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Abstract 

STUDIES ON SOLUTION OF EVOLUTION EQUATIONS 

FOR UNPOLARIZED AND POLARIZED HADRON 

STRUCTURE FUNCTIONS 

Abstract 

Deep Inelastic Scattering (DIS) process is one of the basic processes for 

investigating the structure of hadrons. All information about the structure of 

hadrons participating in DIS comes from the hadronic structure functions. The 

structure function, depends on Q2, contains both valence and sea quark 

distributions. It rises with Q2 at small x, where sea quarks dominate, and falls 

with Q2 at large x, where valence quarks dominate. These effects may be 

quantified using the evolution equations, which expresses the evolution of the 

quark and gluon distributions. The gluon distributions of the nucleon cannot be 

extracted directly from the measured structure functions in DIS experiments, 

but can be predicted by using the Quantum Chromo dynamics (QCD) evolution 

equations. 

The most important source of hadrons structure function values, 

amongst various experimental measurements through DIS, are certainly the 

HERA experiments {H1 and ZEUS}. Their latest sets of experimental data 

reached a level of precision very useful for theoretical tests and obtain the well 

known Bjorken scaling violation. The scaling violation implies that parton 

densities inside the proton become Q2 dependent and the resumption of the 

collinear divergences in the framework of perturbative QeD leads to Q2 

evolution equations for these parton densities. These equations, called the 

Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equations, were found 

independently by Gribov-Lipatov in 1972, Altarelli-Parisi and Dokshitzer in 

1977. Due to their very good agreement with experiment and its implications on 

scaling violation, the DGLAP equations are considered as one of the best 



Abstract 

successes of QCD and, more precisely, perturbative QCD. Thus the solutions of 

DGLAP evolution equations are the powerful techniques to obtain the Parton 

Distribution Functions (PDF), hence the hadrons structure function and 

ultimately structure of proton or neutron. 

There are various numerical methods to solve DGLAP evolution 

equations with a good degree of accuracy, but the interest in the analytical 

methods can not be ruled out. Though exact analytic solutions of the DGLAP 

equations are not possible in the entire range of x and Q2, under certain 

conditions analytic solutions are possible which are quite successful as far as 

the HERA small x data are concerned. In recent years, such a scheme in the 

analytic study of the DGLAP equations has been pursued with quite good 

phenomenological success. One of the limitations of these solutions was the non 

uniqueness of the solution. However, by using the method of characteristics to 

solve DGLAP type partial differential equation of two variables (Q2 and x) with 

one initial condition, we can get rid of the ad hoc assumption and obtain a 

unique solution.. In this thesis, unpolarized DGLAP evolution equations are 

solved up to Next-Next-to-Leading Order (NNLO) and polarized DGLAP 

evolution equations are solved up to Next-to-Leading Order (NLO) analytically 

by using method of characteristic and compared our results with various 

experimental data and parameterizations. 

In Chapter 1, we give a brief introduction to the basic building blocks of 

matter, standard model of elementary particles, quantum chromodynemics, 

deep inelastic scattering, small x physics, structure functions, quark parton 

model, evolution equations and about some important research centers and 

experiments. 

In Chapter 2, we discussed about various methods to solve evolution 

equations and their comparative study was done. We briefly discussed about 

the advantages and disadvantages of method of characteristics. In the 

subsequent Chapters we have used method of characteristics to solve both 

unpolarized and polarized DGALP evolution equations to get deuteron, proton, 

11 
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neutron and gluon structure functions at small-x. 

In Chapter 3, we present our solutions of unpolarized DGLAP evolution 

equations for singlet and non-singlet structure functions at small-x in La. The t 

and x-evolutions of deuteron and non-singlet (combination of proton and 

neutron) structure functions, thus obtained, have been compared with NMC 

deuteron data, E-665 data, CLAS Collaboration data and NNPDF Collaboration 

parameterization. 

In Chapter 4, our solutions of unpolarized DGLAP evolution equations 

for singlet and non-singlet structure functions at small-x in NLO are obtained. 

The t and x-evolutions of deuteron and non-singlet structure functions, thus 

obtained, have been compared with NMC deuteron data, E-665 data, CLAS 

Collaboration data and NNPDF Collaboration parameterization. Also these 

results are compared with our La results from Chapter 3. 

In Chapter 5, our solutions of unpolarized DGLAP evolution equations 

for singlet and non-singlet structure functions at smalI-x in NNLO are obtained. 

The t and x-evolutions of deuteron and non-singlet structure functions thus 

obtained have been compared with NMC deuteron data, E-665 data, CLAS 

Collaboration data and NNPDF Collaboration parameterization. Also these 

results are compared with our La and NLO results from Chapter 3 and Chapter 

4 respectively. 

In Chapter 6, our solutions of polarized DGLAP evolution equations for 

singlet and non-Singlet structure functions at small-x in La are obtained. The t 

and x-evolutions of polarized deuteron and non-singlet structure functions, 

thus obtained, have been compared with E-143 at SLAC experimental data, 

SMC and CaMP ASS Collaboration data. 

In Chapter 7, our solutions of polarized DGLAP evolution equations for 

singlet and non-singlet structure functions at small-x in NLO are obtained. The 

t and x-evolutions of polarized deuteron and non-singlet structure functions, 

iii 



Abstract 

thus obtained, have been compared with E-143 at SLAC experimental data, 

SMC and COMPASS Collaboration data. Our NLO results are also compared 

with LO results obtained from Chapter 6. 

In Chapter 8, we present solution of unpolarized DGLAP evolution 

equations for gluon distribution functions at small-x in LO and NLO. The t and 

x-evolutions of unpolarized gluon distribution functions thus obtained have 

been compared with GRV1998 and MRST2004 gluon parameterizations. 

In Chapter 9, we present polarized DGLAP evolution equations for 

gluon distribution functions at small-x in LO and NLO. The t and x-evolutions 

of polarized gluon distribution functions thus obtained have been compared 

with the graph obtained by B. Ziaja with the help of numerical method. 

In Chapter 10, we include the overall conclusion drawn from our work. 

IV 
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unpolarized and polarized gluon distribution function have been obtained up 

td next-to-Ieading order and obtained results have been compared with various 

leading experimental data as well as recent global parameterizations. 

I cannot express in words to offer my gratitude to my research 

supervisor Professor Jayanta Kumar Sarma whose invaluable guidance with 

an expert hand brought me the proper path of knowledge in physics especially 

in High Energy Physics. Without his invaluable assistance in research and 

scientific discussion I could not develop this thesis. His encouragement and 

advice are manifest in this research work. At this moment I am deeply grateful 

to him for his valuable input. 

I never forget to thank Tezpur University for providing me the research 

facility and would like to take the opportunity to thank all administrative staff 

for helping me throughout this research period. With immense pleasure/ I 



would like to express my profound sense of gratitude to all faculty members of 

Physics Department, Tezpur University for their inspiration and 

encouragement during this research work. 

I would like to acknowledge the help I received from Bobby Baidew, 

Maini Mahi and Dr Biren Das who were constant sources of inspiration to me. 

I express my sincere thanks to Dr Anjan Bhatta, Dr Tapan Deka and all the 

faculty members of J. N. College, Boko for contributing their seasoned 

perspectives in this research work. 

I would like to thank all my friends and colleagues of Tezpur University 

specially Sanjeev, Momee, Abu, Upamanyu, Ankur, Sourav, Mayuree, Sovan, 

Nayanmoni, Rathin, Ghanada and Narayan for their company, help and 

goodwill. My warm appreciation goes to Dada Gobinda Baishya, Baidew­

Bhindew Abala Baishya, Lohit Das, Purnima Baishya, Ramesh Das, Mother­

Father (In-law) ]amini Roy, Madan Roy, Bhaskar, Utpal, Shewali, Dalim, 

Ranjan, Pranab, Babu, Baba, Kuhi and a number of friends and well wishers 

who extended their helpful hands in a variety of ways and for their love, 

inspiration and close friendship, I offer my heartiest thanks to all of them. 

Last but not least, I must acknowledge my family members for 

providing communal support and good humor, made this work possible. 

Particularly my beloved wife Anju is the unseen partner in my labour, 

without whose constant encouragement and inspiration, I could not have 

completed this work properly. In the long run, I offer my profound love to my 

little master Nrupal, whose melodious tunes and lovable expressions give me 

immense happiness and refreshment. 

Ranjit Baishya 



STUDIES ON SOLUTION OF EVOLUTION EQUATIONS 

FOR UNPOLARIZED AND POLARIZED HADRON 

STRUCTURE FUNCTIONS 

Contents 

1. Introduction 

1.1 Basic Building Blocks of Matter 

1.2 The Standard Model of Elementary Particles 

1.3 Quantum Chromodynamics and Small-x Physics 

1.4 Deep Inelastic Scattering and Bjorken Scaling 

1.5 Structure Functions 

1.6 Quark Parton Model 

1.7 Evolution Equations 

1.8 Particle Accelerator Centres 

1.9 Phenomenology 

2. Solution of Evolution Equations 

2.1 Brute force method 

2.2 Laguerre polynomial method 

2.3 Mellin transformation method 

2.4 Matrix approach method 

2.5 Taylor Expansion and particular solutions method 

2.6 Regge theory method 

2.7 Method of characteristics 

Part I: Unpolarized Hadron Structure Functions 

3. Unpolarized DGLAP Evolution Equations in Leading Order 

3.1 Theory 

3.2 Results and Discussions 

3.3 Conclusion 

4. Unpolarized DGLAP Evolution Equations in Next-to-Leading Order 

4.1 Theory 

4.2 Results and Discussions 

4.3 Conclusion 

1 

5 

10 

12 

14 

16 

19 

27 

34 

37 

38 

40 

41 

43 

45 

48 

52 
58 
71 

72 

75 

88 



5. Unpolarized DGLAP Evolution Equations in Next-Next-to-Leading Order 

5.1 Theory 90 

5.2 Results and Discussions 93 

5.3 Conclusion 

Part II: Polarized Hadron Structure Functions 

6. Polarized DGLAP Evolution Equations in Leading Order 

6.1 Theory 

6.2 Results and Discussions 

6.3 Conclusion 

7. Polarized DGLAP Evolution Equations in Next-to-Leading Order 

7.1 Theory 

7.2 Results and Discussions 

7.3 Conclusion 

Part III: Gluon Distribution Functions 

8. Unpolarized Gluon Distribution Functions in Leading and 

Next-to-Leading Order 

8.1 Theory 

8.2 Results and Discussions 

8.3 Conclusion 

9. Polarized Gluon Distribution Functions in Leading and 

Next-to-Leading Order 

9.1 Theory 

9.2 Results and Discussions 

9.3 Conclusion 

10. Conclusions 

Bibliography 

Appendices 

Publications 

Addenda 

II 

102 

104 

110 

119 

120 

124 

130 

132 

135 

144 

146 

148 

152 

153 

155 

164 

172 



Introduction 

Chapter 1 

Introduction 

1.1 Basic Building Blocks of Matter 

The desire to identify the smallest constituents of matter is indeed very 

old thought. Since ancient time, people have been fascinated by some questions 

of the ultimate structure of matter e.g. are there fundamental, indivisible 

particles and if so, what are they? How do they behave? How do they group 

together to form the matter that we see? How do they interact with each other? 

According to Hindu mythology, there were five elements - fire, water, air, earth 

and sky. The great Philosopher Aristotle believed that there were just four 

elements - earth, air, fire and water, whose indefinitely large number of 

combinations were accounted for all things (Figure 1.1). In the fifth century 

B.C., a Greek named Empedocles took the ideas of several others before him 

and combined them to say that matter is made up of earth, wind, fire, water 

and that there are two forces - Love and Strife, that govern the way they grow 

and act. More scientifically, he was saying that matter is made of smaller 

substances that interact with each other through repulsion and attraction. 

Democritus, a contemporary of Empedocles, went a step further to say that all 

matter is made of fundamental particles that are indestructible. He called these 

particles as 'Atoms' - meaning indivisible [1]. Gradually the rules of what 

constitutes a satisfactory theory of sub-structure have changed throughout the 

ages, but one seemingly constant demand is that the different elementary 

objects at the substructure level should number at a few. 

1 



Introduction 

Figure 1.1: Aristotle's view of substructure 

Elementary Particle Physics is perhaps the most fundamental of all the 

sciences. The very concept of eleqlentariness conveyed in particle physics, 

means no internal structure or most fundamental building blocks of matter. 

With the passage of time, the concept of elementariness gradually changes. It is 

a relative concept subject to the progress in experimental techniques which can 

probe deeper and deeper in size or equivalently at higher and higher energy 

regime. The first scientific approach to substructure was John Dalton's atomic 

theory, proposed in the year 1809. The growth in the number of different atoms 

till today from Dalton's day, also suggested that the atoms were perhaps not as 

indivisible as Dalton had supposed. The Mandel's classification of atoms also 

pointed to some underlying simplicity of substructure. The final clue was the 

observation made by J J Thompson in 1897 those electrons were constituents of 

many different substances. In 1911, Rutherford's (l - particle experiment and in 

1913 Neil Bohr's bold hypothesis of angular momentum quantization in an 

allowed orbit of revolving electron around the nucleus had explained the stable 

2 
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atomic model. After discovery of neutron in 1932 by James Chadwick, the 

neutron - proton picture of the nucleus had clearly understood [2, 3, 4]. The 

scenario of basic building blocks of matter is changed as the numbers of 

elementary particles have been discovered day by day. The elementary particles 

that discovered up to 1960 are listed in Table 1.1. 

Spin Symbol Generic name Elementary? 

0 + - 0 K+ K-X,X,X, , ," Scalar mesons No 

e, J..l, v e ' v!l Leptons Yes 
1/2 

p, n, A,~,···· Baryons No 

1 y Photon Yes 

p (D •••• Vector Mesons No , , 

3/2 ~ ++ ~ + ~ 0 ~ - 0;::;' 0 0;::;'- •• 
I , I ,......,......, Baryon No 

Table 1.1: Elementary Particles in 1960 

Our concept on the basic constituents of matter has changed during last 

century after two revolutionary experiments. The first was the Rutherford 

scattering experiment of 1911, bombarding a - particle on the gold atoms. While 

most of them passed through straight, occasionally a few were deflected at very 

large angles. Rutherford scattering experiment showed the atom to consist of a 

hard compact nucleus, surrounded by a cloud of electrons. The nucleus was 

found later to be made up of protons and neutrons. The second experiment was 

the electron-proton scattering experiment of 1968 at the Stanford Linear 

Accelerator Centre. This was essentially a repeat of the Rutherford scattering 

type experiment, but at a much higher energy. It was again clear from the 

pattern of large angle scattering that the proton is itself made up of three 

compact objects called quarks. The proton was found later to be made up of 

two up quarks and one down quark, while the neutron consists of two down 

quarks and one up quark. 

3 
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10- 10 m 

Molecule Atom Nucleus 

10-15 m Less than 10-13 m 

Nucleus N~utron (or proton) Quark 

Figure 1.2: Dimensional representation of building blocks of matter 

The main difference between the Rutherford and the electron-proton 

scattering experiments comes from the fact that, the dimension of the atom is 

typically 1A = 10 -10 m that of the proton is about Hm = 10 -15 m (Figure 1.2). 

The Uncertainty Principle says that, 8.E.8.x ~ ne ~ 0.2 GeV.fm, the smaller the 

distance we want to probe the higher must be the beam energy. Thus probing 

inside the proton (x « Hm) requires a beam energy E » 1 GeV, which is the 

energy acquired by the electron on passing through a giga volts. It is this multi 

giga electron volt acceleration technique that accounts for the half a century gap 

between the two experiments. 

4 



Introduction 

We now, know that the nuclear particles i.e. proton, neutron and mesons, 

which are collectively called hadrons, are all made up of quarks - they are all 

quark atoms. The up and down quarks are the constituents of proton and 

neutron, together with the electron they constitute alI the visible matter around 

us. The heavier quarks and charged leptons all decay into the lighter ones via 

interactions analogous to the muon decay. So they are not freely occurring in 

nature. But they can be produced in laboratory or cosmic ray experiments. The 

muon and the strange quark were discovered in cosmic ray experiments in the 

late forties, the latter in the form of K-meson. Next to come were the neutrinos. 

Although, practically massless and stable; the neutrinos are hard to detect 

because they interact only weakly with matter. The electron neutrino was 

discovered in atomic reactor experiment in 1956, for which Reines got the Nobel 

Prize in 1995. The muon neutrino was discovered in the Brookhaven proton 

synchrotron in 1962, for which Lederman and Steinberger got the Nobel Prize 

in 1988. The first cosmic ray observation of neutrino came in 1965, when the 

muon neutrino was detected in the Kolar Gold Field experiment. The rest of the 

particles have all been discovered during the last 40 years, at the experiments 

performed by the electron-positron and the antiproton-proton colliders. The 

quick successions of discoveries mainly at the e-- e+ colliders were charm 

quark (1974), Tau lepton (1975), bottom quark (1977) and the evidence for 

gluons, the carrier of the force between quarks, came out in 1978 from an 

electron - positron machine, called PETRA, at Hamburg in Germany which is 

able to observe collisions up to 30 GeV. This was followed by the discovery of 

Wand Z bosons (1983) and finally the top quark (1995) at the proton antiproton 

colliders [5,6, 7]. 

1.2 The Standard Model of Elementary Particles 

As per our present understanding, the basic constituents of matter are a 

dozen of spin half particles (ferrnions) along with their antiparticles. These are 

5 
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the three pairs of leptons like electron, muon, tau and their associated neutrinos 

and three pairs of quarks e.g. down - up, strange - charm and bottom - top. 

Apart from the electric charge the quarks also possess a new kind of charge 

called colour charge. This is relevant for their strong interaction, which binds 

them together inside the nuclear particles i.e. hadrons. There are two types of 

hadrons - meson and baryon. Quarks observed bound together in pair quark -

antiquark, forming particles called mesons or in threes, forming particles called 

baryons. All quarks and leptons with their rest masses are listed in Table 1.2. 

1 st Generation 2nd Generation 3rd Generation Electric 
Charge 

Electron (e) Muon (/l) Tau ('t ) -1 
m = 0.511 MeV m=105.7Me\:, m=1.777 GeV 

Leptons 
Electron Muon- Tau- Neutrino 

Neutrino (V e) Neutrino (V 11 ) (V 1:) 0 

m< 2.2MeV m < 0.17 MeV m< 15.5 MeV 

Down (d) Strange (s) Bottom (b) I 
--

m = 4.8 MeV m = 104 MeV m=4.2GeV 3 
Quarks 

Up (u) Charm (c) Top (t) 2 
-

m=2.4 MeV m = 1.27 GeV m = 171.2 GeV 3 

Table 1.2: Lepton and Quark family with their rest masses 

Two terms are used in referring to a quark's mass: 'current quark mass' refers to 

the mass of a quark by itself, while 'constituent quark mass' refers to the 

current quark mass plus the mass of the gluon particle field surrounding the 

quark [8]. These masses typically have very different values. Most of a hadron's 

mass comes from the gluons that bind the constituent quarks together, rather 

than from the quarks themselves. While gluons are inherently mass less, they 

6 
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possess energy - more specifically, Quantum Chromodynamics Binding 

Energy (QCBE) - and it is this that contributes so greatly to the overall mass of 

the hadrons. For example, a proton has a mass of approximately 938 MeV, of 

which the rest mass of its three valence quarks only contributes about 10 MeV. , 
much of the remainder can be attributed to the gluons' QCBE [9,10]. 

According to Standard Model, there are four basic interactions among 

these particles - strong, electromagnetic, weak and gravitational. Apart from 

gravitation, which is too weak to have any practical effect on quarks interaction 

but having for massive bodies, the other three are all gauge interactions. They 

are all mediated by spin one particles called gauge bosons, whose interactions 

are completely specified by the corresponding gauge groups. Of these, our 

everyday world is controlled by gravity and electromagnetism (Figure 1.3). The 

strong force binds quarks together and holds hadrons. The weak force is 

responsible for the radioactive decay of unstable nuclei and for interactions of 

neutrinos and other leptons with matter. The intrinsic strengths of the forces 

can be compared relative to the strong force, here considered to have unit 

strength. In these terms, the electromagnetic force has an intrinsic strength of 

(1/137). The weak force is a billion times weaker than the strong force. The 

weakest of them all is the gravitational force. This may seem strange, since it is 

strong enough to hold the massive Earth and planets in orbit around the Sun. 

Forces can be represented in the theory as arising from the exchange of specific 

particles called gauge bosons, the quanta of the force field. Just as photons are 

real i.e. quanta of light and can be radiated when charged particles are 

accelerated, the other gauge bosons can also be created and observed as real 

particles. All the bosons have zero or integer spins. The carriers of the strong 

force are called gluons, that hold quarks together in protons or neutrons and 

also helps form nuclei. The carriers of the weak force come in three forms, and 

are called weak bosons the W +, W - and Zoo The carriers of the gravitational 

field are called gravitons and are unique in having a spin of two. 

7 
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Figure 1.3: Schematic diagram of fundamental forces 

The Standard Model was the great achievement of particle physics of the 

1970' s. It incorporated all that was known at that time and has since then 

successfully predicted the outcome of a large variety of experiments. Today, the 

Standard Model is a well established theory applicable over a wide range of 

conditions and according to total angular momentum 0), the whole numbers of 
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elementary particles is classified into four groups and concept of elementary 

particles is listed in the Table 1.3. [11] 

J Symbol Generic name Observed 

0 H Higgs scalar No 

e, lI, T, V e , V }l , V T 
Leptons Yes 

1/2 
Yes 

li, d, c, s, t, b Quarks 

y Photon Yes 

1 g Gluons(8) Yes 

w+ w- ZO ' , Vector Mesons Yes 

2 G Graviton No 

Table 1.3: Elementary particles in 2009 

The Higgs boson is a massive scalar elementary particle predicted to 

exist by the Standard Model in particle physics. At present there are no known 

fundamental scalar particles in Nature. The Higgs boson is the only Standard 

Model particle that has not yet been observed. It is believed that Higgs boson 

couples strongly to the top quark so it may decay into top- anti top quark pairs. 

Experimental detection of the Higgs boson would help to explain the origin of 

mass in the universe. More specifically, the Higgs boson would explain the 

difference between the mass less photon, which mediates electromagnetism, 

and the massive Wand Z bosons, which mediate the weak force. If the Higgs 

boson exists, it is an integral and pervasive component of the material world. 

The Large Hadron Collider (LHC) at CERN is expected to provide experimental 

evidence either confirming or refuting the Higgs boson's existence. 

9 
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The Higgs mechanism, which gives m.ass to vector bosons, was theorized 

in 1964 by F. Englert and R. Brout [12]. In October of the same year, P. Higgs 

[13] worked from the ideas of P. Anderson also independently by G. Guralnik, 

C. R. Hagen, and T. Kibble [14], who worked out the results by the spring of 

1963 [15]. The three papers written on this discovery by Guralnik, Hagen, 

Kibble, Higgs, Brout, and Englert were each recognized as milestone papers 

during Physical Review Letters 50th anniversary celebration [16]. Steven 

Weinberg and Abdus Salam were the first to apply the Higgs mechanism to the 

electroweak symmetry breaking. The electroweak theory predicts a neutral 

particle whose mass is not far from that of the W and Z bosons. 

1.3 Quantum Chromodynarrucs and small-x Physics 

The strong force is subject to the particles have properties called colour. 

The field theory that describes, this is called Quantum Chromo dynamics (QCD) 

[17] and was first proposed in 1965 by Han, Nambu and Greenberg. This theory 

predicts the existence of the gluon, which is the mediator of the strong force 

between two matter particles. The common model of quark and gluon 

interactions is an SU(3) gauge theory, arbitrarily called 'colour' [18]. According 

to QCD, quarks carry anyone of the colours - red (R), blue (B) or green (G). 

Anti-quarks carry anti-colours - anti-red (cyan - R ), anti-blue (yellow - B ) and 

anti-green (magenta - G). The eight gauge fields associated with the eight SU (3) 

generators are called Gluons and we can label each gluon as follows: 

[
RR RG RB] 

g~ = ~: ~~ ~:. 
Here the upper index is the anti-colour index and denotes the column of the 

matrix and the lower index is the colour index denoting the row of the matrix. 

10 
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Then consider the gluon g~ ~ (~ 1 OJ ° 0, 

° ° 
and quarks are 

It is easy to see that this gluonwillinteractas g~qR =0, g~qG =qR' g~qB =0. 

Or, in other words, the gluon with the anti-green index will only interact with a 

green quark. There will be no interaction with the other quarks. As the quarks 

. are assigned to a triplet of an SU (3) colour group, SU (3) colour symmetry is 

expected to be exactly conserved. The gluons, which mediate the QeD force 

between colour charges, come in eight different colour combinations: RG, RB, 

GR, GB, BR, BG, .Jl/2(RR -GG) and .J1I6(RR + GG - 2BB) i.e. the gluons 

belong to an SU (3) colour octet. The remaining combination of the SU(3) colour 

singlet .J173(RR + GG + BB) does not carry colour and can not mediate between 

colour charges [19-21]. The cancellations of the colour charges of quarks ensure 

that the nuclear particles composed of them are colour neutral. The gluons 

themselves carry colour charge and hence have self-interaction unlike the 

photons, which have no electric charge hence no self-interaction (Figure 1.4). 

e-.~--~--~----

e --+---~-q R-__ --
(a) (b) 

Figure 1.4: (a) Electromagnetic interaction by photon exchange, (b) Strong interaction 
by gluon exchange and flow of colour 

11 



Introduction 

Small-x (the four momentum fraction carried by the struck quark) 

physics is comparably a new and exciting field of lepton-nucleon scattering. 

The behavior of the parton distributions of the hadrons in this small-x region is 

of considerable importance both theoretically and phenomenologically. First, 

the predictions of the rates of various processes at the high energy hadrons 

colliders depend on the parton densities at small-x. According to QCD, at 

small-x and large-Q2 (square of the exchanged four momentum or virtuality of 

photon), a nucleon consists predominantly of gluons and sea quarks. Their 

densities grow rapidly in the limit x ~ 0 leading to possible spatial overlap 

and to interactions between the partons i.e. at small-x, the structure function is 

proportional to the sea quarks density. At large values of Q2, i.e. at small scale 

distance, DIS probes the constituents of the hadron (i.e. quarks), not the hadron 

as a whole. Here, the quarks act as almost free particles and because the 

interactions are relatively weak at those scales, perturbative Quantum 

Chromodynamics (pQCD) techniques can be used for DIS. A typical lower-Q2 

limit, for which pQCD is applicable, is 1 GeV2. 

1.4 Deep Inelastic Scattering and Bjorken Scaling 

The direct evidence for the existence of quarks inside the hadrons and 

the first information on the nature of quark-quark interactions are provided by 

Lepton-nucleon Deep Inelastic Scattering (DIS). The DIS is the process, in which 

constituents of the hadrons are probed, by means of lepton-hadron scattering. 

The interaction is 'Inelastic' when a lepton is knocked out of the proton and the 

proton is broken up. It is called 'Deep' when the proton is probed with a gauge 

boson with small wavelength, resolving small distance scale. Here the lepton 

enters the proton deeply, and knocked out one of the quarks, provided that the 

lepton had sufficient energy. To reach high enough energy, the leptons need to 

be accelerated in enormous particle colliders. The first deep inelastic scattering 

experiments were done in 1968 at the Stanford Linear Accelerator Centre 

(SLAC) in California where electrons of 7 GeV were collided with a hydrogen 
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target. The schematic picture of the neutral current DIS, where neutral bosons 

'Y or Zo are exchanged between the lepton and the quark is shown in Figure 1.5. 

CENTRAL UBRAF\\', T. u. 
'-19 to §'L; ACC. NO ............................ . 

e (k') 
e(k) 

y,Q2 

P(p) 
x.P 

Figure 1.5: Four vector of incoming and outgoing particle in DIS and most commonly 
used variables in DIS kinematics 

In the kinematics of the DIS, the most commonly used variables are: 

• 

• 

• 

• 

Ci =--q2 =(k-k'Y: Square of the exchanged four momentum or 

virtuality of photon. 

2 
X= -q 

2P.q : The Bjorken scaling variable defined as the four 

momentum fraction carried by the struck quark. 

P.q 
Y = P .k : Inelasticity defined as the fraction of the initial lepton 

energy transferred to the boson. 

W
2 = (P+qY : Square of the invariant mass of the hadronic final 

state. 
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These four kinematics variables are not independent, the interaction is 

characterised by only two independent variables x and Q2. Neglecting the 

masses of the electron, Q2, x and yare related through: Q2 = s.x.y, with s the 

centre of mass energy squared of the electron proton system, whereas the mass 

of the hadronic final state, W, is related to x and Q2 through: W2 = Q2 (l-x)/x 

+mp2, where mp is the mass of the proton. In 1969, Bjorken proposed that in the 

limit Q2 ~ 00, W2 ~ 00, x is fixed. At fixed x (scaling variable), the scattering is 

independent of q2. This suggests that the probing 'virtual photon' scatters 

against something point like called parton. The kinematics variables describe 

above, have a limited range of allowed values as 0 < Q2 < S, 0 < x < 1, 0 < y < 1, 

II\, < W <..fs . In DIS, three types of events are distinguished: (i) inclusive events, 

where only the scattered lepton is detected; (ii) semi-inclusive events, where 

apart from the lepton also a hadron is detected; and (iii) exclusive events, where 

all reaction products are identified. 

1.5 Structure Functions 

Hadron structure functions are very useful entities in the study of 

structure of hadrons as well as their interactions. It is a mathematical picture of 

hadron's structure at high energy region. The precise determination of the 

partonic structure of the proton is very important. The parton distributions are 

determined by the values of the structure functions. The determination of 

structure functions and their comparison with experimental results are 

important tests for QeD. 

The unpolarized DIS [191 cross section can be expressed in three 

independent structure functions Fl, F2 and F3: 

(1.1) 

Here a = e2/4rrnc ~ 11137 , is the fine structure constant. These three structure 

functions give information on the number and properties of quark and gluon 
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constituents in the proton. The structure function FI is proportional to the 

transverse component of the cross section, whereas the difference of F2 and FI 

gives the longitudinal part of the cross section. The longitudinal part of the 

cross section is suppressed, because of the spin 1/2 nature of the quark. Omitting 

the longitudinal part of the cross section results in the Callan - Gross Relation: 

2xF( (x)= F2 (x). (1.2) 

Here 

(1.3) 

(1.4) 

Here WI and W2 are dimensionless structure functions, M is the total mass of 

hadron and f. (x) is the probability density of finding the i-th parton with 

fractional momentum x and charge el. The structure function F3, often referred 

to as XF3 contains the parity violating part of the cross section. Since the 

electromagnetic coupling conserves parity, this term can be neglected at low-Q2, 

where photon exchange dominates the cross section. 

Similar to the unpolarized structure functions FI and F2, the polarized 

structures functions gl and g2 contain information on the helicity dependent 

contribution to the DIS cross section. To access these structure functions, a 

polarized target and a polarized beam are needed. Results are obtained by 

measuring the difference in cross section for a parallel or anti-parallel 

orientation of the spins of the struck nucleon and the lepton. A measure for the 

helicity dependent contributions to the cross section is obtained by evaluating 

the asymmetry. This is called a double spin asymmetry. Similarly, in case of a 

single spin asymmetry, either the target or the beam is polarized, while the 

other is unpolarized [22, 23, 24]. The inclusive scattering cross section gives 

access to longitudinally polarized structure function gl' which is the sum of 

helicity distributions for different quark flavours ~qf weighted by the electric 

1" 2 charge e f squared, g( = - L.... ef~q f . 
2 f 
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By determining the double spin asymmetry in semi inclusive DIS for 

hadrons with a different quark composition, the helicity distributions of the 

individual quark flavors can be determined. Whereas transversely polarized 

structure functions g2 has contributions from quark-gluon correlations and 

other higher twist terms which cannot be described perturbatively. The 

contribution of the gluon spin L\G to the nucleon spin can be determined from 

events created in the photon-gluon fusion process, where the virtual photon 

interacts with a gluon from the nucleon by splitting into a quark-antiquark pair. 

