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Abstract 

The main objective of this research work is to make a statistical analysis of an important 

meteorological parameter rainfall with special reference to North East India. More 

precisely, an attempt has be~n made to find the best fitting model for the analysis of 
, 

daily rainfall, sequence of rainfall (i.e. spell) and annual maximum rainfall of North 

East India. 

It is well known fact that Markov chain model can be fitted to daily rainfall oc­

currence and several authors have used Markov chain model to estimate the wet and dry 

days in past. First, we demonstrate the application of first order two state Markov chain 

for studying the pattern of occurrence of wet and dry days during the rainy seasons of 

North East India. Then an analysis regarding the fitting Markov chain of appropriate 

order has been carried out in this study using the Akaike information criterion. For the 

majority of the stations Markov chain of order one is identified as the most appropriate 

model, followed by order two, for describing the daily precipitations occurrences over 

North East India during Indian summer monsoon season. Then some well known distri­

butions namely, Normal, Log-normal, Gamma and Weibull distribution are also fitted to 

find the best fitting distribution function to the daily rainfall series. Chi-square test and 

Kolmogorov-Smirnov test have been' performed judging the goodness of fit. Cumulative 

distribution functions for each of the aforesaid distributions and the observed cumulative 

distribution functions are plotted for identifying the right probability density function 

for the daily rainfall amount. The Gamma and Wei bull distributions are observed to be 

competing each other and both are very close to the observed distributions as evinced 

by the graphical plots. 

Again the distribution of rainfall depends on the wet and dry spells over a pe­

riod of time, so it is desirable to investigate the pattern of occurrence of wet and dry 

spells especially in Indian summer season (April-September). Various distributions have 

been fitted to develop a discrete precipitation model for the daily series of precipitation 



occurrences over North East India. The goodness of fit of the proposed model have 

been tested using Kolmogorov-Smirnov test. It is observed that Eggenberger-Polya dis­

tribution fairly fits wet and dry spell frequencies and can be used in the future for an 

estimation of the wet and dry spells in the area under study. 

Knowledge of spatial and temporal variability of extreme rainfall events is very 

much useful for the design of dam and hydrological planning. Therefore, study on the 

statistical modeling of extreme rainfall is very much essential as the statistical model 

may vary according to the geographical locations of the area considered. Considerable 

efforts have been made in this direction using the annual series of maximum daily rainfall 

data for the period of 42 years of nine stations in North East India. For this purpose, five 

three-parameter extreme value distributions viz. Generalized Extreme Value distribu­

tion (GEV), Generalized Logistic distribution (GLD), Generalized Pareto distribution 

(GPD), Lognormal distribution (LN3) and Pearson (P3) distribution are considered. 

The estimation of the parameters for each distribution has been done using the methods 

of L-Moment and LQ-Moment independently. The performances of the distributions are 

evaluated using three goodness of fit tests namely relative root mean square error, rela­

tive mean absolute error and probability plot correlation coefficient. Further, L-moment 

ratio diagram is also used to confirm the goodness of fit for the above five distribu­

tions. This study reveals that the results of the best fitting distributions may differ for 

a particular station depending on either L-Moment or LQ-Moment is used. However, 

generalized logistic distribution is empirically proved to be the most appropriate distri­

bution for describing the annual maximum rainfall series for the majority of the stations 

in North East India. 

Recently, Wang ([73]) introduced the concept of LH-moments as generalization 

of the L-moment with the capacity; of a more detailed analysis of annual flood peak 

data. These are based on linear combination of higher order statistics. Although a 

good number of articles is devoted to the statistical modeling of extreme rainfall using 

L-moments, there is hardly any literature concerning the use of LH-moments in the 

statistical modeling of extreme rainfall. Therefore, LH-moments(L to L4 ) are used to 
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estimate the parameters of three extreme value distributions viz. Generalized Extreme 

Value distribution, Generalized Logistic distribution and Generalized Pareto distribution 

to annual maximum daily rainfall data for the period 1966 to 2007 of nine distantly 

located stations in North East India. The performances of the distributions are assessed 

by evaluating the relative bias (RBI'AS) and relative root mean square error (RRMSE) 

of quantile estimates through Monte Carlo simulat~ons. Then the boxplot is used to 

show the location of the median and the associated dispersion of the data. This study 

reveals that generalized Pareto distribution would be appropriate for describing the 

annual maximum rainfall series in North East India when the distributions are fitted 

using LH-moments. More precisely, zero level of LH-moments of GPD is found to be 

more superior to the majority of the stations in comparison to the other higher levels 

of LH-moments. Further, higher levels of the LH-moments can also be used to obtain 

improve estimate values of extreme rainfall for some stations in North East India. 
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Chapter 1 

General Introduction 

The severity of the weather, which manifests in the form of floods and landslides on 

account of rainfall, has a substantial impact on the life and properties. Rainfall is one of 

the fundamental components of the hydrological cycle as its accurate estimation is neces-
I 

sary for planning, designing and operation of water resources development programmes. 

The purpose of this thesis is to find the best fitting statistical model(s) for the analysis of 

rainfall data of North East India. Fitting a probability distribution function to observed 

data provides a compact and smoothed representation of the frequency distribution re­

vealed by the available data, and leads to a systematic procedure for extrapolation to 

frequencies beyond the range of the data set (Stedinger et al. [68]). 

1.1 Background 

We live in a world that is exposed to the vagaries of severe and unusual weather. Natural 

disaster and severe weather events have a close link because all severe weather events, 

due to climate change or otherwise could and often lead to natural disasters that occur 

on varying time and space scales. Disaster may strike any country but the greatest 
I 

burden falls on less developed countries and their highly populated regions. Despite 

development in all fields of socio-economic activity we have not succeeded in insulating 
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the population from their effects. One of the common features of developing countries in 

the South East Asia is flash flood in urban areas during rainy season and acute shortage 

of water for domestic and agriculture uses during winter. 

North East India, located at east of 80° E and North of 21° N, is one of the 

major disaster prone region of India because of their unique geographical locations and 

physical features, witnessing the fury of monsoon. The summer monsoon influence 

this region from June to September contributing more than 80% of the annual rainfall. 

During this season major floods occur that often lead to disaster. The average annual 

rainfall in North East India ranges from 2000-4000 mm with a maximum of 11000 mm 

in Cherrapunjee. However, more than the total amount, the distribution of rainfall 

matters a lot for sustained high yield of agricultural crops throughout the season. In 

the North East India, the rainfall distribution is not even. While the excess rainfall in 

the monsoon months of June-September causes drainage problems, in the longer dry 

spell during November to March crop goes down in spite of having sufficient rainfall in 

the monsoons. Again it is important to note that the distribution of water resources 

potential in the country shows that as against the national per capita annual availability 

of water as 2208 m3 the average availability in North East because of the Brahmaputra 

and the Barak rivers is as high as 16589 m3 . However, this vast water resource remains 

unutilized and creates problems in the entire region in many ways. This necessitates 

changes in perspective of water management in the region. 

Extreme precipitation events (heavy rain storm, cloud burst) may have their 

own impacts on the fragile geomorphology of the Himalayan part of the Brahmaputra 

basin causing more widespread landslides and soil erosion. The response of hydrologic 

systems, erosion processes, and sedimentation in the Himalayan river basins could alter 

significantly due to climate change. Two extremely intense cloud bursts of unprecedented 

intensity- one in the western Meghalaya hills and Western Arunachal Pradesh in 2004 

produced two devastating flash floods in the Goalpara and Sonitpur districts of Assam 

bordering Meghalaya and Arunachal respectively causing hundreds of deaths. The most 

recent examples of such flash floods originating from extreme rainfall are two events that 
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occurred in the north bank of the Brahmaputra River and caused significant damage 

to human life and property. The first of the two events occurred during the monsoon 

season on June 14th, 2008 due to heavy rainfall on the hills of Arunachal Pradesh north 

of Lakhimpur District causing flash floods in the rivers of Ranganadi, Singara, Dikrong 

and Kakoi that killed at least 20 people and inundated more than 50 villages leading to 

displacement of more than la, 000 people. The other that occurred in the post monsoon 

season on October 26 affected a long strip of area of northern Assam valley adjoining 

foothills of Bhutan and Arunachal Pradesh causing flash flooding in four major rivers (all 

are tributaries of the river Brahmaputra) and a number of smaller rivers. This episode of 

flash floods caused by heavy downpour originated from the Tropical Depression 'Rashmi', 

(a depression over the West Central Bay of Bengal adjoining Andhra coast). 

Climate change has cascading and far reaching affects on almost every aspect of 

environment and societies as already observed amply all over the world. The developing 

countries of the world with large populations living in poverty and degraded environ-
I 

ments and reliant on primary production are most vulnerable to the impacts of global cli-

mate change. The northeast Indian region of India is expected to be highly prone to the 

consequences to climate change because of its geo-ecological fragility, strategic location 

vis-a.-vis the eastern Himalayan landscape and international borders, its trans-boundary 

river basins and its inherent socio-economic instabilities. Environmental security and 

sustainability of the region are and will be greatly challenged by these impacts. 

Studies on rainfall and the temperature regimes of northeast India indicate that 

there is no significant trend in rainfall for the region as a whole i.e. rainfall is neither 

increasing nor decreasing appreciably for the region (cf. [13,29]). However, for a part of 

the region that the meteorologists of the country officially refer to as the 'South Assam 

Meteorological Subdivision'(that covers mainly the hill states of Nagaland, Manipur, 

Mizoram and Tripura and parts of the Barail Hills in southern Assam), a significant 

change in seasonal rainfall has been observed. The summer monsoon rainfall is found to 

be decreasing over this region significantly during the last century at an approximate rate 

of 11 mm per decade (cf. [13, 48]). For example, several districts of Assam were badly 

3 



affected due to drought like situations consecutively for two years in 2005 and 2006 which 

had a signature of climate change on them as vindicated by the Intergovernmental Panel 

on Climate Change(IPCC) report of 2007( [35]). In the intense drought-like conditions 

that prevailed in as many as 15 districts of Assam during the summer monsoon months 

of the year 2006 owing mainly to below normal (nearly 40%) rainfall in the region, more 

than 75% of the 26 million people associated with livelihoods related to agriculture in 

these districts were aff€cted and the state suffered a loss of more than 100 crores due 

to crop failure and other peripheral affects. Other states of the region also received 

rainfall 30-40% below their normal rainfall except Mizoram. Normally such fluctuations 

are considered as results of inter-annual variability of the monsoons, but then climate 

change impacts are supposed to affect the southwest monsoon also by increasing the 

normal mode of its variability. 

Rainfall occurring earlier or later has adversely affected sowing and harvesting of 

crops. Moreover, there are reports that natural wetlands are shrinking in many parts of 

the region. Some ecologists have informed about appearance of more number of invasive 

species and changes in their distribution pattern in the region. Some have reported 

more number of diseases and pests in citrus species. One significant impact which 

many plant scientists agree to is the change taking place in the phenological phases in 

plants ([34]). Besides such scientific evidences, which are however few, individual and 

collective opinions in various parts of the region bear references to what may be construed 

as increased variability or changes in local climates. Such anecdotal r.eferences talk of 

irregular rainfall pattern with rainfap starting quite early in the region (say in January), 

heavy rainfall events (extreme rainfall) and flash floods becoming more frequent and dry 

periods becoming longer in various parts of the region. However, more rigorous study 

on the rainfall character of North East region of India needs to be done at regional scale 

before anything can be said conclusively. 
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Figure 1. 1 Locations of rain gauge staions used in this study 



1.2 Brief Description of the Study Area 

The brief description, especially hydroclimatology, of rain gauge stations used in this 

study is presented in this section. The geographical locations of the rain gauge stations 

are shown in Figure 1.1. 

Guwahati: Guwahati is the largest city in the North East Region of India and is located 

at 26°11'N 910 44'E. Guwahati's climate is mildly sub-tropical with warm, dry summers 

from April to late May, a strong monsoon from June to September and cool, dry winters 

from late October to March.The city experiences an annual rainfall of 180 cm (from May 

to September) with an average number of 77.3 rainy days. While summer temperatures 

range from 22°C to 38°C, in winters the mercury ranges from lOoC to 25°C. 

Shillong: Shillong is the capital of Meghalaya, one of the smallest states in India. 
I 

Shillong is located at 25°34'N 91°53'E. It is on the Shillong Plateau, the only major 

pop-up structure in the northern Indian shield. Due to its latitude and high elevation 

Shillong has a sub-tropical climate with mild summers and chilly to cold winters. Shillong 

is a subject to vagaries of the monsoon. The monsoons arrive in June and it !ains almost 

until the end of August. In summers the average temperature is 23 degree Celsius and 

in winters it is dropped to 4 degree Celsius. 

Cherrapunji: Cherrapunji is the world's wettest place and is just 56 km from the capital 

Shillong of Meghalaya. Geographically it is located at 250 18'N 91°42'E. Cherrapunji's 

yearly rainfall average stands at 11,430 mm. This figure places it behind only nearby 

Mawsynram, Meghalaya, whose average is 11,873 mm and Mount Waialeale (USA) on 

the Hawaiian island of Kauai, whose average is 11,684 mm. The orography of the hills 

with many deep valleys channels the low flying (150-300 m) moisture laden clouds from 

a wide area to converge over Cherrapunjee which falls in the middle of the path of 

this stream. The winds push the rain clouds through these gorges and up the steep 

slopes. The rapid ascendance of the clouds into the upper atmosphere hastens the 

cooling and helps vapours to condense. Most of Cherrapi 
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of air being lifted as a large body of water vapour. Extremely large amount of rainfall 

at Cherrapunjee is perhaps the most well known feature of orographic rain in northeast 

India. 

Imphal: Imphal is the capital of Manipur, located at 24°49'N 930 57'E. It has an average 

elevation of 786 metres (2578 feet). It is located in the extreme east of India. The 

Imphal Valley is drained by several small rivers originating from the hills surrounding it. 

Imphal has a sub-tropical climate with cool, dry winters, a warm summer and a moderate 

monsoon season. July is the hottest month with temperatures averaging around 2SoC, 

while January is the coldest with average lows near 4°C. The city gets about 1320 mm 

of rain with June being the wettest month. 

Mohanbari: Mohanbari is located 15 km from the city center Dibrugarh of district 

Dibrugarh, Assam, India. Being located 27°26'60N 9So1'60E and with its unique phys­

iographic elements, the area experiences subtropical monsoon climate with mild winter, 

warm and humid summer. Rainfall decreases from south to north and east to west in 

the area. The average annual rainfall of the Dibrugarh city in the north is 276 cm with 

a total number of 193 rainy days, while at Naharkatia in the south, it is 163 cm with 

147 rainy days. 

North Lakhimpur: North Lakhimpur is situated in the eastern parts of India in 

the state of Assam. The district of Lakhimpur lies on north bank of the mighty river 

Brahmaputra. It is situated at 270 13'60 Nand 940 7'E. 

Pasighat: Pasighat is the headquarter of East Siang district in the Indian state of 

Arunachal Pradesh and located at 28.07oN 95.330 E. It has an average elevation of 153 
I 

metres. The area experience tropical humid climate during summer and dry mild winter. 

The place is known for receiving highest rainfall in a single year. In fact Pasighat and 

area around it receive heavy rainfall every year during monsoon season starting from 

May till September. 

Silchar: Silchar is the headquarter of Cachar district in the southern part of the Assam 
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state and it lies between latitude 90.44 E and longitude 20.04 N. Because of its sub­

tropical monsoon climate, silchar experiences high rainfall, about 85 % of which occurs 

during May to October. The average annual rainfall in Silchar varies from 2500 mm to 

3400 mm and the temperature is moderate ranging from 13°C-35°C. 

Tezpur: Tezpur is situated in the eastern parts of India in the state of Assam and 

located at 26.630 N 92.8°E. It has an average elevation of 157 ft and the average annual 

rainfall in Tezpur ranges from 2000 mm to 2700 mm. The climate in this part of Assam 

is usually pleasant, the only problem arises due to the high humidity factor. The summer 

see the temperature rising as high 34.6°C and during winters the temperatures may drop 

to about 12°C. 

Tocklai: Tocklai is situated in the district Jorhat, Assam, India and its geographical 

coordinates are 26°45' N 94°13' E and 91 meter above mean sea level. The average 

annual rainfall in this part of central Assam ranges from 2000-3000 mm. This place is 
I 

also known for Tocklai Experimental Station which has been serving the tea industry 

and has become synonymous with the research on tea in the country. 

Silcoorie: Silcoorie is just 10 km from the district headquarters Silchar of Cachar 

district and is located at 24°50' N 92°48' E. The average annual rainfall in Silcoorie 

varies from 1965 mm to 3000 mm. 

North Bank: North Bank station is 35 kms from Tezpur town on the north bank of 

the River Brahmaputra in Assam and located at 26°50' N 92°38' E. 

1.3 Motivation and Objectives 

This seetion elucidates our main objectives and motivation for the present study. Real­

istic sequences of meteorological variables such as precipitation are key inputs in many 

hydrologic, ecologic and agricultural models. Rainfall information form the basis for de­

signing water related structure in agriculture planning, in weather modification, in water 

management and also in monitoring climate changes. The most commonly measured and 

recorded information on rainfall is a daily value gauged. The equipments for observing 
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daily values are also the simplest type of rain gauges which are fairly inexpensive, easy 

to maintain and read by local observer with little expertise. 

In India majority of the people depends on agriculture for their livelihood. And 

Indian agriculture primarily depends on rainfall. Only 20% of the cultivated land en­

joys the facilities of irrigation. In remaining areas, however the farming is done under 

unirrigated conditions and as such it, depends mostly on the occurrence of rainfall. Agri­

culture is highly sensitive to rainfall modulation during the rainy season/Indian Summer 

Monsoon season which provides more than 80% of the annual rainfall over India. There­

fore, a detailed knowledge of rainfall regime is an important prerequisite for agriculture 

planning. 

Amount of daily rainfall is an important factor that impacts agriculture system. 

It governs the crop yields and determines the choice of the crops that can be grown. 

Therefore it is also important to graduate the rainfall of different time scales by fitting 

appropriate frequency distributions. According to Fisher [21J crop yield during a season 

is mainly influenced by the distribution of rainfall rather than season total amount of 

rainfall. Again the distribution of rainfall depends on the wet and dry spells over a 

period of time. So it is of the essence to investigate the pattern of occurrence of wet 

and dry spells during especially in Indian summer monsoon season (June-Sept.). The 

occurrence of wet and dry spells can be regarded as series of Bernoulli trials. And so, , 
the pattern of occurrrence of rainfall can be investigated by fitting a stochastic model to 

rainfall data over a moderate period of time(summer monsoon) during which agriculture 

operation is highly influenced by rainfall. 

Another important issue which we need to address is the extreme rainfall. Ex­

treme rainfall events can have severe impacts on society. It afflicts the worst environ­

mentally related tragedy, which contributes to loss of crops and valuable property and 

untold human misery. The vulnerability of the people to the extreme weather events 

seems to be increasing every year in terms of change in frequency and adversely affecting 

the people. Stochastic models for extreme rainfall events over an area may be used for 

such disaster prevention purposes. If the best fitting distribution is known for a par-
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ticular station, one would be able to predict the return value of this extreme rainfall 

event at a specific time in the future. The main objectives of this thesis are outlined as 

follows: 

• Statistical modeling of the pattern of occurrence of daily rainfall data 

Here we have made an effort to demonstrate the application of first order two state 

Markov chain for studying the pattern of occurrence of wet and dry days during 

the rainy seasons in North East India. Further an analysis regarding the fitting of 

Markov chain of appropriate order has been carried out in this study. 

• Application of well known probability distributions 

Some well known probability distributions viz. normal, log-normal, gamma and 
I 

Weibull distribution have been fitted to find the best fitting distribution function 

to the daily rainfall series in North East Region of India. Chi-square test and 

Kolmogorov-Smirnov test have been performed to judge the goodness of fit. 

• Statistical modeling of wet and dry spell frequencies 

In this 1?tudy, the point of approach has been taken as the modeling of the duration 

of consecutive dry and wet days i.e. spell, instead of individual wet and dry days. 

Various distributions have been fitted to describe the wet and dry spell frequencies 

of occurrences considering the climatic features of the different parts of North-East 

India. 

• Statistical analysis of annual maximum rainfall 

Knowledge of extreme rainfall event is very much useful for the design of dam 

and hydrological planning. Again the statistical model may vary according to the 
, 

geographical locations of the area considered. Therefore, it is very much essential to 

make a study on extreme rainfall over North East India. For this purpose, several 

extreme value distributions have been fitted. The estimation of the parameters for 

each distribution has been done by using the methods of L-moment, LQ-moment 

and LH-moments independently. 
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1.4 A Brief Survey on Statistical Methods 

Nature is a very complicated system. Despite this, it is often necessary to simulate the , 

behavior of natural systems. To attempt this by modeling all the physical processes 

deterministically is a very difficult task. Instead, stochastic models are advocated. 

Stochastic models generally have a relatively simple framework that incorporates an 

element of uncertainty in the outcome. This randomness or uncertainty represents the 

part of the process that can not be explained deterministically. Stochastic models are 

designed to reproduce the important patterns evident in the observations based on the 

current knowledge of the physical processes. 

Stochastic modeling of rainfall data has become a frontier research area over 

the years. The majority of stochastic models deal with either daily rainfall or series 

of rainfall (i.e. spell) or annual maximum rainfall. In order to put our discussion into 

proper perspective, we first give a brief account of the development of the statistical 

modeling of rainfall data over the globe. 

As far our knowledge is concerned, the statistical modeling of rainfall data started 

with the work of Gabriel and Neuman [22, 23]. They applied a first order chain to Tel 

Aviv precipitation data on the basis of multiple hypotheses testing procedures and it is 

observed from their study that two state Markov chain give a good description of the 

occurrences of wet and dry days during the rainy period at Tel Aviv. Bhargava et al. 

[9] studied the occurrence of rainfall with the help of Markov chain model of order one 

in Raipur District India. Further, the occurrences of wet and dry weeks were studied by 

Gore and Thapliyal [28] at Maharastra, India. Latter, Gates and Tong [28] reanalyzed 

the same Tel Aviv data applying the AIC procedure and suggested that a Markov chain 

of order not lower than 2 should be fitted, instead of the previously fitted first order. 

