
CENTRAL LIBRARY 
j 

1 . EZPUR U\~iV~:::f' ~,.-

ccesshn No. "1 2.. 15_ 



SOME CAscADE MODELS IN THE 

THEORY OF RELIABILITY 

A Thesis submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

Chumchum Doloi 

Registration No. 020 of2010 

Department of Mathematical Sciences 
School of Science and Technology 

Tezpur University, Assam 
Tezpur- 784028, India 

May, 2012 



Abstract 

Our effort in this research work is to develop different cascade reliability models. 

The evaluation of reliability· is considered mainly for cascade systems. For this purpose 

several distributions are considered namely, exponential, Weibull, gamma, Rayleigh, 

Lindley, uniform and two-point distribution. 

First, the attenuation factor K is taken to be a uniform random variable in (0, \). 

Then unconditional reliability of the system is given by the expected value of Rn(K), 

where expectation is taken w.r.t. the distribution of K . Then some well known 

distributions namely, exponential, gamma and Weibull distribution are used to evaluate 

the reliability of n -cascade system. Again stress-strength is considered as a mixture of 

either two exponentials or two Rayleighs or two Weibulls, reliability of n -cascade 

system is obtained. 

More precisely an n -cascade system is also used where components may fail in 

different ways. For the estimation of cascade system reliability three failure models have 

been considered. Further, two distributions viz. exponential and Rayleigh are used to find 

out the expressions of reliability for all the failure models. Again stress-strength 

distributions are considered as one parameter exponential and the parameters involved 

are assumed to be random with known prior distribution. Two cases are considered i.e. (i) 

strength parameter is random but stress parameter is a constant and (ii) stress parameter is 

random but strength parameter is a constant. In each case, two prior distributions viz. 

uniform and two-point distributions are considered for the parameter(s) involved. The 

system reliability of a 2-cascade system is obtained for all the cases. 

An n -cascade system with P(X < Y < Z) is considered where Y is the stress on 

the component subjected to two strengths X and Z . Reliability expressions of an n

cascade system is obtained when stress-strength both are either exponential or Rayleigh 

or Lindley distribution. 

Often the expressions of reliability are not simple enough to give an idea of their 

change with different stress-strength parameters. Hence, a few numerical values of the 



reliabilities are tabulated against the parameter(s) involved, in each chapter, to show the 

effect of various parameters on the system reliability. The graphical representations are 

described for a particular set up. 
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Chapter 1 

1 Introduction 

Reliability theory is a well established scientific discipline with its own principles and 

methods for solving its problems. Probability theory and mathematical statistics playa major 

role in most of the problems in reliability theory. In fact reliability is often defined in terms 

of probability. Standby redundancy is a well known technique to increase the reliability of a 

system. In standby redundancy, it is assumed that a component, taking the place of a failed 

component works exactly in the same environment, i.e. it faces the same stress. But it may 

not be necessarily so. An n -cascade system is a special type of n -standby system in which a 

new component faces k (called an attenuation factor) times the stress on the preceding 

component. The purpose of this thesis is to estimate the reliability of various cascade models 

using different stress-strength (S-S) distributions. 

1.1 Background of the study 

Reliability theory uses existing mathematical methods as well as develops new once. 

There are a large number of defmitions of reliability scattered in the literature. They defined 

reliability in different ways and in different contexts. Some of them are: 

I. 'Reliability is the probability of a device performing its purpose adequately for the 

period of time intended under the operating conditions encountered' (Radio- Electronics

Television Manufactures Association, 1955, cf. Barlow and Proschan, 1965). 

'" 
Symbolically, R(t) = f d F(x) 
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where F(t) represents the failure time distribution of the system. 

2. 'Reliability is the integral of the distribution of probabilities of failure-free operation 

from the instant of switch-on to the first failure (cf. Polvoko, 1968). 

3. 'The reliability R(t) ofa component (or a system) is the probability that the component 

(or system) will not fail for a time t (cf. Polvoko, 1968). 

Reliability models, in general, can be broadly divided into two groups: (i) Time 

dependent models and (ii) Stress-strength models or interference models. 

In the time dependent models time is the important random variable and different 

measures of reliability theory such as Reliability or Survival function, Availability, 

Maintainability, Failure rate etc. are obtained from Time-to-Failure (TTF) distributions of the 

unit (system or component) under study. In such models the underlying idea is that the 

characteristics of the unit gradually changes and failure occurs when it goes beyond the 

~pecified limits. Ordinarily, here failure probability is an increasing function of time and 

similarly other measures are also functions of time (except failure rate for exponential TT F 

distribution). Majority of studies in reliability theory are based on the time dependent 

models. A case in favor of such models is presented by Disney and Seth (1968), Yadav 

(1973), Kapur and Lamberson (1977), Dhillon (1980) and many references cited by them. 

Some such models are considered in the present study. In time dependent models the time is 

the dominating factor and in interference models stress is the dominating factor. Throughout 

this thesis strength and stress are considered to be continuous random variable, though they 

may be discrete also (cf. Charalambides, 1974, Winterbottom, 1974). 

The word 'stress' and 'strength' used in the reliability theory in a broader sense, 

applicable in many situations well beyond the traditional, mechanical or structural systems. 

In reliability theory by 'stress' we mean any agency which tends to produce failure of a 

component, a device or a material. The term agency may be a mechanical load, 

environmental hazard, electric voltage etc. The 'strength' represents an agency resisting 

failure ofthe system and it is measured by the mean stress required to cause the failure of the 

2 
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system. The Interference theory is based upon the fact that when the strength of a component 

or a device or a material is less than the stress imposed on it, the failure occurs (Dhillon 

1980). Here the reliability R, ofa component (or system) is defined as the probability that the 

strength of the component, say X (a r.v), is not less than the stress, say Y (another r.v), on it. 

Symbolically, 

R = P(X ~ Y) (1.1.1) 

The S-S models are also called interference models because here the reliability can be 

represented in terms of interference area between stress and strength densities. Once the 

respective distributions of stress and strength are known (or estimated), one can obtain 

reliability of a system by employing equation (1.1.1). 

If f(x) and g(y) are the densities of X and Y respectively then from (1.1.1) 

(1. 1.2) 
'" 

= f F(y)g(y)dy 

(1.1.3) 
'" 

= f G(x)f(x)dx 

where F(x) = 1 - F(x), F(X) and G(Y) are the cumulative distribution functions of X and 

Y, respectively. 

The distribution of stress and strength which are commonly used in reliability theory 

are exponential, gamma, normal, Weibull, log-normal, Rayleigh and Lindley distributions. 

Different distributions are used in different situations. 

3 
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Mostly in S-S models each stress-strength is represented by a single distribution, but 

in some cases this may not be suitable and a mixture of distributions may represent them 

better. Sometimes, the distributions with fixed parameters may not represent the stress and/or 

strength distributions adequately. For example, if a particular component, having certain 

strength distribution is manufactured in different lots, then for a particular lot the parameters 

of the strength distribution may remain fixed but may vary from lot to lot. In such situations 

the parameters of the strength distributions may themselves be taken as random variables. 

Similar reasoning can be given for the distribution of stress also. So stress and strength may 

be represented by compound distributions. 

In the' studies of S-S models, generally stress-strength of a component is supposed to 

be independent random variables. But in many situations they may be correlated also. The 

stresses and strengths together and even stress and strength separately may be correlated. 

Increase in the complexity of jobs to be performed increases the complexity of the 

device, increasing the number of components in it and the possibility of inter-actions. In 

general, as the number of components increases the reliability of the system decreases. But at 

the same time the reliability must be kept high in order to meet the increasing importance of 

the task. Better maintenance results in higher reliability, but some times it is not possible to 

achieve high reliability goals with any amount of maintenance. In such cases the only 

alternative way to achieve high reliability is to incorporate redundancy. 

Redundancy is the technique in which more components (or units) than the minimum 

required for normal operations of the system are attached to it in such a way that even if only 

a few units are working the system works. Pieruschka (1963) has described the following 

forms of redundancy: 

(i) Parallel redundancy 

(ii) Standby redundancy 

4 
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In a parallel redundant system n components are connected in a parallel arrangement, 

and to start with all n components are operating. The system continues to operate till at least 

k of the components are operating. The system is also referred to as k -out-of- n system. 

When k = n, it is the series system, when k = 1 it is called completely parallel system (LJoyed 

and Lipow, 1962). 

Standby redundancy is a well known technique to increase the reliability of a system. 

Here a number of redundant components are attached to one or more essential components of 

the system. If a particular component along with its redundant units is called one set, the 

standby system works till at least one component in each set is in working order. In general, 

in standby redundancy, it is assumed that a component, taking the place of a failed 

component works exactly in the same environment, i.e. it faces the same stress. But it may 

not be necessarily so. 

In addition to the redundancy discussed above there is another type of redundancy i.e., 

'Cascade Redundancy' (cf Pandit and Sriwastav, 1975). Cascade reliability is a special kind 

of standby system for stress-strength models. An n -cascade system may be described as 

follows: 

The system consists of n components, arranged in order of activation. The component 

strengths are identically distributed independent random variables following a specified 

distribution. The system is working under impacts of random stresses. Initially the first 

component only is active and other (n -1 ) remain as standbys, i.e. when a stress comes on the 

system, it is only this first component that initially is subjected to it. If this random stress 

exceeds the strength of this component, it fails and the second component in order gets 

activated. However, the stress to which this new component is subjected to k times the stress 

on the previous component. If, under the circumstances, the second component fails, the third 

component in order succeeds it, to face again a changed stress. The chain continues until, at 

some stage the residual stress becomes less than the strength of the currently activated 

component or all the components in the system have failed. In the first case the system itself 

survives, though possibly with the less of a few components; in the later case, the system 
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fails. The attenuation factor k (an integer constant) by which the stress keeps on changing in 

the successive steps may be constant or random variable. Such a system is termed as an n

cascade system. 

Let XI'X2' .. Xn be the strengths of the n components in the order of activation and 

r; be the stress applied to the first component. If r; ~ XI ' the component works; otherwise it 

fails and the second component, with strength X 2 , takes its place. However the magnitude of 

the stress coming on the second component will be Y2 = k r; , where k is an integer constant. If 

Y2 ~ X 2 ' the second component works; otherwise it also fails and the third component will 

now be subjected to a stress Y3 = k 2 Y2 • In general, if the ilh component fails, the (i + 1 yh 

component, with strength X'+I' takes its place and is subjected to a stress Y:+I = k' Y:, 

i=I,2, ... , (n-l). The system fails only if all the n components in cascade fail. 

In the above discussions, only the time dependent failure models are considered. But as 

remarked earlier a realistic model should consider both stress and time. For example, though 

the system's failure depends upon the magnitude of stress but it may also depend on the 

number of stresses impinging to the system in a particular interval of time period. Thus 

considering the factors- stress and time, certain type of models can be considered which are 

known as Stress-Strength-Time (SST) models (cf. Kapur and Lamberson, 1977). 

