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ABSTRACT

Over the period of time many population based evolutionary algorithm have been
developed such as Genetic Algonthm (GA), Particle Swarm Optimization (PSO), Simulated
Annealing (SA) and Differential Evolution (DE) Genetic Algornthm mimucs the natural process
of evolution Simulated Annealing exploits the physical process of cooling of a liquid or solid to
regain the crystalline structure Particle Swarm Optimization 1s inspired by the social behavior of
bird flocking and Differenuial Evolution has 1ts origin 1n Chebychev polynomual fitting problem
All the above evolutionary algorithm has one thing common, that they have the mulu-starting
points while starting the search process But, each of them renews their initial population also
known as candidate solutions using their parameters differently GA uses the parameters called
“crossover” and “mutations” PSO renew the candidate solutions called particles flying through
the problem space by following current optimum particles Simulated Annealing uses a random
search strategy which not only accepts new positions that increase the objective function (for
minimization problems) but also accept the positions which decreases the objective function
values The latter 1s accepted probabilistically based on the Boltzmann-Gibbs distribution
Differential Evolution uses three parents to reproduce offspring by arithmetic crossover operator
Though all the above algonithms starts with the same imtial population (imitial solution), they
differ 1n a way they reproduce the new set of population (intermediate solution) and move
towards the optimum solution So, 1t becomes important to study the performance of all these
algorithms on the test functions There 15 a collection of test functions available 1n hiterature and
numbers are increasing

In tune of further development we felt that there 1s a need to develop new set of test
functions to test the 10bustness and performance of above evolutionary algorithms In this study
we have developed a set of new test functions generated with specific properties and coded the
functions in MATLAB to get the visual presentations of the functions using the mesh and surface
plotter of the MATLAB The four evolutionary optimizers such as Differential Evolution,
Genetic algonthm, Particle Swarm Optimization and Simulated Annealing have been used to
find the opumum value of these newly developed test functions The algorithms run with

different population sizes and for different number of iterations and results have been recorded 1n



tabular form The results also have been analyzed and validated based on the minimum values

found by the optimizers

Since the development of above family of Evolutionary Computing algorithms were
lacking the theoretical base and missing convergence criteria, it became important to study the
performance and robustness of the above techniques using large number of test problems So, as
a further study on Evolutionary Algorithms (Evolutionary Computing) collection of test
functions started appearing Chattopadhyay (1971) studied some class of test functions for
optimization algorithms and also explained the method of generating test functions with certain
specific properties Constrained and Unconstrained Testing Environment (CUTE) 15 suite for
FORTRAN subroutines, scripts and test problems for linear and nonlinear optimizations 1s a
large collection of test functions developed by Jorge et al (1981) In tune of further work on test
functions, Floudas and Pardalos (1987) published a collection of test problems for constrained
optimization and unconstrained optimization algorithms Nagendra (1997) published a catalogue
of test functions to test the performance ot the Evolutionary Algorithm Andrer (2008) also

added another collection of test functions for unconstrained optimization

Again 1n absence of strong convergence critera, researchers started studying the
performance and robustness of the evolutionary algorithms using the test functions Ackley
(1987) published the empirical study of vector function optimization An expenmental study 1n
non convex optimization was done by Styblinski and Tang (1990) Deb (1991) used genetic
algorithm to optimize multi-model functions Fogel (1996) published evolutionary computation
towards a new philosophy of machine intelhgence Michalewicz (1999)’s book entitled “Genetic
Algorithms+ Data structure = Evolution program” deals with the real life numerical problem and
step by step experimental studies Jason and Konstantinos (2002) did expenimental study of
benchmarking test functions for Genetic Algonthm  Lewis (2008) in a “survey of meta-
heuristics technique” argued that all these global optimization techniques falls under the

Evolutionary Computing and known as population based Meta heuristics technique

The aim of this thesis 1s two fold (1) Development of new test functions for the empincal study
evolutionary computing such as genetic Algorithms, Particle Swarm Optimization, Simulated

Annealing and Differential Evolutions, (2) Collect the benchmark test functions available n



literature and do the comparative study of the above optimizers using the benchmark test

functions
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CHAPTER 1

Introduction

1.1 Empirical Study

Over the years many a class of stochastic search techmque, have been developed for the
purpose of complex optimization and many variants of these stochastic search
techmques such as evolutionary algorithm, Swarm Intelligence, Differential Evolution
and Simulated Annealing, the list can continue, and they have demonstrated the high
performance optimizers on a class of optimization problem The algorithmic
development involves an iterative process where the performance assessment plays a
crucial role in improving our understanding of such optimizers and interplay between
its different components The performance understanding will greatly aid 1n the future
development of better evolutionary opuimizers Therefore as more advanced
evolutionary algonthms are being designed, the 1ssue of performance assessment has
become increasingly important However, the assessment of evolutionary algonthms
capability 15 not a trivial task Due to 1its stochastic nature, the capability of
evolutionary algorithms cannot precisely determune before its actual application as
discussed in Chiam et al (2007)

The most practical and effective means for assessing the performance of evolutionary
optimizers 1s via an empirical study, where the evaluated algorithm will be apphed to a
set of test functions and the evolved solution will be taken as an indication of
algorithmic performance Although performance assessment can also be done wia
theoretical study as discussed in He and Yoo (2003) This approach lacks the
practicalhity and flexibility of empirical investigation Again due to the stochastic nature
of evolutionary algorithms and 1ts complex relationship with optimization problem, 1t 1s
difficult, if not impossible, to estabhish any formal mathematcal treatment of
algorithmic performance  Hence researchers will either get lost in the swamp of

complexity or resort a substantial simplifications before any analysis can be done Due
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to this Iimitation of the theoretical studies, performance assessment via empirnical

approach has been adopted

In this research pertinent to Empinical study has been focused on the development of
new test functions and the performance assessment of the optimizers taken for study on
this class of test problems Also, 1n this thesis our attention 1s on unconstrained Global
Optimization (GO) problems for which 1t can be guaranteed that the global mimmizer

lies within a hmited region

Although much work have been done to improve the reliabihity of empirical studies,
there are little or no discussions at all on how 1t should be conducted with adequate
substantiality on their statements made on the pertormance and behavior of the
evaluated algorithms  So, in this study we have designed empirical study in following
manner A new class of test functions have been developed and the features of these
test functions have been discussed to show the complexity of the class of test functions
The optimum value of these test function have been calculated using the different
optimizers with a set parameters and the results are being compared Because of the
complexity of the studies any statistical analysis 1s not considered except to check

whether the optimizers are able to find the optimum value 1n a CPU time or not

Absence of convergence theorem or very lhttle theoretic development towards the
convergence criteria as well as the stopping conditions, but the ability to solve the very
complex real life global optimization problems of the evolutionary algonthms also
keeps motivating the researchers to study the performance of meta-heuristics
(population besed evolutionary algorithms) on the large set of test functions This
mnsprred us to study population based meta-heunistics algorithms empirically on some
new test function and some benchmark test functions in this thesis So, 1t 1s important to
understand the global optimization problems and evolutionary algonthms popularly
known as population based meta-heuristics In the next paragraph we explain global

optimization and population based optimization

Global Optimization (GO) 1s one of the interesting topics of operation research It refers
to finding the extreme values of a given non-convex function in a certain feasible
region Global Optimization problems are classified in two classes, unconstrained and
constrained problems While solving global optimization problems Dekkers and Aarts

(1991) had made great gain from the interest in the interface between computer science

2
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and operations research Al and Torn (2004) worked on population based meta-
heuristics algorithm and presented the numerical results Other researchers who also
contributed towards global optimization techmiques are Aluffi-Pentini et al (1985),
Easom (1990), Jansson and Knuppel (1992,1994) ,Levy et al (1981), Schutte (2003),
Torn and Zilinskas (1989), Van Iwaarden (1996), Pinter (1996) and Dixon and Szego
(1975, 1978)

The global optimization problem formulated by Easom (1990) 1n terms of finding the
point x 1n a solution space set X (called the feasible region) where a certain function
f X — T (called the objective function), attains a mimmum or a maximum 7 in any
ordered set (usually a subset of R") The set X 1s usually a subset of R" defined by
constraints g(x)<0 or g(1)20, where g 15 a set of m possible nonlhnear
functions of x The external point X can then be written as (x,%,x, x,),and the x 'S
are sometimes called decision variables It 1s often practically useful to.express the

variable bounds explicitly as x* < x < x¥(x*,x’ € R") Some of the variables may be
constramned to only take integer values (x € Vi in an index setZ c {1,2,3, n}) Horst

and Paidolas (1995) defined the global optimization 1n Mixed-Integer Nonhnear
Programming problem (MINLP) as tollows

min,_ f(x)
gx)2bh
g(r)sh
xt<xga

ve€Z YViel

Finding the global optimum for a problem becomes extremely difficult, when the
problem 15 deceptive, non-convex, noisy and non-differentiable 1n nature Most of the
optimization techniques available 1n literature stuck to the local minima So, here we
have tried to study the heuristics or more precisely the population based meta-heuristics

in solving global optimization problems and studies the performance empirically
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1.2 Evolutionary Algorithms and its Evolution

The 1dea of using simulated evolution to solve the engineering and design problems
have been studied in the 1950s and 1960s Three persons, Box (1958), Friedberg (1958)
and Bremmermann (1962) floated the 1dea independently In the 1960’s Rechenberg
{1965) introduced “Evolutionary Strategies” to optimize real valued parameters for
devices such as airfoils Fogel et al (1966) developed “Evolutionary Programming™ a
technique 1in which candidate solutions to given tasks were presented as a fimte state
machines which were evolved by randomly mutating their state-transition diagrams and
selecting the fittest Genetic Algonthm (GA) was introduced by Holland (1962) In
contrasts, evolutionary strategies and evolutionary programming, Holland (1975)
studied the phenomenon of adaption as 1t occurs in nature and to develop ways in
which the mechanisms of natural adaption might be imported into computer systems
His book “Adaptation in Natural and Aruficial Systems presented the genetic algornithm
as an abstraction under genetic algornithm Davis (1991)’s book *“Handbook of Genetic
Algorithm” were instrumental in further development in genetic algorithms Tsutsui
and Fujimoto (1993) developed the forking Genetic Algorithm with blocking and
shrinking modes which increased the speed of the algorithm considerabely and again in
Tsutsui et al (1997a) modified the forking genetic algorithm with the space division
scheme Bi-population scheme for Real coded Genetic Algonthms was the another
concept ntroduced by Tsutsur et al (1997a) Area of genetic programming was
developing in parallel and Koza (1992) pubhshed a book in “Genetic Programming”
Deb (2001) published a book entitled “Multi-objective optimization using Evolutionary
Algorithm” were instrumental in the development of mulu-objective optimization using

evolutionary algorithms

The above research not only fueled interest in evolutionary computing but they also
were instrumental 1n bringing the evolutionary programming, evolutionary strategies,
and genetic algorithm concepts together 1n a way that fostered unity and an explosion
of new and exciting forms of evolutionary computing Development of evolutionary
computing generation wise can be categones as follows, the first generation could be
evolutionary programming by Fogel (1967), genetic algorithm by Holland (1965) and
evolutionary strategy by Rechenberg (1965) and Schwefel (1965, 1975, 1977, 1981)

The second generation evolutionary computing are hybrid genetic search by Davis

4
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(1987), “Genetic Evolution + Data Structures = Evolutionary Algonthm” by
Michalewicz (1999), genetic evolution programs by Koza (1992) and Tabu Search by
Glover (2006) The third generation evolutionary computings are artificial immune
systems by Farmer et al (1986), memetic algornthms by Moscato (1989), ant colony
Opumization by Dorigo (1992), cultural algonthms by Reynolds (1994), DNA
Computing, similar to paralle]l computing which takes advantages of many different
molecules of DNA to try many different possibilities at once, developed by Adleman
(1994), particle swarm optimization by Kennedy and Eberhart (1995), estimation of
distribution  algorithms some umes called probabilistic model-building  genetic
algorithm by Larrafiga and Lozano (2002) After this for most of the researchers 1t will

be interesting to see the 4" generation of evolutionary algorithm

Above three simulated evolution techniques were further used by many researchers to
solve the real Iife problems Fogel et al (1966) was concern with solving prediction
problems Rechenberg (1965) and Schwefel (1968, 1975, 1977, 1981) were concerned
in solving parameter optimization problems Holland (1962) was concerned n
developing robust adaptive system Each of these researchers successfully developed
appropriate evolutionary computing for their particular problem independently But
among all the three evolutionary techniques, evolutionary computing became most
popular technique In United States, Goldberg (1989) populanzed genetic algornithms
(family of evolutionary computing) by the book entitled “Genetic Algorithms in search,
optimization and machine learning” This book explained the concept of genetic
algorithm 1n such a way that a wide variety of engineers and scientist could understand
and apply Goldberg (1989) defined genetic algorithm as a search algorithms based on
the mechanics of natural selection and natural Michalewicz (1985) studied on genetic
algorithm for numerical optimization and constraints, Price (1994) worked on genetic
anneahng and Tu and Yong (2004) worked on a robust stochastic genetic algonthm for

global numerical optimization

Inspired by different natural intelhgence, evolutionary computing community
researchers developed other vaniants of evolutionary algonthms  Kirkpatrick et al
{1983) proposed the simulated annealing which exploits an analogy between the way 1n
which a metal cools and freezes into a mummum energy crystalline structure
Simulated annealing 1s an optimization process based on the above physical process

belongs to the population based meta-heuristics Inspired by the foraging behavior of

5
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ants Dornigo (1992) proposed a class of swarm intelligence population based stochastic
optimization technique called ant coloney algorithm in his PhD thesis Eberhart and
Kennedy (1995) proposed another swarm intelligence computing called Particle Swarm
optimization inspired by the social behavior of bird flocking or fish schooling Particle
Swarm Optimization (PSO) shares many similarities with evolutionary computation
techniques such as genetic algorithm Later on many variants of particle swarm
appeared 1n publication, to name some of them are Liang and Suganthan (2005) who
worked on dynamic multi-swarm particle swarm optimizer and Liang et al (2006)
worked on comprehensive learning particle swarm optimizer In tune of further
development Storn and Price (1997) proposed Differential Evolution (DE) while
solving the Chebychev polynomial fitting problem posed by Storn (1995) which later
on published 1n as book by Price et al (2005)

Since the development of above family of evolutionary computing algorithms were
lacking the theoretical base and missing convergence criteria, 1t became important to
study the performance and robustness of the above techmques using large number of
test problems So, as a further study on evolutionary algorithms (same as evolutionary
commuting) collection of test functions started appearing Chattopadhyay (1971)
studied some class of test functions for optimization algornthms and also explained the
method of generating test functions with certain specific properties CUTE
(Constrained and Unconstrained Testing Environment) 1s suite for FORTRAN
subroutines, scripts and test problems for linear and nonlinear optimizations 15 a large
collection of test functions developed by Jorge et al (1981) More work on test
function, Floudas and Pardalos (1987) published a collection of test problems for
constrained optimization and unconstrained optimization algorithms Nagendra (1997)
published a catalogue of test functions to test the performance of the evolutionary
algonthm Liang (2005) worked on the noval composition test functions for numencal
global optimization, Andrer (2008) has published a collection of test functions for
unconstrained optimization Addis and Locatelli (2007) studied a new class of test
function for Global Optimization and gave a new direction to the Emprical study

research

As stated above 1n absence of strong convergence criteria, researchers started studying
the performance and robustness of the evolutionary algorithms using the test functions

Ackley (1987) published the empirical study of vector function optimization An
6
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experimental study in non convex optimization was done by Styblinski and Tang
(1990) Deb (1991) used genetic algorithm to optimize multi-model functions Fogel
(1996) pubhished evolutionary computation towards a new philosophy of machine
intelhigence Michalewicz (1999) published a book entitled “Genetic Algorithms+ Data
structure = Evolution program™ which deals with the real life numerical problem and
step by step experimental studies Jason and Konstantinos (2002) did experimental
study of benchmarking test functions for Genetic Algorithm Hsiesh (2006) studied the
Particle Swarm as a guided evolution strategy for real parameter optimization, Lewis
(2008) in a “Survey of Meta-heuristics techmque”, argued that all these global
optimization techmiques falls under the evolutionary computing and known as

population based meta- heunistics technique

1.3 Study Area

The interaction between computer science and optimization has yielded new practical
solvers for global optimization problems, called meta-heuristics as defined in Glober
and Kochenberger (2002) The structures of meta-heuristics are mainly based on
simulating nature and artifictal intelligence tools Meta-heuristics mainly invoke
exploration and explotation search procedures n order to diversify the search all over
the search space and intensify the search in some promising areas Therefore, meta-
heuristics cannot easily be entrapped in local optima However, meta-heurstics are
computationally costly and there 1s always a question whether one algorithm will
perform and find the optimum value for all type of global optimization problems Since
none of the meta-heuristics have the stopping criteria and strong convergence theorm,
one has to study the performance of these meta-heuristics on a large number of test

problems and if necessary develop new test problems

1.4. Population based Meta-heuristics

The term “Meta-heunistics” was first proposed by Glover (1986) that contains all
heunstics methods that show evidence of achieving good quality solutions for the
problem of interest within an acceptable time Usually, meta-heurnistics offer no
guarantee of obtaining the global solutions Back et al (1991) did a survey of the

evolutionary strategies, Bethke (1980) submitted a doctoral thesis on genetic algorithm

7
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as function optimizer, and Bukin (1997) worked on mimimizing multi model functions
for continuous varnables Coello-Coello (1998) surveyed the multi-objective
optimization techniques, Suganthan et al (2005) studied the problem definition and
evolution criteria in real parameter optimization, Srinivas and Deb (1994) studied non
dominated multi-objective function optimization using non-domated sorting Genetic
Algonihm and Huang et al (2006) worked on swarm optimizer Denmis and Schnabel
(1983) worked on numerical methods for unconstrained optimization Eberhart et al
(1996) published a book on “Computational Intelligence” where he explained the
problem solving capability of population based meta-heuristics Another book who
explained the population based meta- heuristics 1s “Method for Unconstrained
Opurmization Problern” pubhshed by Kowahk and Osborne { 1963)

Glober and Kochenberger (2002) classified meta-heunistics into two classes,
population-based methods and point-to-point meta-heuristics methods In the latter
methods, the search invokes only one solution at the end of each iteration from which
the search will start 1n the next iteration On the other hand, the population-based
methods invoke a set of many solutions at the end of each iteration Al and Torn
(2004) explained how genetic algorithms are population based meta-heuristics and tabu

search as point to point Meta- heuristics

Although there are many examples of meta-heuristics, 1n our study we are going to
consider the genetic algorithm, particle swarm optimization, differential evolution and

simulated annealing as population based meta-heunistics for our empirical study

1.4.1 Pseudo codes of Evolutionary Computations

(a) Genetic Algorithm

Genetic algorithm 1s search algorithms based on the mechanics of natural selection and
natural genetics They combine survival of fittest among the string structures with
structured yet randomized informatton exchange to form a search algorithm with some

of the innovative flair of human search

Genetic Algonthm (GA) work by evolving a population of individuals over a
number of generations A fit value 1s assigned to each individual in the population,
where the fitness computation depends on the application For each generation,
individuals are selected from the population for reproduction, the individual’s crosses

to generate the new individuals, and new individuals are mutated with some low

8
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mutation probability The new individuals may completely replace the old individuals

1n the population, with a distinct generations evolved by Goldberg (1989)

Outline of Basic Genetic Algorithm

Choose the initial populations
Evaluate each individual’s fitness
Determine population’s average fitness
repeat
select best ranking individuals to reproduce
mate pairs at random
apply crossover operator
apply mutation operator
evaluate each individual’s fitness
Determine population’s average fitness
Untail termination condition 1s met (e g One 1ndividual has
the desired fitness or enough generations have been completed

More elaborately

Stepl  Choose a coding to represent problem parameters (Our program uses the real
coding of the population), a selection operator, a crossover operator, and a
mutation operator Choose population size, n, crossover probabihity, p, and
mutation probabthity p,, Imtialize a random population of strings of size /

Choose a maximum allowable generation number #y,,, Set 1 =0

Step 2 Evaluate each string in the population The program we have used uses the

evolution via survival of fittest
Step3 If r> 1., or other termination criteria satisfied, Terminate

Step4  Perform reproductions on the population The selection scheme we have used
1s the tournament selection with a shuffling technique for choosing random
pairs for mating

Step 5 Perform crossover on random pairs of strings, we have used single point

crossover and there 1s option for umform crossover

Step 6 Perform mutations on every string, the program the jump mutation and creep

mutation Niching (Sharing) 1s also done

Step 7  Evaluate strings 1n the new population Set r=t+1 and goto step 3
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(b) Particle Swarm Optimization

Particle Swarm Opumization (PSO) 1s a form of swarm intelligence developed by
Kennedy and Eberhart (1995) and Kennedy et al (2001) This 1s modelled by particles
in multidimensional space that have a position and a velocity These particles are flying
through hyperspace and have two essential reasoning capabilities memory of their own
best position and knowledge of the swarm's best Members of a swarm communicate
good positions to each other and adjust therr own position and velocity based on these

good positions There are two main ways this communication 1s done

* a global best that 1s known to all
* "neighborhood" bests where each particle only communicates with a subset of

the swarm about best positions

There are several different realizations of particle swarm opumization Common to all
these realization 1s the repulsion between the particles This can prevent the swarm
trapped 1n local mimima, which would cause a premature convergence and would lead
the optimization algonithm to fail to find the global optimum The other variants use a
dynamic scheme In Repulsive Particle Swarm Optimization as 1t appears in Mishra
(2006) the future velocity v,,; of a particle at position x with a recent velocity v, 1s
V., = v, +ar(Xx —x)+abr(X, —x)+acnz
calculated by
X =A+V,

where,

* x s the position and V 1s the velocity of the individual particle The subscripts

¢ and 1+1stand for the recent and the next (future) iterations, respectively

®* n, h, nLare random numbers, € [O,I], a b ¢ are constants
* @ snertia weight, € [001,07], - 1s a random velocity vector

e x5 the best position of a particle, x, 15 best position of a randomly chosen

other particle from within the swarm

(c) Simulated Annealing
Annealing refers to the cooling piocess of hquid or solid and the analysis of the
behavior of substances as they cool, when the temperature reduces, the mobihty of

molecules reduces, with the tendency that molecules may align themselves in a

10
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crystalline structure. The aligned structure is the minimum energy state of the system.
To ensure that this ahgnment is obtained, cooling must occur at a sufficiently slow rate.

If the substance is cooled at a too rapid rate, an amorphous state may be reached.

This idea of alignment in crystalline structure of the substance is being used in
optimization process. So, speaking in mathematical terminology the minimum energy
of the system represents the mimimum of an objective function. Hence simulated
annealing is an algorithmic implementation of the cooling process to find the optimum
of an objective function developed by Kirkpatrick et al. (1983) and Kirkpatrick (1984).
Also, Corana et al. (1987) studied simulated annealing to minimize the multimodal
function of continuous variables. Davis and Steenstrup (1986) published the overview

of genetic algorithm and simulated annealing.

Simulated Annealing Algorithm:
Create 1nitial solution x (0);
Set 1nitial temperature, T (0);
t=0;
repeat
Generate new solution, x;
Determine quality f(x);

Calculate acceptance probability
I if fx)<f(x)
P =9 1up-s0y

y
T

e otherwise

Where ¢, >0.

1f U(0,1) € acceptance probability then
x(t)=x
end

until stopping condition 15 true;
Return x (t) as the solution;

(d) Differential Evolution

Differential Evolution is a population-based search strategy very similar to
evolutionary algorithm. The main difference is in the reproduction where the offspring
is created from three parents using arithmetic cross-over operator. Differential
Evolution is defined for floating-point representation of individuals. The method goes

in following ways as defined by Storn and Price (1995).

