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Abstract 

In this thesis, we study analogues of Ramanujan's partition identities and congru­

ences by using his cubic continued fraction, theta function identities and modular 
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tions with designated summands in which all parts are odd and overpartition pairs 
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Chapter 1 

Introduction 

The thesis consists of six chapters including this introductm.:y chapter. In the fol­

lowing few subsections we briefly introduce the basic concepts and terminology. 

1.1 Partitions 

A partition A =. (A!, A2, ... , Ak) of a natural number n is a finite sequence of non­

increasing positive integer parts Ai such that n = 2:7=1 Ai' Let p(n) denote the 

number of partitions of n. For example, p(4) = 5, since there are five partitions of 

4, namely, 

(4), (3,1), (2,2), (2,1,1), and (1,1,1,1). 

The generating function for p( n) is given by 

00 1 
Lp(n)qn = ( . ) , 
n=O q,q 00 

(1.1.1) 

where, -here and throughout the thesis, for Iql < 1, (a; q)oo := rr~o(1 - aqn). 

Ramanujan [80, 81]' found nice congruence properties for p(n) modulo 5, 7, and 

11, namely, for any nonnegative integer n, 

and 

p(5n + 4) == 0 (mod 5), 

p(7n + 5) == 0 (mod 7), 

p(l1n + 6) == 0 (mod 11). 

1 

(1.1.2) 

(1.1.3) 

(1.1.4) 
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In [80], Ramanujan deduced (1.1.2) by proving the identity 

00 (5 5)5 
LP(5n + 4)qn = 5 q ; q 00, 

n=O (q; q)oo 
(1.1.5) 

which G. H. Hardy [81, p. xxxv] described as Ramanujan's "Most Beautiful Iden-

tity". Many proofs of (1.1.5) are available in the literature. We refer to the com­

mentary on Ramanujan's papers by B.C. Berndt in [81J. 

Ramanujan also offered a more general conjecture which states that if 15 = 5a 7blF 

and A is an integer such that 24A == 1 (mod 15), then 

p(n6 + A) == 0 (mod 6). 

Ramanujan sketched a proof of this conjecture for arbitrary a and b = c = o. 
However, for arbitrary b and a = c = 0 the conjecture was corrected by Watson [93J 

as 

p(ni5 + A) == 0 (mod 15/), 

where 151 = 5a7b'1F with bl = b if b = 0, 1, 2 and bl = [(b + 2)/2J if b > 2. 

Next, we define the general partition function Pr(n) by 

00 1 
LPr(n)qn := ( . y . 
n=O q,q 00 

(1.1.6) 

The function Pr(n) has been studied by various mathematicians. For example, Atkin 

[9], Garvan [42], Boylan [27], Gordon [44], Kimming and Olsson [56], Newman [69]­

[75], Ramanathan [77], Ramanujan [82, p. 182] (Berndt, Gugg and Kim [25J have 

proved and discussed Ramanujan's claims, and established further results depend­

ing on his ideas), Serre [89], and Sinick [90]. In particular, Boylan [27], Kimming 

and Olsson [56], and Sinick [90J addressed the characterization of Ramanujan-type 

congruences, i.e., congruences of the form c(fn + a) == 0 (mod f) for all n E Z with 

R. prime, for the function c( n) defined by 

00 r 1 

~ c(n)qn = IT (qa.; qa;)oo' 

where a/s are positive integers, not necessarily distinct. Note that when ai = 1 for 

each i, then c(n) = Pr(n). 
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1.2 Frobenius partitions 

G. E. Andrews [5J introduced the idea of generalized F'robenius partitions (or simply 

F-partitions) of n which is a notation of the form 

of non-negative integers a.'s, b.'s with 

r r 

n = r + La, + L bll 

1=1 ,=1 

where each row is of the same length and each is arranged in non-increasing order. 

In particular, Andrews [5J introduced c<Pm(n), the number of F-partitions of n 

with m colors and strict decrease in each row. He gave the generating function for 

c<Pm(n) and obtained the q-product representations of the generating functions for 

c<p1(n), c<p2(n), and c<p3(n). Furthermore, Andrews proved the congruences 

c<P2(5n + 3) == 0 (mod 5), 

c<Pm(n) == 0 (mod m2), if m is prime and does not divide n. 

Recently, q-product representations for the generating functions for c<P4{n) and 

c<P5(n) are given by Baruah and Sarmah [19J. They also deduced some congruences 

for c<p4(n). 

Again, L. Kolitsch [57, 581 introduced the partition function c<Pm(n), which de­

notes the number of F-partitions of n with m colors whose order is m under cyclic 

permutation of the m colors. For example, the F-partitions enumerated by c<P2(2) 

are (~J (~: ), CJ (~:) ( ~:). ( ~J ( ~J and ( ~:) 
where the subscripts represent the two colors red and green of the non negative 

integers. The generating function for c<Pm{n) is given by [58], 

00 _ n m 2: qQ(k) 

L c<Pm(n)q = {. )m ' 
n=O q,q 00 

(1.2.1) 
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where the sum on the right extends over all vectors k = (kl' k2' ... ', km) with k-I = 1 

1 ",m 2' - ) and Q(k) = 2 ~\=1 (k\ - k\+d wherem 1 = (1,1,1, ... ,1 and km+l = kl 

Next, Kolitsch proved that, for all n 2: 1 and for any m 2: 2, ccPm(n) = 

o (mod m 2
). In particular, Kolitsch [57J found that 

00 _ n 9q(q9; q9);, L c<P3(n)q = ( . )3 ( 3. 3) , 
n=O q, q 00 q ,q 00 

(1.2.2) 

which readily implies that c<P3(n) == 0 (mod 32
). In a short note, J. Sellers [86], 

found that, for all n 2: 1, 

c<P5(5n) == 0 (mod 53), 

- 3 c<P7(7n) == 0 (mod 7 ), 

and 

Furthermore, by employing a well-known result of Jacobi in (1.2.2), Sellers [88J 

proved an analogous result involving c<P3(3n) modulo 34
. Recently, Baruah and 

Sarmah [19] have found an expression for the generating function for c<p4(n) and 

also deduced some related congruences. For example, 

ccP4(2n) == 0 (mod 43
), 

ccP4(4n + 3) == 0 (mod 44
), 

ccP4(4n) == 0 (mod 44
). 

1.3 Partitions with designated parts 

The notion of partition with designated summands goes back to MacMahon [66J. He 

considered partitions with designated summands in his work on generalized divisor 

sums. Indeed MacMahon's An,A: is the number of partition of n with designated sum­

mands wherein exactly k different magnitudes occur among all the parts. MacMahon 

[66, Section 17] is able to connect An,A: with numerous divisor sum identities due to 

Glaisher [43], Ramanujan [81] and others (see also Andrews and Rose [7]). 



5 

In [6J, Andrews, Lewis and Lovejoy studied partitions with designated summands 

which are constructed by taking ordinary partitions and tagging exactly one of each 

part size. For example, there are 10 partitions of 4 with designated summands, 

namely, 

4', 3' + I', 2' + 2, 2 + 2', 2' + I' + 1, 2' + 1 + I', I' + 1 + 1 + 1, 1 + 
I' + 1 + 1, 1 + 1 + I' + 1, 1 + 1 + 1 + I'. 

Let PD(n) denotes the number of partitions of n with designated summands. 

Thus, PD(4) = 10. They [6J also studied PDO(n), the number of partitions of n 

with designated summands in which all parts are odd. From the above example, we 

note that PDO(4) = 5. 

The generating functions found by Andrews, Lewis and Lovejoy [6J for PD(n) 

and PDO(n) are 

and 
00 n (q4; q4)00(q6; q6);, 
LPDO(n)q = ( . ) (3. 3) (12. 12) . 
n=O q, q 00 q ,q 00 q , q 00 

By using modular forms and q-series identities they found many interesting di­

visibility properties. They [6J proved that for n 2 0, 

P D(3n + 2) == 0 (mod 3). (1.3.1) 

They also obtained explicit formulas in terms of q- products for the generating 

functions for P D(2n) and P D(2n+ 1) by using Euler's algorithm for infinite products 

and Sturm's criterion. Chen, Ji, Jin, and Shen [36J gave proofs of the generating 

functions PD(3n), PD(3n+l), PD(3n+2) by employing H.-C. Chan's [30J identity 

on Ramanujan's cubic continued fraction. In particular, they proved that 

00 (q3. q6)3 (q6. q6)6 
~ PD(3n + 2)qn = 3 ' 00 , 00 

~ (q; q2)~(q2; q2)~ , 

which readily implies (1.3.1). 
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1.4 Overpartitions and overpartition pairs 

An overpartition of a positive integer n is a non increasing sequence of positive 

integers whose sum is n in which first occurrence of a distinct number may be 

overlined. Let 15(n) denote the number of overpartitions of n and po(n) denote 

the number of overpartitions of n in which all parts are odd. For example, the 

overpartitions of 3 are 

(3), (3), (2,1), (2,1), (2, I), (2, I), (1,1,1), (1,1,1). 

Thus, 15(3) = 8 and Po(3) = 4. 

An overpartition pair of n is a pair of overpartitions (A, J.L) such that the sum of all 

of the parts is n. For convenience, it is assumed that there is only one overpartition 

of zero denoted by 0. Let pp(n) denote the number of overpartition pairs of n and 

ppo(n) denote the number of overpartition pairs of n into odd parts. For example, 

overpartition pairs of 3 are, 

((3),0), ((3),0), ((2,1),0), ((2,1),0), ((2, 1),0), ((2, 1),0), ((1,1,1),0), 

((1,1,1),0), ((2), (1)), ((2), (I)), ((2), (1)), ((2), (I)), ((1), (2)), ((I), (2)), 

( (1), (2)), ( ( 1 ), (2)), ( (1, 1), (1)), ( (I, 1), (1)), (( 1, 1), (I)), ( (I, 1), (I)), 

(( 1), (1, 1)), (( 1), (I, 1)), ( (1), (1, 1)), ( (I), (I, 1)), (0, (3)), (0, (3)), 

(0, (2, 1)), (0, (2, 1)), (0, (2, I)), (0,2, I)), (0, (1, 1, 1)), (0, (I, 1, 1)). 

Thus, pp(3) = 32 and pPo(3) = 16. 

The generating functions for pp(n) and ppo(n) given in [37] and [59] are 

00 (2 2)2 
LPp(n)qn = q;q 400 

n=O (q;q)oo 

and 

The function p( n) has been considered recently by number of mathematicians in­

cluding Corteel and Lovejoy [40], Hirschhorn and Sellers [51, 52], Mahlburg [67] and 

Kim [54]. Overpartitions have been used in combinatorial proofs of many q- series 

identities and· these partitions arise quite naturally in the study of hypergeometric 
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series (see [38, 39, 40, 60, 76]). Overpartitions also arise in theoretical physics as 

jagged partitions in the solution of certain problems regarding seas of particles and 

fields (see [41]), where a jagged partition of n is an ordered sequence of nonnegative 

integers (Am' , AI) that sum to n and satisfy the weakly decreasing conditions, 

AJ ~ \-1 - 1 and AJ ~ AJ -2. 

In [67J, Mahlburg proved bijectively that the overpartitions correspond to the 

jagged partitions. 

Recently, arithmetic properties of pp( n), the number of overpartition pairs of 

n, have been considered by Bringmann and Lovejoy [28], Chen and Lin [37] and 

Kim [55]. It has become clear that overpartition pairs play an important role in 

the theory of q- series and partitions. They provide a natural and general setting 

for the study of q-series identities and q-difference equations [61, 62, 641. In [53], 

Hirschhorn and Sellers studied the arithmetic properties of overpartitions having 

only odd parts. More recently, Lin [59] investigated various arithmetic properties of 

overpartition pairs into odd parts. 

1.5 Ramanujan's theta functions and modular equa­
tions 

Define Ramanujan's general theta function J(a, b) as 

00 

J(a, b):= L an(n+l)/2bn(n-l)/2, labl < 1. (1.5.1) 
n=-oo 

Three special cases of J(a, b) are defined, for Iql < 1, by [20, p. 36, Entry 22] 

00 (2 2)5 
tp(q) := J(q, q) = L qk

2 

= (-q; q2)~(q2; q2)00 = ( . f2 ;t 4.
00

4)2 ' 
k=-oo q, q 00 q , q 00 

(1.5.2) 

7jJ(q) := J(q, q3) = f qk(k+1)/2 = (q2; q:)oo = (q2; q2);" 
k=O (q;q )00 (q;q)oo 

(1.5.3) 

00 00 

k=O k=l 
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where the product representations in (1.5.2)-(1.5.4) arise from Jacobi's triple prod­

uct identity 

f(a, b) = (-a; ab)oo( -b; ab)oo(ab; ab)oo, 

and the last equality in (1.5.4) is Euler's famous pentagonal number theorem. 

Furthermore, the q-product representations of cp(-q) and 'ljJ(-q) are given as 

(1.5.5) 

Now, we define a modular equation as given by Ramanujan. The complete elliptic 

integral of the first kind associated with the modulus k, 0 < k < 1, is given by 

K := K(k):= r/2 

-,==d=()====;;= 
Jo VI - k2 sin2 

() 

The complementary modulus k' is defined by k' = VI - k2. Set K' = K(k'). Let 

K, K', L, L' denote the complete elliptic integrals of first kind a.c;sociated with the 

moduli k, k', £, £', respectively. Suppose that the equality 

K' L' 
n-=-

K L 
(1.5.6) 

holds for some positive integer n. Then a modular equation of degree n is a relation 

between the moduli k and £ that is implied by (1.5.6). Ramanujan recorded his 

modular equations in terms of 0: and (3, where 0: = k2 and (3 = £2. We then say that 

(3 has degree n over 0:. For example, we recall from [20, Entry 5(ii), p. 230] that if 

(3 has degree 3 over 0:, then 

(0:(3)1/4 + ((1 - 0:)(1 - (3))1/4 = 1. 

1.6 The Rogers-Ramanujan continued fraction and 
Ramanujan's cubic continued fraction 

The famous Rogers-Ramanujan continued fraction R(q) is defined by 

ql/5 q q2 
R(q) := -1- + 1 + 1 + ... ' Iql < 1. (1.6.1) 
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This continued fraction first appeared in a paper by 1. J. Rogers [83] in 1894. 

Ramanujan later rediscovered the Rogers-Ramanujan continued fraction, and devel­

oped an extensive and deep theory for it (see [24]). In his notebooks, Ramanujan 

recorded many identities involving R(q) which can be found in [24, 20, 79, 80]. Two 

important formulas for R(q) are 

and 

1 11 R5() (q; q)~ 
R5( ) - - q = (5. 5)6 . q qq,q 00 

Ramanujan [80] derived (1.1.5), by employing the above identities. 

Another continued fraction of Ramanujan, known as Ramanujan's cubic contin­

ued fraction G (q), is defined by 

ql/3 q + q2 q2 + q4 
G(q) := -1- + -1- + 1 + ... ' Iql < 1. (1.6.2) 

Several results on G(q) are recorded by Ramanujan in his notebook [79, p. 237, vol 

II] and his lost notebook [82, p. 366]. In particular, he recorded that 

where 

We also note here that 

( ) ( 2) (q; q )00 

X -q = q; q 00 = ( 2. 2) . q ,q 00 

(1.6.3) 

(1.6.4) 

(1.6.5) 

Proofs of (1.6.3) can be found in papers by Selberg [85], Gordon [45] and Andrews 

[4]. 
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1.7 Work done in this thesis 

In this thesis, we study analogues of Ramanujan's partition identities and congru­

ences by using his cubic continued fraction, theta function identities and modular 

equations. We also find several new partition identities and congruences for par­

titions with designated summands into odd parts and overpartition pairs into odd 

parts. 

