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ABSTRACT

Introduction

The theory of infinite divisible distributions, developed primarily during the
period from 1920 to 1950, plays a fundamental role in several parts of theoretical
probability. Loosely speaking, divisibility of a random variable X is the property that X
can be divided into independent parts having the same distribution. A full account of this
theory and its applications, as it had been developed by the late 40's, were presented in
the monographs of Levy (1937), Gnedenko and Kolmogorov (1968), Loeve (1960) and
Steutel and Harn (2004).

Infinite divisibility plays a significant role in the solution of limit problems for
sums of independent random variables. It is well known that, stochastic processes, more
specifically by the processes with stationary independent increments generate all
infinitely divisible distributions. In fact, all Poisson stopped sum distributions (compound
Poisson distributions) belong to the important class of infinitely divisible distributions
(Johnson, et al, 1992). The converse of the result is also true. De Finetti (1931) has
proved that all infinitely divisible distributions are limiting forms of generalized Poisson
distributions (See also Lukacs, 1970).

Elementary infinitely divisible distributions, which are formulated on the basis of
simple models, seem to be inadequate to describe the situations which may occur in a
number of phenomena. In the last few years’ research various infinite divisible
distributions have been derived. There are some applied processes that give rise to classes
of infinite divisible distributions. The best known are convolution and compounding. A
general compounding theorem is due to Feller (1957). It has been observed that certain
families of probability distributions maintain their infinite divisibility under repeated

mixing and convolution.



Infinite divisibility
A random variable is said to be infinite divisible if and only if it has a

characteristic function, ¢(¢f) that can be represented for every positive integer ‘n’ as the

n" power of some characteristic functiong, (), ie.

#() =1{4,(0}" . 1.h
For example, in case of discrete distribution the Poisson, geometric, negative binomial,
logarithmic-series, discrete Pareto and Borel distribution etc., are infinitely divisible.
Conditions for a discrete distribution to be infinitely divisible are discussed in Katti
(1967), Warde and Katti (1971), and Chang (1989).
In this study, we have selected the following two models (1.2) and (1.3), studied
by Klebanov, Maniya and Melamed (1984) and Steutel (1990) under the name of

geometrically infinitely divisible distributions.

G(t):a—*w)g(t_), O<w<l : (1.2)
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where g(t) is the pgf of the component distribution used.

The aim of this thesis is to derive some generalized distributions of Poisson-
Lindley (Sankaran, 1970), three parameter Charlier (Jain and Gupta, 1975) and
Gegenbauer (Plankett and Jain, 1975), by considering them as the component distribution
in the above models (1.2) and (1.3). The generalized distributions have been studied in
the presence of their recurrence relations for their probabilities, factorial moments and
cumulants. The parameters are estimated and a few sets of reported data have been
considered for the fitting of the distributions, and the fits are compared with that of other
distributions.

The thesis consists of seven chapters. The first chapter is an introductory one
which highlights the literatures on univariate discrete distributions and some Lagrangian
distributions. The second chapter is a review on some probability distributions, such as
Poisson Lindley distribution (Sankaran, 1970), three parameter Charlier distribution (Jain
and Gupta, 1975) and Gegenbauer distribution (Plankett and Jain, 1975). In the

succeeding chapters we have studied some of their generalized form of the distributions.



In chapter 3, we have studied certain properties of generalized Poisson-Lindley
distributions of Type-I and Type-II, based on the models (1.2) and (1.3) studied by
Klebanov, Maniya and Melamed (1984) and Steutel (1990) under the name geometrically
infinitely divisible distributions. Certain properties of Infinite Divisible distributions of
Type-I and Type-II, have been studied in chapters 4 and 5 respectively, by considering
three parameter Charlier and Gegenbauer as the generalizing distribution. A class of
Charlier family of Lagrangian discrete probability distributions has been considered in
chapter 6. In the last Chapter 7, we have made an attempt to test the fitting of
Gegenbauer distribution to some well known published data on Ball Games.

Poisson-Lindley Distribution

Poisson Lindley distribution (Sankaran, 1970) is a one-parameter compound
Poisson distribution, which has wide applications in the theory of accident proneness.

The probability generating function of Poisson-Lindley distribution may be defined as

. 0*@+2-2)
g) = @+D@+1-27 977  (See Sankaran, 1970) (1.4)

Three parameter Charlier distribution
The probability generating function of three parameter Charlier distribution (Jain

and Gupta, 1975) is given by

gity=e*(1-pYe"(1-p)*, a,B,A20 (1.5)
As particular limiting cases of three-parameter Charlier distribution, Poisson
distribution and negative binomial distribution may be obtained by putting S =0 and
a = O respectively.

Gegenbauer distribution

The Gegenbauer distribution Plunkett and Jain (1975), has the probability

generating function of the form

g=0-a-p'(-a-a")" (1.6)
The limiting distributions of Gegenbauer distribution are negative binomial (8 =0) and
Hermite distribution (¢ -0,/ —0and A - o, such that la =, and 1B=a,) as

particular limiting cases.



Lagrangian distribution

Consul and Shenton (1972) gave us a new generation of ‘distributions having
interesting properties associated with the queueing processes. A class of discrete
probability distributions under the title ‘Lagrangian Distributions’ had been introduced
into the literature by Consul and Shenton (1972, 1973, 1975). They used the particular
title on account of the generation of these probability distributions by the well known
Lagrange expansion of a function g(s)as a power series in y wheny = s/g(s). Using
Lagrange’s expansion for the derivative of the probabilities of certain discrete
distributions Consul and Shenton (1972, 1973, and 1975) and their co-workers derived
the functional form of the distributions and studied different properties also. A detailed
study on these mixtures of discrete probability distributions and their properties can be
found in the works of Gurland (1957, 1958, 1965), Haight (1961), Janardan and Rao
(1983), Consul (1989), Everitte and Hand (1981) and Johnson Kotz and Kemp (1992).
The probability mass function (pmf) of Lagrange distributions (Consul and Shenton,
1972) of first kind (LD1) may be given as

P(X=x)=1
xl

[‘5” {g(s)}‘f'(s)J . forx=123. a7

agx—l §=0

where P.(X =0)= f(0).

The probability mass function (pmf) of Lagrange distributions (Janardan and Rao (1983)
of second k‘ind (LD2) may be given as

and P (X=x)= t%gl—)[gs;—{g(s)}‘ f(s)} , for x=0,123,... (1.8)
* S=0
=0, otherwise

In chapter 6, a class of Charlier Family of Lagrangian distributions #pe — I and
type — Il have been derived like the other authors (Consul et al., 1973 and Janardan et al.,
1983) by takir;g different choice of three parameter charlier, Poisson, negative binomial,
Logarithmic series and delta distributions as f(s)and g(s). The main objective of this
thesis is to investigate the probabilistic structures of Charlier Family of Lagrangian
distributions of type — I and type — II , and discuss some of their important properties and

applications.



Estimation of parameters

The estimation of parameters plays a very important role in fitting of probability
distributions. Of all the procedures of estimating the parameters, the method of moments
is perhaps the oldest and the simplest. In many cases it may lead to tractable operations.
Although, the method of maximum likelihood is considered to be more accurate for
fitting a probability distribution than all other methods of estimation, in our cases it
involves much more computational works than the method of moments. It is mainly from
this reason, moment estimators are used.

In chapter 3, the parameters of generalized Poisson-Lindley distributions of type-
I and type-Il1 (GPL1 and GPL2), have been estimated by considering a method in which
one parameter is estimated by using Newton-Raphson method and the other parameter is
estimated by the method of moment. .

In chapter 4 and chapter S, the parameters of generalized Charlier (GCD) and
generalized Gegenbauer (GGD) distributions of type-I and type-II have been estimated
by an adhoc method of using first two sample moments and ratios of first three
frequencies for rapid prediction, because of complexity of maximum likelihood method
of estimation.

It is to be very important to note that, when the frequency for the zero class in the
sample is larger than most of the other class frequencies or when the graph of the sample
distribution is approximately L-shaped, one would like to give more weight to this larger
frequency value of the zero class than to the statistic of sample variance which is more
affected by the frequencies of the higher classes (Anscombe, F. W., 1950). It is for this
reason, the parameters of basic Lagrangian negative binomial distribution has been
estimated by the method of using the ratio of first two frequencies and mean in chapter
6. The method of moment is also used and both methods give us satisfactory results. In
case of basic Lagrangian Poisson distribution, the parameters are estimated by using
maximum likelihood method and using the first sample frequency. Again for testing the
goodness of fit of general Lagrangian distributions in chapter 6, one composite method .
of using the first two sample moments and ratio of first three frequencies is used for

estimation of parameters.



Applications

The negative-binomial and the Poisson distributions are commonly used in
ecological and biological problems. It is for that reason, the generalized distributions of
Poisson-Lindley (GPL1 and GPL2), three parameter Charlier (GCD1 and GCD2) and
Gegenbauer (GGD1 and GGD?2) are fitted to some numerical data in different fields of
biology, ecology, social information for which various modified forms of Poisson
distribution were fitted by different authors. In all cases, observing the observed and
expected frequencies it is clearly seen that our fitted distributions describe the data very
well.

The basic Lagrangian negative binomial and Lagrangian Poisson distribution have
been fitted to some data collected by Williams (1944) on the numbers of papers published
by authors in a certain Journal for which Plunkett and Jain (1975) fitted generalized
geometric distribution. It has been found that the basic LNB distribution gives better fit
than the other distributions compared. The general Lagrangian negative binomial Poisson
(LNBP), Lagrangian Poisson negative binomial (LPNB) and Lagrangian Poisson
logarithmic (LPL) distributions have been also fitted to some well known data on natural
laws in social sciences, accidents, home injuries, biological and ecological and the
data on the number of publication of research papers etc. In all cases, the expected
frequencies obtained are more satisfactory than the distributions compared.

In chapter 7, the Gegenbauer distribution has been fitted to the distribution of
scores of teams and individuals in several sports involving ball games. For example, the
distribution of runs scored in the completed innings in test matches by some famous
batsmen at cricket (Reep and Bengamin, 1971), the distribution of scores of individual
teams in U.S. Collegiate football games (Pollard, 1973 and Mormney, 1956), and also the
distribution of goals per match scored by individual teams in national Hockey League
1966-67 (Reep et al, 1971) have been used to fit the Gegenbauer distribution. It is
observed that, in most of the above cases Gegenbauer distribution provides better fit than

that of the negative binomial distribution.
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Chapter 1

Introduction

1.1 Introduction

The theory of discrete probability distributions is an important branch of Statistics
with varieties of useful applications. The field of discrete probability distribution is
originated from the works of James Bernoulli (1713) and Poisson (1837). In recent years,
the mixtures of the basic discrete distributions such as Poisson, binomial, negative
binomial and Logarithmic series have become an extremely important part of modern
Statistics, with wide utilities in the fields of social sciences, physical sciences, biological
and medical sciences, operation research, engineering and so on. A detailed study on
these discrete mixtures of probability distributions and their properties can be found in
the works of Gurland (1957, 1958, 1965), Khatri (1959, 1961), Haight (1961a, 1967),
Patil (1961, 1962a, 1962b, 1964), Katti (1967, 1977), Katti and Gurland (1961, 1962a,
1962b), Johnson and Kotz (1969), Consul (1975, 1989), Consul and Shenton (1972,
1973, 1975), Steutel (1968, 1973, 1990), Everitte and Hand (1981), and Johnson et al
(1992) and Steutel and Harn (2004) etc.

Before going to the main steps that we have studied, let us first discuss some
important terms related to the theory of discrete probability distributions. It is very
important to note that, the scope of this thesis is basically restricted to univariate discrete

distributions only.



1.2 Mixture Distribution

A mixture of distributions is a mechanism which helps us to construct new
distributions from the given ones for which empirical justification must be sought.
According to Medgyessy (1977), a mixture of distributions is a superimposition of
distributions with different functional forms or different parameters, in specified
proportions.

A continuous mixture of discrete distribution arises when a parameter
corresponding to some features of a model for a discrete distribution can be regarded as a
random variable taking continuous values. Different mixtures of Poisson distributions,
where the mixing distributions are countable or continuous are discussed in details in the
book by Johnson et al (1992).

1.3 Generalized distributions

If g, (¢) is the probability generating function (pgf) of a distribution function F,,
and if the argument ‘¢ is replaced by the pgf g,(r) of another (or the same) distribution
function F, , then the resultant function g, {g,(#)}, is also a pgf, which is a polynomial
function of ‘¢’ with non negative coefficients. The probability distribution corresponding
to the new pgfg,{g,(¢)}, is called a generalized F, distribution, and this can be written
in the symbolic form F} v F, .

In case of mixture distribution there are three important theorems due to Levy
(1937b, 1954), Maceda (1948) and Gurland (1957) on the methods of generalization.
a) Levy’s Theorem (see Feller, 1957)
A discrete probability distribution on non negative integers is infinitely divisible
if and only if (iff) its pgf can be written in the form
G(s) = exp[A{g(s) - 1}],
where A > 0 and g(s) is another pgf.

The implication of Levy’s Theorem is that an infinitely divisible distribution with non-
negative support can be interpreted as
1. a stopped sum of Poisson distributions (i.e., as the sum of Y random variables

with pgf g(z), where Y has a Poisson distribution).



2. a convolution (sum) of a Poisson singlet, Poisson doublet, triplet etc., where the

successive parameters are proportional to the probabilities given by g(s).

b) Maceda’s theorem (see Maceda, 1948)

This theorem states that if we consider a mixture of Poisson distributions where
the mixing distribution has non-negative support, then the resultant distribution is
infinitely divisible iff the mixing distribution is infinitely divisible. As infinitely divisible
discrete distributions can be interpreted as Poisson-stopped-sum distributions, the
implication from Levy’s and Maceda’s theorems is that mixing Poisson distributions
using an infinitely divisible distribution yields a Poisson-stopped-sum distribution.
Furthermore, mixing a Poisson-stopped-sum distribution using an infinitely divisible
distribution gives rise to another Poisson-stopped-sum distribution.
¢) Gurland’s theorem (see Gurland, 1957)

According to Gurland’s theorem theorem, a distribution with pgf of the
form G, {G,(z)} will be called a generalized F, distribution, more precisely a F,
distribution generalized by the generalizing F, distribution. This theorem can be stated
symbolically as FvFE~F nAF,
provided that G,(z/ k¢) =[G, (z/$)]". (1.3.1)
Wherekand¢ denote the parameters of the distributions Fland F, respectively. The
Poisson, binomial and negative binomial distributions all have pgf’s of the form (1.3.1),
therefore it follows that the discrete mixture distributions of Poisson, binomial and
negative binomial distributions are also generalized distributions in the above sense.

1.4 Review on certain literatures of discrete mixture distributions

The origin of the theory of discrete probability distributions developed primarily
during the works of James Bernoulli and Poisson. James Bernoulli, the Swiss
mathematician derived the binomial distribution and published it in the year 1713. In
1837, Poisson distribution was derived by a French mathematician Simeon D. Poisson as
a limiting form of the binomial distribution. Greenwood and Yule obtained negative
binomial distribution in 1920 as a consequence of certain simple assumptions in accident
proneness models. As time goes, it is seen that the simple basic distributions such as

binomial, Poisson, negative binomial, logarithmic series etc. have been found to be



describe some sets of data, which leads to construct new generalized or mixture models
of the basic distributions. Univariate mixtures obtained by combining two or more of the
elementary distributions with the help of the process of compounding or generalizing
have become an important and extremely useful branch of Statistics. In this way a large
number of discrete distributions were derived by different authors, which are classified as
generalized, modified and contagious distributions. The generalized distributions can
satisfactorily describe the data and slowly in the recent years the field of discrete
distribution has been expanded. These distributions have important applications in
biological sciences, medical sciences, social sciences, physical sciences, operation
research, engineering and so on. From the books of Johnson and Kotz (1969), Everitt and
Hand (1981), Consul(1989) and Johnson et al (1992) we may get a detailed information
regarding the vast area of discrete mixture distributions and their properties.

Lindley (1958) derived a distribution known as Lindley distribution based on
Baye’s theorem. Sankaran (1970), generalized Lindley distribution by mixing with
Poisson distribution, which is known as Poisson-Lindley distribution with application to
mistakes in copying groups of random digits (data from Kemp and Kemp, 1965) and
accidents to 647 women on high explosive shell in 5 weeks (data from Greenwood and
Yule, 1920). Borah and Begum (2002) studied some properties of Poisson-Lindley and its
derived distributions. They fitted the generalized distributions of Poisson-Lindley to
some biological and ecological data for comparison. Some mixtures of Poisson Lindley
distribution using Gurland’s generalization (1957) were also studied by Borah and Deka
Nath (2001). They also studied and fitted the inflated Poisson Lindley distribution to
some well-known data, for empirical comparison.

The Hermite distribution which is a Poisson mixture of Bernoulli distribution was
studied by Kemp and Kemp (1965). He applied Hermite distribution to the fields of
biological sciences, physical science and operational research. The pgf of Hermite
distribution can be conveniently expressed in terms of modified Hermite polynomials. By
Gurland’s theorem, the Hermite distribution can also be regarded as a Poisson mixture of
binomial distributions which was used for biometrical data by Skellam (1952) and
McGuire et al. (1957). The Hermite distribution which is a Poisson-stopped-sum

(generalized Poisson) distribution can also be derived as the sum X =7, +Y,, where Y, is



a Poisson random variable with parameter a,and Y, is a Poisson random variable with

parametera, .

Plunkett and Jain (1975) derived the Gegenbauer distribution by mixing the
Hermite distribution with the Gamma distribution. This distribution has a long history in
the theory of stochastic processes. Further they have studied some of its limiting cases
and its goodness of fit by estimating the parameters of the distribution by using the
factorial moments. They fitted the distribution to a set of accident data using the method
of moments. Borah (1984), studied the probability and moment properties of the three
parameter Gegenbauer distribution, and also studied the estimation of the parameters by
using the first two sample moments and the ratio of the first two sample frequencies.
They fitted the distribution to a set of accident data using the method of moments. Medhi
and Borah (1984) studied the four parameter genera}ized Gegenbauer distribution with
different estimation techniques. Kemp (1979) studied the Gegenbauer distribution which
can be obtained by convoluting binomial and pseudo binomial variables. Kemp (1992a,
1992b) also studied various forms of estimation, including ML estimation.

The Charlier polynomials were investigated by Doetsch (1934), Meixner (1934,
1938) and Berg (1985), which are associated with the Poisson distribution of rare events.
McBride (1971) discussed two parameter Charlier polynomials and some of their
properties. Jain and Gupta (1975) defined the generalized Charlier polynomial. Later on
Medhi and Borah (1986) studied generalized four parameter Charlier distribution which
includes Negative binomial (Bliss and Fisher, 1953), Hermite (Kemp and Kemp, 1965),
Gegenbaﬁer (Plankett and Jain, 1975) and three parameter Charlier (Jain and Gupta,
1975) d.ist:ributions as particular limiting cases. They investigated different properties of
this distribution and also discussed the methods for fitting of four parameter Charlier
distribution.

The class of discrete probability distributions under the name of ‘Lagrangian
distributions’ had been introduced into the literature by Consul and Shenton (1972, 1973,
1975) and Mohanty (1966), Consul and Jain (1973) and Janardan and Rao (1983) in the
following years. The particular title was chosen by Consul and Shenton (1972) on
account of the generation of these probability distributions by the well known Lagrange

expansion of a function g(s)as a power series in y wheny = s/g(s). The Lagrangian



binomial distribution was obtained by Mohanty (1966), Jain and Consul (1971) derived
Lagrangian negative binomial distribution, Jain and Gupta (1975) introduced into the
literature the Lagrangian Logarithmic distribution. Consul and Jain (1973a) obtained
Lagrangian Poisson distribution as a limiting form of the Lagrangian negative binomial
distribution. Consul in his book (1989) studied the properties of Lagrangian Poisson
distribution. Lagrangian Katz family of distribution was studied by Consul and Felix
(1996) with estimation of parameters and applications. Borah and Begum (1997) have
studied the probabilistic structures of Charlier Family of Lagrangian (CFL) distributions
(Chapter 6) of type—Iandtype —II, by using the Lagrange expansion to this Charlier
distribution. A class of Hermite type Lagrangian distribution has been studied by Borah
and Deka Nath (2000).

These CFL distributions give rise to a large number of discrete distributions. Most
of the basic Lagrangian distributions viz., generalized negative binomial (Jain and
Consul, 1971), generalized Poisson (Consul and Jain, 1973a), Borel-Tanner (Tanner,
1961), Haight (Haight, 1961), etc., may be obtained as its limiting cases. All these
distributions are found to be of relevance in queueing theory and possess with some
interesting properties [Consul and Shenton, 1973].

1.5 Infinite Divisibility of Probability Distributions
A random variable is said to be infinitely divisible iff it has a characteristic

function (cf), @#(¢) that can be represented for every positive integer ‘ n’ as the n” power

of some cfg, (1), i.e.

¢ =1{4,(0)}" . (1.5.1)

In non-technical terms what it means is that there exist independently and

identically distributed (iid) random variables X, (i =1,2,3,...,n) such that the distribution

of ZX,,, is the same as the given distribution. For example, in case of discrete

distribution, the Poisson, geometric, negative binomial, logarithmic-series, discrete
Pareto and Borel distribution are infinitely divisible.

All Poisson stopped sum distributions (generalized Poisson distributions) having

the pgf’s of the form
G(1) = explA{g() - 1}],



where g(t)is the pgf of the generalizing distribution, belong to the important class of ID

distributions (Johnson, et al, 1992). The converse of the result is also true (See Feller,
1957). De Finetti (1931) has proved that all ID distributions are limiting forms of
generalized Poisson distributions (See also Lukacs, 1970). In has been observed that in
case of continuous distribution the characteristic function of Normal distribution and in
case of discrete distribution the characteristic function of Poisson distribution can be
easily put in the form (1.5.1), but it may not always be possible to express the
characteristic function of an infinite divisible distribution as in the form given in
(1.5.1).Conditions for a discrete distribution to be infinitely divisible are discussed in
Katti (1967), Warde and Katti (1971), and Chang (1989).

It is well known that all infinitely divisible distributions are generated by
stochastic processes, more specifically by processes with stationary independent
increments. There are number of methods to construct new infinitely divisible
distributions from given ones. The best known are convolution and compounding. A
general compounding theorem is due to Feller (1957). There are some applied processes,
however, that give rise to classes of infinitely divisible distributions. It has been observed
that certain families of probability distribution functions maintain their infinite
divisibility (Goldie, 1967 and Steutel, 1968) under repeated mixing and convolution.
Condition for a Distribution to be Infinitely Divisible

Let us suppose thatp,,p,,p,,..., are the probabilities of 0,1,2,...,

with p. # 0, p, # 0. Then according to Katti (1967) the necessary and sufficient condition
for a distribution to be infinitely divisible is that for each value of i

l]), -1 pj

T,=—"=->n_—220, for i=12,.., (1.5.2)

’ -7
R) J=1 Dy

Note that for a given distribution function, one can numerically compute a number of P R
Dy

to see if they are positive and if they are, then one can use this information along with his
algebraic calculation to generate an inductive proof of infinitely divisibility.
Geometric Infinite Divisibility

The concept of geometric infinite divisibility (gid) was introduced by Klebanov,

Maniya and Melamed (1984). According to Klebanov et al. (1984) a random variable



X’ is said to be geometrically infinitely divisible if there exists an independently

identically distributed (iid) sequence of random variables X\, j =1,2,3,.., N, such that

for every p € (0,1),

2

d N
X=X (1.5.3)

14
J=1

where P(N, = k) = p(1- p)*"',k =123,....and X, N ,and X are independent.

d
Here the symbol = stands for equality of distributions.
Pillai ans Sandhya (1990) have shown that the class of geometrically infinitely
divisible distributions is a proper sub-class of infinitely divisible distributions. In terms of

characteristic function (1.5.3) can be expressed as (1.6.1) where G(tf) and g(r) are
Laplace transform of X and X respectively.

A more detailed description of geometrically infinitely divisible random variable
is based on the fact that, a random variable Y with cf f(¢)is geometrically infinitely
divisible iff

1
#(t) = exp{l - 76} , (1.5.4)
represents an infinitely divisible cf (See Klebanov et al.,1984). Goldie (1967) proved that
the product of two independent non-negative random variables is infinitely divisible, if
one of the two is exponentially distributed or, equivalently, mixtures (with positive
weights) of exponential random variables are infinitely divisible.
Certain Compound Distributions

The following two classes of infinitely divisible characteristic functions are of
special interest in discrete probability theory. They are
a) Compound-Poisson Distribution
A distribution with cf of the form

¢(t) = exp[A{g()-1}], A >0 (1.5.5)
in which g(t) is also a cf| is always infinitely divisible. This is also known as Poisson-
stopped-sum distribution. They arise as the distribution of the sum of a Poisson number

of independently and identically distributed random variables with cf g(¢). Because of



their infinite divisibility these distributions have very great importance in discrete
distribution theory. They are known by different names. Feller (1943) used the term
generalized Poisson, Galliher et al. (1959) and Kemp (1967) called them stuttering
Poisson and Feller (1950, 1957, 1968) and Lloyd (1980), used the term compound
Poisson. ’
b) Compound geometric Distribution

A probability distribution, with the cf of the form

A
¢(0—m: A>0 (1.5.6)

in which g(t) is an arbitrary cf on non-negative integers, is always infinitely divisible. It is
known as compound georpetric distribution (Lukacs, E, 1960). In fact (1.5.6) is a special
case of (1.5.5), i.e., the class of compound geometric distribution is-a proper subclass of
the class of compound Poisson distribution. However many infinitely divisible cf’s
appear in the special form (1.5.6) (Lukacs, E, 1960).

The negative binomial distribution with pgf

g =01-p)a-pn*,
is compound geometric iff k£ <1.
The compound exponential distribution having pgf of the form
1
H=—"+ 1.5.7
9O = 1o = (1.5.7)

where f(t) is also a infinitely divisible pgf, is infinitely divisible. The compound

exponential distribution with pgf given by (1.5.7), coincide with the compound geometric
form (1.5.6) and hence it is infinitely divisible (F.W. Steutel and K.V. Harn, 2004).
1.6 Review of the literatures on Infinitely Divisible Discrete Distributions

The theory of infinitely divisible distributions, develdped primarily during the
period from 1920 to 1950, has played a very important role in a variety of problems of
probability theory and has been carried out along many lines. It plays a significant role in
the solution of limit problems for sums of independent random variables. A full account
of this theory and its applications, as it had been developed by the late 40's, were
presented in the monographs of Levy (1937), Gnedenko and Kolmogorov (1968), and
Loeve (1960).



Elementary infinitely divisible distributions which are formulated on the basis
of simple models seem to be inadequate to describe under certain situations which may
occur in a number of phenomena. In the last few years’ research, various infinitely
divisible distributions have been derived. Numerous new results have been obtained and
entirely new applications have been found. In 1962, Mark Fisz gave a survey on recent
developments in infinite divisibility. F. W. Steutel (1973) also surveyed on some recent
results in infinitely divisibility and gave ideas on some basic theorems in infinite
divisibility. Steutel (1968) also discussed methods of constructing infinitely divisible
distributions mainly by mixing. Godambe and Patil (1969, 1975) consider a mixture of
Poisson distributions where the mixing distributions have non-negative support. The
importance of the property of infinite divisibility in modeling was stressed by Steutel
(1983); see also the monograph by Steutel (1970) Pillai (1990), Pillai et al (1990, 1994).
Some properties of infinitely divisible discrete distributions are, given by Johnson, et al
(1992) and F.W. Steutel and K.V. Harn (2004). Begum and Borah (2003) studied certain
Infinitely Divisible Discrete Probability Distributions and Applications.

The following two forms of pgf's of discrete distributions

G(t)=-Q:—M, 0<w<l (1.6.1)
1-wg(r)

- ° 0 6.2

G(1) oyt o> (1.62)

were studied by Klebanov, Maniya and Melamed (1984), Steutel (1990) under the name
of geometrically infinitely divisible distributions. The function (1.6.2) is an ID

characteristic function (Steutel, 1968) which can be easily seen by writing

_ » 1/n
o ‘Lm_g(,)J ’

as a linear combination of cf’s. In the above two forms (1.6.1) and (1.6.2), g(¢) is the pgf
of the component distribution. Begum and Borah (2003) studied certain infinitely
Divisible Discrete Probability Distributions and Applications.

The aim of this thesis is to derive, some generalized distributions of Poisson-
Lindley (Sankaran, 1970), three parameter Charlier (Jain and Gupta, 1975) and
Gegenbauer (Plankett and Jain, 1975) by considering them as the component distribution

10



in the above models (1.6.1) and (1.6.2). The generalized distributions have been studied
in the presence of their recurrence relations for their probabilities, factorial moments and
cumulants with applications in different fields of social sciences, biological and
ecological sciences, home injuries and accidents etc. The parameters are estimated and a
few sets of reported data have been considered for the fitting of the distributions, and the
fits are compared with that of other distributions.

Attempt has been also made to study the important properties and applications of
some Lagarangian type of discrete probability distributions.

1.7 Synopsis of the Thesis

The thesis entitled by “An Empirical Study on Some Infinitely Divisible and
Mixtures of Discrete Distributions” consists of seven chapters. The first chapter is an
introductory one which gives an account of the relevant works done earlier by different
authors in the theory of univariate discrete probability distributions. A brief description of

the literatures on infinite divisible discrete probability distributions is also discussed.

The second chapter is a review on some well known discrete probability
distributions, such as Poisson Lindley distribution (Sankaran, 1970), three parameter
Charlier distribution (Jain and Gupta, 1975) and Gegenbauer distribution (Plankett and
Jain, 1975). The above distributions are further investigated to study some of their
important properties like probability recurrence relation, factorial moment recurrence
relation and cumulant recurrence relation etc., with the estimation techniques of the
parameters used by the respective authors. In the succeeding chapters we have made an
attempt to study some of their generalized distributions by using the models (1.6.1) and
(1.6.2) studied by Klebanov, Maniya and Melamed (1984) and Steutel (1990) under the
name geometrically infinitely divisible distributions.

In chapter 3, two generalized distributions of Poisson-Lindley distribution viz.,
Generalized Poisson-Lindley Distribution of Type 1 (GPL1) and Generalized Poisson-
Lindley Distribution of Type 2 (GPL2) have been obtained by using the models (1.6.1)
and (1.6.2) respectively. Attempt has been made to derive the recurrence relations for
probabilities, factorial moments and cumulants etc., for both of the generalized
distributions. The problems of estimation of parameters and fitting of the distributions

have been considered. For estimating the parameters of GPL1 and GPL2, we have used a
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composite method where one parameter is estimated by using Newton Raphson method
and the other parameter is estimated by the method of moment. The derived distributions
have been applied in different fields of biology, ecology and social information for
empirical justifications where various modified forms of Poisson distribution were fitted
by different authors. In all cases, our fitted distributions describe the data very well.

In chapter 4, using the model (1.6.1), two infinitely divisible distributions have
been derived by considering three parameter Charlier (Jain and Gupta, 1975) and
gegenbauer (Plankett and Jain, 1975) distributions respectively as the generalizing
distribution. The derived distributions are denoted by Generalized Charlier Distribution
of Type 1 (GCD1) and Generalized Gegenbauer Distribution of Type 1 (GGDI1)
respectively. Attempt has been made to study certain important properties of the derived
distributions, such as the recurrence relations for probabilities, factorial moments and
cumulants etc. The parameters of GCD1 and GGD1 have been estimated by an adhoc
method of using first two sample moments and ratios of first three frequencies for rapid
prediction, because of complexity of maximum likelihood method of estimation. A few
sets of reported data on ecology and biology have been considered for empirical fitting of
these distributions with satisfactory results. Some generalized distributions of Poisson,
negative-binomial and Hermite distributions may be obtained as particular limiting cases
of GCD1 and GGDI. These distributions have been also studied for some of their
important properties with estimation of parameters. The fitting of the distributions have
been also considered by using some published data in different fields of accidents, home
injuries, biology and ecology.

In chapter 5, considering the second model (1.6.2), two infinitely divisible
distributions viz., Generalized Charlier Distribution of Type 2 (GCD2) and Generalized
Gegenbauer Distribution of Type 2 (GGD2) have been derived by using three parameter
Charlier (Jain and Gupta, 1974) and Gegenbauer (Plankett and Jain, 1975) distributions
respectively as the component distribution. Certain properties of the derived distributions,
such as the recurrence relations for probabilities, moments, factorial moments and
cumulants are studied. The parameters of GCD2 and GGD2 are estimated. Different
applications of GCD2 and GGD2 are discussed. The fitted distributions are compared

with that of the other distributions. The generalized distributions of Poisson, negative-
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binomial and Hermite may be obtained as pamcular limiting cases of GebR en f th
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They have been also studied with estimatigh of their parameters and fitting
distributions considering some published data on accidents, home injuries an"iialso using

some ecological and biological problems. o -
In chapter 6, we have made an attempt to derive a class of discrete probability

distributions under the title, “Charlier family of Lagrangian (CFL) discrete probability
distribution” by using the well known Lagrange’s expansions, having wide ﬂe)fibility and
important implications in queueing theory. The probabilistic structures 6f general
Lagrangian Charlier distributions of type—Iand type—II have been derived by using
Langrange expansion of first kind (LD1) and Lagrange expansion of second kind (LD2)
respectively (according to Janardan and Rao’s terminology). The basic Lagrangian
Poisson (LP) and basic Lagrangian negative binomial (LNB) distributions have been
investigated for some of their important properties. The parameters are estimated by
using different methods. The fitting of the basic distributions have been considered for
testing the validity of the estimates of the parameters. Further, the general Lagrangian
Poisson negative binomial (LPNB), Lagrangian negative binomial Poisson (LNBP) and
Lagrangian Poisson Logarithmic (LPL) distributions of #ype—Iand type— Il are also
investigated. Some ad hoc methods are used to estimate the parameters of the
distributions. It is also conceivable that discrete data occurring in ecology, epidemiology,
and meteorology could be statistically modeled on the distributions considered in this
investigation. It is found that Lagranglan probability distributions give better fit than their
classical forms.

