

PERTURBATION OF WEIGHTED SHIFT OPERATORS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF
DOCTOR OF PHILOSOPHY

BY

BIMALENDU KALITA
Registration No. 016 of 2010

DEPARTMENT OF MATHEMATICAL SCIENCES SCHOOL OF SCIENCES TEZPUR UNIVERSITY

JULY 2013

Abstract

In this work we have studied perturbation of weighted shift operators. For our study we consider both one-variable and two-variable weighted shift operators. There already exists in the literature, different necessary and sufficient conditions for a weighted shift operator to be either hyponormal, or weakly hyponormal, or 2-hyponormal, or quadratic hyponormal, or subnormal. We observe that these necessary and sufficient conditions are all framed in terms of the 'weight sequence' of the particular weighted shift. This immediately implies that any change or perturbation in the weights would reflect upon the hyponormality or any other similar property of the weighted shift. In this work we frame conditions which can exhaustively determine the situations where a perturbed shift will still retain its original property of hyponormality/ weak hyponormality/ 2-hyponormality/ quadratic hyponormality/ subnormality.

DECLARATION

I, Bimalendu Kalita, hereby declare that the subject matter in this thesis entitled Perturbation of Weighted Shift Operators is the record of work done by me, that the contents of this thesis did not form the basis of the award of any previous degree to me or to the best of my knowledge to anybody else, and that the thesis has not been submitted by me for any research degree in any other university/ institute. This thesis is being submitted by me to Tezpur University for the degree of Doctor of Philosophy in Mathematical Sciences.

Place: Napam
Date: $24 / 07 / 2013$

Bimalender Kalila
Signature of the Candidate

TEZPUR UNIVERSITY

CERTIFICATE

This is to certify that the thesis entitled Perturbation of Weighted Shift Operators submitted to the School of Sciences Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Mathematical Sciences is a record of research work carried out by-Bimalendu Kalita under my supervision and guidance.
All help received by him from various sources have been duly acknowledged.
No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Napam
Munmun Hazarika
Date: 24.07.2013
Professor
Department of Mathematical Sciences
School of Sciences
Tezpur University, Assam
INDIA

ACKNOWLEDGEMENT

First of all, it gives me immense pleasure and joy to express my heartfelt gratitude to my supervisor Dr.(Mrs.)Munmun Hazarika, Professor, Department of Mathematical Sciences, Tezpur University, for her valuable guidance, scholarly inputs and constant encouragement I received throughout the research work. Without her constant inspiration and encouragement, the present work would not have been possible.

I would like to express my heartiest thanks to Prof. Debajit Hazarika, Head, Department Mathematical Sciences, Tezpur University and Prof. Nayandeep Deka Baruah, Dean School of Sciences, Tezpur University, for their support and advice at various phases of my work.

I would like to thank all other faculty members and staff members of the Department of Mathematical Sciences, Tezpur University for their encouragement.

I would like to thank Dr. Tirthankar Bhattacharyya, Professor, Department of Mathematics, IISc Bangalore, for giving me the opportunity to attend a "Workshop on Analysis" at IISc Bangalore during my course work. This along with his valuable support and suggestions helped me in my research work.

For the financial support, I wish to acknowledge Tezpur University for providing Institutional scholarship, and University Grants Commission for providing U.G.C. Research Fellowship in Science for Meritorious Students to me to carry forward my research work.

I especially want to thank Mr. A. K. Pansari, Chairman, Royal Group of Institutions for having the confidence in me as an Assistant Professor in the

Department of Mathematics in his Institution. I wish also to extend my grateful thanks to Prof. (Dr.) S. P. Singh, Director, Royal Group of Institutions, Prof. (Dr.) B. Banerjee, Principal, Royal School of Engineering \& Technology and Prof. (Dr.) A. Devi, Head, Department of Mathematics, Royal School of Engineering \& Technology, for their valuable support and good wishes and specially for granting me leave from the Institution to carry forward my research work.

I gained a lot from my colleagues, Chumchum Doloi, Jonali Gogoi, Ajanta Nath, Kanon K. Ojah, Narayan Nayak, Ambeswar Phukon, Kallol Nath, Tazuddin Ahmed, Bidyut Boruah and Navanath Saharia, through their personal and scholarly interaction, their suggestions at various points of my research. I also acknowledge researchers of our department Jayanta, Tarun, Pearl, Suparna, Kuwali, Dimpal, Pallabi, Zakir, Gautam, Somnath, Surya, Porinita, Neelam and Krishna for their support in a very special way.

Finally, I thank my parents, who encouraged and helped me at every stage of my personal and academic life and longed to see this achievement come true.

[^0]
Dedicated

To

Maa \& Deuta

Table of Contents

Abstract i
Declaration ii
Acknowledgement iv
Table of Contents vii
1 Introduction 1
1.1 Background 1
1.2 Objectives 4
1.3 Review of literature 5
1.4 Notations 10
1.5 Chapterwise brief summary 11
2 On convexity of weakly k-hyponormal region 17
2.1 Introduction 17
2.2 Examples for quadratic hyponormality 18
2.3 NASC for weak k-hyponormality 30
2.4 Perturbation and convexity 37
3 On convexity of positive quadratic hyponormal region 40
3.1 Introduction 40
3.2 Positive quadratic hyponormality 41
3.3 Statement of problem 42
3.4 Determination of k_{1} and k_{2} 43
3.5 Conclusion 50
4 Finite rank perturbation of 2-hyponormal weighted shifts 51
4.1 Introduction 51
4.2 About 2-hyponormality 52
4.3 NASC for 2-hyponormality of finite rank perturbation 53
4.4 Small perturbation of 2-hyponormal is quadratically hyponormal 60
4.5 Examples of rank one perturbations 67
5 Perturbation of 2-variable hyponormal shift 70
5.1 Introduction 70
5.2 Statement of problem 70
5.3 Perturbation of the weight $\alpha_{\left(0, k_{2}\right)}$ 74
5.4 Perturbation of the weight $\alpha_{\left(k_{1}, 0\right)}$ 79
5.5 Perturbation of the weight $\alpha_{\left(k_{1}, k_{2}\right)}$ 84
6 On weak hyponormality of 2-variable weighted shifts 92
6.1 Introduction 92
6.2 Perturbations not affecting the core of T 95
6.2.1 Perturbation of the weight $\alpha_{\left(k_{1}, 0\right)}$ 95
6.2.2 Perturbation of the weight $\alpha_{\left(0, k_{2}\right)}$ 97
6.3 Reformulation of weak hyponormality 99
6.4 Perturbation of the weight $\alpha_{\left(k_{1}, k_{2}\right)}$ 103
7 Back-step extension of weighted shifts 107
7.1 Introduction 107
7.2 Backward extension for one variable weighted shifts 108
7.3 Backstep extension of 2-variable weighted shifts 113
7.4 Derivation of above results using Schur product technique 121
Bibliography 132

Chapter 1

Introduction

1.1 Background

Several important classes of bounded Hilbert space operators were introduced around the year 1950. We refer to three such classes of operators, namely, weighted shift operators, subnormal operators and hyponormal operators.

Weighted shifts are among the apparently simple but actually very rich examples of Hilbert space operators. They are related to subtle questions of function theory and constructive mathematics.

- If $\left\{e_{n}\right\}_{n=0}^{\infty}$ denotes an orthonormal basis of the space of square summable complex sequences $\ell^{2}\left(\mathbb{Z}_{+}\right)$, and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is a bounded sequence of scalars, then the unilateral weighted shift W on $\ell^{2}\left(\mathbb{Z}_{+}\right)$is defincd linearly such that $W e_{n}=\alpha_{n} e_{n+1}$ for all n.

Though references to these definitions go back to the late 1950 's, the first systematic study of shift operators was undertaken by R. L. Kelly in his doctoral thesis in 1966 [68]. About ten years later A. L. Shields again compiled a thorough account of subsequent developments [81]. Since then this class of operators has received much attention. Initially it was used in the investigation of isometries, but slowly it emerged as a fertile domain for providing examples in the
study of general operators.
The other two classes of bounded Hilbert space operators that we have mentioned are subnormal and hyponormal operators. Motivated by the successful development of the theory of normal operators, in 1950 P.R. Halmos introduced the notion of subnormality and hyponormality for bounded Hilbert space operators.

- We recall that an operator T is subnormal if it is the restriction of a normal operator to an invariant subspace.
- T is hyponormal if $T^{*} T \geq T T^{*}$.

By simple matrix calculations it can be verified that subnormality implies hyponormality, but the converse is false. One reason is that subnormality is invariant under polynomial calculus or the calculus of analytic functions, while hyponormality is not. If we define T to be polynomially hyponormal whenever $p(T)$ is hyponormal for every polynomial $p \in \mathbb{C}[\mathbb{Z}]$, then the natural question that follows is:

Question A: If T is polynomially hyponormal, then must T be subnormal?

In [75] it was shown that Question-A has an affirmative answer if and only if the corresponding problem for unilateral weighted shifts has an affirmative answer. In other words, it was proved that there exists a non subnormal polynomially hyponormal operator if and only if there exist a weighted shift operator with the same property. In [34] was given an example of an operator which is polynomially hyponormal but not subnormal. This means that there must also exist a
non subnormal polynomially hyponormal weighted shift operator. However, till date such a weighted shift operator has not yet been identified. The reason for this could be because the gap between subnormality and hyponormality is not clearly understood. In [24] it was pointed out that we can easily construct a non subnormal polynomially hyponormal weighted shift operator, if we can give an affirmative answer to the following question regarding perturbation of weighted shift operators:

Question B: Is polynomial hyponormality of the weighted shift stable under small perturbations of the weight sequence?

Let us assume that Question-B has an affirmative answer. Under this assumption, if we consider the recursively generated weighted shift T_{x} with weight sequence : $1, \sqrt{x},\left(\sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}}\right)^{\wedge}$, then it can be shown that T_{x} is subnormal if and only if $x=2$; whereas T_{x} is polynomially hyponormal if and only if $2-\delta_{1}<x<2+\delta_{2}$ for some $\delta_{1}, \delta_{2}>0$. Thus for sufficiently small $\epsilon>0$, the weight sequence $\alpha_{\epsilon}: 1, \sqrt{2+\epsilon},\left(\sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}}\right)^{\wedge}$ would induce a non subnormal polynomially hyponormal weighted shift operator, as desired.

Hence it needs to be investigated whether Question-B does have an affirmative answer or not. And for this we need to develop the perturbation theory of weighted shift operators. In fact, a proper investigation of the notion of perturbation of weighted shift operators would help us to bridge the gap between subnormality and hyponormality, and to understand the position of the subnormals within the class of hyponormals.

1.2 Objectives

The basic problem we refer to is understanding the gap between the classes of subnormal and hyponormal operators. In the recent past several new classes of operators like k-hyponormal and weakly k-hyponormal operators have been introduced and studied in an attempt to bridge the gap between subnormality and hyponormality. We refer the following papers for details [12] [13] [16] [17] [22] [26] [36] [44] [51] [75].

Most of this work is carried out on the class of weighted shift operators, this being a prototype to the original question. A huge volume of literature deals with characterizations of these intermediate classes of operators by establishing necessary and sufficient conditions. These conditions are always in terms of weights of the weighted shift. This motivated us to raise the following questions: "suppose we have a k-hyponormal weighted shift W with sequence $\left\{\alpha_{n}\right\}$. To what extent can the weight sequence be perturbed, so that the corresponding perturbed shift still retain the property of k-hyponormality?" The ability to answer this question would contribute much towards a proper understanding of the class of k-hyponormal weighted shift operators, and also to distinguish it from the other subclasses.

Again it is known from the existing literature that the class of k-hyponormals is within the class of weakly k-hyponormals. This motivate us to ask "whether a perturbed k-hyponormal remains weakly k-hyponormal." The present work attempts to address such kinds of questions.

Hence, the objective of the present work is to contribute to the development of the theory of perturbation of weighted shift operators, with reference to the
notion of hyponormality, k-hyponormality, weak k-hyponormality and subnormality. Our work aims to carry forward the ongoing research in this area and also to plug some of the holes in the existing literature.

1.3 Review of literature

We begin by taking a look at the class of weighted shift operators with reference to the classes of subnormal and hyponormal operators. We denote by W_{α} the weighted shift on $\ell^{2}\left(\mathbb{Z}_{+}\right)$with a bounded weight sequence $\alpha=\left\{\alpha_{n}\right\}$. If, in particular, each α_{n} is equal to 1 , then W_{α} is referred to as the simple unilateral shift and denoted by U_{+}. Since the bilateral shift on $\ell^{2}(\mathbb{Z})$ is a natural normal extension of U_{+}, hence U_{+}is subnormal, and therefore also hyponormal. However, the weighted shift W_{α} need not always be subnormal or even hyponormal. In fact we have the following results:

- W_{α} is hyponormal if and only if $\left|\alpha_{n}\right| \leq\left|\alpha_{n+1}\right|$ for all n.
- (Berger's Theorem) W_{α} is subnormal if and only if there exists a Borel probability measure μ supported in $\left[0,\left\|W_{\alpha}\right\|^{2}\right]$, with $\left\|W_{\alpha}\right\|^{2} \in \operatorname{supp} \mu$, such that $\gamma_{n}=\int t^{n} d \mu(t)$ for all $n \geq 0$, where $\gamma_{0}:=1$ and $\gamma_{n+1}:=\alpha_{n}^{2} \alpha_{n-1}^{2} \ldots \alpha_{0}^{2}$ for $n \geq 0$.

In [51, Problem 203] Halmos asked for an example of a hyponormal operator that is not subnormal. Later on he himself comes up with one such example namely, the weighted shift operator W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}$, where $\alpha_{0}=a, \alpha_{1}=b, \alpha_{n}=1$ for all $n>1$ and $a<b<1$. In fact Stampfli [80] was the first to address the question "which monotone shifts are subnormal?" In Theorem 4 of the same paper he provides a set of necessary and sufficient
conditions for subnormality of W_{α} in terms of the weights α_{n}. These conditions make it cvident that even the first four weights ($\alpha_{0}<\alpha_{1}<\alpha_{2}<\alpha_{3}$) may 'prevent' a shift from being subnormal.

Again in [51, Problem 209], Halmos asked for an example of a hyponormal operator whose square is not hyponormal. The example was duely provided but with much difficulty. We now recall subsequent development in the theory by which such examples can now be generated with much ease.

Let H be an infinite dimensional separable complex Hilbert space and let $B(H)$, denote the algebra of bounded linear operators on H.

- For $S, T \in B(H),[S, T]:=S T-T S$.
- An n-tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ is hyponormal or the operators T_{1}, \ldots, T_{n} are jointly hyponormal if

$$
\left[T^{*}, T\right]:=\left(\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \ldots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \ldots & {\left[T_{n}^{*} ; T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \ldots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right) \geq 0
$$

- For $k \geq 1, T \in B(H)$ is k-hyponormal if $\left(T, T^{2}, \ldots, T^{k}\right)$ is hyponormal i.e.,

$$
\left(\begin{array}{cccc}
{\left[T^{*}, T\right]} & {\left[T^{* 2}, T\right]} & \ldots & {\left[T^{* k} ; T\right]} \\
{\left[T^{*}, T^{2}\right]} & {\left[T^{* 2}, T^{2}\right]} & \ldots & {\left[T^{* k}, T^{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T^{*}, T^{k}\right]} & {\left[T^{* 2}, T^{k}\right]} & \ldots & {\left[T^{* k}, T^{k}\right]}
\end{array}\right) \geq 0
$$

- (Bram-Halmos)
$T \in B(H)$ is subnormal
$\Leftrightarrow T$ is k - hyponormal for all $k \geq 1$
$\Leftrightarrow\left(T, T^{2}, \ldots, T^{k}\right)$ is hyponormal for all $k \geq 1$.
- An n-tuple $T=\left(T_{1}, \ldots, T_{n}\right)$ is weakly hyponormal if $L S(T):=\left\{\sum_{i=1}^{n} \lambda_{i} T_{2}\right.$:
$\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}\right\}$ consists only of hyponormal operators.
- For $k \geq 1, T \in B(H)$ is weakly k-hyponormal if $\left(T, T^{2}, \ldots, T^{k}\right)$ is weakly hyponormal.
- $T \in B(H)$ is said to be polynomially hyponormal if T is weakly k hyponormal for all $k \geq 1$.
- W_{α} is k-hyponormal $\Leftrightarrow\left(\gamma_{n+2+}\right)_{\imath, j=0}^{k} \geq 0$ for all $n \geq 0$, where $\gamma_{0}:=1$ and $\gamma_{n+1}=\alpha_{n}^{2} \gamma_{n}$ for $n \geq 0$, defines the moment sequence of W_{α}.

With this last characterization at hand, it is possible to distinguish between k-hyponormality and $(k+1)$-hyponormality for every $k \geq 1$. But while k hyponormality of weighted shift admits a simple characterization, the same is not true for weak k-hyponormality.

In an effort to unravel how k-hyponormality and weak k-hyponormality are interrelated, different researchers have adopted different line of thoughts:
(a) A number of papers have been written describing the links for specific families of weighted shifts e.g., those with recursively generated tails and those obtained by restricting the Bergman shift to suitable invariant subspaces. Some of the relevant references are the following [5] [12] [13] [17] [19] [20] [21] [24] [25] [32] [65] [66] [71].
(b) Another approach has been to take a closer look at weighted shifts whose first few weights are unrestricted but whose tails are subnormal and recursively generated, refer to [3] [15] [16] [45] [46] [60] [63] [80].

As such we have a whole range of results leading to a better understanding of the problem in hand.

- [80] If W_{α} is subnormal weighted shift with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\alpha_{n}=\alpha_{n+1}$ for some $n \geq 0$, then $\alpha_{1}=\alpha_{2}=\ldots$ i.e., W_{α} is flat
- [6] Let W_{α} be a unilatreral weighted shift with weight sequence $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and assume that W_{α} is quadratically hyponormal (that is, weakly 2hyponormal). If $\alpha_{n}=\alpha_{n+1}$ for some $n \geq 1$, then $\alpha_{1}=\alpha_{2}=\ldots$ i.e. W_{α} is subnormal.
- [12] For $x>0$ let W_{α} be the weighted shift whose weight sequence is given by $\alpha_{0}:=x$ and $\alpha_{n}=\sqrt{\frac{n+1}{n+2}}$ for $n \geq 1$. Then
(i) W_{α} is subnormal $\Leftrightarrow 0<x \leq \sqrt{\frac{1}{2}}$
(ii) W_{α} is 2-hyponormal $\Leftrightarrow 0<x \leq \frac{3}{4}$
(iii) W_{α} is weakly 2 -hyponormal $\Leftrightarrow 0<x \leq \sqrt{\frac{2}{3}}$.
- [46] Let $\alpha(x): \sqrt{x}, \sqrt{x}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \ldots$ be a weight sequence with Bergman tail. Then $\left\{x \in \mathbb{R}_{+} \mid W_{\alpha(x)}\right.$ is q.h. $\}$ is a closed interval and is equal to $\left[\delta_{1}, \delta_{2}\right]$ where $\delta_{1} \approx .1673$ and $\delta_{2} \approx .7439$ approximate to four places after decimal.
- [23] Let $\left\{\delta_{n}\right\}_{n=0}^{\infty}$ be the weight sequence given by

$$
\delta_{n}= \begin{cases}\frac{1}{2} ; & \text { if } n=0 \\ \frac{1}{2^{n}}, & \text { if } n=2,4,6, \\ \frac{1}{2^{2+2}}, & \text { if } n=1,3,5, \ldots\end{cases}
$$

If $\alpha_{n}=\left(\sum_{k=0}^{n} \delta_{k}\right)^{\frac{1}{2}}$ for $n \geq 0$, then W_{α} is hyponormal but not 2hyponormal.

- [66] Let $\alpha(x): \sqrt{x}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}} ; \ldots$ There exists $\delta \in\left(\frac{9}{16} ; \frac{2}{3}\right)$ such that
(i) $W_{\alpha(x)}$ is cubically but not 2-hyponormal if $\frac{9}{16}<x \leq \delta$.
(ii) $W_{\kappa(x)}$ is quadratically hyponormal but not cubicaly hyponormal if $\delta<a<\frac{2}{3}$.

Inspite of this huge repertoire of established results and generated examples, it should however be mentioned that the overall problem still remains largely unsolved.

The study of the multivariable analogue to these problems have also received much attention in the last few years [27] [28] [29] [30] [31] [37] [38] [39] [40].

- Consider double indexed positive bounded sequences $\alpha_{k}, \beta_{k} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right), k \equiv$ $\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}:=\mathbb{Z}_{+} \times \mathbb{Z}_{+}$and let $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ be the Hilbert Space of square summable complex sequences indexed by \mathbb{Z}_{+}^{2}. The 2 -variable weighted shift $T=\left(T_{1}, T_{2}\right)$ is defined by

$$
T_{1} e_{k}=\alpha_{k} e_{k+\varepsilon_{1}}, T_{2} e_{k}=\beta_{k} e_{k+\varepsilon_{2}}
$$

where $\varepsilon_{1}=(1,0)$ and $\varepsilon_{2}=(0,1)$. Here

$$
T_{1} T_{2}=T_{2} T_{1} \Longleftrightarrow \beta_{k+\varepsilon_{1}} \alpha_{k}=\alpha_{k+\varepsilon_{2}} \beta_{k} \text { for all } k \in \mathbb{Z}_{+}^{2}
$$

Given $k \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, the moments of T of order k are

$$
\gamma_{k}:=\left\{\begin{array}{cc}
1 & \text { if } k_{1}=0=k_{2} \\
\alpha_{(0,0)}^{2} \ldots \alpha_{\left(k_{1}-1,0\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2}=0 \\
\beta_{(0,0)}^{2} \ldots \beta_{\left(0, k_{2}-1\right)}^{2} & \text { if } k_{1}=0 \text { and } k_{2} \geq 1 \\
\beta_{(0,0)}^{2} \ldots \beta_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}\right)}^{2} \ldots \alpha_{\left(k_{1}-1, k_{2}\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2} \geq 1
\end{array}\right.
$$

A multivariable weighted shift can be defined in an entirely similar way.

- [67](Berger's Theorem: characterization of subnormality for 2 -variable weighted shifts) T admits a commuting normal extension if and only if there is a probability measure μ defined on the 2 -dimensional rectangle $R=\left[0, a_{1}\right] \times\left[0, a_{2}\right],\left(a_{2}:=\left\|T_{2}\right\|^{2}\right)$ such that $\gamma_{k}=\iint_{R} t^{k} d \mu(t):=$ $\iint_{R} t_{1}^{k_{1}} t_{2}^{k_{2}} d \mu\left(t_{1}, t_{2}\right)\left(\forall k \in \mathbb{Z}_{+}^{2}\right)$.
- [25] A 2 -variable weighted shift $T=\left(T_{1}, T_{2}\right)$ is k-hyponormal
$\Leftrightarrow\left(\gamma_{u} \gamma_{u+(m, n)+(p, q)}-\gamma_{u+(m, n)} \gamma_{u+(p q)}\right)_{1 \leq m+n \leq k,} 1 \leq p+q \leq k \leq 0$ for all $u \in \mathbb{Z}_{+}^{2}$.
- A 2-variable weighted shift T is horizontally flat if $\alpha_{\left(k_{1}, k_{2}\right)}=\alpha_{(1,1)}$ for all $k_{1}, k_{2} \geq 1$; vertically flat if $\beta_{\left(k_{1}, k_{2}\right)}=\beta_{(1,1)}$ for all $k_{1}, k_{2} \geq 1$; flat if it is horizontally flat, and vertically flat; symmetrically flat, if T is flat and $\alpha_{(1,1)}=\beta_{(1,1)}$.

1.4 Notations

We mention here a few standard notations to be followed throughout the sequel.
\mathbb{N} : Set of natural numbers.
\mathbb{Z} : Set of integers.
\mathbb{Z}_{+}: Set of non-negative integers.
\mathbb{R} : Set of real numbers.
\mathbb{R}_{+}: Set of non-negative real numbers.
\mathbb{C} : Set of complex numbers.
\mathbb{Z}_{+}^{2} : Set of Ordered pairs of non-negative integers.
$\ell^{2}\left(\mathbb{Z}_{+}\right)$: Hilbert space of square summable complex sequences indexed by the set \mathbb{Z}_{+}.
$\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$: Hilbert space of square summable complex sequences indexed by the
$\operatorname{set} \mathbb{Z}_{+}^{2}$.
$\ell^{\infty}\left(\mathbb{Z}_{+}\right)$: Space of all bounded sequences of scalars indexed by the set \mathbb{Z}_{+} $\ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$: Space of all bounded sequences of scalars indexed by the set \mathbb{Z}_{+}^{2}.

In addition to these we also often use the following abbreviations:
q.h.: Quadratic hyponormal or weak 2-hyponormal.
p.q.h.: Positive quadratic hyponormal.

NASC: Necessary and sufficient condition.
cl: Closure.

1.5 Chapterwise brief summary

Chapter 1: This chapter is introductory in nature. We include here the motivation and objectives of the present work, along with a brief review of literature leading to the same. A chapterwise brief summary of the work done in each chapter of the thesis is also included here.

Chapter 2: On convexity of weakly k-hyponormal region

Let $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a weight sequence. Let $k \geq 1$ and $\jmath \geq 0$. Definc
$\alpha[\jmath: x]: \alpha_{0}, \alpha_{1}, \ldots, \alpha_{\jmath-1}, x, \alpha_{\jmath+1}, \ldots$ We say, $\alpha[\jmath: x]$ is the perturbation of weight sequence α where the $j^{\text {th }}$ weight of α namely, α_{j} is perturbed to x.

Let $\Omega_{\alpha}(k, \jmath):=\left\{x: W_{\alpha[\jmath x]}\right.$ is k-hyponormal $\}$
and $\omega_{\alpha}(k, \jmath):=\left\{x: W_{\alpha[\jmath x]}\right.$ is weakly k-hyponormal $\}$.
If W_{a} is a weighted shift then $W_{\alpha[j x]}$ is referred to as a rank-one perturbation of W_{α} where the $\jmath^{\text {th }}$ weight α_{j} is perturbed to x. If for $\imath<\jmath, \alpha_{2}$ and α_{j} are perturbed to x and y respectively, then $W_{\alpha[(\imath x),(\jmath y)]}$ is referred to as rank-two perturbation of W_{α} Similarly, we can define any finite perturbation of W_{α}. In $[24$, Theorem 6.5] it was shown that rank-one perturbations of k-hyponormal
weighted shifts which preserve k-hyponormality form a convex set. That is, if W_{α} is k-hyponormal then $\Omega_{\alpha}(k, j)$ is a convex set. The natural question that follows is "If W_{α} is weakly k-hyponormal, then is $\omega_{\alpha}(k, j)$ a convex set?" In this chapter we answer this question in the affirmative.

For this we have used the characterization of weak k-hyponormality given in [45].
Chapter 3: On convexity of positive quadratic hyponormal region
This chapter is in continuation of Chapter 2. Here also we continue to investigate the idea of convexity.

If $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a positive weight sequence, $\imath \geq 0, k \geq 1$ and W_{α} is weakly k hyponormal, then we have shown that $\omega_{\alpha}(k ; j)$ is a nonempty convex set, where $\omega_{\alpha}(k, j):=\left\{x: W_{\alpha[j x]}\right.$ is weakly k-hyponormal $\}$.

Question: For $y \in \omega_{\alpha}(k, i+1)$, is there any relation between $\omega_{\alpha}(k, i)$ and $\omega_{\alpha[i+1, y]}(k, i)$? Here $\omega_{\alpha[2+1, y]}(k, i):=\left\{x: W_{\alpha[(2: x),(i+1: y)]}\right.$ is weakly k-hyponormal $\}$. In this chapter we address this problem with reference to a positively quadratically hyponormal operator W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ where $\alpha_{n}=$ $\sqrt{\frac{n+1}{n+2}}$ for all n.
We have proved the following:

1. For $x \in\left[k_{1} ; k_{2}\right]$, the weighted shift $W_{[(0: x),(1: x)]}$ is p.q.h., where $k_{1}=$ $0.630435, k_{2}=0.737144$.
2. For $y \in\left[k_{1}, k_{2}\right],\left\{x: W_{\alpha[(0: x),(1: y)]}\right.$ is p.q.h. $\}=(0, y]$.
3. If either $y<k_{1}$ or $y>k_{2}$, then there exists $0<x \leq y$ such that $W_{\alpha(0 x),(1: y)]}$ is not p.q.h. If we represent the perturbations of α_{0} and α_{1} as x and y respectively, and represent them in the 2 -dimensional plane then our result can be graphically represented as follows

Chapter 4: Finite rank perturbation of 2-hyponormal weighted shifts In [24, Theorem 2.1] it has been shown that a non-zero finite rank perturbation of a subnormal shift is never subnormal unless the perturbation occurs at the initial weight. However, this is not necessarily true for a 2 -hyponormal shift as shown in [24, Example 3.1(ii)]. In view of this, the question being addressed in this chapter is as follows:
"Given a 2-hyponormal weighted shift W_{α} and $j \geq 0$, does there always exist $\varepsilon>0$ such that for $x \in\left(\alpha_{j}-\varepsilon, \alpha_{j}+\varepsilon\right), W_{\alpha[j: x]}$ is again 2-hyponormal?"

In this chapter we establish a set of sufficient conditions under which there exists $\epsilon>0$ such that for $x \in\left(\alpha_{j}-\epsilon, \alpha_{j}+\epsilon\right), W_{\alpha \mid j: x]}$ will again be 2-hyponormal. Applying these conditions we can completely determine the situations where 2-hyponormality preserving perturbations do not exist.

Moreover, in [24, Theorem 2.3], it was shown that a 2-hyponormal weighted shift remains quadratically hyponormal under small non-zero finite rank perturbations. The proof was based on the definition of positive quadratic hyponormality. In this chapter we give an independent proof for the same result, using a different characterization of quadratic hyponormality.

Chapter 5: Perturbation of 2-variable hyponormal weighted shift
In Chapter 4 we have addressed the question of finite rank perturbation of 2-hyponormal weighted shift considering the unilateral weighted shift W_{α} on $\ell^{2}\left(\mathbb{Z}_{+}\right)$. In this chapter we initiate a parallel discussion for the 2 -variable weighted
shift on $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$. For a unilateral weighted shift W_{α} it is well known that W_{α} is hyponormal if and only if $\alpha_{n} \leq \alpha_{n+1}$ for all n. Hence for a strictly increasing weight sequence, any slight perturbation of the $i^{\text {th }}$ weight still retains the hyponormality property for the perturbed shift. "Is the same true for a two variable weighted shift?" The answer is negative as is shown in the work done in this chapter. We also frame a set of positivity conditions which can completely determine hyponormality of the perturbed shift.

Chapter 6: On weak hyponormality of 2 -variable weighted shifts

In Chapter 5 it, was shown that if for a. 2-variable hyponormal shift $T=\left(T_{1}, T_{2}\right)$, a weight $\alpha_{\left(k_{1}, k_{2}\right)}$ is perturbed, then the resulting perturbed shift may not remain hyponormal. For example, say we have the 2 -variable hyponormal shift $T=$ $\left(T_{1}, T_{2}\right)$ with respective weight sequences $\left\{\alpha_{\left(k_{1}, k_{2}\right)}\right\}$ and $\left\{\beta_{\left(k_{1}, k_{2}\right)}\right\}$, as shown in the following diagram

Suppose the weight $\alpha_{(2,2)}$ is perturbed slightly to x. Then to preserve commutativity, we need to perturb at least a minimum number of adjacent weights. So
accordingly, $\beta_{(2,2)}$ changes to $y, \alpha_{(1,2)}$ changes to z, and $\beta_{(2,1)}$ changes to t. The weight diagram of the perturbed shift $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ will be as follows:

In Chapter 5 it was shown that \tilde{T} may not remain hyponormal. In fact the conditions under which \tilde{T} will still be hyponormal is completely given in that chapter.

In this chapter, we show that though \tilde{T} may not be hyponormal, it will however still remain weakly hyponormal for sufficiently small perturbations x of $\alpha_{\left(k_{1}, k_{2}\right)}$.

Chapter 7: Back-step extension of weighted shifts

In this chapter we address the question of perturbation of subnormal weighted shifts. It was shown in [24, Theorem 2.1] that a non-zero finite rank perturbation of a subnormal shift is never subnormal, unless the perturbation occurs at the initial weight α_{0}. So the idea is to begin with a subnormal shift and create a backstep extension preserving subnormality The necessary and sufficient conditions (NASC) for subinormal backward extension of a 1-variable weighted shift was first given by Curto [12, Proposition 8]. Later an improved version of this result
was given by Curto and Yoon [37, Proposition 1.5]. In the same paper, they have also given the NASC for subnormal backward extension of a 2 -variable weighted shift [37, Proposition 2.9]. However, these results only deal with 1step extension. In this chapter we extend these results to 2 -step extension, and following a similar technique we propose NASC for n-step backward extension of 1 -variable and 2 -variable weighted shifts. In the last section we show how these results can also be derived applying Schur product technique.

Chapter 2

On convexity of weakly k-hyponormal region

2.1 Introduction

To express ourself clearly and systematically we begin by specifying the notations being followed. Let W_{α} be a weighted shift with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. Here α_{n} is referred to as the $n^{\text {th }}$ weight. So α_{0} is the $0^{\text {th }}$ weight, α_{1} is the $1^{\text {th }}$ weight and so on. If for $y>0$, and $j \geq 0, \alpha[j: y]$ denote the weight sequence $\alpha_{0}, \ldots, \alpha_{j-1}, y, \alpha_{j+1}, \ldots$ then $W_{\alpha[j: y]}$ is called the perturbed shift where the $j^{\text {th }}$ weight α_{j} is perturbed to $y . W_{\alpha[j: 3]}$ is a rank one perturbation of W_{α}. If the $i^{\text {th }}$ and $j^{\text {th }}$ weights of α are perturbed to x and y respectively, then the perturbed shift $W_{\alpha[(i: x),(j: y)]}$ is called a rank two perturbation of W_{a}. Similarly, we can define any finite rank perturbation of W_{α}.

The issue of perturbation of weights in a weighted shift operator, is intricately related to the question of convexity of the domain of perturbation. In [24, Theorem 6.5] it was shown that rank-one perturbations of k-hyponormal weighted shifts which preserve k-hyponormality form a convex set. That is, if W_{α} is k-hyponormal then $\Omega_{\alpha}(k, j):=\left\{x: W_{\alpha\{j: x\}}\right.$ is k-hyponormal $\}$ is a convex set. However, it is not known whether a similar result holds for weakly k-hyponormal
weighted shift W_{α}. In this chapter we show that, "if W_{α} is weakly k-hyponormal, then $\omega_{a}(k, j):=\left\{x: W_{\alpha[j: x]}\right.$ is weakly k-hyponormal $\}$ is a convex set."

In trying to ascertain this result, our first attempt is to come up with an example having this property. We try to achieve this for the case of a weak 2-hyponormal (i.e. quadratic hyponormal) operator using the characterization of quadratic hyponormality given in [65].

In examples 2.2 .1 and 2.2 .2 we construct two quadratically hyponormal weighted shifts W_{α} and W_{β} where the weight sequences α and β are as follows:

$$
\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{43}{80}}, \sqrt{\frac{2}{3}}, \ldots \text { and } \beta: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{47}{80}}, \sqrt{\frac{2}{3}}, \ldots
$$

Let $\gamma(x)$ denote the weight sequence $\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{x}, \sqrt{\frac{2}{3}}, \ldots$ In Proposition 2.2.3 we show that $W_{\gamma(x)}$ is quadratically hyponormal for all $x \in\left[\frac{43}{80}, \frac{47}{80}\right]$. For this we make use of the Theorem 2.2.2 and Mathematica graphs. The insight gained from this example enables us to prove that for a weighted shift operator W_{α}, if $W_{\alpha[j: x]}$ and $W_{\alpha[j: y]}$ are weakly k-hyponormal, then $W_{\alpha[j: x]}$ is weakly k - hyponormal for all z between x and y. In other words, $\omega_{r r}(k, j)$ is a convex set, and this is shown in Theorem 2.4.3.

2.2 Examples for quadratic hyponormality

We begin by recapitulation of definitions introduced in $[12,17,65]$. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be the canonical orthonormal basis for $\ell^{2}\left(\mathbb{Z}_{+}\right)$and let $\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence of positive numbers. Let W_{α} be the unilateral weighted shift defined by $W_{\alpha} e_{n}=\alpha_{n} e_{n+1}(\forall n \geq 0)$.

By definition, an operator T is quadratically hyponormal (q.h.) if $T+s T^{2}$ is hyponormal for every $s \in \mathbb{C}$.

Lemma 2.2.1. [25] W_{α} is quadratically hyponormal if and only if $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal for every $s \geq 0$.

Proof. By the definition of quadratic hyponormality it is trivial that W_{α} is quadratically hyponormal implies $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal for every $s \geq 0$. Conversely, suppose $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal for every $s \geq 0$. We need to show that $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal for all $s \in \mathbb{C}$.

Let $s \in \mathbb{C}$ and $s=r e^{i \theta}$ for $r>0$. Define $u_{\theta}: \ell^{2} \longrightarrow \ell^{2}$ as $u_{0} e_{n}=e^{-i n \theta} e_{n}$. Then $u_{\theta}^{*} e_{n}=e^{i n \theta} e_{n}$, and so, u_{0} is unitary.

Also, $u_{o} W_{\alpha} u_{0}^{*} e_{n}=e^{-\imath \theta} \alpha_{n} e_{n+1}=e^{-\imath \theta} W_{\alpha} e_{n}$ that is, $u_{o} W_{\alpha} u_{o}^{*}=e^{-i \theta} W_{\alpha}$.

$$
\begin{aligned}
u_{0}\left(W_{\alpha}+s W_{\alpha}^{2}\right) u_{\theta}^{*} & =u_{\rho} W_{\alpha} u_{\theta}^{*}+s u_{0} W_{\alpha}^{2} u_{\theta}^{*} \\
& =u_{0} W_{\alpha} u_{0}^{*}+s\left(u_{\theta} W_{\alpha} u_{0}^{*}\right)^{2} \\
& =e^{-i \theta} W_{\alpha}+r e^{i \theta} e^{-2 i \theta} W_{\alpha}^{2} \\
& =e^{-i \theta}\left(W_{\alpha}+r W_{\alpha}^{2}\right)
\end{aligned}
$$

Since $W_{\alpha}+r W_{\alpha}^{2}$ is hyponormal, therefore $W_{\alpha}+s W_{\alpha}^{2}$ is hyponormal $(\forall s \in \mathbb{C})$.
For a hyponormal weighted shift $W_{\alpha \alpha}$ and $s \geq 0$, let $D(s):=\left[\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*},\left(W_{\alpha}+\right.\right.$ $\left.\left.s W_{c}^{2}\right)\right]$. Then we have,

$$
\begin{aligned}
D(s) & =\left[\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*},\left(W_{\alpha}+s W_{\alpha}^{2}\right)\right] \\
& =\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*}\left(W_{\alpha}+s W_{\alpha}^{2}\right)-\left(W_{a}+s W_{\alpha}^{2}\right)\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*} \\
& =\left[W_{\alpha}^{*}, W_{\alpha}\right]+s\left[W_{\alpha}^{*}, W_{\alpha}^{2}\right]+s\left[W_{\alpha}^{*^{2}}, W_{\kappa}\right]+s^{2}\left[W_{\alpha}^{*^{2}}, W_{\alpha}^{2}\right]
\end{aligned}
$$

It can be easily shown that

$$
\begin{aligned}
& {\left[W_{\alpha}^{*}, W_{\alpha}\right] e_{n}=\left(\alpha_{n}^{2}-\alpha_{n-1}^{2}\right) e_{n}(\forall n \geq 0)} \\
& {\left[W_{\alpha}^{*}, W_{\alpha}^{2}\right] e_{n}=\alpha_{n}\left(\alpha_{n}^{2}-\alpha_{n-1}^{2}\right) e_{n+1}(\forall n \geq 0)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[W_{\alpha}^{*^{2}}, W_{\alpha}\right] e_{n}= \begin{cases}0 & \text { if } n=0 \\
\alpha_{n-1}\left(\alpha_{n}^{2}-\alpha_{n-2}^{2}\right) e_{n-1} & \text { if } n \geq 1\end{cases} } \\
& {\left[W_{\alpha}^{*^{2}}, W_{a}^{2}\right] e_{n}=\left(\alpha_{n}^{2} \alpha_{n+1}^{2}-\alpha_{n-1}^{2} \alpha_{n-2}^{2}\right) e_{n}(\forall n \geq 0)}
\end{aligned}
$$

Let P_{n} be the projection of $\ell^{2}(\mathbb{Z})$ onto $\bigvee_{2=0}^{n}\left\{e_{2}\right\}$ and for ($n \geq 0$), let $D_{n}:=$ $D_{n}(s)=P_{n} D(s) P_{n}$. Then

$$
D_{n}=\left(\begin{array}{cccccc}
q_{0} & r_{0} & 0 & \ldots & 0 & 0 \\
r_{0} & q_{1} & r_{1} & \ldots & 0 & 0 \\
0 & r_{1} & q_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & q_{n-1} & r_{n-1} \\
0 & 0 & 0 & \ldots & r_{n-1} & q_{n}
\end{array}\right)
$$

where

$$
\begin{aligned}
& q_{k}:=u_{k}+s^{2} v_{k} \\
& r_{k}:=s \sqrt{w_{k}} \\
& u_{k}:=\alpha_{k}^{2}-\alpha_{k-1}^{2} \\
& v_{k}:=\alpha_{k}^{2} \alpha_{k+1}^{2}-\alpha_{k-1}^{2} \alpha_{k-2}^{2} \\
& w_{k}:=\alpha_{k}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k-1}^{2}\right)^{2}
\end{aligned}
$$

for $k \geq 0$ and $\alpha_{-1}=\alpha_{-2}:=0$
By the definition of quadratically hyponormal operator, we immediately see that W_{α} is q.h. if and only if $D_{n}(s) \geq 0$ for every $s \geq 0$ and every $n \geq 0$.

For $x_{0}, x_{1}, \ldots, x_{n}$ and s in \mathbb{R}_{+}we define the following:

$$
\begin{aligned}
F_{n} & :=F_{n}\left(x_{0}, x_{1}, \ldots, x_{n}, s\right) \\
& =\sum_{z=0}^{n} q_{2} x_{\imath}^{2}-2 \sum_{i=0}^{n-1} r_{2} x_{2} x_{i+1}
\end{aligned}
$$

$$
=\sum_{i=0}^{n} u_{i} x_{i}^{2}-2 s \sum_{i=0}^{n-1} \sqrt{w_{i}} x_{i} x_{i+1}+s^{2} \sum_{i=0}^{n} v_{i} x_{i}^{2}
$$

and recall, for further use, the following result :

Theorem 2.2.2. [65]: Let W_{α} be a weighted shift with a weight sequence α. Then the followings are equivalent :
(i) W_{α} is quadratically hyponormal;
(ii) $F_{n}\left(x_{0}, x_{1}, \ldots, x_{n}, s\right) \geq 0$ for any $x_{0}, x_{1}, \ldots, x_{n}, s \in \mathbb{R}_{+}(n \geq 2)$;
(iii) There exists a positive integer N such that $F_{n}\left(x_{0}, x_{1}, \ldots, x_{n}, s\right) \geq 0$ for any $x_{0}, x_{1}, \ldots, x_{n}, s \in \mathbb{R}_{+}(n \geq N)$.

Example 2.2.1. Let α be the positive weight sequence given by $\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{43}{80}}$, $\sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$ We will show that the weighted shift operator W_{α} is quadratically hyponormal.