The S-S models discussed so far, assume that the stress and strength are random 

variables. However, more generally, they may be stochastic processes. Taking the system 

strength and stress on it as two stochastic processes X(t) and Y(t) respectively, the 

reliability of the system can be obtained from the 'Difference-process', viz. 

Z(t) ={ X(t) - Y(t)} 

The system fails when, for the 'first-time', the stochastic process Z(t) crosses zero from the 

above (Sriwastav and Pandit, 1978). 
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1.2 Objectives 

This research aims to develop some cascade models to estimate the system reliability. 

For this purpose several distributions ~re considered viz. exponential, gamma, Weibull, 

Rayleigh, Lindley, uniform and two-point distribution. The main objectives of this thesis are 

outlined as follows: 

• Cascade system with random attenuation factor 

Here we have made an n -cascade system for which the attenuation factor k is a 

uniform random variable in (0,1). For this purpose, several stress-strength 

distributions have been considered to obtain the expressions of the unconditional 

reliability of the system. 

• Mixture of distributions in cascade system 

In this study, n -cascade system has been taken when stress-strength of each 

component are assumed to be mixture of two distributions with different mix

parameters. Various distributions have been considered to describe the expression for 

reliability of n -cascade system. 

• Cascade reliability in different types of failure models 

For the estimation of cascade system reliability three failure models have been 

considered here. In particular when stress-strength of the components follows 

different distributions, expressions of reliability have been worked out for all the 

models. 

• Cascade model with random parameters 

Here we have made a 2-cascade system by considering stress-strength are exponential 

variates and one ofthe parameters (stress or strength) be a random with a known prior 

distribution, other parameter remaining constant. Some well known probability 

distributions viz. uniform and two-point distribution has been taken as the prior 

distributions; reliability of the 2-cascade system is obtained. 
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• An n -cascade system with P(X <Y <Z) 

Here a general model is developed for n -cascade system with P(X < Y < Z), where 

Y is the stress on the component subjected to two strengths X and Z . The reliability 

expressions of an n -cascade system is obtained when the stress-strength of the 

components follow particular distributions. 

1.3 A Brief Survey on Reliability Models 

A review of some of the works of other authors in the interference theory, which are 

relevant to the work done in the present thesis, follows: 

A system may be a single component system or a multicomponent system. In a 

muIticomponent system one may be interested in fmding reliability of each component, each 

of which may be treated as a system itself and then knowing the structure of the system and 

using probability logic the reliability of the complete system may be evaluated. 

Pandit and Sriwastav (1975, 1978) have considered n -cascade system and obtained the 

expressions for reliability where stress and strength distributions are exponential, gamma and 

normal, assuming the attenuation factor, k to be a constant and also when it is random. 

Pandit and Sriwastav (1976) have obtained the distribution of the number of attacks to 

failure for a cascade system and called it generalized geometric distribution. They have also 

considered the cascade system. subjected to stress arriving at a random process, viz. Poisson 

process and obtained with reliability expressions for 2- and 3-cascade system. Gogoi et al. 

(2010) has considered n -standby S-S system where the number of impacts of stresses faced 

by the system is a Poisson process. They obtained the system reliability when both stress and 

strength follow either exponential or gamma or normal or Weibull distribution. 

Kapur and Lamberson (1977) studied the time dependent S-S model by considering 

repeated application of stress and also the deterioration of strength with time. They have 
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obtained the expression for reliability of the system for a single component by considering 

the deterministic and random cycle times. Gopalan and Vankateswarlu (1982) have 

considered the reliability of time dependent 2-cascade and 3-cascade system using S-S 

models by considering each of the stress and strength variables as deterministic or random 

fixed or random independent. They assume the number of cycles in any period of time' t ' to 

be deterministic. Assuming attenuation factork, 's to be constants they have obtained the 

expressions for system reliability where stress and strength distributions are exponential. 

Beg (1980) has considered the two-parameter exponential distribution for stress and 

strength random variables to derive the MVUE of R. Beg (1980) obtained MVU and Bayes 

estimators for a n -cascade system where X and Yare exponential. A cascade reliability 

model for n -warm standby system is considered by Dutta and Bhowal (1999) and cascade 

model with imperfect switching is considered by Sriwastav (1992). 

Kakaty (1983) considered the mixture of distributions in stress-strength model for 

standby system and obtained the system reliability when the stress and strength are the 

mixture of two exponential, two gammas, two Weibull distributions and an exponential and a 

gamma distribution. Cohen (1965), Harris and Singpurwalla (1968), Mann et al. (1974) have 

considered time to failure distributions as mixtures of distributions. 

Shooman (1968) has assumed that the parameter of strength distribution is a 

deterministic function of time. Tarman and Kapur (1975) have assumed that the parameters 

of the stress-strength distributions are variables but not random variables. Sriwastav and 

Kakaty (1980) have considered that the parameters (stress or strength) of the stress-strength 

distributions are random variable. Although all the parameters involved may be taken as 

random variables, they have considered only one parameter random with a known prior 

distribution, at a time, and the others remain constants. Then, from compound distribution of 

stress-strength they have obtained the reliability of the system. 

Singh (1980) has considered the estimation of R = P(XI < Y < X 2 ) where XI and 

X 2 are independent random stress variables and Y is independent of XI and X 2 is a random 
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strength variables. Chandra and Owen (1975) obtained the estimation of reliability of a 

component subjected to several different stresses. They 'obtained the estimate 

R = P[Max(~'Y2'''''Yk) < X] when (~'Y2""'~) are i.i.d. normal distributions and X as an 

independent normal distribution. Hanagal (1997) has estimated the reliability of a component 

subjected to two different stresses which are independent of the strength of a component. In 

another paper (2003) he estimated the system reliability in multicomponent series stress

strength models. 

Rekha et al. (1988) obtained the reliability of n -cascade system where stress and 

strength are log-normal and Weibull. In another investigation Rekha et al. (1992) have 

derived an expression for the reliability of a single component system where the strength of 

the component and the imminent stress on the system are random and follow non-identical 

probability distribution. They assumed that after successive arrivals, the strengths on the 

successive components are attenuated by specified deterministic factors. They have 

considered survival function for the stress and strength following exponential distribution. 

Raghavachar et al. (1983) have considered survival functions under stress attenuation 

10 cascade reliability. Rekha and Shyam Sunder (1997) have derived an expression for 

survival function for the strength attenuation system with stress-strength following 

exponential distribution. They have obtained the lower and upper bounds when the strength 

attenuation factor k, • = k, . 

1.4 Organization of the thesis 

This thesis consists of seven chapters followed by references. The organization of the 

thesis is as follows: 

Chapter I is the introductory one, provides background of the present study and 

objective ofthe thesis. It also provides a brief survey on the reliability models. 
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Chapter 2 deals with an n -cascade system for which the attenuation factor K is a 

random variable distributed uniformly over (0, I). Here the unconditional reliability of the n-

cascade system is given by the expected value of Rn(K), where expectation is taken w.r.t. 

the distribution of K. Various stress-strength distributions like exponential and Weibull have 

been considered to evaluate the unconditional reliability of the system. We also consider the 

case when stress follows gamma and strength follows exponential distribution. For some 

particular values of the parameters involved numerical values of the reliability are tabulated 

for each case and graphical representations are described for a particular set up. 

Chapter 3 demonstrate the estimation for reliability of an n -cascade system where 

stress-strength of each component can be represented by a mixture of distributions. 

Considering that each stress and strength is a mixture of either two exponentials or two 

Rayleighs or two Weibulls, reliability of n -cascade system, n ~ 3 is obtained. A few 

numerical values of reliabilities R. , R2 , R3 are tabulated and reliability graphs are also drawn. 

In Chapter 4, an attempt has been made to estimate an n -cascade system where 

components may fail in different ways. For the estimation of cascade system reliability three 

failure models have been considered i.e. (i) an active component faces m different stresses 

and it fails if the strength of the active component is less than anyone of the stresses 

and after the failure of the first component, the second component faces m stresses which 

are k times the corresponding previous stresses and so on, (ii) for the working of an 

active component the m stresses on the component lie in an interval (a
J

, h
J

) • The component 

fails even if one of stresses on the component falls outside the specified limits and (iii) this 

model is similar to the model II except that the components are not identical. In particular 

when stress-strength of the components are either exponential or Rayleigh distributions, 

expressions of reliability have been worked out for all the models. Some numerical values of 

reliability have also been presented in tabular form for some selected values of the 

parameters. Some graphs are plotted for selected values of the parameters to facilitate the 

direct reading of reliability. 
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Chapter 5 provides the reliability estimation of 2-cascade system where stress strength 

are exponential variates and one of the parameters (stress or strength) is assumed to be a 

random with a known prior distribution, other parameter remaining constant. Using the 

derived compound distribution, reliability of the 2-cascade system is obtained. Uniform and 

two-point distributions are taken as the prior distributions for the parameters concerned. For 

all the cases some numerical values of reliability are tabulated. To make the things clear, a 

few graphs are also drawn. 

In Chapter 6, an n -cascade system with P(X < Y < Z) where Y is the stress on the 

component subjected to two strengths X and Z has been demonstrated. Reliability 

expressions of an n -cascade system is obtained when stress-strength both are either 

exponential or Rayleigh or Lindley distribution. Another two cases are considered; ftrst, 

when both strengths are one parameter exponential and stress follows Lindley distributions 

and second, when both strengths are one parameter exponential and stress follows two 

parameters gamma distributions. Various reliability parameters have been computed and 

analyzed by tabular illustrations and some graphs are also drawn for selected values of the 

parameters. 

The last Chapter 7 includes the summary of the thesis and future works. The references 

and the tables are cited in the text ofthe thesis are appended at the end. 

******** 
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Cascade System with Random Attenuation Factor 

2.1 Introduction 

Cascade system were first developed and studied by Pandit and Sriwastav (1975). 

Cascade reliability is a special kind of standby system for stress-strength models. Tn a 

standby system, i.e. a system with standby redundancy, there are a number of components 

only one of which works at a time and the others remain as standbys. When an impact of 

stress exceeds the strength of the active component, for the first time, it fails and another 

from standbys, if there is any, is activated and faces the impact of stresses. The system fails 

when all the components have failed. In cascade system, the strength of the components are 

independent and stress on a component is k times the stress on its preceding component, 

called attenuation factor. 

Attenuation factor is generally assumed to be a constant for all the components or to be 

a parameter having different fixed values for different components (Pandit and Sriwastav, 

1975). But an attenuation factor may be a random variable also (Pandit and Sriwastav, 1978). 

