

CENTRAL TERMEUND ON

REFERENCE BOOK

NOT TO METOSUED TEZPUR DEMEASITY TRACAY

PRODUCTION, ISOLATION AND CHARACTERIZATION OF MICROBIAL ALKALINE PROTEASE AND THEIR INDUSTRIAL APPLICATIONS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

BY SUDHIR KUMAR RAI, M.Sc. Registration no. 003 of 2007

School of Science and Technology

Department of Molecular Biology and Biotechnology

Tezpur University

September 2010

Dedicated to my beloved family

members

Honr Lt Shri Nandu Prasad Rai

Smt. R. Rai

Er. Shri Shailesh Kumar Rai

Smt. Kiran Rai

Miss Hasita Rai

&

Prof. Ashis K. Mukherjee and his

family members

Abstract

Microbial proteases constitute approximately 60% of the total worldwide production of enzymes. They have diverse applications in a wide variety of industries, such as in detergent, food, pharmaceutical, leather, silk and for recovery of silver from used X-ray films. Of these, alkaline proteases are particularly important because they are both stable and active at high pH solutions and in the presence of surfactants and oxidizing agents. Their major application is in detergent industry, because the pH of laundry detergents is generally in the range of 9.0-12.0. The industrial demand of highly active preparations of proteolytic enzymes with appropriate specificity and stability to pH, temperature, metal ions and surfactants continues to stimulate the search for new enzyme sources. Isolation and screening of microorganisms from naturally occurring alkaline habitats is expected to provide novel strains capable of producing high-titer of industrially important proteases which will retain its activity and stability in high alkaline conditions. Based on above mention requirements, present study was initiated with the objectives of isolation of high-titer alkaline protease producing bacteria by screening the soil / water samples of northeast India, taxonomic identification of above potential strains, optimization of culture conditions of potential microbes for maximizing the protease production using solid-state fermentation (SSF) and submerged fermentation (SmF) systems. Finally, effort has been given for the isolation, downstream processing and biochemical characterization of an alkaline protease produced by the promising microbial strain(s). Furthermore, the possible industrial applications of the isolated alkaline proteases were also investigated.

Sudhir K Rai

Thirty three alkaline protease producing bacterial cultures were obtained by initial screening of environmental samples collected from various parts of NE India, and amongst them only 12 bacteria showed zones of hydrolysis ≥ 25.0 mm in skim-milk agar plate. These strains were further characterized. On the basis of (i) bacterial growth kinetics, (b) alkaline protease yield, (c) alkaline pH and detergent stability, and (d) thermal stability of isolated protease five potential strains viz. AS-S10-II, AS-S18 AS-S20-I, AS-S24-I AS-S24-II were selected for taxonomic identification and and characterization of their protease enzyme(s). Pure culture of bacteria was obtained by following the standard protocol. On the basis of the data obtained from phenotypic, chemotaxonomic and phylogenetic analyses of pure cultures, the strain AS-S10-II, AS-S18, AS-S20-I, AS-S24-I and AS-S24-II were identified as Brevibacillus sp. AS- S10-II, B.subtilis AS-S18, Bacillus sp. AS-S20-I, B. licheniformis AS-S24-I, and P. tezpurensis sp. nov. AS-S24-II, respectively. Further, a protease producing promising strain isolated previously, in our laboratory viz. B. subtilis DM-04 was also included in the present study.

Screening of parameters for optimized protease production by *B. subtilis* RM-01, *B. subtilis* DM-04, *Brevibacillus* sp. AS-S10-II, *Bacillus* sp. AS-S20-I, *B.licheniformis* AS-S24-I, and *P.tezpurensis* sp. nov. AS-S24-II under SmF and SSF was performed using Plackett Burman design followed by Response surface methodology. Under statistically optimized conditions maximum alkaline protease production by all the strains was varied in a process controlled bioreactor. Bacterial strains such as *Paenibacillus* Sudhir K Rai

Abstract

tezpurensis sp.nov.strain AS-S24-II, *B.subtilis* strain RM-01, *Bacillus* sp.strain AS-S20-I, *Brevibacillus* sp. strain AS-S10-II demonstrated preference for inorganic nitrogen source whereas *B.subtilis* DM-04 and *Bacillus licheniformis* strain AS-S24-I showed preference for organic nitrogen source for maximum protease production under submerged fermentation. All strains except *B.subtilis* strain DM-04 demonstrated the choice of complex carbon source casein for optimum growth and protease production; *B.subtilis* strain DM-04 displayed maximum protease production in presence of maltose. However *Bacillus licheniformis* strain AS-S24-I preferred D-glucose for protease production under submerged fermentation.

In the present study, some alkaline proteases were purified their biochemical properties and biotechnological application were studied. For example, two alkaline proteases viz., Bsubap-I and Alzwiprase was purified from *B.subtilis* strain DM-04 with a molecular masses 33.1 kDa and 16.9 kDa respectively; detergent stable alkaline protease was purified from *P.tezpurensis* sp.nov. strain AS-S24-II with a molecular mass 43.0 kDa; Alkaline β -keratinase was purified from *B.subtilis* strain RM-01 with molecular mass 20.1 kDa. Another alkaline keratinase viz. Alkarnase having the molecular mass of 43.1 kDa was purified from *Bacillus licheniformis* strain AS-S24-I; Brevicarnase, an alkaline keratinase was purified from *Brevibacillus* sp. strain AS-10-II with molecular mass 83.2 kDa.

All purified alkaline proteases demonstrated suitable for industrial applications thus biochemical properties suggesting their applications in <u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

iii

laundry detergent formulations and other industries where alkaline proteases are employed. For examples, Bsubap-I and Alzwiprase isolated from *B.subtilis* strain DM-04, Alkarnase isolated from *Bacillus licheniformis* strain AS-S24-I, detergent stable alkaline protease from P.tezpurensis sp.nov. strain AS-S24-II and partially purified protease isolated from Bacillus sp. strain AS-S20-I demonstrated optimum pH in the range of 10.0-10.5 and optimum incubation temperature at 45.0°C, whereas Brevicarnase isolated from Brevibacillus sp. strain AS-S10-II and alkaline β-keratinase isolated from B.subtilis strain RM-01 demonstrated optimum pH at 12.5 and 8.0, respectively. Substrate specificity study demonstrated maximum specificity for casein by Bsubap-I, Alzwiprase, and purified from P.tezpurensis sp.nov. strain AS-S24-II, whereas protease Brevicarnase, Alkarnase and β -keratinase showed maximum preference for hydrolyzing raw chicken-feather. In contrast, partially purified protease from Bacillus sp. strain AS-S20-I displayed maximum specificity for degrading fibrin thus showing its fibrinolytic activity and suggesting its future application as thrombolytic and anticancer agent. It was observed that Fe²⁺ enhanced the proteolytic activity of Bsubap-I, Alzwiprase and alkaline β -keratinase, whereas other metal ions decreased the protease activity of purified enzymes. All purified / partially purified proteases demonstrated appreciable stability in presence of various non-ionic and ionic surfactants, oxidizing and bleaching agents. Thermo-stability study demonstrated thermostable nature of the purified proteases by virtue of possessing intramolecular disulphide bond in protein molecule. Inhibition study demonstrated that all purified/ partially proteases / keratinase were inhibited by PMSF, 4-BPB and IAA suggesting that Ser-His-Cyst residues Sudhir K Rai

Abstract

are function as a catalytic triad during enzymatic reaction. All purified proteases demonstrated more or less organic solvent stability suggesting their application in peptide synthesis.

All purified proteases demonstrated very good stability in presence of various commercial laundry detergents at a very low dose of enzyme. For example, Bsubap-I (7.0 μ g /mI), Alzwiprase (0.1 mg /mI), purified protease from *P.tezpurensis* sp.nov. AS-S24-II (3.0 μ g /mI), Brevicarnase (6.0 μ g /mI), Alkarnase (7.0 μ g /mI), alkaline β -keratinase (0.5 mg / mI), and partially purified protease from *Bacillus* sp. AS-S20-I (6.0 μ g /mI) showed detergent stability at a very low dose, much below the dose recommended for inclusion of protease in detergent formulation. Pharmacological properties of all purified / partially purified proteases / keratinases demonstrated negligible toxicity at the tested concentration, suggesting eco-friendly applications of these proteases for laundry detergent formulations and other industries.

All the purified protease in the present study did not show collagenase activity suggesting their applications in leather industries as dehairing agents. Some of the alkaline protease such as Bsubap-I and Alzwiprase demonstrated excellent antibacterial activity advocating their application in food industry as a preserving and sterilizing agent, and in laundry detergent industries they may used as sanitizing agents. Partially purified protease from *Bacillus* sp. strain AS-S20-I degraded β -chain from fibrinogen and α -chain from fibrin clot in *invitro* condition implying their application in pharmaceutical industries as a thrombolytic agent. *Sudhir K Rai*

Declaration

I hereby declare that due to the lack of proper facility at Tezpur University, following experiments / sample analyses were carried out at other institutes. Further, I declare that no part of this has been reproduced elsewhere for award of any other degree.

- GC analyses of FAME of the bacterial strains were done by Dr. Shanmugam Mayilraj at Institute of Microbial technology, Chandigarh, India.
- 16S-rRNA gene analysis was done by Prof.
 V.K.Chaudhary, at DBT sponsored National DNA Sequencing facility, Department of Biochemistry, University of Delhi South Campus, New Delhi.

Date: 10 09 10 Place:Tezpur University, Napaam

(Sudhir Kumar Rai) Registration No.003 of 2007

TEZPUR UNIVERSITY

(A Central Govt. University)

DEPARTMENT OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY

Tezpur, 784028, Assam, India

Dr. Ashis K Mukherjee Professor and Head E-mail: akm@tezu.ernet.in Ph: 03712-267007/8/9 Ext.5405 (O) Mobile: +919957184351 Fax: 03712-267005/6

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Production, isolation and characterization of microbial alkaline protease and their industrial applications" submitted to the Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Science and Technology in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Mr. Sudhir Kumar Rai under my personal supervision and guidance.

All helps received by him/her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for award of any other degree.

Date: 10 September, 2010

Place: Tezpur University

Akdulchene

(A. K. Mukherjee) Signature of Principal Supervisor Professor and Head Department of Molecular Biology and Biotechnology School of Science and Technology

TEZPUR UNIVERSITY

CERTIFICATE OF THE EXTERNAL EXAMINAR AND ODEC

This is to certify that the thesis entitled "Production, isolation and characterization of microbial alkaline protease and their industrial applications" submitted by Mr. Sudhir Kumar Rai to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Science and Technology in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology has been examined by us on $\underline{MS} = \underline{MS}$ and found to be satisfactory.

The Committee recommends for the award of the degree of Doctor of Philosophy.

Signature of:

Acountermen

Principal Supervisor

Date: 18 /01/2011

hubertockingh

External examiner

Date: (8)1/2011

CONTENTS	Page No.
Abstract	i-v
Declaration	
Certificate by the supervisor	
Certificate of the external examiner and ODEC	
Contents	
List of tables	vi-xix
List of figures	xx-Liv
List of abbreviation	
Acknowledgements	
CHAPTER I:	1
INTRODUCTION	1
1. Introduction	2-3
1.1 Historical aspect of Industrial enzymes	3
1.2 Industrial enzymes and Development of bio industrial sectors:	4-5
An overview	
1.2.1 Indian scenario of industrial enzyme's	5-6
1.2.1.1 Futuristic application of enzymes for the growth of Indian	6-9
Bio-Industrial sector	
1.3 Present scenario of microbial protease: a leader of industrial	10
enzymes	
1.4. Microbial protease: bread and butter for enzyme industries	11-12
1.4.1 Proteolytic enzymes	12-14
1.4.2 Classification of proteases	14-15
1.4.2.1 Exopeptidases	15-16
1.4.2.2 Endopeptidases	16
1.5 Serine proteases	16-17
1.5.1 Serine alkaline proteases	17
1.5.1.1 Subtilisins	17
1.6 Aspartic proteases	18
1.7 Cysteine/thiol proteases	18

-

1.8 Metalloproteases	19
1.9 Structure and Mechanism of action of proteases	19-20
1.9.1 Structure of proteases	20
1.9.2 Mechanism of action of proteases	20-21
1.9.2.1 Mechanism of action of serine protease	21-26
1.9.2.2 Mechanism of action of aspartic protease	27-28
1.9.2.3 Mechanism of action of metallo-protease	29
1.9.2.4 Mechanism of action of cysteine protease	30-31
1.10 Production of microbial alkaline proteases	32-35
1.11 Protease purification techniques	36-40
1.12 Physiological functions of proteases	41-43
1.13 Immobilization	43
1.13.1 Historical aspect of immobilized enzymes	43-44
1.13.2 Classification of immobilized methods and selection of	44-45
carrier	
1.13.3 Main Application Areas of Immobilization Technology	46
1.13.3.1 Bioprocess Technology	46
1.13.3. 2 Enzyme Technology	46
1.13.3.3. Waste Technology	46
1.13.3.4 Environmental Technology	46
1.14 Industrial application of microbial proteases	46-48
1.14.1 Food and feed industry	48-49
1.14.2 Peptide synthesis	49-50
1.14.3 Leather industry	50-51
1.14.4 Management of industrial and household waste	51
1.14.5 Proteases in the detergent industry	51-52
1.14.6 Selection and evaluation of detergent protease performance	52-53
1.15 Major obstacles and future prospect of microbial proteases	53-54
1.16 Aims and objectives of present study	54-55
CHAPTER II:	56
REVIEW OF LITERATURE	56
2. Screening and detection of protease producing potential micro-	57-66
organisms	

2.1 A brief review on alkaline protease production by submerged fermentation (SmF) and solid-state fermentation (SSF) system	66
2.1.1 Solid-state fermentation (SSF) systems	
2.1.2 Solid-supports in SSF systems	
2.2 Protease production under SSF system using agro-industrial	69-74
wastes	
2.3 Protease production under submerged fermentation system	75
2.4 Statistical optimization of protease production	76-81
2.5 Purification and biochemical characterization of alkaline	82-89
protease	
Immobilization of alkaline proteases	89
2.6.1 Cell-free immobilization	89-90
2.7 Industrial application of proteases	90
2.7.1 Detergent industries	90-99
2.7.2 Leather industry	100
2.7.3 Pharmaceutical industry (with especial reference with	100
fibrinolytic enzymes)	
2.7.4 Solid-waste management	101-103
CHAPTER III:	104
MATERIALS AND METHODS	105
3.1 Materials	105
3.1.1 Plasticware / Glassware /Columns	105
3.1.2 Chemicals	105
3.1.2.1 Analytical grade	105
3.1.2.2 Microbiological grade culture media/chemicals	105-106
3.1.2.3 Molecular biology grade chemicals / kits	106
3.1.2.4 Raw materials	106
3.1.2.5 Microbial strains	106
3.2 Methods	106
3.2.1 Collection of environmental samples	106-107
3.2.2 Sample collection from soil	
3.2.3 Sample collection from water	
3.3 Screening of alkaline protease producing thermophilic bacteria	
3.3.1 Measurement of zone of hydrolysis	108

3.3.2 Growth kinetics and protease production	109	
3.3.3 Thermo stability study	109	
3.3.4 Detergent compatibility study	109	
	109-110	
3.4 Pure culture of alkaline protease secreting bacterial isolates	110	
3.4.1 Spread plate technique	110	
3.4.2 Streak-plate Technique	110	
	110-111	
3.6 Taxonomic identification of alkaline protease producing	111	
bacteria		
3.6.1 Morphological tests	111	
3.6.1.1 Simple staining	111	
3.6.1.2 Negative staining	111	
3.6.1.3 Gram's staining	111-112	
3.6.1.4 Spore staining	112	
3.6.2 Biochemical tests	112	
3.6.2.1 Hydrolysis test for casein, starch, lipid and gelatin	112	
3.6.2.2 Carbohydrate fermentation test	112	
3.6.2.3 Triple sugar iron (TSI) agar test	113	
3.6.2.4 IMViC test	113	
3.6.2.4.1. Indole production test	113	
3.6.2.4.2. Methyl red - Voges-Proskauer (MR-VP) test	113	
3.6.2.4.3. Citrate Utilization test	113	
3.6.2.4.4 Hydrogen sulfide test	113	
3.6.2.4.5 Urease test	113	
3.6.2.4.6 Litmus-milk reactions test	114	
3.6.2.4.7 Nitrate reduction test	114	
3.6.2.4.8 Catalase test	114	
3.6.2.4.9 Oxidase test	114	
3.6.3 Chemotaxonomic identification: analysis of bacterial cellular	115	
fatty acid methyl esters (FAME)		
3.6.4 Ribotyping using 16S rRNA gene amplification	115	
3.6.4.1 Isolation of chromosomal DNA	115	
3.6.4.1.1 DNA extraction by alkaline lysis	115-116	

ł,

3.6.4.1.2 Direct chromosomal DNA extraction	116
3.6.4.1.3 PCR amplification of 16S-rRNA gene	116-117
3.6.4.1.4 Phylogenetic analysis	117
3.6.5. PCR-RFLP analysis of selected strains	118
3.6.5.1 Synthesis of 16S-23S Inter specific region (ISR) primers for	118
Bacillus subtilis, and Bacillus licheniformis strains	
3.6.6 16S-rRNA gene species-specific amplification of AS-S20-I	118-119
and AS-S24-II	
3.7 Optimization of culture condition for optimum growth and	119
maximum alkaline protease production by selected bacteria under	
SSF and SmF systems	
3.7.1 Alkaline protease production under submerged fermentation	119
(SmF) system	
3.7.2 Effect of various carbon sources on alkaline protease	119
production	
3.7.3 Effect of various inorganic and organic nitrogen sources on	120
alkaline protease production	
3.7.4 Effect of pH on alkaline protease production	120
3.7.5 Effect of agitation rate on alkaline protease production	120
3.7.6 Effect of temperature on alkaline protease production	120
3.7.7 Effect of incubation time on alkaline protease production	120
3.8 Alkaline protease production under solid-state fermentation	120
system	
3.8.1 Process optimization of various parameters in SSF for	121
alkaline protease production	
3.8.2 Preparation of substrates for alkaline protease production	121
3.8.3 Preparation of substrates for alkaline keratinase production	122
3.8.4 Solid-state fermentation and optimization of process	122-123
conditions for protease production	
3.8.5 Solid-state fermentation and optimization of process	123
conditions for alkaline keratinase production	
3.8.6 Optimization of protease / keratinase extraction from	123-124
fermented matter	
3.9 Statistical optimization of alkaline protease production in SmF	124

٠,

and SSF

3.9.1 Screening of factors effecting protease production using	124-125	
Plackett-Burman design		
3.9.2 Statistical optimization of alkaline protease production using	125-126	
Response surface method (RSM)		
3.9.3 Validation of response surface: Batch fermentation under	126	
optimized conditions		
3.9.3.1 Alkaline protease production under SSF systems	126-127	
3.9.3.2 Alkaline keratinase production under SSF systems	127	
3.9.3.3 Alkaline protease production under SmF systems	127	
3.10. Isolation and downstream processing of alkaline proteases /	128	
keratinase		
3.10.1 Isolation and purification of Bsubap-I, an alkaline protease	128-129	
from <i>B. subtilis</i> DM-04		
3.10.2 Isolation and purification of Alzwiprase (an alkaline	129-130	
protease) from <i>B. subtilis</i> DM-04		
3.10.3 Isolation and purification of alkaline β -keratinase protease	130	
from <i>B. subtilis</i> RM-01		
3.10.4 Isolation and purification of detergent-stable alkaline	130-131	
protease from Peanibacillus tezpurensis sp.nov. AS-S24-II		
3.10.5 Isolation and purification of Alkarnase (an oxidant and	131	
detergent-stable alkaline protease) from Bacillus licheniformis AS-		
S24-I		
3.10.6 Isolation and purification of Brevicarnase (detergent-stable	132	
alkaline protease) from Brevibacillus sp. AS-S10-II		
3.10.7 Partial purification of alkaline protease from <i>Bacillus</i> sp. AS-	132	
S20-I		
3.10.8 Criteria of purity and determination of molecular weight	132-133	
3.10.9 Determination of active alkaline protease/ fibrinolytic /	133	
keratinase activity using zymographic study		
3.10.9.1 Casein zymographic study	133-134	
3.10.9.2 Fibrin zymographic study	134	
3.10.9.3 Keratin zymographic study	134-125	
3.10.10 Estimation of protein content	125	

•

3.11.1 Assay of proteolytic activity	135-136
3.12 Biochemical characterization of alkaline protease	136
3.12.1 Dose-dependent protease activity	136
3.12.2 Effect of pH on protease activity and stability	136
3.12.3 Determination of optimum temperature for protease activity	136
3.12.4 Heat-inactivation study	137
3.12.5 Influence of metal ions on protease activity	137
3.12.6 Chemical modification of protease activity	137
3.12.7 Effect of surfactants, chelators, denaturing, oxidizing and	137
bleaching agents	
3.12.8 Organic-solvent stability	137-138
3.12.9 Substrate specificity	138
3.12.10 Enzyme kinetics	138
3.13 Immobilization of purified alkaline keratinase onto iron-oxide	138
magnetic nanoparticle for improvement of catalytic activity and	
biotechnological potential of enzyme	
3.13.1 Preparation of iron-oxide magnetic nanoparticle (MNPs)	138
3.13.2 Optimization of enzyme coupling to magnetic nanoparticle	139
3.13.3 Preparation of aminofunctionalized MNP	139
3.13.4 Covalent immobilization of keratinase from <i>B.subtilis</i> RM-01 on Fe ₃ O ₄ MNP	139
3.13.5 Attachment of purified enzyme onto MNP by carbodimide/cyanimide activation	139-140
3.13.6 Binding of MNP binding to purified keratinase enzyme: dose-dependent study	140
3.13.7 Statistical procedure for optimizing conditions for maximal coupling of keratinase on to iron-oxide MNP	140-141
3.14 Characterization of the enzyme-coupled iron-oxide magnetic nanoparticle	141
3.14.1 XRD analysis for determination of nanocrystalllite size	141
3.14.2 FTIR analysis	142
3.14.3 SEM analysis for determination of particle size	142

A A A A A A A A A A A A A A A A A A A	142
3.14.4 Comparison of stability storage of free and MNP-bound β -	1-72
keratinase	440
3.15 Industrial application of purified / partially purified alkaline	142
proteases / keratinase	4.40
3.15.1 Clot lysis (thrombolytic) activity	142
3.15.2 Detergent compatibility test	142
3.15.3 Wash performance test	143
3.15.4 Pharmacological characterization of proteases	143
3.15.4.1 Interference in blood coagulation	143
3.15.4.2 Assay of haemolytic activity	144
3.15.4.3 In-vitro tissue damaging activity	144
3.15.5 Dehairing activity	144-145
3.15.6 Antibacterial property of purified alkaline protease	145
3.15.7 Feather degradation using MNP-Bound β-keratinase	145-146
3.15.8 Release of free-amino acids from the chicken-feather	146
3.15.9 Analysis of liberated free fatty acids from chicken-feather by	146-147
β-keratinase	
CHAPTER IV :	
SCREENING OF MICRO-ORGANISMS FROM DIFFERENT	
HABITATS OF NORTH-EAST INDIA (WITH SPECIAL	
EMPHASIS ON EXTREME HABITATS) FOR THE PRODUCTION	
OF PROTEASE WITH PARTICULAR REFERENCE TO THE	
ALKALINE, THERMOPHILIC ENZYMES	
4.1 Results	148
CHAPTER V:	
PROCESS OPTIMIZATION, ISOLATION, PURIFICATION,	
BIOCHEMICAL CHARACTERIZATION AND INDUSTRIAL	
APPLICATIONS OF ALKALINE PROTEASES ISOLATED FROM	
Bacillus subtilis DM-04	
5.1 Results	230
CHAPTER VI:	
PROCESS OPTIMIZATION, ISOLATION, PURIFICATION,	
BIOCHEMICAL CHARACTERIZATION AND INDUSTRIAL	

APPLICATIONS OF ALKALINE PROTEASE ISOLATED FROM

Paenibacillus tezpurensis sp.nov. strain AS-S24-II6.1 ResultsCHAPTER VII:PROCESS OPTIMIZATION, ISOLATION, PURIFICATION,BIOCHEMICAL CHARACTERIZATION AND INDUSTRIALAPPLICATIONS OF AN ALKALINE B-KERATINASE(PROTEASE) ISOLATED FROM Bacillus subtilis RM-017.1 Results	293 337	
CHAPTER VIII: PROCESS OPTIMIZATION, PARTIAL PURIFICATION, BIOCHEMICAL CHARACTERIZATION AND INDUSTRIAL APPLICATION OF AN ALKALINE PROTEASE ISOLATED FROM Bacillus sp. AS-S20-1 8.1 Results		
CHAPTER IX: PROCESS OPTIMIZATION, PURIFICATION, BIOCHEMICAL CHARACTERIZATION, AND INDUSTRIAL APPLICATION OF AN ALKALINE PROTEASE ISOLATED FROM <i>Bacillus</i> <i>licheniformis</i> AS-S24-I	401	
9.1 Results CHAPTER X: PROCESS OPTIMIZATION, PURIFICATION, BIOCHEMICAL CHARACTERIZATION, AND INDUSTRIAL APPLICATION OF AN ALKALINE PROTEASE ISOLATED FROM <i>Brevibacillus</i> sp. strain AS-S10-II	446	
10.1 Results CHAPTER XI:	492	
DISCUSSION	537	
CONCLUSION		
REFERENCES		
Appendix		
LIST OF PUBLICATIONS		

List of Tables

Table No	Titles	Page No
	Chapter 1 : Introduction	
1.1	Bioindustrial companies by Revenue (2009-2010)	7
1.2	Potential enzyme distributors/suppliers in India	8-9
1.3	Specificity of proteases	13
1.4	Classification of proteases. Open circles represent the	14-15
	amino acid residues in the polypeptide chain. Solid	
	circles indicate the terminal amino acids, and the	
	triangles signify the blocked termini. Arrows show the	
	sites of action of the enzyme	
1.5	Statistical methods used to improve the protease	34-35
	production from microorganisms	
1.6	Combination of chromatographic techniques applied for	39-40
	purification of microbial alkaline proteases	
1.7	Comparison of Different Immobilization Methods	45
1.8	Commercial application of alkaline protease in various	47-48
	biotech industries	
	Chapter 2: Review of literature	
2.1	Screening results of isolated alkaline proteases from	59-63
	different environmental samples reported from Abroad	
2.2	Protease producing microbes reported from India	63-65
2.3	Advantages and disadvantages of the SSF system	67-68
2.4	Use of solid substrates as support for protease production in SSF systems.	68-69
2.5	Alkaline protease production under solid-state	71-74
	fermentation system	
2.6	Alkaline keratinase production under solid-state	74
	fermentation system	
2.7	Statistical optimization of alkaline protease production	77-80
2.8	Statistical optimization of alkaline keratinase production	81

vi

Table No	Titles	vii Page No
2.9	Properties of few selected proteases from different micro-organisms	84-86
2.10	Properties of few selected keratinase from different microorganims	88-89
2.11	Industrial application of different class of protease in various bibtech sectors	93-100
2.12	Industrial application of alkaline keratinase	103
	Chapter 3 : Materials and Methods	
3.1	Optimal PCR reaction conditions for amplification of conserved region of 16S-rRNA gene of selected protease secreting bacterial strains	117
3.2	Taxonomic Description of the plant Imperata cylindrica	121-122
3.3	Independent variables for alkaline protease / keratinase	126
	production with respect to each strain under SSF and SmF systems using central composite design	
3.4	Validation of response surface for alkaline protease/keratinase production	128
	Chapter 4 :Results	
4.1	Collection of soil samples from various regions of North- East India	149
4.2	Screening for alkaline protease producing alkalophilic bacteria from different samples of North- East India. The medium used was skim-milk agar, pH 8.0	150-152
4.3	Selection of alkaline protease producing 12 bacteria having zone of hydrolysis ≥ 25.0 mm (see Table 4.2)	153
4.4	Selection of alkaline protease producing potential bacteria on the basis of alkaline protease production in culture medium. Results represent mean \pm S.D of three individual experiments.	154
4.5	Detergent compatibility study of crude protease pre- incubated at 45°C. Enzyme activity in absence of	155

Table No	Titles	viii Page No
	detergent was considered as 100% activity and other values were compared with that. Results represent mean \pm S.D of three individual experiments.	
4.6	Thermo stability study of protease from selected bacterial isolates. The crude protease (2 mg/ml) was heated at 60°C for 15 to 60 min's followed by assay of protease activity. Results Represent mean \pm S.D of three individual experiments.	156
4.7	Biochemical and morphological tests of strain AS-S10 II. Experiments were repeated thrice to assure the reproducibility.	158
4.8	Biochemical and morphological tests strain AS-S18. Experiments were repeated thrice to assure the reproducibility.	159
4.9	Biochemical and morphological tests of strain AS-S20-I. Experiments were repeated thrice to assure the	160
4.10	reproducibility. Biochemical and morphological tests of strain AS-S24-I. Experiments were repeated thrice to assure the	161
4.11	reproducibility. Biochemical and morphological tests AS-S24-II. Experiments were repeated thrice to assure the	162
4.12	reproducibility. Composition of cellular fatty acids content of selected bacterial strains	165
4.13	A similarity index of FAME analysis of protease producing selected bacteria	166
4.14	Partial DNA sequence of conserved region of 16S-rRNA gene of all bacterial isolates selected in present study	167-169
4.15	Homologous search results of 16S-rRNA gene partial sequence of strain AS-S10-II using Basic Local	171-175

Table No	Titles	ix Page No
	Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI). The 16S-rDNA, sequences from microbes showing upto 99% identity are shown	
4.16	A Homologous search results of 16S-rRNA gene partial sequence of AS-S20-I using Basic Local Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI)	179-191
4.17	Homologous search results of 16S-rRNA partial sequence gene of strain AS-S24-I using BLAST from NCBI database	195-206
4.18	Homologous search results of 16S-rRNA partial gene of sequence of AS-S24-II using BLAST tool from NCBI	210-221
4.19	A taxonomic classification of alkaline protease producing potential bacteria	228
4.20	Taxonomic identification and nomenclature of selected bacterial strains	229
	Chapter 5 :Results	
5.1	Influence of different combinations of co-substrates on alkaline protease production by <i>B. subtilis</i> strain DM-04 under solid-state fermentation. Values are mean± S.D of three determinations	240
5.2	Plackett–Burman store design showing six variables with coded values along with the observed results for protease production by <i>B.subtilis</i> , strain DM-04 in SmF. Values (protease yield) are mean of triplicate	247-248
5.3	determinations Statistical analysis of Plackett–Burman design showing coefficient values, t- and p-value for each variable for protease production (p-value <0.05)	248-249

Table No	Titles	x Page No
5.4	Observed responses and predicted values of alkaline protease produced by <i>B.subtilis</i> strain DM-04. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units. C_1 , IC: PP level (% w/v); C_2 , beef-extract level (% w/w); C_3 , incubation time (h)	250-251
5.5	Analysis of Variance (ANOVA) of alkaline protease produced by <i>B.subtilis</i> strain DM-04	252
5.6	Model coefficients estimated by multiple linear regressions (significance of regression coefficients) <i>Bacillus subtilis</i> strain DM-04 in SmF under shake-flask study	252
5.7	Summary of purification of Bşubap-I from <i>Bacillus subtilis</i> strain DM-04. Values are from a typical experiment	261
5.8	Biochemical characterization of Bsubap-I purified protease	261
5.9	Effect of surfactants, chelators, inhibitors, denaturing, oxidizing and bleaching agents on enzymatic activity of Bsubap-I. Values are mean \pm S. D. of three determinations	266
5.10	Pharmacological properties of Bsubap-I from <i>B.subtilis</i> strain DM-04. Values are mean± S.D. of three experiments	268
5.11	Summary of purification of Alzwiprase from <i>Bacillus subtilis</i> strain DM-04. Values are from a typical experiments	274
5.12	Biochemical properties and substrate specificity of Alzwiprase from <i>Bacillus subtilis</i> strain DM-04. Substrate specificity values are mean \pm S.D of three experiments	279

Table No	Titles	xi Page No
5.13	Effect of surfactants, inhibitors, EDTA, denaturing agents, oxidizing and bleaching agents on protease activity of Alzwiprase from <i>B. subtilis</i> strain DM-04. Assay was carried out at pH 10.0 and 45°C. Values are mean \pm S.D. of three determinations	281-282
5.14	Pharmacological properties of Alzwiprase from <i>B.subtilis</i> strain DM-04. Values are mean \pm S. D. of three determinations	287
	Chapter 6 : Results	
6.1	Influence of different combinations of co-substrates on alkaline protease production by <i>Paenibacıllus</i> <i>tezpurensis</i> sp.nov. strain AS-S24-II under solid-state fermentation. Values are mean± S.D of three determinations	302
6.2	Plackett–Burman store design showing six variables with coded values along with the observed results for alkaline protease 'production' by <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II in SmF	309-310
6.3	Statistical analysis of Plackett–Burman design showing coefficient, t- and p-values for each variable (p-value <0.05)	310
6.4	Observed and predicted values of alkaline protease production by <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II post 48 h of incubation at 45°C and 200 rpm. The observed values are mean \pm S.D of triplicate determinations. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units C ₁ , pH of the medium; C ₂ , casein level (% w/v); C ₃ , ammonium sulphate (%w/v)	312-313

Table No	Titles	xii Page No
6.5	Analysis of Variance (ANOVA) of alkaline protease produced by <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II	313
6.6	Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease production by <i>Paenibacillus</i> <i>tezpurensis</i> sp.nov. strain AS-S24-II in SmF under shake-flask study	313-314
6.7	Summary of purification of a detergent stable alkaline protease from <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II. Data represent a typical experiments	319-320
6.8	Biochemical properties and substrate specificity of alkaline protease from <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II. Values are mean ± S.D. of triplicate determinations	324
6.9	Effect of different inhibitors, surfactant, denaturing agents, oxidizing and bleaching agents and metal chelators on purified protease. Values are mean ± S.D. of triplicate determinations	329-330
6.10	Pharmacological properties of purified protease from <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II. Values are mean ± S. D. of three determinations <i>Chapter 7 : Results</i>	331-332
7.1	Plackett–Burman store design showing six variables with coded values along with the observed results for keratinase production by <i>B. subtilis</i> strain RM-01.	352
7.2	Statistical analysis of Plackett–Burman design showing coefficient values, t- and P-value for each variable for keratinase activity (p-value <0.05),	353
7.3	Observed, and predicted values of alkaline β -keratinase	354-355

Table No	Titles	xiii Page No
	incubation at 50°C. The observed values are average \pm S.D of `triplicate determination. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units. C ₁ , pH of the medium; C ₂ , maltose level (% w/v); C ₃ , sodium nitrate (% w/v).	
7.4	Model coefficients estimated by multiple regression (model adequacy determination)	356
7.5	Analysis of Variance (ANOVA) for alkaline β-keratinase produced by <i>B.subtilis</i> strain RM-01	356-357
7.6	Summary of purification of β-keratinase from <i>B.subtilis</i> strain RM-01. Results represent a typical experiment.	365
7.7	Effect of denaturing agent, oxidizing and bleaching agent, inhibitors, chelators, and surfactants on purified β -keratinase from <i>Bacillus subtilis</i> strain RM-01 at pH 8.0 and 45°C temperature. Values are mean± S.D. of three experiments.	372
7.8	Pharmacological properties of purified β -keratinase from <i>Bacillus subtilis</i> strain RM-01. Values are mean \pm S. D. of three determinations.	375-376
7.9	A comparison of binding efficiency (under non-optimized condition) of β -keratinase onto iron-oxide MNP and increase in specific activity of the enzyme post binding to MNP by two different methods. Values are mean ± S.D. of three different experiments	376-377
7.10	Observed and predicted values of Y response by RSM. The observed values are mean of triplicate determinations. Data within bracket indicates the coded value.	377-378

Table No	Titles	xiv Page No
7.11	Model co-efficients estimation by multiple regression analysis (model adequancy checking) <i>Chapter 8 : Results</i>	378
8.1	Influence of different combinations of co-substrates on alkaline protease production by <i>Bacillus</i> sp. AS-S20-I in solid-state fermentation. Values are mean \pm S.D. of three experiments	412
8.2	Plackett–Burman design showing six variables with coded values along with the observed results for protease production by <i>Bacillus</i> sp. strain AS-S20-I	419-420
8.3	Statistical analysis of Plackett–Burman design showing coefficient values, t- and p-value for each variable for protease activity (p-value <0.05)	420
8.4	Observed responses and predicted values of alkaline protease production by <i>Bacillus</i> sp. strains AS-S20-I in SmF. Values are mean ± S.D. of three experiments	422
8.5	Analysis of Variance (ANOVA) of alkaline protease produced by <i>Bacillus</i> sp. strain AS-S20-I. Values are mean \pm S.D. of three experiments	423
8.6	Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease production by <i>Bacillus</i> sp. strain AS- S20-1 in SmF under shake-flask study. Values are mean ± S.D. of three experiments	423
8.7	Substrate specificity of partially purified alkaline protease from <i>Bacillus</i> sp.strain AS-S20-I. Values are mean \pm S.D. of three experiments	432
8.8	Effect of chemical/chelators/ inhibitors/ denaturing/ oxidizing/ bleaching agents on catalytic activity of partially purified protease from <i>Bacillus</i> sp. strain AS- S20-I. Values are mean ± S.D of triplicate	436-437

Table No	Titles	xv Page No
	determinations	
8.9	Pharmacological properties of partially purified protease	440-441
	from <i>Bacillus</i> sp. strain AS-S20-I. Values are mean ±	
	S.D. of three experiments	
	Chapter 9 : Results	
9.1	Influence of different combinations of co-substrates on	457
	alkaline protease production by B. licheniformis strain	
	AS-S24-I under solid-state fermentation Values are	
	mean \pm S.D. of three experiments.	
9.2	Plackett-Burman store design showing six variables with	464-465
	coded values along with the observed results for	
	protease (β-keratinase) production by <i>B.licheniformis</i>	
	strain AS-S24-I.	
9.3	Statistical analysis of Plackett-Burman design showing	465
	coefficient values, t- and P-value for each variable for	
	protease (keratinase) activity (p-value <0.05).	
9.4	Observed responses and predicted values of β -	467
	keratinase activity of culture supernatants from	
	B.licheniformis strain AS-S24-I. The observed values are	
	average of triplicate determinations	
9.5	Analysis of variance (ANOVA) of alkaline β -keratinase	468
	activity produced by B.licheniformis strain AS-S24-I	
	strain. Values are mean \pm S.D. of three experiments.	
9.6	Model coefficients estimated by multiple linear	469
	regressions (significance of regression coefficients) for	
	protease (β-keratinase) production by <i>B.licheniformis</i>	
	strain AS-S24-I in SmF under shake-flask study (p<0.05).	
9.7	Summary of purification of Alkarnase (an alkaline β -	477
	keratinase) from B.licheniformis strain AS-S24-I. Data	
	represent, a typical experiment.	

Table No	Titles	xvi Page No
9.8	Substrate specificity of Alkarnase from <i>B. licheniformis</i> strain AS-S24-I. Values are mean ± S.D. of three	479
9.9	experiments. Effect of protease inhibitors, chelator, surfactants, urea, oxidizing and bleaching agents on catalytic activity of Alkarnase from <i>B.licheniformis</i> AS-S24-I strain. Experiment was done as described in the text. Values	482-483
9.10	represent mean \pm S.D of three determinations. Pharmacological properties of Alkarnase from <i>B</i> . <i>licheniformis</i> strain AS-S24-I. Values are mean \pm S.D. of three experiments.	487-488
	Chapter 10 : Results	
10.1	Influence of different combinations of co-substrates on alkaline protease production by <i>Brevibacillus</i> sp.strain AS-S10-II under solid-state fermentation. Values are mean \pm S ^I D of triplicate determinations.	503
10.2	Plackett–Burman store design showing six variables with coded values along with the observed results for alkaline protease (β -keratinase) production by <i>Brevibacillus</i> sp. AS-S10-II.	510-511
10.3	Statistical analysis of Plackett–Burman design showing coefficient values, t- and P-value for each variable for protease (β -keratinase) activity (p-value <0.05).	511
10.4	Observed responses and predicted values of alkaline β - keratinase production by <i>Brevibacillus sp.</i> strain AS- S10-II. The observed values are average of triplicate determinations	512-513
10.5	Analysis of Variance (ANOVA) of alkaline protease produced by <i>Brevibacillus</i> sp. AS-S10-II strain. Values are mean \pm S.D. of three experiments.	513-514

Table No	Titles	xvii Page No
10.6	Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease (β -keratinase) production by <i>Brevibacillus</i> sp. AS-S10-II in SmF under shake-flask study.(p<0.05)	514-515
10.7	A summary of purification of an Brevicarnase (alkaline β -keratinase) from <i>Brevibacillus sp.</i> strain AS-S10-II. Data represent a typical experiment.	523
10.8	Biochemical characterization of Brevicarnase from <i>Brevibacillus</i> sp. strain AS-S10-II. Values are mean± S.D. of three experiments.	527-528
10.9	Effect of chemical inhibitors, chelator, metal ions, surfactants and urea on Brevicarnase. Values represent mean \pm S.D of three determinations.	530-531
10.10	Pharmacological properties of Brevicarnase. Values are mean ± S ₁ D. of three experiments. <i>Chapter 11: Discussion</i>	533
11.1	Distinctive phenotypic properties of isolate AS-S10-II and related species of <i>Bacillus</i> sp. ND: Not determined	543-545
11.2	Percentage of cellular fatty acid composition of isolate AS-S10-II and related species of <i>Bacillus subtilis</i> .	548
11.3	Some phenotypic properties of isolate AS-S20-I and related species of <i>Kocuria</i> sp. ND: Not determined.	551-554
11.4	A comparison of percentage cellular fatty acid composition of isolate AS-S20-I with related species of <i>Kocuria</i>	556
11.5	Distinctive phenotypic properties of isolate AS-S24-I and related species of <i>Peanibacillus</i>	560-561
11.6	Percentage cellular fatty acid composition of isolate AS- S24-I and related species of <i>Paenibacillus</i> species	563

Table No	Titles	xviii Page No
11.7	Distinctive phenotypic properties of isolate AS-S24-II	565-568
11.8	and related <i>Bacillus licheniformis</i> . NT, not tested. Percent cellular fatty acid composition of isolate AS-S24- II-and related species of <i>Paenibacillus</i> as determined by GC analyşis	570
11.9	Phenotypic properties of isolate AS-S18 with related genus of <i>Bacillus</i>	572-574
11.10	Percentage of cellular fatty acid composition of isolate AS-S18 with other related genus of <i>Bacillus</i>	576
11.11	A comparison of statistically optimized alkaline protease yield by isolated strains and other reported bacteria	590-591
11.12	A comparison of molecular weight of isolated proteases (Bsubap-I and Alzwiprase (<i>B.subtilis</i> DM-04), Brevicarnase (<i>Brevibacillus</i> sp. AS-S10-II), Alkarnase (<i>B.lichenformis</i> AS-S24-I) and detergent stable alkaline protease (<i>P.tezpuresnsis</i> sp.nov. strain AS-S24-II) with molecular weight of reported protease purified from <i>Bacillus</i> species	592-594
11.13	A comparison of molecular weight of alkaline β - keratinase (in the present study) with the reported molecular weight of the same enzyme purified from <i>B.</i> <i>subtilis</i> and other species of <i>Bacillus</i>	596
11.14	A comparison of requirement of optimum temperature and pH for purified / partially purified proteases in the present study with reported alkaline proteases isolated from <i>Bacillus</i> species	598-599
11.15	A comparison of requirement of optimum temperature and pH of purified keratinase in the present study with reported alkaline keratinase purified from <i>Bacillus</i> species	599-600
11.16	A comparative study of effect of different surfactants,	604-607

Table No	Titles	xix Page No
	oxidizing and bleaching agent's on purified alkaline proteases	
11.17	A comparison of influence of metal ions on purified / partially purified proteases in the present study with proteases purified by other workers	609-610
11.18	A comparison of kinetic properties of purified/ partially purified protease in the present study with the reported proteases purified from <i>Bacillus</i>	613
11.19	Comparison of fibrinolytic / casinolytic (F/C) ratio of Bacillus sp strain AS-S20-I with other reported strains	619
11.20	Comparison of K _m and V _{max} of partially purified protease <i>Bacillus</i> sp strain AS-S20-I with other reported strains	619-620
11.21	General composition of detergents for laundry and dishwashing	622-623
11.22	A comparison of detergent compatibility properties of purified / partially purified protease with detergent stability of previously reported proteases	626-628

•

List of Figures

Figure	Figure legends	Page
No		No
	Chapter No 1: Introduction	
1.1	Global enzyme markets by application sectors,	5
	through 2012 (In \$ Millions), according to Business	
	Communications Company (BCC 2009).	
1.2	Consumption of industrial enzymes in India:	6
	Pharmaceuticals; Food and feed; Detergent	
	manufacturing; Leather and paper and; Textile	
	processing (Source: Biospectrum, June,2010.	
	(http://biospectrumindia.ciol.com/content/BSTOP20/1	
	10061423.asp)	
1.3	Distribution of enzyme sales. The contribution of	10
	different enzymes to the total sales of enzymes is	
	indicated. The shaded portion indicates the total	
	sales of proteases.	
1.4	Three-dimensional structure of proteases: (a) The	20
	crystal structure of trypsin, a serine protease	
	resolution(http://www.proteases.org/structure.php?sta	
	rt=1200)	
1.5	Active sites of proteases. The catalytic site of	21
	proteases is indicated by * and the scissile bond is	
	indicated by —S1; through Sn and S1' through Sn'	
	are the specificity subsites on the enzyme, while P1	
	through Pn and P1' through Pn' are the residues on	
	the substrate accommodated by the subsites on the	
	enzyme	
1.6	Catalytic mechanism of the serine proteases	24-26
1.7	Catalytic mechanism of aspartic proteases	28
1.8	Schematic illustration of catalytic mechanism of	29
	metalloprotease (thermolysin)	
1.9	Catalytic mechanism of cysteine protease	31

Figure No	Figure legends	Page No
	Chapter 2: Review of literature	56-103
	No figures	
	Chapter 3 : Materials and Methods	104-147
	No figures	•
	Chapter 4 :Results	
4.1	Storage stability of crude protease from selected	157
	bacteria at zero day (2) and post 30 days of storage	
	at 4°C(□). Results represent mean ± S.D of three	
	individual experiments.	
4.2(a)	Phylogenetic relationships of strain AS-S10-II and	176
	other closely related Brevibacillus species based on	
	16S rDNA sequencing. The tree was generated using	
	the neighbour-joining method and the sequence from	
	Escherichia coli strain KesE6 (accession no	,
	EU884314) was considered as out-group. The data	
	set was re-sampled 1000 times by using the	
	bootstrap option and percentage values are given at	
	the nodes. Bar, 0.01 substitutions per site.	
4.2(b)	Phylogenetic relationships of strain AS-S10-II and	177
	other closely related Brevibacillus species based on	
	16S rDNA sequencing. The tree was generated using	
	the Unweighted Pair Group Method with Arithmetic	
	Mean (UPGMA) method and the sequence from	
	Escherichia coli strain KesE6 (accession no	
	EU884314) was considered as out-group. The data	
	set was re-sampled 1000 times by using the	
	bootstrap option and percentage values are given at	
	the nodes. Bar, 0.01 substitutions per site.	
4.3(a)	Phylogenetic relationships of strain AS-S20-I and	192
	other closely related Bacillus species based on 16S	

rDNA sequencing. The tree was generated using the

.

Figure

Figure legends

No

neighbour-joining method and the sequence from *Escherichia coli* strain KesE6 (accession no EU884314) was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

- 4.3(b) Phylogenetic relationships of strain AS-S20-I and other closely related Bacillus species based on 16S rDNA sequencing. The tree was generated using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from coli strain KesE6 Escherichia (accession no EU884314) was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.
- 4.4(a) Phylogenetic relationships of strain AS-S24-I and other closely related *Bacillus* species based on 16S rDNA sequencing. The tree was generated using the neighbour-joining method and the sequence from *Escherichia coli strain KesE6 (accession no EU884314)* was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.
- 4.4(b) Phylogenetic relationships of strain AS-S24-I and other closely related *Bacillus* species based on 16S rDNA sequencing. The tree was generated using the unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from *Escherichia coli* strain. KesE6 (accession no EU884314) was considered as out-group. The data

Page No

193

207

208

Figure No	Figure legends	Page No
NO	set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.	
4.5(a)	Phylogenetic relationships of strain AS-S24-II and other closely related <i>Paenibacillus</i> species based on 16S rDNA sequencing. The tree was generated using	222
	the neighbour-joining method and the sequence from <i>Bacillus</i> sp. HSCC 1649 T (accession no. AB045097) was considered as out-group. The data set was resampled 1,000 times by using the bootstrap option, and percentage values are given at the nodes. Bar, 0.01 substitutions per site.	
4.5(b)	Phylogenetic relationships of strain AS-S24-II and other closely related <i>Paenibacillus</i> species based on 16S rDNA sequencing. The tree was generated using the unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from <i>Bacillus</i> sp. HSCC 1649 T (accession no. AB045097) was considered as out-group. The data set was resampled 1,000 times by using the bootstrap option, and percentage values are given at the nodes. Bar, 0.01	223
4.6	PCR amplification of ISR of 16S-23S r RNA gene of strain AS-S10-IILane 1 molecular weight marker in kbp [(a) 1.0 kb and (b) 0.5 kbp)], Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS- S10-II with primers (p1/p2) in Fig. (a) and in Fig. (b) nested PCR of 0.7kb fragment with primer p3/p4.	224
4.7	PCR amplification of ISR of 16S-23S r RNA gene of strain AS-S20-4: Lane 1 molecular weight marker in kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS-	225

Figure	Figure legends	Page
No		No
	S20-I with primers (p1/p2) in fig. (a) and in fig. (b)	
	nested PCR of 0.7kb fragment with primer p3/p4.	
4.8	PCR amplification of ISR of 16S-23S r RNA gene of	226
	strain AS-S18: Lane 1 molecular weight marker in	
	kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with	
	DNA template; Lane 3 amplified ISR of strain AS-	
	S18 with primers (p1/p2) in fig. (a) and in fig. (b)	
	nested PCR of 0.7kb fragment with primer p3/p4.	
4.9	PCR amplification of ISR of 16S-23S r RNA genes of	227
	strain AS-S24-I: Lane 1 molecular weight marker in	
	kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with	
	DNA template; Lane 3 amplified ISR of strain AS-	
	S24-I with primers (p1/p2) in fig. (a) and in fig. (b)	
	nested PCR of 0.7kb fragment with primer p3/p4.	
	Chapter 5 :Results	230
5.1	Screening of different waste residues such as MOC	232
	(�), WB (⊠), RB (Δ), IC(X), PP (⊠), BL (∘), and TL	
	(\blacksquare) for the production of alkaline protease by	
	B.subtilis strain DM-04 strain at different time	
	intervals. Values are mean ± S.D. of three	
	experiments.	
5.2	Time course of alkaline protease production by	233
	Bacillus subtilis strain DM-04. Legends show	
	bacterial dry biomass (*) and protein concentration	
	of cell free extract (⊡).Values are mean ± S.D. of	
	three experiments.	
5.3	Influence of initial moisture content of the substrates	234
	[PP (■) or IC (♦)] on alkaline protease production by	
	B.subtilis strain DM-04. Values are mean \pm S.D. of	
	three determinations post 24h incubation at 50°C.	
	Moistening agent was distilled water, pH adjusted to	
	8.0.	

Figure No	Figure legends	Page No
5.4 /	Influence of moistening agents on alkaline protease production by <i>B.subtilis</i> strain DM-04 using either IC (\blacksquare) or PP (\blacksquare) as a substrate. Values represent mean ± S.D of three experiments post 24h of incubation of	235
5.5	<i>B.subtilis</i> strain DM-04 at 50°C. Influence of inoculum size on alkaline protease production by <i>B.subtilis</i> strain DM-04 using PP (Δ) or IC (\blacksquare) as substrate under SSF. Values are mean ± S.D. of three determinations.	236
5.6	Effect of supplementation of co-carbon sources (10 % w/w) to IC (substrate) on alkaline protease production by <i>B.subtilis</i> strain DM-04.Values are means ± S.D. of three determinations.	237
5.7	Effect of supplementation of co-nitrogen sources $(1.0\% \text{ w/w})$ to IC (99 % w/w) on alkaline protease production by <i>B.subtilis</i> DM-04.Values are means \pm S.D. of three determinations.	238
5.8	Screening of best extraction medium for alkaline protease extraction from the fermented matter. Values are means \pm S.D. of three determinations.	239
5.9	Effect of different carbon sources on alkaline protease production from <i>B.subtilis</i> strain DM-04 under SmF. Values are mean \pm S.D of three determinations.	241
5.10	Effect of various nitrogen sources on alkaline protease production from <i>B.subtilis</i> strain DM-04 under SmF. Values are mean \pm S.D of three determinations.	242
5.11	Effect of pH on alkaline protease production from <i>B.subtilis</i> strain DM-04. Values are mean ± S.D of three determinations.	243
5.12	Effect of incubation temperature on alkaline protease	244

Figure	Figure legends	Page
No	production from <i>B.subtilis</i> strain DM-04. Values are	No
	mean \pm S.D of three determinations.	
5.13	Effect of incubation time on alkaline protease	245
	production (\blacklozenge), bacterial dry biomass (\square) and protein	
	content (\blacktriangle) of culture supernatant from <i>B.subtilis</i>	
	strain DM-04 under submerged fermentation	
	condition. The pH and temperature of the medium	
	were adjusted to 8.0 and 45°C, respectively. Values	
	are mean \pm S.D of three determinations	
5.14	Effect of agitation rate on alkaline protease	246
	production from B.subtilis strain DM-04 under	
	submerged fermentation. Values are mean± S.D of	
	three determinations.	
5.15	Response surface plots for alkaline protease	253
	production by <i>B. subtilis</i> strain DM-04. The interaction	E
	between (a) concentration (%, w/v) of (1:1, w/ \tilde{w})	
	IC:PP (C ₁) and concentration (%, w/v) of beef-extract	
	level (C ₂), hold value incubation time (C ₃) = 0; (b)	
	concentration (%, w/v) of (1:1, w/w) IC:PP (C ₁) and	
	incubation time (C_3) ,; hold value beef extract level	
	$(C_2) = 0;$ (c) concentration (%, w/v) of beef extract	
	(C_2) and incubation time (C_3) , hold value IC:PP level	
	(C ₁)= 0.	
5.16	Countor surface plots for alkaline protease production	254
	by <i>B. subtilis</i> strain DM-04. The interaction between	
	(a) concentration (%, w/v) of (1:1, w/w) IC:PP (C ₁)	
	and concentration (%, w/v) of beef-extract level (C_2),	
	hold value incubation time (C_3) = 0; (b) concentration	
	(%, w/v) of (1:1, w/w) IC:PP (C_1) and incubation time	
	(C ₃),; hold value beef extract level (C ₂) \approx 0; (c)	
	concentration (%, w/v) of beef extract (C_2) and	
	incubation time (C_3), hold value	

Figure	Figure legends	Page
No		Νο
	IC:PP level (C_1)= 0.	
5.17	Fractionation of anionic proteases secreted from	257
	B.subtilis strain DM-04 by DEAE Sephadex A-50	
	column. Elution was performed stepwise with	
	phosphate buffers of the following molarities and pH	
	values: (a) 20 mM K-phosphate, pH 7.0); (b) 20 mM	
	K-phosphate (pH 6.5); (c) 20 mM K-phosphate (pH	
	6.0); (d) 20 mM K-phosphate (pH 5.5); (e) 100 mM K-	
	phosphate (pH 5.0); (f) 120 mM K-phosphate (pH	
	5.0). Data represent a typical experiment.	
5.18	Sephacryl S-200 gel filtration profile of DE-I fraction.	258
	Data represent a typical experiment.	
5.19	12.5 % SDS-PAGE of crude protease and Bsubap-I	259
	from <i>B. subtilis</i> DM-04. Molecular weight markers are	
	phosphorylase b (97,400 Da), BSA (66,000 Da),	
	ovalbumin (43,000 Da), carbonic anhydrase (29,000	
	Da), soybean trypsin inhibitor (20,100 Da) and	
	lysozyme (14,300 Da); Lane 1: crude protease (50	
	μg); Lane 2: DEAE-Sephadex A-50 flow through	
	fraction (50 μg); Lane 3: DE-01 fraction (50 μg); Lane	
	4: Bsubap-I under reduced condition (10 μg); Lane 5:	
	Bsubap-I under non-reduced condition (10 μ g), Lane	
	6: Casein zymograph of Bsubap-I (20 μg) post	
	incubation at 45 °C for 4 h.	
5.20	RP-HPLC of GF-II fraction. HP-I represents solvent	260
	peak.	
5.21	Lineweaver-Burk plot to determine the K_m and V_{max}	262
	values for Bsubap-I using casein as a substrate.	
	Values are mean of triplicate determinations.	
5.22	Thermo stability study of Bsubap-I from B.subtilis	263
	strain DM-04. Values are mean ± S. D. of three	
	determinations	

xxviii

Figure	Figure legends	Page
No		Νο
	Effect of polyols on Bsubap-I stability at 60°C for 120	
	min. Values are mean \pm S. D. of three determinations	
5.24	Effect of divalent metal ions on catalytic activity of	265
	Bsubap-I. Values are mean ± S. D. of three	
	determinations	
5.25	Organic solvent stability of Bsubap-I. Enzyme activity	267
	in the absence of solvents was considered as 100%	
	activity and other values were compared with that.	
	Each value represents mean ± S.D. of three	
	experiments.	
5.26	Detergent stability and compatibility of Bsubap-1 (7.0	270
	μ g / ml) pre-incubated at 25 (E), 37(\Box), and 45°C	
	(2). Enzyme activity in the absence of detergent was	
	considered as 100% activity and other values were	
	compared with that. The values represent mean ±	
	S.D. of three determinations	
5.27	Wash performance test of Bsubap-I at 37°C. The	271
	values represent mean ± S.D. of three determinations	
5.28	Antibacterial activity of purified Bsubap-I (0.25mg /ml)	272 .
	from <i>B.subtilis</i> DM-04. Values represent mean ± S.D	
	of three experiments	
5.29	Dehairing activity of Bsubap-I (a) goat skin incubated	273
	in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at	
	37°C (control) and (b) enzymatically dehaired goat	
	skin incubated with Bsubap-I (50 U / ml) for 12 h at	
	37°C.	
5.30	Gel filtration profile of zwitterionic proteins from	275
	<i>B.subtilis</i> strain DM-04.	
5.31	Reverse-phase HPLC of GF-I fraction. HP-S stand	276
	for solvent peak	
5.32	12.5% SDS-polyacrylamide gel electrophoresis of	277

Figure legends

Figure

Page No

No purified protease. Molecular weight markers were phosphorylase b (97,400 Da), BSA (66,000 Da), ovalbumin (43,000 Da), carbonic anhydrase (29,000 Da), soybean trypsin inhibitor (20,100 Da) and lysozyme (14,300 Da); lane 1, crude protease (40 µg); lane 2, CM-Cellulose flow through (CMFT) (30 ug); lane 3, DEAE-Sephadex A-50 Flow through (DEFT) (30 µg); lane 4, ethanol precipitated fraction (8 µg); lane 5, HP-I fraction under reduced condition (15.0 µg); lane 6, HP-I fraction under non-reduced condition (15.0 µg). 5.33 Effect of incubation temperature on Alzwiprase 278 activity. Each value represents mean ± S.D. of three experiments 5.34 Effect of pH on Alzwiprase activity. Each value 278 represents mean ± S.D. of three experiments. 5.35 Thermo-stability study of Alzwiprase from *B.subtilis* 280 strain DM-04 at 60°C. Each value represents mean ± S.D. of three experiments 5.36 , Effect of divalent ions on Alzwiprase from B.subtilis 283 strain DM-04. Each value represents mean ± S.D. of three experiments. 5.37 Effect of polyols against heat-denaturation of catalytic 284 activity of Alzwiprase. The activity of enzyme in absence of polyols was considered as 100% activity and other values were compared with that. Each value represents mean ± S.D. of three experiments. 5.38 Lineweaver-Burk plot to determine the K_m and V_{max} 285 values of Alzwiprase using casein as a substrate. Each value represents mean of three experiments. 5.39 Organic solvent stability of Alzwiprase. Enzyme 286

activity in the absence of solvents was considered as

XXX

Figure No	Figure legends	Page No
	100% activity and other values were compared with	
	that. Each value represents mean ± S.D. of three experiments.	
5.40	Detergent stability and compatibility of Alzwiprase at	288
	pre-incubation temperatures of $25(\Box)$, 37 (🔂) and 45	
`	(■)°C for 60 min. Enzyme activity in the absence of	
	detergent was considered as 100% activity and other	
	values were compared with that. The values	
	represent mean \pm S.D. of three determinations.	
5.41	Wash performance study of Alzwiprase at 37°C. The	289
	values represents mean ± S.D. of three	
	determinations	
5.42	Antibacterial study of Alzwiprase (0.30 mg /ml) from	290
	B.subtilis strain DM-04 post 12h of incubation at	
	37°C. Values represent mean ± S.D of three	
	experiments.	
5.43	Dehairing activity of Alzwiprase (a) goat skin	291
	incubated in 100mM Glycine-NaOH buffer, pH 10.0	
	for 12 h at 37°C (control) and (b) enzymatically	
	dehaired goat skin incubated with Alzwiprase (50U /	
	ml) for 12 h at 37°C.	000
0.4	Chapter 6 : Results	293
6.1	Screening of different waste residues such as MOC	294
	(\diamond), WB (\square), RB (\blacktriangle), IC(X), PP(\bullet), BL(\bullet), and	
	TL(X) for the production of alkaline protease by	
	Paenibacillus tezpurensis sp.nov. strain AS-S24-II	
	strain at different time intervals. Values are mean \pm	
	S.D. of three experiments.	
6.2	Kinetics of alkaline protease production by	295
	Paenibacillus tezpurensis sp.nov. strain AS-S24-II.	
	1 around a show bacterial day biamass (A) and protain	

Legends show bacterial dry biomass (\diamondsuit) and protein

Figure No	Figure legends	Page No
	concentration of cell free extract (). Values are mean	
	± S.D. of three experiments.	
6.3	Influence of initial moisture content of the substrates	296
	[PP (國) or IC (♦)] on protease production. Values are	
	mean ± S.D. of triplicate determinations post 24h	
	incubation at 45°C. Moistening agent was distilled	
	water, adjusted to pH 8.0 with 0.01N NaOH.	
6.4	Influence of moistening agents on alkaline protease	297
	production by Paenibacillus tezpurensis sp.nov.strain	
	AS-S24-II in SSF using either IC (\blacksquare) or PP (\Box) as a	
	solid substrate. Values represent mean ± S.D of	
	three experiments post 24h at 45°C.	
6.5	Influence of inoculum size on protease production by	298
	Paenibacillus tezpurensis sp.nov. strain AS-S24-II	
	using PP (�) or IC (I) under SSF. Values are mean	
	± S.D. of three determinations	
6.6	Effect of supplementation of co-carbon sources (10	299
	% w/w) to IC (99 % w/w) on alkaline protease	
	production by <i>Paenibacillus tezpurensis</i> sp.nov.	
	strain AS-S24-II. Values are means ± S.D. of three	
	determinations.	
6.7	Effect of supplementation of co-nitrogen sources	300
	(1.0% w/w) to IC (99.0%) (substrate) on protease	
	production by Paenibacillus tezpurensis sp.nov.	
	strain AS-S24-II. Values are means ± S.D. of three	
	determinations	
6.8	Screening of extraction mediums for maximum	301
	protease extraction from fermented substrate (IC).	
<u> </u>	Values are means \pm S.D. of three determinations.	0.00
6.9	Effect of different carbon sources on alkaline	303
	protease production from Paenibacillus tezpurensis	

xxxii

Figure No	Figure legends	Page No
	sp.nov. strain AS-S24-II under SmF. Values are	
	means \pm S.D. of three determinations.	
6.10	Effect of various nitrogen sources on alkaline	304
	protease production from Paenibacillus tezpurensis	
	sp.nov. strain AS-S24-II in SmF. Values are means \pm	
	S.D. of three determinations	
6.11	Effect of pH on alkaline protease production by	305
	Paenibacillus tezpurensis sp.nov. strain AS-S24-II in	
	SmF. Values are means ± S.D. of three	
	determinations.	
6.12	Effect of incubation temperature on alkaline protease	306
	production from Paenibacillus tezpurensis sp.nov.	
	strain AS-S24-II in SSF. The pH of the medium was	
	adjusted to 8.0, respectively. Values are means \pm	
	S.D. of three determinations.	
6.13	Effect of incubation time on alkaline protease	307
	production by Paenibacillus tezpurensis sp.nov.	
	strain AS-S24-II in SmF. Legends show alkaline	
	protease production (�) bacterial dry biomass (■)	
	and protein content (\blacktriangle). Values are means ± S.D. of	
	three determinations.	
6.14	Effect of agitation rate on alkaline protease	308
	production from Paenibacillus tezpurensis sp.nov.	
	strain AS-S24-II under SmF. Values are means \pm	
	S.D. of three determinations.	
6.15	Response surface plots for alkaline protease	315
	production by Paenibacillus tezpurensis sp.nov.	
	strain AS-S24-II in SSF. The interaction between (a)	
	pH of the medium (C ₁) and concentration (%, w/v) of	
	casein level (C ₂), hold value C ₃ = 0 (b) pH of the	
	medium (C ₁) vs concentration (%, w/v) of ammonium	

Figure	Figure legends	Page
No		No
	sulphate level (C ₃), hold value C_2 = 0 and (c)	
	concentration (%, w/v) of casein (C_2) vs	
	concentration of ammonium sulphate level (C ₃) (%	
	w/v) hold value $C_1 = 0$	
6.16	2D Countor surface plots for alkaline protease	316
	production by <i>P.tezpurensis</i> sp.nov. strain AS-S24-II	
	in SSF. The interaction between (a) pH of the	
	medium (C ₁) and concentration (%, w/v) of casein	
	level (C ₂), hold value C ₃ = 0 (b) pH of the medium (C ₁)	
	vs concentration (%, w/v) of ammonium sulphate	
	level (C ₃), hold value C ₂ = 0 and (c) concentration (%,	
	w/v) of casein (C ₂) vs concentration of ammonium	
	sulphate level (C ₃) (% w/v) hold value $C_1 = 0$	
6.17	Gel filtration of 80% acetone fraction of alkaline	321
	protease from <i>Paenibacillus tezpurensis</i> sp.nov.	
	strain AS-S24-II on Sephacyrl S-200 column. Data	
	represent a typical experiment	
6.18	RP-HPLC of GF-II protease fraction of alkaline	322
	protease from <i>Paenibacillus tezpurensis</i> sp.nov.	
	strain AS-S24-II. Initial peak with a retention time of	
	2.0 min represents the solvent peak.	
6.19	SDS-polyacrylamide gel (15%) electrophoresis of	323
	purified protease (HP-III). Lane 1, Protein molecular	
	weight standards: ovalbumin (43 kDa), carbonic	
	anhydrase (29 kDa), and soybean trypsin inhibitor	
	(20.1 kDa); lane 2, reduced crude protease (30 µg);	
	lane 3, 60% acetone precipitated fraction (30 µg),	
	lane 4, 80% acetone precipitated fraction (30 µg),	
	lane 5, reduced alkaline protease (8 μg), lane 6, non-	
	reduced alkaline protease (8 μg)	
6.20	Thermo-stability study of detergent-stable protease	325
	from Paenibacillus tezpurensis sp.nov. strain AS-	

xxxiv

Figure No	Figure legends	Page No
	S24-II in presence of CaCl ₂ (\blacklozenge) and in absence of	
	CaCl₂ (III). Values are mean ± S.D. of triplicate	
	determinations	
6.21	Lineweaver-Burk plot to determine the K_{m} and V_{max}	326
	values of detergent stable alkaline protease from	
	Paenibacillus tezpurensis sp.nov. strain AS-S24-II.	
	The substrate used was casein, at pH 9.5 and	
	incubation temperature was 45°C.	
6.22	Effect of polyols on thermostability of protease under	327
	heated condition from Paenibacillus tezpurensis	
	sp.nov. strain AS-S24-II. The enzyme without polyols	
	served as control (100% residual activity). Values	
	are mean \pm S.D. of three experiments.	
6.23	Effect of metal ions on protease activity of detergent	328
	stable alkaline protease from Paenibacillus	
	tezpurensis sp.nov. strain AS-S24-II Values are	
	mean \pm S.D. of three experiments.	
6.24	Organic solvent stability of alkaline protease from	330
	Paenibacillus tezpurensis sp.nov.strain AS-S24-II.	
	Enzyme activity in the absence of solvent was	
	considered as 100% activity and other values were	
	compared with that. Each value represents mean ±	
0.05	S.D. of three experiments.	
6.25	Detergent compatibility pattern of purified protease	333
	from Paenibacillus tezpurensis sp.nov. strain AS-	
	S24-II at the tested temperature ranges 25 (□), 37	
	(■) and 45°C (□). Values are mean ± SD of triplicate	
6.06	determinations.	224
6.26	Dose-dependent and wash performance study of purified protease in presence of sunlight®	334
	detergent(7.0 mg /ml)	

Figure No	Figure legenus	
6.27	Wash performance study of purified protease from Paenibacillus tezpurensis sp.nov. strain AS-S24-II at	່ຽວປ
	45°C. Values are mean ± SD of triplicate determinations.	
6.28	Dehairing activity of purified protease from <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with purified protease from <i>Paenibacillus tezpurensis</i> sp.nov. strain AS-S24-II (50 U / mI) for 12 h at 37°C. <i>Chapter 7 : Results</i>	336
7.1	Alkaline keratinase production from <i>Bacillus subtilis</i> strain RM-01 under solid state fermentation. Values are mean \pm S.D. of three experiments.	339
7.2	Influence of initial moisture content on alkaline keratinase production from <i>B.subtilis</i> strain RM01. Values are mean ± S.D. of three determinations post 96 incubation at 50°C temperature. Moistening agent was distilled water, pH adjusted to 8.0.	340
7.3	Influence of moistening agent on alkaline β - keratinase production by <i>B.subtilis</i> strain RM-01 using chicken feather as a substrate. Values represent mean ± S.D. of three experiments post 96 h of incubation at 50°C.	341
7.4	Influence of inoculum size on alkaline β -keratinase production by <i>B.subtilis</i> strain RM-01 on raw chicken-feather under SSF. Values are mean \pm S.D. of three experiments.	342
7.5	Effect of supplementation of co-carbon sources (10%, w/w) to chicken feather (90%, w/w) on β -keratinase production by <i>B. subtilis</i> strain RM-01.	343

xxxvi

Figure	Figure legends	Page
No	Values are mean it S.D. of three superiments	No
7.6	Values are mean ± S.D. of three experiments	344
7.6	Effect of supplementation of co-nitrogen sources (1.0%, w/w) to chicken feather (substrate) for β -	344
	keratinase production by <i>B. subtilis</i> strain RM-01.	
	Values are mean \pm S.D. of three experiments	
7.7	Screening of best extraction medium for maximum	345
•.•	alkaline β-keratinase extraction from fermented	010
	material. Values are mean ± S.D. of three	
	experiments.	
7.8	Effect of different carbon sources on alkaline β-	346
	keratinase production from <i>B.subtilis</i> strain RM-01	
	under SSF. Values are mean ± S.D. of three	
	experiments.	
7.9	Effect of various nitrogen sources on alkaline β -	347
	keratinase production from B. subtilis strain RM-01	
	under SSF. Values are mean \pm S.D. of three	
	experiments.	
7.10	Effect of pH on alkaline β -keratinase production from	348
	B.subtilis strain RM-01. Values are mean \pm S.D. of	
	three experiments.	
7.11	Effect of incubation temperature on alkaline β -	349
	keratinase production from <i>B.subtilis</i> strain RM-01 in	
	SmF. Values are mean \pm S.D. of three experiments.	
7.12	Effect of incubation time on alkaline β -keratinase	350
	production in SmF (a), bacterial dry biomass (\bullet), and	
	protein content (a) from <i>B.subtilis</i> strain RM-01 under	
7.13	SSF. Values are mean \pm S.D. of three experiments.	054
1.13	Effect of agitation rate on alkaline β-keratinase production from <i>B.subtilis</i> strain RM-01 under SmF.	351
	Values are mean \pm S.D. of three experiments.	
7.14	Response surface plots for alkaline β-keratinase	358
	production by <i>B. subtilis</i> strain RM-01. The interaction	

.

Figure legends

Figure No

between (a) pH of the medium and concentration (%, w/v) of maltose, hold value $C_3=0$ (b) pH of the medium vs concentration (%, w/v) of sodium nitrate, hold value $C_2=0$ and (c) concentration (%, w/v) of maltose vs concentration of sodium nitrate (% w/v) hold value $C_1=0$. Values are mean ± S.D. of three experiments.

- 7.15 Countor plots for alkaline β-keratinase production by 359 B.subtilis strain RM-01. The interaction between (a) pH of the medium and concentration (%, w/v) of maltose, hold value $C_3=0$ (b) pH of the medium vs concentration (%, w/v) of sodium nitrate, hold value $C_2=0$ and (c) concentration (%, w/v) of maltose vs concentration of sodium nitrate (% w/v) hold value $C_1=0$. Values are mean ± S.D. of three experiments
- 7.16 Batch fermentation for alkaline β-keratinase production from *B.subtilis* strain RM-01 under statistically optimized conditions in SSF. Values are mean ± S.D. of three experiments.
- 7.17 CM-Cellulose profile of cationic keratinase secreted 362 from *B.subtilis* strain RM-01. Buffers used for step elution were : (a) 100 mM K-phosphate buffer, pH 7.5 ; (b) 100 mM K-phosphate buffer, pH8.0 ; (c) 150 mM K-phosphate buffer, pH 8.0 ; (c) 200 mM K-phosphate buffer, pH 8.0 ; (d) 200 mM K-phosphate buffer, pH 8.0 ; (f) 300 mM K-phosphate buffer, pH 8.5. Data represent a typical experiment.
- 7.18 Gel-filtration profile of CM-1 (non-retained by CM- 363 cellulose) fraction from *B.subtilis* RM-01 bacterial strain on Sephacryl S-200 column. Data represent a

Page No

361

xxxviii

Figure	Figure legends	Page
No		No
	typical experiment.	
7.19	RP-HPLC profile of fraction GF-III. The HPLC	364
	experiment condition is described in the text. Data	
	represent a typical experiment.	
7.20	SDS-polyacrylamide gel (12.5%) electrophoresis of	365
	purified β -keratinase. Lane 1, Protein molecular	
	weight standards: phosphorylase b (97.4 kDa), BSA	
	(66.0 kDa), ovalbumin (43 kDa), carbonic anhydrase	
	(29 kDa), and soybean trypsin inhibitor (20.1 kDa);	
	lane 2 reduced crude β -keratinase (30 µg); lane 3	
	non-reduced crude β -keratinase (30 µg); lane 4	
	reduced β -keratinase (15 µg); lane 5 non-reduced β -	
	keratinase (15 μg).	
7.21	pH optimization of alkaline β-keratinase from	366
	B.subtilis strain RM-01. Values are mean \pm S.D. of	
	three experiments.	
7.22	Effect of incubation temperature on alkaline β -	367
	keratinase activity from <i>B.subtilis</i> strain RM-01.	
	Values are mean ± S.D. of three experiments.	
7.23	Substrate specificity study of purified alkaline β -	368
	keratinase from <i>B.subtilis</i> strain RM-01. Values are	
	mean \pm S.D. of three experiments.	
7.24	Thermostability of alkaline β-keratinase from	369
	B.subtilis strain RM-01. Values are mean \pm S.D. of	
	three experiments	
7.25	Lineweaver-Burk plot to determine the K_{m} and V_{max}	370
	values of purified alkaline β-keratinase from Bacillus	
	subtilis strain RM-01.	
7.26	Effect of metal ions on alkaline β-keratinase activity	371
	from <i>B.subtilis</i> strain RM-01. Values are mean ± S.D.	
	of three experiments	
7.27	Effect of polyols on alkaline β -keratinase stability at	373

xxxix

Figure	Figure legends	Page
No		No
	60°C for 30 min. The enzyme activity without polyols	
	served as control (100%). Values are mean \pm S.D. of	
	three experiments.	
7.28	Organic solvent stability of alkaline β -keratinase from	374
	B.subtilis strain RM-01. Enzyme activity in the	
	absence of solvents was considered as 100% activity	
	and other values were compared with that. Values	
	are mean± S.D. of three experiments.	
7.29	Legend shows response surface plot (a) and contour	379
	plot (b) of specific activity of iron-oxide MNP bound β -	
	keratinase vs pH of buffer (Tris-HCI) system used.	
	C_1 , amount of MNP (in coded value), C_2 , pH of Tris-	
	HCI (in coded value), and C_3 (specific activity in U	
	/mg).	
7.30	Scanning electron microscopic images of (a) bare	382
	bare Fe ₃ O ₄ MNP, and (b) Fe ₃ O ₄ MNP bound β -	
	keratinase	
7.31(a)	FTIR spectra of iron oxide magnetic nanoparticle	383
7.31 (b)	FTIR spectra of MNP-coupled β-keratinase.	384
7.32	Magnetization curve of iron oxide magnetic	385
	nanoparticle (a) Before (b) after enzyme	
	immobilization.	
7.33	X-ray diffraction pattern of (A) bare Fe_3O_4 MNP (B)	386
	Fe₃O₄ MNP bound β-keratinase.	
7.34	Effect of pH on free β -keratinase (\blacklozenge) and MNP	388
	coupled β -keratinase (\Box).Values are mean ± S.D. of	
	three experiments.	
7.35	Thermostability study of free β -keratinase and MNP –	390
	coupled β -keratinase at 60°C for 120 min. Values are	
	mean ± S.D. of three experiments	
7.36	Storage stability study of free β -keratinase and MNP	391
	-coupled β-keratinase for 30 days at 4°C. Values are	

Figure No	Figure legends	Page No
	mean ± S.D. of three experiments.	
7.37	Detergent stability and compatibility of alkaline β - keratinase from <i>B.subtilis</i> strain RM-01 at 25 (\Box), 37 (\blacksquare) and 45 (\Box)°C. Enzyme activity in absence of detergent was considered as 100% activity and other values were compared with that. Values represent	392
	mean ± S.D of three experiments.	
7.38	Wash performance study of alkaline β -keratinase from <i>B.subtilis</i> strain RM-01 at 37°C. From left (a) control (tap water with blood stain cloth), (b) alkaline β -keratinase (0.5 mg / ml) with blood stain cloth, (c) unheated detergent with blood stain cloth, (d) heated detergent with blood stain cloth, (e) unheated detergent with purified alkaline β -keratinase (0.5 mg / ml) with blood stain cloth, (f) heated detergent with purified alkaline β -keratinase (0.5 mg / ml) with blood stain cloth. Values represent mean \pm S.D of three experiments.	393
7.39	Dehairing activity of alkaline β -keratinase (a)goat skin incubated in 100 mM Tris- buffer, pH 8.0 for 6 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with alkaline β -keratinase (50U / ml) for 6 h at 37°C. Kinetics of chicken-feather hydrolysis by free β -	394 395
7.40	keratinase (\diamond) and MNP-coupled β -keratinase (\blacksquare). Values represent mean ± S.D of three experiments	555
7.41	Scanning electron microscopic images of (a) native chicken-feather (X 270) (b) native chicken-feather barb (X 1000) (c) rachis of chicken-feather post 24 h treatment with Fe ₃ O ₄ MNP bound β -keratinase (X 10,000) and (d) chicken-feather post 40 h treatment with Fe ₃ O ₄ MNP bound β -keratinase (X 500)	396

-

Figure No	Figure legends	Page No
7.42	Gas chromatographic profile of free β-keratinase treated chicken feather fermented products	398
7.43	Gas chromatographic profile of MNP coupled β- keratinase treated chicken feather fermented products.	399
7.44	Mass spectrum (MS) of volatile product released from hydrolyzed chicken feather post treated with MNP- coupled β-keratinase. Legends show ion chromatogram of each peak: (a) retention time 19.430; (b) retention time 25.936; (c) retention time 28.363, 31.405, and 32.615 have similar products; (d) retention time 30.078.	400
	Chapter 8 : Results	401
8.1	Screening of different agro-industrial waste residues such as MOC (\diamond), WB (\blacksquare), RB (Δ), IC(X), PP(\boxtimes), BL(\bullet), and TL(\blacksquare) for the production of alkaline protease by <i>Bacillus</i> sp. strain AS-S20-I at different time intervals. Values are mean \pm S.D. of three experiments.	403
8.2	Kinetics of alkaline protease production by <i>Bacillus</i> sp. strain AS-S20-I in SSF. Legends show bacterial dry biomass (\diamond) and protein concentration (\textcircled{a}).Values are mean ± S.D. of three experiments	404
8.3	Influence of initial moisture content of the substrates [PP (\diamond) or IC (\square)] on protease production. Values are mean \pm S.D. of three experiments post 24h incubation at 50°C. Moistening agent was distilled water, pH adjusted to 11.0.	405
8.4	Influence of moistening agent on protease production using either IC (\square) or PP (\square) as a substrate. Values are mean \pm S.D. of three experiments post 24h of incubation of <i>Bacillus</i> sp. strain AS-S20-I at 50°C.	406

.

Figure	Figure legends	Page
No		No
8.5	Influence of inoculum size on protease production by	407
	Bacillus sp. strain AS-S20-I strain using PP (*) or IC	
	(錮) as substrate under SSF. Values are mean ± S.D.	
	of three experiments.	
8.6	Effect of supplementation of co-carbon sources (10	409
	% w/w) to IC (substrate) on protease production by	
	Bacillus sp. strain AS-S20-I. Values are mean \pm S.D.	
	of three experiments	
8.7	Effect of supplementation of co-nitrogen sources	410
	(1.0% w/w) to IC (substrate) on protease production	
	by Bacillus sp.strain AS-S20-I. Values are mean±	
	S.D. of three experiments.	
8.8	Screening of extraction medium for optimum	411
	protease recovery from fermented matter. Values are	
	mean ± S.D. of three experiments.	
8.9	Effect of different carbon sources on alkaline	413
	protease production by Bacillus sp.strain AS-S20-I	
	under submerged fermentation. Values are mean \pm	
	S.D. of three experiments.	
8.10	Effect of various nitrogen sources on alkaline	414
	protease production from Bacillus sp. strain AS-S20-I	
	under SmF. Values are mean ± S.D. of three	
	experiments.	
8.11	Effect of medium pH on protease production by	415
	Bacillus sp. strain AS-S20-I. Values are mean± S.D.	
	of three experiments.	
8.12	Influence of incubation temperature on alkaline	416
	protease production by Bacillus sp.strain AS-S20-I in	
	SSF. The pH of the medium was adjusted to 9.5.	
	Values are mean \pm S.D. of three experiments.	
8.13	Effect of incubation time on alkaline protease	417

•

Figure No	Figure legends	Page No
	production by Bacillus sp. strain AS-S20-I in SmF.	
	Values are mean ± S.D. of three experiments.	
8.14	Effect of agitation rate on alkaline protease	418
	production from Bacillus sp. strain AS-S20-I under	
	SmF. Values are mean \pm S.D. of three experiments.	
8.15	Response surface plots for alkaline protease	425
	production by Bacillus sp. strain AS-S20-1. The	
	interaction between (a) pH of the medium and	
	concentration (%, w/v) of casein, hold value $C_3 = 0$	
	(coded value) (b) pH of the medium vs concentration	
	(%, w/v) of ammonium sulphate, hold value C_2 =	
	0(coded value), and (c) concentration (%, w/v) of	
	casein vs concentration of ammonium sulphate (%	
	w/v) hold value $C_1 = 0$ (coded value). Values are	
	mean \pm S.D. of three experiments	
8.16	Countor plots for alkaline protease production by	427
	Bacillus sp. strain AS-S20-I. The interaction between	
	(a) pH of the medium and concentration (%, w/v) of	
	casein, hold value $C_3 = 0$ (coded value) (b) pH of the	
	medium vs concentration (%, w/v) of ammonium	
	sulphate, hold value $C_2 = 0$ (coded value) and (c)	
	concentration (%, w/v) of casein vs concentration of	
	ammonium sulphate (% w/v) hold value $C_1 = 0$	
	(coded value). Values are mean ± S.D. of three	
	experiments.	
8.17	12.5 % SDS-polyacrylamide gel electrophoresis of	429
	crude and acetone precipitated proteases. Molecular	
	weight markers are phosphorylase b (97,400 Da),	
	BSA (66,000 Da), ovalbumin (43,000 Da), carbonic	
	anhydrase (29,000 Da); lane 1, crude protease in	
	reduced condition (40.0 µg); lane 2, crude protease	
	in non-reduced condition (40.0 μg); lane 3, acetone	

xliii

Figure	Figure legends	Page
No		No
	precipitate fraction under reduced condition (15.0	
	μg); lane 4, acetone precipitate fraction under non-	
0.40	reduced condition (15.0 μ g).	400
8.18	Influence of pH on alkaline protease activity from	430
	Bacillus sp. strain AS-S20-I. Values are mean ± S.D.	
0.40	of three experiments.	10.4
8.19	Thermo-stability study of partially purified protease	431
	from Bacillus sp. strain AS-S20-I heated at 60°C for	
	various time interval. Values are mean \pm S.D. of three	
	experiments.	
8.20	Effect of polyols against heat-denaturation of partially	433
	purified alkaline protease from <i>Bacillus</i> sp. strain AS-	
	S20-I. The protease was heated at 60°C for 120 min	
	either in presence or absence of polyols. The enzyme	
	activity without polyols was considered as control	
	(100%) and values were compared with that. Values	
	are mean \pm S.D. of three experiments.	
8.21	Lineweaver-Burk plot to determine the K_m and V_{max}	434
	values of partially purified protease using casein as a	
	substrate. Values are mean ± S.D. of three	
	experiments.	
8.22	Effect of metal ion on partially purified protease from	435
	Bacillus sp. strain AS-S20-I. Values are mean \pm S.D.	
	of three experiments.	
8.23	Organic-solvent stability of partially purified protease	438
	from Bacillus sp. strain AS-S20-I. Enzyme activity in	
	the absence of solvents was considered as 100%	
	activity and other values were compared with that.	
	Values are mean ± S.D. of three experiments.	
8.24	Degradation of fibrin by partially purified alkaline	439
	protease from <i>B.</i> sp. strain AS-S20-I. The fibrin	
	degradation products were separated by 12.5% SDS-	

Figure No	Figure legends	Page No
	PAGE. Lanes 1: control; Lane 2-7: fibrin degradation	
	pattern by 5.0 µg of partially purified alkaline	
	protease post 30, 60, 120, 240, 360, 480, and 720	
	min of incubation, respectively at 37°C.	
8.25	Degradation pattern of fibrinogen by partially purified alkaline protease from <i>B</i> . sp. strain AS-S20-I. The	439
	fibrinogen degradation products were separated by	
	12.5% SDS-PAGE. Lanes 1-7: fibrin degradation	
	pattern by 5.0 µg of partially purified alkaline	
	protease post 30, 60, 120, 240, 360, 480, and 720	
	min of incubation, respectively at 37°C; Lane 8:	
	control.	
8.26	Thrombolytic activity of partially purified protease	441
	from Bacillus sp. strain AS-S20-I. Values represent	
	mean \pm S.D of three experiments.	
8.27	Detergent stability and compatibility of partially	443
	purified protease (6.0 μg / ml) from <i>Bacillus</i> sp. strain	
	AS-S20-I at the tested temperature ranges 25 (\Box), 37	
	() and 45°C (☑). Values are mean ± SD of triplicate	
	determinations.	
8.28	Wash performance test of partially purified protease	444
	(6.0 μg /ml) from <i>Bacillus</i> sp. strain AS-S20-I at 37°C.	
	The values represent mean ± S.D. of three	
	determinations	
8:29	Dehairing activity of partially purified protease from	445
	Bacillus sp. AS-S20-I (a) goat skin incubated in 100	
	mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C	
	(control) and (b) enzymatically dehaired goat skin	
	incubated with partially purified protease (50 U / ml)	
	for 12 h at 37°C.	
	Chapter 9 : Results	446

.

.

Figure No	Figure legends	Page No
9.1	Screening of different waste residues such as MOC (\diamond) , WB (\blacksquare), RB (\blacktriangle), IC(\circ), PP(\boxtimes), BL(\circ), and TL(+) for the production of alkaline protease by <i>B. licheniformis</i> strain AS-S24-I at different time intervals. Values are mean \pm S.D. of three experiments.	448
9.2	Kinetics of alkaline protease production from <i>B.</i> <i>licheniformis</i> strain AS-S24-I. Legends show bacterial dry biomass (\diamondsuit) and protein concentration	449
9.3	 (■).Values are mean ± S.D. of three experiments. Influence of initial moisture content of the substrates [PP (□) or IC (♦)] on protease production. Values are 	450
9.4	mean \pm S.D. of three experiments post 60h incubation at 45°C. Moistening agent was distilled water, adjusted to pH 10.0 with 0.01N NaOH. Influence of moistening agents on alkaline protease production by <i>B.licheniformis</i> strain AS-S24-I in SSF using either IC (B) or PP (D) as a solid substrate. Values are mean \pm S.D. of three experiments post	451
9.5	 60h of incubation 45°C. Influence of inoculum size on protease production by <i>B. licheniformis</i> strain AS-S24-I using PP (◆) or IC (☑) as substrate under SSF. Values are mean ± S.D. 	452
9.6	of three experiments. Effect of supplemented co-carbon sources (10 % w/w) to IC (substrate) on alkaline protease production by <i>B. licheniformis</i> strain AS-S24-I. Values are mean	454
9.7	± S.D. of three experiments Effect of supplemented co-nitrogen sources (1.0% w/w) to IC (substrate) for protease production from <i>B</i> .	455

xlvii

Figure No	Figure legends	Page No
	licheniformis strain AS-S24-I. Values are mean± S.D.	
	of three experiments	
9.8	Screening of best extraction mediums for alkaline	456
	protease extraction from the fermentation matter.	
	Values are mean \pm S.D. of three experiments	
9.9	Effect of different carbon sources on alkaline	458
	protease production from Bacillus licheniformis strain	
	AS-S24-I under SmF. Values are mean ± S.D. of	
	three experiments	
9.10	Effect of various nitrogen sources on alkaline	459
	protease production from B. licheniformis strain AS-	
	S24-I in SmF. Values are mean ± S.D. of three	
	experiments.	
9.11	Effect of pH on alkaline protease production by B.	460
	licheniformis strain AS-S24-1 in SmF. Values are	
	mean ± S.D. of three experiments	
9.12	Effect of incubation temperature on alkaline protease	461
	production by <i>B. licheniformis</i> strain AS-S24-I. Values	
	are mean \pm S.D. of three experiments.	
9.13	Effect of incubation time on alkaline protease	462
	production (\blacklozenge), bacterial dry biomass (\Box), and	
	protein content (Δ) from <i>B. licheniformis</i> strain AS-	
	S24-I under SmF condition. Values are mean ± S.D.	
	of three experiments.	
9.14	Effect of agitation rate on alkaline protease	463
	production from B. licheniformis strain AS-S24-I	
	under SmF. Values are mean± S.D. of three	
	experiments.	
9.15	Response surface plots for alkaline protease	470
	production by B.licheniformis strain AS-S24-I. The	
	interaction between (a) pH of the medium and	

Figure No	Figure legends	Page No
NO	concentration (%, w/v) of glucose, hold value $C_3 = 0$	NU
	(b) pH of the medium vs concentration (%, w/v) of $(0, 0, 0, 0)$	
	yeast extract, hold value $C_2 = 0$ and (c) concentration	
	(%, w/v) of glucose vs concentration of yeast extract	
	(%, w/v), hold value $C_1=0$. Values are mean \pm S.D. of	
	three experiments.	
9.16	Countor plots for alkaline protease production by	471
•••••	B.licheniformis strain AS-S24-I. The interaction	
	between (a) pH of the medium and concentration (%,	
	w/v) of glucose, hold value $C_3 = 0$ (b) pH of the	
,	medium vs concentration (%, w/v) of yeast extract,	
	hold value $C_2 = 0$ and (c) concentration (%, w/v) of	
	glucose vs concentration of yeast extract (% w/v),	
	hold value $C_1=0$. Values are mean \pm S.D. of three	
	experiments	
9.17	Sephacryl S-200 gel filtration profile of 80 % (v/v)	474
	acetone precipitated fraction. Data represent a typical	
	experiment.	
9.18	RP-HPLC profile of fraction GF-VI from	475 [′]
	B.licheniformis strain AS-S24-I.	
9.19	SDS-PAGE (12.5%) of HP-III fraction (Alkarnase)	476
	from <i>B. licheniformis</i> strain AS-S24-I. Lane 1crude	
	keratinase (50 µg); Lane 2- acetone precipitated	
	keratinase (50 μg), Lane 3- reduced Alkarnase (10.0	
	μg); Lane 4- non-reduced Alkarnase (10.0 μg); Lane	
	5- Protein molecular weight marker (kDa)	
	phosphorylase b (97.4), BSA (66.0), ovalbumin:	
	(43.0), carbonic anhydrase (29.0).	
9.20	Effect of pH on protease activity. Values are mean \pm	478
	S.D. of three experiments	
9.21	Effect of incubation temperature on protease activity	478
	of Alkarnase. Values are mean ± S.D. of three	

xlix

Figure No	Figure legends	Page No
9.22	experiments Lineweaver–Burk plot for determination of K_m and V_{max} values of Alkamase. Values are mean ± S.D. of	-480
	three experiments.	
9.23	Effect of metal ions on activity of Alkamase. Values	481
	are mean \pm S.D. of three experiments	
9.24	Thermo-stability study of Alkamase from Bacillus	484
	licheniformis AS-S24-I heat at 60°C for 120 min.	
	Values are mean \pm S.D. of three experiments.	
9.25	Effect of polyols on thermostability of Alkarnase from	485
	B.licheniformis strain AS-S24-I post heated at 60°C	
	for 120 min. The enzyme without polyols served as	
	control (100%). Values are mean \pm S.D. of three	
	experiments.	
9.26	Organic solvent stability of Alkarnase from B.	486
	licheniformis strain AS-S24-I. Enzyme activity in the	
	absence of solvents was considered as 100% activity	
	and other values were compared with that. Values	
9.27	are mean \pm S.D. of three experiments.	489
9.21	Detergent stability and compatibility of Alkamase (7.0 µg / ml) from <i>B. licheniformis</i> strain AS-S24-I at the	409
	tested temperature ranges $25(\textcircled{B})$, 37 (\Box) and $45 ^{\circ}C$	
	(III) and 45 C (III)	
	determinations.	
9.28	Wash performance test of Alkarnase from B.	490
	licheniformis strain AS-S24-I at 45°C. The values	
	represent mean \pm S.D. of three determinations.	
9.29	Dehairing activity of purified alkaline protease (a)	491
	goat skin incubated in 100 mM Glycine–NaOH buffer,	
	pH 10.0 for 12 h at 37°C (control) and (b)	
	enzymatically dehaired goat skin incubated with	
	purified alkaline protease (50U / ml) for 12 h at 37°C.	

Figure	Figure legends	Page
No		No
	Chapter 10 : Results	492
10.1	Screening of different agro-industrial waste residues	494
	such as MOC (\diamond), WB (\Box), RB (Δ), IC(X), PP (\diamond),	
	BL (•), and TL (•) for the production of alkaline	
	protease by Brevibacillus sp. strain AS-S10-II strain	
	at different time intervals. Values are mean \pm S.D. of	
10.0	three experiments.	105
10.2	Kinetics of alkaline protease production by	495
	Brevibacillus sp. strain AS-S10-II. Legends show	
	bacterial dry biomass (2) and protein concentration	
10.0	(*).Values are mean± S.D. of three experiments	100
10.3	Influence of initial moisture content of the substrates	496
	[PP (■) or IC (+)] on alkaline protease production.	
	Values are mean \pm S.D. of triplicate determinations	
	post 48h incubation at 50°C. Moistening agent was	
40.4	distilled water, adjusted to pH 12.5 with 0.1N NaOH.	407
10.4	Influence of moistening agent on alkaline protease	497
	production using either IC (\square) or PP (\square) as a	
	substrate. Values represent mean ± S.D of three	
	experiments post 48h of incubation of <i>Brevibacillus</i>	
40 F	sp. strain AS-S10-II at 50°C.	400
10.5	Influence of inoculum size on protease production by	498
	Brevibacillus sp. strain AS-S10-II using PP (*) or IC	
	(a) under SSF. Values are mean ± S.D. of triplicate	
10.6	determinations	500
10.6	Effect of supplementation of co-carbon sources (10	500
	% w/w) to IC (substrate) on protease production by	
	Brevibacillus sp. strain AS-S10-II. Values are means ±	
10.7	S.D. of three determinations	501
10.7	Effect of supplementation of co-nitrogen sources	501
	(1.0% w/w) to IC (substrate) on protease production	
	by Brevibacillus sp. strain AS-S10-II. Values are	

I

Figure No	Figure legends	Page No
	means \pm S.D. of three determinations	
10.8	Screening of best extraction medium for extraction of	502
	alkaline protease from fermented matter. Values are	
	means \pm S.D. of three determinations.	
10.9	Effect of different carbon sources on alkaline	504
	protease production by Brevibacillus sp. strain AS-	
	S10-II under SmF. Values are mean \pm S.D. of three	
	experiments	
10.10	Effect of various nitrogen sources on alkaline	505
	protease production from <i>Brevibacillus</i> sp. strain AS-	
	S10-II under SmF. Values are mean± S.D. of three	
	experiments.	
10.11	Effect of medium pH on alkaline protease production	506
	by Brevibacillus sp. strain AS-S10-II in SSF. Values	
	are mean \pm S.D. of three experiments	
10.12	Effect of incubation temperature on alkaline protease	507
	production from Brevibacillus sp. strain AS-S10-II.	
	Values are mean ± S.D. of three experiments.	
10.13	Effect of incubation time on alkaline protease	508
	production (\blacklozenge), bacterial dry biomass (\square), and protein	
	content (A) from <i>Brevibacillus</i> sp. strain AS-S10-II	
	under SmF condition. Values are mean \pm S.D. of	
	three experiments.	
10.14	Effect of agitation rate on alkaline protease	508
	production from Brevibacillus sp. strain AS-S10-II	
	under SmF. Values are mean \pm S.D. of three	
	experiments.	
10.15	Response surface plots for alkaline protease	516
	production by Brevibacillus sp. strain AS-S10-II. The	
	interaction between (a) pH of the medium and	
	concentration (%, w/v) of casein, hold value $C_3 = 0(b)$	
	pH of the medium vs concentration (%, w/v) of	

li

Figure No	Figure legends	Page No
	potassium nitrate, hold value $C_2 = 0$ and (c)	
	concentration (%, w/v) of casein vs concentration of	
	potassium nitrate (% w/v) hold value $C_1 = 0$. Values	
	are mean \pm S.D. of three experiments	
10.16	Countor plots for alkaline protease production by	517
	Brevibacillus sp. strain AS-S10-II. The interaction	
	between (a) pH of the medium and concentration (%,	
	w/v) of casein, hold value $C_3 = 0$ (b) pH of the	
	medium vs concentration (%, w/v) of potassium	
	nitrate, hold value $C_2 = 0$ and (c) concentration (%,	
	w/v) of casein vs concentration of potassium nitrate	
	(% w/v) hold value $C_1 = 0$. Values are mean \pm S.D. of	
	three experiments	
10.17	Gel-filtration pattern of 80% acetone precipitate	520
	protease (β-keratinase) fraction from <i>Brevibacillus</i> sp.	
	strain AS-S10-II on Sephacryl S-200 column.	
10.18	SDS-PAGE (12.5%) of GF-I fraction from	521
	Brevibacillus sp. strain AS-S10-II. Lane 1 - protein	
	molecular weight markers (kDa) :phosphorylase b	
	(97.4), BSA (66.0), ovalbumin (43.0), carbonic	
	anhydrase (29.0); Lane 2- crude protease under	
	reduced condition (45.0µg); Lane3- crude protease	
	non-reduced condition (45.0µg); Lane 4 – 80%	
	acetone precipitate fraction (10.0µg); Lane 5- GF-I	
	fraction under reduced condition (8.0 µg); Lane 6 -	
	keratin zymographic study of GF-I fraction (8.0 μg).	
10.19	RP-HPLC of GF-I fraction, HP-I represents solvent	522
	peak	
10.20	Effect of incubation temperature on catalytic activity	524
	of Dravianman from Dravibacillus on strain AC	

10.20 Effect of incubation temperature on catalytic activity 52 of Brevicamase from *Brevibacillus* sp. strain AS-S10-II. Values are mean ± S.D. of three experiments

•

•

Figure	Figure legends	Page
No		No
10.21	Influence of pH on Brevicarnase activity from	525
	<i>Brevibacillus</i> sp. strain AS-S10-II. Values are mean ±	
	S.D. of three experiments.	
10.22	Heat-inactivation study of Brevicarnase from	526
	<i>Brevibacillus</i> sp. strain AS-S10-II. Values are mean ±	
	S.D. of three experiments.	
10.23	Effect of stabilizers on thermostability of	527
	Brevicarnase post heating at 60°C for 120 min. The	
	enzyme with out stabilizers (polyols) served as	
	control (100%). Values are mean \pm S.D. of three	
	experiments.	
10.24	Lineweaver-Burk plot to determine the K_m and V_{max}	528
	values of Brevicamase. Values are mean ± S.D. of	
	three experiments.	
10.25	Effect of metal ions on Brevicarnase activity . Values	529
	are mean \pm S.D. of three experiments.	
10.26	Organic - solvent stability of Brevicamase. Enzyme	532
	activity in the absence of solvents was considered as	
	100% activity and other values were compared with	
	that. Values are mean \pm S.D. of three experiments.	50.4
10.27	Detergent stability and compatibility of Brevicamase	534
	(6.0 μg / ml) from <i>Brevibacillus</i> sp. strain AS-S10-II at	
	the tested temperature ranges 25 (\square), 37 (\square) and	
	45(□)°C. Values are mean ± SD of triplicate	
40.00	determinations.	E95
10.28	Wash performance study using blood stain containing	535
	cotton fabrics with Brevicarnase (6.0 μ g / ml) at 45°C.	
	From left (a) control (tap-water with blood stain cloth),	
	 (b) Brevicarnase (6.0 μg / ml) with blood stain cloth, (c) unheated detergent with blood stain cloth, (d) 	
	heated detergent with blood stain cloth, (e) unheated	
	detergent with Brevicarnase (6.0 µg / ml) with blood	
	detergent with brevicalhase (0.0 µg / III) with blood	

Figure No	Figure legends	Page No
	stain cloth, (f) heated detergent with Brevicamase	
	(6.0 μ g / ml) with blood stain cloth. Values represent	
	mean ± S.D of three experiments	
10.29	Dehairing activity of Brevicarnase (a) goat skin	536
	incubated in 100 mM Glycine-NaOH buffer, pH 10.0	
	for 12 h at 37°C (control) and (b) enzymatically	
	dehaired goat skin incubated with Brevicarnase (50 U	
	/ ml) for 6 h at 37°C.	
	Chapter 11: Discussion	537
11.1	Diagrammatic representation of techniques and	541
	markers used in modern polyphasic approach for	
	resolving the bacterial hierarchy	
11.2	Inflow and outflow diagram for leather processing.	631
	Temporarily preserved (salted) hides and skins are	
	treated with variety of chemicals in a water medium,	
	through a series of unit processes and operations, to	
	produce leathers. This leads to a variety of solid (red	
	text) and air (purple text) pollutants at various stages	
	of processing	

.

liv

Acknowledgements

It gives me immense pleasure and joy to express my heartfelt gratitude to my supervisor, Prof. Ashis K. Mukherjee, Head and Co-crdinator, Department of Molecular Biology and Biotechnology, Tezpur University, who has guided me throughout the entire work. Without his constant inspiration, encouragement and constructive criticism, the present investigation would not have been possible.

I would like to express my sincere thanks to Prof. M.K. Chaudhari, Vice chancellor, Tezpur University, Napaam for their kind support and constant encouragement during the tenure of my research period.

I express my deep sense of gratitude to Dr. G.maitri Scientist –I DBT nodel centre, Miss Rupamoni thakur, ,Jetender, Rocktotpal, Satish, Hemant adhikari, saurov mazumdar and Miss Debashree Saikia for their technical support and careful thesis editing.

It is a great pleasure to offer my sincere thanks to all faculties and staff members of the Department, specifically Mr. Kalyan Hazarika, Mr. Pranab Mudoi, Mr. Samar Kakoti, Mr. Depak and Mr.D.D. Bania for their support during the entire course of investigation. Special thanks are to my colleague Mr. Deepak, Research scholar, Dept. of Biological science, Birla institute of Technology (BITS), Pilani for his friendly advices and constant encouragement. I am also grateful to my senior collegaues Dr. Kishore das, Dr. N.K, Bordoloi, Dr. (Mrs) Pallabi Kalita, Dr. R.Doley and all other friends of the department and also all AT hostel boarders of TU for their help, encouragement and cooperation.

I would like to express my deep sense of gratitude to all of my family members —for their enthusiastic inspiration all throughout my academic career. Thanks are also to my close associates Khem, Ambi, and Rakesh for their constant help and support.

Last but not the least, I also offer thanks to master students of MBBT departmet and various other departments for their support throughout the work.

The financial assistance in the form of a Junior and Senior Research Fellowship received from the DBT and CSIR, New Delhi is duly acknowledged.

Date 10/09/10

Abbreviations	Full form
CFU	Colony forming unit
DF	Degree of freedom
f-value	Fishure value
FTIR	Fourier transform infrared
	spectroscopy
gm	Gram
9	gravity
GC-FAME	Gas chromatography of fatty acid
	methyl ester
KBr	potassium bromide
kbp	Kilobase pair
kDa	Kilo dalton
MTCC	Microbial type culture collection
M	Molar
hð	Microgram
mM	Millimolar
mg /ml	Milligram / milliliter
ml	Milliliter
μ	Microlitre
Na-EDTA	Disodium ethylene diamine tetra
	acetate
NH₄Ci	Ammonium chloride
NH₄NO₃	Ammonium nitrate

List of abbreviation

Abbreviations	Full form		
(NH ₄) ₂ SO ₄	Ammonium sulphate		
NaNO ₃	Sodium nitrate		
Ν	Normality		
OD	Optical density		
p-value	Probability value		
rpm	Revolution per minute		
RBC	Red blood cells		
S <u>.</u> D	Standard deviation		
ТСА	Tri carboxylic acid		
U	Units		
v/v	Volume / volume		
w/v	Weight / volume		
w/w	Weight / Weight		

-

.

CHAPTER I

INTRODUCTION

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

.

•

Chapter 1

Introduction

1.0 Introduction

Biotechnology which can simply be defined as the application of living organisms and their components to industrial products and processes is important technology that has a large impact on many different industrial sectors. Biotechnology offers the potential for new industrial processes that require less energy and are based on renewable raw materials^{1,2}. Biotechnology is currently considered as a useful alternative to conventional process technology in industrial and analytical fields. Unlike the chemical catalysts, the biological systems have the advantages of accomplishing complex chemical conversions under mild environmental conditions with high specificity and efficiency. Biological systems help in ingredient substitution, processing aid substitution, more efficient processing, less undesirable products, increased plant capacity, increased products yields, and improved or unique products. The variety of chemical transformations catalyzed by enzymes has made these catalysts a prime target of exploitation by the emerging biotech industries^{2,3}.

Industrial biotechnology is the application of biological based systems and their components in the manufacture of industrial products or in the support of industrial processes. Industrial biotechnology (also referred to as "White Biotechnology") is one of the three areas of the biotechnology sector, the others being Healthcare biotechnology ("Red biotechnology") and Agricultural biotechnology ("Green biotechnology") as described by Soetaert and Vandamme⁴.

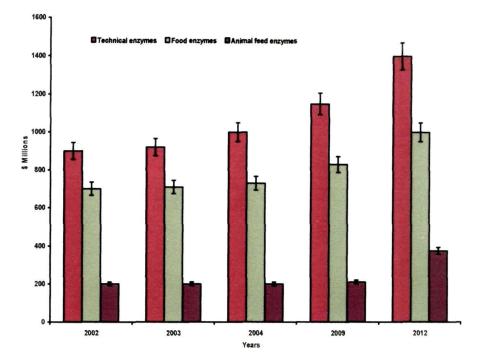
Industrial biotechnology is mainly based on fermentation technology and bio-catalysis. Fermentation is a biological process in which an organism or its components an aerobically convert organic compounds into alternative organic compounds⁵. In industrial biotechnology this

<u>Sudhir K Rai</u>

typically involves the conversion of complex organic material into simpler products (e.g. the conversion of carbohydrates into alcohol). In Bio-catalysis processes mostly the microbial enzymes, are applied to accelerate (catalyze) the conversion of substrate into a product⁵. Industrial biotechnology covers a broad range of industrial applications and sectors, including polymer manufacturing, biofuels production, fine and specialty chemical manufacturing and bio-remediation⁵.

1.1 Historical aspect of Industrial enzymes

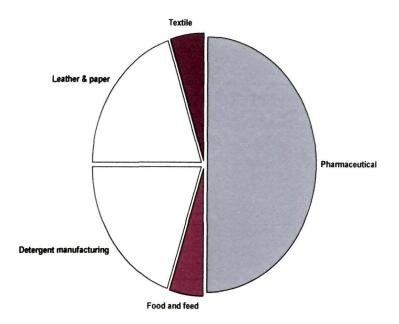
Most of the reactions in living organisms are catalysed by protein molecules called enzymes. Enzymes can rightly be called the catalytic machinery of living systems. Man has indirectly used enzymes since the beginning of human history. Enzymes are responsible for the bio catalytic fermentation of sugar to ethanol by yeasts, a reaction that forms the basis of beer and wine manufacturing. Enzyme oxidises ethanol to acetic acids. This reaction has been used in vinegar production for thousands of years. Similar microbial enzymatic reactions of acid forming bacteria and yeasts are responsible for aroma forming activities in bread making and in preserving activities in sauerkraut preparation^{6,7}.


Probably the first application of cell free enzymes was the use of rennin isolated from calf or lamb stomach. Rennin is an aspartic protease which coagulates milk protein and has been used for hundreds of years by cheese manufacturing industry. Rohm in Germany prepared the first commercial enzyme preparation in 1914^{8,9}. This trypsin enzyme isolated from animals degraded proteins and was used as a components of detergent. It proved to be so powerful compared to traditional washing powders that the original small package size made the German housewives suspicious so that the product had to be reformulated and sold in larger packages^{10,11}. The real breakthrough of enzymes occurred with the introduction of microbial proteases into washing powders. The first commercial bacterial (Bacillus) protease Bio-40 was marketed in 1959 and it revolutionized the enzyme market when Novozymes a Denmark based bio-industry started to manufacture it and major detergent manufactures started to use it around 1965. Sudhir K Rai

1.2 Industrial enzymes and development of bio industrial sectors: An overview

The field of industrial enzymes is now undergoing major R&D initiatives, resulting in both the development of a number of new products and in improvement in the process and performance of several existing products. According to a report from Business Communications Company, Inc the global market for industrial enzymes was estimated to touch \$2.7 billion in 2012¹² .Volume growth of industrial enzymes is between 4% and 5% AAGR (average annual growth rate), which is accompanied by decreasing prices, due to the increase in the number of minor players competing in the market. As a result, the market is expected to rise at an AAGR (average annual growth rate) of a little over 3% over the next 4 years, and the total industrial enzyme market in 2012 is expected to reach nearly \$2.4 billion¹³. The industrial enzyme market is divided into three application segments: technical enzymes, food enzymes, and animal feed enzymes (Fig. 1.1). The growth of animal feed enzymes is somewhat higher, expected to be close to 4% AAGR, which in large part is boosted by increased use of phytase enzyme as an animal feed additive in diets for monogastric animals, for high-temperature feed pelleting processes^{14,15}.

<u>Sudhir K Rai</u>


Fig.1.1 Global enzyme markets by application sectors, through 2012 (In \$ Millions), according to Business Communications Company (BCC 2009).

1.2.1 Indian scenario of industrial enzymes

Indian biotech sector has attained critical mass in manufacturing and research services. Indian biotechnology is now poised to leverage its scientific skills and technical experiences to make a global impact on a strong innovation-led platform. The technological capability of a firm to produce some products is only a part of the requirement for the commercial success of the business. Apart from technological capabilities, the firm must be able to position its product in pharmaceutical industries, followed by food / feed and textiles market. The market, thus, serves as the link between consumer's needs and the pattern of industrial response ¹⁶.

In India, the industrial enzyme consumption is predominantly in the pharmaceutical market (50 percent), followed by the detergent market (20 percent) (Fig.1.2). The other important segments are food and feed, textiles, leather, pulp and paper¹⁷ (Fig.1.2). In recent years, enzymes *Sudhir K Rai*

have found numerous applications in the food, pharmaceutical, diagnostic and chemical processing industries. The trend for their application in almost every sector is ever increasing.

Fig.1.2 Consumption of industrial enzymes in India: Pharmaceuticals; Food and feed; Detergent manufacturing; Leather and paper and; Textile processing¹⁷

1.2.1.1 Futuristic application of enzymes for the growth of Indian Bio-Industrial sector

The Bio-Industrial market mainly comprising industrial enzymes is estimated to be Rs 564 crore in the year 2009-10 as against Rs 478 crore in 2008-09. The segment grew 16 percent in FY 2009-10¹⁷ .Though the overall enzyme consumption figures of India are comparatively low with respect to other countries and 60-70 percent of domestic demand is imported, the segment on an average has been growing over 15 percent in the last five years. The leading players in this segment include Novozymes which has over 50 percent market share followed by Advanced Enzyme Technologies holding 25-30 percent market share (Table 1.1). Other important players are Maps, Genecor, Lumis and Kerry Biosciences. Besides, a new entrant Anthem Cellutions, a part of Anthem Biosciences group has gained significant market share over a short period of time¹⁷.

Sudhir K Rai

Rank	Company	2009-10	2008-09	% Change Over
2010		(Revenue	(Revenue	2008-09
		in Rs Cr)	in Rs Cr)	
1	Novozymes	268	250.00	7.2
	South Asia*			
2	Advanced	121	88.60	36.57
	Enzymes			
* Biospectrum estimates		All the figu	res in Rs. Cr	ore unless indicated
		otherwise		

 Table 1.1
 Bioindustrial companies
 by Revenue (2009-2010)

Apart from focusing on the local market, companies like Advanced Enzyme Technologies are looking at foreign markets such as China. Considering the potential opportunity in the other markets Advanced Enzyme has registered appreciable growth in its export sales¹⁷. The Indian enzyme companies are reporting a good growth in terms of activity; a lot of R&D and exploration of new applications of microbial enzymes. However, with respect to global enzyme industry India still needs to do a lot for expanding its market including production of enzyme. The leading distributor / suppliers of enzymes in India are shown in Table 1.2.

- Sudhir K Rai

Table 1.2 Potential enzyme distributors/suppliers in India

Distributors/suppliers	Business type	Products offered
Texnzymes India, Mumbai, Maharashtra	Manufacturers	Textile auxiliaries and enzymes
Americos Industries Inc., Ahmedabad, Gujarat	Manufacturers And exporters	Textile auxiliaries and enz ymes
United Biochemicals Private Limited, Mumbai,	Manufacturers and exporters	Enzymes and biochemicals for textiles
Maharashtra		
Ruchi Biochemicals, Mumbai, Maharastra	Manufacturers and suppliers	Biofertilizers and industrial enzymes
Trishul Chemicals, Chennai, Tamil Nadu	Manufacturers and exporters	Leather chemicals including bates and
		enzymes
Indian Textile Auxiliary Co., Bangalore,	Manufacturers and exporters	Textile auxiliaries, enzymes, leather
Karnataka		auxiliaries, leather enzymes, etc.
Zytex India Private Limited Mumbai,	Manufacturers and exporters	Industrial enzymes
Maharashtra		
Naruveli Ventures Chennai, Tamil Nadu	Dealers	Industrial enzymes, microbial products and
		biofertilizers

<u>Sudhir K Rai</u>

Distributors/suppliers	Business type	Products offered
Enzyme India Private Limited, Chennai, Tamil	Manufacturers and exporters	Enzymes for agro, bio-feed, food, detergen
Nadu		and textiles
Monozyme India Limited, Secunderabad,	Manufacturers and exporters	Enzymes and diagnostic reagents
Andhra Pradesh		
Prasanthi Leather Chem Private Limited,	Wholesale suppliers/Distributor sellers	Enzymes and fat liquors, etc.
Kolkata, West Bengal		
Biomax, Thane, Maharashtra	Manufacturers	Biofertilzers, soil modifi ers and enzymes
Genotex International Private Limited,	Manufacturers and exporters	Industrial enzymes, Aloe vera juice and
Hyderabad, Andhra Pradesh		patented peptides
Protos Trading Private Limited, New Delhi	importers/buyers	Textile enzymes

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

1.3 Present scenario of microbial protease: a leader of industrial enzymes

Microbial proteases are among the most important hydrolytic enzymes and have been studied extensively since the advent of enzymology. Among them, alkaline proteases represent one of the three largest groups of industrial enzymes and account for about 60% of total worldwide enzyme sales (Fig.1.3). This dominance of proteases in the industrial market is expected to increase 15% for next five years is by 2015¹⁷. In recent years, there has been a phenomenal increase in the use of alkaline protease as industrial catalysts. These enzymes offer advantages over the use of conventional chemical catalysts for numerous reasons; for example, they exhibit higher catalytic activity and, a higher degree of substrate specificity. Besides they can be produced in large amounts in a relatively short period of time and are economically viable thus further expanding their industrial acceptability.

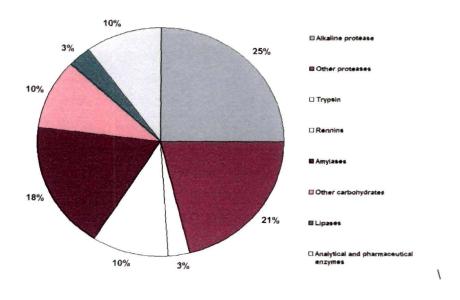


Fig.1.3 Distribution of enzyme sales. The contribution of different enzymes to the total sales of enzymes is indicated. The shaded portion indicates the total sales of proteases. Sudhir K Rai

1.4. Microbial protease: bread and butter for enzyme industries

Microorganisms represent an excellent source of enzymes due to their broad biochemical diversity and their susceptibility to genetic manipulation. Microbial proteases account for approximately 65% of the total worldwide enzyme sales^{9, 18} and are preferred to the enzymes from plant and animal sources since they possess almost all the characteristics desired for their biotechnological applications. Most commercial proteases mainly neutral and alkaline are produced by the genus *Bacillus*. Fungi elaborate a wider variety of enzymes than bacteria, e.g., *Aspergillus oryzae* produces acid, neutral and alkaline proteases. Fungal acid proteases are useful in cheese-making industry, neutral proteases in reducing the bitterness of food protein hydrolysates and alkaline proteases in food protein modification. Most of the viral encoded peptidases are endopeptidases of serine, cysteine or aspartic type.

Among the broad sources of enzymes i.e., animals, plants and microbes, enzymes from micro organisms have become the choice of industrial production. The current trend is to use microbial enzymes since they provide a greater diversity of catalytic activities and can be produced more economically. Micro-organism have qualified as an average source of industrial enzyme owing to their consistency, ease of process optimization and modification and their potent industrial application. Micro-organism elaborates a large array of intracellular and / or extracellular processes, such as sporulation and differentiation, protein turnover, maturation of enzymes and maintenance of the cellular proteins in cell free environments and enable the cell to absorb and utilize hydrolytic products¹⁹.

The technological application of enzymes under demanding industrial conditions makes the currently known arsenal of enzymes unrecommendable. Thus, the search for new microbial sources is a

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

continual exercise, but one must respect biodiversity. The microorganism habour diverse and exotic environments. Microbial diversity is a major resource for biotechnological products and processes. Extremophiles are considered an important source of enzymes, and their specific properties are expected to result in novel process applications. Infact only 2% of the world's micro-organism have been tested as enzymes sources^{20,21}. Looking into the depth of microbial diversity, there is always a chance of discovery a promising micro-organism producing novel enzymes with better properties that are suitable for commercial exploitation²². The multitude of physicochemically diverse habitats has

challenged nature to develop equally numerous molecular adaptations in the microbial world. About 80% of the commercial enzymes are produced using micro organisms of different genera and species, isolated from different geographical regions. Although, northeastern part of India is considered as one of the mega biodiversity zones of the world, however, persusal of literature shows that limited attempt has been made to explore the industrially important microorganisms from this region.

1.4.1 Proteolytic enzymes

Proteases are the single class of enzymes, which occupy a pivotal position with respect to their applications in both physiological and commercial fields ^{23,24}. Proteases catalyze only a single reaction, i.e the hydrolysis of peptide bonds. Yet, the various ways they achieve this, their ubiquitous distribution among all life forms, their multiplicity of locations inside, outside and at the surface of cells and, above all, their enormous diversity of function makes them one of the most fascinating groups of enzymes^{23,24}. The specificity of some of these proteases has been listed in Table 1.3.

<u>Sudhir K Rai</u> Ph.D Thesis, Tezpur University, 2010

Chapter 1 Table 1.3 Specificity of pr Enzyme	ACC. NO. <u>49653</u> roteases Peptide bond cleaved ^a
Trypsin	Lys(or Arg)
Chymptrypsin, subtilisin	Trp (or Tyr, Phe, Leu)
Staphylococcus V8 protease	Asp(or Glu)
Papain	Phe (or Val, Leu)- Xaa
Thermolysin	↓ Leu (or Phe)
Pepsin	↓ Phe (or Tyr, Leu)Trp (or Phe, Tyr)

^aThe arrow indicates the site of action of the protease. Xaa, any amino acid residue.

They are presumed to have arisen in the earliest phases of biological evolution, some billion years ago since the present digestive proteases can be shown to have a common ancestry with those of the microbial origin. They are responsible for the complex processes involved in the normal physiology of the cell as well as in abnormal pathophysiological conditions. The vast diversity of proteases, in contrast to the specificity of their action, has attracted worldwide attention in attempts to exploit applications²³⁻²⁵. The biotechnological their physiological and involvement of proteases in the life cycle of disease causing organisms has led them to become a potential target for developing therapeutic agents against fatal diseases such as cancer and AIDS. The major producers and distributors of proteases worldwide are Novo Industries (Denmark), Gist-Brocades (Netherlands), Genencor International and Miles Laboratories (United States).

Sudhir K Rai Ph.D Thesis, Tezpur University, 2010

CENTRAL LIBRARY, T. U ACC. NO TIL

Chapter 1 1.4.2 Classification of proteases

According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classified in subgroup 4 of group 3 (hydrolases) (International Union of Biochemistry. (1992). However proteases do not comply easily with the general system of enzyme nomenclature due to their huge diversity of action and structure. Currently, proteases are classified on the basis of three major criteria: (I) type of reaction catalyzed, (II) chemical nature of catalytic site, and (III) evolutionary relationship with reference to structure²⁶. Depending on their site of action, proteases are grossly subdivided into two major groups, i.e. exopeptidases and endopeptidases (Table 1.4). Based on the functional group at the active site, proteases are further classified into serine, aspartic, cysteine and metalloproteases or of unknown type, e.g., ATP dependent proteases which require ATP for their activity^{24, 27}. Based on their amino acid sequences, proteases are classified into different families²⁸ and further classified into clans to accommodate sets of peptidases that have diverged from a common ancestor ²⁹.

Table 1.4 Classification of proteases. Open circles represent the amino acid residues in the polypeptide chain. Solid circles indicate the terminal amino acids, and the triangles signify the blocked termini. Arrows show the sites of action of the enzyme.

PROTEASES			
EXOPEPTIDASE	ENDOPEPTIDASE		
¥	¥		
λοοο	0000		
Based on actions	Based on active sites		
Aminopeptidases	Serine endopeptiases (3.4.21)		
(3.4.11) λοοοο			
Dipeptidyl peptidase	Cysteine endopeptidases (3.4.22)		
(3.4.14) λ λοοο			

Chapter 1	15
PROT	EASES
EXOPEPTIDASE	ENDOPEPTIDASE
Tripeptidyl peptidase	Aspartic endopeptidases (3.4.23)
(3.4.14) λ λ λοο	
Carboxylpeptidases	Metallo endopeptidases (3.4.24)
(4.16-18) οοοολ	
Carboxylpeptidase (serine)	
(3.4.16)	
Carboxylpeptidase (metallo)	
(3.4.17)	
Carboxylpeptidase (cysteine)	
(3.4.18)	
Peptidyl dipeptidases	Endopeptidase of unknow catalytic
(4.15) οοο λ • λ	mechanism (3.4.99)
Dipeptidases 🛓	
(3.4 19) λ λ	
Omegapep tidases	
(4.19) οοο λ<	•
¥	
> λ 00	

1.4.2.1 Exopeptidases

Exopeptidases act only near the ends of polypeptide chains, further classified as amino or carboxypeptidases based on their site of action at the N or C terminus respectively³⁰. Aminopeptidases liberate a single amino acid residue, a dipeptide (dipeptidyl peptidase) or a tripeptide (tripeptidyl peptidase)^{30,31}. The substrate specificities of the enzymes from bacteria and fungi are distinctly different in that the organisms can be differentiated based on the profiles of the products of hydrolysis^{30,32}. Aminopeptidases can also be classified as aminopeptidase N or aminopeptidase A, depending on their preference for neutral (uncharged) or acidic side chains, respectively³³. Most of the aminopeptidases are metalloenzymes. Carboxypeptidases can be

<u>Sudhir K Rai</u>

divided into three major groups, serine carboxypeptidases, metallocarboxypeptidases and cysteine carboxypeptidases, based on the nature of the amino acid residues at the active site of the enzymes³⁴. The enzymes can also hydrolyze the peptides in which the peptidyl group is replaced by a pteroyl moiety or by acyl groups. Other exopeptidases include dipeptidases, which cleave a dipeptide and omega peptidases which release modified residues from N- or C-termini.

1.4.2.2 Endopeptidases

Endopeptidases are characterized by their preferential action at the peptide bonds in the inner regions of the polypeptide chain away from the N or C terminus. They are divided into five subgroups based on their catalytic mechanism, (i) serine proteases, (ii) cysteine proteases, (iii) aspartic proteases, (iv) metalloproteases and (v) unknown type denoted by the letters S, C, A, M, and U, respectively.

1.5 Serine proteases

Serine proteases are characterized by the presence of a serine group in their active site. Based on their structural similarities, they have been grouped into families, which have been further subdivided into about six clans with common ancestors^{30,35,36}. The classification of peptidases based on the evolutionary relationships has been given in MEROPS the peptidase database; url: http://www.bi.bbsrc.ac.uk/Merops/merops.htm. Trypsin, chymotrypsin are the well studied proteases of this subgroup^{34,36}. Another interesting feature of the serine proteases is the conservation of glycine residues near the catalytic serine residue to form the motif Gly-Xaa-Ser-Yaa-Gly^{37,38}. They are recognized by their irreversible inhibition by 3,4- DCI, E.64, DFP, PMSF and TLCK. Some are inhibited by thiol reagents such as PCMB due to the presence of a cysteine residue near the active site. Serine proteases are generally active at neutral and alkaline pH, with an optimum between pH 7 and 11. They have broad substrate specificities Sudhir K Rai

including esterolytic and amidase activity. Their molecular masses range between 18 and 35 kDa. Their isoelectric points are generally between pH 4 and 6. Serine alkaline proteases that are active at highly alkaline pH represent the largest subgroup of serine proteases.

1.5.1 Serine alkaline proteases

These are produced by several bacteria, molds, yeasts and fungi. They are inhibited by DFP but not by TLCK or TPCK. They hydrolyze a peptide bond, which has tyrosine, phenylalanine, or leucine at the carboxyl side of the splitting bond. The optimal pH of the alkaline proteases is around pH 10, and their isoelectric point is around pH 9. Their molecular masses are in the range of 15 to 60 kDa. Although alkaline serine proteases are produced by several bacteria such as *Arthrobacter, Streptomyces*, and *Flavobacterium* spp³⁹, subtilisins produced by *Bacillus* spp. are the best known. Alkaline proteases are also produced by *S. cerevisae*⁴⁰ and filamentous fungi such as *Conidiobolus* spp.⁴¹ and *Aspergillus* and *Neurospora* spp⁴².

1.5.1.1 Subtilisins

Subtilisins of *Bacillus* origin represent the second largest family of serine proteases. Two different types of alkaline proteases, Subtilisin Carlsberg produced by *Bacillus licheniformis* and Subtilisin Novo or BPN' produced by *B. amyloliquefaciens* have been identified⁴³⁻⁴⁶. Subtilisin Carlsberg was the first detergent protease formulated for detergent industries since 1960s and was isolated from *Bacillus licheniformis* strain. The active-site conformation of subtilisins is similar to that of trypsin and chymotrypsin despite the dissimilarity in their overall molecular arrangements. The serine alkaline protease from the fungus *Conidiobolus coronatus* was shown to possess a distinctly different structure from Subtilisin Carlsberg in spite of their functional similarities⁴⁷.

<u>Sudhir K Rai</u>

1.6 Aspartic proteases

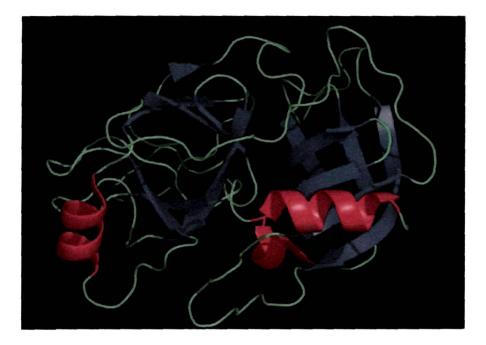
Commonly known as acid proteases, these proteases depend on aspartic acid residues for their catalytic activity. They have been grouped into three families, namely, pepsin (A1), retropepsin (A2), and enzymes from pararetroviruses (A3)³⁶ and have been placed in the clan AA. Most aspartic proteases show maximal activity at low pH (pH 3 to 4) and have isoelectric points in the range of pH 3 to 4.5. Their molecular masses are in the range of 30 to 45 kDa. The members of the pepsin family have a bilobal structure with the active-site cleft located between the lobes⁴⁸. The active-site aspartic acid residue is situated within the motif Asp-Xaa-Gly in which Xaa can be Ser or Thr. The aspartic acid proteases are inhibited by pepstatin and diazocompounds such as DAN and EPNP in the presence of copper ions. Microbial acid proteases exhibit specificity against aromatic or bulky amino acid residues on both sides of the peptide bond, which is similar to pepsin. They can be broadly divided into two groups, (i) pepsin-like enzymes produced by Aspergillus, Penicillium, Rhizopus and Neurospora and (ii) rennin-like enzymes produced by Endothia and Mucor sp.

1.7 Cysteine/thiol proteases

The activity of all cysteine proteases depends on a catalytic dyad consisting of cysteine and histidine. The order of Cys and His residues differs among the 20 families²⁶. Generally cysteine proteases are active in the presence of reducing agents such as HCN or cysteine. Based on their side chain specificity, they are broadly divided into four groups, (i) papain-like, (ii) trypsin-like with preference for cleavage at the arginine residue, (iii) specific for glutamic acid, and (iv) others. Papain is the best-known cysteine protease. Cysteine proteases have neutral pH optima, although a few of them, like lysosomal proteases, are maximally active at acidic pH. They are susceptible to sulfhydryl agents such as PCMB but are unaffected by DFP and metal chelating agents.

<u>Sudhir K Rai</u>

1.8 Metalloproteases


These are the most diverse of the catalytic types of proteases⁴⁹ characterized by the requirement of a divalent metal ion for their activity. Out of 30 families of metalloproteases, 17 contain only endopeptidases, 12 contain only exopeptidases and 1 (M3) contains both endo- and exopeptidases. Families of metalloproteases have been grouped into different clans based on the nature of the amino acid that completes the metal-binding site; e.g., clan MA has the sequence HEXXH-E and clan MB corresponds to the motif HEXXH-H. Based on the specificity of their action, metalloproteases can be divided into four groups, (i) neutral, (ii) alkaline, (iii) Myxobacter I, and (iv) Myxobacter 11^{50,51}. The neutral proteases show specificity for hydrophobic amino acids, while alkaline proteases possess a very broad specificity. Myxobacter I is specific for small amino acid residues on either side of the cleavage bond, whereas protease II is specific for lysine residue on the amino side of the peptide bond. All of them are inhibited by chelating agents such as EDTA but not by sulfhydryl agents or DFP. Thermolysin, collagenase and elastase are the well studied metalloproteases. Matrix metalloproteases play a prominent role in the degradation of the extracellular matrix during tissue morphogenesis, differentiation, and wound healing, and may be useful in the treatment of diseases such as cancer and arthritis⁵².

1.9 Structure and Mechanism of action of proteases

1.9.1 Structure of proteases

The three dimensional structure of proteases can provide valuable insights into their function and specificity providing a framework to focus previous biochemical data and a sound basis for the design of new experiments and therefore, can be a rich source of information for the modern biochemist. Structural data on proteases can have a profound influence on the search and design of novel specific inhibitors ("rational drug design"). The x-ray crystallographic structures of many proteases have been determined⁵³⁻⁵⁶. In 1994, Yamagata and his colleague's⁵⁷ <u>Sudhir K Rai</u>

reported the structure of cucumisin, a thermostable alkaline serine protease that is found in the juice of melon fruits (*Cucumis melo* L.). Their studies on the primary structure of cucumisin revealed that it is synthesized as a precursor, consisting of four functional domains: a possible signal peptide (22 amino acid residues), an NH,-terminal prosequence(*8* 8 residues), a 54-kDa protease domain (505 residues), which is the active enzyme domain of the 67-kDa native cucumisin, and a 14-kDa COOH-terminal polypeptide (116 residues), which arises by limited autolysis of the 67-kDa native cucumisin. Sequence comparisons revealed that cucumisin has several features in common with the microbial proteases of the subtilisin family (Fig. 1.4).

Fig.1.4 Three-dimensional structure of proteases: (a) The crystal structure of trypsin, a serine protease⁵⁸.

1.9.2 Mechanism of action of proteases

The mechanism of action of proteases has been a subject of great interest to researchers as it forms a basis for exploring various ways of

<u>Sudhir K Rai</u>

modifying its activity to make it suitable for its biotechnological application. Studies of the mechanism of proteases have revealed that they exhibit different types of mechanism based on their active-site configuration. The catalytic site of proteases is flanked on one or both sides by specificity sub-sites, each able to accommodate the side chain of a single amino acid residue from the substrate. These sites are numbered from the catalytic site S1 through Sn toward the N terminus of the structure and S1' through Sn' toward the C terminus. The residues which they accommodate from the substrate are numbered P1 through Pn and P1' through Pn', respectively (Fig.2.2). Proteolytic enzymes, in general, have three essential catalytic components^{50,51}:

 A nucleophilie to attack the carbonyl C atom of the scissile peptide to form a tetrahedral intermediate (Ser 195 serves this function in trypsin)
 An electrophile to stabilize the negative charge that develops on the carbonyl O atom of the tetrahedral intermediate (the H-bonding donors lining the oxyanion hole, Gly 193 and Ser 195, do so in trypsin).