For this, let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ denote the sequence α so that $\alpha_{n+1}=\sqrt{\frac{n}{n+1}} \forall n \geq 2$.
In view of Theorem 2.2 .2 , it is sufficient to show that $F_{n} \geq 0 \quad \forall n \geq 5$.
For $x_{0}, x_{1}, \ldots, x_{5}, s$ reals, we denote a function $G_{5}=G_{5}\left(x_{0}, x_{1}, \ldots, x_{5}, s\right)$ by

$$
\begin{aligned}
G_{5} & =F_{5}-v_{5} t x_{5}^{2} \text { where } s^{2}=t \\
& =\sum_{i=0}^{4}\left(u_{i}+t v_{i}\right) x_{i}^{2}-2 \sum_{i=0}^{4} \sqrt{w_{i} t} x_{i} x_{i+1}+u_{5} x_{5}^{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
F_{6} & =\sum_{i=0}^{6}\left(u_{i}+t v_{i}\right) x_{i}^{2}-2 \sum_{i=0}^{5} \sqrt{w_{i} t} x_{i} x_{i+1} \\
& =G_{5}+t v_{5} x_{5}^{2}+\left(u_{6}+t v_{6}\right) x_{6}^{2}-2 \sqrt{w_{5} t} x_{5} x_{6} \\
& =G_{5}+\left(v_{5} t-\frac{w_{5} t}{u_{6}+t v_{6}}\right) x_{5}^{2}+\left(\frac{\sqrt{w_{5} t}}{\sqrt{u_{6}+t v_{6}}} x_{5}-\sqrt{u_{6}+t v_{6}} x_{6}\right)^{2}
\end{aligned}
$$

Suppose $F_{6}\left(x_{0}, \ldots, x_{6}, s\right) \geq 0$ for any $x_{0}, \ldots, x_{6}, s \in \mathbb{R}_{+}$. Then since x_{6} is arbitrary non-negative real, we will take $x_{6}=\frac{\sqrt{w_{5} t}}{u_{6}+t v_{6}} x_{5}$ so that

$$
F_{6} \geq 0 \Rightarrow G_{5}+\left(v_{5} t-\frac{w_{5} t}{u_{6}+t v_{6}}\right) x_{5}^{2} \geq 0
$$

Conversely, if $G_{5}+\left(v_{5} t-\frac{w_{5} t}{u_{6}+t v_{6}}\right) x_{5}^{2} \geq 0$ then

$$
F_{6}=G_{5}+\left(v_{5} t-\frac{w_{5} \iota}{u_{6}+t \cdot v_{6}}\right) x_{5}^{2}+\left(\frac{\sqrt{w_{5} l}}{\sqrt{u_{6}+t v_{6}}} x_{5}-\sqrt{u_{6}+t v_{6}} x_{6}\right)^{2} \geq 0
$$

Hence,

$$
\begin{aligned}
& F_{6}\left(x_{0}, \ldots, x_{6}, s\right) \geq 0 \text { for any } x_{0}, \ldots, x_{6}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\left(v_{5} t-\frac{w_{5} t}{u_{6}+t v_{6}}\right) x_{5}^{2} \geq 0 \text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\frac{z_{6} t}{1+z_{6} t} v_{5} t x_{5}^{2} \geq 0 \text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+} \\
& \left(\text {using } v_{n}=u_{n+1} v_{n} \forall n \geq 5 \text { and } z_{n}=\frac{v_{n}}{u_{n}}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
F_{7}=G_{5} & +\left(v_{5} t-\frac{w_{5} t}{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}\right) x_{5}^{2} \\
& +\left(\frac{\sqrt{w_{5} t}}{\sqrt{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}} x_{5}-\sqrt{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)} x_{6}\right)^{2} \\
& +\left(\frac{\sqrt{w_{6} l}}{\sqrt{u_{7}+t v_{7}}} x_{6}-\sqrt{u_{7}+t v_{7}} x_{7}\right)^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
& F_{7}\left(x_{0}, \ldots, x_{7}, s\right) \geq 0 \text { for any } x_{0}, \ldots, x_{7}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\left(v_{5} t-\frac{w_{5} t}{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}\right) x_{5}^{2} \geq 0
\end{aligned}
$$

$$
\text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+}
$$

$$
\Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\frac{z_{7} z_{6} l^{2}}{1+z_{7} t+z_{7} z_{6} t^{2}} v_{5} t x_{5}^{2} \geq 0 \text { for any } x_{0}, \ldots, x_{5} ; s \in \mathbb{R}_{+}
$$

So, by Mathematical induction, for $u \geq 6$ we have

$$
\begin{align*}
F_{n} \geq 0 & \Leftrightarrow G_{5}+\frac{\left(z_{n} z_{n-1} \ldots z_{6} t^{n-5}\right) v_{5} t x_{5}^{2}}{1+z_{n} t+z_{n} z_{n-1} t^{2}+\cdots+z_{n} z_{n-1} \ldots z_{6} t^{n-5}} \geq 0 \\
& \Leftrightarrow G_{5}+\frac{1}{1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7} \ldots z_{n} t^{n-5}}} v_{5} t x_{5}^{2} \geq 0 \tag{2.2.1}
\end{align*}
$$

Claimi: $G_{5}\left(x_{0}, \ldots, x_{5}, s\right) \geq 0$ for $0 \leq s \leq \sqrt{0.299}$
The corresponding symmetric matrix to the quadratic form G_{5} is

$$
A(t)=\left(\begin{array}{cccccc}
u_{0}+t v_{0} & -\sqrt{w_{0} t} & 0 & 0 & 0 & 0 \\
-\sqrt{w_{0} t} & u_{1}+t v_{1} & -\sqrt{w_{1} t} & 0 & 0 & 0 \\
0 & -\sqrt{w_{1} t} & u_{2}+t v_{2} & -\sqrt{w_{2} t} & 0 & 0 \\
0 & 0 & -\sqrt{w_{2} t} & u_{3}+t v_{3} & -\sqrt{w_{3} t} & 0 \\
0 & 0 & 0 & -\sqrt{w_{3} t} & u_{4}+t v_{4} & -\sqrt{w_{4} t} \\
0 & 0 & 0 & 0 & -\sqrt{w_{4} t} & u_{5}
\end{array}\right)
$$

We discuss the positivity of $A(t)$ by Nested Determinant Test. By direct Computation, we have

$$
\begin{aligned}
& d_{0}=\frac{1}{2}+\frac{1}{4} t \\
& d_{1}=\frac{3 \iota}{320}+\frac{43 \iota^{2}}{640} \\
& d_{2}=\frac{43 t^{2}}{12800}+\frac{559 t^{3}}{76800}
\end{aligned}
$$

$$
\begin{aligned}
& d_{3}=\frac{301 t^{2}}{1024000}+\frac{731 t^{3}}{1024000}+\frac{20683 t^{4}}{12288000} \\
& d_{4}=\frac{301 t^{2}}{12288000}+\frac{301 t^{3}}{10240000}+\frac{34529 t^{4}}{368640000}+\frac{599807 t^{5}}{1474560000} \\
& d_{5}=\frac{301 t^{2}}{245760000}-\frac{301 t^{3}}{122880000}-\frac{35647 t^{4}}{7372800000}-\frac{20683 t^{5}}{9830400000}
\end{aligned}
$$

If $0<t \leq 0.299$, then $d_{0}, \ldots, d_{4}>0$ and $d_{5}>0$, which implies that $A(t) \geq 0$ for $0<t \leq 0.299$ and $G_{5}\left(x_{0}, \ldots, x_{5}, s\right) \geq 0$ for $0<s \leq \sqrt{0.299}$ and Claim 1 is established.

Hence by (2.2.1),

$$
F_{n}\left(x_{0}, \ldots, x_{n}, s\right) \geq 0 \text { for any } x_{0}, \ldots, x_{n} \in \mathbb{R}_{+} \text {and } 0<s \leq \sqrt{0.299} .
$$

Again, $z_{n}=\frac{v_{n}}{u_{n}}=\frac{4(n+1)}{n+2},(n \geq 5)$ and also $\left\{z_{n}\right\}_{n=6}^{\infty}$ is an increasing sequence converging to 4 . Thus,

$$
\begin{aligned}
& 1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7} \ldots z_{n} t^{n-5}} \\
& \leq 1+\frac{1}{z_{6} l}+\left(\frac{1}{z_{6} l}\right)^{2}+\cdots+\left(\frac{1}{z_{6} l}\right)^{n-5} \\
& \leq \sum_{n=0}^{\infty}\left(\frac{1}{z_{6} t}\right)^{n}=\frac{1}{1-\frac{1}{z_{6} t}}
\end{aligned}
$$

Hence if $t>0.299$, then

$$
\begin{aligned}
& G_{5}+\frac{1}{1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7}} \frac{1}{z_{t} t^{t i-5}}} v_{5} t x_{5}^{2} \\
& \geq G_{5}+\left(1-\frac{1}{z_{6} t}\right) v_{5} t x_{5}^{2} \\
& =G_{5}+\left(1-\frac{7}{24 l}\right) \frac{t}{6} x_{5}^{2}\left(\text { since } z_{6}=\frac{24}{7} \text { and } v_{5}=\frac{1}{6}\right) \\
& =G_{5}+\left(\frac{24 t-7}{144}\right) x_{5}^{2}
\end{aligned}
$$

Now we consider the corresponding symmetric matrix $B(t)$ to the quadratic form $G_{5}+\left(\frac{24 t-7}{144}\right) x_{5}^{2}$ as follows:

$$
B(t)=\left(\begin{array}{cccccc}
u_{0}+t v_{0} & -\sqrt{w_{0} l} & 0 & 0 & 0 & 0 \\
-\sqrt{w_{0} t} & u_{1}+t v_{1} & -\sqrt{w_{1} t} & 0 & 0 & 0 \\
0 & -\sqrt{w_{1} l} & u_{2}+\iota v_{2} & -\sqrt{w_{2} l} & 0 & 0 \\
0 & 0 & -\sqrt{w_{2} t} & u_{3}+t v_{3} & -\sqrt{w_{3} t} & 0 \\
0 & 0 & 0 & -\sqrt{w_{3} t} & u_{4}+t v_{4} & -\sqrt{w_{4} t} \\
0 & 0 & 0 & 0 & -\sqrt{w_{4} t} & u_{5}+\frac{24 t-7}{144}
\end{array}\right)
$$

As was done in Claim 1, $d_{2}>0$ for $\iota \geq 0.299$ and $i=0,1,2,3,4$. Also, d_{5} of $B(t)$ is
$\frac{301 t^{2}}{8847360000}+\frac{301 t^{3}}{1474560000}-\frac{1191487 t^{4}}{265420800000}-\frac{6653089 t^{5}}{1061683200000}+\frac{599807 t^{6}}{8847360000} \geq 0$
for $t \geq 0.299$
This is because d_{5} is an increasing graph as is seen from the following Mathematica graph of d_{5} :

Figure 1

Therefore, $F_{n} \geq 0$ for $n \geq 5$ and $s \geq \sqrt{0.299}$
Thus for all $t \geq 0, F_{n} \geq 0(n \geq 5)$. So by Theorem 2.2.2, W_{α} is quadratically hyponormal.

Example 2.2.2. Let α be the positive weight sequence given by $\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{47}{80}}$, $\sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$ Then the weighted shift operator W_{α} with weight sequence α is quadratically hyponormal.

This can be shown by a method similar to that used in Example 2.2.1.
Proposition 2.2.3. Let $\gamma(z)$ denote the positive weight sequence $\left\{\alpha_{n}\right\}$ given by $\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{z}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$. Then the weighted shift operator $W_{\gamma(z)}$ is quadratically hyponormal for all $z \in\left[\frac{43}{80}, \frac{47}{80}\right]$.

Proof. As $\alpha_{n+1}=\sqrt{\frac{n}{n+1}}$ for all $n \geq 2$, therefore we have, $w_{n}=u_{n+1} v_{n}$ for all $n \geq 5$.

In view of Theorem 2.2.2, it is sufficient to show that $F_{n} \geq 0 \quad \forall n \geq 5$.
For $x_{0}, x_{1}, \ldots, x_{5}, s$ reals, we denote a function $G_{5}=G_{5}\left(x_{0}, x_{1}, \ldots, x_{5}, s\right)$ by

$$
\begin{aligned}
G_{5}: & =F_{5}-v_{5} t x_{5}^{2} \text { where } s^{2}=t \\
& =\sum_{\imath=0}^{4}\left(u_{i}+l \cdot v_{i}\right) x_{2}^{2}-2 \sum_{i=0}^{4} \sqrt{w_{2} t} x_{i} x_{2+1}+u_{5} x_{5}^{2}
\end{aligned}
$$

Then,
$F_{6}=G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\frac{z_{6} t}{1+z_{6} t} v_{5} t x_{5}^{2}\left(\right.$ since $w_{n}=u_{n+1} v_{n} \forall n \geq 5$ and $\left.z_{n}=\frac{v_{n}}{u_{n}}\right)$
Hence,

$$
\begin{aligned}
& F_{6}\left(x_{0}, \ldots, x_{6}, s\right) \geq 0 \text { for any } x_{0}, \ldots, x_{6}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\frac{z_{6} t}{1+z_{6} t} v_{5} t x_{5}^{2} \geq 0 \text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
F_{7}= & G_{5}+\left(v_{5} t-\frac{w_{5} t}{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}\right) x_{5}^{2}+\left(\frac{\sqrt{w_{5} t}}{\sqrt{\left(u_{6}+l v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}} x_{5}\right. \\
& \left.-\sqrt{\left(u_{6}+t v_{6}\right)-\left(\frac{v_{6} t}{u_{7}+t v_{7}}\right)} x_{6}\right)^{2}+\left(\frac{\sqrt{w_{6} t}}{\sqrt{u_{7}+t v_{7}}} x_{6}-\sqrt{u_{7}+t v_{7}} x_{7}\right)^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
& F_{7}\left(x_{0}, \ldots, x_{7}, s\right) \geq 0 \text { for any } x_{0}, \ldots, x_{7}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\left(v_{5} t-\frac{w_{5} t}{\left(u_{6}+t v_{6}\right)-\left(\frac{w_{6} t}{u_{7}+t v_{7}}\right)}\right) x_{5}^{2} \geq 0 \\
& \quad \text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+} \\
& \Leftrightarrow G_{5}\left(x_{0}, \ldots, x_{5}, s\right)+\frac{z_{7} z_{6} t^{2}}{1+z_{7} t+z_{7} z_{6} t^{2}} v_{5} t x_{5}^{2} \geq 0 \text { for any } x_{0}, \ldots, x_{5}, s \in \mathbb{R}_{+}
\end{aligned}
$$

So, by Mathematical induction, for $n \geq 6$ we have

$$
\begin{align*}
F_{n}\left(x_{0}, \ldots, x_{n}, s\right) \geq 0 & \Leftrightarrow G_{5}+\frac{\left(z_{n} z_{n-1} \ldots z_{6} t^{n-5}\right) v_{5} t x_{5}^{2}}{1+z_{n} t+z_{n} z_{n-1} t^{2}+\cdots+z_{n} z_{n-1} \ldots z_{6} t^{n-5}} \geq 0 \\
& \Leftrightarrow G_{5}+\frac{1}{1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7} \ldots z_{n} t^{n-5}}} v_{5} t x_{5}^{2} \geq 0 \tag{2.2.2}
\end{align*}
$$

Claim1: $G_{5}\left(x_{0}, \ldots, x_{5}, s\right) \geq 0$ for $0 \leq s \leq \sqrt{0.299}$.
The corresponding symmetric matrix to the quadratic form G_{5} is

$$
A(t)=\left(\begin{array}{cccccc}
u_{0}+t v_{0} & -\sqrt{w_{0} t} & 0 & 0 & 0 & 0 \\
-\sqrt{w_{0} t} & u_{1}+t v_{1} & -\sqrt{w_{1} t} & 0 & 0 & 0 \\
0 & -\sqrt{w_{1} t} & u_{2}+t v_{2} & -\sqrt{w_{2} t} & 0 & 0 \\
0 & 0 & -\sqrt{w_{2} t} & u_{3}+t v_{3} & -\sqrt{w_{3} t} & 0 \\
0 & 0 & 0 & -\sqrt{w_{3} t} & u_{4}+t v_{4} & -\sqrt{w_{4} t} \\
0 & 0 & 0 & 0 & -\sqrt{w_{4} t} & u_{5}
\end{array}\right)
$$

We discuss the positivity of $A(t)$ by Nested Determinant Test. By direct Computation, we have

$$
\begin{aligned}
& d_{0}=\alpha_{0}^{2}+t \alpha_{0}^{2} \alpha_{1}^{2} \\
& d_{1}=t \alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)+t^{2} \alpha_{0}^{2} \alpha_{1}^{4} \alpha_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
d_{2}= & t^{2}\left\{\alpha_{0}^{4} \alpha_{1}^{4}\left(\alpha_{2}^{2}-\alpha_{0}^{2}\right)+\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)\left(\alpha_{2}^{2} \alpha_{3}^{2}-\alpha_{1}^{2} \alpha_{0}^{2}\right)\right\} \\
& +t^{3}\left\{\left(\alpha_{2}^{2} \alpha_{3}^{2}-\alpha_{1}^{2} \alpha_{0}^{2}\right) \alpha_{0}^{2} \alpha_{1}^{4} \alpha_{2}^{2}\right\} \\
d_{3}= & t^{2}\left(\frac{3 z^{2}}{16}-\frac{5 z}{96}-\frac{z^{3}}{6}\right)+t^{3}\left(\frac{5 z^{2}}{24}-\frac{z}{16}-\frac{z^{3}}{6}\right)+t^{4}\left(\frac{11 z^{2}}{192}-\frac{z}{64}-\frac{z^{3}}{24}\right) \\
= & t^{2} P_{2}(z)+t^{3} P_{3}(z)+t^{4} P_{4}(z) \\
d_{4}= & t^{2}\left(\frac{z^{2}}{64}-\frac{11 z}{1152}-\frac{z^{3}}{72}\right)+t^{3}\left(\frac{3 z^{2}}{160}-\frac{z}{192}-\frac{z^{3}}{60}\right) \\
& +t^{4}\left(\frac{251 z^{2}}{2304}-\frac{13 z}{480}-\frac{199 z^{3}}{1440}+\frac{z^{4}}{18}\right)+t^{5}\left(\frac{43 z^{2}}{960}-\frac{3 z}{320}-\frac{91 z^{3}}{1440}+\frac{z^{4}}{36}\right) \\
= & t^{2} Q_{2}(z)+t^{3} Q_{3}(z)+t^{4} Q_{4}(z)+t^{5} Q_{5}(z)
\end{aligned}
$$

All d_{0}, d_{1}, d_{2} are positive by their expressions for $d_{0}=d_{1}$ and d_{3}, d_{4} are positive for all $z \in\left[\frac{43}{80}, \frac{47}{80}\right]$ and $\forall t \geq 0$. since all $P_{i}(z)(i=2.3 .4)$ and $Q_{i}(z)(i=2.3 .4 .5)$ are positive for all $z \in\left[\frac{43}{80} \cdot \frac{47}{80}\right]$.

We use Mathematica graph to show the positivity for d_{5} of the matrix $A(t)$.

$$
\begin{aligned}
d_{5}(z, t)= & -\frac{t^{2} z}{4608}+\frac{t^{3} z}{2304}-\frac{t^{4} z}{1920}-\frac{t^{5} z}{3840}+\frac{t^{2} z^{2}}{1280}-\frac{t^{3} z^{2}}{640}+\frac{41 t^{4} z^{2}}{15360}+\frac{t^{5} z^{2}}{11520} \\
& -\frac{t^{2} z^{3}}{1440}+\frac{t^{3} z^{3}}{720}-\frac{3 t^{4} z^{3}}{640}-\frac{t^{5} z^{3}}{384}+\frac{t^{4} z^{4}}{360}+\frac{t^{5} z^{4}}{720}
\end{aligned}
$$

Figure 2

From the above Mathematica graph it is clear that if $0<t \leq 0.299$ then $d_{5}>0$, which implies that $A(t) \geq 0$ for $0<t \leq 0.299$ and $G_{5}\left(x_{0}, \ldots, x_{5}, s\right) \geq 0$ for $0<s \leq \sqrt{0.299}$ and Claim 1 is established. Hence by (2.2.2) $F_{n}\left(x_{0}, \ldots, x_{n}, s\right) \geq$ $0(n \geq 5)$ for any $x_{0}, \ldots, x_{n} \in \mathbb{R}_{+}$and $0<s \leq \sqrt{0.299}$.
Now we will show for $t \geq 0.299$.
As, $z_{n}=\frac{v_{n}}{u_{n}}=\frac{4(n+1)}{n+2},(n \geq 5)$, so $\left\{z_{n}\right\}_{n=6}^{\infty}$ is an increasing sequence and hence

$$
\begin{aligned}
1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7} \ldots z_{n} t^{n-5}} & \leq 1+\frac{1}{z_{6} t}+\frac{1}{\left(z_{6} t\right)^{2}}+\cdots+\frac{1}{\left(z_{6} t\right)^{n-5}} \\
& \leq \frac{1}{1-\frac{1}{z_{6} t}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& G_{5}+\frac{1}{1+\frac{1}{z_{6} t}+\frac{1}{z_{6} z_{7} t^{2}}+\cdots+\frac{1}{z_{6} z_{7} \cdot z_{n} t^{n-5}}} v_{5} t x_{5}^{2} \geq G_{5}+\left(\frac{24 t-7}{144}\right) x_{5}^{2} \\
&\left(\because z_{6}=\frac{24}{7} \text { and } v_{5}=\frac{1}{6}\right)
\end{aligned}
$$

Now considering the corresponding symmetric matrix $B(t)$ to the quadratic form $G_{5}+\left(\frac{24 t-7}{144}\right) x_{5}^{2}$, we have

$$
\begin{aligned}
B(t)= & \left(\begin{array}{cccccc}
u_{0}+t v_{0} & -\sqrt{w_{0} t} & 0 & 0 & 0 & 0 \\
-\sqrt{w_{0} t} & u_{1}+t v_{1} & -\sqrt{w_{1} t} & 0 & 0 & 0 \\
0 & -\sqrt{w_{1} t} & u_{2}+t v_{2} & -\sqrt{w_{2} t} & 0 & 0 \\
0 & 0 & -\sqrt{w_{2} t} & u_{3}+t v_{3} & -\sqrt{w_{3} t} & 0 \\
0 & 0 & 0 & -\sqrt{w_{3} t} & u_{4}+t v_{4} & -\sqrt{w_{4} t} \\
0 & 0 & 0 & 0 & -\sqrt{w_{4} t} & u_{5}+\frac{24-7}{144}
\end{array}\right) \\
d_{5}(z, t)= & -\frac{t^{2} z}{165888}-\frac{t^{3} z}{27648}-\frac{t^{4} z}{13824}-\frac{199 t^{5} z}{46080}-\frac{t^{6} z}{640}+\frac{t^{2} z^{2}}{46080}+\frac{t^{3} z^{2}}{7680} \\
& +\frac{827 t^{4} z^{2}}{1658880}+\frac{2413 t^{5} z^{2}}{138240}+\frac{43 t^{6} z^{2}}{5760}-\frac{t^{2} z^{3}}{51840}-\frac{t^{3} z^{3}}{8640}-\frac{31 t^{4} z^{3}}{41472}-\frac{4679 t^{5} z^{3}}{207360} \\
& -\frac{91 t^{6} z^{3}}{8640}+\frac{t^{4} z^{4}}{12960}+\frac{241 t^{5} z^{4}}{25920}+\frac{t^{6} z^{4}}{216}
\end{aligned}
$$

Figure 3
From the above Mathematica graph it is clear that the graph is an increasing graph and hence $d_{5}>0$ for $t \geq 0.299$ and $z \in\left[\frac{43}{80}, \frac{47}{80}\right]$.

Therefore $F_{n}\left(x_{0} \ldots, x_{n}, s\right) \geq 0$ for all $t>0$ and $z \in\left[\frac{43}{80}, \frac{47}{80}\right]$. So by Theorem 2.2.2, $W_{\gamma(z)}$ is quadratically hyponormal for $z \in\left[\frac{43}{80}, \frac{47}{80}\right]$.

2.3 NASC for weak k-hyponormality

Let $\mathbb{C}[z, w]$ denote the polynomials in two variables and $\mathbb{C}[z]$ denote all polynomials with one variable z. We first give a construction given by J. Agler [2] which associates operators T on a Hilbert space I/ with linear functionals $\lambda: \mathbb{C}[z, w] \longrightarrow \mathbb{C}$ which obey certain positivity conditions.

For $h(z, w)=\sum_{i, j} h_{i j} z^{i} w^{j} \in \mathbb{C}[z, w]$ and an operator $T \in B(H)$. define $h\left(T, T^{*}\right)=$ $\sum_{i, j} h_{i j} T^{* j} T^{i}$. In particular, $(z w)\left(T, T^{*}\right)=T^{*} T$ and $\left(z^{i} u^{j}\right)\left(T, T^{*}\right)=T^{* j} T^{i}$. If $x \in I I$, then define a linear functional $\Lambda_{T}: \mathbb{C}[z, w] \longrightarrow \mathbb{C}$ by the formula

$$
\Lambda_{T}(h)=\left\langle h\left(T, T^{*}\right) x, x\right\rangle
$$

Lemma 2.3.1. For a polynomial $p \in \mathbb{C}[z] ;(\overline{p(\bar{z})})\left(T^{*}\right)=(p(T))^{*}$.
Proof. Let $p(z)=\sum_{i=0}^{n} \alpha_{i} z^{i}$. Then $\overline{p(\bar{z})}=\sum_{i=0}^{n} \bar{\alpha}_{i} z^{i}$ and so $\overline{p(\bar{z})}\left(T^{*}\right)=$ $\sum_{i=0}^{n} \bar{\alpha}_{i} T^{* i}$.

$$
\therefore p(T)^{*}=\left(\sum_{i=0}^{n} \alpha_{i} T^{i}\right)^{*}=\sum_{i=0}^{n} \bar{\alpha}_{i} T^{* i}=\overline{p(\bar{z})}\left(T^{*}\right) .
$$

Observed that for $p \in \mathbb{C}[z]$ with $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$,

$$
p(w) p(z)=\left(\sum_{i=0}^{n} a_{i} w^{i}\right)\left(\sum_{i=0}^{n} a_{i} z^{i}\right) \in \mathbb{C}[z, w] .
$$

Lemma 2.3.2. If x is a cyclic vector for T, then $\|T\| \leq 1$ if and only if

$$
\Lambda_{T}(\overline{p(\bar{w})}(1-z w) p(z)) \geq 0, \forall p(z) \in \mathbb{C}[z]
$$

Proof. Since x is a cyclic vector for T so $H=\operatorname{cl}\{p(T) x: p \in \mathbb{C}[z]\}$.
Now,

$$
\begin{aligned}
\|T\| \leq 1 & \Leftrightarrow\|T y\|^{2} \leq\|y\|^{2}(\forall y \in H) \\
& \Leftrightarrow\left\langle\left(I-T T^{*}\right) y, y\right\rangle \geq 0(\forall y \in H) \\
& \Leftrightarrow\left\langle\left(I-T T^{*}\right) p(T) x, p(T) x\right\rangle \geq 0 \\
& \Leftrightarrow\left\langle p(T)^{*}\left(I-T T^{*}\right) p(T) x, x\right\rangle \geq 0 \\
& \Leftrightarrow\left\langle\overline{p(\bar{w})}(1-z w) p(z)\left(T, T^{*}\right) x, x\right\rangle \geq 0 \\
& \Leftrightarrow \Lambda_{T}(\overline{p(\bar{w})}(1-z w) p(z)) \geq 0 \quad(\forall p(z) \in \mathbb{C}[z])
\end{aligned}
$$

The following result was given by Agler [2]:

Lemma 2.3.3. [2] Let T be a cycluc contraction on $B(H)$. Then T is weakly k-hyponormal if and only of

$$
\Lambda_{T}[(\overline{q(\bar{w})}+\overline{p(\bar{w})} \phi(z))(q(z)+p(z) \overline{\phi(\bar{w})})] \geq 0
$$

for all polynomaals $p(z), q(z)$ and $\phi(z)$ with degree $\phi(z) \leq k$.
Now let us consider a weighted shift W_{α}. Then e_{0} is the standard cyclic vector for W_{α} Thus, taking $T=W_{\alpha}$ we get $\Lambda_{T}\left(z^{2} w^{3}\right)=\left\langle\left(z^{2} w^{p}\right)\left(T, T^{*}\right) e_{0}, e_{0}\right\rangle=$ $\left\langle T^{*} T^{2} e_{0}, e_{0}\right\rangle=0($ for $1 \neq \jmath)$.

Using this fact, a reformulation of Lemma 2.3 .3 was given in [45] for the case where T is a contractive weighted shift.
Lemma 2.3.4. [45] Suppose W_{α} as a contractive hyponormal werghted shift wath weight sequence $\alpha:=\left\{\alpha_{2}\right\}_{2}^{\infty}$. . Then W_{α} is weakly k-hyponormal of and only of

$$
\begin{aligned}
& \Delta_{k}^{\alpha}(\phi, p, q):=\gamma_{k}\left|\phi_{k} p_{0}\right|^{2}+\left\langle\left(\begin{array}{cc}
\gamma_{k-1} & \gamma_{k} \\
\gamma_{k} & \gamma_{k+1}
\end{array}\right)\binom{\phi_{k-1} p_{0}}{\phi_{k} p_{1}},\binom{\phi_{k-1} p_{0}}{\phi_{k} p_{1}}\right\rangle \\
& +\cdots+\left\langle\left(\begin{array}{cccc}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{k} \\
\gamma_{2} & \gamma_{3} & \cdots & \gamma_{k+1} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{k} & \gamma_{k+1} & \cdots & \gamma_{2 k-1}
\end{array}\right)\left(\begin{array}{c}
\phi_{1} p_{0} \\
\phi_{2} p_{1} \\
\vdots \\
\phi_{k} p_{k-1}
\end{array}\right),\left(\begin{array}{c}
\phi_{1} p_{0} \\
\phi_{2} p_{1} \\
\vdots \\
\phi_{k} p_{k-1}
\end{array}\right)\right\rangle \\
& +\sum_{\jmath=0}^{\infty}\left\langle\left(\begin{array}{cccc}
\gamma_{j} & \gamma_{\jmath+1} & \cdots & \gamma_{\jmath+k} \\
\gamma_{\jmath+1} & \gamma_{\jmath+2} & \cdots & \gamma_{\jmath+k+1} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{\jmath+k} & \gamma_{\jmath+k+1} & \cdots & \gamma_{3+2 k}
\end{array}\right)\left(\begin{array}{c}
q_{\jmath} \\
\phi_{1} p_{j+1} \\
\vdots \\
\phi_{k} p_{\jmath+k}
\end{array}\right),\left(\begin{array}{c}
q_{\jmath} \\
\phi_{1} p_{j+1} \\
\vdots \\
\phi_{k} p_{j+k}
\end{array}\right)\right\rangle \\
& \geq 0 \\
& \text { for } \phi:=\left\{\phi_{\imath}\right\}_{\imath=1}^{k}, p:=\left\{p_{2}\right\}_{\imath=0}^{\infty} \text { and } q:=\left\{q_{2}\right\}_{i=0}^{\infty} \text { in } \mathbb{C} .
\end{aligned}
$$

Lemma 2.3.5.

$$
\begin{aligned}
\Delta_{k+1}^{\alpha}(\phi . p, q)= & \Delta_{k}^{\alpha}(\phi, p, q)+\sum_{\jmath=k+1}^{\infty} \gamma_{\jmath}\left[\left|\phi_{k+1} p_{\jmath-k-1}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{k+1} p_{\jmath-k-1}\left(\sum_{l=1}^{k} \phi_{l} \bar{p}_{\jmath-l}\right)\right.\right. \\
& \left.\left.+\phi_{k+1} p_{\jmath} \bar{q}_{\jmath-k-1}\right\}\right]
\end{aligned}
$$

for all $k \geq 1$ and $\phi:=\left\{\phi_{\imath}\right\}_{v=1}^{k}, p:=\left\{p_{\imath}\right\}_{v=0}^{\infty}$ and $q:=\left\{q_{\imath}\right\}_{l=0}^{\infty}$ in \mathbb{C}.

Proof.

$$
\begin{aligned}
& \Delta_{k+1}^{\alpha}(\phi, p, q):=\gamma_{k+1}\left|\phi_{k+1} p_{0}\right|^{2}+\left\langle\left(\begin{array}{cc}
\gamma_{k} & \gamma_{k+1} \\
\gamma_{k+1} & \gamma_{k+2}
\end{array}\right)\binom{\phi_{k} p_{0}}{\phi_{k+1} p_{1}},\binom{\phi_{k} p_{0}}{\phi_{k+1} p_{1}}\right\rangle \\
& +\cdots+\left\langle\left(\begin{array}{cccc}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{k+1} \\
\gamma_{2} & \gamma_{3} & \cdots & \gamma_{k+2} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{k+1} & \gamma_{k+2} & & \gamma_{2 k+1}
\end{array}\right)\left(\begin{array}{c}
\phi_{1} p_{0} \\
\phi_{2} p_{1} \\
\vdots \\
\phi_{k+1} p_{k}
\end{array}\right),\left(\begin{array}{c}
\phi_{1} p_{0} \\
\phi_{2} p_{1} \\
\vdots \\
\phi_{k+1} p_{k}
\end{array}\right)\right\rangle \\
& +\sum_{\jmath=0}^{\infty}\left\langle\left(\begin{array}{cccc}
\gamma_{\jmath} & \gamma_{\jmath+1} & \cdots & \gamma_{\jmath+k+1} \\
\gamma_{\jmath+1} & \gamma_{\jmath+2} & \cdots & \gamma_{\jmath+k+2} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{\jmath+k+1} & \gamma_{\jmath+k+2} & \cdots & \gamma_{\jmath+2 k+2}
\end{array}\right)\left(\begin{array}{c}
q_{\jmath} \\
\phi_{1} p_{3+1} \\
\vdots \\
\phi_{k+1} p_{\jmath+k+1}
\end{array}\right),\left(\begin{array}{c}
q_{\jmath} \\
\phi_{1} p_{\jmath+1} \\
\vdots \\
\phi_{k+1} p_{\jmath+k+1}
\end{array}\right)\right\rangle \\
& =\Delta_{k}^{\sim}(\phi, p, q)+\gamma_{k+1}\left[\left|\phi_{k+1} p_{0}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{k+1} p_{0}\left(\sum_{l=1}^{k} \phi_{l} \bar{p}_{k+1-l}\right)+\phi_{k+1} p_{k+1} \bar{q}_{0}\right\}\right] \\
& +\gamma_{k+2}\left[\left|\phi_{k+1} p_{l}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{k+1} p_{1}\left(\sum_{l=1}^{k} \phi_{l} \bar{p}_{k+2-l}\right)+\phi_{k+1} p_{k+2} \bar{q}_{1}\right\}\right] \\
& +\gamma_{k+3}\left[\left|\phi_{k+1} p_{2}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{k+1} p_{2}\left(\sum_{l=1}^{k} \phi_{l} \bar{p}_{k+3-l}\right)+\phi_{k+1} p_{k+3} \bar{q}_{2}\right\}\right] \\
& +\ldots \\
& =\Delta_{k}^{\alpha}(\phi, p, q)+\sum_{\jmath=k+1}^{\infty} \gamma_{\jmath}\left[\left|\phi_{k+1} p_{\jmath-k-1}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{k+1} p_{\jmath-k-1}\left(\sum_{l=1}^{k} \phi_{l} \bar{p}_{\jmath-l}\right)+\phi_{k+1} p_{\jmath} \bar{q}_{\jmath-k-1}\right\}\right]
\end{aligned}
$$

Lemma 2.3.6. Let $\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a posittve weight sequence and $a=\varepsilon \alpha_{n}$ for $0<\varepsilon<1, n \geq 0$. Then for $k \geq 1$,

$$
\Delta_{k}^{\alpha[n x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\sum_{i=1}^{n} \gamma_{2} z_{2}\right)
$$

where

$$
z_{\imath}=\sum_{\jmath=1}^{k}\left|\phi_{\jmath} p_{\imath-\jmath}\right|^{2}+\left|g_{\imath}\right|^{2}+2 \operatorname{Re}\left[p_{\imath}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{q}_{\imath-\jmath}\right)+\sum_{l=2}^{k} \bar{\phi}_{l} p_{\imath-l}\left(\sum_{\jmath=1}^{l-1} \phi_{\jmath} \bar{p}_{2-\jmath}\right)\right]
$$

Proof. Let γ_{j}^{\prime} denote the moment sequence of $\alpha[n: x]$. Then

$$
\gamma_{\jmath}^{\prime}= \begin{cases}\gamma_{j}, & \text { for } \jmath \leq n \\ \varepsilon^{2} \gamma_{j}, & \text { for } \jmath>n\end{cases}
$$

Case I: If $n=0$, that is α_{0} be perturbed to $x=\varepsilon \alpha_{0}$, then

$$
\begin{aligned}
& \gamma_{3}^{\prime}=\left\{\begin{array}{cc}
\gamma_{0}=1, & \text { for } \jmath=0 \\
\varepsilon^{2} \gamma_{\jmath} . & \text { for } \jmath>0,
\end{array}\right. \\
& \Delta_{1}^{\alpha[0 x]}(\phi, p, q)=\gamma_{1}^{\prime}\left|\phi_{1} p_{0}\right|^{2}+\sum_{\jmath=0}^{\infty}\left\langle\left(\begin{array}{cc}
\gamma_{j}^{\prime} & \gamma_{j+1}^{\prime} \\
\gamma_{3+1}^{\prime} & \gamma_{3+2}^{\prime}
\end{array}\right)\binom{q_{\jmath}}{\phi_{1} p_{j+1}},\binom{q_{\jmath}}{\phi_{1} p_{3+1}}\right\rangle \\
&=\varepsilon^{2} \Delta_{1}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left|q_{0}\right|^{2}
\end{aligned}
$$

By Lemma 2.3.5, we get

$$
\begin{aligned}
\Delta_{2}^{\alpha[0 x]}(\phi, p, q)= & \Delta_{1}^{a \mid 0 x]}(\phi, p, q)+\sum_{\jmath=2}^{\infty} \gamma_{\jmath}^{\prime}\left[\left|\phi_{2} p_{\jmath-2}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{2} p_{\jmath-2} \phi_{1} \bar{p}_{\jmath-1}+\phi_{2} p_{\jmath} \bar{q}_{\jmath-2}\right\}\right] \\
= & \varepsilon^{2} \Delta_{1}^{\alpha}(\phi ; p, q)+\left(1-\varepsilon^{2}\right)\left|q_{0}\right|^{2} \\
& +\sum_{\jmath=2}^{\infty} \varepsilon^{2} \gamma_{\jmath}\left[\left|\phi_{2} p_{\jmath-2}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{2} p_{\jmath-2} \phi_{1} \bar{\jmath}_{\jmath-1}+\phi_{2} p_{\jmath} \bar{q}_{\jmath-2}\right\}\right] \\
= & \varepsilon^{2} \Delta_{2}^{\alpha}(\phi ; p, q)+\left(1-\varepsilon^{2}\right)\left|q_{0}\right|^{2}
\end{aligned}
$$

Similarly,

$$
\Delta_{k}^{\alpha[0 x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\kappa}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left|q_{0}\right|^{2}
$$

for all $k \geq 1$
Case II: If $n=1$, that is α_{1} be perturbed to $x=\varepsilon \alpha_{1}$, then

$$
\begin{gathered}
\gamma_{\jmath}^{\prime}= \begin{cases}\gamma_{\jmath}, & \text { for } \jmath \leq 1 \\
\varepsilon^{2} \gamma_{j}, & \text { for } \jmath>1,\end{cases} \\
\Delta_{1}^{\alpha(1 x]}(\phi, p, q)=\varepsilon^{2} \Delta_{1}^{\sim}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}\right),
\end{gathered}
$$

wherc $z_{1}=\left|\phi_{1} p_{0}\right|^{2}+\left|q_{1}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{1} \bar{q}_{0}\right)$
Also, as $\gamma_{j}^{\prime}=\varepsilon^{2} \gamma_{j}$ for $J \geq 2$, so by Lemma 23.5 , we get

$$
\Delta_{k}^{a[1 x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\sim}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}\right)
$$

for all $h \geq 1$

Case III: If $n=2$, that is α_{2} be perturbed to $x=\varepsilon \alpha_{2}$, then

$$
\begin{gathered}
\gamma_{3}^{\prime}=\left\{\begin{array}{cc}
\gamma_{3}, & \text { for } \jmath \leq 2 \\
\varepsilon^{2} \gamma_{j}, & \text { for } j>2
\end{array}\right. \\
\Delta_{1}^{\alpha[2 . x]}(\phi ; p, q)=\varepsilon^{2} \Delta_{1}^{\alpha}(\phi ; p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}^{\prime}+\gamma_{2} z_{2}^{\prime}\right)
\end{gathered}
$$

where $z_{1}^{\prime}=\left|\phi_{1} \gamma_{0}\right|^{2}+\left|q_{1}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{1} \bar{q}_{0}\right)$ and $z_{2}^{\prime}=\left|\phi_{1} p_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{2} \bar{q}_{1}\right)$
Again, by Lemma 2.3.5

$$
\begin{aligned}
\Delta_{2}^{\alpha[2: x]}(\phi, p, q)= & \Delta_{1}^{\alpha[2: x]}(\phi, p, q)+\sum_{j=2}^{\infty} \gamma_{j}^{\prime}\left[\left|\phi_{2} p_{j-2}\right|^{2}+2 \operatorname{Re}\left\{\bar{\phi}_{2} p_{j-2} \phi_{1} \bar{p}_{j-1}+\phi_{2} p_{j} \bar{q}_{j-2}\right\}\right] \\
= & \varepsilon^{2} \Delta_{2}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}^{\prime}+\gamma_{2} z_{2}^{\prime}\right)+\left(1-\varepsilon^{2}\right) \gamma_{2}\left[\left|\phi_{2} p_{0}\right|^{2}\right. \\
& \left.+2 \operatorname{Re}\left\{\bar{\phi}_{2} p_{0} \phi_{1} \bar{p}_{1}+\phi_{2} p_{2} \bar{q}_{0}\right\}\right] \\
= & \varepsilon^{2} \Delta_{2}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}^{\prime \prime}+\gamma_{2} z_{2}^{\prime \prime}\right)
\end{aligned}
$$

where

$$
z_{1}^{\prime \prime}=\left|\phi_{1} p_{0}\right|^{2}+\left|q_{1}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{1} \bar{q}_{0}\right)
$$

and

$$
z_{2}^{\prime \prime}=\left|\phi_{1} p_{1}\right|^{2}+\left|\phi_{2} p_{0}\right|^{2}+\left|q_{2}\right|^{2}+2 \operatorname{Re} \cdot\left\{\bar{\phi}_{2} p_{0} \phi_{1} \bar{p}_{1}+p_{2}\left(\phi_{1} \bar{q}_{1}+\phi_{2} \bar{q}_{0}\right)\right\}
$$

As $\gamma_{j}^{\prime}=\varepsilon^{2} \gamma_{j}$ for $j>2$, so for $k>2$, we get

$$
\Delta_{k}^{\alpha[2: x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}^{\prime \prime}+\gamma_{2} z_{2}^{\prime \prime}\right)
$$

Thus, for $k \geq 1$,

$$
\Delta_{k}^{\alpha[2: x]}(\phi ; p, q)=\varepsilon^{2} \Delta_{k}^{o}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\gamma_{1} z_{1}+\gamma_{2} z_{2}\right)
$$

where

$$
z_{1}=\left|\phi_{1} p_{0}\right|^{2}+\left|q_{1}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{1} \bar{q}_{0}\right)
$$

and

$$
z_{2}=\sum_{\jmath=1}^{k}\left|\phi_{\jmath} p_{2-\jmath}\right|^{2}+\left|q_{2}\right|^{2}+2 \operatorname{Re}\left[p_{2}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{g}_{2-\jmath}\right)+\bar{\phi}_{2} p_{0} \phi_{1} \bar{p}_{1}\right],
$$

assuming $p_{m}=0=q_{m}$ for $m<0$.

Case IV: If $n=3$, that is α_{3} be perturbed to $x=\varepsilon \alpha_{3}$, then

$$
\gamma_{\jmath}^{\prime}= \begin{cases}\gamma_{\jmath}, & \text { for } \jmath \leq 3 \\ \varepsilon^{2} \gamma_{\jmath}, & \text { for } \jmath>3,\end{cases}
$$

As in Case III, here we get for $k \geq 1$,

$$
\Delta_{k}^{\alpha[3 x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{a}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\sum_{\imath=1}^{3} \gamma_{2} z_{2}\right)
$$

where

$$
\begin{gathered}
z_{1}=\left|\phi_{1} p_{0}\right|^{2}+\left|q_{1}\right|^{2}+2 \operatorname{Re}\left(\phi_{1} p_{1} \bar{q}_{0}\right) \\
z_{2}=\sum_{\jmath=1}^{k}\left|\phi_{\jmath} p_{2-\jmath}\right|^{2}+\left|q_{2}\right|^{2}+2 \operatorname{Re}\left[p_{2}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{q}_{2-3}\right)+\bar{\phi}_{2} p_{0} \phi_{1} \bar{p}_{1}\right]
\end{gathered}
$$

and

$$
z_{3}=\sum_{j=1}^{k}\left|\phi_{\jmath} p_{3-\jmath}\right|^{2}+\left|q_{3}\right|^{2}+2 R e\left[p_{3}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{g}_{3-\jmath}\right)+\sum_{l=2}^{k} \bar{\phi}_{l} p_{3-l}\left(\sum_{\jmath=1}^{l-1} \phi_{\jmath} \bar{p}_{3-\jmath}\right)\right]
$$

assuming $p_{m}=0=q_{m}$ for $m<0$. That is, for $\imath=1,2,3$

$$
z_{2}=\sum_{\jmath=1}^{k}\left|\phi_{\jmath} p_{\imath-\jmath}\right|^{2}+\left|q_{\imath}\right|^{2}+2 \operatorname{Re}\left[p_{2}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{q}_{\imath-\jmath}\right)+\sum_{l=2}^{k} \bar{\phi}_{l} p_{\imath-l}\left(\sum_{\jmath=1}^{l-1} \phi_{\jmath} \bar{p}_{\imath-\jmath}\right)\right]
$$

Continuing in this way, if α_{n} is perturbed to $\varepsilon \alpha_{n}(n=0,1,2, \ldots)$, then for all $k \geq 1$,

$$
\Delta_{k}^{\alpha[n x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|\psi_{0}\right|^{2}+\sum_{i=1}^{n} \gamma_{2} z_{2}\right)
$$

where

$$
z_{2}=\sum_{\jmath=1}^{k}\left|\phi_{\jmath} p_{2-\jmath}\right|^{2}+\left|q_{2}\right|^{2}+2 k e\left[p_{2}\left(\sum_{\jmath=1}^{k} \phi_{\jmath} \bar{q}_{2-\jmath}\right)+\sum_{l=2}^{k} \bar{\phi}_{l} p_{2-l}\left(\sum_{\jmath=1}^{l-1} \phi_{\jmath} \bar{p}_{2-\jmath}\right)\right] .
$$

2.4 Perturbation and convexity

Lemma 2.4.1. Let W_{α} be a weakly k-hyponormal weighted shift and $\varepsilon \alpha_{n} \in$ $\omega_{\alpha}(k, n)$ for some $\varepsilon \in(0,1)$. Then $\left[\sqrt{\varepsilon} \alpha_{n}, \alpha_{n}\right] \subseteq \omega_{\alpha}(k, n)$.

Proof. Let $x=\varepsilon \alpha_{n}$ and for $0<t<1$, let $z_{t}=\sqrt{\delta} \alpha_{n}$ where $\delta=t \varepsilon+(1-t)$.
Claim 1: $z_{t} \in \omega_{\alpha}(k, n)$ for all $0<t<1$.
As $\varepsilon<\delta<1$, so $\delta<\sqrt{\delta}<1$ and therefore $z_{t} \in\left(x, \alpha_{n}\right)$.
Now by Lemma 2.3.6, for $\phi:=\left\{\phi_{i}\right\}_{i=1}^{k}, p:=\left\{p_{i}\right\}_{i=0}^{\infty}$ and $q:=\left\{q_{i}\right\}_{i=0}^{\infty}$ in \mathbb{C},

$$
\begin{equation*}
\Delta_{k}^{\alpha[n: x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\alpha}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\sum_{i=1}^{n} \gamma_{i} z_{i}\right) \tag{2.4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{k}^{\alpha\left[n: z_{t}\right]}(\phi, p, q)=\delta \Delta_{k}^{\alpha}(\phi, p, q)+(1-\delta)\left(\left|q_{0}\right|^{2}+\sum_{i=1}^{n} \gamma_{i} z_{i}\right) \tag{2.4.2}
\end{equation*}
$$

Thus from (2.4.1) and (2.4.1), we get

$$
\begin{aligned}
\Delta_{k}^{\alpha\left[n: z_{t}\right]}(\phi, p, q) & =\delta \Delta_{k}^{\alpha}(\phi, p, q)+\left(\frac{1-\delta}{1-\varepsilon^{2}}\right)\left[\Delta_{k}^{\alpha[n: x]}(\phi, p, q)-\varepsilon^{2} \Delta_{k}^{\alpha}(\phi, p, q)\right] \\
& =\left(\delta-\varepsilon^{2}\right) \Delta_{k}^{\alpha}(\phi, p, q)+\left(\frac{1-\delta}{1-\varepsilon^{2}}\right) \Delta_{k}^{\alpha[n: x]}(\phi, p, q) \geq 0
\end{aligned}
$$

as $\alpha_{1}, x \in \omega_{\alpha}(k, n)$.
Therefore by Lemma. 2.3.4, $z_{t} \in \omega_{\alpha}(k, n)$ and Claim 1 is established.
Now let $\xi \in\left[\sqrt{\varepsilon} \alpha_{n}, \alpha_{n}\right]$. Then

$$
\begin{aligned}
& \xi
\end{aligned}=\lambda \alpha_{n} \text { for } \sqrt{\varepsilon} \leq \lambda \leq 1 .
$$

Corollary 2.4.2. If $x, y \in \omega_{n}(k, n), x<y$ and $x=\varepsilon y(0<\varepsilon<1)$ Then $[\sqrt{\varepsilon} y, y] \subset \omega_{\alpha}(k, n)$

Proof. If γ_{2}^{\prime} denotes the moment sequence of $\alpha[n: y]$, then by Lemma 2.3.6,

$$
\Delta_{k}^{\alpha[n x]}(\phi, p, q)=\varepsilon^{2} \Delta_{k}^{\alpha[n y]}(\phi, p, q)+\left(1-\varepsilon^{2}\right)\left(\left|q_{0}\right|^{2}+\sum_{i=1}^{n} \gamma_{2}^{\prime} z_{2}\right)
$$

and so the result follows as in Lemma 2.4.1.
Theorem 2.4.3. Let W_{α} be a contractive weakly k-hyponormal weighted shrft and $\omega_{\alpha}(k, \jmath):=\left\{x: W_{\alpha[\jmath x]}\right.$ is weakly k-hyponormal $\}$ Then $\omega_{\alpha}(k, \jmath)$ is a convex set.

