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Chapter-1

INTRODUCTION

1.1.  Structure of Matter: A Historical Background

Extensive researches, since the start of nineteenth century, have been carried out by the
scientists to conclude about the ultimatc representatives of the matter that may -be the
basic building blocks — now a day called as elementary particles [1], also called sub-

atomic particles.

In the beginning of nineteenth century, it was established that matter is composed of
atoms and molecules. But soon it was found that atom has also a rich structure and in
1897, Joseph John Thomson, a professor of physics at Cambridge University in England,
established the existence of a particle — the ‘clectron’ that still is classilied as an
elementary particle. Six years later, Ernest Rutherford and Frederick Soddy, working at
McGill University in Montrcal, found that radioactivity occurs when atoms of one type
transmute into those of another kind. The idea of atoms as immutable, indivisible objects
had become completely untenable. The basic structure of the atom became apparent at the
starting of twentieth century. when experiment and ideas of Rutherford and Niels Bohr
established that atom consisted of a positively charged nucleus [2-6] with electrons

revolving around it.

In 1932, James Chadwick identified ‘neutron’ and Werner Heisenberg suggested that
atomic nuclei consist of ‘neutrons’ and ‘protons’ [2-6]. Thus atomic picture becomes
somewhat clear with electron, neutron, proton and ‘photon’ as the basic building blocks.
Photon has been added as a field particle for electromagnetic force such as exists between
the nucleus and electrons in the atom, i.e., it is a quantum unit of radiation. It has zero rest
mass and is uncharged. In the same year, Carl David Anderson found the positive electron
or the ‘positron” while studying cosmic ray showers. The discovery of this particle, being

the antiparticle of electron, predicted the existence of antimatter. With this discovery it
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was thought that the atomic picture could be completed, apart from four force - said
particles with thice possible antiparticles — anticlectrons, antiprotons and anti ncutrons,
thus including scven characters. While clectron and proton are stable particles, the
neutron disintegrates with a lifetime of 18 minutes into a proton with an ejection of §-
particle and a ‘neutrino’. A ncutrino has zero rest mass and no charge. Study of cosmic

ray showers led to the discovery of a number of elementary particles.

Quark, any of six types of particle that form the basic constituents of the elementary
particles called hadrons, such as the proton, neutron and pion. The quark concept [7-8]
was independently proposed in 1963 by the American physicists Murray Gell-Mann and
George Zweig. The term ‘quark’ was taken from the novel by Irish writer James Joyce,
‘Finnegans Wake’. Quarks were first believed to be of three kinds: up, down, and strange.
The proton, for example, consisted of, two up quarks and one down quark, while the
neutron consisted of two down quarks and one up quark. Later theorists suggested that a
fourth quark might exist; in 1974 the existence of this quark, named charm, was
experimentally confirmed [9-10]. Thereafter a fifth and sixth quark-called bottom and
top, respectively — were proposed for theoretical reasons of symmetry. Experimental
evidence for the existence of the bottom quark [9-10] was obtained in 1977, the top quark
eluded researchers until April 1994, when physicists at Fermi National Accelerator
Laboratory (Fermilab) announced they had found experimental evidence for the top
quark’s existence. Confirmation came from the same laboratory in early March, 1995.
Quarks have the extraordinary property of carrying electric charges that are fractions of
the charge of the electron, previously believed to be the fundamental unit of charge.
Whereas the electron has a charge of -1, a single negative charge, the up, charm, and top

quarks have charges of +2/3, while the down, strange, and bottom quarks have charges of

-1/3.

Each kind of quark has its antiparticle. Quantum chromodynamics (QCD) [1 1], physical
theory of strong interaction, attempts to account for the behaviour of the elementary
particles called quarks and gluons, which form the particles known as hadrons.
Mathematically, QCD is quite similar to quantum electrodynamics (QED). the theory of
electromagnetic interactions; it seeks to provide an equivalent basis for the strong nuclear

force that binds particles into atomic nuclei. The prefix ‘chromo’ refers to ‘colour’. a
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mathematical property assigned to quatks Accotding to QCD each quark appears in three
colours [7-10] - red (R), blue (B) and green (G). Antiquarks carry anticolours. Anti-red
(Cyan), Anti-bluc (Yellow) and Anti-gicen (magenta), ice, (2, 8, G ) . Colour has of

course no relation to real colours of every day life; the terminology is just based on the

analogy with the way all real colours are made up of three primary colours. Equal mixture

Yellow B

Red R
Green G

CyanR Magenta G

Blue B

Fig.1.1: Colour composition of hadrons

of Red, Green, Blue (R, G, B) or Cyan, Yellow and magenta( R, B,G ) or equal mixture

of color and complementary colour i. e. (RE, BB, Ga) are white or colourless. This
explains why observed particle states — baryon and mesons in nature are colourless or
white which means unchanged by rotation in R, B, G space i.e. colour space. It is easy to
visualize the colour quantum number by associating the three possible colours of a quark
with the three spots of primary 1ed, green and blue light focused on a screen, as shown in
figure 1.1. The antiquaiks arc assigned the complementary colours: Cyan R, Yellow
B and magentaG The colouts assigned to the antiquarks appear in figure 1.1 in those
parts of the screen where two and only two primary beams overlap. The analogy we have

developed between the colour quantum number and colour is not perfect. The three qg

states RR , GG and BB are colourless, but it is only the combination RR +GG - BB ,
unchanged by rotations in R, G, B colour space, which can form an observed meson. In

other words. we use ‘coloutless’ to mean a singlet representation of the colour group.

The carrier of the force between quarks is a particle called the gluon [7-10]. This strong
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nuclear force is the strongest of the four fundamental forces. It has an extremely short
range ol about 107" m, less than the size of an atomic nucleus. The properties of the
gluon come out of the standard model theory. Lvidence for gluons comes in 1978 from an
electron — positron machine at Hamburg in Germany. The machine, called PETRA [9-
10], was able, like its Stanford twin PEP, to observe collisions up to 30 GeV and in the

pattern of produced particles, the gluon was read.

Quarks cannot be separated from each other, for this would require far more energy than
even the most powerful particle accelerator [2, 9-10] can provide. They are observed
bound together in pairs, forming particles called mesons, or in threes, forming patticles
called baryons, which include the proton "and neutron. However, at the colossal
temperatures and pressures of the first millisecond following the birth of the universe in
the big bang, quarks did exist singly. While the properties of quarks and other kinds of
particle are partly accounted for by the so-called standard model of present-day physics,
many problems remain. One of these is the question of why quarks have their particular
masses. The mass of the top quark is particularly puzzling because it is so large. At
approximately 188 times the mass of a proton, the top quark is as massive as an atom of

the metal rhenium.

Elementary quarks, which fecel the strong force, and leptons, such as electrons, form
families, each containing two kinds of quarks and two kinds of leptons. Large Electron
Positron (LEP) collider experiments at CERN have shown that there are just three such
families, a classification encapsulated in the standard model. Three families of quarks and

leptons [7-10, 12] are as follows:

Families of Quarks and Leptons

Particles First family Second family Third family
Quarks u, d §, ¢ b, t
Leptons e, v, Hov, T,V,

here u, d, s, ¢, b, t are up, down, strange, charm, bottom and top quarks and e, u, 7, v, v,

prare electron, muon, tau, electron-neutrino, muon-neutrino and tau-neutrino respectively.
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Apart from gravity, particles undergo three seemingly quite diflerent types of
interactions, the clectromagnetic interaction of charged particles, the short-range weak
interaction which is responsible for the f-decays [3-4] of nuclei. for example, and the
strong or hadronic force which holds the quarks to one another and binds nucleons into
nuclei. Because of small masses of single atom of pai‘ticles, gravitational force is

negligible at this level. Four forces [2-10] and their field particle’s ranges, charges etc. are

given below:

The Four Basic Forces

Particles Examples
Name Acts on of Range Strength | Stable Reaction
exchange system | induced
by force
Proposed
Gravitational All gravition, Long, i.e. | ~107% Solar Object
. *
particles & F oc 1/#* system falling
All Weak
Weak nuclear | Particles | bosons, W' 1o-17, 1073 None Neutron
except y and Z beta decay
Particles
Electro- with Photon, y | Long, i.e. 1/137 Atoms | Chemical
magnetic electric Foc 1/ reactions
charge
Strong Quarks Hadrons, {| Nuclear
nuclear and Gluon, g 10~1s 1 nucleons | reactions
gluons
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1.2. Lepton — Nucleon Interactions

Since the discovery of partons more than 30 years ago [13-14], decp inelastic lepton-
nucleon scattering experiments |[15-16) have provided important information on the

structure of the hadrons or ultimately the structure of matter, and on the nature of the

*

Y v* T*
O << m,’ Q" <m,’ g >my
T " '—__-)——— q
> P ) E— - e
/ q
/ -
p P~ > n
@) (b) (©)

v
K

(d)

Fig.1.2: The hadron as seen by a ‘microscope’ = virtual photon: as Q2 increases, a quark may

be resolved into a quark and bremsstrahlung gluon or into a quark - antiquark pair.

interactions betwecen leptons and hadrons. When a very low mass virtual photon (Q2 =

—q* << 1GeV?) scatters off a hadron, the photon ‘sees’ only the total charge and magnetic

moment of the hadron and the scattering appears point-like (Fié.l.Z(a) ) [17]. A higher-

mass photon of a few hundred MeV? s able to resolve the individual constituents of the
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hadron’s virtual pion cloud, as shown in Fig.1.2(b) [17], and the hadron appears as a
composite extended object. At high momentum transfers the photon probes the fine
structure of the hadron’s charge distribution and sces its elementary constitucnts
(Fig.1.2(c)) [17]. If quarks were non-interacting. no further structure would appear for
increasing Q% and exact scaling would set in. However, in any renormalizable quantum
field theory, we have to introduce a Bose-field (gluon) which mediates the interaction in
order to form bound states of quarks, i.e. the observed hadrons. In such a picture, the
quark is then always accompanied by a gluon cloud which will be probed as the
momentum transfer is increased. The effect of gluons is then two-fold as illustrated in

Fig. 1.2(d) [17].

When a lepton is scattered by a hadron, photon mediates interaction with quarks inside
the hadron. The complete kinematics [18-22] of a deep inelastic scattering (DIS) process

is given below:

Fig.1.3: Deep inelastic lepton-nucleon scattering ep-eX, via photon exchange

between the electron and a quark of the nucleon.

Here,

k = four momentum of the initial lepton,
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k' = four momentum of the final lepton,
E = energy of the initial lepton,
E' = energy of the final lepton,

E

p = energy of the hadron,

M,, = rest mass of the hadron,

P = four momentum of the hadron,
S = centre of mass energy squared,

X = any set of outgoing particles,

W? = invariant mass squared of the final state hadrons,

6 = angle of the scattered lepton measured with respect to the nucleon direction.
S =(k+P) ~ 4EE', 0 =—q* =—{k—k') ~ 4EE'Cos?6/2,

L. QF _ _ EE'Cos’012
2pq  EplE-E'sin?012)

Pq _ 2pq _ E-E'Sin’0/2
pk S E '

y:

A quark is carrying a fraction x of the longitudinal momentum of the hadron while y
represents the fraction of the lepton energy transferred to the hadron in the nucleon rest
frame. The relation between Qz, x,yand Sis Q2 =~ xyS. The differential cross section for

DIS from a nuclear target is completely calculable and is expressible in terms of two

)

wave functions ¥, and W, which is

0%c
O E'——_7
0QIoF

e

=g " [Pl’, (v.0?)+ 2w, (v, 0% Jn 2(

where

. 4o PE’
o "= ?—('0.\'2(%2). v=[L-[ and, ¢ and O arerelated by@ =z -¢.

L

a = fine structure constant (dimensionless measure of strength of this interaction).

Observable structure functions are given by
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F(s)=M W, = S Al and  F(0)= v, = XD £ (e

where, /, (x) is the probability density of linding the i-th parton with fractional
momentum x and charge e,. The Callan-Gross relation F, = 2xF) is a direct consequence
of spin half partons and is strongly supported experimentally. A quark carrying a {raction
x of the longitudinal momentum of the hadron will be seen by the high-Q2 virtual photon
with a momentum fraction smaller than x, just because the radiated gluon carries away
some of the quark’s original momentum. Similarly this photon may resolve the radiated
gluon into a quark-antiquark pair — a process to be regarded as quark pair creation in the
strong gluon field of the nucleon. Both effects will distort a given nucleon structure
function F(x) to lower x, and specifically quark pair creation will enhance the sea
contribution at small-x. Thus, for a given structure function F(x) of the nucleon, we have
to calculate its dependence on O, F(x, 0%, from radiative corrections as depicted in
Fig.1.2 (d). To complete the identification of these partons with the quarks of Gell-Mann
and Zweing, one compares electron and neutrino  scattering results for /) and F; to infer

the fractional charge assignment of the quark model.

1.3.  Small-x Physics

Small-x physics is a new and exciting field of lepton-nucleon scattering. The behaviour of
the parton distributions of the hadron in this small-x region is of considerable importance
both theoretically and phenomenologicaly. First, the predictions of the rates of various
processes at the high energy hadron colliders depend on the parton densities at small-x.
From a theoretical point of view, the small-x behaviour is particularly interesting since
novel effects are expected to emerge such as, at very low-x region (less than 107 to 107,
quarks and gluons radiate ‘soft’ gluons and thereby new phenomena with high gluon
densities — recombination of gluon to form higher-x gluons, shading of gluons by each
other, collective effects like condensation or super fluidity or formation of local region
(known as hot spots) or something else can occur. These may have dominant effect of
non-perturbative physics at small-x. Small-x physics represents an unexplored area in
deep inelastic structurc function of hadrons. Indeced a characteristic expectation of
perturbative QCD in the small-x regime is the x* behaviour, which results from the
summation of soft gluon cmission via the Lipatov (or BKFL) equation [23-25], with A =

12a,n(2/2) for fixed coupling «,. One consequence is that the gluon and sea quark
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distributions are expected to behave as xg(x¢sea) ~ x* where 1 may be as large as 0.5 [26-
28]. As x decreases parton shadowing will become appreciable and suppresses this
singular growth; and cventually we will enter the non-perturbative regime. The solution
to this problem is to resum the leading logarithmic behavior of the cross section to all
orders, thus rearranging the perturbative expansion into a more rapidly converging series.
The GLDAP [29-32] evolution is the most familiar resummation strategy. Given that a
cross section involving incoming hadrons is dominated by diagrams where successive
emissions are strongly ordered in virtuality, the resulting large logarithms of ratios of
subsequent virtualities can be resumed. The cross section can then be rewritten in terms
of a process-dependent hard matrix element convoluted with universal parton density
functions, the scaling violations of which are described by the GLDAP evolution. A new
kinematics regime has opened up where the very small-x parts of the proton parton
distributions are being probed. The hard scale, 0%, is not very high in such events and it
was expected that the GLDAP [29-32] evolution should break down. To some surprise,
the GLDAP [29-32] evolution has been quite successful in describing the strong rise of

the cross section with decreasing x.

At asymptotically large energies, it is believed that the theoretically correct description is
given by the BKFL [23-25] evolution. Here, each emitted gluon is assumed to take a large
fraction of the energy of the propagating gluon, (1-z) for z — 0, and large logarithms of
1/z are summed up to all orders. Recently, the next-to-leading logarithmic (NLL)
corrections to the BKFL equation were calculated and found to be large [33]. This is
related to the fact that at any finite energy, the cross section will also get contributions
from emissions of gluons which take only a small fraction of the energy of the

propagating gluon.

The CCFM [34-37] evolution cquation resums also large logarithms of 1/(1-z) in addition
to the 1/z ones. Here, z denotes the energy fraction of the emitted gluon. Furthermore it
introduces angular ordering of emissions to correctly treat gluon coherence effects. In the
limit of asymptotic encrgies, it is almost equivalent to BKFL [38-40], but also similar to
the GLDAP evolution for large-x and high-Qz. The cross section is still transverse

momentum k| factorized into an off-shell matrix element convoluted with an unintegrated

parton density, which now also contains a dependence on the maximum angle allowed in

10
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emissions. An advantage of the CCFM evolution, compared to the BKIL evolution, 1s
that it is fairly well suited for implementation into an event generator program, which

makes quantitative comparison with data feasible also for non-inclusive obscrvables.

2
v, Q
In» k'n.
Pn
xn-—ly kn—l
Prn-1
Tn—2, kn—-Q
Pn-2
Tn-3, kn—B
Prn-3
Zo, k()

M
U

Fig1.3: Kinematic variables for multi-gluon emission. The t-channel gluon momenta are
given by ki and the gluons emitted in the initial state cascade have momenta p;.
The upper angle for any emission is obtained from the quark box, as indicated

with Z. Here z,; =k / ki) and q; =p i /(1 -2z4;).

At small-x, the structure function Fa(x, Q%) is proportional to the sea quark density, which
is driven by the gluon density. The standard QCD fits determine the parameters of the
initial parton distributions at a starting scale Oo%. With the help of the GLDAP evolution
equations these parton distributions are then evolved to any other scale (0, with the
splitting functions still truncated at fixed O(ay) at leading order (LO) or O(asz) at next-to-
leading order (NLO). Any physics process in the fixed order scheme is then calculated via

collinear factorization into the coefficient functions C“(x/z) and collinear (independent of
. . - 2 dz a 2
transverse momentum & ; ) parton density functions f4(z, O°%), 6 =0y I—C (x/2)f,(z,07).
z

At large energies (small x) the evolution ol parton distributions proceeds over a large

region in rapidity Ay ~ log (1/x) and effects of finite transverse momenta of the partons

11
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may become increasingly important. Cross sections can then be £ | -factorized [41-44]

into an off-shell ( k| dependent) partonic cross section 6(x/z,k;) anda k| -unintegrated
. . _ dz 2 ~ 2 2 T . d
parton density function F(z,k;), o= I—— d°k,6(x/z,ki{)F(z,ki). The unintegrate

gluon density F(z, ki) is described by the BKFL [23-25] evolution equation in the region

of asymptotically large energies (small x). An appropriate description valid for both small

and large x is given by the CCFM evolution equation [34-37], resulting in an unintegrated

gluon density A(z,ki,ﬁz), which is a function also of the additional scale g . The
coefficient functions and also the GLDAP splitting functions leading to fu(z, 0% are no
longer evaluated in fixed order perturbation theory but supplemented with the all-loop
resummation of the aslog(1/x) contribution at small x. This all-loop resummation shows
up in the regge form factor Arege for BKFL or in the non-Sudakov form factor A, for

CCFM.

Various high energy deep inelastic interactions give us different evolution equations [23-
25, 29-37]. From these evolution equations we can obtain various structure functions
which give us information about the number of partons i.e. quarks and gluons involved in
different scattering processes. Actually structure function is a mathematical picture of the
hadron structure at high-energy region. They are important inputs in many high-energy

processes. The different evolution equations are:

A. Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) evolution equation,
B. Balitskij-Kuraev-Fadin-Lipatov (BKFL) evolution equation,

C. Gribov-Levin-Ryskin (GLR) cvolution equation, and

D. Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation.

The exact form of these equations depends upon the accuracy with which one treats the
large logarithms In(Q%4%) or In(1/x), where A is the QCD cut off parameter. The GLDAP
evolution equation is obtained in the leading InQ* (LLOY approximation which
corresponds to keeping only those terms in the perturbative expansion which has the
leading power of InQ? that is a,"In"Q%. The BKFL equation i$ obtained in the leading

In(1/x) (LL(1/x)) approximation instead of leading anZ. The GLR equation is obtained in

12
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the leading power of InQ? and In(1/x). GLR evolution equation is a non-linear integro-

differential equation for structure function. The CCFM evolution equs ms also
2NN ”v\\
large logarithms of 1/(1-2) in addition to the 1/z ones.

1.4. Evolution Equations

A. GLDAP Evolution Equation

The GLDAP evolution equation is obtained in the (LLQ%) approximation which

corresponds to keeping only those terms in the perturbative expansion which have the

Jeading power of InQ*, that ise [in" 0? . The GLDAP evolution equation is

oudee). asz(gzjlf%[f’ (/20,02 )1 2y 6/ 9)5 .02 ) (1.1

ot 94

X

for quark. In the above equation, first term mathematically expresses the fact that a quark
with momentum fraction x [g(x, O%) on the left hand side] could have come form a parent
quark with a larger momentum fraction y [g(y, Qz) on the right-hand side] which has
radiated a gluon. The probability that this happens is proportional to asPg.(x/y). Second
term considers the possibility that a quark with momentum fraction x is the resuit of gq
pair creation by a parent gluon with momentum fraction y (>x). The probability is
asPgg(x/y). The integral in the equation is the sum over all possible momentum fractions y
(>x) of the parent [7]. And for gluon we can give a symbolic representation of the gluon

evolution equation as in Fig. 1.4:

g(x,0") 80

P (¥/y)

Fig.1.4: Symbolic representation of the gluon evolution equation.

13
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which tells us that

OAG_KX_Q_) g_lQ_)de[z q x/y)q,(y, )+ ng(x/y)G(y,Qz)J, (1.2)

where ¢ = 111(Q2//1 ) and P, denoting the splitting functions. The sum 7 = 1...... 2ng ny

being the number of flavours, runs over quarks and antiquarks of all flavors. Pg, does not

depend on the index i if the quark masses are neglected [7].

B. BKFL Evolution Equation

The BKFL evolution equation is obtained in the LL(1/x) approximation instead of the

LLO? approximation. The BKFL evolution equation is

2
f(x kz):fo(x,k2)+ 3“s(k2)k2 ljdx’ o]’-alk/2 f(x/,k’ )-_f(x’,k2)+ f(x/,kzl

2 4 ’
k' - k? var'" + i

(1.3)

where, the function Ax, k%) is the nonintegrated gluon distribution, that is
22 oAve e 12 2 0, 12y e a ent . Y
f(x, k™) =0xG(x.k7)/0lnk” ., f7(x,k”)is a suitably defined inhomogeneous term; &,
are the transverse momenta squared of the gluon in the final and initial states respectively,
and k,? is the lower limit cut-off. The important point here is that, unlike the case of the

LLQ? approximation, the transverse momenta are no longer ordered along the chain.

C. GLR Evolution Equation

In the approximation where only leading power of InQ? and In(1/x) are kept, that is the
double logarithmic approximation (DLA). compact forms of GLR cquations arc shown in
the recent literature {45-47]. Further approximation is that the coupling of »n > 2 ladder to

the hadron is proportional to the n-th power of a single ladder. As a result, the probability

of finding two gluons (at low momentum Qg ) with momentum fraction x; and x; is

. 2 . . . . .
proportional to g( x,, Q(% ).8( x5,y ). It lcads to a non-linear integro-differential equation

for structure function,
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apﬁyg"’z’ fay' F(' )1 = 2C exploe™ =& F (&) (1.4)
¢ 0

m|—-

with C = (37[2/4/)’0).((202 /A%). C representating the relevant coupling strength. A more

accurate form of GLR equation reads

0D(x,0°)
dIn(l/ x)

Nfas(q'z)_ 1 Locs(q'z)z

A 4
= [k(g?,¢HP(xg"?). Vol(x,0%) (1.5)
JKq? g )Peg ™). — pives e }

where, ® = 0F(x, Qz)/ﬁQz, R denotes the transverse radius of the hadron and V stands for
the triple ladder vertex. However unlike GLDAP or BKFL equation, approximate analytic

solutions of equations (1.4) and (1.5) are not available.

D. CCFM Evolution Equation

The CCFM [34-37] evolution equation with respect to the scale cﬂz can be written in a

differential form [24]:

_d xAG k]G0 g d0 PG KD) gy -
Mg 4,@ .00 e 4.72.08) (x", k1%, (g /2)%),

where A(x,ki,(jz)is the unintegrated gluon density, depending on longitudinal
momentum f{raction x, transverse momentum ki and the evolution variable u?

(factorization scale) = (72 . The splitting variables are z =x/x and 121 =(1-2)/zq + /;l ,

where the vector ¢ is al an azimuthal angle ¢ . The Sudakov form factor 4, is given by

g’ -Oy/q = , 2 2
Iy ™0 l-z _
2.08)=exp(- I” J. dz s (g" (= 2) ), with a, =C, o, /n=3a,/m.
q —2Z
o5 0

For inclusive quantities at leading logarithmic order the Sudakov form factor cancels

against the 1/(1-z) collinear singularity of the splitting function. The splitting function P

for branching i/ is given by:

o(q/(1-2)") % (k)

1-2z, ,

P(z,q] k)= B, (2,9 k2,),
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where the non-Sudakov form factor A, is defined as:

! 2
— dz' ¢ d '
log Am(:,-,q,-z,kf,-) = —U, J‘ o I“——jz Ok ; -q)O(qg - z79;)

{

The unintegrated gluon density A(x,ki,cjz)is a function also of the angular variable 72,

ultimately limited by an angle. gt = x;’;_,E_‘ . defined by the hard interaction, and the two

scales ki,c?z in A(x,ki,(}z).

1.5. Experimental Overview

The study of the DIS of leptons on hadrons has been of profound importance to the
development of particle physics. Electroweak theory, which describes the electromagnetic
and weak nuclear forces. and QCD, the gauge theory of the strong nuclear force, together
form what particle physicists call the ‘standard model’. The model works well, as far as
can be measured using present technology, but several points still await experimental
verification or clarification. Furthermore, the model is incomplete. Prior to 1994, one of
the main missing ingredients of the standard model was the top quark, which was
required to complete the set of three pairs of quarks. Searches for this sixth and heaviest
quark failed repeatedly, until in April 1994 a team working on the Collider Detector
Facility (CDF) at Fermi National Accelerator Laboratory (Fermilab), announced tentative
evidence for the top quark. This was confirmed the following year, when not only the
CDF team but also an independent team working on a second experiment at Fermi lab,
code-named DZero, or DO, published more convincing evidence. The discovery had
required the highest-energy particle collisions available those at Fermi lab’s Tevatron.
which collides protons with antiprotons at a total energy of 1,800 GeV, or 1.8 tera

clectron volts (TeV).

The discovery of the top quark in a sense not only completed one chapter in the history of
particle physics but also focused the attention of experimenters on other questions
unanswered by the standard model. For instance, why there are six quarks and not more
or less. It may be that only this number of quarks allows for the subtle difference between

particles and antiparticles. This asymmetry between particle and antiparticle could in turn
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be related to the domination of matter over antimatter in the universe. Experiments
studying ncutral B mesons, which contain a » quark or its antiquark, may cventually
reveal such effects and so cast light on this fundamental problem that links particle
physics with cosmology and the study of the origin of matter in the universe. Much of
current research, meanwhile, is centred on important precision tests which may reveal
effects that lie outside the standard model in particular, those that are due to super
symmetry. These studies include measurements based on millions of Z particles produced
at the LEP collider at CERN and the Stanford Linear Collider (SLC) at the Stanford
Linear Accelerator Center (SLAC) in California, and on large numbers of ¥ particles
produced at the Tevatron and later at LEP |9-10]. The precision of these measurements is
such that comparisons with the predictions of the standard model constrain the allowed
range of values for quantities that are otherwise unknown. The predictions depend, for
example, on the mass of the top quark, and in this case comparison with the precision
measurements indicates a value in good agreement with the mass measured at Fermilab.
This agreement makes another comparison all the more interesting, for the precision data
also provide hints as to the mass of the Higgs particle a major ingredient of the standard
model that has yet to be discovered. The Higgs particle is the particle associated with the
mechanism that allows the symmetry of the electroweak force to be broken. or hidden, at
low energies and that gives the W and Z particles, the carriers of the weak force, their
masses. Theory provides a poor guide as to the particle's mass or even the number of
different varieties of Higgs particles involved. However, comparisons with the precision

measurements from LEP suggest that the mass of the Higgs particle may be quite light.

Further new particles are predicted by theories that include super symmetry. This
symmetry relates quarks and leptons, which have spin 1/2 and are collectively called
fermions, with the bosons of the gauge fields, which have spins 1 or 2, and with the Higgs
particle, which has spin 0. This symmetry appeals to theorists in particular because it
allows them to bring together all the particles-quarks, leptons, and gauge bosons-in
theories that unite the various forces. The price to pay is a doubling of the number of
fundamental particles, as the new symmetry implies that the known particles all have
super symmetric counterparts with different spins. Thus the leptons and quarks with spin
1/2 have super symmetric partners, dubbed sleptons and squarks, with integer spins, and

the photon, IV, Z, gluon, and graviton have counterparts with half-integer spins, known as
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the photino. wino, zino, gluino, and gravitino, respectively. If they indeed exist, all these
new super symmetric particles must be heavy to have escaped detection so far. Theory
suggests that some of the lightest of them could be created in collisions at the particle
accelerators with the highest energies-that is, at LEP, at the Tevatron, and at the Hadron-

Electron Ring Accelerator (HERA) and at the DESY (German Electron Synchrotron)

There is still more chance of discoveries, including that of one or more Higgs particles, at
the Large Hadron Collider (LHC) planned to start up at CERN about 2005. This machine,
built in the same tunnel that houses the LEP collider, is designed to collide protons at
energies of 7 TeV per beam [9-10]. Other hints of physics beyond the present standard
model concern the neutrinos. In the standard model, these particles have zero mass. So
any measurement of a nonzero mass, however small, would indicate the existence of
processes that are outside the standard model. Experiments to measure directly the masses
of the three neutrinos yield only limits; that is, they give no sign of a mass for the
particular neutrino type but do rule out any values above the smallest mass the

experiments can measure.

Within the region where the parton modal is applicable (i.e. for Q2 > 3GeV? or s0), the
small values of x can be measured only in high energy experiments. However, for the
exciting fixed target experiments, the low-x condition can only be obtained at the expense
of lowering Q” below 1 GeV?. This in turn means that the outgoing lepton is scattered at
very small angles, usually equal a few milliradians, i.c. practically within the lepton beam
divergence limits. Moreover, the extraction of the inelastic single photon exchange cross
sections (or extraction of the structure functions) from the data requires corrections of the
experimental yield for the radiative processes, i.e. separating the cross section due to the
reaction {rom the higher order electromagnetic and weak effects faking and distorting the
interesting events. Radiative processes may account for a substantial part of the measured

low-x cross-section especially for nuclear targets. Listed below are the some experiments

of the presently available low-x data.

A. Muon (Electron) Scattering Experiments

I. The Cambridge-Chicago-Illinois-Oxford (CHIO) Collaboration experiment performed
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at the Fermilab accelerator with 96, 147, 219 GeV muons scattering off hydrogen and 147
GeV muons off deuterium. The structure function /75 was measured for 0.0005 < x < 0.7,
0.2 < 0% < 80 GeV2 and R for 0.003 < x < 0.10, 0.4 < O* < 30 GeV? [49). Observe that in
this experiment low values of x were obtained by using data at high values of y where

systematic effects are most significant.

2. A dedicated, low scattering angle experiment numbered NA28 performed by the
European Muon Collaboration (EMC), at the CERN SPS with a positive muon beam of
nominal energy 280 GeV. Structure functions F, were measured on deuterium, carbon

and calcium targets for 0.002 <x <0.17 and 0.2 < O* < 8 GeV*[50-51].

3. The New Muon Collaboration (NMC) perfomed experiment at the CERN SPS with
muon beams of energies 90, 120, 200 and 280 GeV. The target materials were 'H, 2D,
‘He, SLi, 12C. 4OCa, SFe, 1295n. 208pb, and the kinematical range of measurements 0.006 <
x < 0.6, 0.8 < 0¥ < 75 GeV? for FR(IT) and I55(D) [52]. 0.003 <x < 0.7, 0.12 < 0* < 100
GeV? for the ratio Fo(D) Fa(H) [53-55] and 0.007 <x < 0.8, 0.6 < " < 18.3 GeV? for the
Fy(Ca)l F> (Li), Fo(C) Fy (Li) and F5(Ca)/ F; (C) ratios [56] and 0.0035 <x < 0.65, 0.5 <
0% < 90 GeV? for the Fa(He) Fy(D), Fo(C) I (D) and Fy(Ca)! Fy(D) [57).

4. The experiment of the E665 Collaboration under way at FNAL uses a 490 GeV
positive muon beam and 'H, ’D. '*C, **Ca, "*' Xe and *®Pb targets. Preliminary results for

the Fa(Xe)! Fo(D) structure function ratio at (* down to 0.01 GeV? and x down to
0.00002 have been presented [58-59].

Several low cnergy electro production experiments have been done both on hydrogen and
nuclear targets [60]. In particular, extensive studies were carried out in 1970-1985 at
SLAC experiments E49a [61], £62 [62], 87 [63], E139 [64], E140 [65] using a variety
of targets. The data were recently reanalyzed [66] using the improved versions of the
radiative correction procedure and were normalized to those from the high-precision

experiment E140. The reanalysis permitted to extract R(x, Qz) and Fi(x, Q2 ) for proton
and deuteron over the range 0.1< x < 0.9, 0.6 < 0* < 20 GeV? [66].

B. Neutrino Scattering Experiments

1. The California-Columbia-FNAL-Rochester-Rockefeller (CCFRR) Collaboration
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measured the neutrino (antineutrino)-iron scattering in the FNAL quadrupole focused
beam of energics 120, 140, 168, 200 and 200 GeV [67]. [ and x/7 were extracted for
0.015 < x < 0.65 and 1.3 < Q% <200 GeV?. New, precise results in the same kinematic
limits were presented recently by the Wisconsin-Chicago-Columbia-FNAL-Rochester

(CCFR) Collaboration [68].

2. The CERN-Dortumund-Heidelberg-Saclay-Warsaw (CDHSW) Collaboration
performed the neutrino (antineutrino)-iron scattering experiments at the CERN SPS using

the wide-band beam of energy up to about 280 GeV. Measured were [, xF3 for 0.015 <x

<0.65and 0.19 < 0*< 196 GeV? and F, 7° in somewhat narrower O? intervals [69].

3. The Big European Bubble Chamber (BEBC) Collaboration at CERN measured the
neutrino (antineutrino)-deuteron interaction using the wide-band beam of energy up to
200GeV. Both F, and xF; isoscalar functions were measured in the range 0 < Q2 < 64

GeV?,0.028 <x < 0.7 on neon in BEBC [70].

Some Important Experimental Research Centres

1. CERN (Conseil Europeen pour la Recherche Nucleaire)

byname of ORGANISATION EUROPEENE POUR LA RECHERCHE NUCLEAIRE,
formerly (1952-54) CONSEIL EUROPEEN POUR LA RECHERCHE NUCLEAIRE,
English EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, is the
international scientific organization established for the purpose of collaborative research
in sub-nuclear physics (high-cnergy, or particle physics). The organization operates
expressly for research of a ‘pure scientific and fundamental character’, and the results of
its experimental and theoretical work arc made generally available. Headquarter of CERN
is in Geneva, Switzerland. In the late 20th century, it had a membership of 14 European
nations, in addition to several nations those maintained ‘observer’ status. CERN has the
most powerful and versatile facilities of its kind in the world. The site covers more than
100 hectares in Switzerland and, since 1965, more than 450 hectares in France. The
activation of a 600-mega volt synchrocyclotron in 1957 enabled CERN physicists to
observe the decay of a pion, into an electron and a neutrino. The event was instrumental
in the development of the theory of weak interaction. The laboratory grew steadily,
activating the particle accelerator known as the Proton Synchroiron (1959), which used

‘strong focusing’ of particle beams; the Intersecting Storage Rings (ISR; 1971), enabling
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head-on collisions between protons; and the Super Proton Synchrotron (SPS; 1976), with
a 7-kilometre circumference. With the addition of an Antiproton Accumulator Ring, the
SPS was converted into a proton-antiproton collider in 1981 and provided experimenters
with the discovery of the W and Z particles in 1983 by Carlo Rubbia and Simon van der
Meer. In November 2000 the Large Electron-Positron Collider (LEP), a particle
accelerator installed at CERN in an underground tunnel 27 km in circumference, closed
down after 11 years service. LEP was used to counter-rotate accelerated electrons and
positrons in a narrow evacuated tube at velocities close to that of light, making a complete
circuit about 11,000 times per second. Their paths crossed at four points around the ring,.
DELPHI, one of the four LEP detectors, was a horizontal cylinder about 10 m in
diameter, 10 m long and weighing about 3,000 tones. It was made of concentric sub-
detectors, each designed for a specialized recording task. The LEP tunnel will now house
the Large Hadron Collider (LHC), a proton-proton collider due to be completed in the
early years of the 21st century {71-72).

