerenl .\nd \~.c 

need to 5eparate the Input functlon5 f ;  ( .0 dnd I > \ (  to 0 
from the data potnts to extrdct the x evoluttons of the p~o ton  

and neutron structure funcllons whlch m,iy conlilrt I.lrre clrol\ 

For the complerc solutton o f  eq ( 17) u e  (.,kc n - tx' In ccl 

(15) I f w e  take = a Ineq (15) and d~f fc rent~  ite 151th Iczpect to 

a hclore, we  get 0 = rr"l '+l) exp ( -+- " t r ) ) + l .  f rom 

w h l ~ h  we can not dete~mlne the value o f  a But ~f we take 

/1 = n2 111 ccl ( 15) and t i~Clc io t r~  tic utt lr ~c\pcct  to ty \\c gc! 

till\ vCtluc o l  cc en eq ( IT) \+e get ult~niatcly 

Now, deflnlng 

\be gct 

I'toccedt~ig cu ~ c t l y  111 the \.tlne n.1) n e  ~ l s o  get lot n<v\ 
slnglel struLtirre funelcon 

1 hen uslng eqs (7-6) (27) dnd (38) \ \e get t e\olutlon\ ot 
~IL~ltLlO11 ~l IOlO*,  .tncI l l c l l r l ~ ~ l l  \\I , l ~ t t t l ~  7,1ttct10t1\ 

\11i1t l  trl) \ \e  c in  \hou ill tt 11 \rc t,thc 0 = a' \\e get 



Pcrrlrc rrltrr \olrtltorr of 1I~31Al1 c 1 t~lrrtro~r tclrrtrtro~r rrr rrc \I lo I( trtlrrrq orclc r c t c  0 l 

and I n  II~IIIC I we pre\ent our ~e \u l t s  ot u cl lst~lbutlon of 

deuteron qtructure functrons c1 from eq (29) for K (  t )  = u.4' 

F;"(x I) = r;l(to /)exp j - 1 

I ,(I) + (tl.~\hctl IIII~\) .~ntl lor  K( 1)  = 'I1 (strlrd Ilner) ~n tne rcl.~tlon 

/ {=(I '  101 \ mlnllnum ( I t i \ \ c ~  d.~\llcd .lnd s o l ~ i l  IIII~\) .~nd 

S~m~ la r l y  if we take = as we get 

m,kxllnunl (ul'lxr dd\hcd ,111d \olld Ilnc\) \\hcle tr  / J  ( .lntl c/,lrc 
con\t.lllt\ ,~nd lor  lepre\ent.ltl\e v.lluc\ c.f Q' y \ c n  In e.1ch 
t~gu le  We conip.lce them \\ 1111 NMC deuteron lo\\ u lo\\ Q' d,lt,~ 
[ I  8)  I n  each graph. the data pan t  for x valve just below 0 I hdd 

been taken as Input f : ( ~ ~  I )  I f  we t'lke K(t) = (,\I1 then 
(blr 4 I) 'I4 'Igrcenient of the result for i mlnll i luni \\ 1111 eupe r~~nen t~ l  d.lta I\ 

F;~IJ~(, F;lrJ1l ( 0 (  ex1'[+6(f -;)I tound to beexrcl lentnIn;  10 b = 0  016 On theother hand 11 we 
10 

take K(r) = ce'" then 'lgreement ot  the retultt for 1 mlnlmum 

and wlth expel lmental data I\ found to be g t xd  at c = 0 5 (I= - 1 8 I n  
this conncLtlon, earller we obcervetl 1 141 that agreement 01 the 

I rc\ult\ wrth cxpc~rment.~l c1.1t.1 W.I\ cxccllcnt for K ( r )  = 4 5 
ff(\ I)= l;l(\ll 1 ) e x p j  - (con\t lnt) tr = 4 5 h = O 01 c = 5 t l=  l It11 lo\\ Y 111 Ic.~iIlng ortlt r ! , ( \ , I  ,,)hI ( \ )  

III~ llicrc \\ I\ no stgn111~.11it ~ I ~ ~ C I L I ~ L C  IICI\\LCII the rc\ult\ lo1 

'lnd so on 
1 

Thus \re observe that 11 u e  t ~ h c  /I - a In eq (1 5) \\e c.ln 

not obta~n the value 01 a ,lnd .ll\o the r c q u ~ ~ c d  \olutlon I lut  IT 

\ \c take p =  u' a' a" u S  J ~ C I  50 OII see t11,1t IIIC 
0  8 

po\\ers o f  I'"~'+~)/I,,'"' tt" 'lnd coe l l ~c~en t  o l  h(111-111,~) o l  , 
exponent~al part In t e \o lu t~on\  of deuteron ploton and neutlon 
structure tunctton\ . I I~ 2 312 411 514 ~ n t l  \o on ~ c \ p c ~ t ~ \ c l y  

