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ABSTRACT 

Over the penod of tIme many populatIon ba~ed evolutIonary algonthm have been 

developed such a<; GenetIc Algonthm (GA), PartIcle Swarm OptImIzatIOn (PSO), SImulated 

Annealing (SA) and DIfferential EvolutIon (DE) GenetIc Algonthm mImIcs the natural process 

of evolutIon SImulated Anneahng explolt<; the physIcal process of cooling of a hquld or solId to 

regain the cry<;talllne <;tructure PartICle Swarm OptImIzatIOn IS inspired by the SOCial behavIOr of 

bIrd flocking and DIfferentIal EvolutIon has ItS ongln In Chebychev polynomial fitting problem 

All the dbove evolutIonary algonthm ha" one thing common, that they have the multI-starting 

pOints whtle ~tartlng the search proces<, But, each of them renews theIr inItial populatIOn also 

known as candIdate solutIOns u"lng theIr parameters dIfferently GA uses the parameters called 

"crossover" dnd "mutdtlon.;;" PSO renew the candIdate '>olutlOn" called partIcles flYing through 

the problem "pace by followmg current optImum partIcle'> SImulated Anneahng u"es a random 

search strategy whIch not only accept'> new posltlom that Increase the objectIve functIon (for 

minImIzatIOn problem,,) but al~o accept the po:-.JtlOn,> whIch decrea:-.e<; the objectIve functIOn 

value~ The latter IS accepted probabtilstIcally based on the Boltzmann-GIbbs dlstnbutIOn 

DIfferentIal EvolutIOn uses three parents to reproduce offspnng by anthmetlc crossover operator 

Though all the above algonthms '>tart'> with the same Inlttal populatIOn (mltlal '>olutlOn), they 

dIffer In a way they reproduce the new set of populatIon (intermedIate solutIOn) and move 

towards the optImum solutIon So, It become" Important to study the performance of all these 

algonthm" on the te~t tunctlon'> There I'> a collectIOn ot te~t functlon~ dvatlable In literature and 

numbers are increasing 

In tune of further development we felt that there I" a need to develop new set of test 

functlon:-. to te<,! the I obu~!ne<,<, ,lOd pedol mdnce ot dbove evolutlondry dlgonthm<; In thl~ ~tudy 

we have developed a ~et ot new te~t functlon~ generated WIth <,peclflc propertIes and coded the 

functIOns In MA TLAB to get the vIsual presentatIons of the functIOns using the mesh and surface 

plotter of the MATLAB The four evolutIOnary optlmlzers such a" DIfferentIal EvolutIOn, 

Genetic algonthm, PartIcle Swarm OptImIzatIOn and SImulated Annealmg have been used to 

find the optImum value ot these newly developed te"t functIOns The algonthm'> run WIth 

dIfferent populatIOn sIzes and for dIfferent number of IteratIOns and results have been recorded In 



tabular fonn The results also have been analyzed and validated based on the minimum values 

found by the optlmlzers 

Since the development ot above famJly of EvolutIOnary Computing algonthms were 

lacking the theoretical base and missing convergence cntena, It became Important to study the 

performance and robustne~') of the above techniques usmg large number of test problems So, as 

a further study on EvolutIOnary Algonthms (EvolutIOnary Computmg) collectIOn of test 

functions <;tarted appearmg Chattopadhyay (1971) studied some class of test functions for 

optimiZatiOn algonthm<; and aho explained the method ot generating test functions with certam 

specIfic propertle<; Comtralned and Uncon')tramed Te'>tlng Environment (CUTE) I~ sUIte for 

FORTRAN ~ubroutlne~, scnpt~ and te~t problem~ for linear and nonlinear optImIzatIOns 1<; a 

large collectIOn of test functlon~ developed by Jorge et al (1981) In tune of further work on test 

functIons, Floudas and Pardalos (1987) published a collectIOn of test problems for constramed 

optImizatIOn and unconstramed optImIzatIon algonthm~ Nagendra (1997) publIshed a catalogue 

of test functIOm to test the performance ot the Evolutionary Algonthm AndreI (2008) also 

added another collectIOn of te<;t functIons for uncomtralned optImizatIOn 

Again In ab'>ence of ~trong convergence CrIterIa, re<;earchers started studYing the 

performance and robustness of the evolutIOnary algonthms uSing the test functIons Ackley 

(1987) published the emplflcal study of vector functIOn optimizatIOn An expenmental study m 

non convex optmllzatlon Wd'> done by Stybllmkl and Tang (1990) Deb (1991) used genetic 

algonthm to optlmlze multi-model function., Fogel (1996) published evolutIonary computatIon 

towards a new phJlosophy of machine Intelligence Mlchalewlcz (1999)' s book entitled "GenetIc 

Algomhms+ Data ~tructure = Evolution program" deals With the real life numencal problem and 

step by step expenmental studies Jason and Konstantlnos (2002) did expenmental study of 

benchmarking te')t function') for Genetic Algonthm Lewl'> (2008) In a "<;urvey of meta­

heumtlc~ technique" argued that all the~e global optlmlzatlon technlque~ falb under the 

EvolutIOnary Computing and known a<; populatIOn based Meta heunstlcs technique 

The aIm of thl~ theSIS IS two fold (I) Development of new test functIOns for the emplflcal study 

evolutIOnary computing such as genetIc Algonthms, PartIcle Swarm OptImIzatIon, SImulated 

Annealing and Differential EvolutIOn'>, (2) Collect the benchmark test function,> avaJiable In 



lIterature and do the comparative study of the above optlmlzer~ usmg the benchmark test 

functIOns 
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CHAPTER 1 

Introduction 

1.1 Empirical Study 

Over the years many a c1a'>s of stochastIc <;earch technIque, have been developed for the 

purpose of complex optImIzatIOn and many varIants of these stochastIc search 

technIques such as evolutIonary algorIthm, Swarm IntellIgence, DIfferentIal EvolutIon 

and SImulated AnnealIng, the lIst can contInue, and they have demonstrated the hIgh 

performance optlmlzers on a clas!> of optImIzatIOn problem The algorIthmIc 

development Involve.., dn IteratIve proce!>'> where the performance a'>sessment plays a 

crucIal role In ImprovIng our under<;tandIng of such optlmlzers and Interplay between 

Its dIfferent components The performance understandIng wIll greatly aId In the future 

development of better evolutIonary optlmlzers Therefore as more advanced 

evolutIonary algorIthms are beIng desIgned, the Issue of performance assessment has 

become IncreasIngly Important However, the asse~sment of evolutIonary algorIthms 

capabIlity I!> not a trIvIal ta"k Due to Its stocha!>tlc nature, the capabIlIty of 

evolutIonary algonthms cannot precIsely determIne before Its actual applIcatIOn as 

dlscu!>sed In ChIam et al (2007) 

The most practIcal and effectIve mean!> for a~"es!>Ing the performance of evolutIonary 

optlmlzers IS vIa an empmcal study, where the evaluated algonthm wIll be applIed to a 

<;et of te"t functIon.., and the evolved !>olutlon wIll be taken as an IndIcatIon of 

algorIthmIc performance Although performance d..,,,e!',!>ment can also be done vIa 

theoretIcal study as dl"cussed In He and Yoo (2003) ThIs approach lacks the 

practIcalIty and flexIbIlIty of empIrIcal InvestIgatIon AgaIn due to the stochastIc nature 

of evolutionary algonthms and ItS complex relatIOnshIp WIth optImIzatIon problem, It IS 

dIffIcult, If not ImpossIble, to establIsh any formal mathematical treatment of 

algonthmlc performance Hence re"earcher<; wIll eIther get lo'>t In the <;wamp of 

complexIty or resort a substantial "lmplIficatlOns before any analY!>ls can be done Due 



Chapter I 

to thIs limItatIon of the theoretIcal ~tudle~, performance asse~sment vIa emplflcal 

approach has been adopted 

In thIs research pertinent to Emplflcal study has been focused on the development of 

new te<;t functIons and the performance d~~e~sment of the optlmlLer~ taken for study on 

thIs class of test problems Also, In thIs the~l~ our attentIon IS on unconstrained Global 

OptImIzatIOn (GO) problem~ for whIch It can be guaranteed that the global minImIzer 

lies within a limited regIon 

Although much work have been done to Improve the reliabIlity of emplflcal studIes, 

there are little or no dl~cu<;slons at all on how It ~hould be conducted WIth adequate 

~ub~tantlallty on theIr '>tdtement~ made on the pertormdnce and behaVIor of the 

evaluated dlgorlthms So, In thl~ ~tudy we hdve deSIgned emplflcal study In follOWing 

manner A new class of test functIOns have been developed and the features of these 

test functIons have been dIscussed to ~how the complexIty of the class of test functIons 

The optImum value of these test functIon have been calculated uSing the dIfferent 

optlmlzers with a set parameter<; and the re<;ults are being compared Because of the 

complexIty of the studIes any statIstIcal analYSIS I~ not conSIdered except to check 

whether the optlmlzers are able to find the optImum value In a CPU tIme or not 

Ab~ence of convergence theorem or very little theoretIc development toward<; the 

convergence cntena as well as the stopping condItIOns, but the abilIty to solve the very 

complex real life global optImIzatIOn problem~ of the evolutIOnary algonthms also 

keeps motIvating the researcher~ to ~tudy the performance of meta-heUristIcs 

(population besed evolutIonary algorlthm~) on the large ~et of test functIons ThIS 

InspIred us to study populatIOn ba,>ed meta-heUristIcs algOrithm'> emplflcally on some 

new test functIOn and some benchmark test functIon ... In thIS the'"" So, It IS Important to 

understand the global optImIzatIOn problems and evolutIonary algonthms popularly 

known as populatIOn based meta-heumtlcs In the next paragraph we explain global 

optImIzatIOn and populatIOn based optImIzatIon 

Global OptlmlLatlOn (GO) 1<; one of the interesting tOPICS of operatIOn research It refers 

to finding the extreme values of a gIven non-convex functIon In a certain feaSIble 

regIon Global OptImIzatIOn problem~ are claSSIfIed In two classes, unconstrained and 

constrained problems While solVing global optImIzatIon problems Dekkers and Aarts 

(1991) had made great gain from the Interest In the Interface between computer ~clence 

2 



Chapter J 

and operatlon~ research All and Torn (2004) worked on population based meta­

heunstlc~ algonthm and presented the nu mencal resu Its Other researchers who also 

contnbuted towards global optimizatIOn techniques are Aluffi-Pentlnl et al (1985), 

Easom (1990), Jansson and Knuppel (1992,1994) ,Levy et al (1981), Schutte (2003), 

Torn and ZllIn'lkas (1989), Van Iwaarden (1996), Pinter (1996) and Dixon and Szego 

(197'),1978) 

The global optimization problem formulated by Easom (1990) In terms of finding the 

pOint x In a solutIOn space set X (called the feasible region) where a certain function 

f X ~ T (called the objective function), attams a mmlmum or a maxImum T In any 

ordered set (u'lually a sub'let of R") The 'let X IS usually a subset of R" defined by 

con~tramt~ g(x) $ 0 or g(ol) ~ 0, where g I~ a set of m pO<;~lble nonlinear 

functlon<; of x The external pOint x can then be written as (XI' t 2 , Xl X,,), and the x, 's 

are sometlme'l called decl~lon vanable~ It IS often practically useful to. express the 

varIable bounds explicItly as XL $ X $ XU (XL, XU E R") Some of the varIables may be 

constrained to only take Integer values (X, E '\II In an Index set Z ~ 11,2,3, n}) Horst 

and PaJdold'> (1995) defined the global optlnllzatlon In Mixed-Integer Nonlinear 

Programming problem (MLNLP) a'l tollow~ 

min I(x) 

g(x) ~ b 

g(-\)5,b 

XL 5, X 5, XU 

\, E Z 'til E Z 

Finding the global optImum for a problem become'l extremely dIffIcult, when the 

problem I'> deceptive, non-convex, nOI'>y and non-dltferentIable In nature Most of the 

optImIzatIon techniques avaIlable In literature stuck to the local minima So, here we 

have tned to study the heunstlcs or more precisely the populatIOn based meta-heuristIcs 

In <;olvlng global optlmlLatlOn problem<; and <;tudle<; the performance empJrlcally 

3 



Chapter 1 

1.2 Evolutionary Algorithms and its Evolution 

The Idea of usmg simulated evolution to ~olve the engmeenng and design problem<; 

have been studied m the 1950s and 1960s Three persons, Box (1958), Fnedberg (1958) 

and Bremmermann (1962) floated the Idea mdependently In the 1960's Rechenberg 

(1965) mtroduced "EvolutIOnary Strategies" to optimize real valued parameters for 

devlce~ such as airfoils Fogel et al (1966) developed "Evolutlonary Programmmg" a 

techmque m which candidate solutlOn~ to given ta<;ks were presented as a fmlte state 

machme~ which were evolved by randomly mutating their state-tranSition diagrams and 

selectmg the fittest Genetic Algonthm (GA) wa~ Introduced by Holland (1962) In 

contrasts, evolutionary strategies and evolutIOnary programming, Holland (1975) 

~tudled the phenomenon of adaptlon a~ It occur~ In nature and to develop ways In 

which the mechamsm~ of natural adaptlon might be Imported mto computer ~ystems 

HIs book "Adaptation In Natural and Artificial System~ presented the genetic algonthm 

as an abstractIOn under genetic algonthm DavIs (1991)'s book "Handbook of Genetic 

Algonthm" were Instrumental m further development In genetic algonthms Tsutsul 

and FUJimoto (1993) developed the forking Genetic Algoflthm with blockmg and 

shnnkmg modes which Increased the <;peed of the algonthm cOn'ilderabely and again m 

T~ubul et al (1997a) modified the forking genetic algonthm with the <;pace divIsion 

scheme BI-populatlOn ~cheme for Real coded Genetic Algonthms was the another 

concept Introduced by T<;utsul et al (1997a) Area of genetic programming wa<; 

developing In parallel and Koza (1992) published a book In "Genetic Programming" 

Deb (2001) published a book entitled "Multi-objective optimizatIOn uSing EvolutIOnary 

Algonthm" were m~trumental In the development of multi-objective optimization uSing 

evolutionary dlgonthm~ 

The above research not only fueled Interest In evolutIOnary computing but they also 

were Instrumental In bnnglng the evolutionary programming, evolutionary ~trategles, 

and genetic algonthrn concepts together In a way that fostered unity and an explOSion 

of new and excltmg forms of evolutIOnary computing Development of evolutIOnary 

computing generation wise can be categones as follows, the fir.,t generation could be 

evolutionary programming by Fogel (1967), genetic algonthm by Holland (1965) and 

evolutionary ~trdtegy by Rechenberg (1965) and Schwefel (1965, 1975, 1977, 1981) 

The second generation evolutionary computing are hybnd genetic search by DaVIS 
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( 1987), "Genetic Evolution + Data Structures = Evolutionary Algonthm" by 

Mlchalewlcz (1999), genetic evolution programs by Koza (1992) and Tabu Search by 

Glover (2006) The third generation evolutIOnary computmgs are artificial Immune 

,>ystem~ by Farmer et al (1986), memetlc algonthm~ by Mo~cato (1989), ant colony 

Optimization by Dongo (1992), cultural algonthm~ by Reynolds (1994), DNA 

Computmg, similar to parallel computmg which takes advantages of many different 

molecules of DNA to try many different possibilities at once, developed by Adleman 

(1994), particle swarm optimization by Kennedy and Eberhart (1995), e~tlmatlOn of 

dl'>tnbutlon algonthm~ ~ome time.., called probabJllstlc model-bulldmg genetic 

algonthm by Larraiiga and Lozano (2002) After this for most of the re~earchers It will 

be mtere'>tmg to see the 4th generation of evolutionary algorithm 

Above three simulated evolution techniques were further used by many researchers to 

solve the real life problems Fogel et al (1966) was concern with solvmg prediction 

problem~ Rechenberg (1965) and Schwefel (1968, 1975, 1977, 1981) were concerned 

In solvmg parameter optimization problem!> Holland (1962) was concerned m 

developmg robust adaptive system Each of the~e re'>earchers successfully developed 

appropriate evolutIOnary computmg for their particular problem mdependently But 

among all the three evolutIOnary techniques, evolutionary computmg became most 

popular technique In United State~, Goldberg (1989) populanzed genetic algonthms 

(famJly of evolutionary computmg) by the book entitled "Genetic AlgOrithms m ~earch, 

optimization and machine learnmg" ThiS book explamed the concept of genetic 

algOrithm m ~uch a way that a wide variety of engmeers and sCientist could understand 

and apply Goldberg (1989) defined genetic algOrithm as a search algOrithms ba~ed on 

the mechaniCS of natural selectIOn and natural Mlchalewlcz (1985) studied on genetic 

algOrithm for numerical optimizatIOn and con~tramts, Pnce (1994) worked on genetic 

annealmg and Tu and Yong (2004) worked on a robu'>t ~tochastlc genetic algOrithm for 

global numerical optimizatIOn 

In'>plred by different natural mteillgence, evolutionary computmg community 

researchers developed other vanants of evolutIOnary algonthms Klrkpatnck et al 

(1983) proposed the Simulated annealing which explOits an analogy between the way m 

which a metal cooh and freeLe'> mto a mmlmum energy crystalline structure 

Simulated annealing IS an optimizatIOn process based on the above phYSical process 

belongs to the population ba~ed meta-heuristic,> In'>plred by the foragmg behaVIOr of 
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ants Dongo (1992) proposed a class of swarm Intelligence populatIon based stochastIc 

optImiZatIOn techmque called ant coloney algonthm In hIS PhD theSIS Eberhart and 

Kennedy (1995) propo~ed another swarm Intelligence computIng called PartIcle Swarm 

optImIzatIon InspIred by the socIal behavIOr of bIrd flockIng or fish schooling PartIcle 

Swarm OptImIzatIon (PSO) share!> many slmJlarltle!> with evolutIOnary computatIOn 

techmques !>uch as genetIc algonthm Later on many vanant!> of partIcle swarm 

appeared In pubhcatlon, to name some of them are LIang and Suganthan (2005) who 

worked on dynamIC multI-swarm partIcle swarm optImIzer and LIang et al (2006) 

worked on comprehenSIve learnIng partIcle !>warm optImIzer In tune of further 

development Storn and Pnce (1997) proposed DIfferential EvolutIon (DE) whJle 

solvIng the Chebychev polynomial fitting problem posed by Storn (1995) whIch later 

on published In a!> book by Pnce et al (2005) 

Since the development of above family of evolutIOnary computing algonthms were 

lackIng the theoretIcal base and mls'>lng convergence cntena, It became Important to 

'>tudy the performance and robu'>tne~,> ot the above technIque" u'>lng large number of 

test problems So, as a further study on evolutIOnary algonthms (~ame as evolutIOnary 

commuting) collectIon of test functIons started appeanng Chattopadhyay (1971) 

studIed some class of te!>t functIons for optImIzatIon algonthms and also explained the 

method of generating test functIons WIth certain speCIfIC propertIes CUTE 

(Constrained and Unconstrained Te!>tlng EnVIronment) I~ sUIte for FORTRAN 

subroutines, ~cnpts and test problem~ for linear and nonlinear optImIzatIons I'> a large 

collection of te"t fu nctlons developed by Jorge et al (1981) More work on test 

functIon, Floudas and Pardalos (1987) published a collectIon of test problems for 

constrained optImIzatIon and unconstrained optImIzatIon algonthms Nagendra (1997) 

published a catalogue of test functIons to test the performance of the evolutIOnary 

algonthm LIang (2005) worked on the noval composItIon test functIons for numencal 

global optImIzatIon, AndreI (2008) ha!> publl!>hed a collectIOn of test functIons for 

unconstrained optImIzatIon AddIS and locatelli (2007) !>tudled a new class of test 

functIon for Global OptimIzatIon and gave a new dIrectIOn to the Empncal study 

research 

As stated above In absence of strong convergence cntena, researchers started studYing 

the performance and robu~tne!>s of the evolutIOnary algonthm" uSing the test functlon~ 

Ackley (1987) published the empmcal study of vector functIon optImIzatIOn An 
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expenmental study In non convex OptlmlLatlOn was done by Stybllnskl and Tang 

(1990) Deb (1991) used genetIc algonthm to optImIze multI-model functIons Fogel 

(1996) published evolutIonary computatIon towards a new philosophy of machine 

intelligence Mlchalewlcz (1999) published a book entitled "GenetIc Algonthms+ Data 

structure = EvolutIon program" whIch deals wIth the real life numencal problem and 

step by ~tep expenmental <,tudle'> Jason and Kon<,tantlnos (2002) dId expenmental 

study of benchmarking te~t functlom for Genetic Algonthm H~le~h (2006) studIed the 

PartIcle Swarm as a gUIded evolutIon strategy for real parameter optImIzatIOn, LeWIS 

(2008) In a "Survey of Meta-heUrIStICS technIque", argued that all these global 

optImIzatIon technlque~ falls under the evolutIonary computing and known as 

populatIon ba,>ed meta- heunstlcs technIque 

1.3 Study Area 

The interactIon between computer sCIence and optImIzatIon has YIelded new practIcal 

solvers for global optImIzatIOn problems, called meta-heunstlcs as defined In Glober 

and Kochenberger (2002) The ~tructure" of meta-heunstlc,> are mainly ba~ed on 

sImulating nature and artIfICIal intelligence tools Meta-heunstlcs mainly Invoke 

exploratIon and exploItatIon search procedures In order to dIversIfy the search all over 

the search space and IntensIfy the search In some promisIng areas Therefore, meta­

heunstlcs cannot easIly be entrapped In local optIma However, meta-heunstlcs are 

computatIonally costly and there IS alway,> a question whether one algonthm will 

perform and find the optImum value for all type of global optlmlLatlOn problem'> SInce 

none of the meta-heun.,tlcs have the '>toppIng cfltena and strong convergence theorm, 

one ha~ to study the performance of these meta-heunstlcs on a large number of test 

problems and If necessary develop new test problems 

1.4. Population based Meta-heuristics 

The term "Meta-heumtlcs" was first proposed by Glover (1986) that contaInS all 

heunstlc'> methods that show eVIdence of achIevIng good quality solutIons for the 

problem of Interest wIthin an acceptable tIme U~ually, meta-heunstlcs offer no 

guarantee of obtaInIng the global solutlon~ Back et al (1991) did a survey of the 

evolutIonary <;trategle<" Bethke (1980) <,ubmItted a doctoral thesl~ on genetIc algonthm 

7 



Chapter I 

as functIOn optimizer, and Bukln (1997) worked on mInimIZIng multi model functIOns 

for contInUou<; variable,> Coello-Coello (1998) surveyed the multl-obJectl ve 

optimization techmques, Suganthan et al (2005) studied the problem defimtlon and 

evolution cntena In real parameter optimizatIOn, Snmvas and Deb (1994) studied non 

domIndted multi-obJective function optlmlldtlon u\lng non-domInated sortIng GenetIc 

Algonthm and Huang et al (2006) worked on ~warm optimizer Denms and Schnabel 

(1983) worked on numencal methods for uncon<;traIned optimization Eberhart et al 

(1996) published a book on "Computational Intelligence" where he explaIned the 

problem solvIng capability of population based meta-heunstlcs Another book who 

explaIned the popu latlon based meta- heurIStIc<; IS "Method for UnconstraIned 

Opt1m12atmn Problem" pubhshed by Kowahk and O..,borne (\%«,) 

Glober and Kochenberger (2002) classIfied meta-heunstlcs Into two classes, 

populatlOn-ba<;ed method~ and pOInt-to-pOInt meta-heumtIc~ methods In the latter 

methods, the search Invoke<; only one ~olutlon at the end of each iteratIOn from which 

the search wIll start In the next IteratIOn On the other hand, the populatIOn-based 

methods Invoke a set of many solutions at the end of each Iteration All and Torn 

(2004) explaIned how genetic algonthm~ are population ba<;ed meta-heumtlcs and tabu 

~earch a<; POInt to POInt Metd- heun'>tlc\ 

Although there are many example" of meta-heumtlcs, In our <;tudy we are gOIng to 

consider the genetic algonthm, particle ~warm optlmllatlon, differential evolutIOn and 

simulated annealing as population based meta-heunstlcs for our empirical study 

1.4.1 Pseudo codes of Evolutionary Computations 

(a) Genetic Algorithm 

Genetic dlgonthm I" search algonthm<; ba<;ed on the mechanics of natural selection and 

natural genetics They combIne survIVal of fittest among the stnng structures with 

structured yet randomized Information exchange to form a search algonthm with some 

of the Innovative flaIr of human search 

Genetic Algonthm (GA) work by evolvll1g a population ot Individuals over a 

number of generations A fit value IS a~slgned to each Individual In the populatIOn, 

where the fitness computation depend,> on the application For each generatIOn, 

Individuals are selected from the population for reproductIOn, the Individual's crosses 

to generate the new Individuals, and new Individuals are mutated with some low 
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mutatIon probabilIty The new mdlvlduab may completely replace the old IndIvIduals 

In the populatIon, wIth a dIstinct generatIons evolved by Goldberg (1989) 

Outline of BaSIC GenetIc Algonthm 

Choose the ~n~t~al populat~ons 
Evaluate each ~nd~v~dual's f~tness 
Determ~ne populat~on's average f~tness 

repeat 
select best rank~ng ~nd~v~duals to reproduce 
mate pa~rs at random 
apply crossover operator 
apply mutat~on operator 
evaluate each ~nd~v~dual's f~tness 
Determ~ne populat~on's average f~tness 

Unt~l term~nat~on cond~t~on ~s met (e g 
the des~red f~tness or enough generat~ons have been 

More elaborately 

One ~nd~v~dual has 
completed 

Stepl Choose a codmg to repre<,ent problem parameter" (Our program uses the real 

codmg of the populatIon), a selectIon operator, a crossover operator, and a 

mutatIOn operator Choose populatIon SIze, n, crossover probabIlity, p< and 

mutatIOn probabilIty pm Imtlahze a random populatIOn of stnngs of sIze I 

Choose a maxImum allowable generatIon number ("I(II Set ( = 0 

Step 2 Evaluate each stnng m the populatIon The program we have used uses the 

evolutIon Via ~urvl val of fitte~t 

Step 3 If t> tmo < or other termInatIon cntena satIsfIed, Termmate 

Step 4 Perform reproductIons on the population The selectIOn scheme we have used 

I~ the tournament ~electlon with a ~huffllng technIque for choo~mg random 

pairs for matIng 

Step 5 Perform cro~sover on random pairs of stnngs, we have used sIngle pomt 

crossover and there IS optIOn for uniform crossover 

Step 6 Perform mutatIon<; on every stnng, the program the Jump mutatIon and creep 

mutatIon Nlchmg (Shanng) I~ also done 

Step 7 Evaluate stnngs In the new populatIon Set t = t + I and go to step 3 
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(b) Particle Swarm Optimization 

Particle Swarm OptimizatIOn (PSO) IS a form of swarm intelligence developed by 

Kennedy and Eberhart (1995) and Kennedy et al (2001) This IS modelled by particles 

In multidimensIOnal space that have a position and a velocity These partiCleS are flYing 

through hyperspace and have two essential reasoning capabilities memory of their own 

best position and knowledge of the swarm's best Members of a swarm communicate 

good positions to each other and adJu~t their own PO!>ltlon and velOCity based on these 

good positIOns There are two main ways thiS communicatIOn IS done 

• a global best that IS known to all 

• "neighborhood" bests where each partIcle only communicates with a subset of 

the swarm about best positIOns 

There are !>everal dIfferent realizatIOns of particle swarm optImization Common to all 

these realization IS the repul!>lon between the particles ThiS can prevent the swarm 

trapped In local minima, which would cause a premature convergence and would lead 

the optimization algonthm to fall to find the global optimum The other vanants use a 

dynamIC scheme In RepulSive PartIcle Swarm OptimIzatIOn as It appears In Mlshra 

(2006) the future velOCIty v,+/ of a partIcle at position x WIth a recent velOCity v, IS 

calculated by 
v,_, = lVV, + Wi (x, - x,) + oiJ'2 (X,,, - x,) + OX'1Z 

where, 

• X IS the POSitIon and v IS the velOCity of the indIvidual particle The sub"cnpts 

t and L + 1 stand for the recent and the next (future) iterations, respectIvely 

• ~,'2,'1 are random numbers, E [0, I], a b ( are comtant" 

• (() IS mertla weight, E [001,07], ~ IS a random velOCIty vector 

• ; I~ the be"t PO"ltlon of a particle, x" I" best POSItion of a randomly chosen 

other partIcle from wlthm the swarm 

(c) Simulated Annealing 

Annealing refer'> to the cooling plOce.,., of liqUid or '>olld and the analy'>I'> of the 

behaVIOr of 5ubstance., a" they cool, when the temperature reduces, the moblllty of 

molecules reduces, With the tendency that molecules may align themselves m a 
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crystalline structure. The aligned structure is the minimum energy state of the system. 

To ensure that this alignment is obtained, cooling must occur at a sufficiently slow rate. 

If the substance is cooled at a too rapid rate, an amorphous state may be reached. 

This idea of alignment in crystalline <;tructure of the substance is being used in 

optImization process. So, speaking in mathematical terminology the minimum energy 

of the system represents the minimum of an objective function. Hence simulated 

annealing is an algorithmic ImplementatIon of the cooling process to find the optimum 

of an objectIve function developed by Kirkpatrick et al. (1983) and Kirkpatrick (1984). 

Also, Corana et al. (1987) studied simulated annealing to minimize the multimodal 

function of continuous variables. Davis and Steenstrup (1986) published the overview 

of genetic algorithm and simulated annealing. 

Simulated Annealing Algorithm: 
Create LnLtLal SolutLon x (0); 
Set LnLtLal temperature, T (0); 
t=O; 
repeat 

Generate new SolutLon, x; 
DetermLne qualLty f(x); 

Calculate acceptance probabLlLty 

P'J =J _/(I)ll_J(I.l !f f(x)<f(x,) 

1 e LhT otherwise 

WhereCb >0. 
Lf U (0, 1):5 acceptance probabd L ty then 

x{ t) = x; 
end 

untLl stoppLng condLtLon LS true; 
Return x (t) as the SolutLon; 

(d) Differential Evolution 

Differential Evolution is a population-based ~earch strategy very similar to 

evolutionary algorithm. The main dIfference is in the reproduction where the offspring 

is created from three parents using arithmetic cross-over operator. Differential 

Evolution is defined for floating-point representation of individuals. The method goes 

in following ways as defined by Storn and Price (1995). 