2. FNAL (Fermi National Accelerator Laboratory)

also called FERMILAB, centre for particle-physics research located at Batavia, Illions in
USA, about 43 km west of Chicago. The laboratory is named after the Italian-American
physicist Enrico Fermi, who headed the team that first achieved a controlled nuclear
reaction. The facility is operated for the United States Department of Energy by the
Universities Research Association, a consortium of American and Canadian institutions.
The major components of Fermilab are two large particle accelerators called proton
synchrotrons, configured in the form of a ring with a circumference of 6.3 km. The first,
which went into operation in 1972, is capable of accelerating particles to 400 billion
electron volts. The second. called the Tevatron, is installed below the first and
incorporates more powerful superconducting magnets; it can accelerate particles to 1
trillion electron volts. The older instrument, operating at lower energy levels, now is used
as an injector for the Tevatron. The high-energy beams of particles (notably muons and
neutrinos) produced at the laboratory, have been used to study the structure of protons in
terms of their most fundamental components, the quarks. In 1977 a team led by Leon
Lederman discovered the upsilon meson, which revealed the existence of the bottom
quark and its accompanying antiquark. Since 1987 the Tevatron also has operated as a

proton-antiproton collider and can achieve total collision energies of 2 TeV. Antiprotons

21



Studies on Hadron structure Functions and GLDAP Evolution Equations

are produced and stored in a smaller ring before being injected into the main rings for
acceleration and collision with protons circulating in the opposite direction. In 1972 a
team of scientists at Fermilab isolated the bottom quark and its associated antiquark. The
existence of the top quark. the heaviest and most clusive quark predicted by the standard

model, was established at Fermilab, and announced in March 1995 [71-73].

3. SLAC (Stanford Linear Accelerator Center)

acronym of STANFORD LINEAR ACCELERATOR CENTER is located in Stanford.
California, USA. An exemplar of post World War II Big Science, SLAC is a labofatory
for research in particle physics. It is run by Stanford University for the U.S. Department
of Energy, but used by physicists from across the United States and from other countries.
It houses the longest linear accelerator (linac) in the world-a machine 3.2 km long that
accelerates electrons up to encrgies of 50 giga electron volts. The concept of a multi-GeV
electron linac grew from the successful development of smaller electron linacs at Stanford
University, culminating in the early 1950s in a 1.2 GeV machine. In 1961 plans for the
new machine, designed to reach 20 GeV, were authorized, and the 3.2 km linac was
completed in 1966. In 1968 experiments at SLAC found the first direct evidence for
further structure (i.e., quarks) inside protons and neutrons. As early as 1961, design work
began for an additional machine at SLAC, an electron-positron collider called SPEAR
(Stanford Positron-Electron Asymmetric Rings). Construction did not begin until 1970,
but the machine was completed within two years, producing collisions at energies of 2.5
GeV per beam. In 1974 SPEAR was upgraded to reach 4.0 GeV per beam, and physicists
working with it soon discovered a new type of quark, which became known as charm, and
a new, heavy leptons relative of the clectron, called the tau. SPEAR was followed by a
larger, higher-energy colliding-beam machine, the PEP (Positron-Electron Project), which
began operation in 1980 and took electron-positron collisions to a total energy of 36 GeV.
The SLAC Linear Collider (SLC) was completed in 1987. SLC uses the original linac,
upgraded to reach 50 GeV, to accelerate electrons and positrons before sending them in
opposite directions around a 600-metre loop, where they collide at a total energy of 100
GeV. This is sufficient to produce the Z particle, the neutral carrier of the weak nuclear

force that acts on fundamental particles [71-73].
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4, DESY (Deutsches Elektronen-Synchrotron)

byname of DEUTSCHES ELEKTRONEN-SYNCHROTRON, English German
ELECTRON-SYNCHROTRON, the largest centre for particle-physics research in
Germany, is located in Hamburg. DESY is funded jointy by the German federal
government and the city of Hamburg; in addition, scientists from other countries who
participate in the experiments there donate equipments. The laboratory was founded in
1959, when construction began on an electron synchrotron, which was completed in 1964
and eventually could generate an energy level of 7.4 billion electron-volts. The Double
Ring Storage Facility (DORIS) was completed 10 years later and was capable of colliding
beams of electrons and positrons at 3.5 GeV per beam; in 1978 its power was upgraded to
5 GeV per bcam. DORIS is no longer used as a collider, but its electron beam provides
synchrotron radiation (mainly at X-ray and ultraviolet wavelengths) for experiments on a
variety of materials. A larger collider capable of reaching 19 GeV per bcam, the Positron-
Electron Tandem Ring Accelerator (PETRA), began operation in 1978. Experiments with
PETRA in the following year gave the first direct evidence of the existence of gluons, the
particles that carry the strong force between quarks. The laboratory's newest facility,
completed in 1992, is the Hadron-Electron Ring Accelerator (HERA), the first machine
capable of colliding electrons and protons. HERA consists of two rings in a single tunnel
with a circumf{erence of 6.3 ki, one ring accelerates electrons to 30 GeV and the other

protons to 820 GeV. It is being used to continue the study of quarks [71-73].

5. KEK (Koh - Ene - Ken)

stands for ‘KOH-ENE-KEN, an abbreviation for a Japanese name of NATIONAL
LABORATORY FOR HIGIH ENERGY PHYSICS. The High Energy Accelerator
Research Organization (KEK) facilitates a wide range of research programs based on
high-energy accelerators for users from universities. Both proton accelerators and
electron/positron accelerators, including storage rings and colliders, are in operation to
support various activities, ranging from particle physics to structure biology. Besides the
operation of thesc accclerators, the laboratory began construction work of newly
approved high-intensity proton accelerators in collaboration with Japan Atomic Energy
Research Institute for the future development of current research activities. KEK is one of
the fourteen Inter-University Research Institutes belonging to MECSST (Ministry of

Education, Culture, Sports, Science and Technology). It consists of two rescarch
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institutes. Institute of Particle and Nuclear Studies (IPNS) and Institute of Materials
Structure Scicnce (IMSS), and two laboratorics, Accelerator Laboratory and Applied
Research Laboratory, as well as the Engineering Department and the Administration
Bureau. IPNS carries out research programs in particle physics and nuclear physics. The
Belle collaboration at the KEK B-factory was highlighted by its observation of the CP
violation of B-mesons. While most of these experiments are being carried out by
international collaborations. international cooperation at oversea institutions is also an
important activity of the institute in order to expand the research frontiers for the
university staff. The theory group continued activities in fundamental field theory,
particle and nuclear phenomenological theory, and computational physics. IMSS offers
three types of probes for rescarch programs in material science. The photon factory
operates two storage rings for synchrotron radiation, the 2.5 GeV ring with 61
experimental stations and the new 6.5 GeV ring with 6 stations, which was used to be the
positron accumulator ring for TRISTAN in former days but was converted to a
synchrotron radiation ring. The new ring has a unique capability for single-bunch
operation. The Accelerator Laboratory achieved an outstanding success in operating and
improving the running accelerators, in designing and constructing the new High Intensity
Proton Accelerator (HIPA) project and in pushing R & D work for the future linear-
collider project. The luminosity of the KEKB electron-positron collider was steadily
improved and its own world-record was kept being renewed. The 8 GeV electron linac
was operated cextremely efficiently, while providing beams periodically into 3 facilities:
KEKB and the 2 SR rings. The Applied Research Laboratory, which has four research
centers (Radiation Science Center, Computing Research Center, Cryogenics Science
Center and Mechanical Engineering Center), provide basic technical support for all KEK
activitics with their high-level technologics. In addition to basic support tasks, they also
played key roles in front-end programs. One year has already past since KEK became an
Inter-University Research Institute Corporation. In 2004, they focused on the construction
of the crab cavity which doubles the performance of KEKB electron-positron collider. By

the early spring in 2006, they will construct the two crab cavities, which will bring further

improvements on KEKB performance [74].

6. VECC (Variable Energy Cyclotron Centre)

acronym of VARIABLE ENERGY CYCLOTRON CENTRE located in Kolkata, India is
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a national centre for accelerator based research. The variable energy cyclotron (VEC) set
up here is used for rescarch in nuclear scicnces, condensed matter physics, accclerator
physics. computer science and theoretical physics. Operated by the Department of Atomic
Energy (DAE), the centrc houscs the variable-energy cyclotron built in 1978 and is
building a KV500 super conducting cyclotron in conjunction with Bhabha Atomic
Research Centre (BARC). VECC is also a major producer of accelerator-generated
radioisotopes. The centre is setting up a Superconducting Cyclotron and a Radioactive
Ion Beam Facility. VECC is used to conduct primarily peaceful scientific research but the
facility's cyclotrons have potential for weapons-related research. In VECC, the production
of exotic nuclei in deep inelastic collisions and structure of proton halo nuclei ‘were
studied. The effectiveness of stochastic resonances in enhancement of signals over the
noise was investigated with interesting results. Relativistic Mean Field theory was used to
investigate shape transitions and liquid to gas phase transitions in nuclei. An accurate
description of fission width of nuclei using the Longevin dynamics was obtained. The
year 2001-2002 marked a major advance towards the global recognition of the Indian
built Photon Multiplicity Detector (PMD) in the STAR Experiment at the Relativistic
Heavy lon Collider (RHIC) at Brookhaven national Laboratory (USA) and the signing of
the MoU with BNL. The STAR PMD, a smaller version of the PMD detector for the
ALICE Project at CERN LHC, was installed in September-October, 2002. Fabrication of
the detector is in progress at VECC [75].0]

25



Studies on Hadron Structure Functions and GLDAP Evolution Equations

Chapter-2

COMPLETE AND PARTICULAR SOLUTIONS OF FIRST
ORDER LINEAR PARTIAL DIFFERENTIAL EQUATIONS

We solve GLDAP evolution equations to obtain ¢ and x distributions of various structure
functions using Taylor expansion method. For these, we use method of solution of first
order linear partial differential equation to obtain complete and particular solutions, and
for x evolutions we use numerical integration. In this chapter, we explain different

methods, which are used to obtain the results of our works.

2.1. Taylor Expansion Method

If a function fis such that
(1) the (n-1)th derivative f"'l is continuous in [a, a + 4],

(ii) the nth derivative " existsin Ja, a + h[, and
(ii1) p is a given positive integer,
then there exists at least one number, 6, between 0.and 1 [76-77] such that

n—-1 n—-p

) ’ o h n-1
f(a+h)—f(a)+/1f(a)+—27f(a)+ ------ +(—nji;f (")+(n-1)!p

" (a+h). @2.1)

The condition (i) implies the continuity of £, £, f" ooco....... f " in [a, a + h]. Let a
function @ be defined by

(@th=s) o, Jlarh=x"!

2' = @+ Aa+h-xP,

Ax)=f(x)+(a+h—-x)(x)+

where A is a constant to be determined such that @(a) = @(a + k). Thus 4 is given by

/ ) 2 . n-1 e
f(a+h):f(a)+hf(a)+é!~f (a)+....... +Z’:’_—1)'f '(a) + an? (2.2)
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The function @ is continuous in [a, a + k], derivable in }a,a + h [ and @ (a) = @ (a + h).
Hence, by Rolle’s Theorem [76], there exists at least one number, 6, between 0 and 1

such that @’(a+6h) = 0. But,

(a+h-x)""

D'(x) = f7(x) = pA(a+h—-x)P"",
(n-1)!
n-1 _ n-—1
0=@'(a+0h)= L ((1 1‘;‘) f"(a+0h)- pA(1-0)P " 'hP-!,
n — )
n-p _ n—p
= A=h (1-9) Sf"(a+ 6h), for 1-60)+0 and h=0.

p(n—-1)!

Substituting the value of 4 in (2.2), we get the required result (2.1).

Let x be a point of the interval [a, a + h]. Let f satisfy the condition of Taylor’s theorem
in [a, a + h] so that it satisfies the conditions for [a, x] also. Changing a + A to x that is, 4

to x —a, in (2.1) we obtain

— )2 N3
fx)=fla)+(x-a)f '(x)+—(x—5,i)—f”(x)+——*(x 3,") FO) + ot
n—1 n N
%fﬂ_l(xﬂ <x—c2(’<11_—14)9!) : fMla+0(x-a)],0<h<1.

The remainder after n terms can thus written as

R - Gm@"1-0)""
plin=1)1]

17,

where, ¢ lies between a and x, and depends on the sefection of x. We have seen that
n-1

2
f(a+h)=f(a)+hf’(a)+%'—f”(a)+ ....... +—h-—f""(a)+R,,.
! (n~1)!

The result can be interpreted in two ways:

(i) The value f'(a + h) of the function at a point may be approximated by a summation of

the terms like (K1) f" (a) involving values of the function and its derivatives at some

other point of the domain of definition, and

(ii) The value f(a + h) of the function may be expanded in powers of A.
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Here we use Taylor expansion method for solving GLDAP evolution equation in leading

order and next-to-leading order.

2.2. Complete and Particular Solutions of First Order Linear Partial

Differential Equations

The standard form of linear partial differential equation of first order [78-80] involving x

and y as independent variables and z as dependent variable is

Pp+ Qg =R, 2.3)
where P, O, R are functions of x, y, z and p = 0z/0x, q = 0z/0y. We have seen that
Lagrange’s method [78-82] of solving a linear partial differential equation of the first
order leads to the general intcgral

o U, V)=0, (2.4)
where @ is an arbitrary function of the arguments U(x, y, z) and (x, y,z)and U=aqa, V =

b are two independent integrals of the subsidiary equations

dc _dy dz
P O R

=

(2.5)

In some instances, we can deal with particular solutions more conveniently than with the
general integral. The most important type of particular solution obtainable from the
general integral is that containing two arbitrary constants, say a« and 4. Such a solution

[81] of equation (2.3) may be denoted by

f( X, ), Z, a4, /}):O~ (26)
which is called a complete integral.

If U=« and V' = b are two independent solutions of the subsidiary equation (2.5), then the

complete integral [80-81] may be taken as
V= al + f. 2.7)

Because, since U and V separately satisfy equation (2.3), then equation (2.7) will be a
solution and since equation (2.7) contains two arbitrary constants a and f, it is a complete
integral. Complete solution (2.7) represents a two parameter family of surfaces which
does not have an envelope, since the arbitrary constants enter linearly [80].

Differentiating equation (2.7) with respect to  we get 0 = 1, which is absurd. Hence there
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is no singular solution. From this two-parameter family of surfaces, select a one-
parameter family by setting /8- g (@), where g is a given function of a. Then

V=alU+ g (a). (2.8)
This relation gives a solution of the partial differential equation (2.3) and the surfaces

(2.8) will in general possess an envelope. If we differentiate equation (2.8) with respect to

a we get
0=U+g (@. 29

From equation (2.9), a may usually be obtained in terms of U, and inserting this value of

a in equation (2.8) we fined a relation
V=) (2.10)

which is merely a particular solution of the general solution @ (U, V) = 0 and it will
satisfy the Lagrange’s cquation (2.3). So it does not [urnish us with a new solution. Thus
situation here is different from that of ordinary differential equation. In case of ordinary
differential equation of first order, the envelope, when it exists in a one parameter family
of curves (or surfaces), gives a singular solution which is not a part of the general

solution.

It is to be noted that when /3 is an arbitrary function of a, then the climination of a in
equation (2.8) and (2.9) is not possible. Thus the general solution can not be obtained
from the complete solution [80-81]. Actually, the general solution of a linear partial
differential equation of order onc is the totality of envelopes of all one parameter families
(2.8) obtained from a complete solution. We use this method to obtain 7 and x-evolutions

of structure functions.

2.3. Numerical Integration

In applied mathematics, the solution of problems generally consists of numbers which
satisly some kind of equation. Theoretically these numbers may be specified by the
equation; but in practice, it is found that even in the simplest cases it is not possible to
write down an exact decimal rcpresentative of the solution. Numerical methods are very
important tools to provide practical methods for calculating the .solutions of problems in

applied mathematics to a desired degree of accuracy. The wide use of electronic
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computers for solving problems in various fields of engineering, scientific, industry etc.
has further enhanced the scope of numerical mcthods. Before doing discussion about

numerical integration, it is necessary to know differences, interpolation and interpolation

formula.

Differences: If y,, yi, V2o ovvvvennn , ¥a denote a sct of any function y (x), then yy — yo, 32
= Pl ceereannenns , ¥n — Vo are called the first differences of the function y [83-85]. Denoting
these differences by dye, 4y, onvvoe i , dy,. The differences of first differences are called

second differences. Denoting them by 4%y, A%y, ete. we have 4%y, = Ay, — Ay, A4y =4y
~ 4y, etc. In like manner, the third differences are A3y0= A2y| —Azyo_ A3y| = Azyz —A2y|

etc.

Interpolation and interpolation formula: Interpolation means insertion or filling up
intermediate terms of a series. It is the technique of estimating the value of a function for
any intermediate value of the independent variable when the values of the function
corresponding to a number of the values of the variable are given. Let y = f{x) be a
function given by the values yq, y1, Y2, «oovivvvvennn , ¥» which it takes for the values x,, xi,
X2y e , x, of the independent variable x respectively, and let @(x) denote an
arbitrary simpler function so constructed that it takes the same values as f(x) for the
values Xo, X1, X2, cooevrienn.. , X, Then if f{x) is replaced by @(x) over a given interval, the
process constitutes interpolation, and the function @(x) is a formula of interpolation [83-

85).

Numerical integration: It is the process of computing the value of a definite integral from a
set of numerical values of the integrand. When applied to the integration of a function of
a single variable, the process is sometimes called mechanical quadrature; when applied to
the computation of a double integral of a function of two independent variables it is called
mechanical cubature. The problem of numerical integration is solved by representing
integrand by an interpolation formula and then integrating this formula between the
desired limits. We have a variety of quadrature formulas [83-85], like General quadrature
formula, The Trapezoidal rule, Simpson’s one — third rule, Simp’son’s three — eight rule,

Weddle’s rule, Cotes method. The Euler — Maclaurin’s, Summation and Quadrature
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formula, The central Difference Quadrature formula, Gauss’s Quadrature formula,
Labatto’s formula, TchebychelT's formula, Prisomoidal formula (Special and oldest
form of Simpson's rule.) ctc. We shall now mention some quadrature formulas as an

example,

General quadrature formula for equidistant ordinates: Let us consider a function y = [ (x).

We interpolate y by a Newton’s forwarded interpolation formula as

D(x)=y,+udy,+

B D2
u(uz‘ D e Yo+ u-NHu-2) g Yot oreens 2.11)

2! ’
where u = (x-xo)/h and du = (1/h)dx. Now, we integrate (2.11) over n equidistant
intervals of width 4 (= 4x). The limits of integfation for x are x, and x, + nh. Therefore,

the corresponding limits for « are 0 and n. We now have,

x, x,+nh
I ydx = I ydx

X X

0 Q

n
= Ih[ YV, +udy, + 3

(4]

u(u '~ 1) Ay u(u - 1)'(“ ~2) AB)’o F oo Ja’u

I 0? 1w u?r o, TR TR TR "
=/ Yy (A b —(— -+ Ay o+
g+ iy + 5 (G =Sy, + 5 (m == =)y, .
2 3 2 4 3 3
n n n 2 n n no 3
=hny,+—4d, +(— )4y, +(———+—)A y, +.... 2.12
Lyo 5 Vo (6 4) Yo (24 s 6) Yo } (2.12)

This is called general quadrature formula [83-85}. From this general formula we can
obtain a variety of quadrature formulas by putting n = 1, 2, 3..... etc. The best two are

found by putting » =2 and n = 6.

Simpson’s one - third rule: Putting 7 = 2 in cquation (2.12) and neglecting all differences

above the second. we get

x,+2h

2
jydx = I{Zyo + 24y, + (2—— 2)5‘_)’2_}

X,
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2
8 A%y,
- /z{zy{, + 24y, + (~3—— 2)————-—3‘ }

1
= 11[2)/,, +2y, -2y, + g()’z =2y + Y, )}

Vo + 4y + ¥, ]

W | 3

For the next two intervals from x; to x; + 24 we get in like manner

xy3+2h h
_[ydx = ‘3‘[)’2 +dys+ ).
X2

Similarly for the third pair of intervals we have -

X4 +2h

F
jydx = —31'[)/4 +4ys+ y6]: and so on. Adding all such expressions as these {rom

X4

Xo to x,, Where n is even, we get

Xo+nh

’l .
J‘ydx=§[y0 Hayptyy +yy + Ay Hyy Hys HAYs Hye b ]

o

Therefore,

Xg+nh

/
jydx = '31[)0 4y + Y3t y,)+ 2y +y4 + o +Ypo2) yn]

:_b’0+2(J’|+y3+ ----- +)’,,-1)+2(y|+Y2+Y3+YA+ ------ +yn—|)+yn]'

This formula is known as Simpson’s one third rule and we use this formula to obtain x

evolution of structure functions in leading and next-to-leading orders.

Weddle’s rule: Putting » = 6 in cquation (2.12) and neglecting all differences above the

sixth, we have

e 123 33 41
Iydx = /7[6))0 +184y, + 27A2y0 + 24A3y0 +—1b—A4y0 +1—6—A5y0 +1—4—O—A(’yOJ.

X

i
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Suppose & is chosen in such a way that (4/140) A%y is negligible. The (41/140) A%y is
replaced by (3/10) A%ypand thus we have

1, tOh
Iydx—~bo +5p) + Yy +0y3 + yq +5ps + 6.

Xo

For the next set of six intervals from x4 10 x5, we get in the same way

X1
3h
fydx = ——10 [y6 +5y, +yg +06¥Y9+ Yo +IV+ V12 ]and so on. Adding all such

X6

expressions as these from x, to x., where n is now a multiple of six, we get

/
XTyI [ Yo + 59 + Yy + 6y + Y4 +5ys +2y6 +5y7 + vg +6J’9+)’10+53’n}
10 +2y19+ 42V, 6+ 5+ Y, 4 0V, 3+Y, 2 +5Y,1 +V,

This formula is known as Weddle’s rule. It requires at least seven consecutive values of

the function.n)
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Chapter-3

t AND x-EVOLUTIONS OF GLDAP EVOLUTION
EQUATIONS IN LEADING ORDER

In this chapter, we obtain particular solutions of Gribov—-Lipatov—Dokshitzer—Altarelli—
Parisi (GLDAP) [29-32] evolution equations computed from complete solutiofis in
leading order (LO) at low-x and thereby we obtain ¢ and x-evolutions for singlet and non-
singlet structure functions and hence {-evolutions of deuteron, proton, neutron, difference
and ratio of proton and neutron slrﬁcture functions and x-evolutions of deuteron structure
functions. In calculating structure functions, input data points have been taken from
experimental data directly unlike the usual practice of using an input distribution function
introduced by hand. Results of proton and neutron structure functions are compared with
the HERA low-x low-(? data and those of deuteron structure functions are compared with
the NMC low-x low-Q* data. Comparisons are also made with the results of earlier
approximated solutions [86-88] of GLDAP evolution equations. We also compare our

results of f-evolution of proton structure functions with a recent global parameterization.

3.1. Theory

The GLDAP evolution equations in LO for singlet and non-singlet structure functions in

the standard forms are (89|

ans (x.1)

A
_t 3+ 4n(l - .\‘)}FS (x.0)+ 18 (x.0)+ /5 (.\',1) =0 3.1
ot d 2 ! 2

and

NS
OF, ™ (x,0) Ay
ot -

where
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rS=2f chy {(1 12 )1«';' (xAv)-20% (.\-,1)}, (3.3)

1w

!

Ig(x,t) %N !{1 +(1- “,2}5 XA, dw (3.4
and
]
IINS(x,t)—ZJ:{ {(Hu?)FzNS(x/w )-2F)"(x, z)} (3.5)
-w

Here, ( = In(Q%A%) and A, = 4/(33-2N)), N, being the number of flavours and 4 is the
QCD cut off parameter.

Let us introduce the variable u = 1-w and note that [90]

Yo X e Suk, (3.6)
wol-u 2

The series (3.6) is convergent for |u| < 1. Since x <w <1, s0 0 < u < 1-x and hence the
convergence criterion is satisfied. Now, using Taylor expansion method [80] we can

rewrite G (x/w, () as

oD
G(x/w,t)= G[x + X Zuk./J
k=1

= Glx, 1)+ xiuk Q(—;S}—L (iu ) L(xt) ..... ’ (3.7)

k=t Ox o’

which covers the whole range of u, 0 < u < I—-x. Since x is small in our region of
discussion. the terms containing x* and higher powers of x can be neglected [86-88, 91-

93] and G(x/w, t) can be approximated for small-x as

Glx/w,t)=Gx,1)+ x guka—(](—\—{) (3.8)
k=1 0Ox

Similarly. F2 (x/Av. 1) and F>"5(x/w. 1) can be approximated for small-x as

Dk ﬁf;‘(\ I)

FY(xiwa)= 15 (xa) v vy 2= (3.9)
- k= Ox
and
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NS
o g OFy " (x1)
FzNS(x/w,{) NS (.0} x L ”k‘—- —a—ﬁ - 3.10)
X

Using equations (3.8), (3.9) and (3.10) in equations (3.3), (3.4) and (3.5) and performing

u-integrations we get

S
1 =0 -x)x+ 3)}F§(x,z)+[2x|11(l/x)+x(l _xz)]iF_zaii’_), (3.11)

I‘zg :Nfli%(l—x 2—x+2x2)qx,t)+{—%x(l—x{S—4x+2\:2)+§xhﬂ/x)}acg’t)jl (3.12)

and
. NS
AFV (x, 1
s - (1= xXx+3)E NS(r,t)+ [2xln(1/x)+ x(l —xzﬂ——z—a—(L) . (3.13)
X
Now using equations (3.11) and (3.12) in equation (3.1) we have,
oFS (1) Ay g ar3) (x.1) 0G(x,1)
—2 7 L A)FY (x,1)+ B2 ¢ (0G(x, 1)+ D(x ) =0. (3.14)
ot { Ox Ox
Let us assume for simplicity [86-88]
G(x, )= K(x) F>° (x. 1), (3.15)
where K(x) is a function of x. Then equation (3.14) gives
S S
oFy (x,t) Ay OF3 (x,1
2 )——L[L(.\')Fzs(x,t)JrM(x)———zﬁ——z]:o, (3.16)
&t t Ox
where

A(x) =3 +41In (1=x) — (1-=x) (3 + x),
B(x)=x (1=x%) + 2x In (1/ x),

C(x) = (1/2) Ny (1-x) (2-x+2x%),

D(x) = Npx [(1/2) (1=x) (5-4x+2x%) + (3/2) In (1/ x),

oK(x) and
.\’

L(x)=A(x)+ K{x)C(x)+ D{x)—
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M(x) = B(x) + K(x) D(x).

Secondly using equation (3.13) in equation (3.2) we have

NS A AN
oF x.! + ol x,!
2 (Y ) . ,f l)(x)]"zNS (—\.’ l)+ Q(x) 2 (“_2 = 0’ (3' l 7)
ot ! Ox
where

Px)=3+4In(1-x) - (1-x) (x+3) and O(x) = x (1-x*) <2x Inx.
The general solutions of equations (3.106) is |80-81] F (U, V) = 0, where F is an arbitrary

function and U(x, ¢, F° 25) =C; and Wx, 1, F°) = C, form a solution of equations

dx __dt _ sz‘g(x,t? _ (3.18)
APM(x) -1y /L(x)qu (x,0)

Solving equation (3.18) we obtain,

1 1 L(x)
U(x,t, Fﬁg ) = tex{A—f J Mo dx} and V(x, t, Fés ) = Fig (x,1) ex{ jX/f—ngx}

If U and V are two independent solutions of equation (3.18) and if « and S are arbitrary
constants, then V = aU + f# may be taken as a complete solution of equation (3.17). We
take this form as this is the simplest form of a complete solution which contains both the
arbitrary constants a and /3. Earlier few papers [86-88] considered a solution AU + BV =
0, where 4 and B are arbitrary constants. But that is not a complete solution having both
the arbitrary constants as this equation can be transformed to the form V' = CU, where C =

-A/B, i.e., the equation contains only one arbitrary constant. Now the complete solution
[80-81)

S L(x) 1 ¢ 1
F9 (5 Y x| = —
2(r,t)eXpl:J-M(x)dv} of ex yy IM(x)dx}t,B (3.19)

is a two-parameter family of surfaces, which does not have an envelope, since the
arbitrary constants enter linearly [80]. Diffcrentiating equation (3.19) with respect to § we
get 0 = 1. which is absurd. Hence there is no singular solution. The one parameter family

determined by taking # = a* has equation
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S (x) I I 2
F — Ix . 3.20
I)L\Y{J./ M(x) d\jl \p[/'/ JM(.\')( \]+a ( )

Differentiating cquation (3.20) with respect to a, we get

az—ltex —I—I 1 dx |,
2 Ay M(x)

Putting the value of a in equation (3.20), we obtain the envelope

S, _ 1, 2w
Fy (xt) == ex;{ j(A/M(x) M(X)de}, (3.21)

which is merely a particular solution of the general solution. Unlike the case of ordinary

differential equations, the envelope is not a new locus. It is to be noted that when £ is an
arbitrary function of «. then the elimination of a in cquation (3.20) is not possible. Thus
the general solution can not be obtained from the complete solution [81]. Actually, the
general solution of a linear partial differential equation of order one is the totality of

envelopes of all one parameter families (3.21) obtained from a complete solution.

Now, defining

S P 2 L(x)
Fy (x,th)=——t; ex - dx |,
2 (x O) 40 expli.‘.{ A M (x) M(x)j :,

at 1 =ty where, fo= In (Qy/4%) at any lower value of 0 = Oy, we get from equation (3.21)

2
3 (x,0) = 73 (x, Io{ttoJ , (3.22)

which gives the r-evolution of singlet structure function Fo (x. 1). Proceeding exactly in

the same way, and defining

NS 1 2 2 P(x)
Fi¥S (x.10) == —18 ex
2 )=yl e"p{f(Ame Q@))d} Heee

o)
Fa

M ()= BPS ( ,:O{LJ , (3.23)

10
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. . . . . . . NS, .
which gives the r-evolution of non-singlet structure function /7°(x, /).

Again defining

S I 5 2 L(x) |
F A0 == ¢ - d. s
Y (xgst) 2 t e‘(p(i I( A M) M(x)J x:lxzxo

x = xp, we obtain from equation (3.21)

S S 2 L(x) _
F s = F - 9t ‘ - d N 324
2 (0= Fy (xg,)exp j[AfM(x) M(x)] * (3.24)

X

which gives the x-evolution of singlet structure function F>%(x, 1). Similarly defining

NS P 2 P(x)
- L _ d ,
S (xg.0) p t exp[ _‘{AfQ(x) Q(x)} x}xﬂo

we get

NS NS 2 P(x) )
F2 (x,t)=F2 (xO,t)cxp J‘[AfQ(x)#Q(x)]dx , (3.25)

X0 X=Xq

which gives the x-evolution of non-singlet structure function Y, 0.

Deuteron, proton and neutron structure functions measured in deep inelastic electro-
production can be written 7] in terms of singlet and non-singlet quark distribution

functions in leading order as

FAx, )= (519) I (x, 1), (3.26)
FP (e, 1) = (5/18) I5°(x, 1) + (3/18) F2™ (x, 1), (3.27)
F"(x, 1) = (5/18) FY’(x, 1) = (3/18) " (x, 1) (3.28)
and

FP(x, 1) = F"(x, 1) = (1/3) Fo™S (x, ). (3.29)

Now using equations (3.22) and (3.24) in equation (3.26) we will get 1 and x-evolutions of
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deuteron structure function /5%(x. 1) at low-x as

o

B ()= FYf (x,IO{LI (3.30)
10
and
d _d y 2 L(x)
F5t (x,1) = Ff' (xg.1) exp I(AfM(x)_M(x)}dx , (3.31)
Xp

where the input functions are

The corresponding results for a particular solutions {rom the linear combination of U and
V of general solutions F (U, V) = 0 of GLDAP evolution equations obtained earlier [86-
88] are

FSl (x.0)= (x,to{é) (3.32)
and

X 1 L
FS (x,0) = F§ (xgo1) exp j[ RTEn M(();)))dx . (3.33)

These were obtained by taking arbitrary lincar combination AU + BV = 0 of general

solution " (U, V) = 0, where A and B are two arbitrary constants as discussed earlier.

Similarly using equations (3.22) and (3.23) in equations (3.27), (3.28) and (3.29) we get
the r-evolutions of proton, neutron, and difference and ratio of proton and neutron

structure functions at low-x as

N2
F,,p(.r,t):F,,p(x,IO{L] : (3.34)
2 2 p
2
an(x.l):an(x,Io{L) , (3.35)
0
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2
P ’ b
F (x,0) = 15 () = |1 () = 1 (X”O){T] (3.30)
0
and
x, 1
FR(.0) FE(xty) R0, 337

F’zl(x,’) [;'g()s’())

where R(x) is a constant for fixed-x. Here the input functions are

5 3 n 5 S 3 NS
Fg(xot())z.l_s—Fg(x’tO)_‘_EF"]ZVS(X’IO):! Fz(x’lo)z_l_SFz (X,to)—IgFQ (x7t0) apd

!
FR (x,19) = Fi(x,10) =;F§VS(x,t0)-

The corresponding results for earlier solutions of GLDAP evolution equations [86-88] are

Ff (x.0)= £f (. IO{;’EJ, (3.38)
(1) = FJ (x,lo(i),- (3.39)
EP (x.t) = F (x,0) = [Ff (x.1g) — FY (x,{o)][l—[(;J (3.40)
and

Ff(xv’) _ Fﬁ)(x,lo)
Fix.0)  F5(x.)

= R(x), (3.41)

where R(x) is a constant for fixed-x.

But the x-evolutions of proton and neutron structure functions like those of deuteron
structure function is not possible by this method, because to extract the x-evolutions of
proton and neutron structure functions we are to put equations (3.24) and (3.25) in
equations (3.27) and (3.28). But as the functions inside the ihtegral sign of equations

(3.24) and (3.25) are different, we need to separate the input functions 3 (xp, f) and
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F>"(xo. 1) from the data points to extract the x-cvolutions of the proton and neutron

structure [unctions, which will contain large crrors.

For the particular solution of equation (3.16), we take f§ = o’ in equation (3.19). If we take

B = a in equation (3.19) and differentiating with respect to a as before, we get

1 1
0=t exp[-;l—— IM(x) dx}+1

/

from which we can not determine the value of a. But if we take f# = &’ in equation (3.19)

and differentiating with respect to a, we get

1 1 1 _
o= _[——texp|— dx
3 A, < M(x)

which is imaginary. Putting this value of « in equation (3.19) we get ultimately

1/2 3/2
FzS(x-f)=t3/2{(—lJ +(—1J }exp“( 3/2 L) }dx
3 3 ApM(x) M(x)

Now, defining

S 3/2 1" ( 1)3/2 3/2 L(x)
F2 (x,tp) = = 2 : _ i,
5 (x,89) =1y {( 3) + 3 exp AME) M) dx

we get,

3/2
{
Fés(x,t)= is(x,to{g) .

Proceeding exactly in the same way we get for non-singlet structure function also

3/2
/! t
FzNS (x‘l): in\g (,\“10{7(')—) .

Then using equations (3.26). (3.27), (3.28) and (3.29) we get r-evolutions of deuteron,

proton, neutron and difference of proton and neutron structure f{unctions

3/2
d,pnp—n d,p,n {
ES P xd)=1I P X, ln] — .
2 ( ) 2 ( 0 o

42



Studies on Hadron Structure Functions and GLDAP Evolution Equations

Proceeding in the same way we get x-evolutions of deuteron structure function

d o ado o (32 1),
Fp (o) = Fy (xg. ) exp J‘(AA,-M(.\') M (x) !

Yo

But the determination of x-evolutions of proton and neutron structure functions like those

of deuteron structure function is not possible by this method as discussed earlier.

4

Proceeding exactly in the same way we can show that if we take f# = a” we get

4/3
~d,p.n,p— ~d,p.n [
2 fark n(xJ): l'?f ! (x”(){’w()—]

and

p L d o413 L)
F3 (x0) = Ff (xg,0)exp| | AM(x) M(x)

Xy
and so on. So in general, if we take S = ", we get

yi(y-1
Fd,py"l,!)“" n(x,[): Fd,p,i‘l,])-n(x’lo{;f_
0

and

d, \_pd Hr/y-1) L)
Fy (0= F3 (xg,t)exp J RS

which are -evolutions of deuteron, proton, neutron and difference of proton and neutron
structure functions and x-evolution of deutcron structure function for f = «”. We observe

that if y — oo (very large), y/(y—1) —1.

