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Abstract

In this thesis, we study analogues of Ramanujan’s partition identities and congru-
ences by using his cubic continued fraction, theta function identities and modular
equations. We also find several new partition identities and congruences for parti-
tions with designated summands in which all parts are odd and overpartition pairs

into odd parts.
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Chapter 1

Introduction

The thesis consists of six chapters including this introductory chapter. In the fol-

lowing few subsections we briefly introduce the basic concepts and terminology.

1.1 Partitions

A partition A = (A1, Az, - - , Ax) of a natural number n is a finite sequence of non-
increasing positive integer parts A; such that n = ZLI Ai. Let p(n) denote the
number of partitions of n. For example, p(4) = 5, since there are five partitions of
4, namely,

4), (3,1), (2,2), (2,1,1), and (1,1,1,1).

The generating function for p(n) is given by

Zp(n)q" = (q;)m, (1.1.1)

where, here and throughout the thesis, for |g] < 1, (6;q)eo := [[meo(1 — ag®).
Ramanujan (80, 81], found nice congruence properties for p(n) modulo 5, 7, and

11, namely, for any nonnegative integer n,

p(5n +4) = 0 (mod 5), (1.1.2)

p(7n+5) = 0 (mod 7), (1.1.3)
and

p(lln +6) =0 (mod 11). (1.1.4)



In (80], Ramanujan deduced (1.1.2) by proving the identity

Zp (5n + 4)g 5(( q;)s (1.1.5)

which G. H. Hardy (81, p. xxxv]| described as Ramanujan’s “Most Beautiful Iden-
tity”. Many proofs of (1.1.5) are available in the literature. We refer to the com-
mentary on Ramanujan’s papers by B.C. Berndt in [81].

Ramanujan also offered a more general conjecture which states that if § = 527°11¢

and A is an integer such that 24\ = 1 (mod 4), then
p(néd + A) =0 (mod 9).

Ramanujan sketched a proof of this conjecture for arbitrary a and b = ¢ = 0.
However, for arbitrary b and a = ¢ = 0 the conjecture was corrected by Watson [93]
as

p(né + ) =0 (mod ¢&'),

where §' = 5%7¥11°¢ with & = bif b=0, 1, 2 and ¥’ = [(b+2)/2] if b > 2.

Next, we define the general partition function p,(n) by

Zp, =% }1)’ . (1.1.6)

The function p,(n) has been studied by various mathematicians. For example, Atkin
[9], Garvan [42], Boylan [27], Gordon [44], Kimming and Olsson (56|, Newman [69]-
[75], Ramanathan [77], Ramanujan [82, p. 182] (Berndt, Gugg and Kim [25] have

proved and discussed Ramanujan’s claims, and established further results depend-
ing on his ideas), Serre [89], and Sinick [90]. In particular, Boylan [27], Kimming
and Olsson [56], and Sinick [90] addressed the characterization of Ramanujan-type
congruences, i.e., congruences of the form ¢(¢n + a) = 0 (mod ¢) for all n € Z with

¢ prime, for the function c(n) defined by

oo T 1
2 e = gy

where q,’s are positive integers, not necessarily distinct. Note that when a; = 1 for

each i, then ¢(n) = p,(n).



1.2 Frobenius partitions

G. E. Andrews [5] introduced the idea of generalized Frobenius partitions (or simply

F-partitions) of n which is a notation of the form

a Qa2 . . . Qf
bi by . . . b
of non-negative integers a,’s, b,’s with

n=r+ia,+ib,,
1=1 1=1

where each row is of the same length and each is arranged in non-increasing order.

In particular, Andrews [5] introduced c¢y,(n), the number of F-partitions of n
with m colors and strict decrease in each row. He gave the generating function for
com(n) and obtained the g-product representations of the generating functions for

ch1(n), cpa(n), and cps(n). Furthermore, Andrews proved the congruences

ch2(5n+3) =0 (mod 5),

chm(n) =0 (mod m?), if m is prime and does not divide n.

Recently, g-product representations for the generating functions for c#,(n) and
c¢s(n) are given by Baruah and Sarmah [19]. They also deduced some congruences
for cdy(n).

Again, L. Kolitsch [57, 58] introduced the partition function cé,,(n), which de-
notes the number of F-partitions of n with m colors whose order is m under cyclic
permutation of the m colors. For example, the F-partitions enumerated by cé2(2)
< (o) (o) (5 ) (o) (o) (5 ) ()= ()

0, 0, 0, 04 1, 1, 1, 1,
where the subscripts represent the two colors red and green of the non negative
integers. The generating function for c¢,,(n) is given by [58],

> " = %%% (12.1)



where the sum on the right extends over all vectors k = (ky, k2, - -+, kyn) with k-1 =1
and Q(k) = 25" (k. — kyy1)® wherein 1= (1,1,1,--- ,1) and kg1 = ki

Next, Kolitsch proved that, for all n > 1 and for any m > 2, cgn(n) =
0 (mod m?). In particular, Kolitsch [57] found that

- T no__ gq(qg; qg)go 1.2.2
nz:=06¢3(n)q (59565 %)’ (122)

which readily implies that &E(n) = 0 (mod 3%). In a short note, J. Sellers [86],

found that, for alln > 1,

cps(5n) = 0 (mod 5°),
ch7(Tn) = 0 (mod 7°),

and
chs(11n) = 0 (mod 11%).

Furthermore, by employing a well-known result of Jacobi in (1.2.2), Sellers [88]
proved an analogous result involving cgs(3n) modulo 3%. Recently, Baruah and
Sarmah [19] have found an expression for the generating function for cés(n) and

also deduced some related congruences. For example,

chy(2n) =0 (mod 4%),
coy(4n+3) =0 (mod 4%),
chs(4n) =0 (mod 4*).

1.3 Partitions with designated parts

The notion of partition with designated summands goes back to MacMahon [66]. He
considered partitions with designated summands in his work on generalized divisor
sums. Indeed MacMahon’s A, ; is the number of partition of n with designated sum-
mands wherein exactly k different magnitudes occur among all the parts. MacMahon
[66, Section 17] is able to connect A, x with numerous divisor sum identities due to

Glaisher [43], Ramanujan [81] and others (see also Andrews and Rose [7]).



In [6), Andrews, Lewis and Lovejoy studied partitions with designated summands
which are constructed by taking ordinary partitions and tagging exactly one of each
part size. For example, there are 10 partitions of 4 with designated summands,
namely,

4 3+1, 242, 242, 2+1V+1, 224+1+1, U'4+14+1+1, 1+
+1+1, 1+14+17+1, 1+1+1+4+1.

Let PD(n) denotes the number of partitions of n with designated summands.
Thus, PD(4) = 10. They [6] also studied PDO(n), the number of partitions of n
with designated summands in which all parts are odd. From the above example, we
note that PDO(4) = 5.

The generating functions found by Andrews, Lewis and Lovejoy [6] for PD(n)
and PDO(n) are

- (g% ¢°)2
PD(n)g" = oo
2_: M = Dt o P
and
. (4% 4*)oo (4% ¢°)?
PDO(n)q" = — — 22—
;) (95 90 (3% 03)00 (9% 0o

By using modular forms and g¢-series identities they found many interesting di-

visibility properties. They [6] proved that for n > 0,
PD(3n+2) =0 (mod 3). (1.3.1)

They also obtained explicit formulas in terms of g- products for the generating
functions for PD(2n) and PD(2n+1\) by using Euler’s algorithm for infinite products
and Sturm’s criterion. Chen, Ji, Jin, and Shen [36] gave proofs of the generating
functions PD(3n), PD(3n+1), PD(3n+2) by employing H.-C. Chan’s [30] identity

on Ramanujan’s cubic continued fraction. In particular, they proved that

> (g% %)%, (g% ¢®)8
PD(3n +2)g" = 3 0 =
D PDEBr+ 2" =3 e e

n=0

which readily implies (1.3.1).



1.4 Overpartitions and overpartition pairs

An overpartition of a positive integer n is a non increasing sequence of positive
integers whose sum is n in which first occurrence of a distinct number may be
overlined. Let $(n) denote the number of overpartitions of n and p,(n) denote
the number of overpartitions of n in which all parts are odd . For example, the
overpartitions of 3 are

3), 3), (2,1, (21, (2,1), (271, (@1,1,1), (1,1,1).

Thus, p(3) = 8 and p,(3) = 4.

An overpartition pair of n is a pair of overpartitions (A, ) such that the sum of all
of the parts is n. For convenience, it is assumed that there is only one overpartition
of zero denoted by @. Let pp(n) denote the number of overpartition pairs of n and
PP,(n) denote the number of overpartition pairs of n into odd parts. For example,
overpartition pairs of 3 are,

((3).8), ((3),0). ((2,1),0), ((2,1),

((1,1,1),0), ((2),(1)), (), (D), ((2),)),

(M, @), (), @) (Q,1),0), (L1

(1, (1,1), (1), @11), (D @11)

@.(21), @.21), ©1) @21),

Thus, pp(3) = 32 and 7p,(3) = 16.

The generating functions for p(n) and 7p,(n) given in [37] and [59] are
2)2
Z”p‘” -Gt

and

pro(n)q (@5 )

—~ (9 9)5(a% 9%
The function 7(n) has been considered recently by number of mathematicians in-
cluding Corteel and Lovejoy [40], Hirschhorn and Sellers [51, 52], Mahlburg [67) and
Kim [54]. Overpartitions have been used in combinatorial proofs of many g- series

identities and these partitions arise quite naturally in the study of hypergeometric



series (see (38, 39, 40, 60, 76]). Overpartitions also arise in theoretical physics as
jagged partitions in the solution of certain problems regarding seas of particles and
fields (see [41]), where a jagged partition of n is an ordered sequence of nonnegative
integers (A, , A1) that sum to n and satisfy the weakly decreasing conditions,

A2 Ao —land A > A,

In [67], Mahlburg proved bijectively that the overpartitions correspond to the
jagged partitions.

Recently, arithmetic properties of pp(n), the number of overpartition pairs of
n, have been considered by Bringmann and Lovejoy [28], Chen and Lin [37] and
Kim [55]. It has become clear that overpartition pairs play an important role in
the theory of ¢- series and partitions. They provide a natural and general setting
for the study of g-series identities and g-difference equations [61, 62, 64]. In [53],
Hirschhorn and Sellers studied the arithmetic properties of overpartitions having
only odd parts. More recently, Lin [59] investigated various arithmetic properties of

overpartition pairs into odd parts.

1.5 Ramanujan’s theta functions and modular equa-
tions

Define Ramanujan’s general theta function f(a,b) as

f(a,b) Z oD/ 2pnn-D/2 - 1gh| < 1, (1.5.1)

n=-—00

Three special cases of f(a,b) are defined, for |¢| < 1, by [20, p. 36, Entry 22]

- (% )%
p(q) := =§_wq 0*)2(4%¢%)oo = Ll (1.5.2)
— = k(k+1)/2 _ (9% 4 )oo _ (qz;qz)go
¥(q) = f(9,4°) k§=0q + e = G (1.5.3)

f(—q) = f(—q, _qz) — Z(_l)qu(ak—l)ﬂ + i(_l)qu(3k+l)/2 — (Q;Q)oo, (1‘5_4)
k=0 k=1



where the product representations in (1.5.2)—(1.5.4) arise from Jacobi’s triple prod-

uct identity
f(a,b) = (—a; ab)oo(—b; ab) oo (ab; ab)eo,

and the last equality in (1.5.4) is Euler’s famous pentagonal number theorem.

Furthermore, the g-product representations of ¢(—¢q) and ¥ (—q) are given as

000 14 p(eg) = B Dolts e

p(—q) = () & P (1.5.5)

Now, we define a modular equation as given by Ramanujan. The complete elliptic
integral of the first kind associated with the modulus &, 0 < k < 1, is given by

/2
K = K(k) = / ——ie-—

0 1 — k2?sin%0
The complementary modulus k' is defined by k' = /1 — k2. Set K' = K (kK"). Let
K, K’, L, L' denote the complete elliptic integrals of first kind associated with the

moduli &, k', ¢, ', respectively. Suppose that the equality

K U
n— = —

=7 (1.5.6)

holds for some positive integer n. Then a modular equation of degree n is a relation
between the moduli k¥ and ¢ that is implied by (1.5.6). Ramanujan recorded his
modular equations in terms of a and 8, where a = k% and B = ¢2. We then say that
B has degree n over a. For example, we recall from [20, Entry 5(ii), p. 230] that if
B has degree 3 over «, then

(@) + (1 - o)1~ BV =1.

1.6 The Rogers-Ramanujan continued fraction and
Ramanujan’s cubic continued fraction

The famous Rogers-Ramanujan continued fraction R(q) is defined by

1/5
R(g) = 1— .‘i.

. lg| < 1. (1.6.1)

+ ...



This continued fraction first appeared in a paper by L. J. Rogers [83] in 1894.
Ramanujan later rediscovered the Rogers-Ramanujan continued fraction, and devel-
oped an extensive and deep theory for it (see [24]). In his notebooks, Ramanujan
recorded many identities involving R(g) which can be found in (24, 20, 79, 80]. Two

important formulas for R(q) are

a/%(4% ¢%) oo

1 11 - BS(g) = CHDS

R3(q) (¢% 4%,
Ramanujan [80] derived (1.1.5), by employing the above identities.
Another continued fraction of Ramanujan, known as Ramanujan’s cubic contin-

ued fraction G(g), is defined by

¢? 9+ <+d
1 + 1 + 1 +-

G(g) := lg) < 1. (1.6.2)

Several results on G(q) are recorded by Ramanujan in his notebook [79, p. 237, vol
I} and his lost notebook (82, p. 366]. In particular, he recorded that

G(q) = ¢'/* (((;];:fﬁ))"go = ng:gg), (1.6.3)
where
x(—9) = (6:4")0 = é%;i—‘)’; (1.6.4)
We also note here that
(@) = (= oo = (0% 0w _ (6% (165)

(60  ($9)o0(d*9")0
Proofs of (1.6.3) can be found in papers by Selberg [85], Gordon [45] and Andrews
[4].
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1.7 Work done in this thesis

In this thesis, we study analogues of Ramanujan’s partition identities and congru-
ences by using his cubic continued fraction, theta function identities and modular
equations. We also find several new partition identities and congruences for par-
titions with designated summands into odd parts and overpartition pairs into odd
parts.

In the following few paragraphs, we briefly explain our work.

In Chapter 2 of this thesis, we present 3-dissections of 1/9(q), 1/¢(—¢q) and
1/(g; q)3, from identities involving Ramanujan’s cubic continued fraction and derive
some congruences of the coefficients of these functions.

For example, if
00

> pa(n)g™ =1/(g;9)3,,

n=0

then
(q3 . q3)36
(9;9)3wB(q)

+ 335364°w' (q) + 66048¢*w™ (g) + 61440¢°w' " (q)

Zpg(gn + 8)¢" = 81 {10w(q) + 6729w°(g) + 8313¢*w?(q)

n=0
+ 40960¢5w™(q)},
where

_ 30 _ (39)(e% a5
wla) = (@%4%)%  (6%50)(d® %),

and consequently,
p3(9n +8) = 0 (mod 81).

By using the 3-dissections of 1/1(q) and 1/¢(—q), we derive an analogue of
Ramanujan’s “Most Beautiful Identity”(1.1.5), namely,

- (4% ¢%)% (4% %)3
a(3n+2)¢g" =3 X > 1.7.1
g ( s (4 9)& (9% 6%)% (L)
where a(n) is defined by
= 1
> a(n)g" = : (1.7.2)

(9 9)oo (4% 4%) oo

n=0



11

which was first proved by H.-C. Chan [30].
In Section 2.4, we apply the 3-dissection for 1/(q; )3, to prove some congruences
proved by L. Kolitsch [57, 58] and Sellers [87], and a new congruence for the function

chm(n). In particular, we prove that
c$3(3n) = 0 (mod 3*)
and
cé3(3n +2) = 0 (mod 3%).

In Chapter 3, we deal with modular equations and identities involving Ramanu-
jan’s cubic continued fraction. In his notebooks [79] and his lost notebook [82],
Ramanujan recorded identities giving relations between the Rogers-Ramanujan con-
tinued fraction R(q) defined in (1.6.1) and the five continued fractions R(—q), R(¢?),
R(¢*), R(¢*) and R(g®). C. Gugg in his paper [47] gave a. new proof of Ramanujan’s
modular identity relating R(q) and R(q®), namely,

1— 2R(q%) + 4R%(¢°) — 3R3(¢%) + R*(¢°)

R2(g) = R(¢°)5 + 3R(q%) + 4R2(¢5) + 2R3(¢5) + R*(¢5)

(1.7.3)

H.H. Chan [34] established several modular identities connecting G(g) defined in
(3.1.5) with G(—q), G(¢*) and G(g?). One of the modular relations is

1-G(®) +G*d') _ G(g)
1+2G(¢%) +4G%(¢®)  G(¢*)

(1.7.4)

which is a perfect analogue of (1.7.3).

H.H. Chan [34] proved (1.7.4) by using Ramanujan’s modular equations of degree
3. N.D. Baruah [11], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan (1
also found alternative proofs of (1.7.4). Baruah [12] also established two modular
identities connecting G(g) with G(g¢°) and G(q") respectively. Further modular
identities for G(g) have been found by Naika, S. Chandankumar and K.S. Bairy
(68].
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1
In our work, we prove (1.7.4) by deriving product representations for —— +

. G(q)
G(g) and ——= — 2,/G(g), namely,

VG(9)
VB = YD )

) = V 3( ) o(=¢'")
\/ ¢5o(-¢%)  /x(=q)

We also find some other interesting identities.
Chapter 4 of this thesis is devoted to some analogues of Ramanujan’s partition
identities and congruences arising from his theta functions and modular equations.

We define the generalized partition function pjgmi(n) by

- 1
Zp[c’d"'](”)qn: (g% q°) (g% )

n=0
Note that in this notation a(n) defined in (1.7.2) is pj11)(n) and therefore (1.7.1)

can be written as

(7 4°)3,(¢% 4%)%
(0; )% (% 4%

Y ppa(3n+2)g" =3

n=0

(1.7.5)

Combinatorially, pjy151(n) is the number of 2-colored partitions of n with one of
the colors, say red, appearing only in multiples of 2. Thus, p191(5) = 12, where

the corresponding partitions, with the other color being, say blue, are given by

Sp=4+1=4,+1, =3+ 2, =3, +2, =3+ 1, + 1, =2, + 2, + 1, =2, + 2, + 1,

=2, 4+2, 41, =2+ 1, + 1, + 1, =2, + L+ L+ Ly =1, + L+ 1, + 1, + 1p,
verifying H.-C. Chan’s congruence
]’)[1121)(3’]’& + 2) =0 (rnod 3),

for n =1.
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H.H. Chan and P.C. Toh [33] also gave some beautiful analogues of (1.7.5). Some

of their identities are

- (0% 4%)%. (a5 d°)%
Ppz32(2n +1)q" = 2 .
2 presa (20 +1) @ OS5 O,

ipu‘s‘](% g = 4 D@50 | o (650050 0005
= (¢ 9)%(¢% ¢°)% (¢;9)2(¢5%¢°)12
(o)
(¢% %)% (0" a*)5%
p1171 (2n + 1)q'n. =
,;0 il (4:9)3(a%:97)3
i pyauin 2+ 1)g" = 2 (Ut PAC T 0 PP C T 9 Ul
ard (¢; D& (6" ") (¢; D% (¢"; ¢S
it 2. 2 46. 46 2. .2\2 (.46, ,46)2
5 won e - L | EOLG
= (9:9)%(4%;6%)% (7:9)3:(a%;¢%)%

In Section 4.2, we present new proofs of the above identities by employing Ra-
manujan’s modular equations of degrees 3, 5, 7, 11, and 23, respectively. In Section
4.3, we present some new results analogous to (1.1.5) and new partition congruences
deducible from them.