2 0 6  
as d~scussed .~bove 5rmrl.1rly lor  cvolutlons 01 t lcl~tcrt in 
structure functions u e  \ct that thc nurncl'ltors 01 the III\I tclm 
~ n \ l d e  the ~ r i t e g ~ . ~ l  \ lpn .IIC 2 713- 417 514 ,111~1 \o (111 

rc\pect~vcly lor the s,llne v.lluc\ o f  (1 l hu\ we scc th,lt 11 ~n o  4 

the r c l ~ t ~ o n  /I - @'  i \ 111cs hct\\ecn 3- to .I 111 1~111111111 v.1111~ the 

exponential part In I e\olutlon ,~nd the nulncl.ltor o l  the 111\t 0 2  

term In the Integral \ lgn In 1 evcrlutlon \arres between 2 to I 
Then 11 1s understood thdt the soltltronc o l  eqs (12) and (17) 
obta~ned b) thlc methodology ,Ire not unlque .lnd \o the t o  

evolut~ons ot deuteron proton and neutron s t ~ ~ r r t ~ r r e  lunct~ong o 0 0 2  0 0 4  0 0 6  0 0 8  o 1 

and r evolut~nn ot deuteron structure lunct~cln ~ b t ~ ~ ~ n e t l  h) ti115 x 

methodolog) ,Ire not unique I lgurc I RCSUIIF of ! t l l c l r ~ h u ~ ~ ~ i ~ ~  of tlc11kr11n t l r t ~ ~ t t ~ r ~  ~IIIILIII>~S /.:I 

. . 
solut~ons bang reasonahly narrow rcpretrnliuve \itucr of @ gnen In r i c h  t1g11re ind conlplre thim \ \ I I ~  

NMC ~LIII~IOII IO\V I !(I\\ Q1 d i ~ i  ( I Y I  In r i ~ h  pripli thl d111 point for 

3 Hr.cult\ ,111tl cllsc II\\IOII 
x \ 1Il11 J l I \ t  l > 1 1 0 \ ~  0 I Ill\ 111111 I l l 1 1 1  I\ 111~~111 l.l(l(l 1) I t  \\I 1111  

A ( )  111111 I&I'L1IILI1I 0 1  011 11\11It It11 I IlI1IlIIIIIIIIl \ \ I l l 1  ,\~ltlllll,llllI 

For ,I quantlt.ltl\e .In II,\I\ 01 d ~ \ t ~ r l ) u t l o n \  o l  \t lucture 11111 I\ ~OIIIICI 111 Ir L'LCLIILIII 11 0 = 10 / I  = O O I ~  on 1111 0111tr IIII~LI 11 

function\ \\e calcul I ~ C  the ~ntcgr,ils tIi,lt occur~cd In eq (79) for llL,e A ( \ ) -  ( 6  '' Ihcn egrcenlcllr of the ~ k F l l l l \  for Inl1lllllllm \\ l lh 

N, = thl, Cd\e Ilr\l sceontl ol 
LX~L~II~I~III 11 LI 11 I IS ft11111d 10 h ~IXXI 11 I = 0 5 11 = - 7 (I r(ir LOII\~III~~LC 

b~luc of L ILII dl11 li01n1 (or I>IIL \1111r 111 C) IF I I iL r i  I \ L ~  I iy  .111il111& 11?1 
function B , ( \ )  as I I\ $ln.lll wllerr I = 0 I 2 3 i r e  the ~iunihrr~nat of rur\cs ~ounl~ne fro111 thc 



j mlnlrnurn and maxlmum In the reldtlon /1= a' In t I i c ~ , ~ \ c  oI 

MI,O, agreement o f  the results with exper~mcnt.~l d,lta 1s found 
to  be very poor for any constant value o f  K(x) Therefore, wc do 
nclt presmt our result o f  x d ~ ~ t r ~ b u t c o n  at K(x)  = constant tn 
MX) 

I n  F~gure 2. \\e prerent our ~c \u l ls  o f  x cvolul~on of t l c i~ tc ro~ i  
structure f un~ l l nn  from eq (29) for K f  I ) = 0 I" (d.r\hctl I1nc5) .rrld 