> For each parents p, (1), of generation t,

11
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an offspring, o, (¢) 15 created by the expression o (1) =p, J(l)+z(p JN-p, j(l))

» for any three randomly selected parents for i #y, #1 and
hotyty ~ U (1, n,) By selecting a random number u ~ U (I ,n,) where

n, the number of genes or parameters of a single chromosome are

Then all parameters =1, n,, 1f U(0,1)< P, orif yj=u, we get the offspring o, (1)
otherwiseo, (1) = p, (1) Here P, 1s the probability of reproduction with P, € [0,1]and

# 15 the scaling factor with ze (0,), o, () and p, (1) are the j” parameter of the

offspring and parents

The algorithm for the simple differential evolution goes like this

Initialize and evaluate population P
While (not done) {
for (1 =0, 1 < ps , 1++) |
Create candidate C[1)
Evaluate C[1]
1f (C[1]) 1s better than P(1i})
PO{1] = C[1]
else
PO[2] = P[1]

}
P = PO
}

Create candidate C[1]
Randomly select parents P{1l], P{12}, and P[13) where 11, 12, and 13
are different
Create 1initial candidate Cl[a] = P[al} + fact (P[12] - P[a13])
Create final candidate C[1] by crossing over the genes of P{1] and
Cl(1] as follows
For (=0, 3< N, 7J++){
If (U(0,1)<pc)
Clxllgl=cl{r}[2]
else
Clr}{3]=P[2][]]
}

Here we have randomized the scaling factor as fact = 0 5*rand

Though there more evolutionary algonthms like Ant colony search by Dorigo (1992),
Tabu Search by Glober (1986) which are extensively used to solve the combinatorial

optimization problem but we have not considered for our studies
1.5 Objectives

The objective of our study 1s to work on the development of the new set of test

functions which are more difficult, deceptive, non-convex and noisy in nature The

12
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newly developed test functions are to be coded in MATLAB to give the visual
presentation and analyze the difficulty level of the functions such as the noise,
deceptiveness and many local minima from wisual presentation Performance of
optimizers mentioned n introduction has been studied and results have been recorded

in tabular form for further analysis In short, below four point 1s objectives below

(1) In lterature survey we have collected the benchmark test functions All the
functions have been coded in MATLAB to revisit the visual presentation of these
test functions The graphs drawn of the benchmark test functions and that have

helped the empirical study of the evolutionary optimizers

(1) The second objective was to develop some new test functions The optimum value
of the newly developed test functions using genetic algorithm, particle swarm
optimization, differential evolution and simulated annealing have been calculated
The study has been done with different set of population size and the result 15

recorded in tabular form

(1m1) The comparative study of optimizers mentioned above 1n objective (1) using the
bench mark test functions have been considered in our investigation and results

have been recorded in tabular form and conclusions are drawn

(1v) The conclusion of the study has been drawn looking nto the performance of

above optimizers on the new set of test functions

1.6 Outline of the Thesis

The thesis 1s consist of five chapters Three APPENDILX has been given at the end of
the thesis APPENDIX A contains the large collection of Benchmark test functions
APPENDIX B contains the MATLAB code to represent the benchmark and test
functions graphcally APPENDIX C contains the executable code of new test
functions Below the brief introduction of all the five chapters are presented

The chapter-1 1s an introductory one which highlights the global optimization with the
progress and development of the evolutionary computations in finding the global
optimum values The chapter also discusses the types of evolutionary algorithms with
its pseudo codes of the optimizers such as differential evolution, genetic algorithm,
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particle swarm optimization and simulated annealing Some optimizers like ant coloney
and tabu search to solve the combinatorial optimization have been discussed with its
pseudo codes We have presented our objectives clearly here

The chapter -2 discusses some newly developed unconstrained test functions in detail
Here we have placed three set of newly developed test functions with visual
presentations From function F201 to F211 1s one set Second set 1s the generalization
of the first set Third set 1s the generalization and extension of some Benchmark test
functions Using the Meshz Plot, Surf Plot, Surfc Plot and Surfl Plot of the MATLAB
plotter we have drawn four graphs to have the different visimhity to guess the opumum
points

In chapter-3 we set up the experiments with four optimizers such as differential
evolutions, genetic algorithm, particle swarm optuirmzation and simulated annealing to
record the results for empirical study In the first table we have recorded the results of

newly developed eleven test function (1™

set) with the two set of population size 50 and
250 The second, third and fourth table contans results obtained with two set of
population size (50 and 250) and the result 1s recorded at the iterations such as 100,
200, 300,400, 500, 600, 700 and 1000

Chapter-4 15 a reprint of our published work A comparative study of evolutionary
algorithm 1s performed using the benchmark test functions and the results are published
in Singh and Borah (2009) and Singh et al (2009) The bench mark test function again
coded n MATLAB to get the optimum value from the optimizers and results are
recorded in tabular form and conclusions are drawn

Chapter-5 is the conclusion of the thsis The direction of future research 1s also given
here Results have been vahdated from the empirical study on evolutionary algorithm
using newly developed test functions which have been tabulated in chapter 3 The
conclusions are also drawn from the results tabulated in chapter 4 of study on the
evolutionary algorithm using the benchmark test functions In short our finding can be
stated as “It 1s impossible to have an evolutionary algonthm which can outperform on
all class of problems in the domams™ Hence the study validates the “No Free Lunch

Theorem” by Wolpert and Macready (1997) and Ho and Pepyne (2002)

kkokkkk Ytk
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New Test Functions for Unconstrained
Global Optimization

2.1 Introduction

A set of benchmark test problems have been considered for testing the Evolutionary
Algorithm Testing the algorithms with a test function with mild difficulty may not
validate the algorithm So, 1t 1s important to consider the wide variety of test functions
with the degree of difficulties In the field of global optimization there exist a set of test
functions with a hmited dimension and mild difficulties Therefore testing any Global
Optimization (GO) problems with those algorithms may be not appropriate way to
validate the algorithm We have collected the large class of test function to vahdate the
Global optimization The test functions have been defined with the magnitude of
difficulties Many other researchers have worked in generation of test functions and
collection of benchmark test functions Hock et al (1981), More (1981) , Dennis
(1985), Averick et al (1991), Back et al (1991), Bongartz et al (1995), De Jong et al
(1999) worked on the test problem generator for non stationary environment,
Shcherbina (2002), Shcherbina et al (2003), Adorio (2005) and Mishra (2006) are
among those who worked on the collection of test functions or generation of test
functions to check the performance robustness of the evolutionary algorithms The
difficulties of global optimization problem depend on many factors Among the most
relevant ones 15 the size of basin of attraction of the Global Optimizer, the shape of the
function around the global optimizer, the classical example of the being the Rosenbrock
function where the mimimum point 1s inside a long narrow and a parabohc-shaped flat

valley, which makes convergence difficult, dimension and high mulumodalty

In this chapter, test problems are presented to test the performance of evolutionary
algorithms considered n the thesis These benchmark test functions are deceptive in
nature, non-convex noisy In most of the cases of this test problem traditional method 15

not able to find the optimum value, whereas these algorithms are able to find the
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optimum values Hence, the study will investigate that which algorithm performs better
on these test suits given in section 2 3 The comparative study has been done using the
newly developed test functions For nstances, the five test functions constructed by
De-Jong (1975), popularly known as De-Jong’s five test suit, four are um-model
containing only one optimum point, and other test functions are multi-mode! containing
multi opttmum point Sphere function 1s smooth, um-model, strongly convex and
symmetric, but has only one optimum point Rosenbrock 1s considered to be difficult,
because 1t has a very narrow ridge, the tip of the ridge 1s very sharp, and 1t runs around
a parabola Algorithms that are not able to discover good directions underperform in
this problem Step function 1s the representative of the problem of flat surfaces It 1s
piecewise continuous step function Flat surfaces are obstacles for optimization
algorithms, because they do not give any information as to which direction 1s favorable
Unless an algorithm has variable step sizes, 1t can get stuck on one of the flat plateaus
The background idea of the step function 1s to make the search more difficult by
introducing small plateaus to the topology ot an underlying continuous function
Quartic function 1s a simple uni-modal function padded with noise The Gaussian noise
makes sure that the algorithm never gets the same value on the same point Algorithms
that do not perform well on this test function will perform poorly on noisy data
Foxholes function 1s an example of a function with many local optima Many standard
optimization algorithms get stuck n the first peak it finds The Schwefel, Rastrigin,
Griewangk functions are typical examples of non-lhnear multmodal functions
Rastrigin’s function 1s a fairly difficult problem for genetic algorithms due to the large
search space and large number of local mimima Rastrigin has a complexity of

o(nln(n)), where n 15 the number of the function parameters This function contains

milhons of local optima in the interval of consideration Schwefel’s function 1s
somewhat easier than Rastrigin’s function, and s characterized by a second-best
mimmum which s far away from the global optimum These are some of the features

of benchmark test functions

Below the eleven new test functions are being introduced of different complexity and
difficulies Some functions are noisy in nature Some are dented, non-differentiable
and deceptive in nature The features of each test functions are explained n the section
24 The visual presentation of these functions gives the characteristic and some i1dea

about the number of optimum (1e local mimma or local maxima) and also the
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complexity of the function It can be seen from the graphical presentation that the test
function are highly multimodal Large collection of benchmark test functions have been
presented in APPENDIX A with its chararcteristics in a most exhaustive manner, but

this may not be the complete st of test functions

2.2 Purpose of developing new test functions

In the field of optimization definition of test problems is an important and non-trivial
task Test problems should reflect the wide variety of difficulties encountered when
solving practical problems and are essential wn vahidating algonthms as discussed in
Addis and Locatelli (2007) In the field of Global Optimization there exists the old
class of test functions (List of 200 test functions are provided in Appendix —A) Most
of these test function are limited in dimension and mild difficulty level and
Constrained and Unconstrained Testing Environment (CUTE) which 1s a collection of
generalized version of the test functions no other generalized version of test functions
are not availlable The test functions presented in Hock-Schittkowski (1981) and
Schittkowski (1987) employed for constrained local optimization but many of these test
problems have several local mimimizers with different function values and thus also
appropriate test functions for Global optimization methods In Schoen (1983) a class of
test functions 1s proposed whose global mimmizer 1s priont known, whose smoothness
15 controllable by means of set of parameters, and for which the number and location of

stationary points are controllable by users

Unfortunately, these problems are of limited dimension and of mild difficulty
Therefore testing on them 1s not an appropriate way to validate the Global Optimizers
(GO) The purpose of developing the new test functions was to develop a class of test
function which are umimodal or multimodal and deceptive in nature and its difficulty

level can be controlled

The mterest for new and widely recognized Global Optimization test problems emerged
in a number of recent publications such as a book published by Floudas et al (1999),
papers published by Gaviano et al (2003), Lavor and Maculan (2004), Neumaier et al
(2005), Pinter (2002), and the global optimization web site (GO-site 2005)
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2.3 Some newly developed test functions

Below newly developed test functions are given. The numbers have been written from
201 because in APPENDIX A a collection 200 benchmark test functions are given. The
names of these functions have been coined only looking at the visuals of the colored
dimensional graph. The visual presentations have created using the Meshz Plot, Surf
Plot, Surfc Plot and Surfl Plot of MATLAB 7.1.

201. Tortoise function: The function is defined as in the domain x, ye (-10,10)

213 005 |
¥

(100" 47| [100—" 4y

y |
fouy)=pinwe  *  flostnel  *

-/ \ v
S g, |

(a) Graph drawn by Meshz Plot (b) Grpah drawn by Surf Plot
(c) Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot

Figure: 2.1 Tortoise Function

202. I-Crosscap Function: This function is defined as

’m—‘(f +y7
x
xy)e
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fx,y)=psin(xy)e ~

. Where x,ye (-10,10)
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(c) Graph drawn by Surfc Plot ( d) Graph drawn by Surfl Plot

Figure: 2.2 Crosscap Function

203. Crosscap Function: The function is defined as

1002 +57)

flx,y)=— sin(xy)tj "

@1 ’
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(xy)e , where x, ye (-10,10)
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(b) Graph drawn by Surf Plot

Thes &5 sl graph of the fueten

(c) Graph drawn by Surfc Plot (d ) Graph drawn by Surfl Plot
Figure: 2.3 Inverted Crosscap Function
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204. Four-hole tablé Function: The function is defined as

0 o W S . e
’I(l)—{x‘+_r’ ;‘I ’lw-{rﬂf )
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|

f(x,y) =—|sin(xy)e xy)e  * ' | inthe domain of x, ye (~10,10).

| S

(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot
f
\ !
(¢) Graph drawn by Surfc Plot ( d) Graph drawn by Surfl Plot

Figure: 2.4 Four-hole tables Function

205. Cross on rough ceiling Function: The function is defined as

00—+
sin(xy)e’ *

flx,y)=— — in the domain of x, ye (-10,10)
[m-(r’+y3>i ' ?
cos(xy)e ”
t,‘ﬂl» E ‘J 'w_
(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot
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(c)Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot
Figure: 2.5 Cross on rough ceiling Function

206. Crosshut Function: This function is defined as
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(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot

Thes < surk: graph of e function
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(c)Graph drawn by Surfc Plot (d) Graph drawn by Surtl Plot
Figure: 2.6 Crosshut Function

207. Inverted Crosshut Function: This function is defined as
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xy)e‘ ol in the domain of

f(x,y)=—|sin(xy)e *

'IWAZ'3+:'”3 o8

X,y€E (—]0,10)_

21



Chapter 2

(b) Graph drawn by Surf Plot

Thes 15 susc gragh o the fnction
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(c) Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot

Figure: 2.7 Inverted Crosshut Function

208. Umbrella Function: The function is defined as
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(¢) Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot

22



Chapter 2

Figure: 2.8 Umbrella Function

209. Inverted-umbrella Function: The function is defined as
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(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot
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(¢) Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot

Figure: 2.9 Inverted Umbrella Function

210. Flower Function: The function is defined as
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(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot
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(c) Graph drawn by Surfc Plot (d) Graph drawn by Surfc Plot

Figure: 2.10 Flower function
211. Royalbowl Function: This function is defined as
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(a) Graph drawn by Meshz Plot
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(c) Graph drawn by Surfc Plot
Figure: 2.11 Royalbowl function
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(d) Graph drawn by Surfl Plot

2.3.1 Generalized version of test functions from 201- 211

The functions have been generalized from two variables to n number of variables. The

optimum value of these functions can be calculated just by increasing the dimension of

variable x.
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212. Generalized Tortoise Function: The function is defined as

fl)= sin(ﬁ x,)e

04 008

|00_i r'.’l\
1=l

in the domain of =10 < x, <10

213. Generalized Crosscap Function: The function is defined as

fx)=si

)i

Im—i I':
=1

]

|m-i \,!
=l

in the domain of -10< x, <10.

214. Generalized four-hole table Function: The function 1s defined as

flx)y=—]si

f=-

]

1y

Im—ix,: I(X)-z": \,3
) =)

in the domain of —=10< x <10.

in the domain of ~10< x <10.
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216. Generalized Crosshut Function: The function 1s defined as

fx)=

08

Z 2
IOO-Z S
=

)

in the domain of =10 < x, <10

217. Generalized Inverted Crosshut function: The function is defined as

fx)=-

n N1
100-3
I
n

sn(H]

-10<x <10.

M

.
100-3" 0"
szl

in the domain of

218. Generalised Umbrella Function The function is defined as

flx)=

x € (~10,10)

in the domain of

219. Generalised Inverted Umbrella Function The function is defined as

fO=-

x €(-10,

10).

in the domain of

220. Generalized Flower Function: The function is defined as
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221. Generalized Royalbowl Function: This function is defined as

The function is defined as f(x)=

of -10<x <10

sin(x)e
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in the domain of

in the domain

2.3.2 Extended version of test func;ions from 201 to 211

222. Extended Tortoise Function: The function 1s defined as

nl2

f(x)= 2 sin(x,,_;)e

=]

-10<x <10

LYABNIGTA)
100-( 1374 +13/ )

cos(x,,_,)e

I()f)—(\g,’_]ﬁ\_g,“)
n

223, Extended Crosscap Function: This function is defined as

nl2

f(x)= Z sin(x,,_,x,, )e

100-(43,_ +13, )“‘"!

100-(13,_,+ 3, )

cos(x,,_ x5, )€

45

in the domain of

. Where x, ye (-10,10)

224. Extended Inverted Crosscap Function: This function 1s defined as
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- ||00—( R ' 100-( <, + 0
. n
f(x)= —Z sin(x,,_x,,)e . cos(x,,_ X, )e . Where
=]

X, y€ (—IO,IO)'

225. Extended Four-hole table Function The function is defined as

b 2
w2 300-(15,,+13,)

f) == lsin(x, x0T

=]

)
100-( xg,_, + r§, )f

cos(x,,_,X,, )e in the domain of

x, ye (=10,10).

226. Extended cross on rough ceiling Function: The function is defined as

]

100-( ‘g:-l+ v}

sin(x,,_,x,,)e

nl2

flo)= —Z — 1n the domain of x,ye (-10,10)
=l

100-(13_, +14,)

c0s(x,,_, Xy, )€

227. Extended crosshut Function: This function is defined as

23 2008
ni2 llm—('!'-l+‘21) ‘

fx)= Z sin(x,,_,x,,)e

ARSI AN T
'100—(\,,_,“3,) ’

cOS(x,,_ X, )€ in the domain of

x,ye(—lO,lO).

228. Extended Inverted crosshut Function: This function is defined as

w2 )I(X)-( ‘gll—\l+‘§'l\)l)(l(

fx)= —z sin(x,,_,X,, )€

m V008
llon-« ATt

cos(x,,_,x, )e in the domain of

X, y€ (=10,10)

229. Extended Umbrella Function: The function is defined as

28



Chapter 2

ot

nl2

F ==Y [ =2+ 50

1=]

{ ‘100-( LT

2”)“um { 3
x ) 23 273
l[[x2n-l + XZI _]J| € in [he

e

domain of % Y€ (=10,10)

230. Extended Inverted-Umbrella Function: The function is defined as

o)
201 23
IOO-([r +3 ]

23, 23 STE ]
100-( 15, +13, ) I BN |

nl2 =

fo=-3 x;,'f.+x:,”11e” ] I ]J]l in the

1=]

domain of X»Y€ (=10,10)

231. Extended Flower Function: The function is defined as

, L, po
100-(63,_, +13, )l

D01
n ” 2 2 U T
Xy + X5, €

nl2

f=>y

in the domain

Va2 ]

of X-¥y€ (=10,10)
232. Extended Royalbowl function: This function is defined as

nl2

fy =2 |sin(x,_)e

) [
100-(13,_,+ 3,07
n

“00'( Gt )-"

+|cos(x3_))e v, ye (=10,10)

2.3.3 Extension of some benchmark test functions

234. Extended Goldestein Price Function: On x e [—10,10];i=l,2 this 2-variable

function is defined as follows and has f_(0,-1)=3.

min

FR=0h)

where

nl2 .
Fi= 21+ (o # x, + D19 - 14y, +35, = 14x,, +6x,_x, +3x3) ]

=]
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ni2

fr= 2 [30+(2x,,, —3x,) (18=320x,,, +12x],, —48x,, —36x, 1, +273,) ]
=1

235. Extended Hump Function: It is a 2-variable ( m=2) function with search

domain[-5<y <5];

(1=1,2) and dual (global) minima f(x')==1.032 at x" =(t1) (0.0898, —0.7126) It is

given as

nf2

=Y [40 =218+ 55, 13+ x5, x5, -4, +4x, ]
1=1

236. Extended Hyperellipsoid function: The function is defined as f(x)=)_ j’x!

=l

with x & [-1,1]and the minimum value of the function is £ (x)=0.0.

237. Extended modified Himmelblau function: The modified Himmelblau function

has only one global optimum ;¢\")=0 at.’ =(3.2). This (modified) function is given as
nll s N s ,
FO =Y [ ooy +8, = T+ (6 +25, =1 40 W(x,, =3 + (1, 2]
1=l

238. Extended leon function: In the search domain x,,x, € [-1.2,1.2] this function is

defined as follows and has f_ (1,1)=0.

mn

ni2

f(x)= Z[c(xz, -x; )+ —xz,_,)z] : where ¢=100.

1=!

239. Extended Matyas function: It is a 2-vanable (m=2) function with search

domain|-10< x <10}; (:=1,2) and mmimum 7(x*)=0 at x" =(0, 0). It is given as

nl2
F =3 e, +x3)—dx, x, | ; where c=0.26 d=0.48

=2

240. Extended Mc Cormick function: In the search domain x, € [-1.5,4],x, € [-3,4]

this function 1s defined as follows and has f __(—0.54719,-1.54719)=-1.9133.

min
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ni2

FO =Y [0, , + 5, + (5, =5, =155, +2.5x, +1.]

1=l

241. Extended Quintic function: In the domain xe[-10,10] with f_ =0 for

mtn

x =—=1 or 2;i=12,....m this function (with multiple global minima) is defined as

242. Extended Six hump Camel Function: The camel function is defined as

nl2 6
f=> 4x§,_,—2.1x;‘,_,+x23'-' +x, %, —4x2 +4xt |, 3<x <3 and 2<x, <2 .

1=

The global minimum value of the function is at x =(.0898,-0.7127) or (.0898,
0.7127) and f(x")=-1.0316.

243. Extended three hump camel back function: In the search domain x,, x, € [-5,5]

this function is defined as follows and has f_ (0,0)=0.

min

nl2

6
f(-x) = Z|:2X§I-I - ] 'OSX;I-I + XZG'-‘ + x21-|x21 + XZZI}

1=

244. Generalised Styblinskitang function: In the search domain x,,x, € [-5,5] this

function is defined as follows and has f, (—2.903534,-2.903534) =-78.332

mn

Flo= %i(xf ~16x7 +5x).
1=

245. Extended Zettle function: In the search domain x,,x, € [-5,5] this function is

defined as follows and has f,__(—0.0299,0)=-0.003791

min

nil2

flx)= Z[(xzz,_, +x;, = 2x,_,) +0.25x, _, ]
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246. Extended Treccani  function: The function s  defined as

ni2 6
f(x)= z[Zx;_, ~105x]_, + X26’" — Xy Xy, + x,’] where  the  bounds  are

=

-3<x £3(=12) The global mmimum 1s at (0, 0) and (-2, 0) at f(x)=0

247. Extended Booth Function : A 2—varable (m=2) function with search domain

[-10<x <10],

(1 =1,2) given as

nil

F) = Y[y + 20, = T 42ty + 35, =5) ]

248. Extended Easom function This function 1s 1n 2 variables (m=2) with search

domam|-100<, <100}, (1=1,2) and f(."y=-1 at x =(7, 7) It1s given as

ni2

f(x)= -Z[cos(xz,_,)cos(le)exp[—(le_, =) = (xy, —7:)2]]

=]

2.4. Features of the newly developed test functions

One of the important features of the newly developed test function 1s shape of the test
functions which 1s evident from the coloured dimensional graph for all the test
functions from 20! to 211 For example in the four hole table function, there are four
holes in the table and the global minimum value lies 1n lowest point of any of the four
holes and same can be explained for Umbrella function Rest of the features of the test

functions are given below

201. Tortoise function: multimodal function with 2 dimensional test function but has

been generalized up to n-dimensional in test-212

202 I-Crosscap function: multimodal function with 2 dimenstonal test function but

has been generalized up to n-dimenstonal n test-213

203. Crosscap function 1s a negative of Crosscap multimodal function with 2

dimensional test function but has been generalized up to n-dimensional 1n test-214
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This function 1s deceptive 1n nature While searching the mimima the algorithm can be

eastly trapped nto the local minima

204. Four-hole table function mulumodal function with 2 dimensional test function
but has been generalized up to n-dimensional 1n test-215 This function 1s deceptive 1n
nature While searching the mimima the algorithm can be easily trapped nto the local

minima

205 Cross on rough ceiling function multimodal function with 2 dimensional test

function but has been generalized up to n-dimensional 1n test-216

206. Crosshut Function: ummodal function with 2 dimensional test function but has

been generalized up to n-dimensional in test-217

207 Icrosshut function negative of Crosshut unimodal function with 2 dimensional

test function but has been generalized up to n-dimensional in test-218

208 Umbrella function Umimodal function with 2 dimensional test function but has
been generahized up to n-dimensional in test-219 This function 1s deceptive 1n nature
While searching the minima the algorithm can be easily trapped nto the local mimma
The difficulty level of this test functions can increased by decreasing the hole of the

stand of the umbrella

209 I-Umbrella function : Negative of Umbrella function, Ummodal function with 2
dimensional test function but has been generahzed up to n-dimensional in test-220
This function 1s deceptive 1n nature While searching the minima the algorithm can be
eastly trapped into the local minima The difficulty level of this test functions can

increased by decreasing the hole of the stand of the umbrella

210 Flower Function: Unimodal function with 2 dimensional test function but has
been generalized up to n-dimensional in test-221 This function 1s deceptive 1n nature
While searching the minima the algorithm can be easily trapped into the local mimma
The difficulty level of this test functions can increased by decreasing the hole of the

flower stand

211 Royalbowl Function: Umimodal function with 2 dimensional test function but

has been generalized up to n-dimensional 1n test-222
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2.5 Reason that newly developed test functions
needed for the study

The difficulty of a global optimization problem depends on many factors Among the
most important one are size of the ridge and ditches, shape of the test functions, the
classical example 1s the Rosenbrok function, where the minimum point 1s inside a long,
narrow and parabolic-shaped flat valley, which makes convergence difficult The
dimension and high multi-modulanty are the feature which makes the convergence
again difficult

In this thesis our main focus 1s on the multi-modulanty and the shape of the test
function Although, we have generalized the eleven test functions in 212 to 222 and the
dimension of the test functions can be considered up any level, but we have not taken
this feature for our study The shape of the new test function is another aspect which
can be viewed from the coloured dimensional graph and this feature also makes the
problem difficult to find the global minimum

The experiment has been conducted using the existing test functions also and the results
and discussion of these study have been incorporated in chapter-4 and all these results

have been published

We found that there are not many unimodal/multimodal test functions are there who are
deceptive 1n nature and its difficulty level can be increased by adjusting its parameters,
like one example could be “mddle eye function” Here we have developed some

difficult test functions to conduct the experiments

2.6. Summary

This 1s one of the important chapter of this thesis Here a set of new test functions
have been developed In section 22 the purpose of developing the set of new test
functions 1s given Inthe section 2 3, the functions from 201 to 211 are given These e
new test functions are of dimension two The performance of evolutionary algorithms
will be studied empirically using these test functions The graphical representation of
each functions from 201 to 211 has been given 1n section 3 1, In subsection 2 3 1, the
function 212 to 221 are the generahization of those functions with dimension n The
subsection 2 3 2 1s the extended version of the functions 201 to 211 The subsection
233 contains the. extension of some benchmark test functions which has been
numbered from 234 to 248 In section 2 4, the main features of the test function have
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been defined and n section 2 5 the justification that why these new test function are
need for the Empirical Study 1s explained The visual presentation has been given with
four functions of the MATLAB graphics toolbox to get the approximate vision of the
optimum point through different color dimension The first set of eleven test functions

are used for empinical study

koK ok ok kk
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Experimental Results of New Test
Functions

3.1 Theresults of the new test functions

In this chapter, two type expenments are being conducted and results are recorded 1n
tablular form In the first expeniment, the mmimum values are obtained by all the four
optimizers for eleven functions such as F201-Tortoise function, F202- Inverted Cross
cap function, F203- Cross cap function, F204- Four hole table function, F205- Cross on
rough ceiling function, F206- Cross-hut function, F207- Inverted Cross-hut function,
F208- Umbrella function, F209- Inverted Umbrella function, F210- Flower function
and F211-Royal-Baul function Each of the functions have dimension two discussed 1n
chapter 2 The results are recorded in Table 3 | (a) and Table 3 1 (b) Parameters such
as population size and number of iterations are fixed as 250, 50 and 100 respectively

In the second experiment optimizers are run for different number of iterations such as
100, 200, 300, 400, 500, 600, 700 and 1000 with a population size 250 and 50 The
minimum value obtained by Differential Evolution, genetic Algorithm, Particle Swarm
Optimization and Simulated Annealing have been recorded in Table 3 2 (a) and (b),

Table 3 3 (a) and (b), Table 3 4 (a) and (b) and Table 3 5 (a) and (b) respectively
3.1.1 Experiment setup

Parameter settings and machine configuration on which expeniment have been
conducted are given below The program for Genetic Algonthm, Differential
Evolution, Particle Swarm and Simulated Annealing 1s developed in MATLAB by
Oldenhius (2009) The experiments are conducted using MATLAB platform with the

system configuration as

0S Name Microsoft Windows XP Professional
version 5 1 2600 Service Pack 2 Build 2600
System Model Presario C700 Notebook PC

System Type X86-based PC, 80 GB HDD

Processor x 86 Family 6 Models 15 Stepping 10 Genuine Intel ~1729
MHz

Hardware Abstraction Layer Version = "5 1 2600 2180
(xpsp_sp2_rtm 040803-2158)"
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Total Physical Memory 512 00 MB
Total Virtual Memory 2 00 GB