 3. A proton donor so as to make the amide N atom of the scissile peptide a good leaving group (the imidazolium group of His 57 in trypsin)

Protease:	N	S_n S_3 S_2 S_1 * S_1 ' S_2 ' S_3 ' S_n 'C
Substrate:	N	P _n P ₃ P ₂ P ₁ P ₁ 'P ₂ 'P ₃ 'P _n 'C

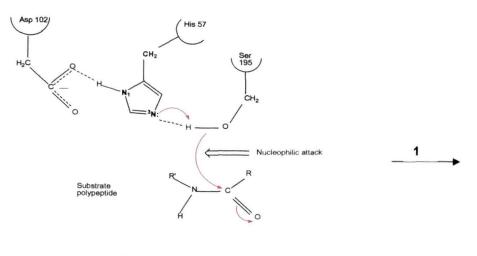
Fig.1.5. Active sites of proteases. The catalytic site of proteases is indicated by * and the scissile bond is indicated by —S1; through Sn and S1' through Sn' are the specificity subsites on the enzyme, while P1 through Pn and P1' through Pn' are the residues on the substrate accommodated by the subsites on the enzyme.

1.9.2.1 Mechanism of action of serine protease

Serine proteases usually follow a two-step reaction for hydrolysis in which a covalently linked enzyme-peptide intermediate is formed with <u>Sudhir K Rai</u>

the loss of the amino acid or peptide fragment⁵⁹. This acylation step is followed by a deacylation process which occurs by a nucleophilic attack on the intermediate by water, resulting in hydrolysis of the peptide. The key steps in the hydrolysis have been illustrated in Fig.1.6. The serine endopeptidases can be classified into three groups based mainly on their primary substrate preference:

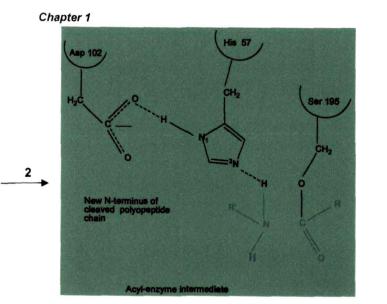
- (I) Trypsin-like, which cleave after positively charged residues
- (II) Chymotrypsin-like, which cleave after large hydrophobic residues; and

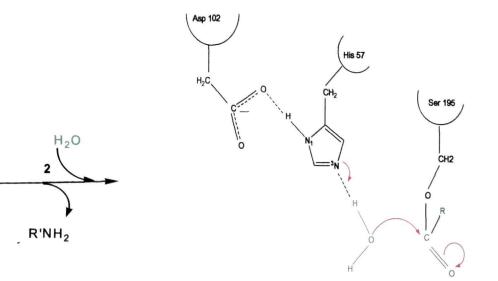

(III) Elastase-like, which cleave after small hydrophobic residues. The recent studies based on the three dimensional structures of proteases and comparisons of amino acid sequences near the primary substrate-binding site in trypsin-like proteases of viral and bacterial origin suggest a putative general substrate binding scheme for proteases with specificity towards glutamic acid involving a histidine residue and hydroxyl function. However, a few other serine proteases such as peptidase A from *E. coli* and the repressor LexA show distinctly different mechanism of action without the classic Ser- His- Asp triad²⁶. Some of the glycine residues are conserved near the catalytic serine residue, but their exact positions are variable³⁸.

A few of the serine proteases belonging to the subtilisin family show a catalytic triad composed of the same residues as in the chymotrypsin family; however, the residues occur in a different order (Asp-His-Ser). Some members of the subtilisin family from the yeasts *Tritirachium* and *Metarhizium* sp. require thiol for their activity. The thiol dependance is attributable to Cys 173 near the active-site histidine⁶⁰. The carboxypeptidases are unusual among the serine-dependent enzymes in that they are maximally active at acidic pH. These enzymes are known to possesss a Glu residue preceding the catalytic Ser, which is believed to be responsible for their acidic pH optimum. Although the majority of the serine proteases contain the catalytic triad of Ser- His-Asp, a few use the Ser-base catalytic dyad. The Glu-specific proteases *Sudhir K Rai*

display a pronounced preference for Glu-Xaa bonds over Asp-Xaa bonds⁶¹.

<u>Sudhir K Rai</u>

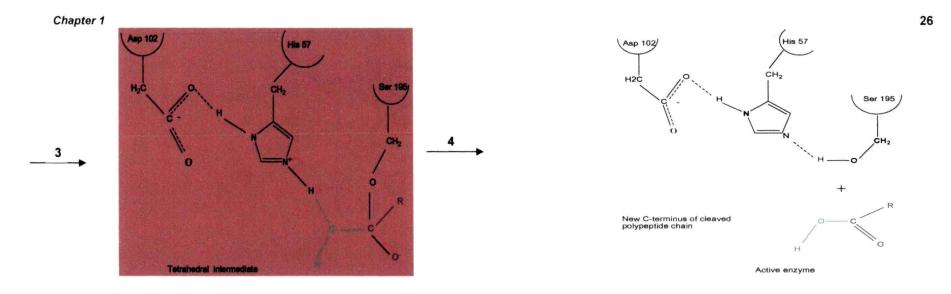




Enzyme-substrate complex

STEP 1

Sudhir K Rai



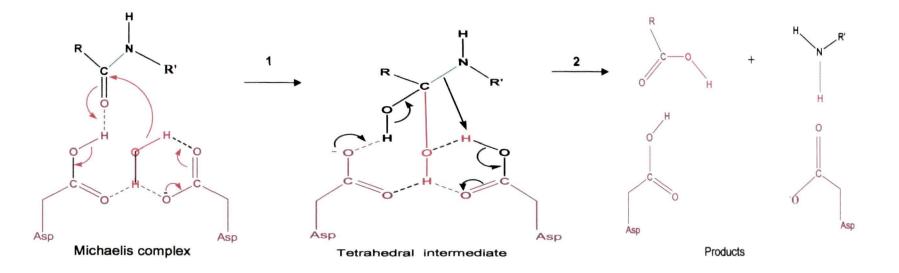
<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

Fig.1.6 Catalytic mechanism of the serine proteases. The reaction involves (1) the nucleophilic attack of the active site Ser on the carbonyl carbon atom of the scissile peptide bond to form the teterhedral intermediate; (2) the decomposition of the tetrahedral intermediate to the acyl- enzyme intermediate through general acid catalysis by the active site Asp-polarized His, followed by loss of the amine product and its replacement by a water molecule; (3) the reversal of Step 2 to form a second tetrahedral intermediate; and (4) the reversal of Step1 to yield the reaction's carboxyl product and the active enzyme.

Sudhir K Rai

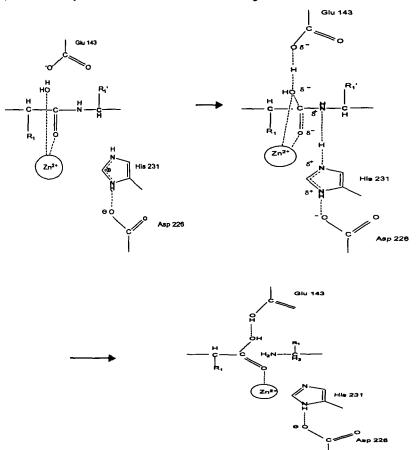
1.9.2.2 Mechanism of action of aspartic protease


Crystallographic studies have shown that the enzymes of the pepsin family are bilobed molecules with the active-site cleft located between the lobes and each lobe contributing one of the pair of aspartic acid residues that is essential for the catalytic activity^{48,62}. In most of the enzymes from the pepsin family, the catalytic Asp residues are contained in an Asp-Thr-Gly-Xaa motif in both the N- and C-terminal lobes of the enzyme, where Xaa is Ser or Thr, whose side chains can hydrogen bond to Asp. However Xaa is Ala in most of the retropepsins. The pepsins and majority of the members of the family show specificity for the cleavage of bonds in peptides of at least six residues with hydrophobic amino acids in both the P1 and P1' positions⁶³. The steps involve in catalytic mechanism

An active site Asp carboxylate group, acting as a general base, activates the bound water molecule, the so called lytic water, to nucleophilically attack the scissile peptide carbonyl C as an OH⁻ ion. Proton donation (general acid catalysis) by the second, previously uncharged active site Asp stabilizes the oxyanion that would otherwise form in the resulting tetrahedral intermediate. The N atom of the scissile peptide is protonated by the first Asp (general acid catalysis) resulting, through charge rearrangement and proton transfer to the second Asp (general acid catalysis), in amide bond scission.

Asparatic proteases are inhibited by compounds with tetrahedral carbon atoms at a position mimicking a scissile peptide bond (Fig.1.7). This strongly suggests that these enzymes preferentially bind their transition states (transition state stabilization), thereby enhancing catalysis. The structural and kinetic studies have suggested that the mechanism involves general acid-base catalysis with lytic water molecule directly participating in the reaction.

<u>Sudhir K Rai</u>


Fig.1.7 Catalytic mechanism of asparatic proteases. The nulceophilic attack of the enzyme –activated water molecule (red) on the carbonyl carbon atom of the scissile peptide bond (green) to form the tetrahedral intermediate. This reaction step is promoted by general base catalysis by the Asp on the right and general acid catalysis by the Asp on the left (Blue). (2) The decomposition of the tetrahedral intermediate to form products via general acid catalysis by the Asp on the right and general acid catalysis by the Asp on the right.

Sudhir K Rai

Ph.D Thesis, Tezpur University, 2010

1.9.2.3 Mechanism of action of metallo-protease

Metalloproteases depend on the presence of bound divalent cations and can be inactivated by dialysis or by the addition of chelating agents. Most of these are enzymes containing His-Glu-Xaa-Xaa-His (HEXXH) motif, which has been shown by X-ray crystallography to form a part of the site for binding of the metal, usually zinc. For thermolysin, based on the X-ray studies of the complex with a hydroxamic acid inhibitor, it has been proposed that Glu 143 assists the necleophilic attack of a water molecule on the carbonyl carbon of the scissile peptide bond, which is polarized by the Zn²⁺ ion as shown in Fig.1.8⁶⁴.

Fig.1.8 Schematic illustration of catalytic mechanism of metalloprotease (thermolysin).

Sudhir K Rai

1.9.2.4 Mechanism of action of cysteine protease

Cysteine proteases catalyze the hydrolysis of carboxylic acid derivatives through a double-displacement pathway involving general acid-base formation and hydrolysis of an acyl-thiol intermediate. The mechanism of action of cysteine proteases is thus very similar to that of the serine proteases. The initial step in the catalytic process involves the non-covalent binding of the free enzyme and the substrate to form the complex followed by the acylation of the enzyme with the formation and release of the first product, the amine R'-NH2 (Fig.1.9). In the next deacylation step, the acyl-enzyme reacts with a water molecule to release the second product, with the regeneration of free enzyme (Fig.1.9). The plant peptidase papain can be considered the archetype of cysteine peptidases and constitutes a good model for this family of enzymes, which catalyze the hydolysis of peptide, amide, ester, thiol ester and thiono ester bonds⁶⁵.

<u>Sudhir K Rai</u>

```
Chapter 1
```

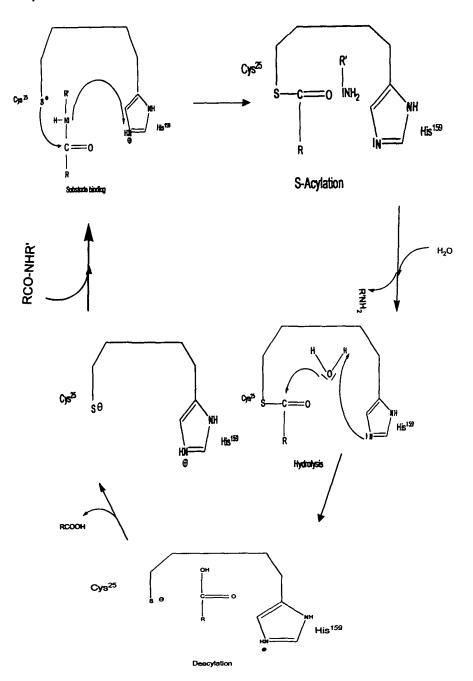


Fig.1.9 Catalytic mechanism of cysteine protease

<u>Sudhir K Rai</u> Ph.D Thesis, Tezpur University, 2010

1.10 Production of microbial alkaline proteases

Most alkalophilic microorganisms produce alkaline proteases, though interest is limited only to those that yield substantial amounts. It is essential that these organisms be provided with optimal growth conditions to increase enzyme production. The culture conditions that promote protease production were found to be significantly different from the culture conditions promoting cell growth⁶⁶. In the industrial production of alkaline proteases, technical media are usually employed that contained very high concentrations (100–150 g dry weight/litre) of complex carbohydrates, proteins, and other media components⁶⁷. With a view to develop an economically feasible technology, research efforts are mainly focused on (a) optimization of the fermentation medium and (b) production conditions to enhance the protease yield.

Alkaline proteases are generally produced by submerged fermentation. In addition, solid state fermentation processes has also been exploited though, to a lesser extent for the production of these enzymes⁶⁸⁻⁷⁰. Generally, proteases produced from microorganisms are constitutive or partially inducible in nature and, under most culture conditions, *Bacillus* species produce extracellular proteases during post-exponential and stationary phases. Extracellular protease production in microorganisms is also strongly influenced by media components, e.g. variation in C/N ratio, presence of some easily metabolizable sugars, such as glucose^{71,72}, and metal ions⁷³. Protease synthesis is also affected by rapidly metabolizable nitrogen sources, such as supplementation of amino acids in the medium. Besides these, several other physical factors, such as aeration, inoculum density, pH, temperature and incubation, also effect the level of protease production⁷⁴⁻⁷⁸.

In order to scale up protease production from microorganisms at the industrial level, biochemical and process engineers have adopted several strategies to obtain high yields of protease in a fermentor. Controlled batch and fed-batch fermentations using simultaneous <u>Sudhir K Rai</u>

control of glucose, ammonium ion concentration, oxygen tension, pH and salt availability^{74,79-81} and chemostat cultures^{82,83} have been successfully used for improving protease production for long-term incubations, using a variety of microorganisms.

In recent years, attempts have been made to utilize statistical methods, using different statistical software packages (Table 1.5) for process optimization studies, with the aim of obtaining high yields of alkaline protease in the fermentation medium^{73, 75, 84}. The application of properly designed approaches with multi-factor models allows process and biochemical engineers to design scale-up strategies for increasing enzyme production. As such no defined medium has been established for the best production of alkaline proteases from different microbial sources. Each organism or strain has its own special conditions for maximum enzyme production and that must be fulfilled for obtaining a superior yield.

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

.

Micro-organisms	Design	Software	References
Bacillus sp.	Central composite design	Statistica	Adinarayana, and
			Ellaiah ⁸⁵
<i>Bacillus</i> sp. L21	response surface methodology (RSM)	Minitab (Minitab Inc., State College, PA., USA)	Tari <i>et al⁸⁶</i>
Bacillus clausii	L16 (45) orthogonal array of Taguchi design	Design Expert software (version6.0.10, Stat- Ease Inc., USA)	Oskouie e <i>t al⁸⁷</i>
Bacillus sp.	RSM: FCCCD as Experimental Design	Design-Expert® 6.0 (Stat-Ease, Min- neapolis, MN) was	Saran <i>et al^{es}</i>
<i>Bacillus</i> sp. HS08	24 full- factorial central composite design (CCD) was	Statistica, Version 7.0 (Statsoft Inc., Tulsa, OK)	Guangrong et al 8
Bacillus sp. RKY3	Plackett–Burman design & Central composite design	Design-Expert 7.1 (Stat- Ease, Inc., Minneapolis, MN, USA)	Reddy <i>et al⁹⁰</i>
Colwellia sp. NJ341	Response surface method	Design Expert software (Version 7.0, USA)	Wang <i>et al⁹¹</i>

Table 1.5 Statistical methods used to improve the protease production from microorganisms.

<u>Sudhir K Rai</u>

Chapter 1			3
Micro-organisms	Design	Software	References
Bacillus pseudofirmus	Plackett-Burman experimental design.	Minitab (Minitab Inc., State College, PA., USA)	Sen <i>et al⁹²</i>
SVB1	Central composite design		
Bacillus pseudofirmus	Box-Behnken Design	Microsoft Excel 97	Abdel -Fattah <i>et al</i> 93
Mn6			
Mangifera Indica	central composite design (CCD)	Minitab v.14 statistical package (Minitab Inc.,	Amid et al ⁹⁴
Cv. Chokanan		PA, USA).	

<u>Sudhir K Rai</u>

1.11 Protease purification techniques

Crude preparations of alkaline proteases are generally employed for commercial use^{6,95,96}. Nevertheless, the purification of alkaline proteases is important from the perspective of developing a better understanding of the functioning of the enzyme^{97,98}.

After successful fermentation, when the fermented medium leaves the controlled environment of the fermenter, it is exposed to a drastic change in environmental conditions. The rapid lowering of the temperature of the fermented medium (to below 5°C) becomes indispensable to prevent microbial contamination as well as to maintain enzyme activity and stability. The removal of the cells, solids, and colloids from the fermentation broth is the primary step in enzyme downstream processing, for which vacuum rotary drum filters and continuous disc centrifuges are commonly used. To prevent the loss in enzyme activity caused by imperfect clarification or to prevent the clogging of filters, it is necessary to perform some chemical pretreatment of the fermentation broth before commencing separation^{67,99}. Changes in pH may also be suitable for better separation of solids⁹⁸. Furthermore, the fermentation broth solids are often colloidal in nature and are difficult to remove directly. In this case, addition of coagulating or flocculating agents becomes vital¹⁰⁰.

When isolating enzymes on industrial scale for commercial purposes, the prime consideration has been the cost of production in relation to the value of the end product. Because the amount of enzyme present in the cell-free filtrate is usually low, the removal of water is a primary objective¹⁰¹⁻¹⁰⁴. Various techniques have been employed for removal of water molecule such as membrane based ultrafiltration, and temperature-sensitive hydrogel ultrafiltration for concentrating an alkaline protease¹⁰⁵ and precipitation (salt based and organic-solvent based) which is the most commonly used method for the isolation and

<u>Sudhir K Rai</u> Ph.D Thesis, Tezpur University, 2010

recovery of proteins from crude biological mixtures¹⁰⁶. It also performs both purification and concentration steps (Table 1.6).

Alkaline proteases are generally positively charged and are not bound to anion exchangers^{98,107,108}. Therefore, cation exchangers can be a rational choice and the bound molecules can be eluted from the column by an increasing salt or pH gradient¹⁰⁹. Reports on the purification of alkaline proteases by different affinity chromatographic methods showed that an affinity adsorbent hydroxyapatite was used to separate the neutral protease¹¹⁰ as well as purify the alkaline protease from a Bacillus sp.¹¹¹. Other affinity matrices used were Sephadex-4phenylbutylamine¹¹², casein agarose^{113,114}, or N-benzoyloxycarbonyl phenylalanine immobilized on agarose adsorbents¹¹⁵. However, the major limitations of affinity chromatography are the high cost of enzyme supports and the labile nature of some affinity ligands, which make them unrecommendable for use at industrial scale. This technique has been applied for purification of alkaline proteases using mixtures of polyethylene glycol (PEG) and dextran or PEG with salts such as H₃PO₄, MgSO₄¹¹⁶⁻¹¹⁸.

In addition, other methods, such as the use of reversed micelles for liquid–liquid extraction¹¹⁹, affinity precipitation, and foam fractionation¹²⁰ have also been employed for the recovery of alkaline proteases. The enzyme preparations used commercially are impure and are standardized to specified levels of activity by the addition of diluents and carriers. Further, the conditions for maximum stability of crude preparations may be quite different than for purified enzymes. Because loss of activity is encountered during storage in the factory, shipment to client(s) and/ or storage in client's facilities, storage stability is of prime concern to enzyme manufacturers. Protease solutions are subject to proteolytic and autolytic degradation that results in rapid inactivation of enzymatic activity. To maintain the enzyme activity and provide stability, addition of stabilizers like calcium salts, sodium formate, borate, <u>Sudhir K Rai</u>

propylene glycol, glycerine or betaine, polyhydric alcohols, protein preparations, and related compounds have proved successful^{121,122}. Also, to prevent contamination of the final commercial crude preparation during storage, addition of sodium chloride at 18–20% concentration has been suggested^{67,123}. In certain cases, for the purpose of convenience in handling and storage, the liquid enzyme preparations are often converted to powder form. However, the handling of dry enzymes poses potential health hazards and therefore, it is customary to maintain the enzyme preparations in stabilized liquid form^{11,124}

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

38

.

 Table 1.6. Combination of chromatographic techniques applied for purification of microbial alkaline proteases

.

Micro-organisms	Concentration method	Column matrices	References
Clostridium sp.SPA3	Ammonium sulfate fractionation	Sephadex G-100 gel filtration column	Alam et al ¹²⁵
	,Dialysed and lyophilisation		
B. mojavensis	Ammonium sulfate saturation (0-85%),	anion-exchanger Q-sepharose column	Beg and Gupta, ¹²⁶
Engyodontium album	(NH4)2SO4 precipitated fraction (40-	DEAE-cellulose column	Chellappan <i>et al</i> ¹²⁷
BTMFS10	90%)		
Aspergillus clavatus ES1	acetone precipitation	Sephadex G-100 gel filtration and CM-	Hajji <i>et al¹²⁸</i>
		Sepharose ion exchange chromatography	
Bacillus mojavensis A21	acetone precipitation	Sephadex G-75 gel filtration and CM-	Haddar <i>et al⁹⁶</i>
		Sepharose ion exchange chromatography	
Periserrula leucoph ryna	ammonium sulphate fractionation	gel filtration, ion exchange and Benzamidine-	Joo et al ¹²⁹
		Sepharose chromatography	
Bacillus pseudofirmus	Not specified	Phenyl Sepharose 6 Fast Flow column.	Gupta <i>et al</i> ¹³⁰
Bacillus cereus	ammonium sulfate precipitation	ion exchange chromatography	Doddapaneni <i>et al¹³¹</i>
Haloalkaliphilic bacterium	Ammonium sulphate precipitation	Phenyl sepharose 6FF HIC	Dodia et al ¹³²
sp. AH-6			

.

<u>Sudhir K Rai</u>

Chapter 1			40
Micro-organisms	Concentration method	Column matrices	References
Bacillus pumilus MS-1	Not specified	DEAE-cellulose (DE-52), CM-Toyopearl 650	Miyali et al ¹³³
Bacillus subtilis PE-11	Ammonium sulphate , dialyzed	Sephadex G-200	Adinarayana et al ¹³⁴
Botrylis cinerea	Ammonium sulphate precipitation	Sephacryl S-200 HR, DEAE sepahrose	Abidi <i>et al</i> ¹³⁵
		chromatography, HLPC with DEAE-Progel	
		TSK, Gel filtration on TSK SW-200 HLPC	
Bacillus licheniformis AP-1	Ammonium sulphate precipitation	DEAE Sephadex A50, CM- Sephadex C50,	Tang <i>et al</i> ¹³⁶
		Sephadex G75	

1.12 Physiological functions of proteases

Proteases execute a large variety of complex physiological functions. Their importance in conducting the essential metabolic and regulatory functions is evident from their occurrence in all forms of living organisms. In general, extra-cellular proteases catalyze the hydrolysis of large proteins to smaller molecules for subsequent absorption by the cell, whereas intracellular proteases play a critical role in the regulation of metabolism. Some of the major activities in which the proteases participate are described below.

Catabolism of proteins provides a ready pool of amino acids as precursors for the synthesis of proteins. Intracellular proteases such as ATP-dependent proteases in E. coli¹³⁷ and eukaryotes¹³⁸ are known to participate in executing the proper protein turnover for the cell. Formation of spores in bacteria¹³⁹, ascospores in yeast¹⁴⁰, fruiting bodies in slime moulds¹⁴¹ and conidial discharge in fungi¹⁴² involve intensive protein turnover. The alkaline serine protease of Conidiobolus coronatus was shown to be involved in forcible conidial discharge using a less conidia forming mutant. Formation of the less active protease by auto proteolysis represents a novel means of physiological regulation of protease activity in Conidiobolus coronatus¹⁴³. Degradation of proteins in dormant spores by serine endoproteinases makes amino acids and nitrogen available for the biosynthesis of new proteins and nucleotides. Their activity is rapidly lost on germination of the spores¹⁴⁴. Microconidal germination and hyphal fusion¹⁴⁵, also involves participation of a specific alkaline serine proteinase.

Extracellular acid proteases are used in the breakage of cell wall polypeptide linkages during germination of *Dictyostelium discoideum* spores¹⁴⁶ and *Polysphondylium pallidum* microcysts¹⁴⁷. Activation of zymogenic forms of chitin synthase by limited proteolysis has been observed in *Candida albicans*, *Mucor rouxii* and *Aspergillus nidulans*. Kex-2 protease catalyses the hydrolysis of prohormones, integral <u>Sudhir K Rai</u>

membrane proteins of the secretory pathway by specific cleavage at the carboxyl side of pairs of basic residues such as Lys-Arg or Arg-Arg²⁶. Pepsin, trypsin and chymotrypsin occur as their inactive zymogenic forms, which are activated by the action of proteases. Proteinases A and B from yeast inactivate several enzymes in a two-step process involving covalent modification of proteins as a marking mechanism for proteolysis. Proteolytic modification of enzymes is known to result in a protein with altered physiological function e.g. leucyl-L-RNA synthetase from *E. coli* is converted into an enzyme which catalyzes leucine-dependent pyrophosphate exchange by removal of a small peptide from the native enzyme.

The extracellular enzymes play a major role in nutrition due to their depolymerizing activity. The microbial enzymes and the mammalian extracellular enzymes such as those secreted by pancreas are primarily involved in keeping the cells alive by providing them with the necessary amino acid pool as nutrition.

Modulation of gene expression mediated by protease has been demonstrated¹⁴⁸. Proteolysis of a repressor by an ATP-requiring protease resulted in a de-repression of the gene. Change in the transcriptional specificity of the B-subunit of RNA polymerase in *Bacillus thuringiensis* was correlated to its proteolytic modification¹⁴⁹. Modification of ribosomal proteins by proteases has been suggested to be responsible for the regulation of translation. Besides the general functions that are described so far, the proteases also mediate the degradation of a variety of regulatory proteins that control the heat shock response, the SOS response to DNA damage, the life cycle of bacteriophage¹⁵⁰ and programmed bacterial cell death¹⁵¹.

Recently, a new physiological function has been attributed to the ATPdependent proteases conserved between bacteria and eukaryotes. It is implied that they act as chaperones and mediate not only proteolysis

<u>Sudhir K Rai</u>

but also the insertion of proteins into membranes and disassembly or oligomerization of protein complexes ¹⁵².

1.13 Immobilization

Microorganisms in nature are irregularly distributed and often exist in Biofilms. Biofilms are surface-attached microbial communities consisting of multiple layers of cells embedded in hydrated matrices. In all known habitats, bacteria preferentially reproduce on a surface rather than in suspension in the liquid phase¹⁵³. Biofilms were first extensively studied during the 1940s when it was not until the 1970s that it was appreciated that their formation occurs in almost all natural environments. A rock immersed in a stream, an implant in the human body, a tooth, a water pipe or conduit, etc. are all sites where Biofilms develop. This natural phenomenon encouraged human to utilize it for similar services. Since that time many studies have been undertaken on immobilized cells and its industrialization.

1.13.1 Historical aspect of immobilized enzymes

In 1916 it was reported that an enzyme in water-insoluble form inhibited catalytic activity. They illustrated that invertase extracted from yeast was adsorbed on charcoal, and the adsorbed enzyme showed the same activity as native enzyme¹⁵⁴. In 1948 it was found that urease from jack bean became water- insoluble on standing in 30% alcohol and sodium chloride for 1-2 days at room temperature, and the water-insoluble urease was active. Thus, it has been known for a long time that enzymes in water-insoluble form show the catalytic activity¹⁵⁵. However the first attempt to immobilize an enzyme to improve its properties for a particular application was not made until 1953, when enzymes such as carboxypeptidase, diastase, pepsin and ribonuclease was immobilized by using diazotized polyaminopolystyrene resin. On the other hand, prior to this (1949), immobilization of physiologically active protein was carried out^{156,157}. In 1973 scientists succeeded in the

Sudhir K Rai

first industrialization of continuous process for production of L-aspartic acid using immobilization.

1.13.2 Classification of immobilized methods and selection of carrier

The bio-immobilization methods include adsorption, covalent bond combination, crosslink and embedment. Their principles and characteristics are shown in Table 1.7.

<u>Sudhir K Rai</u>

Table 1.7 Comparisons of Different Immobilization Methods

Methods		Principles	Carriers	Characteristics
Carrrier	combination	Covalent bond, electrovalent	Lacunaris glass bead,	Easy preparation; low fastness; cell's
(covalent,	electrovalent	bond or molecule gravitation	alumina, active carbon, kaoline,	quantity, exhibited activities and life are
bond, physica	al adsorption,	formed between cells and	cellulose, collagen etc.,	greatly affected by carriers.
etc.)		carriers		
Crosslink		Crosslink between cell and	Glutaraldeh yde, bis-diazo	Difficulty in execution, intense
		reagent with two or more	biphenylamine	
		function		
Embedment		Embedded cells in gelatin grid	Agar, polyurea, alginate	Easy operation ; high intensity of
		or capsule composed of	polyvinyl alcohol (PVA) etc.	immobilized particles; suitable for the
		semipermeable membrane		reaction between small molecule substrate
				and production

<u>Sudhir K Rai</u>

1.13.3 Main Application Areas of Immobilization Technology

Advances in biotechnology using immobilization techniques have shown that conditions can be modified to enhance the activity of specific desirable reactions or chemical process in extreme environments¹⁵⁷. This advantage of immobilization opened the gate for immobilization technology to be applied in every field in our life

1.13.3.1 Bioprocess Technology

Historically, the most important area of immobilization is namely brewing, antibiotics, mammalian cell culture, etc; extensive development is in progress with new products envisaged, namely polysaccharides, medically important drugs, solvents & proteinenhanced foods. Novel fermenter designs are being used to optimize productivity.

1.13.3. 2 Enzyme Technology

Used for the catalysis of extremely specific chemical reactions; immobilization of enzymes; to create specific molecular converters (bioreactors).Products formed include-amino acids, high fructose syrup, semi-synthetic penicillin, starch and cellulose hydrolysis, etc.

1.13.3.3 Waste Technology

Greater emphasis is now being made to couple the process of waste management & bio-immobilization with the conservation and recycling of resources-foods and fertilizers & biological fuels.

1.13.3.4 Environmental Technology

Great scope exists for the application of immobilization concepts for solving many environmental problems-pollution controls,

1.14 Industrial application of microbial proteases

Microbial proteases are among the most important hydrolytic enzymes and have been studied extensively since the advent of enzymology. <u>Sudhir K Rai</u>

There is renewed interest in the study of proteolytic enzymes, mainly due to the recognition that these enzymes not only play an important role in the cellular metabolic processes but have also gained considerable attention in the industrial community. The extra cellular proteases particularly of microbial origin have been commercially exploited to catalyze protein / peptide degradation in various industrial processes¹⁵⁸⁻¹⁶⁰. Alkaline protease used in various industrial segments and their applications are shown in Table1.8⁹

Industry	Type of protease	Applications
Detergent industries	Alkaline protease,	Laundry detergent
	subtilisin	for protein stain
		removal
Dairy industries	Fungal protein	Replacement of calf
	chymosin other	rennet, whey protein
	protease	processing.
		Production of enzyme
		modified cheese
		(EMC)
Beverage industries	Papain	Chill profile removal
		of haze in beverages
Baking industries	Neutral protease	Dough conditioner.
Food processing	Several protease	Modification of
		protein rich nature
Leather industries	Trypsin , other	Bating of leather,
	proteases	dehairing of skins
Meat and fish	Papain, other	Meat tenderization,
	proteases	recovery of protein -

 Table 1.8 Commercial application of alkaline protease in various biotech industries.

<u>Sudhir K Rai</u>

Chapter 1		48
Industry	Type of protease	Applications
		-from bones and fish
		waste
Medicine	Trypsin	Dead tissue removal,
		blood clot dissolution
Photography	Several proteases	Recovery of silver
		from X-ray and
		photographic films
Sweetner	Thermolysin	Reverse hydrolysis in
		aspartame synthesis

Alkaline proteases account for a major share of the enzyme market all over the world^{18,19}. Alkaline proteases from bacteria find numerous applications in various industrial sectors and different companies worldwide have successfully launched several products based on alkaline proteases (Table 1.8). The bulk uses of alkaline proteases in industrial sectors are described in the following section.

1.14.1 Food and feed industry

Traditionally, microbial proteases have been exploited in the food industries in many ways. Alkaline proteases have been used in the preparation of protein hydrolysates of high nutritional value. The protein hydrolysates play an important role in blood pressure regulation and are used in infant food formulations, specific therapeutic dietary products and the fortification of fruit juices and soft drinks^{161, 162}. The basic function of proteases is to hydrolyze proteins; and this property has been exploited for the preparation of protein hydrolysates of high nutritional value. The alkaline proteases are used in hydrolysate preduction from various natural protein substrates. Keratinolytic activity of alkaline protease has also been exploited in the production of proteinaceous fodder from waste feathers or keratin-containing materials. Dalev^{163,164} and Cheng *et al*¹⁶⁵ reported the use of alkaline proteases (B72 from *B. subtilis* and *B. licheniformis* PWD-1) for the

<u>Sudhir K Rai</u>

hydrolysis of feather kerațin, to obtain a protein concentrate for fodder production.

1.14.2 Peptide synthesis

Proteases in organic synthesis have attracted a great deal of attention in recent years^{166,167}. Under normal aqueous conditions, proteases catalyze the hydrolysis reaction, but the reverse actions of proteases have been found in water-restricted media such as synthesis of peptides and esters^{167,168}. There are a great many advantages associated with the application of enzymes to organic synthesis including enantioselectivity, specificity, nonhazardous reaction conditions and so on^{167,169}. These approaches require enzymes that are stable in the presence of organic solvents, but enzymes are generally very labile catalysts and easily lose their activities in non-aqueous media. Several current techniques such as medium engineering, substrate engineering and protein engineering have been employed to improve enzymes for synthesis in organic solvent^{166,167}. However, if enzymes were naturally stable and active in hostile environments, they would be very useful for organic synthesis. Recently, solvent-tolerant bacteria as a relatively novel group of extremophilic microorganisms with unique ability to live in presence of organic solvents have attracted the great attention of many researchers. Some of these microbes have been found to be sources of solvent-stable enzymes, but only a few are reports available in the literature concerning the screening of organic solvent-stable protease producers¹⁷⁰⁻¹⁷³. At the same time, solventtolerant bacteria usually secrete protease in low yield. However, if the solvent-stable proteases could be used for high-yield production, they would be more suitable for industrial applications.

Since the first report of Bergman and Frankel-Conrat¹⁷⁴, on proteasecatalyzed peptide synthesis using the reverse-enzymatic reaction of hydrolysis, the proteases have frequently been used for peptide synthesis¹⁷⁵⁻¹⁷⁸. Enzymatic peptide synthesis offers several advantages <u>Sudhir K Rai</u>

over chemical methods, e.g. reactions can be performed stereospecifically and reactants do not require side-chain protection, increased solubility of non-polar substrates, or shifting thermodynamic equilibria to favor synthesis over hydrolysis. There is less need for expensive protecting-groups, organic solvents, or hazardous chemicals, resulting in production costs competitive with those of chemical methods¹⁷⁸. However, the major limitation for the use of protease in synthetic chemistry is the strongly reduced activity of the enzyme under anhydrous conditions.

1.14.3 Leather industry

Leather processing involves several steps such as soaking, dehairing, bating, and tanning. The major building blocks of skin and hair are proteinaceous. The conventional methods of leather processing involve hazardous chemicals such as sodium sulfide, which create problems of pollution and effluent disposal¹⁷⁹⁻¹⁸¹. The use of enzymes as alternatives to chemicals has proved successful in improving leather quality and in reducing environmental pollution¹⁸¹. Proteases are used for selective hydrolysis of noncollagenous constituents of the skin and for removal of nonfibrillar proteins such as albumins and globulins. The purpose of soaking is to swell the hide. Traditionally, this step was performed with alkali. Currently, microbial alkaline proteases are used to ensure faster absorption of water and to reduce the time required for soaking. The conventional method of dehairing and dewooling consists of development of an extremely alkaline condition followed by treatment with sulfide to solubilize the proteins of the hair root. At present, alkaline proteases with hydrated lime and sodium chloride are used for dehairing, resulting in a significant reduction in the amount of wastewater generated¹⁸⁰.Currently, trypsin is used in combination with other Bacillus and Aspergillus proteases for bating. The selection of the enzyme depends on its specificity for matrix proteins such as elastin and keratin, and the amount of enzyme needed depends on the type of leather (soft or hard) to be produced. Increased usage of enzymes for Sudhir K Rai

dehairing and bating not only prevents pollution problems but also is effective in saving energy. Novo Nordisk manufactures three different proteases, Aquaderm, NUE, and Pyrase, for use in soaking, dehairing, and bating, respectively.

1.14.4 Management of industrial and household waste

Proteases solubilize proteinaceous waste and thus help lower the biological oxygen demand of aquatic systems. Recently, the use of alkaline protease in the management of wastes from various food-processing industries and household activities opened up a new era in the use of proteases in waste management. Recently, poultry wastes (chicken feather) generation rate is increasing everyday and reaching a million ton per years, this creating serious environmental problems^{182,183}. Waste feathers make up approximately 5% of the body weight of poultry and are considered to be a high protein source for food and feed, provided their rigid keratin structure is completely destroyed. The use of keratinolytic protease in food and feed industry waste, for degrading waste keratinous material from poultry refuse¹⁸⁴ and as depilatory agent to remove hair from the drains¹⁸⁵ has been reported.

1.14.5 Proteases in the detergent industry

Enzymes have long been of interest to the detergent industry for their ability to aid in the removal of proteinaceous stains and to deliver unique benefits that cannot otherwise be obtained with conventional detergent technologies^{11,160,186}. Applications of detergent proteases have grown substantially and the largest application is in household laundry detergent formulations^{160,186}. The increased reliance of detergent manufacturers on enzyme technology is because of consumer-recognizable cleaning benefits, the addition of completely new performance benefits, fabric restoration and an increased performance/cost ratio, because of the availability of more efficient enzymes and the industry trend toward reduced pricing. Current market <u>Sudhir K Rai</u>

trends and consumer needs are influencing the development of enzymes for detergent applications, with the emphasis on enzymes that have improved performance/cost ratios, lower washing temperature, alteration in the detergent compositions with regard to the use of environment-compatible non-phosphate builders like zeolites, and the bleaching agents. In addition, enzyme suppliers and detergent manufacturers are actively pursuing the development of new enzyme activities that address the consumer-expressed need for improved cleaning, fabric care and antimicrobial benefits^{160,187,188}. However, apart from their use in laundry detergents, they are also popular in the formulation of household dish- washing detergents and both industrial and institutional cleaning detergents^{11,189}.

1.14.6 Selection and evaluation of detergent protease performance

One of the important parameters for selection of detergent proteases is the pH value. It is known that detergent proteases perform best when the pH value of the detergent solution in which it works is approximately the same as the pH value for the enzyme. However, there are many more parameters involved in the selection of a good detergent protease, such as compatibility with detergent components, e.g. surfactants, perfumes and bleaches 190-192, good activity at relevant washing pH and temperature¹⁹³⁻¹⁹⁵, compatibility with the ionic strength of the detergent solution, stain degradation and removal potential, stability and shelf life¹⁹⁶. Over the past 30 years, the proteases in detergents have changed from being minor additives to being the key ingredients. There is always a need for newer enzymes with novel properties that can further enhance the wash performance of currently used enzyme-based detergents. Conventionally, detergents have been used at elevated washing temperatures, but at present there is considerable interest in the identification of alkaline proteases which are effective over a wide temperature range¹⁹⁵. In addition, the current consumer demands and increased use of synthetic fibers, which cannot tolerate high temperatures, have changed washing habits towards the Sudhir K Rai

use of low washing temperatures¹⁹⁷⁻¹⁹⁹. This has pushed enzyme manufacturers to look for novel enzyme that can act under low temperatures.

Further, a good detergent enzyme should also be stable in the presence of oxidizing agents and bleaches. In general, the majority of the commercially available enzymes are not stable in the presence of bleaching/oxidizing agents. The evaluation of detergent proteases is mainly dependent upon parameters such as the pH and ionic strength of the detergent solution, the washing temperature and pH, mechanical handling, level of soiling and the type of textile. In the case of laundry detergents, protease performance is evaluated by using soiled test-fabrics and the efficiency is measured either visually or by measuring the reflectance of light under standard conditions^{11,160}.

1.15 Major obstacles and future prospect of microbial proteases

Proteases are a complex group of enzymes which differ in their properties such as substrate specificity, active site, and catalytic mechanism. Their exquisite specificities provide a basis for their numerous physiological and commercial applications. Despite the extensive research on several aspects of proteases from ancient times. there are several gaps in our knowledge of these enzymes and there is tremendous scope of improving their properties to suit projected applications. The future lines of development would include (i) designing of an appropriate screening conditions for isolation of alkaline proteases producing promising microbes, (ii) development of the fermentation method(s), (iii) exploration of protease economical suitable for application in industries such as detergent, leather, food, pharmaceuticals.(iv) physiological role of protease isoenzymes in the growth and development of producing bacteria.

The cost of enzyme production is a major obstacle in the successful application of proteases in industry. Protease yields have been improved by screening for hyper producing strains and /or by <u>Sudhir K Rai</u>

optimization of the fermentation medium. Strain improvements by either conventional mutagenesis or recombinant-DNA technology have been useful in improving the production of proteases. Increase in the yield of viral proteases are particularly important for developing therapeutic agents against devastating diseases such as malaria, cancer, and AIDS²³.

Industrial applications of proteases have posed several problems and challenges for their further improvements. The biodiversity represents an invaluable resource for biotechnological innovations and plays an important role in the search for improved strains of micro organisms used in the industry. A recent trend has involved conducting industrial reactions with enzymes reaped from exotic micro organisms that inhabit hot waters, freezing Arctic waters, saline waters, or extremely acidic or alkaline habitats. The proteases isolated from extremophilic organisms are likely to mimic some of the unnatural properties of the enzymes that are desirable for their commercial applications. Exploitation of biodiversity to provide micro organisms that produce proteases well suited for their diverse applications is considered to be one of the most promising future alternatives. Introduction of extremophiles proteases into industrial processes is hampered by the difficulties encountered in growing the extremophiles as laboratory cultures. A revolutionary robotic approach such as DNA shuffling is being developed to rationalize the use of enzymes from extremophiles. The existing knowledge about the structure-function relationship of proteases complies / suggests a fair chance of success, in the near future, in evolving proteases that were never made in nature and that would meet the requirements of the multitude of protease applications²³.

1.16 Aims and objectives of present study

Alkaline active and/or alkali stable protease(s) have gained commercial importance because of their potential applications in textile, paper/pulp, and detergent industries. North-eastern part of India is considered as <u>Sudhir K Rai</u>

one of the mega biodiversity zones of the world. Exploration of microbial diversity of these regions is possible only by screening the soil /water samples for industrial purpose in the development of biotechnological products and processes. The present study was undertaken to isolate alkaline active and alkali stable protease (s) from the promising microbe(s) of NE India. Alkalothermophilic micro organisms growing in alkaline habitats in nature were screened for selection of promising cultures that can produce extra cellular proteases of desired properties. Another main segment of the present study was statistical optimization of culture conditions during fermentation, evaluation of the biochemical and pharmacological properties and assessment of biotechnological potential of the crude/purified alkaline proteases produced by promising bacterial strains isolated from natural habitat's of North-eastern India.

The objectives of the present investigation were as follows.

1. Screening of microorganism from various environmental samples collected from various regions of northeast India, for the production of alkaline protease under thermophilic condition.

2. Obtaining pure culture and taxonomic identification of protease producing potential microbes.

3. Optimization of culture conditions of potential microbes for maximizing protease production using solid state fermentation (SSF) and submerged fermentation (SmF) systems.

4. Isolation, downstream processing and biochemical characterization of an alkaline protease produced by the most promising strain(s).

5. To investigate the possible industrial application of the isolated alkaline proteases.

Sudhir K Rai

CHAPTER II

REVIEW OF LITERATURE

<u>Sudhir K Rai</u>

Chapter 2 Chapter 2

Review of literature

2. Screening and detection of protease producing potential microorganisms

Of the entire alkalophilic microorganism that have been screened for use in various industrial applications, members of the genus *Bacillus* are found to be a predominant and prolific source of alkaline proteases (Table 2.1). However, a few exceptions are *Nocardiopsis* sp.²⁰⁰, *Salinivibrio* sp. strain AF-2004²⁰¹, *Clostridium* sp.²⁰², *Vibrio fluvialis* TKU-005²⁰³, *Aureobasidium pullulans*²⁰⁴, *Streptomyces* sp. CN902²⁰⁵ etc., which are also recognized as promising microbes for alkaline protease production. In addition to above microbial strains, *Monascus purpureus* CCRC31499²⁰⁶, *Exiguobacterium* sp. YS1²⁰⁷, *Vibrio metschnikovii* J1²⁰⁸, etc., were also characterized for alkaline protease production.

Doddapaneni and his colleague's¹³¹ isolated an alkaline protease producing bacterial strain *Bacillus cereus* from slaughter house in Hyderabad city, Andhra pradesh, India. A halophilic strain *Bacillus proteolyticus* CFR3001 isolated for protease production from coastal region of Gujarat, Western India was reported by Patel *et al*²⁰⁹. Recently, Shanmughapriya *et al*²¹⁰ reported an alkaline protease producing gram-negative strain *Roseobacter* sp. (MMD040) isolated from marine sponge *Fasciospongia cavernosa* originated from peninsular coast of Vizhinjam, Kerala, India. *Halogeometricum* sp. TSS101 is a protease producing strain isolated by Vidyasagar and his college²¹¹ from solar evaporated salt pond situated in Tuticorin, on the coast of Tamil nadu, India. Shikha *et al*²¹² reported in the year of 2007, an alkaline protease producing strain *Bacillus pantotheneticus* isolated from saline-alkali soil of the Avadh region Uttar Pradesh, India (Table 2.2).

<u>Sudhir K Rai</u>

Microorganisms	Sources	Geographical Location	References
<u></u>	Internationally reported prote	ase producing microbes	
Nocardiopsis sp.	Soil sample	Northeast of Brazil	Moreira <i>et al²⁰⁰</i>
Bacillus clausii	Heavily polluted tidal mud	Korean yellow sea near Inchon City,	Kumar <i>et al²¹³</i>
ı		Korea	
Bacillus polymyxa	Alkaline soil sample	Isfahan, Iran	Emtiazi <i>et al²¹⁴</i>
Clostridium sp.	Lake sediment sample	Schirmacher oasis, Antarctica.	Alam <i>et al²⁰²</i>
Euphorbia amygdaloides	Land of Erzurum	Turkey	Demir <i>et al²¹⁵</i>
Pseudomonas aeruginosa strain K	Contaminated soils of a wood factory	Selangor, Malaysia	Rahman <i>et al²¹⁶</i>
Bacillus subtilis and	Waste -discharge	Turkey	Orhan <i>et al²¹⁷</i>
Bacillus cereus	area of the leather industry		
Aspergillus fumigatus	Marine food processing industry	Taiwan	Wang et al ²¹⁸
Dactylella shizishanna	Soil samples in Hubei Province	China	Wang et al ²¹⁹

 Table 2.1 Screening results of isolated alkaline proteases from different environmental samples reported from abroad.

<u>Sudhir K Rai</u>

Chapter 2 Microorganisms	Sources	Geographical Location	References
Bacillus sp. TKU004	Soil sample	Taiwan	Wang et al ²²⁰
Monascus purpureus CCRC31499	Marine food processing industry werewashed	Taiwan	Liang <i>et al²⁰⁶</i>
Bacillus sp.	Extreme alkaline conditions	Izmir, Turkey	Genckal and Tari ²²¹
B.clausii I-52	Heavily polluted tidal mud	West sea of Inchon, Korea	Joo and Chang ¹⁸⁷
<i>Bacillus</i> sp. HR-08 and KR-8102	Soil samples were collected from the rhizospher and rhizoplane zone	Hamadan, Iran	Moradian <i>et al²²²</i>
Aureobasidium pullulans	Seawater and sediment ; hypersaline sea water and sediments of the salterns around	Southern sea of China and the pacific ocean ; coastal line of Qingdao	Chi <i>et al²²³</i>
Geobacillus sp. YMTC 1049	Hotspring in Rehai, Tengchong, Yunnan Province,	China	Zhu <i>et al</i> ²²⁴
Vibrio fluvialis TKU005	Seawater sample of Tamsui River near Tamkang University	Taipei, Taiwan	Wang <i>et al²⁰³</i>

Chapter 2			60
Microorganisms	Sources	Geographical Location	References
Salinivibrio sp. strain AF-	Hypersaline lake with 17% (w/v) total salt	Baktegan south of Iran	Karbalaei-Heidari et al ²⁰¹
2004			
Bacillus sp.	Soil samples were collected from sandy soil,	China	Chu, ²⁰⁴
	milk processing plant, the drainage of a		
	slaughterhouse and		
Bacillus cereus	Soil sample	Tehran, Iran	Oskouie <i>et al⁸⁷</i>
Bacillus pumilus	Contaminated soils of a wood factory	Selangor, Malaysia	Rahman <i>et al¹⁷³</i>
Vibrio fluvialis TKU-005	Seawater sample of Tamsui River	Tamkang University, Taipei	Wang et al ²⁰³
Colwellia sp. NJ341	Not specified	China	Wang et al ²²⁵
Bacillus cereus SV1	Oil sewage station from a fishing port	Sfax in Tunisia	Manni <i>et al²²⁶</i>
Bacillus sp. HS08	Soil sample	Toulufan crater, china	Guangrong et al ⁸⁹
Bacillus licheniformis BA17	-do-	-do-	Nikerel et al ²²⁷
Pseudomonas aeruginosa	Alkaline waste water of a tannery.	Sfax Tunisia	Jellouli <i>et al²²⁸</i>
MN7			
Bacillus sp. RKY3 KCTC	Soil	Republic of Korea	Reddy et al ⁹⁰
10412BP			

Chapter 2		A	D.f
Microorganisms	Sources	Geographical Location	References
Pseudomonas aeruginosa	Soil samples were collected from a crude oil	Jiangsu province, China	Tang et al ²²⁹
	contaminated environment located		
Lactobacillus helveticus	Kefir	Greece	Valasaki <i>et al²³⁰</i>
Lactobacillus paracasei	Infant vomited	Taiwan	Wang <i>et al²³¹</i>
subsp <i>paracasei</i> TKU010			
Chryseobacterium	Soil sample	Taiwan	Wang et al ²³²
indologenes TKU014			
Chryseobacterium	Soils by using	Taiwan	Wang et al ²³³
taeanense TKU001	red-koji rice		
Bacillus cereus TKU006	Soil sample	Taiwan	Wang <i>et al²³⁴</i>
Bacillus pumilus	Not specified	Not specified	Wan <i>et al</i> ²³⁵
Bacillus sp. HR-08	Soil samples were collected from	Hamadan, Iran.	Moradian <i>et al²³⁶</i>
	rhizosphere and rhizoplane zone of		
Vibrio metschnikovii J1	Alkaline waste- water of soap industry in	Sfax, Tunisia	Jellouli <i>et al²⁰⁸</i>
Streptomyces sp. CN902	Soil sample	Tunisian	Lazim <i>et al²⁰⁵</i>
Exiguobacterium sp. YS1	Soil sample	South Korea	Lee et al ²⁰⁷

Chapter 2			62
Microorganisms	Sources	Geographical Location	References
Bacillus pseudofirmus Mn6	Olive filed soil sample	El-Menia governorate, Egypt	Abdel-Fattah et al ⁹³

Table 2.2 Protease producing microbes reported from India.

Microorganisms	Sources	Geographical Location	References
	Nationally reported protease producing n	nicrobes	
Arthrobacter ramosus, MCM B- 351	Sediment sample of alkaline lake	Lonar	Nilegaonkar <i>et al²³⁷</i>
Bacillus pseudofirmus	Haloalkaliphilic bacteria (isolate Vel)	west coast of India	Gupta <i>et al²³⁸</i>
Bacillus sp.	-do-	-do-	Prakasham <i>et al</i> ²³⁹
Conidiobolus coronatus	Isolated by overlaying fine particles of plant detritus	Anekal , Karnataka	Laxman <i>et al²⁴⁰</i>
Bacillus sp.	Soil samples were collected from Nellore	Andhra Pradesh	Naidu and Devi ²⁴¹
Halogeometricum sp. TSS101	Solar evaporated salt pond	Tuticorin, coastal area of Tamilnadu	Vidyasagar, <i>et al²¹¹</i>
Pseudomonas aeruginosa	Soil samples were collected from the proximity of a solvent extraction unit	New Delhi	Gupta and Khare ¹⁷²

<u>Sudhir K Rai</u>

Chapter 2 Microorganiama	Courses	Coorrenhicol Location	Deferences
Microorganisms	Sources	Geographical Location	References
Engyodontium album BTMFS10	Marine sediment	Cochin,	Chellappan et al ¹²
Bacillus sp. Po2	Seawater sample of porbandar	Coastal region of the	Patel et al ²⁰⁹
		Gujarat,	
		Western India.	
Bacillus pantotheneticus	Saline-alkali soil of the Avadh region	Uttar Pradesh	Shikha <i>et al²¹²</i>
Exiguobacterium sp. SKPB5	Soil samples were	Western Himalayas	Kasana <i>et al²⁴²</i>
(MTCC 7803)		· (Himachal Pradesh)	
Bacillus proteolyticus CFR3001	Fish processing wastes	India	Bhaskar <i>et al²⁴³</i>
Bacillus cereus MCM B-326	Not specified	Not specified	Zambare et al ²⁴⁴
Bacillus sp	Soil sample	India	Saran <i>et al⁸⁸</i>
Bacillus circulans	Not specified	Not specified	Jaswal <i>et al²⁴⁵</i>
Pseudomonas aeruginosa	The limed animal fleshing	Chennai	Kumar <i>et al²⁴⁶</i>
Halophilic bacterium MBIC3303	Sea water samples	Costal Gujarat	Joshi <i>et al</i> ²⁴⁷
Pseudomonas aeruginosa PseA	Not specified	New Delhi	Mahanta et al ²⁴⁸

Chapter 2			64
Microorganisms	Sources	Geographical Location	References
Roseobacter sp. (MMD040)	Marine sponge Fasciospongia cavernosa,	peninsular coast of India	Shanmughapriya et al ²¹⁰
		(Vizhinjam)	
Penicillium godlewskii SBSS 25	Soil samples	Southern Kerala	Sindhu <i>et al²⁴⁹</i>
Bacillus cereus	Slaughterhouse waste samples,	Hyderabad	Doddapaneni <i>et al</i> ¹³¹

A survey of literature demonstrated that many protease producing microbes were isolated from various regions of India, *but to the best of our knowledge there is no report on alkaline protease producing microbes from North east India,* and this has prompted us to explore the industrially important microbes from North-Eastern region of India.

2.1 A brief review on alkaline protease production by solid-state fermentation (SSF) and submerged fermentation (SSF) system

The rapid development of biotechnology has impacted diverse sectors of the economy over the last several years. The industries most benefited are the agricultural, fine chemical, food processing, marine, and pharmaceutical. In order to continue revolutionizing the industries, new processes must be developed to transform current biotechnological research into viable market products. Specifically, attention must be directed toward the industrial processes of cultivation of microorganisms and enzymes.

Commercial production of protease is carried out in various ways, and different the environmental parameters essential for the optimum growth of micro-organism are being employed for enzymes production. These parameters include nutrient supplementation, pH of the medium, osmotic relationship, degree of aeration, temperature and the control of contamination during fermentation. Maintaining the purity of the medium is also a very important factor, especially when the fermentation is carried out under aerobic conditions. Though the details of the specific fermentation processes adopted by different manufacturers vary, two main methods are followed for protease production viz submerged fermentation and solid–state fermentation^{250,251}.

2.1.1 Solid-state fermentation (SSF) systems

The term solid state fermentation (SSF) is applied to the processes in which water insoluble materials are used for the microbial growth^{252,253}. In the fermentative processes of this type, the quantity of water should <u>Sudhir K Ral</u>

not exceed the capacity of saturation of the solid bed in which the microorganisms grow^{252,253}. Water is essential for the microbial growth and enzyme production in SSF system, and it is present in thin layers and sometimes, absorbed inside the substrates ^{252,253}.

Solid-state fermentation has gained interest from industrialists and researchers for the production of these enzymes in view of its several economic and technological advantages and has been often employed to produce protease. Some advantages and disadvantages of the SSF are presented in Table 2.3.

Solid-state fermentation							
Advantages	Disadvantages						
The culture media are simple.	The used microorganisms are						
Some substrates can be used	limited to those that grow in						
direclty as a solid media or	reduced levels of humidity						
enriched with nutrients							
The product of interest is	The determination of parameters						
concentrated, this facilitates its	such as humidity, pH, free						
purification	oxygen and dioxide of carbon,						
	constitute a problem due to the						
	lack of monitoring devices						
The used inoculum is the natural	The scale up of SSF processes						
flora of the substrates, spores or	has been little studied and it						
cells	presents several problems						
The low humidity content and the							
great inoculum used in a SSF							
reduce the possibility of microbial							
contamination							
The quantity of waste generated is							
smaller than the SmF							
The enzymes show low sensitive to							
The enzymes show low sensitive to	- <u> </u>						

Table 2.3 Advantages and disadvantages of the SSF system.

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

66

Chapter 2	67
Solid-state ferm	nentation
Advantages	Disadvantages
catabolic repression or induction	

Apart from above mentioned advantages this system also displayed excellent low humidity level demonstrating formation of gradient temperature, nutrients and products and also, sporulation mechanisms as well as the production of enzymes and secondary metabolites in SSF systems.

2.1.2 Solid-supports in SSF systems

Two types of SSF systems can be distinguished depending on the nature of the soild phase used. The first and the most commonly used system involves cultivation on a natural material as a substrate (Table 2.4). The second system, which is not as frequently used, involves cultivation on an inert support impregnated with a liquid medium²⁵⁴.

SSF cultivation on natural substrates uses natural materials as substrate that serve both as support and a nutrient source (Table 2.4). Substrate from agricultural or industrial wastes (wheat straw or barley, sugar cane bagasse, coffee pulp, grape wastes, copra pasta, among other) or inert materials (such as resins of ionic exchange, acreolite or poliurethane foam) can be used (Table 2.4). The pretreatments of these materials is really few, generally a milled previous wash.

Table 2.4 Use of solid substrates as support for protease production in SSF systems

Substrates	Applications	References		
Wheat bran	Acidic protease	Germano et al ²⁵⁵		
	production			
Wheat bran	Alkaline protease production	Agrawal <i>et al²⁵⁶</i>		

Sudhir K Rai

Chapter 2 Substrates	Applications	References		
Wheat bran and lentil	Alkaline protease	Uyar and Baysal ²⁵⁷		
husk	production			
Wheat bran	Neutral protease	Sandhya <i>et al²⁵⁸</i>		
	production			
Soybean	Alkaline protease	Elibol and Moreira ²⁵		
	production			
Soybean and wheat	Protease production	Wang <i>et al²⁶⁰</i>		
flours				
Soy cake	Protease production	Valeria <i>et al²⁶¹</i>		
Wheat bran	-do-	Chellappan <i>et al</i> ¹²⁷		
Green gram husk	-do-	Prakasham <i>et al²⁶²</i>		
Pre -filtered palm oil mill	Protease production	Wu et al ²⁶³		
effluent (POME)				
Jatropha seed cake	Protease production	Mahanta <i>et al²⁴⁸</i>		
Untanned	Acidic protease	Kumar <i>et al²⁴⁶</i>		
proteinaceous				
tannery solid waste,				
animal fleshing (ANFL)				
Mirabilis jalapa tubers	Alkaline protease	Hajji <i>et al¹²⁸</i>		
powder (MJTP),	production			
Dhal husk	Milk clotting protease	Sathya <i>et al²⁶⁴</i>		
	production			
Wheat bran (WB) with	Alkaline protease	Lazim et al ²⁰⁵		
chopped date stones	production			
(CDS)				
Hulled grain of wheat	Alkaline protease	Haddar <i>et al²⁶⁵</i>		
(HGW)	production			

2.2 Protease production under SSF system using agro-industrial wastes

Protease production is a major area of research globally, and with the rejuvenated interest created due to their applications in different bio-Sudhir K Rai

formulation sectors, several investigators are working worldwide on various aspect of microbial protease²⁶⁶. Production of low titers of protease has always been a major concern and thus several workers are trying to improve the production titers by adopting multifaceted approaches, which include the use of better bioprocess technologies, using cheaper or crude raw materials as substrates for enzyme production, bioengineering the microorganisms, etc²⁶⁷.

In order to obtain high and commercially viable yields of protease, many workers have been using agro-industrial waste as a cheaper carbon and nitrogen sources for protease/keratinase production under solid-state fermentation system (Table 2.5 and Table 2.6). Among various agro-industrial waste, wheat bran supporting substrates influences the protease/keratinase production under SSF by many microbes as shown in Table 2.5 and Table 2.6. Hongzhang *et al*²⁶⁸ reported protease production under SSF by *Bacillus Pumilus* AS 1.1625 using synthetic supporting material such as polyurethane foam incubated at 32°C for 96h. Mahanta and his colleague's²⁴⁸ reported the use of *Jatropha curcas* seed cake as a solid support for protease production by *Pseudomonas aeruginosa* PseA strain under SSF system.

Recently in the year 2009, use of green gram husk for protease production by *Bacillus* sp., was studied by Prakasham and his colleague's²⁶⁹. *Bacillus Megaterium* NCIM-2087 displayed an excellent protease production in a medium supplemented with soy cake post 60h of incubation²⁷⁰. *Mucor circinelloides*, a well known fungal species supported a protease production in the presence of lentil (dhal) husk post 120h of incubation at $30^{\circ}C^{264}$. Paranthaman *et al*²⁷¹ reproted neutral protease production using rice mill wastes by a fungal species *Aspergillus niger* post 96h of incubation at $35^{\circ}C$ with a maximum yield of 67.7 U /gds (Table 2.5).

<u>Sudhir K Rai</u>

Chapter 2	2
-----------	---

 Table 2.5 Alkaline protease production under solid-state fermentation system.

Micro-organisms	Substrates	рН	Moisture level (In %)	Innoculum level (In %)	Incubation temperature (In °C)	Incubation time (h)	Enzyme activity (U/gds)	References
Penicillium sp.	Defatted soybean cake supplemented	5.0	55.0	108 spores/g dry substrate	28.0	48	43.0	Germano et al ²⁵⁵
Aspergillus oryzae	Wheat bran	7.5	43.6	1.0 ml (8 × 10 ⁸ spores)	30.0	72.0	31.2	Sandhya et al ²⁵⁸
Beauveria felina	Wheat bran	7.0	120.0	Not specified	Not specified	168.0	20,000.0	Agrawal et al ²⁷²
Bacillus pumilus AS 1.1625	Wheat bran	Not specified	65	-do-	-do-	Not specified	4300.0	Aijun <i>et al²⁷³</i>
Bacillus subtilis	Soy cake & babassu cake	5.0-10.0	70.0	25.0 ml	37.0	140.0	960.0	Valeria <i>et al²⁶¹</i> Continued

<u>Sudhir K Rai</u>

Chapter 2								
Table 2.5 Continued								
R.microsporus NRRL	Rice bran	7.0	44.4	10 ⁶	30.0	72 h	129.0	Sumantha et
3671				spores/ml				al ²⁷⁴
Thermoactinomyces	Wheat bran	10.0	80.0	20.0 %	55.0	72	2756.0	Divakar et
thalpophilus PEE 14								al ²⁷⁵
Engyodontium album	Wheat bran	11.0	60.0	Not	25.0	120	Not	Chellappan <i>et</i>
BTMFS10				specified			specified	al ¹²⁷
Bacillus Pumilus AS	Polyurethane	Not	Not	8.2 x 108	32.0	96	Not	Hongzhang et
1.1625.	foam	specified	specified				specified	al ²⁶⁸
Bacillus sp.	Green gram	9.0	140.0	3.0 %	33.0	60	35,000.0	Prakasham et
	husk							al ²⁶²
Aspergillus tamarii	Wheat bran	9.0	65.0	5.0 %	30.0	96	1.46 x	Anandan et
							104 U/g	al ²⁷⁶
Pseudomonas	Jatropha	6.0-7.5	50.0	200.0 µl	30.0	72	1818.0	Mahanta et
aeruginosa PseA	curcas seed							al ²⁴⁸
	cake							

Micro-organisms	Substrates	рН	Moisture	Innoculum	Incubation	Incubation	Enzyme	References
			level (In	level (In %)	temperatu re	time (h)	activity	
			%)		(in °C)		(U/gds)	
Streptomyces sp.	Wheat bran	8.0	60.0	1 x 108	45.0	120.0	245.50	Lazim et al ²⁰⁵
CN902				(spore / gm				
				substrate				
Mucor circinelloides	Dhal husk	7.0	20.0	30.0	30.0	120	8,573.0	Sathya <i>et al²⁶⁴</i>
	holds							
Penicillium godlewskii	Wheat bran	9.0	60.0	5 x 10 ⁷	35.0	96	235.0	Sindhu <i>et al</i> ²⁴⁹
SBSS 25				(spores /ml)				
Bacillus Megaterium	Soy cake	9.0	100.0	3.0 ml	-do-	60.0	5961.0	Reddy <i>et al</i> ²⁷⁰
NCIM-2087	substrate							
Aspergillus niger	Rice mill	7.0	Not	(10 ⁶	35.0	96.0	67.7	Paranthaman
	wastes		specified	spores/ml)				et al ²⁷¹
Aspergillus oryzae	Wheat bran	5.0	60.0	1 ml(10⁵	30.0	120.0	8.64 x	Vishwanatha
MTCC 5341:				spores/ml)			10 ⁵	et al ²⁷⁷
								Continued

Chapter 2 7 Table 2.5. Continued 7											
Wheat	5.7	Not	Not	70.0	24.0	168.0	Merheb-Dini				
bran and 20%		specified	specified				et al ²⁷⁸				
of casein											
(WBC),											
	bran and 20% of casein	bran and 20% of casein	bran and 20% specified of casein	bran and 20% specified specified of casein							

 Table 2.6 Alkaline keratinase production under solid-state fermentation system.

Micro-	Substrates	рН	Moisture	Innoculum	Incubation	Incubation	Enzyme	References
organisms			level (In %)	level (in %)	temperature	time (h)	activity	
				(In °C)			(U/gds)	
B.subtilis	Horn meal	7.0	100.0	50.0 %	37.0	48.0	15,972.0	Kumar et al ²⁷⁹
(MTCC9102)								
Myrothecium	Poultry	8.5	70–75	1.0 x 10 ⁹	28.0	144.0	189.0	Gioppo <i>et al²⁸⁰</i>
verrucaria	feather (PF)			spores				
Penicillium	Rice straw	6.0	80.0	10 ⁵ spores/	26.0	120.0	1,834.20	Morsy and
sp.				ml				Gendy ²⁸¹

Ph.D Thesis, Tezpur University, 2010

73

Chapter 2 2.3 Protease production under submerged fermentation system

Biotechnological application of proteases requires the production of these enzymes economically viable amounts for commercial purposes. Protease production is usually carried out in submerged fermentation (SmF), i.e fermentation in the presence of excess water; instead of SSF, due to better monitoring and ease of handling. Literature survey shows majority of the reports on microbial proteases production utilizes the submerged fermentation technology (SmF) and the widely studied organism used in protease production *- Bacillus* species also has been tested mostly in liquid media (Tables 2.5 and 2.6).

Considering the regular demands of industrial enzymes, many scientists have reported the enhancement of protease production using the supplementation of cheaper carbon and nitrogen sources under SmF. For example, Joo and Chang¹⁸⁷ reported the protease production using soybean, wheat flour and liquid maltose meal as cheaper carbon and nitrogen sources at pH 10.65 by Bacillus clausii I-52 with a maximum enzyme yield of 89,300.0 U / ml. Zambare and his colleagues²⁴⁴ reported protease production using starch and wheat bran by B. cereus MCM B-326 at pH 9.0. A protease producing strain, Teredinocabcter turnirae displayed maximum protease yield of 1950.0 U /ml in presence of soybean as a substrate²⁵⁹. Recently, Bhaskar and his colleagues²⁴³ demonstrated the use of fish processing waste material for alkaline protease production by Bacillus proteolyticus CFR3001 at 37°C incubation temperature. Ramesh et al²⁸² reported protease production by Streptomyces fungicidicus MML1614 using sucrose and peptone as the best carbon and nitrogen sources. Using wheat bran Sunitha²⁸³ reported the and maltose, Kalaiarasi and maximum protease production of 0.9388 U/ ml by Pseudomonas fluorescens strain post 24h of incubation. Esakkiraj and his colleagues²⁸⁴ reported the protease production using Tuna waste by Bacillus cereus with a maximum production of 259.83 U/ ml.

Sudhir K Rai

2.4 Statistical optimization of protease production

Media components were found to have great influence on extracellular protease production and are different for each microorganism. Therefore, the required constituents and their concentrations have to be optimized accordingly⁸⁷. Industrial fermentation is moving away from traditional and largely empirical operation towards knowledge based and better controlled process²⁸⁵.

A number of optimization techniques can be used for this purpose. Statistical approaches offer ideal ways for process optimization studies in biotechnology. Time consuming, requirement of more experimental data sets⁸⁷.and missing the interactions among parameters are the obstacles in predicting the accurate results when the conventional optimization procedures like 'one-factor at a time' were applied⁸⁷. On the contrary, statistical procedures have advantages basically due to utilization of fundamental principles of statistics, randomization, replication and duplication⁸⁷.

Several reports on the process optimization for protease production using different model and design are shown in Tables 2.5 and 2.6. Majority of scientists reported the application of Plackett-Burman factorial design for initial screening of factors influencing protease production followed by central composite design (CCD) using different softwares to see the interaction and effects of the chosen factors(Table 2.6). Zhou and his colleague's²⁸⁶ reported the protease production optimization from *Laccocephalum strain* using MATLAB software package. Process optimization for protease production was performed by minitab 13v software^{92,287,288} as shown in Table 2.7. For keratinase production majority of workers use design expert software and statistica package^{289,290} as shown in Table 2.8.

Sudhir K Rai

Table 2.7 Statistical optimization of alkaline protease production

Micro-organisms	Fermentation	Software	Design	Protease Yield	References
	system (SSF /			(U/ml or U /gds)	
	SmF)				
Bacillus sp.	SmF	Not specified	L16 OA	89.23 U / ml	Prakasham et al ²³⁵
Bacillus sp. L21	SmF	Minitab statistical software	response surface	269 U/ ml	Tari et al ²⁸⁷
		(Release 13v)	methodology (RSM)		
Microbacterium sp.	SmF	Statistic 5.0 software (Statsoft,	Response surface	202.7 U/ ml	Thys <i>et al²⁹¹</i>
		USA).	method		
Pseudomonas	SmF		Plackett-Burman and	793492 U / I	Khan et al ²⁹²
aeruginosa (B-2)			Central Composite		
			Design (CCD)		
Bacillus sp.	SmF	Design-Expert® 6.0 (Stat-	RSM: FCCCD as	3978 U/mL	Saran et al ⁸⁸
		Ease, Min neapolis, MN)	Experimental Design		

<u>Sudhir K Rai</u>

Chapter 2 Micro-organisms	Fermentation		Softwar	e	Des	sign	Protease Yield	References	
	system (SSF /						(U/ml or U /gds)		
	SmF)								
Colwellia sp. NJ341	SmF	Design	Expert'	software	Response	surface	183.21 U/mL	Wang et al ²²⁵	
		(Version	7.0,	Stat-Ease	methodolo	gy			
		Inc.,Min- I	neapolis, I	USA) was					
Bacillus sp. RKY3	SmF	Design-Expert 7.1 (Stat- Ease, F			Plackett-Burman		939 U /ml	Reddy <i>et al⁹⁰</i>	
		Inc., Minn	eapolis, N	IN, USA)	and	response			
					surface me	ethodology			
Bacillus sp. HS08	SmF	Statistica,	Version	7.0 (Statsoft	Central	composite	6804 U/ml	Guangrong et al ⁸⁶	
		Inc., Tulsa	a, OK		design				
B.clausii	SmF	Stat-Ease	Inc., I	Minneapolis,	Central	composite	3914 U/ mi	Oskouie <i>et al⁸⁷</i>	
		MN, USA			design				
	<u> </u>							.Continue	

Chapter 2					78
Table 2.7 Continued	•••				
Aspergillus clavatus	SmF	Design Expert® 7.0' Stat-Ease,	Plackett-Burman	770.66 U/ml	Hajji <i>et al</i> ¹²⁸
		Inc., Minneapolis, MN,	and response		
ES1		USA,	surface methodology		
Laccocephalum mylittae	SmF	Matlab (Version 7.1, the MathWorks, Inc., Natick, MA	Central composite rotatable design (CCRD)		Zhou <i>et al²⁸⁶</i>
Bacillus pseudofirmus SVB1	SmF	Minitab (Minitab Inc., State College, PA., USA)	Plackett-Burman experimental design. Central composite design	Not specified	Sen <i>et al^{e2}</i>
Bacillus pseudofirmus Mn6	SmF	Microsoft Excel 97	Box-Behnken factorial experimental design	3,213.0 U /ml	Abdel-Fattah <i>et al^{es}</i>

Ph.D Thesis, Tezpur University, 2010

•

Micro-organisms	Fermentation	Software	Design	Protease Yield	References	
	system (SSF /			(U/mI or U /gds)	ıds)	
	SmF)					
Streptomyces sp. A6	SmF	Design Expert	Plackett-Burman	129.02 U/ ml	Singh and	
		(version 7.1.6, State-Ease,	design and CCD		Chhatpar ²⁹³	
		Minneapolis, MN, U.S.A.).				
Bacillus sphaericus	SmF		Plackett-Burman	1182.68 U / ml	Liu <i>et al²⁹⁴</i>	
DS11			design and Box-			
			Behnken design		•	
Bacillus mojavensis	SmF	Design Expert® 7.0" Stat-Ease,	Central composite	1860.63U/ml	Haddar <i>et al²⁶⁵</i>	
A21		Inc., Minneapolis, USA	design			
Mangifera Indica	For extraction	Minitab v.14 statistical package	central composite	Not specified	Amid <i>et al²⁸⁸</i>	
Cv. Chokanan	process	(Minitab Inc., PA, USA).	design (CCD			

Chapter 2	
Table 2.8	Statistical optimization of alkaline keratinase production

Micro-organisms	Fermentation	Software	Design	Protease Yield	References
	system (SSF /			(U/ml or U	
	SmF)			/gds)	
Bacillus licheniformis SmF		Design expert 6.0 software	FCCCD	1295.0	Ramnani and Gupta 285
RG1		(Stat-Ease).			
Streptomyces sp7	SmF	SmF Statistica 6.0 (Stat Soft)		95.0	Tatineni <i>et al²⁹⁵</i>
			rotatable CCD		
Bacillus subtilis	SmF	Expert-Design software	Fractional factorial	125	Cai and Zheng ²⁹⁰
strain, KDN2			design (FFD); central		
			composite design		
			(CCD)		

•

2.5 Purification and biochemical characterization of alkaline protease

The properties of microbial proteases may be diverse depending on the producer microorganism. These enzymes are predominantly extracellular, although cell-bound and intracellular enzymes have also been reported^{6,296}. The purification, biochemical and physicochemical properties of some of the selected proteases are presented in Table 2.9.

In a broad-spectrum, all currently used detergent stable proteases are alkaline and thermostable in nature with a high pH optima (the pH of laundry detergents is generally in the range of 8.0-12.0) and have varying in thermostabilities at laundry temperature (50-70 °C). Therefore, most of the commercially available proteases are also active in the pH and temperature ranges 8-12 and 50-70°C respectively (Table 2.9). In addition, a recent trend in the detergent industry is a requirement for alkaline protease active at low washing temperatures to reduce the cost of heating the water to improve the wash performance. Alkaline proteases have board substrate specificity and are active against a number of natural proteins. However, literature conclusively suggests that they are much more active against casein than against other proteinous substrates (Table 2.9). Moreover, there are specific types of alkaline proteases such as collagenase, keratinase^{296,297} which are active against specific types of keratinaceous wastes.

To develop an enzyme-based process, prior information about kinetic parameters of the enzyme in question is of utmost importance. To be precise, kinetic properties, like V_{max} , K_m , K_{cat} and E_s are important for substrate and environment specific for designing an enzyme reactors or quantifying the applications of the enzyme under different conditions^{298,299}. For alkaline protease from *Salinivibrio* sp. strain AF-2004 decreasing the km value to 1.4 (mg/ml) lead in increase in Vmax value of 264 (U/mg) reported by Karbalaei-Heidari *et al*²⁰¹. Singh and *Sudhir K Rai*

his colleague's²⁸⁵ reported the kinetic properties of alkaline protease *Crinum asiaticum* displaying increase in V_{max} value of 5 x 10⁴ μ M/min with a corresponding decrease in Km value of 31.7 μ M. Literature survey suggests decrease in Km value lead to increase in V_{max} value as demonstrated by purified protease from *Bacillus* sp. HR-08²³⁶, *Laccocephalum mylittae*³⁰⁰, *Sardinella aurita*³⁰¹, *Bacillus cereus*³⁰² etc.,

<u>Sudhir K Rai</u>

...

.

Chapter 2 Table 2.9 Properties of few selected proteases from different micro-organisms.

Micro-	рН	Temperature	Substrates	Molecular	Specific	Other properties	References	
organisms	optima	optima (In °C)	specificity	mass	activity			
				(kDa)	(U/mg)			
Bacillus	10.0-	37.0	Casein	30.0-32.0	5142	Marginally inhibited by EDTA (1 mM)	Patel et al ²⁰⁹	
pseudofirmus	11.0					and PMSF (10 mM) ; Ca^{2+} and Mn^{2+} ;		
Engyodontium album	10.0	60.0	Casein	38.0	438	Not specified	Chellappan et al ¹²⁷	
BTMFS10								
<i>Salinivibrio</i> sp. strain AF-2004	8.5	55.0	Casein	31.0	116.8	Complete inhibition by Pefabloc SC and PMSF ; Zn ²⁺ ,Ca ²⁺ and Ni ²⁺ ; organic solvent stable protease	Karbalaei- Heidari, e <i>t al²⁰¹</i>	
Aspergillus clavatus ES1	8.5	50.0	Casein	32.0	37600	inhibited by the serine protease inhibitor (PMSF) indicating	Hajji <i>et al¹²⁸</i>	
Serratia	10 0	30.0	Casein	97.0	Not	Strong inhibition by EDTA ; Cu ²⁺	Doddapaneni <i>et</i>	
rubidaea				45.0	specified	dependent	al ³⁰³	

<u>Sudhir K Rai</u>

Chapter 2						······	84
Micro-	рН	Temperature	Substrates	Molecular	Specific	Other properties	References
organisms	optima	optima (In °C)	specificity	mass	activity		
				(kDa)	(U/mg)		
Botrytis cinerea	9.0-	60.0	Casein	43.0	21,700	DTNB, 2- mercaptoethanol and DTT	Abidi et al ³⁰⁴
	10.0					(thiol protease); Influence by Cu ²⁺	
						ions.	
Aspergillus	8.5	40.0	Casein	37.0	5.620	Co ²⁺ and Fe ²⁺ ; organic solvent	Pena-Montes et
nidulans PW1						stable ; thermostable	al ³⁰⁵
<i>Bacillus</i> sp.	10.0	40.0	Casein and	30.0	65,700.0	Not specified	Ogino <i>et al</i> ¹⁸¹
PN-13			gelatin				
Bacillus	10.0	50.0	Casein	55.0	2983.0	Organic solvent stable protease; Ca ²⁺	Sareen and
licheniformis							Mishra ³⁰⁶
RSP-09-37							
Penicillium	9.0	35	Casein	41.0	36542.6	Strongly inhibited by the serine	Zhu <i>et al³⁰⁷</i>
chrysogenum						protease inhibitors PMSF and DFP ;	
FS010						Mg ²⁺ and Ca ²⁺	

Chapter 2		Tan	Cubatrat		Or a sife -	Othersection	85
Micro-	рН	Temperature	Substrates	Molecular	Specific	Other properties	References
organisms	optima	optima (In °C)	specificity	mass	activity		
				(kDa)	(U/mg)		
B.circulans	11.0	70	Casein	39.5	9000	Ca ²⁺ ,Mg ²⁺ and Mn ²⁺	Rao et al ³⁰⁹
Bacillus sp.	10.0	60.0	Casein	29.0	2,938	Inhibited by PMSF (serine alkaline	Moradian <i>et al</i> ²³⁶
HR-08						protease); organic solvent stable;	
						Influencing metal ions Ca ²⁺ ,Na ²⁺ , Cu ²⁺	
						, 100% stable at 50 °C for 180 min	
B.mojavensis	8.5	40.0	Casein	20.0	15,575.22	inhibited by the serine protease	Haddar <i>et al⁹⁶</i>
A21						inhibitor (PMSF) indicating	
Myrothecium	8.3	37.0	feather	22.0	12,851.8	Inhibited by PMSF; organic-solvent	Moreira, <i>et al³⁰⁹</i>
verrucaria			keratin			stable protease	
Bacillus sp.	10.0	30.0	Casein	28.0	75.0 x 10 ³	strong inhibition by PMSF ; influence	Deng et al ³¹⁰
B001						by Ca ²⁺ ,Ba ²⁺ , and Mg ²⁺ ,	

The molecular mass of alkaline proteases ranges from 20 to 71.0 kDa^{96,311} with few reports of higher molecular masses of 86.29 kDa³¹²,91.0 kDa³¹¹, 97.0 kDa³⁰³; 115.0 kDa³¹³ and 124.0 kDa²¹⁸. However, an enzyme from *Sardinella aurita* had an extremely low molecular weight of 14.2 kDa³⁰¹.

Literature survey demonstrated that majority of alkaline keratinase molecular mass ranges from 30.0 to 80 kDa^{314,315} with few higher molecular mass 134.0 kDa³¹⁶ and 203.2 kDa ³¹⁷ as shown in Table 2.10.In addition, the lowest molecular mass serine keratinase was reported from *Streptomyces albidoflavus* strain³¹⁸.

<u>Sudhir K Rai</u>

Chapter 2 Table 2.10 Properties of few selected keratinase from different micro-organisms.

Micro-organisms	pН	Temperature	Substrates	Molecular	Specific	Other properties	References
	optima	optima (In °C)	specificity	mass	activity		
				(kDa)	(U/mg)		
B licheniformis PWD-1	7.5	50		33		Serine	Lin et al ³¹⁹
Bacillus subtilis KS-1	7.5	-	-	25.4	-	Serine	Suh and Lee 320
Bacillus licheniformis K-508	8.5	52	-	42	-	Thiolprotease	Rozs <i>et al³²¹</i>
Bacillus sp. SCB-3	7	40	-	134	-	Metalloprotease	Lee <i>et al³¹⁶</i>
Bacillus sp. SCB-3	7.0-8.0	60.0	Chicken feather	60.0	303.63	Activated by calcium and barium ions	Farag and Hassan ³²²
Scopulariopsis	8.0	40.0	Not tested	39.0 and	70.6	Serine protease	Anbu <i>et al³²³</i>
brevicaulis				36.0			
Bacillus licheniformis FK14	8.5	60	-	35	-	Serine protease	Suntornsuk e al ³²⁴

<u>Sudhir K Rai</u>

Chapter 2 Micro-organism	рĤ	Temperature	Substrates	Molecular	Specific	Other properties	88 Reference
-	optima	optima (In °C)	specificity	mass	activity		
				(kDa)	(U/mg)		
B. licheniformis MSK103	9–10	60–70	-	26	-	Serine	Yoshioka <i>et</i> al ³²⁵
B. subtilis MTCC	6.0	40.0	Soluble	64.0 and	4181.8	Cysteine protease	Balaji <i>et al³²⁶</i>
(9102)			keratin,	69.0			
Chryseobacterium	10.0	30	Casein	40.0	0.23	Zn-metalloproteases	Wang <i>et al³²⁷</i>
indologenes TKU014							
Bacillus cereus DCUW	8.5	50	-	80	-	Serineprotease	Ghosh <i>et al</i> ³¹⁴
Bacillus pumilis	8.0	65	-	65	-	Serine	Kumar <i>et al</i> ²⁴⁶
Bacillus subtilis KD-N2	8.5	· 55	-	30.5	-	Serine	Cai <i>et al³²⁸</i>
Bacillus licheniformis	9.0	60	-	32	-	Serine	Fakhfakh <i>et</i>
RPk							al ³²⁹
Streptomyces sp. AB1	11.5	75	Keratin	30	67,000	Serineprotease	Jaouadi <i>et al³¹⁵</i>
Streptomyces sp.	9	50	-	203.2	-	Serine	Xie <i>et al³¹⁷</i>
strain 16							

.

Most of the alkaline proteases reported to date are completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphate (DFP) as shown in Table 2.6. In this regard, PMSF sulfonates the essential serine residue in the active site resulting in the complete loss of activity^{310,330.} This inhibition profile classifies these proteases as serine hydrolases³¹⁰. In addition, some of the alkaline proteases were found to be metal ion dependent in view of their sensitivity to metal chelating agents, such as EDTA³⁰³. Iodo acetic acid a thiol inhibitor demonstrated a lesser amount of effect on alkaline proteases of *Botrytis cinerea*³⁰⁴.

2.6 Immobilization of alkaline proteases

Immobilization is one of the efficient methods to improve enzyme stability. Many organic and inorganic substances have been used as the support materials. Using magnetic nanoparticles as the support of immobilized enzymes has the following advantages: (1) higher specific surface area was obtained for binding of a larger amount of enzymes, (2) lower mass transfer resistance and less fouling, and (3) the immobilized enzymes can be selectively separated from a reaction mixture by the application of a magnetic field³³¹.

2.6.1 Cell-free immobilization

Attachment of alkaline proteases to an insoluble carrier (by either physical adsorption or covalent coupling) is the most prevalent method of immobilization. Various carriers employed for the purpose include magnetic nanoparticle, bentonite, porous glass, nylon and vermiculite⁶. Although porous glass has been widely used, the relatively high cost of this support has been the limiting factor for industrial application. The method of immobilization of the alkaline proteases on these supports using glutaraldehyde involves covalent attachment of the amino groups of the enzyme to the available aldehyde groups present in the glutaraldehyde-activated support. In one study, Wu and his colleague's³³² successfully immobilized an alkaline protease onto a (3-aminopropl) triethoxysilane and modified magnetic nanoparticles with <u>Sudhir K Rai</u>

the average diameter of 25.4 nm synthesized in water-phase coprecipitation method. Sadjadi *et al*³³³ reported successful immobilization of alkaline protease Au–Ag nanoparticles (Au–Ag-bi-MNPs) have been prepared on amine functionalized Si-MCM-41 (NH₂–Si-MCM-41) particles through a reduction of AgNO₃ and HAuCl₄ by NaBH₄ at ambient conditions. Au–Ag-bi-MNPs loaded on the NH2–Si-MCM-41, provide a good biocompatible surface for immobilization of the enzyme alkaline protease. And also on TiO2 nanoparticles assembled on the porous MCM-41 (Mobile Crystalline Material No. 41) particles could provide an active biocatalyst.

2.7 Industrial application of proteases

Alkaline proteases are robust enzymes with considerable industrial potential in detergent formulations, leather processing, medical purposes, food processing, and waste treatment. These enzymes contribute to the development of high value-added applications or products by using enzyme-aided (partial) digestion. The different applications currently using alkaline proteases are:

2.7.1 Detergent industries

Current cleaning technology regimes state for lower washing temperature in addition to the alteration in the detergent compositions with regard to the use of environment-compatible non-phosphate builders like zeolites, and the bleaching agents¹⁸⁷. Microbial alkaline proteases dominate commercial applications with a significant share of the market captured by subtilisins and/or alkaline proteases from *Bacillus* sp. for laundry detergent applications^{96,279,312} as shown in Table 2.11. Alkaline proteases added to laundry detergents enable the release of proteinaceous material from stains¹⁸⁷. The increased usage of these proteases as detergent additives is mainly due to the cleaning capabilities of these enzymes in environmentally acceptable, non-phosphate detergents. In addition to improved washing efficiency, the use of enzymes allows lower wash temperatures and shorter periods of agitation, often after a preliminary period of soaking¹²⁴. *Sudhir K Rai*

Literature survey demonstrated that majority of detergent stable proteases are isolated from *Bacillus* species (Table 2.11), with a few limited exception, such as *Serratia rubidaea*³⁰³; *Aspergillus nidulans*³⁰⁵; *Streptomyces fungicidicus* MML1614²⁸² and *Streptomyces* sp. strain AB1³¹⁵.

<u>Sudhir K Rai</u>

Micro-organism	Class of			Industrial a	oplications			References
	protease	Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	-
			industries	synthesis	sector	sector	management	
Nesterenkonia sp.	alkaline protease	Not tested	Not	Not tested	Not tested	Not tested	Suitable for	Bakhtiar et
AL20			specified				poultry waste	al ³³⁴
							management	
Pseudomonas	Alkaline	Not tested	Not	Tested for	Not tested	Not tested	Not tested	Gupta <i>et al</i> ¹³⁰
aeruginosa PseA	protease		specified	peptide				
				synthesis				,
				purpose				
Bacillus	Alkaline	Tested with	Not	Not tested	Not tested	-do-	-do-	Patel <i>et al</i> ²⁰⁹
pseudofirmus	protease	surfactants	specified					
		suggesting it for						
		detergent						
		formulation						

 Table 2.11 Industrial application of different class of protease in various biotech sectors

<u>Sudhir K Rai</u>

Micro-organisms	Class protease	of		Industrial a	pplications			References
	proteuoc	Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	
			industries	synthesis	sector	sector	management	
Bacillus subtilis	-do-	-do-	Not	-do-	-do-	-do-	-do-	Kim et al ³³⁵
TP-6			specified					
Bacillus subtilis	-do-	-do-	Not	-do-	-do-	-do-	-do-	Wang et al ³³⁶
DC33			specified					
Bacillus clausii I-	Alkaline	Suitable for	Not tested	Not tested	Not tested	Not tested	Not tested	Joo and
52	protease	laundry detergent						Chang ¹⁸⁷
		formulation						
Bacillus pumilus	Alkaline	Not tested	Not tested	Not tested	Tested for	Not tested	Not tested	Wang et al ³³⁷
	protease				dehairing			
					purpose			
Botrytis cinerea	Alkaline	Tested for laundry	Not	Not	Not	Not specified	Not specified	Abidi <i>et al³⁰⁴</i>
	Protease	detergent	specified	specified	specified			
		formulation						

Micro-organisms	Class of			Industrial ap	oplications			References
	protease							
		Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	
			industries	synthesis	sector	sector	management	
Bacillus	serine Alkaline	-do-	Not	Not	-do-	-do-	-do-	Arulmani, et
laterosporus-AK1	protease		specified	specified				al ⁹⁶
Serratia rubidaea	Alkaline	-do-	Not	Not	-do-	-do-	-do-	Doddapaneni
	protease		specified	specified				<i>et al</i> ³⁰³
Salinivibrio sp.	Alkaline	Not mentioned	Not	Prospective	Not	Not mentioned	Not	Karbalaei-
strain AF-2004	protease		specified	application	mentioned		mentioned	Heidari et al ²⁰¹
				of this				
				protease in				
				peptide				
				synthesis				
Bacillus	Fibrinolytic	-do-	Not	-do-	-do-	-do-	-do-	Kim, <i>et al³³⁸</i>
vallismortis	Enzyme		specified					·

Sudhir K Rai

Micro-organisms	Class of			Industrial a	pplications			References
	protease	Detergents	Food industries	Peptide synthesis	Leather sector	Pharmaceutical sector	Waste- management	
Bacillus cereus MCM B-326	Alkaline protease	Not tested	Not specified	Not tested	Tested for dehairing	Not tested	Not tested	Nilegaonkar et al ³³⁹
B. licheniformis RP1	Alkaline protease	Suitable for commercial solid laundry detergent formulations	Not specified	Not tested	purpose Not tested	Not tested	Not tested	Sellami- Kamoun <i>et</i> al ³⁴⁰
Bacillus subtilis LD-8547	-do-	-do-	Not specified	-do-	-do-	-do-	-do-	Wang <i>et al³⁴¹</i>
Bacillus sp. nov. SK006	Fibrinolytic Enzyme(Alkaline protease)	-do-	Not specified	-do-	-do-	-do-	-do-	Hua <i>et al³⁴²</i>

Micro-organisms	Class of	Industrial applications						
	protease	Detergents	Food	Peptide	Leather	Pharmaceutical	I Waste- management	
			industries	synthesis	sector	sector		
Cordyceps	Fibrinolytic	Not tested	Not	Not tested	Not tested	Thrombolytic	Not tested	Cui et al ³⁴³
militaris	enzyme (Alkaline protease)		specified			agents		
Penicillium	alkaline protease	Prospective applic	ation of the col	d-active alkalir	ne protease i	s extremely extens	sive, and widely	Zhu <i>et al³⁰⁷</i>
chrysogenum		used in detergents	, feed, food, lea	ther and many	other indust	ries.		
FS010								
Chryseobacterium	Metalloproteases	Not tested	Not	Not tested	Not tested	Not tested	Feather and	Wang et al ²³²
ndologenes			specified				hair	
TKU014							degradation	
Aspergillus	alkaline protease	-do-	Not	Tested for	Not tested	-do-	-do-	Pena-Montes
nidulans			specified	[·] peptide				et al ³⁰⁵
				synthesis				

Micro-organisms	Class of			Industrial ap	oplications			References
	protease	Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	
			industries	synthesis	sector	sector	management	
Bacillus sp. PN-	Protease	Not specified	Not	Not tested	Tested for	-do-	-do-	Ogino et al ¹⁸¹
13			specified		leather			
					dehairing			
					purpose			
Synergistes sp.	acid protease	Not tested	Not	Not	Not tested	Not tested	Tannery	Kumar <i>et al</i> ³⁴⁴
			specified	specified			waste	
Bacillus sp. HR-	Alkaline	Tested for	Not	Tested for	-do-	-do-	-do-	Moradian ei
08	Protease	laundry	specified	peptide				al ²³⁶
		detergent		synthesis				
		formulation		purpose				
Bacillus	Alkaline serine	-do-	Not	Not	-do-	-do-	-do-	Haddar <i>et al⁹⁶</i>
mojavensis A21	protease		specified	specified				
Bionectria sp.,	-do-	-do-	-do-	-do-	-do-	-do-	-do-	Rovati <i>et al³⁴⁵</i>

Micro-organisms	Class of			Industrial a	pplications			References
	protease	Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	
			industries	synthesis	sector	sector	management	Rao et al ³¹⁰
Bacillus circulans	Alkaline	Tested for laundry	Not	Not tested	Not tested	Not tested	Not tested	Rao el al
	protease	detergent	specified					
		formulation						
		purpose						
Bacillus subtilis	Acid protease	Not tested	Suitable	Not tested	Not tested	Not tested	Not tested	Shieh et al ³⁴⁶
			application					
			in chesse					
			making					
			industries					
Streptomyces	Alkaline	Suitable for	Not tested	Not tested	Not tested	Not tested	Not tested	Ramesh et
fungicidicus	protease	detergent						al ²⁸²
MML1614		formulation						
		purpose						

Micro-organisms	Class of			Industrial a	pplications			References
	protease	Detergents	Food	Peptide	Leather	Pharmaceutical	Waste-	
			industries	synthesis	sector	sector	management	
Bacillus subtilis	Alkaline	Not tested	Not tested	Not tested	Not tested	Not tested	Biowaste	Kumar et al ²⁷⁹
(MTCC9102)	protease						Management	
Thermomucor	Milk-clotting	Not tested	Suitable in	Not tested	Not tested	Not tested	Not tested	Dini <i>et al²⁷⁸</i>
indicae-	protease		cheese					
seudaticae N31			making					
			industires					
Streptomyces sp.	-do-	-do-	Not	-do-	-do-	-do-	-do-	Simkhada e
CS684			specified					al ³⁴⁷
Neanthes	Fibrinolytic	-do-	Not	-do-	-do-	-do-	-do-	Deng <i>et al³⁴⁸</i>
japonica (Iznka)	enzyme(Alkaline		specified					
	protease)							
Streptomyces sp.	serine alkaline	-do-	Not	Not	Tested	-do-	-do-	Jaouadi e
strain AB1	proteinase		specified	specified				al ³¹⁵

Ph.D Thesis, Tezpur University, 2010

Chapter 2 2.7.2 Leather industry

Alkaline proteases possessing elastolytic and keratinolytic activity offer an effective biotreatment of leather, especially the dehairing and bating of skins and hides³⁴⁹. The alkaline conditions enable the swelling of hair roots and subsequent attack of proteases on the hair follicle protein allows for easy removal of the hair. Despite the strong alkaline conditions, this process is pleasant and safer than traditional methods using sodium sulfide treatment, which contributes to 100% of sulfide and over 80% of the suspended solids in tannery effluents³⁴⁹. The bating following the dehairing process involves the degradation of elastin and keratin, removal of hair residues, and the deswelling of collagen, which produces a good, soft leather mainly used for making leather clothes and goods.

In addition, studies conducted by different scientists have demonstrated the successful leather dehairing by using alkaline protease from *Bacillus* sp. PN-13¹⁸¹, *Penicillium chrysogenum*³⁰⁷, *Bacillus cereus* MCM B-326³³⁹, and *Bacillus pumilus*³³⁷ as shown in Table 2.11.

2.7.3 Pharmaceutical industry (with especial reference with fibrinolytic enzymes)

The microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure cardiovascular diseases. NK has already been developed as drugs in the market, including Nattokinase NSK- SD, Jarrow NattoMax JR-154, and Natto-K. Development of other microbial fibrinolytic enzymes is still ongoing, some of which are mainly from *Bacillus* species such as *Bacillus subtilis* TP-6³³⁵, *Bacillus subtilis* DC33³³⁶, *Bacillus vallismortis*³³⁸, *Bacillus subtilis* LD-8547³⁴¹ and *Bacillus* sp. nov. SK006³⁴². With a few exceptions, for example *Cordyceps militaris*³⁴³, *Bionectria* sp.,³⁴⁵, *Streptomyces* sp. CS684³⁴⁷, and *Neanthes japonica* (Iznka)³⁴⁸ (Table 2.11). However, much work needs to be done intensively and extensively, especially concerning assessment of their thrombolytic effects *in vivo*. *Sudhir K Rai*

2.7.4 Solid-waste management

Alkaline proteases provide potential application for the management of wastes from various food processing industries and household activities. These proteases can solubilize proteins in wastes through a multistep process to recover liquid concentrates or dry solids of nutritional value for fish or livestock²⁹⁶. In 2008, Wang and his colleagues³²⁷ reported an enzymatic process using a *Chryseobacterium indologenes* TKU014 alkaline protease in the processing of waste feathers from poultry slaughterhouses (Table 2.12). Feathers constitute approximately 5% of the body weight of poultry and can be considered a high protein source for food and feed, provided their rigid keratin structure is completely destroyed. Pretreatment with NaOH, mechanical disintegration, and enzymatic hydrolysis resulted in total solubilization of the feathers. The end product was a heavy, grayish powder with a very high protein content which could be used as a feed additive.

Similarly, many other keratinolytic alkaline proteases were used in feed technology^{354,359} for the production of amino acids or peptides^{328,358} for degrading waste keratinous material in household refuse, and as a depilatory agent to remove hair in bath tub drains, which caused bad odors in houses and in public places³⁵⁵ as shown in Table 2.12.

<u>Sudhir K Rai</u> Ph.D Thesis, Tezpur University, 2010

Table 2.12 Industrial application of alkaline keratinase

Micro-organisms	Industrial application	References
Bacillus licheniformis PWD-1	Hydrolysis of Feather Keratin for feed formulation	Lin et al ³⁵⁰
<i>Vibrio</i> sp. strain kr2	Solid-waste management	Riffel <i>et al</i> ³⁵¹
Doratomyces microsporus	Application in leather processing	Friedrich <i>et al</i> ³⁵²
Pseudallescheria boydii	Sludge Liming	Ulfig ³⁵³
Vibrio sp. strain kr2	Nutritional improvement of feather protein for live	Grazziotin et al ³⁵⁴
	stock feed formulation	
Bacillus subtilis	Solid-waste management	Cai <i>et al³²⁸</i>
Bacillus pumilus	Solid-waste management	Kumar <i>et al</i> ²⁴⁶
Streptomyces	Leather, keratin waste treatment,	Tapia and Simoes ³⁵⁵
	animal feeding industry, and also cosmetic industry	
Bacillus licheniformis	Solid-waste management	Tamilmani <i>et al³⁵⁶</i>
Meiothermus ruber H328	Solid-waste management	Matsui <i>et al³⁵⁷</i>
Serratia sp. HPC 1383	Solid-waste management	Khardenavis <i>et al³⁵⁸</i>

<u>Sudhir K Rai</u>

Chapter 2	Inductrial application	References
Micro-organisms Paecilomyces marquandii	Industrial application Feather meal formulation	Vesela and Friedrich ³⁵⁹
B. halodurans Strain PPKS-2	Solid-waste management ; Leather industry	Prakash et al ³⁶⁰

CHAPTER III

MATERIALS AND METHODS

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

Materials and methods

3.1 Materials

3.1.1 Plasticware / Glassware /Columns

50ml tube sterilized polystyrene tube was purchase from Tarson, India; 100, 250, 500 and 1000 ml Erlenmeyer flask were purchase from Borosil, Mumbai, India; Reverse –phase C_{18} nova pak column was purchased from Waters, USA; DEAE Sephadex A-50 column, sephacryl S-200 column, and CM-Cellulose column were purchased from Sigma-Aldrich, USA.

3.1.2 Chemicals

3.1.2.1 Analytical grade

Methanol, 2-propanol, n-hexane, ethanol, glycine, Iron oxide, Tween-20, Triton-X-100, sodium dodecyl sulphate (SDS), Tris-HCl, sodium hydroxide, Sodium carbonate, potassium dihydrogen phosphate. coomassie brilliant blue, glycine, casein, Tween -20, di-sodium hydrogen phosphate, di-potassium hydrogen phosphate, acetonitrile, Folin-Ciocalteu's D-glucose, fructose, sucrose, galactose, maltose, lactose, cellulose, ammonium sulphate, ammonium nitrate, potassium nitrate, magnesium chloride, mercuric chloride, copper chloride, zinc sulphate, manganese chloride, calcium chloride, cadmium chloride, cobalt chloride, nickel chloride, sodium nitrate, ammonium chloride and EDTA were purchased from Merck, USA. 3-(aminopropyl) triethoxy silane, carbodimide / cyanimide, synthetic peptides, ethidium bromide, collagens, phenylmethylsulfonyl fluoride (PMSF), iodo acetic acid (IAA), 4-bromophenacyl bromide (4-BPB), dithiothreitol (DTT) were purchased from Sigma-Aldrich, USA.

3.1.2.2 Microbiological grade culture media/chemicals

Nutrient agar, nutrient broth, skim-milk agar, luria broth, yeast extract, beef extract, peptone, urea broth, litmus milk broth, phenol red dextrose broth, phenol red lactose broth, phenol red sucrose broth,

Sudhir K Rai

phenol red mannitol broth, gelatine, keratin powder, tryptone broth, simmon citrate broth, nitrate broth, indole nitrate broth, methyl red (MR)- voges proskaure (VP) broth, triple sugar iron agar, tributyrin agar, microbiological grade agar, bovine serum albumin, bovine serum globulin, bovine serum fibrinogen, hemoglobulin, carboxylmethyl cellulose were purchase from Himedia

3.1.2.3 Molecular biology grade chemicals / kits

Gel filtration molecular weight marker kits was purchase from Sigmaaldrich, USA., dNTP mix, 10X Taq buffer, magnesium chloride, Taq DNA polymerase, protein molecular weight marker were purchase from Fermentas, USA. AxyPrep bacterial genomic DNA miniprep kit was purchase from Axygen, USA. QIA quick gel extraction kit was purchased from Qiagen, Germany. HiIMVIC Biochemical test kits was purchased from Himedia, India.

3.1.2.4 Raw materials

Raw chicken feather, goat skin, goat blood, heart, lung, kidney, liver were collected from known local vendors. Agro-industrial wastes were collected from Tezpur University canteen, hostels as well as local shops.

3.1.2.5 Microbial strains

The protease producing bacterium *Bacillus subtilis* strain DM-04 was previously isolated from our laboratory and taxonomically identified³⁶¹. *Klebsiella pneumoniae*, *Staphlyococcus aureus* and *E.coli* were obtained from IMTECH, Chandigarh, India.

3.2 Methods

3.2.1 Collection of environmental samples

Soil samples were collected at random in 50 ml blue cap polystyrene sterile tubes. From each location /site a minimum of five samples were collected. The collection areas were chosen at random within NER (North eastern region).They varied from natural habitats to extreme habitats like area around < the hot springs, oil-fields, high-altitude mountains, rivers site, effluents from paper mills, slaughter house. Samples were collected from the different states of north-east India.

<u>Sudhir K Rai</u>

Collection of samples from near-surface soil/water was accomplished with tools such as spades, shovels, trowels, and scoops as described by Mason under EPA-600/4-83-020³⁶³ with the following steps.

3.2.2 Sample collection from soil

(a) A minimum of five samples were taken from each location.

(b) The vegetation covering the soil at each site was completely removed

(c) A sterile shovel (or clean tool) was used to take the sample from the desired depth area in protocol. Incase of soil the average depth, and incase of water the samples were collected from the sub-surface clear layer.

(d) Each sample was packed in a perfectly clean plastic bag or cardboard container.

(e) Each sample was labeled providing all pertinent technical information.

(f) The soil samples were taken from an average depth of 90.0cm below surface. This was done to avoid surface bacteria that were likely to be totally aerobic.

(g) Collecting soil samples the following were avoided places where commercial fertilizer had been applied, or the ground fertilized with coffee pulp or compost within the last six months.

(h) Lands which had been recently burnt off.

(i) Samples were collected from different soils of different locations throughout Northeast India. The description of the place, soil treatment and kind of crop were registered on a sheet giving technical information; this was later transferred to files.

(j)The samples were air-dried for one week and sieved (2 mm mesh Fisher Scientific sieve). Humidity was determined from 10 grams of sample by drying at 80°C until constant weight was achieved.

(k)The pH was potentiometrically determined after suspending and homogenizing 1 g dry sample for 20 minutes in 10 ml distilled water.

3.2.3 Sample collection from water

(a) Water samples were collected in pre-cleaned new sample 50 ml polystyrene blue cap tubes that were appropriately sterilized.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

(b) The sterilized sample container from the laboratory was then filled and emptied four times with water from the sampling source. The cap of the sample container was than similarly flushed out using the water from the sampling source. This flushing out of the sample container and cap eliminated any residual sterilant in the sample container and cap that could possibly sterilize or otherwise impact the results of the laboratory analysis for microbial life in the sample of fire sprinkler or domestic water.

(d) The sample container was then slowly filled with water from the water source, including allowing the meniscus to develop above the very top of the rim of the sampling container. Approximately twenty (20) seconds was allowed for any entrapped air to escape from the water. A cap full of sample water collected in the cap of the same sample container was then carefully and slowly poured into the top of the sample container to ensure that the meniscus remained. The objective of these procedures was to eliminate, as far as humanly possible, any air bubble being entrapped in the sample container.

3.3 Screening of alkaline protease producing thermophilic bacteria

For the dilution plate method, 1.0 gm of soil or 1.0 ml of water sample was mixed with 9.0 ml of 0.9% (w/v) sterile saline and serially diluted upto 10^{-6} . Then 100 µl aliquot of each dilution was plated on skim-milk agar (Appendix I-A) plate and incubated for 24-48 h at 50°C under static condition in an inverted position.

The following criteria's were adopted for the selection of alkaline protease producing promising bacterial isolates.

3.3.1 Measurement of zone of hydrolysis

A clear area surrounding the bacterial growth on agar plate containing skim- milk was positive reaction for extra cellular protease secretion while absence of clear zone around bacterial colonies was considered as a non-secretion of protease enzyme. The protease producing bacteria were counted in a Cubek colony counter and the zone of hydrolysis around the colonies was measured in mm.

3.3.2 Growth kinetics and protease production

For study the bacterial growth and alkaline protease production, bacteria were propagated at 45° C and pH 8.0 for different time intervals (24–120 h) in 0.1 I M9 media (Appendix I-B(i)) supplemented with 1.0 %, (w/v) casein, placed in a 0.5 I flask with constant shaking (200 rev /min) on a rotary shaker. At a regular time interval samples (5.0ml aliquots) were taken out aseptically, followed by assay of protease activity (section 3.11.1) and protein estimation of culture supernatant³⁶³.

3.3.3 Thermo stability study

The thermo stability of the crude alkaline protease (cell free culture supernatant) was investigated by measuring the residual activity after incubating the enzyme (2.0 mg / ml) at 60°C from 15 to 120 minutes³⁶⁴. At designated time intervals 500μ I was withdraw every 15 minutes and checked for protease activity (section 3.11.1).

3.3.4 Detergent compatibility study

The compatibility and stability of crude protease enzymes with some commercial laundry detergents available in the local market such as Surf excel®, Rin advanced®, (Hindustan Lever Ltd, India), Ghadi® (Calcutta detergent Pvt. Ltd, India), Safed® (Safechem Industry, India), Fena Ultra® (Jericho Detergent Pvt. Ltd, India), Wheel® (Hindustan Lever Ltd, India) and Tide® (Procter and Gamble, India) were examined as described by Mukherjee³⁶⁵. Detergents were individually dissolved in tap water at a concentration of 7 mg /ml (to simulate the washing conditions), and were pre-heated at 100°C for 60 min to destroy the endogenous protease activity, if any (which was reconfirmed by protease assay of heated detergent solution). Then, different concentrations of crude protease were added to the detergent solutions. The relative enzyme activity in the presence of detergent was expressed in percentage activity taking the activity of control (enzyme with buffer) as 100% Mukherjee³⁶⁵.

3.3.5 Storage stability of protease enzyme

The crude protease was stored at 4°C and at a regular interval of time, a suitable volume was withdrawn to assay the protease activity. The <u>Sudhir K Rai</u>

activity of enzyme at the beginning of experiment was considered as 100% activity and other values were compared against that.

3.4 Pure culture of alkaline protease secreting bacterial isolates

In order to obtain a pure culture of isolated bacterial isolates, a loopful of bacterial culture was inoculated in nutrient broth with pH adjusted to 8.0 (Appendix I-M). With a 0.5 growth OD at 600nm, 100µl of culture was mixed in 0.9% (w/v) sterile normal saline and serially diluted upto 10⁻⁷ with a final volume of 2.0 ml. 100 µl aliquot were spread over sterile nutrient agar plates (Appendix I-D), and kept for 24h at 45°C in order to obtained single distinct colonies. For isolation of single pure colonies which were required for further studies. The following techniques were used: (i) Spread-plate method, (ii) Streak-plate method, for isolation of single pure colony was achieved for further studies^{366,367}

3.4.1 Spread plate technique

The spread-plate technique is used for the separation of a dilute, mixed population of micro-organisms so that individual colonies can be isolated. In this technique microorganisms were spread over the solidified agar medium with a sterile L-shaped glass rod while the Petri dish was spun on a turn table. The advantage of this technique is to allow cells to be separated from each other by a distance sufficient to allow the colonies that develop to be free from each other.

3.4.2 Streak-plate Technique

The streak-plate method offers a most practical method of obtaining discrete colonies and pure cultures. In this method, a sterilized loop or transfer needle was dipped into a suitable diluted suspension of organisms which was then streaked on the surface of an already solidified agar plate to make a series of parallel, non-overlapping streaks.

3.5 Routine maintenance and preservation of microorganisms

Pure cultures of bacteria were preserved at 4°C in nutrient agar slants and transferred to fresh slants at an interval of one month. Isolates were

<u>Sudhir K Ral</u> PhD Thesis, Tezpur University, 2010 also stored in 15 % (v/v) glycerol in nutrient broth and kept at -80°C for long term storage.

3.6 Taxonomic identification of alkaline protease producing bacteria

The selected protease producing, thermophilic bacteria were taxonomically identified by (a) standard biochemical test, (b) studying their morphological characteristics³⁶⁷⁻³⁶⁹, (c) GC-FAME analysis³⁷⁰, (c) Ribotyping³⁷¹ as described below.

3.6.1 Morphological tests

3.6.1.1 Simple staining

Two drops of bacterial culture were heat fixed over a clean glass slide and flooded by 5 drops of methylene blue stain for about 5 min. The stain was removed gently by placing the slide under running tap water. The slide was then dried by gently tapping with tissue paper and bacteria were observed under oil-immersion objective lens (1000 X).

3.6.1.2 Negative staining

One drop of nigrosine or Indian ink stain was placed at one end of clean glass slide with the help of pasteur pipette. Two drops of liquid culture was placed on it, and with the help of clean slide held at an angle of 30° the mixture was spread throughout the slide and kept at room temperature for drying. This was followed by visualization of bacteria under oil-immersion objective lens (1000 X).

3.6.1.3 Gram's staining

Over a clean glass slide using sterile inoculating loop, a loopful of 24h bacterial culture was spread over sterile glass slide and kept for 5-10 min for air drying followed by heat fixing. Few drops of primary stain were flooded over bacterial culture and kept for 1 min followed by washing the slide under tap water. Gram's iodine mordant was flooded over this after primary staining and kept at room temperature for 1 min. Removal of Gram's iodine mordant by washing under tap water was followed by addition of few drops of decolorizing agent (95% ethyl alcohol) over bacterial culture. It was washed again with tap water to remove the decolourizer, and followed by addition of counter stain

<u>Sudhir K Rai</u>

safranin for 45 seconds. After this step counterstain was removed with tap water and slide was kept at room temperature for complete airdrying. The bacteria were visualized under a light microscope (1000 X).

3.6.1.4 Spore staining

Using clean glass slide, loopful of 24h bacterial culture was air dry followed by heat fixing, Then few drops of malachite green were added and the slide was placed on a warm hot plate, allowing the preparation to steam for 2-3 mins. Slides from hot plate were removed and kept at room temperature for cooling and then washed under running tap water. Few drops of counter stain (safranin) were added over bacterial culture and kept for 30 seconds. This was followed by washing with tap water. Remaining water drops were absorbed by blotting paper and bacteria were examined under oil immersion objective lens (1000X).

3.6.2 Biochemical tests

3.6.2.1 Hydrolysis test for casein, starch, lipid and gelatin

Sterile nutrient agar plates (pH 8.0) containing with 1% (w/v) of casein, starch or triglyceride tributyrin (as a lipid substrate) were used for hydrolysis tests. 24h bacterial cultures were streaked with into plates using inoculating loop and kept in an inverted position for 24-36h at 45°C. In case of gelatine hydrolysis, 12% (w/v) of gelatin was supplemented in nutrient broth tubes and inoculated with a loopful of bacterial culture. The tubes were kept at 45°C for 48h followed by placing the tubes in refrigerator at 4°C for 30 minutes. The hydrolysis result was considered as positive on the basis of zone of hydrolysis around the colonies.

3.6.2.2 Carbohydrate fermentation test

Fermentation medium containing sugars was prepared as shown in appendix I-C(i). A loopful of 24h bacterial culture was inoculated into all tubes supplemented with respective sugars and incubated for 48h at 45°C. Change in medium colour and gas formation (if any) post 48h incubation were recorded. A control was also set up.

3.6.2.3 Triple sugar iron (TSI) agar test

Sucrose, lactose and glucose (0.1 %, w/v) were supplemented in nutrient agar slants (Appendix I-L), and a loopful of 24h bacterial culture was, streak over TSI agar slants. The slants were kept at 37°C for 48h. Change in medium colour was observed over TSI agar slants. A control was also set up.

3.6.2.4 IMViC test

3.6.2.4.1. Indole production test

Sterile sulfur indole motility (SIM) agar deep tubes were streaked with 24h bacterial culture over agar surface and kept at 37°C for 48h. Change in medium colour after addition of Kovac's reagent was observed and recorded.

3.6.2.4.2. Methyl red - Voges-Proskauer (MR-VP) test

100 ml of sterile methyl red- Voges-Proskauer (MR-VP) broth was inoculated with 1.0 ml of 24h bacterial culture and kept at 37°C for 48h. MR-VP medium was separated into parts A and B. In part A, few drops of methyl red indicator was added for conformation of MR test. In part B, mixtures of Barritt A and B solutions were added in VP broth. In MR test, red colour formation after addition of methyl red indicator showed positive test and formation of yellow colour indicated negative test. In case of VP test, formation of pink colour complex indicated positive test.

3.6.2.4.3. Citrate Utilization test

10.0 ml of sterile Simmons citrate agar slants were prepared in streaked hard tubes with 24h bacterial cultures and kept at 37°C for 48h, followed by addition of bromo-thymol blue indicator over surface. Formation of blue colour complex was taken as a positive confirmation test for citrate.

3.6.2.4.4 Hydrogen sulfide test

10 ml of sterile sulfur indole motility (SIM) agar tubes was inoculated with a loopful of 24-h bacterial culture inside agar slants, and kept at 37°C for 48h. Formation of black colour indicated the production of hydrogen sulfide by bacterial culture.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

3.6.2.4.5 Urease test

10 ml of sterile urea broth was inoculated with 0.1 ml of 24h bacterial culture and kept at 37°C for 48h.Change in medium color from red to pink indicated the presence of urease activity.

3.6.2.4.6 Litmus-milk reactions test

10.0 ml of sterile litmus milk broth was inoculated with 0.1 ml of 24h bacterial culture and kept at 37°C for 48h.Change in medium color, lactose fermentation, gas formation, curd formation, litmus reduction, peptonization and alkaline reaction if any, were observed post 48h of incubation.

3.6.2.4.7 Nitrate reduction test

100.0 ml of sterile trypticase nitrate broth was inoculated with 1.0 ml of 24h bacterial culture and kept at 37°C for 48h. To confirm the nitrate reduction capability of bacterial culture post 48h of incubation, solution A (sulfanilic acid) and solution B (alpha-naphthylamine) and amount of zinc powder were mixed with bacterial culture. Formation of cherry red colour indicated the reduction of nitrate (ability of bacterial cells to reduce nitrate).

3.6.2.4.8 Catalase test

10.0 ml of trypticase soy agar slant was streaked with a loopful of 24h bacterial culture and kept at 37°C for 48h. To confirm the presence of catalase activity, 3.0 % (v/v) hydrogen peroxide (H_2O_2) was flooded over it. If bubble formation was observed, it indicated the catalase positive test (production of catalase by bacteria).

3.6.2.4.9 Oxidase test

10.0 ml of trypticase soy agar slant was streak with a loopful of 24h bacterial culture and kept at 37°C for 48h. To confirm the presence of oxidase activity, p-aminodimethylaniline oxalate was added over the surface of bacterial culture. Development of pink color which finally turned on colony surface indicated the presence of oxidase activity.

3.6.3 Chemotaxonomic identification: analysis of bacterial cellular fatty acid methyl esters (FAME)

Chemotaxonomic identification based on cellular fatty acids content of bacteria was done using Microbial identification system (MIS) of institute of Microbial Technology (IMTECH) Chandigrah, India. The cellular fatty acids of bacteria were isolated and methylated before gas chromatography (GC) analysis³⁷². The MIS system determines the cellular fatty acid profile of the bacterial isolates by high resolution GC analysis. This profile was then compared by utilizing the MIDI software which possesses the database of cellular fatty acid profile of known bacteria. A similarity index (SI) of 0.6 or higher indicated a very good match, where as SI index lower than 0.25 indicated a poor match^{370,373}

3.6.4 Ribotyping using 16S rRNA gene amplification

3.6.4.1 Isolation of chromosomal DNA

3.6.4.1.1 DNA extraction by alkaline lysis

Genomic DNA from bacteria was prepared as described by Ausubel et al³⁷⁴. The cells were pelleted by spinning 4ml of culture at 9,450 x g for 10 min in a refrigerated Beckman Centrifuge, UK and supernatant was decanted. Pellet was resuspended in a 0.8 ml of solution-I (composition is given in appendix I-O(i)). To this resultant mixture, 160 µl of lysozyme (10 mg /ml) was added and incubated at room temperature (24°C) for 20 min. Subsequently, 44.5 µl of 10% (w/v) SDS solution was added and re-incubated for 10 min at 50°C .There after, 53.3 µl of RNase A (10 mg /ml) was added and incubated at 37°C for 90 min. This was followed by addition of 45.3 µl of Na-EDTA (0.1M, pH-8.0) and reincubated at 50°C for 10 min. To remove the protein, 26.6 µl of proteinase K (5.0 mg /ml stock) was added and incubated at 50°C for 100 min. Equal volume of phenol (saturated with 0.1M Tris-HCI, pH-8.0) was added and mixed thoroughly. The mixture was centrifuged at 9,450 x g for 10 min, the upper (aqueous) phase was aspirated into sterile microfuge tube (Eppendorf) and lower phase was discarded. Then 700 µl of (1:1) phenol and chloroform-isoamylalcohol (24:1) were added and mixed thoroughly. After centrifugation at 9,450 x g for 10min, the upper phase was transferred to a sterile microfuge tube, then equal volume of chloroform-isoamylalcohol (24:1) was added and spun at 9,450 x g for 10 min. The upper phase was transferred to a

<u>Sudhir K Rai</u>

sterile microfuge tube and 1 / 10^{th} volume of salt (Na-acetate 3M, pH-7.0) was added. The DNA was precipitated by adding 2 volumes of icecold absolute ethanol in the above solution and the DNA-pellet was recovered by centrifugation. After removal of alcohol, DNA was resuspended in 10 mM Tris HCI-1 mM EDTA buffer (pH-8.0) at a final concentration of 1 µg /ml and was stored at 4°C until it was further used.

3.6.4.1.2 Direct chromosomal DNA extraction

A direct method of DNA extraction from the alkaline protease producing bacterial isolate was adopted. In brief, after removal of the colonies from the surface of agar plates, the bacteria were suspended in a microfuge tube containing 300 μ l of sterile MilliQ water and then vortexed for 20 sec. The DNA was extracted after cell lysis by immersing the tubes in boiling water bath for 10 min. The cell debris was pelleted by centrifugation at 16,000 x g for 10 sec (Beckman, UK) and the supernatant containing DNA was removed and transferred to fresh micro centrifuge tube. The concentration of DNA was estimated by spectrophotometry at 260 nm (Beckman DU 530^R spectrophotometer).

3.6.4.1.3 PCR amplification of 16S-rRNA gene

For amplification of 16S rRNA gene of the bacteria following universal primers were used: forward primer (27F) 5'-AGAGTTTGATCCTGGCTCAG-3' and reverse primer (1525R) 5'-AAGGAGGTGATCCAGCCGCA-3'375. DNA amplification was performed with Genamp PCR system (Applied Biosystem, USA). Reaction mixture for the PCR contained 1 X PCR buffer (Fermentas, Canada), each deoxynucleotide triphosphate (dNTP) at a final concentration of 200 µM, 1.5 mM MgCl₂, each primer at a final concentration of 0.1 µM and 2.5 U of Taq DNA polymerase (Bangalore Genei, India) in a final volume of 100 µl. Standardized PCR condition with respect to each strain is shown in Table 3.1. Amplified DNA was verified by electrophoresis of aliquots of PCR product (5µl) on a 1.0% agarose gel in 1X TAE (Tris-acetate-EDTA) buffer. 16S rDNA amplicon was gel eluted using QIAquick columns (Quiagen Inc., USA) and the sequence was generated by chain termination method using an Applied Sudhir K Rai

Biosystem automated sequencer (Delhi University South Campus, Delhi, India).

Table 3.1 Optimal PCR reaction conditions for amplification of conserved region of 16S-rRNA gene of selected protease secreting bacterial strains.

PCR	Bacterial strains				
conditions	AS-S24-11	AS-S20-1	AS-S24-1	AS-S10-II	
Pre-	94°C for	90 °C for	94 °C for	94 °C for	
denaturation	5 min	2 min	5 min	5 min	
Denaturation	94°C for	92 °C for	94 °C for	94 °C for	
	1 min	1 min	1 min	30 sec	
Annealing	55°C for	44 °C for	55 °C for	54 °C for	
	30 sec	30 sec	90 sec	30 sec	
Synthesis	72°C for	72 °C for	72 °C for	72 °C for	
	2 min	2 min	90 sec	2 min	
Final	72 °C for	72 °C for	72 °C for	72 °C for	
extension	7 min	6 min	7 min	5 min	
Hold	2	2	2	2	
Cycles	36	36	36	36	

3.6.4.1.4 Phylogenetic analysis

The 16S rDNA sequence of bacteria under study was aligned with reference sequences showing sequence homology from the NCBI database (http://blast.ncbi.nlm.nih.gov) using the multiple sequence alignment programme of MEGA4³⁷⁶. Phylogenetic trees were constructed by distance matrix-based cluster algorithms viz. unweighted pair group method with averages (UPGMA), neighbour-joining³⁷⁷ analyses. All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). The stability of trees obtained from above cluster analyses was assessed by using BOOTSTRAP programme in sets of 1000 resamplings (MEGA 4). The 16S rDNA gene sequence determined in this study was deposited in GenBank of NCBI data library (http://www.ncbi.nlm.nih.gov/Genbank) under different accession number with respect to each strain.

<u>Sudhir K Rai</u>

3.6.5. PCR-RFLP analysis of selected strains

For PCR-RFLP analysis of all the selected strains, PCR amplification with primers 16S/p1 and 23S/p2 by using the flanking terminal sequences of the 16S-23S rRNA genes was performed with the isolated chromosomal DNA³⁷⁴.

3.6.5.1 Synthesis of 16S-23S Inter specific region (ISR) primers for *Bacillus subtilis*, and *Bacillus licheniformis* strains

For PCR-RFLP, 16S-23S ISR gene-based oligonucleotide probes were designed for detecting specific bacteria. The 16S-23S ISR gene sequences for each taxon were retrieved from GenBank database and aligned by ClustalW³⁷⁸. Sequences of highly variable regions were selected to design species- or genus specific probes. The specificity of the probes were evaluated in silico by using BLAST (Basic Local Alignment Search Tool) program. Oligonucleotide probes were commercially synthesized, and the 3' end of each probe was modified by nucleotide during the synthesis to enable the immobilization of the oligonucleotide to the CSS-1000 silvlated glass slides (CEL). The 16S-23S ISR forward primers 16S/p1 (5'-AGTCTGCAACTCGACTGCGTG-3') and 23S/p2 (5'-CAACCCCAAGAGGCAAGCCTC-3')379 were used for 16S rRNA gene amplification from the chromosomal DNA of above mentioned bacterial strains. For the specificity of the 16S-23S ISR amplification, the PCR-product was used as a template in a second PCR (Nested PCR) with primers 16S/p3 (5'-GGAAGGTGCGGCTGGATCACC-3') 23S/p4 (5'and CCCGAAGCATATCGGTGTTCG-3'), which anneal to position 11334 to 11355 of the 16S-rRNA gene and position 11770 to 11791 of the 23SrRNA gene respectively. The nested PCR amplification includes the entire ISR and apart of the flanking rDNA (28bp of 16S-rRNA and 83bp of 23S-rRNA).

3.6.6 16S-rRNA gene species-specific amplification of AS-S20-I and AS-S24-II

The *Kocuria*-specific forward primer 5'-AGAGTTTGATCCTGGCTCAG-3' and reverse primer 5'-ACGGGCGGTGTGTTC-3' were used for amplification of 16S-rRNA gene³⁸⁰.

5'-The Paenibacillus-specific primers PAEN515F GCTCGGAGAGTGACGGTACCTGAGA-3' were used in conjunction 5'with reverse primer **RNA1484R** а GGCATGCTGATCCGCGATTACTAGC-3' in PCR amplifications for presumptive identification as strain of this genus, and B. subtilis was used as negative control³⁸¹.

3.7 Optimization of culture condition for optimum growth and maximum alkaline protease production by selected bacteria under SSF and SmF systems

The following criteria were adopted for screening of parameters influencing protease yield in SmF and SSF conditions.

3.7.1 Alkaline protease production under submerged fermentation (SmF) system

The pre-screening of the media components influencing the protease yield was done using the M9 mineral salt media (see appendix I-B(i)for composition) and changing the individual component one at a time. The actual fermentation was carried out in 50 ml of the modified M9 media (in 250 ml E-M flask) inoculated with 1% (v/v) of the mid-logarithmic culture of cells (O.D. at 600 nm ~ 0.5) and incubated at 45°C and 200 rpm for 24-120 hours. At different time intervals, suitable volume was withdrawn to assay the protease activity, estimation of protein content of culture supernatants and determination of bacterial dry biomass³⁶¹.

3.7.2 Effect of various carbon sources on alkaline protease production

Various carbon sources at a final concentration of 10 % (w/v or v/v) such as - starch, carboxyl methyl cellulose (CMC), cellulose, maltose, lactose, sucrose, dextrose, galactose, casein, fructose, glycerol, mannitol, sorbitol and xylose was added in the M9 culture media to check the alkaline protease production by selected bacteria.

3.7.3 Effect of various inorganic and organic nitrogen sources on alkaline protease production

The effect of various organic and inorganic nitrogen sources (at a final concentration of 1.0 % (w/v or v/v) viz- beef extract, peptone, yeast extract, tryptone, casein, urea, potassium nitrate, sodium nitrate, ammonium chloride, ammonium sulphate and ammonium nitrate on alkaline protease production was examined by adding these compounds one at a time in M9 medium inoculated with bacteria. The cell-free culture supernatant was used for assay of proteolytic activity and protein content estimation.

3.7.4 Effect of pH on alkaline protease production

Influence of initial pH on alkaline protease production was studied in the pre-screening step by adjusting pH of the M9 mineral salt medium from 1-14.

3.7.5 Effect of agitation rate on alkaline protease production

The culture flasks were agitated in a temperature controlled orbital shaking incubator in the range of 50-300 rpm and protease production was monitored.

3.7.6 Effect of temperature on alkaline protease production

Influence of temperature on alkaline protease production was studied by incubating the culture flasks in the temperature range of 25-60°C in an orbital shaking incubator.

3.7.7 Effect of incubation time on alkaline protease production

Influence of incubation time on alkaline protease production was studied from 24-120h post incubation of flasks at a desired temperature.

3.8 Alkaline protease production under solid-state fermentation system

The underline method describes the protease production in SSF.

.

3.8.1 Process optimization of various parameters in SSF for alkaline protease production.

3.8.2 Preparation of substrates for alkaline protease production Different agro-industrial waste materials viz. mustard-oil cakes (MOC), wheat bran (WB), rice bran (RB) were obtained from local market. The wild grass *Imperata cylindrica* (IC) (see Table 3.2 for description) and banana leaves (BL) were collected from Tezpur University campus. Potato peels (PP) and used tea leaves (TL) were collected from hostel canteens. These waste materials were washed first with tap water followed by distilled water to remove the adhered surface dust particles. Then blenching operation was carried out by immersing them in hot water (75-80 °C) for 20 min followed by oven drying at 45°C. The dried

material was ground in a mixer grinder (Remi) then sterilized at 121°C, 15 lbs pressure for 15 min and stored at 4°C for further use.

Taxonomic	Imperata cylindrica (L.) Beauv			
name				
Synonyms	Imperata Arundinaceae Cirillo, Lagurus cylindricus L			
Common	Ulukher			
name in				
Assam				
Other	alang-alang, blady grass (English), Blutgras (German),			
common	carrizo, cogon grass (English), gi (Fijian), imperata			
names	cylindrique (France), japgrass (English), kunai, lalang,			
	ngi (Fijian), paille de dys (Frence), paillotte(french),			
	speargrass (English), ulukher (Assames)			
Life form	Grass.			
Description	A slender, flat linear-lanceolate stemless grass with a			
	slightly off center white mid rib and silica bodies			
	embeded in the leaf margins, reaching a height of 1-1.5			
	meters, arising from a thick underground mat of			
	rhizomes			
Habitat	Agricultural areas, coastland, disturbed areas, natural			

<u>Sudhir K Rai</u>

forests, planted forests, range/grasslands, riparian zones, scrub/shrublands, urban areas, wetlands

3.8.3 Preparation of substrates for alkaline keratinase production

Broiler chicken-feathers were washed in boiling water for about 5min to remove any bloodstain and/or any other adhering materials. Feathers were then dried in oven at 50°C until the feathers regained their original fluffiness. These were then cut into about 5–8mm sized structures using a pair of scissors. Before using as substrate, feathers were sterilized by heating under pressure at 120°C for 15min.

3.8.4 Solid-state fermentation and optimization of process conditions for protease production

To screen the various substrates / supports for alkaline protease production in SmF, initially 5.0 g of coarse substrate was taken in a 500ml Erlenmeyer flask and to this a predetermined quantity of 50 mM K- phosphate buffer, pH 7.4 was added, mixed thoroughly and autoclaved at 121°C, 15 lbs pressure for 15 min. The flasks were cooled to room temperature and then inoculated with 2.0 ml of 24 h grown bacterial culture (O.D. at 600nm between 0.49 - 0.51) under sterile conditions. This was incubated at optimum growth temperature for bacterial growth (45°C) for various time periods (24, 36, 48, 72, 96, and 120 h) To investigate the influence of other culture parameters on protease production, effects of initial moisture content of the substrate (50%, 100%, 200% and 300%), inoculum size (10, 20, 40, 60, 80, 100 % (w/w)), co-carbon source (glucose, fructose, galactose, maltose, sucrose, and lactose at 10.0 % w/w) and co-nitrogen source (NH₄Cl, NH₄NO₃, (NH₄)₂SO₄, yeast extract, beef extract, casein and peptone at a final concentration 10.0 % w/w) were studied. For initial moisture content, solid substrate was mixed with predetermined amount of water and 100% moisturization was achieved by adding 1.0 ml water to the substrate and vice-versa²⁶². Un-inoculated flasks served as negative controls whereas the inoculated flasks without any cocarbon or co-nitrogen source served as positive control. Alkaline

protease production was expressed as mean and standard deviations based on the results obtained with triplicate flasks.