Here we have considered an n -cascade system for which the attenuation factor ' K' is a 

random variable. Then, instead of talking about the reliability of the system we talk about the 

expected reliability of the system. The expectation is taken W.r.t. the distribution of K. Much 

of the materials of this chapter are based on Dolo i and Borah (2010). 

The organization of this chapter is as follows: In Section-2.2, the problem is 

formulated in mathematical terms. In Section-2.3, a simple case is considered when K is a 
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uniform r.v. in (0,1). In Sub-Sections 2.3.1, 2.3.2 and 2.3.3, all the distributions are assumed 

to be exponential, Weibull and exponential-gamma respectively to evaluate the expressions 

of the unconditional reliability of the system. Some graphs are plotted for each case in 

Section-2.4. To observe the change in the values of reliabilities with parameters involved, 

some numerical values of reliabilities are tabulated against the parameters involved in the 
~ 

Table 2.1, Table 2.2 and Table 2.3 (d Appendix) and results and discussions are given in 

Section 2.5. 

2.2 Mathematical Formulation 

Let us consider an n -cascade system and suppose that n components are numbered 

from I to n in their order of activation. Let X, be the strength of the ith component, in the 

order of activation, and when activated faces the stress 1'" i = 1,2, ... , n . For a cascade system 

with attenuation factor' K' (considered to be an integer random variable) 

(2.2.1) 

The reliability of the system is given by 

Rn (K) = R(l, K) + R(2, K) + ... + R(n, K) (2.2.2) 

(2.2.3) 

Now, if the attenuation factor, say' K', is a r.v. then Rn(K) is the conditional 

reliability of the system on the condition that K = k . Let h(k) be the density function of 

K. Then, unconditional reliability of the system IS given by the expected value 

of Rn(K), where expectation is taken w.r.t h(k) , 

i.e. Unconditional reliability of the n -cascade system = E[R)K)] 

(2.2.4) 
1=1 
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'" 
where E[R(i,K)] = J R(i,k)h(k)dk (2.2.5) 

-<IJ 

Thus, when the attenuation factor is a r.v. we talk of expected reliability of the system instead 

of the reliability of the system. 

We may note that R(l, K) is independent of 'K' and hence 

E[R(l, K)] = R(l, K) = R(l), say (2.2.6) 

2.3 The Distribution of K is Uniform 

We consider here the case when' K' follows a uniform distribution in ( 0,1), 

I.e. h( k) = 1, 0 ::s k ::s I (2.3.1) 

Then from (2.2.5) 

I 

E[RU,K)]= J R(i,k)dk, i = I,2, .. .n (2.3.2) 
o 

The strength (X) and stress (Y) may follow any distribution. We consider here only 

three cases viz., (1) when X, and Y, both are exponential variates, (2) when X, and Y, 

both are Weibull variates and (3) when X,'s are exponential variates and Y,'s are gamma 

variates. 

2.3.1 Exponential Stress-Strength 

Suppose X, and Y, are i.i.d. as exponential variates with mean (1/ A) and (1/ f..l), 

respectively. Then for p = ~ 
f..l 

R(I) - 1 d d - (l+p)' (In epen entof K), (2.3.3) 

IS 
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R(2, K) = ( 1 ) _ ( 1 ) 
(1 + pK) (1 + p + pK) 

(2.3.4) 

R(3 K) = ( 1 ) _ ( 1 ) _ ( 1 ) + ( 1 ) 
, (l+pK2) (l+p+pK 2) (l+pK+pK2) (l+p+pK+pK 2) 

(2.3.5) 

So, from (2.2.5), (2.3.4), and (2.3.5) after some simple calculations we get 

E[R(2, K)] = ~ IOg{ ~1 + p y)} 
P 1+2p 

(2.3.6) 

tan- l (p)1/2 - tan-I ~ 1 ()"2 
.JI+P 1+ p 

( )
1/2 ()1/2 

and E[R(3,K)]=p-1/2 - ~tan-13 ~ + ~tan-I ~ 
4-p 4-p 4-p 4-p 

(2.3.7) 

t -13 P -I P 2 ( )112 ( )1/2 + ---=== an -- - tan --
~4+3p 4+3p 4+3p 

For i~4, closed form expression could not be obtained. Of course, one may use 

numerical integrations. 

Then, the unconditional reliability (or expected reliability), R2 for a 2- cascade system, 

from (2.2.4), is given by 

R2 = R(l) + E[R(2, K)J (2.3.8) 

where, R(1) and E[R(2,K)] are given by (2,3.3) and (2.3.6), respectively. 

Similarly, the unconditional reliability R3 for a 3- cascade system, is given by 
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R3 = R2 + E[R(3,K)] (2.3.9) 

A few values of R" R2 and R3 are tabulated in Table 2.1 (cf. Appendix) for different 

values of p . 

2.3.2 Weibull Stress-Strength 

Suppose X, and 1': are Weibull distribution with p.d.f. 's 

f{x) = cxc
-' exp{-(xler}/e c 

, x> 0 

g(y) = ayo-' exp{-(y I }.y}/ AO 
, y> 0 

Then 

'" 
R(I) = f exp[ -{t + (A I er t clo

} ]dt , (2.3.10) 
o 

'" '" 
R(2) = f exp[ -{t + (Ak I er t CIO

}] dt - f exp[ -{t + {(AI er + (M I er}tCIO
} ]dt (2.3.11) 

o o 

So from (2.2.5) and (2.3.11) we get 

E[R(2,k)] = s[I exp[ -{t + (Ak I er t cIO
}] dt - J exp[ -{t + {(A I er + (M I er }tclo

} ]dtjdk 
o 0 0 

(2.3.12) 

For i ~ 3 closed form expression could not be obtained. Using the Gauss Laguerre 

Integration method and Trapezoidal rule we have evaluated R(1) and Er R(2, K)] for 

different values of c , e, a and A. 

Then the unconditional reliability, R2 is given by (2.3.8). 

A few values of R, and R2 are tabulated in Table 2.2 (cf. Appendix) for different 

values of c, e, a, A . 
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2.3.3 Exponential Strength and Gamma Stress 

Suppose, X, for all i, are i. i.d. exponential variates with mean ( ~ ) and Y, for all i, 

are i.i.d. gamma variates with scale parameter unity and degrees of freedom I, respectively. 

Then, 

R(I) _ 1 
-(l+A)' 

(2.3.13) 

R(2 K) = 1 ____ ----:-
, (1 + AK)' (1 + A + AK)' 

(2.3 .14) 

So, from (2.2.5) and (2.3.14), after some simple calculations we get, 

E[R(2,k)]= 1 [2(1 + A)-'+I -1- (1 + 2A)-'+I] 
A(-l + 1) 

(2.3.15) 

Then the unconditional reliability R2 can be easily obtained by the expression (2.3.8). 

For some particular values of I and A we have tabulated the values of RI and R2 In 

Table 2.3 (cf Appendix). 

2.4 Graphical Representations 

Some graphs are plotted in Fig. 2.1 to 2.3 by taking different parameters along the 

horizontal axis and the corresponding reliability along the vertical axis for different 

parametric values. Fig. 2.1 signifies that R2 decreases steadily with increasing p. These 

graphs may be used to read the intermediate values directly. For example, for p =0.25, we 

get from the graph, R2 =0.9643 whereas by actual calculation we get R2 =0.9633. The 

difference is only 0.10%. Fig. 2.2 represents the curves of RI which were drawn against c 

for different parameter values of e, a and A. From these graphs we get RI =0.8542. For 
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c=1.5, 8=10, a=6, A =2 while the computed value is R, =0.8536. The difference is only 

0.06%. Taking I along the horizontal axis and the corresponding R2 along the vertical axis 

graphs are plotted for different values of A in Fig. 2.3. One can read the values of R2 for 

intermediate values of I, from these graphs. Thus, for A =0.2 we get R2 =0.7731 for 1=5 

from graphical extrapolation, while the computed value is Rz =0.7716. The difference is only 

0.]5%. 
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Fig. 2.1 Exponential Stress-Strength: Graph for Rz 
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Fig.2 ,2 Weibull Stress-Strength: Graph for R, for different fixed values of e,a and A i.e. 

1.00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

rE 0.55 

0.50 

0.45 
--, R

2
(OA) 

0.40 .. . R
2
(O.5) 

0.35 IR,(06) 
0.30 

2 3 4 5 6 

Fig. 2.3 Exponential Strength and Gamma Stress: Graph for R2 for different fIXed values 
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2.5 Results and Discussions 

For some specific values of the parameters involved in the expressions of R" i=1,2,3 

we evaluate R1 , R2 , R3 for exponential distribution for different values of p and R1 , R2 for 

Weibull and exponential-gamma distributions from their expressions obtained in Sub-Section 

2.3.1-2.3.3. The computation is carried out using the software Matlab 6. 

Table 2.1 (cf. Appendix) presents a few values of R1 , R2, R3 for different values of 

the parameter p for exponential distribution. From the table it is clear that reliabilities 

decreases with increasing values of p . 

A few values of R1 , R2 are tabulated for Weibull distribution, in Table 2.2 (cf. 

Appendix) for different values of the parameter c, (), a, A . Here the change in the values of 

reliability is as expected. The increase in the values of shape parameter increases the 

reliability. But increase in the values of scale parameter decreases the reliability. 

Table 2.3 (cf. Appendix) presents some values of Rl and R2 for exponential-gamma 

distributions. Here the values of Rl and R2 decreases with increasing values of I and A 

which is expected as well. 

******** 
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Mixture of Distributions in Cascade System 

3.1 Introduction 

Standby redundancy is one of the means to achieve highly reliable system with less 

dependable units. In an n -standby system, initially there are n components, one of which is 

working and the remaining ( n -1) are standbys. Whenever the working component fails one 

from standbys takes its place and the system works. This goes on. The system fails when all 

the components have failed. Let XI'X 2 ,,,.,Xn be the strengths of n-components in the order 

of activation and let 1';,1';,,,., Yn are the stresses working on them. In cascade system after 

every failure the stress is modified by a factor k which is given by the equation (2.2.1). 

Often, it is assumed that stress and strength can be represented by a single distribution. 

But in general, stress and strength may be the effects of many random causes, each having its 

own distribution. Hence, the distributions of stress-strength may be better represented by 

mixtures of distributions rather than single distributions. 

If there are 'I' different stresses working on the system simultaneously, and the 

system's failure may be due to either of the 'I' stresses, then the stress distribution G(y) can 

be represented by a mixture of' I' distributions G/y), j =1,2, ... , I as 

f 

G(y) = L q J G) (y), 0 5, q J S; 1 
)=1 
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where G/y) is the c.d.f. of the j'h stress and q}, J=I,2, ... , I IS the corresponding mix 

parameter (Mann et aI., 1974). 