In the following few paragraphs, we briefly explain our work. 

In Chapter 2 of this thesis, we present 3-dissections of 1/'l/J(q), 1/c.p( -q) and 

1/(q; q)!, from identities involving Ramanujan's cubic continued fraction and derive 

some· congruences of the coefficients of these functions. 

For example, if 

then 

where 

and consequently, 

00 

I:P3(n)qn = 1/(q;q)~, 
71=0 

+ 33536lwl1 (Q) + 66048q4w14 (q) + 61440lw17 (q) 

+ 40960lw20 (q)}, 

P3(9n + 8) == 0 (mod 81). 

By using the 3-dissections of 1/'l/J(q) and 1/c.p( -q), we derive an analogue of 

Ramanujan's "Most Beautiful Identity" (1.1.5), namely, 

00 (q3. q3)3 (q6. q6)3 
" a(3n + 2)qn = 3 ' 00 , 00 

~ (q; q):x,(q2; q2):x, , 
(1.7.1) 

where a(n) is defined by 

00 1 
I: a(n)q71 = ( ) (2 2) , 
71=0 q; q 00 q ; q 00 

(1.7.2) 
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which was first proved by H.-C. Chan [30]. 

In Section 2.4, we apply the 3-dissection for l!(q; q)~ to prove some congruences 

proved by L. Kolitsch [57,58] and Sellers [87], and a new congruence for the function 

c<Pm (n). In particular, we prove that 

and 

c<P3(3n + 2) == 0 (mod 33
). 

In Chapter 3, we deal with modular equations and identities involving Ramanu­

jan's cubic continued fraction. In his notebooks [79] and his lost notebook [82], 

Ramanujan recorded identities giving relations between the Rogers-Ramanujan con­

tinued fraction R(q) defined in (1.6.1) and the five continued fractions R( -q), R(q2), 

R(q3), R(q4) and R(q5). C. Gugg in his paper [47] gave a new proof of Ramanujan's 

modular identity relating R(q) and R(q5), namely, 

(1.7.3) 

H.H. Chan [34] established several modular identities connecting G(q) defined in 

(3.1.5) with G( -q), G(q2) and G(q3). One of the modular relations is 

1 - G(q3) + G2(q3) 
1 + 2G(q3) + 4G2(q3) 

which is a perfect analogue of (1.7.3). 

G3 (q) 
G(q3) , (1.7.4) 

H.H. Chan [34) proved (l.7.4) by using Ramanujan's modular equations of degree 

3. N.D. Baruah [11], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan [1] 

also found alternative proofs of (1.7.4). Baruah [12) also established two modular 

identities connecting G(q) with G(q5) and G(q7) respectively. Further modular 

identities for G(q) have been found by Naika, S. Chandankumar and K.S. Bairy 

[68). 
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1 
In our work, we prove (l.7.4) by deriving product representations for f?lT::\ + 

VG(q) 
1 

JG(q) and /GWJ - 2JG(q), namely, 
G(q) 

and 

We also find some other interesting identities. 

Chapter 4 of this thesis is devoted to some analogues of Ramanujan's partition 

identities and congruences arising from his theta functions and modular equations. 

We define the generalized partition function P[c'dm)(n) by 

Note that in this notation a (n) defined in (l. 7.2) is p[1121) (n) and therefore (l. 7.1 ) 

can be written as 

(l. 7.5) 

Combinatorially, P[1121)(n) is the number of 2-colored partitions of n with one of 

the colors, say red, appearing only in multiples of 2. Thus, P[1121)(5) = 12, where 

the corresponding partitions, with the other color bei~g, say blue, are given by 

verifying H.-C. Chan's congruence 

for n = l. 
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H.H. Chan and P.C. Toh [33] also gave some beautiful analogues of (1.7.5). Some 

of their identities are 

In Section 4.2, we present new proofs of the above identities by employing Ra­

manujan's modular equations of degrees 3, 5, 7, 11, and 23, respectively. In Section 

4.3, we present some new results analogous to (1.1.5) and new partition congruences 

deducible from them. 

In Chapter 5, we deal with identities and congruences involving P DO (n), the 

number of partitions of n with designated summands in which all parts are odd. 

By using modular forms, Andrews, Lewis and Lovejoy [6] found that 

P DO(12n + 6) == 0 (mod 3) 

and 

P DO(12n + 10) == 0 (mod 3). 

In this thesis, we prove that 

and 
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which give stronger versions of the previous congruences. 

We also find some more identities and congruences for PDO(n). 

In the concluding chapter of this thesis, we deal with arithmetic properties 

of overpartition pairs into odd parts. Recently, Lin [59] obtained a number of 

Ramanujan-type congruences modulo 3 and modulo powers of 2. In particular, 

he found that 

ppo(4n + 3) == 0 (mod 16) (1. 7.6) 

and 

ppo(Sn + 7) == 0 (mod 32). (1.7.7) 

In derivation of the above congruences, Lin worked on taking modulo powers of 2 . 

In our thesis, we obtain the above congruences and several new congruences from 

their respective generating functions. For example, (1.7.6) and (1.7.7) immediately 

follow from 

and 

00 { (q4. q4)19(q2. q2)6 (q2. q2)1O(q4. q4)7 (qB. qB)2 
"\' pp (Sn + 7)qn = 32 x 5 ' 00 , 00 + 40q , 00 , 00 , 00 

~ 0 (q; q)~(q~; qB)~ (q; q)~ 

+ 16 2 (q2; q2)~(qB; qB)~} 
q (q; q)~(q4; q4)~ , 

respectively. 

We also find several new congruences modulo powers of 2 by employing elemen­

tary generating function techniques. 



Chapter 2 

Congruences Deducible from 
Ramanujan's Cubic Continued 
:Fraction 

2.1 Introduction 

Recall from (1.1.5), Ramanujan's famous identity 

00 (5 5)5 
LP(5n + 4)qn = 5 q ; q 00. 

n=O (q; q)oo 
(2.1.1) 

The above identity was described by G. H. Hardy [81, p. xxxvJ as Ramanujan's 

"Most Beautiful Identity". Ramanujan derived (2.1.1) by employing the identities 

1 (ql/5; ql/5)00 
R(q) - 1 - R(q) = ql/5(q5; q5)00' (2.1.2) 

1 11 R5() (q; q)~ 
R5(q) - - q = q(q5; q5)~' (2.1.3) 

where R(q) is the Rogers-Ramanujan continued fraction defined in (1.6.1). 

Recently, H.-C. Chan [30J proved an analogue of (2.1.1), namely, 

00 (q3. q3)3 (q6. q6)3 
'" a(3n + 2)qn = 3 ' 00 , 00 

~ (q; q)~(q2; q2)~ , 
(2.1.4) 

Note: The contents of this chapter appeared in Internatwnal Journal of Number Theory [17J of 

World Scientific Publishing Company. 

15 
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and consequently, 

a(3n + 2) == 0 (mod 3), (2.1.5) 

where a(n) is defined by 

00 1 
L a{n)qn = ( . ) (2. 2) . 
n=O q, q 00 q , q 00 

(2.1.6) 

H.-C. Chan [30] proved (2.1.4) by using two results, analogous to (2.1.2) and 

(2.1.3), closely connected to Ramanujan's cubic continued fraction G(q), defined in 

(1.6.2). 

ql/3 q + q2 q2 + q4 
G(q) := -1- + -1- + 1 + ... ' Iql < 1. (2.1.7) 

Z. Cao [29] has also proved the same result by applying a 3-dissection of (q; q)00(q2; q2)00. 

Recently H. Zhao and Z. Zhong [95] have proved (2.1.4) by using a 3-dissection of 

1/(q;q)00(q2;q2)00, deducible from cubic theta functions. We refer to [31], [32] and 

[33], and [90] for further ref~rences on G(q). 

In Section 2.2 of this chapter, we present 3-dissections of l/'ljJ(q) and 1/<p{ -q), 

where 'ljJ(q) and <p( -q) are defined in (1.5.3) and (1.5.2), respectively. The 3-

dissections are deduced from identities involving Ramanujan's cubic continued frac­

tion. We find some congruences of the coefficients of these two functions and also 

find a simple proof of H.-C. Chan's congruence (2.1.4). 

In Section 2.3, we give a 3-dissection for l/(q; q)~ deducible from identities 

involving Ramanujan's cubic continued fraction G(q) and derive results analogous 

to (2.1.1) and (2.1.4) and deduce congruences for P3(n) modulo 27 and 81 (see 

Theorem 2.3.1 and Theorem 2.3.3). In Section 2.4, we apply the same 3-dissection 

for l/(q;q)~ to prove some congruences proved by L. Kolitsch [57], [58] and Sellers 

[87], and a new congruen~e for the function c¢m(n). which denotes the number of 

F'robenius partitions of n with m colors. 
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2.2 3-Dissections of l/1jJ(q) and 1/<p( -q), and Chan's 

congruence 

1 
Theorem 2.2.1. The 3-dissection of 'IjJ(q) is given by 

1 'ljJ3(q9) 'ljJ3(q9) 2 'ljJ3(q9) 
'IjJ(q) = 'ljJ4(q3)w2(q3) - q 'ljJ4(q3)w(q3) + q 'ljJ4(q3) ' (2.2.1) 

1 
and the 3-dissection of -( -) is given by 

<p -q 

1 <p3( _q9) <p3( _q9)w(q3) 2 2 3 <p3( _q9) 
-(-) = 4( 3) + 2q 4( 3) + 4q w (q) 4( 3)' (2.2.2) <p -q <p -q <p -q <p -q 

where w(q) is given by (2.2.6). 

Proof. From the later two equalities in Entry l(i) of [20, p. 345], we have 

1 + _1_ = 'IjJ(q) 
G(q3) q'IjJ(q9) 

(2.2.3) 

and 

(2.2.4) 

where G(q) is defined in (2.1.7). 

Now, from the first equality of Entry l(i) of [20, p. 345], we note that 

G( ) - 1/3 (q; q2)00 _ 1/3 () 
q - q (3. 6)3 - q W q , 

q ,q 00 

(2.2.5) 

where 

(2.2.6) 

With the help of (2.2.5), we rewrite (2.2.3) and (2.2.4) as 

1 + 1 = 'IjJ(q) 
qW(q3) q'IjJ(q9) 

(2.2.7) 
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and 

1 1j;4(q3) 
1 + = ---'----'.,..,... 

q3'UJ3 (q3) q31j;4 ( q9) 
(2.2.8) 

Employing (2.2.8) and (2.2.7), we find that 

which is the first part of Theorem 2.2.1. 

Again, from Entry l(ii) and Entry l(iii) of [20, p. 345], we note that 

(2.2.9) 

and 

(2.2.10) 

Employing (2.2.9) in (2.2.10) we find that 

(2.2.11) 

Now, cubing both sides of (2.2.9) and then multiplying with (2.2.11), we arrive 

at 

<p4(_q3) 2 (3) 4 2 2( 3) 
( ) 3{ 9) = 1 + q'UJ q + q 'UJ q , 

<p -q <p -q 
(2.2.12) 

which is equivalent to (2.2.2). o 

The following congruences follow readily from the 3-dissection of _( 
1 

) given 
<p -q 

in Theorem 2.2.1. 
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00' 1 
Corollary 2.2.2. If b(n) is defined by L:n=O b(n)qn = tp( _q)' then 

00 n tp3( _q3) f6( -q3)r( _q2) 
~ b(3n)q = tp4( _q) = J3( -q6)f8( _q) , (2.2.13) 

~ b(3n + 1)qn = 2 w(q) tp3( _q3) = 2 f3( -q2)f3( _q3) 
~ tp4( -q) J1( -q) , 

(2.2.14) 

and 

(2.2.15) 

Corollary 2.2.3. We have 

b(3n + 1) = 0 (mod 2) 

and 

b(3n + 2) = 0 (mod 4). 

Proof. Follow readily from (2.2.14) and (2.2.15). o 

Corollary 2.2.4. We have 

~ b(6 + 5)qn = 24 j4( _q2)f3( _q3)j2( _q8) + 128 f6( _q2)j3( _q3)j6( _q8) 
~ n f9(_q)f(-q4) q J13(_q)J3(_q4) . 

(2.2.16) 

Consequently, 

b(6n + 5) = 0 (mod 8). 

Proof. From (2.2.15), we have 

(2.2.17) 
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where we have used the trivial fact that f( -q) = (q; q)oo = (q; q2)00(q2; q2)00 = 

f ( _q2) (q; q2)00. Replacing q by -q in (2.2.17) and then subtracting the resulting 

identity from (2.2.17), we find that 

00 noon P( _q6) (1 1) 
Lb(3n+2)q - Lb(3n+2)(-q) =4 f4(- 2) (.2)6 - (_.2)6 
n=O n=O q q, q 00 q, q 00 

3( 6) 
4 f -q (( 2)6 ( 2)6) = f4(- 2)( 2. 4)6 -q; q 00 - q; q 00 q q ,q 00 . 

_ P( _q6)f6( _q4) . 2 6 . 2 6 
-4 flO(_q2) ((-q,q)oo-(q,q)oo)' 

(2.2.18) 

Now, from Entry 25(ii) [20, p. 40], we have 

r.p( q) _ r.p( _q) = 4q1jJ( q8). (2.2.19) 

Writing (2.2.19) in q-products, with the help of (1.5.2) and (1.5.3), we find that 

( 16. 16) 
( 2 2) {( 2)2 ( 2)2} 4 q ,q 00 q ; q 00 -q; q 00 - q; q 00 = q ( 8. 16) . 

q ,q 00 

(2.2:20) 

Thus, 

( 16. 16) 
( 2)2 ( 2)2 4 q, q 00 
-q; q 00 - q; q 00 = q ( 2. 2) (8. 16) q ,q 00 q ,q 00 

j2( _q16) 
= 4q f( -q2)f( _q8)' 

Therefore, 

( _q; q2)~ _ (q; q2)~ = (( _q; q2)!, _ (q; q2)!,) 3 + 3( q2; q4)!, (( _q; q2)!, _ (q; q2)!,) 

3 f6( _q16) f( _q2)j2( _q16) 
= 64q J3( _q2)J3( _q8) + 12q j2( -q4)f( _q8) . (2.2.21) 

Employing (2.2.21) in (2.2.18), we find that 

f b(3n + 2)qn _ f b(3n + 2)( _q)n = 48q r( _q4)P( _q6)j2( _q16) 
n=O n=O f9( -q2)f( _q8) 

3 j6( _q4)j3( _q6)f6( _q16) 
+ 256q Jl3(_q2)J3(_q8) . 

(2.2.22) 
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Extracting from both sides of (2.2.22) those terms that involve only q2n+l, and then 

dividing both sides by q and replacing q2 by q, we arrive at (2.2.16) to complete the 

proof. o 

Next, we prove H.-C. Chan's identity (2.1.4) by employing the 3-dissections given 

in Theorem 2.2.1. 

Corollary 2.2.5. Identity (2.1.4) holds. 