1.6 Quark Parton Model 

In 1969, the point like constituents of the nucleon were termed partons 

by Feynman, well before quarks and gluons became established. At high-Q2 the 

electron sees point like objects called partons and makes at elastic electron­

parton scattering. Thus quark parton model is a static model, assuming free 

(non-interacting), and point like partons inside the proton. This assumption is 

confirmed by the notion of asymptotic freedom of non abelian theories: at small 

distance scales the strength of the force between quarks decreases rapidly. It 

has been shown that the quark distributions can be factored off and absorbed in 

universal parton distributions, a procedure known as factorisation. The cross 

section of elastic e-q scattering can be convoluted with the probability of 

finding a quark with momentum fraction between x and x + dx is q(x).dx in the 

proton, where q(x) is the parton densities. The proton is seen as a collection of 

partons and the e-p scattering cross section as an incoherent sum of the 

individual cross sections. Subsequently, these universal parton densities can be 

used in the calculation of cross section of other processes, involving protons. 

The deep inelastic e-p differential cross section in the quark-parton 

model at low-Q2 becomes: 

(1.5) 
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F 2 (X) = L e ~ [ xq (X) + x f (X)], (1.6) 
q 

where eq is the charge of the quark. 

After establishing Bjorken scaling, equations (1.3) and (1.4) become the 

tools for extracting further information. The sum in equation (1.3) runs over the 

charged partons in the proton: 

(1.7) 

where up(x) and up(x) are the probability distributions of u quarks and 

antiquarks within the proton. We have neglected the possibility of a sizable 

presence of charm and heavier quarks inside the proton. The inelastic structure 

functions for neutrons are experimentally accessible by scattering electrons 

from a deuterium target and can de expressed as: 

As the proton and neutron are members of an isospin doublet, their quark 

content is related. There are as many u quarks in a proton as d quarks in a 

neutron and so we can consider as: 

(1.9) 

The quantum numbers of the proton must be exactly those of the uud 

combination of 'valence' quarks i.e. the proton as three constituents or three 

valence quarks uvuvdv accompanied by many quark-antiquark pairs usus/dsds, 

ssssand so on. These are known as 'sea' quarks. As a first approximation, we 

may assume that the three lightest flavor quarks (u/ d, s) occur in the 'sea' with 

roughly the same frequency and momentum distribution, and neglect the 

heavier flavour quark pairs c s Cs and so on. This picture of the proton can be 

summarized as follows: us{x)= Us (x)= ds{x)= ds{x)= Ss (x)= 5s (x)= S{x), 

u(x) = uy{x)+us{x); d(x) = dy{x)+ds{x), (1.10) 

where S(x) is the sea quark distribution common to all quark flavors. 
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( If the proton is ) F2 ( then F 2<P(X) is ) 
3 free quarks 

;:.. 
~ 
~ 

1/3 l' )( 

3 bound quarks 
F2 

~ : ~ 
1/3 1 )( 

F<") ,-
3 valence quarks + sea quarks 

1"/3 1 x 

Figure 1.6: The structure function pictured corresponding to different compositions 
assumed for the proton 

By summing over all contributing partons, we must recover the quantum 

numbers of the proton as: charge =1, baryon no. =1, strangeness no. = O. 

It follows that 

1 1 1 

Hu(x)-TI(x)]dx=2; J[d(x)- d(x)]dx = 1; Hs(x)- s(x)]dx = 0 (1.11) 
o o ... o 

These sum rules express the requirement that the net number of each kind of 

valence quark corresponds to the uud combination of constituents. The sum 

rules are true in any picture where the sea is taken to be made of quark­

antiquark pairs, and so does not affect the quantum numbers of the proton, 

which are exclusively determined by the valence quarks, as expressed in 

equation (1.11). 
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Combining equation (1.10) with equations (1.7) and (1.8), we obtain: 

~ F;P(X)=(~)[4Uv +dJ+(~)S, (1.12) 

~ F~n(x)=G)k + 4dJ(~ )s, (1.13) 

where ± is the sum of e~ over the six sea quark distributions. As gluons create 
3 1 

the qq pairs in the sea, so the number of sea quarks grows logarithmically as 

x ~ O. In Figure 1.6, the proton structure function has pictured corresponding 

to different compositions assumed for the proton. 

1.7 Evolution Equations 

The structure function, depends on Q2, rises with Q2 at small values of x, 

and falls with Q2 at large values of x. The parton being probed may not be an 

'original' constituent, but may arise from the strong interactions within the 

nucleon. The smaller the wavelength of the probe (i.e. the larger the scale Q2) 

the more of such quantum fluctuations can be observed and hence the amount 

of qq pairs and gluons in the partonic 'sea' increases. Although, these sea 

partons carry only a small fraction of the nucleon momentum, their increasing 

number leads to a softening of the valence quark distributions as Q2 increases. 

Thus F2, which contains both valence and sea quark distributions, will rise with 

Q2 at small-x, where sea quarks dominate and fall with Q2 at large-x, where 

valence quarks dominate. We may quantify these effects using the evolution 

equations, which expresses the evolution of the quark and gluon distributions. 

The gluon distributions of the nucleon cannot be extracted directly from the 

measured structure functions in DIS experiments. They mainly are predicted by 

using the QCD evolution equations. 

At very small values of x, it is expected that the number density of 

parton within the hadrons becomes so large that they begin to recombine with 

each other. This phenomenon of parton recombination is also referred to as 

absorptive correction, nonlinear effects and screening, shadowing or unitarity 
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corrections, all leading to saturation. At small-x or large-Q2, the transition of the 

regime described by the linear dynamics, where only the parton emissions are 

considered, is expected for a new regime where the physical processes of 

recombination of parton become important in the parton cascade. In that case, 

the evolution is given by a nonlinear evolution equation. Thus there are mainly 

two types of evolution equations - linear and non-linear evolution equations. 

They are the DGLAP equation (by Dokshitzer, Gribov, Lipatov, Alterelli and 

Parisi) [25-28], the BKFL equation (by Balitsky, Kuraev, Fadin and Lipatov) [29-

31], the GLR equation (by Gribov, Levin and Ryskin) [32-34] and the CCFM 

equation (by Ciafaloni, Catani, Fiorani and Marchesini) [35-38]. In spite of them, 

some other equations are also proposed like the Modified DGLAP equation (by 

Zhu and Ruan) [39-43], the Modified BKFL or BK equation (by Balitsky and 

Kovchegov) [44, 45] and the JIMWLK equation (by Jalilian-Marian, Iancu, 

McLerran, Weigert, Leonidov and Kovner) [46-48] etc. 

i 

High density . 
regIon 

CCFlVI 

Unconventional DGLAP 
lVlodified BFKL 

DGLAP • 

Figure 1.7: Schematic representation of the applicability of various evolution equations 
across the X_Q2 plane 
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The Q2 dependence of structure functions can be calculated by using the 

DGLAP equations and they are successful in describing many experimental 

data. But, as it becomes possible to reach the small-x region by high energy 

accelerators, it is necessary to investigate the details of small-x physics. The 

parton in different nucleons could interact in the nucleus, and the interaction is 

called Parton Recombination (PR). This mechanism is used for explaining 

nuclear shadowing and can be explained by equations like the evolution 

equations proposed by Mueller and Qiu [39 -41]. Since, all stories about small-x 

physics are written by using the QCD evolution equations, there are active field 

of research in modified DGLAP [42, 43] and modified BKFL [49] equations to 

study the small-x region properly. 

Modified DGLAP == DGLAP + shadowing ( - ) + anti-shadowing ( + ), 

Modified BFKL == BFKL + shadowing (-) + anti-shadowing (+). 

Here, the negative shadowing corrections are from the gluon recombination, 

and the suppression to the gluon splitting comes from its inverse process. The 

positive anti-shadowing corrections are the general conclusion of the 

momentum conservation. The anti-shadowing effect always co-exists with the 

shadowing effect in the QCD recombination processes. 

DGLAP 

QeD 
x 

Figure 1.8: Schematic kinematics regions of modified evolution equations 
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1.7.1 DGLAP Evolution Equation 

The DGLAP evolution equations for quark and gluon in Leading Order 

(La) are respectively 

I 
aq~:, t) ~ a;~) J d: [ ~ Pqq (x/y )q,(y, t)+ Pqg(x/Y )g(y, t)], 

x 

(1.14) 

(1.15) 

Here t = In(Q2/ A2) and Pqq, Pqg, Pgg, Pgq are denoting the 'splitting functions'. 

The splitting functions Pij (z) represent the probability of a parton j (quark or 

gluon) emitting a parton i with momentum fraction z of that of the parent 

parton, when the scale changes from Q2 to Q2+d(lnQ2) [27]. In the equation 

(1.14), the first term mathematically expresses the fact that a quark with 

momentum fraction x [q(x, Q2) on the left hand side] could have come from a 

parent quark with a larger momentum fraction y [q(y, Q2) on the right-hand 

side] which has radiated a gluon. The probability is proportional to 

as(t)Pqq(x/y). The second term considers the possibility that a quark with 

momentum fraction x is the result of q q pair creation by a parent gluon with 

momentum fraction y (>x). The probability is proportional to as(t) Pqg(x/y). The 

integral in the equation is the sum over all possible momentum fractions y (>x) 

of the parent [19]. For gluon we have given a symbolic representation of the 

gluon evolution equation (1.15) as in Figure 1.9. 

Figure 1.9: Symbolic representation of the gluon evolution equation in LO 
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The DGLAP evolution equation comes in the Leading Logarithmic Q2 (LLQ2) 

approximation by keeping only leading powers of In Q2 (i.e. a nlnnQ2) terms in 
s 

the perturbative expansion. Figure 1.10 gives a schematic ladder diagram of 

quark and gluon exchange in LLQ2 approximation of DIS. In ladder diagrams, 

the longitudinal momenta -Xi are ordered along the chain (Xi ~ Xi+1) and the 

transverse momenta are strongly ordered, that is, ki,i «ki,i+1' It is this strong 

ordering of transverse momenta towards Q2 which gives the maximal power of 

In(a 2
), since the integration over transverse momentum in each cell is 

logarithmic. 

Figure 1.10: Ladder diagram for the DIS in LLQ2 

The splitting functions contribute to the evolution of the parton distributions at 

order as' as 2 etc. 

p (z) = p O (z) + as (t ) p I (z) + (a s {t )J 2 P 2 (z) + ... 
qq qq 21t qq 21t qq , 

(1.16) 
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PqOq (z) = 4 1 + Z2 . Similarly PqOg (z) =.!.. [Z2 + {1- zy], pO (z) = 4 1 + {1- zY and 
31-z 2 gq 3 z 

(1.17) 

With the advent of data from the various colliders, we are into a new phase of 

testing the applicability of pQCD. We are interesting in testing its predictions at 

very small-x where we may be moving out of the region where the 

conventional approximations (LO, NLO and NNLO) as include in the DGLAP 

equations are applicable. Considering equations (1.17) for the LO splitting 

functions as 

x 4 1 41 1 
z=-~O,Pqq ~-, Pqg ~-, Pgq ~--, Pgg ~6-, 

Y 3 2 3z z 
(1.18) 

we see that the gluon splitting functions are singular as z ~ 0 (this result 

remains true for higher orders). Thus the gluon distribution will rise as x ~ 0, 

and its contribution to the evolution of the quark distribution will become 

dominant, so that the quark singlet distributions and hence, the structure 

function F2, will also rise as x ~ o. 

1.7.2 BKFL Evolution Equation 

At asymptotically large energies, it is believed that the theoretically 

correct description is given by the BKFL [29-31J evolution. Here, each emitted 

gluon is assumed to take a large fraction of the energy of the propagating 

gluon, (1-z) for z - 0, and large logarithms of 1/ z are summed up to all orders. 

Keeping only leading powers of LL (1/ x) terms in the perturbative expansion, 

the BKFL evolution equation comes in the Leading Logarithmic l/x [LL(l/x)] 

approximation. The BKFL evolution equation is 

f (x, k 2 ) = f ° (x, k 2 ) 

+3u s (k
2
)k 2J dx' "'dk,2 {f(X',k'2)-f(X',k

2
)+ f(x',k

2
) } 119 

1t I x'! k,2 Ik,2_k21 .J4k,4+k 4 (. ) 
o 
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The function f(x, k2) is the non-integrated gluon distribution, that is 

f(x,k 2 ) = axG(x,k 2 )/81nk2 , fO(x,k 2 )is a suitably defined inhomogeneous term; 

k 2
, k,2 are the transverse momenta squared of the gluon in the final and initial 

states respectively, and ko 2 is the lower limit cut-off. 

1.7.3 GLR Evolution Equation 

In the approximation where only leading power of InQ2 and In(l/ x) are 

kept, that is the double logarithmic approximation (DLA), compact forms of 

GLR equations are shown in the recent literature [32-34]. Further 

approximation is that the coupling of n ~ 2 ladder to the hadron is proportional 

to the n-th power of a single ladder. As a result, the probability of finding two 

gluons (at low momentum Q~) with momentum fraction Xl and X2 is 

proportional to g(xpQ~).g(X2,Q~). It leads to a non-linear integro-differential 

equation for structure function, which gives the GLR equation as 

where <P = 8F(x, Q2)/ aQ2, R denotes the transverse radius of the hadron and V 

stands for the triple ladder vertex. Here parton recombinations are considered. 

1.7.4 CCFM Evolution Equation 

The CCFM [35-38] evolution equation resumes also large logarithms of 

1/ (l-z) in addition to the 1/ z ones. Here, z denotes the energy fraction of the 

emitted gluon. Furthermore, it introduces angular ordering of emissions to 

correctly treat gluon coherence effects. In the limit of asymptotic energies, it is 

almost equivalent to BKFL, but also similar to the DGLAP evolution for large-x 

and high-Q2. An advantage of the CCFM evolution, compared to the BKFL 

evolution, is that it is fairly well suited for implementation into an event 
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generator program, which makes quantitative comparison with data feasible 

also for non-inclusive observables. The CCFM evolution equation with respect 

to the scale q~ can be written in a differential form 
I 

(1.21) 

where A(x,ki,q2) is the unintegrated gluon density which depends on 

longitudinal momentum fraction x, transverse momentum k i and the 

evolution variable /..1.
2 (factorization scale) = q2. The splitting variables are 

z=x/x' and ki = (1- z)/zq + k 1-' where the vector q is at an azimuthal angleq>. 

Here D. is the Sudakov form factor and is given as 
s 

(1.22) 

where as = 3u /1[ . And the splitting function P for branching i is given by 

non-Sudakov form factor defined as 

1 

( 2 2) _ dz' dq 
2 

( \,...{,) InD. z.,q. ,k , . =-US J-J-2 8k ,:-qp\q-zq. ns 1 1 ..L 1 Z' q..L1 1 
Z. 

(1.23) 

1 

Mueller and Qiu investigated gluon-gluon recombination effect on the 

evolution. The DGLAP and PR evolution equations are given by 

1 = J~ IP (xly)q.(y,t)+P (xly)g(y,t) 
8 q . (x, t) 1 d [ ] 

8t x y j qi q j J qg 

[
a Al/3] 

+ recombination terms proportional to SQ2 ' (1.24) 
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ag(x, t) = } dy [L:P (xly)q .(y, t)+ P (xly)g(y, t)] 
at x y j gq j J gg 

[
a A 1/

3
] + recombination terms proportional to SQ2 ' (1.25) 

where the variable t is defined by t = _(2J1n[as Q: ]. In the PR evolution 
Po as Q o 

case, there are additional higher-twist terms which are proportional to 1/Q2. 

These terms are also proportional to A 1/3 because recombination effect is 

proportional to the magnitude of parton overlap in the longitudinal direction. 

1.8 Particle Accelerator Centres 

Particle accelerator, from which we get various data, provides a beam of 

energetic particles travel in vacuum chamber to study the structure of matter. It 

employs electric fields to impart energy to accelerate the particles and magnetic 

fields to steer and focus the beam. Particle accelerator makes collisions either 

against a fixed target, or between two beams of particles. The name beam given 

to a stream of energetic particles moving at speeds very close to that of light. 

Indeed, the choice of name is by analogy to a beam of light. There are two types 

of accelerators: Linear accelerator, beam travels from one end to the other and 

Circular accelerator, beam repeatedly circulates around ring. Some particle 

accelerator centres are briefly explained below. 

1.8.1 SLAC (Stanford Linear Accelerator Centre) 

SLAC was established in 1962 at Stanford University in Meruo Park, 

California, USA. Its mission is to design, construct and operate electron 

accelerators and related experimental facilities for use in high-energy physics 

and synchrotron radiation research. It houses the longest linear accelerator 

(linac), a machine of 3.2 km long that accelerates electrons up to energies of 
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10 GeV. In 1966 a new machine, designed to reach 20 GeV was completed. In 

1968 experiments at SLAC found the first direct evidence for further structure 

(Le., quarks) inside protons and neutrons. In 1972, an electron-positron collider 

called SPEAR (Stanford Positron-Electron Asymmetric Rings) producing 

collisions at energies of 2.5 GeV per beam was constructed. In 1974 SPEAR was 

upgraded to reach 4.0 GeV per beam. A new type of quark, known as charm, 

and a new, heavy leptons relative of the electron, called the tau were discovered 

using SPEAR. SPEAR was followed by a larger, higher-energy colliding-beam 

machine, the PEP (Positron-Electron Project), which began operation in 1980 

and took electron-positron collisions to a total energy of 36 GeV. The SLAC 

Linear Collider (SLC) was completed in 1987. SLC uses the original linac, 

upgraded to reach 50 GeV, to accelerate electrons and positrons before sending 

them in opposite directions around a 600-metre loop, where they collide at a 

total energy of 100 GeV. This is sufficient to produce the Z particle, the neutral 

carrier of the weak nuclear force that acts on fundamental particles. 

1.8.2 DESY (Deutsches Elektronen-Synchrotron) 

DESY, one of the largest centres for particle-physics research located in 

Hamburg, Germany was founded in 1959. The construction of an electron 

synchrotron to generate an energy level of 7.4 billion electron-volts was 

completed in 1964. Ten years later the Double Ring Storage Facility (DORIS) 

was completed which is capable of colliding beams of electrons and positrons at 

3.5 GeV per beam. In 1978 its power was upgraded to 5 GeV per beam. DORIS 

is no longer used as a collider, but its electron beam provides synchrotron 

radiation (mainly at X-ray and ultraviolet wavelengths) for experiments on a 

variety of materials. A larger collider capable of reaching 19 GeV per beam, the 

Positron-Electron Tandem Ring Accelerator (PETRA), began operational in 

1978. Experiments with PETRA in the following year gave the first direct 

evidence of the existence of gluons. The Hadron-Electron Ring Accelerator 
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(HERA) capable of colliding electrons and protons was completed in 1992. 

HERA consists of two rings in a single tunnel with a circumference of 6.3 km, 

one ring accelerates electrons to 30 GeV and the other protons to 820 GeV. It is 

being used to continue the study of quarks. 

1.8.3 FNAL (Fermi National Accelerator Laboratory) 

FNAL, also called FERMILAB, centre for particle-physics research is 

located at Batavia, Illinois in USA named after the Italian-American physicist 

Enrico Fermi, who headed the team that first achieved a controlled nuclear 

reaction. The major components of Fermilab are two large particle accelerators 

called proton synchrotrons, configured in the form of a ring with a 

circumference of 6.3 km. The first, which went into operation in 1972, is capable 

of accelerating particles to 400 billion electron volts. The second, called the 

Tevatron, is installed below the first and incorporates more powerful 

superconducting magnets; it can accelerate particles to 1 trillion electron volts. 

The older instrument, operating at lower energy levels, now is used as an 

injector for the Tevatron. The high-energy beams of particles (notably muons 

and neutrinos) produced at the laboratory, have been used to study the 

structure of protons in terms of their most fundamental components, the 

quarks. In 1972 a team of scientists at Fermilab isolated the bottom quark and 

its associated antiquark. In 1977 a team led by Leon Lederman discovered the 

upsilon meson, which revealed the existence of the bottom quark and its 

accompanying antiquark. The existence of the top quark predicted by the 

standard model was established at Fermilab in March, 1994. 

1.8.4 KEK (Koh-Ene-Ken) 

KEK is a National Laboratory for High Energy Physics located at 

Tsukuba, Ibaraki Prefecture, Japan. Both proton accelerators and 
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electron/ positron accelerators, including storage rings and colliders, are in 

operation in KEK to support various activities, ranging from particle physics to 

structure biology. A high-intensity proton accelerator was also constructed in 

this laboratory in collaboration with Japan Atomic Energy Research Institute. 

KEK is associated with two research institutes, Institute of Particle and Nuclear 

Studies (IPNS) and Institute of Materials Structure Science (IMSS) and two 

laboratories, Accelerator Laboratory and Applied Research Laboratory. IPNS 

carries out research programs in particle physics and nuclear physics. IMSS 

offers three types of probes for research programs in material science. Its two 

major accelerators are the 12 Ge V Proton Synchrotron and the KEKB electron­

positron collider where the Belle experiment is currently running. The Belle 

collaboration at the KEKB factory was highlighted by its observation of the CP 

violation of B-mesons. The Applied Research Laboratory, which has four 

research centres (Radiation Science Centre, Computing Research Centre, 

Cryogenics Science Centre and Mechanical Engineering Centre), providing 

basic technical support for all KEK activities with their high-level technologies. 

KEK is also associated in the J-PARC proton accelerator under construction in 

Tokaimura. 

1.8.5 VECC (Variable Energy Cyclotron Centre) 

VECC is a research and development unit located in Kolkata, India. The 

variable energy cyclotron (VEC) set up is used for research in Accelerator 

Science and Technology, Nuclear Science (Theoretical and Experimental), 

Material Science, Computer Science and Technology and in other relevant 

areas. The Variable Energy Cyclotron (VEC) is the main accelerator, operational 

at the Centre since 1980. The Centre is also constructing Radioactive Ion Beam 

(RIB) accelerator - highly complex and sophisticated - for most modern nuclear 

physics and nuclear astrophysics experiments. High level scientific activity goes 

on at the Centre for International collaborations in the areas of high energy 
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physics experiments at large accelerators in other parts of the world. The Centre 

has also developed frontline computational facilities to carry out research and 

development in the above mentioned areas. Exploration and recovery of helium 

gas from hot spring emanations and earthquake prediction utilizing related 

observations is another important area in which the Centre is actively engaged. 

1.8.6 BNL (Brookhaven National Laboratory) 

Brookhaven National Laboratory is located at Upton, New York. The 

setup of Relativistic Heavy Ion Collider (RHIC) is a heavy-ion collider used to 

collide ions at relativistic speeds. At present, RHIC is the most powerful heavy­

ion collider in the world. The RHIC double storage ring is itself hexagonally 

shaped and its circumference is 3834 m with curved edges in which stored 

particles are deflected by 1,740 superconducting niobium titanium magnets. 

The six interaction points are at the middle of the six relatively straight sections, 

where the two rings cross, allowing the particles to collide. The interaction 

points are enumerated by clock positions, with the injection point at 6 o'clock. 

There are four detectors at RHIC - STAR (6 o'clock), PHENIX (8 o'clock), 

PHOBOS (10 o'clock), and BRAHMS (2 o'clock). PHOBOS has the largest 

pseudorapidity coverage of all detectors, and tailored for bulk particle 

multiplicity measurement and it has completed its operation after 2005. 

BRAHMS is designed for momentum spectroscopy, in order to study low-x and 

saturation physics and it has completed its operation after 2006. STAR is aimed 

at the detection of hadrons with its system of time projection chambers 

covering a large solid angle and in a conventionally generated solenoidal 

magnetic field, while PHENIX is further specialized in detecting rare and 

electromagnetic particles, using a partial coverage detector system in a super 

conductively generated axial magnetic field. There is an additional experiment 

PP2PP, investigating spin dependence in P+- P - scattering. 
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Another collider eRHIC, also known as spin-dependent electron-hadron 

collider was designed based on the RHIC hadron rings and 10 to 20 GeV energy 

recovery electron linac. The designs of eRHIC, based on a high current super­

conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV, 

have a number of specific requirements on the ERL optics. Two of the most 

attractive features of this scheme are full spin transparency of the ERL at all 

operational energies and the capability to support up to four interaction points. 

The main goal of the eRHIC is to explore the physics at small-x, and the physics 

of colour-glass condensate in electron-hadron collisions. 

1.8.7 CERN (Conseil Europeen pour la Recherche Nucleaire) 

CERN is the European Organization for Nuclear Research which is the 

international scientific organization for collaborative research in sub-nuclear 

physics (high-energy, or particle physics). Head office of CERN is in Geneva, 

Swizerland. The activation of a 600-mega volt synchrocyclotron in 1957 enabled 

CERN physicists to observe the decay of a pion, into an electron and a neutrino. 

The event was instrumental in the development of the theory of weak 

interaction. The laboratory grew steadily, activating the particle accelerator 

known as the Proton Synchrotron (1959), which used 'strong focusing' of 

particle beams; the Intersecting Storage Rings (ISR; 1971), enabling head-on 

collisions between protons; and the Super Proton Synchrotron (SPS; 1976), with 

a 7-kilometre circumference. With the addition of an Antiproton Accumulator 

Ring, the SPS was converted into a proton-antiproton collider in 1981 and 

provided experimenters with the discovery of the Wand Z particles in 1983 by 

Carlo Rubbia and Simon van der Meer. In November 2000 the Large Electron­

Positron Collider (LEP), a particle accelerator installed at CERN is an 

underground tunnel 27 km in circumference, closed down after 11 years 

service. LEP was used to counter-rotate accelerated electrons and positrons in a 

narrow evacuated tube at velocities close to that of light, making a complete 
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circuit about 11,000 times per second. Their paths crossed at four points around 

the ring. DELPHI, one of the four LEP detectors, was a horizontal cylinder 

about 10 m in diameter, 10 m long and weighing about 3,000 tones. It was made 

of concentric sub-detectors, each designed for a specialized recording task. 

For the past few decades, physicists have been able to describe with 

increasing detail the fundamental particles that make up the Universe and the 

interactions between them. This understanding is encapsulated in the Standard 

Model of particle physics, but it contains gaps and cannot tell us the whole 

story. To fill in the missing knowledge requires experimental data, and the next 

big step to achieve this is with LHC (Large Hadrons Collider), the world's 

largest and most powerful particle accelerator, is the latest addition to CERN's 

accelerator complex. The LHe was built to help scientists to answer key 

unsolved questions in particle physics. The unprecedented energy it achieves 

may even reveal some unexpected results that no one has ever thought off. 

The LHC, a circular accelerator, having circumference of 26 Km, depth 

underground ranges from 50 meters to 175 meters. In LHC two beams of 

particles travel at close to the speed of light with very high energies before 

colliding with one another. The beams travel in opposite directions in separate 

beam pipes - two tubes kept at ultrahigh vacuum. They are guided around the 

accelerator ring by a strong magnetic field, achieved using superconducting 

electromagnets. These are built from coils of special electric cable that operates 

in a superconducting state, efficiently conducting electricity without resistance 

or loss of energy. This requires chilling the magnets to about -271°C, a 

temperature colder than outer space. For this reason, much of the accelerator is 

connected to a distribution system of liquid helium, which cools the magnets, as 

well as to other supply services. Physicists will use the LHC to recreate the 

conditions just after the Big Bang, by colliding the two beams head-on at very 

high energy. Proton-proton collisions are foreseen at energy of 7 TeV per beam. 

The beams in LHC are designed to collide within the detectors 40 million times 

per second. Teams of physicists from around the world will analyze the 

particles created in the collisions using special detectors in a number of 
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experiments dedicated to the LHe. Six detectors are being constructed at the 

CERN. They are located underground, in large caverns excavated at the LHC's 

intersection points. Two of them, ATLAS and CMS are large particle detectors. 

ALICE is a large detector designed to search for a quark-gluon plasma in the 

very messy debris of heavy ion collisions. The other three (LHCb, TOTEM, and 

LHC£) are smaller and more specialized. A seventh experiment, FP420 

(Forward Physics at 420 m), has been proposed which would add detectors to 

four available spaces located 420 m on either side of the ATLAS and CMS 

detectors. 

But the question is about the safety of the Large Hadron Collider. The 

LHC can achieve an energy that no other particle accelerators have reached 

before, but Nature routinely produces higher energies in cosmic-ray collisions. 

Concerns about the safety of whatever may be created in such high-energy 

particle collisions have been addressed for many years. In the light of new 

experimental data and theoretical understanding, the LHC Safety Assessment 

Group (LSAG) has updated a review of the analysis made in 2003 by the LHC 

Safety Study Group, a group of independent scientists. The LSAG re-affirms 

and extends the conclusions of the 2003 report that LHC collisions present no 

danger and that there are no reasons for concern. Whatever the LHC will do, 

Nature has already done many times over during the lifetime of the Earth and 

other astronomical bodies. The LSAG report has been reviewed and endorsed 

by CERN's Scientific Policy Committee, a group of external scientists that 

advises CERN's governing body, it's Council. 

1.9 Phenomenology 

Physics is a subject that can only thrive when there is strong interplay 

between theory and experiment. New theoretical ideas lead to predictions that 

can be tested experimentally, and new experimental findings challenge 

theorists to produce better ideas. Phenomenology is research on this boundary 

between theory and experiment. It is concerned with identifying interesting 
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physical observables, making theoretical predictions for them and then 

confronting experimental data gathered at the major international laboratories. 

The main aim of phenomenology is to find evidence for new physics and to 

develop new theories that describe the Universe at a more fundamental level 

than our current theories can. Close collaboration with experimental colleagues 

is a vital aspect of phenomenologist work. 

The last thirty years have seen the spectacular success of the Standard 

Model gauge quantum field theory of electromagnetic, weak and strong 

interactions. The high-energy accelerator programme at various experimental 

group have confirmed the validity of the Standard Model, however, there are 

still important elements of the Standard Model which lack either experimental 

observation or a well-established theoretical basis. The main missing element is 

the Higgs boson, whose existence is ultimately related to the understanding of 

the origin of the mass of all other particles. Existing precision electroweak 

observables show excellent consistency with the Standard Model and constrain 

the mass of the Higgs boson significantly. Even if the Higgs boson is found, the 

Standard Model is far from complete and the electro weak symmetry breaking 

mechanism, which is a fundamental element in the theoretical construction of 

the Standard Model, is not yet well understood. It seems certain that more 

fundamental theories remain to be discovered. 0 
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Chapter 2 

Solution of Evolution Equations 

As soon as QeD was introduced [50-52], theoretical physicists faced the 

problem of computing physical quantities in strong interaction processes. The 

most important source of F2 values, amongst various experimental 

measurements through DIS, are certainly the HERA experiments (HI [53] and 

ZEUS [54]). Their latest sets of experimental data reached a level of precision 

very useful for theoretical tests. In this type of collision, when we compute the 

proton structure function in the QED framework, by a single photon exchange, 

we obtain the well known Bjorken scaling [55]: the structure functions are 

independent of the virtuality Q2 of the exchanged photon. If we compute QeD 

corrections in the large Q2 limit, we meet collinear divergences, appearing 

through log (Q2) corrections [25,27,28]. This is known as scaling violation. The 

scaling violation implies that parton densities inside the proton become Q2 

dependent and the resumption of the collinear divergences in the framework of 

perturbative QeD leads to Q2 evolution equations for these parton densities. 

These equations, called the DGLAP equations, were found independently by 

Gribov-Lipatov in 1972, Altarelli-Parisi and Dokshitzer ir:t 1977. Due to their 

very good agreement with experiment [56] and its implications on scaling 

violation, the DGLAP equations are considered as one of the best successes of 

QeD and, more precisely, perturbative QeD. Thus the solutions of DGLAP 

evolution equations are the powerful techniques to obtain the Parton 

Distribution Functions (PDF), hence the hadrons structure function and 

ultimately structure of proton or neutron. 

As more and more sophisticated computing systems are developed, 

people are interested in numerical methods to solve various complex equations. 
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Some available programs deal with the DGLAP evolution are PEGASUS [57], 

QCDNUM [58], CANDIA [59], HOPPET [60] etc. Though various numerical 

methods are present to solve DGLAP evolution equations with a good degree 

of accuracy, but the interest in the analytical methods can not be ruled out. 

Some popular numerical as well as analytical methods to solve DGLAP 

evolution equations are - Brute force method [61], Laguerre polynomial 

method [62, 63], Mellin transformation method [64 - 66], Matrix approach 

method [67, 68], Taylor expansion and particular solution method [69 - 75], 

Regge theory method [76] , method of characteristics [75, 77, 78, 79] etc. 