K(r )  = ce4Y(iolld Ilnes) In the rel,~tlon /I - a' , lo1 \ In,l\1lnum ,I[ 

d~fferert  parameter vdluc\ ,lntl f o ~  rcprcso1t.1tlvc v,lltrc\ 01 Q' 
glven In each figure, and compare them w ~ t h  NMC dcutcron 
low-x low-Q2data [ I  81 I n  each graph the data polnt for 3 v,rlue 

just below 0 I has been taken a5 Input f;(t , , . t)  Wc ob5etvcd 

that both the graphs c o ~ n c ~ d e  for e,rch Q' v,~l~re ,tnd .II~ In 
excellent agreement M ~ t h  d.~t.\ M lie11 (I = 5 5, h = 0 0 I 0  r = 0 2h  c l  
= - 3  8 

,~bsolutc valt~c\ 01 '(1 c 1) 01 n , ~e\pect~vc ly  .Ire dccre,~scd. 
the Lurvcs move In  the oppo\lte dlrectlon For the sencltlvlty o f  
n , Me 1Ae 6 = 0 0 16 and we ob5erve that at a = LO, agreement ot  
the results with expe~~mental  delta 15 found to be e~cel lent  For 
the \enrlfl\lty o l  ' h ,  we t,~ke cr = 10 and we ob~erve th.11 ,kt 
1) = 0 016 .~glccnicnt t r l  the ~c \u l rs  with cxpcr~mental tlat,~ 1s 
lountl lo  he cxccllc~it On thc othcr II.III(~ f o ~  the SCIISI~IVI~) 01 ( . 
we take h= - 3 5 dnd we oh\crve that dt c = O  5, agreement of  the 
re<ult\ M lth ~ ~ ~ 7 ~ 1 1 1 1 1 ~ 1 1 ~ ~ ~  d'1t.1 I\ found to be good For the 
rcn\lllvlty o l  (f IVL 1.1hc ( - 0 5 . ir~t l  \ \c  ob\cl\e 111.1t ,I[ t l=  - 1 8 
.Iglecmnt o l  the rc\ult\ w ~ t h  cxpe~~ment .~ l  d.~t,l 1s found to he 
cxcellent 

1 1  

Frgure 2 Results or r cvolut~nn or c l c ~ r t t r o n  \ I r t lc tur t  I l l n c c r ~ ~ l i  II~III 
crluat~on (29) for Klr) = nrh (d?\hcd I ~ r r r \ )  111(1 h(1) = t i  (\oI10 IIIIC\) 111 

Ihc relal~on fl= a' lor r rnavrnum a t  d1lrcren1 p tr lrnclcr \ alucs rnd tor 
repretentacrve values of @' gltcn In c ~ch  fip~rre i11d ~otnli rrc rlrcrn u 1111 

NUC deutcron IOU x IIIU Q' diln 181 In 1 rc l r  CI 11111 l l rc  d II I po1111 Tor 

x value just helow O I hlr lxcn tdkcn 3% 1111)ut I:'( to  0 WL OII\CIVC~ 11\11 

both the graphs co~ncldc for each L) \ i l u c  .lnd IIL III e x c e l l ~ t r l  Igrccnitnl 
with data uhen n = 5 5 h = 0 016 r = 0 28 (1 = - ? R For con\cn lc l l cc  

balue or each data point for on< value o l  L) In ~n~rcired by iddlng 0 21 

where r = 0 I 2 $ are Ilrc nurnhcr~rr~r of LIII~LI COIIII~III~ r r~rn IIIC 
bottom of 'he loucrmocl curie i s  thc O th r ~ r d t ~  

I n  F~gure  3 ,  \\e present the sen\ltlvlty ot or11 ~e\ i r l t r  f ~ o m  cq 

(29) forcz 6 c d l n  thcrel.~tlon p = a' f o ~  , rnlrilmuln I~C,ILII 
graph (from tcp). ~f the absolute values o f  (1 c 1) 01 n 

respectively are Increased. the curves \hrlt u[>Mdrd r ~ r i c l  ~f {he 

0  3 
0  0 0 2  004  006  008  0  

X 

I*I~II~~ 3 Scnr~l~\~lv or our r t ~ i ~ I t \  \ ~~I\II~>\II~I>II 111 d ~ ~ ~ l t r ~ i i  %trucltrrL 
fu~icr~orr III ~ h c  n l l l ron / I  cr' lor I IIIIIIII~IIIII~ lor d~f lcr~nt ~ ~ I U C C  (11 n 
h r and d 