The Gegenbauer distribution (GD), which is a gamma-mixed Hermite
distribution, is a very wider class of discrete probability distribution. The negative
binomial and Hermite distributions may be obtained as its particular limiting cases. In the
last chapter 7, attempt has been made to test the fitting of Gegenbauer distribution to the
distribution of scores of teams and individuals in several sports involving ball games such
as cricket, football and Hockey. It is found that in all cases, the Gegenbauer distribution

provides better fit than the negative-binomial, Poisson, Hermite distribution.
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Chapter 2

. A Review on some discrete probability distributions

2.1 Introduction

The present chapter is a review on some well known discrete probability
distributions, such as Poisson Lindley distribution by Sankaran (1970), three parameter
Charlier distribution by Jain and Gupta (1975) and Gegenbauer distribution by Plankett
and Jain (1975). These distributions have been discussed for some of their important
properties like probability recurrence relation, moment recurrence relation, factorial
moment recurrence relation and cumulant recurrence relation etc., with estimation
techniques of the parameters used by the respective authors. In the succeeding chapters
we have made an attempt to study some of their generalized geometrically infinitely
divisible distributions based on the models (1.6.1) and (1.6.2) stated in chapter 1, studied
by Klebanov, Maniya and Melamed (1984) and Steutel (1990).

2.2 Poisson-Lindley Distribution
Lindley (1958) derived a distribution known as Lindley distribution based on

Baye’s theorem with pmf

02 (O+2+x) _

P.(8) = , x=012,..., 2.2.1
x( ) (0+1)x+3 ( )

Sankaran (1970) generalized Lindley distribution by mixing with Poisson distribution

which is known as Poisson-Lindley distribution with application to mistakes in copying
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groups of random digits (data from Kemp and Kemp, 1965) and accidents to 647 women
on high explosive shell in 5 weeks (data from Greenwood and Yule, 1920). In both cases,
Poisson-Lindley distribution gives a better fit to the data than the Poisson distribution.
Borah and Begum (2002) studied certain properties of Poisson-Lindley and its
derived distributions (Chapter 3). They fitted the generalized distributions of Poisson-
Lindley to some biological and ecological data for empirical comparison. Poisson-
Lindley distribution is a special case of Bhattacharya’s (1966) more complicated mixed
Poisson distribution. The Poisson-Lindley distribution (See Sankaran, 1970) has the pgf

of the form
6*@+2-1) S0
@+D)O@+1-0)*" (2.2.2)

gt)=

Its recurrence relation for probabilities may be written as

_2(6+1)P, ~P,.

. L for r>1. (Sankaran, 1970 223
r+l (0+1)2 f ( ) ( )

0*(0+2) P - 6 +3)8*

where P0=_(W, ) @) .

The moment generating function (mgf) of Poisson Lindley distribution is

0= 0@ +2-¢)
@+)@+1-e') (2.2.4)

Its moment recurrence relation may be written as

Hra =%[i(rfl)w',{(0+1)—2’“’}+{(0+1)—2'}]—(0+1)-‘,r >1 (2.2.5)
J=1 ]
M0+

The factorial moment generating function (fmgf) of Poisson Lindley distribution is

_0'@+1-1

0= G ne-n® (2.26)

The recurrence relation for factorial moments may be written as
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(r + 1){20/10) - r/u(r_l)}

o r>1 2.2.7)

Heay =

0+2

where  p,, =m.

Again, the cumulant generating function (cgf) of the distribution is

2

K@) =logM(t) =log 00

- +log(@+2-¢') ~2log6 +1-¢') (2.2.8)

Its recurrence relation for cumulants may be written as

1 14
K. = 20+3)-2/}+(0+3)-2" |,r21 229
r+i 9(04‘1)[;(]%’_]“{( ) } ( ) ] r ( )
where K = 0+2 ,
06 +1)

_6°+40% +60+2
2 (0 +1)6?

Estimation of parameter

The single parameter @ of Poisson-Lindley distribution may be estimated by

using the method of moment (see Sankaran, 1970) remembering @ to be positive.

. —(u-D+y/(u-1)* +8u
2u

2.3 Three Parameter Charlier distribution

,0>0,4%0 (2.2.10)

Doetsch (1934), Meixner (1934, 1938) and Berg (1985) investigated the Charlier
polynomials defined by the generating function

-t (2.3.1)

which are associated with the Poisson distribution of rare events. McBride (1971)

discussed two parameter Charlier polynomials and some of their properties. Jain and

Gupta (1975) defined the generalized Charlier polynomial by the generating function
em (1 _ ﬂIn)—l
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Medhi and Borah (1986) studied generalized four parameter Charlier distribution with
probability generating function

gt)=e(Q-y-pPre U-n-p"Y*, a,p,A20and m=123,..
This distribution includes negative binomial (Bliss and Fisher, 1953), Hermite (Kemp
and Kemp, 1965), Gegenbauer (Plankett and Jain, 1975) and three parameter Charlier
(Jain and Gupta, 1975) distributions as its particular limiting cases. Medhi and Borah
(1986) investigated different properties of this distribution and also discussed the
methods for fitting of four parameter Charlier distribution.

The pgf of three parameter Charlier (TPC) distribution (Jain and Gupta, 1975) is
given by

g)=e (- e"(1-)"*, a,B,120 (2.3.2)

Its probability recurrence relation may be obtained as

_ (a+rB+AB)P. —afP,

, r21. 2.3.3
r+l (r+ 1) r ( )
where P =e(1-p)*

and P =(a+Ap)P,.

The mgf of three parameter Charlier distribution is

M@ =e(1-B)*(1-LB')* e” (2.3.4)
Its moment recurrence relation may be written as
. 1 (r) . . r(r .
Hipsi =q{ﬂ2[}.}6_m +(@+AB-aB2")+ Z[J{a +ApB —aﬂ2’}lh} >
= =l

r>1 (2.3.5)

where B =a+——,

The fmgf of three parameter Charlier distribution is

m@)=1-ar)*e”, a= l—ﬂﬂ. (2.3.6)
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Its recurrence relation for factorial moments may be obtained as

B(r+ ) +a- Plp,, —rabu,
(Y))

Hipsty = , r21 2.3.7)

B

where p,, =a+—:.

1-p
Taking logarithm on both sides of (2.3.4), the cgf may be written as
K@) =logM(t)=~a+ae’ + Alog(1- B)— Alog(l- £e') (2.3.8)

Its cumulants recurrence relation may be written as

K., (1_ {ﬂZ[],_,+,+(a+/1ﬂ)—aﬂ2’},rzl (2.3.9)
where K, —a+_’1£
1-p8°
_a+Af-2aB+ pu
i (-p) '

2.4 Gegenbauer Distribution

Plunkett and Jain (1975) defined Gegenbauer polynomials corresponding to the

generating function
g =(1-a-F)"*,a+pf<1, 1>0.

Further, they studied some of its limiting forms of the corresponding Gegenbauer
distribution and the goodness of fit by estimating the parameters of the distribution by
using the factorial moments. They fitted the distribution to a set of accident data. This
distribution has a long history in the theory of stochastic processes.

The Gegenbauer distribution (Plunkett and Jain, 1975) obtained by mixing the
Hermite distribution with the gamma distribution has the pgf of the form

g)=(l-a-p*l-a-pg*)*,a+p<1,1>0. (2.4.1)

The probabilities of Gegenbauer distribution can be expressed in terms of
Gegenbauer polynomials (see Rainville, 1960). As particular cases of Gegenbauer

distribution with pgf (2.4.1), Hermite distribution may be obtained by taking limit
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asA — o, @ = 0and # — 0 such that Aa = a,and A = «, , and putting B = 0, negative
binomial distribution is obtained. Borah (1984), has also studied the probability and
moment properties of the three parameter Gegenbauer distribution (2.4.1), and has used
estimation via the first two sample moments and the ratio of the first two sample
frequencies. Medhi and Borah’s (1984) studied four parameter generalized Gegenbauer
distribution with the pgf

gh)=(1-a-p'(-a-g")", _ (24.2)
where ‘m’ denotes integer number. They estimated the parameters by the method of
moments and some ad hoc methods via sample mean, sample variance, and ratio of first
two frequencies, assuming a known small integer value form .

Kemp (1979) studied the Gegenbauer distribution with pgf of the form

4-90 (-0 2.43)
1-0)"(1-9,)"

which can be obtained with various restrictions on Q,,0,,U, and U, by convoluting

g =

binomial and pseudo binomial variables. Kemp (1992a, 1992b) studied various forms of
estimation, including Maximum Likelihood (ML) estimation. Factorizing the quadratic
expressions in equation (2.4.2), the pgf can be expressed as
i
g = [-(—%%} , 2.4.4)
where a—b=¢,ab=n and 0 <b<a<]l. This factélfized form makes the distribution

easy to handle, especially its moment proberties. Mekéndrick (1926) had also obtained
the distribution with pgf (2.4.4) as the outcome of a non-homogeneous birth-and-death
process with A initial individuals.

The Gegenbauer distribution with the pgf (2.4.1), has the probability recurrence
relation of the form

P - {a(r+A)P. + pRA+r-1)P_}
T (r+1) ’

r>1 (2.4.5)

where P =(1-a-p)",
and P =alF,.

The mgf of Gegenbauer distribution is
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(-a-p) }
(—ae' — fe™)

Its moment recurrence relation is

M(f) = [

b= A[Ai(j.)(a F2 B+ A+ )+ ZU(“ +pY }u;_,+.] ,

ri (2.4.6)
1
where A=———|
l-a-p4
. Ma+2p)
(-a-p)
The factorial moment generating function of Gegenbauer distribution is
m(t) = (1-at —bt*)™*, 247
where a= a+2f
l-a-p
and  b=—b .
l-a-p8

Its factorial moment recurrence relation is

{a+2B)r+ ), +rB(r+24-Du,_, |

Hepony = , r>1 (24.8)
o (-a-p)
where #(1) = M .
(I-a-p)
The cgf of Gegenbauer distribution is
K@) =logM(t) = Alog(1—a — B)* — Alog(1 - ae’' — fe*)*. (2.4.9)
Its cumulant recurrence relation is
> Ck,_ (@+2 B+ Ma+2™ B)
k., =2 r>1 (2.4.10)
(l-a-p)
where k = Mat2p) )
(1-a-p)
and K, =(a+2,8)k,+/1(a+4ﬂ).
(-a-p)
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Estimation procedures

The estimation procedures of three parameter Charlier (Medhi and Borah, 1986)
and Gegenbauer (Medhi and Borah, 1984) distributions are shown in Table 2.1.

Table 2.1

Estimation procedures of G*#*(¢) and GZ%*(¢)

Mean, variance and ratio of first

Dist. Method of moments two frequencies
A _ M3 24, 3u, N _ My +0-24"
Gerigy | P = ==
! Hy— H, Hy —
a = /ul'—(l—'BA)zuz a = 1ul'(lu1 '_0)"'9(/12 _.ul')
B ’ 2u,'-0-p,
P '—aA)A(l—ﬂA)_ 1= '—a)(Al—,B ), g=I
B B o

3, — )t p(0(u - p,)* - 44py | f(A)=AX +BA+C,

a.B.A A
Gy () 24 ~ —B*+B?-44C

=D A=

ﬂA:l“(ﬂz—u)ﬂtz Y
b A=20-Qu- 1)},
g 22 Qu ) +2u° B=(3u-p)0-24",
. C=gitandd =21 oz
where A= pu, +2u-3u,, =6u”an =7 =al.
0
D =28 430~ " = F A -y
B = ,
D
g 2 Qu— )+ 24
D b

Here, G*#*(t) and G{?*(t) denotes respectively three parameter Charlier and

Gegenbauer distributions.

2.5 Hermite distribution

Kemp and Kemp (1965) studied Hermite distribution as a Poisson mixture of
Bernoulli distribution. By using the Gurland’s theorem, the Hermite distribution can also
be regarded as a Poisson mixture of binomial distributions which was used for

biometrical data by Skellam (1952) and McGuire et al. (1957).
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The Hermite distribution which is a Poisson-stopped-sum (generalized Poisson)
distribution can also be derived as the sum X =Y, +7Y,, where Y,is a Poisson random
variable with parameter a, and Y, is a Poisson random variable with parameter a, .
Mckendrick (1914, 1926) derived the distribution as the sum of two correlated Poisson
random variables. Mckendrick (1926) fitted the distribution using estimation by the
method of moments to the distribution to count of bacteria in leucocytes and obtained a
very much better fit than with a Poisson distribution.

The pgf of Hermite distribution is
G() =expia,(t - +a,(t’ -1}, a,,a, > 0. (2.5.1)

Its probability recurrence relation is

L= M ,r>1. (2.5.3)
(r+1
where P, =exp{—(a, +a,)}, P, =a,F,.

The cgf of the distribution is

K(t)=logG(e') =a,(e' —1) +a,(e* -1) (2.5.9)
Its cumulant recurrence relation is

K., =a+a,2™, r2l (2.5.6)
The first two cumulants are respectively

K =a +2a,, K,=K +2a,.

The Poisson and negative binomial distributions may be obtained as particular
limiting cases of three parameter charlier (Jain and Gupta, 1975) and Gegenbauer
distribution (Plankett and Jain, 1975).

Poisson distribution

The Poisson distribution which is a power series distribution with infinite non-

negative integer support belongs to the exponential family of distributions. It has the pgf

g)=e""" a>0 (2.5.7)
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Its probability recurrence relation may be written as

P =% s (2.5.8)
(r+1
where P=e*, Bb=aF, .

Similarly, the factorial moment recurrence relation may be written as
Homy=,y > 121, pg=a. 2.5.9)

Its recurrence relation for moments may be obtained as

. (r) . .
Hrn =a{l+z( -]/JI}, r2l, y=a. 2.5.10)
=1 .]

All cumulants of Poisson distribution are equal, each being equal to« .
ie., K =a,r2l. 2.5.11)

Negative binomial distribution
The negative binomial distribution has the pgf

g=0-p*a-pn", p,A20. (2.5.12)
Its probability recurrence relation may also be written as

= LURDE (2.5.13)
(r+1)

where P =(1-pB)*, P =AfP,.

The factorial moment recurrence relation may be written as

+A
y(,ﬂ):ﬂ(%—ﬂ)-)’ﬂ, r>1 (2.5.14)
where 1, =1—i’% .

The moment recurrence relation of negative binomial distribution is

Pt = A[Hi(r.)lﬂ) +i(r.]ﬂ',_,+.],r 21 (2.5.15)
s=1\J

J=t .]

where U = B and a=-L_.
- -
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The cumulant recurrence relation may be written as

__B ([
ey, {Z(ij ”}’ 7= 2510

where the first two cumulants of the distribution may be obtained as

k- g _BOSK)

1-8" -5
In succeeding chapters, i.e., in chapters 3, 4 and 5 it will be shown that all the

distributions and their recurrence relations mentioned above may be obtained as a

limiting case of our generalized geometrically infinitely divisible distributions.
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Chapter 3

Poisson-Lindley and its derived distributions

3.1 Introduction

The Poisson-Lindley distribution (Sankaran, 1970) is a one-parameter compound
Poisson distribution which has wide applications in the theory of accident proneness.
Sankaran (1970) generalized Lindley distribution (Lindley, 1958) by mixing with Poisson

distribution which is known as Poisson-Lindley distribution. It has pgf
2 —
6> +2 1)2, 50 G
@+DE+1-1) -

gl)=

In the preceding chapter, we have already discussed properties of Poisson-Lindley
distribution (Sankaran, 1970). In this present chapter, Poisson-Lindley distribution has
been further studied under two known forms of geometric infinite divisibility [(1.6.1) and
(1.6.2)], discussed in chapterl. The pgf of these generalized distributions are denoted by
the symbols GPL1 and GPL2 respectively. Some properties of GPL1 and GPL2, such as
the recurrence relations for probabilities, factorial moments and cumulants are also
investigated. The problems of estimation of parameters and fitting of these distributions
have been also considered. For estimating the parameters of GPL1 and GPL2, we have
considered a composite method where one parameter is estimated by using Newton
Raphson method and the other parameter is estimated by the method of moment. The

distributions GPL1 and GPL2 are fitted to some numerical data in different fields of
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biology, ecology and social information for which various modified forms of Poisson
distribution were fitted by different authors. In all cases, observing the values of chi
squares and also comparing the observed and expected frequencies it is clearly seen that
our fitted distributions describe the data very well.

3.2 Generalized Poisson-Lindley Distribution 1 (GPL1)

a) Probability recurrence relation
The pgf of the generalized Poisson-Lindley (GPL1) distribution derived from the
model (1.6.1) may be written as

6= (1-w)@+2-1)0

= ,0<w<1,8>0. 3.2.1
@+DO+1-1) —wb*@+2-1) ( )

Differentiating (3.2.1) w.r.t. ‘¢’ and then equating the coefficients of ¢" on both sides we
may obtain the probability recurrence relation as

_ {2(6+1) ~w8*}P.—(@+ D,

rel. 322
& @+1) -0 +2) ’ (3-2.2)

where P, = 4,(1- »)(@ +2)8*

P = 4120 +1)’ -00°}P, - (1-w)6?,

1

and A = .
[(6 +1) — w8* (6 +2)]

Putting r = 1,2,3,..., in equation (3.2.2), higher order probabilities may be obtained as

I {26 +1)* -w8*}P, — (6 +1)P,
2T @+ —0d @+2)

p _ 20+ ~08’}P, ~(@+DP,
T @+ —0f(0+2)

etc.

{20+ —08%}P, - (6 +1)P,
T 0+ -0 O+2)

b) Factorial Moment recurrence relation

The factorial moment recurrence relation may be derived from its fmgf given by

m(t) = a- a))tzz(l +0+1) (3.2.3)
(1+60)@-1)" —w82(1+6—1)

r

Differentiating (3.2.3) w.r.t. ‘¢’ and then equating the coefficients of L'— on both sides,
r!
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we may obtain the factorial moment recurrence relation as

o +D[200 +1) - 0071, 1O+ Dps, -, |
How = @ +1)0*(1-w)

2l (3.2.4)

The first factorial moment of the distribution is

@+2)

Ho = o0roxi-o)

Putting r = 1,2,3,..., in equation (3.2.4) higher order probabilities may be derived as

2026(6 + 1) - w8}, - 2(6 +1)

Hoy = @+ 1)1 -0)0°

32006+ 1)~ 08} ) — 66 + Dy,
Ho 0 +1)1 - w)8? ’

42000+ 1) - 06}y — 1200 + 1y,
Heo = @+ 1)1 - 0)6" '

where 1, denotes the " ordered factorial moment of the distribution. Thus mean and

variance of the distribution are respectively given by

- 0+ (3.2.5)
@ +1)0(1-w)

and

e _20u+360°u—200'u+6" -2 (3.2.6)
(1+6)6*(1-w)

It is noted that the mean is less than the variance 6> = Cu+ D, whenC,D # 0.

where Co {26 +36% -206°}
1+ 8)(1 - w)8*
and D=(6"-2)1+0)1-w)b>.

¢) Estimation of Parameters

From the equation (3.2.5), the parameter @ can be expressed as

-0+

12000 (3.2.7)

Again, from equation (3.2.5) and (3.2.6), the parameter @ is expressed in terms of &, as
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:—-—————’

2u6?
0.2 0_2
where A=3u+1-— and B=2(ﬂ———]-
p H

Eliminating @ from equations (3.2.7) and (3.2.8), a functional equation for 8 in terms of

4 and o’ may be obtained as

7(6)=6°+30" + 26 —% : (3.2.9)
0_2
where T=p+l-—.
U

The parameter & may be estimated by the Newton-Raphson method. When ‘8’ is
known, ¢ @’ may be estimated either by using (3.2.5) or (3.2.6) as

o= g1+ u—-(@+2)
@ +1)6u

e QR +30)u+0% -2-6(1+6)c’
2ub8* -6(1+6)o?

or

respectively .

where u and o’ respectively denote the mean and variance of the distribution.

3.3 Generalized Poisson-Lindley Distribution 2 (GPL2)

a) Probability recurrence relation
The pgf of Poisson-Lindley distribution derived from the model (1.6.2) may be given as

(8 +1)(F +1-1)

G(t) = -,
I+o)8+1)0+1-1) - (8+2-1)8

®>0,6>0 3.3.1)

Differentiating (3.3.1) w.r.t. ‘¢’ and then equating the coefficients of " on both sides, the

recurrence relation for probabilities may be obtained as

{2+ 1)@ +1) -0 3P — (0w + 1)@+ DP_

Fra = (@+1)@+1)’ —6°(0+2)

r+l

r>1 (3.3.2)

o0 +1)°

where P, = ,
(@+1)@+1)’ -6*(O+2)
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@+ +1) —0}P, -20(8+1)’
r (@+1)(@+1)’ 020 +2) ’

P 2@ +1D)@+1)’ -0*}P— (@ + 1)@+ DP, +w(0 +1) .

d
n ? (@+1)@+1) -8* @ +2)

Putting r = 2,3,4,..., in the equation (3.3.2), we have

P - {2(w + 1)@ +1)* —0*}P, —(w + 1)@ + DHP,
3 (@+1)O@+1)° 6% +2) ’

{2 +1)@ +1)* —6%}P, ~ (0 +1)(@ + )P,
‘T (@+1)@+1)° -0%(0 +2) ’

etc.

b) Factorial Moment recurrence relation

Factorial moment recurrence relation may be derived from its fmgf given as

m(t) =
(@+DA+0)X0 -1 -6°A+6-1)

r

Differentiating (3.3.3) w.r.t. ‘¢’ and equating the coefficients of t—' on both sides, we
r!

have obtained the factorial moment recurrence relation as

_rH)RO@+ 0+ ) =6y ~r@+ O+ Dty
Herwy @+ of

(0+2)
where Hay = m s

, forr>1, (3.3.4)

_2{20(@ +1)(0+1) - 6%} py, —2(0 +1)

and Hoy = (6 +Dwh?

Putting r = 2,3,..., in equation (3.3.4) we have

_3{20(0+ 1)(O +1) =07} py) — 2@ +1)(0 + Dy,

o (6 + Nwb?

2

e = 426(w +1)(O +1) - 6%} Ly = 3@ +1)(0 + Dy, stc
@ (@ +1wb’ T

Hence mean y and variance o of the distribution are may be expressed as
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_(@+2)
_(9+1)9w’

ol o 400u(@ + 1)+ Gu(@+2)+ 6% -2

and >
w(@+ 1)@

¢) Estimation of Parameters

From equation (3.3.5), the parameter @ can be expressed as

6+2
®w=—-:
60 +)u

Again from equation (3.3.5) and (3.3.6) the parameter @ can be expressed as

07 1 +20u+6* -2
8(6c* —4u) O +1)

Eliminating @ from (3.3.7) and (3.3.8), & may be obtained from the equation
f(@)=A46*+B+C,

The parameter @ is estimated by noting that

g——B+VB*-44C

24

where A=c—p*—p, B=2c>-p*-2p)and C=—6u.
It may be noted that @ is positive. Hence, @ may be estimated either from

@ +2)
ub@+1)°

= HoO+2)+6> -2
60 +1)(@o” -4 u)

or

(3.3.5)

(3.3.6)

3.3.7)

(3.3.8)

(3.3.9)

It is to be very important to note that, the Poisson-Lindley distribution (Sankaran,

1970) may be obtained as particular limiting case of GPL1 distribution, when we

putw =0 in (3.2.1).
3.4 Goodness of fit

The negative Binomial, the Poisson and the Neyman’s distributions are

commonly used in ecological and biological problems, the Neyman’s and negative-

Binomial distributions represent model in which the non-randomness is attributed to

contagion. In this investigation, the parameter 0 of generalized Poisson-Lindley

distribution is estimated by Newton-Raphson method, whereas the parameter o is
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estimated by the method of moments. The distributions GPL1 and GPL2 are fitted to
some numerical data for which various modified forms of Poisson distribution were fitted
by different authors.

In Table 3.1, we consider the data on the Pyrausta nubilalis; to which generalized
Poisson distribution was fitted by Jain (1975) and Neyman type-A distribution was fitted
by Beall and Rescia (1953). Observing the values of chi squares and also comparing the
observed and expected frequencies it is clearly seen that generalized Poisson-Lindley
distributions give better fit.

The Distribution of corn borers is considered in Table 3.2, to which Negative-
Binomial and the Neyman’s type-A distributions were fitted by Bliss and Fisher (1953).
It will be seen that the data agree excellently with generalized Poisson-Lindley fit.

The generalized Poisson-Lindley distributions, i.e. GPL1, and GPL2 are also
fitted to some data on the number of European red mites on apple leaves collected by P.
Garman (see Bliss et al, 1953) in Table 3.3 for which Jain and Consul fitted generalized
negative binomial distribution and Medhi and Borah (1984), fitted generalized
Gegenbauer distribution. In this case also our fitted distributions are found to be
satisfactory.

In Table 3.4, we considered the problem of accidents to 647 women on high
explosive shalls in 5 week period (Data by Greenwood and Yule, 1920) for which
Poisson-Lindley was fitted by Sankaran (1970).

The problem of mistakes in copying groups of random digits (Data by Kemp and
Kemp, 1965) is considered in the Table 3.5, for which Poisson-Lindley was fitted by
Sankaran (1970). Comparing the observed and expected frequencies it is clearly seen that

our fitted distributions describe the data very well.
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Table 3.1: Comparison of observed and fitted Poisson-Lindley, GPL1 and GPL2 and

generalized Poisson Distributions

(Pyrausta nubilslis in 1937, data by Beall and Rescia 1940)

?)served Fitted distributions
E‘ggg{s . ;:ug;cg GPL1 GPLZ | Poisson-Lindley Ge"eﬁa'ized
2 =12046 | ©'=0.5276 | @'=0.1123 | ( Sankaran,1970) , Jf: ;’1‘5?‘;';5)
0'=3.4556 | 6'=12.7400 0'=1.8082 ’
0 33 31.86 33.10 31.49 32.46
] 12 13.84 12.49 14.16 13.45
2 6 5.92 5.50 6.09 5.60
3 3 2.52 2.49 2.54 2.42
4 ] 1.06 1.13 1.04 1.08
5 1 0.80 1.29 0.42 0.97
Total 56 56.00 56.00 56.00 56.00
x| 03743 0.0667 0.6532 0.2500
df 1 Tl 2 .
p-value | >0.54 >0.79 >0.72

Table 3.2: Comparison of observed and fitted Poisson-Lindley, GLP1 and GLP2
distributions (Corn Borers data of Beall and Rescia, 1940)

Observed Fitted distributions
No.of | Frequency GPL1 GPL2 Poisson-lindley
Insects | ¥=1.4833 | g3 4556 6°=6.6400 (Sankaran, 1970)
s°=3.1664 R R A
©'=0.7611 ®'=0.1148 0°=1.0096
0 43 48.05 49.11 4536
1 35 29.04 24.83 30.07
2 17 17.36 15.30 18.70
3 11 10.35 9.84 11.16
4 5 6.16 6.38 6.48
5 4 3.67 4.14 3.68
6 1 2.18 2.69 2.06
7 2 1.30 1.75 1.14
8 2 1.89 1.14 0.62
Total 120 120.00 120.00 120.00
x| 1.7289 1.7251 0.0667
df 4 4 5
p —value >0.78 >0.78 > 0.99

GPL1: Generalized Poisson-Lindley Distribution of Type 1

GPL2: Generalized Poisson-Lindley Distribution of Type 2
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Table 3.3: Comparison of observed and fitted Poisson-Lindley, GLP1, GLP2 and generalized
negative binomial distributions to the Count of the number of European red mites on apple leaves

(Bliss et al 1953)

Leaves Fitted distributions
No.of (observed) Poisson lindley GPLI1 GPL2 Gen.Neg.Bin.
mites x=1.1467 (Sankaran,1970) | 8°=1.3921 0"=8.5800 (Jain and Consul,
per leaf 0'=1.258 "=0.1117 "=0.1022 1971)
s =2.2585 ¢ @

0 70 67.19 67.62 70.89 71.48
1 38 38.89 38.68 33.35 33.98
2 17 21.26 21.04 18.70 19.80
3 10 11.21 11.09 10.84 11.59
4 9 5.76 5.70 6.73 6.57
5 3 2.90 2.92 3.69 3.55
6 2 1.44 1.47 2.15 1.80
7 1 0.71 0.74 1.26 0.84
8 0 0.34 0.71 0.73 0.39
Total 150 150.00 150.00 150.00 150.00

X 3.0136 2.8491 2.4433 2.0700

df 4 3 3 3

p—value | >0.55 >0.41 > (.48 >0.55

Table 3.4: Comparison of observed and fitted Poisson-Lindley, GLP1, GLP2 and negative
binomial, distributions to the Accidents to 647 women on high explosive shells in 5 weeks

(Data by Greenwood and Yule, 1920)

Observed Fitted distributions
No.of | frequency GPL1 GPL2 Poisson-Lindley | Neg-binomial
accidents i2= 0.4652 ©'=0.8145 ©'=0.1189 (Sankaran,1970) | (Plunkett and
$7=06903 191545 | 0'=18.99 6=2728 Jain, 1975)
0 447 441.52 449.03 441 445.89
1 132 140.27 130.21 143 134.90
2 42 44.52 44.57 45 44.00
3 21 14.13 15.26 14 14.69
4 3 4.48 5.22 4 4.94
5 2 2.08 2.71 ] 2.56
Total 647 647.00 647.00 647 647.00 °
x> 1 4.0048 3.4236 4.62 3.6315
df 2 2 3 2
p —value >0.12( >0.18 >0.20 >0.15

GPL1: Generalized Poisson-Lindley Distribution of Type 1
GPL2: Generalized Poisson-Lindley Distribution of Type 2
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Table 3.5: Distribution of mistakes in copying groups of random digits with expected
frequencies obtained by fitting Poisson-Lindley, GLP1 and GLP2 distributions.

(Sankaran, 1970) (Data from Kemp and Kemp, 1965)

Observed Fitted distributions
Noof | frequency I ——&or GPL2 Poisson-Lindley
insects | ¥=0.7833 ) 8399 ©™=0.1916 (Sankaran, 1970)
s* =1.2364 | o 4500 8°=7.4500 =174
0 35 33.63 35.67 33.0
1 1 14.79 12.59 15.3
2 6.50 6.08 6.8
3 2.85 2.93 2.9
4 2 223 2.73 12
Total 60 760.00 60.00 60.00
15398 0.8401 24219
ar | 1 2
p~value | 5 2 >0.35 >0.29

GPL1: Generalized Poisson-Lindley Distribution of Type 1
GPL2: Generalized Poisson-Lindley Distribution of Type 2

From the above Tables it is clear that there is some improvement however small it

may be in fitting these distributions over the other distributions considered earlier. The

fitting of these distributions as indicated here may be used in other situations also.
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Chapter 4

Generalized Infinitely Divisible Distributions of Type 1

4.1 Introduction

Elementary infinitely divisible distributions which are formulated on the basis of
simple models seem to be inadequate to describe the situations which may occur in a
number of phenomena. In the last few years’ research a number of infinitely divisible
distributions have been derived. Numerous new results have been obtained and entirely
new applications have been found.

In this chapter 4, an attempt has been made to derive some generalized
distributions of three parameter Charlier and Gegenbauer by considering them as the
component distribution g(#), in the model

Gy = =280

, O<w«<l “4.1.1)
1-wg ()

studied by Steutel (1968, 1990) and Klebanov, Maniya and Melamed (1984) under the

name of geometrically infinitely divisible distribution, where G(¢) denotes the pgf of the

generalized distribution. The generalized distributions of Charlier and Gegenbauer
derived from the model (4.1.1) are denoted by the symbols GCD1 and GGDI
respectively. Further, certain important properties of these newly derived distributions

such as the recurrence relations for probabilities, factorial moments and cumulants are
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investigated. The parameters of GCD1 and GGDI] are estimated by considering a
composite method of using first two sample moments and ratios of first three frequencies.

To illustrate various applications of these distributions, they are fitted to some
well known data e.g., the number of plants per quadrant of Lespedeza capitate (data of
Beall and Rescia, 1953), the distributions of purchases of two different kinds of brands
(brand K and D) of products (data of Chatfield, 1969) and data on chemically induced
chromosome aberrations in cultures of human leukocytes in which Loeschcke and Kohler
(1976) recommended the use of negative binomial distribution (NBD), while Janardan
and Schaeffer (1977) have used a modified Poisson distribution and generalized Poisson
distribution (GPD) is used by Consul (1989). In all the cases our distributions provide
better fit to the observed data than the earlier ones.