~ For each parents p, (t) , of generation t, 

11 



Chapter J 

an offspnng, 0, (t) I';; created by the expression (I, (I) = P. J (t) + Z (p J(t) - P. J{t») 

~ for any three randomly selected parent.;; for I) * 12 * 11 and 

11,1 2 , I, - U (I, nq) By selectmg a random number u - U (I ,n,.) where 

n" the number of genes or parameters of a .;;mgle chromosome are 

Then all parameters} = I, nq , If U (0, I) < p.., or If} = u, we get the offspring O'l (r) 

otherwise O'l (r) = P'} (r) Here P., IS the probability of reproduction With p" E [0, I] and 

X IS the .;;calmg factor With X E (0,00) , O'l (r) and P,} (r) are the /" parameter of the 

offspnng and parents 

The algOrithm for the Simple differential evolution goe.;; like thle.; 

In~t~al~ze and evaluate populat~on P 
Wh~le (not done) { 
for (~ = 0 , ~ < ps , ~++) { 

Create cand~date C[~I 
Evaluate C[~I 
~f (C[~I ~s better than P[~I) 

else 

P PO 
} 

PO[~I C[~I 

Create cand~date C[~I 
Randomly select parents P[~l], P[~2], and P[dl where ~1, ~2, and ~3 

are d~fferent 
Create ~n~t~al cand~date Cl[1] = P[11] + fact (P[12] - P[13]l 
Create f~nal cand1date C[~I by cross~ng over the genes of P[~I and 
Cl[~1 as follows 

For ()=O, )< N, )++) ( 

else 

If (U(O,l)<pc) 
C [ ~ 1 [) 1 =c 1 [ ~ 1 [) 1 

C [ ~ 1 [ ) 1 =p [11 [ ) 1 
} 

Here we have random1zed the scal1ng factor as fact = 0 5*rand 

Though there more evolutIOnary algonthm.;; like Ant colony search by Dongo (1992), 

Tabu Search by Glober (1986) which are exten';;lvely u.;;ed to solve the combmatonal 

optimization problem but we have not conSidered for our studies 

1.5 Objectives 

The objective of our study IS to work on the development of the new set of test 

function'> which are more difficult, deceptive, non-convex and nOI'>y m nature The 
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newl y developed test functlOm are to be coded In MA TLAB to give the visual 

pre<;entatlon and analyze the difficulty level of the functions such as the nOise, 

deceptiveness and many local minima from visual presentation Performance of 

optlmlzers mentIOned In introductIOn has been studied and results have been recorded 

In tabular form tor further analy'')'' In .,hort, below tour pOint 1<; obJectlve~ below 

(I) In literature survey we have collec.ted the benchmark test functions All the 

functions have been coded In MATLAB to revl~lt the vl<;ual presentation of these 

test functions The graphs drawn of the benchmark test functIOns and that have 

helped the emplflcal study of the evolutionary optlmlzers 

(II) The <;econd objective was to develop some new test functlon<; The optimum value 

of the newly developed test function') uSing genetic algonthm, particle swarm 

optimizatIOn, differential evolution and Simulated annealing have been calculated 

The study has been done With different set of population ')Ize and the result 1<; 

recorded In tabular form 

(III) The comparative '>tudy of optlmlzer~ mentioned above In objective (II) uSing the 

bench mark test functIOns have been con,)ldered In our investigation and results 

have been recorded In tabular form and conclu<;lon') are drawn 

(IV) The conclUSion of the study has been drawn looking Into the performance of 

above optlmlzers on the new set of test functlon<; 

1.6 Outline of the Thesis 

The theSIS 1<; consist of five chapter') Three APPENDIX has been given at the end of 

the theSIS APPENDIX A contains the large collection of Benchmark test functions 

APPENDIX B contains the MA TLAB code to represent the benchmark and test 

functIOn"> graphically APPENDlX C contain'> the executable code of new lest 

functlon<; Below the bnef introduction of all the five chapter<; are presented 

The chapter-! IS an mtroductory one which hlghllght<; the global optimization With the 

progress and development of the evolutionary computatIOns In fmdlng the global 

optimum values The chapter also discusses the types of evolutionary algonthms With 

ItS pseudo codes of the optlmlzers such as differential evolutIOn, genetic algonthm, 
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partIcle "warm optImIzatIon and <;Imulated annealIng Some optlmlzers lIke ant coloney 

and tabu "earch to solve the combInatorIal optImIzatIon have been dIscussed wIth Its 

p"eudo codes We have presented our obJectlve<; dearly here 

The chapter -2 dIscusses some newly developed unconstramed test functIons m detail 

Here we have placed three set of newly developed test functIons wIth vIsual 

presentatIons From functIon F20 I to F211 1<; one 5et Second set 1<; the generalIzatIon 

of the first <;et ThIrd <;et IS the generalIzatIon and extemlon of some Benchmark te<;t 

functIon" Usmg the Me<;hz Plot, Surf Plot, Surfc Plot and Surfi Plot of the MATLAB 

plotter we have drawn four graph,> to have the dIfferent VISlblhty to gues<; the optImum 

pomts 

In chapter-3 we set up the experIments wIth four optImlzers such as dIfferentIal 

evolutIons, genetIc algOrIthm, partIcle <;warm optImIzatIon and sImulated annealIng to 

record the re<;ults for empIrIcal study In the first table we have recorded the result<; of 

newly developed eleven te<;t functIon (I" <;et) wIth the two set of populatIon sIze 50 and 

250 The second, thIrd and fourth table contams results obtamed wIth two set of 

populatIon sIze (50 and 250) and the result IS recorded at the IteratIons such as 100, 

200, 300,400, 500, 600, 700 and 1000 

Chapter-4 IS a reprInt of our publIshed work A comparatIve study of evolutIOnary 

algOrIthm 1<; performed u<;mg the benchmark test functIons and the results are publIshed 

In Smgh and Borah (2009) and SIngh et al (2009) The bench mark test functIon agam 

coded In MATLAB to get the optImum value from the optlmlzer<; and re<;ults are 

recorded In tabular form and conclusIons are drawn 

Chapter-S IS the conclUSIon of the thsls The dIrectIOn of future research IS also gIven 

here Re'>ult<; have been valIdated from the empIrIcal study on evolutIonary algOrIthm 

USIng newly developed te<;t functlOn5 whIch have been tabulated In chapter 3 The 

conclusIons are also drawn from the re<;ults tabulated In chapter 4 of study on the 

evolutIonary algOrIthm U<;Ing the benchmark test functIOns In short our findmg can be 

stated as "It IS ImpossIble to have an evolutIonary algOrIthm whIch can outperform on 

all class of problems In the domaIns" Hence the study valIdates the "No Free Lunch 

Theorem" by Wolpert and Macready (1997) and Ho and Pepyne (2002) 

******"!-'I< 
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CHAPTER 2 

New Test Functions for Unconstrained 
Global Optimization 

2.1 Introduction 

A set of benchmark test problems have been comldered for testIng the EvolutIOnary 

Algonthm TestIng the algonthms wIth a test functIon wIth mIld dIffIculty may not 

valIdate the algonthm So, It IS Important to consIder the wIde vanety of test functIons 

wIth the degree of dlfflcultle<; In the fIeld of global optImIzatIOn there eXIst a set of te<;t 

functlon<; wIth a lImIted dlmen<;lOn and mIld dIffIcultIes Therefore testIng any Global 

OptImIzatIon (GO) problem') wIth those algonthm') may be not appropnate way to 

valIdate the algorIthm We have collected the large class of test functIon to valIdate the 

Global optImIzatIOn The test functIons have been defIned wIth the magnItude of 

dIfficultIes Many other researchers have worked In generatIon of test functIons and 

collectIon of benchmark test functIons Hock et al (1981), More (1981) , DennIs 

(1985), A verIck et al (1991), Back et al (1991), Bongartz et al (1995), De Jong et al 

(1999) worked on the test problem generator for non statIOnary envIronment, 

ShcherbIna (2002), ShcherbIna et al (2003), Adono (2005) and Mlshra (2006) are 

among those who worked on the collectIon of te<;t functIons or generatIon of test 

functIons to check the performance robustness of the evolutIonary algonthms The 

dIffIcultIes of global optImIzatIon problem depend on many factors Among the most 

relevant one<; 1<; the <;Ize of basIn of attractIOn of the Global OptImIzer, the shape of the 

functIon around the global optImIzer, the classIcal example of the beIng the Rosenbrock 

functIon where the mInImum POInt 1<; mSlde a long narrow and a parabolIc-shaped flat 

valley, whIch makes convergence dIffIcult, dImensIon and hIgh multlmodallty 

In thIs chapter, test problems are presented to test the performance of evolutIOnary 

algonthms consIdered In the the<;ls The')e benchmark te<;t functIon') are deceptIve In 

nature, non-convex nOIsy In mo<;t of the ca<;es of thl~ test problem tradItIOnal method 1<; 

not able to find the optImum value, wherea<; these algonthm<; are able to find the 
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optimum value<; Hence, the study will mvestlgate that which algorithm perfonns better 

on the<;e test SUitS given m section 2 3 The comparative study has been done usmg the 

newly developed te<;t functions For m<;tance<;, the five test functions constructed by 

De-long (1975), popularly known as De-long'<; five te<;t SUit, four are um-model 

contammg only one optimum pomt, and other test functlon<; are multi-model contammg 

multi optimum pomt Sphere func.tlon 1<; smooth, um-model, <;trongly convex and 

symmetric, but has only one optimum pomt Rosenbrock IS considered to be difficult, 

because It has a very narrow ridge, the tip of the ridge IS very sharp, and It runs around 

a parabola Algonthm') that are not able to discover good direction<; underperform m 

this problem Step function IS the representative of the problem of flat surfaces It IS 

piecewise contmuou<; step function Flat '>urface'> are obstacles for optimization 

algonthm'>, because they do not give any mformatlon a'> to which direction IS favorable 

Unless an algorithm has variable step Sizes, It can get stuck on one of the flat plateaus 

The background Idea of the step function IS to make the <;earch more difficult by 

Introduung '>mall plateau" to the topology of an underlymg contmuous function 

Quartic functIOn IS a sImple unl-modal functIon padded With nOIse The GaussIan nOIse 

makes sure that the algOrithm never gets the '>ame value on the same pomt AlgOrithms 

that do not perform well on thiS test function will perfonn poorly on nOIsy data 

Foxholes functIon IS an example of a functIon WIth many local optima Many standard 

optimizatIon algOrithms get stuck m the fIrst peak It fmd,> The Schwefel, Rastrlgm, 

Gnewangk functions are typical example,> of non-linear multlmodal functions 

Rastrlgm's function IS a fairly difficult problem for genetIc algOrithms due to the large 

search space and large number of local mmlma Ra'>trlgm has a complexity of 

o(nln(n)), where n I'> the number of the function parameter,> ThiS function contam'> 

millions of local optIma m the mterval of consideratIOn Schwefel's functIOn IS 

somewhat ea<;ler than Rastngm's function, and IS characterized by a second-best 

mmlmum whIch 1<; far away from the global optimum The<;e are <;ome of the features 

of benchmark test functions 

Below the eleven new te<;t function'> are bemg mtroduced of different complexity and 

dIffIcultIes Some functions are nOIsy In nature Some are dented, non-dIfferentIable 

and deceptive m nature The features of each te<;t functions are explamed m the sectIOn 

24 The vl<;ual pre'>entatlon of these function<; glve<; the characteristic and some Idea 

about the number of optimum (I e local mmlma or local maxima) and also the 
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complexity of the function It Cdn be '>een from the graphical presentation that the test 

function are hIghly multlmodal Large collection of benchmark test functions have been 

presented In APPENDIX A with Its chararctenstlcs In a most exhaustIve manner, but 

this may not be the complete list of test functlon<; 

2.2 Purpose of developing new test functions 

In the field of optimization definition of test problems IS an Important and non-tnvlal 

task Test problems <;hould reflect the wide vanety of dlfflcultle'> encountered when 

<;olv\I'\g prac\lcal problem'> and are e<,sen\\al \1'\ vallda\\I'\g algonthms a<; dIscussed \II 

Addis and locatelli (2007) In the field of Global Optimization there eXI<;t<; the old 

class of te<;t functIon'> (LI<;t of 200 te'>t function,> are provided In Appendix -A) Mo'>t 

of these test function are hmlted In dimensIOn and mild difficulty level and 

ConstraIned and UnconstraIned Testing Environment (CUTE) whIch IS a collectton of 

generalized ver<;lon of the te<;t functlon<; no other generalized ver<;lon of te<;t functions 

are not available The test functIOns presented In Hock-Schlttkowskl (1981) and 

Schlttkow<;kl (1987) employed for constrained local optimizatIOn but many of these test 

problems have several local minimizer,> with different function values and thus also 

appropnate test functIOns for Global optimizatIOn methods In Schoen (1983) a class of 

test functions IS proposed whose global minimizer IS pnon known, whose smoothness 

I'> controllable by means of set of parameters, and fOI which the number and location of 

stationary pOints are controllable by u<;er<; 

Unfortunately, these problems are of limited dimension and of mIld difficulty 

Therefore testIng on them IS not an appropnate way to validate the Global Optlmlzers 

(GO) The purpose of developing the new test functions was to develop a class of test 

function which are ummodal or multlmodal and deceptIve In nature and ItS difficulty 

level can be controlled 

The Interest for new and widely recognized Global Optimization te<;t problems emerged 

In a numbel of recent publicatIOns such as a book pubh,>hed by Floudas et al (1999), 

papers pubhshed by Gavlano et al (2003), Lavor and Maculan (2004), NeumaIer et al 

(2005), Pinter (2002), and the global optImIzatIOn web site (GO-site 2005) 
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2.3 Some newly developed test functions 

Below newly developed test functions are given. The numbers have been written from 

201 because in APPENDIX A a collection 200 benchmark test functions are given. The 

names of these functions have been coined only looking at the visuals of the colored 

dimensional graph. The visual presentations have created using the Meshz Plot, Surf 

Plot, Surfc Plot and Surf) Plot of MA TLAB 7.1 . 

201. Tortoise function: The function is defined as in the domain x , y E (- \ 0, \ 0) 

-.--;- . 
, .... ~'_-;, _~--- 0 

(a) Graph drawn by Meshz Plot (b) Grpah drawn by Surf Plot 

~-- .. 
.--;;;---"", 

--;--

(c) Graph drawn by Surfc Plot (d) Graph drawn by Surfl Plot 

Figure: 2.1 Tortoise Function 

202. I-Crosscap Function: This function is defined as 

11~~ +,21<lOJ I L, 1 1OO-{~+~'I"''' 1 
f(x,y) = sin(xy)e I r~xy)e I • Where x,yE (- \0 , \0) 

18 



(a) Graph drawn by Meshz Plot 

(c) Graph drawn by Surfc Plot 

Figure: 2.2 Crosscap Function 

Chapter 2 

(b) Graph drawn by Surf Plot 

( d) Graph drawn by Surfl Plot 

203. Crosscap Function: The function is defined as 

IIOO-(,.J' oI- ?) I 

f (x, y) = - sin(xy)e S 

10000r .... ·-/ 

, (xy)e z · , where x, yE (- \0 , \0) I ~ I "f"' 

. . 
(a) Graph drawn by Meshz Plot 

(c) Graph drawn by Surfc Plot 

Figure: 2.3 Inverted Crosscap Function 

(b) Graph drawn by Surf Plot 

(d ) Graph drawn by Surfl Plot 
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204. Four-hole table Function: The function is defined as 

(a) Graph drawn by Meshz Plot 

(c) Graph drawn by Surfc Plot 

Figure: 2.4 Four-hole tables Function 

in the domain of x , y E (- 10, I 0) . 

. -. . . 

(b) Graph drawn by Surf Plot 

( d) Graph drawn by Surtl Plot 

205. Cross on rough ceiling Function: The function is defined as 

~
_ IWJ~;+y2f· 
m(xy)e 

f( x y ) - -'----------::::;. in the domain of x, Y E (- I 0 , I 0) ,--, I' 'I~'" I(j(j-,(K'+Y-' . 

xy)e X 

·N .. _,..... ........ _ 

(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot 
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.... - ...... -

Y. .. 

(c)Graph drawn by Surfc Plot (d) Graph drawn by Surfi Plot 

Figure: 2.5 Cross on rough ceiling Function 

206. Crosshut Function: This function is defined as 

X,yE (-10, 10) 

(a) Graph drawn by Meshz Plot 

(c)Graph drawn by Surfc Plot 

Figure: 2.6 Crosshut Function 

in the domain of 

(b) Graph drawn by Surf Plot 

(d) Graph drawn by Surfl Plot 

207. Inverted Crossbut Function: This function is defined as 

in the domain of 

x, Y E (- J 0, J 0) 

21 



r ..... _..,. ...... __ 

, '. 
(a) Graph drawn by Meshz Plot 

(c) Graph drawn by Surfc Plot 

Figure: 2.7 Inverted Crosshut Function 
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(b) Graph drawn by Surf Plot 

(d) Graph drawn by Surfi Plot 

208. Umbrella Function: The function is defined as 

X , Y E (- 10, 10) 

(a) Graph drawn by Meshz Plot (b) Graph drawn by Surf Plot 

(c) Graph drawn by Surfc Plot (d) Graph drawn by Suril Plot 

22 



Chapter 2 

Figure: 2.8 Umbrella Function 

209. Inverted-umbrella Function: The function is defined as 

x,yE (-10, 10) 

(a) Graph drawn by Meshz Plot 

-.- ....... -~ 

(c) Graph drawn by Surfc Plot 

Figure: 2.9 Inverted Umbrella Function 

210. Flower Function: The function is defined as 

x,yE (- 10, 10) 

23 

(b) Graph drawn by Surf Plot 

.... - ..... ---

(d) Graph drawn by Surfi Plot 

in the domain of 



(a) Graph drawn by Meshz Plot 

(c) Graph drawn by Surfc Plot 

Figure: 2.10 Flower function 
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(b) Graph drawn by Surf Plot 

. .. 

(d) Graph drawn by Surfc Plot 

211. Royalbowl Function: This function is defined as 

,..~--" .... --
, , \ 

(a) Graph drawn by Meshz Plot 

-----.... -

(c) Graph drawn by Surfc Plot 

Figure: 2.11 Royalbowl function 

x,yE (- 10, 10) 

" " 

11 I A 
I 

- - -
'" -

s 

(b) Graph drawn by Surf Plot 
-- .. _- .,--

(d) Graph drawn by Surfi Plot 

2.3.1 Generalized version of test functions from 201- 211 

The functions have been generalized from two variables to n number of variables. The 

optimum value of these functions can be calculated just by increasing the dimension of 

variable x. 
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212. Generalized Tortoise Function: The function is defined as 

in the domain of-1O ~ x, ~ 10 

213. Generalized Crosscap Function: The function is defined as 

100-i: .,' 100-i: .,' 
--"'- --"'-

f(x) = sin( 0 x,} 

Jr " 
in the domain of -10 ~ x, ~ 10 . 

214. Generalized four-hole table Function: The function IS defined as 

f(x)=- Sin(Ox,} 

100-i: .,' 
--"'-

Jr 

100-i: .,' 
--"'-

If 

in the domain of -10 ~ x, ~ 10 . 

215. Generalized Cross on rough ceiling Function: The function is defined as 

Sin( D x,)- '~F'l" 
f(x) = -+-------...,.,."-::-T,, 

100-i: .,' 
--"'-

cos( Ox,} 
If 

in the domain of -10 ~ x, ~ 10. 
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216. Generalized Crosshut Function: The function IS defined as 
nn .. 

loo-I,,'!." ,., 
;r 

on .. 

100-t ,,2/' 
,,' 

Chapter 2 

cos( D XI} In the domain of -10 $ x, $10 

217. Generalized Inverted Crosshut function: The function is defined as 

feX)=-Sin(Ux,} 

-lO$X, $10. 

un .. 

100- f. \,11' 

.. I 

" 

"" 100-L 1,111 

"I 

" 
in the domain of 

218. Generalised Umbrella Function The functIOn is defined as 

in the domain of 

X, E (-10, 10) 

219. Generalised Inverted Umbrella Function The function is defined as 

f(x) = -Ii ~x12l111e 
X, E (-10,10) 

100-( t. I,'" 11'''' 
1--"'''''-..' -I 

;r 

Il ~X,2i1 Jle 

IOU-(II""lj'''' 
I---'!":!-' -I 

;r 

in the domain of 

220. Generalized Flower Function: The function is defined as 

26 



Chapter 2 

100-( i: .,') 11111 
1_-"'""--' -I 

f(x)~ r&l · I ]"" 100-( i: ',') 
,01 

in the domain of lwje · 
X, E (-10,10) 

221. Generalized Roya\bow\ Function: This function is defined as 

The function is defined as f (x) = sin (x) e 

" I' 100-L ~}n .. , 
" -, 

100-L t:,~'1 
'01 

" " 
cos(x)e in the domain 

of - \0 ~ x, ~ \0 

2.3.2 Extended version of test functions from 201 to 211 

222. Extended Tortoise Function: The function IS defined as 

1100-( .i:>·!:')1 1100-( .i:>·!:')1 
1112 Jr ;r 

f (x) = L: SIn(x
21

_
I
)e cos(x21 _I )e in the domain of 

,=1 

-IO~x, ~IO 

223. Extended Crosscap Function: This function is defined as 

1
1(1)-( , +' )'""1 IllIll-(';"'-I+,,;,)'"111 ,,/2 '1.-1 ':!, 

f(x)= Lsin(x21_lx21)e " cos(x21 _lx2t)e " ,Where X,YE (-10,10) 
.:1 

224. Extended Inverted Crosscap Function: Thl~ function IS defined as 
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_ 11/2 • l'OO-('l,~+<i.l'"111 
((x) - - L sm(x21_lx21)e COS(X21_IX21)e . Where 

,=1 

r,yE (-10,10) 

225. Extended Four-hole table Function The function is defined as 

in the domain of 

X,yE (-10,10). 

226. Extended cross on rough ceiling Function: The function is defined as 

1/12 

f(x) =-2: , , III" mthedomamof X,yE (-10,10) 
1=1 1100-( \~-I Hi, )1 

COS(X21_IX21 )e 

227. Extended crosshut Function: ThIs function is defined as 

1
100-( 21'+ 21l)un~1 1100-( 211+ 2/l)IIU~1 1112 '21-1 \~. \21-' \21 

f(x) = L sin(x21_,x21)e ,T cos(x21_lx21)e in the domain of 
,:1 

l.",yE (-10,10) 

228. Extended Inverted crosshut Function: ThIs function is defined as 

X,yE (-10,10) 

229. Extended Umbrella Function: The function is defined as 
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in the 

domain of l.",yE (-10,10) 

230. Extended Inverted-Umbrella Function: The function is defined as 

in the 

domaIn of x,yE (-10,10) 

231. Extended Flower Function: The function is defined as 

in the domain 

of x,yE (-10,10). 

232. Extended Royalbowl function: ThIs functIon is defined as 

I ' , -'I I' '-'I 1112 100-( ~~'-I+ "5,) 100-( '"2,-1+'2",) 

f) ~' 1 " ,,, 
. (x = L- SIn(x2,_I)e + COs(x;,_I)e \", yE (-10,10) 

1=1 

2.3.3 Extension of some benchmark test functions 

234. Extended Goldestein Price Function: On x, E [-10,101; i = 1,2 this 2-variable 

function is defined as follows and has f nlln (0, -1) ::: 3. 

where 

11/2 

II = I[I + (X,,_I + X2< + 1)2(19-14x2'_1 +3x~'_1 -14x" +6x2,_IX2, + 3 x;,) ] 
,,:::1 
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tl/2 

12 = I [30 + (2x2,_1 - 3X2,)2 (18 - 32x2,_1 + 12x~'_1 - 48x2, - 36x2,_IX2, + 27 x~,)] 
1=1 

235. Extended Hump Function: It is a 2-variable (m = 2) function with search 

domainr-ss \, SSl; 

(,=1,2) and dual (global) minima j(x') =-1.032 at x·=(±l) (0.0898, -0.7126) It is 

given as 

11/2 

I(x) = I[ 4xi,_1 - 2.lx;,_1 + X~'_I /3 + X2,_I X2, -4xi, + 4x;, ] 
1=1 

" 
236. Extended Hyperellipsoid function: The function is defined as I(x) = Ii x~ 

):1 

with x) E [-\, J] and the minimum value of the function is j' (x) = 0.0. 

237. Extended modified Himmelblau function: The modified Himmelblau function 

has only one global optimum J (I') = 0 aLI' = (3.2) . This (modified) function is given as 

238. Extended leon function: In the search domam XI' X 2 E [-1.2, \.2] this function is 

defined as follows and has jm," (I, 1) = o. 

1//2 

I(x) = I[ C(X2, -xi,_I) + (l-x2,_Y] ; where c=IOO. 
,:1 

239. Extended Matyas function: It is a 2-vanable (m = 2) function with search 

domainl-lOsx, S 101; (, =1.2) and mmimum {().·)=o at J;. =(0, 0). It is given as 

1//2 

I (x) = L [C(X~'_I + x;,) - dX2,_IX2,] ; where c=O.26 d=O.48 
1=2 

240. Extended Me Cormick function: In the search domain XI E [-\ .5,4], x 2 E [-3,4] 

this function IS defined as follows and has fmln (-D.54719, -1.54719) = -1.9133. 
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1112 

I (x) = L [ si n(x2,_1 + x2,) + (X2,_1 - x2Y -I .5x2,_1 + 2.5x2 , + I. ] 
1=1 

241. Extended Quintic function: In the domain x E [-10, 10] with fmln = 0 for 

x, =-1 or 2;i= 1,2, ...... m this function (with mUltiple global minima) is defined as 

I(x) = ilx;~ -3X,4 + 4X,I'; 2X,2 -lOx, -41: x, E [-IO,IO];i = 1,2, 3 ..... m 
1=1 

242. Extended Six hump Camel Function: The camel function is defined as 

The global minimum value of the function is at x" =(.0898,--0.7127) or (.0898, 

0.7127) andf(x") =-1.0316. 

243. Extended three hump camel back function: In the search domain XI' X 2 E [-5,5] 

this function is defined as follows and has fm" (0, 0) = o. 

244. Generalised Styblinskitang function: In the search domain x" x2 E [-5,5] this 

function is defined as follows and has fmln (-2.903534, -2.903534) = -78.332 

I /I 

I (x) = - " (X4 -16x2 + 5x ). 
2 ~ I I I 

/=1 

245. Extended Zettle function: In the search domain XI' X 2 E [-5,5] this function is 

defined as follows and has fmln(--O.0299,0)=--O'()03791 

11/2 

I (x) = L [(X;,_1 + X;, - 2x2,_Y + 0.25x2,_1 ] 
/=1 
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246. Extended Treccani function: The functIOn IS defined as 

where the bounds are 

-3:5 x, :5 3(1 = 1, 2) The global mmlmum I!> at (0,0) and (-2,0) at f(x') = 0 

247. Extended Booth Function: A 2-vanable (m=2) functIOn with search domam 

[-10:5 x, :510], 

(/:::1,2) given as 

"I). 

j(x) = I[ (X2,_1 + 2x2, - 7f + (2x2,_1 + x2, - 5)2 ] 
1=1 

248. Extended Easom function This functIOn IS In 2 vanable!> (m=2) with search 

domaml-IOO::;\,::;IOOJ,Ct=I,2)and {(.\·)=-I at x'=(Jr, Jr) It 15 given a5 

,,/2 

f(x) = - :L [ cOS(X2,_I) co!>(x2) exp[ -(X2,_1 - Jr)2 - (x2, - Jr)2] ] 
1=1 

2.4. Features of the newly developed test functions 

One of the Important features of the newly developed te5t function IS shape of the test 

functions which IS eVident from the coloured dimensional graph for all the test 

functions from 20 I to 211 For example 10 the four hole table functIOn, there are four 

holes 10 the table and the global mmlmum value lIes 10 lowest pomt of any of the four 

holes and '>ame can be explamed for Umbrella function Rest of the features of the test 

functions are gIVen below 

201. Tortoise function: multlmodal function with 2 dimensional test functIOn but has 

been generalIzed up to n-d Imenslonal m te~t-212 

202 I-Crosscap function: multlmodal functIOn with 2 dimensional test functIOn but 

has been generalIzed up to n-dimensional 10 te<;t-213 

203. Crosscap function IS a negative of Cros'>cap multlmodal function with 2 

dimensIOnal test functIon but ha5 been generalILed up to n-dlmen<;IOnal In test-214 
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ThIS functIon IS deceptIve In nature While searching the mInima the algorithm can be 

easIly trapped Into the local mInima 

204. Four-hole table function multlmodal function wIth 2 dImensIOnal test functIon 

but has been generahzed up to n-dImensIOnal In test-2lS ThIs functIon IS deceptIve In 

nature While searching the mInima the algonthm can be easliy trapped Into the local 

mInima 

205 Cross on rough ceiling function multi modal functIOn wIth 2 dImensIonal test 

functIon but has been generahzed up to n-dImensIOnal In test-2l6 

206. Crosshut Function: ummodal functIon wIth 2 d,mens,onal test functIOn but has 

been generahzed up to n-dImensIOnal In te~t-217 

207 Icrosshut function negatIve of Crosshut unimodal functIOn wIth 2 dImensIOnal 

te'>t functIon but ha~ been generailLed up to n-dlmen'>lonal In tec.,t-218 

208 Umbrella function Unimodal functIon wIth 2 dImensIOnal test functIon but has 

been generahzed up to n-dImensIOnal In test-2l9 Thl~ functIon IS deceptIve In nature 

While searching the mInima the algorithm can be easily trapped Into the local mInima 

The dIffIculty level of thIs test functIOns can Increased by decreaSing the hole of the 

stand of the umbrella 

209 I-Umbrella function: NegatIve of Umbrella functIOn, Unimodal functIon wIth 2 

dImensIOnal te<;t functIon but has been generahzed up to n-dImensIOnal In test-220 

ThIs functIon IS deceptIve In nature While searching the mInima the algorithm can be 

easlly trapped Into the local mInima The dIffIculty level of thIS test functIons can 

Increased by decreaSing the hole of the ~tand of the umbrella 

210 Flower Function: UnImodal tunctlOn wIth 2 d,menc."onal te~t functIOn but has 

been generailzed up to n-dImensIonal In test-221 ThIS functIon IS deceptIve In nature 

Whlie searching the mInima the algonthm can be easily trapped Into the local mInima 

The dIffIculty level of thIS test functlon~ can Increased by decreaSing the hole of the 

flower stand 

211 Royalbowl Function: Unimodal functIon wIth 2 dImensIOnal test functIOn but 

has been generahzed up to n-dImensIonal In test-222 
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2.5 Reason that newly developed test functions 
needed for the study 

The difficulty of a global optimizatIOn problem depends on many factors Among the 

most Important one are size of the ndge and ditches. shape of the test functIOns. the 

clas~lcal example I" the Rosenbrok function. where the minimum pOint IS inside a long. 

narrow and parabohc-shaped flat valley. which makes convergence difficult The 

dimension and high multl-modulanty are the feature which makes the convergence 

again difficult 

In thl~ theSIS our main focus IS on the multl-modulanty and the shape of the test 

function Although. we have generahzed the eleven test functions In 212 to 222 and the 

dimenSion of the test functions can be considered up any level. but we have not taken 

thiS feature for our study The shape of the new te~t function IS another aspect which 

can be viewed from the coloured dimensional graph and thiS feature also makes the 

problem difficult to find the global minimum 

The expenment has been conducted uSing the eXI~tlng test functions also and the results 

and diSCUSSion of these study have been Incorporated In chapter-4 and all these results 

have been pubhshed 

We found that there are not many unImodaVmultlmodal test functions are there who are 

deceptive In nature and ItS difficulty level can be Increased by adjusting ItS parameters. 

like one example could be "mddle eye function" Here we have developed some 

difficult te~t functlOm to conduct the expenment~ 

2.6. Summary 

ThiS IS one of the Important chapter of thiS theSIS Here a set of new test functions 

have been developed In section 22 the purpose of developing the set of new test 

functions IS given In the section 2 3. the function,> from 201 to 21 I are given These e 

new test functIOns are of dimenSion two The performance of evolutionary algonthms 

will be studied empmcally uSing these test functions The graphical representatIOn of 

each functions from 201 to 211 has been given In section 3 I. In subsection 2 3 I. the 

functIOn 212 to 221 are the generalization of those functions wIth dimenSion n The 

subsection 232 IS the extended versIOn of the functions 20 I to 211 The subsection 

23" contains the. exten~lon of some benchmark te"t functlon~ which has been 

numbered from 234 to 248 In section 24. the main features of the te~t function have 
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been defined and m sectIon 2 5 the Ju~tlflcatlon that why these new test functIon are 

need for the Empirical Study IS explamed The vIsual presentatIon has been gIven WIth 

four functIons of the MATLAB graphIcs toolbox to get the approxImate VISIOn of the 

optimum pomt through dIfferent color dlmen~lon The fir~t set of eleven test functIons 

are used for empirical study 

******** 
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CHAPTER 3 

Experimental Results of New Test 
Functions 

3.1 The results of the new test functions 
In thl!> chapter, two type expenmenb are being conducted and re!>ults are recorded In 

tablular form In the first expenment, the mmlmum values are obtained by all the four 

optlmlzers for eleven functions such a<; F20 I-Tortoise function, F202- Inverted Cross 

cap function, F203- Cro~s cap function, F204- Four hole table function, F205- Cros!> on 

rough ceIling function, F206- Cross-hut function, F207- Inverted Cross-hut functIOn, 