2.1 Brute force method 

The simplest way amongst numerical methods is possibly to use the 

brute-force method. It may seem to be too simple, but it is especially suitable for 

solving more complicated equations with higher-twist terms [39]. These 

equations could not be easily handled by the orthogonal polynomial methods 

such as the Laguerre polynomial and by the Mellin transformation method. 

Furthermore, a computer code [61] is so simple that the possibility of a program 

mistake is small, which means the code could be used for checking other 

numerical methods. In the brute force method, the two variables t and x are 

divided into small steps, and then the differentiation and integration are 

defined by 

af (x, t) --'----.;... => 
at 

where ~t J and ~x k are the steps at the positions j and k, and they are given by 

~t J = t J+I - t J and ~x k = X k - X k-I • The numbers t and x steps are denoted Nt and 

Nx, respectively. Applying these equations to DGLAP, we write the non-singlet 

evolution from tJ to tJ+l as 

qNS (x"t J+1 )= qNS (x"t])+ ~t]I Llx kPqq(_X_, ]qNS (Xk,t]). (2.1) 
k=, x k X k 
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If the distribution qNS is supplied at t\ = 0, the next one qNS (x, b) can be 

calculated by the above equation. Repeating this step Nt -1 times, we obtain 

the final distribution attN' However, it is obvious that the step numbers Nt and 
t 

N x should be large enough to obtain an accurate evolution result. 

The advantage of brute-force method is that the computer code is very 

simple. More complicated evolution equations with higher twists could be 

handled easily. The evolution could be accurate in the small and large x 

regions. But the main disadvantage is the computation time. In order to obtain 

an accurate evolution, large numbers of steps are needed. If one uses the code 

for many evolution calculations, it takes a significant amount of time. 

2.2 Laguerre polynomial method 

The evolution equations could be solved by expanding the distribution 

and splitting functions in terms of orthogonal polynomials. A popular method 

of this type is to use the Laguerre polynomials [62,63]. They are defined in the 

region from 0 to 1, thus the variable x should be transformed to x' by relation 

x' = -In x. The non-singlet evolution is discussed in the following. The evolution 

function ENS (x, t), which describes the distribution evolution from t = 0 to t, is 

defined by 

(2.2) 

Then, it satisfies 

(2.3) 

Here ENS and PNS are evolution functions and polynomials. They are introduced 

into get the equation (2.3), same integro-differential equation form as the 

original DGLAP equation. There is an advantage that the evolution function 

should be the delta function at t == 0: ENS (x, t = 0) = a (1 - x) because of its 
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definition in equation (2.2). It makes the following analysis simpler. The 

functions are expanded in terms of the polynomials: 

where P~ and Ees{t} are the expansion coefficients. The coefficient Fn for a 

I 

function F(x) is given by F
n 

= f dx En (x')F(x), and it could be calculated 
o 

analytically for a simple function. If the two functions on the right hand side of 

equation (2.3) are expanded, it becomes an integration of two Laguerre 

polynomials. Using the formula 

x' 
f dy' Ln (x' - y')L m (y,)= Ln+m (x,)- Ln+m+1 (x'), 

o 
for this integration, we obtain 

~Em (t)= ~(pn-m _pn-m-I)E (t) 
dt NS L..J NS NS m· 

m=O 

Because the evolut.ion function is a delta function at t=O, all the expansion 

coefficients are one. Therefore, this equation is easily solved to give a 

summation form: 

o m t k m-I 
E m (t) = e PNS t ~ _ B k B hi = "" (p m-i _ p m-i-l \n ~ 

NS ~ k' m, m L..J NS NS)D I • 

k = 0 • i=k 

This recursion relation is calculated with the relations B~ = 1 , 

B I ~ i (p J P j-l ) k k k i = L.Jj=1 NS - NS andB o = BI = .... = B k_1 = O. After all, the evolution is 

calculated by the simple summation: 

N 

fNS(x,t)= r I:=JEn_m(t)-En_m_,(t)]Ln(-lnx)f:s(t=O). (2.4) 
n=O 

Thus the integro-differential equation becomes a simple summation of Laguerre 

expansion coefficients, so that this method is considered to be a very efficient 

numerical method for the solution. 
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In computer, Laguerre polynomial method is very fast. As long as one 

does not mind the very small and large-x region, it is a good method for 

repeated evolution calculations. But depending on the initial functional form, 

the results do not converge at small-x unless a large number of polynomials are 

used. It is also difficult to obtain accurate evolution at large-x. 

2.3 Mellin transformation method 

The Mellin transformation method [64] is one of the popular evolution 

methods. It is used because the Mellin transformation of the DGLAP equation 

becomes a simple multiplication of two moments, namely the moments of the 

splitting function and the distribution function. The moments of the splitting 

functions are well known, and a simple functional form is usually assumed for 

the distribution at certain small- Q2 so as to calculate its moments easily. Then, 

it is straightforward to obtain the analytical solution in the moment space. 

Furthermore, the computation time is fairly short. These are the reasons why 

this method has been used as a popular method. The Mellin transformation and 

Mellin inversion are defined [65,66] by 

" 1 1 c+ioo -s" 
f(s,t)= fdxx S-lf(x, t) and f(x,t)=-.- fdsx f(s,t). 

o 21n 
c -100 

Here the upper limit of the x integration is taken one because the distribution 

f(x) vanishes in the region x ~ 1. The Mellin inversion is a complex integral with 

an arbitrary real constant c, which should be taken so that the integral 

1 

f dxf(x)x c-l is absolutely convergent. If this transformation is used, the 
o 

integro-differential equations become very simple. For example the non-singlet 

evolution equation becomes 

(2.5) 
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Its solution is simply given by 

f (s t) = ePNS (s)tf (s t = 0) NS , NS'· 

Because the moments P NS (s) are well known quantities and the moments of the 

initial function f NS (s, t = 0) could be evaluated, it is straight forward to 

calculate the evolution in the moment space. However, the numerical 

integration is needed for the Mellin inversion for transforming the moments 

into a corresponding x distribution 

Mellin transformation method is a faster method than the Brute force 

computation. For repeated evolution calculations with certain accuracy, this 

method is appropriate. But one should be careful about the Mellin inversion 

process at very large-x. 

2.4 Matrix approach method 

The shortcomings common to almost all above numerical methods are the 

computer time required and decreasing accuracy for x ~ 0 . But application of 

matrix approach for numerical solution is highly satisfactory both in terms of 

precision and computing time [67,68]. 

The non-singlet DGLAP equation is in the form of 

df(x,Q2)=as(Q2)fldYp(~J( Q2) 
d InQ 2 21t Y Y y, , 

x 

(2.6) 

where f(x, Q2) represents some non-singlet parton density and P the 

corresponding splitting function. The convolution form does allow exact In Q2 

integration if transformed to Mellin moment space. However, this requires 

knowledge of the function over the entire x region. Thus as data analysis is our 

main aim, it is desirable to remain in x space [68]. Now let, 

1 1 
u = In - v = In-, , 

x Y 

Thus equation (2.6) gives 
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d f( t) U 
u, = I dv r(u - v )f(v, t). 

dt 0 
(2.7) 

To examine the numerical approach, consider performing the integral on the 

right hand side of equation (2.7) via a naive trapezoidal rule over subintervals 

of size h, 

d fm (t) = ~ P f (t) 
d t 

L... mk k , 
k=1 ( 

(2.8) 

where the following rather obvious definitions have been made: 

Uk = kh, fk (t) = f( Uk' t) , P mk = hP( Urn - Uk). 

The typical vanishing of f (x) at x=l has been exploited and a factor one half in 

the last term of the series has been omitted. By noting that the sum in equation 

(2.8) runs only up to m, we see that the matrix Pmk is lower triangular. Finally, 

writing the equation in matrix form [68], we obtain 

[(t)= Pf(t), (2.9) 

where the over dot indicates a derivative with respect to t. 

We should now need only diagonalized P, via a matrix D, left multiplication by 

D-l would then result in 

(2.10) 

The exact solution could thus be written down directly: 

(2.11) 

where the 'Y m would be just the eigen values of the matrix P. Transfonnation back to 

the original basis would then 

(2.12) 

This would be an exact solution in t of the differential equation, only the x 

variable have been discretized and treated numerically. It turns out that the 

eigen values are very close to one another and so diagonalization is very nearly 

singular. 
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2.5 Taylor expansion and particular solutions method 

Considering the splitting functions [28, 80, 81], the DGLAP evolution 

equations for non-singlet and singlet structure functions in standard [81-85] 

form in LO at small-x are 

apNS A 
_2 ___ f [{3 + 4ln (1 - x )}p;'S (x, t)] 

at t 

and 

apS __ 2 __ 

at ~ [{3 + 41n (1 - x )}F 2$ (x, t)] 
t 

1 
+2Af f dw [(I+W2)F;(~,tJ-2F;(X,t)] 

t l-w w 
x 

1 

+2N, ~' f{w 2 +(l-w)' }G( >JdW = o. 
x 

expansion. 

Let us introduce the variable u = 1-0) and note that 

- = -- = x 1 + -- - 1 = x + -- . Now x x ( 1 J ( xu J 
co l-u l-u l-u 

(2.13) 

(2.14) 

Since x is small in our region of discussion, the terms containing x2 and higher 

powers of x, can be neglected and we can rewrite 
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FNS(~ J ~ FNS ( ) xu 8F;s (x, t) 
2 ,t ~ 2 x, t + . 

co l-u ax (2.16a) 

Similarly 

FS(~ J ~ pS( ) xu 8Fi(x, t) 
2 ,t~,x,t+ , 

co - l-u ax (2.16b) 

- t ~ xt +--...!........:--'-G(
X J G( ) xu 8G(x,t) 
co' 'l-u ax . (2.16c) 

Using equation (2.16a) in equation (2.13) and performing u-integrations we get 

_ t aFt
S 

(x, t) + L I (x )aFt
S 

(x, t) + M I (x )F
2
NS (x, t)= 0 (2.17) 

at ax 
where Ll(X) and Ml(X) are two functions. The general solution [73] of equation 

(2.17) is F (U, V) = 0, where F (U, V) is an arbitrary function and U (x, t, F2S) = Kl 

and V (x, t, F2S) = K2 are two independent solutions of the equations-

(2.18) 

Solving equation (2.18) we obtain 

If U and V are two independent soluttons of equation (2.18) and if a and pare 

arbitrary constants, then V = aU + p may be taken as a complete solution of 

equation (2.17). We take this form as this is the simplest form of a complete 

solution which contains both the arbitrary constants a and p. Now the complete 

solution -

F
2
NS (x, t)ex{f Ll (x) dX] = atex{_l f 1 dX] + ~ , 

Ml (x) Af M (x) 
(2.19) 

is a two-parameter family of surfaces, which does not have an envelope, since 

the arbitrary constants enter linearly [73]. Differentiating equation (2.19) with 
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respect to p we get 0 = I, which is absurd. Hence there is no singular solution. 

The one parameter family determined by taking p = a2 has equation 

{ 
L (X)] { 1 1 ] 

Fr"S(x, t)ex f 1 dx = at ex -f dx + a 2
• 

Ml (x) Af MI (x) 

Differentiating equation (2.20) with respect to a, we get 

a = -..!. t ex1_1 f 1 dX] . 
2 L Af M1(x) 

Putting the value of a in equation (2.20), we obtain the envelope 

(2.20) 

(2.21) 

which is merely a particular solution of the general solution. Unlike the case of 

ordinary differential equations, the envelope is not a new locus. It is to be noted 

that when P is an arbitrary function of a, then the elimination of a in equation 

(2.20) is not possible. Thus the general solution can not be obtained from the 

complete solution [74J. Actually, the general solution of a linear partial 

differential equation of order one is the totality of envelopes of all one 

parameter families (2.21) obtained from a complete solution. 

2.6 Regge theory method 

The two body scattering of hadrons is strongly dominated by small 

momentum transfer or by small scattering angles. According to Regge theory 

[76], this scattering amplitude is successfully described by the exchange of a 

particle with appropriate quantum numbers and these are known as Regge 

Poles. Regge Pole exchange is a generalization of a single particle exchange. 

There are two types of Regge Poles: (a) Reggeon and (b) Pomeron. A very 

simple expression for the behaviour of scattering amplitude A (s, t) is predicted 

by Regge is given by 
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A (s, t) ~ S a( t ) ; for large-So 

The number quantities to consider are the structure functions which are 

proportional to the total virtual photon-nucleon cross section and which are 

expected to have Regge behaviour corresponding to pomeron or reggeon 

exchange. So the hadronic cross sections as well as structure functions will be 

dominated by two contributions: (a) a Pomeron, reproducing the rise of Fz at 

small- x and (b) a Reggeon associated with meson trajectories. 

For the pomeron contribution to Fz, we will give three different simple 

possibilities [86,87]: 

(a) It may show a power behaviour like: 

F 2 (x, Q 2 ) = a (Q z ) x - £ , (2.22) 

where a{Q2) is a function of Q2 and the exponent E is called intercept. This 

term, with £ ~ 0.09 is called the soft pomeron, but is unable to describe the 

steeper rise of y*p amplitudes. The solution is to add another contribution, 

called the hard pomeron, which leads to 

(2.23) 

where as (Q2) and a h (Q2) are functions of Q2 and the exponents £5 and £h are 

the intercepts for the soft and hard parts contributions to the structure function 

respectively. The hard pomeron has Ch ~ 0.4. In the complex angular 

momentum plane, i.e. complex - j plane, this corresponds to two simple poles at 

This is the Donnachie-Landshoff two-pomerons model [63,64,86,87]. 

(b) Pomeron may show a logarithmic behaviour like: 

(2.24) 
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where A(Q2) and B(Q2) are functions of Q2. Here DIS variable v is used instead 

of x. In the complex - j plane, this expression becomes 

And this behaviour is often called the double pole pomeron. 

(c) Pomeron may show a squared-logarithmic behaviour like: 

where C(Q2) is also a function of Q2. Here also DIS variable v is used instead of 

x. In the complex-j plane, this expression becomes 

This behaviour is often called the triple pole pomeron. 

Now, in order to apply Regge theory to DGLAP evolution equations, let 

us take the functions of Q2 to be the same as T(Q2). i.e. ~(<t)=As( <t)=T( <t} 
The contributions of the Regge poles solely determine the high energy 

behaviour of all QCD amplitudes in the multi-Regge kinematics given by 

namely Fadin, Fiore, Kozlov and Reznichenko [88]. So we can assume a simple 

form for Regge behaviour of unpolarized structure function to solve DGLAP 

evolution equation, as [89 - 95] 

(2.26) 

where T(t) is a function of t and A is the Regge intercept for unpolarized 

structure function. This form of Regge behaviour is well supported by the work 

in this field carried out by namely Badelek [96], Soffer and Teryaev [97] and 

also Desgrolard, Lengyel and Martynov [98]. According to Regge theory, the 

high energy i. e. small-x behaviour of both gluons and sea quarks are controlled 

by the same singularity factor in the complex angular momentum plane [76]. 
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2.7 Method of characteristics 

The method of characteristics [75, 77, 78, 79], is a method which can be 

used to solve the initial value problem (IVP) for general first order Partial 

Differential Equations (PDE). Consider the first order linear PDE in two 

variables along with the initial condition u(x, 0) = f(x) as 

a(x, t}ux + b (x, t}u t + c (x, t}u = 0 (2.27) 

The goal of the method of characteristics, when applied to this equation, is to 

change coordinates from (x, t) to a new coordinate system (S, 't) in which the 

PDE becomes an ordinary differential equation (ODE) along certain curves in 

the x-t plane, called the characteristic curves or just the characteristics. Such 

curves are [x (S), t (S); O<S<oo], along which the solution of the PDE reduces to 

an ODE. The new variable S will vary, and the new variable 't will be constant 

along the characteristics. The variable 't will change along the initial curve in the 

x-t plane (along the line t = 0). 

x 

't1 

Figure 2.1: Characteristic curves 
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In figure 2.1, the co-ordinates (S, t) are considered as the value of S 

changing along a vertical curvy line where t is constant and 1: changes along a 

horizontal curvy line where S is constant. For t-evolution, we consider as S 

changes along the characteristic curve [x (S), t (S); 0<S<co1 and t changes along 

the initial (t = to) curve. On the other hand, for x-evolution, t changes along the 

characteristic curve [x (t), t (t); 0 < t <co] and S changes along the initial curve 

(x = t). To get characteristic curves, let us choose the characteristic equations as 

dx 
- ==a(x,t), 
dS 

dt 
-== b (x, t). 
dS 

Thus 

()u ()u dx dt du 
a x, t x + b x, t t == - U t + - U t == -

dS dS dS 

()u () dx dt du 
a x, t x + b x, t U t == - U x + - U t == - . 

dS dS dS 

Along the characteristic curve we get one ODE as 

du + c(x, t) U == 0 . 
dS 

(2.28a) 

(2.28b) 

(2.29) 

This can be easily solved and after solving it and transforming (S, t) again to 

(x, t) we get unique solution. 

The general strategies for applying the method of characteristics to a PDE are: 

Step 1: We have to solve the two characteristic equations (2.28a) and (2.28b) and 

find the constants of integration setting x(O) = t and t(O)=O. Now the 

transformation from (x, t) to (S, t); i.e x = xeS, t) and t = t(S, t). 

Step 2: We have to solve the ODE (2.29) with initial condition u(O) = f(t), where 

t are the initial points on the characteristic curves along the t = 0 axis in the x-t 

plane. We now have a solution of u (5, t). 

Step 3: We have to solve for Sand 't in terms of x and t, and substitute these 

values in u (5, 't) to get the solution to the original PDE as u (x, t). 
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The advantages of the Method of characteristics are that, (a) Method of 

characteristics is based on the exact theory of characteristics, (b) Method of 

characteristics follows closely the physics of the problem, and (c) Method of 

characteristics defines and uses the natural co-ordinate system independently 

of the particular choice of the computational grid employed. It was argued by 

Kentzer [99] that Method of characteristics affords exact means of incorporating 

algebraic boundary conditions into a finite-difference solution of partial 

differential equations. He suggested to differentiate the boundary conditions in 

the plane tangent to the boundary and to solve the resulting system of partial 

differential equations simultaneously. 

Though exact analytic solutions of the DGLAP equations are not possible 

in the entire range of x and Q2, under certain conditions analytic solutions are 

possible [100 - 104] which are quite successful as far as the HERA small-x data 

are concerned. In recent years, such a scheme in the analytic study of the 

DGLAP equations has been pursued with quite good phenomenological 

success. One of the limitations of these solutions was an ad hoc assumption of 

the factorizability of x and Q2 dependence of the gluon momentum distribution 

[105] and the non uniqueness of the solution [37]. However, by using the 

method of characteristics [77] to solve partial differential equation of two 

variables with one initial condition, we can get rid of the ad hoc assumption 

and obtain a unique [78, 79] solution. 0 
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Unpolarized Hadron Structure Functions 

The high-energy lepton-nucleon scattering has served as a sensitive 

probe for the substructure of the proton and neutron. Experiments with high 

energy electrons, muons and neutrinos have been used to characterize the 

parton substructure of the nucleon and to establish the current theory of the 

strong interaction - quantum chromodynamics. Observations of the 

experiments are scaling violation for the unpolarized nucleon structure 

functions, the measurement of the strong coupling constant Us (Q 2 ), the 

confirmation of numerous QCD sum rules and the extraction of the parton 

distributions inside the nucleon. The parton distribution functions (PDFs) 

depend on two kinematical variables x and Q2. Their Q2 dependence is called 

scaling violation, which is calculated by the DGLAP evolution equations [25-28] 

in the perturbative QCD region. The Q2 evolution equations are frequently used 

in describing high-energy hadron reactions. Because the PDFs vary significantly 

in the current accelerator-reaction range, Q2=l GeV2 to 105 GeV2, the Q2 

dependence should be calculated accurately. Furthermore, it is known that 

high-energy cosmic rays have energies much more than the TeV scale. 

Analytical forms of current PDFs are supplied typically in the GeV region, so 

that they have to be evolved to the scale which could be more than TeV in order 

to use them for investigating the cosmic rays [106, 107, 108]. 

Various numerical as well as analytical methods to solve DGLAP 

evolution equations are discussed in Chapter 2. The solutions of the 

unpolarized DGLAP equation for the quantum chromo dynamics evolution of 

parton distribution functions have been discussed considerably over the past 

years [100-104, 109-112J. But exact analytical method with unique solution is not 

known. Here we will solve unpolarized DGLAP evolution equations up to next­

next-to-leading order (NNLO) analytically by using method of characteristics 

and get unique solutions. Our results are compared with various experimental 

data. 
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Chapter 3 

Unpolarized DGLAP Evolution Equations in 

Leading Order 

It is well known that all information about the structure of hadrons 

participating in DIS comes from the hadronic structure functions. According to 

QCD, at small values of x and at large values of Q2 hadrons consist 

predominately of gluons and sea quarks. In that region, the DGLAP evolution 

equations give t [= In (Q2j A2), A is the QCD cut off parameter] and x evolutions 

of structure functions. Hence the solutions of DGLAP evolution equations give 

quark and gluon structure functions that produce ultimately proton, neutron 

and deuteron structure functions. In this chapter, the singlet and non-singlet 

structure functions have been obtained by solving DGLAP evolution equations 

in leading order (LO) at the small-x limit. Here we have used a Taylor series 

expansion and then the method of characteristics to solve the evolution 

equations. We have also calculated t and x evolutions of deuteron as well as 

non-singlet (combination of proton and neutron) structure functions and the 

results are compared with the New Muon Collaboration (NMC) [113], E665 

[114], CLAS [115, 116] and NNPDF collaboration [117, 118, 119] data. 

3.1 Theory 

The DGLAP evolution equations [25 - 28] in matrix form 

P qg. J ® (F i J ' 
Pgg G 

(3.1) 
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where Fi and G are singlet and gluon structure functions respectively and 

Pqq , Pqg , Pgq , Pgg are splitting functions. For evolution of singlet structure function, 

the quark-quark splitting function Pqq and gluon-quark splitting function Pqg 

have to be calculated and for non-singlet structure function, we have to 

calculate only quark-quark splitting functionPqq , which can be expressed as 

[112]. 

P (X,Q2)= as(Q2)p(O){x)+(as(Q2)]2 P(I){x)+(as(Q2)]3 p(2){X)+" 
qq 21t qq 21t qq 21t qq 

where p~~){x), P~q (X) and Pq~)(x) are LO, NLO and NNLO splitting functions 

respectively. Again ® represents the standard Mellin Convolution with the 

notation 

a{x)® b{x) == J dy a{y )b(XJ. 
o y y 

(3.2) 

Similarly, other splitting functions can be expressed. 

The strong coupling constant, as (Q2 ) is related with the p-function [112] as 

p(as)= oas(Q2) =_~a2 _~a3 -~a~ +"', 
aIogQ2 41t s 161t 2 

S 641t 3 

with 

~=- 1--2 --+-3- -log t-Iogt-l +P2 +0 3 ' a{Q2 \ 2 [ PI logt 1 {P; (2 )} ( 1 )] 
21t Pot Po t Pot Po t 

11 4 
Po = -Nc --Tr , 

3 3 

34 2 10 
PI =-Nc --NcNr -2CFN r , 

3 3 

R = 2857 N3 +2C 2T _205 C NT _1415 N2T + 44C T2+158 N T2 
1-'2 54 c F r 9 Fer 27 c r 9 F f 27 c f , 

where Nc is the number of colour, Nf is the number of active flavour and Tt, CF 

are constants associated with the colour SU(3) group. We have set Nc = 3, 

N 2 -1 4 1 
CF = c =-andTr = -N r' HereP O,P 1 and P2 are the one loop, two loop and 

2Nc 3 2 

three loop corrections to the QCD P - function. We can neglect P I and P2 in LO. 
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Considering splitting functions [28,80,81], the DGLAP evolution equations for 

singlet and non-singlet structure functions in LO in standard form are 

aF; _ as (t) ~[{3 + 41n (1- x)}F; (x, t)+ I~ (x, t)+ I~ (x, t)]= 0, 
at 2n 3 

(3.3) 

aF NS a (t) 2 ] ----t- -i;-3[{3 + 41n (1- X)}F2NS (x, t)+ I~s (x, t) = 0, (3.4) 

here functions I~, I;, I~s are defined in Appendix A. 

Here as (t) = 3A f with A - 4 . Let us introduce the variable u = 1- co 
21t 2 t f - 33 - 2N f 

and note that 

x x ( xu J ;-= 1-u = x+ 1-u (3.5) 

Since x< co <I, so O<u <1- x and hence the series (3.5) is convergent for I u I <1. 

So, we can use Taylor's series expansion in F; (: ' t), F2
NS 

( : ' t) and G(:, t) as 

Since x is small in our region of discussion, the terms containing x2 and higher 

powers of x can be neglected and we can rewrite 

FS(~ J '" pS( ) ~ aF;(x, t) 2,t"'2 X,t+ , 
ill 1-u ax (3.6a) 

G( 
x J G( ) xu 8G(x, t) -, t ~ x, t + -1 - -~-'--.-"-, 
ill - U ux 

(3.6b) 

FNS(~ J '" F NS ( ) ~ 8F2
NS

(X, t} 2 ,t '" 2 X,t + . 
ill 1-u ax (3.6c) 
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Here if we introduce the higher order terms in Taylor's expansion, then also 

there is no modification of the solution. Because when we solve the second 

order partial differential equation by Monges Method [75], which will be 

produced by introducing the second order terms in Taylor expansion, then 

ultimately it becomes the first order as before due to the form of the DGLAP 

equation. Similarly by introducing more terms in Taylor expansion, we hope 

for these cases also the terms can be neglected due to still smaller values of x 

[82 - 85]. 

Using equations (3.6a) and (3.6b) and performing u-integrations we get 

(3.7a) 

Putting equations (3.7a) and (3.7b) in equation (3.3) we get 

aF~~X, t) _ ;~ [AI (x)F~(x,t)+ A2(X)aF~:, t) + A,(x)G(x, t)+ A4(X)aG~'t) }3.8) 
where A((x)== 2X+X2 +4In(l-x), A2(X)==X_X3 -2xln(x), 

A,(x)~2NrG-x+x2 -~x,) and A.(X)~2N{ _~X+3X2 -2x' +~x' -x In (x)} 

In order to solve equation (3.8), we need to relate the singlet structure function 

Fi(x, t)with the gluon structure function G(x, t). For small-x and high-Q2, the 

gluon is expected to be more dominant than the sea quark. But for lower-Q2, 

there is no such clear cut distinction between the two [79, 82]. Hence for 

simplicity, let us assume 

G(x,t)= k(x)F;(x,t), (3.9) 

where k(x) is a suitable function of x or may be a constant. Here we may 

assume k(x) = k, axb, ce- dx where k, a, b, c and d are suitable parameters which 

can be determined by phenomenological analysis. But the possibility of the 

breakdown of relation also can not be ruled out [79, 82, 85]. Now equation (3.8) 

gives 

55 



Unpolarized Hadron Structure Functions 

_ a f ; (x, t) L ( ) a F ; (x, t) M ( )f S ( ) = 0 
t + 1 x + 1 x 2 x, t , at ax (3.10) 

where 

L r{x)=A f [{A2 +kA4)]' (3.11a) 

MI(Xl=A{( Al +kA, +: A.)]' (3.11b) 

To introduce Method of characteristics, let us consider two new variables 

5 and T instead of x and t, such that 

dt 
-=-t 
dS ' 

(3.12a) 

dx = L(x}, 
dS 

(3.12b) 

which are known as characteristic equations [77]. Again according to the rule 

of PDE we have 

dt BFi(x,t) dx BFi(x,t) dFi(x,t) 
--=----'--....:... + = . 

dS at dS ax dS 

Thus putting equations (3.12a) and (3.12b) in equation (3.10), we get 

dF; (S, 1:) + M, (S, 1:) F; (S, 1:) = 0 (3.13) 
dS 

Then equation (3.13) gives dFf/s,1:)) = -M, (S, 1:)dS, which can be solved as 
F2 ,S, 1: 

F,' (S, t) = F,' (0, t )exp [ - ! M I (S, t )dS l (3.14) 

For t-evolution, structure function varies with t remaining x constant [79]. Thus 

{ )M,(S,1:) 
the equation (3.14) becomes Fi(s,1:) = F;(1:\ t: with the initial condition: 

when S = 0 then t = to and F;(S, 1:)= F2S(0, 1:). Now we have to replace the co­

ordinate system (5, T) to (x, t) with the input function Fi (0, 1:) = Fi (x, to) and will 

get the t-evolution of singlet structure function in LO as 

(3.15) 
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Similarly for x-evolution, structure function varies with x remaining t constant. 

Thus the equation (3.14) becomes F: (S, ,) ~ F: (S )exp f -M'JS, '? dx with the initial 
L1 S, 't 

condition: when T = a then x = Xo and Fi (S, 't) = Fi (S, 0). Now we have to replace 

the co-ordinate system (S, T) to (x, t) with the input function F2
S (S,O) = Fi (xo' t) 

and will get the x-evolution of singlet structure function in LO as 

S( ) S( ) XI M1(X) F 2 X, t = F 2 X 0 ,t exp - () dx . 
X L( X o 

(3.16) 

Proceeding in the same way, we get t and x evolutions of non-singlet structure 

function from equation (3.4) as 

(3.17a) 

and 

(3.17b) 

The deuteron, proton and neutron structure functions measured in DIS 

can be written in terms of singlet and non-singlet quark distribution functions 

[80] as 

F 2d (x, t) = ~ F ; (x, t), 
9 

p ( ) _ 5 s ( ) 3 NS ( ) F2 X, t - -F2 X, t + -F2 X, t 
18 18 ' 

F; (x, t) = ~ F;(x, t}- ~F2NS(X, t}. 
18 18 

Thus 

F~S (x, t) = 3 [2Fi (x, t) - F: (x, t )], 

F~s (x, t) = 3[Fi (x, t) - F2
n (x, t)]. 

(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 

(3.18e) 

The t and x-evolution of deuteron structure functions in LO can be obtained by 

putting equations (3.15) and (3.16) respectively in the equation (3.18a) as 
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where 

F~(x)to)= ~ F;(x)to), 

F;(xo,t)= ~ F;(xo,t) 

(3.19a) 

(3.19b) 

(3.20a) 

(3.20b) 

Equations (3.19a) and (3.19b) are used in our phenomenological work for 

deuteron structure function and equations (3.17a) and (3.17b) are used for non­

singlet structure function which is the combination of proton and deuteron or 

neutron related by the relations (3.18d) or (3.18e). 

3.2 Results and Discussions 

Here we compare our results of t and x-evolution of deuteron structure 

function F2d (x, t) as well as non-singlet structure function F~s (x, t) measured by 

the NMC in muon-deuteron DIS [113], Fermilab E665 data in muon-deuteron 

DIS [114], CLAS Collaboration from the CEBAF Large Acceptance Spectrometer 

(CLAS) at the Thomas Jefferson National Accelerator Facility [115, 116] as well 

as NNPDF Collaboration [117, 118, 1191 based on Artificial Neural Networks by 

considering their parameterization from NMC and BCDMS [120] data. We 

consider the QCD cut-off parameter A
MS 

= 0.323 GeV for as (Mi)= 0.119 ± 0.002 

[57]. In all plots, solid curves are our best fit results. Experimental data and 

parameterization are given with vertical upper and lower error bars for total 

uncertainties of statistical and systematic errors. Structure functions at lowest­

Q2 for t-evolutions and at largest-x for x-evolutions are taken as input functions. 

