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ABSTRACT

In this work we have studied perturbation of weighted shift operators. For
our study we consider both one-variable and two-variable weighted shift oper-
ators. There already exists in the literature, different necessary and sufficient
conditions for a weighted shift operator to be either hyponormal, or weakly
hyponormal, or 2-hyponormal, or quadratic hyponormal, or subnormal. We
observe that these necessary and sufficient conditions are all framed in terms
of the ‘weight sequence’ of the particular weighted shift. This immediately im-
plies that any change or perturbation in the weights would reflect upon the
hyponormality or any other similar property of the weighted shift. In this work
we frame conditions which can exhaustively determine the situations where a
perturbed shift will still retain its original property of hyponormality/ weak
hyponormality/ 2-hyponormality/ quadratic hyponormality/ subnormality.
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Chapter 1

Introduction

1.1 Background

Several important classes of bounded Hilbert space operators were introduced
around the year 1950. We refer to three such classes of operators, namely,
weighted shift operators, subnormal operators and hyponormal operators.

Weighted shifts are among the apparently simple but actually very rich examples
of Hilbert space operators. They are related to subtle questions of function

theory and constructive mathematics.

o If {e,}52, denotes an orthonormal basis of the space of square summable
complex sequences ¢%(Z..), and {0, }%, is a bounded sequence of scalars,
then the unilateral weighted shift W on ¢*(Z,) is defincd linearly such

that We,, = a,en4 for all n.

Though references to these definitions go back to the late 1950’s, the first sys-
tematic study of shift operators was undertaken by R. L. Kelly in his doctoral
thesis in 1966 [68]. About ten years later A. L. Shields again compiled a thor-
ough account of subsequent developments [81]. Since then this class of operators
has received much attention. Initially it was used in the investigation of isome-

tries, but slowly it emerged as a fertile domain for providing examples in the

1



Chapter 1 2

study of general operators.

The other two classes of bounded Hilbert space operators that we have men-
tioned are subnormal and hyponormal operators. Motivated by the successful
development of the theory of normal operators, in 1950 P.R. Halmos introduced
the notion of subnormality and hyponormality for bounded Hilbert space oper-

ators.

e We recall that an operator T is subnormal if it is the restriction of a

normal operator to an invariant subspace.

e T is hyponormal if 7°T > TT™.

By simple matrix calculations it can he verified that subnormality implies hy-
ponormality, but the converse is false. One reason is that subnormality is in-
variant under polynomial calculus or the calculus of analytic functions, while
hyponormality is not. If we define 7" to be polynomially hyponormal whenever
p(T) is hyponormal for every polynomial p € C[Z], then the natural question

that follows is:
Question A: If T is polynomially hyponormal, then must 7" be subnormal?

In [75] it was shown that Question-A has an affirmative answer if and only if the
corresponding problem for unilateral weighted shifts has an affirmative answer.
In other words, it was proved that there exists a non subnormal polynomially
hyponormal operator if and only if there exist a weighted shift operator with
the same property. In [34] was given an example of an operator which is polyno-

mially hyponormal but not subnormal. This means that there must also exist a
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non subnormal polynomially hyponormal weighted shift operator. However, till
date such a weighted shift operator has not yet been identified. The
reason for this could be because the gap between subnormality and hyponor-
mality is not clearly understood. In [24] it was pointed out that we can easily
construct a non subnormal polynomially hyponormal weighted shift operator,
if we can give an affirmative answer to the following question regarding pertur-

bation of weighted shift operators:

Question B: Is polynomial hyponormality of the weighted shift stable under

small perturbations of the weight sequence?

Let us assume that Question-B has an affirmative answer. Under this assump-
tion, if we consider the recursively generated weighted shift T, with weight
sequence : 1, /7, (V/3, \/1,;0 , \/%)A, then it can be shown that T, is subnormal
if and only if z = 2; whereas T, is polynomially hyponormal if and only if
2 -6 < < 2+ 6, for some 81,8, > 0. Thus for sufficiently small € > 0, the

weight sequence o, : 1,2 + ¢, (\/§, 1/ %], 1/ 1—57)’\ would induce a non subnormal

polynomially hyponormal weighted shift operator, as desired.

Hence it needs to be investigated whether Question-B does have an affirma-
tive answer or not. And for this we need to develop the perturbation theory
of weighted shift operators. In fact, a proper investigation of the notion of
perturbation of weighted shift operators would help us to bridge the gap be-
tween subnormality and hyponormality, and to understand the position of the

subnormals within the class of hyponormals.
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1.2  Objectives

The basic problem we refer to is understanding the gap between the classes of
subnormal and hyponormal operators. In the recent past several new classes of
operators like k-hyponormal and weakly k-hyponormal operators have been in-
troduced and studied in an attempt to bridge the gap between subnormality and
hyponormality. We refer the following papers for details [12] [13] [16] [17] [22] [26]
[36] [44] [51] [75].

Most of this work is carried out on the class of weighted shift operators, this
being a prototype to the original question. A huge volume of literature deals
with characterizations of these intermediate classes of operators by establishing
necessary and sufficient conditions. These conditions are always in terms of
weights of the weighted shift. This motivated us to raise the following questions:
“suppose we have a k-hyponormal weighted shift W with seciuence {an}. To
what extent can the weight sequence be perturbed, so that the corresponding
perturbed shift still retain the property of k-hyponormality?” The ability to
answer this question would contribute much towards a proper understanding of
the class of k-hyponormal weighted shift operators, and also to distinguish it
from the other subclasses.

Again it is known from the existing literature that the class of k-hyponormals
is within the class of weakly k-hyponormals. This motivate us to ask “whether
a perturbed k-hyponormal remains weakly k-hyponormal.” The present work
attempts to address such kinds of questions.

Hence, the objective of the present work is to contribute to the development

of the theory of perturbation of weighted shift operators, with reference to the



Chapter 1 )

notion of hyponormality, k-hyponormality, weak k-hyponormality and subnor-
mality. Our work aims to carry forward the ongoing research in this area and

also to plug some of the holes in the existing literature.

1.3 Review of literature

We begin by taking a look at the class of weight;ed shift operators with refer-
ence to the classes of subnormal and hyponormal operators. We denote by W,
the weighted shift on #2(Z,) with a bounded weight sequence o = {a, }. If, in
particular, each o, is equal to 1, then W, is referred to as the simple unilateral
shift and denoted by Us.. Since the bilateral shift on ¢?(Z) is a natural normal
extension of U, hence U, is subnormal, and therefore also hyponormal. How-
ever, the weighted shift W, need not always be subnormal or even hyponormal.

In fact we have the following results:

e W, is hyponormal if and only if || < |am4a| for all n.

o (Berger’s Theorem ) W, is subnormal if and only if there exists a Borel
probability measure p supported in [0, || W, ||?], with ||W,]||? € supp u, such
that v, = [ "du(t) for all n > 0, where o := 1 and y,q1 := 02a2_; ... ad

for n > 0.

In [51, Problem 203] Halmos asked for an example of a hyponormal operator
that is not subnormal. Later on he himself comes up with one such example
namely, the weighted shift operator W, with weight sequence o = {a,}, where
a0 = a,01 = b,o, =1 foralln > 1and a < b < 1. In fact Stampfli [80]
was the first to address -the question “which monotone shifts are subnormal?”

In Theorem 4 of the same paper he provides a set of necessary and sufficient
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conditions for subnormality of W, in terms of the weights ¢,,. These conditions
make it cvident that cven the fiist four weights (ap < o1 < a3 < o3) may
‘prevent’ a shift from being subnormal.

Again in [51, Problem 209], Halmos asked for an example of a hyponormal
operator whose square is not hyponormal. The example was duely provided
but with much difficulty. We now 1ccall subscquent developnient in the theory
by which such examples can now be generated with much ease.

Let H be an infinite dimensional separable complex Hilbert space and let B(H),

denote the algebra of bounded linear operators on H.
e For S,T € B(H), [S,T):=ST -TS.

e Ann-tuple 7' = (T1,...,T,) is hyponormal or the operators 71, ..., 7T, are

jointly hyponormal if

[Tl*’ Tl] [T;a Tl] B [Tr’: Tl]
T T T T (T T

e For k > 1, T € B(H) is k-hyponormal if (T,T?,...,T*) is hyponormal

[T*,T)] [T**T) ... [T**T]
[T*,T% [T*%,T% ... [T**,T7 >0
[T*,T% [T*2,T% ... [T*,T%

¢ (Bram-Halmos)
T € B(H)is subnormal
& T'is k — hyponormal for all k > 1

& (T,72,...,T*) is hyponormal for all & > 1.
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o Ann-tupleT = (T1,...,T,) is weakly hyponormal if LS(T) := { >0 AT :

A= (A1,..., ) € C"} consists only of hyponormal operators.

e For k> 1, T € B(H) is weakly k—hyponormal if (T, T?, ..., T*) is weakly

hyponormal.

e T € B(H) is said to be polynomially hyponormal if T' is weakly k-

hyponormal for all &£ > 1.

W, is k-hyponormal & (%Hﬂ)f,Fo > 0 for all » > 0, where v := 1 and

Ynt1 = a2y, for n > 0, defines the moment sequence of W,.

With this last characterization at hand, it is possible to distinguish between
k-hyponormality and (k + 1)—hyponormality for every £ > 1. But while k-
hyponormality of weighted shift admits a simple characterization, the same
is not true for weak k-hyponormality.

In an effort to unravel how k-hyponormality and weak k-hyponormality are
interrelated, different researchers have adopted different line of thoughts:

(a) A number of papers have been written describing the links for specific fam-
ilies of weighted shifts e.g., those with recursively generated tails and those
obtained by restricting the Bergman shift to suitable invariant subspaces. Some
of the relevant references are the following [5] [12] [13] [17] [19] [20] [21] [24]
[25] [32] [65] [66] [71].

(b) Another approach has been to take a closer look at weighted shifts whose
first few weights are unrestricted but whose tails are subnormal and recursively

generated, refer to [3] [15] [16] [45] [46] [60] [63] [80].
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As such we have a whole range of results leading to a better understanding of

the problem in hand.

e [80] If W, is subnormal weighted shift with weight sequence o = {a,}52,

and @, = apy41 for some n > 0, then a; = a2 = ... i.e, W, is flat

e [6] Let W, be a unilatreral weighted shift with weight sequence {a,}52,
and assume that W, is quadratically hyponormal (that is, weakly 2-
hyponormal). If o, = 41 for some n > 1, then oy = g = ... ie.

W, is subnormal.

e [12] For x > 0 let W, be the weighted shift whose weight sequence is given
by «rg :=z and o, = /2 for n > 1. Then

(i) W, is subnormal < 0 < z < \/g

3

(ii)) W, is 2-hyponormal < 0 < z <

(iii) Wy is weakly 2-hyponormal & 0 < « < \/g

o [46] Let (z) : /x, /x, \/g, \/g, ... be a weight sequence with Bergman
tail. Then {7, € Ry| Wym)is q.h.} is a closed interval and is equal to
[01,82] where 8, = .1673 and d§, = .7439 approximate to four places after

decimal.

o [23] Let {0,}52, be the weight sequence given by

ifn=20
, ifn =2,4,6,.
ot 1f7’L:1,3’57

[SHod

If an = (Xrodk)? for n > 0, then W, is hyponormal but not 2-

hyponormal.
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o (66] Let ce(z) : v/Z,4/2,4/3,1/%,... There exists § € (<%, 2) such that
32\ \/5 167 3
1) Wz is cubically but not 2—hyponormal if 2 < 2 < 4.
(=) 16
1) Wy 1s quadratically hyponormal but not cubicaly hyponormal if
(=)

(5<.’L<§.

Inspite of this huge repertoire of established results and generated examples,
it should however be mentioned that the overall problem still remains largely
unsolved.

The study of the multivariable analogue to these problems have also received

much attention in the last few years [27] [28] [29] [30] [31] [37] [38] [39] [40].

e Consider double indexed positive bounded sequences cy, ﬂk'e 0°(2%),k =
(k1,ko) € Z% := Zy x Zy and let £2(Z2) be the Hilbert Space of square
summable complex sequences indexed by Z2. The 2-variable weighted

shift T' = (71, T3) is defined by
Tiex = kChte,s 126k = Prlhe,
where €; = (1,0) and €5 = (0, 1). Here

TiTy = ToTy <= Brre,th = Qpye,Bx for all k € Z2.

Given k = (ki,k,) € Z2, the moments of T of order k are
'4

1 ifh = 0=k

g o= a?O,O) o a?kl—l,()) ifk; > 1landk; =0
Booy - Boka-1) ifky = 0 and ky > 1

L ,8(20’0) .. ~/8(20,k2—1)a(20,k2) T a%kl—l,kg) ifky > 1land ky > 1

A multivariable weighted shift can be defined in an cntirely similar way.
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e [67)(Berger’s Theorem: characterization of subnormality for 2-variable
weighted shifts) 7" admits a commuting normal extension if and only if
there is a probability measure ;o defined on the 2-dimensional rectan-
gle R = [0,a1] x [0,a2], (&, := [|IT|I*) such that v, = [ [pt*du(t) =

I [atitsrdu(ty, ta) (V k € Z2).

o [25] A 2-variable weighted shift 7" = (7, T3) is k—hyponormal

< (’7u'7u+(m,n)+(p,q) — Yu+t(mmn) Yut(p q)) 1<m+n<k, 1<p+q<k >0

for all u € Zi.

o A 2-variable weighted shift 7" is horizontally flat if cy, x,) = oa,1) for all
kl,kz > 1; ver’cically flat if /B(kl,kz) = 13(1,1) for all kl,kg Z ].; flat if it
is horizontally flat and vertically flat; symmetrically flat if T 1s flat and

G = ,3(1,1)-
1.4 Notations

We mention here a few standard notations to be followed throughout the sequel.

N : Set of natural numbers.

Z : Set of integers.

Z., : Set of non-negative integers.

R : Set of real numbers.

R, : Set of non-negative real numbers.

C : Set of complex numbers.

ZZ% : Set of Ordered pairs of non-negative integers.

¢*(Z..) : Hilbert space of square summable complex sequences indexed by the
set Z...

€2(Z_2|_) : Hilbert space of square summable complex sequences indexed by the
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set, Z2.
(>=(Z,.) : Space of all bounded sequences of scalars indexed by the set Z,
¢(Z2) : Space of all bounded sequences of scalars indexed by the set Z3.
In addition to these we also often use the following abbreviations:
q-h.: Quadratic hyponormal or weak 2-hyponormal.
p-q.h.: Positive quadratic hyponormal.
NASC: Necessary and sufficient condition.

cl: Closure.

1.5 Chapterwise brief summary

Chapter 1: This chapter is introductory in nature. We include here the
motivation and objectives of the present work, along with a brief review of
literature leading to the same. A chapterwise brief summary of the work done
in each chapter of the thesis is also included here.

Chapter 2: On convexity of weakly k-hyponormal region

Let o = {0, }52 be a weight sequence. Let £ > 1 and j > 0. Definc

aly 2]t ag, 0, ,05-1,2, 0541, .. We say, ofy : z] is the perturbation of
weight sequence o where the 7" weight of o namely, o, is perturbed to z.

Let Qq(k, ) := {z : Wy, 4 is k-hyponormal}

and wq(k, 7) := {7 : Wy, 5 is weakly k-hyponormal}.

If W, is a weighted shift then Wy, 5 is referred to as a rank-one perturbation

of W, where the 7t

weight «, is perturbed to z. If for » < 3, o, and «, are
perturbed to x and y respectively, then Wy ¢ 2),(; ) is referred to as rank-two
perturbation of W, Similarly, we can dcfinc any finite perturbation of W,.

In (24, Theorem 6.5] it was shown that rank-one perturbations of k-hyponormal
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weighted shifts which preserve k-hyponormality form a convex set. That is, if
W, is k-hyponormal then 2,(k,7) is a convex set. The natural question that
follows is “If W, is weakly k-hyponormal, then is wq(k, 7) a convex set?”

In this chapter we answer this question in the affirmative.

For this we have used the characterization of weak k-hyponormality given in [45).
Chapter 3: On convexity of positive quadratic hyponormal region
This chapter is in continuation of Chapter 2. Here also we continue to investigate
the idea of convexity.

If & = {an}32, be a positive weight sequence, + > 0, k£ > 1 and W, is weakly k-
hyponormal, then we have shown that w,(k, j) is a nonempty convex set, where
walk,7) == {x : Wy, 4 is weakly k-hyponormal}.

Question: For y € wy(k,i + 1), is there any relation between w,(k,i) and
Wefit1,) (K, )7 Here wap1,4) (k. 1) := {Z : Wa@a),G4+1:)) is weakly k-hyponormal}.
In this chapter we address this problem with referen;:e to a positively quadrat-

ically hyponormal operator W, with weight sequence o = {a,}2, where o, =

n+1

e for all n.

We have proved the following:

1. For o € [k, ko], the weighted shift Wjo.z),(1:2)) is p.q.h., where k; =
0.630435, ky = 0.737144.

2. For y € [k, ka}, {z : W),y 18 P-q-h.} = (0,%].

3. If either y < ky or y > kg, then there exists 0 < z < y such that
Walo z),(1:yy) 18 not p.q.h. If we represent the perturbations of «y and
oy as « and y respectively, and represent them in {he 2-dimensional plane

then our result can be graphically represented as follows
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Chapter 4: Finite rank perturbation of 2-hyponormal weightéd shifts
In [24, Theorem 2.1} it has been shown that a non-zero finite rank perturbation
of a subnormal shift is never subnormal unless the perturbation occurs at the
initial weight. However, this is not necessarily true for a 2-hyponormal shift as
shown in (24, Example 3.1(ii)]. In view of this, the question being addressed in
this chapter is as follows:

“Given a 2-hyponormal weighted shift W, and j > 0, does there always exist
€ > 0 such that for o € (o — €, + €), Woyj0) is again 2-hyponormal?”

In this chapter we establish a set of sufficient conditions under which there exists
¢ > 0 such that for x € (o; — €, 05 + €), Woyjz) will again be 2-hyponormal.
Applying these conditions we can completely determine the situations where
2-hyponormality preserving perturbations do not exist.

Moreover, in [24, Theorem 2.3], it was shown that a 2-hyponormal weighted
shift remains quadratically hyponormal under small non-zero finite rank per-
turbations. The proof was based on the definition of positive quadratic hy-
ponormality. In this chapter we give an independent proof for the same result,
using a different characterization of quadratic hyponormality.

Chapter 5: Perturbation of 2-variable hyponormal weighted shift

'In Chapter 4 we have addressed the question of finite rank perturbation of
2-hyponormal weighted shift considering the unilateral weighted shift W, on

¢%(Z.). In this chapter we initiate a parallel discussion for the 2-variable weighted
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shift on ¢2(Z2). For a unilateral weighted shift W, it is well known that W,
is hyponormal if and only if a,, < a4 for all n. Hence for a strictly increas-
ing weight sequence, any slight perturbation of the 5** weight still retains the
hyponormality property for the perturbed shift. “Is the same true for a two vari-
able weighted shift?” The answer is negative as is shown in the work done in
this chapter. We also frame a set of positivity conditions which can completely
determine hyponormality of the perturbed shift.

Chapter 6: On weak hyponormality of 2-variable weighted shifts

In Chapter 5 it was shown that if for a 2-variable hyponormal shift T' = (T, T5),
a weight ok, k,) 18 perturbed, then the resulting perturbed shift may not remain
hyponormal. For example, say we have the 2-variable hyponormal shift 7' =
(Ty,Ty) with respective weight sequences {v(k, k;)} and {B, )}, as shown in

the following diagram

'

(0,3)|
Bo,2) Ba2) Be.2)
a a o
0.2) (0,2) (1,2) (2,2)
Boy |Bay | Bey
T2 (0, 1) a(O,l) a(lvl) 0:(2»1)
B0 B.0) B2,0)
(0,0) &(,0) o -
(0,0) (1,0 (2,0) (3,0)
o,

Suppose the weight ¢z ) is perturbed slightly to z. Then to preserve commuta-

tivity, we need to perturb at least a minimum number of adjacent weights. So



Chapter 1 15

accordingly, B(22) changes to y, a(1,2) changes to z, and fs,1) changes to ¢. The

weight diagram of the perturbed shift T = (']-“ L 7’2) will be as follows:

(0,3)
Bo.2) Ba.2) Yy
04 VA T
(0,2) —2
5(0,1) ﬂ(l,’l) 2
Tl (g, 1) |—en] 20y e
Boo) B B2,0)
@(0,0) Y(1,0) O2,0)] ---
(0,0) 1,00 (2,00 (3,0)
T
—_—

In Chapter 5 it was shown that 7 may not remain hyponormal. In fact the
conditions under which 7" will still be hyponormal is completely given in that
chaﬁter.

In this chapter, we show that though 7' may not be hyponormal, it will however
still remain weakly hyponormal for sufficiently small perturbations @ of o, k,)-

Chapter 7: Back-step extension of weighted shifts

In this chapter we address the question of perturbation of subnormal weighted
shafts. It was shown in {24, Theorem 2.1] that a non-zero finite rank perturbation
of a subnormal shift is never subnormal, unless the perturbation occurs at the
initial weight cvg. So the idea is to begin with a subnormal shift and create a back-
step extension preserving subnormality The necessary and sufficient conditions
(NASC) for subnormal backward extension of a 1-variable weighted shift was

first given by Curto (12, Proposition 8]. Later an improved version of this result
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was given by Curto and Yoon {37, Proposition 1.5]. In the same paper, they
have also given the NASC for subnormal backward extension of a 2-variable
weighted shift [37, Proposition 2.9]. However, these results only deal with 1-
step extension. In this chapter we extend these results to 2-step extension, and
following a similar technique we propose NASC for n-step backward extension
of 1-variable and 2-variable weighted shifts. In the last section we show how

these results can also be derived applying Schur product technique.



Chapter 2

On convexity of weakly
k-hyponormal region

2.1 Introduction

To express ourself clearly and systematically we begin by specifying the no-
tations being followed. Let W, be a weighted shift with weight sequence
a = {a,}2,. Here ay, is referred to as the n* weight. So oy is the 0" weight,
; is the 1** weight and so on. If for y > 0, and j > 0, a[j : y] denote the weight
sequence v, . . ., -1, Y, Xj41, . . . then Wy is called the perturbed shift where
the j** weight o; is perturbed to y. Wyyj,) is a rank one perturbation of Wj.
If the 7 and j** weights of o are perturbed to = and y respectively, then the
perturbed shift Wy (i.q, (j.y)) 15 called a rank two perturbation of W,. Similarly,
we can define any finite rank perturbation of W,,.

The issu;a of perturbation of weights in a weighted shift operator, is intricately
related to the question of convexity of the domain of perturbation. In [24, The-
orem 6.5) it was shown that rank-one perturbations of k-hyponormal weighted
shifts which preserve k-hyponormality form a convex set. That is, if W, is
k-hyponormal then Q,(k,j) := {v : Wyjq isk-hyponormal} is a convex set.

However, it is not known whether a similar result holds for weakly k-hyponormal

17
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weighted shift W,. In this chapter we show that, “if W, is weakly k-hyponormal,
then wy (k, 7) == {z : W,;. is weakly k-hyponormal} is a convex set.”

In trying to ascertain this result, our first attempt is to come up with an example
having this property. We try to achieve this for the case of a weak 2-hyponormal
(i.e. quadratic hyponormal) operator using the characterization of quadratic
hyponormality given in [65].

In examples 2.2.1 and 2.2.2 we construct two quadratically hyponormal weighted

shifts W, and W5 where the weight sequences o and 3 are as follows:

S A
. 27 2) 80, 3, a . 27 2) 80, 3)

Let y(2) denote the weight sequence \/g, \/%, VI, %, ... In Proposition 2.2.3
we show that W, ;) is quadratically hyponormal for all z € [g—g, %] . For this
we make use of the Theorem 2.2.2 and Mathematica graphs. The insight gained
from this example enables us to prove that for a weighted shift operator W, if
Walj:z) and Wy(;.y) are weakly k-hyponormal, then Wy;.,) is weakly k- hyponor-
mal for all z between 2 and y. In other words, w,(k, j) is a convex set, and this

is shown in Theorem 2.4.3.

2.2 Examples for quadratic hyponormality

We begin by recapitulation of definitions introduced in [12, 17, 65]. Let {e,}%2,
be the canonical orthonormal basis for (?(Z,) and let o = {a,}2, be a
bounded sequence of positive numbers. Let W, be the unilateral weighted shift
defined by Woe, = apenss (V0 > 0).

By definition, an operator T' is quadratically hyponormal (q.h.) if T + s72 is

hyponormal for every s € C.
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Lemma 2.2.1. [25] W, is quadratically hyponormal if and only +f W, + sW?

15 hyponormal for every s > 0.