In Chapter 5, we deal with identities and congruences involving PDO(n), the
number of partitions of n with designated summands in which all parts are odd.

By using modular forms, Andrews, Lewis and Lovejoy [6] found that
PDO(12n + 6) = 0 (mod 3)
and
PDO(12n + 10) = 0 (mod 3).

In this thesis, we prove that

oo 2. .2\117,.3. ,3\13 2. 2\8 3. .34 6. 614
9% 9%)ea(a% q°) (0% 4%)a(a%; 0°)5. (0% 0°)
E PDO(12n + 6)q"™ = 12 {( > = +10 == =
( ) (2;9)23(q5; 45)3, 1 (g;9)%8

n=0

and

oo 2. 2)10(q3. q3)10 (qz. q2)7 (q3' q3) (qs. q6)7
PDO(12n + 10 "=6{7(q’q oM ¥ Jo 1 16 2T Jeotd T rold °°},
Z ( ) (9;9)38(q5; ¢%)2, 1 (g;9)%

n=0
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which give stronger versions of the previous congruences.

We also find some more identities and congruences for PDO(n).

In the concluding chapter of. this thesis, we deal with arithmetic properties
of overpartition pairs into odd parts. Recently, Lin [59] obtained a number of
Ramanujan-type congruences modulo 3 and modulo powers of 2. In particular,

he found that

PP,(4n + 3) = 0 (mod 16) (1.7.6)

PP,(8n + 7) = 0 (mod 32). (1.7.7)

In derivation of the above congruences, Lin worked on taking modulo powers of 2 .
In our thesis, we obtain the above congruences and several new congruences from
their respective generating functions. For example, (1.7.6) and (1.7.7) immediately

follow from

= 2. ,2\6 4. 4\4
S B, (n +3)g" = 16000 )0 e

and
o~ n (9% 9%)ea(d? a*)5% (9% 0%):3(a% ¢*) (2% 0®)%,
P,(8n + 7)g" = 32 x {5 + 40q
?‘;0 (4:9)3(4% 4%)% (492

+ 164>

(4% 4%)e0 (4% 6%)eo }
(9:9)85(e% a5 /'
respectively.
We also find several new congruences modulo powers of 2 by employing elemen-

tary generating function techniques.



Chapter 2

Congruences Deducible from
Ramanujan’s Cubic Continued
Fraction

2.1 Introduction

Recall from (1.1.5), Ramanujan’s famous identity

> p(dn+4)g" = 5%%. (2.1.1)

The above identity was described by G. H. Hardy [81, p. xxxv] as Ramanujan’s
“Most Beautiful Identity”. Ramanujan derived (2.1.1) by employing the identities

1 (@5 ¢") oo
11— R(g) = 9 Jeo 2.1.2
R M T R ). (212)
1 (g:9)5
@) 9= s 213
where R(q) is the Rogers-Ramanujan continued fraction defined in (1.6.1).
Recently, H.-C. Chan [30] proved an analogue of (2.1.1), namely,
o0 3. ,3\3 6. .6\3

(:9)4 (0% 928,

n=0

Note: The contents of this chapter appeared in International Journal of Number Theory [17] of

World Scientific Publishing Company.

15
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and consequently,
a(3n +2) = 0 (mod 3), (2.1.5)

where a(n) is defined by

oo

Z a(n)g” = ! (2.1.6)

(9,9)00 (0% 7)o

n=0
H.-C. Chan [30] proved (2.1.4) by using two results, analogous to (2.1.2) and
(2.1.3), closely connected to Ramanujan’s cubic continued fraction G(g), defined in

(1.6.2).

1/3 2 2 4
q qg+q g tq
G(q) == — 1. 2.1.

Z. Cao [29)] has also proved the same result by applying a 3-dissection of (; ¢)oo(9%; ¢%)co-
Recently H. Zhao and Z. Zhong [95] have proved (2.1.4) by using a 3-dissection of
1/(4;9)oo(9%; 4%)oo, deducible from cubic theta functions. We refer to [31], [32] and
[33], and [90] for further references on G(g).

In Section 2.2 of this chapter, we present 3-dissections of 1/¢(g) and 1/¢p(—q),
where 1(g) and ¢(—q) are defined in (1.5.3) and (1.5.2), respectively. The 3-
dissections are deduced from identities involving Ramanujan’s cubic continued frac-
tion. We find some congruences of the coefficients of these two functions and also
find a simple proof of H.-C. Chan’s congruence (2.1.4).

In Section 2.3, we give a 3-dissection for 1/(g;q)3, deducible from identities
involving Ramanujan’s cubic continued fraction G(q) and derive results analogous
to (2.1.1) and (2.1.4) and deduce congruences for p3(n) modulo 27 and 81 (see
Theorem 2.3.1 and Theorem 2.3.3). In Section 2.4, we apply the same 3-dissection
for 1 /(q;q)3, to prove some congruences proved by L. Kolitsch [57], [58] and Sellers
[87], and a new congruence for the function c@,,(n). which denotes the number of

Frobenius partitions of n with m colors.
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2.2 3-Dissections of 1/19(q) and 1/p(—q), and Chan’s

congruence
1
Theorem 2.2.1. The 3-dissection of lb_(q—) 18 given by
1 3( 9 3(,9 30,9
- ¢3 (q2) g 4¢3(q ) : +q2¢4(q3), (2.21)
P(g)  PHPwHe®)  TYH(Pwl(ed) T PA(ed)
1
and the 3-dissection of 15 given by
©(—q)
1 ¢*(=4¢°) ¢ (=¢°)w(d®) 2 2, 3¢ (=¢°)
- +2g + 42w () ) 9.2.2
o(=q)  ¢*(-¢%) v (-¢%) Twle )<P“(—q3) (222)
where w(q) is given by (2.2.6).
Proof. From the later two equalities in Entry 1(i) of [20, p. 345], we have
1 »(q)
G@@®)  aqv(e®) (223)
and
1 ¥i(e’)
]_ + 3 , 2.24
&G ) 224
where G(q) is defined in (2.1.7).
Now, from the first equality of Entry 1(i) of (20, p. 345], we note that
.2
Glg) = 8D _ s, , 2.2.5
(@) =q @ ¢ (9) (225)
where
(6070 _ (959)o0(d% ¢®)%,
w(q) := — = . 226
@ (¢%0%%  (4%%)w(d% %) (226)
With the help of (2.2.5), we rewrite (2.2.3) and (2.2.4) as
1
1+ ¥(a) (2.2.7)

(@)~ (e
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and
1 ¥'(¢%)
1 = . 2.2.
+ PP (%) (228)
Employing (2.2.8) and (2.2.7), we find that
1 () ¥e®)  av(d®)
Pg) e ¥UP®)  ¢(9)
_ ) L o)
U CO I
T (@)
_ ¥*(g°) 3 2, 27,3
= P ) e,
which is the first part of Theorem 2.2.1.
Again, from Entry 1(ii} and Entry 1(iii) of [20, p. 345], we note that
e(=q) 3 3
=1-2G =1-2 229
Y- (%) qu(g”) (2.2.9)
and
o' (=¢%) ( ) )3
9 —1=1{3 -1} . 2.2.10
¢*(~q) ¢(=q) (2210
Employing (2.2.9) in (2.2.10) we find that
o) _ 3 3 = (2.2.11)

ef(-q)  (1-2qw(@®))® (1 - 2quw(¢®))? 1o 2qw(q®)

Now, cubing both sides of (2.2.9) and then multiplying with (2.2.11); we arrive

at
4(_3
¢'(=97) 3 2, 20 3
——=—="— =1+ 2qw(q"*) + 4¢°w?*(q"), 2.2.12
¢(-9)¢*(-¢°) @ ) (2212
which is equivalent to (2.2.2)." O
1
The following congruences follow readily from the 3-dissection of (—S given
pl—q

in Theorem 2.2.1.



N 1
Corollary 2.2.2. Ifb(n) is defined by 3 oo b(n)g" = ——, then

19

©(—q)
i oo = S = ARy (2213
g)b@n +1)¢" = 2 w(q) ‘if(__‘f)) _of 3(_;:()f ?1()—(]3)’ (2.2.14)
and
; b(3n + 2)¢" = 4 w2(q)‘i4((__‘§)) ~qf 2(7’:()f z()'qﬁ). (2.2.15)
Corollary 2.2.3. We have
b(3n+1) =0 (mod 2)
and
b(3n +2) = 0 (mod 4).
Proof. Follow readily from (2.2.14) and (2.2.15). O
Corollary 2.2.4. We have
3 tto+ 9 a1 LEQESETED sy ECRLEQISE)
(2.2.16)
Consequently,
b(6n +5) = 0 (mod 8).
Proof. From (2.2.15), we have
f: b(3n + 2)g" = 4 ') (2.2.17)

TR CIDICH

n=0
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where we have used the trivial fact that f(—q) = (¢;9)e0 = (4;0)) (0% 700 =
f(—4%)(q;¢%)o- Replacing ¢ by —g in (2.2.17) and then subtracting the resulting

identity from (2.2.17), we find that

oo . o0 y o fa(__qﬁ) 1 3 1
20+ 2" = 3 ban + D=0)" =4 T (e~ o)
_ fs(—qﬁ) —a-a®)® — (a- a%)®
= AR ((' 40" = (4:0")c0)
3 6 4
f (fw()fq() 7) (—4;6*)% — (¢:6°)%) -
(2.2.18)
Now, from Entry 25(ii) [20, p. 40], we have
v(q) — p(—q) = 499(¢°). (2.2.19)

Writing (2.2.19) in g-products, with the help of (1.5.2) and (1.5.3), we find that

16. .16
%00 (=000 — (63075} = q(z ’;16))‘”. (2.2:20)
Thus,
2\2 272 ( 16 16)00
(=490 — (300 = Do
_ 4 (=)
=M )
Therefore,

(~4:¢3% ~ @)% = (—5:6%)% — (6:)%)° +3(a% a2 (4 69)% ~ (6;6%)%)
_ fo(=¢") f(=*)f*(—q"°)
= mCares Y peoies ¢
Employing (2.2.21) in (2.2.18), we find that

(=g (=% 2 (=4"%)
(=% f(—¢®)
3 [(=a") 3 (=%)1°(—¢"%)
f3(=¢*)f3(—q ) '
(2.2.22)

Zb3n+2q —Zb3n+2 y* = 48¢

n=0

+ 2564
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Extracting from both sides of (2.2.22) those terms that involve only ¢!, and then
dividing both sides by ¢ and replacing ¢* by g, we arrive at (2.2.16) to complete the

proof. a

Next, we prove H.-C. Chan’s identity (2.1.4) by employing the 3-dissections given
in Theorem 2.2.1.

Corollary 2.2.5. Identity (2.1.4) holds.

Proof. By the product representations of ¢(—¢) and ¥(q) in (1.5.2) and (1.5.3), we

have

1 1 (60D 1 _ 1
(@) e(—9) (6500 (30200590 (3 eo(d% 1P)eo
Employing (2.1.6), (2.2.1), and (2.2.2) in (2.2.23), we find that
- n LU I ) 236
5= a0 = (Gt ~ Tl )
*(=¢°)

(=), PG | a2 0
X (cp4(—q3) +2q 04 (~¢3) +4q"w*(q )<p4(—q3)) . (2.2.24)

Extracting from both sides of (2.2.24) those terms that involve ¢3**2, we obtain

(2.2.23)

n=0

[o o]
P(@°)¢*(=4°)
a(3n + 2)¢*"? = 32— L 2.2.25
2 oldn+2) W)= (2229
Dividing both sides of (2.2.25) by ¢* and replacing ¢* by g, we obtain
© 3,3\ 3(_ 3
Y aBr+2)q" = 3 (@) (=q) (2.2.26)

pvard Pt (—q) |
With the help of the product representations of ¢(—¢) and ¢¥(¢) in (1.5.2) and
(1.5.3), we can easily deduce (2.1.4) from (2.2.26). O

2.3 Congruences for the partition function p3(n)

Setting 7 = 3 in (1.1.6), we have

> ma(n)g” =1/(4;:9)%

n=0
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where p3(n) is the number of 3-colored partitions of n. Then

S pa(n)g" = (q'}])a (qa;}ﬁ)m (mod 3). (2.3.1)

i

It is clear from (2.3.1) that p3(3n+1) = 0 (mod 3) and p3(3n +2) = 0 (mod 3).

We have the following stronger results.

Theorem 2.3.1. If p.(n) s defined by (1.1.6), then

ip3(3n)q" = VTIPS ( L + 8qw(q) + 16q2'u)4(q)) (2.3.2)
o (6:9)2 \w?(q) ’
- (2% ¢)22(% 4%)oo (0% 6% (4% 695
n+1)¢" =3 > +12 , 2.3.3
;pz( M (95 9)53 (4% 4®)3, eI (233)
and
hasd 3. .3\9
> ps(Bn+2)g" = o{7i7 )eo (2.3.4)

(g;9)%2

n=0

Proof. From Entry 1(iv) of [20, p. 345], we note that

fa(_ql/a) B ) _ 1
FBR(—g) 4G*(q) — 3+ @ (2.3.5)
and
./.12(_(]) _ ) 1 3 .

where G(q) is Ramanujan’s cubic continued fraction as defined in (2.1.7). Replacing

g by ¢* in (2.3.5) and (2.3.6), and then employing (1.5.4) and (2.2.5), we find that

and
I () ) - (238)
7°(q% ¢°)&2 qu(g®)
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Therefore,
ipa(n)q" __1 2@ ( (6% 9% q(q";qg)go)
n=0 (9% (@452 \P@®)2  (69%

. 1 3
492w (¢®) + ) — 27
a*(¢% 4% ( 7wT) qu(g®)

3. 43)12
(6% ¢*)e3 492w(¢®) — 3+

qu(g®)

+ 9¢° + 8¢3w(q?)

(%) 1 3q
‘(fm%g{w%@>+wm%

+ 12¢*w?(¢%) + 16q6w4(q3)}. (2.3.9)

Extracting from both sides of (2.3.9) those terms that involve ¢%*, ¢***!, and ¢3"*2,

respectively, we obtain

> mange = S (L sl +16u@) @310
— w?(g?)

IRCRYRE
% ) 9. %)° 3q
Z p3(3n +1)g* ! = EZ& ZS;;; (w @ + 12q4w2(q3)) , (2.3.11)
n=0 ) =)
and
oo 9. 9\9
n 7" 4%)oo
Zp3(3n + 2)(]3 2 = 9(]2%]3—(]3—)12 (2312)
n=0 ! oo
It is now easy to derive (2.3.2)-(2.3.4) from (2.3.10)-(2.3.12), respectively. O

The following results are immediate from Theorem 2.3.1.

Corollary 2.3.2. We have
p3(3n+1) =0 (mod 3)
and

p3(3n +2) = 0 (mod 3?).

Now we derive the following two interesting congruences from (2.3.4).
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Theorem 2.3.3. We have

p3(9n 4 5) = 0 (mod 3%) (2.3.13)
and

p3(9n +8) = 0 (mod 3*). (2.3.14)

Proof. Employing (2.3.9) in (2.3.4), we find that

- n (Qg;qg)gg 3 2, 2/.3 3,3/ 3
Zp3(3n+2)q =9 (qs.q3)39w8(q3){(1 + 3qw(q’) + 9¢°w*(¢”) + 8¢ w*(¢g*)
n=0 ¢ e
4
+12¢%w*(¢°) + 16q6w6(q3)}
(g% ¢°)%

(@ ) 2w () {1 + 12qw(q®) + 90¢*w?(¢®) + 464¢>w3(¢*)
+ 1875¢*w*(¢°) + 6048¢°w°(¢®) + 16378¢%w°(¢°)

+ 37404¢7w7(¢°) + 74817¢°w(¢%) + 131024¢°w°(¢°)
+209616¢"°w'0(¢%) + 301824 w' (¢°) + 411040¢"%w'?(¢?)
+ 501504150 (¢%) + 5944329 ™™ (%) + 610304¢"w1(¢°)
+ 652032¢"%w'%(¢*) + 552960¢" w7 (¢%) + 557056¢" w8 (¢%)
+ 344064¢"*w'*(¢°) + 368640¢°w™(¢*) + 131072 w? (¢°)

+ 196608¢%w?(q*) + 65536¢%w?* (q3)}. (2.3.15)

Extracting from both sides of (2.3.15) those terms that involve only ¢3**! in (2.3.15),

and then dividing both sides by ¢ and replacing ¢* by g, we obtain

ipg (9n + 5)q™ = 27 M{%}(q) + 625quw(q) + 12468¢*w"(q)
ot (7: 9)3wB(q)

+ 69872¢°w'(q) + 127128¢*w"3(q) + 217344¢°w*%(q)

+114688¢%w'(q) + 655364"w? (¢ )}, (2.3.16)

from which we readily arrive at (2.3.13).
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Next, extracting from both sides of (2.3.15) those terms that involve only ¢%**2
in (2.3.15), and then dividing both sides by ¢ and replacing ¢° by ¢ in the resulting

identity, we find that

i p3(9n + 8)¢™ = 81 % { 10w?(q) + 672qw°(g) + 8313¢*wd(q)
—~ (g; 9)2w(q)
+ 33536¢°w"! (q) + 66048¢*w*(q) + 61440¢°w"" (q)
+40960¢°w® (q) } (2.3.17)
We readily deduce (2.3.14) from (2.3.17) to complete the proof. O

2.4 Some congruences for Frobenius partitions

L. Kolitsch [57, 58] introduced the partition function c¢,(n). Kolitsch proved that,
for all n > 1 and for any m > 2, chu(n) = 0 (mod m?). In particular, in [57),
Kolitsch found that

o~ v 9(¢% %)%
- = 2.4.
; Pl (4 9)%(4% ¢*)oo” (241)

which readily implies that c¢3(n) = 0 (mod 32). In a short note, J. Sellers [86),

found that, for all n > 1,

cos(5n) = 0 (mod 5%),
ch7(7Tn) = 0 (mod 7°),

and
cos(11n) = 0 (mod 113).

Furthermore, by employing a well-known result of Jacobi in (2.4.1), Sellers [88]
proved an analogous result (see(2.4.2) below) involving c$3(3n) modulo 3*. Recently,

Baruah and Sarmah [19] have found an expression for the generating function for
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cha(n) and also deduced the congruences

chy(2n) =0 (mod 43),
cg,(4n +3) =0 (mod 4%),
chy(4n) = 0 (mod 4%).

