
r-I ------- ---

I CENTRAL lJ8RARY 
I 

I TEZiPUR UN~VERSril . 

REFERENCE BOOK 
NOT TO BE lSSUED 

nZPUB UWVfRSiTV LlBRARY 



Smooth Bootstrap Estimation of Some Local and 

Global Measures of Accuracy of Kernel Density 

Estimators 
A 

Thesis 

Submitted to 

Tezpur University 

For the degree of 

Doctor of Philosophy 
. 
In 

Mathematical Sciences (Statistics) 

by 

Santanu Dutta 

Registration Number: 027 of 2009 
Department of Mathematical Sciences 

Under the School of Science and Technology 

Tezpur University 

Napaam, Tezpur. 



Acknowledgement 

The author IS extremely grateful to his supervisors Prof. Arup Bose, Professor Stat. 

Math.Unit, Indian Statistical Institute (~SI) Kolkata and Prof. Munindra Borah, Pro

fessor Mathematical Science dept., Tezpur University. The author is indebted to his 

supervisors for their kind guidance, support and suggestions during various stages of 

the research. 

The author is grateful to the Vice-Chancellor, Registrar and Prof. Munindra Bo

rah, Head of Mathematical Science department (during 2007),. of Tezpur University 

for granting one year study leave for undertaking research in Stat. Math. Unit, lSI 

Kolata. The author expresses his sincere thanks and gratitude to the Dean of StudIes, 

lSI Kolkata, for granting the position of "Visiting Research Fellow" in Stat. Math. 

Unit lSI Kolkata, during 2007 August to 2008 July. 

The author is thankful to the Head and all the esteemed colleagues of Mathematical 

Science department, Tezpur University, for their kind support. 

The author IS thankful to Prof. Arup Bose for supporting several ViSItS to Stat 
\ 

Math. Umt, lSI Kolkata, dunng the various stages of research. Prof. Bose haS been" 

a great teacher, motivator and role model as an ideal academician. The author shall 

always be grateful to Prof. Bose for his patience and the precious time that he devoted 

to clarify several queries and rectify a number of mistakes during the course of the 

research. 

The author is grateful to NBHM for awarding NBHM Teacher Fellowship for 2009 

and 2010 for undertaking this research. 

The author WIll always be indebted to Prof. Arup Bose, Prof. B.V. Rao, Prof. A. 

Goswaml, Prof. P. Chaudhuri, Prof. K. Maulik and Prof. G. K. Basak for allo"Ying him 

to attend their lectures in lSI Kokata during August 2007 to July 2008. The author 

is also grateful for having the opportunity to interact with Prof. S. C. Bagchi and Dr. 

A. K. Ghosh. 

The author expresses his thanks and gratitude Prof. R. Cao and Prof. J .S. Marron 

for sending their papers WIthout which this thesis could not be completed. The author 

takes this opportunity to thank all research scholars, especially Rajat, Koushlk and 

Subhajit in Stat. Math. ynit lSI Kolkata for their kind help and affection. The author 

thanks Mr. Dipankar Das for lending his computer, which was used extensively during 

this research. 

The author is grateful to his parents and wife for their continued support and in

spiration. Love and affection of the family members have kept the author going during 

several difficult phases. The contribution of the author's parents and wife is too great 