Proof. By the product representations of <p( -q) and 1jJ(q) in (1.5.2) and (1.5.3), we 

have 

1 
(2.2.23) 

Extracting from both sides of (2.2.24) those terms that involve q3n+2, we obtain 

~ a(3n + 2)q3n+2 = 3q21jJ3 (q9)<p3( _q9). 
~ 1jJ4 (q3)<p4 ( _q3) 

(2.2.25) 

Dividing both sides of (2.2.25) by q2 and replacing q3 by q, we obtain 

00 n 1jJ3(q3)<p3( _q3) L a(3n + 2)q = 3 1jJ4( ) 4(_ ) . 
n=O q <p q 

(2.2.26) 

With the help of the product representations of <p( -q) and 't/J( q) in (1.5.2) and 

(1.5.3), we can easily deduce (2.1.4) from (2.2.26). o 

2.3 Congruences for the partition function P3(n) 

Setting r = 3 in (1.1.6), we have 
00 

LP3(n)qn = 1/(q;q)3, 
n=O 
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where P3(n) is the number of 3-colored partitions of n. Then 

00 1 1 
LP3(n)qn = ( . ()3 - ( 3. 3) (mod 3). 
n=O q, 1 00 q ,q 00 

(2.3.1) 

It is clear from (2.3.1) that P3(3n + 1) == 0 (mod 3) and P3(3n + 2) == 0 (mod 3). 

We have the following stronger results. 

Theorem 2.3.1. If Pr(n) ~s defined by (1.1.6), then 

I=P3(3n)qn = (f: q;~~ (w}( ) + 8q'l1J(q) + 16q2
'11J

4 (q») , 
n=O q,q 00 q 

(2.3.2) 

00 (q3. q3)12(q2. q2) (q3. q3)3 (q6. q6)6 
~ (3n + 1) n - 3 ' 00 , 00 + 12 ' 00 , 00 

~P3 q - (q;q)~(q6;q6)~ q (q;q)~(q2;q2)~ , 
(2.3.3) 

and 

(2.3.4) 

Proof. From Entry 1(iv) of [20, p. 345], we note that 

(2.3.5) 

and 

P2(_q) (2 1 )3 
qJl2( _q3) = 4G (q) + G(q) - 27, (2.3.6) 

where G(q) is Ramanujan's cubic continued fraction as defined in (2.1.7). Replacing 

q by q3 in (2.3.5) and (2.3.6), and then employing (1.5.4) and (2.2.5), we find that 

(q; q)~ 4 2 2( 3) 3 1 
( 9. 9)3 = q W q - + (3) q q ,q 00 qw q 

(2.3.7) 

and 

(2.3.8) 
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Therefore, 

Extracting from both sides of (2.3.9) those terms that involve q3n, q3n+1, and q3n+2, 

respectively, we obtain 

00 (9 9)9 ( ) 3n q;qoo 1 33 643 
2:P3(3n)q = ( 3. 3)12 W2 ( 3) + 8q W(q ) + 16q W (q) , 
n=Q q ,q 00 q 

(2.3.10) 

(2.3.11) 

and 

It is now easy to derive (2.3.2)-(2.3.4) from (2.3.10)-(2.3.12), respectively. 0 

The following results are immediate from Theorem 2.3.1. 

Corollary 2.3.2. We have 

P3(3n + 1) == 0 (mod 3) 

and 

Now we derive the following two interesting congruences from (2.3.4). 
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Theorem 2.3.3. We have 

(2.3.13) 

and 

(2.3.14) 

Proof Employing (2.3.9) in (2.3.4), we find that 

00 ( 9. 9)36 
'"" P3(3n + 2)qn = 9 q ,q 00 {(I + 3qW(q3) + 9q2w2(q3) + 8q3W3(q3) 
~ (q3; q3)~w8(q3) 

+ 12q4w4(q3) + 16q6w6(q3)} 
4 

( 9. 9)36 

= 9 (q3; :3)~'I1J~(q3) { 1 + 12qw(q3) + 90q
2
W

2
(q3) + 464q3W3(q3) 

+ 1875q4w4(q3) + 6048q5W5(q3) + 16378q6w6(q3) 

+ 37404q7w7(q3) + 74817q8w8(q3) + 131024q9w9(q3) 

+ 209616qlOwlO (q3) + 301824qllWll (q3) + 411040q12w12(q3) 

+ 501504q13w13(q3) + 594432q14W 14(q3) + 610304q15uP(q3) 

+ 652032q16W16(q3) + 552960q17W17(q3) + 557056q18w18(q3) 

+ 344064q19W19(q3) + 368640q20W20(q3) + 131072q21W21(q3) 

(2.3.15) 

Extracting from both sides of (2.3.15) those terms that involve only q3n+l in (2.3.15), 

and then dividing both sides by q and replacing q3 by q, we obtain 

00 ( 3. 3)36 

LP3(9n + 5)qn = 27 ( .q )'3~W~ ) {4w(q) + 625qw4(q) + 12468q2w7(q) 
n=O q, q 00 q 

(2.3.16) 

from which we readily arrive at (2.3.13). 
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Next, extracting from both sides of (2.3.15) those terms that involve only q3n+2 

in (2.3.15), and then dividing both sides by q2 and replacing q3 by q in the resulting 

identity, we find that 

(2.3.17) 

We readily deduce (2.3.14) from (2.3.17) to complete the proof. o 

2.4 Some congruences for Frobenius partitions 

L. Kolitsch [57, 58J introduced the partition function c4>m(n). Kolitsch proved that, 

for all n ~ 1 and for any m ~ 2, c4>m(n) == 0 (mod m2
). In particular, in [57], 

Kolitsch found that 

(2.4.1 ) 

which readily implies that c4>3(n) == 0 (mod 32
). In a short note, J. Sellers [86], 

found that, for all n ~ 1, 

and 

c4>5(5n) == 0 (mod 53), 

c4>7(7n) == 0 (mod 73), 

Furthermore, by employing a well-known result of Jacobi in (2.4.1), Sellers [88] 

proved an analogous result (see{2.4.2) below) involving c4>3(3n) modulo 34 . Recently, 

Baruah and Sarmah [19] have found an expression for the generating function for 



C<P4(n) and also deduced the congruences 

c<p4(2n) == 0 (mod 43
), 

c<P4(4n + 3) == 0 (mod 44
), 

c<p4(4n) == 0 (mod 44
). 
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In the following, we find a simple proof of Sellers's result and a new result with 

the help of (2.3.9) and (2.4.1). 

Theorem 2.4.1. We have 

(2.4.2) 

and 

c<P3(3n + 2) == 0 (mod 33
). (2.4.3) 

Proof. Employing (2.3.9) in (2.4.1), we find that 

~ -Y( ) n 9q(q9; q9)~(q6; q6)~ { 3 (3) 9 2 2( 3) 3 3( 3) 
L C'f'3 n q = ( 3. 3)15( 18. 18)6 1 + qw q + q w q + 8q w q 
n=O q ,q 00 q ,q 00 

(2.4.4) 

Extracting the terms involving q3n and q3n+2, respectively, from both sides of the 

above, we find that 

and 

00 (9 9)18( 6 6)2 . 
~ -y( 2) 3n+2 - 27 2{ (3) q; q 00 q ; q 00 
L C'f'3 3n + q - q w q (3. 3)15( 18. 18)6 
n=O q ,q 00 q ,q 00 

3 4 3 (q9; q9)~(q6; q6)~ } 
+ 4q w (q ) ( 3. 3)15( 18. 18)6 . q,qooq,q 00 

(2.4.5) 

(2.4.6) 
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Thus, 

(2.4.1) 

and 

(2.4.8) 

from which we readily arrive at (2.4.2) and (2.4.3), respectively. With the help of 

(2.2.6), we can recast (2.4.7) and (2.4.8) in the form 

and 

respectively. o 



Chapter 3 

A New Proof of a Modular 
Relation for Ramanujan's Cubic 
Continued Fraction and Related 
Results 

3.1 Introduction 

In the introductory chapter we have defined Roger- Ramanujan continued fraction 

R(q) and discussed modular identities for R(q). Ramanujan's well-known modular 

identity relating R(q) and R(q5) is 

5 '5 1 - 2R(q5) + 4R2(q5) - 3R3(q5) + R4(q5) 
R (q) = R(q ) 1 + 3R(q5) + 4R2(q5) + 2R3(q5) + R4(q5)' (3.1.1) 

Proof of this result was given by Ramanujan [81], Rogers [84], Watson [92], Ra­

manathan [78]. 

In his notebooks, Ramanujan recorded many identities involving R(q) which can 

be found in [24, 20, 79, 80]. One of the most important formulas for R(q) is 

1 (ql/5;ql/5)00 

R( ) - 1 - R(q) = 1/5( 5. 5) . (3.1.2) q q q ,q 00 

Furthermore, on p. 206 of his lost notebook [80], Ramanujan recorded the iden-

tities, namely, 

(3.1.3) 

28 
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and 

1 1 
y'R(0 - f3vR (q) = ql/l0 (3.1.4) 

1-J5 1+J5 
where a = and f3 = . 

2 2 
Proofs of these identities are given by Ramanathan [78] and Berndt et al. [23]. 

See also [24, pp. 21-24J. 

It has been observed that these identities provides an amazing factorization of 

the result in (3.1.2). 

Recently, C. Gugg in his paper [47], gave product identities for the expressions 

appearing in the numerator and denominator of the Ramanujan identity (3.1.1) by 

employing (3.1.3) and (3.1.4). 

Now, we recall Ramanujan's cubic continued fraction 

ql/3 q + q2 
G(q) = -1- + 1 Iql < 1. (3.1.5) 

In 1995, H. H. Chan [34J established several modular relations connecting G(q) with 

G( -q), G(q2) and G(q3). Some of those relations are 

and 

G(q) + G( -q) + 2G2( _q)G2(q) = 0, 

G2(q) + 2G2(q2)G(q) - G(q2) = 0, 

1 - G(q3) + G2(q3) _ G3(q) 
1 + 2G(q3) + 4G2(q3) - G(q3)· 

(3.1.6) 

(3.1.7) 

(3.1.8) 

H.H. Chan [34J proved (3.1.8) by using Ramanujan's modular equations of degree 

3. N.D. Baruah [11], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan [lJ 

also found alternative proofs of (3.1.8). Baruah [12] also established two modular 

identities connecting G(q) with G(q5) and G(q1) respectively. FUrther modular 

identities for G(q) have been found by Naika, S. Chandankumar and K.S. Bairy 

[68]. 
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In our work, we prove (3.1.8) by deriving product representations namely, 

and 

(3.1.10) 

We also find some interesting identities related to G(q). In the next section, we 

give some preliminary results and ill the final section, we present some new identities 

involving Ramanujan's cubic continued fraction G(q) and give a new proof of (3.1.8). 

3.2 Main results and their proofs 

Theorem 3.2.1. We have 

and 

(3.2.2) 

Proof of (3.2.1). We recall from [20, p. 49, corollary(ii)], [20, p. 350, Eq.(2.3)] and 

[20, p. 39, Entriy 24(iii)] that 

and 

'l/J(q) = f(q3, q6) + q'l/J(q9) , 

cp{ _q3) 
X{ -q) = f{q, q2)' 

(3.2.3) 

(3.2.4) 

(3.2.5) 
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From (1.6.3), (3.2.4), and (3.2.5), we have 

G(q) = ql/3 ?; q2)oo = ql/3 ~~ -q)) = ql/3 ~(q3~). (3.2.6) 
q ; q6);, X _q3 f q, q 

Thus, 

Using (3.2.3) and (3.2.4) in the numerator and the denominator of the right side of 

above, we find that 

1 + ~() = J<p(_q3) . ~_ )"',( 1/3) (3.2.7) 
JG(q) V L'rlq) ql/6J1jJ(q3)<p( _q3) V Xl-q)<P q . 

Employing (3.2.5) in the right side of (3.2.7), we arrive at (3.2.1). 0 

Proof of (3.2.2). From [20, p. 345, Entries l(i), (ii)], we obtain 

<p( _ql/3) 
1 - 2G(q) = 1/3 ( 3)" q <p-q 

Using (3.2.8) 

(3.2.8) 

~ _ 2VG(q) = <p( _ql/~. (3.2.9) 
G(q) ql/3<p( _q3) G(q) 

Employing (3.2.6) in the right side of (3.2.9), we arrive at (3.2.2). 0 

Theorem 3.2.2. We have 

(3.2.10) 

and 

2 X3( _q3)¢4( -q) 
1 + 2G(q) + 4G (q) = G(q)· 1/3 ( ) 3( 3) ( 1/3)· q X -q <p -q <p-q 

(3.2.11) 
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Proof of (3.2.10). Here, we require (3.2.1). Note that for each i=1,2, we obtain an 

identity from (3.2.1) by replacing ql/3 with w'ql/3, where w = e27rt/3. Multiplying 

these two identities, we have 

Since 

we have 

00 

n=l 

= IT (1 - qn)3 IT (1 - q3n) 
31n 31h 

(q3; q3)~ 
(q9; q9)00' 

(3.2.13) 

From (1.5.3) 

(3.2.14) 

Using (3.2.14) and (3.2.13), we find that 

(3.2.15) 

Employing (3.2.15) in (3.2.12) and expanding the product on the left side, we obtain 

1 - G(q) + G2(q) 

G(q) 

x3( _q3)X( _q)1jJ4(q) 
ql/3cp2( _q3)1jJ(q3)1jJ(ql/3)' 

(3.2.16) 
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Thus, we complete the proof of (3.2.10). o 

Proof of (3.2.11). The proof of the second part of Theorem 3.2.2 is quite similar to 

the proof of first part. Here we require (3.2.2). 

Proceeding as in the proof of first part, we deduce that 

1 ,_ X -q 1/3 2 1/3 

( ) 
3( 3) 

II J 'G( ) - 2Jw G(q) - q1/3cp2(_q3)X(_q) . cp(-wq )cp(-w q ). 
'=1,2 W q 

Again, we have from (1.5.5) 

(q; q)~ 
cp(-q) = ( 2. 2) . q ,q 00 

Using (3.2.18) and (3.2.13), we obtain 

Now, expanding the left side of (3.2.17) and using (3.2.19), we obtain 

which is equivalent to (3.2.11). 

Corollary 3.2.3. 

(3.2.17) 

(3.2.18) 

(3.2.19) 

(3.2.20) 

o 
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Proof. Multiplying (3.2.10) and (3.2.11) and replacing q by q3, we can easily derive 

(3.2.21). 

Squaring (3.2.11) and multiplying with (3.2.10) and replacing q by q3, we can 

easily derive (3.2.22). o 

Next, as corollary we obtain the following 3-dissections, which are equivalent to 

some results in the previous chapter. 

Corollary 3.2.4. If 1jJ(q) and ¢(q) are defined m (l.5.3) and (l.5.2), then 

1 1jJ3(q9) 1jJ3(q9) 21jJ3(q9) 
1jJ(q) = 1jJ4(93)W2(q3) - q 1jJ4(q3)W(q3) + q 1jJ4(q3) ' (3.2.23) 

1 <p3( _q9) <p3( _q9)W(q3) <p3( _q9)W2(q3) 
-- = + 2q + 4q2 ,(3.2.24) 
<p( _q) <p4( _q3) <p4( _q3) <p4( _q3) 

1 = (q9; q9)~(q18; q18)~ {_1_ + _q_ + 3q2 _ 2q3W(q3) 
(q; q)00(q2; q2)00 (q3; q3)~(q6; q6)~ w2(q3) w(q3) 

+ 4q4W3(q3)}, (3.2.25) 

( . \3 = ~q:: q:~~ { 21( 3) + 3(q3) + 9q2 + 8q3w(q3) + 12q4W2(q3) 
q,qoo q,q 00 w q wq 

(3.2.26) 

where 

G(q) = ql/3 (q; q2)00 = ql/3W(q). 
(q3; q6)~ 

(3.2.27) 

Proof. Employing (3.2.27) in (3.2.10) and replacing q by q3, we arrive at (3.2.23). 