Although there is a disagreement on the appropriate order for the Tel Aviv model but 

one must agree that Markov chains are obvious candidate to model the occurrence of 

rainfall. Some authors attempted to describe rainfall amounts by fitting Markov chains 

with many states each representing a range of amounts. One unsatisfactory element 
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of these models has been the large number of parameters to be estimated. Then some 

well known distributions were tested as an alternative to Markov chains with many 

states to estimate the amounts of rainfall. Barger and Thorn [6J showed that gamma 

distribution provides good fit to precipitation series in the United States. The best-fit 

gamma distribution was also found by Simpson [67J based on rather evaluated rainfall 

data. Mooley [49] tested whether a suitable unified probability model exists or not for 

the distribution of monthly rainfall associated with the Asian Summer Monsoon. He 

found that gamma distribution is the most suitable probability model from among the 

Pearsonian models. Gamma distribution was also fitted by Stern and Coe [69J for mod­

eling rainfall amount. It was claimed that a comprehensive analysis of rainfall data 

should use daily records and not based on 7, 10 days or monthly total. Sharma [65J 

claimed that the probability estimation for the Weibull pdf can be done by analytical 

( integration which was not possible for normal, lognormal and gamma probability distri­

butions. Aksoy [5J investigated the amounts of daily rainfall and the ascension curve of 

the hydrograph by using 2-parameter gamma distribution. Muralidharan and Lathika 

[51J analyzed the rainfall occurrence based on modified version of Weibull distribution 

for two meteorological stations in India. 

Let us turn our discussion to .the statistical modeling of wet and dry spells over 

different parts of the world. The most frequently used model for generating consecutive 

sequence of dry and wet days is the first order, two state, homogeneous Markov chain 

that has been applied by several authors (cf. Gabriel et al. [22], Katz [36], Bruhn et 

al. [10], Richardson [61], Geng [25], Matyasovszky et al. [43], Wilks [75], Dubrovsky 

[20]). The major disadvantage of this model is that it overestimates the very short, but 

underestimates the very long dry sequences. An essential improvement to reproduce the 

short and long spells were made by Berger et al. [8J and Nobilis [54J using higher order 

Markov chain and Eggenberger-Polya distribution. They found that short spells were 

best fitted by fourth order Markov chain, where as the Eggenberger-Polya distribution 

gave the best fit to the long series. Later, Racsko et al. [58J proposed a model consti­

tuting two different geometric distributions. In the referred study, both the geometric 
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distributions were separated according to the length of dry spells. Results of the works 

suggested that mixed distribution, including geometric one, could be promising in re­

production of long dry periods (where as simple geometric distribution gave the best fit 

for wet spells). For wet spells, it was also observed that simple geometric distribution 

could be promising. Recently, following the idea of [58J a mixture distribution based 

on a weighted sum of two geometric distributions, as well as that of one geometric and 

one poisson distribution was applied by Wantuch et al. [74J. The first model exhibits 

good fitting for the dry spells and the latter one can be advised to employ for the wet 

periods. More recently, while Tolika et al. [70J found that both Markov chain of order 

two and negative binomial distribution can be used to estimate the wet spells in Greece, 

Eggenberger-Polya and truncated negative binomial were found to be more efficient in 

fitting observed data both for wet/dry spells by Giuseppe et al. [26J. 

Applications of extreme value distributions to rainfall data have been investigated 

by several authors from different regions of the world. Rakhecha et al. [59J analyzed the 

annual extreme rainfall series at 316 stations over the Indian region, covering 80 years of 

rainfall data for trend and persistence using standard statistical tests. For investigating 

more generalized issues regarding the adequacy of extreme value distributions for ex­

treme rainfall analysis, Baloutsos et al. [7J made the statistical analysis for the longest 

rainfall record available in Greece. In the same direction, Koutsoyiannis [41J made an 

extensive empirical investigation of the longest available rainfall records worldwide, each 

having 100-154 years of data. Nad9-rajah et al. [52J and Nadarajah [53J provided the 

application of extreme value distributions to rainfall data over sixteen locations spread 

throughout New Zealand and fourteen locations in West Central Florida, respectively. 

Extreme value distributions were also used by Aronica et al. [lJ to analyze the trend in 

the extreme rainfall series for a fixed return period by estimating the maximum rainfall 

depth in Palermo, Sicily, Italy. They estimated the parameters using L-moments. Zalina 

et al. [76J discussed the comparative assessment of eight candidate distributions in pro­

viding accurate and reliable maximum rainfall estimates for Malaysia. Model parameters 

were estimated using the L-moment method. They concluded that the GEV distribution 
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is the most appropriate distribution for describing the annual maximum rainfall series 

in Malaysia. On the other hand, Zin et al. [78] found GLD as the most frequently se­

lected best fitting distribution and LN3 as the least frequently selected distribution for 

extreme rainfall in Peninsular Malaysia. Those results differ from the results obtained 

by Zalina et al. in [76]. While Kotz et al. [40] made an extensive study on the fitting of 

extreme value distribution, the detailed references on the statistical modeling of annual 

maximum rainfall based on L-moment and LQ-moment can be found in [78]. The most 

commonly used distributions for ext/reme rainfall data 1can be found from the references 

such as Hosking and Wallis [32] and Rao and Hamed [60]. Recently, Wang ([73]) de­

veloped the LH-moments as a generalization of the L-moments with the capacity of a 

more detailed analysis of annual flood peak data. In his study he concentrated only on 

the generalized extreme value distribution. Since then LH-moments have been used by 

several authors in flood frequency analysis. Meshgi et al. ([46], [47]) performed a com­

parative study of Land LH-moments for regional flood frequency analysis of Kharkhe 

watershed, located in Western Iran. In their study, they extended the regional homo­

geneity test for L-moment developed by Hosking ([31]) to each LH-moments level from 

L1 . to L4 and also developed the LH-moments for generalized logistic distribution (G LD) 

and generalized Pareto distribution (GPD). The other application of LH-moments is due 

to Hewa et al. ([33]) in low flow frequency analysis. They developed a method based 

on LH-moment to use GEV distribution to model the lower tail of low-flow frequency 

curve, without explicitly censoring the data sample. It is observed from their analysis 

that GEV /LH-moment method is more suitable method to model low flows. 

1.5 Organization of the Thesis 

The thesis consists of seven chapters followed by appendices and bibliography. The 

organization of the thesis is as follows: Chapter 2 deals with the the application of first 

order two state Markov chain for studying the pattern of occurrence of wet and dry days 

during the rainy seasons in Imphal, Mohanbari, Guwahati and Cherrapunji. The study 
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reveals that the occurrence of wet and dry days in the tract can be rightly described by 

a two state Markov chain. Further, it is observed that the number of wet days varies 

from 47 to 65 for Imphal, Mohanbari and Guwahati and 96 for Cherrapunji. 

Chapter 3 demonstrates the application of the Akaike information criterion to 

determine the order of two state Markov chain for studying the pattern of occurrence 

of wet and dry days during the rainy seasons in North-East India. First order Markov 

chain model has been found to be an adequate model for most of the stations of North 

East regions of India to determine the daily precipitation. 

In Chapter 4, an attempt has been made to examine the goodness of fit of some 

well known probability distributions based on daily rainfall observations sampled from 

seven distantly located stations in North East Region of India Viz.Imphal, Mohan­

bari, Guwahati, Cherrapunji, Silcoorie, North Bank, Tocklai (Jorhat). The gamma and 

weibull distributions are observed to be competing each other and both are very close 

to the observed distributions as evinced by the graphical plots. 

Chapter 5 is concerned with modeling of duration of consecutive dry and wet 

days i.e. spell, instead of individual, wet and dry days. Various distributions have been 

fitted to describe the wet and dry spell frequencies of occurrences. The goodness of fit 

of the proposed models have been tested using Kolmogorov-Smirnov test. It is observed 

that Eggenberger-Polya distribution fairly fits wet and dry spell frequencies and can be 

used in the future for an estimation of the wet and dry spells in the area under study. 

Considerable efforts have been made in Chapter 6 to determine the best fitting 

extreme value distribution to describe the annual series of maximum daily rainfall data 

for the period 1966 to 2007 of nine distantly located stations in North East India. Model 

parameters are estimated using the method of L-moment and LQ-moment. This study 

reveals that the results of the best fitting distributions may differ for a particular station 

depending on either L-moment or LQ-moment is used. However, generalized logistic 

distribution is found to be more consistent in comparison to the other three best fitting 

distributions. 

Chapter 7 is concerned with the application of LH-moments as generalization , 
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of the L-moment to describe the annual series of maximum daily rainfall data. LH­

moments(L to L4 ) are used to estimate the parameters of three extreme value distribu­

tions viz. generalized extreme value distribution, generalized logistic distribution and 

generalized Pareto distribution to annual maximum daily rainfall data for the period 

1966 to 2007 of nine distantly located stations in North East India. The performances 

of the distributions are assessed by evaluating the relative bias (RBIAS) and relative 

root mean square error (RRMSE) of quantile estimates through Monte Carlo simula­

tions. Then the boxplot is used to show the location of the median and the associated 

dispersion of the data. Generalized Pareto distribution has been found to be appropri­

ate to the majority of the stations for describing the annual maximum rainfall series in 

North East India using LH-moments. 

Some chapter-wise information/results in the form of Tables, which are integral 

and underpin the findings of the chapters are finally appended at the end. 
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Chapter 2 

Statistical Modeling of Daily 

Rainfall Data: Markov Chain 

Approach 

In this chapter, we demonstrate the application of first order two state Markov chain 

for studying the pattern of occurrence of wet and dry days during the rainy seasons of 

North East India. The study reveals that Markov chain model can be used to study the 

daily rainfall occurrence of North East region of India. 

2.1 Introduction 

In India, climate is considered to be one of the major constraint of agriculture and 

agricultural planning, and agriculture scientists/policymakers often keep this in mind 
I 

while making agricultural plans and policy decisions. Although the various climatic 

variables interact with the crop in complex ways, rainfall is the limiting factor in most 

part of the tropics. A fore knowledge of rainfall pattern is of immense help not only 

to farmers, but also to the authorities concerned with planning of irrigation schemes. 

The present study is an effort to demonstrate the application of first order two state 
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Markov chain for studying the pattern of occurrence of wet and dry days during the rainy 

seasons in Imphal, Mohanbari, Guwahati and Cherrapunji. The selected stations Imphal, 

Mohanbari and Guwahati are classified as moderate rainfall area whereas Cherrapunji is 

classified as heavy rainfall area. The study utilizes five years (2001-2005) daily rainfall 

data in mm for the summer monsoon months of June, July, August and September. The 

statistical modeling of daily rainfall data based on first order two state Markov chain 

can be found in [9], [22], [23J and [28J. 
I 

The organization of this chapter is as follows. In Section 2.2, we describe the 

analytical procedure which is needed for the present study. Section 2.3 is concerned 

with the results and discussion, and finally, the chapter ends with a concluding remark 

in Section 2.4. 

2.2 Analytical Procedure 

Any season of the year can be defined as a sequence of wet and dry days, assuming that 

the occurrence of rain in any day depends only on the occurrence of rain on the previous 

day, the following conditional probabilities can be defined 

Pi Pr {wet day/previous day was wet} 

Po Pr {wet day/previous day was dry}. 

Thus a hydrological system can be described by two possible states, the dry state and the 

wet state. The transition probability matrix from one state to another has the following 

form 

state dry wet 

dry 1- Po Po 

wet 1- Pi Pi 

Based on the daily rainfall during the period JSt June to 30th September in each year 

and for each station, each day is classified as dry day if the amount of rainfall is less 
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than 3 mm and wet day if the amount of rainfall is greater than or equal to 3 mm. 

Assuming that the occurrence of rainfall on the pt June depends on the occurrence of 

rainfall on 31st May and repeating this' process for each year the transition count for 

each possibilities can be calculated.' Let these be denoted by nOO, nOl ,nlO, nu where 

nOO + nOI = no and nlO + nll = nl· 

dry wet total 

dry nOO nOI no 

wet nlO nll nl 

The two parameters Po and PI are required to be estimated for describing the Markov 

chain. The maximum likelihood estimates of Po and PI are given by 

nOI nll 
Po = - and PI = -

no nl 
o 
with variances of the estimates as 

Po(l - Po) Pl(l - pd . 
and , respectlvely. 

no nl 

In order to demonstrate that the occurrence of a wet day (or dry day) is influenced 

by the immediately preceding day's 'weather, we compute the usual normal deviate test 

statistic 

z = Po - Pl 
S.E. of (Po - PI) 

When the occurrence of a wet or dry day is influenced by the previous day's weather, the 

above process of the occurrence of wet and dry days over a given time is strictly a two 

state Markov chain with four transition probabilities, depending on only two parameters 

as described above. 

To obtain the common estimates of these two parameters pooled over all such 

stations let the four cell frequencies for the i th centre be denoted by nOOi, nOli, nlOi, nlli, 

respectively with nOOi + nOli = nOi and nlOi + nlli = nli' The common estimates of Po 

and PI pdoled over all the stations are given by 

- L:i nOli 

Po = '"" ' LJi nOi 
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Considering these common estimates as the expected frequencies at each of the statiQns 

two chi-squares for each stations can be calculated for testing the discrepancies between 

the observation and the expectation. The two chi-squares for the ith centre with 1 degree 

of freedom are given by 

2 2 n OOi nOli --:--';.;;.;;....- + -_- -:- nOi, 
nOi(l - Po) nOiPO 

2 2 n lOi n lli 
---":'=""'- + -- - nl'· 
nli(l - pd nliPl t 

If any stations show insignificant chi square values for both the parameters then it can 

be regarded as similar in the pattern of the occurrence of rainfall. They can therefore 

be grouped together for obtaining common estimates of the two parameters in the usual 

manner. 

From the properties of first order two state Markov chain after a sufficiently long 
/ 

period of time, the system settles down to a condition of statistical equilibrium in which 

the state occupation probabilities are independent of initial conditions. If this is so 

then there is an equilibrium probability distribution 7r = (7rO,7rl)' Theoretically this 

probabilities can be calculated by 

1 - PI + Po' 
1- Po 

1- PI + Po 

Further quantity of interest is the distribution of the number of successes in a sequence 

of dependent Bernoulli trials as discussed in Cox and Millar [12J. If Yn is the number 

of wet days out of n then Yn behaves like a sum of independent random variables and 

asymptotically follows normal distribution with 

The properties of the distributions of the length of wet and dry spells in two state 

Markov chain rainfall model are given in Cox and Millar [12J. A wet spells of length 
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W is defined as W successive wet days followed by a dry day. The probability that W 

takes a specific value n is given by 

P(W = n) = (1 - PI)P~-I 

which follows geometric distribution. The expected length of wet spells is then given by 

1 
E(W) = --. 

1 - PI 

Similarly for the length D of dry spell, 
I 

P(W = n) 

E(W) = 
Po 

A weather cycle may be defined as a wet spell followed by a dry spell. The distribution 

of the length C of a cycle is therefore the convolution of two independent geometric 

distributions. Hence 

E(C) = E(W) + E(D). 

2.3 Results and Discussions 

The transition counts nOD, nOl, nlO, nu were calculated for each station separately in 

Table 2.1 and then the transition probabilities Po, PI were estimated using the formulae 

cited above, and the values for Po, PI are presented in Table 2.2. As a first step to fit a 
i 

Markov chain model to the data, the difference in the estimates of these two probabilities 

were tested for significance in respect to each station by usual normal deviate test. The 

value of IZI for the stations Imphal, Mohanbari, Guwahati and Cherrapunji were found 

to be 4.479, 7.472, 4.704 and 7.605, respectively. Thus, the differences are found to be 

highly significant for all the stations. This shows that the weather of a day is influenced 

by the weather of the previous day. As such the occurrences of wet and dry days in the 

tract can be rightly described by a two state Markov chain. 
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To obtain the common estimates of the two parameters pooled over such stations 

as are homogeneous for them, X2 tests were done by using the formulae given in the 

Section 2.2. It was seen that for all the stations, X2 values were significant for both the 

parameters which indicates that the ,occurrence of rainfall varies from station to station. 

So these stations cannot be grouped together to get the common estimates. The different 

values of tabulated and calculated X2 are given in the Table 2.3. 

The various properties of the Markov chain as explained in Section 2.2 were 

obtained and are given in the Table 2.4. From the Table 2.4 it is seen that, for the first 

three stations i.e. for lmphal, Mohanbari and Guwahati the expected length of the wet 

spell varies between 2.00 to 3.03 and for the station Cherrapunji its length is 7.14 i.e.,for 

the first three stations after two to three consecutive wet days a dry day is expected to 

occurs but in Cherrapunji a dry day is expected to occurs after 7 or 8 days. Similarly 

the expected length of dry spells varies between 2.63 to 3.23 for the first three stations 

and for Cherrapunji its value is l.96. So in Cherrapunji after 1 or 2 consecutive dry 

days a wet day is expected to occur and for the remaining three stations after three 

consecutive dry days a wet day is expected. The expected days of the cycle is therefore 

5 to 6 days for the first three stations and 9 for cherrapunji. , 
The expected number of wet days during the period of 122 days and the,actual 

number of wet days during that period are shown in columns 8 and 9 respectively of 

Table 2.4. The results in both the columns are almost same and for the first three 

stations its values vary between 47 to 65 days and for Cherrapunji its value is 96 days. 

The standard deviation of the distribution is about 7 days. 

The state occupation probabilities at equilibrium i.e. 7To and 7Tl which are inde­

pendent of the initial conditions and the number of days required to get the state of 

equilibrium were also obtained and are given in the column 12, 13, 14 of the Table 2.4. 

It is seen that the number of days to equilibrium varies from 6 to 9 which shows that 

after 6 to 9 days from 1st June, the state occupation probabilities of the day being wet 

or dry is independent of the initial conditions of the weather. 
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Table 2.1 Year wise transition counts for the Stations under study 

Station Impool Mohanbari Guwahati Cherrapunj i 
Year noo nOI nlO nil nOO nOI nlO nil nOO nOI nlO nil nOO nOI nlO nil 
2001 47 25 25 25 37 21 20 44 54 23 24 21 8 12 12 90 
2002 50 21 21 30 40 24 23 35 51 25 25 21 14 15 14 79 
2003 40 23 23 36 21 25 24 52 43 25 25 29 II 13 12 86 
2004 49 27 27 19 35 22 23 42 60 21 22 19 9 16 16 81 
2005 50 25 25 22 43 18 18 43 51 21 21 29 24 12 12 74 

Table 2.2 Year wise transition probabilities for the stations under study 

Station 1m )hal Mohanbari 
Year I-po po I-PI PI I-po Po I-PI PI 

2001 .65 .35 .50 .50 .64 .36 .31 .69 
2002 .70 .30 AI .59 .62 .38 040 .60 
2003 .63 .37 .39 .61 046 .54 .32 .68 
2004 .64 .36 .59 AI .61 .39 .35 .65 
2005 .67 .33 .53 047 .70 .30 .30 .70 
Station Guwahati Cherrapunji 
Year I-po po I-PI PI I-po po I-PI PI 
2001 .70 .30 .53 047 040 .60 .12 .88 
2002 .67 .33 .54 046 048 .52 .15 .85 
2003 .63 .37 046 .54 046 .54 .12 .88 
2004 .74 .26 .54 .46 .36 .64 .16 .84 
2005 .71 .29 .42 .58 .67 .33 .14 .86 

Table 2.3 Calculated values of X2 for parameters Po and PI 

SI. No. Station 2 
XPn 

2 
XP1 

Tabulated X2 _.at 5% 

level of significance 
with 1 dJ. 

I Imphal .69 29.1'2 .00393 
2 Mohanbari .75 .26 .00393 
3 Guwahati 4.48 33.50 .00393 
4 Cherrapunj i 12.65 71.94 .00393 
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Table 2.4 Estimated parameters and different properties of 1 st order two state Markov Chain 

Station Po PI Expected length of Expected no. of Actual 
no. of 

Wet Dry Cycle Dry Wet 
wet 
days 

Spells Spells days days 
Imphal .34 .52 2.08 2.94 5.02 71.41 50.59 51 
Mohanbari .38 .67 3.03 2.63 5.66 56.7 65.30 65 
Guwahati .31 .50 2.00 3.23 5.23 75.31 46.69 47 
Cherrapunji .51 .86 7.14 1.96 9.10 26.28 95.72 96 
Station Standerd Equilibrium State No.of days to 

deviation Probability Equilibrium 
of dry or 
wet days "0 "I , 

Imphal 6.63 .59 .41 7 
Mohanbari 7.43 .46 .54 8 
Guwahati 6.51 .62 .38 6 
Cherrapunji 6.54 .22 .78 9 

2.4 Conclusion 

First order two state Markov chain Model is used to study the occurences of rainfall 

in Imphal, Mohanbari, Guwahati and Cherrapunji. For the study, five years (2001-

2005) daily rainfall data in mm. over these four stations were collected from Regional 

Meteorological centre, Guwahati. Each day is classified as wet day if amount of rainfall 

is greater or equal to 3 mm and dry day if it is less than 3 mm. A sequence of wet and 

dry days for each stations over each year during the summer monsoon period (June­

Sept.) was obtained and then using relative frequencies from the data over years, the 

probability Po of a wet day following a dry day and PI of a wet day following a wet 
I 

day were calculated for each station separately. Then normal deviate test is applied to 

judge the efficiency of Markov chain in studying the pattern of occurrence of rainfall. 

The test result shows that occurrences of wet and dry days follow a two state Markov 

chain. Chi square tests were performed for the common estimates of the two parameters 

Po and Pl' But these tests indicated that none of the stations have similar patterns of 

the occurrences of rainfall. So they could not be pooled. The values of Po varies from 
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.31 to .38 for Imphal, Mohanbari, Guwahati and its value was .51 for Cherrapunji. The 

values of PI varies from .50 to .67 for the first three stations .86 for Cherrapunji. The 
, 

expected length of dry spells is seen varying from 2.23 to 2.94 and the expected length 

of wet spells varies from 2.00 to 3.03 for the stations Imphal,Mohanbari and Guwahati 

and for Cherrapunji the values are 1.96 and 7.14 respectively. The expected numbers 

of wet day during the period of 122 days are calculated and compared with the actual 

values and found that the values are almost same. The number of wet days varies from 

47 to 65 for Imphal, Mohanbari and Guwahati and 96 for Cherrapunji. The numbers of 

days to equilibrium are also calculated and found that their values vary between 6 to 9 

for all the stations. 
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Chapter 3 

Determination of the Order of a 

Markov Chain for Daily Rainfall 

Data: Application of Akaike 
I 

Information Criterion 

This chapter aims at demonstrating the application of the Akaike information criterion 

(AIC) to determine the order of two state Markov chain for studying the pattern of 

occurrence of wet and dry days during the rainy seasons in North-East India. For the 

majority of the stations Markov chain of order one is identified as the most appropriate 

model, followed by order two, for describing ~he daily precipitations occurrences over 
. i 

North East India during Indian summer monsoon season. 