Proof. By the definition of quadratic hyponormality it is trivial that W, is
quadratically hyponormal implies W,, + sW2 is hyponormal for every s > 0.
Conversely, suppose W, + sW?2 is hyponormal for every s > 0. We need to show
that W, + sW2 is hyponormal for all s € C.

Let s € C and s = re’ for r > 0. Define ug : 2 — €2 as u,e, = e"™¢,,. Then

* __ oind : >
use, = e'""ey,, and so, u, is unitary.

Also, u,Wyure, = e Y anen = e W e, that is, u, Wau, = e" W,
2y, % __ * 2, %
w, (Wo + sWiur = u, Wou + su,Wiu,
2
= u, Wour + s (1, Wou?)
= e W, + refle H0W?

= e (W, +rW?)
Since W,+7W2 is hyponormal, therefore W, +sW?2 is hyponormal (Vs € C). O

For a hyponormal weighted shift W, and s > 0, let D(s) := [(W,+sW2)*, (W,+

sW2)]. Then we have,

D(s) = [(Wy + sW2), (W, + sW2)]
= (W, + sW2* (W, + sW2) — (W, + sW2)(W, + sW2)*

= [W2, W] + s[W2, W2 + s[WA ;2, Wal+ sz[W;‘z, w2
It can be easily shown that

we,

Walen = (02 — a2 _))e, (Vn > 0)

(W2, Wie, = an(a? — o?_))enss (V1> 0)
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fn=0
p-1(a® —al e,y ifn>1

{"Vfa Wg]en = (aiaiﬂ - 0‘31-105721—2)671 (Vn > Q)

(W2 W,len =

Let P, be the projection of £2(Z) onto \/,_,{e.} and for (n > 0), let D, :=
Dp(s) = P,D(s)F,. Then

g 7m0 0
o ¢1v Ty ... 0
po=| 0 0 ,
0 0 0 ... @Gnot Tn-1
0 0 . Tpa an

where

2
qr ‘= U + s Uk

T 1= 8y/Wg
'U.k = O:i - O!i 1

e 202 2 2
Uk ©= Oy — O3 Qo

w = (s ~ 0 y)?

fork>0anda_; =a_5:=0
By the definition of quadratically hyponormal operator, we immediately see
that W, is q.h. if and only if D,(s) > 0 for every s > 0 and every n > 0.

For %9, 71,..., %, and s in Ry we define the following:

Fn = FTL(:EO):CI:"'):ETL;S)

n n-1
— 2 -2 E -
— T, — 2 T2 0%
1=0

1=0
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n n—1 n
= E 'U,.L‘CIT?'—ZS E \/7.Uifl3iflli+1+52 E ’UiClZ,,:Z

1=0 1=0 i=0

and recall, for further use, the following result :

Theorem 2.2.2. [65]: Let W, be a weighted shift with a weight sequence o.

Then the followings are equivalent :
(1) W, is quadratically hyponormal;
(ii) Fu(zo,z1,...,%n,s) 2 0 for any x¢,21,...,%n, s € Ry (n > 2);

(iii) There exists a positive integer N such that I, (zo,21,. .., %n,8) > 0

for any xo,%1,...,2,,8 € Ry (n > N).

Example 2.2.1. Let o be the positive weight sequence given by cv : \/g , \/g Ja/ g—g,
\/g A/3, ... We will show that the weighted shift operator W, 1s quadratically

hyponormal.

For this, let {¢,}32, denote the sequence « so that cpyy = | /ﬁ—l Vn>2.
In view of Theorem 2.2.2, it is sufficient to show that F;, >0 Vn > 5.

For zg,x1,...,xs, s reals, we denote a function G5 = Gs(zo, 21, . .., 25, s) by

Gs : = Fy — vsta? where s? =t

4 4
= Z(u, =+ tvi):c? -2 Z VWitT;Tip + usxg
i=0

i=0
Then,

6

5
Fﬁ = Z(u, + t?}i)l‘g -2 Z AV ’tUithifCi+1
i=0

i=0

= G5 + tusz? + (ug + vg)zi — 2v/wstzsze

G+ (vt — 5 2y (_Vwst Vs + tg :
= gt — —————— | T —T5 — VU fugLg
> 5 ug + tug S Vg + tug b 0 06
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Suppose Fg(wg, ..., 2s,8) > 0 for any2q, ..., %6 s € Ry. Then since zg is arbi-

trary non-negative real, we will take zg = uvi’t'v w5 s0 that

Ug + L

wst
F620$G5+(?)5t——5—)$:§20

Conversely, if Gs + (vst — —25-)x2 > ( then

ug+tug

-~

2
wsl LU5
=Gs+ |vst — ———— | ai+ — Vug + tugz

5 ( > uﬁ—\—tuﬁ> 5 \/u5+tv6 6 0% ) =

Fe(xq,...,26,8) > 0 for anyzg,..., 26,5 € Ry

wsl
< Gs(zo,- -, T5,8) + | vst — 5 x%ZOforany:co,...,:us,seR+
1L6+t’U6 i
t
< Gs(x, ..., 25,8) + TS tvsta:g >0 for anyzy,..., x5 8 € Ry
6

7L

. v
(usmg Wp = Unp1Un VN 2> 5 and 2z, = Jl)

Similarly,

wsl 2
Ty
(g + tg) — (—ﬁf—)

uyttvr

Vwst wet
+ 2 \/('U,G + t'Uﬁ (‘—6 ) a
(ug + tvg) — { -6~ Uy + tug
6 6 u7+tv7

+ RV ll)ﬁ \/—T 2
U
N 7T T

Fy =Gg+ | vt —
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and so
Fi(zo,...,27,8) 2 0 for anyzg,...,z7,s € Ry
'U)st 2

SGs(zo, ..., 25,8) + | vst — , 25 >0

u)

(ug + tvg) — (1—5——““”7)
for any g, ..., w5, 5 € Ry
2726,’2 2

©Gs(xo, ..., Ts,8) + vstez > 0 for any g, ..., 5,8 € Ry

1 + 27t + 2726t?
So, by Mathematical induction, for 1. > 6 we have

(znzn_l . zﬁi"‘s)vg)trvg

F,>20& G5+ >0
"= ST 14 Zab + 2pzn a2+ Zpzn1 .. 268 T
1
& Gs + ; ; ——uslzg > 0 (2.2.1)
1 + z_ei + z52.'7t5 +t 2627...2pt" 0

Claimi: Gs(zg,...,7s5,5) > 0 for 0 < s < 1/0.299

The corresponding symmetric matrix to the quadratic form Gs is

up +tvg  —+/wol 0 0 0 0
Vgl w4+t —vant 0 0 0
At) = 0 —Vunt uz+tve  —/wst 0 0
0 0 —Vwal  us+tus  —wst 0
0 0 0 —~Vwst ug+lus —Jwal
0 0 0 0 — Vgt g

We discuss the positivity of A(t) by Nested Determinant Test. By direct Com-

putation, we have

11
do = 5 + Zt
4= St 4312
' 320 7 640
4312 5593
dy

= 12800 " 76800
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301¢? 73113 . 20683t!

9 = 7024000 T 1024000 T 12288000

L3012 3018 345200 500807

4 = 12988000 T 10240000 | 368640000 1474560000
30112 3013 35647t 20683t°

5= 245760000 122880000 7372800000 9830400000

If 0 < ¢t <0.299, then dy,...,ds > 0 and ds > 0, which implies that A(t) > 0
for 0 < ¢ € 0.299 and G5(zo,...,z5,8) > 0 for 0 < s < v/0.299 and Claim 1 is
established.

Hence by (2.2.1),
Fo(zo, ... %pn,8) >0 for anyxg,...,2, € Ry and 0 < s < v/0.299.

. 4 . . .
Again, z, = 2 = —%%211, (n > 5) and also {2,}2 ¢ is an increasing sequence

converging to 4. Thus,

1 1 n 1
zgt  zgzqt? 2627 ... Zpt"™d

1 1)° 1\"°
ste (o) v+ ()
36[' ZGL 26[,

Hence if 1 > 0.299, then

'U5tflfg

Gs +
MRS TR ST Sapripya—

zgt 262712 2627 2t 0

1
2 Gs -+ (1 — 7) 7)51,.712

<6

24 1
o (since %= and vs = 6)

Now we consider the corresponding symmetric matrix B(t) to the quadratic

form G5 + (#37) 2 as follows:
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Ug + g —\/'lU()/, 0 0 0
- 'LUot Uy + t?)l —\/’U.)lt 0 0

0 —Vwil ug +lug  —Swsl 0

0 0 —Vwal ug+1lvs —+/wsl

0 0 0 ~Vwslt ug+Ltvg —Jwgl
0 0

24t—7
0 0 ~Vwst  us + =57

0
0
0
0

As was done in Claim 1, d, > 0 for ¢ > 0.299 and < = 0,1, 2,3,4. Also, ds of
B(t) is

301¢2 n 30143 B 1191487¢4 _ 6653089¢° + 599807t5 >0
8847360000 1474560000 265420800000 1061683200000 = 8847360000 —

for ¢ > 0.299
This is because ds is an increasing graph as is seen from the following Mathe-

matica graph of ds:

ds

3.5-10 f
3-10°
2.5-10°

2-10°

Figure 1

Therefore, F,, > 0 for n > 5 and s > +/0.299
Thus for all t > 0, F,, >0 (n > 5). So by Theorem 2.2.2, W, is quadratically

hyponormal.
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Example 2.2.2. Let o be the posilive weight sequence given by « : \/I , \/g 1/ %7
\/g , \/g; ... Then the weighted shift operator W, with weight sequence « is

quadratically hyponormal.
This can be shown by a method similar to that used in Example 2.2.1.

Proposition 2.2.3. Let v(z) denote the positive weight sequence {an} given by

\/g , \/g VR \/g , \/g ,.--- Then the weighted shift operator W,y is quadrati-

cally hyponormal for all z € [g—g, %%].

Proof. As oy = 4 /T for all n > 2, therefore we have, w, = u,41v, for all
n > 5.
In view of Theorem 2.2.2, it is sufficient to show that F,, >0 Vn > 5.

For zg, 71, ..., s, s reals, we denote a function Gs = Gs(%g, ®1,...,%s,5) by
Gs : = Fy — vgtz? where s =1
J

4 4
= E (1; + l.vi)n:f -2 _;_ VWt T Ty + 71,5.732
i=0

1=0
Then,
Z()t 2 . Un
Fs = Gy(zo, ..., x5, 8) + vstxs | since Wy = Up41Vn VN > 5 and z, = —
1+ Zﬁt Un
Hence,
Fs(xo,...,26,8) > 0 foranyzy,... zq,5 € Ry
Zgl
& Gs(wo, .-, 25, 8) + 1 8 fvsta:g > 0 foranyzg,...,xs5,s € Ry
Zgl
Similarly,
wsl wst
F7 =G5 + 7)5t - > ; ng + ( > Ty
(’LLG + t’U(j) — (—J—u_,u_i_t’)?)

\/ (ug + Lug) — (u7u')|"ﬁtt'u7)

— 1/ (ug + tvg) — et ¢ x 2—}- _ Vet Te — +t772
! T - Te — VU V7 X
6 6 1o 6 n ¥ Lo 6 7
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and so
Fi(ze,...,x7,8) > 0 for any xzg,..., 27,5 € Ry
wsl,
¢}G’S(:EO? -~ Ty, S) + | vst — : ¢ ng > 0
(ue + tvg) — <u—:1-)£tv7)
for any zg,..., 75,5 € Ry

2726t2 2

SGs(Tg, ..., 75, 8) + vgtxs > 0 for anyzg,..., 75,5 € Ry

1+ 27t + z72gt?
So, by Mathematical induction, for n > 6 we have

(2nzn-1. .. 261""%) vstz? >0
14+ zpt + 2n2p_1l2+ -+ 2n2p_y ... 26l"°
1
1+ 2+ L+

2gt 262712 Z(;Z7...Zut“_5

Fo(zo,...,®n,8) >0 G+

& G+ 'U5t£l?§ >0

(2.2.2)

Claiml: Gg(zo,...,25,8) > 0 for 0 < s < 1/0.299.

The corresponding symmetric matrix to the quadratic form Cy is

ug +tvg  —+/wol 0 0 0 0

—Vwel  uy +tvy  —awnt 0 0 0

A(t) _ 0 - ’11)1/, Uy + t1)2 —\/’1—1727 0 0
0 —~wat  uz +tvs —\/wst 0

0
0 0 0 —Vwst  ug +1tug  —J gl
0 0 0 0 —+/wat Us

We discuss the positivity of A(t) by Nested Determinant Test. By direct Com-

putation, we have

2
dy =a + tafa?

.2 20 2 2 2.2 4 2
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dy =t* {agai(a3 — af) + agai(as — ad)(a30; — aiad)}

2 2y 2 4 2
+ 1 {nzu‘ ajag)agayag

" 3 2 52 ~3 y 5-,2 5 o ” 11_2 5 &9
Ji =2 | e = e e e P s = e | 4 7 S S
. (16 9% 6) " (24 16 6) (192 64 24)
=12Py(z) + 13P5(z) + t'P4(2)
2 11 2 g {357 v 58
(]’4 :f2 ey — __1_. e + f“ 3 — — —— = —
64 11562 72 160 192 60

if251:% 13z 199s% 2° s f432° 3z 91z &
T e ~ o — qaan T e FF ~ o0 Tan T w2
2304 480 1440 18 960 320 1440 36

=12Q(2) + PQ3(2) + 1'Qa(2) + 1°Q5(=)

All dy. dy. dy are positive by their expressions for ag = ay and dy. dy are positive

forall z € [, il and V1 > 0.since all Pi(z) (i = 2.3.4) and Qi(2) (i = 2.3.4.5)

a3 47

are positive for all z € [§5. 5]

We use Mathematica graph to show the positivity for ds of the matrix A(7).

Py P Ve Pr P22 %7 4% P2

+ - - -+ +
4608 2304 1920 3840 + 1280 640 15360 11520
/2::1 f333 3/423 15:3 /4:4 f5:4

(15(:.{) ==

1440 i 720 640 384 N 360 * 720

ds of A(L)

Figure 2
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From the above Mathematica graph it is clear that if 0 < ¢ < 0.299 then dg > 0,
which implies that A(t) > 0 for 0 < ¢t < 0.299 and Gs(wo,...,%s,s) > 0 for
0 < s < v/0.299 and Claim 1 is established. Hence by (2.2.2) Fy(zo,...,Zn,8) 2
0(n > 5) foranyg,...,z, € Ry and 0 < s < /0.299.

Now we will show for ¢ > 0.299.

4(n+1 : . :
As, z, = 2 = 2 0 > 5) 50 {2,}2°  is an increasing sequence and hence

Un n+42
TR S = P I SR
zgl  zgzgt? 2627 ... Zpt"™d T 2t (z6t)? (z6t)™
1
- 1
1-2
Now,
! 24t — 7
Gs + 1 1 i 1)5f,$§ >Gy + < > q,g
It gtwme T Yoo 144
24 1
oz =— and v5 = -
( T ° 6)

Now considering the corresponding symmetric matrix B(t) to the quadratic form

Gs + (#=T) 22, we have

144
U +_t’l}0 '—\/’U}Ot 0 0 0 0
—Vwel up +tv;  —wit 0 0 0
B(t) _ 0 —y/wnt Ug + t’Uz —\/'wzt 0 0
- 0 0 —vVwt  uz +tvg  —/wsl 0
0 0 0 —wst ugFtvg —+Jwal
0 0 0 0 —Vwgd  us+ ZL
t22 32 tiz 19952 18z 1222 322
ds(z,1) =~ - - - - —+ +
165888 27648 13824 46080 640 46080 = 7680

8271422 4 2413t°22 N 431622 1223 323 314423 46791528
1658880 138240 5760 51840 8640 41472 207360
91623 N 1424 N 2414524 + 1624
8640 12960 25920 216
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ds of B(t)

Figure 3
From the above Mathematica graph it is clear that the graph is an increasing
graph and hence ds > 0 for £ > 0.299 and = € [:-S g]
Therefore F,(rg.... . x,.5) > 0 forallt >0 and = € [% %(—7)] So by Theorem

2.2.2, W,y is quadratically hyponormal for = € [% g%]

2.3 NASC for weak i-hyponormality

Let C[z.w] denote the polynomials in two variables and C[z] denote all poly-
nomials with one variable z. We first give a construction given by J. Agler
[2] which associates operators 1" on a Hilbert space // with linear functionals
A : C[z.w] — C which obey certain positivity conditions.

For h(z,w) =37, - hijz'w’ € Clz. w] and an operator T € B(I1). define h(T.7T") =
> i i TYT' In particular, (zw)(T.7%) = T*T and (z"w?)(T.T*) =TT I

r € 1. then define a lincar functional Ap : C[z.w] — C by the formula
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Ar(h) = (h(T,T*)z,z).

Lemma 2.3.1. For a polynomial p € Clz], (p(Z)) (1) = (p(T))".

Proof. Let p(z) = Yooz’ Then p(z) = Y. ,a;2" and so p(2)(T") =

Z?zo a7

Sop(T) = (i aiTi> - i &T* = p(2)(T*).

=0 =0

Observed that for p € Clz] with p(2) = > 1, a;2%,

n

pw)pte) = () (z) € Clovu)

=0

Lemma 2.3.2. If z is a cyclic vector for T, then ITN| <1 if and only +f

Ap ([T(F)(l - zw)p(z)) >0, Vp(z) € C[z].

Proof. Since z is a cyclic vector for T so H = cl{p(T)z : p € C[z]}. -

Now,

ITI <1< 1Tyl < lylii* (Vy € H)
S (I =TT")y,y) 20 (Vy € H)
& (I = TT*)p(T)z, p(T)z) 2 0
& (p(T)"(I - TT") p(T)z, z) > 0
& <M(1 — 2w)p(2)(T, Tz, 'E> >0

& Ar (p(@)(1 - 2w)p()) 20 (Vp(2) € Cla))

Ve

The following result was given by Agler [2]:
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Lemma 2.3.3. [2] Let T be a cyclic contraction wn B(H). Then T 15 weakly

k-hyponormal if and only of

Ar [(W+W¢(Z)) (cJ(z +p(2)¢( w))]
for all polynomals p(z), q(z) and ¢(z) with degree ¢(z) <

Now let us consider a weighted shift W,. Then eq is the standard cyclic vector
for W, Thus, taking T = W, we get Ap(z*w?) = <(z’11)7)(T,T*)eo,eo> =
(T"1T*ey,e9) = 0 (for 1 # 7).

Using this fact, a reformulation of Lemma 2.3.3 was given in [45] for the case

where T' is a contractive weighted shift.

Lemma 2.3.4. [/5] Suppose W, 1s a contractwe hyponormal weighted shaft
with weight sequence o = {a,}2y. Then W, 15 weakly k-hyponormal +f and

only 1f

a - 2 Te-1 Yk dr-1P0 Gk-1P0
83(6,7.0) = wloul? + (7 e Y () (P )

0 S O . 7 d1po ®1po
Yoo Y3 Ykl $2m1 $am
+ -4 . ) . . ; ; .
Ve YVe+l o Vek-1 QrkPr—~1 PrPr-1
Y3 Yi+1 s Yo+k q T,
s Yo+l Vg2 Vytk4d d1Py+1 ®1P1+1
3=0 : M : : N :
Yi+k  Vobktl 0 Vyh2k OrDPy+k OkPy+k
>0

Jor = {¢ I 1, p:= P24 and q:= {g,}2, m C.
Lemma 2.3.5.

oo k
Af1(6.p,9) =AF(Sp0) + Y 73[‘¢k+1]73—k-1|2 + 2Re{$k+1pg_k-1 (Z ¢zﬁg-z>

7=k+1 =1
+ ¢k+lp](jg—k—l }:|

Jor allk > 1 and ¢ == {¢.}r_ |, p:= {p}2, and g .= {g,}2, m C.
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Proof.
Ve o Ykl dxpo ®kPo
82a(6.7.0) = nlbrrnl” +{ ) (ot )-Camm )
’”+1(¢ P Q) %H'd)kﬂml Ye+1  Vk42 Gk+1P1 Pr+1P1
T Y2 Ykt b1p0 $1p0
Y2 Y3 Ye+2 tham dam
+ ot + . . . - . 3 .
Te+1  Ye+2 Yok+1 Sk1Pk Pr+1Pk
Y3 Yr+1 o Ygk+1 0 q,
+ i < ’Y;.+1 ’YJ.+2 ' 'YJ+.Ic+2 ¢)1l7.g+1 , 4)177.3+1 >
par : : ) : : :
Vobktl Vokk42 0 Vy+2k42 Pr41P4k+1 Pr41Py+k+1

k
=A% (.7, 1) + W1 | drr1p0l” + 2Re {d_)k+17’0 (Z ¢1ﬁk+1-t> + ¢k+1]’k+1’70}:|

=1

+ Vkt2 [l¢k+1m|2 + 2Re {4—)k+1m ( tﬁk+z—t> + Pr+1Pr+2T }]

K
¢
=1
) k
+ Tk+3 [|¢k+1pzl2 + 2Re {¢>k+1p2 (Z ¢tﬁk+3—z) + ¢k+1]7/c+3(72H
1=1

P

+ ...
oo k
=A% (¢ + Y ’Y][ld)k+1pg—k—1l2 + 2R€{¢k+177]-k—1 (Z ¢zﬁ]—1) + ¢>k+mﬁ]—k—1H
71=k+1 =1

O

Lemma 2.3.6. Let a = {a,}32, be a positwe weight sequence and 2 = ear,

for0<e <1, n>0 Then fork>1,

A" (p,p,q) = 208, . 0) + (1 - €7) <|9’0|2 + Z%zl)
=1

where
k k k ~ -1
2 = Z ‘d’]pz—]lZ + lqzl?‘ + 2Re l:pz (Z ¢]Ejz—]> =+ Z ¢lpz—l ( d’yﬁz—])}
7=1 7=1 =2 7=1

Proof. Let v, denote the moment sequence of «[n : z]. Then

o = v,, foryg<n
7 ely,, forj>n
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Case I: If n = 0, that is ag be perturbed to x = eayp, then

o 70217 fOI'j:O
T g2y,. fory >0,

o0 ! !
PRLE p.q) = Y bipol? + <( i) 'YJ+1>( 4y ),( 4, )>
1 (#,7.9) = Yildipol ; Yia1 Vo2 $1P541 P15+
=AY (6,p,q) + (1 — €%)lol?

By Lemma 2.3.5, we get

AgIO I](¢, X)) :A?IO B (6,p,q) + Z ’7; ["752773—212 +2Re {432]73-2(151733—1 + ¢2PJ(73—2}]

=2
=e? A% (¢, p,q) + (1 — €)]go)?
+ Z ey, “¢2p1_2|2 + 2Re {f/_>2‘1)g—2¢1'}7;—1 + apy -2} ]

1=2
=c*D5(8,p,9) + (1 — €%)lgo]*

Similarly,

A (4, p, q) = 208 (¢, p, q) + (1 — £2)]gol?

forallk > 1

Case II: If n = 1, that is oy be perturbed to x = o, then

o fory <1
Y ey,, forjy>1,

A7 (6,p,9) = 2A7(9,p, ) + (1~ 2)(laol* + 1),

where z1 = |¢1po)? + |q1]* + 2Re(d1p170)

Also, as v = €2, for ) > 2, so by Lemma 2 3.5, we get
A8, p,9) = e2A5(6,p,9) + (1 — €)([gol* + n21),

forall h. > 1 4
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Case III: If n = 2, that is ag be perturbed to = ca, then

IR B 7 for 3 €2
RE g?y,, forj>2,

A p g) = 2%, p, ) + (1 — ) (00]* + Mz} + 122)),

where 2} = |p1pol® + |q1]? + 2Re(d1p1d0) and 25 = |d1p1]? + |¢2|? + 2Re(P1p2dh)

Again, by Lemma 2.3.5

85%(g,p,0) = D15 (6,p,0) + 3 ¥ [|d2py-al® + 21e { Baps2r7y1 + $apyj-2})

j:2
= e?A3(6,p,9) + (1 — %) (Jqof® + Mz} +7225) + (1~ €2)ya [|Bapol?

+ 2Re {@apodips + ¢apado} |

= EZAg(Qb, 12 (I) + (1 - 62)(1(]0[2 + 7121, + 72'3;,),

where

# = [dwpol” + [ + 2Re(drmdo)

and
2y = |$1p1|® + |Bapol® + |gal? + 2Re{ Gapodrin + pa(drd + $2o) }-
As v} = g%y, for j > 2, so for k > 2, we get
A, p, g) = 28 (6,0, 9) + (1 - €2)(|a0l® +m2) +7224),
Thus, for £ > 1,
AT, ) = £28%(6,p,9) + (L= )0l + 7121 + 1222),

where

21 = |¢1pol® + |q1|* + 2Re(d1p180)
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and

k k
z2 = Z |¢;p2-,|* + lg2]* + 2Re [P2 (Z ¢;€72~g) + §52P0¢1731] ;

_7:1 _7:]

assuming p,, = 0 = g, for m < 0.