3.8.5 Solid-state fermentation and optimization of process conditions for alkaline keratinase production

For the initial determination of time-course of keratinase production, 0.2g of finely cut chicken-feather was taken in 250ml Erlenmeyer flasks and to this, 1.0ml of distilled water (adjusted to pH 8.0) was added, mixed thoroughly and autoclaved at 121°C, 15lbs pressure for 15min. The flasks were cooled to room temperature and then inoculated with 1.0ml of 24h grown bacterial culture (O.D. at 600nm between 0.49 and 0.51) under sterile conditions and incubated at 50°C temperature for various time period (24h, 48h, 72h, 96h and 120h). To investigate the influence of other culture parameters on keratinase production, effect of growth temperature (30-55°C), effects of initial moisture content of the substrate (50%, 75%, 100%, 150%, 200% and 300%), supplementation with co-carbon sources (glucose, fructose, galactose, maltose, sucrose, lactose and starch at 10.0%, w/w) and co-nitrogen sources (NH₄Cl, NaNO₃, yeast extract, beef extract, casein and peptone at 1.0%, w/w) were studied. For determining the effect of initial moisture content of the substrate on keratinase yield, chicken-feather was mixed with predetermined amount of water and 100% moisturization was achieved by adding 1.0ml water to 1.0g substrate and other ratios in similar lines. Influence of moistening liquids on keratinase yield was determined by using distilled water (pH 8.0) 100mM K-phosphate buffer, pH 8.0, 100mM Tris-HCI buffer, pH 9.0 and 100mM glycine-NaOH buffer, pH 10.0. Un-inoculated flasks served as negative controls where as the inoculated flasks without any co-carbon or co-nitrogen source served as positive control. Keratinase production was expressed as mean and standard deviations based on the results obtained with triplicate flasks.

3.8.6 Optimization of protease / keratinase extraction from fermented matter

For isolation of protease produced under SSF, a known quantity of fermented matter was mixed with distilled water (1:5, w/v) by stirring on a magnetic stirrer for 30 min at room temperature (~24°C). The slurry was then squeezed through a cheesecloth followed by centrifuging <u>Sudhir K Rai</u>

the whole content at 10,000 x g for 10 min at 4°C to remove the insoluble materials. The clear supernatant was used for the protease assay and the protease recovery was expressed as total units (U) of crude protease obtained per gram of dry substrate (gds).

For optimizing the protease extraction, different extraction medium media were used. The first media contained 50mM K-phosphate buffer with a pH range of 7.0-9.0. The second medium contained Glycine-NaOH buffer with a pH range of 9.0-13.0. The third contained plane distilled water. The fourth media contained distilled water with pH adjusted to 8.0.And the final media contained every case; the media was adjusted to the pH that give maximum protease yield.

3.9 Statistical optimization of alkaline protease production in SmF and SSF

3.9.1 Screening of factors effecting protease production using Plackett-Burman design

Our preliminary screening study using the best sources of carbon, nitrogen and physical parameters like incubation time, agitation rate (rpm), pH of the M9 culture medium, and incubation temperature were subjected to, Plackett–Burman factorial design for screening the most significant factors effecting the protease production by strains under study. Based on Plackett–Burman factorial design, each parameter was examined at two levels: low level (-1) and +1 for high level. Simultaneously a center point was run to evaluate the linear and curvature effects of the variables³⁸². Plackett–Burman experimental design is based on the following first-order polynomial model:

Where Y is the response (total alkaline protease activity in U), β_0 is the model intercepts, β_1 is the linear coefficient, and X₁ is the level of the independent variable. This model does not describe interaction among factors and it is used to screen and evaluate the important factors that influence the response. The protease activity assay was carried out in triplicate and the averages of these experimental values were taken as response Y. From the regression analysis of the variables, the

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010 significant factors (P < 0.05) for alkaline protease production were further optimized by using response surface methodology (RSM).

3.9.2 Statistical optimization of alkaline protease production using Response surface method (RSM)

Response Surface Methodology (RSM) was used to estimate main effects on response i.e. the protease yield. Central composite design (CCD) consisting of three main critical independent variables, (i) (C₁), (ii) (C₂), and (iii) (C₃) were chosen as the independent variables capable of influencing the alkaline protease production (Y) by bacteria under study in SmF or SSF (Table 3.3). For each factor, a conventional level was set to zero as a coded level. These three factors, each with three coded levels consisting of 20 experimental runs, were used to analyze the experimental data including five replicates at the center point. The experimental data were fitted as a second order polynomial regression equation including individual and cross effect of each variable.

$$Y = a_{\circ} + \sum_{i=1}^{3} a_{i}C_{i} + \sum_{i=1}^{3} a_{ii}C_{i}^{2} + \sum_{i=1}^{2} \sum_{j=i+1}^{3} a_{ij}C_{i}C_{j} \dots (3.2)$$

Where, Y= predicted response (total protease activity in U /mI for SmF and U /gds for SSF), a_0 intercept term, ai = linear effect, a_{μ} = square effect, a_{μ} = interaction effect, and C_1 and C_2 = variables. The above equation was used to optimize the values of independent parameters for the response. The following equation was used for coding the variables

$$C_{i} = \frac{C_{i} - C_{0}}{\Delta C_{i}}$$
 $i = 1, 2, 3,, k$ -----(3.3)

Multiple regression analysis, response surface plots and analysis of variance (ANOVA) were performed using Minitab 15 Statistical Software® (Minitab Inc, PA, USA).

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010 Table 3.3 Independent variables for alkaline protease / keratinaseproduction with respect to each strain under SSF and SmF systemsusing central composite design.

Strains	Independent variables			
	C ₁	C ₂	C ₃	
	Sol	id-state fermentat	tion	
B. subtilis RM-01	pH of best	Maltose level	Sodium nitrate	
	moistening	(% w/w)	level (% w/w)	
	liquid (distilled			
	water)			
	Submerged fermentation			
B. subtilis DM-04	IC:PP level (%	Beef extract	Time interval	
	w/v)	level (% w/w)	(h)	
Brevibacillus sp.	pH of the M9	Casein level (%	Potassium	
AS-S10-II	medium	w/w)	nitrate (%	
			w/w)	
Bacillus sp. AS-	-do-	-do-	Ammonium	
S20-I			sulphate (%	
			w/w)	
B.licheniformis	-do-	Glucose level	Yeast extract	
AS-S24-I		(% w/w)	(% w/w)	
P. tezpurensis sp.	-do-	Casein level (%	Ammonium	
nov. AS-S24-II		w/w)	sulphate (%	
			w/w)	

3.9.3 Validation of response surface: Batch fermentation under optimized conditions

3.9.3.1 Alkaline protease production under SSF systems

Batch fermentation for alkaline protease production under optimized conditions was performed using 100 g of either IC or PP or different combinations of IC and PP (either supplied or not supplied with cocarbon and co-nitrogen source) moistened with 5.0 mI of distilled water (optimum pH was adjusted with respect to each strain). The substrate was taken in rectangular trays of approximate dimension 286 mm x 120 mm x 80 mm. The tray was incubated at 50°C temperature under static condition. The protease was extracted at different time period (24, 48, 60, 72 and 96 h post inoculation) and assayed. A set of control was run in parallel.

3.9.3.2 Alkaline keratinase production under SSF systems

5.0 gram of chicken-feather was cut into uniform small sized pieces, taken in rectangular trays of approximate dimension 286 x 120 x 80 mm and mixed thoroughly with 5.0 ml of distilled water (pH was adjusted to 8.0 with 0.1N NaOH). The tray was incubated at 50°C temperature under static condition and then the protease was extracted at different time periods (24, 48, 60, 72 and 96 h post inoculation). A set of control was run in parallel.

3.9.3.3 Alkaline protease production under SmF systems

Batch fermentation for optimized protease production (Table 3.4) was carried out in a 5-I Bioflow 110 Fermentor (New Brunswick Scientific, USA) with a working volume of 3 I, operating with foam/anti-foam probe system and the M9 medium composed of best carbon and nitrogen for protease production sources at a desired concentration (% w/v). The pH of medium and optimum temperature was adjusted according to the optimum pH and temperature requirements for each strain. The agitation speed was 200 rpm, provided by a centrifuge propeller. The O_2 and pH electrodes were used for controlling process conditions. The cells were harvested at different time period (24, 48, 60, 72 and 96 h post inoculation), and the cell-free clear supernatant was used to determine the protease yield.

<u>Sudhir K Rai</u>

Strains	pH of the medium	Optimized of	concentration Nitrogen sources (% w/v)
		Carbon sources (% w/v)	
B.subtilis DM-04	8.0	2.5	1.25
Brevibacillus sp. AS-S10-II	13.3	1.4	0.13
Bacillus sp. AS-S20-I	10.9	2.59	0.12
B.licheniformis AS-S24-I	12.3	0.4	0.30
Peanibacillus tezpurensis	7.0	1.0	0.15
sp.nov. AS-S24-II			
B.subtilis strain RM-01	8.0	10.0	1.25

Table3.4Validationofresponsesurfaceforalkalineprotease/keratinaseproduction

3.10. Isolation and downstream processing of alkaline proteases / keratinase

Unless otherwise stated, all the fractionation was carried out at room temperature (~24°C).

3.10.1 Isolation and purification of Bsubap-I, an alkaline protease from *B. subtilis* DM-04

Cell-free culture supernatant (48 h post inoculation) equivalent to 100 mg protein was applied to a CM-cellulose column (1 cm x 20 cm), pre-equilibrated with 20 mM K-phosphate buffer pH 7.0. The unbound proteins (showing major protease activity) eluted from the column with wash buffer were loaded on a DEAE-Sephadex A-50 column (1.5 cm x 9.0 cm) and eluted stepwise using phosphate buffers of increasing molarities and decreasing pH values as indicated. (a) 100 mM potassium phosphate buffer, pH 7.5; (b) 100 mM potassium phosphate buffer, pH 8.0; (c) 150 mM potassium phosphate buffer, pH 8.0; (d) 200 mM potassium phosphate buffer, pH 8.0; (f) 300 mM potassium phosphate buffer, pH 8.5. Individual fraction was screened for protease activity and the fractions showing high caseinolytic activity were pooled, desalted on a

<u>Sudhir K Ral</u>

pre-packed desalting column (16 cm×2.5 cm, Bangalore Genei, India), vaccum concentrated and further fractionated on a Sephacryl S-200 gel filtration column (1.5 cm x 60 cm) with 20 mM K-phosphate buffer (pH 7.0). One ml fraction was collected in each tube at a flow rate of 24ml h and fractions showing the high protease activity were pooled and protein content was determined³⁶³. The homogeneity of preparation and molecular mass of protein was determined by 12.5% SDS-PAGE (section 3.10.8) analysis, with or without reduction of protein(s) with βmercaptoethanol³⁸³. Purity of protein (protease) preparation was also checked by reverse-phase high performance liquid chrornatography (RP-HPLC) of gel-filtration fraction (GF-II) on Waters reverse-phase Nova-Pak C₁₈ column (3.9 mm x 300 mm). Protein was eluted with a linear gradient from 5% to 70% acetonitrile containing 0.1% TFA and elution was monitored at 220nm. Fractions were collected manually and peak was checked for protease activity.

3.10.2 Isolation and purification of Alzwiprase (an alkaline protease) from *B. subtilis* DM-04

One hundred milliliter (equivalent to 240.0 mg protein) of cell-free culture supernatant (post 60 h incubation) was applied to a CMcellulose column (1 cm x 20 cm) pre-equilibrated with 20 mM Kphosphate buffer, pH 7.0. The flow through (unbound proteins) was collected in a single tube and then the column was washed with two column volume of equilibration buffer to elute the non-specifically bound proteins. The combined wash fraction and flow-through fraction was applied to a DEAE-Sephadex A-50 column (1 cm x 20 cm) preequilibrated with 20 mM K-phosphate buffer, pH 7.0.The unbound proteins as well as proteins eluted post washing the column with equilibration buffer were collected in a single tube, desalted on a prepacked 154 desalting column (16 cm x 2.5 cm, Bangalore Genei, India). The pre-chilled ethanol (final concentration 66%) was added and the mixture was kept at 4°C for 12 h. The mixture was centrifuged at 10,000 x g for 10 min. The pellet obtained was dried in vacuum, re-suspended in 20 mM K-phosphate buffer, pH 7.0 followed by re-fractionation on Waters Nova-Pak reverse-phase C₁₈ column (3.0mm x 300mm).Elution of protein was monitored at 220nm and peaks were collected manually.

The peak showing maximum protease activity was checked for homogeneity by SDS-PAGE as described in section 3.10.8.

3.10.3 Isolation and purification of alkaline β -keratinase protease from *B. subtilis* RM-01

The clear cell-free extract was applied to a CM-cellulose column (3.5 cm x 10.0 cm), pre-equilibrated with 50 mM K-phosphate buffer (pH 7.0). After washing the column with twice the volume of equilibration buffer, bound proteins were eluted stepwise at a flow rate of 24 ml /h using phosphate buffers of following molarities and pH values at room temperature (~24°C): The fractions showing high ß-keratinase activity were pooled, concentrated in a vacuum centrifuge (Maxi Dry Plus, Heto Holten, Denmark) and further fractionated on a Sephacryl S-200 gelfiltration column (1.0 cm × 64.0 cm) equilibrated with 20mM Kphosphate buffer (pH 7.0). The peaks showing the maximum keratinolytic activity were pooled, desalted on a pre-packed desalting column (16.0 cm × 2.5 cm, Bangalore Genei, India), and further separated on Waters Nova-Pak C18 reverse phase HPLC column (3.0 mm × 300.0 mm) with a linear gradient from 5 to 70% acetonitrile containing 0.1% TFA at a flow rate of 1.0 ml/min and monitored at 280 nm. Peaks were collected manually, dried in a vacuum centrifuge at -20°C, and then assayed for keratinase activity as well as protein content determination³⁶³. The homogeneity of protease peak was checked by SDS-PAGE analysis as described in section 3.10.8.

3.10.4 Isolation and purification of detergent-stable alkaline protease from *Peanibacillus tezpurensis* sp.nov. AS-S24-II

The clear cell-free culture supernatant was precipitated with different concentrations of ice-cold acetone (50–90%, v/v) at 4°C and kept at the same temperature for 4 h. The precipitate was recovered by centrifugation and dissolved in minimal volume of 20 mM Tris–HCl buffer, pH 8.0, and assayed for protease activity and detergent stability. The fraction displaying high protease activity and showing highest detergent stability was selected, and further fractionated on a Sephacryl S-200 gel filtration column (1.0 x 64 cm) equilibrated with 20 mM K. phosphate buffer (pH 7.0). One-millilitre fraction was collected in each tube and tested for detergent stability at 37°C (section 3.3.4) using

<u>Sudhir K Rai</u>

Safed® detergent (against which the crude protease demonstrated maximum stability) and as well as assaying the protease activity. The fractions showing the alkaline protease activity as well as high detergent stability were pooled and desalted on a pre-packed desalting column (16 x 2.5 cm, Bangalore Genei, India). This fraction was further separated on Waters Nova-Pak C18 reverse-phase (RP) high-performance liquid chromatography (HPLC) column (3.0×300 mm) with a linear gradient of 5% to 95% (v/v) acetonitrile containing 0.1% (v/v) trifluoroacetic acid (TFA) at a flow rate of 1 ml/min, and monitored at 280 nm. Protein peaks were collected manually, dried in a vacuum centrifuge at -20° C and then assayed for alkaline protease activity, detergent stability and protein content determination³⁶³. The purity of HPLC fraction showing protease activity was determined by SDS-PAGE analysis (section 3.10.8).

3.10.5 Isolation and purification of Alkarnase (an oxidant and detergent-stable alkaline protease) from *Bacillus licheniformis* AS-S24-I

The clear cell-free culture supernatant (60 h post inoculation) was precipitated with different concentrations of ice-cold acetone (50-90%, v/v) at 4°C and kept at the same temperature for 4 h. The precipitate was recovered by centrifugation and dissolved in minimal volume of 20 mM K-phosphate buffer, pH 8.0 and assayed for keratinase activity (100 mM Glycine-NaOH, pH 10.0). The fraction displaying highest keratinase activity was selected and further fractionated on a Sephacryl S-200 gel filtration column (1.0 x 64 cm) equilibrated with 20 mM Kphosphate buffer (pH 8.0). The peak showing the highest β-keratinase activity was desalted on a pre-packed desalting column (16 X 2.5 cm, Bangalore Genei, India) and lyophilized. This protein preparation was further purified using Waters Nova-Pak C₁₈ reverse-phase (RP) HPLC column (3.0×300 mm). Proteins were eluted with a linear gradient from 5% to 70% (v/v) acetonitrile containing 0.1% (v/v) TFA at a flow rate of 1.0 ml /min and elution was monitored at 280 nm. The HPLC peak showing keratinase activity was checked for homogeneity by 12.5% sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) analysis of proteins under reducing as well as non-reducing conditions³⁸³. For details (see section 3.10.8)

Sudhir K Rai

3.10.6 Isolation and purification of Brevicarnase (detergent-stable alkaline protease) from *Brevibacillus* sp. AS-S10-II

The clear cell-free culture supernatant (48 h post inoculation) was precipitated with different concentrations of ice-cold acetone (50-90%, v/v) at 4°C and kept at the same temperature for 4 h. The precipitate was recovered by centrifugation and dissolved in minimal volume of 20 mM K-phosphate buffer, pH 8.0 and assayed for keratinase activity (100 mM Glycine-NaOH, pH 12.5). The fraction displaying highest activity was selected and further fractionated on a Sephacryl S-200 gel filtration column (1.0 x 64 cm) equilibrated with 20 mM K phosphate buffer (pH 8.0). The peak showing the highest β -keratinase activity was desalted on a pre-packed desalting column (16 X 2.5 cm, Bangalore Genei, India) and lyophilized. This protein preparation was checked for homogeneity by 12.5% sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) analysis of proteins under reducing as well as non-reducing conditions (section 3.10.8). The purity of purified protein was further checked by using high-performance liquid chromatography on a Waters Nova-Pak C18 reverse-phase (RP) HPLC column (3.0×300 mm). Proteins were eluted with a linear gradient from 5% to 70% (v/v) acetonitrile containing 0.1% (v/v) TFA at a flow rate of 1.0 ml / min and elution was monitored at 280 nm. The protease zymography of the purified β-keratinase was done as suggested by Mazotto et al³⁸⁴ using keratin as a substrate (section 3.10.8).

3.10.7 Partial purification of alkaline protease from *Bacillus* sp. AS-S20-I

The crude protease extract was precipitated with 70% ice-cold acetone and allowed to stand at -20°C for overnight. The resulting precipitate was collected by centrifugation at 10,000g for 20 min at 4°C. The pellet so obtained was suspended in 20 mM K-phosphate buffer, pH 7.0 subjected to protease activity and protein content determination. The analysis of partially purified fraction showing protease activity was done by SDS-PAGE analysis as shown below.

3.10.8 Criteria of purity and determination of molecular weight

The SDS-PAGE was carried out with or without reduction of proteins by β -mercaptoethanol as described by Laemmli³⁸³. Briefly, either defined

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010 amount of crude protein or purified protease was loaded into 15% or 12.5 % separating gel containing 5% (v/v) glycerol (Appendix I-N(i)). Electrophoresis was carried out at a constant current of 15mA until the dye font (bromophenol blue) reached the bottom of the gel. Before staining, proteins were fixed by incubating the gel in 20% TCA for 30 min at room temperature followed by washing the gel thrice in distilled water. Proteins bands were visualized by staining the gel with 1% (w/v) Coomassie brilliant blue R 250 in methanol:acetic acid:water (4:1:5 v/v/v) and destained with methanol:acetic acid:water (4:1:5 v/v/v), and then photographed. Mobility of the purified protein was compared with the following molecular weight markers: phosphorylase b (97,400), bovine serum albumin (66,000), ovalbumin (43,000), carbonic anhydrase (29,000), soyabean trypsin inhibitor (20,000) and lysozyme (14,300). For determining molecular mass of unknown proteins, the migration profile of protein was measured and the log₁₀ values of the molecular weights of the standard proteins versus their migration distance were plotted. Taking the logarithm Rf allows the data to be plotted as a straight line. The molecular weight of unknown protein was then calculated from the standard curve.

3.10.9 Determination of active alkaline protease/ fibrinolytic / keratinase activity using zymographic study

3.10.9.1 Casein zymographic study

Casein zymograms were carried out as described previously Thangam and Rajkumar³⁸⁵. Briefly, casein (1.0%, w/v) that was dissolved in a 1.5M Tris-HCI buffer (pH 8.8) was co-polymerized with 12% (w/v) acrylamide, 0.32% (w/v) bisacrylamide in order to make a running gel. Then 4% (w/ v) acrylamide, 0.11% (w/v) bisacrylamide, and 0.5 M Tris-HCI (pH 6.8) (no substrate) were used for the stacking gel, then poured into a mini-gel cast (Bio-Rad) (Appendix I-N(ii)). The samples (15 µg) that were obtained from the culture supernatant of all strains were prepared by a zymogram sample buffer (0.5 M Tris-HCI, pH 6.8, 20% glycerol, and 0.5% bromophenol blue). After the prepared samples were loaded into the wells, an electrophoresis³⁸³ was carried out in the cold room at a constant current of 12 mA. After the electrophoresis was completed, the gel was incubated for 20.0 min at 4°C temperature on a rotary shaker in buffers w.r.t purified enzyme, which contained 2.5%

<u>Sudhir K Rai</u>

Triton X-100. The gel was washed with distilled water to remove Triton X-100, and then incubated in a zymogram reaction buffer (w.r.t purified enzyme) at 37°C for 12 h. The gel was stained with Coomassie brilliant blue (0.5%) for 8h and then destained in the fixed volume (100 ml) of the destaining solution that contained 10% methanol and 5% acetic acid for a limited period of time. For quantification, the densities of the digested bands on the zymograms were analyzed by video densitometry using Bio 1D ver. 97.04 (Vilber Lourmat, France) image analyzer software using

3.10.9.2 Fibrin zymographic study

Fibrin zymography was performed as described previously Kim et al³⁸⁶. Bovine fibrinogen (0.12%, w/v, Sigma) dissolved in 20 mM sodium phosphate buffer (pH 7.4) and 100 µl of bovine thrombin (10 NIH unit /ml, Sigma) was co-polymerized with 12% (w/v) acrylamide, 0.32% (w/v) bisacrylamide and 1.5 M Tris/HCI (pH 8.8) in order to make the fibrin gel the running gel. Then 4% (w/v) acrylamide, 0.11% (w/v) bisacrylamide and 0.5 M Tris/HCI (pH 6.8) (no fibrinogen) were used for the stacking gel, which was poured into a mini-gel cast (Tarson, India). The samples for analysis were prepared by diluting the culture supernatant 5-fold with zymogram sample buffer (0.5MTris/HCI, pH 6.8, 20% glycerol and 0.5% Bromphenol Blue)³⁸⁷. After the prepared samples (10 µl) were loaded into the wells, electrophoresis³⁸³ was carried out in the cold room (4 °C) at a constant 12 mA. After electrophoresis, the gel was incubated for 30 min at room temperature on a rotary shaker in 50 mM Tris/CI (pH 7.4), which contained 2.5% Triton X-100. The gel was washed with distilled water to remove Triton X-100, and then incubated in zymogram reaction buffer (30 mM Tris/HCl, pH 7.4) at 37°Cfor 16 h. The gel was stained with Coomassie blue for 8 h and then destained. The digested bands were visualized as the non-stained regions of the fibrin gel. For the quantification, the densities of digested bands on the gel were analyzed by video densitometry using Bio 1D Ver. 97.04 (Vilber Lourmat, France)³⁸⁷.

3.10.9.3 Keratin zymographic study

Activity staining of purified proteases was performed by keratin–SDS– PAGE zymography³⁸⁸ using 10 mg/ml keratin in 12.5% polyacrylamide

<u>Sudhir K Rai</u>

mixture. After electrophoresis, the gels were soaked thrice for 20 min in 2.5% (v/v) Triton X-100 at room temperature. Enzyme activity was visualized by incubating the gel for 16 h in substrate buffer (0.1M Tris-HCI buffer pH 8.3) at room temperature. The gel was stained with 0.5% of Coomassie brilliant blue R-250 and bleached with methanol–glacial acetic acid–water (30:10:60).

3.10.10 Estimation of protein content

The protein content was estimated by Lowry method³⁶³ using BSA as a protein standard. The protein content of the unknown sample was calculated from the standard curve BSA obtained by plotting optical density (660nm) Vs concentrations of BSA (0.1 to 1.0mg /ml).

3.11 Assay of proteolytic activity

Caseinolytic activity was evaluated colorimetrically as described by Mukherjee and Maity³⁹¹. Briefly, 1% (w/v) of casein in 0.1M concentration of reaction buffer w.r.t purified enzymes was incubated with specific amount of crude/ purified protease for 30 min at optimum incubation temperature w.r.t to purified enzymes followed by addition of 0.5 ml of 10% (w/v) ice-cold TCA to stop the reaction. After centrifugation of the mixture, supernatant was transferred to a fresh tube containing 2.0 ml of 2 % (w/v) sodium carbonate in 0.1N sodium hydroxide. The reaction was allowed to continue for 10 min at room temperature followed by addition of 0.5 ml of Folin-Ciocalteus reagents (1:2 dilutions). After 30 min absorbance was measured at 660 nm. Caseinolytic activity of the crude/ purified protein was calculated from a standard tyrosine curve. One unit (U) of caseinolytic activity is defined as nanomole equivalent of tryrosine formed per min per ml of enzyme.

For keratinase activity assay, the same procedure was followed except the casein was replaced with keratin. The specific activity of enzyme was calculated as Units of protease activity per mg of protein (U /mg).

Fibrinolytic activity assay was done as described by Kim *et al*³⁸⁶ with the following modifications. Briefly, 3 μ l of thrombin (10 NIH mL⁻¹) was added to 40 μ l of 0.6% (w/v) bovine fibrinogen solution (prepared in 100 mM K-phosphate, pH 7.4) and clot was allowed to form at room

<u>Sudhir K Rai</u>

temperature. Different concentrations of crude protease / purified protease were added to the clots and the reaction mixtures were incubated at 37°C for 30 min. The reaction was stopped by adding 10 μ I of ice-cold trichloro acetic acid and the supernatant was used to determine the release of free amino acids (tyrosine) at 660 nm using Folin-Ciocalteus reagent. One unit (U) of fibrinolytic activity is defined as μ g of tyrosine liberated per min per mI of enzyme.

3.12 Biochemical characterization of alkaline protease

3.12.1 Dose-dependent protease activity

To determine the effect of enzyme concentration on catalytic activity graded amounts of enzyme (0.5 to 10.0 μ g) were added to the reaction mixture and the protease activity was assayed by the method as described in section 3.11.

3.12.2 Effect of pH on protease activity and stability

The protease was incubated in different pH buffers (5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 and 13.0) and the protease activity in each buffer was determined. The following buffer (0.1M) systems were used: citrate- phosphate (pH 4.0), potassium-phosphate (pH 7.0), Tris-HCl (pH 9.0), glycine-NaOH (pH 10.5-11) and glycine-NaOH (pH 13.0). The optimum pH for alkaline protease activity was determined by standard alkaline protease assay using casein/keratin 1.0 % (w/v) as substrate dissolved in the buffer systems mentioned above. To study the protease stability as a function of pH, 2.0 ml of the crude enzyme or 0.1- 4.0 μ g of purified protease was mixed with 2.0 ml of the buffer solutions mentioned above and incubated at 37°C for desired time period Thereafter, protease activity (%) was determined as discussed in section 3.11.

3.12.3 Determination of optimum temperature for protease activity

The optimum temperature for alkaline protease activity was determined by incubating the reaction mixture (containing protease and substrate) at optimum pH for 20 minutes, at different temperatures ranging from 30 to 80°C. Before the addition of enzymes, the substrate (1.0 % (w/v) casein) was pre-incubated at the respective temperature for 10 minutes. For each assay, a control was also setup with respective temperature .

Sudhir K Rai

3.12.4 Heat-inactivation study

Thermo-stability of purified / partially purified protease preparation was determined by following the procedure as described in section 3.3.3.

3.12.5 Influence of metal ions on protease activity

To investigate the effects of different divalent cations on protease activity, casein / keratin hydrolysis reaction was performed with 2.0 μ g of protease in presence of different metal ions (Ni²⁺, Co²⁺, Mg²⁺, Mo²⁺, Fe²⁺, Hg²⁺, Cu²⁺, Zn²⁺, Mn²⁺, Ca²⁺, Cd²⁺). The enzyme activity without metal ions served as control and was considered as 100% activity.

3.12.6 Chemical modification of protease activity

Chemical modification of the histidine, cysteine and serine residues was performed by pre-incubating the purified protease with different concentration of 4-bromophenacyl bromide, iodoacetamide (IAA) and phenyl methyl sulfonyl fluoride (PMSF), respectively at room temperature (~24°C) for 30 min and then assaying the protease activity against appropriate controls³⁶⁴.

3.12.7 Effect of surfactants, chelators, denaturing, oxidizing and bleaching agents

To investigate the effects of surfactants (ionic surfactants like SDS, non-ionic surfactants like Tween-20, 80, Trition -X-100), chelator (EDTA), denaturing agent (urea), oxidizing agent (H₂O₂), and bleaching agent (sodium perborate) on protease activity. 2.0 µg of purified protease was pre-incubated with these chemicals for 30 min at room temperature followed by assay of protease activity. The protease activity without surfactants, chelator, and denaturing, oxidizing and bleaching agents was considered as 100% activity (control) and other values were compared with that.

3.12.8 Organic-solvent stability

The organic solvent stability of protease preparation was studied by pre-incubating the purified enzyme with various organic solvents (20% v/v) viz xylene, n-hexane, 2-propanol, methanol, ethanol, acetonitrile, and benzene at room temperature (~25°C) for 120 min. Aliquots were *Sudhir K Ral*

withdrawn at desired time intervals to test the remaining protease activity. The purified enzyme without added organic solvent was considered as control (100% activity) and other values were compared with that¹⁷³.

3.12.9 Substrate specificity

To determine the substrate specificity of purified/ partially purified alkaline protease, different proteolytic substrates viz., bovine serum albumin (BSA), bovine serum globulin (BSG), bovine serum fibrinogen (BSF), hemoglobulin, raw chicken-feather, human hair, collagen, gelatin, keratin and casein were used at a final concentration 1.0 mg / ml and incubated with 2.0 μ g of crude/ 1.0 μ g of purified alkaline protease at desired (optimum) temperature for 15 min. The protease activity was assayed as described in the section 3.11.

3.12.10 Enzyme kinetics

The K_m and V_{max} values of the protease preparation were calculated by Lineweaver–Burk plot using 0.1-2% (w/v) casein/keratin as a substrate³⁹⁰. The turnover number (K_{cat}) of the enzyme was determined by dividing the value of Vmax with the quantity of enzyme (E) used for driving the reaction [K_{cat} = V_{max} E(T)].

3.13 Immobilization of purified alkaline keratinase onto iron-oxide magnetic nanoparticle for improvement of catalytic activity and biotechnological potential of enzyme

3.13.1 Preparation of iron-oxide magnetic nanoparticle (MNPs)

Iron-oxide MNPs were prepared as described by Rossi *et al*³⁹¹. Briefly, 1.0 M KOH solution was added drop wise to 0.1N FeCl₂ (25 ml), prepared in Millipore water, with constant stirring at room temperature till pH 7.2 was attained, when a characteristic dark green colour was observed. Addition of 250 μ I of 3 % (v/v) H₂O₂ to the above dark green suspension yielded a black precipitate that was attracted by a permanent magnet. After separating the particles by magnetic decantation, they were washed thrice with 20 ml distilled water thrice, followed by washing with 20 ml acetone (twice). After drying overnight at room temperature, the yielded MNPs were weighed.

<u>Sudhir K Rai</u>

3.13.2 Optimization of enzyme coupling to magnetic nanoparticle

The following protocol was executed to find the best method (aminofunctionalisation vs. carbodiimide activation) and the best buffer for activation of the MNP for efficient protease binding.

3.13.3 Preparation of aminofunctionalized MNP

100 mg of iron-oxide nanoparticles were redispersed in 100 ml of ethanol by sonication. After adding 70 μ l of 3-(aminopropyl) triethoxy silane, the solution was mechanically stirred at room temperature. Next day, the black precipitate was separated by centrifugation and washed with 20 ml ethanol twice and dried in air at room temperature.

3.13.4 Covalent immobilization of keratinase from *B.subtilis* strain RM-01 on Fe_3O_4 MNP

Four sets of 2.5 mg amino-functionalised MNP were subjected to sonication in the following buffers : (i) 10 % glutaraldehyde-K-phosphate buffer (20 mM) solution, pH 7.4 (ii) Tris-HCI (50 mM), pH 7.5 (iii) Tris-HCI (50 mM), pH 8.0 and (iv) Tris-HCI (50 mM), pH 8.5 for 1 hour. The MNP were separated by magnetic decantation, followed by washing with 1 ml 20mM K-phosphate buffer pH 7.4, and then resuspending in 0.5 ml of the 20mM K-phosphate buffers, pH 7.4. Then 0.5 ml of purified keratinase (5.0 mg / ml) was added, stirred gently and kept at 4°C for overnight. The enzyme coupled MNP were separated by magnetic decantation followed by washing in 2.0 ml of the respective buffers. This was followed by assay of protease and keratinase activity and the best buffer in terms of maximal MNP-bound keratinase activity was selected.

- 3.13.5 Attachment of purified enzyme onto MNP by carbodimide/cyanimide activation

50 mg of MNP were suspended in any of the following buffer (i) 10 % w/v glutaraldehyde-K-phosphate buffer (20 mM) solution, pH 7.4 (ii) 10 % w/v glutaraldehyde Tris-HCI (50 mM), pH 7.5 (iii) 10 % w/v glutaraldehyde Tris-HCI (50 mM), pH 8.0 and (iv) 10 % w/v glutaraldehyde Tris-HCI (50 mM), pH 8.5. 0.5ml of freshly prepared carbodiimide solution (prepared by dissolving 20 mg / ml of the respective buffers) was added to the above sets. This was followed by

<u>Sudhir K Rai</u>

sonication for 15 minutes at room temperature and then, 0.5 ml (concentration 5.0 mg / ml) of purified keratinase enzyme was added. Sonication was done for 30 minutes at 4°C (ice-bath), followed by centrifugation of the sonication mixture at 3000 rpm for 10 minutes. The supernatant was collected in a fresh microfuge tube (post-precipitate supernatant). The precipitate was washed twice and finally suspended in 0.5 ml of the respective buffers. Protein content determination (section 3.10.10) and keratinase activity assay (section 3.11) were performed to determine the best buffer in terms of maximal MNP-bound keratinase activity.

3.13.6 Binding of MNP binding to purified keratinase enzyme: dose-dependent study

After finding the best buffer and best method for MNP activation and enzyme binding, dose dependent study was performed by varying the amount of MNP while the volume of enzyme added was kept constant.

3.13.7 Statistical procedure for optimizing conditions for maximal coupling of keratinase on to iron-oxide MNP

Response surface methodology (RSM) was used to estimate main effects on response i.e. the enzyme coupling to the iron oxide MNP. Two factors with three levels consisting of 13 experimental runs, were used to analyze the experimental data including four replicates at the centre point to allow better estimate of the experimental error and to provide extra information about the specific activity of the coupled erizyme in the interior of the experimental region³⁹². The amount of MNP used for binding (C₁) and pH of the buffer system used (C₂) were chosen as the experimental factors or the independent variables capable of influencing the studied specific activity of MNP-coupled keratinase (Y).

The correspondence between the coded values and natural values was obtained by the following formula :

$$C_i = \frac{C_i - C_0}{\Delta C_i}, i = 1, 2, 3, \dots, k$$
 (3.4)

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010 Where Z is the coded value, C_i is the corresponding natural value, C- is the natural value in the center of the domain and ΔC is the increment of C corresponding to one unit of Z. Using this design, the experimental data were fitted according to the Eq. (3.5) as a second order polynomial regression equation including individual and cross effect of each variable.

Where, Y = Specific activity of the enzyme coupled to MNP (response), a_0 intercept term, a_i = linear effect, a_{ii} = square effect, a_{ij} = interaction effect, and C_i and C_j = variables.

Analyses were carried out in triplicate and the data tabulated were the average of the three measurements. The above model was used to optimize the values of independent parameters for the response. Multiple regression analysis and response surface plots were generated using Minitab 15 Statistical Software® (Minitab Inc, PA, USA).

3.14 Characterization of the enzyme-coupled iron-oxide magnetic nanoparticle

3.14.1 XRD analysis for determination of nanocrystalllite size

X-ray diffractometer 'Miniflex', (Rigaku corporation Japan), was used for - the powder XRD analysis. The data was fed into the software, X-PERT, for determination of the nanocrystallite size, based on Scherrer's formula:

$$D_{\nu} = \frac{K\lambda}{\beta\cos\theta} \qquad (3.6)$$

Where, $D_v =$ Volume weighted crystallite size

K = Scherrer constant (0.9 in the present study)

 λ = the wavelength of the radiation (1.574 X 10⁻¹⁰ m in the present study)

 β = the integral breadth of a reflection (in radians 2 θ) located at 2 θ

3.14.2 FTIR analysis

FTIR spectrometer for Nicolet USA (Model Impact-410) was used to check the binding of the enzyme coupled to the MNPs. The experiment range of the FTIR used was from 400 to 4000 cm⁻¹. The sample was mixed with KBr (Merck, India) uniformly (0.01%) and a pellet was prepared with a handy press equipped with a pellet holder of 50 nnm thickness, placed in the sample holder and the spectrum was collected.

3.14.3 SEM analysis for determination of particle size

Uncoated carbodiimide functionalized and enzyme bound MNP were examined with a JEOL JSM-6390 LV scanning electron microscope. The samples were platinum coated using JEOL JFC-1600 Auto fine coater.

3.14.4 Comparison of stability storage of free and MNP-bound β -keratinase

The storage stabilities of MNP-bound and free β -keratinase were examined by assaying their residual activity post storage at 4°C for a predetermined time period. The activity of free or Fe₃O₄ MNP-bound enzyme at the beginning of experiment was considered as 100% activity and other values were compared with this.

3.15 Industrial application of purified / partially purified alkaline proteases / keratinase

3.15.1 Blood clot lysis (thrombolytic) activity

Clot lysis was studied with both natural and synthetic blood clot *in vitro* condition. The mixture of 50 ml fibrinogen (0.6% w/v) and 5 ml thrombin was incubated at room temperature for 1 h, washed and vortexed for dispersion. One hundred micro- litre of enzyme (20 mg) was added into this solution, and incubated at 37°C for 16 h. At different time intervals, aliquots were taken from the reaction mixture for analysis³⁹³.

3.15.2 Detergent compatibility test

Detergent compatibility and stability study was performed as explained in section 3.3.4.

3.15.3 Wash performance test

Wash performance of crude / purified protease was evaluated by subjecting the blood stain removal test from cotton fabrics as described by Mukherjee³⁶⁵ with the following modifications. Briefly, white cotton cloth was cut into 5.0 cm² pieces, and each piece was stained with 1.0 ml of fresh goat blood (obtained from slaughter house) and then dried at 40°C for overnight. To test the wash performance, each piece of stained cloth was dipped in any one of the following flasks containing: (a) 25 ml of tap water (control), (b) 20 ml of tap water and 5 ml of heated detergent (7 mg/ ml), (c) 20 ml of tap water and 5 ml of unheated detergent (7 mg /ml), (d) 20 ml of tap water and 5 ml of heated detergent (7 mg / ml) containing 2-8 µg / ml protease, (e) 20 ml of tap water and 5 ml of unheated detergent (7 mg /ml) containing 2-8 µg/ ml protease and (f) 20 ml of tap water and 5.0 ml of 2.0 to 8.0 µg / ml protease. Flasks were kept at 25°C, 37°C and 45°C for 10 min followed by removal of the cloth pieces, and the left over washes were used to determine the quantity of blood (haemoglobin) removed from the cloths³⁶⁵.The dried cloths were visually examined for blood stain removal and then photographed.

3.15.4 Pharmacological characterization of proteases

3.15.4.1 Interference in blood coagulation

Interference in blood coagulation (coagulant or anticoagulant effect) by crude / purified protease was assayed as described by Doley and Mukherjee³⁹⁴. Briefly, platelet poor plasma (PPP) from goat was prepared by centrifuging (2,500 X g at a Remi Centrifuge) the citrated blood (1:9) twice for 15 min at 4°C and used within 4h of collection. To assay the recalcification time, specific amount of crude / purified proteases (in a final volume of 30 µl) was added to 300 µl of PPP pre-incubated at 37°C. The mixture was incubated for 3 min at 37 °C and 40 µl of 250 mM CaCl₂ was added to this reaction mixture . The clotting time of plasma was recorded with the help of stopwatch based on the first appearance of a fibrin clot. As a control, plasma aliquot was incubated with 30 µl of phosphate buffer saline (PBS) and coagulation time was determined identically.

- Sudhir K Rai

3.15.4.2 Assay of haemolytic activity

Direct haemolytic activity was assayed as described by Doley and Mukherjee³⁹⁴. Briefly, graded concentrations of protease solutions were added to 5 % (v/v) of human erythrocyte suspension (in 100 mM phosphate buffer, pH 7.4) and final volume was adjusted to 3 ml. After incubating for 60 min at 37°C, the reaction mixture was centrifuged and released haemoglobin was measured spectrophotometrically at 540 nm (U-2001 UV/Vis Spectrophotometer, Hitachi, Japan). For cent percent (100 %) hemolysis, RBC suspension was incubated with 0.1 % (v/v) Triton-X-100.

3.15.4.3 In-vitro tissue damaging activity

For the assay of in-vitro tissue damaging activity, procedure of Doley and Mukherjee³⁹⁴ was followed with the following modifications. Fresh chicken liver, heart and lungs were washed with 0.9%sodium chloride solution, cut into small uniform sized pieces, patted dry with tissue paper and 300 ± 10 mg pieces were weighed. The tissues were preincubated with 1 ml of 0.2 M K-phosphate buffer, pH 7.4, for 45 min at 37°C. The tissues were then washed twice with the same buffer and incubated with 25 mg of either crude venom or purified protein in a final volume of 2.5 ml in 0.2M K-phosphate buffer, pH 7.4 for 5 h at 37°C. After incubation, reaction mixtures were centrifuged for 5 min at 3000 rpm and the absorbance of the supernatant was read at 540 nm by an UV–VIS Spectrophotometer (Hitachi, Japan). The percentage of haemoglobin released was calculated with respect to tissues incubated with 0.1% Triton X-100 solution (100% activity).

3.15.5 Dehairing activity

Goat skin obtained from a slaughter house was cut into 5 cm² pieces and kept in a disposable sterile perti dish. To this purified alkaline protease (all prepared in sterile medium) was added and the final volume was adjusted to 10.0 ml with sterile deionized water. Then the petri dish was sealed with parafilm and incubation was carried out for 12 h at 37 °C followed by virtually analyzing skin pieces for dehairing activity as described by Huang *et al*³⁹⁵. Briefly, the hair of the skin was pulled by hand to test whether the hair was separated from the skin easily. Since there is no quantitative method to determine the effect of

<u>Sudhir K Rai</u>

dehairing; therefore, we define the dehairing effect to be "no" or "yes" or "easily."

3.15.6 Antibacterial property of purified alkaline protease

Antibacterial activity was measured by a liquid growth inhibition assay, performed in 96-wells microtiter plates (Microplates, Flat-bottom, sterile, Axygen Scientific Pvt. Ltd USA)^{396,397}. Ten ml aliquots of the purified protease were added to 100 ml of a logarithmic phase (O.D.630nm ≈ 0.3) cultures of Escherichia coli, Bacillus licheniformis, Kocuria varians, Peanibacillus polymyxa, Staphylococcus aureus and Klebsiella pneumoniae of the tested bacteria which was diluted to $10^5 - 10^6$ colony-forming units (cfu) per ml. Controls (bacterial cultures with or without antibiotics) were run in parallel and inhibition of bacterial growth (if any) by purified protease enzyme. Final concentrations of the purified protease in the test were used 0.25 mg /ml. Microbial growth was measured as an increase of optical density at 630 nm by a microplate reader (Multiskan, Thermo electron corporation, China) after incubation at 37°C for 16 h. Minimal inhibitory concentrations (MIC) are expressed as intervals of concentrations: [a]-[b]; where [a] is the highest concentration tested at which the bacteria are growing and [b] being the lowest concentration causing 100% of growth inhibition (no change in O.D. at 630nm)³⁹⁷. After 24 h, 80 ml of the test well which showed no change in OD630 was plated, either directly or diluted (1:100) in medium, to define whether the cells were lysed or impeded to grow. Each concentration was tested in triplicates³⁹⁸.

3.15.7 Feather degradation using MNP-Bound β-keratinase

Evaluation of chicken-feather hydrolysis by either free or iron-oxide MNP-bound keratinase was carried out by using 2% (w/v) washed-dried and finely cut chicken-feathers suspended in 100 mM Tris-HCl buffer pH-9.0. To this mixture, a predetermined amount of either free or iron-oxide MNP- bound β -keratinase was added and incubated at 45°C for different time periods under shaking at 100 rpm. Sodium sulphite at a final concentration of 2 mM was added to each reaction mixture to accelerate the reaction rate³⁹⁹. At the end of desired time period, the hydrolyzate was filtered through a pre-weighed Whatman® filter paper to isolate the non-degraded (undigested) chicken-feather. Filter papers

<u>Sudhir K Rai</u>

were dried under the vacuum, weighed and the mass of non-degraded chicken-feather was estimated against appropriate control. The filtrate was analyzed for amino acids and free fatty acids contents as described below.

3.15.8 Release of free-amino acids from the chicken-feather

A predetermined volume of feather-hydrolisate was withdrawn at a regular interval (24 h to 40 h), passed through four layers of cheesecloth, centrifuged at 10,000 X g for 5 min at 4°C and the supernatant was collected in a fresh tube. Two hundred microliter of the supernatant was extracted in methanol and then analyzed for free-amino acids by high performance liquid chromatography (HPLC) using C₁₈ column⁴⁰⁰. The standard amino acids used were cysteine, threonine, valine, methionine, isoleucine, phenylalanine and lysine.

3.15.9 Analysis of liberated free fatty acids from chicken -feather by β-keratinase

For quantitative analysis of FFA released post treatment of MNP bound β -keratinase, 5.0 ml of methanolic NaOH solution (45.0 gm (% w/v) NaOH in 150.0 ml of methanol) was added to a measured amount of lipid extract (in a round bottomed flask) and the mixture was refluxed for 30 min. Then 5.0 ml of deionised water and 1.0 ml of concentrated HCI were added, mixed well and the mixture was extracted with 10.0 ml of petroleum ether. The process was repeated twice and the combined samples were dried in a rotary vacuum evaporator. To these FFAs, 10.0 ml of methyl alcohol and few drops of concentrated H₂SO₄ were added. The mixture was again refluxed for 3 hours followed by dilution with 10 ml of water and then re-extracted with 10.0 ml of petroleum ether. The procedure was repeated twice. All the petroleum-ether extracted fractions were pooled and allowed to dry in a dessicator for analysis by GC.

The dry sample (fatty acid methyl esters) was dissolved in a minimum quantity of chloroform and analyzed on a GC-MS (Varian 3800, Saturn 2000) system. The samples were injected using a split ratio of 100:1 into a fused silica GC column CP-Sil 8 CB low bleed ($30m \times 0.25mm \times 0.25 \mu m$) coupled with CP-Sil 5C low bleed / MS ($30m \times 0.25mm \times 0.25$

<u>Sudhir K Rai</u>

 μ m) column with helium as the carrier gas. The system was equipped with flame ionization detector. The initial oven temperature was 40°C and a temperature program of 3°C min⁻¹ began at injection and continued to a final oven temperature of 240°C, which was held isothermal for 5 min. The injector port and detector temperature were set at 280°C. The mass spectrometric data were acquired in electron ionization mode (70eV). Mass spectra of unknown methylated fatty acids were identified by comparing the retention time of authenticated fatty acids, using the Saturn 2000 MS library search where 99% matching was observed.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

CHAPTER IV

RESULTS

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

148

Chapter 4 Chapter 4

Screening of micro-organisms from different habitats of North-east India (with special emphasis on extreme habitats) for the production of protease with particular reference to the alkaline, thermophilic enzymes

4.1 Collection of environmental samples

From different environmental samples, 52 soil samples were collected at random in sterile tubes, minimum five, from a field including area around the hot springs, oil-fields, high altitude mountains, etc.

Fifteen (15) water samples were collected in sterile screw cap tubes from rivers, hot-springs effluents from paper mills, were collected and kept at 4 °C until further use. A total of 67 samples were collected from the five states of north east India as shown in Table 4.1.

S. No.	North-Eastern	Samples	Samples collected		
	States	Soil	Water		
1	Assam	30	6	36	
2	Arunachal	10	8	18	
	Pradesh				
3	Manipur	4	Nil	4	
4	Meghalaya	5	1	6	
5	Tripura	3	Nil	3	

 Table 4.1 Collection of soil samples from various regions of North-East

 India

Total: 67

<u>Sudhir K Rai</u>

Chapter 4 Out of the 33 bacterial cultures obtained from screening the environmental samples of NE India, only 12 isolates showed zone of hydrolysis \geq 25.0 mm (Tables 4.2 and 4.3). Pure cultures of such isolates were obtained for further studies.

Table 4.2 Screening for alkaline protease producing alkalophilic bacteria from different samples of North- East India. The medium used was skim-milk agar, pH 8.0.

	Sample	District	Туре	pH of	Zone of
S.	code		of	sample	hydrolysis
Ν			sample		in mm
			(soil /		(No. of
			water)		CFU)
		State : Assam			
1	AS-S02a	Golaghat	Soil	7.14	17.0,26.8
					(02)
2	AS-S03a	-do-	-do-	5.04	7.0 ; 24.0 ;
					40.0 (03)
3	AS-S03b	-do-	-do-	4.28	29.0 ; 16.0
					(02)
4	AS-S05	Sivasagar	-do-	8.09	14.0; 16.0
					(02)
5	AS-S06	-do-	Soil	8.31	7.0; 5.0
					(02)
6	AS-S08	-do-	-do-	6.61	17.0 (01)
7	AS-S09	-do-	-do-	8.09	13.0; 8.0
					(02)
8	AS-S10	-do-	-do-	5.30	34.0; 24.0
					(02)
9	AS-S13	-do-	-do-	7.85	16.0 (01)
10	AS-S14	- do-	-do-	7.22	19.0 (01)

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

150

<i>Chapter 4</i> Sample		District	Туре	pH of	151 Zone of
S. N	code		of sample (soil / water)	sample	hydrolysis in mm (No. of CFU)
		State : Assam	ı		
11	AS-S15	Sivagar	Soil	7.77	(22-CFU)- very small
12	AS-S18	Cachar	-do-	9.39	27.0; 24.0 (02)
13	AS-S20	-do-	-do-	5.93	20.0; 19.0; 26.0 (02); 27.0 (05)
14	AS-S21	Sonitpur	-do-	5.85	21.0; 6.0; 40.0 (02)
15	AS-S24	-do-	-do-	3.94	29.0; 22.0; 30.0 (03)
16	AS-W01	Golaghat	Water	6.77	23.0 (01)
17	AS-W02	Sonitpur	Water	7.95	21.0 (01)
		State : Arunachal P	radesh		
18	AR-S01	Papum Pare	Soil	4.48	6.0 (01)
19	AR-S02	-do-	-do-	6.22	5; 12.0 (02)
20	AR-S04	-do-	-do-	4.48	10; 15.0 (02)
21	AR-W01	-do-	Water	7.02	6.0 (02)
22	AR-W02	-do-	-do-	6.65 Co	5.0, 6.0 (02) ontinued

	Chapter 4152Table 4.2 Continued							
23	AR-W04	Papum Pare	Water	5.56	5.0; 12.0			
					(02)			
		State : Manip	ur					
24	MN-S01	Imphal West	Soil	4.90	15.0 (01)			
25	MN-S02	Thoubal	-do-	4.97	6.0 (01)			
26	MN-S03	Imphal West	-do-	6.74	7.0 (03)			
27	MN-S04	-do-	-do-	8.24	10; 24.0			
					(02)			
		State : Meghala	aya					
28	ML-S01	East Khasi Hills	Soil	6.18	19.0 ; 20.0			
					(02)			
29	ML-S02	-do-	-do-	4.99	3.6; 7.0 ;			
					8.0 (03)			
30	ML-S03	-do-	-do-	4.61	7.0;7.0;			
					7.0 (03)			
		State : Tripur	a					
31	TR-S01	West Tripura	-do-	5.93	22.0 (01)			
32	TR-S02	-do-	-do-	4.38	20; 22.0			
					(02)			
33	TR-S03	-do-	-do-	4.35	5.0 (01)			

-

PhD Thesis, Tezpur University, 2010

-

-

These twelve isolates were further characterized based on their growth and protease yield in SmF (Table 4.4). On the basis of protease production, only 7 isolates (shown in bold letter) were considered as alkaline protease producing potential bacteria (Table 4.4).

Table 4.3 Selection of alkaline protease producing 12 bacteria havingzone of hydrolysis \geq 25.0 mm (see Table 4.2)

S.No	Sample	District	Туре	pH of	Zone of
	code		of	sample	hydrolysis
			sample		(in mm)
			(Soil /		
			Water)		
		State : As:	sam	··· ···	
1	AS-S-02a	Golaghat	Soil	4.31	26.8
2	AS-S03a	-do-	-do-	5.04	40.0
3	AS-S03b	-do-	-do-	4.28	29.0
4	AS-S10 I	Sivasagar	-do-	5.30	25.0
5	AS-S10 II	-do-	-do-	5.30	34.0
6	AS-S18	Cacher	-do-	9.39	27.0
7	AS-S20-I	-do-	-do-	5.39	26.0
8	AS-S20-II	-do-	-do-	5.39	26 0
9	AS-S20-III	-do-	-do-	5 39	27.0
10	AS-S21	Sonitpur	-do-	5.85	40.0
11	AS-S24-I	-do-	-do-	3.94	29.0
12	AS-S24-II	-do-	-do-	3.94	30.0

Sudhir K Rai

Table 4.4 Selection of alkaline protease producing potential bacteria on the basis of alkaline protease production in culture medium. Results represent mean \pm S.D of three individual experiments.

Bacterial Isolates	Protease yield (Units)	Growth (OD at 600 nm)
AS-S-02a	12.0 ± 0.6	0.421 ± 0.02
AS-S03a	15.0 ± 0.8	0.340 ± 0.02
AS-S03b	20.0 ± 1.0	0.246 ± 0.01
AS-S10 I	20.0 ± 1.0	0.310 ± 0.02
AS-S21	22.0 ± 1.1	0.424 ± 0.02
AS-S20-III	20.3 ± 1.0	0.388 ± 0.02
AS-S20-11	22.0 ± 1.1	0.346 ± 0.02
AS-S18	35.0 ± 1.8	0.358 ± 0.02
AS-S10-II	62.1 ± 3.1	0.254 ± 0.01
AS-S24-1	63.9 ± 3.2	0.325 ± 0.02
AS-S24-II	64.1 ± 3.2	0.410 ± 0.02
AS-S20-1	66.6 ± 3.3	0.367 ± 0.02

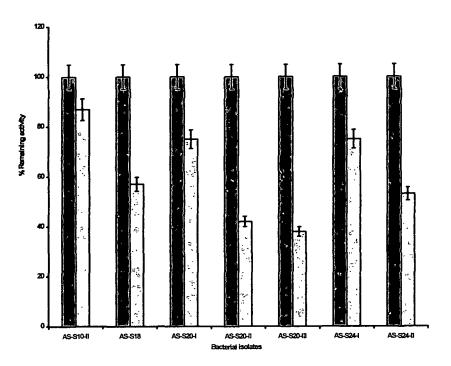
The next criterion of selection was based on some of the biochemical properties of the crude protease enzyme from the selected bacteria, for example, their stability and compatibility with commercial laundry detergents (Table 4.5), thermo-stability (Table 4.6), and storage stability at 4°C (Fig.4.1). Results showed that protease from five isolates viz. **AS-S10-II, AS-S18, AS-S20-I, AS-S24-I and AS-S24-II** displayed superior properties as compared to same properties displayed by crude protease enzyme from others three strains. These four strains were selected for taxonomic identification, optimization of protease production, isolation, purification and characterization of extracellular protease enzyme(s).

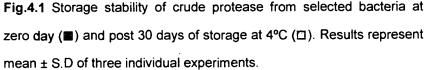
Sudhir K Rai

Table 4.5 Detergent compatibility study of crude protease pre-incubated at 45°C. Enzyme activity in absence of detergent was considered as 100% activity and other values were compared with that. Results represent mean ± S.D of three individual experiments.

Commercial	Isolates								
laundry									
detergents	AS-S10-II	AS-S18	AS-S20-I	AS-S20-II	AS-S20-III	AS-S24-I	AS-S24-11		
(7.0 mg /ml)									
			Rema	ining protease ac	tivity (%)				
Ariel	96.3 ± 4.8	93.1 ±4.7	119.7 ± 6.0	86.5 ± 4.0	96.9 ± 4.8	78.5 ± 3.9	131.6 ±6.6		
Henko	165.8 ± 8.3	86.3 ± 4.3	94.3 ± 4.8	82.0 ± 4.1	90.0 ± 4.5	123.4 ± 6.2	140.0 ± 7.0		
Rin advaņced	115.8 ± 5.8	95.8 ± 4.8	115.4 ± 5.6	98.5 ± 5.0	104.5 ± 5.2	124.4 ± 6.2	116.6 ± 5.8		
Surf excel	102.4 ± 5.1	105.4 ± 5.3	111.2 ± 5.6	97.0 ± 4.9	· 98.7 ± 4.9	74.4 ± 3.7	156.6 ± 7.8		
Tide	93.9 ± 4.7	98.6 ± 4.9	119.7 ± 6.0	97.0 ± 4.9	106.0 ± 5.3	95.9 ± 4.8	160.0 ± 8.0		
Wheel	90 ± 4.5	95.8 ± 4.8	97.1 ± 4.9	95.5 ± 4.8	95.4 ± 4.8	122.4 ± 6.1	158.3 ± 7.9		
Control	100	100	100	100	100	100	100		

<u>Sudhir K Rai</u>


.


Table 4.6 Thermo stability study of protease from selected bacterial isolates. The crude protease (2 mg/ml) was heated at 60°C for 15 to 60 mins followed by assay of protease activity. Results represent mean ± S.D of three individual experiments

Incubation time	AS-S10-II	AS-S18	AS-S20-I	AS-S20-II	AS-S20-III	AS-S24-1	AS-S24-II			
(In mins)										
15	100.0 ± 2.0	100.0 ± 2.0	100.0 ± 2.0	97.0± 1.9	95.0 ± 1.9	105.0 ± 2.1	101.0 ± 2.0			
30	100.0 ± 2.0	94.0 ± 1.9	99.0 ±1.9	92.0± 1.8	90.0 ± 1.8	100.0 ± 2.0	99.0 ±1.9			
45	97.0 ±1.9	88.0 ± 1.8	94.0 ± 1.9	83.0 ± 1.7	87.0 ± 1.7	99.0 ±1.9	97.0±1.9			
60	95.0 ± 1.9	72.0 ±1.7	91.0 ± 1.8	70.0 ± 1.6	80.0±1.6	97.0± 1.9	92.0± 1.8			
Control(0)	100	100	100	100	100	100	100			

<u>Sudhir K Rai</u>

4.2 Taxonomic identification of pure culture of bacterial isolates The results of taxonomic identification by polyphasic approach are shown below.

4.2.1 Biochemical study of alkaline protease producing microbes The results of the biochemical and morphological tests of the selected bacterial isolates are shown in Tables 4.7 to 4.10.

Bacterial morphology and the results of the biochemical tests suggested that AS-S10-II belongs *Bacillus* sp. genus, AS-S18 belongs to *Bacillus* genus, AS-S20-I belongs to the *Kocuria* genus, AS-S24-I belonged to genus *Paenibacillus*, AS-S24-II belonged to the genus *Bacillus licheniformis* (Bergey's manual of systematic bacteriology, 1999,2001,2005).

<u>Sudhir K Rai</u>

Chapter 4	158					
Table 4.7 Biochemical a	nd morphological tests of AS-S10 II.					
Experiments	were repeated thrice to assure the					
reproducibility						
Morphology	Rod shaped, motile, Gram negative, border					
	circular, White color, single					
Growth						
Spore	No endospore					
Agar	Abundant, pale yellow					
Broth	Good growth, with sediment					
рН	4.0 –10.0, optimum at pH 8.0-8.5					
Temperature	Growth range 30-60°C,					
	optimum at 45-50 °C					
Catalase	Positive					
Voges-Proskauer Test	Positive					
Methyl Red Test	Negative					
Acid from						
D- Glucose	Positive					
Sucrose	Negative					
Lactose	Negative					
D- Mannitol	Positive					
Gas from Glucose	Negative					
Hydrolysis of						
Casein	Positive					
Gelatin	Negative					
Starch	Positive					
Urease activity	Negative					
Utilization of Citrate	Negative					
Formation of Indole	Positive					
Nitrate reduction	Positive					
H₂S production	Positive					
Lipid hydrolysis	Positive					
Litmus milk reaction	Peptonization					

Chapter		Dischamical	and	159					
Table	4.8	Biochemical	and	morphological tests AS-S18.					
		Experiments	were	repeated thrice to assure the					
		reproducibility.							
Morpho	logy	1		shaped single cell with 1-2 μm in					
				neter, motile, Gram positive, border					
			circu	ılar, white color					
Growth									
	Aga	r		ndant, pale yellow					
E	Broth	1	Goo	d growth, with sediment					
p	н		4.0 -	-11.0, optimum at pH 8.5-9.0					
Т	ſemp	perature	Grov	vth range 30-60 °C, optimum at 45 °C					
Catalas	e		Posi	tive					
Voges-F	Pros	kauer Test	Posit	Positive					
Methyl I	Red	Test	Negative						
Acid fro	m								
0	D- Gl	ucose	Posi	tive					
Ĺ	acto	se	Positive						
S	Sucro	ose	Positive						
0	D- Ma	annitol	Positive						
Gas fro	m G	lucose	Nega	ative					
Hydroly	sis	of							
C	Case	in	Positive						
G	Gelat	in	Positive						
S	Starc	h	Positive						
Utilizati	on o	f Citrate	Posi	live					
Formati	on c	of Indole	Nega	ative					
Nitrate r	redu	ction	Negative						
Litmus	milk	reaction	Pept	onization					

Chapter 4	160					
Table 4.9 Biochemical and	morphological tests of bacteria AS-S20-					
I. Experiments	s were repeated thrice to assure the					
reproducibility.						
Morphology	Long rod shaped, motile, Gram negative,					
	border irregular, surface raised, white					
	colour glistening colonies					
Growth						
Spore	No endospore					
Agar	Abundant, White colour					
Broth	Good growth, with sediment					
рН	4.0 –10.0, optimum at 8.0					
Temperature	Range 30-60 °C, optimum at 45 °C					
Catalase	Positive					
Voges-Proskauer Test	Not determined					
Methyl Red Test	Positive					
Acid from						
D- Glucose	Positive					
Sucrose	Positive					
Lactose	Positive					
D- Mannitol	Positive					
Gas from Glucose	Negative					
Hydrolysis of						
Casein	Positive					
Gelatin	Negative					
Starch	Positive					
Utilization of Citrate	Positive					
Formation of Indole	Negative					
Nitrate reduction	Negative					
H ₂ S production	Positive					
Urease activity	Negative					
Lipid hydrolysis	Positive					
Litmus milk reaction	Peptonization					

Chapte	er 4							_161
Table	4.10	Biochemical	and r	norphologica	al tests	of	AS-S24-	Ι.
		Experiments	were	repeated	thrice	to	assure	the
		reproducibility	1.					

Morphology Rod shaped with 1-2 μ m in diameter, motile, Gram negative, border circular, arrangement in chains, white color, glistering **Growth**

Spore	No endospore				
Agar	Abundant, pale yellow				
Broth	Good growth, with sediment				
рН	4.0 –10.0, optimum at pH 8.0				
Temperature	Growth range 30-60 °C, optimum at 45 °C				
Catalase	Negative				
Voges-Proskauer Test	Positive				
Methyl Red Test	Negative				
Acid from					
D- Glucose	Positive				
Sucrose	Negative				
Lactose	Negative				
D- Mannitol	Negative				
Gas from Glucose	Negative				
Hydrolysis of					
Casein	Positive				
Gelatin	Negative				
Starch	Positive				
Urease activity	Negative				
Utilization of Citrate	Negative				
Formation of Indole	Positive				
Nitrate reduction	Positive				
H ₂ S production	Positive				
Lipid hydrolysis	Negative				
Litmus milk reaction	Peptonization				

<u>Sudhir K Rai</u>

-

Chapter 4	162
Table4.11Biochemical	and morphological tests AS-S24-II.
Experiments	were repeated thrice to assure the
reproducibility.	
Morphology	Rod shaped single cell with 1-2 μm in
	diameter, motile, Gram positive, border
	circular, white color
Growth	
Spore	Endospore formation
Agar	Abundant, pale yellow
Broth	Good growth, with sediment
рН	4.0 –11.0, optimum at pH 8.0
Temperature	Growth range 30-60 °C, optimum at 45 °C
Catalase	Positive
Voges-Proskauer Test	Positive
Methyl Red Test	Negative
Acid from	
D- Glucose	Positive
Lactose	Positive
Sucrose	Positive
D- Mannitol	Negative
Gas from Glucose	Negative
Hydrolysis of	
Casein	Positive
Gelatin	Negative
Starch	Positive
Urease activity	Negative
Utilization of Citrate	Negative
Formation of Indole	Positive
Nitrate reduction	Positive
H₂S production	Positive
Lipid hydrolysis	Negative
Litmus milk reaction	Peptonization

Chapter 4 4.2.3 FAME analysis

The similarity index (SI) and species identification of these four bacterial strains on the basis of cellular fatty acids composition are shown in Tables 4.12 and 4.13, respectively.

4.2.3.1 AS-S10-II

The predominant fatty acids of AS-S10-II were anteiso-branched C_{150} (44.77%) >anteiso-branched C_{170} (16.76%) >iso-branched C_{150} (25.78%) >iso-branched C_{170} (12.70%).

4.2.3.2 AS-S18

Cellular fatty acids composition of AS-S18 bacterial isolates demonstrated that majority of fatty acids straight chain C_{160} (32.98%) > $C_{170}(15.17\%)$ > $C_{140}(6.49\%)$ > $C_{120}(3.27\%)$ > C_{180} (0.90%), whereas from iso-branched family only $C_{181}(1.50\%)$ chain was determined. In addition, no major fatty acids was observed in AS-S18 isolate.

4.2.3.4 AS-S20-I

The predominant fatty acids of AS-S20-I were anteiso-branched C_{150} (45.20%) >anteiso-branched C_{170} (16.6%) > C_{160} (14.29 %) > isobranched C_{160} (8.47%) >iso-branched C_{150} (6.89%) >iso-branched C_{170} (4.5%) > C_{140} (2.1%).

4.2.3.5 AS-S24-I

The cellular fatty acid distribution of AS-S24-I demonstrated that predominant fatty acids were anteiso-branched C_{150} (67.86%), followed by iso-branched C_{150} (15.39%)> iso-branched C_{160} (8.82%) > anteiso-branched C_{170} (7.93%).

<u>Sudhir K Rai</u>

4.2.3.6 AS-S24-II

The predominant fatty acids of AS-S24-II were anteiso-branched C15:0 (46.54%) > anteiso-branched C17:0 (16.7%) > C16:0 (14.3%) > iso-branched C16:0 (8.47%) > iso-branched C15:0 (6.89%) > iso-branched C17:0 (4.5%) > C14:0 (2.1%).

The Similarity Index (SI) of FAME of all protease secreting potential microbes is represented in Table 4.13.

<u>Sudhir K Rai</u>

Organism/	MTCC		St	raight cha	ain				lso-bi	ranched			Anteiso-I	branched
strain	No		<u> </u>		<u> </u>									
		C _{12:0}	C _{14:0}	C _{16:0}	C _{17:0}	C _{18:0}	C _{14:0}	C _{15:0}	C _{16:0}	C _{17:0}	C _{18:0}	C _{18:1}	C _{15:0}	C _{17:0}
AS-S10-II	8960	-	-	-	-	-	-	25.78	-	12.70	-	-	44.77	16.76
AS-S20-I	8961	-	2.06	14.3	-	1.04	0.87	6.89	8.47	4.52	-	-	45.20	16.7
AS-S24-1	9129	-	-	-	-	-	-	15.4	8.8	-	-	-	67.9	7.9
AS-S24-II	8959	-	2.06	14.29	-	1.04	0.87	6.89	8.47	4.52	-	-	45.2	16.66
AS-S18	No	3.27	6.49	32.98	15.17	0.90	-	-	-	-	-	1.50	-	-

Chapter 4 Table 4.12 Composition of cellular fatty acids content of selected bacterial strains.

<u>Sudhir K Rai</u>

SI.No	Selected isolates	Similarity	Matching strains	MTCC
		Index	based on SI	No
1.	AS-S10-II	0.551	Bacillus subtilis	8960
2.	AS-S20-I	0.689	Kocuria varians	8961
3.	AS-S24-I	0.263	Peanibacillus polymyxa	9129
4.	AS-S24-II	0.623	Bacillus licheniformis	8959
5.	AS-S18	0.860	Bacillus subtilis	Not deposited yet

Chapter 4 Table 4.13 A similarity index of FAME analysis of protease producing selected bacteria.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

.

4.2.4 Phylogenetic analysis of bacterial isolates based on sequencing the o	
4.2.4 Phylogenetic analysis of nacterial isolates based on sequencing the (CONSErved region of 165 (UNA
instruction and you of bactorial lociated bacta of coquerioning the	

The 16S rRNA genes of all the protease secreting bacterial isolates were amplified, sequenced and the sequences are shown in Tables 4.14. **Table 4.14** Partial DNA sequence of conserved region of 16S-rRNA gene of all bacterial isolates selected in present study.

Bacterial	16S-rRNA gene sequence (amplified region)	Length of
isolates		sequence (bp)
·····	AAGTCGAGCGAGTCCCTTCGGGGGGCTAGCGGCGGACGGGTGAGTAACACGTAGGCAACCTGCCCGTAAGCTCGGGATAAC	
AS-S10-II	ATGGGGAAACTCATGCTAATACCGGATAGGGTCTTCTCTCGCATGAGAGGAGACGGAAAGGTGGCGCAAGCTACCACTTA	729
(Using	CGGATGGGCCTGCGGCGCATTAGCTAGTTGGTGGGGTAACGGCCTACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGT	
universal	GACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATTTTCCACAATGGACGAAAG	
primer	TCTGATGGAGCAACGCCGCGTGAACGATGAAGGTCTTCGGATTGTAAAGTTCTGTTGTCAGAGACGAACAAGTACCGTTC	
sequence)	GAACAGGGCGGTACCTTGACGGTACCTGACGAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG	
	GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCG	
	CCCGGTTCGCATCGGAAACTGTGTAGCTTGAGTGCAGAAGAGGAAAGCGGTATTCCACGTGTAGCGGTGAAATGCGTAGA	
	GATGTGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA	
	GGATTAGAT	
AS-S20-I	TGCAAGTCGAGCGGACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTG	621
(Using	TAAGACTGGGATAACTCCGGGAAACCGGGGGCTAATACCGGATGCTTGATTGA	

<u>Sudhir K Rai</u>

Chapter 4

Chapter 4 universal	TTTTAGCTACCACTTACAGATGGACCCGCGCGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTA	
primer	GCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTT	
sequence)	CCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGA	
	AGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG	
	CGGTAATACGTAAGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGC	
	AAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGA	
AS-S20-I	TGCAAGTCGAGCGGACCGACGGGAGCTTGCTCCCTTAGGTCAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTG	622
(Using	TAAGACTGGGATAACTCCGGGGAAACCGGGGGCTAATACCGGATGCTTGATTGA	
species-	TTTTAGCTACCACTTACAGATGGACCCGCGGCGCGTTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTA	
specific	GCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTT	
primers)	CCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGA	
	AGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG	
	CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGC	
	AAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAG	
	TCCCACCTTCGGCGGCTGGCTCCAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTGACGGGCGGTG	
AS-S24-I	TGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTG	
(Using	CAGACTGCGATCCGAACTGAGAACAGATTTGTGGGATTGGCTTAGCCTCGCGGCTTCGCTGCCCTTTGTTCTGCCCATTG	745
universal	TAGCACGTGTGTAGCCCAGGTCATAAGGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGT	
<u>Sudhir K Rai</u>		

168

primer	CACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGGACTTAACCCAACATCTCACG	
sequence)	ACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGCCCCGAAGGGGAAGCCCTATCTCTAGGGTTGTCAGAGGAT	
	GTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCC	
	TTTGAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTTAATGCGTTTGCTGCAGCACTAAAGGGCGGAAACCCT	
	CTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCGCCTCA	
	GCGTCAGTTACAGACCAGAGAGTCG	
AS-S24-II	ATGGAGTGCTTGCACTCCTGATGCTTAGCGGCGGACGGGTGAGTAATACGTAGGTAACCTGCCCTTAAGACCGGGATAACT	714
(Using	CACGGAAACGTGGGCTAATACCGGATAGGCGATTTCCTCGCATGAGGGAATCGGGGAAAGGCGGAGCAATCTGCCGCTTATG	
universal	GATGGACCTACGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGAT	
primer	CGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGCAAGTCTG	
sequence)	ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCCAGGGAAGAACGCTATGGAGAGTAACT	
	GTTCCATAGGTGACGGTACCTGAGAAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGGCAAGCG	
	TTGTCCGGAATTATTGGGCGTAAAGCGCGCGCGCGGGCGTCATGTAAGTCTGGTGTTTAAACCCGGGGCTCAACTCCGGGTC	
	GCATCGGAAACTGTGTGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAG	
	GAACACCAGTGGCGAAGGCGACTTTCTGGGCTGTAACTGACGCTGAGGCGCGCAAAGCGTGGGGGAGC	

169

<u>Sudhir K Rai</u>

Chapter 4

Chapter 4 4.2.4.1 Phylogeny of isolate strain AS-S10-II

A homologous search result of strain AS-S10-II demonstrated that 95-99% similarity of 16S-rDNA sequence was observed with other species of the genus *Brevibacillus* as shown in Table 4.15. The phylogenetic tree constructed from the sequence data by the neighbour-joining method showed that *Brevibacillus strain* DUT005 (FJ197026) showing 95% 16S rDNA sequence identity represented the closest phylogenetic neighbour of the strain AS-S10-II (Fig.4.2).

.

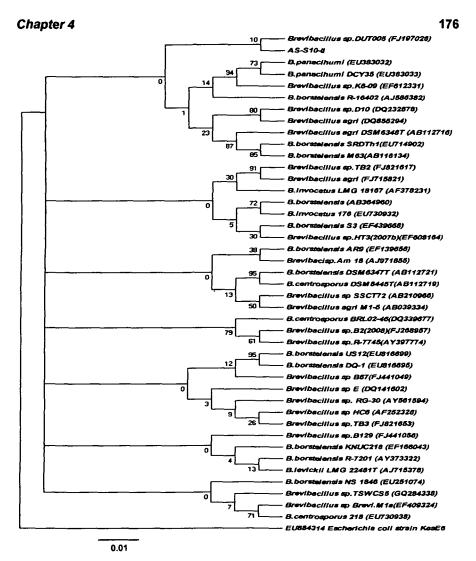
<u>Sudhir K Rai</u>

Table 4.15 Homologous search results of 16S-rRNA gene partial sequence of strain AS-S10-II using Basic Local Alignment Tool (BLAST)

Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ982663.1	Brevibacillus borstelensis strain JBE0014 16S ribosomal RNA gene, partial	1341	1341	100%	0.0	99%
	sequence					
EU376399.1	Bacillales bacterium 01QDX 16S ribosomal RNA gene, partial sequence	1341	1341	100%	0.0	99%
FJ529038.1	Brevibacillus sp. ES-SL-1 16S ribosomal RNA gene, partial sequence	1341	1341	100%	0.0	99%
FJ417406.1	Brevibacillus borstelensis strain P35 16S ribosomal RNA gene, partial	1341	1341	100%	0.0	99%
	sequence					
EU816694.1	Brevibacillus borstelensis clone K11 16S ribosomal RNA gene, partial	1341	1341	100%	0.0	99%
	sequence					
EU714903.1	Brevibacillus borstelensis strain SRDTh2 16S ribosomal RNA gene, partial	1341	1341	100%	0.0	99%
	sequence					
EU714902.1	Brevibacillus borstelensis strain SRDTh1 partial sequence	1341	1341	100%	0.0	99%

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010


171

Description	Blav	Total	<u><u>Ouo</u>m/</u>	Evalue	172 Max
Description			•		ident
	score		coverage	<u></u>	
Brevibacillus borstelensis gene for 16S rRNA, partial sequence	1341	1341	100%	0.0	99%
Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence	1341	1341	100%	0.0	99%
Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence	1341	1341	100%	0.0	99%
Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,	1341	1341	100%	0.0	99%
strain: T2-1					
Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene,	1341	1341	100%	0.0	99%
partial sequence					
Brevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM	1341	1341	100%	0.0	99%
6347T					
Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,	1341	1341	100%	0.0	99%
strain: M63					
Brevibacillus sp. B2(2008) 16S ribosomal RNA gene, partial sequence	1339	1339	99%	0.0	99%
Brevibacillus borstelensis strain AR9 16S ribosomal RNA gene, partial	1339	1339	99%	0.0	99%
sequence					
	Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence, strain: T2-1 Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene, partial sequence Brevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM 6347T Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence, strain: M63 Brevibacillus sp. B2(2008) 16S ribosomal RNA gene, partial sequence	ScoreBrevibacillus borstelensis gene for 16S rRNA, partial sequence1341Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence1341Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence1341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341strain: T2-1Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene,1341partial sequenceBrevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM13416347TBrevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341strain: M63Strain: M631341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,13411349Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341134113491339	scorescoreBrevibacillus borstelensis gene for 16S rRNA, partial sequence1341Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence1341Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence1341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene,134113411341partial sequence1341Brevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM1341134113416347T1341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341134113416331331Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,1341134113416347T1341Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,13411341134113421341134313411344134113451341134613411347134113481341134913411349133913491339134913391349133913491339	scorescorescorecoverageBrevibacillus borstelensis gene for 16S rRNA, partial sequence13411341100%Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence13411341100%Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence13411341100%Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,13411341100%strain: T2-1Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene,13411341100%Brevibacillus borstelensis gene for 16S rRNA, partial sequence,13411341100%gartial sequenceBrevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM13411341100%G347TBrevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,13411341100%Brevibacillus borstelensis strain AR9 16S ribosomal RNA gene, partial1339133999%Brevibacillus borstelensis strain AR9 16S ribosomal RNA gene, partial1339133999%	scorescorecoverageBrevibacillus borstelensis gene for 16S rRNA, partial sequence13411341100%0.0Brevibacillus sp. D10 16S ribosomal RNA gene, partial sequence13411341100%0.0Brevibacillus sp. D4 16S ribosomal RNA gene, partial sequence13411341100%0.0Brevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence,13411341100%0.0Brevibacillus borstelensis strain LMG 15536 16S ribosomal RNA gene,13411341100%0.0partial sequenceBrevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM13411341100%0.0grevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM13411341100%0.0grevibacillus borstelensis gene for 16S rRNA, partial sequence, strain:DSM13411341100%0.0G347TBrevibacillus borstelensis gene for 16S ribosomal RNA, partial sequence, 13411341100%0.0strain: M63Brevibacillus sp. B2(2008) 16S ribosomal RNA gene, partial sequence1339133999%0.0Brevibacillus borstelensis strain AR9 16S ribosomal RNA gene, partial1339133999%0.0

Chapter 4						173
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
AM910272.1	Bacillus sp. R-30914 partial 16S rRNA gene, strain R-30914	1338	1338	100%	0.0	99%
D78456.1	Brevibacillus borstelensis DNA for 16S ribosomal RNA	1338	1338	100%	0.0	99%
DQ350830.1	Brevibacillus borstelensis strain MH301 16S ribosomal RNA gene, complete	1336	1336	100%	0.0	99%
	sequence					
DQ350827.1	Brevibacillus borstelensis strain IPH701 16S ribosomal RNA gene, complete	1336	1336	100%	0.0	99%
	sequence					
AF252328.1	Brevibacillus sp. HC6 16S ribosomal RNA gene, partial sequence	1336	1336	100%	0.0	99%
AY373322.1	Brevibacillus borstelensis strain R-7201 16S ribosomal RNA gene, partial	1334	1334	100%	0.0	99%
	sequence					
EU376400.1	Bacillales bacterium 01QDY 16S ribosomal RNA gene, partial sequence	1332	1332	99%	0.0	99%
FJ529040.1	Brevibacillus sp. ES-SL-3 16S ribosomal RNA gene, partial sequence	1330	1330	100%	0.0	99%
EU816699.1	Brevibacillus borstelensis clone US12 16S ribosomal RNA gene, partial	1330	1330	100%	0.0	99%
	sequence					
FJ821653.1	Brevibacillus sp. TB3 16S ribosomal RNA gene, partial sequence	1328	1328	99%	0.0	99%

Chapter 4					<u></u>	174
Accession	Description	Max score	Total score	Query coverage	E value	Max ident
EU816695.1	Brevibacillus borstelensis clone DQ-1 16S ribosomal RNA gene, partial	1325	1325	100%	0.0	99%
	sequence					
EU714904.1	Brevibacillus borstelensis strain SRDTh3 16S ribosomal RNA gene, partial	1325	1325	100%	0.0	99%
	sequence					
DQ350837.1	Brevibacillus borstelensis strain U404 16S ribosomal RNA gene, complete	1325	1325	100%	0.0	99%
	sequence					
DQ141602.1	Brevibacillus sp. E 16S ribosomal RNA gene, partial sequence	1321	1321	98%	0.0	99%
DQ350828.1	Brevibacillus borstelensis strain IPH801 16S ribosomal RNA gene, complete	1321	1321	100%	0.0	99%
	sequence					
EF439668.1	Brevibacillus borstelensis strain S3 16S ribosomal RNA gene, partial	1317	1317	98%	0.0	99%
	sequence					
FJ441049.1	Brevibacillus sp. B67 16S ribosomal RNA gene, partial sequence	1315	1315	98%	0.0	99%
EF409324.1	Brevibacillus sp. 'Brevi. M1a' 16S ribosomal RNA gene, partial sequence	1314	1314	98%	0.0	99%

Chapter 4						175
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
AJ971855.1	Brevibacillus sp. Am 18 partial 16S rRNA gene, isolate Am 18	1314	1314	99%	0.0	99%
FJ382938.1	<i>Brevibacillus</i> sp. enrichment culture clone 11W_3 16S ribosomal RNA gene, partial sequence	1312	1312	99%	0.0	99%
AJ586382.1	Brevibacillus borstelensis partial 16S rRNA gene, strain R-16402	1301	1301	96%	0.0	99%

Fig.4.2 (a) Phylogenetic relationships of strain AS-S10-II and other closely related *Brevibacillus* species based on 16S rDNA sequencing. The tree was generated using the neighbour-joining method and the sequence from *Escherichia coli* strain KesE6 (accession no EU884314) was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

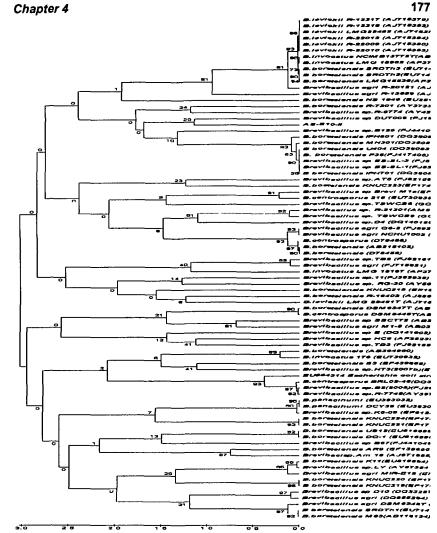


Fig.4.2 (b) Phylogenetic relationships of strain AS-S10-II and other closely related Brevibacillus species based on 16S rDNA sequencing. The tree was generated using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from Escherichia coli strain KesE6 (accession no EU884314) was considered as outgroup. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

Chapter 4 4.2.4.2 Phylogeny of strain AS-S20-I

A homologous search result of 16S –rDNA sequence of strain AS-S20-I demonstrated that 99-100% sequence similarity was observed with other species of the genus *Bacillus* sp. as shown in Table 4.16. The phylogenetic tree was constructed from the 16S-rDNA partial sequence data by the neighbour-joining as well as UPGMA (Fig 4.3a amd 4.3b) methods. It was observed that *Bacillus*. sp *strain* BCL 23-1(EF026994) showing 99% 16S rDNA sequence identity represented the closest phylogenetic neighbours of the strain AS-S20-I (Fig.4.3).

Sudhir K Rai

 Table 4.16 A Homologous search results of 16S-rRNA gene partial sequence of AS-S20-I using Basic Local Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI).

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
GU458871.1	Uncultured Bacillus sp. clone T0501 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					
GU191906.1	Bacillus licheniformis strain SB 3181 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					
GQ375232.1	Bacillus licheniformis strain CICC 10087 16S ribosomal RNA gene,	1142	1142	100%	0.0	99%
	partial sequence					
FN433039.1	Bacillus licheniformis partial 16S rRNA gene, isolate CCM28B	1142	1142	100%	0.0	99%
FN393821.1	Bacillus licheniformis partial 16S rRNA gene, strain ES-188-4	1142	1142	100%	0.0	99%
FJ641027.1	Bacillus licheniformis strain IMAUB1014 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					

<u>Sudhir K Rai</u>

Chapter 4						180
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ641023.1	Bacillus licheniformis strain IMAUB1009 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					
FM958173.1	Bacillus sp. 3LF 16T partial 16S rRNA gene, strain 3LF 16T	1142	1142	100%	0.0	99%
AM913944.1	Bacillus sp. L240 partial 16S rRNA gene, isolate L240	1142	1142	100%	0.0	99%
AM913932.1	Bacillus sp. L164 partial 16S rRNA gene, isolate L164	1142	1142	100%	0.0	99%
FM877591.1	Bacillus sp. AG07-20 partial 16S rRNA gene, isolate AG07-20	1142	1142	100%	0.0	99%
FJ432006.1	Bacillus licheniformis strain BM-Y6 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					
EU675997.1	Bacillus sp. Epbas6 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
EU384246.1	Bacillus sp. By138(B) Ydz-ss 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
EU368761.1	Bacillus sp. By157 Ydz-ds 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
EU344793.1	Bacillus licheniformis strain MML2501 16S ribosomal RNA gene, partial	1142	1142	100%	0.0	99%
	sequence					
EF026994.1	Bacillus sp. BCL23-1 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99 %

Chapter 4						181
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EF433410.1	Bacillus licheniformis strain BCRC 11702 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
DQ981799.1	Uncultured bacterium clone 1-gw1-su4-18 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
DQ981798.1	Uncultured bacterium clone 1-gw2-su4-10 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
AY786999.1	Bac ⁱ llus licheniformis strain CICC 10219 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
AY750906.1	Bacillus licheniformis strain EHD 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
AY631057.1	<i>Bacillus licheniformis</i> strain TKW3 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
AY186036.1	Bacillus licheniformis strain EBI2 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%

Chapter 4						182
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
DQ372686.1	Bacillus licheniformis 16S ribosomal RNA gene, partial sequence	1142	1142	100%	0.0	99%
AB219153.1	Bacillus licheniformis gene for 16S rRNA, partial sequence, strain:SSH4	1142	1142	100%	0.0	99%
DQ082996.1	Bacillus licheniformis strain CICC 10100 16S ribosomal RNA gene,	1142	1142	100%	0.0	99%
	partial sequence					
DQ082995.1	Bacillus licheniformis strain CICC 10087 16S ribosomal RNA gene,	1142	1142	100%	0.0	99%
	partial sequence					
AB039328.1	Bacillus licheniformis gene for 16S rRNA, strain:M1-1	1142	1142	100%	0.0	99%
AY871103.1	Bacillus licheniformis strain CICC 10084 16S ribosomal RNA gene,	1142	1142	100%	0.0	99%
	partial sequence					
AB055006.1	Bacillus licheniformis gene for 16S rRNA	1142	1142	100%	0.0	99%
X68416.1	B.licheniformis gene for 16S rRNA	1142	1142	100%	0.0	99%
FJ517542.1	Bacillus licheniformis strain AR1 16S ribosomal RNA gene, partial	1140	1140	100%	0.0	99%
	sequence					

,

Chapter 4						183
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
AB425370.1	Bacillus sp. SG607 gene for 16S rRNA, partial sequence, Version 1 of	1138	1138	100%	0.0	99%
	two types of sequence					
AB374306.1	Bacillus sp. RT105 gene for 16S rRNA, partial sequence	1138	1138	100%	0.0	99%
FJ517543.1	Bacillus licheniformis strain P3 16S ribosomal RNA gene, partial	1138	1138	100%	0.0	99%
	sequence					
FJ413051.1	Bacillus sp. LAMI 011 16S ribosomal RNA gene, partial sequence	1138	1138	99%	0.0	99%
EU869249.1	Bacillus licheniformis strain BG-B11 16S ribosomal RNA (rrs) gene,	1138	1138	100%	0.0	99%
	partial sequence					
AY553106.1	Bacillus sp. GSP63 16S ribosomal RNA gene, partial sequence	1138	1138	100%	0.0	99%
AB374322.1	Bacillus sp. TT402 gene for 16S rRNA, partial sequence, Version 1 of	1136	1136	100%	0.0	99%
	two types of sequence					
GU458873.1	Uncultured Bacillus sp. clone T0552 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					

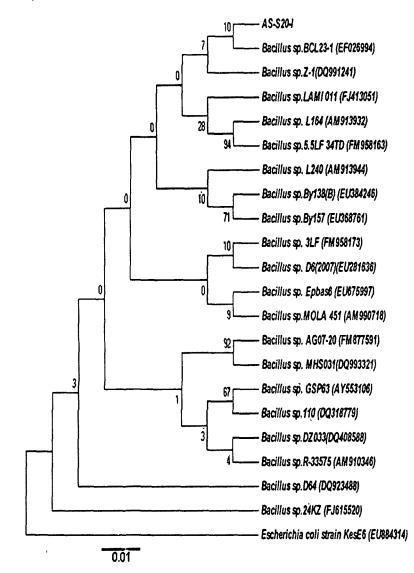
Chapter 4						184
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
GU191905.1	Bacillus licheniformis strain SB 3180 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
GU086446.1	Bacillus licheniformis strain G7A 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
GU086434.1	Bacillus sp. N35 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%
AB513628.1	Bacillus licheniformis gene for 16S rRNA, partial sequence	1136	1136	100%	0.0	99%
GQ871450.1	Bacillus licheniformis strain KK2 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
GQ470399.1	Bacillus licheniformis strain DQgbc4 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
GQ247891.1	Bacillus licheniformis strain x8 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
GQ152136.1	Bacillus sp. WT143 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%
GQ131306.1	Bacillus sp. G-1 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%

Chapter 4						185
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ808719.1	Bacillus licheniformis strain P79 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
,	sequence					
FJ641025.1	Bacillus licheniformis strain IMAUB1012 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
FJ641018.1	Bacillus licheniformis strain IMAUB1002 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
FJ615520.1	Bacillus sp. 24KZ 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%
FJ614258.1	Bacillus licheniformis strain pK 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
FJ655808.1	Bacillus licheniformis isolate D14A3 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
FJ655795.1	Bacillus licheniformis isolate D6AO2 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
FM958163.1	Bacillus sp. 5.5LF 34TD partial 16S rRNA gene, strain 5.5LF 34TD	1136	1136	100%	0.0	99%

Chapter 4						186
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ417403.1	Bacillus licheniformis strain P13 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
AM990718.1	Bacillus sp. MOLA 451 partial 16S rRNA gene, culture collection	1136	1136	100%	0.0	99%
	MOLA:451					
EU626409.1	Bacillus licheniformis strain biosXds2 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
EU373344.1	Bacillus licheniformis strain HNL09 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
AM932277.1	Bacillus licheniformis partial 16S rRNA gene, strain S22-52	1136	1136	100%	0.0	99%
EU256501.1	Bacillus licheniformis strain G7-2 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
EU281636.1	Bacillus sp. D6(2007) 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%
EU257697.1	Bacillus licheniformis strain DC3-1 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					

Chapter 4						187
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EU257696.1	Bacillus licheniformis strain F1 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
AB364961.1	Bacillus licheniformis gene for 16S rRNA, partial sequence	1136	1136	100%	0.0	99%
EU231623.1	Bacillus licheniformis strain TCCC11009 16S ribosomal RNA gene,	1136	1136	100%	0.0	99%
	partial sequence					
EU200968.1	Bacillus licheniformis strain SPRI-536 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
EU117278.1	Bacillus licheniformis strain B8 16S ribosomal RNA gene, partial	1136	1136	100%	0.0	99%
	sequence					
EF702094.1	Uncultured Bacilli bacterium clone MS058A1-H09 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF702068.1	Uncultured Bacilli bacterium clone MS058A1-E12 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					

.

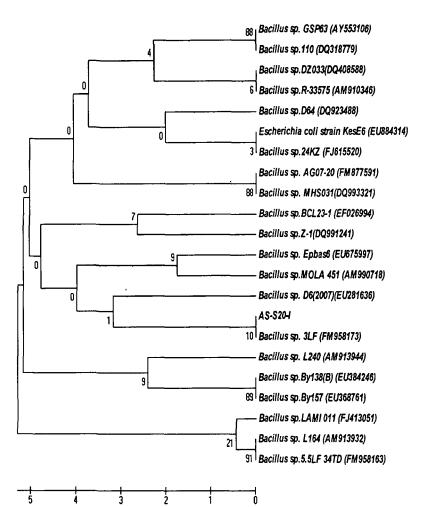

Chapter 4						188
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EF701192.1	Uncultured Bacilli bacterium clone MS028A1-G09 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF700893.1	Uncultured Bacilli bacterium clone MS002A1-G01 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF698606.1	Uncultured Bacilli bacterium clone MS113A1-B08 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF698407.1	Uncultured Bacilli bacterium clone MS106A1-G06 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF698199.1	Uncultured Bacilli bacterium clone MS098A1-B05 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF698123.1	Uncultured Bacilli bacterium clone MS094A1-A05 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					
EF698075.1	Uncultured Bacilli bacterium clone MS087A1-D08 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					

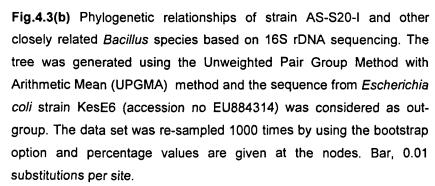
Chapter 4						189
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EF697586.1	Uncultured <i>Bacilli</i> bacterium clone MS074A1-H08 16S ribosomal RNA gene, partial sequence	1136	1136	100%	0.0	99%
EF697503.1	Uncultured Bacilli bacterium clone MS073A1-H06 16S ribosomal RNA	1136	1136	100%	0.0	99%
EF697012.1	gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS056A1-D10 16S ribosomal RNA	1136	1136	100%	0.0	99%
EF696572.1	gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS050A1-G02 16S ribosomal RNA	1136	1136	100%	0.0	99%
EF696555.1	gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS050A1-E06 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence	. 4400	4400	400%	0.0	00%
EF696532.1	Uncultured Bacilli bacterium clone MS050A1-C06 16S ribosomal RNA gene, partial sequence	· 1136	1136	100%	0.0	99%
EF696530.1	Uncultured Bacilli bacterium clone MS050A1-C04 16S ribosomal RNA	1136	1136	100%	0.0	99%
	gene, partial sequence					

					190
Description	Max	Total	Query	E value	Max
	score	score	coverage		ident
Uncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA	1136	1136	100%	0.0	99%
gene, partial sequence				•	
Uncultured Bacilli bacterium clone MS050A1-A07 16S ribosomal RNA	1136	1136	100%	0.0	99%
gene, partial sequence					
Uncultured Bacilli bacterium clone MS019A1-H02 16S ribosomal RNA	1136	1136	100%	0.0	99%
gene, partial sequence					
Uncultured Bacilli bacterium clone MS019A1-D06 16S ribosomal RNA	1136	1136	100%	0.0	99%
gene, partial sequence					
Uncultured Bacilli bacterium clone MS003A1-H06 16S ribosomal RNA	1136	1136	100%	0.0	99%
gene, partial sequence					
Bacillus sp. TT307 gene for 16S rRNA, partial sequence	1134	1134	100%	0.0	99%
Bacillus sp. TT104 gene for 16S rRNA, partial sequence, Version 1 of	1134	1134	100%	0.0	99%
two types of sequence					
Bacillus sp. PT104 gene for 16S rRNA, partial sequence	1134	1134	100%	0.0	99%
	Uncultured <i>Bacilli</i> bacterium clone MS050A1-B09 16S ribosomal RNA gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS050A1-A07 16S ribosomal RNA gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS019A1-H02 16S ribosomal RNA gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS019A1-D06 16S ribosomal RNA gene, partial sequence Uncultured <i>Bacilli</i> bacterium clone MS003A1-H06 16S ribosomal RNA gene, partial sequence <i>Bacillus</i> sp. TT307 gene for 16S rRNA, partial sequence <i>Bacillus</i> sp. TT104 gene for 16S rRNA, partial sequence, Version 1 of two types of sequence	scoreUncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS050A1-A07 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-H02 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-H02 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-D06 16S ribosomal RNA1136gene, partial sequence1136gene, partial sequence1136gene, partial sequence1136gene, partial sequence1136gene, partial sequence1136gene, partial sequence1134Bacillus sp. TT307 gene for 16S rRNA, partial sequence, Version 1 of1134two types of sequence1134	scorescoreUncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS050A1-A07 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-H02 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-H02 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS019A1-D06 16S ribosomal RNA1136gene, partial sequence1136Uncultured Bacilli bacterium clone MS003A1-H06 16S ribosomal RNA1136gene, partial sequence1136Bacillus sp. TT307 gene for 16S rRNA, partial sequence, Version 1 of1134Bacillus sp. TT104 gene for 16S rRNA, partial sequence, Version 1 of1134two types of sequence1134	scorescorescorecoverageUncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA11361136100%gene, partial sequence11361136100%uncultured Bacilli bacterium clone MS050A1-A07 16S ribosomal RNA11361136100%gene, partial sequence </td <td>scorescorescorecoverageUncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA11361136100%0.0gene, partial sequence<!--</td--></td>	scorescorescorecoverageUncultured Bacilli bacterium clone MS050A1-B09 16S ribosomal RNA11361136100%0.0gene, partial sequence </td

Chapter 4 Accession	Description	Max	Total	Query	E value	<u>19</u> Max
	Description	score	score	coverage		ident
AM910346.1	Bacillus sp. R-33575 partial 16S rRNA gene, strain R-33575	1134	1134	100%	0.0	99%
GQ911552.1	<i>Bacillus licheniformis</i> strain ATCC 14580 16S ribosomal RNA gene, partial sequence	1131	1131	100%	0.0	99%
FJ549007.1	Bacillus licheniformis strain SH-B2 16S ribosomal RNA (rrs) gene, partial sequence	1131	1131	100%	0.0	99%
EU869262.1	<i>Bacillus licheniformis</i> strain BG-B63 16S ribosomal RNA (rrs) gene, partial sequence	1127	1127	100%	0.0	99%

Chapter 4




Fig.4.3(a) Phylogenetic relationships of strain AS-S20-I and other closely related *Bacillus* species based on 16S rDNA sequencing. The tree was generated using the neighbour-joining method and the sequence from *Escherichia coli* strain KesE6 (accession no EU884314) was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site. <u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

192

Chapter 4

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

193

Chapter 4 4.2.4.3 Phylogeny of strain AS-S24-I

A homologous search result of 16S- rDNA partial sequence of AS-S24-I demonstrated that 95-99% similarity was observed with other species of the genus *Bacillus* (Table 4.17). The phylogenetic tree constructed from the sequence data by the neighbour-joining method (Fig 4.4a) and by UPGMA method (Fig 4.4b) demonstrated that *B. licheniformis* (Accession no DQ171720) showing 100% 16S rDNA sequence coverage represented the closest phylogenetic neighbours of the strain AS-S24-I.

<u>Sudhir K Rai</u>

Chapter 4 Table 4.17 Homologous search results of 16S-rRNA partial sequence gene of strain AS-S24-I using BLAST from NCBI database.

Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
GQ375235.1	Bacillus licheniformis strain CICC 10181 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
GQ375234.1	Bacillus licheniformis strain CICC 10101 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
GQ375232.1	Bacillus licheniformis strain CICC 10087 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
GQ375230.1	Bacillus licheniformis strain CICC 10085 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AB508877.1	Bacillus sp. TSH3 gene for 16S ribosomal RNA, partial sequence	1376	1376	100%	0.0	100%
GQ152136.1	Bacillus sp. WT143 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
GQ153850.1	Bacillus licheniformis strain T7-2 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

<u>Sudhir K Rai</u>

Chapter 4		_				196
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ957804.1	Uncultured <i>Bacillus</i> sp. clone JPL-4_G11 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ957781.1	Uncultured <i>Bacillus</i> sp. clone JPL-4_A13 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ957553.1	Uncultured <i>Bacillus</i> sp. clone JPL-2_E24 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU718490.1	Bacillus licheniformis strain MS5-14 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ641027.1	Bacillus licheniformis strain IMAUB1014 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ641025.1	Bacillus licheniformis strain IMAUB1012 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ641023.1	Bacillus licheniformis strain IMAUB1009 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

Chapter 4						197
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
FJ641018.1	Bacillus licheniformis strain IMAUB1002 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ615520.1	Bacillus sp. 24KZ 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU371573.1	Uncultured <i>Bacillus</i> sp. clone CBIOS-09 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ655803.1	Bacillus licheniformis isolate D13AO6 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ655802.1	Bacillus licheniformis isolate D13A4 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ655801.1	Bacillus licheniformis isolate D13A5 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ549007.1	<i>Bacillus licheniformis</i> strain SH-B2 16S ribosomal RNA (rrs) gene, partial sequence	1376	1376	100%	0.0	100%
AM913932.1	Bacillus sp. L164 partial 16S rRNA gene, isolate L164	1376	1376	100%	0.0	100%

Chapter 4						198
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
AM913927.1	Bacillus sp. L157 partial 16S rRNA gene, isolate L157	1376	1376	100%	0.0	100%
FJ458451.1	Bacillus licheniformis strain ycsd01 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ458450.1	Bacillus licheniformis strain ycsd02 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU308302.1	Bacillus sp. 50B11-3 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU308301.1	Bacillus sp. 50B11-2 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU308300.1	Bacillus sp. 50B11-1 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
FJ357337.1	<i>Gluconacetobacter diazotrophicus</i> isolate H5 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU870503.1	<i>Bacillus licheniformis</i> strain Sua-BAC006 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU870499.1	<i>Bacillus licheniformis</i> strain Sua-BAC002 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

Chapter 4						199
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EU362149.1	Bacillus sp. B3(2008) 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU869262.1	Bacillus licheniformis strain BG-B63 16S ribosomal RNA (rrs) gene, partial sequence	1376	1376	100%	0.0	100%
EU869249.1	Bacillus licheniformis strain BG-B11 16S ribosomal RNA (rrs) gene, partial sequence	1376	1376	100%	0.0	100%
EU710720.1	Bacterium B-WPhG12 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU816690.1	Bacillus licheniformis clone S-3 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AM910346.1	Bacillus sp. R-33575 partial 16S rRNA gene, strain R-33575	1376	1376	100%	0.0	100%
EU742145.1	Bacillus licheniformis strain SKU 3 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU373408.1	Bacillus licheniformis strain YRL03 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

Chapter 4						200
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EU373344.1	Bacillus licheniformis strain HNL09 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU445292.1	<i>Bacillus licheniformis</i> strain RPk 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU344793.1	Bacillus licheniformis strain MML2501 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EU281636.1	Bacillus sp. D6(2007) 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AB363734.1	Bacillus licheniformis gene for 16S rRNA, partial sequence, strain: NBRC 12202	1376	1376	100%	0.0	100%
AB354236.1	Bacillus licheniformis gene for 16S rRNA, partial sequence, strain: NBRC 12107	1376	1376	100%	0.0	100%
EU031767.1	Bacillus sp. BS17 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF635428.1	Bacillus licheniformis strain MY75 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

Chapter 4 Accession	Description	Max	Total	Query	E value	<u>20</u> Max
	Description	score	score	coverage	L Value	ident
EF591780.1	Bacillus sp. XJ1-05 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
CP000002.3	Bacillus licheniformis ATCC 14580, complete genome	1376	9627	100%	0.0	100%
DQ870721.1	<i>Bacillus licheniformis</i> strain LMAtotj1 16S ribosomal RNA (rrn) gene, partial sequence	1376	1376	100%	0.0	100%
EF472268.1	Bacillus licheniformis strain LQ98 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF471917.1	Bacillus sp. J24 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF433410.1	<i>Bacillus licheniformis</i> strain BCRC 11702 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF423609.1	<i>Bacillus licheniformis</i> strain BCRC 14353 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF423608.1	<i>Bacillus licheniformis</i> strain BCRC 12826 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AB275356.1	Bacillus licheniformis gene for 16S rRNA, partial sequence	1376	1376	100%	0.0	100%

,

<u>Sudhir K Rai</u>

,

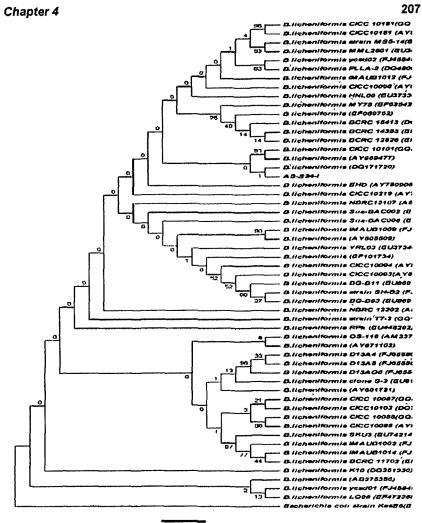
PhD Thesis, Tezpur University, 2010

.

Chapter 4						202
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
EF101734.1	Bacillus licheniformis strain HU14 16S ribosomal RNA (rrnE) gene, partial	1376	1376	100%	0.0	100%
	sequence					
EF059752.1	Bacillus licheniformis 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF026994.1	<i>Bacillus</i> sp. BCL23-1 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
EF026995.1	Bacillus sp. BCL23-2 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ990042.1	Bacterium 8-gw2-5 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ981823.1	Uncultured bacterium clone 9-gw1-su4-1 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					
DQ981804.1	Uncultured bacterium clone 1-gw2-su4-210 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					
DQ981799.1	Uncultured bacterium clone 1-gw1-su4-18 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					
DQ981798.1	Uncultured bacterium clone 1-gw2-su4-10 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					

Chapter 4						203
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
DQ993676.1	Bacillus licheniformis strain BCRC 15413 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ480087.1	Bacillus licheniformis strain PLLA-2 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ351930.2	Bacillus licheniformis strain K10 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AM237383.1	Bacillus licheniformis partial 16S rRNA gene, isolate OS-116	1376	1376	100%	0.0	100%
AY842874.1	Bacillus licheniformis strain CICC10093 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY842873.1	Bacillus licheniformis strain CICC10094 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY842871.1	Bacillus licheniformis strain CICC10181 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

.


Chapter 4 Accession	Description	Max	Total	Query	E value	204 Max
ACCESSION	Description	score	score	coverage		ident
AY842869.1	Bacillus licheniformis strain CICC10085 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY839858.1	Bacillus licheniformis strain CICC10098 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY786999.1	Bacillus licheniformis strain CICC 10219 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ212969.1	Bacillus licheniformis strain CICC10103 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY750906.1	Bacillus licheniformis strain EHD 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AE017333.1	Bacillus licheniformis DSM 13, complete genome	1376	9627	100%	0.0	100%
AY635049.1	Bacillus sp. SAB 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY553109.1	Bacillus sp. MO16 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY553107.1	Bacillus sp. MO14 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%

Chapter 4 Accession	Description	Max	Total	Query	E value	205 Max
Accession	Description	score	score	coverage	L value	ident
AY553105.1	Bacillus sp. MO12 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY553103.1	Bacillus sp. MO10 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY553102.1	Bacillus sp. MO9 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY553099.1	Bacillus sp. MO6 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY601721.1	Bacillus licheniformis isolate YB-42 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
DQ171720.1	Bacillus licheniformis strain CICC10099 16S ribosomal RNA gene, complete sequence	1376	1376	100%	0.0	100%
AY587808.1	Bacterium Te21R 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AY505509.1	Bacillus licheniformis strain GSP30 16S ribosomal RNA gene, partial sequence	1376	1376	100%	0.0	100%
AB189317.1	Bacillus sp. SD-B2 gene for 16S rRNA, partial sequence	1376	1376	100%	0.0	100%
AJ717380.1	Bacillus licheniformis 16S rRNA gene, isolate CV60	1376	1376	100%	0.0	100%
AJ920002.1	Bacillus sp. CK10 partial 16S rRNA gene, strain CK10	1376	1376	100%	0.0	100%

PhD Thesis, Tezpur University, 2010

•

Chapter 4						206
Accession	Description	Max	Total	Query	E value	Max
		score	score	coverage		ident
AJ831843.1	Bacillus aerius partial 16S rRNA gene, type strain 24K	1376	1376	100%	0.0	100%
AJ586363.1	Bacillus sonorensis partial 16S rRNA gene, strain R-19056	1376	1376	100%	0.0	100%
AY871102.1	Bacillus licheniformis strain CICC 10037 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					
AY859477.1	Bacillus licheniformis strain CICC 10101 16S ribosomal RNA gene,	1376	1376	100%	0.0	100%
	partial sequence					
AJ582723.1	Bacillus licheniformis partial 16S rRNA gene, isolate R-13646	1376	1376	100%	0.0	100%
FJ957659.1	Uncultured Bacillus sp. clone JPL-S4_C05 16S ribosomal RNA gene,	1373	1373	100%	0.0	99%
	partial sequence					
FJ549021.1	Bacillus licheniformis strain SH-B35 16S ribosomal RNA (rrs) gene,	1373	1373	100%	0.0	99%
	partial sequence					
AY553108.1	Bacillus sp. MO15 16S ribosomal RNA gene, partial sequence	1373	1373	100%	0.0	99%
AY553104.1	Bacillus sp. MO11 16S ribosomal RNA gene, partial sequence	1373	1373	100%	0.0	99%

0.01

Fig.4.4(a) Phylogenetic relationships of strain AS-S24-I and other closely related *Bacillus* species based on 16S rDNA sequencing. The tree was generated using the neighbour-joining method and the sequence from *Escherichia coli* strain KesE6 (accession no EU884314) was considered as out-group. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

Sudhir K Rai

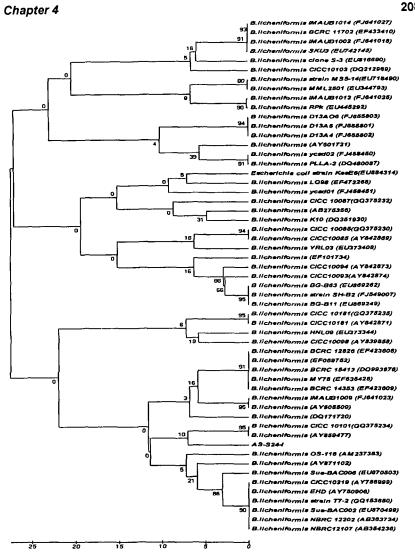


Fig.4.4(b) A phylogenetic relationships of strain AS-S24-1 and other closely related Bacillus species based on 16S rDNA sequencing. The tree was generated using the unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from Escherichia coli strain KesE6 (accession no EU884314) was considered as outgroup. The data set was re-sampled 1000 times by using the bootstrap option and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

208

Chapter 4

4.2.4.4 Phylogeny of strain AS-S24-II

A homologous search result of 16S-rDNA gene partial sequence of strain AS-S24-II demonstrated that 95-99% 16S-rDNA sequence similarity with other species of the genus *Paenibacillus* (Table 4.18). The phylogenetic tree constructed from the sequence data by the neighbour-joining method (Fig 4.5a) and UPGMA method (Fig 4.5b) displayed that *Paenibacillus lentimorbus* strain DNG-14 and *Paenibacillus lentimorbus* strain DNG-14 and *Paenibacillus lentimorbus* strain DNG-14 sequence identity respectively represented the closest phylogenetic neighbours of the strain AS-S24-II (Fig.4.5).

<u>Sudhir K Rai</u>

Chapter 4

 Table 4.17 Homologous search results of 16S-rRNA partial gene of sequence of AS-S24-II using Basic Local Alignment Tool (BLAST) tool

 from National Centre Biotechnology Information (NCBI).

Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
FJ804507.1	Paenibacillus sp. AS-S24-II 16S ribosomal RNA gene, partial sequence	1319	1319	100%	0.0	100%
GU117660.1	Paenibacillus dendritiformis strain OIV 870 16S ribosomal RNA gene, partial sequence	1308	1308	100%	0.0	99%
FJ821592.1	Bacillus sp. AT6 16S ribosomal RNA gene, partial sequence	1308	1308	100%	0.0	99%
AY359885.1	Paenibacillus dendritiformis 16S ribosomal RNA gene, partial sequence	1308	1308	100%	0.0	99%
GQ900693.1	Paenibacillus sp. G9-12 16S ribosomal RNA gene, partial sequence	1299	1299	100%	0.0	99%
AB045092.1	Paenibacillus dendritiformis gene for 16S rRNA, partial sequence	1299	1299	100%	0.0	99%
Y16129.1	Paenibacillus sp. C-168 16S rRNA gene	1299	1299	100%	0.0	99%
GU458945.1	Uncultured <i>Paenibacillus</i> sp. clone T0275 16S ribosomal RNA gene, partial sequence	1277	1277	100%	0.0	98%
Y16128.1	Paenibacillus sp. T-168 16S rRNA gene	1277	1277	100%	0.0	98%

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

210

Chapter 4						211
Accession	Description	Max	Total	Query	Ε	Max
		score	score	coverage	value	ident
EU330645.1	Paenibacillus thiaminolyticus strain 8118 16S ribosomal RNA gene, partial sequence	1262	1262	96%	0.0	99%
EF190490.1	Paenibacillus popilliae strain Dutky 1S 16S ribosomal RNA gene, partial sequence	1258	1258	96%	0.0	99%
EU420075.1	Paenibacillus popilliae 16S ribosomal RNA gene, partial sequence	1256	1256	96%	0.0	99%
AB073197.1	Paenibacillus thiaminolyticus gene for 16S rRNA, partial sequence	1256	1256	96%	0.0	99%
EF190493.1	Paenibacillus popilliae strain DNG 9 16S ribosomal RNA gene, partial sequence	1253	1253	96%	0.0	99%
EF190491.1	Paenibacillus popilliae strain KLN 3 16S ribosomal RNA gene, partial sequence	1253	1253	96%	0.0	99%
EF190488.1	Paenibacillus popilliae strain Pj1 16S ribosomal RNA gene, partial sequence	1253	1253	96%	0.0	99%
EF190487.1	<i>Paenibacillus popilliae</i> strain NRRL B-2309 16S ribosomal RNA gene, partial sequence	1253	1253	96%	0.0	99%

Chapter 4						212
Accession	Description	Мах	Total	Query	E	Max
		score	score	coverage	value	ident
DQ854976.1	Paenibacillus sp. GPTSA9 16S ribosomal RNA gene, partial sequence	1253	1253	96%	0.0	99%
AB073198.1	Paenibacillus popilliae gene for 16S rRNA, partial sequence	1253	1253	96%	0.0	99%
AF071859.1	Paenibacillus popilliae strain ATCC14706(T) 16S ribosomal RNA gene,	1253	1253	96%	0.0	99%
	partial sequence					
FJ821654.1	Paenibacillus sp. TB12 16S ribosomal RNA gene, partial sequence	1251	1251	100%	0.0	98%
EF190489.1	Paenibacillus popilliae strain NRRL B-2524 16S ribosomal RNA gene, partial	1251	1251	96%	0.0	99%
	sequence					
EF190494.1	Paenibacillus popilliae strain DNG 12 16S ribosomal RNA gene, partial	1249	1249	96%	0.0	99%
	sequence					
EF190492.1	Paenibacillus popilliae strain BPFR 16S ribosomal RNA gene, partial	1249	1249	96%	0.0	99%
	sequence					
GQ288412.1	Paenibacillus sp. enrichment culture clone S16 16S ribosomal RNA gene,	1247	1247	96%	0.0	99%
	partial sequence					

Chapter 4						213
Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
EF190495.1	Paenibacillus popilliae strain BPHD 16S ribosomal RNA gene, partial sequence	1247	1247	96%	0.0	99%
AF071860.1	Paenibacillus popilliae strain NRRL B-4081 16S ribosomal RNA gene, complete sequence	1247	1247	96%	0.0	99%
AJ320490.1	Paenibacillus thiaminolyticus partial 16S rRNA gene, strain DSM 7262T	1242	1242	96%	0.0	98%
FJ538210.1	Paenibacillus thiaminolyticus strain IPSr108 16S ribosomal RNA gene, partial sequence	1227	1227	96%	0.0	98%
AF039408.1	Bacillus tipchiralis 16S ribosomal RNA gene, complete sequence	1212	1212	100%	0.0	96%
AF071861.1	Paenibacillus lentimorbus 16S ribosomal RNA gene, complete sequence	1199	1199	96%	0.0	97%
AB073199.1	Paenibacillus lentimorbus gene for 16S rRNA, partial sequence	1195	1195	96%	0.0	97%
EF190497.1	Paenibacillus lentimorbus strain KLN 2 16S ribosomal RNA gene, partial sequence	1194	1194	96%	0.0	97%

•

<u>Sudhir_K Rai</u>

Chapter 4						<u>214</u>
Accession	Description	Max	Total	Query	E	Мах
		score	score	coverage	value	ident
EF190506.1	Paenibacillus lentimorbus strain Cb1 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
EF190505.1	Paenibacillus lentimorbus strain Cb2 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
EF190504.1	Paenibacillus lentimorbus strain Pa1 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
EF190503.1	Paenibacillus lentimorbus strain DNG 16 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
EF190502.1	Paenibacillus lentimorbus strain DNG 15 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
EF190501.1	Paenibacillus lentimorbus strain DNG 14 16S ribosomal RNA gene, partial	1188	1188	96%	0.0	97%
	sequence					
AB110988.1	Paenibacillus lentimorbus gene for 16S ribosomal RNA, complete sequence	1182	1182	96%	0.0	97%

					215
Description	Max	Total	Query	E	Max
	score	score	coverage	value	ident
Paenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene,	1181	1181	96%	0.0	97%
partial sequence					
Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial	1177	1177	96%	0.0	97%
sequence					
Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene,	1177	1177	96%	0.0	96%
partial sequence					
Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial	1166	1166	96%	0.0	96%
sequence					
Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence	1151	1151	96%	0.0	96%
Paenibacillus sp. AT3 16S ribosomal RNA gene, partial sequence	1118	1211	95%	0.0	99%
Uncultured bacterium clone 655927 16S ribosomal RNA gene, partial	1110	1110	99%	0.0	94%
sequence					
Paenibacillus alvei gene for 16S rRNA, partial sequence	1109	1109	100%	0.0	94%
	Paenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence Paenibacillus sp. AT3 16S ribosomal RNA gene, partial sequence Uncultured bacterium clone 655927 16S ribosomal RNA gene, partial sequence	scorePaenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene,1181partial sequence1177Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial1177sequence1177Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene,1177partial sequence1166Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial1166sequence1166Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial1166sequence1151Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1151Paenibacillus sp. AT3 16S ribosomal RNA gene, partial sequence1118Uncultured bacterium clone 655927 16S ribosomal RNA gene, partial1110sequence1110	scorescorescorePaenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene, Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial118111771177sequence1177Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence1177Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial1166Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial1166sequence1166Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial116611661165sequence1151Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1151Paenibacillus sp. AT3 16S ribosomal RNA gene, partial sequence111811101110sequence1110	scorescorescorecoveragePaenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene, partial sequence1181118196%Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial sequence1177117796%Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence1177117796%Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence1177117796%Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence1166116696%Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1151115196%Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1118121195%Uncultured bacterium clone 655927 16S ribosomal RNA gene, partial sequence1110111099%	scorescorescorecoveragevaluePaenibacillus lentimorbus strain NRRL B-2521 16S ribosomal RNA gene, partial sequence1181118196%0.0Paenibacillus lentimorbus strain DNG 10 16S ribosomal RNA gene, partial sequence1177117796%0.0Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence1177117796%0.0Paenibacillus lentimorbus strain NRRL B-2522 16S ribosomal RNA gene, partial sequence1177117796%0.0Paenibacillus lentimorbus strain DNG 21 16S ribosomal RNA gene, partial sequence1166116696%0.0Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1151115196%0.0Paenibacillus thiaminolyticus DNA for 16S rRNA, partial sequence1118121195%0.0Uncultured bacterium clone 655927 16S ribosomal RNA gene, partial sequence1110111099%0.0

Chapter 4						216
Accession	Description	Max	Total	Query	Е	Max
		score	score	coverage	value	ident
GQ288407.1	Paenibacillus sp. enrichment culture clone S25 16S ribosomal RNA gene,	1103	1103	100%	0.0	94%
	partial sequence					
EU497636.1	Paenibacillus sp. Dg-904 16S ribosomal RNA gene, partial sequence	1103	1103	100%	0.0	94%
AY862508.1	Paenibacillus alvei 16S ribosomal RNA gene, partial sequence	1103	1103	100%	0.0	94%
AJ320491.1	Paenibacillus alvei partial 16S rRNA gene, strain DSM 29T	1103	1103	100%	0.0	94%
FJ178786.1	Paenibacillus sp. B1 16S ribosomal RNA gene, partial sequence	1099	1099	100%	0.0	94%
AB265205.1	Paenibacillus thailandensis gene for 16S rRNA, partial sequence	1099	1099	100%	0.0	94%
DQ435022.1	Paenibacillus thiaminolyticus strain ITRC BK4 16S ribosomal RNA gene,	1099	1099	96%	0.0	95%
	partial sequence					
AM162340.1	Paenibacillus sp. JS01-05 partial 16S rRNA gene	1099	1099	100%	0.0	94%
GQ927307.2	Paenibacillus sp. RKJ14 16S ribosomal RNA gene, partial sequence	1098	1098	100%	0.0	94%
EF426449.1	Paenibacillus sp. L5 16S ribosomal RNA gene, partial sequence	1098	1098	100%	0.0	94%
AB377108.1	Paenibacillus alvei gene for 16S rRNA, partial sequence, strain: AUG6	1098	1098	100%	0.0	94%

.

<u>Sudhir K Rai</u>

Chapter 4						217
Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
EU982912.1	Paenibacillus apiarius strain CK30 16S ribosomal RNA gene, partial	1092	1092	100%	0.0	94%
	Sequence					
AM162320.1	Paenibacillus sp. GT08-03 partial 16S rRNA gene	1092	1092	100%	0.0	94%
FJ151508.1	Paenibacillus alvei strain NP75 16S ribosomal RNA gene, partial sequence	1088	1088	99%	0.0	94%
EU435385.1	Paenibacillus alvei strain V1 16S ribosomal RNA gene, partial sequence	1086	1086	100%	0.0	94%
DQ196464.1	Paenibacillus sp. L55 16S ribosomal RNA gene, partial sequence	1086	1086	100%	0.0	94%
EU620450.1	Uncultured bacterium clone CS4-7 16S ribosomal RNA gene, partial	1085	1085	100%	0.0	94%
	sequence					
D78475.1	Paenibacillus thiaminolyticus DNA for 16S rRNA	1085	1085	96%	0.0	94%
AY839868.1	Paenibacillus xinjiangensis strain B538 16S ribosomal RNA gene, partial	1083	1083	100%	0.0	94%
	sequence					
AJ345018.1	Paenibacillus sp. DSM 6358 partial 16S rRNA gene, strain DSM 6358	1083	1083	99%	0.0	94%
FN433032.1	Paenibacillus alvei partial 16S rRNA gene, isolate CCM2B	1081	1081	100%	0.0	94%
EF090420.1	Paenibacillus sp. GB 16S ribosomal RNA gene, partial sequence	1081	1081	100%	0.0	94%

.

<u>Sudhir K Rai</u>

Chapter 4		·		<u></u>		218
Accession	Description	Max	Total	Query	ε	Max
		score	score	coverage	value	ident
AM162296.1	Paenibacillus sp. GT05-08 partial 16S rRNA gene	1081	1081	100%	0.0	94%
FJ172088.1	Paenibacillus sp. Tir6E 16S ribosomal RNA gene, partial sequence	1077	1077	99%	0.0	94%
AY827560.1	Paenibacillus sp. MY03 16S ribosomal RNA gene, partial sequence	1077	1077	99%	0.0	94%
EU571189.1	Paenibacillus sp. 23-13 16S ribosomal RNA gene, partial sequence	1075	1075	100%	0.0	93%
DQ250001.1	Paenibacillus sp. L63 16S ribosomal RNA gene, partial sequence	1075	1075	100%	0.0	93%
AB073201.1	Paenibacillus apiarius gene for 16S rRNA, partial sequence	1074	1074	99%	0.0	93%
FJ172087.1	Paenibacillus sp. Tir10E 16S ribosomal RNA gene, partial sequence	1072	1072	99%	0.0	93%
AB362827.1	Paenibacillus sp. YT0001 gene for 16S rRNA, partial sequence	1072	1072	99%	0.0	93%
GU186911.1	Frankia sp. NTA03 16S ribosomal RNA gene, partial sequence	1070	1070	99%	0.0	93%
GU124638.1	Bacillus sp. Td3 16S ribosomal RNA gene, partial sequence	1070	1070	100%	0.0	93%
DQ870731.1	Paenibacillus mendelii strain JSCtot7-1 16S ribosomal RNA (rrn) gene,	1070	1070	100%	0.0	93%
	partial sequence					
DQ196465.1	Paenibacillus sp. L32 16S ribosomal RNA gene, partial sequence	1070	1070	100%	0.0	93%
DQ023221.2	Paenibacillus sp. GPTSA 19T 16S ribosomal RNA gene, partial sequence	1070	1070	100%	0.0	93%

Chapter 4			Tatal	0		219
Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
EU029572.1	Uncultured Paenibacillus sp. clone T8143 16S ribosomal RNA gene, partial	1066	1066	99%	0.0	93%
	sequence					
EU029562.1	Uncultured Paenibacillus sp. clone T53107 16S ribosomal RNA gene, partial	1066	1066	99%	0.0	93%
	sequence					
NR_025490.1	Paenibacillus agaridevorans strain DSM 1355 16S ribosomal RNA, partial	1066	1066	99%	0.0	93%
	sequence >emb AJ345023.1 Paenibacillus agaridevorans partial 16S rRNA					
	gene, strain DSM 1355					
GU187432.1	Paenibacillus sp. CAU 9038 16S ribosomal RNA gene, partial sequence	1064	1064	99%	0.0	93%
EU570162.1	Paenibacillus sp. RMV1 16S ribosomal RNA gene, partial sequence	1064	1064	96%	0.0	94%
AB362824.1	Paenibacillus sp. YT0073 gene for 16S rRNA, partial sequence	1064	1064	100%	0.0	93%
AB295646.1	Paenibacillus montaniterrae gene for 16S rRNA, partial sequence	1062	1062	98%	0.0	93%
AY387396.1	Uncultured Paenibacillaceae bacterium clone 8F316r 16S ribosomal RNA	1062	1062	98%	0.0	94%
	gene, partial sequence					

Chapter 4						220
Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
EU029574.1	Uncultured Paenibacillus sp. clone T8152 16S ribosomal RNA gene, partial	1061	1061	99%	0.0	93%
	sequence					
EU029569.1	Uncultured Paenibacillus sp. clone T8111 16S ribosomal RNA gene, partial	1061	1061	99%	0.0	93%
	sequence					
EU029331.1	Uncultured Paenibacillus sp. clone M1108 16S ribosomal RNA gene, partial	1061	1061	99%	0.0	93%
	sequence					
EU029318.1	Uncultured Paenibacillus sp. clone M175 16S ribosomal RNA gene, partial	1061	1061	99%	0.0	93%
	sequence					
AB045097.1	Bacillus sp. HSCC 1649T gene for 16S rRNA, partial sequence	1061	1061	99%	0.0	93%
NR_025489.1	Paenibacillus agarexedens strain DSM 1327 16S ribosomal RNA, partial	1061	1061	96%	0.0	94%
	sequence >emb AJ345020.1 Paenibacillus agarexedens partial 16S rRNA					
	gene, strain DSM 1327					
AM162351.1	Paenibacillus sp. YO4-17 partial 16S rRNA gene	1059	1059	96%	0.0	94%

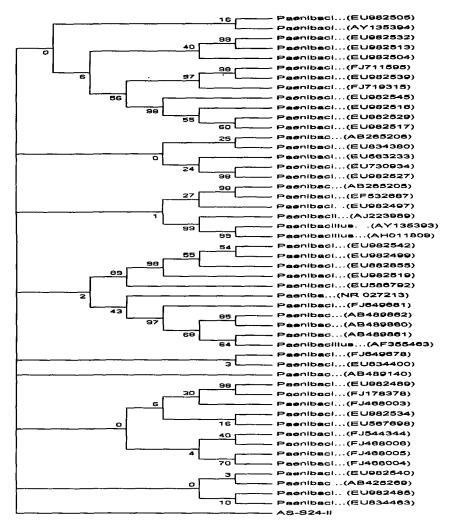
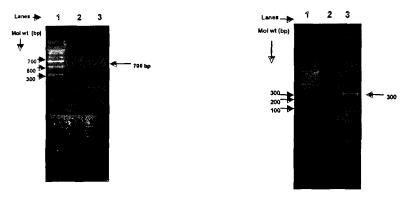

Chapter 4						221
Accession	Description	Max	Total	Query	E	Max
		score	score	coverage	value	ident
AM162329.1	Paenibacillus sp. L47 partial 16S rRNA gene	1059	1059	96%	0.0	94%
AM745262.1	Paenibacillus anaericanus partial 16S rRNA gene, type strain LMG 23878T	1055	1055	100%	0.0	93%

Fig. 4.5(a) Phylogenetic relationships of strain AS-S24-II and other closely related *Paenibacillus* species based on 16S rDNA sequencing. The tree was generated using the neighbour-joining method and the sequence from *Bacillus* sp. HSCC 1649 T (accession no. AB045097) was considered as out-group. The data set was resampled 1,000 times by using the bootstrap option, and percentage values are given at the nodes. Bar, 0.01 substitutions per site.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Fig.4.4(b) Phylogenetic relationships of strain AS-S24-II and other closely related *Paenibacillus* species based on 16S rDNA sequencing. The tree was generated using the unweighted Pair Group Method with Arithmetic Mean (UPGMA) method and the sequence from *Bacillus* sp. HSCC 1649 T (accession no. AB045097) was considered as out-group. The data set was resampled 1,000 times by using the bootstrap option, and percentage values are given at the nodes. Bar, 0.01 substitutions per site.


Sudhir K Rai

PhD Thesis, Tezpur University, 2010

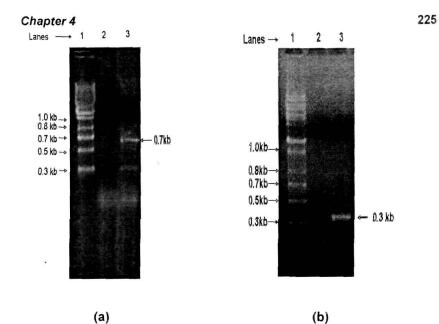
Chapter & 4.2.5 PCR-Restriction fragment length polymorphism (PCR-RFLP) analysis

4.2.5.1 PCR-RFLP of strain Bacillus subtilis AS-S10-II

PCR amplification with p1 and p2 primers of a segment of the ISR of 16S-23S rRNA gene of strain AS-S20-II yielded 0.7 kb and 0.3 kb products as shown in Fig. 4.6 (a) and 4.6(b), respectively. The nested PCR amplification of 0.7 kb fragment with primers 16S/ p3 and 23S/ p4 resulted in amplification of 0.3 kb fragment (as shown in Fig. 4.6b).

(a)

(b)


Fig. 4.6 PCR amplification of ISR of 16S-23S r RNA gene of strain AS-S10-IILane 1 molecular weight marker in kbp [(a) 1.0 kb and (b) 0.5 kbp)], Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS-S10-II with primers (p1/p2) in Fig. (a) and in Fig. (b) nested PCR of 0.7kb fragment with primer p3/p4.

4.2.5.2 PCR-RFLP of strain Bacillus sp. AS-S20-I

PCR amplification with p1 and p2 primers of a segment of the ISR of 16S-23S rRNA gene of strain AS-S20-I yielded 0.68 kb and 0.3 kb products [shown Fig. 4.7(a) and (b)]. The nested PCR amplification of 0.7 kb fragment with primers 16S/ p3 and 23S/ p4 resulted in amplification of 0.3 kb fragment (Fig.4.7b).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

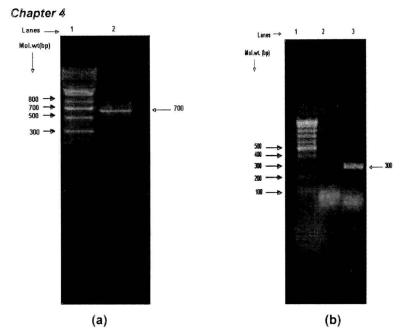
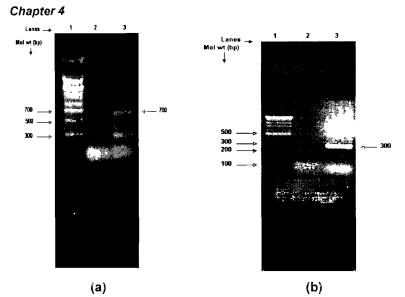


Fig. 4.7 PCR amplification of ISR of 16S-23S r RNA gene of strain AS-S20-I: Lane 1 molecular weight marker in kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS-S20-I with primers (p1/p2) in fig. (a) and in fig. (b) nested PCR of 0.7kb fragment with primer p3/p4.

4.2.5.3 PCR-RFLP of Bacillus subtilis strain AS-S18

PCR amplification of a segment of the ISR of 16S-23S rRNA genes of strain AS-S18 yielded 0.7 kb and 0.3 kb products (Figs.4.8a and 4.8b).

Sudhir K Rai


Fig. 4.8 PCR amplification of ISR of 16S-23S r RNA gene of strain AS-S18: Lane 1 molecular weight marker in kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS-S18 with primers (p1/p2) in fig. (a) and in fig. (b) nested PCR of 0.7kb fragment with primer p3/p4.