In the following, we find a simple proof of Sellers’s result and a new result with

the help of (2.3.9) and (2.4.1).

Theorem 2.4.1. We have
c#3(3n) = 0 (mod 3) | (2.4.2)
and
c#3(3n +2) = 0 (mod 3°). (2.4.3)

Proof. Employing (2.3.9) in (2.4.1), we find that
~— \ n_ 99(0%¢°)8(¢% )%
> " ops(n)q” = (q3_q3)15‘(’;18_qw)6 {14 3quw(¢®) + 9¢*w?(¢*) + 8¢°w’(¢®)
n=0 i 00 ’ 0

+12¢"w* (¢*) + 16¢°w®(¢%)}. (2.4.4)

In+2

Extracting the terms involving ¢*® and ¢ , respectively, from both sides of the

above, we find that

o~ —— 3n _ 3 2,3 (qg;qg)g(qe;qs)go
Zc¢3(3n)q =8lgw(e )(q3;q3)£(q18;q18)3o

n=0

(2.4.5)

T
(4% ¢3)22(a*®; '8)5,
T }
(4% 6%)35(q"8; ¢*8)8,

> cgs(3n +2)¢*? = 27q2{w(q3)

n=0

+ 4¢°w*(¢%) (2.4.6)
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Thus,
00 3. ,3\18/ .2, .2\2
Fa3n)g" = 81qw(q) L D)9 0 )0 247
; ¢s(3n)q w(9) (g5 9)15(q%; ¢®)S,, (247)
and

o~ n (4% ¢*)e(d* ) (0% ¢*)ed(e% 4%
Zc¢3(3n+2)q = {w(q) (9;9)%3(q% %)%, +qu'(q) (;9)55(a% ¢°)S, }

(2.4.8)

n=0

from which we readily arrive at (2.4.2) and (2.4.3), respectively. With the help of
(2.2.6), we can recast (2.4.7) and (2.4.8) in the form

n=0

oo (6% ¢*)L2
ch3(3n)g” = 81g————=
; (30 I
and
i‘?ﬁ*(:‘” +2)g" =27 { (% 0")e(4% 9% oo q(q3;q3)§o(f16;qﬁ)§o}
(4:9)e5(4% ¢°)% @)L [

respectively. 0



Chapter 3

A New Proof of a Modular
Relation for Ramanujan’s Cubic
Continued Fraction and Related
Results

3.1 Introduction

In the introductory chapter we have defined Roger- Ramanujan continued fraction
R(gq) and discussed modular identities for R(g). Ramanujan’s well-known modular
identity relating R(q) and R(q®) is

1 — 2R(¢°%) + 4R*(¢°) — 3R%(¢°) + R*(¢°)
1+ 3R(¢%) + 4R%(g°) + 2R3(¢%) + R4(¢%)

Proof of this result was given by Ramanujan [81], Rogers [84], Watson [92], Ra-

R3(g) = R(@") (3.1.1)

manathan [78].
In his notebooks, Ramanujan recorded many identities involving R(g) which can
be found in [24, 20, 79, 80]. One of the most important formulas for R(q) is

1 (@"%¢"®) oo
— —1-R(q) =4 T Jeo
R(q) (@) 7*/5(¢% ¢°) o

Furthermore, on p. 206 of his lost notebook ‘[80], Ramanujan recorded the iden-

(3.1.2)

tities, namely,

1 e L (4;9)0 T 1
—_— - R(q) - ql/l(] H 1 + aqn/s +q2"/5 (313)

VR(q) (4% ¢5%)o0 2

28
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and

R(g) = Ch q)oo 1
\/— - B 1/10 (5, ¢°) H 1 + Bq™/5 + ¢2n/5’ (3.1.4)
1- 1
2\/3 and f = +2\/5 '
Proofs of these identities are given by Ramanathan {78] and Berndt et al. [23].

See also [24, pp. 21-24].

where o =

It has been observed that these identities provides an amazing factorization of
the result in (3.1.2).

Recently, C. Gugg in his paper {47], gave product identities for the expressions
appearing in the numerator and denominator of the Ramanujan identity (3.1.1) by
employing (3.1.3) and (3.1.4).

Now, we recall Ramanujan’s cubic continued fraction
9 9+¢ F+4

1 + 1 + 1 + -7

G(q) = lal < 1. . (3.15)

In 1995, H. H. Chan [34] established several modular relations connecting G(g) with
G(—q), G(q?*) and G(g*). Some of those relations are

G(q) + G(~9) +2G*(-9)G*(g) =0, (3.1.6)
G*(g) +2G*(¢)G(q) - G(¢*) =0, (3.1.7)

and

1-G(@®)+G%¢*) _ Ga)
1+2G(¢%) +4G*@°)  G(¢®)

(3.1.8)

H.H. Chan [34] proved (3.1.8) by using Ramanujan’s modular equations of degree
3. N.D. Baruah [11], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan [1]
also found alternative proofs of (3.1.8). Baruah [12] also established two modular
identities connecting G(q) with G(q°) and G(q") respectively. Further modular
identities for G(g) have been found by Naika, S. Chandankumar and K.S. Bairy
(68].
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In our work, we prove (3.1.8) by deriving product representations namely,

+VG( Vl,s \/ 9)¥(g') (3.1.9)

\/__

and

—g3) 1/3)

V“w( q ) x(-q)'

G(q) = (3.1.10)

\/a—

We also find some interesting identities related to G(g). In the next section, we
give some preliminary results and in the final section, we present some new identities

involving Ramanujan’s cubic continued fraction G(g) and give a new proof of (3.1.8).

3.2 Main results and their proofs

Theorem 3.2.1. We have

V- D o
and
/3( ( 1/3
\/F_(cf q'/% (f]l) wxf—a) (322

Proof of (3.2.1). We recall from [20, p. 49, corollary(ii)], [20, p. 350, Eq.(2.3)] and
[20, p. 39, Entriy 24(iii)] that

¥(9) = £(¢*,4°) + qv(g®), (3.2.3)
L e(=4)
x(—q) 0D (3.2.4)
and
xX*(q) = olg) (3.2.5)
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From (1.6.3), (3.2.4), and (3.2.5), we have

G(q) =q1/3 (q;q2)00 _ .1/3 X(_Q) _ 173 ¢'((13) (326)

@ T REd) T Ta )

s \/

%) + ¢ Bp(q?
1/“ (g®)f (g, q )

Using (3.2.3) and (3.2.4) in the numerator and the denominator of the right side of

Thus,

above, we find that

1 Ve(=¢%) 1/3
+vG 3.2.7
@) VGla) = o o(—a \/x( 9)v(q 3.2.7)
Employing (3.2.5) in the right side of (3.2.7), we arrive at (3.2.1). a

Proof of (3.2.2). From [20, p. 345, Entries 1(i), (ii)], we obtain

<p( q‘/s)
Using (3.2.8)
\/__ 1/3)
- = 3.2.9
G (rl "3 3)\/— 629
Employing (3.2.6) in the right side of (3.2.9), we arrive at (3.2.2). a
Theorem 3.2.2. We have
3 3Vl \o/d
1— G(q) +G2(q) - G(q) R X ( q )X( Q)‘/) (Q) (3210)

7P (—* ) (¢® )Y (a?)

and

30 3\ g4
1+26(g) +46%(a) = C(a) - 2 é)w‘i ()iﬁq§)¢q()_ql o (3.2.11)
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Proof of (3.2.10). Here, we require (3.2.1). Note that for each 7=1,2, we obtain an

identity from (3.2.1) by replacing ¢/ with w*q'/%, where w = €*™/3. Multiplying

these two identities, we have

1 o Vx3(— ¢*)x(—q) Wiol/3
11 (o +¥oo0) = 11 S e

= M(__q) w 1/3 2 .1/3
- 7302 (— ) Y(wg P)b(wig ). (3.2.12)

1=1,2

Since
(1-q)(1 ~wg)(l —wq) =1-¢°,

we have

[o o]

(95 @)oo (wa; wa)oo (g3 0%)00 = | [ (1 = 4)(1 - w"g™) (1 — ")

=[Ja-g?[Ja-¢"
3

3In

IRCET D
- (3.2.13)

From (1.5.3)

T
Y(g) = G (3.2.14)

Using (3.2.14) and (3.2.13), we find that
(wa/B)w( q1/3) — (w2q2/3; 2/3) (wq/ wq2/3)go
(wq'/3; wql/3) oo (W2q/3; w q1/3)
_ (wzqz/s;w2q2/3)go(wq2 2/3) (q2/3 2/3) (qlfd 1/.5)0o
- (wa/s;wa/a)w(wzqua’wz 1/3)00( 1/3; 1/3)00( 2/3; 2/3)20
_ (0% 0%)5(6% 6%)o0(67% 6o
(4% 0°)% (0 95 (4*/3; 4**)%,

¥4 (q)
= . 3.2.15
V@) (0219
Employing (3.2.15) in (3.2.12) and expanding the product on the left side, we obtain
_ 2 30 3V ( — o \ahd
1-Gg) +G*(q) _ _xX*(=)x(=9)¥*(9) (3.2.16)

G(q) @ PR )(P )P (g?)
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Thus, we complete the proof of (3.2.10). O

Proof of (3.2.11). The proof of the second part of Theorem 3.2.2 is quite similar to
the proof of first part. Here we require (3.2.2).

Proceeding as in the proof of first part, we deduce that

11 (_1__2 w‘G(")>: ) pleug o).

=12 \VWG(9) ¢ (-¢*)x(—q)
(3.2.17)
Again, we have from (1.5.5)
(59)%
—q)= 7oy 3.2.18
o) (4% 6%)oo ( )

Using (3.2.18) and (3.2.13), we obtain
/3., 2 1/3\2 (, ,2,1/3. 2.1/3\2
o I A P AT A S
o(~wg'P)p(~w?q'?) = ( 2/3. 2 ) 2/3. 72/ 2
w wq?/3) oo (wq2/3; wq?/3
(Wg%3;wq%3) oo (W3 W?/3)Z,
_(49)5,(05% 6%) oo (7% 0%) oo

T (%5 0)5%(6% 45 (63 ¢VR)2,
¢*(=9)
~ o(—)e(—g'R)’ (3219)

Now, expanding the left side of (3.2.17) and using (3.2.19), we obtain

1+2G(q) +4G*(q) _ x*(=¢*)¢*'(—q)
G(q) (=) (—a®)p(—a®)p(—g'3)’ (3.2:20)
which is equivalent to (3.2.11). o
Corollary 3.2.3.
1 _ 7*0°(=¢°)¥(¢°) 2.3\ _ 3 _1_
P(@)e(—9)  x®(—a*)P*(¢¥)et(—¢?) {4 C@)—2Gl@)+3+ G(¢®)
1
t } (3.2.21)
1 _ *x(=®)e®(—a°)(d°) 3.3 3 9
TOFCD P 116 €6 +12 06) 48+ o

3 1
SRR } (3.2.22)
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Proof. Multiplying (3.2.10) and (3.2.11) and replacing q by ¢3, we can easily derive
(3.2.21).

Squaring (3.2.11) and multiplying with (3.2.10) and replacing ¢ by ¢%, we can
easily derive (3.2.22). O

Next, as corollary we obtain the following 3-dissections, which are equivalent to

some results in the previous chapter.

Corollary 3.2.4. If¢¥(q) and ¢(q) are defined in (1.5.3) and (1.5.2), then

1L __¥@) @) | a0
Plg)  PHPw(e®) Y@ w(e®) T YY)

(3.2.23)

L _¢(=e) , , ) |, 290w (3.2.24)

= q )
o(-q) ¢*(-q3) ©*(—q%) T oA (=)
1 (qg;qg)s (‘118;(118)3 1 q 2 3 3
= = = + +3¢° - 2¢°w
(:9)0(9% 800 (4% 6%)4, (45 a5)%, {'wz(tf*) w(g3) ¢ - 2qwlg)
+ 4q“w3(q3)}, (3.2.25)
1 (%)% 1 3q 2 2
GE = (qs;qa)g{wi’-(qs) + "o +9¢* + 8¢°w(¢®) + 12¢*w?(¢%)
+ 16¢5w* (qa)}, (3.2.26)
where
G _ .1/3 (q,qz)w . .1/3 3.2.27
(@) =g¢ W—q w(q). (3.2.27)

Proof. Employing (3.2.27) in (3.2.10) and replacing ¢ by ¢*, we arrive at (3.2.23).
Employing (3.2.27) in (3.2.11) and replacing g by ¢°, we find (3.2.24). In (3.2.21),
employing (3.2.27) in the right hand side and using (3.2.14), (3.2.18) in the left hand
side, we obtain (3.2.25). In (3.2.22), employing (3.2.27) in the right side and using
(3.2.14), (3.2.18) in the left side, we arrive at (3.2.26). O

Now, let us consider L.J. Slater’s identities

g (—q;0%)n  f(—q,—¢°)

@ - 9D (3.2.28)

n=0
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and

00 _ 3 _.3
Z il _ 1 ,d)q(_’q)q ), (3.2.29)

which are analogous to the famous Roger~Ra.ma.nujan identities

—q ’_q3)
Z “(a; Q)n f(—q)

n=0

and

Y f(=e,—4Y)
(49 J(=q)

Let us define

_ f(=a.-¢%
Alg) = e (3.2.30)
and
_f(=¢ -¢)
B(q) := BT (3.2.31)
Andrews (4], proved that
_ 1/3&@_ _ .1/3 x(—9) (3.2.32)

(@)=4 Ble) ! (=)

In the next theorem, we find g-product representations of the even and odd terms
B(g) _ ¢'°

Alg) ~ G(9)
Theorem 3.2.5. If

1/3 oo
D(g) = é(q) = % = cad, - (3.2.33)
n=0
then
_ (a% )%
Zq (@ D)oo (0% oo @ oo (3.2:34)
and
iCZann _ (4; 9)oo(q% 43 _ q_l/aG(q). (3.2.35)

(4% 9%) (@3 ¢%)3,
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Proof of Theorem 3.2.5. From (3.2.33), we have

Z%q = 3(D(@) + D(~a))

T 1[B@AC) + B0Aw
By e
where we have used (3.2.33).
We recall from [20, p. 51, Example (v)] that
f(=4,~¢") = x(~a)¥(g"). (3:2.37)
From (3.2.30) and (3.2.37),
v x(=0x(@)¥(e®)v(=d%)
A(Q)A(=q) = e : (3.2.38)
Again, employing (3.2.30) and (3.2.31), we find that
_ _ _ f(qa q5)f(_q3, _qd) + f(—qa _q5)f(q3) q3)
B(g)A(—q) + B(-q)A(q) = mYm - (3:2.39)
Next, recall from (20, p.45, Entry 29| that if ab = cd, then
f(a,b)f(c,d) + f(—a, =b)f(—c, —d) = 2f(ac, bd) f (ad, bc). (3.2.40)

Setting a = ¢, b = ¢°, and ¢ = d = —¢*® in (3.2.40) and using in the right side of

(3.2.39), we have

2f%(=4*, —¢%)
¥(- q) (9)
2(¢% 6%

»(—a)b(9)’

where we have also used (1.5.4). Applying (3.2.41) and (3.2.38) in (3.2.36), we arrive

B(q)A(—q) + B(—q)A(q) =

(3.2.41)

at

2" 02
Z”“" [x( SRR )| (3.2.42)

Now, using ¢- product representations for ¢¥(g) and x(q) in (3.2.42), and then re-
placing ¢% by g, we arrive at (3.2.34).
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The proof of the second part of Theorem 3.2.5 is quite similar to the proof of
first part.

Proceeding as in the proof of first part, we have

> g™ = 3{D(@) - (=) = 3 | TRECDZFCDAD] 524y

Using (3.2.30) and (3.2.31), we find that

g, ) (=% —¢*) — f(=9, —¢°) f(&*, ¢*)
P(—q)1b(q) '

Again, we recall from (20, p.45, Entry 29] that if ab = cd, then

n=0

B(9)A(=q) — B(-9)A(g) =

(3.2.44)

f(a,b)f(c,d) — f(—a, —=b)f(—c,—d) = 2af (g,acr"c‘i) f (g,accﬂ) . (3.2.45)

Setting a = ¢, b = ¢°, and ¢ = d = —¢® in (3.2.45), and employing in the right side
of (3.2.44), we obtain

Blg)A(~q) ~ B(~g)A(g) = 2 i((__qgw(;;]l )

_ 20 X*(=¢*)¥*(¢%)

v(-q)v(g)

where we have also used (3.2.37). Employing (3.2.46), (3.2.38) in (3.2.43), we deduce
that

(3.2.46)

o0
1[2g x(—q2)¢(q“)]
2n+1
Comp1 g™ = = . 3.2.47

nzzo e 2 [ ¢(—4°) (3:2.47)
Now, using g-product representations for ¢(g), ¥(g) and x(g) on the right side of
(3.2.47), diving both sides by g, and then replacing ¢* by g, we easily deduce the

first equality of (3.2.35). The second equality then follows from (3.2.6). O

Remark 3.2.6. M. Hirschhorn and Roselin [50] also proved (3.2.34) and (3.2.35)
3. .3)3
by applying a 2-dissection for %

Finally, we prove (3.1.8).
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Proof of (3.1.8). Dividing (3.2.10) by (3.2.11) and replacing g by ¢°, we obtain

1-G(@°)+Ge®) _ (=)@ e(=a°)p(-9)
14+2G(¢°) +4G*(¢°) o*(—¢*)¥(¢°)¥(q)
_ XX (=4°)
x'(=¢%)

(3.2.48)

where we have also used (3.2.5).

Since

— 1/3 x(—9)
G(g)=g¢ TE

we complete the proof of (3.1.8).



Chapter 4

Analogues of Ramanujan’s
Partition Identities and

Congruences Arising from his
Theta Functions and Modular
Equations

4.1 Introduction

In the introductory chapter, we have defined the partition function pgm)(n) as

- 1
pcl n) (T qn = . 411
; a0 = e T “1
Recently, H.-C. Chan [30] proved that
x 3. 43)3 (46- 46)3
S bz 30+ 2)g" = 3 LD )l05 9 ) (4.1.2)

s (4:9)% (% 60)%,
and consequently, ppi21(3n +2) = 0 (mod 3).
Again, H.-C. Chan and S. Cooper [32] considered the partition function pp2s2)(n)

and proved the congruence pj232)(2n + 1) = 0 (mod 2) by showing that

> (4% 475 (9% 4°)5
2321(2n + 1)g" = 2 = =3 413
2 pn t 00" =2 e e w1

n=0

Note: The contents of this chapter appeared in The Remanujan Journal (18] of Springer.

39
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Here, combinatorially, pj;232)(n) is the number of 4-colored partitions of n with
two of the colors appearing only in multiples of 3.

Very recently, H.H. Chan and P.C. Toh [33] have given some beautiful analogues
of (1.1.5) including the results in the following theorem. They have established these

results using the theory of modular functions.