It is seen that some generalized infinitely divisible distributions of Poisson,
negative binomial and Hermite mixing may be obtained as particular limiting cases of
GCD1 and GGD1. Certain properties of these limiting distributions are also investigated
and the distributions are fitted to some published data in different fields of biology,
ecology, home injuries, accidents and social information.

4.2 Generalized Charlier Distribution of Type 1(GCD1)

a) Probability recurrence relation
The probability generating function (pgf) of generalized three parameter Charlier
distribution of type 1 (GCD1) derived from the model (4.1.1) may be written as
Gy = =@ (=B (- By
1-we™(1-ple™(1- M)
Differentiating both sides of (4.2.1) with respect to (w.r.t) ‘¢, we get

, O0<o<l (42.1)

(1-ANG(0) = ]—f);[(a +AP)GOG() - aff GG+

{@+18)G(t) - apG (1)} (4.2.2)
Expanding (4.2.2) as a power series in ‘t’ and equating the coefficients of t"on both

sides, the recurrence relation for probabilities may be obtained as

{(a + 3B)G,G, + 3 {(a + AB)G, - afiG ., G, } +

G =-—_—__“°
"o (-w)r+1
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(@ +4B+rB)G, —afG,

o , rzl. (4.2.3)

where G, = (]1 - ”’)‘f:z(l(l _ﬁ’;r , (4.2.4)
g

and G, =(a+ A,B){l + 1“’_G° }GO . (4.2.5)

b) Factorial moment recurrence relation
The factorial moment generating function (fmgf) of GCD1 may be written as

(1-w)e”(1-—ae')™

M) = e (1 —ae' )

,0<w<l1 (4.2.6)

B
1-p
Differentiating the equation (4.2.6) w.r.t.‘t’, we get

where a =

(- at)m'(¢) = % {(a + Aa) - actm()m(t) + {(@ + Aa) - act }m(t) (4.2.7)

r

Expanding (4.2.7) as a power series in ‘t’ and equating the ‘coefficients of £ on both

r!
sides the recurrence relation for factorial moments may be obtained as
a) r r r r
w=——|(a+4a . —aa M,y —ary,,
) (-o) [( )é(j)ﬂ(”'u(’ ) ;(j)/‘(; nHe-p T ATH )]
plarad i, —arop, (4.2.8)
(1-w)
where i = 20D+ B,
(1-w)(1-p)
Hence mean and variance of GCD1 are respectively
1- A
U= (_1_(,3)—+ﬂ’ 4.2.9)
(1-o)(1-5)
A 2
o’ =,u+coy2+————ﬂ——2, (4.2.10)
(I-o)1- /)

¢) Moment recurrence relation

The moment generating function (mgf) of GCD1 may be written as
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—ay A ae’ 1 1\-4
M= =B e A=) " o, @.2.11)

1-—we (1= B)'e™ (1- ') ‘
Differentiating the equation (4.2.11) w.r.t.‘t’, we get

(- )M ()= = (@ +AB) - ape' ' MOM(0) + (@ + AB) - afe' ' M (1)

r

. . t . .
Expanding and equating the coefficients of — on both sides, the recurrence relation for
r

moments may be obtained as

K = A[(a +AB-af2’)+ ZU(a AP -af2 Y + ﬂZUu ]

+ B[i[:)@ +AB—ap2™ )j};(j,)u;yj_, ] rx1 (4.2.12)

=0

where A= ! , B= @
1-8 (1-p(1-w)

and M:ﬂ__w.
(1-o)1-f)

d) Cumulant recurrence relation
The cumulant generating function (cgf) of GCD1 may be obtained by taking
logarithm on both sides of (4.2.11) as
K(t) = log(1 - @) +logm(t) — log{l — wm(t)} (4.2.13)

where m(t)=e(1- B) e (1- f')*is the mgf of three parameter Charlier

distribution.

r

Differentiating (4.2.13) w.r.t. ‘t’ and equating the coefficients of t—, on both sides, the
r!

cumulant recurrence relation of GCD1 may be obtained as

"
=I\J J=1\J @
r>1 (4.2.14)
where A= g and B=—_ %
1-p (- p)(1-w)
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Here p, denotes the r” moment of the distribution.

The first and second cumulants of the distribution are respectively

k. _20-P+If
' (-0)1-p)
and K, =K, +oK! A

.
(I-w)1-p)
¢) Particular cases of GCD1

The distributions obtained from GCDI1 as its particular cases are given below in a

tabular form.
SL.No. | Parameter Name of Dist. pef g(?)
values
1. =0 Three parameter Charlier | ¢V g)*(1- g)~*,
a,B,A20
2. 0=0,a=0 Negative binomial 1-p*1-R)*,4,820,
3. w=0,=0 Poisson ea(l—l) a0

From the above Table it is clear that from (4.2.1), Poisson mixing infinitely
divisible distribution (GPD1) may be obtained by putting # =0 and negative binomial
mixing infinitely divisible distribution (GNBD1) may be obtained puttinga = 0.

1) Three parameter Charlier distribution

The three parameter Charlier distribution (Jain and Gupta, 1975) has the pgf
g)y=e*(1-p)'e"(1-4)", a,B,A120
This distribution may also be obtained as a limiting case of GCD1, when we put ® =0 in
(4.2.1). The probability recurrence relation of three parameter Charlier distribution is

_(a+rB+AP)P, —afP _,
o (r+1)

,r21.

where P, =e“(1-B)*, P =(a+AP)P, .
This is obtained by putting @ =0 in (4.2.3).
Similarly puttingw =0 in (4.2.8), the factorial moment recurrence relation of three

parameter charlier distribution may be obtained as
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B+ D) +a(- B, - rabu,.,
Hiay = )

A

where p, =a+——.

1-5

By putting® = 0, in (4.2.12) the moment recurrence relation of three parameter charlier

r21

b

distribution may be obtained as
fo = A[(a +AB-af2 )+ Z( ](a +AB-af2 ! ), + ﬂz[ ]p}

AB 1

where ,u =g+—, A=——.

1-p 1-4
Again, puttingw =0, in (4.2.14) the cumulant recurrence relation of three parameter

charlier distribution may be obtained as

{'BZ( ) sl +(a+1,3)—a,32’}, r>1

AL and K, a+/1ﬂ 2a,6+ﬁ;z
1-p -5

2) Negative binomial distribution

Kr+l
(1-p)

where K =a+

The negative binomial distribution has the pgf

g =-p'a-pm*, BA120.
This distribution may also be obtained as a limiting case of GCD1 when we
putw =0anda =0in (4.2.1). The probability recurrence relation of negative binomial

distribution may also be obtained from (4.2.3), by puttingw =0,a =0 as

, _POEDE
(r+1)
where B=(1-p) and P, =i,

Similarly puttingw =0anda =0, the factorial moment recurrence relation of negative

binomial distribution may be obtained from (4.2.8) as

Br+ )y,
ﬂ(r+l) =——(1_:T() R rZ]
AB
where p,, =——.
-B
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The moment recurrence relation of negative binomial distribution is

By = [“Z( )ﬂ»ﬂﬁZ( )u, ,+.], 21

. AB

h ="
where 7 -
and =—£—.
1- 8

This may be obtained from (4.2.12) by puttingw =0anda =0.
Puttingw =0in (4.2.14), the cumulant recurrence relation of negative binomial

distribution may be obtained as

B [&(r
Koo = (1—ﬂ){;( )k’ ’*'”}"21

where |=—/w—
1-p
and K}:M .
(-5

3) Poisson distribution
The Poisson distribution which is a power series distribution with infinite non-
negative integer support has the pgf
g)=e*"", a>0
This distribution belongs to the exponential family of distributions, may be obtained from
(4.2.1) as a limiting form of GCD1 by puttingw =0 and 8=0.
Again by putting® = 0and 8 = 0, in (4.2.3) the probability recurrence relation of Poisson

distribution may be obtained as

r+l T o, y r21
(r+1
where P=e"*
and B =aF, .

Similarly puttingw =0and # =0, in (4.2.8) the factorial moment recurrence relation of

Poisson distribution may be obtained as
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Hirny =Cthy > 721,
where HBy=a .
Again by puttingw = 0and 8 =0, in (4.2.12) the recurrence relation for moments

may be obtained as

. =a{1+2(r}u;}, rx1.
=1 .]

where h=a.

Puttingw =0and B.=0 in (4.2.14) we get all cumulants of Poisson distribution are equal
to .

ie., K =a,r2l.

4.3 Generalized Gegenbauer Distribution of Type 1(GGD1)

a) Probability recurrence relation
The pgf of generalized Gegenbauer distribution of type 1 (GGDI), derived from

the model (4.1.1) may be written as

G(t) = (-o)l-a-p'l-a-A")"

2 1 » 0<w <l 4.3.1)
I-(l-a-p)y(-a-A)
Differentiating (4.3.1) w.r.t. ‘¢’ we get
(l-at — BHG () = -%[(a +28)GOGE)]|+ Ua +280)G() 43.2)

I-w
Expanding (4.3.2) and equating the coefficients of ¢” both sides, the recurrence relation

for probabilities may be obtained as

= ———L{aGoGr + 2 {aGJ + 2BGJ-I}G"J} +
J=1

Gr+l
(d-o)r+1)

a(r+ )G, + BRA+r-1)G,

o ,r>l. (4.3.3)
where G, = (l—a))(l—a—ﬂz’l , (4.3.4)
l-o(l-a-p)
and G, = 4aG, =a/1{l+ G, }Go. (4.3.5)
l-o(l-a-p)* )
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b) Factorial moment recurrence relation

Corresponding to the pgf (4.3.1), the fmgf may be written in the following form
(1-w)(1—at - bt*)™

= ,0<w <1 (4.3.6)
m{t) 1-w(l—at—bt*)™ @
where a= ﬂ—
l-a-p8
and b= _r .
(I-a-p)
Differentiating the equation (4.3.6) w.r.t ‘¢’, we get
(1-at—btm (f) = vl {a +2bt}m()ym(e) + Aa + 2bt}m(r), 4.3.7)

l-w
Now equating the coefficients of t—' on both sides of (4.3.7), the factorial moment
r.

recurrence relation may be obtained as

WA (r r(ry.
Moy =127 GZ( -)ﬂ(n/‘(r—n +2b2( -)J/‘u-l)/‘(r—n}
1) =0 J 7=l .]

+a(A+r)p,, +rb{2A+(r-D}g,_y, r21 (4.3.8)

The first factorial moment of the distribution is
Ma+2p)
Hoy = .
(I-o)(1-a-p)

The mean and the variance of the distribution are respectively

p=—Ma*+2B) (4.3.9)
(1-o)i-a-p)
and o? =k + LEAE 245 . (4.3.10)
(I-a-p) (-o)l-a-p)
¢) Moment recurrence relation
The mgf of GGDI, corresponding to the pgf (4.3.1) may be written as
_ oy An_ r_ 21\-4
Mm@y =d-=a-pyl-c'-f)" , (43.11)

I~o(l-a-py(1~ae' - )"’
Differentiating both sides of (4.3.11) w.r.t “¢’°, we get
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(1-ae' - fe? )M (1) = %{(a +2e' Je MM (6) + Al + 28 o' M(2)

r

. . t . .
Equating the coefficients of — on both sides, the recurrence relation for moments may
ri

be obtained as

o = A{l(a + P2 + i[;)(a + B2,y + 12:: (;J(a + B2, }

+ B{:ﬂi(:)(a + g2 )2 (;}‘j K., } r>1 (4.3.12)

i = Ma+2p)
'(-o)(-a-p)
PR SN
1-a-p (-a- p)(1-w)
d) Cumulant recurrence relation
Taking logarithm on both sides of (4.3.11) we get the cgf of GGD1 as
K (1) = log(l — @) + logm(t) — log{l — aom(t)} (4.3.13)

where

where m(t)=(1-a - B)* (1 -ae' - f*)*,

r

. . . . . . t
Differentiating (4.3.13) w.r.t ‘¢’ and then expanding and equating the coefficients of —

r!
on both sides, the cumulant recurrence relation may be obtained as
r r r ,
K. = A[ﬂ(a +pB27) + Z[ .J(a +P2)K,_,, ] +BAY, (r.)(a +B52" 4,
=1 .] J=1 J
rx1 (4.3.14)
1
where A=—— |
(-a-p)
1)

B=
(1-a-p)1-w)
Here i, denotes the r” moment of the distribution.

The first and second cumulants of the distribution are respectively

_ AMa+2p0)
Yl-e)i-a-B)’
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K —oki s (DB 2B
(I-a-p) (-o)1-a-p)

e) Particular cases of GGD1

and

The distributions which may be derived from the GGDI, as its particular limiting

cases are given below in a tabular form.

SI.No. | Parameter values Name of distribution | Pgf  g()
1. =0 Gegenbauer (I-a- B (1-a- pH)
a,B,A20
2. 0=0,=0 Negative binomial (-a)*(-a)™?,
A>00<a<l
3 0=0,1-> w, Hermite
a — 0and 5§ 0 expia,(t —1) +a, (17 - 1)},
such that a,,a,>0.
Aa =q,
and Af = a,

From the table B it is clear that, by putting f =0, we may obtain negative binomial
mixing ID distribution and for A — o, @ — 0and S — 0 such that Ao =,and A8 =q,,
Hermite mixing ID distribution may be obtained.
1) Gegenbauer distribution
The Gegenbauer distribution (Plunkett and Jain, 1975) has the pgf
g =(l-a-p*l-a-FH*,a+L<1,1>0.
This distribution may be obtained from (4.3.1) as a limiting distribution of GGD1

by puttingew =0. Puttingw =0in (4.3.3) the probability recurrence relation of

Gegenbauer distribution may be obtained as
P,=(r+D)a(r+)P. +PRA+r-1)P_}, r21

where P=(1-a-pB)*,

and P, =alP,.

Again puttingw = 0in (4.3.8), the factorial moment recurrence relation of Gegenbauer

distribution may be obtained as
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_ K +28)(r + D, +rB(r + 24Dy, f
Herey (-a-pB)
_Ma+2p)
foza-py

r21

3

where

Similarly by putting @ =0in (4.3.12), the moment recurrence relation of Gegenbauer

distribution may be obtained as

;asAPiﬁ%Hr*%wﬁ+uwHWﬁ+XC}Hﬂwww}rm

J=1\J J=1
where y=Mar2p)
(I-a-p)
and =——1—.
l-a-p

Again putting @ =0in (4.3.14), the cumulant recurrence relation of Gegenbauer

distribution may be obtained as

r

ky=(1-a- ﬂ)"{Z(r.)k,_m (@+2' By +Ma+ 2”',3)} r2]

J=1

where h:M
(I-a-p)
and k, = (a+2P)k +ﬂ(a+4ﬂ)'
(1-a-p)

2) Hermite Distribution
Hermite distribution (Kemp and Kemp, 1965) which is a Poisson mixture of
Bernoulli distribution has the pgf
G(t) = exple,(t-D+a,(t* -}, a,,a, > 0.
The Hermite distribution may be obtained from (4.3.1) as a limiting form of GGDI,
taking limitsas@ =0,4 > o, @ - 0and § — 0 such that la = ¢jand 1S = ¢, .
The probability recurrence relation of Hermite distribution is

— apf, +2a,b,

o s r21.
(r+1
where P, =exp{—(2, +a,)}
and P =aF,.
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This is obtained from (4.3.3) taking limits asw =0,4 >, a —> 0and 8 -0 such
that Aa = @, and A8 = a, . Again the factorial moment recurrence relation of Hermite
distribution obtained from (4.3.8) as its limiting case, is

Ky = {(al + 2a2),u(,) +2ra, ,u(,_l)}, r>1
where Moy =, +2a,.
Similarly taking limits as@=0,4 - o,a - 0and S —->‘O such that Aa = a,and
AB=a,in (4.3.12) the moment recurrence relation of Hermite distribution may be
obtained as

., =(a, +2a,)+ 2[;)(% +2" M)y, r21

P

where 4 =a,+2a,.
Again from (4.3.14) the cumulant recurrence relation of Hermite distribution may be
obtained as

K.,=a+a,2™,r>1.
where K =a, +2a, andX, = K, +2a,,

4.4 Estimation of parameters

To estimate the parameters of Generalized Charlier Distribution of Type 1(GCD1)
and Generalized Gegenbauer Distribution of Type 1(GGD1), we shall use the simplest
adhoc method of using sample mean, sample variance and the ratio of first three
frequencies f,/f, and f,/f,, as the other methods are found to be computationally
complicated. In order to make the calculation easier, we shall first transform the

probabilities (G,'s) of the Infinitely Divisible distributions in terms of the probabilities

(P's) of the component distributions used. Then the probability recurrence relations of

GCDI1 and GGDI1 may be written as

- % c (1 _w)Pr+
G, = 1—wP {;Gr—mpj +F,,G, + —(o—L}’ r=1. 4.4.1)
where G, =1_2). (4.4.2)
1-wP,
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G = (1-w)P,

= (4.4.3)
L (-wR)
Putting » =1,2,3..., in (4.4.1), we get
2 -—
G, = ( —a)){a)P[ +d wP")PZ}, so on. (4.4.4)

(1-P,)’
Therefore, the ratios of first three frequencies of the distribution corresponding to (4.1.1)

are respectively

gL H (4.4.5)
fo  (-oFR)F,
2 pa—
o, =L O HU0R)E _ pap g (4.4.6)
fo (1 - a)Po )2 Po Pl
Adding equations (4.4.5) and (4.4.6) we get the a second degree equation in ‘@’ as
Ao’ +Bw+C =0, (4.4.7)
where A=P6},

B= Ponel —Poz{(el +02)+0|2} .
and ~ C=P,(6,+6,)-P,-6,P,.

Hereﬂz%, Pl=% and1’2=% are respectively first three probabilities of the

component distributions used and N = Z /; is the total frequency.

Solving equation (4.4.7), we get the value of @ as

-B++B*-44C

24

For obtaining the remaining parameters of the distributions GCD1 and GGD1 we proceed

Q=

, O<w <1 (4.4.8)

as follows
a) GCD1 ( a,B,1)
The sample mean X , sample variance s”and the ratio of first two frequencies fo and f]

of GCDI are respectively

a(l- )+ Ap
(1-o)1-p)’

X =

(4.4.9)
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K ap , (4.4.10)
- (-o)1-p)

s'=wx’+%+

9=A=(a+ﬂﬂ){l+wG°}, (4.4.11)
Jo 1-
Eliminating, A from (4.4.9), (4.4.10) and (4.4.11) one by one and putting
-1
];:(Sz—f—é)fz),]}:g 1+0)G° andGozﬁ'
l-w N

the estimated value of S may be obtained as

. (-d)F-T,

B=1 i—o)7T (4.5.12)

b

Eliminatinga from (4.4.9) and (4.4.10) and substituting the value of ﬁ we get the

estimated value of A as

A= [31,2 (1-d)1- BT, (4.4.13)

Finally putting the values of Band A in (4.4.9), we get
ip

—. 4.4.14)
(1-5) (

& =(-d)x -

b) GGD1 ( a,,4)
The sample mean X , the sample variance s* and the ratios of first two frequencies f;, and

J, of the distribution GCD1 are respectively

= @+2Pr (4.4.15)
(I-o)1-a-p)
s ok + LEPE 245 (4.4.16)
(I-a-p (-o)l-a-p)
0=%=a,1{1+1‘"_(;—;}, (4.4.17)

Eliminating, 8 one by one from (4.4.15), (4.4.16) and (4.4.17) we get a second degree

equation in A as

PR +QA+R=0 (4.4.18)
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where P=4T -XT,+T,),

Q =27 +(T, - 3T)T,

and R=-T'T,.
_ . _ oG, |
writing T=x(1-2), T,= (1“0’)(52 -ax’), T, :‘9{“’ 1_;}
and G, =ﬁ-
N

The quadratic equation (4.4.18) may be solved either by using Newton Raphson method

or the estimated value of Amay be obtained as

i:‘QiVQZ_“PR, (4.4.19)

2P
Putting the estimated value of 4 in (4.4.15) and (4.4.17), after eliminatingax we get the

estimated value of Sas

5 ML -T)-TT,
= . 4.420
p 22 + AT, ( )
Finally, putting the estimated values of fand A in (4.4.15), we get
G = L-pa +24) ) (4.4.21)

A+ T;
4.5 Applications of GCD1 and GGD1

It is believed that generalized Charlier distribution (GCD1) and generalized
Gegenbauer distribution (GGD1) should give a reasonably good fit to some numerical
data in different fields of biology, ecology and social information for which various
modified forms of Poisson and negative binomial distributions were suggested by
different statisticians. Therefore we have tried to fit GCDI1 and GGD1 to some published
data and compared them with other distribution on the basis of y? criterion. The derived
distributions GCD1 and GGD1 have been fitted by an adhoc method for rapid prediction,
because of complexity of maximum likelihood method of estimation.

For the application of GCDI1 and GGD1, we consider the example of the number

of plants per quadrant of Lespedeza capitate in Table 4.1, well known data of Beall and
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Rescia, 1953 to which Medhi and Borah (1986) fitted generalized Charlier distribution.
For GGDI, using (4.4.8) we getd =0.2475, using (4.4.12), (4.4.13) and (4.4.14) we

get #=0.6408,1=0.0437and & =0.0024. For GGDI1, using (4.4.19), (4.4.20) and

(4.4.21), we get = —0.0390 , A =0.0433 and & = 0.7023 for the same value of & = 0.2475 .
Observing the expected values obtained by GCD1 and GGDI, it is found that our fitted
| distributions agree with the observed data. The Poisson-Pascal distribution by Katti and
Gurland (1961) is also compared with our fitted distribution and our distributions are
found to be satisfactory.
In Tables 4.2 and 4.3, we have considered the data on the observed frequencies of
distributions of purchases of two different kinds of brands of products (brand K and D)
(Chatfield, 1969) where GPD model is fitted to these data by Consul (1989). For GCD1

in Table 4.2, we get & =0.3112, 3=0.6707, 4=0.0315 and & =-0.0031 and in Table 4.3,
we get =0.2345, 3=0.7229, 1=0.0562 and & =0.0159. The GGDI is also fitted to

the observed data of brand K of products in Table 4.2. Here for the same value of
®=0.3112 we get 3=0.0628, A=0.0311 and @ =0.57i§6. Considering the z* values
and a comparison of observed frequencies with the expected frequencies it is seen that the
GCDI1 and GGD1 both are as good as the GPD model for the data fitted by Consul
(1989). '

In the analysis of data observed on chemically induced chromosome aberrations
in cultures of human leukocytes, Loeschcke and Kohler (1976) recommended the NBD,
while Janardan and Schaeffer (1977) have used a modified Poisson distribution and also
GPD by Consul (1989). In Table 4.4, the GCDI is fitted to the distribution of number of
Chromatid Aberrations, and it is also seen that our model fits the data best. Using (4.4.8)
we get & =0.2032, using (4.4.12), (4.4.13) and (4.4.14) we get 5=0.6120, 1=0.1647

and & =0.1765. From all these discussion it is clear that in all cases the data sets are very

well described by the GCD1 model.
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Table 4.1

Observed and fitted distributions of GCD1 and GGD1
(Observed frequencies of Lespedeza Capitate, data from Beall and Rescia, 1953)
(Medhi and Borah, 1986)

Fitted distributions
No of | Observed GCDI1 GGDI1 Poisson-Pascal
plants | frequency W™= 02475 o= 02475 TPCD distribution
*=0.1068 | gn_o6a08 | pr=-00390 | (Medhiand Katti and
=098 ns00437 | Arm0.0433 Borah, 1986) | Curland (1961)
a*=00024 | a"=0.7023
0 7178 7179.18 7179.08 7179.13 7185.0
1 286 286.06 286.06 286.05 276.0
2 93 91.73 94.73 91.52 94.5
3 40 40.26 41.23 40.28 415
4 24 19.71 20.21 20.02 20.2
5 7 10.25 10.52 10.33 10.4
6 5 5.53 5.69 5.61 5.6
7 1 3.07 3.16 3.12 3.1
8 2 1.73 1.78 1.77 1.7
9 1 0.99 1.03 1.02 1.0
10 2 0.58 0.59 0.45 0.6
11 1 0.91 0.32 0.45 0.3
Total | 7640 7640.00 7630.00 7640.00 7640.0
| 205 . 2.04 1.59 9.58
df.| 7 7 8 8
p—value | >0.95 >0.95 > 0.99 > 0.29

GCD1: Generalized Charlier Distribution of Type 1
GGD1: Generalized Gegenbauer Distribution of Type 1
TPCD: Three parameter Charlier Distribution
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Observed and fitted distributions of purchases of a product of brand K, (Chatfield, 1969)

Table 4.2

by the Number of Consumers over a number of weeks (Consul, 1989)

Observed Fitted distributions Generalized
No of frequency GCD1 GGD1 Poisson
CONSUMELS | Chatfield $=03112 $=03112 Distribution
(brand K) B =0.6707 B =0.0628 (Consul, 1989)
* =0.0886 1=0.0315 1=0.0311 4=0.0463
s =0.2807 | 45 _ 0.0031 G =0.5786 A=04710
0 1671 1671.49 1671.36 1670.78
1 43 43.02 43.05 48.04
2 19 16.74 16.25 14.91
3 9 7.66 7.37 6.73
4 2 3.91 3.77 3.57
5 3 2.12 2.05 2.08
6 1 1.18 1.16 1.28
7 0 0.69 0.67 0.82
8 0 0.41 0.40 0.54
9 2 2.78 3.87 1.25
Total 1750 1750.00 1750.00 1750.00
71| 1.4006 2.1151 2.66
df. ] 1 2
p—value | >0.23 >0.14 >0.26

GCD1: Generalized Charlier Distribution of Type 1

GGD1: Generalized Gegenbauer Distribution of Type 1
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Observed and fitted distributions of purchaseé of a product of brand D, (Chatfield, 1969)

Table 4.3

by the Number. of Consumers over a number of weeks (Consul, 1989)

Observed Fitted dist. Generalized
No of frequency GCD1 Poisson
consumers Chatfield (brand D) | & =0.2345 Distribution

x=021225 £=0.7229 (Consul, 1989)

s’ =0.7223 1-0.0562 6=0.1133

a =0.0159 A =0.4663
0 875 874.84 875.05
1 63 62.98 62.18
2 19 19.11 20.40
3. 10 9.42 9.33
4 4 5.23 4.95
5 4 3.09 2.87
6 1 1.89 1.75
7 2 -1.19 1.12
8 0 0.76 0.73
9 1 0.49 0.49
10 0 0.33 0.33
11 0 0.22 0.23
12 1 0.45 0.57
Total 980 980.00 980.00
1 0.36 0.44
df. 2 3
p —value > 0.83 >0.93

GCD1: Generalized Charlier Distribution of Type 1
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Observed and fitted distribution of GCD1

Table 4.4

(Number of Chromatid Aberrations (0.02 g Chinon I, 24 Hours)
data by Loeschcke and Kohler, 1976 (Consul, 1989)

Fitted dist.
No of Observed GCD1 Generalized Poisson
aberrations Frequency @ =0.2032 Distribution
x =0.5475 B=0.6120 (Consul, 1989)
s2 =1.1227 /i=0.1647 q =0.3928
a =0.1765 A =0.2826
0 268 267.59 270.1
1 87 86.85 80.0
2 26 26.22 28.9
3 9 10.41 11.6
4 4 491 5.0
5 2 2.50 2.3
6 1 1.32 1.0
7 3 0.20 0.1
Total 400 400.00 400.00
Ve 1.34 2.37
df. | ’ 3
p —value >0.24 >0.49

GCD1: Generalized Charlier Distribution of Type 1

4.6 Properties of particular cases of GCD1 and GGD1

It is seen that some generalized infinitely divisible distributions of Poisson,
negative binomial (Begum and Borah, 1999, 2003) and Hermite distributions may be
obtained as particular limiting cases of GCD1 and GGD1. Attempt has been also made to
study the properties of these distributions together with estimation of their parameters.
Some well known data sets in different fields of biology, ecology, social information,

home injuries, accident data etc., are considered for fitting of the derived distributions.
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a) Poisson mixing infinitely divisible distribution of Type 1 (GPD1)

The pgf of Poisson mixing infinitely divisible distribution (GPD1) derived from
(4.2.1) by putting £ =0 may be written as

(1 co)e“(' "
_ e

G@)= O<o<l 4.6.1)

Poisson mixing infinitely divisible distribution has the probability recurrence relation

1
G, = oG, + GG, + , for r>1 (4.6.2)
! (r+D[ To1- w{ Z: }] 4
where G0=(l;w)e7,
1-we

qza%+9@}@.
-

Its factorial moment recurrence relation is

r+l r—g+t

a a)(r+1) a
Koy = a —a)) Z[r i +J T Heyyo for r>1 (4.6.3)

a . . o
where x4, = -2’ is the first factorial moment of the distribution.
-

Therefore mean and variance of the distribution are respectively
a
e
and o=y’ +u.
Estimation of parameters
For estimating the parameters of Poisson mixing infinitely divisible distribution,
as method of maximum likelihood will be very cumbersome iﬁ this case the method of

moment has been used. The first two sample moments of the distribution are respectively
= — (4.6.4)

sSS=ax’ +X%. (4.6.5)
Solving the equations (4.6.4) and (4.6.5) we may have the estimated values of w anda

respectively as
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2 = 2
S —X ~ — S

— anda=x+l—T.

X X

Graphical Representation of GPD1

=

To study the behaviour of the GPD1 model for varying values of @ and A, the
probabilities for possible values of x are computed. It is clear from the graphs in figures
4.1, 4.2 and 4.3 that when @ remains fixed atw = 0.25, = 0.5 and ® = 0.8 respectively,
and A varies, the probability curves become unimodel and positively skewed, but its
flatness increases with increasing value of 4.

In figures 4.1, Atakes values0.5,1.5, 3.5, 5.5, 7and9.5. For figures 4.2, and 4.3,
Atakes values0.5,1.5, 2.5,3.5,5.5, 7and9.5. Again, in figure 4.4 for fixed 1 =5.5,

when o takes values 0.25, 0.5 and 0.8 then for smaller value of @, the curve is more

bell-shaped and it becomes more flattened when @ increases.
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b) Negative binomial mixing infinitely divisible distribution of Type 1 (GNBD1)

The pgf of negative binomial mixing infinitely divisible distribution (GNBD1)
derived from (4.2.1) by putting @ = 0 may be written as
Ay a2
=(1—a))(1—[31 a ﬂ)ﬂ , O<w<l (4.6.6)
1-o(1-p8)"(1-4)"

It has the probability recurrence relation is

G(?)

