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SYNOPSIS 

In 1965, Pr0f.L.A. Zadeh[100] of the University of California, Los Angels(USA) laid 

the foundation of the Fuzzy Set theory by generalizing the classical notion of a set to 

accommodate the vagueness and inexactitude usually faced in a decision process. 

The fuzzy set theory and logic lay a form of mathematical precision to human 

thought process that in many ways are imprecise and ambiguous by the standard of 

classical Mathematics. This theory provides a strict mathematical frame work in 

which vague conceptual phenomenon can be precisely and rigorously studied. Out of 

several higher order fuzzy sets, intuitionistic fuzzy sets(1FS) introduced by 

Atanassov [5,6] is quite useful and applicable .IFS are not necessarily fuzzy sets, 

although these are defined with the help of membership functions[5]. But fuzzy sets 

are intuitionistic fuzzy sets. Research on the theory of fuzzy sets has been growing 

steadily since the inception of the theory in the mid- 1960s along with research on a 

board variety of applications of this comparatively new concept into different areas 

of study. 

The most recent contemporary concern about knowledge and information systems 

has been another useful extension of elementary set theory (different from fuzzy set 

theory) is the Rough set theory by Z. Pawlak[68]. The underlying assumption behind 

rough set is that knowledge has granular structure which is caused by the situation 



when some objects of interest cannot be distinguished and they may appear to be 

identical. The indiscernibility relation thus generated is the mathematical basis of 

Pawlak's rough sets. It is an independent discipline to reason about vagueness and 

uncertainty. Rough sets, though different from fuzzy sets, are also suitable for 

modeling vague concepts, i.e., concepts without sharp boundaries. Rough set theory 

is emerging as a powerful theory dealing with incomplete data. It is an expanding 

research area which stimulates explorations on both real world applications and the 

theory itself, viz., decision analysis, machine learning, knowledge discovery, market 

research, conflict analysis etc. Recent theoretical developments on this theory and 

some of its applications are available in [69]. 

Yager[93] introduced the bag structure as a set like object in which repeated 

elements are significant. A set generally implies a collection into a whole, of definite, 

well distinguished objects where redundant objects are not counted. In fact there are 

many collections like collection of books in a library, collection of medicines in a 

medical shop, collection of zeros in an algebraic polynomial, etc, are not sets but 

bags. The application and usefulness of bag in real life situations is important, 

especially in relational database, decision making, etc. 

Molodtsov[60] pointed out that classical methods cannot be successfully used to 

solve complicated problems in economics, engineering and environment because of 

various uncertainties typical of these problems. The important existing theories, viz., 

theory of probability, theory of fuzzy sets, theory of intuitionistic fuzzy sets, theory 



of vague sets, theory of interval mathematics, theory of rough sets, can be considered 

as mathematical tools for dealing with uncertainties. But all these theories have their 

own limitations as pointed out in [60]. The reason for this is possibly the inadequacy 

of the parametrization tool of the theories. Subsequently Molodtsov developed a new 

mathematical theory called 'Soft Set' for dealing with uncertainties and is free from 

the above limitations. The absence of any restrictions on the approximate description 

in soft set theory makes this theory very convenient and easily applicable. Zadeh's 

fuzzy set may be considered as a special case of the soft set. 

The sole motivation behind this thesis is to study the notions of fuzzy sets and rough 

sets further, to explore as well as to formulate the fizziness and roughness occurring 

within the frame work of a number of mathematical avenues and hence to promote 

some fuzzy and rough mathematical theories along with a few extensions to some 

existing frameworks. 

The thesis mainly deals with the following: 

1. The definition of union and intersection in [19] have been simplified to include 

union and intersection of more than two fuzzy sets in different universes and some 

existing propositions are proved using these generalized notions. 



2. Cartesian product of fuzzy bags, bag relation and fizzy bag relation are defined 

and some results are proved with examples as an extension of Yager's theory of bags 

and fuzzy bags and subsequently developed by Chakrabarty et a1.[19 1. 

3.  A new concept of rough algebraic structures is introduced by defining rough 

Boolean algebra and rough subalgebra based on upper approximation of Pawlak's 

rough set and some results of rough Boolean algebras and rough subalgebras have 

been proved with examples. 

4. Some properties of lower and upper approximations are studied with respect to 

congruence relation and fuzzy congruence relation in a lattice. 

5. The concept of similarity measure has been used through intuitionistic fuzzy bag 

theory in deciding the best possible action out of 'n' alternatives involving 'm' 

criteria on the basis of judgments of 'p' judges where each criteria has its 

corresponding weight and an algorithm for the method is also presented along with a 

hypothetical case study. 

6. Soft relation and fuzzy soft relation are introduced and then are applied in decision 

making problems.We have also studied the Sanchez's approach for medical diagnosis 

and extended this concept with the notion of fuzzy soft set theory and intuitionistic 

fuzzy soft set theory and exhibit the technique with a hypothetical case study for 

the two cases separately. 



7. As an interdisciplinary application of fuzzy technology, a fuzzy rule based routine 

has been developed for estimating monthly discharge using the Jiadhal river 

(a tributary of river Brahmaputra) sub- basin covering parts of Arunachal Pradesh 

and Assam. This ensures the applicability of a fbzzy logic -based approach to 

modeling catchment process. 
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Chapter 1 

General Introduction 

Fuzzy set theory provides a means for representing uncertainties and modeling the 

related concepts. Historically, probability theory has been the primary tool for 

representing uncertainty in mathematical models. But it deals with only random 

uncertainty. So nonrandom uncertainties are not suited to treatment or modeling by 

probability theory. In fact, an overwhelming amount of uncertainty associated with 

complex systems and issues, which humans address on a daily basis, is nonrandom in 

nature. Fuzzy set theory is a marvelous tool for modeling nonrandom uncertainty, 

i.e., uncertainty associated with vagueness, with imprecision, with lack of detailed 

information regarding the problem at hand. 

The notion of fuzzy sets provide an alternative approach to the traditional notions of 

set membership and logic whose roots lie in ancient Greek philosophy. Some 

philosophers of that time, including Aristotle, proposed 'laws of thought' in their 

effort to formulate a theory of logic (foundations of Mathematics).It contained 'the 

law of excluded middle' meaning that every proposition must either be 'true' or 

'false' .But Plato claimed that there exists a third region between 'true' and 'falseY.A 

central idea in his philosophy is that, in the real world, elements are very closely 



associated with imperfection and hence, there exists no element that is perfectly 

round. "Perfect notions" or "exact concepts" are the sort of things envisaged in pure 

mathematics while "inexact structure" prevail in real life. Fuzzy sets deal with 

situations using truth values which are true or false or ranging between 'true' and 

'false'. The membership function of a fuzzy set maps each element of the universe to 

a value in the unit interval. The primary feature of fuzzy sets is that their boundaries 

are not precise. This facilitates the assignment of a subjective membership value to 

the elements of the universe of interest without totally rejecting or accepting them. 

This approach of subjective memberships taking all relevant aspect of the situation 

makes the fuzzy set quite user friendly. Fuzzy set theory does not handle the value of 

non membership value of its members explicitly. It is automatically determined by 

the difference between the membership value and unity. For example,we often here 

statements like "sixty percent of the voters voted in favour of a party". It does not 

mean the remaining forty percent of the voters have not voted for the particular party 

because there may be voters who have failed to vote due some reasons.In other 

words, a voter who has not voted in an election is not same as he has not voted for a 

particular party. Thus non membership value is not always automatically the 

difference between unity and the membership value. Considering this fact that the 

membership value always does not determine the non-membership value of an 

element, an extended definition of fuzzy sets was initiated by Prof. Atanassov [5,6]. 

For a set, he defined a membership and a non membership function each of which 

maps each element of the set to a value in the unit interval with the constraint that 

sum of these two functions must be less than or equal to unity. The remaining 



part(the difference of the sum of the membership and non membership from unity), if 

non zero, is the indeterminacy part of the evaluator's conception of the particular 

element. This set with a membership and non membership (each of which may be 

partial) is called an intuitionistic fuzzy set which is in fact a generalization of fizzy 

set. 

Rough set theory is a comparatively recent mathematical approach to formulate sets 

with imprecise boundaries. It represents a different mathematical approach to 

vagueness and uncertainty. Here we associate some information (data, knowledge) 

with every object in the universe of discourse such that objects characterized by the 

same information are indiscernible (similar) in view of the available information 

about them. The indiscernibility relation generated in this way is the mathematical 

basis of the rough set theory. In recent years, there has been a rapid growth of 

interest worldwide in rough set theory and its application. It has been seen that fuzzy 

sets and rough sets are two different topics [30] and none generalizes the other. 

A findamental axiom in the theory of sets is the action of extensionality [SO].This 

action defines equality among sets. According to this axiom two sets A and B are 

equal, if for any X E A  it follows that X E B  and for any ~ E B  implies YEA.  Two 

important properties that follow from this axiom are that ordering of elements in a set 

does not matter or repeated elements in a set are redundant. A list provides a 

structure in which ordering counts. In some situations we may want a structure which 

is a collection of objects in the same sense as a set but in which redundancy counts. 



For example,a collection of objects corresponding to the ages of people in a company 

do have a redundancy which we may desire to make explicit in the underlying set. 

With this in mind, Yager [93] introduced the concept of a bag drawn from a set X 

and mentioned some possible applications of this bag structure in relational 

databases. He defined various operations on bags, introduced the concept of fuzzy 

bags and discussed some operations on them. 

The theory of fizzy sets developed by Zadeh [loo] has established itself as quite an 

appropriate theory for dealing with uncertainties . But recently D. Molodtsov [60] 

showed in his paper 'Soft set theory - First Results' that fizzy set theory have also 

some difficulties in handling uncertainties due to the inadequacy of the 

parametrization tool. Soft set theory is a new mathematical tool for dealing with 

uncertainties which is free from above difficulties. Also, Soft set theory has a rich 

potential for applications in several directions. Molodtsov has shown that fuzzy set 

might be considered as a special case of the soft set. 

Before furnishing the summary of our results, we present a brief description of the 

theories of Fuzzy sets, Intuitionistic fuzzy sets, Rough sets, Bags, Fuzzy bags and 

Soft sets. 

1.1 Fuzzy Sets 

Fuzzy set theory proposed by Professor L.A.Zadeh at the University of California, 

Berkeley in 1965 is a generalization of classical or crisp sets. It makes possible to 



describe vague notions and deals with the concepts and techniques which lay in the 

form of mathematical precision to human thought processes that in many ways are 

imprecise and ambiguous within the ambit of classical mathematics .This theory 

reflects itself as a multi-dimensional field of inquiry, contributing to a wide spectrum 

of areas ranging from para-mathematical to human perception and judgment .It deals 

with situations using truth values ranging between the usual "true and false" . 

When vague notions arise, it is sometimes difficult to determine the exact boundaries 

of the class and hence the decision that whether an element belongs to it or not is 

replaced by a measure from scale. Each element of the class is evaluated by a 

measure which expresses its place and role in the class. This measure is called the 

grade of membership in the given class. A set in which each element of the universal 

set is characterized by its membership grade is called a fuzzy set. 

Let X be a classical set of objects called the universe and x be any arbitrary element 

of X. Membership in a classical subset A of X is defined through a characteristic 

function from X to (0,l)  such that 

where (0,l)  is called a valuation set. If the valuation set is taken to be the real 

interval [0,1] then A is called a fuzzy set. In the year 1967, Goguen [33] proposed a 

purely mathematical definition of fuzzy set by taking a more general poset as a 

valuation set instead of [0, I ]  as in Zadeh's definition and discussed in detail the case 

when this poset is a complete lattice ordered semigroup .In a fuzzy set A, pA (x) is 



called the grade of the membership of x in A. The closer is the membership 

value pA (x) to 1 ,  the more x belongs to A. Thus, we can view A as a subset of X that 

has no sharp boundary and is completely characterized by the set of pairs 

{(x,pA(x):x€X).The standard complement A, of a fuzzy set A with respect to 

universal set X is defined by the characteristic function pA(x)=l-pA (x) . 

For fuzzy sets A, B, C and D in X, we have 

A=B iff pA (x)=p, (x), VX E X ; 

A E B iff pA(x) I pB(x), VX E X ; 

B z A  iff A s B ;  

C=A u B iff p,(x)=max{pA (x),pB(x)), VX E X ; 

D=A n B iff p, (x)=min(pA (x),p, (x)), Vx E X 

Note that the operations fuzzy union, fuzzy intersection and fuzzy complement 

contrary to their counterparts in case of crisp sets , are not unique, i.e., different 

functions may be used to represent these operations in different contexts. Therefore, 

like membership value of fuzzy sets, the operations of fuzzy sets are context 

dependent. The law of contradiction and the law of excluded middle are not satisfied 

by fuzzy set and fuzzy logic. 



1 .11  Fuzzy Relations 

Fuzzy relations also relate elements of one universe, say X, with elements of another 

universe, say, Y, through the Cartesian product of two universes. But the strength of 

the relationship is not measured with the characteristic finction, rather with a 

membership function expressing various "degrees" of the relation on the interval 

[0,1]. Thus the degree or grade of membership of a member in the relation R is 

pR (x,y) E [0,1],V x E X and V y E Y.Here R can be considered as a fuzzy set in the 

universe XxY. 

Note that it is just a generalization of crisp relation. Another case of fuzzy relation 

that map Cartesian product of fuzzy sets AxB contained in the universal set XxY 

into the unit interval [0,1]. 

A fizzy relation R on a single universe X is also a relation from X to X. It is called 

a fuzzy equivalence relation if it satisfies the following three properties: 

i. Reflexivity 

ii. Symmetry 

iii. Transitivity 

A fizzy tolerance relation is a fuzzy relation that satisfies only the reflexive and 

symmetric properties. 

1.1.2 Similarity Measures 

A similarity measure is a matching function to measure the degree of similarity 



between two fuzzy sets. This degree of similarity indicates the closeness of two sets 

and associates a numerical value with the idea that a higher value indicates a greater 

similarity. A number of similarity measures have been proposed in the literature for 

measuring the degree of similarity between fuzzy sets. 

Let F(X) be the set of all fuzzy sets drawn from the set X and 

S: F(X)x F(X)+[O,l].Then S(A,B) is said to be the degree of similarity between the 

fuzzy sets A and BE F(X) if S(A,B) satisfies the following properties: 

i. 05 S(A,B) 51; 

ii. S(A,B)= 1 if A=B; 

iii. S(A,B)= S(B,A). 

1.1.3 Fuzzy Numbers 

Fuzzy numbers model imprecise quantities (numbers) like 'about lo', 'below 100' 

etc. A fuzzy number is a quantity whose value is imprecise, rather than exact as in 

the case with 'ordinary' (single-valued) numbers. Any fuzzy number can be thought 

of as a function whose domain is a specified set (usually the set of real numbers, and 

whose range is the span of non-negative real numbers between 0 and l(both 

inclusive).Each numerical value in the domain is assigned a specific 'grade of 

membership', where 0 represents the smallest possible grade, and 1 is the largest 

possible grade. In many respects, hzzy numbers depict the physical world more 

realistically than single-valued numbers. Fuzzy numbers are used in statistics, 



computer programming, engineering (especially communications), and experimental 

science. The concept takes into account the fact that all phenomena in the physical 

universe have a degree of inherent uncertainty. 

1.1.4 Fuzzy Logic 

Logic is the science of reasoning. Symbolic or mathematical logic has turned out to 

be a powerful computational paradigm. Not only does symbolic logic help in the 

description of events in the real world but also has turned out to be an effective tool 

for inferring or deducing information from a given set of facts. Just as mathematical 

sets have been classified into crisp sets and fuzzy sets, logic can also be broadly 

viewed as crisp and fuzzy logic. Also we have that crisps sets survive on a 2-state 

membership(011) and fuzzy sets on a multistate membership [0,1], similarly crisp 

logic is built on a 2-state truth value(true/false) and fuzzy logic on a multistate truth 

value(true/falselpartly true/ partly false and so on). Fuzzy logic seems closer to the 

way our brains work. We aggregate data and form a number of partial truths which 

we aggregate further into higher truths. When certain thresholds are exceeded, these 

cause certain further results such as motor reaction. The ultimate goal of fuzzy logic 

is to form the theoretical foundation for reasoning about imprecise propositions and 

such reasoning has been referred to as approximate reasoning. Approximate 

reasoning is analogous to predicate logic for reasoning with precise propositions, and 

hence is an extension of classical predicate calculus for dealing with partial truths. 



1.1.5 Fuzzification and Defuzzification 

Fuzzification is the process of changing a crisp quantity into a fuzzy quantity. It can 

be done by simply recognizing that of the quantities which are considered to be crisp 

and deterministic are actually not deterministic at all. They carry considerable 

uncertainty. If the form of uncertainty happens to arise because of imprecision, 

ambiguity, or vagueness, then the variable is considered to be fuzzy and can be 

represented with the help of a membership hnction. 

In many situations, where output is fuzzy, it is possible to take a crisp decision by 

converting the fbzzy output as a single scalar quantity. This conversion of a fuzzy set 

to a single crisp value is called defuzzification and involves the reverse process of 

fuzzification. There are several methods for dehzzification namely centroid method, 

centre of sums and mean of maxima etc. 

1.2 Intuitionistic Fuzzy Sets (IFS) 

Out of several higher order fuzzy sets, intuitionistic fuzzy sets(1FS) introduced by 

Atanassov[5,6] have a lot of potential for applications. IFS are not fuzzy sets, 

although these are defined with the help of membership functions. But fuzzy sets are 

intuitionistic fuzzy sets. Atanassov [5] himself gave one example showing that fuzzy 

sets are intuitionistic fuzzy sets, but the converse is not necessarily true. There are 

many situations where intuitionistic fuzzy sets are more useful to deal with. Let E be 

the set of all states of India with elective governments. Assume that we know for 

every state X E E  the percentage of the electorate who have voted for the 



corresponding government. Let it be denoted by M(x) and let p(x)==. Let 
100 

v(x)=l-p(x) .This number corresponds to that part of electorate who have not voted 

for the government. By means of the fuzzy set theory we cannot consider this value 

in more detail. However, if we define v (x) as the number of votes given to parties or 

persons outside the government, then the part of electorate who have not voted at all 

will have membership value 1 -p(x)-v(x) .Thus the resulting set, denoted by 

{< x,p(x),v(x) > J x ~ E ) i s  called an intuitionistic hzzy set [5], Let a (non fuzzy) set E 

be fixed .An intuitionistic fizzy set (IFS) A in E is defined as 

A={< x,~(x),v(x) >)(xEE), where the functions pA:E + [O, 11 and v,:E + [O, 11 

define the degree of membership and degree of non membership respectively of the 

element x to the set A and for every XEE, 0 I pA(x)+vA(x) 51. 

1.3 Rough Sets 

Rough sets have been introduced by Z.Pawlak in 1982 [68] to provide a systematic 

framework for studying imprecise and insufficient knowledge. It is a strong 

mathematical tool to deal with vagueness. For a very long time, philosophers and 

logicians have been attracted by the concept which is related to the so called 

boundary line view. These objects can be classified neither to the concept nor to its 

complement and thus there are boundary line cases. The underlying assumption 

behind the concept of rough sets is that knowledge has granular structure which is 

caused by the situation when some objects of interest cannot be distinguished as they 



may appear to be identical. The indiscernibility relation thus generated is the 

mathematical basis of Pawlak's rough sets.This can be used to describe dependencies 

between attributes, to evaluate significance of attributes and to deal with inconsistent 

data. The main advantage of rough set theory is that it does not need any preliminary 

or additional information about the data. According to the approach of rough set 

theory we first of all assume that any vague concept is characterized by a pair of 

precise concepts called the lower and the upper approximations of the concerned 

vague concept. The lower approximation is the set of objects surely belonging to the 

concept and the upper approximation is the set consisting of all objects possibly 

belonging to the concept. The boundary region of the vague concept is merely the 

difference between the upper and the lower approximations of it. 

Suppose R is an equivalence relation defined over the universe U which, in turn, 

partitions U into disjoint equivalent classes. Then for any subset X of U, the sets 

A(X)={x:[x], c X) and A(x) = {x:[x], n X st $1 are respectively called the lower 

and the upper approximation of X. The pair A=(U,R) is called the approximation 

space and A(x)=(A(x),A(x)) is called the rough set of X in U. In the above, [x], 

denotes the equivalence class with respect to R containing x. Further, for a fixed non 

empty subset X of U, the rough set of X i.e., A(X) is unique. 