The NMC data consist of four data sets for the proton and the deuteron 

structure functions corresponding to beam energies of 90 GeV2, 120 GeV2, 200 
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GeV2 and 280 GeV2. They cover the kinematics range 0.002 ~ x ~ 0.60 and 0.5 

GeV2 ~ Q2 ~ 75 GeV2. Again E665 data were taken at Fermilab in inelastic muon 

scattering with average beam energy of 470 GeV2. Similarly in CLAS 

Collaboration data, measurement of the deuteron structure function from the 

inclusive cross sections measured in interactions of electrons with a liquid 

deuterium target. The data cover Q2 values from 0.4 to 6 GeV2. The data are 

taken from the CLAS internal note from Osipenka et al. The authors combine 

these data with other world data to study the Q2 evolution of its moments and 

higher twist effects [115]. On the other hand, the BCDMS data consist of four 

data sets for the proton structure function, corresponding to beam energies of 

100 GeV2, 120 GeV2, 200 GeV2 and 280 GeV2 and three data sets for the deuteron 

structure function corresponding to beam energies of 120 GeV2, 200 GeV2 and 

280 GeV2. They cover the kinematic range of 0.06 ~ x ~ 0.80 and 7 GeV2 ~ Q2 ~ 

280 GeV2. For our phenomenological work, we consider the ranges as 0.0045 ~ x 

~ 0.180 and 0.75 GeV2 ~ Q2 ~ 48.0 GeV2 for NMC data, 0.01 ~ x ~ 0.069 and 1.496 

GeV2 ~ Q2 ~ 13.391 GeV2 for E665 data, 0.1225 ~ x ~ 0.9055 and 5.075 GeV2 ~ Q2 ~ 

5.925 GeV2 for CLAS collaboration, and also 0.001 ~ x ~ 0.80 and 1 GeV2 ~ Q2 ~ 

100 GeV2 for NNPDF collaboration respectively. 

As NNPDF Collaboration are based on Artificial Neural Networks, 

considered their parameterization for deuteron and non-singlet structure 

functions from NMC and BCDMS data, thus for our phenomenological analysis 

we have considered the data sets of structure functions in the range of what the 

NMC and BCDMS provided at small-x. Artificial neural networks provide 

unbiased robust universal approximation to incomplete or noisy data. In 

particular, artificial neural networks are now a well established technique in 

high energy physics, where they are used for event reconstruction in particle 

detectors. The NNPDF approach [117, 118, 119] can be divided into four main 

steps - (a) the generation of a large sample of Monte Carlo replicas of the 

original experimental data, in a way that central values, errors and correlations 

are reproduced with enough accuracy, (b) the training of a set of PDFs 

parameterized by neural networks on each of the above Monte Carlo replicas of 
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the data. PDFs are parameterized at the initial evolution scale Q~ and then 

evolved to the experimental data scale Q2 by means of the DGLAP equations, 

(c) the neural net training is stopped dynamically before entering into the over 

learning regime, that is, so that the PDFs learn the physical laws which underlie 

experimental data without fitting simultaneously statistical noise and finally, 

(d) once the training of the Monte Carlo replicas has been completed, a set of 

statistical estimators can be applied to the set of PDFs, in order to assess the 

statistical consistency of their results. Here the systematic errors are - (a) 

calibration of the incoming muon energy, (b) calibration of the outgoing muon 

energy, (c) spectrometer resolution, (d) absolute normalization uncertainty and 

(e) relative normalization uncertainties. 

In figures 3.1, we have plotted computed values of F: (x, t) against Q2 

values for x = 0.0045 and x = 0.008 considering k(x) = k, a constant and 

compared with NMC data. It is found that agreements of our results with data 

are best for 1.03 ~ k ~ 1.6 in the entire range of our discussion. 
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Figure 3.1: Comparison of t-evolution of deuteron structure function in LO with NMC 
data considering k(x) =k, a constant 
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In figures 3.2, we have plotted computed values of F2d (x, t) against Q2 

values for a fixed x with k(x) = axb, a power function of x and compared with 

NMC data. Here we have plotted the graphs for x = 0.008 and x = 0.0125 

respectively. It is found that agreements of our results with data are excellent 

for 5 ~ a ~ 10 and 0.5 ~ b ~1.0 in the range of our consideration. 
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Figure 3.2: Comparison of t-evolution of deuteron structure function in LO with NMC 
data considering k(x) = axb, a power function of x 

In figures 3.3, we have plotted computed values of F:(x, t) against Q2 for 

a fixed x considering k(x) = ce - dx and compared with NMC data. It is found that 

agreements of our results with experimental data are excellent for 3~ c ~ 7 and 

10 ~ d ~ 20 in the range of our consideration. In figures 3.4, we have tested the 

sensitivity of parameter k for t-evolution within our observation and found the 

best agreement with the range 1.03 ~ k ~ 1.6 for the NMC data. Here as we go 

for smaller x, the best fitting curve will get for higher value of k. Thus we say 

that gluon structure functions dominate at small-x. 
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Figure 3.3: Comparing t-evolution of deuteron structure function in LO with NMC 
data considering k(x) = ce - dx, an exponential function of x 
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In figures 3.5 for x-evolution, we have plotted computed values· of 

F~(x, t} against the x values for a fixed Q2 with considering k(x) = k, as a 

constant and compared with NMC data. Here we have plotted the graphs for 

Q2 = 11.5 and 27 GeV2 for the range of 0.025 :s;; x :s;; 0.14. The best-fit curves get 

for the range of 1.0:S;; k:s;; 1.3 and as Q2 increases the k value also increases. 
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Figure 3.5: Comparing x-evolution of deuteron structure function in LO with NMC 
data considering k(x) = k, a constant 
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In figure 3.6 for x-evolution, we have plotted computed values of 

F:(x, t} against the x values for a fixed Q2 with k(x) = axb, a power function of x. 

Our results are compared with NMC data. The best-fit curves are for the range 

of 5::;; a::;; 10 and b=1.0 in our region of discussion. 
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Figure 3.6: Comparing x-evolution of deuteron structure function in LO with NMC 
data considering k(x) = axb, a power function of x 
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In figure 3.7 for x-evolution, we have plotted computed values of 

F2d(x,t) against the x values for a fixed Q2 with k(x) = ce- dx, exponential function 

of x. Our results are compared with NMC data and the best-fit curves are for 

3 ~ c ~ 8 and 10 ~ d ~ 20 within our range of discussion. 
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Figure 3.7: Comparing x-evolution of deuteron structure function in LO with NMC 
data considering k(x) = ce - dx, an exponential function of x 
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In figure 3.8, we have plotted computed values of F:(x, t} against the x 

values for a fixed Q2with k(x)=k, a constant and our results are compared with 

CLAS collaboration data. Though our theory on the DGLAP evolution 

equation are satisfied at high-Q2 and small-x, but CLAS data are available at 

comparably smaller-Q2 and higher-x. Thus our results are not properly satisfied 

with entire range of CLAS collaboration data. The best-fit curves are for 0.6 ~ k 

~ 1.0 with high-Q2 and small-x ranges that available in CLAS collaboration. 

Since the results for k(x) = axband k(x) = ce- dx have no significant variation with 

the results for k(x) = k, so the earlier results are not included here. 
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Figure 3.8: Comparing x-evolution of deuteron structure functions in 

LO with CLAS Collaboration data considering k(x) = k, a constant 
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In figures 3.9, we have plotted computed values of F; (x, t) against the 

Q2 values for a fixed x and our results are compared with NNPDF collaboration 

data where the range of data used to train the 1000 nets which produced the 

results in ranges 0.003 ~ x ~ 0.8; 0.5 GeV2 ~ Q2~ 280 GeV2 for the deuteron and 

non-singlet structure functions. Here we have considered k(x) = k, a constant 

and best-fit curves are for k = 1.1. The results for k(x) = axb and k(x) = ce - dx have 

no significant variation, so these are not included here. 
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In figures 3.10, for x-evolution, we have plotted computed values of 

F~(x, t) against the x values for a fixed Q2 with k(x) as a constant and our results 

are compared with NNPDF collaboration data. The best-fit curves are for 

k(x) = k = 1.2. The results for k(x) = axb and k(x) = ce- dx have no significant 

variation, so these are not included here. 
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Figure 3.10: Comparing x-evolution of deuteron structure function in LO with NNPDF 
coUaboration data considering k(x) = k, a constant 
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In figures 3.11, we have plotted computed values of F2
NS (x, t} against Q2 

values for fix values of x at 0.01, 0.017, 0.024, 0.035 for E665 data and at 0.0045, 

0.008,0.0125,0.0175 for NMC data. The computed values are plotted against the 

corresponding values of Q2 for the range from 1.496 GeV2 to 13.396 GeV2 for 

E665 data and from 0.75 GeV2 to 7.0 GeV2for NMC data. 
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In figure 3.12, the computed values of F:s (x, t) against x are plotted for 

fix Q2 at 5.236 GeV2, 7.161 GeV2, 9.795 GeV2, 13.391 GeV2 for E665 data and at 

9.0 GeV2, 11.5 GeV2, 15.0 GeV2, 20.0 GeV2 for NMC data. The data at highest 

values of x are taken as input values. 
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Figure 3.12: x-evolution of non-singlet structure functions in LO compared with E665 
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3.3 Conclusion 

In this chapter, we have solved the unpolarized DGLAP evolution 

equations for singlet and non-singlet structure functions in LO by using method 

of characteristics. Also we have derived the t and x-evolutions of deuteron as 

well as non-singlet structure functions and our results are compared with 

NMC, E665, CLAS collaboration data and NNPDF parameterization results. It 

is seen that structure functions increase as Q2 increases from lower to higher 

values and decrease with x from higher to lower values. Our results are in good 

agreement with these data sets especially at small-x and high-Q2 region. 

Though results in some graphs do not agree very well with data sets, but our 

expectation is that it will be better in higher orders viz. NLO and NNLO which 

will discuss in chapter 4 and chapter 5 respectively.D 
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Chapter 4 

Unpolarized DGLAP Evolution Equations in 

Next-to-Leading Order 

The DGLAP evolution equations have been solved in NLO at the small-x 

limit. Here we have used a Taylor series expansion and then the method of 

characteristics to solve the evolution equations. We have also calculated t and x­

evolutions of deuteron structure function as well as non-singlet structure 

function and the results are compared with the New Muon collaboration 

(NMC) data [113], E665 data [114], CLAS collaboration data [115, 116] and 

NNPDF parameterization [117,118,119]. 

4.1 Theory 

Considering the splitting functions in NLO [121, 122, 123], the DGLAP 

evolution equations for singlet and non-singlet structure functions in NLO in 

standard form are 

aF; _ as(t)[~{3+4ln(I-X)}F2S(X,t)+I~(X,t)+I;(X,t)J-(as(t))\~ =0,(4.1) 
at 21t 3 21t 

Here I~ , I;, I~, I~s ,I~s are some functions defined in Appendices A and B. 

The strong coupling constant for NLO can be written as as (t) = 41t [1- PI~nt], 
Pot Pot 

II 4 34 2 10 (Q2J where Po =-Nc --Tf' PI =-Nc --NcNf -2CFN f and t = In -2 . 
3 3 3 3 A 
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Let us introduce the variable u==1-mand as discussed in Chapter 3, we 

can use Taylor'S expansion series in Fi(:, t) and G(: ' t). Since x is small in 

our region of discussion, the terms containing x2 and higher powers of x can be 

neglected, i.e. 

FS(~ ) = FS( ) ~ aF;(x, t) 
2 , t 2 X, t + , 

ro 1- u ax 

G(~ ) = G( ) ~ oG(x, t) ,t x,t + . 
ro l-u ax 

Using these equations and performing u-integrations, equation (4.1) becomes 

the form 

aFi (x, t) _ ~[AI (x)Fi(x, t)+ A2 (x) aFi(x, t) + A3 (x)G(x, t)+ A4 (x) aa(x, t )] 
at 27t ax ax 

_(~)2 [B\ (x)F2S (x, t)+ B2 (x) aF; (x, t) + B3 (x)G(x, t)+ B4 (x) aa(x, t)], (4.3) 
27t ax ~ 

where functions Al (x), A2 (x), A3 (x) and A4 (x) are discussed in chapter 3 and 

others are 

B,(x) ~ X J[f(ro) + : N rF~ (ro)r ~ ro dro, 
x 

I I 1 
B3 (x) = f F;g (m )dm and B4 (x) = x f ~ ro F;g (00 )dro. 

x x 

Now let us assume a(x, t) = k(x)F~(x, t), where k(x) is a suitable function 

of x or may be a constant. We may assume k(x) == k, axb, ce- dx where k, a, b, c, d 

are suitable parameters which can be determined by phenomenological 

analysis. Thus equation (4.5) takes the form 

oFi (x, t) L ( ) aFi (x, t) M ( )pS ( ) - 0 - t + 2 X + 2 X 2 x, t - , at ax (4.4) 

where as (t) = 3A f , 

21t 2 t 
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(4.5a) 

(4.5b) 

Here we consider an extra assumption T2 = T.To with T = as (t) , where To is a 
21t 

numerical parameter, which can be determined by phenomenological analysis 

[79, 124, 125]. 

To introduce the method of characteristics, let us consider two new 

variables 5 and T instead of x and t, such that ~ = -t and dx = L2 (x), which 
dS dS 

are known as characteristics equations. Putting these in equation (4.4) we get 

dF; (S, 1:) + M2 (S, 1:)F; (S, 1:) = O. 
dS 

(4.6) 

This can be solved as 

(4.7) 

For t-evolution, structure function varies with t remaining x constant. Thus the 

{ JM
2(S;r) 

equation (4.7) becomes Ff(s, T) = Ff(T\ t: ; F; (S, 1:) = F; (1:) for 5=0, t=to. 

Now we have to replace the co-ordinate system (5, T) to (x, t) with the 

input function F;(1:) = F;(x, to) and will get the t-evolution of Singlet structure 

function in the NLO as 

(4.8a) 

Similarly the x- evolution of Singlet structure function in NLO will be 

(4.8b) 

where 
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Proceeding in the same way, we get t and x-evolutions of non-singlet structure 

function in NLO from equation (4.2) as 

F r s (x, t) = Frs (x, to _t , 
{ )

Af[AI(X)+TOBI(X)) 

to 
(4.9a) 

(4.9b) 

The deuteron and proton structure function.s measured in DIS can be written in 

terms of singlet and non-singlet quark distribution functions, which are shown 

in the chapter 3. Thus the t and x-evolution of deuteron structure functions in 

NLO can be obtained as 

(4.10a) 

(4.10b) 

Here the input functions are F~ (x, to) = 2. F~ (x, to), F~ (xo, t) = 2. F~ (xo, t) and 
2 2 

Thus for phenomenological analysis, we use equations (4.10a) and (4.1b) 

to study deuteron structure functions and equations (4.9a) and (4.9b) to study 

non-singlet (combination of proton and neutron) structure functions in NLO. 

4.2 Results and Discussions 

In this chapter, we compare our result of t and x-evolution of deuteron 

structure function F~ measured by the NMC in muon deuteron DIS with 

incident momentum 90, 120, 200, 280 GeV2, E665 data taken at Ferrnilab in 

inelastic muon scattering with an average beam energy of 470 GeV2, CLAS 

collaboration data at the Thomas Jefferson National Accelerator Facility [115, 

116J as well as NNPDF parameterization [117, 118, 119J based on Artificial 
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Neural Networks. It is observed that our results are very sensitive to arbitrary 

parameters k, a, b, c and d in t-evolution. Figures 4.2, 4.3 and 4.4 are for t­

evolution of deuteron structure function as k(x) = k a constant, a power 

function axb and an exponential function ce-dx of x respectively. We have 

plotted computed values of Ft (x, t) against Q2 values for a fixed x in LO and 

NLO for the various values of k(x). Here the solid lines represent the best fitting 

curves for the parameters in NLO and the dotted lines represent those for LO 

evolutions. Figures 4.5, 4.6 and 4.7 are for x-evolution of deuteron structure 

function as k(x) a constant k, a power function axb and an exponential function 

ce-dx of x. Here we have plotted computing values of F2d against the x values for 

a fixed Q2. Here also the solid lines represent the best-fit curves for the 

parameters in NLO and the dotted lines represent in LO evolutions. In figure 

4.8, the t and x-evolutions for non-singlet structure functions are compared 

with experimental data. For t-evolutions, the structure functions at lowest-Q2 

represent the input values and for x-evolution, the structure functions at 

highest-x represent the input values. 

In figure 4.1, we put T2(t) and ToT(t) against Q2 and we can see that for 

To = 0.048, the values of T2 and T.To are nearly same in our region of discussion. 

Thus the consideration of parameter To does not give any abrupt change in our 

results. 
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Figure 4.1: Comparison of T2 and To.T values 
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In figures 4.2, t-evolutions of F2d has been obtained for fix values of x 

considering k(x) = k, a constant and our results are compared with NMC 

experimental data. Though the best fit curves found within 1.0 ~ k ~ 2.0 for our 

range of discussion, here excellent results are obtained for k= 1.4 and 1.1 at x = 

0.0045 and 0.0125 respectively. 
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Figure 4.2: t-evolution of deuteron structure functions in NLO with k(x) = k, a 
constant, compared with NMC data 
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In figures 4.3, t-evolutions of F~ has been obtained for fixed values of x at 

x ::: 0.0045 and 0.0175 considering k (x) = axb, a power function of x and our 

results are compared with NMC experimental data. Though the best fit curves 

are found within 5.0 ~ a ~ 10.0 and 0.5 ~ b ~ 0.8 for our range of discussion, here 

excellent results are obtained for a = 6.0, b = 0.7 and a = 8.0, b = 0.7 at x = 0.0045 

and 0.0175 respectively. 
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Figure 4.3: t-evolution of deuteron structure functions in NLO with k (x) = axb, a power 
function of x, compared with NMC data 
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In figures 4.4, t-evolutions of F2d has been obtained for fixed values of x at 

x = 0.0045 and 0.008 considering k (x) = ce- dx, an exponential function of x and 

our results are compared with NMC experimental data. Though the best fit 

curves are found within 2.0 ~ c ~ 8.0 and 10.0 ~ d ~ 25.0 for our range of 

discussion, here excellent results are obtained for c= 4.0, d = 20.0 and c = 3.0, 

d = 15.0 at x = 0.0045 and 0.008 respectively. 
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Figure 4.4: t-evolution of deuteron structure functions in NLO with k (x) = ce - dx, an 
exponential function of x, compared with NMC data 
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In figures 4.5, x-evolutions of F2d has been obtained for fixed values of Q2 

considering k(x) = k, a constant. Though the best fit curves are found within 0.5 

~ k ~ 3.0 for our range of discussion, here excellent results are obtained for 

k=l.l and k=1.3 at Q2 = 11.5 GeV2 and 27.0 GeV2respectively. 
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Figure 4.5: x-evolution of deuteron structure functions in NLO with k(x) == k, a 
constantl compared with NMC data 
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In figures 4.6, x-evolutions of F~ has been obtained for fixed values of Q2 

considering k(x) = axb, a power function of x. Though the best fit curves are 

found within 1.1 ~ a ~ 2.8 and 0.9 ~ b ~ 1.4 for our range of discussion, here 

excellent results are obtained for a = 5.5, b = 1.0 and a = 7.5, b = 1.0 at Q2 = 20.0 

GeV2 and 27.0 GeV2 respectively. 
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Figure 4.6: x-evolution of deuteron structure functions in NLO with k (x) = axb, a 
power function of x, compared with NMC data 
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In figures 4.7, x-evolutions of F2d has been obtained for fixed values of Q2 

considering k (x) = ce- dx as an exponential function of x. Though the best fit 

curves are found within 3.0 ~ c ~ 8.0 and 10 ~ d ~ 20 for our range of discussion, 

here excellent results are obtained for c=3.0, d=15 and c=4.0, d=14 at Q2 = 15.0 

GeV2 and 20.0 GeV2. 
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Figure 4.7: x-evolution of deuteron structure functions in NLO with k (x) = ce - dx, an 
exponential function of x, compared with NMC data 
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In figure 4.8, we have plotted computing values of F2d (x, t) in NLO 

against the x values for a fixed Q2 with k(x) = k, a constant and results are 

compared with eLAS collaboration data and our LO results. Our solution of 

the DGLAP evolution equations are satisfied at high-Q2 and small-x but eLAS 

data are available at comparably smaller Q2 and higher-x. Thus our results are 

not satisfied with entire range of eLAS collaboration data. The best-fit curves 

are obtained for 0.6:5; k:5; 1.0 with high-Q2 and small-x ranges available in eLAS 

collaboration. 
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Figure 4.8: x-evolution of deuteron structure functions in NLO for k (x) = k, a constant, 
compared with CLAS collaboration data 
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In figures 4.9, we have plotted computed values of F2d(x, t) against the 

Q2 values for a fixed x and our results are compared with NNPDF collaboration 

parameterization where the range of data used to train the 1000 nets which 

produced the results in x = 0.003 - 0.8; Q2 = 0.5 - 280 GeV2 for the deuteron and 

non-singlet structure functions. Here we have considered k(x) = k, a constant 

and best-fit curves are for k = 1.1 at x = 0.05 and 0.01. The results for k(x) = axb 

and k(x) = ce - dx have no significant variation, so these are not included here. 
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Figure 4.9: t-evolution of deuteron structure functions in NLO conSidering k(x) = k, a 
constant, compared with NNPDF parameterization 
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In figures 4.10, for x-evolution, we have plotted computed values of 

F2d(x, t} against the x values for a fixed Q2 with k(x) =k, a constant. The best-fit 

curves are for k(x) = k = 1.2 at Q2 = 20 GeV2 and 30 GeV2. The results for 

k(x)=axb and k(x) = ce - dx have no significant variation, so these are not included 

here. 
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Figure 4.10: x-evolution of deuteron structure functions in NLO considering k(x)= k, a 
constant, compared with NNPDF parameterization 
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In figures 4.11, we have plotted computed values of F2
NS (x, t) against the 

corresponding values Q2 for fixed values of x. Here the first plots are compared 

with E665 data for the values of Q2 from 1.496 GeV2 to 13.396 GeV2 at x = 0.01, 

0.017,0.024 and 0.035. Similarly second plots are compared with NMC data for 

the values of Q2 from 0.75 GeV2 to 7.0 GeV2 at x = 0.0045, 0.008, 0.0125 and 

0.0175. Value of each data point is increased by adding O.5i and 0.3i for E665 

and NMC data, where i = 0, I, 2, 3 etc. Here we can mention that the non-singlet 

structure function does not include k(x), hence our results are parameter free. 
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Figure 4.11: t-evolution of non-singlet structure functions in NLO compared with E665 
andNMCdata 
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In figures 4.12, the computed values of F2
NS (x, t) against the 

corresponding values of x are plotted for fixed Q2. Here the first plots are 

compared with E665 data for the values of x from 0.01 to 0.069 at Q2 = 5.236 

GeV2, 7.161 GeV2, 9.795 GeV2 and 13.396 GeV2. Similarly second plots are 

compared with NMC data for the values of x from 0.025 to 0.14 at Q2 = 9.0 

GeV2, 11.5 GeV2, 15.0 GeV2and 20.0 GeV2. Value of each data point is increased 

by adding 0.5i and 0.2i for E665 and NMC data, where i = 0, 1, 2, 3 etc. Here we 

can mention that the non-singlet structure function does not include k(x), hence 

our results are parameter free. 
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Figure 4.12: x-evolution of non-singlet structure functions in NLO compared with E665 
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4.3 Conclusion 

Here we solve the unpolarized DGLAP evolution equations in NLO for 

singlet and non-singlet structure functions by using method of characteristics. 

Also we calculate the deuteron structure function and non-singlet structure 

function in terms of proton and deuteron structure functions and our results are 

compared with NMC data, E665 data, CLAS collaboration data and NNPDF 

parameterization results. Our results are in good agreement with these data sets 

especially at small-x and high-Q2 region. It is seen that structure functions 

increase as Q2 increases from lower to higher values and decrease with x from 

higher to lower values also our results for NLO are better than that for LO. 

Though in some cases results do not agree with data sets very well, but our 

expectation is better in NNLO which will be discussed in chapter 5.0 
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Chapter 5 

Unpolarized DGLAP Evolution Equations in 

N ext-N ext-to-Leading Order 

The one and two-loop splitting functions have been known for a long 

time and we studied DGLAP evolution equations in LO and NLO in the 

chapter 3 and chapter 4 respectively. The computation of the three-loop 

contributions to the anomalous dimensions is needed to complete the NNLO 

calculations for DIS. The NNLO corrections should be included in order to 

arrive at quantitatively reliable predictions for hard processes at present and 

future high energy colliders. Recently the three loop splitting functions are 

introduced with a good phenomenological success [123 - 133]. Here we solve 

the DGLAP evolution equation in NNLO analytically by using method of 

characteristics and get unique solution with good agreement with experimental 

data. Hence it is significant as an important phenomenological work for 

studying structure functions. We have calculated t and x-evolutions of deuteron 

structure function as well as non-singlet structure function and the results are 

compared with the New Muon Collaboration (NMC) [113], E665 [114], CLAS 

collaboration [115, 116] data and NNPDF collaboration parameterization [117, 

118,119]. 
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5.1 Theory 

Considering the splitting functions p~~)(x) and Pq~)(x), the DGLAP 

equation have been solved in LO and NLO as discussed in Chapter 3 and 

Chapter 4 respectively. By adding p~~)(x) with previous terms we will get the 

NNLO evolution equations. The three loop quark-quark splitting function 

p~~)(x) can be expressed as 

P (2) _ P (2) + P (2) 
QQ - NS PS (5.1) 

The non-singlet contribution P~~ [131] dominates PQq at large-x, where the 'pure 

singlet' term pW [132] is very small. At small-x, On the other hand, the latter 

contribution takes over as xPW does not vanish for x~O, unlike xP~2J. The 

splitting functions are obtained from the N-space results of the Mellin space by 

an inverse Mellin transformation [125-1351. 

After simplification, the singlet and non-singlet DGLAP evolution 

equations in NNLO take the form as 

_2 __ s __ {3 + 41n(1- x)}Fi(x, t)+ I~(x, t)+ I~(x, t) 8F
S 

a ~)[2 ] 
at 21t 3 

- ( a~~t »)\Hx, t)- ( a~~t»)3 I~ (x, t) ~ 0 (5.2) 

8~S _ a~~t)[~ {3 + 4ln(l- x)}F~S (x, t)+ I~s (x, t)] 

-( a~~t»)\~S(x,t)_( a~~t»)\rS(x, t) ~ o. (5.3) 

Functions I~, I~, I~, It I~s, I~s ,I~s are defined in Appendices A, Band C. Here 

x-space splitting functions are behaved well at small-x [133]. 

Now introducing the variable u = 1-0), as in Chapter 3, we have 

FS(~ ) = FS( ) xu 8Fi(x, t) 
2 ,t 2 x, t + , 

0) l-u ax (5.4) 
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G(~ ) = G( ) xu oG(x, t) ,t x,t + . 
ill l-u Ox 

(5.5) 

Using these and performing u-integrations, equation (5.2) takes the form 

oFi{x, t) _ ~[AI (x}Fi{x, t)+ A2 (x)oF~{X, t) + A3 (x)G(x, t)+ A4 (x}oG{x, t)] 
a ~ & & 

-(;J[ Bl (x)Ff(x, t)+ B2(X)aF~, t) + B, (x)G(x, t)+ B4 (x)OGt' t)] 

-( ;J[ C1 (x)F1{x, t)+ C2(X)aF~, t) + c,(x)G(x, t)+ C4 (x)ilG~, t)] = o. (5.6) 

The functions Al(X), A2(x), A3(x), A4(x) are defined in Chapter 3 and B1(X), B2(X), 

B3(X), B4(X) are defined in Chapter 4. Now C1(X), C2(X), C3(X) and ~(x) are 

defined in the Appendix C due to their large sizes. 

In order to solve equation (5.6), let us assumeG(x,t)=k(x)F;(x,t), 

where k(x) is a suitable function of x or may be a constant. Thus equation (5.6) 

takes the form 

_ a f ~ (x, t) L ( ) a f ~ (x, t) M ( )f S ( ) - 0 t + x + X 2 x, t - , at ax (5.7) 

where 

[( 
8k(x) J ( 8k(x) J] M{x} = Af Al + k(x)A3 + ax A4 + To Bl + k(x)B3 + ax B4 

Here we can consider two numerical parameters To and T 1, such that 

T2{t) = To.T{t) and T3 (t) = To.T{t}T{t) = T1.T{t), where T(t) = as (t) [125]. 
21t 

To introduce the method of characteristics, let us consider two 

characteristic equations ~ = -t and dx = L(x). Putting these in equation (5.7), 
dS dS 

we get dFf (S, 1:) + M(S, 1:)F; (S, 1:) = 0, which can be solved as 
dS 
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(5.8) 

For initial condition S = ° ~ t = to and F;(S,t)= F;(O,t). Now we have to change 

the co-ordinate system from (S, 't) to (x, t) with the input function 

F; (0, t) = F2
S (x, to) and will get the t-evolution of singlet structure function at 

NNLOas 

Similarly the x-evolution of singlet structure function at NNLO will be 

PI = ( Al +k{x)A3 + a~x) A4), 

P 3 = (c 1 + k (x)c 3 + ok (x) C 4 ) 
ox ' 

Q 2 = (B 2 + k (x)c 4 ), 

Q 1 = (A 2 + k (x )A 4 ), 

Q 3 = (C 2 + k(X)c4) 

(5.9) 

(5.10) 

Thus the t and x-evolutions of deuteron structure functions at NNLO can be 

obtained as 

(5.11) 

(5.12) 

where Ft (x, to) = ~Fi(x, to)and Ft (xo, t) == ~ Fi(xo, t) are input functions. 
2 2 

Proceeding in the same way we will get the t and x-evolution of non-

singlet structure function from equation (5.3) as 

F2
NS (x, t)= F:s (x, to _t 

{ )

AdAI +ToBI +TIC 1 ] 

to 
(5.13) 
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with 

F 2NS (x, to) = 3 [2F l' (x, to) - F t (x, to)] , 

Frs (xo, t) = 3[2Fi (xo, t)- F~ (xo, t)]. 

(5.14) 

(5.15) 

(5.16) 

Thus for phenomenological analysis we use equations (5.11) and (5.12) to study 

unpolarized deuteron structure functions and equations (5.13) and (5.14) to 

study non-singlet (combination of proton and neutron) structure functions in 

NNLO. 

5.2 Results and Discussions 

Our results of equation (5.11) for t-evolution and equation (5.12) for x­

evolution of deuteron structure function Ft (x, t) are compared with NMC data 

(in muon- deuteron DIS with incident momentum 90, 120, 200, 280 GeV2 ), 

CLAC collaboration data and NNPDF collaboration parameterization. We have 

also compared our results of equations (5.13) and (5.14) for t and x-evolutions of 

non-singlet structure function F~s (x, t) with NMC and E665 experiment data. 

We consider the range 0.4 ~ Q2 ~ 6.0 GeV2 for CLAS collaboration data, 5.0 ~ Q2 

~ 50.0 GeV2 for NNPDF collaboration parameterization, 0.01 ~ x ~ 0.0489 and 

1.496 ~ Q2 ~ 13.391 GeV2 for E665 data, also 0.0045 ~ x ~ 0.14 and 0.75 ~ Q2 ~ 27 

GeV2 for NMC data. It is observed from figure 5.1 that, within these range, for 

the lowest error we have to consider To = 0.048 and T1 = 0.003. Figures 5.2 

represent the t-evolution of deuteron structure function and figures 5.3 

represent the x-evolution of deuteron structure functions which are compared 

with NMC data. Figures 5.4 represents the t- and x-evolution of deuteron 

structure functions which are compared with CLAS collaboration data. 

Similarly, figures 5.5 represent the t-evolution of deuteron structure functions 

and figures 5.6 represent the x-evolution of deuteron structure functions which 

are compared with NNPDF collaboration parameterization. On the other hand, 
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figures 5.7 represent the t-evolution and figures 5.8 represent x-evolution of 

non-singlet structure functions which are compared with E665 and NMC data. 

It is observed that the results for k(x)=axb and k(x) == ce- dx have no significant 

variation with results for k(x)=k, so we consider only latter case and former two 

are not included here. The best-fit curves are obtained for 0.5 ~ k ~ 2.0. Here 

errors are statistical and systematic uncertainty. Lowest-t and highest-x points 

are taken as inputs for t and x-evolution respectively. 