Proof. Let $x, y \in \omega_{r r}(k, \jmath)$. Without loss of generality we choose $x<y$ Then $x=\varepsilon y$ for some $0<\varepsilon<1$ By Corollary 2.42,

$$
\begin{equation*}
\left[\varepsilon^{\frac{1}{2}} y, y\right] \subset \omega_{\alpha}(k, y) \tag{2.4.3}
\end{equation*}
$$

Step 1:

Let $x_{1}=\varepsilon^{\frac{1}{2}} y$ Then $x=\varepsilon y=\varepsilon^{\frac{1}{2}} x_{1}$ As $\varepsilon^{\frac{1}{2}} x_{1}, x_{1} \in \omega_{\alpha}(k . j)$, so by Corollary 2.4.2, $\left[\varepsilon^{\frac{1}{4}} x_{1}, x_{1}\right] \subset \omega_{\alpha}(k, j)$. That is,

$$
\begin{equation*}
\left[\varepsilon^{\frac{3}{4}} y, \varepsilon^{\frac{1}{2}} y\right] \subset \omega_{\alpha}(k, \jmath) \tag{2.4.4}
\end{equation*}
$$

Therefore from (2.4.3) and (24.4), we get $\left[\varepsilon^{\frac{3}{4}} y, y\right] \subset \omega_{\alpha}(k, \jmath)$.

Step 2:
Let $x_{2}=\varepsilon^{\frac{3}{4}} y$ Then $x=\varepsilon y=\varepsilon^{\frac{1}{4}} x_{2}$ As $\varepsilon^{\frac{1}{4}} x_{2}, x_{2} \in \omega_{\alpha}(k, \jmath)$, so again by Corollary 2.4.2, $\left[\varepsilon^{\frac{1}{8}} x_{2}, x_{2}\right] \subset \omega_{\alpha}(k, \jmath)$ That is,

$$
\begin{equation*}
\left[\varepsilon^{\frac{7}{8}} y, \varepsilon^{\frac{3}{4}} y\right] \subset \omega_{\alpha}(k, j) \tag{2.4.5}
\end{equation*}
$$

Therefore from (2.4.3), (2.4.4) and (2.4.5), we get $\left[\varepsilon^{\frac{7}{8}} y, y\right] \subset \omega_{\alpha}(k, j)$.

Continuing this process, after $n^{\text {th }}$ step we have $\left[\varepsilon^{\left(\frac{2^{n+1}-1}{2^{n+1}}\right)} y, y\right] \subset \omega_{\alpha}(k, j)$. But $\frac{2^{n+1}-1}{2^{n+1}} \uparrow 1$ as $n \rightarrow \infty$ and so $\varepsilon\left(\frac{2^{n+1}-1}{2^{n+1}}\right) \downarrow \varepsilon$ as $n \rightarrow \infty$. Thus we get $(x, y]=$ $(\varepsilon y, y] \subset \omega_{\alpha}(k, j)$. Therefore if $x, y \in \omega_{\alpha}(k, j)$, then $[x, y] \subset \omega_{\alpha}(k, j)$ and so $\omega_{\alpha}(k, j)$ is convex.

Chapter 3

On convexity of positive quadratic hyponormal region

3.1 Introduction

This chapter is in continuation of Chapter 2. Here also we continue to investigate the idea of convexity.

If $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a positive weight sequence, $2 \geq 0, k \geq 1$ and W_{r} is weakly k-hyponormal, then we have shown that $\omega_{\alpha}(k, \imath)$ is a nonempty convex set, where $\omega_{\alpha}(k, \imath):=\left\{x: W_{\alpha\{2 x]}\right.$ is weakly k-hyponormal $\}$. Now suppose $y \in \omega_{\alpha}(k, \imath+1)=\left\{x: W_{\mathrm{a}[\imath+1 x]}\right.$ is weakly k-hyponormal $\}$ and let $\omega_{\alpha[\imath+1, v]}(k, \imath):=$ $\left\{x: W_{\alpha[(2 x),(2+1 y)]}\right.$ is weakly k-hyponormal $\}$ Here $\omega_{\alpha\{\imath+1, v]}(k, \imath) \neq \phi$ as $\alpha_{\imath} \in$ $\omega_{\alpha[2+1, \eta]}(k, \imath)$. Moreover $\omega_{\alpha[2+1, v]}(k, \imath)$ is a convex set, by Theorem 2.4.3.
Question: What is the relation between $\omega_{\alpha}(k, r)$ and $\omega_{\alpha[\imath+1, y]}(k, \imath)$?
In this chapter we address this problem with reference to a positively quadratically hyponormal operator W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ where $\alpha_{n}=$ $\sqrt{\frac{n+1}{n+2}}$ for all n.

3.2 Positive quadratic hyponormality

To define a positive quadratically hyponormal weighted shift W_{r}, we recall the definition of quadratic hyponormal shift from section 2.2. W_{α} is quadratically hyponormal if and only if $D_{n}(s) \geq 0$ for all $s \geq 0$ and $n \geq 0$, where

$$
D_{n}=\left(\begin{array}{cccccc}
q_{0} & r_{0} & 0 & \ldots & 0 & 0 \\
r_{0} & q_{1} & r_{1} & \ldots & 0 & 0 \\
0 & r_{1} & q_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & q_{n-1} & r_{n-1} \\
0 & 0 & 0 & \ldots & r_{n-1} & q_{n}
\end{array}\right)
$$

and

$$
\begin{aligned}
& q_{k}:=u_{k}+s^{2} v_{k} \\
& r_{k}:=s \sqrt{w_{k}} \\
& u_{k}:=\alpha_{k}^{2}-\alpha_{k-1}^{2} \\
& v_{k}:=\alpha_{k}^{2} \alpha_{k+1}^{2}-\alpha_{k-1}^{2} \alpha_{k-2}^{2} \\
& w_{k}:=\alpha_{k}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k-1}^{2}\right)^{2}
\end{aligned}
$$

for $k \geq 0$ and $\alpha_{-1}=\alpha_{-2}:=0$
Let $d_{n}(\cdot):=\operatorname{det}\left(D_{n}(\cdot)\right)$. Then it follows from [17] that

$$
\begin{aligned}
& d_{0}=q_{0} \\
& d_{1}=q_{0} q_{1}-r_{0}^{2} \\
& d_{n+2}=q_{n+2} d_{n+1}-r_{n+1}^{2} d_{n}(\forall n \geq 0)
\end{aligned}
$$

and that d_{n} is actually a polynomial in $t:=s^{2}$ of degree $n+1$, with Maclaurine
expansion $d_{n}(t):=\sum_{\imath=0}^{n+1} c(n, \imath) t^{2}$. This immediately gives that for $1 \leq \imath \leq n+1$,

$$
\begin{aligned}
& c(0,0)=u_{0}, c(0,1)=v_{0}, c(1,0)=u_{1} u_{0}, \\
& c(1,1)=u_{1} v_{0}-u_{0} v_{1}-w_{0}, c(1,2)=v_{1} v_{0} \\
& c(n, \imath)=u_{n} c(n-1, \imath)+v_{n} c(n-1, \imath-1)-w_{n-1} c(n-2, \imath-1)(\forall n \geq 2) \\
& c(n, 1)=u_{n} c(n-1,1)+\left(v_{n} u_{n-1}-w_{n-1} u_{0} . u_{n-1}\right)(\forall n \geq 2)
\end{aligned}
$$

Observed that $c(n, 0)=u_{0} u_{1} \ldots u_{n} \geq 0$ and $c(n, n+1)=v_{0} v_{1} \ldots v_{n} \geq 0$ for all ($n \geq 0$).

Definition 3.2.1. [17] A hyponormal weighted shift W_{a} is said to be positively quadratically hyponormal (p.q.h.) if $c(n, \imath) \geq 0$ for all $n, \imath \geq 0$ with $0 \leq \imath \leq n+1$ and $c(n, n+1)>0$ for all $n \geq 0$

3.3 Statement of problem

Let $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be the positive weight sequence given by $\alpha_{n}=\sqrt{\frac{n+1}{n+2}}$ for all $n \geq 0$

In [12] it was shown that W_{α} is p.q.h., and $\rho_{\alpha}(0):=\left\{x: W_{\alpha \mid 0 x]}\right.$ is p.q.h. $\}=$ $\left(0, \frac{2}{3}\right]$ Recall that $\alpha[0: x]$ denotes the weight sequence $x, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$
Question 1: Can α_{1} be perturbed to y such that $\left.W_{\alpha[1 ~} y\right]$ is again p.q.h.?
Question 2: If answer to Question 1 is 'yes', then what is the relation between $\rho_{\mathrm{a}}(0)$ and $\rho_{\alpha[1 y]}(0)$? Note, $\rho_{\alpha[1 y]}(0):=\left\{x: W_{\alpha[(0 x),(1 y)]}\right.$ is p.q.h. $\}$.
In this chapter we answer these two questions. We show that there exists an interval $\left(k_{1}, k_{2}\right)$ about $\alpha_{1}=\sqrt{\frac{2}{3}}$ such that for $y \in\left(k_{1}, k_{2}\right), W_{\alpha[1 y]}$ is p.q.h., and $\rho_{\sigma[1, y]}(0)=(0, y]$. Thus, if $k_{1}<y<\sqrt{\frac{2}{3}}$ then $\rho_{\sigma[1, y]}(0) \subset \rho_{\alpha}(0)$, and if $\sqrt{\frac{2}{3}}<y<k_{2}$ then $\rho_{\alpha}(0) \subset \rho_{\alpha|1 y|}(0)$.

Now suppose $W_{\alpha\left[1: y_{0}\right]}$ is p.q.h. for $y_{0}<k_{1}$ or $y_{0}>k_{2}$. Then we have shown that in such cases $\rho_{\mathrm{a}\left[1: y_{0}\right]}(0) \neq\left(0, y_{0}\right]$ because there will always exist $x \in\left(0, y_{0}\right]$ such that $W_{\alpha\left[(0: x),\left(1: y_{0}\right)\right]}$ is not p.q.h.

Thus, in this chapter we determine k_{1}, k_{2} such that if $y \in\left(k_{1}, k_{2}\right)$ then either $\rho_{\alpha}(0) \subset \rho_{\alpha[1: 3]}(0)$ or $\rho_{\alpha[1: 3]}(0) \subset \rho_{\alpha}(0)$.

3.4 Determination of k_{1} and k_{2}

Consider the weighted shift $W_{\alpha(x, y)}$ with a positive weight sequence $\alpha(x, y)$: $\sqrt{x}, \sqrt{y}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \ldots$ having a Bergman tail. In [12] it was shown that for $y=\frac{2}{3}$ and $0<x \leq y$, the weighted shift $W_{\alpha(x, y)}$ is p.q.h. So, does there exist an interval $\left(k_{1}, k_{2}\right)$ about $\frac{2}{3}$ such that for $y \in\left(k_{1}, k_{2}\right)$ and $0<x \leq y$, the weighted shift $W_{o(x, y)}$ is p.q.h. ?

Remark 3.4.1. We must have $x \leq y \leq \frac{3}{4}$ because $W_{\alpha(x, y)}$ cannot be p.q.h. if it is not hyponormal in the first place.

Remark 3.4.2. If (k_{1}, k_{2}) exists then it must be contained in $\left[\delta_{1}, \delta_{2}\right]$. This is in view of [46, Theorem 2.2] which states the following :
Let $\alpha(x): \sqrt{x}, \sqrt{x}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \ldots$ be a weight sequence with Bergman tail and let $Q H\left(W_{\alpha(x)}\right)=\left\{x \in \mathbb{R}_{+}: W_{\alpha(x)}\right.$ is q.h. $\}$. Then $Q H\left(W_{\alpha(x)}\right)=\left[\delta_{1}, \delta_{2}\right]$ where $\delta_{1} \approx 0.1673$ and $\delta_{2} \approx 0.7439$ with errors less than .001 .

Now suppose (k_{1}, k_{2}) exists. Then for $y \in\left(k_{1}, k_{2}\right)$ and $0<x \leq y, W_{\alpha(x, y)}$ is p.q.h. and hence q.h. In particular $W_{\alpha(y)}$ is q.h. and so $y \in Q H\left(W_{\alpha(y)}\right)=$ $\left[\delta_{1}, \delta_{2}\right]$.

Remark 3.4.3. If $\left(k_{1}, k_{2}\right)$ exists then it must be contained in $\left(0.625, \delta_{2}\right.$]. This is
in view of [65, Theorem 3.7] where it was shown that for $y=\frac{5}{8}=0.625, W_{\alpha(x, y)}$ is not p.q.h.

We now proceed to show that (k_{1}, k_{2}) exists and also to determine the biggest such interval. Before that we record a few definitions and results from [3] which are to be used in solving our problem.

Definition 3.4.1. [3] Let $\alpha: \alpha_{0}, \alpha_{1}, \ldots$ be a weight sequence.
(1) A weighted shift W_{α} has property $B(k)$ if $u_{n+1} v_{n} \geq w_{n},(n \geq k)$
(2) A weighted shift W_{α} has property $C(k)$ if $v_{n+1} u_{n} \geq w_{n},(n \geq k)$, where u_{n}, v_{n}, w_{n} are defined as in section 3.2.

Corollary 3.4.1. [3] Let W_{α} be a weighted shift with property $C(2)$. Then W_{α} is p.q.h. if and only if $c(n+1, n) \geq 0 \forall n \in \mathbb{N}$

Lemma 3.4.2. [3] If W_{α} has property $B(n+1)$ for some $n \geq 1$, then W_{a} has property $C(n)$.

Theorem 3.4.3. [3] If W_{α} be a weighted shift with property $B(k)$ for some $k \geq 2$, then W_{α} is p.q.h. if and only if $c(n+i-1, i) \geq 0$ for $n=1,2, \ldots, k$

In view of Remark 3.4.3, we shall consider $y \in\left(0.625, \frac{2}{3}\right]$ for determining k_{1}, and we consider $y \in\left[\frac{2}{3}, 0.7439\right]$ for determining k_{2}.

CASE I: Determining k_{1}

Choose $y \in\left(0.625, \frac{2}{3}\right], 0<x \leq y$ and denote the sequence $\alpha(x, y)$ as $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$. Then we have $\alpha_{0}=\sqrt{x}, \alpha_{1}=\sqrt{y}$ and $\alpha_{n}=\sqrt{\frac{n+1}{n+2}}$ for $n \geq 2$. Using the expressions of u_{n}, v_{n} and w_{n} as given in $\S 3.2$, we see that $u_{n+1} v_{n}-w_{n}=\frac{1}{40}\left(\frac{2}{3}-y\right) \geq 0$ for $n=3$, and for $n \geq 4$ we have $u_{n+1}=\frac{1}{(n+2)(n+3)}, v_{n}=\frac{4}{(n+1)(n+3)} ; w_{n}=$
$\frac{4}{(n+1)(n+2)(n+3)^{2}}$ and so $u_{n+1} v_{n}=w_{n}$. Therefore, we have $u_{n+1} v_{n}-w_{n} \geq 0$ for $n \geq 3$ and so by Definition 3.4.1, $W_{r(x, y)}$ has property $B(3)$.
Since $W_{\alpha(x, y)}$ has property $B(3)$ so by Theorem 3.4.3, $W_{\alpha(x, y)}$ is p.q.h. if and only if $c(n+i-1, i) \geq 0$ for $n=1,2$ and $i=1,2,3$.

Again, sinçe $W_{\alpha(x, y)}$ has property $B(3)$, so by Lemma 3.4.2, $W_{\alpha(x, y)}$ has property $C(2)$ and hence by Corollary 3.4.1, $W_{o(x, y)}$ is p.q.h. if and only if $c(n+1, n) \geq 0$ for all $n \in \mathbb{N}$.

Combining the above two results we get that $W_{\alpha(x, y)}$ is p.q.h. if and only if $c(2,1), c(3,2)$ and $c(4,3)$ are ≥ 0. Using the expressions of $c(n, i)$ from $\S 3.2$ and simplifying we get,
$c(2,1)=\frac{3}{4} x\left(\frac{4}{5}-y\right)(y-x)$
$c(3,2)=\frac{1}{80} x\left[\left(5 y-4 y^{2}-3 y^{3}\right)-x\left(32-112 y+138 y^{2}-60 y^{3}\right)\right]$
$c(4,3)=\frac{1}{2800} x\left[\left(41 y-79 y^{2}+37 y^{3}\right)-x\left(128-420 y+475 y^{2}-184 y^{3}\right)\right]$
Clearly, for $y \in\left(0.625, \frac{2}{3}\right]$ and $0<x \leq y$ we get $c(2,1) \geq 0$.
Regarding $c(3,2)$, if we define $f(y):=\frac{5 y-4 y^{2}-3 y^{3}}{32-112 y+138 y^{2}+60 y^{3}}$ then it is seen from the Ma.thematica 'graph and also by rigorous calculation that for $y \in\left(0.625, \frac{2}{3}\right]$ and $0<x \leq y, f(y) \geq y$ and so $c(3,2) \geq 0$.

Figure 4

To check whether $c(4,3) \geq 0$, we define $f(y):=\frac{41 y-79 y^{2}+37 y^{3}}{128-420 y+475 y^{2}-184 y^{3}}$. Then
(i) for $y \in\left(0.625, \frac{29}{46}\right), f(y)<y$ and so for $f(y)<x \leq y$ we have $c(4,3)<0$
(ii) for $y \in\left[\frac{29}{46} ; \frac{2}{3}\right], f(y) \geq y$ and so for $0<x \leq y$ we have $c(4,3) \geq 0$

Figure 5

Hence we conclude that $W_{\alpha(x, y)}$ is p.q.h. for $0<x \leq y$ if and only if $y \in\left[\frac{29}{46}, \frac{2}{3}\right]$. Thus, $k_{1}=\frac{29}{46} \approx 0.630435$

CASE II : Determining k_{2}
Choosing $y \in\left[\frac{2}{3}, 0.7439\right]$ and $0<x \leq y$ and proceeding as in Case I we see that $W_{\alpha(x, y)}$ has property $B(4)$. So by Theorem 3.4.3, $W_{\alpha(x, y)}$ is p.q.h. if and only if $c(n+i-1, i) \geq 0$ for $n=1,2,3$ and $i=1,2,3,4$. That is, if and only if $c(1,1), c(2,1), c(2,2), c(3,1), c(3,2), c(3,3), c(4,2), c(4,3), c(4,4), c(5,3), c(5,4)$, $c(6,4)$ are all ≥ 0.

Using the expressions of $c(n, i)$ from $\S 3.2$ and simplifying we get,

$$
\begin{aligned}
& c(1,1)=\frac{1}{4} x y(3-4 x) \\
& c(2,1)=\frac{3}{20}(4-5 y)(y-x) \\
& c(2,2)=\frac{2}{20} x y\left[\left(3-5 y^{2}\right)-x(4-5 y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& c(3,1)=\frac{1}{60} x(3-4 y)(y-x) \\
& c(3,2)=\frac{1}{80} x\left[\left(-5 y+4 y^{2}+3 y^{3}\right)-x\left(-32+112 y-138 y^{2}+60 y^{3}\right)\right] \\
& c(3,3)=\frac{1}{40} x y\left[\left(-12+27 y-16 y^{2}\right)-x\left(-16+38 y-24 y^{2}\right)\right] \\
& c(4,2)=\frac{1}{16800} x\left[\left(75 y-86 y^{2}-21 y^{3}\right)-x\left(264-842 y+966 y^{2}-420 y^{3}\right)\right] \\
& c(4,3)=\frac{1}{2800} x\left[\left(41 y-79 y^{2}+37 y^{3}\right)-x\left(128-420 y+475 y^{2}-184 y^{3}\right)\right] \\
& c(4,4)=\frac{1}{5600} x y\left[\left(192-390 y+193 y^{2}\right)-x\left(256-608 y+454 y^{2}-105 y^{3}\right)\right] \\
& c(5,3)=\frac{1}{201600} x\left[\left(111 y-194 y^{2}+63 y^{3}\right)-2 x\left(132-397 y+417 y^{2}-162 y^{3}\right)\right] \\
& c(5,4)=\frac{1}{33600} x\left[\left(41 y-73 y^{2}+28 y^{3}\right)-x\left(128-420 y+475 y^{2}-174 y^{3}-15 y^{4}\right)\right] \\
& c(6,4)=\frac{1}{50803200} x\left[\left(1776 y-2942 y^{2}+765 y^{3}\right)-x\left(4224-12704 y+13344 y^{2}-\right.\right. \\
& \left.\left.4914 y^{3}-405 y^{4}\right)\right]
\end{aligned}
$$

Now $c(1,1), c(2,1)$ and $c(3,1)$ are obviously ≥ 0 for $0<x \leq y \leq \frac{3}{4}$.
Thus we only need to check $c(2,2), c(3,2), c(3,3), c(4,2), c(4,3), c(4,4), c(5,3)$, $c(5,4)$ and $c(6,4)$. Of these we find that other than $c(4,2), c(4,4), c(5,4)$ and $c(6,4)$, all the rest are ≥ 0 for $y \in\left[\frac{2}{3}, 0.7439\right]$ and $0<x \leq y$. This is clear from the following figure which shows that the graphs of $c(2,2), c(3,2), c(3,3), c(4,3)$ and $c(5,3)$ are all above the $x=y$ line in the region $y \in\left[\frac{2}{3}, 0.7439\right]$.

Figure 6

To check whether $c(4,2) \geq 0$, we define $f(y):=\frac{75 y-86 y^{2}-21 y^{3}}{264-842 y+966 y^{2}-420 y^{3}}$. Then (i) for $y \in(0.737144,0.7439) ; f(y)<y$ and so for $f(y)<x \leq y$ we have $c(4,2)<0$
(ii) for $y \in\left[\frac{2}{3}, 0.737144\right), f(y) \geq y$ and so for $0<x \leq y$ we have $c(4,2) \geq 0$

Figure 7
To check whether $c(5,4) \geq 0$, we define $f(y):=\frac{41 y-73 y^{2}+28 y^{3}}{128-420 y^{3} 475 y^{2}-174 y^{3}-15 y^{4}}$. Then (i) for $y \in(0.742207,0.7439], f(y)<y$ and so for $f(y)<x \leq y$ we have $c(5,4)<0$
(ii) for $y \in\left[\frac{2}{3}, 0.742207\right], f(y) \geq y$ and so for $0<x \leq y$ we have $c(5,4) \geq 0$

Figure 8

To check whether $c(6,4) \geq 0$, we define $f(y):=\frac{1776 y-2942 y^{2}+765 y^{3}}{4224-12704 y+13344 y^{2}-4914 y^{3}-405 y^{4}}$. Then (i) for $y \in(0.742654,0.7439], f(y)<y$ and so for $f(y)<x \leq y$ we have $c(6,4)<0$
(ii) for $y \in\left[\frac{2}{3}, 0.742654\right], f(y) \geq y$ and so for $0<x \leq y$ we have $c(6,4) \geq 0$

Figure 9
To check whether $c(4,4) \geq 0$, we define $f(y):=\frac{192-390 y+193 y^{2}}{256-608 y+454 y^{2}-105 y^{3}}$. Then (i) for $y \in(0.742847,0.7439], f(y)<y$ and so for $f(y)<x \leq y$ we have $c(4,4)<0$
(ii) for $y \in\left[\frac{2}{3}, 0.742847\right], f(y) \geq y$ and so for $0<x \leq y$ we have $c(4,4) \geq 0$

Figure 10

Hence we conclude that $W_{\alpha(x, y)}$ is p.q.h. for $0<x \leq y$ if and only if $y \in\left[\frac{2}{3}, 0.737144\right)$. Thus, $k_{2}=0.737144$.

3.5 Conclusion

For $0<x \leq y \leq \frac{3}{4}$, let $\alpha(x, y)$ denote the sequence with Bergman tail given by $\alpha(x, y): \sqrt{x}, \sqrt{y}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \ldots$ Then,
(A) there exists an interval $\left(k_{1}, k_{2}\right)$ about the point $\frac{2}{3}$ such that for every $y \in$ (k_{1}, k_{2}) and $0<x \leq y$, the weighted shift operator $W_{\alpha(x, y)}$ is p.q.h.
(B) for $y \leq \frac{29}{46}=0.630435$ there exists $0<x \leq y$ such that $W_{\alpha(x, y)}$ is not p.q.h.
(C) for $y>0.737144$ there exists $0<x \leq y$ such that $W_{a(x, y)}$ is not p.q.h.
(D) $W_{\alpha(x, y)}$ is p.q.h. for $0<x \leq y$ if and only if $y \in\left[k_{1}, k_{2}\right)$, where $k_{1}=\frac{29}{46}=$ 0.630435 and $k_{2}=0.737144$, correct upto six places after the decimal.

Chapter 4

Finite rank perturbation of 2-hyponormal weighted shifts

4.1 Introduction

In this chapter we consider hyponormal weighted shift W_{α}, and then a finite rank perturbation of W_{α}, say $W_{\alpha[j x]}$ where the $j^{\text {th }}$ weight α_{ρ} is perturbed to x. In [24, Theorem 2.1], it has been shown that a non zero finite rank perturbation of a subnormal shift is never subnormal unless the perturbation occurs at initial weight α_{0}. However, this is not necessarily true for a 2-hyponormal shifts as shown in [24, Example 3.1(ii)]. So the question being addressed in this chapter is as follows:

Given a 2-hyponormal weighted shift W_{α} and $\jmath=0,1,2, \ldots$ does there always exist $\epsilon>0$ such that for $x \in\left(\alpha_{\jmath}-\epsilon, \alpha_{\jmath}+\epsilon\right), W_{\alpha[\jmath x]}$ is again 2-hyponormal? Herc we propose a set of sufficient conditions under which there exists $c>0$ such that for $x \in\left(\alpha_{\jmath}-\epsilon, \alpha_{\jmath}+\epsilon\right), W_{\alpha[\jmath x]}$ will again be 2-hyponormal. We also specify conditions under which there exists $\epsilon>0$ such that for all $x \in\left(\alpha_{\jmath}-\epsilon, \alpha_{j}+\epsilon\right)$ and $x \neq \alpha_{3}, W_{\alpha[3 x \mid}$ is not 2-hyponormal; that is, conditions under which slight perturbation of the weight α_{g} makes the perturbed shift non 2-hyponormal. We further prove that in such cases the perturbed shift $W_{\alpha[3 x]}$ will however be at
least quadratic hyponormal.

4.2 About 2-hyponormality

A bounded linear operator T on a complex Hilbert space H is said to be 2 hyponormal if the operator matrix

$$
\left(\begin{array}{cc}
{\left[T^{*}, T\right]} & {\left[T^{*^{2}}, T\right]} \\
{\left[T^{*}, T^{2}\right]} & {\left[T^{*^{2}}, T^{2}\right]}
\end{array}\right)
$$

is positive on $H \oplus H$

Theorem 4.2.1. [12] Let W_{α} be the weighted shift with positive weight sequence $\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, on the space $\ell^{2}\left(\mathbb{Z}_{+}\right)$. Then the following are equivalent:

1. T is 2-hyponormal.
2. The matrzx $\left(\left\langle\left[T^{* 3}, T^{\imath}\right] e_{n+\jmath}, e_{n+2}\right\rangle\right)_{2, \jmath=1}^{2}$ is positive for all $n \geq-1$
3. The matrux $\left(\beta_{n}^{2} \beta_{n+\imath+\jmath}^{2}-\beta_{n+2}^{2} \beta_{n+\jmath}^{2}\right)_{2, \jmath=1}^{2}$ is positive for all $n \geq 0$ where $\beta_{0}=1$ and $\beta_{n}=\alpha_{0}, \quad, \alpha_{n-1}(n \geq 1)$
4. The Hankel matrix $\left(\beta_{n+\imath+\jmath-2}^{2}\right)_{2, j=1}^{3}$ is positıve for all $n \geq 0$

Example 4.2.1. If $\alpha_{n}=\sqrt{\frac{n+1}{n+2}}(\forall n \geq 0)$, then W_{α} wnth werght sequence $\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is 2-hyponormal. In fact, in [24, Example 3.1] it has been shown that $W_{\alpha[1 x]}$ is 2-hyponormal f and only $\imath f \frac{63-\sqrt{129}}{80} \leq x \leq \frac{24}{35}$. This example highlughts the fact that it us possible to perturb the $1^{\text {th }}$ weight of α and still keep the perturbed shift 2-hyponormal.

4.3 NASC for 2-hyponormality of finite rank perturbation

Lemma 4.3.1. Let W_{α} be a hyponormal weighted shaft with positive weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. Then W_{r} us 2-hyponormal if and only if

$$
\Delta_{n}:=\left(\begin{array}{cc}
u_{2} & \sqrt{w_{2}} \\
\sqrt{w_{2}} & v_{2+1}
\end{array}\right) \geq 0
$$

for all $n \geq 0$ (Here u_{2}, v_{2}, w_{2} are defined as in section 22 and 3 2)
Proof.

$$
\left.\begin{array}{l}
W_{\alpha} \text { is 2-hyponormal } \\
\Leftrightarrow\binom{\left[W_{\alpha}^{*}, W_{\alpha}\right]\left[W_{\alpha}^{*^{2}}, W_{\alpha}\right]}{\left[W_{\alpha}^{*}, W_{\alpha}^{2}\right] \quad\left[W_{\alpha}^{*^{2}}, W_{\alpha}^{2}\right]} \geq 0 \\
\Leftrightarrow
\end{array} \quad\left\langle\left[W_{\alpha}^{*}, W_{\alpha}\right] x, x\right\rangle+\left\langle\left[W_{\alpha}^{*^{2}}, W_{\alpha}\right] y, x\right\rangle+\left\langle\left[W_{\alpha}^{*}, W_{\alpha}^{2}\right] x, y\right\rangle\right)
$$

We are now ready to state our results in this chapter.

Theorem 4.3.2. Let W_{α} be a 2-hyponormal weighted shift with weight sequence $\alpha=\left\{\alpha_{\imath}\right\}_{2=0}^{\infty}$. Let the $0^{\text {th }}$ weight α_{0} be slightly perturbed to say x, and let $W_{\alpha\{0 x]}$ denote the perturbed shift with weight sequence $\left\{\alpha_{n}^{\prime}\right\}$ given by $\alpha_{0}^{\prime}=x, \alpha_{n}^{\prime}=$ α_{n} for $n>0$. Then there exists $\varepsilon>0$ such that $W_{\alpha[0 x]}$ 2s 2-hyponormal for all
$x \in\left(\alpha_{0}-\varepsilon, \alpha_{0}+\varepsilon\right)$. That is, for a slight perturbation of the $0^{\text {th }}$ weight α_{0}, the perturbed shift still remains 2-hyponormal.

Proof. Here,

$$
\begin{gathered}
u_{n}^{\prime}= \begin{cases}x^{2}, & \text { if } n=0 \\
\alpha_{1}^{2}-x^{2}, & \text { if } n=1 \\
u_{n}, & \text { if } n \geq 2\end{cases} \\
v_{n}^{\prime}= \begin{cases}x^{2} \alpha_{1}^{2}, & \text { if } n=0 \\
\alpha_{1}^{2} \alpha_{2}^{2}, & \text { if } n=1 \\
\alpha_{2}^{2} \alpha_{3}^{2}-x^{2} \alpha_{1}^{2}, & \text { if } n=2 \\
v_{n}, & \text { if } n \geq 3\end{cases} \\
w_{n}^{\prime}= \begin{cases}x^{2} \alpha_{1}^{4}, & \text { if } n=0 \\
\alpha_{1}^{2}\left(\alpha_{2}^{2}-x^{2}\right)^{2}, & \text { if } n=1 \\
w_{n}, & \text { if } n \geq 2\end{cases}
\end{gathered}
$$

Thus, if $\Delta_{n}^{\prime}:=\left(\begin{array}{cc}u_{n}^{\prime} & \sqrt{w_{n}^{\prime}} \\ \sqrt{w_{n}^{\prime}} & v_{n+1}^{\prime}\end{array}\right)$, then $W_{\alpha\{0: x]}$ is 2-hypponormal if $\Delta_{n}^{\prime} \geq 0$ for all $n \geq 0$.

Now $\Delta^{\prime}{ }_{n}=\Delta_{n} \geq 0$ for $n \geq 2$. Thus we only need to check the positivity of $\Delta^{\prime}{ }_{0}$ and $\Delta^{\prime}{ }_{1}$.

$$
\operatorname{det} \Delta_{0}^{\prime}=\alpha_{1}^{2} x^{2}\left(\alpha_{2}^{2}-x^{2}\right) \geq 0 \text { for all } 0<x \leq \alpha_{1} . \text { So } \Delta_{0}^{\prime} \geq 0
$$

Let $f(x):=\operatorname{det} \Delta^{\prime}{ }_{1}$. Then

$$
f(x)=x^{2}\left[\alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)-\alpha_{2}^{2}\left(\alpha_{3}^{2}-\alpha_{1}^{2}\right)\right]+\alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2}
$$

If $\operatorname{det} \Delta_{1}>0$ then $f\left(\alpha_{0}\right)=\operatorname{det} \Delta_{1}>0$ and so by continuity of f, there exists $\varepsilon>0$ such that $\int(x)>0$ for all $x \in\left(\alpha_{0}-\varepsilon ; \alpha_{0}+\varepsilon\right)$.

But suppose $\operatorname{det} \Delta_{1}=0$. Then $f\left(\alpha_{0}\right)=0$. Also

$$
f^{\prime}(x)=2 x\left[\alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)-\alpha_{2}^{2}\left(\alpha_{3}^{2}-\alpha_{1}^{2}\right)\right]<0 \text { for all } x .
$$

Thus, the continuous function f is decreasing and as $f\left(\alpha_{0}\right)=0$, we conclude that there exists $\varepsilon>0$ such that $f(x)>0$ for $x \in\left(\alpha_{0}-\varepsilon, \alpha_{0}\right)$ and $f(x)<0$ for
$x \in\left(\alpha_{0}, \alpha_{0}+\varepsilon\right)$. So if $\operatorname{det} \Delta_{1}=0$ then there cxisis $\varepsilon>0$ such that $\Delta^{\prime}{ }_{1} \geq 0$ for $r \in\left(\alpha_{0}-\varepsilon, \alpha_{0}\right)$ but $\Delta^{\prime}{ }_{1} \nsupseteq 0$ for $\tau \in\left(\alpha_{0}, \alpha_{0}+\varepsilon\right)$

We can thus, give the following conclusion

1. If $\operatorname{del} \Delta_{1}>0$ then there exists $\varepsilon>0$ such that $W_{\alpha[0 x]}$ is 2-hyponormal for all $x \in\left(\alpha_{0}-\varepsilon, \alpha_{0}+\varepsilon\right)$.
2. If $\operatorname{det} \Delta_{1}=0$ then there exists $\varepsilon>0$ such that $W_{n}[0 x]$ is 2-hyponormal for all $x \in\left(\alpha_{0}-\varepsilon, \alpha_{0}\right)$ but $W_{\alpha \mid 0 x]}$ is not 2-hyponormal for $x \in\left(\alpha_{0}, \alpha_{0}+\varepsilon\right)$

Following a similar line of argument, we now give an exhaustive set of conditions under which perturbation of the $2^{\text {th }}$ weight of a 2-hyponormal weighted shift again keeps the perturbed shifi as 2-hyponormal.

Theorem 4.3.3. Let $\alpha=\left\{\alpha_{2}\right\}_{2=0}^{\infty}$ be a structly increasing positvve weight sequence and W_{α} be a 2-hyponormal werghted shift. Choose any _ from $0,1,2$, Then (referring to notatıons already introduced) we have:
(a) If either $\operatorname{det} \Delta_{\imath+1}=0$ or $\operatorname{det} \Delta_{\imath-1}=0$ on the one hand, and $\operatorname{det} \Delta_{2}=0$ or $\operatorname{det} \Delta_{2-2}=0$ on the other, then there exusts $\epsilon>0$ such that for all x in the deleted neighborhood $\left(\alpha_{2}-1, \alpha_{2}+c\right)$ of $\alpha_{2}, W_{\alpha[2 x]}$ is not 2-hyponormal.
(b) If $\operatorname{det} \Delta_{\imath+1}>0, \operatorname{det} \Delta_{2-1}>0$ but eather $\operatorname{det} \Delta_{2}=0$ or $\operatorname{det} \Delta_{\imath-2}=0$, then there always exist $\epsilon>0$ such that for $x \in\left(\alpha_{2}-\epsilon, \alpha_{\imath}\right), W_{\kappa[\imath x]}$ is not 2hyponormal, and for $a \in\left(\alpha_{i}, \alpha_{2}+\epsilon\right), W_{\alpha[2 x]}$ is 2-hyponormal.
(c) If euther $\operatorname{det} \Delta_{\imath+1}=0$ or $\operatorname{det} \Delta_{\imath-1}=0$, but $\operatorname{det} \Delta_{\imath}>0, \operatorname{det} \Delta_{\imath-2}>0$, then there always exist $c>0$ such that for $\left.x \in\left(\alpha_{2}-\epsilon, \alpha_{2}\right), W_{\kappa[2} x\right]$ ss 2-hyponormal, and for $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right), W_{\alpha[2 x]}$ ss not 2-hyponormal.
(d) If det $\Delta_{\jmath}>0$ for $\jmath=\imath-2, \imath-1, \imath, \imath+1$, then there exısts $\epsilon>0$ such that for $x \in\left(\alpha_{2}-c, \alpha_{2}+c\right), W_{\alpha[2 x]}$ is again 2-hyponormal.

Note: For $\imath=0$, wc need consider only Δ_{2} and $\Delta_{\imath+1}$; and for $\imath=1$, we need consider only $\Delta_{\imath-1}, \Delta_{2}$ and $\Delta_{\imath+1}$.

Proof. Choose \imath arbitrarily and fix 1t. Here $\alpha[\imath: x]$ denotes the perturbed weight sequence α where the $\imath^{\text {th }}$ weight α_{2} is replaced by x, for $\alpha_{\imath-1}<\tau<\alpha_{\imath+1}$. Note $\alpha_{-n}:=0$ for $n \in \mathbb{N}$. Then by Lemma 4.3.1, $W_{\alpha[2 x \mid}$ will be 2-hyponormal if and only of $\Delta^{\prime}{ }_{n} \geq 0$ for all $n \in \mathbb{N}$, where

$$
\begin{gathered}
\Delta_{n}^{\prime}=\left(\begin{array}{ll}
u_{n}^{\prime} & \sqrt{w_{n}^{\prime}} \\
\sqrt{w_{n}^{\prime}} & v_{n+1}^{\prime}
\end{array}\right) \\
u_{n}^{\prime}= \begin{cases}u_{n}, & \text { for } n<\imath \\
x^{2}-\alpha_{\imath-1}^{2}, & \text { for } n=\imath ; \\
\alpha_{2+1}^{2}-a^{2}, & \text { for } n=\imath+1 \\
u_{n}, & \text { for } n \geq \imath+2\end{cases} \\
v_{n}^{\prime}= \begin{cases}v_{n}, & \text { for } n<\imath-1 ; \\
\alpha_{2-1}^{2} x^{2}-\alpha_{2-2}^{2} \alpha_{\imath-3}^{2}, & \text { for } n=\imath-1 \\
x^{2} \alpha_{2+1}^{2}-\alpha_{\imath-1}^{2} \alpha_{2-2}^{2}, & \text { for } n=\imath ; \\
\alpha_{2+1}^{2} \alpha_{2+2}^{2}-x^{2} \alpha_{\imath-1}^{2}, & \text { for } n=\imath+1 \\
\alpha_{2+2}^{2} \alpha_{2+3}^{2}-\alpha_{\imath+1}^{2} x^{2}, & \text { for } n=\imath+2 \\
v_{n}, & \text { for } n \geq \imath+3\end{cases} \\
w_{n}^{\prime}= \begin{cases}w_{n}, & \text { for } n<\imath-1 \\
\alpha_{2-1}^{2}\left(x^{2}-\alpha_{2-2}^{2}\right)^{2}, & \text { for } n=\imath-1 \\
x^{2}\left(\alpha_{2+1}^{2}-\alpha_{2-1}^{2}\right)^{2}, & \text { for } n=\imath ; \\
\alpha_{2+1}^{2}\left(\alpha_{2+2}^{2}-x^{2}\right)^{2}, & \text { for } n=\imath+1 \\
w_{n}, & \text { for } n \geq \imath+2\end{cases}
\end{gathered}
$$

Clearly $\Delta_{n}^{\prime}=\Delta_{n}$ for all n except for $n=\imath-2, \imath-1, \imath, \imath+1$. Hence we only need to check the positivity of $\Delta^{\prime}{ }_{n}$ for these four particular values of n.
(i) To determine x for which $\Delta^{\prime}{ }_{2+1} \geq 0$.

Let

$$
\begin{aligned}
h(x) & :=\operatorname{det} \Delta_{\imath+1}^{\prime} \\
& =x^{2}\left[\alpha_{\imath+1}^{2}\left(\alpha_{\imath+2}^{2}-\alpha_{\imath+1}^{2}\right)-\alpha_{\imath+2}^{2}\left(\alpha_{\imath+3}^{2}-\alpha_{\imath+1}^{2}\right)\right]+\alpha_{\imath+1}^{2} \alpha_{\imath+2}^{2}\left(\alpha_{\imath+3}^{2}-\alpha_{\imath+2}^{2}\right)
\end{aligned}
$$

As $h\left(\alpha_{\imath}\right)=\operatorname{del} \Delta_{\imath+1} \geq 0$ so we have the following two cases:

Case I: If $\operatorname{det} \Delta_{2+1}>0$, then h being continuous in x, there exists $\epsilon>0$ such that $h(x)>0$ for all $a \in\left(\alpha_{2}-c, \alpha_{2}+c\right)$.

Case II: If $\operatorname{det} \Delta_{2+1}=0$ then we consider $h^{\prime}(x)$ given by

$$
h^{\prime}(x)=2 x\left[\alpha_{\imath+1}^{2}\left(\alpha_{\imath+2}^{2}-\alpha_{\imath+1}^{2}\right)-\alpha_{\imath+2}^{2}\left(\alpha_{\imath+3}^{2}-\alpha_{\imath+1}^{2}\right)\right]
$$

As $\alpha_{\imath+1}<\alpha_{\imath+2}<\alpha_{\imath+3}$ so $\alpha_{\imath+1}^{2}\left(\alpha_{\imath+2}^{2}-\alpha_{\imath+1}^{2}\right)<\alpha_{\imath+2}^{2}\left(\alpha_{\imath+3}^{2}-\alpha_{\imath+1}^{2}\right)$. Hence $h^{\prime}(x)<0$ for all $x>0$. In particular, h is a decreasing function at $x=\alpha_{2}$ and since $h\left(\alpha_{2}\right)=0$ so there exists $\epsilon>0$ such that $h(x)>0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}\right)$, and $h(x)<0$ for all $a \in\left(\alpha_{2}, \alpha_{2}+c\right)$.

So we can summarize that if $\operatorname{det} \Delta_{\imath+1}>0$ then there exists $\epsilon>0$ such that $\Delta^{\prime}{ }_{\imath+1}>0$ for all $x \in\left(\alpha_{\imath}-\epsilon, \alpha_{\imath}+\epsilon\right)$. Otherwise $\Delta^{\prime}{ }_{2+1}>0$ for $x \in\left(\alpha_{\imath}-\epsilon, \alpha_{\imath}\right)$, and $\Delta^{\prime}{ }_{2+1}<0$ for $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right)$.
(ii) To determine x for which $\Delta^{\prime}{ }_{2} \geq 0$.

Let

$$
\begin{aligned}
g(x) & =\operatorname{det} \Delta^{\prime}{ }_{\imath} \\
& =-\alpha_{\imath-1}^{2} x^{4}+x^{2}\left[\alpha_{\imath+1}^{2} \alpha_{\imath+2}^{2}+\alpha_{\imath-1}^{4}-\left(\alpha_{\imath+1}^{2}-\alpha_{\imath-1}^{2}\right)^{2}\right]-\alpha_{\imath-1}^{2} \alpha_{\imath+1}^{2} \alpha_{\imath+2}^{2}
\end{aligned}
$$

Now $g\left(\alpha_{\imath}\right)=\operatorname{det} \Delta_{\imath} \geq 0$. If $\operatorname{det} \Delta_{\imath}>0$ then by continuity of g there exists $\epsilon>0$ such that $g(x)>0$ for all $x \in\left(\alpha_{i}-\epsilon, \alpha_{2}+\epsilon\right)$. On the other hand if $\operatorname{det} \Delta_{2}=0$ then since

$$
g^{\prime}(x)=2 x\left[2 \alpha_{\imath-1}^{2}\left(\alpha_{i+1}^{2}-x^{2}\right)+\alpha_{2+1}^{2}\left(\alpha_{2+2}^{2}-\alpha_{i+1}^{2}\right)\right]>0 \text { for all } x>0
$$

so g is an increasing function at $x=\alpha_{2}$ Also since $g\left(\alpha_{2}\right)=0$ so there exists $\epsilon>0$ such that $g(x)<0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}\right)$, and $g(x)>0$ for all $x \in\left(\alpha_{\imath}, \alpha_{2}+\epsilon\right)$.

So we can summarize that if $\operatorname{det} \Delta_{2}>0$ then there exists $\epsilon>0$ such that $\Delta^{\prime}{ }_{2}>0$ for all $x \in\left(\alpha_{i}-\epsilon, \alpha_{i}+\epsilon\right)$. Otherwise $\Delta^{\prime}<0$ for $x \in\left(\alpha_{i}-\epsilon, \alpha_{z}\right)$, and $\Delta^{\prime}{ }_{2}>0$ for $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right)$.
(iii) To determine x for which $\Delta^{\prime}{ }_{2-1} \geq 0$

Let

$$
\begin{aligned}
J(\lambda) & :=\operatorname{del} \Delta_{\imath-1}^{\prime} \\
& =-\alpha_{\imath-1}^{2} x^{4}+x^{2}\left[\alpha_{\imath+1}^{2}\left(\alpha_{\imath-1}^{2}-\alpha_{\imath-2}^{2}\right)+2 \alpha_{\imath-1}^{2} \alpha_{\imath-2}^{2}\right]+\alpha_{\imath-1}^{2} \alpha_{\imath-2}^{4}
\end{aligned}
$$

As $f\left(\alpha_{\imath}\right)=\operatorname{del} \Delta_{\imath-1} \geq 0$, so two cases may arise:

Case I: If $\operatorname{det} \Delta_{2-1}>0$, then f being continuous in x, there exists $\epsilon>0$ such that $f(x)>0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+c\right)$.