Case IV: If n = 3, that is a3 be perturbed to x = corz, then

v for 3 <3
Y gy,, forj >3,

As in Case III, here we get for k > 1,

3
AZB zl(d), p,q) = e2A%($,p,q) + (1 — £2) (|00l2 + Z 7"2’) '
=1

where
21 = |1pol® + | * + 2Re(¢1po)
k k
=Y |¢pe,* + lgal® + 2Re {Pz (Z ¢;<72—;) + @7227304’?1731]
7=1 7=1
and
k k k -
z3 = Z |6,93-51% + lgs|* + 2Re {733 (Z ¢;(js—;> + Z P1p3-1 (Z ¢a733—J>J
=1 =1 1=2 =1

assuming p, = 0 = g¢,,, for m < 0. That is, for+ =1,2,3

k k -
D (Z ¢3‘71—]) + Q-b—lpz—l (Z qsgﬁz—y)}
9=1 1=2

=1

k
Z = Z 6293 + [qa? + 2Re

=1

Continuing in this way, if «,, is perturbed to eov, (n =0,1,2,. .), then for all

k>1,
n
7?6, p, ) = 207 (6,7, q) + (1 - €?) (Iqo|2 + Zm> ,
=1
where
k k k -1
% = Z I¢J7’1—]|2 + |(/zl2 +2he l:’pz <Z ¢J(7‘L—J) + Z‘gt'[)z—l ( ¢Jﬁz—j):' .
7=1 7=1 =2 7=1

O
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2.4 Perturbation and convexity
Lemma 2.4.1. Let W, be a weakly k-hyponormal weighted shift and ea, €
wo(k,n) for some e € (0,1). Then [ean, &) C walk,n).

Proof. Let z =e o, and for 0 <t < 1, let z, = Ve, where § = te + (1-1).
Claim 1: z € wo(k,n) for all 0 <1 < 1.
Ase <8< 1,508 <0 <1 and therefore z € (z,ay).

Now by Lemma 2.3.6, for ¢ := {¢:}5,, p == {p:}2, and q := {¢:}2, in C,

A (g, p,q) = 208 (4,9 q) + (1 - €2) <|q°|2 * Z”"&) _—
i=1

and '
Az[n:n](gba P, Q) = 5Ag(¢,pa q) + (1 - 6) ("?(),2 + Z 7‘izi) (242)
=1

Thus from (2.4.1) and (2.4.1), we get

afn:z, o 1-6 aln-x o
Ak[ ](¢’,Paf]) Z(SA}:,(QS:]))Q)_" (1—52> {Ak[ ](¢,p,g)—E2Ak(d),p,Q)]
1-6
1-¢2

= (6 — €) A (¢, p,q) + ( ) AN (g, p,q) 2 0

as o1, T € wo(k,n).
Therefore by Lemma 2.3.4, 2z, € w,(k,n) and Claim 1 is established.

Now let € € [\/ean, avn]. Then

E=dayfor Je< A< 1
=y = Aoy, € [ean, o)
>N =1+ (1—1t)forsome 0<t<1

= = Aan € wa(k,n), by Claim 1.
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]
Corollary 2.4.2. If z,y € wa(k,n), <y andz = ey (0 < e < 1) Then
[Vey,y) C walk,n)
Proof. If v/ denotes the moment sequence of afn : y], then by Lemma 2.3.6,
AP (4., q) = 205" g, p0) + (1 - &) (mnz + Z vi%)
: =1
and so the result follows as in Lemma 2.4.1. a

Theorem 2.4.3. Let W, be a contractive weakly k-hyponormal weighted shaft
and wy(k, ) == {a: tWap o) 18 weakly k-hyponormal} Then wa(k, 7) 15 a convez

set.

Proof. Let z,y € w,(k, 7). Without loss of generality we choose x < y Then

x = ¢y for some 0 < £ <1 By Corollary 2.4 2,
[e2y,9) C walk, ) (2.4.3)

Step 1:
Let z, = e%y Thenz =¢ey = e2x, Aseizy, z, € wqa(k. 7), so by Corollary 2.4.2,

[e%xl,ml] C wqa(k, 7). That is,

e¥y,e7y] C walk, ) (2.4.4)

Therefore from (2.4.3) and (2 4.4), we get [ey,y] C wa(k, 7).

Step 2:
Let 2o = iy Then x = ey = eizy As eizg,z; € wa(k,7), so again by

Corollary 2.4.2, [5§12,$2] C wa(k,7) That is,

e3y,e1y) C walk,s) (2.4.5)
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Therefore from (2.4.3), (2.4.4) and (2.4.5), we get [egy,y] C walk, 7).

an¥l

Continuing this process, after n* step we have [e( v )y,y] C walk,7). But

gnt+l

22 -1 4+ 1 asn — oo and so 5( o) L easn — oco. Thus we get (z,y] =

2u+1

(ey,y] C walk,j). Therefore if x,y € wq(k, ), then [z,y] C wa(k,7) and so

wa(k, j) is convex. O
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On convexity of positive
quadratic hyponormal region

3.1 Introduction

This chapter is in continuation of Chapter 2. Here also we continue to investigate
the idea of convexity.

If o = {a,}32, be a positive weight sequence, + > 0, k > 1 and W, is
weakly k-hyponormal, then we have shown that w,(k,?) is a nonempty con-
vex set, where wy(k,2) := {& : Way 4 is weakly k-hyponormal}. Now suppose
Y € wo(k,2+1) = {z : W41 4 is weakly k-hyponormal} and let wap41,4)(k,2) 1=
{z : Waea).a+1y) is weakly k-hyponormal} Here weapr1)(k,2) # ¢ as o, €
Waft1,) (K, 2). Moreover Wae+14](k, 1) is a convex set, by Theorem 2.4.3.
Question: What is the relation between wq (k,1) and waqpq1,(k,2)?

In this chapter we address this problem with reference to a positively quadrat-
ically hyponormal operator W,, with weight sequence o = {,, }52, where «,, =

"“ for all n.

40
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3.2 Positive quadratic hyponormality

To define a positive quadratically hyponormal weighted shift W,,, we recall the
definition of quadratic hyponormal shift from section 2.2. W, is quadratically

hyponormal if and only if D,(s) > 0 for all s > 0 and n > 0, where

do To o ... 0 0

e 1 T1 ... 0 0

b O
gn-1 Tn-1

Tn-1 Gn

and

Qi ‘= Uy, + Sz’l);C
T = 8/l
— 2 2
Up = O — Oy
2 2

f—_ 12' !2 — 3 U
Uk -= OOy = O 1O
e 22 2 \2
wy = o (Xieyy — k1)
fork>0and a_y =a_y:=0

Let dn(-) := det(Dn(-)). Then it follows from [17] that

do = qo
dy = qoq — 7

dn+2 = Qn+2dn+l - 7"721+1dn (VTL > 0)

and that d, is actually a polynomial in t := s? of degree n + 1, with Maclaurine
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expansion d,(t) := 27:01 ¢(n,2)t*. This immediately gives that for 1 <1 < n+1,

C(O, 0) = Up, C(O, 1) = o, C(l, 0) = U1Uo,
c(1,1) = ugvp — ugvy — wo, ¢(1,2) = v1vyp,
c(n,1) = tunc(n ~ 1,1) +vpc(n — 1,2 = 1) — wp_rc(n — 2,2 — 1)(Vn > 2)

c(n, 1) = unc(n — 1,1) + (Unn_1 — Wn_1Uo. -Un-1) (¥ > 2)

Observed that ¢(n,0) = uguy ..u, > 0 and c(n,n+ 1) = vvy ... v, > 0 for all

(n > 0).

Definition 3.2.1. [17] A hyponormal weighted shift W, is said to be positively
quadratically hyponormal (p.q.h.) if¢(n,2) > Oforalln,s > Owith0 <2 < n+1

and ¢(n,n+1)>0for alln >0

3.3 Statement of problem

Let o = {an}22 be the positive weight sequence given by a, = /255 for all
n >0

In [12] it was shown that W, is p.q.h., and po(0) := {z : Wy 4 is p.qh.} =
(0, 2] Recall that a[0 : z] denotes the weight sequence z, \/g, \/g, e

Question 1: Can oy be perturbed to y such that Wy 4 is again p.q.h.?
Question 2: If answer o Question 1 is ‘yes’, then what is the relation between
Pa(0) and pa1 41(0)? Note, pa1 1(0) := {2 : Wy z),01 v is P-a.h.}.

In this chapter we answer these two questions. We show that there exists an
interval (ky,kq) about oy = \/g such that for y € (k1,k2), Wapy) is p.ah,,
and pap14(0) = (0,9). Thus, if k; < y < \/g then pap 4 (0) C pa(0), and if

\/g <y < ko then pa(0) C pap1 4(0)-
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Now suppose Wy1.4) is p-q.h. for yo < k1 or o > k2. Then we have shown that
in such cases pa(144)(0) # (0, yo] because there will always exist = € (0, 7] such
that Waj(o:z),(1:50)) 18 N0t p.q.h.

Thus, in this chapter we determine ki, k, such that if y € (k, k2) then either

pa(o) - pa[l:y](o) OT Pa1:y) (0) C pa(O).
3.4 Determination of k; and ks

Consider the weighted shift Wy (s,) with a positive weight sequence o(%,%) :
VI, /Y, \/g, \/Z, ... having a Bergman tail. In [12] it was shown that for
y = % and 0 < = <y, the weighted shift Wy, is p.q.h. So, does there exist an
interval (ky, k2) about % such that for y € (k1,k2) and 0 < z < y, the weighted

shift W, (44 18 p.q.h. ?

Remark 3.4.1. We must have 2 < y < % because W ;) cannot be p.q.h. if it

is not hyponormal in the first place.

Remark 3.4.2. If (ky, ky) exists then it must be contained in [d, d5]. This is in
view of (46, Theorem 2.2] which states the following :

Let a(z) : z, /z, \/g, \/g, ... be a weight sequence with Bergman tail and
let QH(Wam)) = { € Ry : Way is qh.}. Then QH(Wu)) = [01,02) where
61 = 0.1673 and &, = 0.7439 with errors less than .001.

Now suppose (ki, k2) exists. Then for y € (ky,k2) and 0 < © < y, Wz is
p.q-h. and hence q.h. In particular Wy, is q.h. and so y € QH(Wyy,)) =
[61, 62).

J
Remark 3.4.3. If (kq, k2) exists then it must be contained in (0.625, §5]. This is
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in view of [65, Theorem 3.7] where it was shown that for y = 2 = 0.625, Wa(zy)
1s not p.q.h.

We now proceed to show that (ki, k2) exisls and also to determine the biggest
such interval. Before that we record a few definitions and results from (3] which

are to be used in solving our problem.

Definition 3.4.1. [3] Let o : ap, oy,... be a weight sequence.
(1) A weighted shift W, has property B(k) if wn1vn > Wn, (n > k)
(2) A weighted shift W, has property C(k) if Vpi1un > Wy, (n > k),

. . LY
where u,, v,, w, are defined as in section 3.2.

Corollary 3.4.1. [8] Let W, be a weighted shift with property C(2). Then
W is p.g.h. if and only if c(n +1,n) > 0Vn €N

Lemma 3.4.2. [8] If W, has property B(n+1) for somen > 1, then W, has

property C(n).

Theorem 3.4.3. [8] If W, be a weighted shift with property B(k) for some

k> 2, then Wy is p.q.h. if and only ifc(n+1—1,4) >0 forn=1,2,...,k

In view of Remark 3.4.3, we shall consider y € (0.625, £] for determining k,, and

we consider y € [2,0.7439) for determining ko.

CASE I : Determining k;
Choose y € (0.625, f], 0 < = < y and denote the sequence a(z,y) as ag, &y, ag, - . . .
Then we have ap = \/z, a1 = /5 and o, = /2 for n > 2. Using the expres-

sions of u,, v, and w, as given in §3.2, we see that u, v, — W, = %(% -y)>0

for n = 3, and for n > 4 we have u,. = m,vn = m,wn =
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GWL%WL:‘T)Q and SO Up11Vn = Wy,. Therefore, we have u,41v, — w, > 0 for
n. > 3 and so by Definition 3.4.1, W, (s, has property B(3).
Since Wy(,,,) has property B(3) so by Theorem 3.4.3, Wy, is p.q.h. if and
onlyif¢c(n+4i~1,4) >0forn=1,2andi=1,2,3.
Again, since W, has property B(3), so by Lemma 3.4.2, Wy, has property
C(2) and hence by Corollary 3.4.1, W, ) is p.q.h. if and only if ¢(n+1,n) > 0
for all n € N.
Combining the above two results we get that Wy, is p.qh. if and only if
c(2,1),¢(3,2) and c(4, 3) are > 0. Using the expressions of ¢(n, 1) from §3.2 and
simplifying we get,
c21) =3z (- )y - 2)
¢(3,2) = &z [(5y — 4y* — 3y®) — x(32 — 112y + 138y% — 60y°)]
c(4,3) = 50 2 [(41y — T9y® + 37y3) — x(128 — 420y + 475> — 184°)]
Clearly, for y € (0.625, %] and 0 < = <y we get ¢(2,1) > 0.

2800

Regarding ¢(3, 2), if we define f(y) := 3= 1?51,:3 J;;l,’ 55,7 then it is seen from the
Mathematica graph and also by rigorous calculation that for y € (0.6%5, 32-] and
0<z<y, fly) >yandsoc(3,2)>0.

X

0.75¢

0.725 c(3,2)=

0.675
x=y

0.625

0.61 0.62 0.63 0.64 0.65 0.66 0.67°

Figure 4
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20,2 3
To check whether c(4,3) > 0, we define f(y) := 128—4:301,?37;, 321_”184113. Then

(i) for y € (0.625, ‘%2), f(y) <y andso for f(y) < <y wehave ¢(4,3) <0

(ii) for y € [2, 2], f(y) > y and so for 0 < = < y we have ¢(4,3) > 0

.630435

067 0.62 0.63 0.64 0.65 0.66 0.677
0.58

Figure 5

Hence we conclude that Wz is p.q-h. for 0 <z <y if and only if y € [2, 2],

Thus, k; = 2 ~ 0.630435
CASE 1II : Determining k,

Choosing y € [% ,0.7439] and 0 < = < y and proceeding as in Case I we see
that Wy(zy) has property B(4). So by Theorem 3.4.3, Wy(zy) is p.q.h. if and
only if c(n+7—~1,4i) >0forn=1,2,3 and 7 =1,2,3,4. That is, if and only if
e(1,1),¢(2,1),¢(2,2),¢(3,1),¢(3,2), ¢(3,3), c(4,2), c(4,3),c(4,4), (5, 3), (5, 4),
c(6,4) are all > 0.

Using the expressions of ¢(n, %) from §3.2 and simplifying we get,

e(1,1) = %xy (3 - 4z)

c(2,1) = §(4 - 5y)(y — 2)

c(2,2) = Hay[(3 - 5y?) — x(4 - 5y))]
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c(3,1) =g (8- 4y)(y — =)
c(3,2) = g5 @ [(=5y + 4y® + 3y®) — x(-32 + 112y ~ 138y* + 60y°)]
¢(3,3) = & zy [(—12 + 27y — 16y%) — z(—16 + 38y — 24y?)]

c(4,2) = 1e555 = [(75y — 86y* — 21y%) — (264 — 842y + 9661° — 420y°)]
c(4,3) = 5o x [(41y — 79y + 37y%) — (128 — 420y + 475y° — 1844°)]

c(4,4) = 5600 Ty [(192 — 390y + 193y?) — x(256 — 608y + 454y — 105y3)]
¢(5,3) = s5pp & [(111y — 1949 + 63y°) — 22(132 — 397y + 417y* — 162%)]
(5,4) = g3505 ¢ [(41y — 73y% + 28y3) — (128 — 420y + 475y — 174y° — 15y*)]
c(6,4) = sxgomss @ [(1776y — 294242 + 765y%) — (4224 — 12704y + 1334432 —

49149° — 405y%)]

Now ¢(1,1),¢(2,1) and ¢(3,1) are obviously > 0 for 0 < <y < 3.

Thus we only need to check ¢(2,2), ¢(3,2),¢(3, 3), c(4, 2), ¢(4., 3),¢(4, 4), ¢(5,3),
c¢(5,4) and ¢(6,4). Of these we find that other than c(4,2),c(4,4),¢(5,4) and
c(6,4), all the rest are > 0 for y € [2,0.7439] and 0 < = < y. This is clear from
the following figure which shows that the graphs of ¢(2, 2), ¢(3, 2), ¢(3, 3), c(4, 3)

and ¢(5, 3) are all above the z = y line in the region y € [2,0.7439).

0.64 0.66 0.68 0.72 0.74 0.76

Figure 6
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To check whether c(4,2) > 0, we define f(y) == 4_75’;’1’2‘11?326‘]/221_"’:201/3. Then
(i) for y € (0.737144,0.7439), f(y) < y and so for f(y) < = < y we have
c(4,2) <0

(ii) for y € [2,0.737144), f(y) > y and so for 0 < z < y we have c(4,2) > 0

X
1.5
c(4,2)=0
1}
/’_’/J .737144
4
- X=y
0.5
' : : — —y
0.66 0.68 0.72 0174 0.76 0.78 0.8
Figure 7
o 41y—T73y*+28y3
To check whether ¢(5,4) > 0, we define f(y) := 55— T ATeT 17 TE Then

(i) for y € (0.742207,0.7439], f(y) < v and so for f(y) < = < y we have
c(5,4) <0

(ii) for y € [2,0.742207], f(y) > y and so for 0 < = < y we have ¢(5,4) > 0
X

0.78}
0.76 X=Y

.742207
0.74

/6.42 c(5,4)=0

0.66 0.68 0.72 0.74 0.76 .78y
0.68

Figure 8
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o 1776y —2942y°+765y>
To check whether c(6,4) > 0, we define f(y) ‘= gmrsron, s 1554107 1014y —a0557 -

Then (i) for y € (0.742654, 0.7439], f(y) < v and so for f(y) < = <y we have
c(6,4) <0
(ii) for y € [2,0.742654], f(y) >y and so for 0 < z < y we have ¢(6,4) > 0

X
1.1} \
0.66 0.68 0.72 0.74 [\0.76 0.787
0.9
0.8/ c(6,4)=0 Y
% 742654
0.6
0.5

Figure 9

To check whether ¢(4,4) > 0, we define f(y) := 2561%%;32%%;}33’{2@3. Then

(1) for y € (0.742847,0.7439), f(y) < y and so for f(y) < = < y we have
c(4,4) <0
(i) for y € [2,0.742847], f(y) > y and so for 0 < = < y we have c(4,4) > 0

0.8} c(4,4)=0
0.775

0.75¢ .742847

0.725 x=Y

0.66 0.68 0.72 0.74 0.76 0.78y

0.675

Figure 10



Chapter 3 50

Hence we conclude that Wa(z,,) is p.qh. for 0 <z <y if and only if

y € [2,0.737144). Thus, k, = 0.737144.

3.5 Conclusion

ForO<a<y< % , let a(x, y) denote the sequence with Bergman tail given by

a(:c,y):\/:f,\/ij,\/g,\/g,.... Then,

2

5 such that for every y €

(A) there exists an interval (kq, k2) about the point
(k1,k2) and 0 < & <y, the weighted shift operator W (s, is p.q.h.

(B) for y < 22 =0.630435 there exists 0 < z < y such that W) is not p.q.h.
(

C) for y > 0.737144 there exists 0 < z < y such that W (s, is not p.q.h.

(D) Wazy) is p-q.h. for 0 < z < y if and only if y € [ky, k2), where &y = 2 =

0.630435 and k, = 0.737144, correct upto six places after the decimal.
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Finite rank perturbation of
2-hyponormal weighted shifts

4.1 Introduction

In this chapter we consider hyponormal weighted shift W, and then a finite
rank perturbation of W, say W, o) where the 7t weight v, is perturbed to 7.
In (24, Theorem 2.1], it has been shown that a non zero finite rank perturbation
of a subnormal shift is never subnormal unless the perturbation occurs at initial
weight ag. However, this is not necessarily true for a 2-hyponormal shifts as
shown in [24, Example 3.1(ii)]. So the question being addressed in this chapter
is as follows:

Given a 2-hyponormal weighted shift W, and 3 = 0,1,2,... does there always
exist € > 0 such that for z € (a; — €, o, + €), Wy, 5} is again 2-hyponormal?
Here we proposc a sct of sufficient conditions under which there exists ¢ > 0 such
that for z € (o, — €, v, +€), Wy, 5) will again be 2-hyponormal. We also specify
conditions under which there exists ¢ > 0 such that for all z € (o, — €, ; + €)
and = # a;, Wy, 5 is not 2-hyponormal; that is, conditions under which slight
perturbation of the weight o, makes the perturbed shift non 2-hyponormal. We

further prove that in such cases the perturbed shift Wy, ;) will however be at

o1
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least quadratic hyponormal.

4.2 About 2-hyponormality

A bounded linear operator 7" on a complex Hilbert space H is said to be 2-

hyponormal if the operator matrix

1) [T, 7)
(77 [T, 7Y
is posiive on H & H

Theorem 4.2.1. [12] Let W, be the weighted shift unth positive weight sequence

o = {an}2,, on the space (*(Z,). Then the follounng are equivalent:

1. T 1s 2-hyponormal.

2
2. The matrix ( <[T*],T’]en+3,en+l> ) 18 posutwe for alln > —1
1

L=

3. The matriz ( BiB2, ., — 8282, 15 positwe for all n > 0 where

2
>z,]=1
Bo =1 and Bp, = ay, 3 Qn—1 (TL > 1)

4. The Hankel matriz ( B2,,1,_, )3

= 18 positwe for alln >0

Example 4.2.1. If o, = \/% (Vn. > 0), then W, unth weight sequence
o = {0, }22, 15 2-hyponormal. In fact, wn [24, Ezample 8.1] 1t has been shown
that Wy o 15 2-hyponormal of and only +f mﬁg(@ <z< % This example high-
lights the fact that 1t 15 po'sszble to perturb the 1% weight of o and still keep the

perturbed shaft 2-hyponormal.
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4.3 NASC for 2-hyponormality of finite rank
perturbation

Lemma 4.3.1. Let W, be a hyponormal weighted shift with positive weight

sequence o = {an,}2,. Then W, s 2-hyponormal +f and only of

An:=< i ‘ﬁl)zo

W, Vpp1

for alln >0 (Here u,,v,,w, are defined as wn section 2 2 and 8 2)

Proof.

W, is 2-hyponormal

W2 W, W2, W,)
2 a4 >
‘i’ < wawz) e wa ) =0

& (W, Walv, o) + <[W;2, Waly, 7~> + (W2, W2z, y)
+ (W W2y, y) > 0(Ve = (z)andy = (1) in C*(Z,)

<:>Z (u1|$1|2 + VW (T For1 + Tulara) + 7)1|yz|2) >0(Vz,y € €2(Z+))

1=0
Svplyol? + N )( T >>>OV$,1EEQZ
0|y0| §< ( Yut1 Yot 2 0( v ( +))
A, >0 (V2> 0).
(4.31)
O

We are now ready to state our results in this chapter.

Theorem 4.3.2. Let W, be a 2-hyponormal weighted shaft with weight sequence
o = {0, }2,. Let the 0 wewght g be shghtly perturbed to say x, and let Wy 4
denote the perturbed shift with weight sequence {al} gqwen by o = z, o), =

an for n > 0. Then there emsts € > 0 such that W, 4 15 2-hyponormal for all



Chapter 4 54

z € (g — €,000 + €). That is, for a slight perturbation of the 0 weight o, the

perturbed shift still remains 2-hyponormal.

Proof. Here,
z2 ifn=20
! _ 2 _ .2 : —

u, =4 afj—2x% ifn=1

U, ifn>2
20l ifn=20
, atal, fn=1

v, = .

n asas —z?ad ifn=2
Un, ifn>3
w2od, ifn=20

" 202 _ 22Y2  if.

w, =¢ ai(ad—2%)? ifn=1
W, ifn>2

» ', Vuwa ) e
Thus, if A}, := ( T s ) , then Wyo. is 2-hyponormal if A’ > 0 for
alln > 0.

Now A',, = A, > 0for n > 2. Thus we only need to check the positivity of A’y

and A/y.
detA'y = o222 (02 —2?) > 0for all 0 < = < . So Ay > 0.
Let f(z) := detA’;. Then
2 2 2

(@) = 2?[ai(a — 07) — 5o — oq)] + ool

If detAy > 0 then f(ap) = detA; > 0 and so by continuity of f, there exists
e > 0 such that f(z) > 0 for all @ € (g — €, 9 + €).

But suppose detA; = 0. Then f(x) = 0. Also
f(z) = 2z[a?(c? - o?) — a3(a? — a?)] < O for allz.