F208- Umbrella function, F209- Inverted Umbrella function, F210- Flower function 

and F211-Royal-Baul function Each of the functions have dlmen<;lon two discussed In 

chapter 2 The results are recorded m Table 3 I (a) and Table 3 I (b) Parameters such 

as populatIOn size and number of Iterations are fixed as 250, 50 and 100 respectively 

In the second expenment optlmlzers are run for different number of Iterations such as 

100, 200, 300, 400, 500, 600, 700 and 1000 with a population size 250 and 50 The 

minImum value obtamed by Differential Evolution, genetic Algonthm, Particle Swarm 

Optimization and Simulated AnnealIng have been recorded In Table 32 (a) and (b), 

Table 33 (a) and (b), Table 34 (a) and (b) and Table 3 5 (a) and (b) respectively 

3.1.1 Experiment setup 

Parameter !>ett In g<; and machine configuratIon on which expenment have been 

conducted are gIVen below The program for Genetic Algonthm, Differential 

Evolution, Particle Swarm and Simulated Annealing IS developed In MATLAB by 

OldenhlUs (2009) The expenments are conducted uSing MATLAB platform with the 

system configuratIOn as 

OS Name Mlcrosoft Wlndows XP Professlonal 
VerSlon 5 1 2600 SerVlce Pack 2 BUlld 2600 
System Model Presarlo C700 Notebook PC 
System Type X86-based PC, 80 GB HDD 
Processor x 86 famlly 6 Models 15 Stepplng 10 Genulne Intel -1729 
MHz 
Hardware Abstractlon Layer 
(xpsp_sp2_rtm 040803-2158)" 

VerSlon = "5 1 2600 2180 



Total Phys~cal Memory 
Total V~rtual Memory 

512 00 M8 
2 00 G8 
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Through out the expenment we have consIdered the CPU speed to be fixed as the 

system confIguratIon 

Differential Evolution The DIFFEVOL VE(func, popSlZe, Ib,ub) tries to find the 

optImum value of the objectIve tunctlon a~ [func] uSing transversal dIfferential 

evolutIon strategy Population sIze set by [popsILe] and the boundanes for each 

dImensIon IS set by the vectors [Ib] and [ub] respectIvely The [opt, funcval, noofevals] 

= DIFFEVOL VE( ) returns the traJI vector found to YIeld the global optimum In [opt], 

and the corresponding functIon value by [funcval] The total amount of functIon 

evaluatIons that the algOrithm performed IS returned In [noofevals] The scaling factor 

IS being set 0 5 and It IS randomIze wIth a fact=O.S*rand The crossover probabIlity IS 

09 The program runs for pop sIze 50 and 250 and the algOrithm IS run for 100 

iteratIons and result IS being recorded Here we have not recorded the functIon 

evaluatIons 

Genetic Algorithm: The InitIal parameters for genetIc algOrithm are set as default For 

example, the crossover probablllty= 09 IS the probabIlity that the IndIvIdual will 

perform a crossover The mutatIon probabIlity = 001, IS the probabilIty that indIvIdual 

will mutate The 'Genetlc optImIzer GENETIC(func, popslLe, Ib, ub) tries to fund the 

global optImum of the fitness functIon [func] u~lng the basIC GenetIc AlgOrithm (real 

coded) The crossover operator IS Implemented In tollowlng way 

% generate parents ~nd~ces 
parents~nds = 1, 

wh~le (rem(sum(parents~nds), 2) > 0 I I (sum(parents~nds) 0)) 
parents~nds = rand(pops~ze, 1) < crossprob, 

end 
parents = pop (parents~nds, ) , 
parents~nds = popvec(parents~nds), 

% random~ze order of parents 
[dummy, ~ndsl = sort(rand(s~ze(parents, 1), 1), 1), 
parents = parents (~nds, ), 
% separate sexes 
numparents = s~ze(parents, 1), 
faths parents(l 2 numparents, ), 
moths parents(2 2 numparents, ), 
% determ~ne crossoverpo~nts 
numcrosses numparents I 2, 
crosspos round ( (d~ms-1) *rand ( numcrosses, 1 ) + 1 ), 
crosspos numcrosses * (crosspos - 1) + (l numcrosses) 0, 
tempmatr~x zeros(s~ze(moths)), 

tempmatr~x(crosspos) = true, 
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crosspos = cumsum(tempmatr1x, 2), 
% spawn chl.ldren 
daughs -crosspos * moths, 
daughs daughters + faths * crosspos, 
sons -crosspos * faths, 
sons son + moths * crosspos, 
ch1ldren [daughs, sons), 

The mutat10n operator lS 1mplemented 1n followlng way 

mutat10ns 
mut1nd 
pop(mut1nd) 

rand(pops1ze, d1ms) *range + m1ns, 
rand(pops1ze, d1ms) < mutat1onprob, 
mutat1ons(mut1nd) , 

Chapter 3 

Default maxImum number of IteratIOn has been set 100 But the results have also been 

taken for 200,300,400,500,600 and 1000 wIth pop sIze 50 and 250 

Particle Swarm Optimization The SWARM( func, popslze, Ib,ub) tnes to find the 

optImum value of the objectIve functIon as [func] uSing transversal dIfferentIal 

evolutIon ,>trategy PopulatIon ~Ize ~et by [pop~ILe) and the boundaries for each 

dimenSion IS set by the vectors [Ib] and [ub] respectIvely The [opt, funcval, noofevals] 

= SW ARM( ) returns the trail vector found to Yield the global optimum In [opt], and 

the corre~pondmg function value by [funcval] The total amount of functIon evaluatlon~ 

that the algonthm performed IS returned m [noofevals] The parameters are being set as 

771 = 2, SOCial factor when the popu latlOn mteract with each other 772 = 2, Cooperative 

factor means each population passes the mformatlon to ItS Immediate neIghbor m left 

and nght 771 = 05, Nostalgia factor mean') the each populatIon remembers ItS prevIOus 

optimum value (jJ = 0 5 Inertial factor, numnelghbour,>=5, amount of nelghbor~ for 

each particle Convalue = 150, maxImum number of Iterations wIthout Improvement 

Simulated Annealing The SIMANNEAL(func, popslze,lb,ub) tnes to find the 

optimum v.:tlue of the objective function a'> [func] u~mg population based sImulated 

annealing strategy Population size set by [popsILe] and the boundarIes for each 

dImension IS !>et by the vector') [Ib) and [ub] re"'pectlvely The [opt, funcval, noofevals] 

= SIMANNEAL( ) returns the trail vector found to YIeld the global optImum In [opt], 

and the corresponding functIon value by [funcval] The total amount of functIOn 

evaluatIons that the algonthm performed I'> returned m [noofevals] The parameters TO 

= I (mltlal temperature), mmT = le-8 (final temperature), k = I (Boltzmann constant) 
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and maximum iteratIOn = 100 before the cooling scheduling IS applied. The cooling 

schedule = (mmt) " (I Imaxlter) 

Function setup and code example: First the function" to be optimized are bemg coded 

m MATLAB programming code, and then It IS passed through the optImizer WIth the 

external parameters In followmg way 

eleon=@(x)sum( (100* (x(:, 2.2:end)-x(·, 1:2 .end-I). A2)) + (l-x(:, 1:2 :end-
1) . A 2) i 

[x,f]=DIFFEVOLVE(eleon,250,-1.2*ones(1, 10),1.2*ones(1,10)) 
[x,f]=5WARM(eleon,250,-1.2*ones(1,10), 1.2*ones(1,10)) 
[x,f]=GENETIC(eleon,250,-1.2*ones(1,10),1.2*ones(1,10)) 
[x,f]=SIMANNEAL(eleon,250,-1 2*ones(1,10),1.2*ones(l,10)). The code 
for all other functlons has been glven In APPENDIX B. 

3.1.2 Expeimental results 

Table 3.1 (a) OptImum Values obtained by Differential Evolution and GenetIc 

Algorithm 

Fn. PS Differential Evolution Genetic Algorithm 

Optimum point Optimum Value Optimum point Optimum value 

F201 250 94249, -29999 I 9 1752 I 5 I e+Ooo 31416,94822 I 90030274e+000 
F201 50 -15717, -99134 I 9369496ge+000 9 4249, 29275 I 93180513e+000 
F202 250 o 7097, -0 7092 -186189748e+000 07936, -06753 -I 861 67298e+000 
F202 50 07138, 07152 -I 86189372e+Ooo -05890, 07149 -I 86134062e+000 
F203 250 03168, 99167 9 21214865e-00 I 61622 ,79022 9 29639992e-00 I 
F203 50 61013, 77237 949330125e-001 5 5069, -8 2709 957970538e-001 
F204 250 -0 7072 , 0 7084 -2 68906905e+002 07491, 06609 -2 68784 I 25e+002 
F204 50 -0 7128, -0 7099 -268905747e+002 07549, -06578 -268759895e+002 
F205 250 03811 , -4 1214 -2 55748852e+000 I 6964 , -6 481 8 -2 26232943e+OOO 
F205 50 -5 8533, 5 0988 -2 40525045e+000 03911,40137 -2 87854522e+000 
F206 250 - 9 9012, -9 5192 2 45693245e+000 98920 ,-98461 2 39 I 97687e+000 
F206 50 - 98840, 96959 256304786e+000 - 9 9061, -99749 2 6901 2588e+000 
F207 250 -08215, 08278 -229402230e+001 -0 8135 , -0 8149 -2 29394581 e+OO I 
F207 50 o 8 166 , 0 8263 -229401223e+001 -08002 , -08787 -22937553Ie+001 
F208 250 -03819, I 1534 O.OOOOOOOOe+OOO -08200 12718 O.OOOOOOOOe+OOO 
F208 50 00563, -I 5010 0.00000000e+000 -08200 12718 O.OOOOOOOOe+OOO 
F209 250 -2 5270, -0 1457 -1.91155605e+000 -20950, I 4744 -1.9115560Se+000 
F209 50 18102, 17261 -1.9115560Se+000 -06659, 24363 ·1.91155605e+OOO 
F210 250 -06513, 05427 o oooooooOe+Ooo *** *** 
F210 50 03599, -08754 o OOOOOOOOe+Ooo *** *** 
F211 250 06516, -00008 4 9894925ge-0 14 06507, 00344 499137030e-014 
F211 50 06513, -00000 4 98949084e-0 14 06608, 01126 5 0 I 056034e-0 14 
Legends: Fn Name of the functIOn, PS Population Size, 

Note: All eleven newl y developed te'>! functIons F20 I to F211 are gl ven In chapter 2 , ~ectlOn 

23, pp 20 

In the Table 3.1 (a) above the optimum pOint and optImum value of the eleven test 

functlon~ have been obtamed u~mg two optJnllzer~ VIZ Differential Evolution and 

Genetic AlgOrithm With two set ot population size 250 and 50. The values m bold face 
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IS the best value obtained by the optimizer The **'1" value means the optimizer could 

not find the optimum value and It has resulted In overflow 

From the above Table It 1<, ob-.erved that for function F209 Differential EvolutIon and 

GenetIc Algonthm have gIven the best value, whereas for other functIons GenetIc 

Algonthm could not perform better than the other optlmlzers such as particle swarm or 

sImulated annealing 

Table 3.1 (b) Optimum Value obtained by PartIcle Swarm OptimizatIOn anc;i Simulated 

A I nnea 109 
Fn. PS Particle Swarm Optimization Simulated Annealing 

Optimum pomt Optimum value Optimum point Optimum value 

F201 250 -I 5707, 98985 I 91049833e+OOO -78540. 6 1899 1.88780730e+OOO 
F201 50 94248. 3 1703 1.885723 I3e+OOO 9 4248. -3 3427 1 88745345e+OOO 

F202 250 -07085. 07085 -186189758e+OOO 9 9993. -9 9996 -1.87444747e+OOO 
F202 50 07085. 07085 -I 86189758e+OOO 9 9996 . -9 9992 -1.87444232e+OOO 

F203 250 -73669. 66099 9 05 1672 16e-00 I 98966, 15872 8.61537441e-OOI 
F203 50 -62256. 78217 9 07984434e-00 I 9 1756. -3 7662 8.95986856e-OOl 

F204 250 -07085. 07085 -2.68906986e+OO2 99996. 99991 -2 856521 9ge+002 

F204 50 07085. 07085 -2.68906986e+OO2 -99997. 99972 -2 85532368e+002 
F205 250 -25053 8 1509 -3.81 1 58493e+OOO -'i 6181 -69898 -349271313e+OOO 

F205 50 -74480. 02109 -3.36532242e+OOO -95173. -94076 -291218118e+OOO 
F206 250 -99779. 97605 1.5558207ge+OOO 9 9480. -94740 I 85613381e+OOO 

F206 50 98851. 98521 1.58416460e+OOO -9 9585. -9 9372 I 9709478le+OOO 

F207 250 -08255. 08249 -2.29402342e+OOl 08238. 08262 -2 29402328e+OO I 

F207 50 o 8251. -0 8251 -2.29402343e+OOl -08254. 08266 -2 29402293e+OO I 
F208 250 -I 0379. 05254 O.OOOOOOOOe+OOO -14606. -04748 O.OOOOOOOOe+OOO 
F208 50 -05708. 13242 O.oooooooOe+OOO -I 4546. -0 3751 O.oooooooOe+OOO 

F209 250 15023. 23486 -1.91155605e+OOO 26232. 01239 -1.91155605e+OOO 
F209 50 -05622. 25566 -1.91155605e+OOO 2 5978. 06155 -1.91155605e+OOO 

F210 250 02023. 07588 O.OOOOOOOOe+OOO o 6036. -0 0628 O.oooooooOe+OOO 

F210 50 -04052. 05276 O.oooooooOe+OOO -00593. 04253 O.OOOOOOOOe+OOO 
F211 250 06513. 00000 4 98949084e-0 14 -9 9971. -9 9988 4.67427986e-014 
F211 50 -06513. 00000 4 98949084e-0 14 06513. -00032 498950694e-014 

Legends: Fn Name of the functIOn, PS PopulatIOn Size 

Note: All eleven newl y developed test functIons F20 I to F211 are gl ven In chapter 2 , sectIOn 

23, pp 20 

In the Table 3 I (b) above the optimum pomt and optImum value of the eleven test 

functIons have been obtamed usmg two optlmlzers VIZ PartIcle Swarm OptImIzation 

and SImulated Annealing with two set of population size 250 and 50 The values 10 

bold face IS the best value obtained by the optImIzer with that populatIon sIze It IS 

observed from the above table that the PartIcle Swarm and SImulated Annealing have 

performed better on F20 I then DIfferential Evolution and GenetIc Algonthm For 

functIon F202. F203, F209 and F211 SImulated annealing has outperformed all other 
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optlmlzers For functIons F204, F205, F206, F207, F208, F209 and F210 PartIcle 

swarm have outperformed all other algonthms For functIon F209 all the four 

optlmlzers, consIdered In our investIgatIOn have gIven the same value wIth both the set 

of populatIOn sIze 

3.2 Results recorded from the Differential Evolution at 
different iterations 

The expenmental setup IS kept hke above and number of iteratIons IS being changed to 

200,300,400,500,600,700 and 1000 for all the four optlmlzers The result obtamed from 

DIfferential EvolutIOn have been recorded In Table 3 2(a) &Table 3 2(b) 

Table 3.2 (a) OptImum value~ of the functIon'> recoeded by dIfferentIal evolutIOn for 
100,200, 300, 400 Iterations 

Fn. PS Differential Evolution 
100 200 300 400 

F201 250 1.91752151e+OOO 2 606070 12e+OOO 1 92969629e+000 1 92128170e+OOO 
F201 50 1 9369496ge+OOO 2 45892574e+000 1 95692161 e+OOO 1 92789217e+OOO 
F202 250 -I 86189748e+OOO -I 86189751 e+OOO -I 8618956ge+OOO -I 86189428e+000 
F202 50 -I 86189372e+OOO -I 86189523e+OOO -I 86189236e+OOO -I 86189440e+000 
F203 250 921214865e-001 9 21214865e-00 1 9 23446408e-00 1 8.88070077e-OOI 
F203 50 949330125e-001 949330 1 25e-00 1 9 541 86491 e-OO 1 9 42273525e-00 1 
F204 250 -2 68906905e+002 -2 6890690ge+002 -2 68906845e+002 -26890687ge+002 
F204 50 ·268905747e+002 -2 68906677e+002 -2 68905523e+002 -268904703e+002 
F205 250 -255748852e+OOO ·242648317e+000 -287730783e+OOO -284647550e+000 
F205 50 ·2 40525045e+OOO -I 97432970e+000 -2 09707 1 92e+OOO -254237071 e+OOO 
F206 250 2.45693245e+OOO 4 62045594e+000 4 16443314e+000 4 53838033e+OOO 
F206 50 2 56304786e+OOO 5 14521467e+000 5 20364223e+000 5 19345740e+OOO 
F207 250 ·229402230e+OOI -229401978e+001 ·22940132ge+OOl ·2 29401 1 8ge+00 1 
F207 50 -2 2940 1 223e+OO 1 -229400814e+001 -2 2940228ge+OO I -2 29400960e+00 1 
F208 250 O.ooOOOOOOe+OOO 0.00000000e+000 O.OOOOOOOOe+OOO O.OooooOOOe+OOO 
F208 )0 O.ooOOooOOe+OOO O.OOooOOOOe+OOO O.OOOOooOOe+OOO O.OooooOOOe+OOO 
F209 250 ·1.91155605e+OOO -1.91155605e+000 ·1.91155605e+OOO ·1.91155605e+000 
F209 50 ·1.91155605e+OOO -1.91 I 5560Se+000 -1.911SS60Se+OOO -1.9115S60Se+000 
F210 250 O.ooOooOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OooooOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+ooO O.ooOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 250 4 9894925ge-0 14 4 98949481 e-O 14 4 98952356e-0 14 4 98949393e-0 14 
F211 50 4.98949084e-014 4.98949084e-0 14 4 98965805e-0 14 4. 98949084e-0 14 
Legends: Fn Name of the functIOn, PS PopulatIOn SIze 

Note: All eleven newly developed test functlOn~ F201 to F211 are gIven In chapter 2, section 
23, pp 20 

The optImum value of the eleven test functIOns have been obtained by DIfferentIal 

EvolutIon wIth two set ot population '>Ize 250 and 50 at the IteratIOns 100,200,300 and 

400 and recorded In Table 32 (a) The values In bold face IS the best value obtained 

by the optImIzer with that populatIOn sIze From the table It IS observed that 

DIfferential EvolutIOn has gIven the best value for the functIOn F20 I at 100 IteratIons, 
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F203 at 400 IteratIOns, F204 at 200 IteratIOnl>, F205 at 300 IteratIons, and F206 at 100 

letratlOns For functIons F208, F209 and F21 0 the optImum value does not change after 

Increasing the no of IteratIOn" respectIvely 

Table 3.2 (b) OptImum values of the functIons recoeded by dIfferentIal evolutIon for 
500 600 700 1000 IteratIons , , , 

Fn. PS Differential Evolution 
500 600 700 1000 

F201 250 1 93 1 86832e+OOO 1 92956354e+OOO 1 9355140ge+000 1 9248041ge+OOO 
F201 50 1 92848808e+OOO 1 92875804e+OOO 1 91824795e+000 1 93285085e+OOO 
F202 250 -I 86189744e+OOO -I 86189744e+OOO -I 86189753e+OOO -I 86189585e+OOO 
F202 50 -I 86189561 e+OOO -1.86189651e+OOO -I 86189428e+OOO -I 86189534e+OOO 
F203 250 926358931e-001 9 22588980e-00 1 9 2245591 5e-OO 1 9 36622066e-00 I 
F203 50 937265807e-001 9 4041 992ge-00 I 9 46030396e-OO 1 9 46160 I03e-00 1 
F204 250 -268905114e+002 -2 6890684ge+002 -2 6890641 5e+002 -2 68906976e+OO2 
F204 50 -268906777e+002 -2.68903963e+002 -2 689053 1 3e+002 -2 68906717e+OO2 
F205 250 -20543515ge+OOO -2 82959056e+OOO -2 452 1 2838e+OOO -2 15456991 e+OOO 
F205 50 -2.7346 12 1 7e+OOO -2 30531 027e+000 -2 65383976e+OOO -23571398Ie+OOO 
F206 250 44226461ge+OOO 4 68592524e+OOO 5 00527646e+000 3 98279703e+OOO 
F206 SO 463434923e+OOO 5 661 09600e+OOO 463151441e+000 5 75338253e+OOO 
F207 250 -229401 595e+OO 1 -2.29402304e+OOl -2 2940 1 384e+OO 1 -2 29402261 e+OO 1 
F207 SO -2 29402343e+OO 1 -229399390e+001 -2 2940 1 323e+OO 1 -229401 597e+OO 1 
F208 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -1.91155605e+OOO -1.9U55605e+OOO -1.91155605e+oOO -1.91155605e+OOO 
F209 SO -1.91155605e+OOO -1.91 1 55605e+OOO -1. 91155605e+OOO -1. 91155605e+OOO 
F210 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 2'iO 4 98950768e-0 14 4 9895051ge-O 14 4 98953163e-0 14 4.98977918e-OI4 
F211 50 498955474e-014 4 98954565e-O 14 498980698e-014 498952548e-OI4 
Legends: Fn Name of the functIOn, PS PopulatIOn Size 

Note: All eleven newly developed test functions F201 to F211 are given In chapter 2, section 
23, pp 20 

In the table 3 2 (b) above the optImum value of the eleven test functIons have been 

obtained by DIfferential EvolutIon wIth two set of populatIon sIze 250 and 50 at the 

IteratIons 500, 600, 700 and 1000 The values In bold face IS the best value obtaIned by 

the optImIzer wIth the populatIOn sIze 250 and 50 It IS observed In the table that 

DIfferential EvolutIOn has gIven the optImum value for F20 I wIth populatIon sIze 50 

and F202 wIth pop sIze 250 at 700 IteratIOns Also for F202, F203 and F204 the 

optImIzer has gIven the best value at 700, 500, 600 and 700 respectIvely For the 

functlonl> F208, F209, F210 and F211 the value remaInS unchanged, after increasIng the 

number of IteratIonl> 
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3.3 Results recorded from the Genetic Algorithm at 
different iterations 

Table 3.3 (a) Optimum values of the functions recoeded by Genetic Algorithms at 
100,200, 300,400 iterations 

Fn. PS Genetic Algorithm 
100 200 300 400 

F201 250 204949000e+OOO 192416337e+000 I 93374375e+000 I 9 I 354830e+OOO 
F201 SO 2 622531 28e+OOO I 94895262e+000 I 95608050e+000 I 94945681 e+OOO 
F202 250 -I 861 67298e+OOO -I 86 I 891 84e+000 -I 86189122e+OOO -I 86185251 e+OOO 
F202 50 -I 86134062e+OOO -I 86178770e+000 -I 86164848e+OOO -1.86183452e+OOO 
F203 250 929639992e-001 9 I 8600422e-00 I 9 331 59688e-00 1 9 25872868e-00 1 
F203 SO 957970538e-001 9 59775667e-00 I 953196131e-001 9 45252476e-OO 1 
F204 250 -2 68784 1 25e+002 -2 76758 I 57e+002 -2 68798408e+002 -2 68906121 e+002 
F204 50 -2 68759895e+002 -268664793e+002 -268720667e+002 -2 6834 1 625e+002 
F205 250 -2 26232943e+OOO -3 26335208e+000 -2 82682342e+OOO -2 23202944e+000 
F205 50 -I 87854522e+OOO -2 29652881e+000 -2 08575 158e+OOO ·2.4575216ge+OOO 
F206 250 5 2646904ge+OOO 4 7004736Ie+000 4 15435657e+000 4 23678523e+OOO 
F206 SO 5 20870500e+OOO 4.81 554194e+000 5 64967604e+000 5 95678427e+OOO 
F207 250 -2 29394581 e+OO I -229398934e+001 -2 29385071 e+OO I -229401261 e+OO I 
F207 50 -229375531 e+OO I -2 290640 18e+00 1 -2 29321000e+OO 1 -22913012Ie+001 
F208 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 SO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -I 91 155605e+OOO I 91 155605e+000 Re~ult fluctuate Re~ult fluctuate 
F209 SO -I 911 55605e+OOO -I 91 I 55605e+000 Re~ult fluctuate Re~ult fluctuate 
F210 250 *** overflow overflow overflow 
F210 50 *** overflow overflow overflow 
F211 250 499137030e-014 5 004541 56e-0 14 5 00084036e-0 14 4 99027284e-0 14 
F211 50 5 01 056034e-0 14, 4 99699160e-0 14 5 00 I 02078e-0 14 4.90737275e-014 
Legends: Fn Name of the functIon, PS Popul<ltlon SIze 

Note: All eleven newly developed test functlon~ F201 to F211 are gIven In chapter 2, sectIon 

23, pp 20 

In Table 3 3 (a) the optimum value of the eleven test functions have been obtained by 

Genetic Algorithm with two set of populatIOn size 250 and 50 at the iteratIOns 100, 200, 

300 and 400 The values In bold face are the best value obtained by the optimizer with 

that population size The ~H value denote the overflow, means the optlmlzers did not 

converge From the above table It I:' ob<,erved that Genetic Algorithm finds the best 

value for functions F202, F204, F205 at the iterations 400, 200 and 400 respectively 

For the function F208 the value remains unchanged after Jnceaslng the number of 

Iterations For F209, F21 0 the Optimizer, gives the fluctuating value or It overflows For 

F21 I, the best value IS obtained at the iterations 300 and 400 
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Table 3.3 (b) Optimum values of the functions recoeded by Genetic Algonthms for 
500 600 700 1000 Iterations , , , 

Fn. PS Genetic Algorithm 
500 600 700 1000 

F201 250 1 941 8829ge+OOO 1.905418ooe+OOO 1 95307818e+000 1 91901756e+OOO 
F201 50 193386611e+OOO 1 94029430e+OOO 1 95091865e+000 1 93946091 e+OOO 
F202 250 -I 8617 1 445e+OOO -18618727Ie+OOO -I 8646931 1 e+OOO -I 87077152e+OOO 
F202 50 -I 86156356e+OOO -I 86142687e+OOO ·186067167e+OOO -I 86171268e+OOO 
F203 250 9.07322728e-00I 935419787e-001 9 32422247e-OO 1 9 39023920e-00 1 
F203 50 942806955e-001 9 48458557e-00 1 9 648 17071 e-OO 1 9 391 36908e-OO 1 
F204 250 -268730251e+002 ·2 6873007ge+002 ·268890284e+002 -268871366e+OO2 
F204 50 -2.68892538e+002 ·2 68800296e+002 -2 68847171 e+002 -26879889Ie+OO2 
F205 250 ·227214723e+OOO -2 30373267e+OOO -249500243e+OOO ·251221115e+OOO 
F205 50 ·2 36650898e+OOO ·2 27402 1 62e+OOO -2 17168158e+OOO -22282232ge+OOO 
F206 250 3.78401822e+OOO 5 09392847e+OOO 4 29985636e+OOO 5 2495 1 893e+OOO 
F206 50 5 48705784e+OOO 5 4445389ge+OOO 4 95 1 47933e+000 5 90572643e+OOO 
F207 250 -2 29387837e+OO 1 -229391994e+001 ·229401917e+OOI ·229389772e+OOI 
F207 50 -2 29326382e+OO 1 -2.29400122e+OOI ·229314146e+OOI -2 293861 3ge+OO 1 
F208 250 O.ooOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.ooOOOOOOe+OOO O.OOOOOOOOe+ooO O.ooOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 O.ooOOOOOOe+OOO O.OOOOOOOOe+ooO O.ooOOOOOOe+OOO O.OooooOOOe+OOO 
F209 50 O.ooOOOOOOe+OOO O.OOOOOOOOe+ooO O.ooOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 250 overflow overflow overflow overflow 
F210 50 overflow overflow overflow overflow 
F211 250 4 9941308ge-0 14 4 99940452e-0 14 4 99363483e-0 14 4 98411 078e-0 14 
F211 50 5 003921 92e-0 14 5 02 1 04377e-0 1 4 5 1 1 792540e-0 14 5 00633 123e-0 14 
Legends: Fn Name of the function, PS Population Size 

Note: All eleven newly developed te'>t function,> F20 I to F211 are given In chapter 2 , ~ect\On 
23, pp 20 

In the Table 3.3 (b), The optimum value of the eleven test functions have been 

obtamed by Genetic Algonthm with two set of population <;Ize 250 and 50 at the 

Iteratlon<; 500, 600, 700 and 1000 The value~ In bold face IS the be'>t value obtamed by 

the optimizer with that population size In the above table It IS observed that when the 

number of IteratIOns are mcreased the Genetic Algonthm converges and gives the 

optimum values. Except for the functIOn F21 0 where It could not converge, for all other 

fu nctlons F20 I, F203 and F204 the best value IS obtamed at the Iterations 600 and 500 

respectively For F208 and F209 the optimum value does not change 

3.4 Result recorded from the Particle Swarm 
optimization at different iterations 

Table 3.4 (a) Optimum values of the functions recoeded by Particle Swarm 
OptimizatIOn at 100,200, 300,400 IteratIOns 

Fn. PS Particle Swarm Optimization 
100 200 300 400 

F201 250 1 10899463e+OOO 1 86176451 e+OOO 1 91 1 95594e+OOO 1 88463958e+OOO 
F201 50 9.42486768e-OOI 1 861 3 1 442e+000 1 85093636e+000 1 87736573e+OOO 
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F202 250 -1.86189758e+OOO -1.86189758e+000 -1.86189758e+OOO -1.86189758e+000 
F202 50 -1.86189758e+OOO -1.86189758e+000 -1.86189758e+OOO -1.86189758e+OOO 
F203 250 905167216e-001 9 19289128e-OO 1 9 0 1959933e-00 1 8.6281501ge-001 
F203 50 907984434e-001 8 802233 77e-OO 1 895459497e-001 8 660 1 8282e-00 1 
F204 250 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 
F204 50 -2. 68906986e+002 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 
F205 250 -3 81 1 58493e+OOO -3 12784593e+000 -351546244e+OOO -355868875e+OOO 
F205 50 -3 36532242e+OOO -3 26404079e+000 -3 30218920e+OOO -3 51 1 37074e+000 
F206 250 1 5558207ge+OOO 2 20140 I 93e+000 2 32486622e+000 2 10450677e+OOO 
F206 50 1.58416460e+OOO 2 23086987e+OOO 1 98970786e+00O I 54813575e+OOO 
F207 250 -229402342e+001 -2 29402343e+00 I -2.29402343e+OOI -2 29402340e+00 I 
F207 50 -2. 29402343e+OO 1 -2. 29402343e+00 1 -2.29402343e+OOl -2.29402343e+OOl 
F208 250 O.OOOOOOOOe+OOO O.oooooooOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.OOOOOOOOe+OOO O.oooooooOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -1.91155605e+OOO -1.91 155605e+000 -1.91155605e+OOO -1.91155605e+OOO 
F209 50 -1.91155605e+OOO -1.91155605e+000 -1. 91155605e+OOO -1.91 155605e+000 
F210 250 O.OOOOOOOOe+OOO O.oooooooOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 250 4. 98949084e-0 14 4.98949084e-014 4.98949084e-014 4.98949084e-014 
F211 50 4.98949084e-014 4.98949084e-0 14 4. 98949084e-0 14 4.98949084e-014 
Legends: Fn Name of the function, PS Population SILe 

Note: All eleven newly developed test functions F201 to F211 are given In chapter 2, ~ectlon 

23, pp 20 

In the Table 34 (a) the optimum value of the eleven te')t functIOns have been obtaIned 

by Particle Swarm Optimization with two !>et ot population !>ILe 250 and 50 at the 