Employing (3.2.27) in (3.2.11) and replacing q by q3, we find (3.2.24). In (3.2.21), 

employing (3.2.27) in the right hand side and using (3.2.14), (3.2.18) in the left hand 

side, we obtain (3.2.25). In (3.2.22), employing (3.2.27) in the right side and using 

(3.2.14), (3.2.18) in the left side, we arrive at (3.2.26). D 

Now, let us consider L.J. Slater's identities 

00 qn2+2n( _q; q2)n f( _q, _q5) 

~ (q4; q4)n = 1jJ( -q) 
(3.2.28) 



and 

which are analogous to the famous Roger-Ramanujan identities 

and 

Let us define 

and 

Andrews [4], proved that 

A(q) := f{ -q, _q5) 
'If;( -q) 

G(q) = ql/3 A(q) = ql/3 X( -q) 
B(q) X3( _q3) 
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(3.2.29) 

(3.2.30) 

(3.2.31) 

(3.2.32) 

In the next theorem, we find q-product representations of the even and odd terms 
B(q) ql/3 

of A(q) = G(q)" 

Theorem 3.2.5. If 

ql/3 B(q) 00 n 

D(q) = G( ) = A( ) = 2: enq , 
q q n=O 

(3.2.33) 

then 

(3.2.34) 

and 

(3.2.35) 
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Proof of Theorem 3.2.5. From (3.2.33), we have 

00 1 L c2nq2n = 2[D(q) + D( -q)J. 
n=O 

= ! [B(q)A( -q) + B( -q)A(q)] 
2 A(q)A(-q) , 

(3.2.36) 

where we have used (3.2.33). 

We recall from [20, p. 51, Example (v)] that 

(3.2.37) 

From (3.2.30) and (3.2.37), 

A( )A(-q) = X( -q)X(q)'IjJ(q3)'IjJ( _q3). 
q 'IjJ( -q)'IjJ(q) (3.2.38) 

Again, employing (3.2.30) and (3.2.31), we find that 

B(q)A( _q) + B( -q)A(q) = f(q, q5)f( _q3, ~qt2~~(~)q, -q5)f(q3, q3). (3.2.39) 

Next, recall from [20, p.45, Entry 29] that if ab = cd, then 

f(a, b)f(c, d) + f( -a, -b)f( -c, -d) = 2f(ac, bd)f(ad, bc). (3.2.40) 

Setting a = q, b = q5, and c = d = _q3 in (3.2.40) and using in the right side of 

(3.2.39), we have 

(3.2.41) 

where we have also used (1.5.4). Applying (3.2.41) and (3.2.38) in (3.2.36), we arrive 

at 

(3.2.42) 

Now, using q- product representations for 'IjJ(q) and X(q) in (3.2.42), and then re­

placing q2 by q, we arrive at (3.2.34). 
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The proof of the second part of Theorem 3.2.5 is quite similar to the proof of 

first part. 

Proceeding as in the proof of first part, we have 

~ 2n+l = ~[D( ) _ D(- )] = ~ [B(q)A( -q) - B( -q)A(q)] 
~C2n+lq 2 q q 2 A( )A(- ) . 
n=O q q 

(3.2.43) 

Using (3.2.30) and (3.2.31), we find that 

B( )
A(- ) _ B(- )A( ) = f(q, q5)f( _q3, _q3) - f( -q, -q5)f(q3, q3) ) 

q q q q 'IjJ( _q)'IjJ(q) . (3.2.44 

Again, we recall from [20, p.45, Entry 29] that if ab = cd, then 

f(a, b)f(c, d) - f( -a, -b)f( -c, -d) = 2af (~, ac2~) f (~, aCd2) . (3.2.45) 

Setting a = q, b = q5, and c = d = _q3 in (3.2.45), and employing in the right side 

of (3.2.44)' we obtain 

(3.2.46) 

where we have also used (3.2.37). Employing (3.2.46), (3.2.38) in (3.2.43), we deduce 

that 

(3.2.47) 

Now, using q-product representations for !p(q), 'IjJ(q) and X(q) on the right side of 

(3.2.47), diving both sides by q, and then replacing q2 by q, we easily deduce the 

first equality of (3.2.35). The second equality then follows from (3.2.6). 0 

Remark 3.2.6. M. Hirschhorn and Roselin [50J also proved (3.2.34) and (3.2.35) 
(q3. q3)3 

by applying a 2-dissection for ( , ) 00. 

q;q 00 

Finally, we prove (3.1.8). 
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Proof of (3.1.8). Dividing (3.2.10) by (3.2.11) and replacing q by q3, we obtain 

(3.2.48) 

where we have also used (3.2.5). 

Since 

we complete the proof of (3.1.8). 

o 



Chapter 4 

Analogues of Ramanujan's 
Partition Identities and 
Congruences Arising from his 
Theta Functions and Modular 
Equations 

4.1 Introduction 

In the introductory chapter, we have defined the partition function P[dd"'j(n) as 

(4.1.1) 

Recently, H.-C. Chan [30] proved that 

00 n (q3; q3)~(q6; q6)~ 
LP(1l21j(3n + 2)q = 3 (. )4 ( 2. 2)4 ' 
n=O q,q 00 q ,q 00 

(4.1.2) 

and consequently, P[l121j(3n + 2) == 0 (mod 3). 

Again, H.-C. Chan and S. Cooper [32] considered the partition function P[1232j(n) 

and proved the congruence P[1232j(2n + 1) == 0 (mod 2) by showing that 

00 n (q2; q2):x,(q6; q6):x, 
LP[1232j(2n + l)q = 2 (. )6 ( 3. 3)6 . 
n=O q, q 00 q ,q 00 

(4.1.3) 

Note: The contents of this chapter appeared in The RamanuJan Journal [18) of Springer. 

39 
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Here, combinatorially, P[1232](n) is the number of 4-colored partitions of n with 

two of the colors appearing only in multiples of 3. 

Very recently, H.H. Chan and P.C. Toh [33] have given some beautiful analogues 

of (1.1.5) including the results in the following theorem. They have established these 

results using the theory of modular functions. 

Theorem 4.1.1. If the generalized partition function P(c1dmJ(n) is defined by(4.1.1), 

then 

It readily follows from (4.1.4) and (4.1.6) that 

and 

In Section 4.~, we present new proofs of (4.1.3)-(4.1.7) by employing Ramanu­

jan's modular equations of degrees 3, 5, 7, 11, and 23, respectively. 

We also find a host of other analogous results by employing Ramanujan's theta 

function identities and modular equations. We also deduce some new interesting 

partition congruences. In Section 4.3, we present some new results analogous to 

(1.1.5) and new partition congruences deducible from them. 
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4.2 New proofs of (4.1.3)-(4.1.7) 

The proofs of (4.1.3)-(4.1.7), can be given by using a certain type of modular equa­

tions independently found by Schroter, Russel, and Ramanujan. These modular 

equations were beautifully employed by Berndt [21] to deduce certain Farkas-Kra­

type partition identities. 

Proof of (4.1.3). We have 

00 1 1 

~ P(1
2
3

2
) (n)qn = (q; q)~(q3; q3)~ = (q; q2)~(q3; q6)~(q2; q2)~(q6; q6)~' (4.2.1) 

Replacing q by -q in (4.2.1) and then subtracting the resulting identity from (4.2.1), 

we obtain 
00 00 

n=O n=O 

1 {II} 
= (q2; q2)~(q6; q6)~ (q; q2)~(q3; q6)~ - (_q; q2)~( _q3; q6)~ 

(q4. q4)2 (qI2.qI2)2 
= ' 00 , 00 {(_q. q2)2 (_q3. q6)2 _ (q' q2)2 (q3. q6)2 } 

( 2. 2)4 ( 6. 6)4 '00' 00 , 00 , 00' q ,q 00 q ,q 00 

(4.2.2) 

Now, we recall from [20, Entry 5(ii), p. 230J that if {3 has degree 3 over a, then 

(a{3)1/4 + ((1 - a)(1 - (3)//4 = 1, 

which can be transformed into (see [21]) 

Employing (4.2.3) in (4.2.2), we find that 

00 noon n (q4; q4)~(q12; q12)~ 
LP(12 32 )(n)q - LP!I232 )(n)(-I) q = 4q (2. 2)4 ( 6. 6)4 
n=O n=O q,q ooq,q 00 

x {( _q2; q2)~( _q6; q6)~} 

= 4q (q4; q4);,(q12; qI2);, 
(q2;q2)~(q6;q6)~ . 

(4.2.3) 

(4.2.4) 

Extracting from both sides of (4.2.4) those terms involving only q2n+1, and then 

dividing both sides by q and replacing q2 by q, we arrive at (4.1.3) to complete the 

proof. o 
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Proof of (4.l.4). We have 

1 

so that 

00 00 

n=O n=O 

1 {II} 
= (q2; q2)~(q1O; q1O)~ (q; q2)~(q5; qlO)~ - (_q; q2)~( _q5; qlO)~ 

( 4. 4)4 ( 20. 20)4 
_ q , q 00 q , q 00 {( . 2)4 ( 5. 10)4 (. 2)4 ( 5. 10)4 } 
- ( 2. 2)8 ( 10. 10)8 -q,q 00 -q,q 00 - q,q 00 q,q 00 . 

q,q 00 q ,q 00 

(4.2.5) 

Now, we recall from [20, Entry 13(i), p. 2801 the following modular equation of 

Ramanujan. If (3 has degree 5 over a, then 

(a(3)1/2 + ((1 - a)(l - (3))1/2 + 2{16a(3(1 - a)(l - (3)}1/6 = 1 

As shown by Berndt [21], the above modular equation can be transformed into 

(_q; q2)!o( _q5; q1O)~ _ (q; q2)!o(q5; q1O)!o = 8q + 16q3( _q2; q2)~( _q1O; q10)~. 

(4.2.6) 

Employing (4.2.6) in (4.2.5), we find that 

00 00 

n=O n=O 

( 4. 4)4 ( 20. 20)4 
= 2q q, q 00 q , q 00 {4 + 8q2( _q2. q2)4 (_q1O. q1O)4 } 

(q2; q2)~(qlO; ql0)~ , 00 , 00 

= 2q (q4; q4)~(q20; q20)~ {4 + 8q2 (q4; q4)~(q20; q20)~} 
(q2; q2)~(q10; ql0)~ (q2; q2)~(q1O; qlO)~ . 

(4.2.7) 

Now, extracting from both sides of (4.2.7) those terms involving only q2n+1, and 

then dividing both sides by q and replacing q2 by q, we arrive at (4.l.4) to complete 

the proof. o 

Proof of (4.1.5). We have 

1 
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so that 

00 00 

n=O n=O 

(4.2.8) 

Now, we recall from [20, Entry 19(i}, p. 314] the following modular equation of 

Ramanujan. If (3 has degree 7 over Q, then 

(Q(3}1/8 + ((1 - Q}(l - (3))1/8 = 1. 
I 

As shown by Berndt [21], the above modular equation can be transformed into 

With the aid of (4.2.9), we deduce from from (4.2.8) that 

{4.2.10} 

Extracting the odd terms from both sides of (4.2.1O) we arrive at {4.1.5} to complete 

the proof. o 

Proof of (4.1.6). We have 

00 1 1 
~P[12112J(n}qn = (q; q}!,(qU; qll )!, = (q; q2)!,(qll; q22)!,(q2; q2)!,(q22; q22)!,' 

(4.2.11) 

Replacing q by -q in (4.2.11) and then subtracting the resulting identity from 



44 

(4.2.11), we obtain 

00 00 

n=O n=O 

1 {II} 
= (q2; q2)~(q22; q22)~ (q; q2)~(qll; q22)~ - (_q; q2)~( _qll; q22)~ 

( 4. 4)2 ( 44. 44)2 
q , q 00 q , q 00 {( 2)2 ( 11 22)2 ( 2)2 (11 22)2} = ( 2. 2)4 ( 22. 22)4 -q; q 00 -q ; q 00 - q; q 00 q ; q 00 . q,q 00 q ,q 00 

(4.2.12) 

Now, we recall from [20, Entry 7{i), p. 363J that if (3 has degree 11 over a, then 

(a(3)1/4 + ((1 - a)(1 - (3))1/4 + 2{16a(3(1 - a)(1 - (3)}1/12 = 1, 

which can be transformed into (see [21]) 

(_q; q2);,( _qll; l2);, _ (q; q2);,(qll; q22);, = 4q + 4q3( _q2; q2);,{ _q22; q22);'. 

(4.2.13) 

Employing (4.2.13) in (4.2.12), we find that 

00 00 

n=O n=O 

( 4. 4)2 ( 44. 44)2 
2 q,q ooq,q 00{2+22( 2 2)2 ( 2222)2} = q ( 2. 2)4 ( 22. 22)4 q -q; q 00 -q ; q 00 q,q 00 q ,q 00 

= 2 (q4; q4);,(q44; q44);, {2 + 2 2 (q4; q4);,(q44; q44)!,} 
q (q2; q2)~(q22; q22)~ q (q2; q2)~(q22; q22)~ .. (4.2.14) 

Extracting from both sides of (4.2.14) those terms involving only q2n+l, and then 

dividing both sides by q and replacing q2 by q, we arrive at (4.1.6) to finish the 

proof. 

Proof of (4.1.7). We have 

o 

1 

(q; q2)00(q23; q46)00(q2; q2)00(q46; q46)00· 

(4.2.15) 

Replacing q by -q in (4.2.15) and then subtracting the resulting identity from 
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(4.2.15), we obtain 

00 00 
LP[11231j(n)qn - LP[11231j(n)( -ltqn 
n=O n=O 

Now, we recall from [20, Entry 15(i), p. 411] that if (3 has degree 23 over a, then 

(a(3)1/8 + ((1 - a)(l - (3))1/8 + 22/3{a(3(1 - a)(l - (3)}1/24 = 1, 

which can be transformed into (see [21]) 

(_q; q2)00( _q23; q46)00 _ (q; q2)00(q23; q46)00 = 2q + 2q3( _q2; q2)00( _q46; q46)00. 

(4.2.17) 

Employing (4.2.17) in (4.2.16), we find that 

00 00 

n=O n=O 

(4.2.18) 

Extracting from both sides of (4.2.18) those terms involving only q2n+1, and then 

dividing both sides by q and replacing q2 by q, we arrive at (4.1.7) to complete the 

proof. o 

Corollary 4.2.1. We have 

P[1232)(4n + 3) == 0 (mod 4). (4.2.19) 
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Proof. From (4.1.3), we find that 

00 00 

n=O n=O 

Employing (4.2.3) in (4.2.20), we obtain 

(4.2.21) 

and therefore, 

The proffered congruence in (4.2.19) now readily follows from (4.2.22). 0 

Remark 4.2.2. The above congruence is a particular case of a general congruence 

found by Chan and Cooper {32, Eq. (1.4), Theorem l.lj. 