4.2.5.4 PCR-RFLP of strain Bacillus licheniformis AS-S24-II

The PCR amplification with *Bacillus*-specific oligonucleotide primers targeted to amplify the unique regions of the 16S rRNA gene showed the predicted product of around 1 kb only with strain AS-S24-II. PCR amplification with p1 and p2 primers of a segment of the ISR of 16S–23S rRNA gene of AS-S24-II yielded 0.7-kb product and the nested PCR amplification of this fragment with primers 16S/p3 and 23S/p4 resulted in amplification of 0.3 kb (Fig. 4.9).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Fig. 4.9 PCR amplification of ISR of 16S-23S r RNA genes of strain AS-S24-I. Lane 1 molecular weight marker in kbp ((a) 1.0 kb and (b) 0.5 kbp), Lane 2 control with DNA template; Lane 3 amplified ISR of strain AS-S24-I with primers (p1/p2) in fig. (a) and in fig. (b) nested PCR of 0.7kb fragment with primer p3/p4.

4.3 Bacterial identification and re-designation

On the basis of phenotypic, chemotypic and genotypic properties the isolates were taxonomically identified as shown in Table 4.19 and were re-designated as shown in Table 4.20.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

_---

 Table 4.19 A taxonomic classification of alkaline protease producing potential bacteria.

Bacterial isolates	Phenotypic	GC-FAME analysis	16s rDNA sequencing	GenBank ID of
	analysis		(ribotyping)	partial 16S-rDNA
				sequence
AS-S10-II	Bacillus sp.	Bacillus subtilis (MTCC 8960)	Brevibacillus sp.	GU332637
AS-S20-I	Kocuria genus	Kocuria varian (MTCC8961)	Bacillus sp.	GU001817
AS-S24-I	Paenibacillus sp.	Peanibacillus polymyxa (MTCC 9129)	Bacillus licheniformis	GU269542
AS-S24-11	Bacillus licheniformis	Bacillus licheniformis -(MTCC 8959)	Peanibacillus sp.	FJ804507
AS-S18	Bacillus	Bacillus subtilis	N.D.	-

N.D. = Not determined

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

.

.

•

Table 4.20 Taxonomic identification and nomenclature of selected bacterial strains

Bacterial isolates	Taxonomic identity	Designated nomenclature
AS-S10-II	Brevibacillus sp.	Brevibacillus sp. strain AS-S10-II
AS-S20-I	Bacillus sp.	Bacillus sp.strain AS-S20-I
AS-S24-I	Bacillus licheniformis	Bacillus licheniformis strain AS-S24-I
AC 524 II		Peanibacillus tezpurensis sp.nov. strair
AS-S24-II	Peanibacillus sp.	AS-S24-II
AS-S18	Bacillus subtilis	Bacillus subtilis strain RM-01

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

,

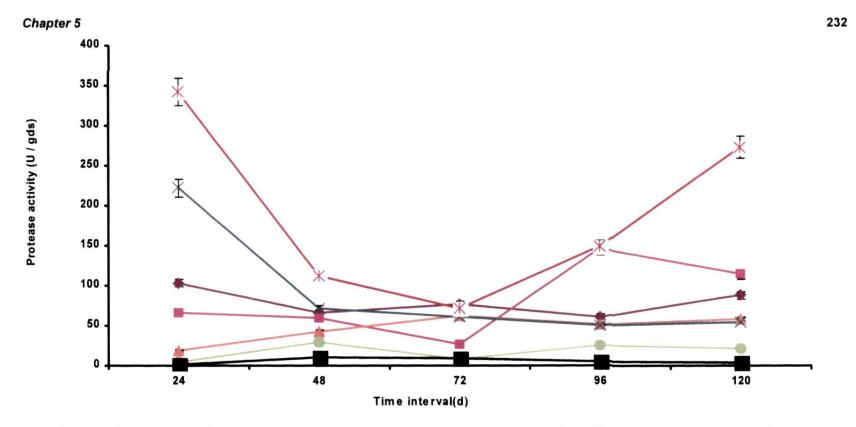
;

CHAPTER V

RESULTS

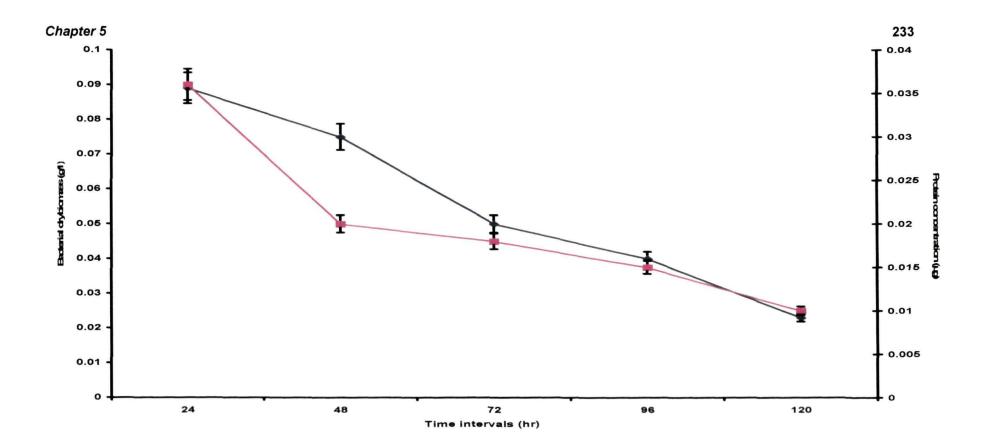
<u>Sudhir K Rai</u>

Chapter 5 Chapter 5


Process optimization, isolation, purification, biochemical characterization and industrial applications of alkaline proteases isolated from *Bacillus subtilis* DM-04

5.1 Alkaline protease production under solid-state fermentation

5.1.1 Screening of different agro-industrial and waste materials for alkaline protease production


The results showed that protease production by *B. subtilis* DM-04 varied with type of the substrate and also dependent on incubation time (Fig.5.1). Maximum enzyme production was observed with potato peel (341.81 U/gds) followed by IC (221.8 U/gds) as substrate post 24 h of incubation. Minimum protease production (1.818 U/gds) was observed when waste TL was used as substrate/ support material (Fig.5.1). The protein content of the cell-free extract as well as the bacterial dry biomass followed the similar trend like protease production on different substrates (Fig.5.2).

<u>Sudhir K Rai</u>

Fig.5.1 Screening of different waste residues such as MOC (♦), WB (■), RB (▲), IC(×), PP (⊠), BL (●), and TL (■) for the production of alkaline protease by *B.subtilis* strainDM-04 at different time intervals. Values are mean ± S.D. of three experiments.

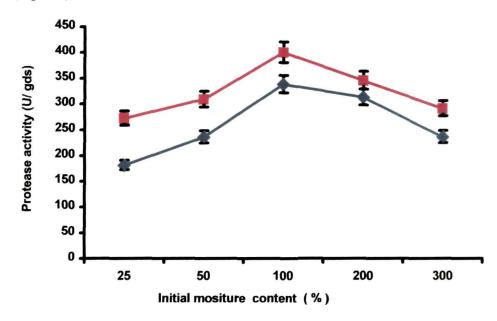

Sudhir K Rai

Fig.5.2 Time course of alkaline protease production by *Bacillus subtilis* strain DM-04. Legends show bacterial dry biomass (◆) and protein concentration of cell free extract (■).Values are mean ± S.D. of three experiments. <u>Sudhir K Rai</u>

Chapter 5 2: 5.1.2 Effect of initial moisture content of the substrate and moistening agent on protease production

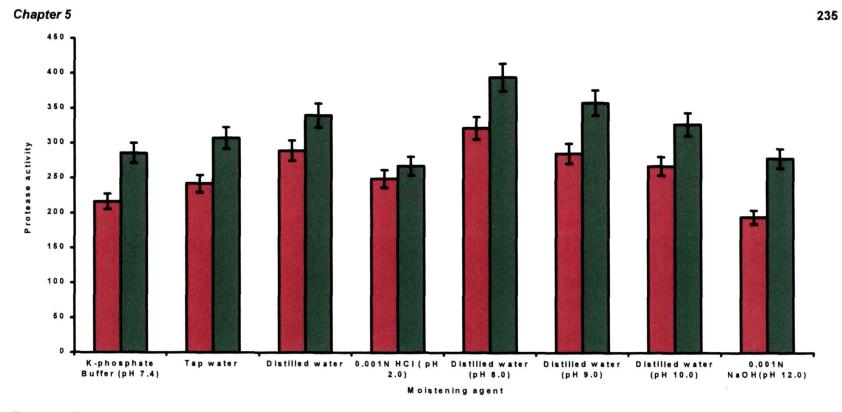

As shown in Fig. 5.3, initial moisture content of the either substrate (IC or PP) has a great influence on protease production by *B. subtilis* strain DM-04. With an increase in the initial moisture content of the substrate from 25 to 100 % alkaline protease production was concomitantly enhanced, and further increase in the moisture content of substrate resulted in a steady decline in protease yield. The nature of the moistening agent also played a crucial role in protease production by *B. subtilis* strain DM-04 under SSF condition. Distilled H₂O adjusted to pH 8.0 was most efficient moistening agents (Fig. 5.4).

Fig.5.3 Influence of initial moisture content of the substrates [PP (**•**) or IC (•)] on alkaline protease production by *B.subtilis* strain DM-04. Values are mean ± S.D. of three determinations post 24h incubation at 50°C. Moistening agent was distilled water, pH adjusted to 8.0.

Sudhir K Rai

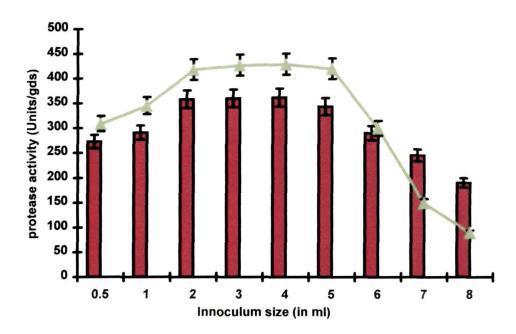

PhD Thesis, Tezpur University, 2010

Fig.5.4 Influence of moistening agents on alkaline protease production by *B.subtilis* strain DM-04 using either IC (\blacksquare) or PP (\blacksquare) as a substrate. Values represent mean ± S.D of three experiments post 24h of incubation of *B.subtilis* strain DM-04 at 50°C.

5.1.3 Effect of inoculum's size on protease production

As shown in Fig.5.5, with an increase in inoculum's size from 0.5 ml to 2.0 ml (5.0 g substrate), protease production by *B. subtilis* strain DM-04 was enhanced linearly, while increasing the inoculum's size from 2.0 ml to 5.0 ml did not have a significant impact in enhancing the protease yield (p>0.05). However, an increase in inoculum's size beyond 5.0 ml resulted in a steady decline in protease production by *B. subtilis* strain DM-04 (Fig.5.5).

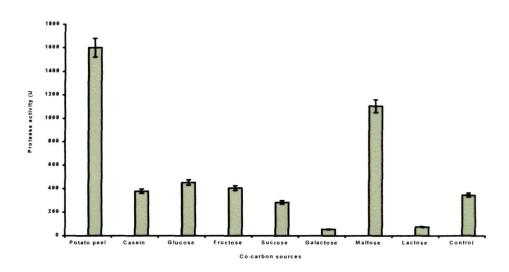
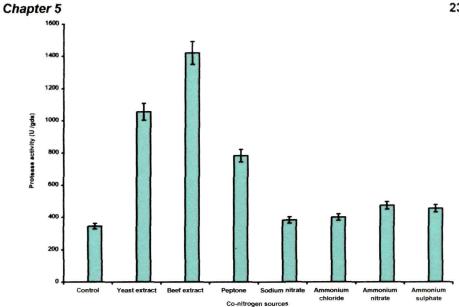


Fig.5.5 Influence of inoculum size on alkaline protease production by *B.subtilis* strain DM-04 using PP (\blacktriangle) or IC (\blacksquare) as substrate under SSF. Values are mean ± S.D. of three determinations.

Sudhir K Rai


5.1.4 Effect of supplementation of co-carbon and co-nitrogen sources on protease production

Maximum yield of protease was observed when the medium was supplemented with PP (1600 U/ gds) followed by maltose (1103.63 U/ gds) as co-carbon sources along with IC as main substrate (Fig.5.6). Among the tested nitrogen compounds, 0.1 % (w/w) beef extract followed by yeast extract served as the best co-nitrogen source for protease production by *B. subtilis* strain DM-04 strain on IC (Fig.5.7).

Fig. 5.6 Effect of supplementation of co-carbon sources (10 % w/w) to IC (substrate) on alkaline protease production by *B.subtilis* strain DM-04.Values are means \pm S.D. of three determinations.

Sudhir K Rai

Fig.5.7 Effect of supplementation of co-nitrogen sources (1.0% w/w) to IC (99 % w/w) on alkaline protease production by *B.subtilis* strain DM-04.Values are means \pm S.D. of three determinations.

5.1.5 Protease extraction from fermented matter

Among the different extractions medium used for the recovery of protease from the fermented matter, distilled water containing 0.1%(v/v) triton X-100, pH 8.0 served as best extraction medium (Fig.5.8).

Sudhir K Rai

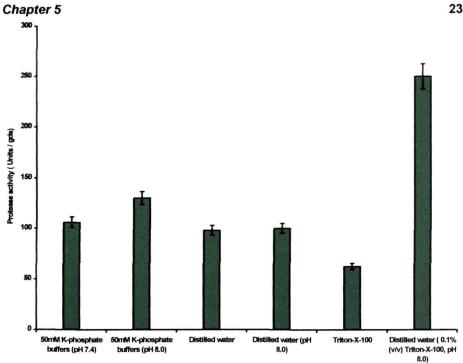


Fig. 5.8 Screening of best extraction medium for alkaline protease extraction from the fermented matter. Values are means ± S.D. of three determinations.

5.1.6 Batch fermentation

The influence of various combinations of IC and PP along with supplementation of co-carbon and co-nitrogen sources on protease production showed that when IC and PP powders were mixed in a ratio of 1:1 without any additional co- carbon and nitrogen sources, a significant increase in protease yield (p< 0.05) could be achieved (Table 5.1).

Sudhir K Rai

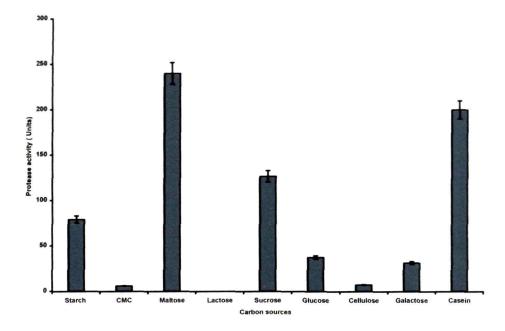
PhD Thesis, Tezpur University, 2010

Chapter 5 Table 5.1 Influence of different combinations of co-substrates on alkaline protease production by B. subtilis strain DM-04 under solid-state

fermentation. Values are mean ± S.D of three determinations.

Substrate(s)	Substrate(s) (U/gds)		Nitrogen (%)	C: N (%)
I.cylindrica (100%)	221.8 ± 11.09	54.7	1.2	45.6
Potato peel (100%)	341.81 ± 17.1	51.7	2.6	19.9
<i>I.cylindrica</i> (89%w/w)+ Maltose (10 % w/w) + Beef extract (1% w/w)	1600.00 ± 32.0	ND	ND	ND
<i>I.cylindrica</i> (90%w/w) + Potato peel (10%)	1709.0 ± 21.0	54.4	1.34	40.5
<i>I.cylindrica</i> (80%w/w) + Potato peel (20 %w/w)	2036.0 ± 39.0	54.1	1.48	36.5
I.cylindrica (50%w/w) + Potato peel (50%w/w)	2382.0 ± 40.0	53.2	1.9	28.0
Potato peel (89% w/w) + Maltose (10%) + Beef extract (1%)	1146.0 ± 14.0	ND	ND	ND

ND : Not Determined

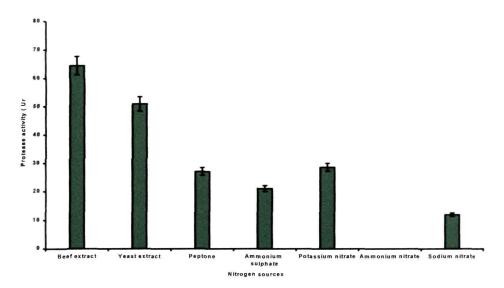

<u>Sudhir K Rai</u>

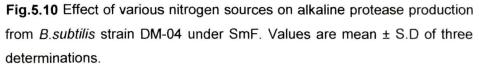
PhD Thesis, Tezpur University, 2010

5.2 Alkaline protease production under submerged fermentation

5.2.1 Influence of carbon source on protease production

Different carbon sources were screened for alkaline protease production by *B.subtilis* strain DM-04 under submerged fermentation. Maximum alkaline protease production was observed in presence of 1% (w/v) maltose followed by casein as substrate (Fig.5.9).




Fig.5.9 Effect of different carbon sources on alkaline protease production from *B.subtilis* strain DM-04 under SmF. Values are mean \pm S.D of three determinations.

Sudhir K Rai

5.2.2 Effect of nitrogen source on protease production

Amongst the various nitrogen sources were tested for alkaline protease production, maximum alkaline production was observed in presence of 0.1% (w/v) beef extract as shown in Fig. 5.10.

5.2.3 Effect of pH on protease production

The effect of pH on alkaline protease production from *B.subtilis* strain DM-04 was determined by adjusting the medium pH and assaying the enzyme production in that particular pH. Results showed that with an increase in the pH of the medium from 6.0 to 8.0, the protease production was enhanced significantly. The production remained constant from pH 8.0-10.0. However, a further increase in pH (beyond pH 10.0) resulted in decline in protease yield (Fig.5.11).

Sudhir K Rai

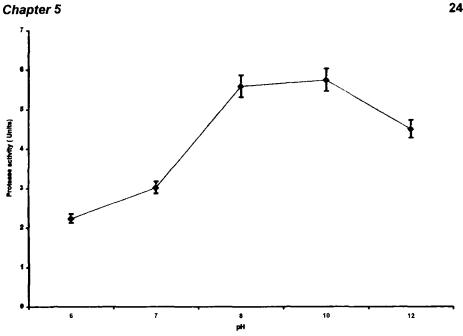


Fig.5.11 Effect of pH on alkaline protease production from B. subtilis strain DM-04. Values are mean ± S.D of three determinations.

5.2.4 Effect of temperature on protease production

The effect of temperature on alkaline protease production by B.subtilis strain DM-04 showed that protease production was significantly increased from 25 to 45°C and beyond this temperature protease production declined (Fig. 5.12). Therefore, 45°C was considered as the optimum temperature for protease production by *B.subtilis* strain DM-04.

Sudhir K Rai

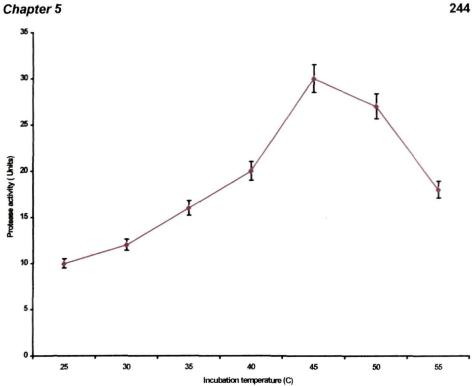
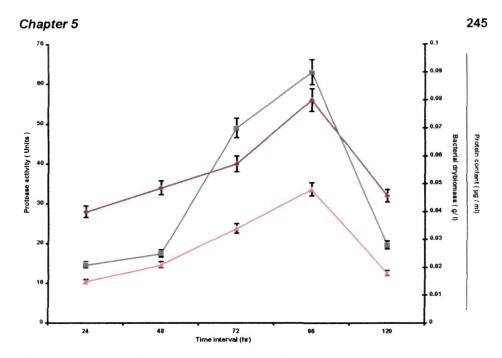



Fig.5.12 Effect of incubation temperature on alkaline protease production from B.subtilis strain DM-04. Values are mean ± S.D of three determinations.

5.2.5 Kinetics of protease production

Result showed that maximum alkaline protease production was achieved post 72h of incubation at 45.0°C and pH 8.0 (Fig. 5.13). Thereafter, a sharp fall in protease production was observed. Bacterial growth curve also followed the similar trend.

Sudhir K Rai

Fig. 5.13 Effect of incubation time on alkaline protease production (\bullet), bacterial dry biomass (\blacksquare) and protein content (\blacktriangle) of culture supernatant from *B.subtilis* strain DM-04 under submerged fermentation condition. The pH and temperature of the medium were adjusted to 8.0 and 45°C, respectively. Values are mean ± S.D of three determinations.

5.2.6 Effect of agitation rate on protease production

An examination of the effect of the agitation speed on the protease production showed that optimum alkaline protease production was observed at 200 rpm (Fig. 5.14).

Sudhir K Rai

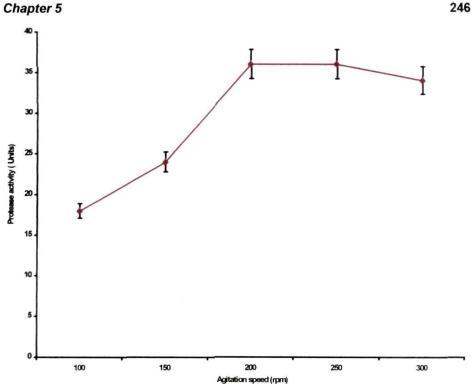


Fig.5.14 Effect of agitation rate on alkaline protease production from B.subtilis strain DM-04 under submerged fermentation. Values are mean ± S.D of three determinations.

5.3. Statistical optimization of alkaline protease production under submerged fermentation

5.3.1 Preliminary screening of factors influencing protease production by using Placket-Burman design

PB design was used to identify the variables which have significant effects on alkaline protease production. Protease activity was estimated in the cell free extract of B.subtilis strain DM-04 culture broth at 72 h post incubation, as protease production was maximum at 72 h. All the assays were carried out in triplicate and the average values are reported. The data in Table 5.2

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

indicated that there was a wide variation of protease activity from 80.100 U/ml to 194.460 U/ml in the fifteen trials. This variation reflected the significance of factors on the enzyme activity. The analysis of regression coefficients and t-value of six ingredients are shown in Table 5.3. It was observed that IC: PP, beef extract, and incubation time (h), displayed a positive effect for enzyme production where as, agitation rate (rpm), innoculum level (% v/v), and pH of the medium displayed a negative effect on protease production. Neglecting the variables which were insignificant, the model equation for protease production can be written as

 $Y = 135 .580 + 9.405 X_1 + 18 .495 X_2 + 16 .485 X_3$ -----(5.1) Where, X₁ = incubation time (h), X₂ = beef extract (% w/v), X₃ = IC:PP (% w/v)

On the basis of calculated t-values (Table 5.3), concentration of IC:PP, beef extract and incubation time(h) were chosen for further optimization, since these factors significantly effected protease production in SSF. Agitation rate and innoculum level were kept at middle level

Table 5.2 Plackett–Burman store design showing six variables with codedvalues along with the observed results for protease production by *B.subtilis*DM-04 strain in SmF. Values (protease yield) are mean of triplicatedeterminations.

IC:PP (% w/v)	Beef extract level (% w/v)	Incub ation time (h)	Agitation rate (rpm)	pH of the mediu m	Innocul um size (% v/v)	Proteas e yield (Units)
1 (2.5)	-1(1.20)	1 (96)	-1 (150)	-1 (9.0)	-1 (1.5)	80.100
1 (2.5)	1 (1.30)	-1 (48)	1 (250)	-1 (9.0)	-1 (1.5)	110.460
-1 (1.5)	1 (1.30)	1 (96)	- (150)	1 (11.0)	-1 (1.5)	140.400
					Cor	ntinued

<u>Sudhir K Rai</u>

Cl	hap	ter 5	5	
			~ ~	

Table 5.	2 Continue	d				
1 (2.5)	-1 (1.20)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	125.400
1 (2.5)	1 (1.30)	-1 (48)	1 (250)	1 (11.0)	-1 (1.5)	147.480
1 (2.5)	1 (1.30)	1 (96)	-1 (150)	1 (11.0)	1 (5.0)	154.500
-1 (1.5)	1 (1.30)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	149.460
-1 (1.5)	-1 (1.20)	1 (96)	1 (250)	1 (11.0)	-1 (1.5)	148.500
-1 (1.5)	-1 (1.20)	-1 (48)	1 (250)	1 (11.0)	1 (5.0)	194.460
1 (2.5)	-1 (1.20)	-1 (48)	-1 (150)	1 (11.0)	1 (5.0)	162.480
-1 (1.5)	1 (1.30)	-1 (48)	-1 (150)	-1 (9.0)	1 (5.0)	149.460
-1 (1.5)	-1 (1.20)	-1 (48)	- 1 (150)	-1 (9.0)	-1 (1.5)	111.000
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	120.000
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	120.000
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	120.000

Table 5.3 Statistical analysis of Plackett–Burman design showing coefficient values, t- and p-value for each variable for protease production (p-value <0.05).

Variables

Protease yield (Units)

	Co- efficient	SE Coef	t-Stat	p-value
Intercept	135.580	2.75483	49.2155	0.000
Incubation time (h)	9.405	3.07999	3.0536	0.016
innoculum level (%v/v)	2.485	3.07999	0.8068	0.443
pH of the medium	-6.415	3.07999	-2.0828	0.071
Agitation rate (rpm)	6.485	3.07999	2.1055	0.068

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Chapter 5 Variables		Protease y	ield (Units)	24
	Co- efficient	SE Coef	t-Stat	p-value
Beef extract	18.495	3.07999	6.0049	0.000
(% w/v)				
IC:PP level	16.485	3.07999	5.3523	0.001
(% w/v)				

5.3.2 RSM regression equation and model analytics

The results of the observed and predicted values for alkaline protease yield (response) in submerged fermentation (SmF) as function of the chosen variables with reference to the experiments performed according to the CCD is shown in Table 5.4. Maximum protease yield (508 U) was obtained with the data set of 2.5 % (w/v) of IC: PP (1:1), 1.25% (w/v) of beef extract post 72 h of incubation. The parameters of Eq. (3.2) (section 3.9.2) were determined by multiple regression analysis by the application of RSM. The overall second-order polynomial regression equation showing the empirical relationship between protease activity (Y) and three test variables in coded units is represented by equation 5.2

 $Y = 465.820 + 11.698C_1 + 14.323C_2 + 11.016C_3 - 0.117C_1^2 + 0.258C_2^2 + 1.085C_3^2 + 1.395C_1C_2 - 0.105C_1C_3 - 0.105C_2C_3$ (5.2)

Multiple regression model assumes a linear relationship between some variable Y (dependent variable) and independent variables C_1 , C_2 , C_3 ----- C_n . Based on the result obtained with the multiple regression analysis, it was observed that interaction of incubation time with the fermentation

<u>Sudhir K Rai</u>

substrates had a negative impact on protease production. The analysis of variance (ANOVA) by Fisher's statistical test was conducted for the second-order response surface model and the result showed that the computed F value for linear regression was much greater than the tabulated (P) > F value (Table 5.5); however, the F values for the square and interaction effects were less than the tabulated (P) > F value (Table 5.6). Therefore, the model terms C_1 , C_2 and C_3 were found to be the significant and not their interaction effects (Figs.5.15 to 5.16).

Table 5.4 Observed responses and predicted values of alkaline protease produced by *B.subtilis* strain DM-04. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units. C_1 , IC: PP level (% w/v); C_2 , beef-extract level (% w/w); C_3 , incubation time (h).

Run	Independent Variables			Y Res	Residual	
no.				(Protease	value	
	C ₁	C ₂	C ₃	Observed	Predicted	
				value	value	
1	1.5 (-1)	0.75 (-1)	48 (-1)	428.129	431.193	-3.065
2	2.5 (+1)	0.75 (-1)	48 (-1)	452.629	452.008	0.621
3	1.5 (-1)	0.75 (-1)	48 (-1)	458.629	457.258	1.371
4	2.5 (+1)	0.75 (-1)	48 (-1)	484.129	483.653	0.476
5	1.5 (-1)	0.75 (-1)	72 (+1)	453.129	453.645	-0.516
6	2.5 (+1)	0.75 (-1)	72 (+1)	472.629	474.040	-1.411
7	1.5 (-1)	1.25 (+1)	72 (+1)	478.629	479.290	-0.661
8	2.5 (+1)	1.25 (+1)	72 (+1)	508.290	505.266	3.024
9	2.0 (0)	1.0 (0)	48 (-1)	456.486	455.888	0.598
10	2.0 (0)	1.0 (0)	72 (+1)	477.486	477.920	-0.435
11	1 .0 (-2)	1.0 (0)	60 (0)	443.371	441.954	1.416
					Con	tinued

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Chapte Ta	e r 5 able 5.4 Cor	ntinued				251
12	3.0 (+2)	1.0 (0)	60 (0)	487.370	488.744	-1.375
13	2.0 (0)	0.5 (-2)	60 (0)	440.370	438.204	2.166
14	2.0 (0)	1.5 (+2)	60 (0)	493.371	495.494	-2.125
15	2.0 (0)	1.0 (0)	60 (0)	466.086	465.819	-2.125
16	2.0 (0)	1.0 (0)	60 (0)	460.270	465.819	-5.550
17	2.0 (0)	1.0 (0)	60 (0)	463.492	465.819	-2.330
18	2.0 (0)	1.0 (0)	60 (0)	467.211	465.819	1.390
19	2.0 (0)	1.0 (0)	60 (0)	466.871	465.819	1.050
20	2.0 (0)	1.0 (0)	60 (0)	470.910	465.819	5.090

Table 5.5 Analysis of Variance (ANOVA) of alkaline protease produced by*B.subtilis* DM-04.

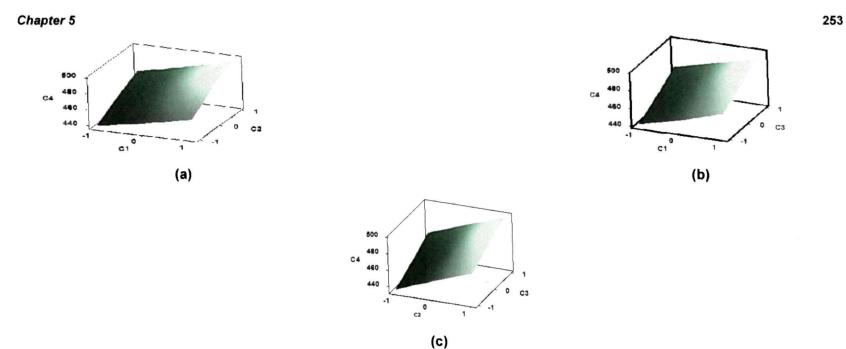
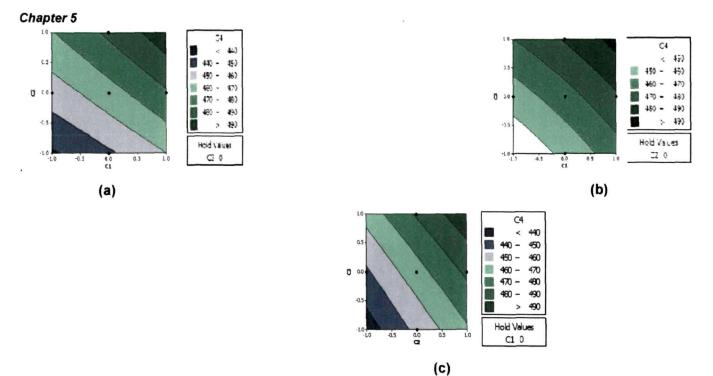

Source	DF	Seq SS	Adj SS	Adj MS	F-value	P-value
Regression	9	6709.15	6709.15	745.46	72.65	0.000
Linear	3	6685.04	6685.04	2228.35	217.16	0.000
Square	3	8.35	8.35	2.78	0.27	0.845
Interaction	3	15.75	15.75	5.25	0.51	0.683
Residual	10	102.61	102.61	10.26	0.57	0.722
error						
Lack-of-Fit	5	37.37	37.37	7.47		
Pure error	5	65.24	65.24	13.05		
Total	19	6811.76				

Table 5.6 Model coefficients estimated by multiple linear regressions (significance of regression coefficients) *Bacillus subtilis* DM-04 in SmF under shake-flask study.

Factor	Coefficient	SE	Computed	p-value
		coefficient	t-value	
Constant	465.820	1.2698	366.837	0.000
C ₁	11.698	0.8008	14.607	0.000
C ₂	14.323	0.8008	17.885	0.000
C ₃	11.016	1.0130	10.875	0.000
C1 ²	-0.117	0.6240	-0.188	0.854
C ₂ ²	0.258	0.6240	0.413	0.689
C_{3}^{2}	1.085	1.4326	0.757	0.466
$C_1 C_2$	1.395	1.1325	1.232	0.246
$C_1 C_3$	-0.105	1.1325	-0.093	0.928
$C_2 C_3$	-0.105	1.1325	-0.093	0.928


 $R^2 = 98.49\%$, R^2 (pred) = 92.1%, R^2 (adj) = 97.14%

<u>Sudhir K Rai</u>

Fig. 5.15 Response surface plots for alkaline protease production by *B. subtilis* strain DM-04. The interaction between (a) concentration (%, w/v) of (1:1, w/w) IC:PP (C₁) and concentration (%, w/v) of beef-extract level (C₂), hold value incubation time (C₃) = 0; (b) concentration (%, w/v) of (1:1, w/w) IC:PP (C₁) and incubation time (C₃), hold value beef extract level (C₂) =0; (c) concentration (%, w/v) of beef extract (C₂) and incubation time (C₃), hold value IC:PP level (C₁) = 0.

Sudhir K Rai

Fig.5.16 Countor surface plots for alkaline protease production by *B. subtilis* strain DM-04. The interaction between (a) concentration (%, w/v) of (1:1, w/w) IC:PP (C₁) and concentration (%, w/v) of beef-extract level (C₂), hold value incubation time (C₃) = 0; (b) concentration (%, w/v) of (1:1, w/w) IC:PP (C₁) and incubation time (C₃),; hold value beef extract level (C₂) =0; (c) concentration (%, w/v) of beef extract (C₂) and incubation time (C₃), hold value IC:PP level (C₁)=0.

Sudhir K Rai

Chapter 5 5.3.4 Response surface plots

The three-dimensional response surface plots as a function of two factors at a time, maintaining the third factor at the minimum (zero) level, are depicted in Figs. 5.15a--c. A small trough in response surface plot (Fig. 5.15a) indicated an initial decrease in protease production with the initial increase of beef extract level. Figure 5.15b shows that protease production was increased with an initial increase of IC: PP concentration; however, further increase of this beef extract resulted in decrease in protease yield by bacteria. Interaction of beef extract level and incubation time demonstrated that an increase in level of both the parameters significantly enhance the protease yield (Fig. 5.15c).

5.3.5 Countor plots

The maximum predicted value is indicated by the smallest ellipse in the contour plots Figs.5.16a–b show the 2D contour plots for protease production for each pair of variables by keeping the third variable constant at its middle level. It could be seen that the protease production was increased upon increasing the concentration of IC:PP from 2.5% (% w/v), but a further increase in its concentration values resulted in decrease in protease production. Similarly, the protease production was increased with an increase in the concentration of beef extract, and further increasing the beef extract concentration resulted in decreased protease production. Therefore, the optimal level of beef extract was determined as 1.25 % (w/v).

5.3.6 Batch fermentation

The validation of the statistically optimized condition for the production of alkaline protease by *B. subtilis* DM-04 was verified by carrying out batch fermentation in a 5-I fermenter. It was interesting to observe that maximum

<u>Sudhir K Rai</u>

protease yield of 518 U obtained by batch culture post 60 h of incubation was slightly higher than the observed highest experimental value in shake –flask study (195.0 U) as well as the predicted value of the protease yield by response surface method (508.0 U). Furthermore, the optimal time requirement for maximum protease production in a process-controlled fermenter was less than that observed under shake-flask study (60 h Vs 72 h).

5.4. Isolation and purification of an alkaline protease (Bsubap-I)

Fractionation of crude protease on a DEAE-Sephadex A-50 column resolved into three peaks DE-I to DE-III (Fig. 5.17). On the basis of maximum specific activity, the DE-I fraction were pooled. Fractionation of peak DE-I (eluted with 20 mM K-phosphate buffer, pH 6.5) on gel-filtration column resolved it into two peaks GF-I and GF-II (Fig.5.18). The peak GF-II, containing higher protease activity compared to GF-I, was found to be homogenous by SDS-PAGE as it displayed a single band of 33.1 kDa under both reduced and non-reduced conditions (Fig. 5.19). The protease activity of 33.1 kDa purified protein was further confirmed by casein zymography (Fig. 5.19). By RP-HPLC, the GF-II fraction was eluted as a single, sharp peak with the retention time of 10.97 min showing purity of the protease preparation (Fig.5.20). A summary of purification of *B. subtilis* DM-04 anionic protease (Bsubap-I) is shown in Table 5.7.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

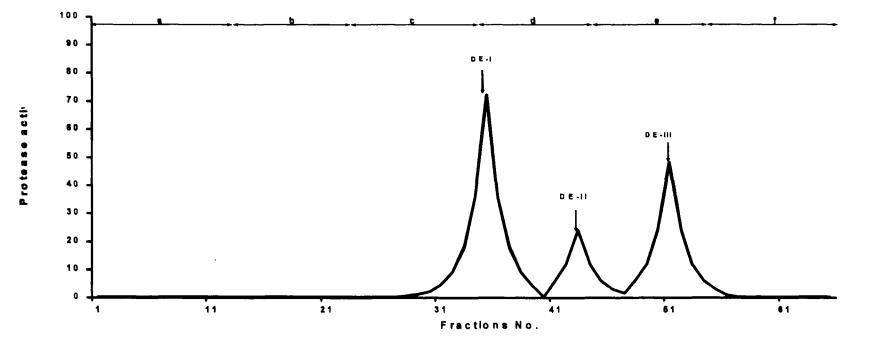


Fig.5.17 Fractionation of anionic proteases secreted from B.subtilis strain DM-04 by DEAE Sephadex A-50 column. Elution was performed stepwise with phosphate buffers of the following molarities and pH values: (a) 20 mM K-phosphate, pH 7.0); (b) 20 mM Kphosphate (pH 6.5); (c) 20 mM K-phosphate (pH 6.0); (d) 20 mM K-phosphate (pH 5.5); (e) 100 mM K-phosphate (pH 5.0); (f) 120 mM K-phosphate (pH 5.0). Data represent a typical experiment. Sudhir K Rai

.

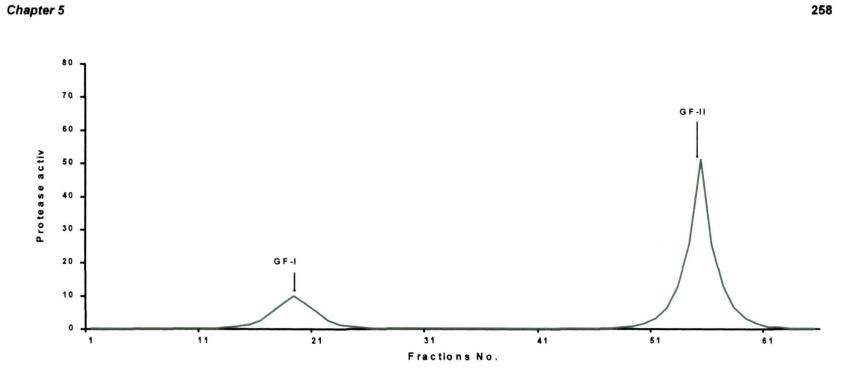
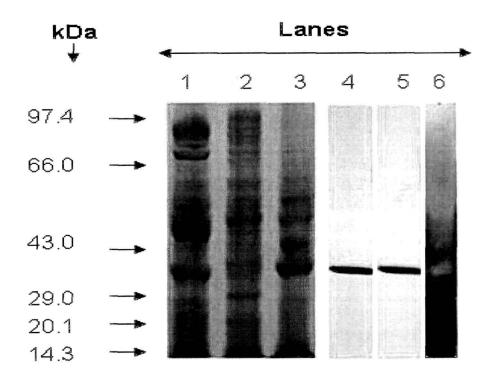



Fig.5.18 Sephacryl S-200 gel filtration profile of DE-I fraction. Data represent a typical experiment.

<u>Sudhir K Rai</u>

Fig. 5.19 12.5 % SDS-PAGE of crude protease and Bsubap-I from *B. subtilis* strain DM-04. Molecular weight markers are phosphorylase b (97,400 Da), BSA (66,000 Da), ovalbumin (43,000 Da), carbonic anhydrase (29,000 Da), soybean trypsin inhibitor (20,100 Da) and Iysozyme (14,300 Da); Lane 1: crude protease (50 μ g); Lane 2: DEAE-Sephadex A-50 flow through fraction (50 μ g); Lane 3: DE-01 fraction (50 μ g); Lane 4: Bsubap-I under reduced condition (10 μ g); Lane 5: Bsubap-I under non-reduced condition (10 μ g), Lane 6: Casein zymograph of Bsubap-I (20 μ g) post incubation at 45 °C for 4 h.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

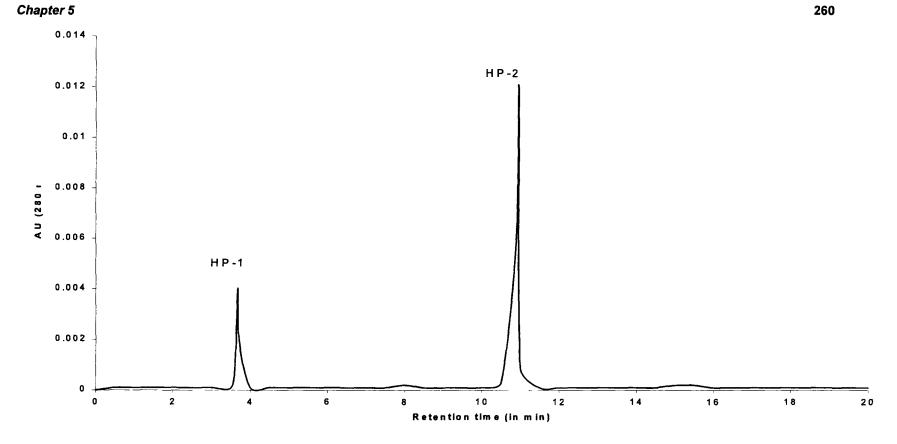


Fig.5.20 RP-HPLC of GF-II fraction. HP-I represents solvent peak.

<u>Sudhir K Rai</u>

Table 5.7 Summary of purification of Bsubap-I from *Bacillus subtilis*strain DM-04. Values are from a typical experiment.

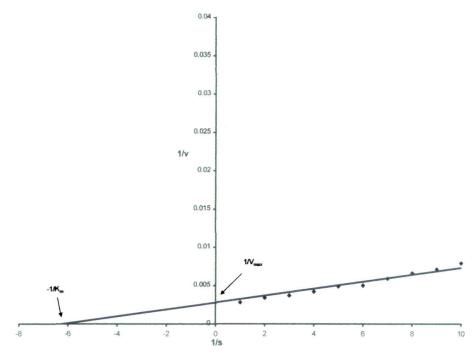
Purification steps	Total protein (mg)	Yield (%)	Total enzyme activity (U)	Specific activity (U / mg)	Purification fold
Cell-free	100.0	100.0	2.1 x 10 ⁴	210.0	1
supernatant					
DE – I	5.9	27.0	5.7 x 10 ³	964.0	4.6
GF-II (Bsubap-I)	2.0	25.0	5.3 x 10 ³	2650.0	12.6

5.5 Biochemical characterization

The optimum activity of Bsubap-I was detected at pH range of 10.0–10.5 and at 45°C temperature (Table 5.8).

 Table 5.8 Biochemical characterization of Bsubap-I purified protease.

Parameters	Values	
Optimum pH	10.0-10.5	
Optimum incubation temperature (°C)	45.0	
Optimum incubation time (min)	30.0	

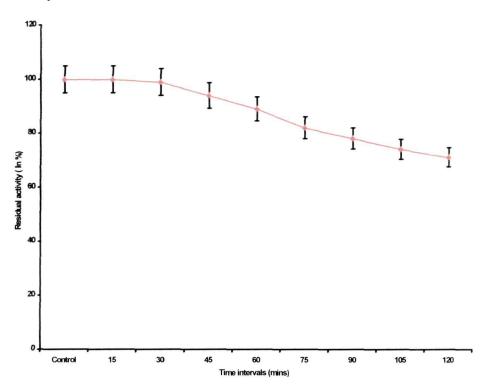

5.5.1 Substrate specificity study

Casein was found to be the most preferred substrate for Bsubap-I [specific activity (S.A) 2650 U/ mg] followed by gelatin [S.A. 729 U/ mg], chicken-feather keratin [S.A. 419 U/ mg], bovine serum albumin [S.A. 352.0], whereas collagen and human hair was not hydrolyzed by this protease.

<u>Sudhir K Rai</u>

5.5.2 Kinetics of substrate hydrolysis

The K_m and V_{max} values of Bsubap-I towards casein was determined as 6.5 mg / ml and 320.0 µmol / min / mg respectively (Fig.5.21); the K_{cat} and K_{cat}/K_m values were calculated as 7.0 x 10^3 / sec and 1.1 x 10^2 / sec / µM, respectively.


Fig. 5.21 Lineweaver-Burk plot to determine the K_m and V_{max} values for Bsubap-I using casein as a substrate. Values are mean of triplicate determinations.

5.5.3 Thermo-stability study of Bsubap-I

Heating the Bsubap-I at 60°C for 90 min and 120 min resulted in reduction of 71% and 89% of its original protease activity, respectively (Fig.5.22).

Sudhir K Rai

The residual protease activity post heating of Bsubap-I at 60°C for 120 min in presence of polyols was observed in the following order: glycerol (150% activity)> mannitol (132% activity) > sorbitol (97% activity) > xylitol (82% activity) (Fig.5.23). The activity of control was considered as 100% activity.

Fig.5.22 Thermo stability study of Bsubap-I from *B.subtilis* strain DM-04. Values are mean ± S. D. of three determinations.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

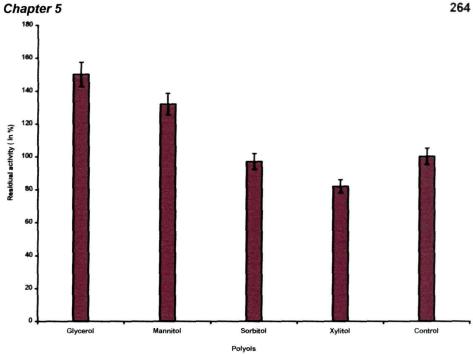


Fig.5.23 Effect of polyols on Bsubap-I stability at 60°C for 120 min . Values are mean ± S. D. of three determinations.

5.5.4 Effect of metal ions on protease activity of Bsubap-I

It was observed that Fe²⁺ stimulated the protease activity to 1.5-folds of its original activity. whereas the enzyme activity was significantly reduced (10-25% of the original activity) in presence of Hg2+, Mn2+, Ca2+ and Cd²⁺(Fig.5.24) The enzymatic activity of Bsubap-I was completely inhibited by Ni^{2+} , Mg^{2+} and Cu^{2+} (Fig.5.24).

Sudhir K Rai

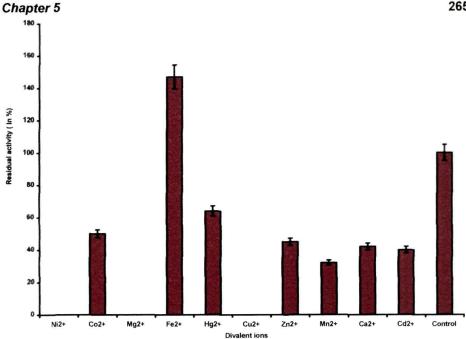
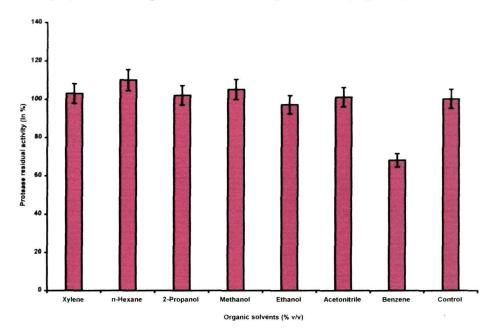


Fig.5.24 Effect of divalent metal ions on catalytic activity of Bsubap-I. Values are mean ± S. D. of three determinations.

5.5.5 Effect of surfactants, chelators, inhibitors, denaturing, oxidizing and bleaching agents on Bsubap-I

Chemical modification of serine and histidine residues of Bsubap-I resulted in a loss of about 97% and 88% of its original enzyme activity, respectively advocating this was a trypsin like serine protease (Ser-His-Asp triad). lodoacetate, TPCK, SDS, EDTA, urea, H2O2, sodium perborate and Tween-20, and Triton X-100 failed to modulate the enzyme activity, where as TPCKand TLCK inhibited the protease activity of Bsubap-I to 4% and 17% respectively as compared to the control (Table 5.9).

Sudhir K Rai


Table 5.9 Effect of surfactants, chelators, inhibitors, denaturing, oxidizingand bleaching agents on enzymatic activity of Bsubap-I. Values are mean \pm S. D. of three determinations.

Effectors	Relative Protease activity of Bsubap-I
	(%)
Control	100
Surfactants	
SDS (20 mM)	97.0 ± 2.1
Urea (6 M)	119.0 ± 3.1
Tween -20 (1% v/v)	95.1 ± 3.4
Triton-X-100 (1% v/v)	100
Chelators (5 mM)	
EDTA	92.0 ± 1.8
Reducing agent (2 mM)	
DTT	90.0 ± 3.2
Inhibitors (2 mM)	
PMSF	3.1 ± 1.2
pBPB	12.1 ± 0.8
lodoacetate	100
TLCK	83 ± 3.3
ТРСК	96 ± 1.9
Oxidizing agent	
H ₂ O ₂ (% v/v)	
5	100.0± 2.
10	98.0 ± 1.4
Bleaching agent	
Sodium perborate (% v/v)	
0.5	110.0± 6.1
1.0	100.0 ± 5.1

<u>Sudhir K Rai</u>

5.5.6 Effect of organic solvents on Bsubap-I

The Bsubap-I demonstrated organic solvent stability in the following order: n-hexane \geq methanol > xylene > 2-propanol > acetonitrile > ethanol > benzene (Fig.5.25). More than 90% of original activity of Bsubap-I was retained even after pre-incubation for 7 days at 25°C in the presence of 20% (v/v) of tested organic solvents, except benzene (Fig.5.25).

Fig.5.25 Organic solvent stability of Bsubap-I. Enzyme activity in the absence of solvents was considered as 100% activity and other values were compared with that. Each value represents mean \pm S.D. of three experiments.

5.5.7 Pharmacological properties of Bsubap-I

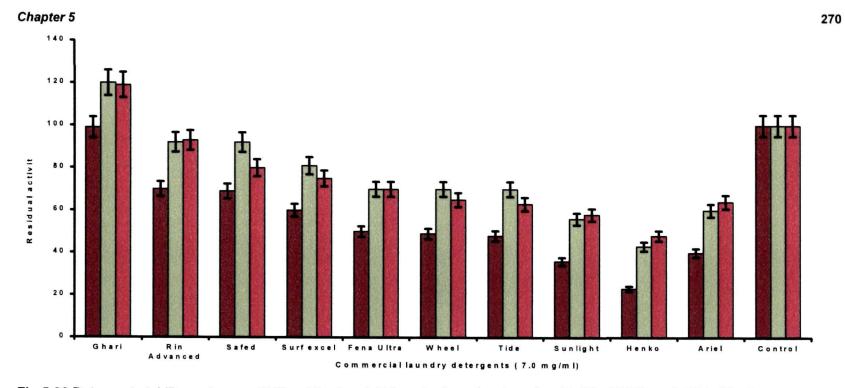
Bsubap-I from *B.subtilis* DM-04 at a dose of 15 μ g/ml induced 2.8 % hemolysis of the washed human erythrocytes, and did not display any detrimental effect on goat liver, heart, lungs and kidney tissues at the tested dose (Table 5.10). Further, as shown in Table 5.10, Bsubap-I did

Sudhir K Rai

not interfere with the normal clotting time of goat platelet- poor plasma (PPP).

Table 5.10 Pharmacological properties of Bsubap-I from *B.subtilis* DM-04.Values are mean± S.D. of three experiments.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of Bsubap-I 90 min	
post incubation at 37 °C)	
Control (without Bsubap-I)	1.4 ± 0.1
Treatment	2.8 ± 0.2
Ca-Clotting time (s)	
Control (without Bsubap-I)	128.0 ± 6.4
Treated (with 15.0 μg / ml of Bsubap-I)	131.0 ± 6.6
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μ g / ml of Bsubap-I 5 h	
post incubation at 37 °C)	
a) <i>Heart</i>	
Control (without Bsubap-I)	0.10 ± 0.01
Treatment	0.25 ± 0.01
b) <i>Lung</i>	
Control (without Bsubap-I)	0.12 ± 0.01
Treatment	0.33 ± 0.01
c) Liver	
Control (without Bsubap-I)	0.15 ± 0.06
Treatment	0.26 ± 0.01
d) <i>Kidney</i>	
Control (without Bsubap-I)	0.11 ± 0.05
Treatment	0.28 ± 0.01


<u>Sudhir K Rai</u>

5.6 Some industrial applications of Bsubap-I

5.6.1 Detergent compatibility and stain removal potency of Bsubap-I

The stability and compatibility study of Bsubap-I (7.0 µg / ml) with most of the commercial laundry detergents at 37°C temperature was observed in the following order: Ghadi® > Rin advanced® = Safed® > Surf excel® > Tide® = Wheel® > Fena ultra® > Aerial® > Henko® (Fig. 5.26). The blood stain removal from cotton fabrics shown by a 1:1 (v/v) mixture of detergent (7.0 mg / ml): Bsubap-I (7.0 µg / ml) solution was significantly higher (p < 0.05) compared to the detergents solutions or purified protease solution alone in the tested temperature. For example, about 27% and 23% increase in removal of blood stain was observed post washing the stained cotton fabrics with Ghadi® and Rin advanced® detergents, respectively supplemented with Bsubap-I (Fig. 5.27).

<u>Sudhir K Rai</u>

Fig.5.26 Detergent stability and compatibility of Bsubap-I (7.0 µg / ml) pre-incubated at 25 (■), 37([∞]), and 45°C (■). Enzyme activity in the absence of detergent was considered as 100% activity and other values were compared with that. The values represent mean ± S.D. of three determinations.

Sudhir K Rai

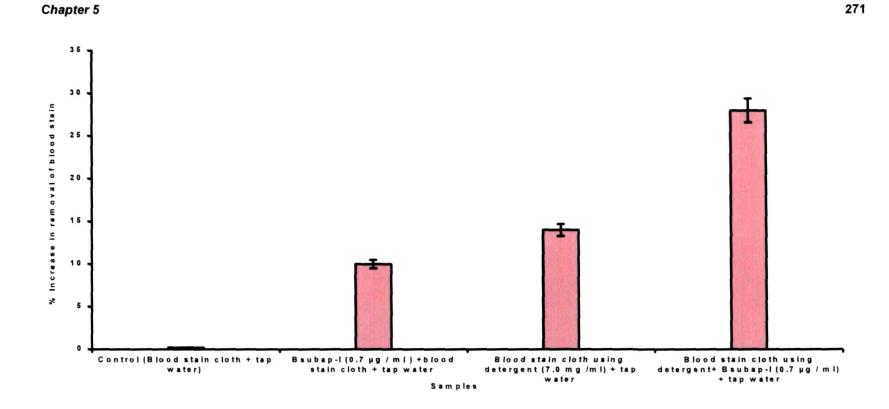
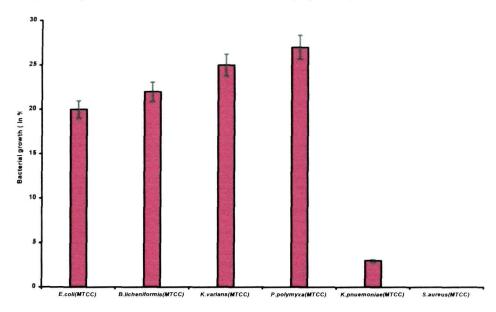



Fig.5.27 Wash performance test of Bsubap-I at 37°C. The values represent mean ± S.D. of three determinations.

Sudhir K Rai

Chapter 5 5.6.2 Antibacterial activity

The Bsubap-I inhibited the growth of E. coli to 20% and 33% of its original growth (in absence of Bsubap-I) post 12 and 24 h of incubation, respectively at 37°C. The growth of *Bacillus licheniformis, Kocuria varians, Paenibacillus polymyxa, Klebsiella. pneumoniae* and *Stapylococcus. aureus* was inhibited by Bsubap-I to 22%, 25%, 27%, 3% and 0%, respectively, post 24 h of incubation at 37°C (Fig. 5.28).

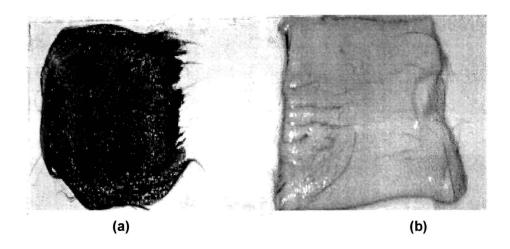


Fig.5.28 Antibacterial activity of purified Bsubap-I (0.25 mg /ml) from *B.subtilis* strain DM-04. Values represent mean ± S.D of three experiments.

Sudhir K Rai

Chapter 5 5.6.3 Dehairing activity

The Bsubap-I from *B.subtilis* strain DM-04 demonstrated appreciable dehairing activity (Fig. 5.29). This effect was in accordance with the protease activity of Bsubap-I. When the raw skin was incubated with the purified protease at 37°C for 12 h, the hairs could be pulled out easily.

Fig. 5.29 Dehairing activity of Bsubap-I (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with Bsubap-I (50 U / ml) for 12 h at 37°C.

5.7 Isolation and purification of a zwitterionic protease (Alzwiprase)

The CM-Cellulose and DEAE-Sephadex A-50 unbound fraction (DEAE-Sephadex A-50 flow-through) containing the neutral/zwitterionic proteases at pH 7.0 represented 57.0% of total extracellular proteases of *B. subtilis* strain DM-04. As shown in Fig 5.30, when this neutral fraction (at pH 7.0) was loaded into a sephacryl S-200 column, the proteins were eluted as a major peak (GF-I). The ethanol precipitated GF-I fraction was separated by C_{18} Nova pak RP-HPLC column into five major peaks (HP-I to HP-V).The

<u>Sudhir K Rai</u>

Chapter 5 HP-I fraction with a retention time of 5.371min (Fig. 5.31) demonstrated maximum protease specific activity (5 X 10³ U / mg) and was found to be homogenous by 12.5 % SDS-PAGE (Fig. 5.32). The SDS-PAGE of about 15 µg protein under both reduced and non-reduced conditions displayed a single band of 16.9 kDa (Fig.5.32) suggesting a monomer protease. This protease was named as Alzwiprase (Alkaline zwitterionic protease). A summary of purification of Alzwiprase is presented in Table 5.11.

Purification step	Total protein	Enzyme yield	Total enzyme	Specific activity	Purification fold
	(mg)	(%)	activity	(U / mg)	
			(U)		
Cell-free	240.0	100	5.1 x 10⁴	213	1
supernatant					
CM-Cellulose	153.0	66.7	3.4 x 10⁴	222.0	1.04
flow throw					
DEAE	73.0	57.0	2.9 x 10⁴	397.0	1.9
Sephadex A-					
50 flow throw					
Ethanol	18.0	45.0	2.3 x 10⁴	1278.0	6.0
precipitate					
(GF-I)					
HP-I	3.0	29.0	1.5 x 10⁴	5,000.0	23.5
(Alzwiprase)					

Table 5.11 Summary of purification of Alzwiprase from Bacillus subtilis strain DM-04. Values are from a typical experiment.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

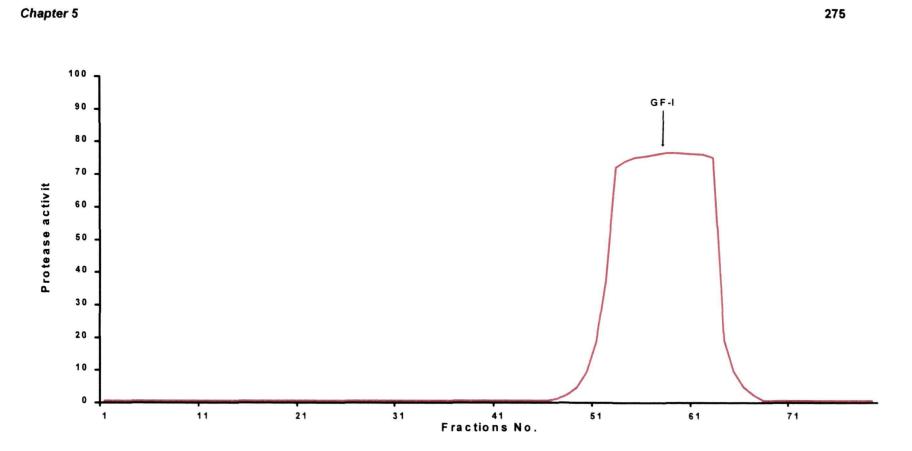


Fig. 5.30 Gel filtration profile of zwitterionic proteins from B. subtilis strain DM-04.

<u>Sudhir K Rai</u>

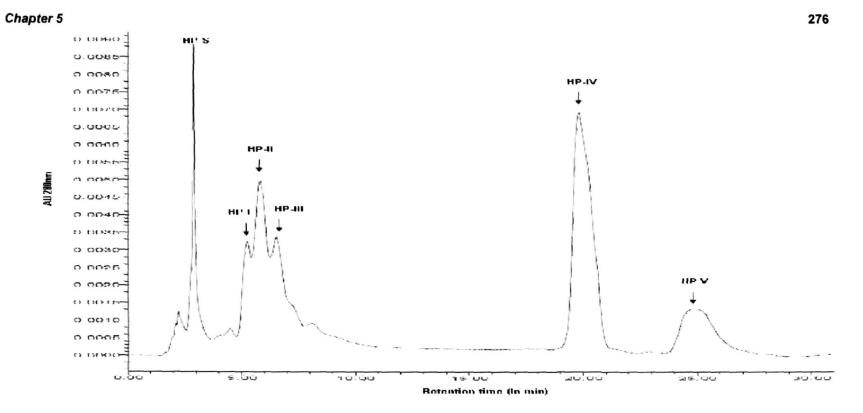
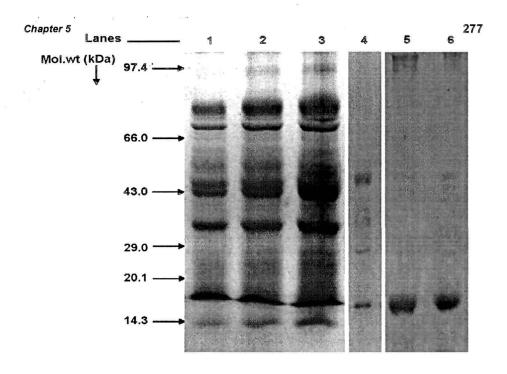



Fig.5.31 Reverse-phase HPLC of GF-I fraction. HP-S stand for solvent peak .

<u>Sudhir K Rai</u>

Fig.5.32 12.5% SDS-polyacrylamide gel electrophoresis of purified protease. Molecular weight markers were phosphorylase b (97,400 Da), BSA (66,000 Da), ovalbumin (43,000 Da), carbonic anhydrase (29,000 Da), soybean trypsin inhibitor (20,100 Da) and lysozyme (14,300 Da); lane 1, crude protease (40 μ g); lane 2, CM-Cellulose flow through (CMFT) (30 μ g); lane 3, DEAE-Sephadex A-50 Flow through (DEFT) (30 μ g); lane 4, ethanol precipitated fraction (8 μ g); lane 5, HP-I fraction under reduced condition (15.0 μ g); lane 6, HP-I fraction under non-reduced condition (15.0 μ g).

5.8 Biochemical characterization of Alzwiprase

Some of the biochemical properties of Alzwiprase are shown in Table 5.12.

5.8.1 Effect of pH and incubation temperature

Alzwiprase showed activity at alkaline range of pH (8.0-12.0) and in a broad range of temperature (30-55°C); however, optimum activity was observed at 45°C (Fig. 5.33) and at pH 10.0 to 10.5 (Fig. 5.34).

<u>Sudhir K Rai</u>

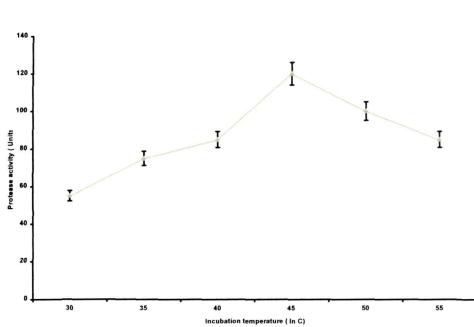


Fig. 5.33 Effect of incubation temperature on Alzwiprase activity. Each value represents mean \pm S.D. of three experiments.

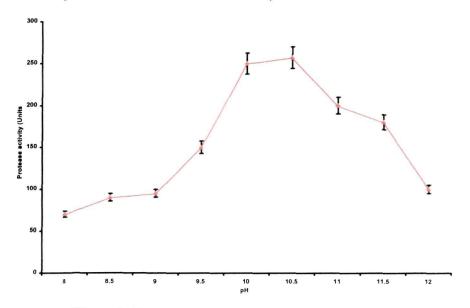


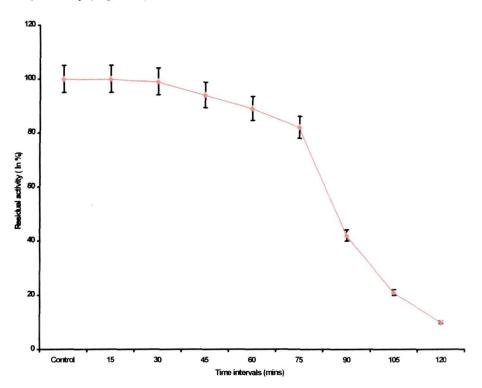
Fig.5.34 Effect of pH on Alzwiprase activity. Each value represents mean \pm S.D. of three experiments.

<u>Sudhir K Rai</u>

Chapter 5

5.8.2 Substrate specificity study

Casein was found to be the most preferred substrate for Alzwiprase followed by hemoglobin, gelatin, chicken-feather keratin (β -keratin), and bovine serum albumin; however human hair (α -keratin) and collagen were not hydrolyzed by this enzyme (Table 5.12).


Table 5.12Biochemical properties and substrate specificity of Alzwiprasefrom Bacillus subtilis strain DM-04. Substrate specificity values are mean± S.D of three experiments.

Biochemical property	Value
Optimum pH	10.0
Optimum temperature	45°C
K _m (μM) for casein	59.0
V _{max} (µmol / mg / min) for casein	336.0
Substrate specificity (unit mg ⁻¹ protein)	
(mean ± S.D., n=3)	
(a) Casein	5000.0 ± 100
(b) Hemoglobin	2560.0 ± 51.0
(c) Fibrin	1954.0 ± 39.1
(d) Gelatin	1300.0 ± 26.0
(e) Bovine serum fibrinogen	988.0 ± 20.0
(f) Chicken-feather keratin	4 33.0 ± 9.0
(g) Bovine serum albumin	149.0 ± 11.0
(h) Human-hair keratin	0.0
(i) Collagen	0.0

<u>Sudhir K Rai</u>

Chapter 5 5.8.3 Thermostability study

Heating the Alzwiprase at 60 °C for 15 min did not affect its protease activity; however heating it for 90 min and 120 min at the same temperature resulted in reduction of 75% and 92% of protease activity, respectively (Fig.5.35).

Fig.5.35 Thermo-stability study of Alzwiprase from *B.subtilis* strain DM-04 at 60°C. Each value represents mean ± S.D. of three experiments.

5.8.4 Effect of surfactants, chelators, denaturing agents, oxidizing and bleaching agents, and chemicals inhibitors on Alzwiprase

The effects of different chemicals, surfactant and urea on enzyme catalyzed reaction are shown in Table 5.13. The purified protease retained 92.0 \pm 1.8% of its original activity in presence of 2 mM EDTA, indicating the metallic ions were not necessary for enzyme activity. Further, other chemicals such as that SDS (40 mM), urea (6M), tween-20 (1% v/v),

Sudhir K Rai

Chapter 5 triton-X 100 (1% v/v), H_2O_2 (5 .0 and 10.0 % (v/v)) and sodium perborate [(0.5 and 1.0 % (v/v))] did not affect proteolytic activity of Alzwiprase. In fact, in presence of urea bleaching and oxidizing agents, the Alzwiprase activity was enhanced (Table 5.13). The serine protease inhibitor PMSF at a concentration of 2 mM significantly reduced the activity of Alzwiprase. Whereas, TPCK and TLCK, the inhibitors of chymotrypsin and trypsin-like serine protease, respectively at 2mM concentration could not modulate the activity of this enzyme. The Alzwiprase retained 90.0 ± 3.0 % of initial activity in presence of histidine inhibitor pBPB (2 mM). The partial inhibition by DTT (2 mM) might be due to reduction of intramolecular disulfide bonds require to maintain the activity and stability of Alzwiprase (Table 5.13). Failure in inhibition of protease activity of Alzwiprase by p-BPB indicated absence of histidine residue in the active site of the enzyme.

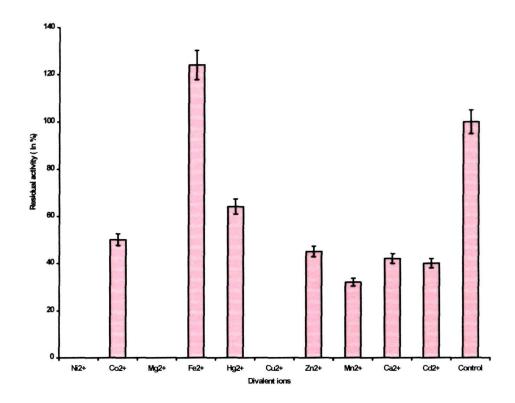
Table 5.13 Effect of surfactants, inhibitors, EDTA, denaturing agents, oxidizing and bleaching agents on protease activity of Alzwiprase from B. subtilis strain DM-04. Assay was carried out at pH 10.0 and 45°C. Values are mean ± S.D. of three determinations.

Reagents/ effectors	Residual activity (%)	
Control	100	
Inhibitors		
PMSF (2 mM)	34.0 ± 0.7	
(4 mM)	12.0 ± 0.2	
4-Bromophenacyl bromide (2 mM)	90.0 ± 3.0	
(4 mM)	89.0± 2.5	
IAA (2 mM)	75 ± 4.0	
(4 mM)	51.0 ± 3.0	

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 5 Reagents/ effectors	28 Residual activity (%
TLCK (2 mM)	100
(4 mM)	97 ± 1.0
TPCK (2 mM)	100
(4 mM)	98 ± 1.2
Chelators	
EDTA (2 mM)	92.0 ± 5.0
(4 mM)	89 ± 3.4
Surfactants	
SDS (40 mM)	97.6 ± 2.0
Trition-X-100 (1% v/v)	100
Tween 20 (1% v/v)	95.1 ± 5.0
Tween 80 (1% v/v)	95.1 ± 5.0
Denaturing agent	
Urea (6 M)	126.0 ± 6.0
Oxidizing agent	
H ₂ O ₂ (% v/v)	
5.0	130.0 ± 2.6
10.0	121.0 ± 2.4
Bleaching agent	
Sodium perborate (% v/v)	
0.5	122.0 ± 2.4
1.0	114.0 ± 2.3
Disulfide bond reducing agent	
DTT(2 mM)	90.0 ± 5.0
(4 mM)	10.0 ± 1.0


.

<u>Sudhir K Rai</u>

-

5.8.5 Effect of metal ions on catalytic activity of Alzwiprase

Study on the influence of metal ions on activity of Alzwiprase showed that all the tested cations viz. Ni²⁺, Cd²⁺, Co²⁺, Mg²⁺, Hg²⁺, Cu²⁺, Mn²⁺, Ca²⁺ and Zn²⁺ inhibited the enzyme activity, to a various extents (Fig.5.36). Maximum (100%) inhibition of protease activity was observed in presence of Mg²⁺, Ni²⁺ and Cu²⁺ (Fig.5.36). In presence of Fe²⁺, the proteolytic activity of Alzwiprase was enhanced (Fig.5.36).

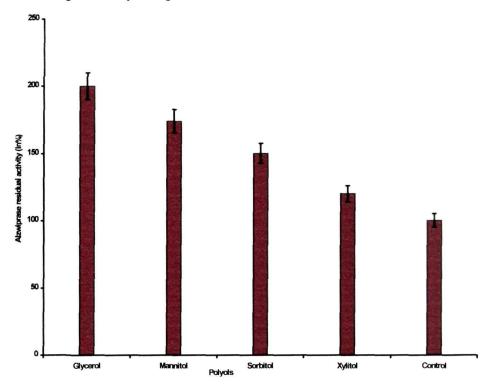
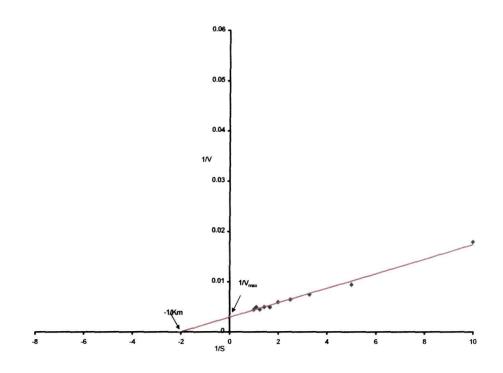


Fig.5.36 Effect of divalent ions on Alzwiprase from *B.subtilis* strain DM-04. Each value represents mean \pm S.D. of three experiments.

<u>Sudhir K Rai</u>

Chapter 5 5.8.6 Effect of polyols on thermostability of Alzwiprase

The residual protease activity remaining after heating of Alzwiprase at 60°C for 120 min in presence of polyols is displayed in Fig.5.37. It was observed that in presence of glycerol, the stability of enzyme was enhanced to 2 fold. The xylitol was found to be least influencing in stabilizing the enzyme against heat-denaturation.


Fig. 5.37 Effect of polyols against heat-denaturation of catalytic activity of Alzwiprase. The activity of enzyme in absence of polyols was considered as 100% activity and other values were compared with that. Each value represents mean \pm S.D. of three experiments.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 5 5.8.7 K_m and V_{max}

The kinetic constant of the enzyme for hydrolysis of casein was calculated which shows a K_m value of 5.9 mg /ml and a V_{max} value of 333.0 μ mol / min/ mg (Fig 5.38).

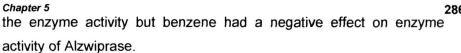


Fig. 5.38 Lineweaver-Burk plot to determine the K_m and V_{max} values of Alzwiprase using casein as a substrate. Each value represents mean of three experiments.

5.8.8 Effect of organic solvents on catalytic activity of Alzwiprase

The organic-solvent (at a final concentration of 20% v/v) stability of Alzwiprase is shown in Fig. 5.39. It was observed that enzyme retained its stability in the following order: n-hexane (Log P 3.5) > methanol (Log P - 0.764) > xylene (Log P 3.1) > ethanol (Log P - 0.235) ~ acetonitrile (Log P - 0.394) > benzene (Log P 2.0). Ethanol and 2-propanol did not influence

<u>Sudhir K Rai</u>

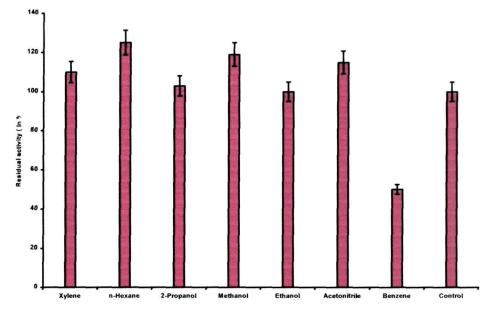


Fig. 5.39 Organic solvent stability of Alzwiprase. Enzyme activity in the absence of solvents was considered as 100% activity and other values were compared with that. Each value represents mean ± S.D. of three experiments.

5.8.9 Pharmacological properties of Alzwiprase

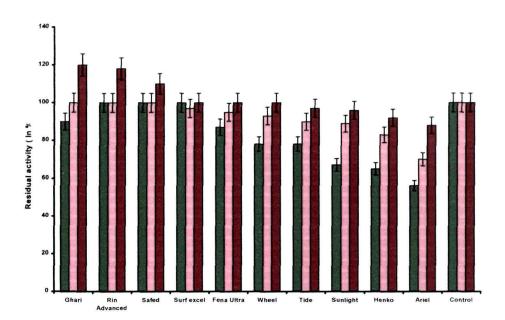
It was observed that Alzwiprase at a dose of 15 µg/ml caused 3% hemolysis of washed human erythrocytes and further, it did not damage the goat liver, heart, lungs and kidney tissues under the tested conditions (Table 5.14). Further, as shown in Table 5.14, Alzwiprase did not interfere with the normal clotting time of goat platelet- poor plasma (PPP).

Suchir K Rai

PhD Thesis, Tezpur University, 2010

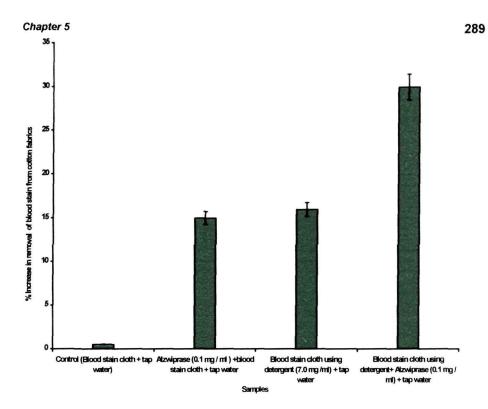
Chapter 5 **Table 5.14** Pharmacological properties of Alzwiprase from *B. subtilis* strain DM-04. Values are mean \pm S. D. of three determinations.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of	• • • • • • •
Alzwiprase 90 min post incubation at 37	
°C)	
Control (without Alzwiprase)	1.4 ± 0.1
Treatment	3.0 ± 0.5
Ca-Clotting time (s)	
Control (without Alzwiprase)	129.0 ± 6.5
Treated (with 15.0 µg / ml of	132.0 ± 7.0
Alzwiprase)	
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μg / ml	
of Alzwiprase 5 h post incubation at 37	
°C)	
a) Heart	
Control (without Alzwiprase)	0.09 ± 0.01
Treatment	0.27 ± 0.01
b) <i>Lung</i>	
Control (without Alzwiprase)	0.13 ± 0.01
Treatment	0.36 ± 0.02
c) <i>Liver</i>	
Control (without Alzwiprase)	0.16 ± 0.08
Treatment	0.28 ± 0.01
d) <i>Kidney</i>	
Control (without Alzwiprase)	0.12 ± 0.05
Treatment	0.27 ± 0.01


<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

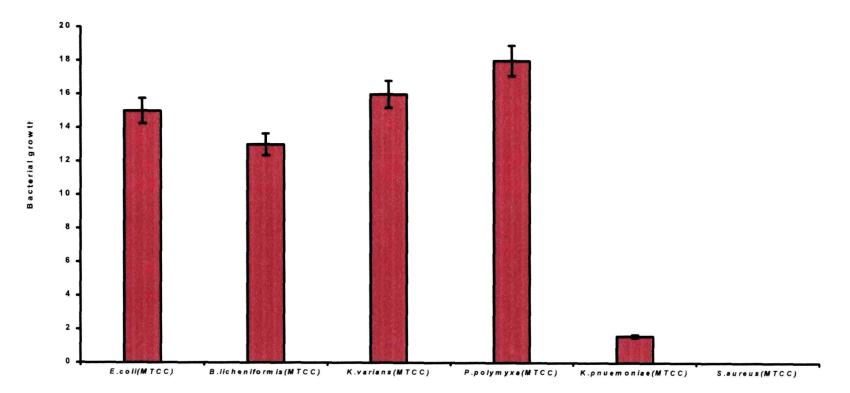
Chapter 5 5.9 Industrial applications of Alzwiprase


5.9.1 Detergent compatibility study

The Alzwiprase at concentration of 0.1 mg / ml demonstrated significant stability and compatibility with all the tested commercial laundry detergents at 37°C (Fig. 5.40). This excellent laundry detergent stability of Alzwiprase prompted us to evaluate its stain removal potency for application in commercial laundry detergent formulations. It was observed that Alzwiprase at a concentration of 0.1mg /ml could remove 28 \pm 2.1% (mean \pm S.D., n = 3) of blood stain from cotton fabrics (Fig 5.41).

Fig.5.40 Detergent stability and compatibility of Alzwiprase at preincubation temperatures of $25(\blacksquare)$, 37 (\blacksquare) and 45 (\blacksquare)°C for 60 min. Enzyme activity in the absence of detergent was considered as 100% activity and other values were compared with that. The values represent mean \pm S.D. of three determinations.

Sudhir K Rai


Fig.5.41 Wash performance study of Alzwiprase at 37° C.The values represents mean ± S.D. of three determinations.

5.9.2 Antibacterial activity

Staphylococcus aureus and *Klebseilla pneumoniae* displayed a fast antibacterial response when treated with a dose of 0.30 mg / ml concentrations of Alzwiprase for post 12h of incubation at 37°C (Fig. 5.42). In contrast, Alzwiprase exerted minimum inhibition of growth for *Bacillus licheniformis, Kocuria varian,* and *Peanibacillus polymyxa* strains (Fig. 5.42).

Sudhir K Rai

Fig.5.42 Antibacterial study of Alzwiprase (0.30 mg /ml) from *B.subtilis* strain DM-04 post 12h of incubation at 37°C. Values represent mean ± S.D of three experiments.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

290

5.9.3 Dehairing activity

The Alzwiprase from *B.subtilis* strain DM-04 demonstrated appreciable dehairing activity (Fig. 5.43). The treated skins and controls showed no visible differences after incubation. No colour change was observed, although the presence of depilated areas was noted in the skins treated with the Alzwiprase. When the hairs were pulled with a forcep, they were very easily released in enzyme-treated pelts. After incubation intact hairs could be taken out of the skins easily by simple scraping. In controls, hair loosening was not observed, even by the mechanical action of a forcep.

Fig. 5.43 Dehairing activity of Alzwiprase (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with Alzwiprase (50 U / ml) for 12 h at 37°C.

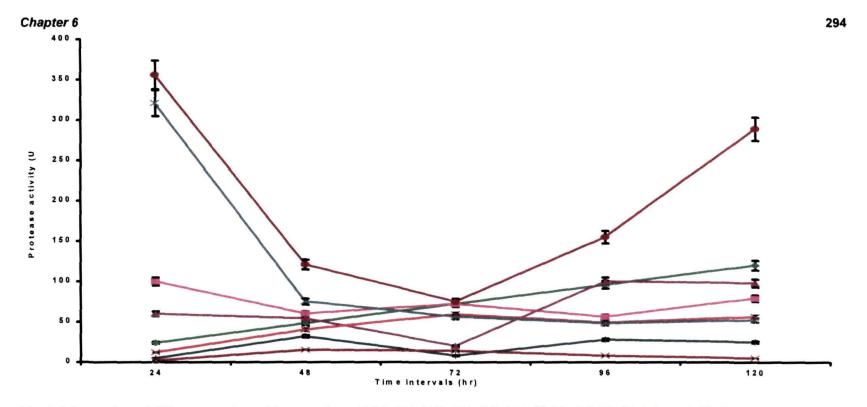
Sudhir K Rai

Chapter 6 CHAPTER VI

RESULTS

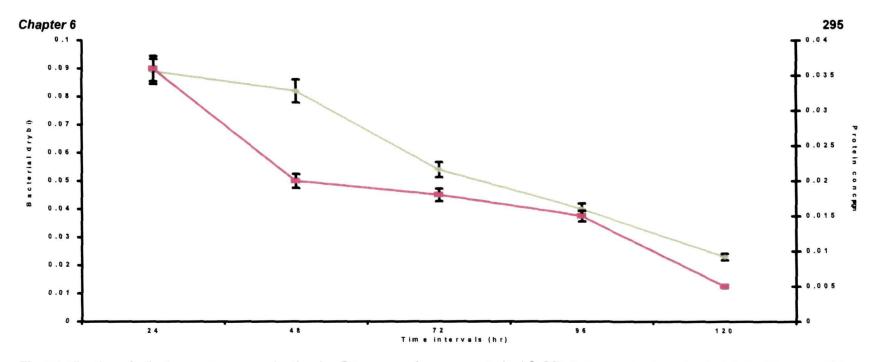
<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010


۱

Process optimization, isolation, purification, biochemical characterization and industrial applications of alkaline protease isolated from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II

6.1 Alkaline protease production under solid-state fermentation6.1.1 Screening of different agro-industrial and waste materials for alkaline protease production


In SSF, the selection of a suitable solid substrate for fermentation process is a critical factor and thus involves the screening of a number of agroindustrial and kitchen waste materials for microbial growth and product formation. All the substrates used in this except tea leaves study supported the growth and enzyme production by *P.tezpurensis* sp.nov. strain AS-S24-II in SSF condition; the maximum protease production was obtained with PP (356.0 U/gds) followed by IC (321.0 U/gds) as solid substrate post 24 h of incubation at 45°C. The minimum protease production (2.0 U/gds) was observed when waste TL was used as substrate/ support material (Fig. 6.1). The protein content of the cell free extract as well as bacterial growth followed the similar trend like protease production on different solid substrates (Fig.6.2).

Sudhir K Rai

Fig.6.1 Screening of different waste residues such as MOC (♦), WB (■), RB (▲), IC(X), PP(●), BL(●), and TL(+) for the production of alkaline protease by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II at different time intervals. Values are mean ± S.D. of three experiments.

Sudhir K Rai

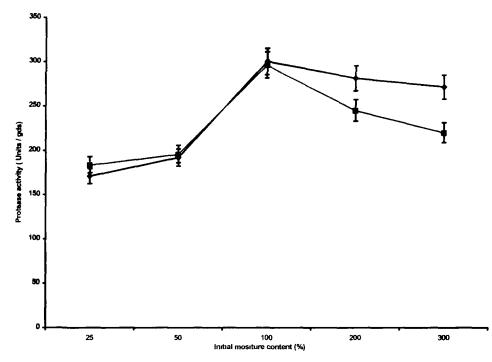
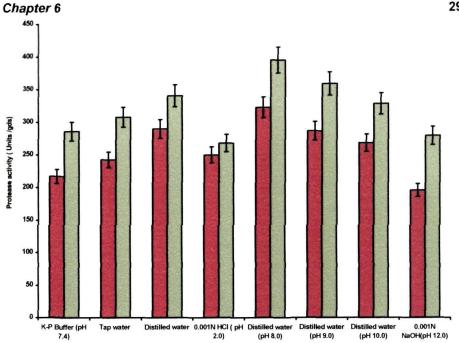


Fig.6.2 Kinetics of alkaline protease production by *P.tezpurensis* sp.nov. strain AS-S24-II. Legends show bacterial dry biomass (*) and protein concentration of cell free extract (■).Values are mean ± S.D. of three experiments.

Sudhir K Rai


Chapter 6 296 6.1.2. Effects of initial moisture content of the substrate and moistening agent on protease production

Optimum level of protease production (298 U/gds) was attained when the initial moisture level of the substrate was adjusted to 100 %, (Fig 6 3) Amongst the tested moistening agents, distilled H_2O adjusted to pH 8 0 supported maximum protease yield (Fig 6 4)

Fig.6.3 Influence of initial moisture content of the substrates [PP (\bullet) or IC (\bullet)] on protease production Values are mean \pm S D of triplicate determinations post 24h incubation at 45°C Moistening agent was distilled water, adjusted to pH 8 0 with 0 01N NaOH

Sudhir K Rai

Fig.6.4 Influence of moistening agents on alkaline protease production by *P.tezpurensis* sp.nov. strain AS-S24-II in SSF using either IC (■) or PP (■) as a solid substrate. Values represent mean ± S.D of three experiments post 24h at 45°C.

6.1.3 Effect of inoculum's size on protease production

Inoculum level of bacterium was also found as an important parameter influencing the production of protease in SSF. As shown in Fig.6.5, with an increase in inoculum size from 0.5 ml to 2.0 ml (5.0 g substrate), protease production was also enhanced significantly (Fig.6.5), while increasing the inoculum's size from 2.0 ml to 5.0 ml did not have a significant impact in enhancing the protease yield (p>0.05). However, an increase in inoculum's size beyond 5.0 ml resulted in a steady decline in protease production by *P.tezpurensis* sp.nov. strain AS-S24-II (Fig. 6.5).

Sudhir K Rai

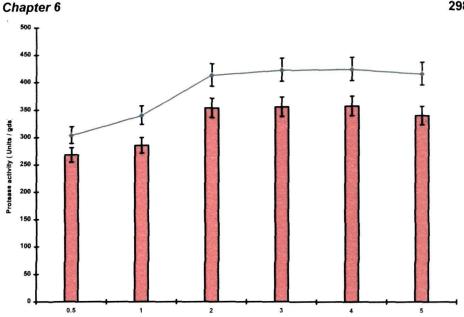
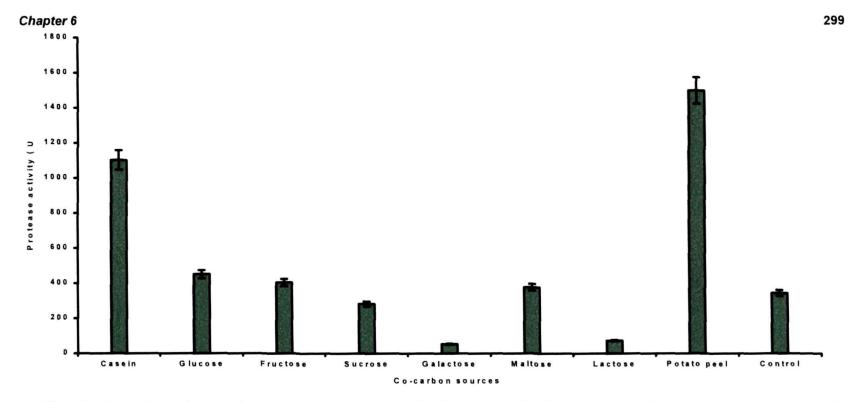
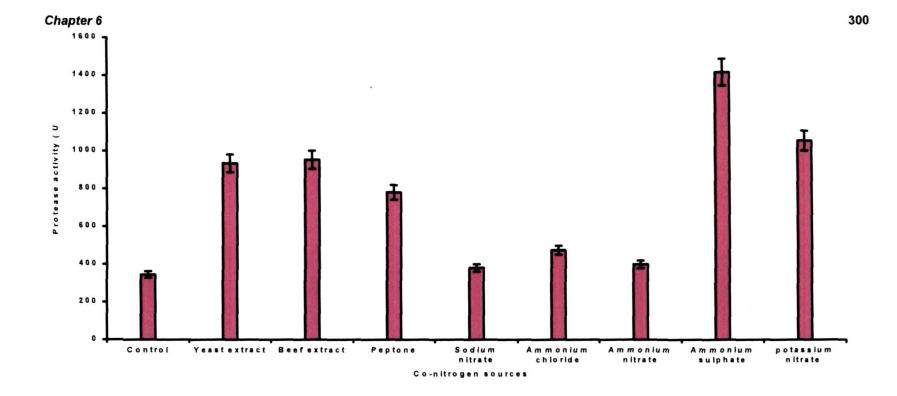


Fig.6.5 Influence of inoculum size on protease production by P.tezpurensis sp.nov. strain AS-S24-II strain using PP (♦) or IC (III) under SSF. Values are mean ± S.D. of three determinations.


6.1.4 Effect of supplementation of co-carbon and co-nitrogen sources on protease production

Several sources of carbon such as casein, glucose, fructose, xylose, galactose, maltose, sucrose, galactose, glucose and lactose were supplemented to solid medium at 1% (w/w) level. It was observed that potato peel alone supported maximum protease production (1500.0 U/gds) followed by casein (1103.0 U / gds), whereas least protease production was recorded in presence of galactose 45.0 U / gds (Fig.6.6) Among the tested nitrogen compounds, 0.1 % (w/w) ammonium sulphate followed by potassium nitrate served as the best co-nitrogen sources for alkaline protease production by P.tezpurensis sp.nov. strain AS-S24-II strain on IC as main substrate (Fig.6.7).

Sudhir K Rai


PhD Thesis, Tezpur University, 2010

298

Fig.6.6 Effect of supplementation of co-carbon sources (10 % w/w) to IC (90 % w/w) on alkaline protease production by *P.tezpurensis* sp.nov. strain AS-S24-II. Values are means ± S.D. of three determinations.

Sudhir K Rai

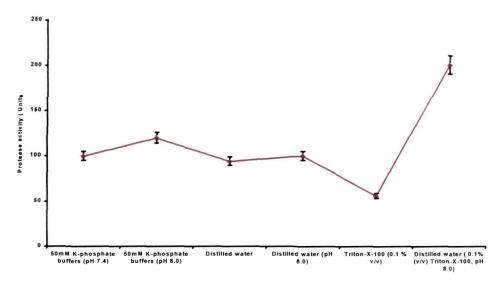


Fig.6.7 Effect of supplementation of co-nitrogen sources (1.0% w/w) to IC (99% w/w) (substrate) on protease production by *P.tezpurensis* sp.nov. strain AS-S24-II. Values are means ± S.D. of three determinations.

Sudhir K Rai

6.1.5 Protease extraction from fermented matter

Among the different extractions medium used for the recovery of protease from the fermented matter (IC), distilled water containing 0.1%(v/v) triton X-100, pH 8.0 served as best extraction medium (Fig.6.8).

Fig.6.8 Screening of extraction mediums for maximum protease extraction from fermented substrate (IC). Values are means ± S.D. of three determinations.

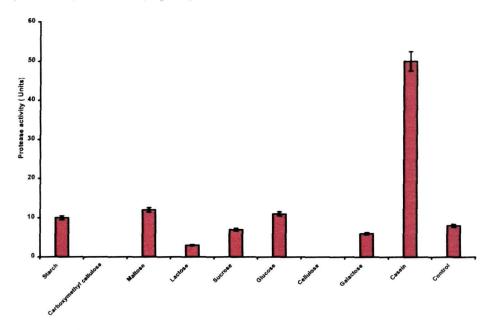
6.1.6 Batch fermentation

The influence of various combinations of IC and PP along with supplementation of co-carbon and co-nitrogen sources on protease production showed that when IC and PP powders were mixed in a ratio of 1:1 without any co- carbon and nitrogen sources, a significant increase in protease yield (p < 0.05) could be achieved (Table 6.1).

Sudhir K Rai

Table 6.1 Influence of different combinations of co-substrates on alkaline protease production by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II under solid-state fermentation. Values are mean± S.D of three determinations.

Substrate(s)	Protease activity (U/gds)
I.cylindrica (100%)	321.0 ± 16.1
Potato peel (100%)	356.0 ± 17.8
<i>I.cylindrica</i> (89%w/w)+ casein (10 % w/w) + ammonium sulphate (1% w/w)	1500.0 ± 75.0
I.cylindrica (90%w/w) + Potato peel (10%)	1699.0 ±84.95
I.cylindrica (80%w/w) + Potato peel (20 %w/w)	2016.0 ±100.8
I.cylindrica (50%w/w) + Potato peel (50%w/w)	2362.0 ± 118.1
Potato peel (89% w/w) + casein (10 % w/w) + ammonium sulphate (1% w/w)	1126.0 ± 56.3


<u>Sudhir K Rai</u>

-

-

6.2 Alkaline protease production under submerged fermentation6.2.1 Effect of different carbon source on protease production

Different carbon sources were screened for alkaline protease production under submerged fermentation. Maximum bacterial growth as well as alkaline protease production was observed in presence of casein (50 U), while the least growth and alkaline protease production was observed in presence of lactose (8 U). The two carbonic compounds viz cellulose and carboxylmethyl cellulose could not support bacterial growth as well as protease production (Fig.6.9).

Fig.6.9 Effect of different carbon sources on alkaline protease production from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II under SmF. Values are means ± S.D. of three determinations.

6.2.2 Effect of nitrogen source on protease production

Various nitrogen sources were tested for alkaline protease production and maximum alkaline protease production was observed in presence of 0.1% <u>Sudhir K Rai</u>

Chapter 6 (w/v) ammonium sulphate followed by potassium nitrate. The least bacterial growth and protease production was observed in presence of peptone (Fig.6.10), demonstrating the bacteria have preference for inorganic nitrogen source compared to organic nitrogen compounds for protease production.

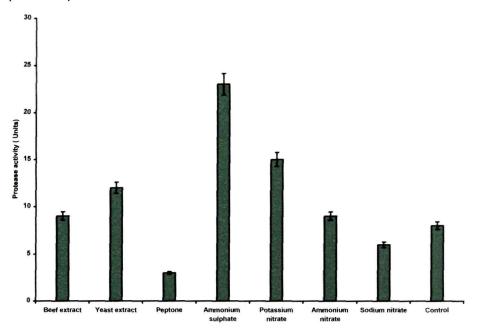
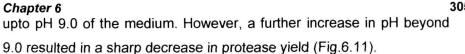


Fig.6.10 Effect of various nitrogen sources on alkaline protease production from Paenibacillus tezpurensis sp.nov. strain AS-S24-II in SmF. Values are means ± S.D. of three determinations.


6.2.3 Effect of pH on protease production

The effect of pH on alkaline protease production from P.tezpurensis sp.nov. strain AS-S24-II was determined by adjusting the medium pH and assaying the enzyme activity. Result showed that with an increase in the pH of the medium from 6.0 to 8.0, the protease production was also enhanced linearly; and than the protease production remained constant

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

304

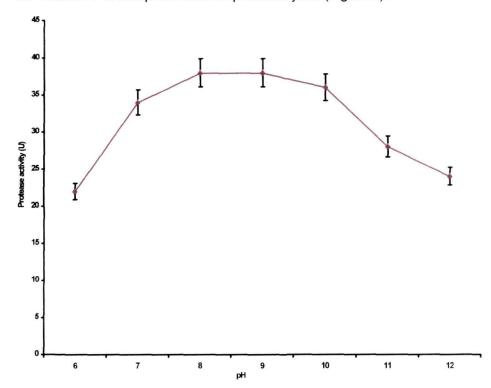
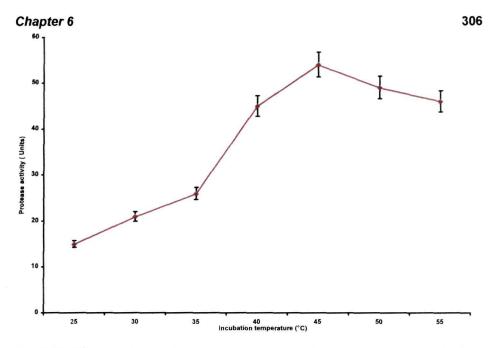


Fig.6.11 Effect of pH on alkaline protease production by Paenibacillus tezpurensis sp.nov. strain AS-S24-II in SmF. Values are means ± S.D. of three determinations.


6.2.4 Effect of temperature on protease production

The effect of temperature on alkaline protease production from P.tezpurensis sp.nov. strain AS-S24-II showed that alkaline protease production was linearly increased from 25 to 45°C and beyond this temperature protease production declined (Fig.6.12). Therefore, 45°C was considered as the optimum temperature for protease production by P.tezpurensis sp.nov. strain AS-S24-II in SmF at pH 8.0.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

305

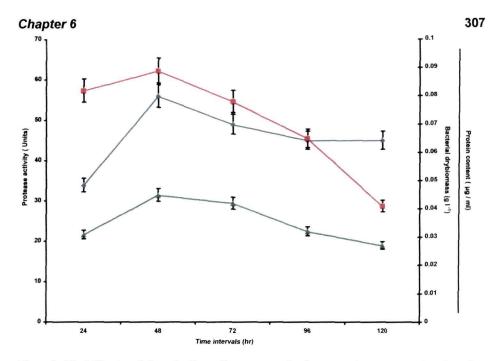


Fig.6.12 Effect of incubation temperature on alkaline protease production from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II in SmF. The pH of the medium was adjusted to 8.0. Values are means \pm S.D. of three determinations.

6.2.5 Kinetics of protease production

Result showed that optimum alkaline protease production was achieved after 48h of incubation (Fig. 6.13). Thereafter, a sharp fall in protease production was recorded.

Sudhir K Rai

Fig. 6.13 Effect of incubation time on alkaline protease production by *P.tezpurensis* sp.nov. strain AS-S24-II in SmF. Legends show alkaline protease production (◆) bacterial dry biomass (■) and protein content (▲). Values are means ± S.D. of three determinations.

6.2.6 Effect of agitation rate on protease production

The effect of the agitation speed on the protease production showed that maximum alkaline protease production took place when the culture flasks were aerated at 200-250 rpm (Fig. 6.14).

Sudhir K Rai

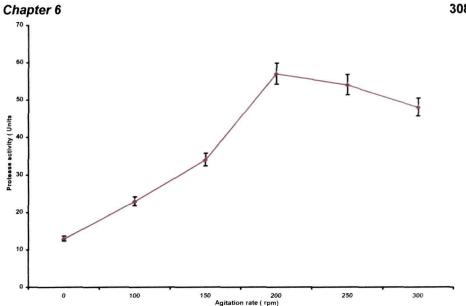


Fig.6.14 Effect of agitation rate on alkaline protease production from P.tezpurensis sp.nov. strain AS-S24-II under SmF. Values are means ± S.D. of three determinations.

6.3 Statistical optimization of alkaline protease production under submerged fermentation

6.3.1 Screening of process parameters significantly influencing the alkaline protease production in SmF using Plackett-Burman design

In this study, the factors significantly affecting the alkaline protease production by P.tezpurensis sp.nov. strain AS-S24-II was identified using a Plackett-Burman statistical design. The 15 sets of experiments were carried out according to the experimental matrix presented in Table 6.2, where the alkaline protease (U/ml/min) was the measured response. A wide variation in response (protease production) was found among the different trials (7.6 to 75.0 U/ml/min), as shown in Table 6.2, thereby emphasizing the importance of medium optimization to attain a higher

Sudhir K Rai

productivity. Thus, by neglecting the terms that were insignificant (p>0.05), the model equation for the alkaline protease production was written as equation 6.1

$$Y = 7.7 + 41.7 X_1 + 10.0 X_2 + 113.6 X_3 - .--- (6.1)$$

Where, Y = (protease activity U), X_1 = Ammonium sulphate (% w/v), X_2 = pH of the medium, and X_3 = casein level (% w/v), respectively.

On the basis of calculated t-values (Table 6.3), ammonium sulphate, pH of the medium and casein level, were chosen for further optimization, since these factors significantly effected the protease production. Agitation rate, innoculum level and incubation time were kept at middle level.

Casein	Ammoniu	Incubati	Agitatio	pH of	Innoculum	Proteas
(% w/v)	m	on time	n rate	the	size (%	e yield
	sulphate	(h)	(rpm)	medium	v/v)	(Units)
	level (%					
	w/v)					
1 (2.5)	-1(0.05)	1 (96)	-1 (150)	-1 (7.0)	-1 (1.5)	21.0
1 (2.5)	1 (1.5)	-1 (48)	1 (250)	-1 (7.0)	-1 (1.5)	28.0
-1 (1.5)	1 (1.5)	1 (9 6)	- (150)	1 (9.0)	-1 (1.5)	18.0
1 (2.5)	-1 (0.05)	1 (96)	1 (250)	-1 (7.0)	1 (5.0)	14.0
1 (2.5)	1 (1.5)	-1 (48)	1 (250)	1 (9.0)	-1 (1.5)	12.0
1 (2.5)	1 (1.5)	1 (96)	-1 (150)	1 (9.0)	1 (5.0)	8.0
-1 (1.5)	1 (1.30)	1 (96)	1 (250)	-1 (7.0)	1 (5.0)	37.0
-1 (1.5)	-1 (1.20)	1 (96)	1 (250)	1 (9.0)	-1 (1.5)	43.0
-1 (1.5)	-1 (1.20)	-1 (48)	1 (250)	1 (9.0)	1 (5.0)	75.0

.

Table 6.2 Plackett–Burman store design showing six variables with codedvalues along with the observed results for alkaline protease production byPaenibacillus tezpurensis sp.nov. strain AS-S24-II in SmF.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

7

309

Chapter 6						310
1 (2.5)	-1 (1.20)	-1 (48)	-1 (150)	1 (9.0)	1 (5.0)	41.0
-1 (1.5)	1 (1.30)	-1 (48)	-1 (150)	-1 (7.0)	1 (5.0)	74.0
-1 (1.5)	-1 (1.20)	-1 (48)	- 1 (150)	-1 (7.0)	-1 (1.5)	31.0
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (8.0)	0 (2.5)	7.6
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (8.0)	0 (2.5)	7.6
0 (2.0)	0 (1.25)	0 (72)	0 (200)	0 (8.0)	0 (2.5)	7.6

Table 6.3 Statistical analysis of Plackett–Burman design showingcoefficient, t- and p-values for each variable (p-value <0.05).</td>

Variable		Protease	e yield (U)	
-	Co-	SE	4 6444	n velue
÷	efficient	Coef	t-Stat	p-value
Intercept	7.7	1.2019	6.38	0.024
Ammonium sulphate	41.7	1.5023	27.76	0.001
level				
(% w/v)				
Innoculum level	-24.6	1.5899	-15.46	0.004
(%v/v)				
pH of the medium	10.0	1.5899	6.26	0.025
Agitation rate (rpm)	-107.5	5.5158	-19.48	0.003
Incubation time (h)	-0.9	0.9014	-0.97	0.434
Casein level	113.6	5.5403	20.50	0.002
(% w/v)				

<u>Sudhir K Rai</u>

Chapter 6 6.3.2 Protease production optimization by RSM

Pursing the initial screening process, it was observed that the protease production was highly influenced by three variables, viz. concentration (% w/v) of casein, concentration (% w/v) of ammonium sulphate and pH of the M9 medium (Table 6.3). The results of the observed and predicted values of alkaline protease yield (response) as a function of the chosen variables with reference to the experiments performed according to the CCD is shown in Table 6.4. The parameters of Eq. 3.2 (see section 3.9.2) were determined by multiple-regression analysis by the application of RSM. The overall second-order polynomial regression equation showing the empirical relationship between protease activity (Y) and three test variables in coded units can be represented by Eq. 6.2.

$$Y = 534.875 + 14.57C_1 - 10.03C_2 + 11.39C_3 - 30.386C_1^2 + 38.914C_2^2 - 39.786C_3^2 - 4.738C_1C_2 + 2.263C_1C_3 - 4.388C_2C_3 - (6.2)$$

The coefficients of the model including the significance of each coefficient as determined by t test and p values in Table 6.5. Results showed that all the effects of C₁, C₂ and C₃, except quadratic effects of C₃ (C₁C₃ and C₂C₃) are significant (p<0.001). It was found that C₁ (pH of the medium) followed by C₃ (ammonium sulphate level) had significant effect (p<0.001) on alkaline protease production by bacterium under study (Table 6.5).The ANOVA of the quadratic regression model demonstrated that the computed F value for linear regression was much greater than the tabulated (P)>F value (Table 6.6). The coefficient (R²) and adjusted R² values were calculated as 99.40% and 98.86%, respectively.

<u>Sudhir K Rai</u>

Table 6.4 Observed and predicted values of alkaline protease production by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II post 48 h of incubation at 45°C and 200 rpm. The observed values are mean \pm S.D of triplicate determinations. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units C₁, pH of the medium; C₂, casein level (% w/v); C₃, ammonium sulphate (% w/v).

Run no.	Indep	endent Va	riables	Y Res	ponse	Residual
				(Protease	activity in	value
				U/ (ml)	
	C ₁	C ₂	C ₃	Observed	Predicted	
				value	value	
1	-1 (7.5)	-1(0.5)	-1(0.05)	480.0	480.823	-0.823
2	1(8.5)	-1(0.75)	-1(0.1)	516.4	514.913	1.487
3	-1(7.5)	1(1.25)	-1(0.1)	480.5	479.013	1.487
4	1(8.5)	1(1.25)	-1(0.1)	490.0	494.153	-4.153
5	-1(7.5)	-1(0.75)	1(0.20)	511.8	507.853	3.947
6	1(8.5)	-1(0.75)	1(0.20)	549.3	550.993	-1.693
7	-1(7.5)	1(1.25)	1(0.20)	486.8	488.493	-1.693
8	1(8.5)	1(1.25)	1(0.20)	513.3	512.683	0.617
9	0(8.0)	0(1.0)	-1(0.1)	487.0	489.918	-2.918
10	0(8.0)	0(1.0)	1(0.20)	522.8	519.058	3.742
11	-2 (7.0) [*]	0(1.0) -	0(0.15)	· 580.9	583.818	-2.918
12	2(9.0)	0(1.0)	0(0.15)	567.5	563.758	3.742
13	0(8.0)	-2(0.5)	0(0.15)	485.7	483.698	2.002
14	0(8.0)	2(1.5)	0(0.15)	505.3	506.478	-1.178
15	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275
16	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275
17	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275
						Continue

Sudhir K Rai

Chapter (6					313
Table 6.4	continued					
18	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275
19	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275
20	0(8.0)	0(1.0)	0(0.15)	534.6	534.875	-0.275

Table 6.5 Analysis of Variance (ANOVA) of alkaline protease produced byPaenibacillus tezpurensis sp.nov. strain AS-S24-II.

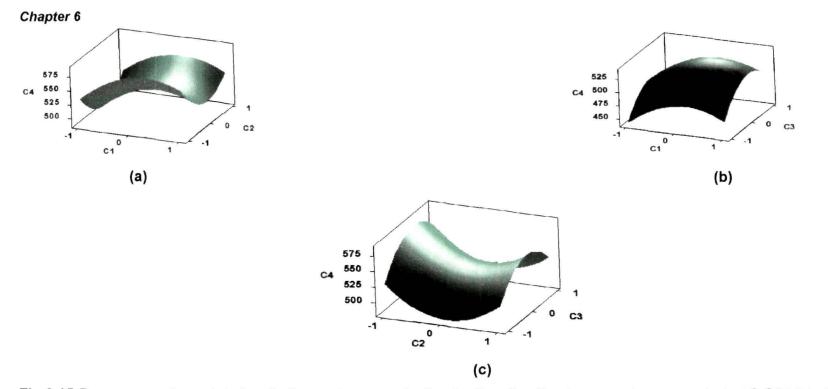
Source	DF	Seq SS	Adj SS	Adj MS	F-value	P-value
Regression	9	15773.2	15773.2	1752.58	184.64	0.000
Linear	3	4426.2	4426.2	1475.39	155.43	0.000
Square	3	10972.5	10972.5	3657.50	385.32	0.000
Interaction	3	374.5	374.5	124.83	13.15	0.001
Residual	10	94.9	94.9	9.49		
error						
Lack-of-Fit	5	94.9	94.9	18.98		
Pure error	5	0.0	0.0	0.00		
Total	19	15868.1				

Table 6.6 Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease production by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II in SmF under shake-flask study.

Factor	Coefficient	SE	Computed	p-value	
		coefficient	t-value		
Constant	534.875	1.0591	505.006	0.0*	
C ₁	14.570	0.9743	14.955	0.0	
				Continue	

.

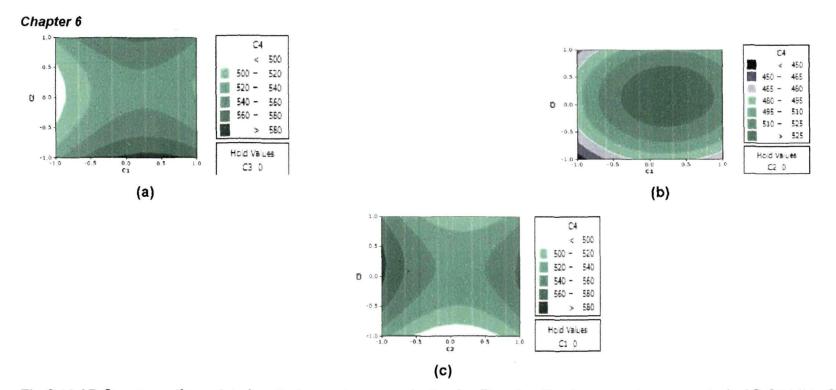
<u>Sudhir K Rai</u>


PhD Thesis, Tezpur University, 2010

4.

Chapter 6				314
Table 6.6 Cor	ntinued			
C ₂	-10.030	0.97.43	-10.295	0.0
C ₃	11.390	0.9743	11.691	0.0
C_1^2	-30.386	1.8579	-16.356	0.0
C ₂ ²	38.914	1.8579	20.945	0.0
C_{3}^{2}	-39.786	1.8579	-21.415	0.0
$C_1 C_2$	-4.738	1.0893	-4.349	0.001
$C_1 C_3$	2.263	1.0893	2.077	0.065
$C_2 C_3$	-4.388	1.0893	-4.028	0.002

 $R^2 = 99.40\%$, R^2 (pred) = 92.28%, R^2 (adj) = 98.86 %


<u>Sudhir K Rai</u>

315

Fig.6.15 Response surface plots for alkaline protease production by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II in SmF. The interaction between (a) pH of the medium (C₁) and concentration (%, w/v) of casein level (C₂), hold value C₃= 0 (b) pH of the medium (C₁) vs concentration (%, w/v) of ammonium sulphate level (C₃), hold value C₂= 0 and (c) concentration (%, w/v) of casein (C₂) vs concentration of ammonium sulphate level (C₃) (% w/v) hold value C₁ = 0.

Sudhir K Rai

316

Fig.6.16 2D Countor surface plots for alkaline protease production by *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II in SmF. The interaction between (a) pH of the medium (C₁) and concentration (%, w/v) of casein level (C₂), hold value C₃= 0 (b) pH of the medium (C₁) vs concentration (%, w/v) of ammonium sulphate level (C₃), hold value C₂= 0 and (c) concentration (%, w/v) of casein (C₂) vs concentration of ammonium sulphate level (C₃) (% w/v) hold value C₁ = 0.

Sudhir K Rai

6.3.1. Response surface plots

Response surface plots as a function of two factors at a time, maintaining all other factors at fixed levels (zero, for instance), are more helpful in understanding both the main and the interaction effects of these two factors. These plots can easily be obtained by calculating from the model the values taken by one factor where the second varies with constraint of a given Y value. The yield values for different concentrations of the variables can also be predicated from the respective response surface plots (Fig. 6.15a-c). The maximum predicted yield is indicated by the surface confined in the response surface diagram. Fig. 6.15a shows the response surface plot obtained as a function of pH of the medium (C1) vs. casein concentration (C_2) , while all other variables are maintained at central level. An increase in alkaline protease yield with increase in pH of the medium, versus casein concentration was observed. Fig.6.15b shows interaction of pH of the medium (C_1) vs ammonium sulphate concentration (C_2), while other variables are maintained at zero level. An increased alkaline protease yield with increase in pH of the medium vs. ammonium sulphate concentration was observed. Fig.6.15c demonstrates significant interaction of casein (C₂) vs ammonium sulphate concentrations. An initial increase in casein and ammonium sulphate concentration linearly enhanced alkaline protease production. However, further increase may lead to decrease in protease production (Fig.6.15c).

6.3.2. Countor plots

2D Contour plots are shown in Figs. 6.16a–c which depicts the interaction between two variables by keeping the other variables at their middle levels for protease production. The maximum predicted value is indicated by the <u>Sudhir K Rai</u>

surface confined in the smallest ellipse in the contour diagram. The response surfaces having circular contour plot indicates no interaction where as, an elliptical or saddle nature of the contour plot indicates significant interaction between the corresponding variables. The Fig. 6.16a and b showing the countor plots indicated significant interaction of pH of the medium with casein for protease production. It could be seen that the protease production increased upon increasing the initial pH from 7.0 to 9.0, but any further increase in its values resulted in decreased protease production. Therefore, the optimal initial pH was around 7.0. The Fig. 2b shows interaction of pH (C₁) with ammonium sulphate level (C₂) increase of pH of the medium vs ammonium sulphate level leads to maximum protease production. Based on regression equation model the interaction of casein with ammonium sulphate displayed increase in protease production (Fig.6.16c)

6.4 Batch fermentation using the optimal medium

The validation of the statistically optimized condition for the production of alkaline protease by *P. tezpurensis* sp.nov. strain AS-S24-II was confirmed by carrying out batch fermentation in a 5-I fermentor. Protease yield, accompanied by the increase of viable cell numbers (1 x 10⁸ cell /ml), reached its maximum of 598.0 x 10^{-3} U / I at 48 h post-incubation and remained constant thereafter, suggesting that alkaline protease production by *P. tezpurensis* sp.nov. strain AS-S24-II was at least partially associated with cell growth.

<u>Sudhir K Rai</u>

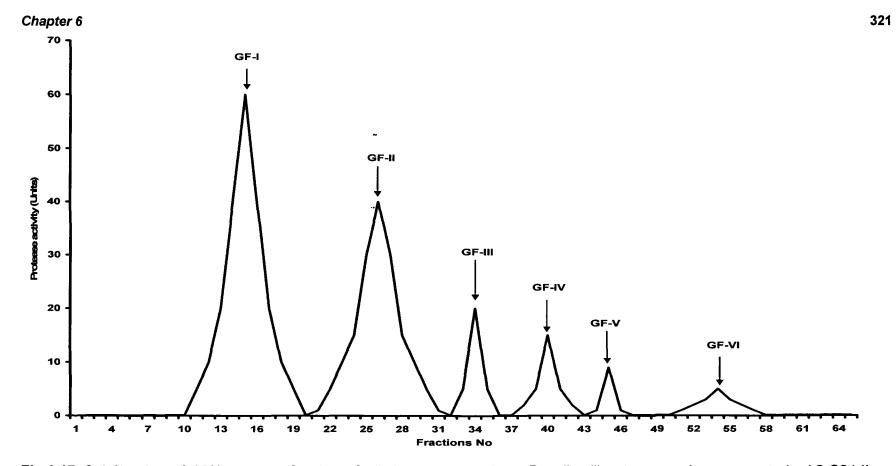
6.5 Isolation and purification of detergent-stable alkaline protease

The 80% acetone-precipitated fraction demonstrated the maximum laundry detergent stability, and separation of this fraction on a gel filtration column resolved it into six protease peaks, designated as GF-I to GF-VI (Fig.6.17). The protease(s) present in GF-II fraction demonstrated appreciable detergent stability and was re-fractionated on an RP-HPLC C18 Nova-Pak column (Fig. 6.18). The peak with the retention time of 14.07 min (HP-III) showed highest alkaline protease activity and was found to be homogenous by 15% SDS-PAGE. About 8.0 µg of protein, both under reducing and non-reducing condition, yielded a single Coomassie-stained band of apparent molecular weight of 43 kDa in SDS-PAGE showing monomeric nature of the protease (Fig.6.19). A summary of purification of this enzyme is displayed in Table 6.7.

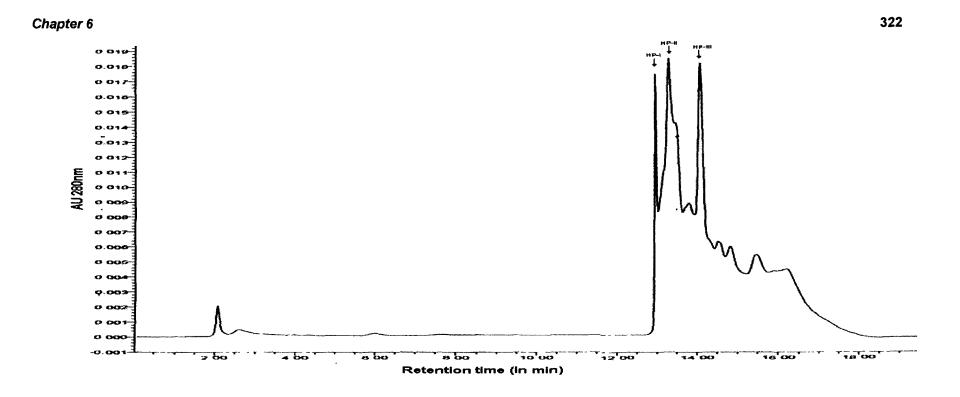
Table 6.7 Summary of purification of a detergent stable alkaline protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II. Data represent a typical experiment.

Purification	Total	Total	Yield	Specific	Purification
step	protein	activity	of	activity	(fold)
	(mg)	(Units)	protein	(units/mg)	
			(%)		
Cell-free	64.0	160.0 X	100	2.5 X 10 ³	1.0
supernatant		10 ³			
······					Continued
		·	· · · · · · · · · · · · · · · · · · ·		

<u>Sudhir K Rai</u>


Chapter 6 Table 6.7 Con	tinued				320
80% acetone	0.260	754.0	0.4	2.9 X 10 ³	1.2
precipitation					
GF-II	0.186	595.0	0.3	3.2 X 10 ³	1.3
HP-III	0.140	588.0	0.2	4.2 X 10 ³	1.7
		<u> </u>			

<u>Sudhir K Rai</u>


; PhD Thesis, Tezpur University, 2010

:

.

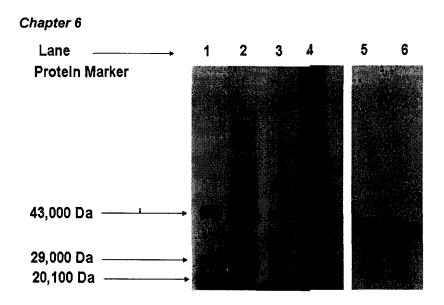


Fig.6.17 Gel filtration of 80% acetone fraction of alkaline protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II on Sephacyrl S-200 column. Data represent a typical experiment. <u>Sudhir K Rai</u>

Fig.6.18 RP-HPLC of GF-II protease fraction of alkaline protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II. Initial peak with a retention time of 2.0 min represents the solvent peak.

Sudhir K Rai

Fig.6.19 SDS-polyacrylamide gel (15%) electrophoresis of purified protease (HP-III). Lane 1, protein molecular weight standards: ovalbumin (43 kDa), carbonic anhydrase (29 kDa), and soybean trypsin inhibitor (20.1 kDa); lane 2, reduced crude protease (30 μ g); lane 3, 60% acetone precipitated fraction (30 μ g), lane 4, 80% acetone precipitated fraction (30 μ g), lane 5, reduced alkaline protease (8 μ g), lane 6, non-reduced alkaline protease (8 μ g)

6.6 Biochemical characterization

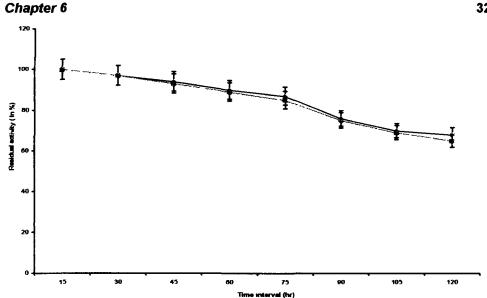
6.6.1 Effect of pH and incubation temperature on detergent stable alkaline protease

The purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II remained active over a broad range of pH and temperature; however, the optimum activity of enzyme was shown at pH 9.5 and at 45–50°C temperature range (Table 6.8).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

323


Table 6.8 Biochemical properties and substrate specificity of alkalineprotease from Paenibacillus tezpurensis sp.nov. strain AS-S24-II. Valuesare mean \pm S.D. of triplicate determinations.

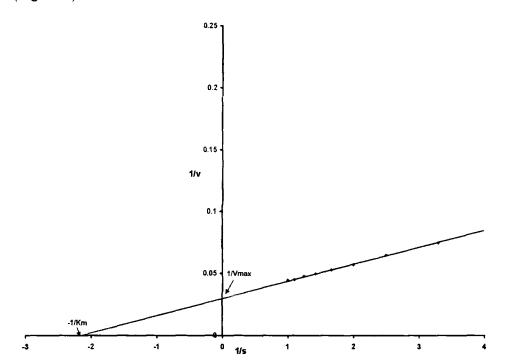
Biochemical property	Value
Molecular mass (kDa)	
(a) SDS-PAGE	43.0
(b) Gel-filtration	42.9
Optimum pH	9.0- 9.5
Optimum temperature	45-50°C
Substrate specificity (unit / mg	Purified protease
protein)	
(mean ± S.D., n=3)	
(a) Casein	4200.0 ± 210.0
(b) Chicken-feather keratin	1300.0 ± 65.0
(c) Bovine serum fibrinogen	1050.0 ± 21.0
(d) Bovine serum albumin	768.0 ± 16.0
(e) Fibrin	562.6 ±11.3
(f) Bovine serum globulin	230.0 ± 11.5
(g) Human-hair keratin	0
(h) Collagen	0

6.6.2 Thermo-stability study of purified protease

The protease showed remarkable thermo stability as was evident from the heating experiment. The enzyme retained 68.0% of its original activity postheating at 60°C for 120 min at pH 9.5, and it was found that Ca^{2+} had no role in influencing the thermo stability of the enzyme (Fig.6.20).

<u>Sudhir K Rai</u>

Fig.6.20 Thermo-stability study of detergent-stable protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II in presence of $CaCl_2$ (*) and in absence of $CaCl_2$ (*). Values are mean ± S.D. of triplicate determinations.


6.6.3 Substrate specificity study

The crude protease (cell-free culture supernatant) from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II demonstrated a broad spectrum of substrate specificity. It was shown to hydrolyse both soluble (casein, bovine serum albumin, fibrinogen, haemoglobin) and insoluble (keratin from chicken-feather and fibrin) protein substrates to a considerable extent (Table 6.8). The purified protease showed a preference for the hydrolysis of casein compared to other protein substrates (Table 6.8).

Sudhir K Rai

Chapter 6 6.6.4 Kinetic study of purified protease

The Km and Vmax values for purified protease towards casein were determined as 0.227 mg / ml and $25.0 \mu \text{mol}$ / mg/ min, respectively, documenting the excellent substrate (casein) specificity of the enzyme (Fig.6.21).

Fig.6.21 Lineweaver-Burk plot to determine the K_m and V_{max} values of detergent stable alkaline protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II. The substrate used was casein at pH 9.5 and incubation temperature was 45°C.

6.6.5 Effect of polyols on stability of protease against heatdenaturation

The influence of various polyols (5%) such as glycerol, mannitol, sorbitol and xylitol, on the thermostability of alkaline protease was examined at 60°C. The data presented in Fig. 6.22 show that glycerol and mannitol stabilized the protease against heat-denaturation.

<u>Sudhir K Rai</u>

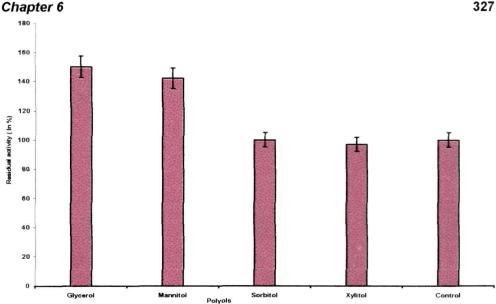


Fig.6.22 Effect of polyols on thermostability of protease under heated condition from Paenibacillus tezpurensis sp.nov. strain AS-S24-II. The enzyme without polyols served as control (100% residual activity). Values are mean ± S.D. of three experiments.

6.6.6 Effect of metal ions on purified alkaline protease

Study on the influence of metal ions on alkaline protease activity of P.tezpurensis sp.nov. strain AS-S24-II showed that all the tested cations, viz. Ni²⁺ ; Cd²⁺ ; Co²⁺ ;Mg²⁺; Fe²⁺; Hg²⁺; Cu²⁺ ;Mn²⁺; Ca²⁺ and Zn²⁺, inhibited the enzyme activity. Maximum inhibition of protease activity was observed in the presence of Co²⁺ (90 % inhibition) whereas Hg²⁺ exerted minimum inhibition (48%) of protease activity compared to control (Fig.6.23).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

327

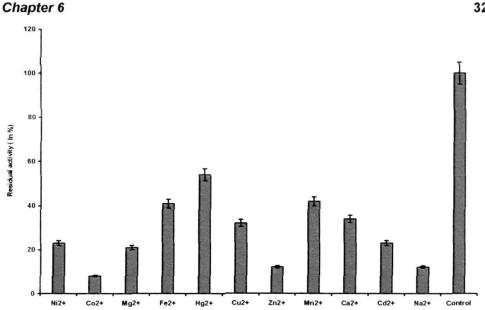


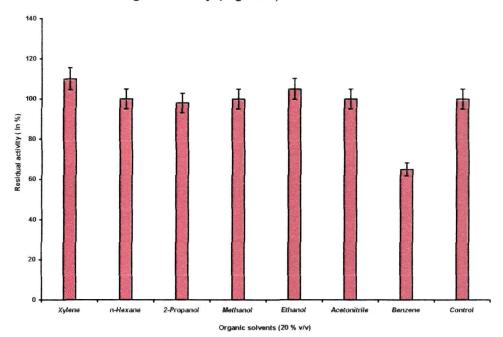
Fig.6.23 Effect of metal ions on protease activity of detergent stable alkaline protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II Values are mean \pm S.D. of three experiments.

6.6.7 Effect of denaturing agents, oxidizing and bleaching agents, inhibitors, chelators, and surfactants on protease activity

A comparison of effects of different inhibitors, metal chelator, surfactants, denaturing agents, oxidizing and bleaching agents and DTT on purified alkaline protease is shown in Table 6.9. The enzyme activity was significantly affected by PMSF, IAA, 4-bromophenacyl bromide and TPCK, thus suggesting a role for serine, cysteine and histidine residues in the catalysis process (Table 6.9). Further, a significant inhibition of protease activity in the presence of DTT was also observed. The anionic surfactant SDS dose-dependently inhibited the protease activity whereas the protease activity was enhanced in presence of oxidizing agent (H_2O_2) and bleaching agent (sodium perborate).

<u>Sudhir K Rai</u>

Table 6.9. Effect of different inhibitors, surfactant, denaturing agents, oxidizing and bleaching agents and metal chelators on purified protease. Values are mean \pm S.D. of triplicate determinations.


Inhibitors/surfactants	Residual activity (%)
Control	100
Inhibitors/chelator (1 mM)	
PMSF	0
4-BPB	7.6 ± 0.4
IAA	0
TLCK	41.5 ± 2.1
ТРСК	2.7 ± 0.1
EDTA	100
Anionic surfactant (SDS)	
20 mM	102.0 ± 5.1
40 mM	92.0 ± 4.6
60 mM	76.0 ± 3.8
80 mM	55.0 ± 2.8
Non-ionic surfactants	
(1% v/v)	
Trition-X-100	72.3 ± 3.6
Tween 20	80.2 ± 4.0
Oxidizing agent	
H ₂ O ₂ (% v/v)	
5.0	130.0 ± 2.6
10.0	124.0 ± 2.5
Bleaching agent	
Sodium perborate (%	
v/v)	
0.5	119.0 ± 2.4

<u>Sudhir K Rai</u>

Chapter 6	330
Inhibitors/surfactants	Residual activity (%)
1.0	108.0 ± 2.2
DTT (1 mM)	13.7 ± 0.7

6.6.8 Effect of organic -solvent on purified protease

The organic-solvent (at a final concentration of 20% v/v) stability of purified alkaline protease is shown in Fig. 6.24. It was observed that xylene and ethanol slightly enhanced the protease activity, whereas the n-hexane, 2-propanol, methanol, and acetonitrile did not affect on enzyme stability. However, in presence of benzene, the enzyme was destabilized and lost about 35% of its original activity (Fig.6.24).

Fig.6.24 Organic solvent stability of alkaline protease from *Paenibacillus tezpurensis* sp.nov.strain AS-S24-II. Enzyme activity in the absence of solvent was considered as 100% activity and other values were compared with that. Each value represents mean \pm S.D. of three experiments.

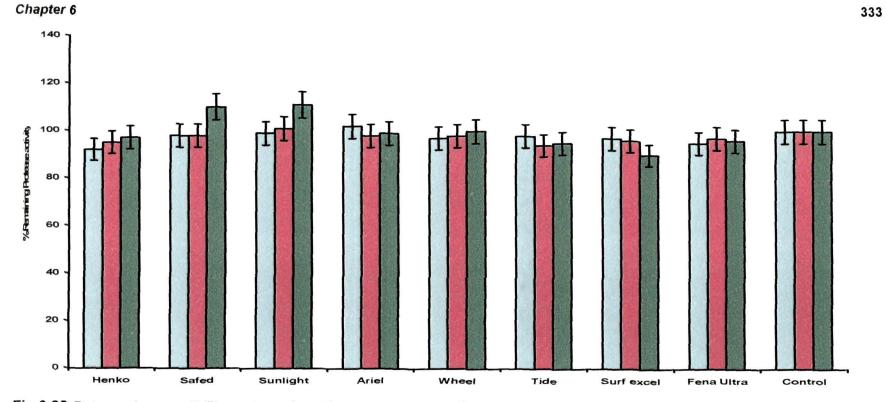
Sudhir K Rai

Chapter 6 6.6.9 Pharmacological properties of protease

The pharmacological property of purified protease is summarized in Table 6.10. The protease at a concentration of 15 μ g / ml showed 3.0 % hemolysis of the washed human erythrocytes, and it did not have any undesirable haemorragic effect on goat liver, heart, lungs and kidney tissues (Table 6.10). Further, as shown in Table 6.10, purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II did not interfere with the normal clotting time of goat platelet- poor plasma (PPP).

Table 6.10Pharmacological properties of purified protease fromPaenibacillus tezpurensis sp.nov. strain AS-S24-II.Values are mean ± S.D. of three determinations.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of alkaline	
protease 90 min post incubation at 37 $^{\circ}\text{C}$)	
Control (without alkaline protease)	1.4 ± 0.1
Treatment	3.0 ± 0.5
Ca-Clotting time (s)	
Control (without alkaline protease)	129.0 ± 6.5
Treated (with 15.0 μg / ml of alkaline protease)	132.0 ± 7.0
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μg / ml of	
alkaline protease 5 h post incubation at 37 °C)	
a) <i>Heart</i>	
Control (without alkaline protease)	0.09 ± 0.01
Treatment	0.27 ± 0.01
b) <i>Lung</i>	
Control (without alkaline protease)	0.13 ± 0.01
Treatment	0.36 ± 0.02
Sudhir K Rai	


Chapter 6	332
Pharmacological properties	Values
c) Liver	
Control (without alkaline protease)	0.16 ± 0.08
Treatment	0.28 ± 0.01
d) <i>Kidney</i>	
Control (without alkaline protease)	0.12 ± 0.05
Treatment	0.27 ± 0.01

6.7 Industrial application of purified protease

6.7.1 Detergent compatibility study of protease

As shown in Fig. 6.25, the stability of purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II towards tested laundry detergents demonstrated a promising result. At a purified protease concentration below 3.0 μ g / ml, the enzyme activity in the presence of detergents (7 mg/ml) could not be detected; however, at a concentration of 3.0 μ g / ml, the enzyme retained 90.0% to 105% of its original activity in the presence of detergents at the tested temperature ranges (Fig.6.25). Based on screening results, maximum stability of purified protease was observed with "Sunlight" detergent; dose dependent study of purified protease with sunlight detergent demonstrated that optimum concentration for wash performance activity was 8.0 μ g / ml and below this dose no washing activity was observed (Fig. 6.26). With 8.0 μ g / ml dose of purified protease maximum blood stain was removed from cotton fabrics when supplemented to laundry detergents (Fig.6.27).