Thus, the continuous function [ is decreasing and as f(ag) = 0, we conclude

that there exists € > 0 such that [(z) > 0 for & € (g — €, ) and [(z) < 0 for
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T € (ag, 9 +¢€). So if detA; = 0 then there exists ¢ > 0 such that A’y > 0 for

T € (ap — €, ) but A’y # 0 for © € (rvg, g +€)

We can thus, give the following conclusion

1. If detA; > O then there exists € > 0 such that W04 is 2-hyponormal

for allz € (og — €, 00 +€).

2. If detA; = 0 then there exists € > 0 such that W, g4 is 2-hyponormal

for all z € (g —¢€, ) but Woo 4 is not 2-hyponormal for 2 € (o, g +¢)

O

Following a similar line of argument, we now give an exhaustive set, of conditions
under which perturbation of the 2! weight of a 2-hyponormal weighted shift

again keeps the perturbed shift as 2-hyponormal.

Theorem 4.3.3. Let o = {a,}2, be a strictly increasing positwe weight se-
quence and W, be a 2-hyponormal weighted shaft. Choose any 1 from 0,1, 2,

Then (referring to notations already wntroduced) we have:

(a) If esther detA, 1y = 0 or detA,_; = 0 on the one hand, and detA, = 0 or
detA,_o = 0 on the other, then there exists € > O such thal for all x wn the

deleted newghborhood (ov, — ¢, v, + ¢) of oy, Wy, o) 15 mot 2-hyponormal.

(b) If detA,+y > 0,detA,—y > 0 but esther detA, = 0 or detA,_, = 0, then
there always emst € > 0 such that for x € (o, — €, o), Wa z) 15 not 2-

hyponormal, and for a € (o, o, + €), Wop, o 15 2-hyponormal.
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(c) If esther detA,y = 0 or detA,_y = 0, but detd, > 0,detA,_, > 0,
then there always emst ¢ > 0 such that for v € (o, — 6,0’1),‘/‘/”(1 ) 18

2-hyponormal, and for x € (au, o, + €), Wy, 5) 25 not 2-hyponormal.

(d) IfdetA, >0 for g =1 — 2,2 — 1,2,1 + 1, then there emsts € > 0 such that

or 2 € (o — ¢, + ), Wap 2 28 agawn 2-hyponormal.
[+ 2]

Note: For 1 = 0, we need consider only A, and A,4q; and for ¢« = 1, we need

consider ouly A,_1, 4, and A,4;.

Proof. Choose z arbitrarily and fix 1t. Here s : 2] denotes the perturbed weight
sequence o where the +** weight «, is replaced by z, for o,_1 < 2 < a,4;. Note
a_yp := 0 for n € N. Then by Lemma 4.3.1, W/, ;) will be 2-hyponormal if and

only if A’;, > 0 for all n € N, where

&=

i, Vuwn
VW, Ve )7

U, for n <1,
, w2 —a?,, forn=n7
Uy = 9 ;
ayq—a®, forn=1+1,
Un, for n > 142,
(
Un, forn <1 —1;
a§_12a:2 —a?,at, forn=1-1;
2 2 .
- 12al+12 - az_%aé_rz, forn =1
n=
az+1a12+2—a:2a1_1, forn =141,
2 2 _
Qyy o0y — %, form=1+2,
Un, for n > 1+ 3,
W, forn<i1-1;
a? (1?2 - a2 ,)?, forn=1-1,
!
Wy =1 2ok, —al,)?, forn=z
01+1(CY1.2+2 —a%)?, forn=1+1;
Wy, forn >+ 2.



Chapter 4 57

Clearly A',, = A, for all n except for n =1 — 2,2 — 1,2,2 + 1. Hence we only
need to check the positivity of A’,, for these four particular values of n.
(1) To determine z for which A’;; > 0.

Let

h(z) == detA

o202 (A2 2y 2 2 2 2 2 2 2
= [az+l(az+2 1) — Ohalonys az—l—l)] + 010G o (O3 — o)
As h(a,) = delA, 11 > 0 so we have the following two cases:

Case I: If detA,41 > 0, then h being continuous in x, there exists ¢ > 0 such

that k(z) > 0 for all 2 € (e, — ¢, 0, + ).

Case II: If detA,;; = 0 then we consider h'(z) given by

h,(x) = 2:1:[&12_',1(&12_'_2 - a’3+1) - a12+2(az2+3 - a12+1)]

As g1 < gz < g3 80 0y (0l —adyy) < ofpa(ali;—ay,). Hence W (z) <0
for all z > 0. In particular, h is a decreasing function at = «, and since
h(e,) = 0 so there exists € > 0 such that h(z) > 0 for all z € (o, — €, ), and
h(x) < 0 for all 2 € (v, o, + ¢).

So we can summarize that if detA,;; > 0 then there exists ¢ > 0 such that
Ay > 0 forall z € (o, — €, @0, + €). Otherwise A1 > 0 for z € (o, — €, ),

and A1 <0 for z € (o, o +€).

(ii) To determine x for which A’, > 0.
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Let

g(z) = detA’,
_ 2 4, . 2[.2 2 4 2 2 \21 _ 2 2 2
=0, 17 4+ [az+1az+2 + a1~ (az-l—l - az——l) ] az—1a1+loz+2

Now g(cv,) = detA, > 0. If detA, > 0 then by continuity of g there exists ¢ > 0
such that g(z) > 0 for all 2 € (o, — €, a0, + €). On the other hand if detA, =0
then since

g'(z) = 2x[2a’z2—1(a1.2+1 ~a®) + ol (0dhy — afiy)] > Ofor allz > 0,

so g is an increasing function at © = «, Also since g(o,) = 0 so there ex-
ists € > 0 such that g(z) < 0 for all 2 € (o, — €,,), and g(z) > 0 for all
T € (o, 0 +€).

So we can summarize that if detA, > 0 then there exists ¢ > 0 such that A’, > 0
for all z € (o, — €, 0, + ¢). Otherwise A’, < 0 for z € (o, — €,0,), and A’, > 0

for z € (o, a, +€).

(iii) To determine z for which A’,_; > 0

Let
J(a) :==delt',_y
= —af ' + 5'32[0‘12“(%2—1 —al,) + 202 ol )+ ol oy
As [(a,) = delA,_; > 0, so two cases may arise:

Case I: If detA,_; > 0, then [ being continuous in z, there exists ¢ > 0 such

that f(z) > 0 for all z € (o, — €, @, + €).
Case II: If detA,_; = 0 then we consider f’'(z) given by

Jz)= 2m[_2a3—1$2 + a7.2+1(a12—-1 - 03—2) + 2%2—10512—2]
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As,

fl() = 20u[0 a1 — 207 (0 — o))

2cv
= ol w1 — 2v,02 {(a? - o )] (o detD,_y =0 = u_1v, = w,_;)

1

__2alaz2—l( 2 2 )( 2.2 2 2 2 2 2 )
- v, a, Qy g )[\ O Oy az—laz—2) + az—Z(aH—l -

<0,

so the function f is decreasing at * = «,, and hence, there exists ¢ > 0 such
that f(z) > 0 for all z € (o, — €,@,), and f(z) < 0 for all z € (o, @, + €).

Thus, if detA,_; > 0 then there exists ¢ > 0 such that A’,_; > 0 for all
z € (a, — €, 0, + €). Otherwise A’,_1 > 0 for z € (o, — €, 0,), and A’,_1 < 0 for

x € (o, 0 +€).

(iv) To determine 2 for which A’,_» > 0.

Let

e(x) ;= detA',_5

= a?—l(af—2 - azz—s)$2 - [0'12—20412—3(0‘12—2 - af—s) + af—2(a3—l - a’z2—3)2]-

Now e(w,) = delA,_o > 0. If detA,_5 > 0, then by continuity of e there exists
¢ > 0 such that e(z) > 0 for all x € (o, — ¢, + ¢). On the other hand if

det/A,_o = 0 then since
e(z) = 2za’ (o, — a2 ;) >0 for all z > 0,

so e is an increasing function at z = o, Also since e(a,) = 0 so there exists € > 0
such that e(z) < 0 for all » € (o, — ¢, ), and e(z) > 0 for all = € (o, o, + ).

So we can summarize that if detA,_, > 0 then there exists ¢ > 0 such that
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Ao >0forall z € (o — €, + €). Otherwise A’;_» < 0 for z € (o — €, ),

and A’;_o > 0 for © € (ay, o + €).

Considering all the above possibilities, the conclusion of the theorem now follows

obviously.

4.4 Small perturbation of 2-hyponormal is
quadratically hyponormal

We know from [1, 12, 13] that if W, is 2-hyponormal then it is necessarily
quadratically hyponormal. The converse however is not true as is seen from the

following example:

Example 4.4.1. [12] If g = \/2 and o, = /22 (Yn > 1) then W, is

quadratic hyponormal but W, is not 2-hyponormal.

We have also seen from Theorem 4.3.3 above that under certain conditions there
may exist ¢ > 0 such that Wy ;.5 is not 2-hyponormal Vi € (o;—¢, a+¢), @ # ;.
However in this section we show that for each ¢ = 0,1, ... there will always exist
€ > 0 such that W4 is quadratically hyponormal Vz € (a; — €, o; +¢€).

Remark 4.4.1. In [24, Theorem 2.3], it was shown that a 2-hyponormal weighted
shift remains quadratically hyponormal under small non-zero finite rank pertur-
bations. The proof was based on the definition of positive quadratic hyponor-
mality. In this chapter we give an independent proof for the same result, using

a different characterization of quadratic hyponormality.

We begin with a few results and notations introduced in [65]. We recall from

Chapter 2, that W, is q.h. if and only if D,(s) > 0 for every s > 0 and for
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every n > 0.

For s e R,xg,..., 1, € C and X,, = (%0, ...,7,)7, definc
Fo(za,- s Zn, 8) = (Dn(8) Xn, Xn) .
Then we have the following lemma:

Lemma 4.4.1. [65] For s € R,xy,...,z, € C, 1t holds that

n n-—1 n
. . |2 . = 7 o 2 .12
Ful(o,...,zp,8) = _S_ RN E 8V W, (2,T 01 + TaZog1) + E s%u, |z,
1=0 =0 =0
Proof.
GoZo + 10T T
T0%0 + 1y +11%2 2y
Fn($0¢--~;$n>5):< ) : >
Tn—2ln-2 + Gn—1Tn-1 + Tn-1ln Tn-1
Tn-1Tp-1 + nTn Tn
n n-—-1
E : 2 Z = -
= q:l:EzJ + T,(l,&,z_;.] + 311:32-}-1)
2=0 1=0
n n—1 n
_ 12 - = 2 2
= WlT)* + Y SV (T, T + Fupr) + Y S0,
1=0 1=0 1=0

In fact,
oy ([ _Eovlar T s ) (1) (1
Y VT T oo W% s ) \s
For x = (2,) € ¢, we define F(z,s) := (D(s)z,z), so that
F(z,s) = Sotlnl 320 VAT T 1 ; 1
ZO \/w_zj:zxz—f-l Zzo ’U,,[L,’z s s

= s%ug|zo)? + Z [wlza]® + $\0, (2, F 01 + BuTar) + 52?/,+1|$,+1|2]
1=0

o T, T
:52110|x0|2+Z<A, ) , : > ,
1=0 8Tq+1 8Ty
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U, /10,
where A, = ! W for all 2 > 0.
VW, Vg

The following result is immediately obvious.

Proposition 4.4.2. [65] Let W, be a wewghted shaft with positive weight se-

quence @ = {a,}2,. The follounng are equivalent

(a) W, s quadratically hyponormal.

(b) F(z,s) >0 for any s > 0 and = € 2.

(c) Falzo,...,%n,8) >0 for any s > 0,29,. .,z, € C andn € N.
For n > 1, we define

n—1
r € X,
Fn(.'ll(), e ,$n) = 82U0|$0|2 —+ E Az i , )
1=0 8Tyt STy

.

Then by Lemma 4.4.1, we have

n n—1 n
Fo(@o, 2%, 8) =Y |z’ + > s\ (@ Fugr + Butur) + 3 S0 [
1=0 1=0 1=0

n—1

=up|z,|? + sPvp|2o|® + Z [qula;z|2 + 8/, (22T 041 + ToZog1)
1=0

+ szvz+1|ﬂ:z+1l2]

e
=Up|z,|? + s%vp|z0)? + A, : , :
: §Top1 STop1

—

Il
o

=Up|Tn|? + Fn(aso, ey Ty 8)
Since {[|A, |}, is bounded, so F,(zo, . . ., Zn, s) converges pointwise to F(z, s)

for each s € R and @ = (z,) € ¢2, and so

nli_)ngan(xo, X, S) = T}Lr&Fn(mo, T, 8) = F(z, 8).
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In view of this, we can say that W, 1s quadratically hyponormal 1if

ﬁn('ro ,Tn ) >0forall s>0,7, ,7,€CandnéeN

Theorem 4.4.3. (Rank 1 perturbation)
Let o = {,}2, be a strictly increasing positive weight sequence and W, be
a 2-hyponormal wewghted shift  For any arbiiarily fized + = 0,1,2, and

th

Q1 < T < 0uy, let afr 2] denote the wewght sequence o wnth the 1™ weight
o, replaced by x  Then there emsts ¢ > 0 such that Wy, 5 15 quadratically

hyponormal for xz € (a, — €,a, + ¢€)

Proof Let A'p, ty, v/p, 'y be defined (as i the cather section) with tespect to

Wapa Forn € N ag ,1n € C and s > 0, define

n—1
- 2,1 2 ’ T a
Fu(zo, ,Zn,s) =s™olzol* + > (4, R 7
ps STy41 STy41

Then Wy, ;) 1s quadratically hyponormal if Fn(mo, ,Zn,8) > 0 for all s >
0,n € N and z, T €C As A/, =A, >0forall ) > 142, we only need to
check the positivity of ﬁn(ro, In,8) for 1 <n<21+2

For1 < n <+ 2 define

20y + U Wy 0 0 0
! 7
Vuw'y v+ % is“;: 0 0
w’ v u’
0 A 0 0

0 0 O Vo1 w1 vV w1
s2(n—-2) 2(n-1) s2(n—1)
O O 0 £/ w1

sZiu—li SZviv ::1) /
If Xp = (z0,571, ,8"2,)7, then Fp(tg, ,7n,s) = (A'"nXu, X,

Claim: A, >0foralll1<n<,+2
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For 2 < n < i+ 2 define

SZ’U’() + ’LL’O . ’LU’O 0 Ca 0
I !
’LU’() '{},1 + _US_QL :;i L 0
w’ v u’

By = 0 el o B 0
Va1 w1
0 0 0 ... Fh+ 32(:: :

Define

(2) = s2g +uy, forn =1;
i) =19 detB,, for2<n<i+2,

and

Yn(z) :=detA’, for1<n<i+2

For 1 <n <i+1, we have

I

Pr+1(z) = Pn(@ )+—<pn(’v)

and

w,

v’ n+1 .
sin an Pn (’L)

Prt1(2) = S2n —Pnt1(2) —

____“n-*—lz/)n( )_*_9071( )d tAI

Clearly ;(z) > 0 for all @;_; < < a41. So first we show that ;(z) > 0 for
all 1<z < Qig1-

We have ¢ (z) = s?v'gv’y + (w/ov'; — w'y), and

, {rn2, if i = 0;

wo = .
0 af, ifi>1.

o2ad, if i =0;
2202 if. 1
W = was, if1=1;
ol i =2
ala?, if1>3.

2.4 if, = (O
zaf, if1=0;
wo=1<¢ ofz?, ifi=1,
adad, if1>2.
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o), ifi=0;
z?), ifi=1;
aoal(m - al) if1 =2
2), ifi>3.

Therefore, detA'y = v'gv'; — W'y =

So 1(z) > 0 for all o,y < T < 4.
Now ¢1(z),¥1(z) > 0 gives po(z) > 0 for all o1 < T < Q.

Also

Ya(en) = —wl( 2) + (Pl( )detAl >0,

since ¢1(o,) > 0,%1(e,) > 0 and detA; > 0. So by continuity of 1),, there exists
¢ > 0 such that ¢¥,(2) > 0 for all & € (o, — ¢, v, + ©).

Repeating the same argument we can conclude that there exists ¢ > 0 such that
en(2),¥n(z) >0forall 1 <n<2+2andz € (o, — €, 0, + €). In other words,
A, >0foralll <n<i+2and z € (o, — €,0, + €). This completes the

proof. |

Theorem 4.4.4. (Rank 2 perturbation)

Let o = {a,}2, be a strictly wincreasing positwe weight sequence and W, be a
2-hyponormal weighted shaft. Then for any integers 0 < i < j there exsts ¢ > 0
such that Wy 2),(;) 8 quadratically hyponormal for x € (o, — €, +€) and
y € (o — €,y +¢). Here (i : x),(j : y)] is the perturbation of the weight

sequence o where the weights o, and o, are replaced by x and y respectively.

Proof. Step 1: Consider aft : z] for o3 < & < 0,41 Then by Theo-
rem 4.4.3 there exists ¢ > 0 such that W,z 1s quadratically hyponormal
for v € (v, — ¢, 0, +0).

Step 2: Take o,y < y < ;41 and @ € (o, — €, ¢, + €) and consider a(z
z), (j : ¥)]. Define
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AII — u”n V 7-U”'n.
n - m '””n—}—l 3
U, for n < 3;
o) V&L forn=y;
" ol —y? forn=j+1
U, forn > 7+ 2,
(', forn<j—1;
2 .
y? - €363, forn=73~1,
S ) Ve — 86, for n = j;
" ol 02, -y, forn=j+1;
22 2 .2 _ .
Oy a0 s — 05 1Y°%, for n —2 +2;
L Vn, forn > 5+ 3,
w'y, forn<j—1;
6%(?/22—53)25 , forn=7-1,
" .
Wy = y2(a]+1 —él) > for n = ;
o (@2, —y*)? forn=j+1;
W, for n.> 3+ 2,
and
x, ifi=y—k
. = . fork=1,23.
S { o,—k, otherwise.

Clearly, A", = A,, > 0foralln > y 4+ 2.

So Wajaa),p.) 15 quadratically

hyponormal if A”, >0foralll1 <n <j+2and s> 0, where

vV ’lU"o 0

s2" +u"

" 7
w'y v+ 5 o
m ’U”2 ’u"z
0 = G
A”n = K
0 0 0
0 0 0

For 2 <n <3+ 2, define

"

32’U”0 —I—’U,”() Wy

V'

— 0 Yy v2

52 52

0
17 7
1)//1 + 1;2] AL

0
0
0

"
YV n-1

+ 2

s2(n-2)
RVAT L.

s2(n-1)

vt
s2(n—2)
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Define

s2"y +u"y, forn=1;

x —
nly) = { det B",, for2<n <y +2,
and
PE(y) = detA", forl <n <y +2

Then for 1 < n < 3+ 1, we have

"

x - (7 z
Pra(y) = ¥r(v) + renly)

and

Vi) = Souit) + L der,
But ¢Z,(a,;) = @n(z) > 0 and 9%, (o)) = Pn(a) > 0 for 2 € (a, — ¢, 0 +0).
Hence for all z € (o,—€, o, +€) and y € (o, —¢, o, +€) we have @2, (y), Y51 (y) >
0, which implies that A”,, > 0 as desired.
(Note that for n > 2 + 1 we define pn11(2) = a() + B en(z) and Yoy () =
i (a) + 228 delA,,) 0

s2n
Then the following theorem is obvious

Theorem 4.4.5. Let o = {0,}2, be a strictly wncreasing positive weight se-
quence and W, be a 2-hyponormal weighted shaft. Then for any n € N and
integers 1, wath 0 <y < -+ - <1, there emsts € > 0 such that Woa, 1), (@ tn)) 5
quadratically hyponormal for i, € (o, — €, 0, +€). Here oof(21 : t1), .., (tn : tn)]
15 the perturbation of the weight sequence v where the wewght o, 1s replaced by

t, fory=1, .,n.

4.5 Examples of rank one perturbations

Example 4.5.1. Consider the 2-hyponormal weighted shaft W, with weight se-
quence o = {an}ozy gwen by an = /324 (n > 0). Then detA, > 0 Vn. So
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by Theorem 2.1.(d) perturbation to each and every weight 1s possible for thas
weight sequence. That 1s, for 1= 10,1, 2, there emsts € > 0 such that Wy, o

15 agawn 2-hyponormal of x € (o, — €, &, + €).

Example 4.5.2. Consider the 2-hyponormal wewghted shaft W, unth weight se-

quence @ = {oa}2, gwen by ap = /L, @, = Vot (n > 1). Here

detAy =0 and detA, > 0 for n # 1. Thus there exists ¢ > 0 such that

(i) for 2 € (g — ¢, ), Wapo o 25 agawn 2-hyponormal but for + € (.o +

€), Wajo z) 28 not 2-hyponormal.

(ii) for v € (o1 — ¢, 1], Wapn o 25 not 2-hyponormal but for x € (01,01 +

€), Wajo z) 28 agan 2-hyponormal.

(iii) for n > 2, Wy 4 15 2-hyponormal for all x € (an — €, an +€).

Example 4.5.3. Consuder the 2-hyponormal weighted shift W, with weight se-

- 00 o= /1 - . /280 -, /3ntl
quence o = {a,}32, qwen by ag = \/;, 1 = (/30 On = 4/5p (02 2)

Here delAy = 0 and delA,, > 0 for n # 2 Thus there exists ¢ > 0 such that

(i) fors=1,3, Wap a4 15 2-hyponormal of © € (a,—€, ov,), but 15 not 2-hyponormal

if 2 € (oo, o +0).

(ii) for v = 2,4, Wy 5 not 2-hyponormal of x € (00 — €, aq), but 15 2-
hyponormal «f x € (o, o, + €)
(iii) for2 =10 ore > 4, Wy, 5 15 2-hyponormal +f x € (o, — €, 04 + €)

Example 4.5.4. Consider the 2-hyponormal weighted shaft W, with weight se-

—_ oo _ 1 _ 580 _ 715 —
quence o = {on}2, gqwen by ag = \/;al = /35 = /5y Cn =

dntl (n > 3). Here detA; = 0, detAs = 0 and delDd, > 0 forn # 2,3

3In+2

Thus there exists ¢ > 0 such that
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(i) forv=2,3,4, Wap 1) 18 not 2-hyponormal of x 15 wn the deleted e—neighborhood
of a,
ii) fori =1, Wy, o 18 2-hyponormal if x € (o, —€ ), but 15 not 2-hyponormal
[+ 2]

if ¢ € (ay, 0 +€)

(iii) fort =5, Wy 4 15 not 2-hyponormal +f x € (o, —¢€, o,), but us 2-hyponormal

if ¢ € (a,, 00 +¢€)
(iv) for1 =0 orz > 5 Wy, 4 18 2-hyponormal of @ € (o, — €, 0, +¢€)

Example 4.5.5. Consider the 2-hyponormal weighted shift W, with recursive
weight sequence & o, o1, k-2, (Qk—1, Ok, Okp1)"  SINCE UpUpy1 — Wy =
0 (Vn > k), therefore detA, = 0 (V' n > k) and so by Theorem 2 1.(a)

perturbation to the weights o, 15 not possible for n > k
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Perturbation of 2-variable
hyponormal shift

5.1 Introduction

In Chapter 4 we have addressed the question of finite rank perturbation of 2-
hyponormal weighted shift. Till now we have only considered the unilateral
weighted shift W, on ¢2(Z,). In this chapter we initiate a parallel discussion
for the 2-variable weighted shift on ¢2(Z2). For a unilateral weighted shift W,
it is well known that W, is hyponormal if and only if |a,| < |on4i| for all n.
Hence for a strictly increasing weight sequence, any slight perturbation of the 7
weight still retains the hyponormality property for the perturbed shift. “Is the
same true for a two variable weighted shift?” The answer is negative as is shown
in the work done in this chapter. We also frame a set of positivity conditions

which can completely determine hyponormality of the perturbed shift.

5.2 Statement of problem

Consider double indexed positive bounded sequences {ax}, {8k} € £°(Z2),k =
(k1,k2) € Z% and let {ex}gezz be the orthonormal basis for ¢2(Z3). The 2-

variable weighted shift T = (T3,73) is defined by

70
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Tier = Oxerye,, T2er = BrCrtes

where ¢; = (1,0) and €2 = (0, 1). Here we assume that Ty, T, commute. Thus
T =TT <= ﬁk-i—el Q= Qk+52ﬁk for all k € Z_z*,

Given k = (k;, ko) € Z2, the moments of T of order k are

;

1 ifky =0 =k,
_ o0y Xy 1,0 ifky > 1and kp = 0
Ve = i Biooy - Bloka-y ifk; =0and ky > 1
{ By Bloka )0k -+ k1) iK1 > Land ky > 1

A multivariable weighted shift can be defined in an entirely similar way.