to be acknowledged m a few words, and this thesis is dedicated to them. 

~~~ ll/tJ'l (~o (( 



Abstract 

In this thesis we address two important problems in the context of kernel density 

estimation, namely estimating some measures of accuracy and automatic bandwidth 

selection. Accuracy of any density estimator can be measured point-wise or there can 

be a notion of overall accuracy. 

The mean integrated squared error (MISE) is a well known measure of overall ac

curacy of a kernel density estimate. As far as indicators of local performance of a 

kernel density estimator are concerned, the bzas and the mean squared error (MSE) 

are the popular measures. An automatic bandwidth selection rule aims to minimize a 

data based estimate of some accuracy measure, say the MISE. We study the validity 

and accuracy of the smooth bootstrap estimators of these accuracy measures and the 

bandwidth minimizing our MISE estimator. The contents in this thesis can be broadly 

classified into the following four categories. 

(i) MISE estimation. 

(ii) Estimating some local measures of accuracy. 

(iii) Extension of (i) and (ii) to the context of multivariate density estimation. 

(iv) MISE optimal bandwidth selection. 

The ab~ve mentioned problems, (i) to (iv), are discussed in cpapters 2 to 5 respec

tively. Chapter 1 contains a brief introduction to kernel density estimators, followed 

by motivation and statement of our proposal. Chapter 1 ends with an overview of the 

results obtained in the subsequent chapters. 

To summarize briefly, in chapter 2 and 3 we have obtained the L1 and L2 rates of 
.. B* M* 

convergence of ~, if and if to I, where M, By and My are the MISE, bias and 
y y 

MSE (at y) of a univariate kernel density estimate. B;, M; and M* are our bootstrap 

estimators of By, My and M respectively. We prove some finite sample properties 

and compare our estimators with a number of well known estimators. In particular we 

obtain sufficient conditions under which our estimators outperform plug-in estimators 

asymptotically. A number of well known bootstrap estimators of MSE and MISE are 

special case of our proposal. 

In chapter 4 we introduce multivariate versions of our estimators, defined in chap

ters 2, 3. We obtain their finite sanlple and asymptotic properties. We observe that 

multivariate versions of our estimators exhibit similar finite sample properties as their 

univariate counterparts. In general it appears that the convergence rates of the univari

ate versions are special case of the convergence rates of the multivariate versions of our 
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estimators. But there are more results on various aspects of our univariate estimators 

than their multivariate extensions. For instance we could obtain only the LI rate of 

convergence for the multivariate version of 7: to one. Its L2 convergence rate seem to 

depend on the MSE of kernel estimators of integrated squared partial derivatives of a 

multivariate density. Such results are difficult to obtain. 

The asymptotic properties of our univariate estimators hold for any kernel of order 

s 2: 2. But the asymptotic properties of multivariate versions of our estimators have 

been obtained for second order kernels only. The reason is that if the given kernel is of 

order 8, then most of the accuracy measures, of a multivariate kernel density estima

tor, are functionals of all the 8th order partial derivatives of the underlying density f. 
Consequently multivariate versions of our bootstrap estimators aim at estimating these 

functionals of partial derivatives of f. But as kernel order s is increased, the number of 

sth order partial derivatives of f increase rapidly. So to obtain the asymptotIc proper

ties of our estimators, based on multivariate data, we have to estImate functionals of a 

large number of partial derivatives of f, as s is increased. This makes the theoretical 

calculations complicated and increases the lengths the proofs. Moreover second order 

kernels are more intuitively appealing than higher order kernels. So in the context of 

multivariate density estimation, we restrict to second order kernels. 

The univariate kernel density estimator depends on a smgle bandwidth, whereas 

a product kernel densIty estimator, based on d-dimensional data (d > I), depends 

on d bandwIdths hI,"" hd . These bandwidths control the amount of smoothing in 

each coordinate direction. A special case is to have' hI = h2 = ... , hd = h. The 

resulting product kernel density estimator is referred to as the "simple product kernel 

density estimator". This assumption is not too restrictive (see for instance, Rao (1983), 

Abraham, Biau and Cadre (2003)). 

We propose an automatic bandwidth h* which aims to minimize our MISE estima

tor M* for h E I, where I is some compact interval. If M* equals our MISE estimator 
• A 

defined in chapter 2, h* is an automatic bandwidth for a kernel density estimate based 

on univariate data. But if M* is equal to the MISE estimator defined in chapter 4, 

the corresponding h* is an automatic bandwidth for a simple product kernel density 

estimate, based on d-dimensional data. In chapter 5 we provide insight into how well 

h* succeeds in minimizing the MISE M, for h E I. In particular we obtain the LI rate 

of convergence of ~i~:i to one, where h* is the minimizer of M in I. ThIS rate depends 

on the data dimension d. 

For univariate data, h* compares well with a number of well known automatic 
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bandwidths such as·least squared cross validation, smooth validation and plug-in band

widths. A number of well known smooth bootstrap bandwidths, such as those proposed 

by Taylor (1989), Faraway and Jhun (1990), Cao (1993) and Jones, Marron and Park 

(1991), are different versions of our h*. 
Sain, Baggers and Scott (1994) proposed automatic bandwidth selectlOn rules for 

multivariate product kernel density estimates. Their cross validation and bootstrap 

bandwidths are extenslOns of the well known unbIased cross validation bandwidth he 

and the Taylor's (1989) bootstrap bandwidth for univariate kernel density estimates. 

Interestingly the multivariate version of he (by Sain, Baggers and Scott (1994)) exhibits 

stronger asymptotic property than its univariate version, as the data dimension is in

creases. In a simulation study we compare different versions of our h*, based on multi

variate data, with the cross validation bandwidth for a number of underlying bivariate 

densities. The bootstrap bandwidth selection rule (by Sain, Baggers and Scott (1994)) 

for a product kernel density estimator is a speCIal case of h*, for hl = h2 = ... = hd . 
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Chapter 1 

Introduction 

The field of nonparametrics has broadened its appeal in recent years with an array 

of new tools for statistical analysis These tools offer sophisticated alternatIves for 

traditional models for exploring data without making specific assumptions. As one 

of these tools, nonparametric density estImation has become a prominent statistical 

research topic. A density estimate gives the data analyst a graphical overview of 

the shape of the distribution. Among the several nonparametric density estimatIOn 

techniques available in the literature, the kernel density estImation is a very useful tool 

for exploring the distribution structure of unknown populations. Park and Marron 

(1990) provides an example to exhibit how this method can show structure that can 

be very difficult to see by classical methods. 

Let Xl, X 2 , .... , Xn be n i.i.d Rd valued (d 2: 1) random variables with joint density 

f, where f(x) 2: 0, J f(x)dx = 1 and x = (Xl, X2, .. , Xd), the general problem is 

to estimate f when no formal structure is specified. "Smoothness" conditions are 

usually imposed on f and Its derivatIves, although there are applications in which 

these smoothness assumptions may not be valid. A product kernel dens~ty esttmator 

with bandwidths (hl, ... , hd ) == (h In ) ... ) hdn ) and kernel K is defined as 

KnCiJ = ; til K (YJ ~ X'J) . 
n TIJ=I hJ ,=1 J=l ) 

where iJ = (Yl, Y2, .... , Yd) E Rd, h --t 0 and n TI~=l h) --t 00 as n --t 00. 

For univariate data, i.e. when d = I, Kn(Y) is simply referred to as the kernel dens~ty 
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2 

esttmator and it ha.s been widely studied in the hterature (see Rao(1983), Silverman 

(1986), Park and Marron (1990), Scott (1992), Simonoff (1996) and the references 

therein). 

For a density estimator KnC), we may be interested in mea.suring the accuracy of 

KnO point-wise or we may be interested in the overall accuracy of KnO instead of 

its accuracy at any partIcular pomt. Accordingly there are two notions of accuracy 

namely "local" and "global" measures of accuracy. Bws, varwnce and mean squared 

error (MSE) are popular local mea.sures of accuracy and mean mtegrated squared er

ror (MISE) is an important global measure of accuracy of a density estimator. The 

performance of a kernel density estimate crucially depends on the bandwidth h and a 

popular criterion for selecting the bandwidth h is to minimize the MISE or MSE. See 

for instance, Taylor (1989), Jhun and Faraway (1990), Hall (1990), Hall, Jvlarron and 

Park (1992) and Falk (1992). 

For a product kernel density estimate there are d bandwidths hl' .... ) hd and the 

corresponding MISE or MSE are functions of these d bandwidths. A common assump

tion is that hI = ..... = hd = h. This simplifies the problem of bandwidth selection 

for a product kernel density estimate to a great extent, a.s under this a.ssumption the 

MISE or MSE are functions of one variable h (see for instance Sain, Baggerly and Scott 

(1994) and references therein). However it is not possIble to evaluate MSE or MISE 

since they depend on the underlying density f which is unknown. 

1.1 Statement of the problem 

For any kernel density estimate with kernel K and bandwidth h, the mea.sures of local 

or global precision (such a.s the bia.s, MSE, MISE etc.) are functionals of h, K and 

f. Let us denote such a functional by a == au, h, K). Often a popular criterion for 

choosing h is to minimize an appropriate e, with respect to h. For instance, e can be 

the MISE which is a well known criterion for bandwidth selection. But in general f is 

unknown. So we address the twin problems of estimatmg a and h *, where the latter 

denotes the value of h that minimizes e. Let us describe the bootstrap method briefly 

in this context. 
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The bootstrap estimator of a functional () can be defined as fJ '= (}(In, h, K), where 

in is some data based estimate of the density. A popular choice of in is a kernel density 

estimator defined using some kernel KO ( call it "pilot" kernel) and some bandwidth A 

(call it "pilot bandwidth"). The resulting estimator fJ is called the smooth bootstrap 

estimator of () (see Shao and Tu (1995)). A smooth bootstrap estimate ( call it h*) of 

h* is defined as the minimizer of fJ with respect to h. 

There are other versions of the bootstrap estimator as well. For instance, often () 

can also be considered as a functional of the underlying distribution function F. A 

classical bootstrap estimate of () is obtained by replacing F, in (), by the empirical 

distribution function. But the classical bootstrap fails to estimate the bias and hence 

the mean square error of kernel based estimators (see e.g. Hall (1990, 1992)). Smooth 

bootstrap is a natural choice for estimating bias, mean square error etc. for kernel 

based estimators. 

While defining a smooth bootstrap estimator fJ there is an obvious question, namely 

"what are appropriate choices for KO and A in in 7" 

Falk (1992) has used KO = K for estimating MSE of a kernel density estimator by 

smooth bootstrap. Cao (1993), Cao et al.(1994) proposed smooth bootstrap estimators 

of MISE and resulting bootstrap bandwidth selection rules, where KO = K and A is 

some bandwidth chosen freely, independent of h. Taylor (1989) obtained a bootstrap 

estimator of MISE, using KO = K and A = h. Under a number of smoothness condi

tions on K and i, Jones, Marron and Park (1991) proved that for A = Cn-23/45h-2, 

Vn(~: -1) is asymptotically normal. Cao (1993), Cao et al. (1994) has proposed some 

choices for A as well, especially A equal to some constant multiple of n-1/
7

. Faraway 

and Jhun (1990) proposed to use A equal to some data based automatic bandwidth, 

such as the cross validation bandwidth, for estimation of MISE and its application in 

optimal bandwidth selection. Hall (1992) has proposed two smooth bootstrap methods 

for estimating bias of a kernel density estimator. In the first method Hall (1992) has 

u~ed KO = K and A to be larger than h, whereas in the latter method A is another 

unspecified bandwidth. 

It seems that there are a number of proposals for choosing A. All the above men

tioned smooth bootstrap estimators of the bias, MSE or MISE seem to use KO = K 

or A equal to some function of h. It is natural to question "is there any advantage in 
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choosing both KO and A independent of K and h?" Besides some of the theoretical 

studies impose a number of smoothness assuIhptions on K. For instance see assump

tions K2 in Cao (1993) and A.2 in Jones, Marron and Park (1991). An important 

question is that "can we obtain theoretical properties of e and h* with minimum pos

sible assumptions on K and h?" 

Cao-Abad (1990) pointed out that if A = h, the resulting MISE estimator (call it T) 

is not a suitable estimator of MISE, as T ~ ° as h is increased. The choice A = CnPhm , 

where C, p, m> 0, (by Jones, Marron and Park (1991)) presents a similar drawback. 

In fact, in chapter 2, we prove that if A is an increasing function of h, the resulting 

MISE estimator goes to zero as h is increased. In general, we believe that the choice 

KO = K or A equal to any function of h restricts the theoretical framework in the sense 

that any assumption imposed on KO and A must hold for K or h, as well. 

In order to point out some demerits of the proposal KO = K, let consider a few 

well known kernels. 

(i) (Rectangular kernel) K (x) 
1 
2' -1 ~ x ~ 1 

= 0, otherwise. 

(ii) (Triangular kernel) K(x) = I-lxi, -1 ~ x ~ 1 

= 0, otherwise. 

(iii) (Quadratic kernels) (a) K(x) 
3 x2 <,2 = 4,3 (,2 - x2), if 

= 0, if x2 > ,2, , > 0. 

(b) K(x) = 9 5 2) 
8(1- '3 x . ' if -1~x~1 

= 0, otherwise. 

The kernel K in' (iii) (b), is a "higher order kernel" with zero second moment. If 

KO = K, in(Y) = n\ 2:~=1 K (U-/.) and if K is anyone of the above kernels, then in 

exhibits the following properties. 

(i) If K is a rectangular kernel, then . 

'1 n 

in(Y) = 2nA L I(x.-A,x.+Aj(Y), 
z=l 

where I(x.-A,x.+Aj(Y) = I, if Y E [Xz - A, X. + A] and zero otherwise. Clearly in is not 

continuous at Y = X. ± A, i = 1,2, .'" n. 
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(ii) If K is a triangular kernel, then 

lIn 
in(Y) = >: - nA2 L Iy - X.I· 

>=1 

in is not differentiable at y = Xi, i = 1,2, .. , n and for other values of y, the second 

and higher order derivatives vanish. 

(iii) For quadratic kernels, the second order derivatives of in is constant multiple of >,\ 

and higher order derivatives vanish. 

If in is not differentiable or derivatives of in vanish, then it is extremely difficult 

to prove the consistency of e. Let us explain this problem in the context of MISE 

estimation. 

MISE est~matwn: MISE equals J [vy + B~] dy, where By, Vy are the point wise 

bias and variance of the density estimate. A smooth bootstrap estimate of the MISE 

equals J [vy* + (B;)2] dy, where B;, Vy* are smooth bootstrap estimates of By, Vy. We 

note that B; = J K(u) [In(Y - hu) - in(y)Jdu. 

For a second order kernel it is easy to verify that 

where i is assumed to possess two continuous derivatives and its second derivative 

(f(2)) is assumed to be square integrable. 

If we use KO = K and K is anyone of the above mentioned kernels in (z) - (i i i), then 

we cannot obtain a similar representation (where the leading term is a multiple of h4) 

for J [(B;)2] dy. This problem arises from the fact that, if KO is anyone of the above 

mentioned kernels in (z) - (iii), then we cannot expand the term in(Y - hu) - in(Y) 

as a second or higher order polynomial in h. So for these kernels we cannot prove 

whether J B~dy is consistently estimated by J [(B;)2] dy. Consequently, the proof of 

consistency of the bootstrap estimator of MISE appears to be difficult, for KO = K in 

in· 

In some of the existing theoretical studies on the validity of bootstrap estimators, 

authors have bypassed the above mentioned problems by imposing smoothness condi

tions on K. For instance Cao (1993) has assumed that K is six times' differentiable 

and the derivatives of K are integrable (see his condition (K2), page 141). Reviewing 

his theorems and their proofs it is obvious that, none the first four derivatives of K 
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should be equal to zero (For instance see Theorem 1 and its proof, Cao (1993)). But 

such conditions will preclude all the above mentioned kernels. 

We propose to solve the above mentioned problems by taking KG to be a smooth 

kernel, for example KG equal to a Gaussian kernel. We note that if KG equals a stan

dard norm~ density, In is continuously differentiable and hence In(Y - hv) - In(Y) can 

be expanded as a polynomial (of any order) in h by Taylor's expansion. So irrespective 

of K, e can admit an asymptotic representation (where the leading term is a second 

or higher order polynomial in h) similar to that for B. Therefore if choose KG freely, 

we can study theoretical propertIes e for any K. 

OUT Proposal. We propose to study the validity and accuracy of e for the broad

est class of kernels and bandwidths. We avoid imposing conditions on K and h as far 

as possible. Therefore the main tenet of our proposal is to choose both KG and A freely 

and impose conditIOns on them, rather than on K or h. Our theoretical study lends 

insight into appropriate choice of A and KG. 

An important aspect of our work is that, we get new asymptotic properties of some 
r 

well known bootstrap estimators as a special case of our theoretical results. For 111-

stance, we get L l , L2 rates of convergence for Cao's (1993) bootstrap MISE estimator 

as a special case of our Theorem 2.3.1, in chapter 2. Similarly our results in chap

ter 3 provide insight into new asymptotic properties of the bootstrap bias and MSE 

estimators by Falk (1992). The details are discussed in the respective chapters. 

1.2 Basic assumptions: 

Although the assumptions imposed vary from problem to problem, the basic assump

tions in all the problems is that are the following 

(i) the given data is realizatIOn of n independent and identically distributed (i.l.d) ran

dom variabl~s Xl, X 2 , .... , Xn and the distribution of Xl is absolutely continuous with 

densi ty 1(-). 

(ii) the density I is assumed to satisfy certain smoothness assumptions. There are no 

moment assumptions on the underlying distribution and I is not assumed to belong 

to any specific family of densities. 
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'1.3 Summary of the chapters 

Each chapter begins with a statement of the problem which is addressed in that chap

ter. It is followed by a brief literature review on that specific problem and a description 

of the notation and assumptions used to state and prove the results in that chapter. 

We collect all the main results in a one section, referred to as "main results". The 

proofs are given at the end of each chapter. We describe of the materials of the latter 

chapters in the following paragraphs. 

In chapter 2, we propose a smoothed bootstrap estimator M*, based on one dim~n

sional data, of the MISE (call it M) and obtain the L1 and L2 rates of convergence 

of Af: to 1 for a broad class of kernels and bandwidths. We also investigate some 

finite sample properties of M*. If the bandwidth h satisfies lim sUPn->oo nh2s+l < 00, 

where s is the kernel order, then M* is shown to be more accurate than ¥ymptotic 

approximation to M. M* compares well with a number of other estimators of M. 

M* depends on a kernel KO and bandwidth A. We suggest some appropriate choices 

for them. For appropriate choices of A, M* works well even for small samples. We find 

that if A equals an increasing function of h, then resulting M* is not a suitable es

timate of M. A number of bootstrap MISE estimators, such as those proposed by 

Taylor (1989), Faraway and Jhun (1990), Cao (1993), Cao et al. (1994), are special 

cases of M*. Some new asymptotic properties of Cao's (1993) estimator are obtained 

as a special case of our results. 

In chapter 3, we propose a generalized smooth bootstrap scheme for estimating the 

bias By and mean square error My of a kernel density estimator, at y, based on i.i.d one 

dimensional data. For a fairly broad class of kernel and bandwidth h, we obtain the 

rates at which E [~ - 1 r and E [~ - 1 r converge to zero as n (sample size) is in

creased, where B; and M; are the proposed estimators of By and My respectively. The 

well known smooth bootstrap estimators (by Falk (1992)) of bias and MSE are special 

of B; and M;. Our proposed estimators compares well with the plug-in estimators as 

well. For instance our results imply that, our bias estimator B; is asymptotically more 

accurate (in L2 sense) than the plug-in estimator of bias when the bias at y is actually 

large. If lim sUPn->oo n2/ 5 h = 00 and f(1) (y) = 0, j(2) (y) =I- 0 then our boot'strap esti

mator of variance is asymptotically more accurate (in L2 sense) than the corresponding 
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the plug-in estimator, where f(1), f(2) are 1st and 2nd derivatives of the density. Sim

ulations reveal that if Y IS a point in the tail region, MSE , at y, can be minimized for 

more than one value of the bandwidth h. Our bootstrap estimator M; also exhibits 

this feature, but the classical plug-in estimate is always uniquely minimized. 

In chapter 4, we extend the results of chapter 2 and 3 to the case of a multivariate 

product kernel density estimator. For instance we have obtained the rates at whIch 

EI%" - ~I, E [:~ _1]2 and E [:! _1]2 converge to zero, where M, My and By are 

MISE, mean-squared error and bias (at if = (Y1, Y2, ... , Yd)) of a product kernel density 

estimator. Bg, Mg and M* are the proposed estimators of By, My and M respectively. 

We have used different pilot bandwidths for bur bias and variance estimators, say A 

and J.l. So our MSE and MISE estimators depend on two pilot bandwidths, namely 

A, J.l. The choice of J.l is straightforward. However there seem to be more than one 

choice of A and different versions of our estimators correspond to the different chOIces 

of A. 

Scott and Wand (1991) introduced a local measure of accuracy which is referred 

to as the sample root coejficzent of vartatzon (denoted by Ry). We have obtained 

the rate of convergence of ~ to one, in probability and asymptotic distribution of 

vnAd (~ - 1), where d is the data dimension. R*y is the proposed smooth bootstrap 

estimator of Ry. 

Sain, Baggerly and Scott (1994) proposed multivariate version of the Taylor's MISE 

estimator' (call it T), which is a special case of our M*. We have obtained some finite 

sample properties of our estimators based on multivariate data. It is interesting to note 

that the multivariate versions of our MSE and MISE estimators exhibit sImilar finite 

sample properties as our bootstrap estimators based on univariate data. For instance, 

we prove that T -+ 0 as h. -+ 09, where h., z = 1,2, .. , d, are the bandwidths used in 

the product kernel density estimate. So T is not an appropriate MISE estimator. If 

A is not equal to h., i = 1,2, .. , d, M* successfully imitates M, for fixed n and large 

values of hi' i = 1,2, .. , d. If if is away from the peaks of f, both Mg and My appear 

to be mmimized for more than one value of h. 

In chapter,5, we address the problem of bandwidth selection for Ulllvanate kernel 

and multivariate product kernel density estimates based on i.i.d data. For multivariate 

product kernel estimators, we assume that all the bandwidths are equal and h is the 
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common bandwidth which controls the amount of smoothing in any dlrection. We 

propose an automatic bandwidth h* which is the minimizer of M*, where M* denotes 

our estimator of the MISE of a univariate kernel or multivariate product kernel density 

estimator. We provide insight into how well h * succeeds in minimizing M for h in 

I = Ll/(~Is+d)' nl/(~2s+d)]' where £1, £2 > 0, s is the kernel order and d is data dimension 

(Ill Ulllvanate case d = 1). For d > 1, we restrict to s = 2. There a number of different 

versions of h*, depending on the choice of pilot bandwidth A in M*. Using simulation, 

we compare the proposed bandwidth selection rules with a number of well known uni

variate and multivariate automatic bandwidth selection rules. For f?xed sample size 

and Gaussian kernel, no specific automatic bandwidth selection rule appears to uni

formly outperform its peers, in terms of minimizing M. In general for second order 

kernels and A = n 11(9' the univanate version of h* exhibIts lower variance than the cross 

validatIOn and Sheather-Jones's (1991) plug-in bandwidths. 

For second order kernels with finite support and A = n 11/ 9 , the univariate version 

of h* appears to be asymptotically more accurate, in terms of minimizing M in I, 

than unbiased cross validation, biased cross validation and Park and Marron's (1990) 

plug-in bandwidths. This result holds for Cao's (1993) bootstrap bandwidth as well. 

Smooth bootstrap bandwidths proposed by Taylor (1989), Faraway and Jhun (1990), 

Cao (1993) and Jones, Marron and Park (1991) are different versions of h*, for different 

choices of K O and A in M*. The bootstrap bandwidth, proposed by Sain, Baggerly and 

Scott (1994), is special of our multivariate version of h*. 



Chapter 2 

Smooth Bootstrap estimate of 

Mean Integrated Squared Error 

2.1 Introduction 

Given XI, X 2 , .... , Xn i.i.d. random variables with density fO, the kernel dens~ty esh

mator (of f) based on the kernel K(-) and bandwidth h == hn is defined as 

where h ~ 0 and nh ~ 00 as n ~ 00. The mean mtegrated squared error (MISE) of 

the kernel density estimator KnU is defined as 

M == M(K, h) = I: E[Kn(Y) - f(y)]2dy 

= J V [Kn(Y)] dy + J [Bn(y)]2dy, where (2.1.1) 

J V [Kn(Y)] dy = n~ J K2(V)dv - ~ J {J K(v)f(y - hv)dv} 2 dy, 

and J[Bn(y)]2 dY = J {E(Kn(y) - f(y)}2 dy 

= J [J K(u)f(y - hu)du - f(y)r dy. 

V [Kn(Y)] and Bn(Y) are the varIance and bias of Kn(Y). M is a global measure of 

accuracy of KnO. It has enjoyed great popularity, especially in the context of optimal 

bandwidth selection of a kernel estimator. See for instance, Taylor(1989), Jhun and 

10 
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Faraway (1990) and Hall, Marron and Park (1992). It is easy to see that 

ISEn is referred to as mtegrated squared error and it is also a well known measure of 

discrepancy between Kn and f. Jones (1991) argued that if the goa] of data analysis is 

to estim~te f well from every sample, then ISEn is conceptually ~ore appropriate than 

M for assessing the performance of density estimates. However Jones (1991) further 

argued that hoping to be able to estimate f well from every sample (generated by 1) 

is an unrealistic goal and that one can only expect to do well in some average sense. 

This leads to the conclusion that M serves as a more practical'criterion for comparing 

density estimates. 

Note that M is a functional (call it M(J)) of the underlying density f. Since f 
is unknown, M needs to be estimated. A smooth bootstrap MISE estimator, call it 

M*, is defined as M* = M(K~), where K~ is a kernel density estimate with some 

kernel KO and bandwidth A. In this chapter we obtain some asymptotic and finite 

sample properties of M*, where KO, A are chosen freely and do not depend on K or h. 

Different choices of KO and A yield different versions of M*. Let us review some well 

known bootstrap estimators of MISE. 

2.1.1 A brief literature review 

Taylor (1989) defined a smooth bootstrap estimate (we call it T) of M, using KO and 

A equal to Gaussian kernel and h respectively. He obtained its exact formula and 

asymptotic variance, see his equation (6) on page 707 (loc. cit.). 

However Cao-Abad (1990) argued that T is not a suitable estimator of M, since 

T ~ 0, whereas M converges to a positive constant, as h is increased. Jones, Marron 

and.Park (1991) proposed another version of M*, using KO = K and A = CnPhTn
, 

where C, p, m are constants. Cao (1994) pointed out that the choice A = CnPh71
\ 

where m > 0, presents drawback similar to the choice A = h. Cao's (1993) smooth 

bootstrap based MISE estimator (we call it Mcao) is yet another version of M*, where 

KO = K, K is a second order kernel with six derivatives and A is independent of h. 

Bootstrap based estimation of M and its use in bandwidth selection have been proposed 

by several other authors as well, such as Jhun and Faraway (1990), Hall (1990) and 



12 

Hall, Marron and Park (1992). 

Hall (1990) proposed a bootstrap scheme, where the size of the bootstrap resample 

is less than the size of the original sample, and proved the theoretical validity of the 

bootstrap approximation (see his equation (2.10), page 184). More recently Delalgle 

and Gljbels (2004, Theorem 4.1, page 27) have proved the validity of the smooth 

bootstrap approximation to M for deconvolution kernel density estimators based on 

data contaminated by random noise. Their results also imply the validity of smooth 

bootstrap approximation to M for the ordinary kernel density estimator, based on 

error free data, which we consider here. They assumed that the characteristic function, 

<PK(t) = J ettx K(x)dx, has a compact support (see their condition B2, page 29) and 

K is of order 2. These assumptions are restrictive in the context of ordinary kernel 