G, = —I—[ﬂ(r +A)G, + @{GOG, + Zr:GjG,_j H , forr>1 (4.6.7)
r+1 1-w =
_ (1-0)1-p)*
where G, = To(— B Tl B
and G, = —ﬂ’l—G"——l _ ,w{l + 25 }GO.
1-w(-B) l-o

[ts factorial moment recurrence relation is

A+r " (A+r—j
Hirary = A{b’“( 1J+ wZ( J Jb’"’“ i} 1 (4.6.8)

r+ a\r—-j+1 J!
!
where A =w, b =-L.
(1-w) 1-p
. T b
The first factorial moment of the distribution is 44, = .
-w

Hence mean and variance of the distribution are respectively

p=—=>® (4.6.9)
(I-o)1-25)
2 2 H

and O =wu+ (4.6.10)

-5
Estimation of parameters
The parameters 4, andw of the negative binomial mixing infinitely divisible
distribution may be estimated in the following three methods
i) Method of using first three factorial moments
The first three sample factorial moments of the distribution are respectively
Ab

e -0’
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mg, = m(,){b(l +1)+ 2a)m(l)},

and  my, = (A+2)bm,, +dam,m, —2om, jom, +bjm,

b
writing R=mgy -2m’, Q=mym, ~ 6m,,’ (R + m(,)z) and g = T2
2 —_—
we have A= 2R2 9 ,
R -0
- - R?
—
O +{ug —RIR
2
and d=1- 0 3R
Ry

ii) Method of using first two sample moments and ratio of first two frequencies

First two sample moments and the ratio of first two frequencies are respectively
AB

e EE— ]

(I-2)1-5)

2 2 H
s“=ou” + ,
(1-5)

and 6=20 =lﬂ{1+—aﬁ°—}60.
o l-w

X=

Solving the above three equations of sample mean x , sample variance s’ and the ratio of

first two frequencies@ = 1‘—, we obtained the estimated values of B, and A
0
respectively as
ﬁ’ _ ¥ +x—s’
(A-Dx
5= A(s? -x)-Xx*
(A-Dx*
P X'P, —6(s’-x7)
(F2+x-sH)+(s*-x)P,-%6’
0
where P = i3
N
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iii) Method of using first sample moment and ratio of first three frequencies

The first sample moment X and the ratio of first three frequencies 8, = ﬁ- and 8, = 12—

fo Jo

of the distributions are respectively

— AB
X =——)
(1-a)(1-5)
S @G,
=—= 1 G’
6, 7. /w{-kl—a)}"
and @ =£=lﬂ(,1+l)0 + B, —2 .
o 2 : "-o
writing R=2(0,-6,)and Q = (XP, - 6,)8,.
we have i:ﬂ,
(1-P)R+Q
,B= xP, -6,
A(1-P)+xP,°
aA)zf—,B(J?+/1)
¥1-p)

¢) Hermite mixing infinitely divisible distribution of Type 1 (GHMD1)

The pgf of Hermite mixing infinitely divisible distribution derived from the model
(4.3.1) by considering the limits asA - o, @ — 0and f — 0 such that Aa =¢,and
A = a, a = 0 may be written as

(1-@)expla, (=) +a,(* -}

c= 1-wexpla, (-1 +a, (> 1)}

,B,A20. (4.6.11)

The distribution has the probability recurrence relation

a,G, +2a,G, 0] .
= + GG, + G, +2a,G ,
s (r+1) r+D-w)| 20 ;{“' ,+20,G,.6..,

for r21 (4.6.12)

where G, = (1~ o)expi=(a +a,)} and G, = a,{l + @Gy }GO.
l1-wexp{—(aq, +a,)} l-w

Its cumulant recurrence relation is
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r

K. = {al +a22r+]}+ 2 l:{al +a22r+l}+2(;j{al +a22r_1+l},ulj},

(1 - w) J=1
forrz1 (4.6.13)
where first two cumulants of the distribution are respectively
K =% +2a,
l l-@
and K, =owK!+K, + 22,
l-w

1ts factorial moment recurrence relation is

R ) r r
Hiray = {(a] +20, ) 1yy +2rapp, }+ i-0) {(al + 20‘2)2(; ( j}%n/‘)r—n +
j:

r . r
20, ) Paten |, gorr2i (4.6.14)
J=1

o, +2a, . . T
where g, = —'1——2 , is the first factorial moment of the distribution.
-

Therefore mean and variance of the distribution are respectively

_ a_nlt@; (4.6.15)
-
and ol =ou’ +u+ 12a2 . (4.6.16)

A

Estimation of parameters

For estimating the parameters of Hermite mixing infinitely divisible distribution
the following methods have been used.
i) first two sample moments and ratio of first two frequencies

The sample mean, sample variance and ratio of first two frequencies are respectively

f:ﬁ:ﬁ’l (4.6.17)

-

2 ) - 20

S =ax +x+m, (4.6.18)

gt o 1H0G D] (4.6.19)
fo : 1-w
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Eliminating, «, from (4.6.17) and (4.6.18) we have

(1 -w)

_ 4.620
v oG, - 1) (4.6.20)

Again eliminating, &, from (4.6.19) and (4.6.20) we may have a second degree equation

in @ as

Ao* +Bo+C =0 (4.6.21)
where A=%2(G,-1), B=(G,-1)(2x—-s’)+x’
and C=0R2x-s)-6.

Solving equation (4.6.21), we get

_3+VE_4AC

= , 4.6.22
Y ( )
Putting the value of @in (4.6.20), we get
L Unl.) B (4.6.23)
1+a(G, -1)
Substituting the values of @ and &, in (4.6.18), we get
. 1 - Ao .
a, = 5(5‘2 -x—dx’)(1-d). (4.6.24)
i) first sample moment and ratio of first three frequencies
The sample mean and the ratios of first three frequencies are respectively
X= o +la , (4.6.25)
l-w
6, = S =q, {H_Q)_(GO__D} ) (4.6.26)
5o l-w
1
6,=0"+220 - —@a,. (4.6.27)
a, 2
Eliminating, , from (4.6.25) and (4.6.27) we have
v _ 2
Pl el (4.6.28)
X
02 — ‘912

where T =

2

6

1
From (4.6.26) and (4.6.28), eliminating @ we may have a second degree equation in ¢, as

Aa’+Ba,+C =0 (4.6.29)
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where A=(G,-1),G, = % , B=(G,-DQ2T +1)+6,

and . C=0,2T +1)-xG,.
Solving (4.6.29) as an ordinary second degree equation we get

-B++B*-44C

&, = 2A , (4.6.30)

Putting the value of &, in (4.6.26), we get

H=—O0-h (4.631)
6, +(G, - D,
Again putting the value of ¢, and & in (4.6.25), we get
O
&, = {x(1~d)~dy}. (4.6.32)

4.7 Applications

The estimation of parameters in fitting probability distributions plays a very
importént role. Of all the procedures of estimating the parameters, the method of
moments is perhaps the oldest and the simplest. In many cases it leads to tractable
operations. The method of maximum likelihood is considered to be more accurate for
fitting a probability distribution on given data, but it involves much more computational
work than is required by the method of moments. It is mainly from this reason moment
estimators are used for estimating the parameters of generalized Poisson (GPD1) and
generalized negative binomial (GNBD1) distributions. In case of: generalized Hermite
distribution (GHMD1), the first two sample moments and the ratio of first two
frequencies are used to estimate the parameters.

The negative-binomial and the Poisson distributions are commonly used in
different ecological and biological problems. Therefore, we have considered some
reported data sets in different fields of biology, ecology, social information and accidents
for fitting generalized Poisson, generalized negative binomial and generalized Hermite
distributions.

In Table 4.5, we have considered the Student’s historic data on Haemocytometer
counts of yeast cells for which Hermite distribution was fitted by Kemp and Kemp (1966)
and Gegenbauer distribution was fitted by Borah (1984). Here it is seen that the expected
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frequencies computed by our derived distributions match satisfactorily than the Hermite
distribution (Kemp and Kemp, 1966). In Table 4.6, we have considered the data of Beall
and Rescia (1940), for which generalized Poisson distribution (GPD) was fitted by Jain
(1975) and Neyman type A and Neyman Type-B were fitted by McGuire et al (1957). In

this case also our distributions give good fit in comparison.

In Table 4.7 and 4.8, we consider two sets of data of Adelstein (1952) on number

of accidents (home injuries) of 122 experienced men in six years (1937-1942) and eleven

years (1937-1947) periods respectively. Again in Table 4.9, we consider the data of first

year shunting accidents and a five year record of experienced 170 men for the age group

21-25 years. It is clear that in all the above three cases there is some improvement,

however small it may be, in fitting these distributions over the other distributions

considered earlier.

TABLE 4.5

Observed and fitted Generalized Poisson Distribution (GPD1), Generalized negative
binomial Distribution (GNBD1) and Generalized Hermite Distribution (GHMD1)
(Haemocytometer Counts of Yeast Cells) (Borah, 1984)

Fitted Fitted Fitted Gegenbauer | Hermite
No. of Observed GPD1 GNBD1 GHMD1 Distribution | Distribution
Yeast cells | Frequency A"=0.4932 | 7 =2.7463, & =0.3882 (Borah,1984) | (Kemp and
Persquare | X =0.6825 | 0"=0.2774 f=02002 | G =0.4491 Kemp,
) .
$'=08117 | (MM) | oo | &, =—0.0158 1966)
(MFM) (MVR)
0 213 212.51 214.77 212.04 214.15 213.12
1 128 126.18 121.52 127.26 123.00 122.91
2 37 43.81 45.39 43.32 44.88 46.71
3 18 12.63 13.74 12.45 13.36 13.31
4 3 3.50 3.58 3.64 3.55 3.16
5 1 0.97 0.81 1.02 0.86 0.64
6 0 0.27 0.05 0.27 0.20 0.15
Total 400 400.00 400.00 400.00 400.00 400.00
12 2.3201 2.7136 3.5802 2.8342 3.8825
d.f. 2 1 1 1 2
p—value | >0.31 > 0.09 > 0.05 > 0.09 >0.14

MM= Method of Moment

MFR= Method of factorial moment

MVR= Method of mean, variance and ratio of first two frequencies.
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TABLE 4.6

Observed and fitted Generalized Poisson Distribution (GPD1), Generalized negative
binomial Distribution (GNBD1) and Generalized Hermite Distribution (GHMD1)
(Data from the paper by Beall and Rescia, 1940)

Observed Fitted Fitted Fitted
No. of Frequency | GPDI GNBD1 GHMDI Generalized
Insects A=0.1403 n"=1.00068 ® =0.4137 | Poisson
x=0.75 ©"=0.8089 | a"=0.9724, @, = 0.2568 | Distribution
s2=1.2946 | (MM) @ "=0.0213 @, =0.0914 | (Jain, 1975)
(MFM) (MVR)
0 33 31.00 31.98 32.74 32.46
1 12 14.86 13.73 11.88 13.47
2 6 6.05 5.89 7.01 5.60
3 3 2.69 2.52 2.57 2.42
4 1 0.99 1.08 0.97 1.08
5 1 0.41 0.46 0.83 0.97
Total 56 56.00 56.00 56.00 56.00
7’ 0.8824 0.6389 0.24 0.25
1
df
p — value >0.34
TABLE 4.7

Comparison of observed frequencies for Home injuries of 122 experienced men during
(1937-1942) with the fitted Generalized Poisson Distribution (GPD1), Generalized
negative binomial Distribution (GNBD1) and Generalized Hermite Distribution
(GHMD1) (Consul, 1989)

Fitted Fitted Fitted
No.of [ Observed GPD1 GNBD1 GHMD1 GPD
injuries | Xx=0.5409 | A"=0.4153 | 7=59314, | @ =0.5747 | Consul,1989
$°=0.60897 | ®"=0.2323 B=0.0777 a, =0.2727
(hﬂd) ) /\=00767 éz = —002 1 3
(MFM) (MVR)

0 73 73.03 73.21 72.96 72.23

1 36 35.82 35.41 35.98 35.32

2 10 10.13 10.34 10.02 10.41

3 2 2.35 2.41 2.35 3.04

4 1 0.67 0.63 0.69 0.00
Total 122 122.00 122.00 122.00 122.00

MM= Method of Moment,
MFR= Method of factorial moment,
MVR= Method of mean, variance and ratio of first two frequencies.
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TABLE 4.8
Comparison of observed frequencies for Home injuries of 122 experienced men during
11 years (1937-1947) with the fitted Generalized Poisson Distribution (GPD1) and
Generalized Hermite DistributionGHMDI1 (Consul, 1989)

Fitted Distributions
No.of Observed GPDI1 GHMDI1 GPD
injuries | Frequency | A*=0.4006 @ =0.2913 | Consul,1989
x=0.9836 | ©*=0.5928 a, =0.4904
s°=1.5571 | (MM) &, =0.1034
(MVR)
0 58 55.21 56.90 57.22
1 34 36.68 33.25 34 .41
2 14 17.03 18.29 16.64
3 8 7.41 7.92 7.59
4 6 3.21 3.17 6.14
5 2 1.39 247 ——
Total 122 122.00 122.00 122.00
7 | 3.4359 2.0327 1.09
df.| 2 1 2
p—value | >0.17 >0.15 >0.57
TABLE 4.9

Comparison of Observed Frequencies for First-Year Shunting Accidents and for a Five
Year Record of Experienced men for the age group 21-25 years with fitted Generalized
Hermite Distribution (GHMD1) (Consul,1989)

Fitted
No.of Observed GHMDI1 GPD
Accidents Frequency @ = 0.8986 Consul, 1989
x =0.7529 a, =0.1354
s2=0.6801 &; =-0.0295
( MVR)
0 80 80.89 76.40
1 56 57.13 65.03
2 30 24.04 23.37
3 4 7.32 5.20
>4 0 0.62 ——
Total 170 170.00 170.00

MVR= Method based on mean, variance and ratio of first two frequencies.
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In the above Tables 4.6, 4.7 and 4.9, in fitting GNBD1 and GHMD]1 where the

number of observations is 6 or less and we have three parameters to be estimated, y2 and
corresponding p —value are not provided as degrees of freedom (df') is very negligible.

In Table 4.10, we have considered the data collected by P. Garman (see Bliss et al
1953) on the Count of the number of European Red Mites on Apple Leaves. Comparing

the y? values obtained from GPD1 with that of the other distributions compared, it has

been observed that our distribution is found to be satisfactory.

TABLE 4.10: Observed and fitted Generalized Poisson Distribution (GPD1)
(Count of the number of European Red Mites on Apple Leaves) (Jain and Consul, 1971)

No. of mites | Leaves Fitted Distributions Gen.Neg.Bin.
per leaf (observed) GPD1 Poisson lindley | (Jain and Consul,
x =1.1467 A"=0.1638 (Sankaran,1970) 1971)
s =22585 | @"=0.8571(MM) 8"=1.258
0 70 66.79 67.19 71.48
1 38 40.17 38.89 33.98
2 17 20.87 21.26 19.80
3 10 10.75 11.21 11.59
4 9 5.76 5.76 6.57
5 3 2.95 2.90 3.55
6 2 1.57 1.44 1.80
7 1 0.75 0.71 0.84
8 0 0.39 0.34 0.39
Total 150 150.00 150.00
1 2.8640 3.0136 2.0700
df. 3 4 3
p —value > 0.41 >0.55 >0.55

MM= Method of Moment,

In Table 4.11, we considered the observed data of Kendall (1961), on the number
of strikes in 4-week periods in two leading industries in U.K. during 1948-1959 and
concluded that the aggregate data for the two industries of Vehicle manufacturing and
Ship building agree with Poisson law. The distributions corresponding to GPD1 and
GHMDI1 have been fitted to the observed data for the two industries. The results are
given in Table 4.11, along with the expected frequencies of GPD (Consul, 1989). Based
on observed and expected frequencies it is clear that the pattern of strikes in vehicle

manufacturing and ship building data describe the models very closely.
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TABLE 4.11

Comparison of Observed Frequencies of the Number of Outbreaks of Strike in U.K. during 1948-1959 with the Expected frequencies

of GPD1 and GHMD1 (Consul, 1989)

Vehicle manufacturing Industries

Ship-building Industries

Fitted Distributions

Fitted Distributions

No. of Observed GPD1 GHMDI1 GPD Observed GPD1 GHMDI1 GPD
outbreaks | Frequency | A*=0.0705 | & =0.4361 | Consul,1989 | Frequency | A"=0.0656 | & =0.4361 Consul, 1989
X=04103 | »»=0.8281 | & =0.1941 | §=0.351 ¥=03269 | ©"=0.7993 | & =0.1941 | =029
s7=0.5496 | (MM) 4, =00186 | i=-0.144 | $°=04124 | (MM) &, =00186 | 1=-0.113
(MVR) (MVR)
0 110 109.47 109.84 109.82 117 116.60 117.14 116.74
1 33 33.82 32.93 33.36 29 30.43 29.05 30.22
2 9 9.25 9.83 9.24 9 6.94 7.93 6.97
3 3 2.52 2.53 3.58 0 1.57 1.52 0.88
4 1 0.69 0.87 0.00 1 0.36 0.36 0.00
Total 156 156.00 156.00 156.00 156 156.00 156.00 156.00
7P| 02236 0.06 7 1.1281 1.19
d.f. 1 1 d.f. 1 1
p—value | >0.63 >0.8 p —value >0.28 >0.27

GPD1: Generalized Poisson Distribution of Type 1
GHMD1: Generalized Hermite Distribution of Type 1

GPD: Generalized Poisson Distribution
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Chapter 5

Generalized Infinitely Divisible Distributions of Type 2

5.1 Introduction

In this chapter 5, we have made an attempt to derive generalized distributions of
three parameter Charlier and Gegenbauer by considering them as the component
distribution g(¢), in the geometrically infinitely divisible model

@

- @Y w50 (.1.1)
(@+1)-g()

G(1)
studied by Klebanov, Maniya and Melamed (1984). The generalized distributions of
Charlier and Gegenbauer are denoted by the symbols GCD2 and GGD2 respectively.
Further, certain important properties of these newly derived distributions are investigated.
The parameters are estimated and distributions are fitted to some published data in
biology, ecology and social information etc.

It has been observed that some generalized infinitely divisible distributions of
Poisson and negative binomial may be obtained as particular limiting cases of GCD2 and
GGD2. The important properties of these limiting distributions have been also
investigated and the distributions are fitted to some well known published data in biology

and ecology.
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5.2 Generalized Charlier Distribution of Type 2 (GCD2)

a) Probability recurrence relation
The pgf of generalized Charlier distribution of type 2 (GCD?2), derived from the
model (5.1.1) may be written as

_ @
G(t)_(a)+1)—e"'(1—,6)‘e"’(1—,ar)“ , ©>0 (5:2.1)

Differentiating both sides of (5.2.1) with respect to (w.r.t.) ‘¢’ we get

(- A)G (1) = ﬁ’aj—lka +ABGE)G(O) - afiGOGH)]- {(@ + ABG() - 2 G(1)}

Now equating the coefficients of #” on both sides, the recurrence relation for probabilities

may be obtained as

» (a() ++11)) {( a+ AB)G,G, + Z {(a +48)G, a,BGl_l}G,_j}
_ (a+/1,3—rﬂ)G,—am,_, r>1 (5.2.2)
(r+1) T o
@
where G, = @) 0-B) (5.2.3)
and G =(a+ ,w){(“’”) 1}60. (5.2.4)

b) Factorial moment recurrence relation
Corresponding to the pgf (5.2.1), the fmgf of GCD2 may be written as
@
o+l-e“(l-ae')y*’
ﬂ .
1-B
Differentiating the equations (5.2.5) w.r.t.‘t’, we get

m(t) = >0 (5.2.5)

where a=

(-anym @) =2 . {(a+,1a) aatm(tym(t) - {(a + Aa) - aca}m(t)

r

. t . . .
Equating the coefficients of — on both sides the recurrence relation for factorial
r.

moments may be obtained as
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o+1 (r (T
Hipy =—| (@ + M)Z[ .)/u(j),u(r-,) - aaZ( .}(1)/‘(,4)/‘0-;)
@ J=0 J J=1 J

- l{a +ad—ar)u,, —arap, J , r21 (5.2.6)
The first factorial moment of the distribution is
a(l-p)+8
Hay = ’
a(1-p)
Hence mean and variance of GCD?2 are respectively
= a(l- B+ Ap
o(l-p) ’
ol :M.;_(w.,.])ﬂz.
o(1-p5)

¢) Moment recurrence relation
The mgf of GCD2 corresponding to the pgf (5.2.1), may be written as
M) = A : >0 (52.7)
(@+D)-e (1= p)e” (1-L')"

Differentiating (5.2.7) w.r.t. ‘t’ we get

(- B IM (1) = 5‘% {(@+2a)-ape' ' MEOM©) - {(@ + 1a) - ofe ' M (1)

r

. . . t .
Expanding and equating the coefficients of — on both sides the moment recurrence
r.

relation may be obtained as

po = B{i[’]{(a +Af) - a2 }Z[;}w - A{i(;){a FAB-af2 Y +

=0 \ [}

r r , —‘
{a+ﬂﬂ)—aﬂ2’}—ﬁ2[jJu,_,+. ,r>1 (5.2.8)
where A=——1—,B= 2+l nd ;=w.
1-B (- Pe a(l-p)

d) Cumulant recurrence relation

Taking logarithm on both sides of (5.2.7), the cgf of GCD2 may be written as
K(t) =logw —log{(w +1) — m(t)} (5.2.9)
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where m(f) =e*(1- B)*e™ (1- f')*, is the mgf of the three parameter Charlier

Distribution.

r

Differentiating (5.2.9) w.r.t. ‘t’ and equating the coefficients of t—' on both sides,
r.
the cumulant recurrence relation of GCD2 may be obtained as
Z(r (T N (a+ip)-aB2’
K., =4 K, .+ B Wae+AB)—af2™ wu, + ,
‘ ,Z‘U & ;(J{ b (1~ p)
r>1. (5.2.10)

where A= s and B:—(ﬁﬂ.
1-p (I- P

Here 1, denotes the r” order ‘raw’ moment of the distribution.

The first and second cumulants of the distribution are respectively

K ~=B+ip

wo(l-p)
and K,=(+0)K:+—20___ B
(1-5) ol-5

It has been observed that from (5.2.1), Poisson mixing infinitely divisible

distribution (GPD2) may be obtained by putting # =0and negative binomial mixing

infinitely divisible distribution (GNBD2) may be obtained by puttinga = 0.
5.3 Generalized Gegenbauer Distribution of type 2 (GGD2)

a) Probability recurrence relation .
The pgf of generalized Gegenbauer distribution of type 2 (GGD2) derived from
the model (5.1.1) may be written as

(]

G = 2 Iv-4 °
(@+D)-(l-a-p)'(1-at-p)

w>0 (5.3.1)

Differentiating both sides of (5.3.1) w.r.t. ‘¢’ we get

[(a +28)G()G®)]- A{(a + 280G 1)}

(1-at- )G (0 = 2202

Equating the coefficients of ¢” on both sides the recurrence relation for probabilities may

be obtained as

72



G, = (‘”“V”{ aG,G, +Z{aG +25G,.)G,. }

w(r+1)
a(r-AG, +Br-1-24G,, (53.2)
(r+1) T
= @ 533
where G, @ ) (a0} ( )
and G, = ﬂa{w~ 1}60 . (5.3.4)
[4]

b) Factorial moment recurrence relation
The fmgf of GGD2, corresponding to the pgf (5.3.1) may be written as

w
1= , 0 5.3.5
m(t) o+1-(0—-at-bt*)* @z (5:3.5)

o+ ap-—_ B
—a-pf (1-a-p)
Differentiating both sides of (5.3.5) w.r.t “¢°, we get
(w+D)A
@

where a=

(1-at - bt Ym'(f) = {a+2bt}m(t)ym(t) - A{a + 2bt}m(r),

r

. . t . .
Now equating the coefficients of - on both sides the factorial moment recurrence
r!

relation may be obtained as

(w+1),%
By = | #(,)/1(, ,>+2b2 j JH o))

@

+la(a-ryu,, - rb{24~(r =D}, |, r21 (5.3.6)

Ma+2p)
Hoy = ————+.
o(l-a- )
Hence mean and variance of the derived distribution are respectively
_ Ma+2p)
o(l-a-p)’

where

and 02=(a)+l)y2+p+2y2+——2/w— .
27 T e(-a-p)
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¢) Moment recurrence relation
Corresponding to the pgf (5.3.1), the mgf may be written as

[0}
otl-(l-a-py(-ae - gy

M@) = >0 (5.3.7)

Differentiating both sides of (5.3.7) w.r.t “¢°, we get

@+1

(- ae' - B )M (1) = —a)—l{(a +28' ' M(OM () - A{(ar +28e' ' M(2)

r

. . t . .
Equating the coefficients of — on both sides the recurrence relation for moments may be
r.

obtained as

By = A[i(;)(a + B2, ~ lﬁ(;J(a + 27 Yy ~Ma + ﬂz”')}

J=1

+ B[i(:)(a +ﬂ2r—:+l)§(;}l;ﬂ,'_j] s r21 (5.3.8)

=0

1 po_(@+DA

where A=——— B=

l-a-p (l-a-pPa
and ﬂlz_ﬂ(a—W)_‘

o(l-a-pf)

d) Cumulant recurrence relation

Taking logarithm on both sides of (5.3.7) we get the cgf as
K@) =logw -log{w+1-m(t)} (5.3.9)

where m(t) = (1-a - B)*(1-ae' — fe*)*is the mgf of Gegenbauer distribution.

r

. . ! .
Differentiating (5.3.9) w.r.t ‘¢’ and equating the coefficients of — on both sides the
ri

cumulant recurrence relation may be obtained as
2’ r+l c r - r '
K,=A4>@+p2+Y| l@+p2)K, ., |+BY|  l@+B2)4,
(2 =1\J s=I\J

r>1 (4.3.10)

1 g _(@+DA

where A = , B= .
l-a-p (I-a-Po
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Here u denotes the »” order ‘raw’ moment of the distribution.

The first two cumulants of the distribution are respectively

B Ma+20)
' e(l-a-p)’
and K, =(@+)K' +K + 2Kk +—28
A o(l-a- )

It has been observed that from (5.3.1) negative binomial mixing infinitely divisible
distribution (GNBD2) may be obtained by putting # = 0.

5.4 Estimation of parameters

To estimate the parameters of Generalized Charlier Distribution of Type 2
(GCD2) and Generalized Gegenbauer Distribution of Type 2 (GGD2) we shall use the
simple adhoc method of using sample mean x , sample variance s> and the ratio of first
three frequencies 6, = f,/f, and@, = f,/f,, as the other methods are found to be
computationally complicated. In order to make the calculation easier, we shall first
transform the probabilities G,'s of GCD2 and GGD?2 in terms of the probabilities P's of
the component distributions g(¢) used. Then probability recurrence relation of GCD2 and

GGD2 corresponding to the pgf (5.1.1) may be written as

G,., == [ZG/ P_.+G, PH,], >1 (5.4.1)
where G, =—‘1"—P (5.4.2)
®+1-F
oP,
| =S (5.4.3)
(@+1-P,)

Then, the ratios of first three frequencies of the distribution corresponding to (5.1.1) are

respectively

P
91=ﬁ=——'——, (5.4.4)
fo o+1-F
2 —
g =L fr@rI-Rh_p, P (5.4.5)

o (@+1-F)’ ' (@+1-R)

Adding equations (5.4.4) and (5.4.5) we get the estimated value of o as
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1 2 1

For obtaining the remaining parameters of the distributions GCD2 and GGD2 we may
proceed as follows
a) GCD2

The sample mean ¥ , sample variance s> and the ratios of first two frequencies f, and f,

of the distribution GCD2 are respectively

X= al-p+ip ) (5.4.7)
o(1- )

2 _ =2 _ ap x 4.8
s"=(w+1)x a)(l—ﬂ)+(l—,3)’ (5.4.8)
6, = (a+/1,8){(—w—ﬂ6—i—l},0, .y (5.4.9)

@ fo

Eliminating « and then A, one by one from the above three equations, we get the

estimated value of g as

. . 6%,

=1+ 5.4.10
B T, (5:4.10)

Again eliminating from (5.4.7) and (5.4.8), and putting the value of ,B we get
~ 1 . .
/1=Ez—a)(l—,8)2T, (5.4.1D

Substituting the estimated values of 1 and £ in (5.4.7) we get

and G=ax-P_. (5.4.12)
a-p5)
where T ={s* - (& +1F* - %},

I,=(@+1)G, —@
b) GGD2
The sample mean X , sample variance s> and the ratio of first two frequencies f,and f;of

the distribution corresponding to (5.3.1) are respectively
(a+2p)A
o(l-a-p)’

X=

(5.4.13)
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+px 248 (5.4.14)
A-a-pB) ol-a-p)’

0, =a,1{(“’—“)ﬁ-1}, o =2, (5.4.15)
) fo

Eliminating Aand then B one by one from (5.4.13), (5.4.14) and (5.4.15) we get a

s =(@+ D% +

second degree equation in « as
Pa*+Qa+R=0 (5.4.16)
Solving this quadratic equation we get the estimated value of « as
“QENG PR (5.4.17)
2P
where P =-Ax?,

Q=243 —24%6, + A8, {s’ ~X — (@ + )X},

a=

R=20[4% -6, - A{s’ - % - (@ +1)x*}],
and A={(o+1)G,-w}.
Eliminating A from (5.4.13) and (5.4.15) and substituting the value of & , we get

&(1- &) A% - G,

= 5.4.18

d 20, + adx ( )
Finally putting the values of @ and ,5 in equation (5.4.13), we get

A= M, (5.4.19)

& +2p3
5.5 Applications of GCD2 and GGD2

To illustrate the applications of GCD2 and GGD2, in Table 5.1, we consider the
well known data of Beall and Rescia (1953), on the number of plants per quadrant of
Lespedeza capitate for which generalized Charlier distribution was fitted by Medhi and
Borah (1986).

In Table 5.1, it has been observed that when GCD2 and GGD?2 are applied to the
frequency distribution of Lespedeza Capitate (data of Beall and Rescia, 1953), GCD2

provides a good fit with a ? value of 2.09 than GGD2 which provides a y’ value of
15.32. Here, using the equation (5.4.6) we get & =0.9065 and for GCD2, using (5.4.10),
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(5.4.11) and (5.4.12) we get 3 = 0.6291, A=0.0522and & = 0.0082. For the same value
of " =0.9065 using the equations (5.4.17), (5.4.18) and (5.4.19), we geta =0.3237,
£ =0.0704 and 1 =0.1263 for GGD2. The Poisson-Pascal distribution by Katti and

Gurland (1961) is also compared with our fitted distribution and it is found to be
satisfactory.

In Tables 5.2 and 5.3, we consider the data of Chatfield (1969) on the observed
frequencies of distributions of purchases of two different kinds of brands of products

(brand K and D) where generalized Poisson distribution (GPD) was fitted by Consul
(1989). From Table 5.2 we get &=0.9272 and for GCD2 we get 3 =0.6595, 1=0.0438
and @ =-0.0026. In case of GGD2, for the same value of & =0.9272, we get #=0.1224,
4=0.1022 and & =0.2553. Here also GCD2 provides a good fit with a y? value of 0.561
than GGD2 which provides a y° value of 2.8748.