<u>Sudhir K Rai</u>

Fig.6.25 Detergent compatibility pattern of purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II at the tested temperature ranges 25 (), 37 () and 45°C (). Values are mean ± SD of triplicate determinations.

Sudhir K Rai

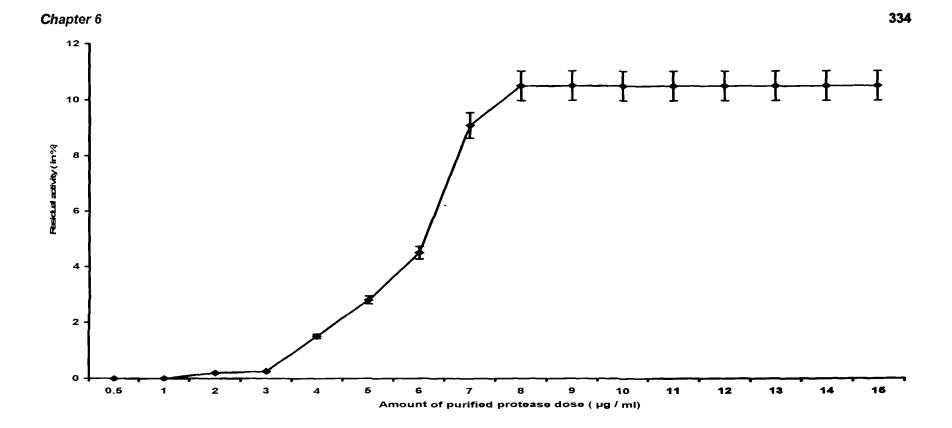
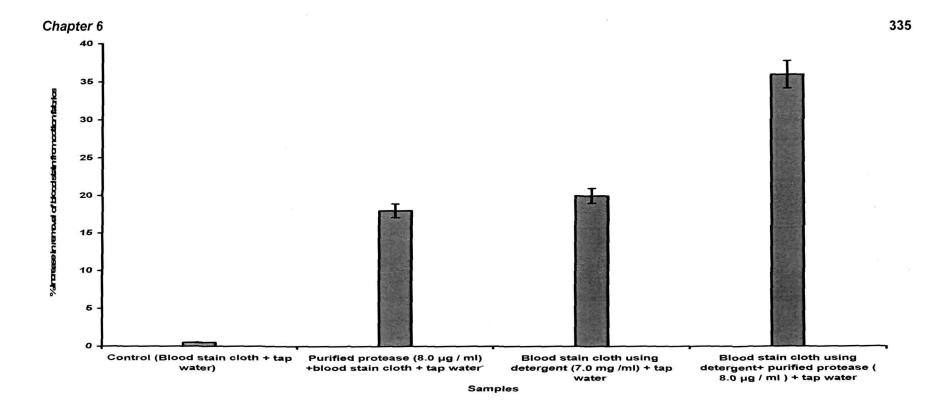



Fig.6.26 Dose-dependent wash performance study of purified protease in presence of sunlight® detergent (7.0 mg /ml).

Sudhir K Rai

Fig.6.27 Wash performance study of purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II at 37°C. Values are mean ± SD of triplicate determinations.

Sudhir K Rai

6.7.3 Dehairing activity of purified protease

In the present study, purified alkaline protease displayed a promising dehairing activity, as was evident from the fact removal of hair from raw skin incubated with purified protease (50U / ml) at 37°C for 12 h, was much easier as compared with control (Fig.6.28) suggesting application of protease leather industry as a dehairing agent.

Fig. 6.28 Dehairing activity of purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with purified protease from *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II (50 U / ml) for 12 h at 37°C.

Sudhir K Rai

CHAPTER VII

RESULTS

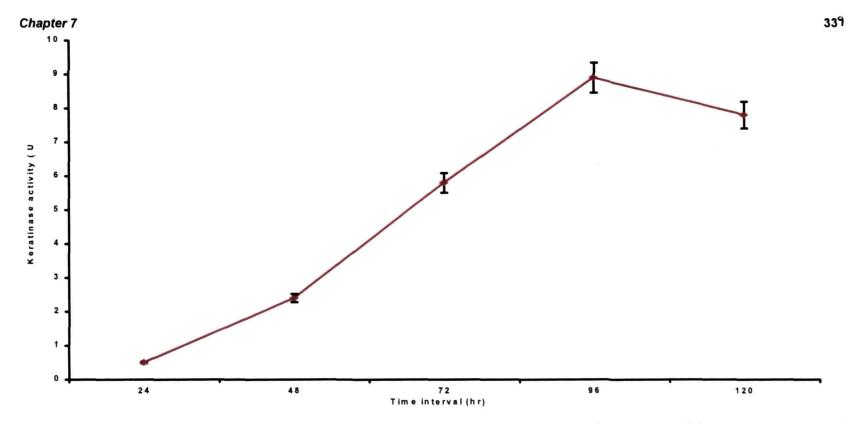
<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

.

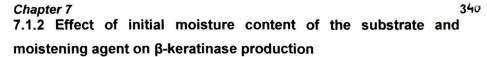
Chapter 7 Chapter 7

Process optimization, isolation, purification, biochemical characterization and industrial applications of an alkaline β -keratinase (protease) isolated from *Bacillus subtilis* strain RM-01


7.1 Production of alkaline β -keratinase under solid-state fermentation Pre-screening of fermentation parameters were done for optimization of

alkaline β-keratinase production under solid-state fermentation system.

7.1.1 Time-course of keratinase production


In the SSF system, when chicken feather was used as a substrate for β keratinase production by *Bacillus subtilis* strain RM-01, the β -keratinase production was observed to increase linearly with time. Maximum keratinase yield of 8.9 U/gds was achieved post 96 hours of incubation at 50°C under un-optimized condition (Fig.7.1). Thereafter, the β -keratinase production declined. Henceforth, 96 hours was considered as the optimized period for β -keratinase production in the subsequent experiments.

<u>Sudhir K Rai</u>

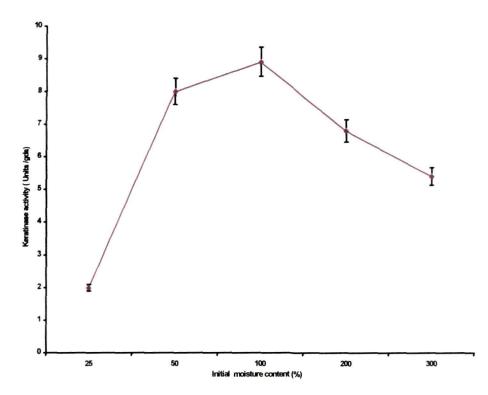


Fig.7.1 Alkaline β -keratinase production from *Bacillus subtilis* strain RM-01 under solid state fermentation. Values are mean \pm S.D. of three experiments.

Sudhir K Rai

With an increase in the moisture content of the substrate from 50% to 100%, β -keratinase production was concomitantly enhanced, and further increase in the moisture content of substrate resulted in a steady decline in the β -keratinase yield (Fig.7.2).

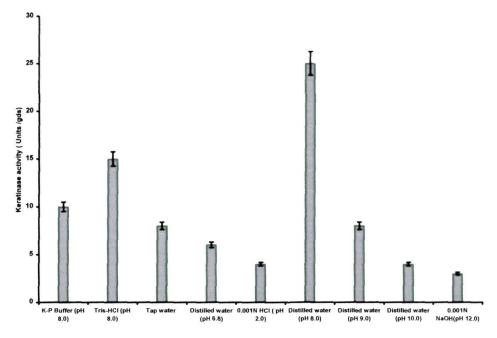


Fig. 7.2 Influence of initial moisture content on alkaline β -keratinase production from *B.subtilis* strain RM01. Values are mean \pm S.D. of three determinations post 96 incubation at 50°C temperature. Moistening agent was distilled water, pH adjusted to 8.0.

<u>Sudhir K Rai</u>

7.1.3 Influence of pH of the moistening agent on β -keratinase production

It was very important to note that amongst the different moistening agents used, distilled water adjusted to pH 8.0 was found to be superior compared to K-phosphate or Tris-HCl buffer, pH 8.0 in supporting the maximal β -keratinase production (Fig.7.3).

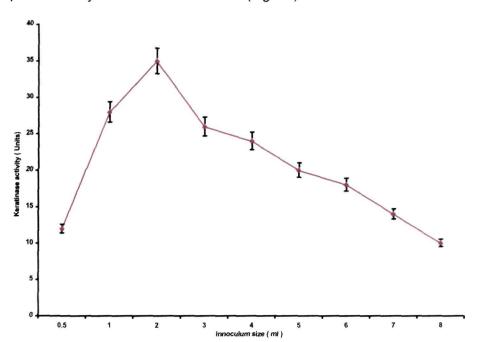


Fig.7.3 Influence of moistening agent on alkaline β -keratinase production by *B.subtilis* strain RM-01 using chicken feather as a substrate. Values represent mean ± S.D. of three experiments post 96 h of incubation at 50°C.

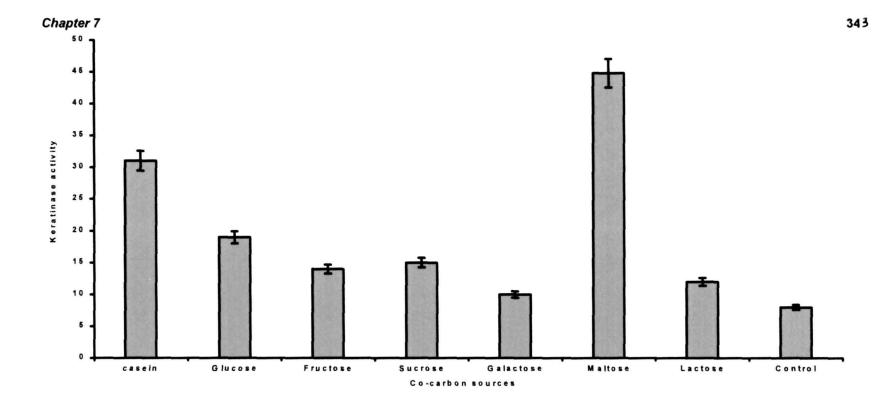
7.1.4 Effect of inoculum's size on protease production

As shown in Fig.7.4, with an increase in inoculum's size from 0.5 ml to 2.0 ml (5.0 g substrate), there was a concomitant increase in alkaline β -keratinase production by *B. subtilis* strain RM-01. Increasing the inoculum's

Sudhir K Rai

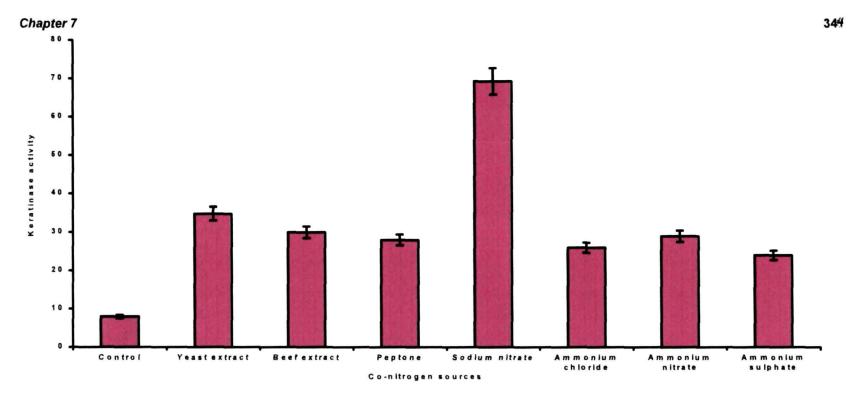
size beyond 2.0 ml. Resulted in a steady decline in β -keratinase production by *B. subtilis* strain RM-01 (Fig.7.4).

Fig.7.4 Influence of inoculum size on alkaline β -keratinase production by *B.subtilis* strain RM-01 on raw chicken-feather under SSF. Values are mean ± S.D. of three experiments.


7.1.5. Effect of supplementation of co-carbon and co-nitrogen sources on alkaline β -keratinase production

Among tested carbon sources, maltose demonstrated about 5.6 fold increase in β -keratinase production followed by casein (5.0 fold) compared with control (Fig.7.5). In a sharp contrast, galactose, lactose, fructose, sucrose, and starch inhibited the β -keratinase production by *B. subtilis* strain RM-01. As shown in fig. 7.6, amongst the tested co-nitrogen sources, NaNO₃ was most effective in enhancing keratinase yield (69.3 U/gds) followed by yeast extract (34.8 U/gds).

Sudhir K Rai


PhD Thesis, Tezpur University, 2010

342

Fig.7.5 Effect of supplementation of co-carbon sources (10%, w/w) to chicken feather (90%, w/w) on β -keratinase production by *B. subtilis* strain RM-01. Values are mean ± S.D. of three experiments.

Sudhir K Rai

Fig.7.6 Effect of supplementation of co-nitrogen sources (1.0%, w/w) to chicken feather (substrate) for β -keratinase production by *B. subtilis* strain RM-01. Values are mean ± S.D. of three experiments.

Sudhir K Rai

7.1.6. Extraction of alkaline β-keratinase from fermented matter

Among the different extractions medium used for the recovery of protease from the fermented matter, distilled water containing 0.1%(v/v) triton X-100, pH 8.0 served as best extraction medium (Fig.7.7).

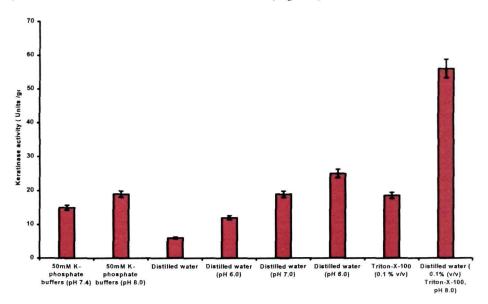
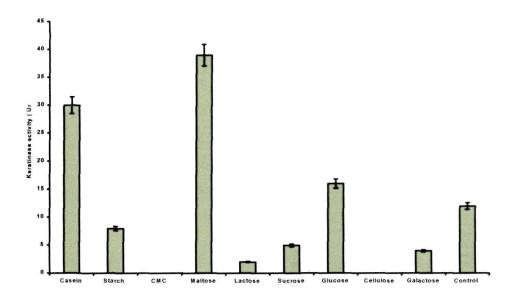


Fig.7.7 Screening of best extraction medium for maximum alkaline β -keratinase extraction from fermented material. Values are mean \pm S.D. of three experiments.

7.1.7. Batch fermentation


Maximum β -keratinase production (95 U/gds) under statistically optimized condition was observed post-72 h of incubation in contrast to 96 h during the initial screening process (non-optimized condition). The β -keratinase production under optimized condition remained almost constant up to 96 h of bacterial growth and thereafter, a decline in β -keratinase production was observed.

Sudhir K Rai

7.2 Production of alkaline β -keratinase production under submerged fermentation (SmF)

7.2.1. Effect of carbon source on alkaline β-keratinase production

Amongst the different carbon sources screened for alkaline β -keratinase production under submerged fermentation, maximum alkaline β -keratinase production was observed in presence of 1% (w/v) maltose followed by casein Fig.7.8.

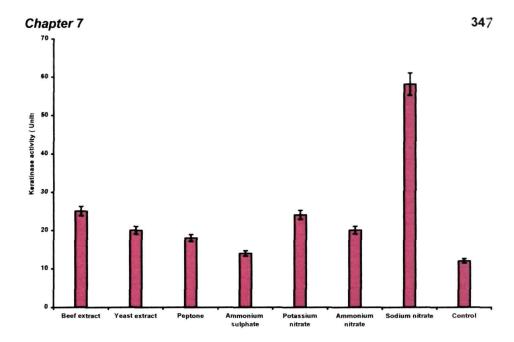


Fig.7.8 Effect of different carbon sources on alkaline β -keratinase production from *B.subtilis* strain RM-01 under SSF. Values are mean \pm S.D. of three experiments.

7.2.2. Effect of nitrogen source on alkaline β-keratinase production

Various nitrogen sources were tested for alkaline β -keratinase production and maximum production was observed in presence of 0.1% (w/v) sodium nitrate (Fig.7.9).

Sudhir K Rai

Fig.7.9 Effect of various nitrogen sources on alkaline β -keratinase production from *B.subtilis* strain RM-01 under SSF. Values are mean \pm S.D. of three experiments.

7.2.3 Effect of pH on alkaline β-keratinase production

The effect of pH on alkaline β -keratinase production by *B.subtilis* strain RM-01 was determined by adjusting the medium pH and assaying the enzyme activity. It was observed that with an increase in the pH of the medium from 6.0 to 8.0, β -keratinase production enhanced concomitantly. However, a further increase in pH resulted in decline in β -keratinase yield (Fig.7.10).

Sudhir K Rai

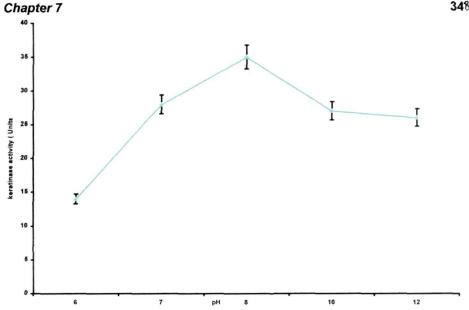


Fig.7.10 Effect of pH on alkaline β-keratinase production from B.subtilis strain RM-01. Values are mean ± S.D. of three experiments.

7.2.4. Effect of temperature on alkaline β-keratinase production

In the tested range of incubation temperature on alkaline β-keratinase production from *B.subtilis* strain RM-01, it was observed that β-keratinase production linearly increased from 25 to 50°C and beyond this temperature protease production was slightly declined (Fig.7.11). Therefore, 50°C was considered as optimum temperature for β-keratinase production by B.subtilis strain RM-01.

Sudhir K Rai

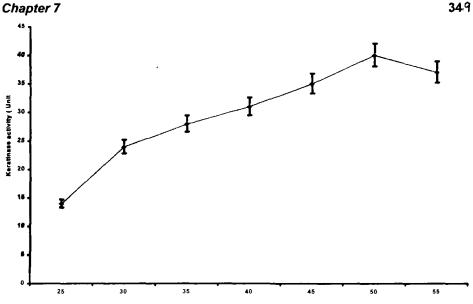


Fig.7.11 Effect of incubation temperature on alkaline β-keratinase production from B.subtilis strain RM-01 in SmF. Values are mean ± S.D. of three experiments.

7.2.4. Kinetics of alkaline β-keratinase production

Study of kinetics for alkaline β-keratinase production from B.subtilis strain RM-01 demonstrated maximum keratinase production by B.subtilis strain RM-01 attained post 96h of incubation (Fig. 7.12). Thereafter, a sharp fall in alkaline β-keratinase production was observed. The bacterial dry biomass and protein content of culture supernatant also displayed the similar trend.

Sudhir K Rai

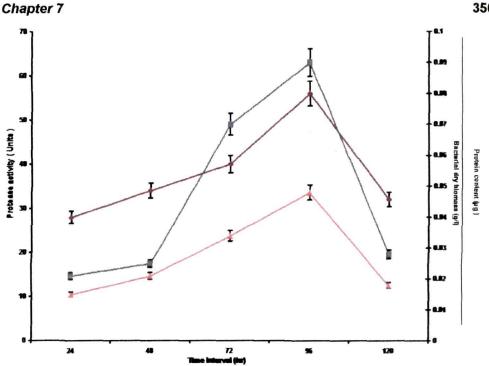
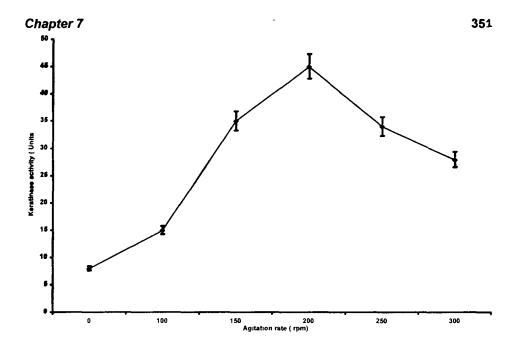


Fig.7.12 Effect of incubation time on alkaline β -keratinase production in SmF (I), bacterial dry biomass (I), and protein content (A) from B. subtilis strain RM-01 under SSF. Values are mean± S.D. of three experiments.


7.2.5. Effect of agitation rate on alkaline β-keratinase production

Influence of agitation rate on the alkaline β-keratinase production displayed a significant increase in β-keratinase production (40U) by B.subtilis strain RM-01 at 45°C with a constant shaking at 200 rpm (Fig. 7.13).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

350

Fig.7.13 Effect of agitation rate on alkaline β -keratinase production from *B.subtilis* strain RM-01 under SmF. Values are mean \pm S.D. of three experiments.

7.3. Statistical optimization of alkaline β -keratinase production under solid- state fermentation

7.3.1 Screening of effective key factors for alkaline β -keratinase production by Plackett-Burman design

Screening results displayed the significance of selected factors on the β keratinase production (Table 7.1). The analysis of regression coefficients and t-value of six parameters showed that maltose, sodium nitrate, and pH of the medium displayed a positive effect for β -keratinase production whereas, innoculum level, incubation temperature and incubation time had a negative effect on enzyme production (Table 7.2). The model equation for β -keratinase production was derived (eq 7.1) neglecting the variables which were insignificant.

<u>Sudhir K Rai</u>

$$Y = 15.0 + 27.4X_1 + 7.9X_2 + 138.3X_3 - (7.1)$$

Where, $Y = \beta$ -keratinase activity (U /gds), $X_1 = pH$ of the medium, $X_2 =$ maltose level, and $X_3 =$ sodium nitrate level.

On the basis of calculated t- and p-values (Table 7.2), casein, potassium nitrate, and pH of the medium were chosen for further optimization. The innoculum level (% v/v) and incubation time (h) were kept at middle level.

Table 7.1 Plackett–Burman store design showing six variables with coded values along with the observed results for β -keratinase production by *B.subtilis* strain RM-01.

Maltose	Sodium	Incubation	Incubation	pH of	Innoculum	β-
(% w/v)	nitrate	time (h)	temperature	the	size (% v/v)	keratinase
	level (%		(ln ℃)	medium		yield
	w/v)					(Units)
1 (15.0)	-1(1.20)	1 (96)	-1 (40)	-1 (7.0)	-1 (1.5)	38.0
1 (15.0)	1 (1.30)	-1 (48)	1 (50)	-1 (7.0)	-1 (1.5)	34.0
-1 (5.0)	1 (1.30)	1 (96)	- 1(40)	1 (9.0)	-1 (1.5)	25.0
1 (2.5)	-1 (1.20)	1 (96)	1 (50)	-1 (7.0)	1 (5.0)	54.0
1 (2.5)	1 (1.30)	-1 (48)	1 (50)	1 (9.0)	-1 (1.5)	67.0
1 (2.5)	1 (1.30)	1 (96)	-1 (40)	1 (9.0)	1 (5.0)	25.0
-1 (1.5)	1 (1.30)	1 (96)	1 (50)	-1 (7.0)	1 (5.0)	29.0
-1 (1.5)	-1 (1.20)	1 (96)	1 (50)	1 (9.0)	-1 (1.5)	64.0
-1 (1.5)	-1 (1.20)	-1 (48)	1 (50)	1 (9.0)	1 (5.0)	58.0
1 (2.5)	-1 (1.20)	-1 (48)	-1 (40)	1 (9.0)	1 (5.0)	68.0
-1 (1.5)	1 (1.30)	-1 (48)	-1 (40)	-1 (7.0)	1 (5.0)	67.0
-1 (1.5)	-1 (1.20)	-1 (48)	- 1 (40)	-1 (7.0)	-1 (1.5)	57.0
0 (2.0)	0 (1.25)	0 (72)	0 (45)	0 (8.0)	0 (2.5)	15.0
0 (2.0)	0 (1.25)	0 (72)	0 (45)	0 (8.0)	0 (2.5)	15.0
0 (2.0)	0 (1.25)	0 (72)	0 (45)	0 (8.0)	0 (2.5)	15.0

<u>Sudhir K Rai</u>

Table 7.2 Statistical analysis of Plackett–Burman design showingcoefficient values, t- and P-value for each variable for keratinase activity (p-value <0.05).</td>

Variables	Keratinase yield (Units)				
	Co- efficient	SE Coef	t-Stat	p-value	
Intercept	15.0	0.5774	25.98	0.001	
Incubation time (h)	-38.9	0.7217	-53.87	0.000	
innoculum level (%v/v)	-45.8	0.7638	-59.90	0.000	
pH of the medium	27.4	0.7638	35.84	0.001	
Agitation rate (rpm)	-133.6	2.6497	-50.43	0.000	
Sodium nitrate (% w/v)	7.9	0.4330	18.19	0.003	
Maltose level (% w/v)	138.3	2.6615	51.95	0.000	

7.3.2 Optimization by response surface methodolgy

The results of the observed and predicted β -keratinase activity (response) as function of pH, co carbon level and co-nitrogen level with reference to the experiments performed according to the CCD are shown in Table 7.3. Maximum β -keratinase activity (95.3 U/gds) was obtained with the data set of pH 8, maltose level of 10%, and sodium nitrate of 1.25 %. The parameters of Eq. (3.2) were determined by multiple regression analysis by the application of RSM. The overall second-order polynomial regression equation showing the empirical relationship between keratinase activity (Y) and three test variables in coded units is represented by Eq. 7.2:

<u>Sudhir K Rai</u>

Chapter 7

$$Y = 74.124 - 16.8722C_1 + 0.5889C_2 + 11.1889C_3 - 23.2994C_1^2$$

 $-1.8661C_2^2 + 9.9339C_3^3 + 0.0250C_1C_2 + 0.0250C_1C_3 + 0.0292C_2C_3$
------(7.2)

The coefficients of the model including the significance of each coefficient as determined by t test and p values are shown in Table 7.4. Results showed that all the effects of C_1 , C_2 and C_3 , except quadratic effects of C_3 (C_1C_3 and C_2C_3) are significant (p<0.0001). The ANOVA of the quadratic regression model demonstrated that the computed F value (Table 7.5) for linear regression was much greater than the tabulated (P)>F value (Table 7.5). The coefficient (R^2) and adjusted R^2 values were calculated as 100%.

Table 7.3 Observed and predicted values of alkaline β -keratinase production by *B. subtilis* strain RM-01 post 96 h of incubation at 50°C. The observed values are average of triplicate determinations ± S.D. Boundaries of the experimental domain and spacing of levels are expressed in coded (within parenthesis) and natural units C₁, pH of the medium ; C₂, maltose level (% w/v); C₃, sodium nitrate (% w/v).

Ind	ependent Va	riables	Y Response		
			(Keratinase ac	tivity in U/gds)	
C ₁	C ₂	C ₃	Observed	Predicted	
		-	value		
1(9.0)	-1(7.5)	-1(0.75)	64.25	64.068	
-1(7.0)	-1(7.5)	0(1.0)	65.2	65.269	
-1(7.0)	-1(7.5)	1(1.25)	86.3	86.338	
-1(7.0)	0(10.0)	-1(0.75)	66.4	66.469	
-1(7.0)	0(10.0)	0(1.0)	67.7	67.699	
-1(7.0)	0(10.0)	1(1.25)	88.8	88.797	
-1(7.0)	1(12.5)	-1(0.75)	65.1 65.138		
				Continued	

<u>Sudhir K Rai</u>

Chapter 7				355
Table 7.3	Continued	•		
-1(7.0)	1(12.5)	0(1.0)	66.4	66.397
-1(7.0)	1(12.5)	1(1.25)	87.55	87.524
0(8.0)	-1(7.5)	-1(0.75)	70.35	70.446
0(8.0)	-1(7.5)	0(1.0)	71.65	71.671
0(8.0)	-1(7.5)	1(1.25)	92.8	92.765
0(8.0)	0(10.0)	-1(0.75)	72.85	72.871
0(8.0)	0(10.0)	1(1.25)	95.3	95.249
0(8.0)	1(12.5)	-1(0.75)	71.6	71.565
0(8.0)	1(12.5)	0(1.0)	72.9	72.849
0(8.0)	1(12.5)	1(1.25)	94	94.001
1(9.0)	-1(7.5)	-1(0.75)	30.2	30.224
1(9.0)	-1(7.5)	0(1.0)	31.5	31.475
1(9.0)	-1(7.5)	1(1.25)	52.6	52.593
1(9.0)	0(10.0)	-1(0.75)	32.7	32.675
1(9.0)	0(10.0)	0(1.0)	34	33.955
1(9.0)	0(10.0)	1(1.25)	55.1	55.103
1(9.0)	1(12.5)	-1(0.75)	31.4	31.393
1(9.0)	1(12.5)	0(1.0)	32.7	32.703
1(9.0)	1(12.5)	1(1.25)	53.8	53.880
0(8.0)	0(10.0)	0(1.0)	73.93	74.126
0(8.0)	0(10.0)	0(1.0)	74.45	74.126
0(8.0)	0(10.0)	0(1.0)	73.77	74.126
0(8.0)	0(10.0)	0(1.0)	74.18	74.126
0(8.0)	0(10.0)	0(1.0)	74.27	74.126

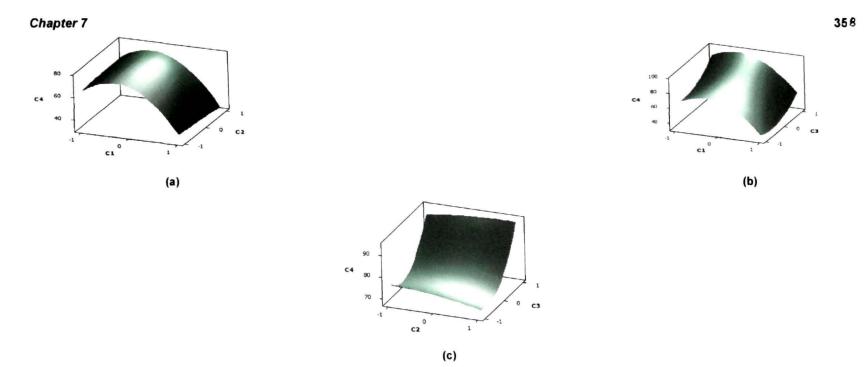
<u>Sudhir K Rai</u>

 Chapter 7
 3

 Table 7.4 Model coefficients estimated by multiple regression (model adequacy determination)
 3

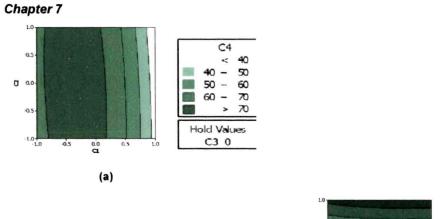
Factor	Coefficient	t-value	p-value
Constant	74.1264	1569.805	0.000<0.05
C ₁	-16.8722	-540.816	0.000<0.05
C ₂	0.5889	18.876	0.000<0.05
C ₃	11.1889	358.644	0.000<0.05
C ₁ C ₁	-23.2994	-466.437	0.000<0.05
$C_2 C_2$	-1.8661	-37.357	0.000<0.05
C ₃ C ₃	9.9339	198.870	0.000<0.05
$C_1 C_2$	0.0250	0.654	0.520>0.05
$C_1 C_3$	0.0250	0.654	0.520>0.05
$C_2 C_3$	0.0292	0.763	0.454>0.05

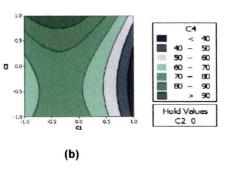
 $R^2 = 100.00\%$, R^2 (pred) = 99.99%, R^2 (adj) = 100.00%.


Table 7.5 Analysis of Variance (ANOVA) of alkaline β -keratinase produced by *B.subtilis* strain RM-01

Source	DF	Seq SS	Adj SS	Adj MS	F-value	p-value
Regression	9	10842.7	10842.7	1204.75	32.82	0.000
Linear	3	6829.8	6593.3	2197.76	59.87	0.000
C ₁	1	5231.5	4118.8	4118.78	112.21	0.000
C ₂	1	31.4	10.4	10.38	0.28	0.600
C ₃	1	1567.0	1627.9	1627.88	44.35	0.000
Square	3	3872.9	3914.3	1304.77	35.55	0.000
C ₁ * C ₁	1	2988.7	3455.4	3455.40	94.14	0.000
C ₂ * C ₂	1	11.0	5.5	5.52	0.15	0.702

<u>Sudhir K Rai</u>


Chapter 7				_		357
Source	DF	Seq SS	Adj SS	Adj MS	F-value	p-value
$C_3 * C_3$	1	873.2	824.7	824.73	22.47	0.000
Interaction	3	140.0	140.0	46.66	1.27	0.310
C ₁ * C ₂	1	42.8	30.5	30.47	0.83	0.373
C ₁ * C ₃	1	49.5	30.5	30.47	0.83	0.373
C ₂ * C ₃	1	47.6	47.6	47.65	1.30	0.267
Residual	21	770.8	770.8	36.71		
error						
Lack-of-Fit	16	190.8	190.8	11.93	0.10	1.000
Pure error	5	580.0	580.0	116.00		
Total	30	11613.6				


<u>Sudhir K Rai</u>

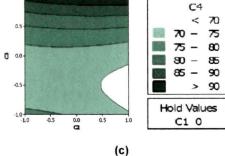


Fig.7.14 Response surface plots for alkaline β -keratinase production by *B.subtilis* strain RM-01. The interaction between (a) pH of the medium and concentration (%, w/v) of maltose, hold value C₃=0 (b) pH of the medium vs concentration (%, w/v) of sodium nitrate, hold value C₂=0 and (c) concentration (%, w/v) of maltose vs concentration of sodium nitrate (% w/v) hold value C₁=0. Values are mean ± S.D. of three experiments.

Sudhir K Rai

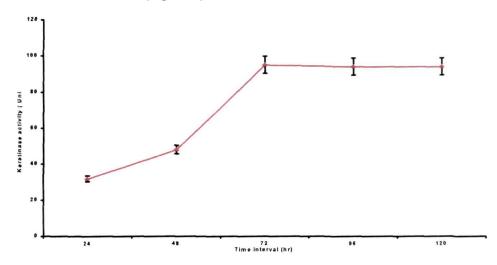
Fig.7.15 Countor plots for alkaline β -keratinase production by *B.subtilis* strain RM-01. The interaction between (a) pH of the medium and concentration (%, w/v) of maltose, hold value C₃=0 (b) pH of the medium vs concentration (%, w/v) of sodium nitrate, hold value C₂=0 and (c) concentration (%, w/v) of maltose vs concentration of sodium nitrate (% w/v) hold value C₁=0. Values are mean ± S.D. of three experiments.

Sudhir K Rai

Chapter 7 7.3.1 Response surface plots

The three-dimensional response surface plots as a function of two factors at a time, maintaining the third factor at the minimum (zero) level, are depicted in Figs. 7.14a–c. A small trough in response surface plot (Fig. 7.14a) indicated an initial decrease in alkaline β -keratinase production with the initial increase of maltose level. Figure 7.14b shows that alkaline β -keratinase production was increased with an initial increase in sodium nitrate concentration. Interaction of maltose and sodium nitrate suggests, increase in maltose level resulted in a decrease β -keratinase yield, whereas an increase in sodium nitrate level significant enhanced the β -keratinase production (Fig.7.14c).

7.3. 2. Countor plots


The maximum predicted value is indicated by the smallest ellipse in the contour diagram Figs.7.15a–c shows the 2D contour plots of protease production for each pair of variables by keeping the other three variables constant at its middle level. It could be seen that the protease production increased upon increasing the initial pH from 7.0 to 9.0, but any further increase in its values resulted in decreased alkaline β -keratinase production. Therefore, the optimal initial pH was at around 8.0. Similarly, the alkaline β -keratinase production increased with increasing the sodium nitrate from 0.5 to 1.5 % (w/v), and any further increase in its values resulted in decreased with increasing the optimal mattee production also the optimal mattee concentration was around 10.0 % (w/v).

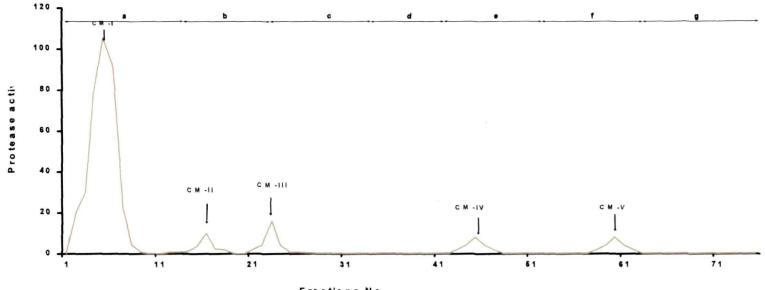
7.4. Batch fermentation under optimized condition

Maximum β -keratinase production under statistically optimized condition was observed post 72 h of incubation (Fig. 7.16) in contrast to 96 h during the initial screening process (see section 7.1.1). The β -keratinase production under optimized condition remained almost constant up to 96 h

<u>Sudhir K Rai</u>

Chapter 7 3 of bacterial growth, demonstrating that the accumulated β -keratinase was stable over time (Fig.7.16).

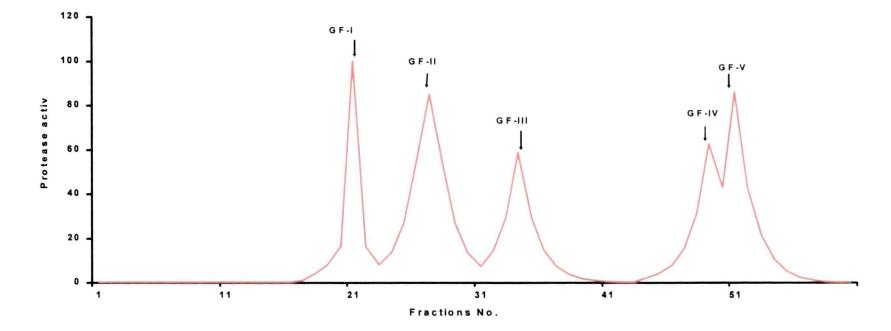
Fig.7.16 Batch fermentation for alkaline β -keratinase production from *B.subtilis* strain RM-01 under statistically optimized conditions in SSF. Values are mean ± S.D. of three experiments.


7.5 Isolation and purification of β -keratinase from *B.subtilis* strain RM-01

Fractionation of CM-cellulose unbound β-keratinase (peak CM-I as shown in Fig.7.17) on a gel filtration column resulted in its separation into five peaks GF-I to GF-V (Fig.7.18). The peak GF-III containing proteins in the molecular weight range of 15–22 kDa showed maximum β -keratinase activity and was separated into six major peaks (HP-I to HP-VI) on a reverse phase C₁₈ HPLC column (Fig.7.19). The peak with the retention time of 12.57min (HP-IV) showing β -keratinase activity was found to be homogenous by SDS-PAGE. About 15 µg of protein (HP-IV), both under reducing and non-reducing condition, yielded a single Coomassie stained band of apparent molecular weight 20.1 (Fig.7.20). A summary of purification of this β-keratinase is displayed in Table 7.6.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010



Fractions No.

Fig.7.17 CM-Cellulose profile of cationic keratinase secreted from *B.subtilis* strain RM-01. Buffers used for step elution were: (a) 100 mM K-phosphate buffer, pH 7.5; (b) 100 mM K-phosphate buffer, pH8.0; (c) 150 mM K-phosphate buffer, pH8.0; (c) 200 mM K-phosphate buffer, pH 8.0; (d) 200 mM K-phosphate buffer, pH 8.0; (e) 300 mM K-phosphate buffer, pH 8.0; (f) 300 mM K-phosphate buffer, pH 8.5. Data represent a typical experiment.

Sudhir K Rai

Fig.7.18 Gel-filtration profile of CM-1 (non-retained by CM-cellulose) fraction from *B.subtilis* RM-01 bacterial strain on Sephacryl S-200 column. Data represent a typical experiment.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

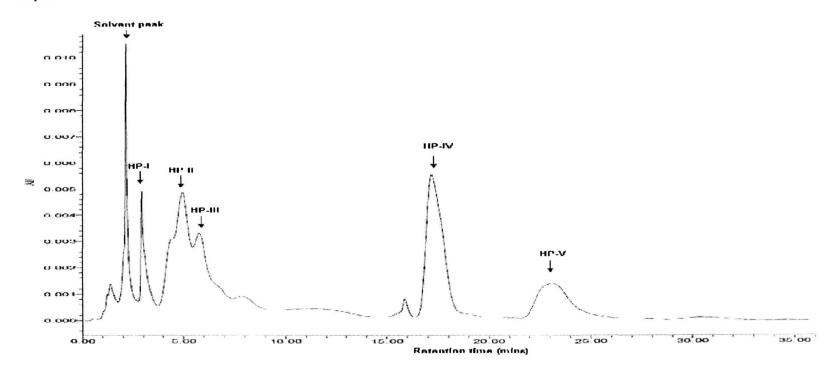
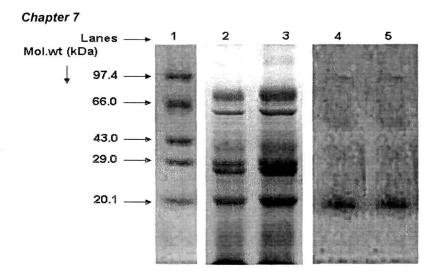



Fig.7.19 RP-HPLC profile of fraction GF-III. The HPLC experiment condition is described in the text. Data represent a typical experiment.

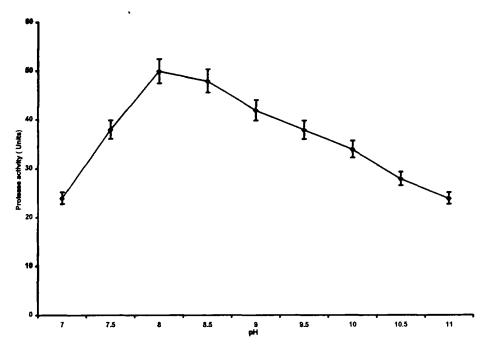
Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Fig.7.20 SDS-polyacrylamide gel (12.5%) electrophoresis of purified β keratinase. Lane 1, Protein molecular weight standards: phosphorylase b (97.4 kDa), BSA (66.0 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), and soybean trypsin inhibitor (20.1 kDa); lane 2 reduced crude β keratinase (30 µg); lane 3 non-reduced crude β -keratinase (30 µg); lane 4 reduced β -keratinase (15 µg); lane 5 non-reduced β -keratinase (15 µg).

Table 7.6 Summary of purification of β -keratinase from *B.subtilis* strain RM-01. Results represent a typical experiment.

Purification step	Total protein	Total activity	Yield of	Specific activity	Purification (fold)
igo al	(mg)	(Units)	protein	(units/mg)	
			(%)		
Cell-free	180.0	134694.0	100	748.3	1
supernatant					
CM-I	4.0	3658.0	2.2	915.0	1.2
GF-III	1.2	3412.0	0.6	2843.0	3.8
HP-IV	0.5	3400.0	0.3	6800.0	9.1


Sudhir K Rai

PhD Thesis, Tezpur University, 2010

7.6 Biochemical characterization of alkaline β -keratinase from *B.subtilis* strain RM-01

7.6.1 Effect of pH and temperature on alkaline β-keratinase activity

The enzyme showed activity at pH range of 7.0–11.0 and at 25–55°C temperature range; however, optimum activity was observed at pH 8.0 and at a temperature of 45°C (Fig.7.21 and Fig.7.22, respectively).

Fig.7.21 Optimum pH requirement for alkaline β -keratinase from *B.subtilis* strain RM-01. Values are mean ± S.D. of three experiments.

Sudhir K Rai

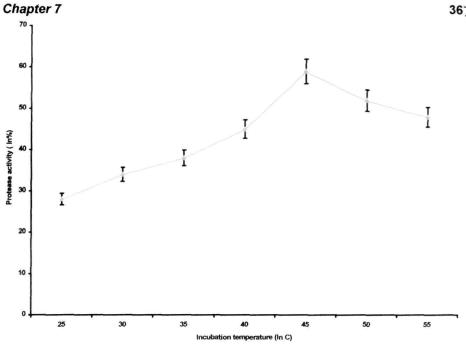


Fig.7.22 Effect of incubation temperature on alkaline β-keratinase activity from *B.subtilis* strain RM-01. Values are mean ± S.D. of three experiments.

7.6.2 Substrate specificity study

Amongst the tested substrates, chicken-feather keratin was found to be the most preferred substrate for this enzyme followed by casein; human hair keratin was least hydrolyzed by this enzyme (Fig.7.23).

Sudhir K Rai

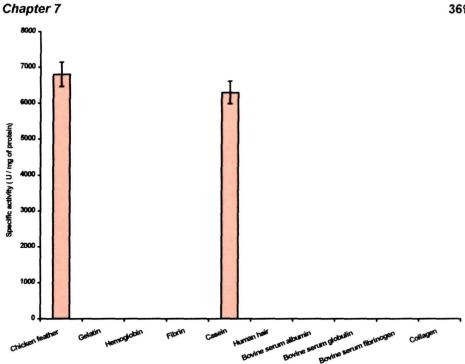


Fig.7.23 Substrate specificity study of purified alkaline β-keratinase from B.subtilis strain RM-01. Values are mean ± S.D. of three experiments.

7.6.3 Thermo-stability study of purified alkaline β-keratinase

The β-keratinase purified from B. subtilis strain RM-01 retained 100% stability of its original activity post-heating at 60°C for 30 min and thereafter there was a steady decline of upto 60% the enzyme activity (Fig.7.24).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

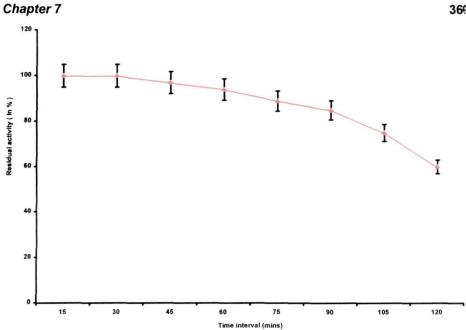


Fig.7.24 Thermo-stability of alkaline β-keratinase from B. subtilis strain RM-01. Values are mean ± S.D. of three experiments. Using chicken-feather keratin as a substrate.

7.6.4 K_m and V_{max} values of purified alkaline β -keratinase

The K_m and V_{max} values of purified β -keratinase towards soluble keratin were determined as 5.0 mg /ml and 1.25 µmol /min / mg, respectively (Fig.7.25).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Fig. 7.25 Lineweaver Burk plot to determine the K_m and V_{max} values of purified alkaline β -keratinase from *Bacillus subtilis* strain RM-01.

7.6.5 Effect of metal ions on alkaline β -keratinase activity

All the tested metal ions, except Fe²⁺, were shown to inhibit the enzyme activity. About 150% (1.5 fold) enhancement of β -keratinase activity was observed in presence of Fe²⁺ (Fig.7.26).

Sudhir K Rai

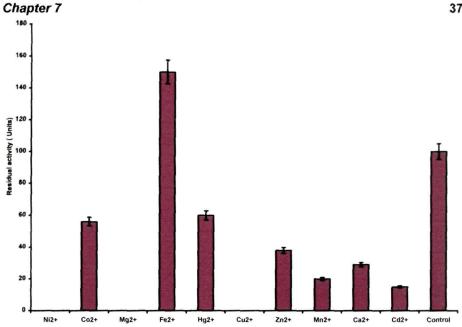


Fig. 7.26 Effect of metal ions on alkaline β-keratinase activity from B.subtilis strain RM-01. Values are mean ± S.D. of three experiments.

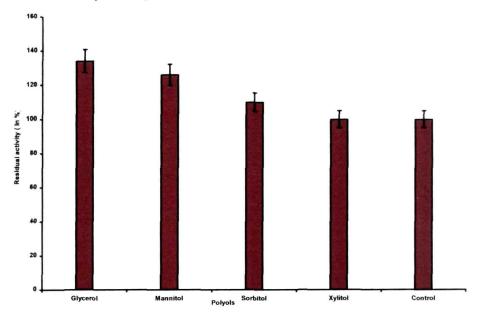
7.6.6 Effect of denaturing agents, oxidizing and bleaching agents, inhibitors, chelators and surfactants on alkaline β-keratinase activity

The β- keratinase from B. subtilis strain RM-01 retained more than 80% of its original activity post-treatment with EDTA, surfactants, oxidizing and bleaching agents (Table 7.8), whereas the enzyme activity was significantly effected by PMSF, IAA and 4-bromophenacyl bromide thus suggesting a role for serine, cysteine, and histidine residues in the catalysis process (Table 7.7).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Table 7.7 Effect of denaturing agent, oxidizing and bleaching agents, inhibitors, chelators, and surfactants on purified β -keratinase from *Bacillus subtilis* strain RM-01 at pH 8.0 and 45°C temperature. Values are mean ± S.D. of three experiments.


Parameters	Values		
Control	100		
Inhibitors (1 mM)			
PMSF	10.5 ± 1.0		
4-Bromophenacyl bromide	18.3 ± 1.8		
IAA	2.8 ± 0.2		
Chelator (1 mM)- EDTA	84.3 ± 3.0		
Anionic surfactant (SDS)			
40mM	100.0		
60mM	94.0 ± 2.0		
Non-ionic surfactants (1% v/v)			
Trition-X-100	87.4 ± 8.0		
Tween 20	82.9 ± 4.0		
Tween 80	100.0		
Denaturing agent			
Urea (8 M)	91.6 ± 8.0		
Oxidizing agent			
H ₂ O ₂ (% v/v)			
5.0	110.0 ± 2.2		
10.0	100.0		
Bleaching agent			
Sodium perborate (% v/v)			
0.5	108.0 ± 2.2		
1.0	99.0 ±1.9		

<u>Sudhir K Rai</u>

-

7.6.7 The stabilizing effect of polyols against heat –denaturation of alkaline β -keratinase

Thermo-stability of enzyme could also be enhanced by modification of the environment, such as addition of various polyols or simple sugars. Effect of polyols on the thermo-stability property of alkaline β -keratinase from *B.subtilis* strain RM-01 is shown in (Fig.7.27). Thermo-stability of alkaline β -keratinase at 60°C was significantly improved post addition of polyols into the reaction media. The highest improvement in stability (relative activity of 138.0%) was obtained with glycerol which was 1.3 fold higher as compared with control. On the other hand, xylitol did not play any role in improving the thermostability of the β -keratinase.

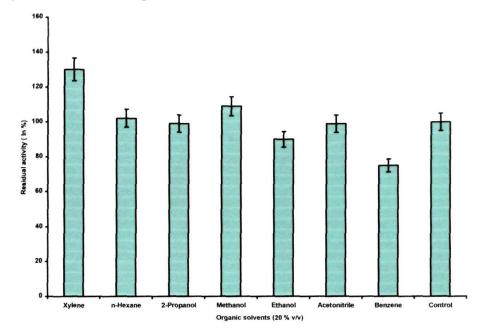


Fig.7.27 Effect of polyols on alkaline β -keratinase stability post heating at 60°C for 30 min. The enzyme activity without polyols served as control (100%) activity. Values are mean ± S.D. of three experiments.

Sudhir K Rai

7.7.8 Effect of organic solvent on alkaline β-keratinase activity

The enzyme was stable to all the organic solvents tested after 90 min incubation (Fig. 7.28). In presence of organic solvents such as xylene, methanol, n-hexane, 2-propanol, acetonitrile, ethanol and benzene (20%, v/v) the activity of alkaline β -keratinase was observed as 130%, 109%, 102%, 99%, 90% and 75%, respectively when compared to the control. Therefore, β -keratinase in the present study showed different tolerancy profile for different organic solvents.

Fig.7.28 Organic solvent stability of alkaline β -keratinase from *B.subtilis* strain RM-01. Enzyme activity in the absence of solvents was considered as 100% activity and other values were compared with that. Values are mean \pm S.D. of three experiments.

Sudhir K Rai

Chapter 7 7.7 Pharmacological properties of alkaline β-keratinase

Purified β -keratinase from *Bacillus subtilis* strain RM-01 at a dose of 7.0 µg/ml caused 3.0% hemolysis of the washed human erythrocytes. Moreover, this enzyme did not display any tissue-damaging effect on goat liver, heart, lungs and kidney tissues (Table 7.8). Further, as shown in Table 7.8, the normal clotting time of goat platelet- poor plasma (PPP) was insignificantly (p>0.05) effected by the purified β -keratinase from *B.subtilis* strain RM-01.

Table 7.8 Pharmacological properties of purified β -keratinase from *Bacillus subtilis* strain RM-01. Values are mean \pm S. D. of three determinations.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of	
β -keratinase 90 min post incubation at	
37 °C)	
Control (without β-keratinase)	1.4 ± 0.1
Treatment	3.0 ± 0.5
Ca-Clotting time (s)	
Control (without β-keratinase)	129.0 ± 6.5
Treated (with 15.0 μ g / ml of β -	132.0 ± 7.0
keratinase)	
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μ g / ml	
of β-keratinase 5 h post incubation at 37	
°C)	
a) Heart	
Control (without β-keratinase)	0.09 ± 0.01
Treatment	0.27 ± 0.01
b) Lung	

<u>Sudhir K Rai</u>

Chapter 7	376
Pharmacological properties	Values
Control (without β-keratinase)	0.13 ± 0.01
Treatment	0.36 ± 0.02
c) <i>Liver</i>	
Control (without β-keratinase)	0.16 ± 0.08
Treatment	0.28 ± 0.01
d) <i>Kidney</i>	
Control (without β -keratinase)	0.12 ± 0.05
Treatment	0.27 ± 0.01

7.8 Binding efficiency and specific activity of β-keratinase

The cyanamide treatment of iron-oxide MNPs (method II) prior to enzyme coupling was found to be a better method as compared to aminofunctionalization of MNP (method I) when we considered the (i) binding efficiency of β -keratinase onto MNPs, and (ii) increase in the specific activity of the enzyme post immobilization onto iron-oxide MNPs (Table 7.9).

Table 7.9 A comparison of binding efficiency (under non-optimized condition) of β -keratinase onto iron-oxide MNP and increase in specific activity of the enzyme post binding to MNP by two different methods. Values are mean \pm S.D. of three different experiments.

Immobilization	Enzyme	Specific	Increase in specific activity*	
method	binding	activity		
	(%)	(U/mg protein)	(%)	
Method I [#]	69 ± 4.8	27200 ± 29	4	
Method II ⁺	81 ± 6.6	55080 ± 22	8.1	

<u>Sudhir K Rai</u>

* Compared to specific activity of free β-keratinase

Treatment of MNP with *3-(amino propyl) triethoxy silane and *cyanamide prior to enzyme coupling.

7.9 Statistical optimization of iron-oxide MNP β-keratinase binding

Table 7.10 shows the observed and predicted values of Y response (specific activity). The maximum Y response was observed when 25 mg MNP was coupled with β -keratinase at pH 8.0. The response surface and contour plots (Fig.7.29a and 7.29b) have shown that both the tested factors (amount of MNP and pH of 20 mM Tris-HCl buffer) independently exerted their influence in both linear and quadratic manner onto the specific activity of the iron-oxide MNP-coupled β -keratinase. However, their (C₁ and C₂) interaction effect was not significant (p> 0.05) (Table 7.11). The overall second-order polynomial equation for keratinase activity may be represented as

$$Y = 60097 .5 - 14099 .0 C_1 - 5008 .98 C_1^2 (7.3) + 6454 .98 C_2 - 17785 .1 C_2^2$$

Table 7.10 Observed and predicted values of Y response by RSM. The observed values are mean of triplicate determinations. Data within bracket indicates the coded value.

Run	Indep	endent	Y Response		Residual
no.	Var	iables	(Keratinase activity U/mg)		value
	C ₁	C ₂	Observed	Predicted	
1	25 (-1)	7.5 (-1)	45184.7	44947.510	237.190
2	25 (-1)	8.0 (0)	68713.2	69187.614	-474.414
3	25 (-1)	8.5 (1)	58094.7	57857.476	237.224
4	50 (0)	7.5 (-1)	35383.0	35857.381	-474.381
		·			Continued

<u>Sudhir K Rai</u>

<u>Chap</u> Table	ter 7 7.10 Conti	nued			378
5	50 (0)	8.5 (1)	48292.9	48767.348	-474.448
6	50 (0)	8.0 (0)	61130.6	60097.486	1033.114
7	50 (0)	8.0 (0)	60013.2	60097.486	-84.286
8	75 (1)	7.5 (-1)	16986.7	16749.510	237.190
9	75 (1)	8.0 (0)	40515.2	40989.614	-474.414
10	75 (1)	8.5 (1)	29896.7	29659.476	237.224

The sample coefficient of determination (R²) measures the closeness of fit of the sample regression equation to the observed value of Y. As shown in Table 7.11, the value of R^2 indicated that more than 99% of sample variations for specific activity of the iron-oxide MNP-coupled β-keratinase were explained by the two independent variable chosen. The analysis of variance (ANOVA) by Fisher's statistical test was conducted for the second-order response surface model and the larger magnitude of the t value and smallest p value vouched for the significance of the corresponding coefficient of the model (Table 7.11).

Table 7.11 Model coefficients estimation by multiple regression analysis (model adequacy checking).

Factor	Coefficient	SE	Computed	p-value	
-		coefficient	t-value		
Constant	60097.5	443.2	135.605	0.0	
C ₁	-14099.0	302.7	-46.570	0.0	
C ₂	6454.98	302.7	21.321	0.0	
C ₁ ²	-5008.87	485.5	-10.317	0.0	
C ₂ ²	-17785.1	485.5	-36.634	0.0	
C ₁ .C ₂	-0.0	370.8	-0.000	1.0	

 $R^2 = 99.9 R^2 (pred) = 99.4, R^2 (adj) = 99.7$

Sudhir K Rai

- - -

PhD Thesis, Tezpur University, 2010

~--

Fig.7.29 Legend shows response surface plot (a) and contour plot (b) of specific activity of iron-oxide MNP bound β -keratinase vs pH of buffer (Tris-HCI) system used. C₁, amount of MNP (in coded value), C₂, pH of Tris-HCI (in coded value), and C₃ (specific activity in U/ mg).

Sudhir K Rai

Chapter 7 7.9.1. Response surface plots

In order to determine the optimal levels of each variable for iron-oxide MNP bound β -keratinase and pH of buffer (Tris-HCl), three-dimensional response surface plots were constructed by plotting the response (protease production) on the Z-axis against any two independent variables, while maintaining other variables at their optimal levels. As is shown in Fig.7.29a, a linear increase in iron-oxide MNP was lead to decrease in specific activity of bound β -keratinase. In contrast, significant increase in pH of the Tris-HCl buffer system enhanced the specific activity (Fig.7.29a).

7.9.2. Countor surface plots

The 2D countor surface plots are generally the graphical representations of the regression equation. The 2D response surface plots are presented in Figure 7.29b from which the values of β -keratinase activity for different concentrations of the variables could be predicted. Each contour curve represented an infinite number of combinations of two test variables with the other two maintained at their respective zero level. The maximum predicted value was indicated by the surface confined in the smallest ellipse in the contour diagram. The contour plots in Figure 7.29b showed that there were ellipsis near the centre point, which meant there were well defined optimum iron-oxide MNP bound β -keratinase and pH of buffer (Tris-HCI) system. However, the ellipsis was a small enough, as the surfaces were rather symmetric and a little flat near the optimum.

7.10 Characterization of bare and β -keratinase bound iron-oxide MNPs

The SEM images showed that the bare iron-oxide MNPs exist as discrete particles with a size of about 50-70 nm (Fig. 7.30a). On the other hand, the enzyme coupled MNP demonstrated the size ranged from 120-400 nm

<u>Sudhir K Rai</u>

suggesting agglomeration in association with the binding process (Fig. 7.30b).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

38¢.

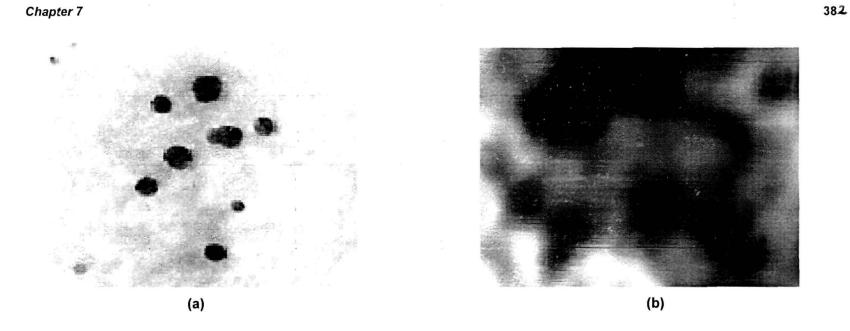


Fig.7.30 Scanning electron microscopic images of (a) bare bare Fe₃O₄ MNP, and (b) Fe₃O₄ MNP bound β -keratinase.

<u>Sudhir K Rai</u>

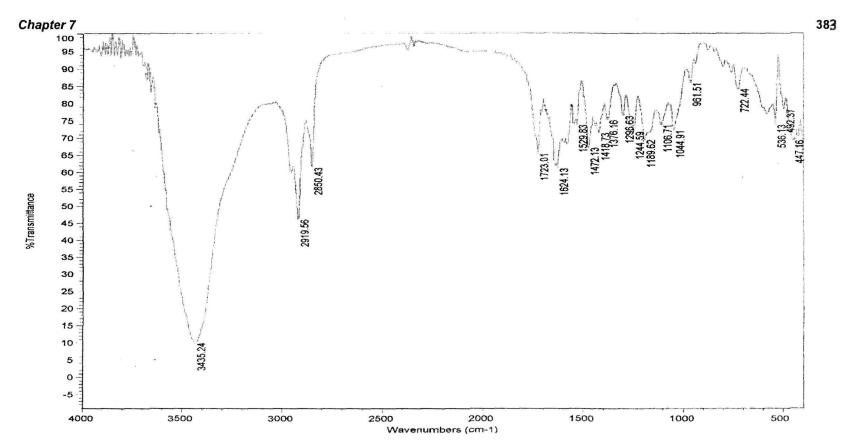


Fig.7.31 (a) FTIR spectra of iron oxide magnetic nanoparticle.

<u>Sudhir K Rai</u>

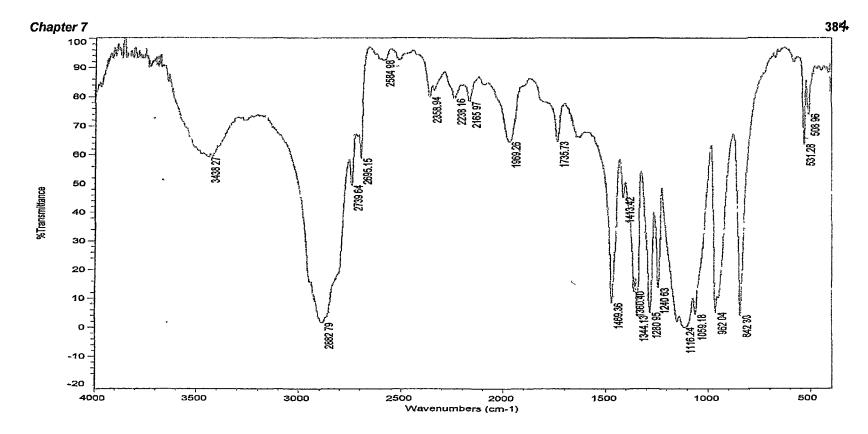


Fig.7.31 (b) FTIR spectra of MNP-coupled β-keratinase.

<u>Sudhir K Rai</u>

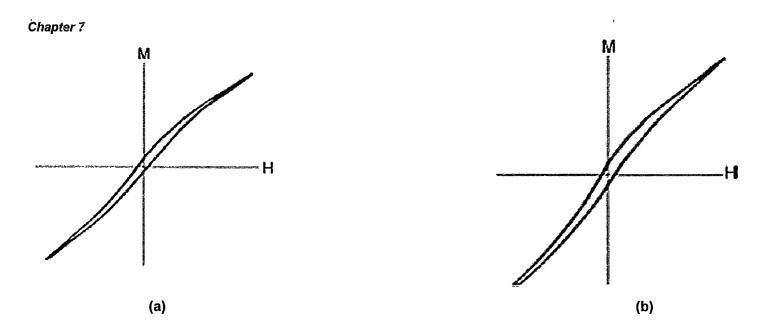


Fig. 7.32 Magnetization curve of iron oxide magnetic nanoparticle (a) Before (b) after enzyme immobilization.

<u>Sudhir K Rai</u>

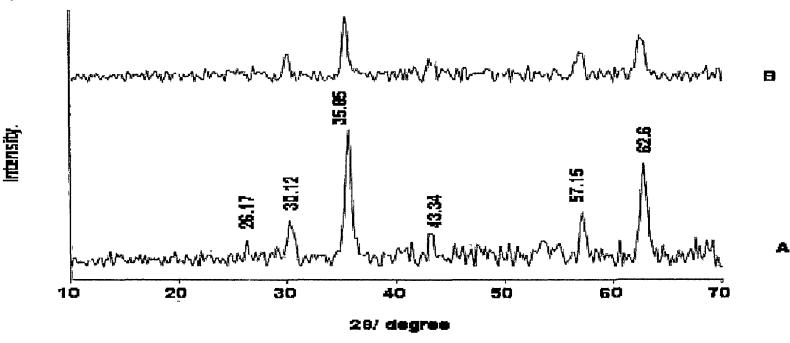


Fig.7.33 X-ray diffraction pattern of (A) bare Fe₃O₄ MNP (B) Fe₃O₄ MNP bound β -keratinase.

Sudhir K Rai

FTIR results also confirmed the binding of the purified β-keratinase onto magnetic Fe₃O₄ nanoparticles. The FTIR spectra of bare Fe₃O₄ MNP showed the characteristic band of metal oxygen interaction at round 572.79 cm⁻¹, typical for the synthesized iron-oxide MNP (Fig.7.31a). However, the change to 564.56 cm⁻¹ indicated possible modulation of interaction due to activation with carbodiimide and the enzyme binding. Band at 1517.69 cm⁻¹ was indicative of the carbodiimide functionalization of the MNP (Fig.7.31b). The C-N stretching bands were observed in the FTIR spectra of enzymebound carbodiimide activated iron-oxide MNP at 1465.12, 1517.69 and 1629 cm⁻¹ which were absent in the FTIR spectra for bare iron-oxide MNP(Fig.7.31b). Besides, in the FTIR spectra for enzyme coupled ironoxide MNP, the characteristics band of 1632 cm⁻¹ shown by bare Fe₃O₄ MNP could not be observed. Instead a high intensity band of 1629.92 cm⁻¹ appeared (Fig.7.31b). Similarly, the characteristics band at 3424.54 cm⁻¹ of bare iron-oxide MNP disappeared post binding with the enzyme and a new high intensity band of 3452.15 cm⁻¹ was observed in the FTIR spectra of iron-oxide MNP-β-keratinase conjugate(Fig.7.31b). This result proves the binding of β-keratinase onto iron-oxide MNPs since the washing of ironoxide MNP β-keratinase conjugate ruled out the possibility of non-specific binding of protein(s) to MNPs(Fig.7.31b).

The low field (178 G) hysteresis loop indicates the presence of proportionately large density single domain super-paramagnetic nanoparticles (Fig.7.32). The magnetization at this field remained the same for iron-oxide nanoparticles with and without enzyme immobilization. The hysteresis loop did not show saturation up to this field indicating that the specimen could withstand to relatively larger field strength. The saturation magnetization (μ_s), remanent magnetization (μ_r) and coercivity (H_c) values for free iron-oxide MNP were determined to be 4.648 emu/cm³, 2.703 emu/cm³ and 9.28 G, respectively and for enzyme-conjugated iron-oxide

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

MNP these values were determined as 4.680 emu/cm³, 2.703 emu/cm³, and 9.7 G, respectively (Fig.7.32). The magnetic susceptibility of the iron oxide nanoparticles, ($\lambda = 0.366$) remained the same both before and post enzyme immobilization indicating that β -keratinase immobilization had not altered the magnetic behavior of the iron-oxide nanoparticles to a statistically significant extent.

The XRD pattern of the bare and β -keratinase bound Fe₃O₄ MNP (Figs 7.33a and 7.33b) revealed the characteristic peaks (26.1°, 30.1°, 35.8°, 43.1°, 57.1° and 62.6°) for pure Fe₃O₄. however, the only difference was observed in the intensity of X-ray diffraction from iron-oxide MNP post binding with enzyme (Fig. 7.33b). Using the software X-PERT, the nanocrystallite size for the bare MNP was found to be about 38.2 nm, and the β -keratinase bound MNP also showed almost the same crystallite size of 38.35 nm.

7.11 Biochemical and kinetic properties of free and MNP bound β -keratinase

7.11.1 Effect of pH on free and MNP bound β -keratinase

This was evident from the fact that the keratinolytic activity of free β -keratinase was restricted to pH range of 7.0 to 10.0 whereas the MNPbound β -keratinase showed activity in the pH range of 6.0 to 12.0 (Fig.7.34).

Sudhir K Rai

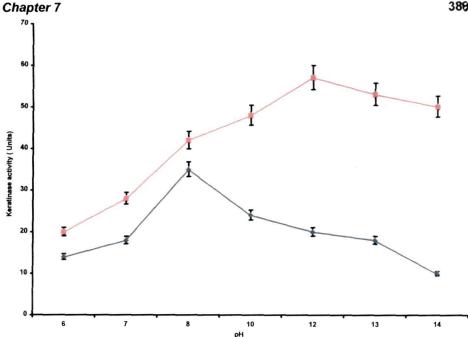


Fig.7.34 Effect of pH on activity of free β-keratinase (*) and MNP coupled β-keratinase (ID). Values are mean ± S.D. of three experiments.

7.11.2 K_m and V_{max} free and MNP bound β -keratinase

The kinetic studies showed that K_m and V_{max} values for free β -keratinase towards keratin were 5.0 mg/ml and 1.25 µmol/ min/ mg, respectively; whereas the same values for Fe_3O_4 MNP-bound β -keratinase were determined as 2.5 mg/ ml and 20 µmol/ min/ mg , respectively. Identically, the K_m and V_{max} values for free β -keratinase towards casein were determined as 4.2 mg/ ml and 1.42 µmol/min/mg, respectively. The specific activity of free and MNP-bound β-keratinase towards keratin was determined as 6800 U/mg and 61713 U/mg, respectively indicating that the catalytic efficiency of MNP bound β-keratinase compared to free βkeratinase was enhanced more than 9 folds.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 7 7.12 Thermal and storage stabilities

A comparison of the thermal stabilities of the free and Fe_3O_4 MNP-bound β keratinase post incubation for an identical time period showed that the latter was more stable compared to the former (Fig.7.35). The storage stability study demonstrated that the free enzyme lost 90% of its original activity post storage for 4 weeks at 4°C, whereas the iron-oxide MNPbound enzyme retained nearly 70% of its original activity under identical storage condition (Fig.7.36).

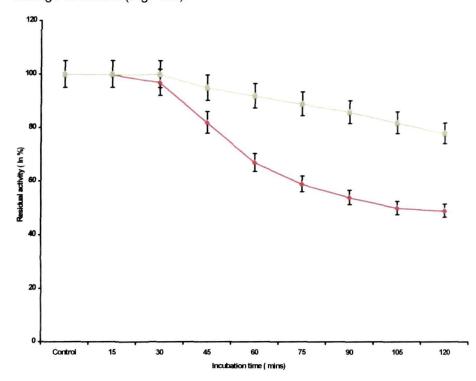


Fig.7.35 Thermostability study of free β -keratinase and MNP –coupled β -keratinase at 60°C for 120 min. Values are mean ± S.D. of three experiments.

Sudhir K Rai

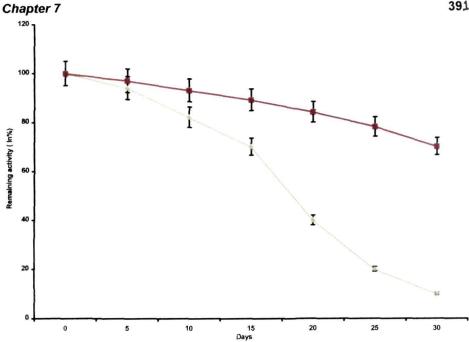


Fig. 7.36 Storage stability study of free β-keratinase and MNP –coupled βkeratinase for 30 days at 4°C. Values are mean ± S.D. of three experiments.

7.14 Industrial applications of alkaline β-keratinase

7.14.1 Detergent compatibility study

alkaline β-keratinase demonstrated significant stability The and compatibility with all the tested commercial laundry detergents at 37°C (Fig. 7.37). This excellent laundry detergent stability of alkaline β-keratinase prompted us to evaluate its stain removal potency for application in commercial laundry detergent formulations. It was observed that alkaline βkeratinase at a concentration of 0.5 mg /ml could remove 32.0 ± 2.1% (mean ± S.D., n = 3) of blood stain from cotton fabrics as shown in Fig 7.38.

Sudhir K Rai

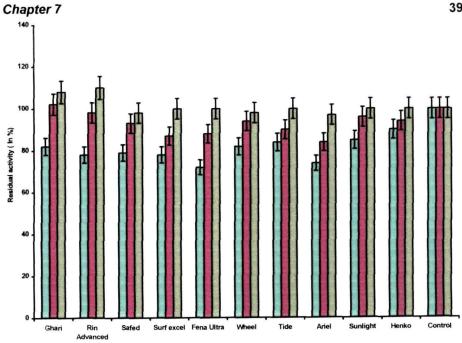
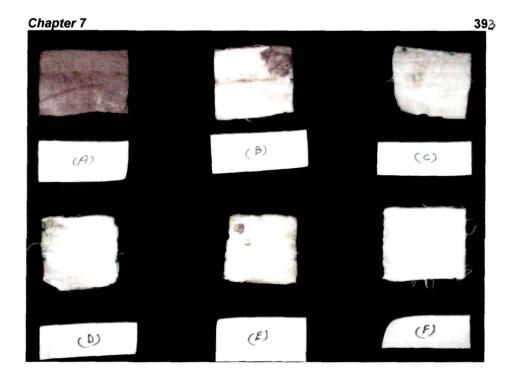
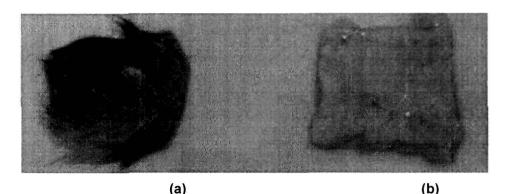



Fig.7.37 Detergent stability and compatibility of alkaline β -keratinase from B.subtilis strain RM-01 at 25 (=), 37 (=) and 45 (=) °C. Enzyme activity in the absence of detergent was considered as 100% activity and other values were compared with that. Values represent mean ± S.D of three experiments.

Sudhir K Rai

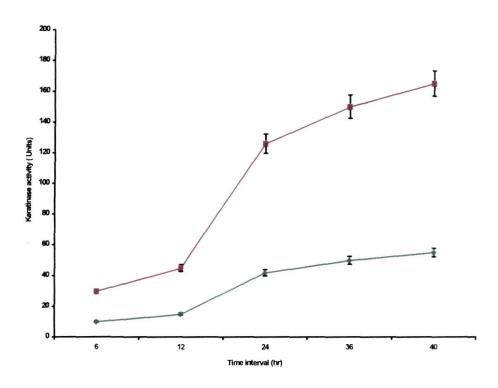

Fig.7.38 Wash performance study of alkaline β -keratinase from *B.subtilis* strain RM-01 at 37°C. From left, A: control (Tap water with blood stain cloth), B: stain cloth washed with alkaline β -keratinase (0.5 mg / ml), C: blood stain cloth washed with unheated detergent solution, D: heated detergent with blood stain cloth, E: unheated detergent with purified alkaline β -keratinase (0.5 mg / ml) with blood stain cloth, F: blood stained cloth washed with heated detergent containing purified alkaline β -keratinase (0.5 mg / ml).

7.14.2 Dehairing activity

The enzyme dehaired the goat skin within 6 h at pH 8.0 and ambient temperature 37° C, with 50 U / ml enzyme used for a 2.5 cm x 2.5 cm piece of goat skin (Fig. 7.39). The enzyme used in dehairing process possibly is non-collagenolytic in nature, as such the hide matrix remains intact. In general, the dehairing process requires the enzyme to be active

<u>Sudhir K Rai</u>

Chapter 7 under alkaline condition; this criterion was satisfied by alkaline βkeratinase from B.subtilis strain RM-01 and is thus a suitable candidate for application in leather industry as a dehairing agent.

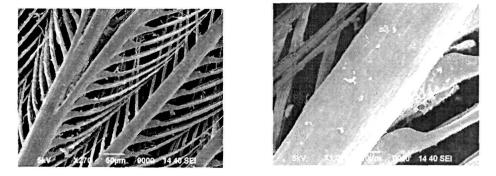

Fig. 7.39 Dehairing activity of alkaline β -keratinase (a) goat skin incubated in 100 mM Tris- buffer, pH 8.0 for 6 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with alkaline β-keratinase (50U / ml) for 6 h at 37°C.

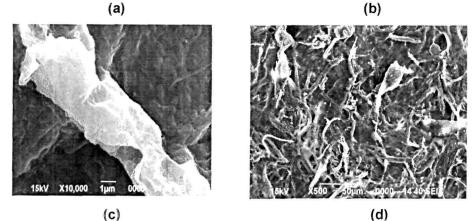
7.14.3 Kinetics of chicken-feather hydrolysis by MNP-coupled βkeratinase

A comparison of kinetics of chicken-feather keratin hydrolysis by free and iron-oxide MNP-bound β-keratinase showed that the latter was more efficient than the former in digesting the chicken-feather protein (keratin) as it was evident from the HPLC analysis of the released free amino acids from the feathers. About three fold increase in the rate of chicken-feather hydrolysis was observed by iron-oxide MNP-bound β-keratinase compared to free β -keratinase post 40 h of incubation under identical condition (Fig.7.40). After 40 h of incubation, the amino acids were recovered from the feather-hydrolisate in the following order: cysteine >valine >threonine >lysine >isoleucine >phenylalanine ~methionine.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010


Fig.7.40 Kinetics of chicken-feather hydrolysis by free β -keratinase (\bullet) and MNP-coupled β -keratinase (\blacksquare). Values represent mean \pm S.D of three experiments.


7.14.4 SEM Study of feather-degradation

The SEM study confirmed that β -keratinase gradually degraded the nativechicken feather (keratin) and subsequently modified the structure of the feather. A comparison of feather-degradation by iron-oxide MNP bound and free β -keratinase revealed that disintegration of barbules started post 2 h and 4 h of treatment of feathers with MNP bound and free β -keratinase, respectively. After 12 h of incubation with β -keratinase-iron-oxide MNP conjugate, the surface of feather keratin was affected severely. At 18 h,

Sudhir K Rai

feather keratin began to break down, followed by hole formation in rachis at 24 h (Fig. 7.41c). It was no longer possible to see the entire structure of keratin after 40 h of incubation with β -keratinase-iron-oxide MNP conjugate (Fig. 7.41d). The SEM study suggested the superiority of iron-oxide MNP-bound β -keratinase compared to free β -keratinase in degrading the chicken-feather under identical experimental condition.

Fig.7.41 Scanning electron microscopic images of (a) native chickenfeather (X 270) (b) native chicken-feather barb (X 1000) (c) rachis of chicken-feather post 24 h treatment with Fe₃O₄ MNP bound β -keratinase (X 10,000) and (d) chicken-feather post 40 h treatment with Fe₃O₄MNP bound β -keratinase (X 500).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

.

7.14.5 Analysis of liberated free fatty acids from chicken-feather by β -keratinase

GC analysis of the hydrolysed products from keratin fibres yields at least 7 volatile products as shown in Figs.7.42 and 7.43. Examination of the corresponding MS indicated that, most products are derived from lipids (Fig.7.44). The molecular ion peaks at m/z 190, 276, 466,171,466,466 and at RT 19.430, 19.488, 25.936, 28.363, 30.078, 31.405, and 32.615 respectively were found to increase sharply post treatment with MNP-coupled β -keratinase than free β -keratinase

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

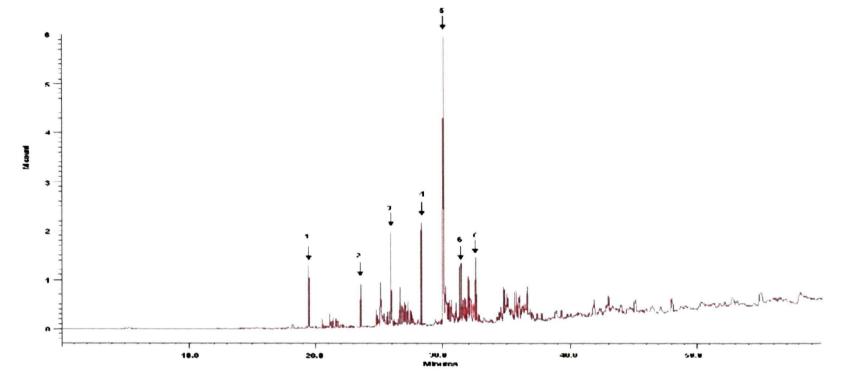


Fig.7.42 Gas chromatographic profile of free β-keratinase treated chicken feather fermented products.

Sudhir K Rai

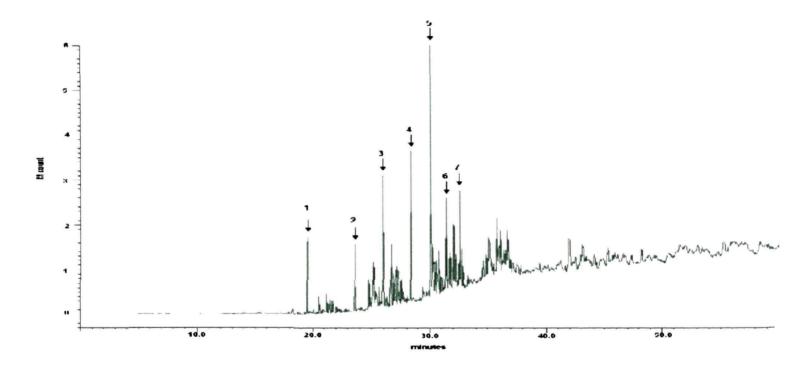
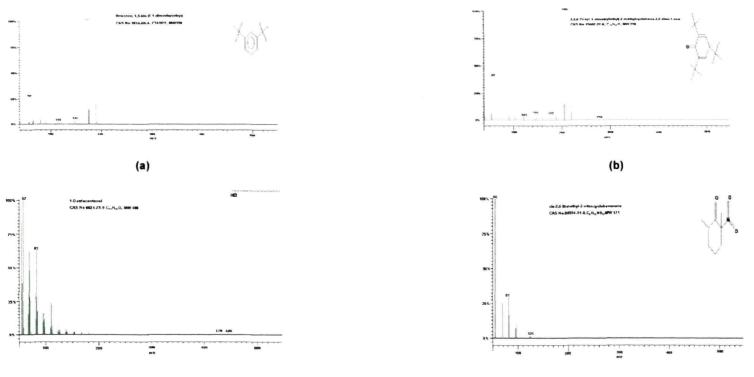



Fig.7.43 Gas chromatographic profile of MNP coupled β-keratinase treated chicken feather fermented products.

Sudhir K Rai

(C)

(d)

Fig. 7.44 Mass spectrum (MS) of volatile product released from hydrolyzed chicken feather post treated with MNP-coupled β-keratinase. Legends show ion chromatogram of each peak: (a) retention time 19.430; (b) retention time 25.936; (c) retention time 28.363, 31.405, and 32.615 have similar products; (d) retention time 30.078.

<u>Sudhir K Rai</u>

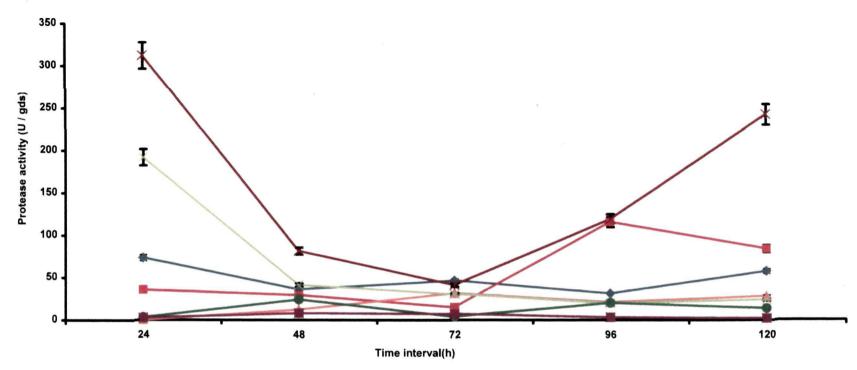
CHAPTER VIII

RESULTS

<u>Sudhir K Rai</u>

Chapter 8 Chapter 8

Process optimization, partial purification, biochemical characterization and industrial application of an alkaline protease isolated from *Bacillus* sp. AS-S20-I


8.1 Alkaline protease production under solid-state fermentation

8.1.1 Screening of different agro-industrial and waste materials for alkaline protease production

The types of substrate used are the key factor influencing the protease synthesis by bacteria in solid-state fermentation (SSF) system. Different substrates such as mustard oil cake (MOC), wheat bran (WB), rice bran (RB), *Imperata cylindrica* (IC) grass, waste potato peel (PP), banana leaf (BL), and used tea leaves (TL) were evaluated for protease synthesis by *Bacillus* sp. AS-S20-I in SSF (Fig. 8.1). Maximum enzyme production was observed in presence of *Imperata cylindrica* grass (IC) (191.8 U/gds) and potato peel (PP) (311.81 U/gds) post 24 h of incubation, while minimum protease production (2.5 U/gds) was shown by waste TL as substrate/ support material. The protein content of the culture supernatants as well as the bacterial dry biomass also followed the same trend like protease production by bacterium on different substrates in SSF (Fig. 8.2).

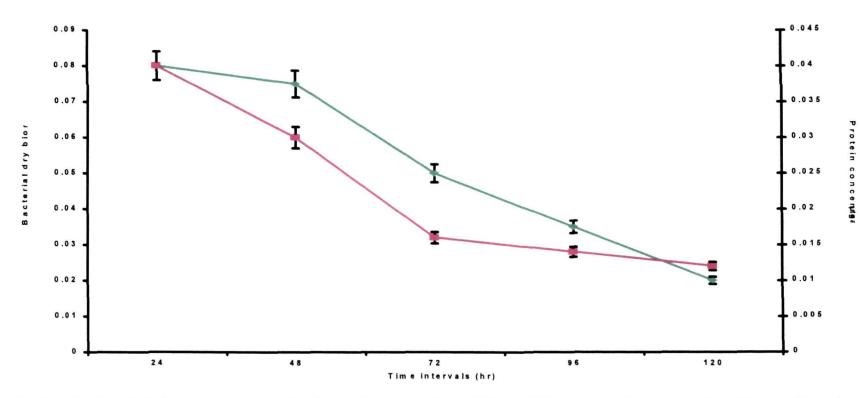

<u>Sudhir K Rai</u>

Fig.8.1 Screening of different agro-industrial waste residues such as MOC (\blacklozenge), WB (\blacksquare), RB (\blacktriangle), IC(\checkmark), PP(\boxtimes), BL(\bullet), and TL(\blacksquare) for the production of alkaline protease by *Bacillus* sp.strain AS-S20-I at different time intervals. Values are mean \pm S.D. of three experiments.

Sudhir K Rai

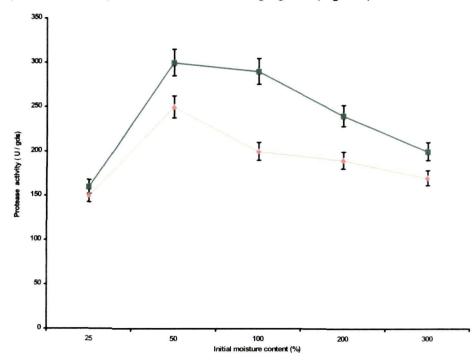


Fig.8.2 Kinetics of alkaline protease production by *Bacillus* sp. strain AS-S20-I in SSF. Legends show bacterial dry biomass (*) and protein concentration (**I**). Values are mean ± S.D. of three experiments.

<u>Sudhir K Rai</u>

Chapter 8 4 8.1.2. Effect of initial moisture content of the substrate and moistening agent on protease production

The moisture content is a critical factor in solid-state fermentation. Its importance for microbial growth and thereby enzyme production has been well established. To check the influence of moisture on protease production during SSF, IC or PP was moistened with different amounts of distilled water (25-300%) prior to fermentation. Results show that 50% of moisture content of solid substrate was optimal for production of protease in IC and PP (290 and 245 U/gds) of substrate, respectively (Fig.8.3). Distilled H₂O adjusted to pH 11.0 was most efficient moistening agent for protease production compared to other moistening agents (Fig. 8.4).

Fig.8.3 Influence of initial moisture content of the substrates [PP (\bullet) or IC (**II**)] on protease production. Values are mean ± S.D. of three experiments post 24h incubation at 50°C. Moistening agent was distilled water, pH adjusted to 11.0.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

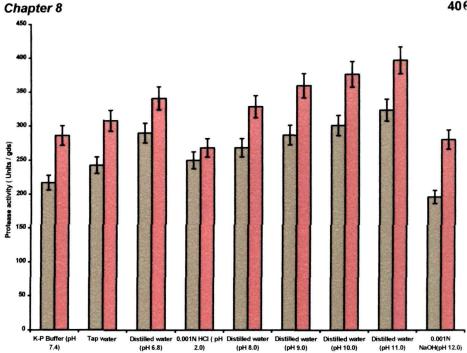
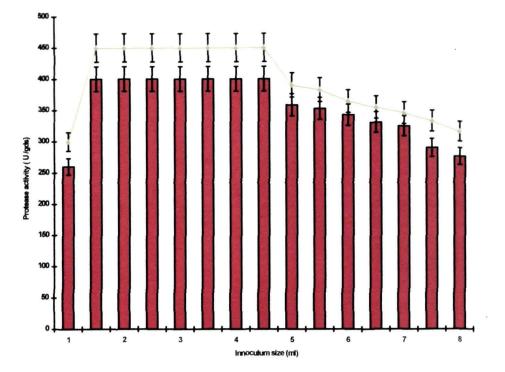



Fig.8.4 Influence of moistening agent on protease production using either IC (I) or PP (I) as a substrate. Values are mean ± S.D. of three experiments post 24h of incubation of Bacillus sp. strain AS-S20-I at 50°C.

8.1.3. Effect of inoculum's size on protease production

As shown in Fig.8.5, with an increase in inoculum's size from 0.5 ml to 1.5 ml (5.0 g substrate), protease production by Bacillus sp. strain AS-S20-I was enhanced linearly, while increasing the inoculum's size from 1.5 ml to 4.5 ml did not have a significant impact in enhancing the protease yield (p>0.05). However, an increase in inoculum's size beyond 4.5 ml resulted in a steady decline in protease production in SSF by Bacillus sp. strain AS-S20-I (Fig.8.5).

Sudhir K Rai

Fig.8.5 Influence of inoculum size on protease production by *Bacillus* sp. strain AS-S20-I strain using PP (\diamond) or IC (\blacksquare) as substrate under SSF. Values are mean ± S.D. of three experiments.

8.1.4. Effect of supplementation of co-carbon and co-nitrogen sources on protease production

In this study, various carbon sources, viz. glucose, casein, galactose, maltose, lactose, fructose, and sucrose were used to investigate their influence on protease production (Fig.8.6). It was found that potato peel displayed a significant increase in protease production followed by casein as the best co-carbon source. And then by maltose for increasing the protease production (Fig. 8.6). About 3.6 fold increase in protease production was observed in presence of casein as compare with control (medium without casein).

Sudhir K Rai

Among the tested nitrogen compounds, 0.1 % (w/w) ammonium sulphate followed by potassium nitrate served as the best co-nitrogen sources for protease production by *Bacillus* sp. strain AS-S20-I on IC (Fig.8.7). Ammonium sulphate increased the protease production to 4.6 times higher as compare with the control. Thus, casein and ammonium sulphate were found to be the best carbon and nitrogen sources supporting microbial growth as well as enzyme production in SSF. When supplemented to IC as a solid substrate.

<u>Sudhir K Rai</u>

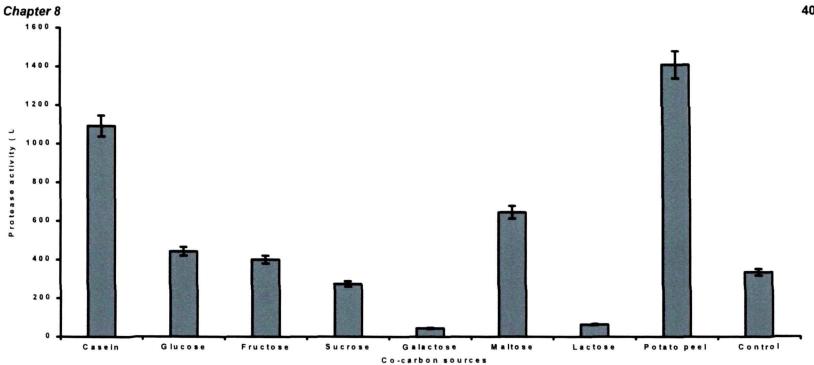
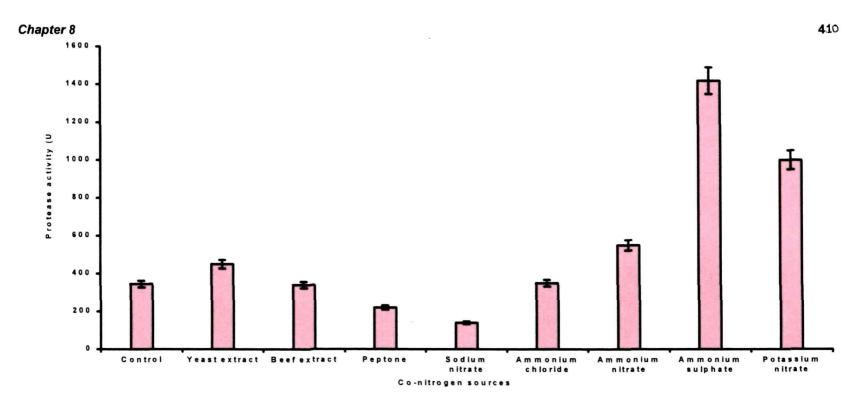



Fig. 8.6 Effect of supplementation of co-carbon sources (10 % w/w) to IC (90% w/w) (substrate) on protease production by Bacillus sp. strain AS-S20-I. Values are mean ± S.D. of three experiments.

Sudhir K Rai

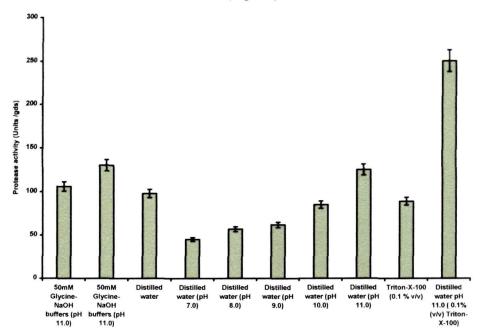


Fig.8.7 Effect of supplementation of co-nitrogen sources (1.0% w/w) to IC (99.0% w/w) (substrate) on protease production by *Bacillus* sp.strain AS-S20-I. Values are mean ± S.D. of three experiments.

<u>Sudhir K Rai</u>

8.1.5 Protease extraction from fermented matter

Tested extractions medium used for the recovery of protease from the fermented matter, distilled water containing 0.1%(v/v) triton X-100, pH 11.0 served as best extraction medium (Fig.8.8).

Fig.8.8 Screening of best extraction medium for optimum protease recovery from fermented matter. Values are mean ± S.D. of three experiments.

8.1.6 Batch fermentation for alkaline protease production

Batch fermentation for protease production from *Bacillus* sp. strain AS-S20-I was studied using the various combinations of IC and PP with or without supplementation of best co-carbon and co-nitrogen sources. Results showed that when IC and PP were mixed in a ratio of 1:1 without any cocarbon and nitrogen sources, a significant increase in protease yield (p< 0.05) could be achieved (Table 8.1), thus demonstrating no requirement of

Sudhir K Rai

Chapter 8 41 additional co-carbon and co-nitrogen sources when PP was supplemented to IC.

Table 8.1 Influence of different combinations of co-substrates on alkaline protease production by *Bacillus* sp.strain AS-S20-I in solid-state fermentation. Values are mean ± S.D. of three experiments.

Substrate(s)	Protease activity (U/gds)
I.cylindrica (100%)	191.8 ± 9.59
Potato peel (100%)	311.81 ± 15.5
<i>I.cylindrica</i> (89%w/w)+ casein (10 % w/w) + ammonium sulphate (1% w/w)	1300.00 ± 65.0
I.cylindrica (90%w/w) + Potato peel (10%)	1409.0 ± 70.45
<i>I.cylindrica</i> (80%w/w) + Potato peel (20 %w/w)	1736.0 ± 86.8
<i>l.cylindrica</i> (50%w/w) + Potato peel (50%w/w)	2082.0 ± 104.1
Potato peel (89% w/w) + casein (10 % w/w) + ammonium sulphate (1% w/w)	846.0± 42.3

8.2 Alkaline protease production under submerged fermentation

8.2.1 Effect of carbon source on protease production

Carbon source such as glucose, fructose, galactose, lactose, sucrose, starch, carboxylmethyl cellulose, casein, and mannitol were incorporated at 10% level in the medium. It was observed that cellulose and *Sudhir K Rai*

Chapter 8 carboxylmethyl cellulose were least effecting carbon source for protease production. The best carbon source supporting protease production by Bacillus sp. strain AS-S20-I in SmF (Fig. 8.9).

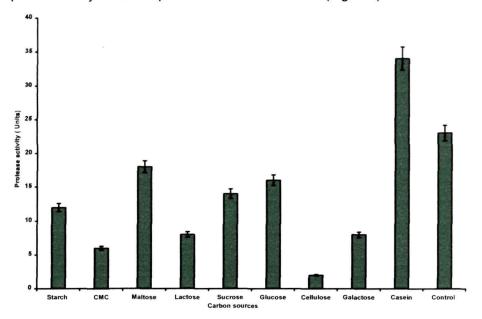
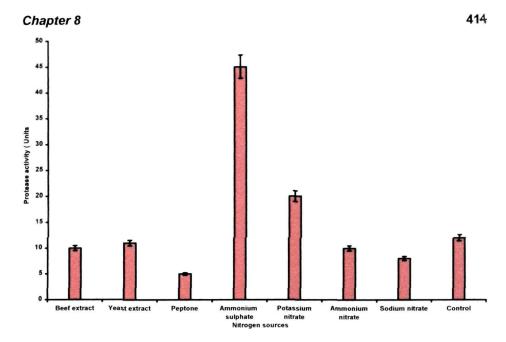



Fig.8.9 Effect of different carbon sources on alkaline protease production by Bacillus sp.strain AS-S20-I under submerged fermentation. Values are mean ± S.D. of three experiments.

8.2.2 Effect of nitrogen source on protease production

Various nitrogen sources were tested for alkaline protease production and maximum alkaline production was observed in presence of 0.1% (w/v) ammonium sulphate (Fig.8.10).

Sudhir K Rai PhD Thesis, Tezpur University, 2010

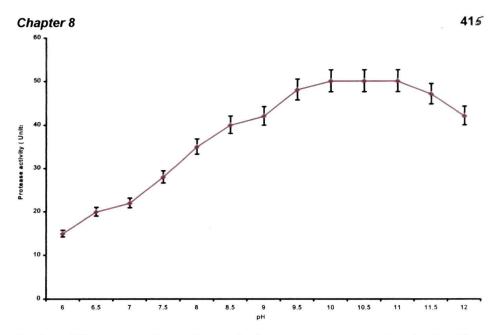


Fig.8.10 Effect of various nitrogen sources on alkaline protease production from *Bacillus* sp. strain AS-S20-I under SmF. Values are mean \pm S.D. of three experiments.

8.2.3 Effect of pH on protease production

The effect of pH on alkaline protease production from *Bacillus* sp. strain AS-S20-I was determined by adjusting the medium pH and than producing protease at that pH. Result showed that with an increase in the pH of the medium from 6 to 9.5, the protease production was enhanced significantly (p<0.05). The protease production remained constant from pH 9.5-11.0; however, a further increase in pH of the medium resulted in a decline in protease yield (Fig.8.11).

Sudhir K Rai

Fig.8.11 Effect of medium pH on alkaline protease production by *Bacillus* sp. strain AS-S20-I. Values are mean ± S.D. of three experiments.

8.2.4. Effect of temperature on protease production

The effect of temperature on alkaline protease production from *Bacillus* sp.strain AS-S20-I showed that protease production was linearly increased from 25 to 50°C and beyond this temperature protease production was decreased suggesting 50°C is the optimum temperature for protease production by *Bacillus* sp. strain AS-S20-I (Fig.8.12).

Sudhir K Rai

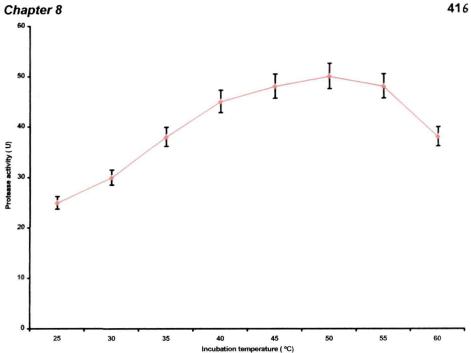


Fig.8.12 Influence of incubation temperature on alkaline protease production by Bacillus sp.strain AS-S20-I in SmF. The pH of the medium was adjusted to 9.5. Values are mean ± S.D. of three experiments.

8.2.5 Kinetics of protease production

Result showed that maximum alkaline protease production was achieved post 48h of incubation (Fig. 8.13). The protease production was slightly declined upto 72h of incubation and beyond this period, a sharp fall in protease production was recorded (Fig. 8.13).

Sudhir K Rai

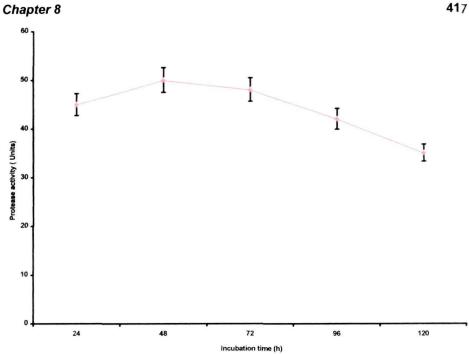
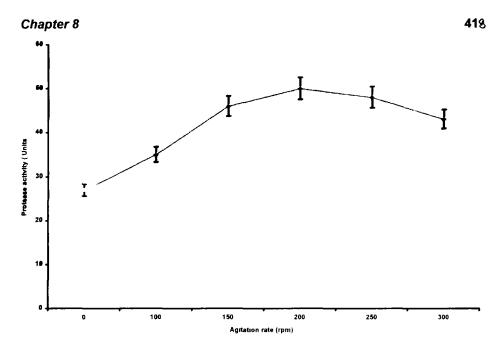



Fig. 8.13 Effect of incubation time on alkaline protease production by Bacillus sp. strain AS-S20-I in SmF . Values are mean± S.D. of three experiments.

8.2.6 Effect of agitation rate on protease production

The effect of the agitation speed on the protease production showed that optima alkaline protease production was observed at 200 rpm (Fig. 8.14), further increase in agitation rate displayed a sharp fall in protease yield.

Sudhir K Rai

Fig.8.14 Effect of agitation rate on alkaline protease production from *Bacillus* sp. strain AS-S20-I under SmF. Values are mean \pm S.D. of three experiments.

8.3 Statistical optimization of alkaline protease production under submerged fermentation

8.3.1 Evaluation of factors effecting production using Plackett-Burman design

In the present study, maximum protease activity was detected in the 48 h post-inoculated cell-free extract of *Bacillus* sp. strain AS-S20-I. Screening result demonstrated a wide variation of protease activity from 59.0 Units to 145.8 Units in the fifteen trials (Table 8.2). The analysis of regression coefficients and t-value of six parameters showed that amongst the tested parameters casein, ammonium sulphate, and pH of the medium stimulated the protease production whereas, innoculum level and incubation time had

<u>Sudhir K Rai</u>

a negative effect on protease production (Table 8.2). Neglecting the variables which were insignificant, the model equation for protease production can be written as

Y = 101 . 680 + 4 . 870 X_1 + 12 . 377 X_2 + 13 . 885 X_3 ----(8.1)

Where $X_1 = pH$ of the medium, $X_2 = casein$ level, and $X_3 = ammonium$ sulphate level.

On the basis of calculated t-values (Table 8.3), casein, ammonium sulphate, and pH of the medium were chosen for further optimization by RSM. Innoculum level (% v/v) and incubation time (h) were kept at middle level.

Table 8.2 Plackett-Burman design showing six variables with coded valuesalong with the observed results for protease production by *Bacillus* sp.strain AS-S20-I .

Casein	Ammoniu	Incubation	Agitation	рН	Innoculum	Proteas
(% w/v)	m	time (h)	rate (rpm)		size (% v/v)	e yield
	sulphate					(U)
	(% w/v)					
1 (1.5)	-1(0.1)	1 (96)	-1 (150)	-1 (9.0)	-1 (1.5)	59.6
⁻ 1 (1.5)	1 (0.25)	-1 (48)	1 (250)	-1 (9.0)	-1 (1.5)	82.8
-1 (0.5)	1 (0.25)	1 (96)	- (150)	1 (11.0)	-1 (1.5)	105.3
1 (1.5)	-1 (0.1)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	94.1
1 (1.5)	1 (0.25)	-1 (48)	1 (250)	1 (11.0)	-1 (1.5)	111.0
1 (1.5)	1 (0.25)	1 (96)	-1 (150)	1 (11.0)	1 (5.0)	116.0
-1 (0.5)	1 (0.25)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	112.1
-1 (0.5)	-1 (0.1)	1 (96)	1 (250)	1 (11.0)	-1 (1.5)	111.4
1 (0.5)	-1 (0.1)	-1 (48)	1 (250)	1 (11.0)	1 (5.0)	146.0
1 (1.5)	-1 (0.1)	-1 (48)	-1 (150)	1 (11.0)	1 (5.0)	122.0
-1 (0.5)	1 (0.25)	-1 (48)	-1 (150)	-1 (9.0)	1 (5.0)	112.1
-1 (0.5)	-1 (0.1)	-1 (48)	- 1 (150)	-1 (9.0)	-1 (1.5)	84.0

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Chapter a	8					420
Casein (% w/v)	Ammoniu m	Incubation time (h)	Agitation rate (rpm)	pН	Innoculum size (% v/v)	Proteas e yield
	sulphate (% w/v)					(U)
0 (1.0)	0 (0.2)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	90.0
0 (1.0)	0 (0.2)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	90.0
0 (1.0)	0 (0.2)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	90.0

Table 8.3 Statistical analysis of Plackett–Burman design showing coefficient values, t- and p-value for each variable for protease activity (p-value <0.05).

Variables	Protease yield (Units)				
	Co- efficient	SE Coef	t-Stat	p-value	
Intercept	101.680	2.065	49.24	0.000	
pH of the medium	4.870	2.309	2.11	0.015	
Innoculum level (%v/v)	1.870	2.309	0.81	0.441	
Incubation time (h)	-4.870	2.309	-2.11	0.068	
Agitation rate (rpm)	-7.127	2.309	-3.09	0.068	
Casein level (% w/v)	12.377	2.309	5.36	0.001	
Ammonium sulphate (% w/v)	13.885	2.309	6.01	0.000	

Based on the preliminary screening result on the influence of process parameters on protease production, the three main parameters viz pH of the medium (C₁), concentration of carbon source (% w/v) (C₂), and concentration of nitrogen source (% w/v) (C₃) were considered as most <u>Sudhir K Rai</u>

significant factors influencing protease production. Requirements of these were further optimized by statistical analysis.

8.3.2 Statistical optimization of protease production in SmF

RSM was employed to characterize the individual and interactive effects of pH, casein and ammonium sulphate concentration on protease production (Table 8.4). The overall second-order polynomial regression equation showing the empirical relationship between protease activity (Y) and three test variables in coded units can be represented by equation 8.2.

 $Y = 562.090 - 57.643C_{1} + 211.277C_{2} + 2.523C_{3} - 53.226C_{1}^{2}$ - 75.226C_{2}^{2} + 12.774C_{3}^{2} + 45.729C_{1}C_{2} - 13.729C_{1}C_{3} - 3.379C_{2}C_{3} ------(8.2)

The coefficients of the model including the significance of each coefficient as determined by t test and p-values showed that all the effects of C₁, C₂ and C₃, were significant (p < 0.0001) (Table 8.5). The analysis of variance (ANOVA) of the quadratic regression model demonstrated that the computed F value for linear regression was much greater than the tabulated (P) > F value (Table 8.5). The goodness-of-fit of the model was checked by determining the coefficient of determination (R²) and adjusted R². The observed values of R² explain that the fitted model could explain 99.87% of the total variation and therefore, vouches for adequacy of the model (Table 8.6). The results showed that C₁ (pH of the medium), C₂ (casein level) and C₃ (ammonium sulphate level) had significant effect (p<0.001) on protease production by bacterium under study (Table 8.6).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

422

Table 8.4 Observed responses and predicted values of alkalineprotease production by *Bacillus* sp. strains AS-S20-I in SmF. Values aremean± S.D. of three experiments.

Run	Indep	endent Var	iables	Y Response		Residual
no.				(Protease	yield in U)	value
	C ₁	C ₂	C ₃	Observed	Predicted	
				value	value	
1	-1(7.0)	-1(0.50)	-1(0.15)	319.000	318.877	0.123
2	1(9.0)	-1(0.50)	-1(0.25)	140.000	139.591	0.409
- 3	-1(7.0)	1(1.50)	-1(0.15)	656.600	656.731	-0.131
4	1(9.0)	1(1.50)	-1(0.15)	660.300	660.360	-0.060
5	-1(7.0)	-1(0.50)	1(0.25)	358.130	358.138	-0.008
6	1(9.0)	-1(0.50)	1(0.25)	124.000	123.937	0.063
7	-1(7.0)	1(1.50)	1(0.25)	682.000	682.477	-0.477
8	1(9.0)	1(1.50)	1(0.25)	631.000	631.191	-0.191
9	0(8.0)	0(1.0)	-1(0.15)	567.000	566.507	0.493
⁻ 10	0(8.0)	0 (1.0)	1 (0.25)	451.000	451.221	-0.221
11	-1(7.0)	0(1.0)	0(0.20)	275.000	275.587	-0.587
12	1(9.0)	0(1.0)	0(0.20)	699.000	698.141	0.859
13	0(8.0)	-1(0.50)	0(0.20)	572.000	572.341	-0.341
14	0(8.0)	1(1.50)	0(0.20)	578.000	577.387	0.613
15	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090
16	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090
17	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090
18	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090
19	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090
20	0(8.0)	0(1.0)	0(0.20)	562.000	562.090	-0.090

 $R^2 = 100.00\%$, R^2 (pred) = 100.00\%, R^2 (adj) = 100.00\%

<u>Sudhir K Rai</u>

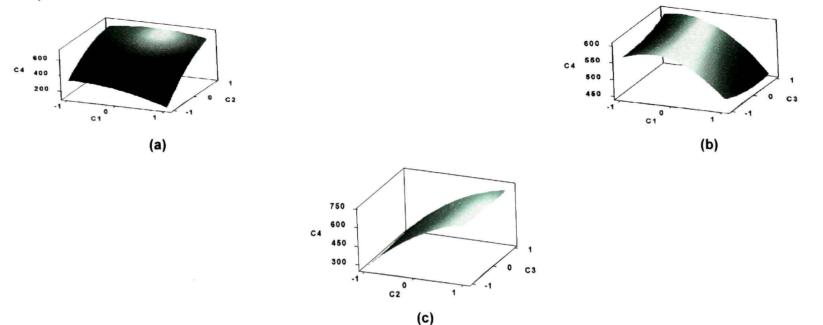
Table 8.5 Analysis of Variance (ANOVA) of alkaline protease produced by *Bacillus* sp. strain AS-S20-I. Values are mean ± S.D. of three experiments.

Source	DF	Seq SS	Adj SS	Adj MS	F-value	p-value
Regression	9	555453	555453	61717	258685.17	0.000
Linear	3	479671	479671	159890	670175.59	0.000
Square	3	57454	57454	19151	80272.65	0.000
Interaction	3	18328	18328	6109	25607.26	0.000
Residual error	10	2	2	0		
Lack-of-Fit	5	2	2	0		
Pure error	5	0	0	0		
Total	19	555455				

Table 8.6 Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease production by *Bacillus* sp. strain AS-S20-I in SmF under shake-flask study. Values are mean \pm S.D. of three experiments.

Factor	Coefficient	SE	Computed	p-value	
		coefficient	t-value		
Constant	562.090	0.1679	3347.451	0.000	
C ₁	-57.643	0.1545	-373.190	0.000	
C ₂	211.277	0.1545	1367.841	0.000	
C ₃	2.523	0.1545	16.334	0.000	
C_1^2	-53.226	0.2945	-180.706	0.000	
C_2^2	-75.226	0.2945	-255.398	0.000	
C_3^2	12.774	0.2945	43.369	0.000	
$C_1 C_2$	45.729	0.1727	264.800	0.000	
C ₁ C ₃	-13.729	0.1727	-79.499	0.000	
C ₂ C ₃	-3.379	0.1727	-19.565	0.000	

Sudhir K Rai


PhD Thesis, Tezpur University, 2010

Chapter 8 8.3.1 Response surface plots

The three-dimensional (3-D) response surfaces were plotted on the basis of the model equation to investigate the interaction among variables and to determine the optimum concentration of each factor for maximum protease production by *B*. sp. strain AS-S20-I (Figs.8.16a-c). Protease production varied significantly upon changing the initial concentrations of casein and ammonium sulphate. The three-dimensional plots depicted that with an increase in either pH of the medium, or concentration of ammonium sulphate resulted in protease production to optimum value; whereas, further increase in concentration beyond the optimum value decreased the protease yield. These results reinforced that the response equation provided a suitable model for the CCD experiment.

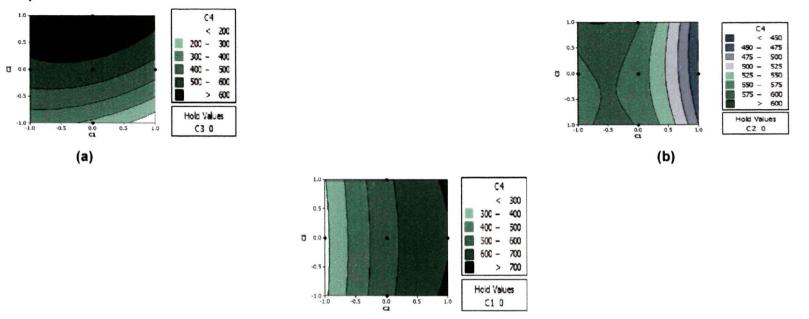
<u>Sudhir K Rai</u>

Chapter 8

Fig.8.15 Response surface plots for alkaline protease production by *Bacillus* sp. strain AS-S20-I. The interaction between (a) pH of the medium and concentration (%, w/v) of casein, hold value $C_3 = 0$ (coded value) (b) pH of the medium vs concentration (%, w/v) of ammonium sulphate, hold value $C_2 = 0$ (coded value), and (c) concentration (%, w/v) of casein vs concentration of ammonium sulphate (% w/v) hold value $C_1 = 0$ (coded value). Values are mean ± S.D. of three experiments.

Sudhir K Rai

Chapter 8 8.3.2 Countor plots


The countor plots were plotted on the basis of the model equation to investigate the interaction among variables and to determine the optimum concentration of each factor for maximum protease production by *Bacillus* sp. strain AS-S20-I (Figs.8.17a-c). Protease production varied significantly upon changing the initial concentration of casein and the concentration of ammonium sulphate. The countor plots showed that either with an increase in pH of the medium, or concentration of ammonium sulphate resulted in protease production to optimum value, whereas, further increase in concentration beyond the optimum value decreased the protease yield. These results reinforced that the response equation provided a suitable model for the CCD experiment.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

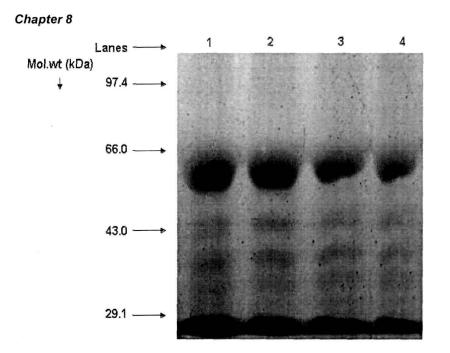
.

Chapter 8

(c)

Fig.8.16 Countor plots for alkaline protease production by *Bacillus* sp. strain AS-S20-I. The interaction between (a) pH of the medium and concentration (%, w/v) of casein, hold value $C_3 = 0$ (coded value) (b) pH of the medium vs concentration (%, w/v) of ammonium sulphate, hold value $C_2 = 0$ (coded value) and (c) concentration (%, w/v) of casein vs concentration of ammonium sulphate (% w/v) hold value $C_1 = 0$ (coded value). Values are mean ± S.D. of three experiments.

Sudhir K Rai


8.4 Batch fermentation using the optimal medium

On the basis of regression equation so obtained, the optimum level of test variables for maximum protease yield was predicted by using the Minitab 16 Statistical Software® program as 3.0 % (w/v) of casein, 0.12 % (w/v) of ammonium sulphate and at pH 10.9 of the medium. The optimal protease production in a process-controlled fermenter was found to be significantly higher (749.0 x 10^3 U /l) than that observed under the shake-flask study (699.0 x 10^3 U /l).

8.4 Partial purification of alkaline protease

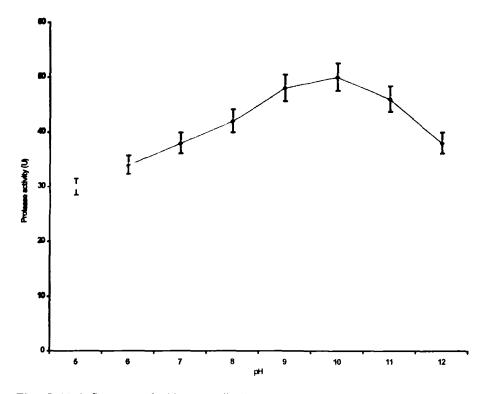
The electrophoresis of the crude protease and acetone fraction are presented in Fig 8.17. Protein profiling of *Bacillus* sp. strain AS-S20-I suggested that this bacterium secretes a major protein with molecular mass of 66.0 kDa, and two minor protein of molecular weights43.0 and 37.0 kDa, respectively.

<u>Sudhir K Rai</u>

Fig 8.17 12.5 % SDS-polyacrylamide gel electrophoresis of crude and acetone precipitated proteases. Molecular weight markers are phosphorylase b (97,400 Da), BSA (66,000 Da), ovalbumin (43,000 Da), carbonic anhydrase (29,000 Da); lane 1, crude protease in reduced condition (40.0 μ g); lane 2, crude protease in non-reduced condition (40.0 μ g); lane 3, acetone precipitate fraction under reduced condition (15.0 μ g); lane 4, acetone precipitate fraction under non-reduced condition (15.0 μ g).

8.5 Biochemical characterization of partially purified protease

8.5.1 Effect of pH, incubation time and temperature on partially purified alkaline protease


The partially purified protease displayed maximum caseinolytic activity within 15 min of post -incubation at 45°C incubation temperature with casein as a substrate.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 8 8.5.2 Effect of pH on partially purified alkaline protease

Although the enzyme remained active over a broad range of pH (5.0–12.0) the enzyme showed characteristics pH optima at 10.0 (Fig. 8.18).

Fig. 8.18 Influence of pH on alkaline protease activity from *Bacillus* sp. strain AS-S20-I. Values are mean \pm S.D. of three experiments.

8.5.3 Thermo-stability study of partially purified alkaline protease

The protease from *B*. sp. strain AS-S20-I retained 100% of its original activity after heating at 60°C for 15 min and thereafter, a steady decline in the protease activity was observed (Fig.8.19).

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

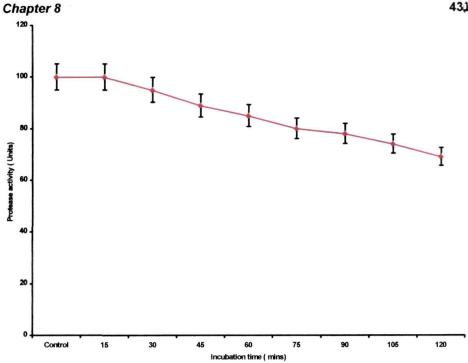


Fig.8.19 Thermo-stability study of partially purified protease from Bacillus sp. strain AS-S20-I heated at 60°C for various time interval. Values are mean ± S.D. of three experiments.

8.5.4 Substrate specificity of partially purified alkaline protease

Among the tested protein substrates, casein served the most preferred substrate, followed by chicken-feather keratin, bovine serum fibrinogen, albumin, globulin, fibrin, hemoglobin, and gelatin (Table 8.7). In contrast, human hair and collagen could not be hydrolyzed by this enzyme.

Sudhir K Rai PhD Thesis, Tezpur University, 2010

Table 8.7 Substrate specificity of partially purified alkaline protease fromBacillus sp.strain AS-S20-I. Values are mean ± S.D. of three experiments.

Substrate specificity	Specific activity (U / mg of		
	protein)		
Fibrin	7100.0 ± 355.0		
Casein	3830.0 ± 192.0		
Raw chicken feather	3408.0 ± 170.0		
Bovine serum albumin	2144 .0 ± 107.0		
Bovine serum fibrinogen	1532.0 ± 77.0		
Bovine serum globulin	957.0 ± 48.0		
Hemoglobin	766.0 ± 38.0		
Gelatin	574.0 ± 23.0		
Human hair	0.0		
Collagen	0.0		

8.5.5 Thermo-stability study of partially purified alkaline protease in presence or absence of polyols

The residual protease activity post heating of partially purified alkaline protease at 60°C for 120 min in presence and absence of polyols is displayed in Fig.8.20. It was observed that glycerol stabilized the enzyme to the maximum extent against heat-denaturation.

Sudhir K Rai

•

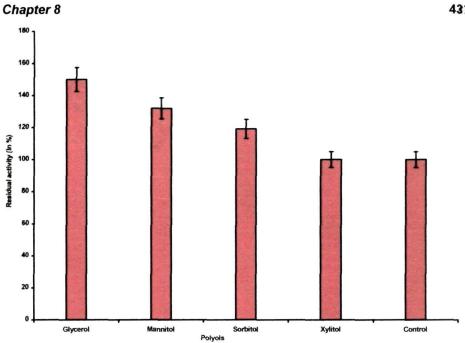
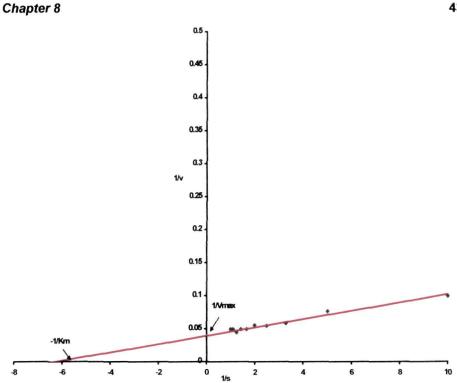



Fig.8.20 Effect of polyols against heat-denaturation of partially purified alkaline protease from Bacillus sp. strain AS-S20-I. The protease was heated at 60°C for 120 min either in presence or absence of polyols. The enzyme activity without polyols was considered as control (100%) and values were compared with that. Values are mean ± S.D. of three experiments.

8.5.6 K_m and V_{max} values

The K_m and V_{max} values of partially purified protease towards fibrin were determined as 0.16 mg /ml and 20.0 µmol /min / mg respectively. (Fig.8.21)

Sudhir K Rai

Fig.8.21 Lineweaver-Burk plot to determine the K_m and V_{max} values of partially purified protease using casein as a substrate. Values are mean \pm S.D. of three experiments.

8.5.7 Effect of metal ions on partially purified protease

Study on the influence of different metal ions on alkaline protease activity of strain AS-S20-I showed that all the tested cations, viz. Ni²⁺, Cd²⁺, Co²⁺,Mg²⁺, Fe²⁺, Hg²⁺, Cu²⁺,Mn²⁺, Ca²⁺ and Zn²⁺, inhibited the enzyme activity. Maximum inhibition of protease activity was observed in the presence of Cu²⁺ (78% inhibition) whereas Cd²⁺ exerted minimum inhibition (12.77 %) of protease activity compared to control (Fig.8.22).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

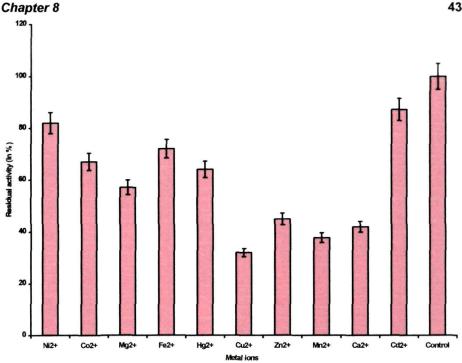


Fig.8.22 Effect of metal ion on partially purified protease from Bacillus sp. strain AS-S20-I. Values are mean ± S.D. of three experiments.

8.5.8 Effect of inhibitors, chelators, denaturing agent, oxidizing and bleaching agent, and surfactants on partially purified protease

An effect of different inhibitors, metal chelator, surfactants and DTT on partially purified protease is shown in Table 8.8. The partially purified protease retained 100% to 80% of its original activity post-treatment with different concentrations of EDTA, SDS, Tween-20, Tween-80, Triton-X-100, and urea (Table 8.8). The oxidizing agent like H₂O₂ and bleaching agent (sodium perborate) enhanced the enzyme activity (Table 8.8). However, the enzyme activity was significantly affected by PMSF, IAA, 4bromophenacyl bromide and TPCK, thus suggesting a role for serine, cysteine and histidine residues in the catalysis process (Table 8.8). Further, a significant inhibition of protease activity in the presence of DTT was also observed. For example, in presence of 4.0mM DTT the protease Sudhir K Rai

PhD Thesis, Tezpur University, 2010

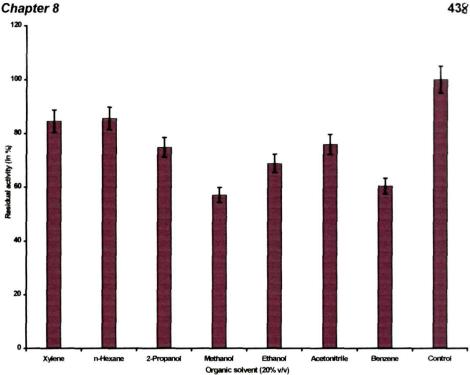
lost more than 90.0% of the original activity of protease was abolished (Table 8.8).

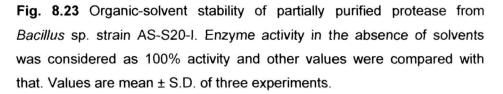
Table 8.8 Effect of chemical/chelators/ inhibitors/ denaturing/ oxidizing/bleaching agents on catalytic activity of partially purified protease fromBacillus sp. strain AS-S20-I.Values are mean \pm S.D of triplicatedeterminations.

Reagents / Effectors	Percent residual activity		
Control	100		
Inhibitors/ surfactants			
PMSF (2 mM)	25.0 ± 0.5		
(4 mM)	2.4 ± 0.05		
4-BpB (2 mM)	73.0 ± 1.5		
(4 mM)	12.0 ± 0.2		
IAA (2 mM)	28.0 ± 0.5		
(4 mM)	10.0 ± 0.2		
EDTA (2 mM)	100.2 ± 5.01		
(4 mM)	85.4 ± 4.27		
TLCK (2 mM)	110.1 ± 5.51		
(4 mM)	91.4 ± 4.57		
TPCK (2 mM)	45.2 ± 2.26		
(4 mM)	12.4 ± 0.62		
SDS (40 mM)	98.4 ± 4.92		
Trition-X-100 (1% v/v)	100.4 ± 5.02		
Tween 20 (1% v/v)	99.3 ± 4.97		
Tween 80 (1% v/v)	95.2 ± 4.76		
Denaturing agent			
Urea (6 M)	93.2 ± 4.66		
Oxidizing agent			
H ₂ O ₂ (% v/v)			

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

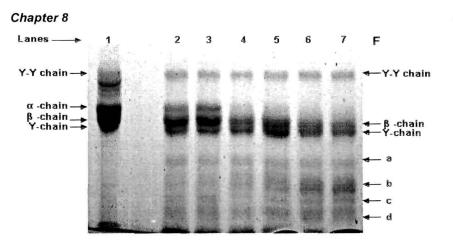

Chapter 8	43
Reagents / Effectors	Percent residual activity
5.0	140.0 ± 2.8
10.0	125.0 ± 2.5
Bleaching agent	
Sodium perborate (% v/v)	
0.5	129.0 ± 2.6
1.0	114.0 ± 2.3
DTT(2 mM)	45.2 ± 2.26
(4 mM)	8.90 ± 0.45


8.5.9 Effect of organic -- solvents on partially purified protease

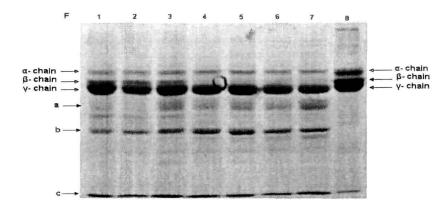
The organic-solvent (at a final concentration of 20% v/v) stability of partially purified protease is shown in Fig. 8.23. All the organic solvent destabilized the protease resulting in loss of protease activity in presence of organic solvents. The maximum inhibition was produced by methanol followed by benzene.

<u>Sudhir K Rai</u>

-



8.5.10 Fibrin(ogen)lytic study


The specific activity of protease from B. sp. strain AS-S20-I was determined as 1689.0 U / mg of protein against fibrin, The fibrin degradation pattern demonstrated that the degradation of a-chain of fibrin was faster compared to the rate of degradation of β-, and γ-chains (Fig. 8.24). In contrast, the crude enzyme preferentially degraded the β-chain compared to a-chain of fibrinogen. However, the y-chain of fibrinogen could not be degraded within 12 h of incubation (Fig.8.25).

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Fig. 8.24 Degradation of fibrin by partially purified alkaline protease from *B.* sp. strain AS-S20-I. The fibrin degradation products were separated by 12.5% SDS-PAGE. Lanes 1: control; Lane 2-7: fibrin degradation pattern by 5.0 μg of partially purified alkaline protease post 30, 60, 120, 240, 360, 480, and 720 min of incubation, respectively at 37°C.

Fig.8.25 Degradation pattern of fibrinogen by partially purified alkaline protease from *B.* sp. strain AS-S20-I. The fibrinogen degradation products were separated by 12.5% SDS-PAGE. Lanes 1-7: fibrin degradation pattern by 5.0 µg of partially purified alkaline protease post 30, 60, 120, 240, 360, 480, and 720 min of incubation, respectively at 37°C; Lane 8: control.

Sudhir K Rai

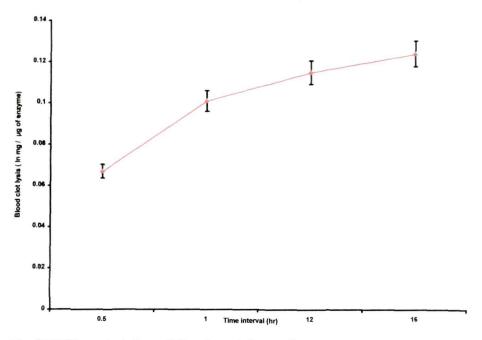
PhD Thesis, Tezpur University, 2010

Chapter 8 8.5.11 Pharmacological properties of partially purified protease from Bacillus sp. strain AS-S20-I

Partially purified protease from Bacillus sp. strain AS-S20-I at a dose of 15 µg/ml induced 2.4 % hemolysis of the washed human erythrocytes. At the same dose, it did not exert any haemorrage to goat liver, heart, lungs and kidney tissues (Table 8.9). Further, as shown in Table 8.9, this partially purified protease did not interfere with the normal clotting time of goat platelet- poor plasma (PPP).

Table 8.9 Pharmacological properties of partially purified protease from Bacillus sp. strain AS-S20-I. Values are mean± S.D. of three experiments.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of partially	
purified protease 90 min post incubation at 37 $^{\circ}\mathrm{C}$)	
Control (without partially purified protease)	1.4 ± 0.1
Treatment	2.4 ± 0.05
Ca-Clotting time (s)	
Control (without partially purified protease)	129.0 ± 6.5
Treated (with 15.0 μg / ml of partially purified	132.0 ± 7.0
protease)	
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μg / ml of partially	
purified protease 5 h post incubation at 37 °C)	
a) <i>Heart</i>	
Control (without partially purified protease)	0.09 ± 0.01
Treatment	0.27 ± 0.01
b) <i>Lung</i>	
Control (without partially purified protease)	0.13 ± 0.01
	0.36 ± 0.02


Sudhir K Rai

Chapter 8	441
Pharmacological properties	Values
c) <i>Liver</i>	
Control (without partially purified protease)	0.16 ± 0.08
Treatment	0.28 ± 0.01
d) <i>Kidney</i>	
Control (without partially purified protease)	0.12 ± 0.05
Treatment	0.27 ± 0.01

8.6 Industrial applications of partially purified protease

8.6.1 Blood clot lytic activity of partially purified protease

The in vitro clot lytic activity showed that incubation of protease at a dose of 0.78 mg /ml with 300.0 ± 10.0 mg of natural or synthetic blood clot (induced by thrombin) for 16h can completely lyse the clot (Fig.8.26).

Fig.8.26 Thrombolytic activity of partially purified protease from *Bacillus* sp. strain AS-S20-I. Values represent mean \pm S.D of three experiments.

Sudhir K Rai

8.6.2 Detergent compatibility and stain removal potency of protease

The partially purified protease at a dose of 6.0 μ g / ml retained 60- 100% of its original activity when pre-incubated at 37°C in presence of commercial laundry detergents in the following order: Surf excel® = Sunlight® = Safed® > Wheel® > Henko® > Ariel® > Fena Ultra® > Tide® (Fig.8.27). The blood stain removal from cotton fabrics shown by a 1:1 (v/v) mixture of detergent: partially purified protease solution was significantly higher (p < 0.05) compared to the detergents solutions or partially purified protease solution alone in the tested temperature. For example, about 35% and 22% increase in removal of blood stain was observed post washing the stained cotton fabrics with detergent supplemented with partially purified protease, and Surf excel® detergents, respectively reinforcing application of the enzyme under study in detergent formulations for improving the wash performance of the detergents (Fig. 8.28).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

442.

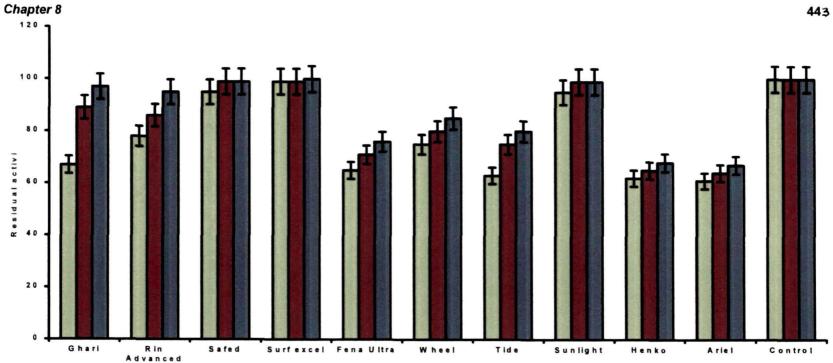


Fig.8.27 Detergent stability and compatibility of partially purified protease (6.0 µg / ml) from Bacillus sp. strain AS-S20-I at the tested temperature ranges 25 (■), 37 (■) and 45°C (■). Values are mean ± SD of triplicate determinations.