density estimation based on error free i.i.d. observations. Besides Hall (1990) and 

Delaigle and Gijbels (2004) do not provide insight into how fast the accuracy of their 

MISE estimators improve, as the sample size is increased. 

2.1.2 Our proposal 

The main idea of our proposal is that KO is some smooth kernel (say a Gaussian kernel) 

and ). satisfies some conditions, to be specified later. We impose conditions on KO and 

). to ensure that (a) K~(-) is a smooth function and (b) J [K~(S\y) r dy is a consistent 

estimator of f [J(s)(y)] 2 dy, where K~(s), f(s) are 8th derivatives of K~, f respectlvely 

and 8 is the kernel order. 

The conditions imposed KO and ). need not hold for K or h at all. In chapter 1, we 

have already mentioned some demerits of the proposal KO = K, in the context of MISE 

estimation. In the next paragraph we provide yet another motivation for choosing KO 

and), freely. 

We see that the theoretical properties of a smooth bootstrap estimate M* depends 

on the asymptotic properties of J [K~(S)(Y1r dy (see for instance Cao (1993)). The 

asymptotic properties of f [K~(S) (y)] 2 dy are obtained under a number of conditions 

on the kernel KO or the bandwidth), (see for example, the conditions in Cao (1993) 

and Hall and Marron (1987)). So if we use KO = K or ). equal to some function of h, 

then the assumptions imposed on KO or ). must also hold for K or h. This can restrict 

the class of K or h for which the theoretical properties of M* hold. 
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The advantage of introducing the extra parameters KO and A is that we can impose 

a number of conditions on them, without imposing those conditions on K or h. In this 

chapter, the conditions on K or h remain quite general. Our results naturally hold for 

MCao, as It is a specIal case of our proposal. So we have also obtained new asymptotic 

properties of Mcao , with lesser conditions on K than Cao (1993). ...------'----...., 

2.1.3 Definitions 

CENTRAL LIBRA!':>', T. u.! 
I ACe. No .. y. .. i..6./i..f. ... 

Let KO and A == An be another kernel and bandwidth sequence. We define 

Let X;, X;, .... , X~ be U.d. smooth bootstrap resample of size n with density K~(-). 

Then 
1 n Y _ X* 

KnB(y) = nh ~K( h') 
.=1 

is the smooth bootstrap version of Kn(Y)· Given Xl, X 2, ... , X n, the smooth bootstrap 

est%mator of M is defined as 

M* = 1: En [KnB(Y) - K~(y)]2 dy 

= V* + B*(say), where 

V* = ~h J K2(U)du - ~ J [J K(u)K~(y - hU)dU] 2 dy and 

B* = J [J K(u)K~(y - hu)du - K~(Y)r dy. 

The expectation En is computed with respect to the density K~O. 

There are several versions of M*, depending on the choice of A. For instance, if A is 

equal to the cross validation ban,dwidth, then M* is the bootstrap estimator proposed 

by Faraway and Jhun (1990). If A = hand K is the Gaussian kernel, then M* equals 

the Taylor's (1989) estimator T. 

Next we define a number of other well known estimators of M. Taylor (1989) 

proposed an estimator which is defined as follows 

1 ( 1) 1 n n ' 2 n n 
T = 2nhVii + 1 -;, n2 ~ L ¢4h2(X. - Xl) - n2 L L ¢3h2(X. - Xl) 

.=1 1=1 .=1 1=1 

1 n n 

+2 L L ¢2h2(X. - Xl)' n 
.=1 1=1 

r~~n!TRAL LIBRARY, T. U. 

tACC. N~ ......... 1. ... 1~~ .. 
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Another popular estimator of M is the plug-in estimator. The basic idea of the plug-in 

rule (see Park and Marron (1990); Jones, Marron and Sheather (1996)) is to substItute 

data based estimates into the asymptotic approximation to M. It is well known that 

if K is of order s then 

M = An(h) + o(;h + h2s ) where An(h) == An equals 

~ j K2(U)du + ~h2S j[J(S) (xWdx and 
nh (s!)2 a = j XS K(x)dx =1= O. 

An is referred to as the asymptotic mean integrated squared error. In the plug-in 

method Os = J[J(s)(x)j2dx is replaced by a suitable estimator (we call it Os) to obtain 

the following estimator An: 

A 1 j 2 a
2 

2s A 

An = nh K (u)du + (s!)2 h Os· 

There are other popular estimators such as unbiased cross vahdation (call It UCVn), 

biased cross validation (call it BCVn) ~nd augmented cross validation, whIch we denote 

by AU CVn- A detailed discussion on the properties of these estimators can be found 

in Scott and Terrell (1987) and references therein. UCVn is a biased estimator of M 

and it is defined as 

K-t,n-I(Y) = (n~l)h 2:;#t=1 K (Y-hXJ
) ,.~ = 1,2, .. , n. In fact UC"'!n equals 

J K2(U)du + ~~ [_1 jK (x - Xt) K (x - XJ) dx _ 2 K (Xt - XJ)] . 
nh ~~ n2h2 h h n(n-1)h h 

t=1 J#t 

For a second order kernel K, BCVn is defined as 

a(y) = j K(2)(x)K(2)(X + y)dx, 

K(2)(y) is the second derivative K(y). Bowman (1984) gave the following formula for 

AUCVn, which Hall (1983) argued to be the correct form for theoretical analysis. 

AUCVn = j[Kn(y)]2 dY - ~ t [K-t,n-I(y) - f(Xt)]- j f2(y)dy. 
t=1 
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2.1.4 Summary of the chapterill 

There are four theorems and a simulation study in this chapter. In Theorem 2.3.1, 

we obtain the rates of convergence of the mean squared error of M* and Af.:. The 

latter rate provides insight into how fast the accuracy of M* will improve with increase 

in sample size. We have also obtained the rates convergence of the mean absolute 

deviation of M* and %'. The Ll rates are faster than the square root of the L2 rates. 

We have studied how well M* compares With other estimators. We have obtained 

conditions under which M* is asymptotically more accurate than a class of plug-in 

estimators, see Theorem 2.3.2. An important aspect of our study is to provide insight 

into some properties of M* when sample size n is fixed. Theore!ll 2.3.3 is a result in 

that direction. We that if A equals an increasing function in h, the resulting M* is not 

an appropriate MISE estimator. 

For Gaussian kernel or Gaussian type higher order kernels we have obtamed the exact 

formula of M*, Theorem 2.4.2. Our theoretical results and simulation provide some 

useful guidelines for choosing KO and A. For instance we recommend KO equal to 

Gaussian kernel and if K is a second order kernel, then n;/9 or the least squared cross 

validation bandwidth are some appropriate values of A. 

2.2 Assumptions 

Let us collect below all the assumptions on the two kernels and the bandwidths. Not 

all of them will be used in all the results. A function H is said to be uniformly bounded 

if IIHII = suP_oo<y<oo IH(y)1 < 00. 

Assumption A (on density J). 

(1) The denSity fO is uniformly bounded, and for some 8 2: 2, the 8th derivative f(s) 

is uniformly bounded and square integrable. 

(ii) There exists k > 1 and NI, such that If(s+k)(x) - f(s+k)(y)1 < Mix - yl, for all 

x, y. 

(iii) There exists p 2: 1, such that (8 + p) th derivative f(s+p)O exists, is integrable 

and is also square integrable. 

Assumption B (on kernel K). The kernel KC) is square integrable and is of 8th 

order, that is J K(x)dx = 1 and there exists an integer 8 2: 2 such that J K(x)xJdx = 



16 

0, J = 1,2, .. , s - 1 and J IK(x)xSldx < 00. Further we assume that K( -x) = K(x) 

and J IK(x)xs+Ildx < 00. 

Assumption C (on auxiliary kernel KO). 

(i) The auxiliary kernel KOO is a probability density function such that 

(a) KOO is continuous and uniformly bounded. 

(b) KO(x) ~ ~ as Ixl ~ 00. 

(ii) K°C) has 8 continuous derivatives on (-00, (0) and its 8th derivative KO(s)C) 

satisfies the above conditions (a) and (b) and also the following. 

(c) J IKO(s)(x)ldx < 00. 

(d) J KO(S) (x)xJdx = 0, where j = 0,1,2, ... , 8 - 1,8 + 1, ... ,8 + p - 1, 

(_}S J KO(S) (x)xSdx = 1 and J IKO(S+p) (x)xs+Pldx < 00. 

Assumption D (on aUXIlIary bandWIdth A) The sequence {A} == {An }n=I,2,3, satisfies 

(i) A > 0 V n ~ 1 and A ~ 0, as n ~ 00. 

(ii) nA2s+l ~ 00 as n - 00. 

Assumption E (on bandwidth h) The sequence {h} == {hn }n=I,2, .. satisfies h ~ 0 

and nh ~ 00 as n ~ 00. 

Remark 2.2.1. (i) The value of p, in A(iii) depends on KO. If KO is the standard 

normal density, then we recommend p = 2. With this choice of KO and p, AssumptlOn 

C is satisfied for any value of s. Most of our results are obtained assuming k = p and 

for a second order kernel, we recommend p = k = 2. 

(ii) Assumptions A(i) - (tti) on j are valid for a wide class of densities which include 

mixed normal, Cauchy, beta(m,n) (m, n>2) and gamma(n) (n>2) among others. In 

contrast, the assumption that j has compact support or the assumptlOn E(IXln < 

00, E > 0 (see page 184, Hall (1990)) precludes the mixed normal dIstributions or the 

heavy tailed distributions which have no moments. 

For a second order kernel K, Cao (1993) obtained asymptotic properties of his MISE 

estimator assuming that j is six times differentiable, the derivatives are bounded and 

the 1st four derivatives are integrable. But for a second order kernel and for p = k = 2, 

we require assumptions on first four derivatives and so for a second order kernel, we 

can obtain the asymptotic properties of M* imposing fewer smoothness assumptions, 

on j, than Cao (1993). 
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(iii) Assumption B on K and Assumption E on h arei quite common in density esti

mation context. On the other hand, the assumptions by Hall (1990) or Delaigle and 

Gijbels (2004) on K prevent the use of a number of popular kernels such as the Gaus

sian or Gaussian type kernel, as they are neither compactly supported nor do their 

characteristic functions vanish outside any compact subset of the real line. Cao (1993) 

assumed that K is six times differentiable, the first six derivatives are bounded, inte

grable and satisfy a number of conditions (see condition K2, in page 141 Cao (1993)). 

We do not impose any smoothness assumption on K at all. 

2.3 Main Results 

We now state and prove our main results. The proofs are given at the end of the 

chapter. 

Theorem 2.3.1. Under Assumptzons A - E and k = p, as n --t 00, 

(z) E[M* - M]2 = 0 (~) + 0 (h4sr n ). 

(n) E [Aft' - 1] 2 = O(rn), where r n = n>.i'+l + ).P + h. 

In partzcular z1 .A = nl/(2'~2P+l)' then 

(m) EIM* - MI = 0 (~) + 0 (np/(2~:'2P+l») . 

(zv) E I "{; - 11 = o(h) + 0 (nPI(2'~2P+l») . 

Remark 2.3.1. (i) Theorem 2.3.1(ii),(iv) ensures the validity of M* and provIdes an 

answer to the question: "how large should the sample SIze be In order that the bootstrap 

approximatIOn M* is close to M?" . 

(ii) The motivation for choosing .A nl/(2p~2'+l) is to ensure that the L1 rates, 

namely EIM* - MI and E I "{; - 11 can converge to zero faster than JE(M* - M)2 

and V E ["f: - 1]:2 respectively. .' 

(iii) Theorem 2.3.1 (iii) and (iv) are not direct consequences of (i) and (n). The 

rate of convergence of E IM* - MI and E I~ - 11 (to zero), in Theorem 2.3.1 (iii) and 

(lV), can be faster than that of JE(M* - M)2 and VE (":; _1]2 respectively. The 

detailed arguments are as follows. 

We note that for .A = nl/(2P~2S+l)' r n = h + np/(2p~2S+l) + 0 (np/(2p~2'+1») . 
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Therefore for)' = nl/(2p~2S+l)' from Theorem 2.3.1 (i) we see that 

JE(M* - M)2 = 0 (~) + 0 (h2S+O 
5 + h

2s 
) . n nP/2(2p+2s+1) 

Whereas from Theorem 2.3.1 (iii), we see that EIM* - MI = 0 (~) + 0 (np/(2~:'2S+1») . 
Clearly for s, p 2 2, np/(2~~2S+l) converges to zero faster than h2s+O 

5 + np/2(~~:2S+l)' for 

any choice of h. 

Therefore the rate of convergence of E IM* - MI (to zero), in Theorem 2.3.1(iii), can 

be faster than that of JE(M* - M)2. Similarly the rate of convergence obtained in 

Theorem 2.3.1 (iv) can be faster than the square root of the rate obtained III Theorem 

2.3.1 (ii). 

2.3.1 Comparison with other estimators 

We have mentioned several other estimators of MISE. Here we discuss a few of those 

in relation to our estimator. 

Delaigle and Gijbels' (2004) estimator 

The bias and variance of the Delaigle and Gijbels' estimator for second order deconvo

lution kernel density estimator are 

Bias = 0 (~) + 0 (h4) and Var = 0 (~2 + hS) + 0 (~) (2.3.1) 

respectively (see their Theorem 4.1, page 27) which continue to hold good for their 

smooth bootstrap estimator of M in the usual i.i.d. set up, where the observations are 

error free. Let the bias and variance of M* be denoted by Bn and Var(M*) respectively. 

Since IBnl :s: E IM* - MI and Var(M*) :s: E [M* - M]2, it immediately follows from 

Theorem 2.3.1(iii) and (i) that 

Bn = 0 (~) + 0 (h2S) and Var(M*) = 0 (~2 + h4S ) where s 2 2. (2.3.2) 

While the difference of orders, OC) and oC) in the rates in (2.3.1) and (2.3.2) at 

which bias goes to zero may seem insignificant from a theoretical point of view, It may 

translate into significant gains in finite samples, just as in the usual bootstrap theory 

of sample mean type statIstics. The results of Delaigle and Gijbels' (2004) hold only 
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for K with compactly supported characteristic function (see their Condition B (B2), 

page 25), whereas we provide the rates of convergence of bias and variance (of M*) for 

a wide class of K. 

Cao's MCao 

Cao (1993) proposed an estimator MCao which is a special case of M* for KO = K, 

where K is a second order kernel satisfying a number of smoothness conditions (see his 

condition K2, page 141). Cao (1993) obtained asymptotic representations for M and 

MCao (see his Theorem 1, page 142). A direct consequence Cao's (1993) Theorem 1 is 

that Mfr converges to one, m probabzlzty. Our Theorem 2.3.1 holds for MCao as well. 

So we obtain some new asymptotic properties of Mcao , for example the L1 , L2 rates 

convergence of Mfr to one and also the rate at which E[Mcao - MF goes to zero. 

We note that rate convergence in probability, of lv1:r to one, obtamed by Cao 

(1993) can be faster than our corresponding L1 rate. But comparing our assumptions 

A, B with the assumptions K2, D (Cao 1993), we see that Cao (1993) obtained his 

result expense of more smoothness assumptions K and f (see Remark 2.2.1 (Ii) and 

(iii) ). 

Taylor's T 

Taylor's estimator T is a special case of M* when A = hand K, KO are equal to 

Gaussian kernel. Cao-Abad (1990) observed that T --t 0, as h is increased. ThIS result 

implies that T is not a suitable estimator of M, for large h. 

From· Taylor (1989) we note that Var(T) = ~ + O(:/fx), where C > o. 
Therefore If lim SUPn-+oo nh2s+O 5 < 00, then Var(M*) IV ar(T) --t O. 

This result further demonstrates the advantage of choosing A, satIsfying condition D, 

rather than A = h. 

Unbiased and biased cross validation estimators U CVn and BCVn 

These are well known estimators for M. It is known that (see Theorem 3.1, Scott 

and Terrell (1987)), Var(UCVn ) = ~ + O(~ + ~),where C is a positive constant. 



Therefore 
Var(M*) 

Var(UCVn) 
o (~) + 0 (nh4srn ) 

C+O(n\ +h4) . 

20 

(2.3.3) 

We note tha~ under Assumptions D and E, h, r n = 0 (1) and nh ---7 00. Therefore If 

lim sUPn-+oo nh4s < 00 (which includes the case where h is a multiple of nl/(~S+l)) then 

M* has infinite asymptotic relative efficiency in comparison to UCVn. 

Similarly (see Theorem 3.2, Scott and Terrell (1987)) 

where C' > O. Therefore 

C' h 
Var(BCVn) = 2h + O( 2)' n n 

Var(M*) 
Var(BCVn) 

o(h) + 0 (n2h4S+I rn) 
C' + O(h2) 

(2.3.4) 

(2.3.5) 

and hence if lim sUPn-+oo nh2s+O 5 < 00, then M* has infinite asymptotic relative effi

ciency in comparison to BCVn. 

Further the bias of UCVn and BCVn are respectively (see Theorem 3.1 and 3.2, 

page 1134 Scott and Terrell (1987)) 

Bws(UCVn) = - j f2(X)dx and Bws(BCVn) = O(~ + h2s+l), (2.3.6) 

whereas from Theorem 2.3.1(iii), 

Bws(M*) = 0 (~) + 0 (nPj(2~:s2P+l)) . (2.3.7) 

So M* has smaller asymptotic bias than UCVn, for all h and smaller asymptotic bias 

than BCVn, if lim infn-+oo nP/(2s+2p+l) h > 0 which is satisfied by h = n1/(;S+l), C > 0 

for p 2: 2. Besides BCVn fails imitate M for large values of h (see Scott and Terrell 

(1987)). 

Plug in estimator 

Another popular estImator of M IS the plug-in estimator. The basic idea of the plug

in rule (see Park and Marron (1990); Sheather and Jones (1991); Jones, Marron and 

Sheather (1996)) is to substitute data based estimates into the asymptotic approxima

tion to M. It is well known that if K is of order s then 

M = An(h) + o(;h + h2s ) where An(h) == An equals 

~ j K2(U)du + ~h2S j[J(S)(X)]2dX and a = j XS K(x)dx =f O. 
nh (s!)2 



21 

An is referred to as the asymptotic mean integrated squared error. In the plug-in 

method ()s = f[f(s)(x)]2dx is replaced by a suitable estimator (we call it es) to obtain 

the following estimator An: 
2 . 

A_I J 2 a 2s A 
An - nh K (u)du + (S!)2 h ()s· (2.3.8) 

An is easy to compute. A natural question is "when is M* more accurate than An?" 
Hall and Marron (1987) introduced two kernel based estimators of ()s' Let us denote 

them commonly by ():;. From their Lemma 3.1 (c) .and Theorem 3.2 (a) it follows 

that E(():;) - ()s = 0 (nZk /(4.t+Zk+I») = 0 (nI/(~8+I») and n 1/(2S+l)(O:; - Os) = op(l), for 

S, k ~ 2 and A~ = 0 (n2J(48~2k+l») , where A~ is bandwidth used in ():;. Our next result 

is motivated by this. 

Theorem 2.3.2. Under Assumptions A - E, s, p ~ 2 and for A = nl/(28~2P+l)' 

(2) limn->oo E11y-1
1
1 = 0 2f e2ther (a) or (b) below holds. 

E i}"-1 , 
C . A 1 

(a) h = n I /(2s+l) , where C 2S a pos2tzve constant, and E(()s) - ()s = 0(n1/(2S+1»)' 

(b) limsuPn--+oo nh2s < 00 and E(es ) - ()s = 0(1). 

~
. 

(ii) :: -1 = op(l) if n 1/(2s+l)(es - ()s) = op(l) and lim sUPn->oo nh2s+l < 00. 
i}" -1 

Marron and Wand (1992) provide important insight into the effect of h on An

For fixed n, they plotted M and An (for Gaussian kernel) against different values 'of 

10glO h. For a wide class of densities, including general normal mixtures, as the value 

of 10glO h is increased from -1 to 0 and beyond, An diverges to 00 whereas M appears 

to level off. Moreover, M and An differ significantly for all values of h satisfying 

10glO h ~ O. Consequently, for larger values of h, approximation of M by An, which in 

turn is an estimator of An, can be poor. Further, An is sensitive to the structure of 

f. In particular, for the double-claw density, which is the density of the distribution 

0.49.N(-1, (2/3?) + 0.49.N(1, (2/3)2) + 0.02. 2:~=o '3~oN((l- 3)/2, (0.01)2),1 An is a 

poor approximation to M (see page 725, Figure 4, in Marron and Wand (1992)). The 

plug-in estimator An is not likely to improve these demerits of An. So we do not 

recommend its use to estimate M, especially when f is believed to have complicated 

structures such as multi-modality, skewness and spikes. 

IN(x,y2) denotes the normal distribution with mean x and variance y2. 
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2.3.2 Fixed Sample performance of M* 

. What are the effects of different possible choices of h and A on the bootstrap estimator 

M* for fixed sample size n? The following proposition provides some answers. 

Theorem 2.3.3. Suppose f is umformly bounded, continuous and KO satisfies C{i)(a). 

Then for any fixed sample size n, as h --t 00, 

(z) for any choice of A, M --t J P(y)dy and M* --t J(K~(y))2dy almost surely. 

(%2) zf f(x) --t 0, as Ixl --t 00, and A --t 00, then E(M*) --t O. Consequently 

E(M*) - M --t - J j2(y)dy and M* -L o. 
(izi) for any choice of A, An --t 00, almost surely. 

(iv) if A --t 00 M* --t 0, almost surely. 

Remark 2.3.2. (i) Theorem 2.3.3(i) implies that for fixed n, M* and M level off and 

the former succeeds in imitating the behavior of the latter for larger values of h. On 

the other hand, Theorem 2.3.3 (iii) demonstrates that An explodes as h is increased, 

thereby verifying the empirical observation of Marron and Wand (1992). 

(ii) Theorem 2.3.3 (ii) implies that, for fixed n if h is large, M* is likely to underestimate 

M when A is also large and the structure of fO is complicated so that J j2(y)dy is 

large. As a consequence, when h is large and A is a monotonically increasing function 

of h, M* can produce an estimator of M with substantial negative bias. Theorem 2.3.3 

(i) and (iv) further prove that for large value of h and A equal to an increasing function 

in h, M* is a poor estimate of M. So Theorem 2.3.3 (i), (ii) and (iv) imply that A equal 

to h, CnPhm (where C, p, m > 0) or any increasing function of h is not an appropriate 

choice of A. 

2.4 Smooth Bootstrap with Gaussian Kernel 

M* does not have a closed form expression in general and hence Monte-Carlo compu

tation is required for its implementation. Marron and Wand (1992) obtained an exact 

and easily computable expression for MISE, assuming f to be a general normal mixture 

and Gaussian type kernels are used. 

A kernel K is said to be a Gausswn-based kernel of order 2r if 

(-lY d2r- 1 

K(x) = 2r- 1(r _ l)!x dx2r- 1 ¢(x) 
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where ¢(x) is standard normal density evaluated at x. Let ¢a2(x) denote the normal 

density with mean 0 and variance a 2, evaluated at x, ¢~5j(X) = ::s¢a2(X) and 

1 r-l r-l (2i + 2j)! 
G1(r) = ft?;;; 23('+1)+1 2!j!(2 + j)!. 

Lemma 2.4.1. (Marron and Wand (1992}) If f(x) = 2::~=1 w,¢a. (x - f.L,) and 2f K 2S 

a Gausswn-based kernel of order 2r, then M equals 

G1(r) ( 1) r-l r-l (-1)'+1 r-l (_1)5 
~+ 1-;, LL2'+1i!.!U(h;2+ J,2)-2L 2S s!U(h,s,1)+U(h,O,O) 

~J~ J ~ 

Now suppose that K is a Gaussian-based kernel of order 2r and Ko is the GaussIan 

kernel. Since Ko is Gaussian, 

1 n (y-x )2 

K~(y) = Le-~ . 
..J2ifnA ,=1 

This is really a mixed n.ormal distribution. Thus, M* is the MISE of the kernel density 

estimator KnB(y), where the underlying density K~(-) is a mixed normal density with 

n components, w. = ~, f.J,. = X. and ax = A, i = 1,2, .. , n. Hence, usmg the above 

result, we obtain a closed expression for M*, provided that K is a Gaussian-based 

kernel of order 2r. 

Theorem 2.4.2. If KO 2S a Gausswn-based kernel of order 2r and Ko 2S the standard 

normal dens2ty, then M* equals 

G1(r) ( 1) r-l r-l (_1)'+1 . r-l (-1)5 
~ + 1 -;, ?;;; 2'+12!j! U(h; 2 + J, 2) - 2 ~ 25 S! U(h, s, 1) + U(h, 0, 0), 

where U(h, s, q) = ~2 2:::1 2::~=1 h2S¢;~~2+qh2(X' - Xl). 

Corollary 2.4.3. If K and Ko are both standard normal dens2t2es, then r = 1 (m 

Theorem 2.4.2) and hence M* equals 
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Remark 4 (i) The choice of KO as the standard normal density trivially satisfies 

Assumption C of Section 2 and it also leads to closed form expression for M* when K 

is a Gaussian or Gaussian type kernel. So these are recommended choices. 

(ii) Taylor's (1989) T is a special case of M* and is obtained by substituting r = 1, 

s = 0 and choosing K as the Gaussian density and A = h in Theorem 2.4.2. 

2.5 Simulation 

To what extent does the nature of f and the value of h affect the performance of M*, 

especially when the sample size is small? What is an appropriate choice of A? We probe 

these questions with simulation. Since any density may be approximated arbitrarily 

closely in various senses by a normal mixture (see Marron and Wand (1992)), we choose 

f to be mixed normal. We choose K to be Gaussian due to its wide popularity. We 

also choose KO to be Gaussian and hence closed form expression for computing M* and 

M are available from Theorem 2.4.2 and Marron and Wand (1992) (see their Theorem 

2.1, page 716). 

Recall that we already have two choices of A, namely (i) A = h, the proposal of 

Taylor (1989) and (ii) A = he, the LeV bandwidth of Faraway and Jhun (1990). From 

Theorems 2.3.1 (iii), 2.3.2, we have a third choice, A = nl/(2'~2P+l)' If K is the standard 

normal density, then s = p = 2 and so n;/9 is a fourth possible choice of A for the 

Gaussian kernel. This choice of A also satisfies Assumptions D. 

We use the following notation to plot or results: let T the value of M* for A = h 

and the Gaussian kernel and let Me, denote M* when A = he. 

For n = 50, 500, we have plotted M* with A = )/9' Me, T and M, against loglo h. 

Our choice of loglO scale is motivated by its use by Marron and Wand (1992). To 

distinguish the four curves, we number T, M, M* (with A = n;/9) and M; as I, 2, 

3 and 4 respectively. Each curve is plotted for four underlying distributions, namely 

standard normal, bimodal (~N(-I,~) + ~N(I, ~)), double-claw and claw (~N(O, 1) + 
fa I:.t=o N(l/2-1, (l~ )4)) distributions. While normal and bimodal densities are simple, 

double claw and claw densities have rather complicated structures, such as existence 

of several peaks. 

In figures 2.1(a) - 2.4(b) we plot T, M, M* with>' = fro and M~, numbered as 1,2,3 and 4 
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respectively, against Log(h) == loglO h for normal, bimodal, double-claw and claw distributions and 

for sample sizes n = 50 and 500. Both K and KO are standard normal densities. 
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(i) Small sample behavwur. From Figures 2.1. (a) to 2.3 (a), for normal, bimodal 

and double claw densities, both M* with A = )/9 and Me succeed in imitating M, for 

a wide range values of h and for n = 50 . So for small samples, M* can estimate M 

quite well for a number of different densities. 

However comparing Figures 2.1 (a) and 2.2 (a) with 2.3 (a) and 2.4 (a), for n = 50, 

both M* with A = n;/9 and Me estimate M more closely for normal and bimodal 

densities than for double claw and claw densities. In particular if the underlying density 

is claw and n = 50, then M* differs widely from M (see Figure 2.4 (a)). So for small 

samples M* is more accurate if f has less complicated features. However Me appears to 

imitate the important features of M for all the four underlying densities. For instance, 

for the claw density, M has two minima and the same is the case for Me. 

(ii) Consistency. As the sample size is increased from 50 to 500, both M* with A = 

n 11/ 9 and Me show improvement in imitating M, for all the four underlying densities. 

See Figures 2.1 (a) to 2.4 (b). Even M* with A = n 11/ 9 exhibits some improvement as 

n is increased. Thus M* appears to be consistent for A = )/9 and he, irrespective of 

whether f is simple or complicated in its structure. However it also appears that as n 

increases, the accuracy of M* with A = he can improve faster than A = )/9' especially 

when f has complicated features. 

(iii) Several mimma. In general, M can have more than one local minima. In 

Figures 2.4 (a), (b), for the claw density, M possesses a global minima for l091O(h) < -1 

and a local minima for l091O(h) close to zero. This feature is imitated by Me. If M 

attains more than one minima, Me, M* can differ widely and in such a situation M 

lies between the two estimates. If M exhibits one minima, Me, M* are close (see 

Figures 2.1(a) to 2.3(b)). So we recommend plotting M* with both A ~ he and ~ 

before making a final choice. 

(iv) Finite sample behavwur of T. Cao-Abad (1990) argued that T -t 0, as h is 

increased. This result implies that T should fail to imitate M for large values h. This 

observation is confirmed by Figures 2.1 (a) to 2.4 (b). Our simulations reveal some 

more details. For example, from Figures 2.1 (b) to 2.4 (b) we see that, T fails to imitate 

M for small values of h as well. So in general, T'does not seem to be an appropriq,te 

estimator of M. However from Figures 2.1 (b) to 2.3 (b) we can conclude that for large 

samples, T can possess a local minima which appears to be close to the global minima 

) 
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of M, and so T can be used as a criterion to select h, especially for large samples. 

2.6 Proofs 

We shall use the following notation. Let * denote convolution, C denote some positive 

constant independent of n, h or )., Ilfll = sUP_oo<y<oo If(y)1 and DCT stands for 

Dominated Convergence Theorem. Recall that es = J {f(S)(y)} 
2 

dy. Let 

KO(s)(y) = _1_KO(s) (~) 
>. ).sH ). , 

en = J {K~(s)(y)}2dy = n).;S+I J {KO(S) (v)}2dv + (n ~ 1) esn · 

The following Lemmas will be used in the proof of Theorem 2.3.1. 

Lemma 2.6.1. Under Assumptwns A(n), e(n) and D, as n --? 00, 

(2) E [en - esl
2 

= 0 (cn>'2~+1 )2 + ).2k) . 

(n) E len - esl = 0(1). 

(m) J E [K~(S)(y) - f(S)(y)f dy = 0 (n>.}s+l + ).2p ). 

Proof of Lemma 2.6.1 For suitable constants AI, A2, A3 , 

2 [1 J{ O(s) 2 n - 1 ]2 E [en - esl = E n).2s+I K (v)} dv + -n-esn - es 

Al (1) 2 [ ] 2 A3 < (n).2s+I)2 + A2 1 -; E esn - es + n2 . 

Under Assumptions A(iz), C(22) and D(ii), Lemma 3.1 (b) and (d) and Hall and 

Marron (1987) implies, 

Hence (1) follows. 

To prove (Ii), note that under Assumptions A(zz) and C(l,l,), Lemma 3.1(d) of Hall 

and Marron (1987) implies that E lesn - esl = 0(1). Now, using Assumption D(iI), 

part (ii) follows because, 



28 

To prove part (iii) recall that 

KO(y) = ~ ~ K O (y - X t ) =} KO(s)(y) = _1_ ~ KO(s) (y - Xl). 
n n)., ~ )., n n).,1+s ~ )., , 

t=1 1=1 

Therefore, E(K~(s)(y)) = 1. J KO(S) (u)j(y - ).,u)du. Expanding j(y - ).,u) under As

sumption C on KO(s), E[K~(s)(y)] = j(s)(y) + b(y), where 

b(y) = (_l)s+p).,p J KO(S) (u)us+p t (1 - t)S+P-l j(S+p)(y - t).,u)dtdu. 
(s+p-1)! Jo 

Applying Cauchy-Schwartz inequality it is easy to verify that 

b2(y) ~ . C').,2p J [IIKO(S)(u)us+PI (1- ty+p-1 [J(s+p)(y - t)"u)] 2 dtdu, 
[(s + p - 1)!)2 Jo 

fIKO(') (u)u'+v Idu ( ) 
where C' = s+p . Consequently, under Assumption A on j s+p (-) 

[E[K~(S)(y)] _ j(s)(y)]2 = b2(y) 

=} J [E[K~(s)(y)] - j(S)(y)]2 dy 

Therefore J [E[K~(s)(y)] - j(S)(y)]2 dy 

where C = (S+~~I)! and g(y) = f IKO(S) (u)us+PI Jo1(1 - t)s+p-i[J(s+p)(y - t).,u)j2dtdu. 

It IS easy to verIfy that 

J Var [K~(S)(y)] dy = n).,;+2S J Var [KO(S) (y -).,X1)] dy 

< ; 2 J J [KO(S)(u)] 2 j(y - u)")dudy = f [KO(S)(~)]2 du. (2.6.2) 
- n)., + S n).,1+ S 

Now 

f E [K~(S)(y) - j(s)(y) f dy = J Var [K~(S)(Y)] dy+ J [E[K~(S)(y)] - j(S) (y)f dy. There

fore from (2.6.1) and (2.6.2) we see that 

J f [KO(s)(U)]2 du J 
E [K~(S).(y) - j(s)(y)]2 dy ~ n).,1+2s + C;).,2p [J(S+p) (y)]2dy. (2.6.3) 

Part (iii) follows from the equation (2.6.3) and so the Lemma 2.6.1 is proved completely. 

o 
The following Lemma is used in the proof of Lemma 2.6.3. Let 

C1 = 1 J IK(u)uSldu, 
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en = J {J 11 (i - ty-1 K(u)uS E[K~(S)(y - thU)]dtdU} 2 dy. 

Lemma 2.6.2. Under Assumptions A-C, as n --+ 00, 

Proof of Lemma 2.6.2 It is easy to see that for each y, t and u, 

E[K~(s)(y - thu)] = :s J KO(s)(z)f(y - thu - )...z)dz. 

Under Assumptions C(i2) (c) and (d) on KO(s) and Assumption A on f(·), using Taylor's 