Again Table 5.3 gives & =0.8381 and for GCD2 we get =0.7161, 1=0.0563
and @ =0.0359. For GGD2, we get 3=0.0614, 1=0.1977 and & =0.3800 for the same

value of & =0.8381. Considering the * values obtained, it is observed that the GCD2 is

as good as the GPD model (Consul, 1989) for both brands but GGD?2 is good for the
brand K only.
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Table S.1

Observed and fitted distributions of GCD2 and GGD2 to the frequency distribution of

Lespedeza Capitate (Beall and Rescia, 1953) (Medhi and Borah, 1986)

Fitted distributions
No. of Observed TPCD Poisson-Pascal
Plants per | Frequency GCD2 GGD2 (Medhi and Katti and
52 =0.2944

F"=0.6291 £7=0.0704

Ar=0.0522 Ar=0.1263

a”=0.0082 | a~=0.3237
0 7178 7179.00 7155.95 7179.13 7185.0
1 286 287.62 283.76 286.05 276.0
2 93 89.82 124.67 91.52 94.5
3 40 40.15 43.80 40.28 41.5
4 24 19.93 18.26 20.02 20.2
5 7 10.45 6.95 10.33 10.4
6 5 5.67 2.85 5.61 5.6
7 1 3.14 1.19 3.12 3.1
8 2 1.78 0.51 1.77 1.7
9 1 1.02 0.22 1.02 1.0
10 2 0.57 0.10 0.45 0.6
11 1 0.85 1.74 0.45 0.3
Total 7640 7640.00 7640.00 7640.00 7640.0

P 2.09 15.32 1.59 9.58
df. 7 7 8 8
p —value >0.95 > 0.03 >0.99 >0.29

GCD2: Generalized Charlier distribution of type 2

GGD2: Generalized Gegenbauer distribution of type 2

TPCD: Three parameter Charlier distribution
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Table 5.2

Observed and fitted distributions of GCD2 and GGD2 to the Number of Units r of

Different Brands Bought by Number of Consumers Over a number of weeks
(Consul, 1989)

Observed Fitted distributions Generalized

No of frequency Potsson

Units Chatfield GCD2 GGD2 Distribution
(brand K) ®=0.9272 ©=09272 Consul(1989)
¥=00886 |#~=065 | p=0.1224 6 =0.0463
202807 | CT s | aoosss | A0470

0 1671 1671.39 1665.00 1670.78

1 43 4328 42.49 48.04

2 19 17.37 27.43 14.91

3 9 8.18 8.17 6.73

4 2 424 3.94 3.57

5 3 232 1.43 2.08

6 1 131 0.63 1.28

7 0 0.76 0.27 0.82

8 0 0.45 0.12 0.54

9 2 0.70 0.52 125

Total 1750 1750.00 1750.00 1750.00

7| 05610 2.8748 2.66
d.f. 1 1 2
p-value =375 >0.08 >0.26

GCD2: Generalized Charlier distribution of type 2

GGD2: Generalized Gegenbauer distribution of type 2
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Table 5.3

Observed and fitted distributions of GCD2 and GGD2 to the Number of Units r of

Different Brands Bought by Number of Consumers Over a number of weeks

(Consul, 1989)

Observed Fitted distributions Generalized
No of Units | frequency Poisson
Chatfield GCD2 GGD2 Distribution
(brand D) ©=08381 ©=0.8381 6=0.1133
% = 021225 f jg'gslg f jg'?;‘; 1=0.4663
$1=07223 | o 0350 6 =0.3800
0 875 874.34 867.45 875.05
1 63 63.75 61.35 62.18
2 19 19.15 28.21 20.40
3 10 9.20 12.08 9.33
4 4 5.14 5.65 4.95
5 4 3.06 2.43 2.87
6 1 1.89 1.09 1.75
7 2 1.19 0.51 1.12
8 0 0.77 0.24 0.73
9 1 0.50 0.11 0.49
10 0 0.33 0.05 0.33
1 0 0.22 0.03 0.23
12 1 0.46 0.80 0.57
total 980 980.00 980.00 980.00
72| 03729 6.6162 0.44
d.f. 2 2 3
p—value | >0.82 > 0.03 >0.93

GCD2: Generalized Charlier distribution of type 2
GGD2: Generalized Gegenbauer distribution of type 2
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5.6 Properties of particular cases

The limiting distributions of GCD2 and GGD2 are some generalized distributions
of Poisson and negative binomial distribution. Attempt has been made to study certain
important properties of these distribﬁtions along with their estimation of parameters and
fitting of distributions.

a) Poisson mixing infinitely divisible distribution of Type 2 (GPD2)

The pgf of Poisson mixing infinitely divisible distribution (GPD2) obtained from
(5.2.1) by putting B = 0 may be written as

(1)

G(t) = @D e >0 (5:6.1)
It has the probability recurrence relation
1 |a(o+1) . :
G, = GG +Y GG _ p—aG. |, forr2>1 (5.6.2
e e ol o o
-a L el Y
= _i__._ a” G, + 9'—_Gr_ ] Jor r=1.
o+l-e | F+) ‘T o
where G,=——2 and G, =aG,{2 G, -1}
(@+D)-e™ " '
Its factorial moment recurrence relation is
a™ r+l&( or Ya!
By ===+ —= {j JT#(,_,-H) , for r21 (5:6.3)
=1 i .

a . . N
where 4, = — is the first factorial moment of the distribution.
1)
Therefore mean and variance of the distribution are respectively
a 2
=— ando” ={(o+Dpu+1}u.
1)
Estimation of parameters

For estimating the parameters of Poisson mixing infinitely divisible distribution the

method of moment may be used, which gives
. L s -X-%
a=—-x-1, &d=——"F—
X
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where ¥ and s’denote respectively the sample mean and sample variance of the

distribution. Again using the first sample moment Xxand ratio of first two

frequencies 8 = AL , we may have

b) Negative binomial mixing infinitely divisible distribution of Type 2 (GNBD2)

The pgf of negative binomial mixing infinitely divisible distribution (GNBD2)
derived from the model (5.2.1) by putting & = 0 may be written as

1)
G(@) = , 0 5.6.4
O pa ¢ 64
It has the probability recurrence relation
1 DAL &
ol =m|:ﬂ(r—ﬂ)G,+———(w+w) ﬂZ;G,G,-,], Jor rz1 (5.63)
=
1- B A+ r(A+r-1
- ( ﬂ) r br+lGo+Z r br—JHG ,
o+1-0-8)" |\ r+1 “\r-j+1 !
w P’
where P = , P=npl-p" =2
Y e+l-a-p"" ! A=y,
and b=_'3_
1-B8

Its factorial moment recurrence relation is

H(A+ r(A+r—j
#(r+|) — (r+1) {[ rjbr+| +Z[ +r .])br—}'ﬂ ﬁ(ﬂ}, r 21 (5,6,6)

@ r+1 a\r—j+1 J!

where p __B . Hgy = —/1’3——
1-8 ao(l- )
Hence mean and variance are respectively
A
M= A
w(1- )

B
(1-B)

and ol=pu+(@+1)’u+
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Estimation of parameters

The parameters (A, and @) of the negative binomial mixing infinitely divisible
distribution may be estimated by using the following three methods
i) Method of using first three factorial moments
The first three sample factorial moments of the distribution are respectively
Ab

m, =—
1 >
® (7

My =mg, {b(ﬂ +0)+ 2m(l) },

and  mg, = (A+2)bmg, +4mym ., —2{m +bjmd,,

where b= ——ﬁ—
(-8
erting R= /U(z) _2/‘2(1) s
Q= HayHay — 4/‘(1)2/‘(2) - R.U(z) + 2/‘(1)4 .
2 2 _
we have /1=R Q,,Bz Y ando = 2Q.
Q o+ R#(l) Ry

ii) Method of first two sample moments and ratio of first two frequencies

First two sample moments and the ratio of first two frequencies are respectively

X = AB ’
o(1- )
2 _ —2 X
s =(w+Dx +(1—ﬂ)’
and 9=—fi=,w{@i—l)ﬂ-1}.
fo @

Solving the above three equations we obtained

(s> ~¥)0 - 3°P,
{(B-D+61x"°

~ X
(s’ -%")-ax*’

@ =

5. xd —‘,é’)a‘) .
B

and
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where P = 3 .
N

iii) Method of first sample moment and ratio of first three frequencies

First sample moment x and the ratio of first three frequencies 6, = L and 6, = 3 are

0 0
respectively
x= i ’
(- p)
9, =A =lﬂ{(a)+l)Go _1}’
Jo @
and o, = 5 _ P -2)8, N Ap(0 +1)6,G, .
Jo 2 @
Solving the above three equations we have
Bt VB -44C
24 ’
where A=1{6,(G,-1)Y,
B =-2G,-1){xG, +(G, - 1)}6?,
and C={(G,-1)6,-26,) + GOBIZ} {(2x - 6,)G,6, +(G, ~1)(6, +26,)}.
and 'B= (f—gl)Go"'T(Go“l) ,
(G, -1 - AG, -1)+XF,
o = (91 —fGo)"' ﬁGo )
X(G, -1~ 5)
5.7 Application

For the applications of generalized negative binomial Distribution of Type 2 i.e.,

for GNBD2 we have considered the Student’s historic data on Haemocytometer counts of

yeast cells in Table 5.4 where Hermite distribution was fitted by Kemp and Kemp (1966)

and Gegenbauer distribution was fitted by Borah (1984). In Table 5.4, on the basis of 32

criterion it can be said that the expected frequencies computed by our derived distribution

match satisfactorily as the other distributions compared.
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TABLE 5.4

Observed and fitted Generalized negative binomial distribution of Type 2 (GNBD2)
(Haemocytometer Counts of Yeast Cells)

No. of Observed | Fitted dist. Gegenbauer Hermite
Insects frequency GNBD2 Distribution Distribution
1=2.7463, (Borah,1984) | (Kemp and
x2=_0.6825 £=0.2202 Kemp, 1965)
MFM)
0 213 214.77 214.15 213.12
1 128 121.52 123.00 122.91
2 37 45.39 44.88 46.71
3 18 13.74 13.36 13.31
4 3 3.58 3.55 3.16
5 1 0.81 0.86 0.64
6 0 0.19 0.20 0.15
Total 400 400.00 400.00 400.00
x2 3.27 2.8342 3.8825
dar 1 1 2
p —value >0.07 > 0.09 >0.14

MFM: method of factorial moments
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Chapter 6

A Class of Lagrangian Discrete Probability Distributions

6.1 Introduction

Lagrangian expansions for the derivation of expressions for the probabilities of
certain discrete distributions have been used for many years. The potential of this
technique for deriving distributions and their properties has been systematically exploited
by Consul and Shenton (1972, 1973 and 1975), Consul and Jain (1973), Janardan and
Rao (1983) and their co-workers. Consul and Felix (1996) studied the Lagrangian Katz
family of distributions with estimation of parameters and applications. Consul in his book
(1989) on generalized Poisson distributions offers a systematic study of Lagrangian
Poisson distribution.

The objective of this chapter is to investigate the probabilistic structures of a class
of Charlier Family of Lagrangian (CFL) discrete probability distributions having wide
flexibility. Using Lagrange’s expansions of #ype — I and type — II, the CFL distributions
has been derived like the authors Consul and Shenton (1972, 1973) and Janardan and Rao
(1983) by taking different choice of the pgf’s of three parameter charlier, Poisson,
negative binomial, Logarithmic series and delta distributions as f(s)and g(s).

The pmf of CFL distributions of the first kind and second kind are presented in
Tables 6.1 and 6.2 respectively (see also Appendix A).
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The basic Lagrangian Poisson (LP) and Lagrangian negative binomial (LNB)
distributions together with estimation of their parameters and fitting of the distributions
have been also studied. These basic distributions have been fitted to some published data
collected by Williams (1944) for which generalized geometric distribution had been fitted
by Plunkett and Jain (1975). It has been found that the basic LNB distribution gives better
fit than the other distributions compared.

The general Lagrangian distributions such as Lagrangian Poisson negative
binomial, Lagrangian Poisson Logarithmic and Lagrangian negative binomial Poisson
distributions of first kind are fitted to some secondary data sets, where generalized
Poisson distribution (GPD) was fitted by Consul (1989).

6.2 Lagrangian Distributions

A class of discrete probability distributions under the title ‘Lagrangian
Distributions’ had been introduced into the literature by Consul and Shenton (1972, 1973,
1975). The particular title was chosen by them on account of the generation of these
probability distributions by the well known Lagrange expansion of a function g(s)as a
power series in ¥ whenu =s/g(s). Since Lagrange expansion seems to be associated
with queueing processes, they used Lagrange expansion for generating new families of
discrete generalized distributions which satisfy the convolution property.

If g(s)and f(s)are two probability generating functions (pgf) defined on some or
all non-negative integers, such that g(0) # 0, Consul and Shenton (1972) used Lagrange’s
expansion to define families of discrete generalized probability distributions which is
called Lagrange distributions of first kind (LD1) according to the terminology of

Janardan and Rao (1983). Lagrange distribution of this kind has the probability mass
function (pmf)

P(X=x)=—

x!

[2;, {g()} f ’(s)] ) for x=1,23,... (6.2.1)

where P (X =0)= f(0).
Again using Lagrange’s expansion of second kind, Janardan and Rao (1983)

investigate another class of discrete distributions called Lagrange distributions of second
kind (LD2) with pmf
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P(X=x)= l———f—’m[g; {g(s)}’f(s)] , for x=0,1,23,... (6.2.2)
; 5=0

=0, otherwise
Consul and Shenton (1972), and Janardan and Rao (1983) generate different families of
Lagrange distributions by various choice of the functions g(s) and f(s) .
All Lagrangian distributions (LD) corresponding to the given transformation

s = ug(s), are closed under convolution. Consul and Shenton (1973) also proved that

under one set of limiting conditions all discrete Lagrangian distributions tend to
normality, and that under another set of limiting conditions they tend to inverse Gaussian
distribution.
a) Properties of Moments and Cumulants of general Lagrangian distributions

The general Lagrangian Probability Distribution (LPD) possesses, some important
properties (see Consul and Shenton, 1973). The r* cumulants K ,forr=123,..., of
the general LPD may be expressed as

K, = 2@,{2——’!—2(5)”'] (623)

o~ zlm, . a T
where the second summation is taken over all partitions 7 ,7,,...,7,.0f m such that

7, +27, + 3, +...+rx_=r. Similar expression is also available for moments (Consul

and Shenton, 1972). Hence, these formulae can be used to write down for higher

moments and cumulants of any generalized Lagrangian probability distributions (LPD).
For simplicity, let F. be the »" cumulant for the pgf f(s), and let D, be the r*

cumulant for the basic Lagrangian distribution obtained from g(s). Then the first few

cumulants of LPD can be written down as particular cases of (6.2.3) in the form

K, =FD,,

K,=FD,+F,D},

K,=FD,+3F,D,D, +F,D,

K, =FD, +3F,D," +4F,D,D, +6F,D,’D, + F,D,*, (6.2.4)

[see Consul and Shenton (1975)].
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Hence the parameters of LPD can be estimated in terms of its cumulants. As the method
of maximum likelihood will be very cumbersome in this case due to the complexity of
the pmf, the moments may be used to estimate the parameters. Let us consider the most
basic Lagrangian distribution.

b) The Basic Lagrangian Distribution

The discrete distribution represented by

x-1
P(X=x)= l’[ J — {g(s)}"] , for x=123,.. (6.2.5)
x! & 50
=0, otherwise

is called basic Lagrangian probability, where g(s) is a pgf defined on non-negative
integers such that g(0) # 0. Examples of such basic Lagrangian type distributions are

Boral-Tanner distributions (Tanner, 1961), Haight distributions (Haight, 1961), consul
distributions (Consul and Shenton, 1975 and Consul, 1983) and geometric distributions.
Consul and Shenton (1975) showed that all Lagrangian distributions of this basic type are
closed under convolution.

¢) Cumulants of Basic Lagrangian Distribution

We have seen that the cumulants given by (6.2.3) of the general LPD depend

upon the cumulants D,,i =1,2,3,..., of the basic LPD, we may derive simple expressions

for D,. If G, be the »" cumulant (r =1,2,3...) of the distribution taken as g(s), the first

four cumulants of basic Lagrangian Distribution can be written as

P
1-G,
G
D, :_2__3_,
(1_Gl)
G 5 G

D, = + ,
(l_Gl)4 (]_Gl)s

3
D, = Y, ~+10 G3G26+ G, —.
(I—Gl) (I_Gl) (I_Gl)

(see Consul and Shenton, 1975)

(6.2.6)
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d) Derivation of Charlier Family of Lagrangian Distributions

The pgf of three parameter Charlier distribution is given by
g(s) =G (s)=e (1= ) e (- B)", a,B,420 (6.2.7)
Its probability mass function (pmf) is

. 16", .
PPt = ;g{Gl 0} (6.2.8)

@y _ A s " ]
_e'(1-h Y, Pa F(’1+j), Jor r=123,...
r! j=0 ! r(l)

where P&t = e (1- p)*.

As the ranges for the skewness and kurtosis of the three parameter Charlier
distribution covers the ranges of the other basic distributions, viz., Poisson, negative
binomial etc., as demonstrated in the literature, this family of Lagrangian distribution
may be considered to be more flexible.

Similarly, the pgf of Poisson, negative binomial, Logarithmic series and delta

distributions may be given by

G,” (s) =exp{r(s -1},

G (9 =01-p" -/,

G, (s) = log(1 - &)/ log(1- B)
and G|'(s)=s" 6.2.9)
respectively, where prefixes (i.e.a,fS,4,y,n,N) denote the parameter/s of the
corresponding distribution.

A new class (Charlier Type) of Lagrangian distributions has been derived by
selecting various pgf given in equations (6.2.7) and (6.2.9) at random as g(s) and f(s)

respectively, and putting them in the expression (6.2.1) and (6.2.2) just like the other
authors [Consul et al., (1973), and Janardan et al., (1983)]. For example, let us take

g(s)as pgf of three parameter Charlier distribution, i.e.G*#*(s) and f(s)as pgf of
Poisson distribution, i.e.G] (s). Then the pmf of Lagrangian Charlier Poisson (LCP1)

distribution of first kind will be given by
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Px =2 =157 [{Gf"”"<s)}’

o g™ {Gz’ (s)}] Jorr=123,.. (6.2.10)

s=0

&|>

where P(X=0)=f(0).

Or we may write equation (6.2.10) as

A ~(ax+r) x-1
I)ra,ﬂ,,{ :7'(1 B)~e - (ax+7) S F,(1-x,Ax,~Bl(ax+¥)) , for x=1,23,....

where , F;(a,b;; x) denotes Hypergeometric function.
This equation may be put in a simpler form as
Ax r
P(X=x)= Me"m’)z:(r‘)(ﬂx)] (x+y) ' B, a,B,A>0. (6.2.11)
Xx: =0 J
forr=123,..,r=x-1
where  P(X =0)= A4e™”.
and (Ax), = Ax(Ax +1)(Ax +2)..(Ax + j - 1).

Similarly, Lagrangian Charlier Poisson distribution of second kind may be obtained as

) A A=pre ™ (e +y)™ {1—(a+ﬂ)} Fy(=x,2x, Bl(ax +y))
- -8 2 L 7%, AX, ’

x!
x>1 (6.2.12)
This may also be written in a simpler form as
1- A ~(axty) x (x
Px=x) =BT S V) (@t p) T B x2 0 (6.2.13)
x! =0 J

where A={l—(a +{1—ﬁ)} and (Ax), = Ax(Ax + [)(Ax +2)...(Ax + j - 1).

The basic Lagrangian Charlier distributions of first kind may be obtained by putting

n =1 in serial number 7, in Table 6.1 as

1_ Ar _ -—ax
pesa 1= /’)' ¢ (@), Fy(l-x, Ax—Blax), x21 (6.2.14)
X

This may be written in a simpler form as

P(X =x)= %ZCJW)’ (@)™ B a,B,A>0, <] (6.2.15)

=0

for x=123.. and r=x-1
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where (Ax), = Ax(Ax +1)(Ax +2)..(Ax + j 1)

Similarly, the basic Lagrangian Charlier distributions of second kind may be obtained as
_ Ax  —ax
P = a=p"e" -l +—/lé— (), F,(1-x,Ax, B/ ax),x 21 (6.2.16)
(x-1! 1-8
by putting » =1 in serial number 14, in Table 6.2
This may also be written as
AQ-P)¥e™ & [r) -
PX =x)=——"————D | () (ax)"'p’, (6.2.17)
e Uy Kl

for x=123..,and r=x-1.

where (Ax), = Ax(Ax + )(Ax +2)...(Ax + j 1)

and A={1—(a+l—ﬂ)},
1-B

It is very interesting to note that the generalized Poisson distribution (see Consul,
1973) is a particular case of Charlier family of Lagrange distributions. All these
distributions shown in Table 6.1 and 6.2 will be relevance in queueing theory and
process. The interesting properties were discussed by Consul and Shenton (1973) in the
case of generalized Poisson distribution. In general, it is also conceivable that discrete
data occurring in ecology, epidemiology, and meteorology could be statistically modeled

on one of the distributions considered in this investigation, see for example Jain (1975).
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Table 6.1: Charlier Family of Lagrange Distributions of first kind

S1. No. g(s) f(s) LDI(g; f;x)

I G (s) Gi(s) |- e ™ (ax+y) T I, Fo{l-x, Ax~f Nax+p)}, x 2 1.

2 G (s) GPV(s) | NBA- )"V e ™ (ax)" /1 x, Fy{l—x,Ax + N +1,-B/ax},x >1.

3 GI(s) GIM(s) | NB(- )Y e ™ ()™ I x, F,{l-x,N +1,-8/m},x > 1.

4 GP#4 (s) G{(s) aB(l- )Y~ e = (ax)" /xl, Fy{l—x,Ax+1,—B/ax},x 21, a = {-log(1- B)}"".
> GJ(s) GI(s) | aPe™ Ix, Fy{l-x1,-B/p},x21, a={~log(l- B)}".

6 GP¥(s) GI(9) | (1-p™e7 () /x, F{1-x,Nx,~B/y},x21.

7 Gy (s) GI(s) | (n/x)1-pB)* e ™ (ax) " I(x—n), Fyfn—x,Ax,~ B/ ax},x 2 n.

G4 (s), GI(s), GP™(s), G#(s)and G! (s)denote the probability generating function of three parameter Charlier, Poisson,
negative binomial, Logarithmic series and delta distribution respectively. , F, (a, b; x) denotes the Hypergeometric function.



Table 6.2: Charlier Family of Lagrange Distributions of second kind
SI. No. g(s) f() LD2(g; f;x)
8 GJ(s) GIM(s) | A=-p)A-B)V e (r) T I x) Fy{-x,N,- B/ px}, x 2 1.
9 G (s) Gl(s) | (1-NB/Q-P}(A-B)Y e y* | xl,Fy{~x,Nx,~B/y},x 21,
10 G (s) GX*(s) | A-p)1- B e™(m+a) /X, Fyf—x, A= l0x + @)}, x 21,
11 G&" (s) GH*(s) | {(1-NB/(1-B)Y(1~ By e “a™ I x, Fy{-x,Nx + A,~B/a},x > 1.
12 GHPAs)y | GPY() | [I={a+AB/(1- B} )Y e ™ (ax)* I x\, Fy{~x,dx + N,— B/ oxx}, x > 1.
13 G (s) GI(s) |[-{a+AB/1-ANA- L) ™ (ax+y) I xl, Fy{-x,A,—B ax+7)},x21.
14 G (s) Gi(s) | [—{fa+AB/1- Y1~ B *e ™ (ax) (x—n), Fy{n—x,Ax,~fox},x2n.
15 G PR (s) | GIPR(s) | [L-{a, + 4 B/(1- PRI - BY™ e @) (g, x + ;)" [ x!

T, Ax + Ay B ax +ay)), x21

GT**(s), Gl (s), GPV(s), GP(s)and G/ (s)denote the probability generating function of three parameter Charlier, Poisson,
negative binomial, logarithmic series and delta distribution respectively. , ¥ (a, b; x) denotes the Hypergeometric function.




6.3 Basic Lagrangian Negative binomial (LNB) Distribution

Taking g(s)= (- )" (1~ )", the pgf of negative binomial distribution in
(6.2.5), the pmf of basic Lagrangian negative binomial (LNB) distribution may be written
as '

(Nx),

x!

P(X =x)= B A-p%, for x=123.. and r=x-1 6.3.1)

where (Nx), = Nx(Nx +1)(Nx +2)..(Nx+r—1), and (Nx), =1.

a) Cumulants of basic LNB Distribution

The first four cumulants of negative binomial distribution are respectively

G =NB_

)
G, =P _

)

NB

G, =

Oy
G, ={(1+p)* +28} N (6.3.2)

a-p*
Then, using. Consul and Shenton’s (1975) general formula for cumulants given in (6.2.6)

the first four cumulants of basic LNB distribution are respectively

p=—1h (6.33)
(1-B)-NB .
__NBA-p) (6.3.4)
P (-B-Np)*’
D, = (- g+ p—2P___ NP P) 63.5)

(1-B-NP)* (1-B-NBy’

NAI=B) , 10NB(-f)  (NBY(A-BYi+ B o1
(1-B-NB’  (-B-NB° = (-B-NBy

From the cumulants the moments of the distribution may be easily obtained.

D, ={(1+p)* +2p}

Thus the indices of skewness and kurtosis are respectively

__A+2NBB+N’p’C

6.3.7
NGK (6.3.7)

B
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A —NB, -N°C,

d =
an B, =3+ NAK (6.3.8)
where K=(10-p8)(0-B-Np),
A=1-2p*+p",

B=Q2-B-2p"+p°),
C=4-48+F"),
A =1+28-6B8> +24° + B*,
B =9B-4p°-38° +23*,
and C, =98> +683° - p*.
b) Estimation of parameters

In order to estimate the parameters of basic LNB distribution the following
methods may be used.

i) Method of moment

The sample mean (x ) and sample variance (m, ) of the distribution are respectively

x= —0—"ﬂ)—, (6.3.9)
1-p-Np
and - _NBA-PB) (6.3.10)

m, = s
(-pB-NpP)
By eliminating N from (6.3.9) and (6.3.10) we get the estimated value of S as

2
ﬂA =.m2_—(_x_])x_., (6.3.11)
m, :
By substituting this value of S in equation (6.3.9) the estimated value of N may be

obtained as

N =@E=DA-F) (6.3.12)
xp

ii) Ratio of first two frequencies and mean

If £, and £, denote respectively the first two sample frequencies of basic LNB

distribution then their ratio may be written as

97



S/
==L =NpP, 6.3.13
F; A ( )

1

S

where P, = 7 and f is the total frequency.

Eliminating N from (6.3.9) and (6.3.13) we get

~ (x-1)P-xp

DA% (6.3.14)

(x-DA

Substituting this value of £ in equation (6.3.9) the estimated value of N may be obtained
as

N® =——~—-—(;‘12(1fﬂA) :
xp
6.4 Basic Lagrangian Poisson (LP) Distribution

(6.3.15)

Taking g(s) = e’“™, the pgf of Poisson distribution in (6.2.2) the pmf of basic

Lagrangian Poisson (LP) distribution may be derived as

o3
P(X =x)= -e—'—(}'x)"', for x=123.. (6.4.1)
x!
a) Cumulants of basic LP Distribution

The first four cumulants of Poisson distribution are respectively

G=G,=G,=G, =4 (6.4.2)
Then, using Consul and Shenton’s (1975) general formula given in (6.2.6) the first four
cumulants of basic LPD distribution are respectively

1

Dl = m, (6.4.3)
D, = ; _Yy)3 , (6.4.4)
2
Dy=—L 4 24 , (6.4.5)
- 0-py
¥ 1052 1597

D, = -+ =+ . (6.4.6)
-y (- A-p7

From these cumulants we can easily obtain the moments of the distribution.
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The indices of skewness and kurtosis are respectively

2y +1)°
=l 6.4.7
A y(d-y) ( )
(1-23y -9%)
=34 L) 64.
A=) (6.4.8)

b) Estimation of parameters

In order to estimate the single parameter A of basic LPD the following methods
may be used.
i) Method of maximum likelihood
The likelihood function of LPD is

51 & £l
L= | x—’!e (Ax)5T, (6.4.9)

Differentiating partially the log likelihood function of (6.4.9) and then solving for 4 we
get the estimated value of 4 as

x-1

A=

(6.4.10)
X

ii) Method of using first sample frequency

Equating the first probability of basic LPD to —;—', where f, and f represent

respectively the first and the total frequencies we may have

q f‘l
A._._-—l() _— 6.4.11
gf ( )

6.5 Application

For the application of both basic LNB and LP distributions, we have considered
the well known data collected by Williams (1944) about the numbers of papers published
by authors in a certain Journal in the year 1935, for which geometric distribution was
fitted by Williams (1944) and generalized geometric distribution was fitted by Plunkett
and Jain (1975). The expected frequencies are given in Table 6.3 with that of geometric
(Williams, 1944) and generalized geometric (Plunkett and Jain, 1975) distributions and it
is seen that basic LNB distribution provides a good fit.
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From Table 6.3, we have the sample mean X =1.4610 and sample
variance s’ = 0.812987 . In case of basic LNB distribution using the method of moment

we have B° =-02105 and N" =-1.8145 . Again by using the ratio of first two

frequencies and mean we have f° =-0.1715and N" =-2.1553 . Comparing the x*

values obtained from LNB distribution (using both methods of estimation) with that of
other distributions compared, it has been observed that LNB distribution gives better fit
than the earlier ones.

It will be seen from the observed data that first three frequencies are large in
comparison to the remaining ones so the method of using the first sample moment and
ratio of first two frequencies gives better fit than method of moment.

In order to estimate the parameters of basic LP distribution, both maximum
likelihood (ML) method and the method of using the first sample frequency (FF) both-
have been used. In this case, we get A" =0.3677 by using the first frequency
and A" = 0.3552, by the method of maximum likelihood. It is seen that LP distribution is
better fitted than geometric distribution by Williams (1944). For the application of basic
LP distribution, we have considered another set of data in Table 6.4, collected by
Williams (1944) about the numbers of papers published by authors in a certain Journal in
the year 1936. The basic LP distribution is compared with geometric distribution
(Williams, 1944) and generalized Logarithmic series distribution (Jain, 1975). Expected
frequencies for basic LP distribution are given in Table 6.4 with that of generalized
logarithmic series distribution by Jain (1975).

It is apparent from all these discussions that the fitting of basic LP distribution is
not satisfactory compared to generalized geometric distribution by Plunkett and Jain
(1975) in Table 6.3 and generalized Logarithmic series distribution by Jain (1975) in
Table 6.4.
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Table 6.3
Comparison of observed frequencies of Publications of research papers in review of applied Mycology 1935 (Plunkett and Jain, 1975)
with the Expected Lagrangian Poisson distribution (LPD) and Lagrangian negative binomial distribution (LNBD)

No. of No. of Fitted Distributions Generalized
papers Authors LNBD LNBD ILPD Geometric dist.
published x¥=1.4610 " 02105 201715 Plunkett and Jain
B =-0. B =-0. A =03417 A =03156 | (1975)
N" =-1.8145 N" =-2.1553 (FF) (ML)
MM) (EM)
1 1085 1079.66 1085.58 1085.03 1113.72 1079.78
2 285 291.60 285.31 263.44 256.36 291.47
3 96 96.43 95.08 95.95 88.52 96.40
4 31 35.43 35.68 41.41 36.22 35.43
5 21 13.89 14.38 19.64 16.28 13.90
6 5 5.69 6.08 9.89 1.77 5.70
7 3} 2.41} 2.66} 5.19 3.87 2.41
8 1 1.89 2.23 6.45 4.26 1.91
Total 1527 1527.00 1527.00 1527.00 1527.00 1527.00
7 44757 4.0248 12.4 10.3708 4.4549
d.f. 4 4 6 6 4
p —value >0.34 > 0.40 >0.05 >0.10 >0.34

ML: method of maximum likelihood

FF: method of first frequency

MM: method of moment
FM: method based on first frequency and mean
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Table 6.4

Comparison of observed frequencies of Publications of research papers in the review of
applied Mycology 1936 (Jain, 1975) with the Expected Lagrangian Poisson distribution

(LPD)
No. of Observed Fitted Distribution Generalized
papers per | frequency LPD LPD logarithmic Series
author x=15509 | 1" =0.3677 A =03552 Ja'in (1975)
(FF) (ML)
1 1062 1062.03 1075.39 1052.72
2 263 270.36 267.78 287.52
3 120 103.24 100.02 107.10
4 50 46.72 4428 45.10
5 22 23.23 21.53 20.83
6 7 12.26 11.12 10.00
7 6 6.75 5.98 497
8 2 3.83 3.32 2.53
9 0 2.22 1.89 1.31
10 1 1.31 1.09 0.70
1 | 2.05 1.60 181
Total 1534 1534.00 1534.00 1534.00
x 8.67 8.44 5.14
df. 6 6 4
p—value | >0.19 >0.20 >0.27

ML: maximum likelihood
FF: first frequency




6.6 General Lagrangian Poisson negative binomial (LPNB) Distribution

Taking g(s)=exp{y(s—1)} and f(s)=(1~pB)"(1- )" in equation (6.2.1),
the pmf of Lagrangian Poisson negative binomial (LPNB) distribution of #ype — I may be

written as

P(X =x)= N,Be_’:(cl' ) Z[:jﬂ’ (%) (N+D),, for x21 (6.6.1)

where P, =(1-p)", r=x-1and (N+1), =(N +1)(N +2)..(N+ ).

Similarly, considering the equation (6.2.2), the pmf of Lagrangian Poisson negaﬁve
binomial distributions of type — Il may be written as

P(X =x)= d-7 )S‘_ A e'”‘i[;j(N)J )™ B, for x20 (6.6.2)

where r=xand (N), =N(N+1)(N+2)..(N+j-1)

a) Cumulants of LPNB Distribution of Type-I

The first four cumulants of negative binomial distribution are respectively

F=2F_
1-5)
F, = NEB s
(1-pB)?
NB
F, = _—
and F,={(1+B)* +2} NB

: 6.6.3
-3 (6.6.3)

Then using Consul and Shenton (1975) formula (6.2.4), the first three cumulants of
general LPNB distribution may be written as

Np

K= ’ 6.6.4
A-p1-y) ( )
NBy NB
K= 3 z 7> 6.6.
A-A-7y  (-Brd—7) (6.6.5)
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NBy 3y 3 Np
K, = 1 1 —_— 6.6.6
; (l—ﬂ)(l—y)‘{+(1—7)+(1—ﬂ)}+(+ﬂ)(l—ﬂ)3(l-7)’ (6.66)

Hence mean and variance of LPNB distribution of type-I are respectively

AN
= (6.6.7)
A a=pa-n
and o] (1—7)N,B (6.6.8)

b) Estimation of parameters

The parameters of LPNB distribution of type — I may be estimated by using the

following methods.
i) First two sample moments and the ratio of first two frequencies

The sample mean X and sample variance s° of the distribution are respectively

g BN (6.6.11)
(-p)1-
= =2
L7 A (6.6.12)
(1-7) NP
The ratio of first two frequencies may be written as
LA nger (6.6.13)
S B

Eliminating N and £ one by one from (6.6.11), (6.6.12) and (6.6.13) we get a

transcendental equation in y as

@ =e70-77 + 27 & (1-yy, 6.6.14)
X X

This equation can be easily solved by using the Newton Raphson method. Putting the
estimated value of y, from equations (6.6.11) and (6.6.13) we get

S 6.6.15
=" (66.15)

By substituting the estimated values of £ and y in equation (6.6.11) we get

N X5
7

(6.6.16)
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ii) First three sample moments

The first three sample moments of the distribution are respectively

g=_ B (6.6.17)
-p0-y)
— =2
Xy x
m, = +—. (6.6.18)
*(1-y)* NB
Xy 3ym, xm, 'y
m, = - +(1+ ) -+ ——. (6.6.19)
To-y)y (-p) Np Np1-y)’
Eliminating N from the first pair we get
a=p _ L (6.6.20)
X(A-7) m(A-y) -%y
Again eliminating N from the second pair we get
(1_18) =m3(1—}/)3—}9?—37m2(1—y) (6621)
Z(1-7) {m,(1~y)" =%y}’
Adding (6.6.20) and (6.6.21) we get a transcendental equation in y as
fH=A0-y)' +BA-y)+Cy=0 (6.6.22)
m,

where A =

~m,, B=-m,, C =2%.