Theorem 4.1.1. If the generalized partition function piugm)(n) is defined by(4.1.1),

then
- (g% a»)% (0" 4% (¢%¢»)5,(¢"; ¢")8
pese(2n + 1)g" =4 = + 8¢ x (414
,,Z;o nesl ) (4;9)3.(a% 4°)% (5 9)82(a% ¢°)&2 (414)
e (%653 (™ 4" )%
pu(2n + 1)g" = , (4.1.5)
;, i (4:9)3(a%9")3
i psnn (@ + )" = 2 LLI@ e o (PTG g
= (¢ 9)&(a"5 6" )% (3 9)%(9"; 9",
ipmal n+1)gr = Li)el0%50e | (05000500 (g g
£ P (g 9% (@55 9)%, (4; 93 (a5 ¢%)%,

It readily follows from (4.1.4) and (4.1.6) that
ppese(2n +1) = 0 (mod 4)
and
ppz1z)(2n + 1) = 0 (mod 2).

In Section 4.2, we present new proofs of (4.1.3)-(4.1.7) by employing Ramanu-
jan’s modular equations of degrees 3, 5, 7, 11, and 23, respectively.

We also find a host of other analogous results by employing Ramanujan’s theta
function identities and modular equations. We also deduce some new interesting
partition congruences. In Section 4.3, we present some new results analogous to

(1.1.5) and new partition congruences deducible from them.
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4.2 New proofs of (4.1.3)—(4.1.7)

The proofs of (4.1.3)—(4.1.7), can be given by using a certain type of modular equa-
tions independently found by Schréter, Russel, and Ramanujan. These modular
equations were beautifully employed by Berndt [21] to deduce certain Farkas-Kra-
type partition identities.

Proof of (4.1.3). We have

oo
,;0”“’3"(")"" B (q;q)?,o(lqa;q3)§o T @ 02)30(03;q‘"’)ﬁottJ?;q?)&(aﬁ;q“)&' #z1)

Replacing ¢ by —¢ in (4.2.1) and then subtracting the resulting identity from (4.2.1),
we obtain

ZP[1232] (”)qn - Zp[ﬂaz] (T")(‘l)nqn

" 1 " 1 1

T (@B PLS O {(q;q2)2o(q3;q6)§o - (—q;qz)%o(—qa;qﬁ)?,o}

SR Vi e P - GPREOL) . (422)

(4% 9%)% (9% ¢®)%
Now, we recall from [20, Entry 5(ii), p. 230] that if 8 has degree 3 over a, then

(@B)/* +((1 - a)(1 - B/ =1,
which can be transformed into (see [21])
(=40")e(=0% 0°)% = (8:9")5(0% 0o = 40(~0" 0o (0" ¢")0e-  (4:23)
Employing (4.2.3) in (4.2.2), we find that

(a*;9")2.(a"% ¢"%)%,
p2az)(n)g" — ) ppeay(n)(—1)"¢" = 4¢
,,2_0[1] :;0“3] (9% 0%)%(9% ¢%)%

X {(-¢%0")5%(~% )5}
T O S U i )
= ) ), (424)

Extracting from both sides of (4.2.4) those terms involving only ¢***! and then

dividing both sides by ¢ and replacing ¢* by g, we arrive at (4.1.3) to complete the

proof. a
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Proof of (4.1.4). We have

1 1
P4 4(n qn = )
2P = T R IR

so that

Z Pussyy(n)g” — Z Ppese)(n)(—

n=0 n=0

(%09)%(a"% )% (g q"’)‘éo(Q“‘; % (6004 (-4% 4%
_ (g59%5(e% g 20;;,{ oy vas
 (g%590)%,(¢%%; 9108, 0% 0 )0 — (645 (¢% 005} (4.2.5)

Now, we recall from [20, Entry 13(i), p. 280] the following modular equation of

Ramanujan. If 8 has degree 5 over «, then

(@B)? + (1 — @)(1 — B))/* + 2{162B(1 — a)(1 — B)}/¢ =1

As shown by Berndt [21], the above modular equation can be transformed into

(—4; 8% (=% 004 — (4:9))%(6% ¢"0)5% = 82 + 16¢°(—q°%; ¢%) o (—0'% ¢'%)%e.

(4.2.6)
Employing (4.2.6) in (4.2.5), we find that
o o0
Zp[1454](n)q" - Zp[vsq (n)(—
n=0 n=0
(q4;q4)4 (q2°;q2°)4 2 2. 2\4 10. _10\4
=12 = 2 {4+ 8¢ (—4%9%) o (904" )oo
(9% 6%)8,(q"%; ¢*0)8, { )
_ ((I“;Q“)ﬁo(qm,q”) {4+8q2(q4;q4)‘éo(qz°;q2°)§o}. (427)
(9% ¢%)8,(¢"%; ¢"0)8, (g% a®)4.(a*% ¢*0)4,

Now, extracting from both sides of (4.2.7) those terms involving only ¢***!, and
then dividing both sides by ¢ and replacing ¢* by ¢, we arrive at (4.1.4) to complete
the proof. O

Proof of (4.1.5). We have

= n 1 1
> ppimy(n)g” =

~ (@ Doo(034)00  (459%)00(0"54)00(% 42)oo (474 4o
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so that
anm](n)q" - ZP[117I] (n)(-1)"¢"
n__ 1 " { 1 _ 1 }
(9% ¢*) (g 14)q14)oo (2,00 (@:8")0  (~0;0%)o0(—4";9")oo
( Le Em T2 2 {(-3800(—4"18M 00 — (§:6%)00(8"; 8 )} - (4.2.8)

(¢ ,q2)§o
Now, we recall from [20, Entry 19(i), p. 314] the following modular equation of

Ramanujan. If § has degree 7 over «, then
@B) P+ (1 -a)2 - )/ =1.

As shown by Berndt [21], the above modular equation can be transformed into

(=45 0")oo(—=7" 400 = (380 (@"; 4o = 29(—07; ") oo(—0"*; oo (4.:2.9)
With the aid of (4.2.9), we deduce from from (4.2.8) that

(q“; 400 (4% 4%%) oo

Pprm(n q - 1 n 1
Z (127 ]( n;)P[l 71] I (qz;qz)go(qu;qu)go
x{ —q2' 2 )oo(—4 14;q14)m}
(q Q) (28 28)2 (4210)
PO N PR O -

Extracting the odd terms from both sides of (4.2.10) we arrive at (4.1.5) to complete
O

the proof.

Proof of (4.1.6). We have

- n_ 1 N 1

2 = o T G PV P
(4.2.11)

n=0

Replacing ¢ by —¢ in (4.2.11) and then subtracting the resulting identity from



44

(4.2.11), we obtain

Zp[121121(77'q —Zp[lzml ( 1)”‘1”

n=0 n=0

1 1 1
- (0% 022 (4225 92)2, {(Q'q2)2 (q'1;¢22)2, (_q;q2)go(_q11;q22)go}
(‘14"14)2 (g 44 ‘144 2 11, 2212 12 /11, 2212
= (0% )L (0% ¢2)%, { —4;¢°)%(—0" 6*%)% — (342 (0" 5 q )oo} (4.2.12)

Now, we recall from (20, Entry 7(i), p. 363] that if 8 has degree 11 over «, then

(@B)* + (1 — (1 - ))/* +2{16aB(1 — a)(1 - A}/ = 1

which can be transformed into (see [21])

(-3 6%)% (-0 6% — (4: 6% (0" )2 = 49 + 46° (6% ¢°) 2 (=% 4%)%-

(4.2.13)
Employing (4.2.13) in (4.2.12), we find that
Zp[l"ll?] (n)g" — ZP[ﬂn?]
n=(0
2 (g

959 )
- E ;4 E 22;4 {24 20°(-0" ") (4" 0)cc)
P q“)2 ("5 q ) {2+2q (q“;q")io(Q““;q““)ﬁo}_. (4.2.14)

(0% 9%)% (22,q22) (9% 9%)%(4%% 9%

Extracting from both sides of (4.2.14) those terms involving only ¢>**!, and then
dividing both sides by ¢ and replacing ¢% by ¢, we arrive at (4.1.6) to finish the
proof. a

Proof of (4.1.7). We have

" 1 1
;p[mm(n)q T (69005 )0 (36)00(0%50)e0(0% 0D)0(4%; 1Yo
(4.2.15)

Replacing ¢ by —q in (4.2.15) and then subtracting the resulting identity from
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(4.2.15), we obtain

o0 . [o o]
Zp[11231](n)qn - Zp[p%l](n)(—l)"q"

n=0 n=0

_ 1 { 1 1 }
(6% 9200 (0% 9%) 0 | (756%)00(0%59%)00  (—439%)oo(—0%3; 9% ) o
(44; q4)oo(q92; qu)oo ) 23, 46 2 23, 46

oo

\

Now, we recall from [20, Entry 15(i), p. 411] that if B has degree 23 over «, then
(@B)® + (1 — a)(1 = B2 + 22 {aB(1 — a)(1 - B)}/* =1,
which can be transformed into (see [21])

(=283 o0(—0% 6" 00 — (4, 6%)0(3%;0") 0 = 29 + 26° (=% %) 00(—9"; §"®) oo-

(4.2.17)
Employing (4.2.17) in (4.2.16), we find that

> ppamy(n)g™ = > ppizay(n)(—1)"g"
n=0 n=0

(‘14;‘14)00((]92;‘192)00 2 2, 2 46. 46

4. 4 92. .92 4. 4 92. 92

S (42,(12);0(q46,q46);o {1+ 2(q2,q2)m(q46,q46)m}. (42.18)

(4% 4%)2,(9*; 9*%)% (9% 6%)oo(q*; 9*%)co

Extracting from both sides of (4.2.18) those terms involving only ¢***!, and then
dividing both sides by ¢ and replacing ¢? by g, we arrive at (4.1.7) to complete the
proof. 0

Corollary 4.2.1. We have

p[1232](4n +3) =0 (mod 4). (4.2.19)
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Proof. From (4.1.3), we find that

Zp[1232](2'n + ].)qn - Zp[1232](2n + 1)(—(])"

n=0 n=0

2 1 1 }

(9% ¢%)%,(¢5% %)%, {(q;112)?,o(q3;q“)2o (—4;9*)8, (4% %)%,

(g% 9")5,(¢"% ¢"%)5, : '
=2 66\ {(—q;qz)go(—qd;qﬁ)go
(g% ¢%)8,(¢% ¢®)&,

- (q;q2)ﬁo(q3;q6)§o}
(g% ¢%)% (0" 4")5% (~a; D)% (=% ¢°)?
(% )% (g5 ¢0)8, \\\ DT et oo

3
’ —(q;qz)io(q3;q6)ﬁo) +3(¢% 4% (% 6%

X ((~4: )% (-0 )% — (@%@ %) | (4220

=2

Employing (4.2.3) in (4.2.20), we obtain

(¢*; 9% (a2 4"%)S,
(9% 9%)8,(q% ¢®)8,

ZP[1232](2n +1)¢" - ZP[lﬁaz] (2n +1)(—q)" = 24q

n=0 n=0
+ 128q3 (q4) q4)¢1x2>(q12) q12)c1x2>
(¢%9%)aa(e%¢%)%
(4.2.21)
and therefore,
[s o]
(4% 4*)o (0% a°)5 (4%9%)e (9% 0o
P23z (4n + 3)¢" = 12 = + 64q 2 =. 4.2.22
2 rea(in +3) P I P TP
The proffered congruence in (4.2.19) now readily follows from (4.2.22). a

Remark 4.2.2. The above congruence is a particular case of a general congruence

found by Chan and Cooper (32, Eq. (1.4), Theorem 1.1].

Corollary 4.2.3. We have
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Proof. From (4.1.5), we have

Y ppm@n+1)g" = Y ppay(2n + 1)(=1)"g"
n=0 n=0
_ (9%9%)%(4%%¢®)%
T EOLES qu) {(~6:0")5%(=0" 0% = (@)% 6%} (4224)
) 00 )

Employing (4.2.9) in (4.2.24), and then comparing odd terms from both sides, we

find that
_ ( 2.q2)3 ( 14;q14)3 (qZ’q2)go(q14,ql4)go
;0”“‘7" ) = 3 s T oL@
I CET A ChT o
= oL med?)
= (0% ¢)o0(q™; ¢")oo (mod 2), (4.2.25)

where we have also applied the binomial theorem. From (4.2.25), we readily deduce

(4.2.23). O

4.3 Some new results and their proofs

In this section, we state and prove some results which are analogues to Ramanujan’s
“Most beautiful identity” (1.1.5). We further deduce some new interesting partition

congruences.

Theorem 4.3.1.
6. .6 10. 10 30. ,30
Z pigsis(2n + 1)g" (q ;q )2 (qs,qa)go(q5 ,z 2)eo(lz ,lz 2)oo
s (9:9)%(9% 0%)3,(¢° ¢°) %, (95 ¢")%,
(0% 0*)2. (4% ¢%)2,(¢"% ') 2. (¢*% )2,
(7:9)3,(g% %)%, (45 4°)3.(a*5; ¢¥)3,

Proof. The proof is similar to those in Section 4.2. We utilize the modular equation

+2g (4.3.1)

[20, Entry 11(xiv), p. 385]

(@By8) 8 + {(1 — a)(1 - B)(1 — 7)(1 — 8)}/8

+ 23 {afys(1 — a)(1 - B)(1 —y)(1 = &)}/ =1,
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where 3, v, and é have degrees 3, 5, and 15, respectively, over a. |

Remark 4.3.2. We note that, pigis115(n) is the number of 4-colored partitions of

n with three of the four colors appearing only in multiples of 3, 5, and 15, respectively.

Theorem 4.3.3. We have

(4% 935 (a"% ¢*2)%,

Zp[1131](2n+ DT = O a5 0 (6 )

n=0

(4.3.2)

and

6. 6)5

4. 4\2
Z 959 )o\d
p[1131] 2n ( ) (

(q q) (qz;qz)oo(q3;q3)go(q12;q12)go' (433)

Proof. We have

ZP[P:%‘](")Q" - ZPulal‘] (n)(-1)"¢"
__ . n= { . ] 1 }
{(8%50M)00(0%0%)0 | (30D)0(636%)0  (—058%)oo(—%0%) oo

= (‘(}:q;);o((q ’ZI))w {(=36%)0o(=%6%)o0 = (3:4))0(q%¢%)0 } . (4.3.4)

Similarly, we have

Z pua(n)g” + Z pura(n)(—

n=0

:(q4q4) ( ’q12)°°
(% 4*)2,(45 %)%

{(=46")o0o(—0% %) + (3 6")0(d*;¢®)o } . (4.3.5)

Now, from (14, p. 958|, we have

P()¥(@®) + ¥(—)v(—¢*) = 20(¢°)¥(q") (4.3.6)

Y()¥(@®) — b(—)v(—¢*) = 2q0(g*)(q"?). (4.3.7)
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Transforming (4.3.6) and (4.3.7) into g-products, we have
(=430")o0 (4% 0%)oo + (43 0% (0%: 6%)o0 = 2(—0*; ¢")ou(~0% 0")es  (4.3.8)
and
(=410%)e0(=0% 6%)c0 = (45 97)o0(0%; 0%V = 20(~ 0% 4" oo (=01 0")0,  (4.3.9)
respectively.
Employing (4.3.8) and (4.3.9) in (4.3.5) and (4.3.4) and comparing the odd terms

and even terms, respectively, from both sides we complete the proofs of (4.3.2) and

(4.3.3). O

Corollary 4.3.4. We have
pat)(4n +2) = 0 (mod 2) and pig(4n +3) = 0 (mod 2). (4.3.10)

Proof. Applying the binomial theorem in (4.3.2) and (4.3.3), we obtain

- n_ (@050 6%
Zp[1131](2n+1)q = — g (mod 2)
— (4% 9*)% (4% 4°)%
and
. (4% 9*)5(a% a%)3
pgy(2n)q" = o0 2 (mod 2),
2:40 w( (@) la% P ¢
from which we readily deduce (4.3.10). O

Remark 4.3.5. We note that, ppraj(n) is the number of 2-colored partitions of n

with one of the colors appearing only in multiples of 3.

Theorem 4.3.6. We have

oo 2. .2\2 (,.30. .30\2
n q )q [oe) q ] o0
> ps(2n+1)g" =4 (07 4 )eola ™3 47)

: 43.11)
E L@ Pn@ e i%e

and

(¢%¢%)%,(¢"% ¢")%,

[o o]
Pnt 1(2’h+lqn=q .
Z (st ) (4 9)2.(9%%:¢%%)2,(¢% ¢%) 0 (4% 6°) oo

n=0

(4.3.12)
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Proof. We have

Zp[slsll(”)q ‘Zp[alsll(n) -1)"q"

n=0

B 1 { 1 ~ 1 }
T (65 090(0% 0 1 (6% 6%)00(@® 0000 (6% 0%)0o(—05 ¢%)co

(ql2;q12 q20’q20 o .
= (qs;qﬁ);x)((lo’qm) {(=4%6%)60(~0% 000 — (¢%6%)e0(d% 0"%) o0} (4.3.13)

and
Z ppusy(n)g” + Z puus(n)(—
1 1 1
T (0% )% )00 {(q;qz)w(ql5;q3°)w+(—q;qz)oo(—q“;q”)oo}
( 4)00(‘160;‘1 Moo .2y (15 30 L2 15, 30
= (¢ (g gL {(~4,6")o00(—=7"% 6*)o0 + (4, 6%)0(0"% ¢*) o } - (4.3.14)

Now, from [20, Entries 9(i) and (iv), p. 377], we note that
¥(g*)(®) — V(- )(—¢°) = 2¢°0(¢* 1 (q*)
and
(@) (e"®) + (=¥ (=¢") = 2p(¢°)¥(¢"°)-
The above two identities can be transformed into

- (-0%4%)00(=6% 0" o0 — (6%6°)e0(@%:4")co
3 (¢*;9)5(d*: ¢%)%

—2 4.3.15
T D)o (0'% )00 (47 0)o0 (0% 49) o0 ( )

and -

(=48 o0(=7"% 6o + (45 6%)00(¢"%; 4**) oo
_ 2 (q12; q12)go(q20; q20)<2>o (4316)
(9% 94)o0(4%; %) 0 (4'%; 41 00 (6°%; 450) 0

respectively.
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Employing (4.3.15) and (4.3.16) in (4.3.13) and (4.3.14) and comparing the odd
terms and even terms, respectively, from both sides of the resulting identities, we

readily arrive at (4.3.11) and (4.3.12). O

Theorem 4.3.7. We have

(6% )2 (6**; %2, (6% %) (4% ¢%)oo
(9;9)3%.(¢%7; ¢*)5,
2. .2 \4 54. . 54\4
+2q3(q g )oo(q 4 )oo, (4317)
(9;9)%.(a*";4°")8,
(0% 9%)2% (47 47)2.(0% ¢°)o0(075 4 ) oo
(9;9)3.(a%; ¢%%)3,
2. .2\4 70. ,70\4
4((] 7q )oo(q ’q )oo
(7 9)%, (g% ¢%)8, (4.3.18)
(¢'% 9" 0)e(a"; '),
(4% 4°)8,(q": 95,
("% a2, (0" ") (45 0) o0 (0% 6% ) oo
(6% 6°)%.(a"; 973

Y ppaar(2n+ 1)g" =2

n=0

Zp[12352](2n + 1)(]71 =2

n=0

+ 2q

Y pm(2n+1)9" =29

n=0

- 2q (4.3.19)

Proof. Since the proof is similar to those in the previous theorems, we omit the
details. We only give the theta function identities in Entries 4(iv), 17(i), and 17(ii)
of [20, Chapter 20, p. 359 and p. 417, which were used to deduce (4.3.17) — (4.3.19)

are

e(@)e(@) — v(—9)e(—=a"") = 49(%; 1®) o (1'% 4" oo + 40™¥(¢*)¥(d™), (4.3.20)

(@)e(d*) ~— e(—0)p(—a%) = 49(4"% )0 (3" ¢")eo + 46°0(g))¥(¢™), (4.3.21)

and
e(@®)e(q") ~ p(—a°)o(—q") = 46*¥(a"")¥ (@) — 46*(6% ¢M) (47 ¢")o0, (4.3.22)

respectively.
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Corollary 4.3.8. We have

p[12272](2n + 1) =90 (mod 2),

Pprssy(2n 4+ 1) = 0 (mod 2),
and
ps272)(2n + 1) = 0 (mod 2).