3.1 Introduction 

It is well known fact that Markov cHain model can be fitted to daily rainfall occurrence 

and several authors used Markov chain model to estimate the wet and dry days in 

past, we refer to [9], [22], [23], [28] for first order Markov chain model and [37], [77] for 
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higher order Markov chain model. Although a good number of literatures are available 

describing the Markov chain model for daily precipitation round the globe, no rigorous 

work barring the works by Bhargava et al. ([9]) and Medhi ([45]) pursued in India. 
I 

The present study is an effort to demonstrate the application of higher order two state 

Markov chain over a series of daily rainfall data of seven stations in North East India. 

In the previous chapter, we have seen that Markov chain model of order one can 

be fitted to the daily rainfall data over North East India. But it does not guarantee that 

we can ignore other higher order Markov chain model. Therefore an analysis regarding 

the fitting of Markov chain of appropriate order has been made in this chapter. We 

apply Markov chain of order up to three to the sequences of wet and dry days observed 

at seven distantly located stations in North East region of India. The best fitting model 

is then determined using the AIC by checking the minimum of AIC estimate and it is 

found that Markov chain of order one is an adequate model for most of the stations of 

North East regions of India to determine the daily precipitation. 

A brief outline of this chapter is as follows. Section 3.2 introduces a brief spec­

ification of data set and the statistical methods used in this chapter. Section 3.3 is 
I 

concerned with a discussion on the results obtained using the AIC criterion for different 

orders of Markov chain. 

3.2 Data and Methodology 

In this chapter, a series of daily rainfall data of seven stations in North East India viz. 

Imphal (2001-2005), Mohanbari (1993-2006), Guwahati (2001-2005), Cherrapunji (2001-

2005), Silcoorie (1986-2005), North Bank (1986-2005), Tocklai (1986-2005) have been 

selected. The locations of these seven stations of North Ea,st India are shown in Figure 

1.1. The series of daily rainfall are taken from Regional Meteorological Centre, Guwahati 

and Tocklai Experimental Station, Jorhat involving the aforesaid seven stations for the 

summer season (April to September) in each year. The Akaike information Criterion 

was introduced by Akaike [2] as an extension to final prediction error and since then 
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it has been used successfully in various fields of statistics, engineering, hydrology and 
I 

numerical analysis (cf. [2], [3], [55], [56], [62], [63]). The procedure for the determination 

of the order of a Markov chain by Akaike's Information Criterion (AIC) was developed 

by Tong ([71]). In the present work, application of the Akaike information crit~rion is 

demonstrated to determine the order of two state Markov chain for studying the pattern 

of occurrence of wet and dry days during the rainy seasons in North-East India. 

In statistical inference situations, Akaike ([2]) proposed the use of the entropy 

B[e] given by: 

J {g(z;x)} 
E[J; z] = log J(z) J(z)dz (3.2.1 ) 

where x is the vector of observations, and J(z) and g(z; x) are the probability density 

functions of the true and fitted models, respectively. According to the entropy maxi­

mization principle ([2]), the objects of statistical inference are to estimate J(z) from the 

data x and to try to find g(z; x) which maximizes the expected entropy: 

E{B[J;'g]} = J B[J; g]J(x)dx (3.2.2) . 

where E denotes the expectation operator and x is the vector of observations. Akaike 

([2]) showed that for the number of observations n ;::: 30: 

-2nE{B[J; g]} ~ TJ + 2k - L, (3.2.3) 

TJ is a log-likelihood ratio test function given by: 

(3.2.4) 

with 

L = number of parameters (dimension) of the true model, 

k number of parameters (dimension) of the fitted model, 

ke and Le are the estimated parameters of the fitted and true models respectively. 
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Thus, from equation (3.2.3) and by ignoring the constant terms, Akaike derived 

a criterion which is now called the Akaike Information Criterion (AIC) given by: 
n 

Ale = -2 L log{g(xilkO)} + 2k 
i=l 

which can also be written as: 

AIC = -2 x log (Maximum likelihood for model) 

+2 x (Number of independent parameters in the model). (3.2.5) 

This statistics was introduced as a measure of the deviation of the fitting model from the 

true structure. The first term on the right hand side of the equation (3.2.5) is a measure 

of the lack-of-fit of the chosen model, while the second term measures the increased 

unreliability of the chosen model due to the increased number of model parameters. 

The best approximating model is the one which achieves the minimum AIC in the class 

of the competing models. The procedure which, given several models, adopts the model 

that minimizes the AIC is called the minimum AIC estimate (MAICE). It is important 

to note that, since the AIC test is based on the maximum likelihood function, which is 

asymptotically effective and unbiased, the test yields fairly accurate results for n 2: 30, 

where n is the number of observations. However, the test has been used with considerable 

success for n 2: 20 (cf. [39]). 

Denote the transition probability for a r order chain by Pij ... kl, i = 1,2, ... ,s, s 

being the finite number of states of the chain and the suffix contains r+l characters. 

Then the maximum likelihood estimates of Pij ... kl is given by 

~ nij ... kl 
Pij ... kl = --, 

nij ... k. 

where nij ... kl is the number of transition from the state i to the states l through the 

state j ... k and nij ... k. = 2:1 nij ... kl· The hypothesis tested is Hr - l : Pij ... kl = Pj ... kl, i = 

1,2, ... ,s (that the chain (r-l) dependent against Hr : that the chain is r dependent). 

The statistics constructed is 

"" (nij ... kl n-j ... kl) 
r-l'rJr = -2log Ar-l,r = 2 ~ nij ... kl log -- -log--

.. k 1 nij ... k. n.j ... k. 
'1.,)"", I 
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which is a X2 variable with sr-l(s _1)2 degrees of freedom under Hr- 1 . The hypothesis 

Hk that the chain is k dependent implies the hypothesis Hr that the chain is r dependent, 

whenever k < r. Hence, the hypothesis Hk is a subset of the hypothesis Hr. Denote by 

Ak,T, the ratio of the maximum likelihood given Hk to that given Hr , then 

Ak,r Ak,k+lAk+l,k+2 ... Ar-l,r and so 

k'rJr -210g Ak,k+l - 2 log Ak+l,k+2 - ... - 2 log Ar-l,r, k < r. 

Again, under H k, Good ([27]) has shown that -210gAk,r i.e., k'rJr has a X2 variable with 

degrees of freedom 

and for k = -1, 

under Hk , where \1 is the standard backward operator given by \1 ST = ST - sr-l. 

If the statistical identification procedure is considered as a decision procedure, 

the most basic problem is the appropriate choice of the risk (expected loss) function. 

The loss functions considered in classical theory of hypothesis testing are defined by the 

probabilities of accepting the incorrect hypothesis or rejecting the correct hypothesis. 

Tong ([71]) proposes the choice of the loss function, based on AlC approach as 

where M is the highest order model to be considered and k is the order of the fitting 

model. The minimum AlC estimate (MAICE) of the order of the Markov chain is that 

value of k which gives the minimum of R(k) over all orders considered. Raising the 

order of Markov chain does not necessarily do away the imperfections of the model. On 

the other hand, the number of parameters to estimate increases with 2k for two state, 

k order Markov chain which may rapidly enhance the uncertainty of the estimation. 

Therefore the present study is confined to the Markov chain of order up to three. 
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Table 3.1 Likelihood statistic for North Bank 

Year o1'h 01'12 01'73 11]2 11]3 21]3 31]3 

1986 167276 168175 198498 00899 31222 30323 0 

1987 177543 228454 287556 50911 110013 59102 0 

1988 41 1159 421816 509963 10657 98804 88147 0 

1989 19 1132 243546 326416 52414 13 5284 8287 0 

1990 21 1622 21 2464 278429 00842 66807 65965 0 

1991 62446 126413 21 1247 63967 148801 84834 0 , 
1992 46952 98015 11.2007 51063 65055 13992 0 

1993 189827 236082 259841 46255 70014 23759 0 

1994 205584 232673 264903 27089 59319 3223 0 

1995 283186 365763 441681 82577 158495 75918 0 

1996 235193 245876 278354 10683 43161 32478 0 

1997 174515 19047 267143 15955 92628 76673 0 

1998 420208 450825 509531 30617 89323 58706 0 

1999 121565 165651 206124 44086 84559 40473 0 

2000 48409 89134 159362 40725 II 0953 70228 0 

2001 68661 7.3759 9.4704 05098 26043 20945 0 

2002 223583 22542 269619 01837 46036 44199 0 

2003 17034 19485 237815 2451 67475 42965 0 

2004 25857 299857 302572 41287 44002 02715 0 

2005 129343 165079 204342 35736 74999 39263 0 

df 1 3 7 2 6 4 0 

Table 3.2 AlC values for the station Cherrapunji 

Year R(O) R(l) R(2) R(3) Min R(i) order 

2001 25.296 -5.5744 -4.7736 0 -5.5744 1 

2002 165769 1.8441 1.4442 0 0 3 

2003 16.7548 -0.0637 -1:2467 0 -1.2467 2 

2004 07354 -4.4915 -0.9573 0 -4.4915 1 

2005 21.1522 -2.5002 -3.3747 0 -3.3747 2 

Table 3.3 AlC values for the station Guwahati 

Year R(O) R(l) R(2) R(3) Min R(i) order 

2001 -1.0056 -50543 -42653 0 -5.0543 1 

2002 10.4165 -44754 -1 8223 0 -4.4754 1 

2003 17846 11.4287 13.3948 0 0 3 

2004 -1.36577 -5.60417 -1.8506 0 -5.60417 1 

2005 18.7865 7.188 2.8948 0 0 3 
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Table 3.4 AIC values for the station Imphal 

Year R(O) R(I) R(2) R(3) MmR(I) order 

2001 42847 -63741 -25225 0 -63741 

2002 329413 87132 -50412 0 -50412 2 

2003 169987 26758 01431 0 0 3 

2004 95471 13503 20861 0 0 3 

2005 127122 -4 5871 -20123 0 -45871 

Table 3.5 AIC values for the station Mohanbari 
Year R(O) R(I) R(2) R(3) Mm R(I) order 

1993 63891 -3 1913 -30882 0 -3 1913 

1994 54926 -63 -52347 0 -63 

1995 7322 -I 9796 -00287 0 -I 9796 

1996 13 724 -72275 -63125 0 -72275 

1997 76405 -5 1164 ·1 9863 0 -5 1164 

1999 55773 2508 ·45951 0 -45951 2 

2001 -26165 -lD 0504 ·79391 0 -lD 0504 

2002 76799 -106054 ·69666 0 -106054 

2003 82287 -00316 -57523 0 -57523 2 

2004 155802 03969 19405 0 0 3 

2005 74747 16295 4336 0 0 3 

2006 170646 -04816 -08071 0 -08071 2 

Table 3.6 AIC values for the station Northbank 

Year R(O) R(I) R(2) R(3) Mm R(I) order 

1986 58498 -88778 -49677 0 -88778 

1987 147556 -09987 -20898 0 -20898 2 

1988 369963 ·2 1196 08147 0 -21196 

1989 186416 15284 0'287 0 0 3 

1990 138429 -53193 -I 4035 0 -53193 I 

1991 71247 28801 04834 0 0 3 

1992 -27993 ·54945 -66008 0 -66008 2 

1993 119841 -49986 -56241 0 -56241 2 

1994 124903 -60681 -4777 0 -60681 I 

1995 301681 38495 -04082 0 -04082 2 

1996 13 8354 -76839 -47522 0 -76839 

1997 127143 ·27372 -03J27 0 -27372 

1998 369531 -30677 -2 1294 0 -30677 

1999 66124 -35441 -39527 0 -3 9527 2 

2000 19362 -09047 -09772 0 -09772 2 

2001 -45296 -93957 -5 9055 0 -93957 

2002 129619 -73964 -35801 0 -73964 

2003 97815 -52525 -37035 0 -52525 

2004 162572 -75998 -77285 0 -77285 

2005 64342 -45001 -40737 0 -45001 
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Table 3.7 AIC values for the station Silcoorie 

Year R(O) R(I) R(2) R(3) Mm R(I) order 

1986 61958 -54116 -5222 0 -54116 

1987 126532 -49303 -55398 0 -55398 2 

1988 33324 -70767 -48481 0 -70767 

1989 144774 -5 8251 -5 4369 0 -58251 

1990 58544 -86228 -47136 0 -86228 

1991 04625 -98248 -7 3887 0 -98248 2 

1992 13 3544 0621 -76684 0 -76684 2 

1993 13 737 03297 -36292 0 -36292 2 

1994 141871 -45688 -2558 0 -45688 

1995 -1 9577 -94869 -60686 0 -94869 I 

1996 276852 -1 9304 -50619 0 -50619 2 

1997 56338 -57394 -48588 0 -57394 

1999 24 1983 -33469 -27311 0 -33469 

2001 75898 -08134 -4293 0 -4293 2 

2002 116622 -5 0198 -72194 0 -72194 2 

2003 16485 -06414 -3548 0 -3548 2 

2004 36647 -06573 12379 0 -06573 

2005 447494 61562 96934 0 0 3 

Table 3.8 AIC values for the station Tocklai 

Year R(O) R(I) R(2) R(3) Mm R(I) order 

1986 -2 6125 -53556 -4 1269 0 -53556 

1987 15623 -69284 -60647 0 -69284 

1988 64774 -72628 -45987 0 -72628 

1989 08393 -109265 -75985 0 -109265 

1990 JO 4431 60319 37292 0 0 3 , 
1991 -2322 -3 1392 0179 0 -3 1392 

1992 -46171 -54782 -3 4837 0 -54782 I 

1993 -03524 -23872 -40922 0 -40922 2 

1994 22017 -24974 -3 6537 0 -3 6537 2 

1995 11907 -6 3817 -58844 0 -63817 1 

1996 81645 10601 -47042 0 -47042 2 

1997 108526 -595314 -340004 0 -5 95314 

1998 48008 34529 08996 0 0 3 

1999 54214 20093 -3656 0 -3656 2 

2000 21448 -071\ 7 1 128 0 -07117 

2001 -56387 -56057 -61419 0 -61419 2 

2002 37916 -46991 -1 9707 0 -46991 

2003 -03613 -761\4 -43962 0 -76114 

2004 -54475 -67144 -74141 0 -74141 2 
2005 02872 -23047 -5778 0 -5778 2 
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Table 3.9 Percentages of the best fitting orders of Markov Chain 

Order North Tocklai Silcoorie Mohanbari Cherrapunji Guwahati Imphal 
ofMC Bank 

0 
I 
2 
3 

0 0 0 0 0 0 0 
60 55 50 58 40 60 40 
30 35 44 25 40 0 20 
10 10 6 17 20 40 40 

3.3 Results and Discussions 

The present work involves the year wise estimation of the likelihood ratio statistic for 

first, second and third order two state Markov chain for each station. Table 3.1 illustrates 

the estimates of likelihood ratio statistic for station North Bank. It is interesting to see 

that the columns corresponding to OTll, OTl2, oTl3 are significant at 5% level of significance 

except for the years 1992 and 2001. For the simplicity of the exposition other tables are 

not included. The details can be found in Appendix. Therefore, we may note that the 

chain is at least of order one. This observation enters into the findings of the previous 

chapter. Then R(k) values for each station over each year are calculated. The calculated 

values are displayed in Tables 3.2-3.8. Then according to MAleE procedure we adopt 

as the order that value of k which gives minimum R(k) and those values for k are 

illustrated in column 7 of the Tables 3.2-3.8. Finally, the performance of the best fitting 

order of the Markov chain is given in Table 3.9. The present study leads to the following 

observations: 

• Markov chain model can be fitted to daily rainfall occurrence of North East regions 

of India . 

• The first order Markov chain model that has been used extensively, is an adequate 

model for most of the stations of North East regions of India to determine the 

daily precipitation. 
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Chapter 4 

Use of Probability Distributions for 

the Analysis of Daily Rainfall Data 

Daily rainfall data can be characterized by a probability distribution function known 

from the statistical literature. In this chapter, some well known probability distributions 

are considered to find the best fitting probability distribution function of the daily rainfall 

data. The gamma and Wei bull distributions are observed to be competing each other 

and both are very close to the observed distributions as evinced by the graphical plots. 

4.1 Introduction 

In the previous two chapters, we have discussed the application of the two state Markov 

chain model to estimate the wet and dry days of seven distantly located stations in 

North East India. In this chapter, an attempt has been made to examine the good­

ness of fit of the distributions based on daily rainfall observations sampled from seven 

distantly located stations in North East Region of India Viz.Imphal, Mohanbari, Guwa­

hati, Cherrapunji, Silcoorie, North Bank, Tocklai (Jorhat). Two-parameter gamma 

distribution, the left-truncated normal distribution, 2-parameter Weibull distribution 

and 2-parameter lognormal distribution is considered to find the best fitting probability 
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distribution function of the daily rainfall data. Chi-square test and Kolmogorov-Smirnov 

test have been performed judging the goodness of fit. Cumulative distribution functions 

(cdf) for each of the aforesaid distr,ibutions and the observed cumulative distribution 

functions are plotted for identifying the right probability density function for the daily 

rainfall amount. For the literature concerning the fitting of probability distribution of 

daily rainfall, we refer to [5], [6], [49], [51], [65], [67] and [69]. So far no rigorous work 

barring the work by Medhi [45] pursued in the North East region of India, considerable 

effort has been made to graduate the rainfall of different time scales by fitting an ap­

propriate frequency distributions. The two basic objectives of this chapter are to judge 

the goodness of fit of the distributions fitted for daily rainfall observations sampled from 

seven stations of North East India and to detect the competing distributions. 

The organization of this chapter is as follows: In Section 4.2, we introduce the 

data sets, probability distributions and related probability density functions, goodness 

of fit of the distributions used in this chapter. While Section 4.3 is concerned with the 

findings of goodness of fit test, the chapter ends with a concluding remark in Section 

4.4. 

4.2 Data and Methodology 

In this study, seven distantly located stations in North East India viz. Imphal, Mohan­

bari, Guwahati, Cherrapunji, Silcoorie, North Bank, Tocklai (Jorhat) have been selected. 

The locations of these seven stations of North East India are shown in Figure 1.1. The 

study utilizes daily rainfall data in mm for five years (2001-2005). The series of daily 

rainfall are taken from Regional Meteorological Centre, Guwahati and Tocklai Experi­

mental Station, Jorhat involving the aforesaid seven stations for the summer monsoon 

months of June, July, August and September in each year. 
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4.2.1 Left-truncated Normal Distribution 

The probability density function of a normally distributed random variable x is given by 

(4.2.1) 

If the values of x below some value XL cannot be observed due to truncation then, the 

resulting distribution is a left-truncated normal distribution with probability density 

function hTN given by (4.2.2) 

{ 

0 
hTN(X) = 

f(x)/ J:: f(x)dx 

-00 ~ x ~ XL 
( 4.2.2) 

where f(x) is as defined in Equation (4.2.1), and /-Ln and O"n are the parameters of the 

distribution and are equal to mean X and standard deviation y'V(X) of the sampling 

distribution respectively. 

4.2.2 Lognormal Distribution 

The probability density function of the lognormal distribution is given by 

(4.2.3) 

where z = log x, and /-Ll and 0"/ are the parameters of the distribution and can be 

evaluated using the following relationship 

{ll Z (4.2.4) 

(4.2.5) 

where z = n-1 2:7=1 Zj (assuming that Xl,X2, ... ,Xn are independent random variables 

each having the same lognormal distribution). 
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4.2.3 Gamma Distribution 

Gamma distribution is next to the normal distribution in simplicity and the same time 

it covers a wide range of skewness. We therefore decided to test the fit of daily rainfall 

to gamma distribution for which the probability density function is given by 

f(x/ >.., 'rJ) 1 A-I -x/n 
'rJAf(>..{ e , 

o 
x,>",'rJ> 0 

otherwise 

(4.2.6) 

(4.2.7) 

where 'rJ and>" are scale and shape parameters, respectively. The exponential distribution 

is a particular case when >.. = 1. The maximum likelihood estimates >.. and r, of the 

parameters can be obtained by solving the equations 

n 

n- l LlogXj 

j=l 

logr, + we>-), 

where X is the arithmetic mean of the rainfall amounts Xl, X2, . .. , Xn and 

, 8log r(~) . 
w(>..) = , = di-gamma functlOn. 

8>" 

4.2.4 Weibull Distribution 

( 4.2.8) 

(4.2.9) 

(4.2.10) 

The probability density function of the two parameter Weibull distribution is given by 

y = f(x/a,!3) = a!3xf3 - l exp( -axf3 ), X > 0 

where a be the scale parameter and !3 be the shape parameter of the distribution. The 

maximum likelihood estimators a and /3 of a and !3 respectively satisfy the equations 
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Table 4.1 Fitting of probability distributions for daily rainfall data (2001-2005) ofMohanbari 
during Indian Summer Monsoon Season. 

Theoretical frequencies. 
Rainfall Observed. Truncated Lognormal Gamma Weibull 
(mm.) frequencies Normal. 

,un =16.687~ , ,ul =1.9568 A =.7039 a =.1224 

an =21.2957 a l =1.5023 
17=23.7079 P=·7859 

0-14 276 132 300 269 277 
14-28 87 143 64 90 85 
28-42 34 102 28 42 39 
42-56 21 48 15 21 20 
56-70 II 15 9 11 10 
70-84 4 3 6 6 6 
84-98 8 0 4 3 3 

98-112 2 0 3 2 2 
112-126 0 0 2 1 1 
126-140 2 2 14 0 2 

Kolmogorov -Smirnov D 
Statistics .3226 .0549 .0164 .0086 

%2 264.8085 25.3793 8.4726 3.5084 

d.f 3 5 4 4 

p-value 4.09828e-57 0.00012 0.07572 0.47660 

Table 4.2 Fitting of probability distributions for daily rainfall data (2001-2005) ofGuwahati 
during Indian Summer Monsoon Season. 

Rainfall (mm.) Observed. I Theoretical frequencies. 
frequencies 

Truncated Lognormal Gamma. Weibull 
Normal 

I1n =13.0294 ,ul =1.5200 A =.5913 a =.2012 

an =19.6634 a l=1.6097 
17=22.0360 P=·6952 

0-14 282 141 300 273 284 
14-28 59 136 45 68 61 
28-42 25 81 18 29 25 
42-56 12 30 10 13 12 
56-70 9 7 6 6 6 
70-84 5 I 4 3 3 
84-98 0 0 3 2 2 

98-112 I 0 2 1 1 
112-126 1 0 1 0 1 
126-140 2 0 7 1 1 
Kolmogorov -Smirnov D 

Statistics .3558 .0444 .0235 .0089 

X
2 246.6116 14.5292 4.1876 1.7047 

d.f 2 4 3 3 
p-value 2.81 I 72e-54 0.00578 0.24191 0.63589 
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, 

Table 4.3 Fitting of probabIlity distributions for daily rainfall data (2001-2005) oflmphal during 
Indian Summer Monsoon Season. 