Thus we observe that if we take # = a in equation (3.19) we can not obtain the value of «
and also the required solution. But if we take ff = «%, . &', «..... and so on, we see that
the powers of (#/1y) in r-evolutions of deuteron, proton, neutron and difference of proton
and neutron structure functions are 2, 3/2, 4/3, 5/4....and so on respectively as discussed

above. Similarly, for x-evolutions of deuteron structure functions, we see that the
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numerators of the first term inside the integral sign are 2, 3/2, 4/3, 5/4....and so on
respectively for the same values of a. We observe that if in the relation f = &', y varies
between 2 to a maximum value, the powers of (¢/1y) and the numerators of the first term in
the integral sign vary between 2 to 1. Then it is understood that the solutions of equations
(3.16) and (3.17) obtained by this method are not unique and so the t-evolutions of
deuteron, proton and neutron structure functions, and x- evolution of deuteron structure
function obtained by this methodology are not unique. Thus by this methodology, instead
of having a single solution we arrive a band of solutions, of course the range for these

solutions is reasonably narrow.

3.2. Results and Discussion

We compare our results of f-cvolutions of deuteron, proton, neutron and difference and
ratio of proton and neutron structure functions from equations (3.30), (3.34), (3.35),
(3.36) and (3.37) respectively with the HERA and NMC low-x, low-Q2 data [94-95]. Here
proton structure functions I5’(x, (%, z) measured in the range 2 < 0* < 50 GeV?, 0.73 < z
< (.88 and neutron structure functions /3"(x, Q% z) measured in the range 2 < Q2 <50
GeV?, 0.3 < z<0.9 have been used. Morcover here 7 < 200 MeV, where Py is the
transverse momentum of the f{inal state baryon and z = 1-q.(p-p) / (g . p), where p, q are
the four momenta of the incident proton and the exchanged vector boson coupling to the
positron and p' is the four-momentum of the final state baryon. And also we compare our
results of {-evolution of proton structure functions with a recent global parameterization
[96]. This parameterization includes data from HI, ZEUS, NMC, E665 experiment [95,
97-102]. Though we compare our results with y = 2 in ff§ = o relation with data, our
results with y maximum, which are equivalent to earlier results of approximate solutions
[86-88] are equally valid. For r-evolutions of deuteron, proton, neutron and difference of
proton and neutron structure functions, the results will be the range bounded by the
curves for y = 2 and y = maximum (= infinity). But for x- evolutions of deuteron structure

functions, both results have not any significant difference.

In figure 3.1. we present our results of r~evolutions of deuteron structure functions F>¢
(solid lines) for the representative values of x given in the figure for y = 2 in the f = o

relation. Data points at lowest-Q* values in the figure are taken as inputs to test the
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evolution equation (3.30). Agrcement is found to be good. In the same figure, we also
plot the results of r-evolutions of deuteron structure functions 1! (dashed lines) for y
maximum in the # = ¢' relation. The results of approximate solution [86-88] from
equation (3.32) of GLDAP evolutton equations are similar to that of our LO results for y

maximum in 8 = & relation. We observe that the LO results for y = 2 are of better

1.6
12 | FT - - 2
x =0.0348
x =0.0125
. $
L 0.8 F
x = 0.0080
04 k x = 0.0045
0 V1 'Y
0 5 10 15
Q*(GeV?)

Fig.3.1: t-Evolution of deuteron structure functions in leading order.

agreement with experimental data in general. For convenience, value of each data point is
increased by adding 0.2/, where i = 0, 1, 2, 3... are the numberings of curves counting

from the bottom of the lowermost curve as the 0-th order.
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In figure 3.2, we present our results of 1-evolutions of proton structure functions 5 (solid
lines) for the representative values of x given in the figure for y = 2. Data points at lowest-
O? values in the figure are taken as input to test the evolution equation (3.34). Agreement

is found to be excellent. In the same figure we also plot the results of /-cvolutions of

J  x=000329,z=0732 j

1.6 | x = 0.00104,z = 0.878

1.2 F

0.8

.J(-’I x = 0.00033, z = 0.878

BT x = 0.00033, z=0.829
0.4 F
x =0.00033,z=0.780
L Sl
I x =0.00033,z=0.732
0 | »
0 10 20 30

Q% (GeV?)

Fig.3.2: t-Evolution of proton structure function’ in leading order

proton structure functions F5” (dashed lines) for y maximum in 8 = @ relation. The results
of earlier approximate solution [86-88} from cquation (3.38) of GLDAP [29-32] evolution
equations are similar to that of our LO results for y maximum in the f = o relation. We
observe that the LO results for y = 2 are of belter agreement with experimental data in

general. For convenience, value of each data point is increased by adding 0.2i, where i =
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0, 1. 2., 3... are the numberings of curves counting from the bottom of the lowermost curve

as the 0-th order.

4
3 3
o
w 2
1 B
x = 0.0045
0 ! 2
1 10 100 1000
Q*(GeV?)

Fig.3.3: t-Evolution of proton structure functions in leading order .

In figure 3.3, we compare our results of r-evolutions of proton structure functions F5” with
recent global parameterization |96] (long dashed lines) for the representative values of x
given in the figures for y = 2 (solid lines) and y maximum (dashed lines) in the f = o
relation. Data points at lowest—Q2 values in the figures are taken as inputs to test the
evolution equation. Agreement is found to be good. For convenience, value of each data

point is increased by adding 0.5/, where i = 0, 1, 2, 3 ... are the numberings of curves
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counting from the bottom of the lowermost curve as the 0-th order.

F— G —§ x=0.00329
z=0.5
...._—.——-—4—-‘—-—'-'—-—'—"*‘—{ x = 0.0010
z=0.9
R e gepepepEE 3 x= 0.00104
T z=0.7

x = 0.00104
___________‘{ z=0.5

.| x =0.00104

o Yl/i/i" __________ 1 z=0.3

0.8

1.2 F
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YI/_I x = 0.00033, z = 0.03

0.4 F

O I § __]
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Fig.3.4: t-Evolution of neutron structure functions in leading order.

In figure 3.4, we present our results ol r-evolutions of neutron structure functions
F5"(solid lines) for the representative values of x given in the figure for y = 2. Data points
at lowest-Q” values in the fipure are taken as inputs to test the evolution equation (3.35).
Agreement is found to be excellent. In the same figure, we also plot the results of ¢-
evolutions of neutron structure functions /" (dashed lines) for y maximum in the g = «'
refation. The results of approximate solution [86-88] of GLDAP evolution equations are
similar to that of our LO results for y maximum in S = &' relation. We observe that the LO

results for y = 2 are of better agreement with experimental data in general. For
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convenience, value of cach data point is increased by adding 0.2, where i = 0, 1, 2, 3...

are the numberings of curves counting from the bottom of the lowermost curve as the 0-th

order.
1.2
x=0.00329
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Fig. 3.5: t-Evolution of difference of proton and neutron structure functions in leading order.

In figure 3.5, we present our results of r-evolutions of difference of proton and neutron
structure functions F5’—/%" (solid lines) for the representative values of x given in the
figure for y = 2. Data points at lowest-Q” values in the figure are taken as inputs to test the
evolution equation (3.36). Agreement is found to be excellent. In’the same figure, we also

plot the results of /-evolutions of difference of proton and neutron structure functions F5—
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" (dashed lines) for y maximum in the # = «" relation. The results ol approximate
solution [86-88] from equation (3.40) of GLDAP evolution equations are similar to that
of our LO results for y maximum in the /= «” relation. We observe that the LO results for
y = 2 are of better agreement with experimental data in general. For convenicnce, value of
each data point is increased by adding 0.4i, where i = 0, 1, 2, 3... are the numberings of

curves counting from the botom of the lowermost curve as the 0-th order.
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Fig.3.6: t-Evolution of ratio of proton and neutron structure functions in leading order.

In figure 3.6, we present our results of r-cvolutions of ratio of proton and neutron
structure functions F7/F)" (solid lines) for the representative values of x given in the

figures. Though according to our theory the ratio should be independent of ¢, due to the
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lack of sufficient amount of data and due to large error bars, a clear cut conclusion can

not be drawn.

For a quantitative analysis of x-distributions of structure functions, we calculate the

integrals that occurred in equation (3.31) using Simpson’s one — third rule for Ny = 4.

1.2
1 o M
Q%= 7GeV?
08 F
Q%= 5.5GeV?
w08 r W
lL -
Q%= 4.5GeV?
| M’
Q*=3.5GeV?
I 2 Q%= 0.75GeV?
0.2 p
K = constant
K = ax®
K = ce 9"
O | 1 ) | A 2
0 0.02 0.04 0.06 0.08 01

X

Fig.3.7: x-Evolution of deuteron neutron structure functions in leading order.

In figure 3.7, we present our results of x-distribution of deuteron structure functions /¢
for K(x) = constant (solid lines), K(x) = ax” (dashed lines) and for K(x) = ce™® (dotted
lines), where «, b, ¢ and d are constants and for representative values of Q2 given in each

figure for y = 2 in f# = ¢ relation. and compare them with NMC deuteron low-x low- 0
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data [95]. In cach curve, the data point for x-value just below 01 has been taken as input
2 (xq, 0). If we take K(x) = 4.5 in equation (3.31) then agreement of the result, with

experimental data is found to be excellent. On the other hand, if we take K(x) = ax” . then

0.5
Q%= 5.5GeV?
0.45 k
=5 |
k=4.5 \
©
N 0.4
0.35
0.3 1 '3 | [l
0 0.02 0.04 0.06 0.08 0.1

X

Fig.3.8: Sensitivity of our results for different values of 'k'.

agreement of the results with experimental data is found to be good at a = 4.5, b = 0.01.

—dx

Again if we take K(x) = ce™", then agreement of the results with experimental data is

found to be good at ¢ = 5, b = 1. We observe that there is no significant difference

y

between the results for y = 2 and y maximum value in the f = & relation. For

convenience, value of each data point is increased by adding 0.2/, where i =0, 1, 2, 3, ...
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are the numberings of curves counting from the bottom of the lowermost curve as the 0-

th order.

In figure 3.8, we present the sensitivity of our results for different constant values of K(x).
We observe that at K(x) = 4.5, agrecement of the results with experimental data is found to
be excellent. If value of K(x) is increased, the curve goes upward direction and if value of

K(x) is decreased, the curve goes downward direction, but the nature of the curve is

similar.
0.5
Q? = 7GeV?
b =.01
0.45 B
° o~ 0.4 =
VIR
0.35 p
0.3 | 1 | | | 1
0 0.02 0.04 0.06 0.08 0.1
X

Fig.3.9: Sensitivity of our results for different values of 'a’ at fixed value of ‘b'".

>

In figure 3.9, we present the sensitivity of our results for different values of ‘a’ at fixed
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value of ‘b’. Herc we take b = 0.01. We observe that at a = 4.5, agreement of the results
with experimental data is found to be excellent. If value of ‘a’ is increased, the curve goes
upward direction and if value of ‘«’ is decreased, the curve goes downward direction, but

the nature of the curve is similar.

0.5
Q*=5.5GeV?
a=45
T
045 P
¢
b=
he}
u 04 P
b=
0.35
0.3 [} [} a4 . [ ]
0 0.02 0.04 0.06 0.08 0.1

Fig.3.10: Sensitivity of our results for different values of 'b' at fixed value of ‘a’.

In figure 3.10, we present the sensitivity of our results for different values of “b” at fixed
value of ‘a@’. Here we take ¢ = 4.5. We observe that at b = 0.01, agreement of the results
with experimental data is found to be excellent. If value of ‘6’ is inCreased then the curve

y ov h ircction and if va ; is decrease 've goes upward direction.
oes downward dircction and if value of ‘b’ 1s dec d the curve goes upward direction
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But we observe that differences of the curves for b —= 0.01, 0.001 and lower values are

very small and all these curves are almost overlapped. Here also the nature of the curve is

similar,
05
Q> = 4.5GeV>
d=1
0.45 p
c=6 °
T 0.4
0.35
0 3 ] ] | ] ]
0 0.02 0.04 0.06 0.08 0.1
X

Fig.3.11: Sensitivity of our results for different values of 'c' at fixed value of 'd".

In figure 3.11, we present the sensitivity of our results for different values of ‘¢’ at fixed
value of ‘d’. Here we take d = 1. We observe that at ¢ = S, agreement of the results with
experimental data is found to be excellent. If value of ‘c’ is increased the curve goes
upward direction and if value of ‘¢’ is decreased the curve goes downward direction. But

the nature of the curve is similar.
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In figure 3.12. we present sensitivity of our results for different values of*d” at fixed value

of ‘¢’. Here we take ¢ = 5. We obsérve that at d = 1, agreement of the results with

0.45

Q? = 3.5GeV?
c=5

0.4

0.35

0-3 i | [ ] 1 i

0 0.02 0.04 0.06 0.08 0.1
X

Fig.3.12: Sensitivity of our results for different values of 'd' at fixed value of ‘c".

experimental data is found to be excellent. If value of ‘d’ is increased then the curve goes
downward direction and if value of ‘d’ is decreased the curve goes upward direction.

Here also the nature of the curve is similar.

Traditionally the GLDAP evolution provide a means of calculating the manner in which
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the parton distributions change at fixed-x as O’ varics. This change comes about because
of the various types of parton branching emission processes and the x-distributions are
modified as the initial momentum is shared among the various daughter partons.
However, the exact rate of modifications of x-distributions at ﬁxed-Q2 can not be obtained
from the GLDAP equations since it depends not only on the initial x, but also on the rate
of change of parton distributions with respect o x, d"F(x)/ dx”" (n = 1 to c0), up to infinite
order. Physically, this implies that at high-x, the parton has a large momentum fraction at
its disposal and as a result it radiates partons including gluons in innumerable ways, some
of them involving complicated QCD mechanisms. However for low-x, many of the
radiation processes will cease to occur duc to momentum constraints and the x-evolutions
get simplified. It is then possible to visualize a situation in which the modification of the
x-distribution simply depends on its initial value and its first derivative. In this simplified
situation, the GLDAP equations give information on the shapes of the x-distribution. The
clearer testing of our results of x-evolution is actually the equation (3.25) which is free
from the additional assumption equation (3.15). But non-singlet data is not sufficiently

available in low-x to test our result.

3.3. Conclusion

In this chapter, we obtain complete and particular solutions of singlet and non-singlet
structure functions at low-x using by Taylor’s expansion method from GLDAP evolution
equations and ¢ and x-evolution of singlet and non-singlet structure functions in LO.
Hence r-evolutions of deuteron, proton, neutron and difference and ratio of proton and
neutron structure functions and x-evolutions of deuteron structure functions in LO have
been calculated. These evolutions are non-unique. We compare our results with HERA,
NMC low-x low () data and a recent global parameterization. In all the result from
experimental as well as global fits, it is seen that deuteron structure functions increases
when x decreases and QO increases for fixed values of Q* and x respectively, and proton,
neutron, difference and ratio of proton and neutron structure functions increases when QO
increases for fixed value of x. It is clear from the figures that the LO results of -
evolutions for y = 2 in the relation f = &, are of betler agreement with experimental data

and parameterization in general. !
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Chapter-4

t AND x-EVOLUTIONS OF GLDAP EVOLUTION EQUATIONS
IN NEXT-TO-LEADING ORDER

In the previous chapter, particular solution of the Gribov-Lipatov-Dokshitzer-Altarelli-
Parisi (GLDAP) evolution equations [29-32] for ¢ and x-evolutions of singlet and non-
singlet structure functions in leading order (LO) at low-x have been discussed. The same
technique can be applied to the GLDAP evolution equations in next-to-leading order
(NLO) for singlet and non-singlef structure functions to obtain f-evolutions of deuteron,
proton, neutron, and difference and ratio of proton and neutron structure functions and x-
evolution of deuteron structure functions at low-x. These NLO results are compared with
the HERA H1 [94] and NMC [95] low-x, low-Q2 data and with those of particular
solution in LO and we also compare our results of f-evolution of proton structure

functions with a recent global parameterization [96].

4.1. Theory

The GLDAP evolution equations with splitting functions [103-105] for singlet and non-

singlet structure functions in NLO are in the standard forms [106-109]

aFjS(x,t) B as([)
ot 2

26+ ain(1- x)ES (x,0) 4 [ dv (1+w2)rS 2FS 2
3 T = x)pfy x, +3Jl——w +w 2(w ) 2(x,,t +ijw +1—w b( )
2
—(—ois(—t)) {(x—I)FS xt Jf(w)dw+ If(\«/)FS( )dw+.f q(w)FS( )dw}

27

5 (
+( 2”~] J’Fqg(u)o(; dew=0 4.D

and
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o (v1) (1)
or 2
2 NS 4'c dw 2\ NS ([ X NS
{—3—{3+4ln(1—x)}172 (x,t)+5j1_w{(1+w 5 (w t) F (x, t)}}
VA
—(i‘(ﬁ) [( ~)FNS (xur)+ If(w)dw ! j/(w)FNS (i,t)dw:l =0, (4.2)
2T W
where
as(t):: Az 1_ﬂ1 lznt , 'BO:?E—_%_N'__ and ’Bl =_3_0_6_—.3_81va_’
ﬁot ,80[ 3 3

Nybeing the number of flavours. Here,

Sy =CE[Pr(n)-P 4 (w)]+ lCFCA [P )+ P 4 (w)]+ CRTRN Py, (9,
Fag)=2CETRN (Fgq(w)

and
Fag#) = CETRN rFag (W) + CGTRN 1Fgg (w).

The explicit forms of higher order kernels are [103-105]

2
Pr(w) = _2(l+w }lnwln(l —w)~( 3 +2w]lnw—l(l+w)||12w—5(l-w),
I~ l—w 2

PG(W) =

I—w

2
21 1+ w 5
P ) = — —Inw—-—=|-2(1- ,
Np ™) 3(:l—w( " 3) ( W)}

2 (l+wn) _
pA(,v):{l+‘”] de—klnl—kﬁk+2(l+w)lnw+4(l w),

2 2
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1_”1 w/(l+u)

20 56
Fag(w)=—=2+6w- o w2 + (1 +5w +§w2)lnw ~(1+ w)ln2 w,
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Fc}g (w) =4 -9w—(1-dw)inw - (1- 2w)1112 w+4In(1 - w)

— I —
+[2ln2(l “)—4ln( Wj 2 2+IOJP ()
W w 3

59



Studies on Hadron Structure Fung:tions and GLDAP Evolution Equations

and

182 14 40 (136
+ 4+ w

9 Y Oy 3 - 338]111 W~4ln(l _W)—(2+8w)ln2 W

(W) =

2
218
+|: In o+ 434 Inw— 2|n2(l - w)+4In(l— W)+ n3 S Pyg (w)

1/(1+w) |-z
+2121g(—-u) J P

wi(H) z

where P (w) = w>+ (17w)%, C4=Cs =N¢ =3, Cr=(NZ~ 1Y 2Nc and Tr=1/2.

Now, using Taylor expansion method [80] and neglecting higher order terms of x as

discussed in the Chapter-3 we can write Fzs(x/w, 1), G(x/w, t)and NS/ w, f) as

@, OFY (x,1)

FzS(x/w,t)E Fzs(x,l)+ xkglu P (4.3)
G (x/w1)= G en)r v $ uk 508(;"’ (4.4)
and
NS
NS NS © k0 X,
Fy (x/wi)= gy ()45 % *F—za-x—(——) (4.5)

where u = l-w.

Using equations (4.3) and (4.4) in equation (4.1) and performing u-integrations we get,

S
6F2 (x,0) ~
ot

2 2
( .
(a;(z)/;l(xﬁ(a;;(rl)) Bl(x)} (x,0) - { ()Aj( )+ (a;:)) Bz("‘)}(’w(’\"l)_

.S
{a;m (2] 83(_)()}”2 (0 [am Jos (%(1)) B )}ao(x Do @6

V4 ox
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where

A (x) = {3+4ln( ) (x—l)(x+3)},

Ay(x) = Nf[ )(2 x+2x2)]

Ay(x) = %{x(l —x2)+ 2"'“(312)}’
A4(x) =N fx{lni —% (l —x{5—4x+2_3\)},
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1
l—w _«¢
34(x)=ijF(;‘;(w)dyv,

X
Let us assume for simplicity {86-88, 106-110}
G(x, 1) = K(x) F?" (x, 1), 4.7)

where K(x) is a function of x. Now equation (4.6) beccomes

S
an (x’t)~[a;'(t)L ( )+( ‘S()) MI(X)}FQ"S(x3t)
V4

ot

S
s () as () oFy (0 _
{ or 2 ( Y ) Z(X)] Bx

where

(4.8)

GK(V)

L (x) = A (x)+ K(x)Az(x) + A (x)

Ly (x)= A3(x)+ K(x)A4(x)
and

GK(x)

M(x) = By(x) + K(x)By(x) + By(x)
Mz(X) = B3(x) + K(x)B4(x)

For a possible solution, we assume [106-109] that

2
as()) as(l)
[ 2 J B TO( 2 )’ (4.9

where T is a numerical parameter to be obtained from the particular Q*-range under

study. By a suitable choice of Tj we can reduce the error to a minimum. Now equation

(4.8) can be recast as

S

a—Faf-ZL') Py (x,t )M—Q (x,0)F (x,1)= 0, (4.10)
where

Pe(x.1)=22 )[Lz(x)+TOMz(x)]
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and
0g(x.1)= g—;%)—[Ll(x)+ ToM | (x)]

Secondly, using equations (4.5) and (4.9) in equation (4.2) and performing u-integration

we have
NS NS
OF; ™ (x,¢) oF3™ (x,1) NS B
——2’—5’—————PNS(x,r)——z,—éx————QJ\,S(x,t)F2 (x,1)=0, (4.11)
where
t .
PNS' (x’[)z a;; ) [AS (X)+ ToBS (X)]
and
0 s (x.1)= a;:) [ 46 (x)+ Ty Bg (1))
with
2 2 1 1w

As(x) = ;{x(l - X )+ 2xln(;)}, Bs(x)=x;[ ” f(w)dw,

5 X 1
Ag(0) = §{3 +4In(t-x)+(x=1)(x+3)}, and B (x)=- jf(w)dw+ x f f(w)aw.

0 0

The general solutions [80-81] of equations (4.10) is F (U, V) = 0, where F is an arbitrary
function and U(x, ¢, Fzs) = Cyand x, 1, Fzs) = (', where, C and C; are constants and they

form a solution of equations

de _di_dB(x) (4.12)

Polxt) =1 =Qglxs)

We observe that the Lagrange’s auxiliary system of ordinary differential equations [80-
81} occurred in the formalism can not be solved without the additional assumption of
linearization (equation 4.9) and introduction of an ad hoc parameter 7y But this
parameter does not effect in the results of r-evolutions of structure functions. Solving

equation (4.12) we obtain,
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N
U(x,t,FS) _ (bres l)exp[ﬁJr S(x)] and V(x.l.FQS) = F (x,1)exp[Mg ()]
! a

where
2 dx L(x)+T,M,(x)
=, = ——J—IB = d d M = : — dx.
a A b 52 Ng(x) = | L+ M, 0 Ms 0=] Ly(x) + T,M, (x)

If U and V are two independent solutions of equation (4.12) and if a and B are arbitrary
constants, then V' = aU + f# may be taken as a complete solution of equation (4.11). Then

the complete solution [80-81]

F (x.t)exp|M ¢ (x)] = a[r(b/’ * l)exp[? + MH + (4.13)
a

is a two-parameter family of planes. The one parameter family determined by taking f =

o’ has equation

a

FS (x,1)exp[Mg ()] = a[t(b 1+ l)exp(? + M)J +a? (4.14)

Differentiating equation (4.14) with respect to a, we obtain

N
2 { a

Putting the value of « again in equation (4.14), we obtain the envelope

2
FQS(x,t)exp[Ms(X)] = -%[t(b/l * 06)4}3(? + ”A‘/ia(lzﬂ :

Therefore,

1 2 2b  2Ng(x)
FZS(x,()z_Z( ()/[+1)exp[—[—+ i —MS(x)}, (4.15)

which is merely a particular solution of the general solution. Now defining

FQS(X’I())‘-: __l_lg(b/lo + l)exp[zb— . 2NS(X)
4 0 4

—Ms(x)}
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at t =ty where. 1o = In (QOZ/AZ) at any lower value Q = (y, we get from equation (4.15)

2

(b/1+1)
S S t t 1
F3 (x,0)= F§ (.1 ar R 21{1 ol (4.16)
{ -
0

. . ) . 2
which gives the r-evolution of singlet structure function F’(x, 1) in NLO for = a".

Proceeding exactly in the same way, and defining

1 206/, +1 26 2N, (¥)
FzNS(x,tO)z—Zzo( 0 )expli—+——N;S‘“—“*MN.s*(x)’

)
where
dx As(x)+TyBs(x)
N = and Myq(x)= - dx
NS(X) J.As(X)'FToBs(X) NS( ) IAG(x)+YOBG(x)
we get,
) 2
(b/1+1)
_ NS _ NS ! LI 4.17
Fy? (x,0)= 1, (x,lo BTy a1y ) {:21(, " H, (4.17)
0

which gives the r-evolution of non-singlet structure function /" S(x, ) in NLO for 8= .

In the previous chapter, we obtained that for low-x in LO for # = a?,

2
S (
F3 (x,0)= F2S (x*’o (E] (4.18)
and
2
N S (
F S (x,1) = F2N (x,(o{ro—] : (4.19)

We observe that if b tends to zero, then equation (4.16) and (4.17) tends to equation
(4.18) and (4.19) respectively, i.e., solution of NLO equations goes to that of LO

" equations. Physically b tends to zero means number of flavours is high.

Again defining,
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2N o(x)
FS(XO,)———Zl(b/t+1) p[—z-;b—-l- S( —MS(X)}

2 -
da X:.\'O
we obtain from equation (4.15)
S .\ _pS 2 l Ly(x) + To M (x) ]dx (4.20)
F2 (X,l)—Fz (X I)GXpliJ[a L2(_x)+TOA42(Y) Lz(X)—i—TOMZ(x) s

. . . . . 2
which gives the x-evolution of singlet structure function F(x, 1) in NLO for § = o’

Similarly defining,
2 b

F2 ( X! ) ll(b/l+1)exp[gﬁ+M«MNS(x)] ,

0
we get

y A +14H B
NS (5,0 = FYS (x, 0 exp J(z : o)+ o 6("))dx . @
a As(X)+T()Bs(\) As(X)+ToBs(X)

which gives the x-evolution of non-singlet structure function F"(x, 1) in NLO for = a%.

In the previous chapter, we obtained that for low-x in LO for f = o,

¥ 2 L(x)
FS(x.ty=F3 __ 4.22
2 (=13 (. ’)ex‘{ J[A/M(x) M(\)]( } @2
and
g 2 P(x)
(x )= (x ) ex dx |, 423
0-7= J[Ame Q(x)] ¢29

where

Ar=4/(33-2Np), Px)=3+41In(1-x)—(1-x) (x +3). Q) =x (1-x})—2x Inx,

L(x) = P(x)+ K(x)C(x)+ D(x)——=

81;( ) and M(x) = Q(x) + K(x) D(x),

where again.
C(x) = (1/2) Ny(1=x)( 2=x + 2x%) and D(x) = Nyx[(=1/ 2) (1=x)(5—4x+ 2x2) + (3/ 2)In (1/%).

Of course, unlike for the r-evolution equations, we could not have for the x-evolution

equations in LO as some limiting case of NLO equations.
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Deuteron, proton and neutron structure functions can be written in terms of singlet and

non-singlet quark distribution functions {7] as

A0, 1) = (5/9) I5°(x. 1), (4.24)
FP(x, 1) = (5/18) F¥°(x, 1) + (3/18) J5™ (x, 1), (4.25)
Fy"(x, £) = (5/18) F>°(x, 1) = (3/18) 5™ (x, 1), (4.26)
FPx, 0= F"(x, 0 =173) ™ (x, 1), (4.27)

Now using equations (4.16) and (4.20) in equation (4.24) we will get ¢ and x-evolution of

deuteron structure function /%(x, f) at low-x in NLO for f = o® as

2
) ) (b/1+D) U
F ) = 1 (xig) |, g+ exp{?_b(t—toj (4.28)
1
0
and
d d o 2 1 Li(x)+T,M,(x)
F. . = F , — _ 07"
2 (=15 o ’)exp[r{[a L)+ TyMo () Lz<x>+nM2<x>)dx}’ @2

where the input functions are Fg(x,to):(5/9)1‘—§(x,lo) and Fg(xo,t)=(5/9)17§(xo,t).

The corresponding results for a particular solution of GLDAP evolution equations in LO

for f = o’ obtained earlier [1 10] given in equations (3.30) and (3.31) in the Chapter-3.

Similarly using equations (4.16) and (4.17) in equations (4.25), (4.26) and (4.27) we get
the r-evolutions of proton, neutron, and difference and ratio of proton and neutron

structure functions at low-x in NLO as

2
) t(b/t+l) |
Ef (x,0) = Ff (x,19)| exp[2b[— - —)J (4.30)
[(b/fO-H) ! [0
0
2
,(b/(+1) U1
E'(x,0) = B'(x, ()] ————— 26| - ——
2 (60 =1 (xl) ’(b/t0+l) oxp )[1 ’OH’ (4.31)
0
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2
’(b//+l) U1
sz(x,l) - Fz"(x,() = lel)(x,lo) — F2”(x’10)] W exp 21)[; - E (4.32)
0
and
FEC0 _FEC0) ey, (4.33)

Fh(x0)  F5(xig)

where R(x) is a constant for fixed-x. And the input functions are
S NS
FP (x,) = (5/18) 5 (x,1) + B/18) 15 (x, 1),

S NS
Faetg)=(5118) 5 (x,19) ~(3/18) 15 (x.10)

and

i)~ mig =013 ) S(x,lo).

The corresponding results for particular solutions of GLDAP evolution equations in LO
for # = o’ have been given in equations (3.34). (3.35), (3.35), (3.36) and (3.37) in the
Chapter-3. It is observed that ratio of proton and neutron is same for both NLO and LO
and it is independent of ¢ for fixed-x. But the determination of x-evolutions of proton and
neutron structure functions like those of deuteron structure function is not possible by this

method as is discussed in the Chapter-3.

For the particular solution of equation (4.10), we take # = a® in equation (4.13). If we take

B = a in equation (4.13) and differentiating with respect to o as before, we get

N .
0= t(b/’ +1) exp(-[[z + -S_(iz}.l from which we can not determine the value of a. But
a

if we take f§ = o in equation (4.14) and differentiating with respect to a. we pet

| Grieny b N@Y
o= —gt(b/l +1) exp(T)wL 2 ] Putting this value of a in equation (4.14) we get
a

3/2 1/2 3/2 3/2
S _ (B/1+]) ( l) ( 1) b Ng(x)
F5 (x,t)=t — = + = — -M _
5 (x,1) 3 3 expl| - . 5(x)
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Now, defining

/2
3/2 1/2 1 3/2 b N 3
FZS(x’tO) :lO(b/tO+]) {(__l) +(__) exp {_’_+ S;I(x)] _MS(x) ’

3 3 ‘0
we get
S . (bI1+1) 3/2 3 (11
F ()= Fy (o)) —— = exp| —b| - —— ||
e ] POl B X

Proceeding exactly in the same way we get for non-singlet structure function also

3/2

NS NS (b11+1) 3 (1 1
E3"2 ()= F3 2 (e ()| —————— expl = b - —— ||

Then using equations (4.24), (4.25) and (4.26) we get f-evolutions of deuteron, proton and

difference of proton and neutron structure functions

3/2

blt+1)

d,p,n,p—n d,p,n,p—n l( 3.1 1
F. (x,)=F (x| ———— exp| =b ——— |1
2 )=r 0) (@710 +D 127,

Proceeding in the same way, we get x-evolution of deuteron structure function as

4 J 372 1 Ly(x) +ToM, (x)
F 5 =F A s * B .
fn=rl o) [ - R

X 0

Proceeding exactly in the same way we can show that if we take f# = o we get

(b11+1) 473
d,p,np-n d,p,n,p—n { 411 1
F (x,0)= 157777 (o)) ———— exp| —b| - — —
2 2 0 ROPED 13700
and
Fz"(x,f):f‘zd(xo,z)exp 'j(4/3. L - L) M)
a 142(X)+70M2(X) L2(X>+TOM2(X)

X0

and so on. So in general. if we take = o, we get
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yi(y-1)

/ I panp (B1D v (0
1'1( ,[),H,/) - N ,',f :/’.l ,I),I WP X,/ ) o - pr L [) M
2 (x,0) =15 (%7 (b1 +D y=11t 1
and
LY
d o o pd ol 2 =D ‘ _ L+ ToMy(x) )
F ey =15 (xg, exp j[ a  Ly(x) +TyMy(x)  Ly(x) +TgMy(x)

Xo

which are r-evolutions of deuteron, proton, ncutron, and difference of proton and neutron
. . ~ 3 . —_ “
structure functions and x-evolution of deuteron structure function respectively for = a'.

We observe if y—oo (very large), y/(y-1) —1.

Thus we observe that if we take f# = a in equation (4.14) we can not obtain the value of a

and also the required solution. But if we take f§ = o, o, at, a5.,.... and so on, we see that

the powers of (/! /!(,b/’"” and co-efficient of {(1/r) — (1/t,)} of exponential part in

t-evolutions of deuteron, proton, neutron, and difference ol proton and neutron structure
functions are 2, 3/2, 4/3, 5/4....and so on respectively as discussed above. Similarly, for
x-evolutions of deuteron structure functions we see that the numerators of the first term
inside the integral sign are 2, 3/2, 4/3, 5/4....and so on respectively for the same values of
a. Thus we see that if in the relation § = o', y varics between 2 to a maximum value, the

bl +1 blt,+1

powers of (/141 / fo , co-efficient of ¢7/*! / Lo of exponential part in ¢-

evolution and the numerator of the first term in the integral sign in x-evolution varies
between 2 to 1. Then it is understood that the solutions of equations (4.10) and (4.11)
obtained by this mcthod are not unique and so the 1~ evolutions of deuteron, proton and
neutron structure functions, and x-evolution of deuteron structure function obtained by

this method are not unique.

4.2. Results and Discussion

We compare our results of r-evolution of deuteron, proton, neutron and difference and
ratio of proton and neutron structure functions with the I11ERA [94] and NMC [95] low-x
and low-Q” data. In case of HERA data [94] proton and neutron structure functions are

measured in the range 2 < Q2 < 50 GeV2. Morcover here 4 <200 MeV. where Py is the
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transverse momentum of the final state baryon. In casc of NMC data, proton and deutcron
. : 2 2 :
structure functions are measured in the range 0.75 < Q” < 27GeV*. We consider number

of flavours N, = 4. We also compare our results of f-evolution of proton structure

1.6
x = 0.0348

12 F =
° x =0.0125
w08 F

x = 0.0080
04 F S x = 0.0045
0 2 I
0 5 10 15
Q*(GeV?)

Fig.4.1: t-Evolution of deuteron structure functions in leading order (déshed ines) and
next-to-leading order (solid lines).

functions with a recent global parameterization [96]. This parameterization includes data
from H1, ZEUS. NMC and 15665 experiment [95, 97-102]. The result of x-evolution of
deuteron structure function has been compared with NMC low-x and low-0* data, and

also our results of x and r-evolutions have been compared with those of LO resuits.

In figure 4.1. we present our results of t-evolutions of deuteron structure functions > for
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the representative valucs of x given in the figure for v = 2 (upper solid lines) and y

maximum (lower solid lines) in the f = & relation. Data points at lowest-Q” values in the

figures are taken as inputs to test the evolution equation. Agreement with the data [95] is

found to be good. In the same figure we also plot the results of r-evolutions of deuteron

Fp

I

1.6 x =0.00329, 2= 0.732

1.2 k x = 0.00104, z = 0.829

08 x = 0.00104, z = 0.732
l’jﬁé x = 0.00033, z = 0.878
-_1__;—_5 X = 0.00033, z = 0.829

04 F
pi==3  x=0.00033,z=0.780
-_;‘J x = 0.00033, z = 0.732

0 I T a 1 ) | »
0 5 10 15 20 25 30 35

Q* (GeV?)

Fig.4.2: t-Evolution of proton structure functions in leading order (dashed lines) and
next-to-leading order (solid lines).

structure functions F,¢ (dashed lines) for the particular solutions in LO. Here, upper

dashed lines are for y = 2 and lower dashed lincs for y maximum in the # = o relation.

We observe that /-evolutions are slightly steeper in LO calculations than those of NLO.

) . . e ~ . . o . o . . .
But NLO results for y = 2 arc of better agreement with /4 experimental data in genieral.
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For convenience, value of each data point is increased by adding 0.2/, where i = 0,1, 2,

3... are the numberings of curves counting from the bottom of the lowermost curve as the

0-th order.