For any subset X c U  representing a concept of interest, the approximation space 

A=(U,R) can be characterized with three distinct regions of X : the so called positive 

region A (X), the boundary regionA(x)-A(x), and the negative region U-A(x) .The 



characterization of objects in X by the indiscernibility relation R is not precise 

enough if the boundary region A(x)-A(X) is not empty. In such a case it may be 

impossible to say whether an object belongs to X or not , so that the set X is said to 

be non definable in A, and X is a rough set. For simplicity, we denote a rough set 

A(x)= (~ (x ) ,A(x ) )  of X by A(x)= (3,X) . Let A(x)=(x,X) and A(Y)=(Y,Y) be 

any two rough sets in the approximation space A=(U,R). Then 

(i ) A(X) u A(Y)=(X u y,X u Y) 

(ii) A(X) n A(Y)=(X n I , %  n Y) ~ 3 1 1  S O  

(iii) A(X) c A(Y) iff X c Y,X c Y 

(iv) The rough complement of A(X) in (U,R) - -- 

denoted by -A(X) and is defined by -A(x)=(u-X,U-%) 

1.4 Bags and Fuzzy Bags 

Yager[93] introduced the bag structure as a set like object in which repeated 

elements are significant. A set generally implies a collection into a whole of definite 

well distinguished objects where redundant objects are not counted. In fact there are 

many collections like collection of books in a library, collection of medicine in a 

pharmacy, collection of zeros of an algebraic polynomial etc., which are not sets, but 



bags.The application and usefulness of bag in the real life situations is very 

important, especially in relational database[ 931, decision making[28,73,74 Ietc. 

A bag (or crisp bag) B drawn from a set X is represented by a function  count^ and is 

defined as CB:X -+N, where N is the set of all non negative integers. The function 

CB is called the count function of the bag and for each X E  X, the value CB(X) 

indicates the number of times (i.e., multiplicity) the element x appears in the bag B. 

The bag B is represented by B={x/C,(x) :x E X) . For example, the bag B drawn 

from the set X={x,,x, ,....., x,) is represented as B={ x,/n, ,x,/n ,,....., x,/n, ), where 

n, is the number of occurrences of the element x, in the bag B, i.e., 

n,=C,(x,),i=1,2, ..., n. In [93] Yager has proposed the operations of intersection, 

union, addition etc. on bags together with the operation of selection of elements from 

a bag and bag projection. In addition to these, he has also defined fbzzy bags (i.e., 

bags with fuzzy elements, in which an object(e1ement) may appear with a number of 

different membership grades).Thus, a fuzzy bag F drawn from a set X is 

characterized by a functionCM, : X + B ,  where B is the set of all bags drawn for 

the unit interval [O,l].Yager has also defined some operations on fuzzy bags such as 

the sum of fuzzy bags, removal of a fuzzy bag from another fuzzy bag, union and 

intersection of fizzy bags etc. 



1.5 Soft Sets 

Molodtsov [60] pointed out that classical methods can not be successfully used to 

solve complicated problems in economics, engineering and environment because of 

various uncertainities typical of these problems. The important existing theories, viz., 

theory of probability, theory of fizzy sets, theory of intuitionistic fuzzy sets, theory 

of vague sets, theory of interval mathematics, theory of rough sets etc.can be 

considered as mathematical tools for dealing with uncertainties. But all these theories 

have their own difficulties as pointed out in [60]. The reason for these difficulties is, 

possibly, the inadequacy of the parametrization tool of these theories. Molodtsov 

[60] introduced a new mathematical theory called 'Soft set' for dealing with 

uncertainties which is free from the above difficulties. Let U be an universe set and 

let E be a set of parameters. A pair (F,E) is called a soft set over U if and only if F is 

a mapping of E into the set of all subsets of the set U, i.e., F:E dP(U),  where P(U) is 

the power set of U. In other words, the soft set is a parametrized family of subsets of 

the set U. Every set F(e ), for e c  E, from this family may be considered as the set of 

e-approximate elements of the soft set (F,E).For an illustration of soft set [60], 

suppose U = the set of houses available for purchase, E= the set of parameters whose 

each parameter is a word or a sentence, say expensive houses, beautiful houses, and 

so on. It is worth nothing that the sets F(e ) may be arbitrary, some of them may be 

empty, while some may have non empty intersection. 

Zadeh's fuzzy set may be considered as a special case of the soft set. For this, let A 

be a fuzzy set, and pA be the membership function of the fuzzy set A, i.e., pA is a 



mapping of U into [0,1], where U is the universal set. Then F(a)={x E U/pA(x) 2 a) ,  

a E [O, 11 is a family of a -level sets of the finction pA . If the family F is known, one 

can find the functions pA(x) by means of the following formulae : 

Thus, every Zadeh's fuzzy set A may be considered as the soft set (F,[O,l]).Again, 

let, (X,t )be a topological space, that is, X is a set and r is a topology(t is a family 

of subsets of X, called the open sets of X). Then the family of open neighbourhoods 

T(x) of point x, where T( x) = { VET : X E  V ), may be considered as the soft set 

(T(x), T ). 

The way of setting (or describing) any of object in the soft set theory principally 

differs from the way in which we use classical mathematics.In classical mathematics, 

we construct a mathematical model of an object and define the notion of the exact 

solution of the model. Usually the mathematical model is too complicated and we 

may not find the exact solution. So, in the second step we introduce the notion of the 

approximate solution and calculate that solution.In the soft set theory, we have the 

opposite approach to this problem. The initial description of the object has an 

approximate nature, and we do not need to introduce the notion of exact solution. 

The absence of any restrictions of on the approximate description in soft set theory 

makes this theory very convenient and easily applicable in practice. We may use any 

parametrization we prefer: with the help of words and sentences, real numbers, 



functions, mappings and so on. It means that the problem of setting the membership 

function or any similar problem does not arise in the soft set theory. 

1.6 Motivation of the thesis 

The motivation of this thesis is to study the notions of fuzzy sets and rough sets 

further, to explore as well as to formulate the fuzziness and roughness occurring 

within the frame work of a number of mathematical avenues and hence to promote 

some fuzzy and rough mathematical theories along with a few extensions to some 

existing frameworks. 

This thesis consists of nine chapters. 

The first chapter is an introductory chapter. In this chapter, a brief introduction of 

fuzzy set, intuitionistic fuzzy set and rough set have been given along with a survey 

of the basic literature related to the proposed problems. 

In chapter 2, the definition of union and intersection in [19] have been simplified to 

include union and intersection of more than two fuzzy sets in different universes and 

some existing propositions are proved using these generalized notions. 

In chapter 3, Cartesian product of fuzzy bags, bag relation and fuzzy bag relation are 

defined and some results are proved with examples as an extension of Yager's theory 

of bags and fuzzy bags which were subsequently developed by Chakrabarty 

et a1. [18]. 



In chapter 4, a concept of rough algebraic structure is introduced by defining rough 

Boolean algebra and rough subalgebra based on upper approximation of Pawlak's 

rough set and then some results of rough Boolean algebras and rough subalgebras 

have been proved. 

In chapter 5, some properties of the lower and upper approximations with respect to 

the crisp congruence relation and fuzzy congruene relation on a lattice are studied . 

In chapter6, intuitionistic fuzzy bags(1FB) concept is applied in multicriteria decision 

making problem and a hypothetical case study has been taken as an example. 

In chapter 7, soft relation and fuzzy soft relation are introduced and then have 

applied in decision making problems. Also, fuzzy soft set and intuitionistic fuzzy soft 

set theory have been applied in medical diagnosis problems separately . 

In chapter 8, a fuzzy rule based methodology is developed for estimating monthly 

discharge for the Jiadhal river basin in the upper Assam. 

In chapter 9, an overall conclusion is made and some scopes for further research 

works are indicated. 



Chapter 2 

On Generalized Union and Intersection of Fuzzy Sets 

In generalizing the Zadeh's notion of union and intersection of two fuzzy sets, 

Chakrabarty et al.[l9]defined these concepts for two fuzzy sets in two different 

universes. In this chapter, we have simplified the above definition to include more 

than two fuzzy sets each coming from a different universe. Some of the existing 

results are also verified with the proposed generalization. 

2.1 Introduction 

Introducing hzzy set in [loo], Prof. L.A.Zadeh defined union and intersection of two 

fuzzy sets in the same universe .Chakrabarty et a1.[19] extended the notion by 

defining union and intersection of two fuzzy sets in two different universes. Here the 

definition of union and intersection in [19] have been simplified to include union 

and intersection more than two fuzzy sets, each from different universes. It is 

observed that the present generalization include the notion of Zadeh[100] ,Dubois 

and Prade, Yager and Hamacher given in [I071 . 

'contents of this chapter was presented in the International Conference on Recent Advances in 
Mathematical Sciences, December 20-22,2000,1IT,Kharagpur,India and have appeared as a paper 
entitled "On Generalized Union and Intersection of Fuzzy Sets" in the Proceedings (Vol I), 
pp.335-340,Narosa Publishing House,New Delhi. 



2.2 Preliminaries 

The union and intersection of a fuzzy set A in the universe X and another fuzzy set 

B in the universe Y, where X and Y are two different universes, in general, are 

defined in [19] as follows. 

Definition 2.2.1 

Let A be a fuzzy set of X with membership function pA and B be another fuzzy set of 

Y with membership function p,. Then the union of the fuzzy sets A and B, denoted 

by A CJ B, is a fuzzy set of XUY with membership function p,,, defined by 

Definition 2.2.2 

For the fuzzy sets A and B in definition 2.2.1 above, the intersection of A and B, 

denoted by A ii B, is a fuzzy set of XUY with membership function pAAB defined by 

pAAB (z) = min{pA (z) ,P~ (z)), b ' ~  E X u Y 

In the above, unlike Zadeh's notion, the definition of union of two fuzzy sets in two 

different universes is not straight to include more than two fuzzy sets. Also, the 

definition of intersection of two fuzzy sets contains inherent problem when ZEXAY. 



Therefore, we need to simplify the above definitions and prove the results for 'n' 

hzzy sets each of which is from a different universe. 

2.3 Generalizations 

In general we need to handle fuzzy sets in different universes so that the resulting 

union and intersection are fizzy sets in a universe which is the union of universes or 

the elementary universes of the individual hzzy sets. So, for the generalization of 

Zadeh's notion proposed by Chakrabarty et a1.[19], it is required to fix up the 

membership grade for each element with reference to a particular fuzzy set which is 

not in the corresponding elementary universe. For this, we define 

Definition 2.3.1 

Let Ai be a fuzzy set in the (elementary) universe X, with membership fbnction pA, , 

for i=1,2,. . . . . ..n. Then the union of the fuzzy sets Ai's, denoted by G Ai , is a hzzy 
I 

set in the universe u Xi whose membership function p;,, ( z )  is defined by 
I 

pGA, (z) = max{pA, (z)), Vz E u Xi, where PA, (z) = 0 if z e Xi.  
I i 

The graphical representation of the union of three fuzzy sets is given in Figure 1. 

The above definition reduces to the definition proposed in [19] for n=2 and to that 

defined in [loo] when X1=X2. 



Figure 1. Unioi "' 
,. n or tnree mzzy sets. 

Definition 2.3.2 

Let A, be a fuzzy set in (e1ementary)universe XI with membership function p,, , 

i =1,2,. . ..., n. The intersection of the fuzzy sets A,'s , denoted by f i  A, , is a fuzzy set 
I 

in the universe u X, whose membership function p,,, is defined by 
I 

pirA, (z) = min{p,, (z)),  b'z E u X,, where p,, (z) = 0 if z er XI 
I I 

The graphical representation of the intersection of three fuzzy sets, given in 

Figure2. 

The above definition reduces to the proposed in [19] for n=2 and then that defined in 

[loo] when X1=X2. 



Figure 2.Intersection of three fuzzy sets. 

Example 2.3.1 

Let A1={a/0.2,b/0.6, c/0.5,d/0.7), A2={ a/0.3,c/0.7,d/0.9, e/0.5,f/0.7, gl0.8) and 

A3={ a/0.6,c/O. 1, d/0.3 ,e/0.6, s/0.2,t/0.5} be fuzzy sets in the universes 

XI={a, b, c, d), X2={ a, c, d, e, f, g) and X3={ a, c, d, e, s, t} respectively. Then 

A, CJA2 CJA3={a~0.6,b/0.6,c/0.7,d/0.9,e/0.6,f/0.7,g/O.8,s/O.2,O.5} and 

Al 6 A2 6 A3={a/0.2, ~10.1,  d10.3 ). 

Proposition 2.3.1 

Let Ai be a fi~zzy set in the universe Xi with membership function p,, , 

for i=1,2,. . ..,n. Then 

(i) (CJ A,)'= 6 A: and 
I I 

(ii) ( 6  A,)'= G A; 
I I 

where (CJ A,)' is the complement of G A, in u Xiand A: is the complement 
I I I 

of A, in Xi 



Proof For z E u X, 
I 

P,,,,, (z) =~-PVA,  (z) 

= 1 - max{IJ,, (z)) 

= minip,; (z)) 

= P,,, ( 4  

(ii) Similar to (i). 

The above result reduces to the similar result in [19] when n=2. 

The results involving a-cuts in two fuzzy sets in [19] also hold for n sets. 

Proposition 2.3.2 

If (A,), ,(GA,), ,(AA,), denote a-cuts of the fuzzy sets A, in the universe XI, fuzzy sets 
I I 

G A ,  and A A, in the universe u X,  respectively,for i=1,2, .... n. Then 
I I 

(i) (GA,), = G(A,), and 
I I 

(ii) ( i iAl )a  = ii(A,)a 
I I 

Proof ( i ) F o r z ~ ( G A ~ ) ,  e p,,,(z) > a  
I 

max{p,, (z)> 2 a 

a {pA, (z)) 2 a ,for some i. 

It is further observed that the above generalization of Zadeh's notion[100] of union 

and intersection of fuzzy sets each in a different universe also hold in case two fuzzy 

sets for the parameterized union and intersection operators given separately by 

Yager, Dubois and Prade and Hamacher[l07].To this end we note that Zadeh's 

notion is a particular case of Yager's notion when p+ooand that of Dubois and 



Prade when the parameter a =O. Now, for two fuzzy sets in different universes, the 

notion of their union and intersection also reduce, for specific value of parameters, to 

the max and min operator respectively according to the generalization suggested in 

this note. Also in case of Hamacher's definition, the union and intersection reduce, 

for the specific value of the parameters, to the algebraic sum and algebraic product 

respectively even if the two fbzzy sets are in two different universes. 

2.4 Conclusion 

The present generalization of Zadeh's notion [loo] of union and intersection of 

fuzzy sets enhances the scope of its applications to many cases of real life problems 

involving more than two fuzzy sets, each in a different universe. A few results are 

proved using the generalized notion and it is examined that the existing results on 

union and intersection also hold in the case of two fbzzy sets which are either in two 

different universes or the same universe. 



Some Results on Yager's Theory of Bags and 

Fuzzy Bags 

1 In this chapter, the bag and fuzzy bag structure introduced by Yager and further 

developed by Chakrabarty et al.[18] have been considered. In continuation, Cartesian 

product of fuzzy bags, bag relation and fuzzy bag relation are defined and some 

results are proved. 

3.1 Introduction 

A bag or a multiset is a collection of elements in a universal set such that, unlike 

crisp set, an element can be repeated in a bag. It is well known that the data language 

SQL [17] for relational databases is based on multisets. Implementation of another 

useful version of database calculus have been suggested by Yager [93] with the help 

of bags or multisets. Also the fact that fuzzy relational databases constitute some 

important applications of hzzy systems [34 ] has attracted considerable attention for 

the study of fuzzy bags.Fuzzy bags have been defined by Yager [93] and their 

applications have been discussed in [28,51,73,74,75]. Chakrabarty et al. [18] have 

'contents of this chapter was presented in the Fourth International Conference on Information 
Technology, December 20-23,2001 ,NIST,Palur Hills, Berhampur, India and have appeared as a paper 
entitled "Some Results on Yager's Theory of Bag and Fuzzy BagsWin the Proceedings, pp. 265-270, 
Tata McGraw-Hill Publishing Company Limited, New Delhi. 



further studied Yager's theory of bags and fuzzy bags. In sequel to [18,93 ] some 

more results have been considered in the present chapter. 

3.2. A brief review of Yager's theory of bags and fuzzy bags 

In order to make our discussion self contained, we summarize below some of the 

basic definitions and results on the theory of bags and fuzzy bags introduced by 

Yager [93] and subsequently developed by Chakraborty et a1 [IS]. 

Definition 3.2.1 

A bag ( or crisp bag) B drawn from a set X is represented by a function  count^ or CB 

defined as CB : X + N, where N represents the set of nonnegative integers. Here 

CB(X) is the number of occurrences of the element x E X in the bag B. The bag B 

drawn from a set X = {XI,XZ ,.., x,,,) is represented as B = { xl/nl, x2/n2 ..., xm/nm), 

where n, is the number of occurrences of the element x, (i = 1, 2,..,m) in the bag B. 

It may be noted that the element of X with zero count in B are not included in B. 

Example 3.2.1 

Let X = {a, b, c, d, e} be any set. Then B = {a, a, b, b, b, d, d} is a bag drawn 

from X and is represented by B = {d2, b/3, d/2}. 

Suppose B1 and B2 are two bags drawn from a set X. Then, 

(1)B1=B2 if CB,(x)=CB,(x), V X E X  

(2) BI c B2 if CBl (x) I CB2 (x) , V x E X 



(5) B = B1 uB2 if CB(x) = max{ CBI (x), CB2 (x) ), 'd x E X 

(6) B = BlnB2 if CB(x) = mini C,, (x), CB2 (x) ), 'd x E X. 

Definition 3.2.2 

Let B be a bag drawn from set X. Then 

(i) the support of B denoted by B*, is a subset of X with the characteristic fbnction 

given by 4 B* (x) = min {CB(X), 1 } , 'd x E X ; 

(ii) The cardinality of B, denoted by card B , is given by card B = c,(x) 
xex 

(iii) The insertion of an element x E X into the bag B results in a new bag B' 

denoted by B' = B O x, such that 

C,,(x) = C, (x) + I  , 

(iv) the removal of x from the bag B results in a new bag B, denoted by B' = Bex,  
such that, 

Definition 3.2.3 

Consider a universal bag U of an information system and X is a support set of U. 

Then, for a sub bag B of U, the complement of B in U, denoted by B ', is defined by 



Example 3.2.2 

If U = { d7,  b/6, c/5, d/8) is the universal bag for a fixed information system and 

B ={d5, b/6, d/3) is a sub bag of U, then Bc = { d2,  c/5, d/5). 

Proposition 3. 2.1 

Suppose U is a universal bag of an information system and X is the support set of U . 

Then for subbag B and C of U drawn from X, the following hold: 

(BC)C = B 

B* # (BC)* 

B* u (BC)* = U* =X 

(BOx) '=BC 8 x , V x ~  X 

(B 0 c)' = B' ec = CC e B 

( B ~ X ) ~ = B ~ ~ X , V X E  X 

(B 8C) '  = B C @  C 

ifB = B 1  $ B2, then B* =B1* u B2* 

(BUC)' = B C n c C  

( B ~ C ) ~ = B ~ ~ C '  

Definition 3.2.4 ( Cartesian product of bags) 

Suppose A and B are two bags drawn from the sets X and Y respectively. Then their 

Cartesian product, denoted by A C3 B , is a bag drawn from the set X x Y such that 



for all (x, y) E X x Y, CA 8 B (x,Y) = CA (x) . CB(Y) 

Note that the above two bags may be drawn from the same set. 

Example 3.2.3 

Let X = {a,b,c,d,e) be any set and let Bl={a/5, b/3, eI8)and B2 = {a/3, b/6, c/5, dl1 ) 

be two bags drawn from X. Then , B1@ B2 = {(a, a)/15, (b, b)/18, (a, b)/30, (b, a)/9, 

(a, c)/25, (a, d)/5, (b,c)/15, (b, d)/3, (e, a)/24, (e, b)/48, (e, c)/40, (e, d)/8) 

Note that CBlBB2 (a,b) # CBl,B2 (b,a) in the above example. Thus, in general, for any 

two bags BI and B2 drawn from the same set X, CBIBB2 (x,y) # CBlBB2 (y,x) . 

Proposition 3.2.2 

For any two bags A and B drawn from the sets X and Y respectively, then 

(1) A @ B # B @ A  

(2) For all x E X and all y E Y, CAB B(X' Y, = CB 8 X, 

Proposition 3.2.3 

For any three bags A, B & C drawn from the sets X, Y and Z respectively, 

(1)  A €3 (B u C) = (A €3 B) u (A €3 C) 

(2) A €3 (B n C) = (A 8 B) n (A €3 C) 

(3) A €3 (B 0 C) = (A €3 B) @ (A €3 C) 

(4) A @ ( B @ C )  = ( A  @ B ) e ( A @ C ) .  