Rainfall (mm.) Observed. Theoretical frequencies. 
frequencies Truncated Lognormal Gamma Weibull 

Normal 

I-In =10.5100 1-1, =1.3093 A. =.5934 a =.2321 

an =16.3932 a, =1.6168 
1] =17.7122 fJ =.6976 

0-14 329 189 342 321 331 
14-28 61 159 43 68 60 
28-42 21 67 I 

17 25 22 
42-56 9 14 9 10 9 
56-70 4 2 5 4 4 
70-84 3 0 3 2 2 
84-98 1 0 2 1 1 

98-112 2 0 2 0 1 
112-126 0 0 1 0 0 
126-140 1 0 7 0 1 

Kolmogorov -Smirnov D 
Statistics .3257 .0312 .0177 .0051 

%2 
196.6883 14.8131 3.9457 .5187 

d.f 1 4 2 2 

p-value 1.10293e-44 0.00510 0.13906 0.77155 

Table 4.4 Fitting of probability distributions for daily rainfall data (2001-2005) of Cherrapunji 
during Indian Summer Monsoon Season. 

Rainfall (mm.) Observed. Theoretical frequencies. 
frequencies Truncated Lognormal Gamma Weibull 

Normal 

I-In =77.7161 1-1, =3.3920 A. =.6373 a =.0469 

an =106'.9166 a,=1.6223 
1]=121.9516 fJ =.7360 

0-80 373 190 386 355 367 
80-160 74 187 64 96 88 
160-240 39 108 27 41 37 
240-320 19 36 15 19 17 
320-400 13 7 9 9 9 
400-480 5 1 6 4 5 
480-560 3 0 4 2 3 
560-640 1 0 3 1 2 
640-720 1 0 2 1 1 
720-800 1 o I 13 1 0 

Kolmogorov -Smirnov D 
Statistics .3464 .0337 .0334 .0151 

%2 
328.652 23.1995 8.2741 4.4465 

d.f 2 5 3 4 
p-value 4.30651e-72 0.00031 0.04067 0.34893 
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Table 4.5 Fitting of probability distributions for daily rainfall data (2001-2005) ofSilcoorie 
during Indian Summer Monsoon Season. 

Theoretical frequencies. 
Rainfall Observed. Truncated Lognormal Gamma Weibull 

I 

(mm.) frequencies Normal. 

JLn =15.5706 JL, ==2.1468 A ==.9681 a =.0771 

0" n ==18.0755 0", ==1.1634 
77==16.0844 P==·9434 

0-14 291 153 303 272 276 
14-28 97 163 83 108 104 
28-42 27 98 31 45 43 
42-56 21 34 15 18 18 
56-70 9 6 8 8 8 
70-84 7 1 5 3 4 
84-98 2 0 3 1 2 

98-112 1 0 2 1 1 
112-126 0 0 1 0 0 
126-140 1 1 5 0 0 

Kolmogorov -Smirnov D 
Statistics .3019 .0257 .0423 .0328 

X
2 

225.6039 11.3778 17.4726 10.1506 
d.f 2 5 3 3 

p-value 1.02503E-49 0.0444 0.0002 0.0173 

Table 4.6 Fitting of probability distributions for. daily rainfall data (2001-2005) of North 
Bank during Indian Summer Monsoon Season. 

Theoretical frequencies. 
Rainfall Observed. Truncated Lognormal Gamma Weibull 
(mm.) frequencies Normal. 

JLn ==17.8168 JL, ==2.0529 A ==.7268 a ==.1088 

0" n ==21.6805 0", ==1.4704 
77==24.5152 P==·8044 

0-20 269 169 297 277 282 
20-40 81 155 , 51 76 71 
40-60 30 64 20 29 27 
60-80 16 12 10 12 11 
80-100 3 1 6 5 5 
100-120 2 0 4 2 2 
120-140 0 0 3 1 1 
140-160 0 0 2 0 1 
160-180 0 0 1 0 0 
180-200 1 I 8 0 2 

Kolmogorov -Smirnov 0 
Statistics .2481 .0702 .0199 .0331 

X2 117.1346 42.9118 2.4278 6.9138 
d.f 1 4 2 3 , 

p-value 12.6824E-27 1.0793E-08 0.2970 0.0747 
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Table 4.7 Fitting of probability distributions for daily rainfall data (2001-2005) of Tocklai during Indian 
Summer Monsoon Season. . 

Theoretical frequencies. 
Rainfall Observed. Truncated Lognormal Gamma Weibull 
(mm.) frequencies Normal. 

f.1n =13.0146 f.1, =1.6966 A =.6957 a =.1556 

O'n =17.1076 0', =1.4449 
q=18.7077 f3 =.7732 

0-12 271 135 292 261 270 
12-24 69 140 58 81 76 
24-36 33 86 22 34 31 
36-48 13 42 14 19 18 
48-60 12 9 7 8 8 
60-72 12 1 5 4 4 
72-84 0 0 3 2 2 
84-96 1 0 2 1 1 

96-108 1 0 2 1 1 
108-120 1 0 8 2 2 

Kolmogorov -Smirnov D 
Statistics .3305 .0511 .0249 .0206 

X 2 
254.6012 32.2358 8.5851 6.6664 

d.f 2 5 3 3 

p-value S.1768IE-S6 S.33SSE-06 0.0353 0.0833 

4.2.5 Test for goodness of fit 

The tests applied for judging the goodness of fit of the distributions for rainfall series 

are namely chi-square test and Kolmogorov-Smirnov test. However, chi-square test has 

been carried out with caution considering its limitations in application and the suggestion 

made by Massey and Frank [44}. The authors of [44J showed that Kolmogorov-Smirnov 

test treats individual observation separately leading to no loss of information in grouping 

while loss of information in chi-square procedure is large. Recently, Pal [57) mentioned 

that the Chi square test's sensitivity to very small cell frequencies make itself unsuitable 

when expected frequencies work out at less than 5 in 20 percent of the cells. In the 

present case it is found that more than 50% of the cell frequencies are less than 5. Also 

according to Keeping [38), Kolmogo~ov Smirnov test can be applied in situations where 

the theoretical distribution function is continuous. Here also the theoretical distribution 

functions considered are continuous since the parameters are positive and x can assume 

42 



values greater than zero. The test statistic used is 

where Sn(x) and F(x) are empirical and theoretical distribution functions, respectively. 

The distribution of Dn is independent of F(x). The theoretical distribution function 

however, has to be completely specified. In this study the theoretical distribution func­

tion have been calculated by using the estimated parameters of the distribution in each 

case. The significance of a critical value of Dn depends on n, the number of observations. 

If n is over 35, the critical values of D at .05 level of significance can be determined by 

the formula 1.36/ fo. Any Dn equ~l to or greater than 1.36/ fo will be significant at 

.05 level (two tailed test). 

4.3 Results 

A day with rainfall of more than 0 mm or a trace be designated as a rainy day and with 

no rainfall as dry. After defining a rainy day, it is necessary to determine the amount 

of rainfall on such a day. In the present study, different distributions are considered 

as the probability distribution function of the daily rainfall data. The parameters for 

each distribution are estimated by maximum likelihood method from the daily rainfall 

data for each station separately and are provided in Tables 4.1 to 4.7. The tables also 

include the observed frequencies, expected frequencies obtained from the different fitted 

distributions. The values of Kolmogorov- Smirnov D-statistics, values of X2 along with 
\ 

degrees of freedom and the corresponding p-value for X2 are also provided as an evidence 

in support of goodness of fit. The Chi-square test of goodness of fit is applied to daily 

rainfall. The number of class intervals was found to be 10 over which the computations 

were done. Further, more than 50% of the cell frequencies were found to be less than 5 

for almost every cases. Accordingly, Kolmorgorov-Smirnov test was applied in all cases 

following by the suggestion made by Pal [57J. Barring truncated normal distribution, 

other distributions viz. log-normal, gamma, and Weibull have been found satisfactory 
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to model the rainfall series as evidenced by Kolmogorov-Smirnov test. 

In order to confirm the goodness of fit for the above three distributions we ad­

ditionally applied graphical plots of theoretical and observed cumulative distribution 

functions. The estimation of the cumulative distribution functions, Sn(x) = P(X ~ x) 

for various preassigned values of x for each distribution viz. normal, log-normal, gamma, 

and Weibull distribution was calculated and graphs were drawn taking probabilities as 

ordinate and rainfall amount as abscissa (c.f. Figure 4.1). Graphic plots for probability 

density functions have been also shown in Figure 4.2. The computations have been 

carried out in the workstation Matlab 6. 

The following salient features have been revealed from the goodness of fit tests 

and graphs: 

• In general, truncated normal distribution appears to poorly represent the distri­

bution of daily rainfall as evidenced by the tests and evinced by the graphs for pdf 

and cdf. 

• The gamma and Weibull pdf can be regarded to compete with each other as both 

of them preserve the 'sigmoid' shape of the observed cumulative distribution of 

daily rainfall series. Also it is seen that gamma and Weibull pdf's are quite close 

to the observed pdf plots. 

• Lognormal distribution, although accepted to be well fitted o~ the basis of chi­

square and Kolmogorov-Smirnov test, does not seem to compete with gamma and 

Weibull distribution and also is observed to be quite a distance from the observed 

plot. 
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4.4 Conclusion 

The following conclusions are drawn on the basis of the results and analysis made in 

this study. 

The gamma and Wei bull distributions are observed to be competing each other 

and both are very close to the observed distributions. It is well evidenced by the graphic 

plots animated on the basis of cdf and pdf. So far as goodness of fit of these two 

distributions are concerned, they are judged to be well fitted as evidenced by chi-square 

and Kolinogorov-Smirnov test. 
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Chapter 5 

Statistical Modeling of Wet and Dry 

Spell Frequencies 

In this chapter, an attempt has been made to develop a discrete precipitation model for 

the daily series of precipitation occurrences over North East India. Various distributions 

have been fitted to describe the wet and dry spell frequencies of occurrences. The 

goodness of fit of the proposed models have ·been tested using Kolmogorov-Smirnov 

test. It is observed that Eggenberger-Polya distribution fairly fits wet and dry spell 

frequencies and can be used in the future for an estimation of the wet and dry spells in 

the area under study. 

5.1 Introduction 

In the previous chapters, we have discussed the statistical modeling of daily precipitation 

occurrences over North East India. The point of approach in the present chapter is to 

model the duration of consecutive dry and wet days i.e. spell, instead of individual 

wet and dry days. The definition of spell is based on the duration of consecutive wet 

and dry days. A wet spell is a sequence of wet days and it begins and ends the day 

after and the day before a dry day. In this study a wet day (W) is considered as one 
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where the precipitation is ~ Imm and, obviously, dry day (D) the one where there is no 

precipitation or is i. Imm. 

The main objective of the present study is to find the best fitting model ~o describe 

the wet and dry spell frequencies of occurrences considering the climatic features of the 

different parts of North-East India. Among the possible statistical models, the following 

models have been tested: 

• Discrete uniform distribution 

• Geometric distribution 

• Logarithmic series 

• Negative binomial distribution 

• Poisson distribution 

• Markov chain of order one and two 

• Eggenberger-Polya distribution 

The models are fitted to the observed data of seven stations namely Imphal, Mohanbari, 

Guwahati, Cherrapunji, Silcoorie, North Bank and Tocklai (Jorhat) of North-East India 

with pronounced attention to summer monsoon season. Then the Kolmogorov-Smirnov 

test for goodness of fit was employed as the significance test for every model, assuming 

the level of significance as 5% (0: = .05). For the earlier literature concerning the 

statistical modeling of wet and dry spells, we refer to Section 1.4. 

A brief outline of this chapter is as follows. Section 5.2 introduces a brief spec­

ification of data set and the statistical methods used in this work. In section 5.3, a 

discussion is carried out on the results obtained from different statistical models applied 

to analyze the wet and dry spell frequencies. Finally, section 5.4 is devoted to a critical 

assessment of the results obtained in section 5.3. 
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5.2 Data and Methodology 

In this study series of daily rainfall data of seven stations in North East India viz. Imphal 

(2001-2005), Mohanbari (1993-2006), Guwahati (2001-2005), Cherrapunji (2001-2005), 

Silcoorie (1986-2005), North Bank (1986-2005), Tocklai (1986-2005) have been selected. 

The locations of these seven stations of North East India are shown in Figure 1.1. 

The series of daily rainfall are taken from Regional Meteorological Centre, Guwahati 

and Tocklai Experimental Station, Jorhat involving the aforesaid seven stations for the 

summer season (April to September) in each year. 

When a spell overlaps a seasonal change (that is, it includes the 31st of march 

and 1st of April or 30th September and the 1st of October) it is considered in its whole 

up to its modality change even if it reaches the following season and we include it in 

the season in which it develops loriger. The sample gives the observed frequency of 

wet/dry spell of'/, length (whe:.e i goes from 1 to the longest spell). The i length spell 

can be considered as a casual variable and its probability density can be calculated with 

theoretical models. The models that have been used to describe the empirical data are 

uniform, geometric, logarithmic, negative binomial, Poisson, defined by (5.2.1)-(5.2.5), 

respectively. Further, following the trend of Berger et al. [8] the spell frequencies have 

also been analyzed by Eggenberger-Polya distribution (d. (5.2.6)) and Markov chain of 

order one and two defined by (5.2.9) and (5.2.11), respectively. 

1 
P(X = k) = -b -, for b - a points (5.2.1) 

-a 
(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

where k = 1,2,3 ... is defined as the number of consecutive days of which a spell is 

composed. 
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The Eggemberger-Polya distribution is: 

dk f(hjd + k) 
P5(X = k) = (1 + d)h/d+k k!f(hjd) (5.2.6) 

where f is the Gamma distribution. Again, it follows from the argument of Giuseppe et 

al. [26J that Eggemberger-Polya distribution maintains the following recursive relation 

(5.2.7) 

(5.2.8) 

where (m+ 1) is the mean length of a spell, d is given by (J2 jm-I, (J2 being the variance 

of sequences length. 

In the case of first order Markov chain the probability that a dry spell will last 

exactly n days is given by 

(5.2.9) 

where Poo is the probability of a dry day following a dry day and POl the probability 

of a rainy day following a rainy day. The two parameters Pm and Pn are required 

to be estimated for describing the Markov chain of order one. One can estimate these 

parameters according to the principle of maximum likelihood estimation. The maximum 

likelihood estimate of Pt)' (2, J = 0, 1) is given by 

ntJ is the number of direct transition from the state 2 to the state j. 

In the second order Markov chain the probability Qn is expressed as 

Q n-2 c > 2 n = PlOO,PoOO ,POOl lor n _ 

and the maximum likelihood estimate of PtJk ('t, J, k = 0, 1) is given by 
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niJk is the number of transition from the state i to the state k through j. The first order 

Markov chain only takes into account the state wet or dry of the day preceding a given 

one. In the same way, the second order considers the states of the two preceding days. 

Raising the order of Markov chain does not necessarily do away the imperfections of the 

model. As the number of parameters to estimate increases with 2k for two state, k order 

Markov chain which may rapidly enhance the uncertainty of the estimation. Therefore 

the present study is confined to the Markov chain of order one and two. 

The Kolmogorov-Smirnov test for goodness of fit is then employed as the sig­

nificance test for each model which is one of the most powerful non parametric tests 

for differences between two cumulative frequency distributions of the observed and esti-
, 

mated ones. It is already mentioned that the Chi square test's sensitivity to very small 

cell frequencies make itself unsuitable when expected frequencies work out at less than 

5 in 20 percent of the cells. In this study, we have also observed that more than 20% of 

the ceH frequencies are less than 5 and therefore the Kolmogorov-Smirnov test is applied 

to test the goodness of fit. The test statistics used is Dr: = max ISn(x) - F(x)! with 

Sn(x) and F(x) are empirical and theoretical distribution functions, respectively. Like 

earlier, the theoretical distribution function have been calculated by using the estimated 

parameters of the distribution in each case. In the second phase, the goodness of fit has 

been tested by Kolmogorov-Smirnov statistics and results are summarized in Table 5.1 

to Table 5.7. 

Table 5.1 Results of the Kolmogorov-Smimov (K-S) Tests for North Bank (1986-2005) 

Summer Wet Spells Summer Dry §QeIls 
Serial Distributions K-S Statistic Serial Distributions K -S Statistic 
No. No. 

1 Discrete Uniform 0.3636 1 Discrete Uniform 0.3750 
2 Geometric 0.4056 2 Geometric 0.4866 
3 Logarithmic 0.4208 3 Logarithmic 0.4922 
4 Neg. Binomial 0.5633 4 Neg. Binomial 0.5096 
5 Poisson 0.2100 5 Poisson 0.2817 
6 M.C of order one 0.0402 6 M.C of order one 0.0661 
7 M.C of order two 0.0306 7 M.C of order two 0.0226 
8 Eggenberger-Po!ya 0.0178 8 Eggenberger-Po\ya 0.0121 

Critical value at a .05 0.0545 Critical value at a .05 0.0545 
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Table 5.2 Results of the Kolmogorov-Smimov (K-S) Tests for Toc~lai (1986-2005) 

Summer Wet Spells Summer Dry Spells 

Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

1 Discrete Uniform 0.3333 1 Discrete Uniform 0.3333 
2 Geometric 0.4439 2 Geometric 0.5385 
3 Logarithmic 0.4526 3 Logarithmic 0.5484 
4 Neg. Binomial 0.3313 4 Neg. Binomial 0.4692 
5 Poisson 0.2095 5 Poisson 0.3749 
6 M.C of order one 0.0235 6 M.C of order one 0.0730 
7 M.C of order two 0.0152 7 M.C of order two 0.0096 
8 Eggenberger-Polya 0.0178 8 Eggenber~er-Pol~a 0.0186 

Critical value at a = .05 0.0505 Critical value at a = .05 0.0504 

Table 5.3 Resulls ofthe Kolmogorov-Smimov (K-S) Tests for Silcoorie (1986-2005) 

Summer Wet Spells Summer Dry Spells 
Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

1 Discrete Uniform 0..3333 1 Discrete Uniform 0.4285 
2 Geometric 0.3499 2 Geometric 0.5256 
3 Logarithmic 0.3795 3 Logarithmic 0.5334 
4 Neg. Binomial 0.4249 4 Neg. Binomial 0.4704 
5 Poisson 0.2567 5 Poisson 0.3513 
6 M.C of order one 0.0618 6 M.C of order one 0.0763 
7 M.C of order two 0.0232 7 M.C of order two 0.0215 
8 Eggenbcrger-Polya 0.0176 8 Eggenberger-Polya 0.0190 

Critical value at a = .05 0.0597 Critical value at a = .05 0.0601 

Table 5.4 Results of the Kolmogorov-Smirnov (K-S) Tests for Mohanbari (1993-2006) 

Summer Wet Spells Summer Dry Spells 
Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

1 Discrete Uniform 0.3333 I Discrete Uniform 0.3571 
2 Geometric 0.3951 2 Geometric 0.3922 
3 Logarithmic 0.4126 3 Logarithmic 0.4104 
4 Neg. Binomial 0.4439 4 Neg. Binomial 0.4343 
5 Poisson 0.2237 5 Poisson 0.2292 
6 M.C of order one 0.0574 6 M.C of order one 0.0368 
7 M.C of order two 0.0287 7 M.C of order two 0.Ql05 
8 Eggenberger-Polya 0.0321 8 Eggenberger-Polya 0.0325 

Critical value ill a = .05 0.0695 Critical value at a = .05 0.0694 
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Table 5.5 Resulls of the Kolmogorov-Smirnov (K-S) Tests for Cherrapunji (2001-2005) 

Summer Wet Spells Summer Dry ~ells 
Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

1 , Discrete Uniform 0.2963 1 Discrete Uniform 0.4000 
2 Geometric 0.2365 2 Geometric 0.5643 
3 Logarithmic 0.3066 3 Logarithmic 0.5807 
4 Neg. BlI10mial 0.2176 4 Neg. Binomial 0.4495 
5 Poisson 0.3510 5 Poisson 0.4220 
6 M.C of order one 0.0777 6 M.C of order one 0.0485 
7 M.C or order two ,0.0582 7 M.C of order two 0.0388 
8 Eggenber,[er-Polya 0.0541 8 Eggenberger-Polya 0.0317 

Critical value at a = .05 0.1338 Critical value at a = .05 0.1338 

Table 5.6 Results of the Kolmogorov-Smirnov (K-S) Tests for Guwahati (2001-2005) 

Summer Wet Spells Summer Dry SQells 
Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

I Discrete Uniform 0.3750 I Discrete Uniform 0.3333 
2 Geometric 0.4558 2 Geometric 0.5019 
3 Logal ilhmic 0.4631 3 Logarithmic 0.5077 
4 Neg. Binomial 0.5086 4 Neg. Binomial 0.4213 
5 Poisson 0.2290 5 Poisson 0.3087 
6 M.C ororder one 0.0399 6 M.C of order one 0.0787 
7 M.C or order two 0.0341 7 M.C of order two O.ot12 
8 Eggenberger-Polya 0.0382 8 Eggenberger-Polya 0.0396 

Critical value at a = .05 0.1024 Critical value at a = .05 0.1018 

Table 5.7 Results of the Kolmogorov-Smirnov (K-S) Tests for Imphal (2001-2005) 

Summer Wet Spells Summer Dry Spells 
Serial Distributions K-S Statistic Serial Distributions K-S Statistic 
No. No. 

1 Discrete Uniform 0.4167 1 Discrete Uniform 0.3333 
2 Geomctric 0.4416 2 Geometric 0.4663 
3 Logarithmic 0.4505 3 Logarithmic 0.4727 
4 Neg. Binomial 0.2187 4 Neg. Binomial 0.6678 
5 Poisson 0.2415 5 Poisson 0.2466 
6 M.C of' order one 0.1 056 6 M.C of order one 0.0736 
7 M.C of' order two 0.0435 7 M.C of order two 0.0307 
8 Eggcnberger-Polya 0.0491 8 Eggenberger-Polya 0.0152 
Critical value at a = .05 0.1070 Critical value at a = .05 0.1064 
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5.3 Results 

This section deals with the comparative results obtained from different statistical models 

applied to analyze the wet and dry spells frequencies over North East India. In the first 

phase of this work we have calculated the empirical frequencies of wet and dry spells , 
according to their length. Then the same frequencies have been estimated for each 

station using the aforesaid theoretical distribution models. 