Iteration!> 100, 200, 300 and 400 The values In bold face IS the best value obtaIned by 

the optimizer wIth that populatIon size It IS also observed from the above table that 

PartIcle Swarm OptImIzatIOn has performed faIrly better than other opttmlzers. For 

functIons F20}' F204 and F206 best value have been found at 100 IteratIons For 

functIons F202, F207, F208, F209, F210 and F2ll the value remaInS unchanged and 

are the optimum value after IncreasIng the number of iteratIons 

Table 3.4 (b) OptImum values of the functIons recoeded by Particle Sawrm 
o 500 600 700 1000 IptlmlzatlOn at , , , Iterations 

Fn. PS Particle Swarm Optimization 
500 600 700 1000 

F201 250 I 8949912ge+OOO I 8737070 I e+OOO I 89147147e+OOO 1 89132774e+OOO 
F201 50 I 903992 12e+OOO I 86655067e+000 I 78736187e+000 I 89753495e+OOO 
F202 250 -1.86189758e+OOO -1.86189758e+000 -1.86189758e+OOO -1.86189758e+OOO 
F202 50 -1.86189758e+OOO -1.86189757e+OOO -1.86189758e+OOO -1.86189758e+OOO 
F201 250 9 003361 66e-001 8 876000 13e-00 I 908343030e-001 8 921 0843ge-OO I 
F203 50 899100153e-001 8 95359945e-00 I 9 05744351 e-OO I 902746687e-001 
F204 250 -2. 68906986e+002 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 
F204 50 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 -2.68906986e+002 
F205 250 -3 80901 825e+OOO -3 0781901 le+OOO -4.18844511 e+OOO -3 24493892e+OOO 
F205 50 -337678832e+OOO -3 08405265e+000 -3 31437855e+OOO -400760484e+OOO 
F206 250 2 29605752e+OOO 226J59865e+OOO J 99J675J2e+OOO J 96860973e+OOO 
F206 50 2 18200740e+OOO J 98092307e+000 2 32886388e+000 2 36256907e+OOO 
F207 250 -2. 29402343e+OO 1 -2.29402343e+001 -2.29402343e+OOI -2.29402343e+OOI 
F207 50 -2. 29402343e+OOl -2.29402343e+OO 1 -2.29402343e+OO 1 -2.29402343e+OOl 
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F208 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -1.91ISS60Se+OOO ·1.91ISS60Se+OOO -1.9IISS60Se+OOO -1.91ISS60Se+OOO 
F209 50 -1.9IISS60Se+OOO -1.91ISS60Se+OOO -1.91ISS60Se+OOO -1.9IISS60Se+OOO 
F210 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 250 4. 98949084e-0 1 4 4.98949084e-014 4. 98949084e-0 1 4 4. 98949084e-0 1 4 
F211 50 4.98949084e-014 4.98949084e-014 4.98949084e-014 4. 98949084e-0 1 4 

Legends: Fn Name of the function, PS Population Size 
Note: All eleven newly developed test functions F201 to F211 are given In chapter 2, section 
23, pp 20 

In the Table 3 4 (b), The optimum value of the eleven test functions have been obtained 

by Particle Swarm OptimizatIOn with two set of population size 250 and 50 at the 

IteratIOns 500, 600, 700 and 1000 The values In bold face IS the best value obtained by 

the optlmlter wIth populatIon size 250 and 50 Here we observe that the value of the 

functions F202 and F207 to F211 does not change after increasing the noumber of of 

Iterations For the function F204 and F205 the optimum value becomes better after 

IncreasIng the no of Iterations 

3.5 Results recorded from the Simulated Annealing at 
different iterations 

Table 3.5 (a) Optimum values of the functions recoeded by Simulated AnnealIng for 
100 200 300 400 IteratIOns , , , 

Fn. PS Simulated Annealing 
100 200 300 400 

F201 250 1 81917980e+OOO 1 61464035e+OOO 1 46444345e+OOO 1 5802064 1 e+OOO 
F201 50 1 92632236e+OOO 1 73063007e+OOO 181089478e+000 1 78608337e+OOO 
F202 250 -I 87444747e+OOO -187447416e+OOO -I 87448306e+OOO -I 87448261 e+OOO 
F202 50 -187444232e+OOO -I 87448103e+OOO 1 87447822e+OOO -187448267e+OOO -- -
F203 250 861537441e-001 8 65958803e-00 1 8 63451906e-OO 1 850372161 e-OOI 

T203 50 895986856e-001 894752643e-001 8 8962 1 54ge-OO 1 8 74339236e-OOI 
F204 250 -2 85652 1 9ge+002 -4.37041 243e+000 -2 85692285e+002 -2 85704455e+002 
F204 50 -2 85532368e+002 -3 65608480e+OOO -2 857 1 4326e+002 -2 8571 5673e+002 
F205 250 -349271313e+OOO -5 08550404e+OOO -4 72397803e+OOO -5 21478553e+OOO 
F205 50 -291218118e+OOO -353617037e+OOO -392858947e+OOO -3 53587268e+OOO 
F206 250 1 85613381 e+OOO 282549476e+OOO 2 22263080e+000 1 95934483e+OOO 
F206 50 197094781e+OOO 2 00803 1 88e+OOO 2 58232390e+000 252601872e+OOO 
F207 250 -2 29402328e+OO 1 -I 91 1 55605e+OOO -2.29402343e+OOI -2.29402343e+OOI 
F207 50 -2 29402293e+OO 1 -I 91 1 55605e+OOO -2 29402340e+OO 1 -2.29402343e+OOI 
F208 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -1.9IISS60Se+OOO -1.91ISS60Se+OOO -I.911SS60Se+OOO -1.911SS60Se+OOO 
F209 50 -1.911SS60Se+OOO -1.91ISS60Se+OOO -1.911SS60Se+OOO -1.911SS60Se+OOO 
F210 250 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 250 4 67427986e-0 14 4 56 1 9593ge-0 14 4 55780188e-014 454638531e-OI4 
F211 50 4 98950694e-0 14 455131865e-014 4 54490951 e-O 14 4 55797674e-O 14 
Legends: Fn Name of the functIOn, PS Population Size 
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Note: All eleven newl y developed test functIOns F20 I to F211 are gl ven 10 chapter 2 , section 
23, pp 20 

In the Table 3 5 (a), The optimum value of the eleven test functIOns have been obtamed 

by SImulated Annealing wIth two set of populatIOn sIze 250 and 50 at the IteratIons 

100, 200, 300 and 400 The values In bold face are the best value obtained by the 

optImIzer wIth that populatIOn sIze From the above table It IS observed that SImulated 

Annealing has the better value when the number of Iterations IS Increased For the 

functIOns F20 I, F204, F206 and F207 at 300, 200, 100, and 400 respectIvely For 

functIons F208, F209, F210 the value does not change after mceaslng the number of 

iteratIOns 

Table 3.5 (b) OptImum values of the functIOns recoeded by SImulated Annealing for 
500,600 700 I 000 Iteratlon~ , , 

Fn. PS Simulated Annealing 
500 600 700 1000 

F201 250 1 56508886e+OOO 1 57200882e+OOO 1 47555787e+oOO 1 58126903e+OOO 
F201 50 1 49024764e+OOO 1 75287432e+OOO 1.22544459e+000 1 65575530e+OOO 
F202 250 -I 87448327e+OOO -187448213e+OOO -1.87448376e-H>00 -I 87448315e+OOO 
F202 50 -I 87448358e+OOO -I 87448312e+OOO -I 87448060e+OOO -I 87448302e+OOO 
F203 250 8 65044900e-OO 1 8 44390852e-00 1 8 42556562e-OO 1 857859313e-001 
F203 50 868019910e-001 8.437S8S34e-OOl 8 7375586ge-OO I 8 56095865e-001 
F204 250 -2 85708492e+002 -2 85712654e+002 -2 8571628ge+002 -285715991e+002 
F204 50 -2 857 I 582ge+002 -2 85714278e+002 -2 85712261 e+002 -2 85716298e+002 
F205 250 -4 I 204 I I 54e+OOO -4 4616051 1 e+OOO -6.993414ISe+OOO -543144237e+OOO 
F205 50 -547514353e+OOO -4 23264582e+OOO -4 01 I 98447e+OOO -4 78963915e+OOO 
F206 250 216131524e+OOO 207405467e+OOO I 91837266e+000 1.45370698e-H>00 
F206 50 2 332 I 8290e+OOO 2 18072424e+OOO 2 24050880e+000 2 24941 I 74e+OOO 
F207 250 -2. 29402343e+OO 1 -2.29402343e+OOI -2. 29402343e+OO 1 -2.29402343e+OOl 
F207 50 -2. 29402343e-H>0 1 -2.29402343e+OO 1 -2. 29402343e+OO 1 -2.29402343e-H>0 1 
F208 250 O.OOOOOOOOe-H>OO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F208 50 O.OOOOOOOOe-H>OO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F209 250 -1.9115S60Se+OOO -1.911SS60Se+OOO -1.9115S605e+OOO -1.91lS560Se-H>00 
F209 50 -1.9115560Se-H>00 -1.91155605e+OOO -1. 91155605e+OOO -1.91155605e-H>00 
F210 250 O.OOOOOOOOe-H>OO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F210 50 O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO O.OOOOOOOOe+OOO 
F211 250 4 54609034e-0 14 4 546 I 5076e-0 14 45447255ge-014 4.S441962ge-014 
F211 50 45452020ge-014 4 54621191e-014 4 54421855e-0 14 4 54594475e-0 14 

Legends: Fn Name of the functIOn, PS PopulatIon SIze 
Note: All eleven newly developed test functIon!> F201 to F21) are gIven 10 chapter 2, sectIOn 
23, pp 20 

In the Table 3 5 (b), The optImum value of the eleven test functIons have been obtamed 

by the optImIzer VIZ SImulated Annealing with two "et of populatIon '>Ize 250 and 50 at 

the iteratIOns 500, 600, 700 and 1000 The value" In bold face are the best value 

obtamed by the optImIzer with that population sIze In the above table we also observed 

that SImulated Annealing has gIven the best value for F20 I at 700 IteratIOn, F202 at 
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700 Iteration,>, F203 at 600 iteratIOns F205 at 500 Iteratlom, and F206 at 1000 

iteration!> The value!> remaIn~ unchanged tor F207, F208, F209, F210 The minImum 

value IS found at 1000 Iterations for the function F211 

3.6 Analysis of results recorded in the above tables 

In sectIOn 3 I 2, two experIments are conducted for empIrIcal study of EvolutIOnary 

Algonthm~ In the first expenment, the OptImILef', were set to run for 100 Iterations 

with two set of populatIOn size 250 and 50 respectively for all the eleven test function 

(discussed In chapter 2) '>0 that the results could record large populatIOn size and small 

population !>Ize The optimum POInt and optimum values obtaIned by Differential 

Evolution and Genetic AlgOrIthms are recorded In Table 3.1 (a) and Particle Swarm 

OptimizatIOn and Simulated AnnealIng are recorded In Table 3.1 (b) respectively. 

From the recorded re!>ult It IS found that Simulated Annealing has outperformed for 

F20 I With the populatIOn size 250, whereas and Particle Swarm OptimizatIOn has 

outperformed all other optlmlzers for population size 50 Simulated AnnealIng has 

outperformed all the optlmlzers with both set of population !>Ize for F202 and F203 

Particle Swarm OptimIzatIOn outperformed all other optlmlzers With both set of 

populatIOn size 250 and 50 for function F204, F205, F206 and F207 The optImum 

value found for functions F208 and F209 by all optlmlzers conSidered for study fInds 

the value 0 and -I 91 I 55605e+000 respectively and It remams same With the change of 

populatIOn size For F210, Differential Evolution, PartIcle Swarm OptImization and 

Simulated Annealmg have given the optimum value zero whereas Genetic Algonthm 

could not find the optImum value and an overflow captIOn were shown by the program 

SImulated AnnealIng outperforms the other algonthms for function F211 Hence we 

conclude that no optimizer outperforms other'> on all type of optimization problems In 

tact, any evolutionary algonthm 1\ only SUitable for a clas,> of test problems With a 

speCifiC feature ThIS valIdates the "No Free Lunch Theorem" of Wolpert and 

Macready (1997) and Ho and Pepyne (2002) 

(a) Analysis based on the results recorded from Differential Evolution: 

In section 32 from the Table 32 (a) and 32 (b) It IS observed that Differential 

EvolutIOn found the optImum value as I 91752151 e+OOO for F20 I With populatIOn 

size 250 after 100 Iterations, -186189651 e+OOO for F202 With the populatIOn size 50 
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after 700 IteratIOns and 888070077e-001 for F203 wIth the populatIOn sIze 250 after 

400 IteratIons SImIlarly, the optImum value found for F204 IS -2 68903963e+002 after 

700 IteratIOns wIth the populatIon sIze 50 , -2 73461217e+000 for F205 after 500 

IteratIons wIth the populatIon sIze 50, 2 45693245e+000 for F206 after 100 IteratIons 

wIth the populatIOn sIze 250, -2 29402304e+00 I for F207 after 600 IteratIons wIth the 

populatIon sIze 250 respectIvely Agam, DIfferentIal EvolutIOn have gIven the 

optimum value as OOOOOOOOe+OOO, -I 91 I 55605e+OOO and OOOOOOOOOe+OOO 

respectively for F208, F209 and F210 and the result do not change If the population 

<;Ize or the number of IteratIons are mcrea<;ed In ca~e of F211 the optImum value 

obtamed IS 498977918e-014 after 1000 IteratIons with the populatIon sIze 250 and 

produces same result after 100, 200 and 400 IteratIOn') wIth the populatIon sIze 50 

Hence wIth thIs analysIs It can be concluded that the performance of the DIfferentIal 

EvolutIOn does not depend on eIther on number of IteratIons or populatIon sIze ThIs 

vahdates the "No Free Lunch Theorem" of Wolpert and Macready (1997) and Ho and 

Pepyne (2002) 

(b) In Analysis based on the results recorded from Genetic Algorithm: 

In section 3 3 from the Table 3 3 (a) and 3 3 (b) It IS observed that Genetic AlgOrIthm 

found the optimum value as 1 90541800e+000 for F20 I wIth popu latlOn sIze 250 after 

600 IteratIons, -I 86183452e+000 for F202 wIth the populatIon sIze 50 after 400 

Iterations and 9 07322728e-00 I for F203 wIth the popu latlOn sIze 250 after 500 

IteratIons SImIlarly, the optImum value found for F204 IS -268892538e+002 after 

500 IteratIons wIth the populatIOn SILe 50 , -2 457521 6ge+000 for F205 after 400 

Iterations wIth the popu latlon sIze 250, 3 7840 I 822e+000 for F206 after 500 IteratIons 

wIth the populatIon sIze 250, -2 29400 1 22e+OO 1 for F207 after 600 iteratIOns wIth the 

populatIOn sIze 50 respectIvely Agam, Genetic AlgOrIthm have gIven the optImum 

value as OOOOOOOOe+OOO and OOOOOOOOOe+OOO respectIvely for F208 and F209 

respectIvely The OptimIzer dId not converge for F210 at any number of IteratIons In 

case of F211 the optimum value obtamed 1<; 4 90737275e-O 14 after 400 iterations 

with the population size 50 Hence with thiS analY~ls It can be concluded that the 

performance of the Genetic AlgOrIthm does not depend on eIther on number of 

Iteration') or populatIon sIze but whenever It ha<; converge It has gIven the better re')ult 

than DIfferential Evolution ThIS valIdates the "No Free Lunch Theorem" of Wolpert 

and Macready (1997) and Ho and Pepyne (2002) 
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(c) In Analysis based on the results recorded from Particle Swarm Optimization: 

Based on the results recorded 10 Table 34 (a) and 3 4 (b), It IS observed that Particle 

Swarm Optimization found the optimum value a~ 9 42486768e-001 for F201 with 

population size 50 after 100 Iterations, -186189758e+000 for F202 with the 

populatIOn size 250 after 100 IteratIOns and value remalOs same even If the number of 

IteratIOns Increased and 8 628150 1ge-00 I for F203 with the populatIOn size 250 after 

400 IteratIons SImilarly, the optImum value found for F204 IS -2 68906986e+002 and 

the value does not change even If we IOcrease the number of iterations, 

-4 1884451 I e+OOO for F205 after 700 Iterations With the population size 250, 

158416460e+000 for F206 after 100 IteratIOns WIth the populatIon sIze 50, 

-2 29402343e+00 I for F207 after 100 Iterations WIth the populatIOn size 250 

respectively AgaIn, Particle Swarm Optimization have given the optimum value as 

o OOOOOOOe+OOO, -I 91 1 55605e+000 ,0 OOOOOOOOe+OOO and 4 98949084e-14 

respectIvely for F208, F209 ,F210and FII and the result do not change If the 

population ~Ize or the number of Iteratlon~ are IOcred~ed Hence With this analy~ls It 

can be concluded that the performance of the PartIcle Swarm OptImIzatIOn does not 

depend on eIther on number of Iterations or popu latlon size It IS also observed that the 

PartIcle Swarm has a better converges ability but It IS ::.Iow ThIS validates the "No Free 

Lunch Theorem" of Wolpert and Macready (1997) and Ho and Pepyne (2002) 

(d) In Analysis based on the results recorded from Simulated Annealing: 

Based on the results recorded In Table 3 5 (a) and 3 5 (b), It IS observed that Simulated 

Annealing found the optimum value as I 225445ge+000 for F201 WIth populatIon 

size 50 after 700 IteratIOns, -I 87448376e+000 for F202 With the population Slle 250 

after 700 IteratIons and value remams same even If the number of IteratIOns 

mcreasedand 8 43758534e-001 for F203 WIth the populatIOn size 50 after 600 

Iteration::. SImilarly, the optimum value found for F204 IS -4 3704 I 243e+OOO after 200 

Iteratlon~ With 250 populatIon Size, -6 9934 14 15e+000 for F205 after 700 IteratIOns 

WIth the populatIOn sIze 250, I 45370698e+OOO for F206 after 100 IteratIons WIth the 

populatIOn sIze 50 respectIvely The optimum value obtaIned for F207 IS 

-229402343e+001 after 300 IteratIOns With the populatIon sIze 250 and the value 

remaIns unchanged even If the number IteratIOns are Increased AgaIn, SImulated 

Annealing have gIven the optImum value as 0 OOOOOOOe+OOO, -I 91 I 55605e+OOO and 
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o OOOOOOOOe+OOO respectively for F208, F209 and F210 and the result do not change 

If the population size or the number of IteratIOns are mcreased In case of F211 the 

optlmu m value obtained IS 4 5441 962ge-0 14 after I 000 iteratIOns with the popu latlon 

~Ize 50. Hence with this analysl~ It can be concluded that the performance of the 

Simulated Annealing does not depend on either on number of IteratIOns or population 

size Thl~ validates the "No Free Lunch Theorem" of Wolpert and Macready (1997) 

and Ho and Pepyne (2002) 

3.7 Summary 

In thl~ chapter the optimum value~ of the eleven te"t function') developed 10 (chapter 2, 

section 2 I I, 201-21 I) have been recorded by the optlmlzers such as Differential 

EvolutIOn, Genetic algoflthms, Particle Swarm OptimizatIOn and Simulated Annealing 

In Table 3 I (a) and Table 3 I (b) the optimum value and optimum pomt obtained by 

Differential Evolution, Genetic Algoflthms and Particle Swarm OptimizatIOn and 

Simulated AnnealIng have been recorded With two set of populatIOn size 250 and 50 

The algonthm were run for I 00 IteratlOn~ In Table 3 2 (a) and Table 3 2 (b) the 

optimum value obtamed by Differential Evolution for 100,200,300,400 and 500, 600, 

700 and 1000 Iterations respectively have been recorded respectively In Table 3 3 (a) 

and Table 33 (b) the optimum value obtamed by Genetic Algonthms for 

100,200,300,400 and 500, 600, 700 and 1000 IteratIOns respectively have been recodrd 

In Table 34 (a) and Table 34 (b) the optimum value obtained by PartIcle Swarm 

OptimizatIOn for 100, 200, 300, 400 and 500, 600, 700 and 1000 IteratIOns have been 

recordr respectively In Table 35 (a) and Table 35 (b) the optimum value obtained by 

Simulated Annealing for 100,200,300,400 and 500, 600, 700 and 1000 Iterations have 

been recorded respectively and all the resylts are analy ... ed 

The results obtained 10 Table 3 I (a) & (b), 32 (a) & (b), 3 3 (a) & (b) , 34 (a) & (b) 

and 35 (a) & (b) are re-expenmented on the eleven test functIOns on vector -Genetic 

Algonthms and some advanced evolutionary algonthms It IS found that the results 

have been almost same except the 20 I, 205 and 206 In which WIth the readjustment of 

crossover and mutatIOn operator It has given better result These algonthms are the 

state-of the art algonthm 

****** 
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CHAPTER 4 

Comparative Study of Evolutionary 
Algorithms with Benchmark Test 

Functions 

4.1 Comparative study of modified Differential 
Evolution and Genetic Algorithm 

Several vanatlons of meta-heunstlcs have been developed recently and each of them 

clalm~ to outperform others Also these algonthm~ lakes convergence CrIterIa or they 

have no convergence proof but claIms to outperform" others, there IS a need of ngorous 

comparatIve study of all the algOrIthms together or paIr wIse wIth a sufficIently large 

number of test functIOns Bre~t et al (2006) dId the comparatIve study of control 

parameter In dIfferentIal evolutIon on numencal benchmark problems In thl~ study we 

have done comparatIve study of modIfied dIfferentIal evolutIon and genetIc algOrIthm 

Each of these methods has ItS OrIgIn In Von Neumann's Monte Carlo expenments 

These methods have been tested wIth certaIn benchmark te"t problems and ~ome new 

test functIons Introduced Researchers who worked on the comparatIve study of 

evolutIOnary algOrIthms are ColvIlle (1986), Vesterstorm and Thomsen (2004), VOIgt 

(1992), Whltleyetal (1996) and Yaoetal (1999) 

4.1.1 Methods used 

Genetic Algorithm: The algOrIthm I~ explaned In chapter I, sectIon I 4 I (a) page 9 

Modified Differential Evolution The algonthm IS explaIned In chapter I, sectIOn 

I 4 1 (d) page 1 1-12 
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4.1.2 Benchmark test functions used for the experiments 

The following ten benchmark test functions i.e. Egg holder function, Corana function, 

Freudenstein Roth function, Leon function, Perm function #1, Trid function, Hougen 

Function, Weierstrass function, Needle-eye function, Shekel Function are used for our 

investigation. 

4.1.3 Experiment on Genetic Algorithms and Modified 

Differential Evolution. 

Genetic algorithms: We have used and input file to pass the different parameters i.e. 

npopsiz=5, pcro~s=.9dO, npsibll = (2*" n= powers of 2) pmutate=0.02dO and 

maxgen=200. Another params.f was included in the main program having three 

parameters popu lation size=200, nchrommax=60 and nparamax= I O. Other two 

parameters are adjustable according to the dimensions of the function used. 

Modified Differential Evolution: In Differential Evoulution (DE) exponential 

crossover is being used, parameter definition (ncross = I). Other parameters such as 

Max. number of iterations Iter = I 0000, population size = 10 times the dimension of the 

function or 100 whichever maximum; crossover probability (pcross = 0.9), The scaling 

factor is being made random by the formula Fact = 0.5*(1 + rand). So, as the rand 

(random number changes) the value of F also changes. Random no. seed four digit 

number between -10000 to 10000; accuracy need; eps = 1.0e'OB. If x in f(x) violates the 

boundary then it is penalized to bring forcibly within specified limits through replacing 

it by a random number lying in the given limits of the function tested. 

4.1.4 Experimental results and analysis 

Table 4.1 Comparative study of Genetic Algorithm (GA) and Modifiend Diff . 
. Evolution (MDE) . ____ _ 

f I . , ResuJts ~f some benchmark test problems 

! .~n.1 Funct!~ns . I Dim; GA MDE. T. yalue, __ 

:.,l_-', ~gg,h(~19,tE.':.£~!1S!,i?~ If ILL _ ,} .. " .Q..o.o_~QO ....... ~.~~.QQO..9 .... _._~ ... _____ ,.J!:Q9.9<XlP _ __ ,J 
1_2_1 Cor_'.!~~!~~io~ ______ J ____ ~_._; __ Q:Q~Q.~, .. _ __ Q:Q~~~~ _____ , _____ O.O!!.O_~Q ___ 1 
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I +-1-R~~~~ili==~=1~~~~-3~-~~°t;°~~~~---: i~it~t-=-==-==-=~~-~-=r 
! 5 J Perm FunctIOn ! _ 4 ! -I 00000 O.OOOOO~ . 0000000 I 
: __ ? __ J ..2~~c.ti?!!.. _______ ._j _._~ _.~ __ ~:QOOOl! _____ ~:!l_OO~J!.... __ ,_ -5000000-.J 

! 7 J J:I~ug~n Func~!ol1 _._ j 3 *** . 0900000 __ :!. 8.9.J 3. _ J 

_! _J ._~~I.t:r2!!:~~_.r::un ______ . J _22._. ~~~_~~ ______ Q.:Q~'!.~ __________ . __ 0 OOO~ _____ j 
~ Nlddle-eye Function J 30 I -I 00000 0000000 -I, I 
. ~Q. _LS~~~~1 fll!1E~~l!.. ___ .... I _ ._'!. . .J. 0 OQQQ9.. ___ . _q.909~_0 .. _ .. ~ .. ._ ._Q:..Q<29QO_ . . . .J 
Legend: Sn: Serial No., Dim: Dimension of the function 

Note: All the benchmark test functIon used for the study are gIven In APPENDIX A. 

Ten benchmark functions are taken to compare the performance of Genetic Algorithms 

and Modified Differential Evolution. The performance of the algorithms shown in 

Table 4.1. The Dimension of each test functIons are gIven in column two of the table. 

In the thIrd and fourth column the results obtained by the algOrithms are given. The 

results in bold face shows the values are very close to True value and also shows the 

better performance. It is observed that for Hougen Function Genetic Algorithms could 

not find the optimum value whIch has been shown by 1<** in the table. 

4.1.5 Summary of Section 4.1 

It is clear from the above Table 4.1 that both the outperform for all the functions. For 

function I and 2 both GA and MDE are able to fInd the optimum value for both the 

function I and 2. But for freudensteIn Roth functIon GA IS able to find the optimum 

value and MDE fails. For Leon and perm function GA is not able to reach the global 

optimum but MDE reaches to optimum. For Trid function both method fails. For 

Hougen function GA overflows and MDE fails to reach the optimum. In case of 

WeIerstrass and Shekel function both methods finds the optimum value but in case of 

Niddle-eye functIOn GA IS able to reach the optImum value whereas MDE fails.This 

work is published by Singh et. a!. (2009). 

4.2. A comparative study of Swarm Intelligence 
Optimization and Evolutionary Optimization 

Recently many algorithms have been developed which mimics the natural procedure 

better known as Evolutionary Algonthm and claims to perform better than others. The 
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objectIve of thIs paper IS to test the performance of GenetIc algonthm and PartIcle 

Swarm (PS) method on ~ome benchmark functIon.., Smce GenetIc Algonthm (GA) 

mImIcs the nature and PartIcle Swarm (PS) explOIts the swarm IOtelllgence, It WIll be 

interesting to see the performance of these two methods on the certain test functIons A 

bnef Idea of these functIOns are gIven 10 thl~ ~ectlon are as follows The~e functIons are 

also represented by graph to facilItate conceptualizatIon of the nature of these functIons 

by vIsual means 

4.2.1 Introduction 

OptImIzatIon IS central to any problem Involvmg decIsIon maklOg, whether 10 

MathematIcs, Engmeenng or m EconomIcs The area of optImIzatIOn has receIved 

enormous attentIon In recent yearc;; pnmarlly because of the rapId progress In computer 

technology, Includmg the development and availability of user-fnendly software, hIgh 

speed and parallel processors The optImIzatIon toolbox of MATLAB and other 

commercIal c;;oftware has gIven a new dImenSIon to It 

4.2.2 Method and Algorithms used 

Algonthms used for the comparatIve study are Genetic Algorithm and Particle 

Swarm Optimization For all algonthms the dImenSIons were set manually based on 

the functIon used m the expenments 

4.2.3 Test functions used 

The objectIve of thIS paper IS to present a comparative study of the performance of the 

GenetIc algonthm and partIcle swarm method on the functIons such as WeIerstrass 

functIOn, Zettle functIon, Zero Sum FunctIon, DIxon & Pnce functIOn, 

Tnd functIOn, 6 Levy functIon No 3, BeaJe functIOn, Booth FunctIon, Easom functIon, 

HlmmeJbJau functIon These functIons are dIfficult m nature and these functlons are 

presented m details 10 APPENDIX A wIth graphIcal presentatlon 
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4.2.4 Experiment on Genetic Algorithm and Particle 

Swarm 
Genetic algorithms We have used and Input file to pass the dIfferent parameters Ie 

npopslz=5, pcro~s= 9dO, npslbll = (2*N N= powers of 2) pmutate=O 02dO and 

maxgen=200 Another subroutme params f was Included m the mam program havmg 

three parameters populatIOn slze=200, nchrommax=60 and nparamax= I 0 Other two 

parameters are adjustable accordlOg to the dImensIOns of the thest functIOn 

Particle Swarm setting PartIcle Swarm have several parameter!>, popu laHon slze=40, 

In most of the cases n=30 works fine Its value can be IOcreased up to 50 to 100 A 

randomly chosen neIghbors = 15 The maxImum no of decIsIon vanables = I 00, Number 

of IteratIOn was set 1000 

4.2.5 Experimental Results and Analysis 

Table 4.2 ComparatIve study of GenetIc Algonthm (GA) and PartIcle Swarm 
o (PSO) 'ptlmlzatlon 

SN Functions Dim GA PSO True Value 
I Weler,tra,\ function 2 0.000000 0029900 07513280664284E-08 
2 Zettle function 5 0.000000 000379 o 379 I 236557044E-02 
3 Zero-,um Function #7 2 0000000 -1.00000 -100000 
4 Dixon & Pnce functIOn 5 0600000 0.000000 o 7368500368739E-08 
5 Tnd functIOn 5 -2000003 -30 -29 999999530 
6 Levy functIOn No 3 2 17 15224 -176.54179 -1765417931343 
7 Be,lle function 2 ~ 4511'; 0.000000 o I080137747515E-09 
8 Booth Function 2 2099958 0.000000 o 4368455356320E-09 
9 Ed~om function 2 1.000000 1.0000000 o 9539719592261 
10 Hlmmelblau function 2 0.0000000 0.000000 o 1476885 I I 8888E-08 

Legend: DIm DImenSIon 

Note: All the benchmark test functIOn used for the study are gIven \0 APPENDIX A 

Ten benchmark test functIons are consIdered for the study of GenetIc Algorithm and 

PartIcle Swarm OptImIzatIOn The re<;ult~ obtalOed 10 the Table 42 shows that the 

genetIc Algonthm has performed better than PartIcle swarm optImIzatIon on functIOn I 

and 2, whereas for functIOn 3-8 Partlcle Swarm has gIven the result close to true value 

For function 9 and 10 both the algonthm has gIven the results close to true value In the 

Table 42 (the results shown \0 bold face IS close to true value) 
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4.2.6 Summary of Section 4.2 

Our program of Genetic algonthm has given a good result for the functIOns like 

Welerastrass functIOn, Zettle functIOn and Easom functIOn but falls for other functions 

considered tor expenments where the Particle Swarm (PS) have failed In these 

functions except the Easom functIOn and Hlmmelblau function where both finds out the 

solution 

Whereas Particle Swarm (PS) has performed better for DIXon Pnce function, 

Tng functIOn, Levy #3 function, Zero sum functIOn 7, Levy functIOn 3, Bealy functIOn, 

Booth function then Genetic Algonthm (GA) The results showen In the above table by 

bold where the methods has outperformed the other This shows that no algonthm IS 

able to absolutely outperform the other This IS a published work by Smgh and Borah 