Similar reasoning can be given for the distribution of strength also. Various factors 

such as raw materials, shape, manufacturing process etc., which determines the strength (X) 

of a system, may be random in nature and as such can be represented by random variables 

following different distributions. The resultant of these distributions may not be adequately 

represented by a single distribution. On the other hand it may also happen that though the 

system is taken as one unit, actually it consists of several components having their own 

strength distributions which cannot be converted into a single distribution. Then like a stress 

distribution, it may be possible to represent a strength distribution, F(x), by mixture of 

distributions, as 

m m 

F(x) = LP,F,(x), 0 S P, S 1 LP, =1 
1=1 1=1 

where F, (x) is the c.d. f. of the ith factor of the strength and P" i = 1,2, ... , m is the 

corresponding mix parameter. 

Ahmad and Ali (2009) have derived a method of combining two Weibull distributions. 

It showed how to produce a mixture distribution by including a mixing parameter, which 

represents the proportions of mixing of the two component Weibull distributions. Nassar 

(1988) has obtained two properties characterizing mixtures of exponential distributions. 

Abraham and Nair (1997) have obtained two characterizations of the mixtures of 

exponential, Lomax and beta densities through relationship between (i) failure rate MRL and 

(ii) second moment of residual life and failure data. 

Some authors (Cohen, 1965, Harris and Singpurwalla, 1968, Kao, 1959 and Mann et 

aI., 1974) have considered time-to-failure distributions as mixture of distributions. Mann et 

al. (1974) pointed out; in support of using a mixture of distribution that a single time 

distribution represents either a random (time independent) or a wear out (time dependent) 

failure but in practice a unit can suffer either of these failures. 
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Some of the results of this chapter are based on Doloi and Borah (2012). Here we have 

considered a 2-cascade and 3-cascade systems only. It is assumed that the strength 

distribution of each component can be represented by a mixture of two distributions. 

Similarly, the distribution of stress on each component can be represented by a mixture of 

two distributions. The reliability of the system, ' Rn " for n < 4 is obtained in terms of two 

distributions and density functions, in the mixtures. 

The organization ofthis chapter is as follows: In Section-3.2 mixture of distributions is 

applied to n -cascade system. In Section-3.3 different specific distributions are considered for 

stress-strength. Generally it is assumed that the distributions that are mixed belong to same 

family. In Sub-Sections 3.3.1 to 3.3.3, the reliabilities of a cascade system are obtained by 

taking it into consideration that each stress and strength is a mixture either of two exponential 

or of two Rayleigh or of two Weibull distributions. Reliabilities of a cascade system for 

particular cases of exponential, Rayleigh and Weibull distributions have been obtained In 

Sub-Sections 3.3.1(a), 3.3.2(a) and 3.3.3(a). Some graphs are plotted for each case In 

Section-3.4. Some numerical values of reliabilities for. particular cases given above are 

tabulated against the parameters involved in the Table 3.1, Table 3.2, Table 3.3 and Table 

3.4 (c£ Appendix) and results and discussions are given in Section-3.5. 

3.2 Mixture of Distribution: An n-Cascade System 

Here we have considered an n -cascade system in which the strength X"X2, ... ,Xn are 

i.i.d. with p.d.£ f(x) which is a mixture of two densities f'(x) and f"(x) with mlX 

parameters p' and p" , i.e. 

(3.2.1) 

By the definition of a cascade system the stress on the ith component, Y, = K'-· Yl' 

where Y. is the stress on the first component. Here we assume that the density of r; is a 

mixture of two densities g'(y.) and g"(y.) with mix parameters q' and q", i.e. 
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(3.2.2) 

Now the marginal reliability R(l), R(2), R(3) , ... , R(n) may be obtained as 

0) 

R(l) = J F(Yl)g(Yl)dYl (3.2.3) 

0) 

R(2) = J F(YI )F(kyl) g(Yl )dYl (3.2.4) 

0) 

R(3) = J F(Yl)F(kyl)F(eYl)g(Yl)dYl (3.2.5) 
-0) 

0) 

R(4) = J F(Yl)F(kyl)F(k
2
Yl)F(eYl)g(Yl)dYl (3.2.6) 

Similarly 

0) 

R(n) = J F(Yl)F(kyl)F(eYl)··· F(e-1Yl) g(Yl)dYl (3.2.7) 

The reliability of an n -cascade system is given as 

Rn = R(l) + R(2) + ... + R(n) , (3.2.8) 

where r th component marginal reliability may be given as 

(3.2.9) 

3.3 Stress- Strength follows Mixture of Distributions 

In this section we have considered stress-strength both are mixtures of either two 

exponential or two Rayleigh or two Weibull distributions. In the following Sub-Sections we 

have obtained the reliability expression for 2-cascade and 3-cascade systems and some 

particular cases in each case, for n > 3, the expressions become too complex. 
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3.3.1 Mixture of two Exponentials: Cascade System 

Let the strength of the n components be i.i.d. with p.d.f. f(x) which is a mixture of 

two exponential distributions with parameters A and 8, respectively, i.e. 

f(x) = p'Ae-Ax + p"8e-fJX
, x ~ 0, A, 8> 0 (3.3.1 ) 

where p' and p" 'are mix parameters. 

Let the p.d.f. of 1'; be also mixture of two exponential densities with parameters J.I. 

and {J, i.e. 

(3.3.2) 

where q' and q" are mix parameters. 

Then marginal reliability R(l), R(2), R(3) of mixture of two exponential 

distributions may be obtained from (3.2.3), (3.2.4) and (3.2.5) respectively. 

R(l) = q'J.I.[-p_'- + -P-"-] + q" f3[-p_'- + -p_"-] 
A+J.I. 8+J.I. A+/3 8+/3 

[ 

p' +~ 
R(2)=ql/J[_p_'_+~- p'2 p.2 ]+q'fJ ?.k+/3 ()k+/3 

?.k+/J ()k+/J ?k+?..+/J ()k+/J+() p.2 

()k+()+/3 

_plpnql/J[ 1 + 1 ]_plpnqn/3[ 1 + __ 1 __ ] 
?.k+()+).1 ()k+A+/J ?.k+()+/3 ()k+A+/3 

p'2 _ p.2 

Ae+A+{J ()e+8+{J 
8 "3 P +_~~p~ ____ _ 

Ae+Ak+A+{J 8e+8+8k+{J 
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1 IIp' 
--~----+ + + ---~~-----
Ae+8+J1, 8e+A+J1, Ae+8k+J1, 8e+Ak+J1, Ae+Ak+8+J1, 

p" p' p' " , " , p 
-ppqJ1, 8e+8k+A+J1, - Ae+8k+A+J1, 8e +Ak+8+J1, 8e +Ak+A+J1, 

p" 

Ae +8k+8+J1, 

1 1 1 1 
--------+ + +---------
Ae+8+{3 8e+A+{3 Ae+8k+{3 8e+Ak+{3 

p' 

" p' p" p' , " "(3 p 
-ppq 8e+8k+A+{3 Ae+8k+A+{3 8e+Ak+8+{3 8e+Ak+A+{3 

p" 

Then from the relation (3.2.8) the reliabilities R2 and R) for the mixture of two 

exponentials of a 2-Cascade and 3-cascade system, may be obtained as 

R2 = R(l) + R(2) (3.3 .3) 

R) = R(1) + R(2) + R(3) (3.3.4) 

(a) Particular case of mixture of two Exponentials: Cascade System 

When A = J.l and 8 = (3 then 

R(1) = ~(p'q' + p"q"]+_l_(p"q'J1, + p'q",B] 
2 ,B+J1, 

R(2) =_l_[p'q' + p"q,,] __ 1_[p,2q, + p,,2q,,]_ p' [p"q'.u + p'q"{3]- p" [p"q'.u + p'q"{3] 
k+l k+2 .uk+.u+f3 f3k+f3+.u 

" , [1 p']' "f3[ 1 p"] + P q .u - + p q - ----....::....---
f3 k + .u f3 k + 2J.1 J.1 k + f3 .u k + 2f3 
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R(3) = _1_(Plql + P'q'] __ /_(Pl2ql + p"2q"]_ 2 1 (P'2q' + p"2q"]+ 2 1 (Pl3ql + p.3q"] 
k2 + 1 k + 2 k + k + 1 k + k + 2 

I n ,2 

P r _" I I '13] p r _" I + I '13] + p r -" I + I '13] + 
- f.1(e + 1) + 13 If' q j1 + p q - f3(e + I) + f.11f' q f.1 P q f.1(e + k + I) + fJ If' q f.1 P q 

w2 I n I W 

P r_" I + "13]+ pp r_"q'll + p'q"f3] + pp r_"q'f.1+p'q'f3]+ 
fJ(e + k + 1) + f.11f' q f.1 P q f.1(e + I) + .8(k + 1) If' ,... .8(e + I) + j1(k + I) If' 

" I [1 p.] I 'f3[ 1 pI] I. I 
pqf.1 f3e+j1- f3e+fJk+f.1 +pq j1e+f3 j1e+j1k+.8 -ppqf.1 

[ 
1 p' 1 p' 1 pI] "".8 --:--=----- + - + - - P P q 

.8e+f.1k+f.1 f3e+f.1k+2f.1 .8e+2f.1 .8k2+.8k+2f.1 f.1e+.8k+f.1 j1e+.8k+2f.1 

P + P + P 
[

I • 1 I 1 .] 

f.1 e + 13 k + .8 f.1 e + .8 k + 2.8 f.1 e + 213 f.1 e + f.1 k + 2.8 .8 e + j1 k + 13 .8 e + f.1 k + 2.8 

Then the reliabilities R2 and R3 for the mixture of two exponentials of 2-cascade 

and 3-Cascade system for the particular case It, = j.1 and e = {3 may be obtained from 

(3.3.3) and (3.3.4) respectively. 

A few values of R •. R2 and R3 are tabulated in Table 3.1 (cf. Appendix) for different 

values of k ,j.1,J..,e,{3,p'andq'. 

3.3.2 Mixture of two Rayleighs: Cascade System 

Let the strength of the n components be i.i.d. with p.d.f. I(x) which is a mixture of 

two Rayleigh distributions with parameters 0". and 0"2 , respectively, i.e. 

(3.3.5) 

Similarly, let the p.d.f. of Y. be also mixture of two Rayleigh densities with 

parameters 0"3 and 0"4' i.e. 
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(3.3.6) 

Then marginal reliability R(l), R(2), R(3) for mixture of two Rayleigh distributions 

may be obtained from (3.2.3), (3.2.4) and (3.2.5) respectively. 