Case II: If $\operatorname{det} \Delta_{\imath-1}=0$ then we consider $f^{\prime}(x)$ given by

$$
f^{\prime}(x)=2 x\left[-2 \alpha_{i-1}^{2} x^{2}+\alpha_{i+1}^{2}\left(\alpha_{i-1}^{2}-\alpha_{\imath-2}^{2}\right)+2 \alpha_{\imath-1}^{2} \alpha_{2-2}^{2}\right]
$$

As,

$$
\begin{aligned}
f^{\prime}\left(\alpha_{\imath}\right) & =2 \alpha_{\imath}\left[\alpha_{\imath+1}^{2} u_{\imath-1}-2 \alpha_{\imath-1}^{2}\left(\alpha_{\imath}^{2}-\alpha_{\imath-2}^{2}\right)\right] \\
& =\frac{2 \alpha_{\imath}}{v_{\imath}}\left[\alpha_{\imath+1}^{2} w_{\imath-1}-2 v_{\imath} \alpha_{\imath-1}^{2}\left(\alpha_{\imath}^{2}-\alpha_{\imath-2}^{2}\right)\right]\left(\because \operatorname{det} \Delta_{\imath-1}=0 \Rightarrow u_{\imath-1} v_{\imath}=w_{\imath-1}\right) \\
& =-\frac{2 \alpha_{\imath} \alpha_{\imath-1}^{2}}{v_{\imath}}\left(\alpha_{\imath}^{2}-\alpha_{\imath-2}^{2}\right)\left[\left(\alpha_{\imath}^{2} \alpha_{\imath+1}^{2}-\alpha_{\imath-1}^{2} \alpha_{\imath-2}^{2}\right)+\alpha_{\imath-2}^{2}\left(\alpha_{\imath+1}^{2}-\alpha_{\imath-1}^{2}\right)\right] \\
& <0,
\end{aligned}
$$

so the function f is decreasing at $x=\alpha_{i}$, and hence, there exists $\epsilon>0$ such that $f(x)>0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}\right)$, and $f(x)<0$ for all $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right)$.
Thus, if $\operatorname{del} \Delta_{\imath-1}>0$ then there exists $\epsilon>0$ such that $\Delta^{\prime}{ }_{\imath-1}>0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$. Otherwise $\Delta^{\prime}{ }_{2-1}>0$ for $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}\right)$, and $\Delta^{\prime}{ }_{2-1}<0$ for $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right)$.
(iv) To determine a for which $\Delta^{\prime}{ }_{2-2} \geq 0$.

Let

$$
\begin{aligned}
e(x) & :=\operatorname{det} \Delta_{\imath-2}^{\prime} \\
& =\alpha_{\imath-1}^{2}\left(\alpha_{\imath-2}^{2}-\alpha_{\imath-3}^{2}\right) x^{2}-\left[\alpha_{\imath-2}^{2} \alpha_{\imath-3}^{2}\left(\alpha_{\imath-2}^{2}-\alpha_{\imath-3}^{2}\right)+\alpha_{\imath-2}^{2}\left(\alpha_{\imath-1}^{2}-\alpha_{\imath-3}^{2}\right)^{2}\right] .
\end{aligned}
$$

Now $e\left(\alpha_{2}\right)=$ del $\Delta_{2-2} \geq 0$. If del, $\Delta_{2-2}>0$, then by continuity of e there exists $\epsilon>0$ such that $e(x)>0$ for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$. On the other hand if $\operatorname{det} \Delta_{\imath-2}=0$ then since

$$
e^{\prime}(x)=2 x \alpha_{\imath-1}^{2}\left(\alpha_{\imath-2}^{2}-\alpha_{\imath-3}^{2}\right)>0 \text { for all } x>0,
$$

so e is an increasing function at $x=\alpha_{2}$ Also since $e\left(\alpha_{2}\right)=0$ so there exists $\epsilon>0$ such that $e(x)<0$ for all $x \in\left(\alpha_{2}-c, \alpha_{2}\right)$, and $e(x)>0$ for all $x \in\left(\alpha_{2}, \alpha_{2}+c\right)$.

So we can summarize that if $\operatorname{det} \Delta_{\imath-2}>0$ then there exists $\epsilon>0$ such that
$\Delta_{i-2}^{\prime}>0$ for all $x \in\left(\alpha_{i}-\epsilon, \alpha_{i}+\epsilon\right)$. Otherwise $\Delta^{\prime}{ }_{i-2}<0$ for $x \in\left(\alpha_{i}-\epsilon, \alpha_{i}\right)$, and $\Delta_{i-2}^{\prime}>0$ for $x \in\left(\alpha_{i}, \alpha_{i}+\epsilon\right)$.

Considering all the above possibilities, the conclusion of the theorem now follows obviously.

4.4 Small perturbation of 2-hyponormal is quadratically hyponormal

We know from $[1,12,13]$ that if W_{α} is 2-hyponormal then it is necessarily quadratically hyponormal. The converse however is not true as is seen from the following example:

Example 4.4.1. [12] If $\alpha_{0}=\sqrt{\frac{2}{3}}$ and $\alpha_{n}=\sqrt{\frac{n+1}{n+2}}(\forall n \geq 1)$ then W_{α} is quadratic hyponormal but W_{α} is not 2-hyponormal.

We have also seen from Theorem 4.3.3 above that under certain conditions there may exist $\epsilon>0$ such that $W_{\alpha[: x]}$ is not 2-hyponormal $\forall x \in\left(\alpha_{i}-\epsilon, \alpha_{i}+\epsilon\right), x \neq \alpha_{i}$. However in this section we show that for each $i=0,1, \ldots$ there will always exist $\epsilon>0$ such that $W_{\alpha[i: x]}$ is quadratically hyponormal $\forall x \in\left(\alpha_{i}-\epsilon, \alpha_{i}+\epsilon\right)$.

Remark 4.4.1. In [24, Theorem 2.3], it was shown that a 2 -hyponormal weighted shift remains quadratically hyponormal under small non-zero finite rank perturbations. The proof was based on the definition of positive quadratic hyponormality. In this chapter we give an independent proof for the same result, using a different characterization of quadratic hyponormality.

We begin with a few results and notations introduced in [65]. We recall from Chapter 2, that W_{α} is q.h. if and only if $D_{n}(s) \geq 0$ for every $s \geq 0$ and for
every $n \geq 0$.
For $s \in \mathbb{R}, x_{0}, \ldots, x_{n} \in \mathbb{C}$ and $X_{n}=\left(x_{0} ; \ldots, x_{n}\right)^{T}$, define

$$
F_{n}\left(x_{0}, \ldots, x_{n}, s\right):=\left\langle D_{n}(s) X_{n}, X_{n}\right\rangle
$$

Then we have the following lemma:
Lemma 4.4.1. [65] For $s \in \mathbb{R}, x_{0}, \ldots, x_{n} \in \mathbb{C}$, it holds that

$$
F_{n}\left(x_{0}, \ldots, x_{n}, s\right)=\sum_{\imath=0}^{n} u_{\imath}\left|x_{\imath}\right|^{2}+\sum_{i=0}^{n-1} s \sqrt{w_{\imath}}\left(x_{\imath} \bar{x}_{\imath+1}+\bar{x}_{\imath} x_{\imath+1}\right)+\sum_{i=0}^{n} s^{2} v_{\imath}\left|x_{\imath}\right|^{2}
$$

Proof.

$$
\begin{aligned}
F_{n}\left(x_{0}, \ldots, x_{n}, s\right) & =\left\langle\left(\begin{array}{c}
q_{0} x_{0}+r_{0} x_{1} \\
\gamma_{0} x_{0}+q_{1} x_{1}+{ }_{1} x_{2} \\
\vdots \\
r_{n-2} x_{n-2}+q_{n-1} x_{n-1}+\eta_{n-1} x_{n} \\
r_{n-1} x_{n-1}+q_{n} x_{n}
\end{array}\right),\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)\right\rangle \\
& =\sum_{i=0}^{n} g_{2}\left|x_{2}\right|^{2}+\sum_{\imath=0}^{n-1} r_{2}\left(x_{2} \bar{x}_{2+1}+\bar{x}_{2} x_{2+1}\right) \\
& =\sum_{i=0}^{n} u_{2}\left|x_{2}\right|^{2}+\sum_{i=0}^{n-1} s \sqrt{\omega_{2}}\left(x_{2} \bar{x}_{2+1}+\bar{x}_{2} x_{2+1}\right)+\sum_{\imath=0}^{n} s^{2} v_{2}\left|x_{2}\right|^{2}
\end{aligned}
$$

In fact,

$$
F_{n}\left(x_{0}, \ldots, x_{n}, s\right)=\left\langle\left(\begin{array}{cc}
\sum_{\imath=0}^{n} u_{2}\left|x_{2}\right|^{2} & \sum_{\imath=0}^{n-1} \sqrt{w_{2}} x_{2} \bar{x}_{\imath+1} \\
\sum_{\imath=0}^{n-1} \sqrt{w_{2}} \bar{x}_{2} x_{2+1} & \sum_{t=0}^{n} v_{2}\left|x_{2}\right|^{2}
\end{array}\right)\binom{1}{s},\binom{1}{s}\right\rangle
$$

For $x=\left(x_{2}\right) \in \ell^{2}$, we define $F(x, s):=\langle D(s) x, x\rangle$, so that

$$
\begin{aligned}
F(x, s) & =\left\langle\left(\begin{array}{cc}
\sum_{\imath=0}^{\infty} u_{\imath}\left|x_{\imath}\right|^{2} & \sum_{\imath=0}^{\infty} \sqrt{w_{2}} x_{\imath} \bar{x}_{\imath+1} \\
\sum_{\imath=0}^{\infty} \sqrt{w_{\imath}} \bar{x}_{\imath} x_{\imath+1} & \sum_{\imath=0}^{\infty} v_{\imath}\left|\lambda_{\imath}\right|^{2}
\end{array}\right)\binom{1}{s}:\binom{1}{s}\right\rangle \\
& =s^{2} v_{0}\left|x_{0}\right|^{2}+\sum_{\imath=0}^{\infty}\left[u_{\imath}\left|x_{\imath}\right|^{2}+s \sqrt{w_{\imath}}\left(x_{\imath} \bar{x}_{\imath+1}+\bar{x}_{\imath} x_{\imath+1}\right)+s^{2} v_{\imath+1}\left|x_{\imath+1}\right|^{2}\right] \\
& =s^{2} v_{0}\left|x_{0}\right|^{2}+\sum_{\imath=0}^{\infty}\left\langle\Delta_{\imath}\binom{x_{\imath}}{s x_{\imath+1}},\binom{x_{\imath}}{s x_{\imath+1}}\right\rangle
\end{aligned}
$$

where $\Delta_{\imath}=\left(\begin{array}{cc}u_{2} & \sqrt{w_{2}} \\ \sqrt{w_{2}} & v_{\imath+1}\end{array}\right)$ for all $\imath \geq 0$.
The following result is immediately obvious.
Proposition 4.4.2. [65] Let W_{α} be a werghted shrft with positvve werght sequence $\alpha=\left\{\alpha_{\imath}\right\}_{\imath=0}^{\infty}$. The following are equivalent
(a) W_{α} is quadratıcally hyponormal.
(b) $F(x, s) \geq 0$ for any $s \geq 0$ and $x \in \ell^{2}$.
(c) $F_{n}\left(x_{0}, \ldots, x_{n}, s\right) \geq 0$ for any $s \geq 0, x_{0}, ., x_{n} \in \mathbb{C}$ and $n \in \mathbb{N}$.

For $n \geq 1$, we define

$$
\tilde{F}_{n}\left(x_{0}, \ldots, x_{n}\right):=s^{2} v_{0}\left|x_{0}\right|^{2}+\sum_{\imath=0}^{n-1}\left\langle\Delta_{\imath}\binom{x_{\imath}}{s x_{\imath+1}},\binom{x_{\imath}}{s x_{\imath+1}}\right\rangle
$$

Then by Lemma 4.4.1, we have

$$
\begin{aligned}
F_{n}\left(x_{0}, \ldots, x_{n}, s\right)= & \sum_{\imath=0}^{n} u_{\imath}\left|x_{\imath}\right|^{2}+\sum_{\imath=0}^{n-1} s \sqrt{w_{\imath}}\left(x_{\imath} \bar{x}_{\imath+1}+\bar{x}_{\imath} x_{\imath+1}\right)+\sum_{\imath=0}^{n} s^{2} v_{\imath}\left|x_{\imath}\right|^{2} \\
= & u_{n}\left|x_{n}\right|^{2}+s^{2} v_{0}\left|x_{0}\right|^{2}+\sum_{\imath=0}^{n-1}\left[u_{\imath}\left|x_{\imath}\right|^{2}+s \sqrt{w_{\imath}}\left(x_{\imath} \bar{x}_{\imath+1}+\bar{x}_{\imath} x_{\imath+1}\right)\right. \\
& \left.+s^{2} v_{\imath+1}\left|x_{\imath+1}\right|^{2}\right] \\
= & u_{n}\left|x_{n}\right|^{2}+s^{2} v_{0}\left|x_{0}\right|^{2}+\sum_{\imath=0}^{n-1}\left\langle\Delta_{\imath}\binom{x_{\imath}}{s x_{\imath+1}},\binom{x_{\imath}}{s x_{\imath+1}}\right\rangle \\
= & u_{n}\left|x_{n}\right|^{2}+\tilde{F}_{n}\left(x_{0}, \ldots, x_{n}, s\right)
\end{aligned}
$$

Since $\left\{\left\|\Delta_{\imath}\right\|\right\}_{\imath=0}^{\infty}$ is bounded, so $\tilde{F}_{n}\left(x_{0}, \ldots, x_{n}, s\right)$ converges pointwise to $F(x, s)$ for each $s \in \mathbb{R}$ and $x=\left(x_{\imath}\right) \in \ell^{2}$, and so

$$
\lim _{n \rightarrow \infty} F_{n}\left(x_{0}, \ldots, x_{n}, s\right)=\lim _{n \rightarrow \infty} \tilde{F}_{n}\left(x_{0}, \ldots, x_{n}, s\right)=F(x, s)
$$

In view of this, we can say that W_{α} is quadratically hyponormal if $\tilde{F}_{n}\left(r_{0} \quad, r_{n} \varsigma\right) \geq 0$ for all $\varsigma \geq 0, r_{0}, \quad, r_{n} \in \mathbb{C}$ and $n \in \mathbb{N}$

Theorem 4.4.3. (Rank 1 perturbation)
Let $a=\left\{\alpha_{2}\right\}_{2=0}^{\infty}$ be a strictly increasing positive weight sequence and W_{α} be a 2-hyponormal weighted shuft For any arbutiarily fuxed $1=0,1,2$, and $\alpha_{2-1}<x<\alpha_{2+1}$, let $\alpha\left[\begin{array}{ll}7 & x\end{array}\right]$ denote the weight sequence α with the $\imath^{\text {th }}$ werght α_{\imath} replaced by x Then there exssts $\epsilon>0$ such that $W_{\alpha[\imath x]}$ is quadratucally hyponormal for $x \in\left(a_{2}-\epsilon, a_{2}+\epsilon\right)$

Proof Let $\Delta_{n}^{\prime}, u^{\prime}{ }_{n}, v_{n}^{\prime}, w_{n}^{\prime}$ be defined (as in the earlies section) with iespect, to $W_{\alpha[2 x]}$ For $n \in \mathbb{N} x_{0} \quad, \imath_{n} \in \mathbb{C}$ and $s \geq 0$, define

$$
\tilde{F}_{n}\left(x_{0}, \quad, x_{n}, s\right)=s^{2} v_{0}^{\prime}\left|x_{0}\right|^{2}+\sum_{\jmath=0}^{n-1}\left\langle\Delta_{\jmath}^{\prime}\binom{x_{\jmath}}{s x_{\jmath+1}},\binom{x_{\jmath}}{s x_{\jmath+1}}\right\rangle
$$

Then $W_{\alpha[2 x]}$ is quadratically hyponormal of $\tilde{F}_{n}\left(\imath_{0}, \quad, x_{n}, s\right) \geq 0$ for all $s \geq$ $0, n \in \mathbb{N}$ and $x_{0}, \quad r_{n} \in \mathbb{C}$ As $\Delta^{\prime}{ }_{\jmath}=\Delta \jmath \geq 0$ for all $\jmath \geq \imath+2$, we only need to check the positivity of $\tilde{F}_{n}\left(x_{0}, \quad, x_{n}, s\right)$ for $1 \leq n \leq \imath+2$

For $1 \leq n \leq \iota+2$ define

$$
A_{n}^{\prime}=\left(\begin{array}{ccccc}
s^{2} v_{0}^{\prime}+u_{0}^{\prime} & \sqrt{w_{0}^{\prime}} & 0 & 0 & 0 \\
\sqrt{w_{0}^{\prime}} & v_{1}^{\prime}+\frac{u_{1}^{\prime}}{s^{\prime}} & \frac{\sqrt{w_{1}^{\prime}}}{s^{2}} & 0 & 0 \\
0 & \frac{\sqrt{w^{\prime}}}{s^{2}} & \frac{v^{\prime} 2}{s^{2}}+\frac{u_{2}^{\prime}}{s^{4}} & 0 & 0 \\
& & & & \\
0 & 0 & 0 & \frac{v^{\prime} n-1}{s^{2}(n-2)}+\frac{u^{\prime} n_{1-1}}{s^{2}(n-1)} & \frac{\sqrt{w^{\prime} n-1}}{s^{2(n-1)}} \\
0 & 0 & 0 & \frac{\sqrt{w^{\prime}(n-1}}{s^{2(n-1)}} & \frac{v^{\prime}, n}{s^{2(n-1)}}
\end{array}\right)
$$

If $X_{n}=\left(x_{0}, s x_{1}, \quad, s^{n} x_{n}\right)^{T}$, then $\tilde{F}_{n}\left(x_{0}, \quad, r_{n}, s\right)=\left\langle A^{\prime}{ }_{n} X_{n}, X_{n}\right\rangle$
Claim: $\Lambda_{n}^{\prime}>0$ for all $1 \leq n \leq 1+2$

For $2 \leq n \leq i+2$ define

$$
B_{n}^{\prime}:=\left(\begin{array}{ccccc}
s^{2} v_{0}^{\prime}+u_{0}^{\prime} & \cdot \sqrt{w_{0}^{\prime}} & 0 & \cdots & 0 \\
\sqrt{w_{0}^{\prime}} & v^{\prime}{ }_{1}+\frac{u_{1}^{\prime}}{s^{2}} & \frac{\sqrt{w_{1}^{\prime}}}{s^{2}} & \cdots & 0 \\
0 & \frac{\sqrt{w_{1}^{\prime}}}{s^{2}} & \frac{v_{2}^{\prime}}{s^{2}}+\frac{u^{\prime}}{s^{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \frac{v^{\prime}(n-1}{s^{2}(n-2)}+\frac{u^{\prime} n_{n-1}}{s^{2(n-1)}}
\end{array}\right)
$$

Define

$$
\varphi_{n}(x):= \begin{cases}s^{2} v_{0}^{\prime}+u_{0}^{\prime}, & \text { for } n=1 \\ \operatorname{det} B_{n}^{\prime}, & \text { for } 2 \leq n \leq i+2,\end{cases}
$$

and

$$
\psi_{n}(x):=\operatorname{det} A_{n}^{\prime} \text { for } 1 \leq n \leq i+2
$$

For $1 \leq n \leq i+1$, we have

$$
\varphi_{n+1}(x)=\psi_{n}(x)+\frac{u_{n}^{\prime}}{s^{2 n}} \varphi_{n}(x)
$$

and

$$
\begin{aligned}
\psi_{n+1}(x) & =\frac{v_{n+1}^{\prime}}{s^{2 n}} \varphi_{n+1}(x)-\frac{w_{n}^{\prime}}{s^{4 n}} \varphi_{n}(x) \\
& =\frac{v_{n+1}^{\prime}}{s^{2 n}} \psi_{n}(x)+\frac{\varphi_{n}(x)}{s^{4 n}} \operatorname{det} \Delta_{n}^{\prime}
\end{aligned}
$$

Clearly $\varphi_{1}(x)>0$ for all $\alpha_{i-1}<x<\alpha_{2+1}$. So first we show that $\psi_{1}(x)>0$ for all $\alpha_{\imath-1}<x<\alpha_{i+1}$.

We have $\psi_{1}(x)=s^{2} v_{0}^{\prime} v^{\prime}{ }_{1}+\left(u_{0}^{\prime} v^{\prime}{ }_{1}-w_{0}^{\prime}\right)$, and

$$
\begin{gathered}
u_{0}^{\prime}= \begin{cases}x^{2}, & \text { if } i=0 ; \\
\alpha_{0}^{2}, & \text { if } i \geq 1,\end{cases} \\
v_{1}^{\prime}= \begin{cases}\alpha_{1}^{2} \alpha_{2}^{2}, & \text { if } i=0 ; \\
x^{2} \alpha_{2}^{2}, & \text { if } \imath=1 ; \\
\alpha_{1}^{2} x^{2}, & \text { if } i=2 ; \\
\alpha_{1}^{2} \alpha_{2}^{2}, & \text { if } \imath \geq 3,\end{cases} \\
w_{0}^{\prime}= \begin{cases}x^{2} \alpha_{1}^{4}, & \text { if } \imath=0 ; \\
\alpha_{0}^{2} x^{4}, & \text { if } i=1 ; \\
\alpha_{0}^{2} \alpha_{1}^{4}, & \text { if } i \geq 2 .\end{cases}
\end{gathered}
$$

Therefore, $\operatorname{det} \Delta^{\prime}{ }_{0}=u^{\prime}{ }_{0} v^{\prime}{ }_{1}-w_{0}^{\prime}= \begin{cases}x_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right), & \text { if } i=0 ; \\ \alpha_{0}^{2} x^{2}\left(\alpha_{2}^{2}-x^{2}\right), & \text { if } i=1 ; \\ \alpha_{0}^{2} \alpha_{1}^{2}\left(x^{2}-\alpha_{1}^{2}\right), & \text { if } \imath=2 ; \\ \alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right), & \text { if } i \geq 3 .\end{cases}$
So $\psi_{1}(x)>0$ for all $\alpha_{\imath-1}<x<\alpha_{\imath+1}$.
Now $\varphi_{1}(x), \psi_{1}(x)>0$ gives $\varphi_{2}(x)>0$ for all $\alpha_{2-1}<x<\alpha_{2+1}$.
Also

$$
\psi_{2}\left(\alpha_{2}\right)=\frac{v_{2}}{s^{2}} \psi_{1}\left(\alpha_{2}\right)+\frac{\varphi_{1}\left(\alpha_{2}\right)}{s^{4}} \operatorname{det} \Delta_{1}>0
$$

since $\varphi_{1}\left(\alpha_{2}\right)>0, \psi_{1}\left(\alpha_{2}\right)>0$ and $\operatorname{det} \Delta_{1} \geq 0$. So by continuity of ψ_{2}, there exists $c>0$ such that $\psi_{2}(x)>0$ for all $x \in\left(\alpha_{2}-c, \alpha_{2}+c\right)$.

Repeating the same argument we can conclude that there exists $\epsilon>0$ such that $\varphi_{n}(x), \psi_{n}(x)>0$ for all $1 \leq n \leq \imath+2$ and $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$. In other words, $A_{n}^{\prime}>0$ for all $1 \leq n \leq i+2$ and $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$. This completes the proof.

Theorem 4.4.4. (Rank 2 perturbation)
Let $\alpha=\left\{\alpha_{2}\right\}_{\imath=0}^{\infty}$ be a strictly increasing positive weight sequence and W_{α} be a 2-hyponormal weighted shift. Then for any integers $0 \leq i<j$ there exısts $\epsilon>0$ such that $W_{\alpha[(\imath \cdot x),(\jmath: y)]}$ is quadratically hyponormal for $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$ and $y \in\left(\alpha_{\jmath}-\epsilon, \alpha_{\jmath}+\epsilon\right)$. Here $\alpha[(i: x),(j: y)]$ is the perturbation of the weight sequence α where the weights α_{2} and α_{3} are replaced by x and y respectively.

Proof. Step 1: Consider $\alpha[2: x]$ for $\alpha_{2-1}<x<\alpha_{\imath+1}$. Then by Theorem 4.4.3 there exists $\epsilon>0$ such that $W_{\alpha[(2 . x)]}$ is quadratically hyponormal for $x \in\left(\alpha_{2}-c_{,}, \alpha_{2}+c\right)$.

Step 2: Take $\alpha_{\jmath-1}<y<\alpha_{j+1}$ and $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$ and consider $\alpha[(\imath$: $x),(j: y)]$. Define

$$
\begin{aligned}
& \Delta^{\prime \prime}{ }_{n}:=\left(\begin{array}{cc}
u^{\prime \prime}{ }_{n} & \sqrt{w^{\prime \prime}}{ }_{n} \\
\sqrt{w^{\prime \prime}} & v^{\prime \prime}{ }_{n+1}
\end{array}\right), \\
& u^{\prime \prime}{ }_{n}:= \begin{cases}u_{n}^{\prime}, & \text { for } n<j ; \\
y^{2}-\xi_{1}^{2}, & \text { for } n=j ; \\
\alpha_{3+1}^{2}-y^{2}, & \text { for } n=j+1 ; \\
u_{n}, & \text { for } n \geq j+2,\end{cases} \\
& v_{n}^{\prime \prime}:= \begin{cases}v_{n,}^{\prime}, & \text { for } n<j-1 ; \\
\xi_{1}^{2} y^{2}-\xi_{2}^{2} \xi_{3}^{2}, & \text { for } n=\jmath-1 ; \\
y^{2} \alpha_{j+1}^{2}-\xi_{1}^{2} \xi_{2}^{2}, & \text { for } n=j ; \\
\alpha_{j+1}^{2} \alpha_{j+2}^{2}-y^{2} \xi_{1}^{2}, & \text { for } n=j+1 ; \\
\alpha_{3+2}^{2} \alpha_{j+3}^{2}-\alpha_{j+1}^{2} y^{2}, & \text { for } n=j+2 ; \\
v_{n}, & \text { for } n \geq j+3,\end{cases} \\
& w_{n}^{\prime \prime}:= \begin{cases}w_{n}^{\prime}, & \text { for } n<\jmath-1 ; \\
\xi_{1}^{2}\left(y^{2}-\xi_{2}^{2}\right)^{2}, & \text { for } n=j-1 ; \\
y^{2}\left(\alpha_{\jmath+1}^{2}-\xi_{1}^{2}\right)^{2}, & \text { for } n=\jmath ; \\
\alpha_{3+1}^{2}\left(\alpha_{j+2}^{2}-y^{2}\right)^{2}, & \text { for } n=j+1 ; \\
w_{n}, & \text { for } n \geq j+2,\end{cases}
\end{aligned}
$$

and

$$
\xi_{k}=\left\{\begin{array}{ll}
x, & \text { if } i=\jmath-k ; \\
\alpha_{\jmath-k}, & \text { otherwise. }
\end{array} \text { for } k=1,2,3\right.
$$

Clearly, $\Delta^{\prime \prime}{ }_{n}=\Delta_{n} \geq 0$ for all $n \geq \jmath+2$. So $W_{a[(2 \cdot x),(\jmath, y)]}$ is quadratically hyponormal if $A^{\prime \prime}{ }_{n}>0$ for all $1 \leq n \leq j+2$ and $s \geq 0$, where

$$
A^{\prime \prime}{ }_{n}:=\left(\begin{array}{cccccc}
s^{2} v^{\prime \prime}{ }_{0}+u^{\prime \prime}{ }_{0} & \sqrt{w^{\prime \prime} 0_{0}} & 0 & \cdots & 0 & 0 \\
\sqrt{w^{\prime \prime}} & v^{\prime \prime}{ }_{1}+\frac{u^{\prime \prime} 1}{} & \frac{\sqrt{w^{\prime \prime} 1}}{s^{2}} & \cdots & 0 & 0 \\
0 & \frac{\sqrt{w^{\prime \prime}} s^{2}}{s^{2}} & \frac{v^{\prime \prime} 2_{2}^{2}}{s^{2}}+\frac{u^{\prime \prime} 2}{s^{4}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \frac{v^{\prime \prime} n-1}{s^{2(n-2)}+\frac{u^{\prime \prime} n-1}{s^{2}(n-1)}} \frac{\sqrt{w^{\prime \prime} n-1}}{s^{2(n-1)}} \\
0 & 0 & 0 & \cdots & \frac{\sqrt{w^{\prime \prime} n_{n-1}}}{s^{2(n-1)}} & \frac{u^{\prime \prime}, n}{s^{2(n-1)}}
\end{array}\right)
$$

For $2 \leq n \leq \jmath+2$, define

$$
B^{\prime \prime}{ }_{n}:=\left(\begin{array}{ccccc}
s^{2} v^{\prime \prime}{ }_{0}+u^{\prime \prime}{ }_{0} & \sqrt{w^{\prime \prime}} & 0 & & 0 \\
\sqrt{w^{\prime \prime}}{ }_{0} & v^{\prime \prime \prime} 1_{1}+\frac{u^{\prime \prime}}{s_{1}} & \frac{\sqrt{w^{\prime \prime} 1}}{s^{2}} & \cdots & 0 \\
0 & \frac{\sqrt{w^{\prime \prime}}}{s^{2}} & \frac{v^{\prime \prime}}{s^{2}}+\frac{u^{\prime \prime} 2_{2}}{s^{4}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \frac{v^{\prime \prime}(n-1}{s^{2(n-2)}}+\frac{u^{\prime \prime} n-1}{s^{2(n-1)}}
\end{array}\right)
$$

Define

$$
\varphi_{n}^{x}(y):= \begin{cases}s^{2} v^{\prime \prime}{ }_{0}+u_{0}^{\prime \prime}, & \text { for } n=1 \\ \operatorname{del} B_{n}^{\prime \prime}, & \text { for } 2 \leq n \leq y+2,\end{cases}
$$

and

$$
\psi_{n}^{x}(y):=\operatorname{del} A^{\prime \prime}{ }_{n} \text { for } 1 \leq n \leq \jmath+2 .
$$

Then for $1 \leq n \leq 1+1$, we have

$$
\varphi_{n+1}^{x}(y)=\psi_{n}^{x}(y)+\frac{u^{\prime \prime}{ }_{n}}{s^{2 n}} \varphi_{n}^{x}(y)
$$

and

$$
\psi_{n+1}^{x}(y)=\frac{v^{\prime \prime}{ }_{n}}{s^{2 n}} \psi_{n}^{x}(y)+\frac{\varphi_{n}^{x}(y)}{s^{4 n}} \operatorname{det} \Delta^{\prime \prime}{ }_{n}
$$

But $\varphi_{n+1}^{x}\left(\alpha_{\jmath}\right)=\varphi_{n}(x)>0$ and $\psi_{n+1}^{x}\left(\alpha_{\jmath}\right)=\psi_{n}(x)>0$ for $x \in\left(\alpha_{\imath}-c, \alpha_{2}+c\right)$. Hence for all $x \in\left(\alpha_{2}-\epsilon, \alpha_{2}+\epsilon\right)$ and $y \in\left(\alpha_{j}-\epsilon, \alpha_{j}+\epsilon\right)$ we have $\varphi_{n+1}^{x}(y), \psi_{n+1}^{x}(y)>$ 0 , which implies that $A^{\prime \prime}{ }_{n}>0$ as desired.
(Note that for $n>\imath+1$ we define $\varphi_{n+1}(x)=\psi_{n}(x)+\frac{u_{n}}{s^{2 n}} \varphi_{n}(x)$ and $\psi_{n+1}(x)=$ $\left.\frac{v_{n}}{s^{21}} \psi_{n}(a)+\frac{\varphi_{n}(x)}{s^{4 n}} \operatorname{del} \Delta_{n}\right)$

Then the following theorem is obvious
Theorem 4.4.5. Let $\alpha=\left\{\alpha_{2}\right\}_{i=0}^{\infty}$ be a structly increasing positive weight sequence and W_{α} be a 2-hyponormal weighted shrft. Then for any $n \in \mathbb{N}$ and integers \imath_{\jmath} with $0 \leq \imath_{1}<\cdots<\imath_{n}$ there exists $\epsilon>0$ such that $W_{\alpha\left[\left(\imath_{1} t_{1}\right),,\left(\imath_{n} t_{n}\right)\right]}$ is quadratıcally hyponormal for $t_{j} \in\left(\alpha_{j}-\epsilon, \alpha_{j}+\epsilon\right)$. Here $\alpha\left[\left(\imath_{1}: t_{1}\right), \ldots,\left(\imath_{n}: t_{n}\right)\right]$ is the perturbation of the weight sequence α where the weight α_{\imath}, as replaced by t_{y} for $\jmath=1, ., n$.

4.5 Examples of rank one perturbations

Example 4.5.1. Consider the 2-hyponormal weighted shift W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ given by $\alpha_{n}=\sqrt{\frac{3 n+1}{3 n+2}} \quad(n \geq 0)$. Then $\operatorname{det} \Delta_{n}>0 \forall n$. So
by Theorem 2.1.(d) perturbation to each and every weight is possible for thes weight sequence. That is, for $\imath=0,1,2$, there exists $\epsilon>0$ such that $W_{c \mid[2 x]}$ is again 2-hyponormal of $x \in\left(\alpha_{2}-\epsilon, \alpha_{\imath}+\epsilon\right)$.

Example 4.5.2. Consider the 2-hyponormal weighted shaft W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ given by $\alpha_{0}=\sqrt{\frac{35}{52}}, \quad \alpha_{n}=\sqrt{\frac{3 n+1}{3 n+2}} \quad(n \geq 1)$. Here $\operatorname{det} \Delta_{1}=0$ and $\operatorname{det} \Delta_{n}>0$ for $n \neq 1$. Thus there exssts $\epsilon>0$ such that
(i) for $a \in\left(\alpha_{0}-\epsilon, \alpha_{0}\right], W_{\alpha[0 x]}$ us again 2-hyponormal but for $x \in\left(\alpha_{0} . \alpha_{0}+\right.$ $\epsilon), W_{\alpha[0 x]}$ is not 2-hyponormal.
(ii) for $x \in\left(\alpha_{1}-\kappa, \alpha_{1}\right], W_{n[1 x]}$ is not 2-hyponormal but for $x \in\left(\alpha_{1}, \alpha_{1}+\right.$ $\epsilon), W_{\alpha[0 x]}$ as again 2-hyponormal.
(iii) for $n \geq 2, W_{\Omega}\left[n x \mid\right.$ 2s 2-hyponormal for all $x \in\left(\alpha_{n}-\epsilon, \alpha_{n}+\epsilon\right)$.

Example 4.5.3. Consider the 2-hyponormal weighted shaft W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ glven by $\alpha_{0}=\sqrt{\frac{1}{2}}, \alpha_{1}=\sqrt{\frac{280}{341}}, \quad \alpha_{n}=\sqrt{\frac{3 n+1}{3 n+2}} \quad(n \geq 2)$. Here del $\Delta_{2}=0$ and $\operatorname{det} \Delta_{n}>0$ for $n \neq 2$ Thus there exasts $c>0$ such that
(i) for $\imath=1,3, W_{\kappa[2 x]}$ थs 2-hyponormal $\imath f x \in\left(\alpha_{\imath}-\epsilon, \alpha_{\imath}\right)$, but is not 2-hyponormal if $x \in\left(\alpha_{\imath}, \alpha_{\imath}+c\right)$.
(ii) for $\imath=2,4, W_{\alpha[2 x]}$ as not 2-hyponormal if $x \in\left(\alpha_{2}-\epsilon, \alpha_{\imath}\right)$, but is 2-

$$
\text { hyponormal } \imath f \in\left(\alpha_{\imath}, \alpha_{\imath}+\epsilon\right)
$$

(iii) for $\imath=0$ or $\imath>4, W_{\alpha[\imath x]}$ थs 2-hyponormal $\imath f x \in\left(\alpha_{\imath}-\epsilon, \alpha_{2}+\epsilon\right)$

Example 4.5.4. Consider the 2-hyponormal weighted shaft W_{α} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ gıven by $\alpha_{0}=\sqrt{\frac{1}{2}}, \alpha_{1}=\sqrt{\frac{580}{689}} \cdot \alpha_{2}=\sqrt{\frac{715}{812}}, \quad \alpha_{n}=$ $\sqrt{\frac{3 n+1}{3 n+2}}(n \geq 3)$. Here $\operatorname{det} \Delta_{2}=0$, $\operatorname{det} \Delta_{3}=0$ and $\operatorname{det} \Delta_{n}>0$ for $n \neq 2,3$ Thus there exasts $\subset>0$ such that
(i) for $\imath=2,3,4, W_{\alpha[2 r]}$ is not 2-hyponormal $\imath f x$ is in the deleted ϵ-neıghborhood of α_{2}
(ii) for $\imath=1, W_{\alpha[\imath x]}$ थs 2-hyponormal $\imath f x \in\left(\alpha_{\imath}-\epsilon \alpha_{\imath}\right)$, but us not 2-hyponormal थf $x \in\left(\alpha_{2}, \alpha_{2}+\epsilon\right)$
(iii) for $\imath=5, W_{\alpha[\imath x]}$ us not 2-hyponormal $\imath f \in\left(\alpha_{2}-\epsilon, \alpha_{\imath}\right)$, but $\imath s$ 2-hyponormal if $x \in\left(a_{2}, \alpha_{2}+\epsilon\right)$
(iv) for $\imath=0$ or $\imath>5, W_{\alpha\{\imath x]}$ is 2-hyponormal if $x \in\left(\alpha_{\imath}-\epsilon, \alpha_{\imath}+\epsilon\right)$

Example 4.5.5. Consıder the 2-hyponormal weighted shift W_{α} with recursive weight sequence $\alpha \quad \alpha_{0}, \alpha_{1}, \quad, \alpha_{k-2},\left(\alpha_{k-1}, \alpha_{k}, \alpha_{k+1}\right)^{\wedge} \quad$ Since $u_{n} v_{n+1}-w_{n}=$ $0(\forall n \geq k)$, therefore $\operatorname{det} \Delta_{n}=0(\forall n \geq k)$ and so by Theorem 2 1.(a) perturbation to the weights α_{n} is not possible for $n \geq k$

Chapter 5

Perturbation of 2-variable hyponormal shift

5.1 Introduction

In Chapter 4 we have addressed the question of finite rank perturbation of 2hyponormal weighted shift. Till now we have only considered the unilateral weighted shift W_{r} on $\ell^{2}\left(\mathbb{Z}_{+}\right)$. In this chapter we initiate a parallel discussion for the 2 -variable weighted shift on $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$. For a unilateral weighted shift W_{α} it is well known that W_{α} is hyponormal if and only if $\left|\alpha_{n}\right| \leq\left|\alpha_{n+1}\right|$ for all n. Hence for a strictly increasing weight sequence, any slight perturbation of the $i^{\text {th }}$ weight still retains the hyponormality property for the perturbed shift. "Is the same true for a two variable weighted shift?" The answer is negative as is shown in the work done in this chapter. We also frame a set of positivity conditions which can completely determine hyponormality of the perturbed shift.

5.2 Statement of problem

Consider double indexed positive bounded sequences $\left\{\alpha_{k}\right\} ;\left\{\beta_{k}\right\} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right), k \equiv$ $\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$ and let $\left\{e_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ be the orthonormal basis for $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$. The 2variable weighted shift $T=\left(T_{1}, T_{2}\right)$ is defined by

$$
T_{1} e_{k}=\alpha_{k}^{\prime} e_{k+\varepsilon_{1}}, T_{2} e_{k}=\beta_{k} e_{k+\varepsilon_{2}}
$$

where $\varepsilon_{1}=(1,0)$ and $\varepsilon_{2}=(0,1)$. Here we assume that T_{1}, T_{2} commute. Thus

$$
T_{1} T_{2}=T_{2} T_{1} \Longleftrightarrow \beta_{k+\epsilon_{1}} \alpha_{k}=\alpha_{k+\varepsilon_{2}} \beta_{k} \text { for all } k \in \mathbb{Z}_{+}^{2} .
$$

Given $k \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, the moments of T of order k are

$$
\gamma_{k}:=\left\{\begin{array}{cc}
1 & \text { if } k_{1}=0=k_{2} \\
\alpha_{(0,0)}^{2} \ldots \alpha_{\left(k_{1}-1,0\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2}=0 \\
\beta_{(0,0)}^{2} \ldots \beta_{\left(0, k_{2}-1\right)}^{2} & \text { if } k_{1}=0 \text { and } k_{2} \geq 1 \\
\beta_{(0,0)}^{2} \ldots \beta_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}\right)}^{2} \ldots \alpha_{\left(k_{1}-1, k_{2}\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2} \geq 1
\end{array}\right.
$$

A multivariable weighted shift can be defined in an entirely similar way.
A 2-variable weighted shift T is horizontally flat if $\alpha_{\left(k_{1}, k_{2}\right)}=\alpha_{(1,1)} \forall k_{1}, k_{2} \geq 1$; vertically flat, if $\beta_{\left(k_{1}, k_{2}\right)}=\beta_{(1,1)} \forall k_{1}, k_{2} \geq 1$; flat if it is horizontally flat and vertically flat; symmetrically flat if T is flat and $\alpha_{(1,1)}=\beta_{(1,1)}$.

By [13, Definition 1.3, Definition 1.4] and [13, Theorem 6.1] we have the following results:

Theorem 5.2.1. T is hyponormal if and only if

$$
\Delta_{k}:=\left(\begin{array}{cc}
\alpha_{k+\varepsilon_{1}}^{2}-\alpha_{k}^{2} & \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k} \\
\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k} & \beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2}
\end{array}\right) \geq 0\left(\forall k \in \mathbb{Z}_{+}^{2}\right)
$$

Theorem 5.2.2. T is weakly hyponormal if and only if

$$
\left\langle\left(\begin{array}{cc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]}
\end{array}\right)\binom{x}{\lambda x},\binom{x}{\lambda x}\right\rangle \geq 0\left(\forall x \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \text { and } \lambda \in \mathbb{C}\right) .
$$

If we have a pair of unilateral weighted shifts W_{α} and $W_{\dot{\beta}}$, then by defining $\alpha_{\left(k_{1}, k_{2}\right)}:=\alpha_{k_{1}}$ and $\beta_{\left(k_{1}, k_{2}\right)}:=\beta_{k_{2}}$ for all $k_{1}, k_{2} \in \mathbb{Z}_{+}$, we can get a 2 -variable weighted shift $T=\left(T_{1}, T_{2}\right)$. Under the canonical identification of $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ and
$\ell^{2}\left(\mathbb{Z}_{+}\right) \otimes \ell^{2}\left(\mathbb{Z}_{+}\right)$, we have $T_{1} \cong I \otimes W_{\alpha}$ and $T_{2} \cong W_{\beta} \otimes I$. In general, T is said to be of tensor form if $T \cong\left(I \otimes W_{\alpha}, W_{\beta} \otimes I\right)$.

Let $\mathcal{M}_{1}:=\bigvee\left\{e_{\left(k_{1}, k_{2}\right)}: k_{2} \geq 1\right\}$ and $\mathcal{N}_{1}:=\bigvee\left\{e_{\left(k_{1}, k_{2}\right)}: k_{1} \geq 1\right\}$. By [28, Defintion 1.2] the core of a 2-variable weighted shift T is $c(T):=T_{\mathcal{M}_{1} \sim v_{1}}$.

Coming back to the discussion of perturbation of $T=\left(T_{1}, T_{2}\right)$, first of all since commutativity has to be preserved, hence if one of the weights is perturbed, some other weights in adjacent blocks will also need to be perturbed. Ideally we try to keep the number of perturbations minimum, and see if we can still preserve hyponormality or atleast weak hyponormality.

We begin our investigation by considering T to be of tensor type. That is, consider strictly increasing positive weight sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and let $\alpha_{\left(k_{1}, k_{2}\right)}:=\alpha_{k_{1}}\left(\forall k_{2} \in \mathbb{Z}_{+}\right)$and $\beta_{\left(k_{1}, k_{2}\right)}:=\beta_{k_{2}}\left(\forall k_{1} \in \mathbb{Z}_{+}\right)$Let $T=\left(T_{1}, T_{2}\right)$ be hyponormal with $T_{1} T_{2}=T_{2} T_{1}$. Let $\alpha_{(0,0)}$ be slightly perturbed to a new weight x. To preserve commutativity of T_{1} and T_{2}, we replace $\beta_{(0,0)}$ by $y=\frac{s \beta_{0}}{\mu_{0}}$. If $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ denotes the perturbed shift, then we investigate if \tilde{T} is still hyponormal. We note that \tilde{T} is not of tensor type. The weight diagrams of T and \tilde{T} are shown in Figure 11 and Figure 12.

Figure 11

Figure 12

In view of Theorem 5.2.1, we need to check the positivity of $\tilde{\Delta}_{k}$ for $k=(0,0)$, where

$$
\tilde{\Delta}_{k}:=\left(\begin{array}{cc}
\tilde{\alpha}_{k+\varepsilon_{1}}^{2}-\tilde{\alpha}_{k}^{2} & \tilde{\alpha}_{k+\varepsilon_{2}} \tilde{\beta}_{k+\varepsilon_{1}}-\tilde{\alpha}_{k} \tilde{\beta}_{k} \\
\tilde{\alpha}_{k+\varepsilon_{2}} \tilde{\beta}_{k+\varepsilon_{1}}-\tilde{\alpha}_{k} \tilde{\beta}_{k} & \tilde{\beta}_{k+\varepsilon_{2}}^{2}-\tilde{\beta}_{k}^{2}
\end{array}\right)
$$

and

$$
\begin{aligned}
& \tilde{\alpha}_{k}= \begin{cases}x, & \text { if } k=(0,0) \\
\alpha_{k}, & \text { if } k \neq(0,0)\end{cases} \\
& \tilde{\beta}_{k}= \begin{cases}y, & \text { if } k=(0,0) \\
\beta_{k}, & \text { if } k \neq(0,0)\end{cases}
\end{aligned}
$$

Now $\tilde{\Delta}_{(0,0)}=\left(\begin{array}{cc}\alpha_{1}^{2}-x^{2} & \alpha_{0} \beta_{0}-x y \\ \alpha_{0} \beta_{0}-x y & \beta_{1}^{2}-y^{2}\end{array}\right)=\left(\begin{array}{cc}\alpha_{1}^{2}-x^{2} & \alpha_{0} \beta_{0}-\frac{x^{2} \beta_{0}}{\alpha_{0}^{0}} \\ \alpha_{0} \beta_{0}-\frac{x^{2} \beta_{0}}{a_{0}} & \beta_{1}^{2}-\frac{x^{2} \beta_{0}^{2}}{n_{0}^{2}}\end{array}\right)$ If $J(x):=\operatorname{del}, \tilde{\Delta}_{(0,0)}$, then \int is a continuous function of x. Also $\int\left(\alpha_{0}\right)=\operatorname{del} \Delta_{(0,0)}=$ $\left(\alpha_{1}^{2}-\alpha_{0}^{2}\right)\left(\beta_{1}^{2}-\beta_{0}^{2}\right)>0$. Hence there exists a neighbourhood N of α_{0} such that $f(x)>0 \forall x \in N$. Thus, there exists $\delta>0$ such that for all $x \in$ $\left(\alpha_{0}-\delta, \alpha_{0}+\delta\right), \quad \tilde{\Delta}_{(0,0)} \geq 0$.