Definition 3.2.5 

A fuzzy bag F drawn from a set X is characterized by a function CMF : X -+ B, 

where B is the set of all crisp bags drawn from the unit interval, I = [0, 11,i.e. , for 

every x, CMF(x) is a crisp bag drawn from I. 

Again any crisp bag can be characterized by a count function over its set , so 

CMF(x) can be characterized by the count function CcMF, : I + N , where N is the 

set of non- negative integers. Here, for every a c I, CCMF, (a) is a positive integer 

indicating the number of occurrences of x with membership value a in the fuzzy 

bag F. 

Note3.2.1 For x E X, CCMF (x) is a crisp bag drawn from I and hence for any a€ [O, 11, 

C,,:, (a) is always a non-negative integer . 

Note 33.2 For x E X and any fuzzy bag F drawn from X, C,,,, (0) = 0 

Example 3.2.4 

Let X = {a, b, c, d} be a set . A fuzzy bag F drawn from X is given by 

CM',) = {.2/5, .6/3, .1/7) 

CM',~' = {.1/2, .3/5, .6/1} 



The fuzzy bag F is also represented as 

F = { a/(.2/5, .6/3, .1/7), b/(. 1/2, .3/6, .6/1), c/(.5/6), d/(.3/5, .1/2, .7/3, .8/4)}. 

The other basic definitions namely union, intersection, addition, insertion of an 

element and removal of an element on hzzy  bags are on similar lines as of crisp 

bags. 

Definition 3.2.6 

Let X be any set and let U be the universal bag for some fixed information system. 

The universal fuzzy bag F(U) for this information system is a fuzzy bag where 

V X E X , V ~ E  [0, 1 ] = I ,  

6 )  C" (XI = 1 cCMaw (a) 
a 

(ii) C c ~ F  x (a)  < C,,;(", (a) for each fuzzy bag F drawn from X. 

Definition 3.2.7 

Let F(U) be the universal fuzzy bag drawn from the set X and let F be any fuzzy sub 

bag of F(U). Then the complement FC of F is defined as 

C . ( a )=CcMh(a)CcM~(a)  , v x ~ X , V a e  I .  
CMp 

Proposition 3.2.4 

Suppose F be a fuzzy bag drawn from the set X, then 

0 )  (FC)C = F ; 

(i i) F* + (F~)* ; 

(iii) F* u (F')* = F (u)* where F* is the supporting set of F . 



3.3 Bag Relations 

Bag relation is defined in continuation to Cartesian product of two bags introduced 

by Chakrabarty et al. [IS] 

Definition 3.3.1 

Let A and B be two bags drawn from the sets X and Y respectively. A bag relation 

from A to B is defined as a subset of A €3 B, denoted by R, if V (x, y ) E X x Y 

CR (x> Y) CA @ B ( ~ > ~ )  

Definition 3.3.2 

A bag relation R in a bag A drawn from X is said to be 

(i) reflexive if CR (a, a) < CABA (a, a), V a E X ; 

(ii) symmetric if CR (a, a) = CR (b, a), 'd a, b E X  ; 

(iii) transitive if CR (a, b) + CR (b, C) 2 CR (a, c), V a, b, c E X 

Definition 3.3.3 

A bag relation R in a bag A drawn from a set X is called a bag equivalence relation if 

it is simultaneously reflexive, symmetric and transitive. 

Example 3.3.1 

Suppose A= {a/6, b/10, c15) is a bag drawn from X= {a, b, c) so that we have 

A@A={(a, a)/36, (b, b)/100, (c, c)/25,(a, b)/60, (a, c)l30, (b, c)/50,(b, a)/60, (c, a)/30, 

(c, b)/50). 

Then ,R={(a,a)/30,(b, b)/80, (c, c)/25, (a, b)/40,(b, a)/40, (b, c)/42, (c, b)/42,(a, ~1115, 



(c, a)/15} in a bag A is a bag equivalence relation. 

It may be observed that for any bag equivalence relation R on a bag A drawn from X, 

CR(x, y) is greater than or equal to each of !h CR(X, X) and !h CR (y, y), 

b ' x ,y  E X.Hence C R ( X , y ) = 0 3 C ~ ( X , X ) = O a n d C ~ ( y , y ) = 0 , b ' ~ , y  E X .  

Definition 3.3.4 

Suppose R is a bag relation from bag A to bag B drawn from X and Y respectively. 

Then R-', defined by CR-I (y, X) = CR(X, y), b' (x, y) E X x Y, is also a bag relation 

from B to A. This R-' is called inverse of the bag relation R. 

Note that R-' is also a bag equivalence relation whenever R is one. 

Definition 3.3.5 

Suppose R and R' be two bag relations on bags A and B drawn from the sets X and 

Y respectively. Then the union of the bag relations R and R' denoted by R u R' and 

their intersection denoted by R n R1 are defined through the function count 

c R" d(z) = max { CR(Z), Cd (2) ) 

C, , (z) = min {CR(Z), C; (z) ), b' Z = (x,Y) E X x Y. 

Proposition 3.3.1 

Let R and R' be two bag equivalence relations on a bag A drawn from the set X. 

Then R uR1 is also a bag equivalence relations on A. 



Proof: (i) We have for each a E X, 

CR, d (a, a) = rnax {CR (a, a), Cd (a, a) > 5 CA 8 A (a, a) 

( since both R and Ri are reflexive) 

This implies R u R' is reflexive. 

(i i) Fora,b E X , C ~ ~ d ( a , b )  =max { C ~ ( a , b ) , C d ( a , b ) )  

= max { CR (b, a) , Cd (b, a) ) 

(since R and R1 are both symmetric) 

= c ~ , d ( b , a ) .  

This implies R u R' is symmetric. 

(i i i) Fora,b,c  E X , C ~ " d ( a , b )  + C R ~ R / ( ~ , C )  

= max { CR (a, b) , CR' (a, b)) + max { CR (b, c) , CR' (b, c)) 

= max { CR (a, b) + CR (b, c), CR' (a, b) +CR (b, c) , CR (b, c) + Cd (b, c), 

C R ~  (a, b) +Cd (b, c)) 

2 max { CR (a, b) + CR (b, c), CR' (a, b) +CR' (b, c)) 

2 max { CR (a, C) , CR' (a, c) 

= C ~ u d ( a ,  c). 

Hence R u Ri is a bag equivalence relation. 

Remark. R n R' is not necessarily a bag equivalence relation. 

Example3.3.2 

Consider a bag A= { al5, b/7, c/4) drawn from the set X={a, b, c). 

Then A 8 A = { (a, a)/25, (b, b)/49,(c, c)/16, (a, b)/35, (b, a)/35, (b, c)/28, (c, b)/28, 



(c, a)/20, (a, c)/20) . 

Consider two bag equivalence relations 

R={(a,a)/lO, (b,b)/15, (c,c)/8, (a,b)/lO, (b,a)/lO, (b,c)/8, (c,b)/8, (a,c)/18, (c,a)/18)) 

and R1={(a,a)/l 5, (b,b)/12, (c,c)/5, (a,b)/8, (b,a)/8, (b,c)l10,(c,b)/10,(a,c)/l7,(c, a)/17) 

defined on A. Then the bag relation 

R nR1 ={(a,a)ll 0, (b,b)/12, (c,c)/5, (a,b)/8, (b,a)/8, (b,c)/8, (c,b)/8,(a,c)/17, (c,a)/l7) 

is not a bag equivalence relation since 

CRn Ri(a, b) +CRnRi(b,  ~ ) = 8 + 8 =  163b CRnR1(a, c)= 17. 

3.4. Cartesian product of fuzzy bags 

Definition 3.4.1 

Let F1 & F2 be two fbzzy bags drawn from the sets X and Y respectively. Then their 

Cartesian product, denoted by FI 8 F2 , is a fuzzy bag drawn from X x Y such that 

for all (x, y) E X x Y 

CCM (x, ~ ) ( a )  = max { CC ly; (al). CC M Y ( 4 1 ,  where a = min {a] ,  a 2 1  
FI@ F1 F t  

The notations CCM x ( a l )  and CCMF (a2) in the above have been defined at 3.2.5. 
FI 2 

Note that the two fuzzy bags above may also be drawn from the same set and in that 

case F1 and F2 may or may not be equal . . 

Example 3.4.1 

Suppose FI = {a/(.3/2, .5/6), b/(.6/5, .7/2)) and Fz = {1/(.4/5), m/(.6/5, .2/4)) are two 



fuzzy bags drawn from the sets X = {a, b) & Y = {I, m) respectively. Then 

F1@F2={(a,l)/(.3/10,.4/30),(a,m)/(.3/10,.2/24, .5/30),(b,1)/(.4/25),(b,m)/(.6/25, .2/20)) 

and FI @ FI = {(a, a)/(.3/12, .5/36), (b, b)/(.6/25, .7/10), (a, b)/(.3/10, .5/30), 

(b, a)/(.3/10,.5/30)). 

Example 3.4.2 

Let X = {a, b, c, d) be a set and Fl={a/(.2/3, .4/5), b/(.5/6), d/(.3/3, .6/7)) and 

F2 = {a/(.6/8, .1/5), b/(.3/4, .2/5), c/(.4/5)) be two fuzzy bags drawn from X. 

Then, F1@F2= {(a,a)/(.2/24, .1/25, .4/40), (b,a)/(.5/48, .1/30),(d,a)/(.3/24, .1/3 5, .6/56), 

(a, b)/(.2/25,.3/20), (b, b)/(.3/24, .2/30), (d, b)/(.3/28, .2/35), (a, c)/(.2/25, .4/25), 

(b, c)/(.4/30), (d, c)/(.3/15,.4/3 5)) . 

It may be observed from the above example that 

Cc M&&YJ~(~) # CCMJ;)! a )  for a E [0, 11 , in general. 

We denote F1@ FI by F,', FI' @ FI by ~1~ and so on. 

Proposition 3.4.1 

For any two hzzy bags F1 and F2 drawn from the sets X and Y respectively, 

(i) FI @ FZ + F2 @ F1 , in general ; 

(ii) CC M (x, Y) (a) = CCM(Y. X) (a) , V a E [0,11, XEX, Y E Y. 
FI 8 Fz FIB FI 

Proposition 3.4.2 

If three fuzzy bags A, B and C are drawn from the sets X, Y and Z respectively, 

then the following hold : 

(i) A €3 (B u C) = (A €4 B) u ( A 8  C) 



(ii) A@ ( B  n C)= (A@B) n (A@ C) 

Proof. (i) For any x E X and y E Y and a E [0,1] 

= max {max { CC %X (all. C C ~  ( ad ) ,  

max { Ccy (al). CcF(a2))), where a = min(a1, a2). 

= CCM (x, y) (a)  where a = min {a , ,  az) 
A@ (B u C) 

(ii) Similar to (i) . 

Remark. Cartesian product of hzzy bags is not distributive with respect to addition 

and subtraction of hzzy bags. 

Example 3.4.3 

Let X = {a, b), Y = { 1, m) and Z = {m) be any three sets . 

Let A= {a/(.2/7, .4/5), b/(.3/8, .4/7)), B = {1/(.4/5), m/(.4/2, .6/5)) and 

C ={m/(.4/9, .2/3)) be the fuzzy bags drawn from X, Y & Z respectively. Then 

(A@ B) @ (A@ C) = {(a, 1)/(.2/35, .4/25), (a, m)/(.2/98, .4/70), (b, m)/(.3/112, .2/24, 

.4/98), (b, 1)/(.3/40, .4/3 5)). 

A@ (B 8 C) = {(a, 1)/(.2/35, .4/25), (a, m)/(.2/77, .4/55), (b, 1)/(.3/40, .4/35), 

(b, m)/(.3/88,.4/77, .2/24)) 



Therefore, A@ (B 6 C) ;t (A@ B) O (A@ C) . 

Similarly it can be checked that A 8  (B 0 C) # ( A 8  B)B (A8C) . 

3.5. Fuzzy bag relations 

Definition 3.5.1 

Consider two fuzzy bags A and B drawn from the sets X & Y respectively. Then a 

hzzy bag relation from A to B is a subset R of A@B whose function count is given 

by 

CCM (x, Y) (a) 5. C C M J ~ ~ )  (a) , V(x,y) E X x Y & a  E [ O , l ] .  
R 

It may be noted that a fuzzy bag relation R is also a sub bag of A@ B. 

Definition 3.5.2 

A fuzzy bag relation R in a fuzzy bag A drawn from a set X is said to be 

(i) reflexive if CCMX, X) (a)  < max { C C ~ &  (a,), C C ~ ~ X  (a2)}, for every 

x E X, where a =  min {al, az); 

(ii) symmetric if Ccp..g~, Y) (a) = C C ~ Y ,  X) (a).v X, Y E X ; 

(iii) transitive if{Cc (x, Y)( a)  + CC%y, z)( a)} 2 CC %(x, z)( a )  'v' X, y, z E X % 

Definition 3.5.3 

A fuzzy bag relation R on a fuzzy bag A drawn from X is called a fuzzy bag 

equivalence relation if it is reflexive, symmetric and transitive. 



Example 3.5.1 

Consider a fuzzy bag A={al(.2/3,.5/6, .7/1),b/(.3/1, .4/5, .7/3),c/(. 115, .4/3, .5/2, .7/5)) 

drawn from the set X = {a, b, c) . Then, 

A@A ={(a,a)/(.2/18, 3 6 ,  .7/1), (b,b)/(.3/5, .4/25, .7/9), (c, c)/(. 1/25, .4/9, ,514, .7/25), 

(a,b)/(.2/25, .3/6, .3/18, .7/3, .4/30), (b,a)/ (.2/15, .3/6, .4/30, .5/18, .7/3), (b,c)/(.3/3, 

.4/15, .1/25, 3 6 ,  .7/15), (c, b)/(.1/25, .3/3, 3 6 ,  .4/15, .7/15) (c, a)/(.1/30, .2/9, .4/18, 

.5/12, .7/5), (a, c)/(.1/30, .2/9, .4/18, .5/12, .7/5)} 

and the fuzzy bag relation, R= {(a, a)/(.2/10, .5/6), (b, b)/(.3/5, .4/20, .7/5), 

(c, c) I(. 1/22, .4/5, .5/4, .7/20), (a, b)/(.2/6, 3 5 ,  .3/4,.4/12,.7/3), (b, a)/(.2/6, .3/4, 

.4/12,.5/5,.7/3), (b, c)/(.1/15, .3/3, .4/10, .5/5, .7/12), (c, b)/(.1/5, .3/3, .4/10, .5/5, 

.7/12), (c, a)/(.1/12, .2/5, .4/4,.5/3,.7/10) (a, c)/(.1/12, .2/5,.4/4,.5/3,7/10)) is a fuzzy 

bag equivalence relation. 

It may be observed that for any fuzzy bag A drawn from a set X, ABA is not always 

a fuzzy bag equivalence relation . However, A@A is a fuzzy bag relation if 

1. CCMx(a)#O, 'v'x E X, wherea=max {a l ,az  ,........, a,,} and CC~X(ai ) fO ; 
A A 

2. Cc (x, y )  (a) t each of % C C ~ ~ X ,  XI (a) and % C C M Y ,  Y) (a), x, Y E X ; hk 
and hence CCM (x, y) (a) = 0 3 CCM (x, X) (a)  = 0 and CCM (Y, Y) (a) = 0 . 

R R R 

Proposition 3.5.1 

If R and R' be two fuzzy bag equivalence relations on a fuzzy bag A drawn from X, 

then R u R '  is also a fuzzy bag equivalence relation on A 



Proof : Suppose R & R' are two fuzzy bag equivalence relations on a fuzzy bag A 

drawn from X. Then 

( 9  For all a, b r X, CCM Q. U R  a) l a )  = max ( CCM R (a. a) (~),CCM$ a) (a)) 

where a = min{al,a2). (since R and R1 are both reflexive) . 

max (Cc%a (a1 ). (a211 

This implies that RuR1 is reflexive. 

(ii) For all a, b E X, CC%(a, b) (a) = max ( C C M ~  b) (a), C C M ~ ~ ,  b) (a)} 
u R' 

= CCM (b, a) (a) (since R and R' are both 
R u R' 

symmetric ) 
This implies that RuR1 is symmetric. 

(iii) For all a, b, c E X, 

CCM (a, b) (a) + CCM (b, c) (a)  
R u  R' R UR' 

= max { Cc% (a, b) (a), C C M ~ ,  b) (a)) + max{ C c y p  c) ( ~ ) , C C M ~ ,  c) (a)} 

= rnax { C C % ( ~  b) (a)  + Ccqb. C) (a)), C C ~ ~ B  b) (a)  + C C ~ L  b) (a)), 

C o p ,  b) (a)  + C C ~ ~ J ,  C) (a), CCMAP, b) (a) + C C M ~ ,  c) (a)} 

2 max {Cc%(a, b) (a) + Cc%(b, c) (a), Cc%fa, b) (a) + Ccqp-~, c) (a)} 



2 man { CCM@. C) (a), CCqp, C) (a)} (since both R and R' are 

transitive) 

= CcT$b;) (") 

This implies that R uR' is transitive. 

Thus R uR' is a fuzzy bag equivalence relation. 

Remark: R nR'  is not necessarily a hzzy bag equivalence relation . 

Example 3.5.2 

In addition to the fuzzy bag equivalence relation R in example 3.5.1, 

consider another fuzzy bag equivalence relation R' = {(a, a)/(.2/12, .5/6), (b, b)/(.3/4, 

.4/22, .7/7), (c, c)/(. 1/20, .4/5, .5/3, .7/22), (a, b)/(.2/7, .5/4, .3/3, .4/14, .7/5), 

(b, a) /(.2/7, .5/4, .3/3, .4/14, .7/5), (b, c)/(.1/17, .3/2, .4/15, .5/5, .7/14), (c, b)/(.1/17, 

.3/2, .4/15, .5/5, .7/14), (c, a)/(.1/14, .2/10, .4/4, .5/3, .7/15), (a, c)/(.1/14, .2/10, .4/4, 

.5/3, .7/15)) 

Then, RnRJ= {(a,a)l(.2/10, .5/6), (b,b)/(.3/4, .4/20, .7/5), (c,c)/(. 1/20, .4/4, .5/3, .7/22), 

(a, b)/(.2/7, .3/3, .5/4, .4/14, .7/3), (b, a)/(.2/7, .3/3, .5/4, .4/14, .7/3), (b, c)/(. 111 7, 

.3/2, .4/15, .5/5, .7/14), (c, b) )I(. 111 7, .3/2, .4/15, .5/5, .7/14), (c, a)/(. 1/14, .2/9, .4/4, 

.5/3, .7/3), (a, c) )I(. 111 4, .2/9, .4/4, .5/3, .7/3)) . 

Here CCM(b, C) (.3) + CCM (c, a) (.3) = 2 + 0 3 CCM (b, a) (.3) = 3 . 
R n R  R n R  R nR'  

Therefore, R n R' is not a fuzzy bag equivalence relation. 



3.6. Complement of a fuzzy bag 

In continuation to the work of Chakrabarty et al. [18] regarding complement of a 

fuzzy bag we add the following definitions and results. 

Definition 3.6.1 

Let F1 and FZ be two fuzzy bag drawn from a set X and let F(U) be the universal 

fuzzy bag for the some fixed information system. Then 'v' x E X, a E I = [ 0, 11 ; 

(i) C ~ y x  1 5  $0 2 = rnin { C~h$: (a] + C ~ F  (a), C~MF;U)(a)} 

(ii) Ccy16 jy) = max{ Ccylx (a) - Ccy x (a),O} 

(iii) c c y 1 ~ ~ ~ )  = min{ C C ~ ;  (a)  + 1, CcqtUiti,(a)} 

(iv) CCv (a)  = maxi Cc (a)  - 1, 0} . 
l a x  %: 

Proposition 3.6.1 

For any x E X and any fuzzy bag F drawn from X, the following holds. 