Results of Kolmogorov-Smirnov tests presented in the Table 5.1 to Table 5.7 

clearly indicate that apart from the Markov chain of order two (in some cases order 1 

also) and Eggenberger-Polya distribution, the rest of the distributions work poorly to 

represent the spell frequencies. In case of dry series, Eggenberger-Polya distribution and 

Markov chain of order two show better results in all seven stations' where as Markov 

chain of order one shows good fit for the stations Mohanbari, Cherrapunji, Guwahati 

and Imphal. While Eggenberger-Polya distribution gives best fit for the stations North­

Bank, Silcoorie, Cherrapunji and Imphal, Markov chain of order two shows best fit for 

the stations Tocklai, Mohanbari and Guwahati. Summarizing the above experiences, we 

may conclude that Eggenberger-Polya distribution and Markov chain of order two are 

competing each other in case of dry spells. In comparison to dry series Markov chain of 

order two shows better performance in case of wet series. Results of the Kolmogorov­

Smirnov tests for Markov chain of order one shows good fit to the observed data in most 

of the investigated cases. Like dry spells, Eggenberger-Polya and Markov chain of order 

two are the best fitting models in case of wet spells also. Markov chain of order two 

gives best fit to the observed data for four stations and Eggenberger-Polya distribution 

works better than Markov chain of order two for the rest three stations. 

5.4 Conclusion 

This section concerns with the critical evaluation of the work carried out. These are 

listed below 
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, 

• The best fitting model in a particular station is found to be consistent for es-

timating both wet and dry spell frequencies. For example, Eggenberger-Polya 

distribution gives best fit to both wet and dry spells for the station North Ban1e 

• Eggenberger-Polya distribution and Markov chain of order two (in some cases 

Markov chain of order one also) models are efficient in fitting the observed data. 

The other models do not fit at all. 

• In case of dry spells (wet spells) Eggenberger-Polya distribution (Markov chain of 

order two) shows best fit in four out of seven stations. 

• Markov chain of order two needs four parameters while Eggenberger-Polya needs 

only two parameters. Considering the above discussions it can be concluded that 

Eggenberger-Polya is better than Markov chain of order two and can be more easily 

used as a theoretical model tq estimate the seasonal climatic characterization of 

precipitation over North-East India. 
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Chapter 6 

Statistical Analysis of Annual 

Maximum Rainfall based on the 

Methods of L-moment and 

LQ-moment 

The purpose of this chapter is to determine the best fitting extreme value distribution 

to describe the annual series of maximum daily rainfall data for the period 1966 to 

2007 of nine distantly located stations in North East India. Model parameters are 

estimated using the method of L-moment and LQ-moment. Finally, goodness of fit test 

results are compared and generalized logistic distribution is empirically proved to be the 

most appropriate distribution for describing the annual maximum rainfall series for the 

majority of the stations in North East India. 

6.1 Introduction 

Realistic sequences of meteorological variables such as extreme rainfall are key inputs 

in many hydrologic, ecologic and agricultural models. So there is a pressing need to 
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know the magnitudes of the extreme rainfall events over different parts of the area un­

der study. Moreover, knowledge of spatial and temporal variability of extreme rainfall 

events is very much useful for the design of dam and hydrological planning. There­

fore, study on the statistical modeling of extreme rainfall is very much essential as the 

statistical model may vary according to the geographical locations of the area consid­

ered. So far no rigorous work has been pursued in the North East India to study the 

annual maximum rainfall events. Considerable efforts have been made in this direction 

using the annual series of maximum daily rainfall data for the period of 42 years of 

nine stations in North East India. For this purpose, five three-parameter extreme value 

distributions viz. Generalized Extreme Value distribution (GEV), Generalized Logis­

tic distribution (GLD), Generalized 'Pareto distribution (GPD), Lognormal distribution 

(LN3) and Pearson (P3) distribution are considered. The estimation of the parameters 

for each distribution has been done using the methods of L-Moment and LQ-Moment 

independently. The performances of the distributions are evaluated using three good­

ness of fit tests namely relative root mean square error, relative mean absolute error and 

probability plot correlation coefficient. Further, L-moment ratio diagram is also used 

to confirm the goodness of fit for the above five distributions. For the earlier literature 

concerning the statistical modeling of extreme events, we refer to Section 1.4. 

The rest of the chapter is organized as follows. While Section 6.2 introduces 

a brief specification of data set and the statistical methods used in the present study, 

Section 6.3 is devoted for a discussion on the results obtained from different statistical 

models applied to analyze the series of annual maximum rainfall. A concluding remark 

is given in Section 6.4. 

6.2 Data and Methodology 

Series of annual maximum daily rainfall data of nine stations in North East India viz 

Imphal, Mohanbari, Guwahati, Cherrapunji, Pasighat, North Lakhimpur, Silchar, Shil­

long and Tezpur for a period of 42 years from 1966 to 2007 have been considered for 
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this study. The 'locations of the nine stations are shown in Figure 1.1. The series of 

block maxima for annual blocks of daily rainfall data of the aforesaid stations are col­

lected from Regional Meteorological Centre, Guwahati. The set of daily rainfall data is 

complete for the analysis period and the graphical representation of the data is shown 

in Figure 6.1. 

1000 

-Tezpur 
o+-~~--~~~--~ __ ~~~~~ 
1960 1970 1980 1990 2000 2010 

Time (yClIr) 
Fignn: 6.1. Represeotlti011 of lIDDual maximum rninfnll dati 

In order to describe the behavior of extreme rainfall at a particular area, it is necessary to 

identify the distribution(s), which best fit the data. In this study, five three-parameter 

extreme value distributions namely Generalized Extreme Value, Generalized Logistic, 

Generalized Pareto, Lognormal and Pearson distribution are considered to find the best 

fitting probability distribution function to extreme rainfall data. The probability density 

functions of the above distributions along with their quantile functions are exhibited 

below. 

Generalized Extreme Value (GEV) Distribution: 

fix} ~ H 1- k(X: {}} 1-1 exp [ - {1 -k(X: {}} I] 
where -00 < x ~ ~ + o:/k for k > 0 and ~ + o:/k ~ x < 00 for k < o. 
Quantile function of GEV: 

Q(F) = ~ + o:Qo(F) 
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where 

Qo(F) = [1- (-logF)kJlk. 

Generalized Logistic Distribution (GLD): 

where -00 < x :s; ~ + 0) k for k > 0 and ~ + et/ k :s; x < 00 for k < o. 
Quantile function of GLD: 

Q(F) = ~ + etQo(F) 

where 

Qo(F) = [1 - {(I - F)/ F}k]/k. 

Generalized Pareto Distribution (GPD): 

f(x) ~'H 1 - k (x: .;) } ,-I 
where ~ < x :s; ~ + et/ k for k > 0 and ~ :s; x < 00 for k < o. 
Quantile function of GPD: 

Q(F) = ~ + etQo(F) 

where 

Qo(F) = [1 - (1 - F)kJlk. 

Lognormal Distribution (LN3): 

where -00 < x:S; ~ + et/k for k > 0 and ~ + et/k:S; x < 00 for k < o. 
Quantile function of LN3: 

Q(F) = ( + exp(ft)Qo(F) 

where 

Qo(F) = exp[O"<p-l(F)] 
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and ep-I(.) has a standard normal distribution with mean zero and unit variance. Pa­

rameters (, J1 and a are the standard parameterizations which can be obtained by 

setting 

Pearson Distribution (P3): 

f(x) = If3I:(Q) ((X ~ ~)) a-I exp ( _ ((X ~ ~)) ), -00 < X < 00. 

The quantile function of P3: 

Q(F) = f-1. + aQo(F) 
I 

where 

Qo(F) = ~ [1 + lep-I(F) _ 1
2

]3 
1 6 36 

2 

1 

and ep-I(.) has a standard normal distribution with mean zero and unit variance. Pa­

rameters I, J1 and a are the standard parameterizations which can be obtained by 

setting 
4 1 2a 

Q = 2' (3 = -2a1IL ~ = f-1. - -. 
1 1 

To estimate the parameters for each of the aforesaid distributions, methods of L-Moment 

and LQ-Moment are used independently. 

6.2.1 Method of L-Moment 

The L-moments (LMOM) were introduced by Sillitto [66] and comprehensively reviewed 

by Hosking [31] for estimating the parameters of certain statistical distributions. The 

L-moments are linear functions of the expectations of order statistics and they can be 

viewed as an alternative system of describing the shapes of probability distributions. 

The main advantages of using the method of LMOM are that the parameter estimates 

are more reliable (i.e. smaller mean-squared error of estimation) and are more robust, 

and are usually computationally more tractable than the conventional moments and 

maximum likelihood. 
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( 

Let Xl, X 2 , ... , Xn be a sample from a continuous distribution function F(.) with 

quantile function Q(F) and let Xl n ~ X2 n ~ ... ~ Xn n denotes the order statistics. 

Then the rth L-moment Ar is given by 

r-1 ( 1 ) -1 k r-
Ar=r I)-I) E(Xr- kr ), 

k=O k 
r = I, 2, ... 

The details on the estimation of parameters for each of the aforesaid distributions can 

be found in Hoskmg and Wallis ([32]). 

6.2.2 Method of LQ-Moment 

Mudholkar and Hutson [50] extended LMOM to a new moment called LQ-moments 

(LQM) by introducing some quick estimators such as median, trimean or Gastwirth in 

places of expectations in LMOM. They found that LQM always exists, are often easier 

to compute and estimate than LMOM, and in general behave similarly to the LMOM. 

In fact, in some recent literature such as Shabri et al. [64J it has found that LQM gives 

better performance in high quantile estimation as compared to the conventional LMOM. 

Analogous to AT) the rth LQ-moments (r of X is defined as 

r-1 ( 1 ) -1 k r-
(r=r I)-I) Tp,a(Xr- kr ), 

k=O k 
r = 1,2, ... 

where 0 ~ c¥ ~ 1/2, ° ~ p ~ 1/2 and 

and Qx(.) is the quantile function. Tp,a is called the median for p = 0, c¥ = I, trimean 

for p = 1/4, c¥ = 1/4 and Gastwirth for p = .3, c¥ = 1/3. In this study trimean based 

estimator is considered. In parametric estimation the coefficient of skewness and kurtosis 

play an important role. The LQ skewness (773) and LQ kurtosis (774) are given by 

respectively. 

62 



The LQ moment can be estimated from the sample by estimating the quick 

estimator 

pQXr_kr(O:) + (1 - 2p)Qxr_kr (1/2) + pQXr_kr(1- 0:) 

pQX[B;~kr(O:)] + (1 - 2p)Qx[B;!kr(1/2)] 

+ pQx [B;~k r(1- 0:)], 0::; 0: ::; 1/2, 0::; p ::; 1/2, 

B;~k r(O:) is the o:th quantile of a beta random variable with parameters r - k and k + 1, 

and Q x (.) denotes the linear interP9lation estimator given by 

Qx(U) = (1 - E)X[n1u] n + EX[n1u)+1 n 

where E = n'u - [n'u] and n' = n + 1. Then the estimation of the first four sample LQ 

moments in simplified form are given by 

For trimean based functional, the values of Cot and U t are given in Table 6.1 (d. [50]). 

Table 6.1 Triangular representation for the estimates of the first four LQ moments t, 
based upon trimean functfonal are presented in the following table. 

~ 

S4 S3 S2 SI 
C, UI C, UI C, UI C, UI 

1116 0.931 1112 0,.909 118 0.866 114 0.750 
118 0.841 116 0.794 114 0.707 112 0.500 

-3/16 0.757 -116 0.674 -114 0.293 114 0.250 
1116 0.707 1112 0.630 -1/8 0.134 

-3/8 0.614 -1/3 0.500 
3/16 0.544 1112 0.370 

-3/16 0.456 -116 0.326 
3/8 0.386 116 0.206 
-1116 0.293 1112 0.091 
3/16 0.243 

-118 0.159 
-1116 0.069 
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In the present study, we evaluate the parameters for each extreme value distribution 

by solving a nonlinear algebraic equation involving the unknown parameter k. For the 

completeness of this work, we present the case for Generalized Extreme Value Distribu­

tion (GEV). The parameters k, a, ~ for GEV distribution can be estimated using the 

following relation involving sample LQ skewness 

r,3 = 

(6.2.2) 

In the last equation we have used the quantile function for GEV distribution given by 

(6.2.1). In order to solve the above equation for k numerically, we first generate 1000 

different values for k in the interval [-1, 1] for suitable step size and those values are used 

to calculate the right hand side of the equation (6.2.2). If we denote the approximate 

right hand side by the symbol fJ3:k for a particular value of k, then k is chosen in such a 

way that 1r,3 - fJ3:k I is minimum. The estimate of the other two parameters e and a of 

GEV distribution are then given by 

~ [1 ~ 1 ~ 1 ~ ] e = (1 - eX 4Qo(1/4) + 2Qo(1/2) + 4Qo(3/4) 

eX = 8(2/ [20 0(.707) - 200(.293) + 00(.866) - 00(.134)] 

with Oo(u) = [1 - (-logui]/k. Details of the estimated values of the parameters for 

each distribution using LQM for extreme rainfall are presented in Table 6.4. 
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6.2.3 Goodness of Fit (GOF) 

The tests applied for judging the goodness of fit for the fitted distributions for annual 

maximum rainfall series are relative root mean squared error (RRMSE), relative mean 

absolute error(RMAE) and probability plot correlation coefficient(PPCC). While the 

first two tests involve the assessment on the difference between the observed values 

and expected values of the assumed distributions, the last one measures the correlation 

between the ordered values and the corresponding expected values. The formulae for 

the tests are 

RMAE = ~ t IX,n - Q(F,) I 
n ~=1 X, n 

PPCC = 2::~1(x'n - x){Q(F,) - Q(F)} 

.J2:~=l(X'n - X)2V"£~==1{Q(F,) - Q(F)P 

where x, n is the observed values of the zth order statistics of a random sample of size 

n, Q(F,) is the estimated quantile values associated with the ith Gringorten plotting 

position 

'/, - 44 - 1 I:n 
~ F, = " and Q(F) = - Q(F,). 

n + .12 n 
,=1 

The smallest values of RRMSE and RMAE correspond to the best fitting distribution 

where as in the case of PPCC, the distribution with the computed PPCC closest to 1 

indicates the best. In order to confirm the goodness of fit for the above five distributions 

we additionally applied L-moment ratio diagram. L-moment ratio diagram was first 
I 

introduced by Hosking ([31]) which can be drawn by plotting L-kurtosis 74 as ordinate 

and L-skewness 73 as abscissa. According to Hosking and Wallis ([32]), the simple explicit 

expressions for 74 in terms of 73 for the assumed distributions can be written as 

(6.2.3) 
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where the coefficients Ak are given in the Table 6.1. Although this is a crude method, 

it can provide some insights on the selection of the best fitting distribution. 

The observed sample L-skewness t3 for all the nine stations are substituted in 

place of 73 in the expression (6.2.3) to get the estimated L-kurtosis 74 for the assumed 

distributions. These computed values (73,74) for each distributions along with the ob­

served (t3, t4) are plotted on the L moment ratio diagram. For a particular station, the 

distances between (73,74) and (t3 , tff ) for all distributions are compared and evaluated. 

The distribution corresponding to the smallest distance is considered to be the best. 

6.3 Results and Discussion 

The extreme rainfall amount can be characterized by mean, standard deviation and 

coefficient of variation. Table 6.2 provides a quantitative comparison between the rain 

gauge stations, and it can be concluded that Cherrapunji received the highest mean and 

standard deviation of annual maximum daily rainfall amount during Indian summer. 

The coefficients of variations for Mohanbari followed by Pasighat are found to be higher 

as compared to the stations in other areas. This may indicate that the amounts of 

extreme rainfall in those two stations are relatively mor~ spread as compared to the 

other regions of North East India. 

The next analysis involves ~he estimation of parameters for each distribution 

using LMOM and LQM. The estimated values are given in Table 6.3. The computation 

is carried out using the software Matlab 6. Subsequent analysis involves selection of the 

best fitting distribution out of the five candidate distributions. Results for all GOF tests 

for each station based on L-moment and LQ-moment are presented in Table 6.4. The 

distribution that is found best at least twice out of the three GOF tests will be selected 

as the best fitting distribution for both the LMOM and LQM. Then, we summarize the 

results based on the L-moment ratio diagram (d. Figure 6.2), LMOM and LQM under 

the three GOF tests to decide the best fitting distribution for a particular station are 

given in Table 6.5. 
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Table 6.2 Polynomial approximations of T4as a function OfT3 

rn 
'0 
0 
t: 
:::l 

.lI:: 
I 

...J 

Ai GPD GEV 
Ao 0 0.10701 
AI 0.20196 0.11090 
A2 0.95924 0.84838 
A3 -0.20096 -0.06669 
A. 0.04061 0.00567 
As - -0.04208 
Ao - 0.03763 
A7 - -
A8 - -

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 -----. 
0.05 

0.00 

-0.05 

GLD LN3 
0.16667 0.12282 

- -
0.83333 0.77518 

- -
- 0.12279 
- -
- -0.13638 
- -
- 0.11368 

P3 
0.1224 

-
0.30115 

-
0.95812 

-
-0.57488 

-
0.19383 

--GPO 
--GEV 

GLO 
-- LN3 

P3 
... OBS. 

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 

L-skewness 
Figure 6.2 L-Moment Ratio Diagram for Annual Maximum 

Rainfall of9 stations of North East India 
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Table 6.3 Main characteristics oftlle rain gauge stations in North-East India 

Stations Mean SD CV 
Cherrapunji 573.6167 172.6664 .3010 
Guwahati 104.9786 35.2915 .3362 
Imphal 82.7619 29.5122 .3566 , 
Mohanbari 142.9476 86.7992 .6072 
North Lakhimpur 149.1619 38.1247 .2556 
Pasighat 225.3238 98.8148 .4385 
S hill ong 144.5048 51.3595 .3554 
Silchar 153.2524 56.4452 .3683 
Tezpur 103.7476 27.3783 .2639 

Table 6.4 Estimates ofthe parameters for each distribution using LMOM and LQM 

GEV GPD GLD LN3 P3 
LMOM LQM LMOM LQM LMOM LQM LMOM LQM LMOM LQM 

StatIOns k k k k k k k k r r 
a a a a a a a a 0' 0' 

~ ~ ~ ~ ~ ~ ~ ~ I-l I-l 
CherrapunJI 03363 03560 1 1173 1000 00285 00360 00583 00640 -0 1749 -0 1920 

172 6430 1493092 6288920 4195162 95 1530 90 1574 1686404 1488653 1690413 1492093 
5185045 513 103 2765963 371 6294 5780814 5823670 5785398 5824713 5736167 577 7027 

Guwahatt -01915 -03000 00805 00360 -02985 -04160 -06242 -07280 17919 20040 
208402 217337 401017 3811 153371 173146 268691 284477 348749 372045 
88 1314 870536 678646 691262 965968 955698 957198 953781 1049786 1063616 

1mpha1 -00543 -03280 03192 -0080 -02051 -04360 -04240 -07640 12403 20880 
221224 175081 494519 300019 150686 141161 265802 23 1368 300530 310654 
687411 702415 452743 559885 77 4199 77 1384 768654 769724 827619 864243 

Mohanban -04565 -03200 -0 3324, 02920 -04995 -02960 -10912 -05160 30763 14760 
247200 234385 366807 467769 209966 173864 354176 286435 757399 329933 
1085838 1140436 880068 932714 1190238 1229397 1165368 1228082 1429416 1304069 

North 00680 00320 05486 05520 -01272 -0 1800 -02613 -0 3160 07755 09280 
Lakhlmpur 32 4959 324931 838063 740877 206730 224868 365793 370933 383489 391814 

1324625 1309820 950454 999498 1447546 1429309 1443000 1428181 1491619 1487270 
Paslghat -02270 -00440 00217 04360 -03238 -02320 -06798 -04040 19426 11760 

530678 519931 984042 1119100 398415 371670 696121 61 2882 946700 669654 
1795084 1841884 1280075 1360804 2012315 2036091 1987062 2033914 2253238 2159816 

ShlIlong 01379 05840 06878 10000 -00847 01840 -0 1736 03200 05181 -09430 
467575 561169 131 3953 1452479 286249 308502 506990 508995 517721 538564 
123 1935 128 1228 666530 72 1260 1404849 1464686 1400714 1466097 1445048 1383708 

Sllchar -00489 -0 1840 03290 02120 -02016 -03320 -04165 -05800 12192 16400 
41 3860 395753 930847 758442 28 1038 300186 495829 494166 558246 589284 
1272679 1279298 832108 936376 1434791 143 1093 1424651 1428484 1532524 1576936 

Tezpur 00380 00367 04908 05600 -0 1459 -0 1760 -03000 -03080 08877 09113 
230766 260570 574158 596667 149269 179989 263969 296939 280887 312981 
91 2652 897576 652339 648108 1000761 993349 996970 992498 1037476 1038820 
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Table 6.5 Outcomes of the GOF tests based on LMOM and LQM methods 

Stations LMOM LQM 
RRMSE RASE PPCC BEST RRMSE RASE PPCC BEST 

Cherrapunji GLD GLD GLD GLD GLD GLD GLD GLD 
Guwahati GEV GEV GLD GEV LN3 LN3 GEV LN3 
Imphal GEV GEV P3 GEV LN3 LN3 GPD LN3 
Mohanbari GLD GLD GLD GLD GLD P3 GLD GLD 
North 
Lakhimpur GEV GEV GLD GEV GEV P3 GEV GEV 
Pasighat GLD GLD GLD GLD GLD GLD GLD GLD 
Shillong P3 GEV P3 P3 P3 P3 GPD P3 
Silchar P3 P3 GLD P3 P3 P3 LN3 P3 
Tezpur GPD GPD P3 GPD P3 P3 P3 P3 

Table 6.6 Best fitting distributions based on L-moment ratio diagram, LMOM and 
LQM methods for all rain gauge stations 

Stations LMOM LQM LMOMRatio 
Diagram 

Cherrapunji GLD GLD GLD 
Guwahati GEV LN3 LN3 
Imphal GEV LN3 GEV 

J 

Mohanbari GLD GLD GLD 
North Lakhimpur GEV GEV LN3 
Pachighat GLD GLD GLD 
Shillong P3 P3 LN3 
Silchar P3 P3 P3 
Tezpur GPD P3 GPD 

Table 6.7 Ranking (in descending order) of the distributions for all stations 
based on methods ofLMOM, LQM and L-moment ratio diagram 

Rank LMOM LQM LMOM Ratio 
ing Diagram 
1 GEV,GLD GLD,P3 GLD,LN3 
2 P3 LN3 GEV, GPD,P3 
3 GPD GEV -
4 LN3 GPD -
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Under LMOM, it is found that the number of stations identified best using GLD, 

GEV, LN3, GPD and P3 are 3, 3, 0, 1 and 2 respectively. On the other hand, under 

LQM, it is found that the number of stations identified best using GLD, GEV, LN3, 

GPD and P3 are 3, 1, 2, 0 and 3 respectively. Further in the L-moment ratio diagram, 

number of stations identified best using GLD, GEV, LN3, GPD and P3 are 3, 1, 3, 1 

and 1 respectively. This information is summarized in Table 6.7 by ranking them in 

descending order to show the best fitting distribution for all the stations in North-East 

India. 