The equation (6.6.22) can be solved by using the Newton Raphson method. Substituting

the estimated value of » in (6.6.20), we may estimate 3 as

5 x(1-7)
B=1 {mZ(l_y)z_fy}, (6.6.23)

Putting the estimated values of y and f in (6.6.17), the value of N may be estimated as

o _F1=Bx1-y)

, (6.6.24)
B
6.7 General Lagrangian Poisson Logarithmic (LPL) Distributions
Considering g(s) = exp{y(s—1)} and f(s) = llo_g((ll_—% , the pgfs of Poisson and
og(1-

Logarithmic distributions respectively in equation (6.2.1), the pmf of Lagrangian Poisson

Logarithmic (LPL) distributions of type — I may be written as
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ape™™ I r! .
P(X=x)= ﬁe' Z—"ﬂ ‘gxY , for x21 and r=x-1. 6.7.1)
g |
where P, =ae”f and a = S
’ log(1- £)
Simi . N log( 3) .
imilarly, taking g(s) = exp{y(s—D}and f(s) = oe(= B , in equations (6.2.2) the pmf
of Lagrangian Poisson Logarithmic (LPL) distributions of type — II may be written as
J
P(X=x)=a(-y)e” ”Z(}?) ﬂ) ,for x>1and r=x-1 (6.7.2)

a) Cumulants of LPL Distribution of Type-I

The first four cumulants of Logarithmic distribution are respectively
Rt
(-8’

_ ap(-ap)
Toa-py
(1+ B-3af+2a*B%)

a-py

b

F,=ap

>

F, ={(1+48+ B* - 4aB( + B)+6a* B ~3a’ B° } ﬁ) (6.7.3)

According to Consul and Shenton (1975) formula, the first three cumulants of general

Lagrangian Poisson Logarithmic distribution may be written as

ap

K=——t 7.
1-p/01-~7) 6749
K2 — aﬁ}/ aﬂ(l_aﬂ) ,
A-AXi—7)  A-Bi-7) (6.7)
___afy {1+ 3y }+ 3afy(-ap)
P a-p- 1-»| A-p*1-y)*
aB(+ B-3ap+2a*p*) 6.7.6)

-p’a-ry

Hence mean and variance of the derived distribution are respectively
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b) Estimation of parameters

The parameters of LPL distribution of fpe — I may be estimated by using the

following two methods.
i) First two sample moments

The first two sample moments of the distribution are respectively

o 9B (6.7.9)
a-B-p)’

. = Xy + x =2
-y A-pQ-p)
1

(6.7.10)

where a=

“log(1- )
=2
Eliminating y from (6.7.9) and (6.7.10), and writing k = mz_t , we have an equation in
P of the form
f(B)=3(1~p) +ap’(1-ak), (6.7.11)

This equation can be solved by using the Newton-Raphson method. After getting 3, the

estimated value of y may be obtained by using (6.7.9) as

~

y=1-—F_ (6.7.12)
x(1-5)
ii) First sample moment and first frequency
Equating the first sample frequency of LPLD with £,, we have
-fjfze"aﬂ, (6.7.13)

where f denotes the total frequency.

Taking logarithm on both sides of (6.7.13), we get

107



log—fl =—y +logaf (6.7.14)
I
Eliminating y from (6.7.9) and (6.7.14), we get a transcendental equation in § as
£(B) =log(apB) +f%§ -{1 + 1og§} (6.7.15)
Solving this equation by using the Newton-Raphson method, the estimated value of S
may be obtained. By substituting this value of 3 in (6.7.9) we get the estimated value of

y as
7=1—f(1af?[3) (6.7.16)

6.8 General Lagrangian negative binomial Poisson (LNBP) Distributions

Taking g(s) = (1- B)Y (1~ )" and f(s) = exp{y(s—1)}, in (6.2.1), the pmf of
general Lagrangian negative binomial Poisson (LNBP) distributions of type — I may be

obtained as

-7 (1 _ Nx r
P(X =x)= e_(l_@_z(’ ) By (W), (6.8.1)
x! m\J
Jor x=123.., r=x~1and (Nx), =(Nx)(Nx+1)..(Nx+ j—1)
where P=e7 (6.8.2)

Again, considering g(s)=(1- )" (1- )" and f(s)=exp{y(s-1)} in (6.2.2)
the pmfs of general Lagrangian negative binomial Poisson distributions of #ype — II may

be written as

P(X =x)= A=4-Np) ﬂx_'_ Np) e7(1- )" Zr:(;)(Nx)jy'”ﬂ’ , (6.8.3)

=0
for x20and r=x
a) Cumulants of LNBP Distribution of Type-I1

The first four cumulants of Poisson distribution are F,=F,=F,=F, =y .

Therefore according to Consul and Shenton (1975) formula (6.2.4), the first three
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cumulants of general Lagrangian negative binomial Poisson distribution of #ype — I may

be written as
__ =Py (6.8.4)
! -8~ NB’
_NBA-Pyy (- By (6.8.5)
P (1-B- Nﬂ) (1-B-Np)*’
Nﬁ(l By 3B (- By 3(Nﬁ)(1 Py, (-By 6.86)
*TA=B-NB'  (1-B-NBy “B-NB)' ' (-p-NBy
Hence mean and variance of the LNBPD are respectively
_(A=-By
uegs 2 (6.8.7)
5o NBA-By . (-P)y 6.88)

(1-B-Np) (1-ﬂ NBY

b) Estimation of parameters

The parameters of LNBP distribution of #ype — I may be estimated by using the
following two methods.
i) First two sample moments and first frequency

The sample mean and sample variance of the distribution are respectively

= 4=Pr (6.8.9)
1- B-NB
&= Nep+—=B* (6.8.10)
(1-B-Np)
By equating the first probability with —fi , using equation (6.8.2), we obtain the estimated
value of y as
y= logf" (6.8.11)

f

where f, and f represent respectively the first and the total frequencies of the

distribution. Eliminating N from the equations (6.8.9) and (6.8.10) we obtain the

estimate of S as
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A2 =2
1= (6.8.12)
(x=-7)

~

B

Substituting this value of ﬁ in equation (6.8.9) we may estimate

y = E=n=8) (6.8.13)
xp
ii) First two frequencies and mean

So

By equating the first two probabilities of LNBP distribution with 7 and —f—respectively

we may write

{%z . (6.8.14)
-ffl =y(1-pe”, (6.8.15)
so that 6= %y(l - B (6.8.16)

where f,, f, and f, represent respectively the first two sample frequencies and the total

frequency of LNBP distribution. Taking log on both sides of (6.8.14), we may obtained

; Jo
y=—log=>, (6.8.17)
f
Eliminating N from the sample mean (6.8.9), and from the equation obtained by taking

log on both sides of (6.8.16), we may have a transcendental equation on S as
f(B)=01-PB)log(l-p)-Ap, (6.8.18)
where A=(x-y"){logh -log7}x.

Using the Newton-Raphson Method the equation (6.8.18) can be solved for 3. Putting

the estimated values of y and £ , the third parameter N may be obtained by either by
using (6.8.16) or (6.8.9) as

~ log@-logy
= log0-logy 6.8.19
log(1- 5) (6819
or §=1=Ax-7) (6.8.20)
xp
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6.9 Lagrangian negative binomial Logarithmic (LNBL) Distribution

log(1- &)
log(1- p)

of Lagrangian negative binomial logarithmic (LNBL) distributions of fype — I may be

Taking g(s) = (1- )" (1- &)™ and f(s) = in equation (6.2.1) the pmf

written as

1 _ Nx
P(X =x)= L,él_ﬂ’“ (Nx+1),, for x=1,23..., r=x-1 (6.9.1)
x!
where a = N and (Nx+1), = (Nx +1)(Nx +2)...(Nx + j)
log(1- f)
Similarly, using equation (6.2.2), the pmf of Lagrangian negative binomial logarithmic
distributions of fype — II may be written as

Nﬂ Nx < (
P(X=x)= 1- 6.9.2
(X =x) { ,B}( ) ﬂ,:o . J), (6.9:2)
Jor x=123..., (Nx), = (Mx)(Nx+1)...(Nx+j-1)
a) Cumulants of LNBL distribution of Type 1
The first four cumulants of Logarithmic distribution are respectively
R
-5
_ap(-ap)
a-p
F = ,3(1+ﬂ 3af +2a’ B )’
(1-py
={(1+48+ B’ —4aBf(1+ B)+6a’p* -3a° B’ }(] 'Z) (6.9.3)

According to Consul and Shenton (1975) general formula, using equation (6.2.4) the first
three cumulants of general LNBL distribution of Type-I may be written as

Kz_a_'q__
' (1-B-NB)’

_ ap’N a,B(l ap)
*TU=p-NBY  (-p-NB)’

(6.9.4)

(6.9.5)
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k- +Paf’N - 3aB(NB)’  3aB(NB(1-ap) |
> (-B-NB' (-B-NpP° (-B-NB)

ap(+pB-3af+ 23a2 5 , 696)
(-B-Np)
Hence mean and variance of the LNBL distribution are respectively
p=—9br 6.9.7)
(1-B-Np)

? TU-p-NBY (-B-NB)

b) Estimation of parameters

The parameters of LNBL distribution oftype — I may be estimated by using the
methods discussed below.

a) First two sample moments

The first two sample moments of the distribution are respectively

%= (—1:;‘-%[})— (6.9.9)

m =B (1-aB)x (6.9.10)
' (1-B-NB* (1-B-NB)

S

log(1- B)’

where a=

=2

Eliminating N from (6.9.9) and (6.9.10), and writing k = T%Li—, we have an equation
X

3
in B of the form
f(By=01-p)-a’ Bk, (6.9.11)
This equation can be solved by using the Newton-Raphson method. After getting 3, the
value of N may be estimated by using (6.9.9) as
o ¥1-B)-ap
xp

b) First sample moment and ratio of first two frequencies

(6.9.12)

Equating the first two sample frequencies of LPL distribution of Type-I with f,
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and f, respectively we may write

% =apl- ", (6.9.13)
and % =(1-/*" N +1) "/23 . (6.9.14)
where f is the total frequency. From (6.9.13) and (6.9.14) we get

ff g 2N (6.9.15)

£ 2a

Eliminating N from sample mean (6.9.9) and (6.9.15), we get a transcendental equation

in B as

f(B)=(2-Px-2ap(1+xK) (6.9.16)
Solving this equation by Newton-Raphson method we may obtain the estimated value

of . Substituting the value of ﬁ in (6.9.9) we may get the estimated value of y as

y=X=p-af (6.9.17)
xp

6.10 Applications

It is to be very important to note that, when the frequency for the zero class in the
sample is larger than most of the other class frequencies or when the graph of the sample
distribution is approximately L-shaped, one would like to give more weight to this larger
frequency value of the zero class than to the statistic of sample variance which is more
affected by the frequencies of the higher classes (Anscombe, F. W., 1950). It is for this
reason the method of first two sample frequencies and sample mean is generally used.
For conducting the empirical comparison of general Lagrangian distributions studied, we
have considered some reported observed data for fitting of the distributions.

In the first Table 6.5, we have considered Biological data used by Janardan et al.
(1979) for Generalized Poisson Model (see Consul, 1989), who have considered Cole’s
(1946) classic sets of data on spiders and sow bugs. Here it can be shown that our models
LNBP1 and LPNBI fit the data very well.

In Table 6.6, we have considered the observed frequencies for Home injuries
(Consul, 1989) of 122 Experienced Men during S years (1937-1942) with the expected
frequencies of LPNBI1 distribution which is found to be satisfactory.
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Table 6.5

Comparison of observed frequencies of distribution of 102 spiders under 240 Boards with
the expected frequencies of LNBP and LPNB Distributions (Consul,1989)

No. of Observed Fitted Fitted (Consul,1989)
Spiders/Boards frequency LNBP1 LPNBI GPD
0 159 159.00 158.81 157.2
1 64 63.47 63.90 66.5
2 13 14.63 14.30 14.2
3 4 2.51 2.97 2.0
Total 240 240.00 240.00 240.0
A =04117 A =00692 | 6=04114
Estimates B =-0.0566 | B =-0.0905| A=0.0320
N" =-0.5831 | N" =-4.7660

Table 6.6

Comparison of observed frequencies for Home injuries of 122 Experienced Men during 5
years (1937-1942) with the Expected frequencies of general LPNB Distribution
(Consul, 1989)

No. of Observed Fitted GPD
injuries frequency LPNBI1 (Consul, 1989)
0 73 72.98 73.23
1 36 35.99 35.32
2 10 9.95 10.41
3 2 1.39 3.04
4 1 1.69
Total 122 122.00 122.00

. A =~0.0924 6 =051
Estimates B =0.2391 12006

N =1.8807

LNBP: Lagrangian negative binomial Poisson
LPNB: Lagrangian Poisson negative binomial
GPD: Generalized Poisson distribution
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The LPNBI distribution is also fitted in Table 6.7 for comparing the observed
frequencies for first year Shunting Accidents for different age groups (Consul, 1989).
Observing the expected frequencies obtained from LPNBI distribution it can be conclude

that the distribution is highly satisfactory in this case.

Table 6.7

Comparison of observed frequencies for First year Shunting Accidents with the Expected
general LPNB Distribution for different age groups (Consul, 1989)

Age 26-30 : Age 31-35
No. of
Accidents | Observed | Fitted GPD Observed Fitted GPD
frequency | LPNBI (Consul, frequency LPNBI (Consul,
1989) 1989)

0 121 121.18 126.42 80 79.99 80.23

1 85 85.12 74.49 61 60.99 60.41

2 19 17.50 21.45 13 13.06 13.48

3 1 0.89 4.02 1 0.96 0.88

>4 1 2.31 0.62 0 0.00

Total - 227 227.00 227.00 155 155.00 155.00

Estimates A" =-02022 | §=0.585 A" =-0.1604 | =0.658

B =0.1665 | 1 =-0.007 B =0361 | j=—-0.134
N" =3.4474 N =18.0234 ‘

LPNB: Lagrangian Poisson negative binomial
GPD: Generalized Poisson distribution

In the forth Table 6.8, we have considered the well-known data on natural laws in
social sciences by Kendall (1961) who considered the observed data on the number of
outbreaks of strike in three leading industries in United Kingdom during 1948-1959.
Generalized LNBP1 model has been fitted to these data using the sample mean, sample
variance and first frequency and it is clear from the observed and the expected
frequencies that the data fit our model well.

In Table 6.9, we have considered the Genetics data (Consul, 1989) on the

variations in the exposure, D and R cells, it is seen that as the exposure to radiation
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increased, the value of the parameter A" increases in our model. When D and R cells are

decreased from 20/400 to 36/200, the value of B° increases and the value of

N increased or decreased with the quantity of D cells is increased or decreased.
Comparing the observed and expected values this Table shows that our model LNBP1 is
representing the ef’fect of processes very well.

In this Chapter 6, in fitting Lagrangian negative binomial Poisson (LNBP1) and
Lagrangian Poisson negative binomial (LPNB1) distributions for the data where the
number of observations is 5 or less (e.g., Tables 6.5, 6.6, 6.7, 6.8 and 6.9) and we have
more than two parameters to be estimated, the y2 and corresponding p —value are not
provided as degrees of freedom (df ) is very negligible.

For the application of general LPL1 distribution, we consider the well known data
collected by Williams (1944) about the numbers of papers published by authors in a
certain Journal for which Plunkett and Jain (1975) fitted generalized geometric
distribution. Expected frequencies for general LPL1 distribution are given in Table 6.10
with that of geometric (Williams, 1944) and generalized geometric distribution (Plunkett
and Jain, 1975) and it is seen that our distribution provides a good fit. By using the first

sample moment and first sample frequency of the distribution we have 8" =0.4873

and »” = 0.0263 . Comparing the y’ values obtained from general LPL1 distribution
with that of other distributions compared, it has been observed that our distribution gives
better fit than the earlier ones.

In Table 6.11,"we consider the data on the number of papers published per author
for whom geometric distribution and logarithmic series distribution were .ﬁtted by
Williams (1944) and generalized logarithmic series distribution by Jain (1975). Here also
the method of using the first sample mean and first frequency is used to estimate the

parameters. In this case we have 8~ =0.6002 andy " = —0.0559 . From the expected data

obtained from LPL1 distribution and 4lso observing the y? values, it may be concluded

that our distributions is found to be highly satisfactory.
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Table 6.8

Comparison of observed frequencies of the number of outbreaks of strike in four leading industries in the U K. during 1948-1959 with
the expected frequencies of general LNBP1 distribution (Kendall, 1961)

Vehicle manufacture ship building Transport
No. of Observed Fitted GPD Observed Fitted GPD Observed Fitted GPD
outbreaks frequency LNBP1 Consul frequency LNBPI Consul, frequency LNBP1 Consul,
(1989) (1989) (1989)
0 110 109.99 109.82 117 117.00 116.74 114 113.99 114.84
1 33 32.86 33.36 29 29.78 30.22 35 31.91 33.88
2 9 9.56 9.24 9 7.08 6.97 4 9.60 7.27
3 3 2.64 3.58 0 1.65 0.88 2 0.00 2.01
>4 1 0.70 1 0.38 1 0.71 9.69
Total 156 156.00 156.00 156 156.00 156.00 156 156.00 156.00
A'=03494 | §=0351 A=02877 | §=029 A=0.3137 | §=0310
Estimates B =-01152 | 1 =_0.144 B =-00406 | 1=_0.113 B =-1371 | 1 =0.098
N" =-1437 N" =-3.0742 N" =-0.132

LNBP: Lagrangian negative binomial Poisson

GPD: Generalized Poisson distribution




Table 6.9

Comparison of observed frequencies of the number of human Cytogenic Dosimetry:
Radiation from 241 Am. with the expected frequencies of LNBP distribution

(Consul, 1989)

Exposure(rad)

Dand R
Cells

frequencies of cell with D and R

0

1

2

3

Total

0.85
(Observed Frequency)

Fitted LNBP1
A" =0.03822
g =-0.5849

N" =-0.7370

GPD (Consul, 1989)
6 =0.0383
1=02334

20/400

385

11

3

1

400

385.00

10.48

- 3.36

0.90

400

384.96

11.68

2.34

1.02

400

1.71
(Observed Frequency)

Fitted LNBP1
A" =0.0672
£ =-0.1396
N =-1.7092

GPD (Consul, 1989)
9 =0.0674
A =02074

177200

187

10

200

187.00

10.05

2.19

0.55

200

186.97

10.24

2.00

0.79

200

3.42
(Observed Frequency)

Fitted LNBP1
A" =0.1278
B =0.1538

N =1.5949

GPD (Consul, 1989)
0 =0.1297
A =02797

36/200

176

15

200

176.00

17.24

4.08

1.45

200

175.68

17.22

4.49

2.61

200

LNBP: Lagrangian negative binomial Poisson

GPD: Generalized Poisson Distribution
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Table 6.10: Comparison of observed frequencies of the Publications of research papers
in review of applied Mycology 1935 with the expected frequencies of LPL Distribution
(Plunkett and Jain, 1975)

No. of No. of Fitted LPL1 Generalized Geometric
papers Authors [" =0.4873 (Plunkett and Jain,
published x =1.4610 " =0.0263. 1975)

1 1085 1085.00 1079.78

2 285 285.24 291.47

3 96 95.71 96.40

4 3] 35.98 35.43

5 21 14.42 13.90

6 5 6.02 5.70

7 3 2.58 2.41

8 1 2.05 1.91
Total 1527 1527.00 1527.00

7’ 3.9514 4.4549
d.f. 4 4
>041 >0.34
p —value

Table 6.11: Comparison of observed frequencies of the Publications of research papers
in review of applied Mycology 1936 with the expected frequencies of LPL Distribution

(Jain, 1975)

No. of Observed Fitted LPL1 Generalized Logarithmic
papers per frequency B" =0.6002 Series dist.
author x =1.5509 " =—0.0559 Jain (1975)

1 1062 1062.01 1052.72

2 263 274.25 287.52

3 120 108.33 107.10

4 50 46.72 45.10

5 22 21.64 20.83

6 7 10.43 10.00

7 6 5.17 497

8 2 2.61 2.53

9 1.31

10 0 .34 0.70

11 1 0.70 1.81

1 0.80
Total 1534 1534.00 1534.00
7 3.6019 5.14
d.f. 3 4
p—value > 0.60 >0.27

LPL: Lagrangian Poisson logarithmic
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Chapter 7

Applications of Gegenbauer Distribution to Ball Games

7.1 Introduction

The Gegenbauer distribution was derived by Plunkett and Jain (1975), by mixing
Hermite distribution with gamma distribution. The probabilities of Gegenbauer
distribution can be expressed in terms of Gegenbauer polynomials (see Rainville, 1960).
This distribution has a long history in the theory of stochastic processes. It has been
observed in the past that the negative binomial distribution (NBD) produce close fit to the
distributions of scores of teams and individuals in several sports involving ball games. In
this present chapter, it is presupposed that Gegenbauer distribution would provide better
fit than the negative binomial, Poisson or Hermite distribution, as the later distributions
may be obtained as particular cases of the former.

Wood (1945) attempted to fit a probability distribution to individual batsmen’s
scores. Morney (1956) showed that the distribution of the goals of football matches gave
good fit to the NBD. While analyzing the passing move distributions in association
football matches, Reep and Bengamin (1968), have shown that the distribution give good
fit to NBD. They have described the association football matches in details and have
discussed the chance mechanisms in the game which lead to the NBD. Following the

works done earlier, Reep et al. (1971) have shown that the NBD is also applicabie to
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certain movements and performances in other ball games viz. crickets, ice-hockey, base
ball and lawn tennis. They have also shown that the distributions of numbers of goals
scored by individual football teams in individual matches provide good fit to the NBD.
Polland (1973) has fitted the NBD successfully to the frequency distribution of group
scores of individual teams in U.S. Collegiate football games.

In this chapter we have attempted to fit the Gegenbauer distribution to the runs
scored in the completed innings in test matches by some famous batsmen at cricket, to the
distribution of scores of individual teams in U.S. Collegiate football games, and also to
the distributions of goals per match scored by individual teams in national Hockey
League 1966-67. In most of the cases it is seen that Gegenbauer distribution gives the
better fit.

The Gegenbauer distribution derived by Plunkett and Jain (1975) has the pgf of
the form

g®)=(-a-p'(-a-pa")" (7.1.1)
They fitted Gegenbauer distribution to a set of accident data using the method of
moments. The limiting distributions of Gegenbauer distribution are negative binomial

(when #=0) and Hermite distribution (asA—>o, a—>0andf >0 such
that Ao = a,and A8 = «, ). Factorizing the quadratic expressions in equation (7.1.1), the
pgf can be expressed as

(1-a)(1+b)

A
] ,0<b<axl (7.1.2)
(-a)(1+br)

G(t) = [

where a—b=¢&,ab=nand 0<b<ax<l.

This factorized form makes the distribution easy to handle, especially its moment
properties.
7.2 Properties of Gegenbauer Distribution

a) Recurrence relation for probabilities
The Gegenbauer distribution of the form (7.1.2) has the recurrence relations for
probabilities as
P - (a-b)(r+ A)P. +ab(QA+r-1)P_,
(r+1)

,r2>1 (7.2.1)
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This is obtained by differentiating the equation (7.1.2), with respect to‘t’ and then
equating the coefficient of ¢" on both sides. The first two probabilities of the distribution
are respectively

P, =(1-ay'(1+b)*and P, = A(a-b)P,
b) Recurrence relation for cumulants

The mgf of Gegenbauer distribution corresponding to the pgf (7.1.2) is of the

following form

M(t)=[ (1-a)i +b) } , (72.2)

(I-ae')(1+be")
The cumulant generating function is obtained by taking log on both sides of (7.2.2), as
K@)y=logM@#)=A ]og{(l —-a)y(l+ b)}— Alog(l1—ae')— Alog(1+be'). (7.2.3)
Its recurrence relation for cumulants may be written as

_AMa- b)+ab2™
! (1-a)(1+b)

}+Z':{(a—b)+abzf}'c K

Jorr=g+l 2
)=

r>1 (7.2.4)

This is obtained by differentiating (7.2.3), w.r.t.‘t’ and then equating the coefficients of

t" /r!, on both sides. First two cumulants of the distribution are respectively

PO
(1-a) (1+b)
Aa Ab

d K = - ,
a 2 (1-a (1+b)

From the cumulants the moments can be easily obtained. Hence the mean and variance of

the distribution are respectively

_Ala—b)+2ab (1.2.5)
I-(a—-b)—ab o
- 2abA+(a—b)u+2abu 796
and o' =u+ | T(a_b)_ab . (7.2.6)

7.3 Estimation of parameters

It is well known that of all of the procedures of estimation, the method of
moments is perhaps the oldest and the simplest and in many cases it leads to tractable

operations whereas the method of maximum Likelihood is very cumbersome in
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comparison. Therefore, in order to estimate the parameters of the Gegenbauer distribution
the following techniques may be used. They are by using

e The first three sample moments

e The first two sample moments and the ratio of the first two frequencies
a) The first three sample moments

The first three sample moments of the distribution may be written respectively as

f:i(_a—_b)""_zib_’ (7.3.1)
1-(a—-b)—ab
R 2abA +(a—b)x + 2abx ’ (732)
l1-(a-b)-ab
= N2 2 :
S 2ab(x +2A)+ (a—b)s” +2abs , 7.33)

1-(a-b)—ab
Eliminating (a—-b)and ab respectively from (7.3.1), (7.3.2) and (7.3.3) we may have a

second degree equation in ‘ 1’ as

A +BA+C=0 (7.3.4)
where A=3s"— m, —2Xx,

B =x(2s* -3%)
and C=-%.
The equation (7.3.4) may be solved for A, either by using Newton Raphson method or
solving as

i:_Bi“f;_4AC,,1>o (7.3.5)

Putting the estimated value of A in (7.3.1) and (7.3.2) and eliminating @, we may obtain

another second degree equation in b as
Pb* +Qb+R=0 (7.3.6)
where P=(x-As%)+ A% +24), ,
0 =2G -} +4ix
and R=51-(s-%)A.
Solving (7.3.6) forb , we get

123



5=—QiVQ2"4PR. (1.3.7)

2P
Putting the value of 4 andb, the estimated value of a may be obtained either from

(7.3.1) or (7.3.2), as

PO Gl )5 e (73.8)
A+2)A+(0+b)x
. 1+5)s* — %
or = _U+Ds BLE (7.3.9)
bRA+Xx+s)+s
b) The first two sample moments and the ratio of the first two frequencies
Taking the ratio of first two sample frequencies of the distribution as
0=£=£—=(a—b)/l (7.3.10)
fo B
Using @, the equation (7.3.1) can be written as
F=_2t2abd 7.3.11)
l1-(a-b)—ab

Eliminating (a —b)and ab respectively from (7.3.10), (7.3.11) and (7.3.2) we may obtain
a second degree equation in 4 as

AR +BA+C =0 ' (7.3.12)
where A=2(s*+6-2%),

B=-(2x* -3x0 + 5%0)
and C=x%.

The equation (7.3.12) can be solved either by using Newton Raphson method or the value
of A may be obtained as

~ —B+\B'-
iz fA a4c (7.3.13)

Putting the estimated value of A and eliminatinga from (7.3.10) and (7.3.11), we get

another second degree equation in b as
Pb* +Qb+R=0 (7.3.14)
where P= /?:(2/1 +X),
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0=(24+x)0
and R=%0+(0-%)A.
Equation (7.3.14) may be solved for b either by using Newton-Raphson method or we
get

1}=_QiVQ2_4PR, (7.3.15)

2P

Putting the value of A and b in (7.3.10), we get
1 0 .
a=—=+b. (7.3.16)
A

7.4 Applications

For the application of Gegenbauer distribution, we present some observed
frequency distributions and the corresponding expected frequency distributions obtained

from the fitted Gegenbauer distribution (GD) and negative binomial distribution (NBD).
We give the values of sample mean (x ), sample variance (s”) and also the calculated
values of chi-square ( 7°) with degrees of freedom (d.f) for each distribution. For
estimating the parameters (a,b,4), the first two sample moments and the ratio of first

two sample frequencies have been used.

In Table 7.1, we have tried to examine whether the distribution of catches taken in
the completed innings at cricket tests provide good fit to the Gegenbauer distribution. For
this purpose, the distribution of catches taken by Sobers (one of the best all rounders in
the cricket world) is used. The expected as well as the observed frequencies of

Gegenbauer distribution together with NBD are given in Table 7.1. Comparing the x*

values obtained from Gegenbauer distribution with that of the negative binomial

distribution, it has been observed that our distribution gives better fit than the NBD.
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Table 7.1

Applications of Gegenbauer distribution (GD) and negative binomial distribution (NBD)
to the distribution of catches taken by Sobers in the completed innings at cricket tests

(Sinha et al., 1987)

Catches | Observed Expected frequency
Frequency
X =0.675 NBD GD
s? =1.4444 (Sinha et al., 1987) i =1.0765
b=0.2429
a=0.4513
0 107 102.1 105.97
1 24 32.0 23.77
2 14 13.6 17.67
3 9 6.3 6.51
4 3.0 3.39
5 3 1.5 1.45
6 1 1.5 1.26
Total 160 160.00 160.00
X’ 3.40 1.72
d.f. 2 3
p —value >0.10 > 0.63

GD: Gegenbauer distribution
NBD: negative binomial distribution

Reep ef al. (1971) have fitted the NBD to the distribution of runs scored by
Cowdrey and Barrington in the completed innings at cricket tests. Here we have attempt
to fit the Geganbauer distribution to the data. The observed as well as the expected
frequencies on the basis of the two distributions under consideration are given in Table
7.2. It is observed from Table 7.2 that the Gegenbauer distribution provides better fit than
NBD for the distribution of the runs scored by Barrington than the runs scored by
Cowdrey.
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Table 7.2
Applications of negative binomial distribution (NBD) and Gegenbauer distribution (GD)

to the runs scored in the completed innings at cricket test Reep et al. (1971)

Cowdrey Barrington
Runs Observed Expected frequency Observed Expected frequency
(units frequency NBD ~ GD frequency NBD _ GD
of20) | x=1.6923 | (Sinhaet | A=1.5049 | x=2.0948 | (Sinhaet | A=3.1555
s =43156| al,1987) | b=02238 | s> =4.8962 | al,1987) | b=0.3258
a =0.5664 a=0.4763
0 64 56.1 60.10 40 31.0 36.69
1 33 373 30.99 19 273 17.42
2 16 23.7 24.77 13 20.0 23.41
3 12 14.8 15.17 15 13.6 12.64
4 11 9.2 9.78 14 8.9 10.48
5 12 5.7 6.00 3 5.7 6.90
6 0 35 3.68 6 3.6 4.00
7 6 22 2.22 3 23 227
8 1 1.3 1.33 2 1.4 1.39
9 1 2.1 1.96 1 22 0.80
Total 156 155.9 156.00 116 116.0 116.00
e 5.12 5.98 7’ 10.02 8.80
d.f. 4 3 d.f. 4 3
p—value | >0.25 >0.11 p —value >0.03 > 0.03

GD: Gegenbauer distribution
NBD: negative binomial distribution

In Table 7.3, we have attempted to fit the Gegenbauer distribution to the
distribution of runs scored by S.M. Gavaskar and G.R. Vishwanath, the two famous
batsmen of cricket in the completed innings in the test matches and compared with NBD.
The observed as well as the expected frequencies calculated on the basis of the two
distributions under consideration are given in Table 7.3 and it is observed that
Gegenbauer distribution provides better fit for the distribution of the runs scored by

Gavaskar and the runs scored by Vishwanath.
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Table 7.3

Applications of Gegenbauer distribution (GD) and negative binomial distribution (NBD)

to the runs scored in the completed innings at cricket test (Sinha et al., 1987)

Gavaskar Vishwanath
Runs Observed Expected frequency Observed Expected frequency
(Units frequency NBD GD frequency NBD GD
of 20) ~ (Sinhaet | 7-16984 | _ (Sinhaet | 7 —1.2989
x2= 21177 al,, 1987) | 5=0.3293 "2= 15775 al., 1987) | b=0.1793
57 =6.0156 a=0.5991 | s =4.0327 a=05774
0 48 42.1 46.70 58 55.1 57.47
1 22 304 21.40 30 33.7 29.72
2 21 21.2 23.44 21 20.7 21.33
3 15 14.4 13.98 12 12.6 13.03
4 6 9.2 10.67 7 7.7 8.11
5 11 6.5 6.81 6 4.7 4.93
6 6 7.3 4.65 4) 2.9) 2.98
7 1) 2.9) 2.99) 1 1.8 1.79
8 2 1.9 1.95 2} 1.1} ].07}
9 1 1.3} 125} 0 0.7 0.64
10 1 0.8 0.80 0 0.4 0.38
2 1.5 1.36 1] 0.6} 0.55
] 1 P4 Py Py
Total 136 136.0 136.00 142 142.0 142.00
7’ 8.91 5.61 7’ 1.05 0.53
df. 5 4 d.f. 4 3
p —value >0.10 > 0.23 p —value > 0.90 >0.91

GD: Gegenbauer distribution

NBD: negative binomial distribution

Table 7.4 gives the observed and expected frequencies obtained on the basis of

Gegenbauer distribution and NBD (Reep et al, 1971), fitted to the distribution of goals

per match scored by individual teams in national Hockey League 1966-67.
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Table 7.4
The observed and the expected frequencies of the distribution of goals per match scored

by individual teams in National Hockey League 1966-67 (Reep et al, 1971)

Expected frequency
No of goals Observed NBD GD

oote frequency (Sinha et al., 1987) | 7 =99 (98
X =2.9786 b=0.0369
s? =3.5304 a=0.0616

0 29 27.6 27.96

1 71 68.8 68.45

2 82 91.4 90.90

3 89 85.9 85.98

4 65 64.1 64.54

5 45 404 40.72 .