(1) ( F O X ) ~ = F ~ B X  

Proposition 3.6.2 

If FI and F2 be to fuzzy sub bags of the universal fuzzy bag F(U) drawn from the set 

X, then 

(1) (F1 0 F2)' = FFIc QF2= FZC OFI 

(2) (FlQF2)C = FIC 0 F2 

(3) ( F l u  F2)C=FICnF2C 

(4) (F I n F2)' = F I uF2' 



3.7 Conclusion 

The bag structure introduced by Yager 1931 where 'bags' provide a natural structure 

for representing 'set-like' objects in which a count of the number of elements is of 

relevance. He has also pointed out that the bag and fuzzy bag structure would be very 

usefil for the development of an advanced version of a database calculus. This 

impetus has led to the study of bags and fizzy bags. With this in mind, bags and 

fuzzy bags are further studied and some results are proved. In the process it is 

established that union of two bags (fuzzy bags) equivalence relations is a bag (fuzzy 

bag) relation but their intersection is not always one. 



Chapter 4 

Rough Boolean Algebras 

1 The concept of rough Boolean algebra and rough sub algebra are introduced based 

upon Pawlak's notion of indiscernibility relation between elements in a set. Some 

characterizations of rough Boolean algebras and rough subalgebras are given. 

4.1 Introduction 

The algebraic approach of rough sets was studied by some authors, for example, Z. 

Bonikowaski[lS],T.B. Iwinski[39] and J. Pomykala and J.A.Pomykala[71].Recently 

Biswas and Nanda [lo] introduced the notion of rough subgroups based on upper 

approximation of rough set. Boolean algebra has the potential applications in 

different fields. In view of this, a concept of rough algebraic structures is introduced 

by defining rough Boolean algebra and rough subalgebra based on upper 

approximation of Pawlak's rough set and then some results of rough Boolean 

algebras and rough subalgebras have been proved and also checked through 

examples. 

I Parts of this chapter entitled " Rough Boolean Algebras" has been accepted for publication in 
Journal of Fuzzy Mathematics, Los Angels. 



4.2 Preliminaries 

Definition of rough set and some basic operations on rough sets necessary to 

introduce rough Boolean algebras are given. 

Definition 4.2.1 

Suppose R is an equivalence relation defined over an universe U .Then for any 

subset X of U, the sets 

A(x)={x:[x]~ E XI and A(x)={x:[x], n X + 4) 

are called lower and upper approximations of X respectively. 

Furthermore, A(x)=(A(x),~(x)) is called the rough set of X in the approximation 

space S=(U,R). 

In the above[xIR denotes the equivalence class of R containing x . Further, for a 

fixed non empty subset X of U, the rough set of X, i.e., A(X) is unique. 

Example 4.2.1 

Given an approximation space S=(U,R), where R is an equivalence relation on 

U={xl,x2,. . ..., xs) with the following equivalence classes: 

El={xl,x4,x51 

E2={xz,x5,~7) 

E3= ( ~ 3  1 

E4=(~6). 



Let X= {x3,x5}, then A(X) = {x3} and A(x) = {x2,x3,x5,x7) and so 

A(X) ={{x3) , {x~,x3,x~,x7)) is a rough set of X. 

Definition 4.2.2 

A subset X of U is called definable if A(X) = A(x) . If X c U is given by a predicate 

P and x E U, then 

1. x E A(X) means that x certainly has property P, 

2. x E X(X) means that x possibly has property P, 

3. x E U \A(x) means that x definitely does not have property P. 

Definition 4.2.3 

I~A=(A,A) and B=(~,B)  are two rough sets in the approximation space S=(U,R) , 

then A v B (union of two rough sets), A n B (intersection of two rough sets), 

A G B (rough set inclusion) and -A( rough complement of A) are defined by 

( i )  A u B  = (AUB,AUB) 

(ii) A n B  = ( A n e , A n B )  

(iii) A c B  a ( A E B , A G B )  

(iv) -A = ( u - A , u - ~ )  

(v) A-B = An(-B) = (A-B,A-B) 



Definition 4.2.4 

Let R be an equivalence relation, defined over a set U. Then the relation R on UxU 

is defined by (x,y)~(p,q) a xRp and yRq . 

Corollary: The relation R is an equivalence relation in UxU . 

4.3 Rough Boolean Algebra 

Definition 4.3.1 

Suppose S=(B,R) is an approximation space, where B=(B, v,  A,') is a Boolean 

algebra and R is an equivalence relation on B. Then the rough set 

A(x)=(LI(x),A(x)) of a non empty subset X of B is a rough Boolean algebra in S 

with respect to the operations in B if 

( i )  X V ~ & X A ~ E A ( X ) , V X , ~ E X ; ~ ~ ~  

(ii) for every x E X,3x1 E A(x) s.t. x v x'=u and x A x' = 0 ,  where 0 and u are 

inf B and sup B respectively. 

In the above ( A(X),v, A,' ) or simply A(X) (when the operations are understood) 

denotes a rough Boolean algebra. 

Remarks : Suppose A(x) is a replaced by an arbitrary super set Y of X, then either 

X c Y c A(x) or X c A(x) c Y .The latter is outside the rough structure whereas 

former does not affect the definition of a rough Boolean algebra. Moreover, the 

lower and upper approximation operations are dual of each other and so, the upper 

approximation is considered. 



It can be easily seen that the following properties of a Boolean algebra also hold in 

case of a rough Boolean algebra. 

( i )  xvx=x, X A X = X  ( idempotence ) 

(ii) x v y = y v x , x ~ y - - y ~ x  ( commutative) 

(iii) x v ( y v z ) = ( x v y ) v z a n d x ~ ( y ~ z ) = ( x ~ y ) ~ z  (associative) 

(iv) x ~ ( x v y ) = x a n d x v ( x ~ y ) = x  (absorption) 

(v) x v ( y ~ z ) = ( x v y ) ~ ( x v z )  a n d x ~ ( y v z ) = ( x ~ y ) v ( x ~ z )  (distributive) 

(vi) ( x v y ) ' = x ' ~ y ' , ( x ~ y ) ' = x ' v y '  (De Morgan's laws) 

(vii) x I y e x ~ y ' = O t > x ' v y = l  . 

Example 4.3.1 

Consider B={ 1,2,3,5,6,10,15,30)=the set of all factors of 30. 

Define operations v and A in B as x v y = Icm{x,y) and x A y = gcd{x,y) . 

Then (B, v, A,') is a Boolean algebra in which the complements of 1,3,5,6,10, 15 and 

30 are respectively 30,15,10,6,5,3,2 and 1 .Also define, for all 

x,y E B,xRy a x = y(mod 2). 

Then R is an equivalence relation in B and the resulting equivalence classes are 

[I]=( 1,3,5,15] and [2]={2,6,10,30) 

Now, (i ) for X = {1,2) c B,A(X) = 4 , A(x)=B and (A(X), v,  A,') is a rough 

Boolean algebra , but (ii) for X = {2,6) c B,A(X) = 4 ,  A(x) = [2] = {2,6,10,30) and 

(A(X), v,  A,') is not a rough Boolean algebra since 2' = 15 e' X(X) 



Proposition 4.3.1 

For any subalgebra X of a Boolean algebra B, A(X) is a rough Boolean algebra. 

Proof: For any subalgebra X, x,y E X 2 x v y,x A y,x' and y' E X LZ A(x) . 

Corollary: For any subalgebra X of a Boolean algebra B, the homomorphic image 

of A ( X )  is also a rough Boolean algebra. 

Example 4.3.2 

Let B be the set of all ordered triples with entries 0 or 1 

i.e.B={(O,O,O),(l,l, I),(] ,O,O),(O, ~ , ~ ~ , ~ ~ , ~ , ~ ~ , ~ ~ , ~ , ~ ~ ~ ~ ~  ,O,l),(O, 1,l)I. 

For (a, ,b, ,c, ),(a, ,b, ,c,) E B , 

the v, A and are defined as (a,,b,,c,) v (a,,b,,c,) = (a, v a,,b, v b,,c, v c,) where 

a, v a, = max{a,,a,) etc. 

(a,,b,,c,) ~(a, ,b, ,c,)  = (a, ~ a , , b ,  A b,,c, AC,) where a, Aa, = min{a,,a,) etc, 

and (a,,  b, , c, )' = (1 -a,, 1 -b, , l -c, ) .Then (B, v, A,') is a Boolean algebra. 

AlsoS=(B,R) is an approximation space with the equivalence relation R defined by 

xRy c;, x and y have the same number of O's(1 's), b'x,y E B . 

The resulting equivalence classes are 

Then X = {(0,0, O), (1,1, I), (1,0, O), (0,1,1)) is a subalgebra where A(X)={E, ,E,), 



A(x)=B and A(X) is a rough Boolean algebra. 

Definition 4.3.2 

If the rough set A(X) ,for 4 # X B,is a rough Boolean algebra in an approximation 

spaceS=(B,R) with operations in B then a rough subset A(Y)of A(X) with Y X ,is 

a rough subalgebra of A(X) provided A(Y) forms a rough Boolean algebra with 

operations in B. 

Example 4.3.3 

In example 4.3.1, if we take X={1,2,3)and Y={1,2),then A(X) is a rough Boolean 

algebra and A(Y) is a rough subalgebra. 

The following results are straight forward. 

Proposition 4.3.2 

If A(X) is a rough Boolean algebra in an approximation space S=(B,R) such that 

A(x)=x, then X(X) is a subalgebra of B . 

Proposition 4.3.3 

Let S=(B,R) be an approximation space, where B is a Boolean algebra and 

A(x)=(A(x),A(x)) be the rough set of X in S. If A(x) is a subalgebra then A(X) is 

a rough Boolean algebra. 

Proof: Since A(x) is a subalgebra of(B, v, A,'), 



x v y and x A y E A(x), Vx,y E A(x). Also x' E A(x) for any x E A(x). 

But X ~ A ( X ) , S O X , ~ E X ~ X V ~  and x ~ ~ ~ A ( ~ ) a n d  x l ~ A ( x ) f o r a n y  X E X .  

The converse of the above proposition is not necessarily true. 

Definition 4.3.3 

A rough Boolean algebra A(X) in an approximation spaceS=(B,R) is a complete 

rough Boolean algebra if every non empty subset of X has a least upper bound and a 

greatest lower bound in A(x). 

Example 4.3.3 

The rough Boolean algebra of example 4.3.l(i ) and 4.3.2 are also complete rough 

Boolean algebra. 

Proposition 4.3.4 

If for any rough Boolean algebra A(X) in an approximation space S=(B,R) , 

A(x) is a complete sub algebra of B then A(X) is a complete rough Boolean algebra. 

Proof: Since X c E(x) and A(x) is a complete subalgebra, every non empty subset 

of X has a lub and glb in A(x) and so, A(X) is a complete rough Boolean algebra. 

Proposition 4.3.5 

If A(X) is a complete rough Boolean algebra in S=(B,R) and A(x)=x ,then X is 



complete subalgebra of B. 

Proof: A(X) is a complete rough Boolean algebra implies A(X) is a rough Boolean 

algebra and every subset of X has a lub and a glb in A(x)=x 3 X is a complete 

sub algebra. 

Lemma 4.3.1 

Let S=(U,R) be an approximation space. 

Then A(x)xA(Y) A(xxY), for any subsets X,Y of U. 

Proof: Let (x,y) E A(x)xK(Y) z x E K(x)&~ E K(Y) 2 [xIR n x t / 

Prposition 4.3.6 

Suppose S=(B,R) is an approximation space where B is a Boolean algebra. If 

A(X) and A(Y), for X,Y c B,  are rough Boolean algebra then A(XxY) is also a 

rough Boolean algebra. 

Proof: A(X) and A(Y) are two rough Boolean algebras in S, therefore 

VX,,X, E X, X, v x,,x, A X ,  E &x), and for every x E X, 3x' E A(x) such that 

x v x ' = u a n d x ~ x ' = O a n d V y , , y ,  EY, yl vy , ,  yI A Y ,  EA(Y) 

and for every y E Y, 3y' E A(Y) such that y v y1=u and y A y' = 0 ,  where 0 and u are 

inf B and supB respectively. 



Now take (x , ,~ , ) ,  (x , ,~ , )  E XxY . 

Then(x,,y,)v (x,,y,) = (x, v x , , ~ ,  v y,) E A(x)xA(Y) c A(XXY) and 

(x,,y,) A(X,,Y,) = (x, A x,,y, A Y,) E A(x)xA(Y) c A(XXY) 

Also (x,y) v (x1,y') = (x v xl,y v y') = (u,u) and 

(x,y) A (xl,y') = (x x',y A Y') = (090) 

Therefore A(XxY) is a rough Boolean algebra. 

4.4 Conclusion 

Pawlak's rough sets are generalization of sets which are associated with 

impreciseness in the form of indiscernibility between the elements of the set. So 

rough algebraic structures could be useful in dealing with some knowledge 

representation problems involving uncertainty in the form of indscernibility. In this 

work, we have introduced rough Boolean algebra based on Pawlak's rough set. 

Rough Boolean algebra consists of a rough set, two binary operations and one unary 

operation whereas a Boolean algebra consists of a set and the same operations. 

Further, we propose to carry forward the work regarding the relationship between the 

rough structure and algebraic structure. 



Chapter 5 

Some Results of the Lower and Upper 

Approximations in Lattices 

In this chapter, we present some properties of lower and upper approximations 

with respect to congruence relation and fuzzy congruence relation in a lattice. 

5.1 Introduction 

Kuroki et a1.[48] introduced the concept of a rough ideal in a semigroup and 

proved few results on the lower and upper approximations with respect to the 

congruences and the fuzzy congruences on a semigroup. Davvaz, [26] defined 

the notion of rough subring and rough ideal with respect to an ideal of a ring and 

studied certain properties of the lower and the upper approximation in a ring. In 

sequel, some properties of the lower and upper approximations with respect to the 

congruence relation in a lattice, sublattice and ideal and also fuzzy congruence 

relation in a lattice have been examined here. 

5.2 Rough subsets in a lattice 

A binary relation 8 in a lattice L is a congruence relation if 

(i ) B is an equivalence relation; 



(ii) For all a, b, c E L, aB b implies ( a v  c) B(b v c) and (a A c) 8 (b A c). 

Being an equivalence relation B partitions the lattice L into a set of disjoint 8- 

classes. The 0-class containing an element aE L, will be denoted by a @ ,  i.e., 

aB = {x E L : x B a). For any two elements a, b E L , the join and meet operations 

of 0-classes are defined as (aB) v (b B)= ( a v  b) B and ( a e )  A (be)= ( a ~  b) 8 .  

Definition 5.2.1 

Let A be a nonempty subset of a lattice L and B is a congruence relation on L. 

Then the sets @-(A) = {x E L : xi3 c_ A) and @-(A) = {x E L : xB n A # 4) are 

called lower and upper approximations of A respectively with respect to B. For a 

nonempty subset A of L, 0(A) = (0-(A),@-(A)) is called a rough set with respect 

to 0 .  

Example 5.2.1 

Let ( L, v ,  A ) be a lattice, where L is a the set of all positive integers where 

x v y=L.C.M of x and y 

x A~=G.C.D of x and y. 

Define a relation B such that 'd x, y E L, x By a x =y (mod2) 

Then 0 is clearly an equivalence relation and 'd x, y, Z E  L, and x 0 y  implies 

(X v z) B (y v z) and (x A z) B (y A 2). Hence 6' is a congruence relation over L. 

Take a subset A={2,3,4,5,6) of L. Then lB=the set of odd positive integers and 

2 @=the set of even positive integers. Also 0- (A)=# and 8-(A)=L, i.e., B(A)= 

(4, L) is a rough set with respect to B over L. 



Proposition 5.2.1 

Let 8 andn be congruence relations on a lattice L. If A and B are non empty 

subsets of L. then 

( i )  B ( A ) s A c  @-(A) 

( i i )  8 - ( A u B ) =  8 - ( A ) u  8-(B) 

(iii) 8- (A n B) = 8- (A) n 8- (B) 

(iv) A c B  3 8 - ( A ) c  K ( B )  

(v) A c B 3 8 (A) c 8- (B) 

(vi) @-(Au B) 2 8 ( A ) u  8- (B) 

(vii) ~ - ( A ~ B ) E  8 - ( A ) n  8-(B) 

(viii) 8 G ~r 3 8- (A) G jlr- (A) 

(ix) 8c n = &(A) c n - ( A ) .  

Proof: (i) Let a €  @-(A), then a e a 8  c A, which implies B ( A ) c A .  Again if 

a e A ,  thena8  n A #  # ( . : a ~ a @  ) a n d s o a ~  @-(A), i.e., A s 8 - ( A ) .  

(ii) N o w a ~ 8 - ( A v B )  o a Q n ( A u B ) # #  

G ( a B n A ) u ( a B n B )  # 4 

a either a E @-(A) or a E 8-(B) 

(iii) 

Q a €  8-(A) u 8-(B). 

Now a €  8 - ( A n B ) e  a 0  5 A n B  

o a 8  c Aand a 8  c B  



a a €  B ( A )  and a €  8 ( B )  

a a €  B ( A )  n B(B) .  

Therefore, 0- (A n B) = 6'- (A) n 6'- (B). 

(iv) From (ii), we have 9- (B)= @-(A v B) (.: A c B iff A v  B=B) 

i.e., 8 - ( A ) c  8-(B). 

(v) Follows from (iii). 

(vi) From (v), we have 6'- (A) c 6'- (A u B) and 6'- (B) c 0- (A u B). 

This implies 6'- (A) u 8 (B) c 0- (A u B). 

(vii) Follows from (iv). 

(v i i i )Leta~6 ' - (A)  = a O n A # @  

(ix) Let a be any element of 9-(A).Then there exists X E  a6' n A. 

a x ~ a n n A ( . : a 8 c a n a s  8 s  n )  

= a €  n-(A). 

i.e., 6' c n implies &(A) c_ 7~-(A) .  

The following example shows that the converse of (vi) and (vii) in Proposition 

5.2.1 is not true. 

Example 5.2.2 

Let (L,v,A) be a lattice, where L=(O,1,2,3,4,5,6,7,8,9,10,11,12,13,14) whose 



x v y= x +, y = (x+y)(mod3) 

x ~ y =  x x, y = xy(mod3). 

Define a relation 0 such that V x, y E L, x By Q x =y (mod3) 

Then B is clearly an equivalence relation and V x, y, ZE L, and xBy implies 

(x v z) 8 (y v z) and (x A z) 8(y A z). Hence B is a congruence relation over L. 

The B -congruence classes are 

El={0,3,6,9,12), E2={1,4,7,10,13) and E3={2,5,8,11,14). 

(i)Take A,BcL, where A={0,3,6,9) and B={ 1,2,4,7,10,12,13).Then 8- (A)= 4 

and 0- (B)= E2 and 8- (A u B)=E1 u E2 and so, 0- (A u B) 8- (A) u 0- (B). 

(ii)Again, take A,BcL, where A={ 1,3,6,9) and B={0,3,4,7) .Then 

&(A)= 8-(B)= E I u E ~  and 8-(A n B ) =  El where &(A) n 8-(B)= 

El u E2 and therefore &(A) n 8-(B)g &(A n B). 

Proposition 5.2.2 

Let 8 and ry be congruence relations on a lattice L. If A be non empty subset of 

L then ( 8  n ry)-(A) E @-(A) n ry-(A) . 

Proof: We know that B n y/ is also a congruence relation on L. 

Let x ~ ( B n r y ) - ( A ) ,  then x ( B n r y ) n A # 6 .  

3 there exists an element a E L such that a E x(B n ry) n A . 

3 ( a , ~ )  E ( 8  n y/) 3 (a,x) E B and (a,x) E ry 



and a ~ x l y a n d a ~ A  * x l y n A # + s x ~  y-(A) 

This implies, x E $-(A) n ly-(A) 

Proposition 5.2.3 

Let B and y be congruence relations on a lattice L.If A be non empty subset of L 

then (Bny)-(A)=B(A)ny-(A).  

Proof x E (6 n ty)-(A) Q x(B n ty) A 

G x E &(A) and x E (u- (A) 

i.e., (Qnly)-(A) = B(A)ny/_(A). 

Notel: Each congruence class is a sublattice. 

Note2: If xB and ye are two congruence classes of a lattice L with respect to 

the congruence relation 6 then (x,y)B is also a congruence class of the lattice 

L x L  and xBxy6=(x,y)B. 

Proposition 5.2.4 

Let 8 be a congruence relation on a lattice L. If A and B are non empty subsets 

of L then $-(A) x B-(B) G &(Ax B) . 



Proof Let (x,y) G @-(A) x 8-(B) 

3 x E @-(A) and y E 6-(B) 

3 x 8 n A  # @  and y Q n B # @  

3 3  m , n ~ L s u c h t h a t  m ~ x 6 n A  and n E  y 6 n B  

3 (m,n) E x6' x y6' and (m,n) E A x  B 

(m,n) E (x, y)8 and (m,n) E Ax B 

3 ( x , Y ) ~  n ( A x B ) * @  

a ( x , y ) ~ B - ( A x B )  

i.e., 6'-(A)x6'-(B) c @-(A x B). 