Proof. Readily follows from (4.3.17)—(4.3.19). O

Theorem 4.3.9. We have

oo 6. 6\7 4. 4\2 (6. A6\T (12. 122
n 7,9 ) 959 )o\T 59 )o\q "3 9
Zp(1‘35](2n+1)q =73 (2 )3 s T8¢ ( ) )2 (2. 2) (3. 3 1200
— (4% 9% o0 (9% ¢°)e2 (959)%(9% ¥ oo(9% ¢*)30
(4.3.23)

and .

i P (20 + 1)g = (9 9)50(0" 4)eo(0™: 0o, ) (00754750
(e @ | L O

n=0
(4.3.24)
Proof. We have
S ()" - . (4.3.25)
125 = = . D
e sl (0 9)o0(0% %)% (959 e0(0?; 0%)0o(9%; 4°)3 (455 4%)3,
Therefore,
ZP[P:«H(”)Q" - Z pas)(n)(—1)"¢"
n=0 n=0
B 1 { 1 1 }
(9% 6% 0% %)% L (4:0M)0(9% 053  (—450%)eo(—a% ¢%)3,

(g% 4% ool ¢'2)3
= (q2'q2;; (qﬁ,qe)u‘f (—36%) oo (—0%0%)% — (3670 (a%¢%)% } -
b o0 * [o o]

(4.3.26)
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Now, we recall the following modular equation of degree 3 in (20, Entry 5(viii),
p. 231).

If B has degree 3 over «, then

s a)s)w. (4.3.27)

a8%)1/8 — _ a8 g _ (AN )
@)+ {0 - ) - gy =1- (2522

The above modular equation can be transformed into (see (13, pp. 1035-1036))

(4;9)5(a% ¢%)%
(~4; 0% oo(—0% %)% ~ (4; 0% eo(d 6°)% = 2g =
°° « (9% 9?4 (a% a%)5%
(4%;9%) 0 ("% 4*2)5,
(4% ¢%) oo (4% ¢%)3

+ 8q2

(4.3.28)

Employing (4.3.28) in (4.3.26), we obtain

- n O - (4 9)5. (4% 0")oo (4% 4*%)5,
E 1351 (n)g™ — E prss) (n)(—1)"q" = 2¢
=0p[1 21 wal () (~1) (9% ¢%)8 (4% ¢°)8,(¢%; ¢¥)%

n=(0
4. 4\2 12, ,12)\10
+ 824 1 3“;((’ mL Zg". (4.3.29)
(4% 9%)3, (4% ¢%)e3
By comparing odd terms from both sides of (4.3.29), we deduce that
ipp:’s](mﬂ)q% _ (69000 00(a™ 0% |, (06004
~ [ (4% 98, (¢ a5)8, (9% ¢®)% (4% 9%)3. (4% ¢°)&a
(4.3.30)

Replacing ¢ by —¢q in (4.3.30), and then adding the resulting identity with (4.3.30),

we find that
Qipll‘351(2”+ g = (@5 80e0(0%07)5 { (600 | (=645 }
(g%92)%(6% %)% 1 (¢%e%)s (=% 454
— (q4;q4)00(q12;q12)go{(q_ q2)4 (_q3_q6)4
(g2;g2)2, (g5 gb)La L1 7 Joor T 7 E Jeo

+(=¢; q"")‘éo(qa;qﬁ)io}. (4.3.31)

n=0

Now, from [14, p. 958], we have

(@)e(=a%) — p(—a)e(d®) = 4q¥(—q* )Y (—4°), (4.3.32)
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which can be transformed, with the aid of (1.5.2) and (1.5.3), into

(2% 6e0(06e0 (4 5 33,

(g% %) o0 (0"% 0" %) o

(3¢5 (@%d%)% — (@912 (=% %)% = 4¢
Therefore,

(—4;%)2%(0% 6% o + (3492 (—4% ¢%)%
2
= {(~4:0")% (6% ¢®)% — (¢ (=% )%} +2(g% 4% (6% "%
(6% ¢®)2 (¢ ¢*)2 (6% ¢%)% (4% ¢®)%
(g 9*)%.(¢"% 9"2)%, (g% 9")%(¢'%; ¢"%)%,

Employing (4.3.34) in (4.3.31), we easily deduce (4.3.23).

= 164*

(4.3.34)

In a similar fashion we can prove (4.3.24) by using the modular equation (20,

Entry 13(vii), p. 281]

5(1 — )5\ V24
(aﬂa)l/s +{(1-a)(1- ﬂ)'ﬂj}l/8 =1-2' (’Baﬁ%_ﬁ;—) ,

where, in this case, § has degree 5 over . We omit the details. O

Remark 4.3.10. Combinatorially, ppiss)(n) is the number of 6-colored partitions of
n with five of the six colors appearing only m multiples of 3. Similarly, piss)(n) is
the number of 4-colored partitions of n with three of the four colors appearing only

in multiples of 5.

Theorem 4.3.11. We have

- (2% 4% oo(q"; ") oo (0'%5 4" ) oo(@°; ¢°)2,
(20 +1)g" = 2 4.3.35
,,2”““3 )22+ 1)g (49055 ¢®)oo (4.3.35)
and
- (0% a®) 7. (0% a3, (¢8; ¢°)?
—a(dn + 3)g" =4 x ke
;p[m i+ 3)a {(q;q)ﬁo(Q";q“)Zo(qn;q”)oo
N (0% 492, (0% 4% oo(d% ¢*)5% (6% ¢ D) oo (4.3.36)
(4:9)8,(¢% ¢®)%, ‘ o
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Proof. We begin with

- O R N ol o R C T P
Dhzs-21(n)g" = = , 4.3.37
,,Zzo s (1) (9%  (6:6)%(% 9% ( )
so that
- " nn_ (@%0%)% ( (4% 9%)% (—q";q“)ﬁo)
Pnzs-21(n)g” — -q(n)(—-1)"¢" = — .
2 )" = 2 a0 = e (Gt~ ot
(4.3.38)
Now, from (4.3.33), we find that
(0505 _ (=% _ 4, (0%0)0(0% 6%)oo(0™; )0 (4.3.39)

@M% a1 (@50Ne500%
Employing (4.3.39) in (4.3.38) and comparing the odd terms from both sides, we
arrive at (4.3.35).
To prove (4.3.36), we note from {94, Corollary 3.3, p. 84] that
?(@)o(=4%) = (=4")o(=a"") + 209 (~" )P (=%,
which can be transformed, with the aid of (1.5.2) and (1.5.3), into

(6% (%9505 %) oo(q"? 4"2)2 (0% %) oo (4% 6®)o0 (05 6°)% (6% 4% oo

(9% (qz;q2)2o(q8;qf‘)oo(q24;q24): 2 (4% ¢%)%(4"% 4% oo
(4.3.40)
Now, from Entries 25(i) and 25(ii) of (20, p. 40], we obtain
0(g) = »(g*) + 299(¢°). (4.3.41)
Employing (1.5.2) and (1.5.3) in (4.3.41), we find that
1 (%56 o, 456950 0% (43.42)

- q )
(0% (9% 4¢%)5 (4" ¢'%)% (9% 6%)3,(4% ¢®) o
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which is a 2-dissection of 1/(g;q)?%,. From (4.3.40) and (4.3.42), we arrive at

(0% 6%)% _ (0% 0")a(e% 0% ("% 0"%)3 (0% ¢%)5
(9% (9% ¢*)22(g*; 4**) (9% )2,
(g% 9")5%(4% 6% e ("% 092, (4" 4"6)2,
(4% ¢%)38(¢% 284, (¢%; ¢%) oo
(g% 9")oo(d?; %)% (6% 4°)2 (65 ™) oo
(4% 4*)%,(4"%; 3" oo (9*6; 426)2,
2 (0% 0)5(4% 8%)5(9"%; 492, (6*; 4*) o
(q2, q2)go(q12’ q12)°0 '
Employing (4.3.43) in (4.3.35), we find that

(g% 45, (a"% "3, (% ®)%,
(4% 6%)%,(4%; ¢*) o (46 )2,
(¢*; a0 (a'% ¢'%)3,(¢"%; ") 2,
(9% 4%)%.(9% ¢®)2,(0*; 4*) oo
(¢9")%.(a% ¢®)5.(4% 4%) oo (975 4o
(9% %)%, (q"%; ¢*%)2,
2(0% 05 (0% %) oo (0"%; 492, (6*; 4**) oo
(g% ¢%)8, '

Replacing ¢ by —¢ in (4.3.44) and then subtracting the resulting identity from

+ 2¢q

+ 2¢q

+4q (4.3.43)

Zp[pa-z]@n +1)¢" =2

n=0

+ 4q

+ 4q

+ 8¢ (4.3.44)

(4.3.44), we obtain

Zp[123—z](2'n. + l)qn’ — p[123-21(2n + 1)(—(])"

n=0
— 8 (6%09e0 (0" 0 (0% 1) | o (9% 9*)20(0% 6°)%(¢% 6%) 0 (a4 4*) oo
(9% 9*)%.(4% ¢®)% (9% %) o (9% 6%)8,(q"¢; ¢"6)%,

(4.3.45)
Comparing the odd terms from both sides of (4.3.45), dividing by ¢, and then

replacing q? by q, we arrive at (4.3.36) to complete the proof. (]

Corollary 4.3.12. We have
p[123-21(2n +1)=0 (mod 2)
and

ppzs-2(4n + 3) = 0 (mod 4).
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Proof. Follows readily from (4.3.35) and (4.3.36). 0

Remark 4.3.13. We note that, pjy23-2)(n) 15 the number of 2-colored partitions of

n with no part having multiples of 3 appears.

Theorem 4.3.14. We have

00 2. ,2\3 5. .5 10. 10
e (@)%
and
oo 2, ,2)2 6. L6312 9..9
Zp[129_21(2n+ l)q" — (q 4 )oo(q 4 )oo(q g )oo. (4‘3‘47)

(4:9)%

n=0

Proof. As in the proof of Theorem 4.3.11, we notice that

= - W% (@50 (0t
Puzs-2(n _ przs-z(n —1)*"™ = oo
; (g ; R e P Sy v

(4.3.48)
From [20, p. 278] and [10, Eq. (2.3)], we note that
0(9)e(—4°) = p(—0)9(a°) = 49 (4% 4")0(9”*; 4%)eos (4.3.49)
which can be transformed into
(0% _ (=00 )60 _ 40 (050)e0(6%14™)e0. (43.50)
(6%  (—6:4%)% (0% 0%)%(¢"% ') oo

Employing (4.3.50) in (4.3.48), and then comparing the odd terms from both sides,
we readily deduce (4.3.46).

The proof of (4.3.47) can be accomplished in a similar fashion by applying the
identity [15, Eq. (4.43), p. 121]

0(9)e(—4°) — o(—q)e(d®) = 2¢(¢'%; ¢"*)%.. (4.3.51)

a
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The following result is immediate from (4.3.46).
Corollary 4.3.15. We have
p[125-2](2n + 1) = 0 (mod 2)

Remark 4.3.16. As in Remark {.5.13, ppzs-2j(n) and puze-z(n) are the number
of 2-colored partitions of n unth no part having multiples of 5 and 9, respectively,

appears.

Theorem 4.3.17. We have

%o 3. .3 6. .6\2 (.2, ,.2\2
n 187 )oo\q 54 3,9 )o
Zp[133—1](2’n+ 1)(] =3 (q g ) (((] - )700( ) , (4352)
=0 q:49)
- (2% a%)5%.(¢% )3,
Pp3s-1 (2n)q" = , (4.3.53)
Z e @ 9% )%
0o 2. .2\5 6. 6
a0 @%56%)%(d%6%)2.(¢% ¢%)oo
Zp[133—1](4n+2)q =9 ( T \10
;)8
n=0
2. .,2\6 (3. .3 6. .6\6

and

i 3..3 2. ,2\11( 6. 62 2. ,2)3 (6. ,6)12
Zp[133—1](8n+4)q" = 24 (q 4 )oo(q v q )oo(q ' q )00{23328(]3 (q »q )oo(q 4 )oo

~ (g;9)8 (;9)%
(0% 49)2(a% ¥ oo (% ¢5)7
+ 453642
1 (9;9)%8
4 225 (0% ) oolq®; ¢%)2%. (4% %)%
(7:9)%
(a% %)%, :
+2 o } (4.3.55)

Proof. We note that

- (6%6%)e0 (6% %)o0(d% 0%)co
Ppsz— n)q" = = . (4356)
2P @S - (@O P
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Replacing ¢ by —¢ in (4.3.56) and then subtracting the resulting identity with
(4.3.56), we find that

- nd 6. 6 3. 6 3.6
ZP[133—1]("1)Q" - ZPp%—q(ﬂ)(-—l)“q" = (4% ((q 18)0 (=754 )oo) .

vrd ot (%)% \ (@Gd*)%  (-4:99)%
(4.3.57)
Now, from (13, Egs. (6.7) and (6.8), p. 1034], we obtain
(@) x(=q) (w(—qg) w(qg))
- =3 . 4.3.58
@ - N\ Tl (4.3.58)
Again, from (16, Equation (8.15), p. 294], we note that
P(=4¢°)  ¥(¢®) (¢'% ¢,
=2 : 4.3.59
50 T L ool d Ol e (4.3.59)
Employing (4.3.59) in (4.3.58), we obtain
(0%58%) (% ¢%) oo q*4")%,(¢'% ¢"%)2,
(q;tf))io - ((—(;;;2))20 =0 ( q(fx"’;(q?)éo = (4.3.60)

Using (4.3.60) in (4.3.57), and then comparing the odd terms from both sides, we
find that

oo 6. .6 4. 4)2 12. L1232
71 q ) q oo : o0 3 fe's)
S ppogeng(2n + 1)+ = 3¢ L D)o(l50)e0l0 50 Do (4.3.61)
s (% ¢%)%
which is clearly equivalent to (4.3.52).
Again, replacing ¢ by —¢ in (4.3.56) and then adding the resulting identity with

(4.3.56), we obtain

i”“““*“l(")q" + ipuaa—q(n)(—l)"q" s ((qa;qﬁ)w " (_qa;qe)w> :
n=0

(%03 \ (603 (—g:¢0)3%

(4.3.62)

n=0

Now, from Entry 5(i) of (20, p. 230], we note that

(%3)1/8 - ((11__‘;)3)1/8 =1, (4.3.63)
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where 3 has degree 3 over «. This modular equation can be transformed into (see

(21, pp. 1033-1034))

xX*(q) | xX*(=q) 2x(—ff)

- , 4.3.64
x(@®)  x(=¢®)  x3(—4¢?) ( )
which can also be written, with the aid of (1.6.4)—(1.6.5), as
3. .6 3. 46 4. 4\6 6. .6)2
(0% 0%)w . ( q,q)m_2 (0% 9")00 (9% 4°)2 (4.3.65)

@0% ol (050)%0 %YL
Employing (4.3.65) in (4.3.62), and then comparing the even terms from both sides,
we deduce (4.3.53).
Now, to prove (4.3.54), we note from (4.3.53) that
S mesniane = Smecenemi = e { e - L
(4.3.66)

n=0 n=0

Now, with the aid of (4.3.60), we find that

(@%9%)%  (=4%4¢%)%

(9% (3413

_ {(qa;qﬁ)oo (—q3;q6)w}3+3 (6% 4o {(qs;q“)oo (—q3;q6)oo}

(6%  (—49%)% (e%59%)3, | (¢e0)3 (—4;¢D)%
4. 4\6 12 12\6 4. 4\5 6. .6 12 12
3(0%9%) 2 (0'% 0%)e (0% 4%)2(¢% 4°) 0 (6" 4" %) o
= 216q (0% )2 + 18¢ @ ) . (4.3.67)

Employing (4.3.67) in (4.3.66), and then comparing the odd terms from both sides,
we deduce (4.3.54).

Next, to prove (4.3.55), we again note from (4.3.53) that

0 i 6, 6 3. ,6)\3 3. ,6\3
n n q ; o0 ) [0} - ) [o¢]
E Ppea-1)(2n)q"™ + E Ppes-1)(2n)g" = (0:0) {(q 7) + (-a530) }

s ~ @3N | )% (6%
(4.3.68)
Employing (4.3.65) in (4.3.68), we obtain
e I n (9% ¢*)se(d% ¢%) %
gpuaa_l](%)q +§)p[133_1](2n)q =8 (qz;q2)2§q”;q”)&
4. .4\9 6. ,6)4
(¢%; 9%)20(9: 4°)% (4.3.69)

(9% 9%)12(¢*%; ¢*2)3,
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Equating the even parts in (4.3.69), we deduce that

(6% 9%)e0(a% %) . (@%9%)5(d%¢")a
(4:9)2 (4% ¢%)S, (7;9)%2(q% ¢®)3,

Replacing ¢ by —q in (4.3.70), and then subtracting the resulting identity from

Z p[133—1] (41’!.)(]" =4

n=0

(4.3.70)

(4.3.70), we find that

Z P33-1) (4n)q™ — Z Pp33-y (4n)(—q)"

n=0 n=0

(%% {(q“;q‘*)Zo B (—q3;q“)Zo} 3 (4% ¢%) oo {(q";q'"’)éo B (~q3;q6)‘éo}
(6% %)% | (3¢DE  (—g;92)2 (@%5eM% | ()2 (—g¢;9%)L2
PR CAT (A"-B") -3 (@%:0°) (A* - BY) (4.3.71)
(g% 9%)3, (4% 923, ’
3. .6 _ 3.6
where A = (059)w dB= (20590 Noting the algebraic identities

@dL T o
A* - B*=(A+B)(A- B)((A- B)* +24B)
and
A" — B"=(A- B)"+7AB(A® — B%) — 21A*B*(A3 — B%) +35A3B3(A - B),
and then employing (4.3.60) and (4.3.65) in (4.3.71), we arrive at (4.3.55). a
Corollary 4.3.18. We have

[)[133-1](2’!1 + 1) =0 (mod 3),

ppes-1y(4n +2) = 0 (mod 9),
and
Pps3-1)(8n + 4) = 0 (mod 24).