expansion with integral remainder we see that, 

E[K~(s)(y - thu)] = ;s f KO(s)(z)f(y - thu - )...z)dz, 

f(s)(y - thu) 

+ (-l)S+P)"P J KO(S) (z)zs+P 11 (1 - t 1)s+p-l f(S+p) (y*)dt1dz 
(8+p-1)! ° 

where y* = y - thu - t1)...z and therefore 

So en = J {J 1\1-t)S-IK(u)uSf(S)(y-thU)dtdu}2dy 

)..2p J 
+ ((8 + P _ 1)!)2 g~(y)dy 

+2 ( (-)..)P )1 J { J 11 (1 - t)S-1 K(u)uS f(S)(y - thu)dtdu }gn(y)dy 
s+p-1. ° 

= tIn + t2n + t3n (say), where . 

gn(Y) J K(u)uS 1\1 -ty-l{ J KO(S) (v)vS+P 11 (1 - tl)S+P-l f(S+p) (y*)dt1dv }dtdu and 

y* = y - tuh - t1)...v. 

Under Assumption A (i) on f(s) and for suitable constants CL C~ 

It3nl ~ )..PC~ J Ign(y)ldy ~ )..PC; J If(s+p)(y)ldy = O()"P). 

Using Cauchy-Schwartz inequality it is easy to see that, t2n ~ C2 )..2p J {J(S+p) (y)}2dy. 

Using Assumptions A (i), (ii) on f(s), it is easy to see that tIn = Cf(}s+O(h). Therefore, 

combining these estimates, 



Hence Lemma 2.6.2 is proved completely. 

Let 

en = J {J 1\1 - t)S-l K(u)uS K~(S)(y - thu)dtdu r dy, 

dn = J {] 1\1 - t)s-l K(u)uS J(S)(y - thu)dtdu r dy. 

30 

o 

Lemma 2.6.3. Suppose k = p and Assumptwns A-D hold. Then 2Ct E(en)Bs -

2E(en).dn = 0 (rn) . 

Proof of Lemma 2.6.3 Using Cauchy-Schwartz inequality it is easy to see that 

Hence 

(2.6.4) 

From Lemma 2.6.1(i), under the Assumptions A(1,1,), C(1,i), D and using k = p, 

E(en) = es + 0 (n,\;s+l + V) . 
Under Assumption A on JO, dn = cles+O(h). Under the Assumptions C(1,i) (c) and 

(d) on KO(s) and Assumption A on J(.), from Lemma 2.6.2, en = cles + O(h + ,\P). 

Substituting the above equations in the right side of (2.6.4) and under Assumption D 

on ,\ we get, as n --7 00. 

o < 2CiE(en ws - 2E(en).dn 

< 2Ci [es +O(n,\;S+1 +,\p)Jes -2[C~es+O(h+,\P)J [C;es+O(h)J 

° (nr\;S+l +,\P + h) (since p ~ 1). 

Hence Lemma 2.6.3 is proved completely. o 
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2.6.1 Proofs of Theorems 

Proof of Theorem 2.3.1 Recalling the definitlOns of M* and M it is easy to verify 

that, almost surely, 

IM* - MI ::; LIn + L 2n (say), where (2.6.5) 

LIn = ~ 11 { 1 K(v)K~(y - hv)dv}2dy - 1 { 1 K(v)f(y. - hv)dv} 2 dyj, 

L2n = 1 [1 K(u)K~(y - h.u)du - K~(Y)] 2 dy - 1 [J K(u)f(y - h.u)du - f(y)] 2 dy . 

Therefore 

EIM* - MI2 ::; 2E(Lin) + 2E(L~n). (2.6.6) 
;) 

Usmg la2 - b21 = (a + b)la - bJ, for a, b> 0, it is easy to see that (writmg y* = y - hv) 

LIn 

::; ~ J [{ J K(v)(K~(y*) + f(y*))dv}{ J K(v)IK~(y*) - f(y*)ldv} ]dy (2.6.7) 

= Dn , say. 

We note that, almost surely 

K~(y*) + f(y*) ::; IK~(y*) - f(Y*)1 + 211fll· 

Therefore, almost surely 

Dn < ~[J {J K(v)IK~(y*) - f(y*)ldv}2dy + 211f11 1 K(v) J IK~(y*) - f(y*)ldydv] 

:::} Dn < ~ [J J K(v){K~(y - hv) - f(y - hv)}2dvdy 

+211f11 J IK~(y) - f(y)ldy] 

= ~ [ J {K~(y) - f(y)}2dy + 211fll 1 IK~(y) - f(y)ldy]. 

Hence from (2.6.7) we have, almost surely 

LIn < ~ [1 {K~(y) - f(y)} 2dy + 211fll 1 IK~(y) - f(y)ldy] (2.6.8) 

:::} E(Lin) < ~2E[ 1 {K~(y) - f(y)} 2dy + 211fll J IK~(y) - f(Y)ldy]2 

< ~2 [E[ 1 {K~(y) - f(y)}2dy]2 

+ 411f1l2E[ 1 IK~(y) - f(y)ldy] 2] (26.9) 
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Since KO is a density function and nh -? 00, therefore if follows from Devroye (1983) 

that, almost surely, J IK~(y) - f(y)ldy = 0(1). Since both f and KO are probabIhty 

density functIOns, J IK~(y) - f(y)ldy ::; 2 \;f n. Therefore, by Dommated Convergence 

Theorem (DCT), 

411fl12 E [J IK~(y) - f(y)ldy r = 0(1). 

Further, under Assumptions A, Con f and KO, E[J{K~(y) - f(y)Fdy]2 equals 

E[ J {K~(y)}2dy - J f2(y)dy + 2 J f(y) {f(y) - K~(y)}dy]2 

::; 2E[ J {K~(y)}2dy - J {f(y)}2dy]
2 + 811fll J E{f(y) - K~(y)}2dy. 

Under the Assumptions A(z), C(2), D(z), (22), from Rao (1983, pp. 45), 

J E{f(y) - K~(y)}2dy = 0(1). 

Under Assumptions A(z), (22), C(22) and D, from Hall and Marron (1987) we get 

Therefore under Assumptions A - E, 

Hence using (2.6.9) we find that, under Assumptions A - E, 

(2.6.10) 

In VIew of (2.6.6) and (2.6.10), to prove Theorem 2.3.1(1), it is enough to show that 

1 2 
h4s r

n 
E(L2n ) = 0(1). (2.6.11) 
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Now under the smoothness Assumptions A, Con 1 and KO, using Taylor's expansion 

with integral remainder we get 

(2.6.13) 

Now we use Lemmas 2.6.10),2.6.3, under assumption k = p, m the right side of (2.6.13) 

to conclude that 

~(2)_ (1 2P)_ () h4SE L2n - 0 (n),2s+1)2 +), +rn - 0 rn , 

establishing (2.6.11). Now recalling (2.6.10), part (i) is proved. 

We now prove part (ii). Under Assumptions A on l(s) and B on K(·), from Rao 

(1983, pp. 45, Theorem 2.1.7), we see that 

M = ~ J K2(U)du + ~(h)2S J[J(S)(xWdX + 0 (~+ h2S ) where 
nh (S!)2 nh 

a = J XS K(x)dx =I O. 

Using part (i) of Theorem 2.3.1, 

E [M* _ 1] 2 = ~[M* - Mj2 = o(~) + O(h
4S

rn ) 

M M2 --.!.2.L + D h4s + 0 (_1_ + h4S) , 
(nh)2 2 (nh)2 

(2.6.14) 

where D1, D2 are posItive constants, independent of n. 

If lim sUPn-+co nh2s
+l < (Xl then, multiplying numerator and denominator of the right 

side of (2.6.14) by (nh)2 we get, 

If limn-+co nh2s
+l = (Xl then again, dividing numerator and denommator of the right 

side of (2.6.14) by h4s , we get agam the'same estimate. This completes the proof of 
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part (ii). Finally we prove parts (iii) and (iv). From equation (2.6.5) we get 

E/M* - M/ ~ E[LlnJ + E[LznJ. 

Since [E[LlnJF ~ E[LinJ, therefore from equation (2.6.10) we see that E[LlnJ = 0 (~) . 

Next we show that for A = nl/(2'~2J1+1)' E[Lzn ] = 0 (nJ1/(2~~2P+l)) . 
From equation (2.6.12) it is easy to see that 

E[Lzn] :s [(8 :z:)!J2 [/ E [J~y] dy + 2 / E [fzyhy] dY] where 

fzy = J IK(u)us/l l 
(1 - ty-l /I(s)(y - thu) - K~(s)(y - thu)/ dtdu and 

h y == J /K(u) uS1 l\1 - t)S-l II(s)(y - thu)1 dtdu. 

Using Lemma 2.6.1(iii) we see that 

/ 
E [fZ ] dy < [1 IK(u)us/dU] 2 J E [KO(s)(y) _ I(s)(y)] 2 dy = 0 ( 1 ) 

2y - 8 n n2p/(2s+2p+l) 
(2.6.15) 

and consequently 

J E [J2yh y] dy = J E [J2y] hydy ~ J E [J?y] dy. J nydy = 0 (np/(~s:2P+l) ) . 

(2.6.16) 

So E/L2n l = 0 (np/(2~:'2P+l)) and therefore 

EIM* - M/ = 0 (~) + 0 (np/(2~:s2P+l») . 
Thus part (iii) is proved. 

Part (iv) follows from part (iii) as follows 

E I ~* - 11 = E IM~- MI = -;==0=(~=)=+=O====(=np=/(=2~:='2='+=1)=)== 
(~)2 + D2h4s + 0 ((n~)2 + h4S

) 

If lim sup nhZs+l < 00, multiplying numerator and denominator by nh we see that 

E I ~* - 11 = 0 (h) + 0 (np/(2P:2S+l) ) . 

If lim inf nhZs+l > 0, then dividing the numerator and denominator by hZs , using the 

conditlOns liminfnh2s+l > 0 and h = 0(1), we get the same rate of convergence of 



E I NJ; - 11 to zero. 

So Theorem 2.3.1 is proved completely. 

Proof of Theorem 2.3.2 We note that 

EI~-ll_ nEIM*-MI 

E 11; - 11 - nE I An - MI' 
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Recall that, under Assumptions A to E and for A = nl/(2S~2P+l)' from Theorem 2.3.1 

(iii) , 

Therefore 

nEIM* - MI = 0(1) when s,p ~ 2 and h = 0 (n1/(;s+l)) . 

So to prove Theorem 2.3.2, it is enough to show that lim infn-+oo nE IAn - MI > o. 
Recalling the formulae of An and M given in (2.3.8) and (2.1.1) it is easy to verify that 

ElAn - MI > E(An - M) 

an a 
2 
h 2s [, ] J 2 -:;; + (S!)2 E Os - {E(Kn(y) - fey)} dy, where 

an = J {J K(v)f(y - hV)dV} 2 dy. (2.6.17) 

Now from Rao (1983, page 45) 

J {E(Kn(Y) - f(y)}2dy:S (:!~2h2S J {f(s)(x)}2 dx = (:!~2h2S0s. 

Therefore from (2.6.17), 

ElAn - MI ~ ~ + (;~2h2SE [as - os] . 

Under Assumptions (a) or (b) of the Theorem on h and as, nh2s E [as - Os] = 0(1) and 

under Assumptions A and B, it also easy to verify that lim infn-+oo an ~ J j2(y)dy > O. 

Therefore lim inf nE IAn - MI ~ J f2(y)dy > 0 and so part (1) of Theorem 2.3.2 is 

proved. 
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1
M

' -1 \ M\ 
To prove part (ii), we see that b.-I = :\1~~M\ . 

M 

From Theorem 2.3.1 (iii), under Assumptions limsupn ...... oo nh2s
+1 < 00 and S,p ~ 2, 

( 
nh2s ) 

nlM* - MI = Op (1) + Op nP/(2s+2p+l) = Op (1) . 
~ 

So to prove part (ii) it is enough to show that, almost surely, nlAn - MI ~ C + Yn, 

where C is a positive constant and Yn = op(I), for all large values of n. 

It is easy to verify that nlAn - MI ~ an + (:,;2 nh2s [es - (;Is] , almost surel~. 
If n1/(2s+1) (e - (;I ) = op(l) and lim sup nh2s+1 < 00 then Y. = nh2s [0 - (;I ] = 

S S n-+oo' n s s 

op(I). We also recall that lim infn ...... oo an > O. Therefore, almost surely, nlAn - MI ~ 
C + Yn, where C > 0 and Yn = op(I), for all large values of n. This proves part (ii) 

and therefore Theorem 2.3.2 is proved completely. 0 

Proof of Theorem 2.3.3 Recalling the definition of M* we see that 

E(M*) S nIh J K2(U)du + E[B*]. 

We note that n~ J K2(U)du = 0(1), as h IS increased. So to prove Theorem 2.3.3 it 

IS enough to show that E[B*] = 0(1), as A, h are increased. Using Cauchy-Schwartz 

inequality we get 

OS E[B*] < J IK(u)ldu x E[ J J IK(u)1 [K~(y - h.u) - K~(y)]2 dudy 

< Tl J J IK(u)IE [K~(y - hu) - K~(y)]2 dudy where Tl = J IK(u)ldu, 

~2 J {KO(v)} 2 dv + 2T; (1 - ~) J {J KO(u)f(y - A.U)dU} 2 dy 

-~; J f(y)dy J IK(u)1 J KO(x)KO (x - ~) dxdu 

-2Tl(I-~) J J IK(u)1 J J KO(zdKO(Z2)f(Y~)f(y;)dzldz2dudy. 
= bn (say). 

where yr = y - A.U - hZl and Y2 = Y - A.Z2. 

Letting h ~ 00 and A ~ 00, it is easy to see (using the condition that If(x)1 ~ 0 

as Ixl ~ 00 and DCT) that bn ~ 0 and hence E(B*) --+ O. Consequently E(M*) ~ 0, 

as h, A ~ 00, proving the first part of (ii). Since M* is a nonnegative random variable, 
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the second part follows from Markov's inequality. 

-(i) and (iii) are easy to prove. Finally we prove part (iv). Recalling the definitIon of 

M*, we note that M* :S J K:~U)dU + B*. Recalling the definition of B*, it is easy to 

verify that 

S' < 2 [ (J IK(u)ldU), + 1] J [K~(Y)J2 dy 

< 2 [ (J IK(U)ldU), + 1] [f IKO~~)12 du + 211~OIl (1- ~) ] 
Consequently 

M* J K2(u)du C [J [KO(u)J2 du 211Koll ( 1)] < + 2 . + 1 - - ,almost surely, 
- nh n)..).. n 

where C = [(J IK(u)ldu)2 + 1] . Therefore if ).. ---* 00, as h ---* 00, then M* ---* 0, 

almost surely, as h is increased. So Theorem 2.3.3 is proved completely. 0 



Chapter 3 

Estimating pointwise bias and 

mean squared error 

3.1 Introduction 

In this chapter we address the problem of estimating some point-wise measures of 

accuracy of the kernel density estimator KnO, introduced in the previous c~apter. 

The framework remains same, for instance X 1 ,X2 , .... ,Xn be n i.i.d. random variables 

with density i (-) and Kn (-) is the kernel dens2ty est2mator (of f) based on the kernel 

KC) and bandwidth h == hn . 

There are two basic assumptIOns on h, namely h -t 0 and nh -t 00 as n -t 00. 

Let us denote the bws, variance and mean squared error (MSE) of the kernel density 

estimator KnO, at y, by By, Vy and My respectively. Note that each of the above 

may be expressed as a functional T(f). These local measures of accuracy of KnO 

have enjoyed great popularity, especially in the context of locally optimal bandwidth 

selection of a kernel estimator. See for example Hall (1990), Falk (1992) and references 

therein. 

In general T(f) is unknown. In the smooth bootstrap approach T(f) is estimated 

by T(fn) where in is an appropriate estimate of in (say a kernel density estimate with 

kernel KO and bandwidth A). Traditionally, such smooth bootstrap estimators use the 

same kernel, that is KO = K . See for instance Hall (1992) who described two possible 

38 
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versions of smooth bootstrap bias estimator, where KO = K but ,\ is either larger than 

h or some unspecified value. The analytic study of such estimators require additional 

restnctions on the basic kernel K. We have already mentioned some demerits of the 

proposal KO = K, especially when K is a rectangualr, trwngular or quadratzc kernel. 

For instance the resulting bootstrap bias estimator can be inconsistent. 

In this chapter we propose that the kernel KO and the bandwidth ,\ be chosen freely 

and not tied to the original kernel and bandwidth. We call these estimators B~, V;* 

and M; respectively. In our approach we need additional conditions on KO an A and 

thus avoid imposing additional conditions on K and h as far as possible. There are 

other performance based reasons for choosing KO and ,\ over the automatic choice of 

KO = K and ,\ = h. 

3.1.1 Definitions 

The parameters By, Vy and My are defined as follows 

By = By(K, h) = E[Kn(Y)] - f(y) = J K(u) [J(y - hu) - f(y)] du 

Vy = Vy(K, h) = nIh J K2(U)f(y - hu)du - ~ (J K(u)f(y _ hU)dU) 2 

and My = My(K, h) = Vy + (By)2 . 

Let KO be another kernel and A = An, J.t = J.tn be two other bandwidth sequences. Let 

KO(y) = ~ ~ KO(y - Xt) and K*(y) = ~ ~ KO(y - Xt) 
n n'\ ~ A n nJ.t ~ 1/.. 

t=1 t=1 ~ 

The proposed general smooth bootstrap estzmator of By and My are defined as 

B~ = En[Kn(Y)]- K~(y) = J K(u) [K~(y - hu) - K~(y)] du 

Vy* = :h J K2(u)K~(Y-hu)du-~ (J K(u)K~(y - hU)dU) 2 and M: = Vy*+·(B~)2. 
So K~(-) is used in bias estimation and K~(-) is used in variance estimation. 

Let rl = E [!: -1 r, r2 = E [~ - 1 rand r3 = E [~: - 1 r 
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Note that rl, r2 and r3 depend on y and n. Plug-in estimators are obtained by substi

tuting data based estimates into the asymptotic approximation of By and My and are 

easy to compute. Under Assumptlon A on f and B on K it is easy to see that 

The corresponding plug in estimators may then be defined as 

[
BA ]2 

Let r 4 = E B: -1 , 

3.1.2 Notation 

Let hy, h; denote the values of h which minimize (globally) My and M; respectively. 

hy shall be referred to as the opt2mal bandw2dth. A bandwidth h will be referred to as 

sup-opt2mal or super-opt2mal if n l / 2s+lh is 0(1) or dIverges to 00 respectively. 

The point y is said to be a mode or an ant2-mode of f if f(1)(y) = 0 and f(2)(y) < 0 or 

f(2) (y) > 0 respectively. We note that if f is a smooth function, then our definitions 

of mode and anti-mode coincide with the peaks and troughs of f. 

Let N(x, y2) denotes the normal distribution with mean x and variance y2. For any 

function H, H(t) shall denote Its ith derivative and IIHII = sUP-oo<x<oo IH(x)l. For 

any two positive sequences {an}, {bn} we WrIte an = Oe(bn) if 0 < l.immfn--;oo ~: < 

1· an 1m suPn ..... oo b
n 

< 00. 

3.1.3, A brief literature review 

There are several estimates of By and My available in the literature. Hall (1990) has 

proposed a bootstrap scheme, where the size of the bootstrap resample is less than the 

size of the original sample and K is compactly supported. Theorems 2.1 (Hall (1990), 

page 182-183) proves strong consistency of his bootstrap estimator M:! of My. 
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Falk (1992) proposed smooth bootstrap estimators B/: and M:; of By and My. 

These are special cases of our B; and M; when we impose KO = K. Under the 

assumptions that h = O(n;/5) and K is a compactly supported second order kernel, 

Falk (1992) has studied the weak convergence of B; and asymptotic behaviour of 

n4/5M{. 

There are also plug-in estimators B:, ~A and M: available based on the asymptotic 

approximations of By, Vy and My (see Hall (1992)). There does not seem to have been 

any analytic study on the accuracy of the above three sets of estimators. For instance 

how fast do ~ converge to one? Besides, no theoretical results on the finite sample 
y 

properties of the boostrap estimators of By or Vy, seem to have been worked out. We 

investigat~ both, the asymptotic accuracy as well as finite sample properties of our 

estimators. 

3.1.4 Chapter summary 

There are eight Theorems and one simulation study in this chapter. In Theor~ms 

3.3.1 and 3.3.2 we obtain the rates at which rl = E [~ - 1] 2 and r3 = E [~ _ 1] 2 

converge to zero for a reasonably broad class of K, f and for any choice of h. The 

proposed bootstrap estimators compare well with plug-in estimators B:, ~A and M:, 
see Theorems 3.3.3, 3.3.4 and 3.3.5 respectively. For instance our results imply that 

for super-optimal h (defined later), B; is asymptotically more accurate (in L2 sense) 

than B:, see Theorem 3.3.3. If limsuPn-+oo n2/5h = 00 and f(1)(y) = 0, f(2)(y) =f 0 

then Vy* has infinite asymptotic relative accuracy (in L2 sense) in comparison to ~A. 

We have proved some properties of the proposed estimators for fixed sample size, see 

Theorem 3.3.6. In the Theorems 3.3.8 and 3.3.9, we have obtained closed form formulae 

for By, Vy, My and their corresponding estimators when K and KO are Gaussian kernels. 

So in this case, all of them can be computed explicitly. 

Simulations reveal that when y is a mode or an anti-mode and lOglO(h) :S -0.5 both 

M: and M; estimate My accurately. However when y is in the tail region, My as a 

function of h possesses more than one minima, and this feature is successfully imitated 
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by M;. But M: always possesses one minima, say h:. Let hy and h~ be the global 

minimizers of My and M;. If y is in the tail region, then both IOglO(h;), lOglO(hy) 2: 0.5, 

whereas IOglO(h:) < O. This observation verifies Sain and Scott's (1995) result that 

when y is in the tail of f, hy can be rather large. In such a situation h~ appears to be 

the more appropriate estimator of hy . 

3.2 Assumptions 

We collect below all the assumptions on the two kernels and the bandwidths. Not all 

of them will be used in all the results. 

Assumption A. (Assumptions on density J). 

(1) f(·) IS uniformly bounded, continuous and possesses s 2: 2 uniformly bounded 

derivatives. The 8th derivative f(5) is continuous and absolutely integrable. Also 

f(y) ~ 0, as Iyl ~ 00. 

(ii) There exists p 2: I, such that f(s+p)(-) is uniformly bounded and continuous. 

Assumption B. (Assumptions on kernel K). K(·) is square integrable and is of 8th 

order, that is I K(x)dx = 1 and there exists an integer 8 2: 1 such that I K(x)xJdx = 

0, J = 1,2, .. ,8 - I, 0 < II K(x)xSdxl ::; IIK(x)xSldx < 00. The number 8 will be 

called the order of the kernel. 

Further we assume that IIK(x)xs+Pldx < 00, where p is the integer for which A(ii) 

holds. 

Assumption C. (Assumption on auxiliary kernel KO). 

(i) K°(-) is a square integrable probability density function and f[KO(y)j4dy < 00. 

Further 

(a) KOO is continuous and uniformly bounded. 

(b) KO(x) ~ 0 as Ixl ~ 00. 

(ii) KOU has 8 continuous denvatIves on (-00, 00) and its 8th derivative KO(5)(-), 

satisfies the above conditions (a) and (b) and the following assumptions 

(c)J IKO(s)(x)ldx < 00 and f[KO(S)(y)]4dy < 00 



(d) J KO~s)(x)xJdx = 0, where 0 ~ j ~ s + P - 1, j =1= s, 

(-s~)S J KO(S) (x)xSdx = 1 and J IKO(S) (x)xs+Pldx < 00. 
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For all asymptotic Fesults (as n --l- 00), it is understood that A, /-L, h --l- 0, 

n>., nJ-L, nh --l- 00. 

Remark 3.2.1. The number p, in Assumptions A and C, depends on KO. If KO IS 

standard normal density then we recommend p = 2. With this choice of KO and p, 

Assumption C is satisfied for any value of s. 

(ii) The Assumptions A(2) - (i2) on f, are valid for a wide class of densities which 

include mixed normal, cauchy, beta(m,n) (m,n>2) and gamma(n) (n>2) among others. 

Whereas the assumption that f has compact support or the assumption E(IX11€) < 

00, E > 0 (see page 184, Hall (1990)) precludes the mixed normal distributions or the 

heavy tailed distributions which have no moments. 

(iii) Assumption B on K is quite common in density estimation context and does not 

limit the choice of K. In contrast the assumptlOns by Hall (1990) and Falk (1992) 

prevent the use of a number of popular kernels e.g. the Gaussian or Gaussian type 

kernel, as they are not compactly supported. 

3.3 Main results 

We now state our main results. The proofs are given at the end of the chapter. 

Theorem 3.3.1. Suppose Assumptwns A-C hold, and f(s)(y) =1= 0 and A = Oe(nl/(2S~2P+l))' 

Then 

,r1 = ~ [!: -1] 2 = 0 (n2P/(2:+2P+l) ) . 

Theorem 3.3.2. Let Assumptwns A - C hold, s ~ 2, 10 > p ~ 2, J-i = Oe(n- 1/ 5 ) and 

{z} If f(y) > 0, f(s)(y) i- ° and liminfn->oonh2s+l > ° then, 
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(2i) If lim SUPn->oo nh 2s+1 = 0 and f (y) > 0, then, 

r3 = E [:: - 1] 2 0 (n2P/(2:+2P+l) ) . 

Remark 3.3.1. (i) If K is a second order kernel (i.e. s = 2) then, under Assumptions 

A - C, Theorems 3.3.1 and 3.3.2 hold whenever y is a mode or an anti-mode. Whether 

a point y is a mode or an anti-mode may be statistically tested using SiZer (Chaudhuri 

and Marron (1999)) which is a tool for detecting the points of "zero crossings" of f(l). 
[KO(.)( )-/(.)( )] D (ii) If n>.2s+1 _ 00 and n>.2s+2p+l _ 0 then under J[, an n Y Y--+ 

0, V f[KO(s) (u)j2du.K,.(y) 

N(O, 1) where an = VnA2s+1.This may be used to test Ho : f(s)(y) = 0 against 

HI : f(s)(y) i= O. 

3.3.1 Comparison with plug in estimator 

Computing B; and M; may require Monte-carlo simulation, the plug-in estimators 

are easier to implement. So a natural question is under what conditions bootstrap 

estimators are worth the extra computational.effort? The next three theorems provide 

conditions under which the bootstrap estimators will have infinite asymptotic accuracy 

(in L2 sense) compared to their plug-in counterparts. 

Theorem 3.3.3. Suppose A88umptwns A-C hold, f(s+l) 28 cont2nuous, III(S+1} II < 00, 

>. = Oe ( 1 ) f(S+1) (y) -.J.. 0 and lim sup nP/(2s+2p+1) h = 00 Then n1/(2s+2p+l} , T n-oo . 

[B* ] 2 E =.lL-1 
rl = By 2 = 0(1). 
r4 E[~-l] 

Remark 3.3.2. For s,p ~ 2, limsuPn->oo n 1/(2s+1}h = 00 implies limsuPn->oo nP/(2s+2p+l}h = 

00. So Theorem 3.3.3 holds for second order kernel and super-optimal h for which By 

can be high. Hence B; is expected to be more accurate than B: in the high bias regIOn. 

Theorem 3.3.4. Suppose Assumptwns A - C hold, limsuPn->oo n2/5h = 00, f..1. = 

Oe (n{/s), f(y) > 0, f(2}(y) i= 0 and f(l)(y) J K2(u)du i= P(y). Then 

[ 
v.* ] 2 E -L-1 

r2 = Vy 
2 = 0(1). 

rs E [V: - 1] 
Vy 
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Remark 3.3.3. The condition f(l)(y) J K2(u)du =1= j2(y) is automatically satisfied 

whenever y is a mode or anti-mode and f(y) > O. 

Theorem 3.3.5. Suppose s ~ 2, 10 > p ~ 2, hm mfn--+oo n 1/(2s+l) h > 0 and h = 

o (np!(2S~2P+!)). Suppose further that Assumptwns A - C hold, I J K(u)us+ldul < 00, 

11J(s+1)11 < 00, ,\ = Oe (nlJ(2S~2P+l»)' J.L = Oe (~), f(2)(y) =1= 0 andf(l)(y) J K2(u)du =1= 

j2(y). Then 

[M' ] 2 E =.1£.-1 
r3 = My 2 = o( 1). 
r6 E [~- 1] 

My 

Remark 3.3.4. (i) In addition to the conditions in Theorem 3.3.5, if we further assume 

that f(s+l)(y) = 0, then condition h = 0 (np!(2S~2V+!)) can be replaced by a more 

general condition h2 = 0 (np;(2s~2p+!)) which is satisfied by h = Oe (n1!(;s+!)) for p = 2. 

So for p = 2, Theorem 3.3.5 holds for h = Oe (n1/(;S+1»). The values of h, whIch are 

constant multiples of n1/(;s+!), have been of great interest in density estlmatlOn from 

the perspective of mimmismg My asymptotIcally (see Hall (1990), Falk (1992)). 

(ii) If y is a mode or anti-mode then the conditions f(2)(y) =1= 0 and f2(y) =1= 

f(l)(y) J K2(u)du are automatically satisfied. So whenever y is mode or an anti-mode, 

Theorem 3.3.5 ensures that M; has infinite asymptotic accuracy in companson M;;. 

3.3.2 Fixed Sample performance of bootstrap estimators: 

The following proposItion provides some indication of the performance of the bootstrap 
\ 

and plug-in estimators for fixed sample sample size n. 

Theorem 3.3.6. Let the Assumptwn A on f hold. Also let KO be umformly bounded, 

contmuous and KO(y) ---+ 00, as Iyl ---+ 00. Then for fixed sample s~ze n and for any 

chozce of'\, J.L =1= h, as h ---+ 00, 

(z) By ---+ -f(y), B; ---+ -K~(y) and B¢ ---+ 00 almost surely. 

(n) Vy ---+ 0 and Vy*, VyA ---+ 0 almost surely. 

(m) My ---+ f2(y), M; ---+ [K~(y)J2 and M;; ---+ 00 almost surely 
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Remark 6 Thus for any sample size the bootstrap estimators successfully imitate 

the behaviors of By, Vy and My, for large value of h. But the asymptotic estImators 

fail to mImic the behavlOr of By and My for large values of h. 

3.3.3 Gaussian kernel 

B;, ~* and M; do not have a closed form expressions in general and hence Monte

Carlo computation is required for its implementation. However we observe that if K 

IS a GaussIan kernel and Kb IS chosen to be the standard normal denSIty then we can 

obtain closed form expression for the proposed bootstrap estimators. ThIs follows from 

the followmg Theorem. 

Theorem 3.3.7. If g(x) = l:~=1 w'¢a;(x - J.L,), where <Pa;(-) 2S the dens2ty of N(O, an 

d2stnbutwn and ¢ 2S the N(O, 1) dens2ty then 

k J ¢(u)g(x - au)du = L w,¢a;+a2 (x - J.L,). 
,=1 

J 
1 k 

¢2(U)g(X - au)du = 2.,fo L w'¢a;+"22 (x - J.L.). 
,=1 

If KO is chosen to be N(O, 1) density, then 

K~ and K~ are densities of the form l:~=1 w,¢a;(x - J.L,), where w, = ~, J.L, = X, 

and a; = (-X)2 or (J.L)2, 2 = 1,2, .. , n. Therefore if K is a Gaussian kernel then using 

Theorem 3.3.7 we can easily obtain closed form expression for B;, ~* and M; 

Theorem 3.3.8. If both K and KO are dens2t2es of N(O, 1) d2stnbutwn then 
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If the underlying distribution is aSsumed to be mixed normal distribution, then for 

Gaussian kernel K we can also obtain a closed form expreSSIOn for By, Vy and Illy. 

Theorem 3.3.9. If f(x) = L~=l W'¢ff;(X - f..L.), where ¢ff;O 2S the dens2ty of N(O, a;) 

d2stnbutwn and K 2S the density of N(O, 1) d2stnbution then· 

k 

By = L W'¢h~+ff;(Y - f..L,) - f(y), 
.=1 

3.4 Simulation 

We investigated by means of simulations, the effect of y and h on the performance of 

M; and M: for fixed sample size. Since any density may be approximated arbitrarily 

closely in various senses by a normal mixture density (see Marron and Wand (1992)), 

we chose f to be mixed normal. We chose K to be Gaussian due to its wide popularity. 

Note that a kernel density estimator is not that sensitive to the choice of the kernel. 

We also chose KO to be Gaussian and hence closed form expression for computing M; 
and My are available from Theorems 3.3.8 and 3.3.9. Since K and KO are standard 

normal density, S = 2 and p = 2. Further we chose J..L = n-1/ 5 and .x = n-1/(2s+2p+l). 

For n = 500, we have plotted M;, M: and My against lOg10 h taking f to be 

standard normal, bimodal, skewed and kurtic densities. Formulae of these densities 

are, available in Marron and Wand (1992). Our choice of log10 scale is motivated by its 

use by Marron and Wand (1992). The figures are given in the next page. 
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In Figures 3.1(a) - 3 4(c) we plot Mny == My(h), M~y == M;(h) and AsyM"y == M:(h) agamst 

Log(h) == Jog lO h for normal, bimodal, skewed and kurtlc distributIOns and for sampJe size 

n == 50, 200 Both K and KO are standard normal densities 
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Fig 3.3 (c): underlying distribution "Skewed"; y=-3; n=500. 
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Fig 3.4 (c): underlying distribution"Kurtic"; y=-3; n=500. 

The following conclusions may be drawn from these simulations. 

(i) Figures 3.1(b), 3.2(d), 3.3(b, c) and 3.4(b, c) reveal that when y is in the tail 

region, My may have more than,one minima and M; captures all important features 

(including mul~iple minima) of My as a function of h. However M': always has one 

minima irrespective of y and it fails to mimic My specially when h is large and y is in 

the tail region. 

(ii) Figures 3.1(a), 3.2(a, b, c) and 3.3(a) consider the case when y is a mode or 

anti-mode of f. These reveal that both M': and M; successfully imitate My when 

IOglO(h) ~ -0.5. However when IOglO(h) 2: 0, M': increases rapidly whereas both M; 

and My first increase and then appear to level-off, as the value of h is increased. 

However, in general we ~oticed that if f is a mixed normal, f(x) = L:~=1 wt <p<7:(x

J.tt) and if a particular <7; is small and the corresponding W t is not too small, then both 

M; and M': are poor estimators of My at y = f..Lt for loglO(h) 2: -1.5. For example, in 

Figure 3.4(a) we have plotted the result when f is the density of ~N(O, 1) + ~N(O,~) 
and y = O. It is to be noted that M; continues to accurately estimate My if log 10 (h) ~ 

-1.5. 

(iii) From the perspective of estimating hy we see that both h~ and h; perform 
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equally well when y is a mode or an anti-mode. 

But if y is' in the tail region of J, then from Figures 3.1(b), 3.2(d), 3.3 (b, c) and 

3.4(b, c) we see that My attains two minima, one in the range lOglO(h) ~ 0 and the 

other in the range log~o(h) ~ 0.5 and the global minima need not be unique. This 

feature is successfully imitated by M;. Further, the global minimizer of M; also need 

not be unique. In any case, the larger minima always turn out to be the global minima 

and hence without loss hy and h~ are taken to be the largest values of h minimizing 

My and M; respectively. It also turns out that they are close. The above choice of h~ 

and hy are also supported by Sain and Scott's (1995) observation that the sequence hy 

can converge to a positive constant, rather than zero. In contrast, M: has a unique 

minimizer h: and lOglO(h:) < 0, irrespective of where y is. In conclusion, if y is in the 

tail, h: is a poor estimate for hy whereas h~ is close to hy. 

(iv) Hall (1990) showed that the minimizers of M!! and My, with respect to hover 

A = [ l/~S+l' l/~:+l J (nl is the res ample size, 0 < E < 1), are asymptotically equivalent 
n 1 n 1 

(almost surely). The results of Falk (1992) imply that, for a second order kernel, 

minimizing M/:y, as a function of hover B = [S}s, £7s], is asymptotically equivalent 

to minimizing :",C:t~ J K2 + (2::/sJ(2)(y) J x2K(x)dx)2 with respect to cover [Cl , C2J. 

Let h: denote the minimizer of Mi! over A and h: be the minimizer of M{ over B. 

For second order kernel, h: and h: are Oe(~) and Oe()/s), where nl < nand 
1 

nl -t 00. Consequently for large n, both h: and h: are expected to be close to zero 

and can be much smaller than hy when y is in the tail. In fact for such y, both h:, h: 

can be expected to be closer to the smaller local minima of My. Thus h~ appears to 

be'a more appropriate estimator of hy than h: and h:. 

3.5 Proofs 

3.5.1 Some important Lemmas 

We state and prove the lemmas which have been used in the proofs of the Theorems. 