Proposition 5.2.5 

Let 8 be a congruence relation on a lattice L. If A and B are non empty subsets 

of L then 0 (A) x t 9  (B) _c 0- (A x B) . 

Proof: Let (x,y) E 0- (A) x 6- (B) 

3 x E 6- (A) and y E 6- (B) 



5.3 Upper and Lower Approximations in sublattices 
and ideals 

An example is considered below to exhibit the existence of lower and upper 

approximation in rough sublattices and rough ideals before examining the some 

results on them. 

Example 5.3.1 

In example 5.2.2, take A={0,1,2,3,6,9,12) then 0- (A)=E, 

&(A)= L, Vx, y E B ( A )  s x v y ~  B ( A )  and x ~ y  E 8 ( A ) .  

AndVx,y E 0-(A) 3 x v y ~  8 - ( A ) a n d x ~ y  E 0-(A). 

Thus 0- (A) and 0-(A) are sublattices of L. Similarly it can be shown that 0- (A) 

and &(A) are ideals of L. 

Proposition 5.3.1 

Suppose B be a congruence relation on a lattice L, and 4 # A,B c_ L . 

If @-(A) and 8-(B) are sublattices of L, then @-(A x B) is also a sublattice of 

L x L. 

Proof:Let(x,,y,),(x,,~,) €e- (AxB)  ~ x , , x 2 , y I , ~ , ~ L  



Similarly, (x, ,y,) A (x2,y2) E @-(A x B). 

Therefore 8-(A x B) is a sublattice of L x L. 

Proposition 5.3.2 

Suppose 8 be a congruence relation on a lattice L, and 4 # A,B c_ L . If 

&(A) and 0-(B) are sublattices of L, then 0 ( A  x B) is also a sublattice of LxL. 

Proof The proof is similar to the theorem 5.3.1. 

Proposition 5.3.3 

Suppose 0 is a congruence relation on a lattice L, and 4 ;t A,B c L . 

If @-(A) and 8-(B) are ideals of L, then &(Ax B) is also an ideal of Lx L. 

ProofLet(x, ,y,) ,(x, ,~,)  E ~ - ( A x B )  ~ x l , x , , y , , y , ~ L  

NOW, (x,,Y, ) V  ( ~ ~ ~ ~ 2 1  =(XI X2 ,YI v Y Z )  E ~ - ( A ) x ~ - ( B )  c @-(AxB) 

Again (x, ,y, ) E 8-(A x B), (m,n) E LxL 

This implies (x, ,y, ) A (m,n) = (x, A m,y, A n) E @-(A) x 8-(B) c 8-(A x B) 

Therefore, 8-(A x B) is an ideal of L x L. 

Definition 5.3.1 

Suppose (L, 0 )  be an approximation space, where 8 is a congruence relation on 

lattice L. Also for 4 # A c L and 8 (A)=(@ (A), @-(A)) is a rough set in the 

approximation space (L, 8). If 8- (A) and &(A) are ideals (or sub1attices)of L, 

then we call 0(A) is a rough ideal (or rough sublattice) in (L, 0). 



Proposition 5.3.4 

Intersection of two rough ideals is again a rough ideal with respect to same 

congruence relation. 

Proof: Follows from the intersection of two rough sets. 

This completes the proof. 

5.4 Lower and upper approximation with respect to fuzzy 
congruences 

A fuzzy relation 8 on L is a mapping 8 :LxL+I, where I is the unit interval 

[O,I].Let 6' and ry be two fuzzy relations on L. Then the composition of two 

fuzzy relations on L is defined by ( 8  0 ry )(a, b)= v {B (a, x) A ry (x, b) ), 
X€ L 

A fuzzy relation B on L is called fuzzy congruence relation on L if Va, b, CEL, 

the following hold: 

(i) B is an equivalence relation on L; 

(ii) 8 (a,b) I B ( a v c , b v c )  A B  ( a ~ c , b ~ c ) ,  ' d a , b , c ~ L .  

Let 8 be a fuzzy congruence relation on L. For each aEL, we define a fuzzy 

subset 8, as follows: 

8, (x)= 8 (a, x) for all  EL. This fuzzy subset 19, is called a 

S 
fuzzy congruence class containing aEL. We write -={ 8, :a€L) 

8 

S 
Then - is a lattice under the binary operationsv and A defined by 

8 

8, v8, = Q,,, and 8, ~ 8 ,  = 8,,, for all a, beL. 



Lemma 5.4.1 

Let 8 be a fuzzy congruence relation on a lattice L. Then 

@'(I) = {(a, b) E LxL : 8 (a, b)= 1 ) is a congruence relation on L. 

Proof: It is obvious that @'(I) is reflexive and symmetric. Therefore ,to prove 

8'(1) is transitive, let (a,b), (b,c) E B1(l) .This implies that 8 (a, b)= 8 ( b, c)=l 

Again since 8 is a hzzy congruence relation on L, we have 

8(a,c) 2 (80 B)(a,c) 

= l A l  

= 1, 

and so 8 ( a, c)=l . Thus ( a, c) E @'(I). 

Again let ( a, b) E Q1(l)and CEL .Then, since 8 is a fbzzy congruence relation on 

L, we have 8 (avc,  b v c )  A 8 ( a ~ c ,  b ~ c )  2 B(a, b)=l. 

~ 8 ( a v c , b v c ) ~ 8 ( a ~ c , b ~ c ) 2 1  

3 8  (avc,  b v c )  2 1 and 8 ( a ~ c ,  b ~ c )  2 1 

3 8  (avc,  b v c )  =1 and 8 ( a ~ c ,  b ~ c )  =1 

a ( a v c ,  b v c )  ~ 8 ' ( 1 )  a n d ( a ~ c , b ~ c )  ~ 8 ' ( 1 )  

Thus 01(1) is a congruence relation on L. 



Proposition 5.4.1 

Let 8 and ry be fuzzy congruence relations on a lattice L. Then 8 n ry is a fuzzy 

congruence relation on L and (0 n ry)'(l) = B1(l) n yl(l) . 

Proof: It is easy to prove that B n t + ~  is a fuzzy congruence relation on L. 

Let (a, b) E (0 n ry)'(l) 

3 ( 8  n ry)(a,b)=l 

3 mini8 (a, b) , ry (a, b))= 1 

3 8(a,b) = cy(a,b) = 1 

3 E Q'(1) n ~ ' ( 1 )  

(8  n cy)'(l) c_ B1(l) n cyl(l). . 

Again, let (a,b) E O1(1) n ry1(1) 

s (a,b) E @(I) and (a,b) E ryl(l) 

a B(a,b) = ry(a,b) = l 

Then wehave ( e n  ry)(a,b)=min{8 (a,b),  B(a,b))=min{l,l)=l 

and so, (a,b) E ( 8  n ry)'(l) 

3 el(l) n ryl(l) c ( 8  n ry)'(l). 

This completes the proof. 

Proposition 5.4.2 

Let 8 and ry be fuzzy congruence relations on a lattice L and if A be non empty 

subset of LxL. Then 



( 9  (6 n vI1(l)-(A) = (O1(1) n v1(1))-(A) 

= O1(l)-(A) n y1(l)-(A) . 

(ii) (0 n v)'(l)-(A) = ( ~ ' ( 1 )  n ~'(1))-  (A) 

= @'(I)-(A) n ~'(1)-(A) . 

Proof: Suppose (a, b) (O n y/)'(l)-(A) 

(sb)  E (0  n v)'(l) and [(sb)l(,n,,.(,, c A 

e O(a,b)= y/(a,b)= 1 and (a,b) E A 

Q (a,b) E @'(I) and (a,b) E ryl(l) and (a,b) E A 

e (a,b) E 01(1) n ~ ' ( 1 )  and (a,b) E A 

e ( 0 )  E (O1(1) n vt(1))-(A). 

Again suppose, (a, b) (0  n v)'(l)- (A) 

c A  [(a,b)I(onv)'(l) - 

c A  [(a,b)lg(l)nw'(l) - 

[(a,b)l,(,) c A and [(a,b)lr,(l) c A 

(ah) E Q1(l)-(A) and ( 0 )  E vl(l)-(A) - ( 0 )  E 01(1>- (A) n ~ ' ( 1 ) -  (A). 

This completes the proof. 



(ii) Similar to (i). 

5.5 Conclusion 

Some results on lower and upper approximations of subsets in a lattice, 

sublattice and ideal with respect to congruence relation have been established 

including some results with respect to fuzzy congruence relation in lattice. 



Chapter 6 

Multicriteria Decision Making using Intuitionistic 

Fuzzy Bag Theory 

In this chapter1, intuitionistic fuzzy bags(1FB) concept is applied in multicriteria 

decision making problem and a hypothetical case study has been taken as an 

example. 

6.1 Introduction 

In real life, we often come across some collection of objects, i.e., set-like structure 

in which redundancy is significant ,for example, collection of books in a library or 

collection of marks scored by students in a school final examination. Crisp set 

representation of these collections fail to give information like presence of multiple 

copies of books in a library or number of students with equal marks. To overcome 

such difficulties Yager[93] introduced the bag structure as a set-like objects in 

which repeated elements are significant . The notion of bag and specially fuzzy bag 

are useful tools for the development of an advance version of a database 

calculus[93] and decision making problems[28,73,74].Intuitionistic fuzzy set(1FS) 

'Contents of this chapter was presented in the International Conference on Analysis and Discrete 
Structure, December 20-22,2002,IIT,Kharagpur, India and have appeared as a paper entitled "An 
Application of Intuitionistic Fuzzy Bag in Multicriteria Decision-Makingwin the Proceedings 
(Combinatorial and Computational Mathematics) pp. 335-340,Narosa Publishing House, New 
Delhi. 



theory introduced by Attanassov [5] is not necessarily a hzzy set but a fuzzy set 

in an intuitionistic fuzzy set. Therefore, IFS is an alternative theory to deal with 

vagueness. The problems which are dealt with fuzzy set theory can also be well 

dealt with IFS theory , but there are some situations where IFS theory is more 

appropriate than fuzzy set theory. Chakrabarty et a1.[20] introduced intuitionistic 

fuzzy bag (IFB) theory which can be used in some decision making problems 

where bag or fuzzy bag theory are not applicable. In this chapter, we apply the IFB 

concept in multi criteria decision making problems. 

6.2 Preliminaries 

Definition 6.2.1 

Let E be fixed crisp set. An intuitionistic fuzzy set (or IFS) A in E is an object of 

the form A= { <x, pA(x) , V, (x) >: X E  E ), where the function pA :E-+ [O,l] and 

v, : E +  [0,1] represent the degree of membership and degree of non membership 

respectively of the element X E  E to the set A . It is clear that 

0 I P,(x) +vA(x) I  1. 

6.2.1 Some Operations 

Definition 6.2.2 

If A and B are two IFSs of the set E, then 

A c B iff Vx E E,[pA(x) 5 pB(x) and v,(x) >v,(x)] and A c B iff B II A. 

A=B iff V x ~ E , [ p , ( x ) = p ~ ( x )  andv,(x)=v,(x)]. 



A={< x, vA(x), p,(x) >) ,complement of the intuitionistic fuzzy set A. 

A n B =  { < x , m i n { ~ ~ ( x ) , ~ ~ ( ~ ) ) , m a x { ~ ~ ( ~ ) , ~ B ( ~ ) > I ~ ~ ~ )  . 

A u B  = {< x, max{p,(x), pB(x)), min{v,(x),v,(x)> Ix E E). 

A+B={< x,PA(x) +~B(x)-~, (x)  . p B ( ~ ) , ~ A ( ~ ) . ~ B ( ~ ) > I ~  E E). 

A.B={< %PA (XI . P ~ ( x ) ~ v ~ ( x ) + v ~ ( x ) - v ~ ( x ) . v ~  (x)> I X  E E). 

C(A)={< x,k,l> Ix E E),  where k = max pA (x), 1= min r / ,  (x) 
XEE xE E 

I(A)={x,kt,l'> Ix E E} , where kt = min pA (x),lt= rnax v, (x) 
XEE XEE 

Clearly every fuzzy set can be written in the form {< x,pA (x),pA, (x)> lx E E} and 

hence is also an IFS. 

Definition 6.2.3 

An intuitionistic fuzzy bag(1FB) F drawn from a non empty set X is characterized 

by a count function CMF:X+B, where B is the set of all crisp bags drawn from the 

Cartesian product 1x1 of the unit interval I=[O,l].Thus for any X E  X, CMF(x) is a 

crisp bag drawn from 1x1 and C,MF(x,:IxI--rN which is the characterizing count 

function for the bag CMr(x).Here, for each (a$) E 1x1, and O5a+P 51, C,,; (a$)  



is a non negative integer which indicates the number of occurrences of x with 

membership value a and non membership valuep in the IFB F. 

Note 1: For all F and x, C,,: (0,0)=0 . 

Note2: An IFB F reduces to a fuzzy bag F if for each X E  X, CMF(X) is a crisp bag 

in which (a$)€  CMF(x), a+P=l. 

Note3: An IFB ,denoted by I) is called null IFB, if for each X E  X, CM$ (x) is an 

empty bag, i.e., CcMl (a$) =O. 

6.2.2 Some Operations 

Definition 6.2.4 

Suppose F1 and F2 are two IFBs drawn from a set X. Then for all X E  X and 

( a  ,p) E 1x1 with O<a+P 51, 

( 9  F 1=F2 if CcMI (a,P)= CCM; (a,P) 

(ii) FI L F2 if ccM; (a$) 5 CcMb (a$) 

(i i i) F=FI @ F2 if C,,; (a,P) =CcM; (a,P) + c,,; (Om 

(iv) F=FlO F2 if CcM; (a,P) CcMi (a$) -CCMi (a$), 0) 

(v) F=FI U F2 if CCMi (a,P) = maxi C,,; (a,P), C,,; ( s P )  1 

(vi) F=FI n F2 if C,,; (a,P) = min{ ccMl (a,P), C,,; (a,P) 1 

Example 6.2.1 

Let F1={a/{(.3,.5)/5,(.5,.2)/2), b/{ (.1,.7)/6,(.6,.4)/5, (.8,.1)/12,(.9,.1)/7), 



c/{(.2,.7)/2) ) and F2={ d{(.5,.2)/3),b/{(.6,.4)/4,(.9,. 1)/8,(.3,.4)/4} 

be two IFBs drawn from a set X={a, b, c) .  Then 

Fl UF2={d {(.3,.5)/5,(.5,.2)/3),b/{(.l,.7)/6,(.6,.4)/5,(.8,.1)/12, (.9,.1)/8,(.3,.4)/4), 

c/{(.2,.7)/2} } 

F1 17 F2 ={d{ (.5,.2)/2), b/{ (.6,.4)/4,(.9,. 1)/7) ) 

Fl Q F2={d{(.3,.5)/5,(.5,.2)l5},b/{(.l,.7)/6,(.6,.4)/9,(.8,.1)/l2,(.9,. 1)/15,(.3,.4)/4}, 

c/{(.2,.7)/2} } 

Fl O F2 ={ a/ { (.3,.5)/5),b/ {(.1,.7)/6, (.6,.4)/1, (.8,.1)/12 1). 

Proposition 6.2.1 

Let A,B and C be IFBs drawn from the set X. Then 

(i) AUB= BUA, A n B =  B n A  

(ii) AU(BUC)=(AUB)UC, An(BnC)=(AnB)nC 

(iii) AUA=A, AflA=A 

(iv) AU(BnC)=(AUB)n(AUC), An(BUC)=(AnB)U(AnC) 

(v) AQ(BUC)=(A@B)U(AQC),A@(BnC)=(A@B)n(A@C), 

(vi) AQB=B@A 

(vii) A@(B@C)=(A@B)QC 

Definition 6.2.5 

Let A and B be two non empty fuzzy bags drawn from the set X. Then a similarity 

measure between A and B denoted by S(A,B) is defined by 

1 
S(A,B)= - (1 - d(A(x)yB(x))), where # (X) = cardinality of X 

#(XI .EX M(x) 



Clearly ,OIS(A,B)Fl, S(A,A)=l and S(A,B)=S(B,A) ,for any non empty bags 

A and B. 

and d(A(x),B(x))= 0.cCMi(0)-x 0.cCMp(0) I 0 

Definition 6.2.6 

Let A and B be two non empty fuzzy bags drawn from the set X. Suppose w(x) is 

the weight of the element x in X such that w(x) E [O,1] , then the degree of 

similarity between two fuzzy bags A and B can be defined by 

, 0 5  0 51 and 

WS(A,B)= 
1 C[l- d(A(x)9B(x))] ,where w(x)=weight of the element x in X. 
w(x) E X  M(x) 

Clearly ,OIWS(A,B)Il,WS(A,A)=l and WS(A,B)=WS(B,A),for any two non 

empty fuzzy bags A and B. 

6.3 Application of similarity measure in decision analysis 

Definition 6.3.1 

The standard IFB of an IFB in a set X is defined as 



Consider the problem of deciding the best possible action out of 'n' alternatives 

involving m criteria on the basis of judgment of 'p' judges where each criteria has 

its corresponding weight. Let the 'n' alternatives be respectively Al,A2,A3,. . ..A, 

.... each of which depends upon all of the m factors or criteria X I , X ~ ,  Xm with 

.. weights W, ,i=1,2,. .,m respectively and these m criteria values are evaluated by p 

. . judges EI,E2,. .,Ep These criteria values clearly form an IFB drawn from the set 

X of all criteria , corresponding to the action Ai. Let us form a criteria matrix P by 

the criteria values given by p judges, as below 

where p, =(p,,v,,) consists of the membership value p,] and the non membership 

A1 

A2 

........ 

An 

value v,,with respect to i' alternative and j' criterion respectively. Here, 

XI X2 ........... .Xm 

............. pll p12 Plm 

........... p21 p22 P2m 

............................ 

.......... Pnl pn2 Pnm 

corresponding to action A,, the criteria values {pil, pi2, ...pi,} form an IFB F, 

... . drawn from the set X={X1,X2, Xm)where each X, has its weight wi, i=1,2,..m 

For each IFB Fi , the standard IFB S(F) is defined as S(F)={Xl/{ (.5,.5)/p}, X2/{ 

...... (.5,.5)/p) ..X,/{ (.5,.5)/p)), which is independent of i. Now each F, is 



compared with the standard IFB S(F) by the similarity measure with respect to p, 

and u , separately. Suppose S, = s P i  - sVj is the difference of similarity measure 

for each i. Then arranging the Si's in descending order of magnitude, we obtain a 

ranking of the actions in order of merit. 

An algorithm for the above method is presented below. 

6.3.1 Algorithm 

1 .Construct the criteria matrix P from the available information supplied by the m 

judges. 

2. Take the standard IFB S(F). 

3. Calculate the n weighted similarity measures WS,= WS[S(F),F,], i=1,2,..n with 

respect to membership value and non membership value separately . 

4.For each i, take S,= S - SVi,  the difference of similarity measure with respect 
Pi 

to membership value and non membership value and arrange St's in descending 

order of magnitude , say S. 1 ~ i ,  2 ...... 2 si ,  . 
11 

5. Choose A,  corresponding to S, as the best action out of n alternatives. 
I 

6. Stop. 

6.3.2 Case- Study 

Consider the problem of selection of an ofice assistant in a company that a 

perspective candidate has to satisfy some characteristic such as Hand writing, 



Typing speed ,Working under tension and English vocabulary, etc. However, we 

consider here only three criteria for easy handling of the problem which are Hand 

writing, Typing and working under tension denoted by XI, X2 and X3 .Thus 

X={X1,X2,X3}denote the set of criteria such that the weight of X1,X2 and X3 are 

.5,.8, and .9 respectively. Suppose there are four candidates A1,A2,A3 and A4 for 

the post of office assistant and there are five judges to select the best candidate for 

the particular post. The evaluation by the five judges based on the three criteria XI, 

X2, X3 is given in following criteria matrix. 