4

p
2
N

™—

x = 0.0045

1 10 100 1000
Q%(GeV?)

Fig.4.3: t-Evolution of proton structure functions in leading order (dashed lines) and next-to-
leading order {solid lines).

In figure 4.2, we present our results of 7-evolutions of proton structure functions F>” (solid
lines) for the representative values of x given in the figure for y = 2 (upper solid lines) and
y maximum (lower solid lines) in the 8 = o relation. Data points at lowest-Q* values in

the figures are taken as inputs to test the evolution equation. Agreement with the data [94]
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is found to be cxcellent. In the same figure, we also plot the results of -evolutions of
proton structure functions /5" (dashed lines) for the particular solutions in leading order.
Here, upper dashed lines are for y = 2 and lower dashed lines for y maximum in the f# = o
relation. We observe that r-evolutions are slightly steeper in LO calculations than those
of NLO. But differences in the results are small. For convenience, value of each data
point is increased by adding 0.2i, where i = 0, 1. 2, 3 ... are the numberings of curves

counting from the bottom of the lowermost curve as the 0-th order.

In figure 4.3, we compare our results of t-evolutions of proton structure functions F’ with
a recent global parameterization [96] (long dashed lines) for the representative values of x
given in the figures for y = 2 (upper solid lines) and y maximum (lower solid lines) in the
B = o relation. Data points at lowest-0” values in the figures are taken as inputs to test
the evolution equation. In the same figure, we also plot the results of f-evolutions of
proton structure functions I’ (dashed lines) for the particular solutions in LO. Here,
upper dashed lines are for y = 2 and lower dashed lines for y maximum in the f§ = o
relation. We observe that r-evolutions are slightly steeper in LO calculations than those
of NLO. Agreement with the NLO results is found to be better than with the LO results.
For convenience, value of each data point is increased by adding 0.5i, where i =0, 1, 2, 3
... are the numberings of curves counting from the bottom of the lowermost curve as the

0-th order.

In figure 4.4, we present our results of s-evolutions of neutron structure functions F3"
forthe representative values of x given in the figure for y = 2 (upper solid lines) and y
maximum (lower solid lines) in the # = & relation. Data points at lowest-Q values in the
figures are taken as inputs to test the evolution equation. Agreement with the data [94] is
found to be excellent. In the same figure, we also plot the results of t-evolutions of
neutron structure functions /3" (dashed lines) for the particular solutions in LO. Here,
upper dashed lines are for y = 2 and lower dashed lines for y maximum in the § = o
relation. We observe that r-evolutions are slightly steeper in LO calculations than those
of NLO. But differences in the results are small. For convenience, value of each data
point is increased by adding 0.2/, where i = 0, 1, 2, 3 ... are the numberings of curves

counting from the bottom of the lowermost curve as the 0-th order.
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}M x = 0.00329
z=0.5

16 F
x = 0.00104
g - - I AJ Z= 0.9
.......... x = 0.00104
- amlieeoen =% ;=07
1.2 F

_______ .4 x=000104
._.;_:i—.:“—L ————eeal  z=0.5

:] x = 0.00104
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Fig.4.4: t-Evolution of neutron structure functions in leading order (dashed lines) and
next-to-leading order (solid lines).

In figure 4.5, we present our results of f-evolutions of difference of proton and neutron
structure functions F5"—F," which is a non-singlet combination, for the representative
values of x given in the figures for y = 2 (upper solid lines) and y maximum (lower solid
lines) in the f = ¢ relation. Data points at lowesl-Q2 values in the figures are taken as
inputs to test the evolution equation. Agreement with the data [94] is found to be
excellent. In the same figure, we also plot the results of r-évolutions of difference of

proton and neutron structure functions /’—F%" (dashed lines) for the particular solutions
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in LO. Here, upper dashed lincs for y = 2 and lower dashed lines for y maximum in the

= @ relation. We observe that t-evolutions are slightly steeper in LO calculations than

1
i : : .
x = 0.00329 }
0.8 r -
os b A L_..----m-=-""
x =0.00104
. ¢
T
N
lLN
04 F
0.2 P
% x = 0.00033
0 B 2 _ B 3 | 1 |
0 5 10 15 20 25 30 35

Q*(GeV?)

Fig.4.5: t-Evolution of difference of proton and neutron structure functions in leading order
(dashed lines) and next-to-leading order (solid lines).

those of NLO. For convenience, value of cach data point is increased by adding 0.4i.
where i = 0. 1, 2, 3 ... are the numberings of curves counting from the bottom of the

lowermost curve as the 0-th order.
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In figure 4.6, we present our resulls of f-cvolutions of ratio of proton and ncutron

structure functions F5”/I%" (solid lines) for the representative values of x given in the
8

x = 0.00329
8 .
-
CN -1-
£ a4t
uw l x = 0.00104 ﬁ+
-

L
2 e
x = 0.00033
0 M " i
0 10 20 30 40
Q*(GeV?)

Fig.4.6: t-Evolution of ratio of proton and neutron structure functions in next-to-leading order.

figures. Though according to our theory the ratio should be independent of ¢, due to the

lack of sufficient amount of data and due to large error bars, a clear cut conclusion can
not be drawn.

Though we compare our results which y = 2 and y maximum in the f# = ¢ relation with

data. agreement of the result with experimental data is found to be excellent with y =2 for
f- evolution in NLO.
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For a quantitative analysis of x-distributions of structure functions, we calculate the
integrals that occurred in equation (4.29) using Simpson’s one- third rule for Ny = 4. In

this case, we neglect first and second terms of the function Bi(x) as x is small. In figurc

1.2
1 = m
i 3
Q=7 GeV?
0.8 F Ii*‘[\y‘
—~g— 1
Q%= 5.5 GeV?
w06k M —3
X
Q%= 4.5 GeV?
“T H‘f“!‘\!-\.._
. 3
Q%= 3.5 GeV?
0.2 b Q%= 0.75 GeV?
K = ce ¥
K = ax®
0 i __a ___ N B
0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.7: x-Evolution of deuteron structure functions in next-to-leading order for K(x) = ax®
(dashed lines) and K(x) = ce—%(solid lines).

4.7, we present our results of x-distribution of deuteron structure functions Fy? for K(x) =
ax® (dashed lines) and for K(x) = ce” ™ (solid lines) in the relation f = &’ for y minimum (=
2), where a, b, ¢ and d are constants and for representative values of O given in each
figure, and compare them with NMC deuteron low-x low-0? data [95]. Each data point

for x-value just below 0.1 has been taken as input P> (xo. 1). If we take K(x) = ax’ in
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equation (4.29), then agreément of the result with experimental data is found to be
excellent at a = 10, b = 0.016. On the other hand, if we take K(x) = ce™™ then agreement
of the results with experimental data is found to be good at ¢ = 0.5, d = —3.8. In this

connection, earlier we observed [110] that agreement of the results with experimental

data
1.2
1 b ~F = -
- -3
Q%=7 GeV?
0.8 } ~Fzg o . -
—y—3
Q*= 4.5 GeV?

T‘:‘O'G- M
Ty —X

Q*=5.5 GeV>

0.4 } i
—K -5
f Q’= 3.5 GeV?
02 Q*=0.75 GeV?
K = ax”
0 | |} | ']
0 0.02 0.04 0.06 0.08 0.1

X

Fig.d.8: x-Evolution of deuteron structure function for K(x) = ax® in the relation p=av, fory
minimum {solid lines) and maximum (dashed lines).

is found to be excellent for K(x) = 4.5 (constant), a = 4.5. 5 = 0.01.c = 5. d = | {or low-x
in LO. But in the case of NLO, agreement of the results with ex.perimental data is found

to be very poor for any constant value of K(x). Therefore we do not present our result of
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x-distribution at K(x) = constant in NLO. For convenience, value of each data point is
increased by adding 0.2i, where i = 0, 1, 2, 3 ... are the numberings of curves counting

from the bottom of the lowermost curve as the 0-th order.

In figure 4.8, we compare our results of x-evolution of deuteron structure function for

K(x) = ax’ in the relation § = o, for y = 2 (solid lines) and maximum (dashed lines) at

1.2

0.8 p

04 p

0.2 } Q%= 0.75 GeV?

0 i ] i ]

0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.9: x-Evolution of deuteron structure function for K(x) = ce—x in the relation f=av,

for y minimum (solid lines) and maximum (dashed lines).

same parameter values, @ = 10, b = 0.016 and for representative values of (* given in

each figure, and compare them with NMC deuteron low-x low-Q* data [95]. Each data
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point for x-value just below 0.1 has been taken as input B (xo, 1). We observe that
difference between the lines is very small. In this connection, earlier we observed that
there is no any significant difference between the lines in LO [110]. For convenience,
value of each data point is increased by adding 0.2/, where i = 0, 1, 2, 3 ... are the

numberings of curves counting from the bottom of the lowermost curve as the 0-th order.
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0.2 F
K = ax®
O [ ] [ ] | J |
0 0.02 0.04 0.06 0.08 0.1
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Fig.4.10: x-Evolution of deuteron structure function for K(x) = ax® in the relation B=av, fory
= 2 (solid lines) and maximum (dashed lines).

In figure 4.9, we compare our results of x-evolution of deuteron structure function for
K(x) = ce ™ in the relation # = o, for y = 2 (solid lines) and maximum (dashed lines) at

same parameter values, ¢ = 0.5, d = —3.8 and for representative values of Q* given in
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each figure, and compare them with NMC deuteron low-x low- O? data [95]. Each data
point for x-value just below 0.1 has been taken as input %% (xo, ). We observe that
difference between the lines is small. In this connection, earlier we observed that there is
no any significant difference between the lines in LO [110]. For convenience, value of
each data point is increased by adding 0.2, where i = 0, 1, 2, 3 ... are the numberings of

curves counting from the bottom of the lowermost curve as the O0-th order.

1.2

-3
' Q*=7 GeV?
08 } Li“i——-!‘
T T———y———3F
Q%= 5.5 GeV?
IR e . SR
(118

T M
X

—X
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K =cx
0 | [ 1 | | | |
0 0.02 0.04 0.06 0.08 0.1

X

Fig.4.11: x-Evolution of deuteron structure function for K(x) = cx—9¢ in relation § = av,

for y = 2 (solid lines) and maximum (dashed lines).

In figure 4.10 and figure 4.11, we present our results of x-evolution of deuteron structure

dx

function for K(x) = ax’ and K(x) = ce™ in the relation f=a, for y =2 (solid lines) and
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maximum (dashed lines) at different parameter values and for representative values of 0
given in each figure, and compare them with NMC deuteron low-x low-QZ data [95]. Each
data point for x-value just below 0.1 has been taken as input 159 (xo, 1). We observe that
result of x-evolution of deuteron structure function in relation f = ¢”, for y maximum
(dashed lines) coincide with result of x-evolution of deuteron structure function for y = 2

(solid lines) when a = 5.5, 5 = 0.016 and ¢ = 0.28, d = —3.8. That means if y varies from

0.46
Q%= 3.5GeV?
b =0.016
T
0.42 P
°n 0.38
0.34
0.3 1 B I | - a1
0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.12: Sensitivity of our results in the relation B=a¥ for y = 2 for different values of
‘a’ at fixed value of b = 0.016.

minimum to maximum, then value of parameter ‘a’ varies from 10 to 5.5 and ‘¢’ varies
from 0.5 to 0.28. In this case, values of parameters ‘4’ and ‘d’ remain constant. For
convenience, value of each data point is increased by adding 0.2i, where i = 0, 1,2,3 ...

are the numberings of curves counting from the bottom of the lowermost curve as the 0-th
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order.

In figure 4.12, we present the sensitivity of our results for different values of ‘a’ at fixed

value of *b’ in the relation # = &, for y =2. Here we take b = 0.016. We observe that at a

0.5
Q%= 5.5 GeV?
a=10

1-
0.45
ﬁ
he]
L 0.4
0.35
0'3 [ 1 b} B Il
0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.13: Sensitivity of our results in the relation B=av for y = 2 for different values of

‘b’ at fixed value of a=10.

= 10, agreement of the results with experimental data is found to be excellent. If value of
‘a’ is increased. the curve goes upward direction and if value of ‘a’ is decreased, the
curve goes downward direction. Though the nature of the curve is similar, curvature of
the curves is decreased and difference of the curves is small when value of ‘a’ is

increased.
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In figure 4.13, we present the sensitivity of our results for different values of ‘6’ at fixed
value of ‘a’ in the relation f = «, for y = 2. Here we take a = 10. We observe that at b =
0.016, agreement of the results with experimental data is found to be excellent, 1 value of
‘b’ is increased the curve goes upward direction and if value of ‘b’ is decreased, the curve

goes downward direction. But the nature of the curves is similar and difference of the

curves is small.

0.5
Q%=5.5 GeV?
=—38
0.45
>0 0.4
0.35
0'3 . [ ] 1 1
0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.14: Sensitivity of our results in the relation B=av for y = 2 for different values of
‘c' at fixed value of d = — 3.8.

In figure 4.14, we present the sensitivity of our results for diffefent values of ‘¢’ at fixed

value of ‘d’ in the relation 8 = o, for y = 2. Here we take d = —3.8. We observe that at ¢ =
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0.5, agreement of the results with experimental data is found to be excellent. If value of
‘c’ is increased, the curve goes upward direction and if value of ‘¢’ is decreased, the curve
goes downward direction. Though the nature of the curves is similar, curvature and

difference of the curves are decreased when value of ‘¢’ is increased.

0.5
Q%= 4.5GeV?
c=0.5
0.45 §
T
u_N0.4
0.35
0.3 J . [ 4 b ¥
0 0.02 0.04 0.06 0.08 0.1
X

Fig.4.15: Sensitivity of our results in the relation B=a for y = 2 for different values of
'd" at fixed value of ¢ = 0.5.

In figure 4.15, we present the sensitivity of our results for different values of ‘d’ at fixed
value of ‘¢’ in the relation f# = @, for y = 2. Here we take ¢ = 0.5. We observe that at d =

—3.8, agreement of the results with experimental data is found to be excellent. If value of
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‘d’ is increased, the curve goes downward direction and if value of ‘d’ is decreased, the
curve goes upward direction. But the nature of the curves is similar and difference of the

curves is small.
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Fig.4.16: Sensitivity of our results of x-distribution of deuteron structure function for
different values of T, at best fit of K(x) = ax® in the relation B=ar for y = 2.

In figure 4.16 and figure 4.17, we present the sensitivity of our results for 7o = 0.024 (0’
=50 GeV?), To = 0.027 (Q" = 15 GeV?) and Ty = 0.049 (Q% = 0.5 GeV?) at best fit of K(x)
= ax® and K(x) = ce™ in the relation f# = @, for y=2. Here a = 10, b = 0.016, ¢ = 0.5, d =

—3.8. We observe that if the value of 7j is increased, the curved goes slightly upward
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direction and if the value of 7} is decreased, the curve goes slightly downward direction.

But the nature of the curves is similar and diflerence of curves is extremely small in both

cases.
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Fig.4.17: Sensitivity of our results of x-distribution of deuteron structure function for different

values of T, at best fit of K(x) = cx#« in the relation = av fory = 2.

In figure 4.18 and figure 4.19, we present the results of x-evolution of deuteron structure
function in the relation f = o, for y = 2 in LO and NLO for K(x) = ax® and K(x) = ce”™

respectively for representative values of O” given in each figure, and compare them with
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NMC deuteron low-x low-0Q” data [95]. Each data point for x-value just below 0.1 has

been taken as input /5" (xo. {). We have already discussed that agreement of the result

1.2

1} LL—I\_L . 5

Q%=7 GeV?
08 | Lf\}\i— —y—
g —$
Q%= 5.5 GeV?
.Dl.l‘: 0.6 F M
I S
Q%= 4.5 GeV?
T Li"l\l\*“_._
X
Q%= 3.5 GeV?
I!E ) Q%= 0.75 GeV?
0.2 F
k = ax®
0 | | a [ 1
0 0.02 0.04 0.06 0.08 0.1

Fig.4.18: x-Distribution of deuteron structure functions for K(x) = ax® in the relation f=av for
y = 2 in next-to-leading order (solid lines) and leading order (dotted lines).

with experimental data is found to be excellent fora =4.5,6=0.01,c=5,d=1in LO

and a = 10, b = 0.016, ¢ = 0.5, d = —3.8 in NLO. For convenience, value of each data
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point is increased by adding 0.2, where i = 0, 1, 2, 3, ... are the numberings of curves

counting from the bottom of the lowermost curve as the 0-th order.
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Fig.4.19: x-Distribution of deuteron structure functions K(x) = ce—%¢ in the relation B=av for y

= 2 in next-to-leading order (solid lines) and leading order (dotted lines).

In figure 4.20, we plot 7(r) ? (solid line) and T,7(f) (dashed line), where T{)=0o,/2n
against O in the Q*-range 0 < Q* < 50 GeV>: We observe that for To = 0.027, error

becomes minimum in the Q2 -range 0 < 0? < 50 GeV™.
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Fig.4.20: T(t)? (solid line) and T,T(t) (dotted line), where T(t) = as(t)/2m against Q2
in the Q%-range 0<Q2<50 GeV2.

4.3. Conclusion

In this chapter. we obtain complete and particular solutions of singlet and non-singlet
structure functions at low-x using Taylor’s expansion method from GLDAP evolution
equations and ¢ and x-evolution of singlet and non-singlet structure functions in NLO and
hence t-evolutions of deuteron, proton, neutron, and difference and ratio of proton and

neutron structure functions and x-evolutions of deuteron structure functions in NLO.
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These evolutions are non-unique. We compare our results with HERA and NMC low-x
low-Q2 data, and also compare our results with those of LO results. In all the results from
experimental as well as global fits, it is seen that deuteron structure functions increases
when x decreases and (* increases for fixed values of 0% and x respectively, and proton,
neutron, difference and ratio ol proton and neutron structure functions incrcases when Q2
increases for fixed value of x. It is clear from the figures that the NLO results of ¢-

evolutions for y = 2 in the relation f = o, are of better agreement with experimental data

in general. (]
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Chapter-5

UNIQUE SOLUTIONS OF GLDAP EVOLUTION EQUATIONS IN
LEADING AND NEXT-TO-LEADING ORDERS

In previous chapters, particular solutions of the Gribov-Lipatov-Dokshitzer-Altarelli-
Parisi (GLDAP) evolution equations [29-32] for ¢ and x-evolutions of singlet and non-
singlet structure functions in leading order (LO) and next-to-leading order (NLO) at low-x
have been presented. These are non unique solutions. In this chapter we report unique
solutions of GLDAP evolution ¢quations computed from complete solutions in LO and
NLO at low-x and calculation of ¢ and x-evolutions for singlet and non-singlet structure
functions, and hence f-evolution of deuteron, proton, neutron, difference and ratio of
proton and neutron structure functions and x-evolution of deuteron structure functions.
These results are compared with NMC [95], HERA [94] low-x low O data and also
compare our results of r-evolution of proton structure functions with a recent global

parameterization [96].

5.1. Theory

The GLDAP evolution equations with splitting functions {103-105] for singlet and non-

singlet structure functions are in the standard forms [89, 106-110]

N
OFy (x1) ag() 2 dw 9
> ;ﬂ [3{3+4|n(l OIF (x, t)+ 1;’{(l+w )Fés(i,t)—ZFZS(x,t)}

N, j{u (1-)? }c.(il,:}mq:o, (5.1)

NS
OFS (x,) g () 2 e ,
— 827[ [3{3+4l"0 x)} (Xl)+3 l_::{(l+u2)F2N5(‘—T),tJ—2F7{VS(x.t)}, (5.2)
for LO, and

93



Studies on Hadron Structure Functions and GLDAP Evolution Equations

oFy (x.1) a0
ot 2 )

[§{3+41n(1-x)}f§(x,z)+:11"”’ {( )rf(x ) 2F3 (x,,t}+Nf J{wz+l w)z}(;(;—‘;,z)-

g (0) s ! | s(x S S % s
_(T_J (x=1)F (x,t)+6[ f(w)dw + ! JWF} (;,t)dw+ijqq(w)F2 ot

T
21
as(t) S x _
+( ;n ) ;(Fqg (w)G(-;,t)dw =0, (5.3)

anNS (x,t) . as(t)
ot 27

B B3+ an - S (x,0)+ —;iljl‘_i_“;v {(1 w2 )FzNS (%t) ~2F (x,t)H

2 1 !
og(1) NS NS| X -
_(_;n J [(x—l)Fz (x,0)+ Ojf(w)dw+ Xjf(w)F2 (;‘”)d‘“]‘o’ (5.4)

for NLO, where

2 In ¢
[ = ln.Q_, a (l):"4£, S(t) = —| 1 ~ E.l_____ ,
D) sl 2
A Pot ﬁOt Aot
33-2N 306 - 38N
o= and =L,

Nrbeing the number of flavours. Here,

_ 1
flw) = C%[PF (w)-Py (w)]+5CFCA (P w)+Py (11))]+CFTRNfPNF (w),

Fqu(w)—_-2CFTRNf g(v) and F, (w) CRTgN qg(w)+C TpN qug(w)
The explicit forms of higher order kernels [103-105] P (W) P (w),P N (w),PA(w),

Faq(w). Fqlg(“')’ qug(w) are given in the Chapter-4.

Now, using Taylor expansion method [80] and neglecting higher order terms as discussed

in the Chapter-3 we can write I5(x/w, f) as
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fi?(\/u 1)'*/“2 (x.1)+x Zu .

Similarly, G(x/y, £) and ;™ (x/w, 1) can be approximated for small-x. Then putting these
values of I (x/w. 1), G(x/w, 1) and NS (x/w, 1) in cquation (5.1) and (5.3) and performing

u-integrations we get,

3 S
oFy (x,1) s, (1) ¢ o (et oten
a 2‘7[ AY(X)Fy (x,0) + Ay (x)G(x,0) + A3(x) ” Ay(x) | 0, (5.5
in LO and

oy (x,1)
S a0+ (O‘S‘)J B 560 9 40+ (“S()j B, @)

o3 (x.
{so e (as(t)) B )} 2 !as(t) . (as()) B()}ac:(vt) 0 66

in NLO, where
A (x) = i {3+4In(l-x)+ (x—1)(x+3)},
Ay (x) = Nf[; (1= x)(2 - x + 2x2)],
A3 (x) = i (x(-x2)+ 2xln(i)},
Ag()=N px(in bl NURE ~4x +2x2Y),
By(x) = xff(w)dw— If(w)dw+ Nf_[ (w)dw
B, (x)= j Fiy (w)dw,
1

By(x)= xj{f(wn N Fo, (w)} }dw,

!
l-w ¢

By(x)=x Fgo (v)dw.

4 =x o Tgg O

X

Let us assume for simplicity [86-88, 106-110]
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G(x, 1) = K(x) F>° (x, 1), (5.7)

where K(x) is a function of x. In this connection, earlier we considered {108-110] K(x) =
k, ax", ce™™, where k, a, b, ¢, d arc constants. Agreement of the results with experimental
data is found to be excellent fork=4.5,a=4.5,b=0.01,¢c=5,d =1 for low-x in LO and
a=10,b=10.016, ¢ = 0.5, d = —3.8 for low-x in NLO for y = 2 in the = o’ relation.
Therefore equation (5.5) and (5.6) becomes

S S
OFy (x,1y s, (1) S OF3 (x,1) | 58
s o Li(x)F3) (x,0) + Ly(x) o =0, (5.8)
in LO and
S 2
oFy (x,1) | as(n) as(1) S
Py { - L](X)"‘(—“'—zn Ml(x) Fz (x,1)
5 q (5.9)
o g (1) o (1) oI5 (x,1)
_ L bl B4 -2 7
l: 27 2(x)+( 2n ) Mz(X)} Ox 0
in NLO. For simplicity, we can write equation (5.8) as
OFS (x,1) OFS (x,1)
2 L e FS e L (o —2—"2 | = 0, (5.10)
ot ! 2 2 Ox
where
oK
Ly (x) = 41 (x) + K(x) 45 (x) + A4 (x) a)(cX) ,
Ly(x) = A3 (x) + K(x) A4 (x),
My (x) = By (x) + K(x)B5 (x) + By (x) 612(x) ,
X
M2(x)= B3(x)+ K(X)B4(X)
o (1)
L' en=—=1, ()
L (=22
Xt = X).
2 2n 2()

For a possible solution of equation (5.9), we assume [106-109] that

2 .
as (1) — as(1)
( 2 ) "TO[ 27 J 10
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where, Ty is a numerical parameter to be obtained from the particular (-range under

study. By a suitable choice of 7 we can reducc the error to a minimum. Now equation

(5.9) can be recast as

OFy (x,0)

X OFS (x,0) + Q(x,0) —2—— 2(x ) =0, (5.12)
ot ox

in NLO, where

(1)

P(x,t) = {Ll(x) + TOMl(x)] and Q(x,1) = as( ) [Lz(x) + T0M2(x)]

The general solutions [80-81] of equation (5.10) is F (U, V) = 0, where F is an arbitrary
function and U (x, /, 172‘3') =) and V(x,, 15%) = C, where, Cy and C; are constants

and they form a solutions of equations

dx dt (1/725 (x.l)
L&y =V -/ nF (x0)

(5.13)

Solving equation (5.13) we obtain,

SY_ 1
U(x,t,F2 )—tex y -[L

r2

L)

Ly (x)

dx |, and V(xtFS) FS(xt)ex _[

(x) 2

where  A;= 4/(33-2N)). Since U and V are two independent solutions of equation (5.13)
and if a and § are arbitrary constants, then V' = aU +  may be taken as a complete

solution of equation (5.12). Then the complete solution [80-81]

L
Ff(x,z)ex | l(x)dx = af ex —1—j L e|+p (5.14)

is a two-parameter family of planes.

Due to conservation of the electromagnetic current, F, must vanish as O7 goes to zero [7,
111]. Also R—0 in this limit. Here R indicates ratio of longitudinal and transverse cross-
sections of virtual photon in DIS process. This implies that scaling should not be a valid
concept in the region of very low-—Q2 . The exchanged photon is then almost real and the
close similarity of real photonic and hadronic interactions justifies the use of the Vector

Meson Dominance (VMD) concept [112-113] for the description of F5. In the language of
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perturbation theory, this concept is equivalent to a statement that a physical photon
spends part of its time as a ‘bare’, point-like photon and part as a virtual hadron (s) [111].
The power and beauty of explaining scaling violations with field theoretic methods (i.e.,
radiative corrections in QCD) remains, however, unchallenged in as much as they provide
us with a framework for the whole x-region with essentially only one free parameter A
[17]. For Q*-values much larger than 42, the effective coupling is small and a perturbative
description in terms of quarks and gluons interacting weakly makes sense. For O of order
A%, the effective coupling is infinite and we cannot make such a picture, since quarks and
gluons will arrange themselves into strongly bound clusters, namely, hadrons {7] and so,
the perturbation series breaks down at small-Q* [7-8]. Thus, it can be thought of A as
marking the boundary between a world of quasi-free quarks and gluons, and the world of
pions, protons, and so on. The value of A is not predicted by the theory; it is a free
parameter to be determined from experiment. It should expect that it is of the order of a
typical hadronic mass [7]. Since the value of 4 is so small we can assume at Q = 4, Fzs(x,
1) = 0 due to conservation of the electromagnetic current [7, 111]. This dynamical
prediction agrees with most ad hoc parameterizations and with the data [17, 111]. Using

this boundary condition in equation (5.14) we get # =0 and

1 L (x)

S
FS(x )=t d
2 X arex I f 2()‘) L (x) X

(5.15)

Now, defining

1 _ Ll (x)
A sz (x) LZ (x)

b

Fig(x,lo) =l ex

at 1 =ty where, 1= In (Q*/4?) at any lower value O = Q, we get from equation (5.15)
!
F ()= £ (xg.t {IO], (5.16)

which gives the r-evolution of singlet structure function F,%(x, t) in LO. Proceeding in the

same way we get from equation (5.15)

(b/t+1) 1
F2 (x,t) = F2 (x, lo) (b/l +1) eXpI:b(t - [O J:I, . (517)
‘o
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which gives the r-evolution of singlet structure function F5(x, ) in NLO, where b =
/1.//3(,2. We observe that the Lagrange’s auxiliary system of ordinary differential equations
(5.12) occurred in the formalism can not be solved without the additional assumption of
linearization (equation 5.11) and introduction of an ad hoc parameter 7, [106-109]. This

parameter does not effect in the results of 7-evolution of structure functions.

Proceeding exactly in the samc way, we get

FNS ()= £ (x,,(){f_] (5.18)
) )
and
(b/t+1)
NS,  _ NS ! r_1 19
F 2 (1) = Fy (x,10) (b/10+l) exp[b(l lQH, (5.19)
{
0

which give the t-evolutions of non-singlet structure functions F5"(x, f) in LO and NLO
respectively. We observe that if b tends to zero, then equations (5.17) and (5.19) tend to
equations (5.16) and (5.18) respectively, i.e., solution of NLO equations goes to that of
LO equations. Again defining,

L;(x)
FZS(xO,t)zou exp, I ! _— dx ,
AfL2 (x)  Ly(x)
X=Xqg
we obtain from equation (5.15)
X
S S o1 L)
Fy (x,t) = F5 (xq,t)ex - X1, 5.20)
2 20 ALy @ Ly (

0

which gives the x-evolution of singlet structure function F5%(x, f) in LO. Similarly we get

S S, 1 1 Ly(x) + T, M, (x)
F2 (x,0)=F3 (x,,0exp || —. - . b
5 ()= F (x, t)epr[a LT Lol (x)}dv} (5.21)

which gives the x-evolutions of singlet structure function F>>(x, 1) in NLO, where a =

2/B,.
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Proceeding in the same way, we get

' [ (x)
NS NS l “ .
‘ )= 1 XL )ex N 175 5.22)
12 (x.1) ) (\0 r)exp J AfA3(x) A3(x) 75\ (
and
NS NS il 1 A (x) + T B, (x)
F, ) =F ,1)ex —. - dx |, 5.23
2 (x,0) 2 (x() ) P‘:J(a As(X)+T,By(x)  As(x)+T,B,(x) ( )

which give the x-evolutions of non-singlet structure functions FYx, f)in LO and NLO

respectively. Here,

]
As(x)=(2/3){x(1-x2) + 2xIn(l /x)}, Bs(x)=x |

X

1 —

w

® r(w)dw,

x 1
Ag(9)=(Q2/3)B+4In(1-x) +(x=D(x+3)}, Bg(x)=—[f(wdw+ x [ f(w)dw.
0 0

In our particular solutions [108-110], we observed that in the relation g = &, if y varies
between minimum (y = 2) to a maximum value, the powers of (1/4,) in LO, and powers of

¢8/141 /1 21+ and co-efficient of b(1/t — 1/1,) of exponential part in NLO in t-evolutions

and the numerator of the first term in the integral sign in x-evolution in both LO and NLO
varies between 2 to 1. Then it is understood that the particular solutions of GLDAP
evolution equations in LO and NLO obtained by that method were not unique and so the
r-evolutions of deuteron, proton and neutron structure functions, and x-evolution of
deuteron structure function obtained by that method were not unique. Thus by that
method, instead of having a single solution we arrive a band of solutions, of course the

range for these solutions is reasonably narrow.

Now deuteron, proton and neutron structure functions measured in deep inelastic electro-
production can be written in terms of singlet and non-singlet quark distribution functions

[7] as

FAx, 1) =(519) F3(x, 1), (5.24)
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(bI1+1) -
Fy (x.t) = Fy (x.1p) (/)/to+l) expl b ’ ﬂ’() . (5.35)
‘o
t
FE (xat)~F’22 (.X,t) :[Fé) (xato)_F’?z(x3tO)](t )9 (536)
0
t(b/t+1) 1 1
sz(x,t) - an (x,0) = [sz(x,to) - sz(x,to)] (b/l‘0+1) exp| b ) - fo (5.37)
tO )
and
FRxO _FEGI0) b (5.38)

F’Zl(xat) F’ZI(X’IO)

where R(x) is a constant for fixed-x. It is observed that ratio of proton and neutron is same
for both NLO and LO and it is independent of ¢ for fixed-x. We also observed that unique
solutions of GLDAP evolution equations in LO and NLO are same with particular

solutions in LO and NLO for y maximum in the = ¢’ relation [108-110].

5.2. Results and Discussion

In the present chapter, we compare our results of t-evolutions of deuteron, proton, and
neutron and difference and ratio of proton and neutron structure functions with the HERA
[94] and NMC [95] low-x and low-0” data and results of x-evolution of deuteron structure
functions with NMC low-x and low-Q? data. In case of HERA data, proton and neutron
structure functions are measured in the range 2 < QZ <50 GeV2. Moreover here Pr<200
MeV, where Pr is the transverse momentum of the final state baryon. In case of NMC
data proton and neutron structure functions are measured in the range 0.75 < Q% < 27
GeV~ We consider number of flavours N, = 4. We also compare our results of f-evolution
of proton structure functions with a recent global parameterization [96]. This

parameterization includes data from H1, ZEUS, NMC, E665 experiment [95, 97-102].

In figure 5.1(a), (b), (c). (d), we present our results of t-evolutions of deuteron, proton,

neutron, and difference of proton and neutron structure functions (solid lines for NLO and
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dashed lines for LO) for the representative values of x given in the figure. Data points at

1.6
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Fig.5.1 (a-d): t-Evolution of deuteron, proton, neutron, difference of proton and

neutron structure functions.

lowest-Q values in the figures are taken as inputs to test ‘the evolution equations.

Agreement with the data {94-95] is found to be good. We observe that /-evolutions are
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slightly steeper in LO calculations than those of NLO. For convenience, value of each
data point is increased by adding 0.2 for deuteron, proton, ncutron and 0.4/ for difference
of proton and neutron structure functions, where i = 0, 1, 2, 3 ... are the numberings of
curves counting from the bottom of the lowermost curve as the 0-th order. Data points at

lowest- Q7 values in the figures are taken as inputs.

4
3
Q b
e 2
x = 0.0064
1 =
x =0.0045
0 A &
1 10 100 1000

Q*GeV?)
Fig.5.2: t-Evolution of proton structure functions.

In figure 5.2, we compare our results of r-evolutions of proton structure functions Fy’
(solid lines for NLO and dashed lines for 1.O) with a recent global parameterization [96]
(long dashed lines) for the representative values of x given in the figure. Data points at

lowest-Q2 values in the figures are taken as input to test the evolution equation. We
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observe that t-evolutions are slightly steeper in LO calculations than those of NLO.
Agreement with the LO results is found to be better than with the NLO results. For
convenience, value of each data point is increased by adding 0.5/, where i =0, 1, 2, 3 ...
are the numberings of curves counting from the bottom of the lowermost curve as the 0-th

order. Data points at lowest-0” values in the figures are taken as inputs.

8
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x = 0.00329
=
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= 4F T
w I x = 0.00104
t 1 E— —1
1 ¢
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2 F T
x = 0.00033
0 | | N | a
0 10 20 30 40
Q*(GeV?)

Fig.5.3: t-Evolution of ratio of proton and neutron structure functions.

In figure 5.3, we present our results of /-evolutions of ratio of proton and neutron
structure functions F5’/ F»" (solid lines) for the representative values of x given in the

figures. Though according to our theory the ratio should be independent of ¢, due to the
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lack of sufficient amount of data and due to large error bars, a clear cut conclusion can

not be drawn.

1.2
Q=7 GeV?
0'8 B M
Q%*=5.5 GeV?
'ULLN — -
Q%= 4.5 GeV?

1 M,,._____

Q%= 3.5 GeV?
Iﬂ Q%= 0.75 GeV?

K = constant

K = ax®
K = ce ¥
0 | [ [ 1 _B
0 0.02 0.04 0.06 0.08 oA

X

Fig.5.4: x-Evolution of deuteron structure function in leading order.

In figure 5.4, we present our results of x-distribution of deuteron structure functions A in
LO for K(x) = constant (solid lines), K(x) = ax’ (dashed lines) and for K(x) = ce ™ (dotted
lines), where a. b, ¢ and d are constants and for representative values of O’ given in each
figure, and compare them with NMC deuteron low-x low-Q2 data [95]. Each data point
for x-value just below 0.1 has been taken as input de (xp, D). If ;Ne take K(x) = 4.5, then

agreement of the result with experimental data is found to be excellent. On the other
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hand, if we take K(x) = ax’, then agreement of the results with experimental data is found
to be good at a = 4.5, b = 0.01. Again if we take K(x) = ce™™ then agreement of the
results with experimental data is found to be good at ¢ = 5, b = 1. For x-evolutions of
deuteron structure function, results of unique solutions and results of particular solutions

have not any significant difference in LO [110).