Through out the experiment we have considered the CPU speed to be fixed as the

system configuration

Differential Evolution The DIFFEVOLVE(func, popsize, lb,ub) tries to find the
optimum value of the objective function as [func] using transversal differential
evolution strategy Population size set by [popsize] and the boundaries for each
dimension 1s set by the vectors [Ib] and [ub] respectively The [opt, funcval, noofevals]
= DIFFEVOLVE( ) returns the trail vector found to yield the global optimum 1n [opt],
and the corresponding function value by [funcval] The total amount of function
evaluations that the algonthm performed i1s returned in [noofevals] The scaling factor
1s being set 0 5 and 1t 1s randomize with a fact=0.5*rand The crossover probability 1s
09 The program runs for pop size 50 and 250 and the algorithm 1s run for 100
iterations and result 15 being recorded Here we have not recorded the function

evaluations

Genetic Algorithm: The imtial parameters for genetic algorithm are set as default For
example, the crossover probability= 09 s the probability that the individual will
perform a crossover The mutation probability = 0 01, 1s the probability that individual
will mutate The Genetic optimizer GENETIC(func, popsize, Ib, ub) tries to fund the
global optimum of the fitness function [func] using the basic Genetic Algorithm (real

coded) The crossover operator 1s implemented 1n following way

% generate parents indices

parentsinds = 1,
while (rem(sum(parentsinds), 2) > 0 || (sum(parentsinds) == 0))
parentsinds = rand(popsize, 1) < crossprob,
end
parents = pop(parentsinds, ),

parentsinds = popvec(parentsinds),
% randomize order of parents

[dummy, 1nds]) = sort(rand(size(parents, 1), 1), 1),
parents = parents(inds, ),

% separate sexes

numparents = size(parents, 1),

faths = parents(l 2 numparents, |

moths = parents(2 2 numparents, ),

% determine crossoverpoints

numcrosses = numparents / 2,

Crosspos = round( (dims-1)*rand( numcrosses, 1 )} + 1 ),
Crosspos = numcrosses * (crosspos -~ 1) + (1 numcrosses)',
tempmatrix = zeros(size(moths)),

tempmatrix (crosspos) = true,
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Crosspos = cumsum(tempmatrix, 2),

% spawn children

daughs = ~crosspos * moths,

daughs = daughters + faths * crosspos,
sons = ~crosspos * faths,

sons son + moths * crosspos,

children {daughs, sons],

The mutation operator is implemented i1n following way

mutations = rand{popsize, dims) *range + mins,
mutind = rand(popsize, dims) < mutationprob,
pop(mutind) = mutations(mutind),

Default maximum number of iteration has been set 100 But the results have also been

taken for 200,300,400,500,600 and 1000 with pop size 50 and 250

Particle Swarm Optimization The SWARM( func, popsize, lb,ub) tries to find the
opimum value of the objective function as [func] using transversal differential
evolution strategy Population <1ze set by [popsize) and the boundaries for each
dimension 1s set by the vectors [Ib] and [ub] respectively The [opt, funcval, noofevals]
= SWARM( ) returns the trail vector found to yield the global optimum in [opt], and
the corresponding function value by [funcval] The total amount of function evaluations
that the algonthm performed 1s returned 1n [noofevals] The parameters are being set as
n, =2, social factor when the population interact with each other 73, =2, Cooperative

factor means each population passes the information to its immediate neighbor n left

and nght 7, =05, Nostalgia factor means the each population remembers its previous

optimum value @ =05 Inertial factor, numneighbours=5, amount of neighbors for

each particle Convalue = 150, maximum number of iterations without improvement

Simulated Annealing The SIMANNEAL(func, popsize,lb,ub) tries to find the
optimum value of the objective function as {func] using population based simulated
annealing strategy Population size set by [popsize] and the boundaries for each
dimension 1s set by the vectors [Ib] and [ub] respectively The [opt, funcval, noofevals]
= SIMANNEAL( ) returns the trail vector found to yield the global optimum 1n [opt],
and the corresponding function value by [funcval] The total amount of function
evaluations that the algonthm performed 15 returned in {noofevals] The parameters TO

= | (initial temperature), minT = le-8 (final temperature), k =1 (Boltzmann constant)
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and maximum iteration = 100 before the cooling scheduling 1s appled. The cooling
schedule = (mint) A (1/maxiter)

Function setup and code example: First the functions to be optimized are being coded
in MATLAB programming code, and then 1t 1s passed through the optimizer with the

external parameters in following way

eleon=0(x)sum((100*(x(:,2.2:end)-x(",1:2.end-1).72))+(1-%x(:,1:2:end~-
1).72);

[x, £]=DIFFEVOLVE (eleon, 250, ~1.2*ones (1,10),1.2*ones (1,10))

[x, f)=SWARM(eleon, 250,-1.2*ones(1,10),1.2*ones(1,10))

[x, £]=GENETIC(eleon,250,-1.2*cnes(1,10),1.2%ones(1,10))

[x, £)=SIMANNEAL (eleon, 250, -1 2*ones(1,10),1.2*ones(1,10)})).

for all other functions has been given in APPENDIX B.

The code

3.1.2 Expeimental results

Table 3.1 (a) Optimum Values obtained by Differential Evolution and Genetic

Algonithm

Fn. PS Differential Evolution Genetic Algorithm

Optimum point Optimum Value Optimum point Optimum value
F201 250 | 94249, -29999 191752151e+000 31416 , 94822 | 190030274e+000
F201 50 -15717, 99134 | 193694969e+000 94249, 29275 | 193180513e+000
F202 250 | 07097, -0 7092 -1 86189748e+000 07936, -06753 | -1 86167298e+000
F202 50 07138, 07152 -1 86189372e+000 05890, 07149 | -1 86134062e+000
F203 250 [ 03168, 99167 921214865¢-001 61622 , 79022 | 929639992e-001
F203 50 61013, 77237 9 49330125e-001 55069, -82709 | 957970538e-001
F204 250 | 07072 , 07084 -2 68906905e+002 07491, 06609 -2 68784125e+002
F204 50 07128, -07099 | -2 68905747e+002 07549, -06578 | -2 68759895e+002
F205 250 { 03811, -4 1214 -2 55748852e+000 16964 , -64818 | -2 26232943e+000
F205 50 -58533, 50988 | -2 40525045¢+000 03911 , 40137 | -287854522e+000
F206 250 | -99012,-95192 2 4569324 5e+000 98920 , -9 8461 | 2 39197687e+000
F206 50 -98840, 96959 | 2 56304786e+000 -99061,-99749 | 2 69012588e+000
F207 250 | -0 8215, 08278 -2 29402230e+001 -08135,-08149 | -229394581e+001
F207 50 08166 , 08263 -2 29401223e+001 -0 8002, -0 8787 | -229375531e+001
F208 250 [ -0 3819, 11534 0.00000000e+000 -08200 12718 | 0.00000000e+000
F208 50 00563, -15010 0.00000000e+000 -0 8200 12718 | 0.00000000e+000
F209 250 | -25270, -0 1457 | -1.91155605¢+000 -2 0950, | 4744 -1.91155605¢+000
F209 50 18102, 17261 -1.91155605¢+000 -0 6659, 2 4363 -1.91155605e+000
F210 250 [ -06513, 05427 | 000000000e+000 *k * Ak
F210 50 | 03599, -08754 0 00000000e+000 * A *Ex
F211 250 | 06516, -00008 4 98949259¢-014 06507, 00344 | 499137030e-014
F211 50 06513, -00000 4 98949084e-014 06608, 01126 | 501056034e-014

Legends: Fn Name of the function, PS Population size,

Note : All eleven newly developed test functions F201 to F211 are given 1n chapter 2, section
23,pp 20

In the Table 3.1 (a) above the opumum pont and optimum value of the eleven test
functions have been obtained using two optinizers viz Difterential Evolution and

Genetic Algorithm with two set of population size 250 and 50. The values 1n bold face
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1s the best value obtained by the optimizer The *** value means the optimizer could

not find the optimum value and 1t has resulted in overflow

From the above Table 1t 15 observed that for function F209 Differential Evolution and
Genetic Algonithm have given the best value, whereas for other functions Genetic
Algorithm could not perform better than the other optimizers such as particle swarm or

simulated annealing

Table 3.1 (b) Optimum Value obtained by Particle Swarm Optimization and Simulated

Annealing
Fn. PS Particle Swarm Optimization Simulated Annealing
Optimum point Optimum value Optimum point Optimum value

F201 250 | -15707, 98985 1 91049833e+000 | -78540, 61899 | 1.88780730e+000

F201 50 94248, 31703 1.88572313e+000 | 94248, -3 3427 1 88745345e+000

F202 | 250 [ -0 7085, 0 7085 -1 86189758e+000 | 99993, -99996 | -1.87444747e+000

F202 | 50 07085, 07085 -1 86189758e+000 | 99996 ,-99992 | -1.87444232e+000

F203 | 250 | -7 3669, 66099 9 05167216e-00) 98966, 15872 | 8.61537441e-001

F203 | 50 -6 2256, 78217 9 07984434¢-001 91756, -3 7662 | 8.95986856¢-001

F204 | 250 | 07085, 07085 -2.68906986e+002 | 9 9996, 99991 -2 85652199¢+002

F204 | 50 07085, 07085 -2.68906986e+002 | -99997, 99972 | -2 85532368e+002

F205 | 250 [ -25053 81509 -3.81158493e+000 | -5 6181 -69898 | -349271313e+000

F205 | 50 -74480, 02109 -3.36532242e+000 | -9 5173, -94076 | -291218118e+000

F206 | 250 | -99779, 97605 1.55582079¢+000 | 99480, -94740 | | 85613381e+000

F206 | 50 98851, 98521 1.58416460e+000 | -9 9585, -99372 | 1 97094781e+000

F207 | 250 | -08255, 08249 -2.29402342e+001 | 08238, 08262 -2 29402328e+001

F207 | 50 08251, -08251 -2.29402343e+001 | -0 8254, 08266 | -2 29402293e+00!

F208 | 250 | -1 0379, 05254 0.00000000e+000 | -1 4606, -04748 | 0.00000000e+000

F208 | 50 -0 5708, 13242 0.00000000e+000 | -1 4546, -0 3751 | 0.00000000e+000

F209 | 250 | 15023, 23486 -1.91155605e+000 | 26232, 01239 | -1.91155605e+000

F209 | 50 -0 5622, 25566 -1.91155605e+000 | 2 5978, 06155 -1.91155605e+000

F210 | 250 {02023, 07588 0.00000000e+000 | 0 6036, -00628 | 0.00000000e+000

F210 | 50 -0 4052, 05276 0.00000000e+000 | -0 0593, 04253 | 0.00000000e+000

F211 250 | 06513, 00000 4 98949084e-014 99971, 99988 | 4.67427986e-014

F211 50 -0 6513, 00000 4 98949084e-014 06513, -00032 | 498950694e-014

Legends: Fn Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given in chapter 2 , section
23,pp 20

In the Table 3 1 (b) above the opttimum point and opumum value of the eleven test
functions have been obtained using two optimizers viz Particle Swarm Optimization
and Simulated Annealing with two set of population size 250 and 50 The values in
bold face 1s the best value obtained by the optimizer with that population size It 1s
observed from the above table that the Particle Swarm and simulated Annealing have
performed better on F201 then Differential Evolution and Genetic Algorithm For
function F202, F203, F209 and F211 Simulated annealing has outperformed all other
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opuimizers For functions F204, F205, F206, F207, F208, F209 and F210 Particle
swarm have outperformed all other algorithms For function F209 all the four
optimizers, considered 1n our investigation have given the same value with both the set

of population size

3.2 Results recorded from the Differential Evolution at
different iterations

The experimental setup 1s kept like above and number of iterations 1s being changed to
200,300,400,500,600,700 and 1000 for all the four optimizers The result obtained from
Differential Evolution have been recorded in Table 3 2(a) &Table 3 2(b)

Table 3.2 (a) Optimum values ot the functions recoeded by differential evolution for
100,200, 300, 400 iterations

Fn. | PS Differential Evolution

100 200 300 400
F201 | 250 | 1.91752151e+000 | 2 60607012e+000 1 92969629¢+000 1 92128170e+000
F201 | 50 1 93694969e+000 | 2 45892574e+000 1 95692161e+000 1 92789217e+000
F202 | 250 | -1 86189748e+000 | -1 86189751e+000 -1 86189569e+000 -1 86189428e+000
F202 | 50 | -1 86189372e+000 | -1 86189523e+000 -1 86189236e+000 -1 86189440e+000
F203 | 250 { 9 21214865e-001 9 21214865¢-001 9 23446408¢-001 8.88070077¢-001
F203 { SO0 | 949330125e-001 9 49330125¢-001 9 54186491e-001 9 42273525¢-001
F204 | 250 | -2 68906905e+002 | -2 68906909¢e+002 -2 6890684 5e+002 -2 68906879e+002
F204 | 50 | -2 68905747¢+002 | -2 68906677e+002 -2 68905523e+002 -2 68904703e+002
F205 | 250 | -2 55748852¢+000 | -2 42648317e+000 -2 87730783e+000 -2 84647550e+000
F205 | 50 | -2 40525045e+000 { -1 97432970e+000 -2 09707192e+000 -2 5423707 1e+000
F206 | 250 | 2.45693245e+000 | 4 62045594e+000 4 364433 14e+000 4 53838033e+000
F206 | 50 | 2 56304786e+000 5 14521467e+000 5 20364223e+000 5 19345740e+000
F207 { 250 | -2 29402230e+001 { -2 29401978e+001 -2 29401329¢+001 -2 29401 189¢+001
F207 | 50 | -229401223e+001 | -2 294008 14e+00! -2 294022894001 -2 29400960e+001
F208 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | S0 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 250 | -1.91155605e¢+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e¢+000
F209 | 50 | -1.91155605e+000 | -1.91155605¢+000 -1.91155605e+000 -1.91155605e+000
F210 | 250 | 0.00000000e+000 { 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 { 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 | 250 | 4 98949259¢-014 4 98949481e-014 4 98952356e-014 4 98949393e-014
F211 | 50 | 4.98949084¢-014 4.98949084¢e-014 4 98965805¢-014 4.98949084e-014
Legends: Fn Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given 1n chapter 2 , section
23,pp 20

The optimum value of the eleven test functions have been obtained by Differential
Evolution with two set of population size 250 and 50 at the 1terations 100, 200, 300 and
400 and recorded in Table 32 (a) The values in bold face 1s the best value obtamed
by the optimizer with that population size From the table 1t 1s observed that

Differential Evolution has given the best value for the function F201 at 100 iterations,
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F203 at 400 1iterations, F204 at 200 iterations, F205 at 300 iterations, and F206 at 100
ietranions  For functions F208, F209 and F210 the optimum value does not change after

increasing the no of iterahions respectively

Table 3.2 (b) Optimum values of the functions recoeded by differential evolution for
500,600, 700, 1000 iterations

Fn. | PS Differential Evolution

500 600 700 1000
F201 | 250 | 1 93186832e+000 1 92956354e+000 1 93551409e+000 1 924804 19¢+000
F201 | 50 1 92848808e+000 1 92875804¢+000 1 91824795e-+000 1 93285085e+000
F202 | 250 | -1 86189744e+000 | -1 86189744e+000 | -1 86189753e+000 -1 86189585¢+000
F202 | 50 } -1 86189561e+000 [ -1.86189651e+000 -1 86189428e+000 -1 86189534e+000
F203 | 250 | 9 26358931e-001 9 22588980e-001 9 22455915e-001 9 36622066e-001
F203 1 50 | 937265807e-00) 9 40419929¢-001 9 46030396e-001 9 46160103e-001
F204 | 250 | -2 68905114e+002 | -2 68906849¢+002 -2 689064 15e+002 -2 68906976e+002
F204 | 50 | -2 68906777e+002 | -2.68903963e+002 -2 689053 13e+002 -2 68906717e+002
F205 | 250 | -2 05435159e+000 | -2 82959056e+000 -2 45212838e+000 -2 15456991e+000
F205 | 50 | -2.73461217e+000 | -2 30531027e+000 -2 65383976e+000 -2 35713981e+000
F206 | 250 | 4 42264619¢+000 4 68592524e+000 5 00527646e+000 3 98279703e+000
F206 | 50 ) 4 63434923e+000 | 5 66109600e+000 4 63151441e+000 5 75338253e+000
F207 | 250 [ -2 29401595e+001 | -2.29402304e+001 -2 294013844001 -2 29402261e+001
F207 | 50 | -2 29402343e+001 | -2 29399390e+00! -2 29401323e+001 -2 29401597e+001
F208 { 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | 50 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 250 § -1.91155605e+000 | -1.91155605¢+000 | -1.91155605e+000 -1.91155605e+000
F209 { 50 | -1.91155605e+000 | -1.91155605e+000 | -1.91155605e+000 -1.91155605e+000
F210 | 250 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 | 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 | 250 | 4 98950768e-0i4 4 98950539¢-014 4 98953163e-014 4.98977918e-014
F211 1 50 | 498955474e-014 4 98954565¢e-014 4 98980698e-014 4 98952548e-014
Legends: Fn  Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given 1n chapter 2, section
23,pp 20

In the table 3 2 (b) above the optimum value of the eleven test functions have been
obtained by Differential Evolution with two set of population size 250 and 50 at the
iterations 500, 600, 700 and 1000 The values 1n bold face 1s the best value obtained by
the optimizer with the population size 250 and 50 It 1s observed in the table that
Differential Evolution has given the optimum value for F201 with population size 50
and F202 with pop size 250 at 700 nerations Also for F202, F203 and F204 the
optimizer has given the best value at 700, 500, 600 and 700 respectively For the
functions F208, F209, F210 and F211 the value remains unchanged, after increasing the

number of iterations
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3.3 Results recorded from the Genetic Algorithm at
different iterations

Table 3.3 (a) Optimum values of the functions recoeded by Genetic Algorithms at
100,200, 300, 400 iterations

Fn. | PS Genetic Algorithm

100 200 300 400
F201 | 250 | 2 04949000e+000 1 92416337e+000 1 93374375e+000 1 91354830e+000
F201 | S0 | 2 62253128e+000 1 94895262e+000 1 95608050e+000 1 9494568 1e+000
F202 | 250 | -1 86167298e+000 | -1 86189184e+000 -1 86189122e+000 -1 86185251e+000
F202 | 50 | -1 86134062e+000 | -1 86178770e+000 -1 86164848e+000 -1.86183452¢+000
F203 | 250 | 9 29639992e-001 9 18600422e-001 9 33159688e-001 9 25872868e-001
F203 | 50 | 957970538e-001 9 59775667¢-001 9 53196131e-001 9 45252476e-001
F204 | 250 | -2 68784125e+002 | -2 76758157e+002 -2 68798408e+002 -2 68906121e+002
F204 | 50 | -2 68759895e+002 | -2 68664793e+002 -2 68720667e+002 -2 68341625e+002
F205 | 250 | -2 26232943e+000 { -3 26335208e+000 -2 82682342e+000 -2 23202944e+000
F205 | 50 | -1 87854522e+000 | -2 2965288 1e+000 -2 08575158e+000 -2.45752169¢+000
F206 | 250 | 5 26469049¢+000 | 4 70047361e+000 4 15435657e+000 4 23678523e+000
F206 | 50 | 5 20870500e+000 4.81554194e+000 5 64967604e+000 5 95678427e+000
F207 | 250 | -2 29394581e+001 | -2 29398934e+001 -2 2938507 1e+001 -229401261e+001
F207 | 50 | -229375531e+001 | -2 29064018e+001 -2 29321000e+001 -229130121e+001
F208 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | SO | 0.00000000e+000 0.00000000¢+000 0.00000000e+000 0.00000000e+000
F209 | 250 | -1 91155605e+000 | 1 91155605e+000 Result fluctuate Result fluctuate
F209 | 50 -1 91155605e+000 | -1 91155605e+000 Result fluctuate Result fluctuate
F210 | 250 *x overflow overflow overflow
F210 | 50 *kk overflow overflow overflow
F211 | 250 | 4 99137030e-014 5 00454156e-014 5 00084036e-014 4 99027284e-014
F211 | 50 | 501056034e-014, 4 99699 160e-014 500102078e-014 4.90737275e-014
Legends: Fn Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given in chapter 2 , section
23,pp 20

In Table 3 3 (a) the opumum value of the eleven test functions have been obtained by
Genetic Algorithm with two set of population size 250 and 50 at the iterations 100, 200,
300 and 400 The values tn bold face are the best value obtained by the optimizer with
that population size The *** value denote the overflow, means the optimizers did not
converge From the above table i1t 15 observed that Genetic Algorithm finds the best
value for functions F202, F204, F205 at the iterations 400, 200 and 400 respectively
For the function F208 the value remains unchanged after inceasing the number of
iterations For F209, F210 the optimizer, gives the fluctuating value or it overflows For

F211, the best value 1s obtained at the iterations 300 and 400
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Table 3.3 (b) Optimum values of the functions recoeded by Genetic Algorithms for
500,600, 700, 1000 iterations

Fn. | PS Genetic Algorithm

500 600 700 1000
F201 | 250 | 1 94188299e+000 1.90541800e+000 1 953078 18e+000 1 91901756e+000
F201 | 50 1 9338661 1e+000 1 94029430e+000 1 95091865e+000 1 9394609 1e+000
F202 | 250 | -1 86171445e+000 | -1 86187271e+000 -1 8646931 1e+000 -1 87077152e+000
F202 | 50 | -1 86156356e+000 | -1 86142687e+000 -1 86067167e+000 -1 86171268e+000
F203 | 250 | 9.07322728¢-001 9 35419787e-001 9 32422247e-001 9 39023920e-001
F203 | 50 | 9 42806955e-001 9 48458557e-001 9 64817071e-001 9 39136908e-001
F204 | 250 | -2 68730251e+002 | -2 68730079e+002 -2 68890284e+002 -2 68871366e+002
F204 | 50 | -2.68892538e+002 | -2 68800296e+002 -2 68847171e+002 -2 68798891e+002
F205 | 250 | -2 27214723e+000 | -2 30373267e+000 -2 49500243e+000 -2 51221115e+000
F205 | 50 | -2 36650898e+000 | -2 27402162e+000 -2 17168158e+000 -2 22822329e+000
F206 | 250 | 3.78401822¢+000 5 09392847¢+000 4 29985636e+000 5 24951893e+000
F206 | 50 | 548705784e+000 5 44453899e+000 4 95147933e+000 5 90572643e+000
F207 | 250 | -2 29387837e+001 | -2 29391994e+00] -229401917e+001 -2 29389772e+001
F207 { 50 | -2 29326382e+001 | -2.29400122¢+001 -2 29314146e+001 -2 29386139e+001
F208 | 250 | 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | SO | 0.00000000¢+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 250 | 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 50 { 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 | 250 | overflow overflow overflow overflow
F210 | 50 overflow overflow overflow overflow
F211 | 250 | 4 99413089¢e-014 4.99940452e-014 4 99363483e-014 498411078e-014
F211 | 50 | 500392192¢-014 502104377e-014 5 11792540e-014 500633123e-014

Legends: Fn Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given in chapter 2 , section
23,pp 20

In the Table 3.3 (b), The optimum value of the eleven test functions have been
obtained by Genetic Algorithm with two set of population size 250 and 50 at the
iterations 500, 600, 700 and 1000 The values in bold face 1s the best value obtained by
the optimizer with that population size In the above table 1t 1s observed that when the
number of iterations are increased the Genetic Algonthm converges and gives the
optimum values. Except for the function F2 10 where 1t could not converge, for all other
functions F201, F203 and F204 the best value 1s obtained at the iterations 600 and 500

respectively For F208 and F209 the optimum value does not change

34 Result recorded from the Particle Swarm

optimization at different iterations

Table 3.4 (a) Optimum values of the functions recoeded by Particle Swarm
Optimization at 100,200, 300, 400 1terations

Fn. PS Particle Swarm Optimization

100 200 300 400
F201 | 250 | 110899463e+000 | 1 86176451e+000 1 91195594e+000 1 88463958e+000
F201 | 50 | 9.42486768e-001 1 86131442e+000 1 85093636e+000 1 87736573e+000
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F202 | 250 | -1.86189758e+000 | -1.86189758e+000 -1.86189758e+000 -1.86189758e+000
F202 | 50 -1.86189758e+000 | -1.86189758e+000 -1.86189758e+000 -1.86189758e+000
F203 | 250 | 9 05167216e-001 9 19289128e-001 9 01959933e-001 8.62815019e-001
F203 | 50 9 07984434e-00] 8 80223377e-001] 8 95459497e-001 8 66018282e-001
F204 | 250 | -2.68906986e+002 | -2.68906986e+002 -2.68906986e+002 -2.68906986e+002
F204 | 50 -2.68906986e+002 | -2.68906986e+002 -2.68906986e+002 -2.68906986e+002
F205 | 250 | -3 81158493e+000 | -3 12784593e+000 -3 51546244e+000 -3 55868875e+000
F205 | 50 -3 36532242e+000 | -3 26404079e+000 -3 30218920e+000 -3 51137074e+000
F206 | 250 | 1 55582079e+000 2 20140193e+000 2 32486622e+000 2 10450677e+000
F206 { 50 1.58416460e+000 2 23086987e+000 1 98970786e+000 1 54813575e+000
F207 | 250 | -2 29402342e+001 | -2 29402343e+00! -2.29402343¢+001 -2 29402340e+001
F207 | 50 -2.29402343e+001 | -2.29402343e+001 -2.29402343e+001 -2.29402343e+001
F208 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | 50 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 [ 250 | -1.91155605e+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F209 | 50 -1.91155605e+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F210 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 | 50 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 { 250 | 4.98949084¢-014 4.98949084¢-014 4.98949084e-014 4.98949084e-014
F211 | 50 4.98949084¢-014 4.98949084e-014 4.98949084¢-014 4.98949084¢-014
Legends: Fn Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given in chapter 2 , section
23,pp 20

In the Table 3 4 (a) the optimum value of the eleven test functions have been obtained
by Particle Swarm Optimization with two set of population size 250 and 50 at the
iterations 100, 200, 300 and 400 The values 1n bold face 1s the best value obtamned by
the opttmizer with that population size It 15 also observed from the above table that
Particle Swarm Optimization has performed fairly better than other optimizers. For
functions F201, F204 and F206 best value have been found at 100 iterations For
functions F202, F207, F208, F209, F210 and F211 the value remains unchanged and

are the optimum value after increasing the number of iterations

Table 3.4 (b) Optimum values of the functions recoeded by Particle Sawrm
Optimization at 500,600, 700, 1000 iterations