K ( a )  = t a  "' 111 the rc.llt~on p =  a' lor ) rnlnlmum and lor 

representdl~ve v.1111es o f  Q' gl\cn In e,cch I ~ g u ~ e  I [ere n = I 0  
/2=001(1 ( = 0  5 ( I=-3 h f L ' ~ ~ ~ ~ l ~ \ c ~ \ c c I f l ~ , ~ t  11 tile \ L ~ l t ~ e o l  ll,~\ 
Inclc I \ L ~  IIIC CIIIVC IIIO\C\ rl1gI111\ II~\\.II~ ,111d 11 the t,lluc o l  
7,, IF dcrre,rscd. the curve movcq ~ l l gh t l )  donnward d~rectlon 
I3ut the n,ltnrc o f  the curve rem,rln\ some and d~ffcrence bet\\ecn 
tI1c Llllvc\ ,11c ~ x t l c l l l c l ) ~  \lllLlll Ill l>l'fll L'I\C\ Ill the I(, l'll1gc 
rnentloncd In the tlgure 

I n  F ~ g u ~ c  5 we prerent the ~esu l t \o l  x evolul~on ot tlctrteron 
\IIIIL~IIIC ~IIIIL~IOII for h'(t) =rr\I1(dd\l,cd I~r lc \ )  ,111d h ( t )  = cc" '  

(wild I~ner )  rn thc ~ c l a ~ l o n  0 - cxl  lo^ \ tnlrllmum In  LO (lower 

d,~\lied ,~nd solrtl I ~ne r )  and In NI 0 (upper d.lshed and solid 
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141gure 4 5cn%rrrv1t j  III our rcclrltc 01 I c l ~ \ l r ~ l > ~ ~ l ~ c ~ n  rjf d i~r len)~~ \ r r t I c r u I ~  

iunct~on In the relat~on fl - aY for \ n1tmllrum for d~fferent v i lu~c of rr 

6 c and d 

Q' - 7 G e ~ '  

Q'= 6 S G ~ V '  L 
a '=  4 S G ~ V '  

Q'= 3 ~GOV'  

r I I 

fq P1- 0 7 5 ~ s ~ '  
HI*) - .r' 
KlX) - c* * 

0 2 
0 

IIII~\) lo1 rcpre\cnldt~ve v.~luc\ ot  Q' g ~ \ c l i  I n  c . ~ c l ~  Irgurc .lnd 
cornprlre thcrn with NMC deuterori lo\\ low Q' d,~t.~ I I S I  I n  
each gr,~ph, the datd p o ~ n t  tor I vdue just below 0 I hds been 
trlhen .I\ rnput Agreement of the rcsult w ~ t h  experimental d.lta 1% 

found to hc cxeellcnt for tr = 4 5 1) = 0 01 L = r i =  I In I 0 .~nd 
tr = 10 lj = 0 016 c = 0 5 t l =  - 3 S UI NLO  rid ,111 curt e\ u~edch 
g~ 1p11 ,~l~nost co~nclde 

I r r  I I~IIIC 6 N C  plot I(!) (\ol l t l  IIIIL) JII~ Ig l \ r )  (cl.~\hcd Irnc) 

where T(r) = a, /2n dgdln\t Q' I n  Ihz Q' range 0 5 1 (2: 1 5 0  

GeV2 We ohserved that lor  To = 0 027 error become\ mlnlmum 

In the Q'range 0 5 5 Q' 5 50 GeV2 

0 003 

002 0 0 4  008 008 0 1  

IIEII~~ h I(#) (\[llld 11111) 11111 1,,1(o (d~\ l l ld  11111 \\IILIL I(!) cr /'IT 

ig'1111\1 0 111 Illc 0' rlllgt 0 5 < Q' < 5 0  OL\ \ t c  i> l?5 i r \ i ( l  Ill 11 lor In = 

o 027 crlor IILCOIIILF IIIIIIIIII~IIII 111 IIIL CJ r III~L o 5 < Q' < 50 ( V L \  

I lorn our .lhove dl\cu\\ron 11 h,~\ been oh\cr\ctl t h . ~ ~  \\e 
c In not c\t,~hlr\Ii .I un~quc rcl 1tro11 bct\\ecn \11tglct .lnd gluon 