1.2
1§ L§-4_
—a— — —3
. Q%=7 GeV?
¥ ¥ -3
Q*=5.5 GeV?
wosf T
* B2 o -3
Q%= 4.5 GeV?
“T Li'hﬂ..___'_
X ¥
Q%= 3.5 GeV?
I‘ii Q%= 0.75 GeV?
0.2 F
K = ax®
K = ce™ ™
O . ) & 2 ) 3 } 1
0 0.02 0.04 0.06 0.08 0.1

X

Fig.5.5: x-Evolution of deuteron structure function in next-to-leading order.

In figure 5.5. we compare our results of x-evolution of deuteron structure function in

NLO for K(x) = ax” (solid lines) and for K(x) = ce™® (dashed lines) with NMC [95] low-x
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low-Q? data and for representative values of O given in each figure. Each data point for
x-value just below 0.1 has been taken as input Y (xo, 1). If we take K(x) = ax’, then
agreement of the result with experimental data is found to be excellent at a = 55, b=
0.016. On the other hand, if we take K(x) = ce™™, then agreement of the results with
experimental data is found to be good at ¢ = 0.28, d = —3.8. But in the case of NLO,
agreement of the results with experimental data is found to be very poor for any constant
value of K(x). Therefore we do not present our result of x-distribution at K(x) = constant

in NLO.

5.3. Conclusion

In this chapter. we obtain complete and unique solutions of singlet and non-singlet
structure functions at low-x using by Taylor’s expansion method from GLDAP evolution
equations and ¢ and x-evolution of singlet and non-singlet structure functions in leading
and next-to-leading orders and hence r-evolutions of deuteron, proton, neutron and
difference and ratio of proton and neutron structure functions and x-evolutions of
deuteron structure functions. We compare our results with HERA, NMC low-x low-Q*
data and a recent global parameterization. In all the result from experimental data as well
as global fit, it is seen that deuteron structure functions increases when x decreases and 0
increases for fixed values of * and x respectively and proton, neutron, difference and
ratio of proton and neutron structure functions increases when (7 increases for fixed
value of x. It has been observed that, though we have derived a unique r-evolution for
deuteron, proton, neutron, difference and ratio of proton and neutron structure functions
in LO and NLO, yet we can not establish a completely unique x-evolution for deuteron
structure function in LO and NLO due to the relation K(x) between singlet and gluon
structure functions. K(x) may be in the forms of a constant, an exponential function or a
power function and they can equally produce required x-distribution of deuteron or gluon
structure functions. But unlike many parameter arbitrary input x-distribution functions
generally used in the literature, our method requires only one or two such parameters.
Explicit form of K(x) can actually be obtained only by solving coupled GLDAP evolution
equations for singlet and gluon structure functions, and works are going on in this regard.

2
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Chapter-6

t AND x-EVOLUTIONS OF GLUON STRUCTURE FUNCTIONS

In the previous chapters, particular and unique solutions of the Gribov-Lipatov-
Dokshitzer-Altarelli-Parisi (GLDAP) [29-32] evolution equations for ¢ and x-evolutions
of singlet and non-singlet structure functions in leading order (LO) and next-to-leading
order (NLO) at low-x have been reported. The same technique can be applied to the
GLDAP evolution equations for gluon structure functions in LO to obtain ¢ and x-
evolutions of gluon structure functions. These LO results are compared with a recent

global parameterization [96, 114].

6.1. Theory

The GLDAP evolution equation for gluon structure function has the standard form in LO

[89] as

oG(x,t) A, {( 11

N,
p ——4+1In(l1~ x))G(x,t) + Ig} =0, (6.1)

12 18

where

’ / Y i J - - ?
J-d [u X \]t G(x,1) +(w(l—w)+1 W)G(x/w’t)_,,%[u}]?zs (x/w,t)}
—w w w

(6.2)

t=1In (Q2 /A ) and 4, =36/(33-N ), Ny being the number of flavours.

Now, using Taylor expansion method [80] and neglecting higher order terms of x as
discussed in the Chapter-3, we can write G(x/w, ¢) as

k G(x’)

G(x/wit)=G(x,t)+x Zl
ox
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Similarly, /°(x/w., f) can be approximated for small-x. Putting these values of G(x/w., 1)

and F,° (x/w, 1), in equation (6.2) and (6.1) and performing u-integrations we get

8G(x,1) Af aFiS (x,7)

S 3G(x,1)
P A()F; (x.7)+ B,(x)

+C(NG(x, 1)+ Dy(x) | =0, (6.3)
)9 Ox

where
A(x) = —-[%(1 —-X)+ é—(l - x)2 + %lnx},

4 4 | , 8 4
Bi(x)=x—+—(1-x)+=(1-x)*+—=Inx-—|,
1(x) ){9x 9( ) 9( ) 9 9]

IO B BT RN PYPRRNIN T T RS BN
C,(x)—(12 18J+ln(1 x) [2(1 X) 2(1 x) +3(1 x) +hm},

Dy(x) = x[l+2(l~x)+—;-(l—x)3 +21nx—l:l.
x

For simplicity we assume [86-88, 106-110] G(x, ) = K(x) FS (x, 1), where K(x) is a
function of x. Therefore

FP (x,0) = Ky(x)G(x,1) , (6.4)
where K)(x) = 1/ K(x).

Now equation (6.3) becomes

oG(xr) Ar [ . oG(x,1)]
T P(x)G(x,t)+Q(x)——ax ]_o, (6.5)

oK, (x)

where P(x) = 4,(x)K(x)+ By(x) +Cy(x) and Q(x) = Bj(x)K(x)+ Dy(x).

The general solution of equation (6.5) is [80-81] F (U, V) = 0, where F is an arbitrary

function and U(x. 1, G) = Cy and (x, t, G) = C; form a solution of equations

dx dt dG(x,1)

A, Q(x) TR PG, 1) (6.6)

Solving equations (6.6) we obtain,

. 1 1
U(x,t. F;) =1 ex;{;l-: jQ(x) dx‘}
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and

V(x,l. fég) = Fz‘q(x,t)ex:{ I—g%g dx}.

If U and V are two independent solutions of equations (6.6) and if a and 3 are arbitrary
constants. then ¥ = qU +  may be taken as a complete solution of equation (6.5). Now

the complete solution [80-81]

P ] e L
G(x.t)ex;{ j 00) dx} = exg{ 1 j o

is a two-parameter family of surfaces, which does not have an envelope, since the

dx}ﬂS , 6.7

arbitrary constants enter linearly [80]. Differentiating equation (6.7) with respect to f we
get 0 = 1, which is absurd. Hence there is no singular solution. The one parameter family

determined by taking = a® has equation

P(x) _ 1l 2
G(x.t)ex;{ JQ(x) dx:‘ =ou exyl'A, jQ(x) dx} +a”. (6.8)

Differentiating equation (6.8) with respect to a, we get

a:—ltex —I—J 1 dx|.
2 A, 7 Q(x)

Putting the value of a in cquation (6.8), we obtain the cnvelope

Grt) = — 1 ex 2P (6.9)
4 4,0(x) Qx)

which is merely a particular solution of the general solution. Now, defining

l , 2 P(x)
G = - i
(x, tO) A ty exp{ r[ 00 ) ]dx]

at 1 =ty where fo=In (Qo*/4%) at any lower value O = Qo, we get from equation (6.9)

2
G(x,1)= G(x,rO{t] , (6.10)
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which gives the r-evolution of gluon structure function G(x, f). Again defining,

R 2 P,
G(loat)'— 4’ CXP[J.(AfQ(x) Q(x)] x:lv*\' ’

we obtain from equation (6.9)

¥ 2 P(x)

= - dx |, (6.11)
oo G(xo’t)exp[ j(AfQ(x) Qu))x]

X

which gives the x-evolution of gluon structure function G(x, f).

For the particular solution of equation (6.5), we take f = o® in equation (6.7). If we take /3

= a in equation (6.7) and differentiating with respect to a as before, we get

X
O———texpLJ. 1 dx |+1
A, 000)

Xn

from which we can not determine the value of a. But if we take # = o® in equation (6.7)

and differentiating with respect to a, we get

1 1 1
a= \/—~ S—texp{z— "[Q(x)dx:' ,

from which we get,

e 3/2
G(x,t)= G(x,to {;’—J

0

and

G(x,t)= G(xq.1)exp I[A 3é§r) - ggg] ;
f <

Yo

as before which are f and x-evolutions respectively of gluon structure function for g = o’.

Proceeding exactly in the same way we can show that if we take B = o we get
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‘o

4/3
G(x,o:(,«(x.,(){L]

and

Wo4/3 P
G(x,t)=G(xO,1)exp I[ AfQ(x) - Qg;]dx

.\'O
and so on. So in general, if we take f = a”, we get
, yiy-=1)

G(x,1)=Glx,1, {——}

o

and

_ 1rr-1) P
G(x,1) =G(x(, ) ex x{[ A Q(x) Q(X))d"

which give f and x-evolutions respectively of gluon structure function for # = a". We

observe if y—oo (very large), y/(y—1) —1.

Thus we observe that, if we take /f = a in equation (6.7) we can not obtain the value of a

3, o ..... and so on, we see that

and also the required solution. But if we take 8 = o’, a
the powers of (t/tp) in f-evolutions of gluon structure functions are 2, 3/2, 4/3, 5/4....and
so on respectively as discussed above. Similarly, for x-evolutions of gluon structure
functions we see that the numerators of the first term inside the integral sign are 2, 3/2,
4/3, 5/4....and so on respectively for the same values of a. Thus we see that, in the
relation f = @, if y varies between 2 to a maximum value, the powers of (¢/fp) and the
numerators of the first term in the integral sign vary between 2 to 1. Then it is understood
that the solution of equation (6.5) obtained by this method is not unique and so the ¢ and
x-evolution of gluon structure function obtained by this method is not unique. Thus by

this method, instead of having a single solution we arrive a band of solutions, of course

the range for these solutions is reasonably narrow.
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Again the value of A is so small that we can take at O = 4, Fzs(x, 1) = 0 due to
conservation of the electromagnetic current [111] as discussed in the Chapter-5. Since the
relation between gluon and singlet structure functions is G(x, 1) = K () (x, 1), therefore
G(x, 1) = 0 at O = A. This dynamical prediction agrees with most ad hoc parameterizations

and with the data {17, 111]. Using this boundary condition in equations (6.7) we get # =0

and
] P(x)
G(x,t) =t - dx |. (6.12)
(x,1) =0 exp{I(Af 00) Q(x)J xl
Now, defining
1 P(x) '
ol =% exp[ ( 4,00 Q) }dx}

at t = fp where 1p=1In (Q%/4%) at any lower value Q = Oy, we get from equation (6.12)

G(x,f) = G(xo,t{—t—} (6.13)

10

which gives the t-evolution of gluon structure function G(x, f) in LO. Again defining,

1 P(x)
¢ =°”e“p{ f( 4,0(x) Q(x)}“} ’

we obtain from equation (6.12)

G(x,1) =G(xg, 1) exp ]{A ;(x)—g g))]dx , (6.14)
f P,

Xg

which gives the.x-evolution of gluon structure function G(x, ¢) in LO. We observed that
unique solutions (equations (6.13) and (6.14)) of GLDAP evolution equation for gluon
structure function are same with particular solutions for y maximum in 8 = & relation in

LO.

6.2. Results and Discussion

In this chapter, we present our result of t-evolution of gluon structure function

qualitatively and compare result of x-evolution with the recent global parameterizations
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[96, 114]. These parameterizations include datd from HI1, ZEUS, DO, CDF, NMC,
BCDMS, SLAC,. E665, CCFR, E605, CTEQ experiments [97-102, 115-130}. Though we

y

compare our results with y = 2 and y maximum in the f = & relation with the

parameterizations, our result with y maximum is equivalent to that of the unique solution.

12
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Fig.6.1 (a-b): t-Evolution of gluon structure functions.

In figure 6.1(a-b), we present our results of t-evolutions of gluon structure functions G(x,
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1) qualitatively for the representative values of x given in the figures for y = 2 (upper

solid and dashed lines) and y maximum (lower solid and dashed lines) in the ff# = a

relation.
2
(@) Kq(x) = ax®, Q%= 1 GeV?
a=373,372,371,b=4
1.5 s
X )
V)
X
10
Kq(x) = ax®, Q?= 20 GeV?
a=140,135,130,b=1.8
1
X 04
O
0.01 t
!
0.001
0.01 0.1 1
X

Fig.6.2 (a-b): x-Evolution of gluon structure functions and sensitivity of ‘a’.

We have taken arbitrary inputs from recent global parameterizations MRST2001 (solid
lines) and MRST2001J (dashed lines) in figure 6.1(a) at Qy>= 1 GeV? [96] and MRS data

116



Studies on Hadron Structure Functions and GLDAP Evolution Equations

in figure 6.1(b) at O =4 GcV2 [114]. It is clear from figures that /-evolutions of gluon

structure functions depend upon input G(x, fy) valucs.

X
(D —-
0.01 0.1 1
X
100 -
(b) Ki(x) = ax
Q% = 20GeV?
MF —— — — a=135
- b=17,1.8,1.9
- 1F
X
© o1}
0.01 r ‘.
0.001 :
0.01 0.1 1
X

Fig.6.3 (a-b): x-Evolution of gluon structure functions and sensitivity of 'b’.

For a quantitative analysis of x distributions of gluon structure functions G(x, f), we

calculate the integrals that occurred in equation (6.14) for N;= 4. In figure 6.2(a-b), we

present our results of x-distribution of gluon structure functions for K (x) = ax®, where ‘o’
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and ‘b’ are constants, for representative values of O’ given in each figure, and compare
them with a recent global parameterization |96) for y = 2 in the rclation # = & In figure
6.2 (a), we observe that agreement of the results with parameterization is found to be very
poor for any values of ‘a” and ‘b’ at low-x and agreement is found to be good at high-x at
a = 372 and b = 4 (thick solid line). In figure 6.2(b), agreement of the results with
parameterizations is found to be good at a = 135 and b = 1.8 (thick solid linc) in the f=a”
relation. In the same figures, we present the sensitivity of our results for different values
of ‘a’ (thick solid lines) at fixed value ‘b’. Here we take b = 4 in figure 6.2(a) and b = 1.8
in figure 6.2(b). We observe that if value of ‘a’ is increased or decreased, the curve goes
upward or downward direction respectively. But the nature of the curves is similar. Here

thin solid and dotted lines are MRST2001 and MRST2001J [96] parameterizations.

In figure 6.3(a-b), we present the sensitivity of our results for different values of ‘b’ at
fixed value of ‘a’. Here we take a = 372 in figure 6.3(a) and a = 135 in figure 6.3(b). We
observe that, agreemerit of the results (thick solid lines) with parameterizations is good in
figure 6.3(a) at b = 4 and in figure 6.3(b) at & = 1.8. If value of ‘b’ is increased or
decreased the curve goes downward or upward directions. But the nature of the curves is

similar.

In figure 6.4(a-b), we present our results of x-evolution of gluon structure function G(x, /)
for K(x) = ax’ for y = 2 ( lower thick solid lines) and maximum (upper thick solid lines)
in the relation § = & at same parameter values a = 372, b = 4 in figure 6.4(a) and a = 135,

= 1.8 in ‘ﬁgure 6.4(b) and for representative values of Q* given in each figure, and
compare them with a recent .global parameterization [96]. We observe that result of x-
evolution of gluon stricture function for y maximum (long dashed lines) coincide with
result of x-evolution of gluon structure function for y = 2 (lower thick solid lines) when a
=375, b =4.7 in figure 6.4(a) and a = 134, b = 2 in figure 6.4(b). That means if y varies
from minimum to maximum, then value of parameter ‘a’ varies from 372 to 375 and ‘b’
varies from 4 to 4.7 in figure 6.4(a) and ‘a’ varies from 135 to 134 and ‘b’ varies from 1.8

to 2 in figure 6.4(b).
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G(x, 1)

G(x, t)

15
(a) Ki(x) = ax”
Q’=1GeV?
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Fig.6.4 (a-b): x-Evolution of gluon structure functions at different parameter values of a, b.

In figure 6.5(a-b). we present our results of x-distribution of gluon structure functions

- _ o,
G(x, 1) for Ki(x) = ce™" . where ‘¢’ and ‘d” are constants for representative valucs of ("

given in each figure, and compare them with a recent global parameterization [96] for y =

2 in the relation = ¢’. In figure 6.5(a), we observe that agreement of the results with the

parameterization is found to be very poor for any values of ‘c’ and ‘d’ at low-x and

1
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agreement is found to be good at high-x at ¢ = 300 and d = -3.8 (thick solid line). In

figure 6.5(b), agreement of the results with parameterizations is found to be goodatc=35

2.5
(a) K1(X) = cx—dx
Q’=1GeV? A
2 c = 305, 300, 295
=-3.8
__ 15 d
X
O 1 )
0.5 .
0 A
0.01 0.1 1
X
100
' (b) Ki(x) = cx ™
Q%= 20 GeV?
10 - = — c=5.5,545
T — ~ d=-28
— 1 -
x
O
01 F
Q.01 I
0.001
0.01 01 1

X

Fig.6.5 (a-b): x- Evolution of gluon structure functions and sensitivity of ‘c'.

and d = =28 (thick solid linc). In the samc figures, we present the sensitivity of our results
for different values of ‘c” by thick dashed lines at fixed value ‘d’. Here we take d = —3.8

in figure 6.5(a) and d = 28 in figure 6.5(b). We observe that, if value of ‘¢’ is increased
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or decreased, the curve goes upward or downward direction respectively. But the nature

of the curve is similar.

~ (a) Kq(x) = ex ™

~ : Q%=1 GeV? |
25 ~ ¢ =300
d=—4,-3.8,—3.6

- -

0.01 0.1 1

100

(b) Ky{x) = cx
‘ Q%= 20 GeV?

10 Jr i c=5

_________ ~~ = —26, —28, —30

G(x, t)

0.1

0.01 F

0.001

0.01 0.1 1
X

Fig.6.6 (a-b): x-Evolution of gluon structure functions and sensitivity of ‘d'.

In figure 6.6(a-b), we present the sensitivity of our results for different values of ‘d’ at
fixed value of ‘c’. Here we take ¢ = 300 in figure 6(a) and ¢ = 5 in figure 6.6(b). We

observe that, agreement of the results (thick solid lines) with the parameterization is good
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in figure 6.6(a) at d = —3.8, and 6.6(b) at 4 = —28. If value of ‘d’ is increased or
decreased, the curve goces downwarﬂ or upward dircction in figure 6.6(a), if value of ‘d’ is
increased or decreased the curve goes upward or downward direction in figure 6.6(b) .

But the nature of the curves is similar in both cases.

(a) Ki(x) = cx™™

5 .
O]
0.01 0.1 1
X
100
(b) Ki(x) = ex™
Q%= 20 GeV?
10 c=5
____________ =28, —-25.3
— 1 )
X
O
01 r
0.01
0.001
0.01 0.1 1

X

Fig.6.7 (a-b): x-Evolution of gluon structure functions at different parameter values of ¢, d.

In figure 6.7(a-b), we present our results of x-evolution of gluon structure function G(x, 1)
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for K1(x) = ce™ for y = 2 (lower thick solid lines) and maximum (upper thick solid lines)
in the relation § = «" at same parameter valucs ¢ = 300, d = —3.8 in figure 6.7(a) and ¢ =
5, d = —28 in figure 6.7(b) and for representative values of O given in each figure, and
compare them with a recent global parameterization [96]. We observe that, result of x-
evolution of gluon structure function, for y maximum (long dashed lines) coincide with
result of x-evolution of gluon structure function for y = 2 (lower thick solid lines) when ¢
= 300, d = -3.6 in figure 6.7(a) a{ld c =5,d=—253 in figure 6.7(b). That means if y
varies from minimum to maximum, then value of parameter ‘d’ varies from ~3.8 to —3.6
in figure 6.7(a) and from —28 to —25.3 in figure 6.7(b). In these cases, value of parameter
‘¢’ remains constant. It is to be noted that, agreement of the results with the
parameterization is found to be very poor for any constant value of K,(x). Therefore, we
do not present our result of x-distribution at K;(x) = constant. Moreover, in general, the
agreement of our results with the parameterization at small-x is poor for low-Q? value and

excellent for high-Q? value which is quite expected.

It is to be noted that, agreement of the results with experimental data is found to be very
poor for any constant value of Kj(x). Therefore we do not present our result of x-

distribution at K(x) = constant in LO.

6.3. Conclusion

In this chapter, we obtain complete and unique solutions of gluon distribution function at
low-x using Taylor’s expansion method from GLDAP evolution equations and ¢ and x-
evolution of gluon structure functions in leading order. We compare our results with a
global parameterization. In all the results from global fits, it is seen that, gluon structure
functions increases when x decreases and Q7 increases for fixed values of 0* and x
respectively. It has been observed that, though we have derived a unique f-evolution for
gluon in LO, yet we can not establish a completely unique x-evolution for gluon structure
functions in LO due to the relation Kj(x) between singlet and gluon structure functions.
Ki(x) may be in the forms of an exponential function or a power function and they can
equally produce required x-distribution of gluon structure functions. But unlike many

parameter arbitrary input x-distribution functions generally u$ed in the literature, our

method requires only one or two such parameters. []
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Chapter-7

t AND x-EVOLUTIONS OF LIGHT SEA AND VALENCE
QUARK STRUCTURE FUNCTIONS

In the previous chapters, particular and unique solutions of the Gribov-Lipatov-
Dokshitzer-Altarelli-Parisi (GLDAP) [29-32] evolution equations for ¢ and x-evolutions
of singlet, non-singlet and gluon structure functions in leading order (LO) and next-to-
leading order (NLO) at low-x have been reported. The same technique can be applied to
the GLDAP evolution equations for light sea and valence quark structure functions in LO
to obtain  and x-evolutions of light sea and valence quark structure functions. These LO

results are compared with a recent global parameterization {96].

7.1. Theory

The GLDAP evolution equations for sea and valence quark structure functions in the

standard forms are [131]

S ,Q2 2 2
6F2 (x )*QGS(Q )[lj dw {(1+W2)F25(X/W»Q2)—2F2S(X,Q2)}jl+aS(Q )

aan2 3r Jl-w 4 o
2
- 2
X[I+il_n_(;,_’(_)}pz~9(x’gz)+_a_~y(g_),:§ {w2 +(l—w)2}}G(x/w,Q2)=0
iz 8

and

Vv 2
oF, | %97 24 (02 2

2 ( 5 )— % © )[J' il {(1+WZ)FZ"(x/w,QZ)—2F{(x,Q2)}}+as(Q )

r I-w /4
dInQ X (7.2)

x [l + %—Y)}Fz‘ (x,0%)=0,

where F’(x, O°) = xu,, xd; or xs,, F, S(x, Q%) = xu, or xd, and
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1 332N, (02
a, (% 1271 '

Taking ¢ = In (Q%/A4°) and A, = 4/(33-2N)), Ny being the number of flavours and A is the
QCD cut off parameter, equations (7.1) and (7.2) become

or & U [{3 +4in(l-xFS (x0)+ 17 (x,0)+1 S(xst)] =0 (7:3)
ot ! 2 1 ?

and

ang(tx,t) - A,f [{3 +4In(l - xYFY (x,0) + 1"(x,t)] =0, 74

where

5(x0)=2 j w{(uw )Fz(x/w )~ 2F2(xt)} (7.5)

15 (x.1) =% lj{wz +(1-w)? }G(x/w, 1w (1.6)

and
1
dw 2
M(x1)= 2){]1—_; {(1 +w )sz (xrw,0)-2F) (x, t)} , (7.7)

Now, using Taylor expansion method [80] and neglecting higher order terms of x as

discussed in the Chapter-3, we can write G(x/w, f) as

Glx/w,1)= Glx, 1)+ x T ulf G(x,1)
k=1 Ox

Similarly, F>' (x/w, 1) and F,*(x/w, {) can be approximated for small-x. Then putting these
values of F5' (xAw, 1), G(x/w, 1) and Fy'(x/w, 1) in equations (7.5), (7.6) and (7.7) and

performing u-integrations we get

1 ={1-x)x+3)|F5 (x,z){len@/x)+x(1—x2)]il%~ix’—t)l (7.8)
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15 =Ei (l-—x(2~x+2\f2)(1(,\‘.1)+{—£—l1x(l—x 5~4x+2xz)+§xll(l/x)}%&t—)} (7.9
and

oFY
1V = —[(1 ~xNx+ 3)F2"(x,t)]+ l2x1n(l /x)+ x(l - xz)]?xz_ . (7.10)

Using equations (7.8) and (7.9) in equation (7.1) we have

OFy (x,1) A OF (x,1 v
26( )——tfi A(x)Fy (x,1) + B(x) 2afc )+C(x)G(x,t)+ D(x)aG—("lt—) =0. (7.11)
t
Let us assume for simplicity [86-88, 106-110]
G(x, 1) = K(x) I3 (x, 1), (7.12)
where K(x) is a function of x. Now equation (7.11) gives
s (x,t) A4 OF3 (x,1)
2 9 f S 2 ]
—Ee—— =T F5 Xt )+ M(x =0, 7.13
- ,“)2()“ax] (7.13)
where

AX)=3+4In(1-x) ~ (1-x) 3+x), Bx) =x (1-x})+ 2x In (1/ x),

C(x) = (1/4) (1-x) (2—x+ 2x%), D(x) =x [(~1/4) (1-x) (5-4x+ 2x%) + (3/ 4) In (1/ x).

L(x) = A(x) + K (x)C(x) + D(x)zg@ and M(x) = B(x) + K(x)D(x).
X

Secondly, using equation (7.10) in equation (7.2) we have

oy (x,r) A oF) (x,t)
2 s f v 2 s
~——| P(x)F5 (x, =0,
. | PEOF (ot + Ox) |70 (7.14)
where

P(x)=3+4In(1-x) - (I-x)(x+3) and
O(x) = x (1=x*) =2x Inx.

The general solution of equation (7.13) is [80-81] F (U, ¥) = 0, where F is an arbitrary

function and U(x. 1, F2) = Cy and W(x, ¢, F>) = C, form a solution of equations
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de _di_ dFQS(-*~’> , (7.15)
AM) =1 A LOFS ()

Solving equations (7.15) we obtain

s 1o ( ,S)z,s ' LX) el
U(x,z,Fz)_lexp{A, J.M(x)dx] and V x.t,F2 Fz (x,t)ex IM(x) x

If U and V are two independent solitions of equations (7.15), and if a and 3 are arbitrary

constants, then ¥ = al + § may be taken as a complete solution of equation (7.14). Now

the complete solution [80-81]

s L(x) _ RENER d
Fz(x,t)ex;{ jM(x)de ot ex 7y jM(x) x:'+,8 (7.16)

is a two-parameter family of surfaces. The one parameter family determined by taking f§ =

o® has equation

s Lx) . |_ ot 2
F2 (x,1) exi{ -[M(x) dx} =t exD[A/ -[M(x) dx} +o”. (7.17)

Differentiating equation (7.17) with respect to a, we get

a=—ltex —LI ! dx .
2 A, " M(x)

Putting the value of a in equation (7.17), we obtain the envelope

s _ 15 2 L) |,
Fy(x.1)= ;! exp{j[A/M(x) M(x)]de, (7.18)

which is merely a particular solution of the general solution. Now, defining

S _ Ly 2 _ L(x)
F (l’to)— 4tO eXp[-[(A,M(X) M(x)]dx}

at 1 = ty. where 1o = In (Qoz//lz) at any lower value Q = (Jy, we get from equation (7.18)

2
S ) !
Fy(x,1)=F, (.\'O,IIEJ , (7.19)

which gives the r-evolution of light sea quark structure function F,’(x, ¢). Proceeding
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exactly in the same way, and defining

vy Lo 2 P,
ERU I[/&Q(x) Q(x)Jx’

we get

2
F,}’(x,t)—_-Fz"(x,tO{LJ , (7.20)
2 o

which gives the f-evolution of valence quark structure function F>"(x, f). Again defining

s __ Lo 2 D)y
Fy (xg 1) ==,1 ex{j(/’fM(x) M(’C)) XL |

xX=xq

we obtain from equation (7.18)

Sy FS 12 1 7.21
Fy(x,0)=F5 (xO,t)exp[ I( M) M(X)de} (7.21)

X0

which gives the x-evolution of light sea quark function F5°(x, £). Similarly defining

) i, 2 P)
F2 (x()’t)— 4t exp[ j( AfQ(x) Q(x)]dx:l.r:\ ,

we get

2 P(x)
£y (x,1) ?_(xo,t)ex ,J,( 4,00 Q(x)] 3 (7.22)

Y=Yy

which gives the x-evolution of valence quark structure function F5'(x, 1).

For the particular solution of equation (7.13), we take 8 = o® in equation (7.16). If we take

f = a in equation (7.16) and differentiating with respect to a as before, we get

O:texp—l—J. 1 dx |+1
A, 7 M(x)

from which we can not determine the value of a. But if we take # = o’ in equation (7.16)

and differentiating with respect to a, we get
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1 1 1
o= _[-=fexp — j~~~~—dx ,
3 Ay T M(x)

Putting this value of « in cquation (7.16), we get ultimately

1/2 3/2
s _ang( )y T (] 3/2  L(x)
Fa =t ( 3] +( 3) e JAfM(x) oo |5

Now, defining

1/2 3/2
i 1 32 L)
FS(x,t PR IR +|—— e - dx
2 (%19) =10 74| ~3 3) [\ ame M [ |

we get

3/2
{
Fjg(x,t)=FZS(x,to{;—] )

0

which gives the /-evolution of light sea quark structure function F3°(x, f). Proceeding

exactly in the same way we get

3/2
) {
FY (x,1)= F3 (x,lo{rj :

0

which gives the r-evolution of valence quark structure function F5"(x, ¢).

Proceeding in the same way we get x-evolutions of light sea and valence quark structure

functions as

S, N S 1 3/2 L
F2 (x,t)= F2 (xo,t)ex x{( A M) M(x)]dx

and

v vV,
Fy (x.) = Iy (x(, 1) exp J ArQ(x)  O(x)

Yo

( 3/2 P

de respectively, and so on. So in
Y=Xp

general. if we take ff = &', we get
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, vily-"1
5. SV [
F35V(x0)=1" \(”\"() ;

lo

yi(y-1) L)
A,M(x) M(x)

F;(x,t) = Fzs(xo,t)exp

Xp

and

Voo o Hriy-1_Pm),
F2 (x,¢) = F2 (xo,l)exp "I( 1,000 0 ]u

X=Xg

which are ¢ and x-cvolutions respectively of light sca and valence quark structure

functions for = & respectively. We observe, if y—oo (very large), y/(y—1) —1.

Thus we observe that if we take = a in equation (7.16), we can not obtain the value of a

s
3, a®, a’..... and so on, we see that

and also the required solution. But if we take § = «’, a
the powers of (¢/¢y) in t-evolutions and the numerators of the first term inside the integral
for x-evolutions of valence and light sea quark structure functions are 2, 3/2, 4/3,
5/4....and so on respectively as discussed above. Thus we see that if in the relation § = &,
y varies between 2 (o a maximum value, the powers of (¢/1y) varies between 2 to 1, and the
numerator of the first term in the integral sign varies between 2 to 1. Then it is understood
that the solutions of equations (7.13) and (7.14) obtained by this method are not unique
and so the r-evolutions and x-evolutions of valence and light sea quark structure functions
obtained by this methodology are not unique. Thus by this methodology, instead of

having a single solution we arrive a band of solutions, of course the range for these

solutions is reasonably narrow.

Since the value of /1 is so small that we can take at O = 4, > (x, 1) or 2" (x, f) = 0 due to
conservation of the electromagnetic current [111] and at small-x valence quark structure
function must vanish. This dynamical prediction agrees with most ad hoc

parameterizations and with the data [17, 111]. Using this boundary condition in equation

(7.16) we get 1 =0 and
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.S ~ L A€ (7.23)
[2 (x,1)=uaurexp I{AfM(\) M(A) :

Now, defining

l L(x)
- SR LI P
0) = *oxp) Jl M) M) :

S
F2 (x,¢

at ¢t = tg where. 1p= In (Qoz//lz) at any lower value Q = (,, we get from equation (7.23)

F3 (x,0)=F3 (x,t)(—’—), (7.24)
2 ”

which gives the 7-evolutions of light sea quark structure function in LO.
Again defining,
/
Fjg(—\’OJ Y=asexp || - ._,L_ iyl
/ M(xy M( x)
X=X

we obtain from equation (7.23)

3 (x,0) = 5 (xg. 1) ex j e d |, (7.25)

.\‘0

which gives the x-evolutions of light sea quark structure functions in LO. Similarly we

get for valence quark

B (x1)= rzv(x ’0(12)] (7.26)

and

FY _pV R )y o P(x)
2(x,l) Fz(xo,l)cx 4 ()(\) Q(x)

(7.27)

.\'0

We observed that unique solutions (equations (7.24), (7.25), (7.26) and (7.27)) of GLDAP
evolution equations for valence and light sea quark structure functions are same with

particular solutions for y maximum in the 8 = «" relation in LO.
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7.2. Results and Discussion

In this chapter, we present our result of t-evolution of light sea and valence quark

structure functions qualitatively and compare result of x-evolution with a recent global

(a) xs
9 1 Q,’=1GeV’ X= A
/ (+7)
" x=.01
x /—’:’-:‘-----------------------(+6)
6
x =.001
,-—ﬁ-------------------------(+5)
T EEETNE S = = B = me = e e ee s = x=.0001
(+4)
3 I8 [y 2 [ a4
0 20 40 60 80 100 120
Q%(GeV?)
1000 10 o
(c) xd,
Qy2= 1GeV?
x=.1
100 "
x=.1
x=.01
> x =.01 U | R
E 10 'g 0.1 x =.001
x = .001 - x = .0001
1 0.01
x =.0001
0.1 0.001
0 50 100 150 0 50 ) 100 150
Q*(GeV?) Q*(GeV?)

Fig.7.1 (a-c): t-Evolution of light sea and valence quark structure functions.

parameterization [96]. This parameterization includes data from H1, ZEUS, NMC,
BCDMS. SLAC, E665, CCFR, E605, and CDF experiments [95, 97-102, 117-124].

132



Studies on Hadron Structure Functions and GLDAP Evolution Equations

Though we present our results of /-evolution with y = 2 and y = maximum in the f oo
relation, our result with y = maximum is cquivalent to that of unique solution and results
of x-cvolution tor y = 2 and v maximum in the f~ o relation have not any significant

difference

In figure 7.1(a-c), we present our results of r-cvolutions of light sea and valence quark
structure functions qualitatively for the representative values of x given in the figures for
y = 2 (solid lines) and y maximum (dashed lines) in the f = & relation. We have taken
arbitrary inputs from a recent global parameterization MRST2001 [96] at O’=1 GeV2 It
is clear from figurcs that t-evolutions of light sca and valence quark structure functions
depend upon input /5'(x, fp) and /2'(x, ) values. Unique solutions of f-evolution for light
sea and valence quark structure lunctions arc samec with particular solutions for y

maximum in the /§ = «' relation in 1,0,

For a quantitative analysis of x-distributions of light sca quark structurc functions, we
calculate the integrals that occurred in equation (7.21) for Ny= 4. In figure 7.2 (a-b), we
present our results for K(x) = constant for representative values of 0% = 10 GeV? (figure
7.2(a)) and Q% = 10* GeV? (figure 7.2(b)) and compare them with a recent global
paramcterization (thin solid lines) [90] in the relation f = & for y =2 (thick solid lincs).
Since our theory is in small-v region and does not explain the peak portion for u & d. so a
point for x-value just below 0.1 for s und 0.01 for u & d has been taken as input to test the
evolution cquation. We obscive that agreement of the results (thick solid line) with
paramcterization is found to be good at A(v) 08,590 for n & d and K(x) 210, 520 for s
in figure 7 2(a) and figure 7.2(b) respectively. In the same figures we present the
sensitivity of our results (dashed fines) for different constant values of A(x). We observe
that if value of K(x) is increased o decreased, the curve goes upward or downward

direction respectively. But the natwie of the curve is similar.