(2009) 

4.3 Study of population based Meta-heuristics 

Several vanatlOns of meta-heunstlc,> have been developed recently and each of them 

clalm~ to outperform other., Through thl" paper we have done the comparative study of 

three methods, each of them has It~ ongln In Von Neumann's Monte Carlo 

expenments We have tested these methods wIth certam benchmark test problems and 

some new test functIOns mtroduced by us first time 

4.3.1 Methods used 

Algonthms used for the comparative study were Genetic Algorithm, Particle swarm 

Optimization and Modified Simulated Annealing. For all algonthms the dimenSIons 

were set manually, based on the functIOns used In the expenments 

4.3.2 Benchmark test functions used 

We have used followmg bench mark test functIOns for comparative study The 

functIOns are Ackley functIOn, Easom functIOn, Gnewank functIOn, Beale functIOn, 

Booth FunctIOn, Matyas function, Weierstrass functIOn Mlchalewlch functIOn, ,Simple 
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Quad Function and Hump functIOn The detail explanatIOn of these function are given 

10 APPENDIX A with graphical representation 

4.3.3 Experiment setup 

Genetic algorithms We have used IOpUt file to pass the different parameters Ie 

npopslz=5, pcross= 9dO, npslbll= (2*" n= powers of 2) pmutate=002dO and 

maxgen=200 Another subroutIne to pas'> the parameter, params f was Included In the 

maIO program havIng three parameter~ populatIOn slze=200, nchrommax=60 and 

nparamax= 10 Other two parameters are adjustable accordlOg to the dimensions of the 

problem~ 

Particle Swarm Optimization Particle Swarm Optimization have several parameters 

populatIOn slze=40, 10 mo~t of the cases n=30 worb flOe Its value can be Increa<;ed up 

to 50 to 100 A randomly chosen nelghbor~ =31 The maximum no of decIsion 

variables maxX= 100, noofsteps=3, Number of IteratIOn was set 1000 

Here the algOrIthm allows each swarm IS allowed to search one step left and rIght, up 

and down 

Modified Simulated Annealing The parameter T IS very crucial 10 uSlOg the SA 

Other parameters N 1<; the dlmen<;lon of the function can be changed from the parameter 

statement N=? VM step length T IS Imposed upon the system with the RT varIable by 

T (1+ I) = RT*T (I) The RT value was set I 5 

In a traditIOnal SA for dlfterent random seed, re,ulb were different So, we modified 

the program to save the optimum value In a particular Iteration by <;ettlng the extra 

variable ffopt, and IOdexopt to get the particular Iteration which gave the value of ffopt 

We got these value prInted ThiS we called It as Modified SA 

4.3.4 Experimental Results and Analysis 

Table 4.3 Comparative study of Genetic Algorithm (GA), Particle Swarm 
OptimizatIOn (PSO) and Simulated AnnealIng (SA) 

Results of some benchmark test problems 
SN Functions Dim GA PSO SA T. Value 
I Ackley Fun 5 0.00000 0.000000 0.189945E·07 0 
2 Ed~om Fun 2 ·1.00001 ·1.00000 ·0.953971 -I 
3 Gnewank Fun 5 0.00000 0.000000 0.0172410 0 
4 Beale Fun 5 545315 0.00000 0.1080137E·09 0 
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5 Weler~tra~~ Fun 5 0.00000 002990 0.7S13280E-08 0 
6 Booth fun 2 -20999 0.00000 0.43684SSE-09 0000000 
7 Mlchalewlch Fun 2 ******* -1.80130 -1.80130 -18013 
8 SImple Quad Fun 2 -3846 IS -3872.7 -3873.7 3873 
9 Hump Fun 2 -1.00000 -I 03162 -103162 -I 
10 Matya fun 2 000000 000000 o 4148318E-09 000000 

Legend: DIm DImenSIOn of the functIon, T Value True value 

Note: All the benchmark test functIon used for the study are gIven 10 APPENDIX A 

The performance of GenetIc Algonthm , Parttcle Swarm OptImIzatIon and SImulated 

AnnealIng have been shown 10 Table 4 3 based selected ten benchmark test functIOns 

It IS clear that for functIon 1,2,3 the genetIc Algonthm, PartIcle swarm optImIzatIOn 

and SImulated Annealing have gIven the value close to true value for the functIOns 1,2 

and 3 respectIvely Whereas for functIon 4 PartIcle Swarm and SImulated Anneahng 

has gIven the result close to true value For functIOn 5 GenetIc Algorithm and 

SImulated Annealing has given the results close to true value For the functIons 6-8 

PSO and SA has performed better than GA where as GA has performed better for 

Hump functIon than PSO and SA For Matya FunctIon all the three algonthms have 

gIven the value close to true value In the table (the results shown 10 bold face IS close 

to true value) 

4.3.5 Summary of Section 4.3 

It IS noted that non of the methods are able to outperform for all the fu nctlons In 

functIons 1-3, 10 three methods gIve the 'lame results Whereas for functIOn 4 GA falls. 

5-RPS fmls, 6-GA falls, 7-GA overflows. 8. IO-Modlfled RPS & ModIfIed SA 

outperforms GA, 9 ThIs vahdates the No Free Lunch Theorem (NFLT) ThIs IS a 

pubh'lhed work by SlOgh and Borah (2009) 

4.4 A comparative study of Particle Swarm 
Optimization and Simulated Annealing 

The objective of thIs paper IS to test the performance of PartIcle Swarm and SImulated 

Anneahng on ~ome te~t functIon" Smce Particle Swarm Optimization.., mImiCS the 

nature and SA (SImulated Anneahng) follows the phY'llcal cntena, It WIll be IOterestlOg 

to see the performance of these two methods on the certalO benchmark test functIons 

A bnef Idea of these functIOns are gIven 10 thIs sectIon as follows These functIOns are 
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also represented by graph to faCIlitate conceptuallLatlOn of the nature of these functions 

by visual means 

4.4.1 Introduction 

Optimization IS central to any problem involving decIsion making, whether In 

Mathematics, Englneenng or In Economics The area of optimizatIOn has received 

enormous attentIon In recent years, pnmanly because of the rapid progress In computer 

technology, including the development and availability of user-fnendly software, high 

speed and paraJlel processors The optImIzatIOn toolbox of MATLAB and many other 

commercial software like thiS has given a new dimensIOn to It 

Extending the class of functIOns to Include multlmodal functions makes the global 

optImIzatIOn problem unsolvable In general In order to be solvable some smoothness 

conditIOn on the functIOn In additIOn to continuity must be known 

4.4.2 Methods used 

Algonthms used for the comparative study were Particle swann Optimization and 

Simulated Annealing. For all algonthms the dimensIOns were set manually, based on 

the functions used In the expenments 

4.4.3 Test functions used 

Functions such as Schaffer FunctIOn, Perm FunctlOn# I, Power-Su m FunctIOn, 

Welestrass Function, Zero-Sum Function (N#7), Judge Function are used for 

comparative study and the detail explanation of the~e functions are gIVen In 

APPENDIX A with the graphical pre~entatlon 

4.4.4 Experiments 

(b) Particle Swarm Optimization: Particle Swarm Optimization has several 

parameters populatIOn SIze 40, In most of the cases 30 works fine Its value can be 
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Increased up to 50 to 100 Randomly chosen neIghbors 15 The maxImum no of 

decI~lon vanables 100, The Local ~earch Number of IteratIOn was set 1000 

(c) Modified SA The parameter T IS very crucial In uSing the SA Other parameters N 

IS the dImensIOn of the functIon can be changed from the parameter statement N=? VM 

step length T IS Imposed upon the system wIth the RT varIable by T (1+ I) = RT*T (I) 

The RT value was set I 5 

4.4.5 Experimental Results and Analysis 

Table 4.4 ComparatIve study of PartIcle Swarm OptImIzatIOn (PSO) and SImulated 
Anneallng(SA) 

Results comparing Particle swarm optimizatIon and Simulated Annealing 
Test functions where PSO performs better than SA 

Name of Functions PSO SA True Value 
Schaffer functIOn 0 972E-03 0 
Perm functlon# I 0 16 0 

Power Sum functlOn4 0 100 0 
Test functIOn where SA performed better PSO 

Wele~tra~~ function 00299 751E-09 0 
Zero Sum functiOn#7 I 0 0 

Jud&e function 204050117 1608173069 1608173069 

Legend: Dim Dlmen~lOn of the tunctlOn, T Value True value 

Note: All the benchmark test functIOn used for the study are gIven In APPENDIX A 

From the Table 44 below we can conclude that for Schaffer functIOn, Perm functIon 

and Power Sum FunctIons PartIcle Swarm OptImIzatIon has performed better than 

SImulated Annealing and gIven the result~ clo~e to true Value whereas for Welestrass 

functIon, Zero Sum and Judge function SImulated Annealing has gIven the value close 

to true value 

4.4.6 Summary of Section 4.4 

Our program of RepulSIve PartIcle Swarm has gIven a good result for the functIOns 

hke Schater functIon, Perm functlon# I, Power-Sum FunctIOn 4 where SImulated 

Annealing have faded In these functions 

Whereas SImulated Annealing has performed better for Welestrass functIon, 
Zero-Sum functIOn and Judge FunctIon then RepulSIve PartIcle Swarm ThIS IS a 
published work by Singh and Borah (2009) 

1<***1<*>1'* 
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Concluding Discussion 

5.1 Discussion and conclusion for empirical study 
on evolutionary algorithms using new test 
functions 

I In thIs thesIs eleven test new functIons were proposed for the emplflcal study of 

evolutIOnary algonthms The graphical representatIOns of these test functions gave a 

shape of the test functIOns The features of the all the eleven test functIons have been 

spell out These eleven test functions have been generalIzed up to n vanable, whIch can 

be used as a hIgher dImensIOn, by sImply puttmg the value of n I e n=500 m the 

optImIzer The dIffIculty of these te~t function!'. can be controlled by the approprIate 

choice of some parameter~ These functlOn~ have been coded In MATLAB to find the 

optImum value of the functions USIng the dIfferent global optImIzer 

2 Two experIments have been performed Based on first experIment, the results 

recorded In Table 3 I (a) and (b) It IS found that PartIcle Swarm OptImIzatIOn has 

performed better on F204 to F210 where as on for F20 I, F202, F208, F209 and F210 

SImulated AnnealIng has found the best optimum value GenetIc AlgorIthm and 

DIfferentIal EvolutIOn have not performed better except the functIon F208 and F209 

The GenetIc AlgorIthm dId not converge at all on F210 In the ~econd experIment, 

results recorded m Table 32 (a) & (b) and 33 (a) & (b) , DIfferentIal EvolutIon and 

GenetIc AlgorIthm converges to optImum when the number of IteratIons have been 

Increased But, from the Table 3 4 (a) & (b) and 3 5 (a) & (b) the results do not Improve 

when the number of Iterations are Increased Hence this result validates the "No free 

lunch theorem emplflcally , though It ha~ been proved theoretIcally also 

3 Depending on the classes of test functIons there are correspondmg evolutIOnary 

algonthms classes FindIng a SUItable correspondIng evolutionary algOrithm for a 

speCIfIC class of applIcatIon IS dIffIcult In general However, In thIS research by 

analYZIng the features of new and benchmark test functIons used In thIS study It I~ 
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found a hlOt that the Differential EvolutIOn and Genetic Algorithm performs better on 

numencal class of optimIzation problem when the number of Iterations are IOcreased 

whereas the results does not Improve when the number of iterations are IOcreased 10 

Particle Swarm Optimization and Simulated Anneahng Hence It IS concluded that 

Particle Swarm optimization and Simulated AnneallOg perform better than Genetic 

Algonthm and DifferentIal EvolutIOn on class of multi-modal functIOn 

5.2 Comparative study (Analysis and conclusion) 

The Chapter 4 contalOs the repnnt of the pubh~hed paper Here we have studied the 

comparative performance of the four optlmlzers uSlOg the benchmark test function 

which are non-convex, non differentiable, nOIsy and deceptIve 10 nature 

In the fIrst of the comparatIve performance of modified DIfferentIal EvolutIOn and 

Genetic Algonthm on some non IlOear, non-convex and nOIsy test functIon have been 

studIed In 4 I 5 the result clearly show<; that none of the algonthm IS able to 

outperform on all the test functIOn conSidered for studies and hence valJdatlOg the "No 

Free Lunch Theorem" by wolpert and Macready (1997) and Ho and Pepyne (2002) 

In the second publIcation IS on the comparative "tudy of Swarm Intelhgence and 

EvolutIOnary OptimIzatIon method where the comparatIve performance of Particle 

Swarm OptimIzatIOn and Genetic Algonthm on some nOIsy numencal benchmark test 

problem" have been <;tudled and reflected 10 conclUSIOn 426 pp 49 that none of the 

algOrithm could outperform all the test functIons IOto conSIderation and vahdates the 

"No Free Lunch Theorem" by wolpert and Macready (1997) and Ho and Pepyne 

(2002) 

Thlrd paper studIes the performance of population based meta-heunstlcs on some non­

convex nOIsy deceptIve benchmark test functIOns Here GenetIc Algonthm, PartIcle 

Swarm OptImizatIOn and Modified Simulated Annealing on the set of test function 

have been studied In 4 3 5 pp 51 valIdates the "No Free Lunch Theorem" by wolpert 

and Macready (1997) and Ho and Pepyne (2002) 

In the forth publIcatIOn the comparative '>tudy wa~ done on RepulSive particle Swarm 

OptImIzatIOn and SImulated AnnealIng on some numencal Benchmark test functions 
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In 446 pp 54 validates the "No Free Lunch Theorem" by wolpert and Macready 

(1997) and Ho and Pepyne (2002) 

5.3 Future direction of research 

Since the meta heumtlc~ technlque~ 1<., growing fast and thIrd generatIon 

Evolutionary Computlngs like ArtifIcIal Immune Systems by Farmer et al (1986), 

Cultural Algonthms by Reynolds (1994), DNA Computing, slmtlar to parallel 

computing whIch takes advantages of many dIfferent molecules of DNA to try many 

different posslbtlltleS at once, developed by Adleman (1994), EStimatIon of 

DIstributIon Algonthm.;; some tImes called Probablilstlc Model-Bulldmg GenetIc 

Algorithm by Larraiiga and Lozano (2002) are being extensIvely used for complex 

computatIOns and NP-hard problems ArtIfiCIal Immune systems have been used In 

robotIcs computatIon, analysIs of adaptIve control and optImIzatIon Adleman (1994) 

solved Hamlltoman path problems UStng DNA computing EstimatIon of distributIon 

algonthm has been used extensIvely m flndmg the protem structure predictIons and 

genomlcs etc Agam these algOrithms do not have strong convergence condItIOns and 

theoretical bdckground So, there wlil be a need to develop the te~t problem and study 

the~e forth generatIon EvolutIonary computmg emplflcally Another dIrectIon of 

research could be the development of test problem and study the charactenzes of the 

test cases Another dIrectIon will be to use these test cases to study the performance of 

these forth generatIOn EvolutIOnary Computmgs 

***** 
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Appendix A 

Benchmark test functions for unconstrained global 
optimization 

TestIng any global optImIzatIon algonthm depends on the benchmark test problems 
taken Into consIderatIon TestIng the algorIthms wIth test functIon wIth mIld dIffIculty 
may not valIdate the algonthm So, It IS Important to consIder the wIde vanety of test 
functIons wIth the degree of difficultIes In the f,eld of global optImIzatIOn there eXIst a 
set of test functIOns with a limited dimensIOn and mild difficulties Therefore testIng 
any Global OptimIzatIon (GO) wIth that algonthm IS not appropnate way to valIdate 
the algonthm We have collected the large cla~s of te~t functIon to valIdate the Global 
optImIzatIOn The test functIons have been defined with the magnItude of dIffIcultIes 

The dIffIcultIes of Global OptImIzatIOn problem depends on many factors Among the 
mo~t relevant ones IS the ~Ize of ba~In of attractIon of the Global OptImIzer, the shape 
of the functIon around the global optImIzer, the clas!'.lcal example of the beIng the 
Rosenbrock functIon where the mInimum POInt IS Inside a long narrow and a parabohc­
shaped flat valley, whIch makes convergence dlfflcu It, dimensIOn and hIgh 
multlmodahty 

Thll) appendIx IS a collectIon of test functlon'i used to te'it the performance of the 
algonthm ... u~ed for comparatIve ~tudy The bench mark test functlon~ are deceptIve In 
nature, non-convex nOI~y In most of the cases of these test problems, tradItIonal 
method IS not able to find the optImum value, whereas these algonthms are able to find 
the optImum values So, the comparatIve ~tudles have InvestIgated which algonthm 
performs better on these test sUlb The fIve test functIons constructed by De-Jong 
(1975) popularly known as De-Jong's fIve test SUIt, four are um-model contaInIng only 
one optImum POInt, where are other test functIons are multlmodal contaInIng multI 
optimum pOInt Sphere functIOn smooth, um-model, strongly convex, symmetnc, but 
only one optImum POInt Rosenbrock IS con~ldered to be dIffIcult, because It has a very 
narrow ndge The tIp of the ndge IS very sharp, and It runs around a parabola 
Algonthms that are not able to dIscover good directIOns underperform In thIS problem 
Step functIon IS the representatIve of the problem of flat surfaces Step function IS 
piecewIse contInUOUS step functIon Flat surface~ are obstacles for optImIzatIon 
algonthms, because they do not give any InformatIon a~ to whIch dIrectIon II) favorable 
Unless an algonthm has vanable step 'iIZeS, It can get stuck on one of the flat plateaus 
The background Idea of the step functIOn IS to make the search more diffIcult by 
IntroducIng small plateaus to the topology of an underlYIng contInUOUS functIOn 

QuartIc functIon IS a ~Imple um-modal functIon padded wIth nOIse The GaussIan nOl~e 
makes I)ure that the algonthm never get~ the ~ame value on the same POInt Algonthms 
that do not do well on thl~ test functIon wIll do poorly on nOIsy data Foxholes functIon 
IS an example of a functIon wIth many local optIma Many standard optImIzatIon 
algonthm~ get stuck In the flr'it peak I~ fInd The Schwefel, Ra~tngIn, Gnewangk 
functlon~ are typIcal examples of non-lInear multlmodaI functions RastngIn's functIon 
IS a faIrly dIffIcult problem for genetIc algonthms due to the large search space and 
large number of local mInIma Rastngm has a complexIty of 0 (n In (n)), where n IS the 

number of the functIon parameters ThIS function contaInS mIllIons of local optIma In 
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the Interval of consideration Schwefel's functIOn IS somewhat easier than RastngIn' s 
function, and IS charactenzed by a second-best mInimum which IS far away from the 
global optimum 

The test problems Nagendra (1997) have different compleXity and difficulties Some 
functions are nOIsy In nature Some are dented non-differentiable and deceptive In 
nature The visual presentatIOn of these functIOns gives the charactenstlc and some Idea 
about the number of optimum (I e local mInima or local maxima) and also the 
compleXity of the function It can be seen from the graphical presentation that the test 
function are highly multi-model The afford was to collect and present the characterIStic 
of the functIOns In a most exhaustive manner but this may not be the complete list of 
test functions Alc;o together with the analysIs some new test functions are evolved 
which IS presented In chapter 2 

More precisely the functIOns from I to 80 are the bench mark test functIOns adopted 
from different web site the reference IS given below The graphs of these test functIOns 
have been redrawn For each functions four colored dimensIOnal graph e g meshz & 
me<;h, ~urt, ~urfc dnd ~urtl ot MATLAB hdve been uc;ed The code of the functions IS 
summanLed In the code and reference chapter The functions from 81 to 90 have been 
adopted from http //ssm comlabstract=926132 and the graph of all those functions has 
been redrawn by us Functions from 90 to 182 the functions have been adopted from 
the CUTE (CUTE ConstralOt and UnconstralOed TestIng Environment AgalO the 
functIOns from 183 to 199 has been adopted from CUTE but we have kept these 
functIOns as another set for the different nature of the problem The survey of the test 
functions are from the folloWIng www maths uq edu au /CEToolBox Inode3 html# 
SECTION 0002130000 0000000000, http IIwww netltb org/utk /mlsc/sw _survey/ 
urclhtmV215 I html and http II www netltb 01 g /cglbln /nh~e/ nphredlrect) 
ftp II 138484 14 /pub/ reports/cute pL gL The reference of other test functions could 
be traced from (though some of them may not be the ongInal source) are 
Chattopadhyay (1971), More et al (1981), Jorge et al (1981), Hock and Schlttkowskl 
(1981), Nagendra (1987), Floudas and Pardalos (1987), Floudas et al (1999), A venck 
et al (1991), Jansson and Knuppel (1992,1994), Bongartz et al (1995), Van-Iwaarden 
(1996), Baker (1996), Adono (2005), Mlshra (2006) and Andrei (2008) 

These benchmark test functions are beIng redrawn with mesh, meshc, surf and surf] are 
created U~Ing MALT AB 7 I ver~lon with different angles 

(i) First set of test functions 

1. A typical multi-modal function A multi-modal (non-convex) function (In 2 
vanables, m = 2) IS 

J(x:) = CO~(Xl)CO~(X2)exp[ -(l/4)~XI2 +x/ ] -5 :5 x, :55 and 

1=1,2 It has global mInimum !(.\·)=-I at .\' =(0 0) The function IS graphically 

represented below 
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2. A typical non-linear function: Consider the function in m variables (m 2: 2) that has 

the optimal value f ( x ') -= 0 in the search domain jxJ$; 10; i = l2,-~m gi ven as 

!(:c) = ~:lcosfJx; - -lHj / l:c;+ -lHIJ+ (m -l) . 1be function is graphicalJy represented below 

3. Ackley function : An m- variable ( m 2: I ) function with search domain 

[- 15 5 Xi 530] for ( i = 1,2, .. . ,m) given by Ackley (1987) 

!(-l) = W +exp(l) - wexp[ ~2( (~X;)I m r~ ] -exp( ~ ~ COS(lx:CJ] 

is called the Ackley function. It is a multi-modal function . The global minimum of this 
function is f(x ' ) = 0 for x ' = (0.0 .... ,0'. 1be functioD is graphicalJy represented below 

....... f._ 

.. 

• -, @ --"';-;--. 
~ . 

\ .... .'1 

4. ANN (Artificial Neural Network's) XOR function: This function IS in nine 
variables. It is defined as follows: 

f=1;+f2+1; + f4 
where 

f =[l+exp{ X7 
2 ) +i-"' ~ 
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(I+e; '--' ) x,}n 
1 +e~"--' X, } J']' 

It is a difficult function to minimize. We obtained by PSO fmin = 0.95979 for 
X=(0.999999, 0 .99993 , -0.89414, 0.999994, 0.55932 , 0.99994, -0.99963, -0.08272 ). 
By GA we found the value tJ1Je 0.00000 and By SA (Simulated Annealing) result came 
0.9669081752844. So in this function GA has outperformed PSO and SA. 

5. Beale function : A 2-variable (m=2) function with search domainr--4.5$x, $ 4.51; ( 

i = 1, 2) given as 
I(x) ~ (1.5 - x, + ..1,..1 , )' + (2.25 - x , + ..1,..1; )' + (2 .625 - x, + ..1 ,..1; )2 

is caUed the Beale function. lbe graphical represemation of the function given below 
............. uooo 

---~--.. ~-.-

6. Bohachevsky functions: Three 2-variable functions (m = 2) characterizing I(x ' ) '" 0 , 

x ' '" (0, 0) in the search domain 1- 100 $ x , $ IDOl : i = I , 2 are called Bohachevsky 

functions. wtUch are given a§ 
1,(%1 ~ X,,2 + 2x; -o.Jcos(Jz x,) -OAcm;(4z'£21 +1>-7 

J~(.£' = .a:,~ + 2.a:g -0.JCM(Jxli,JCM{4z.t:,} +0 .. 3 

1, (.£; = x,2 + h ; -0.3cos(3z.£, + 4z.£, ) +03 

1be graphical representation of the function is 

-. 
•• • _. '0 

7. Bohachevsky 1: This function is defined as 

/(.l:j.-"7) =...: + 2X; - 0.3cos(3Jl.t; )-OAros(4Jl-"7) + 0.7 with xl'x2 E l-50, 50] and the 

minimum value of the function is r (xi'x2 ) = 0.0 

The function is graphically represented below 
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.... __ ... -

-. 

8. Bird function: This is a bi-modal function with f(x*) =- I06.7 64537 In the 

fie3fcb domain Xi E [- 2X. 2;r);; = 1. 2 given by 

f() 
". ( ,1(J-roo('<2IrJ ~I ) [II"-:>;I)'J ( )2 

X = SID .t1)e'- + """'-.11 e + .t1 - .11 

... 
'. 
" 
!-" 

.... ; ........ ~ ..... 
~ ....... ....--"""'"! .. 

., . 

9. Branin function : A 2-variable function (In = 2) characterizing f(x ' ) = 0.397887, with 

three g lobal minima in the search domain 1-5 $ x, $ 10: 0 $ x, $ 15] is called Bohachevsky 

function. which is given as 
f(~I:O (~2 - 5x,i 1(4%' ,+(5-'1,1 x , - 6 1" + 10(1-(8x,-' ) cos<..-, ) 11- 10 

The graphical representation of the function is 

10. Booth Function: A 2 - variable (m = 2 

[-IO~ x; ~1O]; (j = 1,2 ) given as 

f(x) = (x, + lx, _7) ' + (lx, + x , - 5) ' 

function with search domain 

This function is multimodal with the global minimum f(x ' ) = 0 at x ' = ( I , 3). The 

function is graphicaU y represented below 

11. Bukin function: Bukin function is almost fractal (with fine seesaw edges) in the 
surroundings of their minimal points. Due to this property, they are extremely difficult 
to optimize by any method of global (or local) optimization. The search domain 
Xa E [-15. -5] • .t1 E [-3.3J these functions are defined as follows in Bukin (1997). 

14 = lOOx; +O.O l lx, + to! and has its minima f m;n = (-10,1) = 0 
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j~ = IOO~-'2 - O.OIx:i + O.Ol iXI + loj and has its minima flllin = (- \0, 1) = 0 

Graph for I"' function: 
"'" ..... "...-- .... -~--

., 

" 

Graph for 2'"" function: 

-, 
-, 

" .' 

12. Chichinadze function: In the search domain Xl' ~ E [- 30,30] this function is 

defined as follows and has fmin (5.90 \33,0.5) = -43.3 159 , Refer Chichinadze ( 1983 ), 

f(x) = x.2 - 12x. + II + IOcos(JZ'x. ) +8sin(5.cx.) _ (.!..)OJi e~,So(s,-05 j' 
2 5 

~, 

" , , 

13. Corana function: With reference to Corana et al. (1987) four variable function is 
defined as follow s and has .l;nin (0, 0,0,0) = 0, 

4 

f (x) = ~:O. 15(Z; -O.05sgn(Z; »2 difl~i - z;1 < 0.05 
i =U 

z = O.2t~J+O.4oooo1 sgn(x. ) . ~ "'1 J 

4 

= Ldj x j

20therwise 
;:::: 1 

" 
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14. Colville function: The function IS defined as 
! (x" x" x" x, ) = IOO(x, -x,' )' +( I - x,) ' +90(x4 -x; )' +( I -x, )' + IO.I ( x, - I ) ' + (x., - I ) ' + 19.8(x, - I )(x, - I ) 

with xI' x2 ' X 3X 4 E [- 10, I 0] j* (x." x2 ' x}' x4 ) = 0.0 at (I , I , I, I). (Colville, 1986). 

The volume curve of the Colville function which is known as isonormal surface is 

15. De&ded Corrugated Spring fundion; This function defmes the deflected 
corrugated spring in n dimensions is given by 

/=-cos(kR)+0.IR2 where R is the radiu s & 
-

where c the minimum is point and k 

defines the periodicity nature of the corrugations. For the case n=2, c l=2, C2 = 5, & 
k=5. 

/ 

. . . 

I 

-; . 
., 

- . . . 
16. Deb's Deceptive 4-Bit Function: This is a binary problem, usually used in 
multiples i.e., a 40-bit version might consist of 10 of these sub problems. eithe r 
concatenated or interleaved . The problem can be made harder by using different 
weightings for different sub problems. The equation below gives the fitness of a single 
block of length 4, as a function of the number of I's it contains. The maximum value is 
1.0 for (I , I , I , I) 

f( x ) = {0.6 - 0.2u( x), u(~) < 4 
1, u(x) = 4 

Where U(x) = L f=lXi . 
3 

17. DE Jong's Function (#1): The function is defined aSh = LXi' -5.12~x; ~5.12 
;= 1 

(i = 1,2,3) . It is simple strongly convex function. It is 3-dimensional, continuous, unj­

model, separable and scalable. Its g lobal minimum is f(O, 0,0) = O. Refer De-Jong 

and Morrisson (1999) 

18. DE-Jong's Function (#5): It is a 2-dimensional, multi-model, continuous, 
separable with local minima (foxholes) { (al. ) ' a2 ) } ~= I and global mInima IS 
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f(-32 ,-32 ) "" 0.998004 and the function is defined as 

j(X) = 25 I . -65.536~ x. ~65.536 (i== I ,2) . 

0.002 + L--=2---
j= i j + L (x

j 
_aij )6 

i :::: l 

[
-32 - 16 0 16 32 -32 - 16 ..... 16] 

Here, [aij ] = -32 -32 - 32 -32 - 32 - 16 -16 .. .. .. 32 . 

19. Dixon & Price function: This function is in m (m 2 2) variables with search 
domain[-IO ~xi ~ I01 ; (i = 1,2, ... ,m) and the minimum I(x' ) = o. It is defined by Dixon and 

Szego (1975 , 1978) as 

I(x) = (..Ii _1)2 + f i(2x} -X, ... Y 
/:::2 

'The visuaJ presemation of the function is 

20. Easom function : This function is in 2 variables (m = 2) with search domain 

[- 100 ~Xi S 1001; (i = I, 2) and I(x' ) = - I at x · = (Jr, Jr). It is given as 

I(x) =-ro.s(.lj)co.s(~)exp(-{x, - X)l _(.l2 -xf ). 

'The graphical reprelientation of the function is 

.:~ 

"l~ 
.... ' . 

21. Egg holder function: This function is in m (m 2 2) variables and given as: 
. -i 

I(x) = r ( -<..t;.-eJ +47)fiin(Jixi+J + x,l2+47i) Hin(J'rx, - (x'<1 +47)i)(-x)~ -512 :Sx, :S512; i=I.2. ._.m 
i.;J 

..... _,...--

.' .. -.. 

........ ,.....-
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22. Fletcher- Po weI function: 

~ = f Cu;jsin(C)+v;j COS(C)} 
j=4 

U jj .Vjj = rand [-100. 100) and Cj E [-;r.E). 

Appendix A 

This is a m-variable function with 

;= 1 

Bi = f [u;j sin(xj) +vij COS(X)]; 
j=f 

23. Freudenstein Roth function : On X; E [- 10.10];; = 1.2 this 2-variable function is 

defined as follows and has !,,1in(5,4) = 0 . 

f(x) = [-13 + x~ + «5 - XZ)x1 - 2)xS +[-29+.\) + «Xl + l )x2 -14)xS 

24. Generalized Rastrigin function: A typical multimodal function defined as 
/I 

f(x) = L(~ -lOcos(2JIx) + 10) ,-5. 12 ~ Xi ~ 5. 12 and the min va lue of the function 
i::::l 

is f(O,O,O, ...... ,O)=O. The function is graphicalJy represemed below 

.1 

. ". . ~. ' . 