Sudhir K Rai

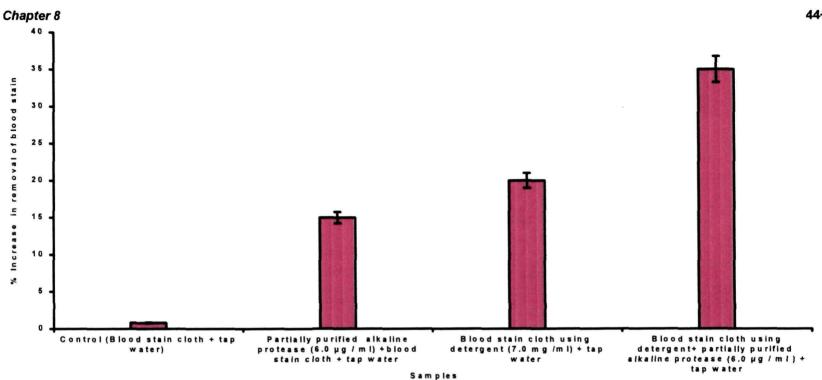


Fig.8.28 Wash performance test of partially purified protease (6.0 µg /ml) from Bacillus sp. strain AS-S20-I at 37°C. The values represent mean ± S.D. of three determinations.

Sudhir K Rai

8.6.3 Dehairing activity

The dehairing effect of partially purified protease from *Bacillus* sp. strain AS-S20-I showed a promising result (Fig. 8.29). When the raw skin was incubated with the partially purified protease at 37°C for 12 h, the hairs could be pulled out easily., which was not possible when the skin was incubated with buffer only.

(b)

Fig. 8.29 Dehairing activity of partially purified protease from *Bacillus* sp.strain AS-S20-I (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with partially purified protease (50 U / ml) for 12 h at 37°C.

<u>Sudhir K Rai</u>

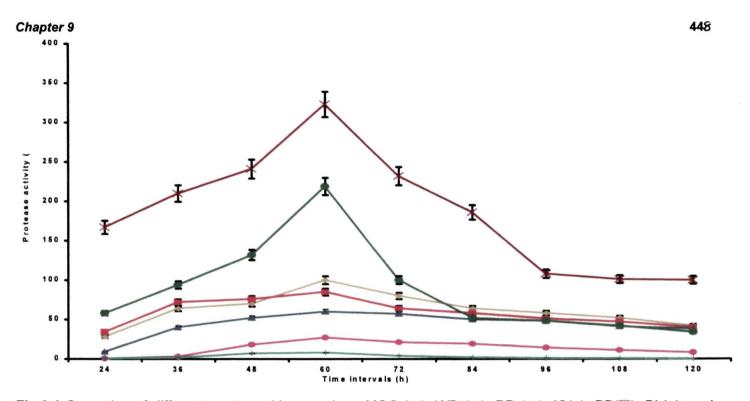
-

-

CHAPTER IX

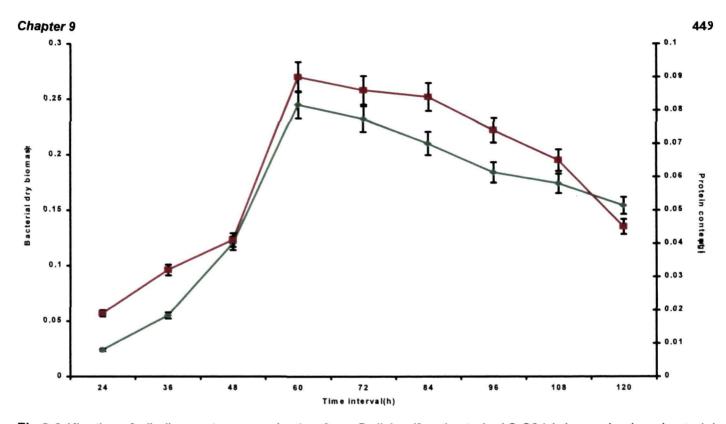
-

<u>Sudhir K Rai</u>


Process optimization, purification, biochemical characterization, and industrial application of an alkaline protease isolated from *Bacillus licheniformis* AS-S24-I

9.1 Alkaline protease production under solid-state fermentation

9.1.1 Screening of different agro-industrial and waste materials for alkaline protease production


Various agro-industrial and kitchen waste substrates were screened for their ability to produce alkaline protease in this study. In SSF, all the tested substrates except used tea-leaves supported protease production. The study on the potential of agro-industrial residues as substrates for alkaline protease production by *Bacillus licheniformis* strain AS-S24-I showed IC and PP were the most effective substrates for this purpose (Fig.9.1). Maximum protease production was observed with PP (340.0 U/gds) followed by IC (219.0 U/gds) as substrate post 60 h of incubation, while minimum protease production (1.7 U/gds) was shown by waste TL as substrate/ support material (Fig.9.1). The protein content of the culture supernatants as well as the bacterial dry biomass followed the same trend as protease production on different substrates (Fig.9.2).

<u>Sudhir K Rai</u>

Fig.9.1 Screening of different waste residues such as MOC (\diamond), WB (\blacksquare), RB (\blacktriangle), IC(\bullet), PP(\boxtimes), BL(\bullet), and TL(+) for the production of alkaline protease by *B. licheniformis* strain AS-S24-I at different time intervals. Values are mean ± S.D. of three experiments.

Sudhir K Rai

Fig.9.2 Kinetics of alkaline protease production from *B. licheniformis* strain AS-S24-I. Legends show bacterial dry biomass (♦) and protein concentration (■).Values are mean ± S.D. of three experiments.

Sudhir K Rai

Chapter 9 4 9.1.2 Effect of initial moisture content of the substrate and moistening agent on protease production

Among the several factor that are important for bacterial growth and protease production under solid-state fermentation by *B.licheniformis* strain AS-S24-I using a particular substrate, moisture level (content)/ water activity is one of the most critical factors. In present study, maximum protease production was observed with 40% moisture content with an enzyme activity of 260 U/gds (Fig. 9.3). Distilled H₂O adjusted to pH 10.0 was most efficient moistening agent for protease production compared to other moistening agents (Fig. 9.4).

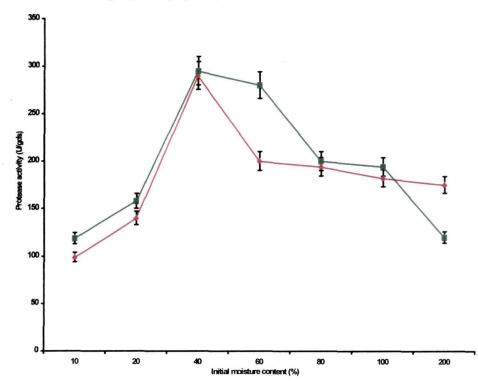
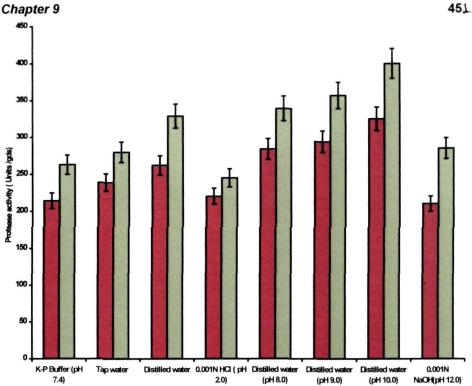
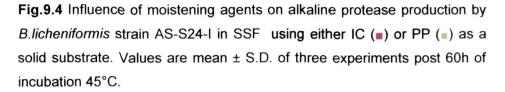




Fig.9.3 Influence of initial moisture content of the substrates [PP (■) or IC (◆)] on protease production. Values are mean ± S.D. of three experiments post 60h incubation at 45°C. Moistening agent was distilled water, adjusted to pH 10.0 with 0.01N NaOH.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

9.1.3 Effect of inoculum's size on protease production

Size of inoculum is an important biological factor, which determines biomass as well as enzyme production during fermentation. The results presented in Fig. 9.5 showed that there was a significant increase in alkaline protease production with an increase in inoculum size up to an optimal level of 0.5-4.0ml after that enzyme yield was constant upto the range of 6.0ml of culture volume. A decrease in protease yield was observed with an increase in inoculum volume beyond 6.0 ml. Maximum enzyme production (440 U/g) was obtained when SSF medium was inoculated with 4.0 ml of inoculum.

Sudhir K Rai

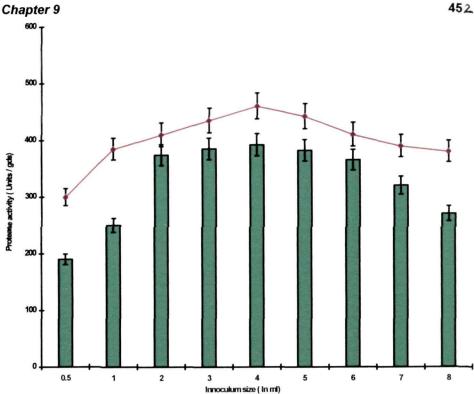
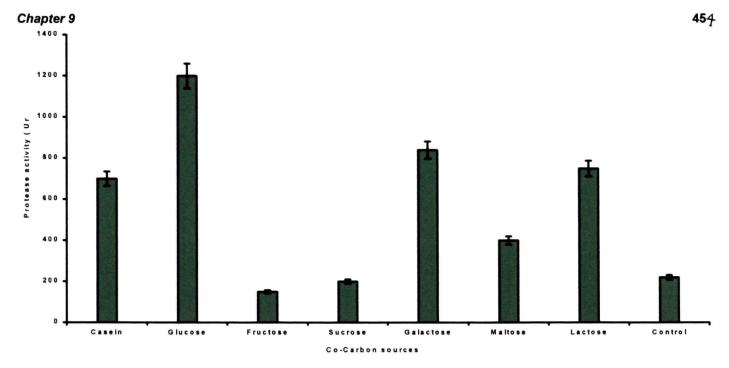
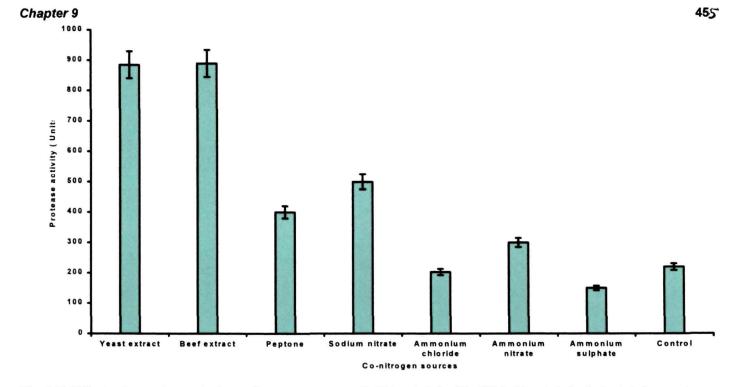


Fig.9.5 Influence of inoculum size on protease production by B. licheniformis strain AS-S24-I using PP (+) or IC (I) as substrate under SSF. Values are mean ± S.D. of three experiments.


9.1.4 Effect of supplementation of co-carbon and co-nitrogen sources on protease production

In order to study the effect of carbon sources on protease production, cultivations were performed with 1.0 % (w/w) carbon (casein, glucose, fructose, galactose, maltose, sucrose and lactose). Maximum yield of protease was observed when the substrates was supplemented with glucose (1200 U/ gds) as co-carbon sources followed by galactose (850 U /gds) and lactose (794.0 U / gds) along with IC as main substrate (Fig.9.6), whereas the other supplemented carbon sources did not accelerate the bacterial growth and protease production by B.licheniformis strain AS-S24-I under SSF system. Sudhir K Rai

Among the tested nitrogen compounds, maximum extracellular alkaline protease production was obtained in presence of 0.1 % (w/w) beef extract (890.0 U / gds) followed by yeast extract (875.0 U / gds) which served as the best co-nitrogen sources for protease production by *B. licheniformis* AS-S24-I strain on IC (Fig.9.7). The protease production in presence of other organic and inorganic nitrogen sources was as followed: peptone (389.0 U / gds), sodium nitrate (495.0 U / gds), ammonium nitrate (285.0 U / gds), ammonium chloride (195.0 U / gds), and ammonium sulphate (176.0 U / gds). These results are displayed in Fig 9.7.


.

Sudhir K Rai

Fig. 9.6 Effect of supplemented co-carbon sources (10 % w/w) to IC (90 % w/w) (substrate) on alkaline protease production by *B. licheniformis* strain AS-S24-I. Values are mean ± S.D. of three experiments.

Sudhir K Rai

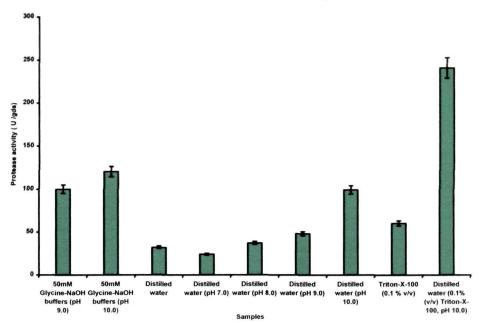


Fig.9.7 Effect of supplemented co-nitrogen sources (1.0% w/w) to IC (99.0 % w/w) (substrate) for protease production from *B. licheniformis* strain AS-S24-I. Values are mean ± S.D. of three experiments.

<u>Sudhir K Rai</u>

Chapter 9 9.1.5 Protease extraction from fermented matter

Among the different extractions medium used for the recovery of protease from the fermented matter (IC), distilled water containing 0.1%(v/v) triton X-100, pH 10.0 served as best extraction medium (Fig.9.8).

Fig.9.8 Screening of best medium for alkaline protease extraction from the fermentation mesh. Values are mean \pm S.D. of three experiments.

9.1.6 Batch fermentation

A fermenter provides a suitable environment for growth and enzyme production, where a consistency in conditions like moisture level, innoculum level, incubation temperature, regular nutrition supply can be maintained in a better manner. When *B.licheniformis* strain AS-S24-I was cultivated in a rectangular trays fermentor, a 1.9-fold increase in enzyme yield was recorded when IC and PP powders were mixed in a ratio of 1:1 without any additional co- carbon and nitrogen sources (Table 9.1).

<u>Sudhir K Rai</u>

Table 9.1 Influence of different combinations of co-substrates on alkaline protease production by *B. licheniformis* strain AS-S24-I under solid-state fermentation Values are mean \pm S.D. of three experiments.

Substrate(s)	Protease activity
	(U/gds)
I.cylindrica (100%)	219.0±10.95
Potato peel (100%)	340.0 ± 17.0
<i>I.cylindrica</i> (89%w/w)+ glucose (10 % w/w) + Beef extract (1% w/w)	1200.00 ± 60.0
<i>I.cylindrica</i> (90%w/w) + Potato peel (10%)	1500.0 ± 75.0
<i>I.cylindrica</i> (80%w/w) + Potato peel (20 %w/w)	1836.0± 91.8
<i>I.cylindrica</i> (50%w/w) + Potato peel (50%w/w)	2300.0 ± 115.0
Potato peel (89% w/w) + glucose (10%) + Beef extract (1%)	1000.0 ± 50.0

9.2 Alkaline protease production under submerged fermentation9.2.1 Effect of different carbon source on protease production

Among different types of different carbon sources tested, 1.0 % (w/v) glucose (50.0 U) supported a high level protease production, followed by galactose (41.0 U), and production was least in presence of carboxylmethyl cellulose is a substrate (Fig.9.9).

<u>Sudhir K Rai</u>

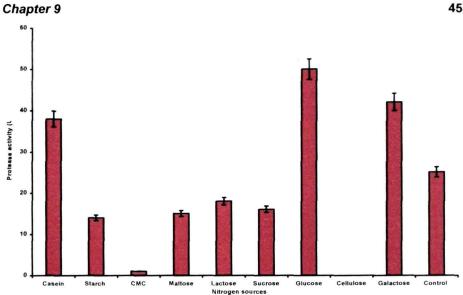


Fig.9.9 Effect of different carbon sources on alkaline protease production from Bacillus licheniformis strain AS-S24-I under SmF. Values are mean ± S.D. of three experiments.

9.2.2 Effect of nitrogen source on protease production

A wide range of organic and inorganic nitrogen sources were tested for successive protease production by B.licheniformis strain AS-S24-I in SSF. Maximum alkaline production was observed in presence of 0.1% (w/v) yeast extract followed by beef extract with accelerating bacterial growth and protease production (Fig. 9.10). Inorganic nitrogen sources were found to be less effective as compared to the complex organic sources of nitrogen in supporting the bacterial growth and protease production by soil borne B.licheniformis strain AS-S24-I.Sodium nitrate (inorganic nitrogen source) and tryptone (organic nitrogen source) suppressed the protease production by the strain under study.

Sudhir K Rai

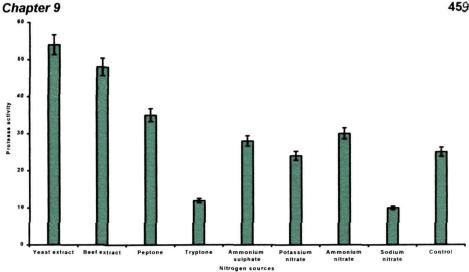


Fig.9.10 Effect of various nitrogen sources on alkaline protease production from B. licheniformis strain AS-S24-I in SmF. Values are mean ± S.D. of three experiments.

9.2.3 Effect of pH on protease production

Metabolic activities of the microorganisms are very sensitive to the pH change. Protease production by B.licheniformis strain AS-S24-I was found to be affected if pH level is higher or lower compared to the optimum value (pH 10.0). Results demonstrated that with an increase in the pH of the medium from 7.0 to 12.0, optimum protease production was observed at pH 10.0. Increase in medium pH beyond 10.0 resulted in a steady decline in protease yield (Fig.9.11).

Sudhir K Rai

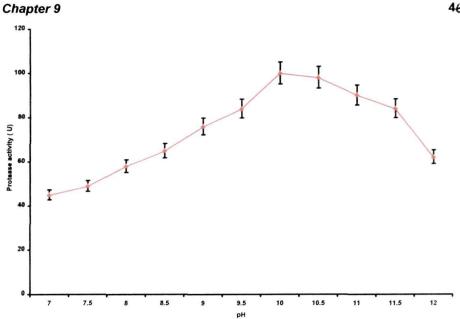
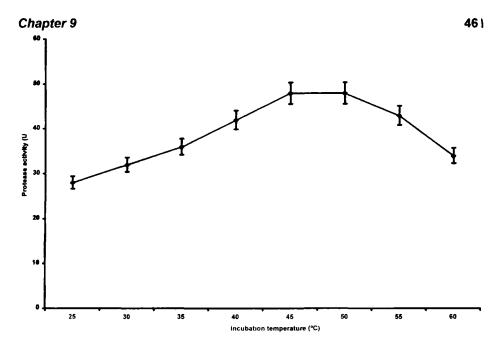



Fig.9.11 Effect of pH on alkaline protease production by B. licheniformis strain AS-S24-I in SmF. Values are mean ± S.D. of three experiments.

9.2.4 Effect of temperature on protease production

A linear increase in enzyme production was observed when bacteria were incubated at different temperature from 25- 50°C. Maximum bacterial growth and enzyme production was observed at 45-50°C range (Fig.9.12) A decrease in enzyme production was observed beyond 50°C.

Sudhir K Rai

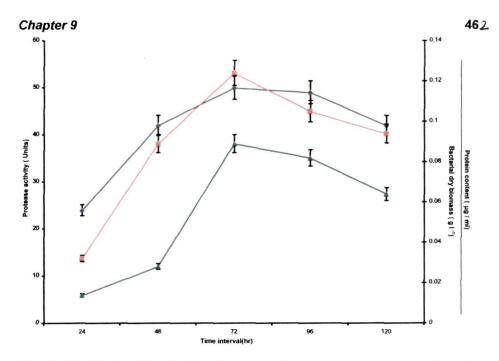


Fig.9.12 Effect of incubation temperature on alkaline protease production by *B. licheniformis* strain AS-S24-I. Values are mean \pm S.D. of three experiments.

9.2.5 Kinetics of protease production

Result showed that optimum alkaline protease production was achieved post 72h of incubation (Fig. 9.13). Thereafter, a sharp fall in this enzyme yield was recorded.

<u>Sudhir K Rai</u>

Fig. 9.13 Effect of incubation time on alkaline protease production (\bullet), bacterial dry biomass (\bullet), and protein content (\blacktriangle) from *B. licheniformis* strain AS-S24-I under SmF condition. Values are mean ± S.D. of three experiments.

9.2.6 Effect of agitation rate on protease production

Agitation rates effected protease production as the yield were very low in static conditions, but there was a gradual rise in enzyme production with increasing agitation rates and were stable from 150-200 rev/min (Fig.9.14), due to improved availability of oxygen and nutrients.

Sudhir K Rai

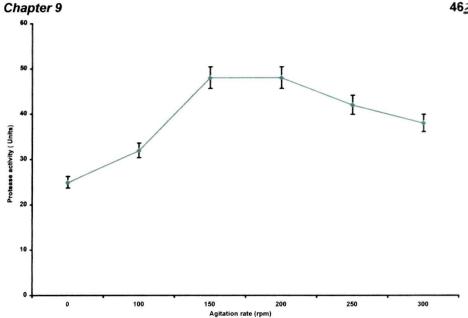


Fig.9.14 Effect of agitation rate on alkaline protease production from B. licheniformis strain AS-S24-I under SmF. Values are mean ± S.D. of three experiments.

9.3 Statistical optimization of alkaline protease production under submerged fermentation

9.3.1 Screening of essential key factors effecting protease (keratinase) production using Plackett-Burman design

In the present study the bacterium was found to secrete a high titer of alkaline keratinase, and maximum keratinase activity was estimated in the 72 h post-inoculated cell-free extract of B. licheniformis strain AS-S24-I. Screening result (Table 9.2) demonstrated a wide variation of protease (keratinase) activity from 33.0 Units to 81.0 Units in the fifteen trials. This variation reflected the significance of factors on the β-keratinase activity. The analysis of regression coefficients and t-value of six parameters showed that glucose, yeast extract, and pH of the medium displayed a positive effect for keratinase production where as, innoculum level and Sudhir K Rai

incubation time had a negative effect on enzyme production (Table 9.3). Neglecting the variables which were insignificant, the model equation for keratinase production can be written as 9.1.

 $Y = 23 . 25 + 0 . 417 X_1 + 3 . 083 X_2 + 2 . 750 X_3$ -----(9.1)

Where $X_1 = pH$ of the medium, $X_2 =$ yeast extract level, and $X_3 \approx$ glucose level.

On the basis of calculated t-values (Table 9.3), glucose, yeast extract, and pH of the medium were chosen for further optimization. Innoculum level (% v/v) and incubation time (h) were kept at middle level.

Table 9.2 Plackett–Burman store design showing six variables with coded values along with the observed results for protease (β-keratinase) production by *B.licheniformis* strain AS-S24-I.

Glucose level	Yeast extract	Incubation time (h)	Agitation rate	рН	Innoculum size	Protease (Keratinase)
(% w/v)	level (% w/v)		(rpm)		(% v/v)	yield (Units)
1 (1.5)	-1(0.05)	1 (96)	-1 (150)	-1 (9.0)	-1 (1.5)	33.125
1 (1.5)	1 (0.15)	-1 (48)	1 (250)	-1 (9.0)	-1 (1.5)	46.025
-1 (0.5)	1 (0.15)	1 (96)	- (150)	1 (11.0)	-1 (1.5)	58.525
1 (1.5)	-1 (0.05)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	52.275
1 (1.5)	1 (0.15)	-1 (48)	1 (250)	1 (11.0)	-1 (1.5)	61.450
1 (1.5)	1 (0.15)	1 (96)	-1 (150)	1 (11.0)	1 (5.0)	64.375
-1 (0.5)	1 (0.15)	1 (96)	1 (250)	-1 (9.0)	1 (5.0)	62.275
-1 (0.5)	-1 (0.05)	1 (96)	1 (250)	1 (11.0)	-1 (1.5)	61.875
-1 (0.5)	-1 (0.05)	-1 (48)	1 (250)	1 (11.0)	1 (5.0)	81.025
1 (1.5)	-1 (0.05)	-1 (48)	-1 (150)	1 (11.0)	1 (5.0)	67.70

<u>Sudhir K Rai</u>

Glucose	Yeast	Incubation	Agitation	рН	Innoculum	Protease
level	extract	time (h)	rate		size	(Keratinase)
(% w/v)	level (% w/v)		(rpm)		(% v/v)	yield (Units)
-1 (0.5)	1 (0.15)	-1 (48)	-1 (150)	-1 (9.0)	1 (5.0)	62.275
-1 (0.5)	-1 (0.05)	-1 (48)	- 1 (150)	-1 (9.0)	-1 (1.5)	46.45
0 (1.0)	0 (1.0)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	50.00
0 (1.0)	0 (1.0)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	50.00
0 (1.0)	0 (1.0)	0 (72)	0 (200)	0 (10.0)	0 (2.5)	50.00

Table 9.3 Statistical analysis of Plackett–Burman design showing coefficient values, t- and P-value for each variable for protease (keratinase) activity (p-value <0.05).

Variable	Protease (keratinase) yield (Units)					
	Effect	Co-	SE	t-Stat	p-value	
	LIIGU	efficient	Coef	l-Stat	p-value	
Intercept		23.25	0.5678	40.95	0.000	
pH of the	-3.167	0.417	0.5678	0.73	0.027	
nedium						
Innoculum	0.833	-1.583	0.5678	-2.79	0.487	
evel (%v/v)						
Incubation	-2.167	-1.083	0.5678	-1.91	0.098	
time (h)						
Agitation rate	2.167	1.083	0.5678	1.91	0.098	
(rpm)						
Yeast extract	6.167	3.083	0.5678	5.43	0.001	
(% w/v)						
Glucose level	5.500	2.750	0.5678	4.84	0.002	
(% w/v)						

<u>Sudhir K Rai</u>

-

Chapter 9 466 9.3.2 Statistical optimization of keratinase production using RSM

The predicted response for protease (β -keratinase) production using RSM was found as 780.1 X 10³ U/ I, while the actual experimental value was observed as 776.0 x 10³ U/ I by shake-flask study, and this difference in observed and predicted values is non-significant (p > 0.05) thus proving the validity of the model (Table 9.4). The overall second-order polynomial regression equation showing the empirical relationship between protease (keratinase) activity (Y) and three test variables in coded units can be represented by equation 9.2.

 $Y = 729.060 + 9.749 C_1 + 4.849 C_2 + 21.880 C_3 - 5.520 C_1^2 - 4.459 C_2^2 + 2.789 C_3^3 - 8.875 C_1 C_2 + 4.875 C_1 C_2 - 0.125 C_2 C_3$ (9.2)

The coefficients of the model including the significance of each coefficient as determined by t test and p-values showed that C₁ (pH of the medium), C₂ (glucose level), and C₃ (yeast extract level) had significant effect (p<0.001) on alkaline protease production by bacterium under study (Table 9.5). The positive co- efficient observed for the C₁, C₂ and C₃ variables indicated a linear effect of these parameters for the increase in βkeratinase production. Further, all the effects of C₁, C₂ and C₃, except quadratic effect of C₃C₂ were significant (p < 0.05). The goodness-of-fit of the model was analyzed by determining the coefficient of determination (R²) and adjusted R². The observed values of R² suggest that the fitted model could explain 99.64% of the total variation and therefore, vouches for adequacy of the model (Table 9.5).On the basis of analysis of variance (ANOVA) of the quadratic regression model, it could be inferred that the computed F value for linear regression was much greater than the tabulated (P) > F value (Table 9.6).

<u>Sudhir K Rai</u>

Table 9.4. Observed responses and predicted values of β -keratinase activity of culture supernatants from *B.licheniformis* strain AS-S24-I. The observed values are average of triplicate determinations.

Run	In	Independent Variables Y Response		Residual		
no.				Protease (Keratinase)		value
				yield		
	C ₁	C ₂	C ₃	Observed	Predicted	
				va	lue	
1	-1 (8.0)	-1(0.5)	-1(0.10)	679.0	681.266	-2.266
2	1(10.0)	-1(0.5)	-1(0.10)	710.0	708.763	1.237
3	-1(8.0)	1(1.5)	-1(0.10)	710.0	708.965	1.035
4	1(10.0)	1(1.5)	-1(0.10)	700.0	700.962	-0.962
5	-1(8.0)	-1(0.5)	1(0.20)	715.0	715.527	-0.527
6	1(10.0)	-1(0.5)	1(0.20)	760.0	762.524	-2.524
7	-1(8.0)	1(1.5)	1(0.20)	740.0	742.725	-2.725
8	1(10.0)	1(1.5)	1(0.20)	755.0	754.223	0.777
9	-2(7.0)	0(1.0)	0(0.15)	699.0	697.052	1.948
10	2(11.0)	0(1.0)	0(0.15)	730.0	729.842	0.158
11	0(9.0)	-2(0.25)	0(0.15)	710.0	708.292	1.708
12	0(9.0)	2(2.0)	0(0.15)	725.0	724.603	0.397
.13	0(9.0)	0(1.0)	-2(0.05)	700.0	700.149	-0.149
14	0(9.0)	0(1.0)	2(0.25)	776.0	780.100	-4.1
15	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060
16	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060
17	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060
18	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060
19	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060
20	0(9.0)	0(1.0)	0(0.15)	729.0	729.060	-0.060

<u>Sudhir K Rai</u>

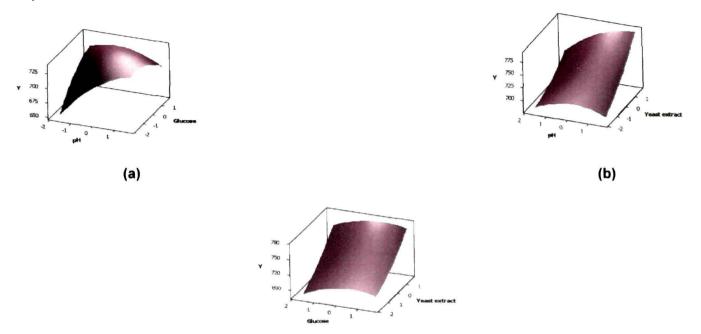
-

Table 9.5 Analysis of variance (ANOVA) of alkaline β -keratinase activity produced by *B.licheniformis* strain AS-S24-I strain. Values are mean \pm S.D. of three experiments.

Source	DF	Seq SS	Adj SS	Adj MS	F-value	p-value
Regression	9	9839.19	9839.19	1093.24	309.14	0.000
Linear	3	8157.24	8157.24	2719.08	768.89	0.000
pН	1	1297.89	1297.89	1297.89	367.01	0.000
Glucose	1	321.16	321.16	321.16	90.82	0.000
Yeast extract	1	6538.19	6538.19	6538.19	1848.84	0.000
Square	3	861.57	861.57	287.19	81.21	0.000
рН*рН	1	423.02	439.12	439.12	124.17	0.000
Glucose*Glucose	1	326.49	286.58	286.58	81.04	0.000
Yeast	1	112.06	112.06	112.06	31.69	0.000
extract*Yeast						
extract						
Interaction	3	820.38	820.38	273.46	77.33	0.000
pH*Glucose	1	630.13	630.12	630.12	178.18	0.000
pH*Yeast extract	1	190.13	190.13	190.13	53.76	0.000
Glucose*Yeast	1	0.12	0.12	0.12	0.04	0.855
extract						
Residual error	10	35.36	35.36	3.54		
Lack-of-Fit	5	35.36	35.36	7.07		
Pure error	5	0.00	0.00	0.00		
Total	19	9874.55	-			

<u>Sudhir K Rai</u>

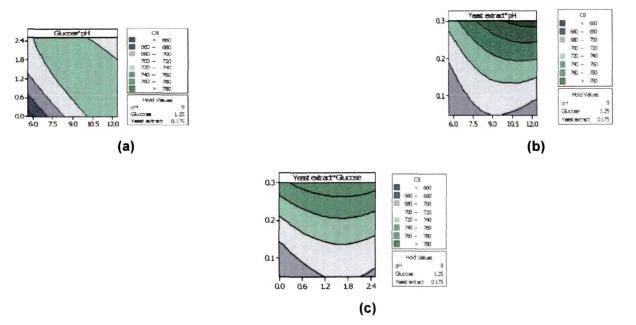
PhD Thesis, Tezpur University, 2010


Chapter 9 Table 9.6 Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for protease (β-keratinase) production by B.licheniformis strain AS-S24-I in SmF under shake-flask study (p<0.05).

Factor	Coefficient	SE	Computed	p-value
		coefficient	t-value	
Constant	729.060	0.7670	950.574	0.000
рН	9.749	0.5089	19.158	0.000
Glucose	4.849	0.5089	9.530	0.000
Yeast extract	21.880	0.5089	42.998	0.000
рН * рН	-5.520	0.4954	-11.143	0.000
Glucose * Glucose	-4.459	0.4954	-9.002	0.000
Yeast extract * Yeast	2.789	0.4954	5.629	0.000
extract				
pH * Glucose	-8.875	0.6649	-13.349	0.000
pH * Yeast extract	4.875	0.6649	7.332	0.000
Glucose * Yeast	-0.125	0.6649	-0.188	0.855
extract				

 $R^2 = 99.64\%$, R^2 (pred) = 97.04\%, R^2 (adj) = 99.32\%

<u>Sudhir K Rai</u>


PhD Thesis, Tezpur University, 2010

(C)

Fig. 9.15 Response surface plots for alkaline protease production by *B.licheniformis* strain AS-S24-I. The interaction between (a) pH of the medium and concentration (%, w/v) of glucose, hold value $C_3 = 0$ (b) pH of the medium vs concentration (%, w/v) of yeast extract, hold value $C_2 = 0$ and (c) concentration (%, w/v) of glucose vs concentration of yeast extract (% w/v), hold value $C_1=0$. Values are mean ± S.D. of three experiments.

Sudhir K Rai

Fig.9.16 Countor plots for alkaline protease production by *B.licheniformis* strain AS-S24-I. The interaction between (a) pH of the medium and concentration (%, w/v) of glucose, hold value $C_3 = 0$ (b) pH of the medium vs concentration (%, w/v) of yeast extract, hold value $C_2 = 0$ and (c) concentration (%, w/v) of glucose vs concentration of yeast extract (% w/v), hold value $C_1=0$. Values are mean ± S.D. of three experiments.

Sudhir K Rai

Chapter 9 9.3.1 Three dimensional surface plots

The three-dimensional (3-D) response surfaces were plotted on the basis of the model equation to investigate the interaction among variables and to determine the optimum concentration of each factor for maximum keratinase production by *B. licheniformis* strain AS-S24-I. The response surfaces shown in Fig. 9.15a-c were based on the final model, holding one variable constant at its optimum level, while the other two within their experimental range. It was observed that with an initial increase in the pH of the medium and concentration of the glucose resulted in an increase in keratinase yield (Fig. 9.15a). The response surface plot based on interaction of pH of the medium and concentration of glucose (C₂) and yeast extract (C₃) was insignificant in higher concentration (p>0.05) resulting decrease in keratinase yield (Fig. 9.15c). These results reinforced that the response equation provided a suitable model for the CCD experiment.

9.3.2 Two dimensional countor plots

Figure 9.16a clearly illustrated that an initial increase in pH of medium and concentration of glucose increases protease yield particularly above pH level 10, with a glucose concentration 1.8 % w/v as elliptical formation occurred at this concentration. Fig. 9.16b shows that interaction of pH of medium and concentration of glucose increases protease yield. However, further increase in the glucose level results in decrease in protease yield. The Fig.9.16c shows interaction of (C_2) glucose and (C_3) yeast extract level was significant in increasing protease yield to optimal value. These results reinforced the premises that the response equation provided a suitable model for the CCD experiment.

Sudhir K Rai

Chapter 9 9.4 Batch fermentation

On the basis of regression equation so obtained, the optimum levels of test variables for maximum keratinase yield were predicted by using the Minitab 16 Statistical Software® program as 0.4 % (w/v) of glucose, 0.30 % (w/v) of yeast-extract and pH 10.0 of the medium. The optimal keratinase production in a process-controlled fermenter was found to be significantly higher (796.0 x 10^3 U/ I post 60 h of incubation) than that observed under the shake-flask study (780.0 x 10^3 U/ I post 72 h of incubation).

9.5 Isolation and purification of alkaline protease

Maximum protease (β -keratinase activity) was determined that 80% acetone-precipitated fraction. Separation of this fraction on a gel filtration column resolved it into seven protease peaks, designated as GF-I to GF-VII (Fig.9.17). The GF-VI fraction (containing proteins in the molecule weight range of 40-45 kDa) demonstrated maximum β -keratinase activity. When GF-VI peak was fractionated by RP-HPLC, the peak HP-III (Alkarnase) with retention time of 8.50 min showed β -keratinase activity (Fig. 9.18). This peak was found to be homogenous by 15% SDS-PAGE analysis, both under reducing and non-reducing conditions, yielded a single Coomassie-stained band of apparent molecular weight of 43.0 kDa (Fig. 9.19). This enzyme was name as Alkarnase. A summary of purification of Alkarnase is displayed in Table 9.7.

<u>Sudhir K Rai</u>

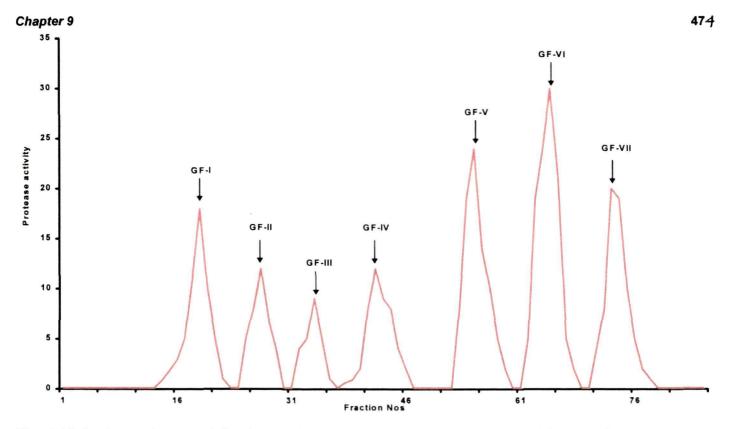


Fig. 9.17 Sephacryl S-200 gel filtration profile of 80 % (v/v) acetone precipitated fraction. Data represent a typical experiment.

Sudhir K Rai

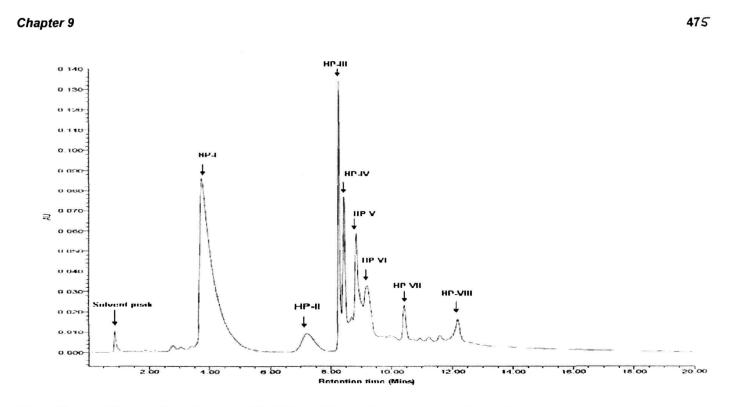


Fig.9.18 RP-HPLC profile of fraction GF-VI from B.licheniformis strain AS-S24-I.

<u>Sudhir K Rai</u>

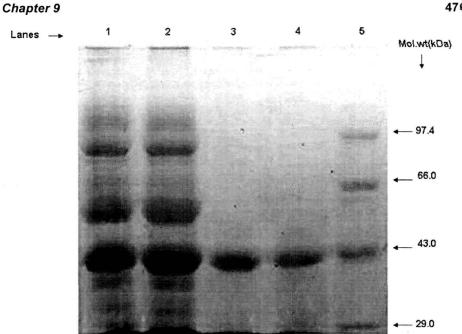


Fig. 9.19 SDS-PAGE (12.5%) of HP-III fraction (Alkarnase) from B. licheniformis strain AS-S24-I. Lane 1 -crude keratinase (50 µg); Lane 2acetone precipitated keratinase (50 µg), Lane 3- reduced Alkarnase (10.0 μg); Lane 4- non-reduced Alkarnase (10.0 μg); Lane 5- Protein molecular weight marker (kDa) :phosphorylase b (97.4), BSA (66.0),ovalbumin (43.0), carbonic anhydrase (29.0).

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Chapter 9 Table 9.7 Summary of purification of Alkarnase (an alkaline βkeratinase) from B.licheniformis strain AS-S24-I. Data represent a typical experiment.

Purificatio	on step	Total protein (mg)	Total activity (Units)	Enzyme yield (%)	Specific activity (units/mg)	Purificati on (fold)
Cell-free		127.0	796.0	100	6.3 x 10 ³	1
supernata	nt					
8 0%	acetone	21.0	670.0	84.0	32.0 x 10 ³	5.0
precipitatio	on					
GF-VI		13.9	605.0	76.0	44.0 x 10 ³	7.0
HP-III(Alka	arnase)	3.0	408.0	51.0	136.0 x 10 ³	22.0

9.6 Biochemical characterization of Alkarnase

The various biochemical properties and characteristics of the isolated βkeratinase (Alkarnase) were characterized in view of its potential application in the field of emerging industrial biotechnology.

9.6.1 Effect of pH and temperature on activity of Alkarnase

The Alkarnase remained active over a broad range of pH (6-13) and temperature (25- 60°C); however, the optimum activity was observed at pH 9.0-10 (Fig.9.20) and at 45-50°C (Fig. 9.21).Further increase in pH and temperature leads to a decrease in the protease activity.

<u>Sudhir K Rai</u>

. .

.

.

PhD Thesis, Tezpur University, 2010

47₹

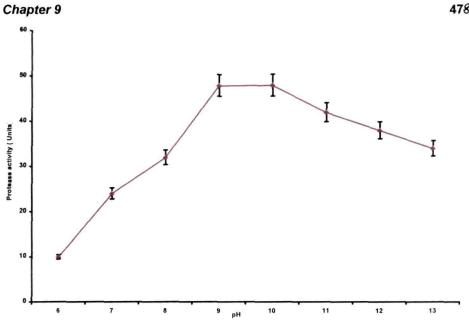


Fig. 9.20 Effect of pH on protease activity. Values are mean ± S.D. of three experiments.

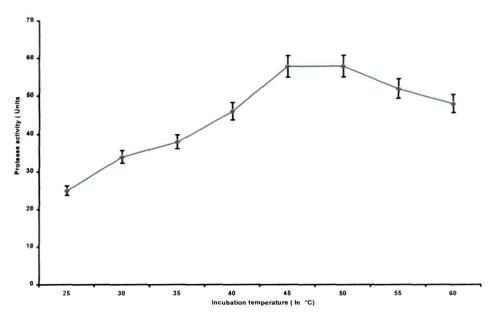
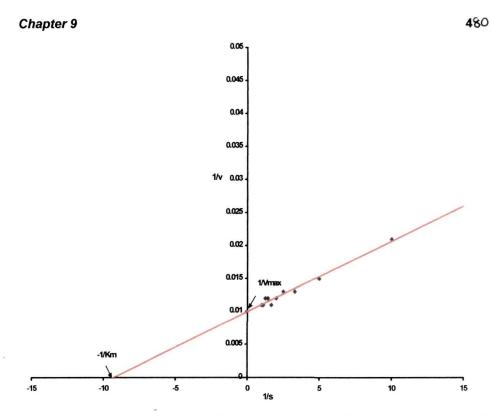


Fig.9.21 Effect of incubation temperature on protease activity of Alkarnase. Values are mean ± S.D. of three experiments.

Sudhir K Rai

9.6.2 Substrate specificity study of alkarnase

The specificity (U/mg of protein) of the purified protease towards different substrates was observed in the following order: raw chicken-feather > casein > bovine serum globulin > bovine serum albumin > bovine serum fibrinogen > hemoglobulin > gelatin. Human hair (α -keratin) and collagen could not be degraded by this protease. Based on its substrate specificity, this protease was considered as an alkaline β -keratinase and was named as Alkarnase. (Table 9.8).


Table 9.8 Substrate specificity of Alkarnase from B. licheniformis strain AS-
S24-I. Values are mean ± S.D. of three experiments.

Substrate specificity	Specific activity (U / mg of		
	protein)		
Raw chicken-feather	13,600.00 ± 680.0		
casein	5081.0 ± 254.0		
bovine serum globulin	500.9 ± 25.0		
bovine serum albumin	350.8 ±18.0		
bovine serum fibrinogen	330.5 ±17.0		
hemoglobulin	150.5 ± 8.0		
gelatin	100.3 ± 5.0		
Human hair	0		
Collagen	0		

9.6.3 K_m and V_{max}

The K_m and V_{max} values for Alkarnase towards soluble keratin were determined as 0. 1 mg / ml and 100.0 µmol / min / mg, respectively. (Fig. 9.22)

<u>Sudhir K Rai</u>

Fig.9.22 Lineweaver–Burk plot for determination of K_m and V_{max} values of Alkarnase. Values are mean \pm S.D. of three experiments.

9.6.4 Effect of metal ions on Alkarnase

All the tested metal ions inhibited the keratinolytic activity of Alkarnase however, maximum (100%) inhibition was produce by Ni^{2+} , Mg^{2+} , Cu^{2+} , Ca^{2+} , Mn^{2+} and Ca^{2+} ions (Fig. 9.23)

Sudhir K Rai

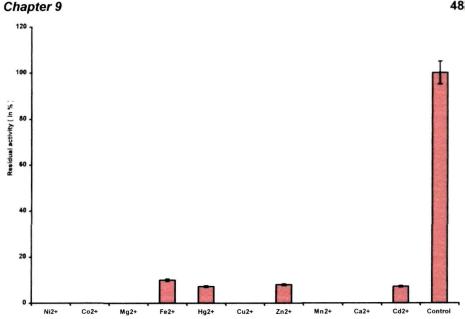


Fig.9.23 Effect of metal ions on activity of Alkarnase. Values are mean ± S.D. of three experiments.

9.6.5 Effect /inhibitors/chelators/ surfactants/ of chemicals denaturing/oxidizing/bleaching agents on Alkarnase

The serine protease inhibitor, PMSF is known to strongly inhibit the serine residue at the active site causing a significant inhibition of enzyme activity. The activity of Alkarnase was inhibited to 91.4% and 98.8 %, in presence of 2.0 and 4.0mM PMSF, whereas iodoacetic acid (IAA) displayed 100% inhibition at 4.0mM concentration. The 4-pBPB also displayed maximum inhibition of about 95.0% of Alkarnase activity. High stability was observed for alkarnase toward various surfactants (Table 9.9). Upon incubation with 1% of Tween-20, -40, and Triton X-100 at room temperature (24°C) for 30.0 min, Alkarnase exhibited enhanced residual activities between 99.0-125 %. Alkarnase retained 98.0 and 90.0 % of original activity after incubation with 2 and 4mM EDTA at room temperature 24°C for 30.0 min. Alkarnase still retained 110.0,100.0 and 95.0% of its original activity, respectively, even after incubation with 20.0mM,-40mM and 60mM SDS. Sudhir K Rai

Alkarnase demonstrated 112% residual activity in presence of 5% (v/v) H_2O_2 and 0.5% (w/v) sodium perborate at room temperature 24°C for 30.0 min (Table 9.9). About, 88.0% decrease in protease activity was observed post addition of DTT with Alkarnase which suggests the presence of intra-molecular disulphide bonds in Alkarnase molecules (Table 9.9).

Table 9.9 Effect of protease inhibitors, chelator, surfactants, urea, oxidizing and bleaching agents on catalytic activity of Alkarnase from *B.licheniformis* strain AS-S24-I strain. Experiment was done as described in the text. Values represent mean \pm S.D of three determinations.

Metal ions/ reagents	Relative activity (%)	
Control	100	
Inhibitors	-	
PMSF (2mM)	8.6 ± 0.4	
(4mM)	1.2 ± 0.2	
4-pBPB (2mM)	14.3 ± 0.8	
(4mM)	5.2 ± 0.5	
IAA (2mM)	2.4 ± 0.1	
(4mM)	0.0	
Metal-ion chelator		
EDTA (2mM)	98.0 ± 1.0	
(4mM)	90.0 ± 0.9	
Anionic surfactant (SDS)		
20 mM	110.0 ± 5.5	
40 mM	100.0 ± 2.1	
60 mM	95.0 ± 0.9	
Non-ionic surfactants (1% v/v)		
Trition-X-100	100.0 ± 5.0	
Tween 20	125.0 ± 6.3	

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

Chapter 9	483
Metal ions/ reagents	Relative activity (%)
Tween 40	99±4.6
Tween 60	95 ± 5.0
Urea (8 M)	80.0 ± 4.0
Oxidizing agents	
H ₂ O ₂ (% v/v) .	
5.0	112.0± 7.1
10.0	100.0 ± 5.0
Sodium perborate (% w/v)	
0.5	112.0± 6.6
1.0	103.0 ± 6.4
DTT	
4mM	12.0 ± 0.6

9.6.7 Thermo-stability study of Alkarnase

Thermostability study demonstrated that the Alkarnase was stable post heating at 60°C for 15 min. However, about 20 % of original activity of Alkarnase was lost post heating it at 60°C for 120 min (Fig.9.24).

<u>Sudhir K Rai</u>

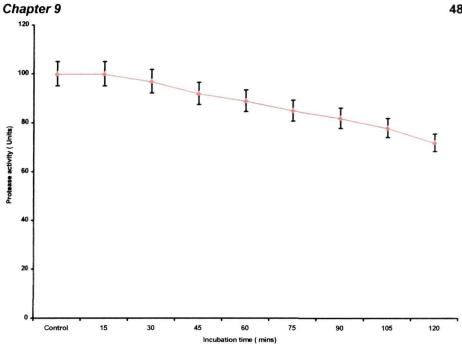


Fig.9.24 Thermo-stability study of Alkarnase from B. licheniformis strain AS-S24-I post heating at 60°C for 120 min. Values are mean ± S.D. of three experiments.

9.6.8 Effect of polyols on stability Alkarnase against heat denaturation

The influence of various polyols (5.0%) such as glycerol, mannitol, sorbitol and xylitol on the thermostability of Alkarnase was examined. Data presented in Fig.9.25 show that glycerol and mannitol stabilized this keratinase to the maximum extent against heat -denaturation, whereas xylitol exhibited least activity in stabilizing the enzyme against heat denaturation.

Sudhir K Rai

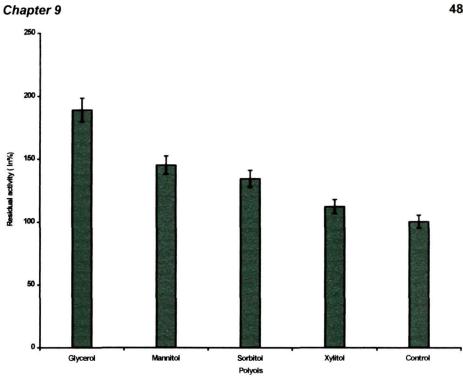



Fig. 9.25 Effect of polyols on thermostability of Alkarnase from B.licheniformis strain AS-S24-I post heating at 60°C for 120 min. The Alkarnase activity without polyols served as control (100% activity). Values are mean ± S.D. of three experiments.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 9 9.6.9 Effect of organic solvents on Alkarnase activity

Present study demonstrates the effects of various organic solvents with different Log P (20%, v/v) on the stability of the Alkarnase. Residual activity of Alkarnase is displayed in Fig.9.26. The stability of the enzyme was highly enhanced by n-hexane and xylene, and no loss of activity was observed in these solvents post 90 mins of incubation at room temperature (Fig.9.26). The enzyme was highly unstable in presence of benzene followed by ethanol.

Fig. 9.26 Organic solvent stability of Alkarnase from *B. licheniformis* strain AS-S24-I. Enzyme activity in the absence of solvents was considered as 100% activity and other values were compared with that. Values are mean \pm S.D. of three experiments.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 9 9.5.10 Pharmacological properties of Alkarnase from B. licheniformis strain AS-S24-I

In order to develop safer laundry detergents for household and industrial applications, it is essential to explore the pharmacological properties and toxicity level of purified enzymes; however, only limited attempts have been made in this direction. Alkarnase from B. licheniformis strain AS-S24-I induced only 2.4% hemolysis of the washed human erythrocytes at a dose of 15 µg/ml. Moreover, it did not display any detrimental effect on goat liver, heart, lungs and kidney tissues (Table 9.10). Further, as shown in Table 9.10, Alkarnase had no affect on the normal clotting time of goat plateletpoor plasma (PPP).

strain AS-S24-I. Values are mean± S.D. of three experiments.		
Pharmacological properties	Values	
Hemolysis ^a (%)		
Control (without Alkarnase)	1.2 ± 0.1	
Treatment with Alkarnase (15.0 µg	2.4 ± 0.1	
/ml) -		
Ca-Clotting time (s) ^b		
Control (without Alkarnase)	125.0 ± 6.3	
Treated (with 15.0 μg/ml of	133.0 ± 6.7	
Alkarnase)		
In vitro tissue damaging activity ^c		
a) <i>Heart</i>		
Control (without Alkarnase)	0.12 ± 0.01	
Treatment with Alkarnase	0.28 ± 0.01	
b) <i>Lung</i>		

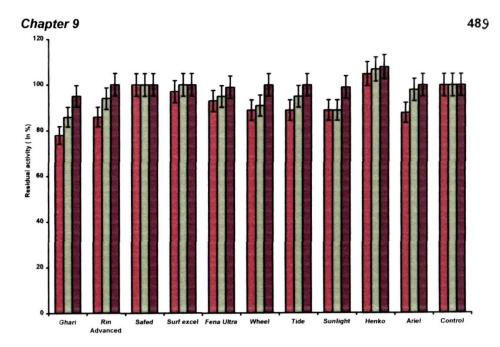
 Table 9.10 Pharmacological properties of Alkarnase from B. licheniformis
 strain AS S24 L Values are meant S.D. of three experiments

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

Chapter 9		488
Pharmacological properties	Values	
Control (without Alkarnase)	0.13 ± 0.01	
Treatment with Alkarnase	0.36 ± 0.02	
c) <i>Liver</i>		
Control (without Alkarnase)	0.12 ± 0.01	
Treatment with Alkarnase	0.29 ± 0.02	
d) <i>Kidney</i>		
Control (without Alkarnase)	0.13 ± 0.01	
Treatment with Alkarnase	0.32 ± 0.02	

^aPercent of Hb released by 15 µg/ml of Alkarnase post 90 min incubation at 37°C. RBC treated with 1% (v/v) Triton-X-100 was considered as 100 % activity.


^bCa²⁺ clotting time of platelet poor goat plasma by 15 μ g/ml of Alkarnase. ^cPercent of Hb released from damaged tissues by 15 μ g/ml of Alkarnase ^rpost 5 h incubation at 37°C. Hemoglobin released from the tissues treated with 1% (v/v) Triton X-100 was considered as 100 % activity.

9.6 Industrial application of Alkarnase

9.6.1 Detergent compatibility and stain removal potency of Alkarnase

Proteolytic activity of Alkarnase was monitored in the presence of different commercial detergents at a concentration of 7.0 mg /ml at pH 10.0; preincubated at 25.0, 37.0 and 45.0°C temperatures for a period of 60 min. The proteolytic activity was assayed at every 10 min intervals. Alkarnase at a dose of 7.0 μ g /ml demonstrated protease activity in presence of detergents at all the tested temperature. The most promising results was observed at 45°C in presence of Henko (120.0%) followed by Sunlight = Surf excel = Fena Ultra = Wheel = Rin advanced = Safed = Ariel (100%) and Ghari (97.0%) detergents (Fig. 9.27).

<u>Sudhir K Rai</u>

Fig.9.27 Detergent stability and compatibility of Alkarnase (7.0 μ g / ml) from *B. licheniformis* strain AS-S24-I at the tested temperature ranges 25(**I**), 37 (**I**) and 45 °C (**I**). Values are mean ± SD of triplicate determinations.

Wash performance analysis of the Alkarnase on small square pieces (7cm ×7 cm) of a cotton fabric was performed at room temperatures. The enzyme and detergent combinations were found to be superior for efficient removal of blood stain, when compared to the use of detergent alone (Fig.9.28). It was observed that Henko® detergent supplemented with Alkarnase (dissolved in tap water) at a concentration of 7.0 μ g / ml could remove 36.0 ± 3.0 % (mean ± S.D., n=3) of blood stain from cotton fabrics, where as the control tap water removed 3.0 ± 0.2% (mean ± S.D., n=3) of blood stain from cotton fabrics under identical experimental condition.

Sudhir K Rai

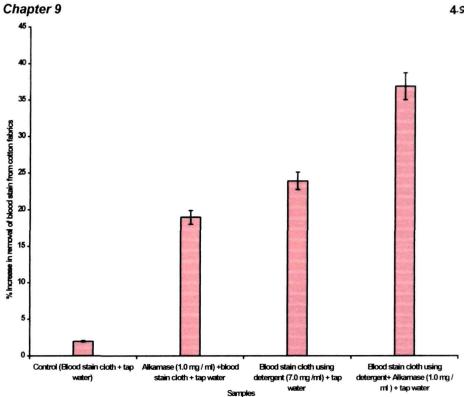


Fig.9.28 Wash performance test of Alkarnase from B. licheniformis strain AS-S24-I at 37°C. The values represent mean ± S.D. of three determinations.

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

4.90

9.6.2 Dehairing activity of Alkarnase

In the present study, dehairing of skin was observed post treatment with Alkarnase (50.0 U / ml) at 37°C for 6 h; on the other hand, treatment of skin with the buffer (control) could not lead to its dehairing (Fig.9.29). Absence of collagenase activity and lack of toxicity in the protease preparation (Alkarnase) from *B. licheniformis* strain AS-S24-I may be considered as promising properties for its future application as a green chemical in leather industry for dehairing purpose.

(a)

(b)

Fig. 9.29 Dehairing activity of Alkarnase (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 10.0 for 12 h at 37° C (control) and (b) enzymatically dehaired goat skin incubated with Alkarnase (50U / ml) for 12 h at 37° C.

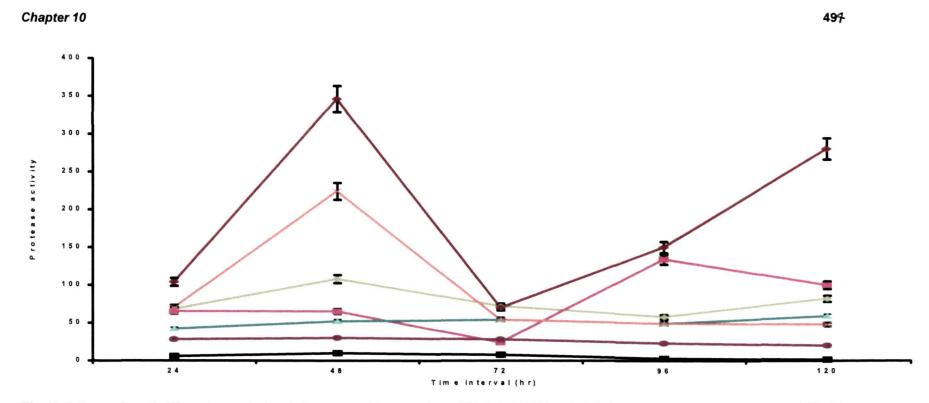
Sudhir K Rai

CHAPTER X

RESULTS

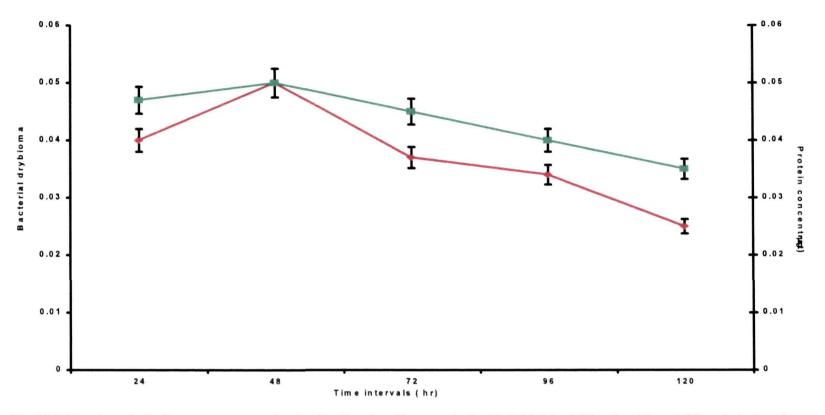
<u>Sudhir K Rai</u>

Process optimization, purification, biochemical characterization, and industrial application of an alkaline protease isolated from *Brevibacillus* sp. strain AS-S10-II


10.1 Alkaline protease production under solid-state fermentation

10.1.1 Screening of different agro-industrial and waste materials for alkaline protease production

Brevibacillus sp. strain AS-S10-II was employed in the present study for bacterial growth and protease production with cheaper agro-industrial and kitchen waste materials. Several solid substrates obtained from a local market and industrial by-products have been tested for protease production. As shown in Fig. 10.1, IC followed by PP mixture (1:1) were found to be most effective substrates in SSF system for protease production. Alkaline protease production was observed to be maximum in presence of IC (224.0 U /gds) and PP (346.0 U/gds) post 48h of incubation at 50°C; followed by wheat bran (WB) and mustard oil cake (MOC) (Fig. 10.1). Least production was achieved in presence of banana leaves and tea leaves (Fig.10.1). Among different substrates, IC and PP demonstrated an appropriate supporting sustained bacterial growth and protease production in SSF systems. These substrates IC and PP significantly enhances the protein content of the culture supernatants as well as the bacterial dry biomass post 48h of incubation at 45°C temperature as compared with other substrates (Fig.10.2).


Sudhir K Rai

- .

Fig.10.1 Screening of different agro-industrial waste residues such as MOC (\diamond), WB (\blacksquare), RB (\blacktriangle), IC(X), PP (\diamond), BL (\bullet), and TL (\blacksquare) for the production of alkaline protease by *Brevibacillus* sp.strain AS-S10-II at different time intervals. Values are mean ± S.D. of three experiments.

<u>Sudhir K Rai</u>

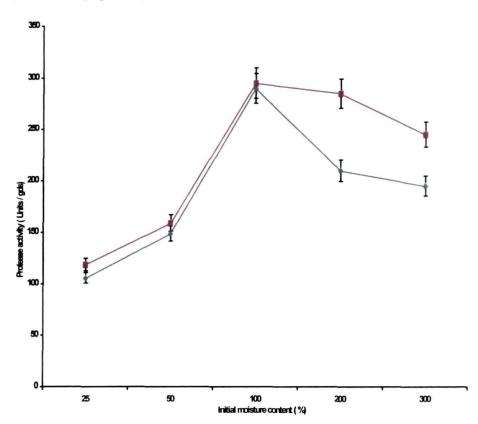
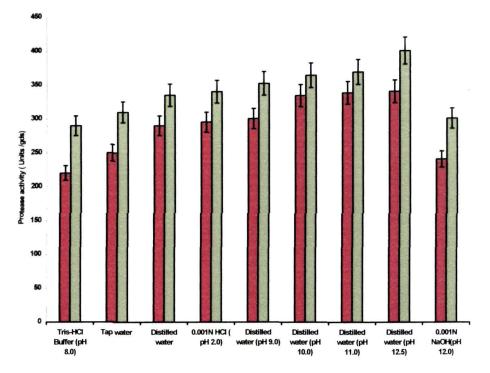


Fig.10.2 Kinetics of alkaline protease production by *Brevibacillus* sp. strain AS-S10-II in SSF using IC and PP substrates. Legends show bacterial dry biomass (**II**) and protein concentration (*). Values are mean ± S.D. of three experiments.

Sudhir K Rai


10.1.2 Effect of initial moisture content of the substrate and moistening agent on protease production

The effect of initial moisture content on protease production is presented in Fig. 10.3. The highest enzyme production (300.0 U/ gds) was obtained at 100% initial moisture content. Further, increase in moisture content displayed a sharp decrease in protease production post 48h of incubation at 50°C. As compared to other moistening agents, distilled H₂O adjusted to pH 12.5 was found as most efficient moistening agent for protease production (Fig. 10.4).

Fig.10.3 Influence of initial moisture content of the substrates [PP (■) or IC (•)] on alkaline protease production. Values are mean ± S.D. of triplicate determinations post 48h incubation at 50°C. Moistening agent was distilled water, adjusted to pH 12.5 with 0.1N NaOH.

Sudhir K Rai

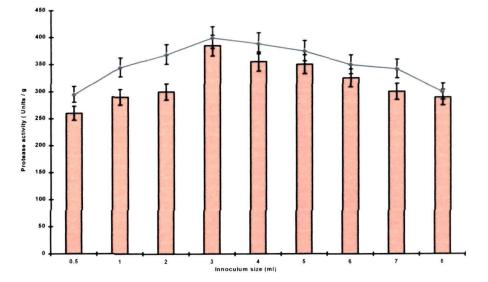


Fig.10.4 Influence of moistening agents on protease production using either IC (**•**) or PP (**•**) as a substrate. Values represent mean ± S.D of three experiments post 48h of incubation of *Brevibacillus* sp. strain AS-S10-II at 50°C.

10.1.3 Effect of inoculum's size on protease production

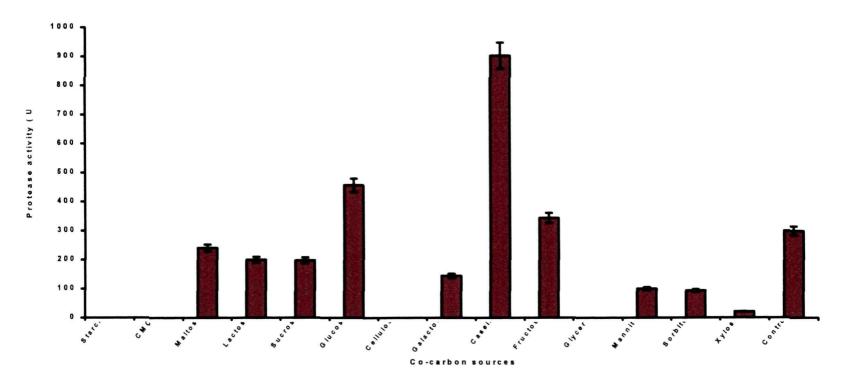
The inoculum size directly effects bacterial growth and protease production. An inoculum size of 0.5- 3.0 ml significantly accelerated the protease production with IC and PP substrates (Fig.10.5). Further increase in inoculum size displayed a sharp decrease in protease production due to competition among bacterial populations for nutrients.

<u>Sudhir K Rai</u>

Fig.10.5 Influence of inoculum size on protease production by *Brevibacillus* sp. strain AS-S10-II using PP (*) and IC (•) under SSF. Values are mean ± S.D. of triplicate determinations.

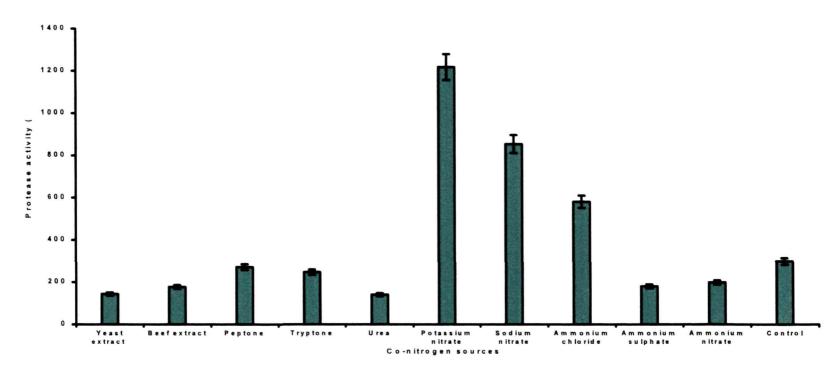
10.1.4. Effect of supplementation of co-carbon and co-nitrogen sources on protease production

It has been envisaged that co-carbon sources have tremendous potential to support bacterial growth and protease production. The influence of different co-carbon sources on protease production by *Brevibacillus* sp. strain AS-S10-II was tested under SSF systems. About 3.0 fold increase in protease production as well as bacterial growth was induced by 1.0 % w/v casein (900.0 U / gds) along with IC post 48h of incubation at 50°C by *Brevibacillus* sp. strain AS-S10-II (Fig. 10.6).


Effect of different nitrogen sources on bacterial growth and protease production by *Brevibacillus* sp. strain AS-S10-II was investigated. Maximum bacterial growth and protease production was observed in presence of 0.1 % (w/v) potassium nitrate along with IC substrate post 48h of incubation (Fig. 10.7). No significant protease production was observed

Sudhir K Rai

in presence of organic nitrogen sources as compared with inorganic nitrogen sources (Fig. 10.7).


<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010

Fig.10.6 Effect of supplementation of co-carbon sources (10 % w/w) to IC (90.0 % w/w) (substrate) on protease production by *Brevibacillus* sp.strain AS-S10-II.Values are means ± S.D. of three determinations.

Sudhir K Rai

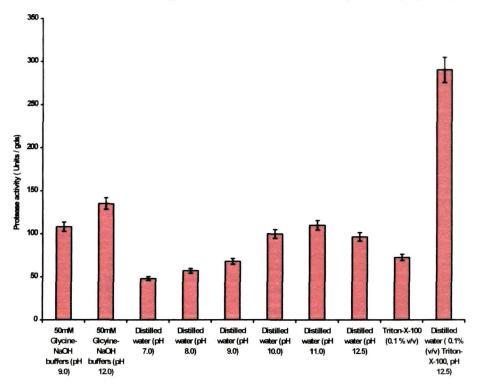


Fig.10.7 Effect of supplementation of co-nitrogen sources (1.0% w/w) to IC (99.0 % w/w) (substrate) on protease production by *Brevibacillus* sp. strain AS-S10-II.Values are means ± S.D. of three determinations.

Sudhir K Rai

10.1.5 Protease extraction from fermented matter

Ideal extraction medium was screened for recovery of protease from fermented matter. Maximum protease extraction was achieved in presence of distilled water containing 0.1 % v/v Triton-X-100 at pH 12.5 (Fig.10.8).

Fig. 10.8 Screening of best extraction medium for extraction of alkaline protease from fermented matter. Values are means ± S.D. of three determinations.

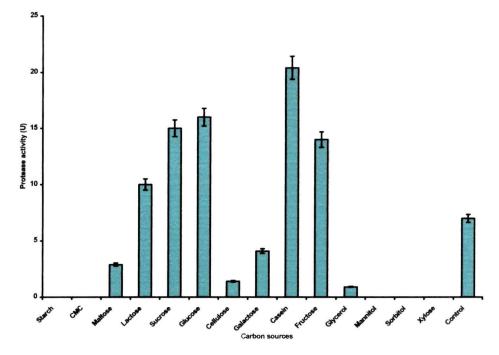
10.1.6 Batch fermentation for alkaline protease production

The influence of various combinations of IC and PP along with supplementation of co-carbon and co-nitrogen sources on protease production showed that when IC and PP powders were mixed in a ratio of 1:1 without any additional co- carbon and nitrogen sources, about 1.32 fold increase in protease yield (p< 0.05) was observed (Table10.1). Therefore, it could be inferred that the *Brevibacillus* sp. strain AS-S10-II can be used for protease production in industrial scale processes using IC and PP,

Sudhir K Rai

since it does not require any additional co-carbon and co-nitrogen sources. which may interfere with downstream processing.

Table 10.1 Influence of different combinations of co-substrates on alkaline protease production by *Brevibacillus* sp. strain AS-S10-II under solid-state fermentation. Values are mean ± S.D of triplicate determinations.


Substrate(s)	Protease activity (U/gds)
I.cylindrica (100%)	224.0 ± 11.2
Potato peel (100%)	346.0 ± 17.3
<i>I.cylindrica</i> (89%w/w)+ casein (10 % w/w) + potassium nitrate (1% w/w)	1500.00 ± 75.0
I.cylindrica (90%w/w) + Potato peel (10%)	1509.0 ± 75.5
<i>I.cylindrica</i> (80%w/w) + Potato peel (20 %w/w)	1636.0 ± 81.8
<i>I.cylindrica</i> (50%w/w) + Potato peel (50%w/w)	1982.0 ± 99.1
Potato peel (89% w/w) + casein (10 % w/w) + potassium nitrate (1%)	746.0 ± 37.3

10.2 Alkaline protease production under submerged fermentation10.2.1 Effect of carbon source on protease production

Various carbon sources were used in the culture media (M9 minimal medium containing 1.0 %, w/v carbon sources) to observe their influence in protease production. Maximum alkaline protease production was observed in presence casein followed by glucose and than sucrose post 48h of

<u>Sudhir K Rai</u>

incubation at 50°C. Interestingly, this strain could not utilize maltose for growth and protease production (Fig.10.9).

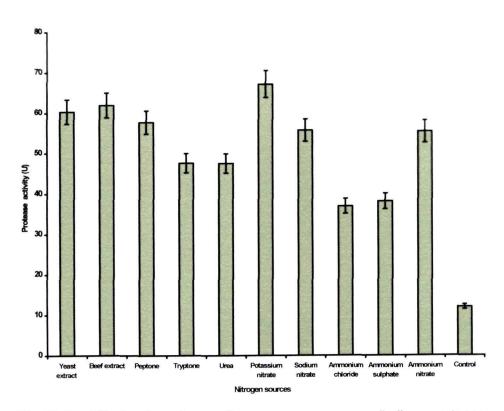


Fig.10.9 Effect of different carbon sources on alkaline protease production by *Brevibacillus* sp. strain AS-S10-II under SmF. Values are mean \pm S.D. of three experiments.

10.2.2 Effect of nitrogen source on protease production

The effect of different nitrogen sources (0.1 % (w/w)) on protease production by *Brevibacillus* sp. strain AS-S10-II is illustrated in Fig. 10.10. The highest cell growth and protease production was achieved with 0.1 % (w/v) potassium nitrate (Fig. 10.10) and in it presence, 6.9 fold increase in protease production was observed compared with control (without nitrogen sources).

Sudhir K Rai

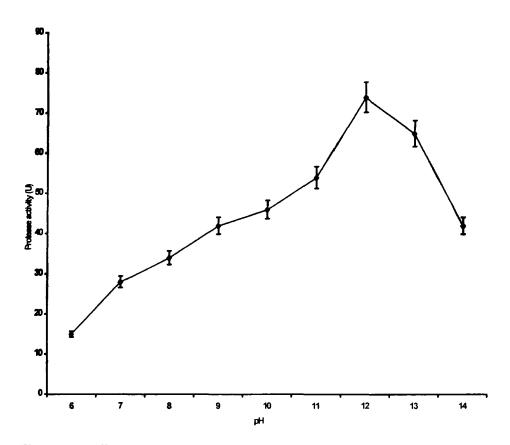


Fig.10.10 Effect of various nitrogen sources on alkaline protease production from *Brevibacillus* sp. strain AS-S10-II under SmF. Values are mean \pm S.D. of three experiments.

10.2.3 Effect of pH on protease production

The pH of the medium strongly affects many enzyme processes and transport of various components across the cell membrane. Effect of initial pH of the medium has been illustrated in Fig. 10.11. Enzyme production gradually increased with increase in the pH of the medium from 5.0-12.0 and the maximum production (70.0 U) was recorded at pH 12.0, further increase in medium pH resulted decline in protease production.

<u>Sudhir K Rai</u>

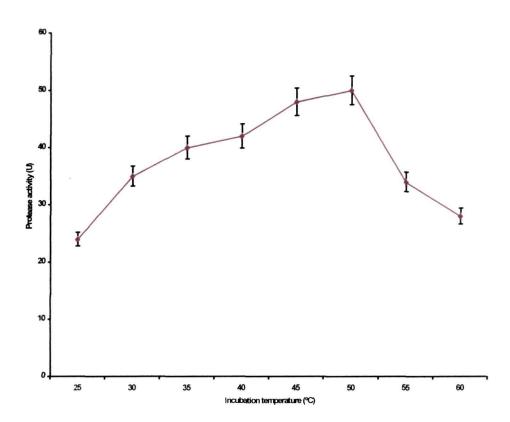


Fig.10.11 Effect of medium pH on alkaline protease production by *Brevibacillus* sp. strain AS-S10-II. Values are mean \pm S.D. of three experiments.

10.2.4 Effect of temperature on protease production

The *Brevibacillus* sp. strain AS-S10-II displayed a linear increase in protease production upto 50°C and further increase in incubation temperature leading to decrease in protease secretion. Therefore, 50°C was found to be the optimum temperature for protease production by *Brevibacillus* sp. strain AS-S10-II.

<u>Sudhir K Rai</u>

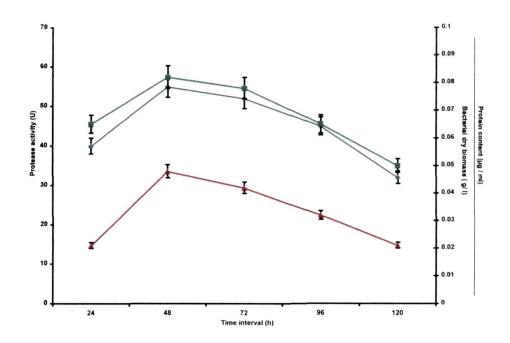


Fig.10.12 Effect of incubation temperature on alkaline protease production from *Brevibacillus* sp. strain AS-S10-II. Values are mean ± S.D. of three experiments.

10.2.5 Kinetics of protease production

Protease production by *Brevibacillus* sp. strain AS-S10-II was optimized under different environmental and nutritional factors including temperature, pH, carbon sources, and nitrogen sources. Maximum protease production, increase in protein content and biomass formation was achieved in 48h of post incubation at 50°C growth temperature (Fig.10.13). Further, increase of incubation time lead a decline in protease production (Fig.10.13).

Sudhir K Rai

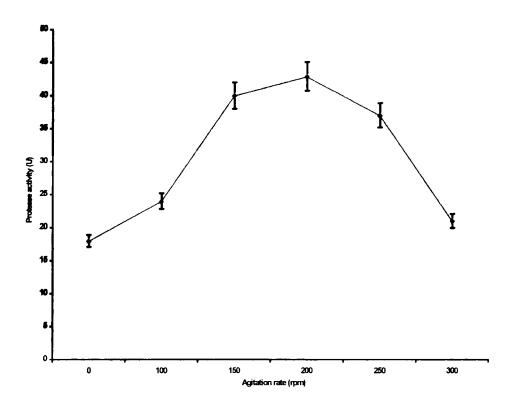


Fig. 10.13 Effect of incubation time on alkaline protease production (♦), bacterial dry biomass (■), and protein content (▲) from *Brevibacillus* sp. strain AS-S10-II under SmF condition. Values are mean ± S.D. of three experiments.

10.2.6 Effect of agitation rate on protease production

The effect of the agitation rate on the protease synthesis showed that maximum protease production was attained at 200 rpm (Fig.10.14) and further increase in agitation rate resulted in decline in protease production from *Brevibacillus* sp. strain AS-S10-II.

<u>Sudhir K Rai</u>

Fig.10.14 Effect of agitation rate on alkaline protease production from *Brevibacillus* sp. strain AS-S10-II under SmF. Values are mean ± S.D. of three experiments.

10.3 Statistical optimization of alkaline protease under submerged fermentation

10.3.1 Evaluation of factors effecting protease production using Plackett-Burman design

In the present study, maximum protease activity was estimated in the 48 h post-inoculated cell-free extract of *Brevibacillus* sp. strain AS-S10-II. Screening result reflected the significance of various factors on the β -keratinase activity (Table 10.2). The analysis of regression coefficients and t-value of six parameters showed that casein, potassium nitrate, and pH of the medium displayed a positive effect for protease production where as,

<u>Sudhir K Rai</u>

innoculum level, agitation rate and incubation time had a negative effect on enzyme production (Table10.2). Neglecting the variables which were insignificant, the model equation for keratinase production can be written as

$$Y = 25 .31 + 16 .04 X_1 + 11 .06 X_2 + 25 .97 X_3 -----(10.1)$$

Where $X_1 = pH$ of the medium, $X_2 = casein$ level, and $X_3 = potassium$ nitrate level.

For further optimization, casein KNO_{3} , and pH of the medium were chosen based in the calculated t and p values (Table 10.3). The innoculum level (% v/v) and incubation time (h) were kept at middle level.

Table 10.2 Plackett–Burman store design showing six variables with coded values along with the observed results for alkaline protease (β -keratinase) production by *Brevibacillus* sp. strain AS-S10-II.

рН	Casein (% w/v)	Incubatio n time (h)	Potassiu m nitrate (% w/v)	Innoculum size (% v/v)	Agitation rate (rpm)	Protease(β- keratinase) activity (Units)
1	-1	1	-1	-1	-1	23.56
1	1	-1	1	-1	-1	29.56
-1	1	1	-1	1	-1	11.12
1	-1	1	1	-1	1	25.68
1	1	-1	1	1	-1	27.56
1	1	1	-1	1	1	37.92
-1	1	1	1	-1	1	8.0
-1	-1	1	1	1	-1	11.44
-1	-1	-1	1	1	1	12.5
1	-1	-1	-1	1	1	22.32

<u>Sudhir K Rai</u>

Cha	Chapter 10 510							
рH	Casein (% w/v)	Incubatio n time (h)	Potassiu m nitrate (% w/v)	Innoculum size (% v/v)	Agitation rate (rpm)	Protease(β- keratinase) activity (Units)		
-1	1	-1	-1	-1	1	15.0		
-1	-1	-1	-1	-1	-1	12.0		
0	0	0	0	0	0	25.3		
0	0	0	0	0	0	25.3		
0	0	0	0	0	0	25.3		

Table 10.3 Statistical analysis of Plackett–Burman design showing coefficient values, t- and P-value for each variable for protease (β -keratinase) activity (p-value <0.05).

Terms	Co-	SE-Coef	t-stat	p-value
	efficient			
Constant	25.31	0.7534	33.59	0.001
рН	16.04	0.9418	17.03	0.003
Casein (% w/v)	11.06	0.9967	11.09	0.008
Incubation time (h)	-6.89	0.9967	-6.91	0.020
Potassium nitrate (% w/v)	25.97	3.4577	7.51	0.017
lnnoculum size (% v/v)	0.76	0.5651	1.35	0.308
Agitation rate (rpm)	-24.96	3.4731	-7.19	0.019

10. 3. 2 Statistical optimization of β-keratinase production in SmF

The results illustrated that maximum alkaline protease (β -keratinase) production of 910 U was achieved by employing RSM (Table 10.4). The overall second-order polynomial regression equation showing the empirical relationship between protease activity (Y) and three test variables in coded units can be represented by equation 10.2.

<u>Sudhir K Rai</u>

Chapter 10 512. $Y = 608.9 - 98.2C_1 + 356.8C_2 + 4528.0C_3 + 5.9C_1^2 - 178.3C_2^2 - 13208.6C_3^2 + \dots$ 11.95 $C_1C_2 - 74.3C_1C_3 - 176.3C_2C_3$ (10.2)

The coefficients of the model including the significance of each coefficient as determined by t test and p-values showed that all the effects of C₁, C₂ and C₃, were significant (p < 0.01) and have a linear effect on β -keratinase production. The analysis of variance (ANOVA) of the quadratic regression model demonstrated that the computed F value for linear regression was much greater than the tabulated (P) > F value (Table 10.5). The goodnessof-fit of the model was checked by determining the coefficient of determination (R²) and adjusted R² (Table 10.6). The results showed that C₁ (pH of the medium) followed by C₃ (potassium nitrate level) had significant effect (p<0.01) on alkaline protease (β -keratinase) production by the bacterium under study (Table10.6). The validation of the statistically optimized condition for the production of alkaline protease (β -keratinase) by *Brevibacillus* sp. strain AS-S10-II was further verified by carrying out batch fermentation in a 5-I fermenter.

Table 10.4 Observed responses and predicted values of alkaline β -keratinase production by *Brevibacillus sp.* strain AS-S10-II. The observed values are average of triplicate determinations.

Run no.	Inde	bendent Va	iriables	Y Response (Protease yield in Units)		Resid ual value
	C ₁	C ₂	C ₃	Observ ed	Predicted	
				v	alue	
1	-1(9.0)	-1(0.5)	-1(0.05)	390.0	390.1	-0.135
2	1(11.0)	-1(0.5)	-1(0.05)	470.0	471.8	-1.802
3	-1(9.0)	1(1.5)	-1(0.05)	470.0	470.9	-0.985
4	1(11.0)	1(1.5)	-1(0.05)	635.0	635.7	-0.652

Sudhir K Rai

Chapte	r 10				513	
Run	Independent Variables			Y Re	sponse	Resid
no.				(Protea	se yield in	ual
				U	nits)	value
	C ₁	C ₂	C ₃	Observ	Predicted	
				ed	value	
				Value	value	
5				550.0	550.7	-0.733
6	1(11.0)	-1(0.5)	1(0.15)	580.0	580.4	-0.400
7	-1(9.0)	1(1.5)	1(0.15)	578.0	577.6	0.418
8	1(11.0)	1(1.5)	1(0.15)	689.0	690.3	-1.249
9	-2(8.0)	0(1.0)	0(0.10)	745.0	744.8	0.186
10	2(12.0)	0(1.0)	0(0.10)	910.0	908.2	1.772
11	0(10.0)	-2(0.25)	0(0.10)	295.0	293.8	1.158
12	0(10.0)	2(2.0)	0(0.10)	455.0	454.2	0.800
13	0(10.0)	0(1.0)	-2(0.025)	385.0	383.5	1.458
14	0(10.0)	0(1.0)	2(0.20)	565.0	564.5	0.501
15	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056
16	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056
17	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056
18	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056
19	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056
20	0(10.0)	0(1.0)	0(0.10)	760.0	760.1	-0.056

 $R^2 = 100.0\%$ $R^2(pred) = 99.98\%$ $R^2(adj) = 99.9\%$

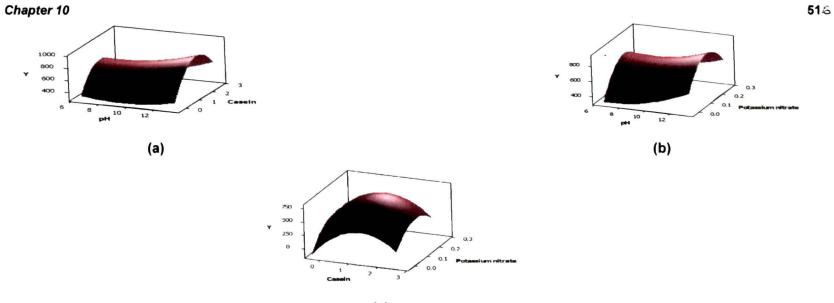
Table 10.5 Analysis of Variance (ANOVA) of alkaline protease produced byBrevibacillus sp. strain AS-S10-II.

Source	DF	Seq	Adj SS	Adj	F-value	р-
		SS		MS		value
Regression	9	518804	518804	57645	39372.17	0.000
Linear	3	102802	81112	27037	18466.75	0.000
рН	1	32235	5193	5193	3546.94	0.000
Casein	1	31040	25234	25234	17234.81	0.000

.

<u>Sudhir K Rai</u>

Chapter 10 Source	DF	Seq	Adj SS	Adj	F-value	51-4
obuice	0,	SS	Auj 00	MS		value
Poatssium nitrate	1	39527	40628	40628	27749.73	0.000
Square	3	409747	409747	136582	93287.42	0.000
рН*рН	1	29665	7958	7958	5435.35	0.000
Casein * Casein	1	232698	268452	268452	183355.90	0.000
Potassium nitrate *	1	147384	147384	147384	100665.32	0.000
Potassium nitrate						
Interaction	3	6255	6255	2085	1423.97	0.000
pH*Casein	1	3444	3445	3445	2352.64	0.000
pH*Potassium	1	1352	1352	1352	923.43	0.000
nitrate						
Casein *	1	1458	1458	1458	995.83	0.000
Potassium nitrate						
Residual error	10	15	15	1		
Lack-of-Fit	5	15	15	3		
Pure error	5	0	0	0		
Total	19	518819				


Table 10.6 Model coefficients estimated by multiple linear regressions (significance of regression coefficients) for alkaline protease (β -keratinase) production by *Brevibacillus* sp. strain AS-S10-II in SmF under shake-flask study.(p<0.05)

Terms	Co-ef	SE-Coef	t-Stat	p-
				value
Constant	608.9	8.9427	68.085	0.000
pH	-98.2	1.6486	-59.556	0.000
Casein	356.8	2.7182	131.281	0.000
Potassium nitrate	4528.0	27.1818	166.582	0.000
рН * рН	5.9	0.0797	73.725	0.000
Casein * Casein	-178.3	0.4163	-428.201	0.000

<u>Sudhir K Rai</u>

Chapter 10				515
Terms	Co-ef	SE-Coef	t-Stat	p- value
Potassium nitrate * Potassium nitrate	-13208.6	41.6311	-317.278	0.000
pH * Casein	11.9	0.2445	48.504	0.000
pH * Potassium nitrate	-74.3	2.4446	-30.388	0.000
Casein * Potassium nitrate	-176.3	5.5876	-31.557	0.000

<u>Sudhir K Rai</u>

(c)

Fig.10.15 Response surface plots for alkaline protease production by *Brevibacillus* sp. strain AS-S10-II in SmF. The interaction between (a) pH of the medium and concentration (%, w/v) of casein, hold value $C_3 = 0$ (b) pH of the medium vs concentration (%, w/v) of potassium nitrate, hold value $C_2 = 0$ and (c) concentration (%, w/v) of casein vs concentration of potassium nitrate (% w/v) hold value $C_1 = 0$. Values are mean ± S.D. of three experiments

Sudhir K Rai

517

Fig.10.16 Countor plots for alkaline protease production by *Brevibacillus* sp. strain AS-S10-II. The interaction between (a) pH of the medium and concentration (%, w/v) of casein, hold value $C_3 = 0$ (b) pH of the medium vs concentration (%, w/v) of potassium nitrate, hold value $C_2 = 0$ and (c) concentration (%, w/v) of casein vs concentration of potassium nitrate (% w/v) hold value $C_1 = 0$. Values are mean \pm S.D. of three experiments.

Sudhir K Rai

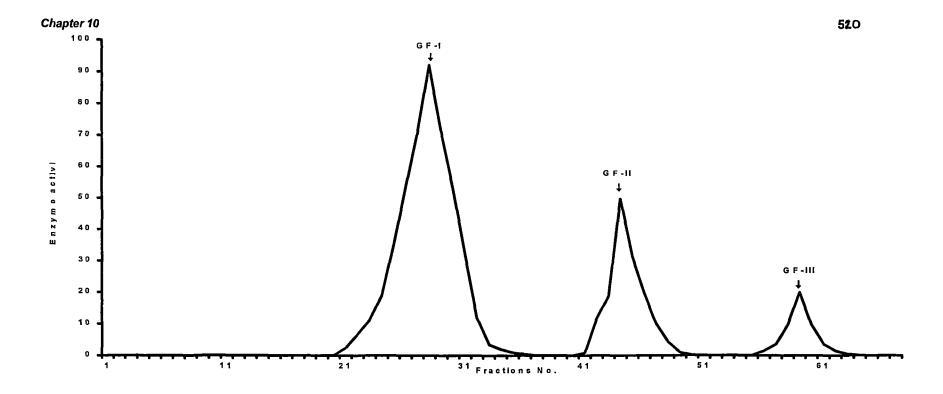
10.3.3 Three dimensional response surface plots

Using three-dimensional (3-D) response surfaces which were plotted on the basis of the model equation, the interaction among variables and the optimum concentration of each factor for maximum protease (β -keratinase) production by *Brevibacillus* sp. strain AS-S10-II (Figs.10.15a-c) were investigated and determined. The β -keratinase production varied significantly upon changing the initial concentrations of casein and potassium nitrate. The three-dimensional plots showed that either with an increase in pH of the medium, or concentration of potassium nitrate β keratinase production reached to a optimum value, whereas, further increase in their concentrations beyond the optimum value decreased the enzyme yield.

10.3.4 Countor plots

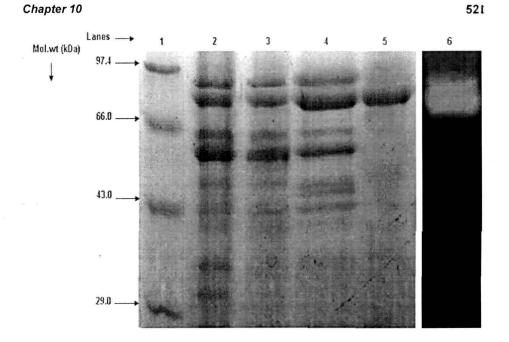
The 2D contour plots are the graphical representation of the regression equation generally used to visualize the relationship between the response and experimental levels of each variable and the type of interaction between the variables to deduce the optimum conditions. Fig. 10.16a clearly demonstrated the interaction of medium pH and casein level; a linear increase in pH of the medium and casein level displayed a significant increase in protease yield with an optimum pH 12.5 with 2.4 % (w/v) casein concentration. Interaction effects of potassium nitrate and medium pH was also studied using 2D countor plots, resulting a hyperparabolic pattern formation due to significant interaction, & yielding maximum protease production at pH 12.5 with 0.22 % (w/v) potassium nitrate level. (Fig.10.16b). Casein and potassium nitrate level demonstrated significant interaction due to circle formations in the centre of the system refering to the the point at which maximum protease production can be achieved (Fig.10.16c).

<u>Sudhir K Rai</u>


10.3.5 Validation of response surface model

The optimum levels of test variables for maximum β -keratinase yield found to be 1.4 % (w/v) of casein, 0.13% (w/w) and pH 12.5 for the production medium were as predicted by using the Minitab 16 Statistical Software® program. A significant higher optimal β -keratinase production (923.0 x 10³ U/ I) was found using process controlled fermenter than that observed under the shake-flask study (910.0 x 10³ U/ I) post 48 h of incubation.

10.4 Isolation and purification of an alkaline β-keratinase


The 80% acetone-precipitated fraction demonstrated maximum protease (β -keratinase activity). Subjecting this fraction to a gel filtration column three peaks exhibiting β -keratinase activity (Fig.10.17) were obtained. Maximum β -keratinase activity was observed for GF-I fraction (containing proteins in the molecular weight range of 80-85 kDa) which was found to be homogenous by SDS-PAGE. The protein displayed a single band of 83.2 kDa under both reduced and non-reduced conditions (Fig. 10.18) illustrating its monomeric nature. The protease activity of the 83.2 kDa purified protein was further confirmed by keratin zymography (Fig. 10.18). By RP-HPLC, the protein eluted as a single, sharp peak with retention time of 11.20 min showing the purity of preparation (Fig. 10.19). This β -keratinase was named as Brevicarnase and a summary of purification of this enzyme from *Brevibacillus* sp.strain AS-S10-II is shown in Table 10.7.

<u>Sudhir K Rai</u>

Fig.10.17 Gel–filtration pattern of 80% acetone precipitated protease (β-keratinase) fraction from *Brevibacillus* sp. strain AS-S10-II on Sephacryl S-200 column.

<u>Sudhir K Rai</u>

Fig. 10.18 SDS-PAGE (12.5%) of GF-I fraction from *Brevibacillus* sp. strain AS-S10-II. Lane 1 - protein molecular weight markers (kDa) :phosphorylase b (97.4), BSA (66.0), ovalbumin (43.0), carbonic anhydrase (29.0); Lane 2-crude protease under reduced condition (45.0µg); Lane3- crude protease non-reduced condition (45.0µg); Lane 4 – 80% acetone precipitate fraction (10.0µg); Lane 5- GF-I fraction under reduced condition (15.0µg); Lane 6 – keratin zymographic study of GF-I fraction (15.0µg).

<u>Sudhir K Rai</u>

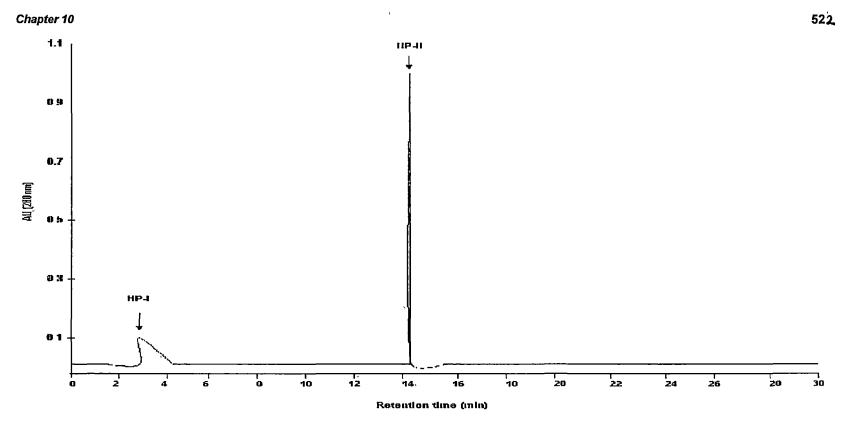


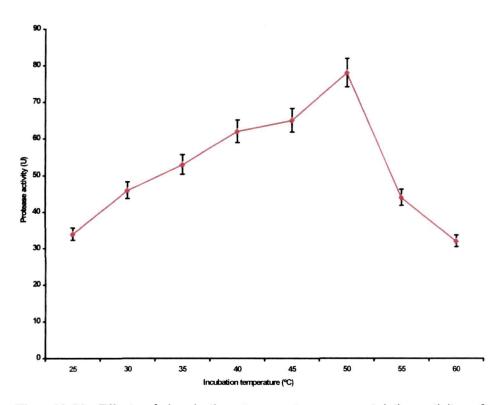
Fig.10.19 RP-HPLC of GF-I fraction, HP-I represents solvent peak.

<u>Sudhir K Rai</u>

Table 10.7 A summary of purification of Brevicarnase (an alkaline β -keratinase) from *Brevibacillus sp.* strain AS-S10-II. Data represent a typical experiment.

Step	Total	Total	Enzyme	Specific	Purification
	protein	activity	yield	activity	(fold)
	(mg)	(Units)	(%)	(units/mg)	
Cell-free	80.0	923.0	100	12.0 x 10 ³	1
supernatant					
80% acetone	8.0	840.0	91.0	105.0 x10 ³	9.0
precipitate					
fraction					
GF-I	2.5	540.0	58.5	216.0 x	18.0
(Brevicarnase)				10 ³	

10.5 Biochemical characterization


Before assessing the biotechnological potential of any enzyme, characterization of its biochemical properties pertinent to industrial application is utmost important and advantageous. Some of the biochemical properties of the enzyme are shown below.

10.5.1 Effect of pH and temperature on Brevicarnase

The Brevicarnase displayed optimum activity at 50°C (Fig.10.20) and remained active over a broad range of pH (5.0–14.0). Nevertheless, the protease showed a characteristic pH optima at 12.5 ± 0.5 (Fig.10.21).

<u>Sudhir K Rai</u>

Fig. 10.20 Effect of incubation temperature on catalytic activity of Brevicarnase from *Brevibacillus* sp. strain AS-S10-II. Values are mean \pm S.D. of three experiments.

<u>Sudhir K Rai</u> Ph.D Thesis, Tezpur University, 2010

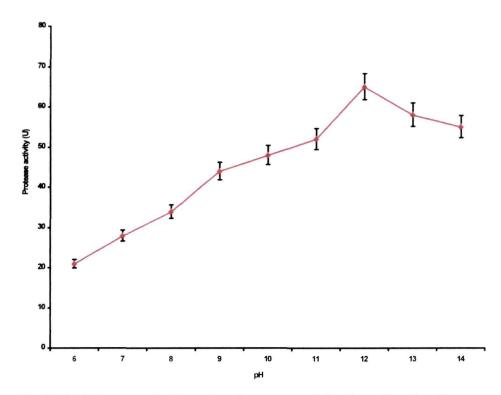
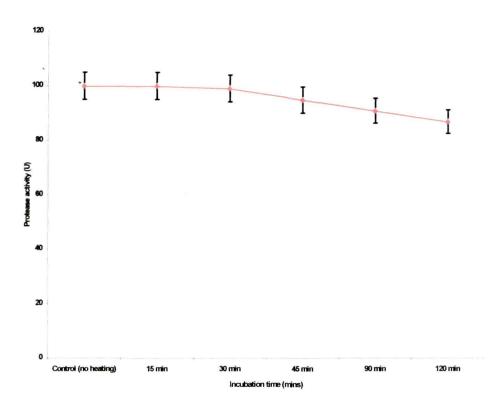
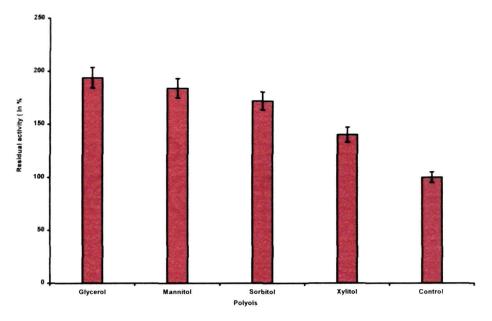



Fig.10.21 Influence of pH on Brevicarnase activity from *Brevibacillus* sp. strain AS-S10-II. Values are mean \pm S.D. of three experiments.

10.5.2 Heat-inactivation study of Brevicarnase

The Brevicarnase retained 95% of its original activity post-heating at 60°C for 30 min. However, further heating displayed a decrease in protease activity upto 80.0 % as shown in Fig.10.22.

Sudhir K Rai


Fig. 10.22 Heat-inactivation study of Brevicarnase from *Brevibacillus* sp. strain AS-S10-II. Values are mean \pm S.D. of three experiments.

10.5.3 Effect of organic stabilizers on thermostability property of Brevicarnase

Different polyols were incubated with Brevicarnase at 60° C for 120 min. Results demonstrated that maximum stability of Brevicarnase was observed in presence of 5.0 % (v/v) of glycerol followed by mannitol (Fig.10.23). Among the tested stabilizers, glyercol (Fig.10.23) considerably increased the protease activity to about 1.6 fold higher as compared with the control (Fig.10.23).

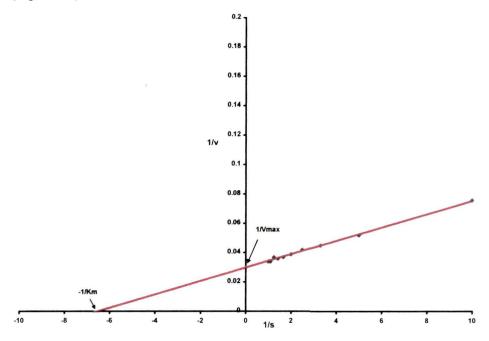
Sudhir K Rai

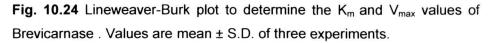
Fig.10.23 Influence of stabilizers on thermostability of Brevicarnase (post heating) at 60°C for 120 min. The enzyme without stabilizers (polyols) served as control (100% activity) and other values were compared with that. Values are mean ± S.D. of three experiments.

10.5.4 Substrate specificity study

The Brevicarnase hydrolyzed the a number of protein substrates in the following order of preference: chicken-feather keratin > casein > bovine serum albumin > bovine serum fibrinogen > Bovine serum globulin > hemoglobin. Gelatin and matrix protein collagen could not be hydrolyzed by Brevicarnase (Table 10.8).

Table 10.8 Biochemical characterization of Brevicarnase from *Brevibacillus*sp. strain AS-S10-II. Values are mean ± S.D. of three experiments.

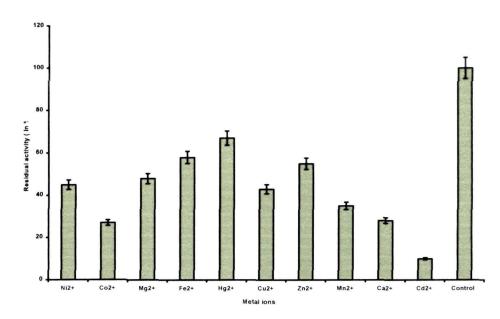

Substrate specificity	Specific activity (U / mg of
	protein)
Raw chicken feather	216000.0 ± 899.0
Casein	7931.0 ± 397.0


Sudhir K Rai

Chapter 10	528
Substrate specificity	Specific activity (U / mg of
	protein)
bovine serum albumin	7176.0 ± 359.0
bovine serum fibrinogen	6185.0 ± 434.2
Bovine serum globulin	1822.0 ± 91.0
Fibrin	1234.0 ± 24.68
Hemoglobin	602.0 ± 12.04
Gelatin	0
Human hair	0
Collagen	0

10.5.5 K_{m} and $V_{max}\,values$

The apparent Michaelis constant (K_m) and maximum velocity of enzyme catalyzed reaction (V_{max}) values for Brevicarnase towards keratin were determined as 0.16 mg / ml and 33.3 μ mol/ min/ mg, respectively (Fig.10.24).



Sudhir K Rai

10.5.6 Effect of metal ions on Brevicarnase

In the present study, Fig.10.25 demonstrated the tested metal ions could not influence the keratinolytic activity of Brevicarnase, suggesting its suitable application in laundry detergent formulation.

Fig. 10.25 Effect of metal ions on Brevicarnase activity . Values are mean ± S.D. of three experiments.

10.5.7 Effect of chemicals, inhibitors, chelators, surfactants, denaturing, oxidizing and bleaching agents on Brevicarnase

In order to evaluate the stability and the class / type of the isolated protease, Brevicarnase was incubated with various chemicals, inhibitors, chelators, surfactants, denaturing, oxidizing and bleaching agents at room temperature for 30 min followed by assay of protease activity. The Brevicarnase retained 97.0 \pm 1.0% of their original activity in the presence of 2 mM EDTA, indicating non-metalloprotease in nature (Table 10.9). The protease exhibited stability in presence of SDS (40mM), urea (8M), Tween -20% (1% v/v) and Triton –X-100 (1% v/v). The tested metal ions could not

Sudhir K Rai

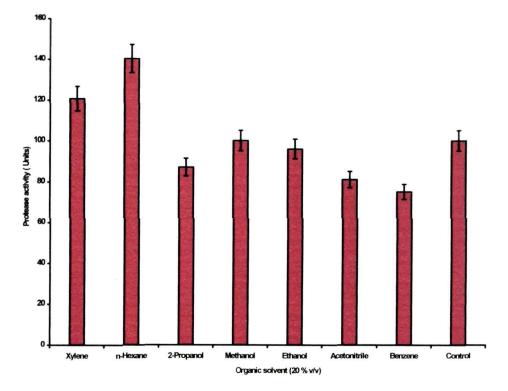
Chapter 10 influence the protease activity (Fig.10.25). Brevicarnase was significantly affected by PMSF, IAA, 4-BPB inhibitors. This suggested predominant secretion of serine and cysteine like keratinase by Brevibacillus sp. strain AS-S10-II (Table 10.9). Further, a significant inhibition of protease activity in presence of DTT was also observed suggesting the presence of intramolecular disulphide bonds in enzyme molecule.

Table 10.9 Effect of chemical inhibitors, chelator, metal ions, surfactants and urea on Brevicarnase activity. Values represent mean \pm S.D of three determinations.

Metal ions/ reagents	Relative activity (%)
Control	100
Inhibitors	
PMSF (2mM)	9.6 ± 0.4
(4mM)	2.2 ± 0.2
4-pBPB (2mM)	11.3 ± 0.8
(4mM)	3.2 ± 0.5
IAA (2mM)	2.4 ± 0.1
(4mM)	0.0
Metal-ion chelator	
EDTA (2mM)	97.0 ± 1.0
(4mM)	91.0 ± 2.2
Anionic surfactant (SDS)	
20 mM	113.0 ± 5.5
40 mM	101.0 ± 2.1
60 m M	96.0 ± 1.1
Non-ionic surfactants (1% v/v)	
Trition-X-100	100.0 ± 3.0
Tween 20	125.0 ± 4.3
Tween 40	99 ± 4.2
Tween 60	95 ± 5.0

<u>Sudhir K Rai</u>

Ph.D Thesis, Tezpur University, 2010


530

Chapter 10	531
Metal ions/ reagents	Relative activity (%)
Urea (8 M)	81.0 ± 3.4
Oxidizing agents	
H ₂ O ₂ (% v/ /)	
5.0	109.0± 4.1
10.)	97.0 ± 2.3
Sodium perborate (% w/v)	
0.5	102.0± 6.6
1.0	96.0 ± 3.4
DTT	
4ml√l	11.0 ± 1.0

10.5.8 Effect of organic –solvents on Brevicarnase

The organic-solvent (at a final concentration of 20% v/v) stability of purified alkaline protease Brevicarnase is shown in Fig. 10.26. n-Hexane and xylene enhanced the protease activity whereas 2-propanol, methanol, ethanol, acetonitrile and benzene any affected the effect on enzyme stability. For example, in presence of benzene, the enzyme was destabilized and lost about 25.0 % of its original activity (Fig.10.26).

<u>Sudhir K Rai</u>

Fig.10.26 Organic - solvent stability of Brevicarnase. Enzyme activity in the absence of solvents was considered as 100% activity and other values were compared with that. Values are mean ± S.D. of three experiments.

10.5.9 Pharmacological properties of Brevicarnase from *Brevibacillus* sp. strain AS-S10-II

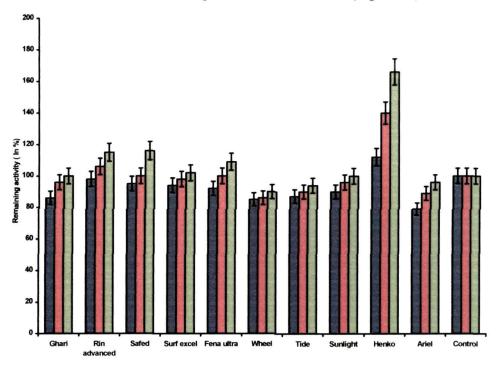
The pharmacological property of Brevicarnase is summarized in Table 10.10. Brevicarnase from *Brevibacillus* sp. strain AS-S10-II at a dose of 15 µg/ml induced 2.8 % hemolysis of the washed human erythrocytes and did not display any detrimental effect on goat liver, heart, lungs and kidney tissues (Table 10.10). Further, as shown in Table 10.10, Brevicarnase did not interfere with the normal clotting time of goat platelet- poor plasma (PPP).

Sudhir K Rai

Chapter 10 Table 10.10 Pharmacological properties of Brevicarnase. Values are mean± S.D. of three experiments.

Pharmacological properties	Values
Hemolysis (% Hb released / 15.0 µg of	
Brevicarnase 90 min post incubation at	
37 °C)	
Control (without Brevicarnase)	1.4 ± 0.1
Treatment	3.0 ± 0.5
Ca-Clotting time (s)	
Control (without Brevicarnase)	129.0 ± 6.5
Treated (with 15.0 µg / ml of	132.0 ± 7.0
Brevicarnase)	
In vitro tissue damaging activity	
(% hemoglobin release by 15.0 μg / ml	
of Brevicarnase 5 h post incubation at	
37 °C)	
a) Heart	
Control (without Brevicarnase)	0.09 ± 0.01
Treatment	0.27 ± 0.01
b) <i>Lung</i>	
Control (without Brevicarnase)	0.13 ± 0.01
Treatment	0.36 ± 0.02
c) <i>Liver</i>	
Control (without Brevicarnase)	0.16 ± 0.08
Treatment	0.28 ± 0.01
d) <i>Kidney</i>	
Control (without Brevicarnase)	0.12 ± 0.05
Treatment	0.27 ± 0.01

<u>Sudhir K Rai</u>


Ph.D Thesis, Tezpur University, 2010

533

Chapter 10 10.6 Industrial applications of Brevicarnase

10.6.1. Detergent compatibility and stain removal potency of Brevicarnase

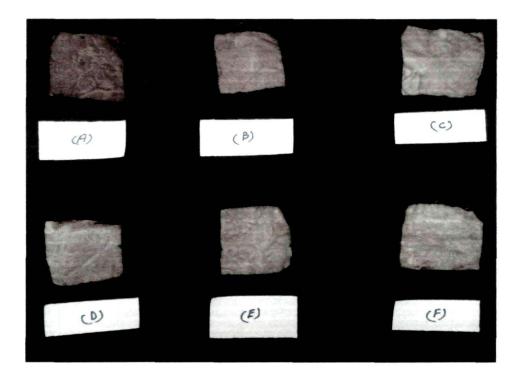
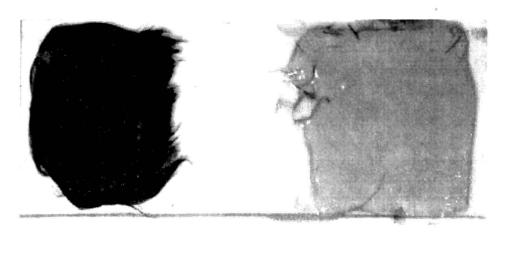

The Brevicarnase at a dose of 6.0 μ g / ml retained 80- 160% of its original activity at 25, 37 and 45°C in the presence of laundry detergents in the following order: Henko® > Rin advanced® = Safed® > Fena Ultra® > Surf excel® =Ghari® >Ariel® >Sunlight® >Tide® >Wheel® (Fig.10.27).

Fig.10.27 Detergent stability and compatibility of Brevicarnase (6.0 µg / ml) from Brevibacillus sp. strain AS-S10-II at the tested temperature ranges 25 (■), 37 (■) and 45 °C (■). Values are mean ± SD of triplicate determinations.

In order to study the wash performance property of Brevicarnase removal of blood stains from cotton fabrics were performed. Result demonstrated that a 1:1 (v/v) mixture of detergent: Brevicarnase solution exhibited significantly higher (p < 0.05) activity as compared to the detergents *Sudhir K Rai*

solutions or Brevicarnase solution alone in the tested temperature shown in Fig. 10.28.

Fig.10.28 Wash performance study using blood stain containing cotton fabrics with Brevicarnase (6.0 μ g / ml) at 37°C. From left (a) control (tap water with blood stain cloth), (b) Brevicarnase (6.0 μ g / ml) with blood stain cloth, (c) unheated detergent with blood stain cloth, (d) heated detergent with blood stain cloth, (e) unheated detergent with Brevicarnase (6.0 μ g / ml) with blood stain cloth, (f) heated detergent with Brevicarnase (6.0 μ g / ml) with blood stain cloth. Values represent mean ± S.D of three experiments.


Sudhir K Rai

Ph.D Thesis, Tezpur University, 2010

535

Chapter 10 10.6.2 Dehairing activity

The dehairing effect of Brevicarnase from *Brevibacillus* sp.strain AS-S10-II showed a promising result as shown in Fig. 10.29. When the raw skin was incubated with the Brevicarnase at 37°C for 6h, the hairs could be pulled out easily. This effect was in correspondence with their protease activity.

Fig. 10.29 Dehairing activity of Brevicarnase (a) goat skin incubated in 100 mM Glycine–NaOH buffer, pH 12.5 for 12 h at 37°C (control) and (b) enzymatically dehaired goat skin incubated with Brevicarnase (50 U / ml) for 6 h at 37°C.

<u>Sudhir K Rai</u>

CHAPTER XI

DISCUSSION

<u>Sudhir K Rai</u>

Chapter 11 Chapter 11

Discussion

Micro organisms represent an attractive source of protease enzyme as they can be cultured in large quantities in a relatively short duration⁷. Micro-organisms secrete arrays of protease isoenzymes and each isoenzyme plays on important role in normal physiological processes of bacteria such as cell cycle regulation, cell growth and differentiation and sporulation,^{401,402}. The proteases could be intracellular and / extracellular. Intracellular proteases are vital to sustain various cellular and metabolic processes, such as sporulation and cell differentiation, protein turnover, and enzyme maturation. Extraceullar proteases carry out protein hydrolysis in fermented media and enable the cell to absorb and / or adsorb and utilize hydrolytic products⁴⁰². Apart from their importance in maintaining the physiology of a living system, proteases are also found to be highly relevant in technical enzyme applications. Of these, their use in detergents is the most prominent with respect to market volume and tonnage¹¹.

During the last decade, numerous reports have been published on microbial alkaline proteases showing their major role in detergent industries^{6,7}. Phylogenetic analysis has revealed that a great diversity exists among protease producing micro organisms. However, a majority of the microbial proteases of industrial significance are isolated from *Bacillus* species^{6,7,23}. Undoubtedly, there is a dearth of reports on industrially important protease production from *Peanibacillus* species, *Brevibacillus* species and gram negative *Bacillus* species.

A close examination of literature evidences that many protease have been purified from diverse groups of micro organisms and a few of them are biotechnologically and industrially important. Nevertheless, <u>Sudhir K Rai</u>

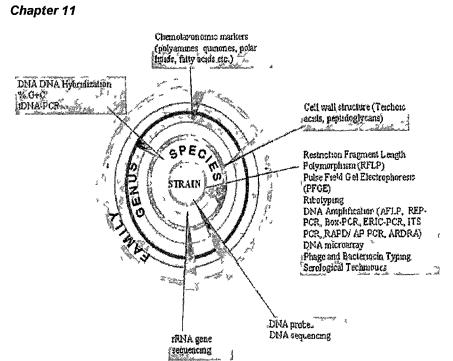
these are not sufficient to meet most of the industrial demands²⁰¹. For example, the industrial applications of proteases in detergent or leather processing industries requires that the enzyme be stable at higher temperatures, ability to function at low washing temperature (for example at 23°C), detergent, surfactant and bleach-stable, and lack autoproteolyitc digestion tendency, besides being cost-effective. Considering the requirement of industry this strongly is undertaken, with an aim to isolate alkaline protease producing promising bacteria from the environmental samples of NE India, one of the biodiversity hot-spot regions of the world, and to explore the biotechnological potential of the isolated protease as a low-cost green-chemical. It is worthy to mention that limited reports are available on the production of alkaline protease from bacteria isolated form environmental samples of NE India.

11.1 Screening for alkaline protease producing bacterial isolates

In the present study, enrichment culture technique was used for the isolation of alkaline protease producing potential bacterial isolates from soil/ water samples of North-East India because of the efficacy of this technique for the isolation of a desired microorganisms (alkaline protease producing bacteria in the present study) from different environmental samples (even if that desired microbes are less abundant in that particular sample). Considering the industrial importance and hence the market demand of detergent-stable robust proteases, the preliminary screening was directed to search for detergent stable alkaline protease producing bacteria. In addition, some other important properties such as thermo-stability and storage stability of protease enzymes were also given a due consideration during the initial screening process. Since high level of enzyme yield (titer) is another crucial criteria for industrial application of that enzyme; therefore, the detergent-stable alkaline protease producing bacteria were further screened for their ability to produce high amount of alkaline-protease in a culture medium. Finally, five bacterial strains Sudhir K Rai

PhD Thesis, Tezpur University, 2010

539


namely *Brevibacillus* sp. AS-S10-II; *Bacillus subtilis* RM-01; *Bacillus* sp. AS-S20-I; *Bacillus licheniformis* AS-S24-I; *Peanibacillus tezpurensis* sp.nov. AS-S24-II and *Bacillus subtilis* DM-04 (previously isolated in our Jaboratory from petroleum contaminated soil samples) meeting the above criteria were selected for the production, isolation, purification, biochemical characterization and industrial applications of the purified protease enzymes.

11.2 Polyphasic approach: a unique system for taxanomic characterization of microorganisms

Microorganisms are tremendously diverse, both genetically and phenotypically. In the present study, polyphasic approach was applied for taxonomic identification of protease producing bacterial strains which was based on studying their morphological and biochemical properties supplemented with information obtained from molecular techniques. Advances in polyphasic approach for bacterial classification such as 16S rRNA gene sequencing and molecular fingerprinting techniques integrated with other molecular markers have become important tools in microbial systematic⁴⁰³.

A number of criteria that include genotypic, chemotypic and phenotypic features used for polyphasic characterization of bacteria (Fig. 1) are discussed below^{403,404}.

<u>Sudhir K Rai</u>

Fig. 11.1 Diagrammatic representation of techniques and markers used in modern polyphasic approach for resolving the bacterial hierarchy.

11.2.1 Phenotypic characterization of alkaline protease producing AS-S10-II isolate

Phenotypic data deserve special attention because of their impact on species delineation and also because it provides a description of new species on the basis of minimum number of phenotypic characteristics⁴⁰⁵.

Phenotypic features of AS-S10-II isolates summarized in Table 11.1. AS-S10-II isolates share similar features like catalase, VP test, casein and starch hydrolysis, nitrate reductions tests with *Bacillus* KD-1014 strain⁴⁰⁶ and *Bacillus* sp.⁴⁰⁷ suggests that this isolate belongs to genus *Bacillus*. Considering the major disadvantages of phenotypic methods which are due to the conditional nature of gene expression wherein the same organism might show different phenotypic characters in different *Sudhir K Rai*

environmental conditions^{408,409}, chemotaxonomic property of the isolate AS-S10-II was characterized.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

.

542

Character	AS-S10-II	<i>Bacillus</i> sp. KD	Bacillus	Bacillus sp. 1044	Bacillus sp. 1124
	-	1014	sp.KMM1918		-
Cell shape	Rods	Rods	Rods	Rods	Rods
Motility	+	+	Not determined	Not determined	Not determined
Spore shape	Spore forming	+	-do- "	ND	Not determined
Gram stain	Positive	Positive	-do-	Positive	Positive
Growth temperature	30-60 °C range ,	40-65 °C optimum	temperature 15-45	Not determined	Not determined
	optimum 45 °C	temperature 45 °C	°C .		•
Growth pH range	6.0-11.0, optimum 8.0	pH range 5.0-9.0,	Not determined	Not determined	-do-
		optimum pH 5.0			
Growth in 5% (w/v)	-	Not determined	+	+	+
NaCl					
Growth in 7% (w/v)	-	-do-	+	-	+
NaCl					

Chapter 11 Table 11.1 Distinctive phenotypic properties of isolate AS-S10-II and related species of *Bacillus* sp. ND: Not determined.

<u>Sudhir K Rai</u>

Character	AS-S10-II	Bacillus sp. KD	Bacillus	Bacillus sp. 1044	Bacillus sp. 1124
		1014	sp.KMM1918		
Growth at				<u> </u>	
pH 5.5	-	+	+	+	+
50 °C	+	+	-	+	-
Catalase	+	+	Not determined	+	+
Voges-Proskauer Test	+	Not determined	-do-	+	+
Methyl red test	+	-do-	-do-	Not determined	Not determined
Acid from	*				•
D-Glucose	+	-	+	+	Weakly positive
Mannitol	-	+	+	-	-
Lactose	-	-	-	-	-
Sucrose	-	+/-	Not determined	-	+
Gas from glucose	-	Not determined	-do-	-	-
Hydrolysis of					

PhD Thesis, Tezpur University, 2010

544

Chapter 11 Character	AS-S10-li	Bacillus sp. KD	Bacillus	Bacillus sp. 1044	Bacillus sp. 1124
		1014	sp.KMM1918		-
Casein	+	+		+	+
Gelatin	-	+	Not determined	+	+
Starch	+	+	do-	+ -	+
Lipid	+	Not specified	-do-	-	Not determined
Urea	• -	-	-do-	Not determined *	-do-
Citrate Utilization	-	-	+	-	+
Indole formation	+	-	Not determined	Not determined	Not determined
Nitrate reduction	+	-	Not determined	+	+
H ₂ S production	+	Not specified	Not determined	Not determined	Not determined
References	Present study	Lee et al ⁴⁰⁶	Ivanova <i>et al⁴¹⁰</i>	Guerra-Cantera a	nd Raymundo ⁴⁰⁷

Chapter 11 11.2.2 Chemotaxonomic properties of isolate AS-S10-II

The term chemotaxonomy refers to the application of analytical methods for collecting information on different chemical constituents or chemotaxonomic markers of bacterial cells in order to group or organize them into different taxonomic ranks⁴⁰³. Identification of microorganisms by analyzing their cellular fatty acid methyl ester (FAME) is based on Similarity Index (SI) which is a numerical value expressing how closely the cellular fatty acid composition of an sample compares with the mean fatty acid unknown bacterial composition of the strains used to create the library entry listed as its match^{411,412}. The database search presents the best matches and associated similarity indices. An exact match of the fatty acid make-up of the unknown sample to the mean of a library entry results in a similarity index of 1.000. The similarity index will decrease as each fatty acid varies from the mean percentage. Strains with a similarity of 0.700 or higher and with a separation of 0.200 or more between first and second choices are considered an excellent match^{411,412}. If the similarity index is between 0.500 and 0.700 with a separation of 0.100 between the first and second choices, then the match is considered good. A Similarity Index between 0.300 and 0.500 could be an acceptable match, but would indicate an atypical strain. Values lower than 0.300 suggest that the species is not in the database, but those listed provide the most closely related species⁴¹¹.

The analysis of fatty acid methyl ester (FAME) profiles by gas chromatography (GC) is a rapid and inexpensive technique that holds great promise in microbial identification. The iso and anteiso are major fatty acids components (60 to 98%) found within certain genera of micro-organisms and analysis of these classes of fatty acids has certain important implications for taxonomy and an evolutionary scheme for micro-organisms⁴¹³. Based on the Sim Index (SI) of 0.689, and due to predominance of anteiso-branched C_{15:0} and iso-C_{15:0} fatty acids, the strain AS-S10-II was taxonomically identified as *Bacillus Sudhir K Rai*

subtilis (MTCC 8960) by the Institute of Microbial Technology, Chandigarh (Table 11.2). However, the major qualitative and quantitative differences in the cellular fatty acid composition of AS-S10-II compared to other *Bacillus subtilis* is in absence of $C_{14:0}$, $C_{15:0}$, $C_{16:0}$, $C_{16:0}$ ω 7 cis alcohol, and $C_{16:1}$ ω 11cis straight chain cellular fatty acid, suggesting that *Bacillus subtilis* AS-S10-II requires molecular level characterization for further conformation.

<u>Sudhir K Rai</u>

Chapter 11 Table 11. 2 Percentage of cellular fatty acid composition of isolate AS-S10-II and related species of Bacillus subtilis.

Strains		S	traight	t chain				lso	-branc	hed			Ante	eiso-bra	nched	References
C _{14:0} C _{15:0} C ₁₆	C _{16:0}		C _{16:1} ω11cis	C _{14:0}	C _{15:0}	C _{16:0}	C _{16:1}	C _{17:0}	C _{17:1}	C _{17:1} w10c	C _{15:0}	C _{16:0}	C _{17:0}	_		
AS-S10-II		_	-		-	-	25.78	-	-	12.70	-	-	44.77	-	16.76	Present study
<i>B. subtilis</i> B-770	-	5.0	-	-	-	2.0	13.0	9.0	13.0	-	-	-	40.0	-	-	Kaneda, ⁴¹³
<i>B. subtilis</i> B-4	-	6.0	-	_	-	4.0	14.0	11.0	15.0	-	-	-	33.0	-	10.0	Kaneda, ⁴¹³
Bacillus subtilis	-	-	3.14	0.23	-	1.13	29.27	2.36	1.52	9.59	-	1.72	40.19	-	9.38	Roberts <i>et</i> al ⁴¹⁴
<i>Bacillus subtilis</i> JCM 1465	0.3	2.3	1.3	-	-	0.4	28.4	2.0	-	-	6.1	-	44.5	-	6.8	Shida <i>et</i> al ³⁷¹

<u>Sudhir K Rai</u>

Chapter 11 11.2.3 Genotypic properties of strain AS-S10-II

Although FAME analysis is one of the methods to study bacterial diversity however, bacterial cellular fatty acid composition can be influenced by various factors such as temperature and nutrition⁴¹⁵. In addition, individual fatty acids cannot be used to represent specific species because individuals can have numerous fatty acids and the same fatty acids can occur in more than one species⁴¹⁶. Considering the above limitations, a number of approaches have been developed to study molecular microbial diversity. Among them, PCR targeted 16S rDNA gene and PCR-RFLP of 16S-23S ISR region have been extensively used to study prokaryote diversity as it allows identification of prokaryotes as well as the prediction of phylogenetic relationships⁴¹⁷.

Over the years, determination of the phylogenetic relationship or identification of bacteria based on 16S rDNA sequencing (ribotyping) has been widely accepted. On the basis of the phylogenetic analysis, the strain AS-S10-II has been classified as a species of the genus *Brevibacillus* (Fig 4.1). The 16S-rDNA gene sequence was deposited in GenBank NCBI with accession No GU332637. The sequencing of 16S rRNA gene alone cannot discriminate among closely related species because of the highly conserved nature of this region⁴¹⁸. However, the ISR of 16S-23S was reported to possess much greater variability in the DNA sequence and proved to be much more useful for the differentiation of closely related bacterial strains^{22,361}. Due to dearth of reports on phenotypic and chemotypic properties of phylogenetically closed species for AS-S10-II strain were not compared.

On the basis of the data obtained from phenotypic, chemotaxonomic and phylogenetic analyses, the strain AS-S10-II could not be classified under a known species of the genus *Brevibacillus*, and the name of this new strain was proposed as *Brevibacillus* sp. strain AS- S10-II.

<u>Sudhir K Rai</u>

Chapter 11 11.3 Phenotypic properties of isolate AS-S20-I

Study on phenotypic properties such as Gram staining of any microorganisms is the first step towards its identification and taxonomic classification⁴¹⁹. Based on phenotypic properties of AS-S20-I, and according to Bergey's manual classification AS-S20-I belongs to genus *Kocuria*. A comparative analysis of phenotypic properties of AS-S20-I is displayed in Table 11.3.

<u>Sudhir K Rai</u>

Character	AS-S20-I	K. varians	K.palustris	K.rhizophila	K.polaris	K.aegyptia
Cell shape	Rods	Spherical	Spherical,	Spherical, tetrads	Coccoid,	Coccoid, occur in
-		arrange in	tetrads and	and packets	occurring in	pair, tetrads or
		tertrads	packets		pairs	clusters
Motility	+	ND	-	-	-	-
Spore shape	_	_	-	-	_	-
Gram stain	_	+	+	+	+	+
Optimum growth	25- 55°C,	22-37 °C	Not specified	Not specified	Optimum	20-40°C ,
temperature	optimum 45 -50	•			-temperature	optimum 28.0°C
	°C				20.0°C	
Growth pH	6.5 -11.0,	4.3-5.9	-do-	-do-	Growing pH 7.0-	5.0-12.0,
	optimum pH 9.0				12.0	optimum pH10.0-
						10.5
Growth in 7% (w/v) NaCl		+	+	+	-	-

Chapter 11 Table 11.3 Some phenotypic properties of isolate AS-S20-I and related species of Kocuria sp. ND: Not determined.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

-

-4

Character	AS-S20-I	K. varians	K.palustris	K.rhizophila	K.polaris	K.aegyptia
Growth at		+				
_pH 5.5	-	-	-	-	-	-
50 °C	+	+		-	-	-
Catalase	+	ND	+	+	+	+
Voges-Proskauer	+	ND	Not specified	Not specified	-	-
Test		-		•		
Methyl red test	+		Not specified	-do-	-	Not specified
Acid from		+				
D-Glucose	+	_	+	+	+	+
Mannitol	+	_	-	-	-	Not specified
Lactose	+	ND	+	-	-	-do-
Gas from	-	-	-	-	_	Not specified
glucose						

Chapter 11						
Character	AS-S20-I	K. varians	K.palustris	K.rhizophila	K.polaris	K.aegyptia
Hydrolysis of			<u></u>		· · · · · · · · · · · · · · · · · · ·	
Casein	+ -	ND	-		-	Not specified
Gelatin	-	-	-	+	-	-do-
Starch	+	_	-	-	-	-do-
Lipid	+	ND		-	-	-do-
Urea	-	+	+	-		-
Citrate Utilization	+	ND	-	+	+	Not specifed
Nitrate reduction	+	_	+	-	Not specified	-

PhD Thesis, Tezpur University, 2010

.

Character	AS-S20-I	K. varians	K.palustris	K.rhizophila	K.polaris	K.aegyptia
H ₂ S production	+	-		Not specified	-do-	
	-					~
References	Present study	Stackebrandt <i>et al</i> ⁴²⁰	Kovac	s et al ⁴²¹	Reddy <i>et al⁴²²</i>	Li <i>et al⁴²³</i>

.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

•

•

Results of the phenotypic properties prompted us to study on the chemotaxonomic properties of a bacterium is considered next to phenotypic characterization for the purpose taxonomic identification.

11.3.1 Chemotaxonomic characterization of isolate AS-S20-I

A comparison of cellular fatty acid composition of strain AS-S20-I with cellular fatty acid profile of other *kocuria* species show that fatty acid composition of AS-S20-I was more not similar to that of bacterium such as *Kocuria varians, Kocuria kristinae, Kocuria rosea, Kocuria erythromyxa, and Kocuria rosea* as shown in Table 11.6. Sim Index (SI) of 0.689 and because of the predominance of anteiso-branched $C_{15:0}$, $C_{16:0}$, iso- $C_{16:0}$ fatty acids, the strain AS-S20-I was taxonomically identified as *Kocuria varians* (MTCC 8961) by the Institute of Microbial Technology, Chandigarh.

A comparison of cellular fatty acid methyl esters (FAMEs) of strain AS-S20-I (Table 11.4) with the reported cellular fatty acid profiles for *Kocuria* strains demonstrated that majority of fatty acid are of anteisobranched $C_{15:0}$ and $C_{17:0}$ class and minor fatty acids are $C_{17:0}$ of isobranched fatty acid and $C_{18:0}$ of straight chain fatty acid.

<u>Sudhir K Rai</u>

Table 11.4 A comparison of percentage cellular fatty acid composition of isolate AS-S20-I with related species of Kocuria

Organism/ strain	Straight chain					lso-branched							Anteiso-	branched	References
	C _{14:0}	C _{16:0}	С _{16:1} w7с	C _{16:1} w11c	C _{18:0}	C _{14:0}	C _{15:0}	C _{16:0}	C _{17:0}	C _{17:1}	C _{17:1} w10c	С _{18:1} н	C _{15:0}	C _{17:0}	
AS-S20-I	2.06	14.3	-	-	1.04	0.87	6.89	8.47	4.52	-	 _	-	45.20	16.7	Present study
Kocuria varians	2.9	9.6	-	-	-	1.4	1.3	11.1	-	-	-	-	60 3	12.1	
Kocuria kristinae	1.0	0	-	-		2.6	1.6	1.7	9.3	-		-	70.1	-	Kovacs <i>et</i>
Kocuria rosea	1.5	1.6	5.9	-	-	1.8	7.6	1.6	-	-	-	-	70.9	4.3	al ⁴²¹
Kocuria erythromyxa	1.8	1.2	6.7	-	1.4	1.2	14.1	1.4	-	-	-	-	63.9	2.4	
Kocuria rosea	0.5	3.2	3.5	-	2.9	1.3	5.1	30	1.5	-	-	-	65.0	7.1	Reddy <i>et</i> al ⁴²²

<u>Sudhir K Rai</u>

11.3.2 Genotypic characterization of strain AS-S20-I

The 16S rDNA-based phylogenetic analysis demonstrated 99.0% sequence similarity of strain AS-S20-I with the other species of the genus Bacillus, which suggested that the bacterium under study belongs to the genus Bacillus. The phylogenetic tree constructed from the sequence data by the neighbour-joining method (Fig.4.2) showed the detailed evolutionary relationship between the strain AS-S20-I and other closely related Bacillus sp. and it also demonstrated a distinct phylogenetic position of this strain within this genus. The Bacillus sp. strain BCL 23-1(EF026994) showing 99% 16S rDNA sequence identity represented the closest phylogenetic neighbours of the strain AS-S20-I (Fig. 4.2). It is worth mentioning that topologies near AS-S20-I estimated from the distance based methods (neighbour-joining and UPGMA), and the maximum-likelihood and parsimony analyses were essentially consistent. On the basis of the result obtained with phylogenetic analysis, the strain AS-S20-I may thus be classified as an unknown species of the genus Bacillus. Therefore, the selected bacterium taxonomically was identified as B. sp. strain AS-S20-I. The partial 16S-rDNA gene sequence of this strain was deposited in GenBank NCBI with accession No GU001817.