Corollary 4.2.3. We have 

(4.2.23) 
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Proof. From (4.1.5), we have 
00 00 

n=O n=O 

(q4; q4)~(q2B; q2B)~ {( 2)3 ( 7 14)3 ( 2)3 (7 14)3} = ( 2. 2)4 ( 14. 14)4 -q; q 00 -q ; q 00 - q; q 00 q ; q 00· (4.2.24) 
q,q 00 q ,q 00 

Employing (4.2.9) in (4.2.24)' and then comparing odd terms from both sides, we 

find that 

00 n (q2; q2)~(q14; q14)~ (q2; q2)~(q14; q14)~ 
~P[1171)(4n + 3)q = 3 (.)4 ( 7. 7)4 + 4q (.)1 ( 7. 7)1 
n=O q,q 00 q,q 00 q,q 00 q,q 00 

_ (q2; q2)~(q14; q14)~ . 
= (.)4 ( 7. 7)4 (mod 2) q,qooq,q 00 

== (q2; q2)00(q14; q14)00 (mod 2), (4.2.25) 

where we have also applied the binomial theorem. From (4.2.25), we readily deduce 

(4.2.23). 0 

4.3 Some new results and their proofs 

In this section, we state and prove some results which are analogues to Ramanujan's 

"Most beautiful identity" (1.1.5). We further deduce some new interesting partition 

congruences. 

Theorem 4.3.1. 

00 n (q2; q2)00(q6; q6)00(qlO; q10)00(q30; q30)00 
LP[113151I51)(2n + l)q = (.)2 ( 3. 3)2 ( 5. 5)2 ( 15. 15)2 
n=O q, q 00 q , q 00 q , q 00 q , q 00 

+ 2 (q2; q2)~(q6; q6)~(qlO; qlO)~(q30; q30)~ 
q (q; q)~(q3; q3)~(q5; q5)~(q15; q15)~ (4.3.1) 

Proof. The proof is similar to those in Section 4.2. We utilize the modular equation 

[20, Entry l1(xiv), p. 385] 

(afh8)1/B + {(I - a)(1 - f~)(1 -,)(1 _ 8)}1/B 

+ 21/3 {a/3J8(1 - a)(1 - ,8)(1 -,)(1 - 8)}1/24 = 1, 
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where (J, " and 8 have degrees 3, 5, and 15, respectively, over a. o 

Remark 4.3.2. We note that, PI113151W](n) is the number 0/ 4-colored partitions 0/ 

n with three o/the/our colors appearing only in multiples 0/3,5, and 15, respectively. 

Theorem 4.3.3. We have 

(4.3.2) 

and 

(4.3.3) 

Proof We have 

00 00 

n=O n=O 

(4.3.4) 

Similarly, we have 

00 00 

n=O n=O 

(4.3.5) 

Now, from [14, p. 958], we have 

(4.3.6) 

and 

(4.3.7) 
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Transforming (4.3.6) and (4.3.7) into q-products, we have 

(4.3.8) 

and 

(4.3.9) 

respectively. 

Employing (4.3.8) and (4.3.9) in (4.3.5) and (4.3.4) and comparing the odd terms 

and even terms, respectively, from both sides we complete the proofs of (4.3.2) and 

(4.3.3). o 

Corollary 4.3.4. We have 

P[l131]{4n + 2) == 0 (mod 2) and P[l131]{4n + 3) == 0 (mod 2). (4.3.10) 

Proof. Applying the binomial theorem in (4.3.2) and (4.3.3), we obtain 

00 n _ (q2;q2)!,{q12;q12)!, 
LP[l131]{2n + 1)q = (t. 4)2 ( 6. 6)2 (mod 2) 
n=O ' q 00 q , q 00 

and 

from which we readily deduce (4.3.10). o 

Remark 4.3.5. We note that, P[l131]{n) is the number of 2-colored partitions of n 

with one of the colors appearing only in multiples of 3. 

(4.3.11) 

and 

(4.3.12) 
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Proof. We have 

00 00 

n=O n=O 

(4.3.13) 

and 

00 00 

n=O n=O 

Now, from [20, Entries 9(i) and (iv), p. 377], we note that 

and 

The above two identities can be transformed into 

and 

(_q; q2)00( _q15; q30)00 + (q; q2)00(q15; q30)00 

= 2 (q12; q12)~(q20; q20)~ 
(q4; q4)00(q6; q6)00(qlO; qlO)00(q60; q60)00' 

(4.3.16) 

respectively. 
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Employing (4.3.15) and (4.3.16) in (4.3.13) and (4.3.14) and comparing the odd 

terms and even terms, respectively, from both sides of the resulting identities, we 

readily arrive at (4.3.11) and (4.3.12). o 

Theorem 4.3.7. We have 

(4.3.17) 

(4.3.18) 

(4.3.19) 

Proof. Since the proof is similar to those in the previous theorems, we omit the 

details. We only give the theta function identities in Entries 4(iv), 17(i), and 17(ii) 

of [20, Chapter 20, p. 359 and p. 417], which were used to deduce (4.3.17) - (4.3.19) 

are 

and 

respectively. 

o 
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Corollary 4.3.8. We have 

and 

PI12272J(2n + 1) == 0 (mod 2), 

P\12352J(2n + 1) == 0 (mod 2), 

Proof. Readily follows from (4.3.17)-(4.3.19). o 

Theorem 4.3.9. We have 

(4.3.23) 

and 

(4.3.24) 

Proof. We have 

Therefore, 

00 00 

n=O n=O 

1 {II} 
= (q2; q2)00(q6; q6)~ (q; q2)00(q3; q6)~ - (_q; q2)00( _q3; q6)~ 

(q4. q4) (q12. q12)5 
, 00 , 00 {( 2) ( 3 6)5 ( 2) (3 6)5} = (2. 2)2 ( 6. 6)lO -q; q 00 -q ; q 00 - q; q 00 q ; q 00 . 

q,q 00 q,q 00 

(4.3.26) 
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Now, we recall the following modular equation of degree 3 in [20, Entry 5(viii), 

p. 231]. 

If f3 has degree 3 over IX, then 

(4.3.27) 

The above modular equation can be transformed into (see [13, pp. 1035-1036]) 

(4.3.28) 

Employing (4.3.28) in (4.3.26), we obtain 

By comparing odd terms from both sides of (4.3.29), we deduce that 

00 2n (q; q)~(q4; q4)00(q12; q12)~ (q4; q4);,(q12; q12)~ 
LP[1135 ](2n + 1)q = ( 2. 2)6 ( 6. 6)6 ( 3. 3)4 + 4q (2. 2)3 ( 6. 6)15 . 
n=Q q,q ooq,q ooq,q 00 q,q ooq,q 00 

(4.3.30) 

Replacing q by -q in (4.3.30), and then adding the resulting identity with (4.3.30), 

we find that 

Now, from [14, p. 958], we have 

(4.3.32) 



which can be transformed, with the aid of (1.5.2) and (1.5.3), into 

( 2)2 (3 6)2 ( 2)2 ( 3 6)2 4 (q8; q8)00(q24; q24)00 
-q; q 00 q ; q 00 - q; q 00 -q ; q 00 = q ( 4. 4) (12. 12) . q ,q 00 q ,q 00 

Therefore, 

(_q; q2)!,(q3; q6)~ + (q; q2)!,( _q3; q6)~ 

= {( _q; q2)!,(q3; q6)!, _ (q; q2)!,{ _q3; q6)!,} 2 + 2(q2; q4)!,(q6; q12)!, 

= 16q2 (q8;q8)~(q24;q24)~ +2 (q2;q2)~(q6;q6)~ 
(q4; q4)~(q12; q12)~ (q4; q4)~(q12; q12)~· 

Employing (4.3.34) in (4.3.31), we easily deduce (4.3.23). 
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(4.3.33) 

(4.3.34) 

In a similar fashion we can prove (4.3.24) by using the modular equation [20, 

Entry 13(vii), p. 281J 

where, in this case, (3 has degree 5 over a. We omit the details. o 

Remark 4.3.10. Combinatorially, P[1135J(n) is the number of6-colored partitions of 

n with five of the six colors appearmg only m multiples of 3. Similarly, P[1153J{n) is 

the number of 4-colored partitions of n with three of the four colors appearing only 

in multiples of 5. 

Theorem 4.3.11. We have 

(4.3.35) 

and 

(4.3.36) 
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Proof. We begin with 

(4.3.37) 

so that 

(4.3.38) 

Now, from (4.3.33), we find that 

(q3; q6)~ _ (_q3; q6)~ = 4q (q4; q4)oo(q8; q8)oo(q24; q24)oo 
(q; q2)~ (_q; q2)~ (q12; q12)oo(q2; q2)~ . 

(4.3.39) 

Employing (4.3.39) in (4.3.38) and comparing the odd terms from both sides, we 

arrive at (4.3.35). 

To prove (4.3.36), we note from [94, Corollary 3.3, p. 84] that 

which can be transformed, with the aid of (1.5.2) and (1.5.3), into 

(q3; q3)~ = (q4; q4):':'(q6; q6)oo(q12; q12)~ + 2q (q4; q4)oo(q8; q8)oo(q6; q6)~(q24; q24)oo 
(q; q)~ (q2; q2)~(q8; q8)oo(q24; q24)oo (q2; q2)~(q12; q12)oo 

(4.3.40) 

Now, from Entries 25(i) and 25(ii) of [20, p. 40], we obtain 

(4.3.41) 

Employing (1.5.2) and (1.5.3) in (4.3.41), we find that 

( 4.3.42) 
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which is a 2-dissection of l/(q; q)~. From (4.3.40) and (4.3.42), we arrive at 