[n figures 7.3(a-b) and 7.4(a-b), we present our results of x-distribution of light sea quark
structure functions for K(x) - «x”. where o’ and ‘b’ arc constants for representative
valucs of (2 = 10 GeV? (figure 7.3(a-b)) and O* = 10* GeV? (figure 7.4(a-b)) and

compare them with recent global parameterizations (thin solid lines) [96] in the relation
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p=a’ for y = 2 (thick solid lines). Since our theory is in small-x region and docs not

explain the peak portion for u & d, so a point for x-value just below 0.1 for s and 0.01 for

(a) @Q*=10GeV?
K =66, 68,70 foru & d
K = 200, 210, 220 for s

= -
X
1
X
'\t (b) Q*= 10* GeV?
A\ K =580, 590, 600 foru & d
2 AN\ K =510, 520, 530 for s "
\
£
Y
»
1 -
0
0.0001 0.001 0.01 0.1 1

Fig.7.2 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'K'.

u & d has been taken as input to test the evolution equation (7.21). We observe that

agreement of the results (thick solid line) with the parameterization is found to be good at
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a=135& b=033foru& dand a=130 & h=0.35 for s at 0% =10 GeV? in figure 7.3(a-
b)and ¢ = 211 & b = 0.25 for u & d and @ = 260 & b = 0.29 for s at O* = 10" GeV? in
figure 7.4(a-b). In the same figures, we present the sensitivity of our results (dashed

lines) for different values of ‘a’ and ‘b’. Here we take b = 0.33, 0.35 in figure 7.3(a) and b

2

(a) K = ax®, Q%= 10 GeV?
a=130,135,140 & b=.33foru & d
a =120, 130, 140 & b = .35 for s

xf(x)

1
X
2
(b) K = ax®, Q*= 10 GeV?

a=1358& b =.36,.33, 3foru&d
a=130& b= 4, .35 3fors

>

= 1

*

0
0.0001 0.001 0.01 0.1 1

Fig.7.3 (a-b): x-Evolution of light sea quark structure functions and sensitivity of 'a’ and 'b’.

= 0.25, 0.29 in figure 7.4(a). We observe that if value of ‘@’ is increased or decreased. the

curve goes upward or downward direction. But the nature of the curve is similar. In
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figure7.3 (b) and figure 7.4(b), we present the sensitivity of our results (dashed lines) for
different values of ‘b’ at fixed value of ‘a’. 1lere we take a = 135, 130 in figure 7.3(b) and

a =211, 260 in figure 7.4(b). We observe that at b = 0.33 & 0.35, agreement of the results

(a) K=ax", Q*= 10" GeV?
a=191,211,221& b=.25foru &d
2 a =250, 260, 270 & b = .29 for s .
*
A
*
1 -
0
0.0001 0.001 0.01 0.1 1
X
(b) k=ax’, Q%= 10° GeV?
2 a=211&b=.15.25,.35 foru&d
a=2608&b=.27,.29, .31 fors
x
®
1 o
0
0.0001 0.001 0.01 0.1 1

X
Fig.7.4 (a-b): x-Evolution of light sea quark structure functions and sensitivity of ‘a' and 'b’.

(thick solid lines) with the parameterization is found to be good in figure 7.3(b) and at b

= 0.25 & 0.29, agreement of the results (thick solid lines) with parameterizations data is
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found to be excellent in figure 7.4(b). If value of ‘" is increased or decreased the curve

goes downward or upward direction. But the nature of the curve is similar.

2
(a) K=ce™, Q*=10 GeV?
c=46.8,47.8,488& d=—1foru&d
c=31.5,325,335&d=—20fors
x
= 1
>

0

0.0001 0.001 0.01 0.1 1
X

2

(b) K = ce ™, Q%= 10 GeV’
c=4788&d=—5—1,—15foru&d
c=3258&d=—-15,-20,—-25fors

xf(x)

0.0001 0.001 0.01 - 0.1 1
Fig.7.5 (a-b): x-Evolution of light sea quark structure functions and sensitivity of ‘c’ and ‘d'.

In figures 7.5(a-b) and 7.6(a-b) we present our results of x-distribution of light sea quark
structure functions for K(x) = ce™™, where ‘¢’ and ‘d’ are constants for representative

values of 0% = 10 GeV? (figure 7.5(a-b)) and O* = 10* GeV? (figure 7.6(a-b)) and
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compare them with a recent global parameterization (thin solid lines) [96] in the relation /3
= ¢ for y = 2 (thick solid lines). Since our theory is in small-x region and does not
explain the peak portion for 1 & d, so a point for x-value just below 0.1 for s and 0.01 for

u & d has been taken as input to test the evolution equation (7.21). We observe that

(a) K=ce™, Q%= 10* GeV?
c =460, 465,4708& d=—4ford & u
2 c=380,385,3908&d=—25fors "
x
G
»
1 -l
0
0.0001 0.001 0.01 0.1 1
X
’ (b) K=ce™®™ Q?=10* GeV?
: “ c=4658d=-39,—4,—41ford & u
2 c =385 & d =—24, —25,—26 for s -
x
[+t
*
1
0
0.0001 ©0.001 0.01 0.1 1

X
Fig.7.6 (a-b): x-Evolution of light sea quark structure functions and sensitivity of ‘c’ and 'd".

agreement of the results (thick solid line) with parameterization is found to be good at ¢ =
478 & d=-1 foru,d and ¢ =32.5 & d = -20 for s at 0 = 10 GeV? in figure 7.5(a-b)
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and ¢ = 465 & d = - 4 for u .l and ¢ - 385 & o = =25 for s at Q" = 10* GeV? in figure
7.6(a-b). In the same figures we present the sensitivity of our results (by dashed lines) for
different valuecs of ‘¢’ and ‘d". Here we take o/ = =1, =20 in figure 7.5(a) and d = 4, -25
in figure 7.6(a). We observe that if value of ‘¢” is increased or decreascd, the curve goes
upward or downward direction. Bul the naturc of the curve is similar. In figure 7.5(b) and
figure 7.6 (b), we present the scnsitivity of our results (dashed lines) for different values
of ‘d at fixed value of ‘c’. Ilere we take ¢ = 47.8, 32.5 in figure 7.5(b) and ¢ = <65, 385
in figure 7.4(b). We observe that at d = —1, & 20, agreement of the results (thick solid
lines) with paramcterizations data is found to be good in figure 7.5(b) and at d 4 &
~25, agreement of the results (thick solid lines) with the parameterization is found to be
excellent in figure 7.6(b). If value of ‘d’ is increased or decreased the curve goces upward
or downward direction. But the nature of the curve is similar. We observe that for x-
evolutions of light sea quark structure functions, results for y = 2 and maximum in the ff =
& relation in 1.O have not any significant difference. T h is to be noted that unigue
solutions of evolution equations for light sea and valence quark structure functions are

same with particular solutions for y maximum in f/ = &” relation in LO.

From our above discussion, it has been observed that though we can derive a complete
unique f-evolution for light sca and valence quark structure functions in LO, yet we can
not establish a complete unique x-cvolution for light sea quark structure function in LO
due to the presence of K(x). A(v). the relation between light sea quark and gluon structure
functions, may be in the forins of a constant, un exponential function of x or a power in x
and they can equally produce required x-distribution of light sea quark. On the other hand,
the explicit form of K(x) can actually be obtained only by solving coupled Gl.DAP
evolution equations for singlet and pluon structure functions, and works are going on in

this regard.

7.3. Conclusion

In this chapter, we obtain complete. particular and unique solutions of light sea quark and
valence quark distribution functions at low-x using Taylor’s expansion method from
GLDAP cvolution equations and s-cvolution of light sea and valence quark structure

functions and x- cvolution of hpht sen quark structure function in LO. We compare our
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results with a global parameterization In all the results from global fits. it is scen that
light sea and valence quark structure functions increases when x decreases and Q2
increascs for fixed values of (' and v respectively. It has been observed that, though we
have derived a unique f-evolution I lipht sca and valence quark structure functions in
LO, yet we can not establish a completely unique x-evolution for light sea quark structure
functions in L.O due to the 1elion A(y) between singlet and gluon structure functions.
K(x) may be in the forms of a constant, an exponential function or a power function and
they can cqually produce required wv-distribution of light sea quark structure functions.

But unlike many parameter arbitrary input x-distribution functions generatly used in the

literature, our method requires only one or two such parameters. [
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Chapter-8

CONCLUSION

This thesis deals with proton, neutron as well as deuteron structure functions determined
from deep inelastic scattering experiments approximated for low-x region. Structure
functions are calculated from complete, particular and unique solutions of GLDAP
evolution equations which are deduced from pertubative quantum chromodynamics. ¢ and
x-evolutions of structure functions at low-x region are predicted. Theoretical predictions

are compared with experimental data and recent global parameterizations.

In the Chapter-1, we present a brief introduction of the problem. Quark and gluon
distribution functions at low-x are important for understanding of the inner structure of
hadrons and for examination of quantum Chromodynamics, the underlying dynamics of
quarks and gluons. Gluons are expected to be dominant in the low-x region. In addition to
that. quark and gluon distributions are important inputs in many high energy processes.
On the other hand, gluon distribution cannot be measured directly from experiment. It is
therefore, important to measure gluon distribution function indirectly from quark
structure function. In this chapter, we discuss about structure of matter, lepton-nucleon
interactions, small-x physics, evolution equations and experimental overview of structure
functions. In the Chapter-2, we discuss about the Taylor expansion method, complete and
particular solutions of first order lincar partial differential cquation and several methods
of numerical integrations which will be used in subsequent chapters. In the Chapter-3. we
discuss briefly about the r-evolutions of deuteron, proton, neutron, difference and ratio of
proton and neutron and x-evolution of deuteron structure functions at low-x. We consider
the leading order GLDAP evolution equation for singlet and non-singlet structure
functions and obtained complete and particular solution by solving it by applying Taylor
expansion method. We compare our results with recent standard parametrizations and
make predictions for the NMC and HERA data. And also we compare our results with
those of earlier approximate solutions of GLDAP evolution equations. In the Chapter-4,

we discuss briefly about the 1 evolutions of deuteron, proton, neutron, difference and ratio
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of proton and neutron and x-cvolution of deutcron structure functions at low-x as in the
Chapter-3. But here we consider the next-to-leading order GLDAP evolution equation for
singlet and non-singlet structurc functlions and obtained complete and particular solution
by solving it applying Taylor cxpansion mcthod. We compare our results with recent
standard parametrizations and make predictions for the NMC and HERA data. And also
we compare our results with those of leading order results. In the Chapter-5, we discuss
briefly about the r-evolutions of deuteron, proton, neutron, difference and ratio of proton
and neutron and x-cvolution ol deuteron structure functions at low-x as in the Chapter-3.
But here we consider the lcading order and next-to-leading order GLDAP evolution
equation for singlet and non-singlet structure functions and obtained complete and unique
solutions by solving it applying Taylor cxpansion method and applying boundary
conditions. We compare our results with recent standard parametrizations and make
predictions for the NMC and IIERA data. In the Chapter-6, we discuss briefly about the ¢
and x-evolutions of gluon structure [unction at low-x. We consider the leading order
GLDAP cvolution equation for gluon distribution function and obtained complete,
particular and unique solutions by solving it applying Taylor expansion method and
boundary conditions. We comparc our results with recent standard parametrizations. In
the Chapter-7, we discuss briefly about the 1 and x-evolutions of light sea and valence
quark structure functions at low-x. We consider the leading order GLDAP evolution
equation for light sea and valence quark structure functions and obtained complete,
particular and unique solutions by solving it applying Taylor expansion method and

boundary conditions. We compare our results with recent standard parametrizations.

In all the results from experiments as well as global fits, it is seen that all the mentioned
structure functions increase when x decreases and ° increases for fixed values of 0* and
x respectively in general. It is obscrved that the results from our methods are also
generally comparable with those of experiments as well as global fits. We observe that x-
cvolution results of deuteron and light sca quark structure functions for y = 2 and y
maximum in the // = «” refation in leading order have not any significant differences. It
has been observed that though we have derived unique r-evolutions for deuteron, proton,
neutron, and difference and ratio of proton and neutron structure functions in leading
order and next-to-leading order and gluon, sea and valence quark structure functions in

leading order , yct we can not cstablish completely unique x-evolutions for deuteron
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structure function in leading order and next-to-leading order and gluon and sea quark
structure functions in leading order due to the relation K(x) between singlet and gluon
structure functions. K(x) may be in the forms ol a constant, an exponential function or a
power function and they can cqually produce required x-distribution of deuteron or gluon
structure functions. But unlike many parameter arbitrary input x-distribution functions
generally used in the literature, our method requires only one or two such parameters. On
the other hand, our methods are mathematically simpler with less number of
approximations. Explicit form of K(x) can actually be obtained only by solving coupled
GLDAP evolution equations for singlet and gluon structure functions, and works are

going on in this regard as mentioned in the Chapter-5.[]
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Programme-1: Integration programme to obtain x distribution of
deuteron structure function in leading order

#include<math.h>

#include<stdio.h>

#include<conio.h>

#define a(x) (3+(4*log(1-x))-((1-x)*(3+x)))

#tidefine b(x) ((x*(1-(x*x))+2*x*log(1/x)))

#define Nf 4

#define c(x) ((.5)*(ND*(1-x)*(2-x+(2*x*Xx)))

#define d(x) (NP*x*(((-.5)*(1-x)*(5-(4*x)+(2*x*x)))+((1.5)*log(1/x))))
#define Af .16

#define t 100

#definew 1

#define j 5

#define k j*exp(-w*x)

#define 1(x) (a(x)+(k*(c(x)))-(w*k*d(x)))

#define m(x) (b(x)+(k*d(x)))

#define f(x) (2/(Af*m(x))-(I(x)/m(x)))

main()

{

int 1;

float h,ul,lm,s,sa,sb,u.e,x;

clrser();

printf("\n upper limit: ");
scanf("%f", &ul);
printf("\n lower limit: *);
scanf("%f", &lm);
h=(ul-lm)/t;
s=f(ul)+f(Im);
for(=1;i<=t-1;i=i+1)
{

sa=(Im+(i*h));
s=s+(2*(f(sa)));
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}

for(i=1;i<=t-1;i=1+2)

{

sb=(Im+(i*h));
s=s+(2*(f(sb)));

}

u=(s*h)/3.0;

printf("\n integral=%f", u);
e=exp(u);

printf("\n exponential=%f", e);
getch();

return(0);

}

*It is to be noted that in case of constant and power value of k, following few lines
#definew 1

#define j 5

#define k jJ*exp(-w*x)

#define I(x) (a(x)+(k*(c(x)))-(w*k*d(x))) replaced by
#definek 4.5

#define I(x) (a(x)+(k*(c(x))))

for constant value of k and

#definew -.01

#define j 1.8

#define k j*pow(x,w)

#define 1(x) (a(x)+(k*(c(x)))+(w*j*d(x)*pow(x,w-1)))

for power value of k.

Programme-2: Integration programme to obtain x distribution of
deuteron structure function in next-to-leading order

#include<math.h>
#include<stdio.h>

#include<conio.h>
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#define Al(x) (.666667*(3+(4*log(1-x))-((1-x)*(3+x))))

#define A2(x) (1.33333*(1-x)*(2-x+(2*x*x)))

#define A3(x) (.666667*((x*(1-(x*x)))+(2*x*log(1/x))))

#define A4(x) (4*x*(((-.33333)*(1-x)*(5-(4*x)+(2*x*x)))+(log(1/x))))

#define Fqql(x) ((-log(x)*((2.222222) +(3*x)+(3*x*x)+ (.8888888*x*x*x})) +(.5*x*
(log(x)*log(x))*(2+x))+(5*x)-(1.5%x*x)+(2.37037037*x*X*X)-
5.87037037)

#define Fqq2(x) ((log(x)*((4.222222)-(4*x)+(1.66666*x*x)+(.8888888*x*x*x)))-(.5*
(log(x)*log(x))*(1+(x*x)))+((.333333)*pow(log(x),3))+(2.2222222/x)-
(4*x)+(5.277777778*x*x)-(2.37037037*pow(x,3))-1.12962963)

#define Fqgl(w) 4-(9*w)-((1-(4*w))*log(w))-((1-(2*w))*log(w)*log(w))+(4*log(1-w))
+((2*log((1-w)/w)*log((1-w)/w))-(4*log((1-w)/w))+ 3.414367333)*(w
*wH((1-w)*(1-w)))

#define y(w)  (-log(log(1+w))-(log(w)*log(1+w))+(log(log((1/w)+1))) +(log(1/w)*
log(1-+(1/w))))

#define F1(w) 20.222222+(1.555556*w)+(4.444444/w)+(((45.333333*w)-12.666667) *

log(w))-4*log(1-w)-((2+(8*w))*log(w)*log(w))

#define F2(w) (-(log(w)*log(w))+(14.666667*log(w))-(2*log(1-w)*log(1-w))+ (4* log

(1-w))+(3.292813)-72.666667)* ((W*w)+H((1-w)*(1-w)))

#define F3(w) 2*((w*w)+((1+w)*(1+w)))*y(w)

#define Fqg2(w) (F1(w)+F2(w)+F3(w))

#define Fqg(w) ((2.66666666*(Fqgl(w)))+(6*I'qe2(w)))

#define Fqgll(x) (-log(x)*((9*x)-(5*x*x)+(3.5555556*x*x*x))+(((3*x)-(3*x*x) +
(1.33333333*x*x*x))*log(x)*log(x))-3.7153777778+ (.017511111*x)
+(5.982488889*x*x))

#define Fqg22(x) ((-2.284622222*x*x*x)+(((3.5555555*x*x*x)-(4.66666666*x*x)+
(2.66666667*x)-1.55555556)*log(1-x))+((1.33333333-(2*x)+ (2* x*
x)-(1.33333333*x*x*x))*log(1-x)*log(1-x)))

#define Fqg9(x) Fqgll(x)+Fqg22(x) '

#define F11(x) -12.04971852+(10.26902222*x)-(16.7690222*x*x) + (18.549718 *x*

X*x)+((-4.4444444-(8*x)-(1 1 *x*x)-(10.2222222*x*x*x))*log(x))

#define F22(x) (((3*x)+(3*x*x)+(.6666666*x*x*x))*log(x)*log(x))+((1.555555-
(2.6666666*x)+(4.66666667*x*x)-(3.555555’;‘x*x*x))*log(1-x))+
((-1.333333+(2*x)-(2*x*x)+(1.333333*x*x*x))*log(1-x)*log(1-x))
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#define Fqg8(x) (IF11(x)+1"22(x))

#define Pf(w) (((-2*(1+(W*wW))/(1-w))*log(w)*log(1-w))-(((B/(1-w))+(2* w))*log(w))-
(.5*(1+w)*log(w)*log(w))-(5*(1-w)))

#define Pg(w) (((1H(W*wW))/(1-w))*((log(w)*log(w)) +((3.666667) *log(w))+
(19.0468))+ (2*(1+w)*log(w))+((13.333333)*(1-w)))

#define Pnf(w) ((.666666)*((((1+(w*w))/(1-w))*(-log(w)-1.666666))-(2*(1-w))))

#define Pa(w) ((2*((1+H(W*W))/(1+w))*y(W))+2*(1+w)*log(W)) +(4*(1-)))

#define flw)  (((1.777778)*Pf(w))+(2*Pg(w))+(2.66667*Pnf(w))+((.222222)* Pa(w)))

#define f1(w) (((1-w)/w)*f(w))

#define f2(w) (((1-w)/w)*Fqg(w))

#define n 10000

#defineul2 1

#define ul3 1

#defineuld 1

#definep -170

#define q 2

#definek  p*exp(-x*q)

#define L1(x)  (A1(x)+Hk*A2(x))-(k*q*(A4(x))))

#define L2(x) (A3(x)+(k*A4(x)))

#define BI1(x) (5.333333*Fqql(x))

#define B2(x) ((2.66666666*(Fqg9(x)))+(6*(Fqg8(x)+u2)))

#define B3(x) (x*(u3)+(5.333333*x*Fqq2(x)))

#define B4(x) (x*(u4))

#define M1(x) (B1(x)+(k*B2(x))-(k*q*(B4(x))))

#define M2(x) (B3(x)+(k*B4(x)))

#define f3(x) (1/(L2(x)+(.026*M2(x)))*(8.333333-(L1(x)*+(.026*M1(x)))))

main()

{

inti,

float h2,h3,h4.h5.s2.53,54,55.5a2,s5a3,sa4,sa5,u2,u3,ud,u;

float sb2,y.sb3,sb4,sb5,ul5,Im2.Im3,Im4,ImS.x.w.e ;

clrscr():

printf("\n value of upper limitS: ");

scanf("%f", &uls);
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printf("\n value of lower limit2: ");
scanf("%f", &Ilm2),

printf("\n valuc of lower limit3: "),
scanf("%f", &Im3);

printf("\n value of lower limit4: "),
scanf("%f", &Im4);

printf("\n value of lower limit5: ");
scanf("%f", &lm5);
h2=(ul2-Im2)/n;

h3=(ul3-Im3)/n;

h4=(ul4-1m4)/n;

h5=(ul5-Im5)/n;
s2=F3(ul2)+F3(Im2),
s3=f1(ul3)+f1(Im3);
s4=f2(ul4)+£2(Im4);

for(i=1; i<=n-1; i++)

{

sa2=(Im2+(i*h2));
§2=s2+(2*F3(sa2));

}

for(i=1; i<=n-1; i+=2)

{

sb2=(Im2+(i*h2));
s2=s2+(2*F3(sb2));

}

u2=s2*h2/3;

printf("\n integral=%f", u2);
for(i=1; i<=n-1; i++)

{

sa3=(Im3+(i*h3));
s3=s3+(2*f1(sa3));

}

for(i=1; i<=n-1; i+=2)

{

156



Studies on Hadron Structure Functions and GLDAP Evolution Equations

sb3=(Im3+4(i*h3)).
s3=s3+(2*f1(sb3));

}

u3=s3*h3/3;

printf("\n integral=%f", u3);
for(i=1; i<=n-1; i++)

{

sad=(Im4+(i*h4));
sd=s4+(2*f2(sad));

}

for(i=1; i<=n-1; i+=2)

{

sb4=(Im4+(i*h4));
s4=s4+(2*f2(sb4));

}

ud4=s4*h4/3;

printf("\n integral=%f", ud);
s5={3(ul5)+f3(Im5);
for(i=1; i<=n-1; i++)

{

saS=(Im5+(i*h9S));
sS=s5+(2*f3(sad));

}

for(i=1; i<=n-1; i+=2)

{

sb5=(Im5+(i*h5));
s5=s5+(2*f3(sb5));

}

u=s5*h5/3;

printf("n integral=%f", u);
e=exp(u);

printf("\n exponential=%f", ¢).
getch();

return(0);
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*In case of power value ol k, following few lines

#definep -170

#defineq 2

#define k p*exp(-x*q)

#define L1(x) (Al(x)+Hk*A2(x))-(k*q*(A4(x)))) replaced by
#definep 30

#define q .014

#define k p*pow(x,q)

#define L1(x) (A1(x)+(k*(A2(x)))+Hp*q*pow(x,q-1))*Ad(x))

Programme-3: Integration programme to obtain x distribution of
gluon structure function in leading order

#include<math.h>

#include<stdio.h>

#include<conio.h>

#define a(x) (.694+(log(1-x))-(2*(1-x))+(.5*(1-x)*(1-x))-(.3333*(1-x)*(1-x)*(1-x))-
log (x))

#define b(x) ((-.2222222)*((1-x)+(.5*(1-x)*(1-x))+(2*log(x))))

#define c(x) (x*(2*(1-x)+((.33333)*(1-x)*(1-x)*(1-x))+(2*log(x))+(1/x)-1))

#define d(x) (x*(.222222)*(((.5)*(1-x)*(1-x))+(2*(1-x))+(4*log(x))+(2/x)-2))

#define Af 1.24

#definew -4

#define j 300

#define k j*exp(-w*x)

#define Im .9

#define t 100

#define p(x) (a(x)+(k*(b(x)))-(w*k*d(x)))

#define q(x) (c(x)+(d(x)*k))

#define f(x) (2/AF*q(x))-(p(x)/q(x)))

main()

{
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int i;

float h,ul,s,sa,sb,u,e,x;
clrser();

printf("\n upper limit: ");
scanf("%f{", &ul);
h=(ul-lm)/t;
s=f(ul)+f(Im);
for(i=1;i<=t-1;i=i+1)

{

sa=(Im+(i*h));
s=sH2*((s2)));

}

for(i=1;1<=t-1;i=1+2)

{

sb=(Im+(1*h));
s=sH(2*(f(sb)));

}

u=(s*h)/3.0;

printf("\n integral=%f{", u);
e=exp(u);

printf("\n exponential=%f", e);
getch();

return(0);

}

*It is to be noted that in casec of power value of k, following few lines
#definew -4

#define j 300

#define k j*exp(-w*x)

#define p(x) (a(x)+(k*(b(x)))-(w*k*d(x))) replaced by

#definew 1.8

#define j 135

#define k j*pow(x,w)

#define p(x) (a(x)+(K*(b(x))+H(W*j*d(x)*pow(x,w-1)))
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Programme-4: Integration programme to obtain x distribution of light
sea quark structure function in leading order

#include<math.h>

#include<stdio.h>

#include<conio.h>

#define a(x) (3+(4*log(1-x))-((1-x)*(3+x)))
#define b(x) ((x*(1-(x*x)))+(2*x*log(1/x)))
#define Nf 4

#define c(x) ((.25)*(1-x)*(2-x+(2*x*x)))
#define d(x) (x*(((-2.5)*(1-x)*(5-(4*x)+(2*x*x)))+((.75)*log(1/x))))
#define Af .16

#define t 100

#definew 1

#define j 5

#define k j*exp(-w*x)

#define 1(x) (a(x)*+(k*(c(x))-(w*k*d(x)))
#define m(x) (b(x)+(k*d(x)))

#define f(x) (2/(Af*m(x))-(I(x)/m(x)))
main()

{

int i;

float h,ul,Im,s,sa,sb,u.e,x;

clrser();

printf("\n upper limit: ");

scanf("%f", &ul);

printf("\n lower limit: ");

scanf("%f", &Im);

h=(ul-lm)/t;

s=f(ul)*+{(Im),

for(i=1;i<=t-1:i=1+1)

{

sa=(lm+(i*h));

s=s+(2*(f(sa)));
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}

for(i=1;1<=t-1:i=i142)

{

sb=(Im+(i*h)):
s=s+(2*(f(sb))):

}

u=(s*h)/3.0;

printf("\n integral=%[", u);
e=exp(u);

printf("\n exponential=%{", e);
getch();

return(0);

}

*[t is to be noted that in case of constant and power value of k, following few lines
#definew 1

#define j 5

#define k j*exp(-w*x)

#define 1(x) (a(x)+(k*(c(x)))-(w*k*d(x))) replaced by
#definek 210

#define I(x) (a(x)+(k*(c(x))))

for constant value of k and

#definew .25

#define j 221

#define k  j*pow(x,w)

#define 1(x) (a(x)*+(k*(c(x))+(w*j*d(x)* pow(x,w-1)))

for power value of k. 1}
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Abstract

We present particular solutions of singlet and non singlet Grnibov Lipatov Dokshitzer Altarelli Panisi (GLDAP) evolutton equations

m leadmg order (1LO) at low ¥ We obtain 1 evolutions of proton and neutron structure functions and v evoluhions of deuteron structure functions at low
x from GLDAP evolution equations The results of ¢ evolutions are compared with HERA low x and low @ data and those of + evolutions are compared

with NMC low y and low @* data
Keywords

PACS Nos 1238 Bx 1239 x 1360 Hb

,

Particular solution complete solution Alterclh Parisi equation structure function

1. Introduction

The Gribov-Lipatov-Dokshitzer-Altarelli-Parist (GLDAP)
evolution equations[1-4] are fundamental tools to study the

!(= ln(Qz//\2 )) and x evolutions of structure functions, where
x and Q? are Bjorken scaling and four momenta transfer in a
deep 1nelastic scattering (DIS) Process [5]) respectively and A
1s the QCD cut off parameter On the other hand, the study of
structure functions at low-x has become topical in view [6] of
high energy collider and supercollider experiments [7] Solutions
of GLDAP evolution equations give quark and gluon structure
functions which produce ultimately proton, neutron and
deuteron structure functions Though numerical solutions are
available in the Iiterature [8], the explorations of the possibility
of obtamning analytical solutions of GLDAP evolution equations
are always nteresting In this connection, some particular
solutions computed from general solutions of GLDAP evolution
equations at low-x in leading order have already been obtained
by applying Taylor expansion method |9] and t-evolutions {10]
and x- evolutions [11} of structure functions have been
presented

The present paper reports particular solutions of GLDAP
evolution equations computed from complete solutions tn
leading order at low-x and calculation of ¢ and v-evolutions for

* Corresponding Author

sfnglet and non-singlet structure functions and hence
t-evolutions of proton and neutron structure functions and
x-evolutions of deuteron structure functions In some instance,
we can deal with particular solutions more conventently than
with the general soluttons [12] In calculating structure functions,
input data points have been taken from the experimental data
directly, unbike the usual practice of using an 1nput dsstribution
function introduced arbitrarily Results ot proton and neutron
structure functions arg compared with the HERA low- ¢ low-Q?
data and those of deuteron structure functions are compared
with the NMC low-x low-Q? data Companisons are also made
with the results of earlier solutions [10, 11, 13] of GLDAP
evolution equations In Section 2, necessary theory has been
discussed Section 3 gives results and discussion

2. Theory

Though the basic theory has been discussed elsewhere {10, 11,
13}, the essential steps of the theory have been presented here
for clarity The GLDAP evolution equations for singlet and non-
singlet structure functions 1n the standard forms are {14]

AN (v.1)
at

A
——’i[{a +ain(l-x)} K (x0+ F 0+ 3 on]=0 O

©2004 1IACS
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and

dFP(x,n)

A
= —Tf[{3+ a1~ 0} (L0 + 1M () = 0,2

where,

Fiuwn= 2j——-{ (102} - 2r,(u)} A)

— W

1
125('(,')=%ij{)\: +(1-n )Z}G(‘clu,r)dw, 4

and

™an= 2]-——{ (1+w?)

R crwn-200) 6
el 13

Here, r=1n {QZ/AZ} and Af= 4/(33—2NI), N/ being the
number of flavours and A 15 the QCD cut off parameter

Let us introduce the varniable « = I-w and note that [15]

x
—=—]—~—t2u )

w £=0

The sertes (6) 1s convergent for |u| <1 Sincerv<u <1 <00
<u < l-xand hence the convergence criterion 1s satisficd Now,
ustng Taylor expanston method [9), we canrewrite G(v/u 1) as

G(x/w, !)=G(t+A 2“"’)
k-1

—G(I. ‘)+ ‘(2“" C?G(;.l; t) 2 (Zuk} m—.{. (7)

)
k-1 L=l dx

which covers the whole range of 1, 0 <u < 1t Since v1s small
in our regron of discusston, the terms contatning 1% and higher
powers of x can be neglected as the first approximation as
discussed in our earhier works [ 11, 12, 14} and G(vw, ) canbe
approximated for small-x as

(t/n 1} = G(x, ’)*‘Z ed (7(\‘,) 8

Similarly, 5 (e /w, ryand EM (1 /w1y canbe approvmated
forsmall vas

o S
F(x/w,n=R(x r)ﬂzu‘i)iz(—“ﬂ ©
- fy dv
and
F2 S(alw, I)"‘I"2 S+ \ZNAM (10)

O 7\

Using egs (8) (10) in eqy (3)-(5) and performing u-
mntcgrations, we get

1 =-{0- 0+ D] B+ 25 In( o+ a1 )]

-
3123(: ,1) (an
o fLaesfomsr s

i 3 dG(x,1)
+{——5 r(l—,\)(5—4\ +2\2)+~2— v ln(l/x)} T] (12

and

M= Ja- v+ D] BP(un

2 BFZNS(\,I)
sf2ein( /o +a(1-27)| S5 = (13
Now ustng eqs (11) and (12) meq (1), we have
(1) A 5 I (1)
~ AR (e,nD+ B
at t (D (an+ B ar
+C(x) G(x, I)+D(A)aG(x ’)} 0 (14)
Let us assume for aumplicity
G(e.1)=K(x) (v 1), (S
where K(1) 15 a tunction of v Now, eq (14) gives
s A F (.
é’r_l(ﬁ_t_)___f_ L(¥) F;(\,T)+M(\)M—r—) =0, (16)
at t a

where

A(W)=3+41n(l-x)—(I-x0)3+1),
B(\y=(l- \2)«-2\ In(1/ 1),

C(\)=1/2Nf(l—\)(2_1+2\2)’

1 WEAE
D(x) = N/\[~5(l— V(s-4 +2\')+(5)In(7)].

L(V) =AW K(O)C(V+ [)(\)igﬁ
X

and MO =B+ K0 DY)
Secondly,using eq (13)mneq (2), we have

R (1

A
/f{P(\)FW(\ N+ 0 )——-—“ ’)] 0, (ID
at ! 7
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where
P(x)=3+4ln(l-)—-(1~-x)(x+3),
and
Q)= \(1— \2) 2vinn

The general solutions of eqs (16) 15 [9, 12} F(U V) =0,
where F1s an arbitrary function and

U(nt )=
and

V(wt. )=
form a solution of equation

dr _dr__ dR (G,

AMD ~ A LB D) 1

Solvingeq (18) we obtain,

U(\', f, ]‘2‘) =t exp |:—A1—- J Mix) rL\:l
J

and

V(r, t, F;) = F; (x,1yexp U%z&]

If U and V are two independent solutions of eq (18) and of o
and f are arbitrary constants, then V = o + 3 may be taken
as a complete solution of eq (18) We take this form as thisis the
simplest form of a complete solution which contains both the
arbutrary constants ¢ and § Earlier [10, 11, 13], we considered
a solution AU + BV =0, where A and B arc arbitrary constants
But that 15 not a complete solution having both the arbitrary
constants as this equation can be transformed to the form V =
CU,where C=-A/B, 1 e the equation contatns only one arbitrary
constant

Now, the complete sofution [9, 12]

5 L(x) 1 1
Fy (e, t)exp [J M(\_)d\]:Oﬂ exp {EJ. e (b:l+ﬁ 19

1s a two-parameter family of surfaces, which does not have an
envelope, since the arbitrary constants enter hinearly [9]

Differentiating eq (19) with respectto 3, we get 0= 1 whichis
absurd Hence, there 1s no singular solution The one-parameter
family determined by tahing 8 = * has equation

L(x) I }
NN i =ar =
AN )CXP[IA/(A)(‘} * cx"{/\, J’/m\)

m} a? oo

Difterentiating eq (20) with respectto o, we get

a=—-l—texp LJ ! dx
2 Al M(x)

Putting the value of or sneq (20), we obtam the envelope

s __l 2 1 _ L(\’) !
Hlen==-g exp[f(/\,m(\) e ) A

which 1s merely a patticular solution of the general solution
Unlike the case of ordinary differential equations, the envelope
1s not a new locus Tt s to be noted that when s an arbutrary
funcuonof ¢, then the elrmnation of @ 1neq (20) 15 not possible
Thus, the general solution can not be obtained from the complete
solution [9] Actually, the general solution of a linear partial
ditterential equation of order one 1s the totality of envelopes of
all one-parameter families (21) obtained from a complete solution

Now, defining

S =1, 2 v
B (v )= 410 CXP{I[A/M(,\) M(x)J(b:|'

atr=1,, where ty = In (Qlf//\z) at any lower value Q = Q. we
getfromeq (21)

-

. I:\(\-’)=IE‘(‘()~’)(}!‘) ) Q2

0
which gives the t evolution of singlet structure function F;( w)

Procceding exactly in the same way, and detining

NS 1= 2 PR
;7 (1) 410 exp[J(A’Q(‘) Q(Y)]{{\J‘

we get for non-singlet structure function

(oL

, r Y
(L= Ff‘(uo)(Tj ’

0

which gives the r-evolution of non-singlet structure function
NS
IANEH)
Again defining

1, 2 L(\)
Ff (o) = 1 — - n| .
2o =g texp j(A,M(v) M(x)]“] ]

0

we obtain fromeq (21)

of 2 L(V)
Ru)=E (g —_—
'(\ ) 2 (Y- Nexp ‘J.(A,M(\) M(\)} Hoeh
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which gives the x-evolution of singlet structure funcuon

F;(x, 1) Similarly defining,
1 2 P(x)
FNS -_1na
2 (xovt) 41 CXP{J[AfQ(x) Q(x))l } ]
Fy" (x.1)= F* (x, 1)exp j(—‘z—-—m

we get
R\ A2 Q%)

] dx, (25)

which gives the x-evolution of non-singlet structure function
F{*(x,1) Deuteron, proton and neutron structure functions
measured 1n deep inelastic electro-production, can be written 1n
terms of singlet and non-singlet quark distrtbution functions in
leading order as