A 2-variable weighted shift T" is horizontally flat if ok, k) = a1y V1, k2 > 15
vertically flat if Bk, k) = Ba,1y Vki, k2 > 1; flat if it is horizontally flat and
vertically flat; symmetrically flat if T is flat and o1,1) = B1,1).

By [13, Definition 1.3, Definition 1.4] and [13, Theorem 6.1 | we have the fol-
lowing results:

Theorem 5.2.1. T is hyponormal if and only if

2 2
O - OktesBrves — Bk 2
Ay = k+er k 2 ! >0 Vkez

k ( ak+52/8k+61 - akﬂ/\’: 48134-62 - ﬁg - ( +)

Theorem 5.2.2. T is weakly hyponormal if and only if

<< %Z%} %:Z;ﬂ ) ( Iy ) ’ ( Iy )> >0 (Vo € %(Z2)and ) € C).

If we have a pair of unilateral weighted shifts W, and Wj, then by defining
Qky k) = Ok, and B(g, ky) = Br, for allk;, ky € Z,, we can get a 2-variable

weighted shift 7 = (73,7%). Under the canonical identification of ¢2(Z2) and
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2(Z,) R HZy), we have Ty = T @ W, and T, = W, ® J. In general, T is said
to be of tensor form if T = (] @ W, W ®I).

Let My := \/{e( ko) : k2 > 1} and N := V{eq, &, - k1 > 1}. By 28, Definition
1.2] the core of a 2-variable weighted shift T is ¢(T") := T}, ;-

Coming back to the discussion of perturbation of T = (77, T%), first of all since
commutativity has to be preserved, hence if one of the weights is perturbed,
some other weights in adjacent blocks will also need to be perturbed. Ideally
we try to keep the number of perturbations minimum, and see if we can still
preserve hyponormality or atleast weak hyponormality.

We begin our investigation by considering 7" to be of tensor type. That is,
consider strictly increasing positive weight sequences {an }324 and {8,152, and
let Qe k) =y, (Vho € Zy) and B, k) = Bry, (VK1 € Zy). Let T = (T1, T2)

be hyponormal with 7175 = TpT1. Let oy be slightly perturbed Lo a new

rbo

weight =. To preserve commutativity of 71 and T3, we replace Sp,0) by ¥ = 72

If T = (T1,T2) denotes the perturbed shift, then we investigate if 7" is still
hyponormal. We note that T is not of tensor type. The weight diagrams of T

and T are shown in Figure 11 and Figure 12.

B B2 B2 B2 Ba B2
g (851 (8 9) g oy (a5
Jo3) b1 B B &3} b1
T2 Qg Qa1 (o) rf-2 Qo (03] (83)
Bo 50 Bo ) ﬁo Bo
8i] g (s ) T o Q9
Tl Tl
—_— —_—

Figure 11 Figure 12
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In view of Theorem 5.2.1, we need to check the positivity of Ay for k = (0,0),

where
2 =2 = 3 — AR
Ay < Opye, — Ok ak+£25k+61 kB )
g o= ~ = - -
&k+52ﬁk+5) - a'k-an /6'1.,2~+52 - ﬁl%
and
) z, ifk=1(0,0)
Qp =
ar, If £ #(0,0)
n Y, itk = (07 0)
B = _
B, if k # (0,0)
_ a? — 2% apfy -y a? -2 apfo — m:’s"
Now A(0,0) = ( ' 2 2 = 1 z2fo 2 Izﬁzo
\ aofo—ay  PBi-y aofo — 50 Bi- =5t

If f(z):= del,A(O,o), then / is a continuous function of . Also [(ap) = delAg) =
(a? — a2)(B? — BE) > 0. Hence there exists a neighbourhood N of o such
that f(z) > 0 Vax € N. Thus, there exists § > 0 such that for all z €
(cg — 6, g + 0), A(o,o) > 0.

Hence, T remains hyponormal for a slight perturbation of g ).

Next we consider an arbitrary hyponormal 2-variable shift 7" = (T},73) with
positive weight sequence o = {o}rezz and 8 = {Bi}rezz- As Ty and Ty are
both hyponormal, so we have o < e, and Bi < Prte, VK € Zi. We assume
strict inequality so as to make perturbation possible on either side. In section
5.3 we consider perturbation of the weight o,y for any k; € Z,. In section
5.4 we consider perturbation of the weight o, ) for any k; € Z,. We try to
minimise the number of necessary perturbations of adjacent weights. We also

try not to disturb the weights at the core of T
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5.3 Perturbation of the weight «,

Here we consider k; > 2. The cases of k3 = 0 and k3 = 1 are addressed in
Remark 5.3.1. We begin with a 2-variable hyponormal shift T = (T3, T2) with
weight sequences o = {ak}kezi and 8 = {,Bk}kezi . As T) and T3 are both
hyponormal, so we have o < gy, and Sy < Piye, for all k € Zﬁ_. We assume
strict inequality so to make perturbation possible on either side.

Let cv(o,x,) be slightly perturbed to a new weight x. To preserve commutativity,

zB(1 ko) _ %0k -1)B1kg-1
we change /6(0,k2) toy = .OT(O(I:T~L1)_ and ,3(0}/62*1) tol = T )|

We will investigate under what condition it is possible for the perturbed shift
T = (Tl, Tz) to still remain hyponormal. The corresponding weight diagram is

shown in Figure 13.

A
IB(O,k2+1)
& (0,kz+1) :
(0, ko + 1) O
Y ,B(l,kz)
v a(ler)
~ (03 k2)
Ty
t Bake-1)  |[Beke-1)
&(0,ky—1 C(1,ky—1 Q(2,ka—1
(0,1.’:2—1) (0,k2~-1) (1,k2—-1) (2,k2-1)
Bok-2) |Bake-2)  |Bka—2)
&0,k —2 Q1 ky—2 2,k —2
(O,k2—2) (0.k2-2) (1,k2-2) (2,k2-2)
(0,0) (1,0) (2,0) (3,0)
T
—_—

Figure 13
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By Theorem 5.2.1 for hyponormality of T we must have positivity of A(O,kz_g),

A(O,kz— 1) and A (0,k2)-

Claim: { <y
‘We have
U0 e — o 2B &
L <y o S0k DBk-1) < B, kz)
A (Y(O k2+l)
Bt ka~ D

S 00,kz—1)CX(0,k2+1) Borm
2 {

R B0,k2—1)C1(0,k2) C(0,k2)B(1,k2) Bl ko D

< z?
B ka1 Bok) Bk
Bo,ks—1)
= B a( 0, 2) < CL'
(0,k2)

A, kz—l Poky-n 2 2
But as Born < 1, so Broeg) a’(O,kg) < X0k

Bo,ky-1)

Hence we can choose a suitable § > 0 such that Bo a(o k) < 2?ie L <y,

for = € (qoky) — 0, (0,ky) + 0). Similarly we have, Bok,-2) <1 <y < Bio,ka+1)-

Positivity of A(O,kz-Z) :

A N - a%l,k2—2) - a%o,kg—’z) 00,2 =1)B(1,k3=2) = €(0,k2-2)B(0,k2-2)
(Osk2-2) Q(0,ke~1)B(1 ka—2) — C(0,k2~2)B(0,kz-2) t? - ﬁ(Q()’kz_z)

fl (’L) = deté(o,h_g)

2 2 a%o k 1)5(21 ky—1)
g — sR2— 2
= (0(1,k2—2) - 0‘(0,k2—2)) : R - ﬁ(O,k2—2)

2
~ (o ks-1)B1ka-2) — a(O,k2—2)ﬁ(0,kz—2))2

If delAx,-2) > 0, then by continuity of /i and the fact that [i(cok,)) =

detDokp—2) > 0 we have fi(z) > 0Vz € (apk,) — 0, xo.r,) + 6), and suitable

6 > 0. Hence A(O,kr@ > 0 for all such z.

But if detA g r,—2) = 0 then as f{(z) = —fa?o,krl)ﬁ(zl,kz_l)(a?l,kz_” - 0’%0,@—2)):

so [ ’(a(olkg))l < 0. As such the function [, is decreasing at (g x,) and hence there



Chapter 5 76

exists 6 > 0 such that fi(z) > 0 for = € (o) — 6, X(oks)), and f1(z) < O for

S (0'(0,k2); O(0,k2) + 5).
Thus, if detAqg,-2y = 0 then Agg,—2y > 0 for @ € (agy) — 6, X0ky))> bub

A(O,kz—z) Z 0 for z € (O’(o,k,_,), Qoky) T (5)

Positivity of A(o,krl) :

2 2
A( ) = Q1 ka—1) ~ X(0,ka—1) fU,B(l,k2~1) — Q(0,kp-1)Y
0,k2—-1) —
2 2
B ,ka—1) — Q(0kz-1)Y ye -t
N 2
2 2 . _ "‘(o,kg—l)ﬂ(l.kz-l)
_ Cka-1) ~ X0,k2-1) J':b;(l,kz—zl) ; z
- 'UB . _ “(o,kz—l)ﬂ(l.kz—l) B(l,k'z)z _ “(o,kg—l)e(l,kg—l)
P (1kz 1) T o ky+1) a?
fo(z) = detAo,k,-1)
1 2 2 2 2 2 2
= =17 {Bi) (1 a-1) ~ ¥oka-1) ~ Fokarn B0 }
(0,k‘.2+1)

2 2 2 2
{0 k= 1) (1 ka 1) X(0,k2 4 1) 51 k2= 1)
1172

+ 20’%0,@-—1)C"%O,kg+1):8(21,k2—1) -
If delA(g r,—1y > 0 then [r(exo,)) > 0 and hence by continuity of f3, f2(z) > 0
in a neibhourhood of a(gx,). Thus there exists § > 0 such that A x,-1) = 0 for
all © € (ovo,ky) — 0, C'(0,kz) + 6).
If detAop,—1) = 0 then fa(ky) =0, so

2 2 2
a%o,kz_1)0‘(1,k2_1)a(0,k2+1)5(1,kz-l)

a'(20”“2)/\ - - 20’€0,kz—1)“(20,/c2+1)ﬁ(21,k2—1) (5.31)

a%O,kz)
where A = /3(21,1:2)(@?1,1;2-1) - a%o,kg-l)) - a?o,k2+1)ﬂ(21,k2_1)~
Also,

2

Jile) = 2 a8+
a%O,k2+1)"E

2 2 2 2
a(O,kz—l)a(l,kg—1)a(0,k2+1)13(1,k2—1)
2 :
X
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Therefore

! 4a?0’k2_1)13(211k2‘1) 2 2 - 5 3 1
fz(a(o,kz)) = 3 (a(l,kz-l) - a(O,kz)) (using (5.3.1))

(0,k2)
= 0, lf Cl(l,k,z—-l) = a(O,kQ)
>0, if ak-1) > A0k)

<0, ifogey-1) < 00 ky)-

Thus, if detAgx,-1) = 0 then
1. O(1ka=1) = OV(0,kp) then A(O,kg—-l) >0 Vaxe (O’(O,kg) -4, o0,ky) T (5) ;

2. if Y(1,kp—1) > O!((),]c?) then A(O,kg—l) Z 0 for z € (a(g,kQ),a(g,kZ) +5) but

A(o,kz-—l) i Oforze (a(o,kz) -0, Ol(o,kg)) )

3. if o ky-1) < ok, then A(O,kg—l) > 0 for z € (a(o’kz) -4, O’(O,kz)) but

A(O,kg—l) z 0 forz € (a(g,kg), 0O (0,kg) T 5) .

Positivity of A(o,kg) :

A(o,kz) = ( a%li’”) - (0,ky+1) Bl k) — TV )
a(o,k2+1),3(1,k2) -y '3(20,k2+1) _ y2
B Cl%l,kz) — g2 0(0,k2+1)B(1 k2) : ;_Z%IL))
= Q’(O,k2+l)lB(l,k2) - ::—%—;’:3 ’B(Zo,kg—f-l) _ ;({:_ij;
So
fa(x) = detA k)
= ———a%&iﬁl) [3;2/1 + a%o,kz+1){a%l,kz)ﬁ(%,kg+1) - a?(],k2+1)5(21,k2)}] . (5.3.2)

where

2 2 2 2 2
M= 20’?0,&#1)/3(1,@) - a(O,k2+1)/B(0,kg+1) - a(l,kz)lg(l,kz)
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As earlier, if detA (k) > 0 then there exists 6 > 0 such that A(o,b) > 0 for all
T e (Of(g’kz) — (5, O’(o’b) -+ (S) .
But if detApx,) = 0 then f3(cpu,)) = detDpk,) = 0.

Therefore,
a%ﬂ,kg) W= a?o,kﬁl) (Of?o,k2+1)ﬁ(21,k2) - 0’?1,:;2)5(20,192“))- (5.3.3)
Also,
2z
f:;('v) =
¥(0,kz+1)
and so
2 .
f3(cor) = (a(zo,kgﬂ)ﬁa,k‘z) - a%l,kg)ﬁ(zo,kﬁ-l)) (using (5.3.3))

Q(0,kz) .

=0, if o k+1)B1ks) = k) B0 k2+1)
>0, if @Ere+1)Bks) > Q(1k2)B(0,k241)
<0, if CY(o,k2+1),3(1,k2) < a(1,k2)ﬂ(0,k2+1)-

Thus if detA(g,kz) =0 then

1. if a(o,kﬁl)ﬂ(l,k;) = Q(1,k2)B(0,k2+1) then there exists § > 0 such that

[l(o,kz) >0Vzxe (a(O,kz) — 0,00k + 5) )

2. if a(O,k;-}-l),B(l,kg) > a(l,kz)ﬂ(glkﬁl) then A(O,kg) Z Oforx € (Of(o,kz), Y (0,k2) + (5)

but A(O,;Q) Z 0for o € (oqo) — 6, oks)) 5

3. i 0 ka4 1)Biks) < X(1a)Bogatn) then Dgpyy > 0for z € (o) — 6, (oky))

but Ay Z 0 for = € (o py), Coka) +9) -

From the above analysis we can exhaustively determine whether perturbation
of cro x,) will again give us a hyponormal shift T or not.

For example if we have the following situation, say:
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1. detA(O,kz_g) > 0, detA(O,kz) > 0;
2. detA(g,k:,_l) =0, and Q(1,ky—1) < C0,kz)-

Then T will still be hyponormal for a slight left perturbation of Q(0,k,), but will ‘
not be hyponormal for any right perturbation of o/q ,).

Similarly, we have another situation say:
1. detA(O,kQ_g) = 0,
2. delDokyy) = 0 and oo g 1)B(1,k2) > C(1k2) B0, k2 +1)-

Then there exists 4 > 0 such that Z:\(o,kg-z) # 0 for any = € (o), O(0,ks) + 6)
and A(O,kg) 7 Oforany z € (a(g,h) -4, a(O,kg)) . So T is not hyponormal for any

perturbation of aq k,)-

Remark 5.3.1. If k5 = 1 then we need to consider only A(O,kg—l) and A(O,kﬁ) for
positivity. Similarly, if k2 = 0, then we need only consider positivity of A(O,kz)

to check whether the perturbed shift 7T is still hyponormal or not.

Remark 5.3.2. Since the perturbation do not affect the core of T, so these results

can be applied to 2-variable shifts whose core is of tensor type.

5.4 Perturbation of the weight o, g

For ky > 0, let oy, 0y be slightly perturbed to a new weight z. For commutativity

=Bk 0 L Ok ~1,0)™(k1.0
we change B, 0) 0 y = ”—((k—llo—)) and v, _1,0) to z = ~HLZLATELO

As

so, by keeping z suitably near o, ¢y, we can preserve the conditions y < B, 1)

and ok, _20) < z < T < Ok, 41,0)-
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4
(0, 3)
ﬁ(k1—2,2) ﬁ(kl—l,z) ﬁ(kl,z) p(k1+1,2)
(0,2) Oy -2,2) (ki -12)  ¥(ky1,2) X (ky+1,2
) Biei-21)  |Btk-1,1) Bk Bk 41,1
T2 N Q(ky-2,1 Q(ky—1,1 (k1) X (k;+1,1
(0,1
Bki-20) |Bki-100 ¥ ’/B(k1+1,0)
Q(k;-2,0 z z k41,0 - -
(0,0) ... (kb1 =2,0) (ks —1,0) (k1,0) (ks +1,0) (k1 +2,0)
T
B
Figure 14

For hyponormality of T = (7’1, 7}), we need to check the positivity of A(k1_2,0),
A(k1—1,0)7 A(kl ,0)-
Positivity of A(kl_g,o) :

A N _ 22— a(2kl_2,0) O’(kl—Z,l)ﬂ(kl—l,O) - a(l\:l—?,O)ﬁ(kl—Z,O)
(k1 —2,0) Q’(k,-?,l)ﬁ(}q—l,ﬂ) - O'(k,—z,o)ﬁ(lc,—zo) 5(25.1_2,1) - ﬂ?kl_gln)

We consider

f1 (’L) = detﬁ(kl —-2,0)

O"?k 10)“& 0)
_ o1 —~1, X1, 2 2 2
VT 2 T Xk, —2,0) (ﬁ(k1~2,1) - ﬁ(kl-z,o))

2
- (O’(k1-2,1)ﬁ(k1—1,0) - a(k1—2,0),5(k1—2,0))

So,

2

Ol -10)%(k1,0) [ 52
7] o1 -1, v1, 2
filz) = - 73 (ﬂ(k1-2,1) - ﬂ(k1-2,0)>
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202
' _ (k1—1,0) / 52 2
. f{(()(kho)) = —m“' (IB(kl—Z,l) - ﬂ(k1—2,0)) < 0.

Case 1: If detA,-2,0) > 0 then by continuity of f, therc exists 6 > 0 such that

fi(z) >0V € (a(kl,o) — 8, 0y 0) + 6) . Thus for all such =z, A(kl_g,o) >0

Case 2: If detA(, _20) = 0 then since f] (o, 0)) < 0 and hence f; is decreasing
at ok, 0, SO A(k1—2,0) >0forzx e (a(kl,o) -6, O-'(kl,o)) and A(kl-z,o) ;‘_4 0 for

T € (a(k1,0)= ' (ky1,0) + 5) :

Positivity of A(kl—l,o) :

- -z Ok -1,1)Y = 2Bk -1,0)
A(kl—l,O) = 2 32
Qe -1,1)Y — Zﬁ(kl—l,o) B(kl—l,l) T M(k-1,0)

We consider

f2(CL) = deté(kl_l,o)

= (#* = 2) (Bfa-1.0) = Blur-109) — (@100 = 2Ba-10)”

a? o?
(k1 —1,0)% (k1,0)
= _L'2 — e (13(2’C1—1»1) - 'B(zkl_l’o))

IE2
) 2
(s 2Bk, 0) B a(k1—1,0)&(k1,0)ﬁ
(k1-1,1) ke 0) - (k1-1,0)
2 [y (B 1y — Bocr) = sy
T2 (k1,0) Wlkr—1,1) = Plki-1,0)) ~ F(k1-1,)P (k1 ,0)
- (kllo)
1
+ 2Cl’(k1—1,0),3(k1,O)Q(kl—l»l)ﬁ(kl—l,o) - F [a?k,-1,0)0-’?k1,0),3(2k1—1,1)]
2 1
=7 + 20011081 001 -1 Bk -10) = =5 (0110010 Bfs -1 »
1,

where p = a?kl,ﬂ) (5(2:;1—1,1) - 5(2k1—1,0)) - a(zkl—l,l)'B(Zkl,O)

If detA g, -10) = 0, then [a(cvw, ) =0. So, o = ofy 1 <ﬂ(2k1—1,1) - 2/3(2k1,0))



Chapter 5 82

Now

2/ 2

Jolz) = =t [0k —1.0)0k 0B - 1.0))
(}\'.1,0) :
2 2 2
- S 0) = P [+ 2y 1.0k -10)]
4 2 2 5
= o) [y —1,0) (Bfer—12y = Bl )]
> 0: if /j(kl—l,l) > IB(k] ,0)
<0, i Be-1,1) < B,0) - (541

=0, if Bk -1,1) = Bik.,0)-

Thus, if detA,—1,0) = 0, then

L. if Bk, -1,1) = Bk, ,0) then there exists 6 > 0 such that A(kl_w) > (0 for all

% € (ke 0) = 8, (ky0) +6) -

2. if ,B(kl—l,l) > ,B(kl,O) then A(kl—l,o) > 0forzx € (a(kl,o),a(kho) +5), and

A(kl—l,()) 2 O fOI' T e (Cl(kl,O) - 6: a(kl,o)) .

3. 1f Bry—11) < Biroy then A —10) > 0 for z € (i 0) = 6, (r0)) » and
A(kl—],O) ?_4 0 for z € (a(kl,ﬂ);a(kl,ﬂ) + 5) .

Positivity of Ag, o) :

- 0) ( O'?k,1+1,0) - rr,2 Ok )P (k1 4+2,0) — TY )
A 6,0) = ,5
C”(k1,l).8(k1+1,0) - Ty 13(2’“,1) _ y2

$2ﬁ2k 0 2B 2
R ol 3 ‘0
f3(z) == (a(2k1+1,0) - 332) (:6(21;1,1) - a0} _ <a(k1,1)18(k1+1,0) - #>

a’%kl,o) Q(k1,0)
2 2 2 2
= (O‘(k1+1,0)ﬂ(k1,1) - a(k],l)ﬂ(kwl,o))
2

T
+ o2 ) (20‘0:1 ,O)LY(kl,1)ﬂ(k1+1,o)ﬁ(k1,o) - :3(2k1,0)a?k1+1,0) - 5&1,1)&&1,0))
(k1,0
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2
{ 2 2 T
=%a@+Mﬁ&mY‘Whnmhﬂm)+aa0;
1,

where v = 20(k, 0y (k1) Bk +1,0)B(k1,0) — ﬁ?kl,o)a%k1+1,0) - ﬁ?kl.l)a%kl,o)'

If detAk, o) = 0 then f3(ok, 0)) = 0. Therefore

2 2 2 2
Y= a’(kl,l)ﬁ(kl-{-l,o) - a(k1+1,0)ﬁ(k1,1)-

Again,

2z 2z 2 2
fé(T) = o2 = o2 (O/?kl,l)ﬂ?}cl-l—l,o) - O’(k1+1,0)5(k1,1))
(%1,0) (k1,0

>0, if ey, 1) Blki+1,0) > Xkr+1,05(k1,1)
<0, if ovgry 1Bk +1,0) < ks +1,0 (k1,1
=0, if oy 1y)Biri+1.0) = Ay +1,0)B (k1 1)
From the continuity of f3 we can make the conclusions:
1. detA,0) > 0 or g, 1)Bk+1.0) = Oki+1,08(k:,1) then there exists 6 > 0
such that A(kl,o) >0forallz € (a(kl,o) ~ 0, QU(ky,0) T 5)
2. If del A, ) = O then there exists 6 > 0 such that
(1) if oy 1By +1,0) > Ok +1,0)B(k 1) then A(kl,o) > 0 for all
z € (ok, 00, Ok, ,0) +6) and A(kl,o) Z 0 for x € (o, ,0) — 0, iey.0));
(ii) if Qky 1)Bk+1,0) < (ki +1,0)B(k:,1) then A(kl,O) > 0 for all
T E (a(kl,o) -9, C‘f(kl,o)) and A(kl,o) 2 0forz e (a(kl,o), O(kp,0) T 5)
From the above Analysis we can exhaustively determine whether perturbation
of ok, o) will again result in a hyponormal shift T or not.
Remark 5.4.1. For k; = 0, we only need to consider A(kl,o) for positivity and
for k) = 1, we need to consider only positivity of A(k] ,0) and A(kl—l,o)-
Remark 5.4.2. Since the perturbation do not affect the core of T', so these results

can be applied to 2-variable shifts whose core is of tensor type.
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5.5 Perturbation of the weight o, ,)

In general if we want to perturb a weight o, x,) for k& > 0, ky > 0, then for
commutativity we need to change at least three other adjacent weights. The

further perturbation of weights in adjacent blocks are as follows:

Bz
o

1. Bk changes to y =

2. oy, changes to z = 2=k

3. Bi-c, changes to £ = P=a2®t
¢ Pk g , :

with the understanding that if £ = (0, k2) then we neglect (2), and if k = (ky, 0)
we neglect (3).
T = (Ty, T5) is the perturbed shift with weight sequences {&}-ezz and {Br}rezi

given as follows:

x, ifr=k y, ifr=k
r =4 2z, fr=k-¢g and §, = t, fr=k—e
o, fT7#£k7T#k—¢e Br, 7 #k1T#k~¢q

The perturbed weight diagram is given in Figure 15.