(q3; q3)~ (q4; q4)~(q6; q6)00(q12; q12)~(q8; q8)~ 
~~~=~~~~~~~~~~~--~ 

(q; q)~ (q2; q2)~(q24; q24)00(q16; q16)~ 

+ 2q (q4; q4)~(q6; q6)00(q12; q12)~(q16; q16)~ 

(q2; q2)~(q8; q8)~(q24; q24)00 

+ 2q (q4; q4)00(q8; q8)~(q6; q6)~(q24; q24)00 
(q2;q2)~(q12;q12)00(q16;q16)~ 

+ 4 
2 (q4; q4);,(q6; q6)~(q16; q16)~(q24; q24)00 

q (q2; q2)~(q12; q12)00 . (4.3.43) 

Employing (4.3.43) in (4.3.35), we find that 

00 n (q4; q4)~(q12; q12);,(q8; q8)!o 
LP[123-2J(2n + l)q = 2 ( 2. 2)9 ( 24. 24) (16. 16)2 
n=O q,q ooq ,q ooq ,q 00 

+ 4q (q4; q4)"oo(q12; q12);,(q16; q16)~ 

(q2; q2)~(q8; q8)~(q24; q24)oo 

+ 4q (q4; q4)~(q8; q8)~(q6; q6)00(q24; q24)00 

(q2; q2)~(q16; q16)~ 

+ 8q2 (q4; q4)!o(q6; q6)00(q16; q16)~(q24; q24)00. 

(q2; q2)~ 
(4.3.44) 

Replacing q by -q in (4.3.44) and then subtracting the resulting identity from 

(4.3.44), we obtain 
00 

n=O 

(4.3.45) 

Comparing the odd terms from both sides of (4.3.45), dividing by q, and then 

replacing q2 by q, we arrive at (4.3.36) to complete the proof. o 

Corollary 4.3.12. We have 

P[123-2J(2n + 1) == 0 (mod 2) 

and 

P[123-2J(4n + 3) == 0 (mod 4). 
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Proof. Follows readily from (4.3.35) and (4.3.36). o 

Remark 4.3.13. We note that, P[123-2)(n) l,S the number of 2-colored partitions of 

n with no part having multiples of 3 appears. 

Theorem 4.3.14. We have 

00 (q2. q2)3 (q5. q5) (qlO. qlO) 
~ (2 + 1) n _ 2 ' 00 , 00 , 00 
L..,. P[125-2) n q - ( . )5 
n=O q,q 00 

( 4.3.46) 

and 

00 (q2. q2)2 (q6. q6)2 (q9. q9) 
~ (2 + 1) n _ ' 00 , 00 , 00 
L..,. P[129- 2 ) n q - ( . )5 . 
n=O q,q 00 

(4.3.47) 

Proof. As in the proof of Theorem 4.3.11, we notice that 

( 4.3.48) 

From [20, p. 278] and [10, Eq. (2.3)]' we note that 

( 4.3.49) 

which can be transformed into 

(q5; qlO)~ _ (_q5; qlO)~ = 4q (q4; q4)~{q20; q20)00 
(q; q2);, (_q; q2);, (q2; q2)!,(qlO; qlO)oo' 

(4.3.50) 

Employing (4.3.50) in (4.3.48), and then comparing the odd terms from both sides, 

we readily deduce (4.3.46). 

The proof of (4.3.47) can be accomplished in a similar fashion by applying the 

identity [15, Eq. (4.43), p. 121] 

(4.3.51) 

D 
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The following result is immediate from (4.3.46). 

Corollary 4.3.15. We have 

Remark 4.3.16. As in Remark 4.3.13, P(12S-2j(n) and P(129-2j(n) are the number 

of 2-colored partitions of n unth no part having multzples of 5 and 9, respectively, 

appears. 

Theorem 4.3.17. We have 

(4.3.52) 

(4.3.53) 

(4.3.54) 

and 

(4.3.55) 

Proof. We note that 

(4.3.56) 
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Replacing q by -q in (4.3.56) and then subtracting the resulting identity with 

(4.3.56), we find that 

~ n ~ n n (q6; q6)00 ((q3; q6)00 (_q3; q6)00) 
L...,P(1 3 3- 1 j(n)q - L...,P(13 3- 1 j(n)(-I) q = ( 2. 2)3 (. 2)3 - (_ . 2)3 . 
n=O n=O q , q 00 q, q 00 q, q 00 

(4.3.57) 

Now, from [13, Eqs. (6.7) and (6.8), p. 1034], we obtain 

( 4.3.58) 

Again, from [16, Equation (8.15), p. 294], we note that 

'IjJ( _q9) + 'IjJ(q9) = 2 (q12; q12);, 
'IjJ( -q) 'Ij;(q) (q2; q2)00(q4; q4)00(q6; q6)00· 

(4.3.59) 

Employing (4.3.59) in (4.3.58), we obtain 

(q3; q6)00 _ (_q3; q6)00 = 6q (q4; q4)!,(q12; q12)!, 
(q; q2)~ (_q; q2)~ (q2; q2)~ . 

(4.3.60) 

Using (4.3.60) in (4.3.57), and then comparing the odd terms from both sides, we 

find that 

00 (q6. q6) (q4. q4)2 (q12. q12)2 
~ , (2 + 1) 2n+1 - 3 ' 00 , 00 , 00 
L..., P(l J 3- 1 j n q - q ( 2. 2)7 ' 
n=O q , q 00 

(4.3.61) 

which is clearly equivalent to (4.3.52). 

Again, replacing q by -q in (4.3.56) and then adding the resulting identity with 

(4.3.56), we obtain 

Now, from Entry 5(i) of[20, p. 230], we note that 

(a3) 1/8 _ ((1 _ a)3) 1/8 = 
(3 1 - (3 1, (4.3.63) 
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where f3 has degree 3 over a. This modular equation can be transformed into (see 

[21, pp. 1033-1034]) 

x3(q) + X3( -q) = 2 X( _q6) 
X(q3) X( _q3) X3( _q2)' 

which can also be written, with the aid of (1.6.4)-(1.6.5), as 

(q3; q6)00 + (_q3; q6)00 = 2 (q4; q4)~(q6; q6)!, 
(q; q2)~ (_q; q2)~ (q2; q2)~(q12; q12)~· 

(4.3.64) 

(4.3.65) 

Employing (4.3.65) in (4.3.62)' and then comparing the even terms from both sides, 

we deduce (4.3.53). 

Now, to prove (4.3.54), we note from (4.3.53) that 

00 noon (q6; q6)00 { (q3; q6)~ (_q3; q6)~} 
LP[133- 1 )(2n)q - LP[lJ3- 1)(2n)q = ( 2. 2)3 (. 2)9 - (_ . 2)9 . 
n=O n=O q , q 00 q, q 00 q, q 00 

( 4.3.66) 

Employing (4.3.67) in (4.3.66), and then comparing the odd terms from both sides, 

we deduce (4.3.54). 

Next, to prove (4.3.55), we again note from (4.3.53) that 

00 noon (q6; q6)00 { (q3; q6)~ (_q3; q6)~} 
LP[133- 1 )(2n)q + LP[lJ3- 1)(2n)q = ( 2. 2)3 (. 2)9 + (_ . 2)9 . 
n=O n=O q , q 00 q, q 00 q, q 00 

(4.3.68) 

(4.3.69) 
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Equating the even parts in (4.3.69), we deduce that 

(4.3.70) 

l{eplacing q by -q in (4.3.70), and then subtracting the resulting identity from 

(4.3.70), we find that 

00 00 

n=O n=O 

h A (q3; q6)00 d B (_q3; q6)00 N . th al b . 'd t't' 
were = ( . 2)3 an = (_ . 2)3' otmg e ge ralc I en lIes 

q,q 00 q,q 00 

A4 - B4 = (A + B)(A - B)((A - B)2 + 2AB) 

and 

and then employing (4.3.60) and (4.3.65) in (4.3.71), we arrive at (4.3.55). 0 

Corollary 4.3.18. We have 

and 

P[133-1)(2n + 1) == 0 (mod 3), 

P[133-1)(4n + 2) == 0 (mod 9), 

P[133-1)(8n + 4) == 0 (mod 24). 

Proof. Follows readily from (4.3.52), (4.3.54) and (4.3.55). o 
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Remark 4.3.19. We note that, P(J33-1j(n) is the number of 3-colored partitions of 

n with one of the colors appearing only in parts that are not multiples of 3. 

Theorem 4.3.20. 

(4.3.72) 

and 

(4.3.73) 

Proof. As before, we note that 

Now, workjng on a modular equatjon of degree 3, Baruah and Berndt [13, Eq. 

(6.19), p. 1036J proved that 

which can also be written in the form 

(q3; q6):'" _ (_q3; q6):'" = 8q (q4; q4)~(q12; q12)00 
(q; q2)~ (_q; q2)~ (q2; q2)~(q6; q6)00 . 

(4.3.75) 

Using (4.3.75) in (4.3.74), we find that 

00 00 (q4. q4)5 (q12. q12) (q6. q6)3 
LP(143-4j(n)qn - LP(143-4j(n)( -ltqn = 8q , 00 ( 2: 2)9

00 
, co. 

n=O n=O q ,q 00 

(4.3.76) 

Equating the odd parts in (4.3.76), we readily deduce (4.3.72). 
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Next, to prove (4.3.73), we notice from (4.3.72) that 

Employing (4.3.67) in (4.3.77), we obtain 

00 00 

LP[143-4j(2n + l)qn - LP[143-4j(2n + l)(-qr 
n=O n=O 

_ {(q4; q4)~(q6; q6)~(q12; q12)00 2 (q4; q4)~(q12; q12)~(q6; q6)!,} 
- 72q ( 2. 2)11 + 12q ( 2. 2)16 . q,q 00 q,q 00 

(4.3.78) 

Equating the odd terms in (4.3.78), we easily arrive at (4.3.73) to complete the 

proof. o 

Corollary 4.3.21. We have 

and 

Proof. Follows readily from (4.3.72) and (4.3.73). o 

Remark 4.3.22. Combinatorially, P[143-4j(n) is the number of 4-colored partitions 

of n, where parts having multiples of 3 do not occur. 



Chapter 5 

Partitions with Designated 
Summands into Odd Parts 

5.1 Introduction 

In the introductory chapter, we have discussed partitions with designated parts 

and partitions into odd parts with designated parts. 

By using modular forms and q-series identities, Andrews, Lewis and Lovejoy [6J 

showed that the partition function P D(n) has many interesting divisibility proper­

ties. In particular, they obtained the following Ramanujan-type congruence. 

Theorem 5.1.1. [6, Corollary 7] For n ~ 0, we have 

P D(3n + 2) == 0 (mod 3). (5.1.1) 

They also obtained explicit formulas for the generating functions for P D(2n) and 

P D(2n + 1) by using Euler's algorithm for infinite products and Sturm's criterion. 

Chen, Ji, Jin, and Shen [36] g!'1ve proofs of the generating functions of PD(3n), 

PD(3n + 1), PD(3n + 2) by employing H.-C. Chan's [30] identity on Ramanujan's 

cubic continued fraction. By using modular forms, Andrews, Lewis and Lovejoy [6, 

Corollary 19] also found some Ramanujan-type identities for P DO(n), namely, 

P DO(12n + 6) == 0 (mod 3), 

P DO(12n + 10) == 0 (mod 3), 
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(5.1.2) 

(5.1.3) 



PDO(24n) == 0 (mod 3), 

P DO(24n + 16) == 0 (mod 3), 

PDO(24n + 18) == 0 (mod 24). 

65 

(5.1.4) 

(5.1.5) 

(5.1.6) 

The generating function found by Andrews, Lewis and Lovejoy for P DO(n) is 

given as 

~ P DO(n)qn = (q4; q4\Xl(q6; q6)~ 
~ (q; q)00(q3; q3)00(qI2; qI2)00' 

(5.1.7) 

By using q-series and modular forms; they found (5.1.7) as well as the following 

identities. 

Theorem 5.1.2. [6, Theorem 21 and Theorem 22J We have 

(5.1.8) 

(5.1.9) 

(5.1.10) 

(5.1.11) 

and 

00 (q2. q2)3 (q6. q6) (qI2. q12) 
"" P DO(3n + 2) n = 2 ' 00 , 00 , 00 
L..t q ()4 (4 4) . n=O q; q 00 q ; q 00 

(5.1.12) 

The aim of this chapter is to find proofs of (5.1.8)-(5.1.12) and the following 

new identities by using certain dissections of theta functions. 

Theorem 5.1.3. We have 

00 (2 2)6 (6 6)2 
"" P DO(4n + 2)qn = 2 q; q 00 q ; q 00 

L..t ( )6 (3 3)2 ' n=O q; q 00 q ; q 00 

(5.1.13) 

00 (q4. q4)4 (q6. q6)2 
""PDO(4n+3)qn=4 ' 00 , 00 

~ (q : q)~(q3; q3)~ , 
(5.1.14) 
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00 (2 2)13( 3 3) (6 6) 
~ P DO (6n + 2) n = 2 q; q 00 q ; q 00 q ; q 00 

~ q ( )1l( 4 4)4 ' 
n=O q; q 00 q ; q 00 

(5.1.15) 

(5.1.18) 

~ P DO(9n + 6)qn = 12 (q2; q2)~(q3; q3)~ (5.1.19) 
~ (q; q)~(q4; q4)~ , 

00 { (q2. q2)11(q3. q3)13 (q2. q2)8 (q3. q3)4 (q6. q6)4 } 
~ P DO(12n + 6)qn = 12 ' 00 , 00 + lOq , 00 , 00 , 00 

~ (q; q)~(q6; q6)~ (q; q)~ , 

From the above identities, we easily deduce the following congruences. 

Corollary 5.1.4. We have 

P DO(4n + 2) == 0 (mod 2), 

PDO(4n+3) == 0 (mod 4), 

P DO(6n + 2) == 0 (mod 2), 

(5.1.20) 

(5.1.21) 

(5.1.22) 



P DO(6n + 3) == a (mod 4), 

P DO(6n + 5) == a (mod 8), 

P DO(9n + 3) == a (mod 4), 

P DO(9n + 6) == a (mod 12), 

PDO(12n + 6) == a (mod 12), 

P DO(12n + 9) == a (mod 16), 

PDO(12n + 10) == a (mod 6). 
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(5.1.23) 

(5.1.24) 

Note that, congruences (5.1.23) and (5.1.24) are improved versions of (5.1.2) and 

(5.1.3) . 

In the following two theorems, we give some congruences which we derive by 

using elementary generating function dissection technique. 

Theorem 5.1.5. We have 

P DO(8n + 6) == 0 (mod 4), 

PDO(8n + 7) == a (mod 8), 

P DO(18n + 15) == a (mod 24), 

P DO(27n + 9) == 0 (mod 16), 

P DO(27n + 18) == a (mod 16). 

Theorem 5.1.6. For any nonnegative integer n, we have 

PDO(24n + 9) == 0 (mod 23
), 

P DO(24n + 15) == a (mod 23
), 

P DO (24n: + 21) == a (mod 23
), 

P DO{72n + 51) == 0 (mod 24
), 

(5.1.25) 

(5.1.26) 

(5.1.27) 

(5.1.28) 

(5.1.29) 

(5.1.30) 

(5.1.31) 

(5.1.32) 

(5.1.33) 



and 

{ 

4 (mod 24), 
P DO(72n + 3) == 

o (mod 24), otherwise, 

where Pk is either of the kth generalized pentagonal numbers k(3k ± 1)/2. 
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(5.1.34) 

In the next section, we give some preliminary results and dissections of some 

theta functions. In the last section, we prove Theorems 5.1.2-5.1.6. 

5.2 Preliminary results and dissections of theta 

functions. 

Lemma 5.2.1. If tp(q), 1/J(q), and x( -q) are defined in (1.5.2), (1.5.3), and (1.6.4), 

then 

't/J(q) = f(q3, q6) + q't/J(q9), 

2 tp( _q3) 
f(q, q ) = ( )' X -q 

tp2(q) = tp2(q2) + 4q1/J2(q4) , 

(5.2.1) 

(5.2.2) 

(5.2.3) 

Proof. See [20, p. 49, Corollary(ii)J and [20, p. 350, Eq. (2.3)J for the proofs of 

(5.2.1) and (5.2.2), respectively. Adding identities (v) and (vi) of [20, p. 40, Entry 

25], we can easily derive (5.2.3). o 

In the remaining lemmas of this section, we state and prove certain 2- and 3-

dissections. 

Lemma 5.2.2. We have 

1 _ (q8; q8)~(q12; q12)~ 

(q; q)oo(q3; q3)oo - (q2; q2)~(q4; q4)(q6; q6)!,(q24; q24)~ 

+ (q4; q4)~(q24; q24)~ 
q (q2;q2)!o(q6;q6)~(q8;q8)~(q12;q12) (5.2.4) 