Proof. Follows readily from (4.3.52), (4.3.54) and (4.3.55). O
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Remark 4.3.19. We note that, puss-1(n) is the number of 3-colored partitions of

n with one of the colors appearing only in parts that are not multiples of 3.

Theorem 4.3.20.

oo 2. 42\§ 3. 333 6. 6
3 ppes-a(2n + )" = 4 (0% 9M)00(0% 4720 (4%: °)oo

ooy (4.3.72)
n=0 ) o0
and
st 2. .2\5 3. . 3\5 6. 6\2
s (g; )8
(g% 0% (¢*; ¢°)5(d%; ¢°)8
+ 432¢ (q;q)ég“’ =¥ (4.3.73)

Proof. As before, we note that

2 i 6. 614 3. 6)4 _ 3. .6\4
> pussa(a" = 3 pe-a)(-1)q" = i (i) (i
n=0 n=0

T (@)L L @)L (—aad)h

(4.3.74)

Now, working on a modular equation of degree 3, Baruah and Berndt [13, Eq.
(6.19), p. 1036} proved that

(-60)% (495 _g (a*; %)o@ 4"2)3,

(%694 (9L 7 (65 9)(e® 90
which can also be written in the form
(65698 (=995 . (%49)5(¢'% 4o

_ - . 4.3.75
(9% (—a:9H)% 4 (4% 4%)3,(4% ¢%) oo ( )

Using (4.3.75) in (4.3.74), we find that

(% a5, (¢'% ¢'%) oo (4% ¢°)3,
(9% 9%

ZP[M*‘] (n)q" — ZP[I‘T‘] (n)(=1)"¢" = 8¢
n=0

n=0

(4.3.76)

Equating the odd parts in (4.3.76), we readily deduce (4.3.72).
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Next, to prove (4.3.73), we notice from (4.3.72) that

S > 6. .64 3. 6\3
" n q ’q o0 q »q
Zp[l‘3"](2n + l)q - 5 p[143-4](2n -+ 1)(-q) — ( ) { ( )oo

e ) (4% ¢M& L (g 63)%
(~% %)%,
- Tm} (4.3.77)
Employing (4.3.67) in (4.3.77), we obtain
Zp[143—4](2n + l)q" — ZPII‘S“](QTL + 1)(-—(])"
n=0 n=0
- rog { ORI | 1y p RSN
(7% 4% % (4% %)%
(4.3.78)

Equating the odd terms in (4.3.78), we easily arrive at (4.3.73) to complete the

proof. 0O

Corollary 4.3.21. We have
Ppea-4(2n +1) = 0 (mod 4)
and
Pp4s-4(4n 4+ 3) = 0 (mod 36).
Proof. Follows readily from (4.3.72) and (4.3.73). : 0

Remark 4.3.22. Combinatorially, ppas-«(n) is the number of 4-colored partitions

of n, where parts having multiples of 3 do not occur.



Chapter 5

Partitions with Designated
Summands into Odd Parts

5.1 Introduction

In the introductory chapter, we have discussed partitions with designated parts
and partitions into odd parts with designated parts.

By using modular forms and g-series identities, Andrews, Lewis and Lovejoy [6]

showed that the partition function £ (n) has many interesting divisibility proper-

ties. In particular, they obtained the following Ramanujan-type congruence.

Theorem 5.1.1. [6, Corollary 7] For n > 0, we have
PD(3n +2) =0 (mod 3). (5.1.1)

They also obtained explicit formulas for the generating functions for PD(2n) and
PD(2n + 1) by using Euler’s algorithm for infinite products and Sturm’s criterion.
Chen, Ji, Jin, and Shen [36] gave proofs of the generating functions of PD(3n),
PD(3n+ 1), PD(3n + 2) by employing H.-C. Chan’s (30] identity on Ramanujan’s
cubic continued fraction. By using modular forms, Andrews, Lewis and Lovejoy [6,

Corollary 19} also found some Ramanujan-type identities for PDO(n), namely,

PDO(12n + 6) = 0 (mod 3), (5.1.2)
PDO(12n + 10) = 0 (mod 3), (5.1.3)

64
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PDO(24n) = 0 (mod 3), (5.1.4)
PDO(24n + 16) = 0 (mod 3), (5.1.5)
PDO(24n + 18) = 0 (mod 24). (5.1.6)

The generating function found by Andrews, Lewis and Lovejoy for PDO(n) is

given as
(% %) (% ¢°)%,

2 PDOMm)" = (9 9)oo(9°; 0%)o0 ("% 4o

n=0

(5.1.7)

By using g¢-series and modular forms; they found (5.1.7) as well as the following

identities.
Theorem 5.1.2. [6, Theorem 21 and Theorem 22] We have

d (¢%; 9%)%(a% ¢°)a
PDO(2n)¢" = — == ,
> PDOCNG" = s e e

o) N (qz;qz)go(qlz; qlz)?’o
2_ PDOGn +1)q" = (0 )4 (g% a*)2% (8 ¢5)2, (5:1.9)

- (9% 9%)2,(¢% %)
PD n — o0 ) o0
2 PDOGNG" = (o e

= (0%0%)3,(¢% 05 (0"% 0" oo
PDO@3n + 1)¢" = o0 0old , 5.1.11
Z ( ) (0 0)3.(a% 9*) oo (a5 ¢%) %, ( )

(5.1.8)

n=0

(5.1.10)

n=0
and
oo (q2; q2)3 (qﬁ; qﬁ)m(qn; qlz)oo
PDO@Bn +2)¢" =2 x . 5.1.12
; ( e (4:9)5(q*% 0o ( )

The aim of this chapter is to find proofs of (5.1.8)—(5.1.12) and the following

new identities by using certain dissections of theta functions.

Theorem 5.1.3. We have

oo 2. 2\6 (.6, ,.6\2
3" PDO(n +2)¢" = 2 (a5 g“’(q 10 )oo (5.1.13)
= (4 9)o0(d3;63)2,
e 4. 4\4 6. .,6)2

(7:9)3(¢% ¢33’

n=0
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- (9% 92)2(9% 6%)oo (9% 4% oo
PDO(6n +2)¢" =2 = , (5.1.15)
;:; (@ 9)e (g% 9%)%,
- (0% 092 (0% ¢*) o (0% a")5
PDO(6n + 3)g" = 4 o0 , (5.1.16
2 PDOEn+3)g (@ )5 O )
o 2. 42 3. .3 4, 4\4 6. .6
S PDO(6n +5)g" = 8 (4% 9w (4’5 9 )oo(q7,q ool T 87)0. (5.1.17)
n=0 (Q7Q)oo
- n (0% 0% 4°)5 (a% 423, (¢5% ¢%),
Y " PDO(9n +3)q =4{ T e g }
= (@; 9)oala?; 9*)% (0% 6%)3, (0 9)o0 (0% a%)2
(5.1.18)
°° (&% a*)ala® 4°)s
PDO(On +6)g" = 12 20 == 5.1.19
A N T (5.019)
= (% aD) (% ¢°)e (0% )8 (@3 %)L (g% ¢®)
PDO(12n + 6)¢™ = 12 o0 ® 4 10 o0 00 <3
D PDO(n + )" = 12 { {om = + 10g @)% )
(5.1.20)
o0 2, ,2\14/ 4. _4\2 6. .6\4
S PDO(20 +9)" = 16 {(q 19 )olq ,q2m(qz,q )oo
"o (9;9)38("%; q'%),
. (2% 432 (4% ¢¥) ool ¢)20(5% ¢%)
(¢:9) (4% g2,
1 g (0% 4)8(4% ¢°)oo (¢ %) (6% 4°)2,
(3987 (g% 9%)2
2. 2\8 (4. .4\6 (3. .3\2 (,12. 12\2
+4q (0% 0%)5(a% g );,z(qﬁ,qﬁ)go(q 5 q )m}, (51.21)
(9:9)28(q%; ¢%)
oo (qz;qz)IO(QS;q:i)lO
PDO(12n +10)q" = 6 {7 20 %0
,Z:o _( s { (9:9)55(¢5 ¢°)%,
(6% 4%)7%(¢% 6% oo (g% ¢%)7,
+16 . 5.1.22
“ @5 ) (8.1.22)

From the above identities, we easily deduce the following congruences.
Corollary 5.1.4. We have
PDO(4n +2) = 0 (mod 2),
PDO(4n + 3) = 0 (mod 4),

PDO(6n +2) =0 (mod 2),



67

PDO(6n + 3) =0 (mod 4),
PDO(6n + 5) = 0 (mod 8),
PDO@Gn + 3) =0 (mod 4),
PDO(9n + 6) = 0 (mod 12),
PDO(12n + 6) = 0 (mod 12}, (5.1.23)
PDO(12n +9) = 0 (mod 16),
PDO(12n + 10) = 0 (mod 6). (5.1.24)
Note that, congruences (5.1.23) and (5.1.24) are improved versions of (5.1.2) and
(5.1.3).

In the following two theorems, we give some congruences which we derive by

using elementary generating function dissection technique.

Theorem 5.1.5. We have

PDO(8n +6) = 0 (mod 4), (5.1.25)
PDO(8n+7) =0 (mod 8), (5.1.26)
PDO(18n + 15) = 0 (mod 24), (5.1.27)
PDO(27n + 9) = 0 (mod 16), (5.1.28)
PDO(27n + 18) = 0 (mod 16). (5.1.29)

Theorem 5.1.6. For any nonnegative integer n, we have

PDO(24n +9) = 0 (mod 2%), (5.1.30)
PDO(24n + 15) = 0 (mod 2°), (5.1.31)
PDO(24n + 21) = 0 (mod 2%), (5.1.32)

PDO(72n + 51) = 0 (mod 2%), (5.1.33)
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and

4 (mod 2%), ifn= Py,
PDO(72n +3) = (5.1.34)

0 (mod 2%), otherwise,

where Py 1s either of the kth generalized pentagonal numbers k(3k £ 1)/2.

In the next section, we give some preliminary results and dissections of some

theta functions. In the last section, we prove Theorems 5.1.2-5.1.6.

5.2 Preliminary results and dissections of theta
functions.

Lemma 5.2.1. If o(q), ¥(q), and x(—q) are defined in (1.5.2), (1.5.3), and (1.6.4),

then
W(g) = f(@* ¢°) + v (4, (5.2.1)
o P(=4%
flg,q) = <—a)’ (5.2.2)
¥*(q) = ¢*(¢") + 499*(¢"). (5.2.3)

Proof. See [20, p. 49, Corollary(ii)] and [20, p. 350, Eq. (2.3)] for the proofs of
(5.2.1) and (5.2.2), respectively. Adding identities (v) and (vi) of [20, p. 40, Entry
25], we can easily derive (5.2.3). O

In the remaining lemmas of this section, we state and prove certain 2- and 3-

dissections.

Lemma 5.2.2. We have
2
1 _ (6% 4°)..(0'% )5,
(@9)00(@% 8% (g2 92)2 (0% a4)(a5; ¢°)%, (g%4; ¢2)%,
(g% 94> (4% ¢*)2
(g% g% (4% 4%)2. (g% ¢®)%, (¢'2; 1)

(5.2.4)
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4 4
1 _ (6% ¢%)eo(a™; 4o, (g% 6")e(e'% 0

- + 2
2 2 5 5 , 2 . 2
(0:0)@%5 4%, (a%9%) (a5 a%). (0% q%6) . (q%8; ¢*8)

2 2 4 2
1 (0409 0(0"%0'%) (075 0%%) 5o (0%%; 9®)
(9% 4%)° (4% ¢5)2, (%; 4®)oo (924; 4*)oo

Proof. From (35, Corollary 8}, we find that

+ 4q

Y(Q)w(a®) = v(g*)e(d®) + qv(a'?)e(q).

Again, from (35, Corollary 4]

0(@)e(a*) = 0(g*)e(a') + 2g Y(g*)¥(q®) + 4¢* Y(®)P (™).

Employing the g-product representations of ¢(g) and ¥(g), namely,

(g% ¢%)5,

‘P,(Q) T 505 %
and
AP
Vi) = (43 9)o0 '

in (5.2.6) and (5.2.7), we easily derive (5.2.4) and (5.2.5), respectively.

Lemima 5.2.3. We have
1 (@449 +4q (4% 020 (0% *)oe
(@Ga)h (@) )L (4% ¢%)
Proof. From (5.2.3)

©*(q) = ¥*(¢°) + 4q9*(q*).

Employing (5.2.8) and (5.2.9) in (5.2.11), we readily arrive at (5.2.10).

6 6
(0% 9%) oo (%5 6%) oo

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)

a

Proofs of the results in the next lemma can be found in Chapter 4. It can also

be found in Hirschhorn, Garvan, Borwein [48].
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Lemma 5.2.4. We have

(%80 _ (4%9%)en(% 0% (4% 9°)oo(0'% 9" (4% 0o (5.2.12)
@05 (@B @nenL, (g% ¢2)" ’ -
(@ a)%  (0%a%)% (0% 6%)eo(d; ¢)n (6% 022,

@ @500 9% (0% 0%)eo

((24;(]4)((:0(06;06)00(!112;(]12)20@16;1216):0
(4% 4%)20 (45 ¢8) 0 (4% 4%)oo
(2% 8*)oo (9% %) 20(a%; 8%)00 (4% 4 oo
(g% q2)2°(q12; 7)o (g16; q16)2
(6% 050 (0% 0%) o (0" ") (625 4o
(0% 020 (@'% 0")oo ’

Proof. From (4.3.52) and (4.3.53) of Chapter 4, we readily arrive at (5.2.12). From

+ 2¢q

+ 2¢q

(4.3.43), we obtain (5.2.13). O
The proof of the result in next lemma can be found in Chapter 2.

Lemma 5.2.5. We have

)
ot (—43)’

1 (=) +9 03 (—q°)w(q*)

o) =) T o (=) A

(5.2.14)
where

(49)00(g% 63,
wlo) = (0% 02 oo(g% 0*)%, (5-2.15)

Lemma 5.2.6. We have

(@5 0% (0% 4%)(e® ) (0% ¢%)os (4% ¢°)am
(G9)s (@)@ ed®)S, (%00 ),
(0% 9%)e (0% ¢°)on + 440" (0% ¢%)0,(0% 0°)re (6% %)
(3 0®)sa(8; 9'8)2, (4% 0oy
o (0% 0%)(¢% ) (a5 ¢*8)2,

(g% ¢%) 22
(% 8%)5 (4% 0o (4" ")y

(4% ¢%)on
6 (4% 9%)ae(a"® ¢*)18

(0% 0°)% (g% ¢%)2

+214?

+ 60q

+ 48¢°

+ 16

(5.2.16)
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Proof. Squaring both sides of (5.2.1) and then employing (5.2.2), we have
2/ 9 9 9
O (=a") | 2,2/ 9 (=g )¥(q")
+ 7)) +2q :
=) 1 via) x(—¢%)

Again, squaring both sides of (5.2.14), we find that

$2(q) = (5.2.17)

1 (=4
X -q)  ¥8(~4%)

{1 + 4qw(g®) + 12¢°w?(¢%) + 16¢°w*(¢°) + 16¢*w*(¢*)}.

(5.2.18)
From (1.5.5) and (1.6.4), we have
(695
(-9)= (&0 (5.2.19)
x(~9) = (3:¢°) = @0 (5.2.20)
SN GO

Multiplying (5.2.17) and (5.2.18) and then employing (5.2.9), (5.2.20), (5.2.15)

and (5.2.19), we easily arrive at (5.2.16) to complete the proof. 0

Lemma 5.2.7. We have

2 3
(0% 9 _ (@99 0"%)% (4% ¢%) (0% %) (6% %) oo

(@D (g% 0% (9% 9%)2, (0% 0%)ae (0% 4*8)5,
6. .6 18. 18 36. 36
+2g? (¢°9°)0(a®; g )go(q 14")o0 (5.2.21)
(6% %)
Proof. We recall from [26] that the cubic theta function ¢(q):
o0 3. 33
C(q) = Z qm2+mn+n2+m+n - 3q1/3 (q 4 )oo (5222)
—— oo (5 9)oo
From [22], we have
. c(q) ¥ (g*)
=1+ . 5.2.23
c(g*) q¥*(¢°) ( )
Employing (5.2.22) in (5.2.23), we find that
(09w _ (@95 { ¥*(¢*) }
= 1+ . 5.2.24
@Gdo @y T ) (5:2.24)
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Next, replacing g by ¢2 in (5.2.17),
2(_ 18

vH(?) = 902( QG)

x*(—4°)

Using (5.2.25) in (5.2.24), we obtain

(—¢"®)¥("®) '

+q'92(g"®) + 22 % ) (5.2.25)

(0% (@362 1 /9%(=¢") | 4.5, 18
@D (q3;q3>§;{ +qw2<q6>(x2<—qﬁ> tOviE)
20(=a"*)(q"®)
2 x(—q8) >}
_ (04" {1+q3w2(q18)}+ (Q”;q”)i,{ 0*(-q"%)

(0% 0%)% $2(q®) (03 ¢%)°, Lav?(¢®)x2(—4)
+2g %}. (5.2.26)
Employing (5.2.9), (5.2.20) and (5.2.19) in (5.2.26), we find that
(0% _ (4%9"D5, S92 L (@%0Do(d®68)e
@D (%) {Hq ’/’2(‘16)} (3 43)5 (4% ¢%)2,
+2g? (9" 9")o0 (9% 4°)o0 (4% 4%)oo (5.2.27)

(0% ¢%)%
Now, multiplying both sides of (5.2.24) by 1?(¢®)/1*(¢%), replacing ¢ by ¢3, and
then employing (5.2.9), we deduce that
3 Y@ | (0% 0%)en (0% 6°)en (6% 4o
= 2 3
qjﬂ(qﬁ) (qa; qs)m(qla; qls)oo(qm; qu)m

Employing (5.2.28) in (5.2.27), we arrive at (5.2.21) to finish the proof. O

1+g¢q

(5.2.28)

5.3 Proofs of Theorems 5.1.2-5.1.6

Proof of (5.1.8). Using (5.2.4) in (5.1.7), we have
0 2 4
Z PDO(’IT)(]" - (qg; qB)oo(qH; le)oo
= (9% 9%)% (9% %) (655 9°)7, (a2 ¢2%)%,
(g% ¢%)o, (0% )2
(g2 6%)% (g3 ¢8)>. (g%, ¢1)2,

(5.3.1)
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Extracting from both sides of (5.3.1), those terms involving only ¢**, and then
replacing ¢ by q, we arrive at (5.1.8). m|

Proof of (5.1.9). Extracting from both sides of (5.3.1), those terms involving only
¢*™*! and then dividing both sides by ¢ and replacing q* by g, we arrive at (5.1.9).
(]

Proofs of (5.1.10)~(5.1.12). Using.(5.2.21) in (5.1.7), we find that

f: PDO(n)q" — (qﬁ; QG);(QIB; q18)§o (qG; qegzo(qs’; q9)2o(q36; q36)°‘2’
n=0 (6% 0%) (@ 0%%) 0 (0%6%)00(0"% 9" (08 0"8)
4 2g? (¢% qﬁ)ﬁo(q“‘; 900 (9% 6*)oo

(4% 6%)o0 (4% ') oo

Extracting from both sides of (5.3.2), the terms involving ¢°*, ¢3!, and ¢*"+2,

(5.3.2)

respectively, we arrive at (5.1.10)—-(5.1.12), respectively. o

Proof of (5.1.13). Employing (5.2.5) in (5.1.8), we have
00 2 5
> PDO(ER)" = (4% 9")en (45 6°)° (6™ 4*)o0
o (4% 022 (05 0%)oo (0'2; 4'2)2,(96; ¢26)2 (g%8; g*8)2
6 2
(04990 (@% 0"
6 2
(6% 6%)o0 (4% 6°) 5
(q4;q4):o(q16; qlﬁ):o(q48; q48)c2>°
(9% 4%)%, (95 4%)o0 (0%; 08) oo (92%; ) oo

We can arrive at (5.1.13) by extracting the terms involving only ¢?**! from both

+ 2¢q

+ 4(]4

(5.3.3)

sides of (5.3.3), and then dividing both sides by ¢ and replacing ¢2 by q. a

Proof of (5.1.14). Employing (5.2.10) in (5.1.9), we have

- 2. 028 (412 12)2 4. ,4)14

= (g% %)% (g% %)%, L(g%a2)iA(e% ¢®)%
AT io(qg;qa)éo}
R

Extracting the terms involving only ¢***! from the above, we easily deduce (5.1.14).