However, because of the highly conserved nature of the 16S-rRNA gene, its sequencing alone cannot discriminate between closely related species³⁶⁰. Sequencing of the 16S-23S gene is found to be more reliable as it is reported to possess greater variability in the DNA sequence, thus being more useful for the differentiation of closely related bacterial species. Based on phenotypic properties, AS-S20-I was taxonomically identified as a species of the genus *Kocuria*, but according to genotype properties it was identified as *Bacillus* species. The RFLP pattern of strain AS-S20-I was clearly distinct from the RFLP pattern of *B. subtilis* DM-03 and DM-04 strains³⁶¹, which reinforces that it would not be appropriate to classify the strain under study as *B*.

<u>Sudhir K Rai</u>

ŧ

subtilis and therefore, it is proposed that the bacterium under study be named as *Bacillus* sp. AS- S20-I.

In the present study, results obtained by genotypic study for AS-S20-I strain couldn't compared with phylogenetically closest species *Bacillus* sp. strain BCL 23-1(EF026994), due to lack of phenotypic and chemotypic properties. Hence, AS-S20-I isolate was proposed as *Bacillus* sp. strain AS-S20-I.

11.4 Phenotypic properties of isolate AS-S24-I

:

In the present study, AS-S24-I isolates displayed rod shaped cells, gram variable, class of bacterial isolate. Based on phenotypic properties and according Bergey's standard classification system, AS-S24-I isolate were classified in genus *Paenibacillus* as shown in Table 11.5. A comparison of the phenotypic properties of AS-S24-I with other strains such as *Paenibacillus* species suggests AS-S24-I require further study at cellular level.

<u>Sudhir K Rai</u>

Character	AS-S24-I	Paenibacillus	Paenibacillus	Peanibacillus polymyxa
	_	azotofixans	lautus	-
Cell shape	Rods	Rods	Rods	Rods
Motility	+	Not specified	Not specified	Not specified
Spore shape	ND	Oval	Oval	Not specified
Gram stain	- /+	+	+	+
Growth temperature (°C)	30-60 range , optimum 45	30-37	28-30	42.0
Growth pH range	6.0-11.0, optimum 7.0	Not specified	Not specified	6 .8
Growth in 5% (w/v) NaCl	+	-	+	+
Growth in 7% (w/v) NaCl	+	-	+	+
Growth at				
pH 5.5	_	+	-	+
50 °C	+	-	-	-

Chapter 11 Table 11.5 Distinctive phenotypic properties of isolate AS-S24-I and related species of *Peanibacillus*.

<u>Sudhir K Rai</u>

Chapter 11					
Character	AS-S24-I	Paenibacillus	Paenibacillus	Peanibacillus polymyxa	
		azotofixans	lautus		
Catalase		+	+	+	
Voges-Proskauer Test	+	Not specified	Not specified	+	
Methyl red test	+	-do-	-do-	-	
Acid from					
D-Glucose	+	+	+	+	
Mannitol	-	+	- +	W+	•
Lactose	-		-	-	
Gas from glucose Hydrolysis of	-	-	-	-	

PhD Thesis, Tezpur University, 2010

560

.

Chapter 11 Character	AS-S24-I	Paenibacillus	Paenibacillus	Peanibacillus polymyxa
		azotofixans	lautus	
Casein	- +	-	-	+ +
Gelatin	-	-	-	+
Starch	* +	-	· +	+
Lipid	-	-	-	-
Jrea	• _	-	• +	
Citrate Utilization	-	-	-	+
ndole formation	+	-	-	Not specified
Nitrate reduction	+	-	+	+
H₂S production	+	Not tested	Not tested	Not specified
References	Present study	Shida e	et al ³⁷¹	Guerra-Cantera and Raymundo407

PhD Thesis, Tezpur University, 2010

561

To avoid difficulties in taxonomic characterization further examination was carried out based on variation in cellular fatty acids composition of isolate AS-S24-I.

11.4.1 Chemotaxonomic properties of isolate AS-S24-I

The cellular fatty acids composition of strain AS-S24-I suggested that it was likely to be a member of the genus *Paenibacillus* because of the predominance of anteiso-branched $C_{15:0}$ fatty acids amongst the member of this genus^{413,414,424}. However, some major differences were observed in cellular fatty acids contents of AS-S24-I with respect to other strains of *Paenibacillus species* (Table 11.6). The percent distribution of iso and anteiso-branched $C_{15:0}$ in *Paenibacillus* strain was observed. In a sharp contrast, $C_{15:0}$ iso and ante-iso branched fatty acids represented 15 % and 68 %, respectively of the total cellular fatty acids pool in strain AS-S24-I. Moreover, strain AS-S-24-I did not possess $C_{16:0}$ straight chain fatty acid (Table 11.6). Based on Sim Index (SI) of 0.263 and because of the predominance of anteiso-branched $C_{15:0}$ iso- $C_{15:0}$ fatty acids, the strain AS-S24-I was taxonomically identified as *Paenibacillus polymyxa* (MTCC 9129) by the Institute of Microbial Technology, Chandigarh.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

Table 11.6 Percentage cellular fatty acid composition of isolate AS-S24-I and related species of Paenibacillus species.

Organism/ strain	Straight chain				lso-branched					so-bran	References	
-	C _{14:0}	C _{16:0}	C _{14:0}	C _{15:0}	C _{16:0}	C _{17:0}	C _{17:1}	C _{17:1} w10c	C _{15:0}	C _{16:0}	C _{17:0}	_
AS-S24-I	-		-	15.4	8.8	-	_	-	67.9	_	7.9	Present study
P.macerans ATCC 8244T	3.7	17.9	7.9	2.6	16.4	-	-	-	36.1	-	12.2	
P.sanguinis 2301083	-	10.1	1.7	6.8 [๋]	13.4	5.8	-	-	44.2	-	6.8	Chou <i>et al⁴²⁵</i>
P.timonensis 2301032	1.3	10.6	8.2	10.1	15.5	1.9	-	-	43.4	-	4.0	
P.assamensis GPTSA 11	1.8	3.5	4.7	6.0	11.6	1.6	-	-	48.4	-	5.7	
P.chitinolyticus NBRC 15660	0.5	7.2	-	7.8	7.2	3.9	-	-	59.0	-	9.1	Chou <i>et al⁴²⁶</i>

<u>Sudhir K Rai</u>

Chapter 11 11.4.2 Genotypic characterization of strain AS-S24-I

The 16S rDNA-based phylogenetic analysis demonstrated 100 % sequence similarity of AS-S24-I with the other *B. licheniformis* strains. The phylogenetic tree constructed from the sequence data by neighbour-joining method (Fig.4.3) showed that strain AS-S24-I share 100% 16S rDNA sequence identity with *B. licheniformis* (Accession no DQ171720). The topologies near strain AS-S24-I estimated from the distance (neighbour-joining and UPGMA) analyses were essentially consistent. Phylogenetically identified strain AS-S24-I could not compared with any species due to unavailability of phenotypic and chemotypic data , hence AS-S24-I strain proposed as *Bacillus licheniformis* strain AS-S24-I.

11.5 Phenotypic properties of isolate AS-S24-II

Present study, displayed rods shaped, endospore forming , gram positive bacterial isolate AS-S24-II. A comparative analysis of AS-S24-II isolate was summarized in Table 11.7. Based on phenotypic properties, AS-S24-II isolate belongs to genus *Bacillus licheniformis*.

<u>Sudhir K Rai</u>

Chapter 11					
Characters	AS-S24-II	B.licheniformis NRRL NRS-1264 ^T	B.licheniformis JCM 2505	B. licheniformis	
7% (w/v) NaCl	+	+	+		
0.001% (w/v) Lysozyme	 +	NT -	NT	~ NT	
Growth at					
pH 5.6		+ -	+	· _	
50 °C	+	+	+	+	
Catalase	+	+	+	+	
Voges-Proskauer Test	- +	NT	+	• +	
pH in VP broth	< 6.0	-do-	NT	NT	
Acid formation					
D-Glucose	+	+	+	+	
Mannitol	_	+	+	+	

<u>Chapter 11</u> Characters	AS-S24-11	B.licheniformis NRRL NRS-1264 ^T	B.licheniformis	B. licheniformis
			JCM 2505	. <u>.</u>
Lactose -	+			NT
Sucrose	+	NT	NT	-do-
Glycerol	+	NT	NT	-do-
- Gas from Glucose	_	-	-	NT
Hydrolysis				
Casein	+	- +	+	NT
Gelatin	-	NT	+	NT
Starch	-	+	+	+
Lipid	-	NT	NT	NT
Urea	-	_	NT	NT

Chapter 11 Characters	AS-S24-II	B.licheniformis NRRL NRS-1264 ^T	B.licheniformis	B. licheniformi	
			JCM 2505		
Utilization of citrate		. +	+	NT	
Formation of indole	+	_	NT	_	
Nitrate reduction	+	+	+	NT	
Litmus milk reaction	+	NT	NT	NT	
H2S production	+	NT	NT	NT	
References	Present study	· Roberts et al ⁴¹⁴	Guerra-Cantera and Raymundo ⁴⁰⁷	Miranda <i>et al⁴²⁷</i>	

11.5.1 Chemotaxonomic properties of isolate AS-S24-II

Based on the content of iso and anteiso fatty acids as major components of the fatty acid pool, the isolate AS-S24-II was identified as Bacillus licheniformis (MTCC). A comparison of cellular fatty acid distribution of B.licheniformis strain AS-S24-II with the reported B.licheniformis is presented in Table 11.8. Further, we also compared the cellular fatty acid composition of isolate AS-S24-II with reported fatty acid composition of Bacillus licheniformis (Table 11.8) shows a qualitative as well as quantitative differences in composition of the cellular fatty acid composition of AS-S24-II with either B.licheniformis .For example, straight chain C16:0 fatty acid content of AS-S24-II was found to be higher compared to B.licheniformis, similarly, anteisobranched C17:0 fatty acid content also demonstrated a difference amongst all the strains. Therefore, based on chemotaxonomic properties, it was difficult to place the strain AS-S24-II is any recognized species of the genus Bacillus for example B.licheniformis.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

÷

Chapt	er 11
-------	-------

Table 11.8 Percent cellular fatty acid composition of isolate AS-S24-II-and related species of *Paenibacillus* as determined by GC analysis.

Organism	Straight-chain				Iso-branched					o-bran	References	
	- C _{14:0}	C _{15:0}	C _{16:0}	C _{18:0}	C _{14:0}	€ _{15:0}	C _{16:0}	C _{17:0}	C _{15:0}	C _{16:0}	C _{17:0}	- ~
AS-S24-II	2.06	0.0	14.29	1.04	0.87	6.89	8.47	4.52	45.2	0.0	16.66	Present study
Bacillus licheniformis		-	-	-	-	.29.5	3.9	3.0	36.0	4.0	1.0	.Horani and Priest ⁴²⁸
<i>B.licheniformis</i> NRRL NRS- 1264	-	-	3.43	-	1.09	32.18	3.34	6.26	39.89	-	9.89	Palmisano <i>et</i> al ⁴²⁴
B.licheniformis ATCC 12759		-	3.57	-	1.05	34.6	-	5.51	40.5	-	8.94	Ĝatson <i>et al⁴²⁹</i>
B. licheniformis MTCC 429	-	-	-	-	0.4	34.8	2.6	15.6	15.6	-	9.2	Shivaji <i>et al⁴³⁰</i>

<u>Sudhir K Rai</u>

Chapter 11 11.5.2 Genotypic properties of strain AS-S24-II

The preceding morphological observations, biochemical tests and chemotaxonomic analysis could not establish a definitive taxonomic position for strain AS-S24-II; therefore, in order to establish the correct taxonomic position, molecular characterization of the strain was followed. Phylogenetic analysis reveals that great diversity exists amongst protease producing microorganisms, suggesting that protease production is an important survival tool for the producing microbes.

Using neighbor-joining and UPGMA methods the isolate AS-S24-II displayed closest species of genus *Peanibacillus* as *Paenibacillus lentimorbus* with 99 % homologous similarity. In contrast, no comparative anaylsis for AS-S24-II strain performed due to dearth of reports on closest species of AS-S24-II strain. Therefore, we proposed it as *Paenibacillus tezpurensis* sp.nov. strain AS-S24-II.

11.6 Phenotypic characterization of isolate AS-S18

The isolate AS-S24-II subjected to 31 phenotypic tests to provide more descriptive information that would help in recognizing their genus (Table 11.9). AS-S24-II were gram –positive , rod-shaped, catalase-positive, spore-formers, acid forming bacteria data suggests that it belongs to genus *Bacillus* (Table 11.9). A comparative analysis displayed by similar group of bacteria such as *Bacillus* sp. 1044 and *Bacillus* sp. 1124⁴⁰⁷, *Bacillus* sp. KD 1014⁴⁰⁶ and *Bacillus* sp.KMM1918⁴³¹, demonstrating that it belongs to *Bacillus* species.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

Characters	AS-S10-II	<i>Bacillus</i> sp. KD	Bacillus	<i>Bacillu</i> s sp. 1044	<i>Bacillus</i> sp. 1124		
<u>.</u>		1014	sp.KMM1918				
Cell shape	Rods	Rods	Rods	Rods	Rods		
Motility	+	+	Not specified	Not specified	Not specified		
Spore shape	Spore forming	+ `	-do-	ND	Not specified		
Gram stain	Positive	Positive	-do-	Positive	Positive		
Growth temperature	30-60 °C range ,	40-65 °C optimum	temperature 15-45	Not specified	Not specified		
	optimum 45 °C	temperature 45 °C	°C				
Growth pH range	6.0-11.0, optimum 8.0	pH range 5.0-9.0,	Not specified	Not specified	-do-		
		optimum pH 5.0					
Growth in 5% (w/v)	-	Not determined	+	+	+		
NaCl							
Growth in 7% (w/v)	-	-do-	+	-	+		
NaCl							
Growth at							

Chapter 11 Table 11.9 Phenotypic properties of AS-S18 with related genus of Bacillus.

<u>Sudhir K Rai</u>

Characters	AS-S10-II	Bacillus sp. KD	Bacillus	Bacillus sp. 1044	Bacillus sp. 1124	
		1014	sp.KMM1918			
pH 5.5		+	+	+	+	
50 °C	+	+	-	- +	-	
Catalase	+	+	Not determined	+	+	
Voges-Proskauer Test	+	_Not determined	-do-	<u> </u> +	+	
Methyl red test	+	-do-	-do-	Not specified	Not specified	
Acid from						
D-Glucose	+	-	+	• +	Weakly positive	
Mannitol	-	+	+	-	-	
Lactose	-	-	-	-	-	
Sucrose	-	+/-	Not determined	-	+	
Gas from glucose	-	Not determined	-do-	-	-	

Hydrolysis of

<u>Sudhir K Rai</u>

Chapter 11 Characters	AS-S10-II	Bacillus sp. KD	Bacillus	Bacillus sp. 1044	Bacillus sp. 1124			
		1014	sp.KMM1918					
Casein	+	+	-	+	+			
Gelatin	-	+	Not specified	+	+			
Starch	+ -	+	-do-	+	+ -			
Lipid	+	Not specified	-do-	-	Not specified			
Jrea	_ •	-	-do- *	Not specified	-do-			
Citrate Utilization	-	-	+	-	+			
ndole formation	+	-	Not specified	Not specified	Not specified			
Nitrate reduction	+	-	Not specified	+	+			
H ₂ S production	+	Not specified	Not specified	Not specified	Not specified			
References	Present study	Lee et al ⁴⁰⁶	Ivanova <i>et al⁴³¹</i>	Guerra-Cantera	Guerra-Cantera and Raymundo407			

٠.

•

Chapter 11 11.6.1 Chemotaxonomic properties of AS-S18

Cellular fatty acid composition of AS-S18 isolates display iso and anteiso fatty acids are the major components of AS-S18 fatty acid pool, the isolate AS-S18 was identified as *Bacillus subtilis* (MTCC). A comparison of cellular fatty acid distribution of *Bacillus subtilis* (MTCC) with the reported *Bacillus subțilis* is presented in Table 11.10. AS-S18 shows a qualitative as well as quantitative differences in composition of the cellular fatty acid composition with *Bacillus subțilis* species For example, straight chain C_{16:0} fatty acid content of AS-S18 was found to be higher than *Bacillus subțilis*⁴¹⁴ and *Bacillus subțilis* JCM 1465³⁷¹. Therefore, based on chemotaxonomic properties, it was placed in genus *Bacillus* and was recognized as *Bacillus subțilis* strain RM-01.

<u>Sudhir K Rai</u>

	Straight chain							Iso-branched								Anteiso-branched			
	C _{14:0}	C _{15:0}	C _{16:0}	- C _{16:1} ω 7 cis alcohol	C _{17:0}	C _{18:0}	C _{14:0}	C _{15:0}	C45:0 C16:0 C16:1	C _{17:0}	C _{17:1}	C _{17:1} w10c		C _{15:0}	C _{16:0}	C _{17:0}			
AS-S18	6.49		32.98	-	15.17	0.90	-		_	-	-	-	-	1.5 ຼ	-	-	-	Present study	
B. subtilis B-770	-	5.0	-	-	-		2.0	13.0	9.0	13.0	-	-	-	-	40.0	-	-	Kaneda ⁴¹³	
B. subtilis B-4	-	6.0	-	-	-		4.0	14.0	11.0	15.0	-	-	-	-	33.0	-	10.0		
Bacillus subtilis	-	-	3.14	0.23	-		1.13	- 29.27	2.36	1.52	9.59	-	1.72	-	40.19	-	9.38	Roberts <i>et</i> al ⁴¹⁴	
<i>Bacillus subtilis</i> JCM 1465	0.3	2.3	1.3	-	-		0.4	28.4	2.0	-	-	6.1	-	-	44.5	-	6.8	Shida <i>et</i> al ³⁷¹	

Chapter 11 Table 11.10 Percentage of cellular fatty acid composition of AS-S18 isolate with other related genus of Bacillus.

PhD Thesis, Tezpur University, 2010

- -

Chapter 11 11.6 Protease production under solid-state and submerged fermentation

On a large industrial scale, productions of secondary metabolites are mostly carried out by using SmF conditions, whereas the use of SSF for the production of commercially valuable metabolites is restricted mainly within Asian countries⁴³⁴. One of the probable reasons might be due to less acquaintance of SSF process by the scientists of the West compared to those in the East. In SSF the determination of parameters such as humidity, pH, free oxygen and dioxide of carbon, constitute a problem due to the lack of monitoring devices. Scaling up of SSF processes has been little studied and it presents several problems. Also the microorganisms studied are limited to those that grow in reduced levels of humidity^{252, 433, 434}. In third world nations, the use of SSF is more dominant than SmF because of low production expense, less consumption of water and energy, less effluent problem and stability of the products due to less dilution in the media432,435. Besides, SSF technology holds a tremendous promise for employment generation particularly in developing countries. Furthermore, it has been reported that wild-type strains of microorganisms (fungi or bacteria) have a tendency for better performance in SSF system compared to genetically altered microorganisms, and thus further reducing the energy and cost requirement72,254.

11.6.1 Protease production under solid-state fermentation using non-conventional and cheap sources of carbon and nitrogen: a cost-effective technology

The selection of an ideal agro-biotech waste for enzyme production in a solid-state fermentation process depends upon several factors, mainly related with cost and availability of the substrate material, and thus may involve screening of several agro-industrial residues²³⁹. In the present study, various agro-industrial residues viz. mustard oil cake (MOC), wheat bran (WB), rice bran (RB), *I. cylindrica* (IC) grass and banana leaves (BL) were used for alkaline protease production under SSF at <u>Sudhir K Rai</u>

45°C with an aim to reduce the protease production cost. The present investigation relates to a simple, novel, low-cost process for the highlevel production of alkaline protease from all the bacterial strains by using a weed I. cylindrica (commonly known as Ulukher in Assam) and potato peel (PP) as cheap sources of carbon and nitrogen under SSF. Although a number of solid substrates have been used for the production of bacterial proteases, neither IC grass nor PP has used for protease production in SSF or SmF systems. The major advantage of the present method of protease production is the commercial utilization of I. cylindrical grass, which otherwise remains unutilized and causes a severe problem in many areas of the world. This grass is considered as the top most of 10 notorious weeds in the world, as reported by 73 countries⁴³⁶. This grass is a nuisance wherever it is found, costing hundreds of million of dollars in control, with its only documented limited use in a thatch for building huts and roofs. Control of this grass by application of herbicides is an extremely complicated process and a costly measure⁴³⁶. On the other hand, large-scale cultivation of IC for commercial exploitation (for example protease production under SSF system) will be inexpensive, because it can grow in a wide range soil types with little to no special nutrient requirements. Similarly, the PP is also produced in huge amounts as a kitchen waste byproduct and generate effluent problem. Therefore, the utilization of PP and IC as fermentation substrates by microorganisms offers a low-cost microbial technology for obtaining proteolytic enzymes coupled with environment protection. Furthermore, the proteases produced by B. subtilis DM-04, Brevibacillus sp. AS-S10-II, Bacillus sp. AS-S20-I, Bacillus licheniformis AS-S24-I and Paenibacillus tezpuresnsis sp.nov. AS-S24-II in accordance with the present method is free of undesirable flavor that is advantageous for its use in food and pharmaceutical industries. The nature of the solid substrate in SSF system greatly influences the production of microbial enzymes. Although a number of substrates have been employed for cultivating different microorganisms, wheat bran has

<u>Sudhir K Rai</u>

been the preferred choice for microbial protease production, because it is proved to be superior as compared to many other substrates^{257,437,438}.

The present study documents that protease production by all the bacteria on a mixture of IC grass and PP (1:1 ratio) is much better than protease production on wheat bran or on other tested substrates, indicating that PP and IC in a proper combination influence the protease synthesizing mechanism in bacteria. In many cases, the time required for the optimum protease production by bacteria or fungus may be as long as 48 h to 9 days^{75,439}. Kinetics study of the bacterial growth and protease production by all strains on IC and PP demonstrated that optimum protease production occurred within a short duration for Bacillus subtilis DM-04 (post 24 h of incubation whereas optimum growth was achieved post 48 h of incubation); Brevibacillus sp. AS-S10-Il (post 24 h of incubation whereas optimum growth was achieved post 72 h of incubation), Bacillus sp. AS-S20-I (post 24 h of incubation whereas optimum growth was achieved post 60 h of incubation), Bacillus licheniformis AS-S24-I (post 24 h of incubation whereas optimum growth was achieved post 72 h of incubation) and P.tezpurensis sp.nov. AS-S24-II (post 24 h of incubation whereas optimum growth was achieved post 60 h of incubation). The results are similar to the kinetics of alkaline protease production by a Bacillus sp., under SSF condition by using lentil husk and wheat bran as substrates²⁵⁷ Therefore, it may be assumed that like *B. sphaericus*⁴⁴⁰, protease production by all the bacterial strains under study is both growth and non-growth associated. This observation is in contradiction to the earlier report demonstrating that alkaline protease production by Bacillus sp. is growth-associated²⁶². The decline in enzyme activity of B. subtilis DM-04 post 24 h incubation might be due to slow denaturation and/or decomposition of protease²⁵⁷.

A crucial factor in the SSF system that influences the microbial growth as well as product yield is the initial moisture content of the <u>Sudhir K Rai</u>

substrate^{262,441}. Increase in moisture level beyond optimum level is believed to reduce the porosity of solid-substrates, thus limiting oxygen transfer, while decrease in the moisture content from optimum moisture content of substrate causes reduction in the solubility of nutrients of the substrates resulting in a lower degree of swelling²⁷⁵. Since growth of microbes and product formation takes place at or near the surface of moist solid substrate⁴⁴²; therefore, for achieving maximum yield of the desirable product, it is crucial to optimize the moisture content that controls the water absorption (Wa) of the fermenting substrate²⁶². For example, in the present study, 100% initial moisture contents of both the substrates (IC and PP) were found to be optimum for protease production by all the strains, whereas 30%, 40% and 140% initial moisture contents of wheat bran, lentil husk and green gram husk, respectively were found to be optimum concentrations for maximum protease production by Bacillus sp. in SSF^{257,262}. However, depending upon the type of microorganism, the initial moisture content of the same substrate for optimum protease yield may vary. For example, Uyar and Bavsal²⁵⁷ reported 30% moisture level of wheat bran is optimum for alkaline protease production by Bacillus sp., whereas optimal moisture level was reported to be 74% with wheat bran for protease production by Pseudomonas sp.443. Similarily, alkaline protease production by Mucor circinelloides demonstrated about 20% moisture level requirement for optimum protease production using dhal husk²⁶⁴. In the present study, a decrease in protease production with a further increase in moisture content beyond 100% may be related to decrease porosity and/or air content of the substrate444, which in turn interfered with the microbial activity.

The inoculum concentration also plays a crucial role in enzyme production, and therefore, this parameter should also be given a due consideration. In the present study, 40% (v/w) of inoculum concentration (bptical density at 600 nm 0.5 ± 0.05) was found to be suitable for optimum protease production by *B. subtilis* DM-04 strain on <u>Sudhir K Rai</u>

IC or PP, whereas Uyar and Baysal²⁵⁷ reported a 20 and 25% (v/w) inoculum level requirement for the production of alkaline protease by a *Bacillus* sp. when grown on wheat bran and lentil husk, respectively. It was assumed that with the increase in inoculum level beyond 2.0ml the production of protease by *B.subtilis* DM-04 declines. Similarly, increase in inoculum level 3.0 ml *Brevibacillus* sp. AS-S10-II, inoculum level 1.5ml from *Bacillus* sp. AS-S20-I, inoculum level beyond 2.0ml from *Bacillus* licheniformis AS-S24-I and inoculum level beyond 2.0ml from *P.tezpurensis* sp. nov. AS-S24-II results in the decline of protease production which might be due to exhaustion of nutrients in the fermentation mash.

The choice of the nitrogen and carbon sources has a major influence on the yield of protease. Present observation as well as findings from other laboratories suggested that different bacteria have different preferences for either organic or inorganic nitrogen sources for growth and protease production, although complex nitrogen sources are usually used for alkaline protease production^{262,442}. All strains used in the present study have shown a preference for both organic as well as inorganic nitrogen sources for protease production. In a sharp contrast to these observations, organic nitrogen sources like peptone and yeast extract were found to suppress the protease production of an alkaliphilic strain of Arthrobacter ramosus MCM B351²³⁷. In 2010, Murty and Naidu⁴⁴⁵ described a partial inhibition of extracellular protease production from Aspergillus oryzae strain CFR05 in presence of glucose, a versatile source of carbon; however, present study shows that protease synthesis is enhanced (P < 0.05) by B.lichenformis strain AS-S24-I when glucose and some other carbohydrates are supplied as co-carbon source to the fermentation medium containing IC. This observation is in accordance with the report of Prakasham et al²⁶² describing no repressive effect of glucose on enzyme production by Bacillus sp. The data presented in the present study show that optimum protease production by B.subtilis DM-04, B.subtilis RM-01(Alkaline keratinase), Sudhir K Rai

Brevibacillus sp. strain AS-S10-II, Bacillus sp. strain AS-S20-I, Bacillus licheniformis AS-S24-I and Paenibacillus tezpurensis sp. nov. strain AS-S24-II was enhanced significantly (p<0.05) when two best substrates (IC and PP) were mixed in a ratio of 1:1 and not by individual substrate. This observation may be well explained by considering the C: N ratio of individual substrate as well as their different combinations. It is well established that carbon-to-nitrogen ratio, carbon concentration as well as the amino acid composition of growth media/fermentation substrate influence the growth of microbe as well as enzyme production^{446,447}. Since the carbon content of the individual substrate (IC or PP) or their different combination was approximately same; therefore, it may be concluded that an optimum C: N ratio of fermenting material (1:1 mixture of IC and PP in the present study) greatly influences the protease secretion by all the strains. Furthermore, from our results it appear that carbon and nitrogen sources present in IC and PP can serve as complete basal and standardized medium for protease production by bacteria. The current method does not require additional supplementation of co-carbon or co-nitrogen sources to IC and PP substrates and therefore, it can be considered as a cost effective process for protease production⁷². 1

11.6.2 Chicken-feather degradation and keratinase production under solid-state fermentation

Microbial biodegradation of insoluble macromolecule like keratin, cellulose, collagen and lignin depends on the secretion of extracellular enzymes with the ablility to act on compact substrates. Keratin, a structural protein found in feathers, wool, hooves, and hair, is resistant to degradation by common proteolytic enzymes such as trypsin, pepsin, and papain because of its high degree of cross –linking^{448,449}. Nevertheless, feathers do not accumulate in nature, which confirms the existence of feather degrading micro-organisms¹⁸². Studies on feather-degrading micro-organisms have focused either on animal diseases or on biotechnology for processing large amounts of waste by –products in <u>Sudhir K Rai</u>

poultry-processing plants²⁹⁶. As keratinases from *Bacillus subtilis* have greater potential for applications in commercial processes, biotechnological studies have been focused on these strains^{450,451}.

Due to dearth of published reports on keratinase production in SSF, the optimum time taken by B. subtilis RM-01 for β-keratinase production in SSF could not be compared with the time course of β -keratinase production by other microorganisms under identical conditions. The fact that the bacteria can grow and produce maximum β-keratinase at lower moisture content of fermentable substrate offers significant advantages in reducing risk of contamination, since most bacterial species are unable to grow at reduced moisture level⁴⁵². Increased moisture level is believed to reduce the porosity of substrate, thus limiting the oxygen transfer into the substrate⁴⁵³. Likewise, a lower moisture ratio leads to reduced availability of nutrients of the solid substrate, lower degree of swelling and a higher water tension⁴⁵⁴. The highest β-keratinase yield in SSF by using water instead of buffers is advantageous from economic point of view which advocates the cost-effectiveness of the present method. Similar reports are available on the use of distilled water or tap water as moistening liquid in SSF processes⁴⁵² and it might be reasonable to assume that high salt concentration of the buffer may have a negative impact on β-keratinase production by B. subtilis RM-01. The cross-linking of protein chains by cysteine bridges confers high mechanical stability and resistance to proteolytic degradation of keratins³¹. Since the alkaline pH possibly favors keratin degradation as higher pH modifies cystine residues to lathionine making it accessible for keratinase action⁴⁵⁵; therefore, it may be concluded that the alkaline pH of the moistening liquid supports maximum keratinase production and higher feather degradation by most microorganisms^{450, 456}.

The production of primary metabolites by microorganisms is determined by the availability of nutrients in the substrates. In the present study, β keratinase production by *B.subtilis* RM-01 was inhibited by <u>Sudhir K Rai</u>

monosaccharides which may be attributed to catabolite repression⁷. However, the choice of carbon source for growth and enzyme production has been shown to vary depending upon bacterial species. For example, glucose enhanced the protease production by *B. pseudofirmus* AL-89⁴⁵⁷ and *B. sp*²⁶², whereas for *B. subtilis*⁴⁵⁸ and *B. licheniformis*⁴⁵⁹ protease production was suppressed by the addition of glucose. Present observation as well as findings from other laboratories suggested that different bacteria have different preferences for either organic or inorganic nitrogen for growth and keratinase production such as *Bacillus subtilis* KD-N2³²⁸, *Bacillus subtilis* KD-N2²⁹⁰, and *Bacillus halodurans* Strain PPKS-2⁴⁶⁰. *B. subtilis* RM-01 has shown a preference for inorganic nitrogen source compared to organic nitrogen for β-keratinase production.

11.6.3 Screening of process parameters influencing protease yield in submerged fermentation

At the industrial level, enzyme production is a fastest growing field of modern biotechnology. Annual world sales figures are close to 10⁹ dollars with ever increasing number of patents and research articles related to this field^{160,461}. About 90 % of industrial enzyme manufacturers produce enzymes using submerged fermentation (SmF) or liquid surface (SLF) fermentation techniques with enzyme titers in the range of grams per liter⁴⁶². From technical aspects, enzyme production under submerged fermentation carry several advantages over other well know fermentation systems because of proper agitation and mixing of substrate, easy to control moisture level, dissolved oxygen content, pH level, aeration level, and proper monitoring of microbial growth etc in SmF^{251,463,464}. Such levels are a prerequisite if specific compounds are to be considered as commodities because product recovery costs are inversely proportional to concentration in a fermentation broth.

<u>Sudhir K Rai</u>

Protease production in sufficient quantity is one of the important parameters which an enzyme should posses for industrial purposes. This is because around 30–40% of the production cost of the industrial enzymes was estimated to be accounted for the cost of the growth medium. Therefore, in the present study the low-cost growth substrates such as rice bran, banana leaf, and wheat bran and kitchen waste product are used to produce the bacterial proteases to greatly reduce the production costs. In addition, development of the economical fermentation method is also necessary to reduce the overall cost of the enzyme production^{7,465,466}.

It has been well established that medium components play an important role in protease production by bacteria^{467,468}. In the present study, optimization of medium composition was done to balance between the various medium components, thus minimizing the amount of unutilized components at the end of fermentation. Research efforts have been directed mainly towards evaluating the effect of various carbon and nitrogen nutrient cost-effective substrates on the yield of enzymes, optimization of environmental parameters such as pH, temperature, aeration and agitation^{7,466}. In addition, no defined medium has been established for the production of proteases from different microbial sources suggesting medium composition need to be optimized depending upon the types of protease producing microbes.

Amongst the tested carbon sources, casein was found to be the best carbon source for optimum growth as well as protease production by *Bacillus* sp. AS-S20-I, *Brevibacillus* sp. AS-S10-II and *Paenibacillus tezpurensis* sp. nov. AS-S24-II, whereas *B.subtilis* DM-04 demonstrated preferences of carbon sources IC: PP, *B.subtilis* RM-01 preferred maltose and *B.licheniformis* AS-S24-I preferred D-Glucose, as the best carbon source as described for a number of protease secreting *Bacillus* strains²⁶². However, this result differed from previous observations

<u>Sudhir K Rai</u>

showing preference of maltose for optimum protease production by *Bacillus circulans* and *Bacillus pseudofirmus* SVB1 strains^{92,239}. The difference in uptaking of carbon sources to enhance protease production is due to regulatory mechanism involved during selection of bacteria for growth and enzyme production⁴⁶⁹.

Micro-organisms prefer both inorganic or organic forms of nitrogen for growth and other metabolic processes. Organic nitrogen is a complex nitrogen source composed of a spectrum of peptides and free amino acids. During fermentation, these are taken up from the medium by the cell and directly incorporated into proteins or transformed into other cellular nitrogenous constituents⁴⁷⁰. By contrast, the cell spends more energy and time in synthesizing amino acids for protein synthesis from inorganic nitrogen sources⁴⁷⁰. Among organic nitrogen sources, differences in protein and amino acid composition could have accounted for the differences in the production rates and yields observed. The choice of nitrogen source for growth and protease production by bacteria in the present study is in accordance with previous reports suggesting that each bacterium has its own choice for carbon and either inorganic or organic nitrogen sources for optimum growth and protease production^{92,239}. For example, an increase in Bacillus licheniformis was observed in protease production by presence of ammonium sulphate and potassium nitrate⁴⁷³; whereas sodium nitrate was found to be stimulatory for alkaline protease oryzae472.Prakasham et al²⁶² reported production by Rhizopus utilization of yeast extract for alkaline protease production by Bacillus sp. A significant increase in alkaline protease production by Bacillus cereus SV1 was observed in presence of ammonium chloride⁴⁷³.

Variation in selection of nitrogen sources in *Bacillus* species is mainly because of the involvement of different regulatory precursors which are responsible for the uptake of low molecular weight source of nitrogen

Sudhir K Rai

present in growing media and activating precursors responsible for synthesis of extra-cellular proteases⁴⁶⁹. This phenomenon was explained in *Aspergillus nidulans* producing extra-cellular protease. According to them, when the *Aspergillus* strain was grown on media containing protein as sole nitrogen source, four extra-cellular proteases (α , γ , ξ and ε) are released into the medium and occur in the mycelium together with protease β in its active form. This regulation of proteases by nitrogen metabolites has been called 'ammonium repression'⁴⁷⁴⁻⁴⁷⁶.

11.6.4 Optimization of process parameters for enhancing the protease yield: a statistical approach

11.6.4.1 Plackett-Burman design for preliminary screening

The biotechnological application of proteases / keratinases demands the production of these enzymes in sufficient amounts for commercial purposes and require optimized medium for enhanced enzyme yield. Classical approach of medium optimization is a time-consuming and labor-intensive process. The Plackett-Burman experimental design has proved to be a valuable tool for the rapid evaluation of the effects of the various medium components³⁸². Since this design is a preliminary optimization technique, which tests only two levels of each factor, it can not provide the optimal quantity of each factor required for the optimum enzyme production. This technique, however, provides indications of how each factor tends to effect bacterial growth and enzyme production³⁸². On the basis of the result obtained from Plackett-Burman analysis, and t-and p-value (p< 0.05) following factors significantly influences the protease / keratinase production under solid-state and submerged fermentation systems. Among the tested parameters, IC:PP level, beef extract level, and incubation time (h) were found to be significant factors for protease production by *B.subtilis* strain DM-04; casein level, ammonium sulphate and pH of the medium were found to be positively influencing factors for alkaline protease production by P.tezpurensis sp.nov. AS-S24-II; whereas maltose level, sodium nitrate Sudhir K Rai

level and pH of the medium significantly influenced the keratinase production by *B.subtilis* strain RM-01, level of casein and KNO₃ as well as pH of the medium were found to significantly accelerate the bacterial growth as well as protease production by *Brevibacillus* sp. strain AS-S10-II. Increased protease production by *B.licheniformis* strain AS-S24-I post 48h of incubation was found to be influenced by glucose level, yeast extract level and pH of the medium casein level, whereas ammonium sulphate level and pH of the medium were found to be like positively influencing parameters for increased protease yield from *Bacillus* sp. strain AS-S20-I.

11.6.4.2 Statistical optimization using central composite design for protease production

Designing an appropriate fermentation medium is of critical importance in optimizing the product yield. However, the conventional experimental approaches for the optimization of media composition require a large number of experiments to study the influence of each factor of the media on enzyme production. On the contrary, statistical optimization of media components takes into account the interactions of variables in process responses³⁹². The sample coefficient of generating determination (R²) measures the closeness of fit of the sample regression equation to the observed value of Y477. Incase of a higher value of R² the regression accounts for a large proportion of the total variability in the observed value of Y which favors the regression equation model^{392,477}. The high value of R² indicates that the statistical model presented in this study could explain the variability in the process responses of the alkaline protease /keratinase production from B.subtilis strain DM-04 (R² = 98.49%); Brevibacillus sp. strain AS-S10-II (R² = 100.00 %), Bacillus sp. strain AS-S20-I (R² = 100.00%), Bacillus licheniformis strain AS-S24-I (R² = 99.87%), P.tezpurensis sp.nov. strain AS-S24-II (R² = 99.40%) and B.subtilis strain RM-01 (R²= 100.00%). The high value of R² advocates in favor of high significance of all the models. The significance of the predicted model (Eq. (3)) was <u>Sudhir K Rai</u>

further evaluated by Student's t test and p values, and the larger magnitude of the t value and smaller p value vouches for the significance of the corresponding coefficient of all the regression models obtained in the present study for protease production.

The 3D response surface and the 2D contour plots were generally the graphical representations of the regression equation. The response surface plot is the theoretical three-dimensional plot showing the relationship between the response and the independent variables⁴⁷⁸. The two-dimensional display of the surface plot is called contour plot and in the contour plot, lines of constant response are drawn in the plane of the independent variables⁴⁷⁸.

In all the experiments, the value of protease yield obtained by batch culture was slightly higher than the observed highest experimental value in shake-flask study as well as the predicted value of the protease yield by response surface method. This discrepancy might be due to slight variation in experimental conditions in a fermentor and EM flasks because the concentration of dissolved oxygen as well as the pH of the medium could be maintained at the desired level in a bioreactor but not in a flask. This may favor the higher protease production in less time in a bioreactor⁸⁸. Although the protease yield by *B. subtilis* strain DM-04 in SmF was found to be lower than the reported yield of alkaline protease from *Bacillus* sp.⁷⁵ and *Bacillus* sp. RKY3⁹⁰; however, use of cheaper substrates (IC and PP) for protease production could lead to a considerable reduction in enzyme production cost which may favor the commercialization of alkaline protease production by *B. subtilis* strain DM-04.

Alkaline protease yield by *Brevibacillus* sp. strain AS-S10-II and *Paenibacillus tezpurensis* sp. nov. strain AS-S24-II could not be compared with other *Brevibacillus sp or Paenibacillus sp*. because hardly any report is available on protease production by these strains. Nevertheless, a comparison showed that the yield of alkaline protease <u>Sudhir K Rai</u>

by these strains (*Brevibacillus* sp. strain AS-S10-II and *P.tezpurensis* sp. nov. strain AS-S24-II) was significantly higher than the alkaline protease production by many other species of *Bacillus* such as *Bacillus* sp. RKY3⁹⁰ and *Bacillus licheniformis* BA17²²⁷.

The optimum protease yield of 699 U from *Bacillus* sp. strain AS-S20-I was achieved by employing RSM and was higher than reported alkaline protease production by *B. subtilis* IH-72⁴⁸⁰ and *Bacillus licheniformis* BA17²²⁷ even under optimized conditions. The optimized protease yield by *Bacillus licheniformis* strain AS-S24-I reported here was significantly higher compared to the reported value of alkaline protease production by other strains of *B. licheniformis*⁴⁸⁰⁻⁴⁸³. This reinforces the industrial exploitation of the selected bacterium as a microbial cell factory for high-titre alkaline protease production. A comparison of RSM optimized protease from similar types of bacteria is presented in Table 11.11

Strains	Protease	References
	yield	
ł .	(Únits)	
Brevibacillus sp. AS-S10-II	942.0 ± 47.1	Present study
Bacillus sp. AS-S20-I	699.0 ± 35.0	-do-
P.tezpurensis sp.nov. strain AS-	583.0 ± 29.2	-do-
S24-II		
<i>B. subtilis</i> strain DM-04	508.0 ± 25.4	-do-
B.licheniformis strain AS-S24-I	779.0 ± 39.0	-do-
B. lichenformis	196.00	Nehete <i>et al⁴⁸⁰</i>
B. licheniformis	34.70	Lee and
1		Chang ⁴⁸¹

 Table 11.11 A comparison of statistically optimized alkaline protease

 yield by isolated strains and others bacteria.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

I

Chapter 11		
Strains	Protease	References
	yield	
	(Units)	
B. subtilis	9.60	Haq et al479
Bacillus sp. RKY3	939.0	Reddy <i>et al</i> ⁹⁰
<i>Colwellia</i> sp. NJ341	183.21	Wang <i>et al</i> ²²⁵
B. licheniformis BA17	11.99	Nikerel <i>et al²²⁷</i>

18.7 Isolation and purification of protease enzymes

Although most of the commercial applications of enzymes do not always need homogeneous preparation of the enzyme, however, a certain degree of purity is required, depending upon the final application, in industries such as fine chemicals, pharmaceuticals and cosmetics⁴⁸⁴⁻⁴⁸⁸. Besides, purification of the enzyme is a must for understanding the 3-D structure and the structure–function relationships of proteins^{6,7}. For industrial purposes, the purification strategies employed should be inexpensive, rapid, high-yielding and amenable to large-scale operations. They should have the potential for continuous product recovery, with a relatively high capacity and selectivity for the desired product. Various strategies used for purification of microbial proteases have been reviewed by Gupta *et al*⁷.

11.7.1 Isolation and purification of alkaline proteases from isolated strains

11.7.1.1 *B. subtilis* strain DM-04

In the present study, we report the purification of an alkaline protease (Bsubap-I) from *B.subtilis* DM-04 with molecular mass of 33.1 kDa. The molecular mass of Alzwiprase differed significantly from the molecular masses of the alkaline proteases isolated from other species of *Bacillus* (Table 11.12). Furthermore, based on its anionic nature at pH 7.0 and optimum activity in alkaline pH range, this purified protease was named as Bsubap-I (*Bacillus subtilis* alkaline protease-I).

<u>Sudhir K Rai</u>

Another neutral / zwitterionic protease was purified from *B.subtilis* strain DM-04 exhibiting maximum activity at pH 10.0 with a specific activity of 397.0U /mg of protein. It represented 57.0% of total extracellular proteases of *B. subtilis* strain DM-04. It is noteworthy to mention that when the extracellular proteases of *B. subtilis* strain DM-04 were separated on the basis of their overall net charge at pH 7.0, the zwitterionic proteases (which did not bind to cation and anion exchangers) were found to constitute a major proportion of extracellular protease secreted by *B.subtilis* strain DM-04, as compared to anionic and cationic proteases. Peak HP-I (Fig.5.31) demonstrated maximum protease specific activity (5 x 10^3 U/mg) and was found to be homogenous by 12.5% SDS-PAGE. SDS-PAGE of about 15 µg protein under both reduced and non-reduced conditions displayed a single band of 16.9 kDa suggesting its monomeric nature. This protein was subsequently named as Alzwiprase (Alkaline zwiterionic protease).

A comparison of molecular weight of proteases isolated in the present study with the other species of *Bacillus* and *Brevibacillus* is shown in Table 11.12.

Table 11.12 A comparison of molecular weight of isolated proteases (Bsubap-I and Alzwiprase (*B.subtilis* DM-04), Brevicarnase (*Brevibacillus* sp. AS-S10-II), Alkarnase (*B.lichenformis* AS-S24-I) and detergent stable alkaline protease (*P.tezpuresnsis* sp.nov. strain AS-S24-II)) with molecular weight of reported protease purified from *Bacillus* species.

Strain name	Molecular weight	References
	(kDa)'	
Bacillus sp.	27.0	Margesin <i>et al⁴⁸⁹</i>
Bacillus subtilis NCIM	28.0	Kembhavi <i>et al</i> 490
No. 64		
B.subtilis RM615	28.0	Moon <i>et al</i> ⁴⁹¹

<u>Sudhir K Rai</u>

Strain name	Molecular weight	References	
	(kDa)		
Bacillus sp. PS719	42.0	Hutadilok-	
		Towatana <i>et al⁴⁹²</i>	
Bacillus sp. SCB-3	134.0	Lee et al ³¹⁵	
<i>Bacillus subtilis</i> PE-11	15.0	Adinarayana <i>et</i>	
		al ¹³⁴	
B.subtilis	37.0	Orhan <i>et al²¹⁷</i>	
Bacillus subtilis	45.0	Gerze et al ⁴⁹³	
megatherium			
Bacillus sp. TKU004	27.0 and 57.0	Wang <i>et al</i> ²²⁰	
Bacillus sp. PN-13	30.0	Ogino et al ¹⁸¹	
Bacillus licheniformis	55.0	Sareen and	
RSP-09-37		Mishra ³⁰⁶	
Bacillus mojavensis A21	20.0	Haddar <i>et al⁹⁶</i>	
Bacillus pseudofirmus	30–32	Patel <i>et al</i> ²⁰⁹	
Bacillus licheniformis	19.7	Ozturk <i>et al</i> ⁴⁹⁴	
BA17			
Bacillus cereus	28.0'	Doddapaneni <i>et</i> al ¹³¹	
B.subtilis AG-1	24.9 and 18.0	Ghafoor and Hasnain ⁴⁹⁵	
<i>Bacillus</i> sp. B001	28.0	Deng <i>et al³¹⁰</i>	
Bacillus licheniformis ER-15	58.0	Tiwary and Gupta ⁴⁹⁶	
Brevibacillus sp. AS-	83.2	Present study	
S10-II (Brevicarnase)	50.L	1 rooont otday	
B.subtilis DM-04	33.1	Present study	
(Bsubap-I)	00.1	1 recent olddy	
B.subtilis DM-04	16.9	Present study	
(Alzwiprase)	10.0	i tooont study	

Chapter 11				
Strain name	Molecular weight	References		
	(kDa)			
Paenibacillus	43.0	Present study		
tezpurensis sp.nov.strain				
AS-S24-II				

11.7.1.2 P.tezpurensis sp.nov. strain AS-S24-II

In the present study, we also report the purification of a detergent-stable alkaline protease from P. tezpurensis strain AS-S24-II, which represents less than 1% of total extra cellular protease activity. It is quite obvious that all the proteases secreted by a particular bacterium may not exhibit the identical property, for example high protease activity, thermo stability as well as detergent compatibility and therefore, all of them may not be equally important from an industrial perspective. Since our goal was to isolate and purify a detergent-stable alkaline protease for application in commercial laundry detergent formulations; therefore, in each purification step, we searched for the protease(s) showing best detergent stability rather than looking for protease demonstrating highest enzyme activity at alkaline pH. It is worthy to mention that, although the purified protease in the present study contributes a meager amount of overall extra cellular protease protein or activity, there is a dearth of report on alkaline proteases exhibiting comparable detergent stability as well as stain removal property as displayed by the purified protease from P. tezpurensis sp. nov. strain AS-S24-II. Since this is the first report on purification of a protease from Peanibacillus species, therefore we could not compare the molecular weight of this protease with other protease from Peanibacillus sp. Further, cloning of this protease gene and its high level expression in a suitable host may significantly improve the yield and therefore, holds a tremendous future prospect.

<u>Sudhir K Rai</u> PhD Thesis, Tezpur University, 2010

Chapter 11 11.7.1.3 Brevibacillus sp.strain AS-S10-II

An alkaline protease from the strain *Brevibacillus* sp. AS-S10-II was purified from the cell-free culture supernatant to homogeneity using acetone precipitation, followed by gel filtration on Sephacryl S-200, which resulted in a 18.9 -fold increase in specific activity and 58.5% of protease recovery. The isolated protease demonstrated a high molecular mass of 83.2 kDa and SDS-PAGE analysis suggested monomeric nature of protease. This protease was named as Brevicarnase and molecular weight of Brevicarnase was found to be higher as compared to other isolated protease from *Bacillus* species (Table 11.12).

11.7.1.4 Bacillus sp.strain AS-S20-I

Partially purified protease from *Bacillus* sp. AS-S20-I demonstrated a molecular mass of 60.0 kDa. It was observed that the molecular weight of this protein was higher when compared to other proteases isolated from *Bacillus* sp.(Table 11.12).

11.7.1.6 B.subtilis strain RM-01

Isolation and down stream processes of extracellular β -keratinase were determined and the data presented here show, that a pronounced increase in specific proteolytic activity occurred after separation through CM-Cellulose column followed by sephacryl S-200 column and then reverse phase HPLC C₁₈ nova pak column. The reverse phase HPLC C₁₈ nova pak column separation resulted in elution of pure protease with 9.0 fold increase in specific activity, compared to crude enzyme. Moreover, HP-IV fraction was demonstrated to be the most detergent stable alkaline protease fraction. The SDS–PAGE analysis revealed that β -keratinase isolated from *B.subtilis* strain RM-01 had a mol ecular weight of 20.1 kDa and it was monomeric in nature. The molecular weight of alkaline keratinases isolated from other *Bacillus* species (Table 11.13).

<u>Sudhir K Rai</u>

Table 11.13 A comparison of molecular weight of alkaline β -keratinase (in the present study) with the reported molecular weight of the same enzyme purified from *B. subtilis* and other species of *Bacillus*.

Strain name	Molecular	Reference
	mass (kDa)	
Bacillus licheniformis PWD-	33.0	Lin <i>et al</i> ⁴⁹⁷
1		
Bacillus subtilis KS-1	25.4	Suh and Lee ⁴⁹⁸
Bacillus licheniformis K-508	42.0	Rozs et al ⁴⁹⁹
Bacillus sp. SCB-3	134.0	Lee <i>et al</i> ³¹⁶
B.lciheniformis strain HK-1	46.0	Korkmaz and
		Dincer ⁵⁰⁰
Bacillus licheniformis FK14 ,	35.0	Suntornsuk <i>et al⁵⁰¹</i>
Bacillus licheniformis	26.0	Yoshioka <i>et al³²⁵</i>
MSK103		
Bacillus subtilis MTCC	64-69.0	Balaji <i>et al³²⁶</i>
(9102)		
Bacillus cereus DCUW	80.0	Ghosh <i>et al</i> ³¹⁴
Bacillus subtilis KD-N2	30.5	Cai <i>et al³²⁸</i>
Bacillus pumilis	65.0	Kumar <i>et al</i> ²⁴⁶
Bacillus licheniformis RPk	32.0	Fakhfakh <i>et al³²⁹</i>
Bacillus subtilis RM-01	20.1	Present study
(alkaline β-keratinase)		
B.licheniformis strain AS-	43.0	Present study
S24-I (Alkarnase)		

11.7.1.5 Alkarnase from Bacillus licheniformis strain AS-S24-I

The keratinolytic protease was purified from a culture supernatant (3 I) of *B.licheniformis* AS-S24-I. By SDS-PAGE, the apparent molecular weight of Alkarnase was estimated as 43.0 kDa. Further characterization demonstrated that Alkarnase exhibited a high level of *Sudhir K Rai*

PhD Thesis, Tezpur University, 2010

1

specificity for β -keratin substrates. A comparison of molecular mass of Alkarnase with other keratinase purified from other strains of *B.licheniformis* and other species of *Bacillus* is shown in Table 11.13.

11.8 Biochemical characterization of purified / partially purified proteases/ keratinase

Before assessing the biotechnological potential of any enzyme, characterization of biochemical properties pertinent to industrial application is of utmost importance and advantageous.

11.8.1 Effect of pH and incubation temperature on protease / keratinase activity

A survey of literature demonstrated that proteases with alkaline nature have novel stability⁵⁰². Bacteria, actinomycetes and fungi have been extensively screened for industrial enzyme production and numerous processes and enzyme products have been developed over the years. The enzymes vary widely in their properties particularly with regard to temperature and pH optima for activity and stability. It is interesting to observe that even mesophilic strains secrete enzymes which are found to be stable at a temperature and / or pH values far above those required for optimal growth of the producing culture⁵⁰³. In our studies, Bsubap-I and Alzwiprase from B.subtilis DM-04 have demonstrated similar working pH properties. All proteases purified from B. subtilis RM-01 (alkaline β-keratinase), P.tezpuresnsis sp.nov. AS-S24-II. Brevibacillus sp. AS-S10-II, B.licheniformis AS-S24-I, and Bacillus sp. AS-S20-I (partially purified) exhibited proteolytic activity at an alkaline range of pH and a broad range of incubation temperature. This demonstrated their suitability for incorporation in commercial laundry detergent formulations which require the enzyme to be stable as well as active at higher alkaline pH and temperature regimes. A comparison of optimum pH for all purified proteases/ keratinase with previously reported proteases studied is shown in Table 11.14 and Table 11.15.

<u>Sudhir K Rai</u>

Table 11.14 A comparison of requirement of optimum temperature and pH for purified / partially purified proteases in the present study with reported alkaline proteases isolated from *Bacillus* species.

Strains	Ор	otimum	References
	рН	Temperature	
		(In°C)	
Bacillus sp. ;	11.0	60.0	Margesin et al., 1992 ⁴⁸⁹
<i>Bacillus</i> sp. B18	12.0-13.0	85.0	Fujiwara et al., 1993 ⁵⁰⁴
Bacillus	9.0	60.0	Ferrero et al ⁵⁰⁵
licheniformis			
MIR 29			
B. subtilis Y-108	8.0	50.0	Yang <i>et al</i> ⁵⁰⁶
Bacillus	10.5	60.0	Beg et al ⁵⁰⁷
mojavensis			
Bacillus	10.0 -11.0	45.0	Gupta et al ¹³⁰
pseudofirmus			
Bacillus	10.0-11.0	37.0	Patel et al ²⁰⁹
pseudofirmus			
Bacillus	10.0-11,0	65.0-70.0	Sellami-Kamoun <i>et al</i> ³⁴⁰
licheniformis			
RP1			
Bacillus	8.5	60.0	Haddar <i>et al⁹⁶</i>
<i>mojavensis</i> A21			
Bacillus	8.0–10.0	60.0	
mojavensis A21	and 10.0		
Bacillus sp.	10.0	60.0	Deng <i>et al³¹⁰</i>
B001			
Bacillus	11.0	70.0	Tiwary and gupta ⁴⁹⁶
licheniformis			
ER-15			
B.subtilis DM-0,4	10.10.5	45 _. 0	Present study
(Bsubap-I)			

<u>Sudhir K Rai</u>

Chapter 11 Strains	C	ptimum	References
_	рН	Temperature (InºC)	
B.subtilis DM-04	10.0	45.0	-do-
(Alzwiprase)			
P.tezpurensis	9.5	45.0 -50.0	-do-
sp.nov. AS-S24-			
//			
Bacıllus sp. AS-	9.0	45.0	-do-
S20-I	:	•	

Table 11.15 A comparison of requirement of optimum temperature and pH of purified keratinase in the present study with reported alkaline keratinase purified from *Bacillus* species.

Strains	0	otimum	References
	рН	Temperature	-
		(in°C)	
Bacillus licheniformis	7.5	50	Lin <i>et al</i> 497
PWD-1			
Bacillus subtilis KS-1	7.5	-	Suh and
ţ	,	٢	Lee ⁴⁹⁸
Bacillus licheniformis	8.5	52	Rozs <i>et al⁴⁹⁹</i>
K-508			
Bacillus sp. SCB-3	7	40	Lee <i>et al³¹⁶</i>
Bacillus licheniformis	8.5	60	Suntornsuk et
FK14			al ⁵⁰¹
Bacillus licheniformis	9–10	60–70	Yoshioka <i>et</i>
MSK103			al ³²⁵
Bacillus cereus	8.5	50	Ghosh <i>et al</i> ³¹⁴
DCUW			
Bacillus pumilis	8.0	65	Kumar et al ²⁴⁶

<u>Sudhir K Rai</u>

Chapter 11		• _	
Strains	Opt	imum	References
	рН	Temperature	
		(in°C)	
Bacillus subtilis KD-	8.5	55	Cai <i>et al³²⁸</i>
N2			
Bacillus subtilis	6	40	Balaji <i>et al³²⁶</i>
MTCC (9102)			
Bacillus licheniformis	9.0	60	Fakhfakh <i>et</i>
RPk			al ³²⁹
B.licheniformis strain	9.0	45.0	Present study
AS-S24-I			
(Alkarnase)			
B.subtilis RM-01	9.0	45.0	Present study
(alkaline β-			
keratinase)			
<i>Brevibacillus</i> sp.	12.5-13.0	45.0	Present study
AS-S10-II			
(Brevicarnase)			2

11.8.2 Thermo stability study of purified / partially purified protease / keratinase

Microorganisms, like all living things, adapt to the conditions in which they have to live and survive. Thermophiles are reported to contain proteins which are thermostable and resist denaturation and proteolysis at a higher temperature⁵⁰⁸. Thermostable enzymes are stable and active at temperatures which are even higher than the optimum temperatures for the growth of the microorganisms⁵⁰⁹. Thermostable enzymes are gaining wide industrial and biotechnological interest due to the fact that their enzymes are better suited for harsh industrial processes⁵¹⁰⁻⁵¹⁴. Furthermore, thermostable enzymes are usually more resistant to inactivation by other denaturants such as detergents, organic solvents, chaotropic agents and oxidizing agents. In some cases thermostable enzymes also have proven extremely resistant to <u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

4

proteolysis⁴⁶. From an industrial point of view, thermostable enzymes can take advantages of the benefits of high temperatures systems. These are benefits such as increased substrate solubility, decreased viscosity of the medium and lower risk of microbial contamination or higher rates of concurrent non-enzymatic reactions⁵¹⁵⁻⁵¹⁷.

Considering the above important aspects, we have examined the thermo-stability properties of proteases purified/ partially purified from all the strains under study. All these proteases demonstrated excellent thermo-stability properties as compared with the same property reported for alkaline proteases isolated from different bacterial sources, suggesting potential applications in heavy –duty laundry detergent formulation purpose.

11.8.3 Effect of polyols on stability of protease against heatdenaturation

The stability of enzymes and proteins *in vitro* condition remains a critical issue in their biotechnological application. Understanding the intricate balance of various factors responsible for the stability of proteins and enzymes in solution is not only an academic challenge but also has enormous implications for the pharmaceutical and biotechnology industries. Operational stability is of paramount importance for any bioprocess⁵¹⁹. The effects of co-solvents on the stability of proteins are under investigation.

Several methods are employed to increase the stability of proteins in operational conditions, including chemical modification, use of stabilizing additives, derivatization, and modification with carbohydrates, amino acid substitution, mutagenesis, and genetic engineering of enzymes⁵¹⁹. We investigated stabilization of purified / partially purified protease with co-solvent additives such as xylitol, sorbitol, glycerols and mannitol. All purified proteases demonstrated maximum stability in presence of glycerol except keratinase from *B.subtilis* RM-01 and *Sudhir K Rai*

alkaline protease from *Bacillus* sp.AS-S20-I. Later proteases exhibited maximum stability in presence of sorbitol. The probable explanation for protease stability in presence of different polyols is because glycerol has lower dielectric constant and stronger electrostatic interaction properties as compared with other polyols^{520,521}.

The present study demonstrates, an increase in protease activity in the presence of polyols, which might be due to a change in the thermostabilization properties of the enzymes as a result of modification of the environment by the additives (polyols, PEG)^{522,523}. These protective effects are due to the strengthening of the hydrophobic interactions inside protein molecules and by indirect action of polyols on water structure⁵²⁴. Hydrophobic interaction are generally considered to be the single major factor in stabilizing the three dimensional structure of proteins⁵²⁵. The effects of sugars and polyols on hydrophobic interaction and consequently on the thermal stability of proteins should also depend upon how they affect the structure of water. Hydrophobic interactions between pairs of hydrophobic groups are stronger in glycerol solution than pure water. It seems likely therefore that this mechanism by which sugars and polyols in general may stabilize proteins to heat denaturation^{524,525}.

11.8.4 Effect of inhibitors, surfactants and chelators on protease activity

Inhibition studies give insight into the nature of the enzyme, its cofactor requirements, and the nature of the active site i.c. presence of amino acid in the catalytic site of an enzyme⁵²⁶. Most of the alkaline proteases are found to be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphate (DFP) which was due to binding and subsequent inhibition of active site and it results in the complete loss of catalytic activity of proteases⁵²⁷. Further, 4-pBpB and IAA are responsible for binding to the histidine and cysteine residues respectively in the active site and that leads to inhibition of proteases **Sudhir K Rai**

activity³⁰. N α -Tosyl-L-lysine chloromethyl ketone hydrochloride (TLCK) and N α -Tosyl-L-Phenylalanine Chloromethyl Ketone (TPCK) are mainly used to characterize trypsin and chymotrypsin nature of alkaline protease and alkaline serine protease. Three dimensional structures of proteases mainly depend on the presence of sulphur containing amino acids and disulphide bonds. To classify the proteases belonging to cysteine protease family, iodoacetic acid (IAA) and dithiothreitol (DTT) are mainly used for categorization of protease family. Based on the inhibitor study, it appears that all purified/ partially purified proteases have similar catalytic domain, formed by the catalytic triad of serine, histidine and cysteine residues for enzyme-catalyzed reactions.

Due to the presence of different types of surfactants in any heavy duty laundry detergent, incorporating an enzyme in the detergent becomes a difficult task for the manufacturing industries⁵²⁸. To overcome this problem, it is important to investigate the surfactant stability of any protease in order to include it in commercial laundry detergent formulation.

Considering above criteria, we have investigated the effect of surfactants on all purified/partially purified alkaline protease. Inhibitors study illustrated that all the purified / partially purified proteases were unaffected by chelating agents. Moreover, the purified enzymes were found to be stable in both anionic and non-ionic surfactants, oxidizing and bleaching agents. These findings in this study were similar with previously reported surfactant stable proteases isolated from different species of *Bacillus* as shown in Table 11.16.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

ŧ

603

Chapter 11

 Table 11.16 A comparative study of effect of different surfactants, oxidizing and bleaching agen t's on purified alkaline proteases.

	Surfactants, oxidizing and bleaching agent						References		
Strains			(% residual activity)						
	SDS	Triton-X-	4.	Twe	en		H ₂ O ₂	sodium	_ `
	100				perborate				
		-	20	40	60	80			
B. mojavensis	100	100	131	100	141	150	154.0	100.0	Beg and Gupta, ¹²⁶
Bacillus ps e udofirmus	110.0	11.0	-	-	-	99.0	-	-	Patel <i>et al</i> ²⁰⁹ .
B.cereus MCM B-326	0.72	-	-	-	-	79.64	121.91	62.30	Nilegaonkar <i>et</i> al ²³⁷
<i>B. licheniformis</i> RSP-09-37	91.0	108	-	-	-	-	-	-	Sareen and Mishra ³⁰⁶
Bacillus cereus TKU006	100	71.0	61.0	60	-	-	-	-	Wang <i>et al²³⁴</i>

<u>Sudhir K Rai</u>

Strains		Surfactants, oxidizing and bleaching agent (% residual activity)							References
. –	SDS	Triton-X-		Twe	en	**	H ₂ O ₂	sodium	 *-
		100	20	40	60	80		perborate	
Bacillus sp. HR-08	54.0	91.0	-	-	-	-	109.0	-	Moradian <i>et al²³⁶</i>
B.mojavensis A21	91.0	85.0	-	-	-	100.0	79.4	70.0	Haddar <i>et al⁹⁶</i>
B.circulans	75.0	- 115.0	120.0	-	-	• <u>-</u>	105.0	-	Rao <i>et al</i> ³⁰⁸
Bacillus mojavensis A21 (BM-01)	93.2	80.0	-	-	-	92.5	76.2	77.0	-do-
<i>Bacillus</i> sp. B001	101.0	110.0	112.0	-	-	111.0	99.0	N.T	Deng et al ³¹⁰

strains			Surfactar	nts, oxidiz	ing and b	leaching ag	ent		References
				(% resid	dual activ	ity)			
-	SDS	Triton-X-	Tween				H ₂ O ₂	sodium	-
		100	20	. 40	60	80		perborate	
Bsubap-I (<i>B.subtilis</i>	97.0	100.0	95.1			<u> </u>	100.0	110.0	Present study
M-04) .	-				*			-	
lzwiprase (<i>B.subtilis</i>	97.6	100.0	95.1	-	-	95.1	130.0	122.0	-do-
0M-04)									
e.tezpurensis sp.nov.	102.0	72.3	80.2	-	-	-	130.0	119.0	-do-
train AS-S24-II	-				•			•	
alkaline protease)									
.subtilis RM-01	100.0	87.4	82.9	-	-	100.0	110.0	108.0	-do-
Alkaline β-									
eratinase)									

PhD Thesis, Tezpur University, 2010

606

.

Strains	Surfactants, oxidizing and bleaching agent								References
				(% resid	lual activit	y)			
- 	SDS	Triton-X-	Tween				H ₂ O ₂	sodium	-
_		100	20	40	60	80	-	perborate	
Brevicarnase	110.0	100.0	125.0	99.0	95.0	_	112.0	112.0	-do-
(Brevibacillus sp. AS-									
S10-II)				-				-	
Alkarnase	113.0	100.0	125.0	99.0	95.0	-	109.0	102.0	-do-
(B.lichenformis AS-									
S24-I)				•				•	

11.8.5 Effect of metal ions on protease activity

Many enzymes incorporate divalent cations and transition metal ions within their structures to stabilize the folded conformation of the protein⁵²⁹⁻⁵³¹. The commercial laundry detergent contains metal chelators as important ingredient to remove metal ions and decreases water hardness. The chelating agents also assist in stain removing property from fabrics¹⁹⁵. Therefore, alkaline proteases with alkaline pH and non-metallic nature (metal-ion independent alkaline protease) are best for commercial laundry detergent formulations.

Considering the importance of the present study, we have examined the effect of metal ions on the proteolytic activity of the purified protease. Results demonstrated that Fe^{2+} ion stimulated the protease activity of Busbap-1 and Alzwiprase, whereas all other purified / partially purified proteases displayed no specificity for any tested metal ions suggesting their non-metalloprotease nature. But in all purified/ partially purified proteases there was no significant increase in the protease activity in presence of Ca²⁺ and Mg²⁺. Since water hardness depends on the presence of Ca²⁺ and Mg²⁺, these enzymes were found to be applicable in laundry detergent formulations. Assessment of present data with the reported alkaline proteases reported tilldate are metal dependent in nature especially for Ca²⁺ and Mg²⁺ as shown in Table 11.17.

<u>Sudhir K Rai</u>

Table 11.17 A comparison of influence of metal ions on purified / partially purified proteases in the present study with protease purified by other workers.

Strains	Metal ions dependency	References
Bacillus sp. PS719	Ca ²⁺	Towatana et al ⁶³²
Bacillus brevis	Ca²⁺ and Na⁺	Banerjee <i>et al⁵³³</i>
Bacillus sp. RGR-14	Mn ²⁺	Oberoi <i>et al¹⁹⁵⁻</i>
B.subtilis PE-11	Ca ²⁺ , Mg ²⁺ , and Mn ²⁺	Adinarayana <i>et al</i> ¹³⁴
Bacillus sp. HR-08 and KR-8102	Fe ²⁺	Moradian <i>et al²³⁶</i>
B. mojavensis A21	Ca ²⁺	Haddar <i>et al⁹⁶</i>
Bacillus cereus	Cu ²⁺	Doddapaneni <i>et al</i> ¹³¹
B. cereus SV1	Ca ²⁺ and Mg ²⁺	Manni <i>et al⁴⁷³</i>
B.subtilis DM-04 (Bsubap-I)	Fe ²⁺	Present study
B.subtilis DM-04 (Alzwiprase)	Fe ²⁺	-do-

<u>Sudhir K Rai</u>

Metal ions dependency	References	
No significant effect was observed	do-	
Fe ²⁺	-do-	
Non of the metal ions stimulated the protease activity	-do-	
-do-	-do-	
-do-	-do-	
	No significant effect was observed Fe ²⁺ Non of the metal ions stimulated the protease activity -do-	

PhD Thesis, Tezpur University, 2010

610

11.8.6 Kinetic study of purified / partially purified proteases

Enzymes display enormous catalytic power, accelerating reaction rates as much 'as 10¹⁶ over uncatalyzed levels, which is far greater than any synthetic catalysts can achieve, and enzymes accomplish these astounding feats in dilute aqueous solutions under mild conditions of temperature and pH⁵³⁴.

Kinetics is the branch of science concerned with the rates of chemical reactions. The study of enzyme kinetics addresses the biological roles of enzymatic catalysts and how they accomplish their remarkable feats. In enzyme kinetics, we seek to determine the maximum reaction velocity that the enzyme can attain and its binding affinities for substrates and inhibitors^{390,534}. Coupling with studies on the structure and chemistry of the enzyme, analysis of the enzymatic rate under different reaction conditions yields insights regarding the enzyme's mechanism of catalytic action ^{390,534}. Such information is essential to an overall understanding of metabolism.

The Michaelis-Menton equation, both in its original form and as modified by Briggs and Haldane, is derived with respect to a singlesubstrate enzyme-catalyzed reaction with one substrate-binding site per enzyme and involving the formation of a single intermediate complex³⁹⁰. The Michaelis-Menton equation has been found to be applicable to a great many enzyme-catalyzed reactions, and the constants V_{max} and K_m determined. V_{max} varies with the total concentration of enzyme present, but Km is independent of enzyme concentration and is characteristic of the system being investigated^{390,534}.

Understanding the significances of K_m and V_{max} values, we have characterized these kinetic properties for all the purified / partially purified protease with reference to best substrates for each protease; and all proteases in this study have demonstrated lower K_m values and <u>Sudhir K Rai</u>

higher V_{max} values. A comparison of kinetic values of purified proteases with previously reported proteases from *Bacillus* species is shown in Table 11.18.

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

.

Table 11.18 A comparison of kinetic properties of purified/ partially purified protease in the present with the reported proteases purified from *Bacillus* species.

Strains		Kinetics	References
—	K _m (mg /ml)	V _{max}	
Bacillus sp. SCB-3	0.17	1047.2 (U)	Lee et al ³¹⁶
Bacillus pseudofirmus	2.0	289.8 µg / min	Gupta <i>et al</i> ¹³⁰
<i>Bacillus</i> sp. TKU004	2.98	0.14 U/ml	Wang <i>et al²²⁰</i>
Vibrio fluvialis TKU005	2.21	0.26 U/ml	Wang <i>et al²⁰³</i>
Salinivibrio sp. strain AF-2004	1.4	264 U/mg	Heidari <i>et al²⁰¹</i>
<i>B.subtilis</i> DM-04 (Bsubap-I)	6.5	320.0 ± 16.0 (µmol /min/mg)	Present study
<i>B.subtilis</i> DM-04 (Alzwiprase)	5.9	333.0 ± 16.7 (µmol /min/mg)	-do-
P.tezpurensis sp.nov. AS-S24-II	2.27	25.0 ±1.24 (µmol /min/mg)	-do-
<i>B.subtilis</i> RM-01 (Alkaline β-keratinase)	5.0	1.25 ± 0.063 (µmol /min/mg)	-do-
Bacillus sp. AS-S20-I	0.16	20.0 ± 0.4 (µmol /min/mg)	-do-
(Brevicarnase) Brevibacillus sp. AS-S10-II	0.16	33.3 ± 1.66 (µmol /min/mg)	-do-
(Alkarnase) B.licheniformis AS-S24-l	0.1	100 (µmol /min/mg)	-do-

<u>Sudhir K Rai</u>

11.8.7 Substrates specificity study of alkaline proteases

Alkaline proteases are ubiquitous in occurrence and constitute an important group of enzymes with diverse functions while sharing similar mechanism of catalysis. Their ability to hydrolyse proteins with varying specificities in a broad range of conditions renders them suitable for a number of industrial applications, such as detergent additives, leather tanning, production of protein hydrolysates, etc^{6,7, 535}. Some of the microbial alkaline proteases are also able to hydrolyse insoluble proteins like keratin and elastin, which allow the production of value added products from renewable wastes like feathers^{498,535}. Considering the important aspects of substrate specificity, the present study shows that the purified / partially purified alkaline proteases from bacterial strains isolated from soil samples of NE India exhibit board range specificity for insoluble and soluble proteinous substrates but with different rates of degradation which is advantageous for various industries. According to Beynon and Bond³⁰, specificity for different substrates by proteases is due to the limited proteolysis when a native protein is attacked by a protease under typical reaction conditions, not all the potential hydrolytic sites in a folded, native protein structure are cleaved and therefore, the proteolysis must be limited by higher-order structural phenomena. In many cases, only one or two bonds are cleaved over a few hours of incubation and sometimes no digestion can be measured over the limited time scale of the experiment. This defines the sequence-structure paradigm of limited proteolysis and several studies have been undertaken to discover those structural features that are responsible for limiting reaction.

Thermophilic bacteria are used in the decomposition of these hard-todegrade animal proteins because in the elevated temperature range where thermophilic bacteria grow, such proteins tend to gain plasticity, resulting in more susceptibility to protease attack⁵³⁷. In the present study, alkaline β -keratinase producing thermophilic strain *B.subtilis* RM-01 demonstrated specificity for insoluble and hard-to-degrade animal proteins such as raw chicken feather keratin than human hair ,nail etc. This specificity may be due to the tight arrangement of protein chains in α -helices and β -sheets, respectively in human hairs than raw chicken feather keratin^{31,537}. Furthermore, filament structures are *Sudhir K Rai*

stabilized by their high degree of cross-linking of disulfide bonds, hydrophobic interactions, and hydrogen bonds ^{328,537.}

A survey of literature shows that most of the proteases belong to the subtilisin family of serine proteases and cysteine protease, have higher activity on casein⁵³⁸ and it is because of higher similar arrangement of catalytic triad of histidine, aspartate and serine residues in radically different α/β and β/β protein scaffolds³⁴.

11.8.8 Effect of organic solvents on protease activity

Proteases in organic synthesis have attracted a great deal of attention in recent years⁵³⁹. Under normal aqueous conditions, proteases catalyze the hydrolysis reaction, but the reverse actions of proteases have been found in water-restricted media such as synthesis of peptides and esters^{540,541}. There are a great many advantages associated with the application of enzymes to organic synthesis including enantioselectivity, specificity, non-hazardous reaction conditions and so on^{167,542}. These approaches require enzymes that are stable in the presence of organic solvents, but enzymes are generally very labile catalysts and easily lose their activities in non-aqueous media. Several current techniques such as medium engineering, substrate engineering and protein engineering have been attempted to improve enzymes for synthesis in organic solvent^{167,539}. However, if enzymes were naturally stable and active in hostile environments, they would be very useful for organic synthesis.

Recently, solvent-tolerant bacteria as a relatively novel group of extremophilic microorganisms with unique ability to live in presence of organic solvents have attracted great attention of many researchers throughout the world. Some of these microbes have been found to be sources of solvent-stable, enzymes, but only limited reports are available in the literature concerning the organic solvent-stable protease¹⁷⁰⁻¹⁷³. Considering the present requirement, we have explored the organic –solvent stability property of all isolated in the present study. Maximum stability was observed in presence of n-hexane and least stability was observed in presence benzene. Variation in organic <u>Sudhir K Rai</u>

solvent stability may be assumed by the way in which solvents affect enzymatic activity i.e., interact directly with the essential water surrounding the enzyme molecule. Highly polar solvents are capable of rapidly absorbing the essential water molecule surrounding the enzyme, entailing the loss of its catalytic properties⁵⁴³. Generally, the enzymatic activity is low in polar solvents with log P < 2, is moderate in solvents with log P = 2-4, and is high in polar solvents with log $P > 4^{173,543,544}$. The organic solvent-stable PST-01 protease from Pseudomonas aeruginosa demonstrated presence of disulfide bonds in enzyme molecule which in turn is supposed to play an important role in the organic solvent stability of the protease^{170,545} In the present study, proteases are found to contain disulfide bonds (because their activity was reduced in presence of DTT) and exerted organic solvent stability and therefore, reinforces the role of intramolecular disulfide bonds in maintaining the protease stability in presence of organic solvents.

11.8.9 Pharmacological properties of proteases

In their raw state, proteases from bacterial/fungal origin causes allergic reactions in the lung⁵⁴⁶. Proteolytic enzymes also cause irritation to skin, eyes and the respiratory tract. For 40 years, encapsulated enzymes have been used worldwide in detergent products, especially laundry formulations, and have increasing importance due to biodegradability and functionality at low temperatures, thus offering environmental benefits. However, many scientists have suggested that the inclusion of enzymes in such products leads to adverse skin reactions, including erythema, pruritus and exacerbation of eczema⁵⁴⁶. Therefore, in order to develop safer commercial laundry detergent formulation or for other biotechnological applications, it is extremely important to explore the pharmacological properties and toxicity of the isolated protease. It is worthy to mention that, all purified protease in the present study displayed no toxicity level at 2.5 fold higher concentration than the tested concentration for detergent compatibility and wash performance study, suggesting their suitability for incorporation in commercial laundry detergent formulations. Due to lack of reports on pharmacological properties of alkaline proteases, no comparison could be made with the present results.

<u>Sudhir K Rai</u>

11.9 Industrial applications of purified / partially purified proteases Alkaline proteases account for a major share of the enzyme market all over the world^{6,11,18,19}. On the basis of biochemical and pharmacological properties of purified / partially purified proteases, we have explored the possible industrial applications of all proteases, for example their application in laundry detergent, leather, and pharmaceutical industries. Present study demonstrated that all purified proteases lack milk -clotting activity. It might be due to alkaline nature of all purified proteases, because all reported milk-clotting proteases work in low pH range and they belongs to a class of aspartic protease⁵⁴⁷.

11.9.1 In vitro blood clot lysis study

Since intravascular thrombosis due to fibrin aggregation in arteries is one of the main causes of cardiovascular diseases, a number of thrombolytic agents, such as streptokinase, urokinase, tissue-type plasminogen activator (t-PA), and single-chain urokinase-type plasminogen activator (scu-PA), have been developed for therapeutic use^{335,548}. Of these, the first-generation fibrinolytic agents such as streptokinase and urokinase can mediate unwanted side reactions. For instance, both deplete plasminogen within the thrombus, converting plasminogen to plasmin⁵⁵⁰. Streptokinase circulating is also immunogenic as a result of which its use results in drug resistance, fever, and allergic reactions³³⁵. Second-generation agents such as t-PA and scu-PA are fibrin specific; however, they not only decrease the levels of circulating fibrinogen and plasminogen but also increase the risk of intracranial hemorrhage^{550,551}. These limitations have prompted the scientists to develop third-generation thrombolytic agents⁵⁵² that are either conjugates of t-PAs with monoclonal antibodies against fibrin, platelets, and thrombomodulin or chimeric plasminogen activators.

In addition, novel molecules from animal or bacterial origin possessing direct (plasmin like) fibrinolytic activity are screened for their thrombolytic activities^{551,552}. Several microbial serine proteases with direct fibrinolytic activity have been considered as therapeutic agents, and traditional fermented foods in Asia have been identified as effective sources of such thrombolytic agents. A strong direct-acting fibrinolytic enzyme (subtilisin NAT) originating from a *Bacillus subtilis* present in *Sudhir K Rai*

Natto, a Japanese fermented soybean product, has been purified and studied extensively⁵⁴⁸.

Considering the above drawbacks of presently available fibrinolytic and thrombolytic drugs, we examined the fibrin (ogen)lytic properties of partially purified alkaline protease from Bacillus sp. strain AS-S20-I isolated from soil samples of North east India. Based on biochemical and pharmacological properties of partially purified protease their mode of action on fibrin/fibrinogen was analyzed. According to their mechanism of action, direct fibrinolytic enzymes are usually classified into a-fibrinogenase, a based on specificity towards Aa-chain of fibrinogen and β-fibrinogenase, based on specificity towards Bβ- chains of fibrinogen. The fibrinolytic enzymes from Bacillus sp. strain AS-S20-I was identified to cleave the β-chain of fibrinogen and hence it may be called as ß-fibrinogenase^{553,554}. The fibrinolytic pattern of the isolated proteases differed from some other reported proteases in terms of their fibrinogenolytic pattern. FP84 is reported to degrade the Bβ-chains and slowly released y-chain of fibrinogen³⁴⁷, and fibrinolytic serine protease from Bacillus subtilis DC33 is found to preferentially degrades Aqchains followed by BB- and y-chains of fibrinogen³³⁶. A comparison of the fibrinolytic activities of the isolated protease showed that isolated proteases showed stronger fibrinolytic activity than earlier reported fibrinolytic proteases. These results indicated that proteases have strong proteolytic action on fibrin and thus suitable for thrombolytic therapy, and may also be used to prevent the formation of venous blood clots and treatment of cancer^{548,553}. In support of above results, the fibrinolytic activity / caseinolytic activity (F/C) ratio and kinetic study for fibrin substrate (K_m and V_{max}) of partially purified protease from Bacillus sp. strain AS-S20-I displayed higher F/C ratio and Km and Vmax as compare with other reported fibrinolytic protease from Bacillus species as represented in Table 11.19 and Table 11.20. Further, directacting fibrinolytic proteases degrade fibrin clot similar to that of plasmin, and therefore, it is advantageous as compared to streptokinase & urokinase. Because of its direct fibrinolytic nature, these enzymes do not require the activation of plasminogen to active plasmin, thereby eliminating the severe concern such as associated with plasminogen

<u>Sudhir K Rai</u>

activation as platelet activation and depletion of several other clotting factors⁵⁴⁸.

Table	11.19	Comparison	of	fibrinolytic	1	casinolytic	(F/C)	ratio	of
Bacillu	s sp sti	ain AS-S20-I	with	n other repo	rte	d strains			

Protease	Caseinolytic	Fibrinolytic	F/C %	References
	activity	activity		
Bacillus sp. strain	257	352	73.0	Kim <i>et al⁵⁵⁵</i>
CK 11-4			(40.0)	
B. licheniformis	423	41	9.7	
(type VIII)			(5.2)	
Subtilisin BPN'	438	142	32.4	
(type XXVII)			(17.5)	
В.	72	138 [·]	1.92	Peng et
amyloliquefaciens			(1.04)	al ⁵⁵⁶
DC-4				
Bacillus sp. nov.	59	110	1.86	Hua <i>et al⁵⁵⁷</i>
SK006	1	,	(1.0)	
Staphylococcus	57.70	59.92	1.03	Choi <i>et al</i> ⁵⁵⁸
strain AJ	•	•	(0.55)	
Subtilisin BPN'	102.62	53.36	0.52	-do-
from <i>B</i> .			(0.28)	
amyloliquefaciens				
Subtilisin	131.56	38.12	0.27	-do-
Carlsberg			(0.15)	
from B.				
licheniformis				
<i>Bacillus</i> sp. strain	3830.0	7100.0	185.0	Present
AS-S20-I			(100)	study

Table 11.20 Comparison of K_m and V_{max} of partially purified protease from *Bacillus* sp strain AS-S20-I with other reported strains

Protease	Km	Vmax	References
Rhizopus	0.226 mM	4.023 x 10 ⁻⁴ mM/s	Xiao-lan <i>et al⁵⁵⁹</i>
chinensis 12			
Bacillus subtilis	0.21 mM	22.2 µmol/ min/ l	Wang <i>et al³³⁶</i>
DC33			

<u>Sudhir K Rai</u>

Chapter 11

Protease	Km	Vmax	References
Bacillus subtilis	259.0 µM	145.0 µmol mg ⁻¹	Kim <i>et al³³⁵</i>
TP-6		min ⁻¹	
Bacillus subtilis	0.521 mmol/L	0.049 mmol/min	Wang <i>et al</i> ³⁴¹
LD-8547			
<i>Bacillus</i> sp.	0.45 µM	39.30 nmol/	Hua <i>et al⁵⁵⁷</i>
nov. SK006		min/ml	
Staphylococcus	0.38 mM	19.73 s ⁻¹	Choi <i>et al⁵⁵⁸</i>
strain AJ			
Streptomyces	4.2 mg/ml	305.8 mg/min/mg	Simkhada <i>et</i>
sp. CS684			al ³⁴⁷
Bacillus sp.	0.2 mg / ml	25.0 µmol / min /	Present study
strain AS-S20-I		mg	

<u>Sudhir K Rai</u>

11.9.2 Alkaline proteases: a green chemical

Cleanliness has been an important consideration for human beings from time immemorial, but the relation between personal and environmental cleanliness is a less obvious one. Soap making dates back to about 1500 BC, the earliest records indicate that a combination of animal and vegetable oils with alkaline salts was used to form a soap-like material. In ancient India too, people used soap preparations made from plant or animal fats⁵⁶⁰. Modern technology has provided synthetic detergents that have slowly replaced soaps. The first detergents were used chiefly for hand dishwashing and fine fabric laundering. This was followed by the development of all-purpose laundry detergents introduced in the U.S. in 1946⁵⁶⁰.

Detergents are household chemical cleaning compounds used for laundering and dishwashing. They contain wetting agents and emulsifiers, based on non-soap synthetic surfactants. Synthetic detergent powders consist of surface-active agents, builders and fillers⁵⁶¹. In addition they have additives like anti re-deposition agents, optical fibre brighteners (whitening agents), bluing agents, bleaching agents, foam regulators, organic sequestering agents, enzymes, perfumers, and substances that regulate the density and assure crispness of the material they are used on (Table 11.21).

<u>Sudhir K Rai</u>

Table 11.21 General composition of detergents for laundry and dish-washing

Raw materials	Function in general Types of compounds		Contents (w/w %)	
		-	Laundry	Dishwash
Builders	Washing alkalis Water softening	Phosphates (sodium triphosphates Na-citrates	30-60	10-40
	Buffer action stabilizers Corrosion	Zeolites Soda Silicates Complex formers (NTA,		
	protectioņ	etc.)		-
Surfactants	Emulsify particle interfacial activity	Surfactants : Anionics Cationics Nonionic	10-30	1-4
	reduce surface tension			
	•	·		• '
Soap	Prevents overfoaming in the	Soap	1-5	0
	machine			
Bleach –as	Oxidize polyphenolics form e.g.,	Na-perborates Na-percarbonates Activators	0.25	4.15
peroxygen /	fruits, coffee,tea,wine and	(TAED,etc.)		
activator	vegetables			

<u>Sudhir K Rai</u>

Raw materials	Function in general	Types of compounds	Contents	s (w/w %)	
		· · · · · · · · · · · · · · · · · · ·	Laundry	Dishwash	
Enzymes	Removal of starch -based stains	Amylases	0.4-1.0	1.0-3.0	
	Removal of protein complexes	Proteases	0.4-2.0	0.5-2.0	
	Removal of fat stains Textile color	~ Lipases	0.2-1.0	0.5	
	brightening, softening, soil, removal , whiteness maintenance	Cellulases	1.0-3.0	0	
Salt	Process aid to promote flow and loading properties (powders)	Na-sulfate	Balance to 100	Balance to 100	
Perfume	To add a pleasant smell to the fabric	Various esters	0.1-0.5	0-0.1	
Other organics	Graying inhibitors	Carboxyl methyl Cellulose	0.5-5.0	0-1.0	
	Optical brighter ners	Polycarboxylates			
	Solvents	Alcohols			

<u>Sudhir K Rai</u>

A study conducted to understand the Indian consumers knowledge of harmful effects of detergents on health and environment, showed that 77.6 percent of respondents had experienced some kinds of skin irritation due to detergents. Of these the majority comprised of dhobis (Washermen) and rural women. Conventional laundry detergents leave chemical residues on the clothes⁵⁶⁰. These residues enter our bodies either through the skin or through the lungs. They cause many common health problems including allergies, skin infections and in rare cases, cancer. The fragrances used in laundry detergents can prove allergic and be highly irritating to lungs, causing serious health effects to people with asthma or chronic heart problems⁵⁶⁰. The usual result of a continuous and excessive exposure of the skin to detergents is drying, fissuring and dotting of the keratin layer leading to increased permeability that causes sensitization, which may develop into dermatitis. Elderly people are more susceptible to infections that may lead to developing eczema⁵⁶⁰.

11.9.2.1 Laundry detergents consumption in India

Most laundry detergents in India are phosphate based. Phosphates are a major source of water pollution that has become the direct cause of 42 per cent of human and animal diseases. In India, per capita consumption of detergents in 1994 was 2.8 kg per annum. This is projected to rise to over 4 kg/capita by 2005. In rural areas the use of detergent bars is expected to grow 7-8 per cent annually. The figures are of concern because high quality detergents have as much as 35 per cent sewage treatment plant (STP) in them. The main problem is that of phosphate-based detergents promote eurtrophication of aquatic environments. Eutrophication or nutrient pollution is a process by which water bodies gradually age and become more productive. Any natural process like this might take thousands of years to progress but human activities accelerate this process tremendously. Sewage perhaps is a particular source of phosphorus when detergents containing large amounts of phosphates are drained during washing. The algal boom leads to consumption of the oxygen dissolved in water, creating hypoxic, and at times, near anoxic situation. This can lead to excessive eutrophication that kills the fish, cause odour and increase pathogenic animals.

<u>Sudhir K Rai</u>

11.9.2.2 Better options – Alkaline protease based cleaning powders

An environmentally superior detergent is the one that makes use of lesser chemical ingredients. The toxicity of detergents decreases by non-addition of additives like perfumes, colour and brightening agents. Minimal packaging can also reduce environmental harm substantially. Proteolytic enzymes function to degrade protein dirt such as egg, blood and gravy. Proteins are often denatured and aggregated by the washing process. The addition of proteolytic enzymes active under washing conditions greatly facilitates the degradation and subsequent removal of stubborn stains^{11, 46,502}.

Proteolytic enzymes incorporated into detergent formulations exhibit satisfactory catalytic activities in the presence of other detergents components and under standard washing conditions. Considering above mentioned drawbacks of available laundry detergents and present –day requirements, the present study offers highly stable purified / partially purified alkaline protease exhibiting stability against surfactant, oxidizing, bleaching and denaturing agents, working at a broad range of temperature and pH and ideal for incorporation in detergents (section 11.9.2, Table 11.21). The detergent compatibility properties of all purified / partially purified proteases demonstrated higher detergent compatibility than the reported alkaline proteases from other species of *Bacillus* as shown in Table 11.22.

<u>Sudhir K Rai</u>

Table 11.22 A comparison of detergent compatibility properties ofpurified / partially purified protease with previously reported proteases.

Micro-	Detergent stability (In %)	References
organisms		
<i>Bacillus</i> sp.	Rin supreme® (93.0) > Nirma ® (90.0) > Surf (ultra) ® (88.0) > Ariel® (87.0) > Surf (wash booster) ® (85.0) > Wheel® (68.0)	Oberoi et al ¹⁹⁵
B.clausii I-52	Hanspoon® (140.0) > Spark® (129.0) > Bright® (122.4) > Supertie® (118.9)	Joo and chang ¹⁸⁷
B.mojavensis A21	Axion®= Ariel®= Nadhif® (100.0)> New Det® (90.0)	Haddar <i>et</i> <i>al⁹⁶</i>
B.mojavensis	Revel® (143.0) > Wheel® (130.0) > Nirma® (¹ 116.0) > Feħa® (109.0) > Ariel® = Henko® = Rin® = Surf ®= Tide® (100.0)	Beg and Gupta ¹²⁶
B. <i>laterosporus</i> - AK1	Ariel® (75.0) > Henko® (63.0) > Surf excel ® (43.0) > Tide® (38.0)	Arulmani <i>et</i> al ³¹²
Bacillus subtilis PE-11	Wheel® (65.0) > Henko® = Nirma® (58.0) > Surf Excel® (56.0) > Rin® (53.0) > Ariel® (52.0) > Surf® (51.0)	Adinarayana <i>et al¹³⁴</i>
B. circulans	Rin® (115.0) > Henko® (105.0) > Super wheel® (95.0) > Ariel® = Surf excel® (94.0) >Nirma® (93.0) > Surf® (85.0)	Rao <i>et al³⁰⁸</i>
<i>Bacillus</i> sp.	Tide® (80.0) > Cheer® (65.0) >Revel® (16.0) > Ariel® (11.4) > Wheel® (6.6)	Nascimento and Martins ⁵⁶²
Bacillus licheniformis NH1	New Dex® (96.0) > Axion® (95.0) > Dixan® (93.0)> Schems® = Ariel® (80.0) > Nadhif® (64.0)	Hadj-Ali et al ⁵⁶³
Haloalkaliphilic bacterium sp. AH-6	Wheel® (88.0) > Aerial® (86.0) >	Dodia <i>et</i> al ⁵⁶⁴

<u>Sudhir K Rai</u>

Chapter 11

Micro-	Detergent stability (In %)	References
organisms		
Bacillus	Henko® (185.0) > Ariel® = Nirma® =	Rajput et
pumilus KS12 ຸ	Wheel® (183.0) >Fena® = Rin® (180)>	al ⁵⁶⁵
	Tide ® (179.0) > Surf® (160.0)	
B.subtilis DM-	Ghari® (120.0) > Rin advanced® =	Present
04 (Bsubap-I)	Safed® (99.0) > Surf excel® (79.0) >	study
	Fena Ultra® (67.0) > Wheel®= Tide®	
	(65.0) > Sunlight® = Ariel® (58.0) >	
	Henko® (55.0)	
B.subtilis DM-	Ghari® = Rin advanced® (118.0) >	-do-
04	Safed® (115.0) > Surf excel® = Fena	
(Alzwiprase)	Ultra® = Wheel ® (100.0) > Tide® =	
	Sunlight® (98.0) > Henko® (95.0) >	
	Ariel® (92.0)	
P.tezpurensis	Sunlight® = Safed® (115.0) > Henko®	-do-
sp.nov. AS-	= Ariel® (99.0) > Wheel ® = Tide®=	
S24-II	Surf excel® (97.0) > Fena Ultra®	
	(95.0)	
B.subtilis RM-	Rin advanced® (115.0) > Ghari®	-do-
01 (Alkaline β-	(105.0) > Henko® = Sunlight® (100.0)	
keratinase)	> Surf excel® = Fena Ultra®= Tide®	
	(99.0) > Safed® (97.0) > Wheel ®	
	(96.0) > Ariel® (94.0)	
•	Safed® =Surf excel®=Sunlight®	-do-
AS-S20-I	(100.0) > Ghari® (98.0) > Rin	
ł	advanced® (95.0) > Wheel® (82.0) >	
	Tide® (80.0) > Fena Ultra® (78.0) >	
	Henko® = Ariel® (67.0)	
(Brevicarnase)	Honko (150 0) > $Pin otherood =$	da
(Brevibacillus	Henko® (159.0) > Rin advanced® = Safed@ (118.0) > Fana Litra® (115.0) >	-do-
sp. AS-S10-II	Safed® (118.0)> Fena Ultra® (115.0) > Surf excel® ≈Ghari® (100.0)>Ariel®	
op. //o-010-11	(98.0) >Sunlight® (95.0) >Tide® (82.0)	
	>Wheel® (80.0)	

<u>Sudhir K Rai</u>

Micro-	Detergent stability (In %)	References	
organisms			
(Alkarnase)	Henko (120.0)> Sunlight = Surf excel =	-do-	
B.licheniformis	Fena Ultra = Wheel = Rin advanced =		
AS-S24-I	Safed ≈ Ariel (100.0) > Ghari (97.0)		

Present study reinforces the use of alkaline protease based detergent as 'green detergents' that do not contain non-essential additives like perfumes, colour and brightening agents in minimal packaging will go a long way in ensuring a cleaner and healthier environment.

11.9.3 Antibacterial study

Antimicrobial peptides (AMPs) are usually synthesized by microorganisms as well as multicellular organisms, and they are part of the innate host defense mechanisms⁵⁶⁶. By their mode of production, AMPs fall into two categories; non-ribosomally synthesized peptides and ribosomally synthesized (natural) peptides. Whereas the first group is mostly produced by bacteria, the other is produced by all organisms including bacteria⁵⁶⁷. In another classification, electrostatic charge, the most important characteristic by which the action of AMPs is explained, is a trait that clusters AMPs into two main groups. The larger group consists of positively charged peptides, whereas the other group includes non-cationic peptides and it is divided into subgroups such as anionic peptides, aromatic peptides and peptides derived from oxygenbinding proteins⁵⁶⁸. Non-cationic peptides in comparison with the first group are scarce and very often in scientific texts, the term "antimicrobial peptide" only refers to cationic AMPs. The naturally derived AMPs are divided into peptides with β-sheet, α-helix, extended helix and loop structures; and among them the first two groups are more abundant in nature569.

Mechanism of action for many of antimicrobial peptides (AMPs), including cecropin A, several defensins and magainins was investigated^{570,571}. The killing mechanism found for most peptides investigated consists of attacks on the outer and inner membranes, ultimately resulting in lysis of the bacteria. Channel formation in artificial <u>Sudhir K Rai</u>

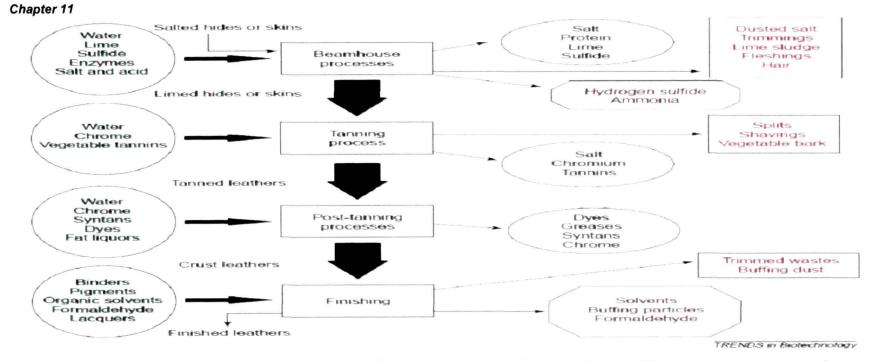
membranes was demonstrated for cecropins, defensins and magainins⁵⁷². Proline-arginine rich peptides, however, act differently, because the high concentration of proline is incompatible with amphipathic structure formation.

Extensive use of antibiotics in animal husbandry as therapeutics or growth promoters is widespread⁵⁷³.Treatment of animals with antibiotics leads to antibiotic residue problems in veterinary products and possible transmission of antibiotic-resistant microbes to humans⁵⁷⁴. Due to the above-mentioned concerns and expectations, AMPs are suitable candidates applicable various fields. They are ubiquitous in nature, with high selectivity against target organisms and resistance against them is rarely observed⁵⁷⁵. Considerations such as increase in potency of antipathogen activity, reduction of their hemolytic effect or inhibition of their degradation by host protease, persuade scientists to use analog peptides or derivatives of the original AMPs that could be created by amino acid alterations⁵⁷⁶.

On the basis of above limitation of commercially available antimicrobial agents used in food industries, aquaculture, animal husbandry, and agriculture sectors, we have investigated the antibacterial properties of purified proteases. Antibacterial strength of Bsubap-I and Alzwiprase displayed the hydrolysis of peptidoglycon layer present in cell wall of Gram positive and Gram -negative class of bacteria. Peptidoglycon is a polymer of β (1-4)-linked N-acetylglucosamine and N-acetylmuramic acid (MurNAc) cross-linked by short peptides containing alternating Land D-amino acids⁵⁷⁷, killing of Gram-negative bacteria by AMPs likely involves an additional step because, in Gram-negative bacteria, peptidoglycan is not exposed on the cell surface since it is located underneath the lipopolysaccharide (LPS) containing outer membrane. Killing of Gram-negative bacteria most likely involves initial binding of AMPs⁵⁷⁸⁻⁵⁸⁰. In Gram-positive bacteria, the initial binding of AMPs to bacteria may, involve lipoteichoic acid (LTA), in addition to peptidoglycan, because LTA also inhibits killing of bacteria by AMPs^{579,581}

Sudhir K Rai

Considering its antibacterial, biochemical and pharmacological properties its safe application as preservative for preventing or slowing microbial growth which is, the major reason of spoilage and poisoning of food products is warranted. As compounds of natural origin compounds, AMPs are advantageous options for use as new preservatives to prevent the problems that are encountered due to irregular use of conventional antibiotics, AMPs should therefore be studied properly and prudently for future applications as preservatives.


11.9.4 Alkaline protease as dehairing agent in leather industries

The story of leather is long and colourful. Many years before recorded history people wrapped themselves in dried animal pelts⁵⁸². The fact that the skins turned stiff and rotted was a problem, but ways of softening and preserving the hides were discovered. This was the beginning of leather processing. At first the hides or skins were probably dried in air and sunlight. Later they may have been soaked in water and dried over a fire. Still later it was discovered that certain twigs, barks and leaves soaked with the hides in water helped to preserve them. Through archeologists findings, we know that primitive man used the skins of hunted animals for food as well as clothing. Nomadic tribes made shelters from the hides of larger animals, such as bison⁵⁸².

As civilization advanced, preserving hides and tanning them into leather became an important industry. In the 18th century tanning was an old and respectable trade and a tedious one. Nearly a year was spent manipulating a hide before it was delivered as leather to the saddle maker, harness maker or other craftsmen.

Present available conventional technology include several events during leather processing such as (a) pre-tanning or beam house operations, which clean the hides or skins; (b) tanning, which permanently stabilizes the skin or hide matrix; (c) post-tanning or finishing operations where aesthetic value is added¹⁷⁹. At each stage, various chemicals are used and a variety of materials are expelled into the environment (Fig.11.2).

<u>Sudhir K Rai</u>

631

Fig.11.2 Inflow and outflow diagram for leather processing. Temporarily preserved (salted) hides and skins are treated with variety of chemicals in a water medium, through a series of unit processes and operations, to produce leathers. This leads to a variety of solid (red text) and air (purple text) pollutants at various stages of processing.

<u>Sudhir K Rai</u>

Current practices of pre-tanning and tanning processes discharge enormous amount of pollutants, which account for nearly 90% of the total pollution from a tannery wastewater. This comprises sulphides, sulphates, chlorides and other minerals. Further, toxic gases such as hydrogen sulphide and ammonia and solid wastes such as lime sludge are generated during the pre-tanning process. Dehairing (liming) and fibre opening (re-liming) alone contribute to 60–70% of the total pollution load in leather processing. The main objectives of this process are the removal of hair and flesh and splitting of fibre bundles by chemical and physical means. These processes employ lime and sodium sulphide, which generate severe pollution loads as well as possess unfavourable consequence to the environment.

Undertaking the consequences of conventional technology, many places in India tanneries industries closed such as 400 tannery industries closed in Tamil nadu ordered by Apex court during 1996⁵⁸³. About 418 in Uttar Pradesh got shutdown due to the heavy release of effluents on the river Ganga and the UP govt., decided not open the new leather tannery in Jajmau suburb⁵⁸⁴.

The above mentioned drawbacks of conventional technology for leather processing and the restriction imposed by government on tannery industries in various states have promoted us to develop an ecofriendly, cheaper and cost-effective technology for sustainable development of society. The present study offers, matching standards for dehairing process using purified / partially purified proteases isolated from novel strains from North East India. In addition, no collagenolytic activity or minimum collagenase activity was observed in all purified proteases demonstrating the advantageous property for maintenance of skin texture during dehairing process.

All these properties supports the appropriate application of purified proteases in leather industry for dehairing process due to the following benefits : 1) significant reduction or complete elimination of the use of sodium sulfide, 2) total recovery of hair resulting good quality with good saleable value, and 3) creation of an ecologically conducive atmosphere for the workers. The chemical composition of fresh hides *Sudhir K Rai*

and skins falls approximately within the following limits: water 60- 65%; protein 25-30; fats 5-10% and small amounts of minerals^{179,585}.

The potential use of protease enzymes in leather processing eliminates the use of chemicals such as sodium, lime and solvents which are responsible for pollution. Future generation might witness eco-labelled leather products emerging as niche products by the use of protease enzyme technology and the experience gained by the Indian leather industry in this area might greatly help us to emerge as a global leaders.

11.9.5 MNP-coupled alkaline β -keratinase mediated chicken feather hydrolysis (solid waste) for development of eco-friendly environment

Biological solid waste let out by the by-product industries is a matter of concern for all of us. Keratinous waste like horns, feather, nails, hoofs, scales, and wool are increasingly accumulating in the environment generated from poultry and meat processing plants, slaughter houses, tanneries, and other industries. Horn meal is available in large quantities. Keratins are proteins that form hard fibres and are components of epidermal and skeletal tissues. Due to the higher degree of cross-linking by disulfide bridges, hydrogen bonds and hydrophobic interactions, keratin is insoluble and poorly susceptible to digestion by enzymes such as trypsin, pepsin, and papain^{586,587}. Keratin is the main component of feathers, representing nearly 90% of feather weight. Feather keratin shows an elevated content of the amino acids glycine, alanine, serine, cysteine and valine, but lower amounts of lysine, methionine and tryptophan^{588,589}. The feathers constitute up to 10% of total chicken weight, reaching more than 7.7×108 kg/year as a byproduct of the poultry industry. This excessive material is discarded in several cases, being a material of difficult degradation that may become an environmental problem. The feeding of biological waste to livestock is an accepted practice and has arisen because of the necessity to reduce costs both in terms of waste disposal and meat production from livestock 590.

<u>Sudhir K Rai</u>

Currently, some industries produce feather meal by steam pressure cooking, which require high-energy input. Feather meal has been used on a limited basis as an ingredient in animal feed, since it is deficient in methionine, histidine, and tryptophan^{591,592}. Although feather meal has potential to be an important protein source for animal production, it presents low digestibility and variable protein quality and nutrient bioavailability⁴⁴⁸. Considering that animal feeds correspond to a significant part of the poultry production cost, it is relevant to investigate alternatives to the most expensive dietary ingredients. Since feathers have elevated keratin content, the use of this protein source should be considered.

Keratinases are a particular class of proteolytic enzymes that display the capability of degrading insoluble keratin substrates^{593,594}. These enzymes are gaining importance in the last years, as several potential applications have been associated with the hydrolysis of keratinous substrates among other applications²⁹⁶. Unfortunately, its stability is poor and hence limits its practical applications⁵⁹⁵.

Immobilization is one of the efficient methods to improve enzyme stability. Many organic and inorganic substances have been used as the support materials. Using magnetic nanoparticles as the support of immobilized enzymes has the following advantages: (1) higher specific surface area was obtained for the binding of a larger amount of enzymes, (2) lower mass transfer resistance and less fouling, and (3) the immobilized enzymes can be selectively separated from a reaction mixture by the application of a magnetic field^{595,596}.

Magnetite (Fe3O4) is one of the major magnetic materials now in common use. Due to its strong magnetism and low toxicity, its applications in biotechnology and medicine have gained significant attention^{597,598}. Many bioactive substances, such as enzymes, proteins, antibodies, and anticancer agents, have been immobilized on it^{597,599-601}. The immobilization is commonly accomplished through a surface coating with polymers, the use of coupling agents or crosslinking reagents, and encapsulation.

<u>Sudhir K Rai</u>

Recently, a new method for the direct binding of proteins such as bovine serum albumin via carbodiimide activation was reported⁶⁰². This method is notable for its simplicity and high efficiency. The immobilization of alkaline keratinase on various supports has been investigated by several researchers⁶⁰³⁻⁶⁰⁵.

A large number of nano-scaled carriers have been applied in the enzyme immobilization process³³⁵. However, from an industrial perspective there are several disadvantages of this process owing to the difficulty experienced in recovering and handling the nanoparticles at industrial level. Alternatively, the use of magnetic nanoparticles (MNPs) might overcome such problems because the use of a magnet allows a simple recovery of the catalyst post binding with MNP. In addition, the use of MNP as a support to immobilize the enzymes has several advantages such as higher specific surface areas resulting in binding of a large amount of enzyme, lower mass transfer resistance and less fouling ³⁹⁷. It has been reported that amongst the MNPs, magnetite (Fe₃O₄) in particular has received a considerable attention particularly in the fields of biotechnology and medicine due to its strong magnetism and low toxicity⁶⁰⁶.

An attempt has made in present study for improvement of nutritional quality of feather meal using MNP-coupled β -keratinase. Iron-oxide MNP-immobilized β -keratinase produce would find applications in nutritional improvement of livestock feed formulation from chicken-feather. The observed enhancement of β -keratinase activity post binding to Fe₃O₄ MNP was significantly higher than the reported increase in keratinase activity from *Aspergillus oryzae* after immobilization on various solid supports such as charcoal, silica gel, Dowex. DEAE-cellulose, Ca-alginate etc³²².

Morphological changes of the chicken feather keratin suggest that the maximum degradation was achieved by post treatment with Fe₃O₄ MNP immobilized β -keratinase than free β -keratinase. SEM observation showed that the large parts of the substrate had been completely digested. The complete degradation of hard keratin is possible only after denaturation by splitting the disulphide bonds. GC–MS confirm <u>Sudhir K Rai</u>

that keratin degradation occurred as a result of action of two mechanisms, sulphitolysis and proteolysis⁶⁰⁷. Therefore, it might be reasonable to conclude that this type of treatment enhances release of nutritionally essential amino acids from chicken-feather keratin by iron-oxide MNP immobilized β -keratinase as compared to free β -keratinase, also the thermo-stability of Fe₃O₄ MNP immobilized β -keratinase offers a simple and inexpensive technology for bioconversion of poultry feather from a potent pollutant waste material to a nutritionally enriched feedstuff for livestock.

11.10 Conclusion

In the present study, process optimization, purification, biochemical and pharmacological characterization, and industrial applications of alkaline protease/ keratinase produced by *B.subtilis* DM-04, *B.subtilis* RM-01, *Brevibacillus* sp. strain AS+S10-II, *Bacillus* sp. strain AS-20-I, *Bacillus licheniformis* strain AS-S24-I, and *P.tezpurensis* sp.nov. AS-S24-II growing under thermophilic growth condition (45°C) were characterized. One out of six bacteria , viz. *B.subtilis* DM-04 was previously isolated in our laboratory from petroleum-oil contaminated soil samples, whereas *B.subtilis* RM-01 was isolated from poultry waste material. All other strains viz. *Brevibacillus* sp. strain AS-S10-II, *Bacillus* sp. strain AS-20-I, *Bacillus* licheniformis strain AS-S24-I, and *P.tezpurensis* sp.nov. AS-S24-II other strains viz. *Brevibacillus* sp. strain AS-S10-II, *Bacillus* sp. strain AS-20-I, *Bacillus licheniformis* strain AS-S24-I, and *P.tezpurensis* sp.nov. AS-S24-II isolated from soil samples of Northeastern part of India.

Optimized alkaline protease production by all the strains were demonstrated in presence of *Imperata cylindrica* and potato peel under solid-state fermentation without any additional co-carbon and nitrogen sources. Raw chicken feather exhibited best carbon and nitrogen sources for alkaline keratinase production by *B. subtilis* strain RM-01. All strains exhibited distinct preferences for the carbon and nitrogen source, and pH for alkaline protease production under submerged fermentation. For example, D-glucose demonstrated the preferable carbon source for protease production from *Bacillus licheniformis* strain AS-S24-I; casein demonstrated best carbon source for protease production from *Brevibacillus* sp. strain AS-S10-II, *Bacillus* sp. strain AS-20-I, and *P.tezpurensis* sp.nov. strain AS-S24-II under submerged *Sudhir K Rai*

fermentation; maltose served as the best carbon source for alkaline keratinase production from Bacillus subtilis strain RM-01 under solidstate fermentation system. Similarly, all strains demonstrated preference for either organic or inorganic nitrogen sources. For example, B.subtilis DM-04 had a preference for beef extract; В. licheniformis strain AS-S24-I preferred yeast extract as the best organic nitrogen sources, whereas inorganic nitrogen sources such as potassium nitrate was preferred by Brevibacillus sp. strain AS-S10-II; ammonium sulphate was choice for P.tezpurensis sp.nov. strain AS-S24-II, and Bacillus sp. strain AS-S20-I. Statistically optimized fermentation conditions leads to formulation of a cheaper, low-cost and effective fermentation medium for alkaline protease production at industrial scale using IC: PP as substrates.

Biochemical properties of all purified/ partially purified proteases/keratinase demonstrates that all protease / keratinase belongs to serine protease family and they showed activity at alkaline pH and thermo-stability property. All proteases demonstrated excellent stability in presence of surfactants, bleaching and oxidizing agents suggesting their suitable applications in laundry detergent formulation. Organic solvent stability of purified proteases suggested suitable applications in peptide synthesis.

In the present study, pharmacological and detergent stability properties suggest the suitable applications of purified proteases in commercial laundry detergent formulations. All the purified proteases were devoid of collagenase activity suggesting their application in leather industry as dehairing agents. Antibacterial activity of Bsubap-I and Alzwiprase suggested their futuristic applications in food industries as preserving agents. Thrombolytic activity of partially purified protease from *Bacillus* sp. AS-S20-I strain advocated its application as a safe thrombolytic agent for the treatment of thrombosis and may be cancer. Feather degradation properties of alkaline β -keratinase from *B.subtilis* RM-01 strains suggest low cost feed formulation with high content of essential amino acids. Present study offer cheaper, cost-effective, eco-friendly technology for the development of clean and green environment.

<u>Sudhir K Rai</u>

- Eggleston, G. Advances in the Industrial Application of Enzymes on Carbohydrate-Based Materials (ACS Symposium Series; American Chemical Society: Washington, DC, 2007)
- Mahmoud, D.A.R., Helmy, W.A. Potential Application of Immobilization Technology in Enzyme and Biomass Production (Review Article). J. Appl. Sci. Research 5(12), 2466-2476 (2009)
- 3. Hasan, F. '*et al.* Enzymes used in detergents: Lipases. African J Biotechnol. **9(31)**, 4836-4844 (2010)
- Soetaert, W., Vandamme, E.J. Industrial Biotechnology: Sustainable growth and economic success (Wiley-VCH, Weinheim, 1st edition, 2010)
- http://www.biotechcorp.com.my/Documents/AboutBiotechCorp/indu strial-cover-and-inside-final.pdf., The Malaysian Industrial Biotechnology Sector. Access on 19th August 2010
- 6. Kumar, C.G., Takagi, H. Microbial alkaline proteases: From a bioindustrial viewpoint. *Biotechnol. Adv.* **17**, 561–594 (1999)
- Gupta, R.' *et al.* An overview on fermentation, downstream processing and properties of microbial alkaline proteases. *Appl. Microbiol. Biotechnol.* 60, 381–395 (2002)
- 8. Beilen, V., J.B., Li, Z. Enzyme technology: an overview. *Curr. Opin. Biotechnol.* **13**, 338–344 (2002)
- 9. Krik, O. *et al.* Industrial enzyme applications. *Curr. Opin. Biotechnol.* **13,** 345–435 (2002)
- Haki, G.D., Rakshit, S.K. Developments in industrially important thermostable enzymes: a review. *Bioresource Technol.* 89, 17– 34(2003)

<u>Sudhir K Rai</u>

- 11. Maurer, KH. Detergent proteases. *Curr. Opin. Biotechnol.* **15,** 330–334 (2004)
- http://www.thefreelibrary.com/BCC+Research+Repor+Indicates+GI obal+Market+for+Industrial+Enzymes...-a0172107942, BCC Research Report Indicates Global Market for Industrial Enzymes Worth \$2.7 Billion by 2012. Accessed on 10 July, 2010
- Rajan M. Global market for industrial enzymes to reach \$2.4 million by 2009 Business Communications Company, Inc. RC-147U Enzymes for Industrial Applications; 2004. http://www.bccresearch.com/editors/RC- 147U.html, Accessed on 10 July, 2010
- Garrett, J.B. *et al.* Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. *Appl. Environ. Microbiol.* **70**, 3041–3046 (2004)
- 15. Afinah, S. *et al.* Review Article Phytase: application in food industry. *Int.I Food Research J.* **17,** 13-21 (2010)
- Chandel, A.K. *et al.* Industrial enzymes in bioindustrial sector development: An Indian perspective. *J Commer. Biotechnol.* 13(4), 283–291(2007)
- 17. http://biospectrumindia.ciol.com/content/BSTOP20/110061423.asp Biospectrum, June,2010. Accessed on 12th July, 2010
- Godfrey, T., West, S.I. Introduction to industrial enzymology. In: Industrial enzymology (2nd Edition, Stockton Press, New-York, États-Unis, 1-8, 1996)
- Kalisz, H.M. Microbial proteinases. Adv. Biochem. Eng. Biotechnol.
 36, 1–65 (1988)

<u>Sudhir K Rai</u>

- 20. Wiseman, A. Handbook of enzyme biotechnology. (Ellis Horwood Ltd., New York, 274–379, 1985)
- 21. Hasan, F. *et al*.Industrial applications of microbial lipases. *Enzyme Microbial Technol.* **39**, 235-251(2006)
- Rai, S.K. *et al.* Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain *Paenibacillus tezpurensis* sp. nov. AS-S24-II. *Appl. Microbiol. Biotechnol.* **85**,1437–1450 (2010)
- 23. Rao, M.B. *et al.* Molecular and Biotechnological Aspects of Microbial Proteases. *Microbiol. Mol. Biol. R.* **62(3)**, 597–635 (1998)
- 24. Bankus, J. M., and Bond, J. S. In *Proteolytic Enzymes: A Practical Approach* (Oxford University Press, Oxford, 312, 2001)
- 25. Poldermans, B. *Proteolytic enzymes in industry: production and applications* (VCH Publishers, Weinheim, Germany, p108-123, 1990)
- 26. Barett, A.J. Proteolytic enzymes: serine and cysteine peptidases. *Methods Enzymol.* **244**, 1–15 (1994)
- 27. Menon, A.S., Goldberg, A.L. Protein substrates activate the ATPdependent protease La by promoting nucleotide binding and release of bound ADP. *J. Biol. Chem.* **262**, 14929–14934, (1987)
- Argos, P. A sensitive procedure to compare amino acid sequences.
 J. Mol. Biol. 193, 385–396 (1987)
- 29. Rawlings, N.D., Barrett, A.J. Evolutionary families of peptidases. Biochem. J. 290, 205-218 (1993)
- Beynon, R., Bond, J.S. *Proteolytic enzymes* 2nd edition practical approach (Oxford university press, 2001)

<u>Sudhir K Rai</u>

- 31. Voet, D., Voet, J.G. *Biochemistry*, 3rd Edition (John Wiley & Sons, 2005)
- 32. Cerny, G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. *Eur. J. Appl. Microbiol. Biotechnol.* **5**, 113–122 (1978)
- Gupta, R., Beg, Q.K., Lorenz, P. Bacterial alkaline proteases: molecular approaches and industrial applications. *Appl. Microbiol. Biotechnol.* 59, 15–32 (2002)
- 34. Siezen, R.J., Leunissen, J.A.M. Subtilases: the superfamily of subtilisin-like serine proteases. *Protein Sci.* **6**, 501–523 (1997)
- 35. Lehninger, A.L. Nelson, D.L. Cox, M.M. *Lehninger principles of Biochemistry*, 5th edition (W. H. Freeman 2008)
- Barett, A.J. Proteolytic enzymes: aspartic and metallopeptidases. Methods Enzymol. 248, 183 (1995)
- Bone, R., Shenvi, A.B., Kettner, C.A., Agard, D.A. Serine protease mechanism: structure of an inhibitory complex of .alpha-lytic protease and a tightly bound peptide boronic acid. *Biochem.* 26 (24), 7609–761(1987)
- 38. Brenner, S. The molecular evolution of genes and proteins: a tale of two serines. *Nature* **334**, 528–530 (1988)
- 39. Boguslawski, G., Shultz, J.L., Yehle, C.O. Purification and characterization of an extracellular protease from *Flavobacterium arborescens*. *Anal. Biochem.* **132**, 41–49 (1983)
- 40. Mizuno, K., Matsuo, H. A novel protease from yeast with specificity towards paired basic residues. *Nature* **309**, 558–560 (1984)

<u>Sudhir K Rai</u>

- Phadatare, S.U., Srinivasan, M.C., Deshpande, V.V. High activity alkaline protease from *Conidiobolus coronatus* (NCL 86.8.20): enzyme production and compatibility with commercial detergents: *Enzyme Microbial Technol.* **15**, 72–76 (1993)
- 42. Lindberg, R.A., Eirich, L.D., Price, J.S., Wolfinbarger, L.Jr., Drucker,
 H. Alkaline protease from *Neurospora crassa*. *J. Biol. Chem.* 256, 811–814 (1981)
- 43. Wiseman, A. Handbook of enzyme biotechnology 3rd edition (Prentice hall, Ellis horwood, 1999)
- Glazer, A.N., Nikaido, H. Microbial enzymes. In: Glazer AN, Nikaido H, editors. Microbial Biotechnology (W.H. Freeman and Co., New york, 24–263, 1995)
- 45. Tewari, J.P. *et al. Advances in microbial biotechnology* (A.P.H. publishing corporation, New delhi, 1999)
- 46. Walsh, G. *Proteins: Biotechnology and Biochemistry* (John Wiley & sons, 2001)
- Phadatare, S., Rao, M., Deshpande, V. A serine alkaline protease from the fungus *Conidiobolus coronatus* with a distinctly different structure than the serine protease subtilisin Carlsberg. *Arch. Microbiol.* 166, 414–417 (1997)
- Sielecki, A.R., Fujinaga, M., Read, R.J., James, M.N.G. Refined structure of porcine pepsinogen at 1.8A resolution. *J.Mol.Biol.* 219, 671-692 (1991)
- 49. Page, R.D.M. TreeView: an application to display phylogenetic trees on personal computers. *Comput. Appl. Biosci.* **12**, 357–358 (1996)

<u>Sudhir K Rai</u>

- 50. Chakraborti, S. *et al.* Regulation of matrix metalloproteinases: An overview. *Mol. Cell. Biochem.* **253**, 269–285 (2003)
- 51. Hooper, N.M. Families of zinc metallo-proteases. *FEBS Lett.* 354, I-6 (1994)
- 52. Browner, M.F. *et al.* Crystal structures of matrilysin-inhibitor complexes. *Biochem.* **34 (20),** 6602–6610, (1995)
- 53. Bryan, P.N. *et al.* Proteases of enhanced stability: Characterization of a thermostable variant of subtilisin. *Proteins: Struct. Funct. Gen.*1, 326–34 (1986)
- 54. Windhorst, S. et al. The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia: characterization of the protein and molecular cloning of the gene. J. Biol. Chem. 277, 11042–11049 (2002)
- 55. Nonaka, T. *et al.* The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal β-barrel domain. *J. Biol. Chem.* **279**, 47344–47351(2004)
- 56. Piao, S. *et al.* Crystal structure of the serine protease domain of prophenoloxidase activating factor-I. *J. Biol. Chem.* **282,** 10783–10791(2007)
- 57. Yamagata, Y. *et al.* Functional changes of dextran-modified alkaline proteinase from alkalophilic *Bacillus* sp. *Enzyme Microbial Technol.*16, 99–103 (1994)
- 58. http://www.protease.org/structure.php?start=1200 three dimensional structure of trypsin. Accessed on 12th April 2010
- 59. Fastrez, J., Fersht, A.R. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypşin. *Biochem.* **12**, 2025–2034 (1973) <u>Sudhir K Rai</u>

ŧ

.

- Jany, K.D., Mayer, B. Proteinase K from *Tritirachium album* Limber I. Molecular mass and sequence around the active site serine residue. *Biol. Chem. Hoppe-Seyler* 366, 485–92 (1985)
- 61. Austew, B. M., Smith, E.L. Action of staphylococcal proteinase on peptides of varying chain length and composition. *Biochem. Biophys. Res. Commun.* **72**, 411–417 (1976)
- 62. Blundell, T. L., Cooper, J.B., Sali, A., Zhu, Z. Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases. *Adv. Exp. Med. Biol.* **306**, 443–453 (1991)
- 63. Keil, B. Specificity of proteolysis. (Springer-Verlag KG, Germany, 1992)
- 64. Holmes, M. A., Matthews, B.W. Binding of hydroxamic acid inhibitors to crystalline thermolysine suggests a pentacoordinate zinc intermediate in catalysis. *Biochem.* **20**, 6912–6920 (1981)
- 65. Polgar, L.Common feature of the four types of protease mechanisms. *Biol. Chem. Hoppe-Seyler* **371**, 327–331 (1990)
- 66. Moon, S.H., Parulekar, S.J. Some observations on protease production in continuous suspension cultures of *Bacillus firmus*. *Biotechnol. Bioeng.* **41**, 43–54 (1993)
- 67. Aunstrup, K. Proteinases. *In: Rose AH (ed) Microbial enzymes and bioconversions* (Academic Press, New York, pp 50–114, 1980)
- Chakraborty, R., Srinivasan, M. Production of a thermostable alkaline protease by a new *Pseudomonas* sp. by solid substrate fermentation. *J. Microb. Biotechnol.* 8, 7–16 (1993)

69. Malathi, S., Chakraborty, R. Production of alkaline protease by a new *Aspergillus flavus* isolate under solid-substrate fermentation <u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

644

conditions for use as a depilation agent. *Appl. Environ. Microbiol.* **57,** 712–16 (1991)

•

ŧ

- George, S. et al. Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem. 30, 457–62 (1995)
- 71. Beg, Q.K., Saxena, R.K., Gupta, R. De-repression and subsequent induction of protease synthesis by *Bacillus mojavensis* under fed-batch operation. *Process Biochem.* **37**, 1103-1109 (2002)
- 72. Mukherjee, A.K., Adhikari, H., Rai, S.K. Production of alkaline protease by a thermophilic *Bacillus subtilis* under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. *Biochemical Eng. J.* **39**, 353–361(2008)
- 73. Varela, H. *et al.* Effect of medium composition on the production by a new *Bacillus subtilis* isolate of protease with promising unhairing activity. *World J Microbiol. Biotechnol.* **12**, 643–645 (1996)
- 74. Hameed, A., Keshavarz, T., Evans, C.S. Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of *Bacillus subtilis* K2, for use in leather processing. *J. Chem. Technol. Biotechnol.* **74**, 5–8 (1999)
- 75. Puri, S., Beg, Q.K., Gupta, R. Optimization of alkaline protease production from *Bacillus* sp. by response surface methodology. *Curr. Microbiol.* **44**, 286–290 (2002)
- 76. Rahmana, R.N.Z.R.Abd., Geoka, L.P., Basrib, M., Salleha, A.B. An organic solvent-tolerant protease from *Pseudomonas aeruginosa*

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

645

:

1

strain K Nutritional factors affecting protease production. Enzyme Microbial Technol. **36**, 749–757 (2005)

٠

- 77. Potumarthi, R., Subhakar, Ch., Pavani, A., Jetty, A. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by *Bacillus licheniformis* NCIM-2042 using statistical methods. *Bioresource Technol.* 99, 1776–1786 (2008)
- Shivanand, P., Jayaraman, G. Production of extracellular protease from halotolerant bacterium, *Bacillus aquimaris* strain VITP4 isolated from Kumta coast. *Process Biochem*. DOI:10.1016/j.procbio.2009.05.010
- Hubner, U., Bock, U., Schugerl, K. Production of alkaline serine protease subtilisin Carlsberg by *Bacillus licheniformis* on complex medium in a stirred tank reactor. *Appl. Microbiol. Biotechnol.* 40, 182–188 (1993)
- Mao, W., Pan, R., Freedman, D. High production of alkaline protease by *Bacillus licheniformis* in fed-batch fermentation using a synthetic medium. *J. Ind. Microbiol.* **11**, 1–6 (1992)
- Van Putten, A.B. et al. Improvement of the production of subtilisin Carlsberg alkaline protease by Bacillus licheniformis by on-line monitoring and control in a stirred tank reactor. J Biotechnol 49, 83– 93 (1996)
- Frankena, J., Verseveld, H.W. van., Stouthamer, A.H. A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease in *Bacillus licheniformis*. *Appl. Microbiol. Biotechnol.* 22, 169–176 (1985)

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

646

:

 Frankena, J., Koningstein, G.M., Verseveld, H.W. van., Stouthamer, A.H. Effect of different limitations in chemostat cultures on growth and production of exocellular protease by *Bacillus licheniformis. Appl. Microbiol. Biotechnol.* 24, 106–112(1986)

•

1

- De Coninck, J., Bouquelet, S., Dumortier, V., Duyme, F., Denantes,
 IV. Industrial media and fermentation processes for improved growth and protease production by *Tetrahymena thermophila*. J. Ind. Microbiol. Biotechnol. 24, 285–290 (2000)
- Adinarayana, K., Ellaiah, P. Response surface optimization of the critical medium components for this production of alkaline protease by a newly isolated *Bacillus* sp. *J. Pharmacy Pharmaceutical Sci.* 5, 272–227 (2002)
- Tari,C., Genckal, H., Tokatl, F. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated *Bacillus* sp. L21. *Process Biochem.* 41, 659–665 (2006)
- 87. Oskouie, S.F.G., Tabandeh, F., Yakhchali, B., Eftekhar, F. Enhancement of alkaline protease production by *Bacillus clausii* using Taguchi experimental design. *African J. Biotechnol.* 6(22), 2559-2564, (2007)
- Saran, S., Isar, J., Saxena, R.K. Statistical optimization of conditions for protease production from *Bacillus* sp. and its scale-up in a bioreactor. *Appl. Biochem. Biotechnol.* 141(2-3), 229-239(2007)
- Buangrong, H., Dehui, D., Weilian, Hu., Jiaxin, J. Optimization of medium composition for thermostable protease production by *Bacillus* sp. HS08 with a statistical method. *African J. Biotechnol.* 7(8), 1115-1122, (2008)

<u>Sudhir K Rai</u>

 Reddy, L.V.A., Wee, Y.J., Yun, J.S., Ryu, H.W. Optimization of alkaline protease production by batch culture of *Bacillus* sp. RKY 3 through Plackett-Burman and response surface methodological approaches. *Bioresource Technol.* **99**, 2242–2249 (2008)

ž ; .