Therefore F={X1/{(.6,.3)/2,(.7,.2)/2,(.8,.1)/1},X2/{(.6,.4)/2,(.8,.1)/2,(.9,.1)/1}, 

X3/{(.3,.6)/3,(.5,.4)/1,(.6,.2)/1}} 

F~~{X~/{(.8,.1)/5},X~/{(.3,.5)/1,(.4,.5)/2,(.5,.3)/2},X~/{(.6,.2)/4, (.7,.2)/1}} 

F3={X~/{(.3,.5)/2,(.4,.5)/2,(.5,.3)/1},X2/{(.3,.1)/1,(.5,.4)/3,(.6,.2)/1}, 

X~/{(.7,.2)/1,(.8,.1)/3,(.9,.1)/1}} 

F~={X1/{(.6,.3)/4,(.7,.2)/1),X2/{(.6,.2)/2,(.7,.2)/2,(.9,.1)/1},X3/{(.4,.5)/3, (.5,.2)/2}} 

Now S(F)={X1/{(.5,.5)/5}, X2/{(.5,.5)/5}, X3/{(.5,.5)/5}} 

Then S ~ I = W S (  S(F),Fl)= .9036 , SVI=WS( S(F),FI)= A309 



Therefore SI=.0727, S2=.095, S3=.08 and S4=.091 and hence 

S22 S4> S3 ~ S I  i.e., ~ 2 ( 2 " ~  candidate) dominates all the others and so 2nd candidate 

is selected . 

6.4 Conclusion 

The concept of IFB is reviewed and then applied in decision analysis in selecting 

the most suitable action out of n alternatives on the basis m weighted criteria 

depending on the information of p judges. 



Chapter 7 

On Soft Sets, Fuzzy Soft Sets and Intuitionistic 

Fuzzy Soft Sets 

7.1 Introduction 

Most of our real life problems in medical sciences, engineering, management, 

environment and social sciences often involve data which are not always all crisp, 

precise and deterministic in character because of various uncertainties typical for 

these problems. Such uncertainties are usually being handled with the help of the 

topics like probability, fuzzy sets, intuitionistic fuzzy sets, interval mathematics and 

rough sets etc. However, Molodtsov [60 ] has shown that each of the above topics 

suffers from some inherent difficulties due to inadequacy of their parametrization 

tools and introduced a concept called 'Soft Set Theory' having parametrization tools 

for successfully dealing with various types of uncertainties. The absence of any 

restrictions on the approximate description in soft set theory makes this theory very 

convenient and easily applicable in practice. Subsequently Maji et al. [54,55,56 ] 

extended their works by studying the theoretical aspects of the ' Soft Set Theory, 

'Fuzzy Soft sets' and 'Intuitionistic Fuzzy Soft sets'. 



In the first section of this chapter, some well known definitions and results of soft 

set, hzzy soft set and intuitionistic fuzzy soft set are listed. In the next section, soft 

relation and fuzzy soft relation are introduced and then have applied in decision 

making problems. In the last two sections fuzzy soft set theory and intuitionistic 

fuzzy soft set theory have been applied in medical diagnosis problems separately . 

7.2 A brief survey of soft sets, fuzzy soft sets and 
intuitionistic fuzzy soft sets 

7.2.1 Soft Sets 

Definition 7.2.1.1 

Let X be a universal set, E a set of parameters and ACE. Then a pair (F,A) is called 

soft set over X, where F is a mapping from A to 2' , the power set of X. 

Definition 7.2.1.2 

Let (F,A) and (G,B) be two soft sets over a common universe X, then 

(i ) (F,A) C (G,B) , if A c  B and V e E A, F(e)=G(e), 

(ii) (F,A)=(G,B), if(F,A) C(G,B)and (G,B) C (F,A), 

(iii) Let E=(el,e2,. . ..., e,)be a set of parameters. The NOT set of E, denoted by IE, 

is defined by 1 E=(kl, 7e2,le3, . . ..,k,), where le,=not el, V i. 

It may be noted that 1 and 1 are different operators. 

(iv) The complement of a soft set (F,A), denoted by (F,A) ', is defined by 

(F,A)'=(F',~ A),where ~ ' : 1~ -+2 '  is a mapping such that ~'(e)=2'-~(le), V eE 1 A. 



(v) A soft set (F,A) is said to be a null soft set , denoted by cD ,if V e E A, F(e)= cD 

(null set) of X. 

(vi) A soft set (F,A) is said to be absolute set over X, denoted by A , if 'd e E A, 

F(e)=X. 

(vii) AND operation of two soft sets : If (F,A) and (G,B) be two soft sets then 

"(F,A) AND (G,B)", denoted by (F,A) r\(G,B)=(H,Ax B), where 

H( a,P)=F(a n G  (P), 'd ( ~ , P > E  Ax B. 

(viii) OR operations of two soft sets : If (F,A) and (G,B) be two soft sets then 

"(F,A) OR(G,B)" denoted by (F,A) v(G,B)=(O,Ax B) ,where 

O( a,P)=F(a ) u G(P),v ( a,P) a x  B. 

(ix)Union of two soft sets of (F,A) and (G,B) over the common universe X is the 

soft set (F,A) CJ (G,B)=(H,C)., where C=AuB, such that v e E C, 

H(e) = F(e), if e E A-B, 

=(Ye), if e~ B-A, 

=F(e)uG(e), if e € A n B .  

(x) Intersection of two soft sets of (F,A) and (G,B) over the common universe X is 

the soft set (F,A) h (G,B)=(O,C), where C=AnB, and v e E C, O(e)=F(e) or G(e) . 

Example 7.2.1.1 

Let X={CI,C~,C~) be the set of three cars and E ={costly(el), metallic colour (ez) 



cheap (e3)) be the set of parameters ,where A={el,ez) cE. Then 

(F,A)={F(el)={cl,c2,c3),F(ez)={cl,c3)}is the crisp soft set over X which describes 

the " attractiveness of the cars" which Mr. S(say) is going to buy . 

7.2.2 Fuzzy Soft Sets 

Definition 7.2.2.1 

Let X be a universal set, E a set of parameters and ACE. Let F (X) denotes the set of 

all fuzzy subsets of X. Then a pair (F,A) is called fuzzy soft set over X, where F is 

a mapping from A to IF (X). 

Definition 7.2.2.2 

Let (F,A) and (G,B) be two fuzzy soft sets over a common universe X, then 

(i) (F,A) 2 (G,B) , if A c  B and v e E A, F(e) is a fuzzy subset of G(e). 

(ii) (F,A)=(G,B) , if (F,A) Z (G,B) and (G,B) 5 (F,A), 

(iii ) The complement of a fuzzy soft set (F,A) denoted by 

(F,A)', is defined by ( F,A)' = (F',-!A), where FC: 1~ -+ F (x) is a mapping given 

by FC(ct)= fuzzy complement of F(lct), v a E 1 ~ .  

(iv) (F,A) is said to be a null fuzzy soft set, denoted by @, if v e E  A, 

F(e)=null fuzzy set of X. 

(v ) A fbzzy soft set (F,A) is said to be absolute fuzzy soft set over X , denoted by A, 

if v e E A, F(e)=X. 

(vi)Union of two fuzzy soft sets (F,A) and (G,B) is a fuzzy soft set, denoted by 



(H,C)=(F,A) 5 (G,B), if C=A u B and tr eE C, 

w e )  = if e E A-B, 

=G(e), if e~ B-A, 

=F(e)GG(e),if e c A n B .  

(vii) Intersection of two fuzzy soft sets (F,A) and (G,B) is a fuzzy soft set, 

denoted by (H,C)=(F,A) 6 (G,B),if C=A n B and v e E C,H(e)=F(e) n G(e). 

(viii) AND(/\) operation of two hzzy soft sets : If (F,A) and (G,B) are two fuzzy 

soft sets then (F,A) AND (G,B),denoted by 

(H,A x B)= (F,A) A (G,B), where H(a, P)=F(a) 6 G(P), V a6 A and b' P E B. 

(ix ) OR(v)  operation of two fi~zzy soft sets: If (F,A) and (G,B) are two fuzzy soft 

sets, then (F,A) OR(G,B), denoted by 

(0,A x B)= (F,A) v (G,B), where O(a, P)=F(a) G G(P), b' a E A and b' P E B. 

Example 7.2.2.1 

Let X={CI,C~,C~) be the set of three cars and E ={costly(el), metallic colour(e2) 

cheap(e3)) be the set of parameters ,where A={el,ez) c E. Then 

(G,A)={G(el)={c1/.6,c2/.4,c3/.3),G(e2)={c1/.5,c2/.7,c3/.8}) is the hzzy soft set over 

X describes the " attractiveness of the cars" which Mr. S(say) is going to buy . 

7.2.3 Intuitionistic Fuzzy Soft Sets(1FSSs) 

Definition 7.2.3.1 

Let X be a universal set, E a set of parameters and A c E. Let Z(X) denote the set of 



all intuitionistic fuzzy subsets of X. Then a pair (F,A) is called an intuitionistic 

fuzzy soft set(1FSS) over X, where F is a mapping from A to Z(X). 

Definition 7.2.3.2 

Let (F,A) and (G,B) be two IFSSs over a common universe X, then 

(i) (F,A) 2 (G,B), if A c B and v e E A, F(e) is an intuitionistic fuzzy subset of G(e). 

(ii) (F,A)=(G,B) , if (F,A) (G,B) and (G,B) 5 (F,A), 

(iii ) The complement of an IFSS (F,A) denoted by (F,A)', is defined by 

( F,A)C = (F',~A), where FC: 1~ -+ Z(X)is a mapping given by 

Fc(a)= intuitionistic fuzzy complement of F(la), v a €  ]A. 

(iv) (F,A) is said to be a null IFSS, denoted by 4 if v eE A, F(e)=null intuitionistic 

fuzzy set of X. 

(v ) An IFSS set (F,A) is said to be absolute IFSS over X , denoted by A, 

if v e E A, F(e)=X. 

(vi) Union of two IFSSs (F,A) and (G,B) is an IFSS, denoted by 

(H,C)=(F,A) G (G,B), if C=A u B and v e E C, 

w e )  = F(e), if ~ E A - B ,  

= G(e), if e E B-A, 

=F(e) GG(e), i f e ~ A n B .  

(vii) Intersection of two IFSSs (F,A) and (G,B) is an IFSS, denoted by 

(H,C)=(F,A) f i  (G,B), if C=A n B and v e E C, H(e)= F(e) n G(e). 

(viii) AND(/\) operation of two IFSSs : If (F,A) and (G,B) are two IFSSs then 



(F,A) AND (G,B) is an IFSS, denoted by 

(H,A x B)= (F,A) A (G,B),where H(a, P)=F(a) 6 G(P), V a E A and V P E B. 

(ix) OR(v)  operation of two IFSSs : If (F,A) and (G,B) are two IFSSs then 

(F,A)OR(G,B) is an IFSS, denoted by (0,A x B)= (F,A) v (G,B), 

where O(a, P)=F(a) G G(P), V a E A and V p E B. 

Example 7.2.3.1 

Let X={cI,c2,c3} be the set of three cars and E={costly(el), metallic colour(e2), 

cheap(e3),)be the set of parameters. Consider two intuitionistic hzzy soft sets (F,A) 

and (G,B),where A={el,e2} c E and B={el,e2,e3} c E and 

(F,A)={F(e1)={~~/(.6,.3),~2/(.4,.4),~3/(.3,.6)), F(e2)={~1/(.6,.2),~2/(.7,.2),~3/(.5,.4)} ) 

and (G,B)= {G(el)= {c~/(.6,.3),~2/(.4,.5),~3/(.3,.6)}, G(e2)= {c1/(.6,.4),cz/(.7, .2), 

c3/(.5,.5)), G(e3)={~1/(.2,.6),~2/(.4,.4),~3/(.5,.3))) .Then 

(i ) (F,A)"= { F(le I)= {c1/(.3,.6),~2/(.4,.4),~3/(.6,.3)} ,F(le2)= {c1/(.2,.6),c2/(.2, .7),c3/(.4, .5)) 

(i i) (F,A) (G,B) . 

(iii) (H,C)=(F,A) G (G,B)={H(el)={cl/(.6,.3),c2/(.4,.5),c3/(.3,.6)}, 

H(e2)={ c1/(.6,.2),~2/(.7,.2),~3/(.5,.4) ), H(e3)={ c1/(.2,.6),~~/(.4,.4)~3/(.5,.3))) 

(iv) (H,C)=(F,A) f i  (G,B)={H(el)= {c1/(6,.3),~2/(.4.4),~3/(.3,.6)}, 

H(ez)= { c 1/(.6,.2),~2/(.7,.2),~3/(.5,.4)} } . 

Proposition 7.2.3.1 

If (F,A) and (G,B) are two soft sets (or fuzzy soft sets or intuitionistic fuzzy soft sets) 

then 



(i ) (FA) CJ (FA) =(FA) 

(ii) (F,A) f i  (F,A) =(F,A) 

(iii) (F,A) CJ 9, = @ 

(iv) (F,A) 6 I$ = 9, 

(v) (F,A) CJ 2 = 2 ,where 2 is the absolute soft set(or absolute fuzzy soft set 1 IFSS). 

(vi) (F,A) f i  A=A 

(vii) ((F,A) CJ (G,B))' = (F,A)' CJ (G,B)' 

(viii) ((F,A) 6 (G,B))' =(F,A)' ii (G,B)c 

(ix) ((F,A) v (G,B))' = (F,A)' A (G,B)' 

(x) ((FA) A (G,B)IC =(F,AIC v (G,BIC. 



7.3 Soft Relations and Fuzzy Soft Relations 

7.3.1 Soft Relations 

 he concept of soft set is one of the recent topics developed for dealing with the 

uncertainties present in most of our real life situations. Further the availibity of the 

parametrization tools in soft set theory enhances the flexibility of its applications. 

Here soft and fuzzy soft relations are introduced and then applied in a decision 

making problem. 

Definition 7.3.1.1 

Let U and V be two initial universe sets and let E be a set of parameters and (F,E) 

and (G,E) be soft sets over U and V respectively, then (H,E) is a soft relation 

between (F,E) and (G,E) over UxV if 

H:E+~'"" is a mapping such that H(e) ={(u,,v,):u, €F(e) and v, ~G(e) , 'deeE) 

= 4, otherwise. 

Example 7.3.1.1 

Let U={u1,u2,u3,u4} be the set of four houses and V={vI,v2,v3) be the set of three 

farm houses. Also let, E={el,e2,e3) be the set of parameters namely el=expensive, 

e2=wooden and e3=prime location. Suppose that F(el)= {ul ,u3} ,F(e2)= {u2,u4)and 

F(e3)={ul,u2).Then the soft set (F,E) is a parametrized family {F(e1),i=1,2,3)of 

'parts of this chapter will appear as a paper entitled " Application of Soft and Fuzzy Soft Relations in 
Decision Making Problems" in 'Bulletin of Pure and Applied Sciences'. 



subsets of U, giving a collection of approximate description of houses. Similarly 

the soft set (G,E) is also a parametrized family {G(ei),i=1,2,3)0f subsets of V, where 

G(eI)={vl ,v3), G(e2)={vl ,v2) ,G(e3)={v2,v3), giving another collection of 

approximate description of farm houses. Then (H,E) is a parametrized family 

(H(ei) ,i=1,2,3)of subsets UxV, where H(~I)=((~I,~I),(~I,v~),(u~,vI),(u~,v~)), 

H(e2)={(~2,~1),(~2,~2),(~4,~1),(u4,v2))and H(e3)={(ul,v2),(ul,v3),(~2,~2),(~2,~3)) and 

(H,E) is a soft relation between (F,E) and (G,E). 

The tabular representation of soft sets (F,E) ,(G,E) and soft relation (H,E) are given 

below 



Definition 7.3.1.2 

Let (HI,E) and (H2,E) be two soft relations between (F,E) and (G,E) over UxV. Then 

(i) the union of (H1,E) and (H2,E) is also soft relation, denoted by 

(H,E)= (H1,E) \I, (H2,E), such that H(e) = Hl(e) u Hz(e), V e E E and 

( ii) the intersection of (H1,E) and (H2,E) is also soft relation, denoted by 

(K,E) = (H1,E) 6 (H2,E), such that K(e) = Hl(e) n H2(e) , V e E E. 

uxv 

(ul,vl) 

(UI,VZ) 

(u1,v3) 

(u2,v1) 

(u2,vz) 

( ~ 2 . ~ 3 )  

( ~ 3 9 ~ 1 )  

(u3,v3) 

( ~ 4 3 ~ 1 )  

(u4,~2) 

el e2 e3 

1 0 0 

0 0 1 

1 0 1 

0 1 0 

0 1 1 

0 0 1 

1 0 0 

I 0 0 

0 1 0 

0 1 0 



Example 7.3.1.2 

From example 7.3.1.1, let 

tHl>E) 
- - 

UxV 

( u I , ~ , )  

(u1,vz) 

( ~ 1 3 ~ 3 )  

(u2,v1) 

(u2,vz) 

( ~ 4 9 ~ 1 )  

e l  e2 e3 

1 0 0 

0 0 1 

1 0 1 

0 1 0 

0 1 1 

0 1 0 

UxV el e2 e3 

(ul,vl) 1 0 0 

(u1,vz) 

( ~ 1 3 ~ 3 )  

(u2,v1) 

(u2,v2) 

( ~ 2 . ~ 3 )  

( ~ 4 ~ 1 )  

( ~ 4 3 ~ 2 )  

0 0 1 

1 0  1 

0 1 1 

0 1 1 

0 0 1 

0 1 0 

0 1 0 



Definition 7.3.1.3(Complement of a soft relation) 

Suppose (F,E)' and (G,E)' are the complements of the soft sets (F,E) and (G,E) over 

U and V respectively. Then the complement of the soft relation (H,E) over UxV is 

also a soft relation (H,E)' over UxV if 

HC: 1 E + 2 UxV is a mapping such that 

Hc(le) = {(u,,~,) :u, ~ F ( l e )  and v, ~G( le ) ,b ' e~E)  

Example 7.3.1.3 

From example 7.3.1.1 

(F,EIC @YE)C and (H,E)C 

Definition 7.3.1.4 

Suppose (F,E), (G,E) and (H,E) are three soft sets over U and V and W respectively. 

Further, (KI,E) and (K2,E) are soft relations between the pair of soft sets (F,E) and 

(G,E) over UxV and the pair of soft sets (G,E) and (H,E) over VxW respectively . 

Then the composition of (K1,E) and (K2,E) is also a soft relation (K,E) over UxW if 

K : E + 2 UxV such that 

K(e)= { (u,w) : 3 v EV s.t.(u,v)~Kl(e) and ( v , w ) ~  Kz(e),'v' UEU,WE W) 



Definition 7.3.1.5 

Let (H,E) be a soft relation between the soft sets (F,E) and (G,E) over UxU, then 

(H,E) is called, 

i) reflexive iff (u , ,~,)  E H(e), b' e E E and V u, E U. 

ii) symmetric iff (uI,uJ) €H(e) 3(uJ,u,) cH(e) ,V ~ E E ,  U~,UJE U 

iii) transitive iff (u,,u,) and (uJ,uk) €H(e) =(u,,uk) eH(e), 

b' eEE and b'u,,uJ,uk~U 

Definition 7.3.1.6 

A soft relation is said to be a soft tolerance relation if it is reflexive and symmetric. 

Definition 7.3.1.7 

A soft relation is said to be soft equivalence relation if it is reflexive, symmetric and 

transitive. 

Example 7.3.1.4 

The soft relation (H,E) between the soft sets (F,E) and (G,E) is a soft equivalence 

relation where 

(F,E) (G,E) 



7.3.2 Fuzzy Soft Relations 

Definition 7.3.2.1 

Let U and V be two initial universe sets and let E be a set of parameters and (F,E) 

and (G,E) be two fuzzy soft sets over U and V respectively and F(UxV)be the set of 

all fuzzy subsets of UxV , then (H,E) is a fuzzy soft relation between (F,E) and (G,E) 

over UxV if 

H:E+F(UxV )is a mapping such that ,Ve€E ,H(e)={(ul,vJ)/p, : plJ =min{p, ,pJ )), 



Example 7.3.2.1 

Suppose U={uI,u2, u3,u4}is a set of four houses and V={v1,v2,v3) is another set of 

three farm houses. Further, suppose, E={el,e2, e3)is the set of parameters, namely 

el=expensive,e2=wooden and e3=prime location such that F(el)={ul/.4,u2/l .O, ~31.5, 

u4/.2),F(e2)={u1/.4,u2/.6,u3/.8,u4/.3)and F(e3)={u1/.2,u2/.3,u3/.7,u4/.3).The fuzzy soft 

set (F,E) is a parametrized family {F(e,), i=1,2,3)of fuzzy subsets of U, giving a 

collection of an approximate description of houses and (G,E) is also a parametrized 

family{G(eI),i=1,2,3)of fuzzy subsets of V, where G(el)={v1/.3,~2/.7,~3/.5}, 

G(e2)={v1/.7, v2/.4,v3/.6) and G(e3)={v1/.3,v2/.8,v3/.9), giving another collection of 

approximate description of farm houses. Then (H,E) is a parametrized family 

{H(eI),i=1,2,3)of fuzzy subsets of UxV where H(e~)={(ul , v I ) / .~ , (u I ,v~) / .~ ,  (ul ,v3)/.4, 

(u2,v1)/.3,(u2,v2)/.7,(~2,v3)/.5,(~3,~ 1)~.3,(~3,v2)~.~,(u3,v3)~.5,(u4,vl)~.2,(u4,v2)~.2, 

(~4,~3)/.2), H(e2)={(~1,~1)/.5, (~i ,~2)/ .4 ,  ( u I , v ~ ) / . ~ ,  (~2,~1)/.6, (~2,~2)/.4, (~2,~3)/.6, 

(~3,~1)/.7, (~3,~2)/.4, (~3,~3)/.6, ( u ~ , v I ) / . ~ ,  (m,v2)/.3, (~4,~3)/.3 1 and H(~~)=( (UI ,VI ) / .~ ,  

(ul,v2)/.2,(u1,v3)/.2,(u2,v1)/.3,(u2,v2)~.3,(u2,v3)~.3,(u3,vl)~.3,(u3,v2)~.7,(~3,v3)~.7, 

( u ~ , v I ) / . ~ ,  (~4,~2)/.3, (w,v3)/.3 ), and 

(H,E) represents a fuzzy soft relation between (F,E) and (G,E). 