]
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Proofs of (5.1.15) and (5.1.17). Employing (5.2.10) in (5.1.12), we arrive at

iPDO(3n+ 2" =2 (9% 7%)ool 6;q6)m(q”;q”)w{ (0% 0)os
(9%

e (9% 9*)oo 102)on (0% 0%
4. 4\2 ¢ 8. 8}4
10)00(0%0%) oo
+4g )2°_°(2 ). (5.3.4)
(6% 0%
Extracting the even and odd powers of ¢ from both sides of (5.3.4), we readily
deduce (5.1.15) and (5.1.17), respectively. a

Proof of (5.1.16). Using (5.2.10) in (5.1.10), we arrive at

iPDO(?)n)q" _ (6%107)(0% 0% (04090 4 . (¢%0")eo(0%: 0%)e0 |
=0 (g% ¢")5, (4% 9%)oo (4% 00 (g2%¢2)
(5.3.5)

Now (5.1.16) can be deduced by extracting the odd powers of g from both sides of
(5.3.5). Q

Proofs of (5.1.18) and (5.1.19). Squaring both sides of (5.2.14) and then employing
the resultant identity in (5.1.10), we obtain

S PDOER)" = ¥ <;‘g ()fqa()_ 4 ){1 + 49 w(g®) + 12¢% w2(¢®) + 16¢°w (%)

+ 164 w4(q3)}. (5.3.6)

n=0

Extracting from both sides of (5.3.6), those terms involving only ¢***! and ¢°**2,

respectively, we find that

S PDO(On +3)q" = 4 w(qwsi;(qus(—ﬂ {1+14g v’ (g)}

n=0

- 1o WHDPH=a)(—¢%)
> " PDO@9n +6)¢" = 12 T

)
n=0

which by (5.2.15) and (5.2.19) reduce to (5.1.18) and (5.1.19), respectively. a
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Proofs of (5.1.20) and (5.1.22). Employing (5.2.16) in (5.1.13), we find that

[ o)
Y PDO(4n +2)g"
n=0
10 10
-2 (%0901 )se | g, (050)0(@ 0 7 2 (2%50°)0(0"i0)eo
- 2
(4% %) (¢'%; ¢8)%, (4% ¢%)sn(a"8; )2, (q3‘qa)m(q“‘;qw)oo
9 4
PRI Cictsd W Clnet ) RPN C T 0 S (ot A CdT i
! (@5 ¢%)n ! (@%¢%)ns
] o0 ) 0
6. ,6\7 (9.9 18. 18\7
2°19°) (0% 0")0(q"%;4°°) o
i e - 3 o{ ) 3 (5.3.7)
(6% 9%) 0
Extracting from both sides of (5.3.7), those terms involving only ¢3**! and ¢***2,

respectively, we deduce (5.1.20) and (5.1.22).
Now we present a second proof of (5.1.20).

Extracting the terms involving ¢?* from both sides of (5.3.5), we find that

2414 . 4

ZPDO (6n)q™ Gl )wfq4’q6)w6 ~. (5.3.8)
oo T (49 2(a% ¢)(g% ¢,

Next, from (5.2.12), we obtain

(0% ¢%)5,

(9 9)os

050000 o @500 | 0 (0509006% 00

(4% 9%)oo (9% 4'2) ¢, (4% 0%) oo (4% 4"%) % (4% q%)2

(0% ¢*)an(d% 4°)% (6% 92"

2 (050"50(0% 695 (6" 6o
(4% %)

28
(¢%q%)

+108¢3 © 4 81¢*

(56.3.9)
Employing (5.3.9) in (5.3.8), we find that

(4% 9% {<q4;q4)2:(q6;qﬁ)i§
(q 0*)5(a% ¢8)2% (g% q2)22(q'% ¢"2),,
4\20 6110
(;Z;qq)%i(((iQ;Z‘Z;Zo 4a” « q( ), (2‘7)23‘7 k
5 (0% 9% (0% %)%, (@'% a')5,

(4% ¢2)%
(g% 9%)es (0% 495 (‘2;q‘2)§o}

(¢% )% '

Z PDO(6n)q"

+12¢q

+ 108¢g

+ 81¢*

(5.3.10)
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Extracting the terms involving only ¢?**! from both sides of (5.3.10), we readily
arrive at (5.1.20) to finish the proof. a

Proof of (5.1.21). Squaring both sides of (5.2.13), we have

(@ 6%,
(@:9)%, :
_ (0%0)50(0% )20 (4% 6%)en (9% 0" D)ee (9% a*)io(a% ¢°) (2% 0°)% (0% 9*%)5

+4q

(g% q )2°(q16,q“") (g%; g*)2
(g% 9", (4% %) (6% ¢®)2 (6" 4)oo
(qz.q2)19( 16. qlﬁ)
3 o0 7 00
7 3
2 (6450, (0% 0%)n (0% ¢8) e (0% 6 D)eo
(g%
4)12(q6.q6)2 (q12.q12)§0(q16;q16);
(9% 4%)20(q%; )2, (ff“;tf’“)2
+4g? (0% 9% (0% 0% (6% )22 (4™ 445
(q2'q2)18(q12'q12) ( 16. q16)
)' fo'e) 3 00 ) [o o]

4. 4\ (.6. 63 (.12. 12 16. 1614
(0% 0%) (0% 0%) (0" 1) oo(0"% ¢'%) oo
(4% 020 (% ¢®)>

6
(0% 4% (6% 4°)% (4% %) (6% 4™)2,
(9% 6%)2(q"% ¢12)2,
(g% 4% (g% 4°)as (@' 40)2 (74 422,
(q q2)18 12. qlz)2
) w ) o0

Now, using (5.3.11) in (5.1.16), we find that

20 2
(9% 9% (a5 0%

+ 4q

+ 16¢

2 (q4'q

+ 4q

+ 16¢°

+ 1643

+ 164*

(5.3.11)

ZPDO(Gn +3)¢"

n=0

12
_4{ (0% 0%)oa(0®; 0)an(4'% 425 +4 (0% 4%)es (9% 0°)2s (9" "%
(9% %) (9%6; 41, (9%; ¢24)2, (g% g2) s (g%4; g24)>
(0% 9900 (2% 4°) o (6% 4®) (3% 47%) o
(g% 4%)1r (q'6; ¢6)",
2 (0% 090005 6%). (0% 42 (6% 0% eo
(q2'(;1'“’)17

2 (2% 99e('% 495 (0% ¢0)2,

(9% 92)>(g® ,qg)m( 24,42“)20

+4q

+ 16¢g

+ 4q
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12 2
(0% 9%)es (0% 48)% (0% %) ea (0% 0o
4
(9% %) o(q'%; 9*2)2 (¢*%; 9%6)5,
13 3 4
+ 161 (4% 49 (@% %) o0 (@*% D)oo %)y
7 2. 2)17 (8- 48)2
(9% 9%) 5 (0% ®)
8 2
(0% q%)es(@®; 4°) (6% ¢8) 2 (4 )2
(qz; q2)12(q12; ql2)2
(0% 0%)en (0% %)% (6*; )5 (4 4*)2, }
(g%;9 )16(q12 ¢'2)2

Extracting the terms involving ¢***! from both sides of the above, we arrive at

+ 4q2

+ 164¢°

+ 164*

(5.3.12)

(5.1.21) to complete the proof. 0O

Now we prove (5.1.25)—(5.1.27).
Proofs of (5.1.25)-(5.1.27). By binomial theorem, it is easy to deduce that
(49)% = (4% ¢ (mod 2). (5.3.13)

Employing (5.3.13) in (5.1.13), (5.1.14), and (5.1.19), we find that

i PDO(n +2) ,

5 " = (4% 492 (4% ¢%)oo (mod 2),
n=0
Zw = (6% 0%)00(0% 0°)o (mod 2),

and

>\ PDO(9n +6) (q q)
; 12 = (g% ¢*

respectively. Now (5.1.25)—(5.1.27) are apparent from the above.
From (5.3.6)

® (mod 2),

2(_ 6\, 6(_ 9
- (go‘i()fq;f) : ){1 +4q w(g®) +120° w*(¢®) + 16¢°w’(¢°)
+16¢* ‘w4(q3)}

_ P (=4°)¥°(~¢°)

T (=)

i PDO(3n)q

n=0

{1+ 4q w(¢®) — 4¢* w*(¢*)} (mod 16).

(5.3.14)
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Therefore,

- n_ (=0 (—¢%)
Y PDO(9n)q" = 0] (mod 16).
(6% ¢ (g% ¢*)"
(:9)*%(q%; ¢*)%(a%; ¢°)
= (g% ¢®)" (mod 16), (5.3.15)

n=0

(mod 16). by (5.2.19)

which implies that

> PDO(27n +9)g" = 0 (mod 16)

n=0
and
Y PDO(27n +18)¢"* = 0 (mod 16).
n=0
Now, (5.1.28) and (5.1.29) are apparent from the above. a

Proof of Theorem 5.1.6. Taking modulo 16 in (5.3.12), we find that

12 8 4
i PDO(6n + 3)g" = 4 (159 )ee(@10)00(00%)og
~ L B L )

=4 (¢% ‘14)20 (mod 16), (by binomial theorem) (5.3.16)

(mod 16).

which yields that

i PDO(24n +9)¢™ = 0 (mod 16), (5.3.17)
n=0
i PDO(24n +15)¢” = 0 (mod 16), (5.3.18)
n=0
i PDO(24n +21)¢" = 0 (mod 16), (5.3.19)
o
and
i PDO(24n + 3)¢" = 4 (4; ¢), (mod 16). (5.3.20)

n=0

Now, (5.1.30)-(5.1.32) follow from (5.3.17)-(5.3.19).



Again, from (5.3.20), we have

c- n A (N — (q 10%)es
> PDO(24n +3)q" =4 (g;9)%, = = 4 9(g) (mod 16).

(q Do

n=0

Using (5.2.2) in (5.2.1), we have
¢(—4°%)
x(—¢°)
Employing (5.2.19), (5.2.20) in (5.3.22),

(4% %) (6% %)
(0% %) (@' q“‘

P(g) = + q(d°).

® + q3h(q°).

V(g) =

Thus, from (5.3.21), we obtain

+4g¢(q°) (mod 16),

- (4% ¢%)o. (0% ¢°)°
PDO24n+ 3)g" =4 o o
§ ( ) (6% 0% 00 (9% 9"8) o

which implies

Y PDO(72n + 51)q" = 0 (mod 2*)

n=0

and

(0% 090 (* 0%)ag o
ZPDO(72n+3)q =4 o) (mod 16)

=4 (¢; ¢)oo (mod 16)

n=0
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(5.3.21)

(5.3.22)

(5.3.23)

(5.3.24)

(5.3.25)

=444 ) (—1)F(gH*D/2 4 gFBR/2) (mod 16). (5.3.26)

n=0

Thus, (5.1.33) and (5.1.34) follow from (5.3.25) and (5.3.26). This completes the

proof.

O



Chapter 6

Some Identities of Overpartition
Pairs into Odd Parts

6.1 Introduction

In the introductory chapter, we defined overpartitions and overpartition pairs.
Recently, arithmetic properties of overpartition pairs pp(n) have been considered by
Bringmann and Lovejoy {28], Chen and Lin (37} and Kim [55].

An overpartition pair into odd parts is a pair of overpartitions (), 1) such that
the parts of both overpartitions A and 4 are restricted to be odd integers. Note that
either A or i may be an overpartition of zero, which, for convenience, assumed to
be 0. Let pp,(n) denote the number of overpartition pairs of n into odd parts. Then

the generating function for pp,(n) is

S ) = e 6.11)

rd (5 9)5 (g% 995

Recently, Lin [59] investigated various arithmetic properties of pp,(n). He ob-
tained a number of Ramanujan-type congruences for modulo 3 and for modulo
powers of 2. In this chapter, we derive the congruences for the function pp,(n) from
the respective generating functions.

We list our main results in the following theorems.

80



Theorem 6.1.1. [59, Theorem 2.1] We have

gﬁﬁo(%)q” = (Q;q(;];((j;);%“)éo’ (6.1.2)
;:)JTPO(% +1)¢" = 4(—'222—3‘;—;%. (6.1.3)
Theorem 6.1.2. We have
S = O s e g
gp—p L+ 1" =4 S;é(?%):o (6.1.5)
ni;?’_f’o(“” +2)¢" = 8%) (6.1.6)
;m(% +3)¢" =16 Ch q?} &;;};g e (6.1.7)
Lin [59] has also proved (6.1.6).
Theorem 6.1.3. We have
gﬁf)o(&z £ 4)g" = 80 x { - q()‘fw (‘{2354)20 + 169 (qq(lwgm q4>§,o} 619
gp_p R U el R e
g)m(&z +7)q" = 32 {5%33523232% +40q (qz;q2)£(‘(1;;:’];§gg°(q8; T )eo
e GIRELE)
Theorem 6.1.4. We have
iP_Po(mn +6)g" = 24 {4(q2;q2)22(q3;q3)33 + 363 (4% a*)es(a% ¢*)2

(7:9)33(q5; q%) 13 (2;9)32(¢5; ¢5)4,
M) aola?; a°)aa(a®; ¢®)3,

(:9)%
(% 99)(g% ¢%)2, (¢ ¢%) 14 }

(g;9)% ’

n=0

2.
+ 24964 (g% 9

+ 1408¢° (6.1.11)
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(6% d%)8(¢% ¢*) % + 444 (0% 4®)3(q ¢%)er
(9;9)3(q5; ¢%)12 (7 9)2 (955 9%) oo
(% 4%)e2(a® %)%, (a5 )5,

ip_pa(12n +10)g" = 48 {13

n=0

+ 14164 o éq;g)g
o SLELE)
From (6.1.3)-(6.1.12), we easily arrive at the following congruences.
Corollary 6.1.5. We have
PB,(2n +1) = 0 (mod 4),
PP.(4n) = 0 (mod 4),
7P,(4n + 1) = 0 (mod 4),
7P,(4n +2) = 0 (mod 8),
PP,(4n +3) = 0 (mod 16), (6.1.13)
PP,(8n +4) = 0 (mod 80),
PP,(8n +6) = 0 (mod 32),
PP.(8n + 7) = 0 (mod 32), (6.1.14)
PP,(12n 4+ 6) = 0 (mod 24), (6.1.15)
5,(12n + 10) = 0 (mod 48). (6.1.16)

Lin [59] also proved (6.1.13), (6.1.14), and (6.1.15) by taking modulo powers of
2. The identity in (6.1.16) is an improved version of Lin’s identity in [59, Eq. (2.11),
Corollary 2.1
9,(12n + 10) = 0 (mod 24).

In the following theorems, we prove some new congruences for pp,(n) by employ-

ing elementary generating function technique.

Theorem 6.1.6. We have

PP,(8n + 5) = 0 (mod 2°), (6.1.17)



PP,(16n + 8) = 0 (mod 2°),
7P,(16n + 10) = 0 (mod 2°),
PP,(16n + 12) = 0 (mod 2%),
PP,(16n + 14) = 0 (mod 2*),
PP,(32n +20) = 0 (mod 160),
77,(32n + 28) = 0 (mod 160),
PP,(48n + 10) = 0 (mod 2°),
7P,(48n + 18) = 0 (mod 23),
PP,(48n + 26) = 0 (mod 2°),
PP,(48n + 34) = 0 (mod 2°),

PP,(48n + 42) = 0 (mod 2°).
Theorem 6.1.7. We have

PD,(3n + 1) = 0 (mod 2?),
PP,(3n + 2) = 0 (mod 2?),
pp,(6n + 3) = 0 (mod 2*),
PP,(9n + 3) = 0 (mod 2%),

PP,(9n + 6) = 0 (mod 2*).
Theorem 6.1.8. For all nonnegative integers n, we have
PP,(24n +17) = 0 (mod 2)

and

4 (mod 2), ifn = P,
PP,(24n +1) = ( ) ¢
0 (mod 2), otherwise,

where Py is either of the kth generalized pentagonal numbers k(3k + 1)/2.
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(6.1.18)
(6.1.19)
(6.1.20)
(6.1.21)
(6.1.22)
(6.1.23)
(6.1.24)
(6.1.25)
(6.1.26)
(6.1.27)

(6.1.28)

(6.1.29)
(6.1.30)
(6.1.31)
(6.1.32)

(6.1.33)

(6.1.34)

(6.1.35)



Theorem 6.1.9. For all nonnegative integers n, we have
7P,(48n + 34) = 0 (mod 2°)

and

8 (mod 2°%), ifn = P,
PP,(48n + 2) =
0 (mod 2°), otherwise,

where Py, 1s either of the kth generalized pentagonal numbers k(3k + 1)/2.

Theorem 6.1.10. For all nonnegative integers n, we have
PP,(96n + 68) = 0 (mod 2)

and

80 (mod 2), ifn = F,
7,(96n + 4) = ( hoyn=Fh
0 (mod 2), otherwise,

where Py is either of the kth generalized pentagonal numbers k(3k £+ 1)/2.
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(6.1.36)

(6.1.37)

(6.1.38)

(6.1.39)

In the next section, we state some lemmas which will be used in the final section

to prove the above identities and congruences.

6.2 Preliminary results and dissections of theta

functions

In this section, we state some lemmmas containing certain dissections.