Fn. | PS Particle Swarm Optimization
500 600 700 1000

F201 | 250 | 189499129e+000 1 87370701e+000 |1 89147147e+000 1 89132774e+000
F201 | 50 1 903992 12e+000 1 86655067e+000 1 78736187e+000 1 89753495e-+000
F202 | 250 [ -1.86189758e+000 | -1.86189758e+000 -1.86189758e+000 -1.86189758e+000
F202 | 50 -1.86189758e+000 | -1.86189757e+000 -1.86189758e+000 -1.86189758e+000
F203 | 250 | 9 00336166e-001 8 87600013e-001 9 08343030e-001 8 92108439e-001
F203 | 50 8 99100153e-001 8 95359945e-001 9 05744351e-001 9 02746687¢e-001
F204 | 250 | -2.68906986e+002 | -2.68906986e+002 | -2.68906986e+002 -2.68906986¢+002
F204 | S0 | -2.68906986e+002 | -2.68906986e+002 -2.68906986e+002 -2.68906986e+002
F205 | 250 | -3 80901825e+000 [ -3 07819011e+000 -4.18844511e+000 -3 24493892¢+000
F205 | 50 | -337678832e+000 | -3 08405265e+000 -3 31437855e+000 -4 00760484e+000
F206 | 250 | 2 29605752e+000 | 2 26159865e+000 1 991675124000 1 96860973e+000
F206 { 50 | 2 18200740e+000 [ 1 98092307e+000 2 32886388e+000 2 36256907e+000
F207 | 250 | -2.29402343e+001 | -2.29402343¢+001 -2.29402343e+001 -2.29402343e+001
F207 | 50 | -2.29402343e+001 | -2.29402343e+001 -2.29402343e+001 -2.29402343e+001
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F208 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | 50 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 250 | -1.91155605e+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F209 | 50 | -1.91155605e+000 | -1.91155605¢+000 -1.91155605e+000 -1.91155605¢+000
F210 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 | 50 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 | 250 | 4.98949084e-014 4.98949084e-014 4.98949084e-014 4.98949084¢-014
F211 | 50 | 4.98949084e-014 4.98949084e-014 4.98949084¢-014 4.98949084¢-014

Legends: Fn

Name of the function, PS Population Size

Note : All eleven newly developed test functions F201 to F211 are given in chapter 2, section
23,pp 20

In the Table 3 4 (b), The optimum value of the eleven test functions have been obtained
by Particle Swarm Optimization with two set of population size 250 and 50 at the
iterations 500, 600, 700 and 1000 The values in bold face 1s the best value obtained by
the optimicer with population size 250 and 50 Here we observe that the value of the
functions F202 and F207 to F211 does not change after increasing the noumber of of
iterations  For the function F204 and F205 the optimum value becomes better after

increasing the no of iterations

3.5 Results recorded from the Simulated Annealing at

different iterations

Table 3.5 (a) Optimum values of the functions recoeded by Simulated Annealing for
100,200, 300, 400 iterations

Fn. | PS Simulated Annealing

100 200 300 400
F201 | 250 | 1 81917980e+000 1 61464035e+000 1 46444345e+000 1 5802064 1e+000
F201 | 50 1 92632236e+000 1 73063007¢+000 1 8§1089478e+000 1 78608337e+000
F202 | 250 | -1 87444747e+000 | -1 87447416e+000 -1 87448306e+000 -1 87448261e+000
F202 | 50 -1 87444232e+000 | -1 87448303e+000 | 87447822e+000 -1 87448267¢+000
F203 | 250 ) 8 61537441e-00) 8 65958803e-00) 8 63451906e-00) 8 50372161e-00)
F203 | 50 | 8 95986856e-001 8 94752643e-001 8 89621549e-001 8 74339236e-001
F204 | 250 [ -2 85652199e+002 | -4.37041243e+000 -2 85692285e+002 -2 85704455e+002
F204 | 50 | -2.85532368e+002 | -3 65608480e+000 | -2 85714326e+002 -2 85715673e+002
F205 | 250 [ -3 49271313e+000 | -5 08550404e+000 -4 72397803e+000 -5 21478553e+000
F205 | 50 | -291218118e+000 | -3 53617037e+000 -3 92858947e+000 -3 53587268e+000
F206 | 250 | 1 85613381e+000 [ 2 82549476e+000 2 22263080e+000 1 95934483e+000
F206 | 50 197094781e+000 | 2 00803 188e+000 2 58232390e+000 2 52601872e+000
F207 | 250 | -2 29402328e+001 | -1 91155605¢+000 | -2.29402343e+001 -2.29402343e+001
F207 | 50 [ -229402293e+001 | -1 91155605¢+000 -2 29402340e+001 -2.29402343e+001
F208 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 | 250 | -1.91155605e+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F209 | 50 | -1.91155605e+000 | -1.91155605e+000 -1.91155605¢+000 -1.91155605e+000
F210 | 250 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 [ 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 | 250 | 4 67427986¢-014 4 5619593%¢-014 4 55780188e-014 4 5463853 1e-014
F211 | 50 | 4 98950694e-014 4 55131865¢-014 4 54490951e-014 4 55797674e-014
Legends: Fn  Name of the function, PS Population Size
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Note : All eleven newly developed test functions F201 to F211 are given in chapter 2, section
23,pp 20

In the Table 3 5 (a), The optimum value of the eleven test functions have been obtained
by Simulated Annealing with two set of population size 250 and 50 at the iterations
100, 200, 300 and 400 The values i1n bold face are the best value obtained by the
optimizer with that population size From the above table 1t 1s observed that Simulated
Annealing has the better value when the number of iterations 1s increased For the
functions F201, F204, F206 and F207 at 300, 200, 100, and 400 respectively For
functions F208, F209, F210 the value does not change after inceasing the number of

iterations

Table 3.5 (b) Optimum values of the functions recoeded by Simulated Annealing for
500,600, 700, 1000 terations

Fn. | PS Simulated Annealing
500 600 700 1000

F201 | 250 } 1 56508886e+000 1 57200882¢+000 1 47555787e+000 1 58126903e+000
F201 | 50 1 49024764e+000 1 75287432e+000 1.22544459e+000 1 65575530e+000
F202 | 250 | -] 87448327e+000 | -1 87448213e+000 -1.87448376e+000 -1 87448315e+000
F202 | 50 | -1 87448358e+000 | -1 87448312e+000 -1 8§7448060e+000 -1 87448302¢+000
F203 | 250 | 8 65044900e-001 8 44390852¢-001 8 42556562¢-001 8 57859313e-001
F203 | 50 [ 8 68019910e-001 8.43758534¢e-001 8 73755869¢e-001 8 56095865e-001
F204 | 250 | -2 85708492e+002 | -2 85712654e+002 -2 85716289%¢+002 -2 85715991e+002
F204 | 50 [ -2 85715829e+002 | -2 85714278e+002 -2 85712261e+002 -2 85716298e+002
F205 | 250 { -4 12041154e+000 | 4 4616051 1e+000 -6.99341415e-+000 -5 43144237e+000
F205 | 50 | -547514353e+000 | -4 23264582e+000 -4 01198447e+000 -4 78963915e+000
F206 | 250 | 2 16131524e+000 | 2 07405467e+000 1 91837266e+000 1.45370698e+000
F206 | 50 | 233218290e+000 | 2 18072424e+000 2 24050880e+000 2 24941174e+000
F207 | 250 | -2.29402343e+001 | -2.29402343e+001 -2.29402343e+001 -2.29402343e+001
F207 [ 50 | -2.29402343e+001 [ -2.29402343e+001 -2.29402343e+001 -2.29402343e+001
F208 | 250 [ 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F208 | 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F209 ] 250 ) -1.91155605e¢+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F209 | 50 | -1,91155605e+000 | -1.91155605e+000 -1.91155605e+000 -1.91155605e+000
F210 | 250 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F210 | 50 | 0.00000000e+000 | 0.00000000e+000 0.00000000e+000 0.00000000e+000
F211 | 250 | 4 54609034e-014 4 54615076e-014 4 54472559¢-014 4.54419629¢-014
F211 | 50 | 4 54520209¢-014 4 54621191e-014 4 54421855e-014 4 54594475¢-014

Legends: Fn Name of the function, PS Population Size
Note : All eleven newly developed test functions F201 to F211 are given 1n chapter 2 , section

23,pp 20

In the Table 3 5 (b), The optimum value of the eleven test functions have been obtained
by the optimizer viz Simulated Annealing with two set of population size 250 and 50 at
the iterations 500, 600, 700 and 1000 The values in bold face are the best value
obtained by the optimizer with that population size In the above table we also observed

that Simulated Anneahing has given the best value for F201 at 700 iteration, F202 at
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700 1terations, F203 at 600 iterations F205 at 500 iterations, and F206 at 1000
iterations The values remains unchanged for F207, F208, F209, F210 The minimum

value s found at 1000 iterations for the function F21]

3.6 Analysis of results recorded in the above tables

In section 3 1 2, two experiments are conducted for empirical study of Evolutionary
Algorithms In the first experiment, the optimizers were set to run for 100 iterations
with two set of population size 250 and 50 respectively for all the eleven test function
(discussed 1n chapter 2) so that the results could record large population size and small
population size The optimum point and optimum values obtained by Differential
Evolution and Genetic Algonthms are recorded in Table 3.1 (a) and Particle Swarm
Optimization and Simulated Annealing are recorded in Table 3.1 (b) respectively.
From the recorded result 1t 1s found that Simulated Annealing has outperformed for
F201 with the population size 250, whereas and Particle Swarm Optirmization has
outperformed all other optimizers for population size 50 Simulated Annealing has
outperformed all the optimizers with both set of population size for F202 and F203
Particle Swarm Optimization outperformed all other optimizers with both set of
population size 250 and 50 for function F204, F205, F206 and F207 The optimum
value found for functions F208 and F209 by all optimizers considered for study finds
the value 0 and -1 91155605¢+000 respectively and it remains same with the change of
population size For F210, Differential Evolution, Particle Swarm Opumization and
Simulated Annealing have given the optimum value zero whereas Genetic Algorithm
could not find the optimum value and an overflow caption were shown by the program
Simulated Annealing outperforms the other algonthms for function F211 Hence we
conclude that no optimizer outperforms others on all type of optimization problems In
fact, any evolutionary algorithm is only surtable for a class of test problems with a
specific feature This validates the “No Free Lunch Theorem” of Wolpert and

Macready (1997) and Ho and Pepyne (2002)

(a) Analysis based on the results recorded from Differential Evolution:

In section 32 from the Table 32 (a) and 32 (b) 1t is observed that Dhfferential
Evolution found the optimum value as | 91752151e+000 for F201 with population
size 250 after 100 iterations, -186189651e+000 for F202 with the population size 50
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after 700 iterations and 8 88070077e-001 for F203 with the population size 250 after
400 1iterations Similarly, the optimum value found for F204 1s -2 68903963e+002 after
700 1terations with the population size 50 , -2 73461217e+000 for F205 after 500
iterations with the population size 50, 2 45693245e+000 for F206 after 100 iterations
with the population size 250, -2 29402304e+001 for F207 after 600 iterations with the
population size 250 respectively  Again, Differential Evolution have given the
opttmum value as 00000000e+000, -!91155605e+000 and 0 00000000e+000
respectively for F208, F209 and F210 and the result do not change if the population
size or the number of iteratnons are increased In case of F211 the optimum value
obtamed 1s 4 98977918e-014 after 1000 iterations with the population size 250 and
produces same result after 100, 200 and 400 iterations with the population size 50
Hence with this analysis 1t can be concluded that the performance of the Differential
Evolution does not depend on either on number of iterations or population size This
vahdates the “No Free LLunch Theorem” of Wolpert and Macready (1997) and Ho and
Pepyne (2002)

(b) In Analysis based on the results recorded from Genetic Algorithm:

In section 3 3 from the Table 3 3 (a) and 3 3 (b) 1t 1s observed that Genetic Algornthm
found the optimum value as 190541800e+000 for F201 with population size 250 after
600 iterations, -1 86183452e+000 for F202 with the population size 50 after 400
iterations and 9 07322728e-00! for F203 with the population size 250 after SO0
iterations  Simularly, the optimum value found for F204 1s -2 68892538e+002 after
500 iterations with the population size 50 , -2 45752169e+000 for F205 after 400
iterations with the population size 250, 3 78401822e+000 for F206 after 500 nerations
with the population size 250, -2 29400122e+001for F207 after 600 iterations with the
population size 50 respectively Again, Genetic Algorithm have given the optimum
value as 00000000e+000 and 0 00000000e+000 respectively for F208 and F209
respectively The Optumizer did not converge for F210 at any number of iterations In
case of F211 the opumum value obtamed 1s 4 90737275e-014 after 400 iterations
with the population size 50 Hence with this analysis it can be concluded that the
performance of the Genetic Algorithm does not depend on either on number of
iterations or population size but whenever it has converge 1t has given the better result
than Differential Evolution This validates the “No Free Lunch Theorem” of Wolpert
and Macready (1997) and Ho and Pepyne (2002)
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(c) In Analysis based on the results recorded from Particle Swarm Optimization:

Based on the resuits recorded in Table 34 (a) and 3 4 (b), 1t 1s observed that Particle
Swarm Opumization found the opumum value as 9 42486768e-001for F201 with
population size 50 after 100 sterations , -186189758e+000 for F202 with the
population size 250 after 100 iterations and value remains same even 1f the number of
iterations increased and 8 62815019e-001for F203 with the population size 250 after
400 rterations Sumularly, the optimum value found for F204 1s -2 68906986e+002 and
the value does not change even 1f we increase the number of iterations,
-4 1884451 1e+000 for F205 after 700 iterations with the population size 250,
1 58416460e+000 for F206 after 100 nerations with the population size 50,
-229402343e+001 for F207 after 100 iterations with the population size 250
respectively Again, Particle Swarm Optimization have given the optimum value as
0 0000000e+000, -1 91155605e+000 .0 00000000e+000 and 4 98949084e-14
respectively for F208, F209 ,F210and Fll and the result do not change if the
population size or the number of iterations are increased Hence with this analysis 1t
can be concluded that the performance of the Particle Swarm Optimization does not
depend on either on number of iterations or population size It 1s also observed that the
Particie Swarm has a better converges abihty but it 1s slow This validates the “No Free
Lunch Theorem” of Wolpert and Macready (1997) and Ho and Pepyne (2002)

(d) In Analysis based on the results recorded from Simulated Annealing:

Based on the results recorded 1n Table 3 5 (a) and 3 5 (b), 1t 1s observed that Simulated
Annealing found the optimum value as 1 2254459e+000 for F201 with population
size 50 after 700 iterations , -1 87448376e+000 for F202 with the population size 250
after 700 iterations and value remaimns same even 1f the number of iterations
increasedand 8 43758534e-001for F203 with the population size 50 after 600
iterations  Similarly, the opumum value found for F204 15 -4 37041243e+000 after 200
tterations with 250 population size, -6 99341415e+000 for F205 after 700 iterations
with the population size 250, 145370698e+000 for F206 after 100 1terations with the
population size 50 respectively The optimum value obtained for F207 s
-229402343e+001 after 300 iterations with the population size 250 and the value
remains unchanged even 1if the number iterations are increased Again, Simulated

Annealing have given the optimum value as 0 0000000e+000, -1 91155605¢+000 and

50



Chapter 3

0 00000000e+000 respectively for F208, F209 and F210 and the result do not change
if the population size or the number of iterations are increased In case of F211 the
optimum value obtained 1s 4 54419629¢-014 after 1000 iterations with the population
size 50. Hence with this analysis it can be concluded that the performance of the
Simulated Annealing does not depend on either on number of 1terations or population
size This vahdates the “No Free Lunch Theorem” of Wolpert and Macready (1997)
and Ho and Pepyne (2002)

3.7 Summary

In this chapter the optimum values of the eleven test functions developed in (chapter 2,
section 2 1 1, 201-211) have been recorded by the optimizers such as Differential
Evolution, Genetic algorithms, Particle Swarm Optinization and Simulated Annealing
In Table 3 1 (a) and Table 3 1 (b) the optimum value and optimum point obtained by
Differential Evolution, Genetic Algorithms and Particle Swarm Optimization and
Simulated Annealing have been recorded with two set of population size 250 and 50
The algorithm were run for 100 iterations In Table 32 (a) and Table 3 2 (b) the
optimum value obtained by Differential Evolution for 100,200,300, 400 and 500, 600,
700 and 1000 iterations respectively have been recorded respectively In Table 3 3 (a)
and Table 33 (b) the optimum value obtained by Geneuc Algonithms for
100,200,300,400 and 500, 600, 700 and 1000 iterations respectively have been recodrd
In Table 34 (a) and Table 34 (b) the optimum value obtained by Particle Swarm
Opumization for 100, 200, 300, 400 and 500, 600, 700 and 1000 sterations have been
recordr respectively In Table 3 5 (a) and Table 3 5 (b) the optimum value obtaned by
Simulated Annealing for 100, 200, 300, 400 and 500, 600, 700 and 1000 iterations have
been recorded respectively and all the resyits are analysed
The results obtained 1n Table 31 (a) & (b), 32 (a) & (b),33 (a) & (b), 34 (a) & (b)
and 35 (a) & (b) are re-experimented on the eleven test functions on vector —Genetic
Algorithms and some advanced evolutionary algorithms It 1s found that the resuits
have been almost same except the 201, 205 and 206 in which with the readjustment of
crossover and mutation operator 1t has given better result These algonthms are the

state-of the art algonthm

% % ok k % k

51



CHAPTER 4

Comparative Study of Evolutionary
Algorithms with Benchmark Test
Functions

4.1 Comparative study of modified Differential
Evolution and Genetic Algorithm

Several vanations of meta-heuristics have been developed recently and each of them
claims to outperform others Also these algonthms lakes convergence criteria or they
have no convergence proof but claims to outperforms others, there 1s a need of rigorous
comparative study of all the algorithms together or pair wise with a sufficiently large
number of test functions Brest et al (2006) did the comparative study of control
parameter in differential evolution on numerical benchmark problems In this study we
have done comparative study of modified differential evolution and genetic algorithm
Each of these methods has its origin in Von Neumann’s Monte Carlo experiments
These methods have been tested with certain benchmark test problems and some new
test functions introduced Researchers who worked on the comparative study of
evolutionary algorithms are Colville (1986), Vesterstorm and Thomsen (2004), Voigt
(1992), Whitley et al (1996) and Yao et al (1999)

4.1.1 Methods used

Genetic Algorithm: The algorithm 15 explaned in chapter 1, section |1 4 | (a) page 9
Modified Differential Evolution The algorithm 1s explained in chapter 1, section
141 (d)page 11-12
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4.1.2 Benchmark test functions used for the experiments

The following ten benchmark test functions i.e. Egg holder function, Corana function,
Freudenstein Roth function, Leon function, Perm function #1, Trid function, Hougen
Function, Weierstrass function, Needle-eye function, Shekel Function are used for our

investigation.

4.1.3 Experiment on Genetic Algorithms and Modified

Differential Evolution.

Genetic algorithms: We have used and input file to pass the different parameters i.e.
npopsiz=5, pcross=.9d0, npsibli= (2*" n= powers of 2) pmutate=0.02d0 and
maxgen=200. Another params.f was included in the main program having three
parameters population size=200, nchrommax=60 and nparamax=10. Other two

parameters are adjustable according to the dimensions of the function used.

Modified Differential Evolution: In Differential Evoulution (DE) exponential
crossover is being used, parameter definition (ncross = 1). Other parameters such as
Max. number of iterations Iter =10000, population size = 10 times the dimension of the
function or 100 whichever maximum; crossover probability (pcross = 0.9), The scaling
factor is being made random by the formula Fact = 0.5*(1+rand). So, as the rand

(random number changes) the value of F also changes. Random no. seed four digit

number between -10000 to 10000; accuracy need: eps = 1.0e’®®. If x in f(x) violates the ]

boundary then it is penalized to bring forcibly within specified limits through replacing

it by a random number lying in the given hmits of the function tested.

4.1.4 Experimental results and analysis

Table 4.1 Comparative study of Genetic Algorithm (GA) and Modifiend Diff.

Evolution (MDE)

) i Results of some benchmark test problems ; J
Sn | Functions | Dim ! GA ~  MDE T. Value |
()| Eggholder function [21] | _ 2 0.00000 0000000 __: 0000000 |

2 } Corana function f m4ﬂ”-(_)~909_09 o 0.000000 s -(_);QQOOOO ;
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i

Legend: Sn: Serial No., Dim: Dimension of the function

Note: All the benchmark test function used for the study are given in APPENDIX A.

Ten benchmark functions are taken to compare the performance of Genetic Algorithms
and Modified Differential Evolution. The performance of the algorithms shown in
Table 4.1. The Dimension of each test functions are given in column two of the table.
In the third and fourth column the results obtained by the algorithms are given. The
results in bold face shows the values are very close to True value and also shows the
better performance. It is observed that for Hougen Function Genetic Algorithms could

not find the optimum value which has been shown by *** in the table.

4.1.5 Summary of Section 4.1

It is clear from the above Table 4.1 that both the outperform for all the functions. For
function land 2 both GA and MDE are able to find the optimum value for both the
function 1 and 2. But for freudenstein Roth function GA 1s able to find the optimum
value and MDE fails. For Leon and perm function GA is not able to reach the global
optimum but MDE reaches to optimum. For Trid function both method fails. For
Hougen function GA overflows and MDE fails to reach the optimum. In case of
Weierstrass and Shekel function both methods finds the optimum value but in case of
Niddle-eye function GA 1s able to reach the optimum value whereas MDE fails.This
work is published by Singh et. al. (2009).

4.2. A comparative study of Swarm Intelligence
Optimization and Evolutionary Optimization

Recently many algorithms have been developed which mimics the natural procedure

better known as Evolutionary Algonthm and claims to perform better than others. The
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3.__|_Freudenstern Roth ]2 1000000 1000000  _: 0000000
4 | Leon function } 30 ; -0.011039 0.000000 0 000000 |
5 | Perm Function a1 100000 0.000000 0 000000 N
6 | Tnd Function _} 6 ' 0.00000 _ 0.000000 , -50 00000 |
7 | Hougen Functon _ ;o3 ¥s_ 0000CCO ; _-18013 i
8 | Weierstrass Fun {30 ,_0.00000  0.000000 . 0 00000 |
9 | Niddle-eye Function | 30 | -100000 0 000000 ; -1 |
10 | Shekel Funcuon | _ 4} 000000 __ 0000000 _ __ 000000 ]
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objective of this paper 1s to test the performance of Genetic algonithm and Particle
Swarm (PS) method on some benchmark functions Since Genetic Algonthm (GA)
mimics the nature and Particle Swarm (PS) exploits the swarm intelligence, 1t will be
interesting to see the performance of these two methods on the certain test functions A
bref 1dea of these functions are given in this section are as follows These functions are
also represented by graph to facilitate conceptualization of the nature of these functions

by visual means

4.2.1 Introduction

Optimization 1s central to any problem involving decision making, whether in
Mathematics, Engineering or in Economics The area of optimization has received
enormous attentton 1n recent years primarily because of the rapid progress in computer
technology, tncluding the development and availability of user-friendly software, high
speed and parallel processors The optimization toolbox of MATLAB and other

commercial software has given a new dimension to 1t

4,2.2 Method and Algorithms used

Algonthms used for the comparative study are Genetic Algorithm and Particle
Swarm Optimization For all algorithms the dimensions were set manually based on

the function used in the experiments

4.2.3 Test functions used

The objective of this paper 1s to present a comparative study of the performance of the
Genetic algonthm and particle swarm method on the functions such as  Weierstrass
function, Zettle function, Zero Sum Function, Dixon & Price function,
Tnd function, 6 Levy function No 3, Beale function, Booth Function, Easom function,
Himmelblau function These functions are difficult in nature and these functions are

presented 1n details in APPENDIX A with graphical presentation
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4.2.4 Experiment on Genetic Algorithm and Particle

Swarm

Genetic algorithms We have used and input file to pass the different parameters 1 e
npopsiz=5, pcross= 9d0, npsibll= @* N= powers of 2) pmutate=002d0 and
maxgen=200 Another subroutine params f was included in the main program having
three parameters population size=200, nchrommax=60 and nparamax=10 Other two

parameters are adjustable according to the dimensions of the thest function

Particle Swarm setting Particle Swarm have several parameters, population size=40,
In most of the cases n=30 works fine Its value can be increased up to 50 to 100 A
randomly chosen neighbors =15 The maximum no of decision variables =100, Number

of iteration was set 1000

4.2.5 Experimental Results and Analysis
Table4.2  Comparauve study of Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO)
SN Functions Dim GA PSO True Value
1 | Weierstrass function 2 0.000000 0 029900 0 7513280664284E-08
2 | Zettle funcuon 5 0.000000 0 00379 0 3791236557044E-02
3 | Zero-sum Function #7 2 0 000000 -1.00000 -1 00000
4 | Dixon & Price function 5 0 600000 0.000000 0 7368500368739E-08
5 | Tnd function 5 -2 000003 -30 -29 999999530
6 | Levy funchonNo 3 2 1715224 -176. 54179 -176 5417931343
7 | Beale function 2 545315 0.000000 0 1080137747535E-09
8 | Booth Function 2 20 99958 0.000000 0 4368455356320E-09
9 | Easom function 2 1.000000 1.0000000 0953971959226
10 | Himmelblau function 2 0.0000000 0.000000 0 14768851 18888E-08

Legend: Dim Dimension

Note: All the benchmark test function used for the study are given in APPENDIX A

Ten benchmark test functions are considered for the study of Genetic Algorithm and
Particle Swarm Optimization The results obtaned in the Table 4 2 shows that the
genetic Algorithm has performed better than Particle swarm optimization on function 1
and 2, whereas for function 3-8 Particle Swarm has given the result close to true value
For function 9 and 10 both the algorithm has given the results close to true value In the

Table 4 2 (the results shown 1n bold face 1s close to true value)
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4.2.6 Summary of Section 4.2

Our program of Genetic algonthm has given a good result for the functions like
Weierastrass function, Zettle function and Easom function but fails for other functions
considered for expeniments where the Particle Swarm (PS) have failed in these
functions except the Easom function and Himmelblau function where both finds out the
solution

Whereas Particle Swarm (PS) has performed better for Dixon Price function,
Tng function, Levy #3 function, Zero sum function 7, Levy function 3, Bealy function,
Booth function then Genetic Algorithm (GA) The resuits showen 1n the above table by
bold where the methods has outperformed the other This shows that no algorithm 1s
able to absolutely outperform the other This 1s a published work by Singh and Borah
(2009)