6 24 223 22.39

7 7 11.1 10.99

8 4 5.0 4.90

9 | 2.1 2.01

10+ 3 1.3 1.16

Total 420 420.0 420.00

P 3.43 3.13

df. 6 3
>0.70 > 0.67
p —value

GD: Gegenbauer distribution

NBD: negative binomial distribution

Finally, in Table 7.5, we have given the expected frequencies obtained from
Gegenbauer distribution to the number of points per game scored by individual teams in

U.S. Collegiate football games where NBD was fitted by Pollard (1973). From Table 7.4
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and Table 7.5, it is clear that in both cases Gegenbauer distribution provides better fit

than the NBD. The evidences reveal that Gegenbauer distribution may be used to

describe random counts arisen from various situations in ball games.

Table 7.5

The observed and expected frequencies of the distribution of the number of points per

game scored by individual teams in U.S. Collegiate football games (Pollard, 1973)

Expected frequency

Number of Observed frequency GD

points x=2.58 NBD 1=4919
s2=3.76 (Sinhaetal., 1987) | p = —0.0339
a =0.3286

0 272 278.7 275.65
1 485 490.1 491.52
2 537 590.1 512.21
3 407 406.6 408.45
4 258 275.9 276.24
5 157 167.3 166.94
6 101 93.5 92.95
7 57 - 49.0 48.62
8 23 244 2421
9 8 11.7 11.59
10 5 5.4 5.36
11 6 4.3 4.26
Total 2316 2316.0 2316.00

7’ 7.42 7.18

d.f. 9 8
>0.50 > 0.51
p —value

GD: Gegenbauer distribution

NBD: negative binomial distribution
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Charlier family of Lagrangian distribution of first kind
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Appendix C

A Brief note on the methods of estimation

The method of Maximum Likelihood is the best and the most important method
of estimating parameters of a distribution. It was first used by C. F. Guass in developing
the theory of least squares and subsequently reintroduced by Prof. R. A. Fisher in 1912.
Besides this there are other methods also. They are method of moments, method of
minimum chi square, method of minimum variance, method of inverse Probability and
least square method of estimation. Of all these methods, method of moments is perhaps
the oldest and the simplest and it can also be used with a desired number of accuracy.
Estimation by using the method of moments was first introduced by Karl Pearson (1900).
This method sometimes yield estimates most easily in comparison with Maximum
Likelihood estimates.

In certain situations where the method of Maximum Likelihood leads to
intractable equations, then method of moments is the best method to estimate the
parameters of a distribution. It is also true that method of moments do not lead us to the
same estimate as the method of Maximum Likelihood. It has been observed that under
certain general conditions the estimates obtained by the method of moments are
asymptotically normal but not in general efficient. Generally method of moments yields
less efficient estimates than those obtained from the method of Maximum Likelihood.

It has been observed that, in case of certain mixture distributions specially when
there are three ‘or more than three parameters, the solution of Maximum Likelihood
equations for estimating the parameters is very cumbersome. For example, in our case,
the generalized distributions of Poisson Lindley, three parameter Charlier and
Gegenbauer distributions in Chapters 3, 4 and 5, we have faced such type of problems.
Some authors like Fisher, 1941; Anscombe, 1950, Evans, 1953; Katti and Gurland, 1961,
1962 have suggested alternative methods which can lead to relatively simple equations to
solve. These methods have been found to be very useful in the problem of fitting of the

distributions. Katti and Gurland (1961, 1962) have also calculated the efficiencies of



these methods. These methods are method of moments, method of minimum chi square
and method of using first two moments and the proportion of zeros in estimating the
parameters of Poisson Pascal and Poisson Binomial distributions. But it may be well to
say that under certain situations these methods give maximum results.

Katti and Gurland (1961, 1962) used the method of moments when the mean and
the variances are in large magnitude. When mean and the variances are moderate and the
proportion of the zero class frequency is large they used the method of the first two
moments and the proportion of the zero class frequency in estimating the parameters of
Poisson Pascal distribution. Again when the first three frequencies are large in
comparison with the remaining, the method of first two moments and the ratio of the first
two frequencies are used in estimation.

In view of the above results of Katti and Gurland (1961, 1962), we have taken
some ad hoc methods to estimate the parameters in different Chapters. The p values are
also calculated for each Table and have shown along with the chi square values and their
respective degrees of freedoms.

But in certain tables in Chapter 4, in fitting Generalized negative binomial and
Generalized Hermite distributions of type 1 and in Chapter 6, in fitting Lagrangian
negative binomial Poisson and Lagrangian Poisson negative binomial distributions as the
number of observations in the data sets is less than equal to 5, the fitting of the
distributions can not be compared on the Basis of chi square criterion as the degrees of

freedom is very negligible. That is why in tHose tables p-values are not provided.
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1. Introduction .

" In queucing theory, to obtain the expected length and variance of the random
variable X, i.c. the number of customers served in the First Busy Period (FBP),
the probability distribution of X is necded; but this is. dependent upon the
systems of arrivals and the service interval of each customer. Similar type of
problem had been considered for Poisson arrivals at a constant service time by
Borel and Tanner (Tanner 1961 and Prabhu, 1965). It has been well illustrated
by the authors [Consul and Shen (1971)] that Lagrangian probability distribution
(LPD) consist of many families and that has many interesting members such
as Borel-Tanner distribution (Tanner, 19.51). Haight distribution (Haight, 1961),
generajized negative binomical distribution (Jain and Consul, 1971), and
generalized Poisson distribution (Consul ¢ nd Jain, 1972). Mohanty (1966) obtained
the Lagrangian binomial distribution as the distribution of he number of failures
x cncountered in getting B x + n successes given a sequence of n independent
bernoulli trials. A queueing process in.erpretation has been given by Takacs
(1962) and Mohanty (1966). The appli-ation of Lagrangian type distributions
in the theory of random mappings has been studied by Berg and Mutafchiev
(1990) and Berg and Nowicki (1991). Devroye (1992) has studied the computer
generation of Lagrangian type variables. Consul’s (1989) book on the Lagrangian
Poisson distribution highlights how intensively it has been studied for its many
propertics, and all for its various mode of genesis. Here we have considered a
morc general problem where the input of the customers is a three parameter
Charlier (where Poisson, or negative binomial may be obtained as a particular
casc), and the initial number of customers waiting for service in a qucue is also
another discrete random variable. A vzry simple and well known method to
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determine the probability distribution of the number of customers in the FBP
has been considered

2. Lagrangian Distributions

A class of discrete probability distribuuons under the utle
Distributions” had becn introduced 1nto th: hiterature by Consul and Shenton
(1971, 1973) The particular title was chosen oy them on account of the genecration
of these probability distributions by using the well known Lagrange expanston
of a function flx) as a power series 1n y when )y = v/g(x) Considering g(s) and
f(s) as the two probability generating functions (p g f) defined on non-ncgative
integers such that g(0) # 0, Consul and Shenton (1972) used Lagrange's expansion
to define families of discrete generalized probability distributions which 1s
called Langrange Distribution of first kind \LD1 according to the terminology
of Janardan and Rao (1983) Lagrange distibution of this kind has the probability

mass function (pmf)

13

_agiangian

P (X = 0) = f0O),

-]
PriX=1)=, L;is*-‘ (g()}* f (J):} Jforx=1,23 (11
si=0

Using the Lagrange’s expansion of secound kind, Janardan and Rao (1983)
investigate a new class of discrete distributicns called lagrange distitbutions of
the second kind (LD2) with the pm f

1 - o’(1 T
Pr(X=x)= —f—,—(—lﬁ— [{8()) (5 lym, for 2 =0, 1,2,3,  (12)

Consul and Shenton (1972), and Janardan and Rao (1983) generate different

families of Lagrange distribution by various choice of the functions f(s) and
8(s)

3. Charlier Type Distributions
Doctsch (1933), Mewxner (1934, 1938) and Beirg (1985) investigated the Charlier
polynomals defined by the generating funct on

e'(1 - Bsy™ (21)

Jain and Gupta (1975) dcfined the generalized Charlier polynomial cl, (a, B
of degree n by the generating function

{nim)
e™(1 - Bs™ = X CL, (a,B)s"in (22)

n=0

Hence

{nlm) J 1
) ~n r(/L +])
C) , = Y lﬁ_ & d
nm (x ﬁ) 120 n _]l ()1 - l)?])' F(A‘)

where [K] denotes the mnteger part of K MeJdh and Bora (1984) have also

(23)
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studied the probability, moment and cuniulant properties of four parameter
charlier distribution, and have used estimation via the first three cumulants and
the ratio of the first two sample frequencies (fi/fp). Jain and Gupta (1975) have
obtained some operational formulae and recurrence relations for probabilities
and moments. They have extensively studied the various properties of he

polynomuals.
The p.g.f. of three parameter Charlier distribution (for m = 1) is given by

GIPA(s)=e (1 - Byt e® (1 ~ Bs)~ (2.4)
with the probability mass function (p.m.f.)

R B GO

" B r! ds’
_1papi y o BPETTA)) -
=t EO ¢ A forr=1,2,3, ... (2.5)

where POO"B')L =e % (1 - ﬁ)A, and "C; = rl/{j! (r - ))!}. As the ranges for the
skewness and kurtosis of the three parameter Charlier distribution covers the
ranges of the other basic distributions, viz. ‘Poisson, Negative binomial etc. as
demonstrated in the literature, this family of Lagrangian Distributions may be
considered to be more flexible.

Similarly, the p.g.f. of Poisson, Negative binomial, Logarithmic series and
delta distributions may be given by '

GJ(s) = exp [y (s - 1)]
GI¥(s)=(1 - BV - By~
G (s) =log (1 - Bs)log (1 ~ B)
Gi(s) = 5" | 2.6)

respectively, woere prefixes (i.e. a, 3, 4, 7, n, N) denote the parameter/s of the
corresponding distribution.

A new class (Charlier Type) of Lagrangian distributions has been derived by
selecting various p.g.f. given in equations (2.4) and (2.6) at random as g(s) and
f(s) respectively, and putting them in the expressions (1.1) and (1.2) just hke
the other authors [Consul et al. (1973). and Janardan et al. (1983)]. The Charlier
family of Lagrange distributions of the first and second kinds derived from
Lagrange’s expansion of first kind (LD1) and second kind (LD2) is presented
in Tables | and 2, respectively. The basic Lagrangian Charlier distributions of
first kind may be obtained putting n = 1 in serial number 7 (in Table 1) as

PEPA = (i ~ PR (an)S ! Fo(l - x, Ax, = Blax), x 2 1 (2.7)

Similarly, Lagrangian Charlier distributions of second kind may be obtained
as
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Table 1. Charlier Family of Lagrange Distributions of first kind

No. = g(s) f(s) LDI(g; f; %)
L Gy Gl K1 = By e @ ax + yy~'ix!
2Fo(l = x, Ax, = Bl(ax + 7)), x2 1
2 Gla.ﬂ,l (s) GfN(S) Nﬂ(] _ ﬁ)lx+Ne-w(ax)\-l/X!
2ol = x, Ax + N + 1, - Blax), x21
3 Gl(s) GB¥(s) NB(L - BYVe ™ (yx)!/x!
, Foll =x, N+ 1, = By, x2 1
4 GIPA(s) Gls) AB(1 = B e ()™ V/x!
2F0(1 - X, Ax + 1, - ﬂ/a).’), x21
where A = - llog (I - )
5 GIs) GP(s) AB e x!
zFo(l - X, ], ~ ﬁ/yl), x 21
where A = - l/log (1 ~ f)
6 G&s) GIl(s) (1 - Byt
2Foll = x, Nx, - BIy), x 1
7 GFA () GI(s) (n/x) (1 = B (o) "/(x— n)!
1Foln = x, Ax, flax), x2n

G{"ﬂ'/l (s), Gl(s), Gf"v(s), Gf(.v) and G{(s) denote the probability gencrating
function of three parameter Charlier, Poisson, Negative binomial, logarithmic serics and
delta distribution respectively. 1Fo(a, b; x) denotes hypergeometric function.

PEPR = (1 = 1) AL = e (a)y™ Foll - x, Ax, = Blo), x 2 1
2.8)

where A = [1 — {a + AP/(1 - B)}], putting n = 1 in number 14 in Table 2. It
is very interesting to note that the generalized Poisson distribution (see Consul,
1973) is a particular case of Charlier family of Lagrange distributions. All
these distributions shown in Tabl:s 1 and 2, will be of relevance in queueing
theory and possess all the interestir g properties discussed by Consul and Shenton
(1973) in the case of generalized Poisson disribution. In general, it is also
conceivable that discrete data occurring in the ecology, epidemiology, and
meteorology could be statistically modelled on one of the distributions considered
in this investigation, see for example Jain (1975).

4. Properties of Moments and Cumulants

The general Lagrangian Probability Distribution (LPD) possesses, some important
properties (see Consul and Shenton, 1973). The cumulants K,, r =1, 2, 3, ...,
of the general LPD become

mlmtnsylon, ! 2

K =32 F,,,{E——-’ r! : 3 (D, /i n,)J (3.1
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Table 2. Charlier Family of Lagrange Distributions of Second Kind

~

No. g(s) £s) LD2(g; f; x)
8 Gl(s) GP¥(s) (1-9 (1 =P e (pm)x!
2F0(*X,N"‘/3/YX)» x21
9 GI"s) GG (1 - NBI(1 = B)) (1 - B &yt
2Fol~ x, Nx, = B/, x21
10 Gl(s) GHPMs)y (-1 (1 - Blre ™ + o)ix!
2,#Hol-x, 7% = Bl + ), x> 1
11 GMs) G (1~ NEI(L - B} A - B e oy
2o~ x, Nx + A, - flo), x> 1
12 GHP%s)  GPV(s) {1 - {a+ AB - BN - MY e (o)
Ix! o Fy(- x, Ax + N, - Blax), x21
13 GH(  Gl(s) [l = {o+ AB(L - P (1 - Y el
(0 + Px! oFol- x, A,
- fllex + ), x2>1
14 GHMPMs)  Gr(s) {1~ {a+ AB(1 - P90 — B e (o)™
I(x = n)! 2Fo(n - x, Ax, — Blox), x>n

15 Gl"l'ﬂ"/l(s) Gl"z'ﬁ'AZ(S) - {al + A],B/(l -ﬁ)}](l _ ﬂ)).lnlz e (@ x+ay)
(alx + CXz)X/X! 2F0 (- x, l,x + ;{IZ,
- ﬁ(alx + a2)» X2 l

GPA(s), G1(s), Gf'N(s) and GI(s) denote the probability generating function of
three parameter Charlier, Porsson, Negative binomial and delta distribution respectively.
2Fo(a, b; x) denotes hypergeometric function.

where the second summation is taken ove all partitions m), m,, 73, ..., @, of m
such that 7y + 2m, + 3m; + ... + r m, = r. Similar expression is also available
for moments (Consul and Shenton, 1972). Hence, these formulae can be used
to write down higher moments and cumulants of any generalized Lagrangian
probability distributions (LPD).

For simpicity, let F, be the rth cumulant for the pgf f(s), and let D, be the
rth cumulant for the basic Lagrangian distribution obtained from g(s). Then the
first few cumulants of LPD can be written down as particular cases of (3.1) in
the form:

K] = FlDl’
Ky = F\Dy + F, DY,
K3 = FlD3 + 3FleDz + F3 Dl3’

K4 = F\Dy + 3D, D2 + 4F,D\D3 + 6FD2D, + F3 D} (3.2)

Hence the parameters of LPD can be estimated in terms its cumulants.
Minimum variance unbiased estimation for Lagrangian distributions has been
examined by Consul and Famoye (1989).
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5. Conclusion

This paper defines a class of Charlier iype of Lagrangian probability Distributions
by using well known Lagrange’s cxpansions, which are aplicable in queueing
theory. It is believed that LPD should give better fit than their classical forms.
It may be of interest to investigate in further.
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SOME PROPERTIES OF POISSON - LINDLEY
AND ITS DERIVED DISTRIBUTIONS
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Abstract

Poisson-Lindley is a well known one-parameter compound
Poisson distribution, which has wide applications in the the-
ory of accident proneness In this paper, Poisson - Lindley
distribution has been studied and under two known forms of
geometric infinite divisibitity, the three parameters of Pois-
son - Lindley infinitely divisible distributions have been ob-
tained. Further, some properties such as the recurrence
relation for probabilities, factorial moments and cumulants
of these distributions are also investigated. The problem of
estimation of parameters, their sensitivity and the fitting of
the distribution have beer. studied.

Key Words : Lindley ana Poisson-Lindley Distribution, Infinite

divisibility, Recurrence Relation, Estimation and Goodness of fit.

1 Introduction

A random variable is said to ke infinitely divisible if and only if for
every integer n, its characteristics function ¢(t) can be expressed as

*Received (Revised version) : Jun:z 2002.
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then-th power of some other characteristics function ¢,(t), i.e.,
$(t) = {¢n(8)}". (1)

The importance of the property >f infinitely divisibility in modeling
was stressed by Steutel (1973, 1983). see also the monograph by Steutel
(1970), Pillai and Sandhya (1990) a1d Pillai and Jose (1994) who have
studied some properties of geometrically infinitely divisible discrete dis-
tributions. Some properties of infinitely divisible discrete distributions
have been studied by Johnson et. «l. (1992). The infinitely divisible

discrete distributions with probabil'ty generating functions (pgf’s) of

the form
_ (1 —-w)g(?) :
G(t) = T:—wg&-)—, O<w<l (2)

were studied by Klebanov et. al. (1984) under the name of geomet-
rically infinitely divisible distributions. Here, g(t) corresponds to the
pgf of the component distribution used. The resulting distribution 1s
always infinitely divisible, no matter whether the component distrib-
ution is infinitely divisible (ID) or not. Hence, the above two forms
(2) and (3) are ID irrespective.of whether g(¢) is ID or not. The basic
geometrically infinitely divisible distributions given by Klebanov et al
(1984) and Keilson and Steutel (1972), are closed under mixing and
convolution. In case of continuous distribution, the characteristic func-
tion (cf) of the Normal distribution and in case of discrete distribution,
the cf of Poisson can be easily put in the form (1), but it may not always
be possible to express the cf of a distribution as in the form (1). Con-
ditions for a discrete distribution to be infinitely divisible are discussed
in Katti (1967), Warde and Katti (1671), Chang (1989) and Godambe
and Patil (1975). In this paper, twc new forms of infinitely divisible
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distributions have been derived bv using Poisson-Lindley distribution
as a component distribution with the help of (2) and (3). The pgf of
these distributions based on the model (2) and (3) are denoted by the
symbols GPL1, GPL2 respectively.

Poisson-Lindley Distribution :

Lindley (1958) derived a distribution known as Lindley distribution
based on Bayes Theorem. Sankarsn (1970) generalized Lindley distri-
bution by mixing with Poisson distribution which is known as Poisson-
Lindley distribution. The pgf of Poisson-Lindley distribution obtained
by compounding the Poisson distribution with one due to Lindley may
be defined as

(6 + 2 — 2162

W=Grneri-2 70

The probability recurrence relation may be expressed as

P.(6+3+r)

. f >
CECEF I M

Pr+1:

02%(0+2

,  0°+49%+60 42
T e+

g

be respectively the mean and variance of the distribution. The para-

—(p—=1)+/(4—1)*+8u

21 }

meter § of the distribution is related to p by § =
remembering 6 to be positive, see Sankaran (1970).

This distribution has been studied by Sankaran (1970), with appli-
cations to data on errors and accidents. It is a special case of Bhat-

tacharya’s (1966) more complicated mixed Poisson distribution.
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2 Generalized Poisson-Lindley (GPL1) Dis-
tribution

The probability generating function (pgf) of the generalized Poisson-
Lindley distribution derived frora the model (GPL1) can be given as

(1-w)(B+2—.)6

¢>0. (1
G+ D0+t —wdi@ra—g °<¥<b >0 (1)

G(t) =

From (1), we get

Py = A{2004+12-wh?} P—(0+1) P_y], (2)
where
1
S () ER R Sy
Py = A1 -w)(@+2)6°
|
and

P = A1 ({206 + 1) — wb*} Py~ (1 - w)é?

Factorial moment recurrence relation may be derived from its fac-

torial moment generationg function (fmgf) given by

- (1—-w)f?(1+0+1)
m(t) = (14+6)(0—1)2~wh?(1+0-1t) 3)

From (3), we get the factorial mment recurrence relation to be

_ (r+D[{20(1 +6) — w8}y — (14 O)pr-y)]
Hral = (i +6)82(1 — w) (4)

where

_ (6 +2)
O = 81170)1 - w) (5)
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Mean and variance of the distribution are respectively given by

(6 +2)

P E e I-w) (6)

and

2 _ 20u+ 302 — 2whp + 072 — 2

1+ 06 (1 - w) (7)

g

It is noted that the mean is less than the variance ¢? = Cu + D,
when C,D # 0 where C = {20 + 36% — 2w6®}/(1 + 6)(1 — w)8? and
D=(6?-2)(1+0)(1—w)d?

Estimation of Parameters
From equation (6), the parameter w can be expressed as

(¢+2)
=1--— , 8
“ (1+80)9u &)
Again, from equation (6) and (7), the parameter w is expressed in terms
of 9, as
6? + B6 + 2
W= A + - + ’ (9)
2u8
where 2 52
A=3p+1~- —, B =2(u- —).
7 7

Eliminating w from equations (8) aad (9), a functional equation for 8

in terms of x4 may be obtained as

9
f(8) =6°+36% + 20 — = (10)

where 2
T=u+1——g——
. =

The parameter § may be estimated by the Newton-Raphson method.
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Hence, w may be estimated either by

{81+ —(84+2)}
Y (¢ +1)0u ’ (1)
L 16@2+3u+ P -2-6(1+6)0%} (12)

2u0? — 0(1 + 6)?

where 1 and ¢? respectively deaote the mean and variance of the dis-

tribution.

3 Generalized Poisson-Lindley (GPL2) Dis-
tribution .

The pgf of Poisson-Lindley distribution derived from the model (GPL2)
can be given as

B w(f +1)(0 + 1 —t)?
(4w (@+1)@+1-1)2—(0+2—1t)0%

G(t) w>0,0>0 (1)
Differentiating (1) w.r.t. ¢ and equating the coefficients of 2 on both
sides, the recurrence relation for probabilities may be obtained as
2w+ )0+ 1)2 -} — (w+ )+ 1)P

Frn = @+ D)6+ 1) —62(0 +2) BEAC

for r > 1 where

o= w(d +1)3
O T I D@1 -0 +2)
b o 2w+ 104 1) - 0%}P — 2w(0 + 1)°
L (WH+1)(0+1)°~6%0+2) !
and
P, = 2w+ 1)(0+1)2 - 02}P, — (w+ 1)@ + 1) Py +w(0 + 1)

(w+ D+ 1)3—-6%6+2)
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Factorial moment recurrence relation may be derived from its fmgf

as
w(f+1)(0 —t)?

7““:(w+nu+mw—wy—mu+9—w (3)

which gives

(r+ D{20(w + 1)(0+ 1) — 0% }py — 7(w + 1)(8 + 1))

Hrg1)y = (0 + 1)wb?
for r > 1 where
_ (8+2)
PO = o+ 6)
and
. 2{20w+1)(0 + 1) — 92};1,(1) -2(60+1)
@ = (0 + 1)wo?
Hence the mean and variance of the distribution may be given as
6+ 2
— _(_____)_’ (4)
(0 + 1)0w
and
S 4wlp(0 + 1) 4 0u(6 + 2) + 6% — 2. (5)
w(f -+ 1)6?
Estimation of Parameters
From equation (5) the par‘amet(-ar w can be expressed as
¢+ 2 :
= (6)

6(6 +1))p’
Again from equations (5) and (6), the parameter w can be expressed as

B 0% + 29 + 6% - 2 (7)
© 0(fo? — 4B+ 1)

Eliminating w from (7) and (8), 4 may be obtained from

f(6) = AG> -+ BO+C . - (8)
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The parameter 6 is estimated by noting that

—B-:v/B?-4AC (9)

2A

g =

where A = 02— u? — i, B = 2(0* — p? — 2p), C = —6u. It may be noted
that 6 is positive.

Hence, w may be estimated :ither from

o (6 +2) b6 +2)+0* -2
T+ 1) YT 80 1 1) (002 — ap)

4 (Goodness of Fit

The negative Binomial, the Poisi;on and the Neyman’s distributions are
commonly used in ecological and biological problems, the Neyman's
and Negative-Binomial distribution represent model in which the non-
randomness is attributed to contagion. In this investigation, the pa-
rameter 6 of generalized Poisson-Lindley distribution is estimated by
Newton-Raphson method, whereas the parameter w is estimated by the
method of moments. In Table 1, we consider the data on the Pyrausta
nubilalis, to which generalized Poisson distribution was fitted by Jain
(1975). It is observed that generalized Poisson-Lindley distribution give
better fit. The Distribution of corn borers is considered in Table II, to
which the Negative-Binomial and the Neyman’s type A distributions
were fitted by Bliss and Fisher (1953). It will be seen that the data
agree excellently with generalized Poisson-Lindley fit. The generalized
Poisson-Lindley distributions, i.e. GPL1 and GPL2 are also fitted in
Table III to some data collecte¢ by P. Garman (see Bliss et al, 1953)

and the fit is found to be satisfactory.
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Table 1: Pyrausta nubilslis in 1937 (data by Beall and Rescia

1940)
No. of | observed | Poisson-Lindley GPL1 GPL2 Generalized-
insects (by Sankaran, ) = 3.4556 6 =12.74 Poisson
1970) & =05276 | @ =0.1123 | (by Jain, 1975)
6 = 1.8082
0 33 3149 31.86 33.10 32.46 ]
1 12 14.16 13.84 12.49 13.45
2 6 6.09 5.92 550 5.60
3 3 2.54 2.52 2.49 2.42
4 1 1.04 1.06 1.13 108
5 1 0.42 0.80 1.29 097
Total 56 56 00 56.00 56.00 56.00
X2 0.6532 0.3743 0.0667 0.25 |
Table 2 : Corn Borers data of Beall (1940)
No. of | observed Poisson- GPL1 GPL2
insects Lindley (by | 6 =23.4556 | 6 = 6.64
Sankaran, 1970) | @ = 0.7611 | @ = 0.1148
6 = 1.0096
0 43 45.36 48.05 49.11
1 35 30.07 29.04 24.83
2 17 18.70 17.36 15.30
3 11 11.16 10.35 9.84
4 5 6.48 6.16 6.38
) 4 3.68 3.67 4.14
6 1 2.06 2.18 2.69
7 2 1.14 1.30 1.75
8 2 0.62 1.89 1.14
Total 120 120.00 120.00 120.00
¥t | 0.0667 1.7289 1.7251
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Table 3 : Count of the number of European red mites on
apple leaves (data of Bliss et al 1953)

No of Leaves Poisson-Lindle ; GPL1 GPL2 Jain and Consul
mites per | {observed) {by Sankaran, 6 = 13921 6 =858 (1971)
leaf 1970)0=1.258 | @ = 0.1117 | & = 0.1022
0 70 67.19 67.62 70 89 71 48
1 38 38.89 38.68 3335 3398
2 17 21.26 21.04 18.70 19.80
3 10 11.21 11 09 10.84 1159
4 9 5.76 57 6.73 6 57
5 3 2.90 2.92 369 355
6 2 1.44 1.47 2.15 1.80
7 1 071 0.74 1.26 0.84
8 0 0.34 0.71 0.73 039
Total 150 150.00 150.00 150 00 150 00
X2 30136 2.8491 2.4433 2.07
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CERTAIN INFINITELY DIVISIBLE DISCRETE
PROBABILITY DISTRIBUTIONS AND
ITS APPLICATIONS.

R. A. Begum.; M. Borah.

@Department of Statistics.Darrang College, Tezpur, Assam.
*Department Mathematical Sciences. Tezpur University, Napaam,
Jezpur, Astam,

Abstract

Elementary infinitely divisible distributions which are formu-
lated on the basis of simple models seen to be inadequate to describe
the situations which may occur in a number of phenomena. In the last few
years a number of various infinitely divisible distributions have been de-
rived. In this paper two forms of infinitely divisible discrete distribu-
tions have been studied. The recurrencé relations for their probabilities
and factorial moments are also investigated. As the method of maxi-
mum likelthood will be very cumbersome, some other adhoc methods
have been also used to estimate the parameters. A few sets of
reported data have been considered for thie fitting of the distributions, and
the fits are compared with that obtained with other distributions..

Key words : Infinitely divisibleé" d.stributions, Recurrence Rela-
tions, Factorial moments.

Introduction

The theory of infinitely divisible distributions, developed primarily
during the period from (1920), to (1950), has played a very important
role in the solution of limit problems for sums of independent random
variables. A full account of this theory and its applications as it had been
developed by the laté 40's, were presen.ed in the monographs of Levy
(1937), Gnedenko and Kolmogorov (1968), and Loeve (1960). In the last
few years research in this field have shown that infinite divisible laws
plays a significant role in a variety of proslems of probability theory and

&8
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has been carried out along meny lines. Numerous new results have been
obtained and entirely new applications have been found. In 1961, Mark
Fisz gave a survey on recent dzvelopments in infinite divisibility only for
the distributions on the real line. F. W. Steutel (1972), also surveyed on
some recent results in infinitely divisibility.

1 Meaning Of Infinite Divisibility

A random variable is said to be infinitely divisible if and only if
(iff) it has a characteristic function (cf'), $(t) that can be represented for
every positive integer '’ as the nth power of some cf ¢ (1), ie

o) ={¢,(O}". (1.1)

In case of continuous distribution the cf of Normal distribution and
in case of discrete distribution the cf of Poisson distribution can be easily
put in the form (1.1), but' it may not be always possible to express the cf
of an infinite divisible distribution as in the form given in (1:1). Condi-
tion$ for a discrete dlstnbutlort to be infinitely dmsnble are discussed in
Katti'(1967), Warde and Kam -(1971), and Charg (1989)."' v

‘' “In nof -technical terms what it means is that, if there exist inde-

pendently and identically distiibuted random variables x,;,%,7,....,X,,
! FO . ) ' HE R R '
such that the distribution of x=x,;+x,,+...+x,, is the same as the

given distribution:

1. In agriculture, we usual y start ‘witha large plot of land-ahd:we
subdivide it into n-parts and assume that the yields in the n-parts are inde-
pendent and since they are usually of equal size, they have identical dis-
tribution . Thus, if the distributipn of yield over the entire plot is such as to
permit this subdivision, then it needs to be divisible. The question of infi-
niteness in divisibility is really a theoretical idealization of the fact:that:
the plot is subdivided quite ext2ansively.-Samesis true in biology where a
blood sample taken from a patient:is subdivided in to a number of parts to
test for different diseases. In testing {or reliability of equipment over a
period of time, we take an interval.and subdivide the interval into many
parts.and act as though the disiribution of failure in each part is inde-
pendently and identically: distributed. This again-leads to infinite idivis-
ibility. Hence testing of "infinite divisibility is an interesting g part of statis-
tical inference.

&9
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2 Condition For a Distribution Te Be Infinitely Divisible

Suppose that pgy, py, py,.... are probabilities of 0,1,2,3,..., with

po#0,p#0. Then according to Katti (1967) the necessary and suffi-

cient condition for a distribution to b infinitely divisible is that for each
value of i
1Pl p
m==t-Ym_,~L20 for i=1,2,.. 2.1
B = Po
Note that for a given distribution function, one can numerically compute
anumber of p,/py , to see ifthey are positive and if they are, then one can

use this information along with his algcbraic calculation to generate an
inductive proof of infinitely divisibilty.

The following two classes of infinitcly divisible characteristic functions
are of special interest.

1) Compound-Poisson Distribution: A distribution with characteristics
function(cf) of the form
¢(,)=e“8(’)‘” , A>0 (2.2)

in which g(t) is also a cf, is alweys infinitely divisible. This is also
known as Poisson-stopped-sum distribution. They arise as the distribu-
tion of the sum of a Poisson number of independently and identically
distributed random variables with cf Because of their infinite divisibility
these distributions have very great jmportance in discrete distribution
theory. They are known by different names. Feller (1943) used the term
generalized Poisson, Galliher et al. (1959) and Kemp (1967) called
them stuttermg Poisson. The term compound Poisson was used by Fel-
ler (1950,1957, 1968) and Lloyd (1980).

i) Compoﬁnd~geometric Distribution: A distribution with ¢f of the form
(1) = S — '
A+l-gt) r 4>0 (2.3)

in which g(t) is also a cf is always infinitely divisible.