Hence, \tilde{T} remains hyponormal for a slight perturbation of $\alpha_{(0,0)}$.
Next we consider an arbitrary hyponormal 2-variable shift $T=\left(T_{1}, T_{2}\right)$ with positive weight sequence $\alpha=\left\{\alpha_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$. As T_{1} and T_{2} are both hyponormal, so we have $\alpha_{k} \leq \alpha_{k+\varepsilon_{1}}$ and $\beta_{k} \leq \beta_{k+\varepsilon_{2}} \forall k \in \mathbb{Z}_{+}^{2}$. We assume strict inequality so as to make perturbation possible on either side. In section 5.3 we consider perturbation of the weight $\alpha_{\left(0, k_{2}\right)}$ for any $k_{2} \in \mathbb{Z}_{+}$. In section 5.4 we consider perturbation of the weight $\alpha_{\left(k_{1}, 0\right)}$ for any $k_{1} \in \mathbb{Z}_{+}$. We try to minimise the number of necessary perturbations of adjacent weights. We also try not to disturb the weights at the core of T.

5.3 Perturbation of the weight $\alpha_{\left(0, k_{2}\right)}$

Here we consider $k_{2} \geq 2$. The cases of $k_{2}=0$ and $k_{2}=1$ are addressed in Remark 5.3.1. We begin with a 2 -variable hyponormal shift $T=\left(T_{1} ; T_{2}\right)$ with weight sequences $\alpha=\left\{\alpha_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$. As T_{1} and T_{2} are both hyponormal, so we have $\alpha_{k} \leq \alpha_{k+\varepsilon_{1}}$ and $\beta_{k} \leq \beta_{k+\varepsilon_{2}}$ for all $k \in \mathbb{Z}_{+}^{2}$. We assume strict inequality so to make perturbation possible on either side.

Let $\alpha_{\left(0, k_{2}\right)}$ be slightly perturbed to a new weight x. To preserve commutativity, we change $\beta_{\left(0, k_{2}\right)}$ to $y=\frac{x \beta_{\left(1, k_{2}\right)}}{\alpha_{\left(0, k_{2}+1\right)}}$ and $\beta_{\left(0, k_{2}-1\right)}$ to $t=\frac{\alpha_{\left(0, k_{2}-1\right)} \beta_{\left(1, k_{2}-1\right)}}{x}$.
We will investigate under what condition it is possible for the perturbed shift $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ to still remain hyponormal. The corresponding weight diagram is shown in Figure 13.

Figure 13

By Theorem 5.2.1 for hyponormality of \tilde{T} we must have positivity of $\tilde{\Delta}_{\left(0, k_{2}-2\right)}$; $\tilde{\Delta}_{\left(0, k_{2}-1\right)}$ and $\tilde{\Delta}_{\left(0, k_{2}\right)}$.

Claim: $t<y$
We have

$$
\begin{aligned}
t<y & \Leftrightarrow \frac{\alpha_{\left(0, k_{2}-1\right)} \beta_{\left(1, k_{2}-1\right)}}{x}<\frac{x \beta_{\left(1, k_{2}\right)}}{\alpha_{\left(0, k_{2}+1\right)}} \\
& \Leftrightarrow \alpha_{\left(0, k_{2}-1\right)} \alpha_{\left(0, k_{2}+1\right)} \frac{\beta_{\left(1, k_{2}-1\right)}}{\beta_{\left(1, k_{2}\right)}}<x^{2} \\
& \Leftrightarrow \frac{\beta_{\left(0, k_{2}-1\right)} \alpha_{\left(0, k_{2}\right)}}{\beta_{\left(1, k_{2}-1\right)}} \frac{\alpha_{\left(0, k_{2}\right)} \beta_{\left(1, k_{2}\right)}}{\beta_{\left(0, k_{2}\right)}} \frac{\beta_{\left(1, k_{2}-1\right)}}{\beta_{\left(1, k_{2}\right)}}<x^{2} \\
& \Leftrightarrow \frac{\beta_{\left(0, k_{2}-1\right)}}{\beta_{\left(0, k_{2}\right)}} \alpha_{\left(0, k_{2}\right)}^{2}<x^{2}
\end{aligned}
$$

But as $\frac{\beta_{\left(0, k_{2}-1\right)}}{\beta_{\left(0, k_{2}\right)}}<1$, so $\frac{\beta_{\left(0, k_{2}-1\right)}}{\beta_{\left(0, k_{2}\right)}} \alpha_{\left(0, k_{2}\right)}^{2}<\alpha_{\left(0, k_{2}\right)}^{2}$.
Hence we can choose a suitable $\delta>0$ such that $\frac{\beta_{\left(0, k_{2}-1\right)}}{\beta_{\left(0, k_{2}\right)}} \alpha_{\left(0, k_{2}\right)}^{2}<x^{2}$ i.e, $\iota<y$, for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)$. Similarly we have, $\beta_{\left(0, k_{2}-2\right)}<t<y<\beta_{\left(0, k_{2}+1\right)}$.

Positivity of $\tilde{\Delta}_{\left(0, k_{2}-2\right)}$:

$$
\begin{gathered}
\tilde{\Delta}_{\left(0, k_{2}-2\right)}=\left(\begin{array}{cc}
\alpha_{\left(1, k_{2}-2\right)}^{2}-\alpha_{\left(0, k_{2}-2\right)}^{2} & \alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-2\right)}-\alpha_{\left(0, k_{2}-2\right)} \beta_{\left(0, k_{2}-2\right)} \\
t^{2}-\beta_{\left(0, k_{2}-2\right)}^{2}
\end{array}\right) \\
f_{1}(x):=\operatorname{det} \tilde{\Delta}_{\left(0, k_{2}-2\right)} \\
=\left(\alpha_{\left(1, k_{2}-2\right)}^{2}-\alpha_{\left(0, k_{2}-2\right)}^{2}\right)\left(\frac{\left.\alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}-\beta_{\left(0, k_{2}-2\right)}^{2}\right)}{x^{2}}\right) \\
\quad-\left(\alpha_{\left(0, k_{2}-1\right)} \beta_{\left(1, k_{2}-2\right)}-\alpha_{\left(0, k_{2}-2\right)} \beta_{\left(0, k_{2}-2\right)}\right)
\end{gathered}
$$

If del $\Delta_{\left(0, k_{2}-2\right)}>0$, then by continuity of j_{1} and the fact that $\int_{1}\left(\alpha_{\left(0, k_{2}\right)}\right)=$ $\operatorname{det} \Delta_{\left(0, k_{2}-2\right)}>0$ we have $f_{1}(x)>0 \forall x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)$, and suitable $\delta>0$. Hence $\tilde{\Delta}_{\left(0, k_{2}-2\right)} \geq 0$ for all such x.
But if $\operatorname{det} \Delta_{\left(0, k_{2}-2\right)}=0$ then as $f_{1}^{\prime}(x)=-\frac{2}{x} \alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}\left(\alpha_{\left(1, k_{2}-2\right)}^{2}-\alpha_{\left(0, k_{2}-2\right)}^{2}\right)$; so $\int^{\prime}\left(\alpha_{\left(0, k_{2}\right)}\right)<0$. As such the function \int_{1} is decreasing at $\alpha_{\left(0, k_{2}\right)}$ and hence there
exists $\delta>0$ such that $f_{1}(x)>0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$, and $f_{1}(x)<0$ for $x \in\left(\alpha_{\left(0, k_{2}\right), \alpha_{\left(0, k_{2}\right)}}+\delta\right)$.

Thus, if $\operatorname{det} \Delta_{\left(0, k_{2}-2\right)}=0$ then $\tilde{\Delta}_{\left(0, k_{2}-2\right)} \geq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta_{3} \alpha_{\left(0, k_{2}\right)}\right)$, but $\tilde{\Delta}_{\left(0, k_{2}-2\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$.
$\underline{\text { Positivity of } \tilde{\Delta}_{\left(0, k_{2}-1\right)}}:$

$$
\begin{aligned}
\tilde{\Delta}_{\left(0, k_{2}-1\right)} & =\left(\begin{array}{cc}
\alpha_{\left(1, k_{2}-1\right)}^{2}-\alpha_{\left(0, k_{2}-1\right)}^{2} & x \beta_{\left(1, k_{2}-1\right)}-\alpha_{\left(0, k_{2}-1\right)} y \\
x \beta_{\left(1, k_{2}-1\right)}-\alpha_{\left(0, k_{2}-1\right)} y & y^{2}-t^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\alpha_{\left(1, k_{2}-1\right)}^{2}-\alpha_{\left(0, k_{2}-1\right)}^{2} & x \beta_{\left(1, k_{2}-1\right)}^{2}-\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}}{x} \\
x \beta_{\left(1, k_{2}-1\right)}-\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}}{x} & \frac{\beta_{\left(1, k_{2}\right.}^{2} x^{2}}{\alpha_{\left(0, k_{2}+1\right)}^{2}}-\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left.1, k_{2}-1\right)}^{2}}{x^{2}}
\end{array}\right) \\
f_{2}(x) & =\operatorname{det} \tilde{\Delta}_{\left(0, k_{2}-1\right)} \\
& =\frac{1}{\alpha_{\left(0, k_{2}+1\right)}^{2}}\left[x^{2}\left\{\beta_{\left(1, k_{2}\right)}^{2}\left(\alpha_{\left(1, k_{2}-1\right)}^{2}-\alpha_{\left(0, k_{2}-1\right)}^{2}\right)-\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}\right\}\right. \\
& \left.+2 \alpha_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}-\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(1, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}}{x^{2}}\right]
\end{aligned}
$$

If $\operatorname{det} \Delta_{\left(0, k_{2}-1\right)}>0$ then $\int_{2}\left(\alpha_{\left(0, k_{2}\right)}\right)>0$ and hence by continuity of $\int_{2}, \int_{2}(x)>0$ in a neibhourhood of $\alpha_{\left(0, k_{2}\right)}$. Thus there exists $\delta>0$ such that $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \geq 0$ for all $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)$.

If $\operatorname{det} \Delta_{\left(0, k_{2}-1\right)}=0$ then $f_{2}\left(\alpha_{\left(0, k_{2}\right)}\right)=0$, so

$$
\begin{equation*}
\alpha_{\left(0, k_{2}\right)}^{2} \lambda=\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \frac{\alpha_{\left(1, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}}{\alpha_{\left(0, k_{2}\right)}^{2}}-2 \alpha_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}}{2} \tag{5.3.1}
\end{equation*}
$$

where $\lambda=\beta_{\left(1, k_{2}\right)}^{2}\left(\alpha_{\left(1, k_{2}-1\right)}^{2}-\alpha_{\left(0, k_{2}-1\right)}^{2}\right)-\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}$.
Also,

$$
f_{2}^{\prime}(x)=\frac{2}{\alpha_{\left(0, k_{2}+1\right)}^{2} x}\left[x^{2} \lambda+\frac{\alpha_{\left(0, k_{2}-1\right)}^{2} \alpha_{\left(1, k_{2}-1\right)}^{2} \alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}}{x^{2}}\right] .
$$

Therefore

$$
\begin{aligned}
& f_{2}^{\prime}\left(\alpha_{\left(0, k_{2}\right)}\right)= \\
& \qquad\left\{\begin{array}{l}
=\frac{4 \alpha_{\left(0, k_{2}-1\right)}^{2} \beta_{\left(1, k_{2}-1\right)}^{2}}{\alpha_{\left(0, k_{2}\right)}^{3}}\left(\alpha_{\left(1, k_{2}-1\right)}^{2}-\alpha_{\left(0, k_{2}\right)}^{2}\right) \text { (using (5.3.1)) } \\
>0, \quad \text { if } \alpha_{\left(1, k_{2}-1\right)}^{2}=\alpha_{\left(1, k_{2}-1\right)}>\alpha_{\left(0, k_{2}\right)} \\
<0, \quad \text { if } \alpha_{\left(1, k_{2}-1\right)}<\alpha_{\left(0, k_{2}\right)} .
\end{array}\right.
\end{aligned}
$$

Thus, if $\operatorname{det} \Delta_{\left(0, k_{2}-1\right)}=0$ then

1. if $\alpha_{\left(1, k_{2}-1\right)}=\alpha_{\left(0, k_{2}\right)}$ then $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \geq 0 \forall x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)$;
2. if $\alpha_{\left(1, k_{2}-1\right)}>\alpha_{\left(0, k_{2}\right)}$ then $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \geq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$ but $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$;
3. if $\alpha_{\left(1, k_{2}-1\right)}<\alpha_{\left(0, k_{2}\right)}$ then $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \geq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$ but $\tilde{\Delta}_{\left(0, k_{2}-1\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$.
$\underline{\text { Positivity of } \tilde{\Delta}_{\left(0, k_{2}\right)}}$:

$$
\begin{aligned}
\tilde{\Delta}_{\left(0, k_{2}\right)} & =\left(\begin{array}{cc}
\alpha_{\left(1, k_{2}\right)}^{2}-x^{2} & \alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}-x y \\
\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}-x y & \beta_{\left(0, k_{2}+1\right)}^{2}-y^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\alpha_{\left(1, k_{2}\right)}^{2}-x^{2} & \alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}-\frac{x^{2} \beta_{\left(1, k_{2}\right)}^{\alpha_{\left(0, k_{2}\right.}^{2}}}{\alpha_{0}} \\
\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}-\frac{x^{2} \beta_{\left(1, k_{2}\right)}}{\alpha_{\left(0, k_{2}+1\right)}} & \beta_{\left(0, k_{2}+1\right)}^{2}-\frac{x^{2} \beta_{\left.1, k_{2}\right)}^{2}}{\alpha_{\left(0, k_{2}+1\right)}^{2}}
\end{array}\right) .
\end{aligned}
$$

So

$$
\begin{align*}
f_{3}(x) & :=\operatorname{det} \tilde{\Delta}_{\left(0, k_{2}\right)} \\
& =\frac{1}{\alpha_{\left(0, k_{2}+1\right)}^{2}}\left[x^{2} \mu+\alpha_{\left(0, k_{2}+1\right)}^{2}\left\{\alpha_{\left(1, k_{2}\right)}^{2} \beta_{\left(0, k_{2}+1\right)}^{2}-\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}\right)}^{2}\right\}\right] \tag{5.3.2}
\end{align*}
$$

where

$$
\mu=2 \alpha_{\left(0, k_{2}+1\right)}^{2}, \beta_{\left(1, k_{2}\right)}^{2}-\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(0, k_{2}+1\right)}^{2}-\alpha_{\left(1, k_{2}\right)}^{2} \beta_{\left(1, k_{2}\right)}^{2}
$$

As earlier, if $\operatorname{det} \Delta_{\left(0, k_{2}\right)}>0$ then there exists $\delta>0$ such that $\tilde{\Delta}_{\left(0, k_{2}\right)} \geq 0$ for all $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)$.
But if $\operatorname{det} \Delta_{\left(0, k_{2}\right)}=0$ then $f_{3}\left(\alpha_{\left(0, k_{2}\right)}\right)=\operatorname{det} \Delta_{\left(0, k_{2}\right)}=0$.
Therefore,

$$
\begin{equation*}
\alpha_{\left(0, k_{2}\right)}^{2} \mu=\alpha_{\left(0, k_{2}+1\right)}^{2}\left(\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}\right)}^{2}-\alpha_{\left(1, k_{2}\right)}^{2} \beta_{\left(0, k_{2}+1\right)}^{2}\right) . \tag{5.3.3}
\end{equation*}
$$

Also,

$$
f_{3}^{\prime}(x)=\frac{2 x \mu}{\alpha_{\left(0, k_{2}+1\right)}^{2}}
$$

and so

$$
\begin{aligned}
& f_{3}^{\prime}\left(\alpha_{\left(0, k_{2}\right)}\right)=\frac{2}{\alpha_{\left(0, k_{2}\right)}}\left(\alpha_{\left(0, k_{2}+1\right)}^{2} \beta_{\left(1, k_{2}\right)}^{2}-\alpha_{\left(1, k_{2}\right)}^{2} \beta_{\left(0, k_{2}+1\right)}^{2}\right) \text { (using (5.3.3)) } \\
&\left\{\begin{array}{l}
=0, \\
=0 \text { if } \alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}=\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)} \\
>0, \\
\text { if } \alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}>\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)} \\
<0, \\
<0 f \alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}<\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)} .
\end{array}\right.
\end{aligned}
$$

Thus if $\operatorname{det} \Delta_{\left(0, k_{2}\right)}=0$ then

1. if $\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}=\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)}$ then there exists $\delta>0$ such that

$$
\tilde{\Delta}_{\left(0, k_{2}\right)} \geq 0 \forall x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}+\delta\right)
$$

2. if $\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}>\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)}$ then $\tilde{\Delta}_{\left(0, k_{2}\right)} \geq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$ but $\tilde{\Delta}_{\left(0, k_{2}\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$;
3. if $\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}<\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)}$ then $\tilde{\Delta}_{\left(0, k_{2}\right)} \geq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$ but $\tilde{\Delta}_{\left(0, k_{2}\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$.

From the above analysis we can exhaustively determine whether perturbation of $\alpha_{\left(0, k_{2}\right)}$ will again give us a hyponormal shift \tilde{T} or not.

For example if we have the following situation, say:

1. $\operatorname{det} \Delta_{\left(0, k_{2}-2\right)}>0, \operatorname{det} \Delta_{\left(0, k_{2}\right)}>0$;
2. $\operatorname{det} \Delta_{\left(0, k_{2}-1\right)}=0$, and $\alpha_{\left(1, k_{2}-1\right)}<\alpha_{\left(0, k_{2}\right)}$.

Then \tilde{T} will still be hyponormal for a slight left perturbation of $\alpha_{\left(0, k_{2}\right)}$, but will not be hyponormal for any right perturbation of $\alpha_{\left(0, k_{2}\right)}$.

Similarly, we have another situation say:

1. $\operatorname{det} \Delta_{\left(0, k_{2}-2\right)}=0$;
2. $\operatorname{del} \Delta_{\left(0, k_{2}\right)}=0$ and $\alpha_{\left(0, k_{2}+1\right)} \beta_{\left(1, k_{2}\right)}>\alpha_{\left(1, k_{2}\right)} \beta_{\left(0, k_{2}+1\right)}$.

Then there exists $\delta>0$ such that $\tilde{\Delta}_{\left(0, k_{2}-2\right)} \nsupseteq 0$ for any $x \in\left(\alpha_{\left(0, k_{2}\right)}, \alpha_{\left(0, k_{2}\right)}+\delta\right)$ and $\tilde{\Delta}_{\left(0, k_{2}\right)} \nsupseteq 0$ for any $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta, \alpha_{\left(0, k_{2}\right)}\right)$. So \tilde{T} is not hyponormal for any perturbation of $\alpha_{\left(0, k_{2}\right)}$.

Remark 5.3.1. If $k_{2}=1$ then we need to consider only $\tilde{\Delta}_{\left(0, k_{2}-1\right)}$ and $\tilde{\Delta}_{\left(0, k_{2}\right)}$ for positivity. Similarly, if $k_{2}=0$, then we need only consider positivity of $\tilde{\Delta}_{\left(0, k_{2}\right)}$ to check whether the perturbed shift \tilde{T} is still hyponormal or not.

Remark 5.3.2. Since the perturbation do not affect the core of T, so these results can be applied to 2 -variable shifts whose core is of tensor type.

5.4 Perturbation of the weight $\alpha_{\left(k_{1}, 0\right)}$

For $k_{1} \geq 0$, let $\alpha_{\left(k_{1}, 0\right)}$ be slightly perturbed to a new weight x. For commutativity we change $\beta_{\left(k_{1}, 0\right)}$ to $y=\frac{x \beta_{\left(k_{1}, 0\right)}}{\gamma_{\left(k_{1}, 0\right)}}$ and $\alpha_{\left(k_{1}-1,0\right)}$ to $z=\frac{\gamma_{\left(k_{1}-1,0\right)} \kappa_{\left(k_{1}, 0\right)}}{x}$.
As

$$
y<\beta_{\left(k_{1}, 1\right)} \Leftrightarrow x<\frac{\beta_{\left(k_{1}, 1\right)}}{\beta_{\left(k_{1}, 0\right)}} \alpha_{\left(k_{1}, 0\right)}
$$

so, by keeping x suitably near $\alpha_{\left(k_{1}, 0\right)}$, we can preserve the conditions $y<\beta_{\left(k_{1}, 1\right)}$ and $\alpha_{\left(k_{1}-2,0\right)}<z<x<\alpha_{\left(k_{1}+1,0\right)}$.

Figure 14
For hyponormality of $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$, we need to check the positivity of $\tilde{\Delta}_{\left(k_{1}-2,0\right)}$; $\tilde{\Delta}_{\left(k_{1}-1,0\right)}, \tilde{\Delta}_{\left(k_{1}, 0\right)}$.
$\underline{\text { Positivity of } \tilde{\Delta}_{\left(k_{1}-2,0\right)}}$:
$\tilde{\Delta}_{\left(k_{1}-2,0\right)}=\left(\begin{array}{cc}z^{2}-\alpha_{\left(k_{1}-2,0\right)}^{2} & \alpha_{\left(k_{1}-2,1\right)} \beta_{\left(k_{1}-1,0\right)}-\alpha_{\left(k_{1}-2,0\right)} \beta_{\left(k_{1}-2,0\right)} \\ \alpha_{\left(k_{1}-2,1\right)} \beta_{\left(k_{1}-1,0\right)}-\alpha_{\left(k_{1}-2,0\right)} \beta_{\left(k_{1}-2,0\right)} & \beta_{\left(k_{1}-2,1\right)}^{2}-\beta_{\left(k_{1}-2,0\right)}^{2}\end{array}\right)$
We consider

$$
\begin{aligned}
f_{1}(x) & :=\operatorname{det} \tilde{\Delta}_{\left(k_{1}-2,0\right)} \\
= & \left(\frac{\alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2}}{x^{2}}-\alpha_{\left(k_{1}-2,0\right)}^{2}\right)\left(\beta_{\left(k_{1}-2,1\right)}^{2}-\beta_{\left(k_{1}-2,0\right)}^{2}\right) \\
& -\left(\alpha_{\left(k_{1}-2,1\right)} \beta_{\left(k_{1}-1,0\right)}-\alpha_{\left(k_{1}-2,0\right)} \beta_{\left(k_{1}-2,0\right)}\right)^{2}
\end{aligned}
$$

So,

$$
f_{1}^{\prime}(x)=-\frac{2 \alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2}}{x^{3}}\left(\beta_{\left(k_{1}-2,1\right)}^{2}-\beta_{\left(k_{1}-2,0\right)}^{2}\right)
$$

$$
\therefore f_{1}^{\prime}\left(\alpha_{\left(k_{1}, 0\right)}\right)=-\frac{2 \alpha_{\left(k_{1}-1,0\right)}^{2}}{\alpha_{\left(k_{1}, 0\right)}}\left(\beta_{\left(k_{1}-2,1\right)}^{2}-\beta_{\left(k_{1}-2,0\right)}^{2}\right)<0
$$

Case 1: If $\operatorname{det} \Delta_{\left(k_{1}-2,0\right)}>0$ then by continuity of f_{1}, there exists $\delta>0$ such that $f_{1}(x)>0 \forall x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$. Thus for all such $x, \tilde{\Delta}_{\left(k_{1}-2,0\right)} \geq 0$

Case 2: If $\operatorname{det} \Delta_{\left(k_{1}-2,0\right)}=0$ then since $f_{1}^{\prime}\left(\alpha_{\left(k_{1}, 0\right)}\right)<0$ and hence f_{1} is decreasing at $\alpha_{\left(k_{1}, 0\right)}$, so $\tilde{\Delta}_{\left(k_{1}-2,0\right)}>0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}\right)$ and $\tilde{\Delta}_{\left(k_{1}-2,0\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)} ; \alpha_{\left(k_{1}, 0\right)}+\delta\right)$.
$\underline{\text { Positivity of } \tilde{\Delta}_{\left(k_{1}-1,0\right)}}$:

$$
\tilde{\Delta}_{\left(k_{1}-1,0\right)}:=\left(\begin{array}{cc}
x^{2}-z^{2} & \alpha_{\left(k_{1}-1,1\right)} y-z \beta_{\left(k_{1}-1,0\right)} \\
\alpha_{\left(k_{1}-1,1\right)} y-z \beta_{\left(k_{1}-1,0\right)} & \beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}-1,0\right)}^{2}
\end{array}\right)
$$

We consider

$$
\begin{aligned}
f_{2}(x) & :=\operatorname{det} \tilde{\Delta}_{\left(k_{1}-1,0\right)} \\
= & \left(x^{2}-z^{2}\right)\left(\beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}-1,0\right)}^{2}\right)-\left(\alpha_{\left(k_{1}-1,1\right)} y-z \beta_{\left(k_{1}-1,0\right)}\right)^{2} \\
= & \left(x^{2}-\frac{\alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2}}{x^{2}}\right)\left(\beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}-1,0\right)}^{2}\right) \\
& -\left(\alpha_{\left(k_{1}-1,1\right)} \frac{x \beta_{\left(k_{1}, 0\right)}}{\alpha_{\left(k_{1}, 0\right)}}-\frac{\alpha_{\left(k_{1}-1,0\right)} \alpha_{\left(k_{1}, 0\right)}}{x} \beta_{\left(k_{1}-1,0\right)}\right)^{2} \\
= & \frac{x^{2}}{\alpha_{\left(k_{1}, 0\right)}^{2}}\left[\alpha_{\left(k_{1}, 0\right)}^{2}\left(\beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}-1,0\right)}^{2}\right)-\alpha_{\left(k_{1}-1,1\right)}^{2} \beta_{\left(k_{1}, 0\right)}^{2}\right] \\
& +2 \alpha_{\left(k_{1}-1,0\right)} \beta_{\left(k_{1}, 0\right)} \alpha_{\left(k_{1}-1,1\right)} \beta_{\left(k_{1}-1,0\right)}-\frac{1}{x^{2}}\left[\alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2} \beta_{\left(k_{1}-1,1\right)}^{2}\right] \\
= & \frac{x^{2}, l}{\alpha_{\left(k_{1}, 0\right)}^{2}}+2 \alpha_{\left(k_{1}-1,0\right)} \beta_{\left(k_{1}, 0\right)} \alpha_{\left(k_{1}-1,1\right)} \beta_{\left(k_{1}-1,0\right)}-\frac{1}{x^{2}}\left[\alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2} \beta_{\left.\left(k_{1}-1,1\right)\right]}^{2}\right]
\end{aligned}
$$

where $\mu=\alpha_{\left(k_{1}, 0\right)}^{2}\left(\beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}-1,0\right)}^{2}\right)-\alpha_{\left(k_{1}-1,1\right)}^{2} \beta_{\left(k_{1}, 0\right)}^{2}$
If $\operatorname{det} \Delta_{\left(k_{1}-1,0\right)}=0$, then $f_{2}\left(\alpha_{\left(k_{1}, 0\right)}\right)=0$. So, $\mu=\alpha_{\left(k_{1}-1,0\right)}^{2}\left(\beta_{\left(k_{1}-1,1\right)}^{2}-2 \beta_{\left(k_{1}, 0\right)}^{2}\right)$

Chapter 5

Now

$$
\begin{align*}
f_{2}^{\prime}(x) & =\frac{2 x \mu}{\alpha_{\left(k_{1}, 0\right)}^{2}}+\frac{2}{x^{3}}\left[\alpha_{\left(k_{1}-1,0\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2} \beta_{\left(k_{1}-1,0\right)}^{2}\right] \\
\therefore f_{2}^{\prime}\left(\alpha_{\left(k_{1}, 0\right)}\right) & =\frac{2}{\alpha_{\left(k_{1}, 0\right)}}\left[\mu+\alpha_{\left(k_{1}-1,0\right)}^{2} \beta_{\left(k_{1}-1,0\right)}^{2}\right] \\
& =\frac{4}{\alpha_{\left(k_{1}, 0\right)}}\left[\alpha_{\left(k_{1}-1,0\right)}^{2}\left(\beta_{\left(k_{1}-1,1\right)}^{2}-\beta_{\left(k_{1}, 0\right)}^{2}\right)\right] \\
& \begin{cases}>0, & \text { if } \beta_{\left(k_{1}-1,1\right)}>\beta_{\left(k_{1}, 0\right)} \\
<0, & \text { if } \beta_{\left(k_{1}-1,1\right)}<\beta_{\left(k_{1}, 0\right)} \\
=0, & \text { if } \beta_{\left(k_{1}-1,1\right)}=\beta_{\left(k_{1}, 0\right)} .\end{cases} \tag{5.4.1}
\end{align*}
$$

Thus, if $\operatorname{det} \Delta_{\left(k_{1}-1,0\right)}=0$, then

1. if $\beta_{\left(k_{1}-1,1\right)}=\beta_{\left(k_{1}, 0\right)}$ then there exists $\delta>0$ such that $\tilde{\Delta}_{\left(k_{1}-1,0\right)} \geq 0$ for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$.
2. if $\beta_{\left(k_{1}-1,1\right)}>\beta_{\left(k_{1}, 0\right)}$ then $\tilde{\Delta}_{\left(k_{1}-1,0\right)} \geq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$, and $\tilde{\Delta}_{\left(k_{1}-1,0\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}\right)$.
3. if $\beta_{\left(k_{1}-1,1\right)}<\beta_{\left(k_{1}, 0\right)}$ then $\tilde{\Delta}_{\left(k_{1}-1,0\right)} \geq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta_{,} \alpha_{\left(k_{1}, 0\right)}\right)$, and $\tilde{\Delta}_{\left(k_{1}-1,0\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$.

Positivity of $\tilde{\Delta}_{\left(k_{1}, 0\right)}$:

$$
\begin{gathered}
\tilde{\Delta}_{\left(k_{1}, 0\right)}=\left(\begin{array}{cc}
\alpha_{\left(k_{1}+1,0\right)}^{2}-x^{2} & \alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}-x y \\
\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}-x y & \beta_{\left(k_{1}, 1\right)}^{2}-y^{2}
\end{array}\right) \\
f_{3}(x):=\left(\alpha_{\left(k_{1}+1,0\right)}^{2}-x^{2}\right)\left(\beta_{\left(k_{1}, 1\right)}^{2}-\frac{x^{2} \beta_{\left(k_{1}, 0\right)}^{2}}{\alpha_{\left(k_{1}, 0\right)}^{2}}\right)-\left(\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}-\frac{x^{2} \beta_{\left(k_{1}, 0\right)}}{\alpha_{\left(k_{1}, 0\right)}}\right)^{2} \\
=\left(\alpha_{\left(k_{1}+1,0\right)}^{2} \beta_{\left(k_{1}, 1\right)}^{2}-\alpha_{\left(k_{1}, 1\right)}^{2} \beta_{\left(k_{1}+1,0\right)}^{2}\right) \\
+\frac{x^{2}}{\alpha_{\left(k_{1}, 0\right)}^{2}}\left(2 \alpha_{\left.\left(k_{1}, 0\right)\right)}^{\left.\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 0\right)}-\beta_{\left(k_{1}, 0\right)}^{2} \alpha_{\left(k_{1}+1,0\right)}^{2}-\beta_{\left(k_{1}, 1\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2}\right)}\right.
\end{gathered}
$$

$$
=\left(\alpha_{\left(k_{1}+1,0\right)}^{2} \beta_{\left(k_{1}, 1\right)}^{2}-\alpha_{\left(k_{1}, 1\right)}^{2} \beta_{\left(k_{1}+1,0\right)}^{2}\right)+\frac{x^{2} \gamma}{\alpha_{\left(k_{1}, 0\right)}^{2}}
$$

where $\gamma=2 \alpha_{\left(k_{1}, 0\right)} \alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 0\right)}-\beta_{\left(k_{1}, 0\right)}^{2} \alpha_{\left(k_{1}+1,0\right)}^{2}-\beta_{\left(k_{1}, 1\right)}^{2} \alpha_{\left(k_{1}, 0\right)}^{2}$.
If $\operatorname{det} \Delta_{\left(k_{1}, 0\right)}=0$ then $f_{3}\left(\alpha_{\left(k_{1}, 0\right)}\right)=0$. Therefore

$$
\gamma=\alpha_{\left(k_{1}, 1\right)}^{2} \beta_{\left(k_{1}+1,0\right)}^{2}-\alpha_{\left(k_{1}+1,0\right)}^{2} \beta_{\left(k_{1}, 1\right)}^{2}
$$

Again,

$$
\begin{array}{r}
f_{3}^{\prime}(x)=\frac{2 x \gamma}{\alpha_{\left(k_{1}, 0\right)}^{2}}=\frac{2 x}{\alpha_{\left(k_{1}, 0\right)}^{2}}\left(\alpha_{\left(k_{1}, 1\right)}^{2} \beta_{\left(k_{1}+1,0\right)}^{2}-\alpha_{\left(k_{1}+1,0\right)}^{2} \beta_{\left(k_{1}, 1\right)}^{2}\right) \\
\begin{cases}>0, & \text { if } \alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}>\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)} \\
<0, & \text { if } \alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}<\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)} \\
=0, & \text { if } \alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}=\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)}\end{cases}
\end{array}
$$

From the continuity of f_{3} we can make the conclusions:

1. $\operatorname{det} \Delta_{\left(k_{1}, 0\right)}>0$ or $\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}=\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)}$ then there exists $\delta>0$ such that $\tilde{\Delta}_{\left(k_{1}, 0\right)} \geq 0$ for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\bar{\delta}, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$.
2. If del, $\Delta_{\left(k_{1}, 0\right)}=0$ then there exists $\delta>0$ such that
(i) if $\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}>\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)}$ then $\tilde{\Delta}_{\left(k_{1}, 0\right)} \geq 0$ for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$ and $\tilde{\Delta}_{\left(k_{1}, 0\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}\right)$;
(ii) if $\alpha_{\left(k_{1}, 1\right)} \beta_{\left(k_{1}+1,0\right)}<\alpha_{\left(k_{1}+1,0\right)} \beta_{\left(k_{1}, 1\right)}$ then $\tilde{\Delta}_{\left(k_{1}, 0\right)} \geq 0$ for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}\right)$ and $\tilde{\Delta}_{\left(k_{1}, 0\right)} \nsupseteq 0$ for $x \in\left(\alpha_{\left(k_{1}, 0\right)}, \alpha_{\left(k_{1}, 0\right)}+\bar{\delta}\right)$.

From the above analysis we can exhaustively determine whether perturbation of $\alpha_{\left(k_{1}, 0\right)}$ will again result in a hyponormal shift \tilde{T} or not.

Remark 5.4.1. For $k_{1}=0$, we only need to consider $\tilde{\Delta}_{\left(k_{1}, 0\right)}$ for positivity and for $k_{1}=1$, we need to consider only positivity of $\tilde{\Delta}_{\left(k_{1}, 0\right)}$ and $\tilde{\Delta}_{\left(k_{1}-1,0\right)}$.

Remark 5.4.2. Since the perturbation do not affect the core of T, so these results can be applied to 2 -variable shifts whose core is of tensor type.

5.5 Perturbation of the weight $\alpha_{\left(k_{1}, k_{2}\right)}$

In general if we want to perturb a weight $\alpha_{\left(k_{1}, k_{2}\right)}$ for $k_{1}>0, k_{2}>0$, then for commutativity we need to change at least three other adjacent weights. The further perturbation of weights in adjacent blocks are as follows:

1. β_{k} changes to $y=\frac{\beta_{k} x}{\alpha_{k}}$
2. $\alpha_{k-\varepsilon_{1}}$ changes to $z=\frac{\gamma_{k-\varepsilon_{1}, \gamma_{k}}^{x}}{x}$
3. $\beta_{k-\varepsilon_{2}}$ changes to $t=\frac{\beta_{k-\varepsilon_{2} \alpha_{\lambda}}}{x}$
with the understanding that if $k=\left(0, k_{2}\right)$ then we neglect (2), and if $k=\left(k_{1}, 0\right)$ we neglect (3).
$\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ is the perturbed shift with weight sequences $\left\{\tilde{\alpha}_{\tau}\right\}_{\tau \in \mathbb{Z}_{+}^{2}}$ and $\left\{\tilde{\beta}_{\tau}\right\}_{\tau \in \mathbb{Z}_{+}^{2}}$ given as follows:

$$
\tilde{\alpha}_{\tau}=\left\{\begin{array}{ll}
x, & \text { if } \tau=k \\
z, & \text { if } \tau=k-\varepsilon_{1} \\
\alpha_{k}, & \text { if } \tau \neq k, \tau \neq k-\varepsilon_{1}
\end{array} \quad \text { and } \tilde{\beta}_{\tau}= \begin{cases}y, & \text { if } \tau=k \\
t, & \text { if } \tau=k-\varepsilon_{2} \\
\beta_{k}, & \text { if } \tau \neq k, \tau \neq k-\varepsilon_{2}\end{cases}\right.
$$

The perturbed weight diagram is given in Figure 15.
As $\alpha_{k}<\left(\frac{\beta_{k-\epsilon_{2}}}{\beta_{k-2 \epsilon_{2}}}\right) \alpha_{k}$, so by keeping $x<\left(\frac{\beta_{k-\epsilon_{2}}}{\beta_{k-2 \epsilon_{2}}}\right) \alpha_{k}$ we will preserve the condition $\beta_{k-2 \epsilon_{2}}<t$. Similarly, by keeping x suitably near α_{k}, we can preserve the conditions $\beta_{k-2 \epsilon_{2}}<t<y<\beta_{k+\epsilon_{2}}$ and $\alpha_{k-2 \epsilon_{1}}<z<x<\alpha_{k+\epsilon_{1}}$.
Now for hyponormality of the perturbed shift \tilde{T} it is sufficient to identify the conditions of positivity for the following matrices: $\tilde{\Delta}_{k-2 \varepsilon_{2}}, \tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}}, \tilde{\Delta}_{k-2 \varepsilon_{1}}$, $\tilde{\Delta}_{k-\varepsilon_{1}}, \tilde{\Delta}_{k-\varepsilon_{2}}$ and $\tilde{\Delta}_{k}$, where

$$
\tilde{\Delta}_{\tau}:=\left(\begin{array}{cc}
\tilde{\alpha}_{\tau+\varepsilon_{1}}^{2}-\tilde{\alpha}_{\tau}^{2} & \tilde{\alpha}_{\tau+\varepsilon_{2}} \tilde{\beta}_{\tau+\varepsilon_{1}}-\tilde{\alpha}_{\tau} \tilde{\beta}_{\tau} \\
\tilde{\alpha}_{\tau+\varepsilon_{2}} \tilde{\beta}_{\tau+\varepsilon_{1}}-\tilde{\alpha}_{\tau} \tilde{\beta}_{\tau} & \tilde{\beta}_{\tau+\varepsilon_{2}}^{2}-\tilde{\beta}_{\tau}^{2}
\end{array}\right) \geq 0 \quad\left(\forall \tau \in \mathbb{Z}_{+}^{2}\right) .
$$

Figure 15
To check positivity of $\tilde{\Delta}_{k-2 \varepsilon_{2}}$ we consider

$$
\begin{aligned}
f_{1}(x):= & \operatorname{det} \tilde{\Delta}_{k-2 \varepsilon_{2}} \\
= & \left(t^{2}-\beta_{k-2 \varepsilon_{2}}^{2}\right)\left(\alpha_{k+\varepsilon_{1}-2 \varepsilon_{2}}^{2}-\alpha_{k-2 \varepsilon_{2}}^{2}\right)-\left(\alpha_{k-\varepsilon_{2}} \beta_{k+\varepsilon_{1}-2 \varepsilon_{2}}-\alpha_{k-2 \varepsilon_{2}} \beta_{k-2 \varepsilon_{2}}\right)^{2} \\
= & \left(\frac{\beta_{k-\varepsilon_{2}}^{2} \alpha_{k}^{2}}{x^{2}}-\beta_{k-2 \varepsilon_{2}}^{2}\right)\left(\alpha_{k+\varepsilon_{1}-2 \varepsilon_{2}}^{2}-\alpha_{k-2 \varepsilon_{2}}^{2}\right) \\
& -\left(\alpha_{k-\varepsilon_{2}} \beta_{k+\varepsilon_{1}-2 \varepsilon_{2}}-\alpha_{k-2 \varepsilon_{2}} \beta_{k-2 \varepsilon_{2}}\right)^{2} \\
\therefore f_{1}^{\prime}(x)= & -\frac{2 \beta_{k-\varepsilon_{2}}^{2} \alpha_{k}^{2}}{x^{3}}\left(\alpha_{k+\varepsilon_{1}-2 \varepsilon_{2}}^{2}-\alpha_{k-2 \varepsilon_{2}}^{2}\right)<0
\end{aligned}
$$

Now, $f_{1}\left(\alpha_{k}\right)=\operatorname{det} \Delta_{k-2 \varepsilon_{2}} \geq 0$. So by continuity of f_{1} we can make the following conclusion $\mathrm{C1}$:

1. If $\operatorname{det} \Delta_{k-2 \varepsilon_{2}}>0$ then there exists $\delta_{k}>0$ such that for all

$$
x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right), \tilde{\Delta}_{k-2 \varepsilon_{2}} \geq 0
$$

2. If $\operatorname{det} \Delta_{k-2 \varepsilon_{2}}=0$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k-2 \varepsilon_{2}} \geq 0$ for all

$$
x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right) \text {, and } \tilde{\Delta}_{k-2 \varepsilon_{2}} \nsupseteq 0 \text { for } x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right) \text {. }
$$

Similarly to check the positivity of $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}}$, we consider

$$
\begin{aligned}
& f_{2}(x):=\operatorname{det} \tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \\
& =\left(\beta_{k-\varepsilon_{1}}^{2}-\beta_{k-\varepsilon_{1}-\varepsilon_{2}}^{2}\right)\left(\alpha_{k-\varepsilon_{1}}^{2}-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}}^{2}\right)-\left(z t-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}\right)^{2} \\
& =\left(\beta_{k-\varepsilon_{1}}^{2}-\beta_{k-\varepsilon_{1}-\varepsilon_{2}}^{2}\right)\left(\alpha_{k-\varepsilon_{1}}^{2}-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}}^{2}\right) \\
& -\left(\frac{\alpha_{k-\varepsilon_{1}} \alpha_{k}^{2} \beta_{k-\varepsilon_{2}}}{x^{2}}-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}\right)^{2} \\
& f_{2}^{\prime}(x)=\frac{4 \alpha_{k-\varepsilon_{1}} \alpha_{k}^{2} \beta_{k-\varepsilon_{2}}}{x^{3}}\left(\frac{\alpha_{k-\varepsilon_{1}} \alpha_{k}^{2} \beta_{k-\varepsilon_{2}}}{x^{2}}-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}\right) \\
& \therefore f_{2}^{\prime}\left(\alpha_{k}\right)=\frac{4 \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}}{\alpha_{k}}\left(\alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}-\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}\right) \\
& \begin{cases}>0, & \text { if } \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}>\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}} \\
<0, & \text { if } \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}<\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}} \\
=0, & \text { if } \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}=\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}} .\end{cases}
\end{aligned}
$$

From the continuity of f_{2} we can make the following conclusion $\underline{\mathrm{C} 2}$:

1. If $\operatorname{det} \Delta_{k-\varepsilon_{1}-\varepsilon_{2}}>0$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right)$.
2. If $\operatorname{det} \Delta_{k-\varepsilon_{1}-\varepsilon_{2}}=0$ then there exists $\delta_{k}>0$ such that
(i) if $\alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}>\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}$, then $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$, and $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \nsupseteq 0$ for $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$;
(ii) if $\alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}<\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}$, then $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$, and $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \nsupseteq 0$ for $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$;
(iii) if $\alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{2}}=\alpha_{k-\varepsilon_{1}-\varepsilon_{2}} \beta_{k-\varepsilon_{1}-\varepsilon_{2}}$, then $\tilde{\Delta}_{k-\varepsilon_{1}-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}+\delta_{k}, \alpha_{k}-\delta_{k}\right)$.

For positivity of $\tilde{\Delta}_{k-2 \varepsilon_{1}}$, we consider

$$
\begin{aligned}
f_{3}(x) & :=\operatorname{det} \tilde{\Delta}_{k-2 \varepsilon_{1}} \\
& =\left(z^{2}-\alpha_{k-2 \varepsilon_{1}}^{2}\right)\left(\beta_{k-2 \varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-2 \varepsilon_{1}}^{2}\right)-\left(\alpha_{k-2 \varepsilon_{1}+\varepsilon_{2}} \beta_{k-\varepsilon_{1}}-\alpha_{k-2 \varepsilon_{1}} \beta_{k-2 \varepsilon_{1}}\right)^{2} \\
& =\left(\frac{\alpha_{k-\varepsilon_{1}}^{2} \alpha_{k}^{2}}{x^{2}}-\alpha_{k-2 \varepsilon_{1}}^{2}\right)\left(\beta_{k-2 \varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-2 \varepsilon_{1}}^{2}\right)-\left(\alpha_{k-2 \varepsilon_{1}+\varepsilon_{2}} \beta_{k-\varepsilon_{1}}-\alpha_{k-2 \varepsilon_{1}} \beta_{k-2 \varepsilon_{1}}\right)^{2}
\end{aligned}
$$

So,

$$
\begin{aligned}
f_{3}^{\prime}(x) & =\frac{-2 \alpha_{k-\varepsilon_{1}}^{2} \alpha_{k}^{2}}{x^{3}}\left(\beta_{k-2 \varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-2 \varepsilon_{1}}^{2}\right) \\
\therefore & f_{3}^{\prime}\left(\alpha_{k}\right)=\frac{-2 \alpha_{k-\varepsilon_{1}}^{2}}{\alpha_{k}}\left(\beta_{k-2 \varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-2 \varepsilon_{1}}^{2}\right)<0 .
\end{aligned}
$$

Now from the continuity of f_{3} we can make the conclusion $\underline{\mathrm{C} 3}$:

1. If $\operatorname{det} \Delta_{k-2 \varepsilon_{1}}>0$ then there exists $\delta_{k}>0$ such that for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right), \tilde{\Delta}_{k-2 \varepsilon_{1}} \geq 0$.
2. If $\operatorname{det} \Delta_{k-2 \varepsilon_{1}}=0$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k-2 \varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$, and $\bar{\Delta}_{k-2 \varepsilon_{1}} \nsupseteq 0$ for $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$.