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Lemma 3.5.1. Under Assumptwns A on j and C(zz) on KO(s) and choosmg ,X = 

(z) sUP_oo<y<ooE [K~(S)(y) - j(S)(y)f = 0 (n2P/(2;+2 S +l»). 

(zz) sUP_oo<y<ooE [K~(S)(y) - j(S)(y)f = 0 (n4P/(2;+2 S +l»). 

Proof of Lemma 3.5.1 (i) Recall that K~(s)(y) = n>'~+l I:~=1 KO(s) (Y-/'). 

It is easy to verify that 

and under Assumption C on KO(s) it is easy to verify that 

[E [K~(s)(y)] - j(s)(y)]2 ~ ,X2p ['g:+;;'i J KO(S) (U)us+Pduf ' \:!y. 

Therefore for ,X = Oe (nll(2'~2P+l»)' Lemma 3.5.1 (i) is an immediate consequence of the 

above mequahties. o 

Proof of Lemma 3.5.1 (ii) Using (a + b)4 ~ 8(a4 + b4) we see that 

E [K~(s)(y) - j(S) (y)t ~ 8E [K~(s)(y) - E [K~(s)(y)]t + 8 [E [K~(s)(y)] - j(s)(y)t 

(3.5 1) 

Let Ym = n>'!+l {KO(s) (Y-/') - E [KO(s) (Y->.x,)]} , z = 1,2, ... , n. Then Yn1 , Yn2 , ..... , Ynn 

are i.i.d random variables and E(Yn1 ) = O. Therefore we get the following equation 

E [K~(')(Y) - E (K~(')(Y))]' = E (~Y",) , = nE(Y;,) + 6n(n - 1) [E(Y,;,)] , . 

(3.5.2) 

Now 

E(Yn") < n' '\~'+4 {E [KO(') (Y -/' ) 1 \ [EKO(') (Y -/' ) n 
< n''\~'+4 [11/11'\ j[K0(') (v)]'dv + lilli' A' [j KO(,)(v )dv n 

G1 3 
= n4,X4s+3 {I + G2,X }, where G1, G2 are pos1tive constants 
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and 

E(y2) < 1 E[KO(S)(Y-Xl)]2< 1 Ilfllj[KO(S)(V)]2 dV nl - n2 ).2s+2 ). - n2 ).2s+1 

Substitutmg the above inequalIties m equation (3.5.2) and usmg n). ---+ 00 we get 

E [K~(s\y) - E [K~(s)(y)]t :::; n2).~S+2 [Ilfll j [KO(S)(v)] 
2 

dV] 2 + 0 (n2A~S+2) , '<fy. 

Therefore for A = Oe (n;l/(2S:2
P
+l) ) , we get 

sup E [K~(s)(y) - E [K~(s)(y)]t = 0 ( 4/(2:+2 +1») . 
-oo<y<oo n P P 

(3.5.3) 

Further 

Therefore for)' = Oe (nl/(2S~2P+l») and using Lemma 3.5.1 (i), we get 

sup [E [K~(s)(y)] - f(s)(y)t = 0 (n4P/(2:+2P+1») . (354) 
-oo<y<oo 

Substituting the equations (3.5.3) and (3.5.4) in the right side of equation (3.5.1) we 

get Lemma 3.5.1(ii). So Lemma 3.5.1 is proved completely. o 
In order to prove Theorem 3.3.2 we need the following Lemma. 

Lemma 3.5.2. Under Assumptwns A - C and choosmg ). = O(nll(2s~2p+l») we get 

E [(B;)2 - B;] 2 = 0 (n2P/(~:2P+l) ) . 

Proof of Lemma 3.5.2 Recalling the formulae of B~ and By, from the proof of 

Theorem 3.3.1, we see that 

1 (B;)2 - (By)21 = ((s ~2:)1)21 {j K(u)uS 10
1 
(1 _ ty-l K~(s)(y _ thU)dtdU} 2 

- {j K(u)uS 11 (1 _ t)s-1 f(S)(y _ thU)dtdU} 21 

:::; ((s ~2:)!)2 [J IK(u)USl l
1 
(1 - t)S-1 IK~(s)(y - thu) + f(s)(y - thu) I dtdu. 

j IK(u)uSll1 (1 - t)s-1 IK~(s)(y - thu) - f(s)(y - th~)1 dtdu] 

h2s 
= ((8 - 1)1)2 Cln·C2n (say). 
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It is easy to see that 

where C = J /K(u)us/. Therefore 

(3.5.5) 

where C' = IIf(~IIC. Further using Cauchy-Schwartz inequality for c~n and c~n and 

taking expectation we get 

From Lemma 3.5.1 (i) and (ii), we see that for A = 0 (nl/(2S~2P+l)) 

-~~~<oo E [K~(s)(y) - f(S)(y)]2
J 

= 0 (n2JP/(2:+2P+l)) , j = 1,2. 

Therefore from equation (3.5.5), we see that 

Hence Lemma 3.5.2 is proved completely. o 
To prove Theorem 3.3.5 we need the following Lemma. 

Lemma 3.5.3. Let s ~ 2,10> P ~ 2. Under Assumptwns A-C and further assummg 

If K(u)uS+1dul < 00, IIf(s+l)II < 00, liminfn-toonh2s+l > 0, h = 0 (n-P/(2S+2P+l)) and 

for J..L = Oe(n-1/5 ), A = Oe(n-1/(2S+2P+l)) we get 

Proof of Lemma 3.5.3(i) Recalling the definition of B: we see that 
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Under Assumptions A on f and C on KO(s), it is easy to verify that 

E [K~(S)(y)]2 = nA;S+1 j[KO(S)(UW f(y - Au)du 

+ (n -1) [f(S)(y) + (-1)s+PAP j KO(S) (u)us+p j(1 _ t)s+p- 1 f(s+p)(y _ tAU)dtdU]
2 

n (8+p-1)! 

= nA;S+1 j[KO(S)(uWf(y-)..U)dU 

+ (n - 1) [f(S)(y) + (-1)s+pAP j KO(S) (u)uS+Pduf(s+p) (y) + 0 ()..P)] 2 
n (8+p)! 

Therefore 

E[(B:?] = C; n:::+1 j [KO(S) ( u)]2 f(y - )..u)du + (n ~ 1) C;h2s[J(S) (y)]2 

+ (n - 1) C2h2s)..p f(s)(y)f(s+p)(y) + 0 (h2S )..p) (3.5.6) 
n 

h C - f K(u)uSdu d C _ f KO(S)(u)uS+VduC 
were 1 - s' an 2 - (s+p)' 1· 

Further recall (from proof of Theorem 3.3.1) that 

By = (-h)S j K(u)uS t (1 _ t)S-l f(s)(y - thu)·dtdu. 
(8-1)! io 

Therefore 

h2s [I K(u)u
S 

f(s)(y) 
[(8 - 1)!)2 8 

-h j K(u)uS+1 11 (1 _ t)(s-1)t 11 f(S+1)(y _ vthu)dvdtdu] 2 

= h
2s 

[I K(u)usf(s)( ) _ hI K(u)u
S
+1 f (S+1)() (h)]2 

[(8 - 1)!J2 8 Y 8 Y + 0 . 

f K(u)u S +1 This impbes that with C3 = C1 , , s. 

From equations (3.5.6) and (3.5.7) we see that 

C2~ j[KO(S) (U)]2 f(y - )..u)du 
1 n)..2s+1 

+ C2h2s.)..p f(S) (y) f(s+p) (y) - C3h2s+1 f(S) (y) f(s+1) (y) 

+ 0 ( h2s ( )..P + h + ~) ) . (3.5.8) 
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Therefore under Assumption A that f and its higher order derivatives are uniformly 

bounded, 

h = 0 (npl(2'~2P+l») and choosing A = Oe (nll(2'~2P+l») we see (from equation (3.5.8)) 

that 

(3.5.9) 

Recall that VyA = K~~Y) J K2(U)du. Therefore, recalling the definition of Vy, we get the 

following equation 

J K2(U)du 1 / 
E [VyA] - Vy = nh [E(K~(y)) - f(y)] + nh K_2(U) [f(y) - f(y - hu)] du 

+~ (/ K(u)f(y _ hU)dU) 2 

It is easy to verify that, 

o (/-L
2

) , E(K~(y)) - f(y) 

:h / K2(U) [J(y) - f(y - hu)] du -~f(I)(y) / K2(U)udu + 0 (~) , 

~ (/ K(u)f(y _ hU)dU) 2 = Pn(y) + 0 (-n
h

) . (3.5.10) 

Therefore for /-L = Oe (n11/ s ), from the above equations we see that 

IE [VyA] - Vyl = ~ jI2(y) - f{l)(y) / K
2
(U)Udul + 0 (nl+~/5h +~) . 

= L4 + 0 (nl+;/5h +~) (say). (3.5.11) 

Under assumptions hm infn_ co nh2s+1 > 0 and If2(y) - f(1)(y) J K2(u)udul > 0, we 

see that 
nP/(2s+2p+l) 

lim h2s L4 = 00. 
n->co 

Further for s ~ 2, 10 > p ~ 2, lim infn->co nh2s+l > 0 and h = 0 (np7(2'~2P+l) ) 

1 h ( h2s ) 
n1+2/5h + ; = 0 nP/(2s+2p+l) . 

Therefore for s ~ 2, 10 > p ~ 2, under assumptions h = 0 (np/(2'~2P+l»)' lim mfn_ co nh2s+1 > 

o and f2(y) =1= f{l)(y) J K2(u)udu , from equation (3.5.11) we see that 

nP/{2s+2p+l) 
lim h2 IE [VyA] - Vyl = 00. 

n--+-oo S 
(3.5.12) 
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Lemma 3.5.3(i) is a direct consequence of the equations (3.5.9) and (3.5.12). O' 

Proof of Lemma 3.5.3(ii) Recalling the definitions of Vy* and Vy we see that 

IE (V;) - Vyl = I n\ J K2(U)E [K~(y - hu) - fey - hu)J du 

-~ [E (J K(u)K~(y - hU)dU)' -:- (J K(u)f(y - hU)dU) ']1 
IE[L1J - E[L2J I , 

where L1 and L2 are as defined in the proof of Theorem 2.3.2. 

Recalling equation (3.5.23) we see that for J..l = Oe(n-1/ 5 ) 

E(L2 ) = 0 (n1: 2/ 5 ) . 

Under the Assumptions A on f, B on K and C on K O, s > 2 and choosing J..l = 

Oe(n-1/ 5 ) It is easy to verify that 

C' 1(2) (y) ( 1) , . 
E[LIJ = n1+2/5h + 0 n1+2/5h ,where C IS a non-zero constant. 

Therefore, under the Assumptions A on f, Bon K, Con KO, s ~ 2 and If(2)(y)1 > 0 

and choosing J..l = Oe(n- 1
/ 5 ), we see that 

liminf n1+2
/
5h IE (V*) - v.1 = IC'f(2)(y)1 > o. 

n-->oo y y 
(3.5.13) 

Recalling the definition of rs it is easy to see that 

[E[(B*?J - B2]2 E [(B*)2 _ B2]2 
r - y y < y y 
s - 2 - 2 

E [~* - Vy] [E[~*J - Vy ] 

(3.5.14) 

Recalling Lemma 3.5.2 and equations (3.5.13) and (3.5.14), under Assumptions A - C 

an~ for A = O(nll(2'~2P+l») and J..l = Oe(n- 1
/

5
), we get 

( 
h4s+ln1+2/5 ) 

rs = 0 n2p/(2s+2p+l) = O(gn) (say). 

We see that for h = 0 (np/(2p~2S+1d and S,p 2: 2, gn = 0(1). Therefore Lemma 3.5.3(ii) 

follows immediately from the above equatIOn. So Lemma 3.5.3 is proved completely.D 
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3.5.2 Proofs of Theorems 

Proof of Theorem 3.3.1 Recall that 

By = j K(u) [j(y - hu) - f(y)] du and B; = j K(u) [K~(y - hu) - K~(y)] duo 

For each fixed y and u, expanding f(y - hu) and K~(y - hU) by Taylor's expansion 

with integral remainder we get 

and almost surely 

B* = (_h)S jK(u)uSl1(1-tY-lKO(S)(y-thU)dtdU 
y (8 - I)! on' 

Therefore, almost surely, we get 

~s IBy - B;I ~ (S~I)1 J IK(u)uSI Jo1(1- t)~-llf{S)(y - thu) - K~{s)(y - thu)ldtdu. 

Squaring and taking expectatIOn on both sides of the above inequalIty we get 

~E [B - B*]2 < Cf sup E [KO(s)(y) _ f(s)(y)]2 
h2s y y - (8!)2 -oo<y<oo n 

(3.5.15) 

where C1 = J Ivl s K(v)dv. 

Under the Assumptions A, C on f and KO, chbosing A = O(nl/(2S~2P+l})' from Lemma 

3.5.1(i) we get 

sup E [KO(s)(y) - f(s)(y)]~ = 0 ( 1 ) . 
-oo<v<oo n n2p/{2s+2p+l) 

substItuting the above equation in right sIde ot (3.5.15) we see that 

~ E [B - B*] 2 = 0 ( 1 ) h2s Y Y 71,2p/{2s+2p+I)' (3.5.16) 

Usmg the smoothness Assumption A on f{S) It is easy to see that 

1 (J K(u)uSdu ) 2 
h2SB; = 8! f{iJ)(y) + 0(1) (3.5.17) 

S ,+.E[By-B;t h f d h I J () I d ince TIn = hi B2 , t ere ore un er t ~ Assumptions K u uSdu > 0 an 
!;IT y 

If{s)(y)1 > 0, Theorem 3.3.1 is a direct conseql.1.ence equatIOns (3.5.16) and (3.5.17).0 
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Proof of Theorem 3.3.2 Recalling the d0finitions of My, M; and using (a+b)2 :s 
2a2 + 2b2 we find that 

(3.5.18) 

Recalling the definitions of Vy and Vy* we get the following equation 

v; - Vy = :h J K2(U)[K~(y - hu) - f(y - hu)]du 

-~ [ (J K(u)K~(y - hu)dU) ' - (J K(u)f(y - hU)dU) '] 

LI - L2 (say) 

Hence 

(3.5.19) 

Now 

Further note that 

So choosing J.L = Oe(n- I / 5 ), whIch mmmuzes the right side of the above equation, we 

get 

sup E [j(y) - K~(y)J2 = O(n-4
/
5

). (3.5.20) 
-oo<y<oo 

Therefore 

E(Li) = 0 (;2+~5h2 ) . (3.5.21) 

Now using a2 - b2 = (a - b)(a + b) and Cauchy-Schwartz inequality It IS easy to see that 

n2EL~:S E(en.dn) [J )K(U»)duf 1 where 

en = J \K(u)\ [J(y - hu) + K~(y - hU)]2 du 

and dn = J \K(u)\ [j(y - h'lf) - K~(y - hu)f duo 
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Since If(y - hu) + K~(y - hu)1 :S If(y - hu) - K~(y - hu)1 + 211fll, for all y, therefore 

it is easy to see that Cndn :S 2d~ + 811fWdn and hence 

(3.5.22) 

where C = J IK(u)ldu. Further it is easy verify that 

o :S E(d~) :S C sup E[K~(y) - f(y)J21 J = 1,2. 
-oo<y<oo 

For J.L = Oe(n- 1
/
5

) recalling equatlOn (3.5.20) we get 

By some straight forward algebra it is easy to verify that for J.L = Oe(n- 1
/ 5 ) 

sup E[K~(y) - f(y)J4 = 0 ( ;/5)' 
-oo<y<oo n 

Consequently E(d~) = 0 (n:/ 5 ) and hence recalling equation (3.5.22) we get 

E(L~) = 0 (n2: 4/ 5 ) 
(3.5.23) 

From equations (3.5.19), (3.5.21) and (3.5.23) we get 

E[Vy* - Vy]2 = 0 (n2+L5 h2 ) . (3.5.24) 

From equations (3.5.18), (3.5.24) and Lemma 3.5.2 it is easy to see that 

(35.25) 

Using Assumption A(i) on f and Assumption B on K it is easy to prove that 

M; = [f(Y) / K2(U)du + (h
2
,)s2 [/ K(u)uS f(S)(Y)] 2 + 0 (~ + h2S)] 

2 

(3.5.26) 
nh s. nh 

Recall that 

(3.5 27) 
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If liminfn->oonh2s+1 > 0 then, under the Assumption f(y) > 0 and If(s)(y)1 > 0, 

divIding numerator and denominator of 1'3 by h4s we get, from equations (3.5.25), 

(3.5.26) and (3.5.27), that 

l' -o( 1 1) -o( 1 ) 
3 - n2p/(2s+2p+1) + (nh2s+1 )2n4/ 5 - n 2p/(2s+2P+1) 

using 8 ~ 2 and 10> p ~ 2. 

If lim sUPn->oo nh2s+I = 0 then, under the AssumptIOn f(y) > 0, dIviding numerator 
~ 

and denominator of T3 by (n~)2 we get, from equations (3.5.25) and (3.5.27), that 

l' -0 +- -0 
( 

nh2s+I 1) ( 1 ) 
3 - n2p/(2s+2p+1) n4/5 - n 2p/(2s+2p+1) 

using 8 ~ 2, 10 > p ~ 2 and lim sUPn->oo nh2s+I = O. 

So Theorem 3.3.2 is proved completely. 

Proof of Theorem 3.3.3 Recall that 

and from the proof of Theorem 2.3.1 we see that 

By = (~-_h~;! J K(u)uS 11 (1 - ty-l f(S)(y - thu)dtdu 

Using la - bl ~ Iia - el-Ib - ell, it is easy to see that 

~s IE[B:] - Byl ~ Id1n - d2n l 

where 

dIn = I :! J K(u)uSdu.E [K~(s)(y) - f(s)(y)] I, 

d2n = I (8 ~ I)! J K(u)uS 11 (1 - t)S-l [J(S)(y - thu) - f(S)(y)] dtdul· 

Now 

Therefore 

o 

(3.5.28) 
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In view of equations (3.5.16) and (3.5.28), to prove Theorem 3.3.3, it is enough to show 

that 

. . Id1n - d2n l ( 1 ) hm mf = 00, where ). = Oe 1/(2 2 1) . 
~oo ~ n ~~ 

(3.5.29) 

Using the Assumption A on f(8), f(s+p) and Assumption C (ii) on KO(s) it is easy to 

see that 

(3.5.30) 

Substituting the above expression for E [K~(S) (y) - f(8) (y)] in the definition of d1n we 

get 

dIn = ),.P \f(s+P)(y) J KO(S) (U)US+PdU\ + o().P). 
(s + p)! 

So to prove equation (3.5.29) It is enough to show that limsuPn->oo ~ = 00. 

Using the Taylor expansion for f(8)(y - thu) - f(s)(y) and the assumption that f(S+l)(-) 

is bounded, continuous, it is easy to show that 

d2n = (:)! If(s+1)(y) J K(u)uS +1dul + o(h). 

Ch . \ 0 ( 1 ) . th t' l' p/(2~2p+1)h oosmg /\ = e n 1/(2s+2p+1) , usmg e assump Ions 1m sUPn->oo n = 00 

and f(s+1) (y) i= 0, it is easy to see that lim sUPn->oo ~ = 00 and consequently 

1
. Id1n - d2n l _ 
1m sup \ -00. 
n->oo /\p 

This establishes equation (3.5.29) and hence Theorem 3.3.3 is proved completely. 0 

Proof of Theorem 3.3.4 Recall that 

and 

Vy = n~ J K2(u)f(y - hu)du - ~ (J K(u)f(y - hU)dU) 2 

Using E(X2) ~ IE(X)j2 and la - bl ~ Iia - cl - Ib - cl \, it is easy to see that 
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where 

ein = n~ J K2(U)duIE(K~(y)) - f(y) I, (3.5.31) 

e'n = :h / K'(u) lI(y - hu) - f(y)l du - ~ (/ K(u)f(y - hU)dU) '~3.532) 

Under the Assumption C ~m K O and f(2)(y) =1= 0, choosmg I-" = Oe(n- I / 5 ) It is easy to 

show that 

ein = Oe (n1+;/5h) (3.5.33) 

n->co 
= Ji{I)(y) J K2(U)du - f2(y)1 > 0 (by assumption). 

Since limn-+co n2
/

5 h = oo,we have limn->oo ~ = 00. 
el n 

Since limn_co ~ = 00, therefore Theorem 3.3.4 is proved completely if we can show 
el n 

that 

E [V* - 11.]2 
y 2 y = 0(1). 
ein 

(3.5.34) 

Equation (3.5.34) is a direct consequence of the equations (3.5.24) and (3.5.33). This 

completes the proof of Theorem 3.3.4. o 

Proof of Theorem 3.3.5 Recalling the definitions of r3 and T6 we see that 

T3 E [M; - My] 
2 

< 2E [Vy* - Vy]2 + 2E [(B;)2 - B;]2 

T6 E [Mt - My] 
2 

- [E(Mt) - My] 
2 

< 2E [Vy* - Vy]2 + 2E [(B;)2 _ B;]2 

[IE[(B:)2J - BEI-IE[~Al- VyW 
= 

2E [Yy* - Vy] 2 (1 + 1'S) 

[E[V/J - Vy] 2 (r7 - 1)2 

< 2E [Yy* - Vy]2 (1 + TS) 
rein - e2nJ2 (1'7 - 1)2 

(3.5.35) 
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where eIn, e2n are as defined in the proof of Theorem 3.3.4. 

Recalling the proof of Theorem 3.3.4, under Assumptions A -C arid limn-->oo n2/ 5 h = 

00, we see that 
E [~* _ Vy]2 
--=---"----'2;,- = 0 ( 1 ) 

[eln - e2n] 
(3.5.36) 

From Lemma 3.5.3(i) and (ii) we see that, under all the assumptions ~tated in Lemma 

3.5.3 

7"7 = 0(1) and r8 = 0(1). 

Therefore Theorem 3.3.5 is a direct consequence of equation (3.5.35 ), (3.5.36) and 

Lemma 3.5.3. This completes the proof. o 

Proof of Theorem 3.3.6 Recall that By = f K(u)f(y - hu)du - f(y). So under the 

assumptions (A) that f is uniformly bounded and f(y) -t 0, as Iyl -t 00, applying 
, 

D.C.T we see that f K(u)f(y - hU)du -t 0 as h -t 00. So By -t - f(y) as h -t 00. 

Recall that B; = f K(u)K~(y - hu)du - K~(y). Under the stated assumptions on 

KO, for each fixed n and .x, K~(y) = ;).. 2:~=1 KO (Y-/') is uniformly bounded arid 

K~(y) = 0(1), as Iyl -t 00, almost surely. So repeating the previous arguments we see 

that under stated assumptions on KO, B; -t -K~(y), almost surely, as h is increased. 

The third part follows immediately from the definition of B¢. So part (1) is proved. 

To prove part (ii), we note that 

Vy::; :h J K2(U)f(y - hu)du a:nd Vy* ::; :h J K2(u)K~(y - hu)du, almost surely. 

So under the stated conditions on f arid KO, Vy, Vy* = 0(1), as h -t 00. 



Chapter 4 

Estimating measures of accuracy of 

the multivariate product kernel 

density estimator 

4.1 Introduction 

In this chapter we address the problems of estimating some local and global measures 

of accuracy of a multivariate kernel density estimator. Let Xl, X 2 , .... , Xn be n ij.d 

Rd valued (d > 1) random variables wIth joint densIty f. A natural generahzatlOn of 

the ordinary kernel density estimator is the product kernel dens~ty est~mator (see for 

mstance Scott and Wand (1991), Jones and Wand (1993)). A product kernel denszty 

estzmator with bandwidths hJ == hnJ' J = 1,2, .. , d, and kernel K is defined as 

where Y = (Yl, Y2, .... , Yd) E Rd, hJ --+ 0, J = 1,2, ., d and n rr~=l hJ --+ 00 as n --+ 

00. The d bandwidths hJ' J = 1,2, .. , d, represent the amount of smoothing along d 

coor'dinate directions. This estimator was proposed by Epanechnikov (1969). 

Scott and Wand (1991), Wand and Jones (1993) provide evidence in favour of 

having the flexibility to smooth by dlfferent amounts independently in each dlrectlOn. 

64 
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In fact, the latter authors have demonstrated good reasons for using full covariance 

matrix parameterized bandwidth. However there are some implementation problems 

assocIated with these proposals. For instance, automatic choice of the full bandwidth 

matrix is computatlOnally quite expensive, see for instance Duong and Hazelton (2003). 

Moreover in a recent paper, Dutta (2010) has observed that a product kernel density 

estimate, based on spherical data, compares well with a density estimate using full 

bandwidth matrix, in terms of capturing both the location and orientation of the 

modes. So a computationally efficient alternative seems to implement the product 

kernel density estimate applied to spherical data X* = X 5-1/ 2 , where X is the data 

matrix and 5 is the the sample covariance matrix. The resulting density estimate is 

defined as K~*(ij) = 15-1/2IK~(Y 5-1/ 2), y E R2, 15-1/ 21 denotes the determinant of 

5-1/ 2 and K~ is the usual product kernel density estimate based on X* (see Dutta 

(2010)). 

Even the proposal of selectmg a number of smoothing parameters along different 

directions can be undeSIrable, especially when the bandwidths are chosen subjectively 

and the data dimension is more than two. A simpler option is to choose hI = h2 = 

.... = hd = h, which is to have equal amount of smoothing along all direction (Cacoullos 

(1966)). The resulting simple product kernel estimator is defined as follows 

Kn(ilJ ~ n~d t,g K (y, -h X'') . 

It has many applications. For instance, it is used in detecting important features such 

as peaks and valley of a multivariate density by Significance in Scale-Space method 

(Ghostliness, Marrow, Chauffeur (2000)). Another interesting application of the simple 

product kernel estimator is in mode estimation of a multIvariate density (Abrahan1, 

Bias and Cadre (2003)). 

The mean squared error My, at y, and mean integrated squared error M are popular 

measures of local (point-wise) and global (overall) accuracy of Kn(-). These measures 

reveal important insight into the effect of dimension on accuracy of Kn(-) (see for 

instance Scott and Wand (1991) and references therein). My and M are also used as 
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criterion for selecting an optimal h = (hI, h2' .'" hd). For instance, Scott and Wand 

(1991) introduced a local measure of accuracy which IS referred to· as the sample root 

coeffic~ent of vanatwn (denoted by Ry) and it is defined as follows 

Scott and Wand (1991) have stated that a small value of this criterion in high dimen

sions would suggest that widely separated peaks will be identIfiable even if estimates 

are biased downward with a large window width. 

In this chapter we propose smooth bootstrap estimators of bias, mean squared error, 

sample root coefficient of variation and MISE. We study the asymptotic properties of 

the proposed estimators and provide insight into their finite sample behaviour. 

4.2 Literature review 

The amount of research on bootstrap estimators of local and global measures of accu

racy of multivariate kernel density estimator appear to be quite less in comparison to 

the amount of work focused on bootstrap methodology for univariate density estima-
, 

tors. Sain, Baggers and Scott (1994) have proposed a multivariate extension of Taylor's 

(1989) bootstrap estimator. Apparently asymptotic properties of their bootstrap esti

mator (we call it T) does not appear to be known. No theoretical results on its finite 

sample properties seem to have been worked out. We investigate both, the asymptotic 

accuracy as well as finite sample properties the proposed estimators. T turns out to be 

a special case of our proposed estimator M* and so our study also lends some insight 

into properties of T, especially its finite sample behaviour. 

We state and prove all the theoretical results for the case when hI = h2 = ..... = 
hd = h and K is a second order kernel. This restriction simplifies the theoretical calcu

lations involved in our proofs to a great extent, without compromising the generality 

significantly. Our results can be easily extended to the case where kernel order exceeds 

2 and hI, .... , hd may not be equal, at the expense of some more complIcated theoretical 

calculations. 
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4.2.1 Notation and definitions 

To simplify the calculations we introduce some notation which are used in the sequel. 

Let 

d d d d 
II K(u,) = K(u), II KO(u,) = KO(u), II K 2(u,) = K2(U) and II[KO(u,W = [KO(u)j2. 
,=1 ,=1 t=l t=l 

Further let 

J z(x)dx = J ... J Z(X1, X2, .... , xd)dx1dx2 .. ·dxd, 

R.u = (h1.U1, h2.U2, ..... , hd.Ud), h = (hI, ... , hd) and u E Rd. 

Let DCT stands for Dominated Convergence Theorem. For any two positive sequences 

{an}, {bn} we write an = Oe(bn) if 0 < liminfn ...... oo ~: ~ limsupn ...... oo ~ < 00. 

We denote the bIas, variance and mean squared error of Kn(fj) by By, Vy and My 

respectively. They are defined as follows 

By = E [Kn(Yl] - f(Yj = / K(u)f(y - h.u)du- f(Y), 

Vy = : 2 Var [IT K (YJ -h
X1J

)] 
n ITJ=l hJ J=l 

= : J K2(U)f(Y - h.u)du - ~ [/ K(u)f(y _ h.U)dU] 2 

n ITJ=l hJ . 

and My = Vy + B~. 

Sample root coefficient of variation and mean integrated squared error (MISE) of the 

are denoted by Ry and M respectively. They are defined as follows 

Ry = [V~;/2, where Ey = E [Kn(Y)] = J K(u)f(y - h.u)du 

and M = J [Vy+B~] dy= V +B (say). 

Next we define the proposed smooth bootstrap estimators of these parameters. Let B~, 

V;, M~, R:y and M* be the proposed estimators of By, Vy, My, Ry and M respectively 
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They are defined as follows 

B"!. ,y 1 K(u)g(y - hu)du- g(y), 

; j .... j IT K 2(uJ)w(Y - hu)du- ~ [1 K(u)w(y _ hU)dU] 2 
n ITJ=1 hJ J=1 _ tL , 

M~ y 

M* 

and R*(Y) = 

Vi + [Bg] 2 
, 

j [V;~ + [Bg] 2] dy = V* + B*, 

[vg]I/2 h E* jK(-) (- h- -)d-E"!. ' were y = u 9 Y - .u u. 
y 

g, w are two product kernel densdy estzmators with some other kernel KO and band

widths A == An and /-L == /-Ln respectively. They are defined as follows 

9(0'" 9n(0 = n~' tn K" (y, -/") 
w(Y) ~ wn(Y) = ~ tIT KO (YJ - X.J) . 

n/-L .=IJ=1 /-L 

The bandwidths satisfy h, A, /-L ~ 0 and nhd, nAd, n/-Ld ~ 00. 

Sain, Baggers and Scott (1994) derived a multivariate version of Taylor's (1989) esti

mator of M. We call this estImator T. The formula for T can be written as 

T = (4 )d/2~ h h + WI {(1- ~ )0; - 20i + O~}(Wl)' 
n 'If 1 2··· d n 

where 0; is a n x n matrix having (iI, i2) th entry equal to <P(2+J)D (X'1 - X'2)' j = 0, 1, 2 

and WI = (1, .... ,1) 1 . If hI = h2 = ... = hd and K, KO are standard normal densities n n x n 

then M* = T. 

My and M have the following asymptotic expansions (see Rao (1983)) 

My = Ay + 0 (n~d + h4) , whe;e 

Ay = , [ , r :~1 {J Kf(U)dU} + (~~2 J K(u)u
2!; 1.(2)(y) 

and M = A + 0 (n~d + h4) , where 

A = 
K (u)du h4 2 (2) _ {j 2}' [ , r 

nhd + (2!)2 j j K(u)u !; I. (Y) dy. 
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The plug-in estimators of My and M are obtained by replacing unknown quantities in 

Ay and A, by corresponding data based estimators. We denote 

A ~ {f K:~JdU}\ (~;, J [J K(U)U'tj,('\Y)r dy 

A, ~~? {j K'(u)du r + (~;, [J K(u)u' t j,i2l(y) r 
i(2)(y) is some data based estimator of f~(2)(Y), i = 1,2, .. , d, which is the 2nd order 

partial derivative of the function f with respeCt to x~. 

For a function H : Rd -t R, let IIHII = SUPYERd H(Y). A function H is said to be 

umformly bounded if IIHII < 00. 

LetHi1, .. ,.JY) = [8X'18q8X,qH(x)L.=yandH~(q)(Y) = [kH(x)L.=y,wherex=' (XI,X2, ... ,Xd) 

and Y = (Yl, Y2, ... , Yd). For y E Rd, 1IY11 = J"£~=l Y;· 

[ B~ ] 2 [V~] 2 [M~] 2 
rl = E B; - 1 , r2 = E ~ - 1 , r3 = E M~ - 1 

R~ 
and r = 2-l. 

Ry 

We note that rl, r2, r3 and r depend on y and n. r4 depends on n. The rates of 

convergence of r., ~ = 1,2,3,4 and r to zero provide insight into how fast the accuracy 

of the proposed estimators improve. 

Let ¢O denote the density of N(O, 1) distribution. ¢m,S(-) be the density of multi-

van ate normal distribution with mean vector m = (mI, ... , md) and variance covariance 

matrix S which is a d x d positive definite matrix. 

Id denotes the d x d identity matrix. 

4.2.2 Chapter Summary 

There are 9 theorems and two simulation studies in this chapter. In the first four the

orems we obtain the rates at which rl, r3, r and r4 converge to zero, as n IS increased. 

In Theorem 4.4.5 we obtain some fixed sample properties of the proposed estimators. 

Theorem 4.4.9 implies that the estimator T, proposed by Sain, Baggerly and Scott 
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(1994), is not suitable for estimating M when h is large, where h is the smoothing pa

rameter of a simple product kernel density estimator. We have obtained exact formulae 

for M~, My and M* for Gaussian kernel, see Theorems 4.4.6, 4.4.7, 4.4.8 respectively. 

These results reduce the amount of computation involved in the bootstrap estimation. 

We note that asymptotic rates of convergence of the proposed estimators depend 

on two parameters, namely A and f.L. It appears that the choice of A depends upon the 

parameter we want to estimate. In particular for estimating M by M*, there can be 

two possible choices of A, namely A equal to nl/(~+2) and nl/(~+S). Using a simulation 

study we investigate how well M* estimates M for both these choices of A. In another 

simulation experiment we study how well M~ imitates My by plotting them against 

a wide range of values of h. An interesting observation is that, if My attains minima 

for multiple values of h then the same feature is exhibited by the bootstrap estimate 

M~. Final section is devoted to proofs of the theorems stated in this chapter. We have 

addressed the problems of estimating some local and global measures of accuracy of 

univariate and multivariate kernel density estimates in chapters 2, 3 and in the current 

chapter. 

An important application of M is that it serves a criterion for bandwidth selection 

for univariate and multivariate kernel density estimates. The problem of automatic 

bandwidth selection, by minimizmg M*, is addressed in next chapter. 

4.3 Assumptions 

We now collect some assumptions which will be used in the sequel. 

Assumption A (Assumption on f) (i) The density function f : Rd -7 (0,00) is uni

formly bounded and possesses all uniformly bounded and continuous partial derivatives 

up to order 4. 

(ii) The 2nd and 4th order partial derivatives are square integrable. 

Assumption B (Assumptions on K) K is assumed to be a non-negative, square in

tegrable kernel of order 2, i.e. J K(u)du = I, J K(u)udu = 0, J K(u)u2du < 00 and 
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J K2(u)du < 00. 

Assumption C (Assumptions on KO) (i) K°(.) is a non-negative second order kernel 

and f[KO(y)]4dy < 00. Further 

(a) J KO(u)luIJdu < 00, j = 1, .. ,4. 

(b) lu3 IKO(u) -t 0, as lui -t 00. 

(ii) K°(-) has 2 continuous derivatives on (-00,00) and the two derivatives KO(t)(-), i = 

1,2, satisfy the following assumptions 

(c) J [K°(1)(u)]
2 

du < 00, J [K°(1)(U)]2 udu = ° and J IKO(l)(U)uJldu < 00, J 

0,1, .. ,4. 

(d) u3 KO(I)(U) -t 0, as lui -t 00. 

(e) J IKO(2)(x)ldx < 00, f[KO(2)(y)j4dy < 00 and ° < J IKO(2)(X)xJldx < 00, J 

0,1, .. ,4. 

Remark 4.3.1. (i) An obvious chOlce of KO is the standard normal density. 

(ii) Assumptions A(~) - (i2i) on f are valid for a wide class of densities which include 

mixture of multivariate normal densities. 

(Iii) We note that the Assumptions B and C are similar to the Assumptions Band C 

in Chapters 2 and 3 respectively. The Assumption A can be looked at as multivariate 

extension of the Assumption A in Chapter 2 and 3. This is because the smoothness 

assumptions, in Chapter 2 and 3, on f and its derivatives are special case of Assumption 

A (i) and(ii), when d = 1 and kernel order is 2. 

4.4 Main results 

We now state our main results. The proofs are given at the end of the chapter. 

Theorem 4.4.1. Suppose the Assumptwns A - C, n),d+4 -t 00 and fnCY) i= 0, for 

some i = 1, 2, ... , d, hold. Then 

[ B~ ] 2 (1 ) 
rl = E B: -1 = 0 n),d+4 +),4 . 
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I 
Theorem 4.4.2. Suppose the Assumptions A - C, n>.d+4, np,d --t 00, fCy) > 0 and 

f,,(y) =f. 0, for some i = 1,2, .. , d, hold. Then 

Theorem 4.4.3. Let the Assumptions A - C hold and f(Y) > O. Then 

M 
Rg (1 2 1 2) r = - -1 = Op -- + >. + -- + p, , 
Ry VnAd ~ 

(ii) IJ h = O(A), nAd+4 = 0(1), n>.dp,4 = 0(1), >. = o(p,) and K, KO are standard normal 

densities then 

~ (') , _ (2y7r)d 
vnAuT --tL N 0, C , where C - j3(Y) . 

Theorem 4.4.4. Let the Assumptions A - C hold. Also let n>.d+4 --t 00, np,d --t 00 

and the 3rd order partwl derivatives oj J be integrable. Then 

4.4.1 Fixed Sample performance of M* and Mg 

What are the effects of different possible choices of h, p, and A on the bootstrap esti

. mator M* for fixed sample size n? The following proposition provides some answers. 

Theorem 4.4.5. Suppose 1 : Rd --t (0,00) is a unzJormly bounded denszty and 1(Y) --t 

0, as Ilyll --t 00. Let KO be a unzJormly bounded probabzlzty density Junctzon and 

KO(y) --t 0, as Iyl --t 00. Then Jar any fixed sample size n and A, p, =f. h, as h --t 00 

(z) M --t J j2(Y)dy and M* --t J g2(Y)dy almost surely. 

(ii) A, A --t 00, almost surely. 

(ziij My --t j2(Y) and Mil --t g2(Y), almost surely. 

(iv) Ay, Ay --t 00, almost surely. 

Remark 4.4.1. (i) Theorem 4.4.5(i) implies that for fixed n, M* and M level off and the 

former succeeds in imitating the behavior of the latter for larger values of h. On the 
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other hand, Theorem 4.4.5(ii) demonstrates that A and A explodes as h is increased. 

So A and A fail to estimate M closely for larger value of h. 

(ii) Theorem 4.4.5 (iii) and (iv) imply that the bootstrap estimator Mg successfully 