6.4 Conclusion 

This study reveals that the results of the best fitting distributions may differ for a 

particular station depending on either LMOM or LQM is used. However, GLD is found 

to be more consistent in comparison to the other three best fitting distributions. If we 

consider LMOM, GEV shares the first rank with GLD but fails to perform under LQM 

and in LMOM ratio diagram. For LQM, P3 is found to be best fitting distribution along 

with GLD but receives second rank in LMOM and works poorly in case of LMOM ratio 

diagram. Further, in case of LMOM ratio diagram LN3 distribution holds the first rank 

with GLD but it is found to be least frequently selected under LMOM methods. From 

the above discussions, it can be concluded that GLD is the most suitable distribution 

to describe the annual maximum rainfall in North East India, which also agrees with 

the result obtained by Zin et al. (2008). But GPD is found to be the least frequently 

selected distribution. This result differs from the result obtained by Zin et al. (2008) 
I 

for extreme rainfall in Peninsular Malaysia. 
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Chapter 7 

LH-Moments for Statistical Analysis 

of Annual Maximum Rainfall 

In this chapter, the LH-moments of order zero(L) to order four (L4) are used to estimate 

the parameters of three extreme value distributions viz. generalized extreme value dis­

tribution, generalized logistic distribution and generalized Pareto distribution are used 

to estimate the parameters of three extreme value distributions to describe the annual 

series of maximum daily rainfall data. Finally, it can be revealed that the L level of the 

generalized Pareto distribution would be appropriate to the majority of the stations for 

describing the annual maximum rainfall series in North East India. 

7.1 Introduction 

In the previous chapter, we have discussed five three-parameter extreme value distribu­

tions to describe the annual series of maximum daily rainfall data. Model parameters 

have been estimated using the method of L-moment and LQ-moment independently. 

Over the years LH-moments have been developed by Wang ([73]) as a generalization of 

the L-moments with the capacity of a more detailed analysis of annual flood peak data. 

In his study he concentrated only on the generalized extreme value distribution. Since 
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then LH-moments have been used by several authors in flood frequency analysis. For the 

details application of LH-moments in flood frequency analysis, we refer to Wang ([73]) 

and Meshgi et al. ([46], [47]), and the references therein. Although a good number of 

articles is devoted to the statistical modeling of extreme rainfall using L-moments, there 

is hardly any literature concerning the use of LH-moments in the statistical modeling of 

extreme rainfall. Therefore, LH-moments(L to L4 ) are used to estimate the parameters 

of three extreme value distributions viz. generalized extreme value distribution, general­

ized logistic distribution and generalized Pareto distribution to annual maximum daily 

rainfall data for the period 1966 to 2007 of nine distantly located stations in North East 

India_. The performances of the distributions are assessed by evaluating the relative bias 

(RBIAS) and relative root mean square error (RRMSE) of quantile estimates through 

Monte Carlo simulations. Then the boxplot is used to show the location of the median 

and the associated dispersion of the data. 
I 

The rest of the chapter is organized as follows. While Section 7.2 introduces a 

brief specification of data set, basics of the LH-moments and statistical tools used in 

the present study, section 7.3 is devoted to a discussion on the results obtained from 

different levels of LH-moments for RRMSE and RBIAS values. The chapter ends with 

a concluding remark. 

7.2 Data and Methodology , 

Series of annual maximum daily rainfall data of nine stations in North East India viz 

Imphal, Mohanbari, Guwahati, Cherrapunji, Pasighat, North Lakhimpur, Silchar, Shil­

long and Tezpur for a period of 42 years from 1966 to 2007 have been considered for this 

study. The locations of the nine stations are shown in Figure 1.1. The series of annual 

maximum daily rainfall is collected from Regional Meteorological Centre, Guwahati, 

Assam, India. 
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7.2.1 Method of LH-Moment 
I 

Wang ([73]) introduced the concept of LH-moments as generalization of the L-moment. 

These are based on linear combination of Higher order statIstics GIVen a sample of size 

m drawn from a distribution F(x) = Pr(X ~ x), the expectation of the ]th smallest 

variable is given by Hosking ([31]). 

E[XJ m] = ( )~! ) t x(F)FJ-I(1 - F)m-JdF. 
] - 1 . m -] ! Jo 

For any probabilIty p, x(p) is the quantile of nonexceedance probabIlity p. Then the 

LH-moments are defined as 

Ai = E[X(1)+I} (1)+1)]; A~ = ~E[X(1)+2} (1)+2) - X(1)+I} (1)+2)] 

Aj = ~E[X(1)+3} (1)+3) - 2X(1)+2} (1)+3) + X(1)+1} (1)+3)] 

A2 = ~ E[X(1)+4} (1)+4) - 3X(1)+3} (1)+4) + 3X(1)+2} (1)+4) - X(1)+1} (1)+4)]' 

When the order of LH-moments, 17 = 0, LH-moments are equivalent to L-moments As 

17 increases, LH-moments reflect more and more the characteristics of the upper part 

of the dIstributions and larger events in data. LH-moments are called Ll moments, L2 

moments, ... for 17 = 1,2, .. ,respectively LH-moments can be normalized to define LH 

coefficient of variation, skewness, and kurtosis, respectively, as Ti = ~, 
1 

)..'1 

?r. 
2 

T 7I-
4 -

For a gIven ranked sample, X(I} ~ X(2} ~ ... ~ X(n}, the sample estimates of the 

LH-moments can be estImated by (cf. Wang [73]) 
n n 

\71 1 '" t-1c \71 1 1 "'(t-1C t-l C n-tC) 
/\1 = ;;c-~ 1)x(t} , /\2 = -;;c-~ 1)+1 - 1) 1 X(t} 

71+ 1 t=1 2 71+2 t=1 

\71 _ ~_1_ ~(t-IC _ 2 t- 1C n-tC +t-l C n-tc)X 
/\3 - 3 nC ~ 71+2 71+1 1 1) 2 (t) 

71+3 t=1 

\71 _ ~_1_ ~(t-IC _ 3 t- 1c n-tC + 3 t- 1C n-tc _t-l C n-tc)X 
/\4 - 4 nC ~ 71+3 1)+2 1 71+1 2 71 3 (t), 

71+ 4 t=1 

where 
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is the number of combination of any j item from m items and is zero when j > m. 

L-moments are a linear transformation of Probability weighted moments (PWM) 

(cf. [31]) and LH-moments are a generalization of L-moments (d. [73]). Therefore LH-
I 

moments are a linear combination of Higher order PWMs, and the relationships between 

the LH-moments and Normalized PWMs are given by Wang ([73]) as 

>'i = B7) (7.2.1) 

>.~ = ~! ('r/ + 2) [B7)+l - B7)] (7.2.2) 

>.j = ~('r/ + 3)[('r/ + 4)B7)+2 - 2('r/ + 3)B7)+1 + ('r/ + 2)B7)] (7.2.3) 
3. 
1 

>.~ = 4! ('r/ + 4)[('r/ + 6)('r/ + 5)B7)+3 - 3('r/ + 5)('r/ + 4)B7)+2 + 3('r/ + 4)('r/ + 3)B7)+1 

-('r/ + 3)('r/ + 2)B7)], (7.2.4) 

where, 

(7.2.5) 

and f3r is the normalized PWM and is the standard PWM (d. Greenwood et al. [30]). 

In order to describe the behavior of extreme rainfall at a particular area, it is 

necessary to identify the distribution(s), which best fit the data. In this study, three 

extreme value distributions namely Generalized Extreme Value, Generalized Logistic 

and Generalized Pareto distributions are considered to find the best fitting probability 

distribution function to extreme rainfall data. To estimate the parameters for each of 

the aforesaid distributions, methods of LH-Moments are used. Although the pdf and 

Quantile functions for the aforesaid distributions are given in the previous chapter, we 

again recall them for the simplicity of the exposition. 

LH-moments for Generalized Extreme Value (GEV) Distribution: 

The Probability density function of GEV is given ~y 

f(x) ~ ~ { 1 - k (x : ~) } 1-1 exp [ _ { 1 _ k (x : ~)} I] 
where -00 < x ::; ~ + a/ k for k > 0 and ~ + a/ k ::; x < 00 for k < O. 
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Quantile function of GEV: 

Q(F) = ~ + aQo(F), Qo(F) = [1 - (-log F)kJlk. 

The PWMs of GEV developed by Hosking ([31]) is 

Br = {~+ ~[1- r(1 + k)(r + 1)-k]}. (7.2.6) 

Then combining the identities (7.2.1)-(7.2.4) with equation (7.2.6) leads to a system 

of equations involving the parameters a, ~ and k. In the evaluation of the parame­

ters, the sample LH-moments (~i, ~~, ~j, ~~) may be used directly. So we propose 

first estimating the shape parameter k by numerically solving the following non-linear 

equation 

fT} = Aj = (1] + 3) [-(1] + 4)(1] + 3)-k + 2(1] + 3)(1] + 2)-k - (1] + 2)(1] + l)-k] (7.2.7) 
3 A~ 3(1] + 2) -(1] + 2)-k + (1] + 1)-k 

in the interval [-1,1]. In order to solve equation (7.2.7) for k numerically, we first 

generate 1000 different values for k in the interval [-1, 1] for suitable step size and those 

values are used to calculate the right hand side of the equation (7.2.7). If we denote 

the approximate right hand side by the symbol r;ic for a particular value of k, then k 

is chosen in such a way that Ifi - r;ic l is minimum. The estimate of the other two 

parameters a and ~ are then given by 
I 

2!k~~ 1 a = ---,--=---:- -:------,--:-----~ 
(1] + 2)r(k + 1) [-(1] + 2)-k + (1] + 1)-k] 

A a k ( 
~ = Ai - I[l - (1] + 1)- r k + 1)]. 

LH-moments for Generalized Logistic Distribution (GLD): 

The Probability density function of GLD is given by 

where -00 < x ~ E + 0./ k for k > 0 and E + a/ k ~ x < 00 for k < o. 
Quantile function of GLD: 

Q(F) = E + aQo(F), Qo(F) = [1 - {(1 - F)/ F}k]/k. 
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Then substituting above information in (7.2.5), we have 

Br = { ~ + ~ [1 - (r + l),6(r - k + 1, k + 1)] }, 
,6(.,.) is the standard beta function. The shape parameter k for GLD distribution can 

be computed using the following relation 

fTl _ A~ _ (T] + 3) L 
3 - .f.~ - 3 (T] + 2) M ' 

(7.2.8) 

where 

L -(''7 + 4)(T] + 3),6(T] - k + 3, k + 1) 

+2(T] + 3)(T] + 2),6(r - k + 2, k + 1) - (T] + 2)(T] + 1),6(T] - k + 1, k + 1) 

M = -(T] + 2),6(T] - k + 2, k + 1) + (T] + 1),6(T] - k + 1, k + 1). 

Arguing as in estimating k for GEV distribution, the approximate value of k can be found 

numerically solving the equation (7.2.8) in the interval [-1,1] for GLD distribution. The 

estimate of the other two parameters a and ~ are then given by 

LH-moments for Generalized Pareto Distribution (GPD): 

The Probability density function of'GPD is given by 

f(x) ~ HI -k (x: <) } I-I 

where ~ < x :::; ~ + a/k for k > 0 and ~ :::; x < 00 for k < O. 

Quantile function of GPD: 

Q(F) = ~ + aQo(F), Qo(F) = [1 - (1 - F)kJlk. 

Substitute above information in (7.2.5) to have the following PWMs of GPD distribution 

Br = ~ + ~ [1- (r + l),6(r + 1, k + 1)]. 
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The shape parameter k for GPO distribution can be computed using the following rela­

tion 

where 

P -(1] + 4)(1] + 3),8(1] + 3, k + 1) 

+2(1] + 3)(1] + 2),8(1] + 2, k + 1) - (1] + 2)(1] + 1),8(1] + 1, k + 1) 

Q = -(1] + 2),8(1] + 2, k + 1) + (1] + 1),8(1] + 1, k + 1). 
J 

(7.2.9) 

We then calculate the approximate value of k satisfying (7.2.9) arguing as in the case 

for GEV distribution. The estimate of the other two parameters Q and ~ are then given 

by 

Parameters for the GEV, GLO and GPO distributions are estimated for each nine sta­

tions using the methodology as stated in this section. For the simplicity of the exposition, 

only the results for the station Cherapunji are presented in Table 7.1. The details of the 

estimated parameters are presented in Appendix. 

7.2.2 Monte Carlo Simulations 

The next step in our analysis is to evaluate the performance of different LH-moments 

level of the GEV, GLD and GPD distribution. For this purpose the Monte Carlo sim­

ulations have been carried out to evaluate the LH-moments levels of GEV, GPO and . 

GLO distributions in terms of their capabilities when estimating quantiles of specific 

recurrence intervals. In this case the parameters are estimated from the observed data 

and then the values of the parameters are used to generate random samples of same size. 

In each simulation a total of 10,000 samples are generated for a particular recurrence 
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Table 7.1: Regional parameters of region Cherapunji for the GEV, GLD and GPD 

distributions, for different levels of the LH-moments 

Region Distribution 1] ~ ex k 

Cherapunji GEV 0 518.4767 172.6151 .3360 

1 521.5445 130.5284 .0960 

2 530.5818 109.5680 -.0040 

3 534.2021 104.1172 -.0280 

4 534.1806 104.1266 -.0280 

GLD 0 578.0034 95.1574 .0280 

1 572.9681 86.8092 -.0600 

2 573.9340 80.5648 -.1040 

3 574.2426 79.9061 -.1080 

4 573.1956 81.4028 -.1000 

GPD 0 287.7761 571.6812 1.000 

1 405.7723 253.9468 .3720 

2 452.1337 172.9941 .1560 

3 470.2451 148.5069 .0840 

4 477.2774 140.3607 .0600 

interval(RI). The simulations have been conducted for each of the nine rain gauge sta­

tions separately and for RI=2, 5, 10, 20, 50, 100 years. Then the parameters for each 

random sample are estimated using'the technique describe in Subsection 3.2. Finally, 

these information are used to estimate the quantile functions (Qs(m») for each simulated 

sample. 

The criteria for the selection of a particular PDF at a particular LH-moment 

level would be based on the minimum error produced when simulated and calculated 

quantiles are compared for a number of recurrence intervals. Two of the more commonly 

error function used in such cases are the relative root mean square error (RRMSE) and 
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relative bias (RBIAS) represented by 

RRMSE = ~ t (Qs(m) - Qc) 2 

m=l Qc 
(7.2.10) 

RBIAS = t (Qs(m) - Qc). 
m=l Qc 

(7.2.11) 

For a particular recurrence interval, M is the total numbers of samples, Qs(m) represents 

the simulated quantiles of the mth sample and Qc is the calculated quantiles from the 

observed data. The minimum RRMSE and RBIAS values and their associated variability 

are used to select the most suitable PDF at a particular LH-moment level. For this 

purpose boxplots are used. 

The Monte Carlo simulations conducted in this study involves the following steps. 

1. Select a set of GEV parameters (in case of the selected rain gauge stations, at site 

estimated parameters are used). 

2. Estimate the quantiles for the RI of interest by using the selected parameters. 

3. Using a random number generator, generate a data series, using the selected GEV 

parameters in step one (in case of the selected rain gauge stations, generated 

sample size is same as the size of the observed maxima series). 

4. Fit the GEV distribution to the generated samples by using LH-moment of order 

zero. 

5. Estimate quantiles for the same RI of step 2. 

6. Repeat step 3 to 5 for 10,000 times. 
I 

7. Estimate the RRMSE and RBIAS of the quantiles, by taking the quantile estimates 

in step 2 as the true value. 

8. Repeat the procedure from 1 to 7 for L1, L2 , L3 , L4 moments. 

9. Repeat the procedure from 1 to 8 for GLD and GPD distributions. 

79 



Table 7.2 RRMSE values for different recurrence intervals of GEV, GPD and GLD 
distributions for regions Cherrapunji and Guwahati 

Region Distri bu tion 'r/ 2 5 10 20 50 100 
Cherapunji GEV 0 .0513 .0407 .0405 .0437 .0551 .0676 

1 .0429 .0491 .0518 .0619 .0837 .1075 
2 .0390 .0472 .0565 .0701 .0993 .1288 
3 .0368 .0505 .0580 .0702 .1032 .1327 
4 .0398 .0499 .0599 .0745 .1022 .1350 

GPD 0 .0554 .0419 .0337 .0343 .0403 .0448 
1 .0452 .0530 .0500 .0543 .0642 .0779 
2 .0373 .0531 .0613 .0662 .0872 .1076 
3 .0352 .0509 .0612 .0715 .0953 .1216 , 
4 .0359 .0536 .0623 .0715 .0987 .1225 

GLD 0 .0450 .0423 .0471 .0573 .0773 .0925 
1 .0421 .0448 .0520 .0706 .0969 .1261 
2 .0404 .0462 .05775 .0714 .1079 .1426 
3 .0389 .0473 .0555 .0711 .1085 .1468 
4 .0419 .0493 .0564. .0740 .1054 .1446 

Guwahati GEV 0 .0457 .0634 .0827 .1128 .1753 .2282 
1 .0479 .0669 .0816 .1150 .1653 .2243 
2 .0505 .0704 .0894 .1094 .1648 .2181 
3 .0502 .0720 .0850 .1114 .1648 .2240 
4 .0497 .0714 .0924 .1155 .1661 .2320 

GPD 0 .0517 .0704 .0809 .0974 .1285 .1597 
1 .0477 .0747 .0851 .1039 .1519 .1838 
2 .0449 .0763 .0908 .1081 .1525 .2028 
3 .0459 .0740 .0957 .1170 .1627 .2280 
4 .0459 .0738 .0907 .1111 .1618 .2118 

GLD 0 .0460 .0615 .0105 .1234 .1942 .2579 
1 .0488 .06288 .0842 .1114 .1797 .2407 
2 .0517 .0658 .0815 .1094 .1669 .2267 
3' .0502 .0703 .0861 .1125 .1752 .2301 
4 .0536 .0677 .0895 .1142 .1729 .2575 
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Table 7.3 RBIAS values for different recurrence intervals of GEV, GPD and GLD 
distributions for regions Cherrapunji and Guwahati 

Region Distri bu tion 'fJ 2 5 10 20 50 
Cherapunji GEV 0 .0007 -.00086 -.0016 .0015 .0027 

1 ' .0014 -.0026 -.0035 -.0033 .0017 
2 .0020 -.00035 -.0018 -.0020 -.0037 
3 .0006 -.00065 .0003 -.0045 -.0096 
4 .0002 .0023 .0020 -.0056 -.0098 

GPD 0 -.0090 -.0016 .0072 .0122 .0214 
1 .0016 -.0021 -.0018 -.0028 .0035 
2 .0006 .0009 -.0041 -.0050 -.0023 
3 .0002 .0007 -.0012 -.0026 -.0049 
4 -.0014 .0003 -.0024 -.0048 -.0103 

GLD 0 .0005 -.0007 .00008 -.0028 .0046 
1 .0018 -.0024 -.0024 -.0031 .0030 
2 .0017 .0004 -.0044 -.0059 -.0041 
3' .0020 .0015 -.0007 -.0085 -.0016 
4 -.00002 .0005 -.0021 -.0063 -.0031 

Guwahati GEV 0 .0024 -.0012 -.0033 -.0118 .0022 
1 .0032 -.0028 -.0054 -.0090 -.0023 
2 .0022 .0017 -.0070 -.0118 -.0113 
3 .00079 .0038 -.0040 -.0088 -.0117 
4 -.0018 .0041 -.0045 -.0114 -.0170 

GPD o , .0017 -.0010 -.0040 -.0056 -.0057 
1 .0015 .0022 .0036 -.0030 -.0031 
2 .0022 .0024 .0028 -.0118 .0004 
3 -.0034 .0046 .0003 -.0072 -.0255 
4 .0016 .0038 .0034 -.0109 .0130 

GLD 0 .0016 -.0033 -.0088 -.0111 -.0037 
1 .0028 -.0011 -.0052 -.0100 -.0079 
2 .0023 -.0003 -.0054 -.0120 -.0101 
3 .0004 .0038 -.0076 -.0012 -.0151 
4 -.0020 .0018 .00001 -.0089 -.0141 
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100 
.0042 
.0062 
.0016 
-.0056 
-.0054 
.0246 
.0062 
.0016 
.0007 
-.0061 
.0071 
.0052 

-.0020 
-.0011 
-.0021 
.0055 
.0011 
-.0095 
-.0110 
-.0280 
.0049 
-.0057 
.0006 
-.0150 
-.0150 
-.0058 
-.0036 
-.0035 
-.0204 
-.0155 



7.3 Results and Discussions 

The present section is devoted to determine the best fitting extreme value distribution 

to describe the annual series of maximum daily rainfall data for the period 1966 to 

2007 of nine distantly located stations in North East India. The performances of the 

distributions are assessed by evaluating the relative bias (RBIAS) and relative root mean 

square error (RRMSE) of quantile estimates through Monte Carlo simulations. Selection 

of the most suitable distribution function is based on the smallest calculated values of 

RRMSE and RBIAS at different levels of TJ. 

7.3.1 RRMSEand RBIAS values by different PDF's 

The efficiency of GEV, GLD and GI?D distributions under RRMSE and RBIAS test for 

different recurrence intervals (i.e. 2,5,10,20,50, 100) at different levels of TJ has been 

discussed in this section. Table 7.2 describes the RRMSE values for regions Cherrapunji 

and Guwahati. As the results of Table 7.2 for Cherrapunji, the minimum RRMSE values 

of GEV, GPD and GLD distributions appears at TJ = 3 for recurrence interval 2, and is 

at TJ = 0 for the remaining recurrence intervals. As for region Guwahati, it is observed 

that the minimum RRMSE value of the GEV distribution is at TJ = 0 for recurrence 

intervals 2 and 5, TJ = 1 for 10, and TJ = 2 for rest of the recurrence intervals; the 

minimum RRMSE values of GPD distribution appears at TJ = 2 for 2, and is at TJ = 0 for 

the remaining recurrence intervals; the minimum RRMSE values of GLD distribution 

appears at TJ = 0 for 2, 5 and 10, and is at TJ = 2 for the remaining intervals. Therefore 

a significant conclusion can not be drawn from the RRMSE values and hence we have 

omitted the details about the RRMSE values for rest of the stations. 