In figure 5.1, we put T2(t) and To.T(t) as well as T3(t) and TLT(t) against 

Q2 and we can see that for To = 0.048 and TI = 0.003, the values of P and T.To as 

well as T3 and T.TI are nearly same within the range of 0 ~ Q2 ~ 100 GeV2. Thus 

the consideration of parameters To and TI does not give any abrupt change in 

our results. Value of each data point is increased by adding 0.015 for P(t) and 

TI.T(t). 
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Figure 5.1: Comparison of T2 and To.T as well as T3(t) and T1.T(t) values 
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In figures 5.2, t-evolutions of Ff (x, t) have been plotted against Q2 

keeping x constant with the values of 0.0045, 0.008, 0.0125 and 0.0175 

respectively. Our NNLO results are compared with NMC data and our NLO 
and LO results. 
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Figure 5.2: t-evolution of deuteron structure functions in NNLO compared with NMC 

data 
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In figures 5.3, x-evolutions of F: (x, t) have geen plotted against x 
I 

keeping Q2 constant with the values of Q2 = 11.5 GeV2, 15.0 GeV2, 20.0 GeV2 and 

27.0 GeV2 respectively and our NNLO results are compared with NMC data. 

Also we compared our NNLO results with our NLO and LO results. Here we 

consider k(x) = k, a constant and best fitting found for the values 1.0 ~ k ~ 1.6. 
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Figure 5.3: x-evolution of deuteron structure functions in NNLO compared with NMC 
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In figures 5.4, we have plotted computed values of F1(x, t) for NNLO, 

against the x values for a fixed-Q2 with k(x) = k, a constant and our results are 

compared with CLAS collaboration data. Also we compared NNLO results 

with our NLO and LO results. Though our solution of the DGLAP evolution 

equations are better at high-Q2 and small-x, but CLAS data are available at 

comparably smaller-Q2 and higher-x. Thus our NNLO results are not properly 

satisfied with CLAS collaboration data. The nearly fit curves are obtained for 

0.6 S k s 1.0 with high-Q2 and small-x ranges that available in CLAS 

collaboration. 
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Figure 5.4: x-evolution of deuteron structure functions compared with eLAS 
collaboration data 
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In figures 5.5, we have plotted our computed NNLO values of Ft (x, t) 

against the Q2 values for a fixed-x and our results are compared with NNPDF 

collaboration parameterization. Also we compared our NNLO results with our 

NLO and LO results. Here we have considered k(x) = k, a constant and best-fit 

curves are obtained for k = 1.1 at x = 0.05 and 0.01. 
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Figure 5.5: t-evolution of deuteron structure functions in NNLO considering k(x) = k, a 
constant, compared with NNPDF collaboration parameterization 
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In figures 5.6, we have plotted our computed NNLO results of F~ (x, t) 

against the Q2 values for a fixed-x and compared with NNPDF collaboration 

parameterization. Also we compared our NNLO results with our NLO and LO 

results. Here we have considered k(x) = k, a constant and best-fit curves are 

obtained for k = 1.1 at x = 0.05 and 0.01. 

0.6 

0.54 

't:I 
N 

LL 

0.48 

0.42 

0.01 

0.56 

0.49 

't:I 
N 

LL 

0.42 

---....... -.................... ... 

-NNLO 
NLO 

...... LO 

(a) Q2 = 20 GeV2 

-.. _-

0.014 x 0.018 

..... . ..... '. ..... ............... .... ..... ......... '. 

(b) Q2 = 30 GeV2 

". ...... 
' ....... '. ...... 

-NNLO 
NLO 

...... LO 

............. ::-:: .. --::- ........ 
........... ::-...... 

0.35 
0.015 0.04 x 0.065 

0.022 

0.09 

Figure 5.6: x-evolution of deuteron structure functions in NNLO considering k(x) = k, a 
constant, compared with NNPDF collaboration parameterization 

99 



Unpolarized Hadron Structure Functions 

In figures 5.7, t-evolutions have been plotted as F2
NS (x, t) against Q2 

keeping x constant with the values of 0.01, 0.017, 0.024 and 0.035 for E665 data 

and 0.0045, 0.008, 0.0125 and 0.0175 for NMC data. Here also we compared our 

NNLO results with our NLO and LO results. For clarity, data are scaled up by 

+O.5i (i=O, 1, 2, 3, - -) for E665 data and by +0.3i for NMC data, starting from 

bottom of all graphs in each figure. 
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Figure 5.7: t-evolution of non-singlet structure functions in NNLO compared with E665 
and NMC data 
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In figures 5.8, x-evolutions have been plotted as Frs (x, t) against x 

keeping Q2 constant with the values of Q2 = 5.236 GeV2, 7.176 GeV2, 9.795 GeV2, 

13.391 GeV2 for E665 data and 9.0 GeV2, 11.5 GeV2, 15.0 GeV2, 20.0 GeV2 for 

NMC data. Here also we compared our NNLO results with our NLO and LO 

results. For clarity, data are scaled up by +O.5i (i=O, 1,2,3, - -) for E665 data and 

by +0.2i for NMC data, starting from bottom of all graphs in each figure. 
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Figure 5.8: x-evolution of non-singlet structure functions in NNLO compared with 
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5.3 Conclusion 

In this chapter, we have solved the DGLAP evolution equation by 

method of characteristics and obtain the singlet and non-singlet structure 

functions. Here we found that the t and x-evolution of deuteron structure 

function as well as non-singlet structure function, which is the combination of 

proton and deuteron structure functions, are in good consistency with the 

NMC, E665, CLAS collaboration data sets and NNPDF collaboration 

parameterization results. If we calculate the errors by considering always the 

middle sets of experimental data and our corresponding results, then on 

average, the percentage errors of our results in LO, NLO and NNLO are 4.66%, 

2.53% and 1.035% with NMC data, 11.3%, 1.72% and 3.78% with E665 data, 

14.8%,20.7% and 33.8% with CLAS data, and also 4.62%,2.61 % and 0.88% with 

NNPDF collaboration results respectively. Here except CLAS data, the 

contribution of NNLO is found to be high at the lower-x and higher-Q2. CLAS 

data are available only at lower-Q2 and higher-x, where our methodology is not 

work good. Here we can claim that in our presentation, we consider very few 

numbers of parameters comparative to the other methods. D 
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Polarized Hadron Structure Functions 

In the spin dependent or polarized deep inelastic scattering program, the 

spin structure of the nucleon has been studied by using polarized lepton beams 

scattered by polarized targets. These fixed-target experiments have been used 

to characterize the spin structure of the proton and neutron and to test 

additional fundamental QCD and quark-parton model (QPM) sum rules. The 

first experiments in polarized electron-polarized proton scattering, performed 

in the 1970s, helped to establish the parton structure of the proton. In the late 

1980s, a polarized muon-polarized proton experiment found that a QPM sum 

rule was violated, which seemed to indicate that the quarks do not account for 

the spin of the proton. This "proton-spin crisis" gave birth to a new generation 

of experiments at several high energy physics laboratories around the world. 

The new and extensive data sample collected from these fixed-target 

experiments has enabled a careful characterization of the spin-dependent 

parton substructure of the nucleon. The results have been used to test QCD, to 

find an independent value for as (Q2) and to probe with reasonable precision 

the polarized parton distributions. 

Recent interest in the spin structure of the proton, neutron, and deuteron 

and advances in experimental techniques have led to a number of experiments 

concerned with DIS of polarized leptons on various polarized targets. Among 

these are the E143 experiments at SLAC [136] and the Spin Muon Collaboration 

(SMC) at CERN [137], which used polarized hydrogen and deuterium, the E154 

experiment at SLAC [138, 139] and the HERMES collaboration at DESY [140], 

which used polarized 3He, also the HERMES collaboration [141] which used 

polarized hydrogen [142]. A new material, deuterized lithium 6LiD, has recently 

emerged as a source of polarized deuterium in the E155/E155x experiments at 

SLAC [143]. Thus the world data of the spin structure functions are obtained 

from EMC, SMC, SLAC-E143, E154, HERMES and JLAB-CLAS for proton; 

SMC, SLAC-E143, E155, HERMES and JLAB-CLAS for deuteron; and SLAC­

E142, HERMES and JLAB-MIT for neutron. 
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Chapter 6 

Polarized DGLAP Evolution Equations in 

Leading Order 

The polarized structure function gl(X, (2) for deep-inelastic lepton­

nucleon scattering is of fundamental importance in understanding the quark 

and gluon spin ~tructure of the proton and neutron. According to the polarized 

DGLAP equations [144, 145], gl (x, Q2) is expected to evolve logarithmically 

with Q2, where gl depends both on x, the fractional momentum carried by the 

struck parton, and on Q2, the squared four momentum of the exchanged virtual 

photon. There have been a number of theoretical approaches to calculate 

gl(X, Q2) using phenomenolOgical models of nucleon structure. In this chapter 

we will solve polarized DGLAP evolution equations in LO by method of 

characteristics and compared our results with E143 at SLAC experimental data 

[136] and SMC [137] and COMPASS [146, 147] collaboration data. 

6.1 Theory 

In polarized experiments, when both beam and the target are 

longitudinally polarized in DIS, the asymmetry is defined as 

at!. _a tt 

All = t!. tt ' 
a + a 

where (J t,j, and (J tt are the cross section for opposite and same spin direction 

respectively. Similarly the transverse asymmetry, determined from scattering of 

a longitudinally polarized beam on a transversely polarized target, is defined as 
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u~ ~ft~ (j -v 
AJ..=---:­

(jU~ +(jft~ 

These asymmetries can be expressed in terms of longitudinal (At) and 

transverse (A2) virtual photon-nucleon asymmetries as 

All = D[AI +l1A 2] and A.L = d[A 2 - 1(1- I.JA 1] with D = ( 2X- y\ 2' 
2 21-y l+R +y 

=(Q) 2{1-y) d= ~l-y D y2 =4y2x 2 = M x=~ 
11 E y( 2 - y) , 1 _ y' , y Q ' 2M v ' 

2 

where D is often called the depolarization factor of the virtual photon and M is 

the nucleon mass. 

For spin 1/2 targets (proton and neutron), At and A2 can be interpreted as virtual 

photon-nucleon asymmetries, 

A
P,n _ °1/2 - °3/2 AP,n-
1 - , 2 ------, 

01/2 + 03/2 01/2 + 03/2 

whereas for the deuteron 

TL TL 
A d _ 0'0 -0'2 Ad _ 0'0 -0'\ 

1 - and 2 - ----=---"-
0' 0 + (J' 2 0' 112 + (J 3/2 

In these expressions, the indices refers to the total spin projections of the 

photon- hadron system in the direction of the virtual photon, and the 0 TL are 

cross sections arising from the interference of amplitudes for longitudinally and 

transversely polarized virtual photons [144]. 

The longitudinal polarized structure function g, (x) I obtained from 

longitudinally polarized leptons scattering off nucleons polarized parallel or 

anti-parallel to the lepton direction is defined as 

g\(x)=! Le~~qi(x) 
2 . 

I 

where &}i(x)=q7(x)+qi+(X)-qi(x)+~i-(x). Here q~(x) and q;(x) are the 

densities of quarks of flavor 'i' with helicity parallel and anti parallel to the 
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nucleon spin. The polarized structure functions gl(X, Q2) and g2(X, Q2) are 

related with unpolarized structure function F2 (x, Q2) as 

(6.1) 

(6.2) 

where t = In (Q2j j\2), j\ is the QCD cut-off parameter and R" = O'L x,Q: is the 
O'T x, Q 

ratio of the longitudinal and transverse virtual photon cross section. 

The polarized DGLAP evolution equation [145] in the standard form 

Ogl(X,Q2)=p{X Q2)®g (x Q2) 
olnQ 2 ' 1', (6.3) 

where gl (x, Q2 ) is the polarized structure function as the function of x and Q2. 

Here P(x, Q2) is the polarized kernel known perturbatively up to the first few 

orders in as (Q2), the strong coupling constant. Here ® represents the standard 

Mellin convolution and the notation is given by 

a{x)®b{x):: fdY a{Y)b(~J. 
o Y Y 

(6.4) 

Now one can write 

p(x,Q' l~ asJ~' lp(o)(x)+( ast lJ p(I)(X), (6.5) 

whereP(O)(x) and p(I)(X) are polarized splitting functions in La and NLO. 

Considering polarized splitting functions, the singlet and non-singlet 

structure functions are obtained from the polarized DGLAP evolution 

equations in La as 

ag~ _ as(t)[~{3 + 4ln (1- x)}g~(x, t)+ I~S(x, t)+ I~S(x, t)] = 0, (6.6a) at 21t 3 

a~r -a~~t) [~ {3 + 4ln (t - x )}g~S (x, t)+ I;NS (x, t)] ~ 0 , (6.6b) 

where functions I~s, I~s, I~NS are defined in Appendix D. 
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Also as{t)= 41t , where~o =l1-~Nf is the one loop (LO) correction to the 
~o t 3 

QeD ~ - function and 

N£ being the flavors number. 

Let us introduce the variable u = 1-00 and note that 
x x 00 k 
-=--=xLu. 
(0 1 - U k=O 

Since x<(O<I, so 0 < u < I-x and hence the series is convergent for I u I < 1. So, 

using Taylor's expansion series 

S(x) s( xu) S( ) xu ag~(x,t) 1 ( xu )2 a2g~(x,t) gl -, t = gl X + --, t = gl x, t + -- + - -- 2 + ..... 
(0 l-u l-u ax 2 I-u ax 

As x is small in our region of discussion, so we can rewrite g~ ( : ' t), g ~s ( : ' t) 

S(~ ) _ S( ) ~ ag~(x, t) g 1 ,t - g 1 x, t + , 
0) l-u ox (6.7a) 

NS ( x) NS ( ) xu og rs (x, t) gl -, t = gl x, t +---....:....;----'-~ 
(0 l-u ax (6.7b) 

~G(~, t) = ~G{x, t) + xu a~G{x, t) . 
00 l-u Ox 

(6.7c) 

In order to solve equation (6.6a) we need to relate the singlet distribution 

function g~{x, t) with the gluon distribution function ~G{x, t). For small-x and 

hogh-Q2, the gluon is expected to be more dominant that the sea quark. Hence, 

for simplicity, let us assume ~G{x,t)=k/{x)gi{x,t), where k/{x) is a suitable 

function of x or may be a constant. We may assume kl (x) = k, axb, ce-dx where 

k, a, b, c, d are suitable parameters, which can be determined by 

phenomenological analysis. Such an assumption is used for the unpolarized as 

well as polarized cases [79,82, 174]. Using equation (6.7a) and (6.7c) in equation 

(6.6a) and performing u-integrations, we get 

_tag~(x,t)+A L/(x)ag~ +A M/(x)gS(x t)=O at flax f 1 l' , 
(6.8) 
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L /1 (x ) = A i B (x ) + k / (x )A ~ (x ) , 

M~(x)= A~(x)+ k/(x)A~(x)+ A~(x)ak(x). 
ax 

ThefunctionsA~(x), Ai(x), A~(x) and A~(x) are 

A~(x)= 2X_X2 +41n(1-x), 

A i (x) = x -X 3 - 2xln (x), 

A~(x)=~Nf(X_X2 ), 
2 

A~(x)=~Nf[-X+X3 +x1n(x)]. 
2 

(6.9a) 

(6.9b) 

(6.10a) 

(6.10b) 

(6.10c) 

(6.10d) 

To introduce method of characteristics, let us consider two new variables Sand 

T instead of x and t, such that 

dt 
-=-t 
dS ' 

(6.l1a) 

dx I ( ) -=AfL, x . 
dS 

(6.l1b) 

These are known as characteristics equations. Now from equation (6.6a), 

dg~d~' 't) + M~ (S, 't)g~ (S, 't) = 0 (6.12) 

This can be solved as g~ (S, t) ~ g~ (0, t )exp [ - ! M; (S, t )dS ] . (6.13) 

For t-evolution, structure function varies with t as x remains constant. Hence 

equation (6.11a) can be used in equation (6.13), the solution of which is 

{ JMi(S;r) 
g~(S'1:)=g~(1:\t: ' (6.14) 

where Mf (S, 1:) = AfMf (x) andgT(S, 1:) = gH1:); 5 = 0, t = to. 

Now we have to replace the co-ordinate system (5, T) to (x, t) in equation (6.14) 

with the input function gT(t)=gT(x,to) and will get the t-evolution of singlet 

structure function in the LO as 
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{ Ji.AfM~ (x) 

gHx,t)~ g~(x,tO\ t: 2 (6.15) 

Similarly, for x-evolution, structure function varies with x as t remains constant. 

Hence equation (6.11b) can be used in equation (6.13) and the x-evolution of 

singlet structure function will be 

S ( ) S ( ) [Ix M i (x ) l g 1 x, t = g 1 X 0 ,t exp - x 0 L /1 (x) dx 

(6.16) 

Proceeding in the same way, we get t and x-evolutions of non-singlet 

(combination of proton and neutron) structure function from equation (6.6b) as 

grS (x, t)~ grS (x, to c: trAit,) , 

g~S(x,t}=g~S(xo,t}exp(- fA! dXJ. 
xo A 2 

(6.17a) 

(6.17b) 

The deuteron, proton and neutron structure functions measured in DIS 

can be written in terms of Singlet and non-singlet quark distribution functions 

[80] as 

gt(x,t)= 5 gi(x,t), 
9 

g f (x, t) = ~ g ~ (x, t) + ~ g rs (x, t), 
18 18 

g~ (x, t)= ~g~(x, t}- ~g~S(x, t). 
18 18 

(6.18a) 

(6.18b) 

(6.18c) 

Thus t and x-evolution of deuteron (Singlet) structure functions in LO can be 

obtained as 

(6.19a) 

(6.19b) 
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where gt(x,to)=~gt(x,to), gt(xo,t)=~gt(xo,t), 
9 9 

grS (x, to) = 3[gi (x, to) - gf (x, to)] and grS (xo, t) = 3[gf (xo, t)- gf (xo, t)] with 

gf(x,to)' gf(x,to)' g~(x,to) and gf(xo,t), gf(xo,t), g~(xo,t) are input 

functions. 

For phenomenological analysis we use equations (6.19a) and (6.19b) to 

study polarized deuteron structure functions, and also equations (6.17a) and 

(6.17b) to study non-singlet (combination of proton and neutron) structure 

functions in LO. 

6.2 Results and Discussions 

We compare our results of t- and x-evolutions of polarized deuteron 

g~(x,t) and non-singlet (a combination of proton and neutron) g~S(x,t) 

structure functions with data obtained by the SLAC E143 collaboration [136], 

SM collaboration [137] and COMPASS collaboration [146, 147]. 

The SLAC E143 gives the measurement of the polarized structure 

function of deuteron, proton and neutron in deep inelastic scattering by 

polarized electrons at incident energies of 29.1 GeV2, 16.2 GeV2 and 9.7 GeV2 on 

a polarized Ammonia target. Data cover the kinematical ranges of x from 0.024 

to 0.75 and Q2 from 0.5 to 10 GeV2. The SM Collaborations gives the final results 

of measurements of the virtual photon asymmetry of deuteron (proton) and the 

polarized deuteron (proton) structure functions in deep inelastic scattering of 

100 GeV2 and 190 GeV2 polarized muons on polarized deuterons (protons). The 

data cover the kinematic ranges of x from 0.0008 to 0.7 and Q2 from 0.2 to 100 

GeV2. In COMPASS collaboration, the measurement of the polarized structure 

function gf(x,t) at Q2 values from 1 to 100 GeV2 and x values from 0.004 to 0.7 

is obtained. The data were taken with a polarized muon beam of mean energy 

160 GeV2 and a polarized Lithium Deuteride target. The data were collected 

during the period 2002-03 [Ageev et all and 2002-04 [Alexakhin et all. 
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In figures 6.1-6.3, we have plotted computed values of polarized 

deuteron structure function g~ (x, t) against Q2 values for a fixed-x in LO taking 

suitable values of kl (x) = k, a constant, kl (x) = axb, a power function and 

kl (x)= ce-dx, an exponential function of x. In figure 6.4, we have plotted our 

computed values of polarized non-singlet structure functions g~S against the Q2 

values for LO. Here values of g~ (x, t) and g~S (x, t) at lowest Q2 have been taken 

as the input functions. In figures 6.5 - 6.8, the computed values of polarized 

deuteron structure functions g~ (x, t) have been plotted against x for fixed Q2 

taking suitable values of kl (x) = k, axb and ce-dx. Here values of g~(x, t) at 

highest-x are taken as the input functions. It is seen from the figures that the 

polarized structure functions are increased with Q2 at small-x. 

In figure 6.1, t-evolution of polarized deuteron structure functions 

g~ (x, t) have been ploted against Q2 for x = 0.035, 0.049, 0.063 and 0.079 taking 

kl (x) = k, a constant with value k = 0.8 and compared our results with SLAC 

E143 experimental data. 

2.1 

1.4 

0.7 

o 
1.5 

k/(X) = k = 0.8 

I .. ----~I.....---------.... ix=o.079 

! ·---.......... !I---------.. !x=O.063 

! ... ----4!I---------....... !X=O.049 

±~ --+--! -------e!.=<l"035 

3 4.5 6 

Figure 6.1: t-evolution of polarized deuteron structure functions in LO at k/ (x) = k, a 
constant, compared with SLAC E143 data 

111 



Polarized Hadron Structure Functions 

In figure 6.2, t-evolution of polarized deuteron structure functions 

g~(x,t) have been ploted against Q2 for x = 0.056, 0.071 and 0.090 taking k/(x)= 

axb, a power function of x with values a =1.2 and b = 0.8. Here our results are 

compared with SLAC E143 experimental data. 

0.8 
k'(x)=axb; a=1.2, b= 0.8 

0.5 x=O.09 ! ! t 
'0 .... 
en 

t ! ! x=O.071 
0.2 

x=O.056 ! t ! 
-0.1 

1 2.5 4 5.5 
Q2(GeV2) 

Figure 6.2: t-evolution of polarized deuteron structure functions in LO at kl (x)= axb, a 
power function of x, compared with SLAC E143 data 
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In figure 6.3, t-evolution of polarized deuteron structure functions 

g1(x, t) have been ploted against Q2 for x = 0.035, 0.044, 0.049, 0.056 and 0.063 

taking k/(x) = ce -dx, an exponential function of x with values c= 0.2 and 

d= 0.06. Here also our results are compared with SLAC E143 experimental data. 

0.5 
1.5 3 4.5 6 

Figure 6.3: t-evolution of polarized deuteron structure functions in LO at kl (x)= ce-dx, 

an exponential function of x, compared with SLAC E143 data 
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In figure 6.4, t-evolution of polarized non-singlet structure functions 

g~S(x, t} have been ploted against Q2 for x = 0.035, 0.044, 0.049, 0.056 and 0.063. 

Our results are compared with SLAC E143 data. 

6.5 

t- f ! x=O.063 

! 1 x=O.056 1-4.5 

1 r-- t x=O.049 
1/1 
z ... 
C) 

r---J x=O.044 

2.5 
x=O.035 

0.5 
1.5 3 4.5 6 

Figure 6.4: t-evolution of polarized non-singlet structure functions in LO, 
compared with SLAC E143 data 
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In figure 6.5, x-evolution of polarized deuteron structure functions 

g~(x,t) have been ploted against x for Q2 = 5 GeV2 taking k/(x) = k, a constant 

with value k = 0.9. Our results are compared with SLAC E143 data. 

0.18 

0.13 

0.08 

0.03 

0.075 

Q2=5 GeV2, k'(x)= k = 0.9 

0.13 0.185 0.24 
x 

Figure 6.5: x-evolution of polarized deuteron structure functions in LO 

at kl (x) = k, a constant, compared with SLAC E143 data 
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In figure 6.6, x-evolution of polarized deuteron structure functions 

g1(x,t) have been ploted against x for Q2 = 10 GeV2 taking k/(x) = axb, a power 

function of x with values a =0.3, b = 0.6. Our results are compared with SM 

collaboration data. 

0.3 

-0.1 

'tI .... 
OJ 

-0.5 

-0.9 

0.004 0.015 x 

Q2=10 GeV2 

k'(x) = axb 

a = 0.3, b = 0.6 

0.026 0.037 

Figure 6.6: x-evolution of polarized deuteron structure functions in LO at kl (x) = axb, 

a power function of x, compared with SMC data 
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In figure 6.7, x-evolution of polarized deuteron structure functions 

g1(x,t) have been ploted against x for Q2 = 10 GeV2 taking k/(x)= ce - dx, an 

exponential function of x, with values c :::: 0.5, d:::: 0.01. Our results are 

compared with SM collaboration data. 

0.3 

-0.1 

-0.5 

-0.9 

0.004 0.015 x 

Q2=10 GeV2 
k'(x) = ce- dx 

C = 0.5, d = 0.01 

0.026 0.037 

Figure 6.7: x-evolution of polarized deuteron structure functions in LO at k/ (x)= 

ce-dx, an exponential function of x, compared with SM collaboration data 
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In figure 6.8, x-evolution of polarized deuteron structure functions 

g~(x,t) have been ploted against x for Q2> 10 GeV2, considering k/(x) = k and 

axb, compared with COMPASS collaboration data. It observed that the best fit 

results are obtained with values k= 1.0 and a = 1.0, b = 0.7 respetively. Here we 

have not consider kl (x) = ce-dx, as it has no significantly different results. 

0.2 

0.05 

-0.1 

-0.25 

o 

0.3 

0.1 

-0.1 

-0.3 

o 

(a) COMPASS (Alexakhin et al) 

0.03 x 0.06 

Q2>10 GeV2 

k/(X) = k=1.0 

(b) COMPASS (Ageev et al) 

Q2>10 GeVZ 

k'(x) = axb; a = 1.0, b = 0.7 

0.03 0.06 
x 

0.09 

0.09 

Figure 6.8: x-evolution of polarized deuteron structure functions in La, compared 
with CaMP ASS collaboration data 
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6.3 Conclusion 

In this chapter, we have solved the polarized DGLAP evolution equation 

in LO by method of characteristics and our results are compared with SLAC 

E143, SMC and COMPASS collaboration data set. It is observed that polarized 

structure functions are increased when Q2 increases or x decreases. Here our 

results are significantly compatible with the experimental data. Though some of 

our results are not accurately matched with experimental data, hope in NLO, 

which will be discussed in next chapter, we will get more accuracy. 0 
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Chapter 7 

Polarized DGLAP Evolution Equations in Next­

to-Leading Order 

In this chapter, the polarized structure function gl(X, (2) for deep­

inelastic lepton-nucleon scattering has been obtained by solving DGLAP 

evolution equations in NLO. We used the Taylor's expansion and then the 

method of characteristics to solve the evolution equations and then compared 

our results with SLAC E143 [136] experimental data, SMC [137] and COMPASS 

[146, 147] collaboration data. 

7.1 Theory 

The general discussion of polarized structure functions has been done in 

previous chapter. So, this is not done here. The singlet and non-singlet structure 

functions are obtained from the polarized DGLAP evolution equations in NLO, 

a!~ _ a~t)[~ {3+41n(1- x))g~(x, t)+ 1;5 (x, t)+ 1,5 (x,t)] -( a~t)r 1,5 = 0 (7.1) 

a~~s _ a~!t)[ ~ {3 + 4ln(1- x))grs (x, t)+ I;NS (x, t)] - ( a~!t))\2NS = 0 (7.2) 

Functions I;s (x, t), I~s (x, t), I;s (x, t), I;NS (x, t) and I~NS (x, t) are discussed in 

Appendices D and E. 

Now using Taylor's expansion series, we get 

s(x) s( xu ) s( ) xu agi(x,t) 1( xu )2 a2gi(x,t) gl -,t =gl X+--,t =gl x,t + +- -- 2 + .. 
cu l-u l-u Ox 2 l-u Ox 
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As x is small in our region of discussion, the terms containing higher powers of 

x can be neglected and we can rewrite g i ( : ' t), g ~s ( : ' t) and AG(: ' t) as 

s(x) s{ ) xu ogi{x,t) g 1 -, t == g 1 x, t + -- , 
cu 1- u ox 

(7.3a) . 

NS( X J - NS( t) xu agrS(X/t) g 1 -, t - g 1 X, + -- , 
(i) l-u ax (7.3b) 

~G(~, t) == ~G{x, t}+ xu o~G(x, t) . 
cu 1-u Ox 

(7.3c) 

In order to solve equation (7.1) we need to relate the singlet structure 

function g i (x, t) with the gluon distribution function ~G(x, t) and as discussed 

in previous chapter, let us assume ~G(x, t) == k'{x)gi (x, tL where kl (x) is a 

suitable function of x or may be a constant. We may assume k/(x) == k,ax b
, 

ce-
dx where k', a, b, c, d are parameters which can be determined by 

phenomenological analysis. 

Using equation (7.3a) and (7.3c) and performing u-integrations we get 

from equation (7.1) 

_ t a g i (x, t) + A L' (x) a g i + AM' (x ) g S (x t) == 0 at f ox f l ' . 

Here 

Af == as(t)t 
3n ' 

L'(x) == L; (x) + ToL~(x), 

M'(x)== M; (x) + ToM~(x), 

(7.4) 

(7.5a) 

(7.5b) 

We have considered one numerical parameter To, such thatT2(t)= To.T{t) with 

T{t) == as (t) . This parameter is not arbitrary, but can be determined by 
2lt 

phenomenological analysis [79, 174]. Also 

L; (~) == A~(x)+ k'(x)A~ (x), 

ok'(x) 
M; (x)=: A; (x)+ k'{x)A~ (x)+ A~ (x) ox ' 
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L~(x)= B~(x)+k'(x)B~(x), 

M~{x)= B~ (x)+ k'{x)B~{x)+ B~ (x)ak'{x) 
ax 

where functions A{ {x),A~ {x),A~ (x),A~ (x) are discussed in chapter 6 and 

B~(x)~ XJ[f(W)+ : NfM':.(W)] 1 ~ W dw, 
x 

Now let us consider two new variables 5 and T instead of x and t, 

~--t d5 - , 

dx = AfL'{x). 
dS 

From equation (7.4), 

dg~~, .r) + M'(5,1:)gi(5,1:) = 0 . 

This can be solved as 

(7.6c) 

(7.6d) 

(7.7a) 

(7.7b) 

(7.8) 

(7.9) 

For t-evolution, structure function varies with t remaining x constant. Hence 

equation (7.7a) can be used in equation (7.9) and we get 

{ )M'(S;r) 

gi{5,1:)=gi{1:\t: ' (7.10) 

where M'{S, 1:) = AjM'{x) and gi(s,1:)=gi(1:); 5 = 0, t=to' Now we have to 

replace the co-ordinate system (5, 1:) to (x, t) in equation (7.10) with the input 

function gi (1:) = gi (x, to) and will get the t-evolution of Singlet structure 

function in the NLO as 
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(7.11) 

Similarly, for x-evolution, structure function varies with x remaining t constant. 

Hence equation (7.7b) can be used in equation (7.9) and the x-evolution of 

polarized singlet structure function in NLO will be 

S( ) S( ) [fXM'(X) ] g 1 X, t = g 1 X 0 ,t exp - x 0 L ' (x) dx . (7.12) 

Proceeding in the same way, we get t and x-evolutions of non-singlet structure 

function from equation (7.2) as 

{ )
~Af[Ai {x}tToBi (x)] 

NS ( ) NS ( t 2 g 1 X, t = g 1 X, tOt ' 
o 

(7.13a) 

g NS (x t)= gNS (x t)eXp [- fX A; (x)+ ToB; (x) dX] 
I' I 0' A~(x)+ToB~(x)' 

Xx 

(7.13b) 

Similarly, t and x-evolutions of deuteron structure functions in NLO are 

{ J~AfM'(X) 
gt(x, t} ~ gt(x, to \ t: 2 , (7.14a) 

d( )_ d( )e [ fX M'(x) ] gl x,t -gl xo,t xp -xoL,(x)dX . (7.14b) 

Here gt(x, to) = ~gt(x, to), g1{xo, t) = ~g1{xo, t), 
9 9 

g~S(x, to) = 3[gf (x, to)- gr (x, to)] , 

g rs (x 0' t) = 3 [g r (x 0' t) - g ~ (x 0' t )] , 

with g1(x,to), gf(x,to),gr(x,to) and gt(xo,t), gf(xo,t), gf(xo,t) are input 

functions. For phenomenological analysis, we use equations (7.14a) and (7.14b) 

to study polarized deuteron structure functions and equations (7.13a) and 

(7.13b) to study polarized non-singlet (combination of proton and neutron) 

structure functions in NLO. 
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7,2 Results and Discussions 

Here we compare our result of t and x-evolutions of polarized deuteron 

g~(x, t} and non-singlet g~S(x, t} (combination of proton and neutron) 

structure functions with data measured by the SLAC E143 experiment [136] and 

SMC [137] and COMPASS collaboration [146, 147]. We compare our results for 

k/ (x) = k, axb and ce- dx where k, a, b, c and d are constants. Each graph is the 

best fit graph of our work with the corresponding values of the parameters k, a, 

b, c and d. Data points from experimental data sets, at lowest-Q2 values are 

taken as inputs to test the t-evolution of our results and data points from 

experimental data sets at highest-x is taken as inputs to test the x-evolution of 

our results. It is seen from the figures that the polarized structure functions are 

increased with Q2 at small-x. 