imitates My, but Ay and Ay fail to mimic My, for large values of h and fixed sample 

SIze. 

4.4.2 The special case of Gaussian kernel 

B~, ~~, Mg and }';J* do not have a closed form expressions in general and hence Monte

Carlo computation is required for its implementation. However we observe that if K 

is a Gaussian kernel and KO is chosen to be the standard normal density then we can 

obtain closed form expression for the proposed bootstrap estimators. 

Theorem 4.4.6. If K and KO are dens2tzes of N(O, 1) distnbutwn then 

B ff = 

and M~ y 

If the underlying distribution is assumed to be multivariate-normal distribution 

or mixtures of normal distributions, then for Gaussian kernei K we can also obtain 

(repeating similar arguments as in Theorem 4.4.6) closed form expressions for By, lIy

and My. 

Theorem 4.4.7. Let K be the dens2ty of N(O, 1) d2stnbution. 

(2) If f(x) = 2:~=1 wd)r:,,(x - mi), where 2:~1 w, = 1, then 

k 

By = L W'¢D+~. (y - m.) - f(fl), 
,=1 

v, ~ n(2v'i')~ [1:0' h, t w'¢E.+lD(il-: rii,) - ~ [t w.¢Ddil- mi) r 
and My = Vy + (By)2. 
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(ii) If f(x) = !co
oo 

rP 1 I (x)dv, then 
;;-Zd 

By = roo rPD+-3r 1d(Y)dv - f(Y), Jo v 

v, = n(2.,fi)~ rI1~1 h; 100 

¢;),[.+,v(y)dv - ~ [100 

¢v+;),[,(YJdvj' 

and My Vy + (By)2. 

Jones and Wand (1993) .obtained closed form expression for M for multivariate 

kernel density estimator ~ith Gaussian kernel, dispersion matrix H and assuming the 

underlying density to be mixture of multivariate normal densities (see their Theorem 

I, page 524). 

Now suppose that K and K O are Gaussian. Then we can obtain exact formulae of 

V*, B* and M* = V* + B* by repeating similar arguments as in the proof of Theorem1, 

Jones and Wand (1993). 

Theorem 4.4.8. If K, K O are Gaussian kernels, then 

M * 1 - {O* 2("'1* n* 1 n**}( - )' = ( )d/2h h h + WI 2 - HI + HO - -H2 WI n 47f 1 2 .. · d n 

where 0;* is an n x n matrix having (iI, i 2) th entry equal to rPf( _x. 2D+2J.L21 (0), 
... 1.1 1.2' d 

ni, j = 0, I, 2 is an n x n matrix having (iI, i2) th entry equal to rPx. -x. ·D+2>.2I (0), 
, 'I 1.2') d 

WI = (~, ... , ~hxn' (WI)' is the transpose of WI and jD = diag(jhi,jh~, .. ,jh~). 

R~mark 4.4.2. (i) When hI = h2 = .... = hd = h, T (Sain, Baggerly and Scott's (1994) 

estimator) is in fact a special case of our estimator M*, where A = f.i~ h. 

(ii) In general T can be looked at as a special case of a generalization of M* (we call 

it M**) which is described below. 

Let us define M** = V** + B**, \Yhere V**, B** are as defined below 

B** 1 [1 K(u)g(y - h.u)du- g(Y) r dy, 

V** = : j' IT K 2(uJ )w(y - h.u)du- ~ [1 K(iZ)w(y _ h.iZ)diZ] 2, 

n TI j =1 hJ j=1 n. 

where g(Y) = ~ L,~1 rP X"Dl (y), w(Y) = ~ L,~=l rP Xi,D2 (y), Dl = diag( Ai, ... , A~) and 

D2 = diag(J.Li, ... , J.L~). T is a special case of M**, when Dl = D2 = D = diag(hi, ... , h~). 
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Repeating the arguments in the proof of Theorem 4.4.8, we can easily derive an 

exact formula of M** which is as given below 

M ** = 1 - {"* 2n* n* 1 n**}( -)' 
(4 )d/zh h h + WI HZ - HI + HO - -HZ WI, 

n 7f 1 2··· d n 

where D;* is an n x n matrix having (/'1,22) th entry equal to ¢x- -x 2D+2D (0) and 
11 "2' 2 

OJ*' J = 0, I, 2, are n x n matrix having (iI, i 2) th entry equal to <Px- -x- D+2D (0). 
. 11 "2,J 1 

WI = (~, ... , ~hxn, (wi)' is the transpose of WI and jD = diag(jhi,jh~, .. ,jh~). 

Next we obtain a fixed sample property of T. 

Theorem 4.4.9. If h, ~ 00, 2 = 1,2, .. , d, then T ~ 0, almost surely. 

Remark 4.4.3. From Theorem 4.4.5 c(i), we know that for a simple product kernel 

density estimator M ~ J j2(y)dy, as h is increased, where h = hl = h2 = ... = hd. If 

hI = h2 = .... = hd = h, Theorem (4.4.9) implies that T ~ 0 as h ~ 00. So T fails to 

imitate M, when h is large. 

4.4.3 Choice of A and !1-

From Theorems 4.4.9 and 4.4.5 we see that the choices of J.L and A are important, es

pecially when anyone of the bandwidths hI, h2' ... , hd is large. Theorem 4.4.9 demon

strates the demerit of the choice A = h" for some i = 1,2, .. , d. The Theorems obtained 

so far, provide some insight into appropriate choice of A and J.L. Following are some 

important observations. 

(1) An appropriate choice"of A can depend on the parameter that we want to es

timate. For instance to estimate fly by Rg, a choice of A and J.L can be obtained by 

minimizing the rate of convergence (in probability) of ~ to one (see Theorem 4.4.3). 

So we can choose A and J.L to be constant multiples of nl/(~+4)' For estimating My and 
M: M' 

M ,one can choose A and J.L by minimizing the rates of convergence of M~ and AT to 
v 

one, obtained in Theorems 4.4.2 and 4.4.4 respectively. This leads us to choose A and 

J.L which are constant multiples of nl/(~+8) and nl/(~+4) respectively. So the choice of A 

can vary depending upon whether we estimate M or fly. 
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(2) For estimating M, another criterion for the choice of A is provided by Theorem 

4.4.5. We see that for fixed n and A # h, M* -t J g2(if)dy and M -t J j2(if)dy, as 

h -t 00. Recalling that gO depends on A, a criterion to choose A can be to ensure 

that J g2(Y)dy estimates J j2(Y)dy (say) as closely as possible. 

The problem of estImating J j2(Y)dy by J g2(Y)dy has been well studied in the 

hterature for the univariate case (see Hall and Marron (1987)). It is possible to extend 

the theoretical deductions of (Hall and Marron (1987)) to the multivariate case as well 

and consequently it is possible to show that 

E (J l(y)dy- J j2(Y)dY) 2 = 0 (n2~2d + A4
). 

So an appropriate choice of A, for estimating M, can be the minimizer of the right side 

of the above equation and such a choice of A is a constant multiple of nl/(~+2). 

4.5 Simulation 

In this section we provide insight into how well the proposed estimators Mg and M* 

perform when sample size is fixed. We observe that for M* there are more than one 

option for choosing A. We compare how the different choices of A can effect M*. 

From Chapter 3 we recall that for a univariate kernel density estimator, the mean 

squared error My and its bootstrap estimator M; can attain local minima for more 

than one value of h, especially when y is in the tail of the underlying density. A natural 

question is "does My and Mg exhibit a similar property?" We investigate this in our 

second simulation experiment. In Table 4.1 we provide the formulae of six bivariate 

mixed normal densities, namely correlated normal, bimod.al, kurtic, skewed, trimodal 

and quadrimodal density. These distributions are used in the sequel. 

For n = 50, 200, we have plotted M* with .A = nl/(~+2)' nl/(~+8)' T and M, against 

10glO h. Our choice of 10glO scale is motivated by its use by Marron and Wand (1992). To 

distinguish the four curves we number M* (with A·= nlf(~+2»)' M, M* (with A = nll(~+8)) 

and T as 1, 2, 3 and 4 respectively. Each curve has been plotted for correlated normal, 

bimodal, kurtic, skewed and quadrimodal densities. The main obsrvations are as follows 



Table 4.1: Parameters of 6 bivariate Normal Mixture distributions 

correlated normal 
bimodal 
kurtic 

trimodal 

quadrimodal 

skewed 

N(O, 0,1,1, -0.5) 

1N(0,0, 1,4,~) + ~N(l,O, (1»)2, (~)2, -0.5) 

~N(-~,0,(~)2, (~)2,0 7) + ~N(~,O, (~)2, (~)2,0 7) 
+ ~N(O,O, (~)2, (~)2, -0.7) 

iN( -1,1, (1)2, (1)2,0.4) + ~N(-l, -1, (~)2, (1)Z, -0.6) 
+IN(l, -1, (1)2, (1)2, -0.7) + ~N(l, 1, (~)2, (~?, -0.5) 

~N( -~, 0, (~)2, (~)2, 0.7) + ~N(~, 0, (~)2, (~)2, 0.7) 

+ ~N(O, 0, (~)2, (~)2, -0.7) 
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1) Conszstency. Comparing Figures 4.1(a) with 4.1(b), .... ,4.5(a) with 4.5(b), we see that 

the curves 1, 2 and 3 are closer for n = 200 than for n = 50. So M* (with A = nl/(~+2) 

and nll(~+8)) are consistent estimators of M. However T, curve 4, does not show much 

improvement in imitating M even as the sample size is increased. This observation and 

Theorem 4.4.9 demonstrate that A = h = hi = .... = hd is not an appropriate choice 

for estimating M. 

It is interesting to note that A = n 1/ld+2) does not satisfy the condition nAd
+4 ~ 00, 

which is one of the conditions in Theorem 4.4.4. In view of the consistent behaviour 

of M* (with A = nl/(~+2)) it appears that in general M* can be consistent even if the 

condition nAd+4 ~ 00 is relaxed. 

2) Small sample behavwur. For n = 50, the curves 1, 2 and 3 are qUIte close for 

correlated normal, bimodal and quadrimodal densities, see Figures 4.1(a), 4.2(a) and 

4.5{a). So it appears that M* (with A = n 1;/d+2) and nl/(~+8») can closely estimate M 

even for small samples, especially if the underlying density is unimodal, symmetric or 

posssesses multiple peaks which are not very close to one another. However for skewed 

density and n = 50, the curve 2 is not close to either 1 or 3, especially when h is large 

(see Figure 4.4(a)). So the small sample performance of M* can be sensitive to the 

underlying f, especially if the underlying density possesses features such as skewness 

or multiple peaks which are close. 

In Figures 4.1(a) - 4.5(b) we plot M* (with>.. = n 1/ld+2»' M, M* (with>" = n 1/ld +8» and T 

numbered as 1,2,3 and 4 respectively, against Log(h) == laglO h for correlatednormal, bimodal, kurtic, 
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Fig 4 5 (a), (b)' underlymg density "quadrimodal", n=50, 200; d=2 

In the next experiment we plot the curves Ag, M; and My against a wide range of 

values of lOgIO(h), for n = 50 and n = 500. The three curves are plotted for a number 

of different values of yand for two bivariate densities, namely correlated normal and 

bimodal density. We have also plotted the three curves for some of the other bivariate 

densities, mentioned in Table 4.1. But these plots are not shown as the main features 

appear to be similar. The main observations are as follows 

1) Effect of y. From Figures 4.6(a) to 4.13(b), we see that My is sensitive to y. If 

Y is the mode or a point close to the mode of the underlying density then My attains 

one global minima. But if y is a point away from the mode, My can attain minima for 

more than one value of h. For mstance in the Figures 4.11(b) to 4.13(b), we note that 

My attains two minima, one for lOglO(h) < 0 and the other for loglO(h) > O.JWe also 

note that whenever My attains more than one minima, the global minima a~ears to 

be attained for lOglO(h) > 0, see Figures 4.11(a) to 4.13(b). 

Ay does not appear to be much affected by y. It always attains one global mmimum 

for a value of h satisfying lOglO(h) ::; O. From the Figures 4.6(a) to 4.9(b) we see that 

Ay can be poor estimate of My for lOgIO(h) > O. These observations and Theorem 4.4.5 

(iiI), (IV) imply that Ay may not be the appropriate estimate of My. 

M; appears to be affected by y. For correlated normal density and y = (2,2), both 

Mli and My attains multiple minima, see Figures 4.13(a) and 4.13(b). From Figures 

4. 7( a) to 4.8(b) and 4.10 (a), (b) we see that, if y is the mode of the underlying density 

then both M; and My possesses one global minima. In general we observe that as the 

distance of y from the modes of the underlying density increases, M; appears to be 

closer to My than Ay. 

2) Small sample behavwur. From Figures 4.6(a) to 4.13(a) we see that for n = 50, 

M; imitates Mil more closely than Ay, for almost all values of y and lOglO(h) 2 O. In 

general the Figures 4.6(a) to 4.13(a) reveal that for small samples Mli can estimate 

My quite well, especially when y is not equal or close to the peaks of the underlying 

density and lOgIO(h) 2 O. However from Figures 4.11(a) and 4.11(b) we note that for 
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correlated normal density and iJ = (1, 1), both Ay and Mi fail to estimate M,ii closely. 

ThIs only indicates that for any fixed sample size, the problem of accurate estimation 

of My at every point iJ appears to be very difficult. 

In Figures 4.6(a) - 4.13(b) we plot A~, M~ and My against Log(h) = logIO h for bimodal and 

correlated normal distributions and for sample size n = 50, 500. Both K and KO are standard 
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4.6 Proofs 

First we state and prove a number of Lemmas which are used m the proofs of Theorems. 
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4.6.1 Some important Lemmata 

Lemma 4.6.1. Under Assumptwn C, the two derwatwes of KO possesses the followmg 

. properhes 

(z) J KO(l) (u)du = 0, J KO(l) (u)udu = -1 and J KO(1)(U)u2du = 0. 

(n) J KO(2) (x)xJdx = 0, where ° ~ j ~ 3,j f. 2 and fr J KO(2) (x)x2dx = 1. 

Proof of Lemma 4.6.1 (i) J KO(l) (u)du = 0 is a direct consequence of Assumption 

C (b). To prove that J K°(l) (u)udu = -1, let a(u) = uKO(u). Then 

a(l)(u) = UKO(l)(U) + KO(u) :::} I: a(l)(u)du = I: UKO(ll(u)du + 1 

:::} I: UKO(ll(u)du = [a(u)e'oo - 1. 

From Assumption C (b) we note that a(u) = uKO(u) = 0(1), lui ---+ 00. 

So J UKO(l) (u)du = -1. This proves the 2nd part of Lemma 4.6.1 (i). 

To prove the third result we take a(u) = u2 KO(u) and repeat the above arguments. 

The only difference is that, in this case we use the property J uKO(u)du = 0 (Assump

tion C (i) on KO). 

Part (ii) can be proved easily by similar arguments under Assumption C (d). 0 

Lemma 4.6.2. Under Assumptions A and C, we get 

(z) SUPYERd E [g'J(Y) - f'J(y)J
2 

= 0 (nJ+4 + ,A4), Vz, j = 1,2, ... , d. 

(ii) SUPYERd E [g'J(Y) - fZJ(Y)J4 = 0 (n2,\~+2d + ,A8) , Vi, j = 1,2, ... , d. 

(iiz) J E [gZJ(Y) - fZJ(Y)]2 dy = 0 (n,\J+4 + ,A4) , V~,j = 1,2, ... , d. 

(tv) further assummg that all the 3rd order partwl derwatwes of fare mtegrable, 

E (J (w(Y) - f(Y))2] = ~ (J(KO(U))2du] d +i-'4[J KO(Z)Z2dZr2~~L:~=1 f .. (Y))2dY +0 (~ + J.L4) . 

Proof of Lemma 4.6.2 To prove part (i) we first consider tile case where ~ f. j = 
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1,2, ... , d. We recall that 

9(0 ~ n~d t, ,!l KO (yo, -/'''') 

::::} g'J(if) = n>'~+2 t TI KO (Yl ~Xlll) KO(1) (y, ->.Xlt ,) K O(1) (YJ ->.XltJ ) . 
It ==1 1==1, If',J 

Taking expectation on both sides of the above equation we get 

d 

E[g'J(if)] = ;21 IT KO(Ul)KO(1) (u,)KO(l) (uJ)f(y - >.il)dil. 
u 1==1, If',J 

Expandmg f(Y - >'il) by Taylor expanSlOn and usmg AssumptlOn C, and Lemma 4.6.1 

we get 

Under the Assumption A, all the 4th order partial derivatives of fare. uniformly 

bounded and under Assumption C, J KO(u) luJ Idu, J IK°(1)(u)uJldu < 00, ] = 0,1, .. ,4 

hold and we get the following equations 

(46.1) 

where C 1S a constant independent of n, h, >.. It is easy to verify that 

Var [g'J (if)] = 

(4.6.2) 

Now 

(4.6.3) 

From (4.6.1), (4.6.2), (4.6.3) we see that, 

E [g'J(Y) - f'J(if)]2 :s; n~~4 + C2>.4, 'rig and z =1= ], 
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where C1, C2 are constants independent of n, h, A, J-L or f. The first case in Lemma 

4.6.2(i) follows immediately from the above equation. 

The next case i = J = 1,2, ... , d can be treated similarly. We see that 

Taking expectation, using Taylor expansion and Lemma 4.6.1, we get 

The above equation implies that, under the stated assumptions on i, KO and its 

derivatives, we get 

where C is positive constant. It is easy to verify that 

The above two equations imply that 

So part (i) is proved completely. o 
Now we prove part (ii). First we consider the case where i =1= j = 1,2, ... , d. Using 

(a + b)4 ::; 8(a4 + b4) we see that 

E [9'J (Y) - i'J (Y) J4 < 8E [g'J (y) - E [g'J (Y)]]4 

+ 8 [E [g'J(Y)]- i1J(Y)]4 . 

Let Ynl = n>'~+d [al - E(al)]' l = 1,2, ... , n, 

(4.6.4) 

whereal = I1~1=1, 11#1,J KO (YJ-~'(lt!) KO(l) (y,-;'(tt) KO(l) (YJ-;'(IJ). Then Yn1 , Y,t2, ..... , Y,m 
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are i.i.d random variables, satisfying E(Ynl) = 0 and therefore we get the followmg 

equatIOn 

E [9., (0 - E [g., (0 Jl' ~ E (~Yn.) , ~ nE(Y;,) + 6n( n - 1) [E(Y;,) l' . (4.6.5) 

Let Cl = f[KO(I)(v)j4dv, C2 = f[KO(v)j4dv, C3 = J IKO(I)(v)ldv, 

C4 = J [KO(I)(V)]2 dv and C5 = f[KO(v)J2dv. Then 

E(Y;I) < n4),,~+4d {E[ail + [E(adl
4
} 

< n4),,~+4d [11f11)"dCic~-2 + Ilfl14),,4dcj] = Oe (n4),,~+3d + 0(1)) 

2 1 ( 2) 1 2 d 2 and E(Yn1 ) < n2),,4+2d E a1 S; n2),,4+dllfllc4C5- . 

Substituting the above inequalities in equation (4.6.5) and using n)"d -+ 00 we get 

E [92J(:0 - E [92J(:0]]4 S; n2),,~+2d [llfllic~c~-2]2 + 0 (n2:S+2d ) . 

Further [E [92J(Y)J - f2J(Y)J4 S; [E [92J(Y) - f2J(Y)n
2 

, Vy and 1, =1= J. 

Now using Lemma 4.6.2 (i), we get 

[E [g., (01 - 1.,(01' ~ 0 ( {nA~+4 +'\'} ') , ';Iif and , fo J. 

( 4.6.6) 

(4.6.7) 

Substituting the equations (4.6.6) and (4.6.7) in the right side of equation (4.6.4) we 

get 

E [g2J(Y) - f2J(0J
4 = 0 (),,8 + n2),,~+2d) ,Vy and z =1= J. 

The first case in Lemma 4.6.2(Ii) follows immediately from the above equatIon. The 

case where z = J = 1,2, .. , d, can be proved similarly. The only difference is that m this 

case a! = nd KO (YJ- X
l. 1 ) KO(2) (Y.-X l. ) l = 1 2 d 

21 =1, 21;e2 A A" , .. , . o 

To prove (iii) we recall, from the proof of 4.6.2 (i), that for 1, =1= J = 1,2, ... , d, 
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Applying Cauchy-Schwartz inequality it is easy to verify that 

b;) (Y) 

d).4 d 1 d 
< '~3!)2 [C L ii II IKO(UI)KO(l)(U.)KO(l)(U))U,1U,2U,3U'4I 

'1,'2"3,'4=1 1=1, If.,) 

11 (1 - t)3 f'~"2"3"4 (y - t).u)dtdu] 

where C = ~ L~1"2"3"4=1 Iii rr~=l, If.,) IKO(ut)KO(1)(U.)K°(1)(u))u.1U.2Ui3 U'4Idu. Conse

quently, under the Assumption A that all the 4th order partial derivatives are square 

integrable, 

Under the assumptions that KO and KO(l) are square integrable, we see that 

J Var [g.)(Y)] dy 

= n},;d+4 J VaT [~!!'J KO (y, -/Jl) KO(l) (Y. -/") KO(l) (y, -/1' ) 1 dfi 

< n},~+4 J J [,,,[L KO(U,)KO(l)(u,)K"(I)(U,)r fry - u}')dudy 

U[KO(u)j2dut-
2 [J [K°(1)(u)]

2 
duf C' 

= n).d+4 = n).d+4 (say). (4.6.9) 

Now 

I E [g.)(y) - f.) (Y)]2 dy = I Var [g.)(Y)] dv + I [E[g.)(Y)]- f.) (Y)]2 dy. 

So from (4.6.8) and (4.6.9) we see that 

J E [g.](Y) - f.,) (Y)]2 dy:S n~l+4 + C2).\ 

where C1 , C2 are positive constants. So the first case in part (iii) is proved. 

(4.6.10) 

To prove the other case, that is i=j=l, .... ,d, we repeat similar arguments whIch are as 

follows. We recall that 

E[g .. (y)] = f .. (y) + b .. (Y), where b .. (y) is equal to 
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Therefore under the Assumptions A and C, on I and KO, it is easy to verify that 

J [E[g~~(Y')] - 1~~(Y)]2 dy 

< (3~;24[C .t J TI IKO(UI)KO(2)(U~)U'1U'2U~3U'4IJ 1'~"2'~3'~4(Y)dY]. 
'1,'2,'3,~4=1 l=l, li",) 

Recalling the definition of g .. (Y) we see that 

J Var 19 .. (jJ) I dy ~ n,,!'H J Var [it. KO (y, -/" ) KO(2) (y. -/" ) 1 diJ 

(J [KO(U)]2 dU) d-1 J [KO(2)(u)] 2 du 
< 

n>..dH 

The above equations imply that 

This completes proof of part (iii). Finally we prove part (iv). 

We note that the kernel KO is a second order kernel and therefore 

E r ! (w(Y) - 1(Y))2 dyl = n~d J [KO(U)]2du + 0 (~) 
d 1 

+ J.L4 J {t1~=1 J KO(Z)Z.1 Z.21 (1 - t)I.1, ~2(Y - tJ.LZ)dtdz}2dy. 

(4.6.11) 

Under the Assumptions A, Con 1'1, '2' i1, i2 = 1,2, ... , d and KO 
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where 

any 

h·) [", t.,~ J KO (Z) Z" z" z" l' (! - t) t l' {t I"~ ," ," (17 - st~Z) z, } dSdtd~ 
bn ; ~ Lt,~J KO(Z)z" z" l' (1 - t) {to" ,,(17 - t~Z) + / .. , ,,(17)) dtd;] . 

. Therefore under the Assumption A, that Ilf'1, '211 < 00, iI, '/,2 = 1,2, .. , d and all the 3rd 

order partial derivatives of f are integrable, it is easy to verify that J any.bnydiJ = O(p,). 

Therefore 

(4.6.12) 

Lemma 4.6.2(iv) follows from the equations (4.6.11) and (4.6.12). So Lemma 4.6.2 is 

proved completely. 

Lemma 4.6.3. Under Assumptwns A - C we get 

Proof of Lemma 4.6.3 Recalling the formulae of Bi; and By, from the proof of 

Theorem 4.4.1 and the assumptlOns on K, we see that 

1 (B';) , - (B;)'I ~ h'l tt J K(a)u,u, l' (1 ~ t)9" (17 - thU)dtda} 

2 

-tt J K(U)u,uj l' (1- t)/" (17 - tha)dtda} 'I 
::; h4 Cln. C2n, where 

d 1 

Cln = L J K(iL) IU'UJ I 1 (1 - t) Ig'J(Y - thiL) + !'J(Y - thiL) I dtdiL 
',J=1 0 

d 1 

C2n = L J K(iL)IU'UJll (1 - t) Ig'J(Y - thiL) - f'J(iJ- thiL) I dtdiL 
',J=1 0 
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It is easy to see that 

0:0 ClnC'n :0 cln + 2 G ,tJ K(iiJlu,U,ldUJlf"II) c'n 

Therefore 

(4.6.13) 

where C' = 2::'J=l J K(u)lu,.uJ Idullf'J'" Further using Cauchy-Schwartz inequality 

for ~n and cin and taking expectation we get 

From Lemma 4.6.2 (i) and (ii), we see that 

sup E [g'J(Y) - ftJ(Y)]21 = 0 ([ \~+4 + A4] I) , l = 1,2. 
yERd n/\ 

Therefore from equatlOn (4.6.13), we see that 

~8E [(Bg)2 - (By)2f = 0 (nA~+4 + A4) . 

Hence Lemma 4.6.3 is proved completely. o 

Lemma 4.6.4. Let the Assumptwns A-Cand f(Y) > 0 hold. Further 2fthe cond2twns 

h = O(A), nAd+4 = 0(1), nAdp,4 = 0(1), A = o(p,) hold and K 2S umformly bounded, 

, then 

VnAd(Eg - E [Eg]) -tL N(O, C1), where C1 = 1 2 . 

J [JCl(v)] dvf(Y) 

Proof of Lemma 4.6.4 we recall the definition of Ei; and get the following 

equation 

_1_ tjK(U)KO ((Y - hu- Xt)) du 
VnAd 

t==l A 
1 n 

= Vn ~Ym' where 

'\~/' J K(ii)KO ( (Ii - h~ - X,) ) dii 
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We note that for fixed n, Ym , i = 1,2, .. , n, are i.i.d non-negative random variables and 

Therefore under the stated conditions on K, KO, ).., h, f and Its partial denvatives , 

we get the following equations 

= 0(1), E(Y;I) = J [KO(v)] 
2 

dvf(Y) + 0(1) 

1 
< )..d/2 C, 

where C is positive constant. It is easy to see that 

( 4.6.14) 

Vn)..d(Eg - E [Eg]) = In t Zm, where Zm = Ym - E(Ym), 2 = 1,2, .. , n. 

We note that for each value of n, Zm, 2 = 1,2",., n, are i.i.d mean zero random 

variables. Recalling the Lyapounov's condition for C.L.T of row-wise i.i.d triangular 

array (see Billingsly) we get 

1· 1 EIZnI1 3 0 Imsup- = 
n->oo yin [JV ar( Znl) J3 

1 n 

=} L Zm ~L N(O, 1) 
yfnVar(Znd t=l 

Now Var(Znl) = Var(Ynl ) and EIZnI13 ~ 4[E(Y;J + [E(Ynl )j3J. Therefore using the 

above equations (4.6.14), it is easy to verify that 

EIZnI13 ,C 

[JVar(Znl)J3 ~ )..d/2 J [KO(v)] 2 dvf(Y) + 0()..d/2)· 

Therefore under the assumptions n)..d ~ 00 and fCy) > 0, we see that In h/~~~(~:d)3 = 

0(1). Hence 

1 . n 

J LZm~LN(O,l) 
nVar(Znd t=1 

=} In)..dVar(Znd(E;' - Ey) ~L N(O, 1). 

But Var(Znd = Var(Ynd = J [KO(v)] 2 dv!(y) + 0(1). Therefore from the above 

equation we get 



4.6.2 Proofs of Theorems 

Proof of theorem 4.4.1 Recall that 

By j K(u) [1(y - hU) - f(Y)] dii 

j K(u) [g(y - hu) - g(Y)] dii 
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where y = (Yl, .. , Yd) and ii = (UI' .. , Ud). Under Assumptions A to C, expanding 

f(y - hU) - f(Y) and g(17 - hii) - g(Y) by Taylor expansion, for functions of several 

variables, we get 
, 

d I 

By = h2 L jK(u)utu] r (1- t)ft](Y - thu)dtdii 
t,]=l Jo 

(4.6.15) 

d I 

Bg = h2 L j K(u)utu] r (1 - t)gt](Y - thu)dtdu. 
t,]=1 Jo 

(4.6.16) 

EquatlOn (4.6.16) holds almost surely. Under AssumptlOns A and B, applymg DCT m 

the right side of (4.6.15), It is easy to show that 

(2:)' l.t a"t.,(f!)] , + 0(1) 

v
2 

(2~)' [t, a,,/,,(f!)] + 0(1), (4.6.17) 

as at,] = [J K(u)du]d-2 [J K(u)udu]
2 = 0, ~ i J. From equations (4.6.15) and (4.6.16) 

it is easy to see that 

2 d2h4 
[Bg - By] ::; -2-en (almost surely), where en equals 

.t a:" f. [K( u)lu,u, I [(1 -t) [g.,(y- thu) - /" (y- thUll' dt 1 du, 

where a~,] = J K( u)lut.u] Idu. Therefore 

(4.6 18) 
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Consequently applying Lemma 4.6.2 (i) in the right side of equatlOn (4.6.18) we get 

the following equation 

(4.6.19) 

Recall that 

(4.6.20) 

Therefore under the assumption that f"Cy) =1= 0 for some i = 1,2, ... , d, Theorem 4.4.1 

IS a dIrect consequence of the equations (4.6.17), (4.6.19) and (4.6.20). 0 

Proof of Theorem 4.4.2 Recalling the definitions of My, M~ and using (a + b)2 ::; 

2a2 + 2b2 we find that 

(4.6.21) 

Recalling the definitions of Vy and V; we get the following equation 

v; - Vy = n~d l K2 (u)[w(y- hu) - f(y- hu)]du 

-~ [ (1 K(il)w(y - hil)dU) , - (1 K(u)f(y - hU)dU) '] 

Ll - L2 (say). 

Hence 

E[V; - Vy]2 ::; 2E(Li) + 2E(L~). (4.6.22) 

Now 

It is easy to verify that, E [f(iI) - w(iI)]2 < ~~~ 1 [KO(u)]
2 

du 

[ 2:~'J=1 [JKO(U)UtUJdU]21IftJII/-l2]2 
+ 2! ' 

So 

sup E [J(iI) - w(Y)f = 0 (~ + /-l4) . 
YERd n/-l 

( 4.6.23) 
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Therefore 

(4.6.24) 

Now using a2 
- b2 = (a - b)(a + b), properties of K and Ca~chy-Schwartz inequality 

n2 EL~ ~ E(en.dn), where 

en = J K(u) [J(y - hu) + w(y - hu)f du 

and dn = J K(u) [J(y - hu) - w(y - hu)J2 duo 

Since If(y - hu) + w(y - hu)1 ~ If(y - hu) - w(y - hu)1 + 211fll, for all y, therefore it 

is easy to see that endn ~ 2d; + 811fWdn and hence 

( 4.6.25) 

Further it is easy verify that 

o ~ E(d~) ~ CJd sup E[w(Y) - f(Y)J2J J = 1,2. 
yERd 

Recalling equation (4.6.23) and by some straight forward algebra, it is easy to verify 

that 

Consequently E(d;) = 0 ([~ + {L4f) and hence recalling equations (4.6.23) and 

(4.6.25) we get 

E(L~) = 0 (~2 [n~d + {L4]) = 0 (n2~2d [n~d + {L4]) . (4.6.26) 

From equations (4.6.22), (4.6.24) and (4.6.26) we get 

E[V; - Vy}2 = 0 (n2~2d [n~d + {L4]) . (4.6.27) 

From equations (4.6.21), (4.6.27) and Lemma 4.6.3 it is easy to see that 

E [Mg - My] 
2 

= 0 (h8 [nA~+4 + A4] + n2~2d [n~d + {L4]) . (4.6.28) 

Using Assumptions A on f and B on K it IS easy to prove that 

MJ ~ [~;;1 {f K'(U)dU} \ (~!;, [J K(u)u' t,f .. (Y) r + 0 (n~d + h') r 
(4.6.29) 
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Recall that 

(4.6.30) 

If lim infn ...... oo nh4+d > 0 then under the assumption that Ifuy)1 > 0, for some 2, dividing 

numerator and denominator of 1'3 by h8 we get, from equations (4.6.28), (4.6.29) and 

(4.6.30), that 

If lim sUPn_oo nh4+d < 00 then under the assumption f(Y) > 0, dividing numerator 

and denominator of 1'3 by (n';dF ,:e get, from equations (4.6.28), (4.6.29) and (4.6.30), 

that 

1'3 = 0 ([nA~+4 + A4] + [n~d + ~4]). 
So Theorem 4.4.2 is proved completely. o 

Proof of Theorem 4.4.3 Recalling the definition of l' we see that 

EiiVV! 
T = Y -1 

E~JVi 

E- (~~ ) E-= ~ -.!L-1 +~-1 
Ey Vy Ey 

(4.6.31) 

Recalling the definition of Vii and assuming f(Y) > 0 it is easy to verify that, 

li~~fnhdVii ~ [J K 2 (U)dUf f(Y) > O. 

Recallmg equation (4.6.27) and using the above inequality it is easy to verify that 

[ V~ ] 2 

E ~-1 

I V~ I ~ ~-1 

Therefore 

( 4.6.32) 
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Recallmg the definitions of Ey, Eli and that K is probability density function it is easy 

to verify that 

E [Eli - Eyr < J K(il)E [g(y - hil) - f(il- hil)]2 dil 

< sup E [g(Y) - f(Y)]2 . 
y 

Under the assumption that the 2nd order partial derivatives of f are uniformly bounded 

(Assumption A) it is easy to verify that 

where 0 1 , O2 are positive constants, independent of n, h, A, J.L. 

Therefore from the previous two equations we get the following equation 

E [Eli - Ey]2 = 0 (~d + 02A4) 

'* IE'; - E,I = Op ( ::;d + C,>.4) . (4.6.33) 

Recalling the definition of Ey and the stated assumptions on f it is easy to verify that 

lim Ey = f(Y). 
n-+oo 

Therefore Eli = Eg - Ey + Ey = f(Y) + op(l) and hence under the assumption that 

f(Y) > 0 

Ey _ (01 4) 
Eli - 1 - Op nV + C2 A . (4.6.34) 

From equations (4.6.31), (4.6.32) and (4.6.34) we see that 

r = Op ( ::;d + C,>'4 + J n~d + I'} 
So part (i) is proved. 

To prove part (ii) we recall Lemma 4.6.4 and get the following equation 

VnV(Ey*--E(Ey*-))-7 L N(O,Ol), where 0 1 = 12 . . . J [KO(iJ)] diJ!(y) 
(4.6.35) 

Recalling the definition of Eli it is easy to verify that 

IE(Eli) - Ey/ ~ J K(il)dil sup IE(g(Y)) - f(Y)I· 
yERd 
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Further recalling that KO is a second order kernel we see that 

E(g(if)) = f(if) - ~2 ~ J KO(U)U'1 U'21
1 

(1 - t)f'1, '2(Y - tAu)dtdu. 
'1,'2-1 

Therefore under the Assumption A that all the second order partial derivatives are 

uniformly bounded we see that 

Therefore 

VnAd IE (Eg) - Eli I = 0 ( VnAd+4) . ( 4.6.36) 

Therefore if nAd 
---t 00, nA4+d = 0(1) and f(if) > 0, then from equations (4.6.35) and 

(4.6.36) we see that 

( 4.6.37) 

The above equation implies that, Eg - Ey = op(l). Under the assumptions that f is 

continuous and uniformly bounded and recalling the definition of Ey it is easy to show 

that E.g ---t f (if). Therefore 

Eg - f(if) = op(l). 

Hence if f(if) > 0, under the stated conditions on A and f, we get (from the above 

equation and (4.6.37)) the following equation 

~ (EY) (C1 
) v nA~ Eg - 1 ---t L N 0, j2(if) . ( 4.6.38) 

Recalling equation (4.6.32), under the assumptions that limn->oo nAdp,4 = 0, A = o(p,) 

and lim sUPn->oo ~ = 0, we see that 

n->oo 

[Vi 
y~ -1 =0. (4.6.39) lim sup V nAd 

Therefore under the stated assumptions on A, p" K and KO, recalling equations 

(4.6.31), (4.6.38) and (4.6.39), we see that 

VnAdr ---t L N(O, f~0)' 
where C1 = [0 J2 . This completes the proof of part (ii) and hence Theorem 

J K (v) dvf(Y) 
4.4.3 is proved completely. 0 
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Proof of Theorem 4.4.4 Recall that 

M 1 [Vy+ B~] dy= V + B (say) 

and M* 1 [v; + (Bg)2] dy = V* + B* (say) 

Therefore E IM* - MI < E IV* - VI + E IB* - BI· (4.6.40) 

V* - V = J[Vi - Vy]dY. Integrating the expressions of Vy, Vi we see that 

1 Vydy = n~d 1 K2(U)du - ~ 1 (1 K(u)f(y - hU)dU) 2 dy 

/ V;dy n~d / K2(u)du - ~ / (/ K(u)w(y - hU)dU) 2 dy 

=* EIV* - VI = ~E 1 { (1. K (il)w(if - hU) dil)' - (J. K ( il) f (if - hil)dil) }if . 
n 

Therefore 

EIV* - VI < ~ E (/ laybyldY) ~ ~ { E(/ a~Y) + 2E(/ laycyl dY) } 

:5 ~ { E(1 a}Jif) + 2E 1 alfiif 1 C;-dif} 

:5 ~ { E(1 alfiii) + 2 E (J alfiif) 1 C;-dif} (4.6.41 ) 

where ay = 1 K(u) [w(Y - hu) - iUj - hu)] du 

by = 1 K(u) [w(y - hu) + f(Y - hu)] du 

and cy = / K(u)f(y - hu)du. 

We note that E (J a}ly) ~ E (J (w(Y) - f(Y))2 dy] . 

From Lemma 4.6.2(iv) we see that, E (J a}ly) = 0 (~ + C2p,4), where G1 , G2 are 

positive constants and substituting this in the right side of (4.6.41) we get 

E IV* - VI = 0 (~. / ~d + p,4) . (4.6.42) 
n V np, 

Since B* - B = J [(Bg)2 - (By)2] dy, therefore integrating the expressions for Bg and 



By (see equations (4.6.15) and (4.6.16)) and taking expectation we get 

E IB* - BI < h4 J E (/tyhy) dy 
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< h4 J [E (Jiy) + 2E (hyhy)] dy (4.6.43) 