Let us turn our discussion to RBIAS values for regions Cherrapunji and Guwahati. 
I 

Table 7.3 describes the RBIAS values for different recurrence intervals of GEV, GLD 

and GPD distributions at different levels of TJ. As in the case of RRMSE values, RBIAS 

values require further analysis, so that logical selection of the LH-moments levels can be 

made for individuals PDF's for each station. For this purpose the box plots can be used 

82 



as a tool for grouping of results based on statistical properties, as we will be discussed 

next. 

7.3.2 Boxplots for better illustration of the RRMSE and RBIAS 

results 

Box plot is a widely used graphical tool introduced by Thkey ([72]). It is a simple plot of 

five quantities namely the minimum value, the lower quantile (QO.25), the median (QO.5), 

the upper quantile (QO.75) and maximum value. This provides the location of the median 

and associated dispersion of the data at specific probability levels. Then, in those cases 

where it is difficult to reach a decisive conclusion among several levels of variability of 

computed values (as in the case of'RRMSE and RBIAS tests) box plots can provide 

useful information. Figures 7.1-7.9, provide the associated box plots ofrelative positions 

of RRMSE values of LH-moments of GEV, GPD and GLD distributions for the nine 

stations considered in this study. 

The criterion for selecting a suitable LH-moments level is based on the mini­

mum achieved median RRMSE or RBIAS values, as well as the minimum dispersion 

in the median RRMSE or RBIAS values, indicated by both ends of the box plot. It 

is noted that a smaller median dispersion in RRMSE or RBIAS values would indicate 

better integration of the LH-moments levels, so it should also be used as selection cri­

terion. As illustrated by Figure 7.1, for region Cherrapunji, the GPD distribution at 

TJ = 0 level produces the minimum median and dispersion in RRMSE. While figures 

7.2, 7.3, 7.4, 7.5, 7.6, 7.8 illustrates similar results, Figures 7.7 and 7.9 indicate that 

the L1 level of the GPD distribution has minimum dispersion in RRMSE. Figure 7.10 

illustrating the relative positions of'RBIAS values of LH moments of GEV, GPD and 

GLD distributions for station Cherranpunji. As illustrated by Figure 7.10, almost all 

LH moment levels of the corresponding PDF's have produced very low RBIAS values. 

As a result it is rather difficult to select one particular distribution function. Similar 

conclusion can be drawn for the stations North Lakhimpur, Shillong and Silchar as il-

83 



lustrated by the Figures 7.14, 7.16 and 7.17, respectively. The L2 level of GPD and 

L level of GEV distribution produces the minimum median RBIAS value of - .0005 for 

station Guwahati , but the RBIAS dispersion for L2 level of GPD distribution (indicated 

by both ends of the box plot) is quite high compare to the L level of GEV distribution 

as illustrated by Figure 7.11. Figure 7.12 shows RBIAS values for station Imphal and 

clearly L1 level of GPD distribution produces the minimum median RBIAS value of 

- .00015 and minimum dispersion. 
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Figure 7.13 shows RBIAS values for station Mohanbari and clearly L2 level of GPD 

distribution produces the minimum median RBIAS value of -.01115 and minimum 

dispersion. Similar observation can be made for station Tezpur as illustrated by Figure 

7.18. Figure 7.15 shows RBIAS values for station Pasighat and clearly L level of GPD 

distribution produces the minimum median RBIAS value of -.001545 and mllllmum 

dispersion. 
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7.4 Conclusion 

This study is intended to model maximum/extreme rainfall in the North East India. 

Any crop producing potentiality of an area depends primarily on the prevailing climate 

and soil conditions. A fore-knowledge of rainfall pattern is of immense help not only to 

farmers, but also to the authorities concerned with planning of irrigation schemes. With 

this in mind this study is being carried to examine what kind of distribution would be 

appropriate for extreme rainfall. If the best fitting distribution is known for a particular 

station, one would be able to predict the return value of this extreme rainfall event at a 

specific time in the future. 

It is important to note from the earlier studies (d. Zalina et al. (2002), Zin et al. 

(2008) and Kysely et al. (2007)) on the statistical modeling of extreme rainfall that the 

best fitting probability distribution may vary according to the geographical locations 

of the area considered and the method used to estimate the parameters. Although 

theoretical result (d. Coles (2007)) suggest that for block maxima the appropriate class 

is generalized extreme value distribution. This study reveals that generalized Pareto 

distribution would be appropriate for describing the annual maximum rainfall series in 

North East India when the distributions are fitted using LH-moments. More' precisely, 

zero level of LH-moments of GPD is found to be superior to the majority of the stations 

in comparison to the other higher levels of LH-moments. Further, higher levels of the 

LH-moments can also be used to obtain improve estimate values of extreme rainfall for 

some stations in North East India. 
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Appendix 

Appendix AI: 

Illustrates the values of Likelihood statistic k TJM used for determining R( k) 

in Chapter 3. 

Appendix A2: 

Here we have presented the estimates of the parameters for the distributions 

used in Chapter 5. 

Appendix A3: 

Performance of each distribution based on LMOM and LQM under different 

GOF tests described in Chapter 6 are presented here. 

Appendix A4: 

Details of the parameters for each distribution used in Chapter 7 are pre­

sented. Further, RRMSE and RBIAS values for different recurrence intervals 

of GEV, GPD and GLD distribution are illustrated. 
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Appendix At 

Table At. 1 Year-wise Likelihood statistic for North Bank 

Year o Tit 0 172 0 113 1172 1113 2 T13 3
'
13 

1986 16.7276 16.8175 19.8498 0.0899 3.1222 3.0323 0 
I 

1987 17.7543 22.8454 28.7556 5.0911 11.0013 5.9102 0 
1988 41.1159 42.1816 50.9963 1.0657 9.8804 8.8147 0 
1989 19.1132 24.3546 32.6416 5.2414 13.5284 8.287 0 
1990 21.1622 21.2464 27.8429 0.0842 6.6807 6.5965 0 
1991 6.2446 12.6413 21.1247 6.3967 14.8801 8.4834 0 
1992 4.6952 9.8015 11.2007 5.1063 6.5055 1.3992 0 
1993 18.9827 23.6082 25.9841 4.6255 7.0014 2.3759 0 
1994 20.5584 23.2673 26.4903 2.7089 5.9319 3.223 0 
1995 28.3186 36.5763 44.1681 8.2577 15.8495 7.5918 0 
1996 23.5193 24.5876 27.8354 1.0683 4.3161 3.2478 0 
1997 17.4515 19.047 26.7143 1.5955 9.2628 7.6673 0 
1998 42.0208 45.0825 50.9531 3.0617 8.9323 5.8706 0 
1999 12.1565 16.5651 20.6124 4.4086 8.4559 4.0473 0 
2000 4.8409 8.9134 15.9362 4.0725 11.0953 7.0228 0 
2001 6.8661 7.3759 9.4704 0.5098 2.6043 2.0945 0 
2002 22.3583 22.542 26.9619 0.1837 4.6036 4.4199 0 
2003 17.034 19.485 23.7815 2.451 6.7475 4.2965 0 
2004 25.857 29.9857 30.2572 4.1287 4.4002 0.2715 0 
2005 12.9343 16.5079 20.4342 3.5736 7.4999 3.9263 0 

df 1 3 7 2 6 4 0 

I 

Table At. 2 Year-wise Likelihood statistic for Silcoorie 

Year 07]1 07]2 07]3 17]2 17]3 27]3 37]3 

1986 13.6074 17.4178 20.1958 3.8104 6.5884 2.778 0 
1987 19.5835 24.193 26.6532 4.6095 7.0697 2.4602 0 
1988 12.4091 14.1805 17.3324 1.7714 4.9233 3.1519 0 
1989 22.3025 25.9143 28.4774 3.6118 6.1749 2.5631 0 
1990 16.4772 16.568 19.8544 0.0908 3.3772 3.2864 0 
1991 12.2873 13.8512 14.4625 1.5639 2.1752 0.6113 0 
1992 14.7334 27.0228 27.3544 12.2894 12.621 0.3316 0 
1993 15.4073 23.3662 27.737 7.9589 12.3297 4.3708 0 
1994 20.7559 22.7451 28.1871 1.9892 7.4312 5.442 0 
1995 9.5292 10.1109 12.0423 0.5817 2.5131 1.9314 0 
1996 31.6156 38.7471 41.6852 7.1315 10.0696 2.9381 0 
1997 13.3732 16.4926 19.6338 3.1194 6.2606 3.1412 0 
1999 29.5452 32.9294 38.1983 3.3842 8.6531 5.2689 0 
2001 10.4032 17.8828 21.5898 7.4796 11.1866 3.707 0 
2002 18.682 24.8816 25.6622 6.1996 6.9802 0.7806 0 
2003 19.1264 26.033 30.485 6.9066 11.3586 4.452 0 
2004 6.322 8.4268 17.6647 2.l048 11.3427 9.2379 0 
2005 40.5932 41.056 58.7494 0.4628 18.1562 17.6934 0 
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Table At. 3 Year-wise Likelihood statistic for Mohanbari 

Year 01]\ 01]2 01]3 \1]2 \1]3 21]3 31]3 

1993 11.5804 15.4773 20.3891 3.8969 8.8087 4.9118 0 
1994 13.7926 16.7273 19.4926 2.9347 5.7 2.7653 0 
1995 11.3016 13.3507 21.322 2.0491 10.0204 7.9713 0 
1996 22.9515 26.0365 27.724 3.085 4.7725 1.6875 0 
1997 14.7569 15.6268 21.6405 0.8699 6.8836 6.0137 0 
1999 5.0693 16.1724 19.5773 11.1031 14.508 3.4049 0 
2001 9.4339 11.3226 11.3835 1.8887 1.9496 0.0609 0 
2002 20.2853 20.6465 21.6799 0.3612 1.3946 1.0334 0 
2003 10.2603 19.981 22.2287 9.7207 11.9684 2.2477 0 
2004 17.1833 19.6397 29.5802 2.4564 12.3969 9.9405 0 
2005 7.8452 9.1387 21.4747 1.2935 13.6295 12.336 0 
2006 19.5462 23.8717 31.0646 4.3255 11.5184 7.1929 0 

Table At. 4 Year-wise Likelihood stat~stic for Cherrapunji 

Year 01]\ 01]2 01]3 \1]2 \1]3 21]3 31]3 

2001 32.8704 36.0696 39.296 3.1992 6.4256 3.2264 0 
2002 16.7328 21.1327 30.5769 4.3999 13.8441 9.4442 0 
2003 18.8185 24.0015 30.7548 5.183 11.9363 6.7533 0 
2004 7.2269 7.6927 14.7354 0.4658 7.5085 7.0427 0 
2005 25.6524 30.5269 35.1522 4.8745 9.4998 4.6253 0 

Table At. 5 Year-wise Likelihood statistic for Guwahati 

Year 01]\ 01]2 01]3 \1]2 \1]3 21]3 31]3 

2001 6.0487 9.2597 12.9944 3.211 6.9457 3.7347 0 
2002 16.8919 18.2388 24.4165 1.3469 7.5246 6.1777 0 
2003 8.4173 10.4512 31.846 2.0339 23.4287 21.3948 0 
2004 6.2384 6.48483 12.63423 0.24643 6.39583 6.1494 0 
2005 13.5985 21.8917 32.7865 8.2932 19.188 10.8948 0 

Table At. 6 Year-wise Likelihood statistic for Imphal 

Year 01]\ 01]2 01]3 \1]2 \1]3 21]3 31]3 

2001 12.6588 12.8072 18.2847 0.1484 5.6259 5.4775 0 
2002 26.2281 43.9825 46.9413 17.7544 20.7132 2.9588 0 
2003 16.3229 22.8556 30.9987 6.5327 14.6758 8.1431 0 
2004 10.1968 13.461 23.5471 3.2642 13.3503 10.0861 0 
2005 19.2993 20.7245 26.7122 1.4252 7.4129 5.9877 0 
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Table At. 7 Year-wise Likelihood statistic for Tocklai 

Year 0'71 0'72 0'73 1772 1 '73 2 '73 3 '73 

1986 4.7431 7.5144 11.3875 2.7713 6.6444 3.8731 0 
1987 10.4907 13.627 15.5623 3.1363 5.0716 1.9353 0 
1988 15.7402 17.0761 20.4774 1.3359 4.7372 3.4013 0 
1989 13.7658 14.4378 14.8393 0.672 1.0735 0.4015 0 
1990 6.4112 12.7139 24.4431 6.3027 18.0319 11.7292 0 
1991 2.8172 3.499 11.678 0.6818 8.8608 8.179 0 
1992 2.8611 4.8666 9.3829 2.0055 6.5218 4.5163 0 
1993 4.0348 9.7398 13.6476 5.705 9.6128 3.9078 0 
1994 6.6991 11.8554 16.2017 5.1563 9.5026 4.3463 0 
1995 9.5724 13.0751 15.1907 3.5027 5.6183 2.1156 0 
1996 9.1044 18.8687 22.~645 9.7643 13.0601 3.2958 0 
1997 9.0384 10.4853 15.08526 1.4469 6.04686 4.59996 0 
1998 3.3479 9.9012 18.8008 6.5533 15.4529 8.8996 0 
1999 5.4121 15.0774 19.4214 9.6653 14.0093 4.344 0 
2000 4.8565 7.0168 16.1448 2.1603 11.2883 9.128 0 
2001 1.967 6.5032 8.3613 4.5362 6.3943 1.8581 0 
2002 10.4907 11.7623 17.7916 1.2716 7.3009 6.0293 0 
2003 9.2501 10.0349 13.6387 0.7848 4.3886 3.6038 0 
2004 3.2669 7.9666 8.5525 4.6997 5.2856 0.5859 0 
2005 4.5919 12.0652 14.2872 7.4733 9.6953 2.222 0 
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Table A2.1 Estimates ofthe parameters for 
North Bank 

Distribution l Parameters 

Summer 
Summer Wet 

Dry 
Spells 

Spells 

Uniform a=-1 b=6 a=-2 b=8 

Geometric p=0.28349 p=0.22901 

Logarithmic 8=0.80526 8=0.87502 

Neg. Binomial 
n=2 n=1 , 
p=0.50638 p=0.33914 

Poisson ;>..=2.5274 ;>"=3.3666 

Eggenberger- m=1.5274 m=2.3667, 
Polya d=2.2677 d=3.1946 

Table A2. 2 Estimates of the parameters for 
Tocklai 

Distribution Parameters 

Summer Summer 
Dry Spells Wet Spells 

Uniform a=O b=5 a=-1 b=7 

Geometric p=0.32067 p=0.25431 

Logarithmic 8=0.74113 8=0.84566 

Neg. Binomial 
n=5 n=3 
p=0.72213 p=0.51236, 

Poisson ;>"=2.1185 ;>"=2.9322 

Eggenberger- m=1.1185 m=I.9322, 
Polya d=1.6229 d=1.9618 
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Table A2. 3 Estimates of the parameters for 
Silcoorie 

Distribution Parameters 

Summer Summer 
Dry Spells Wet Spells 

Uniform a=-1 b=5 a=-3 b=11 

Geometric p=0.31121 p=O.l9371 

Logarithmic 8=0.75901 8=0.90884 

Neg. Binomial 
n=3 n=1 
p=0.59723 p=0.24163 

Poisson ;>"=2.2133 ;>..=4.1625 

Eggenberger- m=1.2133 m=3.1625, 
Polya d=2.0544 d=4.4473 

Table A2. 4 Estimates of the parameters for 
Mohanbari: 

Parameters 
Distribution 

Summer Summer 
Dry Spells Wet Spells 

Uniform a=-3 b=10 a=-2 b=9 

Geometric p=0.22037 p=0.22222 

Logarithmic 8=0.88401 8=0.88212 

Neg. Binomial 
n=1 n=1 
p=0.24784 p=0.2543 

Poisson ;>"=3.5379 ;>"=3.5 

Eggenberger- m=2.5379, m=2.5000, 
Polya d=4.6247 d=4.5052 



Table A2. 5 Estimates of the parameters for 
Cherrapunji. 

Parameters 
Distribution Summer Dry Summer 

Spells Wet Spells 

Uniform a=O b=4 a=-6 b=20 

Geometric p=0.33993 p=0.12623 

Logarithmic 8=0.70096 8=0.95571 

Neg. Binomial 
n=24 n=1 
p=0.92743 p=.120779 

Poisson /...=1.9417 /...=6.9223 

Eggenberger- m=.9417, m=5.9223, 
Polya d=1.2232 d=8.677 

Table A2. 6 Estimates of the parameters for 
Guwahati. 

Parameters 
Distribution 

Summer Summer 
Dry Spells Wet Spells 

Uniform a=O b=5 a=-l b=6 

Geometric p=0.29421 p=0.2623 
I 

Logarithmic 8=0.78837 8=0.83535 

Neg. Binomial 
n=4 n=2 
p=0.6463 p=0.50571 

Poisson /",=2.3989 /...=2.8125 

Eggenberger- m=1.3987, m=1.8125, 
Polya d=1.6533 d=2.0684 
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Table A2. 7 Estimates of the parameters for 
Imphal. 

Parameters 
Distribution Summer Summer 

Dry Spells Wet Spells 

Uniform a=-1 b=7 a=-3 b=8 

Geometric p=0.26942 p=0.25275 

Logarithmic 8=0.8257 8=0.84761 

Neg. Binomial 
n=1 n=1 
p=0.4236 p=.748511 

Poisson /...=2.7117 /...=2.9565 

Eggenberger- m=1.7117 m=1.9565 
Polya d=2.7400 d=5.0086 



Appendix A3 

Table A3. 1 Values of all GOF tests for each station based on LMOM and LQM methods 

Statlons GEV GPD GLD LN3 P3 

LMOM LQM LMOM LQM LMOM LQM LMOM LQM LMOM LQM 

RRMSE RRMSE RRMSE RRMSE RRMSE RRMSE RRMSE RRMSE RRMSE RRMSE 
RASE RASE RASE RASE RASE RASE RASE RASE RASE RASE 
PPCC PPCC PPCC PPCC PPCC PPCC PPCC PPCC PPCC PPCC 

CherrapunJI o 1113 00509 02111 00969 00806 00287 o 1001 00456 01003 00458 
00586 00060 01067 00102 00370 00036 00522 00054 00523 00054 
09822 09819 09428 09446 09917 09917 09859 09859 09859 09859 

Guwahatl 00364 00162 00466 00137 00378 00195 00373 00135 00417 00135 
00300 00034 00377 00031 00311 00038 00306 00029 00341 00031 
09896 09907 09781 09810 09914 09889 09874 09892 09825 09840 

Imphal 00382 00336 00619 00349 00439 00373 00385 00318 00406 00352 
00281 00053 00471 00054 00296 00056 00287 00052 00319 00054 
09877 09458 09865 09751 09829 09297 09883 09633 09890 09735 

Mohanban 00862 00383 01000 00443 00847 00360 00972 00394 01259 00204 
00659 00064 00784 00077 00641 00060 00769 00066 01013 00017 
09722 08863 09628 08101 09732 09155 09651 08741 09375 08596 

North 00281 00087 00534 00175 00285 00111 00281 00088 00290 00091 
Lakhlmpur 00242 00021 00376 00031 00243 00027 00243 00021 00248 00021 

09930 09932 09782 09780 09935 09917 09931 09931 09927 09927 

Paslghat 00484 00218 00806 00341 00421 00178 00578 00229 00755 00246 
00357 00036 00576 00057 00323 00031 00417 00038 00534 00041 
09896 09625 09736 09131 09925 09788 09854 09592 09761 09541 

Shll10ng 00557 00577 00664 00256 00777 01001 00565 00701 00551 00209 
00411 00082 00546 00053 00519 00111 00417 00090 00412 00009 
09899 09368 09781 09654 09875 09205 09900 09364 09900 09372 

Silchar 00573 00212 00638 00233 00641 00244 00561 00202 00553 00105 
00462 00045 00491 00057 00514 00049 00452 00045 00441 00012 
09780 09769 09655 09701 09795 09734 09775 09772 09761 09760 

Tezpur 00393 00166 00254 00077 00519 00230 00382 00159 00358 00073 
00278 00029 00195 00015 00362 00038 00272 00028 00260 00007 
09921 09921 09915 09898 09871 09863 09925 09925 09931 09932 
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Appendix A4 

Table A4. 1 Parameters of the GEV, GLD and GPD distributions for different levels of 
the LH-moments 

Region Distribution 7] ~ a k I 

Guwahati GEV 0 88.1267 20.8261 -0.1920 
1 87.9562 21.5838 -0.1720 
2 87.6470 22.1440 -0.1600 
3 88.0960 21.5292 -0.1720 
4 89.7331 19.7911 -0.2040 

GLD 0 96.5582 15.3129 -0.3000 
1 96.8293 16.4068 -0.2600 
2 96.5748 17.3894 -0.2320 
3 96.5525 17.3978 -0.2320 
4 97.2865 16.5057 -0.2520 

GPD 0 67.8735 40.0735 0.0800 
1 71.2536 33.7353 -0.0160 
2 73.0476 31.2425 -0.0520 
3 75.5521 28.3871 -0.0920 
4 79.3235 24.7381 -0.1440 

Imphal GEV 0 68.7243 22.0844 -0.0560 
1 68.8098 21.7841 -0.0640 
2 68.4107 22.6281 -0.0440 
3 67.2442 24.4173 -0.0080 
4 65.6347 26.4971 0.0280 

GLD 0 77.4480 15.0803 -0.2040 
1 I 77.6387 15.7335 -0.1760 
2 77.4063 16.9402 -0.1360 
3 76.6252 18.5626 -0.0920 
4 75.3747 20.4740 -0.0480 

GPD 0 45.2606 49.5017 0.3200 
1 51.0321 37.0584 0.1360 
2 52.6251 34.5660 0.1000 
3 52.1787 35.1621 0.1080 
4 50.8097 36.8118 0.1280 

Mohanbari GEV 0 108.5876 24.7456 -0.4560 
1 111.2747 18.9898 -0.5480 
2 114.4320 15.7224 -0.6000 
3 115.1759 15.2098 -0.6080 
4 114.2330 15.7461 -0.6000 

GLD 0 119.0041 20.9738 -0.5000 
1 119.3230 17.0422 -0.5720 
2 120.8866 14.7289 -0.6120 
3 121.3886 14.2584 -0.6200 
4 120.2340 15.0183 -0.6080 