Fi(x,t)=5/9 If(x,1), (26)
Ff(x,1)=5/18 F (x,1)+3/18 i (x,1) @7
and  F'(x,t) =5/18 £ (x,1)-3/18 F;¥S (x,1) 28)

Now using eqs (22) and (24) ineq (26), we will getranda
evolution of deuteron structure function Fj (x, 1) at low-x as

F(en)= 1 (s )(,—)

(29)

and

F (x,0)= F5 (xq. 1) exp j 2 MW,
2 \ X, 2 (Xo» AfM(x) M) * (30)
%o
where the input functions are

5
de(x"o)=‘9‘Fzs(tv )

and

w

de(XoJ):"Fzs(‘Ov’)

O

The corresponding results for a particular sofutions from
the linear combination of U and V of general solutions F (U, V)
=0 of GLDAP evolution equations obtained earher {10, 11, 13)
are

de(x,t) = de(x, rO) (IL]

0

3n

and

X

L(x)
A0 =F(x.0 j(A/M(\) M(r))dx (32

These were obtained by taking arbitrary linear combination
AU+ BV =0o0f general solution (U, V) =0, wherc A and B are
two arbitrary constants as discussed earlier

Similarly ustng eqs (22) and (23) ineqs (27) and (28), we get
the +- evolutions of proton and neution structure functions at
low vas

Py

B (x.0) = B (x.10) (ri) o
0
and
' 2
Fy (x,1) = Fy (x, "’)(Tj (34
0

where the input functions are
re O ps 3 pons
2 (x"o)—l—g‘ 2 (x-’0)+ﬁ 7 (% 1o)

and

n 5 3
B (xto) =15 7 (x0to) = 5o B (x10)

The corresponding results for earhier solutions of GLDAP
evolution equations [10, 11, 13 ] are

(33)

B e,y =2 B (V) (—’-)
fo

and

B (o) = Ff (x.15) (ti) (36)
0

But the x evolutions of proton and neutron structure
functions like those ot deuteron gtructure function 1s not
possible by this methodology, because to extract the x-evolution
of proton and neutron structure functions, we are to put eqs
(24) and (25) ineqs (27) and (28) But as the functions inside the
mntegral signof eqs (24) and (25) are different, we need to separate
the nput functions K (x,, ) and F**(x,,r) from the data
points to extract the x-evoluticns of the proton and neutron
structure functions, which will contain large errors

For the complete solution of eq (16), we take =% ineq
(19) If wetake g = a meq (19) and differentiate withiespect to
a as before, we get

O~lcxpl: l J-Mit) I\}H.

from which we can not determine the value of ¢
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But1f we take § = a? ineq (19) and differentiate with
respect to ¢, we get

1 i t
a= J—-}—tcxp [Xj—j ) (l\}

which 1s imaginary Putting this value of o ineq (19) we get
ulumately

1 3

Fzs(x,l)=t3 (—%)E +(——;—)E exp J

Now, defining

w

3
2 Lw
AM(x)  M(x)

! 3

3 1Y2 12
2(3' o) 02 3 3

3
2 L
CXPJ AM(x)y M| |

we get

3
2
s 5 !
=R, to)(—-J
fo
Proceeding exactly 1n the same way, we get for non singlet
structure function also

FMS (e, = B (x1g )(ti)z
0

Then using egs (26)—(28) we get r- evolutions of deuteron,
proton and neutron structure functions

2
B P = F P (xty )[IL)
0

Proceeding in the same way we get x- evolutions of deuteron
structure function

X

3
i (x.0) = B (vt )exp| | —2—
){A[M(x)

L(x)

M(x)

But the determination of x- evolutions of proton and neutron
structure functions like those of deuteron structure function s
not possible by this methodology as discussed earlier

Proceeding exactly in the same way, we can show that 1f we
take 8 = or*, we get
4

”n ’ ‘;
rrr =il (\-rn’(T)

0
and

4
il 3

L(x)
F'(x.0) = F} (xo, —
3 (10 = B (xo.1)exp ;[ AM(x) M(x)

Similarly, if we take § = a°, we get

3
FE P ety = B 77 (xuty )('—’-]
0

and
5
x 2
4

' (x1) = F (xg.1)exp | |

%o

_ L(x)
M)

AMQY)

and so on

. Thus, we observe that if we take § = 1neq (19), we can
not obtain the value of ¢ and also the required solution Butif
we take f=0o?, o3, 0, &® and so on, we see that the
powers of (¢/f,) 1n t-evolutions of deuteron, proton and neutron
structure functions are 2, 3/2,4/3,5/4  and so onrespectively,
as discussed above Similarly, for x- evolutions of deuteron
structure functions, we see that the numerators of the first term
inside the integral signare 2,3/2,4/3,5/4  and so on respectively,
for the same values of ¢ Thus, we see that if in the relation
f=a’, y varies between 2 to a maximum value, the powers of
(#/t,) varies between 2 to 1, and the numerator of the first term 1n
the integral sign varies between 2 to 1 Then 1t 1s understood
that the solutions of eqs (16) and (17) obtained by this
methodology are not unique and so the t-evolutions of deuteron,
proton and neutron structure functions, and v- evolution of
deuteron stiucture function obtained by this methodology are
not unique They become eqs (29), (30}, (33), (34) for y=2, but
they reduce toeqs (31), (32), (35) and (36) respectively, which
are our earlier results for a maximum value of y

Thus by this methodology, nstead of having a single
solution, we arrive at a band of solutions, of course the range
for these solutions 1s reasonably nayrow

3. Results and discussion

In the present paper, we compare our results of r-evolutions of
proton and ncutron structme functions from eqs (33) and (34)



372 R Rajkhowa and J K Sarma

respectively, with the HERA low-v. low 0 data16] Tlere, proton
structure functions Fz”(t,Qz,z) measured n the range
2< Q% <50 Gev? , 073<z<088 and neutron structure

funcons  Fy'(x, Q% z) measured 1n the range 2< Q" <50
GeVZ?, 03<:<09 have been used Moreover, here P, <
200MeV, where P15 the transverse momentum of the final state
baryonand z= 1-q (p-p")/(q p), where p, q are the four momenta
of the incident proton and the exchanged vector boson coupling
to the positron and p’ 15 the four-momentum of the final state

baryon Though we compare our results withy =2 n =o'
relation with data, our results with y maximum, which are
equivalent to our carlier results are equally valid For r-evolutions
of deuteron, proton and neutron structure functions, the results
will be the range-bounded by our new and old results But for x
evolutions of deuteron structure function, new and old 1esults
have not any significance difference

InFigure 1, we present our results of f-evolutions of proton
structure functrons F) (sohd lines) for the repiesentative values
of v given in the figure Data points at Jowest-Q® values in the
figure are taken as mput to test the evolution equation (33)
Agreement 1s found to be excellent In the same figure, we also

18
I xooow;onz}
16
14
12
x 000104 z 0780
1
g x 000104 2 0732
[P B SSSSS
08
'} I x-000033 z 0878
06
!M X 000033 z 0829
04
»E""Y  x=000033 z-0780
02
rj""‘{ X=0 00033 20 732
0
0 5 10 15 20 25 30 15

Q° (GeV")

Figure 1. r evolutions of protoa structure functions 75 (sohd hnes) for
the representative values of x Data ponts at lowest Q? values are tiken
as inpul to test the evolution cquation (13) We also plot the results of ¢
evolutions of proton structure functions /Y’ (dashud hines) for our ¢rlicr
solutions from ¢q (35) of GLDAP cvolution cquations For convenicnee
value of each data point 1s increased by adding 0 2: where ¢ = 01213,
are the numbenngs of curves counting from the bottom of the lowermost
curve as the 0 th order

plot the 1esults of f-evolutions of proton structure functions
7 (dashed lines) for our carlier solutions fromeq (35) ot GLDAP
evolution cquattons We observe that our new 1esults arc in
better agreement with data than the old ones

InFigure 2, we picsent out tesults of f-evolutions of neution
structure functions 13 (solid lines) for the repiesentative values
of x given n the figure Data points at lowest- Q> values in the
figuie are taken as input to test the evolution eq (34) Agreement
1s {found to be cxcellent In the same frguwie, we also plot the
results of t-evolutions of neutron structure functions Fy' (dashed
lines) for our earlier solutions from eq (36) of GLDAP evolution
equations We observe that 1n this case also, our new results
arc in better agreement with data than the old ones
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Figure 2. 1 evolutions of proton structure functions £y (sohd linesy for
the representattve values of v Data points at lowest Q)2 values are taken
as mput to test the evolution cquition (34) We also plot the results of ¢
cvolutions of neutron structure functions 12" (dashed bnes) for ow carher
solutions from eq (36) of GLDAP cvolution equations For comventence
vaive of ¢1ch data point 1s mereased by adding 021 where s =01 2 3
are the numberimgs of curves counting from the bottom of the loweimost
cutve as the 0 th oader

For a quantitative analysis of r-distiibutions of structuie
tunctions, we caleulate the integrals that occurted i e (30) for
N, =4 Iniagure 3, we present oun results of v distribution of
deuteion structure functions F:" for K(1) = constant (solid lines),
K(v) = ar? (dashed lines) and for A(V) = ce™ (dotted lines),
whete a b, ¢ and d are constants and for representative values
of Q% givenn each figure, and compare them with NMC deuteron
low-x low- 0% data}17] Ineach, the data pomt for v value just
below 0 1 has been taken as mput /‘z‘l (v 1)
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If we take K(x) =4 51neq (30), then agreement of the result
with experimental data 1s found to be excellent On the other
hand, if we take K(x) = ax’, then agreement of the results with
experimental data is found tobe good ata=4 5,6=001 Agamn
iIf we take K(x) = ce ", then agreement of the results with
expertmental data ts found to be good atc =5, b =1

12
tF LVM'*YI-“-_.‘____,
Q*=7GeV
o8 p LNVT"“'!"-—?___’
Q°=55GeV
[
Qo
o, [N 4
w
Q=45 GeV?
04 By o
o ¥ .
Q*=35GeV’
02 }F Q*=0 75GeV? k constant
Kk-ax”
k ce™
0 N s A N
0 002 004 006 008 01
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In Figure 4, we present the sensitivity of our results for
ditterent constant values ot K(1), we observe thatat K(1) =45,
agreement of the results with experimental data is found to be
excellent If value of K(x) 1s increased, the curve goes upward
dircctton and 1f value of K(v) 18 devicased, the curve goes
downwaid direction But the nature of the curve 1s similar

In Nigure 5, we present the sensitivity of our results for
different values of a at fixed value of b Here, we take b=00!
We observe that at @ = 45, agreement of the results with
experimental data 1s tound to be excellent If value of a 1s
increased, the curve moves upward and if value of a 1s decreased,
the curve goes downward But the nature of the curve 1s similar

046

042

oa }

F’

038

X

Figure 3 x distnibutions of deuteron structure functions 12” for k(x) =
constant (solid hines) A(x) = a (dashed hnes) and for k(x) = c¢ % (dotted
lines) where a b ¢ and d are constants, and compare them with NMC
deuteron low x low Q2 data In each, the data point for x value just
below 0 1 has been taken as input Fz" (x, O For convemence value of
cach data point 1s increased by adding 02r where: =0 1 2,3 are the
numbenings of curves counting from the bottom of the lowcrmost curve
as the O th order
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Figure 4 Scnsitivity of our results for difforent constant vidues of A(1)
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Figure 5 Scusittvity of our results for different values of a at fixed value
of b =001

In Figure 6, we present the sensitivity of our results for
dsfferent values of b ift fixed value of @ Here, wetake a=4 5, we
observe that at b = 001, agreement of the results with
expenimental data 1s excellent If value of b s increased. then the
curve goes downward and if value of b 1s decreased, the curve
goes upward But we observe that difference of the curves for b
=001, 000L, 00001 1s very small and all these curves are
overlapped Here also the nature of the curves 1s sinmlar

In Figure 7, we present the sensitivity of our results for
different values of 'c’ at fixed value of '@ Here,wetahed=1 We
observe that at ¢ = 5§, agreement of the 1esults with experimental
datasexcellent If value of ¢'1s increased, the curve goes upward
and if value of 'c 1s decreased, the curve goes downward
direction But the nature of the curves is sumilar

InF1gure 8, we present sensitivity of our results for ditterent
values of d at fixed value of ¢ Here, we take ¢ = 5, we observe
that at @ = 1, agreement of the results with experimental data is
excellent If value of 'd’ 1s mcicased, then the curve goes
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downward and if value of d 15 decreased the curve goes upward
Here also the nature of the curves 15 similay

048

Q> 55
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03 N N N .
0 002 004 006 008 01

x

Figure 6  Sensittvity of our results for diffurent values of b at fixed vilue
of a=45
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045 }

03 A " " i

0 002 004 008 008 01
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Figure 7. Sensitvity of our results for diffcrent values of ¢ o fixed vatue
of d =1

From our above discussion, 1t has been observed that we
can not establish a unique relation betwecn singlet and gluon
structure functions 1 e a unique expression for K(x) ineq (15)
by this method, K(x) in the forms of a constant, an exponential
function of x or a power 1n x can equally produce required 1
distribution of deuteron structure functions But unlike many

parameter nput v distribution functions generally used 1n the
Iiterature, our method required only one or two such parameters
The explicit form of K(x) can actually be obtained only by solving
coupled GLDAP evolution equations for singlet and gluon
structure functions and woths are gomng onan this diecion
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038

036
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03 M " A
0 002 004 006 008 01

X

Ligure 8 Scusntinaty of o rosnlts for difforent vadiues of of at fined value
ofe =85

)

Traditionally, the GLDAP equations provide a means of
calculating the manner in which the parton distributions change
at hixed a, as Q% vaties This change occws because of the
various types of parton branching emission processes and the
v distributions are modified due to sharing of imtial momentum
among the various daughter partons However, the exact rate of
modifications of x-distributions at fixed Q° can not be obtained
from the GLDAP equations since 1t depends not only on the
intttal x but also on the rate of cfmnge of parton distributions
withrespectto v, d" F(1)/ dr" (n=110 o), up to infinite order
Physically, this implies that at high +, the parton has a large
momentum fraction at 1its disposal and as a result, 1t radiates
partons including gluons 1 innumerable ways, some of them
involving comphicated QCD mechanisms However for fow -y,
many of the radiation processes will cease to occur due to
momentum constraints and the v-evolutions get stmplified Itis
then possible to visualize a situation 1n which the modification
of the 1 distuibution simply depends on sts titial value and its
firstderivative In this simphified situation, the GLDAP equations
give information on the shapes of the x distribution as
demonstrated mthis paper The cleater testing of our results of
1 evoluttonis actually the eq (25) which s fiece from the additional
assumption [eq (15)] But non singlet data 1s not sutficiently
available m low-x to test our result It1s observed in general that
the results of particular solutions ot GL DAP evolution equations
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have improved over those of our earher solutions, especially 1n
t-evolution calculations Of course, this 1s a leading order
calculation Its natural improvement wilil be the calculation
considering next to leading order terms and our preliminary work
{18] shows some improvement in this regard
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Abstract We present particular solutions of singict and non singlet Dokshitzer-Gribov Lipatov  Altarcth Pans (DGLAT) evolution equations
n next 1o leading order (NLO) at low v We obtain 1 cvolutions of deuteron, proton neutron and difference and rato of proton and neutron structure
funcuions at fow x from DGLAP cvolution equations “The results of ¢ evolutions are compared with HERA and NMC low v and fow Q° data and with
those of leading order (LO) solutions of DGLAP evolution equations We also compare our result of r-evolution of proton structure function with a
recent global parametenization

Keywords Partiwufar sofution, complute solution, Alareth Panw equation, structure function, low v phystes
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1. Introduction .

!

\ S 2 2
In arecent paper {1}, particular solution of the Dokshitzer-Gnibov- x{([ * "'Z)FZS(;' ')—2Fl (\")} Ny .[{" H=w) }
Lipatov-Alarelli-Pansi (DGLAP) evolution equations {2-5] for t !
and x-evolutions of singlet and non singlet structure functions 2 1
in leading order at low-x have been reported The same technique XG(-’C— ,r)dw] —(-oi‘—(l—)-) (x— l)F,f (x,/)j S(w)dn
can be applied to the DGLAP evolution equations tn next-to- w n 0
leading order (NLO) for singlet and non-singlet structure \ \
functions to obtain t-evolutions of deuteron, proton, neutron, +If(“’) Fa“(i.!)du%jl’s o) Ff(—‘.r)dw
difference and ratio of proton and neutron structure functions d = S n o "" “\u
These NLO results are compared with the HERA H1 [6) and

’

NMC (7} low-x, low Q?data and with those of particular solution I . . s
1n LO and we also compare our results of t-evolution of proton +J F (w) G(;.t)dw =0 W
structure functions with recent global parameterization {8) ¥
2. Theory and
Though the necessary theory has been discussed clsewhere  9R™ (v a,(N[2 a 4 dw
[9], here we mention some essential steps for clanty The DGLAP ot - 27 '3' (3dind -0y Gy _3 1= w
X

evolution equattons with splitting functions [ 10, 11] for singlet

and non-singlet structure functions tn NLO are 1n the standard . .
forms 12] x{(l w? S (ﬁ,:)-za"su, :)}]—[2‘—)
w 4

dw
1 1

W X (= DA r.:)_[f(u-)(/u- + J'f(w)/r:”(i.:)m. =0, D
° . "

I (xn) a2 s 4!
2 I S A - VY (x, )+ —
ey = [3{ +41In(1- V}E (x r)+3{l

° Corresponding Author

© 2004 TACS
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where
4 Int 33-2n
r.r,(1)=__1—ﬂ‘2 . By = !
Byt Byt 3
306-38n
and f; =——3———j-.

Nl being the number of flavours
1
Here, f(W)=CHPF(W)-—PA(u)]+ECFCA[P(,(W)+P‘(W)]
+CFTRN] PN, (H)
and
(w) 2CpTN F, (w)

and  Fp (w)=CpTrN F) (W) + CoTpN I (w)
The exphicit forms of higher order hernels are (10, 1]

20+ %)
-

Pe(n)=- Inwin(l-w) ('3 +2n]|n\\

"

——%(l+u)lnzu -5(1—-u)

PG(M)=-!+
1-w

w? 11 61 n?
I wt—Inn+— -
3 9 13

+2(1+u)lnw+ 539 (1-w)

2] 1+u? 5
P, =< “Inw—-=]-2(1~ ,
w, () 3[1—‘»'( nu 3) ( W)}

(14+n)
At+n?) dkln-l~k—k+2(l+n)lnn+4(l—w).

Py(w)=
T+w wil+n)

Fpw)= ~——2 6w-%w +(l+5w+§wz)lnu

—(1+ w)ln® w,

F,;,(w)=4——9w—(l—4w)|n n—(l—2w)|n2u+4ln(|~w)
2l-w I-n 2,
H2In| —— [—-4In| —— [-=7" + O (P,
[ n(w) n( “) 37t ]qx(u)

(w)—1§2+l—Li +—‘—‘2+(@w—§)lnu~4ln(|—w)
9 9 Iw 3 3

and

—(2+8u)ln2w+|:— fn? w+%ilnu —2in(l—w)+din(l—-u)

ey

7t 218 dz
4 3 3 ]P’“(W)i"’l’n( Ww) J
wilin
where P,“(u)=u2+(l~u)2, C\=C, =N =3,

Co = (N =1)[2N¢ and 1,=112

Let us introduce the vartable w = 1w wnd note that [ 13)

Lo S

L o}

The above seites 1s convergent tor fu] < 1 Since v<n < 1,50
0 < u < 1 — v and hence the convergence criterion 1s satisfied
Now using Taylor expansion method we canrewrite Fy (2w 1)
das

1 (yw 1) (x+ \Zu )

SIS ) *Z ) N, \3[2“ ) aF (\ n,
RETE 2 & o’
which covers the whole tange ot i O << 1=y Simee vis small
1n our region of discusgion, the teims containing x? and higher
powers of x can be neglected in the first approximation as
discussed i our earhier works [1, 14 16], F(x/u ,f) can be
approximated for small x as

- s
B(gw =R S PE0D
(W ¥

Similarly, GV nand I3¥°(1/w 1) can be approximated for

small x as

(v.1) +\2 “90?(") “
(744

Al

Gly/w 1)=G

o v§
(A/u I)E Fm(l I)+ YZH‘ —er (l"—)

5
I dx

and

Usmgeqs (3)and (4) meq (1) and performing i imtegrations,
we get

ooy
--5{") [az(') A+ [a 7(:)) B,(\)]r‘(u)

(¢4 (r) o (1) ’
/") I‘ ; .
49 (5] meo o
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a. () a (Y DE (x.0)
Al B -
[2 M) (271) ‘(‘)} Jx

“ X

[az(r)/u Ve (a (r)) 114(\)}(7(:;"”=0. ©

where

A,(\)=%{'§+4 In(1 - v)+(\—l)(x+3)},

] ] 4
B, (v)= r!f(w)dw ~£f(w)(1w + SNI j Em(w)dw,
Aj(()_—.Nj[%(l—x)Q— v+2(2)].

1
Bi(x) = J'I,Ii(n){lw,
Y

2 4 |
A,(t}:;{\(l—x')+2t In( \)},

Bi(v)= xJJf(w)+ N, T, (w)}

(/ w,

Aj()=N, r{ln%-%(l— \')(5—4x+2x2)}

and

i
By(x)= xJ (- 'm(" Y

v

Letus assume for simphicity [ 14 16]
G(x.t) = K(¥) 5 (x,1), )]

where K(x) 1s a function of v In this connection, earlier we
considered (1] K(x) =k, ax’, ce
constants Agreement of the results with experimental data 1s
found tobe excellentfork=45,a=45,b=001,c=5,d=1for
low-x 1n leading order But correct form of K(x) can actually be
obtained only by solving coupled DGLAP evolution equations
for singlet and gluon structure functions, and works are going
on in this regard Therefore, eq (6) becomes

—d
, where k, a b, ¢, d are

<
gf_l‘;T\L) [a 0, H(a (r)) M,(\)}Fz‘(m)

a () a,(n Ay (\.1)
l' o Ly( )+( o ) M:(x):l—-zx—-:o, (8)
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where

IR(v)
()= A () +A()A, (\)+AJ(\)———.

M, (V) =BV FAMB () B, (\)(,\(\,.

L,(Z\)= Ay () + K() A (1),
M, (x) = By(2) + K(1) B,(x)

For a possible solution, we assume [9, 12]

a, (Y _ (a‘(t))
( 2n) =T\ r ) ©)

where T, 1s a numerical parameter to be obtained trom the
particular Q*-range under study By a suitable choice of T we
can reduce the error to a mintmum Now, eq (8) can be recast as

N (.1) (1,0

EP *P\(\.r)——'a“ - LD (L =0, (10)
where
Py(x1) = a(')[Lz( Y+ Ty My (V)]
_a()
and  Qy(x1)= [L,(\)+70M(\)]

Secondly, using eqs (5) and (9) 1n eq (2) and performing
u-integration, we have

é‘%{ﬁ‘PNs(Xv')QF;z,;S—(Y‘:,—)—QNs(x.t)Fst(r,t)=0,(“)
whete
Pys(x,) = a‘;') [A5(0)+ T, By(x)]
and *
O (0= Z 20 A 0+ Ty (1]
with

L A= —32—{x(1 ~?)+2¢ ln(%)}

Bs(x)=x

X

/\6(\’)=§{3+4|n(l-—\)+(\—l)(\+?)}.

X |
By(\) = -j Fw)dw + j FO)dw
0 0
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The general solutions {17, 18] ofeq (10)w I"'(U V) =0
where F 15 an arbitrary function and U(\,t. Fz‘):(‘, and

V(x. ! I}‘) = €y, where C, and C, arc constant and they form a
solution of equations

dx dt dlz‘(\,l)
Pxt) -1 -0.(u1) (12)
s \

We observed that the Lagrange s auxihiary system of ordmary
differential equations {17, 18] occurring in the formalism, can
not be solved without the additional assumption of lineanization
(eq (9)) and introduction of an ad hoc parameter T, This
parameter does not affect the results of t-evolution of structure
functions Solvingeq (12), we obtain

U(x, Fs)-t(”/”“exp[b Ns(‘)]
! a

and  V{x,t,F])=F (a,nexp[Msv)),
where
a=2b=21 o= [— L
Bo B Ly (x)+TyM,(x)
and M;(x):J__._L'(()*'E’ﬁ_(L)
Ly(x)+TyM,(v)

If U and V are two independent solutions of eq (12) andif or
and f3 are arbitrary constants, then V = U + 3 may be taken
as a complete solution of eq (12) Then the complete solution
[17,18]

Fz(tt)exp[MS(x)] a[ TR (b Ny (1 ))]lﬂ 13

1s a two-parameter family of planes The one parameter family
determined by taking 8= a* has equation

b N
FZS(XJ)CXP[MS(X)] = a[,(blnl) exp(_+__"(_))]+ a? (14)
H a
Differentiating eq (14) with respect to a, we obtain
a= —-!-[(b/H” exp[é_ + M]
2 4 a
Putting the value of & again ineq (14), we obtain envelope

Ns(‘)) ’
a

F (x.hyexp[M(x)] = _%[,w/m) cxp(ﬁ +
1

Therefore,

2 2
Fz (1) = —— (2D Pl:&+ Ns(©)
4 a

f

—Ms(\)]v 19

which 1s metely a particular sofution of the generat solution

Now, delining

1 2b 2N
R (aty) = == 134" cxPl}_{jL—‘)—(_‘l— M. ‘)}
4 ty a

where 1y = |n(QS//\1) atany lower value Q= Q, we
gettromeq (15)

. . ’(h/ul) (16
F(xn)=5L ()| ——— p{ 20| -——
2 (v 1) =F (1) r(()h/lnﬂ) ( ’0]

which pives the ¢ evolution of the smglet structuie function
5
IV(vi)y mNILO

atr=t,,

Proceeding exactly in the same way and defining

2h, 2 2
M 1) = —7:—!,;(’/"'”) cxp[—h-w‘ _NLV_‘(_\Z_MM(\)}
ty a
wheie NV (V=f— ——d‘ —
e Ag(V) + T By (1)

A (V)4 LBy
[T
Ag(x)+ Ty B5(\)

and  Nye(0) =

we get {ot non singlet sttuctute functton i NI O

[}

" " () : |1
(x,0)= f‘z (\ ’0) ;—m cxXp 2’)(7“;] . (|7)
0

which gives the ¢ evolution of the simglet stiucture function

LG mNLOtor B= o

In an earlier communication [ 1], we suggested that for fow-x
L0 f=a?

»

B (n) = f‘?‘"'“’(%) 1o
[}

and

2

Man= Fz""(x.r(,)(%)

o

o

We observe that if b tends to zero then eqs (16) and (17)
tend to eqs (18) and (19) respectively 1e, solution of NLO
equations goes to that of LO equations Physically, & tends to
zero means that the number of flavours 1s high

Again defining,

5
i,u'/w')c\,,[%wt;’!ﬁ)l
4 ! a

r;(\()-’):_ ‘M\U)J

=1,
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we obtain fromeq (15)

2 1
F(x0)=F, umexvf[,,m
0

L M) |
\ 0)
Ly()+ LM, (1)

which gives the x-evolution of singlet structe function 1‘2‘( uh
inNLO

Similarly, defining
1 2h 2N
N‘(\(,,I) - ——l('/”')cxp[——) } 2N () MN‘(\)]
4 ! a g
we get

X
R = llN‘(\,,‘t)cxpj 2 __ 1
a Ag(x)4 l(,li.;(\)

€)]

_ A+ ToBe(r) dr
A+ 1B ]

which gives the x evolution of non-singlet structure function
NS
F(x,t) mNLO

In an earlier communication [ 1], we suggested that for low-x
mLOfor § = g*

F (x.1)= I (xg.1)exp J(

L(x) dlx
AMx) My [ @

and

Fst(\’.!):[‘st(\(,‘l)L‘xp ]( 2

- PO |, 23
i A Q) OO

Trdingl )

where

A, =433 2N, Py IR
Q(x) = \(l—\z)—Z\ln,\,

L) = P(x)+ K(2)C(x)+ Dix )‘)’“ Y

and M) =Q0() + K(v) D(v),

where agatn,

CO)=1/28, (1= (2-x+227)

and D(V)=N, \[—1/2(1— V-4 + 21+ (372)In(1/ r)]

Of course, unlike for the t-evolution equations, we could
not have for the x-evolution equations 1n LO as some hmmting
case of NLO equations

Deuteton, proton and neutron structure tunctions measured
in deep imelastic clectio-production, can be wiitten in terms ot
singlet and non-singlet quatk distnibution tunctions [19] as

' oun - S1910 (o, h
FP () =5118F (x,n)+3/18F" (1), 25
S G = 5118F (v =3/18F (\.n) 0
and  F(un =B L) =135 (un @n

Now using eqs (16) and (20) ineq (24), we wall get ¢ and
x-evolution of deuteron structure function Fz"( v,t) at fow-v1n
NLOas

. . ’(l'/IH) : \ 1
F,’_’ ()= FS (\Jo) —(I’—/-,—m exp 20 - — — 28)
fh'* Loty

2 1

Fy(v)y=1 nexp
and "= ey Jl:u L)+ 1My (0

L)+ Ty, (‘)]1\ -

L, (V) +TyMy ()
where the input functions are
4 _ 5 s "l _ 5 [
I ((,fo)—al:z (v.ty) and 15 (.\OJ)—GFz (1.1)

The conesponding results {or patticulat solutions of DGLAP
-
evolution equations m LO tor 8 = a obtamned earher { 1] are

5

4 /! ! i
[«21(\"):1,:"(\"-')(__] (“))
. o
and
) ) y ! 1V
Houn 1 Gganexp -
2t 2 (o0 J A argy [ 0D
0

Sumdarly, using eqs (16) and (17) ineqs (25).(26) and (27).
we get the 1 — evolutions of proton, neution, and difference and
ratio of proton and neutron structure functions at low-xin NLO

as
, ’(b/nl) B 1 1
E(e,0)= Ff(x1g) Ty | €xp|2h -——) . (32)
1" 1oty

" u ’(h/ul) : 1 1
E?(\'.f)zl‘?,.(\,fo) —('b/—"m exp 2[)(———] . (33)
) N L
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Ff (e )= et = [ (utg) = F ()]
Wi )2
t 11
x(,(()b/:.,m] exp[ﬂ{;—aﬂ.

Y B ()
F () R

(34)

and

= R(x), (35)

where R(x) 1s a constant for fixed ¥ The input functions are

5 3

Ff(x.t9)= = £ (x1g)+ 3 FYS (x.1y),
. 5 3

F(xt) = EFZS(“'“'EFZNV(""“)’

and  Ff(x.ty)- Fy(x,1y) = % £ ()

The corresponding results for particular solutions of DGL AP
evolution equations 1n LO for § = o> are

2
Ff(x0) = Ff (x.ty )(IL]

(36)
)
. Y
Bx0=hH (HD)(TJ . 7
o

n n 1
F{’(x.r)» 3 (x,1) =[F2p(x,lo)—- I (x‘tn)][’—-J > (38)
0
G _ Fa)
Fx)  Fxg)

R(a). (39)

and

where R(x) 1s a constant for fixed-x

1t 1s observed that the ratio of proton and neutron 1 same
for both NLO and LO and 1t 1s independent of ¢ for fixed ¢

For the complete solution of eq (10), we take f3 = a’ ineqg
(13) If wetake ff = ¢ ineq (13) and differentiate with respect to
a as before, we get

N
0 = exp(’—) +———‘(r))+ 1,
t a

from which we can not determine the value of o

Buttakmng g = o neq (13)and differentiating with iespedt
to a, we get

S BTN (AT
3 t a

which 1s imagmary Putting this value of o ineq (13), we get
ultmately

12 V2
s _ bjre¥ _l) (_l)
nL(w=1 {( 3 + 3
Y2
xcxpli(£+ﬁ(\l) «Ms(\)]
t a

Now, defining

. 2 V2
rfu,,(,):,:,b/wf{(_%) o{4) }
b N
Xexp [(—) +_‘,L\2] -M;(\)}.
ty a

" (1 1
expl b
2.1t 1

Proceeding exactly i the same way we get for non-singlet
structure function also

¥
'(Iu/nl\ 3 1 1
INS(\J :,ﬁN\ W ) = exp| =0 -~ —
2 ) - ( 0 "()Il/l(,4l\ I 2 TR

Thenusing eqs (24),(25) (26) and (27) we get 1- evolutions
of deuteron, proton, neutron and difference of proton and
ncutron structure functions

we get

(bt n

NG r:‘(\.ro)(

(bfty e 1Y
’(l

dpnp n d pnp on et "
= ' ————
K (w=1; (v1y) (i v
0

[1 (1 IH
xexp| —bj - ——
200 4

Proceeding in the same way, we get v evolutions of deuteron
structure function

\

/2 I
1 N =10 exp (‘
AR '\j @ Ly()+TpMa (V)
3 LD TR () "
[0t 1ML ()

But the x-evolutions of proton and neutron structure
functions like those of deuteion sttucture tunction can not be
obtained by this methodology as discussed earlier
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Proceeding exactly in the same way, we can show thatif we
take f = a*, we get

. , @iy Y1
pnp-n g pnpen
F (W =F (Wt~

10

and

(413 1
Fan=ri(vr)ex (—~ O+ T M)
2 () =T3(x 1) p:[ a  Ly(x)+TyMy(x)

_ Li{x)+ TyM (x) dx
Ly()+TyM,(v)

Similarly, if we take 3 = ¥, we pet

ey Y4
F;Il:np—n(‘,l):[;l.hnn "("’()) -(_/,/T'}T)_
tl) ’
5
xexp[——b[l——l—)]
4t 1
. (574
and Fz'(x.t)= F{'(ro,t)expj(s—— SN S
W@ Ly (x)+ TyM,(x)

L) FToM ()

da
Lz(l)+7sz(X)J and <o on

Thus we observe that if we take =« ineq (13), we can
not obtan the value of @ and also the requtred solution Butaf
we take f=a’, o', a*, o and so on, we sce that the
powers of ¢%//*! [i%/'o*! and coefficient of b{1/t=1/ty) of the
exponential part in t-evolutions of deuteron, proton and neutron
structure functions are 2, 3/2,4/3,5/4  and so on respectively,
as discussed above Similaily, for x evolutions of deuteron
structure functions we see that the numerators of the first term
nside the integral signare 2, 3/2,4/3,5/4  and so on respectively,
for the same values of & Thus we see that 1f n the relation
B=a',yvanesbetween 2 and a maximum value, the powers of
(Y14 [10%1 and coefficient of b(1/1 —1/t,) of the exponential
part in t- evolution varies between 2 and 1, and the numerator of
the first term in the integral sign in x-evolution varies between 2
and I Then it 1s understood that the solutions of eqs (10) and
(11) obtained by this methodology are not umique and so the
t-evolutions of deuteron, proton, neutron and difference of
proton and neutron structure functions, and x-evolution ot
deuteron structure function obtained by this methodology are

985

also notunique They become eqs (28), (29),(32), (33). (34) tor
y = 2, but they reduce to equations

{(b/1+1)
I—-ri pnp-n - Frl pup-n ) " b _l___‘_
25 (L)=F (1) iy (eXP

Iy Ity
and

A l l
F (e,0) = F (xg.1)exp j[— S —
- \a Ly ()4 TgM,(x)

L)+ TM (9 ]dt
Ly(x) + TyM,(¥)

for a maximum value of v

Thus by this methodology, 1nstead of having a single
solution, we arrive at a band of solutions. of course the range
for these solutions 1s 1easonably nartow

3. Results and discussion

In the present paper, we cgmpare out results of f-evolution of
deuteron, proton, neutron and dilteience and ratio ot proton
and neutron structure functions with the HERA {6] and NMC
[7}low-v and low-Q? data In case of HERA data |6]. proton and
ncutron stiucture functions ate measured 1n the range ot
2< Q2 <50 GeV? Moreovet, here P, €200 MeV. where Py
the transverse momentum of the final state baryon In case of
NMC data, proton and deuteron structure functions are
measured 1 the range of 075 € Q, < 27 GeV? We consider
number of flavours Nj =4 We also compare our results of
¢ evolution of proton structure functions with recent global
parametenzation [8] This parameterization imcludes data from
H1-96199, ZEUS-96/97(X0 98), NMC, E605 data

In Figures {(a-d), we present our results of r-evolutions of
deuteson, protog, neutron and difference of proton and neutron
structure functions (solid lines) respectively, tor the
representative values of v given in the figures for y = 2 (upper
sohd IinesY and v= maximum (lower sold lmes) i f§ = a* relation
Data points at lowest Q7 values in the figures are tahen as input
to test the evolution equation Agreement with the data[7, 6] 1s
found to be good In the same figures, we also plot the results of
t evolutions of deuteron, proton, neatton and ditterence of
proton and neutron structure tunctions (dashed lines) tor the
particular solutions 1n leading order Here, the upper dashed
lines are for v = 2 and lower dashed lines, for y = maximum in
B =a’ relation We obsery ¢ thatf-evolutions are shightly steeper
in LO calculations than those of NLO But differences i results
for proton and neutron structure functions are smatler and NLO
tesults for y =2 are in better agreement with experimental data,
in general
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InFigure 2. we compare our results of  evolutions of proton
structure functions sz (solid hnes) with recent global
parameterization [8] (long dashed lines) for the representative

16

16 ® !xsogogz_s_smnz
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12 - _ g 00004 08

x=0 03483 _-.l.nu&‘.‘..’?"‘..’
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x=0 00104 20732
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e
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Figure 1(a-d) Results of 1 evolutiors of deuteron proton neution and
difference of proton and neutron structure functions (sohd hines) for the
representative values of v in next to leading order for NMC and HFRA
data For convenience value of each data point 15 increased by adding 0 2/
(ac)and Qdi (dy where 1 =0, 1 2 3 are the numbunings of curves
counuing from the bottom of the lowermost curve as the 0 th order In
the same figures we also plot the résults of ¢ cvolutions of deuteron
proton ncutron «nd difference of proton and ncutron structure functions
(dashed hnes) for the particular solutions m Icading order Dt ponts at
lowest Q? values i the figures are taken as input

values of x given n the figures for vy = 2 (upper solid hnes) and
y=maximum (lower solid lines) in 3 = &’ relation Data pornts
at lowest-Q? values in the frgures are taken as mput 10 test the
evolution equation I[n the same figure, we also plot the results
of t-evolutions of proton structure functions FP (dashed lines)
for the particular solutions tn leading order Here, the upper
dashed lines are for y = 2 and the lower dashed lines are for
y=maximumn 8 = " relation We observe that the -evolutions
are shightly steeper 1n LO calculations than those of NLLO
Agreement with the NLO results 1s found to be better than with
the LO results

InTigwe 3, we present oun tesudts ot evofutions of tatio of
proton and neution stiucture functions ﬁ:"/l’,_" (solid lines)
for the representative values of + given in the figuies Though
according to our theory, the ratio should be independent ot 1,

4

35

25

05 § x=00045

0 A A
1 10 0" (GeV?) 100 1000

Figure 2 Results of ¢ cvolutions of proton stractone functions 24 gsolid
hines) with recent global puamdtanzinon (long dashed lmes) tor the
representative values of v given an the frgures Data pomts at Towest Q°
vatlues 1n the figures are taken as wmput In the sune figure we abo plot the
results of ¢ evolutions of proton structure functions 7/ (dashed lings) for
the partickar solutions 1o leading order For convenence vitbue of cach
data potnt 15 1ncreased by addig 051 wherc 1 =0 1 2 3 are the
numberings of curves counting from the bottom of the Jowermost curve
as the 0 th orde

8
-
6 r -
[ x=0 00329
. -L -~
Ea
w I x=0 00104
L 1
2
x=0 00033
0 -
0 10 20 30 a0

Q(Gev?)