25 Generalized Schwefel function: The fu nction is defi ned as 

f(x) = ! -x; sio(M") , -500 ~Xi ~ 500 . The minimu m value of the function best 
;;: 1 

known is 1(420.9687, .... ..... , 420.9687) = - 4 189 .5 The function is graphicall y 
represented below 

26. Griewank function : It is a typical multi-modal function with a large number of 
local minima in the search domainl -600 ~x,~ 600 1 , i = 1,2, ... , 111 and global minimum 

f(x ' ) = oat x ' = (0 ,0, ... , 0). It is g iven as 
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f (x) = f er? /4(8); - fi cos(xJ Ji) +. 
;=1 ,i~ 

1be function is grapbjcally represented below 
.... -,..~ ... -... 

-. 

27. Giunta function: in the search domain x. , x2 E [-1,1) the function is defined as 

follows and has f uWJ (0.45834282, 0.45834282) = 0'(Jro2472 I 84_ 

L 2 [ . 16 . 2 16 I . 16 ] f(x) =0.6+ . SID(-X -1)+slO (-Xi -1)+-SIIl(4(-x; -1)) 
.:lJ IS' IS 50 15 . 

We have got the minimum value of this function using GA, RPS & SA 
OJ)6447.0.06447 and O.6447044S40070E-OI respectively . 

................... '-"-

28. Goldstein Price function: On Xi E [-10,10];; = 1.2 this 2-variable function is 

defined as follows and has fmin (0, -I) = 3 _ 

f(x) = (f)(f2) 

where 

fo = [I + (x, + X 2 + 1)2(l9-14xp + 3x,2 -14x2 +6x,x 2 + 3x;)] 

12 = [ 30+ (2xn - 3X2 )208-32Xn + I2x~ -48x2 -36x,Xl + 27x~)] 
The graphical representation of the function is 

29. Himmelblau funclion: It is a 2-variable (m = 2) function with search domain 
[-{) $x; $61 ; (i=I,2) and 4 global minimaj(x' ) =o , one each in the four Cartesian 

quadrants. The optimal values of x are: (3,2) , (-2.805, 3.131), (-3.779, -3 .283) and 
(3.584, -1.848). The function is written as: 

f(x) = (XI +x~ - 7) ' + (XI' +X, - II )' 

The modified Himmelblau function has only one g lobal optimum f(x ' ) = 0 at x ' = (3,2). 

This (modified) function is given as 
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f( x) = (X, + X; _7) ' + (x,' + x , - II )' + O.I[(x, - 3)' + (x, - 2) ' I 

The visual presentation of the function is 

~l .- -. 
" ,- •. 

The generalized himmelblau function is depicted below with four graphs 

.' " 
,-. 

30. Hougen Function: Hougen function is typical complex test for classical non- linear 
regression problems. The Hougen-Watson model for reaction kinetics is an example of 
this a non-linear regression problem. The form of the model is 

rate = fJ~~ - ~ I fJ~ 
I if- Pl4. if-pj~ if- fJ4~ 

where the betas are the unknown parameters, x = (x" x" x, ) are the explanatory 

variables and 'rate' is the dependent variable. The parameters are estimated via the least 
squares criterion. That is, the parameters are such that the sum of the squared 
differences between the observed responses and their fitted values of rate is minimized . 
Th ' d I'd ed e mput ata gIVen a ongst e are us 

XI 
470 285 

470 
470 470 100 100 470 100 100 100 285 285 

X2 
300 80 

30 
80 80 190 SO 190 300 300 SO 300 190 

X3 
80 W 

W 
120 10 10 65 65 54 UO 120 10 UO 

tau 855 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13 

The values by tradition method are A = 1.253031 ; P2 = 1.190943; ft. = 

0.()62798; li4 =0.040063; lis = 0.112453. The Particle Swarm method also does not 

ordinarily perfonn well in estimating the betas of the Hougen function. However, with 

XaJ) ::(WOO5 and UJ=O.05. ruo for 50.000 iterations we ~ A = L5575204; lil = 

0.0781010629; li3 =0.050866667; li4 =0.138796292; li5 = 0.955739322. The sum of 

squares of deviations (S2) is = 0 .301933528 . A comparison of Rosenbrock-Quasi­
Newton results with these (RPS) results indicates that the betas exhibit very high 
degree of instability in the neighborhood of the minimal S2 . The above analysis is 
adopted from Mishra (2006). 

31. Hump function: It is a 2-variable (m=2) function with search domain r-5 :'> x, :'>51; ( 

i= I, 2) and dual (global) minima/(x' ) =-1.032 at x' =(±l) (0.0898, -0.7126). It is given 

as 
f(x) = 4Xl2 - 2. I x~ + x~ / 3+ XI X 2 -4x; +4x; 

The funct ion is graphically represented below 
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32. Hyper eUipsoid function: The function is defined as f(x) = L/x~ with 
j = 1 

X j E [- 1, l]and the minimum value of the function is j * (x) = 0.0 . 

1bis is a two dimensional visualization of hyper ellipsoid function.. 

33. Judge funclion: This is a multimodal 
function derIDed as 
f(x) = (XI +x2sin 2(u;) +x; cos(v)- yy 

This function has two optima f(0.846, 1.23) 
= 16.0817 which is a global minima and 
[(2.35,-0.319)=20.9805 which is a local 
mmuna. 
This function has been taken from Bill 
Goffe' s Simman (Simulated Annealing 
Problem website). 

--

I 
1 
2 
3 
4 
5 
6 

1 
8 
9 
10 
II 
12 
13 
14 
15 
16 
11 
18 
19 
20 

U(l) 
.286 
.913 
.348 
.216 

, .913 
, .543 

.951 
: .948 

.543 
1 .193 
, .936 
; .889 
1.006 
1.828 

.399 

.611 

.939 
1 .184 

.012 
' .889 

34. Keane's funclion: The keane's function is defined as 

(L'~ OOS4 (x.)-2n~ . ros2 (x;)) 
f(x) = ,=j .=1 With a constraints 

J~. a: 
~i~ I 
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V(I) Y(I) 
.645 4.284 
.585 4.149 
.310 3.811 
.058 533 
.455 2.211 
.119 2.389 
.259 2.145 
.202 3.231 
.028 1.998 
.099 1.319 
.142 2.106 
.296 1.428 
.1 15 1.011 
.ISO 2.179 
.842 2.858 
.039 1.388 
.103 1.651 
.620 1.593 
.158 1.046 
.704 2.152 
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35. Levy function No.3: It is a 2-variable (m = 2) multi-modal function with search 
domainr-lO ~ Xi ~ 101· It has some 760 local minima and 18 global minima in this search 

domain. Its global minimum is f(./) = - 176 .542. 

~ ~ 

I(x) = Licos((i + l)~ +i]Licos[(i + l)x2 +i] 
i=1 ;=J 

TIle function is grapb.ically represented below 

36. Levy function No.5: It is a 2-variable (m = 2) multi-modal function with search 
domainr-10 ~xi~ 101. It has some 760 local minima in this search domain. Its global 

minimum is f(x ' ) = - 176. 13 75 at x ' = (- 1.3068, - 1.4248) . 
~ ~ 

f(x) = ~)coq:(i +I)x, +i)~)cos[(i + 1)-'2 +ll+(.Ij + L425l3f +(.17 + 0.80032)1 
1=1 1=1 

The function is graphically represented below 

., 

... -. -. . . '" "'''' ... .. /"" . - . . . 

37. Levy function No.8: It is a 3-variable (m = 3) multi-modal function with search 
domain[- IO ~ Xi ~ 101· It has some 125 local minima in this search domain. Its only global 

minimum is f(x ' ) = 0 at x ' = (I , I , I ). this function IS specified as 
... -1 

j(x) = sin 2 (J!y. ) + ~:<Yi _1)2[1 + IOsin2
(J!Yi'" )]+(Y .. _1 )2 

i=/ 

where Yi = 1 + (Xi -1)/4 ; i = I, ... ,m. in Levy et aL (1981). 
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38. Levy function ('U): In the search domain -'1J,x1 E [-10.10) this function is 

defined as follows and has I min (l, 1) = 0_ as defined in Levy et al. (1981) . 

I(x) = fiin 2(3JIXu) + (x~ _1)2 [I -H;in 1 (3JIx1 ) ] + ( X 2 _1 )2 [I + Si0 2( 2JCX) l 
The graphical representation of the function is 

39. Leon function: In the search domain ~.X2 E [-1.2,1.2] this function is defined as 

folJows and has j~'in (1 , 1) = o. 
f(x) = IOO(x2 - X12 ) + (1 - XI )2 

The graphical representation of the function is 

-. 
-, 

40. Matyas function: It is a 2-variable ( m=2) function with search domain 
[- 10 :0; Xi :0; 10] ; (i=I,2) and minimum j(x*)=o at x' = (0, 0). It is given as 

f(x) =O.26(.x; + .x;)-O.4&;~ 
The function is graphically represented below 

.­
l ..... --, .• 'f ~ __ ;--;- h 

4 L McCormick funcdon: In the fieafcb domain .., E [ -I .5,4) , x2 E [-3,4] th is 

function is defined as follows and has Imin(-o.547 19,-1.547 19) =-1.9133. 

f(x) = sin(x, +X2 )+(XI -x2? - 1.5x, +2,SX2 + l. 

~l 'I 
. .l 

.-
• J -~ • 
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42. Meyer function: The Meyer function is defined as cubic polynomial divided by a 
quadratic 

fey) = 1+ A y + 8y2 + ; / Where 
I+Dy +Ey 

ABC 
1.3604 0 .0962 -0.5127 

D E 
-0.6722 -0.3278 

43. Michalewicz function: In Michalewicz (1985) the function is an interesting multi ­
modal function in Ihe searcb domain (OS x, SKI. i = L2, ... ,m. It has an additional 

parameter, p that determines its surface. For p=IO, its global minima at different 
dimensions (m) are : f(x' ) = - 1.8013 (while m=2), f( x' ) ==-4.6877 (while m==5), 

f(x' ) = -7.664 (while m=7) . This function is given as 

'" 
j(x) = - L sin(xi)(sin(ix; I X »)lp 

/:1 

TIle function is graphically reprefierIed below ... _,..,,,-

44. Modified RCOS function: In the domain -'1E [-5. I O).~ E[O. 15] this 2-variable 

function has Imin (-3.196989,12.52626) = -D. 179891. It is specified as where 

.~ = a(x2 - bX,2 + ex, - d)2;f2 == e(l - g )cos(x)cos(x2);f3 = log(x~ + x~ + I) 

1 5.1 5 
where g =-;b=-z ;c=-;a = I;d = 6;e = JO 

8Jf 4Jl" Jf 

45. Modified Scbaft'er fundion #1: In the search domain -G.~E (-100, 100) this 

function is defined as follows and has 1.rin(O,O)=O 

j(x) =O.5 + Sin 2 (~+.r;)-0.5 ,o 
[ I +OoOOI(~ +.r;) J 

46, Modified Schaffer function #2: In the search domain -'1.~ E [-100,100] this 

function is defined as follows and has I min (0,0) = 0 

j (x) =O..5 + Sin
2
(X; - Xi>-0..5

1 o 

[ I +O'(x)J(.r? +.r;)] 

47. Modified Schaffer function #3: In the search domain .1"., -'2 E [- 100, 100) this 

function is defined as follows and has .t:llin (0, 1.253115) = 0.00 156685 
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.sin1 cos IX: -x;l -O.5 
f(x)=O.5+ ? 

(I +O'!X)l(.Il2 + xi) l 
48.. Modified Schaffer function #4: In the search domain ..tj , X:2 E [-)00, )00) this 

function is defined as follows and has fOlin (0, 1.253132) = 0.292579 

cos1 sin ~.~ - xii-O.5 
I(x) ==0.5+ 2 • 

[I +O.OOI(~ +xi)] 
49. Masters Cosine wave function: The function is defined as 

,,-~ 1( , 'I 
~ -:;;I Xi.,..o·~x • .o:,.,. .. "i (J 2 2 ) 5 < 5 f(x) == -~e ~ cos 4 xi .. / +O,SXiX i +1 + x, ,- ::::: Xi - . 
;= 1 

The function is graphically represem.ed below 

50. Needle-eye function: This function is m-dimensional (m ~ I) and defined with a 

small (say 0.00(1) eye. If ~xil~eyeV'i then!(x) = I else 
m 

I (x) = ~)J.OO + Ix, 1)/;;( == ti/ lx;j > eye,Ootherwise. Minimization of this problem 
i= 1 

becomes more difficult with smaller eye and larger m(dimension), 

51. Pathological function: The function is defined 

.. -,[ sin 2 (Jx;~ +)OOX;)-0.5 J 
I(x) == L 2 2 +0.5 , -100::::: Xi ::::: 100 . 

• ~I 0.00 1 (Xi .. , - 2xi +,x; + x:) + J ,0 

as 

52. Paviani function: It is a lO-variable function (m = 10) in the search domain 
Xi E (2, 10), with f{x ' ) = - 45.77847 ; x ' = (9.3502 ,9.3502, ... ,9. 3502) given as 

t ( ln l(x; -2)+Jnl (IO-.l;)]-[n~o<JXi r 
~ 
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53. Perm function #1 In the domain XE [-4,4], the function has fmin =0 for 

x=( 1 ,2,3,4). 

'I;'; specified as j(x) ~[tt(i' + Pl{( ~' )' -\ H The value of P(~ 50) introduces 

diffICUlty to optimization. Smaller values of p raises difficulty further. 

The graphical representation of the function is 

54. Perm function #2: In the domainxE [-1,1] , and for a given p (=10), this m­

variable function has J:nin = 0 for x, = (ifl ,i = I, 2, ..... ,m . It is specified as 

55. Power-sum function: Defined on four variables in the domain XE [0,4], this 

function has !;nin = 0 for any permutation of x= (1,2,2,3). The function is defined as 

f(x) = [t bt - t -< J ;bt =(8,18.44,114) fork = (1),,3,4) respectively. 

56. Quintic function: In the domain XE [-10,10] with fmin = 0 for 

Xi =-1 or 2;i = 1,2, ...... m this function (with multiple global minima) is defined as 

f(x) = i p:; -3x: +4X,l +2x} -lOx, -~: X, E [-10,10];; == 1,2,3 .... m 
i= 1 

57. Quadric Function: This function is defined as 

f(x)== r.( i :Xi)2 with xj E [- IOO, IOO] and the minimum value is j'(x)=O.O 
j>4 *;! 
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58. Rastrigin function: It is a typical multi-modal function in m (m 21) variables 
with search domain [-5 .1 2~x; ~5. 1 2]; (i== I,2, ... ,m) and the minimum j(r") == o at 

x ' == (0,0, .. ,0). It is a difficult function to optimize. It is given as 

f (x) == 10m + t (X; -IOCO!i(ax;» 
i==1 

The function is graphically represented below 

59. Rosenbrock function: This function is in m (m 2 2) variables with search domain 
[-5~x, ~ IOl ; Ci= I,2, .. . ,m) and the minimum f(x ' ) == 0 and x ' == (I, 1,., 1) [t is very simi lar to 

the Dixon and Price function. It is often referred to for its very slow convergence in the 
neighborhood of the minimum. It is given as 

",-J 

~)IOO(~ -x:;~i +(.1', _1)1) 
;=1 

The function is graphically represented below in two variables 

.~ ,. 

60. Royal Road Function: The Royal Road function is a binary problem with one 
optimum but many large plateaus. Technically, this is a type-Rl Royal road function , 
This version assumes there are a blocks. each of b bits. so thal L = a. b. 

f( -) - va n i,(b+1) 
X - k.i =l i~ihH Xi 

61. Rana's function: The function is defined as 

f(x)== I((xi+l +l)ros( J/xi ... - X; +ll}sin( J~+I + Xi + ~) + x; oos( JX;+J +~ + Ij)sm ( JjX; ... - X; + 11)) 
~ 
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62. Schwefel function: It is another difficult but interesting multi-modal multi ­
dimensional function in the search domain [- 500 s x, s 500J , i == \,2, ... , m with its global 

minimum at J(x ' ) = o. It is given as defined in Schwefel (1981 , 1995) as, 

I(x) == 418.9829m - f ix; sin(M)] 

The function is graphically represemed below 
,..-.... ~ .... -

/ .. 
63. Schaffer Function (#7) : This function is non-separable and non-scalable. The 
global minimum value of the function is f(O ,O)=O. 
I(x) = (xi +X;)!II.2~[sin 2(5O(x; +X:)'H) + 1.0) -IOO ~xi ~ lOO(i = 1,2). 

, 

'II' ._ •. '. 

64. SdlafI'er fuodion (#5): In the search domain ~,X2 E [-100,100] this function is 

defined as follows and has f:nin (0, 0) == O. 

I(x) =0.5+ sin
2 

J(.X; +X;) -O,~ . 
[ I +OJXH(.x;2 + xi)] 

4 4 4 4 0.1 

65. Shekel Function: A 4-variable function (In = 4) for I I 0.2 
parameter p (2 <; p <; 10; P is an integer) in the search 8 8 8 8 0.2 

domain X; E (2, 10) is given as: 6 6 6 6 0.4 

( r 3 7 3 7 0.4 I' 4 
A== ; c == 

/ , (x) == -~ ~(Xj -a, )' +c; 2 9 2 9 0.6 

5 5 3 3 03 
The optimal values of I,'(x' ) li e between -10.02 and 10.54 8 8 I 0.7 
The matrix A and the vector C are given alongside. 6 2 6 2 05 

7 3.6 7 3.6 05 

66. Sine envelope sine wave function: This function characterizes repeating couplets 
of optimal values of x ' , except their sign. The function is given as: 

- ~(Sin2(Jxi2 ... , +X; -0.5) J . - < < '-I(x) - ~ 2 +0.5 , )(XL Xi _100; 1-1,2, ... ,m. 
i;'J (O,(X}f(Xi~1 +xn+l) 
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67. Shubert function : It is a 2-variable (m = 2) typically difficult multi-modal function 

with search domain[- IOsx;s IO] ; (i = I,2) and minimum f(x*) =-186.7309 It is given 

as 
2 ~ 

!(x) = n~)iros«i+l)xi +i» 
j,," ;=1 

1be function is graphically represented below 

; • . 
, ...... , ........ ~ .. ,,-

68. Shubert function #1: This function is defined as 

!(X)= (±iCOS[(i+I)Xj+i)) *(tiCOS[(i+I)~+i])2 and the global minimum is at 
~ ,,::;::3 ,~ 

X· =X*(:i), 

X . = [ - 7.0835 - 7.0835 - 1.4251 - 1.4251 - 1.4251 4.8581 5.4829] 

- 1.4251 - 7.7083 5.4829 -7.0835 -(}.8003 -(}.8003 4.8581 
Where X' is the part of the global minima set and f(x ' ) = - 186.7309 This function has 
about 400 minima and about 18 global minima. The graph of the function 2 1 and 22 is 
same as function 20. 

-, 
"'1 

""I 

:l 
.', --~--;-

...... ----------. ! 

,. .. .... -.- ....-~ .. -

69. Shubert function #2: The function is defined 

!(x) =( tiOOS[(i + I)Xj +i )*( tiCOs((i+I)Xz +i ) +(Xj + 1.42513)2 +(.12 +0.80032)2 

Where the bounds are - to ::::; x"x2 ::::; to . The global mIntmum is at 

x· =(-1.42513, -0.80032) f(x*)= - 186.7309 .This function has abou t 400 minima. 

The function is graphically represented below 
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70. The six-hump camel back function: The camel function is defined as 
h 

l(x)=4~ -2.ltu4+j +-Gxl -4X; +4X;, -3::;.x;::;3 and -2::;x2 ::;2 . The global 

minimum value of the function is at x· = (.0898,-D.7127) or (.0898, 0.7 127) and 

f(x' ) = - 1.0316. 

71. The Stuckman function : This function IS defined as 

l(L ~ J+i)sin(~)/~ J if O::; .lj ::;b 

Is (x" x2 ) == l (l ~J+~)sjn(llz) /llz J if b::; x:z::;W 

Where 0 ::; Xi ::; 10 for i= 1,2 and mi is a random variable between 0 and 100 (i= 1,2), 

and b is a random variable between 0 and 10, and 0 i = U.l1 - 'iilJ +UXz - TulJ, where fj I 

is a random variable between 0 and b, 'i2 is a random variable between b and 10, and 

r21 is a random variable between 0 and 10, rn is a random variable between 0 and 10 

(all random variables are uniform). 
The global maximum is located at 

{
(r. r.) if ~ ~~ ( x. ' Xl ) = ( II' 21 ) 

. 'i z, Tzz otherwise 

72. Three-humps camel badl fundion: In the search domain .lj,Xl E [-5,5] this 

function is defined as follows and has f~jn (0, 0) = o. 
l> 

I(x) = 2X; -1.05.lj- +.:5.-+ -G X 2 + X; 
6 

The graphical representation of the function is 
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73. StybIinsIdtang function: In the search domain -G , x2 E [-5,5) this function IS 

defined as follows and has f min(- 2.903534,-2.903534) =-78.332 

!(x) = ~ t (X;4 -/6X; + 5X;). By Styblinski and Tang (1990) . 

....... -_ ......... -

,-

74. Trid function : This function is in m (m ~ 2) variables with search domain 
[- tn ' 5x, 5m' J; (;=1,2, ... m) . The Trid function is given as 

!(x) = I (x; _1)2 - IXiXi_1 
i- I j -J - -. 

Optimal values rI Trid function of different dimensions (m) 
m 

XI X 2 X ] x4 Xs X6 X 7 Xg X9 -Xio XII -Xi 2 -Xi 3 -Xi 4 -Xis f( x*) 
: , 

15 15 28 39 : 4,8 55 6(} 63 64 63 60 55 4S 39 28 15 -665 
JO 10 18 24 . 28 JO 30 28 24 18 10 I ·210 
6 6 JO 12 I, 12 10 6 I i I ·50 

The values of f(x' ) and those of x ' at different m are given in the table above. 

The pattern observed in the values taken on by decision variables is interesting, Mishra 

(2006). The function is graphically represented below 
'\0 •• _ _ ...... .- "'.-, .. -~ 

" *, 

.- -, 
,-:- . 

75. Weierstrass function : The Weierstrass function [in its original form, 

!(X) = I~~Ok cos(b*x) while bis an odd integer, 0<0< l; 00>(1 +3x/2)) is one of 

the most notorious functions (with almost fractal surface) that changed the course of 
history of mathematics. Weierstrass proved that this function is throughout continuous 
but nowhere differentiable. In its altered form Liang and Suganthan (2005) this 
function in m (m~ l ) variables with search domain[--().55x, 50.5]; (i = I,2, .. ,m) and the 

minimum f(x') = O forx' =(o, 0._.,0); 0=0.5; b=3; k=20, is given as 
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f(x)== L~)a' oos(2.;r:b*(x; +O.5)))-mL ltl cos(2n/'05)1;.t:; E (-0.5, 0.51; j == 1.2._.,m 
i=1 k=O k =O 

76. Yao-Liu #15 function or Kowalick: It is 4 variable functions in the domain 

XE [-5,5] , that has a global minimum i min (0.19,0.19,0.J2,0.14) = 0.3075 . This 

function is defined by Yao et. al . (1999) a<; [(x) = looot[a; _ x~(b} +b;.l2) ]2; where 
;:1 bj +h;~ +X. 

(
b - J I I I I I I I I It ) and 

\ - 0.25 ' 05 '1'2'4'6'8' 10 '12'14' 16 

a =(0.1957 ,0.1947 ,0.1735,0.1600,0.0844,0.0627 ,0.0456,0.0342,0.0323,0 .0235,0.0246) 

77. Yao-Liu #7 function: It is a m-variable function in the domain XE [-1 .28, J .28] , 

that has a global minima/,nin(O,O,O,O, .. ... O) = 0 . This function is give n by Yao et al. 

(1999) as 

" 

78. Zakharov function: Thi s function is in m (m~ 2) variables with search domain 
f-5:;;x,:;; IOJ ;(i = I.2, ... ,m) and the minimum j(x ' ) = o and x' =(O, 0 .... ,0). The function is: 

f(x) = ~ x: + [~ixJ2 J +[tiXJ2 r 
The function is graplUca1Jy repr-eseiIed below 

79. Zetde funcDon; In the search domain X P X 2 E [-5,5] this function is defined as 

follows and has f min (-D. 0299, 0) = -D.OO379I 

f (x) = (X1
2 + x; - 2XI) 2 + O.25x, 

., 

98 



Appendix A 

80. Zero-sum Function: Defined in the domain XE [-10,10] this function (in m ~ 2) 

ha$ f(x)=O if r ::1 x, == O. Otherwise f (x) == ) + ( I 0000 II :, xII f5 . This fu nction has 

innumerably many minima but it is extremely difficult to obtain any of them. Larger is 
the value of m (dimension), it becomes more difficult to optimize the function . 

.... 
" 

,"'--. ""I .-. -. 

(ii) Recently appeared test functions 

These functions are credi ted to Mishra (2006) and the graph of these functions IS 

regenerated by us. 

81. Cross in tray function: This function has a multiple local minima with four global 

minima at f(x*)==2.06261218 in the search domain xj E[-1O,IOJ,i=1.2. Thi s 

function is gi ven as : 

f (x) ~ -0.0001 {rin(x,) sin(x, J"il 4 ·~r' H + I r 

82. Crowned cross function : This is a negative form of the cross in tray function. It 
has 

f(x*)==O In the search domain Xi E [-IO,IO),i= 1, 2. It is a diffICUlt fuoction to 

optimize. The minimal value obtained by us is approximately 0.1 by Repulsive Particle 
Swarm 

.,-, 
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83. Cross function: This is a multi-model function with fCx' ) = 0. It is given by 

(.f + ~I'" I 
f (x) = jn(x.)Sjn(X2 )e~oo-[ ., + I {~ } 

}

-{) 1 

84. Cross-leg table function: This function is the negative form of the cross function 

and may be called as ' inverted cross' function. It has f( x ' ) =-1. in the search domain 

xj E[-IO. IO] .i==I. 2. k is difficult to optimize. We have failed to optimize by all our 

methods which we have used in this thesis . Repulsive Particle Swarm Method as given 
us the result 0 .00 1305, Genetic Algorithm has given us 0.00000 and Simulated 
Annealing has given us -0.8470640834 J 63E-04. 

. ( ..,' +~l~~ 1 

{r ~oo-[ ) ., 
} 

-(). J 

f(x)=- in(x)sin(-'2)e +1 

., 

85. Carrom Table Function: This function has a mUltiple local minima with four 

global minima at f(x' ) = 24.1568155 in the sean;b domain Xi E [-IO.IO].i = 1.,2. 1'bis 

function is given as : 

f(x) == -{COS(lj)COS(-'2)e~+.;'+~I',·Jt4r 130 

., 

. ~ 

" . .""'..... ----.--: 
, ._-- 4 .-

86. Holder Table Function: This ' tabular holder' function has multiple local minima 
with four global minima at !(x*) == 26 .92. This function is given as: 

L",,{ U ( . ·r~}..l 
f(x) =-r~Xu)COS(-'2 )en ~+"i - I 
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.~ 
\ 

-, 
" " 

.~ , " .,-" 

87. Pen holder function: This is a multi -model function with !(x*) == - 0.96354 in 

the search domain X; E [-I 1..11] , ~ given as: 

:·1 
"i 
,; .~, 

f( x) ~ -exp {-~x, )co.(x, J+"~4 f''' f} 
, , 
.'j 

"I 

)! ........ 

88. Test tube Holder Function (a) : This multimodal function is defined as follows. 
We obtain x ' = - 10.8723 in the domain xjE[-IO, IO),i=1..2 

I (x ) = -4~in(~)ros(.l7)ejoo...f"~)/~1 

-. 

89. Test tube Holder Function (b): This multimodal function is defined as follows. 
We obtain x' = - 10.8723 in the domain~ E [-9.5,9.4), X2 E [-10.9,10.9] . 

/(x) :::: -4~Sin(-'1 )oos(X2 )eF«C,+~j/~1 
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(iii) Some More Benchmark Test Functions (These 
functions have been adopted from CUTE) 
(ftp:/1138.48.4.14/pub/cute/) 

90. Extended Freudenstein & Roth function: The function is defined as 
'1/2 

I(x) = L(-I3+x2'_1 +«5-X2)X2, -2)x2,)" +(-29+x2,_1 + «x2, + l)x2, -14)x2,)" where . 
Xo = [0.5, -2, 0.3, -2, 0.5, -2 .......... 0.5, -2] and x

J 
E [- 10, 10], i = 1,2. 

91. Extended Trigonometric Function: The function is defined as 

I(x) = t((n - t cos XJ) + i(l- cos x,) - sin X,)2 where Xo = [0.2,0.2,0.2, ......... , 0.2] 
,=1 )=1 

92. Extended Rosenbrock function: The function is defined as 
n/2 ') 

I(x) = L C (X2' - X;,_I r + (I - X2'_1)2 , where Xo = [-1.2, I, ...... , -1.2,1) and c= I 00. 
1=1 

93. Generalized Rosenbrock function: The function is defined as 
II-I 2 

I(x)= Lc(x'+I-xn +(I_x,)2, where Xo =[-1.2,1, ......... ,-1.2,1] and c=IOO. 
1=1 

94. Extended White & Holst function: The function is defined as 
,,/2 2 

I(x)= Lc(x2,-x;'_I) +(I-X2,_1)2 , where Xo =[-1.2,1, ....... ,-1.2,1] and c=IOO. 
1=1 

95. Extended Beale function: The function is defined as 
11/2 ') 2 2 

I(x) = L(1.5 - X2,_1 (1- x2,))" + (2.25-x2,_1 (1- x;,)) + (2.625 - X2,_1 (1- xi,)) where 
,=1 

Xo = [1,0.8, ........ ,1,0.8]. 

96. Extended Penalty function: The function is defined as 

I(x) = ~(x, _1)2 +(t,x~ -0.25 r wherexo = [1,2,3 .............. ,n]. 

97. Perturbed Quadratic function: The function is defined as 

I(x) = 'I.ix,2 +_I_('I.x,)2 where Xu = [0.5,0.5,0.5, ....... ,0.5]. 
,=1 100 ,=1 

98. Raydan function #1: The function is defined as I(x)= 'I. ~(exp(x,)-x,) where 
,=1 10 

Xu = [I, I, I, ....... , 1]. 
" 

99. Raydan function #2: The function is defined as lex)=L(exp(x,)-x,) where 
,=1 

Xo = [I, I, I, ....... , 1]. 

" 
100. Diagonal function #1: The function is defined as I(x) = L (exp(x,) - ix,) where 

/=1 

Xu =[\In,\ln,\ln, ....... ,\ln]. 
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101. Diagonal function #2: The function is defined as I(x) = :t(exp(x,)- ~, ) where 
,=1 I 

Xo =[11l.1I2.1/3 ......... l/n]. 

" 
102. Diagonal function #3: The functIon is defmed as I(x)= L(exp(x,)-lsin(x,)). 

where Xo = [1.1.1 •........ I] . 

103. Hager function: The function is defined as I (x) = :t (exp(x,) - vlix,), where 
1=1 

Xo =[1.1,1 ........ ,1]. 

104. Generalized Tri-diagonal1 function: The function is defined as 
11-1 

I(x) = L(x, +x'+1_3)2 +(x, -X'+I +1)4 wherexo =[2,2,2 ....... ,2]. 
1=1 

105. Extended Tri-diagonal 1 function: The function is defined as 
1112 

I(x) = L(x2,-1 + x2, _3)2 + (X2,_1 - x2, + 1)4 wherexo =[2,2,2 ....... ,2]. 

106. Extended (TET) function: (Three exponential term): The functIon IS defined 
1112 

as I(x) = L (exp(x2,_1 + 3x2, -0.1) +exp (x2,_1 - 3x2, -0.1) + exp( -X2,_1 -0.1)). 

Xo =[0.0.0.1.0.1.. .......... 0.1]. 

107. Generalized Tri-diagonal 2 function: The functIon is defined as 
, II-I 1 2 

f( r) = (( 5 - 3x1 - xn tl - 3x1 + I r + L (( 5 - 3x, - tn t, - r,_1 - 3 t,.1 + I) + (( 5 - 3xn - x~) Xn - xn_1 + I) 
/=1 

Xo = [-I. -I, -I, ......... -I] . 
,,/2 I 

108. Diagonal function #4: The functIOn is defined as I(X)=~2(x;'_I+cx;,) 

Xo = [1.1.1, ..... 1] and c=1 00. 