For positivity of $\tilde{\Delta}_{k-\varepsilon_{2}}$, we consider

$$
\begin{aligned}
f_{4}(x):= & d e t \tilde{\Delta}_{k-\varepsilon_{2}} \\
= & \left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-\alpha_{k-\varepsilon_{2}}^{2}\right)\left(y^{2}-t^{2}\right)-\left(x \beta_{k+\varepsilon_{1}-\varepsilon_{2}}-t \alpha_{k-\varepsilon_{2}}\right)^{2} \\
= & \left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-\alpha_{k-\varepsilon_{2}}^{2}\right)\left(\frac{\beta_{k}^{2} x^{2}}{\alpha_{k}^{2}}-\frac{\beta_{k-\varepsilon_{2}}^{2} \alpha_{k}^{2}}{x^{2}}\right)-\left(x \beta_{k+\varepsilon_{1}-\varepsilon_{2}}-\frac{\beta_{k-\varepsilon_{2}} \alpha_{k} \alpha_{k-\varepsilon_{2}}}{x}\right)^{2} \\
= & \frac{1}{\alpha_{k}^{2}}\left[x^{2}\left\{\beta_{k}^{2}\left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-\alpha_{k-\varepsilon_{2}}^{2}\right)-\alpha_{k}^{2} \beta_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}\right\}\right. \\
& \left.+2 \beta_{k-\varepsilon_{2}} \alpha_{k}^{3} \alpha_{k-\varepsilon_{2}} \beta_{k+\varepsilon_{1}-\varepsilon_{2}}-\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2} \frac{\beta_{k-\varepsilon_{2}}^{2} \alpha_{k}^{4}}{x^{2}}\right]
\end{aligned}
$$

If $\operatorname{det} \Delta_{k-\varepsilon_{2}}=0$ then $f_{4}\left(\alpha_{k}\right)=\operatorname{det} \Delta_{k-\varepsilon_{2}}=0$. Therefore,

$$
\lambda:=\beta_{k}^{2}\left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-\alpha_{k-\varepsilon_{2}}^{2}\right)-\alpha_{k}^{2} \beta_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}=\beta_{k-\varepsilon_{2}}^{2}\left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-2 \alpha_{k}^{2}\right)
$$

Again,

$$
\begin{aligned}
& f_{4}^{\prime}(x)=\frac{1}{\alpha_{k}^{2}}\left[2 x \lambda+\frac{2 \alpha_{k}^{4} \alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2} \beta_{k-\varepsilon_{2}}^{2}}{x^{3}}\right] \\
&=\frac{2}{\alpha_{k}^{2} x}\left[x^{2} \lambda+\frac{\left.\alpha_{k}^{4} \alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2} \beta_{k-\varepsilon_{2}}^{2}\right]}{x^{2}}\right] \\
& f_{4}^{\prime}\left(\alpha_{k}\right)=\frac{2}{\alpha_{k}}\left[\lambda+\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2} \beta_{k-\varepsilon_{2}}^{2}\right] \\
&=\frac{4 \beta_{k-\varepsilon_{2}}^{2}}{\alpha_{k}}\left(\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}^{2}-\alpha_{k}^{2}\right) \\
& \begin{cases}>0, & \text { if } \alpha_{k+\varepsilon_{1}-\varepsilon_{2}}>\alpha_{k} \\
<0, & \text { if } \alpha_{k+\varepsilon_{1}-\varepsilon_{2}}<\alpha_{k} \\
=0, & \text { if } \alpha_{k+\varepsilon_{1}-\varepsilon_{2}}=\alpha_{k} .\end{cases}
\end{aligned}
$$

Now since f_{4} is a continuous function, therefore conclusion $\underline{\mathrm{C}}$:

1. If $\operatorname{det} \Delta_{k-\varepsilon_{2}}>0$ or $\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}=\alpha_{k}$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right)$.
2. If $\operatorname{det} \Delta_{k-\varepsilon_{2}}=0$ then there exists $\delta_{k}>0$ such that
(i) if $\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}>\alpha_{k}$ then $\tilde{\Delta}_{k-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$ and $\tilde{\Delta}_{k-\varepsilon_{2}} \nsupseteq 0$ for $x \in\left(\alpha_{k}-\delta_{k} ; \alpha_{k}\right)$;
(ii) if $\alpha_{k+\varepsilon_{1}-\varepsilon_{2}}<\alpha_{k}$ then $\tilde{\Delta}_{k-\varepsilon_{2}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$ and $\tilde{\Delta}_{k-\varepsilon_{2}} \nsupseteq 0$ for $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$.

For positivity of $\tilde{\Delta}_{k-\varepsilon_{1}}$, we consider

$$
\begin{aligned}
f_{5}(x): & =\operatorname{det} \tilde{\Delta}_{k-\varepsilon_{1}} \\
= & \left(x^{2}-z^{2}\right)\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-\varepsilon_{1}}^{2}\right)-\left(\alpha_{k-\varepsilon_{1}+\varepsilon_{2}} y-\beta_{k-\varepsilon_{1}} z\right)^{2} \\
= & \left(x^{2}-\frac{\alpha_{k-\varepsilon_{1}}^{2} \alpha_{k}^{2}}{x^{2}}\right)\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-\varepsilon_{1}}^{2}\right)-\left(\frac{\alpha_{k-\varepsilon_{1}+\varepsilon_{2}} \beta_{k} x}{\alpha_{k}}-\frac{\alpha_{k} \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{1}}}{x}\right)^{2} \\
= & \frac{x^{2}}{\alpha_{k}^{2}}\left[\alpha_{k}^{2}\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-\varepsilon_{1}}^{2}\right)-\alpha_{k-\varepsilon_{1}+\varepsilon_{2}}^{2} \beta_{k}^{2}\right]+2 \alpha_{k-\varepsilon_{1}+\varepsilon_{2}} \beta_{k} \alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{1}} \\
& -\frac{1}{x^{2}}\left(\alpha_{k-\varepsilon_{1}}^{2} \alpha_{k}^{2} \beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}\right) .
\end{aligned}
$$

If $\operatorname{det} \Delta_{k-\varepsilon_{1}}=0$ then $f_{5}\left(\alpha_{k}\right)=\operatorname{det} \Delta_{k-\varepsilon_{1}}=0$. Therefore

$$
\mu:=\alpha_{k}^{2}\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k-\varepsilon_{1}}^{2}\right)-\alpha_{k-\varepsilon_{1}+\varepsilon_{2}}^{2} \beta_{k}^{2}=\alpha_{k-\varepsilon_{1}}^{2}\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-2 \beta_{k}^{2}\right) .
$$

Now

$$
\begin{aligned}
& f_{5}^{\prime}(x)=\frac{2 x \mu}{\alpha_{k}^{2}}+\frac{2}{x^{3}} \alpha_{k-\varepsilon_{1}}^{2} \alpha_{k}^{2} \beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2} \\
& \therefore f_{5}^{\prime}\left(\alpha_{k}\right)=\frac{2}{\alpha_{k}}\left(\mu+\alpha_{k-\varepsilon_{1}}^{2} \beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}\right) \\
&=\frac{4 \alpha_{k-\varepsilon_{1}}^{2}}{\alpha_{k}}\left(\beta_{k-\varepsilon_{1}+\varepsilon_{2}}^{2}-\beta_{k}^{2}\right) \\
& \begin{cases}>0, & \text { if } \beta_{k-\varepsilon_{1}+\varepsilon_{2}}>\beta_{k} \\
<0, & \text { if } \beta_{k-\varepsilon_{1}+\varepsilon_{2}}<\beta_{k} \\
=0, & \text { if } \beta_{k-\varepsilon_{1}+\varepsilon_{2}}=\beta_{k} .\end{cases}
\end{aligned}
$$

Again from the continuity of \int_{5}, we can make the conclusion $\underline{\mathrm{C} 5}$:

1. det $\Delta_{k-\varepsilon_{1}}>0$ or $\beta_{k-\varepsilon_{1}+\varepsilon_{2}}=\beta_{k}$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k-\varepsilon_{1}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right)$.
2. If $\operatorname{det} \Delta_{k-\varepsilon_{1}}=0$ then there exists $\delta_{k}>0$ such that
(i) if $\beta_{k-\varepsilon_{1}+\varepsilon_{2}}>\beta_{k}$ then $\tilde{\Delta}_{k-\varepsilon_{1}} \geq 0$ for all $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$ and $\tilde{\Delta}_{k-\varepsilon_{1}} \nsupseteq 0$ for $x \in\left(\alpha_{k}-\delta_{k} ; \alpha_{k}\right)$;
(ii) if $\beta_{k-\varepsilon_{1}+\varepsilon_{2}}<\beta_{k}$ then $\tilde{\Delta}_{k-\varepsilon_{1}} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$ and $\tilde{\Delta}_{k-\varepsilon_{1}} \nsupseteq 0$ for $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$.

Finally, to check the positivity of $\tilde{\Delta}_{k}$ we consider

$$
\begin{aligned}
\int_{6}(x) & :=\text { del } \tilde{\Delta}_{k} \\
& =\left(\alpha_{k+\varepsilon_{1}}^{2}-x^{2}\right)\left(\beta_{k+\varepsilon_{2}}^{2}-y^{2}\right)-\left(\alpha_{k-\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-x y\right)^{2} \\
& =\left(\alpha_{k+\varepsilon_{1}}^{2}-x^{2}\right)\left(\beta_{k+\varepsilon_{2}}^{2}-\frac{\beta_{k}^{2} x^{2}}{\alpha_{k}^{2}}\right)-\left(\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\frac{\beta_{k} x^{2}}{\alpha_{k}}\right)^{2} \\
& =x^{2}\left(-\beta_{k+\varepsilon_{2}}^{2}-\frac{\beta_{k}^{2} \alpha_{k+\varepsilon_{1}}^{2}}{\alpha_{k}^{2}}+\frac{2 \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}} \beta_{k}}{\alpha_{k}}\right)+\left(\alpha_{k+\varepsilon_{1}}^{2} \beta_{k+\varepsilon_{2}}^{2}-\alpha_{k+\varepsilon_{2}}^{2} \beta_{k+\varepsilon_{1}}^{2}\right)
\end{aligned}
$$

$$
=\frac{x^{2}}{\alpha_{k}^{2}}\left(2 \alpha_{k} \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}} \beta_{k}-\alpha_{k}^{2} \beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2} \alpha_{k+\varepsilon_{1}}^{2}\right)+\left(\alpha_{k+\varepsilon_{1}}^{2} \beta_{k+\varepsilon_{2}}^{2}-\alpha_{k+\varepsilon_{2}}^{2} \beta_{k+\varepsilon_{1}}^{2}\right)
$$

If $\operatorname{det} \Delta_{k}=0$ then $f_{6}\left(\alpha_{k}\right)=\operatorname{det} \Delta_{k}=0$. Therefore

$$
\gamma:=\left(2 \alpha_{k} \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}} \beta_{k}-\alpha_{k}^{2} \beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2} \alpha_{k+\varepsilon_{1}}^{2}\right)=\left(\alpha_{k+\varepsilon_{2}}^{2} \beta_{k+\varepsilon_{1}}^{2}-\alpha_{k+\varepsilon_{1}}^{2} \beta_{k+\varepsilon_{2}}^{2}\right)
$$

Again,

$$
\begin{aligned}
f_{6}^{\prime}(x)=\frac{2 x \gamma}{\alpha_{k}^{2}}= & \frac{2 x}{\alpha_{k}^{2}}\left(\alpha_{k+\varepsilon_{2}}^{2} \beta_{k+\varepsilon_{1}}^{2}-\alpha_{k+\varepsilon_{1}}^{2} \beta_{k+\varepsilon_{2}}^{2}\right) \\
& \begin{cases}>0, & \text { if } \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}>\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}} \\
<0, & \text { if } \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}<\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}} \\
=0, & \text { if } \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}=\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}} .\end{cases}
\end{aligned}
$$

From the continuity of f_{6} we can make the conclusion $\underline{C} 6$:

1. $\operatorname{det} \Delta_{k}>0$ or $\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}=\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}}$ then there exists $\delta_{k}>0$ such that $\tilde{\Delta}_{k} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right)$.
2. If $\operatorname{det} \Delta_{k}=0$ then there exists $\delta_{k}>0$ such that
(i) if $\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}>\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}}$ then $\tilde{\Delta}_{k} \geq 0$ for all $x \in\left(\alpha_{k}, \alpha_{k}+\delta_{k}\right)$ and $\tilde{\Delta}_{k} \nsupseteq 0$ for $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$;
(ii) if $\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}<\alpha_{k+\varepsilon_{1}} \beta_{k+\varepsilon_{2}}$ then $\tilde{\Delta}_{k} \geq 0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}\right)$

From the above analysis we can exhaustively determine whether perturbation of α_{k} will again result in a hyponormal shift \tilde{T} or not.

For illustration let us consider the following examples:

Example 5.5.1. Lel $T=\left(T_{1}, T_{2}\right)$ be hyponormal with $\Delta_{(0,3)}>0, \Delta_{(0,5)}>$ $0, \Delta_{(0,4)}=0$ and $\alpha_{(1,4)}<\alpha_{(0,5)}$. We want to perturb $\alpha_{(0,5)}$.

Applying C1 (1), C6 (1) and C4 (2)(ı2) we conclude that \tilde{T} will stzll be hyponormal for a slıght'left perturbation of $\alpha_{(0,5)}$, but will not be hyponormal for any right perturbatzon of $\alpha_{(0,5)}$

Example 5.5.2. We want to perturb $\alpha_{(7,11)}$ Hence we need to consıder $\Delta_{(7,9)}$, $\Delta_{(6,10)}, \Delta_{(5,11)}, \Delta_{(7,10)}, \Delta_{(6,11)}, \Delta_{(7,11)}$ Suppose $\Delta_{(6,10)}: \Delta_{(5,11)}, \Delta_{(7,10)}, \Delta_{(7,11)}>$ 0 and $\Delta_{(7,9)}=\Delta_{(6,11)}=0$ So by C1 (2) and C5, we make the following conclusıons:

1. If $\beta_{(6,12)} \leq \beta_{(7,11)}$ then \tilde{T} will be hyponomal for a slight left perturbation of $\alpha_{(7,11)}$, but will not be hyponormal for any right perturbatzon of $\alpha_{(7,11)}$.
2. If $\beta_{(6,12)}>\beta_{(7,11)}$ then for any sl2ght perturbatzon of $\alpha_{(7,11)}, \tilde{T}$ will fazl to be hyponormal.

Chapter 6

On weak hyponormality of 2 -variable weighted shifts

6.1 Introduction

In Chapter 5 it was shown that if for a 2-variable hyponormal shift $T=\left(T_{1}, T_{2}\right)$, a weight $\alpha_{\left(k_{1}, k_{2}\right)}$ is perturbed, then the resulting perturbed shift \tilde{T} may not remain hyponormal. In fact the conditions under which \tilde{T} will still be hyponormal is completely given in that chapter. In this chapter, we show that though \tilde{T} may not be hyponormal, it will however still remain weakly hyponormal for sufficiently small perturbations x of $\alpha_{\left(k_{1}, k_{2}\right)}$.
Let $\alpha:=\left\{\alpha_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\beta:=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ be 2-variable weight sequences and $T=\left(T_{1}, T_{2}\right)$ be a 2 -variable weighted shift on $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ defined by $T_{1} e_{k}=\alpha_{k} e_{k+\varepsilon_{1}}$ and $T_{2} e_{k}=\beta_{k} e_{k+\varepsilon_{2}}$.

As mentioned earlier $T=\left(T_{1}, T_{2}\right)$ is weakly hyponormal if $\lambda_{1} T_{1}+\lambda_{2} T_{2}$ is hyponormal $\forall \lambda_{2} \in \mathbb{C}$. Equivalently,
T is weakly hyponormal

$$
\begin{aligned}
& \Leftrightarrow T_{1}+\bar{\lambda} T_{2} \text { is hyponormal } \forall \lambda \in \mathbb{C} \\
& \Leftrightarrow\left[\left(T_{1}+\bar{\lambda} T_{2}\right)^{*},\left(T_{1}+\bar{\lambda} T_{2}\right)\right] \geq 0 \forall \lambda \in \mathbb{C}
\end{aligned}
$$

$$
\begin{align*}
& \Leftrightarrow\left\langle\left[\left(T_{1}+\bar{\lambda} T_{2}\right)^{*},\left(T_{1}+\bar{\lambda} T_{2}\right)\right] x, x\right\rangle \geq 0 \quad \forall \lambda \in \mathbb{C} \text { and } x \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \\
& \Leftrightarrow\left\langle\left[T_{1}^{*}, T_{1}\right] x, x\right\rangle+\lambda\left\langle\left[T_{2}^{*}, T_{1}\right] x, x\right\rangle \\
& +\bar{\lambda}\left\langle\left[T_{1}^{*}, T_{2}\right] x, x\right\rangle+\lambda \bar{\lambda}\left\langle\left[T_{2}^{*}, T_{2}\right] x, x\right\rangle \geq 0 \forall \lambda \in \mathbb{C} \text { and } x \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \\
& \Leftrightarrow\left\langle\left(\begin{array}{cc}
\left\langle\left[T_{1}^{*}, T_{1}\right] x, x\right\rangle & \left\langle\left[T_{2}^{*}, T_{1}\right] x, x\right\rangle \\
\left\langle\left[T_{1}^{*}, T_{2}\right] x, x\right\rangle & \left\langle\left[T_{2}^{*}, T_{2}\right] x, x\right\rangle
\end{array}\right)\binom{1}{\lambda},\binom{1}{\lambda}\right\rangle \geq 0 \tag{6.1.1}
\end{align*}
$$

for all $\lambda \in \mathbb{C}$ and $x \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$.
Theorem 6.1.1. $T=\left(T_{1}, T_{2}\right)$ is weakly hyponormal if and only if
$\sum_{j=0}^{\infty}\left|c_{(0, j)}\right|^{2} \alpha_{(0, j)}^{2}+|\lambda|^{2} \sum_{i=0}^{\infty}\left|c_{(2,0)}\right|^{2} \beta_{(2,0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \geq 0$
for all $x=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ and

$$
\Delta_{k}:=\left(\begin{array}{cc}
\alpha_{k+\varepsilon_{1}}^{2}-\alpha_{k}^{2} & \alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k} \\
\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k} & \beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2}
\end{array}\right)
$$

for all $k \in \mathbb{Z}_{+}^{2}$.
Proof. We have $T_{1} e_{k}=\alpha_{k} e_{k+\varepsilon_{1}}$ for $k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, and

$$
T_{1}^{*} e_{k}= \begin{cases}0 & \text { if } k_{1}=0 \\ \alpha_{k-\varepsilon_{1}} e_{k-\varepsilon_{1}} & \text { if } k_{1}>0\end{cases}
$$

Similarly, $T_{2} e_{k}=\alpha_{k} e_{k+\varepsilon_{2}}$ for $k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, and

$$
T_{2}^{*} e_{k}= \begin{cases}0 & \text { if } k_{2}=0 \\ \alpha_{k-\varepsilon_{2}} e_{k-\varepsilon_{2}} & \text { if } k_{2}>0\end{cases}
$$

Therefore,

$$
\begin{aligned}
{\left[T_{1}^{*}, T_{1}\right] e_{k} } & =T_{1}^{*}\left(T_{1} e_{k}\right)-T_{1}\left(T_{1}^{*} e_{k}\right) \\
& = \begin{cases}T_{1}^{*} \alpha_{k} e_{k+\varepsilon_{1}} & \text { if } k_{1}=0 \\
T_{1}^{*} \alpha_{k} e_{k+\varepsilon_{1}}-T_{1} \alpha_{k-\varepsilon_{1}} e_{k-\varepsilon_{1}} & \text { if } k_{1}>0\end{cases} \\
& = \begin{cases}\alpha_{k}^{2} e_{k} & \text { if } k_{1}=0 \\
\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right) e_{k} & \text { if } k_{1}>0\end{cases} \\
& =\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right) e_{k}
\end{aligned}
$$

$$
\text { assuming } \alpha_{\left(t_{1}, t_{2}\right)}=0 \text { for all } t_{1}<0, t_{2} \in \mathbb{Z}
$$

Again,

$$
\begin{aligned}
{\left[T_{2}^{*}, T_{1}\right] e_{k}=} & T_{2}^{*}\left(T_{1} e_{k}\right)-T_{1}\left(T_{2}^{*} e_{k}\right) \\
= & \begin{cases}T_{2}^{*} \alpha_{k} e_{k+\varepsilon_{1}} & \text { if } k_{2}=0 \\
T_{2}^{*} \alpha_{k} e_{k+\varepsilon_{1}}-T_{1} \beta_{k-\varepsilon_{2}} e_{k-\varepsilon_{2}} & \text { if } k_{2}>0\end{cases} \\
= & \begin{array}{ll}
0 & \text { if } k_{2}=0 \\
\left(\alpha_{k} \beta_{k+\varepsilon_{1}-\varepsilon_{2}}-\alpha_{k-\varepsilon_{2}} \beta_{k-\varepsilon_{2}}\right) e_{k+\varepsilon_{1}-\varepsilon_{2}} & \text { if } k_{2}>0
\end{array} \\
= & \left(\alpha_{k} \beta_{\left.k+\varepsilon_{1}-\varepsilon_{2}-\alpha_{k-\varepsilon_{2}} \beta_{k-\varepsilon_{2}}\right) e_{k+\varepsilon_{1}-\varepsilon_{2}},}\right. \\
& \text { assuming } \beta_{\left(t_{1}, t_{2}\right)}=0 \text { for all } t_{1} \in \mathbb{Z}, t_{2}<0 .
\end{aligned}
$$

Similarly,
$\left[T_{1}^{*}, T_{2}\right] e_{k}=\left(\alpha_{k-\varepsilon_{1}+\varepsilon_{2}} \beta_{k}-\alpha_{k-\varepsilon_{1}} \beta_{k-\varepsilon_{1}}\right) e_{k-\varepsilon_{1}+\varepsilon_{2}}$ and $\left[T_{2}^{*}, T_{2}\right] e_{k}=\left(\beta_{k}^{2}-\beta_{k-\varepsilon_{2}}^{2}\right) e_{k}$.
Let $x \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ and $x=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k}$.
Then

$$
\begin{align*}
\left\langle\left[T_{1}^{*}, T_{1}\right] x, x\right\rangle & =\left\langle\sum_{k=\left(k_{1}, k_{2}\right)}\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right) c_{k} e_{k}, \sum_{t=\left(t_{1}, t_{2}\right)} c_{t} e_{t}\right\rangle \\
& =\sum_{k}\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right) c_{k}\left\langle e_{k}, \sum_{t} c_{t} e_{t}\right\rangle \\
& =\sum_{k}\left(\alpha_{k}^{2}-\alpha_{\left.k-\varepsilon_{1}\right)}^{2}\right)\left|c_{k}\right|^{2} \\
& =\sum_{k_{1}=0}\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right)\left|c_{k}\right|^{2}+\sum_{k_{1}>0}\left(\alpha_{k}^{2}-\alpha_{k-\varepsilon_{1}}^{2}\right)\left|c_{k}\right|^{2} \\
& =\sum_{\jmath=0}^{\infty}\left|c_{(0, \jmath)}\right|^{2} \alpha_{(0, \jmath)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left(\alpha_{k+\varepsilon_{1}}^{2}-\alpha_{k}^{2}\right)\left|c_{k+\varepsilon_{1}}\right|^{2} \tag{6.1.2}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \left\langle\left[T_{2}^{*}, T_{1}\right] x, x\right\rangle=\sum_{k \in \mathbb{Z}_{+}^{2}} \bar{c}_{k+\varepsilon_{1}} c_{k+\varepsilon_{2}}\left(\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k}\right) \tag{6.1.3}\\
& \left\langle\left[T_{1}^{*}, T_{2}\right] x, x\right\rangle=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k+\varepsilon_{1}} \bar{c}_{k+\varepsilon_{2}}\left(\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k} \beta_{k}\right) \tag{6.1.4}\\
& \left\langle\left[T_{2}^{*}, T_{2}\right] x, x\right\rangle=\sum_{\imath=0}^{\infty}\left|c_{(2,0)}\right|^{2} \beta_{(2,0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left(\beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2}\right)\left|c_{k+\varepsilon_{2}}\right|^{2} \tag{6.1.5}
\end{align*}
$$

Using (6.1.2) to (6.1.5) in (6.1.1), we conclude that
T is weakly hyponormal

$$
\begin{aligned}
& \left.\binom{1}{\lambda},\binom{1}{\lambda}\right\rangle \geq 0 ; \text { for all } \lambda \in \mathbb{C} \text { and } x=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \\
& \Leftrightarrow \sum_{\jmath=0}^{\infty}\left|c_{(0, j)}\right|^{2} \alpha_{(0, j)}^{2}+|\lambda|^{2} \sum_{\imath=0}^{\infty}\left|c_{(i, 0)}\right|^{2} \beta_{(2,0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}} \cdot\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \\
& \geq 0 \text { for all } \lambda \in \mathbb{C} \text { and } x=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \text {. }
\end{aligned}
$$

Remark 6.1.1. If $T=\left(T_{1}, T_{2}\right)$ is hyponormal then $\Delta_{k} \geq 0$ for all $k \in \mathbb{Z}_{+}^{2}$, and hence by Theorem 6.1.1 it immediately follows that T is also weakly hyponormal.

6.2 Perturbations not affecting the core of T

6.2.1 Perturbation of the weight $\alpha_{\left(k_{1}, 0\right)}$

For $k_{1} \geq 0$, let $\alpha_{\left(k_{1}, 0\right)}$ be slightly perturbed to a new weight x. For commutativity we change $\beta_{\left(k_{1}, 0\right)}$ to $y=\frac{x \beta_{\left(k_{1}, 0\right)}}{\alpha_{\left(k_{1}, 0\right)}}$ and $\alpha_{\left(k_{1}-1,0\right)}$ to $z=\frac{\alpha_{\left(k_{1}-1,0\right)} \alpha_{\left(k_{1}, 0\right)}}{x}$. The corresponding weight diagram is given in Figure 16.

Let $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ be the perturbed shift with weight sequences $\left\{\tilde{\alpha}_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\left\{\tilde{\beta}_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$.
Let

$$
\tilde{\Delta}_{k}:=\left(\begin{array}{cc}
\tilde{\alpha}_{k+\varepsilon_{1}}^{2}-\tilde{\alpha}_{k}^{2} & \tilde{\alpha}_{k+\varepsilon_{2}} \tilde{\beta}_{k+\varepsilon_{1}}-\tilde{\alpha}_{k} \tilde{\beta}_{k} \\
\tilde{\alpha}_{k+\varepsilon_{2}} \tilde{\beta}_{k+\varepsilon_{1}}-\tilde{\alpha}_{k} \tilde{\beta}_{k} & \tilde{\beta}_{k+\varepsilon_{2}}^{2}-\tilde{\beta}_{k}^{2}
\end{array}\right)
$$

Clearly, $\tilde{\Delta}_{k}=\Delta_{k}$ for all $k \in \mathbb{Z}_{+}^{2}$, except for $k=\left(k_{1}-2,0\right),\left(k_{1}-1,0\right)$ and $\left(k_{1}, 0\right)$.
Let $\mu_{1}>0$ and $\mu=\left(\mu_{1}, 0\right)$. Define $\bar{\Delta}_{\mu}=\left(\begin{array}{cc}|\lambda|^{2} \tilde{\beta}_{\mu+\varepsilon_{1}}^{2} & 0 \\ 0 & 0\end{array}\right)+\tilde{\Delta}_{\mu}$

Figure 16
Claim: $\bar{\Delta}_{\mu} \geq 0$ for $\mu=\left(\mu_{1}, 0\right)$ and $\mu_{1}=k_{1}-2, k_{1}-1, k_{1}$.
As

$$
\bar{\Delta}_{\mu}=\left(\begin{array}{cc}
|\lambda|^{2} \tilde{\beta}_{\left(\mu_{1}+1,0\right)}^{2}+\bar{\alpha}_{\left(\mu_{1}+1,0\right)}^{2}-\tilde{\alpha}_{\left(\mu_{1}, 0\right)}^{2} & \tilde{\alpha}_{\left(\mu_{1}, 1\right)} \tilde{\beta}_{\left(\mu_{1}+1,0\right)}-\tilde{\alpha}_{\left(\mu_{1}, 0\right)} \tilde{\beta}_{\left(\mu_{1}, 0\right)} \\
\tilde{\alpha}_{\left(\mu_{1}, 1\right)} \tilde{\beta}_{\left(\mu_{1}+1,0\right)}-\tilde{\alpha}_{\left(\mu_{1}, 0\right)} \tilde{\beta}_{\left(\mu_{1}, 0\right)} & \tilde{\beta}_{\left(\mu_{1}, 1\right)}^{2}-\tilde{\beta}_{\left(\mu_{1}, 0\right)}^{2}
\end{array}\right),
$$

so

$$
f(x):=\operatorname{det} \bar{\Delta}_{\mu}=|\lambda|^{2} \tilde{\beta}_{\left(\mu_{1}+1,0\right)}^{2}\left(\tilde{\beta}_{\left(\mu_{1}, 1\right)}^{2}-\tilde{\beta}_{\left(\mu_{1}, 0\right)}^{2}\right)+\operatorname{det} \tilde{\Delta}_{\mu}
$$

Therefore,

$$
\begin{gathered}
\int\left(\alpha_{\left(k_{1}, 0\right)}\right)=|\lambda|^{2} \tilde{\beta}_{\left(\mu_{1}+1,0\right)}^{2}\left(\tilde{\beta}_{\left(\mu_{1}, 1\right)}^{2}-\tilde{\beta}_{\left(\mu_{1}, 0\right)}^{2}\right)+\operatorname{det} \Delta_{\mu}>0 \\
\left(\because \operatorname{det} \Delta_{\mu} \geq 0 \text { and } \tilde{\beta}_{\left(\mu_{1}, 1\right)}>\tilde{\beta}_{\left(\mu_{1}, 0\right)}\right) .
\end{gathered}
$$

Thus by continuity of f, there exists $\delta_{\mu}>0$ such that $f(x)>0$ for all $\lambda \in \mathbb{C}$ and for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta_{\mu}, \alpha_{\left(k_{1}, 0\right)}+\delta_{\mu}\right)$.
Let $\delta=\min \left\{\delta_{\left(k_{1}-2,0\right)} ; \delta_{\left(k_{1}-1,0\right)}, \delta_{\left(k_{1}, 0\right)}\right\}$. Then for $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}+\delta\right)$; $\bar{\Delta}_{\mu} \geq 0$ for all $\lambda \in \mathbb{C}$, and the Claim is established.

Also, $\tilde{\Delta}_{k}=\Delta_{k} \geq 0 \forall k \in \mathbb{Z}_{+}^{2}$, except for $k=\left(k_{1}-2,0\right),\left(k_{1}-1,0\right)$ and $\left(k_{1}, 0\right)$. Therefore by Theorem 6.1.1 we conclude that there exists $\delta>0$ such that for all $x \in\left(\alpha_{\left(k_{1}, 0\right)}-\delta, \alpha_{\left(k_{1}, 0\right)}+\delta\right) \tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ is weakly hyponormal.

Thus for a hyponormal 2 -variable weighted shift T, if $\alpha_{\left(k_{1}, 0\right)}$ is slightly perturbed then, the perturbed shift \tilde{T} still remains weakly hyponormal.

6.2.2 Perturbation of the weight $\alpha_{\left(0, k_{2}\right)}$

For any $k_{2}>0$, let $\alpha_{\left(0, k_{2}\right)}$ be slightly perturbed to a new weight x. To preserve commutativity, we change $\beta_{\left(0, k_{2}\right)}$ to $y=\frac{x \beta_{\left(1, k_{2}\right)}}{\alpha_{\left(0, k_{2}+1\right)}}$ and $\beta_{\left(0, k_{2}-1\right)}$ to $t=$ $\frac{\alpha_{\left(0, k_{2}-1\right)} \beta_{\left.1, k_{2}-1\right)}}{x}$.

The weight diagram of \tilde{T} is given in Figure 17.

Figure 17

We have $\tilde{\Delta}_{k}=\Delta_{k}$ for all $k \in \mathbb{Z}_{+}^{2}$, except for $k=\left(0, k_{2}-2\right),\left(0, k_{2}-1\right)$ and $\left(0, k_{2}\right)$ Also as T is hyponormal, so $\Delta_{k} \geq 0$ for all k. Thus, we have $\tilde{\Delta}_{k} \geq 0$ for all k except for $k=\left(0, k_{2}-2\right),\left(0, k_{2}-1\right)$ and $\left(0, k_{2}\right)$.
For $\mu=\left(0, \mu_{2}\right), \mu_{2} \in \mathbb{Z}_{+}$. Define $\overline{\bar{\Delta}}_{\mu}:=\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{\tilde{\alpha}_{\mu+\varepsilon_{2}}^{2}}{|\lambda|^{2}}\end{array}\right)+\tilde{\Delta}_{\mu}$. . Clearly, the positivity of $\overline{\bar{\Delta}}_{\mu}$ implies the positivity of $f\left(c_{2 j}, \lambda\right)$. Now we will show that $\overline{\bar{\Delta}}_{\mu} \geq 0$ for $\mu=\left(0, k_{2}-2\right),\left(0, k_{2}-1\right)$ and $\left(0, k_{2}\right)$.
Consider $\mu_{2} \in\left\{k_{2}-2, k_{2}-1, k_{2}\right\}$ and $\mu=\left(0, \mu_{2}\right)$.

$$
\overline{\bar{\Delta}}_{\mu}=\left(\begin{array}{cc}
\tilde{\alpha}_{\mu+\varepsilon_{1}}^{2}-\tilde{\alpha}_{\mu}^{2} & \tilde{\alpha}_{\mu+\varepsilon_{2}} \tilde{\beta}_{\mu+\varepsilon_{1}}-\tilde{\alpha}_{\mu} \tilde{\beta}_{\mu}^{2} \\
\tilde{\alpha}_{\mu+\varepsilon_{2}} \tilde{\beta}_{\mu+\varepsilon_{1}}-\tilde{\alpha}_{\mu} \tilde{\beta}_{\mu}^{2} & \tilde{\beta}_{\mu+\varepsilon_{2}}^{2}-\tilde{\beta}_{\mu}^{2}+\frac{\alpha_{\mu}^{2}+\varepsilon_{2}}{|\lambda|^{2}}
\end{array}\right)
$$

and

$$
\begin{aligned}
g(x) & :=\operatorname{det} \overline{\bar{\Delta}}_{\mu} \\
& =\frac{\tilde{\alpha}_{\mu+\varepsilon_{2}}^{2}}{|\lambda|^{2}}\left(\tilde{\alpha}_{\mu+\varepsilon_{1}}^{2}-\tilde{\alpha}_{\mu}^{2}\right)+\operatorname{det} \tilde{\Delta}_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
g\left(\alpha_{(0, t)}\right)= & {\left[\frac{\tilde{\alpha}_{\mu+\varepsilon_{2}}^{2}}{|\lambda|^{2}}\left(\tilde{\alpha}_{\mu+\varepsilon_{1}}^{2}-\tilde{\alpha}_{\mu}^{2}\right)\right]_{x=\alpha_{(0, t)}}+\operatorname{det} \Delta_{\mu}>0 } \\
& \left(\because \operatorname{det} \Delta_{\mu} \geq 0 \text { and } \tilde{\alpha}_{\mu+\varepsilon_{1}}>\tilde{\alpha}_{\mu}\right) .
\end{aligned}
$$

So by continuity of g, there exists $\delta_{\mu}>0$ such that $g(x)>0$ for all $\lambda \in \mathbb{C}$ and for all $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta_{\mu}, \alpha_{\left(0, k_{2}\right)}+\delta_{\mu}\right)$.

Let $\delta=\min \left\{\delta_{\left(0, k_{2}-2\right)}, \delta_{\left(0, k_{2}-1\right)}, \delta_{\left(0, k_{2}\right)}\right\}$. Then for $x \in\left(\alpha_{\left(0, k_{2}\right)}-\delta_{\mu}, \alpha_{\left(0, k_{2}\right)}+\delta_{\mu}\right)$; $\overline{\bar{\Delta}}_{\prime \prime} \geq 0$ for all $\lambda \in \mathbb{C}$ and for all $\mu=\left(0, k_{2}-2\right),\left(0, k_{2}-1\right)$ and $\left(0, k_{2}\right)$ Therefore, we conclude that the perturbed shift is weakly hyponormal.

6.3 Reformulation of weak hyponormality

Theorem 6.3.1. Let $\mathcal{A}=\left\{\left(k_{1}, 0\right): k_{1} \in \mathbb{Z}_{+}\right\}$. For $\lambda \in \mathbb{C}$ and $\mu \in \mathcal{A}$, define $\mathcal{M}_{\mu}:=\left(\begin{array}{cc}|\lambda|^{2} \beta_{\mu+\varepsilon_{1}}^{2} & 0 \\ 0 & 0\end{array}\right)+\Delta_{\mu}$. Then Tis weakly hyponormal if and only of

$$
\begin{aligned}
& |\lambda|^{2}\left|c_{(0,0)}\right|^{2} \beta_{(0,0)}^{2}+\sum_{\jmath=0}^{\infty}\left|c_{(0, y)}\right|^{2} \alpha_{(0, \jmath)}^{2}+\sum_{\mu \in \mathcal{A}}\left\langle\mathcal{M}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}} \cdot\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& +\sum_{k \in \mathbb{Z}_{\backslash \mathcal{A}}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \geq 0
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and $\sum c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$

Proof. For $\mu \in \mathcal{A}$,

$$
\begin{aligned}
& \left\langle\mathcal{M}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{+1}},\binom{c_{\mu+\varepsilon_{2}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
|\lambda|^{2} \beta_{\mu+\varepsilon_{1}}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle+\left\langle\Delta_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& =|\lambda|^{2}\left|c_{\mu+\varepsilon_{1}}\right|^{2} \beta_{\mu+\varepsilon_{1}}^{2}+\left\langle\Delta_{\mu}\left(\begin{array}{c}
c \\
c_{\mu+\varepsilon_{1}} \\
\lambda c_{\mu+\varepsilon_{2}}
\end{array}\right),\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& |\lambda|^{2}\left|c_{(0,0)}\right|^{2} \beta_{(0,0)}^{2}+\sum_{j=0}^{\infty}\left|c_{(0, y)}\right|^{2} \alpha_{(0, j)}^{2}+\sum_{\mu \in \mathcal{A}}\left\langle\mathcal{M}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& +\sum_{k \in \mathbb{Z}_{+\backslash}^{2} \backslash \mathcal{A}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{h+\varepsilon_{2}}}\right\rangle \\
& =|\lambda|^{2}\left|c_{(0,0)}\right|^{2} \beta_{(0,0)}^{2}+\sum_{j=0}^{\infty}\left|c_{(0, \jmath)}\right|^{2} \alpha_{(0, \jmath)}^{2}+\sum_{\mu \in \mathcal{A}}|\lambda|^{2}\left|c_{\mu+\varepsilon_{1}}\right|^{2} \beta_{\mu+\varepsilon_{1}}^{2} \\
& +\sum_{\mu \in \mathcal{A}}\left\langle\Delta_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle+\sum_{k \in \mathbb{Z}_{+}^{2} \backslash \mathcal{A}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{c_{h+\varepsilon_{1}}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \\
& =\sum_{j=0}^{\infty}\left|c_{(0, y)}\right|^{2} \alpha_{(0, j)}^{2}+|\lambda|^{2} \sum_{\imath=0}^{\infty}\left|c_{(2,0)}\right|^{2} \beta_{(2,0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{h+\varepsilon_{2}}},\binom{c_{h+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Hence the result follows from Theorem 6.1.1.

Theorem 6.3.2. Let $\mathcal{B}=\left\{\left(0, k_{2}\right): k_{2} \in \mathbb{Z}_{+}\right\}$. For $\lambda \in \mathbb{C}$ and $\mu \in \mathcal{B}$, define $\mathcal{N}_{1}:=\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{\alpha_{1+e_{2}}^{2}}{|\lambda|^{2}}\end{array}\right)+\Delta_{\mu}$. Then T is weakly hyponormal if and only if $\forall \lambda \in \mathbb{C}$ and $\sum c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$,

$$
\begin{aligned}
& \left|c_{(0,0)}\right|^{2} \alpha_{(0,0)}^{2}+|\lambda|^{2} \sum_{i=0}^{\infty}\left|c_{(2,0)}\right|^{2} \beta_{(i, 0)}^{2}+\sum_{\mu \in \mathcal{B}}\left\langle\mathcal{N}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& +\sum_{k \in \mathbb{Z}_{+}^{2} \backslash \mathcal{B}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \geq 0 .
\end{aligned}
$$

Proof. For $\mu \in \mathcal{B}$,

$$
\begin{aligned}
& \left\langle\mathcal{N}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{\alpha_{\mu+\varepsilon_{2}}^{2}}{\left.\lambda\right|^{2}}
\end{array}\right)\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+e_{2}}}\right\rangle+\left\langle\Delta_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& =\left|c_{\mu+\varepsilon_{2}}\right|^{2} \alpha_{\mu+\varepsilon_{2}}^{2}+\left\langle\Delta_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left|c_{(0,0)}\right|^{2} \alpha_{(0,0)}^{2}+\sum_{i=0}^{\infty}\left|c_{(i, 0)}\right|^{2} \beta_{(i, 0)}^{2}+\sum_{\mu \in \mathcal{B}}\left\langle\mathcal{N}_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle \\
& \quad+\sum_{k \in \mathbb{Z}_{+}^{2} \backslash \mathcal{B}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \\
& =\left|c_{(0,0)}\right|^{2} \alpha_{(0,0)}^{2}+\sum_{i=0}^{\infty}\left|c_{(i, 0)}\right|^{2} \beta_{(i, 0)}^{2}+\sum_{\mu \in \mathcal{B}}\left|c_{\mu+\varepsilon_{2}}\right|^{2} \alpha_{\mu+\varepsilon_{2}}^{2} \\
& \quad+\sum_{\mu \in \mathcal{B}}\left\langle\Delta_{\mu}\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}},\binom{c_{\mu+\varepsilon_{1}}}{\lambda c_{\mu+\varepsilon_{2}}}\right\rangle+\sum_{k \in \mathbb{Z}_{+}^{2} \backslash \mathcal{B}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle \\
& =\sum_{j=0}^{\infty}\left|c_{(0, j)}\right|^{2} \alpha_{(0, j)}^{2}+|\lambda|^{2} \sum_{i=0}^{\infty}\left|c_{(i, 0)}\right|^{2} \beta_{(i, 0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Hence the result follows from Theorem 6.1.1.
Let $k=\left(k_{1}, k_{2}\right)$ and $|k|=k_{1}+k_{2}$. Also (for convenience of notation) let us denote by a_{k}, b_{k}, d_{k} the following $a_{k}=\alpha_{k+\varepsilon_{1}}^{2}-\alpha_{k}^{2}, b_{k}=\alpha_{k+\varepsilon_{2}} \beta_{k+\varepsilon_{1}}-\alpha_{k}^{\prime} \beta_{k}$, $d_{k}=\beta_{k+\varepsilon_{2}}^{2}-\beta_{k}^{2}$. Then $\Delta_{k}=\left(\begin{array}{ll}a_{k} & b_{k} \\ b_{k} & d_{k}\end{array}\right)$

Let

$$
\begin{aligned}
& L_{0}=\left(\begin{array}{cc}
a_{(0,0)}+|\lambda|^{2} \beta_{(1,0)}^{2} & b_{(0,0)} \\
b_{(0,0)} & d_{(0,0)}+\frac{\alpha_{(0,1)}^{2}}{|\lambda|^{2}}
\end{array}\right) \\
& L_{1}=\left(\begin{array}{ccc}
a_{(1,0)}+|\lambda|^{2} \beta_{(2,0)}^{2} & b_{(1,0)} & 0 \\
b_{(1,0)} & d_{(1,0)}+\frac{a_{(0,1)}}{|\lambda|^{2}} & \frac{b_{(0,1)}}{|\lambda|^{2}} \\
0 & \frac{b_{(0,1)}}{|\lambda|^{2}} & \frac{d_{(0,1)}}{|\lambda|^{2}}+\frac{c_{(0,2)}^{(2)}}{|\lambda|^{4}}
\end{array}\right) \\
& L_{2}=\left(\begin{array}{cccc}
a_{(2,0)}+|\lambda|^{2} \beta_{(3,0)}^{2} & b_{(2,0)} & 0 & 0 \\
b_{(2,0)} & d_{(2,0)}+\frac{a_{(1,1)}}{\left(\left.\lambda\right|^{2}\right.} & \frac{b_{(1,1)}}{|\lambda|{ }^{2}} & 0 \\
0 & \frac{b_{1(1) 1}}{|\lambda|^{2}} & \frac{d_{(1,1)}}{|\lambda|^{2}}+\frac{a_{(0,2)}}{|\lambda|^{4}} & \frac{b_{(0,2)}}{\left.|\lambda|\right|^{4}} \\
0 & 0 & \frac{b_{(0,2)}}{|\lambda|^{4}} & \frac{d_{((0,2)}}{|\lambda|^{4}}+\frac{\alpha_{(0,3)}^{2}}{|\lambda|^{6}}
\end{array}\right)
\end{aligned}
$$

So, in general L_{n} is a matrix $\left(\Lambda_{(2, j)}\right)$ of size $(n+2) \times(n+2)$, with $\Lambda_{(2, j)}$ defined as follows:

1. $A_{(1,1)}=a_{(n, 0)}+|\lambda|^{2} \beta_{(n+1,0)}^{2}$.
2. $A_{(n+2, n+2)}=\frac{d_{(0, n)}}{|\lambda|^{2 n}}+\frac{c_{(0, n+1)}^{2}}{|\lambda|^{2(n+1)}}$
3. $A_{(2, \mathrm{~J})}=A_{((, 2)}$
4. $A_{(2, \jmath)}=0$ if $\jmath>\imath+1$ for all \imath.
5. $A_{(2,2+1)}=\frac{b_{(n+1-2,2-1)}}{|\lambda|^{2(2-1)}}$ for $\imath=1,2, \ldots, n+1$
6. $A_{(2, j)}=\frac{d_{(n+2-2,-2)}}{|\lambda|^{2(2-2)}}+\frac{a_{(n+1-2,-1)}}{|\lambda|^{2(1-1)}}$ for $\imath=2,3, \ldots, n+1$

Also for $\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ and $\lambda \in \mathbb{C}$, let

$$
X_{0}=\binom{c_{(1,0)}}{\lambda c_{(0,1)}}, X_{1}=\left(\begin{array}{c}
c_{(2,0)} \\
\lambda c_{(1,1)} \\
\lambda^{2} c_{(0,2)}
\end{array}\right), X_{2}=\left(\begin{array}{c}
c_{(3,0)} \\
\lambda c_{(2,1)} \\
\lambda^{2} c_{(1,2)} \\
\lambda^{3} c_{(0,3)}
\end{array}\right)
$$

In general, $X_{n}=\left(\begin{array}{c}c_{(n+1,0)} \\ \lambda c_{(n, 1)} \\ \lambda^{2} c_{(n-1,2)} \\ \vdots \\ \lambda^{n+1} c_{(0, n+1)}\end{array}\right)$
That is X_{n} is a column matrix $\left(B_{(i, 1)}\right)$, where $B_{(i, 1)}=\lambda^{i-1} c_{(n+2-i, i-1)}$ for $i=1,2, \ldots, n+2$.