Tigure 3 Results of ¢ evalutions of the rito of proton and acutron
structure functions I,”/I," (solid lincs) for the representatine values of v
given i the figures Data points at lowest (7 values in the figures are
taken as mput
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due to the lack of sulficient amount of dita and due to large
error bars a clear cut conclusion ¢ in not be diawn

In Figure 4, we plot T(0? and 1, 7(1) where 7(1) = o, (1)/27
against Q% inthe Q” range of 05 £ Q” < 1000 GeV2 as required by
the data used by us Though the cxplicit value of TO 15 not
necessary in calculating 7 evolution yet we observe that for
7,=0027 errors become minimum inthe @’ range 0f 05 < Q" <
1000 GeV’

00025

0002

00015

T(tY & TT(t)

0001

0 0005
Q N .
0 200 400 600 800 1000
Q*(GeV’)

Figure 4 T(07 and I /11y where T(1) = o, (1)f2n gunst Q2 n the Q7
range of 05 < Q? < 1000 GeV?

Though we compare our results for y=2 and y = maximum n
B=a' relaton with data, agreement of the result with
experimental data 15 found to be excellent with y =2 for 1 evolution
n next to leading order

We can also calculate ¥ evoluuon ot non singlet and singlet
structure function at low vfiomegs (22) and (23) Butitinvolves
complicated intcgrals as eqs (22) and (23) involve L (0 L),
M, (x), and M,(x) which are agam functions of A (W) A0 A,

v

967

ALY B(v) B0 B,(v) and B(V) But these tunctions imvolve
many ntegrals making the calculation ot v distitbution
complicated We keep 1t as our subsequent work
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Abstract

We present particular solutions of singlat and non smglet Dokstitzer Gribov Lipatov Altarclis Parist (DGLAP) evolution equations

m next to leading order (NLO) at low v We ohtain v evolutions of dewicron structure functions at low x from DGLAP evolution cquations The results
of ¢ cvoluttons are compared with NMC low v and fow Q" daty and with thosc of leading order (LO) solutions of DGLAP evolution equations

Keywords
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1. Introduction

The Dokshitzer-Gnibov-Lipatov-Altaretli Parisi (DGLAP)
evolution equations [1-4] aie fundamental tools to study the

1(: |n(Q2/Az )) and v evolutions of structure functions, where
x and Q? are Bjorken vanable and four momenta transfer
respectively ina deep inelastic scattering (DIS) process {5} and
A 15 the QCD cut off parameter On the other hand, the study of
structure functions at low 1 has become topical in view [6] of
high encrgy collider and super collider experiments | 7] Solutions
of DGLAP evolution equations give quark and gluon structuie
functions which ultimately produce, proton, neutron and
deuteron structure functions Those stiucture functions are
important inputs in many high energy processes Moteover the
determination of their r and 1 evolutions 1< a test for QCD the
underlying dynamics of quarks and gluons inside hadions

Though some numetical solubons are available i the hies e
{8. 9], the explorations of the possibility ot obtaining analytical
solutions of DGLAP evolution equations are always interesting

In this connection particular solutions of DGLAP evolution
equations at low v in leading order (1 O) have alicady been
obtained by applying Faylor expansion method [10] and ¢ and ¢

evolutions [1t 15] of structure functions for intermediate and
low- ¢ have been presented Here, the particular solutions have

* Corresponding Author

v

been obtained either by a linear combination ot U and V of the
general solution AU, V) =0[11-13] or from the complete solution
[14, 15} of the equation We also have obtained particular solution
of DGLAP evolution equation from the complete solution 1n
next to-leading order (NLO) for non-singlet and singlet structure
functions | 15, 16| and compared our results with HHERA H1 [17]
and NMC [ 18] data

The piesent paper reports particular solutions of DGLAP
evolution equations computed from complete solutons in NLO
at low 1 and calculation of ¢ and r-evolutions for singlet and
non-singlet structure functions, and hence -evolutions of
deuteron structure functions In some instance we can deal
with particular sofutions more conveniently than wath the general
solutions [19] In calculating structure functtons nput data
points have been taken from experimental data directly unhike
the usual practice of using an input distnbutron function
mtroduced by hand These NLO 1esults are compared with the
NMC low-1, low-Q* data and with those of particular solution in
LO Here, Section 1, Section 2, and Section 3 present the
introduction, the relevant theory and the results and discussion,
1espectively

2. Theory

[hough the basic theory has been discussed elsewhere {15,

©2005 IACS
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16}, here we have mentioned some essential steps for clanty
The DGLAP evolution equations with sphtting tunctions |20,
21] for singlet and non-singlet structure functions in NI O are in
the standard forms {22

A (v _a,n
dt 2n

x[—{3+4ln(l—\)}F,(\t)+ j_‘fLJ +“3)/;(_‘_.z)
I—w LW

+{1-n 3)}(:(‘—:—4)]{%—:—))2

i 1
x (x—I)Fz‘(l.c)jf(w)dwjﬂu)rz‘(i,z}lw
)] 1 "

“2F (. I)} +N, j{",:

J’ (“)[1 (-—- I)(/\ } ( (’)) J.I,,L(w)(:(—— I)(lu =0
~ "
hy
and
(D un
Jdt 2n

4!

adw 3 M(\ J
—— (L) ot
l—w{( ) : W

z 1
-ZFZ’VS( v ’)}]“(9‘2‘%’2‘) [( - l)Flw( ' I)Jf(ll Ydw

x[—{3+4ln(l— \)}F,N((r r)+

0

I
A
+] f(w)Fzm[T‘—.IJ(In J =0, @)
X
33-2N, 306~ 38N,
where B, =5 and f}, =—- {-«-~ N, being the

number of flavours

2 1
Here, f(w)=Ci[Pr(w)=Py(w)] +EC, Ca[r, 00+ 20

+CFTRN1PN,(W),
(M) ZCFTRN[F (w)

and  Frn) = CrTpN I (n)+ ColgN I n)

The expheit forms of higher order kernels me {20-2 1

3
l’,(u)—~—’7(l+ u Jln win(l-w) ( 1 2n )ln "
P—w l-w

—l(l+w)ln:w-—S(l‘w),
2
tan® 7
P, ) - e In”u +|~| lnw 4(—) _7[
1-n 3 9 3
)
1204wy lnw ’:“LH W)y,

- 2
P/\,I () = ;[llt‘:‘ (_!n W 2»)—-2(1—\1 )j’.

2N\ Voo
I’/\(n'):2[l+“ ) J ﬂlnlkk+2(l+n)lnn+4(l#u),
wil+n)

20 56 “
! (\\)——(—~"’+(m——-£u (l+5u+§n')lnn
9 9 3

qq "

{1+ n)in"w,

hlnw -(1~2u)|n: widn(l-n)

l_ ! 2 9
) 41( . )——}'71"+10]Pm,(u')

4 9 (]

4[2lnz(l
"

qx(")

and

4 3
(\)— 182 —l-‘lw+—9—+(—]—~(lu -E)ln w—dln(i-w)
9 o 3 3

2 2 44 2
~(2+8w)ln'w+|:—ln'u +~3—ln w=2In"(I-w)+4In(l-n)

1(lrn)

7 218 d= 1-:
+T-‘TJP(,L,(H)+2P’N(*H) —ln—-—.
- AT ~
wheie l’,“(||)—-u +(l—n)1, C,=C,=N, =13

C, =(NE=D/2N, and 1, =112

1 et us mttoduce the varable = 1-n and note that {23

T o
wo l-u o
The series (3) 1s convergent tor fu] <1 Since v<w< 1500
< n < | —vand henee the convergence crtterton 1s satished

Now, using Tuylor expansion method {10}, we can tewnite
I’l‘(\/w,l) as

/3\(\/u',l)=l'f(\+ \zu‘ I)
L
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Sl 1, YA (o
=rf(\ (ARt u‘i———-—~4——\' ot —_—
- AE:, aa 2 ‘2, G
h

which covers the whole range of 1t 0 << I=v Since vis smatl
1n our region of discussion the terms contarmng +* and higher
powers of v can be neglcdied as ow st approximation as

discussed in our carlier works [ 11 12, 14-106] I‘;(t/u L) can
be approximated for small xas

I
F;(\/u,l)zF,‘(\ H+ xZu“ L_ii(\'_\-t) (5
Ly

NS
Similarly, G(v/w, ) and 157" (\/w . 1) can be approximated
for small-vas

C(r}n.l);(}(r,)*rguk QG_(\\Q ©
1 .
and
FAV(\/H r)*[‘, S(x, ’)+V2 ‘!9[7 (1 r) -
L-t dx

Using eq (3) (5) and (6) in e¢q (1) and performing
1« mtegrations, we get

s
IR (D) _ [U Ao (“ ( )) Is(\)jll,‘(\r)
dx | 27 2n )

_{"‘“’)Aﬁ(\)+(a‘(’)]unz(\) G(x 1)
2 2 ]
2 1 S
49, (m(a (’)) By |20
2n 2 | h
(1) RO
—{ o /h(\H( Py ) By(x) |4
N a‘(r)AJ(\H(a\(I)) B0 r7G(Y.I):0' @)
2 2n | Jdr
where
A= {3+4|n(|—\)0(\—1)(r+'5)},

A (V)= N,[%(I— \)(2~\+2x2)}

AJx):%{\(l- 1)+ 24 In(%)}

] .
AJ(t)=Nlt{Inl‘—;(l—\)(5~4x+2\‘)}

Y

! \
4 20 .
B(v) - \j/(n Yelw —If(u ) +;NI[—|n \(T)-+ It W
0 0

J R 1, 64 ¥l7
+§-\‘ +l\(2+\)|n“\+i\——\ +—‘— -
9 2 2 27 54

32
[ (9\~5\ +— )In\
9
N 4 2 \
+ 1\—1\'41\‘)In'\+(L\‘~ﬁ\'+§\—ﬁ)lll(l—\)
3 9 3 9
+(i—2u2\3—3\‘)|n3(|-\)+(3—in3)
3 3 319
(2 N 59) (113 2 2)2 (4 2 20) 3
H—m -\t ——=m" W] ="—— |x
3 9 9 3 9 3

40 2 5
+3Nf —(—-+8x+llx2 +9—- t')ln e
2 9 9

Ba(\)'—

u|r\>

» 2 2 14 8 4 5 3
+(h+h‘+———\‘)ln‘\ (-————\+—\'——\1
' 9 9 9

3 3
]
)ln (I—\)+( n? 769)
9 54
(122 I 7) (l N ?()l)~ (%0 2 ,)l
H— =7 | =1 — i -—nr
9 1 3 18 27 9

+%N,I2(H T4 (l#u):)[—ln In(l+u)—Inw In(t+n)
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+(—i+2\—7x
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Letus assume tor simphony 11-14]

Glx )= K(v) (), 9

where K(¥)1sa function of v Now eqg (8) becomes

; .
ar, (r.l)__{Fl\“)Ll(\H (“ (’)) M,(\)}If(\ "
o 2n )

at

a(r) a (1) AP (\ 1)
Ly(v)+ M, — =)
[ o (v ( > ) 4,(\)] o (10

where

IK(\)

[Z4}

L)y = A () + K(COA {0+ A ()

M (\)-B,(r)+K(\)B,(\)+BJ(\)~’;(—L)
\

Ly (x) = A0+ K(OA (1)

and  M,(x)=B,(\)+ K(\)B,(1)

For a possible solution, we assume [ 15,22} that

a,ny a, (N
(52) =5(%7)
w 27

where T}, 15 a numenical parameter (o be obtaimed from the
partrcular Q*-range under study By a switable choice of T, we

can reduce the error toa mimmum Now eq (10) canbeirccastas

(i

IF (x.1)

Wl (n=0,
ot Ostv Nl

—Pg(\ 1)

aF, (vn 5
ER (12)

o, (1)

where Ps(x,l)— [L,(()+7,,M (]

Qs(x,1) = )[L,(\)+ I,M, (0]

and

Secondly usingeqs (3) (7)and (1) meq (2) and petloiming
u-integration, we have

(v 1)
o

M (wn or,"

3 s (4 1) ~QuiunIMaon=0 (3

where P (x.t)=

SO 1, 80)
LT

Ons(xi)=

and

a, (1)
- [A )+ T,B, (V)]

with

w3yl

1
I -
Bi(x)= \J ! w3y

v

2
A(‘(\)=§{14 4In(l- D+ =D+ D)

v |
Bo(v)- J/(u)r/u | \j/(u)(ln

n 1)

and

The general solutions [10 9] ot eqs (I12)w T (U V) =0,
whete 7 os an atbiiary function and (/(\_, [:‘): C, and

V(\, IR I}V) =G, wheie €, and C, are constants and they form

a solution of equations

LA _dr A7

Pint) -1 —Qs(r 1)

(4

We observed that the Tagrange < auxtliary sy stem of ordimary
dterential equations [ 10 19] occurred in the tormalism can not
be solved without the additional assumption of lincarization
(eq (111 and inioduction ot an ad hoc parameter 1, Which
does not atfct the tesults of 1 evolution of structute tunctions
Solving eq (14). we obtain

) !
U(\,I. I':C):'I(I/””L‘\pli ,+
t

V(\,I.I‘;): F;(\ r)cxp[M‘(\)],

/_V\(_\')]

a

and

2 /}‘

whele a=—-—_ b=

B Bi

Ly LML (v I
_—
Ly(\)+ TyM-(0)

No(v) —

J- dh
Ly(O)+TyM.(v)

and M\(\)=I it U and V are two

independent soluttons of eq (14) and 1f ¢ and f are arbrtrary
constants, then V = aU + f§ may be taken as a complete solution
of eq (14) We take this form as this is the simplest torm ot a
complete solution which contains both the arbitraiy constants
o and 31 wher P11, 12
AU + BV =0 whete A and 8 ate aebateary constants But that s
not a complete solution having both the arbtrary constants as
this equation can be transtormed to the fotm V= CU where
C=-A/B 1 e theequation contains only one arbitrary constant
Thenthe complete solunon 10 19

M):’ +B s

o

wetvonstdered an equation

Wi l
F;(\ l)cxp[M\(\)] :(1’)‘”' " C\p(—)- 4
t

s a two parameter famly of planes windh does not have an
envelope since the arbittary constants enter inearly {10} Again

ditferentiating eq (ISY wathrespectto I weeetO=1 which

absud Hence, there 1s no stngular solution The one parameter
5

family determsned by taking f3 = o~ has equation

,\\m)]m‘ (10)
o

| /
I I)L\p[/”.‘(\)]* 11[1“ ! ”C\[)(—’4
1
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leferentmtmg eq (16) with respect to ¢, we obtam  and

l (h[H I) (\) 2
a= Ny NS !
-2’ a G =R"0wy) = on
0
Putting the value of a agamn in equation (16), we obtain the
envelope We observe that il b tends to zero, egs (18) and (19) tend to

, eqs (20rand (21), respectivelvor e solutions of NI O equations
S Y hian b NJCOZ o over to those of LO equations Physically, & tends to zero
Fl(\.l)exp[lth(\)]:—z 1 exp| —+——— E 1 y
1

a means number of flavours s high
Therefore, Again detiming
» 26 2IN(n) — 1 bnn & 2Nv(‘)_
F(x r)——4 A /""exp[—;—+—:~’——M;(\) () INCWE 4r expl—+— M (v)
which 1s metely a particular solution weobtam romeq (17)
Now, defimng I
/1(\{) F(r ryexp -
1 s 2 2N ” I a L0+ TML (1)
Yoy = gD el 22 oM,
4 ty a
L+ Ty ()
3/ A2 - "l‘ 20
att =ty where fg = In (Q(;//\ ) at amy lower value Q= Q, we Ly()+TM,(0)

getfromeq (17), \
which gives the x-evolution of singletstiucture function £, (1)

2 l
(hitily (l:ml)
! ¢ ¢ rw =
NG EIAT ’0)[ o m) c'(|1[2/z[l~lﬂ. % mNLO for = a® Similarly, detining NI E 4
Ity )] .
xcxpl' ’ "N“(\) MM-(\)]
! a

©we pet
which gives the t-evolution of smglet structure tunction 1,5 (yf) Yo

mNLOfor = o’ 'y ‘
\\(\.r)= I’ (\0 t)exp J _—_
Proceeding exactly in the same way, and detining a Ag(\)+ 1y Bg(W)
I agnie, s h 2N
M(“”):_Z'(;um. "cxp[f—l p___f\lilll-/um(\)]. “/\,_(\)+T(,B(,(\) " "
0 ‘ Ac() + 1y B(V) =Y
where N\s(r):_’--—*d—‘w which gives the x-evolution of non singlet structure tunction
AstO+ Ty Bs (1) A (W) mNLOlo B=ca*
AV +T B (V) In anearlier commumication [ 14], we suggested that tor fow-
and MM(\)=J-—~—~——1 L,
As(O+T,B(0) xnLOfor §=a’,

we get for non-singlet structure tunction i N1 O as r

. I (L= F (y.)exp j —2—— L) fe] (ay)
NS A e {o - - : A M) MG “
LUl =10"0u) —m] exp) 2/{—~-—] 9 -
Iy * LAY and
which gives the t-evolution of non-singlet structure function R , L,
IS ey mNLO -t Y uny = R (vynex : V1L (2S)
2 ) o1 fi 2 2 (v P J A,Q(\) TS (

In an earlier communication | 14], we suggested that for low "
5 where
ximLOfor f=a",

A, *4/(“—2N,). PO=3+dIn(l-)=(1=- v + D)

T

s e ! .
Fl(\.r)_Fz(u,,)(—r;) e Q== =2vIny,
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IK(\)
ox

M(x) = Q(x)+ K(x)D(1), where again

L{x)= P()+ K(O)C(x)+ D(x)
and

C(O=12N,(1- ) 2=+ %)
and D(x) = N -1/2(1~ )= 4e+ 2331+ (372 tact /)]

Of course, unlike for the ¢ evolution cqualtons, we could
not have for the r-evolution equations 1 | O as some hmiting
case of NLO equations Deuteron, proton and neutron structure
functions measured 1n deep nelastic clectio production can be
wriiten 1n terms ol singlet and non singlet quark distiibution
functions {5] as

Ff (x.0) =519 F (x,1), (26)

Ff (e =5/18F (x )+ V18K (v 1) Q7
and

F(an)=518F (v 1y-31815 (v 1) 28)

Now using eqs (22) ineq (26), we will get a evolution of
deuteror structure function [3‘( i) atlow xmNIOTor ff=a
as

2 |
a Ly{(\)+TyM, ()

Fld( = Fld( n(,.r)exp j[

Y

Li()+ToMi (9
e ([\ (7())
Ly} + TyM, () a

where, the input function 1s /:’(\(,,y)—grf(\(, 1} The

corresponding result for a particular solution of DGI AP
evolution equations in LO for J = o obtained earher [ 14} 1

ALY }/\ ()

} 2
Flu)=F t
v (v ’) 7 (1 )exp I( MY

: /\,M(\)

The determination of x evolutions of proton and neutron
structure functions like those of deuteron structure function 1y
not possible by this methodology because to extract the
v evolution of protron and neutron structure tunctions we ate
touseegs (22)and (23)1neqs (27) and (28) But the functions
inside the integral signof eqs (22) and (23) are different and we

need to separate the input functions 2 (vt) and 722 (v )
from the data points to extract the x evolutions of the proton
and neutron structure functions which may contun large crrors

For the complete sotutonof eq (12) wetake f§~ o’ meq

(15) If wetake B = a ineq (15 and differentivte with 1espect o

I)+N‘(t)

o as belore, we pet 0=1”’/’”’exp i +1, trom

! a
which we can not deteimine the value of o But if we take
A= o m cq (15) and differentiite wath 1espect to (x we get

Q“J“%f(h/””CXP(B-F N\(\)
!

) which s imagmnary Putting
a

this value of o tineq (15) we getultimately
A 1\72
i) ( 3)
b N 2
x cxp{(—:-+——‘—(—\—)) - M\(\)}
a

Now, defining

) . N NE
’zv(‘ ’u):’((ll/”” {(5—1) +(»;) }

32
[['_N_U] .
fn «

N ) g\ 3 (11
Iy (x ’)2[2‘(“’0)(;:)7,77"7‘.7] exp 5/(7—’—(;)

Proceeding exactly i the same way we also get {or son
singlet structure function

32
(hj1+1)
1 {1 1
I,N\ VY= I 1) e e\pl —=h ———
2 ( ) 2 ( 0 ’(l)l/l,lll ! 2 ! ’0

Then using egs (26) (27) and (28) we get t evolutions ot
dedtaon proton and neutton structure Tunctions

g
3(1 1
exp| =b| ———
2 0r g

Piocecding i the same way we get x evolution of deuteron

I3\ ,)_'(h/ul)" I(
‘ |

we pet

. ’(lv/ul)
I?_‘ Ilu(\ I): r’zl " (‘ ’”) toanr
/

1]

structure function as

M 1/2 i
13 (un) =1 exp fj == -
2 (nn) =1y )L“’\J( a L)+ IgMy(0)

LM 0
Ly()+1gMa(0)

4
Sundely we cinshow thi it wetahe f=a” weget

(hit+ 1)

471
4 (1 1
Ay - e | expl o - —
( ) (‘ l))(’u(lh th P 3 ! '()
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and

4/3 |

)
[«"d :/,‘, ! VRN
Y (x 1)=1{x, )CXP‘J a 1.4 IgMa(0)

_ LMY
[,(O)+ TyMy (V)

Similarly if wetake = we get

5/4

(hirel)
1 501 1
r;"’"(\ I)=Ffl""(\ )| = J exp| —bl ~——
l()(l/l h 4 ' ’"
and
A
5/4 |
T =1 I)cxpj —
- X a I\ M o()
N L)+ TyM ()
Lo (v )+ ToMS ()
and so on

Thus we observe thatif we tihe f—a meq (15) wecan
not obtain the value of @ and also the 1equited solution Butf

21 4 s
we take f=a” a o « and so on we sce that the

(hitely [ (bir +y
powers of """V /1,

and coetficient of h(l/l—l/t“) of
exponential part int exolutions of deutcron proton and neutron
structure functions e 2 32 4/3 S/4 wmd soon respeatively
as discussed above Simlarly for v cvolutions of deuteron
structure functions we set that the numerators of the fust term
mstde the integial sign are 2 3/2 4/3 5/4

respectively for the same values of ¢ Thus we see that i in

and <o on

the refation 3 — * v v anes between 2 to amiamum value the

thie vy

of

co clficrent ol I”’/”')/I,,” oy

powersot 1"V /1,
exponential part in 1 evolutton and the numerator of the fust
term 1n the integral s1gn 10 v evolution vares between 2 to |
Then 1t 1s understood that the solutions of eqs (12) and (13)
obtained by this methodology are not unique and <o the t
evolutions ot deuteron proton and neutron structure functions
and v evolution of deuteron structure tunction obtaned by this
methodology are not unique

Thus by this methodology 1nstcad of having a single
solution,we arnve at a band of solutions the range of these
solutions being reasonably narrow

3 Results and discussion

For a quantitatine analysis of v distrbutions of stiucture
functions we calcul ite the integrals that occurted ineq (29) for
N, =4 In this case we neglect the first and second term of

/
function B (x) as vis small

In Ligme | we present our results ot x distitbution of

deuteron structure functions IZ_" fromeq (29) for K(1)= a’

h

(dashed hines) and tor K(1) = ce “* (sohid hines) in tne relation

f=a' tor v mimmum (lowet dashed and solid lines) and
maximum (upper dashed and solid hines) wherea b ¢ and d are
constants and for representatne values of Q7 given in each
tiguie We compare them with NMC deuteron fow xlow Q' data

[18] Ineach graph, the data point for x valve just below 0 | had

been taken as mput rgd(\o 1) If we take K(1) = a¥?

agreement of the result for v minumum with experimental data s
tound to be excellentata= 10 b=0016 On theother hand if we
take K(v) = ce™ then agreement ot the results for y mmmmum
with expetimental data s foundtobe good at« =05 d=-38 In
this connection, earher we observed | 14] that agreement of the
resufts with expenimental data was excellent for K(v) = 45

then

(consti) a=45 H=001 c=5 d={tolow xainleadingorder
wnd there wis no stgntficant difference batween the results ton
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1} m‘
Q’= 7GeV?
os |
Q’= 5 5GeV?
wos i W
Q’- 4 5GeV?
T m‘
Q’= 3 5GeV’
I =075CeV?
o2} o °
Kix) = ax®
K{x) s ce ¢
o e A L 1
0 002 004 006 008 01

X

Ligure 1 Results of v distnibution of deutcron structure tuncnions =
from ¢« (29 for AQ(V) = a¥ (dashed lies) nd for A = (™ solid ings)
m the rehnon (o y mmimum (lower dished wnd seld hinesy and mamum
(upper drshed nd solid hines) where a & ¢ nd o are constants ind for
representative values of @ gnven 1n cach figure and compare them with
NMC duntaion low v low Q' datt {18] In each graph the daty point for
Xovilue qust botow O 1 s boen tiken wonput I"(\l, 0 Howe ik
A e’ than agicament of the 1ot for v maumum with cyportmont ]
ditr s found to be execdlent At a = 10 h = 0016 On the othar hind at we
tihe A(1)—c¢ ® then agreement of the scsults for v mmmum with
expenment b dity s found to be good at e =05 o =~ 38 For conmvinmience
vatuc of cich daty point for one value of @ 15 ncrcsed by adding 0 21
whercr=0 1 2 13 are the numbenngs of curves counting from the
bottom of the loweimost curve as the ¢ th order
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y mumymum and maximum 1n the relation =@’ Inthe casc of
NLOQ, agreement of the results with experimental data is found
10 be very poor for any constant value of K(x) Therefore, we do
not present our result of x distribution at K(x) = constant tn
NLO

In Figure 2, we present our results of x evolution of deutcion
structure funcuion from eq (29) for K(1) = e (dashed hines) and
K(x) = ce™™ (sohid hines) 1n the relation 8 — @' for y masimum at
differert parameter values and for representative values of Q°
given in each figure, and compare them with NMC deuteron
low-x low-Q* data [ 18] Ineach graph the data point for 1 value
Just below O 1 has been taken as input Fz”( vy 1) We observed
that both the graphs coinaide for each @7 value and are in
excellent agreement withdatawhena=55,6=0016 « =0 2b d
=-38

12
1F L{-—J\l\;__*’
Q'= 7GeV?
oo Li‘i\‘!\t—\H
Q= 5 5GoV’
woe M
Q= 4 5GeV’
| k!‘!“l-s‘..,\_'___l
i Q’= 3 5GeV’
n2 b Q=0 75GeV?
Kix) = ax®
Kix)=cx **
o N N . .
0 002 004 006 008 0

H
Figure 2 Results of v cvolution of deutcron structure function from
equatton (29) for K{ ) = ax® (dyshed hines) ind k() = ¢ (sohd Jies) 1
the refation I=¢q’ for v maximum at different parimeter valucs and for

representative values of Q7 given in cich figure and compare them wath
NMC deutcron low x low Q dua {181 In cach goaph the dany pomt for

x value just below 0 1 has been taken 16 imput 1700 1) We observed tht
both the graphs comcide for each @ value and e in exeellent agreament
with data when @ =55 b =0016 ¢ = 028 d = - 38 For convenicnce
value of cach data pont for one value of @ 10 mcrersed by wding 0 20
where r=0 12 4 are the numbenings of curves countim,. from the
bottom of the lowermost curve as the O th ordu

InFigure 3, we present the sensitivity of our results from eq
(29)fora b ¢ d mtherelaton =" tory mmmum Incach

graph (from (cp), 1f the absolute values of d ¢ b o1 a
respectively are increased, the curves shitt upward and 1f the

absolute values ol 'd ¢ b o1 a,1espectively are decreased,
the curves move in the opposite direction For the sensitivity of
a,wetake b=0016 and we observe that at a = 10, agreement ot
the results with experimental data 1s found to be excellent For
the sensttivity of ‘b, we take ¢ = 10 and we observe that at
b =0016 agreccment of the 1esults with experimental data 1s
tound to he excellent On the other hand for the sensttivity ol ¢,
we take H=— 3 8 and we observe that at ¢ = 0 5, agreement of the
results with expetimental data v tound to be gaod Tor the
sensittvity of of wetahe ¢ =0 Sand we obsenve that atdf =~ 3 8
agrecmnt of the resufts with expetimental data 1s found to be
excellent

11
Q= 7Gevi,c= §
dw 36 38 4 42
o9 k
- Q'=55Gev’ d= 38
o
07
Q'w45Gev’ a=10
b= 014 0tS 018 017
.
05
Q'=35GeV’ b= 018
a=510 15 20
03 N N A .
0 002 004 Q06 008 0

Figure 3 Sensitivty of ous sesults of v disufoanon of desteron stivetune
funcnon n the rchtion 3 ¢® lor v nunimum for different values of a
b oandd

InTiguic 4 we present the sensutin ity of out results from eq

(29} for didtcrent values of Ty at best fit of A(v) = av® and

K1) = ce ™ n the realion f=¢' for y muimimum and lor
representative values of Q7 given in each figure Here a = 10
h=0016 ¢ =05 d=-3& Weobsanvadthatif the salue ot 71
mcicsed the cotve moves shghtly upward and it the vaiue ot
1,15 decreased, the curve moves shghtly downward direction
But the nature of the curve remams some and difference betwecn
the curves are oxtremely small i both cases i the /) range
mentioned in the figure

InFigie 5 we present the results of x evolution ot deuteron
structure function for K(1) =av" (dashed ines) and A(1) = ¢ h

(sohd lines) mntherelanon = a' for v mintmum 1in LO (lower
dashed and solid Iines) and in NI O (upper dashed and sohd
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Frgure 4 Scnsipvity of our sesalts of v disinbution of deatcron stracine
function 1n the relation B~ o' for v munumum for different values of a
b ¢ andd
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Figure 5 Results of v evolubon of deuteron struciuse function for K(v)
= ax® (dashed lines) nd K(v) = ¢ ' (sohd hines) i rcditon - for v
mummum in LO (lower dished nd sobd lines) md in NTO (upper dashad
and sohd lines) for representative values of Q given i cach figure and
compare them with NMC deuteron low v low Q% dita {18] In cich graph
the data point for v value just below 0 1 has been taken as mput - Agreement
of the result with experimentid datis fonnd 10 be exeddhont lor a4 S
b=00l e =5 d=1mlO wmda 10h 006 ¢ ~05d 3KinNIO
and afl the curves 1n cach grph almost comctde

lines) for representative values ot Q7 ginvenineach tigure and
compare them with NMC deuteron low 1 low Q" data [18] In
each graph, the data point tor v value just below 0 1 has been
taken as input. Agreement of the result with experimental datais
found to be excellent fora=45 b=001 ¢ = d=tin1 Oand
a=10 6=0016 ¢=05 d=-3 8 NLO and all curresineach
g1 1ph almost coincide

Intigwe 6 weplotI{0) (solid ind) and 7,117 (dashed hine)
where T(1) = a, /2 against Q" in the Q@ range 05< 07 <50
GeV? We observed that for T, =0027 error becomes mimmum
inthe Q% range 05 < Q° <50 GeV?

0003
—_—Tin
T.T(H

0002
K
-
)
=

0001

° X — . ~
0 10 20 3o 40 50

Q’(Gev?}

Frgnre 6 1(0) (olid hnd) md 7 KO (dobhad e whae 1D a /0x
agunst Q v the Q7 ringe 05< Q’ <50 GLN o We observed thu for 1) =
0027 enor becomes mimmuman the Q ringe 05< Q’ <50 (nd

.

from our above discusston at has been observed that we
¢ not establish a umique relion between singlet and gluon
structure functions 7 ¢ & unique expression for A(V ineq (9) by
this methad  K(1) in the forms ot an exponential tunctionof vor
a power 1n x can equally produce requued x distribution ol
deuteron structure functions But unhike x distnibution tunction
with many mput parameters {(gencraily used 1n the hterature)
our method requited only one ot two such puameters The
cxplicit form of K(1) can actually be obtained only by solving
coupled DGLAP evolution equations for singlet and gluon
structute functtons and work 1s going on in this regard
fraditonally the DGLAP cquitions provide a means of
calculating the manner in which the patton distnbutions change
at fixed x as Q" vartes This change comes about because ot the
virious ypes of parton branchimg cnnisaae n processes md the

v distributtons are modttied as the mstial momentum s shated
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among the various daughter partons However the exactrate of
modifications of v-distributions at fixed Q%can not be obtamcd
trom the DGLAP equations, since 1t depends not only on the
inttial x but also on the rate of change of parton drsttibutions
with respecttox, d" F(x)/ dx”" (n= 110 o), up to lintc order
Physically, this imphes that at high-¢ the parton has a large
momentum fraction at its disposal and as a result 1t radrates
partons including gluons 1n inpumerable ways some of them
involving complicated QCD mechanisms However, fo1 fow v,
many of the radiation processes will cease to occw due to
momentum constraints and the v-evoluttons get simplidied 1ers
then possible to visualize a situation 1n which the modibication
ot the x-distnibution simply depends on its imtial value and its
first denvative In this simplified situation the DGLAP equations
give information on the shapes of the x distnibution as
demonstrated in this paper The clearer testing of our iesults of
x evolution s actually theeq (23) whichis tree from the addiional
assumption {eq (9)] The required non singlet data 1s not
adequately avaiable 1n the low viegion to test our result
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