109. Diagonal function #5: The function is defined as 
" 

I(x) = L log( exp (x,) + exp (-x,)) where Xo = [1.1.1.1 •...... 1. 1] . 
1=1 

110. Extended Himmelblau function: The functIon IS defined as 
,,/2 1 1 

I(x) = L(x~'_1 + x2, -II r + (x2'_1 + x~, -7)" where Xo = [1.1, ...... 1]. 
1=1 

111. Generalized White and Holst function: The function is defined as 
II-I 

I(x) = Ie(x"l - X,l f + (l-xJ where Xo = [-1.2.1 ..... -1.2.1].c = 100. 
1=1 ~ 

112. Generalized PSCI function: The functIon IS defined as 
11-) 

I(x) = I (X,2 + X,2+ 1 + X,XI+ 1 f +sin 2 (x, )+cos2 (x,), where Xo = [3.0.1 .......• 3.0.1]. 
1=1 

113. Extended PSC1 function: The function is defined as 
nl2 

I(x) = I (X;'_I + x;, + X2,_IX2'/ + sin 2 (X2,_1 ) + cos 2 (x2,) where Xo = [3,0.1 •..... 3.0.1] . 
1=1 
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114. Extended Powell function: The function is defined as 
1114 2 2 4 4 

f (x) = L (X4,_3 + 1 OX4,_2) + 5 (X4,_1 - X4,) + (X4 ,_2 - 2x4,_I) + 10 (X4 ,_3 - x4,) where 

Xo = [3,-1,0,1, ...... 3,-1,0, 1]. 
115. Full Hessian FHl function: The functIOn is defined as 

, II ( , )2 
f(x) = (XI - 3f + L XI -3 - 2(x, + X2 + ... X, r ' where Xu = [001,0.01,001. ...... 0.01]. 

,=2 
116. Full Hessian FH2 function: The function IS defined as 

2 II 2 
f(x)=(x,-S) +L(X, +X2+X3 + .... ·.+x,-I) ,Xu=[O.OI,O.OI,O.OI. ..... ,O.OI]. 

1::2 

117. Extended BDI (Block Diagonal) function: The function IS defined as 
11/2 2 ., 

f(x) = L( xi,_, + xi, - 2) + (exp(x2,_1 -I) - X2J ' where Xu = [0.1,0.1,0.1.. ...... ,0. 1]. 

118. Extended Maratos function: The function is defined as 
,,/2 2 

f(x) = LX2,-, + C(X~'_I + x~, -I) where Xu = [1.1,0.1, 1.1.. ...... , 1.1,0.1]. 
/=1 

119. Extended Cliff Function: The function IS defined as 

f(x) = I(x2
'-1 _3)2 -(~'_I -x2, )+exp(20(x2,_1 -x2, )), where 

,=1 100 

Xo =[0,-1,0,-1. ...... ,0,-1). 

[129] Perturbed Quadratic Diagonal function: The function is defined as 

f(X)=(tx,)2 + t_
I
_X,2, where Xu =[0.5,0.5, ....... ,0.5]. 

,=1 ,=1 100 
121. Extended Wood Function: The function is defined as 

f(x)= ~IOO( ';,.,- r.,.J +( ,.,.,-1)' +90( r;,.,- "')' +(1- ""')' + 10 I{( r.,., -I)' +( '., -1)'}+19 8(,,,., -1)( '., -I) 

Where Xu = [-3,-1,-3,-1, ......... -3,-1,-3,-1]. 

122. Extended Hiebert Function: The function is defined as 

/=1 

123. Quadratic Function (QF1): The function is defined as f(x) =.!.. tix,2 -XII 
2 /=1 

where Xo = [I, I, I, ...... , I] . 

124. Extended Quadratic penalty QPl function: The function is defined as 

f(x) = ~ (X,2 - 2)2 +( t,Xl2 _0.5)2 where Xo = [1.1, I, .... , 1]. 

125. Extended Quadratic penalty QP2 function: The function is defined as 

f(x) = ~(X,2 -sin x, f +( t,Xl2 -100 r where Xu = [1,1,1, ...... , 1]. 
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126. Extended Quadratic QF2 function: The function is defined as 
1 II , 

f(x) = - 2> (X,2 - 1 r -XII' Xo = [0.5,0.5, ....... ,0.5]. 
2 ,;1 

127. Extended Quadratic exponential EPI Function: The function is defined as 
11/2 2 2 2 

f(x)='L(exp(x2,_I- X2,)-5) +(X2,_I- X2,) (x2,_I- x2,-II), 
1=1 

Xo = [1.5, 1.5, 1.5 ......... , 1.5]. 

128. Extended Tri-diagonal function: The functIon is defined as 
,,-1 

f(x) = 'L(X'X'+I _1)2 +e(x, + l)(x'+1 + I), where Xu = [1,1,1, ..... ,1) , and c= 0.1. 
/=1 

129. FLETCBV3 function (CUTE): The function is defined as 

f(x)=-p(xi +xn)+IE.(X'-X'+lf-I 2 X,+ ~CoS(X,) , where 
I 2 2 n-I , II [p ( h 2 + 2) e 1 
2 ,;1 2 ,;/ h h 

p=I/IOM
, h=l/(n+i), e=l, xll =[h,2h, ... nh]. 

130. FLETCHCR function (CUTE): The function is defined as 
,,-1 ., 

f(x) = Ie(x'+I- x, -xn- ,Xo =[0,0,0, .... 0] e= 100 . 
1=1 

131. BDQRTIC function (CUTE): The function is detined as 

~ 2 2 2 2 2 22 
f(x)= L,.(-4x,+3) +(x, +2x,+/+3x,+2+ 4x,+1+ 5xII) , .xo=[I,I,I, ... ,I). 

,;/ 

132. TRJDIA Function (CUTE): The function is defined as 
, ~ J 

f(x) = y(b\ -If + L,.i(ax, - {JX'_I r, and 

a=2, {J=I, y=l, c:>=I, xo=[I,I,I, .... ,1] 
133. ARGLINB function (CUTE): The function is defined as 

'" ( II )2 f(x)=~ ~ijXJ-I , xo=[I,I,I, .... ,I). 

134. ARWHEAD function (CUTE): The function is defined as 
II-I n-I 2 

f(x)=I(-4x,+3)+I(x,2+ x,:}, andxo =[I,I,I, ..... ,I]. 
,;1 ,,:::1 

135. NONDIA functions (CUTE): The function IS defined as 

f(x)=(x/-1)2+~)00(xl_x,l_I)2, xo =[-I,-I,-I, .... ,-I). 
,;1 

136. NONDQUAR function (CUTE): The function is defined as 
n-2 

f(x)=(XI-X1)1+ 'L(x,+x,+I+ xllf+(xn_I+X,,)2 xo=[I,-I,I,-I...,-I]. 
/::::1 

137. DQDRTIC function (CUTE): The function IS defined as 
n-2 

f(x) = I( X,2 + eX':1 + dt'~2)' e = 100, d = 1000 Xo = [3.,3.,3., ..... ,3.] . 
1=1 
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138. EG2 function (CUTE): The function is defined as 
"-I I 

I(x) = LSin (XI + X,2 -I) +-sin (x~), Xo = [I., I., .... , I.] . 
,=1 2 

139. CURLY20 function (CUTE): The function is defined as 

" 
I(x) = Lq: _20q,2 -O.lq" 

where 

{

X, + X'+I + .... + X,H 
q = 

, x, +X'+I + .......... x" 

i5,n-k . 

i>n-k 

Xo =[0.001/(11+1), ...... ,0.001/(11+1)] 

k=20. 

140. DIXMAANA-DIXMAANL function: The function is defined as 

A B y 'Ii KI K2 
A 1 0 0125 0 0 0 
B 1 0.0625 0.0625 00625 0 0 
C 1 0.125 0.125 0.125 0 0 
D 1 0.26 0.26 026 0 0 
E 1 0 0.125 0.125 1 0 
F 1 0.0625 0.0625 0.0625 1 0 
G 1 0125 0.125 0.125 1 0 
H 1 0.26 0.26 0,26 1 0 
I 1 0 0,125 0125 2 0 
J 1 0,0625 0.0625 0.0625 2 0 
K 1 0.125 0.125 0.125 2 0 
L I 0,26 0.26 0.26 2 0 

Appendix A 

m=nI3, 

K3 K4 
0 0 
0 1 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
0 2 
0 2 
0 2 
0 2 

141. Partial Perturbed Quadratic function: The function is defined as 

I(x) = XI
2 

+ ~(iX,2 + I~O (XI + x2 +" .... +X,)2). Xu = [0,5,0.5,0.5 ..... ,0.5]. 

142. Broyden Tri-diagonal function: The function is defined as 

j(x) =(3x1 -2xn2 + I(3x, -2x} -X,_I -2x'+1 + 1)2 +(3tn -2x,; -X,,_I + If, Xo = [-1,-1,-1, ..... ,-1] 
I=.:! 

143. Almost Perturb Quadratic function: The function is defined as 

" I 
I(x) = Lix,2 +-(XI + XII)2, Xo = [0.5,0,5,0.5, .... ,,0,5], 

,=1 100 

144. Staircase 1 function: The function is defined as 

I(X)=~(~XJJ, xo =[I,I,I, .. "I], 

145. Staircase Hundion: The fu nct;on ; s defined as f (x) = ~ [ ( t x, ) - J. and 

Xo = [0,0,0, .... ,,0], 
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146. LIARWHD function (CUTE): The function is defined as 
" 2 " 

f(x)=I4{-x l+xn +I(x,-1)2, Xu =[4,4,4 ... ,4]. 
1=1 

147. POWER function (CUTE): The function is defined as f(x) = IUX,)2, 

Xu = [I, I, I, ..... , 1]. 
148. ENGVALI function (CUTE): The function is defined as 

11-1 11-1 

f(x)= I(X,2+X'~1)2 + I (-4x, +3), Xo =[2,2,2, .... ,2]. 
,=1 1=1 

149. CRAGGLVY function (CUTE): The function I~ defined a~ 

J(r)= I(exp( I".,)-x,,), +IOO( I" - I, .. ,)' +(tan( I"., -.1".,)+.1, .. , - I".,l' + I~,_, +(.1, .. , -I)'. "", =[1.2.2.2 .. 21 ,., 

150. EDENSCH function (CUTE): The function is defined as 
,,-1 

f(x)=16+ I[(x, _2)4 +(X,X'+1-2xl+l)2 + (XI+I +lfJ. Xo =[0,0,0, .... ,0]. 
1=1 

151. INDEF function (CUTE): The function is defined as 

f(x)=Ix,+I-cos(2x,-x,,-xl ), xu= -,-, ...... ,-. 
" ,,-I 1 [I 2 n ] 

,=1 ,=2 2 fl + 1 fl + 1 n + 1 
152. CUBE function (CUTE): The function is defined as 

f(x) = (XI _1)2 + I 1 OO( x, - X'~I f, Xu = [-1.2, I, -1.2, 1, ..... ,-1.2, 1). 
1=2 

153. EXPLINI function (CUTE): The function IS defined as 
" 

f(x) = exp (O.lx,xl+ l ) -10 I (ix,), Xu = [0,0,0, ... ,0] . 

154. EXPLIN2 function (CUTE): The function IS defined as 

f(x)=Iexp _,_,_+1 -IOI(ix,), xo=[O,O,O, .... O]. <II (IX X) " 
,=1 10m ,=1 

155. ARGLINC function (CUTE): The function is defined as 

f(x)=2+ ~(~jX}(i-I)-IJ, xu=[I,I,I, .... ,q. 
156. BDEXP function (CUTE): The function is defined as 

11-2 

f(x)= I(x, +X,+I )exp(-x'+2 (X, +X,+I))' Xu =[1,1,1 ..... ,1] 
,=1 

157. HARKERP2 function (CUTE): The function is defined as 

( " )2 "( 1 2 ) "(" )2 f(x)= ~x, -~ x,+'2x, +2~ ~x, ' xu=[1,2,3, .... ,n]. 

158. GENHUMPS function (CUTE): The function is defined as 
II-I 

f(x) = I sin (2x, )2 sin (2xl+l )2 + 0.05 (X,2 + X,2+1)' Xu = [-506.,506.2, ...... , 506.2] . 
1=1 
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159. MCCORMCK function (CUTE): The functIOn is defined as 
II-I 

I(x) = I( -1.5x, + 2.5xl+l + I + (x, _X,+1)2 +SIn (x, + XI+ I))' Xo = [I, I, I, .... , 1]. 
1=1 

160. NONSCOMP function (CUTE): The functIon IS defined as 

I(x) = (XI - 1)2 + I4 (x, - X'~I ( Xo = [3, 3, 3, .. ,3] . 
,=2 

161. VARDIM function (CUTE): The functIon is defined as 

" ( " n ( n + I ) )2 (" n ( n + I ) )4 
I(x) = ~(x, _1)2 + ~iX, - 2 + ~iX, - 2 ' Xo =[I-.!.'I-~' .... 'I-!!:.]. 

n n n 

162. QUARTC function (CUTE): The function IS defined as 

I(x)= I(x,-1)4, Xo =[2.,2., ..... ,2]. 
1=1 

163. Diagonal 6 function (CUTE): The function is defined as 
" 

I(x) = Ie" - (1- x,), Xo = [1,1, I, ..... , I]. 

164. SINSQAD function (CUTE): The function is defined as 
II-I 

I(x) = (XI - 1)4 + I (Sin (X, - x,,) - XI" + xn
2 

+ (x,~ - xn2, Xli = [0.1,0.1,0.1, ..... , o. I] . 

165. Extended DENSCHNB function (CUTE): The function IS defined as 
,,/2 

I(x) = I(X2'-1 - 2)2 + (X2'_1 _2)2 xi, + (X2' + 1)2, Xo = [I, I, 1, ... ,1]. 
/=1 

166. Extended DENSCHNF function (CUTE): The function IS defined as 
1112 2 2 

I(x) = L(2(x2,_1 +X2,)2 +(.\2,_I-X2,)2 -8) +(5x~'_1 +(x2,-3)2 -9), Xo =[2.,0.,2.,0., ..... 2.,0.] 
1=1 

167. LIARWHD function (CUTE): The functIon is defined as 

I(x) = I 4 (X,2 -XI f + I(x, -If, Xo = [4.,4., .... ,4.]. 
1=1 

168. DIXON3DQ function (CUTE): The functIon is defined as 
2 II-I 2 2 

f(x)=(xl-l) +L(X}-X}+I) +(x,,-I) , Xo =[-I.,-I., .... ,-I.]. 
}=I 

169. COSINE function (CUTE): The function IS defined as 
II-I 

I(x) = LCOS (-0.5x,+1 + xn, Xo = [I, I, I, .... , 1]. 
1=1 

170. SINE function: The function is defined as 
,,-1 

I(x) = LSin (-0.5x,+1 + xn, Xo = [I, I, I, .... , J]. 

171. BIGGSBI function (CUTE): The function is defined as 

l(x)=(xl-lf + I(xl+l -x,)2 +(I-x"f, Xo =[0,0,0, .... ,0]. 
1=' 
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172. Generalized Quartic function: The function is defined as 
II-I 2 

f(x) = IX,2 +(X'+I + xn, Xo = [\,\,\, ... , 1]. 
1::1 

173. Diagonal 7 function: The function is defined as 

f(x) = Iexp(x,)-2x,-x,2, Xo =[1,1,1, .... ,1]. 
,:::1 

174. Diagonal 8 function: The function is defined as 

f(x)= Ix, exp(x,)-2x, _X,2, Xo =[1,1,), ... ,1]. 

175. Full Hessian FH3 function: The function is defined as 

f(X)=(~xJ + ~(x,exp(x,)-2x,-xn, xo=[I,I,I, ... ,I]. 

176. SINCOS function: The function is defined as 

Appendix A 

Xo = [3,0.1,3,0.1, ..... ,3,0.1]. 

177. Diagonal 9 function: The function is defined as 
II-I 

f(x) = I( exp( x;) - ix,) + I OOOOx,:, Xo = [I, I, I, ... , I]. 

178. HIMMELBG function (CUTE): The function is defined as 
nl2 

f(x) = I( 2x;,_, + 3x;,) exp (-X2,_1 - X2,), Xo = [1.5,1.5,1.5, ..... , 1.5] . 
1=1 

179. HIMMELH function (CUTE): The function is defined as 
1112 

f(x) = I( -3x2,_1 - 2x2, + 2+ xi,_, + x;,), Xu = [1.5, 1.5, 1.5, ........ , 1.5]. 

180. Box 2-variable function: The function is defined as 

f(x) = ~ {[ exp ( ~~i)_exp( ~~i) ]-[ exp ( ~~ )-exp ( -i) ]}, with 5 different 

starting point (5,0), (0,0), (0,20), (2.5, 10), (5, 20). 

181. Box 3-variable function: The function is defined as 

5 

182. Step function: This function is defined as f(x) = Iint(x,) where 

-5.12~x, ~5.12. 

(iv) Some more test functions 

183. Sum of different power functions: The sum of different powers is a commonly 

used uni modal test function. The function is defined as f(x) = I I x,r+ 1 Test area is 
,=1 
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usually restricted to hypercube- l ~xi~ 1,i= 1, 2, .... . ,n. Its global minimum equal 

f(x) = 0 is obtainable for Xi =O,i = 1,2, ..... ,n. 

184. Langermann 's function: The Langermann function is a multimodal test 
function. 
The local minima are unevenl y distributed. The function is defi ned as 

.. [ I II 2] [" . 2] ! (X) == t;cjexp - Jlf.;(X j -aij ) cos }f~( Xj - a,J I where are constant numbers. 

It is recommended to set the va lue of m=S. 

185. "Drop wave" function: This is a multimodal test function. The given form o f 
function has only two variab le and the function is defined as 

I +cos( t2J-G2 + xi ) 
f( x"x2 ) = I where - 5.12 ~ x I' x2 ~ 5.12 . 

- (X;+X; )+2 
2 

-- ., ., 
,-..,---. 

186. Shekel's Foxholes function: This IS multi-model function. It is defi ned as 

! (X) == - f. ( t [(xj - ay )2 +Cj])-I where 
.=i} J=i} 

(c;. i = 1. 2, .... ,m) . (aij , j = 1. 2, ....• n.i == t ... . ,m) . It is recommended to set m=30 . 

187. Rotated Hyper ellipsoid function : The function is defined as!(;:) = ! (t x:). 
;=1 j= l 

Where -65.536 ~ Xi ~ 65.536. This is a urn-model continuous function. The optimum 

va lue is 0. 
188. Treccani function: The function is defined as 

Ii> 

j(x) == a: -1 .05-,;4 + ~ - .l1.l2 + xi where the 
6 

bounds are -3 ~ Xi ~3(i == 1,2) . The 

global minimum is at (0,0) and (-2,0) at f(x' ) =0. 
30 

189. Function #1 : The function is defined as !(x) == L(ix: + GlUlSS(O, I) ) and 
;= 1 

- 1.28 ~ Xi ~ 1.28 . 
190, Function#2: The function is defined as 

!(X) ==0.002+ t(~+ t(Xj -aYr). -65536~ X; ~65536 
/:1 J .=! 
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191. Function #3: The function is defined as f(x)=IOV+ i(-.t;;Sin(~)), where 
' ;!J 

- 500-::; x; -::;500 V=4189.829101. 

192. Function #4: The function is defined as 
20 

f(x)=WA+ 'L (x: -IOcos(2JtxJ) , -512:S:x; :S:512 A =10 . 
;=] 

193. FlIDdion#5: The function is dermed as f(x) ~I + t.( ~)-U( cos ( );)) 

and -600 -::; Xi -::; 600 . 

194. Function #6 : This function with f min (I, 1, 1, ...... , 1) = 2 may be defined as follows: 
.-1 

f(x) =(1 +x",Y-;x. = m-'L xi;\ii = L.2.3, ... ,m. This function is not very difficult to 
;=1 

optimize. However, its modification that gives us a new function (B) is considerably 
difficult 

" 

~~ 
t ~ _ ...-_ --- , 

:~, 
" I ._" • 

195. Function#7: This function with f min (1,1,1 , .. .. .. ,1) = 2 may be defined as follo ws : 

f(X)=(J+x.r- ;x_ =m-~(X; + Xi~J );XE[O, J JV'i==t2,3, ... ,m. Xm of the prior 
;= 1 2 

iteration indirectly enters into the posterior iteration. As a result, this function 
extremely difficuk to optimize. 

t • 1 :1 
. . , .. -. 

-; 
; -

196. Function#9: The function is defined as 

f(x)=: {lOsin2(JtYl)+ ~(Yk -J)2[ 1+lOsin 2 (JtYk+a)] +( Y. -It} . 
y; =1+~(Xi -l) , and -105xj 510, i = 1,2,3, ....... ,n and minimum value of the 

function is O. Thi s function has roughly 5" local minima and a unique global minima 
located at x = (I , I , I , 1, .. ... , 1) . 

197. New function #10: A 2-d problems with!, . (-8.4666, - 9.9988) = -0.18466 
mIn 

f(X)=IrosJ~+XzIf5 + "11~Xz ;X; E [-IO,IO];i= L.2 
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198. New function #11: This function is a variant of function # I where cos(.) is 

replaced by sin(. ). Function has the optimum!min (- 9.94112,-9.99952) = -0.199441 . It 

is given by 

I ~05 .l1 + x 
f(x) = sin VI.( + .1711 + I(X/;x, E [-10,10] ;; = 1,2 

199. New function #12: In the domain XE [-10. 10] with 

! min(2.8863,1.82326) = - 2.28395 This function IS defined as 

[{ 
2 } ]2 [(Xi _1)2 +(.17 _,)2] 

f(x)=- ln (sin«cos(XI) + cos(X2»2 ) - (cos(sin(.l1)+sin(.17»2f +.ll + 10 

200. Modified Masters Cosine wave function: The function is defined as 

_ ~ -~..f~J+<I.~Li·"J"''i'1 (J 2 1) . ( '2 2) f(x) - -~e cos 4 X;+I +O.5x;xi ... 1 + Xi . SID 4" x;+1 +0.5X;X;"'1 + X; , 
;= 1 

-5 ~Xi ~ 5 . 

1be graphical presentation for the above function is 

( ... _- ~ , 

******** 
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The MATLAB code for the visual representation of the collected test function and 

some new test function created are given here. The m-code of few functions are 

reported and most of them are available with the author. The code to draw the graph 

usmg meshz, surf, surfc and surfl are also there as last paragraph. 

MA TLAB code for visual presentation of test functions 
(Benchmark test functions and New Test functions) 

(i) Code for Benchmark Test function for visual presentation 

% Th~s Program draws four 3-D coloured graph of d~fferent funct~on. 
% Program developed by SanJeev Kumar S~ngh. 
%---------------------------------------------------------------------
%3. Ackley Function 
r=-15: .05:30; 
[X,YJ=meshgr~d(r,r) ; 
Z=20+exp(1)-20*exp(-0.2*sqrt( (X. A 2+Y. A 2)/2»­
exp(0.5*(cos(2*p~.*X)+cos(2*p~.*Y» ); 
%---------------------------------------------------------------------
% 5.Beale Function 
r=-4.5: .01:4.5; 
[X,YJ=meshgr~d(r,r) ; 
Z=(1.5-X+X.*y)A2+(2.25-X+X.*yA2)A2+(2.625-X+X.*y A3)A2; 
%---------------------------------------------------------------------
%8. Bird Function 
r=-2*p~: .1: 2*p~; 
[X,Yl=meshgr~d(r,r) ; 
Z=s~n(X) .*exp(abs(l-cos(Y») .*2+cos(Y) .*exp(abs(l-cos(X») .*2+(X­
Y) . A2; 
%---------------------------------------------------------------------
% 6. Bohachevsky Function 
r=-100: .9:100; 
[X,Yl=meshgr~d(r,r) ; 
Z=X.A2+2*Y.A2-0.3*cos(3*p~*X)-0.4*cos(4*p~*Y)+0. 7; 
%--------------------------------------------------------------------
%7. Bohachevsky1 Function 
r=-50:.5:50; 
[X,YJ=meshgr~d(r,r) ; 
Z=X.A2+2*Y.A2-0.3*cos(3*p~*X)-0.4*cos(4*p~*Y)+0. 7; 
%---------------------------------------------------------------------
%10. Booth Function 
r=-10: .01: 10; 
[X,Yl=meshgr~d(r,r); 

Z=(X+2*Y-7). A2+ (2*X+Y-5). A2; 
%---------------------------------------------------------------------
% 9. Branian function 
r=-512: .9:512; 
[X,Yl=meshgr~d(r,r) ; 
Z=- (Y+47) . *s~n (sqrt (abs (Y+ (X/2) +47») +s~n (sqrt (abs (X- (Y+47) 1 1 1 . * (-Xl; 
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%---------------------------------------------------------------------
% 11. Buk1n Function 
x=-15:0.1:-5; 
y=-3:0.1:3; 
[X,Y)=meshgr~d(x,y} ; 
%Z=100*Y. A2+0.01*abs(X+10}; 
Z=100*sqrt(abs(Y-0.01*X. A2} }+0.01*abs(X+IO}; 
%---------------------------------------------------------------------
% Carrom Table Funct10n 
r=-10:.1:10; 
[X,Y)=meshgr~d(r,r} ; 
Z=- (cos (X) . * cos (Y) . * exp (abs ( 1- (sqrt (X. A 2+ Y . A 2) } } } /p~} . A 2 /30; 
%---------------------------------------------------------------------
%12. Ch1ch1nadze function 
r=-30: .9: 30; 
[X,Y)=meshgr~d(r,r} ; 
Z=X.A2-12*X+11+10*cos(p~*X/2}+8*s~n(5*p~*X/2} -1/sqrt(5}*exp(-( (Y-
0.5).A2}/2}; 
%---------------------------------------------------------------------
% 14. Colv111e Funct10n 
r=-10:1.5:10; 
%[X,Y,Z,T)=ndgr~d(r,r,r,r}; 

[X,Y,Z,T)=flow; 
M=100* (Y-X. A2) . A2+ (I-X) . A2+90* (T-Z. A2) . A2+ (l-Z) . A2+10.1 * (Y-l) . A2 

+(T-l) .A2+19.8*(Y-l} .*(T-l); 
%---------------------------------------------------------------------
% Colville Function 
%Th~s ~s mesh graph of the funct~on. 
fLgure (1) 
hpatch = patch(~sosurface(X,Y,Z,T,M}); 
~sonormals(X,Y,Z,T,hpatch) 

set (hpatch, 'FaceColor' , 'red' , 'EdgeColor' , 'none' ) 
daspect ( [1,4,4 J ) 
v~ew( [-65,20)} 
ax~s t~ght 

camhght left; 
set(gcf, 'Renderer', 'zbuffer'}; l~ght~ng phong 
%--------------------------------------------------------------------
% 13. Corana function 
r=-lOO: .9:100; 
[X,YJ=meshgr~d(r,r} ; 
Tl=0.2*abs(abs(X/0.2}+0.49999}*s~gn(X) ; 
T2=0.2*abs(abs(Y/0.2}+0.49999}*s~gn(Y}; 

~f (((X-Tl) & (Y-T2}) < 0.05 } 
'Z=O . 15 * (T 1-0.05 * s~gn (T1) } . A 2+0.15 * (T2-0 . 05 * s~gn (T2) ) . A 2 ; 
else 
Z= 1*X. A2+1000*Y. A2; 
end 
%--------------------------------------------------------------------
% 83. Cross function 
r=-lO:.l:lO; 
[X,Y]=meshgrld(r,r} ; 
Z=(abs(s~n(X) .*s~n(Y} .*exp(abs(100-(sqrt(X. A2+Y. A2}/pl}» }+1} .A(-
0.1) ; 
%---------------------------------------------------------------------
%84. Crossleg function 
r=-10:.1:10; 
[X,YJ=meshgr~d(r,r} ; 
Z=- (abs (s ~n (X) . * s In (Y) . *exp (abs (100- (sqrt (X. A 2 + Y . A 2) /p~} ) ) ) + 1) . A (-

0.1) ; 
%--------------------------------------------------------------------
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[X,Y)=meshgr~d(r,r) ; 
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2=0.0001 * (abs (s~n (X) . *s~n (Y) . *exp (abs (100- (sqrt (X. A2+Y. A2) /p~) ) )) +1) 
. AO.1; 

%---------------------------------------------------------------------
%82. Crowncross Function 
r=-10: . 1: 10; 
[X,Y)=meshgr~d(r,r) ; 
2=0.0001* (abs (sl.n (X) . * s l.n (Y) . *exp (abs (100 - (sqrt (X. A 2 + Y . A 2) /Pl.) ) ) ) + 1) 
. AO. 1; 

%---------------------------------------------------------------------
%15. Deflected Corrugated Spr1ng Funct10n 
r=-100: .9:100; 
[X,Y)=meshgrl.d(r,r) ; 
2=-cos(5*sqrt( (X-2) .A2+(Y-5) .A2) )+0.1*( (X-2) .A2+(Y-5) .A2); 

%---------------------------------------------------------------------
% 18. De Jong Funct10n 

c=-Pl.: .1:pl.; 
C1=-pl.:.1 :pl.; 
C2=-pl.:.1 :pl.; 
[X,Y)=meshgr~d(c,c) ; 
a=-100; 
b=100; 
ran=a+(b-a)*rand(63,63) ; 
2=«ran.*s~n(C1)+rand.*cos(C1)+ran.*s~n(C2)+rand.*cos(C2)) 

- (ran. * Sl.n (X) +rand. * cos (X) + ran. * s l.n (Y) + rand. *cos (Y) ) ) . A 2; 

%---------------------------------------------------------------------
% 19. D1xon Function 
r=-10: .5:10; 
[X,Y)=meshgrl.d(r,r) ; 
2= (X-I) . A2+2* (2*Y. A2-X) . A2; 

%-----------------------------------------------------------------
% 185 Drop wave Funct10n 
r=-5.12: .1:5.12; 
[X,Y)=meshgr~d(r,r) ; 
2=-(1+cos(12*sqrt(X.A2+Y.A2))) ./(0.5*(X. A2+Y. A2)+2); 

%---------------------------------------------------------------------
% 21. Egg Holder Function 
r=-512: .9:512; 
[X,y]=meshgr~d(r,r) ; 
2=- ( (Y + 4 7) . * s l.n (sqrt (abs (Y+ (X/2) + 4 7) ) ) +Sl.n (sqrt (abs (X- (Y + 4 7) ) ) ) . * (­
X)) ; 

%---------------------------------------------------------------------
% 20. Esom Funct10n 
r=-100: .5:100; 
[X,Y]=meshgrl.d(r,r) ; 
2=-cos(X) .*cos(Y) .*exp(-(x-p~) .A2-(Y-pl.) .A2); 

%---------------------------------------------------------------------
% Extended Freudens Funct10n 
r=-10:.1:10; 
[X,y]=meshgr~d(r,r); 

2= (-13+X+ ( (5- Y) . *y -2) . *y) . A 2+ (-29 +X+ ( (Y + 1) . *y -14) . *y) . A 2; 

%---------------------------------------------------------------------
% 22. Fletcher Powe1 Funct10n 
c=-pl. : .1 : pl.; 
C1=-pl.: .1:pl.; 
C2=-pl.: . 1 : pl.; 
[X,Y]=meshgrl.d(c,c) ; 
a=-100; 
b=100; 
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ran=a+(b-a)*rand(63,63) ; 
Z=( (ran.*sln(Cl)+rand.*cos(Cl)+ran.*sln(C2)+rand.*cos(C2)) 

- (ran. * SIn (X) +rand. * cos (X) + ran. * s In (Y) + rand. * cos (Y) ) ) . "2; 
%---------------------------------------------------------------------
% 23. Freudenstein Funct10n 
r=-4:.1:4; 
[X,Y]=meshgrId(r,r); 
Z=(51* (X+X. "2+X. "3+X. "4-4)). "2+ 
(52* (Y/2-1) +54* (Y. "2/4-1) +58* (Y. "3/8-1) +66* (Y. "4/16-1) ) . "2; 
%---------------------------------------------------------------------
% 27. Giunta function 
r=-1:0.01:1; 
[X,Yj=meshgrId(r,r) ; 
Z=O .6+ (S In ( (16 * X/15) -1) + (sIn ( (16 * X/15) -1) ) . "2+ . 02 * s In (4 * ( (16 * X/15) -
1))) ... 