Lemma 6.2.1. The following 2-dissections hold:

1 (@ 5o (040)5,(0"% 4"
G0L  (@BAL@SL L e

LS Ut + g 05990(6% %),
@GOn (@O (@)

L ' PSP C T ) SONPR C T 1p WA (1108
@a)s  (a%a)2(a% )5 q(q2;q2)§§ ? (@% %5

(6.2.1)

(6.2.2)

(6.2.3)
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32
1 (ghaY% 16g (@500, 95,2 (58e
- 8
(@GS (0%62)25 (g8 ¢8)LS (9% 9%)22(q%; ¢8)%, (g% ¢2)%
4. 4120, g 8\8 4. 4\8 (8 8\16
3(0% 9080 ) oo (g% 9M). (6% %) o
+ 256q (q;°q2)44 + 256q e q2)40 , (6.2.4)
K 18, 8. 8\4
1 (¢%; %) (g% q")% 2 (%)) e(d® a®),
13 T 5. a2 8.812'*'12‘1 3. 2138 8_34+48 2. ovid
(:9) s (0% 9%) o (a®;a%) 5 (92 9%)o (a8 q%) o (%9
7% 94)° (% ¢®)2
+ 64g° (q);j°q(2)30 Joo. (6.2.5)
) [°)
Proof. Adding Entry 25(i) and Entry 25(ii) of [20, p. 40 ], we have
ela) = pl(g*) + 2q* (). (6.2.6)
From (5.2.3), we obtain
©*(q) = ¥*(¢%) + 4g9*(¢"). (6.2.7)
Squaring (6.2.7), we arrive at
0*(q) = ¢*(¢%) + 8¢ (¢*)¥*(¢*) + 16¢°¢* (¢*), (6.2.8)

where ¢(q) and v¥(g) are defined in (1.5.2) and (1.5.3). Employing (1.5.2) and
(1.5.3) in (6.2.6), (6.2.7), (6.2.8), we readily arrive at (6.2.1), (6.2.2) and (6.2.3).
From (6.2.3), we can easily deduce (6.2.4) and (6.2.5). a

Proofs of the identities in the next lemma can be found in Chapter 5.

emma VYR L€ JO O’w'Lng -a1SSecLions noia.
L 6.2.2. The foll $-dissections hold
6 10 16 9 13 8 10
(@* 90 (6%6%)00(0% 0°)ca +64 (0% 9%) 0 (2% 0°)os 42142 (6% 9%) oo (4% 0%) o
- P 8 8 7 5 16 2
(G9)%  (9%63) (g 9'8)s, (43 ¢%)r (q"8; ¢"8)2, (4% ¢%)ac(a'®; ¢*8)>,
5 (65990 (a% ) (% ¢*®) o (0% 050 (2% ¢°)a (4% ¢™8)%,

+ 44q = +60q

(¢%¢®)2 (¢% )1

5 7 4
s (0% %) (0% 4% (075, 0"8) 6 (a%d°%) (" ")
+48q 3 3 13 + ]‘6q 9 9 2 3 3 12
(g% ¢%) (0% 4°) (0% %)

(6.2.9)
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and
(65000 _ (0'%0)oo(0'%0")s | (6%6%)a0(45 6%)on (9% 4*%)co
@D (g% (0%;4%), (% 0%)o (4% 4®)0
2 (qﬁ;q")oo(q:; .q;z;;o(q““*;q"ﬁ)oo. (6.2.10)
Lemma 6.2.3. The following 3-dissection holds:
(@:0)% = (((;Z:g;z:?gz:g:%o _ 3‘1(‘19;‘?9)20 + 448 (q3;q3)zo(q18;qlg)go 6211

(9% 4%)o0(a% 0°)%
Proof. From [20, p. 49, Corollary (i)] and [20, p. 51, Ex. (v)], we note that

o(~a) = v(~¢°) — 29 f(~¢°,—q") (6.2.12)
and
f(=a,=6%) = x(~q)¥(¢%)- (6.2.13)
Squaring (6.2.12) and then employing (6.2.13), we obtain
$*(-0) = ¢*(=4°) — 44 p(~ (" W(@°) +4*X P~ WHe®).  (6:2.14)

Again, we recall from (5.2.1) and (5.2.2) of Chapter 5, that

¥(g) = f(¢* ¢°) + g ¥(q°) (6.2.15)
and
2y _ ‘P(—qs)
fla.q) = 0 (6.2.16)

Employing (6.2.16) in (6.2.15), we find that

P(g) = %—:3—2 +q ¢(q°). (6.2.17)
Multiplying (6.2.14) and (6.2.17), we arrive at
3.9
Pladle) = S5 - 30 PO + 1R 6218)

Now, applying ¢g-product representations for ¢(g), ¥(g), and x(g) in (6.2.18), we can
easily derive (6.2.11). O
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6.3 Proofs of Theorems 6.1.1-6.1.10

Proof of Theorem 6.1.1. Employing (6.2.2) in (6.1.1), we obtain

pro )" = (q q) {( (0% 9% o +4g (q“;q“)io(qel;oqe)f,o}' (63.1)
g%

4
= 9% | (6% 0®)es(@® %) (0% 0% o

Extracting from both sides of (6.3.1), those terms involving only ¢?, and then

replacing ¢® by g, we arrive at (6.1.2). Again, extracting from both sides of (6.3.1),

2n+1

those terms involving only ¢***!, and then replacing 2 by q, we arrive at (6.1.3). O

Proof of Theorem 6.1.2. Using: (6.2.3) in (6.1.2),

o 2. ,2)12 4. 4\28 4, 4\16
Zﬁﬁo(2n)q"=(q’q)°°{ (9% 9o +8q(q,q)m

par (@%599% L% ?)n(® ¥ (0% 6%
2 (0% 990(0% 1))e
+16g L } (6.3.2)

Extracting from both sides of (6.3.2), those terms involving only ¢%*, and then

replacing ¢* by ¢, we arrive at (6.1.4). Again, extracting from both sides of (6.3.2),

those terms involving only ¢?**!, and then replacing ¢ by g, we easily deduce (6.1.6).
Again, employing (6.2.2) in (6.1.3),

o m (e AV (¢*4*)on (4% ¢")oo(e% ")
2 PP+ )" = 4(a"s0 )m{(ff;q 2) (9% ¢%)ns i (4% 4%)ea }

n=0

(6.3.3)
Extracting from both sides of (6.3.3), those terms involving only ¢*", and then
replacing ¢2 by ¢, we arrive at (6.1.5). Again, extracting from both sides of (6.3.3),

2n+1

those terms involving only ¢ , and then replacing ¢ by g, we arrive at (6.1.7).

.

Proof of Theorem 6.1.3. Using (6.2.3) and (6.2.4) in (6.1.4), we obtain

56 44
pr (4n)q (q g% { (g% 9Y)e 4 16 (g% 9%
° = aE e (9% 9%)o (9% %) o (4% 4%)oa (6% 4%)cs
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20, 8. 8\8
(g% q“) 30 6% (a5 6°)
+96¢% S22 4 956¢ =
(9% 9% (g% a*)te
28
(¢4 q“) (¢% 4 %o 4. 4\8 (¢*;4*)
+ 256¢" =1 + 167 (¢ ¢")%{ "
( % 02)5 (0% 4%)oa (0% 0%) oo
(0% ¢%)u 2 (0% 0Y)50 (0% 8%)s
+8g-121 Jea 4 164 20 °°}. (6.3.4)
Y (a5 )" (4% )2
Now, extracting from both sides of (6.3.4), those terms involving only ¢?**!  and

then replacing ¢* by g, we easily derive (6.1.8).
Again, employing (6.2.5) in (6.1.6), we find that
(4% 4*)oe SR it )
2. ,2}42( 8. ;812 T2 2\38 (8. 84
9% 0%) 50 (9% ¢®)oo (9% %) o0 (9% ¢®)o0
18 4 6 12
(6% 49(8% 8o 4.2 (q“;q“)m(qs;qg)m} (6.3.5)
(9% 4% TR T

Now, extracting from both sides of (6.3.5), those terms involving only ¢***!, and

Zijﬁo(‘in + 2)q" = 8(q%; ‘12)(1,2{ :

n=0

+ 48¢?

then replacing ¢* by ¢, we arrive at (6.1.9). O
Proof of Theorem 6.1.4. Employing (6.2.9) in (6.1.6), we obtain

> Pp,(4n + 2)g"

n=0
_8{ (4% 4°)2(a% ¢°)o 412 (4% 4°)o0 (% 4%)o0
(4% ¢3)35(q"®; 9"8)28 (a%¢%)35(q*®; ¢'8)3
(45 q%)ar(q®; ¢°) 2
(g% ¢%)33(¢"8; ¢'8)%
(6% ¢*)2(9'8;9"%) o

(45 q°)as (% ¢°)28
(q3;q3)34( 18,q18)10
(4% q%)e5(q°% %)
(2%9%)32(¢"8; ¢*®)4,
4 5064g° (41970 2)eald™ 05

+ 784* + 34043

+10894*

(@3 ¢33

0% ¢%)3(0% ¢°)ea(9"%; 4"%)3

+ 74884" (¢° o0
(@ ®)E

6. ,6\12/7,.9. .9\8 18. ,18\8

s (2% 0%)52(a°% )5, ("% ¢"®)8,
+ 84967 (0% ¢%)%8

% q®)ia (% ¢°)3, (a*%; ¢*®) 1}
(@3 ¢%)Z

+ 7168¢° (



6. .6\107,.9. ,3)2 18. 18114
+4224q10 (q yq )oo(q v q )oo(q 4 )oo

(6% %)%
' [o]
1 15360" L1000 0 os | g5 (658 )l04 )eg

(4% 6*)%5(4% ¢°) oo (0% 6%)24(q% ¢°)a
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(6.3.6)

Extracting from both sides of (6.3.6), those terms involving only ¢***!, and then

replacing ¢° by ¢, we arrive at (6.1.11). Again, extracting from both sides of (6.3.6),

those terms involving only ¢3**2?  and then replacing ¢® by g, we easily deduce

(6.1.12).

Proof of Theorem 6.1.6. From (6.1.3), we find that

i P20 +1) o _ (65475
4 (3;9)%
= (g% ¢")3, (mod 4),

n=(0

which implies that

Y BP,(8n+1)g" = 4 (4;9)% (mod 2)

n=0

o<
Zp_po(&l + 3)¢™ = 0 (mod 8),

n=0

Zp_pn(Sn +5)¢™ = 0 (mod 8),

n=0

> " Pp,(8n+ 7)g" = 0 (mod 8).

n=0

It follows from (6.3.10) and (6.3.11) that (6.1.17) and (6.1.14) hold.

Again, from (6.1.6), we obtain

i PPo(4n+2) . (¢%4" )
8 (g;9)%2

_ (%445
(4% 943

n=0

(mod 4),

a

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)
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which yields

i BP,(87 + 6)¢"™ = 0 (mod 16), (6.3.13)
n=0
im,(lﬁn +6)¢™ = 0 (mod 16), (6.3.14)
n=0
i@o(lﬁn + 10)¢™ = 0 (mod 16), (6.3.15)
n=0
and
i PP,(16n + 14)g™ = 0 (mod 16). (6.3.16)
n=0

It follows from (6.3.13), (6.3.15) and (6.3.16) that (6.1.13), (6.1.19) and (6.1.21)
hold.
From (6.1.4), we have

im(%) S U PECRTWH
— 4 (¢;9)s5(a% g*)8, (4;9)%
_ (a5
= A on +4q (¢*; ¢*)%, (mod 2), (6.3.17)

which implies that

Y PP, (16n + 8)g" = 0 (mod 8) (6.3.18)
n=0
and
ZP—Po(lﬁn +12)¢™ = 0 (mod 8). (6.3.19)
n=0

It follows from (6.3.18) and (6.3.19) that (6.1.18) and (6.1.20) hold.
From (6.1.8),

i p,(8n+4) , (4% ¢*)3%8 416 (% a%)se(g*; )8,
80 P T\ @oBEh s T T (9:9)%
(2% 4%)3, 4. 4\3 [ 8. 8\3
= _(q4'q4)15 + 169 (¢%; ¢ )oo(d°;67)5, (mod 4), (6.3.20)



which yields

S (320 + 20)g™ = 0 (mod 160)

n=0

and

) " P,(32n + 28)¢™ = 0 (mod 160).

n=0
Now, (6.1.22) and (6.1.23) easily follow from (6.3.21) and (6.3.22).
Taking modulo 32 in (6.3.5), we obtain

N (4% 4%
S BPo(8n + 2)¢" = By (mod 32
n=0 1400 ) 00

= 8 (¢*;¢")e (mod 32).
Employing (6.2.11) in (6.3.23), we find that

o 12. 12 18. 18\6
> rpfon + g =8N
o (% 0%) o (¢°%;¢%)

2 6
(4% 6%)o0 (6% 4*)co
3

(¢'%; qm)zo(qlg; qls)oo

3
24q2(q18; qIB)oo

+32¢° (mod 32).

It follows from (6.3.24) that

ZP_PO(48n +2)g" = 0 (mod 8),

n=0
3" 75,(48n + 10)g" = 0 (mod 32),
n=(0
Zﬁoo(48n + 18)¢™ = 0 (mod 8),
n=0

Y 75,(48n + 26)g™ = 0 (mod 32),

n=0

ZWO(4871 + 34)¢™ = 0 (mod 32),

n=0
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(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)
(6.3.26)

(6.3.27)

(6.3.28)

(6.3.29)
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and

> " PP, (48n + 42)¢" = 0 (mod 32). (6.3.30)

n=0

Thus, (6.1.24)-(6.1.28) are apparent.

a
Proof of Theorem 6.1.7. Employing (5.2.19) in (6.1.1), we find that
X (¢% 4% ¢*(=¢*)
(n)g" = © __ _ . 6.3.31
2P = e s P(a) (63.5)
Again, using (6.2.13) in (6.2.12), we obtain
o(=q) = v(=4°) — 2q x(=¢*)¥(¢°)- (6.3.32)

Squaring (6.3.32) and replacing ¢ by ¢?, we find that
03 (~¢%) = @*(—¢"®) — 4¢* x(—®)¥(¢"®)0(—q"®) + 4¢* X*(—¢®)¥*(¢"®). (6.3.33)

Now, employing (6.3.33) and (5.2.18) in (6.3.31), we arrive at

S = ST -0 + 40 0@ -0 - 40 X Wiaol—a)

n=0 (

+12¢% w? ¢

%)
(@°)¢*(—4"®) — 16¢* w(g*)x(—¢°)¥(a"*)0(—¢*®)
+16¢° w ()0 (—¢") + 4¢* x*(—®)¥*(@"®) + 16¢" w*(¢*)p?(—¢"®)
— 48¢* w*(¢*)x(=4°)¥(a")e(—4"®) + 16¢° w(g*)x*(—*)¥*(a"®)
— 64¢° w’(q°)x

(¢°)x

(g

4

— 644¢°® w*(q

(—q X
3@ )x(—a®)0(a"®)e(—4"®) + 48¢° w*(¢*)x*(—¢®)¥*(¢"®)
’ (- (¢°)

q
(—®)(a"®)e(—q"®) + 64¢" w(¢*)x*(—¢®)¥*(¢"®)

+64¢° wH(g N (—aPH (e}, (6.3.34)

which implies that

> " PP,(3n +1)g" = 0 (mod 4) (6.3.35)
n=0



and

Zﬁo@n + 2)q" = 0 (mod 4).
n=0

Now, (6.1.29) and (6.1.30) readily follow from (6.3.35) and (6.3.36).
Also, from (6.3.34), we obtain

o5 (3n)en = L=

nZ=Oz>po(3n)q =0 (mod 16)
(% 4°)8

(4:9)"(¢% %)%, (4% "),

By binomial theorem

(05 070(0% Ve _ (@500 (1104 9y

(3;9)%%(q% ¢%)%,(¢*% ¢ %)% (9'%¢*)%

Using (6.3.38) in (6.3.37), we arrive at

il

pr,, 3n)q" = (( qz; (mod 16).

n=0

From (6.3.39), we obtain

> " BP,(6n +3)g™ = 0 (mod 16),

n=0

> BP,(9n +3)g™ = 0 (mod 16),
n=0

and

Zﬁo(gn +6)g™ = 0 (mod 16).

n=0

Thus, (6.1.31)—(6.1.33) follow from (6.3.40)—(6.3.42).

Proof of Theorem 6.1.8. From (6.3.8),

- e n — A — (qz)qz)zo — Y
Y B+ 1)q" =4 (459)% = 4 ~ = = 4 4(q) (mod 2).

vard (4o

000 6°)o (mod 16), (by (5.2.19)).
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(6.3.36)

(6.3.37)

(6.3.38)

(6.3.39)

(6.3.40)

(6.3.41)

(6.3.42)

(6.3.43)
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Again, employing (6.2.16), (5.2.19), (5.2.20) in (6.2.15), we arrive at

6. 6 9. 9\2
- EEe

Using (6.3.44) in (6.3.43),

(4% %) (0% 8%

PP,(8n + 1)¢" = + 4q¥(¢®) (mod 2), 6.3.45
,,2 Pl 9 (4% 4% (4"% 9"8) oo (@) ) ( )
which yields
> PP,(24n +17)q" = 0 (mod 2) (6.3.46)
n=0
and

2

o n_ oy (050%)0(0%0%)os
> PP, (24n +1)g" = 4 o med2)

=4 (¢;9)oo (mod 2)

n=0

=4+4 ) (-1)k(g"D2 4 CH2) (mod 2).  (6.3.47)
n=0

Thus, (6.1.34) and (6.1.35) are readily follow from (6.3.46) and (6.3.47). This com-
pletes the proof. O

Proof of Theorem 6.1.9. From (6.3.23), we have

Y PP,(8n +2)" =8 (¢;¢")% (mod 32), (6.3.48)

n=0

which implies that

- (a% ¢%):
Y " #,(16n +2)" = 8 (g; )3, =8 =
n=0 ( 3 )oo

Now, employing (6.3.44) in (6.3.49), we find that

2
(4% 4%) 00 (4% 9% oo

= 8 ¥(q) (mod 32). (6.3.49)

PP,(16n +2)g" = + 8q¥(g°) (mod 32), 6.3.50
; ( ) (4% 9%) 00 (4% ¢") o (@) ( ) ( )
which yields

> PP, (48n + 34)¢" = 0 (mod 32) (6.3.51)

n=0
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and

> n o (@50 (d% )2
E 7P,(48n +2)q" =8 @0 (qﬁ'qﬁ)) (mod 32)
n=0 ? 1 /oo ’ 00

= 8 (¢;9)oo (mod 32)

=8+8 Y (—1)f(gF* /2 4 gF+D/2) (mod 32). (6.3.52)

n=0

Now, (6.1.36) and (6.1.37) follow from (6.3.51) and (6.3.52) which completes the

proof. m|

Proof of Theorem 6.1.10. From (6.3.20),

im(mn +4)q™ = 80 (g;9)3, = 80 %‘é)ﬁ = 80 1(q) (mod 2).  (6.3.53)

Now, employing (6.3.44) in (6.3.53), we easily deduce (6.1.38) and (6.1.39). O
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