4.3 Study of population based Meta-heuristics

Several vanations of meta-heunistics have been developed recently and each of them
claims to outperform others Through this paper we have done the comparative study of
three methods, each of them has 1ts origin m Von Neumann's Monte Carlo
experiments We have tested these methods with certain benchmark test problems and

some new test functions introduced by us first time

4.3.1 Methods used

Algorithms used for the comparative study were Genetic Algorithm, Particle swarm
Optimization and Modified Simulated Annealing. For all algorithms the dimensions

were set manually, based on the functions used i the experiments

4.3.2 Benchmark test functions used

We have used following bench mark test functions for comparative study The
functions are Ackley function, Easom function, Gnewank function, Beale function,

Booth Function, Matyas function, Wezerstrass function Michalewich function, ,Simple

57



Chapter 4

Quad Function and Hump function The detail explanation of these function are given

in APPENDIX A with graphical representation

4.3.3 Experiment setup

Genetic algorithms We have used input file to pass the different parameters 1€
npopsiz=5, pcross= 9d0, npsibll= (2*" n= powers of 2) pmutate=002d0 and
maxgen=200 Another subroutine to pass the parameter, params f was included in the
main program having three parameters population size=200, nchrommax=60 and
nparamax=10 Other two parameters are adjustable according to the dimensions of the

problems

Particle Swarm Optimization Particle Swarm Optimization have several parameters
population size=40, in most of the cases n=30 works fine Its value can be increased up
to 50 to 100 A randomly chosen neighbors =31 The maximum no of decision

variables maxX=100, noofsteps=3, Number of iteration was set 1000

Here the algonthm allows each swarm 1s allowed to search one step left and right, up

and down

Modified Simulated Annealing The parameter T 1s very crucial in using the SA
Other parameters N 1s the dimension of the function can be changed from the parameter
statement N=? VM step length T 1s imposed upon the system with the RT variable by
T (I+1) = RT*T (1) The RT value was set | S

In a tradiional SA for different random seed, results were different So, we modified
the program to save the optimum value in a particular iteration by setting the extra
variable ffopt, and indexopt to get the particular iteration which gave the value of ffopt

We got these value printed This we called 1t as Modified SA
4.3.4  Experimental Results and Analysis

Table 4.3 Comparative study of Genetic Algonithm (GA), Particle Swarm
Optimization (PSO) and Simulated Annealing (SA)

Results of some benchmark test problems

SN | Functions Dim | GA PSO SA T. Value
| Ackley Fun 5 0.00000 0.000000 0.189945E-07 0
2 Easom Fun 2 -1.00001 -1.00000 -0.953971 -1
3 Griewank Fun 5 0.00000 0.000000 0.0172410 0
4 Beale Fun 5 545315 0.00000 0.1080137E-09 0
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5 Weierstrass Fun 5 0.00000 0 02990 0.7513280E-08 0

6 Booth fun 2 -20 999 0.00000 0.4368455E-09 0 000000
7 Michalewich Fun 2 Kok okok X -1.80130 -1.80130 -1 8013

8 Simple Quad Fun 2 -3846 15 -3872.7 -3873.7 3873

9 Hump Fun 2 -1.00000 -1 03162 -103162 -1

10| Matya fun 2 0 00000 0 00000 04148318E-09 0 00000

Legend: Dim Dimension of the function, T Value True value

Note: All the benchmark test function used for the study are given in APPENDIX A

The performance of Genetic Algonthm , Particle Swarm Optimization and Simulated
Annealing have been shown 1n Table 4 3 based selected ten benchmark test functions

It 1s clear that for function 1,2,3 the genetic Algonthm, Particle swarm optimization
and Simulated Annealing have given the value close to true value for the functions 1, 2
and 3 respectively Whereas for function 4 Particle Swarm and Simulated Annealing
has given the result close to true value For function 5 Genetic Algorithm and
Simulated Annealing has given the results close to true value For the functions 6-8
PSO and SA has performed better than GA where as GA has performed better for
Hump function than PSO and SA For Matya Function ail the three algorithms have
given the value close to true value In the table (the results shown in bold face 1s close

to true value)
4.3.5 Summary of Section 4.3

It 1s noted that non of the methods are able to outperform for all the functions In
functions 1-3, 10 three methods give the same results Whereas for function 4 GA fails,
5-RPS fails, 6-GA fals, 7-GA overflows, 8, 10-Modified RPS & Modified SA
outperforms GA, 9 This vahdates the No Free Lunch Theorem (NFLT) This 1s a
published work by Singh and Borah (2009)

44 A comparative study of Particle Swarm
Optimization and Simulated Annealing

The objective of this paper 1s to test the performance of Particle Swarm and Simulated
Annealing on some test functions Since Particle Swarm Optimizations mimics the
nature and SA (Symulated Annealing) follows the physical criteria, it will be interesting
to see the performance of these two methods on the certain benchmark test functions

A brief 1dea of these functions are given in this section as follows These functions are
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also represented by graph to facilitate conceptuahzation of the nature of these functions

by visual means

4.4.1 Introduction

Opumization 1s central to any problem mvolving decision making, whether in
Mathematics, Engineering or in Economics The area of optimization has received
enormous attention sn recent years, primarily because of the rapid progress in computer
technology, including the development and availability of user-friendly software, high
speed and parallel processors The optimization toolbox of MATLAB and many other

commercial software like this has given a new dimension to it

Extending the class of functions to include mulumodal functions makes the global
optimization problem unsolvable in general In order to be solvable some smoothness

condition on the function 1n addition to continuity must be known
4.4.2 Methods used

Algorithms used for the comparative study were Particle swarm Optimization and
Simulated Annealing. For all algorithms the dimensions were set manually, based on

the functions used 1n the expertments

4.4.3 Test functions used

Functions such as Schaffer Function, Perm Function#l, Power-Sum Function,
Weiestrass Function, Zero-Sum Function (N#7), Judge Function are used for
comparative study and the detail explanation of these functions are given in

APPENDIX A with the graphical presentation

4.4.4 Experiments

(b) Particle Swarm Optimization: Particle Swarm Optimization has several

parameters population size 40, 1n most of the cases 30 works fine Its value can be
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increased up to 50 to 100 Randomly chosen neighbors 15 The maximum no of

deciston vanables 100, The Local search Number of iteration was set 1000

(c) Modified SA The parameter T 1s very crucial in using the SA Other parameters N
1s the dimension of the function can be changed from the parameter statement N=? VM
step length T 1s imposed upon the system with the RT vanable by T (I+1) = RT*T (1)
The RT value was set 1 5

4.4.5 Experimental Results and Analysis

Table 4.4 Comparative study of Particle Swarm Optimization (PSO) and Simulated
Annealing(SA)

Results comparing Particle swarm optimization and Stmulated Annealing
Test functions where PSO performs better than SA

Name of Functions PSO SA True Value
Schaffer function 0 9 72E-03 0
Perm function#| 0 16 0

Power Sum functiond 0 100 0

Test function where SA performed better PSO
Weiestrass function 00299 7 S1E-09 0
Zero Sum function#7 ] 0 0
Judge function 20 4050117 16 08173069 16 08173069

Legend: Dim Dimension of the tunction, T Value True value

Note: All the benchmark test function used for the study are given in APPENDIX A

From the Table 4 4 below we can conclude that for Schaffer function, Perm function
and Power Sum Functions Particle Swarm Optimization has performed better than
Simulated Annealing and given the results close to true Value whereas for Welestrass
function, Zero Sum and Judge function Simuiated Annealing has given the value close

to true value
4.4.6 Summary of Section 4.4

Our program of Repulsive Particle Swarm has given a good result for the functions
like Schater function, Perm funcuon#l, Power-Sum Function 4 where Simulated

Annealing have failed in these functions

Whereas Simulated Annealing has performed better for Weiestrass function,
Zero-Sum function and Judge Function then Repulsive Particle Swarm This 1s a
published work by Singh and Borah (2009)
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CHAPTER 5

Concluding Discussion

5.1 Discussion and conclusion for empirical study
on evolutionary algorithms using new test
functions

| In this thesis eleven test new functions were proposed for the empirical study of
evolutionary algonthms The graphical representations of these test functions gave a
shape of the test functions The features of the all the eleven test functions have been
spell out These eleven test functions have been generahzed up to n vanable, which can
be used as a higher dimension, by simply putting the value of n 1e n=500 in the
optimizer The difficulty of these test functions can be controlled by the appropriate
choice of some parameters These functions have been coded in MATLAB to find the

optimum value of the functions using the different global optimizer

2 Two expenments have been performed Based on first experiment, the results
recorded 1n Table 3 1 (a) and (b) 1t 15 found that Particle Swarm Optimization has
performed better on F204 to F210 where as on for F201, F202, F208, F209 and F210
Simulated Annealing has found the best optimum value Genetic Algorithm and
Differential Evolution have not performed better except the function F208 and F209
The Genetic Algonthm did not converge at all on F210  In the second experiment,
results recorded 1n Table 32 (a) & (b) and 3 3 (a) & (b) , Differential Evolution and
Genetic Algorithm converges to opumum when the number of iterations have been
increased But, from the Table 3 4 (a) & (b) and 3 5 (a) & (b) the results do not improve
when the number of iterations are increased Hence this result validates the “No free

lunch theorem empirically , though 1t has been proved theoretically also

3 Depending on the classes of test functions there are corresponding evolutionary
algonthms classes Finding a suitable corresponding evolutionary algorithm for a
specific class of application 1s difficult in general However, in this research by

analyzing the features of new and benchmark test functions used in this study 1t 15



Chapter 5

found a hint that the Differential Evolution and Genetic Algorithm performs better on
numerical class of optimization problem when the number of iterations are increased
whereas the results does not improve when the number of iterations are increased in
Particle Swarm Optimization and Simulated Anneahng Hence 1t 1s concluded that
Particle Swarm optimization and Simulated Annealing perform better than Genetic

Algorithm and Differential Evolution on class of multi-modal function

5.2 Comparative study (Analysis and conclusion)

The Chapter 4 contains the reprint of the publhished paper Here we have studied the
comparative performance of the four optimizers using the benchmark test function
which are non-convex, non differentiable, noisy and deceptive 1n nature

In the first of the comparative performance of modified Differential Evolution and
Genetic Algorithm on some non linear, non-convex and noisy test function have been
studied In 415 the result clearly shows that none of the algorithm s able to
outperform on all the test function considered for studies and hence validating the “No

Free Lunch Theorem” by wolpert and Macready (1997) and Ho and Pepyne (2002)

In the second publication 1s on the comparative study of Swarm Intelhigence and
Evolutionary Opumization method where the comparative performance of Particle
Swarm Optuimization and Genetic Algorithm on some noisy numerical benchmark test
problems have been studied and reflected 1n conclusion 4 26 pp 49 that none of the
algorithm could outperform all the test functions mto consideration and validates the
“No Free Lunch Theorem” by wolpert and Macready (1997) and Ho and Pepyne
(2002)

Third paper studies the performance of population based meta-heunistics on some non-
convex noisy deceptive benchmark test functions Here Genetic Algonthm, Particle
Swarm Optimization and Modified Simulated Annealing on the set of test function
have been studied In 435 pp 51 vahdates the “No Free Lunch Theorem” by wolpert
and Macready (1997) and Ho and Pepyne (2002)

In the forth pubhcation the comparative study was done on Repulsive particle Swarm

Optimization and Simulated Annealing on some numerical Benchmark test functions
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In 446 pp 54 validates the “No Free Lunch Theorem™ by wolpert and Macready
(1997) and Ho and Pepyne (2002)

5.3 Future direction of research

Since the meta heuristics techmques 15 growing fast and  third generation
Evolunonary Computings like Artificial Immune Systems by Farmer et al (1986),
Cultural Algonthms by Reynolds (1994), DNA Computing, similar to parallel
computing which takes advantages of many different molecules of DNA to try many
different possibilities at once, developed by Adleman (1994), Estimation of
Distribution  Algorithms some times called Probabilistic Model-Building Genetic
Algonthm by Larrafiga and Lozano (2002) are being extensively used for complex
computations and NP-hard problems Artificial Immune systems have been used in
robotics computation, analysis of adaptive control and optimization Adleman (1994)
solved Hamltonian path problems using DNA computing Estimation of distribution
algorithm has been used extensively in finding the proten structure predictions and
genomics etc Again these algonthms do not have strong convergence conditions and
theoretical background So, there will be a need to develop the test problem and study
these forth generation Evolutionary computing empirically  Another direction of
research could be the development of test problem and study the characterizes of the
test cases Another direction will be to use these test cases to study the performance of

these forth generation Evolutionary Computings

KKk
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Appendix A

Benchmark test functions for unconstrained global
optimization

Testing any global optimization algonthm depends on the benchmark test problems
taken 1nto consideration Testing the algorithms with test function with mild difficulty
may not validate the algorithm So, it 1s important to consider the wide vanety of test
functions with the degree of difficulties In the field of global optimization there exist a
set of test functions with a limited dimension and muld difficulties Therefore testing
any Global Optimization (GO) with that algornithm 1s not appropriate way to validate
the algonthm We have collected the large class of test function to vahdate the Global
optimization The test functions have been defined with the magmitude of difficulties

The difficulties of Global Optimization problem depends on many factors Among the
most relevant ones 1s the size of basin of attraction of the Global Optimizer, the shape
of the function around the global optimizer, the classical example of the being the
Rosenbrock function where the minimum point 1s inside a long narrow and a parabolic-
shaped flat valley, which makes convergence difficult, dimension and high
multimodality

This appendix 1s a collection of test functions used to test the performance of the
algorithms used for comparative study The bench mark test functions are deceptive 1n
nature, non-convex noisy In most of the cases of these test problems, traditional
method 1s not able to find the optimum value, whereas these algorithms are able to find
the optimum values So, the comparative studies have investigated which algorithm
performs better on these test sutts The five test functions constructed by De-Jong
(1975) popularly known as De-Jong’s five test suit, four are um-model containing only
one optimum point, where are other test functions are multimodal contaimng multi
optimum point Sphere function smooth, um-model, strongly convex, symmetric, but
only one optimum point Rosenbrock 1s considered to be difficult, because 1t has a very
narrow ridge The tip of the ridge 1s very sharp, and it runs around a parabola
Algonthms that are not able to discover good directions underperform n this problem
Step function 1s the representative of the problem of flat surfaces Step function 1s
precewise continuous step function Flat surfaces are obstacles for optimization
algorithms, because they do not give any information as to which direction 1s favorable
Unless an algorithm has variable step sizes, 1t can get stuck on one of the flat plateaus
The background 1dea of the step function 1s to make the search more difficult by
introducing small plateaus to the topology of an underlying continuous function

Quartic function 1s a simple uni-modal function padded with noise The Gaussian noise
makes sure that the algorithm never gets the same value on the same point Algorithms
that do not do well on this test function will do poorly on noisy data Foxholes function
1s an example of a function with many local optima Many standard optimization
algorithms get stuck in the first peak 1s find The Schwefel, Rastrigin, Gnewangk
functions are typical examples of non-hnear multimodal functions Rastrigin’s function
1s a fairly difficult problem for genetic algonthms due to the large search space and
large number of local mimma Rastrigin has a complexity of o(nlin(n)), where n s the

number of the function parameters This function contains millions of local optima n
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the interval of consideration Schwefel's function 1s somewhat easier than Rastrigin’s
function, and 1s characterized by a second-best minimum which 1s far away from the
global optimum

The test problems Nagendra (1997) have different complexity and difficulties Some
functions are noisy 1n nature Some are dented non-differentiable and deceptive in
nature The visual presentation of these functions gives the characteristic and some 1dea
about the number of optimum (1e local minima or local maxima) and also the
complexity of the function It can be seen from the graphical presentation that the test
function are highly multi-model The afford was to collect and present the characteristic
of the functions 1n a most exhaustive manner but this may not be the complete list of
test functions Also together with the analysis some new test functions are evolved
which 1s presented 1n chapter 2

More precisely the functions from 1 to 80 are the bench mark test functions adopted
from different web site the reference 1s given below The graphs of these test functions
have been redrawn For each functions four colored dimensional graph e g meshz &
mesh, surf, surfc and surfl of MATLAB have been used The code of the functions 1s
summarized 1n the code and reference chapter The functions from 81 to 90 have been
adopted from http //ssrn com/abstract=926132 and the graph of all those functions has
been redrawn by us Functions from 90 to 182 the functions have been adopted from
the CUTE (CUTE Constraint and Unconstrained Testing Environment Again the
functions from 183 to 199 has been adopted from CUTE but we have kept these
functions as another set for the different nature of the problem The survey of the test
functions are from the following www maths uq edu au /CEToolBox /node3 html#
SECTION 0002130000 0000000000, http //www nethb org/utk /misc/sw_survey/
urc/html/215 1 html and http/ wwwnnethb  Oi1g  /cgibin  /nhse/ nphredirect?
ftp /138 48 4 14 /pub/ reports/cute p2 gz The reference of other test functions could
be traced from (though some of them may not be the onginal source) are
Chattopadhyay (1971), More et al (1981), Jorge et al (1981), Hock and Schittkowski
(1981), Nagendra (1987), Floudas and Pardalos (1987), Floudas et al (1999), Averick
et al (1991), Jansson and Knuppel (1992, 1994), Bongartz et al (1995), Van-Iwaarden
(1996), Baker (1996), Adorio (2005), Mishra (2006) and Andrei (2008)

These benchmark test functions are being redrawn with mesh, meshc, surf and surf] are
created using MALTAB 7 1 version with different angles

@) First set of test functions

1. A typical multi-modal function A multi-modal (non-convex) function (in 2
variables, m=2)1s

f(x)= cos(x,)cos.(xz)exp[—(l/4)\/)c,2 +x,° ] -5<x <5and

1=1,2 It has global mmmmum s )y=-t at ;"= 0) The function 1s graphically

represented below
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S

2. A typical non-linear function: Consider the function in m variables (m>2) that has
the optimal value f(x)=0 in the search domain |x|<10; i=L2....m given as

S =37 cosllx, —x[f]x +x,[I+0m=1) pre function is graphically represented below

s el R T ]

| e S

3. Ackley function: An m— variable ( m>1) function with search domain
[-15<x <30] for (i=1,2,...,m ) given by Ackley (1987)

1 L
L Ll
0.&

05
f(x)=20+exp(l)— 20"‘9{:0-2[(2"2)/’"} }-expi:izoos(hx, )}
i m .

is called the Ackley function. It is a multi-modal function. The global minimum of this
function 1s f(xH)=0 for x" = (0,0,...,0). The function is graphm“y rcprescmed below

i ¥ ¥ :x

v et

4. ANN (Artificial Neural Network’s) XOR function: This function is in nine
variables. It is defined as follows:

f=h+ L+t L+,

_ [ -x X ;
fl —{l*’exp{l*’e(-xl—x:—k) -l+eug-x‘,-ig‘) —x')}]

_ . .. T

where
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1l
|

- "y
| X, X !
3 1+exps— = =
|| ool

- _J—_
x, X | |
=|1—|1+exps— == -
f:z I p{ l+e(—xg-13) ]+e(‘h"k»’ }}

It is a difficult function to minimize. We obtained by PSO f, = 0.95979 for
X=(0.999999, 0.99993 , -0.89414, 0.999994, 0.55932 , 0.99994, -0.99963, -0.08272).
By GA we found the value true 0.00000 and By SA (Simulated Annealing) result came
0.9669081752844. So in this function GA has outperformed PSO and SA.

5. Beale function: A 2—variable (m=2) function with search domain|—4 5 <x <45 (
i=1,2) given as
FO=(0.5=x +xx) +(2.25~x +x,x3)" +(2.625-x, + x,x;)°

is called the Beale function. The graphical representation of the function given below

g o P 1t e mbian

6. Bohachevsky functions: Three 2-variable functions (m =2 ) characterizing f(x’)=0,
x"=(0, 0) in the search domain |-100<«x <100]; i=1, 2 are called Bohachevsky

functions, which are given as
filx)=x1 +2x; —0.3cos(37x,) —0.4cos(4xx,) +0.7
fux) = x7 +2x; —0.3c0s(3xx, )oos(4xx,)+0.3
fi(x) = x +2x2 —0.3cos(3xx, +47x,)+ 0.3

The graphical representation of the function is

A A A <
e e 9 v

7. Bohachevsky 1: This function is defined as
f(x.x)=x'+2x; —0.3cos(37x,)— 0.4 cos(47x,)+0.7 with x,,x, € [-50,50] and the

minimum value of the functionis f (x,,x,)=0.0

The function is graphically represented below

79



Appendix A

5 x .

8. Bird function: This is a bi-modal function with  f(x*)=-106.764537 in the
search domain x, € [-27,27):i=1,2 given by

[(-simtx Y’ |

f(x)=sin(x])é(I-Mx:9rJ+c°s(x:)e _+(xl_x2)2

Tow oot g T T 2 e i

y v v ¥

9. Branin function: A 2-variable function (m=2) characterizing f(x") = 0.397887 , with
three global minima in the search domain |-5< x, <10; 0 < x, <15] is called Bohachevsky

function, which is given as
fix)=(x, =5x; H4x" )+ (5x,/ 1) - 6)° + 10(1 —(8x) " )cos(x,) + 10
The graphical representation of the function is

o

10. Booth Function: A 2— variable ( m=2 ) function with search domain
[-10<x <10]; (i =1,2) given as
f0)=(x,+2x, ~T) +(2x,+ x, =5)°
This function is multimodal with the global minimum fx")=0 at x =, 3). The
function is graphically represented below
A

11. Bukin function: Bukin function is almost fractal (with fine seesaw edges) in the
surroundings of their minimal points. Due to this property, they are extremely difficult
to optimize by any method of global (or local) optimization. The search domain
x, € [-15.-5]. x, € [-3.3] these functions are defined as follows in Bukin (1997).

£ =100x; +0.01)x, +10| and has its minima f,, =(-10,1)=0
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L= loo‘;sz ~0.015| +0.01)x, +10| and has its minima f,;, =(=10.1)=0
Graph for 1* function:

Graph forVZ.'"’“f_l‘mction:

12. Chichinadze function: In the search domain x,,x,e[-30.30] this function is

defined as follows and has f,, (5.90133,0.5) =—43.3159. Refer Chichinadze (1983).

f()=x-12x +11+ 10cos(12’-‘i)+8sin(5xx, )— (%)"5("5‘ sy

A T AU

13. Corana function: With reference to Corana et al. (1987) four variable function is
defined as follows and has f_ (0,0,0,0)=0.

min

4
f(x)=20.15(z, ~0.05sgn(z,))’dif |x, — 2| < 0.05

=0

X
02— +0.4 .
l-(—)zl %“)‘sgn(x,)

4
=Y d x}otherwise d. =1,1000,10,100
i=l

-_ -

¢ ¢ ¢ ¥

z
4
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14. Colyville function: The function is defined as
F(x, X0, x,,x,) =100(x, — X7 ) + (1= x,)" +90(x, —x3)" + (1= x,)" +10.1(x, = 1) + (x, = 1)" +19.8(x, = D)(x, = 1)

with %, %, %, %, € [=10,10] (5. 50,2, 2) =00 0 1y 1 1), (Colville, 1986).
The volume curve of the Colville function which is known as isonormal surface is

15. Deflected Corrugated Spring function: This function defines the deflected
corrugated spring in n dimensions is given by
f=—cos(kR)+0.1R° where R is the radius &

R=\/(xl —¢) +(x,—¢,)’ +.....(x,—c,)’, where ¢ the minimum is point and k
defines the periodicity nature of the corrugations. For the case n=2, ¢;=2, ¢ =5, &

16. Deb’s Deceptive 4-Bit Function: This is a binary problem, usually used in
multiples i.e., a 40-bit version might consist of 10 of these sub problems, either
concatenated or interleaved. The problem can be made harder by using different
weightings for different sub problems. The equation below gives the fitness of a single
block of length 4, as a function of the number of 1’s it contains. The maximum value is
1.0 for (1, 1,1, 1)

_y_ [06—02u(x), u(x)<4
f(x)—{l, u(x) =4
Where U(x) =X{,x;.
3
17. DE Jong’s Function (#1): The function is defined as f, =Y x, . =5.12<x, <5.12

i=1

(i =1,2,3) . It is simple strongly convex function. It is 3-dimensional, continuous, uni-
model, separable and scalable. Its global minimum is £(0,0,0)=0 . Refer De-Jong
and Morrisson (1999)

18. DE-Jong’s Function (#5): It is a 2-dimensional, multi-model, continuous,
separable with local minima (foxholes) {(au,az‘j)}‘;:l and global minima is
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f(—32,-32) = 0.998004 and the function is defined as
f(x)= = : I ,—65.536 < x, <65.536 (i=1.,2).
0.002+Y —5—
J=1 j+Z(xi__aq)6
i=1
-32 -16 O 16 32 -32 -16 ... 16
Here, [a,]= .
132 =32 32 32 -32 —-16 -16 ... 32

19. Dixon & Price function: This function is in m (m>2) variables with search
domain[-j0<x <10]: (i=1,2,..,m) and the minimum s(x")=0. Itis defined by Dixon and

Szego (1975, 1978) as
fx)=(x, -1y +ii(2xf -x_)

The visual presentation of the function is

- o

| = “ F

20. Easom function: This function is in 2 variables ( m=2) with search domain
[—100<x <100 (i=12) and f(x')=-1 at x =(&, 7). Itis given as

f(x)=—cos(x, )cos(x, Jexp~(x, — 1)’ —(x,—1)’].
The graphical representation of the function is

- e e

21. Egg holder function: This function is in m (m >2) variables and given as:

-l
f)=Y (x,, +4Tysind 5, + x /2+4T)) +sind[lx —(x, +4T)K-x) | -512<x <512 i=L2 .m
exi

) il
Ity - i

T & | ﬁ
' “w'{‘l e 'r,.“.;"”’. M . MM
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m-variable function with

22. Fletcher- Powel function: This is a
A O T — ¢, )=0 is given as follows: f(x)= Z(Av -B ) where
i=l
’4:' = Z[“ij Sin(cj ) + Vij COS(Cj )]: B' = Z[uij sin(xj )+ v'_j ms(xj )],
=1 j=

u,.v, = rand[~100.100] and c, € [-7.7].