As ag < (%j‘i—) o, so by keeping x < (%) o we will preserve the condi-
tion fBr_g, < t. Similarly, by keeping x suitably near ¢, we can preserve the
conditions Bx_ge, <t <Y < Bre, AN Qp_9e, < 2 < T < Qe -

Now for hyponormality of the perturbed shift 7" it is sufficient to identify the

conditions of positivity for the following matrices: Ak_252,Ak_51_52,Ak_251,

Dg—e,; Dk—e, and Ay, where

=2 =2 ~ 3 5 3
A, = ( | e O ar“ﬁf e i;”ﬁ ") >0 (vrez).
aT+€2ﬂT+El — QrPr :8T+62 - ,BT
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ﬂl
(O, ]\’,‘2 + 2)
ﬁk—é‘l +e2 ﬁk-i-sz
Qg1 +ey | Ahten
(0,ky + 1)
/Blc—el Y /BI\H-EI
z T Okte
(0, k2)
J ﬂk—e; —£2 3 /Bk+£1-52
7
a’k—sl —€2 ak—é’z ak+51 —£3
0,k ~ 1)

(0,0) m(kl—l,o) (k1,0) (k1 +1,0) (ki +2.0)
T

—_—

Figure 15
To check positivity of Ag_s, we consider
f1 (’L) Z=Cl€tAk_2£2

=(12 = B _2e) (Okie,—2ey — Oieney) — (ChoeaPhter—260 — ak-zezﬁk—zeg)2

— 'Blzc—e'zai 2 2 2
= - 6k-—2€2 (ak+51~252 - ak—?sg)

12

2
- (ak—5218k+51—252 - ak—Zeg:Bk—kz)

268, %
fll(m) = __,E;Q—(alz—f—el—kg - a/%—ZEz) <0

Now, fi(o) = detDg_z, > 0. So by continuity of f; we can make the following

conclusion C1:

1. If detAx—2e, > 0 then there exists 6 > 0 such that for all

S (G'k. - (51\’:: 477 +5k)7 Ak*2€2 Z 0

2. If detAg_ 9., = O then there exists §; > 0 such that Ak_gE.‘, > 0 for all
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x € (oy — Ok, ax), and Ak_252 z 0 for x € (ag, ok + k).
Similarly to check the positivity of Ak_el_m, we consider
fa(z) =detDy_¢, e,
2 2
(IBET—EI - /Bk—61~62) (ali—el - az‘—el—eg) - (Zt - ak—EI—EZB’C"‘El —52)

~“k—g1 - k—ey—€2 ak-—El - ak—el —£e2
(32 ,82 )( 2 2 )

Qe O’sz 2
L—e1 U Vk—€
- ( - : 2 ak—el-szﬁk-el—f:g

22

4ak_g Oéiﬂk_ (87 CY,QC,B;C_
fill(x) = 1,133 = 2 ,1:2 2 - ak—el—sgﬁk—sl—eg
dorg—e, Br-e
fé((—}'k) = e (O‘k—elﬁk-—m — (X—gy —ezﬁk—zl—sz)

187°
> O) lf Qk-—elﬂk—ez > O"k-el—EQlBk_El—EQ
< 0, if ak—elﬁk—m < O'k—el—ezlgk—el—sz

=0, if Qg ,Bk—sz = Of—gy ~£2ﬁk—-el —€g-

From the continuity of f; we can make the following conclusion C2:

1. If detAf_¢,—¢, > O then there exists d; > 0 such that Ak_€1_52 > 0 for all

X e (CYk - (Sk; W+ 6k)
2. If detAg_¢,_., = 0 then there exists 6 > 0 such that

(1) if e, Bhi—ey > k) —e2Bk—e1—ey, then A;ﬂ_el_m > 0 for all
z € (og, o + 6x), and Ay, o, 7 0 for z € (g — bk, ap);

(ii) if ak_el,Bk_SQ. < Ok—gy—eaBk—e1 -6, then Ak_sl_az > 0 for all
T e (C\’k — (Sk;()’k), and Ak—ﬁ—é‘z 4)& 0 forx € ((yk,ak -+ 5/0);

(ii1) if ke, Bher = Othey—esBk—e1—eq, then Ax_o ., > 0 for all

T € (o + O, ok — ).
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For positivity of Ak_gsl, we consider

fS(CE) = det&k—2€l
2
= (22 - a’i—%]) (1812;—2514-52 - 5}2;_251) - (ak—251+6213k—51 - ak—2€1:8k-2€1)

2 2 .
Ok Xk 2 2 2 2
= (—__’:21 — O'k__2€1> ('Bk—261+52 - IBk—2€1) - (a’k—2£1+62ﬁk-51 - ak—2€1ﬂk—-2€1)

So,

2 2
_2ak—51 Gy

f3(z) = T3 (ﬂi_251+52 - 55—2&)
—20
fé(a’k) = _a;hi (1613—2514-62 - ﬁg‘251) <0
Now from the continuity of f3 we can make the conclusion C3:

1. If detAj_ac, > 0 then there exists 6 > 0 such that for all

S (Ofk — O, g + (Sk), Ak—Zsl > 0.

2. If detAg—2:, = 0 then there exists 6 > 0 such that Ak_gez > 0 for all

T E (a'k - 5k,ak), and Ak—2el ?0forze (a'k, o + 6k).
For positivity of Ak_ew we consider ‘
fa(z) i=detA g,
2
=(al2c+51—52 - a%:—sg) (y2 - tz) - (‘T:Bk+€1~52 - tak—52)

2,2 2 2 , 2
(a2 ol ) B _ Br—e, %k Y _ Pr-ea ke,
k4e1~e2 k—eq 2 Wlkte)—€2 -

’ 2
Q. T T

Il

1 2 27 2 2 202
z_a_i [I {ﬂk (ak+61—sz - Qk—éz) - akﬁk-kel—m}
4
2 /Blg—ezakJ

I3 U ;
+ 2/Bk“52akak-52ﬁk+fl —€2 — Ok+51—52 2

If detAg_, = 0 then fs(ar) = detAg_., = 0. Therefore,

2 2 2 202 __ N2 2 2
A= :Bk (ak+51—-£2 - ak—ez) - a’ker-Fel—ez - lBk—ez (ak+el——ez - 2ak) :
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Again,
1 20408 o, e, Bi-
1(2) = = |22\ + terzeal 06
4(%) a’% [ 23
4.2 2
_ 2 [T2/\+ akak.-i-el—szﬂk.—ez}
alz | x?
k
2 2 2
fé(ak) = a’—k [)‘ + ak+€1 —EQ/Bk—EQ:I
ABE ., o 2
= akEz (ak+51—ez - ak)

>0, if Okgeg—e, > Ok
< 05 if Ckter~ez < g
= 0, if Qkter~g9 — k-

Now since f4 is a continuous function, therefore conclusion C4:
L. If detAg_ey, > 0 OF Qpie,—e, = i then there exists 6, > 0 such that
Ak—ez >0forallz e (ak — O, oy + 6k)
2. If detAg_., = 0 then there exists d; > 0 such that

(1) if Okre,~e, > v then Ak_€2 >0 forall z € (ak,ak + 5k) and

Apgy 7 0 for = € (o — by, o)

(ii) if Oppey—eq < Ok then Ak_.sz >0foral xe (ak — 5k,a'k) and

Ap_e, 2 0forae (ovk, ok + 6) -
For positivity of Ak_el, we consider
fs(x) :=det[lk_5]
=(0* = 2) (Berter — Bier) = (h-crvert) = Br-er2)

2 2
(.2 _ ak—slak B2 32 ) ak—€1+82ﬁkx akak—ﬂﬁk-el
=i 72 ( k—ey1+ez  Mk—-er) T -

(097 T

2
T 2/ 2 2 2 2
=3 [ak(ﬁk—€1+ez - ﬂk—sl) - ak—-al—ke;ﬁk + 2ak_51+5213kak“51/8k‘51

(aﬁ_El 04125512;—51 +62) :
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If detAg—, =0 then f5(ay) = detdg—., = 0. Therefore

) 2742 2 2 2 _ 2 2 . 2
H= ak(:Bk—51+52 - :Bk~51) = OheytenPk = ak—sl(ﬁk—61+eg —- 20B;).

Now
2z 2, 2 2
fé('l:) = 012 + Eak—mak'@k‘el-ﬁw
k o
2 2 2
fé(ak) = a;(“’ + O'k—ellBk*51+£z)
2
. 4ak—61 (,32 2)
- Qg k—ey+eq k

>0, if Br—e+ep > Br
<0, if Br—e e, < Bk
=0, if Br-gy4e, = B
Again from the continuity of f5, we can make the conclusion C5:

1. detAg_e, > 00T By 4e, = Pk then there exists d; > 0 such that Ak_el >0

for all z € (ak ~ O, o + 6&)

2. If detAy_., =0 then there exists §; > 0 such that
(i) if Br—erte, > Br then Ap_, > 0 for all @ € (o, + 6;) and
Are #0forze (o — Ok, k)3
(i) if Br—e,re, < Bi then Ag_, > 0 for all z € (o — 6k, o) and

Ak—-el ?_4 0 for z € (ak,ak + 6k)

Finally, to check the positivity of A, we consider

Je(x) := del Ay,

= (a?\?"‘sl - :E2) ('BIZC+62 - y2) - (ak‘EQ'Bk+51 - ’C’y)2

2,.2 L2\ 2
(.2 2 2 T Brx
- (ak+51 - )(/Bk-l-ez - ”2 ) - (ak+526k+€1 - ok )
» k 5

2.2
A2 2 ﬁkalﬁ—e 2G’k+62ﬁk+s Bk 2 2 2 9
-7 ( = Prves = af ot Qg 1 + (a’“+51’3’“+52 . ak+€z'3k+el)
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.’132

2 52 2 2 2 2 2 2
= 042 (2akak+€2ﬂk+615k - akﬁk—f—ez - ;6ka+51> + (ak+€1'Bk+ez - ak+€2’6k+€1)'
k

If detAy = 0 then fg(ax) = detAg = 0. Therefore

202 2.2 2 2 2 2
Y= (2akak+52ﬁk+€1 Bk - alek-}-E'z - Bkak+€1> = (ak+52ﬁk+€1 - ak+€113k+52)'

Again,
xy 2T, 5 g2 2 2
f(’i(ﬂ:) = — = _ri(ak—i-Ez'Bk-i-El - ak+€113k+52)

> 0, if ak+62:8k+51 > ak+€1ﬁk+€2
< 01 if ak+€218k+61 < ak+€1/6k+62

=0, if ak+62;8k+51 = Okey ﬁk+€2'

From the continuity of f¢ we can make the conclusion C6:

1. detAg > 0 or ¢y, Brae; = kte, Prte, then there exists dx > 0 such that

Ay>0foralze (ak—5k,ak+5k)-

2. If detAy, = 0 then there exists d; > 0 such that

(1) if CkteyBrae, > Chve Brte, then Ay > 0for all z € (ak,ak + 5;;)

and Ay ? 0 for z € (ar — bk, au);

(ii) if ak+£2,3k+51 < ak+€]ﬁk+52 then Ak >0forallze (Ofk - 5k; O!k)

and Ay # 0forz € (a&ak + 8k).

From the above analysis we can exhaustively determine whether perturbation
of oy, will again result in a hyponormal shift 7" or not.

For illustration let us consider the following examples:

Example 5.5.1. Let T = (Ty,T3) be hyponormal with Az > 0, Aps) >

0, Ay =0 and g4y < (o5 We want to perturb o).
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Applying C1 (1), C6 (1) and C4 (2)(u) we conclude that T unll still be hyponor-
mal for a shoht’left perturbation of as), but urll not be hyponormal for any

right perturbation of a5

Example 5.5.2. We want to perturb ar11y Hence we need to consider Az,
A(6,10)1 A(5,11), A(7,10), A(6,11)1 A(7,11) Suppose A(G,IO); A(5,11), A(7,10), A(7,11) >
0 and Aoy = Apay =0 So by C1 (2) and C5, we make the followng conclu-

S10NS8:

1. If Bea2) < Bz then T wunll be hyponomal for a shight left perturbation of

7,11y, but wnll not be hyponormal for any might perturbation of cr11y.

2. If B2y > Bz then for any shght perturbation of o7 11y, T unll fail to

be hyponormal.
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On weak hyponormality of
2-variable weighted shifts

6.1 Introduction

In Chapter 5 it was shown that if for a 2-variable hyponormal shift T' = (T3, T3),
a weight ok, k,) 1S perturbed, then the resulting perturbed shift T may not re-
main hyponormal. In fact the conditions under which T will still be hyponormal
is completely given in that chapter. In this chapter, we show that though T
may not be hyponormal, it will however still remain weakly hyponormal for
sufficiently small perturbations = of o, k,)-

Let o := {ak}keZ'ﬁ’r and 8 := {ﬁk}kezi be 2-variable weight sequences and
T = (T, T3) be a 2-variable weighted shift on ¢2(Z2) defined by Tiex = ctkeie,
and Thoer = Srlrtes-

As mentioned earlier T = (T},T3) is weakly hyponormal if ATy + A;T5 is hy-

ponormal V )\, € C. Equivalently,

T'is weakly hyponormal
& Ty + AT, is hyponormal VA € C

<~ [(Tl + /—\Tg)*, (T] + /—\Tz)] >0VvAeC

92
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& ([(Ty + MTo)*, (Ty + ATo)lx,2) > 0 VA e Cand z € £3(Z3)
& ([T7, Th)z, ) + A (T3, Th]z, ©)
+ M{[T7, o), ) + A {[T3, To)z,2) > 0 VA e Canda € £*(Z})
T Tz, x T, T, x 1 1
((rm asmn ) (3)-(3))2
for all \ € C and z € ¢%(Z2). (6.1.1)

Theorem 6.1.1. T = (11, 73) is weakly hyponormal if and only if
(>0 o0
Cle Cr,
3 ot + WS ot + 3 (o 1 ) (2 ) ) 20
7=0 =0 keZ2 2 2

for allx = Zkezi crex € C3(Z2) and

2 2
A Qpye, — Pk ak+522ﬁk+el - ?kﬁk
ke, Brre, — nBr Bive, — B

for all k € Z2.

Proof. We have Tie, = ayegie, for k = (ky, ko) € Z2, and

Tfek={0 ik, =

Op_g, Chogy if ky > 0.

Similarly, Toer = oepye, for k = (ky, ko) € Z2, and

. [0 if ky =
T2 = { O, Chimgqy if ky > 0.

Therefore,

[Ty, Tilex = Ty (Ther) — T (T ex)

_ { T3 Ok ke, ifki =0
| TYowehye, — Ti0k—g Cheey, if kg >0
B { aleg ifk; =0
T (e —af. e ifk >0

= (ai - az—el )Bk

assuming oy, 4,) = 0 for allt; <0, £, € Z.
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Again,
[Ty, Tiler = Ty (Tiex) — Th(Tyex)
_ T;ak €kteq if ]\’52 =0
Tz*a'k Clte, — Tlﬂk—sgek—ez if k"2 >0
Jo if ks = 0
(ak}Bk—i—el-sz - ak—52/3k—52)ek+51—52 if k)g >0
= (akﬁk+61—62 - ak—EQIBk—ez)ekA—El——Eg:
assuming f, .,) = 0 for allty € Z, 13 < 0.
Similarly,

[Tl*> T2] €L = (O’k—61+62 Bk — Qg /Bk—El)eko—51+€2 and [T2*7 T2] €k = (IBL? _‘Blb%—EQ) k-

Let ¢ € £3(Z2) and z = 2 keza Ck €k

Then

([Tf,Tl]ﬂ:,.’l:)=< Z (ui_ai—zl)ckek’ Z Ct(3t>

k=(ky ,k2) t=(t1,t2)

= Z(az — 0, )Ck <ek, Z ctet>
t
- Z ak 61 |ck|2
= Z — i ) ) ce|* + Z — o —e,) )|ex|?

L1—0 k1 >0
—ZIC(oJ)I ooy + D (e, = ODlokse (6.1.2)
kez?
Similarly, we have
([T5, Dz, z) = Z Choter Chen (Ohter Brrer — kBr) (6.1.3)
kez?
<[Tf7T2]‘T>$> = Z Ck+615k+52 (ak+52ﬁk+el - akﬂk) (6'1'4)
keZ?

(I3, e, 2) = Y lewo"Boy + D (Birey = Bdlekseal” (6.1.5)

1=0 kezi
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Using (6.1.2) to (6.1.5) in (6.1.1), we conclude that

T is weakly hyponormal

- YizoleapyPody ) + Tilokie, — oDlckie, Sk Chey Chaen (OhpenBrae, — tBi)
Pk Chtey Chten (Qkres Brve;, — kbr) Y20 lee, 008 o) + Li(Bhye, — B ckteal?

(/1\),(/1\)>20, forall A\ € C andx=cheke 62(21)

keZ?
2.2 2 272 k+e k+e1
@E c gy A E ca,0)l B +E <A( 1),( )>
]:0} ) (0.) &l o l¢6,0)] (= 0) = £ A Chtey A Chtes
+

>0foral A e C andz = Z crex € C3(Z2).

keZ?

ad

Remark 6.1.1. If T = (Ty,Ty) is hyponormal then A, > 0 for all k € Z2, and

hence by Theorem 6.1.1 it immediately follows that T is also weakly hyponormal.

6.2 Perturbations not affecting the core of T°

6.2.1 Perturbation of the weight o, g

For k) > 0, let o, 0) be slightly perturbed to a new weight x. For commu-

. _ ®Bxy.0) , -
tativity we change B, 0) to y = m and q,—1,0) to z =

Xk =1.0%(k1,0)  The
- )

corresponding weight diagram is given in Figure 16.
Let T = (Ty,T) be the perturbed shift with weight sequences {ck}rezz and
{Bk}kEZi'
Let 3 )
Ak = ( &IZC-}-E] - 5’% &k+62/3k+61 - dkﬁk ) .
dk+€218k+61 - &lek ﬁg-‘-EQ - ﬁg

Clearly, Ay = Ay for all k € 2%, except for k = (k1 —2,0), (k; —1,0) and (k,, 0).

- IA282,., O -
Let £1; > 0 and p = (u1,0). Define A, = ! +A,
0 0
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'y
(0,3)
Bi—22) |Btki-12) B2y  Brra+1r2)
(0,2 Qky-2,2) O(-12)  Q(k1,2) O(kp+1,2
Bki-21)  (Bki-11) Bk B ks +1,1)
T2 R a(k1—2,1 a(kl“lxl a(kl,l) a(k1+1,l
(0,1
IB(kl_2,0) ﬁ(kl—l,o) ‘y ,3(1:1+1,0)
a(k1_2:0 z z a(k1+1,0 %
(0,0) - (ky=2,0) (k1 —1,0) (k1,0) (k1 +1,0) (K +2,0)
n,

Figure 16

Claim: A,L > 0for jo= (11,0) and jug = k1 — 2,k — 1, k.
As

bl

A, = ( |/\‘26%Ml+1,0) + al%#1+1,0) - &%m,O) &(m’,l)ﬁ(m-i-l,o) - d(m,O)IB(Nl»O) >
n=

d/(l-’lyl)’B(Nl'*'le) - C~Y(111,0)16(/11»0) '8(2/:1,1) - AB(2/:1,0)

SO
f('E) = detAH = |/\|2B(2/L1+1,0)(ﬂ(2u1,1) - f8(2/tl,0)) + detAli'

Therefore,

f(a(kl,o)) :|’\|2:B(2u,+1,0) (B(2u],1) - ﬁ?,“,o)) + detA/t >0

( detA“ > 0 and B(m,l) > B(M,O))-

Thus by continuity of f, there exists 6, > 0 such that f(z) > O forall A € C
and for all z € (Cngl,o) — O, iy 0) + 0,0).

Let & = min{dk, -2,0), (ki-1.0), Okr,0)}- Then for x € (g, 0) — 6, (iy,0) + 0),
A“ > 0 for all A € C, and the Claim is established.
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Also, Ay = A > 0 Yk € Z2, except for k = (k; — 2,0), (k1 — 1,0) and (k1,0).
Therefore by Theorem 6.1.1 we conclude that there exists § > 0 such that for
all x € (o, 0) = 9, (k1 ,0) +9) T = (11, T,) is weakly hyponormal.

Thus for a hyponormal 2-variable weighted shift T', if c(x, gy is slightly perturbed

then, the perturbed shift T still remains weakly hyponormal.

6.2.2 Perturbation of the weight o,

For any k; > 0, let ook, be slightly perturbed to a new weight z. To pre-

ZB(1,kg)
®(0,ky+1)

serve commutativity, we change B, to v = and Bok,-1) to £ =

(0,ky - 1)B(1,ky-1)
—;—z .

The weight diagram of T is given in Figure 17.

F 3
IB(O,kz-l—l)
Q(0,ka+1 :
0, ks + 1) z+)
Yy B(l,kz)
xZ a(l,kz)
_| (0,kz)
2
t Bke-1)  |Bke—1)
Q0 ky—1 Q(1,kp—1 Q2 kg -1
(O,kz—l) 2--1) (1,k2-1) (2,k2-1)
Bok-2) |Bake-2) |Bke-2)
Q(0,ky~2 O(1,ky—2 (2, kg —2
(O,k2—2) (0,k2~-2) (1,k2—-2) (2,k2-2)
(0,0) (1,0) (2,0) (3,0)
T
B e

Figure 17
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We have A, = Ay for all k € Z2, except for k = (0, k2—2), (0, k,—1) and (0, k)

Also as T is hyponormal, so A, > 0 for all k. Thus, we have Ay > 0 for all k

except for k = (0, k2 — 2), (0, k2 — 1) and (0, k2).

= 0 0 -
For p = (0,42), pi2 € Z,. Define A, = &2 + A,,. Clearly, the
0 |2

positivity of A . implies the positivity of f(c,,;, A). Now we will show that A p 20
for = (0, k2 — 2), (0, k2 — 1) and (0, k2).
Consider pp € {ko — 2,ka — 1, k2} and p = (0, u2).

~9 ~2 ~ P ~ ~2
Z _ Qye, — O a[,L+€g/B[L+€1 - a/uB,L
LR (e 3 ~ A2 A2 32, G
a/.L+E2ﬁlt+51 - aﬂﬂu ptez ’311- + —(i\_lgg
and
g(z) = detZ,,
d'2+ 2 2 A
— ez ¢~ A
B |/\|2 (CY[L+51 - O[L) + d(itA,,
5:2
_ jite2 1 ~2 =2
g(a(O,t)) - l/\‘22 (au+€1 - Ot”) + detAl' >0
E:a’(oyt)

(.- detA, > 0and Gppe, > @,).

So by continuity of g, there exists §,, > 0 such that g(z) > 0 for all A € C and
for all € (cv(ok3) — 610, Ct(0,k) + 611

Let 6 = mun{d(ok,-2), 0(0,ks—1), S0,k2) }- Then for = € (o ky) = s t(0ks) + 61).
Z,, > 0forall A € C and for all u = (0, k2 —2), (0,k; — 1) and (0, k;) Therefore,

we conclude that the perturbed shift is weakly hyponormal.
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6.3 Reformulation of weak hyponormality

Theorem 6.3.1. Let A = {(k1,0) : ky € Z,}. For \ € C and pn € A, define
232
M, = ( A g*‘“‘ 8 ) + A,. Then Tis weakly hyponormal 1f and only 1f

[o 0]
C, c
e B + 3 lonlaby + 3 (4t (e ), (s )
pteg

Ac
=0 HEA pte2

Chte Chkte
e 2 e (i) ()=
kEZ;_'_\ A A Chk+eg A Cltye,

for all ) € C and Y cyex, € £3(Z2)

Proof. For js € A,

M Ciite, ’ Ciite,
< M\ Aute, ACu+es
= |/\|2 I%‘HE; 0 Cute, Cptey + A Cute, Crtey
0 0 Apre, |7\ Aluter P Autes )7\ Aptea
_ 2 202 Cute, Cpdey
- |/\| |cl‘+‘€1| ﬁl"i‘el + <A“ ( /\Cu-i—ez ) ’ < /\C;L+£2 ) >

Therefore,
oo
2 22 2 Cputey Cute,
|’\| |C(0,0)| /j(o,o) + Z |C(OJ)| (‘Y?O,J) + Z <M“ < A :,,:,52 ) ; ( /\:,,:LEZ > >
7=0 HEA
Chk4e, Ckte,
g o) ()
€Ly
o0
2 2
= |)\|2|C(0,0)| 5(20,0) + Z |c(0,])|2a(0,]) + Z I/\|2|6u+51 ‘218/2:+51
7=0 pneA
Ciute, Cite, Ck+e, Chte,
g () (2)) B () (22))
1" € +
oo oo
_ 2 2 2 202 Ck+e, Chtey
= leonlPafoy + MY lewol’ B + D <Ak< Neran ) ’ ( Nere ) >
7=0 =0 kez?