+ (s In ( ( 16 *y /15) -1) + (s In ( (16 *y / 15) -1) ) . "2+ . 02 * s l n (4 * ( (16 *y /15) -1) ) ) ; 
%--------------------------------------------------------------------
% 28. Goldstein Price Funct10n 
r=-10:.9:10; 
[X,Y]=meshgrld(r,r) ; 
Z= (1+ (X+Y+1) . "2. * (19-14*X+3*X. "2-14*Y+6*X. *Y+3*Y. "2)) . * 

(30+(2*X-3*Y) ."2.*(18-32.*X+12*X."2-48*Y-36*X.*Y+27*Y."2)); 
%---------------------------------------------------------------------
% 24. Genera11zed Rastrig1n Function 
r=-5.12: .1:5.12; 

[X,Y]=meshgrld(r,r) ; 
Z=«X."2-10*cos(2*PI.*X)+10)+(Y."2-10*cos(I*Pl.*Y))+10); 
%---------------------------------------------------------------------
% 26. Griewank Function 
r=-100: .5:100; 
[X,Yj=meshgrld(r,r) ; 
Z= ( (X. "2/4000) + (Y . "2/4000) ) - (cos (X) . * cos (Y 1 sqrt (2) ) ) ; 
%---------------------------------------------------------------------
% 25. Genera11zed Schewefel Function 

r=-500: .9: 500; 
[X,Yj=meshgrld(r,r) ; 
Z=-(X.*sln(sqrt(abs(X)) )+Y.*sln(sqrt(abs(Y)))); 
%---------------------------------------------------------------------
%29. H1mmelblau Function 
r=-6.1:6; 
[X,Yj=meshgrld(r,r) ; 
Z= (X+Y. "2-7) . "2+ (X. "2+Y-ll) . "2; 
%---------------------------------------------------------------------
% Holder Table Funct10n 
r=-10:.1:10; 
[X,Yj=meshgrld(r,r) ; 
Z=-abs (cos (X) . *cos (Y) . *exp(abs (1- (sqrt (X. "2+Y. "2)))) /pl); 
%---------------------------------------------------------------------
% 72. Three Hump Camel Function 
r=-5:0.1:5; 
[X,Y]=meshgrld(r,r); 
Z=2*X."2-1.05*X."4+(X."4/6)+X.*Y+Y."2; 
%---------------------------------------------------------------------
%31. Hump Function 
r=-5.1:5; 
[X,Yj=meshgrld(r,r) ; 
Z=4*X."2-2.1*X."4+X."6./3+X.*Y-4*y.A2+4*Y."4; 
%---------------------------------------------------------------------
%33. Judge Function 
r=-100: .9:100; 
[X,Yj=meshgrld(r,r) ; 
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Z= (X+Y*s~n(.286) .~2+Y.~2*(cos(.645)-4.284» .~2 

+ (X+Y*s~n (.973) . ~2+Y. ~2* (cos (.585) -4 .149» . ~2 
+ (X+Y*s~n (.348) . ~2+Y. ~2* (COS (.310) -3.877» . ~2 
+(X+Y*sln(.276).~2+Y.~2*(cos(.058)-.533».~2 ... 
+ (X + Y * s ~ n ( . 973) . ~ 2 + Y . ~ 2 * ( cos ( . 455 ) - 2 . 211) ) . ~ 2 
+ (X+Y*s~n (.543) . ~2+Y. ~2* (cos (.779) -2.389» . ~2 
+ (X+Y·sln (.957) . ~2+Y. ~2· (COS (.259) -2 .145». ~2 
+ (X+Y·s~n (.948) . ~2+Y. ~2· (cos (.202) -3.231» . ~2 
+ (X+Y·sln (.543) . ~2+Y. ~2· (cos (.028) -1. 998». ~2 
+ (X+ Y· s ~n ( .793) . ~ 2 + Y . ~ 2· (cos ( .099) -1 . 379) ) . ~ 2 
+ (X + Y· s ~ n ( . 936) . ~ 2 + Y . ~ 2· ( cos ( . 142 ) - 2 . 106) ) . ~ 2 
+ (X + Y· s ~ n ( . 889) . ~ 2 + Y . ~ 2 * (cos ( . 296) -1 . 428) ) . ~ 2 
+ (X+Y·s~n (.006) . ~2+Y. ~2* (cos (.175) -1. 011» . ~2 
+ (X+Y·s~n (.828) . ~2+Y. ~2· (cos (.180) -2 .179» . ~2 
+(X+Y·sln(.399) .~2+Y.~2*(cos(.842)-2.858» .~2 

+ (X+Y·sln (.617) . ~2+Y. ~2· (cos (.039) -1. 388». ~2 
+(X+Y·s~n(.939) .~2+Y.~2·(cos(.103)-1.651» .~2 

+ (X+Y*s~n (.784) . ~2+Y. ~2* (cos (.620) -1. 593». ~2 
+ (X+Y·sln (.072) . ~2+Y. ~2· (cos (.158) -1. 046}) . ~2 
+ ( x + Y * s ~ n ( . 889) . ~ 2 + Y . ~ 2 * ( cos ( . 704 ) - 2 . 152) ) . ~ 2 ; 
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%---------------------------------------------------------------------
% 34. Keane Function 
r=O: .1: 10; 
[X,Yl=meshgr~d(r,r) ; 
if «X.*Y) >= 0.75 & (X+Y) <= 15) 
Z=abs « «cosX) . ~4+ (cosY) . ~4) -2* «cosX) . ~2. * (cosY) . ~2» 

. /sqrt (x. ~2+2*Y. ~2 I I; 
end 

%---------------------------------------------------------------------
% 39. Leon Function 
r=-1.2:0.01:1.2; 
[X,Yl=meshgr~d(r,r) ; 
Z=100*(Y-x.~2)+(l-X) .~2; 

%---------------------------------------------------------------------
% 38. Levy Function 
r=-10.1:10; 
[X,Y)=meshgrld(r,r) ; 
Z=(cos(2.*X+11+2.*cos(3.*X+21). *(cos(2.*Y+l)+2.*cos(3.*Y+2) I; 

%---------------------------------------------------------------------
% 49. Master Cosine wave Function 
r=-5: .1:5; 
[X,YI=meshgrld(r,r); 
Z=-exp ( (-1/ 8) * (Y . ~ 2 +0.5 *X. * Y +X. "2) ) . ·cos (4 * sqrt (Y . ~ 2+0.5 * X. *y +X. ~ 2) ) 

.*s~n(4*sqrt(Y."2+0.5*X.*Y+X."2» ; 

%---------------------------------------------------------------------
% 40. Matyas Function 
r=-10.1:10; 
[X,Yj=meshgrld(r,r) ; 
Z=0.26* (X.~2+Y.~2)-0.48*X.*Y; 

%---------------------------------------------------------------------
% 44. Modif1ed RCO Function 
x=-5:.5:10; 
y=O: .5: 15; 
[X,YI=meshgr~d(x,y) ; 
%Z= (Y - (5.1/4 *pi . "2) *y . "2 + (5 /pl) *X-6) . ~ 2; 
% Z=10* (1- (1/8*p~» . ·cos (X) . ·cos (Y) ; 
Z= log(X."2+Y."2+1); 

%-------------------------------------------------------------------
% 51. Pathological Function 
r=-lOO: .9:100; 
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[X,Y]=meshgr~d(r,r) ; 
Z=( (( (s~n(sqrt(y.A2+100*X.A2))) .A2-0.5))./ 

( (0.001 * (Y . A 2-2 *y . *X+X. A 2) . ~ 2+ 1.0) ) ) +0 . 5; 
%---------------------------------------------------------------------
% 52. Paviani Function 
r=2:.9:10; 
[X,Y]=meshgr~d(r,r) ; 
Z=(log(X-2) .A2+1og(10-X) .A2+1og(Y-2) .A2+1og(l0-Y) .A2)-(X.*Y) .AO.2; 
%--------------------------------------------------------------------
% 87. Pen Holder Funct~on 
r=-10:.1:10; 
[X,Y]=meshgr~d(r,r) ; 
Z=-exp(-abs(s~n(X) .*cos(Y) .*exp(abs(l-(sqrt(X.A2+y.A2)/p~)))) .A(-l)); 
%---------------------------------------------------------------------
% 56. Quintic Function 
x=-5:.5:10; 
y=O: .5: 15; 
[X,Y]=meshgr~d(x,y) ; 
Z= (Y - (5.1/ 4 *p~ . A 2) *y . A 2 + (5/p~) *X-6) . A 2; 
% Z=10*(1-(1/8*p~)) .*cos(X) .*cos(Y); 
% Z= log(X.A2+T.A2+); 
%---------------------------------------------------------------------
% 61.Rana Function 
r=-500: .9:500; 
[X,Y]=meshgr~d(r,r) ; 
Z= (Y + 1) . *cos (sqrt (abs (Y -X+ 1) ) ) . * s~n (sqrt (abs (Y +X+ 1) ) ) + 

X.*cos(sqrt(abs(Y+X+l))) .*s~n(sqrt(abs(Y-X+l))); 
%--------------------------------------------------------------------
% 73. Stybl~nsk~ Tang Funct~on 
r=-5:0.1:5; 
[X,Y]=meshgr~d(r,r) ; 
Z=0.5*( (X. A4-16*X. A2+5*X)+(Y. A4-16*Y. A2+5*Y)); 
%---------------------------------------------------------------------
% 67. Subert Funct~on 
r=-10:.9:10; 
[X,Y]=meshgr~d(r,r) ; 
Z=30+(cos(2*X)+2*cos(3*X)+3*cos(4*X)+4*cos(5*X)+5*cos(6*X)).* 

(cos(2*Y)+2*cos(3*Y)+3*cos(4*Y)+4*cos(5*Y)+5*cos(6*Y)) .A2; 
%--------------------------------------------------------------------
% 76. Yao Funct~on 
r=-1.28: .01:1.28; 
[X,Y]=meshgr~d(r,r) ; 
a=O; 
b=l; 
ran=a+(b-a)*rand(257,257); 
Z=ran + (X. A4+2*Y. A4); 
%---------------------------------------------------------------------
% Treccani Function 
r=-3: .1: 3; 
[X,Y]=meshgr~d(r,r) ; 
Z=2*X.A2-1.05*X.h4+(X.A6/6)-X.*y+y.A2; 
%---------------------------------------------------------------------
% 78. Zakharov Funct~on 
r=-4:.1:10; 
[X,Y]=meshgr~d(r,r) ; 
Z=(X. A2+Y. A2)+(X/2+(2*Y)/2) .A2+(X/2+(2*Y)/2) .A4; 
%---------------------------------------------------------------------
% 80. Zero Sum Function 
r=-lO:.l:lO; 
[X,Y]=meshgnd(r,r) ; 
Z=l+(lOOOO*abs(sqrt( (X+Y)))); 
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%--------------------------------------------------------------------
% 79. Zettle function 
r=-5:0.1:5; 
[X,Y)=meshgr~d(r,r) ; 
Z= (X. h2+Y. h2-2*X) . h2+0. 25*X; 
%---------------------------------------------------------------------
% New Test Funct~on 
r=-lO:.l:lO; 
[X,Y)=meshgr~d(r,r); 

Z=abs(cos(sqrt(abs(X.h2+Y)))) .h.5+(X+Y) .1100; 
%---------------------------------------------------------------------

%-------------------------P lot ~ ng code------------------------------

%Th~s ~s meshz graph of the funct~on. 
fLgure (1) 
meshz(Z, 
'facecolor', 'lnterp', 'Edgecolor', 'none', 'facel~ght~ng', 'phong') 
t1tle('Th1s 15 meshz graph of the funct~on.') 
%---------------------------------------------------------------------
%Th~s ~s surf graph of the funct~on 
f1gure(2) 
surf(X,Y,Z, 'facecolor', 'lnterp', 'Edgecolor', 'none', 'facel1ght~ng', 'pho 
ng' ) 
aXls('on') 
t1tle('Th~s ~s surf graph of the funct~on.') 
%---------------------------------------------------------------------
%Th~s ~s a surface count~r of the funct~on. 
fLgure (3) 
surfc(Z, 'facecolor', '~nterp', 'Edgecolor', 'none', 'facel~ght1ng', 'phong' 
) 

colormap hot 
aX1S ( 'on' ) 
t1tle('Thls 1S surfc graph of the funct~on.') 
%---------------------------------------------------------------------
%ThlS ~s surface 1 graph of the functlon. 
flgure (4) 
surfl(Z) 
t~tle (' Th~s ~s surfl graph of the funct~on.') 
shad~ng ~nterp 

colormap hot 

(ii) Code for the new functions introduced 
%---------------------------------------------------------------------
% Th~s Program draws four 3-D coloured graph of d~fferent functlon. 
% Program developed by SanJeev Kumar Slngh. 
% F20l Torto~se funct~on 
r=-lO:.l:lO; 
[X,Y)=meshgr~d(r,r) ; 
Z=abs (5 1n (X) . *exp (abs (l 00- (X. h 2 + Y . h 2) ) /pl) ) . h ( .0 l) +abs (cos (X) 

. * e x p ( a bs ( 100 - ( X . h 2 + Y . h 2) ) / p 1) ) . h ( . 01 ) ; 
%--------------------------------------------------------------------
% F202 (Inverted crosscap funct~on) 
r=-lO:.l:lO; 
[X,Y)=meshgrld(r,r) ; 
Z=abs (5 ~n (X) . * exp (abs (l 00- (X. h 2 - Y . h 2) ) /p~) ) . h ( . l) +abs (5 ~n (X) 

. * ex p ( a bs ( 100 - (X . h 2 + Y . h 2) ) / p ~) ) . h ( . 1 ) , 
%--------------------------------------------------------------

% F203 (Crosscap function) 
r=-lO:.l:lO; 
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[X,Yj=meshgrid(r,r) ; 
Z=-(abs(sin(X.*Y) .*exp(abs(100-
( x . ~ 2 + Y . ~ 2) ) 1 pi) ) . ~ ( . 01 ) ) . * (a bs (c 0 s (X . * Y) 

. *exp (abs (100- (X. ~ 2 + Y . ~ 2) ) Ipi) ) . ~ ( .01) ) ; 
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%--------------------------------------------------------------
% F204 (Fourhole table function) 
r=-10:.1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=- (abs (sin (X. * Y) . * exp (abs ( 100- (X . ~ 2 + Y . ~ 2) ) Ipl.) ) . ~ ( .09) ) 
· * (abs (cos (X. *y) . *exp (abs (100 - (X. ~ 2 + Y . ~ 2) ) Ipi ) ) . ~ ( .09) ) ; 

%--------------------------------------------------------------
%F20S (Cross on rough ceiling function) 
r=-10:.1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=-(abs(sin(X. *Y). *exp(abs(lOO-(X. ~2+Y. ~2) )/pi». ~(.09» 
· 1 (abs (cos (X. *y) . *exp (abs (100- (X. ~ 2 + Y . ~ 2) ) Ipi) ) . ~ ( .09) ) ; 

%-~-------------------------------------------------------------------
% F206 (Crosshut fUnction) 
r=-10:.1:10; 
[X,Yj=meshgrid(r,r) ; 
Z= (abs (sin (X. *y) . *exp (abs (100- (X. ~ 2 /3 + Y . ~ 2/3) ) Ipi) ) . ~ ( .05) ) 
· * (abs (cos (X. *y) . *exp (abs (100 - (X. ~ 2 /3 + Y . ~ 2 /3) ) Ipi ) ) . ~ ( .05) ) ; 

%---------------------------------------------------------------------
% F207 (Inverted crosshut function) 
r=-10: .1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=-(abs(sin(X.*Y) .*exp(abs(100-(X.~2/3+Y.A2/3) )/pi» .~( .05» 
· * (abs (cos (X. *y) . *exp (abs (100- (X. A 2 /3 + Y . A 2 /3) ) Ipi) ) . A ( .05) ) ; 

%---------------------------------------------------------------
% F208 (Umbrella fUnction) 
r=-10:.1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=- (abs (cei 1 ( (X. A 2/3 + Y . A 2 /3) ) . *exp (ce J.l (abs (100-
(X.~2/3+Y.A2/3»/pi»).~(.01) ... 
· * (abs (floor ( (X. A 2/3+ Y . A 2 /3) ) . * exp (floor (abs ( 100-
(X. A2/3+Y. A2/3» Ipi»). A (.01»; 

%---------------------------------------------------------------
% F209 (Inverted Umbrella function) 
r=-10:.1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=-(abs(ceil((X. A2/3+Y.A2/3» .*exp(ceil(abs(100 
(X. A2/3+Y. A2/3»/pi»).A(.01» ... 
· * (abs (f loor ( (X. A 2/3+ Y . A 2 /3) ) . *exp (f loor (abs (100-
(X. A 2 /3 + Y . ~ 2/3) ) Ipi ) ) ) . A ( .01) ) i 

%------------------------------------------------------------
% F2l0 (Flower function) 
r=-10:.1:10; 
[X,Yj=meshgrl.d(r,r) i 

Z=(abs(ceil(sqrt(X.A2+Y. A2» .*exp(ceil(abs(100-
(X. A2+Y. A2»/pi»).A(.01» ... 
· * (abs (floor (sqrt (X. ~2+Y. ~2) ) . *exp (floor (abs (100-
(X. A 2+ Y . ~ 2) ) Ipi) ) ) . ~ ( .01) ) i 

%------------------------------------------------------------------
% F211 (Royalbaul tunction) 
R=-lO: .1:10; 
[X,Yj=meshgrid(r,r) ; 
Z=@ (x) (abs (sin (x ( : , 1) ) . *exp (abs (100- (x ( : , 1) . A 2+x ( : , 2) . A 2) ) Ipi) ) . A (-
1) +abs (cos (x ( : , 1) ) . *exp (abs (100- (x ( : , 1) . A 2 +x ( : , 2) . A 2) ) Ipi) ) . A (-1) i 

%-----------------------------------------------------------------
% Code to draw the Graph 
%This is mesh grapn of the function. 
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flgure (1) 
mesh(X,Y,Z) 
t1tle('Th1s 15 mesh graph of the funct10n ') 
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%----------------------------------------------------------------
%Th1S 15 surf graph of the funct10n 
f1gure(2) 
surf(X,Y,Z, 'facecolor', 'lnterp', 'Edgecolor', 'none', 'facel1ght1ng', 'pho 
ng' ) 
aX1S ( 'on' ) 
%v1ew(O,30) 
t1tle('Th1s 15 surf graph of the funct1on.') 
%------------------------------------------------------------------
%Th1S 15 a surface countor of the funct10n 
flgure (3) 
surfc{X,Y,Z, 'facecolor', 'lnterp', 'Edgecolor', 'lnterp', 'facellghtlng',' 
phong' ) 
color map hot 
aX1s('on') 
%v1ew(O,40) 
t1tle (' Th1S 15 surfc graph of the funct1on.') 
%-------------------------------------------------------------
%Th1S 15 surface 111um1nated graph of the funct1on. 
flgure (4) 
surfl(X,Y,Z) 
t1tle('Th1s 15 surfl graph of the funct1on.') 
shad1ng 1nterp 
colormap hot 
%v1ew(O,60) 
%--------------------------------------------------------------------

******** 
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Executed commands for new test functions 

%---------------------------------------------------------------------
F201 tortoise=@(x) (abs(sin(x(:,l» .*exp(abs(100-
(X(:, 1) . A2/3+x(:, 2) . A2/3» /p~» . A (.05). *abs (cos (x(:, 1» . *exp(abs (100-
(x (: (1) . A2/3+x (:,2) . A2/3» /pi» . A (.05» ; 

[x, fJ =dlffevolve (tortolse, 250, [-10 -10J, [10 10J) 
[x,fJ=dlffevolve(tortolse,50, [-10 -10], [10 10J) 
[x, fJ=genetlc(tortolse, 250, [-10 -10], [10 10J) 
[x, f J =genetlc (tortolse, 50, [-10 -10J, [10 10J) 
[x,fJ=swarm(tortolse,250, [-10 -10J, [10 10J) 
[x,fJ=swarm(tortolse,50, [-10 -10J, [10 10J) 
[x, fJ=slmanneal (tortolse, 250, [-10 -10], [10 10J) 
[X,fJ=slmanneal(tortolse,50, [-10 -10J, [10 10J) 

%-----------------------------------------------------------------

F202 ~crosscap=@ (x) (- (abs (s~n (x (:,1) . *x (:,2» . *exp (abs (100-
(x(:, 1) . A2+x(:, 2) . A2» /pi» . A (.01» . * (abs (cos (x(:, 1) . *x(:, 2» . *exp(abs 
(100-(x(:,1) .A2+x(:,2) .A2»/pi» .A(.Ol»); 

[x,fJ=dlffevolve(lcrosscap,250, [-10 -10], [10 10J) 
[x,fJ=dlffevolve(lcrosscap, 50, [-10 -10J, [10 10J) 
[x,fJ=genetlc(lcrosscap, 50, [-10 -10]' [10 10J) 
[x,fJ=genetlc(lcrosscap,250, [-10 -10J, [10 10J) 
[x,fJ=swarm(lcrosscap,250, [-10 -10], [10 10J) 
[x,fJ=swarm(lcrosscap,50, [-10 -10], [10 10J) 
[X,fJ=slmanneal(lcrosscap,50, [-10 -10], [10 10J) 
[X,f]=slmanneal(lcrosscap,250, [-10 -10J, [10 10J) 

%-------------------------------------------------------------------
F203 crosscap=@ (x) «abs (sin (x (: (1) . *x (:,2» . *exp (abs (100-
(x(:,l) .A2+x(:,2) .A2»/p~» .A(.Ol» .*(abs(cos(x(:,l) .*x(:,2» .*exp(abs 
( 100 - (x ( : , 1) . A 2 +x ( : , 2) . A 2) ) / pi) ) . A ( . 01) ) ) ; 

[x,fJ=dlffevolve(crosscap,250, [-10 -10J, [10 10J) 
[x,fJ=dlffevolve(crosscap,50, [-10 -10J, [10 10J) 
[x, fJ=genetlc(crosscap, 250, [-10 -10J, [10 10J) 
[x, fJ=genetlc(crosscap, 50, [-10 -10J, [10 10J) 
[x,fJ=swarm(crosscap,50, [-10 -10J, [10 10J) 
[x, fJ =swarm(crosscap, 250, [-10 -10], [10 10J) 
[x, fJ =slmanneal (crosscap, 250, [-10 -10J, [10 10J) 
[X,fJ=slmanneal(crosscap,50, [-10 -10J, [10 10J) 

%-----------------------------------------------------------
F204 Four-holetable=@ (x) (- (abs (s~n (x (:,1) . *x (:,2» . *exp (abs (100-
(x(:,l) .A2+x(:,2) .A2»/p~» .A(.09» .*(abs(cos(x(:,l) .*x(:,2» .*exp(abs 
(100-(x(:, 1) .A2+x(: (2) .A2» /pi».A (.09»); 

[x,fJ=dlffevolve(functlon204,250, [-10 -10J, [10 10J) 
[x,fJ=dlffevolve(functlon204,50, [-10 -10J, [10 10J) 
[x,fJ=genetlc(functlon204,250, [-10 -10], [10 10J) 
[x,fJ=genetlc(functlon204,50, [-10 -10], [1,0 10]) 
[x,fJ=swarm(functlon204,50, [-10 -10], [10 10J) 



[x,f)=swarm(functl.on204,250, [-10 -10], [10 10) 
[x,f)=sl.manneal(functl.on204,250, [-10 -10L [10 10) 
[x,f)=sl.manneal(functl.on204,50, [-10 -10], [10 10) 

Appendix C 

%---------------------------------------------------------------------
F205 Crossonroughcel.ll.ng =@ (x) (- (abs (s1.n (x (:,1) . *x (:,2» . *exp (abs (100 
(x (:,1) . "2+x (: ,2) . "2» /p1.» ." (.09» . / (abs (cos (x (: ,1) . *x (:,2» . *exp (abs 
(100-(x(:,1) ."2+x(:,2) ."2»/p1.» ."(.09»); 

[x,f)=dLffevolve(functLon205,250, [-10 -10J, [10 10) 
[x, f) =dLffevolve (functLon205, 50, [-10 -10), [10 10) 
[x,f)=genetl.c(functl.on205,250, [-10 -10), [10 10) 
[x, f) =genetl.c (functLon205, 50, [-10 -10), [10 10) 
[x,f]=swarm(functl.on205,250, [-10 -10], [10 10) 
[x,f)=swarm(functl.on205,50, [-10 -10], [10 10) 
[x,f)=sl.manneal(functl.on205,50, [-10 -10)' [10 10) 
[x,f)=sl.manneal(functl.on205,250, [-10 -10), [10 10) 

%-----------------------------------------------------------
F206 crosshut =@ (x) «abs (sin (x (:,1) . *x (:,2» . *exp (abs (100-
(x(:,l) ."2/3+x(:,2) ."2/3»/pi» ."(.05» .*(abs(cos(x(:,l) .*x(:,2» .*exp 
(abs (100- (x (: ,I) . "2/3+x (:,2) . "2/3» /p1.» ." (.05») ; 

[x,f]=dl.ffevolve(functLon206,250, [-10 -10], [10 10) 
[x,f]=dl.ffevolve(functl.on206,50, [-10 -10], [10 10) 
[x,f)=genetl.c(functl.On206,250, [-10 -10), [10 10) 
[x,f)=genet~c(functl.on206,50, [-10 -10), [10 10) 
[x,f)=swarm(functl.on206,50, [-10 -10), [10 10) 
[x,f)=swarm(functl.on206,250, [-10 -10), [10 10]) 
[x, f) =sl.manneal (functLon206, 250, [-10 -10), [10 10) 
[x, f) =sl.manneal (functl.on206, 50, [-10 -10), [10 10) 

%-------------------------------------------------------------------
F207 invertedcrosshut=@ (x) (- (abs (s1.n (x (:,1) . *x (:,2) ) . *exp (abs (100-
(x (:,1) . "2/3+x (: ,2) . "2/3» /p1.» ." (. 05» . * (abs (cos (x (: ,1) . *x (:,2» . *exp 
(abs (100- (x (:,1) . "2/3+x (:,2) . "2/3» /pi» ." (.05»); 

[x, f) =dl.ffevolve (functl.on207, 250, [-10 -10), [10 10]) 
[x,f)=dl.ffevolve(functl.on207, 50, [-10 -10), [10 10) 
[x,f)=genetLc(functl.on207,50, [-10 -10), [10 10) 
[x, f) =genetl.c (functl.on207, 250, [-10 -10), [10 10) 
[x,f)=swarm(functLon207,250, [-10 -10), [10 10) 
[x,f)=swarm(functl.on207,50, [-10 -10), [10 10) 
[x,f)=sl.mannea1(functl.on207,50, [-10 -10), [10 10) 
[x,f)=sl.manneal(functl.on207,250, [-10 -10), [10 10) 

%-------------------------------------------------------------------
F208 umrella=@(x) (-
(abs(ce1.l«x(:,l) ."2/3+x(:,2) ."2/3» . *exp(ce1.l (abs (100-
(x (:,1) . "2/3+x (:,2) . "2/3» /p1.») ." (.01» . * (abs (floor «x (:,1) . "2/3+x (:, 
2) ."2/3» . *exp (floor (abs (100-(x(: , 1) ."2/3+x(:,2) ."2/3»/pi») ."(.01»; 

[x,f)=dl.ffevolve(functLon208,250, [-10 -10), [10 10) 
[x,f)=dl.ffevolve(functl.on208,50, [-10 -10), [10 10) 
[x,f)=genetLc(functLon208,50, [-10 -10)' [10 10) 
[x,f)=genetl.c(functl.on208,250, [-10 -10), [10 10) 
[x, f)=swarm(functl.on208, 250, [-10 -10), [10 10) 
[x,f]=swarm(functl.on~208,50, [-10 -10), [10 10) 
[x,f)=sl.manneal(functl.on208,50, [-10 -10), [10 10]) 
[x,f)=sl.mannea1(functl.on208,50, [-10 -10)' [10 10) 
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%-------------------------------------------------------------------
F209 invertedumbrella =@ (x) (-
(abs (ceil «x (:,1) . "2/3+x (:,2) . "2/3» . *exp (ceil (abs (100-
(x ( : , 1) . "2/3+x ( : ,2) . "2/3) ) /pl.) ) ) . "( . 01) ) . * (abs (floor ( (x ( : ,1) . "2/3+x (: , 
2) . "2/3» . *exp (floor (abs (100-
(x (:,1) . "2/3+x (: ,2) . "2/3» /Pl.») ." (.01») ; 

[x,f)=d~ffevolve(funct~on209,250, [-10 -10), [10 10) 
[x,f)=d~ffevolve(functlon209,50, [-10 -10), [10 10) 
[x,f)=genet~c(funct~on209,50, [-10 -10), [10 10) 
[x,f)=genetlc(funct~on209,250, [-10 -10), [10 10]) 
[x,f)=swarm(funct~on209,250, [-10 -10), [10 10) 
[x,f)=swarm(funct~on209,50, [-10 -10), [10 10) 
[x, f) =s~manneal (funcct~on209, 50, [-10 -10), [10 10) 
[x,f)=s~manneal(funct~on209,50, [-10 -10), [10 10) 

%----------------------------------~--------------------------------
F210 flower 
=@ (x) «abs (cel.l (sqrt (x (:,1) . "2+x (:,2) . "2» . *exp (cel.l (abs (100-
(x(:,l) ."2+x(:,2) ."2»/pl.») ."(.01» .*(abs(floor(sqrt(x(:,l) ."2+x(:,2) 
. "2» . *exp (floor (abs (100- (x(:, 1) . "2+x(:, 2) . "2» /pi») ." (.01»); 

[x,f)=d~ffevolve(functlon210,250, [-10 -10), [10 10) 
[x,f]=d~ffevolve(funct~on210,50, [-10 -10], [10 10]) 
[x,fJ=genet~c(funct~on210,250, [-10 -10), [10 10) 
[x, fJ=genet~c(funct~on210, 50, [-10 -10], [10 10J) 
[x,fJ=swarm(funct~on210,250, [-10 -10J, [10 10) 
[x,f)=swarm(funct~on210,50, [-10 -10), [10 10]) 
[x, f) =s~manneal (functlon210, 250, [-10 -10), [10 10) 
[x,f)=s~manneal(funct~on210,50, [-10 -10), [10 10) 

%-----------------------------------------------------------------
F211 royalbowl=@(x) (abs(sl.n(x(:,l» .*exp(abs(100-
(x (:,1) . "2+x (:,2) . "2» /pi» ." (-1) +abs (cos (x (:,1» . *exp (abs (100-
(x(:,l) ."2+x(:,2) ."2»/pi» ."(-1); 

[x, f)=d~ffevolve(baul, 250, [-10 -10), [10 10) 
[x,f)=d~ffevolve(baul,50, [-10 -10], [10 10J) 
[x,f)=genet~c(baul,250, [-10 -10), [10 10) 
[x,f)=genet~c(baul,50, [-10 -10), [10 10) 
[x,f]=swarm(baul,250, [-10 -10), [10 10]) 
[x,f]=swarm(baul,50, [-10 -10], [10 10) 
[x,f]=s~mannea1(baul,50, [-10 -10], [10 10]) 
[x,f)=s~manneal(baul,250, [-10 -10), [10 1) 

******** 
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