[ 
pi p" p'2 p"2] 

(ela,2+ 1/a/) + (ela/+l/a/) - (l/a,2+ela,2+l/ a /) - (l/a/+ela/+l/a4

2) 

PIP"ql[ 1 1] p'p"q" 
- --2- 2 2 2 2 + 2 2 2 2 - --2-

a 3 (l/a2 +k la, +1/(3 ) (11 a, +k la2 +1/(3 ) a 4 

[010-,' +k' /0-,' + 1/0-.') + (1/0-,' +k' :0-,' + 1/0-.')] 

p' + p' 

(k4 IU l
2 +I1u/) (e lu/ +I1u/) 

, p.2 
R(3) = ~ ---:-~----,:-----..,.

u 3 (k 4 Iu/ +l/u/ +l/u/) 

4 2 2 2 
(k lUI +l/u l +I1<T3 ) 
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,3 ,,3 
P + p 

4 2 2 2 2 2 -4----:2:---2 --=--:::-2 -1-/--:-2 -1-/--:-2 ) 
(k /O'J +k /O'J +1/O'J +1/0'4) (k /0'2 +k /0'2 + 0'2 + 0'4 

1 1 1 
42 2 2+42 2 2+4222 2+ 

(k /O'J +1/0'2 +1/0'3) (k /0'2 +1/O'J +1/0'3) (k /O'J +k /0'2 +1/0'3 ) 

I p' 

(e /0'/ +e /O'J2 +l/O'/) (e /O'J2 +e /0'/ +1/O'J2 +1/0'/) 

- p'p"q' p' p' 

0'/ (e /0'/ +e /O'J2 +1/0'/ +1/0'/) (e /0'/ +e /O'J2 +1I0'J2 +110'/) 

p' p' 

(e /O'J2 +k2 /0'/ +1/0'/ +110'/) (e /0'/ +e /0',2 +110'/ +110'/) 

p' 

1 1 I 
4 2 I 2 2 + 4 I 2 I 2 2 + (k 4 I 2 k 2 I 2 1 I 2) (k lal +1 a 2 +1I(4 ) (k a 2 +1 a l +1/(4 ) a 2 + a l + a 4 

I p' 
+ 4222 2- 4222 2 2 

(k la l +k 1a-2 +1/(4 ) (k la-I +k 1a-2 +]/a-I +1/a-4 ) 

p'p"q" p" 
, 

p ----
a 4 

2 
(k 4 I a / + e I a,2 + 11 a / + 1/ a / ) 

p" 

(e la/ + e Ia-/ + lIal
2 

+ 1/a-/) 

p" 

(e I a-1

2 
+ e I a/ + 1/ a / + 1/ a-/) 

p' 

Then the reliabilities R2 and R) for the mixture of two Rayleighs of 2-cascade and 

3-Cascade system may be obtained from (3.3.3) and (3.3.4) respectively. 

(a) Particular case of mixture of two Rayleighs: Cascade System 
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[ I 

, ", 2 pp q (T3 

So, as usual the reliabilities R2 and R3 for the mixture of two Rayleigh distributions 

of 2-cascade and 3-Cascade system for the particular case (Tj= (T3 and (Tz = (T4 may be 

obtained from (3.3.3) and (3.3.4) respectively. 
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For some particular values of k, (}l' () 2' () 3' () 4' p' and q' we have tabulated the 

values of RI , Rz and R3 in Table 3.2 (cf. Appendix) 

3.3.3 Mixture of two WeibuUs: Cascade System 

Let the strength of the n components be i.i.d. with density f(x). Now f(x) IS 

assumed to be a mixture of two Weibull p.d.fs, as 

I( ) - p'A A-I _(X/A)A p"B 8-1 _(x/O)B 
x- AX e + 8X e , A () 

x~O, A,B,A,(»O 
(3.3.7) 

Similarly, let the p.d.f. of 1'; be also a mixture of two Weibull densities, given by 

(3.3 .8) 

Then marginal reliability R(1), R(2), R(3) of mixture of two Weibull distributions 

may be obtained from (3.2.3), (3.2.4) and (3.2.5) respectively. 

R(l) = I [pI e-(y,IA)A + pW e-(y,/9)B {~~ YI C-1 
e-(Y,/IJ/ + ~~ YI D

-
I 
e-(Y'/ fl)D jdY, 

R(2) = 1[1- p' e-(y,IJ.)A _ pW e-(y,/9)B ][pl e-(k y,/ A)A + p" e-(k y,/9)B] 

o 

[
qlC C-I _(y,/p)C + qWD 0-1 -(Y'/fl)Djd 
J-lC YI e pD YI e YI 

R(3) = 1[1- p' e-(y,IA)A _ p" e-<>,,/O)B ][1- p' e-(k y,/ A)A _ p" e-(k y,/9)B] 

o 
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Hence the expressions for R(l), R(2) and R(3) can be evaluated numerically. The 

reliabilities R2 and R3 for the mixture of two Weibulls of 2-cascade and 3-Cascade system 

may be obtained from (3.3.3) and (3.3.4) respectively. 

(a) Particular cases of mixture of two Weibulls: Cascade System 

(1) When shape parameters are equaJ i.e. A = C and B = D then 

where a 1 and a 2 can be evaluated numerical1y. 

where 1J"i = 1,2, ... ,8 can be evaluated numerical1y. 
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8 2 -8
3 

+84 -85 +86 -87 -88 -89 +810 +811 -812 +813 +814 +815 -816 -817 -818 +819 +820 -

8 21 + 822 + 8 23 - 824 - 825 + 826 + 827 + 828 

where 8" i =1,2 ... ,28 can be evaluated numerically. 

The reliabilities R2 and R3 for the mixture of two Weibulls of 2-cascade and 3-

cascade system when shape parameters are equal i.e. A = C and B = D, may be obtained 

from (3.3.3) and (3.3.4) respectively. 

A few values of RI , R2 and R3 are tabulated ill Table 3.3 (cf. Appendix) for 

different values of k,A,B,C,D,)1,A,e,/3,p' and q'. 

(2) When scale parameters are equal i.e. A =)1 and e = /3 then 

R(l) = IIp' e~Y"'" + p' e-(""'"l[ ~~ y,C-' e~Y"'>' + ~~ y, D-' e-(Y"Pl' ]dY, 

R(2) f""[1 ' -(y,/Jl)A n _(y,/{J)B][ , -(ky,IIl)A + w -(ky,/{J)B] = -pe -pe pe pe 
o 

[
q'C C-I -(y,/Jl)C qnD 0-1 -(Y'/{J)D]d 
f.1C YI e + fJO YI e YI 
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R(3) = J[1-p'e-(y,'jJ)A _p'e-(y,IP)B][I_p'e-(ky,'jJ)A _p'e-(kYJIP)B] 

o 

~, e-(k' y,1 jJ)A + p' e-(k' y,I(1)B ] [~~ YI C-I e-(y,IJI)C + ~~ YI /)-1 e-(y,1 p)D ]dYI 

Chapter 3 

The expressions for R(i), R(2) and R(3) can be evaluated numerically. The reliabilities R2 

and R3 for the mixture of two Weibulls of 2-cascade and 3-cascade system when scale 

parameters are equal i.e. A = fl and f) = f3, may be obtained from (3.3.3) and (3.3.4) 

respectively. 

A few values of RI , R2 and R3 are tabulated in Table 3.4 (cf. Appendix) for 

different values of k, A, E, C, D , fl, A, f), f3, P' and q'. 

3.4 Graphical Representations 

A few graphs of R I , R2 and R3 against p' for different values of q' are drawn in Fig. 

3.1(a)-3.1(t), Fig. 3.2(a)-3.2(t), Fig. 3.3(a)-3.3(t) and Fig. 3.4(a)-3.4(t) for corresponding 

parametric values involved. In Fig. 3.1 (a)-3.t (t), reliabilities are steadily increasing with 

p' whereas in Fig. 3.2(a)-3.2(t), Fig. 3.3(a)-3.3(t) and Fig. 3.4(a)-3.4(t) it is decreasing with 

increasing p'. 
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3.5 Results and Discussions 

A few selected values of the parameters involved in the expressions of R" i = 1,2,3 we 

evaluate R" R2, R3 for particular cases of exponential, Rayleigh and Weibull distributions 

and presented in Table 3.1, Table 3.2, Table 3.3 and Table 3.4. These numerical results for 

exponential distributions are obtained for specific values of p, A, (), {3 when 

A = p and () = {3. Similar results have been obtained for Rayleigh and Weibull 

distributions, when 0", = 0"3' 0"2 = 0"4 and shape parameters say A = C, B = D and scale 

parameters say A = p , () = {3 . In all the cases the attenuation factor k takes values 0.6 and 

0.8. 

From the Table 3.1 we see that, in case of mixture of exponential distribution, 

maximum value R,= 0.6667, R2 = 0.8803 and R3= 0.9619 have been obtained when p'=1 

and q' =0 for p = A = 1, () = {3, k =0.6 and {3 = 2. Minimum value R, =0.3333, R2 = 0.5006 

and R3= 0.6178 have been obtained whenp'=O and q'=1 for JI. =A=l,()={3, k=0.8 

and {3 = 2. It is noted that as q' increases, values of R" R2 and R3 decreases. 

For different values of k, 0""0"2'0"3'0"4'P' and q' we have tabulated the values of R" 

R2 , R3 in case of mixture of Rayleigh distribution in Table 3.2. From that table we see that, 

maximum value R,= 0.8000, R2 = 0.9712 and R3= 0.9977 have been obtained when p'=O 

and q'=1 for 0", = 0"3 = 1,0"2 = (}4' k=0.6 and 0"4 = 2. Minimum value R, =0.2000, R2=0. 
~. 

3486 and R3= 0.4934 have been obtained when p'=1 and q'=O for 0", =0"3 =1,0"2 =0"4' 

k =0.8 and 0"4 = 2 . It is noted that as q' increases, values of R" R2 and R) increases. 

Table 3.3 presents a few values of R" R2, R3 for different values of k, 

A,B,C,D,p,A,(),{3,p'andq' in case of mixture of Weibull distribution. From the Table 

we see that, maximum and minimum value of R,= 0.5382 (whenp'=O,q'=l) and 0.4475 

(whenp'=l,q'=O) for P=A=()={3=l, A=C=l,B=D, k=0.6 andD=2. Similarly 
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maximum value R2 = 0.8116 and R3 = 0.9576 have been obtained when p' =0 and q' =0 for 

J.1 == A == e == f3 = 1, A == C == 1, B = D, k = 0.6 and D =2. Minimum value R2 = 0.6094 

and R3=0.7546 have been obtained when p'=1 and q'=O for 

J.1 = A = e = f3 = 1, A = C == 1, B = D, k = 0.8 and D =2. It is noted that as q' increases, 

values of R2 and R3 decreases. Only RI increases with increasing value of q' . 