The tabular representation of fuzzy soft sets (F,E) ,(G,E) and fuzzy soft relation 

(H,E) are given below. 



Definition 7.3.2.2 

Let (H1,E) and (H2,E) be two fuzzy soft relations between (F,E) and (G,E) over UxV. 

Then 

( i ) the union of (H1,E) and (H2,E) is also fuzzy soft relation denoted by 

UxV 
( u I , ~ , )  

(u1,v2) 

(u,,v3) 

( u z , ~ , )  

(u2,v2) 

( ~ 2 . ~ 3 )  

(u3,vI) 

( u 3 , ~ 2 )  

(u3 ,~3)  

(u4,v1) 

( u 4 , ~ 2 )  

(u4,v3) 

el e2 e3 
.3 .5 .2 

.7 .4 .2 

.4 .5 .2 

.3 .6 .3 

.7 .4 .3 

.5 .6 .3 

.3 .7 .3 

.5 .4 .7 

.5 .6 .7 

.2 .3 .3 

.2 .3 .3 

.2 .3 .3 



(H,E)= (HI,E) CJ (H2,E) such that H(e) = Hl(e) 13 Hz(e), V e E E 

(where IS is the operation of fuzzy union of two fuzzy sets) and 

( ii) the intersection of (H,,E) and (H2,E) is also fuzzy soft relation denoted by 

(K,E) = (HI,E) 6 (H2,E) such that K(e) = Hl(e) TF Hz(e) , 'd e E E, (where ii is 

the operation of hzzy intersection of two fuzzy sets) . 

Example 7.3.2.2 

Suppose (HI,E) and (H2,E) are two fuzzy soft relations between the fuzzy soft sets 

(F,E) and (G,E) over UxV. 

and 

UxV 

(u],v]) 

(u1,v2) 

(u2,v2) 

(u,,v~) 

(u4,v1) 

e l  e2 e3 

.5 .4 .2 

.7 0 .3 

.4 1 .8 

.3 . I  .8 

.7 .4 0 

UxV 

(UI ,VI)  

(u1,v,) 

( ~ 2 ~ ~ 3 )  

(uJ,v~)  

( ~ 4 , ~ 2 )  

el  e2 e3 

.4 .6 .5 

.3 .2 .4 

0 1 .8 

.2 .6 .3 

.6 .2 . I  



and 

Definition 7.3.2.3(Complement of a hzzy soft relation) 

Suppose (F,E)' and (G,E)' are the complements of the fbzzy soft sets (F,E) and (G,E) 

over U and V respectively. Then the complement of the fuzzy soft relation (H,E) 

between(F,E) and (G,E) over UxV is also a soft relation (H,E)' over UxV if 

HC: 1 E + F(UxV) is a mapping such that 

(K,E) 

Hc(le) = {(ul,vJ)/pU : ~ I J  = min{pI , pJ 1, (ul ,pl)~F(le) and (vJ, pJ)€G(k),Ve€E). 

UxV el e2 e3 



Example 7.3.2.3 

From example 7.3.2.1, 

(F,E)C (G,E)c 

and 

Definition 7.3.2.4 

Let (H,E) be a fuzzy soft relation between (F,E) and (G,E) over UxU, then 

( i ) (H,E) is called reflexive if (hl,hl)=l, V ~ E E  and V h,cU.  

(ii) (H,E) is called symmetric if (h,,hJ)= (hJ,hl), VeEE and h , ,h j~U.  

(iii) (H,E) is called transitive if (hl,hJ)=hl, (h,,hk)= h2 implies 

PH(e) (h,,hk)= h,where k 2min {hl , h z ) , V e ~ E  and hl,hJ ,hk€U. 

UxV 

(UI,VJ)  

(u,,vz) 

(u1,v3) 

( ~ 2 . ~ 1 )  

( ~ 2 ~ ~ 2 )  

(u*,v3) 

(u3,v1) 

( u 3 , ~ 2 )  

(u3,v3) 

(u4,v1) 

(u~,v*) 

( ~ 4 9 ~ 3 )  

e l  ez e3 

.6 .3 .7 

.3 .5 .2 

.5 .4 . I  

0 .3 .7 

0 .4 .2 

0 .4 . I  

.5 .2 .3 

.3 .2 .2 

.5 .2 . I  

.7 .3 .7 

.3 .6 .2 

.5 .4 . I  



Definition 7.3.2.5 

A hzzy soft relation is said to be fuzzy tolerance relation if it is reflexive and 

symmetric. 

Definition 7.3.2.6 

A fuzzy soft relation is called fuzzy soft equivalence relation if it is reflexive, 

symmetric and transitive. 

Example 7.3.2.4 

The fuzzy soft relation (H,E) between the fuzzy soft sets (F,E) and (G,E) is a fuzzy 

soft equivalence relation where 

(FJ) (G,E) 



7.3.3 Applications of soft relations and fuzzy soft relations 

Molodtsov [60] introduced soft set theory and showed its applications in several 

different directions like game theory, operation research, smoothness of functions, 

Riemann integration, Perron integration, probability, theory of measurement etc. 

Later, Maji et al. [55,56,57 1 presented applications of soft set and fuzzy soft set in 

decision making problems. In this section, we present applications of soft relation in 

both crisp and hzzy setting. Suppose U=(m~,m~,m3,m~}is the set of male and 

V=(fi,f2,f3)is the set of female tennis players having ranking in the mixed double 

version of the game seeking sponsorship. Also suppose the set 



E={el=height,e2=adaptability to climate change,es= stamina for playing long game, 

e4= physical fitness and es=high rank ho1der)represent the attributes required to 

judge the merit of a tennis player. The set of attributes is taken as the set of 

parameters in the language of soft set. 

Suppose one Mr. S is interested to sponsor a mixed pair of tennis players on the 

basis of his choice of parameters el=height,e2=adaptability to climate change and 

es=stamina for long game forming a subset A of E. 

( i ) In crisp soft setting 

We consider the soft sets (F,A) over U and another soft set (G,A) over V given by 

(F,A)={F(e1)={m1,m2),F(e2)={m1,m2,m4),F(e3)={m1,m3))and 

(G,A)={G(e1)={f1,fi),G(e2)={f1,f2),G(e3)={f1,f2,f3))respectively. The tabular 

representation of these soft sets are 

(FA) (G,A) 

Definition 7.3.3.1 

Choice value of a pair of players (m,,f,) E UxV is r,, given by 

rlJ = ( m , s f , ) ,  
eeA 

where (m,,f;)are the entries in the table of soft relation. The suffixes i j  of r, represent 

the suffixes of 'm' and 'f respectively of the ordered pair (m,,f,). 



Algorithm for selection of the mixed double players. 

1 .  input the soft sets (F,A) and (G,A) and the soft relation (H,A) w.r.t. the choice of 

the parameters of Mr. S. 

2. input the choice value r, = x (,,, 1,) of each pair (m,,f,) of (H,A). 
esA 

3.find m =max r, 

If m has more than one value, then any one of them can be chosen by Mr. S by using 

his option. 

From the above two tables of soft set, we formulate the tabular representation of the 

soft relations (H,A) between the soft sets (F,A) and (G,A) together with the 

respective choice value. 

Here max r,=rll.Thus the choice for Mr. S is the pair (m~,f,). 
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UxV 

(ml,fl) 

(ml,fi) 

(ml,f3) 

(m2,fl) 

(m2,fz) 

(m2,f3) 

(m3,fi) 

(m3,f2) 

(m3,f3) 

(m4,fi) 

el e2 e3 

1 1 1 

0 1 1 

1 0 1 

1 1 0 

0 1 0 

1 O 0 

0 0 1 

0 O 

0 0 1 

0 1 0 

Total 
choice 
value 
r l l=3 

r 2=2 

r13=2 

rzl=2 

r22=l 

rZ3= I 

r31=1 

r 3 2 = ~  

r33=I 

r4!=1 



(ii) In fuzzy soft setting 

We consider the fuzzy soft sets (F,A) over U and another fbzzy soft set (G,A) over V 

given by (F,A)= { F(el)={ml/l .O, m2/.4,m3/.3,m4/.7),F(ez)={ m1/.5, m2/.6,m3/.5, 

m4/ 1.01, F(e3)={ m11.8, m2/.9,m3/1 .O,m4/.6)) and (G,A)= {G(el)= { sl/.9,s2/.5,s3/.6), 

G(e2)={ s1/.6,s2/.8,s3/. 1.0 ), G(e3)={ s1/.7,s2/.6,s3/.5)). 

The tabular representation of these fuzzy soft sets (F,A) and (G,A) are respectively 

(FA)  
- 

Definition 7.3.3.2 Comparison table of a fuzzy soft relation (H,A) : 

The fuzzy soft relation is a square table having equal number of rows and columns 

and rows and columns are labelled by the pairs (m,,f,) of the cartesian product of both 

universes and the entries are r, ij=1,2,. . .,n given by r,=the number of parameters for 

which the membership value of (m,,f;) exceeds or equal to the membership value of 

(m,,f,),i.e. r,=p, V where p is the number of parameters in E. 

Definition 7.3.3.3 Row sum and column sum of a pair (m,,f;): 

Row sum of a pair (m,,f,) is denoted by s,, and is calculated by the formula 



s , = C  r, and the column sum of a pair (m.4) is denoted by p ,  and is calculated by 
esA 

the formula p,= r, 
e e A  

Definition 7.3.3.4 

Score of pair (m,,f,) is S, and is calculated by the formula SIJ= s,- p, 

Finally algorithm similar to that given in case of crisp soft setting can also be 

written in case of fuzzy soft setting . 

From the above two tables of fuzzy soft sets in the application of fuzzy soft 

relations, the tabular representation of the fuzzy soft relations (H,A) between the 

soft sets (F,A) and (G,A) is formulated and then the comparison table is prepared 

together with row and column sums score of each pair (m,,f;). 



Comparison Table 

( m ~ , f ~ )  

(m~,f i )  

(ml,f3) 

(m2,fl 

(m2,fi) 

(rnl,f3) 

(m3,f1) 

( r n 3 , f ~ )  

(m3,f3) 

(mr,fl) 

(m,f2) 

( m f 3 )  

Column 

sum 

(ml,fl) 

3 

1 

1 

2 

1 

1 

2 

1 

1 

I 

1 

1 

16 

(m~,fz) 

3 

3 

2 

2 

2 

1 

2 

2 

1 

3 

3 

2 

26 

(m~,fi) 

3 

2 

3 

2 

2 .  

2 

2 

2 

2 

3 

2 

3 

28 

( m ~ , f ~ )  

2 

1 

1 

3 

2 

2 

1 

0 

0 

2 

2 

2 

18 

(mz,fz) 

2 

2 

1 

3 

3 

2 

I 

1 

0 

3 

3 

2 

23 

(m2,4) 

2 

2 

2 

3 

3 

3 

I 

1 

I 

3 

3 

3 

27 

(m3,fl) 

3 

2 

2 

3 

2 

2 

3 

2 

2 

2 

2 

2 

27 

(m3,f2) 

3 

3 

2 

3 

3 

3 

3 

3 

2 

3 

2 

2 

31 

(m3,f3) 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

36 

(m4,fl) 

2 

1 

0 

2 

2 

I 

1 

1 

0 

3 

2 

1 

16 

(m4,f2) 

2 

2 

1 

1 

1 

0 

1 

1 

0 

2 

3 

2 

16 

(mz,f3) 

2 

I 

2 

1 

1 

1 

1 

1 

I 

2 

1 

3 

17 

Row 

sum 

30 

23 

20 

28 

25 

20 

21 

18 

13 

30 

27 

26 

Score 

14 

-3 

-8 

10 

2 

-7 

-6 

-13 

-23 

14 

11 

9 



Clearly the maximum score is 14 secured by the pairs (ml,fI) and (m4,fl). Therefore 

Mr.S can sponsor any pair of these two. 

7.3.4 Conclusion 

The concept of the soft relations and fuzzy soft relations are introduced and applied 

in decision making problem with separate examples. 



7.4 An Application of Fuzzy Soft sets in Medical 
Diagnosis 

ÿÿ he concept of fuzzy soft set is applied here to extend Sanchez's approach for 

medical diagnosis with a hypothetical case study. 

7.4.1 Application of fuzzy soft sets in medical diagnosis 
problem 

Here we present an application of fuzzy sofi set theory in medical diagnosis 

following Sanchez's approach[87].For this, suppose S is a set of symptoms, D is a 

set of diseases and P is a set of patients. Then a fizzy soft set (F,D) is constructed 

over S, where F is a mapping F: D + I ~  .This fuzzy soft set gives a relation matrix, 

say R1,called symptom- disease matrix. Its complement (F,D)' gives another relation 

matrix, say R2, called non symptom-disease matrix. Analogous to Sanchez's notion 

of 'Medical knowledge' we refer to the matrices R1 and R2 as 'Soft Medical 

Knowledge'. 

Again we construct another soft set ( F1,S ) over P, where F1 is a mapping given by 

FI: S+I' .This fizzy soft set gives a relation matrix Q called patient- symptom 

matrix. Then we obtain two new relation matrices TI=QoR1 and T2 =Q oR2, called 

'contents of this chapter was presented in the Conference on Fuzzy Set Theory and its Mathematical 
Aspects and Applications., December 26-28,2002,Deptt. of Mathematics,BHU,Varanasi,lndia and 
have appeared as a paper entitled "Application of Fuzzy Soft Sets in Medical DiagonosisWin the 
Proceedings, pp. 172-175,Allied Publishers Pvt. Limited, New Delhi. 



symptom -patient matrix and non symptom-patient matrix respectively, in which the 

membership values are given by 

PT, (P, ,dJ)= v C P ~  (P, A PR, (ek d J ) l  and 

PT2 (P, , d, )= v [Pq (P, ,ek ) A pR2 (ek, dJ )I ,where, v=max and ~ = m i n .  

Now if max {pT, (p, ,dJ)-pT, (p,, dJ))  occurs for exactly (p,, dk) only then we conclude 

that the acceptable diagnostic hypothesis for patient p, is the disease dk. In case there 

is a tie the process has to be repeated for patient p, by reassessing the symptoms. 

7.4.2 Case study 

Suppose there are three patients pl,p2, and p3 in a hospital with symptoms 

temperature, headache, cough and stomach problem. Let the possible diseases 

relating to the above symptoms be viral fever and malaria. We consider the set 

S={el,e2,e3,e4) as universal set where el,e2,e3 and e4 represent symptoms temperature, 

headache, cough and stomach problem respectively and the set D={dl,d2) where d l  

and d2 represent the parameters viral fever and malaria respectively. Suppose that 

F(dl)={el/.9,e2/.4,e3/.5,e4/.2),F(d2)={e1/.6,e2/.5,e3/.2,e4/.8). The fuzzy soft set (F,D) 

is a parametrized family { F(dl), F(d2))of all fuzzy sets over the set S and are 

determined from expert medical documentation. Thus the fuzzy soft set (F, D) gives 

an approximate description of the soft medical knowledge of the two diseases and 

their symptoms. This h z z y  soft set (F,D) and its complement (F,D)' are represented 



by two relation matrices Rland R2 ,called symptom-disease matrix and non 

symptom disease matrix respectively, given by 

e, .9 .6 e, . I  .4 

e, .4 .5 
Rl= e, 1 .5 .2 1 and R2 .5 '5] .8 

e, .2 .8 .8 .2 

Again we take P={pl,p2,p3) as the universal set where p1,p2 and p3 represent the 

patients under consideration and S={el,e2,e3,e4)as the set of parameters detailed 

above. Suppose that, Fl(e1)={p1/.8,p2/.7,p3/.4),F1(e2)={p1/.4,p2/.3,p3/.5) 

Fl(e3)={p1/.6,p2/.4,p3/.4]and Fl(e4)={p1/.3,p2/.6,p3/.7) . The fuzzy soft set is another 

parametrized family of all fuzzy sets over P and gives a collection of approximate 

description of the symptoms in the hospital. This fuzzy soft set (F1,S) represents a 

relation matrix Q called patient -symptom matrix given by 

Then combining the relation matricesR1 and R2 separately with Q we get two 

matricesTlandT2 called patient-disease and patient-non disease matrices respectively 

given by 

dl d2 



Now, it clear from matrix TI-T2 that the patient p, is suffering from disease dl and 

patient p2 and p3 are both suffering from disease d2. 

7.4.3 Conclusion 

Here we applied the notion of fuzzy soft sets in Sanchez's method of medical 

diagnosis. A case study has been taken to exhibit the simplicity of the technique. 



7.5 An Application of Intuitionistic Fuzzy Soft Sets 

in Medical Diagnosis 

'1n this part we extend Sanchez's approach for medical diagnosis using intuitionistic 

fuzzy soft sets and exhibit the technique with a hypothetical case study. 

7.5.1 Introduction 

Out of several generalizations of fuzzy set theory for various objectives, the notion 

introduced by Atanassov[5,6] in defining intuitionistic fuzzy sets (IFSs) is interesting 

and useful. But Molodtsov [60] has shown that this topic suffers from some inherent 

difficulties due to inadequacy of parametriation tools and introduced a concept called 

'Soft Set Theory' having parametrization tools for successfully dealing with various 

types of uncertainties. Maji et a1.[56] have developed a theoretical study of the 

'Intuitionistic Fuzzy Soft Set'(IFSS).The combination of Intuitionistic Fuzzy Set and 

Soft Set will be more useful in the field of applications wherever uncertainty appear. 

De et a1.[27] have studied Sanchez's[87] method of medical diagnosis using 

intuitionistic fizzy set. Our proposed method is an attempt to improve the results in 

[27]using the complement concept of IFSS to formulate a pair of medical knowledge, 

hereafter called soft medical knowledges. 

In section 7.5.2, we present a new method for medical diagnosis through IFSS 

and section 7.5.3 contains an algorithm of the method. Then in the next section a 

hypothetical case study is discussed using the proposed method . 
'parts of this chapter has appeared as a paper entitled 'An Application of Intuitionistic Fuzzy Soft 

Sets in Medical Diagnosis' in ' Bio Science Research Bulletin', Vo1.2 (2003) 12 1 - 127. 



7.5.2. Application of intuitionistic fuzzy soft set in medical 
diagnosis problem 

Suppose S is a set of symptoms related to sickness, D is a set of diseases and P is a set 

of patients. Construct an intuitionistic fuzzy soft set (F,D) over S, where F is a 

mapping F:D+P(S). A relation matrix say, R1 is constructed from the intuitionistic 

fuzzy soft set (F,D) and name it symptom-disease matrix. Similarly its complement 

(F,D)' gives another relation matrix, say RZ, called non symptom-disease matrix. 

Analogous to Sanchez's notion of 'Medical knowledge' we refer to each of the 

matrices R1 and Rz as 'Intuitionistic Soft Medical Knowledge'. Again we construct 

another intuitionistic soft set (F1,S) over P, where F1 is a mapping given by 

FI:S+P(P).This intuitionistic fbzzy soft set gives another relation matrix Q called 

patient-symptom matrix. Then we obtain two new relation matrices T I = Q o R I  and 

T2=Q0R2, called symptom-patient matrix and non symptom-patient matrix 

respectively, in which the membership values are given by 

and the non-membership function given by 

v  (P., d ) = A { v  (P . , e . )vv  (e d )), T, 1 k Q ~ J  R, j ' k  

where v = max and A = min . 