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and 

1 _ (q8; q8)~(q24; q24)~ + 2q (q4; q4)!a(qI2; qI2)!a 

(q; q)~(q3; q3)~ - (q2; q2)~(q6; q6)~(qI6; qI6)~(q48; q48)~ (q2; q2)~(q6; q6)~ 

+4 
4 (q4;q4)~(qI2;qI2)~(qI6;qI6)!a(q48;q48)~ 

q 2)5 5 (5.2.5) 
(q2; q 00(q6; q6)00(q8; q8)00(q24; q24)00 

Proof. From [35, Corollary 8], we find that 

(5.2.6) 

Again, from [35, Corollary 4] 

(5.2.7) 

Employing the q-product representations of ~(q) and 1j;(q), namely, 

q'= (q2; q2)~ 
~( ). (q; q)~(q4; q4)~ (5.2.8) 

and 

(5.2.9) 

in (5.2.6) and (5.2.7), we easily derive (5.2.4) and (5.2.5), respectively. 

o 

Lemma 5.2.3. We have 

1 (q4;q4)!! (q4;q4)~(q8;q8)!o 
--4"- = 14 4 + 4q 10 
(q; q)oo (q2; q2)00 (q8; q8)oo (q2; q2)oo 

(5.2.10) 

Proof. From (5.2.3) 

(5.2.11) 

Employing (5.2.8) and (5.2.9) in (5.2.11), we readily arrive at (5.2.10). o 

Proofs of the results in the next lemma can be found in Chapter 4. It can also 

be found in Hirschhorn, Garvan, Borwein [48]. 
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(5.2.12) 

(5.2.13) 

(4.3.43), we obtain (5.2.13). o 

The proof of the result in next lemma can be found in Chapter 2. 

Lemma 5.2.5. We have 

(5.2.14) 

where 

(5.2.15) 
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Proof. Squaring both sides of (5.2.1) and then employing (5.2.2), we have 

(5.2.17) 

Again, squaring both sides of (5.2.14), we find that 

1 ~6( q9) 
2( ) = 8(- 3) {1 + 4qW(q3) + 12q2w2(q3) + 16q3u?(q3) + 16q4w4(q3)}. 

~ -q ~-q 

From (1.5.5) and (1.6.4), we have 

( ) 
(CJ;CJ)~ 

~ -q = (q2; q2)' 

( ) ( 2) (q;q)OO 
X -q = q; q 00 = .( 2. 2) . q,q 00 

(5.2.18) 

(5.2.19) 

(5.2.20) 

Multiplying (5.2.17) and (5.2.18) and then employing (5.2.9), (5.2.20), (5.2.15) 

and {5.2.19), we easily arrive at {5.2.16) to complete the proof. o 

Lemma 5.2.7. We have 

Proof. We recall from [26J that the cubic theta function c(q): 

00 (3 3)3 
c(q):= L qm2+mn+n2+m+n = 3ql/3 q ; q 00. 

m,n=-oo . (q; q)oo 
(5.2.22) 

From [22J, we have 

c(q) = 1 + 1jJ2(q2) 
C(q4) q1jJ2(q6)' (5.2.23) 

Employing (5.2.22) in (5.2.23), we find that 

(5.2.24) 
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Next, replacing q by q2 in (5.2.17), 

.,.2( 2) = cp2( _qI8) + 4.,.2( 18) + 2 2 cp( _qI8)1j;(qI8) 
'I-' q X2( _q6) q 'I-' q q X( _q6) . (5.2.25) 

(5.2.27) 

Now, multiplying both sides of (5.2.24) by 1j;2(q6)/1j;2(q2), replacing q by q3, and 

then employing (5.2.9), we deduce that 

1 + 
3 1j;2(q18) = (q6; q6)!,(q9; q9)!o(q36; q36)oo 

q .,.2( 6) 2 3 . (5.2.28) 
'I-' q (q3; q3)oo(q18; q18)oo(qI2; q12)oo 

Employing (5.2.28) in (5.2.27), we arrive at (5.2.21) to finish the proof. 0 

5.3 Proofs of Theorems 5.1.2-5.1.6 

(5.3.1) 
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Extracting from both sides of (5.3.1), those terms involving only q2n, and then 

replacing q2 by q, we arrive at (5.1.8). 0 

Proof of (5.1.9). Extracting from both sides of (5.3.1), those terms involving only 

q2n+l, and then dividing both sides by q and replacing q2 by q, we arrive at (5.1.9). 

o 

respectively, we arrive at (5.1.10)-{5.1.12), respectively. o 

Proof of (5.1.13). Employing (5.2.5) in (5.1.8), we have 

00 (4 4)2 (8 8)5( 24 24)5 
~ PDO{2n)qn = 5 q;q 00 q;q q;q c;' 2 

~ {q2; q2)00{q6; q6)00{q12; q12)~{q16; q16)00{q48; q48)00 

+ 2 
(q4; q4)~{q12; q12)~ 

q 6 )2 {q2; q2)00{q6; q6 00 

+ 4q
4 (q4;5q4)!.,(q16; q16)!.,(q48; q48)~ 

(5.3.3) 
{q2; q2)00{q6; q6)00{q8; q8)00{q24; q24)00 

We can arrive at (5.1.13) by extracting the terms involving only q2n+l from both 

sides of (5.3.3), and then dividing both sides by q and replacing q2 by q. 0 

Proof of (5.1.14). Employing (5.2.1O) in (5.1.9), we have 

00 (q2. q2)6 (q12. q12)2 { (q4. q4)14 
~ PDO{2n + 1) n - ' 00 ' 00 , 00 

~ q - (q4; q4)~(q6; q6)~ (q2; q2)~(q8; q8)~ 
(q4; q4)~(q8; q8)~} 

+ 4q ( 2. 2)10 . q,q 00 

Extracting the terms involving only q2n+l from the above, we easily deduce (5.1.14). 

o 
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Proofs of (5.l.15) and (5.l.17). Employing (5.2.10) in (5.l.12), we arrive at 

00 (2 2)3 (6 6) (12 12) (4 4)14 
~ P DO(3 + 2) n = 2 q; q 00 q ; q 00 q ; q 00 { q ; q 00 
~ n q (q4; q4)00 (q2; q2)!!(q8; q8)!o 

4 
(q4; q4)~(q8; q8)!o} 

+ q ( 2. 2)10 . (5.3.4) 
q ,q 00 

Extracting the even and odd powers of q from both sides of (5.3.4), we readily 

deduce (5.l.15) and (5.l.17), respectively. o 

Proof of (5.l.16). Using (5.2.10) in (5.1.10), we arrive at 

~ PDO(3n)qn = q;q 00 q ;2q 00 q ;4q 
00 4 +4q q;q 00 q ;oq 00 . 

00 (2 2)2 (6 6)4 { (4 4)14 (4 4)2 (8 8)4 } 

~ {q12; q12)00 {q2; q2)00{q8; q8)oo {q2; q2)oo 
(5.3.5) 

Now (5.l.16) can be deduced by extracting the odd powers of q from both sides of 

(5.3.5). o 

Proofs of (5.1.18) and (5.l.19). Squaring both sides of (5.2.14) and then employing 

the resultant identity in (5.1.10), we obtain 

Extracting from both sides of (5.3.6), those terms involving only q3n+l and q3n+2, 

respectively, we find that 

and 

which by (5.2.15) and (5.2.19) reduce to (5.1.18) and (5.1.19), respectively. 0 
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Proofs of (5.1.20) and (5.1.22). Employing (5.2.16) in (5.1.13), we find that 

00 

L PDO(4n + 2)qn 
n=O 

( 6 6)12( 9 9)16 (6 6)1l( 9 9)13 (6 6)10( 9 9)10 _ 2 { q; q 00 q ; q 00 + 6 q; q 00 q ; q 00 + 21 2 q; q 00 q ; q 00 

- (q3; q3)!!(q18; q18)!o q (q3; q3)!!(q18; q18)~ q (q3; q3)!!(q18; q18)~ 
+ 44 3 (q6; q6)~(q9; q9):(qI8; ql8)oo + 60 4 (q6; q6)!,(q9; q9):"(qI8; qI8):" 

q ( 3. 3)17 q ( 3. 3)16 q,q 00 q,q 00 

+48 5 (q6;q6):'(q9;q9)00(qI8;qI8):'}. 
q 15 (5.3.7) 

( 3. 3) q,q 00 

Extracting from both sides of (5.3.7), those terms involving only q3n+l and q3n+2, 

respectively, we deduce (5.1.20) and (5.1.22). 

Now we present a second proof of (5.1.20). 

Extracting the terms involving q2n from both sides of (5.3.5), we find that 

00 (2 2)14( 3 3)4 
" P DO(6n) n = q ; q 00 q ; q 00 . 

~ q ( )12( 4 4)4 (6 6)2 
n=O q; q 00 q ; q 00 q ; q 00 

(5.3.8) 
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Extracting the terms involving only q2n+l from both sides of (5.3.10), we readily 

arrive at (5.1.20) to finish the proof. 

Proof of (5.l.21). Squaring both sides of (5.2.13), we have 

(q3; q3)!o 

(q; q)~ 

o 

= (q4; q4):"(q6; q6)~(qB; qB):"(qI2; q12)!o + 4 (q4; q4)~(q6; q6)~(qB; qB)~(qI2; q12)!o 
(q2; q2)~(qI6; qI6)!c,(q24; q24)~ q (q2; q2)~(q24; q24)~ 

+ 4 (q4; q4)~(q6; q6)~(qB; qB)~(qI2; ql2)oo 

q (q2; q2)!:(qI6; q16)!o 

+ 16q2 (q4; q4):'(q6; q6)~(q\~8)!o(q12; q12)oo 
(q2; q2)oo 

+ 4 2 (q4; q4)~(q6; q6)~(q12; q12)!o(qI6; q16)!o 
q (q2; q2)~(q8; q8)!c,(q24; q24)~ 

+ 4 2 (q4; q4)~(q6; q6)~(qB; qB)~(q24; q24)~ 
q (q2; q2)~(qI2; q12)~(qI6; q16)!c, 

+ 16 
3 (q4; q4)~(q6; q6)~(q12; q12)00(q16; q16)!o 

q W 2 (q2; q2)oo(qB; qB)oo 

+ 16 3 (q4; q4)!o(qB; qB):,(q6; q6)!o(q24; q24)~ 
q (q2;q2)~(q12;q12)~ 

+
16 4 (q4; q4):,(q6; q6)!o(q16; qI6)!o(q24; q24)~ 

q 2 IB 2 (5.3.11) 
(q2; q )00(q12; ql2)oo 

Now, using (5.3.11) in (5.1.16), we find that 

00 
LP DO(6n + 3)qn 
n=O 

= 4 { (q4; q4)~(q8; q8)!o(q12; q12)!o + 4 (q4; q4)~(q8; q8)~(q12; q12)!o 
(q2; q2)~(q16; qI6)!c,(q24; q24)~ q (q2; q2)~(q24; q24)~ 

+ 4 (q4; q4)~(q6; q6)00(q8; q8)~(qI2; q12)00 
q (q2; q2)~(qI6; q16)!c, 

+ 16q2 (q4; q4)!:,(q6; q6)00(qB; qB)!o(q12; q12)00 
(q2; q2)~ 

+ 4 2 (q\ q4)!!(qI2; qI2)~(qI6; qI6)~ 
q (q2; q2)~(qB; qB)!c,(q24; q24)~ 



77 

(5.3.12) 

Extracting the terms involving q2n+l from both sides of the above, we arrive at 

(5.1.21) to complete the proof. o 

Now we prove (5.1.25)-(5.1.27). 

Proofs of (5.1.25)-(5.1.27). By binomial theorem, it is easy to deduce that 

(5.3.13) 

Employing (5.3.13) in (5.1.13), (5.1.14), and (5.1.19), we find that 

~ P DO(4n + 2) 2 2 3 6 6 
L..J 2 qn =: (q ; q )oo(q ; q )00 (mod 2), 
n=O 

and 

~ PDO(9n + 6) n = (q6; q6)~ ( d 2) 
L..J 12 q - (2. 2) mo , 
n=O q ,q 

respectively. Now (5.1.25)-(5.1.27) are apparent from the above. 

From (5.3.6) 

00 <p2( q6)<p6( q9){ L P DO(3n)qn = - 8(_ 3) 1 + 4q w(q3) + 12q2 w 2(q3) + 16q3w3(q3) 
n=O <p q 

+ 16q4 'W4(q3) } 

_ <p2( _q6)<p6( _q9) 3 2 2 3 
= 8( 3) {I + 4q w(q ) - 4q w (q )} (mod 16). 

<p -q 

(5.3.14) 
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Therefore, 

which implies that 

00 

L P DO(27n + 9)qn == 0 (mod 16) 
n=O 

and 

00 

L PDO(27n + 18)qn == 0 (mod 16). 
n=O 

Now, (5.l.28) and (5.l.29) are apparent from the above. o 

Proof of Theorem 5.l.6. Taking modulo 16 in (5.3.12), we find that 

00 (4 4)12( 8 8)8 (12 12)4 
~ PDO(6n + 3)qn == 4 q;q 1~ q;q ~ q ;q ~ (mod 16). 
~ (q2; q2)00(qI6; qI6)00(q24; q24)00 

== 4 (q4; q4)~ (mod 16), (by binomial theorem) (5.3.16) 

which yields that 

00 

L P DO(24n + 9)qn == 0 (mod 16), (5.3.17) 
n=O 

00 

L PDO(24n + 15)qn == 0 (mod 16), (5.3.18) 
n=O 
00 

L PDO(24n + 21)qn == 0 (mod 16), (5.3.19) 
n=O 

and 

00 

LPDO(24n + 3)qn == 4 (q;q)~ (mod 16). (5.3.20) 
n=O 

Now, (5.l.30)-{5.l.32) follow from (5.3.17)-{5.3.19). 
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Again, from (5.3.20), we have 

00 (2 2)2 L P DO(24n + 3)qn == 4 (q; q)~ == 4 ~: q) 00 == 4 'lj;(q) (mod 16). (5.3.21) 
n=O q,q 00 

Using (5.2.2) in (5.2.1)' we have 

¢( _q9) 9 
'lj;(q) = ( 3) + q'lj;(q ). 

X -q 
(5.3.22) 

Employing (5.2.19), (5.2.20) in (5.3.22), 

~6;t)oo(t;t)~ 9 
'lj;{q) = ( 3. 3) (18. 18) + q'lj;(q ). q,qooq,q 00 

(5.3.23) 

Thus, from (5.3.21), we obtain 

00 n _ (q6; q6)00(q9; q9)~ 9 2: P DO(24n + 3)q = 4 ( 3. 3) (18. 18) + 4q'lj;(q ) (mod 16), 
n=O q,q ooq ,q 00 

(5.3.24) 

which implies 

00 

2: PDO(72n + 51)qn == 0 (mod 24) (5.3.25) 
n=O 

and 

00 (2 2) (3 3)2 2: PDo.(72n+3)qn == 4 q;q 00 q;q 00 (mod 16) 
n=O (q; q)oo (q6; q6)00 

== 4 (q; q)oo (mod 16) 
00 

== 4 + 4 2:(_1)k{qk(3k-1)/2 + qk(3k+l)/2) (mod 16). (5.3.26) 
n=O 

Thus, (5.1.33) and (5.1.34) follow from (5.3.25) and (5.3.26). This completes the 

proof. o 



Chapter 6, 

Some Identities of Overpartition 
Pairs into Odd Parts 

6.1 Introduction 

In the introductory chapter, we defined overpartitions and overpartition pairs. 

Recently, arithmetic properties of overpartition pairs pp{ n) have been considered by 

Bringmann and Lovejoy [28], Chen and Lin [37] and Kim [55]. 

An overpartition pair into odd parts is a pair of overpartitions (A, p.) such that 

the parts of both overpartitions A and J.L are restricted to be odd integers. Note that 

either A or /1. may be an overpartition of zero, which, for convenience, assumed to 

be 0. Let ppo{n) denote the number of overpartition pairs of n into odd parts. Then 

the generating function for ppo{n) is 

(6.1.1) 

Recently, Lin [59] investigated various arithmetic properties of ppo{n). He ob­

tained a number of Ramanujan-type congruences for modulo 3 and for modulo 

powers of 2. In this chapter, we derive the congruences for the function ppo(n) from 

the respective generating functions. 

We list our main results in the following theorems. 

80 
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Theorem 6.1.1. [59, Theorem 2.1J We have 

(6.1.2) 

(6.1.3) 

Theorem 6.1.2. We have 

(6.1.4) 

(6.1.5) 

(6.l.6) 

(6.1.7) 

Lin [59J has also proved (6.1.6). 

Theorem 6.1.3. We have 

Theorem 6.1.4. We have 

00 ( 2. 2)19( 3. 3)29 ( 2. 2)16( 3. 3)20 
~ pp (12n + 6)qn = 24 {4 q ,q 00 q ,q 00 + 363 q, q 00 q ,q 00 

~ 0 (q; q)~(q6; q6)~ q (q; q)~((l; q6)~ 
(q2. q2)13(q3. q3)11(q6. q6)5 + 2496q2 , 00 , 00 , 00 

(q;q);; 

+ 1408q
3 (q2; q2)~(q3; q3)~(q6; q6)~} 

( )26 
' (6.1.11) 

q;q 00 



82 

00 ( 2. 2)18( 3. 3)26 ( 2. 2)15( 3. 3)17 
~ - (12n + 10) n = 48 {13 q ,q 00 q ,q 00 + 444q q, q 00 q ,q 00 

~ PPo q (q; q)~(q6; q6)~ (q; q)~(q6; q6)00 

(q2. q2)12(q3. q3)8 (q6.q6)8 + 1416q2 , 00 , 00 , 00 

(q; q)~ 
3 (q2; q2)~(q6; q6):J,} 

+ 256q (. )25( 3.3) . q,qooq,q 00 

From (6.1.3)-(6.1.12), we easily arrive at the following congruences. 

Corollary 6.1.5. We have 

pPo(2n + 1) == a (mod 4), 

ppo(4n) == a (mod 4), 

ppo(4n + 1) == a (mod 4), 