23. Freudenstein Roth function: On x, € [-10,10];i =12 this 2-variable function is

defined as follows and has  f,, (5,4)=0.

f)=[~13+x +((5-x)x, - 25, | +[-29+ x, + ((x, + Dx, —14)x, ]

S e € €

Generalized Rastrigin function: A typical multimodal function defined as

24.
(x) =Z(,‘f -l()cos(Zirg)-HO) ,—5.12<x, <5.12 and the min value of the function

i=]
is (0.00.,...... OH) The funcuon is graphically reprcsemed below
A d
b I W |
Y L W _ im | W

The function is defined as

25  Generalized Schwefel function:
f(x)=z—x, sin(,ﬂx,]) , —500<x, <500. The minimum value of the function best

=l
known 1s f(4209687. .......... 4209687):—41895 " The funCtion is graphically

represented below

A A A
e * L]

—.. “; ‘q_‘,r._
i" "‘v'"'wﬂ‘

26. Griewank function: It is a typical multi-modal function with a large number of
local minima in the search domain{-600< x <600{, i=12,..,m and global minimum

f(x’y=o0at x" =(0,0,...,0). It is given as
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f(x):i(.\f’/m)—ﬁcos(x,/\/;)%—l
The ﬁmcnon is graphically represemed below

e s g @

27. Giunta function: In the search domain x,, x, € [~1,1] the function is defined as

follows and has f,., (0.45834282,0.45834282) =0.0602472184.
* inc® 1) esin?(@x —1ys L incacSx
f(x)—0.6+zl_:l[sm(gx,—l)+sm (% D+ sinCTx, 1))]

We have got the minimum value of this function using GA, RPS & SA
0.06447,0.06447 and 0.644704484@705—01 rcspectively.

-~ o~ <

28. Goldstein Price function: On x €[-10,10):i=12 this 2-variable function is
defined as follows and has f,, (0,—1)=3.
S =0)0f)

where
=140 43, +1)2(19-14x, +3x —14x, + 6x,x, +3x3) |

f,=[30+(2x, - 3x,)° (18- 32x, +12x] —48x, —36x,x, + 27x}) |

The graphical representation of the function is

- v -«

29. Himmelblau function: It is a 2-variable (m=2) function with search domain
[6<x<6]; (i=12) and 4 global minima f(x')=0, one each in the four Cartesian
quadrants. The optimal values of x are: (3,2), (-2.805, 3.131), (-3.779, -3.283) and
(3.584, -1.848). The function is written as:

f)=(x+x =77+ +x,—11)°
The moditied Himmelblau function has only one global optimum f(x’)=0 at x" =(3,2).
This (modified) function is given as
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SO =+ =77+ +x, =117 +0.1[(x, =3)" +(x, —2)°]
The visual presentation of the function is

- - - -

The generalized himmelblau function is depicted below with four graphs
: [ | ‘ |

30. Hougen Function: Hougen function is typical complex test for classical non-linear
regression problems. The Hougen-Watson model for reaction kinetics is an example of
this a non-linear regression problem. The form of the model is

Bx. —x, ! Bs
14 B,x, + Bix, + Box,
where the betas are the unknown parameters, x=(x, x,, x,) are the explanatory

variables and ‘rate’ is the dependent variable. The parameters are estimated via the least
squares criterion. That is, the parameters are such that the sum of the squared
differences between the observed responses and their fitted values of rate is minimized.
The input data given alongside are used

rate =

3 470 | 285 470 470 | 470 | 100 100 | 470 | 100 100 | 100 | 285 285
x5 300 |80 30 80 80 190 80 190 | 300 300 | 80 300 190
X, 80 10 10 120 | 10 10 65 65 54 120 | 120 |10 120
rate | 855 |3.79 {482 {002 |2.75 | 1439 | 254 | 435 1300 {850 (005 | 1132 | 313

The values by tradition method are B, = 1.253031; Bz = 1.190943; ﬁa =
0.062798: ﬁz =0.040063; [fs =0.112453. The Particle Swarm method also does not
ordinarily perform well in estimating the betas of the Hougen function. However, with
MNa3) =0.0005 and @=0.05, run for 50,000 iterations we obtain: S =1.5575204; B, =
0.0781010629; S, =0.050866667; B, =0.138796292; B, =0.955739322. The sum of

squares of deviations (S%) is = 0.301933528. A comparison of Rosenbrock-Quasi-
Newton results with these (RPS) results indicates that the betas exhibit very high
degree of instability in the neighborhood of the minimal S*. The above analysis is
adopted from Mishra (2006).

31. Hump function: It is a 2-variable (m=2) function with search domain|—5< x <5]; (

i=1,2) and dual (global) minima f(x')=~1.032 at x" =(+1) (0.0898, —0.7126). It is given
as

f)=4x] =2.1x" +x° 13+ xx, —~4x +4x]
The function is graphically represented below
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S S O @

32. Hyper ellipsoid function: The function is defined as f(x)= Z jzx:;‘ with
j=1

x, € [~1,1]and the minimum value of the function is f~ (x) =0.0.
This is a two dimensional visualization of hyper ellipsoid function.

33. Judge function: This is a multimodal | I Ud) V() Y()
function defined as |1 286 645 4284
f(x)=(x, +x,sin’(u,)+ x5 cos(v,) — y.)’ 2 | 973 585 4.149
This function has two optima (0.846,1.23) 3 | -348 -310 3.877
=16.0817 which is a global minima and |4 276 058 -533
£(2.35.-0.319)=20.9805 which is a local |3 i3 AD5 2211
minima. 6 543 179 2.389
This function has been taken from Bill |7 957 259 2.145
Goffe’s Simman (Simulated Annealing |8 948 202 3.231
Problem website). 9 | 543 028 1.998
10 .793 099 1.379

11 936 142 2.106

’ 12 889 1296 [1428

13 006 175 1.011

= 14 828 180 2.179

—,
W

399 842 2.858

617 039 1.388

=)

939 103 1.651

784 620 1.593

“\

072 158 1.046

.889 704 2.152

8

34. Keane’s function: The keane’s function is defined as

(37 cos* (x) =205 ()

f(x) =1 JZ" - With a constraints
i:lix’ l
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[1,x=075
Z’:]x'. <7.5n

35. Levy function No. 3: It is a 2-variable (m=2) multi-modal function with search
domain-10< x <10]. It has some 760 local minima and 18 global minima in this search
domain. Its global minimum is f(x") = -176.542 .

f)=Yicosl(i+1)x, +i]Y icos|(i +x, +i]
The function is graphically reprcs;tted below i

o o e e i

S it pot vt

}

36. Levy function No. 5: It is a 2-variable (m=2) multi-modal function with search
domain[-[0<x <10]. It has some 760 local minima in this search domain. Its global
minimum is f(x’) = -176.1375 at x" = (~1.3068, —1.4248).

(0= icos{(i+1)x, +i]Y icos{(i+1)x, +i]+(x, +1.42513)* +(x, +0.80032)°

=1 i=l

The function is graphically represented below

-

N, o ~ :

37. Levy function No. 8: It is a 3-variable (m=3) multi-modal function with search
domain[-10< x <10]. It has some 125 local minima in this search domain. Its only global

»

s »

minimum is  f(x’)=0 at x =, 1, 1). this function is specified as

=1

f(x)=sin’(xy,)+ Y (y,—D)’[1+10sin’(zy,, )]+ (¥, 1)’

=1

where y, =1+(x,—1)/4 ; i=1,...m. in Levy et al. (1981).
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38. Levy function (#13): In the search domain x_x,e[-10.10] this function is
defined as follows and has [, (1,1)=0. as defined in Levy et al. (1981).

f(x)=sin’Bx) +(x, - 1) [1+5in*Gzx,) |+ (x, =) [1+sin’(27x,) .
The graphical representation of the function is

“ e ¢ -

39. Leon function: In the search domain x,. x, € [-1.2,1.2] this function is defined as
follows and has f . (1,1)=0.

f(x)=100(x, —x))+(1-x,)’
The graphical representation of the function is

40. Matyas function: It is a 2-variable ( m=2 ) function with search domain
[-10<x <10]; (i=12) and minimum 7(x")=0 at x =(0, 0). [t is given as

F(x)=026(x +x)—0.48xx,
The function is graphically represented below

\

41. McCormick function: In the search domain x, € [-1.5,4].x, € [-3,4] this
function is defined as follows and has f, . (—0.54719,-1.54719)=-1.9133.
f(x)=sin(x, +x,) +(x, —x,)° =1.5x, + 2.5x, +1.
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42. Meyer function: The Meyer function is defined as cubic polynomial divided by a
quadratic
[+Ay+ By‘7 + Cy}

(y) = _ Where
£ 1+ Dy+Ey”

A B C D E

l

1

1.3604 0.0962 -0.5127 -0.6722 -0.3278

2/3
and y:(vl) vm=%(\/g—l).

oo

43. Michalewicz function: In Michalewicz (1985) the function is an interesting multi-
modal function in the search domain [o<x<x]. i=12..m . It has an additional

parameter, p that determines its surface. For p=10, its global minima at different
dimensions (m) are : f(x)=-1.8013 (while m=2), f(x)=-4.6877 (while m=5),
f(x")=~7.664 (while m=7). This function is given as

f(x)= -i sin(x, (sin(ix” / x))*”
The function is graphically represented below

“Zo~ e

\ “\

-

44. Modified RCOS function: In the domain x, € [-5.10],x, € [0,15] this 2-variable
function has f (-3.196989,12.52626)=-0.179891. It is specified as where
£y =a(x, =bx} +cx, ~d)*; f, =e(1— g)cos(x,)cos(x,); f, =log(x’ +x3 +1)

where ¢ =_l—;b = ﬂz-;c =i;a =1:d =6;e=10

8z 4 b4

45. Modified Schaffer function #1: In the search domain x,.x, € [-100.100] this
function is defined as follows and has f; (0,0)=0

sin”(x] +x3)~0.5
(1400015 +2) [
46. Modified Schaffer function #2: In the search domain x,.x, € [-100,100] this
function is defined as follows and has f;; (0,0)=0

sin’(x; —x7)—0.5
(140001 +2)]
47. Modified Schaffer function #3: In the search domain x.x, € [-100,100] this
function is defined as follows and has f  (0,1.253115)=0.00156685

f(x)=05+

f(x)=05+

min
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sin” cos‘,\f —x§|—0.5

(1400010 +x3) |

48. Modified Schaffer function #4: In the search domain x,.x, € [-100,100] this
(0,1.253132) =0.292579

-0.5

(14000105 +)]

49. Masters Cosine wave function: The function is defined as

F=-% o e cos(4yfsZ, +0.5xx,, +x7), 5<x <5.

The ﬁmct;n is graphically represented below

<¢';) * ‘!. ‘\! 4 @ : .

50. Needle-eye function : This function is m-dimensional (m > 1) and defined with a
small (say 0.0001) eye. If |x|<eyeVi then f(x)=1 else

f(x)=0.5+

function is defined as follows and has f,

min

coszsin‘.xz—xz‘
f(x)=05+ Ly A

fx)= Zm:( 1.00+|x )1, =1if |x| > eye.Ootherwise. Minimization of this problem
i)

becomes more difficult with smaller eye and larger m(dimension).

51. Pathological function: The function is defined as
o sin?(Jx, +10057)-05
fn=Y +0.5[,~100< x <100.

=1 O_OOI(X,il ~ 28X +"? )2 +1.0

52. Paviani function: It is a 10-variable function ( m=10) in the search domain
x, € (2, 10), with f(x")=-45.77847,x" =(9.3502,9.3502,...,9.3502) given as

02
|

g[lnz({ —2)+ln2(l()—x,)]-§[n;x,]
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53. Perm function #1 : In the domain xe[~4.4], the function has fu, =0 for
x=(1,2,34).

4 4 s 7T
It is specified as  f(x) :{ZZ([* +B) {(ﬁ) -]H The value of (= 50) introduces

k=1 i=l 1

difficulty to optimization. Smaller values of g raises difficulty further.
The graphical representation of the function is

A

P

54. Perm function #2: In the domainxe [-1.1]. and for a given B (=10), this m-

=0 for x, =(i)” Li=12,.....m.Itis specified as

f(x){ii(i +B)(x) *(i)“‘}}z

k=l i=1

variable function has f

min

55. Power-sum function: Defined on four variables in the domain xe[0,4], this

function has f,

min

=0 for any permutation of x= (1,2,2,3). The function is defined as

4 4 2
f(x)=1iz:b‘k —fo] b, =(8,18,44,114) for k = (1,2.3.4) respectively.
k=1 i=k

56. Quintic function: In the domain  xe[-10,10] with f_ . =0 for

x.=—1 or 2:i=12,...m this function (with multiple global minima) is defined as

f(x)= i]xf =3x' +4x’ +2x7 ~10x, —4{:x,. €[-10,10};i=1,2,3...m
i=l

e & & W

57. Quadric Function: This function is defined as

n j 2
f(x) =Z(ij) with x; € [~100,100] and the minimum value is f(x)=00

=1\ k=1
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58. Rastrigin function: It is a typical multi-modal function in  m (m=>1) variables
with search domain [-5.12<x <5121 (i=12..m) and the minimum ;')=0 at
=(0,0.....0). It is a difficult function to optimize. It is given as

f(x)= |0m+iu¢’ ~10cos(2xx,))
i=[

The function is graphically represented below

| M, L
- v

A
.

59. Rosenbrock function: This function is in m ( m > 2) variables with search domain
[-5<x <10]: (i=1,2,...m) and the minimum 7(x)=0 and " =, 1,...1). It is very similar to

the Dixon and Price function. It is often referred to for its very slow convergence in the
neighborhood of the minimum. It is given as

m—]
Y 1100057 —x,_ ) +(x,~1)°]

The function is graphically represented below in two variables

Y Y

60. Royal Road Function: The Royal Road function is a binary problem with one
optimum but many large plateaus. Technically, this is a type-R1 Royal road function.
This version assumes there are a blocks, each of b bits, so that L = a.b.

(D) =E, 00 x
j=ib+1%j
61. Rana’s function : The function is deﬁned as

f(x)~§1(x”,+l)ms ‘/lxml x+l”sm(‘fl H,+t+l”+xms(‘ﬁxm+r +l{)sm WM x+l{))

3005 =300, |
f"'ﬂ.,,.""‘:'ib
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62. Schwefel function: It is another difficult but interesting multi-modal multi-
dimensional function in the search domain [-s00<x <500). i=1,2,...m with its global

minimum at f(x)=0. [tis given as defined in Schwefel (1981, 1995) as.
£(x)=418.9829m - ¥ [x,sin(f[x. )]
The function is graphically represented below

e o e

63. Schaffer Function (#7) : This function is non-separable and non-scalable. The
global minimum value of the function is f(0,0)=0.

f)=(x +5)"Z[sin* (500 +25)*") +1.0]  —100<x, <100 =12).

. NP

64. Schaffer function (#5): In the search domain x,,x, € [-100,100] this function is
defined as follows and has f, . (0,0)=0.

fix)=05+ sin” J(—f]""—x’f)—os

(140,001 +) |

4 4 4 4] [0.1]

65. Shekel Function: A 4-variable function (m=4) for 111 0.2
parameter p (2< p<10; p is an integer) in the search 8 8 8 8§ 0.2
domain x e (2, 10) is given as: 6 6 6 6 04
p 4 - 3 7 3 7 04
f,(x)=-Z(Z(x,-a,f+c,] A=12 9 2 9| “Tlos!
e ! 5 5 3 3 03

The optimal values of f,(x) lie between -10.02 and 10.54 8 1 8 1 0.7
The matrix A and the vector C are given alongside. 6 2 6 2 05
7 36 7 36| 05|

66. Sine envelope sine wave function: This function characterizes repeating couplets
of optimal values of x”, except their sign. The function is given as:

f‘*)‘i sin’(\Jx”, +x7 -05) .
= (0.()01(1:,«{,+x,.2)+l)Z

05]; -100<x,<100; i=L2,...m.
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> o > o

67. Shubert function: It is a 2-variable (m=2) typically difficult multi-modal function

with search domain{-10<x <i0}: (i=1,2) and minimum f(xX)=-186.7309 It is given
as

Fo =[] Xlicos((i +x, +i)]

==l

The function is graphically represented below

68. Shubert function #1: This function 1s defined as

5 x 5 2

f(x)=(Zic‘:0's[(i+l)x1 +i]}"(2icos[(i+l)x2 +i]] and the global minimum is at
[E | i=

X =X (i),

. [-7.0835 —7.0835 —1.4251 —1.4251 -14251 4.8581 5.4829]

h -1.4251 -7.7083 54829 -7.0835 —0.8003 —0.8003 4.8581

Where X' is the part of the global minima set and f(x") = -186.7309 This function has

about 400 minima and about 18 global minima. The graph of the function 21 and 22 is
same as function 20.

e 0 7 gt At St

69. Shubert function #2: The function is defined
(.5 5 ,
f(x}:(Zicos((i-!—l)x] +i)a;(ziws[(i+1)x2 H}L(x1 +1.42513)" +(x, +0.80032)°
i=1 i=1
Where the bounds are —10<x,x,<10 . The global minimum is at
x =(-142513,-0.80032) f(x)=-186.7309 .This function has about 400 minima.
The function is graphically represented below
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70. The six-hump camel back function: The camel function is defined as
6
f=4c2 2.1z +£31~+x1x2 —4x +4x' | 3<x <3 and 2<x,<2 . The global

minimum value of the function is at x =(.0898,-0.7127) or (.0898, 0.7127) and
f(x')=-1.0316.

> s s

71. The Stuckman function: This function is defined as

M]_n:,_’+%]sin(a,)/a,J if 0<x,<bh

filx.x,) =1 l
KL”‘ZJ”*E)Sin(aZ)/aZj if b<x,£10

Where 0<x, <10 for i=1,2 and m, is a random variable between 0 and 100 (i=1,2),

and b is a random variable between o and 10, and a, =| [x, —r, | |+] |x, - r,,| |, where 7,

is a random variable between O and b, r,, is a random variable between b and 10, and

r,, 1s a random variable between 0 and 10, r,, is a random variable between 0 and 10

(all random variables are uniform).
The global maximum is located at

(rox,) = (i) O mzm,
v (r,,r,) otherwise

72. Three-humps camel back function: In the search domain x,.x, e [-5,5] this

function is defined as follows and has f,; (0,0)=0.
6
f(x)=2x —1.05x +—x6'—+x,x2 +x;

The graphical representation of the function is
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3 N’\ i~‘\ @~

73. Styblinskitang function: In the search domain x . x, € [-5,5] this function is
defined as follows and has f, (—2.903534,-2.903534) =-78.332

2
f(x):%Z(x: 1645z ). By Styblinski and Tang (1990).

i=]

- . @ O

74. Trid function: This function i1s in m ( m>2) variables with search domain
(-n’ <x <m’]s (i=1.2.....m). The Trid function is given as

f(x)= i(&- -1’ -ixixi-l
i= =2

Optimal values of Trid function of different dimensions (m)

m Ml X S X XS | X | X X | Ko | Ko Ko X2 s M| s f(x*)
I

15 (15 128 [39 [48 |55 [60 [63 |64 [63 [60 [55 [48 [39 [ 28 [15 | -665

10 |10 |18 |24 {28 (30 [30 {28 |24 (18 |10 -210

6 |6 10 (12 [ 12 {10 |6 S50 |

The values of f(x )and those of x* at different m are given in the table above.
The pattern observed in the values taken on by decision variables is interesting, Mishra

v . 'The function is graphically represented below

)\ \

75. Weierstrass function: The Weierstrass function [in its original form,
f(x)=z;a* cos(b* x) while bis an odd integer, 0<a<1: ab>(1+371/2)] is one of

the most notorious functions (with almost fractal surface) that changed the course of
history of mathematics. Weierstrass proved that this function is throughout continuous
but nowhere differentiable. In its altered form Liang and Suganthan (2005) this
function in m (m=>1) variables with search domain[-05<x <05]; (i=1.2...m) and the

minimum £y =0 forx =, 0,....0y; a=0.5; b=3; k=20, is given as
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I 3 k
(=YY la" cos2zb' (x, +0.5))-m |a" cos(2xb' 03)): x,€[-05. 05) i=L2 .m

i=l k=0 k=0

76. Yao-Liu #15 function or Kowalick: It is 4 variable functions in the domain
xe[-5.5), that has a global minimum f (0.19,0.19,0.12,0.14)=0.3075 . This

_ xi(b;Z +bx,) :‘2.

11
function is defined by Yao et. al. (1999) as f(x)= 10002‘ a,=— - where
b +bx, +1x,

i=1

1 1111111 1 1 1°
b:.—-’——’—7—9—,_’-9_1—9—5— ilnd
« 0250512468101214 16
a=(0.1957,0.1947,0.1735,0.1600,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246)

77. Yao-Liu #7 function: It is a m-variable function in the domain xe [-1.28,1.28].

that has a global minima f,  (0,0,0,0,.....0) = 0. This function is given by Yao et al.
(1999) as

f(x)= rtmd[O,l]+ ii(xf)
i=1

& ¢ & ¥

78. Zakharov function: This function is in m (m >2) variables with search domain
[-5<x <10); (i=12,...m) and the minimum 7(x)=0 and x" =(0, 0,..,0). The function is:

f(x) =ixf +[£ix, /2]‘ +{iix, 12:}

The function is graphically represented below

) — | .
79. Zettle function: In the search domain x,, x, € [-5.5] this function is defined as

(~0.0299,0) =—0.003791
fO=(x +x ~2x,)"+0.25x,

e & b o
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80. Zero-sum Function: Defined in the domain xe [~10.10] this function (in m>2)

has f(x)=0 if Z:i‘x,. =(. Otherwise f(x):l+(10000IZ:;11;])Q5 . This function has

innumerably many minima but it is extremely difficult to obtain any of them. Larger is
the value of m (dimension), it becomes more difficult to optimize the function.

(ii) Recently appeared test functions

These functions are credited to Mishra (2006) and the graph of these functions is
regenerated by us.

81. Cross in tray function: This function has a multiple local minima with four global
minima at f(x")=206261218 in the search domain x e[-10,10).i=1.2. This

function is given as:

100 T ol z‘ o
f(x)=—0.0001“sin(x,)sin(xz)e:""ﬂf e [I +|}

25

82. Crowned cross function : This is a negative form of the cross in tray function. It
has
f(x)=0 In the search domain x,e[-10,10].i=1.2. It is a difficult function to

optimize. The minimal value obtained by us is approximately 0.1 by Repulsive Particle
Swarm

po (4}

f(x)=0.0001 { sin(x, ) sin(x, )e
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83. Cross function: This is a multi-model function with f(x")=0. It is given by

\Fm—ir(;f+x§‘) . J/t\

s 0.1
057
'+l}

f(x)=

}x‘in(x,)sin(xz)e

84. Cross-leg tabie function: This function is the negative form of the cross function
and may be called as ‘inverted cross’ function. It has f(x")=-1. in the search domain
x,€[~10,10].i=1.2. It is difficult to optimize. We have failed to optimize by all our

methods which we have used in this thesis. Repulsive Particle Swarm Method as given
us the result 0.001305, Genetic Algorithm has given us 0.00000 and Simulated
Annealing has given us —0.8470640834163E-04.

4 +L.]
fx)= -{ m(x,)sm(xz)e' o {l }

= X

85. Carrom Table Function: This function has a multiple local minima with four
global minima at f(x")=24.1568155 in the search domain x € [-10,10].i =1.2. This
function is given as :

fx)= {COS(X,)COS(L)C ity ‘} 130

86. Holder Table Function: This ‘tabular holder’ function has multiple local minima
with four global minima at f(x*) = 26.92 . This function is given as:

1 (23] ra]
f(x)=—1m~(xj)cosuz)e{( M)
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87. Pen holder function: This is a multi-model function with f(x*) =-0.96354 in
the search domain x, € [-11,11], is given as:
_)}

-l 425
f(x):—exp{—'cos(x,)cos(xz)e‘ s o0 ]

88. Test tube Holder Function (a) : This multimodal function is defined as follows.
We obtain x* =—10.8723 in the domain x, € [-10,10].i=12

mﬂﬁu‘f)/m‘

f(x) =—4}sin(x1 )cos(x, Je

- - e e ek et e« oot e S

ﬁﬂ .!""‘\'H'"‘ '!')‘»“'"“:

89. Test tube Holder Function (b): This multimodal function is defined as follows.
We obtain x* = -10.8723 in the domainx, € [-9.5,9.4], x, € [-10.9.10.9].

| 2 9
Joos(( 17 x5 )/ 2004

fx)= —4lsin(x, )cos(x, )e

s A ¢ g e e
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(iii) Some More Benchmark Test Functions (These

functions have been adopted from CUTE)
(ftp://138.48 4.14/pub/cute/)

90. Extended Freudenstein & Roth function: The function is defined as
nl2

FO) =D (=134 x5, + (5= X5,)%5, = 2)%,)F + (=29 + x|, +((xy, + Dxy, —14)x,,)° where

=1

x,=[0.5,-2,0.3,-2,0.5,2.......... 0.5,-2] and %€ (~10,10],i=1,2.

91. Extended Trigonometric Function: The function is defined as

=] 1=

f= Z[(n—Zcos le+i(I ~cos x,) ~sin x,] where x, =[0.2,0.2,02,........,0.2]

92. Extended Rosenbrock function: The function is defined as
f(x)=§c(x2, —xzz,_,)2+(l—.x2,_,)2 . where x, =[-1.2,1,......,—1.2,1] and c=100.

93. G’:neralized Rosenbrock function: The function is defined as
f(x)=§c(x,+,—x,2)2+(l—x,)2,where xo=[-1.2,1,......... ,—1.2,1] and c=100.

9. E)':t‘ended White & Holst function: The function is defined as
f(x):fc(xz, -x;,_,)2+(1—x2,_,)2 . where x, =[-1.2,1,......,—1.2,1] and ¢=100.

95s. Ext(;;ded Beale function: The function is defined as

ni2

FO=Y (155 (1= 1)) # (2255, (122 ) +(2.625 3, (1-x} ) where

=1

X =[1,0.8,......, 1,0.8].

96. Extended Penalty function: The  function is  defined as
n-l H 2

f(x)=Z(x,-1)2+[ij—0.25] where x, =[1,2,3..c..ccc......, n].
=1 J=l

97. Perturbed Quadratic function: The function is defined as

n 2
f(x)= ixf+lOLO[Zx,] where x, =[0.5,0.5,0.5........,0.5].
1= =1

98. Raydan function #1: The function is defined as f(x)= Z%(exp(x,)—x,) where

99. Raydan function #2: The function is defined as f(x)=) (exp(x,)-ux ) where

1=}

100. Diagonal function #1: The function is defined as f(x)= Z(exp(x,)—ix,) where

1=)

xo=[1nV/nin,...., 1/n].
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101. Diagonal function #2: The function is defined as f(x)= Z(exp(x,)—f_'—) where
1=i i
x0=[1/1,1/2,1/3 ........ ,l/n].