Following the notations introduced above, Theorem 6.1.1 can be reformulated as follows.

Theorem 6.3.3. A 2-variable weighted shift $T=\left(T_{1}, T_{2}\right)$ with weight sequences $\alpha=\left\{\alpha_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ is weakly hyponormal if and only if for all $\lambda \in \mathbb{C}$ and $X=\sum_{k \in \mathbb{Z}_{+}^{2}} c_{k} e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$, we have

$$
\left|c_{(0,0)}\right|^{2}\left(\alpha_{(0,0)}^{2}+|\lambda|^{2} \beta_{(0,0)}^{2}\right)+\sum_{n=0}^{\infty}\left\langle L_{n} X_{n}, X_{n}\right\rangle \geq 0
$$

Proof. Direct calculation shows that

$$
\begin{aligned}
\left\langle L_{0} X_{0}, X_{0}\right\rangle= & |\lambda|^{2}\left|c_{(1,0)}\right|^{2} \beta_{(1,0)}^{2}+\left\langle\Delta_{(0,0)}\binom{c_{(0,0)+\varepsilon_{1}}}{\lambda c_{(0,0)+\varepsilon_{2}}},\binom{c_{(0,0)+\varepsilon_{1}}}{\lambda c_{(0,0)+\varepsilon_{2}}}\right\rangle \\
\left\langle L_{1} X_{1}, X_{1}\right\rangle= & |\lambda|^{2}\left|c_{(2,0)}\right|^{2} \beta_{(2,0)}^{2}+\left|c_{(0,2)}\right|^{2} \alpha_{(0,2)}^{2} \\
& +\sum_{|k|=1}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\langle L_{n} X_{n}, X_{n}\right\rangle= & |\lambda|^{2}\left|c_{(n+1,0)}\right|^{2} \beta_{(n+1,0)}^{2}+\left|c_{(0, n+1)}\right|^{2} \alpha_{(0, n+1)}^{2} \\
& +\sum_{|k|=n}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle
\end{aligned}
$$

Therefore,
$\left|c_{(0,0)}\right|^{2}\left(\alpha_{(0,0)}^{2}+|\lambda|^{2} \beta_{(0,0)}^{2}\right)+\sum_{n=0}^{\infty}\left\langle L_{n} X_{n}, X_{n}\right\rangle$
$=\sum_{j=0}^{\infty}\left|c_{(0, j)}\right|^{2} \alpha_{(0, j)}^{2}+|\lambda|^{2} \sum_{i=0}^{\infty}\left|c_{(i, 0)}\right|^{2} \beta_{(i, 0)}^{2}+\sum_{k \in \mathbb{Z}_{+}^{2}}\left\langle\Delta_{k}\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}},\binom{c_{k+\varepsilon_{1}}}{\lambda c_{k+\varepsilon_{2}}}\right\rangle$
The result now follows from Theorem 6.1.1.

6.4 Perturbation of the weight $\alpha_{\left(k_{1}, k_{2}\right)}$

For $s \geq 0$ define L_{s} as follows:

Choose $k=\left(k_{1}, k_{2}\right)$ arbitrarily and fix it. Let α_{k} be perturbed to the weight to x. For commutativity, β_{k} is changed to $y=\frac{\beta_{k} x}{\alpha_{k}}, \alpha_{k-\varepsilon_{1}}$ is changed to $z=\frac{\alpha_{k-\epsilon_{1}} \alpha_{k}}{x}$ and $\beta_{k-\varepsilon_{2}}$ is changed to $t=\frac{\beta_{k-\varepsilon_{2}} \alpha_{k}}{x}$.
Let $\tilde{T}=\left(\tilde{T}_{1}, \tilde{T}_{2}\right)$ be the perturbed shift with weight sequences $\left\{\tilde{\alpha}_{\tau}\right\}_{\tau \in \mathbb{Z}_{+}^{2}}$ and $\left\{\tilde{\beta}_{\tau}\right\}_{\tau \in \mathbb{Z}_{+}^{2}}$ as defined in section 6.2.1. Also just as Δ_{τ} and L_{s} are defined with respect to T, in a similar way $\tilde{\Delta}_{\tau}$ and \tilde{L}_{s} are defined for \tilde{T}. As T is hyponormal so $L_{s} \geq 0$ for all $s \in \mathbb{Z}_{+}$. Also $\tilde{L}_{s}=L_{s}$ for $s<|k|-2$ and $s>|k|$. So if we can show that $L_{s} \geq 0$ for $|k|-2 \leq s \leq|k|$, then by Theorem 6.3.3 we can conclude that \tilde{T} is weakly hyponormal.

For example if $k=(2,2)$ then $\tilde{L}_{2}, \tilde{L}_{3}, \tilde{L}_{4}$ can be represented by the following weight diagram:

Figure 18

Theorem 6.4.1. Let $T=\left(T_{1}, T_{2}\right)$ be hyponormal with weight sequences $\left\{\alpha_{\tau}\right\}_{\tau \in Z_{+}^{2}}$ and $\left\{\beta_{\tau}\right\}_{\tau \in Z_{+}^{2}}$. Then for any $k \in \mathbb{Z}_{+}^{2}$, a slight perturbation of the weight α_{k} makes the perturbed shift \tilde{T} weakly hyponormal (assuming that $\beta_{k}, \alpha_{k-\epsilon_{1}}$ and $\beta_{k-\epsilon_{2}}$ are also necessarily perturbed to preserve commutativity).

Proof. Let

$$
\begin{aligned}
& g_{0}(x):=\tilde{a}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2}>0 . \\
& g_{1}(x):=\operatorname{del}\left(\begin{array}{cc}
\tilde{a}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} & \tilde{b}_{(s, 0)} \\
\tilde{b}_{(s, 0)} & \tilde{d}_{(s, 0)}+\frac{\tilde{a}_{(s-1,1)}}{|\lambda|^{2}}
\end{array}\right) \\
& =\frac{\tilde{a}_{(s-1,1)}}{|\lambda|^{2}} g_{0}(x)+\operatorname{det} \tilde{\Delta}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \tilde{d}_{(s, 0)} \\
& >\operatorname{det} \tilde{\Delta}_{(s, 0)} \text {. } \\
& g_{2}(x):=\operatorname{det}\left(\begin{array}{ccc}
\tilde{a}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} & \tilde{b}_{(s, 0)} & 0 \\
\tilde{b}_{(s, 0)} & \tilde{d}_{(s, 0)}+\frac{\tilde{a}_{(s-1,1)}}{|\lambda|^{2}} & \frac{\tilde{b}_{(s-1,1)}}{|\lambda|^{2}} \\
0 & \frac{\tilde{b}_{(s-1,1)}}{|\lambda|^{2}} & \frac{\bar{d}_{(s-1,1)}}{|\lambda|^{2}}+\frac{\tilde{a}_{(s-2,2)}}{|\lambda|^{4}}
\end{array}\right) \\
& =\frac{\tilde{x}_{(s-2,2)}}{|\lambda|^{4}} g_{1}(x)+\frac{\tilde{d}_{(s-1,1)}}{|\lambda|^{2}} g_{1}(x)-\frac{\tilde{b}_{(s-1,1)}^{2}}{|\lambda|^{4}} g_{0}(x) \\
& =\frac{\tilde{a}_{(s-2,2)}}{|\lambda|^{4}} g_{1}(x)+\operatorname{det} \tilde{\Delta}_{(s-1,1)} \frac{g_{0}(x)}{|\lambda|^{4}}+\frac{\tilde{d}_{(s-1,1)}}{|\lambda|^{2}}\left(\operatorname{det} \tilde{\Delta}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \tilde{d}_{(s, 0)}\right) \\
& =\frac{\tilde{a}_{(s-2,2)}}{|\lambda|^{4}} g_{1}(x)+\operatorname{del} \tilde{\Delta}_{(s-1,1)} \frac{g_{0}(x)}{|\lambda|^{4}}+\frac{\tilde{d}_{(s-1,1)}}{|\lambda|^{2}} \operatorname{del} \tilde{\Delta}_{(s, 0)}+\tilde{d}_{(s-1,1)} \tilde{d}_{(s, 0)} \tilde{\beta}_{(s+1,0)}^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\tilde{a}_{(s-3,3)}}{|\lambda|^{6}} g_{2}(x)+\operatorname{det} \tilde{\Delta}_{(s-2,2)} \frac{g_{1}(x)}{|\lambda|^{8}}+\operatorname{del} \tilde{\Delta}_{(s-1,1)} \tilde{d}_{(s-2,2)} \frac{g_{0}(x)}{|\lambda|^{8}} \\
& +\operatorname{det} \tilde{\Delta}_{(s, 0)} \frac{\tilde{d}_{(s-1,1)} \tilde{d}_{(s-2,2)}}{|\lambda|^{6}}+\tilde{\beta}_{(s+1,0)}^{2} \frac{\tilde{d}_{(s, 0)} \tilde{d}_{(s-1,1)} \tilde{d}_{(s-2,2)}}{|\lambda|^{4}}
\end{aligned}
$$

Similarly,
孝

$$
\begin{aligned}
g_{4}(x):= & \frac{\tilde{a}_{(s-4,4)}}{|\lambda|^{8}} g_{3}(x)+\operatorname{det} \tilde{\Delta}_{(s-3,3)} \frac{g_{2}(x)}{|\lambda|^{12}}+\operatorname{det} \tilde{\Delta}_{(s-2,2)} \tilde{d}_{(s-3,3)} \frac{g_{1}(x)}{|\lambda|^{14}} \\
& +\operatorname{det} \tilde{\Delta}_{(s-1,1)} \tilde{d}_{(s-2,2)} \tilde{d}_{(s-3,3)} \frac{g_{0}(x)}{|\lambda|^{14}}+\operatorname{det} \tilde{\Delta}_{(s, 0)} \frac{\tilde{d}_{(s-1,1)} \tilde{d}_{(s-2,2)} \tilde{d}_{(s-3,3)}}{|\lambda|^{12}} \\
& +\tilde{\beta}_{(s+1,0)}^{2} \frac{\tilde{d}_{(s, 0)} \tilde{d}_{(s-1,1)} \tilde{d}_{(s-2,2)} \tilde{d}_{(s-3,3)}}{|\lambda|^{10}} .
\end{aligned}
$$

For $j=0,1, \ldots, s+1$, let M_{j} denote the $(j+1) \times(j+1)$ leading submatrix of \tilde{L}_{s}. If $g_{j}(x):=\operatorname{det} M_{j}$ then

$$
\begin{aligned}
& g_{0}(x)=\tilde{a}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \\
& g_{1}(x)=\frac{\tilde{a}_{(s-1,1)}}{|\lambda|^{2}} g_{0}(x)+\operatorname{del} \tilde{\Delta}_{(s, 0)}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \tilde{d}_{(s, 0)}
\end{aligned}
$$

For $j=2,3, \ldots, s, g_{j}(x)$ is

$$
\begin{aligned}
& g_{j}(x):=\frac{\tilde{n}_{(s-j, j)}}{|\lambda|^{2 j}} g_{j-1}(x)+\operatorname{det} \tilde{\Delta}_{(s-j+1, s-1)} \frac{g_{j-2}(x)}{|\lambda|^{4(j-1)}}+\sum_{l=2}^{j-1}\left(\operatorname{det} \tilde{\Delta}_{(s-j+l, j-l)}\right) \\
& \frac{\prod_{r=1}^{l-1} \tilde{d}_{(s-j+r, j-r)} g_{(j-l-1)}(x)}{|\lambda|^{4(j-l)+(l-1)(2 j+l)}}+\operatorname{det} \tilde{\Delta}_{(s, 0)} \frac{\prod_{r=1}^{j-1} \tilde{d}_{(s-r, r)}}{|\lambda|^{j(j-1)}}+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \frac{\prod_{r=0}^{j-1} \tilde{d}_{(s-r, r)}}{|\lambda|^{j(j-1)}}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{s+1}(x) & :=\frac{\tilde{\alpha}_{(0, s+1)}^{2}}{|\lambda|^{2(s+1)}} g_{s}(x)+\operatorname{det} \tilde{\Delta}_{(0, s)} \frac{g_{s-1}(x)}{|\lambda|^{4 s}}+\frac{\tilde{d}_{(0, s)}}{|\lambda|^{s s}}\left(\operatorname{det} \tilde{\Delta}_{(1, s-1)} \frac{g_{s-2}(x)}{|\lambda|^{4(s-1)}}\right. \\
& +\sum_{l=2}^{s-1}\left(\operatorname{det} \tilde{\Delta}_{(l, s-l)}\right) \frac{\prod_{r=1}^{l-1} \tilde{d}_{(r, s-r)} g_{(s-l-1)}(x)}{|\lambda|^{4(s-l)+(l-1)(2 s+l)}}+\operatorname{det} \tilde{\Delta}_{(s, 0)} \frac{\prod_{r=1}^{s-1} \tilde{d}_{(s-r, r)}}{|\lambda|^{s(s-1)}} \\
& \left.+|\lambda|^{2} \tilde{\beta}_{(s+1,0)}^{2} \frac{\prod_{r=0}^{s-1} \tilde{d}_{(s-r, r)}}{|\lambda|^{s(s-1)}}\right) .
\end{aligned}
$$

At $x=\alpha_{k}$, we have $\operatorname{det}, \tilde{\Delta}_{\tau}=\operatorname{det} \Delta_{\tau} \geq 0$ for all $\tau \in \mathbb{Z}_{+}^{2}$. Also as $g_{0}\left(\alpha_{k}\right)>0$, hence for all $j=1, \ldots, s$, we have

$$
g_{\jmath}\left(\alpha_{k}\right) \geq \frac{a_{(s-\jmath, j)}}{|\lambda|^{2 j}} g_{j-1}\left(\alpha_{k}\right)>0
$$

Similarly

$$
g_{s+1}\left(\alpha_{k}\right)=\frac{\alpha_{(0, s+1)}^{2}}{|\lambda|^{2(s+1)}} g_{s}\left(\alpha_{k}\right)>0 .
$$

Thus by continuity of g_{j} there exists $\delta_{k}>0$ such that $g_{j}(x)>0$ for all $x \in\left(\alpha_{k}-\delta_{k}, \alpha_{k}+\delta_{k}\right)$, which implies that $\tilde{L}_{s} \geq 0$. So by Theorem 6.3.3, \tilde{T} is weakly hyponormal for any slight perturbation of α_{k}.

Chapter 7

Back-step extension of weighted shifts

7.1 Introduction

If W_{α} is a hyponormal weighted shift with weight sequence α, then for any subsequence β of α, W_{β} is again a hyponormal shift on $\ell^{2}\left(\mathbb{Z}_{+}\right)$. We ask the question if this property carries over to a quadratic hyponormal or a positive quadratic hyponormal or a subnormal weighted shift W_{α}. In response, we come up with the following examples.

Example 7.1.1. Consider the weight sequence $\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{43}{80}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$, with a subsequence $\beta: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$, which in turn has a subsequence $\gamma: \sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots$ Here W_{α} is $q . h$., W_{β} is not q.h. and W_{γ} is again q.h.

Example 7.1.2. Consider the weight sequence $\alpha: \sqrt{\frac{2}{3}}: \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}} ; \sqrt{\frac{4}{5}}, \ldots$, and a subsequence $\beta: \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{4}{5}}, \sqrt{\frac{6}{7}}, \sqrt{\frac{8}{9}}, \ldots$. Then W_{α} is p.q.h. but W_{β} is not p.q.h.

However, for the case of a subnormal weighted shift W_{α} with weight sequence $\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, Curto in [12, Proposion 8] proposed a concrete set of conditions under which x can be suitably chosen so that for the weight sequence
$\beta: x, \alpha_{0}, \alpha_{1}, \ldots, W_{\beta}$ is again subnormal. This result is as follows:
Theorem 7.1.1. [12] Let T be a weighted shifl whose restriction to $\bigvee\left\{e_{1}, e_{2}, \ldots\right\}$ is subnormal, with associated measure μ. Then T is subnormal if and only if

1. $\frac{1}{t} \in L^{1}(\mu)$ and
2. $\alpha_{0}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}(\mu)}\right)^{-1}$

In particular, T is never subnormal if $\mu\{0\}>0$.
This is referred to as the one-step backward extension of a one-variable subnormal weighted shift. Later an improved version of this result was given by Curto and Yoon [37, Proposition 1.5]. In the same paper they have also given the NASC for subnormal backward extension of a 2 -variable weighted shift [37, Proposition 2.9]. However these results only deal with one-step backward extension. In this chapter we try to extend this idea to formulate conditions for existence of n-step backward extension of a subnormal weighted shift. We do this for both single variable weighted shifts as well as for two variable weighted shifts. We first derive our results using a technique similar to that of $[12,37]$. However, in the last section of the chapter we show how these results can also be derived by using Schur product technique.

7.2 Backward extension for one variable weighted shifts

For $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, a bounded sequence of positive real numbers, let W_{α} be the associated unilateral weighted shift on $\ell^{2}\left(\mathbb{Z}_{+}\right)$. The moments of α are given as

$$
\gamma_{k} \equiv \gamma_{k}(\alpha):= \begin{cases}1 & \text { if } k=0 \\ \alpha_{0}^{2} \ldots \alpha_{k-1}^{2} & \text { if } k>0\end{cases}
$$

We now recall a well known characterization of subnormality for single variable weighted shifts, due to C. Berger [8]: " W_{α} is subnormal if and only if there exists a probability measure ξ supported in $\left[0,\left\|W_{\alpha}\right\|^{2}\right]$ such that $\gamma_{k}(\alpha):=\alpha_{0}^{2} \ldots \alpha_{k-1}^{2}=$ $\int t^{k} d \xi(t)(\forall k \geq 1) " . \xi$ is called the Berger measure of W_{a}. For instance, the Berger measures of U_{+}and S_{a} are δ_{1} and $\left(1-a^{2}\right) \delta_{0}+a^{2} \delta_{1}$, respectively, where δ_{x} denotes the point mass probability measure with support the singleton $\{x\}$. Also we denote by $U_{+}=\operatorname{shift}(1,1,1, \ldots)$ the (unweighted) unilateral shift, and for $0<a<1$ wẹ let $S_{a}:=\operatorname{shift}(a, 1,1, \ldots)$.

Again, if W_{α} is subnormal, and if for $h \geq 1$ we let $M_{h}:=\bigvee\left\{e_{n}: n \geq h\right\}$ denote the invariant subspace obtained by removing the first h vectors in the canonical orthonormal basis of $\ell^{2}\left(\mathbb{Z}_{+}\right)$, then the Berger measure of $\left.W_{\alpha}\right|_{M_{h}}$ is $\frac{1}{\gamma_{h}} t^{h} d \xi(t)$. Consider $\gamma_{k}\left(W_{\alpha}\right)$ and $\gamma_{k}\left(\left.W_{\alpha}\right|_{M_{h}}\right)$ are as moments of the weighted shifts W_{α} and $\left.W_{\alpha}\right|_{M_{h}}$ respectively. The moments are related as

$$
\begin{aligned}
\gamma_{k}\left(\left.W_{\alpha}\right|_{M_{h}}\right) & \equiv \alpha_{h}^{2} \alpha_{h+1}^{2} \ldots \alpha_{h+k-1}^{2}=\frac{\gamma_{k+h}\left(W_{\alpha}\right)}{\alpha_{0}^{2} \alpha_{1}^{2} \ldots \alpha_{h-1}^{2}} \\
& =\frac{\gamma_{k+h}\left(W_{\alpha}\right)}{\gamma_{h}\left(W_{\alpha}\right)}
\end{aligned}
$$

so that for all $k \geq 0$,

$$
\int t^{k} d \eta_{h}(t)=\frac{1}{\gamma_{h}} \int t^{k+h} d \xi(t)
$$

where η_{h} and ξ are the Berger's measure for the weighted shifts $\left.W_{\alpha}\right|_{M_{h}}$ and W_{r} respectively.

Therefore

$$
\eta_{h}(t)=\frac{1}{\gamma_{h}} t^{h} d \xi(t) .
$$

We begin by stating the one-step subnormal backward extension of a onevariable weighted shift.

Theorem 7.2.1. (1-step backward extension) [37] Let T be a weighted shift whose restrictron $T_{M}:=\left.T\right|_{M}$ to $M:=\bigvee\left\{e_{1}, e_{2},\right\}$ is subnormal, wath associated measure μ_{M}. Then T is subnormal (with assocaated measure μ) if and only ${ }^{\imath} f$

1. $\frac{1}{t} \in L^{1}\left(\mu_{M}\right)$
2. $\alpha_{0}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{M}\right)}\right)^{-1}$

In thus case, $d \mu(t)=\frac{\alpha_{0}^{2}}{t} d \mu_{M}(t)+\left(1-\alpha_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{M}\right)}\right) d \delta_{0}(t)$ where δ_{0} denotes Dirac measure at 0 . In partıcular, T is never subnormal when $\mu_{M}(\{0\})>0$.

Theorem 7.2.2. (2-step backward extension) Let T be a werghted shaft whose restrictron $\left.T\right|_{M_{2}}$ to $M_{2}=\bigvee\left\{e_{2} . e_{3}, \quad\right\}$ is subnormal, with assoczate measure η_{2}. Then T is subnormal (with assocuate measure η) of and only if

1. $\frac{1}{t^{2}} \in L^{1}\left(\eta_{2}\right)$
2. $\alpha_{0}^{2} \alpha_{1}^{2} \leq\left(\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right)^{-1}$
3. $\alpha_{1}^{2}=\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}\right)^{-1}$

In thrs case, $d \eta(t)=\left(1-\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right) d \delta_{0}(t)+\frac{\alpha_{0}^{2} \alpha_{1}^{2}}{t^{2}} d \eta_{2}(t)$, where δ_{0} denotes the Dirac measure at 0. In partıcular, T is never subnormal of $\eta_{2}(\{0\})>0$

Proof \Longrightarrow) Assume that T is subnormal, so clearly $\left.T\right|_{M_{2}}$ is subnormal The moments of T and $\left.T\right|_{M_{2}}$ are related by the equation

$$
\gamma_{k}\left(\left.T\right|_{M_{2}}\right) \equiv \alpha_{2}^{2} \alpha_{3}^{2} \ldots \alpha_{k+1}^{2}=\frac{\gamma_{k+2}(T)}{\alpha_{0}^{2} \alpha_{1}^{2}}
$$

so that for all $k \geq 0$,

$$
\int t^{k} d \eta_{2}(l)=\frac{1}{\alpha_{0}^{2} \alpha_{1}^{2}} \int t^{k+2} d \eta(l)
$$

that is, $d \eta_{2}(t)=\frac{t^{2}}{a_{0}^{2} \alpha_{1}^{2}} d \eta(t)$. Let $\eta(0)=\lambda,(\lambda \geq 0)$, so it follows at once that

$$
\begin{align*}
d \eta(t) & =\lambda d \delta_{0}(t)+\frac{\alpha_{0}^{2} \alpha_{1}^{2}}{t^{2}} d \eta_{2}(t) \tag{7.2.1}\\
\Rightarrow \int d \eta(t) & =\lambda \int d \delta_{0}(t)+\alpha_{0}^{2} \alpha_{1}^{2} \int \frac{1}{t^{2}} d \eta_{2}(t) \\
\Rightarrow \quad 1 & =\lambda+\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}
\end{align*}
$$

that is $\alpha_{0}^{2} \alpha_{i}^{2}\left\|_{t^{2}}\right\|_{L^{1}\left(r_{2}\right)}=1-\lambda \leq 1$, also $\frac{1}{t^{2}} \in L^{1}\left(\eta_{2}\right)$. Also, substituting the value of λ in (7.2.1), we have

$$
d \eta(l)=\left(1-\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right) d \delta_{0}(l)+\frac{\alpha_{0}^{2} \alpha_{1}^{2}}{t^{2}} d \eta_{2}(l)
$$

Again, suppose η_{1} is the measure associated with the shift $\left.T\right|_{M_{1}}$, where $M_{1}:=$ $\bigvee\left\{e_{1}, e_{2}, \ldots\right\}$. Then by Theorem 7.2.1, subnormality of $\left.T\right|_{M_{1}}$ and $\left.T\right|_{M_{2}}$ will imply that

$$
\frac{1}{t} \in L^{1}\left(\eta_{2}\right), \alpha_{1}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}\right)^{-1}
$$

and

$$
d \eta_{1}(t)=\eta_{1}(0) d \delta_{0}(t)+\frac{\alpha_{1}^{2}}{t} d \eta_{2}(t), \text { where } \eta_{1}(0)=\left(1-\alpha_{1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}\right) .
$$

Now, suppose $\alpha_{1}^{2}<\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}\right)^{-1} \Rightarrow \eta_{1}(0)>0$.
Which is a contradiction to the initial assumption that T is subnormal. Therefore, $\alpha_{1}^{2}=\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}\right)^{-1}$.
$\Longleftrightarrow)$ Let conditions 1, 2 and 3 hold and

$$
\begin{equation*}
d \eta(t)=\left(1-\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right) d \delta_{0}(t)+\frac{\alpha_{0}^{2} \alpha_{1}^{2}}{t^{2}} d \eta_{2}(t) \tag{7.2.2}
\end{equation*}
$$

For $k=0$,

$$
\begin{aligned}
\int d \eta(t) & =\left(1-\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right) \int d \delta_{0}(t)+\alpha_{0}^{2} \alpha_{1}^{2} \int \frac{1}{t^{2}} d \eta_{2}(t) \\
\Rightarrow \int d \eta(t) & =\left(1-\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{\iota^{2}}\right\|_{L^{1}\left(\eta_{2}\right)}\right)+\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{\iota^{2}}\right\|_{L^{1}\left(\eta_{2}\right)} \\
\Rightarrow \int d \eta(t) & =1=\gamma_{0}(T)
\end{aligned}
$$

For $k=1$, using (7.2.2) we have

$$
\begin{aligned}
\int t d \eta(t)=\int \frac{\alpha_{0}^{2} \alpha_{1}^{2}}{t} d \eta_{2}(t)=\alpha_{0}^{2} \alpha_{1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)} & =\alpha_{0}^{2} \quad\left(\because \alpha_{1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{2}\right)}=1\right) \\
& =\gamma_{1}(T)
\end{aligned}
$$

For $k \geq 2$,

$$
\int t^{k} d \eta(t)=\alpha_{0}^{2} \alpha_{1}^{2} \int t^{k-2} d \eta_{2}(t)=\alpha_{0}^{2} \alpha_{1}^{2} \gamma_{k-2}\left(\left.T\right|_{M_{2}}\right)=\gamma_{k}(T)
$$

Thus T is subnormal with Berger measure η.
Also if $\eta_{2}(0)>0$ will imply that $\left.T\right|_{M_{1}}$ is not subnormal, therefore T is not subnormal.

A similar argument will yield the NASC for 3 -step backward extension, and in general, the n-step subnormal backward extension of a 1 -variable weighted shift will be as follows:

Theorem 7.2.3. (n-step backward extension) For $n \geq 2$, let T be a weighted shift whose restriction $\left.T\right|_{M_{n}}$ to $M_{n}:=\bigvee\left\{e_{n}, e_{n+1}, \ldots\right\}$ is subnormal, with associate measure η_{n}. Then T is subnormal (with associate measure η) if and only if

1. $\frac{1}{i^{n}} \in L^{1}\left(\eta_{n}\right)$
2. $\alpha_{0}^{2} \alpha_{1}^{2} \ldots \alpha_{n-1}^{2} \leq\left(\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\eta_{n}\right)}\right)^{-1}$
3. $\alpha_{i}^{2} \alpha_{\imath+1}^{2} \ldots \alpha_{n-1}^{2}=\left(\left\|\frac{1}{i^{n-i}}\right\|_{L^{1}\left(\eta_{n}\right)}\right)^{-1}$ for $1 \leq i \leq n-1$.

In this case,

$$
d \eta(t)=\left(1-\alpha_{0}^{2} \alpha_{1}^{2} \ldots \alpha_{n-1}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\eta_{n}\right)}\right) d \delta_{0}(t)+\frac{\alpha_{0}^{2} \alpha_{1}^{2} \ldots \alpha_{n-1}^{2}}{t^{n}} d \eta_{n}(t)
$$

where δ_{0} denotes the Dirac measure at 0 . In particular, T is never subnormal if $\eta_{n}(\{0\})>0$.

Corollary 7.2.4. Let T be a subnormal weighted shift and for $j \geq 2$, let $M_{j}:=$ $\bigvee\left\{e_{j}, e_{j+1}, \ldots\right\}$. Let η_{j} denote the Berger measure of $\left.T\right|_{M_{j}}$. Then $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j-1}$ is completely determined by η_{j} that is, $\alpha_{j-1}^{2}=\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{j}\right)}\right)^{-1}$.
Also, if T is subnormal then condition 3 of Theorem 7.2 .3 imply that

$$
\left\|\frac{1}{t^{n-i}}\right\|_{L^{1}\left(\eta_{n}\right)}=\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{i+1}\right)}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{i+2}\right)} \ldots\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta_{n}\right)} \text { for } 1 \leq i \leq n .
$$

7.3 Backstep extension of 2 -variable weighted shifts

A 2-variable weighted shift $T=\left(T_{1}, T_{2}\right)$ is said to be subnormal if it admits a commuting normal extension. Equivalently, $T=\left(T_{1}, T_{2}\right)$ is subnormal if there exist normal operators N_{1} and N_{2} such that N_{i} is a normal extension of $T_{i}(i=1,2)$ and N_{1}, N_{2} commute. Clearly, each component T_{i} of a subnormal 2 -variable weighted shift $T=\left(T_{1}, T_{2}\right)$ must be subnormal.

Theorem 7.3.1. [67](Berger's theorem for 2-variable case) A 2-variable weighted shift $T=\left(T_{1}, T_{2}\right)$ admits a commuting normal extension if and only if there is a probability measure μ defined on the 2 -dimensional rectangle $R=$
$\left[0, a_{1}\right] \times\left[0, a_{2}\right],\left(a_{2}:=\left\|T_{2}\right\|^{2}\right)$ such that

$$
\gamma_{k}=\iint_{R} t^{k} d \mu(t):=\iint_{R} t_{1}^{k_{1}} t_{2}^{k_{2}} d \mu\left(t_{1}, t_{2}\right)\left(\forall k \in \mathbb{Z}_{+}^{2}\right)
$$

We also include a few more definitions and results that are to be used in the sequel.

Definition 7.3.1. [37] Let μ and ν be two positive measures on \mathbb{R}_{+}. We say that $\mu \leq \nu$ on $X:=\mathbb{R}_{+}$if $\mu(E) \leq \nu(E)$ for all Borel subset $E \subseteq \mathbb{R}_{+}$; equivalently, $\mu \leq \nu$ if and only if $\int f d \mu \leq \int f d \nu$ for all $f \in C(X)$ such that $f \geq 0$ on \mathbb{R}_{+}.

Definition 7.3.2. [37] Let μ be the positive measures on $X \times Y \equiv \mathbb{R}_{+} \times \mathbb{R}_{+}$, and assume $\frac{1}{t} \in L^{1}(\mu)$. The extremal measure $\mu_{\text {ext }}$ (which is a probability measure) on $X \times Y$ is given by $d \mu_{e x t}(s, t):=\left(1-\delta_{0}(t)\right) \frac{1}{t\left\|\frac{1}{t}\right\|_{L^{1}(\mu)}} d \mu(s, t)$
Definition 7.3.3. [37] Given a measure μ on $X \times Y$, the marginal measure μ^{X} is given by $\mu^{X}:=\mu \circ \pi_{X}^{-1}$, where $\pi_{X}: X \times Y \rightarrow X$ is the canonical projection on X. Thus $\mu^{X}(E)=\mu(E \times Y)$, for every $E \subseteq X$. If μ is a probability measure, then so is μ^{X}.

Lemma 7.3.2. [37] Let μ be the Berger measure of 2-variable weighted shift T and let ξ be the Berger measure of the shift $\left(\alpha_{(0,0)}, \alpha_{(1,0),}\right)$. Then $\xi=\mu^{X}$. As a consequence $\iint f(s) d \mu(s, t)=\int f(s) d \mu^{X}(s)$ for all $f \in C(X)$.

Corollary 7.3.3. [37] Let μ be the Berger measure of a 2-varzable weighted shift T. For $\jmath \geq 1$, let $d \mu_{\jmath}(s, t)=\frac{1}{\gamma_{(0, y)}} t^{\jmath} d \mu(s, t)$. Then the Berger measure of the shift $\left(\alpha_{(0, j)}, \alpha_{(1, j)},\right)$ is $\xi_{j}=\mu_{j}^{X}$.

Lemma 7.3.4. [37] Let μ and ω be two measures on $X \times Y$, and assume that $\mu \leq \omega$. Then $\mu^{X} \leq \omega^{X}$.

Lemma 7.3.5. Let μ be a positive measure on $\mathbb{R}_{+} \times \mathbb{R}_{+}$such that $\mu(E \times\{0\})=0$ for all Borel sets $E \subseteq \mathbb{R}_{+}$. For $n \geq 1$, let $\frac{1}{t^{n}} \in L^{1}(\mu)$. Then the extremal measure $\mu_{(e x t)^{n}}$ on $\mathbb{R}_{+} \times \mathbb{R}_{+}$is given by

$$
d \mu_{(e x t)^{n}}(s, t):=\frac{1-\delta_{0}(t)}{t^{n}\left\|\frac{1}{t^{n}}\right\|_{L^{1}(\mu)}} d \mu(s, t) .
$$

Proof. For $n=1, \frac{1}{t} \in L^{1}(\mu)$ and we have

$$
d \mu_{(e x t)}(s, t):=\frac{1-\delta_{0}(t)}{l\left\|\frac{1}{t}\right\|_{L^{1}(\mu)}} d \mu(s, t) \text { (by Definition 7.3.2) }
$$

Suppose result is true for n i.e.,

$$
d \mu(e x t)^{n}(s, t):=\frac{1-\delta_{0}(l)}{l^{n}\left\|\frac{1}{t^{n}}\right\|_{L^{\prime}(\mu)}} d \mu(s, t) .
$$

Let $\frac{1}{t^{n+1}} \in L^{1}(\mu)$. Then,

$$
\begin{aligned}
\iint \frac{1}{t} d \mu(e x t)^{n}(s, t)= & \iint \frac{1-\delta_{0}(t)}{t^{n+1}\left\|_{t^{n^{n}}}\right\|_{L^{1}(\mu)}} d \mu(s, t) \\
= & \iint \frac{1}{t^{n+1}\left\|_{t^{12}}\right\|_{L^{1}(\mu)}} d \mu(s, t) \\
& \left(\because \mu(E \times\{0\})=0, \forall E \subseteq \mathbb{R}_{+}\right) \\
= & \frac{\left\|\frac{1}{t^{n+1}}\right\|_{L^{1}(\mu)}}{\left\|\frac{1}{t^{2}}\right\|_{L^{1}(\mu)}}<\infty
\end{aligned}
$$

Therefore

$$
\frac{1}{t} \in L^{1}(\mu)_{(e x t)^{n}} \text { and }\left\|\frac{1}{t}\right\|_{\left.L^{1}(\mu)\right)_{(x x t)^{n}}}\left\|\frac{1}{t^{n}}\right\|_{L^{1}(\mu)}=\left\|\frac{1}{l^{n+1}}\right\|_{L^{1}(\mu)} .
$$

Now as $\frac{1}{t} \in L^{1}(\mu)_{(e x t)^{n}}$, so by Definition 7.3.2,

$$
\begin{aligned}
d \mu_{(e x t)^{n+1}}(s, l) & :=\frac{1-\delta_{0}(t)}{t\left\|\frac{1}{t}\right\|_{L^{1}(\mu)_{(e x t)^{n}}}} d(\mu)_{(e x t)^{n}}(s, l) \\
& =\frac{1-\delta_{0}(t)}{t^{n+1}\left\|\frac{1}{t}\right\|_{L^{1}(\mu)_{(c x t)^{n}}}\left\|\frac{1}{t^{n}}\right\|_{L^{1}(\mu)}} d \mu(s, t) \\
& =\frac{1-\delta_{0}(t)}{t^{n+1}\left\|\frac{1}{t^{n+1}}\right\|_{L^{1}(\mu)}} d \mu(s, t)
\end{aligned}
$$

Thus the result hold (by induction) for all $n=1,2, \ldots$

Theorem 7.3.6. (1-step backward extension) [37] Let $T=\left(T_{1}, T_{2}\right)$ be a 2varıable weighted shift and M be the subspace of $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ associated to undices $k=\left(k_{1}, k_{2}\right)$ with $k_{2} \geq 1$. Let $T_{M}:=\left.T\right|_{M}$ be subnormal with assoczated measure μ_{M} and let $W_{0}=\operatorname{shift}\left(\alpha_{(0,0)}, \alpha_{(1,0)}, \quad\right)$ is subnormal with associated measure ν. Then T is subnormal if and only of

1. $\frac{1}{t} \in L^{1}\left(/ /_{M}\right)$
2. $\beta_{(0,0)}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{M}\right)}\right)^{-1}$
3. $\beta_{(0,0)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{M)}\right)}\left(\mu_{M}\right)_{e x t}^{X} \leq \nu$

Moreover, if $\beta_{(0,0)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{M}\right)}=1$, then $\left(\mu_{M}\right)_{\text {ext }}^{X}=\nu$. In the case when T is subnormal, the Berger measure $/ 1$ of T as gıven by

$$
\begin{aligned}
d \mu(s, t)= & \beta_{(0,0)}^{2}\left\|\frac{1}{l}\right\|_{L^{1}\left(\mu_{M}\right)} d\left(\mu_{M}\right)_{e x t}(s, t)+\left(d \nu(s)-\beta_{(0,0)}^{2}\left\|\frac{1}{l}\right\|_{L^{1}\left(\mu_{M}\right)} d\left(\mu_{m}\right)_{e x t}^{X}(s)\right) \\
& d \delta_{0}(t) .
\end{aligned}
$$

Theorem 7.3.7. (2-step backward extension) Let $T=\left(T_{1} . T_{2}\right)$ be a 2-variable weighted shaft with the weight sequences α and β. Assume that $\left.T\right|_{M_{2}}$ the restruction of T to $M_{2}:=\bigvee\left\{e_{\left(k_{1}, k_{2}\right)} \cdot k_{2} \geq 2\right\}$ is subnormal with assocıated measure μ_{2} Let $W_{0}:=\operatorname{sh2ft}\left(\alpha_{(0,0)} \cdot \alpha_{(1,0)},\right)$ and $W_{1}:=\operatorname{shr} f t\left(\alpha_{(0,1)}, \alpha_{(1,1),}\right)$ be subnormal wuth assocuated measures ξ_{0} and ξ_{1} respectuvely. Then T is subnormal with assocuated measure $/ 1$ of and only of

1. $\frac{1}{t^{2}} \in L^{1}\left(\mu_{2}\right)$
2. $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \leq 1$
3. $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu \mu_{2}\right)_{(e x t)^{2}}^{X} \leq \xi_{0}$
4. $\beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\right)}=1$
5. $\left(\mu_{2}\right)_{e x t}^{X}=\xi_{1}$

Moreover, if $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}=1$, then $\left(\mu_{2}\right)_{(\text {ext })^{2}}^{X}=\xi_{0}$. In the case when T is subnormal, the Berger measure μ of T is given by,
$\mu=\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu_{2}\right)_{(e x t)^{2}}+\left(\xi_{0}-\beta_{(0,0)}^{2} \stackrel{\beta_{(0,1)}^{2}}{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} d\left(\mu_{2}\right)_{(e x t)^{2}}^{X}\right) \times \delta_{0}$
Proof. $\Longrightarrow)$ Let T be subnormal. Then $\left.T\right|_{M_{1}}$ and $\left.T\right|_{M_{2}}$ are also subnormal with the corresponding Berger measures μ_{1} and μ_{2} respectively. The moments are related as follows:

$$
\left.\left.\begin{array}{rl}
\gamma_{\left(k_{1}, k_{2}+1\right)} \\
& T) \\
\gamma_{\left(k_{1}, k_{2}+2\right)}(T) & =\beta_{(0,0)}^{2} \gamma_{((0,0)}^{2} \beta_{\left(k_{1}, k_{2}\right)}^{2}\left(\left.T\right|_{\left.M_{1}\right)} \gamma_{\left(k_{1}, k_{2}\right)}\right) \\
\hline
\end{array}\right|_{M_{2}}\right) .
$$

Therefore, the subnormality of $T,\left.T\right|_{M_{1}}$ and $\left.T\right|_{M_{2}}$ imply that

$$
\begin{align*}
& t d \mu(s, t)=\beta_{(0,0)}^{2} d \mu_{1}(s, t) \tag{7.3.1}\\
& t^{2} d \mu(s, t)=\beta_{(0,0)}^{2}, \beta_{(0,1)}^{2} d \mu_{2}(s, t) \tag{7.3.2}
\end{align*}
$$

Therefore, $\mu_{1}(E \times\{0\})=0, \mu_{2}(E \times\{0\})=0, \forall E \subseteq \mathbb{R}_{+}$.
Now,

$$
\begin{align*}
\iint \frac{1}{t^{2}} d \mu_{2}(s, t)=\iint_{t>0} \frac{1}{t^{2}} d \mu_{2}(s, t) & =\frac{1}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}} \iint_{t>0} d \mu(s, t) \\
& =\frac{1}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}} \mu(t>0) \tag{7.3.3}\\
& \leq \frac{1}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}}
\end{align*}
$$

So, $\quad \frac{1}{t^{2}} \in L^{1}\left(\mu_{2}\right)$ and $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \leq 1$, which establishes 1 and 2 .

For arbitrary Borel sets $E \subseteq \mathbb{R}_{+}$and $F \subseteq \mathbb{R}_{+}$, we have

$$
\begin{align*}
\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{1^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} & \left(\mu_{2}\right)_{(e x t)^{2}}(E \times F) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint_{E \times F} d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint_{E \times F}\left(1-\delta_{0}(t)\right) \frac{1}{t^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{1}\right)}} d \mu_{2}(s, t) \\
& =\iint_{E \times(F \backslash\{0\})} \beta_{(0,0)}^{2} \beta_{(0,1) \frac{1}{2}}^{t^{2}} d \mu_{2}(s, t) \\
& =\iint_{E \times(F \backslash\{0\})} d \mu(s, t) \\
& =\mu(E \times(F \backslash\{0\})) \leq \mu(E \times F) \tag{7.3.4}
\end{align*}
$$

and by Lemmas 7.3.4 and 7.3.2, $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|_{t^{2}}^{1}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu_{2}\right)_{(e x t)^{2}}^{X} \leq \mu^{X}=\xi_{0}$.

If $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}=1$ then by $(7.3 .3) \mu(t>0)=1$, and so $\mu(E \times(F \backslash$ $\{0\}))=\mu(E \times F)$. Therefore, from (7.3.4) we get $\left(\mu_{2}\right)_{(e x t)^{2}}=\mu \Rightarrow\left(\mu_{2}\right)_{(\text {ext })^{2}}^{X}=$ ξ_{0}.

Again,

$$
\begin{aligned}
\left\|\frac{1}{l}\right\|_{L^{1}\left(\mu_{2}\right)} & =\iint \frac{1}{l} d \mu_{2}(s, t)=\frac{1}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}} \iint t d \mu(s, t) \\
& =\frac{\gamma_{(0,1)}(T)}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}}=\frac{\beta_{(0,0)}^{2}}{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}}=\frac{1}{\beta_{(0,1)}^{2}}
\end{aligned}
$$

which gives $\beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\right)}=1$, proving 4.
Since $\left.T\right|_{M_{1}}$ is a 1-step subnormal extension of $\left.T\right|_{M_{2}}$, and also $\beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\right)}=1$, so by Theorem 7.3.6, we have $\xi_{1}=\left(\mu_{2}\right)_{\text {ext }}^{X}$.
Finally from (7.3.2) we have $t^{2} d \mu(s, t)=\beta_{(0,0)}^{2} \beta_{(0,1)}^{2} d \mu_{2}(s, t)$. So if $\mu(s, 0)=\lambda(s)$ then

$$
d \mu(s, t)=d \lambda(s) d \delta_{0}(t)+\frac{\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}}{l^{2}} d \mu_{2}(s, t)
$$

$$
\begin{aligned}
& \Rightarrow d \mu(s, t)=d \lambda(s) d \delta_{0}(t)+\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) \\
& \Rightarrow \iint d \mu(s, t)=\int d \lambda(s) \int d \delta_{0}(t)+\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{L^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) \\
& \Rightarrow \int d \mu^{X}(s)=\int d \lambda(s)+\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \int d\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s) \\
& \Rightarrow \int d \xi_{0}(s)=\int d \lambda(s)+\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \int d\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s) \\
& \Rightarrow d \xi_{0}(s)=d \lambda(s)+\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} d\left(\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s)\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d \mu(s, l)= & \left(d \xi_{0}(s)-\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} d\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s)\right) d \delta_{0}(l) \\
& +\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) .
\end{aligned}
$$

\Longleftarrow) Conditions 4 and 5 imply that $T_{M_{1}}$ is subnormal with measure μ_{1} such that $\mu_{1}(E \times\{0\})=0$ for all Borel sets $E \subseteq \mathbb{R}_{+}$.
Given conditions 1 to 2 , let

$$
\begin{aligned}
\mu(s, t):= & \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) \\
& +\left(\xi_{0}(s)-\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s)\right) \delta_{0}(t) .
\end{aligned}
$$

If $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}=1$ then total mass of the second summand is zero, and so $\mu:=\left(\mu_{2}\right)_{(e x t)^{2}}$.

For $j=0$,

$$
\begin{aligned}
\iint s^{2} d(\mu)(s, t) & =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{2} d\left(\left(\mu_{2}\right)_{(e x t)^{2}}(s, t)\right. \\
& +\int s^{2} d \xi_{0}(s)-\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \int d\left(\mu_{2}\right)_{(e x t)^{2}}^{X}(s)
\end{aligned}
$$

$$
\begin{aligned}
& =\int s^{i} d \xi_{0}(s) \text { (using Lemma 7.3.2) } \\
& =\gamma_{(i, 0)}(T)
\end{aligned}
$$

For $j=1$,

$$
\begin{aligned}
\iint s^{i} \iota d(\mu)(s, \iota) & =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{i} l d\left(\mu_{2}\right)_{(e x t)^{2}}(s, l) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{i} t \frac{\left(1-\delta_{0}(t)\right)}{t\left\|_{t}^{1}\right\|_{L^{1}\left(\mu_{2}\right)}^{e x t}} d\left(\mu_{2}\right)_{e x t}(s, t) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{l}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{i}\left(1-\delta_{0}(t)\right) d\left(\mu_{2}\right)_{e x t}(s, t) \\
& =\beta_{(0,0)}^{2} \int s^{i} d\left(\left(\mu_{2}\right)_{e x t}^{X}(s)(\text { using } 4)\right. \\
& =\beta_{(0,0)}^{2} \int s^{i} d \xi_{1}(s)=\beta_{(0,0)}^{2} \alpha_{(0,1)}^{2} \ldots \alpha_{(i-1,1)}^{2} \\
& =\gamma_{(i, 1)}(T)
\end{aligned}
$$

For $j>1$,

$$
\begin{aligned}
\iint s^{i} t^{j} d(\mu)(s, t) & =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{i} t^{j} d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \iint s^{i} t^{j}\left(1-\delta_{0}(t)\right) \frac{1}{t^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}} d \mu_{2}(s, t) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2} \iint s^{i} t^{j-2} d \mu_{2}(s, t) \\
& =\beta_{(0,0)}^{2} \beta_{(0,1)}^{2} \gamma_{(i, j-2)}\left(\left.T\right|_{M_{2}}\right)=\gamma_{(i, j)}(T)
\end{aligned}
$$

Hence, it follows that T is subnormal with Berger measure μ.