Hence the result follows from Theorem 6.1.1. O
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Theorem 6.3.2. Let B = {(0,k2) : ko € Z4}. For A € C and p € B, define
: 0 O
N, = ( 0 ol +A,. Then T is weakly hyponormal if and only if VA € C

A2
and Z Cr e € 32(21)

1)
2.2 2 202 C;L+El C;L+€1
o + |\ E . -+ E N, ,
|C(0,0)| ©.0 l | |C( ,0)| IB(Z’O) < ! ( ’\CM+52 ) ( /\Cu+62 )>

=0 HEB

ck+£1 Ck+£1
+ Ay ( : > 0.
] z < A Chtes A Chteg
+
Proof. For 11 € B,
N Crtey Clitey
< P Aures )T\ ACute,
_ 0 020 Citey Crite, + A Ciite, ] Cite,
0 |’—:\+l;-z ACptes "\ ACutes "\ ACutea "\ ACute,
= 2.2 Ciute, Cute
B |C1L+62| (){#-'_62 + <A“ ( ’\Cu+52 ) ’ < ’\Cu+:2 ) >
Therefore,

[oe]
2.2 202 Chter Cute,
c al oy + g cao 286 o + g N, ;
| (0,"0)| 0 =0 | (,0)| @0 < . ( ’\C;H-ez ) ( /\CIL+€2 ) >

HEB

Ckte Chtey
+ Z <Ak ( A Ck+teq ) ! ( A Ck+ea ) >

keZi\ B

o0
= IC(O,O)I%Y?O,O) + Z |C(i,0)|2ﬁ(2¢, 0t Z |C,l+sz|20,2t+52
=0 HEB

Cp Cp Ck+e Ck+e
g () () B o) (32)
Z< /(’\C;L-H:z) (/\C/L+ez Z , A Cte, A Chtes

neB kEZZ\ B

o0 [o o]
2 2 2 2 p2 Chte Chte :
= c ] (8 : + A C(; i + A- 1 s : 1
j§=0| COICTERARY ?zol w0l B+ D < k ( A Ckres ) ( X Chte, )>

keZ?
Hence the result follows from Theorem 6.1.1. O
Let k& = (ky1,k2) and |k| = k; + ks. Also (for convenience of notation) let us

denote by ay, bg, dy the following a; = a,%HI — o, bk = QpterBrter — kB,

k bk
de = B2.., — BE. Then Ay = @k Ok
br dg
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Let
l apo) + I\N*Bhey Do)
0= a?
bo.o) doo + P
ago) +I\N*Bley b 0
b
Ly, = b(1,0) dpo) + %%%l T(,%l ,
b d o
0 BE TR TR
ao) + M*BGe  beo 0 0
b
L bz,0) dz0) + iz hia 0
2 0 b1y dayy | 902 bo,2)
M PCERNP A
b d o

So, in general Ly is a matrix (A,))) of size (n +2) x (n+2), with A, ;) defined

as follows:

L. Aun =amo) + |/\|2,5(2n+1,0)

d(O,n n?0,11+1)
2. Apmyont2) = |—,\|7l + Rpee

3. Ay =Aua
4. Ay =0if 3>+ 1for all 2.

b
5. Apurn) = Sy fora = 1,2, ,n+1

_ d(n+2—1, -2 Andl—2,—1
6. Awy) = “pesn + Sipesn s fore=2,3,...,n+1

Also for 37ez2 crex € (2(Z3) and A € C, let

c €(3,0)
€@,0) =0 - Ac(2,1)
Xo = , Xi= | Aeqa ; Xo =
(1,1) 2
Ac0,1) Acq,2)

/\20(0,2)
/\36(0,3)
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C(n+1,0)
/\C(n,l)

In general, X, = AC(no1,2)

+1
AT C(0n41)

That is X, is a column matrix (B, 1)), where B 1) = A7 ¢(n4a—i,i—1) for
1=1,2,...,n+ 2
Following the notations introduced above, Theorem 6.1.1 can be reformulated

as follows.

Theorem 6.3.3. A 2-variable weighted shift T = (T1,T») with weight sequences
o= {ak}kez’i and = {ﬁk}kezi is weakly hyponormal if and only if for all
ANEC and X =3 e Crex € 0*(Z%), we have

lc.o|*(o,0) + IM?Bloy) + Z (Ln Xn, Xn) 2 0.
n=0

Proof. Direct calculation shows that
Lo Xo, Xo) =|A%|c 292 o+ <A ( €(0,0)+e1 ) , ( C(0,0)+e1 >>
(o Xo, Xa) =Pl ol o OO\ Aoy A C(0,0)+e2
<L1 X1, /Y1> =|/\|2|C(2,0)|2ﬁ(22,0) + |C(0’ 2)|2a(20,2)

A Ch+ey Cktey )
+|klz=1< * ( AChes ) , ( A Chtey

Similarly, '
(Ln X, Xn) =IAPlenn,0)*Bnsr,0) + 160, nrn) 0o, nny
Clk+te Chte
+ A v, :
=) ()
Therefore,

o0
leo*(fon + I\ Bloy) + D (Ln Xn, Xn)

n—O
o
= Ck+e Ch+
_Z el a(o;)+|’\| ZIC(10)| By + Z < ( /\Ck+;2 ) ’ ( /\Ck-{s-:‘z >>
3=0

i=0 keZ?

The result now follows from Theorem 6.1.1. O
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6.4 Perturbation of the weight o, i)

For s > 0 define L, as follows:

a0y + I/\lzﬁéﬂ,a) bs.m) . 0 0
bs,0) dgs0) + st 0
0 e R 0
0 0 ﬁl-;—l?,ﬁ 0
K . K ‘. . . .
0 0 0 .. ﬁ‘“"ﬁ)
d(O,s) azu,n+(
0 0 0 e l,\‘?x + ’)‘,2 s4-1

Choose k = (ky, ko) arbitrarily and fix it. Let oy be perturbed to the weight to
2. For commutativity, By is changed toy = ﬂ‘—‘:, (tk—g, 1s changed to z = m—“;ﬁ'i
and fj_e, is changed to t = ﬁ—"‘—;ﬂ

Let T = (Ty,Ty) be the perturbed shift with weight sequences {a,},ez2 and
{Br}rezi as defined in section 6.2.1. Also just as A, and L, are defined with
respect to T, in a similar way A, and L, are defined for T. As T is hyponormal
soLs>0forallseZ, Also Ly =L, for s < |k| — 2 and s > |k|. So if we can
show that L, > 0 for |k| — 2 < s < |k|, then by Theorem 6.3.3 we can conclude
that 7 is weakly hyponormal.

For example if k& = (2,2) then Ly, L3, Ly can be represented by the following

weight diagram:

0.5
(0,4)
(0,3)
Yy
(0’2) zZ x
7l !
(0,1)
DN I I
0,0 (1,00 (2,0) (3,0) (4,0) (5,00
T

Figure 18
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Theorem 6.4.1. Let T = (T1,T,) be hyponormal with weight sequences {ce } ¢ 72
and {p: }re z2- Then for any k € Z2, a slight perturbation of the weight oy makes
the perturbed shift T weakly hyponormal (assuming that By, ok, and Bi_., are

also necessarily perturbed to preserve commutativity).

Proof. Let
0(w) = fgs,0) + [M*Br10) > 0.
e g [ B0 T AP b(s,0)
g1(x) == del ; i d(s-11)
(s,0) (s,0) + 72
a(s 1,1)
- '/\|2 go(l) +detA(SO) =+ |A| ﬂ(s-}-l O)d(so)
> detA(s,g).
As0) + IM?Bir0) bs.0) 0
x 7 a §— b §~1
QQ(CE) = det b(s,O) d(s,O). + (Mllz']) ) (')\'2,1)
bes— dio— g
0 G e
~ 5 72
Q(s—2,2) d(s-1,1) 051 Ys-11)
= T)+ T :
I/\|4 gl( ) '/\‘2 ( ) l’\l4 (7’)
_ a(s A(s—2,2) ) X Jo(l) (s-—l 1) Y 5 1
= |/\|4 ( ) + detA(s_l,l) (/\|4 + I)\(2 detA(s,O) + lx\‘zﬁ(zs_,_l,o)d(s’())
= B2 ) 4 detA gy ) 4 Gt g5 ts—1.1yd(s,0)5?
'/\'4 J]. (S 1, 1 '/\|4 '/\l2 ae (S,O) + c‘(S—l,l)C (.9,0):6(5—{-1,0)
6‘(5,0) + l/\|2/§z€+1,0) 5(-“10) - 0 0
1~) X J . As-1,1) ba_1,1)
95(z) = det 0 L -
° W TRE R R

h,,._.‘ lis-, &gs-.)
O 0 (II\IZQ) IA?Z + ,A33
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as 4 () go(a:)
=~ 920+ ety detBimndesy T
~ d(s—1,1)‘l(s—2,2)' d(s,O)d(s—l,l)d(s—zz)
+ dEtA(s,O)—_—W—_ 5(s+1,0) |,\|4 '
Similarly, ' "2'/’
Q(s~4,4 ga(x) g1(z)
ga(z) = (I/\ls Lgs(x) + detB ooz g A2 + et oz die—sy [ A
i 3 - gl2) d(s_l,l)d(s—z,z)d(s—s,a)
+ detA(s_1,1)d(s—2,2)d(s—3 3) P"M + dEtA |/\|12
+ 3(2 1,0) Aoy d(s-1,d(s-2.2)0(s-33)
~(s+1, .

N[0
For 7 =0,1,...,s+1, let M; denote the (7 + 1) x (j + 1) leading submatrix of
L. If g;(z) := detM; then

90(z) = G(s0) + |/\1|2B(23+1,0),

Q(s-1, ~ ~ ~
h (5’«) = (wl;) !Jo(fL') + deLA(s,g) + ‘/\l2,8(2s+1.0)d(s,0)

:
For j =2,3,...,s, g;(z) is

7-1
fifs—j.g) 9;-2(%)
g5(x) == Wéi gi-1(%) + detB (s j41,6- 1)|_\L|4(TT) + T:; (detA(s i+ z))

-1 7—1
= ds—' rj-r i—1-1){(T ~ r ls—rr et r d -, T
Hr—l (s=j+r, =) 9G-1-1)( ) + detA () =1 X ) I/\,25(2$+1 0 _0 (s—7,7)

X160+ YR IN3G-1)

and

— (0 _(0,s+1) X gs—l(l') (Z(O,s) X 95-2(33)
Js+1 ("L) |/\|2(s+1) gs(a,) + dBtA(O,S) |/\l4s + l)\|2s detA(l’s—l)]/\[T(s—_l).

A 12, der s—n9(s-1-1) (@) 12 dis—rn
+ Z (d@iA(l,s—l)) I)\‘4(s_l)+(l D(2s+0) + deiA _——_‘|/\‘S(s—l)
=2

s—1 3
Hr:O d(S—"a T) ) )

222
+ M ﬂ(s+1,0)—|/\|—sw
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At z = oy, we have detA, = detA, > 0 for all 7 € Z2. Also as go(ax) > 0,

hence for all j =1,..., s, we have

C(s—3,5
9 @) 2 5 05-1(00) > 0.

Similarly

0,s+1
o1 (o) = |/\(|2—(3+1)59s(ak) > 0.

Thus by continuity of g, there exists d; > 0 such that g;(z) > 0 for all
T € (ak — O, o + 6;;), which implies that L,>0. So by Theorem 6.3.3, T is

weakly hyponormal for any slight perturbation of .
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Back-step extension of weighted
shifts

7.1 Introduction

If W, is a hyponormal weighted shift with weight sequence «, then for any
subsequence f3 of o, Wj is again a hyponormal shift on ¢%(Z,). We ask the
question if this property carries over to a quadratic hyponormal or a positive
quadratic hyponormal or a subnormal weighted shift W,. In response, we come

up with the following examples.

~ - o f1 f1 [a3 [2 /3
Example 7.1.1. Consider the weight sequence ¢ : \/;, \/;, V5 \/;, \/;, e
with a subsequence [ : \/g ) \/I , \/g , \/g ,..., which in turn has a subsequence

v \/%., \/g, \/g, ... Here W, is q.h., Wp is not q.h. and W,, is again q.h.

Example 7.1.2. Consider the weight sequence « : \/g \/g, \/g; \/g, ..., and

a subsequence f3 : \/.E, \/g, \/g, \/g, \/g, ... Then W, 1s p.q.h. but Wy is not

p-q.h

However, for the case of a subnormal weighted shift W, with weight sequence
a = {a.}%,, Curto in [12, Proposion 8] proposed a concrete set of condi-

tions under which = can be suitably chosen so that for the weight sequence‘

107
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B:x,ap,0,. .., Wsis again subnormal. This result is as follows:

Theorem 7.1.1. [12] LetT be a weighted shifi whose restriction to \/{ey, 3, ... }

18 subnormal, with associated measure . Then T is subnormal if and only if
1. ;€ L*(p) and

-1
2. of < (Il w)
In particular, T is never subnormal if u{0} > 0.

This is referred to as the one-step backward extension of a one-variable sub-
normal weighted shift. Later an improved version of this result was given by
Curto and Yoon [37, Proposition 1.5]. In the same paper they have also given
the NASC for subnormal backward extension of a 2-variable weighted shift [37,
Proposition 2.9]. However these results only deal with one-step backward ex-
tension. In this chapter we try to extend this idea to formulate conditions for
existence of n-step backward extension of a subnormal weighted shift. We do
this for both single variable weighted shifts as well as for two variable weighted
shifts. We first derive our results using a technique similar to that of {12, 37].
However, in the last section of the chapter we show how these results can also

be derived by using Schur product technique.

7.2 Backward extension for one variable weighted
shifts

For o = {0,}52, , a bounded sequence of positive real numbers, let W, be the
associated unilateral weighted shift on ¢2(Z, ). The moments of ¢ are given as
1 ifk =0

W= wle) =1

af...ai_ | ifk>0
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We now recall a well known characterization of subnormality for single variable
weighted shifts, due to C. Berger [8]: “W, is subnormal if and only if there exists
a probability measure £ supported in [0, ||W,]|?] such that v, () :=a?...a2_, =
[thde(t) (Vk > 1) 7. € is called the Berger measure of Wj,.

For instance, the Berger measures of U, and S, are d; and (1 — a?)8y + a4y,
respectively, where §,, denotes the point mass probability measure with support
the singleton {x}. Also we denote by U, = shift(1,1,1,...) the (unweighted)
unilateral shift, and for 0 < a < 1 we let S, := shift(a,1,1,...).

Again, if W, is subnormal, and if for & > 1 we let M}y, := \/{en : n > h} denote
the in‘variant subspace obtained by removing the first A vectors in the canonical
orthonormal basis of £2(Z,.), then the Berger measure of W,|uy, is i thde(t).

Consider v (W, ) and v,(W,|m,) are as moments of the weighted shifts W, and

Walm, respectively. The moments are related as

(W)
(W, =alal ..ol =-—Mi—
Te(Walm,) = bt Cigry aZal.. ol
_ Yih(Wa)
7h(M/a) ’

so that for all £ > 0,

/mmm=%/wwwx

where 7, and £ are the Berger’s measure for the weighted shifts W, |y, and W,
respectively.
Therefore

nﬂ0=$%mdﬂ

h

We begin by stating the one-step subnormal backward extension of a one-

variable weighted shift.
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Theorem 7.2.1. (1-step backward extension) [87] Let T be a weighted shaft
whose restriction Tyy := Ty to M :=\/{e1,e2, . } 15 subnormal, unth associ-

ated measure jips. Then T s subnormal (with associated measure p) 1f and only
of
1. % €L} (/,LM)
2 1 -1
2 0t < (|1Hlgan)

In this case, du(t) = %ad/.LM(t) + (1 —all}

)ddg(t) where 6y denotes

|L1 {renr)

Dirac measure at 0. In particular, T 1s never subnormal when 1ia({0}) > 0.

B

Theorem 7.2.2. (2-step backward extension) Let T be a weighted shift whose
restriction Ty, to My .= \/{ez.e3, } 15 subnormal, with associate measure

ne. Then T 1s subnormal (with associate measure n) of und only of

1. t_12_ € Ll(’l’}g)

2. ala? < (Htl2 B

L (772)>

5. 02 = (130

2a2
In this case, dn(t) = (1 - okad I'Z%I‘Ll(ng)) dbo(t) + Z95Ldny(t), where 6y denotes

-1

the Durac measure at 0. In particular, T 1s never subnormal +f n,({0}) > 0

Proof =) Assume that T is subnormal, so clearly Ty, is subnormal The

moments of T and 7|y, are related by the equation

_ Yer2(T)
7k(T|Mz)=0’§a§~~O/i+1 = 2 32
Qptty

so that for all £ > 0,

1
kg, — k+2 g,
//, dia(l) = 2o //, +2dn(1)
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that is, dnq(t) = ;%gdn(t). Let n(0) = A, (A > 0), so it follows at once that
0-'1

oo
dn(t) = X dbo(t) + P dna(t) (7.2.1)
1
= 1 =) +adad 7
L(n2)

that is odedl| F i) =1 - < 1, also 7 € L'(12). Also, substituting the value

of A in (7.2.1), we have

1 2.2
dn(l) = (1 —oda? " ) ddo(t) + aggh dna(L).
L(n2)

Again, suppose 7; is the measure associated with the shift T'|ys,, where M; =

V{ei, es,...}. Then by Theorem 7.2.1, subnormality of T|p, and T'|p, will

-1
L‘(nz))

2
dm(t) = m(0) déo(t) + %d’f]z(t), where m (0) = (1 -l

imply that

1
le L'(m2), of < <“—
t 1
and

1

t

L‘(m))

Now, suppose af < (|[3{lL1)™" = m(0) > 0.
Which is a contradiction to the initial assumption that 7" is subnormal. Thefe—
fore, af = (| 3ll1(m)) ™"

<=) Let conditions 1, 2 and 3 hold and

2 2|l 1 : ‘1’(2)0@
dn(t) = | 1 — ogog || déo(t) + P dna(t) (7.2.2)
L1 (n2)
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For £k =0,

e iy

1
L' (m) ’

1
73 ) + o'ga'f
L (n2)

=
N L1 )

For k = 1, using (7.2.2) we have

ala? 1
[ran® = [ *5 an() = o o

t t

_ 1)
L (n2)

—od (e
L(m2)

For k > 2,

/tk dn(t) = agaf/tk—2dnz(t) = ajedve-2(T|m) = 1(T)

Thus T is subnormal with Berger measure 7.
Also if 12(0) > 0 will imply that 7|, is not subnormal, therefore 7' is not

subnormal. 0O

A similar argument will yield the NASC for 3-step backward extension, and in
general, the n-step subnormal backward extension of a 1-variable weighted shift

will be as follows:

Theorem 7.2.3. (n-step backward extension) Forn > 2, let T be a weighted
shift whose restriction T|p,, to My, = \/{en, €nt1, ...} is subnormal, with asso-
ciate measure 1,. Then T is subnormal (with associate measure n) if and only
of

1 o€ L'(n)

m
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-1
2 afal. .ok < (I‘?}T“L‘(nn))

-1
for1 <i<n-1.

2.2 2 — L
3 ojugy 0, = (”t"-i Ll(n..)>
In this case,

adal. .. o?

) dsa(t) + LT g ),

1
tn
where 8y denotes the Dirac measure at 0. In particular, T is never subnormal

2'f77n({0}) > 0.

dn(t) = (1 —oada?. . a2 o)
Li(nn

Corollary 7.2.4. Let T be a subnormal weighted shift and for j > 2, let M; =

V{ej, ejs1, ... }. Letn; denote the Berger measure of T|py;. Then oy, o, . .., 50

-1
15 completely determined by n; that s, a?_l = (”%

L (nj))
Also, if T is subnormal then condition 8 of Theorem 7.2.8 imply that

1
{nt

7.3 Backstep extension of 2-variable weighted
shifts

1

1

“ for1 <t < n.
LY (miv2) t

Lt (m)

-
LY (nm) ¢

7

LY (Mig1)

A 2-variable weighted shift T = (7}, 7T3) is said to be subnormal if it admits
a commuting normal extension. Equivalently, T = (73,7T3) is subnormal if
there exist normal operators N7 and N; such that /N, is a normal extension of
T; (i = 1,2) and Ny, Ny commute. Clearly, each component T; of a subnormal

2-variable weighted shift 7" = (73, T;) must be subnormal.

Theorem 7.3.1. [67](Berger’s theorem for 2-variable case) A 2-variable
weighted shift T = (T1,Ts) admits a commuling normal extension if and only

if there is a probability measure yi defined on the 2-dimensional rectangle R =
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[0, a1] x [0, a2, (a, :== | T2||*) such that

= [ [ it = [ [ btk ez,

We also include a few more definitions and results that are to be used in the

sequel.

Definition 7.3.1. {37} Let p and v be two positive measures on R,. We
say that 1 < v on X = R, if u(E) < v(F) for all Borel subset £ C Ry;
equivalently, u < v if and only if [ fdu < [ fdv for all f € C(X) such that
f>0onR,.

Definition 7.3.2. [37] Let u be the positive measures on X xY = R, xR, and

assume + € L'(u). The extremal measure ie,; (which is a probability measure)

on X XY is given by djier(s,1) := (1 — do(2)) ?ﬂTﬂ__d” (s,t)

L(y)
Definition 7.3.3. [37] Given a measure ;2 on X x Y, the marginal measure %
is given by ;X = 10 7r;(1, where 7x : X X Y — X is the canonical projection
on X. Thus pX(E) = u(E x Y), for every E C X. If u is a probability measure,

then so is puX.

Lemma 7.3.2. [37] Let i be the Berger measure of 2-variable weighted shaft

T and let £ be the Berger measure of the shaft(c0), a0y, ). Then € = p*. As
a consequence [ [ f(s)du(s,t) = [ f(s)duX(s) for all f € C(X).

Corollary 7.3.3. [87] Let ju be the Berger measure of a 2-varable weighted
shaft T. For 3 > 1, let du,(s, 1) = —f’du(s t). Then the Berger measure of
the sha ft(av,y, ), ) 18 & = X

Lemma 7.3.4. [87] Let 1 and w be two measures on X x Y, and assume that

i < w. Then X < w¥.
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Lemma 7.3.5. Let 11 be a positive measure on Ry xRy such that p1(Ex {0}) =0

for all Borel sets E C R,. Forn > 1, let & € L'(11). Then the extremal measure

tn

Peztyr on Ry x Ry is given by

1 —do(t
d/J/(ea:t)" (S,t) = n 0( )

dp(s,t).
A PP

Proof. For n.=1, 1 € L*(u) and we have
1 — do(t)

Ak

Suppose result is true for n i.e.,

piiexty (8, 1) = du(s,t) (by Definition 7.3.2)

L (1)

1—=60(t)

du(s,t).
H il

d/‘f(ea:t)" S, t

Let 4 € L'(1). Then,

~ 8(1)
// Cl/_l(ezt)u(s i) // tn+1”t}t”Ll(H) d/L(S,t)

dp(s, t)
// t"“ll;,—.llu(,,)

(B x{0})=0,VE CR,)
|

— t—uﬁ”L‘(#)
N5l 22y

< o0

t |

Therefore

' 1

1 1
? € L (/l)(ert)" a.l’ld ’

L' () “ L)

L (/’)(czt)"

Now as -i— € Ll(/,a)(m)n, so by Definition 7.3.2,

1 — dp(t
dtgeyenr (5,1) = =0 gy (s, 0)

212t ey
_ 1 — do(2)
e 12 2
1 — do(t)
R

du(s,t)

du(s, 1)

”L‘(/L)
Thus the result hold (by induction) for all n =1,2, ... 0
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Theorem 7.3.6. (I-step backward extension) [37] Let T = (T1,T3) be a 2-
variable weighted shaft and M be the subspace of £2(Z%) associated to indices
k = (ky, ko) with kp > 1. Let Tpy := T|p be subnormal unth associated measure
pn and let Wy = shaft(a0), @0y, ) 15 subnormal with associated measure

v. Then T 1s subnormal +f and only +f

1. % € Ll(/IM)

-1
L‘(/IM))

3. 5(20,0) “%”Ll(,“,,) (1m)ge S v

2 B < (I3

Moreover, 1f /B?O,O)II%HLI(/LM) = 1, then (up)X, = v. In the case when T 1s
subnormal, the Berger measure 1« of T 1s gwven by

1
{

du(s, t) zﬁ(zo,())

dbo(t).

d(m)ext(s, 1) + (dV(S) - 5(20,0) d(ﬁ‘m);\a’:t(s)>

LY (par) LY (ups)

Theorem 7.3.7. (2-step backward extension) Let T = (T1.T:) be a 2-variable
werghted shaft with the weight sequences o and 3. Assume that T'|p, the restric-
tion of T to My := \/{e(, ) ~ k2 > 2} 15 subnormal wrth assocrated measure
pa Let Wy := shift{apg). cae), ) and Wy = shift(ae), au,n, ) be subnor-
mal with associated measures & and & respectwely. Then T 1s subnormal unth

associaled measure ;i of and only if
1. % e LMu)
2. Blo0Bom 17l 1y < 1
3. 5(20,0)5(20,1) ”tl'-’“;:l (12) (/02)(};’”)2 <&

4- '8(20»1) H%”Ll(uz) =1
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5. (M) =&

Moreover, if ﬁ(20,0)6(20,1) ”tlz”Ll(/lz) =1, then (/,LQ)E\;zt)g = &. In the case when T
is subnormal, the Berger measure pu of T' is given by,

1
2

1

H= /8(20,0)ﬁ(20,1) 72 d(ﬂﬁém)?) X 0o

h Y
(12) (exty? + (50 - BiooyBin

L (p2) L1(p2)

Proof. =) Let T be subnormal. Then T'|p;, and T'|ps, are also subnormal with
the corresponding Berger measures j; and s, respectively. The moments are

related as follows:

Vet k1) (T) = B0y Yk ko) (T Ity )

Yok, k242) (T) = Bo,.0)Bf0,1) Yk o) (T a2
Therefore, the subnormality of T', T'|a, and 7|, imply that

tdu(s,t) = ﬁgo,o)d,ul(s, £) (7.3.1)

t2du(s,t) = ,3(20,0),3(20,1)(‘1/1.2(3; t) (7.3.2)

Therefore, i (E x {0}) =0, po(E x {0}) =0, VECR,.