( 1  p -v ) and n =(I- pT2 -vT2) are the hesitation parts with respect to. 
T~ T2 

TI  and T2 respectively then we calculate STl = pT, - v n and S = p - v n 
1 T2 T2 T2 T2 ' 

which we call as diagnosis score for and against the disease respectively. 

Now, if max { s, (p, , d,) - sT2 (p,, d,))occurs for exactly (p,, dk) only ,then we 
I 

conclude that the acceptable diagnostic hypothesis for patient p, is the disease dk. 

In case there is a tie, the process has to be repeated for patient p, by reassessing the 

symptoms. 

7.5.3 Algorithm 

1 .input the IFSSs (F,D) and (F,D)' over the sets S of 

symptoms, where D is the set of diseases. Also write the soft medical 

knowledge R1 and R2 representing the relation matrices of the IFSS 

(F,D) and (F,D)' respectively. 

2. input the IFSS (FI,S) over the set P of patients and write its relation 

matrix Q. 

3. compute the relation matrices Tt=Q o R1 and T2=Q 0 R2. 

4. compute the diagnosis scores S and S . 
Tl T2 

5. find Sk = max { sTl (p, , d,) - sT2 (p,, d,)) . Then conclude that the patient 
I 

p, is suffering from the disease dk 



6. if Sk has more than one value then go to step one and repeat the process 

by reassessing the symptoms for the patients. 

7.5.4 Case Study 

Suppose there are three patients pl,p2 and p3 in a hospital with symptoms temperature, 

headache, cough and stomach problem. Let the possible diseases relating to the above 

symptoms be viral fever and malaria .We consider the set S={ el,e2,e3,e4) as universal 

set, where el,ez,e3 and e4 represent the symptoms temperature, headache,cough and 

stomach problem respectively and the set D={dl,dz)where d l  and d2 represent the 

parameters viral fever and malaria respectively. Suppose that F(dl)={el/(.9,.1), 

e2/(.4,.5),e3/(.5,.3),e4/(.2,.7)) ,F(dz)= {e1/(.6,.2),e2/(.5,.3),e3/(.2,.6),e4/(.8,. 1)). The 

intuitionistic fuzzy soft set (F,D) is a parametrized family 

{F(dl), F(d2)) of all intuitionistic fuzzy sets over the set S and are determined from 

expert medical documentation. Thus the fuzzy soft set (F,D) gives an approximate 

description of the intuitionistic soft medical knowledge of the two diseases and their 

symptoms. This intuitionistic fizzy soft set (F,D) and its c~rnplement(F,D)~ are 

represented by two relation matrices R1 and R2, called symptom-disease matrix and 

non symptom-disease matrix respectively, given by 

dl d2 d 1 d2 



Again ,we take P={ pl, p2, p3) as the universal set where p1,p2 and p3 represent 

patients respectively and S= { el, e2, e3, e4) as the set of parameters. Suppose that, 

FI (el)= {p1/(.8,.2),p2/(.7,.1),~3/(.4,.5I),F1 (e2)= {p1/(.4,.5),~2/(.3,.6) p3/(.5,.5) 1, 

FI (e$= {p1/(.6,.3),~2/(.4,.5), p3/(4,.6))and FI (e4)= {p1/(3,.4), p2/(.6,.3), p3/(.7,.2)). 

The intuitionistic fuzzy soft set (FI,S) is another parametrized family of all 

intuitionistic fuzzy sets and gives a collection of approximate description of the 

patient-symptoms in the hospital. This intuitionistic fuzzy soft sets (F1,S) represents a 

relation matrix Q called patient-symptom matrix given by 

Then combining the relation matrices RI and R2 separately with Q we get two 

matrices TI and TZ called patient-disease and patient-non disease matrices 

respectively, given by 



Now we calculate 

Now, it is clear that the patient pl is suffering from the disease dl and patients p2 and 

p3 are both suffering from disease d2. 

7.5.5 Conclusion 

We have applied the notion of intuitionistic fuzzy soft sets in Sanchez's method of 

medical diagnosis. A case study has been taken to exhibit the simplicity of the 

technique. 



Chapter 8 

Application of fuzzy logic in modeling river 

catchment 

In this chapter, a fuzzy rule based methodology is developed for estimating monthly 

discharge using the Jiadhal river basin in the upper Assam. 

8.1 Introduction 

The state of Assam in the North East India has a chronic history of devastating flood 

and the situation has not changed much over the years.Despite the importance of rain 

water discharge there is no universally accepted method for the purpose and hence 

reasonable rain water discharge estimates are critical for developing accurate models 

of river basins.These models in spite of the inaccuracy are often used for flood 

forecasting and reducing the damages in a river basin. The fuzzy rule based approach 

presented here simplifies the model input by using fewer and easily quantifiable 

parameters like rainfall and past river discharge. Moreover, fuzzy set theory 

developed by Zadeh[100] are more suitable for handling the implicit vagueness in 

the data. 



8.2 Study site 

The Jiadhal river is a north bank tributary of river Brahmaputra and lies between 

latitudes 27"08'N and 2 7 ' 4 5 ' ~  and longitudes 94'1 5' E and 94'38' E The Jiadhal sub- 

basin falls in the west Siang district of Arunachal Pradesh and Dhemaji district of 

Assam. It is bounded by the Subansiri sub basin on its west and north and by 

Maridhal sub basin on its east. The southern side of the subbasin is bounded by the 

Kherkatia Suti, a channel of Brahmaputra. Total catchment area of the sub basin is 

about 1346 sq. km. out of which 306 sq. km. lies in the hills of Arunachal Pradesh 

and 1040 sq. km. lies in the plains of Assam. The hill catchmant comprises of nearly 

23 % of the overall catchment of the sub basin. The geographic location of the 

Jiadhal river basin and data collection centers are indicated in Figure 1. 

The Jiadhal river is primarily fed by groundwater covering mostly hilly regions. The 

river has minimal flow during off season but it creates havoc during the monsoon. 

This necessitates flood forecast during the monsoon to save life and property in the 

lower part of the basin. The data used in this study are obtained from the branch at 

Lakhimpur of the Brahamaputra Board. 

8.3 Fuzzy Methodology 

All quantitative rules pertaining to physical science are normally described by 

mathematical hnctions which, for every element in the domain, assign a unique 





output value. There are also certain classes of rules applied to linguistic variables, 

which do not have unique numerical values. For example, suppose the quantitative 

rule for the linguistic variable 'low temperature' refers to the temperature 'around 5' 

Celsius'. Here the term 'low temperature' cannot be a definite numerical value. It 

can have value within an arbitrarily chosen range and all temperature values within 

the defined range may not be considered equally low temperature. A fuzzy logic 

based modeling approach enables one to establish a one to one relationship between 

'low temperature' and 'around 5' Celsius' in a way that is quite different from a 

conventional functional form . 

Fuzzy logic modeling is based on the theory of fuzzy sets in which, unlike an 

ordinary binary set, the boundary is not clearly defined. A fuzzy set is a 

generalization of ordinary (crisp or classical) set in the sense that the former includes 

partial memberships along with full and no membership. This concept of partial 

membership is responsible for the unclear boundary of a fuzzy set. Again the unclear 

boundary or the transitional region of a fuzzy set entertains gradual transition from 

full membership to no membership and allows modeling of concepts containing 

linguistic variables. In the above example, the temperature of 12' Celsius may have 

zero membership whereas the temperature of 8'~elsius may have partial 

membership, say 0.2 and temperature of 5'~elsius may have membershipl.(Figure2). 



Figure 2. Example of membership function 

Thus each element in a fuzzy set is assigned a membership value which can be 

between 0 and 1 inclusively whose membership value 0 represents no membership 

and membership value 1 represents full membership and the values between 0 and 1 

represents partial membership. The function p that assigns a value to each member 

of a fuzzy A is referred to as the membership function associated with the fuzzy set 

and is denoted byp, . 

Fuzzy numbers are special cases of fuzzy sets and are defined by having a non 

increasing part, non decreasing part (quasi convexity assumption) and at least one 

value such that its membership function is I(norma1ity assumption). Of the different 

fuzzy numbers representation, triangular fuzzy numbers are often used to define 

membership functions for different classes. The base of the triangular fuzzy numbers 

defines the range over which full or partial membership exists and is known as the 

support of the number. A fuzzy number can be expressed as ( a, ,a*,a3 )T such that 

a ~ a 2  9 3  . 



A fuzzy rule based model is based on an ' i f . .  ..then' principle where 'if corresponds 

to a vector of input variables and 'then' corresponds to consequences. Fuzzy rules 

consist of a vector of arguments in the form of fuzzy setsA,,, with membership 

functions pAjL ,  and a consequence in the form of a fuzzy setB, , where i signifies 

rule number and k the input variable index .Fuzzy rules describe a function with 

domain as the Cartesian product of the fuzzy classes defined on each of the input 

variables and whose range is the fuzzy set defined on the output variable. The total 

possible number of rules is the product of the number of classes in each variable. 

Again training data consists of representative example of input vectors and their 

corresponding consequences. A rule based model serves as a good representation of 

the physical situation provided the rule outcomes reflect actual outcomes and it is 

achieved through 'degree of fulfillment calculation' and 'adjustment of membership 

functions to the training data'. There are a number of methods for constructing fuzzy 

rules utilizing training data. In the present discharge model, the three components of 

input vector are total monthly rainfall, mean monthly temperature and the pervious 

month's discharge and the corresponding consequence is total monthly discharge. 

The input vector consisting of the element a,(s) , obtained at time s, is matched with 

the corresponding consequence denoted by b(s) for all months in the training set. 

Thus the "training set" T derived from the data is usually expressed as 

T={a,(s),a,(s),a,(s),b(s):s=1,2 ,...., S ) .  

Model calibration consists of deriving fuzzy rules from an algorithm that uses the 

membership function of the input premises in conjunction with the training data. 



Algorithm 

The algorithm consists of the following steps: 

I .  Classify each of the inputs(for example, mean monthly temperature) into 

classes (for example, low, medium etc.) with membership functions. Then 

the rule premises arise through combination of the input classes, one from 

each type of input. 

11. Calculate the degree of fulfillment (DOF), denoted by v, (s), for each 

input vector corresponding to the training set T and each rule i following 

the classification in step I above. The DOF is defined as the product of 

the values of the membership function for the inputs as 

v~(Al,A2,A3)= ~ l l ( ~ , ) ~ ~ Q ( ~ 2 ) ~ ~ 1 3 ( ~ 3 )  

111. Select a number E > 0 such that only computed DOF's with value at least 

equal to E are considered in the construction of input fizzy numbers and 

the corresponding response for each rule. 

I V .  Both the input premises A , ,  and the corresponding responseB, are 

assumed to be triangular fuzzy numbers for all rules i. The triangular 

hzzy number response for rule i is denoted by (PI -,PI ,PI +), , where PI - is 

the minimal answer with a DOF at least E , 0, is the mean answer with a 

DOF at least E and P,+ is the maximal answer with a DOF at least E.  

The triangular fuzzy numbers (a,,, -,a,,, ,a,,, +), are similarly determined 

for the k inputs for rule i. 



Defuzzification 

For any input vector, all rules are checked to see if they fulfill some minimum DOF. 

For rules that do, the process of defuzzification combines the fuzzy 

consequenceslresponses of all such rules to produce a 'crisp' or a single numerical 

output value. Of various methods of defuzzification, a common one is the weighted 

fuzzy mean method which combines the weighted sum of the DOFs, v,, with their 

corresponding fuzzy mean responses, M(B,), to produce the corresponding crisp 

value M(B) . For a fuzzy response in case of the i-th rule, B, = (PI -,PI ,PI +), = 

(P,,P2,P3), , where PI-= the minimal answer satisfying the required DOF , PI= the 

mean answer satisfying the required DOF and P, + = the maximal answer satisfying 

the required DOF, the formulae of fuzzy mean response and the weighted fuzzy 

mean are M(B,) = (PI +PI +P3) I3  . . . ( I )  and M ( B ) = ~  V, ( ) . . . . . . . (2) 
1=1 

respectively. 

8.4 Fuzzy Rule- Based Discharge Methodology 

In this study, all fuzzy rule based discharge models use three input premises- total 

monthly rainfall (R), mean monthly temperature (T) and the previous months 

discharge(PMD ) to derive the single output of total monthly discharge. The mean 

monthly temperature is used to measure of potential evaporative and transpiration 

losses. The total previous month's discharge is used as measure of the potential 



runoff during precipitation events. The total monthly rainfall together with the above 

two inputs decides the total discharge during the month. 

The characteristics of fuzzy rule based models are 

(i) the number of rules used 

(ii) the manner in which the support for the fuzzy numbers are obtained 

(iii) the DOF for rule activation 

(iv) computation of the mean fuzzy responses for each rule. 

The number of rules in a fuzzy rule based model is a function of both the number of 

input premises and the number of classes of each input variable. Here each of the 

three input variables has been classified into three classes, say low, medium and 

high giving 27(=33) rules. The number of classes of each variable may also be 

increased to four or five classes giving a total of 64 or 125 rules respectively. Such 

increase in the number of classes will enhance the sensitivity of the model 

performances. 

8.5 Example of model implementation: 

As an example, the details of the translation of the linguistic rule for the month of 

August is presented here for 27 rule case. The membership functions for the input 

premises are shown in the Figures 3,4 and 5. 



1.2 I 
Low Med~um Hlgh 

2000 2100 2200 2300 2400 

Total monthly rainfall (mrn) 

Figure 3. Rainfall membership functions for 27 rule case 

Low Med~um 

1.2 1 High 

25 27 29 31 33 

Mean monthly temperature (Degree Celsius) 

Figure 4.Temperature membership functions for 27 rule case 

0 100 200 300 400 500 

Total previous month discharge (cumec) 

Figure 5. Previous month discharge for 27 rule case 



The membership hnction values are computed for each of the three input variables 

for the same 'August' month from 1976 to 1998. During training only 4 rules were 

identified that fulfill the DOF(c) = 0.3 

Table 1 .Fuzzy classes of total monthly rainfall 
Amount of rainfall Fuzzy number representation 

(mm) 
LOW (- 00,2090, 2220)~  

Medium (2090,2220,2350).r 

High (2220,2350, 00 +) 

Table 2.Fuzzy classes of mean monthly temperature 
Class of temperature Fuzzy number representation 

(OC) 
LOW (-w,27.8, 29.4)~ 

Medium (27.8,29.4, 3 1 ) ~  

High (29.4,3 1, 00 +)T 

Table 3.Fuzzy classes of previous month discharge 

Previous month discharge Fuzzy number representation 
(Cumec) 

LOW (- CXJ ,54, 2 1 2 ) ~  

Medium (54,2 12, 370)T 

High (212,370, m+)~  

The rules are 



If total monthly rainfall is medium and mean monthly temperature is low and total 

previous month discharge is medium then total monthly discharge is some triangular 

fuzzy number. 

2214.4 28.1 208.475 138.925 

If and and then A 
2198 2225 28 28.4 169.2 267.7 76.7 174.5 

Rainfall Temperature Previous month Discharge 
discharge 

2. Rulell: 

If total monthly rainfall is low and mean monthly temperature is medium and total 

previous month discharge is medium then total monthly discharge is some triangular 

fuzzy number. 

2122.75 29.7 241.9 

If and and then A 
2099.9 2 145.6 29.4 30 201.8 282 109.9 251.4 

Rainfall Temperature Previous month Discharge 
discharge 

2223 2229 28.5 29.2 87.9 102 155 162 

Rainfall Temperature Previous month Discharge 
discharge 

If total monthly rainfall is medium and mean monthly temperature is medium and 

total previous month discharge is medium then total monthly discharge is some 

triangular fuzzy number. 



If and and then A 
2145.6 2246.6 29.4 29.6 174.5 297.4 6 1 25 1.4 

Rainfall Temperature Previous month Discharge 
discharge 

4.Rule15: 

If total monthly rainfall is medium and mean monthly temperature is medium and 

total previous month discharge is medium then total monthly discharge is some 

triangular fuzzy number. 

Rainfall Temperature Previous month Discharge 
discharge 

Defuzzifica tion : 

We take validation year so that all above fivarules are satisfied . 

Validation year: Rainfall(R)=2 150 mm, Temperature(T)=28 OC and Previous month 

discharge(PMD)=300 cumec. 



-- - 

Rule PR PT PPMD Degree of freedom Mean discharge 

Crisp discharge: 140.72 cumec. (applying (2)). 

The above discharge of 140.72 cumec in August is less than that during July. This is 

quite reasonable looking at the rainfall difference during the two month. 

Table4: Result summary for four months 
Month Validation data No. of effective rules Discharge 

Rainfall/MMT/PMD on cumec 
mm / OC / cumec 

June 2200/29/40 

July 3 100/29/ 120 

August 21 50/28/300 

September 1620/27.5/130 



Discussion 

The above table reflects the water discharge pattern of the river basin using the same 

DOF 0.3 for all the four months considered. It may be noted here that a reduction in 

the value of DOF is likely to increase the number of effective rules and this, in turn, 

will improve the final output for the corresponding month. Further, an increase in the 

number of classes for each input variable will improve the performance of the model. 

8.6 Conclusion 

The above fuzzy rule based model with more number of classes for the input variable 

is likely to serve as a model for flood forecasting of the underlying river basin. 



Chapter 9 

General conclusion and Future Scope of research 

9.1 Conclusion 

The theory of sets has been the base for the foundation of mathematics and so is 

considered as one of the most significant branches in mathematics. The fact that any 

mathematical concept can be interpreted with the help of set theory has not only 

increased its versatility but has established this theory to be the universal language of 

mathematics. In the recent past, a relook to the concept of uncertainty in science and 

mathematics has brought in paradigmatic changes. Prof. Zadeh, through his classical 

paper[100], introduced the concept of modified set called fuzzy set to be used a 

mathematical tool to handle different types of uncertainty with the help of linguistic 

variable. In continuation, other modified sets like intuitionistic fuzzy set, rough set 

and soft set have also been introduced. All these consider the boarder line objects in 

different ways to handle the uncertainty or vagueness in different areas. 

Presently, all the sets are being so widely applied in different branches that one can 

hardly find any branch into which at least one of these sets and its methods cannot be 

applied. In the present work, we have studied some aspects of these comparatively 

recent concepts. 



In this thesis, we have discussed a discrete variety of hzzy and rough mathematical 

problems as stated below: 

The first chapter is an introductory chapter. Besides a brief discussion on fuzzy set, 

intuitionistic hzzy set, rough set and soft set, it includes the summary of the theories 

and results discussed throughout this thesis chapter wise one by one. 

In Chapter 2 of this thesis , the generalized notions of union and intersection of fuzzy 

sets coming from different universes are proposed and some existing results are 

proved. 

The investigation reported in Chapter 3 may looked upon as extension of Yager's 

theory of bags and fuzzy bags and subsequent together with development by 

Chakrabarty et al. Here we have defined Cartesian product of fuzzy bags, bag relation 

and fuzzy bag relation and some results are proved with examples. 

In Chapter 4, the concept of rough Boolean algebra and rough sub algebra are 

introduced based upon Pawlak's notion of indiscernibility relation between elements 

in a set. Some characterizations of rough Boolean algebras and rough subalgebras are 

given. 

Chapter 5 contains some results of lower and upper approximations of Pawlak's 

rough set with respect to congruence relation and fuzzy congruence relation in 

lattices, sub-lattices and ideals in a lattice. 



In Chapter 6 of this thesis, intuitionistic fuzzy bags(1FB) concept is applied in 

multicriteria decision making problem and a hypothetical case study has been taken as 

an example. Here similarity measurement method is applied with respect to 

membership value and non membership value separately of intuitionistic fuzzy bag 

theory. 

In Chapter 7, a new generalization of fuzzy sets called soft sets are extended by 

defining soft relations and fuzzy soft relations and then have been applied in decision 

making problems. Also, fuzzy soft set theory and intuitionistic fuzzy soft set theory 

have been applied in medical diagnosis problems separately . 

In Chapter 8, an application of fuzzy rule based methodology is developed for 

estimating monthly discharge using the Jiadhal river basin in the upper Assam. 

9.2 Future Scope of Research 

The fuzzy set theory and rough set theory are two different approaches to extend the 

scope of the classical set theory. But both these obtained their pitching grounds from 

the boarder line objects. So, a closer look and comparison around the boarder line 

objects in both approaches is likely to provide finer concept to handle the so called 

uncertainty. Soft set being a very recent concept, there is scope to examine the 

applicability of this set in different branches of study. 
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