d 1 

where fly = L! K(ii)IUt1Ut211 (1- t) ift1,t2(Y - thii) + 9t1,t2(Y - thii) 1 dtdii 
'1,t2=1 0 

d 1 

h y L !K(ii)IUt1Ut211 (1-t)lft1,t2(y-thii)-9t1,t2(y-thii)ldtdii 
t1,t2=1 0 

d 1 

and h y = L! K( ii) IUt1 Ut211 (1 - t) Ift1,t2 (Y - thii) 1 dtdii (4.6.44) 
t1,t2=1 0 

Using Cauchy- Schewartz inequality it is easy to verify that 

Using Lemma 4.6.2(lii) in the right side of the above mequality we get 

(4.6.45) 

Further we note that 

[J E (hyf3y) dy]2 ~ E [J (hyhy) dy]2 ~ J E(fiy)hydy J hydy ~ C J E(fiy)dy 

where 

C = ~ [I:~1,t2=1 J K( ii) IUt1 ut2Idiillft1,t211] [I:~1,t2=1 J K( ii) IUt1 ut2 1dii J Ift1,t2 (y)ldy] . 
Therefore it is easy to see that 

J E (j,;;/s;;) diJ ~ 0 ( J n).~+4 +).4) . (4.6.46) 

From equations (4.6.43), (4.6.45), (4.6.46) we see that 

EIB" - BI ~ 0 (h4J n).~+4 + ).4) . (4.6.47) 

From the equations (4.6.40), (4.6.42) and (4.6.47) we see that 

EIM* - MI = 0 (~J 1 + J.L4 + h4 1_1_ + ,>.4) . 
n nJ.Ld V n)..d+4 

(46.48) 
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Under Assumptions A, B on f and K and for s = 2 it is easy to show that 

Di 4 (1 4) M = nhd + D2h + 0 nhd + h ,Di , D2 > O. 

Therefore from equation (4.6.48) and the above equation we get 

o (! . / 1 + 1/4 + h4 / 1 + ),4) 
n V;;:;p!I"" V n,Xd+4 

1'4 = ~ + D2h4 + 0 (~ + h4) . 

If lim infn->oo nh4+d > 0 then dividing numerator and denominator of 1'4 by h4 we get, 

1'4 = 0 (h\/~ + /1-4 + VnJ+4 + ),4). 
If limsuPn-+oo nh4+d = 0, diViding numerator and denommator of 1'3 by (n;d)2 we get, 

1'4 = 0 (h4 V ~ + /1-4 + V n,X1+4 + ),4). 0 

Proof of Theorem 4.4.5 Recalling that M = V + Band M* = V* + B*, where V, 

V*, B and B* are as defined earlier. We see that, almost surely 

o ~ V, V* ~ n~d 1 K2(iZ)diZ. 

Therefore V, V* ---+ 0, as h ---+ 00. 

Now 

B-1 {I K(iZ)f(y - hiZ)diZ - f(YJ } 2 dy 

= 1 f2(YJdy + 1 [1 K(iZ)f(y - hiZ)diZ] 2 dy 

-2 1 f(Y) 1 K(iZ)f(y - hiZ)diZdy 

= 1 f2(y)dy + bn - en (say). 

We note that, 0 ~ bn ~ b JK2(iZ)diZ = 0(1), as h ---+ 00. 

As h ---+ 00, Ily - hiZll ---+ 00 for iz =1= O. Therefore using the stated conditions on f and 

DCT it is easy to show that en = 0(1), as h ---+ 00. Hence under the stated conditions 

on f, B ---+ J f2(YJdy and consequently M ---+ J f2(YJdy. 

Further we note that, almost surely, 

B* = 1 g2(Y)dy + 1 K(iZ) [1 g(y - h.iZ)diZr dy 

-2 1 g(Y)K(iZ)g(y - h.iZ)diZdY 

= 1 g2(YJdfj + b~ - c~ (say), 
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where 0 ~ b~ ~ Il~~lhJ JK2(u)du = 0(1), as h -t 00. 

Recalling the definition of g(YJ, we see that g(y-hu) = ntr 2::1 rr:=1 K O (YJ-hi.-X'l ). 

Therefore for fixed n, A, under the stated condition on K O, gO is umformly bounded 

and g(y - hu) -t 0, almost surely, h -t 00. Therefore using DCT it is easy to argue 

that c~ -t 0, almost surely, as h is increased. 

So under the stated conditions on KO and for fixed A and 11-, almost surely, B* -t 

J g2(YJdy and hence M* -t J g2(YJdy, as h is increased. So part (i) is proved. 

The proofs of part (ii) and (iv) follow directly from the definitions of A, A, Ay and 

Ay respectively. 

The proof of part (in) follows by repeating similar arguments as used in the proof of 

part (i). So Theorem 4.4.5 is proved completely. 0 

Proof of Theorem 4.4.6 Suppose KO is the standard normal density. Recalling 

the definitions of 9 and w we see that g(YJ and w(Y) are equal to g(Y) = ~ 2:~=1 ¢)(,,)..2I/Y) 

and w(YJ = ~ 2:~=1 ¢X"J.t2I/Y) respectively. 

If K is standard normal density, then we see that Kn(Y) = ~ l:~1 ¢5,D(Y - Xt ). 

Consequently if both K, KO are both standard normal densities then 

Bg = J ¢5,D(y - u)g(u)du - g(Y) 

= ~ t J ¢5,D(y - u)¢x,,)..2I/u)du - g(Y) 
t=1 

1 n 

= -; L ¢X.,D+)..2I/YJ - g(y), 
t=1 

where D = dwg(hf, ... , h~). So part one is proved. 

To prove the second part, we note that if K(·) is standard normal density, then K2(U) = 

2fo¢O,1/2(U). So n:=1 K 2(uJ ) = (2fo)d¢5,~I/U). Consequently, if K is standard normal 

density then recalling the definition of V; we see that 

Vi = 

Now if K O is a standard normal density then w(u) = ~ 2:~=1 ¢~Y'"J.t2IJU). Substituting 

this m the right side of above equatIOn we get the formula for "ii. So Theorem 4.4.6 IS 
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proved completely. o 

Proof of Theorem 4.4.8 We recall that If K and KO are standard normal den

sitIes then w(iJ) = ~ L:~=I <PX"J.L2IJiJ)· Further recalhng the defimtlOn of V* we see 

that 

Therefore, If K and KO are standard normal densitIes then 

V' = 

= 
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Si:nilarly recalling that g(iJ) = ~ I:~=1 ¢X,,>.2I)iJ), KO is Gaussian k~rnel and the defi

nition of B* we see that 

B* = J [J ¢f5,D(Y - u)g(u)du - g(iJ)] 2 dy 

= J [J ¢O,D(Y - U)9(U)dU] 2 dy + J [g(iJ)J2 dy - 2 J [J ¢O,D(Y - U)9(U)dU] g(Y)dy 

J [~~ J 1>',oUJ - UJ1>x"m.(a)da] , diJ + J [~~ 1>X,,"I,(ilJ] ' dy 

-~ t, J [~t, J 1>',o([J - iiJ¢x"mJUJda] ¢X,,"I,(ilJdy 

J [~~ ¢x"o+m.(ilJ] ' dy + J [~ ~ ¢X,,"I,(ilJ] ' dy 

2 n n J 
- n2 ~ ~ ¢X"D+>.2I)iJ)¢x,,>.2I)iJ)dY 

t=1 J=1 

Recalling M* = V* + B* is proof is complete. 

Proof of Theorem 4.4.9 Recalling the definition of T we see that 

T = 
1 

n( 47[" )d/2 hI h2 .. hd 
1 n n _ _ _ 

+ n2 L L {¢X.-X,,4D(O) - 2¢X,-X
3
,3D(O) + ¢X.-X,,2D(O)}, 

t=1 J=1 

where D = dwg(hf, .... , h~). It is easy to verify that, almost surely, 

o 

as ht ---t 00, 2 = 1,2, .. , d. Therefore for fixed n, T ---t 0, almost surely, as ht ---t 00, 2 = 

1,2, .. , d. This completes the proof of Theorem 4.4.9. 0 



Chapter 5 

Automatic Bandwidth Selection 

5.1 Introduction 

An important problem in density estimation is to choose the bandwidth h == hn by 

minimizing M, the MISE of a density estimator. In general M is unknown. So several 

data based schemes for selecting h have been proposed with an aim to minimize some 

estimate of M. Cross-validation, smoothed cross-validation, smooth bootstrap, plug-in 

rule are some well known bandwidth selection schemes. In this chapter we propose new 

automatic bandwidth selection schemes for univariate and multivariate kernel density 

estimators. In chapters 2 and 4 we have proposed new consistent estimators (we call 

them M*) of M for univariate and multivariate density estimators. The basic idea of 

our proposal is to choose h by minimizing M*. 

In general the multivariate product kernel density estimator (see chapter 4) depends 

on d bandwidths, say hI> .. , hd' where d is the data dimension. But in order to simplify 

theoretical calculations we assume that hI = .... = hd = h and the resulting density 

estimator is referred to as a simple product kernel density estimator. This assumption 

is not unusual. For instance in chapter 4 we have discussed some applications of the 

simple product kernel density estimator. In this chapter we address the problem of 

selecting the common bandwidth h of a simple product kernel density estimator based 

on data which are realizations of i.i.d, Rd valued random variables. 

For a kernel density estimate based on univariate data, let h* be the minimizer of 

the MISE M, for h E I = [nl/N'+l)' n1/(i'+ld where 0 < EI < E2, s is the kernel order. 

The assumption of restricting h to constant multiples of n1!(;.+1) is not too restrictive. 
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For example see assumption (2.3) in Park and Marron (1990). 

For a simple product kernel density estimate, let h* be the minimizer of M, for h E 

I = [nl/(!+d) ' nl/(~+d)] , where d is the data dimension. Actually the choice of this interval 

is motivated by asymptotic properties of M. We know that for a simple product kernel 

density estimator with second order kernel and bandwidth h the following equation 

holds (see chapter 4) 

Gl 4 (1 4) M = nhd + h G2 + a nhd + h ,where Gl , G2 are positive constants. 

The leading term in the right side is minimized for a value of h which is a constant 

multiple of nl/(~+d) and minimizing ~+h4G2 is asymptotically equivalent to minimizing 

M in some interval [nl/(l+d)' n1/n+dd, where El, E2 are positive constants. 

5.1.1 Definitions 

Let us describe our bootstrap bandwidth selection rule. In chapter 2, 4 we have in

troduced MISE estimators, both denoted by M*, based on univariate and multivariate 

data. Consequently there are two definitions of our automatic bandwidth 17,*, corre

sponding to one- dimensional and d- dimensional (d > 1) data. 

1. 17,* for umvanate denszty estzmate. Given none-dimensional observatlOns, let us 

recall our MISE estimator M*, defined in chapter 2. Then 

h* is a multiple of nl/(~S+l) and it depends on the parameter A, in M*. A can be 

either some fixed bandwidth or can be a random automatic bandwidth such as LSCV 

bandwidth. So there are several versions of 17,*, depending on the choice of A. 

Let h~ = 17,*, for A = he. This is the bootstrap bandwidth proposed by Faraway and 

Jhun (1990). If A = hand K is the Gaussian kernel, then 17,* equals Taylor's (1989) 

bandwidth hT . 

Cao's (1993) bootstrap bandwidth, call it heao, is a special case of 17,* for KO = K, 

where K is a second order kernel possessing six derivatives. Cao (1993) claimed that 

A = Gn-l
/
7 is an optimal choice for A, where G is a positive constant and depends on 

integrated squared derivative of f. 
If K, KO are second order kernels with eight bounded, continuous derivatives and 
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A = CnPhm , the resulting h* is the bootstrap bandwidth proposed by Jones, Marron 

and Park (1991). 

2. h* for multwarzate kernel eszmates. Given our MISE estimate M*, based on d

dimensional data (see chapter 4), let us define 

The multivariate version of M* depends on two parameters A, J.l. From chapter 4 we 

recall that an appropriate choice of J.l is a constant multiple of nlJ(~+d). For A there are 

two choices, namely constant multiples of nl/(~+d) and nl/(~+d). Consequently there are 

two versions of our h*, based on multivariate data. 

Now let us introduce some of the standard bandwidth selection methods for univari

ate and multivariate kernel density estimators. For a univariate kernel density estimate 

Kn(-), with bandwidth h, following are some well known bandwidth selection rules. 

1. Least Squares Cross- Valzdatwn (see Rudemo (1982) and Bowman (1984)). We 

select h by. mmimizing UCVn (defined in chapter 2), with respect to h. Let us denote 

the minimizer of UCVn by hc. In R it is invoked by "bw.ucv" function. 

2. Smooth Cross Validatwn. Hall et al. (1992) proposed to select h by minimizing 

SCVn which is defined as follows 

where K h (-) = ~K Cjh), Lg(-) = ~L ()g) and * denotes convolution. K and h are the 

given kernel and bandwidth respectively. Whereas L and 9 are some other kernel and 

bandwidth. We note that if K and L are standard normal densities then 

Hall et al.(1992) proposed to use 9 = SO~~~6, where s is the sample standard deviation. 

We denote the minimizer of SCVn by hsc . 

3. Plug-m rule (Silverman (1986), Sheather-Jones (1991)). It is based on the idea of 

minimizing the asymptotic approximation A (defined in chapter 2) of M. For a second 
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order kernel, A mvolves an unknown quantity R(j(2)) = J [J(2) (x)] 2 dx. DIfferent ver

sions of the plug-in approach depend on the form of the estimate of R(j(2)). Two popu

lar versions of the plug-in rule are the Rules of Thumb (Silverman (1986)) and Solve-the

Equatzon plug-in method by Sheather-Jones (1991). The Sheather-Jones (1991) plug-in 

bandwidth (we denote it by hSJ) is widely recommended (see'Sheather (2004)) and it is 

available in S-PLUS and R. In R it is invoked by a function "bw.SJ". The other plug-in 

bandwidth ha, based on Rules of Thumb, is defined as ha = 1.06.mm(s, Q/1.34).n- I
/

5
, 

where s is the sample standard deviation and Q is the difference between the third and 

first sample quartiles. 

4. Bwsed cross valzdatwn (Scott and Terrell (1987)). Here we select a bandwidth 

by minimizing BCVn defined in chapter 2. We denote the minimizer of BCVn by hbcu . 

For a product kernel density estimator, with bandwidths hI, h2, ... , hd, Sain, Bag

gerly and Scott (1994) proposed multivariate extensions of the Taylor's (1989) boot

strap bandwidth and the unbiased cross validation bandwIdth. They are defined as 

follows. 

1. Bootstrap bandw%dth selectwn rule. The bandwidths hI, h2, ... , hd are selected 

by the minimizing T defined in chapter 4. For a simple product kernel density estima

tor, with bandwidth hI' = h2 = .... = hd = h, T is a function of h and the bootstrap 

method of selecting h is to minimize T, with respect to h and we denote the minimizer 

of T by hr. 

2. Least Squares (Unbwsed) Cross- Valzdatzon. The bandwidths hI, h2' ... , hd are 

selected by minimizing UCVn(hl , ... , hd) which equals 

where 6 1Jk = X,k;'k
X,k

, i =1= j = 1,2, ... , n, k = 1,2, ... , d, and X 1k is the kth component 

of )(1' If hI = h2 = .... = hd = h, then the unbiased cross validation rule for selecting 

h is to minimize UCVn(h) with respect to h. Let us denote the minimizer of UCVn(h) 

by he. 
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5.1.2 A review of some well known automatic bandwidths 

Umvarwte automat2c bandw2dths. So far we defined a number of well known data based 

bandwidth selection rules. These include the cross-validation of Rudemo (1982) and 

Bowman (1984), the smoothed cross-validation of Hall, Marron and Park (1992), and 

the plug-in rules of Silverman (1986) and Sheather-Jones (1991). 

The centerpoint of research on bandwidth selection for kernel density estimators has 

been the least squares (unbiased) cross-validation method (LSCV). Park and Marron 

(1990), Hall et al. (1992), Jones, Marron and She ather (1996) have been strongly 

critical of LSCV and have advocated other bandwidth selection schemes, such as plug

in methods based on Rules of Thumb, Smoothed Cross Validation (SCV) and Solve

the-equatwn plug-in approach which are less variable and possess stronger asymptotic 

properties than the cross validation method. Taylor (1989) and Faraway and Jhun 

(1990) proposed to select h by minimIzmg smooth bootstrap estImates of M. 

Taylor (1989) compared his bootstrap bandwidth with cross validation and Rules of 

Thumb plug-in bandwidth. Faraway and Jhun (1990) observed that bootstrap band

widths are generally larger but less variable than the cross validation bandwidth. For 

second order kernels with six derivatives, Cao (1993) studied asymptotic properties 

of his bootstrap bandwidth. Cao et al. (1994) conducted a broad simulation study 

to compare performances of a number of automatic bandwidths. They observed that 

LSCV bandwidth exhibits relatively poor behaviour and recommended the plug-in 

bandwidth by Sheather and Jones (1991) and smooth bootstrap bandwidth (by Cao 

(1993), Cao et al. (1994)) selection rules for automatic data based choice of h. 

Jones, Marron and Park (1991) proposed yet another version of the smooth boot

strap bandwidth (we call it hJMP)' where K, KO have eight bounded continuous deriva

tives, f has six bounded derivatives (see their assumptions A.2, A 3) and A = CnPhm . 

For A = Cn-23/45h-2, they showed that Vii (~ - 1) is asymptotically normal. This 

result appears to be very appealing, especially when compared with the rate of con

vergence of ~, to one, where he is the LSCV bandwidth. It is well known that 

!:. - 1 = 0 P (n1)1O)' where h equals he or similar bandwidth selectors (~ee Loader 

(1999)). 

Loader (1999) pomted out that the rate of convergence of h~' to one, IS not an 

appropriate measure of asymptotic performance of any automatic bandWIdth h. He 
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has challenged the superiority of the plug-in methods and pointed out that the plug-in 

rules can fail if the specification of the pilot bandwidth used in plug-in methods is 

wrong, and that the often quoted variability and undersmoothing of the LSCV method 

simply reflects the uncertainty of data based bandwidth selection. He argued that 

the shortcoming of the less variable bandwidth selection rules such as plug-in meth

ods, manifests in another way: consistently oversmoothing small and difficult to detect 

features. It appears that there is no unique bandwidth selection scheme that enjoys 

universal superiority on all fronts. 

A utomatic bandwidths based on multwariate data. The amount of research on band

width selection rules, especially based on bootstrap method, for multivariate kernel 

estimators appear to be quite less in comparison to the univariate case. Sain" Baggerly 

and Scott (1994) have proposed multivariate extensions of the LSCV, biased cross 

validation and Taylor's smooth bootstrap bandwidth selection rule for product kernel 

density estimator. 

Interestingly the rate of convergence of ~ to 1 improves as d is increased, where 

he is bandwidth selected using cross validation rule and d is the data dimension (Sain, 

Baggerly and Scott (1994)). The theoretical properties of the bootstrap bandwidth 

selection rule, proposed by Sain Baggerly and Scott (1994), does not' appear to be 

known. 

Motivation for our proposal. We have reviewed a number of well known methods 

for estimating h*, especially for univariate kernel density estimates. No automatic 

bandwidth seems to yield the best possible choice of h, from all perspectives. So a 

natural question is "why propose yet another bandwidth selection rule ?" 

Marron and Chung (1997), Sheather (2004) have argued that a family of kernel 

density estimates is a more powerful graphical device for capturing various features of 

the data than a single curve. The various bandwidth selection rules can provide the 

different values of h to produce a family of density estimates (see Sheather (2004)). 

We further enrich the existing class of bandwidth selection rules, by proposing a new 

automatic bandwidth (1,,*) with s~me desirable asymptotic property. 

We note that Cao (1993)', Jones, Marron and Park (1991) obtained asymptotic 

properties of hCao and hJMP , under a number of smoothness conditions on K (for in

stance see conditions K2 and A.2 in Cao (1993) and Jones et al. (1991)). hCao and 

hJMP are special cases of our h* and we intend to obtain an asymptotic property of h* 
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with no smoothness assumption on K at all. This result can be considered as a new 

asymptotic property of heao and hJ M P that holds for a broad class of kernels. 

'5.1.3 Chapter Summary 

There are two Theorems and two simulatlOn studies in this chapter. Theorem 5.2.1 

provides insight into how well the proposed automatic ba~dwidth h* succeeds in min

imizing M as the sample size is increased. This result holds for heao and h JMP ' But 

unlike Cao (1993) and Jones, Marron and Park (1,991), we do not impose any smooth

ness assumption on K at all. So we obtain a new asymptotic property of heao and 

hJMP, with lesser assumptions on K. Theorem 5.2.3 is the multivariate extenslOn of 

Theorem 5.2.1. Theorem 5.23 provides the rate at which the accuracy (in terms of 

minimizing M) of h*, for a simple product kernel density estimate, improves with in

crease in sample size. These results seem to be new. 

In the first simulation study we compare a wide class of bandwidth selection rules in 

the context of univariate kernel denSIty estimators. We compare h* with six well known 

automatic bandwidths, in terms of minimizing Monte-Carlo estimate of E \ ~1'(W - 1\ 

based on univariate data. In the next simulation study we compare the proposed au

tomatic bandwidths with LSCV bandwidth, by Sain, Baggerly and Scott (1994), for 

bivariate product kernel density estimates. 

The proofs are given in section 5.5. There are two tables in the first simulation 

study. These tables, namely Table 5.1 and Table 5.2, are given at the end of the 

chapter after the proofs. 

5.2 Main Results 

5.2.1 Univariate case 

From the perspective of denSIty estimation, an important question is "how well does 

h* succeed in minimizing M?" Following Theorem provides some insight. Recall that 

s IS the kernel order, p, k are constants as defined In Assumption A in our chapter 2. 

Theorem 5.2.1. Suppose s,p 2: 2, k = p and Assumptwns A - E hold. Then 

E ~~~:~ - 1 = 0 (n1/(!s+l) ) + 0 (Jn~2S+l + AP) . 
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Remark 5.2.1. (i) Under the conditions stated in Theorem 5.2.1 and A = nl/(2S~2P+l)' 

E I Z~~:~ - 11 = 0 (n1J(;S+1))' 

(ii) From Park and Marron (1990) we see that, for symmetric, second order kernels 

with finite support, n 1/ 5 (:::g:) - 1) converges in law to the chi-squared distribution, 

where h is the minimizer of UCVn , or BCVn in I. h can also be the'plug-in bandwidth 

by Park and Marron (1990) (they call it hPJ)' Theorem 5.2.1 implies that for any 

second order kernel (i.e. s = 2), p = 2 and A = nfrg, n1
/

5 (Z~~~~ - 1) = op(1). 

Therefore for second order kernels with finite support, assuming the conditions stated 

in Theorem 5.2.1 hold and A = )/9, h: is asymptotically more accurate than the 

unbiased or biased cross validation bandwidths or the plug-in bandwidth hpJ. 

(iii) heao is a special case of h*, for KO = K, where K is a second order kernel 

having six derivatives. Cao (1993) has claimed A equal to a constant multiple )/7 to 

be the optimal choice for A. Substituting s = p = 2 and A equal to a constant multiple 

~ in Theorem 5.2.1 we see that 

EI~~~:)) -11 = 0 (n;/5) +0 (n~/7) = 0 (n;/5)' 

Again repeating the arguments in the previous paragraph, we see that for second kernels' 

with finite support, assuming p = 2 and the conditions stated in Theorem 5.2.1 hold, 

heao is asymptotically more accurate (in terms of minimizing M) than the LSCV, 

biased cross validation and the plug-in bandwidth hPJ. These are new asymptotic 

properties of heao . 

(iv) For a second order kernel K, hJMP is a special case of h*, for A = CnPhm . In 

particular if A = Cn-23/45h-2 and h equal to a multiple of n 11/ 5 , A is a multiple of ~. 

This resembles with our choice of A in M*, see Theorem 2.3.1 (iii) in chapter 2. Recall 

that in chapter 2, we had proposed A = n17(2S~2P+l)' 
Jones, Marron and Park (1991) proved that for a second order kernel K, satisfying 

their smoothness assumption (A.2), and A = Cn-23/45h-2, ~ - 1 = Op (In) . We 

obtain the rate of convergence of Mt(:.r) to one. For a second order kernel K and 

h E I, substituting A equal to a constant multiple of n{/9' under conditions stated in 

Theorem 5.2.1 we get 

I
M(hJ M P ) I (1) E M(h*) - 1 = 0 n 1/ 5 . 

This result seems to be a new asymptotic property of hJMP . But unlike Jones, Marron 

and Park (1991), we do not impose any smoothness assumption on K at all. 
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We note that the bootstrap method of optimal bandwidth selection can be compu

tationally expensive. In general, computing h: involves two stages of approximations, 

namely the Monte-Carlo simulation for computing M* and numerical optlmlzation for 

minimizing M*. For Gaussian type kernels we have obtained closed form expression , 
for M*, in chapter 2. So an easy way to compute h* is to plot M*. After tentatively 

locating h* from the graph, we can compute its exact value using numerical optimiza

tion algorithms (for instance using umroot and optzmzze algorithms in R). 

Some numerical optimizc;.tion algorithms (for example umroot in R) require the for

mulae of derivatives of M*. Therefore the formulae for derivatives M* (for GaUSSIan 

kernels) are obtained in the next Theorem. 

Theorem 5.2.2. If K(·) zs a Gausszan-based kernel of order 2r and KO zs the standard 

normal denszty, then 

where U(1)(h·· ) - 1 ~ ~{2 ·h2J - 1A,(2J ) (X X) ,), q - n2 L..; L..; ) n 'P2A~+qh~ ,- 1 
,=1 1=1 

5.2.2 Multivariate case 

We now state a Theorem which is an extension of Theorem 5.2.1, to the context 

of ~andwidth selection for a simple product kernel density estimate. This Theorem 

provides some insight into how well h* succeeds in mimmizing the MISE of a simple 

product kernel density estimator. 

Theorem 5.2.3. Suppose Assumptwns A - C m chapter 4 hold and n),d+4 ----t 00. 

Then 

(5.2.1) 
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5.3 Simulation 

We have conducted two simulation experiments. In the first experiment we compare 

two versions of our proposed bandwidth sel~ction rules, h* (with), = )/0) and h~, 

with a number of existing bandwidth selection schemes such as LSCV (he), the plug-in 

Rule o/thumb (ha) and Sheather-Jones plug-in bandwidth (hsJ ), SCV bandwidth (hse ) 

and Taylor's (1989) bootstrap b.andwidth (hT). 

In the next experiment we compare LSCV bandwidth (by Sain, Baggerly and Scott 

(1994)) and h*, for)' equal to n 1t/4+d)· and nl/(~+d)' for simple product kernel density 

estimates based on bi-variate data. 

5.3.1 Comparison of automatic bandwidths for univariate den

sity estimates 

We draw 30 samples, of size 50 and 200, from four distributions, namely standard 

normal, bimodal, claw and double claw. 
. it M(h) A A * A * For each sample we compute the ratIOS h* and M(h*)' where h = he, h, he' 

hse , hT , ha, hSJ and h* denotes the global minima of M. h* denotes the minimizer of 

M*, with), = nl~9. We estimate the bias and variance of /:. from the 30 sample values 

of :*. These are tabulated in Table 5.1. LetEI::(~}) - 11 denote the average of the 

v.alues of I ::(~}) - 11, calculated from the 30 samples, where h is anyone of the seven 

data based bandwidths which we compare. E I ::(~}) - 11 is the Monte-Carlo estImate 

of E I ~~}) - 11 for any bandwidth h and its values are tabulated in Table 5.2. The 

main observations are as follows: 

(i) Samplzng fiuctuatzon and bias. From Table 5.1 we find that as expected, there 

is no unique bandwidth selection rule which exhIbits least sampling fluctuation for all 

the four underlying densities. For instance if n = 50 and underlying density is normal, 

h* has least variance among all the automatic bandwidths. But for bimodal, double 

claw and claw densities, ha possesses least variance for n = 50. Similarly, for n = 200, 

ha has least varianc~ for normal and bimodal densities whereas, h* and he exhibit least 

sampling fluctuation for double claw and claw densities. 

In general the proposed bandwidth h* possess lower variance than both LSCV and 

Sheather and Jones (1991) plug-in bandwidths. However h* can have higher bIas than 
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Lsev and Sheather and Jones (1991) plug-in bandwidths. 

(ii) Mm~m~zing M. From Table 5.2 we may conclude that there is no unique band

width selection rule that minimizes E I ::(~~\ - 11 uniformly for all the densities and 

for all sample sizes. For instance hT, ha, h*, h~ are the minimizers of jj; I ::lh~\ - 11, for 

normal, bimodal density, double-claw and claw density respectively and n = 50. But 

h*, hs], hT and he are the minimizers of E I ::(\~) - 11, for normal, bimodal, double

claw and claw density respectively and n = 200. So it is recommended to produce a 

family of density estimates using the above mentioned automatic bandwidths. 

5.3.2 Comparison of bandwidths for bivariate density esti

mates 

Sain, Braggerly and Scott (1994) has proved that the theoretical behaviour of the LeV 

algorithm, for optimal bandwidth selection, improves rapidly as data dimension in

creases. Besides cross-validation method is a popular bandwidth selection scheme. For 

instance, it is widely used in home-range estimation in ecology (see Gitzen R.A. and 

Millspaugh J.J. (2003). In this simulation study we compare the contour and perspec

tive plots of kernel density estimates, using the LSeV bandwidth and the proposed 

bandwidths h*, for .A = n1/A+d) and n1/(Ld)' See Figures 5.1 to 5.30. We compare th~ 

plots of the density estimates with the corresponding plots of the underlying density 

function. The contour and perspective plots for each density estimate is obtained for 

samples of size 50 and 200. These plots are expected to provide insight into how well 

the simple product kernel density estimates with h = h* and he, imitate the features 

of the underlying density for small and large samples. We consider four bivariate den

sities, namely bimodal, kurtic, trimodal and quarimodal densities. These dIstributions 

are explained in Table 4.1, chapter 4. The main observations are as follows: 

1) The perspective and contour plots of simple product kernel density estimates 

based on h = he and h = h* (with .A = n1//d+2») resemble closely. The density esti

mates, obtained using h = h* (with .A ~ nlJ(~+8))' appear to be oversmoothed. 

2) Densities which are unimodal or have well separated multiple modes can be 

estimated reasonably well using all the three bandwidths based on sample size 200. 

However if the underlying density has several modes, then the LSeV bandwidth tends 

to undersmooth, especially for small samples. 
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3) A density with close multiple peaks are hard to estimate using simple product 

kernel density estimator. If the underlying density has two or more peaks which are 

close, then a perspective of the simple product kernel density estimate may not reveal 

all the peaks even for large samples. For instance we note that for trimodal density, the 

none of the perspective plots can capture the peaks that are visible in the perspective 

plot of the density functIOn. 

~) There appears to be no unique bandwidth selection rule which produces the best 

perspective or contour plot for all the five bivariate densities. We note that for n = 200 

bimodal, skewed and quadrimodal densities, the contour and perspective plots of den

sity estimates based on h = he and h = h: (with>' = n1/(:+2») capture the important 

features of the underlying density. But for kurtic density, the contour and perspective 

plots qensity estimate based h = h* (with>' = n 1/(:+8») resemble the correspondmg 

plots of the underlying density more closely than the other two bandwIdths. So for 

any given set of bivariate data, it is recommended to produce a family of plots using 

these bandwidths. 

The various perspective and contour plots, mentioned in this simulation study, are 

given in next seven pages. 



Fig 5.1: The p of Bimodal density 
~~~~~~~--J 