In Figure 7.1 we plot T2(t) and ToT(t), where T(t) = as(t)/27t, against Q2in 

the range 0 ~ Q2 ~ 30 Ge V2 as required by our data used for structure functions. 

Here we observe that the difference between the values of T2(t) and ToT(t) in 

this range is negligible for To = 0.048. 

0,015 
To= 0,048 

.....:: --'" .... 

0.0075 

_ T2(t) 
- - - To,T(t) 

--------------------------------------

o 
0,5 10 19,5 29 

Figure 7.1: Comparison of T2 and To T values 
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In figures 7.2, computed values of gt(x,t) have been plotted against Q2 

for fixed-x in NLO for x = 0.056, 0.071 and 0.09 taking suitable values of 

k/ (x) = ce-dx, an exponential function of x with values c = 0.02 and d = 0.08. 

Here values of gf(x,t) at lowest Q2 are taken as the input functions. Our results 

are compared with SLAC E143 data. All solid dots with vertical error bars 

represent the experimental data with total systematic and statistical 

uncertainties. It is observed that k/ (x) is not a strongly influenced function that 

is, our results do not vary significantly with the form of k/ (x). Thus k/ (x) = k 

and axb are not considered here. 

0.8 

k'(x) = ce-dx; c = 0.02, d = 0.08 

0.5 ! t ! x=O.09 

~ ... 
C) 

! ± ! 0.2 
x=O.071 

! 1 I x=O.056 

-0.1 
1 3 5 7 

Q2(GeV2) 

Figure 7.2: t-evolutions of polarized deuteron structure function in NLO at k/ (x) :::: 
ce-dx, an exponential function of x, compared with SLAC E143 data 
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In figure 7.3, we have plotted computed values of grS(x, t) against Q2 for 

LO and NLO for x = 0.056, 0.071 and 0.09. Here solid lines represent our NLO 

results and dotted lines represent LO results. The values of g~S(x,t) at lowest 

Q2 are taken as the input functions. Our results are compared with SLAC E143 

data. Here also all solid dots with vertical error bars represent the experimental 

data with total systematic and statistical uncertainties. 

I/) 
z 

0.8 

0.5 

ci 

0.2 

-0.1 

f 

1.5 

-NLO 
- - - LO 

-----------i-------------u----u--------------i x=O.09 

omf-----------------------------------! x=O.071 

... --+---------------------------------1 x=0.056 

3 4.5 6 

Figure 7.3: t-evolutions of polarized non-singlet structure function in NLO, compared 
with SLAC E143 data 
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In Figures 7.4, computed values of g~ (x, t) have plotted against x for 

fixed Q2 = 5 GeV2 in LO and NLO taking suitable value of k/ (x) = k, a constant 

with value k = 0.7. Solid line represents our NLO results and dotted line 

represents LO results. The middle values of vertical lines represent SLAC E143 

experimental data with lower and upper values as total systematic and 

statistical errors. The gt(x,t) value at highest-x is taken as the input function. 

0.21 

0.14 ~ 

... 
OJ 

0.07 

o 
0.05 

~ .. 

Q2=5 GeV2 

k'(x)= k = 0.7 

.. ........... ...... -

-- NLO 
- - - LO 

K'~""" 
t~ --.. -.-.----.;.:.:--:.:-::--~:.:..:..._+ 

0.12 x 0.19 0.26 

Figure 7.4: x-evolution of polarized deuteron structure functions in NLO considering 

k/ (x) = k, a constant, compared with SLAC E143 data 
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In figure 7.5, computed values of g1(x,t) have been plotted against x for 

fixed-Q2 in LO and NLO for Q2 = 10 GeV2 taking suitable values of kl (x) = axb, 

a power function of x with values a = 0.1 and b = 0.03. Solid line represents our 

NLO results and dotted line represents LO result. The middle values of vertical 

lines represent SMC data with lower and upper values as total statistical and 

systematic errors. Here the value of gt(x, t} at highest-x is taken as the input 

function. 

0.8 

0.2 

... 
en 

-0.4 ~ 
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-6.25E-1 0.015 
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Q2=10 GeV2; k'(x)=axb 
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-- NLO 
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0.03 0.045 

Figure 7.5: x-evolution of polarized deuteron structure functions in NLO considering 

kl (x) ::::: ce-dx, an exponential function of x, compared with SMC data 
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In figures 7.6, x-evolutions of polarized deuteron structure functions 

g1{x, t) have been ploted against x for Q2> 10 GeV2, considering k/ (x) = k and 

axb, It observed that the best fit results are obtained with values k = 1.0 and 

a = 1.0, b = 0.7 respetively. Our results are compared with COMPASS 

collaboration data. Here we have not consider k/ (x) = ce-dx, as it has no 

significantly different results. 
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Figure 7.6: x-evolution of polarized deuteron structure functions in NLO considering 

k/ (x) = k and axb, compared with COMPASS collaboration data 
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7.3 Conclusion 

In this chapter, we have solved the polarized DGLAP evolution 

equation in NLO by method of characteristics and our results are compared 

with SLAC E143 experimental results, SMC and COMPASS collaboration data 

sets. It is observed that our results are significantly compatible with the 

experimental data. On and average the percentage errors of our results in LO 

and NLO are 1.03% and 6.39% with SLAC E143 data, 5.94% and 2.91 % with 

SMC data also 6.92% and 2.94% with COMPASS collaboration data. These 

errors in theoretical results are very less as compared to systematic and 

statistical uncertainties in the experimental data. It is observed that there is 

significant contribution of Next-to-Leading order over the Leading order in 

polarized structure functions. Here k/ (x) is a not strongly influenced function 

i.e. for different k/ (x) values also we get approximately same results of polarized 

structure functions. 0 
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Gluon Distribution Functions 

"If you cannot measure it, then it is not science" 
-1(e{'Vin 



Gluon Distribution Functions 

The gluon distribution function is one of the most important physical 

observables that govern the physics at high energy (small Bjorken x) in the DIS. 

The basic information about the gluon distribution function of the nucleon can 

be obtained from a measurement of the DIS structure function F2 (x, Q2) and its 

scaling violation. The measurement of the proton structure function by the HI 

[53, 148] and ZEUS [54] group at HERA over a wide kinematics region has 

enabled us to know about the gluon also in the previously unexplored region in 

x and Q2. In the small-x region where gluon, being the dominant parton, drives 

the structure function F2 (x, Q2) through the transition g ~ qq. The steep rise of 

F2 (x, Q2) towards small- x observed at HERA, also indicates in perturbative 

QCD a similar rise of the gluon towards small x. 

Experimental data of polarized structure functions are available from 

results of experiments performing on SLAC [149-156], CERN [157-164] and 

DESY [140, 141]. The results were analysed by many groups worldwide and 

polarization quark structure functions as well as gluon distribution functions 

were presented [165-174]. The spin of the nucleon is known to be 1/2. However, 

the EMC experiment has found that the spin of the quarks contributes only a 

small fraction to the proton spin. Ever since it has been a longstanding problem 

how the nucleon spins are divided among the quarks and gluons. The spin 

density contribution of the quarks to the nucleon spin ~~ can be probed in 

deep inelastic scattering. The result obtained by the HERMES collaboration 

[175] is ~~ = 0.30 ±0.04 ± 0.09, clearly showing that the gluon contributions to 

the nucleon spin are needed. The gluon spin density ~G can be probed in the 

photon-gluon fusion process as planned in the COMPASS experiment. The first 

direct exploration of the gluon polarization has been performed by the 

HERMES collaboration [176] and found a value of ~ GIG = 0.41 ± 0.18 (stat) ± 

0.03 (syst) at an average fraction of the nucleon momentum carried by the 

struck gluon of (xG) = 0.17. Due to limitations in large angle tracking it is 

planned to start with the measurement of gl at small-x values, which is 

important for the study of possible scaling violations. 
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Chapter 8 

Unpolarized Gluon Distribution Functions in 

Leading Order and Next-to-Leading Order 

In this chapter, the unpolarized gluon distribution functions have been 

obtained by solving Dokshitzer-Gribove-Lipatov-Alterelli-Parisi (DGLAP) 

evolution equations in LO and NLO at the small-x limit. Here we have used a 

Taylor series expansion and then the method of characteristics to solve the 

evolution equations. We have also calculated t and x-evolutions of gluon 

distribution functions and the results are compared with GRV1998 [177] and 

MRST2004 [178] gluon parameterizations. 

8.1 Theory 

The DGLAP evolution equations in standard forms for unpolarized 

gluon distribution functions in LO and NLO [91, 179, 180, 181] are 

oO(x,t) _~3.{(!.!._ N f +In(1-X))O(X t)+II}=O 
at 21t 3 12 18 'g' 

(8.1) 

oO(X, t) _ ~~{(.!..!. _ N f + In(1- X))O(X t) + II} _(as)2 12 = 0 
at 21t 3 12 18 'g 21t g , 

(8.2) 

where functions I~ (x, t) and I~ (x, t) are defined in Appendix F. 

Let us introduce the variable u = 1- co and using Taylor's expansion 

series we can rewrite 
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G(~, tJ = G(x, t)+ ~ aG(x, t) + l(~J2 a 2
G(x, t) + ..... 

(J) 1 - u ax 2 1 - u ax 2 

G( ) xu aG(x, t) 
~ x,t+-- , 

l-u a x 
(8.3a) 

FS(~ J - FS( ) ~ aFi(x, t) 2 ,t - 2 x, t + . 
(J) 1- u ax 

(8.3b) 

Since x is small in our region of discussion, the terms containing x2 and 

higher powers of x are neglected. Using equations (8.3a) and (8.3b) and 

performing u-integrations we get equation (8.1) of the form 

8G(x, t) _ Af [Af(X)G(X, t)+ A~{x)8G(x,t) + AHx)Fi(x,t)+ AHX)aFi(x,t)] = 0, 
at t ax. ax 

(8.4) 

us{t) 4 4 
whereA f = ~t = 3Po = 33-2N

f 
' as defined in chapter 3, and also 

g{) 11 1 2 1 3 
A x =--+2x--x +-x -In(x) 

I 6 2 3 ' 
4 1 

AHx)=1+-x-3x2 +X3 __ X4 +2xln(x), 
3 4 

AHx)=- --+2x--x 2 -21n(x) ,AHx)=- 2+-x-3x2+-x3+4xln(x) . 2{ 3 1 } 2{ II} 
9 2 2 9 2 2 

Now let us assume, Fi(x, t)= R(x)G(x, t), where R(x) is a suitable function of x 

or may be a constant. Now equation (8.4) gives 

- aG(x,t) A Lg( )aG(x,t) A Mg( )G( )- 0 t + f I X + f I X x, t - , 
at ax 

(8.5) 

where 

L1(x) = A~(x)+ R(x)A~ (x) and Mt (x) = At (x)+ R{x)A~ (x)+ A~ (x)aR(x) 
ax 

Now let us consider two new variables Sand 1: instead of x and t, such 

that 

dt 
-=-t 
dS ' 

dx _ g( ) --AfLl X • 
dS 

(8.6a) 

(8.6b) 
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Putting these in equation (8.5), we get 

dO(S, 't} + MHs, 't}O(S, 't} = 0, 
dS 

where Mr(S, 't)= AfMf(x). Equations (8.7) can be solved as, 

(8.7) 

(B.8) 

For t-evolution, gluon distribution function varies with t remaining x constant. 

Hence equation (8.6a) can be used to solve the equation (8.7). Now we have to 

replace the co-ordinate system (5, T) to (x, t), considering when 5 = 0, t = to and 

the input function as o( 't) = O(x, to). So the t-evolution of gluon distribution 

function in LO is given by 

{ JAfMf(X) 
G(x,t)=G(x,tO\t: ' (B.9) 

Using equation (8.6b) and replacing the co-ordinate system (5, T) to (x, t), with 

consideration when T = 0, X = Xo and the input function as O(S) = O(xo' t), the 

x-evolution of gluon distribution function in LO is given by 

(8.10) 

Similarly the t and x-evolution of gluon distribution functions in NLO 

are given by 

(8.11) 

(8.12) 

where 

L;(x} = BHx}+ R(x}BHx} and M~(x}= Br(x}+ R(x}B~(x}+ B~(x}aR(x} . 
ax 
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We also consider (a~~t))2 ~ To( a~~t)} where To is a numerical parameter, not 

arbitrary choose but determined by phenomenological analysis [79, 174]. The 

other functions are B ~ (x) = -~ In x , 
3 

52 BHx)= --(l-x + x Inx), 
3 

1 1 1 
BHx) = f A(oo)doo and BHx) = x f -00 A(oo)doo. 

x x 00 

8.2 Results and Discussions 

Here we have compared our result of t-evolution for gluon distribution 

function G(x, t) in La and NLO with GRV1998 global parameterizations [177] 

and x-evolution with GRV1998 and MRST2004 [178] parameterizations. We 

consider GRV1998 parameterization for 10 - 2 ~ X ~ 10 - 5 and 20 ~ Q2 ~ 40 Ge V2, 

where they used HI [182] and ZEUS [1831 high precision data on G(x, Q2). They 

have chosen as(M~)=0.114 andAMs(N r =4)=246MeV. The input densities 

have been fixed using the data sets HERA [182], SLAC[184], BCDMS [185], 

NMC [113] and E665 [114]. The resulting input distribution at Q2 = 0.04 GeV2 

is given by xg = 20.80 X1.6 (1-X)4.1. 

We have taken the MRST2004 fit to the HI [531 and ZEUS [54] data with 

x < 0.01 and 2 ~ Q2 ~ 500 GeV2 for Q2 =100 GeV2, in which they have taken 

parametric form for the starting distribution at Q; = IGeV 2 given by 

xg = A g X -Ag (1- x Y 7 (1 + Eg Fx + Y g x)- Ax -8 (1- x yo , 
where power of the (I-x) factors are taken from MRST2001 fit [561. Here 

A g ,A. g' Y g' E g' A and 0 are taken as free parameters. The optimum fit 

corresponds to as (M i)= 0.119 and A MS = 323 MeV with N f = 4. 

Our results represent the best fit graphs of our work with different 

parameterization curves. Results of parameterization at lowest-Q2 values are 

taken as input to test the t-evolution equations and those at highest-x is taken as 

input to test the x-evolution equations. We have compared our results for R(x) 
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as a constant R, a power function axb and an exponential function ce -dx. In our 

work for gluon distribution function, we have found the values of the gluon 

distribution function remains almost same for b<O.OOOl and for d<O.OOl. So, we 

have chosen b = 0.0001 and d = 0.001 and the best fit graphs are observed by 

changing the values of R, a and c. If we plot T2(t) and ToT(t) against Q2, then we 

can see that for To = 0.048, the values of T2 and T.To are nearly same in our 

region of discussion, as we have seen in figure 4.1 of chapter 4. Thus we 

consider To = 0.048 in calculation of G(x, t) at NLO and the consideration of 

parameter To does not give any abrupt change in our results. 

In figures 8.1, we have plotted our results of t-evolution of gluon 

distribution function in LO from equation (8.9) and compared with GRV1998 

parameterization for R(x) = R, a constant. Here we have plotted our results of 

gluon distribution function against Q2 for x = 10 - 5 and x = 10- 4 and we get the 

best fit with R = 0.5 and R = 0.8 respectively. 

230 90 
(a) x=10 - 5 (b) x=10-4 

R(x)=R=O.8 

190 75 

150 
60 

- - - - GRV1998 - - - - GRV1998 
LO - LO 

110 
45 

0 30 60 90 
0 30 60 90 

Q2(GeV2) Q2(GeV2) 

Figure 8.1: t-evolution of gluon distribution functions in LO for R(x) = R, a constant, 
compared with GRV1998 parameterization graphs 
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In figures 8.2, we have plotted our results of t-evolution of gluon 

distribution function in LO from equation (8.9) and compared with GRV1998 

parameterization at x=10 - 5 for R(x) = axb and ce- dx respectively. Here we have 

plotted our results against Q2 for R(x)= axb as well as R(x) = ce-dx and we get 

the best fit with a = 0.9, b = 0.0001 and c = 0.8, d = 0.001. 
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Figure 8.2: t-evolution of gluon distribution functions in LO for R(x)= axb and ce - dx 

compared with GRV1998 parameterization graphs 
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In figure 8.3 we have plotted our results of gluon distribution function 

against x for Q2= 100 GeV2 with R(x) = R and compared with MRST2004 and 

best fit has been found for R= 0.4. 

21 
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7 

o 
0.001 0.01 

x 

Q2= 100 GeV2 
R{x) = R = 0.4 

- - - - MRST 2004 
-LO 

0.1 1 

Figure 8.3: x-evolution of gluon distribution functions in LO for R(x) == R, compared 
with MRST2004 parameterization 
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In figures 8.4 and 8.5, we have plotted our results of t-evolutions of 

gluon distribution function in NLO from equation (8.11) and compared with 

GRV1998 gluon parameterization for R(x) = Rand axb. These results are also 

compared with our LO results obtained from equation (8.9). In figure 8.4, we 

have plotted our results of gluon distribution function against Q2 for x = 10- 5 

and we get the best fit with R = 0.8 in NLO and R == 0.9 in LO. 
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Figure 8.4: t-evolution of gluon distribution functions in NLO for R(x) = R, compared 
with GRV1998 parameterization 
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In figures 8.5 our results of gluon distribution function in NLO have 

been plotted against Q2 for x = 10- 4 with R(x) = axb and we get the best fit with 

a = 0.8 and b = 0.001 in NLO and a = 0.9 and b = 0.0001 in LO. 
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Figure 8.5: t-evolution of gluon distribution functions in NLO for R(x) = axb, compared 
with GRV1998 parameterization 
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In figure 8.6, we have plotted our results of x-evolution of gluon 

distribution function in NLO from equation (8.12) and compared with GRV1998 

gluon parameterization for R(x) = axb. These results are also compared with our 

LO results. We have plotted our results for Q2: 40 GeV2 and the best fit has 

found for a = 0.9 and b = 0.001 in NLO and for a = 0.8 and b = 0.0001 in LO. 
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Figures 8.6: x-evolution of gluon distribution functions in NLO for R(x)::::: axb, 

compared with GRV1998 parameterization 
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In figure B.7, we have plotted our results of x-evolution of gluon 

distribution function in NLO from equation (B.12) and compared with GRV199B 

gluon parameterization for R(x) = ce- dx. These results are also compared with 

our La results. We have plotted our results for Q2= BO GeV2 and the best fit has 

found with c = O.B and d = 0.001 in both NLO and La. 
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Figures 8.7: x-evolution of gluon distribution functions in NLO for R(x)= ce -dx, 

compared with GRV1998 parameterization 
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In figure 8.8 we have plotted our results of gluon distribution function 

against x for Q2=100 GeV2 with R(x) = R, a constant and R(x) = axb, a power 

function of x. Our results are compared with MRST2004 as well as our LO 

results. The best fit has been found with R= 0.4 in both NLO and La and also 

with a = 0.5, b = 0.0001 in NLO and a = 0.5, b ::: 0.001 in La respectively. 
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Figure 8.8: x-evolution of gluon distribution functions in NLO for R(x) = R, a constant 
and axb, compared with MRST2004 parameterization 
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8.3 Conclusion 

In this chapter, we have solved the DGLAP evolution equation by using 

method of characteristics and get gluon distribution function in La and NLO. 

We have calculated here the t and x-evolutions of gluon distribution functions. 

It is shown that our results are in good agreement with GRV1998 and 

MRST2004 global parameterizations especially at small-x and high-Q2 region. 

Here from global parameterizations and our results we have seen that the gluon 

distribution functions increase when x decreases and Q2 increases for fixed 

values of Q2 and x respectively. On an average, the mean percentage errors of 

our La and NLO results are 7.73% and 1.86% with GRV1998 and also 11.45% 

and 3.63% with MRST2004 global parameterizations respectively. These errors 

of our results are very less as compared to systematic and statistical 

uncertainties in the experimental data. Thus there is significant contribution of 

Next-to-Leading order over the Leading order in unpolarized gluon 

distribution functions. 0 

144 



Gluon Distribution Functions 

Chapter 9 

Polarized Gluon Distribution Functions in 

Leading Order and Next-to-Leading Order 

Quark and gluon contributions to the nucleon spin are described by 

polarized parton distribution functions (polarized PDF) and their first 

moments. It became clear that only a small fraction of nucleon spin is carried by 

quarks and antiquarks. Therefore, a large gluon polarization or effect of orbital 

angular momenta should be possible sources for explaining the origin of the 

nucleon spin. Polarized PDFs have been investigated by global analyses of data 

on polarized lepton - nucleon DIS and proton - proton collisions [65, 165, 166, 

168, 179, 187 -194]. Polarized quark distributions are determined relatively well, 

however the polarized gluon distribution is not accurately determined. The 

gluon distribution contributes to the structure function gl as a higher order 

effect in the expansion by the running coupling constant as of QeD. 

In this chapter, the polarized gluon distribution functions have been 

obtained by solving DGLAP evolution equations in LO and NLO at the small-x 

limit. Here we have used a Taylor's series expansion and then the method of 

characteristics to solve the evolution equations. We have also calculated t and x­

evolutions of gluon distribution function and the results are compared with the 

graph obtained by B Ziaja with the help of numerical method [195]. Here the 

detailed phenomenological study is not possible due to shortage of 

experimental data of polarized gluon distribution function. 
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9.1 Theory 

The DGLAP evolution equations in standard forms for polarized gluon 

distribution functions ~G(x, t), in LO and NLO [134, 173, 180, 181] are 

a~G(x,t)_~JG( )=0 
I X, t I 

at 21t 
(9.1) 

aAG(x, t) _ as J~(x, t)_(as )2 J~(x, t)= 0, 
at 21t 21t 

(9.2) 

where integrals J~ (x, t), J~ (x, t) are defined in Appendix G. 

Let us introduce the variable u = 1- co and using Taylor's expansion 

series we can rewrite 

AG(~, t):::: AG(x, t)+ ~ aAG(x, t) , 
(j) l-u ax 

(9.3a) 

s(~ J - s( ) ~ ag~(x, t) g I ,t - g I X, t + . 
ill 1- u ax 

(9.3b) 

Using equations (9.3a) and (9.3b) and performing u-integrations we get 

equation (9.1) as 

A ; g (x )a G (x, t) + A; g (x) a A ~~' t) 

+ A; g (x )g ~ (x, t) + A ~g (x) a g ~~' t) 
=0 (9.4) 

Equation (9.4) is a partial differential equation of two variables and two 

functions. To convert it to one function, we have to establish a relation between 

them. At high-Q2 and small-x, we can assume that sea quarks and gluons have 

no clear cut distinction. Thus we can assume that g~(x, t) = R'(x)~G(x, t), where 

R' (x) is a suitable function of x or may be a constant. Now equation (9.4) gives 

- aAG(x,t) A Lrg( )a~G(x,t) A M,g( ).AG( )- 0 t + f I X + f I X u x, t - , (9.5) 
at ax 

where 

(9.6a) 
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(9.6b) 

To introduce the method of characteristics, let us consider two new 

variables 5 and T instead of x and t, such that 

dt 
-::::-t 
dS ' 

dx L,g( ) -::::A f I X • 
dS 

Putting these in equation (9.4), we get 

d~G(x, t) + M;g (S, 't )~G(S, 't) = 0, 
dt 

where M;g(S, t}:::: AfM;g(x}. 

Equation (9.8) can be solved as 

~G (S, t ) ~ ~G (0, t) exp [ - ! M : g (S, t) dS ] 

(9.7a) 

(9.7b) 

(9.8) 

(9.9) 

For t-evolution, polarized gluon distribution functions vary with t, 

remaining x constant. Hence equation (9.7a) can be used to solve the equation 

(9.8). Now we have to replace the co-ordinate system (5, T) to (x, t), considering 

when 5 :::: 0, t:::: to and the input function as ~G( t} = ~G(x, to}. So the t-evolution 

of polarized gluon distribution function in LO is given by 

(9.10) 

Using equation (9.7b) and replacing the co-ordinate system (5, T) to (x, t), with 

consideration when T :::: 0, x:::: Xo the input function is ~G(S}:::: ~G(xo, t}, we get 

the x-evolution of polarized gluon distribution function in LO as 

(9.11) 

Considering the same procedure as in unpolarized cases, the t and x-evolution 

of polarized gluon distribution functions in NLO are given by 

147 



Gluon Distribution Functions 

(9.12) 

(

X M,g(x)+ T M,g(x) J aG(x t) = aG(x t)exp - f I 0 2 dx 
, 0' L,g(x)+TL,g(x)' 

Xo I 0 2 

(9.13) 

where 

L~(x)= B;g(x)+ R'(x)B~g(x), M;g (x) = B;g (x)+ R'(x)B;g (x)+ B~g(x) aR~x) 

and (a~~t)) 
2 

~ To( a~~)). Here To is a numerical parameter, which is not 

arbitrary chosen but obtained by phenomenological analysis [79, 174]. 

Here ~G(xo' t) and ~G(x, to) are input functions. For phenomenological 

analysis we use equations (9.10) and (9.11) to study polarized gluon distribution 

functions in LO and equations (9.12) and (9.13) to study polarized gluon 

distribution functions in NLO. 

9.2 Results and Discussions 

In this chapter, we compare our result of x evolution of polarized gluon 

distribution function i1G(x,t) in LO and NLO with the graphs obtained by 

numerical method of B Ziaja [195]. Each graph of our result is the best fit graph 

of our works with the numerical method. Here values at x = 0.001 is taken as 

input to test the x-evolution equations of our results. We compared our results 

for R'(x) = R', axb and ce OOdx, where R', a, b, c and d are constants. In all figures, 

we have plotted computed values of polarized gluon distribution function 

i1G(x, t) against the x values for a fixed Q2 qualitatively. Here we have plotted 

the graphs for Q2 =10 GeV2 in the range of 0.001 ~ x ~ 0.00001. In all graphs, 

solid lines represent our NLO results, dash lines represent our LO results of 

best fitted graphs and numerical methods are represented by the dotted lines. 

Since experimental data as well as parameterization results on t-evolution of 
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polarized gluon distribution function is not found elsewhere, so we could not 

compare our t-evolution results here. 

As value of To has obtained in chapter 4 and chapter 7, here it is not 

shown. But same value, To = 0.048, is considered here. In figure 9.1, we have 

plotted our results for LO and NLO considering R'(x) = R', a constant. It is 

found that best fit results are for R' = 0.8 in both LO and NLO. 

C) 
<I 

650 

450 

250 

50 
0.00001 0.0001 

X 

Q2= 10 GeV2 

... Ziaja 
--- LO 
-NLO 

0.001 

Figure 9.1: x-evolution of polarized gluon distribution functions in LO and NLO with 
R' (x) = R', compared with the graph obtained by numerical method 

149 



Gluon Distribution Functions 

In figure 9.2, we have plotted our results for R' (x) = axb, a power function 

of x. It is found that best fit results are for a = 0.01 and b = 0.002 in both LO and 

NLO. 

650 

450 

250 

50 
0.00001 0.0001 

X 

Q2= 10 GeV2 

R'(x) = axb 

a=0.01, b=0.002 

......... Ziaja 
LO 

- NLO 

0.001 

Figure 9.2: x-evolution of polarized gluon distribution functions in LO and NLO with 
R' (x) = axb, compared with the graph obtained by numerical method 
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In figure 9.3, we have plotted our results for R/(x) = ce- dx, an exponential 

function of x. It is found that our best fit results are for c = 0.2 and d = 0.03 in 

both LO and NLO. 

650 

450 

250 

50 
0.00001 0.0001 

x 

Q2= 10 GeV2 

R'(x) = ce' dx 

c=0.2, d=0.03 

.... Ziaja 
-- - LO 
--NLO 

0.001 

Figure 9.3: x-evolution of polarized gluon distribution functions in LO and NLO with 
R/(x) = ce - dx, compared with the graph obtained by numerical method 
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9.3 Conclusion 

In this chapter, we have solved DGLAP evolution equations for 

polarized gluon distribution function in LO and NLO using method of 

characteristics. Experimental data on t-evolution of polarized gluon distribution 

function is not found elsewhere. Thus we could not compare our t-evolution 

results of polarized gluon distribution function. Our x-evolution graphs for 

polarized gluon distribution functions in both LO and NLO are compared are 

in good consistency with the results obtained by solving unified evolution 

equation by numerical method especially at small-x and high-Q2 region. The 

mean percentage error of our LO and NLO results are 11.47% and 5.81 % with 

data obtained from numerical method. Thus the NLO shows significantly better 

fitting to the data sets obtained by numerical method than that of in LO and 

hence the NLO corrections have significant effect and we cannot ignore the 

contribution of NLO terms in high-Q2 and small-x region. The polarized gluon 

contribution, which is largely responsible for scaling violations, appears to be 

positive, although quite poorly determined at this time. A major motivation for 

future high-energy polarized scattering experiments is to obtain more 

information on the polarized gluon contributions to the nucleon spin. 0 
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Chapter 10 

Conclusion 

In this thesis, we solved unpolarized DGLAP evolution equations up to 

NNLO and polarized DGLAP evolution equations up to NLO by applying first 

Taylor's expansion and then Method of Characteristics, and obtained unique 

solutions for both unpolarized and polarized singlet, non-singlet structure 

functions and gluon distribution functions in the small-x and high-Q2 region. 

We derived t and x-evolutions of singlet (deuteron), non-singlet (combination 

of proton and neutron or proton and deuteron) and gluon distribution 

functions and compared them with experimental data sets, parameterizations 

and result from numerical method with satisfactory phenomenological success. 

In all the results, from experiments, global fits or numerical method, it is seen 

that all the mentioned structure functions increase when x decreases for fixed 

values of Q2 and when Q2 increases for fixed values of x. 

We have seen that our results of unpolarized deuteron and non-singlet 

structure functions are in good agreement with NMC, E665, CLAS collaboration 

and NNPDF collaborations data sets and the results of unpolarized' gluon 

distribution function are in good agreement with MRST2004 and GRV1998 

global parameterizations. Results of polarized structure functions are also in 

good agreement with SLAC E143, SMC and COMPASS collaboration data sets 

and with the graph obtained by solving unified evolution equation by 

numerical method especially at small-x and high-Q2 region. Again from our 

results of the best fitted graphs, it is clear that the singlet and non-singlet 

structure functions as well as gluon distribution functions in NLO show 

significantly better fitting to the experimental and parameterization data than 

that of in LO. So, the higher order term in NLO has appreciable contribution in 

the small-x region to the parton distribution functions. In Chapter 5, we have 
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seen that T1 is much smaller than To, so, we expect NNLO contributions to the 

DGLAP evolution equations should be small. But from the comparison of t and 

x-evolution graphs of our results for LO, NLO and NNLO, it is seen that NNLO 

corrections have significant effect. This indicates that we should not ignore the 

contribution of NNLO terms in our region of small-x and high-Q2. We speculate 

that contributions from higher and higher orders to the DGLAP evolution 

equations will be smaller and smaller and ultimately leading to insignificant 

effect to the structure functions. Though we have considered some parameters 

like k(x), To and T1 etc., but since the numbers of assumed parameters are less. 

For simplified solutions of DGLAP evolution equations we have considered 

numerical variables To and T1, not arbitrarily. The values are chosen such that 

differences between T2(t) and To T(t), and also T3(t) and T1 T(t) are negligible. 

Thus we can conclude that though there are various methods to solve 

DGLAP evolution equation to calculate quark structure functions and gluon 

distribution functions, the Method of characteristics is also a viable alternative. 

Though mathematically vigorous, it changes the integro-differential equations 

into ordinary differential equations and then makes it possible to obtain unique 

solutions. 