1 1 1
—dpa(s,t) = // = djg(s,t) = ——m— // du(s,t
// 12 t>0 t2 IB(zg,o)ﬁ?oyl) t>0 ( )

1
=—— u(t> 0) (7.3.3)
ﬁ(20x0)ﬂ(20,1)

1
S -
BiooBion)

Now,

So, # € L*(u2) and ﬁ(20,0)ﬂ(20,1)”tl2 L'(u) < 1, which establishes 1 and 2.

For arbitrary Borel sets £ C Ry and 7 C R, we have
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1

5(20‘0)5(20,1) 2 (/—LQ)(ezt)Q(E x I)

LY (2)
~ Bhoion e // er(m)(mp(s,t)
H2

_ g // 5o(£)) ——————— dpn(s, )

(0,0)/ (01) tz L1 (2) Ex 12 “t2 ILl(llz)
= B 02 —-dl. s, t

//EX(F\{O}) 0.0F©0.1)32 fha( )
=// dp(s,t)

Ex(F~{0})

=pu(Ex (F~{0})) <u(ExF) (7.3.4)

and by Lemmas 7.3.4 and 7.3.2, B3 0,85 1yll /| 2 (uz) (2 feryp < #* = &o.

If [)'(00)[3’(0 1)|| lLt(ie) = 1 then by ( 7.3.3) nu(t > 0) = 1, and so (&2 x (F7
{0})) = 1(E x F). Therefore, from ( 7.3.4) we get (12)(ent)2 = = (ug)(m)g =

o
Again,

|

duz(s,t) // L du(s,t)
L3 (2) / / ~ BooPon o>5(o y

_ 7(01)(T) '3(00) _
ﬁ(O,O)ﬂ(O,l) B(O,U)’B(O,l) 5(0,1)

which gives 83 || 1lz1(.) = 1, proving 4.

Since T'| m, is a 1-step subnormal extension of 7| ,, and also 5(20,1) “ : H L) = b
so by Theorem 7.3.6, we have £ = (j22)X,.

Finally from (7.3.2) we have {2 du(s,t) = (00 Bioyda(s, ). Soif pu(s, 0) = A(s)

then

B2
dia(5,1) = dA(s) dbo(t) + ~C2TOD gy (s, )
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1
d(,‘»’&)(ea:t)2 (Sa f’)

2] 11 2
[ [ dtyems (5.0
L1 (je2)

::l> // dju(s,t) =/d/\(5) /d‘SO(t)‘*'ﬁ(ZO,O)ﬁ?OJ)

1 -
= /d/,LX(S) :/d/\(3)+ﬁ(20,o)ﬁ(20,1) /d(/'l‘2)(\ea:t)2(5)

2
1
12

= d/,L(S, t) = Cl/\(S) déo(t) + 13(20,0)ﬁ(20,1)

1
2

L (u2)

/ (312 e (5)

= / déo(s) = / dA(s) + Bio,y B0,y

LY (p2)

A(112) ety (3)
L1 (p2)

1
12

= dép(s) = dA\(s) + ﬁ(zo,o)ﬁ?o,n

Therefore,

du(s,t) = (d&o(s) - ﬁgo,o)ﬁfo,l) d(/.Lz)(\;zt)g(s)) dbg(L)

21t o)
1

t_2 d(ﬁ@)(e:ﬂt)2 (S; t)

L (p2)

+ ,6(20,0)ﬁ(20,1)

<=) Conditions 4 and 5 imply that T, is subnormal with measure fi; such
that 11 (E x {0}) = 0 for all Borel sets E C R,

Given conditions 1to 2, let

1
12

(,U'2)(ea:t)2 (S> t)
LY (u2)

+ (éo(S) - B0)5%1)

1(s,t) 1=,5(20,0),5(20,1)

1
g

(/-t2)(\;zz)2(5))50(t)-

LY (1e2)
If B%0)8% 1l |t (us) = 1 then total mass of the second summand is zero, and
S0 [ = (,“'2)(ezt)2'

For j =0,

1 1 1
// st d(p)(s, 1) =/3(20,0),3?0,1) ) // s d(112) (eany2 (s, 1)
£ (p2)
) 1
+/5d50(3) —:B(ZO,O)ﬁ(zo,l) ) /d(lm){gzz)?(S)
L (j12)
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=/sid§0(s) (using Lemma 7.3.2)

=vu0)(T)
For 3 =1,
. 1 ;
// st d(p)(s, ) :ﬁ(zo,O)ﬁ(zo,l) 72 //SLd(M)(emt)z(va)
© ML (p2)
1 — 0o(t))
=Gl [ [ )
0,070,132 () t” 0Lt (oot
1 i
=ﬁ(20,0)ﬂ(20,1) 7' //5 (1 —do(1)) d(liz)ext(sat)
“ UL (p2)
_ n2 ‘ i X -
= By [ 5 dlua)2le) (using 4
:‘ﬁ(20,0)/3 déi(s) = ﬁ(oo)a(o 1) O@-1,1)
=v:0(T)
For 5 > 1,
. 1 .
//Sztjd(ﬂ)(sst) 218(20’0)/8(20,1) t_2 // Szt]d(,l,l,g)(em)'z(s,t)
LY (u2)

= BlomBio

> 1
// Sztj(l - 60(t))—2——1—— d/,Lz(S,t)
LY (u2) 2 1zl ) _

='B(20,0)ﬁ(20,1) // S92y (s, 1)
= Bo0fonvei~2 (Th) = Y65 (1)

t

Hence, it follows that T is subnormal with Berger measure pu.

O

Theorem 7.3.8. (n-step subnormal backward extension of a 2-variable weighted
shift) Let T = (T1,T,) be a 2-variable weighted shift with double indezed
weight sequences o = {okteczz and B = {Bi}rezz. Forn > 1, let My

be the subspace associated to the indices k = (ki, ko) with ke > n. Assume
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that T|u, is subnormal with associated measure jin,. For 0 < 1 < n —1 let
W, = shaft{o, o,q, . } be subnormal with associated measures &, respec-

twely. Then T 1s subnormal if and only if

1. %€ LMun)

tﬂ

1

2. H;:(} '6(20,3) ” 2}7

L (pn) <

. T35 B I3 sy G < o

n—1 R
4 T2 By =l gy =1 for1<i<n—1
5. (/Ln)(\‘;zt)l =& ifor1<i<n-1

Moreover, 1f H;‘;OI [)’(QO,J) “t%”L1 ) = 1 then ([Ln)ém)n = &. In the case when T

s subnormal, the Berger measure p of T is given by,

n—1
_ 2
K= H 'B(O-J)
=0

The proof being similar to that of Theorem 7.3.7 is omitted.

(ﬁ‘n)(\;zt)") X 8o

1
tn

1
tn

n—1
(un)(ezt)" + ({0 - H ﬁ(zo,])
) 1=0

L (jen L (kn)

7.4 Derivation of above results using Schur prod-
uct technique

In this section we show that the above results can also be derived using Schur

product technique.

Definition 7.4.1. T = (Ty,...,Tn), where each T, acts on a Hilbert space H,
is said to be unitarily equivalent to S = (S1,...,Sn), where each S, acts on
a Hilbert space K, if there exists a unitary operator U : H — K such that
USU=T,for1 <y <N.
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For L = (I,m) and I = (1,7) in Z3%, let H; := v(k,,kz)eza {e(1+lkl,]+mk2)} :

In the sequel, we choose I,m > 1and 0<2< 1 -1,0<5< m~ 1

Explanation:

If L =(1,1) then» =y =0andso H; = H,o = \/(khk?)ezi{e(kl,k?)} = (*(Z2).
IfL=(21)then0<2<1landj=0 As Hpg = v(kl,k2)621{e(2klxk2)} and
Hu,00 = Vi, kyezz {er2m, k) }- S0, E(Z3) = Ho,0)D Ha,0)- Thus,

m—1 [-1

(22 =P P H,y.

1=0 =0
Definition 7.4.2. For § = (§(x, x,)) € €°°(Z2) define P py : £°(Z2) — 0°(Z2)

as

-1
P(L n 5) {H5(z+klt+p J+kzm)}
(ky kz)ezz

p=0

and Q.7 : £°(22) — (=°(Z3) as

m—1
Qun(d) = { H Oyl J+L2m+p)} :
(k1 kz)622

p=0

Definition 7.4.3. Define S; and S; on (*(Z2) as

(S17)(k1, k2) = v(k1 + 1, ko)

(S2v) (b1, k2) = (k1 kg + 1)
for Y= (7(161,’%)) € POO(Z?,_) Note 5152 = 5251.
PI‘OpOSitiOl’l 7.4.1. P(L‘(O,O)) S;S% = P(L I and Q(L (0,0)) S}S; = Q(LJ)'
Proof. S1S3(8)(ky, ko) = 6(ky + i, ky + 7) = 8(ky, k2) (say). Then

Py S193(8)(k1, k2) = Pr000 (1, k2)

-1

= [kl +p, k2m)

p=0
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-1
= H5(7 + kil +p, 7+ kgm)
p=0

= P ny(6)(kr. k2)
Similarly, Qz, (0,0)) S$1S3 = QL Iy -

Given, G = {a(kl,kz)} € €°°(Zi) and 13 = {ﬂ(k],;@)} € €°°(Z_2*_), let T = (Tl,Tg)

be 2-variable weighted shift with weight sequences o and (3, defined as

T1 €(ky k2) = (ke ko) E(k1+1, k2)

T2 €(ky ka) = Bks ka)€(kr, ko +1)

Let Ty = ((T(L - (Tw 1))2) be 2-variable weighted shift with weight se-

quences P, ny(a) and Q(r 1y(B), defined as

-1
(T(L ]))1 E(ky ko) = {HQ(l+k11+P,J+k2m)} E(k1+1, k)

p=0

m—1
(T(L 1))2 E(ky,k2) = { H ﬁ(z+k1l,1+k2m+P)} €(k1, ka+1)
p=0

NOW, TL = (Tll, T2m) and TLIH, = (T{IH,; T2m|H,)

Proposition 7.4.2. TY 15 unitanly equivalent to EB;”:_OI B T ny-

Proof. Define U : (3(Z2) — Hy as U e, k) = €(utkil, 1+ksm) Lhen for

€k, ka) € Hp, U €y 1) = € (b=t ko) and so UU* =1 =U"U

'om

Now, T®™ = (T}, T3*) and T¢™ |y, = (T{|n,, T3 H,)
As

-1
*rpl
U Tll”lue(kq,kz) = {H CY(z+k,t+p,J+k2m)} Clky41,kp) = (T(L I))l Cky kz)>

p=0

so similarly,

U T iU ery k) = (T(L D)2 Clkaka)
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Thus by Definition 7.4.1, (T%|s,, T5"|m,) = ((Tiw n)1, (Tw ny)2)- That is,

TL’HI = T(L n-

As L
m—1 -1
e(Z3) = EB @ Hy,
fy 7=0 2=0
SO
m—1 [-1 m~-1 -1
" =@ DTn =D DTun
7=0 =0 7=0 =0

O

Corollary 7.4.3. a) T* s k-hyponormal +f and only +f T(y, 1y 15 k-hyponormal

forall0<:<1-1,0<7<m—-1L

b) TL 1s subnormal +f and only +f T 1y 18 subnormal for all0 <2< 1-1,0<

78&m—-1

T 1s subnormal = T* = (T}, T3*) 15 subnormal
= TL|”, 18 subnormal for0 <1 <1 -1,0<7<m -1

= TiL s subnormal for0<21<1-1,0<7<m~- 1.

We are now seek to identify the Berger measure ji(;, jy corresponding to T, r)

St pa/m m s/t ga/m
Theorem 7.4.4. dyu, py(s,t) = zj(—T)du(sl/l, t/my = p,(z']jj(:r) divr ,00)(8, t)

Jor0 <o <1 -1, 0< 3 <m-—1 If u(s,t) = v(s,t) + p(s)do(t), where

v(Ex {0}) =0V FE CR,, then

2/l
d./l(Sl/l, 7tl/m)

(a) djr @oy(s,t) =
(L oy (s:t) Yoo (T)

Sz/l t]/m

V) (T)

(b) For 1<j3<m-—1dugn(st)= dv(s**, t/™)
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Proof. Let Y, #,)(T) and v, x,)(Z(1 1)) denote the moment sequences related
to T and Ty, y respectively.
Then

Y+kil, 3+kam) (T)
Yk, k (TL] ) =
(kv k2)\ L (L T) ’Y(z,g)(T)

1
k1 yk2 — 1kl g 3+kem
= s duc, n(s,t) = //s t dp(s,t)
// =D Yen)(T)
_ 1 // Sz/l Skl t]/mtkzd“ (Sl/l, tl/rn)

’Y("‘r]) (T)
i/l 43/m
st
= dur (s, t) = dj gt gm
: Ve (T) ( )

(7.4.1)

Also, dpur, 0,0y)(s, t) = dpe (s*/, t*™) . Therefore

o/l y3/m i/l y3/m

s st

dir (s, 1) = dp (sM4, 1™ = dir 0,00)(8, 1)
0 Vo) (T) ( ) Yoy (T) OO

for0<+1<[-1,0<9<m~—1.

If u(s,t) = v(s,t) + p(s)do(t), then from (7.4.1), we get

51/[

dir oy (s, ) = dpe (s, (Mm
(L (x,0)) 7(1‘0)(71) ( )

For1<j7;<m-—1,

ek 1
ki 4k 1+kil py+komn
s 2Cl/,l, L7 (S,t) = //S 1 pITh2 d/l,(S,t)
// “n V) (T)

= stRb Ry (s 1) (9 +kem > 0, Vi)
Yea)(T)

p ( t) Sz/l t]/m
= fiL nis; =
Y)(T)

dl/(sl/l, tl/m)
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Theorem 7.4.5. Let T = (1Ty,T2) be 2-varable weighted shift with wewght se-
quences o and 3, and M = \/k221 (ks ko) If T .= T|ar 15 subnormal, then for
L={(l,m), withl > 1,m > 1, the follounng are equivalent:

(a) T* 1s k-hyponormal.

(0) T(L 0y 25 k-hyponormal for 0 <+ <1 -1

Proof. (a) = (b) is obvious from Corollary 7.4.3.
(b) = (a) - Here

m—1 -1

b EB T(LI)

1=0

Given that T(f .0y is k-hyponormal for 0 < ¢ < [~ 1. To show Ty (. ,)) 18
k-hyponormal for 0 <:</—1land1<j7<m—~1.
Deﬁne d(kl,kz) = a(kl,k2+l) and B(kl,kQ) = ﬁ(kl,k2+l)~

(Tm) 1y is a 2-variable weighted shift with weight sequences

-1 -1
P (@) = {H &(z+klz+p,1+kzm)} = {Ha(z+klt+p,g+kzm+1)} = Pr g,+1)) (@)

p=0 p=0

and

Qun(B) = QL ey+1))(B)
Thus (TM)(L (7)) = T(L (2,9+1)) for 0 <1< [—1and 0 < ¥ S m—1
That is, (Tam) @y-1)) =Ty for0< 7 <l —1and 1< 9 <m

Now

Ty is subnormal = TAL,, is subnormal
= (Tm) 1y is subnormal and hence k-hyponormal
for0<2<1-1,0< 7 <m—1(by Corollary 7 4 3)
= (Tm)(L (y-1)) is k-hyponormal for 0 <2 <1 —-1,1 <3< m

= (T)r ts k -hyponormal for 0 <+ <1 -1,1<3<m -1
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O

Theorem 7.4.6. Let T = (T1,T5) be 2-varable weighted shift with wewght se-

quences ¢« and 8. Let M,, = \/k22n €(ky, kp) 0nd Trg, = T|m, be subnormal. For
L=(m)withl>1m>1,T=(,7) mith0<21<1-1,0<3<m~—1, and
k > 1. then the follouang are equivalent

(a) T* 15 k-hyponormal.

(b) T(L (2,0))s T(L @1). - - T(L (1,n~1)) GTE k-hyponormal for all0 <1 < -1

Theorem 7.4.7. Lel T = (11,T3) be 2-variable weighted shift with wewght se-
quences o and 3. Let My, = \/,622 LE(ky, kp) and Tar, = T|pr, be subnormal with
the Berger measure ju1(s,t) = v1(s,t)+p(s) 6o(t) and Wy .= sha ft(a,0), @(,0), )

be subnormal with associated measure & Then TM?) 1s subnormal +f and only

of
1 -1
o< ([,.,,)
LY (v1)
1
and ,3(20,0) n (Vl):a\:,rt <o
’ Ll(Ul)

If p(s) = 0, then T2 15 subnormal +f and only +f T 1s subnormal.

Proof. By the Theorem 7 4.5, if Thy, 1s subnormal, then 712 is subnormal if
and only if T{(1,2) (0,0y) is subnormal So, it suffices to check for T2 0,0y Again
T((1,2) (0,0)) is the 1-step back extension of (T, )((1,2) (0.1))

Since Ty, is subnormal with measure j¢1, so by Corollary 7.4.3 (c) (T, )((1,2) (0.1))
is also subnormal with measure (11)(1,2) (0,1))- Therefore by Theorem 7.3.6,

T(a,2) (0,0)) is subnormal if and only if



Chapter 7 128

-1
1
BooyBh,1) < (“7 )
iy A ((/'1)((1,2):(011)))

(7.4.2)

X

1
ﬁ?o,o)ﬁ(zo, Dt ((/.111)((1,2)1(0,1))> <& (7.4.3)
L ((“1)((1,2)=(0,1))) ext
Now,
d t1/2 4 f1/2 (7 ) 4)
' t =T N s v B N
(/jl) ((1,2):(0,1)) (S’ ) ’Y(O,l) (TMI) Vl(SI )
and
1 — ot
(l(ﬁﬂ) (S, /,) = f“l”( 0( )) d(/,tl) (57 é)
((1’2):(0'1)) ext e Ll((“l)((l.Z):(O,l))) ((1.2):(0,1)
- 50(t)) 1/2 .
= 1172 f _% (s, 1177) dvy(s,17*) (using (7.4.4))
t )
(1 =0o(t))
= —a— din(s, !
tf 1 dnls1) 154
= d(v1)em(s. ) (7.4.5)
1
NOW; (7.4.2) = ﬁ(zo,o)/@(z(), 1) / z d(/,l,l) (S,t) <1
(1,2):(0,1)
1
= B / 7 (s 1) <1
1
= ﬁ(2(),0) / ? dl/l(S,t) S 1
1 -1
~#a = ([il...,)
L (1)
and

] X
(743) = 6(20,0),6(20, 1) / - d((ﬂl)((llz):(o’])) (5; t)) ((,ul)((l,z);(o,l)) (5, t)) S 60(3)

A ext

" X
= :6(20,0) / 1/17 dUl(S’ t1/2) (Vl('s’t))ezt S 60(8)

= Bo.0) / % dia(s,1) (ni(s,1)) oy, < &o(s)

1 ‘4
7 ()es < &o
L1 ()

= ﬁ(zo, 0)
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If p(s) = 0, then uy(s,t) = w(s,t). Therefore by Theorem 7.3.6, T is

subnormal if and only if T is subnormal.

O

Theorem 7.4.8. Let T be a 2-variable weighted shift with the weight sequences o
and B. Assume that Thy, == T|m, the restriction of T to My = \/{e(, k) - k2 >
2} is subnormal with associated measure . Let Wy = shift(oo,0), 00,0),..)
and Wi = shift(coay, o11),...) be subnormal with associated measures & and

&1 respectively. Then T is subnormal with associated measure o if and only if
(i) tlz € L' (u2)

(i) ﬂ(20,0)ﬂ(20,1) |'215|'L1(,L2) <1

(i) BooyBion 17l 1 gy (2)%,0 < &0

(iv) 5(20,1) |‘%”L1(m) =1

(v) ()l =6

Proof. Assume that T be subnormal. Since T}, is a subnormal weighted shift

-1
Ll(“2)> and (/"'2)3; =

&1, Moreover, if (11 is a Berger measure of Ty, then 11 = (u,),,,. Since T

possessing a subnormal extension T, so ﬁ(20 ) = ( “%

is subnormal so by Corollary 7.4.3 (c), T((1,2)(0,0)) is also subnormal. Again
T((1,2):0,0)) 18 the 1-step extension of (T, )(1,2):(0,1)). Therefore by Theorem 7.3.6,

T((1,2):(0,0y) is subnormal if and only if
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L
7€ L ((/“)((1,2) (o,l)))
1
ﬁfo,o)ﬁfo,n 2l ) <1
. ((’“)((1,2) ©1)
X
1
ﬁ(20,0)'8(20.1) T ((“‘1)«1,2) @.x))) <o
L ( ("1) ((1,2) (0,1))) ext
Now

L1/2

, = — Y2 = dug(s, tM?).
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(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

So, (7.4.6) implies that % € L'(yi5(s,t)) and so also 1 € L*(us(s,1)). Also,

(B x{0}) =0, uo(E x {0}) =0VEC Ry.

and

() (5.1 U0l i)

e
02 o), el (6.2 0.9 (59)

(1,2) (0,1)

(s,1)

(1 — do(t)) dia(s, /%) (using (7.4.9))

= 1
t”;”IJI (/Lz(s,tlﬂ))

1 —6p(t
= f2”(l” ot)) dpa(s, t)
c el (;Lz(s,t))
= (i) _ya (1)
Again from (7.4.7), we get
1
18(20,0)ﬁ(20, nily <1
t Lt (“2(.5,:‘,1/2))
1
= 6(20,0)15(20, |72 <1
Lt (l"'z(sit))

and from (7.4.8), we get

1
Bo.0B0.1 ”7 p
Ell (Nz(s,tl/2))

1
(a(s, 1)), < &0(s)

£

2 2
= Bo,0fo.1) b (1ato0)
L\ 1eg (s,

(7.4.10)

(16, (s, 1)) 2 < o(s) (using(7.4.9) and (7.4.10))
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(«<=) Suppose all the conditions are hold. To show T is subnormal. From
conditions (i), (iv) and since Ty, is subnormal so by Theorem 7.3.6, Ty, is sub-
normal with the Berger measure 1, such that p;(E x {0}) =0 for all F C R,
and /i1 = (43 )ezt- S0 by Theorem 7.4.7 to check the subnormality of 7', it suffices
to check the subnormality of T3 and by Theorem 7.4.5 this reduces to verify-
ing the subnormality of T{q,2):0,0)- Again T{(1,2):(0,0)) is the 1-step extension of

(Tnm, )(1,2):(0.1)) (Which is subnormal).

Now, since (T, )((1,2):(0,1)): Tm, and Ty, are subnormal with measures (/41) ;2,017 >
j11 and ju2 respectively. So, we can establish as above that d(//,l) (

dus(s, /%) and (), (5,8) = d(tz) s (5,).

(1,2):(0,1)) (s,4) =

(1,2):(0,1)) ezt

So, condition (i) implies that 1€ Ll((ﬂl)((l,z).(o,l)))- From condition (ii) we will

get
2 2 1
B, 0P, 1) 2 <1
’ Ll(('ul)((l,Q):(O,l)) (3'12))
= Bo.oboy H <1
() a0 (59)

and condition (iii) will give,

1 X
18(20, 0)!8(20,1) 1_2' <(/J'l)((1,2).-(o,1)) (53 t)) < 50(3)
’ Ll((l‘l)((l,Q):(O,l))(sltz)) ext
1 X
= Bhobion| (6mom(s:) <)

’ Ll((11'1)((1,2):(0.1))(81t)) ext

Thus by Theorem 7.3.6, T{(1,2).(0,0)) is subnormal and hence T is subnormal. O
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