z1 

Fig 5.2: Perspective plots of Bimodal density estimates, with 

h = he, kp.. =~, ~) respectively and n = 50. 

Z1 

Fig 5.3: Perspective plots of Bimodal density estImates, with 

h = he, h*()" = n:/9 ' nl/(~+dd respectively n = 200. 
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Fig 5.4: The of Kurtic density 
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Fig 5.5: Perspective plots of Kurtic density estimates, with 

FIg 5 6: PerspectIve plot of Kurtic densIty estimates, wIth 

h = he, h*(A = )/9) n1/(;+d») respectively n = 200 
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Fig 5.7: of Skewed density. 

Fig 5.8: Perspective plots of Skewed density estimates, wIth 

h = he, h*()' =~, ~) respectIvely and n = 50. 

FIg 5.9: Perspective plots of Skewed density estimates, with 

h = he, h* (). = nll(~+d)' n1/{;+d») respectively and n = 200. 
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Fig 5.11: Perspective plots of Trimodal density estimates) wIth 

h = hc) h*(A =~) ~) respectively n = 50 
r-~----~~--r--' r---~--~~--~-' 

,1 

Fig 5.12: PerspectIve plots of Trimodal density estImates) with 

h = hc) h*(A = nllj9) n1/i:l+d») respectively n = 200 
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Fig 5.13: The perspective plot of Quadrimodal density 

FIg 5.14: Perspective plots of Quadnmodal densIty estImates, WIth 

) respectively and n = 50. 
'--:~:':;";";==F=-';:(--' 

Fig 5.15: Perspective plots of Quadrimodal density estimates, with 

) respectively and n = 200. 
~----='::....;F==F=~--, 



Fig 5.16: The cont?ur plot of Bimodal density 

Fig 5.17: Contour plots of bimodal density estimates, with h = hc, h* (A = n1!l8+ d ) , nl/ l2+ d») 

Fig 5.18: Contour plots of bimodal density estimates, with h = hc, h:(A = nl/l8+d) ' n1/(\+d)) 

respectively and n = 200. 
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Fig 5.19: Contour plot of Kurtic density 

Fig 5.20: Contour plots of Kurtic density estimattls, with h = he, h*(>' = nlJ(~+d)' n1/l2+d») . 

Fig 5.21: Contour plots of Kurtic density estimates, with h = he, h* (>. = nl/(~+d)' n1/(\+d)) 



Fig 5 22 Contour plot of Skewed density 
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Fig 5 23 Contour plots of Skewed density estimates, with h = he, h*(>' = n.!l8+d) ' n.71Hd») 
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Fig 5 24 Contour plots of Skewed density estimates, with h == he, h*(>' = n./l8+d) ' n./A+d») 

respectively and n == 200 
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Fig 5.25: Contour plot of Trimodal density 

Fig 5.26: Contour plots of Trimodal density estimates, with h = he, h:(>\ = nl/(~+d)' n 1J/2+d») 

respectively and n =-=5:...:.0_. __ 
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Fig 5.27: Contour plots of Trimodal density estimates, with h:::= he, h:(>, :::= nll(1+d) ' n1f(\+d)) 

respectively and n = 200. 
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Fig 5.28: Contour plot of Quadrimodal density 
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Fig 5.29: Contour plots of Quadrimodal density estimates, with h = he, h:(>.. = nlJ(~+dl' n1J(;+dl) 

respectively and n = 5~~0. __ 
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Fig 5.30: Contour plots of Quadrimodal density estimates, wIth h = he, h'* (>o. = nlJ(~+d)' n1t/:'+d)) 

-2 0 2 
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5.4 Application in data analysis 

We analyze a data set which consists of measurements of two flower parts, namely 

sepal length and sepal width, of a flower (botanical name is Iris Verginica). There are 

50 pairs of sepal length and width measurements. The data is published in page 25, A 

handbook of small data sets, by Hand et. al.(l994). 

Our objective is to visualize various features typical to the data set. We use contour 

and perspective plots of simple product kernel densIty estimates using both cross vah

dation and proposed bootstrap bandwidth selection rule. These plots are obtained III 

R package, version 2.10.l. 

Fig 5.31. Contour plots of density estimates for the Iris Verginica data, with 

~ . 

Fig 5.32: Perspective plots of density estimates for the Iris Vergmica data, with 

h = he, h* (). = nl,l2+d) ' n l 718 +d») respectively. 
,,------, 

• 
Jo.,..~ 

• 
"""'" 

Remark 5.4.1. The data possesses a global mode at (length, width)=(6.5,3). A weak 

local mode is visible in the neighborhood of (length, width)=(8,4). Note that the 

bootstrap bandwidth h*, with A = nl/(~+d)' smooths local peaks that are visible in the 

contour and perspective ·plots with cross validation bandwidth. 
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5.5 Proofs 

Proof of Theorem 5.2.1 Recall that h* and h* are minimizers of M and M*, with 

respect to h, in I = [nl/(~ls+l)' nl/(~2'+l)]' Therefore h*,h* E I. Recalling (2.6.5), in 

chapter 2, we see that, almost surely 

1M - M*I ~ LIn + L2n , where LIn, L2n are as defined in proof of Theorem 2.3.1. 

Recalling (2.6.8), (2.6.12) and the definitions of h y and h y ( in proof of Theorem 2.3.1 

(iii)), it is easy to verify that the following inequalities hold, almost surely. 

LIn < ~ [ J {K~(y) - f(y)} 2dy + 2/11/1 f /K~(y) - f(y)/dy] = eln (say), 

L2n < [(s :2:)!)2 [J fiydy + 2 J [hyhy] dY] 

< n2s/(2S+l~f~s _ 1)!]2 [J fiydy + 2 J [hyi3y] dY] = e2n (say), Vh E [. 

We note that ein and e2n are independent of h. Therefore 11M - M*II = sUPhEI 1M -

M*I:S; ein + e2n' 

Hence using, I inf 1- inf gl :s; III - gil, we see that 

EIM(h*) - M(h*)1 < EIM(h*) ~ M*(h*)1 + EIM(h*) - M*(h*)1 

< 2EIIM - M*II ~ 2E(eln + e2n)' 

Recalling the arguments m the proof of Theorem 2.3.1 (i) we see that 

E(eln) = 0 (~) for s,p ~ 2. 

(5.5.1) 

(5.5.2) 

Using Lemma 2.6.1(iii) and equatlOn (2.6.15), (2.6.16), in chapter 2, we see that 

J E [Jiy] dy < [J IK(:)USldU r J E [K~(s)(y) - l(s)(y)]2 dy 

= 0 (~+ A2P) and 

Substituting these inequalities in the definition of e2n we get 

E(e2n) = 0 (n2s/~S+l)' (vn~2S+1 + AP
)) . (5.5.3) 
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From equations (5.5.1), (5.5.2) and (5.5.3), we get 

Further we note that M ~ Jn~2 - C U:(Y)dY , Vh E I and hence 

I K2 (1) 
M(h*) ~ E2. n (2s)/(2S+l) + 0 n2s/(2s+l) . 

Therefore E I ~~~:~ - 11 = 0 (n1/(is+l») + 0 ( ~ + ),p) . So Theorem 5.2.1 IS proved 

completely. 0 

Proof of Theorem 5.2.3 Recall that h* and h* are minimizers of M and M*, with 

respect to h, in I = [nl/~!+d)' nl/(~+d)]' Therefore h*, h* E I and recalling the definitions 

of M and M* and the arguments in proof of Theorem 4.4.4, we see that almost surely 

1M - M*I < IV* - VI + IB - B*I, where 

IV - V'I < ~ {J a~y+2 f a}iy f C}iy}, 

and IB - B'I '" h' [J fi".dy + 2. f fi.,dy f fi,d~ 
where aif' cy, hif and f3if are as defined in the proof of Theorem 4.4 4 and hence It IS 

easy to verify that 

JC~fj < J f2(YJdfj = ein (say), 

Ja~fj < J [w(YJ - f(YJ]2 dfj = e2n (say) 

J fiydfj < 2 t [IK(u)lut1 U t2 Iduj2 J[ ( -]2 -d . 22 ftl,t2 YJ - g'l,t2(Y) dy = e3n (say), 
'l,t2,=1 

and J ffydfj < d2 t [fK(u)lut1 Ut2 Idu'j2 J [f (V)]2d-= ( ) 22 'l,t2 Y Y e4n say. 
tl,t2,=1 

We note that em, ~ = 1,00,4 are independent of h. Therefore 

IIM-M*II sup 1M - M*I 
hE! 

1 E~ 
< ;, {e2n + 2je1ne2n} + n4/(4+d) {e3n + 2je3ne4n} 
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Since eln , e4n are constants, therefore taking expectation on either side of the above 

inequality and using E(vX) ::; JE(X), where X is a nonnegative random variable, 

we get 

E[e3n] is a linear combination of J E [J11,12(Y) - 91~'12(Y)]2 diJ,' iI, i2 = 1,2, '" d, 

and E[e2n] = J E [w(Y) - f(Y)]2 diJ· 

We obtained the rates of convergence of J E [111,12 (iJ) - 911,12 (iJ)]2 diJ, iI, i2 = 1,2, '" d, 

and J E [w(Y) - f(Y)]2 diJ in Lemma 4.6.2, in chapter 4. So recalling Lemma 4.6.2 (iii) 

and (iv) we get 

II - *11 - 0 (~fl---:-: 1 E M M - n V ~ + W + n 4/(4+d) 

Further 

EIM(h*) - M(h*)1 ::; EIM(h*) - M*(h*)1 + EIM(h*) - M*(h*)1 ::; 2EIIM -'M*II· 

Therefore 

Further we note that there exists D I , D2 > 0 such that 

and hence 
J K2 (1) 

M(h*) 2 E~.n4/(4+d) + 0 n 4/(4+d) . 

Therefore 

E M(h*) _ 0 (fl---:-: . / 1 \4) 
M(h*) -1 - V~+W+Vn>'d+4 +/\ . 

So Theorem 5.2.3 is proved completely. o 
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f' 

Table 5.1: Bias and variances of h~' where h = ha, hSJ,h*,h~, hse , hT, he 
n Distributions 

h Normal Bimodal Double-claw Claw 
50 ha -0.272 (0.014) 0.028 (0.008) -0.483 (0.002) 5.146 (0.356) 

h}J -0.152 (0.034) -0.065 (0.041) -0.526 ( 0.012) 5.868 (1.953) 
h* 0.163 (0.011) 0.444 (0.009) -0.277 (0.003) 8.581 (0.565) 
h* e 0.014 (0.054) 0.216 (0.084) -0.418 (0.017) 1.357 (15.786) 

hse 0.064 (0.022) 0.395 (0.018) -0.295 (0.004) 10.943 (1.125) 
hT 0.006 (0.012) 0.978 (0.020) -0.301 (0.004) 8.157 (0.488) 
he -0.099 (0.048) 0.053 (0.075) -0.521 (0.019) 11.034 (8.937) 

200 ha -0.215 (0.002) 0.168 (0.002) -0.469 (0.001) 5.605 (0.181) 
hSJ -0.122 (0.016) 0.009 (0.022) -0.537 ( 0.004) 1.353 (2.026) 
h* 0.118 (0.003) 0.470 (0.007) -0.327 ( 0.001) 15.735 (0.322) 
h* e -0.102 (0.043) 0.093 (0.055) -0.505 (0.011) -0.510 (0.077) 

hse 0.030 (0.005) 0.379 (0.011) -0.370 (0.002) 15.735 (0.316) 
hT 0.259 (0.004) 1.122 (0.031) -0.168 (0.012) 8.018 (0.355) 
he -0.173 ( 0.072) -0.004 (0.080) -0.557 (0.017) -0.090 (0.002) 

. ~ I M{h) I . - . * Table 5.2. E M{h*) - 1 values for h - h , ha, hsJ , hse , hT , he 

n Distributions 
h Normal Bimodal Double-claw Claw 

50 ha 0.228 0.013 0.636 6.152 

h.sJ 0.149 0.077 0.887 5.696 
h* 0.085 0.072 0.178 6.96 
h* e 0.236 0.143 0.546 2.030 

hse 0.060 0.193 0.211 7.027 
hT 0.030 0.656 0.217 6.950 
he 0.468 0.363 0.985 6.899 

200 ha 0.121 0.053 0.383 15.740 

h.sJ 0.042 0.051 0.567 2.664 
h* 0.007 0.078 0.168 3.402 
h* e 0.045 0.114 0.541 0.702 

hse 0.012 1.457 0.223 1697 
hT 0.163 0.242 0.062 21.304 
he 0.099 0.161 0.793 0.0204 
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