"

102. Diagonal function #3: The function is defined as f(x)= Z(exp(x,)-lsin(x,)),
=l
where x, = [1,1,1,.......,1].

103. Hager function: The function is defined as f(x) = Z(exp(x,%\/fxl ), where

i=1

104. Generalized Tri-diagonal 1 function: The function is defined as

n=l

F =Y (x40, =3 +(x —x, +1)"  wherex, =[2,2,2.....,2].

105. Extended Tri-diagonal 1 function: The function is defined as

nl2

fo= szl_ 2 =3) +(xy — Xy, +1)° wherex, =[2,2,2.......,2].

106. Extended (TET) function: (Three exponential term): The function s defined

ni2

as f(x)= (exp(x,., +3x, —0.1)+exp(x,_, —3x, —0.1)+exp(-x,_, —0.1)),

1=]

%, =[0.0,0.1,0.1.... ......., 0.1].
107. Generalized Tri-diagonal 2 function: The function is defined as

f(r)=((5—3x.—xf)\‘,—3.x2+l)2+nz-l((5—3x,—\',1)\',—\',_I—-3x,+,+l)2+((5—3x"—xf)xn—x,,_l-i-l)z
xo=[-L-L-1 1]
nl2
108. Diagonal function #4 : The function is defined as f(x)=zlz(x§,_,+cx§,)
1=l

x, =[1,L1,.....1] and ¢=100.
109. Diagonal function #5: The function is defined as

fx)= ilog(exp(x,)+exp(—x,)) where x, = [1.1,1.1,...,1.1].

110. Extended Himmelblau function : The function 1s defined as

nl2

fl)= Z(.x;_, +x, -1 1)2 + (xz,_, +x! —7)2 where x, =[1,1,.....,1].

111. Generalized White and Holst function: The function is defined as

n-1

F=Yc(x,-x) +(1-x) wherex, =[-1.2,1, . ., —1.2,1],c=100.

=l

112. Generalized PSC1 function: The function 1s defined as

7=}

f=> (2 +x%, +x,xH,) +sin?(x ) +cos’ (x ), where x, =[3,0.1,.....,3,0.1].

1=l

113. Extended PSC1 function: The function is defined as
nl2
f =2 +x +x,_x, )2 +sin’(x,,, )+cos® (x,,) where x, =[3,0.1,.....3,0.1].

1=l
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114. Extended Powell function: The function is defined as
ntd

fx)= Z(Xm-; +10x,,_, )2 +5( %o =%, )2 (X — 2% )4 +10( x5 = %, )4 where
=)

x, =(3,-1,0,1,......3,-1,0,1].
115. Full Hessian FH1 function: The function is defined as

2 I 232
F=(x-3)+Y (5 -3-2(x+x,+..x)") , where x, =[001,0.01,001.....0.01].
=2
116. Full Hessian FH2 function: The function 1s defined as
F)=(x5=5) + Y (5 + x40+t x, = 1), x,=[0.01,0.01,0.01.. ....,0.01].

=2

117. Extended BD1 (Block Diagonal) function: The function 1s defined as

ni2

f=Y (x5, +x —2)2 +(exp(xy,., —1)-x,, )*, where x, =[0.1,0.1,0.1.......,0.1].

1=!

118. Extended Maratos function: The function is defined as

nl2

=Y x +e(xd, +xk —1) wherex, =[1.1,0.1,1.1......,1.1,0.1].
=1

119. Extended CIiff Function: The function is defined as

f(x) = HZ(MJ- _(x2l—| _xll ) +exp(20(x21—l — X )) * where
=1

x, =[0,-1,0,-1.......,0,-1].
[129] Perturbed Quadratic Diagonal function: The function is defined as

n

2 n
f(x):(Zx,) +Z$xf, where x, =[0.5,0.5,.......,0.5].
1=l

=l

121. Extended Wood Function: The function is defined as

fios iloo( Gt ) (=) 490( 5 )+ (0 0l 10 (e =1+ (=1 F19 8 (0 - 1) (4, -1)
Where x, =[-3,-1,-3,-1,........ -3,-1,-3,-1].

122. Extended Hiebert Function: The function is defined as

ni2
2

F)=Y (x5, =10)" +(x,_,x, —50000)°, where x, =[0,0,0,0....,0].

=1
123. Quadratic Function (QF1): The function is defined as f(x)= —;—Zixf -x,
1=l

where x, =11, 1,......, 1].

124. Extended Quadratic penalty QP1 function: The function is defined as

. " 2
f(x) =ZI(x,2 —2)2 +(Zx,2 —0.5] where x, = [1.1,1, . .., 1].
o=l

=)
125. Extended Quadratic penalty QP2 function: The function is defined as

2
n~t

f=3 (%} =sinx)’ +(ixf - 100]- where x, =[1L1,1,......1].
1=
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126. Extended Quadratic QF2 function: The function is defined as
f(r)——Z (x7 ~l)2~x,,, x, =[0.5,0.5,.......,0.5].

=]

127. Extended Quadratic exponential EP1 Function: The function is defined as
nl2

f= Z(CXP()‘L—l _le)—5)2 + (X0~ Xy, )2 (2 =2~ 1)2 ,

1=l
x, =[1.5,1.5,1.5........,1.5].
128. Extended Tri-diagonal function: The function is defined as

n-l

fo= Z X%, =1) +c(x +1)(x,, +1), where x, =[1,1,,....,1] , and c= 0.1,

129, FLETCBV3 function (CUTE): The function is defined as
n-\ ) n hz +2 .
f(x)=lp(x,2+x:)+zp(x -x,) —Z f(——z——)x,+£cos(x,) , where
2 =2 - h h
p=110% h=1/(n+1), c=1, x,= [h 2h,. nh],

130. FLETCHCR function (CUTE): The function is defined as

n-\

=Y e(x,-x-x) % =[0,0,0,..0] c=100.

131. BD?)RTIC function (CUTE): The function is defined as

f)= f(—4x, +3)+ +(x7 +2x%, +3x, +4x), + 55 ) c X =L,
132. TR';'DIA Function (CUTE): The function is defined as
f)=y(éx ~1) +Z ax, - fBx_ ), and

a=2, f=1, y= 1, d=1, x,=[L1,1,..,1]

133. ARGLINB function (CUTE): The function is defined as

2
flx)= Z(Zijx, —1] , X =L

=)

134. ARWHEAD function (CUTE): The function is defined as

n-l

Fx)y=Y (-4x+3)+ "Z_'(xf +x2), andx, =[1,11,....1].
=1 =]

135. NONDIA functions (CUTE): The function 1s defined as
fO=(x-1) +Z]00(A, ) xe=[=-l-l 1]

136. NONDQUAR function (CUTE): The function is defined as
f(x)=(x,—x2)2+nz-: (x,+x,+x) +(x,+x) x=[L-11L-1..,-1].
137. DQDRTIC fu’:lction (CUTE): The function 1s defined as
f(x)=n2_:(x +ex), +dxl,), €=100, d=1000 x,=[3.3.3....3].
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138. EG2 function (CUTE): The function is defined as
n-|
fx)=Y sin(x+x) - ])+%sin(.x,2,), xo=[1 1]
1=l
139. CURLY20 function (CUTE): The function is defined as

n

fx)=> gq'-20g} -0.1q,,

=]

where

. k=20.
{x, +x,, +.tx,, iSn—k
q, =

X Fx o X, i>n-k

1+l

x, =[0.001/(n+1),......,0.001/(n +1)]
140. DIXMAANA-DIXMAANL function: The function is defined as

o N e N2 g B L \K4
f)=1+4) ax’ (-’—) +zl:,8xf (% +22, )2 (i] +> yxixl, (i) +Z(5x,x,”m( ] , m=nl3,
n =l n = n 1=

i
n

=l
Xo={2.,2,2 0. L2

A B y -3 Ki K2 K3 K4
A 1 0 0 125 0 0 0 0 0
B 1 0.0625 0.0625 00625 0 0 0 1
c 1 0.125 0.125 0.125 0 0 0 0
D 1 0.26 0.26 026 0 0 0 0
E i 0 0.125 0.125 | 0 0 1
F I 0.0625 0.0625 0.0625 1 0 0 ]
G | 0125 0.125 0.125 1 0 0 ]
H 1 0.26 0.26 0.26 i 0 0 I
] ] 0 0.125 0125 2 0 0 2
J ] 0.0625 0.0625 0.0625 2 0 0 2
K ] 0.125 0.125 0.125 2 0 0 2
L 1 0.26 0.26 0.26 2 0 0 2

141. Partial Perturbed Quadratic function: The function is defined as

f(x)=x,2+Z(ix,2+FI)6(.\',+x2+ ...... +.r)2], x,=[0.5,0.5,05.....,0.5] .

'
1=}

142. Broyden Tri-diagonal function: The function is defined as
2

fx) =(3x, —2):|:)2 + i(i&x, —2xt-x_ —2x, + I)z +(3 X, —2x —x,_ + I) X =[=L=1=1.-1]

143. Almost Perturb Quadratic function: The function is defined as

144, Staircase 1 function: The function is defined as

"

f(x)=2(2x,] . ox=[LLLLL]

=1

2
145. Staircase 2 function: The function is defined as  f(x) = Z{[ijj—i} , and
1=l
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146. LIARWHD function (CUTE): The function is defined as
fl)= 24(—x| + x'z)z + Z(x, "')2’ x=[4,4,4. 4]
=] 1=l

147. POWER function (CUTE): The function is defined as f(x) = Z(z’x, )2,

x, =[LL1 1.
148. ENGVALI1 function (CUTE): The function is defined as

n=1

F=Y (2 +2) +Z (-4x +3), x =[2,2,2,...2].

=1

149. CRAGGLVY functlon (CUTE): The function 1s defined as
f(x) =i(exp( L)X, )J +100(, =, ) +(tan (1, = xy0 )+ A5, — \2,‘2)J + 0+ (A, —I)z. n=[r2.2.20 2]

150. EDENSCH function (CUTE): The function is defined as
n—1

F=16+3 [ (x,-2)" + (x5, =25,) + (5, +10' ], % =[0,0,0,....,0].
=1
151. INDEF function (CUTE): The function is defined as

n~1 l 2 n
- + —CO x _X = N yoeeeees N .
flo= ZX ; cos| sl [HH n+l n+]}
152. CUBE function (CUTE): The function is defined as
FO=(x =17 +37100(x,-x%)", x=[-121,-1.2,1,...,-12,1].
1=2
153. EXPLINI1 function (CUTE): The function 1s defined as

F(x)=exp(0.1xx,,) IOZ ix ), x,=[0,0,0,.,0].

154. EXPLIN2 function (CUTE) The function 1s defined as

fx)= Zexp( ') 10}: (ix), x,=[0,0,0,..0].

155. ARGLINC function (CUTE) The function is defined as

f(A)—2+"Z|(”zljx (i-1) —1] xy=[LL1.,1].

=2\ y=2

156. BDEXP function (CUTE): The function is defined as

n-2

flx)= Z(x, +x,, )exp(——xH2 (x +x,, )) x, ={LL1,....,1]

=1

157. HARKERP?2 function (CUTE): The function is defined as

f(x)=(i. ) Z(\ + =X )+22(Zx], X ={12.3,....n].

=1 =2\ 1=y

158. GENHUMPS function (CUTE): The function is defined as

an-l
f(x)=> sin(2x, ) sin(2x,,) +0. 05(x7+x%,). x,=(-506.,506.2,......,506.2].

=]
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159. MCCORMCK function (CUTE): The function is defined as

fo= "Z-‘l‘(—l.Sx, #2255, + 1+ (x5 = x,, ) +on (x4 x,)), X =[LLL]
160. N(;ILJSCOMP function (CUTE): The function 1s defined as
fy=(x-1) +Z4( 2), x=[333..3].

161. VARDIM functlon (CUTE): The function is defined as

f0=3(5 1) [i (_22]@:(_2&] oef1-ta-2,-1]

162. QUARTC function (CUTE): The function 1s defined as
F=Y(x-1)", x=[2,2...2].

=1

163. Diagonal 6 function (CUTE): The function is defined as
f(x):ie"—(l—x,), x, =L 1L 0.

164. SIIL;ISQAD function (CUTE): The function is defined as

f)=(x-1) +Z(sm ~xl+x ) +(x2 - )2, x, ={0.1,0.1,0.1,.....,0.1] .

=2

165. Extended DENSCHNB function (CUTE): The function 1s defined as

nl2

FO=Y (X0 =2) 4 (2, =2) &+ (x, +1), x=[LL1.0].

166. Extended DENSCHNF function (CUTE): The function 1s defined as

nl2

f)= Z( X+, ) H (%, -5, ) —8)2+(5x§,_,+(x2,—-3)2—9)2, x, =[2.,0.,2.,0.,....2.,0]

167. LIARWHD function (CUTE): The function is defined as

F@=3a( =)+ (x-1), x=[4.40.4].

168. DIXON3DQ function (CUTE): The funcuion is defined as

n-1

S0 =(x-1) +Z( o) =1k =[=l=la1].
169. COSINE functlon (CUTE): The function 1s defined as

n-|
f)=3 cos(-05x,, +x7), x,=[LL1,...1].

1=

170. SINE function: The function is defined as

n=4

f(x)=Zsin( 0.5x,, +x; ) xo =[1L1,1,..,1].

1=}
171. BIGGSB]1 function (CUTE) The function is defined as
f)=(x-1) +Z x,-x)+(1-x), x=[0,00,.,0].
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172. Generalized Quartic function: The function is defined as
fo= Sxf t(xn+ 1) x =L

173. Di:glonal 7 function: The function is defined as

flx)= iexp(x,)—2x, -x!, X = [l, L1,....1].

174. Di;g'onal 8 function: The function is defined as

flo= Zr exp(x)-2x —x', x,=[LLL...1].

=1
175. Full Hessian FH3 function: The function is defined as

n

f(x)=(2x,J +i(x,exp(x,)—2x, —x,z), X =L

176. SINCOS function: The function is defined as

nl2
F) =Y (K x5, ) +sindx, +cosix,, % =[3.0.1,3,0.1,.....3,0.1].

=]

177. Diagonal 9 function: The function is defined as

n=|

=Y (exp(x)-ix, ) +10000x7, x,=[LL1,...1].
=l
178. HIMMELBG function (CUTE): The function is defined as

al2

f=> (20 +3x Jexp(—x,, - %, ). x,=[1.51.515,..,1.5].

=]

179. HIMMELH function (CUTE): The function is defined as

ni2
F)=d (30, —2x, 424 x5, +x3,), x,=[1.51.51.5..,1.5].

1=}

180. Box 2-variable function: The function is defined as
10 v o .

f(x)= Z exp(—x'—l)—exp(ﬁ) - exp(—']—exp(—i) , with 5 different
= 10 10 10

starting point (5,0), (0,0), (0,20), (2.5,10), (5, 20).

181. Box 3-variable function: The function is defined as

R

5
182. Step function: This function is defined as f(x)=Zint(x,) where

1=l

~5.12<x <5.12.

(iv) Some more test functions

183. Sum of different power functions: The sum of different powers is a commonly

. . . . . = 141 .
used uni modal test function. The function is defined as f(x)= ) |x|" Test area is

=]
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usually restricted to hypercube —1<x, <L i=L12....n. Its global minimum equal

f(x)=0 is obtainable forx, =0,i=1,2,....n.

184. Langermann’s function: The Langermann function is a multimodal test
function.
The local minima are unevenly distributed. The function is defined as

- l n 2 | " 2

fo)= Zci cxp[—-Z(xj —a; }cos{)tZ(xj -aij) where are constant numbers.
i=1 Y/ g j=1

It is recommended to set the value of m=>5.

185. “Drop wave” function: This is a multimodal test function. The given form of
function has only two variable and the function is defined as

H—cos(lZQ/xJ2 +;§)
fFlx,x)=— i : where —5.125 %%, £5.12,
i(xf+x§)+2

- | 2

-
-

186. Shekel’s Foxholes function: This is multi-model function. It is defined as

-1
ro=3 (5[5 -a) | where
=1 \_j=1
(c,.i=12,..,m), (“i/’j =1,2,...ni=1,..., m). It is recommended to set m=30.

187. Rotated Hyper ellipsoid function: The function is defined as f(x) = i(z xf) )

=1 j=1
Where —65.536 < x, <65.536. This is a uni-model continuous function. The optimum

value is 0.
188. Treccani function: The function is defined as

)
f(x)=2x —1.05 e x,+x, where the bounds are —3<x <3(i=1,2) . The
: X, 6 X x ;

global minimum is at (0,0) and (-2,0) at f(x*) =0
30

189. Function #1 : The function is defined as f(x)=Y (ix’ +Gauss(0.1)) and

i=1
—1.28<x <1.28.
190. Function#2: The function is defined as

25 2 )
F(x) =()_(X)2+Z(-]—.+Z(x‘. ~a, “J,—ﬁsssss x, <65536
=] =t
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10

191. Function #3: The function is defined as f()=10V +(—x sin(fx )} where
i=l

=500<x, <500 V=4189.829101.
192. Function #4: The function is defined as

20
f(x)=20A+ (5’ —10cos(27x,)).-512<x, <512 A=10.
i=1

10 2 10
193. Function #5: The function is defined as f(x) =1+ (x_,]_ (cos(in
! 2 {000 | N[ 72

i=1

and —600 < x, <600.
194. Function #6 : This function with f . (1 L1,......,1) =2 may be defined as follows:

-
fx)=(+x,)":x, = m—in;Vi =1,2,3,...,m . This function is not very difficult to
i=l
optimize. However, its modification that gives us a new function (B) is considerably
difficult.

v & 4 O

195. Function#7: This function with f . (1,1,1,......,1)=2 may be defined as follows:

min

H(x+x,,) .

f(x)=0+x)";x, m—Z‘—zﬂ-;xe[O,l]VisLZJ ..... m . Xm of the prior
i=1

iteration indirectly enters into the posterior iteration. As a result, this function

extremely difficult to optimize.

196. Function#9: The function is defined as
| L= 2 2
f(x) ;—f{l()sin2 (23,)+> (v, 1) [l +10sin’ (7y,, )]+(_v_ -l)"} :
n k=l

y, =l+::—(x[—l), and —10<x <10, i=1,2,3,......., n and minimum value of the

function is 0. This function has roughly 5" local minima and a unique global minima
located at x = (1,1,1,1,.....,1) .

197. New function #10: A 2-d problems with f__(—8.4666,-9.9988) = —(.18466

min

f(x)=]¢0$‘fixf +le|‘“ +x]l;(;2 :x,€[-10,10):i =12
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198. New function #11: This function is a variant of function #1 where cos(.) 1
replaced by sin(.). Function has the optimum f, , (=9.94112,-9.99952) =—0.199441. lt
is given by

0.5
sin,/ixfuzﬂ +A555 11;0 :x, € [~10,10]:i =1,2

199. New function  #12: In  the domain  xe[-10.10] with
£ (2.8863,1.82326) =—2.28395 This function is defined as

f(x)=

‘ ) _1y 1P
f(x)=-ln[{(sin((008(xl)+cos(xz))2)z_(cos((sin(x])+sin(xz))z)z}+xl] +[(x1 ) I‘:)(xz ) ]

L R

200. Modified Masters Cosine wave function: The function is defined as

f(x)—-z H(X i ‘(4 xM+05xx +x; )sin(4 X, +0.5xx +x; ’

i+ i+1 ii+l

—5<x <5.

The gmphncal presentation for lhc abovc function is

o, -

$okoskok gk ok ok
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The MATLAB code for the visual representation of the collected test function and
some new test function created are given here. The m-code of few functions are
reported and most of them are available with the author. The code to draw the graph

using meshz, surf, surfc and surfl are also there as last paragraph.

MATLAB code for visual presentation of test functions
(Benchmark test functions and New Test functions)

(i) Code for Benchmark Test function for visual presentation

% This Program draws four 3-D coloured graph of different function.
% Program developed by Sanjeev Kumar Singh.

%3. Ackley Function

r=-15:.05:30;

[X,Y]=meshgrad(r,r);
2=20+exp(l)-20*exp(-0.2*sqre ((X."2+Y."2)/2))~-
exp(0.5*(cos (2*p1.*X)+cos (2*p1r.*Y}));

% 5.Beale Function

r=-4.5:.01:4.5;

[X,Y}=meshgrid(r,r);
Z=(1.5-X+X.*Y) "2+ (2.25-X+X.*Y"2)"2+(2.625-X+X.*Y"3)"2;

%$8. Bird Function
r=-2*pi:.1:2*p1;
[X,Y]=meshgrid(r,r);

Z=s1n(X).*exp(abs(l-cos(Y))).*2+cos(Y).*exp(abs(l-cos(X))).*2+(X-
Y)."2;
o

% 6. Bohachevsky Function

r=-100:.9:100;

[X,Y)=meshgrid(r,r);
2=X."2+2*Y."2-0.3*cos(3*p1*X)-0.4*cos (4*p1r*Y)+0.7;

e e e
%$7. Bohachevskyl Function
r=-50:.5:50;

[X,Y])=meshgrid(r,r);
2=X.%2+2*Y."2-0.3*cos (3*p1*X)-0.4*cos (4*pr*Y)+0.7;

%$10. Booth Function
r=-10:.01:10;
[X,Y)=meshgrid(r,r);
Z=(X+2*Y-T7) .72+ (2*X+Y-5)."2;

% 9. Branian function

r=-512:.9:512;

[X,Y]=meshgrid(r,r);

Z=-(Y+47) .*s1n{sqrt (abs(Y+(X/2)+47)))+sin{sqre{abs(X-(Y+47)))) .*(-X);
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% 11. Bukin Function

x=-15:0.1:-5;

y=-3:0.1:3;

[X,Y)=meshgraid(x,y);
$2=100*Y."2+0.01*abs (X+10);

Z=100*sqgrt (abs(Y-0.01*X.72))+0.01*abs (X+10) ;

e e
% Carrom Table Functaion
r=-10:.1:10;

[X,Y)=meshgraid(r,r);
=-(cos(X).*cos(Y).*exp(abs(l-(sqrt(X.”2+Y.%2))))/p1)."2/30;

% _____________________________________________________________________
$12. Chichinadze function
r=-30:.9:30;

[X,Y)=meshgrid(r,r);
Z=X.%2-12*X+11+10*cos (p1*X/2) +8*s1n(5*p1*X/2) -1/sqrt (5)*exp(-( (Y~
0.5).72)/2);

% 14. Colville Functaion

r=-10:1.5:10;

$(X,Y,2,Tl=ndgrad(r,r,r,r);

[X,Y,2,T)=£flow;

M=100* (Y-X."2) .72+ (1-X)."2+90*(T-2.72) .72+ (1-2).72+10.1*(Y-1)."2
+(T-1).72+19.8*(Y-1) .*(T-1);

% Colville Function

$This 1s mesh graph of the function.
figure(l)

hpatch = patch(isosurface(X,Y,2,T,M));
1sonormals(X,Y,2, T, hpatch)

set (hpatch, 'FaceColor', 'red', 'EdgeColor', 'none')
daspect ((1,4,4])

view([-65,20])

ax1s tight

camlight left;

set (gcf, 'Renderer’', 'zbuffer'); lighting phong

% 13. Corana function

r=-100:.9:100;

[X,Y)=meshgrad(r,r);

T1=0.2*abs (abs(X/0.2)+0.49999) *s1gn(X);

T2=0.2*abs (abs(Y/0.2)+0.49999) *s1gn(Y);

1f (((X-T1) & (¥Y-T2)) < 0.05)
‘Z=O.15*(Tl—O.OS*SLgn(Tl)).“2+0.15*(T2-0.05*51gn(T2)).“2;
else

Z= 1*X.72+1000*Y."2;

end

% ____________________________________________________________________
% 83. Cross function

r=-10:.1:10;

[X,Y])=meshgrad(r,r);

Z=(abs(s51n(X) .*sin(Y).*exp(abs (100~ (sqrt(X."2+Y."2)/p1))))+1) .~ (-
0.1);

% _____________________________________________________________________
$84. Crossleg function

r=-10:.1:10;

[X,Y)=meshgrid{(r,r);
Z=-(abs{sin(X).*s1n(Y).*exp(abs(100-(sqrt (X."2+Y."2)/pr))))+1) .~ (-
0.1);
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%81. Crossintray Function
r=-10:.1:10;
[X,Y)=meshgrid(xr,r);

Z2=0.0001* (abs(sin(X).*s1n(Y).*exp{abs(100-(sqrt(X.”2+Y."2)/p1)})))+1)
0.1

% _____________________________________________________________________
%82. Crowncross Function

=-10:.1:10;

[X,Y)=meshgrid(r,r);
2=0.0001* (abs (sin(X).*s1n(Y).*exp(abs (100~ (sqgrt (X."2+Y."2)/p1))))+1)
.01

%15. Deflected Corrugated Spring Function

r=-100:.9:100;

[X,Y)=meshgrid(r,r);

Z=-cos{5*sqrt ((X-2) .72+(Y-5).72))+0.1* ((X-2)."2+(¥Y-5)."2);

% 18. De Jong Function
c=-p1:.l:p1;
Cl=~p1:.1l:p1;
C2=-p1:.1:p1;
[X,Y)=meshgrid{c,c);
=-100;
b=100;
ran=a+(b-a)*rand(63,63);
Z=((ran.*sin(Cl)+rand.*cos(Cl)+ran.*s1n(C2})+rand. *cos(C2))
-{ran.*sin(X)+rand.*cos(X)+ran.*s1n(Y)+rand.*cos(Y)))."2;

% 19. Daixon Function
r=-10:.5:10;
[X,Y]=meshgraid(r,r);
Z=(X-1).72+2*(2*Y."2-X)."2;

% 185 Drop wave Function

=-5.12:.1:5.12;

[X,Y)=meshgrid(r,r);

Z2=-(1+cos(12*sqrt (X."2+Y."2)))}./(0.5*(X."2+4Y."2)+2);

% 21. Egg Holder Function

r=-512:.9:512;

{X,Y)=meshgrid(r,r);

Z=-((Y+47).*sin(sqgrt (abs(Y+(X/2)+47)))+sin(sgrt (abs (X-(Y+47)))).*(~
X))

% 20. Esom Functaion

r=-100:.5:100;

{X,Y])=meshgrid(r,r);

=-cos(X) .*cos(Y).*exp(-(X~-p1)."2-(Y-p1)."2);

% Extended Freudens Function

r=-10:.1:10;

{X,Y}=meshgrid(r,r);
Z=(=13+X+((5-Y).*Y~-2) . *Y) . "2+ (=29+X+((Y+1).*Y-14).*Y)."2;

% 22. Fletcher Powel Function
c=-p1:.1l:p1;

Cl=-p1:.1l:p1;