\lructurc fun~trons r c .I unlque elc[Jre\sron for A ( \ )  In eq (9) by 
t h ~ r  method K ( t )  I n  the forms ot ,in elcponent~.~l tc~n~t ron o l  r o r  
a power I n  x can equrllly produce requrred x drstrrbutlon ot 
deuteron structure tunctlons But u n l ~ k e  x dlstr~butlon tunctlon 
wlrh many ~npu t  p.ll.lmelcrs (gcncr.lllv tl\ed I n  the I~tcr.~lure) 
our ~nc l l lod  ~cql l l rct l  ol l ly ollc 01 I\\ o \IIL h p r!.lrllrtcr\ 1 hc 
c ~ p l ~ c r t  for111 01 K ( I )  c.ln .IC~II.IIIY be ohtdlned 0111) by \ o l \ ~ n g  
corrpled DGLAP evolutron equatrons for srnglet and eluon 
strurtulc f un r t~ons  .~nd  \\orb IS golng on I n  I ~ I \  regard 
I r,~drtlon.~lly the DCiLAI' cqu l t lon \  pro\  11lc ,I IIIL.III\ of 

calcul~t lng the mdnner In \\hrch the prllton d~slr~bul lons ch.~nge 
rlt f~ l ted x as Q' v.trres Thrs changecomes about bec.ttrseot the 
v 1110l1 \  l ) l > L \  (11 ~1.111~~11 l ~ 1 , l l l c l l l l l ~  L l l l l \ \ l i  11 plc>LL\\'\ lll~l 111c 
\ dl\ lr~button\ dre nlodrllcd '1s the IIII~I,~~ rno~nentur~~ i\ \II.IILLI 

I 

1.1gure 5 Rcsul~s of r cvolul~on of dculcrc~n slruLlllr1 fi~nclrc~~r for KO) 
= a? (dathcd Ilncc) int l  k ( t )  = r r ' (aol~d IIIICF) 111 rcl 111ci1i I( - n' for v 
rnlnlmum In LO (lowcr dlthcd 111d \ol~d IIIIL\) 111d 111 Nl 0 (IIjipcr ~ICIILI 
and sol~d Ilncc) for rcprcsenlaltvc vl lucr of 0 glvcn III clch fikurc ind 
compare Illern H I I~  NMC deutcron low \ low 0' d l ta  I I X I  In c ~ch graph 
the data polnl for r value just below 0 I hac hccn liken aa III~II~ Aprcemcnl 
of Ihc rcs~~ll WIIII c x p c r ~ m c t ~ l  11 (I 11 I I\ k11111cl 10 IR IXL(IILIII lor ( I  4 5 
6=001 r - 5  < / = I  I n 1 0  lnd(r 10 h 0l)lh r - 0 5  (1  ~XIIINIO 
and a l l  Ihe curves In each griph dlmosl C C ~ I I ~ L I ~ C  



among the varrous daughter p.lrtonr 1 l o w ~ i  el the cx,~ct r,ltc ol 
mod~firat~ons o f  r-d~str~but~ons at frxed Q2can not be oht.1111~~1 
from the DGLAP equations, slnce II depcntlq not on11 on thc 
l n ~ t ~ a l  x but also on the rate ol change ol palton d t \ ~ ~ ~ h ~ r l ~ o n \  

w ~ t h  respect tor. d" F ( r ) I d r n  (11 = I 10 -),up to ~ n l i n ~ t c  o ~ t l c ~  

Physically. this ~mplles t h ~ t  at h~gh-r  the p'lrton h,~r ,I I.II~': 
momentum fr.lct~on at 11s d~spo\,~l .~nd ,I\ .I rcrull II ~,ltll,~tc\ 
partons lncludlng gluons ~n ~nnumer,~hle \\,ty\ \omc 01 IIICI~~ 
tnvolv~ng complicated QCD mech,~n~rms I Io\\evcr, lot lo\\ 1, 

many o f  the radlatlon proce\ser w ~ l l  cc.lse to occu~ due to 
momenlum constraints and the t-evolut~on\ gct s~mpl~ l lc t l  11 I\ 
then poss~ble lo v~sudl~ze d cltu.1tlon In i v h ~ ~ h  tlic I~~OLIIIIC.III~I~ 
ot the x-d~str~but~on s~mply depend\ on ~ t q  II~IIIAI v.~lue .~nd 115 

first denvatlve In th~s srmplrfied s~tu,~t~on [lie DGLAI 'cq~~l t~oni  
glve rnformatlon on the shdpes ot  the u d ~ s t r ~ h u t ~ o n  .I< 
demonstrated In this paper 7 hc LIC'I~CI tcr1111p 111 0111 IC\IIII\ 0 1  

x evolut~on IS actually theeq (23) wh~ch I\ lrce Itom the ,~dd~t~on.~l 
assumption [eq (9)] The requ~red non r~nglet d,ltCl 1s not 
adequately inallable In thelo\\ r teglon to tc\t our rc\ult 
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