From the Table 3.4 we see that, in case of mixture of Weibull distribution, maximum 

value R1= 0.6667, R2= 0.8803 and R3= 0.9619 have been obtained when p'=O and q'=1 

for A = J.1 = 1, e = f3, A == B = C = D == 1, k =0.6 and f3 =2. Minimum value RI =0.3329, 

R2=0.3605 and R3=0.4704 have been obtained whenp'=l and q'=O for A = J.1 = I, e = f3, 

A = B = C = D = 1, k =0.8 and f3 =2. It is noted that values of R1 , R2 and R3 increases with 

increasing value of q' . 

******** 
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Cascade Reliability in Different Types of Failure 
Models 

4.1 Introduction 

In many situations a component may fail in several ways as electrical failure, 

mechanical failure and the like. Each type of failure may be attributed to different stresses 

which in tum can be represented by different random variables. Let us assume that a 

component may fail in m different ways for which m different stresses are responsible. 

Now if X is a random variable representing the strength of a component then the reliability 

of the component is given by 

(4.1.1) 

An n -cascade system where components may fail in different ways is considered in 

this chapter. The following three models are considered: 

Model- I: Here we have assumed that in an n -cascade system an active component faces 

m different stresses (which are responsible for different types of failures) and it 

fails if the strength of the active component is less than anyone of the stresses 

on it. After Jhe failure of the fIrst component, the second component faces m 

stresses which are k times the corresponding previous stresses and so on. 

Model-II: For an n -cascade system we assume that for the working of an active 

component it is essential that the m stresses on the component lie in an 
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interval (a" b,), j = 1,2, ... , m. The component fai Is even if one of stresses on 

the component falls outside the specified limits. The two limits a, and b, are 

assumed to be constants. All the components are assumed to be identical. 

Model- ITI: Here also an n -cascade system is considered. This model is similar to the 

model II except that the components are not identical. Here the limits of the 

different stresses, though constants are assumed to be different for different 

components, say ( alj' blj)' for the i th component, j = 1,2, ... , m . 

For model II and model III strength of the components do not come into the picture 

directly. But the constants (a"b) and (alj,blj) must have been fixed on the basis of the 

strength of the components. 

Sriwastav and Dutta (1986) considered the case of an n -standby system with different 

types of failure in S-S model. For multicomponent systems Hilton and Fergen (1960) have 

considered structural reliability problem where failure modes of the components are 

independent. A similar problem is considered by Moser and Kinser (1967). Heller and Donat 

(1967) have evaluated the reliability of 'multiple-load-path' structure, in which the system 

with m components initially, may work even with (m -1) failed components. The applied 

stress to the system is redistributed among the surviving components, at every failure. The 

system fails when all the components fail. They have assumed a statistical dependence 

among different types of failure modes. 

Here we have considered an n -cascade system. We have not come across any study 

where cascade model is considered for such a models. The main aim of this chapter is to 

obtain the system reliability Rn under this three failure models. 

This chapter is organized as follows: In Section-4.2 the general expressions for all the 

three models are developed. In Section-4.3 the reliability expressions of an n -cascade system 

is obtained for all the models when the stress-strength of the components follow particular 
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distributions. In Sub-Section 4.3.1 to 4.3.2 the expressions of Rn, n < 4 is obtained under the 

three models when stress-strength distributions are either exponential or Rayleigh. Some 

graphs are also plotted for some values in Section 4.4. In all the cases, numerical results for 

particular values of relevant parameters are tabulated in Table 4.1, Table 4.2, Table 4.3, 

Table 4.4, Table 4.5 and Table 4.6 (cf. Appendix) and some results and discussions are 

given in Section-4.5. 

4.2 Development of the Mathematical Models 

Let us consider an n -cascade system working under the impact of m different 

stresses. Here we shall obtain the reliability of this system under the three different models, 

one-by-one. 

Model I: Let XI' X 2 , ••• , X n be the strengths of n -components and each component faces m 

stresses simultaneously. The stresses on the frrst component are 1';, Y2 , ••• ,Ym • After the failure 

of the frrst component the second component faces m stresses k~, kY2 , ••• , kYm , the th ird 

component faces m stresses e ~,k 2 Y2 , ••• ,e Ym and so on. The stresses on the th component 

are k,-I ~, k,-I Y
2 

, •• .k'-I Y
m

• Let the attenuation factor k be a constant quantity. It is assumed 

thatX" i=1,2, ... ,n and Y
j

, J=I,2, ... ,m are independent random variables. Then the 

probability that the ith component works is given by 

(4.2.1) 

Then, the reliability of the system is given by 

Rn = R'(l) + [1- R'(l)]R'(2) + [1- R'(l)][I- R'(2)]R'(3) + ... + [1- R'(I)] 

( 4.2.2) 

[1- R'(2)1 .. [I- R'(n -1)]R'(n) 

= R(l) + R(2) + ... + R(n), say (4.2.3) 
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where R(i), i=I,2, ... ,n is the marginal reliability due to the ith component, given by 

R(i) = [1- R'(l)][I- R'(2) } .. [1- R'(i -1)]R'(i) (4.2.4) 

Let J,(x) and gj(Y) bethep.d.f.of X, and Yj , i=I,2, ... ,n, j=I,2, ... ,m respectively. 

Since, the stress and strength are independent, we have 

m 0:> 

R'(i) = Il JF,(k,-ly)g/y)dy, i=1,2, ... ,n (4.2.5) 
j=l _0:> 

x 

where F, (x) = J J, (x)dx and F, (x) = 1- F, (x) 
-0:> 

Substituting i =1,2,3 in (4.2.5) and using (4.2.4) we get, 

m 0:> 

R(1) = I1 J Fl(y)g;Cy)dYj 
j=l _0:> 

=R'(1) (4.2.6) 

R(2) = [1- R'(1)]R'(2) 

= R'(2) - R'(1)R'(2) 
m ct.) m ct,) 

= Il J F2 (k Yj ) g;Cy)dYj - Il J ~(y)F2(k y)g;Cy)dYj . (4.2.7) 
j=l _0:> j=l _0:> 

R(3) = [1- R'(1)] [1- R'(2)]R'(3) 

= R'(3) - R'(2)R'(3) - R'(1)R'(3) + R'(1)R'(2)R'(3) 
m ct,) m 00 

= Il J F3(e y)g/y)dYj - Il J F;(y)F3(k 2y )g/y)dy, 
j=l -0:> j=1 -0:> 

m 00 m ct,) 

-Il J F2(kYj)F3(k 2yj )g,{y)dy, + Il f F1(Yj)F2(kYj)F3(e Yj)g/y)dy, (4.2.8) 
j=1 -0:> j=1 -00 

Substituting R(1), R(2), R(3), ... , R(n) in (4.2.3) we get Rn' 
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Model II: We have an n-cascade system. As in model I let r;'Y2""'Ym be the stresses on the 

fll"st component. We assume that for the working of a component the jth stress must lie in a 

specified interval, say (a
j 
,b

j
), j ==1,2, ... , m. After the failure of the first component the 

second component faces m stresses kY;, kY2 , ... , kYm, the 3 rd component faces m stresses 

eY;,eY2, ... ,eYm ' and so on. Here we assume that the components are identical i.e., the 

limits (aj,b) is same for all the components. Here also the reliability Rn of the system is 

given by (4.2.2) and (4.2.3) but now, 

R'(i) = Pl<a
l 

<k,-Iy' <b
l
),(a2 <k,-IY2 <b

2
),.··,(am <k,-IYm <bm)J 

=P{a
l 
<k,-IY

1 
<b

l
)F{a

2 
<k,-IY

2 
<bJ .. P{a

m 
<k,-IYm <bJ 

i == 1 ,2, ... , n , since the stresses on the components are independent random variables. 

Let g j (y) be the p.d. f. of Y
j

, then 

Now from (4.2.4) and (4.2.10), we get 

R(l) = R'(I) 
m hJ 

= nfgj(y)dYj 
j=1 OJ 

R(2) = R'(2)- R'(l)R'(2) 

~ D I g,(y)dy, - (D I g,(y)dy, J (D ~j~,(Y)dY, J 
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R(3) = R'(3) - R'(2)R'(3) - R'(I)R'(3) + R'(l)R'(2)R'(3) 

= 11::r g,(y)dy, -[11 )~,(y)dy, J [o.:X~,(y)dy, J -[0.1, g,(y)dy, J 

[D :X~,(y)dy, H 111, g,(y)dy, J( 0. )~,(y)dy, J( 0. :X~,(y)dy, J 
(4.2.13) 

Substituting R(I),R(2),R(3), ... ,R(n) in (4.2.3) we can obtain Rn. 

Model ITI: This model is similar to model II except the components are not identical. Let 

k'-'~,k'-'Y2, ... ,k'-'Ymbe the stresses on the ith active component and let (ay,by ); 

0=1,2, ... , n; j=I,2, ... ,m) be the required limits of the m stresses for the working of the ith 

active component where (ay, by) corresponds to the jth stress on the ith component. 

Reliability of the system under this model is given by (4.2.2) and (4.2.3) 

since ~'Y2' ... 'Ym are independent. 

Let g,(y) be the p.d.£ of ~, then 

bv 
m? 

R'(i) = n f g, (y)dy" i = 1,2, ... ,n 
,=1 au 

? 

(4.2.14) 

(4.2.15) 

Substituting the values of R'(i), 1=1,2, ... ,n from (4.2.15) in (4.2.2) we get the system 

reliability Rn. 
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4.3 Stress-Strength follows Specific Distributions 

In this section we have considered stress-strength, which are either exponential or 

Rayleigh distributions and they may be with different parameters. In the following Sub

Sections we have obtained the reliability of a 3-cascade system under the three models as 

discussed in section 4.2. 

4.3.1 Exponential Stress-Strength Distribution 

Model I: Let j,(x)and g/y)be the exponential densities with means 118, and lIa
J

, 

i = I ,2, ... , n; j = 1,2, ... , m respectively. Then from (4.2.5) we get, 

m '" 
R' (i) = n f e -k'-IO,y, a J e -a ,y, dy J 

J=I 0 
(4.3.1) 

m a 
= n J 1 ; i = 1,2, ... ,n 

J=I a J +k'- 8, 

Now from (4.3.1) using (4.2.4) we get the marginal reliabilities R(l), R(2) ,R(3) as follows. 

R(l) = R'(l) 

=·0 a J 

J=I a
J 

+81 

R(2) = R'(2) - R'(l)R'(2) 

= 0 a J 0 a J 

J=I a
J 

+k82 J=I a J +81 +k82 

(4.3.2) 

(4.3.3) 

Substituting the values of R(l), R(2), R(3) in (4.2.3) we can obtain R3 , the reliability of a 3 

cascade system. 
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Model II: Let g ;Cy) be the exponential densities with mean 11 a}, j = 1,2, ... , m respectively. 