Theorem 7.3.8. (n-step subnormal backward extension of a 2-variable weighted shift) Let $T=\left(T_{1}, T_{2}\right)$ be a 2-variable weighted shift with double indexed weight sequences $\alpha=\left\{\alpha_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$ and $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}_{+}^{2}}$. For $n \geq 1$, let M_{n} be the subspace associated to the indices $k=\left(k_{1}, k_{2}\right)$ with $k_{2} \geq n$. Assume
that $\left.T\right|_{M n}$ is subnormal with assoczated measure μ_{n}. For $0 \leq i \leq n-1$ let $W_{2}:=\operatorname{sh} . f t\left\{\alpha_{(0,2)}, \alpha_{(1,2)},\right\}$ be subnormal with associated measures ξ_{2} respectively. Then T is subnormal if and only if

1. $\frac{1}{t^{n}} \in L^{1}\left(\mu_{n}\right)$
2. $\prod_{j=0}^{n-1} \beta_{(0, j)}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\mu_{n}\right)} \leq 1$
3. $\prod_{\jmath=0}^{n-1} \beta_{(0, \jmath)}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\mu_{n}\right)}\left(\mu_{n}\right)_{(e x t)^{n}}^{X} \leq \xi_{0}$
4. $\prod_{\jmath=2}^{n-1} \beta_{(0, j)}^{2}\left\|\frac{1}{i^{n-2}}\right\|_{L^{1}\left(\mu_{n}\right)}=1$ for $1 \leq i \leq n-1$
5. $\left(\mu_{n}\right)_{(e x t)^{2}}^{X}=\xi_{n-i}$ for $1 \leq i \leq n-1$

Moreover, if $\prod_{\jmath=0}^{n-1} \beta_{(0, j)}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\mu_{n}\right)}=1$, then $\left(\mu_{n}\right)_{(e x t)^{n}}^{X}=\xi_{0}$. In the case when T is subnormal, the Berger measure μ of T is given by,

$$
\mu=\prod_{\jmath=0}^{n-1} \beta_{(0, j)}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\mu_{n}\right)}\left(\mu_{n}\right)_{(e x t)^{n}}+\left(\xi_{0}-\prod_{\jmath=0}^{n-1} \beta_{(0, \jmath)}^{2}\left\|\frac{1}{t^{n}}\right\|_{L^{1}\left(\mu_{n}\right)}\left(\mu_{n}\right)_{(e x t)^{n}}^{X}\right) \times \delta_{0}
$$

The proof being similar to that of Theorem 7.3.7 is omitted.

7.4 Derivation of above results using Schur product technique

In this section we show that the above results can also be derived using Schur product technique.

Definition 7.4.1. $T=\left(T_{1}, \ldots, T_{N}\right)$, where each T, acts on a Hilbert space H; is said to be unitarily equivalent to $S=\left(S_{1}, \ldots, S_{N}\right)$, where each S_{\jmath} acts on a Hilbert space K, if there exists a unitary operator $\mathcal{U}: H \rightarrow K$ such that $\mathcal{U}^{*} S_{\jmath} \mathcal{U}=T$, for $1 \leq \jmath \leq N$.

For $L=(l, m)$ and $I=(l, j)$ in \mathbb{Z}_{+}^{2}, let $H_{I}:=\bigvee_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}\left\{e_{\left(2+l k_{1}, j+m k_{2}\right)}\right\}$.
In the sequel, we choose $l, m \geq 1$ and $0 \leq l \leq l-1,0 \leq j \leq m-1$.

Explanation:

If $L=(1,1)$ then $\imath=\jmath=0$ and so $H_{I}=H_{(0,0)}=\bigvee_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}\left\{e_{\left(k_{1}, k_{2}\right)}\right\}=\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$.
If $L=(2,1)$ then $0 \leq i \leq 1$ and $j=0$. As $H_{(0,0)}=V_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}\left\{e_{\left(2 k_{1}, k_{2}\right)}\right\}$ and $H_{(1,0)}=V_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}\left\{e_{\left(1+2 k_{1}, k_{2}\right)}\right\}$. So, $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)=H_{(0,0)} \oplus H_{(1,0)}$. Thus,

$$
\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)=\bigoplus_{\jmath=0}^{m-1} \bigoplus_{i=0}^{l-1} H_{(2, j)}
$$

Definition 7.4.2. For $\delta=\left(\delta_{\left(k_{1}, k_{2}\right)}\right) \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$ dcfinc $P_{(L I)}: \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right) \rightarrow \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$
as

$$
P_{(L: I)}(\delta)=\left\{\prod_{p=0}^{l-1} \delta_{\left(\imath+k_{1} l+p, j+k_{2} m\right)}\right\}_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}
$$

and $Q_{(L: I)}: \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right) \rightarrow \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$ as

$$
Q_{(L \cdot I)}(\delta)=\left\{\prod_{p=0}^{m-1} \delta_{\left(2+k_{1}, 3+k_{2} m+p\right)}\right\}_{\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}}
$$

Definition 7.4.3. Define S_{1} and S_{2} on $\ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$ as

$$
\begin{aligned}
& \left(S_{1} \gamma\right)\left(k_{1}, k_{2}\right)=\gamma\left(k_{1}+1, k_{2}\right) \\
& \left(S_{2} \gamma\right)\left(k_{1}, k_{2}\right)=\gamma\left(k_{1}, k_{2}+1\right)
\end{aligned}
$$

for $\gamma=\left(\gamma_{\left(k_{1}, k_{2}\right)}\right) \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$. Note $S_{1} S_{2}=S_{2} S_{1}$.
Proposition 7.4.1. $P_{(L \cdot(0,0))} S_{1}^{2} S_{2}^{j}=P_{(L I)}$ and $Q_{(L(0,0))} S_{1}^{2} S_{2}^{j}=Q_{(L \cdot I)}$.
Proof. $S_{1}^{2} S_{2}^{j}(\delta)\left(k_{1}, k_{2}\right)=\delta\left(k_{1}+i, k_{2}+j\right)=\tilde{\delta}\left(k_{1}, k_{2}\right)$ (say). Then

$$
\begin{aligned}
P_{(L \cdot(0,0))} S_{1}^{2} S_{2}^{\jmath}(\delta)\left(k_{1}, k_{2}\right) & =P_{(L \cdot(0,0))} \tilde{\delta}\left(k_{1}, k_{2}\right) \\
& =\prod_{p=0}^{l-1} \tilde{\delta}\left(k_{1} l+p, k_{2} m\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{p=0}^{l-1} \delta\left(\imath+k_{1} l+p, \jmath+k_{2} m\right) \\
& =P_{(L J)}(\delta)\left(k_{1} \cdot k_{2}\right)
\end{aligned}
$$

Similarly, $Q_{(L(0,0))} S_{1}^{2} S_{2}^{J}=Q_{(L I)}$.
Given, $\alpha=\left\{\alpha_{\left(k_{1}, k_{2}\right)}\right\} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$ and $\beta=\left\{\beta_{\left(k_{1}, k_{2}\right)}\right\} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$, let $T=\left(T_{1}, T_{2}\right)$ be 2-variable weighted shift with weight sequences α and β, defined as

$$
\begin{aligned}
& T_{1} e_{\left(k_{1}, k_{2}\right)}=\alpha_{\left(k_{1}, k_{2}\right)} e_{\left(k_{1}+1, k_{2}\right)} \\
& T_{2} e_{\left(k_{1}, k_{2}\right)}=\beta_{\left(k_{1}, k_{2}\right)} e_{\left(k_{1}, k_{2}+1\right)}
\end{aligned}
$$

Let $T_{(L I)}=\left(\left(T_{(L I)}\right)_{1} .\left(T_{(L I)}\right)_{2}\right)$ be 2 -variable weighted shift with weight sequences $P_{(L I)}(\alpha)$ and $Q_{(L I)}(\beta)$, defined as

$$
\begin{aligned}
& \left(T_{(L I)}\right)_{1} e_{\left(k_{1}, k_{2}\right)}=\left\{\prod_{p=0}^{l-1} \alpha_{\left(2+k_{1} l+p, \jmath+k_{2} m\right)}\right\} e_{\left(k_{1}+1, k_{2}\right)} \\
& \left(T_{(L I)}\right)_{2} e_{\left(k_{1}, k_{2}\right)}=\left\{\prod_{p=0}^{m-1} \beta_{\left(2+k_{1} l, \jmath+k_{2} m+p\right)}\right\} e_{\left(k_{1}, k_{2}+1\right)}
\end{aligned}
$$

Now, $T^{L}:=\left(T_{1}^{l}, T_{2}^{m}\right)$ and $\left.T^{L}\right|_{H_{I}}:=\left(\left.T_{1}^{l}\right|_{H_{I}},\left.T_{2}^{m}\right|_{H_{I}}\right)$
Proposition 7.4.2. T^{L} $\imath s$ unıtarıly equıvalent to $\bigoplus_{\jmath=0}^{m-1} \bigoplus_{\imath=0}^{l-1} T_{(L I)}$.
Proof. Define $\mathcal{U}: \ell^{2}\left(\mathbb{Z}_{+}^{2}\right) \rightarrow H_{I}$ as $\mathcal{U} e_{\left(k_{1}, k_{2}\right)}=e_{\left(2+k_{1} l, j+k_{2} m\right)}$ Then for
$e_{\left(k_{1}, k_{2}\right)} \in H_{I}, \mathcal{U}^{*} e_{\left(k_{1}, k_{2}\right)}=e_{\left(\frac{\mu_{1}-2}{l}, \frac{k_{2}-3}{m}\right)}$ and so $\mathcal{U} \mathcal{U}^{*}=1=\mathcal{U}^{*} \mathcal{U}$
Now, $T^{(l, m)}=\left(T_{1}^{l}, T_{2}^{m}\right)$ and $\left.T^{(l, m)}\right|_{H_{I}}=\left(\left.T_{1}^{l}\right|_{H_{I}},\left.T_{2}^{m}\right|_{H_{I}}\right)$
As

$$
\left.\mathcal{U}^{*} T_{1}^{l}\right|_{I I_{1}} \mathcal{U} e_{\left(k_{1}, k_{2}\right)}=\left\{\prod_{p=0}^{l-1} \alpha_{\left(2+k_{1} l+p, \jmath+k_{2} m\right)}\right\} e_{\left(k_{1}+1, k_{2}\right)}=\left(T_{(L I)}\right)_{1} e_{\left(k_{1}, k_{2}\right)}
$$

so similarly,

$$
\left.\mathcal{U}^{*} T_{2}^{l}\right|_{H_{I}} \mathcal{U} e_{\left(k_{1}, k_{2}\right)}=\left(T_{(L I)}\right)_{2} e_{\left(k_{1}, k_{2}\right)}
$$

Thus by Definition 7.4.1, $\left(\left.T_{1}^{l}\right|_{H_{I}},\left.T_{2}^{m}\right|_{H_{I}}\right) \cong\left(\left(T_{(L I)}\right)_{1},\left(T_{\left(L_{I}\right)}\right)_{2}\right)$. That is, $\left.T^{L}\right|_{H_{I}} \cong T_{(L J)}$.

As

$$
\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)=\bigoplus_{j=0}^{m-1} \bigoplus_{\imath=0}^{l-1} H_{I},
$$

so

$$
T^{L}=\left.\bigoplus_{J=0}^{m-1} \bigoplus_{\imath=0}^{l-1} T^{L}\right|_{I_{I}} \cong \bigoplus_{j=0}^{m-1} \bigoplus_{\imath=0}^{l-1} T_{(L I)}
$$

Corollary 7.4.3. a) T^{L} is k-hyponormal if and only of $T_{(L I)}$ is k-hyponormal for all $0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1$.
b) T^{L} is subnormal if and only uf $T_{(L I)}$ as subnormal for all $0 \leq \imath \leq l-1,0 \leq$ $\jmath \leq m-1$
c)

$$
\begin{aligned}
T \text { थs subnormal } & \Rightarrow T^{L}=\left(T_{1}^{l}, T_{2}^{r_{2}}\right) \text { थs subnormal } \\
& \left.\Rightarrow T^{L}\right|_{H_{l}} \text {,s subnormal for } 0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1 \\
& \Rightarrow T_{\left(L_{I}\right)} \text { is subnormal for } 0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1 .
\end{aligned}
$$

We are now seek to identify the Berger measure $\mu_{(L I)}$ corresponding to $T_{(L I)}$
Theorem 7.4.4. $d \mu_{(L I)}(s, t)=\frac{s^{2 / l} t^{j / m}}{\gamma_{(2, j)}(T)} d \mu\left(s^{1 / l}, t^{1 / m}\right)=\frac{s^{2 / l} / t^{j / m}}{\gamma_{(2, j)}(T)} d \mu_{(L(0,0))}(s, t)$ for $0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1$. If $\mu(s, t)=\nu(s, t)+\rho(s) \delta_{0}(t)$, where $\nu(E \times\{0\})=0 \forall E \subseteq \mathbb{R}_{+}$, then
(a) $\operatorname{dj\mu }_{(L(2,0))}(s, t)=\frac{s^{2 / l}}{\gamma_{(2,0)}(T)} d_{\mu}\left(s^{1 / l}, t^{1 / m}\right)$
(b) For $1 \leq \jmath \leq m-1, d \mu_{(L I)}(s, t)=\frac{s^{2 / l} t^{\jmath / m}}{\gamma_{(2, j)}(T)} d \nu\left(s^{1 / l}, t^{1 / m}\right)$

Proof. Let $\gamma_{\left(k_{1}, k_{2}\right)}(T)$ and $\gamma_{\left(k_{1}, k_{2}\right)}\left(T_{(L I)}\right)$ denote the moment sequences related to T and $T_{(L I)}$ respectively.

Then

$$
\begin{align*}
& \gamma_{\left(k_{1}, k_{2}\right)}\left(T_{(L I)}\right)=\frac{\gamma_{\left(2+k_{1} l, j+k_{2} m\right)}(T)}{\gamma_{(2, j)}(T)} \\
& \Rightarrow \iint s^{k_{1}} t^{k_{2}} d \mu_{(L I)}(s, t)=\frac{1}{\gamma_{(2, j)}(T)} \iint s^{2+k_{1} l} t^{\jmath+k_{2} m} d \mu(s, t) \\
&=\frac{1}{\gamma_{(2, j)}(T)} \iint s^{2 / l} s^{k_{1}} t^{j / m_{t} t^{k_{2}} d \mu\left(s^{1 / l}, t^{1 / m}\right)} \\
& \Rightarrow \quad d \mu_{(L I)}(s, l) \quad=\frac{s^{2 / l} t^{j / m}}{\gamma_{(2, j)}(T)} d \mu\left(s^{1 / l}, t^{1 / m}\right) \tag{7.4.1}
\end{align*}
$$

Also, $d \mu_{(L(0,0))}(s, t)=d \mu\left(s^{1 / l}, t^{1 / m}\right)$. Therefore

$$
d \mu_{(L I)}(s, l)=\frac{s^{2 / l} t^{j / m}}{\gamma_{(2, \jmath)}(T)} d \mu\left(s^{1 / l}, t^{1 / m}\right)=\frac{s^{2 / l} t^{j / m}}{\gamma_{(2, J)}(T)} d_{l \prime}(L(0,0))(s, l)
$$

for $0 \leq \imath \leq l-1,0 \leq 1 \leq m-1$.

If $\mu(s, t)=\nu(s, t)+\rho(s) \delta_{0}(t)$, then from (7.4.1), we get

$$
d_{/ \prime(L(2,0))}(s, l)=\frac{s^{2 / l}}{\gamma_{(2,0)}(T)} d \mu\left(s^{1 / l}, \iota^{1 / m}\right)
$$

For $1 \leq 3 \leq m-1$,

$$
\begin{aligned}
\iint s^{k_{1}} t^{k_{2}} d \mu_{(L I)}(s, t) & =\frac{1}{\gamma_{(2, \jmath)}(T)} \iint s^{2+k_{1} l} t^{\jmath+k_{2} m} d \mu(s, t) \\
& =\frac{1}{\gamma_{(2,))}(T)} \iint s^{2+k_{1} l} t^{\jmath+k_{2} m} d \nu(s, t)\left(\because \jmath+k_{2} m>0, \forall k_{2}\right) \\
\Rightarrow \quad d \mu_{(L I)}(s, t) \quad & =\frac{s^{2 / l} t^{\jmath / m}}{\gamma_{(2, j)}(T)} d \nu\left(s^{1 / l}, t^{1 / m}\right)
\end{aligned}
$$

Theorem 7.4.5. Let $T=\left(T_{1}, T_{2}\right)$ be 2-varaable weaghted shaft with weaght sequences α and β, and $M=\bigvee_{k_{2} \geq 1} e_{\left(k_{1}, k_{2}\right)}$. If $T_{M}=\left.T\right|_{M}$ is subnormal, then for $L=(l, m)$, with $l \geq 1, m \geq 1$, the following are equivalent:
(a) T^{L} is k-hyponormal.
(b) $T_{(L(2,0))}$ is k-hyponormal for $0 \leq \imath \leq l-1$

Proof. $(a) \Rightarrow(b)$ is obvious from Corollary 7.4.3.
$(b) \Rightarrow(a) \cdot$ Here

$$
T^{L} \cong \bigoplus_{\jmath=0}^{m-1} \bigoplus_{\imath=0}^{\iota-1} T_{(L I)}
$$

Given that $T_{(L(2,0))}$ is k-hyponormal for $0 \leq \imath \leq l-1$. To show $T_{(L(2, \jmath))}$ is k-hyponormal for $0 \leq \imath \leq l-1$ and $1 \leq \jmath \leq m-1$.
Define $\tilde{\alpha}_{\left(k_{1}, k_{2}\right)}=\alpha_{\left(k_{1}, k_{2}+1\right)}$ and $\tilde{\beta}_{\left(k_{1}, k_{2}\right)}=\beta_{\left(k_{1}, k_{2}+1\right)}$.
$\left(T_{M}\right)_{(L I)}$ is a 2 -variable weighted shift with weight sequences

$$
P_{(L I)}(\tilde{\alpha})=\left\{\prod_{p=0}^{l-1} \tilde{\alpha}_{\left(\imath+k_{1} l+p, \jmath+k_{2} m\right)}\right\}=\left\{\prod_{p=0}^{l-1} \alpha_{\left(2+k_{1} l+p, \jmath+k_{2} m+1\right)}\right\}=P_{(L(2, j+1))}(\alpha)
$$

and

$$
Q_{(L I)}(\tilde{\beta})=Q_{(L(2, j+1))}(\beta)
$$

Thus $\left(T_{M}\right)_{(L(2, j))}=T_{(L(2, j+1))}$ for $0 \leq r \leq l-1$ and $0 \leq \jmath \leq m-1$
That is, $\left(T_{M}\right)_{(L(2,0-1))}=T_{(L(2, j))}$ for $0 \leq 1 \leq l-1$ and $1 \leq \jmath \leq m$
Now
T_{M} is subnormal $\Rightarrow T_{M}^{L}$ is subnormal

$$
\begin{aligned}
& \Rightarrow\left(T_{M}\right)_{(L I)} \text { is subnormal and hence } k \text {-hyponormal } \\
& \quad \text { for } 0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1 \text { (by Corollary } 743 \text {) } \\
& \Rightarrow\left(T_{M}\right)_{(L(2, \jmath-1))} \text { is } k \text {-hyponormal for } 0 \leq \imath \leq l-1,1 \leq \jmath \leq m \\
& \Rightarrow \\
& (T)_{(L I)} l s k \text {-hyponormal for } 0 \leq \imath \leq l-1,1 \leq \jmath \leq m-1
\end{aligned}
$$

Theorem 7.4.6. Let $T=\left(T_{1}, T_{2}\right)$ be 2-varlable weighted shift with weight sequences α and β. Let $M_{n}=\bigvee_{k_{2} \geq n} e_{\left(k_{1}, k_{2}\right)}$ and $T_{M_{n}}:=\left.T\right|_{M_{n}}$ be subnormal. For $L=(l, m)$ wuth $l \geq 1, m \geq 1, I=(\imath, \jmath)$ wnth $0 \leq \imath \leq l-1,0 \leq \jmath \leq m-1$, and $k \geq 1$. then the following are equivalent
(a) T^{L} is k-hyponormal.
(b) $T_{(L(2,0))}, T_{(L(2,1))} \cdots, T_{(L(2, n-1))}$ are k-hyponormal for all $0 \leq \imath \leq l-1$

Theorem 7.4.7. Let $T=\left(T_{1}, T_{2}\right)$ be 2-varable weaghted shift with weight sequences α and β. Let $M_{1}=\bigvee_{k_{2} \geq 1} e_{\left(k_{1}, k_{2}\right)}$ and $T_{M_{1}}:=\left.T\right|_{M_{1}}$ be subnormal wuth the Berger measure $\mu_{1}(s, t)=\nu_{1}(s, t)+\rho(s) \delta_{0}(t)$ and $W_{0}=\operatorname{sh\imath } f t\left(\alpha_{(0,0)}, \alpha_{(1,0)}\right.$, $)$ be subnormal with assocaated measure ξ_{0} Then $T^{(1,2)}$ is subnormal थf and only ${ }^{\imath} f$

$$
\begin{array}{ll}
& \beta_{(0,0)}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\nu_{1}\right)}\right)^{-1} \\
\text { and } \quad & \beta_{(0,0)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\nu_{1}\right)}\left(\nu_{1}\right)_{e x t}^{X} \leq \xi_{0}
\end{array}
$$

If $\rho(s)=0$, then $T^{(1,2)}$ us subnormal of and only if T is subnormal.

Proof. By the Theorem 74.5, if $T_{M_{1}}$ is subnormal, then $T^{(1,2)}$ is subnormal if and only if $T_{((1,2)(0,0))}$ is subnormal So, it suffices to check for $T_{((1,2)(0,0))}$ Again $T_{((1,2)(0,0))}$ is the 1 -step back extension of $\left(T_{M_{1}}\right)_{((1,2)(0,1))}$

Since $T_{M_{1}}$ is subnormal with measure μ_{1}, so by Corollary 7.4.3 (c) $\left(T_{M_{1}}\right)_{((1,2)(0,1))}$ is also subnormal with measure $\left(\mu_{1}\right)_{((1,2)(0,1))}$. Therefore by Theorem 7.3.6, $T_{((1,2)(0,0))}$ is subnormal if and only if

$$
\begin{align*}
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left((\mu 1)_{((1,2):(0,1))}\right)}\right)^{-1} \tag{7.4.2}\\
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{(1,2):(0,1))}\right)}\left(\left(\mu, l_{1}\right)_{(1,2):(0,1))}\right)_{e x t}^{X} \leq \xi_{0} \tag{7.4.3}
\end{align*}
$$

Now,

$$
\begin{equation*}
d\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)=\frac{t^{1 / 2}}{\gamma_{(0,1)}\left(T_{M_{1}}\right)} d \nu_{1}\left(s, t^{1 / 2}\right) \tag{7.4.4}
\end{equation*}
$$

and

$$
\begin{align*}
d\left(\mu_{1}\right)_{((1,2):(0,1))_{e x t}}(s, l) & \left.=\frac{\left(1-\delta_{0}(t)\right)}{t \|_{\frac{1}{t} \|_{L^{1}}\left(\left(\mu_{1}\right)\right.}((1,2):(0,1))}\right) \\
& =\frac{\left(1-\delta_{0}(t)\right)}{t^{1 / 2} \int \frac{1}{t^{1 / 2}} d \nu_{1}\left(s, t^{1 / 2}\right)} d \nu_{1}\left(s, l_{(}\right)_{(1,2):(0,1))}(s, l) \\
& =\frac{\left(1-\delta_{0}(t)\right)}{t \int \frac{1}{t} d \nu_{1}(s, t)} d \nu_{1}(s, l) \\
& =d\left(\nu_{1}\right)_{e x t}(s, t) \tag{7.4.5}
\end{align*}
$$

Now,

$$
\begin{aligned}
(7.4 .2) & \Rightarrow \beta_{(0,0)}^{2} \beta_{(0,1)}^{2} \int \frac{1}{t} d\left(\mu_{1}\right)((1,2):(0,1)) \\
& \Rightarrow \beta_{(0,0)}^{2} \int \frac{1}{t^{1 / 2}} d \nu_{1}\left(s, t^{1 / 2}\right) \leq 1 \\
& \Rightarrow \beta_{(0,0)}^{2} \int \frac{1}{t} d \nu_{1}(s, t) \leq 1 \\
& \Rightarrow \beta_{(0,0)}^{2} \leq\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\nu_{1}\right)}\right)^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
(7.4 .3) & \Rightarrow \beta_{(0,0)}^{2} \beta_{(0,1)}^{2} \int \frac{1}{l} d\left(\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)\right)\left(\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)\right)_{e x t}^{X} \leq \xi_{0}(s) \\
& \Rightarrow \beta_{(0,0)}^{2} \int \frac{1}{t^{1 / 2}} d \nu_{1}\left(s, t^{1 / 2}\right)\left(\nu_{1}(s, t)\right)_{e x t}^{X} \leq \xi_{0}(s) \\
& \Rightarrow \beta_{(0,0)}^{2} \int \frac{1}{t} d \nu_{1}(s, t)\left(\nu_{1}(s, t)\right)_{e x t}^{X} \leq \xi_{0}(s) \\
& \Rightarrow \beta_{(0,0)}^{2}\left\|\frac{1}{l}\right\|_{L^{1}\left(\nu_{1}\right)}\left(\nu_{1}\right)_{e x t}^{X} \leq \xi_{0}
\end{aligned}
$$

If $\rho(s)=0$, then $\mu_{1}(s, t)=\nu_{1}(s, t)$. Therefore by Theorem 7.3.6, $T^{(1,2)}$ is subnormal if and only if T is subnormal.

Theorem 7.4.8. Let T be a 2-variable weighted shift with the weight sequences α and β. Assume that $T_{M_{2}}:=\left.T\right|_{M_{2}}$ the restriction of T to $M_{2}:=\bigvee\left\{e_{\left(k_{1}, k_{2}\right)}: k_{2} \geq\right.$. 2\} is subnormal with associated measure μ_{2}. Let $W_{0}:=\operatorname{shift}\left(\alpha_{(0,0)}, \alpha_{(1,0), \ldots}\right)$ and $W_{1}:=\operatorname{sifift}\left(\alpha_{(0,1)}, \alpha_{(1,1), \ldots}\right)$ be subnormal with associated measures ξ_{0} and ξ_{1} respectively. Then T is subnormal with associated measure μ if and only if (i) $\frac{1}{t^{2}} \in L^{1}\left(\mu_{2}\right)$
(ii) $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)} \leq 1$
(iii) $\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}\right)}\left(\mu_{2}\right)_{(\text {ext })^{2}}^{X} \leq \xi_{0}$
(iv) $\beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\right)}=1$
(v) $\left(\mu_{2}\right)_{\text {ext }}^{X}=\xi_{1}$

Proof. Assume that T be subnormal. Since $T_{M_{1}}$ is a subnormal weighted shift possessing a subnormal extension T, so $\beta_{(0,1)}^{2}=\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\right)}\right)^{-1}$ and $\left(\mu_{2}\right)_{c x t}^{X}=$ ξ_{1}, Moreover, if μ_{1} is a Berger measure of $T_{M_{1}}$, then $\mu_{1}=\left(\mu_{2}\right)_{c x t}$. Since T is subnormal so by Corollary 7.4.3 (c), $T_{((1,2) \cdot(0,0))}$ is also subnormal. Again $T_{((1,2):(0,0))}$ is the 1-step extension of $\left(T_{M_{1}}\right)_{((1,2):(0,1))}$. Therefore by Theorem 7.3.6, $T_{((1,2):(0,0))}$ is subnormal if and only if

$$
\begin{align*}
& \frac{1}{t} \in L^{1}\left(\left(\mu_{1}\right)_{((1,2)(0,1))}\right) \tag{7.4.6}\\
& \left.\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\left(\mu_{1}\right)\right.}{ }_{((1,2)(0,1))}\right) \leq 1 \tag{7.4.7}\\
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{((1,2)(0,1))}\right)}\left(\left(\mu_{1}\right)_{((1,2)(\overline{0}, 1))}\right)_{e x t}^{X} \leq \xi_{0} \tag{7.4.8}
\end{align*}
$$

Now,

So, (7.4.6) implies that $\frac{1}{t^{2}} \in L^{1}\left(\mu_{2}(s, t)\right)$ and so also $\frac{1}{t} \in L^{1}\left(\mu_{2}(s, t)\right)$. Also, $\mu_{1}(E \times\{0\})=0, \mu_{2}(E \times\{0\})=0 \forall E \subseteq \mathbb{R}_{+}$.
and

$$
\begin{align*}
d\left(\mu_{1}\right)_{((1,2)(0,1))_{e x t}}(s, t) & \left.=\frac{\left(1-\delta_{0}(t)\right)}{t\left\|\frac{1}{t}\right\|_{L^{1}}\left(\left(\mu_{1}\right)_{((1,2)}(0,1)\right)}(s, t)\right) \\
& =\frac{\left(1-\delta_{0}(t)\right)}{t\left\|\frac{1}{t}\right\|_{L^{1}}\left(\mu_{2}\left(s, t t^{1 / 2}\right)\right)} d \mu_{((1,2)(0,1))}(s, t) \\
& =\frac{\left(1-\delta_{0}(t)\right)}{t^{2}\left\|t^{\frac{1}{2}}\right\|_{L^{1}\left(\mu_{2}(s, t)\right)}} d \mu_{2}(s, t)(\operatorname{using}(7.4 .9)) \\
& =d\left(\mu_{2}\right)_{\left((x t)^{2}\right.}(s, t) \tag{7.4.10}
\end{align*}
$$

Again from (7.4.7), we get

$$
\begin{aligned}
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\left(s, t^{1 / 2}\right)\right)} \leq 1 \\
\Rightarrow & \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}(s, t)\right)} \leq 1
\end{aligned}
$$

and from (7.4.8), we get

$$
\begin{aligned}
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{2}\left(s, t^{1 / 2}\right)\right)}\left(\mu_{2}(s, l)\right)_{(c x t)^{2}}^{X} \leq \xi_{0}(s) \quad(\operatorname{using}(7.4 .9) \text { and }(7.4 .10)) \\
\Rightarrow & \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\mu_{2}(s, t)\right)}\left(\mu_{2}(s, t)\right)_{(c x t)^{2}}^{X} \leq \xi_{0}(s)
\end{aligned}
$$

(\Longleftarrow) Suppose all the conditions are hold. To show T is subnormal. From conditions (i), (iv) and since $T_{M_{2}}$ is subnormal so by Theorem 7.3.6, $T_{M_{1}}$ is subnormal with the Berger measure μ_{1} such that $\mu_{1}(E \times\{0\})=0$ for all $E \subseteq \mathbb{R}_{+}$ and $\mu_{1}=\left(\mu_{2}\right)_{\text {ext }}$. So by Theorem 7.4.7 to check the subnormality of T, it suffices to check the subnormality of $T^{(1,2)}$ and by Theorem 7.4.5 this reduces to verifying the subnormality of $T_{((1,2):(0,0))}$. Again $T_{((1,2):(0,0))}$ is the 1-step extension of $\left(T_{M_{1}}\right)_{((1,2):(0,1))}$ (which is subnormal).

Now, since $\left(T_{M_{1}}\right)_{((1,2):(0,1))}, T_{M_{1}}$ and $T_{M_{2}}$ are subnormal with measures $\left(\mu_{1}\right)_{((1,2):(0,1))}$, μ_{1} and μ_{2} respectively. So, we can establish as above that $d .\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)=$ $d \mu_{2}\left(s, t^{1 / 2}\right)$ and $d\left(\mu_{1}\right)_{(1,2,2)(0,1))_{e x t}}(s, t)=d\left(\mu_{2}\right)_{(e x t)^{2}}(s, t)$.

So, condition (i) implies that $\frac{1}{t} \in L^{1}\left(\left(\mu_{1}\right)_{(1,2),(0,1))}\right)$. From condition (ii) we will get

$$
\begin{aligned}
\beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{((1,2):(0,1))}\left(s, t^{2}\right)\right)} \leq 1 \\
\Rightarrow \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{(1,2):(0,1))}(s, t)\right)} \leq 1
\end{aligned}
$$

and condition (iii) will give,

$$
\begin{aligned}
& \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{t^{2}}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{((1,2):(0,1))}\left(s, t^{2}\right)\right)}\left(\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)\right)_{e x t}^{x} \leq \xi_{0}(s) \\
\Rightarrow & \beta_{(0,0)}^{2} \beta_{(0,1)}^{2}\left\|\frac{1}{l}\right\|_{L^{1}\left(\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)\right)}\left(\left(\mu_{1}\right)_{((1,2):(0,1))}(s, t)\right)_{e x t}^{X} \leq \xi_{0}(s)
\end{aligned}
$$

Thus by Theorem 7.3.6, $T_{((1,2):(0,0))}$ is subnormal and hence T is subnormal.

Bibliography

[1] Athavale, A. On joint hyponormality of operators, Proc. Amer. Math. Soc. 103(2), 417-423, 1988.
[2] Agler, J. Hypercontractions and subnormality, J. Operator Theory 13, 203217, 1985.
[3] Bay, J. Y. Jung, I. B. \& Exner, G. R. Criteria for positively quadratically hyponormal weighted shifts, Proc. Amer. Math. Soc. 130(11), 3287-3294, 2002.
[4] Bhatia, R. Matrix Analysıs, Springer, Replika Press Pvt Ltd. India, 2000.
[5] Choi, Y. B., Han, J.K. \& Lee, W.Y. One-step extension of the Bergman shift, Proc. Amer. Math. Soc. 128, 3639-3646, 2000.
[6] Choi, Y. B. A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37, 347-352, 2000.
[7] Conway, J. B. \& Szymanski, W. Linear combinations of hyponormal operators, Rocky Mountain Journal of Mathematics 18(3), 695-705, 1988.
[8] Conway, J. B. Mathematical Surveys and Monographs. The Theory of Subnormal Operators, American Mathematical Society, Rhode Island USA, 1991.
[9] Conway, J. B. A Course in Operator Theory, American Mathematical Society, Rhode Island USA, 2000.
[10] Conway, J. B. A Course in Functional Analysis, Springer, New York, 2008.
[11] Constantinescu, T. Schur analysis of positive block-matrices, Operator Theory: Advances and Applications 18, 191-206, 1986.
[12] Curto, R. E. Quadratically hyponormal weighted shifts. Integr. Equ. Oper. Theory 13, 49-66, 1990.
[13] Curto, R. E. Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51, 69-91, 1990.
[14] Curto, R. E. Polynomially hyponormal operators on Hilbert space, in Proceedings of ELAM VII, Revista Union Mat. Arg. 37, 29-56, 1991.
[15] Curto, R. E. \& Fialkow, L. Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17, 603-635, 1991.
[16] Curto, R. E. \& Fialkow, L. Recursively generated weighted shifts and the subnormal completion problem, Integr. Equ. Oper. Theory 17, 202-246, 1993.
[17] Curto, R. E. \& Fialkow, L. Recursively generated weighted shifts and the subnormal completion problem II, Integr. Equ. Oper. Theory 18, 369-426, 1994.
[18] Curto, R. E., Hwang, I. S. \& Lee, W. Y. Weak subnormality of operators, Arch. Math. 79, 360-371, 2002.
[19] Curto, R. E., Jung, I. B. \& Park, S.S. A characterization of k hyponormality via weak subnormality, J. Math. Anal. Appl. 279, 556-568, 2003.
[20] Curto, R. E. \& Jung, I. B. Quadratically hyponormal weighted shifts with two equal weights, Integr. Equ. Oper. Theory 37, 208-231, 2000.
[21] Curto, R. E., Jung, I. B. \& Lee, W.Y. Extensions and extremality of recursively generated weighted shifts, Proc. Amer. Math. Soc. 130, 565-576, 2002.
[22] Curto, R. E. \& Lee, W. Y. Joint hyponormality of Toplitz pairs, Mem. Amer. Math. Soc. 712, Amer. Math. Soc., Providence 2001.
[23] Curto, R.E. \& Lee, W. Y. Towards a model theory for 2-hyponormal operators, Integr. Equ. Oper. Theory 44, 290-315, 2002.
[24] Curto, R. E. \& Lee, W. Y. k-hyponormality of finite rank perturbations of unilateral weighted shifts, Trans. Amer. Math. Soc. 357, 4719-4737, 2005.
[25] Curto, R. E. \& Lee, S. H. Quartically hyponormal weighted shifts need not be 3-Hyponormal, J. Math. Anal. Appl. 314, 455-463, 2006.
[26] Curto, R. E., Lee, S. H. \& Lee, W. Y. A new criterion for k-hyponormality via weak subnormality, Proc. Amer. Math. Soc. 133, 1805-1816, 2005.
[27] Curto, R. E., Lee, S. H. \& Yoon, J. k-hyponormality of mullivriable weighted shifts. J. Funct. Anal. 229, 462-480, 2005.
[28] Curto, R. E., Lee, S. H. \& Yoon, J. Reconstruction of the Berger measure when the core is of tensor form, Aclas del XVI Coloquio Latinoamericano de Algebra, Bibl. Rev. Mat. Iberoamericana, 317-331, 2007.
[29] Curto, R. E., Lee, S. H. \& Yoon, J. Which 2-hyponormal 2-variable weighted shifts are subnormal ?, Linear Algebra and its Applications 429 , 2227-2238, 2008.
[30] Curto, R. E., Lee, S. H. \& Yoon, J. Subnormality for arbitrary powers of 2-variable weighted shifts whose restriction to a large invariant subspace are tensor products, J. Funct. Anal. 262, 569-583, 2012.
[31] Curto, R. E., Muhly, P. S. \& Xia, J. Hyponormal pairs of commuting operators, Operator Theory: Advances and Applications, 35, 1-22, 1988.
[32] Curto, R. E., Poon, Y. T. \& Yoon, J. Subnormality of Bergman like weighted shifts, J. Math. Anal. Appl. 308, 334-342, 2005.
[33] Curto, R. E., \& Park, S. S. k-hyponormality of powers of weighted shifts via Schur products, Proc. Amer. Math. Soc. 131, 2761-2769, 2003.
[34] Curto, R. E. \& Putinar, M. Existence of non subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. 25, 373-378, 1991.
[35] Curto, R. \& Putinar, M. Nearly subnormal operators and moment problems. J. Funct. Anal. 115, 480-497, 1993.
[36] Curto,'R. E. \& Putinar, M. Polynomially hyponormal operators, Operator Theory: Advances and Applications, 207, 195-207, 2010.
[37] Curto, R. E. \& Yoon, J. Jointly hyponormal pairs of commuting subnormal operators need not be jointly subnormal, Trans. Amer. Math. Soc. 358, 5139-5159, 2006.
[38] Curto, R. E. \& Yoon, J. Disintegration-of-measure techniques for commuting multivariable weighted shifts, Proc. London Math. Soc. 92, 381-402, 2006.
[39] Curto, R. E., \& Yoon, J. Spectral picture of 2-variable weighted shifts, C. R. Acad: Sci. Paris. Ser. I 343, 579-584, 2006.
[40] Curto, R. E. \& Yoon, J. Propagation phenomena for hyponormal 2-variable weighted shifts, J. Operator Theory 58(1), 175-203, 2007.
[41] Dong, Y., Exner, G., Jung, I. B. \& Li, C. Quadratically hyponormal recursively generated weighted shifts, Operator Theory: Advances and Applications 187, 141-155, 2008.
[42] Do, Y., Exner, G., Jung, I. B. \& Li, C. On semi-weakly n-hyponormal weighted shifts, Integr. Equ. Oper. Theory 73, 93-106, 2012.
[43] Douglas, R. G. Banach Algebra Techniques in Operator Theory, Springer, New York, 1998.
[44] Douglas, R. G., Paulsen, V. I. \& Yan, K. Operator theory and algebraic geometry, Bull. Amer. Math. Soc. 20, 67-71, 1989.
[45] Exner, G., Jung, I. B. \& Park, S. S. Weakly n-hyponormal weighted shifts and their examples, Integr. Equ. Oper. Theory 54, 215-233, 2006.
[46] Exner, G., Jung, I. B. \& Park, D. Some quadratically hyponormal weighted shifts, Integr. Equ. Oper. Theory 60, 13-36, 2008.
[47] Fillmore, P. A. Notes on Operator Theory, Van Nostrand Reinhold Math. Studies, Van Nostrand, New York, 1970.
[48] Fan, P. A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92(2), 271-272, 1984.
[49] Franks, E. Polynomially subnormal operator tuples, J. Operator Theory 31, 219-228, 1994.
[50] Halmos, P. R. Commutators of operators, II, Amer. Math. Soc. 76(1), 191198, 1954.
[51] Halmos, P. R. A Hilbert space problem book, Second Edition, Springer Verlag, 1982.
[52] Halmos, P. R. Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76, 887-933, 1970.
[53] Hazarika, M. \& Kalita, B. A generalized definition of joint hyponormality, Int. Journal of Math. Analysis 3(36), 1795-1802, 2009.
[54] Hazarika, M. \& Kalita, B. On positively quadraically hyponormal weighted shifts, Inter. J. Contemp. Math. Sciences 4 (35), 1709-1718, 2009.
[55] Hazarika, M. \& Kalita, B. Quadratic hyponormality and positive qadratic hyponormality are not preserved under weighted completion and restriction, International Conference on Challenges and Applications of Mathematics in Sciences and Technology (CAMIST) January 11-13, 2010.
[56] Hazarika, M. \& Kalita, B. Finite rank perturbation of 2-hyponormal weighted shifts, Inter. J. Func. Anal. Oper. Th. and its Appl. 5(1), 1935, 2013.
[57] Hazarika, M. \& Kalita, B. Back-step extension of weighted shifts, Communicated.
[58] Hazarika, M. \& Kalita, B. Perturbation of 2-variable hyponormal weighted shifts, Communicated.
[59] Hazarika, M. \& Kalita, B. Convexity of the region of perturbation of a weakly k-hyponormal weighted shift, Communicated.
[60] Hoover, T., Jung, I. B. \& Lambert, A. Moment sequences and backward extensions of subnormal weighted shifts, J. Austral. Math. Soc. 73, 27-36, 2002.
[61] Horn, R. A. \& Johnson, C. R. Matrix Analysis, Cambridge University Press, Cambridge, USA, 2013.
[62] Joshi, A. Hyponormal polynomials of monotone shifts, Indian J. Pure Appl. Math. 6, 681-686, 1975.
[63] Jung, I. B.\& Li, C. A formula for k-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc. 129, 2343-2351, 2001.
[64] Jung, I. B., Lambert, A. \& Stochel J. Backward extensions of subnormal operators, Proc. Amer. Math. Soc. 132(8), 2291-2302, 2004.
[65] Jung, I. B. \& Park, S. S. Quadratically hyponormal weighted shifts and their examples, Integr. Equ. Oper. Theory 36(4), 480-498, 2000.
[66] Jung, I. B. \& Park, S.S. S. Cubically hyponormal weighted shifts and their examples, J. Math. Anal. Appl. 247, 557-569, 2000.
[67] Jewell, N. P. \& Lubin, A. R. Commuting weighted shifts and analytic function theory in several variables. J. Operator Theory 1, 207-223, 1979.
[68] Kelly, R. L. Weighted shifts on Hilbert space, Ph.D. thesis, University of Michigan, Ann. Arbor, Mich, 1996.
[69] Kreyszig, E. Introductory Functional Analysis with Applications, Willey, India, 2007.
[70] Lee, J. I. Operators with rank one selfcommutators, Journal of the Chungcheong Mathematical Society 23(1), 163-168, 2010.
[71] Lee, H. Y. \& Choi, Y.B. Two-step extension of the Bergman shift, Korean Annals of Math. 16, 101-111, 1999.
[72] Lee, S. H. \& Lee, W. Y. Hyponormal operators with rank-two selfcommutators, J. Math. Anal. Appl. 351, 616-626, 2009.
[73] Lee, S. H., Lee, W. Y. \& Yoon J. Subnormality of Aluthge transformations of weighted shifts, Integr. Equ. Oper. Theory 72, 241-251, 2012.
[74] Lubin A. Weighted shifts and commuting normal extension, J. Austral. Math. Soc. 27, 17-26, 1979.
[75] McCullough, S. \& Paulsen, V. A note on joint hyponormality, Proc. Amer. Math. Soc. 107, 187-195, 1989.
[76] Martinez-Avendano, R. A. \& Rosenthal, P. An Introduction to Operators on the Hardy-Hilbert Space, Springer, New York, 2007.
[77] Radjavi, H. \& Rosenthal, P. Invariant Subspaces, Springer-Verlag, New York, 1973.
[78] Royden, H. L. Real Analysis, Macmillan, New York, 1963.
[79] Rudin, W. Real and Complex Analysis, McGraw-Hill, New York, 1987.
[80] Stampfli, J. G. Which weighted shifts are subnormal ?, Pracific J. Math. 17, 367-379, 1966.
[81] Shields, A. Weighted shift operators and analytic function theory, Topics in Operator Theory, Amer. Math. Soc. 13, 49-128, 1974.
[82] Xia, D. On the semi-hyponormal n-tuple of operators, Integr. Equ. Oper. Theory 6, 879-898, 1983.
[83] Xia, D. Analytic theory of hyponormal operators with rank one selfcommutators, Integr. Equ. Oper. Theory 75, 573-589, 2013.
[84] Yoon, J. Schur product techniques for commuting multivariable weighted shifts, J. Math. Anal. Appl. 333, 626-641, 2007.
[85] Yoon, J. Disintegration of measures and contractive 2 -variable weighted shifts, Integr. Equ. Oper. Theory 59, 281-298, 2007.
[86] Zhu, K. Operator Theory in Function Spaces, Mercel Dekker, INC., New York and Basel, 1990.
[87] Wolfram Research, Inc. Mathematica, Version 5.1, Wolfram Research, Inc., Champaign, IL, 1996.

[^0]: Bimalendu Kalits
 Place: Tezpur
 Bimalendu Kalita
 Date: 24/07/20/3