As the future directives, to obtain completely unique solutions, we can 

try to solve coupled evolution equations both for singlet structure functions and 

gluon distribution functions. We can also try to solve the equations in higher 

and higher orders to have more precise results if and when relevant kernels are 

available. Non-perturbative low-Q2 sector is also an area of future study, 

though some work has been going on at present also [196]. At higher energy, x 

values are still smaller and number of partons increases more. So, hadrons can 

be considered as some statistical systems. Studies on structure functions 

considering this model are going on [197, 198, 199] and we can give more 

importance on them. Lastly at small-x, recombination among partons may be 

considered a dominating factor. Study on evolution equations and structure 

functions considering this effect is also an important subject at present and 

future. 0 
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II Appendices II 

"One must aivide one's time 6etween pofitics ana equations. (j3ut our 
equations are mucli more important to me" 

- P,instein 



Appendices 

I. Appendix A 

Functions for unpolarized DGLAP evolution equation in LO are 

I~(x, t) ~ 2 f \ ~ffiffi [(\ +0)' f:(: ,t) -2F: (x, t)] 

I~ (x, t) ~ 2N r [ {u' + (\ - w)' Jo( : ' t }w 
I~'{x, t) ~ 2 [ I ~ww [(\ + w' f:'(:, t) -2F,N' (x, t)] 

II. Appendix B 

Functions for unpolarized DGLAP evolution equation in NLO are 

I; +-I)F1 (x, t)[ r(w)dw+ [r(o¥1(:, t}w+ [F:q(W)F1(:, t}w+ [F:,(WJG(:, t t"'] 
I~' +x -I )F,N' {x, tl[ r{w)d", + ! r( "')F,"' ( >}'" ] 
with f(OO) = ci [PF (00)- PA (00 )]+ ~CFC A [p G + P A (00)]+ CF TR N fPNr (00), 

F:q (00) = 2C F TTN rFqq (00), 

F:g(OO) = CFTTNrF~g(oo)+CG TTNrF:g(OO), 

PF ("') ~ - 2fl +0); ) 1n('" )1n(1 - ill) - (_3_ + 2OO)lnoo - ~ (1 + 00 )lnoo + 5{1- (0), 
1-00 1-00 2 
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F~g (00) = 4 - 900 - (1- 400 )lnoo - (1- 200 )1n 2 (00)+ 41n(l- (0) 

+In'C ~ro ) - 41f ~ ro ) - ~,,2 + 10 ]p" (ro), 

F2 (ro)= 182 + 14 ro+ 40 +(136 ro- 38)lnro-4In(l-ro)-(2+8ro)ln2ro 
qg 9 9 9ro 3 3 

[ 
44 2 218] C~w)d 1 

+ -ln2ro+-lnoo-21n2{I-ro)+41n{l-ro)+~-- P
qg

{ro)+2Pqg{-oo) f ~ln -z 
3 3 3 (~) z Z 

I+w 

III. Appendix C 

Functions for unpolarized DGLAP evolution equation in NNLO are 

I!(x, t) ~ ! ct; [p;;)qq (x)Fi" (» + P" (x)G( :. t)] 
I~s (x, t)~ !~ [P~2(X)F2NS( » 1 
where 

{

{L1 (-163.9x -I -7.208x)+ 151.49 + 44.51x - 43.12x 2 + 4.82x 3 Kl- X)} 
P(2)( )-

NS X, t - n f ( ) 2 40 ( 4 3 ) , 
+LoLI -173.1+46.18Lo +178.04Lo +6.892Lo +- Lo - 2Lo 

27 

-5.926L~ -9.751L~ -72.11L1 +177.4+392.9x-101.4x2 

2 400 3 160 4 
n f -57.04LoLI -661.6Lo + 131.4Lo --Lo +-Lo 

9 27 

_ 506.0x-1 - 3584 x-1L 
27 0 

[
1.778L~ +5.944LI +100.1-125.2x+49.26x2 -12.59X 3J 

+ n~ 2 32 3 256_1 -1.889LoLI + 61.75Lo +17.89Lo +-Lo +-x 
27 81 
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100L~ _ 70L~ -120.5L~ +104.42L I +2522-3316x+2126x 2 
27 9 

Pqg(x) == n f + LoLl (1823 - 25.22Lo)- 252.5xL~ + 424.9Lo + 881.5L~ 

_ 44 e + 536 L4 -1268.3x-1 _ 896 x-IL 
3 0 27 0 3 0 

20 3 200 2 2 3 
-LI +-LI -5.496LI -252.0+158.0x+145.4x -139.28x 
27 27 

+ n: - 98.07xL~ + 11.70xL3
o - LoLl (53.09 + 80.616Lo) 

-254.0L -90.80e _ 376 e _.!iL4 + 1112 x -1 

o 0 27 0 9 0 243 

with La = In (x), Ll = In (I-x). 

Also 

{

In(o))ln(l- 0))[-173.1 + 46.181n (1- 0))]+ 178.041n (1- O))} 

+ 6.8921n 2 (1- 0))+ ~(ln 4 (1- 0))- 2ln 3 (1- 0))) 
27 

+ O){ln(O) )(-163.9 (1- 0) t -7.208 (1- 0) ))+ 151.49 } 

+ 44.51 (1- 0))- 43.12 (1- 0) Y + 4.82 (1- 0) r 
-5.926In 3(0))-9.751ln 2(0))-72.11ln (0))+177.4 

+392.9 (1-0))-101.4 (I-O)Y -57.04In (I-O))ln(O)) 

-661.6In (1-0))+ 131.41n 2(1_0))_ 400 In 3(1-0)) 
9 

160 4 () ()-I 3584 ( )-1 ( ) + -In 1- 0) - 506.0 1- 0) - -- 1- 0) In 1- 0) 
27 27. 

1.778ln 2 (0))+ 5.9441n (0))+ 100.1 -125.2 (1- 0)) 

+ 49.26 (1 - 0) Y -12.59 (I - 0))3 -1.889In (I - 0) )In (0)) 

+ 61.751n (1-0))+ 17.891n 2(1-0))+~ln3(1-0)) 
27 

256 (1 )-1 +- -0) 
81 
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{

In (00 )In (1 - 00 )[-173.1 + 46.181n (1 - 00)] + 178.041n (1 - OO)} 

+6.892ln 2(1-00)+ 40 (In 4(1-00)-2In 3(1-00)) 
27 

+ 00{ln(OOX-163.9 (1- 00)-1 -7.208 (1- 00))+ 151.49 } 

+ 44.51 (1 - 00) - 43.12 (1 - 00 y + 4.82 (1 - 00 y 
-5.926In 3(00)-9.7511n 2(00)-72.111n (00)+177.4 

+ 392.9 (1- 00)-101.4 (1- ooy - 57.041n (1- oo)ln(oo) 

+ 00 _ 661.61n (1- 00)+ 131.41n 2 (1- 00)- 400 In 3 (1- 00) 
9 

160 4 () ()-I 3584 ( )-1 ( ) + -In 1 - 00 - 506.0 1 - 00 - -- 1 - 00 In 1 - 00 
27 27 

1.7781n 2(00)+5.944In (00)+100.1 -125.2(1-00) 

+ 49.26 (1- 00 Y -12.59 (1- 00)3 -1.889In (l- 00 )In(oo) 

+nfoo + 61.751n (1-00)+17.89In 2(1-00)+E.. ln 3{l-00) 
27 

256 (1 )-1 +- -00 
81 

100 In 41n (00 ) - ~ In 3 (00 ) - 120 . 51n 2 (00 ) + 104 .42 In (00 ) 
27 9 

+2522 -3316(I-oo)+2126(I-ooY -252.5(I-oo)ln 3(1-00) 

+ In (00 )In(l- 00 )(1823 - 25 .22In(l- 00 ))+ 424 .9In(l- 00) 

+881.5In 2 (1-00)- 44 In3 (1_00)+ 536 In4 (I_oo) 
3 27 

-1268 .3(I-oot - 896 (l-ootln(I-OO) 
3 

20 In 3 (00)+ 200 In 2 (00)- 5.4961n (00)- 252.0 
27 27 

+ 158 .0(1- (0)+ 145.4(1- 00 Y -139.28 (1- 00 r 
- 98 .07 (1 - 00 )In 2 (1 - (0) + 11 .70 (1 - 00 )In 3 (1 - (0) 

+ n f -In(oo )In(l- 00 )(53.09 + 80 .616In(l- (0)) 

- 254 .0In(l- (0)- 90 .801n 2 (1- (0)- 376 In 3 (1- (0) 
27 

- .!i In 4 (1 - 00 ) + 1112 (1 - 00 t 
9 243 
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100 In4In(ro)- 70 In 3(ro)-120.5In 2 (ro)+104.42In(ro) 
27 9 

+ 2522 -3316 (1- ro)+ 2126 (1- roy - 252.5(1- ro)ln 3(1- ro) 

+ In(ro )In(l- ro XI 823 - 25 .22In(l- ro ))+ 424 .9In(l- ro) 

+881.5In 2 (I-ro)- 44 In3 (I_ro)+ 536 1n4 (I_ro) 
3 27 

-1268.3(1- ro tl "- 896 (1- rot In(l- ro) 
3 

20 In 3 (ro)+ 200 In 2 (ro)- 5.4961n (ro)- 252.0 
27 27 

+ 158 .0(1- ro)+ 145.4(1- roy -139.28 (1- ro r 
- 98.07(1- ro )In 2 (1- ro)+ 11.70(1- ro )In 3(1_ ro) 

+ n f - In (ro )In (I - ro X53. 09 + 80. 616ln (I - ro )) 

IV. Appendix D 

-254.0In(l-ro)-90.80In 2 (I-ro)- 376 In3 (I_ro) 
27 

_.!i In 4 (1- ro)+ 1112 (I -rot 
9 243 

Functions for polarized DGLAP evolution equation in LO are 

I;S(x, t) = 4 f doo [(1 + 00
2 ~~(~, t) -2g~(x, t)] 

3 x l-oo 00 

r;S{x,t) ~ N, [~2 -(I-ro)' ~~ >}ro 

I;NS(x, t)~ : f 1 ~roro [(1 +OJ' ~~S(:, t) -2g ~S(x, tll 
V. Appendix E 

Functions for polarized DGLAP evolution equation in NLO are 

I I (x) I;S(x,t)=(X-l)g~(X,t)!f(ro)dro+!f(oo)g~ -;,t dro 

+ ! M';, (ro 19~(: +ro + ! ~p;, (ro)8G (: ,t}ro 
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with 

f(co) = C~ [PF (CO)- P A (co )]+ ~CFC A [p G + P A (co )]+ CF TR N fPN
r 

(CO) I 

PF ("') ~ - 2fl +ffi; ) In( '" )In( 1 - '" ) - (_3_ + 2co)lnco - 1.. (1 + co )lnco + 40 (1- co) 
I-co I-co 2 3 

PN (co)=~[I+C02 (-lnco-~)-2(I-CO)]' L\Pq~(CO)=2CFTRNfL\Pqq(CO), 
r 3 I-co 3 

~P qq (00) = (1- (0)- (1- 300 )Inoo - (1 + 00 )In 2(0 I 

~P:g «(0) = C F TR N f~P~g (00)+ Co TR N f~Pq2g (00) I 

L\P ~g (00) = -22 + 27 ro - 9lnro + 8(1 - ro )In(I - ro) 

+ (2ro -1{ 2ln 2 (1- co)- 4ln (1- ro )lnro + In 2CO - ~ 1t
2 ] 

~P q2g «(0 ) = 2 (12 - 11 (0 ) + 2 0 + 8 (0 )In (0 - 8 (1 - (0 )In (1 - (0 ) 

- 2 In 2 (1 - (0 ) - ~ (2 (0 - 1) - 2 J ~ In ~ - 3In 2 (0 (- 200 - 1) 
[ 

2 ] [ III +00 d 1 ] 

6 111+00 Z Z 

VI. Appendix F 

Functions for unpolarized gluon distribution functions are 

1 wG( ,t)-G(x,t) { }c ()2 J ( ) 
Igl (x,t) =fd w + w(l-w)+ 1-w (x ,t)+ 2 1+ 1-w F~ ~,t I 

1 - w w w 9 w w x 

169 



Appendices 

r: (x, t) ~ f dOO[P ~ (oo)oC : ' t) + A (oo )F:(: ' t) J. where p~(oo)~ :! 
Also 

A(oo) = CF
2 .A I (00)+ CF,CG .A 2 (00)+ CF.TR.N F.A3 (00), 

A (00) = - ~ - 2. 00 + (2 + 2. 00 J + (- 1 + ~J In 200 - 200 .In (i - 00 ) 
I 2 2 2 2 

+ {_ 3In (1- 00 )-In 2 (1- 00 )}I + (1- 00 Y 
00 

{ () 1 2 II ( ) 2 ( ) 1 2 I} I + (1- 00 Y + - 2Inooin 1- 00 + -In 00 + -In 1- 00 + In 1- 00 - -1t + - -~~ 
2 3 6 2 00 

_ 1 + (1 + (0 y "1'.0 dZln 1- Z , 

(0 {J)/\+{J) Z Z 

VII. Appendix G 

Functions for polarized gluon distribution functions are 

J~ (x, t) ~ H :~ -~; + In(l- X»)dG(X, t)+ 61 0 } 

J~ (x, t) = (x - I )~G (x, t)f ~P:g (eo):teo + f ~P:g (eo )~G (~, tJdeo 
o x 00 

+ [dP:q(oo:g~(: ,t}oo 
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with 

1 ll(1+ro4~G(~,t)_2i1G(x,t) (1 (1-ro)3J x ) 
Ia = f dro - ro + - + ro 3 - i1G( -, t) 

x 2 1-ro ro ro ro 

i1P:g (ro ) = -C a T R N f L\P ~g (ro ) - C F T R N f L\P ~ (ro ) + C; L\P:g (ro ) , 

L\P~g (ro)= 4(1- ro)+ !(1 + ro)lnro + 20 (_1 __ 2ro + 1J, 
3 9 1-00 

L\P g~ (w ) = 1 0 (1 - w ) + 2 {5 -w )In 00 + 2 (1 + 00 )In 2 w , 

1 19 
L\P:g (ro) = -(29 - 6700 )lnoo - -(1- ro)+ 4(1 + 00 )In 200 

3 2 

- f ~ln~ --+200+1 
111+w d 1 (1 J 
w/l+w Z Z 1 + 00 

+ - - 41n (1 - ro )In 00 + In ro - - --- 200 + 1 , { 
67 2 1t 2 }( 1 J 
9 3 l-w 

L\P ~q (00 ) = - : (4 + 00 ) - ~ (2 - 00 )In (1- 00 ) , 

M'~(oo)~ - ~ - ~ (4 -oo)lnoo-(2 + oo)ln(l- oo)+{ -4 -In'(I-oo)+ ~ In' 00 }(2 - (i)), 

1 1 
L\P :q (w) = {4 -13 00 )lnw + -{10 + w )In (I - w)+ -(41 + 35 w) 

3 9 

+ - - 2 f ~ln ----=-.:.. + 31n 2 w (2 + w) 1 { l/l+w d 1 } 

2 w/l +w Z Z 

+ {In' (1- (0)- 21n (1- 00 )Inoo - "6' }(2 - (i)). 0 
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Evolution of spin-dependent structure functions from DGLAP equations in leading order and 
next to leading order 

R. Baishya* 
Physics Department, J. N. College, Boko-781123. Assam. India 

U. Jamil and J. K. Sarma 
Physics Department, Tezpur University, Napaam-784028. Assam. India 

(Received 15 December 2008; published 25 February 2009) 

In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by 
solving Dokshitzer, Gribov, Lipatov, AI tarelli, Parisi evolution equations in leading order and next to 

leading order in the small x limit. Here we have used Taylor series expansion and then the method of 
characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron 
structure functions, and the results are compared with the SLAC E-143 Collaboration data. 

DOl: 10.II03/PhysRevD.79.034030 

I. INTRODUCTION 

High-energy lepton-nucleon scattering has served as a 
sensitive probe for the substructure of the proton and the 
neutron. Experiments with high-energy electrons, muons, 
and neutrinos have been used to characterize the parton 
substructure of the nucleon and to establish the current 
theory of strong interactions, quantum chromodynamics 
(QCD), etc. Here the observations are scaling violations for 
the unpolarized nucleon structure functions, the measure­
ment of the strong coupling constant asCQ2), the confir­
mation of numerous QCD sum rules, and the extraction of 
the parton distributions inside the nucleon. The solutions of 
the unpolarized DGLAP equation [I] for the QCD evolu­
tion of parton distribution functions have been discussed 
considerably over the past years [2-8]. There exist two 
main classes of approaches: those that solve the equation 
directly in x space, and those that solve it for Mellin 
transforms of the parton densities and subsequently invert 
the transform back to x space. Some available programs 
that deal with DGLAP evolution are PEGASUS [5], which 
is based on the use of Mellin moments, and QCDNUM [6], 
CANDIA [7], and HOPPET [8), which are all based on x 
space. 

In the polarized deep-inelastic scattering (DIS) program, 
the spin structure of the nucleon has been studied by using 
polarized lepton beams scattered by polarized targets. 
These fixed-target experiments have been used to charac­
terize the spin structure of the proton and neutron and to 
test additional fundamental QCD and quark-parton model 
(QPM) sum rules. The first experiments in polarized 
electron-polarized proton scattering, performed in the 
I 970s, helped establish the parton structure of the proton. 
In the late 1980s, a polarized muon-polarized proton ex­
periment found that a QPM sum rule was violated, which 

*rjitboko@yahoo.co.in 
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seemed to indicate that the quarks do not account for the 
spin of the proton. This "proton-spin crisis" gave birth to a 
new generation of experiments at several high-energy 
physics laboratories around the world. The new and exten­
sive data sample collected from these fixed-target experi­
ments has enabled a careful characterization of the spin­
dependent parton substructure of the nucleon. The results 
have been used to test QCD, to find an independent value 
for a sCQ2), and to probe with reasonable precision the 
polarized parton distributions. 

Recent interest in the spin structure of the proton, neu­
tron, and deuteron and advances in experimental tech­
niques have led to a number of experiments concerned 
with DIS of polarized leptons on various polarized targets. 
Among these are the El43 experiments at SLAC [9] and 
those of the SMC Collaboration at CERN [10], which used 
polarized hydrogen and deuterium; the E 154 experiment at 
SLAC [11] and the HERMES Collaboration experiments at 
DESY [12), which used polarized 3He; and the HERMES 
experiment [13], which used polarized hydrogen [14]. A 
new material, deuterized lithium 6LiD, has recently 
emerged as a source of polarized deuterium in the E155/ 
E I 55x experiments at SLAC [15]. The spin-dependent 
structure function g 1 Cx, Q2) for deep-inelastic lepton­
nucleon scattering is of fundamental importance in under­
standing the quark and gluon spin structure of the proton 
and neutron. According to the DGLAP equations [16], 
gl Cx, Q2) is expected to evolve logarithmically with Q2, 
where g 1 depends both on x, the fractional momentum 
carried by the struck parton, and on Q2, the squared four­
momentum of the exchanged virtual photon. There have 
been a number of theoretical approaches [8,17] to calculate 
g 1 Cx, Q2) using phenomenological models of nucleon 
structure. In this paper we will try to solve polarized 
DGLAP evolution equations up to next to leading order 
(NLO) by the method of characteristics [6,18] and compare 
our results with experimental data [9]. Since the method of 
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characteristics gives a unique solution of the partial differ­
ential equation, this phenomenological work signifies an 
important role in the evolution of structure functions. 

II. THEORY 

When both the beam and the target are 10ngitudinalIy 
polarized in DIS, the asymmetry is defined as 

0-11 - 0-11 

All = 0-11 + 0-11 ' 

where 0-11 and o-n are the cross sections for the opposite and 
same spin directions, respectively. Similarly, the transverse 
asymmetry, determined from scattering of a longitudinally 
polarized beam on a transversely polarized target, is de­
fined as 

~- - o-ft-
A.l. = ~- + o-ft-' 

These asymmetries can be express in terms of longitudinal 
(A,) and transverse (A2 ) virtual photon-nucleon asymme­
tries as 

All = D[A, + 7]A2J and A.l. = d[ A2 - Y(I - ~)A' J. 

h D - 2)'-/ - (Q)2('-)') d - .~ D 
were - 2('-)')(1 +R)+y2' 7] - E y(2=YJ' - n ' 
y2 = 4y2x2, andy =~. The virtual photon-nucleon asym­

metries for the proton, neutron, and deuteron are defined as 

AP.n = 0-'/2 - 0-3/2 , ' 
0-'/2 + 0-3/2 

Ad = 0-0 - 0-2 

, 0-0 + 0-2' 

The longitudinal spin-dependent structure function g, (x) is 
defined as 

where q,(x) = qi(x) + iji(x) - qj(x) + ijj(x). Here 
qi(x) and qi(x) are the densities of quarks of flavor "i" 
with helicity parallel and anti parallel to the nucleon spin. 

The spin-dependent structure functions g, (x, Q2) and 
gz(x, QZ) are related to the spin-independent structure 
function Fz(x, Q2) as 

F2(x, Q2)[A,(x, Q2) + yA2(x, Q2)J 
g, = 2x[1 + R,Ax, Q2)] . (Ia) 

F2(x, Q2)[ -A,(x. Q2) + A2 (x, Q2)hJ 
g2= 2x[I+R

q
(x.Q2)) (Ib) 

where Rq = ~;~~$: is the ratio of the longitudinal and 

transverse virtual photon cross sections. The deuteron, 
proton, and neutron structure functions measured in DIS 

PHYSICAL REVIEW D 79,034030 (2009) 

can be written in terms of singlet and nonsinglet quark 
distribution functions as 

d( _ 5 S( ) g, x, t) - 2 g, x, t , (2a) 

p • ) _ 5 S( ) 3 NS( ) g, (x, t - Is g, x, t + Is g , x, t , (2b) 

N _ 5 S .) 3 NS( ) g, (x, t) - Is g, el, t - Is g, x, t , (2c) 

where t = In(Q2/A2); A is the QeD cutoff parameter. 
The polarized DGLAP evolution equation [16] in the 

standard form is given by 

ag
; ~~Q~2) = P(x, Q2) ® g, (x, Q2), (3) 

where g, (x, Q2) is the spin-dependent structure function as 
a function of x and Q2, where x is the Bjorken variable and 
Q2 is the four-momentum transfer in a DIS process. Here 
P(x, Q2) is the spin-dependent kernel known perturbatively 
up to the first few orders in as(Q2), the strong coupling 
constant. Here ® represents the standard Mellin convolu­
tion, and the notation is given by 

1'dY (X) o(x) ® b(x) == -o(y)b - . 
o Y Y 

(4) 

One can write 

P(x, (22) = a~;2) p(O) (x) + (a~;2)y p(1)(x), (5) 

where p(O)(x) and p(' ) (x) are spin-dependent splitting func­
tions in LO and NLO. 

The singlet and nonsinglet structure functions are ob­
tained from the polarized DGLAP evolution equations as 

agS as(t) [2 at- -2:;- 3{3 + 41n(l - x)}g~(x, t) 

+ If (x, t) + I~(x, t) ] = 0, 

ag~S _ as(t) [~{3 + 41n(l - x)}g~S(x, t) 
at 21T 3 

+ l~S(x, t) ] = 0, 

in LO and 

agS as(t) [2 
-' - -- - {3 + 41n( I - x)}g~{x, t) at 21T 3 

s s ] (as{t»)2 s +/, (x. t) + 12 (x, t) - ~ 13 = 0, 

a NS A 
-.l.L - -1 [{3 + 41n(l - x)}g~S(x,t) at t 

+/~S(x, t)) - (i~)y/~s = 0 

(6a) 

(6b) 

(7a) 

(7b) 
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in NLO, where 

PHYSICAL REVIEW D 79, 034030 (2009) 

with 

I~(x, f) = ~ fl ~[(1 + w2)g~(~, t) - 2g~(x. f)]. (8a) 
3 x l-w w 

Ii(x, t) = Nf f {w2 - (I - w)2}LlG(;, f)dw, (8b) 

I~ = [(x - I)g~(x, t) fal f(w)dw + f f(w)gr(;, t)dw + f LlP~q(w)gr(;, t)dW 

+ f ~P~g(w)LlG(;, t)dW J. (8c) 

I~S(x, r) = ~ fl ~[(1 + w2)g~S(~, r) - 2gfS(x, t)], (8d) 
3 x l-w w 

I~S = [(x - I)gfS(-t, t) fal f(w)dw + f f(w)gf S(;, t)dW + f LlP~q(w)gfS(~, t)dw] (8e) 

2(1 + w 2
) f(J/(I+W)) dk (1 - k) 

PA(w) = (I) -In -k- + 2(1 + w) In(w) + 4(1 - w), 
+ w (01/(1 +(1» k 

(1 + w 2
) ( ~ 11 67 71"2) 40 

PcCw) = (1 _ w) In-(w) + 3 In(w) + 9 - 3 + 2(1 + w)Inw + 3(1 - w), 

2 [1 + w
2 

( 5) ] PN (w) = - -- -Inw - - - 2(1 - w) , 
f 3 I-w 3 

LlP~q(w) = 2CFTRNjLlPqq(w), 

LlPqq(w) = (l - w) - (1 - 3w) Inw - (1 + w)In2w, 

LlP2g(w) = CFTRNfLlPbg(w) + CGTRNfLlP~II(w), 

~P~g(w) = -22 + 27w - 91nw + 8(1 - w) In(1 - w) + (2w - 1)[2In2(1 - w) - 41n{1 - w) Inw + In2w - i~], 

LlP~g(w) = 2(12 - Ilw) + 2(1 + 8w) Inw - 8(1 - w) In(1 - w) 

- 2[ln2(1 - w) - 71"2](2W -1) - [2jl/(I+WldZ In_l_-_z - 31n2w]<-2w-1) 
6 01/(1-01) Z Z 

The strong coupling constant as(Q2) is related to the f3 
function as [4] 

·rl~~----------~~------------------
34 2 10 38 

/31 = 3 Nc - 3 NcNf - 2CFNf = 102 - 3 Nj ' 

where 

2857 3 2 205 44 2 
/32 = -s4 Nc + 2CFTf - gCFNCTf + gCFTf 

158 2 +nNcTf 

2857 6673 325 2 

=-6--18 Nj +54 Nf 

are the one-loop, two-loop, and three-loop corrections to 
the QeD f3 function, Nf being the flavor number. We have 
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N~-I 4 1 
set Nc = 3, CF(w) = Vc = 3' and Tf = 'iNfo Let us 

introduce the variable u = I - wand note that ~ = 1 ~II = 

XLk=o uk. 

Since x < w < I, 0 < u < I - x, and hence the series is 
convergent for lui < 1. Now using Taylor's expansion 
series, 

Here, if we introduce the higher order terms in the Taylor 
expansion, then there is also no modification of the solu­
tion. When we solve the second-order partial differential 
equation using the Monges method, which will be pro­
duced by introducing the second-order tenns in the Taylor 
expansion, then it ultimately becomes first order, as before, 
due to the form of the DGLAP equation. Similarly, by 
introducing more terms in the Taylor expansion, we hope 
that for these cases the terms can also be neglected due to 
still smaller values of x [19]. Thus x is small in our region 
of discussion, the terms containing x2 and higher powers of 
x can be neglected, and we can rewrite gf(~. t), g~S(;.. t), 
and ilG(1;, t) as 

s(x ) _ S() xu ag~(x, t) 
gl ;' t - gl x, t + I _ u ax ' (9a) 

NS(X ) _ NS(.) xu ag~S(x, f) 
gl ;' t - gl -', t + I - u ax ' (9b) 

ilG(2.. t) = ilG(x, t) + ~ ailG(x, t) . 
w I - u ax 

(9c) 

In order to solve Eqs. (6a) and (7a), we need to relate the 
singlet distribution gT(x, t) with the gluon distribution 
ilG(x, t). For small x and high Q2, the gluon is expected 
to be more dominant than the sea quark. But for lower Q2, 
there is no such clear-cut distinction between the two. 
Hence, for simplicity, let us assume ilG(x, t) = 

k(x)g~(x, f), where k(x) is a suitable function of x or may 
be a constant [20]. 

Using Eqs. (9a) and (9c) in Eqs. (8a) and (8b) and 
performing u integrations, Eq. (6a) takes the form 

where 
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FIG. 1. Characteristic curves. 

iJk(x) 
L(x) = A(x) + k(x)C(x) + D(x)--, (1Ia) 

ax 
M(x) = B(x) + k(x)D(x). (lIb) 

A(x) = 2x - x2 + 41nO - x), (llc) 

B(x) = x - x3 - 2x In(x), (lId) 

C(x) = ~Nf(x - x2), (lIe) 

D(x) = ~Nf[ - x + x3 + x In(x)]. (11f) 

To introduce the method of characteristics [18J, let us 
consider two new variables, Sand 7, instead of x and t, 
such that 

dt 
-= -t 
dS ' 

(I2a) 

dx 
dS = AfM(x), (J2b) 

which are known as characteristic equations. Figure I in­
dicates the characteristic curves in the x-t plane. Here the 
vertical curvy lines represent the I-evolution curves. In a 
particular vertical curvy line 7 is constant and S varies 
from 0 to a. Putting these equations in Eq. (10), we get 

dg~(S. 7) + L(S, 7)gT(S, 7) = 0 (13) 
dS 

which can be solved as 

For the evolution of I, the structure function varies with 
f, while x remains a constant. Hence Eq. (12a) can be used 
in Eq. (13), the solution of which is 

s S (t )L(S'TJ 
gl(S.7)=gl(T) t;;' (14) 

where L(S. T) = 3/2Af L(x) and g~(S. T) = gT(T) for S = 
0, f = fo. 

Replacing the coordinate system (S, 7) to the original 
coordinate system (x. t) in Eq. (14) with the input function 
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gy( r) = gy(x, to), we get the t evolution of the singlet 
structure function in the LO as 

(15) 

Proceeding in the same way, we get the t evolution of the 
nonsinglet structure function from Eq. (7b) as 

NS _ NS ( t )(3/2)Af A(X) 
g, (x, t) - g, (x, to) t;; . (16) 

The t and x evolution of the deuteron, proton, and 
neutron structure functions in LO can be obtained as 

(17a) 

(17b) 

and 

PHYSICAL REVIEW D 79, 034030 (2009) 

L,(x) = B,(x) + k(x)B2 (x) + B4 {x)ak(x)/ax, 

Mj(x) = BJ(x) + k(x)B4 (x), 

B,(x) = x fa' f(w)dw - h< f(w)dw 

+ ~NJ f' tlPqq(w)dw, 
3 x 

B2(x) = L' tlP~8(w)dw, 
B3(x) = x i'[f(W) + iNftlP~g(W) ] I : w dw, 

f'l- W 
B4(X) = x -- tlP~g(w)dw. 

x W 

(2Ia) 

(21b) 

(21c) 

(21d) 

(21e) 

(21 f) 

Here we consider one numerical parameter, To, such that 

T2(t) = To.T(t), where T(t) = ~ and To = I; with as = 
0.1240:!: 0.0008(stat) :!: O.OOIO(exp) ± 0.001 I (had) [21]. 

III. RESULTS AND DISCUSSION 

In this paper, we compare our result for the t evolution of 
the polarized singlet (deuteron) gf(x, t) and nonsinglet 
(combination of the proton and the neutron) g~S(x, t) 
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FIG 4 NonsmgJet structure tunctton \0 LO 

structure functIOns measured by the SLAC E- 143 
CollaboratIOn at beam energies of 29 I, 16 2, and 
97 GeY In Figs 2 and 3, we have plotted the computed 
values of g I d agam~t Q2 values for a fixed x m LO and 
NLO, respectively In Flg~ 4 and 5 we have plotted the 
computed values of giNS agamst the Q:! values for LO and 
NLO Here the vertical hnes represent the data ranges from 
expenment, and honzontal Imes represent our computed 
values 
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Abstract The non-singlet structure functions have been 
obtained by solving Dokshitzer-Gribov-Lipatov-Altarelli­
Parisi (DGLAP) evolution equations in next-next-to-Ieading 
order (NNLO) in the small-x limit. Here a Taylor series ex­
pansion has been used to solve the evolution equations and 
we obtain the semi numerical solution. Results are compared 
with the Fermi Lab experiment E665 data and New Muon 
Collaboration (NMC) data. 