GPD 0 87.9945 36.7087 -0.3320 
1 98.7051 23.1564 -0.5000 
2 105.1010 17.9485 -0.5720 
3 I 107.3457 16.5576 -0.5920 
4 106.2944 17.1269 -0.5840 
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North GEV 0 
I 

132.4629 32.4967 0.0680 
Lakhimpur 1 132.5034 32.1487 0.6000 

2 132.8855 31.2634 0.0440 
3 134.7056 28.3465 -0.0040 
4 137.5094 24.8664 -0.0600 

GLD 0 144.7272 20.6659 -0.1280 
1 145.2755 21.8243 -0.0840 
2 145.1911 22.4170 -0.0680 
3 145.5779 21.5438 -0.0880 
4 146.7518 19.8300 -0.1240 

GPD 0 95.0588 83.7516 0.5480 
1 104.6007 60.4774 0.3160 
2 110.2494 50.6321 0.2160 
3 116.9921 41.1781 0.1160 
4 123.6295 33.4831 0.0280 

Pasighat GEV 0 179.4857 52.9934 -0.2280 
1 181.8514 45.3775 -0.3040 
2 184.2614 41.8380 -0.3360 
3 185.5276 40.4495 -0.3480 
4 185.0028 40.9355 -0.3440 

GLD 0 201.2161 39.8309 -0.3240 
1 200.7994 36.7982 -0.3640 

I 

2 201.4011 35.3414 -0.3800 
3 201.6417 34.9575 -0.3840 
4 200.8384 35.8088 -0.3760 

GPD 0 129.0873 98.1612 0.0200 
1 148.6475 . 64.6766 -0.1920 
2 158.2812 53.5147 -0.2680 
3 162.6944 49.4492 -0.2960 
4 164.2274 48.2522 -0.3040 

Shillong GEV 0 123.1515 46.6927 0.1360 
1 123.2384 46.1865 0.1280 
2 125.4553 40.6763 0.0520 
3 128.9628 35.0935 -0.0200 
4 131.5196 31.9434 -0.0600 

GLD 0 140.5164 28.6303 -0.0840 
1 141.3494 30.2614 -0.0360 
2 141.4395 29.1413 -0.0600 
3 142.4142 26.9184 -0.1000 
4 143.3924 25.4737 -0.1240 

GPD 0 66.6461 131.4254 0.6880 
1 81.8163 91.7894 0.4160 
2 95.8082 66.3952 0.2280 
3 107.1710 50.5080 0.0960 
4 

I 
114.0606 42.5995 0.0240 

Silchar GEV 0 127.2845 41.4230 -0.0480 
1 126.8492 43.7746 -0.0120 
2 127.2740 42.8245 -0.0240 
3 129.1599 39.9865 -0.0560 
4 131.6486 37.0200 -0.0880 
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GLD 0 143.5520 28.1337 -0.2000 
1 144.4652 30.8505 -0.1360 
2 144.2591 31.7718 -0.1200 
3 144.6023 30.9996 -0.1320 
4 145.4382 29.8397 -0.1480 

GPD 0 83.2407 92.9755 0.3280 
1 90.3560 77.2992 0.2080 
2 97.3223 66.0055 0.1240 
3 104.5976 56.4702 0.0520 
4 111.4662 48.8475 -0.0080 

Tezpur GEV 0 91.2443 23.0373 0.0360 
1 90.8532 26.3135 0.1360 
2 90.7472 26.6363 0.1440 
3 91.4932 25.2839 0.1160 
4 92.5300 23.8201 0.0880 

GLD 0 100.1223 14.9404 -0.1440 
1 101.1811 17.2132 -0.0280 
2 101.0920 18.1910 0.0080 
3 J 101.0408 18.3236 0.0120 
4 101.2051 18.0289 0.0040 

GPD 0 65.2151 57.4905 0.4920 
1 66.9149 53.2403 0.4360 
2 70.7152 46.0112 0.3480 
3 74.9194 39.4603 0.2680 
4 78.7234 34.3881 0.2040 

Table A4.2 RRMSE values for different recurrence intervals ofGEV, GPD and GLD 
distributions 

Region Distribution 7] 2 5 10 20 50 100 

ImphaJ GEV 0 0.0575 0.0652 0.0771 0.1007 0.1434 0.1759 

1 0.0586 0.0681 0.082 0.1002 0.1426 0.1947 

2 0.0609 0.0702 0.0829 0.1011 0.1349 0.1812 

3 0.0662 0.0749 0.0806 0.0989 0.1299 0.1713 

4 0.0776 0.0824 0.0911 0.1048 0.1457 0.1792 
GPD 0 0.0674 0.0728 0.0683 0.0748 0.0951 0.1142 

1 0.058 0.0767 0.0796 0.094 0.1176 0.1463 
2 0.0581 0.0781 0.0885 0.0948 0.124 0.1524 
3 0.0601 0.0792 0.0874 0.0927 0.1207 0.1507 
4 0.0683 0.0814 0.0896 0.096 0.116 0.147 

GLD 0 0.0546 0.0638 0.0829 0.1137 0.1677 0.2094 
1 0.0582 0.0648 0.0823 0.1062 0.1603 0.2144 
2 0.0613 0.0675 0.0776 0.1026 0.1491 0.1989 
3 0.0682 0.0718 0.0799 0.0967 0.1414 0.1868 
4 0.0801 0.0739 0.0795 0.095 0.1325 0.1726 

Mohanbari GEV 0 0.0531 0.0862 0.1277 0.1784 0.273 0.3862 

1 0.0439 0.0866 0.1287 0.1819 0.2895 0.3945 

2 0.0348 0.0874 0.1334 0.1862 0.3171 0.3955 

3 0.037 0.0929 0.1446 0.2013 0.314 0.4021 

4 0.0495 0.0966 0.1561 0.2105 0.3297 0.3884 
GPD 0 0.0547 0.0959 0.127 0.1775 0.2648 0.3539 

106 



1 0.0396 0.0963 0.135 0.1894 0.3139 0.3786 
2 0.0324 0.0942 0.1356 0.1929 0.317 0.3916 
3 0.0358 0.0978 0.1441 0.2115 0.3065 0.42 
4 0.0461 0.0931 0.1555 0.2211 0.3415 0.4083 

GLD 0 0.0516 0.086 0.1227 0.1864 0.2884 0.4155 
1 0.0443 0.0862 0.1303 0.1876 0.2919 0.3957 
2 0.0377 0.0888 0.13 0.1941 0.3027 0.415 
3 0.0382 0.0915 0.1394 0.1961 0.3066 0.4071 
4 0.0518 0.0981 0.1553 0.236 0.3329 0.4018 

North GEV 0 0.0425 0.0468 0.0527 0.0653 0.0905 0.1106 
Lakhimpur 1 0.0428 0.0488 0.0535 0.0682 0.0902 0.1145 

2 0.0433 0.0504 0.0591 0.0673 0.0939 0.1185 
3 0.0399 0.0505 0.0595 0.0691 0.0995 0.1302 
4 0.0382 0.0498 0.0604 0.0749 0.1077 0.143 

GPD 0 0.0526 0.0483 0.0448 0.0455 0.0553 0.0672 
1 0.046 0.0536 0.0529 0.0587 0.0697 0.0875 
2 0.0405 0.0558 0.0591 0.0643 0.081 0.1007 
3 0.036 0.0536 0.0627 0.0712 0.0928 0.1158 
4 0.0363 0.0518 0.0616 0.0777 0.1 041 0.1349 

GLD 0 0.04 0.0463 0.0589 0.0791 0.1082 0.143 
1 0.0411 0.0448 0.0547 0.0705 0.1018 0.1316 
2 0.0436 0.046 0.054 0.0694 0.103 0.1385 
3 0.0414 0.0485 0.0555 0.0701 0.1036 0.1413 
4 0.041 0.0491 0.0578 0.0723 0.1116 0.1588 

Pasighat GEV 0 0.0579 0.0759 0.0981 0.1373 0.2118 0.2661 
1 0.0531 0.0787 0.1074 0.1442 0.2249 0.3346 
2 0.0495 0.0817 0.1121 0.1512 0.2195 0.3208 
3 0.0499 0.0835 0.1099 0.1581 0.2274 0.3185 
4 0.0556 0.0865 0.115 0.1502 0.2338 0.3148 

GPD 0 0.0637 0.0873 0.096 0.1151 0.1583 0.1971 
1 0.0502 0.0885 0.1075 0.1467 0.2059 0.2761 
2 0.0458 0.0893 0.1201 0.1486 0.2248 0.2974 
3 0.0,454 0.089 0.1206 0.1497 0.2243 0.3056 
4 0.0524 0.0902 0.1216 0.1558 0.2285 0.2986 

GLD 0 0.0554 0.074 0.1024 0.1422 0.2415 0.3056 
1 0.052 0.0764 0.1015 0.1451 0.2359 0.3123 
2 0.0495 0.0803 0.1037 0.1466 0.2219 0.3216 
3 0.0525 0.0829 0.1096 0.1503 0.2275 0.3145 
4 0.0571 0.0862 0.1166 0.1523 0.2376 0.3107 

Shillong GEV 0 0.0622 0.0575 0.0628 0.0727 0.0921 0.1178 
1 0.064 0.0593 0.0639 0.0719 0.0948 0.1178 
2 0.0652 0.0609 0.0693 0.0774 0.1077 0.1333 
3 0.0517 0.0626 0.0717 0.0871 0.1192 0.1556 
4 0.049 0.0636 0.0743 0.0892 0.1245 0.1671 

GPD 0 0.0747 0.0582 0.0478 0.0464 0.0575 0.0687 
1 0.0646 0.0653 0.0618 0.0607 0.0749 0.0872 
2 0.0542 0.0696 0.0708 0.0787 0.093 0.1135 
3 0.0469 0.065 0.0745 0.0858 0.1079 0.139 
4 0.045 0.0646 0.07771 0.09 0.1187 0.1562 

GLD 0 0.0556 0.0575 0.0683 0.086 0.1205 0.1466 
1 0.0594 0.0573 0.0635 0.083 0.11 0.1396 
2 0.0591 0.0592 0.0698 0.0824 0.1183 0.1513 
3 0.0537 0.0597 0.0701 0.0836 0.1246 0.1652 
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4 0.0533 0.0604 0.0711 0.0886 0.1292 
0 0.0574 0.066 0.0774 0.098 0.1396 
1 0.0606 0.0686 0.0755 0.0972 0.129 
2 0.0616 0.0711 0.0831 0.0952 0.1334 

Silchar GEV 3 0.0581 0.0716 0.0834 0.0961 0.l375 
4 0.0'584 0.0717 0.0846 0.1026 0.144 

GPD 0 0.0672 0.0711 0.0703 0.0764 0.093 
1 0.0643 0.0758 0.0772 0.0825 0.1089 
2 0.0569 0.0769 0.0809 0.092 0.1183 
3 0.0543 0.076 0.0862 0.0977 0.1279 
4 0.0526 0.0741 0.0883 0.1022 0.135 

GLD 0 0.0534 0.0644 0.0839 0.1096 0.1619 
1 0.0605 0.0646 0.076 0.1042 0.146 
2 0.0614 0.0662 0.0774 0.0995 0.1455 
3 0.0628 0.0685 0.079 0.098 0.1435 
4 0.0617 0.0688 0.0806 0.099 0.1436 

Tezpur GEV 0 0.1884 0.0499 0.0576 0.071 0.099 
1 0.0502 0.0499 0.0525 0.0618 0.0819 
2 0.0499 0.0511 0.0551 0.0621 0.0823 
3 0.0498 0.0521 0.0547 0.0636 0.0827 
4 0.0492 0.0532 0.0583 0.0661 0.0868 

GPD 0 0.0535 0.0537 0.0485 0.0508 0.0634 
1 0.0509 0.0556 0.05 0.0516 0.0617 
2 0.0478 0.0569 0.0541 0.0578 0.067 
3 0.0463 0.0566 0.061 0.061 0.0743 
4 0.045 0.0553 0.0611 0.0631 0.0798 

GLD 0 0.0418 0.048 0.0637 0.0837 0.12 
1 0.04874 0.0462 0.0559 0.0679 0.0976 
2 0.0501 0.0492 0.0537 0.0645 0.0892 
3 0.0503 0.0508 0.0558 0.0652 0.0903 
4 0.0503 0.0507 0.0569 0.0663 0.0916 

Table A4. 3 RBIAS values for different recurrence intervals ofOEV, OPD and OLD 
distributions 

Region Distribution 1] 2 5 10 20 50 
Imphal GEV 0 0.0028 -0.0038 -0.0029 -0.0033 0.0003 

1 0.003 -0.0029 -0.00086 -0.0029 0.0021 

2 0.0018 0.00038 -0.0031 -0.0036 -0.0097 

3 0.0021 -0.0019 -0.0038 -0.0061 -0.0037 

4 0.0017 0.0041 -0.0027 -0.0093 -0.0093 
GPD 0 0.0023 0.00007 -0.0005 -0.0054 0.0062 

1 0.0024 -0.0027 -0.0033 -0.0055 0.0032 
2 0.0011 0.0015 -0.0059 -0.0076 -0.0041 
3 0.0022 0.002 -0.0011 -0.0054 -0.0036 
4 -0.0006 0.0019 -0.0044 -0.0062 -0.004 

GLD 0 0.0025 -0.0026 -0.007 0.0015 0.0019 
1 0.0055 -0.0039 -0.0057 -0.006 -0.0055 
2 0.0055 I -0.0014 -0.0043 -0.0075 -0.0107 
3 0.0015 0.0022 -0.0011 -0.0118 -0.0052 
4 0.0029 0.0035 -0.0062 -0.0072 -0.0089 

Mohanbari GEV 0 0.007 -0.0052 -0.0156 -0.0278 -0.0594 
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0.1727 
0.1731 
0.1647 
0.169 

0.1793 
0.1884 
0.1111 
0.1284 
0.1493 
0.1642 
0.1765 
0.2227 
0.1925 
0.1825 
0.1991 
0.199 

0.1214 
0.1038 
0.1005 
0.1 037 
0.1095 
0.0736 
0.0734 
0.0811 
0.0888 
0.0984 
0.1544 
0.1202 
0.1144 
0.1163 
0.1174 

100 

-0.0016 

0.0053 

0.0093 

-0.0023 

-0.0097 
0.0108 
0.007 
0.0007 
-0.0003 
-0.0065 
0.0049 
0.0058 
-0.001 
-0.0045 
0.0037 

-0.0445 



1 0.0074 0.0052 -0.0124 -0.0482 -0.0779 -0.1044 

2 0.0031 0.0096 -0.0117 -0.0372 -0.0967 -0.1245 

3 -0.0042 0.0155 -0.001 -0.0336 -0.0966 -0.1374 

4 -0.0114 0.0197 0.0132 -0.0345 -0.095 -0.1425 
GPD 0 0.0063 -0.0044 -0.0127 -0.023 -0.0393 -0.0319 

1 0.0049 0.0084 -0.0115 -0.0322 -0.0643 -0.1 052 
2 0.0025 0.0124 -0.0098 -0.0297 -0.0803 -0.01243 
3 -0.0032 0.0159 -0.0014 -0.0332 -0.0865 -0.0341 
4 -0.0142 0.0183 0.0067 -0.0289 -0.0813 -0.1257 

GLD 0 0.0055 -0.0111 -0.0176 -0.0394 -0.0454 -0.0308 
1 0.009 0.0035 -0.0176 -0.0477 -0.0816 -0.111 
2 0.0059 0.0128 -0.0087 -0.0364 -0.0968 -0.137 
3 -0.0021 0.0141 -0.0045 -0.0372 -0.0972 -0.1224 
4 -0.0125 0.0189 0.0093 -0.0229 -0.0822 -0.1329 

North GEV 0 0.0011 -0.0002 -0.0002 -0.0043 0.0044 0.0069 
Lakhimpur 1 0.0016 -0.0022 -0.0021 -0.0032 0.0031 0.0053 

2 0.0011 0.0006 -0.004 -0.0049 -0.0024 0.0005 
3 0.0003 0.0011 -0.001' -0.0043 -0.0033 -0.0003 
4 -0.0011 0.0013 -0.0017 -0.0072 -0.0067 -0.0021 

GPD 0 0.0018 0.0003 -0.0038 0.0004 0.0031 0.0049 
1 0.0018 I -0.0007 -0.0026 -0.0037 0.0017 0.0034 
2 -0.0011 0.0011 -0.0038 -0.0017 -0.0013 0.0021 
3 -0.0004 0.0008 -0.0017 -0.002 -0.0017 0.0012 
4 -0.0023 0.002 -0.0023 -0.0068 -0.0085 -0.0038 

GLD 0 0.0001 -0.0018 -0.003 -0.0008 -0.0012 0.0057 
1 0.0017 -0.0028 -0.004 -0.0045 -0.0036 -0.0008 
2 0.0004 0.00009 -0.0045 -0.0032 -0.004 0.0016 
3 -0.0001 -0.0005 -0.0017 -0.0047 -0.0043 -0.0028 
4 -0.0006 0.0031 -0.0013 -0.0092 -0.009 -0.0018 

Pasighat GEV 0 0.0043 -0.0053 -0.0067 -0.0093 -0.0066 -0.0098 
1 0.0052 -0.0031 -0.0048 -0.0135 -0.014 -0.Ql08 
2 0.0033 0.0034 -0.0064 -0.0156 -0.0386 -0.0269 
3 -0.0005 0.0063 -0.011 -0.0184 -0.0336 -0.0423 
4 -0.003 0.0097 -0.0019 -0.021 -0.0384 -0.0548 

GPD 0 0.003 0.00009 -0.0022 -0.0111 0.0044 0.0095 
1 0.0036 -0.002 -0.0072 -0.0144 -0.0089 -0.0064 
2 0.0017 0.0048 -0.0087 -0.021 -0.028 -0.032 
3 -0.0018 0.0072 -0.001 -0.0178 -0.0318 -0.0342 
4 -0.0059 0.0098 0.0027 -0.0243 -0.029 -0.047 

GLD 0 0.0015 -0.0058 -0.0109 -0.0095 -0.0046 0.0038 
1 0.0071 -0.0015 -0.0149 -0.02 -0.0241 -0.0317 
2 0.0031 0.0033 -0.0113 -0.0164 -0.0381 -0.0421 
3 0.0021 

I 
0.0037 -0.0025 -0.0193 -0.0416 -0.0489 

4 -0.0042 0.0056 -0.0015 -0.0222 -0.0382 -0.0493 
Shillong GEV 0 0.0009 -0.002 -0.0006 0.0012 -0.0035 0.0072 

1 0.001 0.0001 -0.0003 -0.0041 -0.0011 0.0026 
2 0.0012 -0.0014 -0.0054 -0.0015 -0.0041 0.0047 
3 0.0011 -0.0006 -0.0011 -0.0054 -0.0069 0.0022 
4 -0.0026 0.0027 0.0001 -0.0047 -0.0061 -0.0056 

GPD 0 0.0006 -0.0012 -0.0004 0.0035 0.0044 0.0129 
I -0.0003 0.0002 -0.0045 -0.002 -0.0001 0.0088 
2 0.0006 -0.0015 -0.0013 -0.0055 -0.0025 0.0032 
3 0.0001 0.0018 -0.0014 -0.0036 -0.0038 0.0011 
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4 -0.0001 0.0017 -0.0024 -0.0057 -0.0101 -0.0023 
GLD 0 0.0011 -0.0011 -0.0005 -0.0054 0.0059 0.0083 

1 0.0023 -0.0031 -0.0027 -0.0034 0.0034 0.0062 
2 0.0021 0.0004 -0.0051 -0.0061 -0.0034 -0.0006 
3 0.0012 0.0013 -0.0017 -0.006 -0.005 -0.0017 
4 -0.0009 0.0015 -0.0025 -0.0089 -0.0086 -0.0035 
0 0.002 -0.0006 -0.0012 -0.0076 0.0052 0.0085 

Silchar GEV 1 0.0027 -0.003 -0.0035 -0.0052 0.003 0.0061 
2 -0.0018 0.001 -0.0059 -0.0078 -0.0049 -0.0014 
3 0.0004 0.002 -0.0015 -0.0068 -0.0061 -0.0022 
4 -0.0019 0.0021 -0.0024 -0.0102 -0.01 -0.0043 

GPD 0 0.00001 -0.0064 -0.0023 -0.0055 0.0032 0.0079 
1 -0.0005 -0.0039 -0.0038 -0.006 0.0028 0.0101 
2 0.0021 I 0.0005 -0.0049 -0.005 -0.0046 0.0069 
3 0.0009 0.0033 -0.002 -0.0085 -0.0089 -0.0053 
4 -0.0041 0.0007 -0.0034 -0.0063 -0.0095 0.0018 

GLD 0 -0.0014 -0.0026 -0.0078 -0.0034 0.0002 0.0072 
1 0.0015 -0.0023 -0.0065 -0.0007 0.0018 0.009 
2 0.0054 -0.0013 -0.0041 -0.0065 -0.0009 -0.0067 
3 0.0019 0.0017 -0.0064 -0.0094 -0.0134 -0.002 
4 -0.0014 0.0018 -0.0022 -0.0081 -0.0091 -0.0139 

Tezpur GEV 0 -0.0043 -0.0008 -0.0015 -0.0018 0.0038 0.0002 
1 0.0008 -0.0019 -0.0006 -0.004 0.0003 0.0026 
2 0.0032 -0.0012 -0.0033 -0.0014 -0.0017 0.0019 
3 -0.0007 -0.0011 -0.0025 -0.0018 -0.0013 0.0024 
4 -0.0001 0.0031 -0.0034 -0.0037 -0.0026 -0.0019 

GPD 0 0.0028 -0.0024 -0.0035 0.0004 0.0051 0.0074 
1 0.002 0.0006 -0.0001 -0.0039 0.004 0.0065 
2 0.0015 -0.0017 -0.0018 -0.0033 0.0028 0.0053 
3 0.00004 0.0014 -0.0037 -0.0044 -0.0018 0.0021 
4 -0.0014 0.0017 -0.0003 -0.0033 -0.0022 -0.0009 

GLD 0 0.0007 -0.0038 -0.0019 -0.0005 0.0026 0.0085 
1 0.0003 0.00009 -0.0043 -0.0022 0.0021 0.0021 
2 0.0031 0.0005 -0.0011 -0.0023 -0.0027 0.0047 
3 0.0019 -0.0006 -0.0003 -0.005 -0.0012 0.0002 
4 0.0004 0.0011 -0.0016 -0.0021 -0.002 0.0001 
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