Then from (4.2.10) we get, 

(4.3.5) 

Now from (4.3 .5) using (4.2.4) we get the marginal reliabilities R(1), R(2), R(3) as follows: 

R(l) = R'(l) 

= Ii (e -alai _ e-a,b, ) 
}=I 

(4.3.6) 

(4.3.7) 

(4.3.8) 

Substituting the values of R(I), R(2), R(3) from (4.3.6) to (4.3.8) in (4.2.3) we get R3 • 

Model ITI: Let g}(y)be the exponential densities with means lIa}, j=I,2, ... ,m 

respectively. 

Then from (4.2.14) we get, 

(4.3.9) 
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Now from (4.3.9) and (4.2.4) we get the different marginal reliabilities as fo\lows: 

R(l) = fI(e-"IOII _e-aAI) (4.3.10) 
J=I 

(4.3.11) 

m (_aIOll ..!!.l2L) m ( rrr( _ala' I _a}b,j) m (_aIOl} _a/'l}) TI e k' -e k' +TI e-ajol
} _e-aA} }11 e k -e k n e k' -e *' 

pi J=I pi pi 

(4.3.12) 

Substituting the values of R(I), R(2), R(3) in (4.2.3) we get R3 • 

4.3.2 Rayleigh Stress-Strength Distribution 

Model I: Let .t:(x)and g/y)be the Rayleigh densities with parameters O",2 and 13/, 
;=1,2, ... , n; j =1,2, ... , m respectively. Then from (4.2.5) we get, 

m 2 

R'(i) = n 2 0"1 2;; = 1,2, ... ,n 
k 2,-2{J 

J=I 0", + } 
(4.3.13) 

Now from (4.3 .13) using (4.2.4) we get the marginal reliabilities R(I), R(2), R(3) as fo \lows. 

R(l) = R'(l) 

(4.3.14) 
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R(2) = R'(2) - R'(l)R'(2) 

(4.3.15) 

R(3) = R'(3) - R'(2)R'(3)- R'(1)R'(3) + R'(1)R'(2)R'(3) 

m 2 n 0"3 

- 2 k4f3 2 
j=l 0"3 + j 

(4.3.16) 

Substituting the values of R(I), R(2), R(3) in (4.2.3) we can obtain R3 , the reliability of a 3 

cascade system. 

Model II: Let gj(y)be the Rayleigh densities with parameters f3/, j=I,2, ... ,m 

respectively. 

Then from (4.2.10) we get, 

m [_.!!L -.!i ) , . k,-I k,-I . 
R (l) = n e - e ; 1 = 1,2, ... ,n 

j=l 

(4.3.17) 

Now from (4.3.17) using (4.2.4) we get the marginal reliabilitiesR(l),R(2),R(3)as follows: 

R(l) = R'(l) 

= fI(e-aJ _e-b
)) 

(4.3.18) 

)=1 

(4.3.19) 
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(4.3.20) 

Substituting the values of R(l), R(2), R(3) from (4.3 .18) to (4.3.20) in (4.2.3) we get R). 

Model ill: Let g /y) be the Rayleigh densities with parameters,8/, j =1 ,2, ... , m 

respectively. 

Then from (4.2.14) we get, 

m( a" by) ,. - ? -2. o_ R (I) - IT e -e , 1 -1,2, ... ,n 
}=I 

(4.3.21) 

Now from (4.3.21) and (4.2.4) we get the different marginal reliabilities as follows: 

R(J) = Ii (e -0'1 - e -h'1 ) (4.3 .22) 
/=1 

(4.3.23) 

(4.3.24) 

Substituting the values of R(l), R(2), R(3) in (4.2.3) we get R) . 
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4.4 Graphical Representations 

Some graphs are plotted in Fig. 4.1(a) - 4.1(b), Fig. 4.2(a) - 4.2(b), Fig. 4.3(a) - 4.3(b), 

Fig. 4.4(a) - 4A(b), Fig. 4.5(a) - 4.5(b) and Fig. 4.6(a) - 4.6(b) by taking different parameters 

along the horizontal axis and the corresponding reliabilities along the vertical axis. Fig. 

4.1(a) - 4.1(b) represents the curves for82 = I ,8J = 2 and it is seen that reliabilities decrease 

steadily with increasing k. Fig. 4.2(a)-4.2(b) represents the values for 

a l = 0.I,a2 == 0.2,aJ = 0.3 = l,b, = b2 = bJ = 4,a , = a 2 = a J = 0.2 respectively. One can read 

the values of R(l), R(2), R(3) and RJ for intermediate values of k, from these graphs of 

exponential distribution. In Fig. 4.3(a) - 4.3(b), some graphs of reliabilities against k are 

plotted for some fix values of all = a l2 = a lJ = a 21 = a 22 = an = 0.1, 

bll , b12 , b,J , b2" b22 , b2J , bJ" bJ2 , bJJ and a l = a 2 == a J = 0.2. It is to be observed that, 

reliability steadily decreases with increasing k. Again Fig. 4.4(a) - 4.4(b) represents the 

curves for (J 2 = I , (J J = 2 and it is seen that reliability decreases stead ily with increasing k. 

Fig. 4.5(a) - 4.5(b) repre~ents the different values of a"a2 ,b" b2 respectively. One can read 

the values of R(1), R(2), R(3) and RJ for intermediate values of k, from these graphs of 

Rayleigh distribution. Similarly Fig. 4.6(a) - 4.6(b) it is seen that some graphs ofreliabilities 

against k are plotted for some fix values of all' a12 , a2" a 22 , aJl' a J2 and 

bll,bI2"b2"b22,bJI,bJ2' It is to be observed that, R(2),R(3) andRJ are steadily increases 

with increasing k but the graph of R(l) seems to be a straight line since it is independent of 

k. 
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4.5 Results and Discussions 

From the Table 4.1 we observe that when k increases, a and e remaining the same, 

R(2) decreases rapidly whereas there is slight decreases in R(3) which results in decrease in 

R3 • For example, when k=O.I, a,=l, a 2 ==1.0and 8, ==0.5,82 =1.0,83 =2.0 we find 

R(2) =0.4358, R(3)=0.Il22 and system reliability R3 =0.9925 but k =0.5, for same set of 

parameter values R(2)=0.1944, R(3)=0.1044 and R3 =0.7433. When 8, increase R(I) 

increases. Similar conclusion may be drawn for increase in 82 and 83 , But when 8, and 82 

increases we find increase in the values of RU) ; i = I ,2,3 and consequently R3 . 

From the Table 4.2, we see that RU) , i=2,3 increase when k increases. Also change in 

values of a" i =1 ,2,3 effects all RU). When any a, increases (i.e., mean stress decreases), 

keeping the limits fixed RU) increases but there is decrease in R(2) and R(3). For instance 

when a, = 0.1, bl = 4.0, a
2 

= 0.2, b2 = 4.0, a3 = 0.3, b3 = 4.0, a l == 0.2 a 2 = 0.2,a) = 0.2, then 

R(1) =0.1337, R(2)=0.3248, R(3)=0.2891 and keeping all other parameters fixed if 

a, = 0.1, a 2 == l.0,a3 = l.0, we get R(l) =0.5217, R(2) =0.1466, R(3)=0.0309. When any of 

the upper limits decreases, RU), i =2,3 will decrease. 

From the Table 4.3, we notice that all the limits (ay,by ), i,J=1,2,3 and stress 

parameter a" i = 1 ,2,3 remaining the same R3 increases when k :::; 0.5 and R3 decrease 

when k>0.5. In general we see that when a, (i=I, 2, 3) increases, all RU)will increase. For 

instance when a, = a 2 =a3 =0.2, a'j=O.l, i,j=1,2,3; and 

b'2 == bl3 = b22 = b23 = b32 = b 33 =3, R(l)=0.5767, R(2) =0.5026, R(3)=0.0011. Whereas 

when a,=a2 =a3 =0.5,other values remaining constant, R(1)=0.3093, R(2)=0.1541, 

R(3) =0.000 1. Also it is observed that keeping all other parameters fixed R(i) can be 

increased, by increasing by values. 
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From the Table 4.4, we observe that when k increases, <7 and f3 remaining the same, 

R(2) decreases rapidly whereas there is slight increases in R(3) which results in decrease in 

R3. For example, when k=O.l, f3,=1, f32 =l.0 and <7, =0.5,<72 =l.0,<73 =2.0we find 

R(2)=0.8290, R(3)=0.0048 and system reliability R3 =0.9857 but k =0.5, for same set of 

parameter values R(2) =0.4949, R(3)=0.0826 and R3 =0.7375. When <7, increase R(l) 

increases. Similar conclusion may be drawn for increase in <72 and <73 • But when <7, and <72 

increase we find increase in the values of R(i); i = 1,2,3 and consequently R3. 

From the Table 4.5, we see that R(i), i=2,3 increase when k increases. For instance 

when a, = 0.1, b, = 4.0, a2 = 0.2, b2 = 4.0, then R(l) =0.7096, R(2)=0.1592, R(3)=0.0395. 

When any of the upper limits increases, R(i) (i ==2,3) will decrease some times and similarly 

when any ofthe lower limits increases, R(i), (i ==2,3) will decrease. 

From the Table 4.6, we notice that all the limits (ay,by ),i=I,2,3 and j=1,2 remaining 

the same R3 increases when k ::;0.9 and R3 decreases when k >0.9. Also it is observed that 

keeping all other parameters fiXed, R(i), i =2,3 can be decreased, by increasing by values 

and also R(i), i=2,3 and R3 can be decreased, by increasing a" values. 

******** 
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A Cascade Model with Random Parameters 

5.1 Introduction 

Most of the discussions of interference models assume that the parameters of stress and 

strength distributions are constants (Beg, 1980, Enis and Geisser, 1971, Harris and 

Singpurwalla, 1968, Kelley et ai., 1976 etc.). But in many cases this assumption may not be 

true and the parameters may be assumed themselves (parameters) to be random variables. In 

other words, the distributions with fixed parameters may not represent the stress and or 

strength distributions adequately; distributions with random parameters may model the 

situations better. For example, if a particular component, having certain strength distribution 

is manufactured in different lots, for a particular lot the parameters of the strength 

distribution may remain flXed but may vary randomly from lot to lot. In such situations the 

parameters of the strength distribution may themselves be taken as random variables. 

Similarly, stress applied on a component (or system) is due to different factors such as 

vibration, pressure, temperature, humidity etc. Generally one of these factors will be 

dominant and will be the main cause for the stress on the component and stress distribution 

will be the distribution of this factor. But the other factors may vary at different time or at 

different places in such a way that, though they may not alter the form of the distribution, 

they may bring random fluctuations in the values of the parameters of the stress distribution. 