ppo(4n + 2) == a (mod 8), 

ppo(4n + 3) == a (mod 16), 

ppo(8n + 4) == 0 (mod 80), 

ppo(8n + 6) == 0 (mod 32), 

ppo(8n + 7) == a (mod 32), 

pPo(12n + 6) == a (mod 24), 

pPo{12n + 10) == 0 (mod 48). 

(6.1.12) 

(6.1.13) 

(6.1.14) 

(6.1.15) 

(6.1.16) 

Lin [59] also proved (6.1.13), (6.1.14), and (6.1.15) by taking modulo powers of 

2. The identity in (6.1.16) is an improved version of Lin's identity in [59, Eq. (2.11), 

Corollary 2.1] 

ppo{12n + 10) == a (mod 24). 

In the following theorems, we prove some new congruences for ppo{n) byemploy­

ing elementary generating function technique. 

Theorem 6.1.6. We have 

(6.1.17) 



ppo(16n + 8) == 0 (mod 23
), 

ppo(16n + 10) == 0 (mod 24), 

ppo(16n + 12) == 0 (mod 23
), 

ppo(16n + 14) == 0 (mod 24), 

ppo(32n + 20) == 0 (mod 160), 

• 
ppo(32n + 28) == 0 (mod 160), 

pPo(48n + 10) == 0 (mod 25
), 

ppo(48n + 18) == 0 (mod 23
), 

ppo(48n + 26) == 0 (mod 25
), 

ppo(48n + 34) == 0 (~od 25
), 

PPo( 48n + 42) == 0 (mod 25
). 

Theorem 6.1.'7. We have 

ppo(3n + 1) == 0 (mod 22), 

ppo(3n + 2) == 0 (mod 22), 

ppo(6n + 3) == 0 (mod 24), 

ppo(9n + 3) == 0 (mod 24), 

ppo(9n + 6) == 0 (mod 24
). 

Theorem 6.1.8. For all nonnegative integers n, we have 

and 

pPo(24n + 17) == 0 (mod 2) 

{ 

4 (mod 2), ifn = Pic, 
pPo(24n + 1) == 

o (mod 2), otherwise, 

where Pic is either of the kth generalized pentagonal numbers k(3k ± 1)/2. 
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(6.1.18) 

(6.1.19) 

(6.1.20) 

(6.1.21) 

(6.1.22) 

(6.1.23) 

(6.1.24) 

(6.1.25) 

(6.1.26) 

(6.1.27) 

(6.1.28) 

(6.1.29) 

(6.1.30) 

(6.1.31) 

(6.1.32) 

(6.1.33) 

(6.1.34) 

(6.1.35) 



Theorem 6.1.9. For all nonnegative integers n, we have 

and 

otherwise, 

where Pk is either of the kth generalized pentagonal numbers k(3k ± 1}/2. 

Theorem 6.1.10. For all nonnegative integers n, we have 

and 

ppo(96n + 68) == 0 (mod 2) 

{ 

80 (mod 2), 
ppo(96n + 4) == 

o (mod 2), otherwise, 

where Pk is either of the kth generalized pentagonal numbers k(3k ± 1)/2. 
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(6.1.36) 

(6.1.37) 

(6.1.38) 

(6.1.39) 

In the next section, we state some lemmas which will be used in the final section 

to prove the above identities and congruences. 

6.2 Preliminary results and dissections of theta 

functions 

In this section, we state some lemmas containing certain dissections. 

Lemma 6.2.1. The following 2-dissections hold: 

(6.2.1) 

(6.2.2) 

(6.2.3) 
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Proof. Adding Entry 25{i) and Entry 25{ii) of [20, p. 40 ], we have 

(6.2.6) 

From (5.2.3), we obtain 

(6.2.7) 

Squaring (6.2.7), we arrive at 

(6.2.8) 

where cp(q) and 1jJ(q) are defined in (1.5.2) and (1.5.3). Employing (1.5.2) and 

(1.5.3) in (6.2.6), (6.2.7), (6.2.8), we readily arrive at (6.2.1), (6.2.2) and (6.2.3). 

From (6.2.3), we can easily deduce (6.2.4) and (6.2.5). o 

Proofs of the identities in the next lemma can be found in Chapter 5. 

Lemma 6.2.2. The folloW'tng 3-dzssectwns hold: 

(6.2.9) 



and 

and 

Squaring (6.2.12) and then employing (6.2.13), we obtain 

Again, we recall from (5.2.1) and (5.2.2) of Chapter 5, that 

and 

2 <p( _q3) 
f(q, q ) = ( ). 

X -q 

Employing (6.2.16) in (6.2.15), we find that 

<p( q9) 
.t/J(q) = - + q .t/J(q9). 

X( _q3) 

Multiplying (6.2.14) and (6.2.17)' we arrive at 

¢2( _q).7jJ(q) = q}( _q9) _ 3q ¢2( _q9)7jJ(q9) + 4q3X2( _q3)7jJ3(q9). 
X( _q3) 
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(6.2.13) 

(6.2.14) 

(6.2.15) 

(6.2.16) 

(6.2.17) 

(6.2.18) 

Now, applying q-product representations for <p(q), 't/J(q), and X(q) in (6.2.18), we can 

easily derive (6.2.11). o 
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6.3 Proofs of Theorems 6.1.1-6.1.10 

(6.3.1) 

Extracting from both sides of (6.3.1), those terms involving only q2n, and then 

replacing q2 by q, we arrive at (6.1.2). Again, extracting from both sides of (6.3.1), 

those terms involving only q2n+l, and then replacing q2 by q, we arrive at (6.1.3). 0 

(6.3.2) 

Extracting from both sides of (6.3.2), those terms involving only q2n, and then 

replacing q2 by q, we arrive at (6.1.4). Again, extracting from both sides of (6.3.2), 

those terms involving only q2n+l, and then replacing q2 by q, we easily deduce (6.1.6). 

Again, employing (6.2.2) in (6.1.3), 

'" pPo(2n + 1)qn = 4(q4; q4)~ q ;4
q 

00 4 + 4q q; q 00 q ;oq 00 . 

00 { (4 4)14 (4 4)2 (8 8)4} 

~ (q2; q2)00(q8; q8)00 (q2; q2)00 

(6.3.3) 

Extracting from both sides of (6.3.3), those terms involving only q2n, and then 

replacing q2 by q, we arrive at (6.1.5). Again, extracting from both sides of (6.3.3), 

those terms involving only q2n+l, and then replacing q2 by q, we arrive at (6.1.7). 

o 

Proof of Theorem 6.1.3. Using (6.2.3) and (6.2.4) in (6.1.4), we obtain 

00 (2 2)24 (4 4)56 (4 4)44 
"'-(4n)n-4 q ;q oo{ q;q 00 +16 q;q 00 f::o PPo q - (q4; q4)~ (q2; q2)~( q8; q8)~ q (q2; q2)~( q8; q8)!, 
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Now, extracting from both sides of (6.3.4), those terms involving only q2n+l, and 

then replacing q2 by q, we easily derive (6.1.8). 

Again, employing (6.2.5) in (6.1.6), we find that 

00 (4 4)42 (4 4)30 
~-(4n+2)n-8(2. 2)12{ q;q 00 +12 q;q 00 

~ PPo q - q, q 00 (2. 2)42( 8. 8)12 q ( 2. 2)38( 8. 8)4 
n=O q ,q 00 q ,q 00 q ,q 00 q ,q 00 

+ 48 2 (q4; q4)~ (q8; q8)!a + 64 3 (q4; q4):' (q8; q8)~ }. (6.3.5) 
q ( 2. 2)34 q ( 2. 2)30 q ,q 00 q ,q 00 

Now, extracting from both sides of (6.3.5), those terms involving only q2n+1, and 

then replacing q2 by q, we arrive at (6.1.9). 0 

Proof of Theorem 6.1.4. Employing (6.2.9) in (6.1.6), we obtain 

n=O 
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(6.3.6) 

Extracting from both sides of (6.3.6), those terms involving only q3n+l, and then 

replacing q3 by q, we arrive at (6.1.11). Again, extracting from both sides of (6.3.6), 

those terms involving only q3n+2, and then replacing q3 by q, we easily deduce 

(6.1.12). o 

Proof of Theorem 6.1.6. From (6.1.3), we find that 

00 - ( ) {4 4)4 '\""' PPo 2n + 1 n _ q; q 00 

~ q - { )4 . 
n=O 4 q;q 00 

== (q4; q4)~ (mod 4), (6.3.7) 

which implies that 

00 

2::ppo{8n + l)qn == 4 (q; q)~ (mod 2) (6.3.8) 
n=O 

and 

00 

LPpo{8n + 3)qn == 0 (mod 8), (6.3.9) 
n=O 

00 

(6.3.1O) 
n=O 
00 

L ppo(8n + 7)qn == 0 (mod 8). (6.3.11) 
n=O 

It follows from (6.3.1O) and (6.3.11) that (6.1.17) and (6.1.14) hold. 

Again, from (6.1.6), we obtain 

(6.3.12) 
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which yields 

00 

L ppo(8n + 6)qn == 0 (mod 16), (6.3.13) 
n=O 

00 

L pPo(16n + 6)qn == 0 (mod 16), (6.3.14) 
n=O 

00 

L ppo(16n + lO)qn == 0 (mod 16), (6.3.15) 
n=O 

and 

00 

LPpo(16n + 14)qn == 0 (mod 16). (6.3.16) 
n=O 

It follows from (6.3.13), (6.3.15) and (6.3.16) that (6.1.13), (6.1.19) and (6.1.21) 

hold. 

From (6.1.4), we have 

00 pPo(4n) n (q2; q2)~ + 4 (q4; q4)~ 
'" q = q ...:.c:...---:-::-= ~ 4 (q; q)~(q4; q4)~ (q; q)~ 

- (q8;q8)~ 4 (4 4)6 ( d 2) 
= ( 4. 4)12 + q q ; q 00 rna , q ,q 00 

(6.3.17) 

which implies that 

00 

L ppo(16n + 8)qn == 0 (mod 8) (6.3.18) 
n=O 

and 

00 

L ppo(16n + 12)qn == 0 (mod 8). (6.3.19) 
n=O 

It follows from (6.3.18) and (6.3.19) that (6.1.18) and (6.1.20) hold. 

From (6.1.8), 

00 ppo(8n + 4) qn = { (q2; q2)~ + 16q (q2; q2)~(q4; q4)~} 
~ 80 (q; q)~(q4; q4)~ (q; q)~ 

_ (q8; q8)~ 16 (4. 4)3 ( 8. 8)3 ( d 4) 
= ( 4. 4)15 + q q ,q 00 q ,q 00 rna , q ,q 00 

(6.3.20) 
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which yields 

00 

L ppo(32n + 20)qn == 0 (mod 160) (6.3.21) 
n=O 

and 

00 

L ppo(32n + 28)qn == 0 (mod 160). (6.3.22) 
n=O 

Now, (6.1.22) and (6.1.23) easily follow from (6.3.21) and (6.3.22). 

Taking modulo 32 in (6.3.5), we obtain 

00 (2 2)42 
L ppo(8n + 2)qn == 8 q3d q 00 12 (mod 32) 
n=O (q; q)00(q4; q4)00 

== 8 (q2; q2)~ (mod 32). (6.3.23) 

Employing (6.2.11) in (6.3.23), we find that 

(6.3.24) 

It follows from (6.3.24) that 

00 

(6.3.25) 
n=O 

00 

(6.3.26) 
n=O 
00 

LPpo(48n + 18)qn == 0 (mod 8), (6.3.27) 
n=O 

00 

LPpo(48n + 26)qn == 0 (mod 32), (6.3.28) 
n=O 
00 

LPpo(48n + 34)qn == 0 (mod 32), (6.3.29) 
n=O 
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and 

00 

LPpo(48n + 42)qn == 0 (mod 32). (6.3.30) 
n=O 

Thus, (6.1.24)-(6.1.28) are apparent. 

o 

Proof of Theorem 6.1.7. Employing (5.2.19) in (6.1.1), we find that 

(6.3.31) 

Again, using (6.2.13) in (6.2.12), we obtain 

(6.3.32) 

Squaring (6.3.32) and replacing q by q2, we find that 

Now, employing (6.3.33) and (5.2.18) in (6.3.31), we arrive at 

00 6( 9) 
LPpo(n)qn = <Ps -q3 {<p2(_qlS) + 4q W(q3)<p2(_qlS) - 4q2 X(_q6)?jJ(qlS)<p(_qlS) 
n=O <p (-q ) 

+ 12q2 W2(q3)<p2( _qlS) _ 16q3 W(q3)X( _q6)?jJ(qlS)<p( _qlS) 

+ 16q3 w3(q3)<p2( _qlS) + 4q4 X2( _q6)'tj}(qlS) + 16q4 w4(q3)<p2( _qlS) 

_ 48q4 W2(q3)X( _q6)?jJ(qlS)<p( _qlS) + 16q5 W(q3)X2( _q6)?jJ2(qlS) 

_ 64q5 W3(q3)X( _q6)?jJ(qlS)<p( _qlS) + 48q6 W2(q3)x2( _q6)?jJ2(qlS) 

_ 64q6 W4(q3)X( _q6)?jJ(qlS)<p( _qlS) + 64q7 W3(q3)X2( _q6)?jJ2(qlS) 

(6.3.34) 

which implies that 

00 

LPpo(3n + l)qn == 0 (mod 4) (6.3.35) 
n=O 
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and 

00 

L ppo{3n + 2)qn == 0 (mod 4). (6.3.36) 
n=O 

Now, (6.1.29) and (6.1.30) readily follow from (6.3.35) and (6.3.36). 

Also, from (6.3.34), we obtain 

00 6{ 3) 2{ 6) 
L ppo{3n )qn == <p -qs <p -q (mod 16) 
n=O <p (-q) 

_ (q2; q2)~{q3; q3)~ 
= { . )16{ 6. 6)2 { 12. 12)2 (mod 16), {by (5.2.19)). (6.3.37) 

q, q q, q 00 q ,q 00 

By binomial theorem 

(q2; q2)~{q3; q3)~ = {q6; q6)!o mod 2 
(q; q)16{q6; q6)~{q12; q12)~ - (q12; q12)~ ( ). (6.3.38) 

Using (6.3.38) in (6.3.37), we arrive at 

(6.3.39) 

From (6.3.39), we obtain 

00 

LPpo{6n + 3)qn == 0 (mod 16), (6.3.40) 
n=O 
00 

LPpo{9n + 3)qn == 0 (mod 16), (6.3.41) 
n=O 

and 

00 

L ppo{9n + 6)qn == 0 (mod 16). (6.3.42) 
n=O 

Thus, (6.1.31)-{6.1.33) follow from (6.3.40)-{6.3.42). o 

Proof of T1H~orem 6.1.8. From (6.3.8), 

00 {2 2)2 
LPpo{8n + l)qn == 4 (q; q)~ == 4 ~: q) 00 == 4 't/J{q) (mod 2). 
n=O q,q 00 

(6.3.43) 
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Again, employing (6.2.16)' (5.2.19)' (5.2.20) in (6.2.15)' we arrive at 

_ (q6; q6)00(q9; q9)~ 9 
'IjJ(q) - ( 3. 3) (18. 18) + q'IjJ(q ). (6.3.44) 

q,q 00 q ,q 00 

Using (6.3.44) in (6.3.43), 

~ - (8 1) n - 4 (q6; q6)00(q9; q9)~ 4 0/.( 9) ( d 2) 
L PPo n + q = (3. 3) (18. 18) + q<p q mo , 
n=O q , q 00 q , q 00 

which yields 

00 

LPpo(24n + 17)qn = 0 (mod 2) 
n=O 

and 

00 (2 2) (3 3)2 
LPpo(24n+1)qn=4 q;q ooq;q 00 (mod 2) 
n=O (q; q)00(q6; q6)00 

= 4 (q; q)oo (mod 2) 
00 

(6.3.45) 

(6.3.46) 

=4+4 L(_1)k(qk(3k-1)/2+ qk(3k+1)/2) (mod 2). (6.3.47) 
n=O 

Thus, (6.1.34) and (6.1.35) are readily follow from (6.3.46) and (6.3.47). This com-

pletes the proof. o 

Proof of Theorem 6.1.9. From (6.3.23), we have 

00 

L ppo(8n + 2)qn = 8 (q2; q2)~ (mod 32), (6.3.48) 
n=O 

which implies that 

00 ( 2. 2)2 
LPpo(16n + 2)qn = 8 (q; q)~ = 8 ~: q) 00 = 8 'IjJ(q) (mod 32). 
n=O q, q 00 

(6.3.49) 

Now, employing (6.3.44) in (6.3.49), we find that 

00 (6 6) (9 9)2 
,,- (16 2) n - 8 q; q 00 q ; q 00 + 8 0/.( 9) ( d 32) LPPo n + q = (3. 3) (18. 18) q<p q mo , 
n=O q,q ooq,q 00 

(6.3.50) 

which yields 

00 

LPpo(48n + 34)qn = 0 (mod 32) (6.3.51) 
n=O 
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and 

00 (2 2) (3 3)2 
LPpo(48n + 2)qn = 8 q; q 00 ~ ; ~ 00 (mod 32) 
n=O (q; q)oo(q ; q )00 

= 8 (q; q)oo (mod 32) 
00 

=8+8 L(_1)k(qk(3k-l)/2+ qk(3k+l)/2) (mod 32). (6.3.52) 
n=O 

Now, (6.l.36) and (6.l.37) follow from (6.3.51) and (6.3.52) which completes the 

proof. o 

Proof of Theorem 6.l.1O. From (6.3.20), 

00 (2 2)2 
LPpo(32n + 4)qn == 80 (q; q)~ == 80 ~: q) 00 == 80 'ljJ(q) (mod 2). (6.3.53) 
n=O q,q 00 

Now, employing (6.3.44) in (6.3.53), we easily deduce (6.l.38) and (6.l.39). 0 
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