PACS 12.38-t· 12.39-x . 13.60.Hb 

1 Introduction 

The one- and two-loop splitting functions have been known 
for a long time [1-4]. The computation of the three-loop 
contributions to the anomalous dimensions is needed to 
complete the NNLO calculations for deep inelastic scatter­
ing (DIS). The NNLO corrections should be included in or­
der to arrive at quantitatively reliable predictions for hard 
processes at present and future high energy colliders. Re­
cently the three-loop splitting functions are introduced with 
good phenomenological success [5-11]. Though various 
methods like Laguerre polynomials, brute-force methods, 
Mellin transfonnation etc. [12-J 8] are available in order to 
obtain a numerical solution of DGLAP evolution equations, 
exact analytical solutions are not known [II, 19]. Here we 
solve the DGLAP evolution equation in NNLO analytically 
to get a semi numerical solution with good agreement with 
experimental data. Hence it is significant as an important 
phenomenological work for studying structure functions. 

a e-mail: rjitboko@yahoo.co.in 
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2 Theory 

The DGLAP evolution equation in the non-singlet sector in 
the standard form is given by 

8pNS(X Q2) 
2 ' = P ( Q2).o. pNS( Q2) (2.1) 8 In Q2 NS x, '01 2 x, , 

where Ffs (x, Q2) is the non-singlet structure function as 
the function of x and Q2, where x is the Bjorken variable 
and Q2 is the four momentum transfer in a DIS process. 
Here I'Ns(x, Q2) is the non-singlet kernel known perturba­
tively up to the first few orders in as(Q2), the strong cou­
pling constant. Here ® represents the standard Mellin con­
volution and the notation is 

t dy (x) a(x) ® b(x) == 10 y-a(y)b y . (2.2) 

One can write 

I'NS(X. Q2) = as~;2) P~~(x)+ (as~;2)r P~~(x) 

+ (as~;2») 3 P~~(x). (2.3) 

where P~~(x). P~s(x) and P~~(x) are non-singlet split­

ting functions in LO, NLO and NNLO respectively. P~~ (x) 

and P~~(x) are defined in Ref. [2-4]. and using these. the 
DGLAP e~uation have been solved up to NLO [I]. By 
adding P~~ (x) with previous tenns we will get the NNLO 

evolution equation. The splitting functions pi}iex) can be 
obtained from the N-space results of the Mellin space by an 
inverse Mellin transformation. 

Applying all these and simplifying. the DGLAP evolu­
tion equations for the non-singlet structure function in LO, 
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NLO and NNLO can be written as 

aF{'S as(t) [2{ } NS 
----ar--~ )" 3+4In(l-x) F2 (x,t) 

+ Irs(x, t)J =0, (2.4) 

aF.NS A 
_2 __ 2.[{ 3 + 41n(1 - x)} Ffs(x, t) + Irs(x, t)] 

at t 

_ (as(t»)2 INS =0 
2rr 2 

(2.5) 

and 

where 

Irs(x,t) = ~1' ~[(I +w2)Ffs(~,t) 
3 x I-w w 

- 2F{'S(x, t) l (2.7a) 

Ifs(x, t) = (x - I)F{,s(x, t) 10' f(w)dw 

+ l' f(W)Ffs(~,t)dW (2.7b) 

and 

NS r I dw [ (2) () NS x J 13 (x, t) = ix -;;; PNS x F2 (~, t) . (2.7c) 

Here t = In -%' 11 is the QeD cut off parameter. Also 

I 
few) = CHPF(W) - PA(W)] + 2CFCA[PC + PA(W)] 

+ CFTRNfPNr(W), 

2(1 + w2) 
PF(W) = - In(w)ln(1 - w) 

(1- W) 

- (_3_ + 2W)lnw - ~(1 + w)lnw 
I-w 2 

40 
+ "3(I-w), 

Pc(w) = In2 (w) + -In(w) + - - -(1 +w2
) ( 11 67 rr2) 

(l - w) 3 9 3 

40 
+ 2(1 + w)lnw + "3(1- w), 

~ Springer 
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PN/(W) = ~[11~: (-lnw-~) -2(l-W»). 

2(1 + w2
) j(rt:w) dk (I -k) 

PA(W) = -In --
(I+w) (rl!;;;) k k 

+ 2(1 + w)ln(w) + 4(1 - w) 

and 

P~~(x, t) = n f [{ LI (-163.9x- 1 
- 7.208x) + 151.49 

+ 44.5Ix - 43.12x2 + 4.82x3}(l - x) 

+ LoLI[-173.1 +46.18Lo] + 178.04Lo 

2 40 (4 3)J + 6.892Lo + 27 Lo - 2Lo 

with CA = Cc = 3, Lo = In(x), LI = In(I-x). Here results 
are from direct x-space evolution [8, 9, 20]. 

The strong coupling constant, as(Q2), is related with the 
p-function by 

where 

11 4 
Po = "3Ne - )"Tf' 

34 2 10 
PI = "3 Ne - "3 NeNf - 2CFNf 

d 2857 N3 2C27' 205 C N 7' 44 C 7'2 an P2 = 54 e + F 1 f - ""9 F Cl f +"9 F 1 f + 
~78 NeT? are the one-loop, two-loop and three-loop correc­
tions to the QeD p-function and Nf being the flavor number. 

N 2 _1 4 ,. 
We have set Ne = 3, CF = ~ = 3 and Tf = "2Nf, With 

a(Q2) 2 [ PI log t I {Pf 2 --=- 1---+- -(log t-logt-I) 
2rr Pot f35 t P6 t f30 

Now let us introduce the variable u = I - w, and since 
x < w < 1, we have 0 < u < 1 - x; hence the series is con­
vergent for lui < 1 and we can use Taylor's expansion series 



Eur. Phys. 1. C 

It has been observed that if we introduce the higher order 
terms in a Taylor expansion, then also there is no modifica­
tion of the solution. Because when we solve the second order 
partial differential equation by the Monges method, which 
will be produced by introducing the second order terms in 
Taylor expansion, ultimately it becomes of the first order as 
before, due to the form of the DGLAP equation. Similarly 
by introducing more terms in a Taylor expansion, we hope 
for these cases also the terms can be neglected due to the 
still smaller values of x [21,22]. Hence we can rewrite 

NS (x) NS xu aFfS(x, t) 
F2 -,t ~F2 (x,t)+-- . 

w 1 - u ax 
(2.8) 

Using (2.8) in (2.7a), (2.7b) and (2.7c), and performing 
the u-integrations, (2.4), (2.5) and (2.6) become of the form 

2 ' _ ~ AI (x) Ff\x, t) 
aFNS(x t) a [ 

at 27r 

+A2(X) 2 ' =0, 
aFNS(x t)] 

ax 
(2.9a) 

2' S A ( ) p:NS ( ) 
aFNS(x t) a [ 

at - 27r I x 2 x, t 

+A2(X) 2 ' 
aFNS(x t)] 

ax 

(
a )2[ aFNS(x t)] - 2; BI (x)Ffs(x, t) + B2(X) 2 ax ' = ° 

(2.9b) 

and 

ap:NS(x t) a [ 
20t ' - 2; AI (x) FfS(x, t) 

oFNS(x t)] 
+ A2(X) 2 ax ' 

(
as )2[ aFNS(x, t)] 

- 27r BI (x)F2
NS

(X, t) + B2(X) 2 ax 

(
as )3[ aFNS(x, t)] 

- 27r CI (x)FfS(x, t) + C2(X) 2 ax = 0, 

where 

AI(x)=2x+x2 +4In(1-x), 

A2(X) = x - x 3 - 2x In(x), 

BI(x)=x fol f(w)dw- fox f(w)dw 

(2.9c) 

CI(X) 

fo
l-X dw 

=nf --
o l-w 

x [pn(W)(-163.9(1-W)-1 

-7.208(1 - w») + 151.49 

+ 44.51 (1 - w) - 43.12(1 - w)2 + 4.82(1 - w)3}w 

+ {In(W)ln(1 - w)[ -173.1 + 46.181n(1 - w)] 

+178.04In(l-w)+6.892In2(1-w) 

+ ~~ (In4(1 - w) - 21n3 (1 - W»)} l 
and 

C2(X) 

In
l - X xdw 

=n/ o (1 - w)2 

x [{ In(w)( -163.9(1 - w)-I 

-7.208(1 - w») + 151.49 

+ 44.51 (1 - w) - 43.12(1 - w)2 + 4.82(1 - w)3}w 

+ {In(W)ln(1-W)[-173.1 +46.18In(1-w)] 

+ 178.041n(1 - w) + 6.892In2 (1 - w) 

+ ~~ (In4(1- w) - 21n3 (1 - W»)} l 
Hence (2.9a), (2.9b) and (2.9c) take the forms 

aFNS(x, t) aFNS(x, t) 
-t 2 +LI(X)---'2=----

at ax 

+ MI (x)Ffs(x, t) = 0, (2. lOa) 

!J F NS (x , t) !JFNS(x, t) 
-t 2 + L2(X)---'2=----

ot ax 

+ M2(X)FfS(x, t) = ° (2. lOb) 

and 

~ Springer 



aFNS(x, t) aFNS(x, t) 
-t 2 + L3(X)--..;2=----at ax 

+ M3 (x) F2
NS

(X, t) = ° (2.lOc) 

where LI(x) = ;fo(A2), MI(x) = ;fo(AI), 

2 [ f3110gt] L2(X) = - 1- -2- (A2 + ToB2), 
f30 f30t 

2 [ f3110gt] M2(X) = - 1 - -2- (AI + ToBI), 
f30 f30 t 

2 [ f31 log t 1 
L3(X) = - 1 - -- + -

f30 f35 t f36 t 

x { ~~ (log2 t - log t - 1) + f32 } ] 

X (A2 + ToB2 + TIC2) 

and 

M3(X)=- 1---+-2 [ f3llogt I 

f30 f3Jt f3Jt 

x { ~~ (log2 t - log t - 1) + f32 } ] 

X (AI + ToBI + TICI). 

Here we consider the two numerical parameters To and TI, 
such that T2(t) = To . T(t) and T\t) = TI . T(t) with 
T(t) = a~~), where To and TI are two suitable numerical 
parameters. It is observed from Fig. 2.1 that the values of 
r2(t) and To' T(t) as well as T3(t) and TI . T(t) are com-

Eur. Phys. J. C 

meters the numerical error is very much less as compared to 
the other errors. 

The general solution [23-26] of (2. lOa) is F(U, V) = 0, 
where F(U, V) is an arbitrary function. Here 
U(x, t, Frs) = KI and vex, t, F~S) = K2 are two inde­
pendent solutions of the equation 

dx dt dF~s(x, t) 

LI (x, t) = -:-t = -MI (x, t)F~S(x, t)' 

Solving equation (2.11) we obtain 

U(x, t, F~S) = t· exp[! _1_dX] and 
LI(x) 

V(x, t, F~S) = Frs (x , t) exp[! MI (x) dxJ. 
LI(x) 

(2.11 ) 

It thus has no unique solution. The simplest possibility is 
that a linear combination of U and V is to satisfy F (U, V) = ° so that a . U + f3 . V = 0, where a and f3 are arbitrary 
constants [21, 22]. Putting the values of U and V in this 
equation we get 

at· exp[! _1_ dX ] + fJ· F2
NS (X, t) 

LI (x) 

[I MI(x) ] x exp --dx =0, 
LI(x) 

which implies that 

Frs(x, t) = -y . t . 

x exp[1 (LI~X) - ~lltn dx l 

(2.12) 

(2.13) 

paratively same. Due to the introduction of these two para- where y = ~ is another constant. 

Fig.2.1 T 2(t). To . T(t) and 
T\t), Tl . T(t) versus Q2 
(GeV2) 
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Now, defining .. 

NS [f( I M\(X»)] F2 (x, (0) = -y. loexp -- - -- dx , 
L\(x) L\(x) 

at t = 10, where, 10 = In(Q6/112) at any lower value Q = 
Qo, we get from (2.13) 

(2.14a) 

Again defining 

NS [f( 1 M)(X»)] F2 (XO,I) = -yt ·exp -- - -- dx , 
L\ (x) L) (x) X=Xo 

we obtain 

(2.14b) 

Equations (2.14a) and (2.14b) give the (- and x-evolution of 
the non-singlet structure function FfS(x, I) in LO, respec­
tively. 

To get the solution of (2.1 Ob) and (2.1 Oc), let us introduce 
functions Lj(x) such that L;(x, t) = ,¥T(t)L;(x). Then 
(2.IOb) and (2.1 Oc) become 

(2.15) 

and 

[f ( 1 M3(X»)] 
x exp dx L3(X) - L3(X) . (2.16) 

Now, defining 

at t = 10, where 10 = In(Q6/112) at any lower value Q = Qo, 
(2.15) gives 

( 
1(I+b/t») (b b) NS NS ---

F2 (x, t) = F2 (x, to) r(l+b/lo) e' '0. 

o 
(2.17a) 

Again defining 

b 
b -= -yt(l+')e I 

[f( 1 M2(X»)] x exp =-- - -- dx , 
L2(X) L2(X) x=xo 

(2.17b) 

FfS(x, t) = FfS(xo, nexp[ [X(~ _ M2(X»)dX]. 
lxo L2(X) L2(X) 

Equations (2.17a) and (2.17b) give the t- and x-evolution of 
the non-singlet structure function Ffs (x, t) in NLO, respec­
tively. 

Proceeding in the same way, the t- and x-evolutions of 
the non-singlet structure function Ffs(x, t) in NNLO can 
be obtained from (2.16) as 

FfS(x, t) = F2
NS (X, to) 

( 

t(b-b2)/1 ) (_b2In2'+b2~) 
X e' '0 

(b-b2)/IO 
to 

(2.18a) 

and 

vNS NS() 1"2 (x, t) = F2 xO, t 

[l X( I M3(X»)] x exp =-- - -- dx 
Xo L3(X) L3(X) 

(2.18b) 

with b = ~ and c = ~. 
To compare our result with experimental data, we have 

to consider the relation between proton and deuteron struc­
ture functions measured in DIS with the non-singlet quark 
distribution function: FfS(x, t) = 3[2Ff(x, t) - Ff(x, t)]. 

3 Results and discussion 

In this report, we have compared our results of t- and x­
evolutions of the non-singlet structure function F2

NS (x, I) 

with E665 experiment data [27] (taken at Fermi Lab in in­
elastic muon scattering with an average beam energy of 
470 Gey2) and NMC data [2S] (in muon-deuteron DIS with 
incident momentum 90, 120,200,280 Gey2). Figures 3.la 
and 3.2a represent the (-evolution of a non-singlet structure 
function where our computed values from (2.14a), (2.17a) 
and (2.1Sa) are plotted against Q2 for different values of x. 
In the x-evolutions at Figs. 3.1 band 3.2b, our computed val­
ues from (2.14b), (2.17b) and (2.1Sb) are plotted against x 

for different values of Q2. Here vertical error bars are sta­
tistical and systematic uncertainties. In all graphs, lowest-t 
and highest-x points are taken as inputs for Ffs(x, to) and 
F2

NS (xO, t) respectively. It is observed from the figures that 

~ Springer 
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for LO, NLO and NNLO the total contnbutIOns are better In 

the hlgher-Q2 and smaller-x regIOn ThiS IS so because the 
DGLAP equatIOns hold well In the hlgher-Q2 and smaller-x 
regIOn 
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Abstract The non singlet structure functions have been obtained by solVing Dokshitzer Gnbove lIpatov 
Alterelll PanSI (DGLAP) evolution equations In leading order (LO) and next to leading order (NLO) at the small x 
limit Here a Taylor Senes expansion has been used and then the method of charactenstlcs has been used to 
solve the evolution equations We have also calculated t and x evolutions of deuteron structure function and the 
results are compared with the New Muon Collaboration (NMC) and E665 data 

Keywords DIS DGLAP equation small x method of characterlsllcs structure function 

PACS Nos 1235 Eq 1238 t 1239 x 1360 Hb 

1. Introduction 

Structure functions In deep-inelastic lepton-hadron scattenng (DIS) remain among the most 
Important probes of perturbatlve Quantum Chromodynamlcs (PQCO) and of the partonIc 
structure of hadrons Indeed, expenments have proceeded towards very high accuracy 
and a greatly extended kinematic coverage dunng the past two decades An accurate 
knowledge of the parton denSities Will be indispensable for Interpreting many results at 
the future for hadrons structure The non-perturbatlve BJorken-x dependence of the structure 
functions at one scale, the scaling violations can be calculated In the QCO-Improved 

parton model In terms of a power senes expansion In the strong coupling constant as 
The next-to-Ieadlng order (NLO) ingredients for such analyses are available since 1980 
for unpolanzed structure functions In mass less perturbatlve QeD [1J The corresponding 
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1334 R 8aishya and J K Sarma 

results for the next-to-next-to leading order (NNLO) are complete at present, though there 
is enormous complexity in the required loop calculations [2-6]. One of the most useful 
and famous evolution equation is the Dokshitzer, Gribov, Lipatov, Alterelli, Parisi (DGLAP) 

equation [7-14] to give t [= In (Q2
/ /1

2
), /1 , is the QCD cut off parameter] and x evolutions 

of structure functions. Hence the solutions of DGLAP evolution equations give quark and 
gluon structure functions that produce ultimately proton, neutron and deuteron structure 
functions. 

Though various methods are available in order to obtain a numerical solution of DGLAP 
evolution equations, exact analytical solutions of these equations are not known [5-6]. 
Various analytical methods have been reported to solve DGLAP evolution equations and 
one of the limitations of these solutions is that, as they are partial differential equations 
(PDE), their ordinary solutions are not unique one. On the other hand, this limitation can 
be overcome by using method of characteristics [15-18]. The singlet structure functions at 
small-x in LO and NLO have been obtained from DGLAP equation by using the method of 
characteristics in the Ref. [18]. In this paper, we obtain a solution of DGLAP equations 
for non-singlet structure functions at small-x in LO and NLO by using the .method of 
characteristics. The results are compared with E665 and NMC data [19, 20]. 

2. Theory 

The non singlet combinations of quark and anti quark densities, q; and q;-, are given 
by 

Nr 
~s = q ~ q- - (qlf ~ q;), c4s = 2:( qr - q;) (1 ) 

r-1 

Nf stands for the number of effectively massless flavours. The corresponding splitting 

functions are denoted by P~s and P~s = P"Ns + p£s. For an integro-differential equation 

of DGLAP tYPe, which is in a perturbative fashion, the kernel P(x) is known perturbatively 

up to the first few orders in as, approximations which are commonly known as LO, NLO, 
NNLO. The evolution equation in the non singlet sector [21-23] is 

(2) 

Here ® stand for the Mellin convolution in the momentum variable [4, 6 ] and define 

as 

(3) 

DatallJPISeplember 2009111 R Baishya.p65 
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Also 

(4) 

Here p(o) (x), p(l) (x) are splitting functions [24] in LO, NLO respectively. The DGLAP 

evolution equations for non-singlet structure functions in LO and NLO [1, 21, 22] can be 
written as 

(5) 

aFNS 
Ll. (a (t)]2 _2_ -:2. [r 3 + 41n(1 - X)l, r=.NS (x t) + INS (x t)] - _S_ INS = 0 at t I J 2 ' l' 2" 2 (6) 

where 

(7a) 

I? = [(x.1)F2
NS 

(X.I) If(W)dW' [f (w) F2"" (~.t ldW] (7b) 

f (cu) = cqPF (cu) - PA (cu)] + ;CFCA [Pa + PA (cu)] + CFTRN,P"d cu), 

2 (1 + c(
2

) (3) 1 40 PF (cu) = - ( .' In(cu) In(1- cu) - - + 2cu Incu - -(1 + cu) Incu + -(1 - cu) , 
1-cu) 1-cu 2 3 

(1+CU
2
)( 11 67~] 40 Pa(cu) = kl(cu)+-In(cu)+--- +2(1+w)lnw+-(1-cu) 

(1 - cu) 3 9 3 3' 

Pru. (cu) = - -- -Incu- - -2(1- cu) 2[1+CU
2

( 5) I 
, 3 1-cu 3 ' 
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with 
_ _ _ (Nl-1) _ 1 _ 4" [ ~1lntl 

CA -Ca -3 CF - Tf - - as (t) - - 1 - -- . , 2N' 2 ' (.I t (.12 
f 1-'0 1-'0 t 

~o :: 11 - 3.Nf and ~ :: 1 02 - 38 Nf are the one loop (LO) and two loop (NLO) correction 
3 3 

to the QeD ~ - function and N, being the flavors number. We can neglect ~ for LO. 

Let us introduce the variable u:: 1 - a;J and since x< co <1, so 0<u<1-x, hence the 

series is convergent for lul<1. 

Now ~ :: ~ :: (x + ..!.!:!..-) 
UJ 1-u 1-u . 

So, using Taylor's expansion series we can rewrite 

FNS (~ t):: FNS(X + ~ t) 
2 UJ' 2 1-u' 

(8) 

Since x is small in our region of discussion, the terms containing x2 and higher powers 
of x can be neglected. Using eq. (8) in eq. (7a) and (7b) and performing u-integrations, 
eq. (5) becomes the form 

aFNS (x t) aF NS 
-t 2 '+AtA(x)FNS(xt)+)\yB(x)_2_::0 at 2' ax (9) 

where 

A- :: _Gs_(_t) t :: _4_:: ___ 4-
3n 3f3o 33 - 2Nf 

A(x) :: 2x + x 2 +.4ln(1 - x), (10a) 

B(x)=x - x3 
- 2x In (x) , (10b) 
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To introduce method of characteristics, let us consider two new variables Sand T 

instead of x and t, such that 

~ = -t 
dS ' 

dx - = A,B(x) 
dS 

(11a) 

(11 b) 

which are known as characteristics eqs. [15-18]. Putting these equations in (9), we get 

dFi
tJS 

(S, t") + L(S t") f,NS (S t") = 0 
dS '2, , (12) 

which can be solved as-

(13) 

where L(S, t") = 3[2 A, A(x) and F/,tS (S, 1:) = ~NS (1:) for initial condition S = 0, t = to' 

Now we have to replace the co-ordinate system (S, t") to (x, t) with the input function 

FIus (r) = F2
NS (x,to) and will get the t- evolution of non singlet structure function in the 

LO as 

(14a) 

Similarly the x- evolution of non singlet structure function will be 

rus rus [XfA(X) 1 F2 (x,t) = F2 (xo,t)exp - Xo B(x) dx . (14b) 

In the NLO, the t and x evolution of non singlet structure functions will be obtain as 

(15a) 

OatallJPISeptember 2009111 R Baishya.p65 
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NS - (liS ! IX A (x) + To ~ (x) 1 ~2 (x,t) - F2 (xo,t)exp - i'() B(x) + To~ (x) dx , (15b) 

with 

(16a) 

I[ 4 ]1-W ~ (x) = x I f (w) + 3N(Fq~ (w) --;;-dw. 
x 

(16b) 

[
as(t))2 [as(t)) 

Here we introduce an extra assumption ---zrr = To ---z;.- [18]. where To is 

a numerical parameter. By a suitable choice of To we can reduce the error to a 
minimum. 

To compare our results with experimental data, we have to consider the relations 
between deuteron and proton structure functions measured in DIS with non-singlet quark 
distribution functions as 

(17) 

0.024 r---------------------....., 

.- 0.016 
;. 
.!> 
" c 
IV 
g 
~ 0.008 

-2.08E-1 
o 

, , , 

Figure 1. J'2 and To T curves. 
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3. Results and discussion 

Here, we compare our result of t and x evolution of non-smglet structure function F 2NS 

measured by E665 [19] (The data were taken at Fermllab experiment E665 In Inelastic 
muon scattering with an average beam energy of 470 GeV) and NMC [20] (NMC m muon 

27 27 
(a) E66S - dala (b) E66S - dala 

F2NS+0 51 F2NS+0 51 

I 
x = 0035 

~ I I Q"2=13391 t---: t--J T 
18 -- - -- . - - -- -r 18 

.1 
x = 0 024 

fool f. f 
-1--

Q"2=9795 ~ 
09 ~ 09 ~ ., ... _ .. 

Q"2=7161 

=F*I :1 I I x = 0 01 

~ 
NLO QM 2=523 

=LO NLO 

0 0 ::: LO 

0 6 
QM2 

12 18 0 0025 x 005 0075 

Figure 2 (a & b) Evolution of non-singlet structure function compared to E66S data 

18 r------------------------------, (a) NMC - data 

F2NS+0 31 

12 

~ x = 0012 

06 ~ x = 0 008 

~ x = 0 0045 

NLO ---
0 

LO ---
0 25 QM2 5 

Figure 3 (a & b) Evolution of non-singlet structure function compared to NMC data 
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deuteron DIS with Incident momentum 90, 120, 200, 280 GeV) We consider the range of 
o 01 ~ x ~ 00489 and 1 496 ~ Q2 ~ 13391 for E665, 0 0045 ~ x ~ 0 14 and 0 75 ~ Q2 

~ 20 for NMC data It IS observed that within these range To IS satisfied for 0 08 ~ To ~ 
o 25 (Figure 1) Figure 2(a) and Figure 3(a) represent the t evolution and Figure 2(b) and 
Figure 3(b) represent the x evolution of non-singlet structure function For convenience, 

value of each data pOint IS Increased by adding 0 51 or 031 or 021, where I = 0, 1, 2, 3, 
are the numberlngs of curves counting from the bottom of the lowermost curve as the 

oth order Here errors bars represent total combined statistical and systematic uncertainty 

Our results are compatible with experimental values and fitness IS better In NLO than the 
LO case 

4. Conclusion 

Though there are various methods to solve DGLAP evolution equation to calculate quark 
and gluon structure functions, our method of characteristics to solve these equations IS 

also a viable alternative Though mathematically VigOroUS, It changes the Integro-dlfferentlal 
equations Into ODE and then makes It possible to obtain unique solutions 
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In thiS paper the singlet and nonsInglet structure functIOns have been obtained by solVing Dokshltzer, 
Gnbov, Llpatov, Altarelh, Pansl (DGLAP) evolutIOn equations In leading order and next to leading order 
at the small x 11Imt Here we have used Taylor senes expansIOn and then the method of charactenstlcs to 
solve the evolutIOn equations We have also calculated t and x evolutions of the deuteron structure 
function and the results are compared With the New Muon CollaboratIOn data 
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I. INTRODUCTION 

The solutions of DGLAP evolutIOn equations give quark 
and gluon structure functIOns that ultimately produce pro­
ton, neutron, and deuteron structure functIOns [1-9] 
Though varIOus methods lIke brute force approaches, the 
MellIne moments method, etc are aVaIlable In order to 
obtaIn a numencal solutIOn of DGLAP evolutIOn equa­
tIOns, exact analytical solutIOns of SInglet equations are not 
known [10, II] Because the evolutIOn equations are partial 
differential equatIOns (PDE), their ordInary solutIOns are 
not umque solutIOns, but rather a range of solutIOns On the 
other hand, thiS lImitatIOn can be overcome by USIng the 
method of charactenstlcs The method of charactenstlcs IS 
an Important techmque for solVIng Initial value problems 
of first order PDE It turns out that If we change coordInates 
from (x, t) to SUitable new coordInates (S, r) then the PDE 
becomes an ordInary differential equatIOn (ODE) Then we 
can solve the ODE by the standard method 

II. THEORY 

The DGLAP evolutIOn equatIOns for SInglet and non­
SInglet structure functions In leadIng order (LO) and next 
to leadIng order (NLO) In standard form [5 -7] are 

aFS as(t) [2 
_2 - __ -{3 + 41n(1 - x)}F~(x, t) + I~(x, t) 
at 21T 3 

+ I~(x, t) ] == 0, (1) 

aF~S _ as(t)[~{3 + 4In(1- x)}F~S(x, t) + I~S(x, t)] == 0, 
at 21T 3 

(2) 

.!<Emall address rJltboko@yahoo co III 

PACS numbers 1238 -t, 1239 -x, 1360 Hb 

aFS as(t) [2 
_2 - __ -{3 + 41n(1 - x)}F~(x, t) + I~(x, t) 
at 21T 3 

+ I~(x, t) ] - (a;<;)y I~ == 0, (3) 

aFNS A 
_2 __ --.£ [{3 + 41n(1 - x)}F~S(x, t) + I~S(x, t)] 

at t 

- (a;<;)y I~S == 0, (4) 

where I~, I~, I~, I~s, I~s are Integral functIOns 
USIng Taylor's expansion senes we can rewnte Ff(1;;, t) 

and G(~, t) as [7,8] 

FS(.::. ) == FS( ) ~ aF~(x, t) 
2 ' t 2 X, t + 

w 1 - u ax 

and G -, t == G x, t + -----(
X) () xu aG(x, t) 
w 1 - u ax 

SInce x IS small In our regIOn of diSCUSSion, the terms 
contaInIng x2 and higher powers of x are neglected 

In order to solve Eq (I), we need to relate the SInglet 
dlstnbutlOn F~(x, t) With the gluon dlstnbutIon G(x, t) For 
small x and high Q2, the gluon IS expected to be more 
domInant than the sea quark But for lower Q2, there IS no 
such clear cut distInctIOn between the two Hence, for 
SimplICity, let us assume G(x, t) == k(x)F~ (x, t), where 
k(x) IS a SUitable function of x or may be a constant We 
may assume k(x) == k, axb , cedx where k, a, b, c, dare 
SUitable parameters which can be determIned by phenome­
nological analYSIS But the pOSSibilIty of the breakdown of 
the relatIOn cannot be ruled out either [8,9] 

PerformIng u IntegratIOns, Eq (I) becomes 

aFS(x, t) aFs 
- t 2at + AfL(x)F~(x, t) + AfM(x) ax2 == 0 (5) 

To Introduce the method of charactenstIcs, let us conSider 
two new variables (S, r) Instead of (x, t), such that ~ = - t 
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and ~~ = AfM(x}. Putting these equations in (5), we get 

dF~~.T) + L(S, T}F~(S, T) = 0, which can be solved as 

F~(S, T) = F~( T} (fo)L(S. T) • 

Now we have to replace the coordinate system (S, T) to 
(x, t) with the input function F~(T) = F~(x, to) and we will 
get the t evolution of the singlet structure function in the 
LO as F~(x, t) = F~(x, to) (fo)AfL{X) . Similarly the x evolu­

tIOn of the singlet structure function will be 

Hence the t and x evolution of deuteron structure functions 
in LO can be obtained as 

d ( t )AfL(X) 
Ft(x, t) = F2 (x, to) ~ 

and d ) - d ) [_ (x L(x) ] 
F2 (x, t - F2 (xo, t exp Jx, M(x) dx , 

where Ft(x, to) = ~F~(x, to) and Ft(xo, t) = ~F~(xo, t) are 
input functions. 

In the NLO, the t and x evolution of deuteron structure 
functions will be obtain as 

where 

0.5 0.5 
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L,(x) = B,(x} + k(x}B2(x} + B4(x}ak(x)/ax; 

M, (x) = B3(x) + k(x)B4 (x); 

Here we consider an extra assumption (~)2 = To(~), 
where To is a numerical parameter. By a suitable choice of 
To we can reduce the error to a minimum. 

III. RESULTS AND DISCUSSION 

In this paper, we compare our result of t and x evolution 
of the deuteron structure function Ft measured by the New 
Muon Collaboration in muon deuteron deep inelastic scat­
tering with incident momentum 90, 120, 200, 280 GeV 
[12]. For quantitative analysis, we consider the QCD cutoff 
parameter AMS = 0.323 GeV for as(M~) = 0.119 ± 
0.002 and Nf = 4. It is observed that our result is very 
sensitive to arbitrary parameters k, a, b, c, and d. In Fig. I, 
for t evolution, we have plotted computed values of Ff 

0.5 ,.------------, 
(a)x=O.0045 (b)x=0.008 (c)x=O.0125 

0.4 

0.3 

0.2 

O.S 

- NLO k =0.6 
... LO k = 1.4 

2.5 4.5 

0.4 

'" N 

U. 

0.3 

- NLO a=6, b=0.0001 

... LO a=8, b=0.7 

0.2 ...... ----....... -----~ 

0.5 2.5 4.5 

0.4 

0.3 

- NlO c=1.5, d=0.1 
.... LO c=3, d= • 10 

0.2 ~ __ --'-___ ....L... __ --.I 

0.5 2.5 a2 
4.5 6.5 

FIG. 1. t evolution of the deuteron structure function in LO and NLO. 
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0.41 
(a) d=11.5 Gev 2 
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0.37 
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0.33 
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0.41 

0.37 

0.33 

- NLO c=2.5, d=0.05 
.... LO c=0.4, d=1.0 

0.29 1...-__ ........ __ ........ __ ---' 
0.29 1.-----'----....1...------' 0.29 L-__ -'-__ --L._-=---1 

0.05 0.1 X 0.15 0.2 0.05 0.1 x 0.15 0.2 0.05 0.1 x 0.15 0.2 

FIG. 2. x evolution of the deuteron structure function in LO and NLO. 

against Q2 values for a fixed x in LO and NLO. Here the 
solid lines represent the best fitting curves in NLO and the 
dotted lines represent those for LO evolutions. In Fig. 2, for 
x evolution, we have plotted computed values of F~ against 
the x values for a fixcd Q2. Here also the solid lines 
represent the best-fit curves for NLO and the dottcd lines 
represent for LO evolutions. 
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