C2=-p1:.1:p1;
{X,Y]=meshgrid(c,c);

a=-100;

b=100;
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ran=a+ (b-a)*rand(63,63);
Z={(ran.*sin(Cl)+rand.*cos(Cl)+ran.*sin(C2)+rand. *cos (C2))

~-{ran.*sin(X)+rand.*cos{X)+ran.*sin(Y)+rand.*cos(Y}))."2;
& e e
% 23. Freudenstein Function
r=-4:.1:4;

[X,Y)=meshgrad(r,r);
Z=(51* (X+X."2+X.,"3+X."4-4)) .72+
(52* (Y/2-1)+54*(Y."2/4-1)+58*(Y."3/8-1)+66*(Y."4/16-1)) ."2;

% 27. Giunta function

r=-1:0.01:1;

[X,Y)=meshgrid(r,r);
2=0.6+(s1n((16*X/15)-1)+(s1n{(16*X/15)-1))."2+.02*s1n(4*((16*X/15)-
1)) ...
+{sin((l6*Y/15)-1)+(san((16*Y/15)-1)).72+.02*s1n(4* ((16*Y/15)-1)));

% 28. Goldstein Price Function

r=-10:.9:10;

[X,Y]=meshgrid(r,r};

Z=(1+(X+Y+1) .72, % (19-14*X+3*X . "2~-14*Y+6*X *Y+3*Y,"2)).* ...
(304 (2*X-3*Y) ."2.%(18-32.*X+12*X."2-48*Y~36*X.*Y+27*Y."2));

% 24. Generalized Rastrigan Function

r=-5.12:.1:5.12;

[X,Y)=meshgrid(r,r);

Z=((X."2-10*cos (2*p1.*X})+10)}+(Y."2-10*cos(1*p1.*Y))+10);

% 26. Griewank Function

r=-100:.5:100;

[X,Y])=meshgrid(r,r);
Z=((X.%2/4000)+(Y."2/4000))-(cos(X) .*cos(Y/sqrt (2}));

% 25. Generalized Schewefel Function
r=-500:.9:500;

[X,Y)=meshgrid(r,r);

2=-(X.*sin(sqrt (abs(X)))+Y.*sin(sqrt(abs(Y))));

% _____________________________________________________________________
$29. Himmelblau Function
r=-6.1:6;

{X,Y]=meshgrid(r,r);
Z=(X+Y."2~7) .72+ (X."2+Y¥-11) .72;

% Holder Table Function
r=-10:.1:10;
[X,Y)=meshgrid(r,r);

Z=-abs(cos(X).*cos(Y) .*exp(abs(l-(sqrt(X."2+Y."2))))/p1r);

% _____________________________________________________________________
% 72. Three Hump Camel Function

r=-5:0.1:5;

[X,Y)=meshgrad(r,r);
Z=2*X."2-1.05*X. "4+ (X."4/6)+X . *Y+Y."2;

gy S
$31. Hump Function
r=-5.1:5;

[X,Y)=meshgrid(r,xr);
Z=4*X."2-2.1*X.74+X."6./3+X.*Y-4*Y . "2+4*Y "4,

%$33. Judge Function

r=-100:.9:100;
{X,Y}=meshgrid(r,r);
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Z= (X+Y*s1in(.286).72+Y."2*(cos(.645)-4.284)) .72
+(X+Y¥*s1n(.973) .72+Y."2*(cos(.585)-4.149))."2
+(X+Y*s1n{(.348).72+Y."2*(cos(.310)-3.877))."2
+{(X+Y¥*s1n(.276) .72+Y."2*(cos(.058)-.533)).72 ...
+(X+Y*s1n(.973).72+Y.”2*(cos(.455}-2.211))."2
+(X+Y¥*s1n(.543) .72+Y."2*(cos(.779)-2.389))."2
+{X+Y¥*s1n{(.957) .72+Y."2*(c0os5{.259)-2.145))."2
+(X+Y*sin(.948) .72+Y."2*(cos(.202)-3.231))."2
+(X+Y*sin(.543).72+Y."2*{cos(.028)-1.998))."2
+(X+Y¥*s1in(.793) .72+Y.%2*(c0os(.099)-1.379))."2
+(X+Y*sin(.936) .72+Y."2*(cos(.142)-2.106))."2
+({X+Y*sin(.889).72+Y."2*(cos(.296)~-1.428))."2
+(X+Y¥*sin(.006) .~2+Y."2*(cos(.175)-1.011))."2
+{X+Y¥*s1n(.828).°2+Y."2*(cos(.180)-2.179))."2
+(X+Y*s1n(.399).%2+Y."2*(cos(.842)-2.858))."2
+(X+Y*s1n{.617).7°2+Y."2*(cos{.039)-1.388))."2
+(X+Y*s1n(.939) .72+Y."2*(cos(.103)~1.651)) .72
+(X+Y*s1n{.784) .%2+Y."2*(c0s{.620)-1.593))."2
+(X+Y¥*s1n(.072) .*2+Y."2*(cos(.158)-1.046)).72 ...
+(X+Y*sin(.889) . "2+Y."2*(cos{.704)-2.152))."2;

G e
% 34. Keane Function
r=0:.1:10;

[X,Y]=meshgrid(r,r);

1f ((X.*Y) >= 0.75 & (X+Y) <= 15)

Z=abs({{(cosX) .4+ (cosY)."4)-2*((cosX)."2.*(cosY)."2)})
/sqQre(X."2+2%Y."2) ) ;

end

% 39. Leon Function
r=-1.2:0.01:1.2;
[X,Y]=meshgrid(r,x);
2=100*(Y-X."2)+(1-X)."2;

G
% 38. Levy Function
r=-10.1:10;

[X,Y]=meshgrid(r,r);
2=(Cos(2.*X+1)+2.*%cos{3.*X+2)).*{cos(2.*Y+1}+2.*cos{3.*Y+2});

% 49. Master Cosine wave Function

r=-5:.1:5;

[X,Y)=meshgraid(r, r);
Z=-exp({-1/8)*(Y."2+0.5*X.*Y+X."2)).*cos(4*sqrt (Y. 2+0.5*X. *Y+X."2))

c¥sin(4*sqrt (Y. "240.5*%X.*Y+X."2));

% _____________________________________________________________________
% 40. Matyas Function
r=-10.1:10;

[X,Y]=meshgrad(r,r);
2=0.26*(X."2+Y.72)-0.48*X.*Y;

% _____________________________________________________________________
% 44. Modified RCO Function

x=-5:.5:10;

y=0:.5:15;

[(X,Y]=meshgrid(x,vy);
$Z2=(Y-(5.1/4*pi."2)*Y. "2+ (5/pr)*X-6)."2;
$ 2=10*(1-(1/8*p1)).*cos(X).*cos(Y);

2= log(X."2+Y."2+1);

% 51. Pathological Function
r=-100:.9:100;
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[X,Y]=meshgrid{r,r);
Z=((((sin(sqrt(Y.”2+100*X."2)))."~2-0.5))./
((0.001*(Y."2-2*Y.*X+X."2)."2+1.0)))+0.5;

g e
% 52. Paviani Function
r=2:.9:10;

[X,Y]=meshgrad(r,r);
Z=(log(X-2)."2+1log(10-X) ."2+1log(Y-2)."2+1log(10-Y) ."2)~-(X.*Y)."0.2;

$ 87. Pen Holder Functaion
r=-10:.1:10;
[X,Y}=meshgrid(r,r);

=-exp(-abs(sin(X).*cos(Y).*exp(abs(l-(sqrt (X."2+Y."2)/p1))))."(-1));
B e e e —
% 56. Quintic Function

x=-5:.5:10;

y=0:.5:15;

[X,Y)=meshgrad(x,y);
Z=(Y-(5.1/4*pr."2)*Y."2+(5/p1r)*X-6)."2;
% Z2=10*(1-(1/8*p1)) .*cos(X).*cos(Y);

% 2= log{X."2+T."2+);

% 61.Rana Function

r=-500:.9:500;

[X,Y]=meshgrid(r,r);

2=(Y+1) .*cos(sgrt (abs(Y-X+1))).*sin(sqrt (abs(Y+X+1)))+

X.*cos(sqrt(abs(Y+X+1))).*sin(sqrt (abs(Y-X+1)));
G m m e e e
% 73. Styblanski Tang Function
r=-5:0.1:5;

{X,Y]=meshgraid(r,xr);
Z2=0.5* ((X."4-16*X."2+5*X)+ (Y. 4-16*Y."2+5*Y)) ;

% 67. Subert Function

r=-10:.9:10;

[X,Y)=meshgrid(r,r);

Z2=30+(cos (2*X)+2*cos (3*X)+3*cos (4*X)+4*cos (5*X)+5%cos (6*X)) .*
(cos(2*Y)+2*cos (3*Y)+3*cos(4*Y) +4*cos(5*Y)+5*cos(6*Y)) . 2;

% 76. Yao Function
r=-1.28:.01:1.28;
{X,Y]=meshgrad(r,r);

a=0;

b=1;
ran=a+(b-a)*rand(257,257);
Z=ran + (X."4+2*Y."4);

g e
% Treccani Function
r=-3:.1:3;

[X,Y]=meshgrid(r,r);
2=2*X.%2-1.05*X."4+(X."6/6)~-X.*Y+Y."2;

% 78. Zakharov Function

r=-4:.1:10;

[X,Y}=meshgrid(r,r);
Z=(X."2+Y."2)+(X/2+(2%Y)/2) . "2+ (X/2+(2*Y)/2)."4;

G
% 80. Zero Sum Function
r=-10:.1:10;

[X,Y)=meshgraid(r,r);
2=1+({10000*abs{sqrt { (X+Y))));
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$ 79. Zettle function
=-5:0.1:5;
[X,Y)=meshgrad(r,r);
Z=(X."2+Y.%2-2*X)."2+0.25*X;

% New Test Function
r=-10:.1:10;
[X,Y]=meshgrid(r,r);

Z=abs (cos(sgrt(abs(X.”2+Y)))). .5+ (X+Y)./100;
e e
Do-~-===-veeemmmncmcecnanns Ploting code-————————ce———— -

%This 1s meshz graph of the function.

figure(1)

meshz (2,

'facecolor', 'interp’, 'Edgecolor’, 'none', 'facelighting', 'phong’)
title('This 1s meshz graph of the function.')

e
%$This 1s surf graph of the function

figure(2)

surf(X,Y,2, 'facecolor', 'interp', 'Edgecolor', 'none', 'facelighting', 'pho
ng')

axis('on')
title('This 1s surf graph of the function.')

G o e
$This 1s a surface countor of the functaion.
figure (3)

surfc(z, 'facecolor', '1nterp', 'Edgecolor', 'none', 'facelighting', 'phong’
)

colormap hot

axis('on')

title('Thas 1s surfc graph of the function.')

%This 1s surface 1 graph of the function.
figure(4)

surfl (2)

title('This 1s surfl graph of the function.')
shading interp

colormap hot

(ii) Code for the new functions introduced
%

% This Program draws four 3-D coloured graph of different functaion.

% Program developed by Sanjeev Kumar Singh.

% F201 Tortoise functaion

r=-10:.1:10;

[X,Y)=meshgrid(r,r);

Z=abs (sin(X).*exp(abs (100-(X."2+Y."2))/p1)) .7 (.01)+abs(cos(X)
.*exp(abs (100~ (X."2+Y.72))/p1)) .~ (.01);

% F202 (Inverted crosscap function)

r=-10:.1:10;

[X,Y])=meshgrad(r,r);

Z=abs (sin(X).*exp(abs(100-(X."2-Y."2))/p1))."(.1)+abs (s1n(X)
.*exp(abs (100-(X."2+Y."2))/pr))."(.1),

% F203 (Crosscap function)
r=-10:.1:10;
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[X,Y])=meshgrid(r,r);
Z=-(abs(sin(X.*Y) .*exp(abs (100~
(X."2+4Y.72))/pi)) .7 (.01)) .*(abs(cos (X.*Y)

.*exp(abs (100-(X."2+Y."2))/pi}).~(.01));

% F204 (Fourhole table function)

r=-10:.1:10;

[X,Y]=meshgrid(r,r);
Z=-~(abs(sin(X.*Y).*exp(abs(100-(X."2+Y."2))/p1))."(.09))
.*(abs(cos(X.*Y).*exp(abs (100-(X."2+Y.72))/pi))."(.09));

$F205 (Cross on rough ceiling function)

r=-10:.1:10;

[X,Y)=meshgrid(r,r);
Z=-(abs{sin{X.*Y) . *explabs{100-(X."2+Y."2))/pi))."~{.09))

./ (abs{cos{X.*Y) . *exp(abs(100-(X."2+Y."2))/pi))."(.09));

%__- ___________________________________________________________________
% F206 (Crosshut function)

r=-10:.1:10;

[X,Y)=meshgrid(r,r);
Z=(abs(sin(X.*Y).*exp(abs{100-(X."2/3+Y.72/3}))/pi))."(.05))
.*(abs(cos(X.*Y).*exp(abs(100-(X."2/3+Y.72/3))/pi))."(.05));

% F207 (Inverted crosshut function)

=-10:.1:10;

[X,Y]=meshgrid(r, r};
Z=-~(abs(sin(X.*Y).*exp(abs(100-(X."2/3+Y.72/3))/pi))."(.05))
.*(abs(cos(X.*Y).*exp(abs (100~ (X."2/3+Y."~2/3))/pi)) .~ (.05));

$ F208 (Umbrella function)

r=-10:.1:10;

[X,Y)=meshgrid(r,r);

Z=-(abs(ceil ((X."2/3+Y.72/3)).*exp(cerl(abs(100-
(X.%2/3+Y.72/3))/pi))).~(.01))

.*(abs(floor ((X."2/3+Y.72/3)).*exp(floor(abs(100-
(X."2/3+Y.72/3))/pi)) ).~ (.01));

% F209 (Inverted Umbrella function)

r=-10:.1:10;

[X,Y]=meshgrid(r, r);

Z=-(abs(ceil ((X."2/3+Y.72/3)) .*exp{ceil (abs (100
(X.72/3+Y.72/3))/pi))).~(.01))
.*(abs(floor((X."2/3+Y.72/3)) .*exp(floor (abs(100-
(X.72/3+Y.7°2/3))/pi))) .~ (.01));

% F210 (Flower function)

r=-10:.1:10;

[X,Y])=meshgrad{r,r);

Z=(abs(ceil (sqrt (X.”2+Y.72)).*exp(ceil{abs(100-
(X.72+4Y.72))/pi)))y.~(.01)) .

.*(abs (floor (sqrt (X.~2+Y."2)).*exp(floor (abs(100-
(X.72+4Y.72))/pi))) .~ (.01));

% F211 (Royalbaul function)

=-10:.1:10;

[X,Y)=meshgrid(r,r);

Z=@(x) (abs(sin(x(:,1)).*exp{abs(100-(x(:,1).%2+x(:,2).72))/pi)) .~ (-
l)+abs(cos(x(:,1)) .*exp(abs(100-(x(:,1).72+x(:,2).72))/pi))."(-1);

% Code to draw the Graph
$This is mesh graph of the function.
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figure(l)
mesh(X,Y,2)
title('This 1s mesh graph of the function ')

% ________________________________________________________________
$This 1s surf graph of the function
figure(2)

surf(X,Y, 2, 'facecolor', 'interp', 'Edgecolor’', 'none’, 'facelighting’, 'pho
ng')

axis('on')

$view (0, 30)

title('This 1s surf graph of the function.')

$This 1s a surface countor of the function

figure(3)

surfci{X,Y,2, 'facecolor', 'interp', 'Edgecolor’', 'anterp', 'facelaghting’', '
phong')

colormap hot

axis('on')

$view (0, 40)

tatle('This 1s surfc graph of the function.')

% _____________________________________________________________
$This 1s surface 1lluminated graph of the function.
figure(4)

surfl(X,Y,2)

title('Thas 1s surfl graph of the function.')
shading i1nterp

colormap hot

$view(0,60)

Kook ok ok o
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Executed commands for new test functions

% —_—

F201 tortoise=@ (x) (abs(sin(x(:,1)).*exp(abs (100-
(x(:,1).7%2/3+x(:,2).72/3))/p1)) .~ (.05) .*abs (cos (x(:,1)) .*exp(abs (100~
(x(:,1).%2/3+x(:,2) .~2/3))/pi)).*(.05));

[x,f}=diffevolve(tortoise, 250, [-10 -10}, {10 10})
[x,f]=drffevolve(tortoise,50, (-10 -10}, {10 10])
{x, f]=genetic(tortoise, 250, {-10 -10), (10 10})
[x, f]=genetic(tortorse, 50, [-10 -10]), [10 10])

[x, f]=swarm(tortoise, 250, (-10 -10]),[10 101])

[x, f)=swarm(tortoise, 50, [-10 -10], (10 10})

[x, f]=simanneal (tortoise, 250, [-10 -10], (10 10))
[x, f}=simanneal {tortoxise, 50, {-10 -10), (10 10})

G

F202 1crosscap=Q (x) (- {abs (sin(x(:,1).*x(:,2)) . *exp(abs (100-
(x(:,1).%2+4x(:,2).722))/pi)) .~ (.01)) .*(abs(cos(x(:,1).*x(:,2)) .*exp(abs
(100-(x(:,1).%2+4x(:,2).72))/pi)).~(.01)));

[x,f]=diffevolve(1rcrosscap, 250, [-10 -10], (10 10]))
[x,f]=drffevolve(icrosscap, 50, [-10 -10), (10 10])
[x, f]=genetic(1crosscap, 50, (-10 -10], {10 10])

[x, f]=genetic(1crosscap, 250, [-10 -10), (10 10})
[x, f)=swarm(icrosscap, 250, [-10 -10]J, (10 10)])
[x,f}=swarm(icrosscap, 50, [-10 -10], (10 10])

[x, f)=simanneal (1crosscap, 50, (-10 -10}, [10 10})
[x, f}=simanneal (1crosscap, 250, (-10 -101], (10 1Q}])

F203 crosscap=@(x) ((abs(sin(x(:,1) .*x(:,2)) .*exp(abs (100-
(x(:,1).%2+x(:,2).%2))/p2)).7(.01)) .*(abs(cos(x(:,1) .*x(:,2)) . *exp(abs
(100-(x{:,1).%2+x(:,2).22))/pi)) .~ (.01)));

[x,f)=drffevolve(crosscap, 250, [-10 -10), [10 10})
[x, f)=d1ffevolve(crosscap, 50, [-10 -10), (10 10])
[x, f)=genetic(crosscap, 250, [-10 -10],[10 10])
[x, f}=genetic{crosscap, 50, [-10 -10), [10 10))

[x, f]=swarm(crosscap, 50, (-10 -10], (10 10))

[x, f]=swarm(crosscap, 250, (-10 -10], (10 10])

{x, f]=simanneal (crosscap, 250, [-10 -10], {10 10])
(x, f]=s1manneal (crosscap, 50, [-10 -10], (10 10])

% —————

F204 Four-holetable=@(x) (-~ (abs(sin(x(:,1) .*x(:,2)) .*exp (abs (100-
(x(:,1).%2+x(:,2).72))/p2)) .~ (.09)) .*(abs(cos(x(:,1) .*x(:,2)) .*exp(abs
(100-(x(:,1).%2+x(:,2).%2))/pi)).*(.09)));

[x, fl=d1ffevolve(function204, 250, [-10 -10], (10 10))
[x, f]=diffevolve(function204, 50, [-10 -10], (10 10})
[x, fJ=genetic(function204,250, [-10 -10}, {10 10})
[x, fl=genetic(function204,50, (-10 -10}, [10 10])

[x, f}=swarm(function204,50, {-10 -10),[10 10})
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[x, f)=swarm(function204, 250, (-10 -10), (10 10})
[x, f)=simanneal (function204, 250, [-10 -10],(10 10})
[x, f]l=si1manneal (function204,50, [-10 -10], (10 107])

F205 Crossonroughcexrling =@ (x) (- (abs(sin(x(:,1).*x(:,2)).*exp(abs (100
(x(:,1).72+x(:,2).%2))/p2)) .~ (.09))./(abs(cos(x(:,1) .*x(:,2)) .*exp (abs
(100—(x(:,1).72+4x(:,2).°2))/p2)) .2 (.09)));

[x,f)=drffevolve(function205,250, (-10 -10], (10 10))
[x,f)=d1ffevolve(function205,50, (-10 -10}, (10 10})
[x, f]=genetic(function205,250, [-10 -10], (10 10))
{x, f]l=genetic(function205,50, (-10 -10}, (10 10))

[x, f}=swarm(function205,250, (-10 -10}, (10 10}))

[x, fi=swarm(function205,50, (-10 -10}, [10 10}])

[x, f}=simanneal (function205,50, (-10 -10], (10 10])
[x, f]=simanneal (function205,250, [-10 -10],[10 10])

F206 crosshut =@ (x) ((abs(sin(x(:,1).*x(:,2)).*exp (abs (100-
(x(:,1).%2/3+x(:,2).72/3))/pi)) .~ (.05)) .*(abs(cos (x(:,1).*x(:,2)) .*exp
(abs (100-(x(:,1) .%2/3+x(:,2).72/3))/p1)) .~ (.05)));

[x,f)=dirffevolve(function206,250, (-10 -10], (10 10])
[x,f]l=diffevolve(function206,50, (-10 -10], (10 10])
[x, f]=genetic{function206,250, [-10 ~10}, (10 10})
{x, f]=genetic(function206,50, (-10 -10], (10 101}
{x,f]=swarm(function206,50, {-10 -10}, {10 10])
[x,f]l=swarm(function206,250, (-10 -10], (10 10})

[x, f)=s1manneal (function206, 250, [-10 -10}, {10 10))
[x, f]=simanneal (function206, 50, [-10 -10], [10 10])

F207 invertedcrosshut=Q(x) (- (abs(sin(x(:,1).*x(:,2)).*exp(abs(100-
(x(:,1).7%2/34x(:,2).%2/3))/p1)) .~ (.05)) .*(abs(cos(x(:,1) .*x(:,2)).*exp
(abs (100-(x(:,1).%2/3+x(:,2).72/3))/pi)).*(.05)));

[x,f]l=diffevolve(function207,250, (-10 -10], (10 10))
[x,f]l=diffevolve(function207,50,{-10 -10}, (10 10})
[x, f]=genetic (function207,50, (-10 -10], (10 10))

[x, f]=genetic (function207,250, [-10 -10), [10 10])
[x,f)=swarm(function207,250, (-10 -10}, (10 10})

[x, f)=swarm(function207,50, [-10 -10),[10 10})

[x, f}=simanneal (function207,50, [-10 -10), (10 10))
[x, f}=simanneal (function207,250, [-10 -10]),[10 10))

F208 umrella=@ (x) (~

(abs(cexl ((x(:,1).~2/3+x(:,2).”~2/3)) .*exp(cerl (abs (100-
(x(:,1).72/3+x(:,2).72/3))/p1))) .~ (.01)) .*(abs(floor((x(:,1).%2/3+x(:,
2).~2/3)) .*exp(floor(abs (100-(x(:,1).72/34x(:,2).~2/3))/pi}))."~(.01));

[x,f]l=diffevolve(function208,250, (-10 -10}], (10 10})
{x,fl=diffevolve(function208,50, [-10 -10], (10 10})
[x, fl=genetic(function208,50, (-10 -10], (10 10))

[x, f)=genetic (function208,250, [-10 -10]),[10 10])
[x, f)=swarm(function208, 250, {-10 -10}, (10 10])

[x, f]=swarm{funct1on208,50, [-10 -10], [10 10])

[x, f]=simanneal (functi1on208, 50, {(-10 -10}, (10 10})
[x, f)=simanneal (function208, 50, {-10 -10), {10 10))
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F209 invertedumbrella =@ (x) (-

(abs (ceil ((x(:,1) .~2/3+4x(:,2).%2/3)) .*exp(ceil (abs (100-
(x(:,1).722/34x(:,2).22/3))/p1))).~(.01)).*(abs (floor ({(x(:,1)."2/3+x(:,
2).72/3)) .*exp(floor (abs(100-
(x(:,1).72/3+x(:,2).72/3))/p1))) .~ (.01)));

[x,fl=diffevolve(function209, 250, [-10 -10], (10 10}))
[x,f)=d1iffevolve{function209, 50, {-10 -10), {10 10))
{x, f}=genetic(function209,50, {-10 -10), [10 10))

[x, f)=genetic(function209,250, (-10 -10]), (10 10})
fx, f}=swarm(function209, 250, (-10 -10}, {10 10])

[x, fl=swarm(function209,50, [-10 ~10], (10 10])

[x, f)=simanneal (funcction209, 50, (-10 -10}, {10 10]))
[x, f]=simanneal (function209,50, (~10 -10], (10 10})

F210 flower

=@ (x) ((abs(ceil(sgrt (x(:,1).%2+x(:,2)."%2)) .*exp{(cerl (abs (100~
(x(:,1).%2+x(:,2).%2))/p1))) .~ (.01)).*(abs(floor(sgrt (x(:,1).%2+x(:,2)
.~2)) . *exp(floor (abs (100-(x(:,1) ."2+x(:,2).72))/pi))) .~ (.01)));

[x,f)=drffevolve(function210, 250, {-10 -10], [10 10))
[x,f]=d1ffevolve(function210,50, [-10 -10}), (10 10})
[x, fj=genetic(function210,250,{-10 -10], [10 10])
[x, f]=genetic(function210,50, (-10 -10), (10 10})
[x,f)=swarm(function210, 250, [-10 -10], [10 101])

[x, f}=swarm(function210,50, (-10 -10), [10 10})

[x, f)=simanneal (function210, 250, [-10 -10], (10 10])
[x, f]=simanneal (function210,50, [-10 -10], (10 10])

F211 royalbowl=@(x) (abs(sin(x(:,1)) .*exp(abs (100-
(x(:,1).%2+x(:,2) .72))/pi)) .~ (-1)+abs(cos(x{(:,1)) .*exp(abs (100-
(x(:,1).%2+x(:,2) .72))/pi)) .~ (-1);

[x, fl=drffevolve(baul, 250, [-10 -10),[10 10])
[x,f]=diffevolve(baul, 50, {-10 -10], [10 10])
[x, f}=genetic(baul, 250, {~10 -10], [10 10})
[%x, f]=genetic(baul, 50, [-10 -10], [10 10))

{x, f]=swarm(baul, 250, (-10 -10], (10 10})

[x, f]=swarm(baul, 50, [-10 -10], (10 10})

[x, £)=simanneal (baul, 50, [-10 -10], [10 10})
[x, f]=simanneal (baul, 250, [-10 -10}, (10 1))

* ok ok ok ok ok Kk
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