It is well known that all infinit:ly divisible (inf. div.) distributions

i
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are generated by a stochastic processes, more specifically by processes
with stationary independent sncrements There 1s some applied processes,
however, that give nise to classes of infinitely divisible distributions
Certain families of probabil ty distribution functions maintain their infi-
nitely divisibility under repeated mixing and convolution Godambe and
Patil (1975) consider a mixture of Poisson distributions where the mixing
distributions has non-negative support The importance of the property of
infinite divisibility in modeling was stressed by Steutel (1973,1983); see
also the monograph by Steutel (1970) Pillai (1990), Pillai et al (1990,1994).
Some properties of infinitelv divisible discrete distributions are given
by Johnson, et al (1992).

w ot will turn out that all infinitely divisible distributions are limits of
compound Poisson distributions. There is a number of a number of meth-
ods to construct new infinite divisible distributions from given onc.glghe
best known are convolution and compounding. A general compounding
theorem is due to Feller (1957)

3"Geometric Infinite Divisibility

" According to Klebancv (1984) arandom variable X is said to b of
'ge’ometricall)} infinitely divisible (gid) if there exists an independently
’idéntically distributed 'séquence of random variables X,‘P‘) ‘ j‘=l,2,-—--Np

such that forany "pe (O l)

Uy us n
X - ZJ,X.[

. Cd
whereit PN =k)=p(1-p)*' k= 1,2,.....and X, N_and-. ;(Hzxareindependent

‘. oot v I ! i : | AT

% stands for equality of distributions. The, gcometrically infinitely divis-

=

'ible distributions form a sul-class of infinitely divisible distributions! A
riore detailed description of geometrically infinitely divisible random
variable is based on the fact that, a random variable Y with cf f{t) is
geometrically infinitely divisible if and only if

4(0) = cxp{l -—) i, an mfinitely divisible characteristic function.

f()[l U i ",.. L‘ i iy Ly

JInfinitely. divxslble discrete distributions with pgf's of the form!

boaaa
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_ (- w)g(n)
| Gl) = g O<w<]l
G.1)
, [ 0o
@
G(’)—z)‘:l—_—g&—) , @>0
(3.2)

respectively, were studied by Klebancv, Maniya and Melamed (1984),
Steutel (1990) under the name geometrically infinitely divisible distribu-
tions. In the aboyve two forms (3.1) AND.(3.2),.g(t) is the pgf of the com- .
ponent distribution. It is very important to note that the resultant distribu-
tion is always infinitely divisible no ma ter whether the component distri-
bution is infinitely divisible or not.

Here, in this paper, taking pgf of Poisson, Poisson-Lindley, and
negative binomial distributions, as the component distribution the above
two forms of geometric infinitely divis:bility have been studied. Further,
the recurrence relations for probabilitis and factorial moments are also
investigated. The problems of estimation and the fitting of the distribu-
tions have‘also beeri considered. ! o

Poisson Distribution

A random variable x is said to follow Poisson distribution, 1f it
assumes only non negative values of x having the following probabxhty
function J . v 5

{
i

L gmRgkr ’
P(x k)— i . k=0,1,2, .., ' 1>0. " (3.3)

with pgf g(t)= el(f—l) ,where A isthe enly parameter of the distribution.

The distribution is,a power series distribution with infinite non-negative
integer support. It belongs to the exponential family of distributions.
Poisson (1837) published the derivation of the distribtition by consider-
ing the limiting forms of the binomial distribution, which bears his name.

1

"y N oy

Negatwe-Bmomml Distribution

P . . . . . . . .
A random variable x is said to follow Negative-binomial distribu-

tion with parameters k and p if its probability mass function is given by
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P(X=x)= (k+x—lr)pkq—k> x=0,12,...
(3.49)
where 0<p<l, k=123.... It has the pgfg (t) = (1-q)* (1-qt)*
0<t<l and ptq=l.

Poisson-Lindley Distribution

Poisson-Lindley is a one parameter well known compound Poisson
distribution, which has wide applications to the thcory of accident proneness.

Lindley (1958) derived a distribution known as Lindley distribu-
tion based on Baye's theorem. Sankaran {(1970) generalized Lindley dis-
tribution by mixing with Poisson distribution which is known as Poisson-
Lindley distribution. The pgf of Poisson-Lindley distribution obtained
by compounding the Poisson distribution with one due to Lindley. may be
defined as

L (0+2-2)?
gO):(9+1x9+1—@3’
The Probability recurrence relation may be expressed as
| IP, @ +3+7)

g>0 (3.5)

Fi= , Jor
LM T G2 720 (3.6)
6% +2)
where =g

i ‘(8 +1)L\‘m i
‘1"?45~V\.‘L1)‘;9‘|

= 042 Lot h482+66+2

. B(B+1) and L g (g+1) \';‘

denote respectively’ thef meéah 'and” the' -variance of the: distribution.:
The' patameter of' the distributivh is' estimated as below

5= ~(/f—1)+\/(ﬂ—l)z+8u
o 2,u .
re,membermg 6 to be polsitnve Sez Sankaran (1970). This distribution
1

was studied by Sankaran (1970) with applicdtions to errors and acci-
dents. It, 15 a special case of Bhattdcharya s (1966) more complicated

(‘\1/

7
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mixed Poisson distribution.

4 Properties Of Poisson Mixing Infin:tely Divisible Distribution

a) The pgfof Poisson mixing infinite divisible distribution derived from
model (3.1) will be obtained as

(1 __a))e/‘@—))
Its probability recurrence relation
~A r+l J
e A1 -0+ Pw) r AF
Pr+1 — Y + wEl K , 120 4.2)

may be derived by expanding the pgf («.1) and equating the coefficients
of t' on both sides, where

(I- a))e"’q'

= 1

|- we
Now, puttingt = 0, 1, 2, ... respectivel / in equation (4.2 ), we have

P
P] :A'PO{I+-£9—Q }1

l-w
l afp
& -}\P'{ 2 " 1w }’
P AR
. = — - t
P P A 2R [ etc.

Factorial moments recurrence relation

b o

reo o r ) Fiad i
= Z[ ]* ot . (43)

(r+1) l-w =l r-—-g+1 J l-w

may be derived from the factorial moment generating function (fmgf)

: A .
corresponding to the pgf (4.1), where Koy =725 The higher other
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factorial moments may be obtiined by putting r = 1,2, 3 etc. in (4.3)
respectively as
Moy =By {d+20 Koo }

3
= ) — 2 3
Mo Z40H ) LR F 5 A, H AT E Al

A .
where mean pu = 5 variance = pu {(A+1) + R w -1) } .

Estimation Of Parameters

For the Poisson mixing inf. dist. (4.1), using the first two central
moments the parameters are estiniated as

ey
w =
y7i
2
o
A= utl-—

7
where pu and o? are the mean and variance of the distribution (4.1).

b) The pgf of Poisson mixing infinite divisible distribution derived
from model (3.2), will be given by

173)
T e << 4
) Gi(t) .,(o+1:¢f("l) , for 0<e<l, 21-0. (4.4)

P R

Its Probability recurrence relation
¢ [
! -

[EY Al (
Atlpro
= F Sp v Zop.
PrH 3{:((%-1)'. =1 ! s

(4.5)

may be obtained by expanding (4 4) with respect to 't' and equating the
coefficients of 'tr' oni both sides, where

Lo
w

P-: I
0T
w+l—e"
)
e x
and £y =y
a)+ll-—{e )

5
) A

L
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Putting r = 1,2, ... respectively, in the equation (4.5) the higher order
probabilities may be obtained as

P, = ARP,
I P
= AP, —+e -
P2 }{2 ~ a)}’

{ 2
pln_ 2R
3 R12D,

Similarly, the factorial moments recurrence relation

0

‘P

r+lrf r )4 A+l \
Hesy © © j{;][j"ljj Hir-y+1y + o (4.6)

may be obtained from the fmgf of the derived distribution (4.4), where

A

Ky ™ o -

Hence, the higher order factorial moments may be obtained putting r = 1,
2, 3 respectively in the equation (4.6) as

ey ™ Koy (A 21,
_ 2 '
By ™ #a){/‘ + 34y + *ﬂm}

3 2 3
Hey™ 4#(1){/1(3) + ‘27/1/1(2) + A ﬂ91)} + A [

A
mean #=—, and
w
variance g2 = y(1+ u+ A1)

Estimation of Parameters

Using the first two moments, the parameters w and A of the distri-
bution (4.4) may be estimated as

0= ol - pu—u?
= 2
M
o2
A= ——u-l
7
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L (1- ) (1+0+1)
"0 T e -wstir0-1)’

(5.3)

Differentiating (5.3) w.r.t. 't and equating the coefficients of t/r' on both
sides, we get the factorial moment recurrence relation as

(r+ DI{20(1+ ) ~ w8} 11y — (14 0) 1))

Hrst) = 140620 -0) ) (5.4)
_(9+2)
where Hny = 00+ ) l-a) -

Putting r=1,2,3,---, respectively in equation (5.4) we have

\ Log ~
202608 + 1) ~ 087 by ~ 26 + 1)

M2y =
@) (@ +1)(1 - )8 !
206+ D) =00 ) - 6(0 + Dy
Hizy =
@ (6+1)(1- )8
12000 +1) = 00 Yy = 1208 + Dy
sy = -

6 +1D)(1 - w)6*

where 4(;; denotes the v order factorial morent of the distribution.

Mean and variance of the distribution may be given as

(& +2)1
K= 0+ 1801 ww) 13

(5.5)

204 +30% 1t ~2w0u+6% -2
1+ )02 - w)

2=

and o© respectively. (5.6)

!
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It is noted that the mean is less than the variance o2 =Cu+D, when C
Ds 0,
where

_{20+36° - 2w6%)

C i
(1+6)(1 - w)6?

and D= (62-2)(1+0)1-w)0?

Estimation of Parameters
" The parameter of the distfibutinn (5.1) ¢dn be expressed as

_ . 0+2)
@ = (1+6)6u >

-r

from the equation (5.5) of the d'stribution (5.1)
Similarly the parameter of th. distribution (5.1) can be expressed in
terms of 0, using the equation (5.6)

(5.7)

AG* + BO+2
2/182

(5.8)

w =

2 2
o o

where A= 3#”“——',3:2[/1‘ J
H H

Eliminating o from equations (5.7) and (5.8), the function of 6 may be
obtained as '

L Re)= 6362 20- 2 (5.9)
where T=p+l-
| H
Now parameter 0 can be estimzeted by using Newton-Raphson metrod
‘f A,
041 =6, '“‘j}‘,‘(—er—)‘, . for r=172,--- )
r

by selecting an appropriate guess values of 8, ic. 0, .
When 0 i1s known, the parametei’ w of the distribution (5.1) m est:
mated using either mean or mean and variance of the distribu:

Therefore ®, may be estimatéd either by
L _160+0)u-0+2)) _
(6+1D)8u
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o wz{9(2+3y+92—2—0(1+0)52}
2u6% —0(1+9)5°

(5.12)
where g and o?denote the mean and variance of the distribution.

b) The pgfof Poisson-Lindle:’ distribution derived from the model
(3.2) may be given as

@+ D@ +1-1)’
(14 w0 e DO +1-0)2 = (0 +2-1)8*

G(t)= ,0>0,0>0 (5.13)

Differentiating (5.13) w.r.t. 't" and equating the coefficients of t" on both

sides the 1ccusicnce relation for probabilities may be obtained as
PR RV D202 P - (w+ 10+ )P, g S 14
a (w1 DG +1)° 020 +2) - (5.14)
w8 +1)°
where Co= ,

1 LI

7 (i 0+ -6%0+2)

1
<

(200 O+ 1)? =02} Py = 200(0 + 1)?

3 ="
1 (w+D)@+1)}-0%@+2) ’
} e ‘: i : ot !
. 200 DO+ -0H R — (@ + DO+ )P + 00 +1)
n -~
" (W+D(@+1)° =020 +2)

Putting  r—2:3 - respeci vely in the equation (5.14) we have
) R §
lf }

e o 1) —0%) Py — (w+ 1O +1)P
(e Ll)({)}+l)3 ~9%(0 +2) :

ot

e I AT oo i
12(w+1)(8 + 1)’ —62}}93 —(@+ DO +1)P,

Do
4 ‘lg'a)'_*_ 1!)(0+1")3’_‘02(0'+/2)‘ - , CtC.

§
|

00

P
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The fmgf of the distribution (5.13) may be written as

(8 + 148 1)
(0 +D(1+0)0-1)2 -0*1+0-1)°

m (t)=

(5.15)
The factorial moments recurrence relation may be obtained by differenti-
ating (5.15) w.r.t. 't and equating the coefficients of t/r' on both sides,

(r+DQ20(@+1)O+1) =8 Y gy~ r(@+ DO+ g,

HMra) T Ot , > 1 (5.16)
Ly = @+2)
where (1) ———_—(09(1+9) ,

220w + 18 +1)~8% ) 11yy - 2(0 +1)
4 6+ Dewb?

Putting r=2,3,---, respectively in ¢-quation (5.16) we have

3(20(e + 1)@ +1) = 6%}y ~ 6(w + (O + D g1y
(6+Dwb

Hi3y =

420(co + 10 +1) - 6%} p13) -~ 12 + 1O + 1) 12
(@ +Dwd’

etc.

Hay =

b

Hence, the mean and variance of the distribution

__(6+2)
A= 0+ )ow

(5.17)

g2 Awlu(@+ 1)+ Eu(0+2) + 6% -2
w(0 +1)6?

and , respectively (5.18)

Estimation‘of Parameters

From equation (5.17) the parameter  can be expressed as

G+2

0)=-9—(—§+—1)Z’ (519)
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Again from equation (5.18) the parameter can be expressed as

0%+ 20u + 0% =2
T 00ct -du)@+1)

W

(5.20)
Eliminating  from (5.19) and (5.20), the function of 6 may be ob-
tained as

f6) = AB? + BO +C, (5.21)

}

The parameter 8 is estiniated as

_—pxBi-d4C

24

0 , assuming 6 to be positive,

where g=o?— 2~y B= 2(s? -y -2p) , and C=-6 p.

Hence, w may be estimated cither in terms of mean or in terms of mean
and variance respectively as

1

(0 +2) uA(G+2)+6% =2
OF 406+ 07 0o 1)@ - du)

v

1.6 Properties Of Negative-Zinomial Mixing Inf. Div. Distribution

2
a) The pgfof Negative Binomial mixing Infinitely divisible distribution
derived from equation (3.1) will be given by
_ s n 1. N
l—w(l~a)' 1 ~ar)™"

, wher w>0, a>0, (6.1)

Probability rccurrence relation

' f"'/*'}P

/},rZO (6.2)

Po=T {”"C,Hd’” (I-w+dR)t @Y "™ C,_ a

poo b =1
may be obtained by expanding (6.1) the pgf of negative binomial mixing
distribution and equating the coéf ;(c,ignts of tr on both sides,

where R=>0-w)l; |
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: (1-a)"
I =t
and 1 l-w(l-a)
Putting , r=0, 1,2, .. respecsively, in equation (6.2),we have
)
Pl = naPO I+ (UPO s
(I-w)
Py (n-1
T5) =apl{;;“ 5 ‘}: efc.

Factorial moments recurrence relation
’ =K br+l(n+rC )+w§r: (37+1‘—jC )bf‘—j-{-l&
Hrel) = A r+l Z r—y+l L >1 (6.3)

_{(r+ )
where o)

may be derived from fmgf corre;ponding to the pgf (6.1),

a
where b= (I-a) °

Hence the first three factorial moments of the distribution (6.1) may be
written as

nb
=

[1(2) = (ﬂ + I)bﬂ(]) + 20)/.1(!)2

Hiy = bz(n +D(n+ 2)p1yy + 6.00(n + D,u(])z + 6(02;1(,)3

nb
where Mean H= —(T——as (6.4)
and Variance ot =Qu-) (n+Dbu+u (6.5)

Estimation of Parameters

{
Using the first three facto: ial moments of negative binomial mix-
ing inf. div distribution (6.1) we estimate the parameters n, a and o as
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/\J—2Nz
n=—,
M~-N*
_x?
p MoK
pX
M - 2N?
=]
;X
) fu’~1\"2
and a=

r 3 » 2 .
py M- N

2

\Vriting M =,U(3),U(l) —‘(:'/'.4'(]) (A + ,U(])) y

and N = IU(}'_) - 2,112(5) ,

Where ptis the mean of the distribution.

b) The pgfof Negative Binomial mixing Infinitely divisible distribution
derived from equztion (.5 2 will be given by
G = n 0 <w<l (6.6)

w+1-(=c)'(1-cs)

Probability Recurrence r=latio:

_ 7 ) ntr gl < MAr= ) r-Jj+lp
Py =Ty "G 0y 0 LT e T (6.7)

i J
may be obtaind by exprzadag & £) the pgf of negative binomial mixing
distribution and equating m; cocflicients of tr on both sides, where

where 15 = e e -

and

Putting =0, 1, 2, ... :s-,_;-.?;ct,n;}}.;y_ in{6.7), the higher order probabilities
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where N = My~ 2,112(1) ,
f

O= /"{/1(1) - /\’;1(2) ,

and M= g3y - pay(N +319))

Goodness of fit

One of the problems in fitting distributions is that of the param=
eters. Of all the procedures of estimating the parameters, the method of
moments 1s perhaps the oldest and the siniplest. In many cases it leads to
tractable operations. The method of maxiinum likelihood is considered to
be more accurate for fitting a probability «listribution on given data, but it
involves much more computational work than is required by the method
of moments. It is mainly from this reasor, moment estimators are used.

Therefore, using the method of moments we estimate the param-
eters and of Poisson mixing inf. div. «listribution and in case of the
negative-binomial -mixing inf. div. distribution we used the first three
factorial moments for estimating the parameters a, w and n, for each of
the above two forms under (3.1) and (3.2).

In this investigation the parameter ¢ of generalized Poisson-Lindley
distribution is estimated by Newton-Raohson method, whereas the pa-
rameter w is estimated by the method of moments. The Negative-bino-
mial, the Poisson and the Poisson-Lindley distributions are commonly
used in ecological and biological probl:ms. Therefore we consider the
numerical data of Haemocytometer Counts of Yeast Cells and the data of
counts of European red mites on appie l2aves for our comparison.

The distributions (4.1) and (4.4) hive been fitted to some available
data as shown in Table 1 and 2. It is clea that there is some improvement,
however small it fnz;y be, in fitting these distributions over the other dis-
tributions, considered earlier. The fitting of these distributions as indi-
cated here may be used in other situations also. In table 3 we consider the
data on the Pyrausta nubilalis,'to which generalized Poisson distribution
was fitted by Jain'(1975). It is observed that generalized Poisson-Lindley
distributions (5.1) and (5.13) give better fit. The Distribution of corn bor-
ers is considered in table 4, to which the Negative- Binomial and the
Neyman's type A distributions were fitted by Bliss and-Fisher (1953). It
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will be seen that the data agrec excellently with generalized Poisson-
Lindley fit. The generalized Poisson-Lindiey distributions are also
fitted in table 5, to some data collectcd by P. Garman (see Bliss et
al,1953) and the fitting is found to be satisfactory.

We consider the numerical data of Table 2, Haemocytometer
Counts of Yeast Cells, where the expected freciencies match satisfactorily
with those computed by distribution (6.1 the:: ihe Hermite distribution
(Kemp and Kemp), and in case of the count. o European red mites on
apple leaves in table 5, is also good filled by tac distribution (6.1).
' !

TABLE 1: OBSERVED AND FI7TED PISTRIBUTIONS
(4.1) AND (6.1)

(Data from the paper by Bcall 2nd Rescia)

,),\; o l o . Fltted ) CFit :u l . ‘ ; .
No. of . Observed chtnbutmn (4.1 Distr .iu;mu{'v E) Pascal- Poisson
Thsects | ‘frequéncy | A72=0.1403" n™=1 00458

®*=0.8089" " ' |'a*=09724," " o =1 as2

e SRR CE TR R m/\_o.(}zxnl i TS T I

PN N e o N ERETR AR T “1,!0.: t. dvod vt

o 33 ] 8r00- - e 39t ! o) 32,054 33450
MR 124 T aget ol {33 4113065t 134
g2 1o 6 6.05 ‘ . 590 5.87 5.86
3 3 2.69 2.52 2.25 3.34
4 ] 0.99 1.08 1.08 0.88
5 ] 0.41 046 0.83 | 1.13
Total 56 5600 ¢+ 1 56.00 56.00 [56.00
22 f 08824 ) 106389 193 10.08
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TABLE 2: OBSERVED AND FITTED DISTRIBUTIONS
(4.4) AND (6.1)
(Haemocytometer Counts of Yeast Cells)

Fitted Fitted
No. of | Observed | Distribution Hermite Distribution (6.1)
(4.4) Distribution
Insccts{ frequency| A™=0.4932 (Kemp and Kemp) n"=2.7463
0"=0.2774 ' a"=0.2202
0”=0.8799
0 213 212.51 213.12 214.77
I 128 126.18 122.91 121.52
2 37 43.81 46.71 45.39
3 18 12.63 13.3] 13.74
4 3 3.50 3.16 3.58
5 1 0.97 0.64 0.81
6 0 0.27 0.15 0.05
Total 400 400.00 400.00 400.00
2 2.3201 3.8825 2.7136

Table-3: OBSERVED AND FITTED POISSON-LINDLEY

Pyrausta nubilslis in 1937 (data by Beall and Rescia 1940)

MIXING DISTRIBUTIONS (5.1) AND (5.13)

]

No.of | Observed | GPL1(5.1) | GPL2(5.13){ Poisson-Lindlcy, Gencralizcdf

insects | w"=.5276 mf\=0.112.3 (By Sankaran, | Poisson
. 1970) ( by

| 87=3.4556f 07=12.74 07=1.8082 Jain ,1975)
0 33: 31.86 33.10 31.49 32.46
] 12, 13.84 ,12.49 14.16 13.45
2 6. 5.92 5.50 6.09 5.60
3 3 2.52 - 2.49 2.54 2.42
4 ] 1.06 1.13 1.04 1.08
> 5 1 080 | 1.29 0.42 0.97
Total 56: 56.00 56.00 56.00 56.00
Y2 03743 | 0.0667 0.6532 0.25
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Table-4: OBSERVED AND FITTED POISSON-LINDLEY

MIXING DISTRIBUTIONS

Corn Borers | data of Beall 1940)

(5.1) AND (5.13)

No of | Observed] GPLI(5 1)} GI L2(5 13){Poisson-lindley Bhss et al (1953)
Insects Sankaran, Negative| Neyman-
1970 Binonuaj type-A
07=3 4556} 0/=6 64 07=1 0096
0”=0 7611} ©"=0 1148
0 43 48 05 49 11 4536 443 | 498
] 35 29 04 24 83 3007 311 233
2 17 1736 1530 1870 191 189
3 11 10 35 984 1116 112 123
4 5 616 638 648 64 73
5 4 367 414 368 36 41
6 1 218 269 206 20 22
7 2 130 175 I 14 11 11
8 2 189 114 62 12 11
f ] T s i ! H
Total 120 120 00 129 00 12000 120 00 {120 00
L2 17289 56031 1 7251
I : f Ly | !
fTable-Sl: OBSERVED AND FITTED PO:SS5ON-LINDLEY \

J

MIXTMNG DISTRIBUTIONS
Count of the number of European red imtes on apple leaves

(5.1) AND (5.13), , |

(data of Blisset al 1953)

No of { 'Leaves L;ﬂ (s P' GPL2(5 13){ Poisson -lindley § Gen Negativg fitted
mitcs | observed| 0 = 397? 0°=8 58 (By Sanhaiin Bingmial(by dist (6 1)
Per leaf] | i 1970) Jain and a"= 8902
=01 \17 o™=0 1022} §"=1798 Consul, '} w=1385
‘ (1971) n"=1 0219
O L R N I I X 6867 |
r i 38 f wes l 3335 | (38 3398 13783
2 17 ZiC4 i 1870 24 7 1980 20 47
3 10 o9 1084 11 1159 1097
4 i 9 3730673 {1 ste Y 6397 583
S 3 292 369 | 290 | 355 307
6 2 t47 10 215 P 14 g0 frys2t
7 | 74 {noi2e 2 S B2 79
8 {- 0 ZANR B & 24 39 41
Total '} 150 00| ‘150 ¢0 4 15000 | * 15000 ** | ' 15000 | 15000
b P atuedtl ez U soset TN dor [o4ni8

¥
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SOME PROPERTIES OF POISSON MIXING
INFINITELY DIVISIIBLE DISTRIBUTIONS

M. Borah and R. A. Begum!

Abstract

Elementary infinitely divisible distributions which are formulated on the
basis of simple models seem to be inadequate to describe the situations which may
occur in a number of phenomena. Ir the last few years a number of various
infinitely divisible distributions have Leen derived. In this paper three forms of
infinitely divisible discrete distributions have been studied. The recurrence relations
for their probabilities and factorial mom.ents are investigated. Further, the recurrence
relations for partial derivatives of the probabilities with respect to its parameters
are also investigated which may facilitate the calculation of the asymptotic covariance
matrix of maximum likelihood estimators. As the method of maximum likelihood
will be very cumbersome, some other adhoc methods have been also used to
estimate the parameters. A few sets of reported data have been considered for the
fitting of the distributions, and the fits are compared with that obtained with other

distributions.

Key words : Infinitely divisible distribution, Recurrence relation, Covariance matrix,
Factorial moments.

1. INTRODUCTION

The theory of infinitely divisible disributions developed primarily during the period
from 1920 to 1950, has played a very important role in the solution of limit problems for
sums of independent random variables. A 1ull account of this theory and its applications as
it had been developed by the late 40’s were presented in the monographs of Levy {1937),
Gnedenko and Kolmogorov (1968), and Loeve (1960). In the last few years research in this
field has been carried out along many line:. Numerous new results have been obtained and
entirely new applications have been founi.

A random variable is said to be infinitely divisible if it has a characteristic function
(cf). ¢(t) that can be represented for every positive integer n as the nth power of some cf

o (t)
oft) = (¢ (Wi (1.1)

Department of Mathematical Sciences, Tezpur University, Tezpur-784001, Assam
!Department of Statistics., Darrang Colleje, Tezpur, Assam
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It is well known that all infinitely divisible distiibutions are generated by stochastic processes,
more specifically by processes with stationar, independent increments. There is a number
of methods to construct new infinitely diviiible distributions from given ones. The best
known are convolution and compounding. A general compounding theorem is due to Feller
(1957) There are some applied processes ho>wever, which give rise to classes of infinitely
divisible distributions. Certain families of probability distribution functions maintain their
infinite divisibility under repeated mixing ani convolution.

Godambe and Patil (1975) considered a mixture of Poisson distributions where the
mixing distributions have non-negative support. The importance of the property of infinite
divisibility in modelling was stressed by Steutz] (1983); see also the monograph by Steutel
(1970). Infinitely divisible discrete distributions with pgf's of the forms

_ (1= w) gft)
Gt = pqn 0 <@ <! (1.2)
Gl) = — (19(?&)) o @ >0 (1.3)
: W

were studied by Steutel (1990) under the nar e geometrically infinitely divisible distributions.
Conditions for discrete distributions to be infiaitely divisible were discussed by Katti (1967),
Warde and Katti {1971), and Chang (1989)

Here taking gft) equal to the p.g.f. of i>cisson distributions in the above three forms
in the equations (1.2),(1.3), and (1.4) respectively, three infinitely divisible distributions have
been derived. Further, the recurrence relations for probabilities and factorial moments of
the newly derived distributions are investigated. The problem of estimation and the fitting
of the distributions have also been considered.

2. RECURRENCE RELATIONS FOR PROBABILITIES

(a) The pgf of Poisson mixing infinite divisible: distribution derived from the first form (1.2)
will be given by

(1- ®) M-

o e @ >0, A >0, (2.1)

Glt) =

Probability recurrence relation

P = e*/(1- e A+ (1~w+P,0)/+1) +o 5-; NP/ (2.2)

r—+1

may be derived by expanding the paf G(t) of equation (2.1) wrt't' and equating the
coefficients of t" on both sides,
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where, P, =(1-0)e*/Al - we?),
P, = AP {1+ ® P /1 - w)}.
P, = AP {1/2 + @ P /(1 - w)}.
P, = AP,{P,/AP,~ AP /12P,}.
Factorial moments recurrence relation may be derived from the factorial moment generating
function (f.m.g.f) corresponding to th_e p.g.f.{2.1) which will be given by
e, y= 0fr+1)/(1- o) ’2_:1 (ot BATHA/(1- @), (2.3)

where p,=3/(1- o),

The higher order factorial moments may be obtained by putting r= 1,2,3 etc in (2.3)
respectively as

o= Ky A+2 o),
M= 3om, M+l + A,
I by +3M, /7 2+ A b + Ay
where p, denotes 1™ factorial moment, and we have
MEAN = u = A/(1- w), and

VARIANCE = p{(A+1) + 2o -1) u}.

(b). The pgt of Poisson mixing infinitely divisible distribution derived from the second form
(1.3) will be given by

eua- 1}
k]

¥ (- o

Probability recurrence relation may be derived from the pgf (2.4) by equating the coefficients
of t' on both sides as

= e/ | + (1- @) e*A! {1~ (1- )P} / (r+ 1)~

st
il

O<w<l A0 (2.4)

r+1

(1~ a) ; WP, (2.5)

where P, = e/ ((o/+ (1- @) e}
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Putting r=0,1,2, respectively in equation (2.5), hitther order probabilities may be calculated
as

P, = AP,(1-(1 - w)P,).
P, = AP(1/2- (1 - 0)P,).
P, = AP,P,/AP, - A%P /12P,}.

Similarly factorial moments recurrence relation i1nay be derived from the fmgf of the
distribution as given by

Byoy= OV = (1= @) ) (r+1) Z R} (2.6)

where, = WA

The higher order factorial moments may be obtzined by putting r~1,2,3 etc. respectively
in (2.6) as

My = Ky (2Ry=M

Mgy = SHy A3ty Ko 3Myy, = 2A%,
Heay = Sty A+ 3ty = Shy, = 2A%,
and MEAN = p = oA |

VARIANCE = 1 (u+1-A).

() The pgf of Poisson mixing infinitely divisible: distribution derived from equation (1.4)
will be given by

()]

Provability recurrence relation may be derived from (2 7) by expanding and equating the
coefficients of t* on both sides as )

=

J (2.8)

r=+10

p

r+l

= e/ {0 +1-e?}A! PO/(rJél)! - (N/jhy P

=1

The higher order probabilities may be obtained by putting r =1, 2, 3 etc. respectively in
(2.7) as

P, = Ae*P? /0.

RY;
(]

AP(1/2 + ¢* Py /o).

Y
|

P,{P,/P, - AP /12P,}
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Similarly the factorial moment recurrence relation may be derived from the factorial moment
generating function (f.m g.f) corresponding to the p g.f. (2.7) as

HMFu+n/m[g;ggwuhmﬁhwﬂ/m, (2 9)
where, p = A/,

Mo = Py (20

Moy = Hyy (A3l + Ry )

R = S lngt (B72A1, + A% J+A% )

and MEAN = p = A/, and

VARIANCE = p (1+p + A).

3. ESTIMATION OF PARAMETERS

(a) Poisson mixing distribution {2.1) with parameters (®, A)

®w = uzu,and A=pnu+1-0c'u

where u and o? denote the mean and the variance of the distribution (2.1)
(b) Poisson mixing distribution {2 4) with parameters (», A)
w=————”—2——~— and A =1+ p-o0%/u
w4 p-o?
where p and ¢? denote the mean and the variance of the distribution (2 4)

(c) Poisson mixing distribution (2.7) with parameters { ®, A)

2 . 2 _
2
A= —pn-1
m

where it and o? denote the mean and the variance of the distribution (2 7)

4. GOODNESS OF FIT

One of the problems in fitting distributions is that of estimation of the parameters
Of all the procedures of estimating the parameters, the method of moments is perhaps the
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oldest and the simplest. In many cases it leads to tractable operations. Whereas the other
methods become computationally compliceted, it is mainly for this reason that, moment
estimators are used. The distributions have been fitted to some available data as shown in
Tables 1, 2 and 3. It is clear that there is some improvement, however small it may be,
in fitting these distributions over the other distributions, considered earlier. The fitting of
these distributions as indicated here many be used in other situations also.

TABLE 1: OBSERVED AND FITTEL POISSON MIXING DISTRIBUTION (2 1)
- (Data from the papzr by Beall and Rescia) '

[ No of ) Fitted Dist. Pascal-Poisson
Insects observations ﬁ = 01403 and Distribution
® = 0.8089 o=1 =2
0 33 31.0G 32.05 33.45
1 12 14.8¢€ 13.65 11.34
2 6 6.05 5.87 5.86
3 3 2.69 2.25 3.34
4 1 0.99 1.08 .88
5 1 041 0.83 1.13
Total 56 56.0C 56.00 56.00
\ 12 0.882t 1.93 0.08 )

TABLE 2: OBSERVED AND FITTED POISSON MIXING DISTRIBUTION (2.4)
(Counts of the number of Eurcpean Red Mites on Apple Leaves)

No of Obs. | Observations |  Fitted Dist. Negative Binomial
A = 0.1638, and distribution
w = 0.8571
0 70 66.79 67.49
1 38 ] 40.17 39.03
2 17 20.87 20.86
3 10 10.75 10.97
4 9 5.76 5.66
5 3 2.95 290
6 2 1.57 1.48
7 1 0.75 0.75
8 0 0.39 0.76
Total 150 150 00 150.00
i X2 2.8640 2.8936 |
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TABLE 3: OBSERVED AND FITTED POISSON MIXING DISTRIBUTION (2.7)
(Haemocytometer Counts of Yeast Cells)

[ No of Obs. Observations AFitted Dist. Hermite
. A = 0.4932 distribution
o = 02774 (Kemp and Kemp)
0 213 212.51 213.12
1 128 . 126.18 12291
2 37 43.81 46.71
3 18 - 1263 13.31
4 3 ] 3.50 5.16
5 1 0.97 0.64
6 0 0.27 0.15
Total 400 400.00 400.00
% x? 2.2301 2.8825 j
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