- 91. Wang, Q. *et al.* Optimization of cold-active protease production by the psychrophilic bacterium *Colwellia* sp. NJ341 with response surface methodology. *Bioresource Technol.* **99**,1926–1931(2008)
- 92. Sen,S., Dasu, V.V., Mandal, B. Medium development for enhanced production of alkaline protease from a newly isolated *Bacillus pseudofirmus* SVB1. *Asia-Pacific J Chemical Eng.* DOI: 10.1002/apj.417 2009
- Abdel-Fattah, Y.R., El-Enshasy, H.A., Soliman, N.A., El-Gendi, H. Bioprocess development for production of alkaline protease by *Bacillus pseudofirmus* Mn6 through statistical experimental designs. *J. Microbiol. Biotechnol.* **19(4),** 378–386 (2009)
- Amid, M. *et al.* Optimization of serine protease extraction from mango peel (Mangifera Indica Cv. Chokanan). *Food Chem.* **124(2)**, 666-671 (2011)
- 95. Esposito, T.S. *et al.* Fish processing waste as a source of alkaline proteases for laundry detergent., *Food chem.* **112(1)**, 125-130 (2009)
- 96. Haddar, A. *et al.* Two detergent stable alkaline serine proteases from *Bacillus mojavensis* A21: Purification, characterization and potential application as a laundry detergent additive. *Bioresource Technol.* **100(13)**, 3366-3373 (2009)
- 97. Takagi H. Protein engineering on subtilisin. Int. J. Biochem. 25, 307–12 (1993)

<u>Sudhir K Rai</u>

- Tsai, Y.C., Yamasaki, M., Yamamoto-Suzuki ,Y., Tamura, G. A new alkaline elastase of an alkalophilic *Bacillus. Biochem. Int.* 7, 577–83 (1983)
- 99. Mukhopadhyay, A., Chakrabarti, S.K., Bajpai, P.K. Treatment and clarification of fermented broth in bacterial enzyme production. *Biotechnol. Techniques* **4**, 121–26 (1990)
- 100. Boyer, E.W., Byng, G.S. *Bacillus proteolyticus* species which produce an alkaline protease (US Patent No. 5518917, 1996)
- 101. Strathmann, H. The use of membranes in downstream processing. *Food Biotechnol.* **4**, 253–72 (1990)
- Bohdziewicz J, Bodzek M. Ultrafiltration preparation of pectinolytic enzymes from citric acid fermentation. *Process Biochem.* 29, 99– 107(1994)
- 103. Bohdziewicz J. Ultrafiltration of technical proteolytic enzymes. *Process Biochem.* 29, 109–18(1994)
- 104. Bohdziewicz J. Ultrafiltration of technical amylolytic enzymes. *Process Biochem.* **31**, 185–91 (1996)
- 105. Han, J., Park, C.H., Ruan, R. Concentrating alkaline protease, subtilisin, using a temperature-sensitive hydrogel. *Biotechnol. Lett.***17**, 851–52 (1995)
- Bell, D.J., Hoare, M., Dunnill, P. The formation of protein precipitates and their centrifugal recovery. *Adv. Biochem. Eng. Biotechnol.* 26, 1–72 (1983)
- 107. Fujiwara, N., Masui, A., Imanaka, T. Purification and properties of the highly thermostable alkaline protease from an alkaliphilic and thermophilic *Bacillus* sp. *J. Biotechnol.* **30**, 245–56 (1993)

<u>Sudhir K Rai</u>

- 108. Kumar, C.G., Tiwari, M.P., Jany, K.D. Purification and characterization of two alkaline proteases from an alkalophilic *Bacillus* sp. *Zeitschrift für Ernährungs-Wissenschaft.* **36**, 48 (1997)
- Tsuchiya, K., Seki, K., Arai, T., Masui, T. Substrate specificity of alkaline proteases from *Cephalosporium* sp. KSM388. *Biosci. Biotechnol. Biochem.* 57, 1803–4(1993)
- 110. Keay, L., Wildi, B.S. Proteases of the genus *Bacillus*. I. Neutral proteases. *Biotechnol. Bioeng.* **12**, 179–212 (1970)
- 111. Kobayashi, T., Hakamada, Y., Hitomi, J., Koike, K., Ito, S. Purification of alkaline proteases from a *Bacillus* strain and their possible interrelationship. *Appl. Microbiol. Biotechnol.* **45**, 63– 71(1996)
- 112. Ong, P.S., Gaucher, M. Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus *Malbranchea pulchella* var. *sulfurea. Can. J. Microbiol.* **22**, 165–76 (1976)
- Manachini, P.L., Fortina, M.G., Parini, C. Thermostable alkaline protease produced by *Bacillus thermoruber*—a new species of *Bacillus. Appl. Microbiol. Biotechnol.* 28, 409–13 (1988)
- 114. Bockle, B., Muller, R. Reduction of disulfide bonds by *Streptomyces* pactum during growth on chicken feather. *Appl. Environ. Microbiol.* 63, 790–95 (1997)
- 115. Larcher, G. *et al.* Purification and characterization of a fibrinogenolytic serine proteinase from *Aspergillus fumigatus* culture filtrate. *FEBS Lett.* **308**, 65–69(1992)
- 116. Roe,S. *Protein purification applications a practical approach* (Oxford university press, 2001)

<u>Sudhir K Rai</u>

- 117. Simpson, R.J. *Purifying proteins for proteomics : A laboratory manual* (Cold spring harbor Laboratory Press, New York, 2003)
- 118. Guerrier, L., Righetti, P.G., Boschetti, E. Reduction of dynamic protein concentration range of biological extracts for the discovery of low-abundance proteins by means of hexapeptide ligand library. *Nat. Protoc.* **3(5)**, 883-90(2008)
- Mazzola, P.G.*et al.* Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. *J. Chem. Technol. Biotechnol.* 83, 143–157 (2008)
- 120. Burgess, R.R. Deutscher, M.P. *Methods in Enzymology, vol 463 : In, Guide to protein purification 2nd edition* (Academic press,2009)
- Brennan, J.D., Benjamin, D., DiBattista, E., Gulcev, M.D. Using sugar and amino acid additives to stabilize enzymes within sol-gel derived silica. *Chem. Mater.* 15, 737-745 (2003)
- Iyer, P.V., 'Ananthanarayan, L. Enzyme stability and stabilization— Aqueous and non-aqueous environment. *Process Biochem.* 43(10), 1019-1032(2008)
- Shetty, J.K., Patel, C.P., Nicholson, M.A. Purified alkaline protease concentrate and method of preparation. (European. Patent Appl. EP 0549048, 1993)
- 124. Stoner, M.R. *et al.* Protease autolysis in heavy- duty liquid detergent formulations: effects of thermodynamic stabilizers and protease inhibitors. *Enzyme Microbial Technol.* **34**, 114–125 (2004)
- 125. Alam, S.I. *et al.* Purification and characterisation of extracellular protease produced by *Clostridium* sp. from *Schirmacher oasis*, Antarctica. *Enzyme Microbial Technol.***36(5-6)**,824-831(2005)

<u>Sudhir K Rai</u>

- 126. Beg, Q.K. Gupta, R. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from *Bacillus mojavensis. Enzyme Microbial Technol.* **32**, 294-304 (2003)
- 127. Chellappan, S. Production, purification and partial characterization of a novel protease from marine *Engyodontium album* BTMFS10 under solid state fermentation. *Process Biochem.***41(4)**, 956-961(2006)
- 128. Hajji, M., Rebai, A., Néji Gharsallah, N., Nasri, M. Optimization of alkaline protease production by *Aspergillus clavatus* ES1 in *mirabilis jalapa* tuber powder using statistical experimental design. *Appl. Microbiol. Biotechnol.* **79**, 915–923 (2008)
- 129. Joo, H.S. *et al.* Simple methods for alkaline protease purification from the polychaeta, *Periserrula leucophryna. Process Biochem.*37, 299–303 (2001)
- Gupta, A. 'et al. One-step purification and characterization of an alkaline protease from haloalkaliphilic *Bacillus* sp. J. Chromatogr. A. 1075, 103–8(2005)
- Doddapaneni, K.K. *et al.* Purification and characterization of a solvent and detergent-stable novel protease from *Bacillus cereus*. *Microbiol.Research* 164(4), 383-390 (2009)
- Dodia, M.S. *et al.* Purification and stability characteristics of an alkaline serine protease from a newly isolated haloalkaliphilic bacterium sp. AH-6. *J. Ind. Microbiol. Biotechnol.* 35, 121–131 (2008)
- 133. Miyali, T., Otta, Y., Nakagawa, T., Watanabe, T., Niimura, Y., Tomizuka, N. Purification and molecular characterization of

<u>Sudhir K Rai</u>

subtilisin-like alkaline protease BPP-A from *Bacillus pumilus* strain MS-1. *Lett. Appl. Microbiol.* **42(3),** 242-7(2006)

- 134. Adinarayana, K., Ellaiah, P., Prasad, D.S. Purification and partial characterization of thermostable serine alkaline protease from a newly Isolated *Bacillus subtilis* PE-11. *AAPS PharmSciTech*. **4(4)**,1-9(2003)
- 135. Abidi, F., Limam, F., Nejib, M.M. Production of alkaline proteases by *Botrytis cinerea* using economic raw materials: Assay as biodetergent. *Process Biochem.* **43(11)**, 1202-1208 (2008)
- Tang, X.X. *et al.* Purification and characterization of an alkaline protease used in tannery industry from *Bacillus licheniformis*. *Biotechnol. Lett.* 26, 1421–1424, (2004)
- Chung, C. H., Goldberg, A.L. The product of the lon (capR) gene in Escherichia coli is the ATP dependent protease, protease La. *Proc. Natl. Acad. Sci.* 78, 4931–4935 (1981)
- 138. Hoffman, T. Food related enzymes. *Adv. Chem. Ser.* **136,** 146–185 (1974)
- 139. Kornberg, A. *et al.* Origin of proteins in sporulation. *Annu. Rev. Biochem.* **37**, 51–78 (1968)
- 140. Esposito, R. E., Klapholz, S. Meiosis and ascospore development, In J. N. Strathern, E. W. Jones, and J. R. Broach, (ed.), The molecular biology of the yeast Saccharomyces. Life cycle and inheritance (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 211-287, 1981)
- 141. North, M. J. Comparative biochemistry of the proteinases of eukaryotic microorganisms. *Microbiol. Rev.* **46**, 308–340 (1982)

<u>Sudhir K Rai</u>

- 142. Phadatare, S. U., Srinivasan, M.C., Deshpande, V.V. Evidence for controlled autoproteolysis of alkaline protease: a mechanism for physiological regulation of conidial discharge in *Conidiobolus coronatus. Eur. J. Biochem.* **205**, 679–686 (1992)
- 143. Phadatare, S., Rao, M., V. Deshpande, V. A serine alkaline protease from the fungus *Conidiobolus coronatus* with a distinctly different structure than the serine protease subtilisin Carlsberg. *Arch. Microbiol.* **166**, 414–417 (1997)
- 144. Postemsky, C. J., Dignam, S.S., Setlow, P. Isolation and characterization of *Bacillus megaterium* mutants containing decreased levels of spore protease. *J. Bacteriol.* **135**, 841–850 (1978)
- Leighton, T. J., Stock, J.J. Biochemical changes during fungal sporulation and spore germination. I. Phenyl methyl sulfonyl fluoride inhibition of macroconidial germination in *Microsporum gypseum. J. Bacteriol.* **101**, 931–940 (1970)
- Jackson, D. P., Cotter, D.A. Expression of proteolytic enzymes during *Dictyostelium discoideum* spore germination. *Arch. Microbiol.* 137, 205–208 (1984)
- 147. O'Day, D. H. Acid protease activity during germination of microcysts of the cellular slime mold *Polysphodylium pallidum*. *J. Bacteriol.* **125**, 8–13 (1976)
- 148. Roberts, J. W., Roberts, C.W., Mount, D.W. Inactivation and proteolytic cleavage of phage repressor in vitro in an ATP-dependent reaction. *Proc. Natl. Acad. Sci.* **74**, 2283–2287 (1977)
- 149. Lecadet, M. M., Lescourret, M., Klier, A. Characterization of an intracellular protease isolated from *Bacillus thuringiensis* sporulating

<u>Sudhir K Rai</u>

cells and able to modify homologous RNA polymerase. *Eur. J. Biochem.* **79,** 329–338 (1977)

- 150. Gottesman, S., Maurizi, M.R. Regulation by proteolysis: energydependent proteases and their targets. *Microbiol. Rev.* 56, 592– 621(1992).
- 151. Van Melderen, L. *et al.* ATP-dependent degradation of Ccd A by Lon protease. *J. Biol. Chem.* **271**, 27730–27738 (1996)
- 152. Suzuki, C. K. *et al.* ATP-dependent proteases that also chaperone protein biogenesis. *Trends Biochem. Sci.* **22**, 118–123 (1997)
- 153. Pearson, K.K., Karatan, E. Biofilm development in bacteria. *Adv.Appl.Microbiol.* **57**, 79-111 (2005)
- 154. Nelson, J.M., Griffin, E.G. Adsorption of invertase. *J. Am. Chem.* Soc. **38 (5),** 1109–1115 (1916)
- 155. Sumner, J.B. Denaturation of urease without inactivation. *Science* **108(2807)**, 410 (1948)
- 156. Grubhofer, N., Schleith, L. Protein coupling with diazotized polyaminostyrene. *Hoppe Seylers Z Physiol. Chem.* **297**, 108–112 (1954)
- 157. Guisan, J.M. *Immobilization of Enzymes and Cells, Second Edition* (Humana Press Inc, 2006)
- 158. Sumantha, A. Rice bran as a substrate for proteolytic enzyme production. *Brazilian Arch. Biol. Technol.* **49(5)**, 843-851(2006)
- Podar, M., Reysenbach, A.L. New opportunities revealed by biotechnological explorations of extremophiles. *Curr. Opin. Biotechnol*; **17**, 250–255 (2006)

<u>Sudhir K Rai</u>

- 160. Kumar, D. *et al.* Microbial proteases and application as laundry detergent additive.*Research J. Microbiol.* **3(12),** 661-672 (2008)
- Neklyudov, A.D., Ivankin, A.N., Berdutina, A.V. Production and Purification of Protein Hydrolysates (Review). *Appl. Biochem. Microbiol.* 36(4),317-324(2000)
- 162. Ward, O. P. Proteinases, In W. M. Fogarty (ed.), Microbial enzymes and

biotechnology (Applied Science Publishers, London, England, p-251-305, 1983)

- Dalev, P. An enzyme-alkaline hydrolysis of feather keratin for obtaining a protein concentrate for fodder. *Biotechnol. Lett.* 12, 71– 72 (1990)
- Dalev, P.G. Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. *Bioresource Technol.* 48, 265– 67(1994)
- Cheng, S.W. Production and characterization of keratinase of a feather-degrading *Bacillus licheniformis*. *Biosci. Biotechnol. Biochem.* 59, 2239–43 (1995)
- 166. Bordusa, F.Proteases in organic synthesis. *Chem. Rev.* 102, 4817–4867 (2002)
- Kumar, D., Bhalla, T.C. Microbial protease in peptide synthesis: approaches and applications. *Appl. Microbiol. Biotechnol.* 68, 726– 736 (2005)
- 168. Gupta, M.N., Roy, I.Enzymes in organic media forms, functions and applications. *Eur. J. Biochem.* **271**, 2575–2583 (2004)

Sudhir K Rai

- 169. Klibanov, A.M.Improving enzymes by using them in organic solvents. *Nature* **409**, 241–246 (2001)
- 170. Ogino, H., Yasui, K., Shiotani, T., Ishihara, T., Ishikawa, H. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. *Appl. Environ. Microbiol.* **61,** 4258–4262 (1995)
- Geok, L.P., Razak, C.N.A., Rahman, R.N.Z.A., Basri, M., Salleh,
 A.B. Isolation and screening of an extracellular organic solventtolerant protease producer. *Biochem. Eng. J.* 13, 73–77 (2003)
- Gupta, A., Khare, S.K. A protease stable in organic solvents from solvent tolerant strain of *Pseudomonas aeruginosa. Bioresource Technol.* 97, 1788–1793 (2006)
- 173. Rahman, R.N.Z.A., Mahamad, S., Salleh, A.B., Basri, M. A new organic solvent tolerant protease from *Bacillus pumilus* 115b. *J. Ind. Microbiol. Biotechnol.* 34, 509–517 (2007)
- Bergmann, M., Frankel-Conrat, H. The role of specificity in the enzymic synthesis of proteins: synthesis with intracellular enzymes. *J. Biol. Chem.* **119**, 707–720, (1937)
- Clapes, P., Pera, E., Torres, J.L. Peptide bond formation by the industrial protease, neutrase, in organic media. *Biotechnol. Lett.* 19, 1023–1026 (1997)
- Isono, Y., Nakajima, M. Enzymic peptide synthesis using a microaqueous highly concentrated amino acid mixture. *Process Biochem.* 36, 275–278 (2000)
- 177. Kise, H., Hayakawa, A., Noritomi, H. Protease catalyzed synthetic reactions and immobilization–activation of the enzyme in hydrophilic organic solvents. *J. Bacteriol.* **14**, 239–254 (1990)

<u>Sudhir K Rai</u>

- 178. Morihara, K. Using protease in peptide synthesis. *Trends Biotechnol.* **5,** 164–170 (1987)
- 179. Thanikaivelan, P., Rao, R.J., Nair, U.B., Ramasami, T. Progress and recent trends in biotechnological methods for leather processing. *Trends in Biotechnol.* **22(4)**, (2004)
- Ozgunay, H., Colak, S., Mutlu, M.M., Akyuz, F. Characterization of leather industry wastes. *Polish J. Environ. Stud.* **16(6)**, 867-873 (2007)
- Ogino, H., Otsubo, T., Ishikawa, H. Screening, purification, and characterization of a leather-degrading protease. *Biochemical Eng. J.* 38, 234–240 (2008)
- 182. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S. Potentials for biotechnological applications of keratin- degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. *Bioresource Technol.* 66, 1–11 (1998)
- Brandelli, A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. *Food Bioprocess Technol.* 1, 105–116 (2008)
- Ichida, J.M. *et al.* Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. *J. Microbiol. Methods*, **47**, 199–208 (2001)
- 185. Takami, H., Nakamura, F., Aono, R., Hirishiri, K. Degradation of human hair by a thermostable alkaline proteinase from alkalophilic Bacillus sp. no. AH-101. Biosci. Biotechnol. Biochem. 56, 1667– 1669 (1992)

Sudhir K Rai

- Saeki, K., Ozaki, K., Kobayashi, T., Ito, S. Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal Structures. *J. Biosci. Bioeng.* 103(6), 501–508 (2007)
- 187. Joo, H-S., Chang, C-S. Production of an oxidant and SDS-stable alkaline protease from an alkaophilic *Bacillus clausii* I-52 by submerged fermentation: Feasibility as a laundry detergent additive. *Enzyme Microbial Technol.* **38(1-2),** 176-183 (2006)
- Basketter, D.A., English, J.S., Wakelin, S.H., White, I.R. Enzymes, detergents and skin: facts and fantasies. *Br. J. Dermatol.* 158, 1177-1181 (2008)
- http://pubs.acs.org/cen/coverstory/87/8704cover.html. The greening game report. Accessed on 18th July 2010
- 190. Bech, L.M., Branner, S., Breddam, K., Groen, H. Oxidation stable detergent enzymes. US Patent 5,208, 158 (1993)
- Gupta, R., Gupta, K., Saxena, R.K., Khan, S. Bleach-stable, alkaline protease from *Bacillus* sp. *Biotechnol. Lett.* **21**,135–138 (1999)
- 192. Kumar, C.G., Malik, R.K., Tiwari, M.P. Novel enzyme-based detergents: an Indian perspective. *Curr. Sci.* **75**, 1312–1318 (1998)
- Aehle, W., Sobek, H., Amory, A., Vetter, R., Wilke, D., Schomburg,
 D. Rational protein engineering and industrial application: structure prediction by homology and rational design of protein-variants with improved "washing performance" the alkaline protease from *Bacillus alcalophilus. J. Biotechnol.*, 28, 31–40 (1993)
- 194. Beg, Q.K., Saxena, R.K., Gupta, R. Kinetic constants determination for an alkaline protease from *Bacillus mojavensis* using response surface methodology. *Biotechnol. Bioeng.* **78**, 289–295 (2002)

<u>Sudhir K Rai</u>

- 195. Oberoi, R., Beg, Q.K., Puri, S., Saxena, R.K., Gupta, R. Characterization and wash performance analysis of an SDSresistant alkaline protease from a, *Bacillus* sp. *World J. Microbiol. Biotechnol.* **17**, 493–497 (2001)
- 196. Showell, M.S. Enzymes, detergent. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 2. (Wiley, New York, pp 958– 971, 1999)
- 197. Hasan, A.K.M.Q., Tamiya, E. Cold-active protease CP70. Patent WO9727313 , (1997)
- 198. Kitayama, M. New low-temperature alkaline protease. Patent JP4271781, (1992)
- 199. Nielsen, M.H., Jepsen, S.J., Quttrup, H. Enzymes for low temperature washing. *J. Am. Oil. Chem. Soc.* **58**, 644–649 (1981)
- 200. Moreira, K.A., Porto, T.S., Teixeira, M.F.S., Porto, A.L.F., Filho, J.L.L. New alkaline protease from *Nocardiopsis* sp.: partial purification and characterization. *Process Biochem.* **39(1)**, 67-72 (2003)
- 201. Karbalaei-Heidari, H.R., Ziaee, A.A., Amoozegar, M.A. Purification and biochemical characterization of a protease secreted by the *Salinivibrio* sp. strain AF-2004 and its behavior in organic solvents. *Extremophiles* **11**, 237–243 (2007)
- Alam, S.I., Dixit, A., Reddy, G.S.N., Dube, S., Palit, M., Shivaji, S., Singh, L. C. *Clostridium schirmacherense* sp.nov. an obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. *Int. J. Syst. Evol. Microbiol.* 56, 715-720 (2006)

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

660

- Wang, S.L., Chio, Y-H., Yen, Y-H., Chuan-Lu Wang, C.Lu. Two novel surfactant-stable alkaline proteases from *Vibrio fluvialis* TKU005 and their applications. *Enzyme Microbial Technol.* 40, 1213–1220 (2007)
- Chu, W-H. Optimization of extracellular alkaline protease production from species of *Bacillus. J. Ind. Microbiol. Biotechnol.* 34(3), 241-245 (2007)
- 205. Lazim, H., Mankai, H., Slama, N., Barkallah, I., Limam, F. Production and optimization of thermophilic alkaline protease in solid-state fermentation by *Streptomyces* sp. CN902. *J. Ind. Microbiol. Biotechnol.* **36**, 531–537(2009)
- 206. Liang, T-W., Lin, J.J., Yen, Y-H., Wang, C-L., Wang, S-L. Purification and characterization of a protease extracellularly produced by *Monascus purpureus* CCRC31499 in a shrimp and crab shell powder medium. *Enzyme Microbial Technol.* **38(1-2)**, 74-80 (2006)
- 207. Lee, S.H., Chung, C.W., Yu, Y.J., Rhee, Y.H. Effect of alkaline
 protease-producing *Exiguobacterium* sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge. *Bioresource Technol.* 100(20), 4597-4603 (2009)
- Jellouli, K. *et al.* Molecular and biochemical characterization of an extracellular serine-protease from *Vibrio metschnikovii* J1. *J. Ind. Microbiol. Biotechnol.* **36**, 939–948 (2009)
- 209. Patel, R.K., Dodia, M.S., Joshi, R.H., Singh, S.P. Purification and characterization of alkaline protease from a newly isolated haloalkaliphilic *Bacillus* sp. *Process Biochem.* **41**, 2002–2009 (2006)

<u>Sudhir K Rai</u>

- Shanmughapriya, S. *et al.* Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp. (MMD040). *Bioprocess Biosyst. Eng.* **31**, 427–433 (2008)
- Vidyasagar, M., Praskash, S.B., Sreeramulu, K. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon *Halogeometricum* sp. TSS101. *Lett. Appl.Microbiol.* **43(4)**, 385-91 (2006)
- Shikha, Sharan, A., Darmwal, N.S. Improved production of alkaline protease from a mutant of alkalophilic *Bacillus pantotheneticus* using molasses as a substrate. *Bioresource Technol.* 98(4), 881-885 (2007)
- Kumar, C.G., Joo, H-S, Koo, Y-Mo, Paik, R.S., Chang, C-S. 213. Thermostable alkaline protease from novel marine а haloalkalophilic Bacillus clausii isolate. World J.Microbiol. Biotechnol. 20, 351–357 (2004)
- 214. Emtiazi, G., Nahvi,I., Maal, B.K. Production and immobilization of alkaline protease by *Bacillus polymyxa* which degrades various proteins. *Int. J. Environ. Sci.* 62(1), 101-107 (2005)
- Demir, Y., Alayli, A., Yildirim, S., Demir, N. Identification of protease from *Euphorbia amygdaloides* latex and its use in cheese production. *Preparative Biochem. Biotechnol.* 35(4), 291-299 (2005)
- Rahman, RNZAbd, Geok, L.P., Basri, M., Salleh, A.B. Physical factors affecting the production of organic solvent-tolerant protease by *Pseudomonas aeruginosa* strain K. *Bioresource Technol.* 96(4), 429-436 (2005)

<u>Sudhir K Rai</u>

- Orhan, E., Omay, D., Guvenilir, Y. Partial purification and characterization of protease enzyme from *Bacillus subtilis* and *Bacillus cereus*. *Appl. Biochem. Biotechnol.* **121–124,**183–94(2005)
- 218. Wang. S.L., Chen, Y.H., Wang, C.L., Yen, Y.H., Chern, M.K. Purification and characterization of a serine protease extracellularly produced by *Aspergillus fumigatus* in a shrimp and crab shell powder medium. *Enzyme Microbial Technol.* **36**, 660–665 (2005)
- 219. Wang, R.B., Yang, J.K., Lin, C., Zhang, K.Q. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus *Dactylella shizishanna*. *Lett. Appl. Microbiol.* **42,** 589–594 (2006)
- 220. Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., Chen, Y.H. A solvent stable metalloprotease produced by *Bacillus* sp.TKU004 and its application in the deproteinization of squid pen for beta-chitin preparation. *Enzyme Microbial Technol.* **39**, 724–31 (2006)
- Genckal, H., Tari, C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microbial Technol. 39, 703–710 (2006)
- Moradian F., Khajeh, K., Naderi-Manesh, H., Ahmadvand, R., Sajedi, RH, Sadeghizadeh, M. Thiol-dependent serine alkaline proteases from *Bacillus* sp. HR-08 and KR-8102 :Isolation, production, and characterization. *Appl. Biochem. Biotechnol.* 134(1), 77-87 (2006)
- 223. Chi, Z., Ma, C., Wang, P., Li, H.F. Optimization of medium and cultivation conditions for alkaline protease production by the marine

<u>Sudhir K Rai</u>

yeast Aureobasidium pullulans. Bioresource Technol. **98(6)**, 1238-1245 (2006)

- 224. Zhu, W., Cha, D., Cheng, G., Peng, Q., Shen, P. Purification and characterization of a thermostable protease from a newly isolated *Geobacillus* sp. YMTC 1049. J Enzyme Microbial Technol. 40, 1592–1597 (2007)
- Wang, Q., Hou, Y., Xu,Z., Maio, J., G, Li. Optimization of cold-active protease production by the psychrophilic bacterium *Colwellia* sp. NJ341 with response surface methodology. *Bioresource Technol.* 99, 1926-1931(2007)
- 226. Manni, L. *et al.* An oxidant- and solvent-stable protease produced by *Bacillus cereus* SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. *Appl. Biochem. Biotechnol.* **160(8)**, 2308-2321 (2008)
- Nikerel, I.E., Ates, O., Oner, E.T. Effect of bioprocess conditions on growth and alkaline protease production by halotolerant *Bacillus licheniformis* BA17. *Appl. Biochem. Microbiol.* 44(5), 487-492 (2008)
- 228. Jellouli, K., Bayoudh, A., Manni, L., Rym, A., Nasri, M.: Purification, biochemical and molecular characterization of a metalloprotease from *Pseudomonas aeruginosa* MN7 grown on shrimp wastes. *Appl. Microbiol. Biotechnol.* **79**, 989–999 (2008)
- 229. Tang, X.Y., Pan, Y., Li, S., He, B.F. Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. *Bioresource Technol.* **99**, 7388– 7392(2008)

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

664

- 230. Valasaki, K. *et al.* Purification and kinetics of two novel thermophilic extracellular proteases from *Lactobacillus helveticus*, from kefir with possible biotechnological interest. *Bioresource Technol.* **99(13)**, 5804-5813 (2008)
- Wang, S.L. *et al.* Bioconversion of squid pen by *Lactobacillus* paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. *Bioresource Technol.* 99(13), 5436-5443 (2008)
- 232. Wang, S.L., Hsu, W.T., Liang, T.W., Yen, Y.H., Wang, C.L. Purification and characterization of three novel keratinolytic metalloproteases produced by *Chryseobacterium indologenes* TKU014 in a shrimp shell powder medium. *Bioresource Technol.* 99, 5679–5686 (2008)
- Wang, S.L., Yang, C-H, Liang, T-W., Yen, Y-H. Optimization of conditions for protease production by *Chryseobacterium taeanense* TKU001. *Bioresource Technol.* **99(9)**, 3700-3707 (2008)
- Wang, S.L., Chao, C.H., Liang, T.W., Chen, C.C. Purification and characterization of protease and chitinase from *Bacillus cereus* TKU006 and conversion of marine wastes by these enzymes. *Marine Biotechnol.* **11(3)**, 334-344 (2009)
- 235. Wan, M-Y., Wang, H-Y., Zhang, Y-Z., Feng, H. Substrate specificity and thermostability of the dehairing alkaline protease from *Bacillus pumilus Appl.Biochem.Biotechnol.* **159(2)**, 394-403 (2009)
- Moradian, F., Khajeh, K., Naderi-Manesh, H., Sadeghizadeh, M. Isolation, purification and characterization of a surfactants-, laundry detergents- and organic solvents-resistant alkaline protease from *Bacillus* sp. HR-08. *Appl. Biochem. Biotechnol.* **159**, 33–45 (2009)

<u>Sudhir K Rai</u>

- 237. Nilegaonkar, S.S., Kanekar, P.P., Sarnaik, S.S., Kelkar, A.S. Production, isolation and characterization of extracellular protease of an alkaliphilic protease of an alkaliphilic strain of *Arthrobacter ramosus*, MCM B-351 isolated from the alkaline lake of Lonar, India. World J. Microbiol. Biotechnol. **18**, 785–789 (2000)
- Gupta, A. *et al.* One-step purification and characterization of an alkaline protease from haloalkaliphilic *Bacillus* sp. *J. Chromato. A.* **1075,** 103–108 (2005)
- 239. Prakasham, R.S., Subba, Rao Ch., Sreenivas, Rao R., Sarma, P.N. Alkaline protease production by an isolated *Bacillus circulans* under solid-state ⁱ fermentation using agro-industrial waste: process parameters optimization. *Biotechnol. Prog.* 21, 1380–8 (2005)
- 240. Laxman, R.S. *et al.* Optimization and scale up of production of alkaline protease from *Conidiobolus coronatus*. *Process Biochem.*40, 3152–3158 (2005)
- Naidu, K.S.B., Devi, K.L.Optimization of thermostable alkaline protease production from species of *Bacillus* using rice bran. *J. Biotechnol.* 4, 724-726 (2005)
- 242. Kasana, R.C., Yadav, S.K. Isolation of a Psychrotrophic *Exiguobacterium* sp. SKPB5 (MTCC 7803) and Characterization of Its Alkaline, Protease. *Curr. Microbiol.* 54(3), 224-229 (2007)
- 243. Bhaskar, N., Sudeepa, E.S., Rashmi, H.N., Selvi, A.T. Partial purification and characterization of protease of *Bacillus proteolyticus*-CFR3001 isolated from fish processing waste and its antibacterial activities. *Bioresource Technol.* **98**, 2758–2764 (2007)
- 244. Zambare, V.P., Nilegaonkar, S.S., Kanekar, P.P. Production of an alkaline protease by *Bacillus cereus* MCM B-326 and its application

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

666

as a dehairing agent World J. Microbiol. Biotechnol. 23, 1569-1574 (2007)

- 245. Jaswal, R.K., Kocherand, G.S., Virk, M.S. Production of alkaline protease by *Bacillus circulans* using agricultural residues: A statistical approach. *Indian J. Biotechnol.* 7, 356-360 (2008)
- 246. Kumar, GA., Swarnalatha, S., Sairam, B., Sekaran, G. Production of alkaline protease by *Pseudomonas aeruginosa* using proteinaceous solid waste generated from leather manufacturing industries. *Bioresource Technol.* **99(6)**, 1939-44 (2008)
- 247. Joshi, R.H., Dodia, M.S., Singh, S.P. Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium *Biotechnol. Bioprocess Eng.* **13**, 552-559 (2008)
- 248. Mahanta, N., Gupta, A., Khare, S.K.Production of protease and lipase by solvent tolerant *Pseudomonas aeruginosa* PseA in solidstate fermentation using Jatropha curcas seed cake as substrate. *Bioresource Technol.* **99**, 1729–1735 (2008)
- 249. Sindhu, R., Suprabha, G.N., Shashidhar, S. Optimization of process parameters for the production of alkaline protease from *Penicillium* godlewskii SBSS 25 and its application in detergent industry. *African J. Microbiol. Research*, **3(9)**, 515-522 (2009)
- 250. Soccol, C.R., Vandenberghe, L.P.S. Overview of applied solid-state fermentation in Brazil. *Biochemical Eng. J.* **13(2-3)**, (2003)
- Couto, S. R., Sanroman, M. A. Application of solid-state fermentation to food industry - A review. J. Food. Eng. 76(3), 291-302 (2006)

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

667

- 252. Aguilar, N.C. *et al.* Perspectives of Solid State Fermentation for Production of Food Enzymes. *American J. Biochem. Biotechnol.* 4 (4), 354-366 (2008)
- Singhania, R.R., Patel, A.K., Soccol, C.R. Pandey, A. Recent advances in solid-state fermentation. *Biochemical Eng. J.* 44, 13–18 (2009)
- 254. Barrios-Gonzalez, J., Gonzalez, H., Mejia, A. Effect of particle size, packing density and agitation on penicillin production in solid state fermentation. *Biotechnol. Adv.* **11**, 539– 547 (1993)
- Germano, S., Pandey, A., Osakud, C.A., Rochaa, S.N., Soccol, C.R. Characterization and stability of proteases from *Penicillium* sp. produced by solid-state fermentation. *Enzyme Microbial Technol.* 32, 246–251(2003)
- Agrawal, D., Patidar, P., Banerjee, T., Patil, S. Production of alkaline protease by *Penicillium* sp. under SSF condition and its application to soy protein hydrolysis. *Process Biochem.* 39, 977– 81(2004)
- 257. Uyar, F., Baysal, Z. Production and optimization of process parameters for alkaline protease production by a newly isolated *Bacillus* sp. under solid-state fermentation. *Process Biochem.* 39, 1893–1898 (2004)
- Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A. Comparative evaluation of neutral protease production by *Aspergillus oryzae* in submerged and solid state fermentation. *Process Biochem.* 40, 2689–2694 (2005)
- 259. Elibola, M., Moreira, A.R. Optimizing some factors affecting alkaline protease production by a marine bacterium *Teredinobacter turnirae*

Sudhir K Rai

under solid substrate fermentation. *Process Biochem.* **40,** 1951–1956 (2005)

- 260. Wang, S., Chen, Y., Wang, C., Yen, Y., Chern, M. Purification and characterization of a serine protease extracellularly produced by *Aspergillus fumigatus* in a shrimp and crab shell powder medium. *Enzyme Microbial Technol.* **36**, 660-665 (2005)
- Valeria, F.S., Castilho, L.R., Bon, E.P.S., Freire, D.M.G. High-yield Bacillus subtilis protease production by solid-state fermentation. Appl. Biochem. Biotechnol. 311, 121-124 (2005)
- Prakasham, R.S., Rao, S.Ch., Sarma, P.N. Green gram husk—an inexpensive substrate for alkaline protease production by *Bacillus* sp. in solid-state fermentation. *Bioresource Technol.* 97, 1449–1454 (2006)
- 263. Wu T.Y., Mohammad, A.W., Md. Jahim J., Anuar N. Investigations on protease production by a wild-type *Aspergillus terreus* strain using diluted retentate of pre-filtered palm oil mill effluent (POME) as substrate. *Enzyme Microbial Technol.* **39**, 1223-1229 (2006)
- 264. Sathya, R., Pradeep, B.V., Angayarkanni, J., Palaniswamy, M. Production of milk clotting protease by a local isolate of *Mucor circinelloides* under SSF using agro-industrial wastes. *Biotechnol. Bioprocess Eng.* 14, 788-794 (2009)
- 265. Haddar, A. *et al.* Low-cost fermentation medium for alkaline protease production by *Bacillus mojavensis* A21 using hulled grain of wheat and sardinella peptone. *J. Biosci. Bioeng.* **110(3)**, 288-94 (2010)

<u>Sudhir K Rai</u>

- Gupta, R., Beg, Q.K., Lorenz, P. Bacterial alkaline proteases: molecular approaches and industrial applications. *Appl. Microbiol. Biotechnol.* 59, 15–32 (2002)
- Lynd, L.R., Weimer, P.J., Zyl, W.H.V., Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. *Microbiol. Mol. Biol. R.* 66(3), 506–577 (2002)
- Hongzhang, C., Hui, W., Aijun, Z., L. Zuohu, L. Alkaline protease production by solid-state fermentation on polyurethane foam. *Chem. Biochem. Eng. Q.* 20 (1), 93–97 (2006)
- Prakasham, R.S., Sreenivas Rao, R., Hobbs, P.J. Current trends in biotechnological production of xylitol. *Curr. Trend. Biotechnol. Pharm.* 3, 8–36 (2009)
- Reddy, G.B. et al. Optimization of production of alkaline protease from Bacillus megaterium NCIM-2087 through solid-state fermentation. *The IUP Journal of Biotechnol.* 3(3), 46-55 (2009)
- 271. Paranthaman, R., Alagusundaram, K., Indhumathi, J. Production of protease from rice mill wastes by *Aspergillus niger* in solid state fermentation. *World J.Agri. Sci.* 5 (3), 308-312 (2009)
- 272. Agrawal, D., Patidar, P., Banerjee, T., Patil, S. Alkaline protease production by a soil isolate of *Beauveria felina* under SSF condition: parameter optimization and application to soy protein hydrolysis. *Process Biochem.* **40**, 1131–1136 (2005)
- Aijun, Z., Hingzhang, C., Zuohu, L. Air pressure pulsation solid state production of alkaline protease by *Bacillus pumilus* 1.1625. *Process Biochem.* 40, 1547–51 (2005)

,

<u>Sudhir K Rai</u>

- 274. Sumantha, A., Larroche, C., Pandey, A. Microbiology and industrial biotechnology of food-grade proteases. *Food Technol. Biotechnol.* **44(2)**, 211-220 (2006)
- 275. Divakar, G., Sunitha, M., Vasu, P., Shanker, U.P., Ellaiah, P. Optimization of process parameters for alkaline protease production under solid-state fermentation by *Thermoactinomyces thalpophilus* PEE 14. *Indian J.Biotechnol.* **5**, 80-83 (2006)
- 276. Anandan, D., Marmer, W.N., Dudley, R.L. Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from *Aspergillus tamari*. *J. Ind. Microbiol. Biotechnol.* **34**, 339–347 (2007)
- Vishwanatha, K.S., Rao, A.G.A., Singh, S.A. Production and characterization of a milk-clotting enzyme from *Aspergillus oryzae* MTCC 5341. *Appl. Microbiol. Biotechnol.* 85(6), 1849-1859 (2010)
- 278. Merheb-Dini, C., Gomes, E., Boscolo, M., Silva, R.da. Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated *Thermomucor indicaeseudaticae* N31 (Milk-clotting protease from the newly isolated *Thermomucor indicae-seudaticae* N31. *Food Chem.* **120**, 87–93 (2010)
- 279. Kumar, R., Balaji, S., Uma, T.S., Mandal, A.B., Sehgal, P.K. Optimization of influential parameters for extracellular keratinase production by *Bacillus subtilis* (MTCC9102) in solid state fermentation using horn meal—A biowaste management. *Appl. Biochem. Biotechnol.* **160(1)**, 30-39 (2010)
- 280. Gioppo, N.M.R. *et al.* Influence of the carbon and nitrogen sources on keratinase production by *Myrothecium verrucaria* in submerged

<u>Sudhir K Rai</u>

and solid state cultures. J. Ind. Microbiol. Biotech. **36**, 705–711 (2009)

- Morsy, M., Gendy, El, A. Keratinase production by endophytic *Penicillium* spp. under solid-state fermentation using rice straw. *Appl.Biochem.Biotechnol.* 162(3), 780-794 (2010)
- 282. Ramesh, S., Rajesh, M., Mathivanan, N. Characterization of a thermostable alkaline protease produced by marine *Streptomyces fungicidicus* MML1614. *Bioprocess Biosyst. Eng.* 32, 791–800 (2009)
- Kalaiarasi, K., Sunitha, P.U. Optimization of alkaline protease production from *Pseudomonas fluorescens* isolated from meat waste contaminated soil. *African J. Biotechnol.* 8 (24), 7035-7041(2009)
- 284. Esakkirai, P., Immanuel, G., Sowmya, S.M., Iyapparaj, P., Palavesam, A. Evaluation of protease-producing ability of fish gut isolate *Bacillus cereus* for aqua Feed. *Food Bioprocess Technol.* 2(4), 383-390 (2009)
- Singh, S.K., Agarwal, U.S., Saxena, R. P. Optimization of process parameters for milling of green gram (Phaseolus aureus). *J. Food Sci.Technol.* 41(2), 124– 30 (2004)
- 286. Zhou, Li-H. *et al.* Optimization of mycelial biomass and protease production by *Laccocephalum mylittae* in submerged fermentation. *African J. Biotechnol.* 8(8), 1591-1601(2009)
- 287. Tari, C., Genckal, H., Tokatl, F. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated *Bacillus* sp. L21. *Process Biochem.* 41, 659–665 (2006)

.

<u>Sudhir K Rai</u>

- 288. Amid, M. *et al.* Optimization of serine protease extraction from mango peel (Mangifera Indica Cv. Chokanan). *Food Chem.* 10.1016/j.foodchem.2010.06.027 '
- Ramnani, R., Gupta, R. Optimization of medium composition for keratinase production on feather by *Bacillus licheniformis* RG1 using statistical methods involving response surface methodology. *Biotechnol. Appl. Biochem.* 40, 191–196 (2004)
- Cai, C., Zheng, X. Medium optimization for keratinase production in hair substrate by a new *Bacillus subtilis* KD-N2 using response surface methodology *J. Ind. Microbiol. Biotechnol.* 36, 875–883 (2009)
- 291. Thys, R.C.S., Guzzon, S.O., Olivera, F.C., Brandelli, A. Optimization of protease production by *Microbacterium* sp. in feather meal using response surface methodology. *Process Biochem.* 41, 67–73 (2006)
- 292. Khan, S. *et al.* Response surface optimization of effective medium constituents for the production of alkaline protease from a newly isolated strain of *Pseudomonas aeruginosa. Indian J. Exp. Biol.* **44**, 151-156 (2006)
- Singh, A.K., Chhatpar, H.S. Optimization of protease production by *Streptomyces* sp. A6 using statistical approach for reclamation of shellfish waste. *World J. Microbiol. Biotechnol.* 26(9), 1631-1639 (2010)
- 294. Liu, S., Fang, Y., Lv, M., Wang, S., Chen, Li. Optimization of the production of organic solvent-stable protease by *Bacillus sphaericus* DS11 with response surface methodology. *Bioresource Technol.* **101(20)**, 7924-7929 (2010)

<u>Sudhir K Rai</u>

- 295. Tatineni, R. *et al.* Purification and characterization of an alkaline keratinase from *Streptomyces* sp. *Bioresource Technol.* **99(6)**, 1596-1602 (2008)
- 296. Gupta, R., Ramnani, P. Microbial keratinases and their prospective application's: An overview. *Appl. Microbiol. Biotechnol.* **70**, 21-33 (2006)
- Brandelli, A., Daniel J. Daroit, D.J., Riffel, A. Biochemical features of microbial keratinases and their production and applications. *Appl. Microbiol. Biotechnol.* 85, 1735–1750 (2010)
- 298. Marangoni, A.G. *Enzyme kinetics . A modern approach* (John wiley & sons, inc, 2003)
- 299. Bisswanger. *Enzyme kinetics- Principles and methods* (John wiley & sons, inc., 2008)
- 300. Zhou, L. Purification, Characterization and *in vitro* Anthelmintic Activity of a Neutral Metalloprotease from *Laccocephalum mylittae*. *Chinese J. Chemical Eng.***18(1),** 122-128(2010)
- 301. Hayet, B.K., Rym, N., Ali, B., Sofiane, G., Moncef, N. Low molecular weight serine protease from the viscera of sardinelle (*Sardinella aurita*) with collagenolytic activity: purification and characterization. *Food Chem.* DOI: 10.1016/j.foodchem.2010.06.096
- 302. Xu, J., Jiang, M., Sun, H., He, B.F. An organic solvent-stable protease from organic solvent-tolerant *Bacillus cereus* WQ9-2: Purification, biochemical properties, and potential application in peptide synthesis. *Bioresource Technol.* **101**, 7991–7994 (2010)
- 303. Doddapaneni, K.K., Radhika, T., Ravichandra, P., Narasu, L.M. Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Sudhir K Rai

Serratia rubidaea. J. Chemical Technol. Biotechnol. 82(8), 721-729 (2007)

- 304. Abidi, F., Limam, F., Marzouki, M.N.Purification and characterization of an alkaline protease prot 1 from *Botrytis cinerea* biodetergent catalyst assay. *Appl. Biochem. Biotechnol.* **141,** 361-376 (2007)
- 305. Pena-Montes, C., Gonzalez, A., Castro-Ochoa, D., Farres, A. Purification and biochemical characterization of a broad substrate specificity thermostable alkaline protease from *Aspergillus nidulans*. *Appl. Microbiol. Biotechnol.* **78**, 603–612 (2008)
- Sareen, R., Mishra, P. Purification and characterization of organic solvent stable protease from *Bacillus licheniformis* RSP-09–37.
 Appl. Microbiol. Biotechnol. **79**, 399–405 (2008)
- Zhu, H-Y, Tian, Y., Hou, Y-H., Wang, T-H. Purification and characterization of the cold-active alkaline protease from marine cold-adaptive *Penicillium chrysogenum* FS010. *Mol. Biol. Rep.* 36, 2169–2174(2009)
- 308. Rao, S. Ch., Sathish, T., Ravichandra, P., Prakasham, R.S. Characterization of thermo- and detergent stable serine protease from isolated *Bacillus circulans* and evaluation of eco-friendly applications. *Process Biochem.* 44, 262–268(2009)
- 309. Moreira, F.G. *et al.* Production of hydrolytic enzymes by the plant pathogenic fungus *myrothecium verrucaria* in submerged cultures. *Brazilian J. Microbiol.* 36, 7-11 (2005)
- Deng, A., Wu, Jie., Zhang, Y., Zhang, G., Wen, T. Purification and characterization of a surfactant-stable high-alkaline protease from *Bacillus* sp. B001. *Bioresource Technol.* **101**, 7100–7106 (2010)

<u>Sudhir K Rai</u>

- Olivera, N., Sequeiros, C., Sineriz, F., Breccia J.D.Characterization of alkaline proteases from a novel alkalitolerant bacterium *Bacillus patagoniensis*. World J. Microbiol. *Biotechnol.* 22(7), 737-743 (2005)
- Arulmani, M. *et al.* Purification and partial characterization of serine protease from thermostable alkalophilic *Bacillus laterosporus*-AK1. *World J Microbiol. Biotechnol.* 23, 475–481(2006)
- Kuddus, M., Ramteke, P.W. Purification and properties of coldactive metalloprotease from *Curtobacterium luteum* and effect of culture conditions on production. *Chinese J. Biotechnol.* 24(12), 2074-2080(2008)
- Ghosh, A., Chakrabarti, K., Chattopadhyay, D. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated *Bacillus cereus* DCUW. *J. Ind. Microbiol. Biotech.* 35, 825–834 (2008)
- Jaouadi, B. *et al.* Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from *Streptomyces* sp. strain AB1 with high stability in organic solvents. *Bioresource Technol.* **101,** 8361–8369 (2010)
- Lee, H., Suh, D.B., Hwang, J.H., Suh, H.J. Characterization of a keratinolytic metalloprotease from *Bacillus* sp. SCB-3. *Appl. Biochem. Biotechnol.* 97, 123–133 (2002)
- 317. Xie, F. *et al.* Purification and characterization of four keratinases produced by *Streptomyces* sp. strain 16 in native human foot skin medium. *Bjoresource Technol.* **101,** 344–350 (2010)
- 318. Bressollier, P., Letourneau, F., Urdaci, M., Verneuil, B. Purification and characterization of a keratinolytic serine proteinase from

<u>Sudhir K Rai</u>

Streptomyces albidoflavus. Appl. Environ. Microbiol. **65,** 2570– 2576 (1999)

- 319. Lin, X., Lee, C.G., Casale, E.S., Shih, J.C.H. Purification and characteriztion of a keratinase from a feather-degrading *Bacillus licheniformis* strain. *Appl. Environ. Microbiol.* 58, 3271–3275 (1992)
- 320. Suh, H.J., Lee, H.K. Characterization of a keratinolytic serine protease from *Bacillus subtilis* KS-1. *J. Protein Chem.* **20**, 165–169 (2001)
- 321. Rozs, M., Manczinger, L., Vágvölgyi, C., Kevei, F. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of *Bacillus licheniformis. FEMS Microbiol. Lett.* **205**, 221–224 (2001)
- 322. Farag, A.M., Hassan, M.A. Purification, characterization and immobilization of a keratinase from Aspergillus orizae. Enzyme Microbial Technol. 34, 85–93 (2004)
- Anbu, P., Gopinath, S.C.B., Hilda, A., Lakshmipriya, T., Annadurai,
 G. Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. *Enzyme Microbial Technol.* 36, 639–647 (2005)
- 324. Suntornsuk, W. *et al.* Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium. *World J. Microbiol. Biotechnol.* **21**, 1111–1117 (2005)
- 325. Yoshioka, M. *et al.* Characterization of a proteolytic enzyme derived from a *Bacillus* strain that effectively degrades prion protein. *J. Appl. Microbiol.* **102,** 509–515 (2007)
- Balaji, S. *et al.* Purification and characterization of an extracellular keratinase from hornmeal-degrading *Bacillus subtilis* MTCC (9102). *World J. Microbiol. Biotechnol.* 24, 2741–2745 (2008)

<u>Sudhir K Rai</u>

- 327. Wang, S.L., Hsu, W.T., Liang, T.W., Yen, Y.H., Wang, C.L. Purification and characterization of three novel keratinolytic metalloproteases produced by *Chryseobacterium indologenes* TKU014 in a shrimp shell powder medium. *Bioresource Technol.* 99, 5679–5686 (2008)
- 328. Cai, C.G., Chen, J.S., Qi, J.J., Yin, Y., Zheng, X.D. Purification and characterization of keratinase from a new *Bacillus subtilis* strain. *J. Zhejiang Univ. Sci. B* 9, 713–720 (2008)
- 329. Fakhfakh, N., Kanoun, S., Manni, L., Nasri, M. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading *Bacillus licheniformis* RPk. *Can. J. Microbiol.* 55, 427–436 (2009)
- 330. Gasparin, M.G.F. *et al*.Purification and characterization of an efficient poultry feather degrading-protease from *Myrothecium verrucaria*. *Biodegradation*, 20(5), 727-736 (2009)
- Halling, P.J., Dunnill, P. Magnetic supports for immobilized enzymes and bioaffinity adsorbents. *Enzyme Microbial Technol.* 2(1), 2-10 (1980)
- 332. Wu, J., Wang, J-L., Li, M-H., Lin, J-P., Wei, D-Z.Optimization of immobilization for selective oxidation of benzyl alcohol by *Gluconobacter oxydans* using response surface methodology. *Bioresource Technol.* **101(23)**, 8936-8941 (2010)
- 333. Sadjadi, M.S., Farhadyar, N., Zare, K. Synthesis of bi-metallic Au-Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity. Supperlatt. Microstruct. 46(4), 563-571 (2009)

<u>Sudhir K Rai</u>

- Bakhitar, S., Estiveira, RJ., Hatti-Kaul. Substrate specificity of alkaline protease from alkaliphilic feather-degrading *Nesterenkonia* sp. AL20. *Enzyme Microbial Technol.* 37, 534-540 (2005)
- 335. Kim, S.B. *et al.* Purification and characterization of a fibrinolytic subtilisin-like protease of *Bacillus subtilis* TP-6 from an Indonesian fermented soybean, Tempeh. *J.Ind. Microbiol. Biotechnol.* 33(6), 436-44 (2006)
- 336. Wang, C.T. *et al.* Purification and characterization of a fibrinolytic enzyme of *Bacillus subtilis* DC33, isolated from Chinese traditional Douchi. *J. Ind. Microbiol. Biotechnol.* **33**, 750–758 (2006)
- 337. Wang, H.Y. *et al.* Screening and mutagenesis of a novel *Bacillus pumilus* strain producing alkaline protease for dehairing. *Lett. Appl.Microbiol.* **44(1),** 1-6 (2007)
- 338. Kim, J-B. *et al.* Identification of a fibrinolytic enzyme by *Bacillus vallismortis* and its potential as a bacteriolytic enzyme against *Streptococcus* mutans. *Biotechnol. Lett.* **29**, 605–610 (2007)
- 339. Nilegaonkar, S.S., Zambare, V.P., Kanekar, P.P., Dhakephalkar, P.K., Sarnaik, S.S. Production and partial characterization of dehairing protease from *Bacillus cereus* MCM B-326.*Bioresource Technol.* 98(6), 1238-1245 (2007)
- Sellami-Kamoun, A., Haddar, A., Ali, N., Ghorbel-Frikha, B., Nasri,
 M. Stability of thermostable alkaline protease from *Bacillus licheniformis* RP1 in commercial solid laundry detergent formulations. *Microbiol.Research*, **163(3)**, 299-306 (2008)
- 341. Wang, S.H., Zhang, C., Yang, Y.L., Diao, M., Bai, M.F. Screening of a high fibrinolytic enzyme producing strain and characterization of

<u>Sudhir K Rai</u>

the fibrinolytic enzyme produced from *Bacillus subtilis* LD-8547. *World J. Microbiol. Biotechnol.* **24,** 475–482 (2008)

- 342. Hua, Y., Jiang, B., Mine, Y., Mu, W. Purification and characterization of a novel fibrinolytic enzyme from *Bacillus* sp. nov. SK006 isolated from an Asian traditional fermented shrimp paste. *J.Agr.Food.Chem.* 56, 1451-1457(2008)
- 343. Cui, L. *et al.* A novel fibrinolytic enzyme from *Cordyceps militaris*, a Chinese traditional medicinal mushroom. *World J.Microbiol. Biotechnol*, **24**, 483-489(2008)
- 344. Kumar, A.G., Nagesh, N., Prabhakar, T.G., Sekaran, G. Purification of extracellular acid protease and analysis of fermentation metabolites by synergists sp. utilizing proteinaceous solid waste from tanneries. *Bioresource Technol.* **99(7)**, 2364-72(2008)
- 345. Rovati, J.I., Delgado, O.D., Lucia I. C. Figueroa, L.I.C., Farin, J.I. A novel source of fibrinolytic activity: *Bionectria* sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucuman, Argentina). *World J. Microbiol. Biotechnol.* DOI 10.1007/s11274-009-0142-z
- 346. Shieh, C.J., Phan Thi, L. A., Shih, I. L. Milk-clotting enzymes produced by culture of *Bacillus subtilis* natto. *Biochemical Eng. J.*43, 85–91(2009)
- 347. Simkhada, J.R., Mander, P., Cho, S.S., Yoo, J.C. A novel fibrinolytic protease from *Streptomyces* sp. CS684. *Process Biochem.* 45, 88–93 (2010)
- 348. Deng, Z. et al. Purification and characterization of a novel fibrinolytic enzyme from the polychaete, Neanthes japonica (Iznka). Bioresource Technol. 101, 1954–1960 (2010)

<u>Sudhir K Rai</u>

- Choudhary, R.B., Jana, A.K., Jha, M.K. Enzyme technology applications in leather processing. *Indian J. Chemical Technol.* 11, 659-671 (2004)
- Lin, X., Shih, J.C.H., Swaisgood, H.E. Hydrolysis of feather keratin by immobilized keratinase. *Appl. Environ. Microbiol.* 62, 4273–4275 (1996)
- 351. Riffel, A., Lucas, F., Heeb, P., Brandelli, A. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. *Arch. Microbiol.* **179**, 258–265 (2003)
- 352. Friedrich, J., Gradisar, H., Vrecl, M., Pogacnik, A. In vitro degradation of porcine skin epidermis by a fungal keratinase of *Doratomyces microsporus*. *Enzyme Microbial Technol.* **36**, 455–460 (2005)
- 353. Ulfig, K., Plaza, G., Terakowskip, M., Janda-Ulfig, K. Sewage sludge open-air drying effects on keratinolytic, keratinophilic and actidione-, resistant fungi. *Rocz Panstw Zakl Hig* **57**, 371–379(2006)
- 354. Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A. Nutritional improvement of feather protein by treatment with microbial keratinase. *Anim. Feed Sci. Technol.* **126**, 135–144 (2006)
- 355. Tapia, D.M.T., Simoes, M.L.G. Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. *African J. Biotechnol.* **7**, 296–300 (2008)
- 356. Tamilmani, P., Umamaheswari. A., Vinayagam, A., Prakash, B. Production of an extra-cellular feather-degrading enzyme by

<u>Sudhir K Rai</u>

- 357. Matsui, T., Yamada, Y., Mitsuya, H., Shigeri, Y., Yoshida, Y., Saito, Y., Matsui, H., Watanabe, K. Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic *Meiothermus ruber* H328. *Appl. Microbiol. Biotechnol.* 82, 941–950 (2009)
- Khardenavis, A.A., Kapley, A., Purohit, H.J. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from *Serratia* sp. HPC 1383. *Waste Manage.* 29, 1409–1415 (2009)
- 359. Vesela, M., Friedrich, J. Amino acid and soluble protein cocktail from waste keratin hydrolyzed by fungal keratinase of *Paecilomyces marquandii*. *Biotechnol. Bioprocess Eng.* 14(1), 84-90 (2009)
- 360. Prakash, P., Jayalakshmi, S.K., Sreeramulu, K. Production of keratinase by free and immobilized cells of *Bacillus halodurans* strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. *Appl. Biochem. Biotechnol.* **160(7)**, 1909-1920(2010)
- Mukherjee, A.K., Das, K. Correlation between diverse cyclic lipopetides production and regulation of growth and substrate utilization by *Bacillus subtilis* strain in a particular habitat. *FEMS Microbiol. Ecol.* 54, 479–489 (2005)
- 362. www.epa.gov/oust/cat/mason.pdf .Preparation of soil sampling protocols: sampling techniques and strategies. Accessed on 9th April, 2010

<u>Sudhir K Rai</u>

- Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. Protein measurement with folin phenol reagent. *J. Biol. Chem.* 193, 276– 275 (1951)
- 364. Das, K., Doley, R., Mukherjee, A.K. Purification and biochemical characterization of a thermostable, alkaliphilic, extracellular αamylase from *Bacillus subtilis* DM-03, isolated from the traditional fermented food of India. *J. Biotechnol. Appl. Biochem.* **40**, 291–298 (2004)
- 365. Mukherjee, A.K. Potential application of cyclic lipopeptide biosurfactants produced by *Bacillus subtilis* strains in laundry detergent formulations. *Lett. Appl. Microbiol.* **45**, 330–335 (2007)
- 366. Aneja, K.R. Experiments in microbiology, plant pathology, tissue culture and mushroom cultivation, 2nd edition (Wishwa prakashan, New age International (p) Limited, New delhi, 1996)
- Cappuccino, J.G., Sherman, N. *Microbiology: A Laboratory Manual* 4th edition (Addison-Wesley Longman, Inc, 1999)
- 368. Castenholz, R.W., Garrity, G.M. Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria_(Springer 2nd ed., 2001)
- 369. Staley, J.T. et al. Bergey's Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria (Part C) (Bergey's Manual of Systematic Bacteriology)(Springer-Verlag, 2nd edition, 2005)
- Pandey, K'K., Mayilraj, S., Chakrabarti, T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int. J. Syst. Evol. Microbiol. 52, 1559–1567 (2002)
- 371. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., Komagata, K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus <u>Sudhir K Rai</u>

curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and *Bacillus thiaminolyticus* to the genus *Paenibacillus* and emended description' of the genus *Paenibacillus. Int. J. Syst. Bacteriol.* **47,** 289–298 (1997)

- 372. Mukherjee, A.K. Fatty acid composition of four potential aquatic weeds and their possible use as fish-feed neutraceuticals. *Food Chem.* **123**, 1252–1254 (2010)
- Yuste, L. *et al.* Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. *FEMS Microbiol. Ecol.* 32(1), 69-75 (2000)
- Ausubel, F.M., Brent, R., Kinston, R.E., Moorse, D.D., Seidman, J.D., Smith, J.A., Struhl, K. Short protocols in molecular biology. (Wiley, New York, pp 212–214, 1995)
- Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. *J. Bacteriol.* 173(2), 697-703 (1991)
- Tamura, K., Dudley, J., Nei, M., Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* 24, 1596–1599 (2007)
- Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4, 406–425 (1987)
- 378. Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673– 4680 (1994)

Sudhir K Rai

- 379. Winker, S., Woese, C. R. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. *Syst. Appl. Microbiol.* **14,** 305-310 (1991)
- Krishna, P., Arora, A., Reddy, M.S. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkalin ebauxite residue sites. *World J.Microbiol. Biotechnol.* 24(12), 3079-3085(2008)
- 381. Pettersson, B., Rippere, E.K., Yousten, A.A., Priest, F.G. Transfer of *Bacillus lentimorbus* and *Bacillus popilliae* to the genus *Paenibacillus* with emended descriptions of *Paenibacillus lentimorbus* comb. nov. and *Paenibacillus popilliae* comb.nov. *Int. J. Syst. Bacteriol.* 49, 531–540 (1999)
- Plackett, R.L., Burman, J.P. The design of optimum multifactorial experiments. *Biometrika* 33, 305–325 (1946)
- Laemmli, U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. *Nature* 227, 680–685 (1970)
- Mazotto, A.M. *et al.* Keratinolytic activity of *Bacillus subtilis* AMR using humanhair *Lett. Appl. Microbiol.* **50**, 89–96 (2010)
- 385. Thangam, E.B., Rajkumar, S.G. Purification and characterization of alkaline protease from *Alkaligenes faecalis. Biotechnol. Appl. Biochem.* 35, 149–154 (2002)
- 386. Kim, S.H., Choi, N.S., Lee, W.Y. Fibrin zymography: a direct analysis of fibrinolytic enzymes on gels. Anal. Biochem. 263,115–6 (1998)
- Kleiner, D.E., Stetler-Stevenson, W.G. Quantitative zymography: detection of picogram quantities of gelatinases. *Anal. Biochem.* 218, 325–329 (1994)

<u>Sudhir K Rai</u>

- Tatineni, R. *et al.* Purification and characterization of an alkaline keratinase from *Streptomyces* sp. *Bioresource Technol.* 99, 1596-1602 (2008)
- Mukherjee, A.K., Maity, C.R. The composition of Naja naja venom samples from three districts of West Bengal, eastern India. Comp. Biochem. Physiol. 119A, 621–627 (1998)
- 390. Palmer, T. Enzymes: biochemistry, biotechnology and clinical chemistry. (Horwood, 2004)
- 391. Rossi, L.M., Quach, A.D., Rosenzweig, Z. Glucose oxidasemagnetite nano-particle bio-conjugate for glucose sensing. *Anal. Bioanal. Chem.* 380(4), 606-613 (2004)
- Haaland, P.D. Experimental design in biotechnology (statistics: A series of textbooks and monographs, CRC Press; 1 edition, 1999)
- 393. Ko, J.H., Yan, J.P., Zhu, L., Qi, Y.P. Identification of two novel fibrinolytic enzymes from *Bacillus subtilis* QK02. *Comp. Biochem. Physiol. C. Toxicol. Pharmacol.* **137**, 65–74 (2004)
- 394. Doley, R., Mukherjee, A.K. Purification and characterization of an anticoagulant phospholipase A2 from Indian monocled cobra (*Naja kaouthia*) venom. *Toxicon* 41, 81–91 (2003)
- 395. Huang, Q., Peng, Y., Li, X., Wang, H., Zhang, Y. Purification and characterization of an extracellular alkaline serine protease with dehairing function from *Bacillus pumilus*. *Curr. Microbiol.* **46**, 169– 173 (2003)
- 396. Bulet, P. *et al.* Insect immunity: Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. *J. Biol. Chem.* **266**, 24520-24525 (1991)

<u>Sudhir K Rai</u>

- 397. Ehret-Sabatier, L. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. *J. Biol. Chem.* **271,** 29537-29544 (1996)
- 398. Haeberli,S., Kuhn-Nentwig, L., Johann Schaller, J., Nentwig, W. Characterization of antibacterial activity of peptides isolated from the venom of the spider *Cupiennius salei (Araneae: Ctenidae)*. *Toxicon* **38**, 373-380 (2000)
- Ramnani, P., Gupta, R. Keratinases vis-à-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 23, 1537–1540 (2007)
- 400. Williams, C.M., Richter, C.S., Mackenzie, J.M., Shih, J.C.H. Isolation, identification and characterization of a feather-degrading bacterium. *Appl. Environ. Microbiol.* **56**, 1509–1515 (1990)
- 401. Priest, F. G. Extracellular enzyme synthesis in the genus *Bacillus*. *Bacteriol. Rev.* **41**, 711-753 (1977)
- Brar, S.K. *et al.* Bacillus thuringiensis proteases: production and role in growth sporulation and synergism. *Process Biochem.* 42, 773–790 (2007)
- 403. Prakash, O. *et al.* Polyphasic approach of bacterial classification An overview of recent advances. *Indian J. Microbiol.* **47,** 98–108 (2007)
- 404. Cohan, F.M., Perry, E.B. A systematics for discovering review the fundamental units of bacterial diversity. *Curr. Biol.* **17**, 373–386 (2007)
- 405. Wayne, L. G. *et al.* Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. *Int. J. Syst. Bacteriol.* 37, 463-464 (1987)

<u>Sudhir K Rai</u>

- 406. Lee, K.D., Kim, J.H., Kim, H. Isolation and characterization of *Bacillus* sp. KD1014 producing carboxymethyl-cellulase. *The J. Microbiol.* **34(4)**, 305-310, (1996)
- 407. Guerra-cantera, M.A.R.V., Raymundo, A.K. Utilization of a polyphasic approach in the taxonomic reassessment of antibioticand enzyme-producing *Bacillus* sp. isolated from the Philippines. *World J. Microbiol. Biotechnol.* **21**, 635-644 (2005)
- 408. On, S.L.W., Holmes, B. Reproducibility of tolerance tests those are useful in the identification of *compylobacteria*. J. Clin. Microbiol. 29,1785–1788 (1991)
- 409. On, S.L.W., Holmes, B. Assessment of enzyme detection tests useful in identification of *campylobacteria*. **30**, 746–749 (1992)
- 410. Ivanova, E.P. *et al.* Phenotypic diversity of *Pseudoalteromonas citrea* from different marine habitats and emendation of the description. *Int. J. Syst. Bacteriol.* **48**, 247–256 (1998)
- 411. Brown, B.J., Leff, L.G. Comparison of fatty acid methyl ester analysis with the use of API 20E and NFT strips for identification of aquatic bacteria. *Appl. Environ. Microbiol.* **62(6)**, 2183–2185 (1996)
- 412. Quezada, M., Buitron, G., Moreno-Andrade, I., Moreno, G., pez-Marin, M.L.M.Lo. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems. *FEMS Microbiol. Lett.* **266**, 75–82 (2007)
- 413. Kaneda, T. Fatty acids of the genus *Bacillus*: an example of branched-chain preference. *Bacteriol. Rev.* **41**, 391–418 (1977)

<u>Sudhir K Rai</u>

- 414. Roberts, M.S., Nakamura, L.K., Cohan, F.M. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44, 256-264 (1994)
- 415. Graham, P. H. *et al.* Differences among strains of *Bradyrhizobium* in fatty acid-methyl ester analysis. *Can. J. Microbiol.* **41**, 1038–1042 (1995)
- 416. Bossio, D.A., Scow, K.M., Gunapala, N., Graham, K.J. Determinants of soil microbial communities: effects of agricultural management management, season, and soil type on phospholipid fatty acid profiles. *Microb. Ecol.* **36**, 1–12 (1998)
- 417. Pace, NR. A Molecular View of Microbial Diversity and the Biosphere.
 Science 276 (5313), 734 740 (1997)
- Stackebrandt, E., Goebel, B.M. Taxonomic note: a place for DNA– DNA reassociation and 16S-rRNA sequence analysis in the present species definition in bacteriology. *Int. J. Syst. Bacteriol.* 44, 846– 849 (1994)
- 419. Gram, H.C. U ber die isolierte Farbung der Schizomyceten in Schnittund Trockenpra paraten. *Fortschr. Med.* **2**, 185–189 (in German) (1884)
- Stackebrandt, E., Koch, C., Gvozdiak, O., Schumann, P. Taxonomic dissection of the genus *Micrococcus: Kocuria* gen. nov., *Nesterenkonia* gen. nov., *Kytococcus* gen. nov., *Dermacoccus* gen. nov., and *Micrococcus* Cohn 1872 gen. emend. *Int. J. Syst. Bacteriol.* 45, 682–692 (1995)

<u>Sudhir K Rai</u>

- 421. Kovacs, G. *et al. Kocuria palustris* sp. nov. and *Kocuria rhizophila* sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (*Typha angustifolia*). *Int. J. Syst. Bacteriol.* **49**, 167–173 (1999)
- 422. Reddy, G.S.N. *et al. Kocuria polaris* sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. *Int. J. Syst. Evol. Microbiol.* **53**, 183–187 (2003)
- 423. Li, W-J. et al. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int. J. Syst. Evol. Microbiol. 56, 733–737 (2006)
- 424. Palmisano, M.M., Nakamura, L.K., Duncan, K.E., Istock, C.A., Cohan, F.M. *Bacillus sonorensis* sp.nov., a close relative of *Bacillus licheniformis*, isolated from soil in the sonoran desert, Arizona. *Int. J. Syst. Evol. Microbiol.* **51**, 1671-1679(2001)
- 425. Chou, J-H. *et al. Paenibacillus fonticola* sp.nov., isolated from a warm spring. *Int. J. Syst. Evol. Microbiol.* **57**, 1346-1350 (2007)
- 426. Chou, J-H. *et al. Paenibacillus contaminants* so.nov. isolated from a contaminated laboratory plates. *Int. J. Syst. Evol. Microbiol.* **59**, 125-129 (2009)
- 427. Miranda, C.A.C., Martins, O.B., Clementino, M.M. Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S-rRNA gene sequencing and intertRNA gene sequence lengths analysis. *Antonie van Leeuwenhoek* 93, 297-304 (2008)
- 428. Horani, H.K., Priest, F.G. Thermotolerant varieties of *Bacillus licheniformis* isolated from desert environments. *J Appl. Bact.* **77**, 392-400(1994)

<u>Sudhir K Rai</u>

ŧ

- 429. Gatson, J.W. *et al. Bacillus tequilensis* sp.nov., isolated from a 2000-year-old Mexican shaft-tomb is closely related to *Bacillus subtilis. Int. J. Syst. Evol. Microbiol.* **56**, 1475-1484 (2006)
- 430. Shivaji, S. *et al. Bacillus aerius* sp. nov., *Bacillus aerophilus* sp. nov., *Bacillus stratosphericus* sp. nov. and *Bacillus altitudinis* sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. *Int. J. Syst. Evol. Microbiol.* **56**, 1465–1473 (2006)
- 431. Ivanova, E.P. *et al.* Characterization of *Bacillus* strains of marine origin. *Int.Microbiol.***2**, 267-271 (1999)
- 432. Holker, U., Lenz, J. Solid-state fermentation-are there any biotechnological advantages? *Curr. Opin. Microbiol.* **8**, 301–306 (2005)
- 433. Nigam, P., Singh, D. Solid-state (substrate) fermentation systems and their applications in biotechnology. *J. Basic Microbiol.* 34, 405–423 (1994)
- 434. Robinson, T., Singh, D., Nigam, P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. *Appl. Microbiol. Biotechnol.* 55, 284-289 (2001)
- 435. Das, K., Mukherjee, A.K. Characterization of biochemical properties and biological activities of biosurfactants produced by *Pseudomonas aeruginosa* mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. *Appl. Microbiol. Biotechnol.* **69**, 192–199 (2005)
- Gaffney, J.F. Ecophysiological and technological factors influencing the management of cogon (*Imperata cylindrica*), Dissertation, Agronomy Department, University of Florida, Gainesville, FL, 1996

<u>Sudhir K Rai</u>

- 437. Babu, K.R., Satyanarayana, T. Production of bacterial enzymes by solid- state fermentation. *J. Ind. Sci. Res.* **55**, 464–467 (1996)
- 438. Kaur, S., Vohra, R.M., Kapoor, M., Beg, Q.K., Hoondal, G.S. Enhanced production and characterization of a highly thermostable alkaline protease from *Bacillus* sp. P-2. *World J. Microbiol. Biotechnol.* **17 (2),** 125–129 (2001)
- 439. Aikat, K., Bhattacharyya, B.C. Protease extraction in solid-state fermentation of wheat.bran by a loçal strain of *Rhizopus oryzae* and growth studies by the soft gel technique. *Process Biochem.* 35, 907–914 (2000)
- 440. Singh, J., Vohra, R.M., Sahoo, D.K. Enhanced production of alkaline protease by *Bacillus sphaericus* using fed-batch culture. *Process Biochem.* **39**, 1093–1101(2004)
- 441. Ramachandran, S. *et al.* Coconut oil cake—a potential ray material for the production of α-amylase. *Bioresource Technol.* 93, 169–174 (2004)
- Pandey, A., Soccol, C.R., Mitchell, D. New developments in solid-state fer- mentation. I. Bioprocesses and applications. *Process Biochem.* 35, 1153–1169 (2000)
- 443. Chakraborty, R., Srinivasan, M.J. Production of a thermo stable alkaline protease by a new *Pseudomonas* sp. by solid-substrate fermentation. *J. Microbiol. Technol.* 8, 7–16 (1993)
- 444. Gautam, P., Sahu, A., Pandey, A., Szackaes, G., Soccol, C.R.
 Microbial production of extracellular phytase using polystyrene as inert support. *Bioresource Technol.* 83, 229–233 (2002)

<u>Sudhir K Rai</u>

- Murthy, P.P., Naidu, M.M. Protease production by Aspergillus oryzae in solid-state fermentation utilizing coffee by-products. World Appl. Sci. J. 8(2), 199-205 (2010)
- 446. Marshall, E.K., David, A.S., Mark, J.A. Carbon-to-nitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of *Helminthosporium solani*. *Mycologia* **90**, 406–413 (1998)
- 447. Salwanis, Md.Z.W.W. *et al.* Production of cyclodextrin glucanotransferase from alkalophilic *Bacillus* sp.TS1-1: optimization of carbon and nitrogen con- centration in the feed medium using central composite design. *Biochemical Eng. J.* **33**, 26–33 (2007)
- Papadopoulos, M.C., El Boushy, A.R., Roodbeen, A.E., Ketelaars,
 E.H. Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meat. *Anim. Feed Sci. Technol.* 14, 279–290 (1986)
- 449. Shih, J.C.H. Recent development in poultry waste digestion and feather utilization-a review. *Poultry Sci.* **72**, 1617-1620 (1993)
- 450. El-Refai, H.A., AbdelNaby, M.A., Gaballa, A., El-Araby, M.H., Abdel Fattah, A.F. Improvement of the newly isolated *Bacillus pumilus* FH9 keratinolytic activity. *Process Biochem.* **40**, 2325-2332 (2005)
- 451. Grazziotin, A., Pimentel, F. A., de Jong, E. V., Brandelli, A. Nutritional improvement of feather protein by treatment with microbial keratinase. *Animal Feed Sci.Technol.* **126**, 135–144 (2006)
- 452. Das, K., Mukherjee, A.K. Comparison of lipopeptide biosurfactants production by *Bacillus subtilis* strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial

<u>Sudhir K Rai</u>

applications of biosurfactants. *Process Biochem.* **42**, 1191–1199 (2007)

- 453. Raimbault, M., Alazard, D. Culture method to study fungi growth in solid fer- mentation. *Appl. Microbiol. Biotechnol.* **9**,199–209 (1980)
- Ikasari, Li, Mitchelli, D.A. Leaching and characterization of Rhizopus oligosporous acid protease from solid-state fermentation. *Enzyme Microbial Technol.* 19, 171–175 (1994)
- 455. Friedrich, A.B., Antranikian, G. Keratin degradation by *Fervidobacterium pennavorans*, a novel thermophilic anaerobic species of the order Thermatogales. *Appl. Environ. Microbiol.* 61, 3705–3710 (1996)
- 456. Anbu, P., Gopinath, S.C.B., Hilda, A., Lakshmipriya, T., Annadurai,
 G. Optimization of extracellular keratinase production by poultry
 farm isolate Scopulariopsis brevicaulis. Bioresource Technol. 98, 1298–1303 (2007)
- 457. Gessesse, A., R, H-K., Gashe, B.A., Mattiasson, B. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. *Enzyme Microbial Technol.* **32**, 519–524 (2003)
- 458. Kole, M.M., Draper, L., Gerson, D.F. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentration. J. Chem. Technol. Biotechnol. 41, 197– 206 (1998)
- 459. Frankena, J., Koningstein, C.M., Van verseveld, H.W., Stouthamer,
 A.H. Effect of different limitations in chemostat cultures on growth and production of exo- cellular protease by *Bacillus licheniformis*. *Appl. Microbiol. Biotechnol.* 24, 106–112 (1986)

<u>Sudhir K Rai</u>

- 460. Prakash, P., Jayalakshmi, S.K., Sreeramulu, K. Production of keratinase by free and immobilized cells of *Bacillus halodurans* strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. *Appl. Biochem. Biotechnol.* **160**, 1909–1920 (2010)
- 461. Viniegra-González, G. et al. Advantages of fungal enzyme production in solid state over liquid systems. *Biochemical Eng. J.*13, 157-167 (2003)
- 462. Aguilar, C.N., Favela-Torres, E., Viniegra- González, G., Augur, C. Culture conditions dictate protease and tannase production in submerged and solid-state cultures *Aspergillus niger* Aa-20. *Appl. Biochem. Biotechnol.* **102-103**, 407-414(2002)
- 463. Krishna, C. Solid-state fermentation systems-an overview. *Crit. Rev. Biotechnol.* **25(1/2)**, 1-30 (2005)
- 464. Singhania, R.R., Patel, A.K., Soccolc, C.R., Pandey, A. Recent advances in solid-state fermentation. *Biochemical Eng. J.* **44,** 13–18 (2009)
- 465. González, G.V., Favela-Torres, E., Aguilar, C.N., Romero-Gomez, S., Díaz-Godinez, G., Augur, C. 2003. Advantages of fungal enzyme production in solid state over liquid systems. *Biochemical. Eng. J.* 13, 157-167 (2003)
- Holker, U.M., Hofer, M., Lenz, J. Biotechnological advantages of laboratory-scale solid state fermentation with fungi. *Appl. Microbiol. Biotechnol.*, 64, 175-186(2004)
- 467. Wang, Y., Lee, M. Influence of culture and nutritional condition on the production of protease from Thermophilic strain *Aspergillus*

<u>Sudhir K Rai</u>

- species NTIJ-FC-671. J.Chinese Agric.Chemical.Society. **34,** 732-742 (1996)
- 468. Nehra, K.S., Dhillon, S., Chaudhary, K., Singh, R. Production of alkaline protease by *Aspergillus* species under submerged and solid state fermentation. *Ind.J. Microbiol.* **42**, 43-47 (2002)
- 469. Priest F.S. Extracellular enzyme synthesis in the genus *Bacillus*. *Bacteriol. R* **41(3),** 711-753 (1977)
- Mongi, F., Edward, C., William, H., Gwang- Hoon, G., Almadidy, A. Influence of culture parameters on biological hydrogen production by *Clostridium saccharoperbutylacetonicum* ATCC 27021. *World J. Microbiol . Biotechnol.* 21, 855-862 (2005)
- 471. Sinha, N, Satyanarayana, T. Alkaline protease production by thermophilic *Bacillus licheniformis*. *Indian J. Microbiol.* 31(4), 425 430 (1991)
- 472. Banerjee, R., Bhattacharyya, B. Extracellular alkaline protease by newly isolated *Rhizopus oryzae*. *Biotechnol. Lett.* **14,** 301-304 (1992)
- 473. Manni, L. *et al.* An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: Application in the deproteinization of shrimp wastes and as a laundry detergent additive. *Appl. Biochem. Biotechnol.* **160**, 2308–2321(2010)
- 474. Cohen, B.L. Ammonium repression of extracellular protease in *Aspergillus nidulans. J. General Microbiol.***71,** 293- 299 (1972)
- 475. Cohen B.L. The neutral and alkaline proteases of *Aspergillus* nidulans. J. General Microbiol. **77**, 521-528 (1973)

<u>Sudhir K Rai</u>

- 476. Pateman, J.A., Kinghorn, J.R., Etta Dunn, E., Forbes, E. Ammonium regulation in *Aspergillus nidulans*. J. Bacteriol. 114(3), 943–950 (1973)
- 477. Daniel, W.W. A foundation for analysis in the health sciences.
 Hypothesis testing. In: Daniel WW (ed) Biostatistics, 7th edn.
 (Wiley, New York, pp 166–167,2000)
- 478. Bas, D., Boyac, I.H. Modelling and optimization I: Usability of response surface methodology. *J. Food Eng.* **78**, 836-845 (2007)
- 479. Haq Iul, Mukhtar H. Fuzzy logic control of bioreactor for enhanced biosynthesis of alkaline protease by an alkalophilic strain of Bacillus subtilis. Curr. Microbiol. 52, 149-152 (2006)
- 480. Nehete, P.N., Shah, V.D., Kothari, R.M. Profiles of alkaline protease production as a function of composition of the slant, age, transfer and isolate number and physiological state of culture. *Biotechnol. Lett.* **7**, 413–418 (1985)
- Lee, Y.H., Chang, H.N. Production of alkaline protease by *Bacillus* licheniformis in an aqueous two-phase system. *J. Ferment. Bioengin.* 69, 89-92 (1990)
- 482. Calik, P., Calik, G., Ozdamar, T.H. Oxygen transfer effects in serine alkaline protease fermentation by *Bacillus licheniformis:* Use of citric acid as the carbon source. *Enzyme Microbial Technol.* **23**, 451-461 (1998)
- 483. Potumarthi, R., Ch, S., Jetty, A. Alkaline protease production by submerged fermentation in stirred tank reactor using *Bacillus licheniformis* NCIM-2042: Effect of aeration and agitation regimes. *Biochemical Eng. J.* 34, 185-192 (2007)

<u>Sudhir K Rai</u>

- 484. Antonian, E. Recent advances in the purification, characterization and structure determination of lipases. *Lipids* 23, 1101-1 106 (1988)
- 485. Taipa, M.A., Moura-Pinto, P., Cabrat, J.M.S.Identification and characterization of *chromobacterium viscosum* lipase. *Biotechnol. Lett.* 8(1), 27-32 (1992)\
- 486. Aires-Barros, M.R., Taipa, M.A., Cabral, J.M.S. Isolation and purification of lipases. In: Wooley P, Petersen SB (eds) Lipases their structure, biochemistry and application. (Cambridge University Press, Cambridge, pp 243–270, 1994)
- Saxena, R.K., Sheoran, A., Giri, B., Davidson, S. Purification strategies for microbial lipases. *J. Microbiol. Methods* 52, 1–18 (2003)
- 488. Palekar, A.A., Vasudevan, P.T., Yan, S.Purification of lipase: a review. *Biocat. Biotransform.* **18**, 177–200(2000)
- 489. Margesin, R., Palma, N., Knauseder, F., Schinner, F. Purification and characterization of an alkaline protease produced by a psychrotropic *Bacillus* sp. *J. Biotechnol.* **24**, 203–6 (1992)
- 490. Kembhavi, A.A., Kulkarni, A., Pant, A. Salt-tolerant and thermostable alkaline protease from *Bacillus subtilis* NCIM No-64. *Appl. Biochem. Biotechnol.* **38 (1-2),** 83-92 (1993)
- 491. Moon, S.Y., Oh, T.K., Rho, H.M. Purification and characterization of an extracellular alkaline protease from *Bacillus subtilis* RM615. *Korean Biochem. J.* 27(4), 323-329 (1994)
- 492. Hutadilok-Towatana, N., Painupong, A., Suntinanalert, P. Purification and characterization of an extracellular protease from

<u>Sudhir K Rai</u>

alkaliphilic and thermophilic *Bacillus* sp. PS719. *J. Biosci. Bioeng.* **87(5),** 581-587 (1999)

- 493. Gerze, A., Omay, D., Guvenilir, Y. Partial purification and characterization of protease enzyme from *Bacillus subtilis* and *Bacillus megatherium. Appl. Biochem. Biotechnol.* **121-124**, 335-45 (2005)
- 494. Ozturk, S., Ozeren-Morgan, M., Dilgimen, A.S., Denizci, A.A., Arikan, B., Kazan, D. Alkaline serine protease from halotolerant *Bacillus licheniformis* BA17. *Ann. Microbiol.* **59(1)**, 83-90 (2009)
- 495. Ghafoor, A., Hasnain, S. Production dynamics of *Bacillus subtilis* strain AG-1 and EAG-2, producing moderately alkaline proteases. *African J. Microbiol. Research*, **3(5)**, 258-263 (2009)
- 496. Tiwary, E., Gupta, R. Medium optimization for a novel 58kDa dimeric keratinase from *Bacillus licheniformis* ER-15: biochemical characterization and application in feather degradation and dehairing of hides. *Bioresource Technol.* **101(15)**, 6103-10 (2010)
- 497. Lin, X., Lee, C.G., Casale, E.S., Shih, J.C.H. Purification and characterization of a keratinase from a feather-degrading *Bacillus licheniformis* strain. *Appl. Environ. Microbiol.* **58**, 3271–3275 (1992)
- 498. Suh, H.J., Lee, H.K. Characterization of a keratinolytic serine protease from *Bacillus subtilis* KS-1. *J. Protein Chem.* **20,** 165–169 (2001)
- 499. Rozs, M., Manczinger, L., Vágvölgyi, C., Kevei, F. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of *Bacillus licheniformis*. *FEMS Microbiol. Lett.* **205**, 221–224 (2001)

<u>Sudhir K Rai</u>

- 500. Korkmaz, H., Hür, H., Dinçer, S. Characterization of alkaline keratinase of *Bacillus licheniformis* strain HK-1 from poultry waste. *Ann. Microbiol.* **54**, 201–211(2004)
- 501. Suntornsuk, W. *et al.* Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium. *World J. Microbiol. Biotechnol.* **21**, 1111–1117 (2005)
- Saeki, K. *et al.* A novel species of alkaliphilic *Bacillus* that produces an oxidatively stable alkaline serine protease. *Extremophiles* 6, 65– 72 (2002)
- 503. Srinivasan, P.T., Viraraghavan, T., Subramanian, K.S. Aluminium in drinking water: An overview. *Water SA* **25** (1), 47-55 (1999)
- 504. Fujiwara, N., Masui, A., Imanaka, T. Purification and properties of the highly thermostable alkaline protease from an alkaliphilic and thermophilic *Bacillus* sp. *J. Biotechnol.* **30**, 245–56 (1993)
- Ferrero, M.A., Castro, G.R., Abate, C.M., Baigori, M.D., Sineriz, F. Thermostable alkaline proteases of *Bacillus licheniformis* MIR 29: isolation, production and characterization. *Appl. Microbiol. Biotechnol.* 45, 327–32 (1996)
- Yang, Y., Jiang, L., Zhu, L., Wu, Y., Yang, S. Thermal stable and oxidation resistant variant of subtilisin E. *J. Biotechnol.* 81, 113–118 (2000)
- 507. Beg, Q. K., Saxena, R.K., Gupta, R. Derepression and subsequent induction of protease synthesis by *Bacillus mojavensis* under fedbatch operations. *Process Biochem.* **37**, 1103-1109 (2002)
- 508. Kumar, S., Nussinov, R. How do thermophiles deal with heat? *Cell. Mol. Life Sci.* **58**, 1216–1233 (2001)

<u>Sudhir K Rai</u>

- 509. Saboto, D. *et al.* The b-glycosidase from the hyperthermophilic archaeon *Sulfolobus solfataricus*: enzyme activity and conformational dynamics at temperatures above 100°C. *Biophys. Chem.* **81**, 23–31 (1999)
- 510. Leuschner, C., Antranikan, G. Heat stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. *World J. Microbiol. Biotechnol.* **11**, 95–114 (1995)
- 511. Fredrich, A., Antrakian, G. Keratin degradation by *Fervido-bacterium pennavorans*, a novel thermophilic anaerobic species of the order *Thermotogales*. *Appl. Environ. Microbiol.* **62**, 2875–2882 (1996)
- 512. Diane, W., Stephan, R., Wolfgang, Z. Application of thermostable enzymes for carbohydrate modification. In: Contribution of the Fourth International Workshop on Carbohydrate as Organic Raw Materials, March 20–21, WUV-Universitatverlag, Vienna 1997
- 513. Zeikus, J., Lee, C., Lee, Y., Saha, B. Thermostable saccharides: new sources, uses and biodesigns. In: Kalegoris, E., Christakopoulos, D., Kekos, D., Macris, B. (Eds.), Studies on the solid-state production of thermostable endoxylanases from *Thermoascus aurantiacus*: Characterization of two isoenzymes. *J. Biotechnol.* **60**, 155–163, (1998)
- 514. Zeikus, J., Vielle, C., Savachenko, A.Thermozymes: biotechnology and structure-function relationships. *Extremophiles* **2**, 179–183 (1998)
- 515. Mozhaev, V. Mechanism-based strategies for protein thermostabilization. *Trends Biotechnol.* **11**, 88–95 (1993)

<u>Sudhir K Rai</u>

- 516. Krahe, M., Antranikian, G., Markel, H. Fermentation of extremophilic microorganisms. *FEMS Microbiol. Rev.* **18**, 271–285 (1996)
- 517. Kumar, H.D., Swati, S. *Modern Concepts of Microbiology, second revised ed.* (Vikas Publishing House Pvt. Ltd., New Delhi, 2001)
- 518. Gangadhara., P, RK., V. Prakash. Influence of polyols on the stability and kinetic parameters of invertase from *Candida utilis*: correlation with the conformational stability and activity. *Protein J.* 27(7-8), 440-9 (2008)
- 519. Fagain O. Understanding and increasing protein stability. *Biochem. Biophys. Acta* **1252**, 1–14 (1995)
- Street, T.O., Bolen, D.W., Rose, G.D. A molecular mechanism for osmolyte-induced protein stability. *Proc. Natl. Acad. Sci.* 103, 13997–14002 (2006)
- 521. Taravati, A. *et al.* Various effect of sugars & polyols on the protein structure and function: Role as osmolyte on protein stability. *World Appl. Sci. J.* **2(4)**, 353-362 (2007)
- 522. Asther, H., Meunier, J.C. Increased thermal stability of *Bacillus licheniformis α*-amylase in the presence of various additives. *Enzyme Microbial Technol.* **12**, 902–5 (1990)
- 523. Gonzalez, G., Gonzalez, C., Merino, P. Thermostabilization of *Cucurbita ficifolia* protease in the presence of additives. *Biotechnol. Lett.* **14,** 919–24 (1992)
- 524. Ghorbel B. Sellami-Kamoun A. Nasri M.Stability studies of protease from *Bacillus cereus* BG1. *Enzyme Microbial Technol.* 32(5), 513-518 (2003)

Sudhir K Rai

- 525. Fersht, A. R. *Enzyme Structure and Mechanism*. (Freeman: Reading, England, 1977)
- 526. Sigma, D.S., Moser, G. Chemical studies of enzyme active sites. Ann. Rev. Biochem. 44, 889–931 (1975)
- 527. Gold, A.M., Fahrney, D. Sulfonyl fluorides as inhibitors of esterases.
 II. Formation and reactions of phenyl methane sulfonyl alphachymotrypsin. *Biochem.* 3, 783–91(1964)
- 528. Jones, M.N., Manley, P. Interaction between lysozyme and n-alkyl sulphates in aqueous solution. *J. Chemical Soci. Faraday Transactions* **76(1)**, 654-664 (1980)
- 529. Pan, T., Lin, S. Fermentative production of alkaline protease as detergent additive. *J. Chinese Biochem. Soc.* **20**, 49–60 (1991)
- 530. Steele, D.B., Fiske, M.J., Steele, B.P., Kelley, V.C. Production of a low molecular weight, alkaline active, thermostable protease by a novel spiral-shaped bacterium, *Kurthia spiroforme* sp. nov. *Enzyme Microbial Technol.***14**, 358–60 (1992)
- 531. Donaghy, J.A., McKay, A.M. Production and properties of an alkaline protease by *Aureobasidium pullulans. J. Appl. Bacteriol.* **74**, 662–66 (1993)
- 532. Towatana, N.H., Painupong, A., Suntinanalert, P. Purification and characterization of an extracellular protease from alkaliphilic and thermophilic *Bacillus* sp. PS719. *J. Biosci. Bioeng.* **87,** 581–587 (1999)
- 533. Banerjee, U.C., Sani, R.K., Azmi, W., Soni, R. Thermostable alkaline protease from *Bacillus brevis* and its characterization as a laundry detergent additive. *Proc. Biochem.* **35**, 213-219 (1999)

Sudhir K Rai

- 534. Garrett, R.H., Grisham, C.M. *Biochemistry* (Brooks Cole; 2 edition, 1999)
- 535. Anwar, A., Saleemuddin, M. Alkaline proteases: A review. *Bioresource Technol.* **64,** 175-183 (1998)
- Bockle, B., Galunsky, B., Muller, R. Characterization of a keratinolytic serine proteinase from *Streptomyces pactum* DSM 40530. *Appl. Environ. Microbiol.* 61, 3705–3710 (1995)
- 537. Suzuki, Y., Tsujimoto, Y., Matsui, H., Watanabe, K. Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. *J. Biosci. Bioeng.* **102,** 73–81 (2006)
- 538. Sangali, S., Brandelli, A. Feather keratin hydrolysis by a *Vibrio* sp., strain kr2. *Appl. Environ. Microbiol.* **89**, 735–743 (2000)
- 539. Bordusa, F. Proteases in organic synthesis. *Chem. Rev.* **102**, 4817–4867 (2002)
- 540. Zaks, A., Klibanov, A.M. Enzymatic catalysis in organic media at 100°C. *Science* **224**, 1249–1251 (1984)
- 541. Gupta, M.N., Roy, I.Enzymes in organic media forms, functions and applications. *Eur. J. Biochem.* **271**, 2575–2583 (2004)
- 542. Klibanov, A.M. Improving enzymes by using them in organic solvents. *Nature* **409**, 241–246 (2001)
- 543. Shuang, Li., Bingfang, He., Zhongzhong, Bai., Pingkai,Ouyang. A novel organic solvent-stable alkaline protease from organic solventtolerant *Bacillus licheniformis* YP1A. *J. Mol.Cat. B : Enzymatic.* 56(2-3), 85-88 (2009)
- 544. Laane, C., Tramper, J., Lilly, M. D., Eds. *Biocatalysis in Organic Media* (Elsevier: Amsterdam, 1987)

<u>Sudhir K Rai</u>

- 545. Ogino, H., Ishikawa, H. Enzymes which are stable in the presence of organic solvents. *J. Biosci. Bioeng.* **91**, 109–116 (2001)
- 546. Basketter, D.A., English, J.S., Wakelin, S.H., White, I.R. Enzymes, detergents and skin: facts and fantasies. *Br. J. Dermatol.* **158**, 1177-1181 (2008)
- 547. Visser, S.⁴ Proteolytic Enzymes and Their Relation to Cheese Ripening and Flavor: An Overview. J. Dairy Sci. **76(1)**, 329-350 (1993)
- 548. Peng, Y., Yang, X., Zhang, Y. Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity *in vivo. Appl. Microbiol. Biotechnol.* **69**, 126–132 (2005)
- 549. Verstraete, M.Third-generation thrombolytic drugs. *Am. J. Med.* **109,** 52–58 (2000)
- 550. Torr, S.R., Nachowiak, D.A., Fujii, S., Sobel, B.E. Plasminogen steal and clot lysis. *J. Am. Coll. Cardiol.* **19**,1085–1090 (1992)
- Lijnen, H.R., Van Hoef B, Collen, D. Interaction of staphylokinase with different molecular forms of plasminogen. *Eur. J. Biochem.* 211, 91–97 (1993)
- 552. Schleuning, W.D. Vampire bat plasminogen activator DSPAalpha-1 (desmoteplase): a thrombolytic drug optimized by natural selection.
 Haemostasis 31, 118-122 (2001)
- 553. Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. *J. Thromb. Haemost.* **3**, 1791-9 (2005)
- 554. Mukherjee. A.K. Correlation between the phospholipids domains of the target cell membrane and the extent of *Naja kaouthia* PLA2induced membrane damage: Evidence of distinct catalytic and

Sudhir K Rai

PhD Thesis, Tezpur University, 2010

705

cytotoxic sites in PLA₂ molecules. *Biochimica et Biophysica Acta* **1770**, 187–195(2007)

- 555. Kim, W. *et al.* Purification and characterization of a fibrinolytic enzyme produced from *Bacillus* sp. strain CK 11-4 screened from Chungkook-Jang. *Appl. Environ. Microbiol.* **62,** 2482–2488 (1996)
- 556. Peng, Y., Huang, Q., Zhang, R-H.,Zhang, Y-Z. Purification and characterization of a fibrinolytic enzyme produced by *Bacillus amyloliquefaciens* DC-4 screened from douchi,a traditional Chinese soybean food. *Compar. Biochem. Physiol. Part B.* **134,** 45–52 (2003)
- 557. Hua, Y., Jiang, B., Mine, Y., Mu, W. Purification and characterization of a novel fibrinolytic enzyme from *Bacillus* sp. nov. SK006 isolated from an Asian traditional fermented shrimp paste. *J. Agr. Food Chem.* 56, 1451–1457 (2008)
- 558. Choi, N.S. *et al.* Purification and characterization of a novel thermoacid-stable fibrinolytic enzyme from *Staphylococcus* sp. strain AJ isolated from Korean salt-fermented Anchovy-joet. *J. Ind. Microbiol. Biotechnol.* **36,** 417–426 (2008)
- 559. Xiao-lan, Liu., Lian-xiang, Du., Fu-ping, Lu., Xi-qun, Z., Jing, X. Purification and characterization of a novel fibrinolytic enzyme from *Rhizopuschinensis* 12. *Appl. Microbiol. Biotechnol.* 67, 209–214 (2005)
- 560. http://www.indiatogether.org/environment/articles/tlink-1002.htm) Detergents under scrutiny. (Accessed on 20th July, 2010)
- 561. Olsen, H.S., Falholt, P. The role of enzymes in modern detergency. *J. Surf. Det.* **1(44)**, 555-567 (1998).

<u>Sudhir K Rai</u>

- 562. Nascimento, W.C.A., Martins, M.L.L. Studies on the stability of protease from *Bacillus* sp. and its compatibility with commercial detergent. *Brazilian J. Microbiol.* **37**, 307-311 (2006)
- 563. Hadj-Ali, N.El *et al.* Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated *Bacillus licheniformis* NH1. *Enzyme Microbial Technol.* **40**, 515– 523(2007)
- 564. Dodia, M.S., Bhimani, H.G., Rawal, C.M., Joshi, R.H., Singh, S.P. Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated haloalkaliphilic *Bacillus* sp. *Bioresource Technol.* **99**, 6223–6227 (2008)
- 565. Rajput, R., Sharma, R., Gupta, R. Biochemical characterization of a thiol-activated, oxidation stable keratinase from *Bacillus pumilus* KS12. *Enzyme Research*, 1-7 (2010)
- 566. Brown, K.L., Robert, E.W. Hancock. cationic host defense (antimicrobial) peptides. *Curr. Opin, Immun.* **18**, 24–30 (2006)
- 567. Hancock, R.E.W., Chapple, D.S. Peptide Antibiotics. *Antimicrobial Agents and Chemo.* **43(6)**, 1317-1323 (1999)
- Vizioli, J., Salzet, M. Antimicrobial peptides from animals: focus on invertebrates. *Trends Pharmacological Sci.* 23(11), 494-496 (2002)
- 569. Powers, J.P.S., Hancock, R.E. The relations between peptide structure and antibacterial activity. *Peptides* **24**, 1681–1691(2003)
- 570. Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N., Miyajima, K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. *Biochimica. Et. Biophysica. Acta* **1327**, 119-130 (1997)

Sudhir K Rai

- 571. Bechinger, B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. *J. Membr. Biol.* **156(3),** 197–211 (1997)
- 572. Park, C.B., Kim, H.S., Kim, S.C. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. *Biochem. Biophys. Re.s Commun.* **244**, 253-257(1998)
- 573. Khachatourians, G.G. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. J.A.M.C. 159 (9) 1129-1136 (1998)
- 574. Molina, M.P., Althaus, R.L., Molina, A., Fernandez, N. Antimicrobial agent detection in ewe's milk by the microbial inhibitor test brilliant black reduction test-BRT AiM®. *Int. Dairy J.* **13**, 821-826 (2003)
- 575. Zasloff, M. Antimicrobial peptides of multicellular organisms. *Nature*, **415(6870)**, 389-395 (2002)
- 576. Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. *Biochim. Biophys. Acta* **1696,** 1–14 (2004)
- 577. Dziarski, R., Gupta, D. The peptidoglycan recognition proteins (PGRPs). *Genome Biol.* **7(232)**, 1-13 (2006)
- Mahamoud, A., Chevalier, J., Alibert-Franco, S., Kern, W.V., Pages J-M. Antibiotic efflux pumps in Gram-negative bacteria : the inhibitor response strategy. *J. Antimicro. Chemother.* DOI: 10.1093/jac/dk1493
- 579. Wang, M. '*et al.* Human peptidoglycan recognition proteins require zinc to kill both Gram-positive and gram-negative bacteria and are <u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

708

synergistic with antibacterial peptides. *The J. Immunol.* **178**, (116-3125) 2007

- 580. Nasri, N.A.Md. *et al.* Anitbacterial properties of tualang honey and its effect in burn wound management: a comparative study. *BMC Complement. Alter. med.* **10(31),** (1-7) 2010
- 581. Umamaheswari, A., Nuni, A., Shreevidya, R. Evaluation of antibacterial activity of *Boerhaavia diffusa L.leaves. Int.J.Green Pharmacy.* DOI: 10.4103/0973-8258.63879
- 582. http://www.contractleathers.com/HistoryandProcess.pdf. History and Process of Leather. (Accessed on 24th July 2010)
- 583. http://biospectrumindia.ciol.com/content/bioFocus/104021201.asp.
 Superstore of leather tech.(Accessed on 24th July 2010)
- 584. http://www.financialexpress.com/news/No-new-tanneries-in-Kanpursuburb-UP-govt/623048/).No new tanneries in Kanpur suburb: UP govt.(Accessed on 24th July 2010)
- 585. Bhavan, S., Rao, J.R., Nair, B.U. A potential new commercial method for processing leather to reduce environmental impact. *Environ. Sci. Pollut. Res.* **15**, 293–295 (2008)
- 586. Cohlberg, J.A.The structure of α-keratin. *Trends in Biochemical Sci.*18, 360–362 (1993)
- 587. Steinert, P. M. Structure, function, and dynamics of keratin intermediate filaments. *Journal of Investigative Dermat.* **100**, 729–734 (1993)
- 588. Harrap, B.S., Woods, E.F. Species differences in the proteins of feathers. *Comparative Biochem. Physiol.* **20(2)**, 449-452(1967)

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

709

- 589. Cherry, J.P., Young, C.T., Shewfelt, A.L. Characterization of protein isolates from keratinous material of poultry feathers. *J. Food Sci.* 40, 331–335 (1975)
- 590. El-Boushi, A.R.Y., van der Poel, F.B. *Handbook of Poultry Feed from Waste. Processing and Use.* (Kluwer Academic Publishers, Dordrecht, 2000)
- 591. Luong, V.B., Payne, C.G. Hydrolysed feather protein as a source of amino acids for laying hens. *Br. Poult. Sci.* **18**, 523–526 (1977)
- 592. Liu, J.K., Waibel, P.E., Noll, S.L.Nutritional evaluation of blood meal and feather meal for turkeys. *Poult.Sci.* **68**, 1513–1518 (1989)
- 593. Casarin, F., Cladera-Olivera, F., Brandelli, A. Use of poultry by product for production of keratinolytic enzymes. *Food Bioprocess Technol.* **1**, 301–305 (2008)
- 594. Brandelli, A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. *Food Bioprocess Technol.* **1**, 105–116 (2008)
- 595. Wang, J. J., Swaisgood, H. E., Shih, J. C. H. Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. *Enzyme Microbial Technol.* **32**, 812–819 (2003)
- 596. Halling, P.J., Dunnill, P. Magnetic supports for immobilized enzymes and bioaffinity adsorbents. *Enzyme Microbial Technol.* **2**, 2-10 (1980)
- 597. Dresco, P.A., Zaitev, V.S., Gambino, R.J., Chu, B. Preparation and properties of magnetic and polymer magnetite nanoparticles. *Langmuir* **15**, 1945-1951 (1999)
- 598. Roath, S. Biological and biomedical aspects of magnetic fluid technology. *J. Magn.Mater.* **122**, 329-334(1993) Sudhir K Rai

- 599. Löster, K., Seidel, S., Kirstein, D., Schneider, F., Noll, F. Novel antibody coating of a magnetizable solid phase for use in enzyme immunoassays. *J.Immunol. Meth.* **148**, 41-47(1992)
- 600. Schütt, W. *et al.* Applications of magnetic targetting in diagnosis and therapy-possibilities and limitations: a mini-review. *Hybridoma* **16**, 109-117(1997)
- 601. Shinkai, M., Honda, H., Kobayashi, T. Preparation of fine magnetic particles and application for enzyme immobilization. *Biocatalysis* **5**, 61-69 (1991)
- 602. Mehta, R.V., Upadhyay, R.V., Charles, S.W., Ramchand, C.N.
 Direct binding of protein to magnetic particles. *Biotechnol. Bioeng.* 11, 493-496 (1997)
- Cochrane, F.C., Petach, H.H., Henderson W. Application of tris(hydroxymethyl) phosphine as a coupling agent for alcohol dehydrogenase immobilization. *Enzyme Microbial Technol.* 18, 373-378(1996)
- 604. Ooshima, H., Genko, Y., Harano, Y. Stability of immobilized yeast alcohol dehydrogenase. *Biotechnol. Bioeng.* **23**, 2851-2862 (1981)
- 605. Schöpp,W., Grunow, M. Immobilization of yeast ADH by adsorption onto polyaminomethylstyrene. *Appl. Microbiol. Biotechnol.* **24,** 271-276 (1986)
- 606. Liang, Y.Y., Zhang, L.M. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. *Biomacromolecules* 8, 1480-1486 (2007)

<u>Sudhir K Rai</u>

607. Kunert, J. Biochemical mechanism of keratin degradation by the actinomycetes Streptomyces fradiae and the fungus *Microsporum gypseum*: a comparison. *J Basic Microbiol.* **29**, 597–604 (1989)

<u>Sudhir K Rai</u>

PhD Thesis, Tezpur University, 2010

712

Appendix-I

(A)Screening media for protease producing bacteria

Composition	Concentration (gm/l)
Skim milk agar	4.0
Yeast extract	2.5
Glucose	1.0
Agar	20.0
рН	8.0/10.0
Distilled water	1000 ml

Note:Adjust the media $\ensuremath{\mathsf{p}}\xspace$ separately followed by addition of skim milk , agar and yeast extract.

(B)Composition	n of M9 Media fo	or protease	production
----------------	------------------	-------------	------------

(I) M9 Medium composition	Concentration (gm/l)
Na₂HPO₄	6.0
KH₂PO₄	3.0
NH₄CI	1.0
NaCl	0.5
MgSO₄.H₂O	0.246
CaCl ₂ .7H ₂ O	0.014
Carbon source	1.0
(II) Macro-nutrient composition	
FeSO ₄ .7H ₂ O	1.0 mg l ⁻¹
CuSO₄.5H₂O	50.0 µg Г ¹
H ₃ BO ₃	10.0 µg Г ¹
MgSO₄.5H₂O	10.0 µg Г¹
ZnSO ₄ .7H ₂ O	70.0 µg l ⁻¹
MoO3	10.0 µg l⁻¹
Add 1ml of macro -nutrient in 1000 ml of M9	production medium

(C) Carbohydrate fermentation medium compositions	
(i) Phenol red broth	Concentration (gm/l)
Protease peptone	10.0

	Beef extract	1.0
	Sodium chloride	5.0
	Sucrose/Lactose/fructose/D-glucose/	5.0
	Mannitol	
	Phenol red	0.018
	(D) Nutrient Agar composition	Concentration (gm/l)
	Peptic digest of animal tissue	10.0
	Meat extract	10.0
	NaCl	5.0
	Agar	15.0
	(E) Litmus milk composition	Concentration (gm/l)
	Skim milk powder	100.0
	Litmus	0.50
	Sodium sulphite	0.50
	(F) Urea broth	Concentration (gm/l)
	Yeast extract	0.1
	Monopotassium phosphate	9.1
	Dipotassium phosphate	9.5
	Urea	20.0
	Phenol red	0.01
	(G) Tryptone broth	Concentration (gm/l)
`	Casein enzymatic hydrolysate	10.0
	Sodium chloride	5.0
	(H) Simmon citrate agar (SIM agar)	Concentration (gm/l)
	Magnesium sulphate	0.20
	Ammonium dihydrogen phosphate	1.0
	Dipotassium phosphate	1.0
	Sodium citrate	2.0
	NaCl	5.0
	Bromothymol blue	0.08

(I) Nitrate broth	Concentration (gm/l)
Peptic digest of animal tissue	5.0
Meat extract	3.0
Potassium nitrate	1.0
NaCl	30.0

(J) Indole nitrate broth	Concentration (gm/l)
Casein enzymic hydrolysate	20.0
Disodium phosphate	2.0
Dextrose	1.0
Potassium nitrate	1.0
Agar	1.0

(K) Methyl red –voges proskauer	Concentration (gm/l)
broth	
Buffered peptone	7.0
Dextrose	5.0
Dipotassium phosphate	5.0

(L) Triple sugar iron agar	Concentration (gm/l)
Peptic digest of animal tissue	10.0
Casein enzymic hydrolysate	10.0
Yeast extract	3.0
Beef extract	3.0
Lactose	10.0
Sucrose	10.0
Dextrose	1.0
Ferric ammonium citrate	0.30
NaCl	5.0
Sodium thiosulphate	0.30
Phenol red	0.024
Agar	12.0

Agar

•

(M) Nutrient Broth	Concentration (gm/l)
Peptic digest of animal tissue	10.0
Meat extract	10.0
NaCl	5.0

(N)SDS-PAGE gel electrophoresis composition	
(i) Resolving buffer (8X)	Concentration (gm/l)
1.5 M Tris-Cl (pH 8.8)	18.17

(ii) Stacking buffer (4X)	Concentration (gm/l)
0.5M Tris-Cl (pH 6.8)	6.06
Note : Adjust the pH 8.8 with 6N HCI.	Make up the final volume to 100 ml
with distilled water	

(iii) Acrylamide mixture	Concentration (gm/l)
30 % acrylamide	30.0
0.8% bis-acrylamide	0.8
Note : Dissolve in 100ml of wa	rm deionized water to facilitate dissolution
of bis-acrylamide. Store in amber colour bottle at 4°C	

(iv) Reservoir buffer (pH 8.3, 1X)	Concentration (gm/l)
Tris-Cl	3.0
Glycine	14.4
10% SDS	10.0
Note : Dissolve in 1000ml of distilled water adjusted to pH to 8.3	

(v) Sodium dodecyl sulfate (SDS)	Concentration (gm/l)
10 % SDS	10.0

(vi) Ammonium per sulphate (APS)Concentration (gm/l)10% APS0.2

(vii) Staining solution

Volume (ml / concentration)

Methanol	40.0
Glacial acetic acid	10.0
Distilled water	50.0
Commassie brilliant blue	0.4 (gm/ ml)

Volume (ml)
40
10
50

(ix) Loading buffer (50 ml , 3X)		
Composition	Amount / volume	
Tris-Cl (pH 6.8)	1.296	
SDS	3.0	
Glycerol	1.5 ml	
Bromophenol blue	3.0	
Note: 1ml of loading buffer mixed with 30µl of 2-mercaptoethanol (3%)		

(x) Resolving gel composition	
(12.5%)	
Components	Volume (ml)
Distilled water	2.3
1.5 M Tris-Cl (pH 8.8)	5.0
Acrylamide mixture	8.3
10% SDS	0.2
1 % APS	1.5
Glycerol	0.8
TEMED	0.025

(xi) Stacking gel (4X)	
Components	Volume (ml)
Distilled water	5.4
0.5M Tris-Cl (pH 6.8)	2.5

10% SDS	0.1
Acrylamide mixture	1.3
1 % APS	0.7
Glycerol	0.4
TEMED	0.015

-

.

(O) Chemicals composition for chromosomal DNA isolation	
(i) Solution I	Concentration (gm %)
50mM alucose	0 0

50mM glucose	0.9
25mM Tris-Cl	0.30
10mM EDTA	0.37

(ii) Solution II	Concentration (gm %)
0.2N NaOH	0.0079
SDS	1.0

(iii) Solution III	Volume (ml)
5M Potassium acetate	60.0
Glacial acetic acid	11.5
Distilled water	28.5

(iv) Loading dye	Concentration (gm %)
Bromophenol blue	0.25
Xylene cyanol	0.25
Sucrose	40.0

List of publications

LIST OF PUBLICATIONS FROM Ph.D THESIS

1.**Rai, S.K.,** Mukherjee, A.K. Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from *Bacillus subtilis* DM-04. Biochemical Eng. J. 48 (2010) 173–180

2. **Rai, S.K.,** Roy, J.K., Mukherjee, A.K. Characterisation of a detergentstable alkaline protease from a novel thermophilic strain *Paenibacillus tezpurensis* sp. nov. AS-S24-II. Appl. Microbiol. Biotechnol. 85(5), (2010) 1437-50.

3. **Rai, S.K.,** Mukherjee, A.K. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from *Bacillus subtilis* strain DM-04.Bioresourc. Technol. 100 (2009) 2642–2645

4.**Rai, S.K.,** Konwarh, R., Mukherjee, A.K. Purification, characterization and biotechnological application of an alkaline β -keratinase produced by *Bacillus subtilis* RM-01 in solid-state fermentation using chicken-feather as substrate Biochemical Eng. J. 45 (2009) 218–225

5. Mukherjee, A.K., Adhikari, H., **Rai, S.K**. Production of alkaline protease by a thermophilic, *Bacillus subtilis* under solid-state fermentation (SSF) condition using *Imperata cylindrica* grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochemical Eng. J. 39 (2008) 353–361

PAPER PRESENTED IN SEMINAR / SYMPOSIUM / CONFERENCES

(A) International level

1. Rai, S.K., Mukherjee, A.K. (2009) *International Symposium on Envirnomental Pollution Ecology and Human Health (ISEPEHH-* 2009). 25-27 July 2009, organized by S.V.University, Tirupati, India

2.Rai, S.K., Mukherjee, A.K. (2009) *INSA Platinum Jubilee International Symposium on Research in Molecular Medicine Based on Natural Resources and Traditional Knowledge* 21-23 November 2009, organized by National chemical Laboratory (NCL), Pune, India

3. Mukherjee, A.K., Rai, S.K., Bhuyan, P (2009) *INSA Platinum Jubilee International Symposium on Research in Molecular Medicine Based on Natural Resources and Traditional Knowledge* 21-23 November 2009, organized by National chemical Laboratory (NCL), Pune, India

4. Mukherjee, A.K., Rai, S.K. (2007) In: Il International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007), 28 November - 1 December 2007, University of Sevilla, Spain.

(B) National level

1. Rai, S.K., Mukherjee, A.K. (2009) *New Biology section of 96th Indian Science Congress,* 3-7 January, 2009, organized by North-Eastern Hill University, Shillong, India.

2. Rai, S.K., Mukherjee, A.K. (2008) *National conference on Recent Trends in Bioscience and Industrial Application,* December, 2008, organized by K. J. Somaiya College of Arts and science, Mumbai.

3. Rai, S.K., Mukherjee, A.K. (2008) *New Biology section of 95th Indian Science Congress.* 3-7 January, 2008, organized by Andhra University, Visakhapatnam, India.

LIST OF PUBLICATIONS APART FROM Ph.D WORK

1. Konwarh, R., Karak, N., **Rai, S.K.,** Mukherjee, A.K., Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20 (2009) 225107, doi:10.1088/0957-4484/20/22/225107

2. Mukherjee, A.K., Borah, M., **Rai, S.K.** To study the influence of different components of fermentable substrates on induction of extracellular α -amylase synthesis by *Bacillus subtilis* DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α -amylase in laundry detergent formulations. Biochemical Eng. J. 43 (2009) 149–156

3. Mukherjee, A.K., Kumar, T.S., **Rai, S.K.,** Roy, J.K. Statistical optimization of *Bacillus alcalophilus* α -amylase immobilization onto ironoxide (Fe₃O₄) magnetic nanoparticles. Biotechnology and Bioprocess Engineering Journal (2010) (In press).

PAPER PRESENTED IN SEMINAR / SYMPOSIUM / CONFERENCES

National level

1. Roy, J.K., **Rai, S.K.,** Mukherjee, A.K. (2009) *New Biology section of* **96th Indian Science Congress,** 3-7 January, 2009, organized by North-Eastern Hill University, Shillong, India.

2. Bhuyan, P., Nag, A., **Rai, S.K.,** Mukherjee, A.K. (2009) *New Biology* section of 96th Indian Science Congress, 3-7 January, 2009, organized by North-Eastern Hill University, Shillong, India.

3. **Rai, S.K.,** Saikia, D., Mukherjee. A.K. (2007) *In: Proceedings of Seminar on Bioelectronics, (Ed., Drs J.C. Dutta and R.Chutia),* Bioelectronics Division, Dept. of Electronics and Communication Engineering, Tezpur University, Tezpur, pp: 55-56 (2007). 2. Bhuyan, P., Nag, A., **Rai, S.K.,** Mukherjee, A.K. (2009) *New Biology section of 96th Indian Science Congress,* 3-7 January, 2009, organized by North-Eastern Hill University, Shillong, India.

3. Rai, S.K., Saikia, D., Mukherjee. A.K. (2007) *In: Proceedings of Seminar on Bioelectronics, (Ed., Drs J.C. Dutta and R.Chutia),* Bioelectronics Division, Dept. of Electronics and Communication Engineering, Tezpur University, Tezpur, pp: 55-56 (2007).

Contents lists available at ScienceDirect

Biochemical Engineering Journal

journal homepage: www.elsevier.com/locate/bej

Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from *Bacillus subtilis* DM-04

Sudhir K. Rai, Ashis K. Mukherjee*

Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India

ARTICLE INFO

Article history: Received 1 July 2009 Received in revised form 3 September 2009 Accepted 9 September 2009

Keywords: Enzyme Submerged Microbial Bacillus subtilis Chromatography Protease Kinetics Solid-state fermentation Optimization

ABSTRACT

Optimum protease production of 518 U by Bacillus subtilis DM-04 in submerged fermentation was attained by response surface method. An alkaline protease, exists as zwitterionic form at pH 7.0 was purified to 23.5-fold by a combination of cation and anion exchange chromatography, ethanol precipitation followed by reverse-phase HPLC. The purified protease (Alzwiprase) contributes 29.0% of overall extracellular proteases of *B. subtilis* DM-04, has a subunit molecular mass of 16.9 kDa and exists as a monomer. It shows optimum activity at 45 °C and pH 10.0, respectively. The K_m and V_{max} values of Alzwiprase towards casein were determined as 59 µM and 336 µg min⁻¹, respectively. Irreversible inhibition of enzyme activity of Alzwiprase with serine protease inhibitors demonstrates that it belongs to serine protease family, more particularly endopeptidase K and/or subtilisin-like protease. The significant stability and compatibility towards organic solvents, urea, surfactants, commercial laundry detergents as well as excellent stain removal and dehairing properties of Alzwiprase hold a tremendous promise for its industrial application.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The enzymes are considered as "green chemicals" owing to their eco-friendly in nature and possess wide range of applications from industrial sector to house-hold products. Microbial proteases represent one of the three largest groups of industrial enzymes and account for approximately 60% of the total enzyme sale in the world and they are the leaders of the industrial enzyme market worldwide [1]. Microbial proteases are classified as acidic, neutral and alkaline depending on the pH at which they show maximum activity. Amongst these, alkaline proteases find a wide range of applications in laundry detergent, textile, food processing, pharmaceuticals, and leather, paper and pulp industries [1–3].

Since the enzyme based detergents can function better at room temperature (\sim 23 °C) and possess pollution-alleviating capacity over conventional synthetic detergents; therefore, alkaline proteases have made their way as key-ingredients in detergent formulations [2,3]. It is worthwhile to mention that there are many a parameters involved in the selection of an ideal detergent protease,

E-mail address: akm@tezu.ernet.in (A.K. Mukherjee).

such as compatibility with the detergent components, good activity at relevant washing pH and temperature, compatibility with the ionic strength of the detergent solution, stain degradation and removal potential, stability and half-life. This has stimulated the scientists to search for newer microbial proteases with novel properties that can further improve the wash performance of enzyme based laundry detergents.

In our previous study, we report the purification, characterization, physiological significance and industrial application of a 33.1 kDa anionic, alkaline serine protease (Bsubap-I) from Bacillus subtilis DM-04 [3]. It is to be noted that a bacterium produces arrays of protease isoenzymes for its survival and growth and many of these proteases may be explored for the industrial purpose [3]. Our subsequent study has shown that apart from secreting the anionic and cationic proteases, the same bacterium produces another major group of proteases, which is zwitterionic in nature at pH 7.0 (protease does not bind to any cation or anion exchanger at pH 7.0) and holds a tremendous promise for industrial application. This has prompted us to purify, characterize and explore the possible biotechnological potential of an organic solvent-stable protease which exists as zwitterionic form at pH 7.0 (Alzwiprase) but shows optimum activity at pH 8.0 from B. subtilis DM-04. Further, we also improved the protease yield in SmF by statistical optimization of process parameters using response surface method. Characteriza-

^{*} Corresponding author. Tel.: +91 3712 267007x5405; fax: +91 3712 267005/267006.

¹³⁶⁹⁻⁷⁰³X/\$ - see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.bej.2009.09.007

Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain *Paenibacillus tezpurensis* sp. nov. AS-S24-II

Sudhir K. Rai - Jetendra K. Roy - Ashis K. Mukherjee

Received: 25 June 2009 / Revised: 25 June 2009 / Accepted: 13 July 2009 © Springer-Verlag 2009

Abstract An alkaline-protease-producing bacterial strain (AS-S24-II) isolated from a soil sample in Assam is a Gram-stain-positive, catalase-positive, endospore-forming rod and grows at temperatures ranging from 30 °C to 60 °C and salinity ranging from 0% to 7% (w/v) NaCl. Phenotypic characterisation, chemotaxonomic properties, presence of Paenibacillus-specific signature sequences, and ribotyping data suggested that the strain AS-S24-II represents a novel species of the genus Paenibacillus, for which the name Paenibacillus tezpurensis sp. nov. (MTCC 8959) is proposed. Phylogenetic analysis revealed that P. lentimorbus strain DNG-14 and P. lentimorbus strain DNG-16 represent the closest phylogenetic neighbour of this novel strain. Alkaline protease production (598×10³) $U I^{-1}$) by *P. tezpurensis* sp. nov. in SmF was optimised by response surface method. A laundry-detergent-stable, Ca²⁺-independent, 43-kDa molecular weight alkaline serine protease from this strain was purified with a 1.7fold increase in specific activity. The purified protease displayed optimum activity at pH 9.5 and 45-50 °C temperature range and exhibited a significant stability and compatibility with surfactants and most of the tested commercial laundry detergents at room temperature. Further, the protease improved the wash performance of detergents, thus demonstrating its feasibility for inclusion in laundry detergent formulations.

The 16S rDNA sequence to GenBank and the accession number are bankit1191281 FJ804507, and the strain is deposited in Microbial Type Culture Collection (MTCC 8959).

S. K. Rai · J. K. Roy · A. K. Mukherjee (🖂) Department of Molecular Biology and Biotechnology, School of Science and Technology, Tezpur University, Tezpur 784 028 Assam, India e-mail: akm@tezu.crnet.in Keywords Alkaline protease · Detergent compatibility · Paenibacillus tezpurensis · Response surface · Serine protease · Submerged fermentation

Introduction

Microbial proteases, representing one of the three largest groups of industrial enzymes, account for approximately 60% of the total enzyme sale. Amongst the different types of proteases, alkaline proteases particularly those isolated from the genus *Bacillus* find a wide range of applications in laundry, dishwashing, textile, food processing, pharmaceuticals, leather, paper and pulp industries (Anwar and Saleemuddin 1998; Gupta et al. 2002). Owing to the better cleansing properties of enzyme-based detergents at lower washing temperature and pollution-alleviating capacity over conventional synthetic detergents (Krik et al. 2002; Mukherjee et al. 2008), alkaline proteases have made their way as key ingredients in detergent formulations (Maurer 2004).

It is well known that exploration of microbial diversity is the major driving force for the development of biotechnological products and processes. The northeastern part of India is considered as one of the mega biodiversity zones of the world and, by screening the soil samples of this region, we have isolated a potent bacterial strain capable of secreting significant amount of protease in the culture medium at 50 °C temperature. Taxonomic identification of the strain by polyphasic approach showed that this is a novel species belong to the genus *Paenibacillus*, and this strain was subsequently named as *Paenibacillus tezpurensis* sp. nov. There are hardly few reports available on protease production by *Paenibacillus* which are ubiquitous in nature, and the proteases from this genus may find novel industrial

Short Communication

Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from *Bacillus subtilis* strain DM-04

Sudhir K. Rai, Ashis K. Mukherjee *

Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India

ARTICLE INFO

Article history: Received 11 August 2008 Received in revised form 24 November 2008 Accepted 25 November 2008 Available online 10 january 2009 ;

Keywords: Bacillus subtilis Serine alkaline protease Dehainng activity Antibacterial specificity Organic solvent stable protease

1. Introduction

Proteases are important from an industrial perspective due to their wide scale applications in the detergents, food, pharmaceuticals, chemicals, leather, paper and pulp and silk industries (Krik et al., 2002; Mukherjee et al., 2008). Owing to the better cleansing properties of protease based detergents and pollution-alleviating capacity over conventional synthetic detergents (Krik et al., 2002; Mukherjee et al., 2008), alkaline proteases have made their way as key-ingredients in detergent formulations. A survey of literature showed that extracellular proteases were largely responsible providing nutrients to the bacteria (Brar et al., 2007) and therefore," an attempt was made to explore the possible ecological significance of a major extracellular protease from Bacillus subtilis DM-04, a strain isolated form a soil sample of Assam, North-east India (Mukherjee and Das, 2005). In this study, we report the purification, characterization and explore the biotechnological potential and ecological significance of a alkaline serine protease (Bsubap-I) from B. subtilis DM-04 (Mukherjee and Das, 2005).

2. Methods

2.1. Microorganisms

The microbes viz. Escherichia coli, B. subtilis DM-04, Bacillus licheniformis, Kocuria varians, and Paenibacillus polymyxa were iso-

ABSTRACT

An organic solvent stable, alkaline serine protease (Bsubap-I) with molecular mass of 33 1 kDa, punfied from *Bacillus subtilis* DM-04 showed optimum activity at temperature and pH range of 37-45 °C and 10.0-10.5, respectively. The enzyme activity of Bsubap-I was significantly enhanced in presence of Fe^{2+} . The thermal resistance and stability and of Bsubap-I in presence of surfactants, detergents, and organic solvents, and its dehairing activity supported its candidature for application in laundry detergent formulations, ultrafiltration membrane cleaning, peptide synthesis and in leather industry. The broad substrate specificity and differential antibacterial property of Bsubap-I suggested the natural ecological role of this enzyme for the producing bacterium.

© 2008 Elsevier Ltd All rights reserved

lated from the soil samples of Assam and taxonomically identified Staphylococcus aureus and Klebesilla pneumoniae were obtained from Microbial Type Culture Collection, IMTECH, Chandigarh

2.2. Isolation and purification of acidic protease

Batch fermentation with B. subtilis DM-04 was carried out by using potato peel (PP) and Imperata cylindrica (IC) grass as substrates (Mukherjee et al., 2008). Cell-free culture supernatant (48 h post inoculation) equivalent to 100 mg protein was applied to a CM-cellulose column (1 cm × 20 cm) and the unbound proteins (showing major protease activity) were re-fractionated on a DEAE-Sephadex A-50 column (1.5 cm × 9.0 cm) by eluting stepwise using phosphate buffers of increasing molarities and decreasing pH values at room temperature (~25 °C). The fractions showing high caseinolytic activity were pooled, desalted, concentrated and further fractionated on a Sephacryl S-200 column (1.5 cm \times 60 cm) with 20 mM K-phosphate buffer (pH 7 0). Fractions showing the high protease activity were pooled and protein content was determined (Lowry et al., 1951). The homogeneity of preparation and molecular mass of native protein was determined by 12 5% SDS-PAGE, with or without reduction of protein(s) with β-mercaptoethanol (Lammeli, 1970). Purity of protein was also checked by reverse-phase high performance liquid chromatography (RP-HPLC) of gel-filtration fraction (GF-II) on Waters reverse-phase Nova-Pak C_{18} column (3.9 mm × 300 mm). Protein was eluted with a linear gradient from 5% to 70% acetonitrile containing 0.1% TFA. Casein (1% w/v) zymography was applied to determine the proteolytic activity of the purified protease as described by Thangam and Rajkumar (2002).

^{*} Corresponding author Mobile: +91 9957 184351; fax: +91 3712 267005/ 267006.

E-mail address: akm@tezu.ernet.in (A.K. Mukherjee),

^{0960-8524/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.biortech2008.11.042

Purification, characterization and biotechnological application of an alkaline β -keratinase produced by *Bacillus subtilis* RM-01 in solid-state fermentation using chicken-feather as substrate

Sudhir K. Rai, Rocktotpal Konwarh, Ashis K. Mukherjee*

Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam, India

ARTICLE INFO

Article history: Received 3 February 2009 Received in revised form 30 March 2009 Accepted 1 April 2009

Keywords: Bioreactor systems Solid-state Enzyme Microbial Keratinase Waste treatment Response surface method

ABSTRACT

We report the application of response surface methodology (RSM) for optimization of the media composition for β -keratinase production by a feather degrading *Bacillus subtills* strain RM-01 in solid-state fermentation using chicken-feather as substrate. The optimized culture conditions for 5.0 g of chickenfeathers moistened with distilled water (1:1, w/v, adjusted to pH 8.0) supplemented with maltose (10%, w/w) and sodium nitrate (1.25%, w/w) as best co-carbon and co-nitrogen sources, respectively resulted in 5-fold increase of β -keratinase production post-72 h of incubation at 50°C compared to β keratinase production under un-optimized condition. The purified β -keratinase was a 20.1 kDa molecular weight serine protease requiring Fe²⁺ for enzyme activity, showed restricted substrate specificity for β keratin, and exhibited a significant stability and compatibility with surfactants, and most of the tested commercial laundry detergents, thus demonstrating its feasibility for inclusion in laundry detergents formulations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Amongst the industrially important enzymes, microbial keratinases are stimulating tremendous interests in the enzyme-market owing to the fact that there is a great demand for developing biotechnological alternatives for recycling of keratin-wastes, for example unused chicken-feather to useful value added products [1-3]. Keratinase-mediated degradation of feathers in the niche of environmental biotechnology provides a viable alternative to alkali hydrolysis and steam pressure-cooking [1]. New avenues for commercial exploitation of keratinase have yielded better animal feed additives from feather hydrolysates of keratin degrading bacteria [1]. Besides, keratinases are finding applications for the manufacturing of biodegradable plastics, nitrogenous fertilizers, glues, cosmetic, medicine, and foils [2,3].

Despite these, the industrial application and hence the market demand of keratinases as compared to other industrial enzymes is still in the stage of infancy. Therefore, effort should be directed to reduce the keratinase production cost by using the low cost waste material(s) as fermentable substrate(s). During the past cou-

* Corresponding author. Tel.: +91 9957184351 (M); fax: +91 3712 267005/267006 (O).

E-mail address: akm@tezu.ernet.in (A.K. Mukherjee).

ple of years, solid-state fermentation (SSF) has shown a tremendous potential in the industrial production of a myriad of value-added products with advantages over submerged fermentation in terms of low production expense, saving of water and energy, less effluent problem and stability of products due to less dilution in the media [4-6]. Besides, SSF technology holds a tremendous promise for employment generation particularly in developing countries. Furthermore, it has been reported that wild-type strains of microorganisms (fungi or bacteria) have a tendency to do better performance in SSF systems compared to genetically altered microorganisms, and thus reducing the energy and cost requirement even further [7]. However, unlike for production of other biotechnologically important microbial enzymes in SSF, a perusal of literature shows that till date, production of bacterial keratinase in SSF has never been attempted which prompted us to initiate the present study.

In this study, we report the β -keratinase production by a feather degrading *Bacillus subtilis* RM-01 in SSF using chicken-feather as substrate, biochemical characterization and some application of the purified β -keratinase. Response surface methodology (RSM) was used to optimize the media composition for maximal β -keratinase yield in SSF with in an effort to reduce the production cost. To the best of our knowledge, this is the first report on keratinase production as well as statistical optimization of fermentation condition to improve the keratinase yield in SSF.

¹³⁶⁹⁻⁷⁰³X/\$ - see front matter © 2009 Elsevier R.V. All rights reserved. doi: 10.1016/j.bej.2009.04.001

Biochemical Engineering Journal 39 (2008) 353-361

Production of alkaline protease by a thermophilic *Bacillus subtilis* under solid-state fermentation (SSF) condition using *Imperata cylindrica* grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation

Ashis K. Mukherjee*, Hemanta Adhikari, Sudhir K. Rai

Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India Received 14 May 2007; received in revised form 27 September 2007; accepted 29 September 2007

Abstract

Among the different agro-industrial waste products and kitchen waste materials, viz. mustered oil cake, wheat bran, rice bran, *Imperata cylindrica* grass, banana leaves, potato peels and used tea leaves screened as substrates/solid supports for the production of alkaline protease by a thermophili strain of *Bacillus subtilis* DM-04 under solid-state fermentation, potato peel followed by *I. cylindrica* grass supported maximum protease production by *B. subtil* SDM-04 under solid-state fermentation, potato peel followed by *I. cylindrica* grass supported maximum protease production by *B. subtil* DM-04 compared to individual substrate. Among the tested nitrogen compounds, 0.1% (w/w) beef extract followed by yeast extract served as the best co-nitrogen sources for protease production. The crude protease displayed optimum activity at 37-45 °C temperature range and show characteristics pH optima at pH 8.0-9.0. The protease from *B. subtilis* DM-04 retained 67% of its original activity post-heating at 60 °C 15 min. Among the tested protein substrates, casein served as the most preferred substrate for the enzyme. Crude protease exhibited a signific stability and compatibility with most of the tested commercial laundry detergents, demonstrating its feasibility for inclusion in laundry deterg formulation.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Alkaline protease; Bacillus subtilir; Imperata cylindrica; Laundry detergent formulation; Potato peel; Solid-state fermentation, Ulukher

1. Introduction

Proteases catalyze the cleavage of peptide bonds in other proteins, are the class of enzymes having tremendous applications in both physiological and commercial fields. Among all the different commercial enzymes, microbial protease in particular, represents about 60% of all the industrial enzyme's sales in the world due to their applications in several industrial sectors like in the detergent, food, pharmaceuticals, chemicals, leather, paper and pulp and silk industries [1]. Proteases are classified into acid, neutral and alkaline proteases on the basis of pH range in which their activities are optimum [2]. Among all proteases, alkaline proteases are primarily used as detergent additives [1,3]

* Corresponding author. Tel.: +91 3712 267172;

fax: +91 3712 267005/267006.

E-mail address: akm@tezu.ernet.in (A.K. Mukherjee).

and they accounted for 40% of the total worldwide enzy sales and 89% of the total protease sale. Nowadays, the u enzyme (protease)-based detergents is preferred over the ventional synthetic ones in view of their cleaning prope better performance at lower washing temperature and the *z* ation of pollution [3]. The first detergent containing the baenzyme was introduced in the market in 1956 under the name Bio-40 and today, a significant share of the enzyme *z* is captured by subtilisins and/or alkaline proteases from *Bacillus* species [1].

At present, the overall cost of enzyme production high (due to high cost of substrates and mediums ustherefore, development of novel processes to incre yield of proteases with respect to their industrial requi coupled with lowering down the production cost iv appreciable from the commercial point of view. Furth proteases produced by using commercial medium undesirable flavor, which are unsuitable for application