For example, solutions corrosive action may be highly influenced by variation in its 

temperature (Kakati, 1983) and hence the distribution of stress (corrosive action) may have 

different parametric values which vary randomly with temperature or in other words, the 

stress parameter may be taken as a random variable. 
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Further, if a prior knowledge exists about the parameters involved, it will be a waste of 

available data if we do not use a random parameter model i.e. a Bayesian model. In order to 

use the Bayesian approach the subjective information must be quantified and represented in 

the form of a prior distribution of the parameter concerned (Kapur and Lamberson, 1977). 

Harris and Singpurwalla (1968) have derived an unconditional time to failure 

distribution by assuming that a parameter of the failure distribution (viz. exponential or 

WeibulD is a random variable. Using the derived compound distribution and Bayesian 

techniques they have estimated the system's reliability. They considered two-point, uniform 

and gamma distributions as prior distributions. Krishnamoorthy et al. (2007) proposed in 

estimating the parameter R which is referred to as the reliability parameter. I.e. 

R = (X > Y), where its strength X and stress Yare independent random variables. 

Shooman (1968) has assumed that the parameter of strength distribution is a 

deterministic function of time. Tarman and Kapur (1975) have assumed that the parameters 

of the stress-strength distributions are variables but not random variables. They have found 

optimal values of the parameters involved subject to resource and design constraints. 

In this chapter we have calculated the system reliability of a 2-cascade system when 

the parameters of the stress-strength distributions are random variable. Here stress and 

strength are considered to be exponential random variable with parameters, say A and f.J, 

respectively. We further assume that either A or f.J is a random variable with a known prior. 

The following two cases are considered: 

• When strength parameter is random but stress parameter is a constant. 

• When stress parameter is random but strength parameter is a constant. 

The prior distributions considered for stress-strength parameters, in all the above two 

cases, are either uniform or two-point distributions. 
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In Section-5.2 the general model is formulated. [n Section- 5.3 to 5.4 the above two 

cases are considered. The reliabilities of a cascade system are evaluated in each case. For all 

the above cases, some numerical values of these reliabilities are tabulated in the Table 5.1, 

Table 5.2, Table 5.3 and Table 5.4 (cf. Appendix) for different set of values of the 

parameters. To make the things clear, a few graphs are drawn in Section 5.5 for selected 

values of the parameters. Results and discussions are devoted to Section 5.6. 

5.2 Notations and Formulation of the Model 

Here we have assumed that strength' X ' and stress' Y' are exponential variates with 

means 11 A and 11 J..l, respectively. The parameters A and J..l may be random. Let X, 's be 

i.i.d. with distribution function F(x) and let p.d.f. of Y1 be g(YI) 

(5.2.1) 

Let 

P(A),p(A) = The prior distribution function and p.d.f. (or p.m.f.) ofthe random strength 

parameter A . 

Q(J..l),q(J..l) = The prior distribution function and p.d.f. (or p.m.f.) of the random stress 

parameter J..l . 

f{xl A)= The conditional p.d.f. of the r.v. X for a given value of A. 

g{y/ J..l)=The conditional p.d.f. of the r.v. Y for a given value of J..l. 

fx (x)= The unconditional p.d.f. of the r. v. X. 

gy{Y)= The unconditional p.d.f. of the r.v. Y. 

Here f{x / A) = fx (x) if A is constant and g{y I J..l) = g y (y) if J..l is constant. 
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Now 

'" 
fx(x) = Jf(X/A)dP(A) (5.2.2) 

-«l 

'" 
gy(Y) = J g(y/ /1)dQ(/1) (5.2.3) 

Then from (5.2.1) 

'" 
R(l) = J Fx(y,)gy(y,)dy, (5.2.4) 

'" 
R(2) = J Fx (y,)Fx(ky,)gy (y,)dy, (5.2.5) 

5.3 Random Strength Parameter 

Suppose the components under study are manufactured in different lots so that its 

strength distribution may be represented by distribution with random parameters. But are 

used in the same environment exerting similar stresses, of course with random fluctuations, 

i.e. stress distribution is having constant parameter. As already assumed stress-strength are 

exponential with parameter /1 and A, so in this case the strength parameter A is a r.v. 

whereas the stress parameter /1 remains constant. 

I.e. 

Two types of prior distributions are considered for A : 

(a) uniform and (b) two-point 

(a) Uniform Prior for A 

In a situation where each lot is homogeneous within itself but different lots may have 

different values of A and taking all the possible sources of the lots together, each value of A 
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appears equally frequently, a uniform prior distribution will be suitable for A (Harris and 

S ingpurwalla, 1968). 

Let A be un iform Iy distributed in the range ( a, b ) 

1 
i.e., p(A) = ,a<A<b 

(b-a) 

Then the unconditional p.d.f of X is given by 

Hence, 

= L-Iog b + f.J 
b-a ea+f.J 

_ f.J I bk + f.J f.J fO? I r -y(a+ak+p) -y(b+ak+p) -y(a+bk+p) + -Y(b+bk+P)]d - og - -le - e - e e y 
k(b - a) e ak + f.J k(b - a)2 0 y2 

= f.J log bk + f.J 
e 

k(b-a) ak+f.J 

where 7]. = 1 ~[e -y(a+ak+p) -'e -y(b+ak+I') - e -y(a+bk+p) + e -y(b+bk+p) ]dy 

oy 

The expression 7]. can be evaluated numerically. 

Then the reliability R2 for a 2-cascade system, from the equation (3.2.8), is given by . 

66 



Chapter 5 

R2 = R(l) + R(2) 

Table 5.l (cf Appendix) gives a few values of R) and R2 for different values of 

parameters f-l, a, b and attenuation factor k. 

(b) Two- Point prior for A 

In a situation where it is known that A. can take two only values A, and .1.2 (say) with 

probabilities p and (1- p), respectively, a two point prior distribution for A. is appropriate 

(Harris and Singpurwalla,1968). 

Let A. have a two-point distribution, given by, 

Pr{A = A,) = p{A)) and Pr{A. = A2) = p{A2) 

Then 

2 

fx(x) = If(xl A,)p(A.,) =pA,e-~x +(1- p)Aze-;"x (5.3.1) 
,:) 

Hence 

R(l) = (-p- + ~)f-l 
A, + f-l A.z + f-l 

R(2)= pf-l _ p2f-l _ f-lp(l-p) +f-l(l-p)_ f-lp(l-p) _ f-l(l_p)2 

f-l + A,k f-l + A, + A,k f-l + A,k + A.z f-l + Azk f-l + A, + A.zk f-l + A.z + Azk 

Then R2 = R(1) + R(2) 

A few values of R) and R2 are tabulated in Table 5.2 (cf. Appendix) for different 

values of parameters f-l, p, A" A.z and attenuation factor k . 

5.4 Random Stress Parameter 

The situation may be opposite of that considered in Section 5.3. That is, the 

components might have come from the same lot or otherwise also the strength parameters 
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may not vary from one lot to another. In other words, the parameter of component's strength 

distribution remains constant. But as discussed earlier the stress on the component may not 

suitably be represented by a constant parameter distribution. So we shall consider a stress 

distribution with random parameters. Let, as in Section 5.3, X and Y be both exponential 

with parameter Il and J.l i.e. stress and strength are exponential with mean 1/ J.l and 1/ Il 

respectively. But now J.l is a random variable and Il remains constant. 

For J.l also the prior distributions considered are uniform and two-point distributions, 

respectively, in the following sub-sections. 

(a) Uniform Prior for J.l 

Similar situations, as that in case of Il, may be envisaged for the use of this distribution 

as the prior distribution for J.l also. For example, the components may be working in such an 

environment where the values taken by J.l in a given range are equally likely, and then we 

can assume a uniform distribution for J.l . 

Let J.l be distributed uniformly in the range (c, d), then 

Then, 

Hence, 

1 
q(J.l) = --, c 5, J.l 5, d 

d-c 

Il d+1l 
R(1) = I - --Iog e --

d-c c+1l 

2) Il [k I d + Ilk + Il I d + Ilk + Il kid + Ilk ] R( =-- og + og - og--
d-c c+Ilk+1l c+Ilk+1l c+llk 

Then R2 = R(J) + R(2) 
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For different values of the parameters the reliabilities of RI and R2 are tabulated in 

Table 5.3 (cf. Appendix). 

(b) Two- Point prior for I-l 

Similar to Section 5.3(b), if it is known that I-l can take only two values I-li and 1-l2 

with probabilities q and (1- q), respectively, then we have two-point prior distributions for 

JJ. given as, 

Then, 

2 

grey) = Ig(y/ l-l)q(l-l) =ql-lle-Jl'Y + (1- q)1-l2e-Jl2Y (5.4.1) 
)=1 

Hence, 

1 )+(1-q)1-l ( 1 ___ 1 __ ) 
I-li + A + Ak 2 1-l2 + A.k 1-l2 + A + A.k 

and as usual R2 = R(l) + R(2) 

Table 5.4 (cf. Appendix) gives a few values of RI and R2 for different values of 

parameters 1-l1, 1-l2' A, q and attenuation factor k . 

5.5 Graphical Representations 

A few graphs of RI' R2 are drawn in Fig. 5.1(a), Fig. 5.1(b), Fig. 5.2(a), Fig. 5.2(b), 

Fig. 5.3(a), Fig. 5.3(b), Fig. 5.4(a) and Fig. 5.4(b) for different parametric values involved. 

From these graphs one can read directly the values of reliabilities RI ,R2 for intermediate 
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values of J1 , A. and k. In Fig. 5.1(a), Fig. 5.1(b), Fig. 5.2(a) and Fig. 5.2(b) reliabilities are 

steadily increasing with J1 and k whereas in Fig. 5.3(a), Fig. 5.3(b), Fig. 5.4(a) and Fig. 

5.4(b) it is decreasing with increasing A. and k. 
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5.6 Results and Discussions 

A few values of R\ and R2 are tabulated for the I sl case when strength parameter is 

random but stress parameter is a constant. Uniform distributions are considered as a prior 

distribution for A in Table 5.1 (cf. Appendix) for different values of J.1., a, b and attenuation 

factor k. From the table we have seen that reliabilities are steadily increasing with J.1. and k 

but decrease with increasing value of a and b. Similarly in Table 5.2 (cf. Appendix), two

point distributions are considered as the prior distribution for A for the 151 case we have 

tabulated some values of R\ and R2 for different values of J.1., p, AI' A2 and attenuation 

factor k. Here also we have seen that the reliabilities are steadily increasing with J.1. and k. 

For different values of c, d, k and A we have tabulated the values of R\ and R2 in 

Table 5.3 (cf. Appendix) in the 2nd case when stress parameter is random but strength 

parameter is a constant and uniform distributions are considered as a prior distribution for J.1. . 

The values of the reliability are on expected line. From the table we see that, increase in the 

values of A and k decrease the reliability but reliabilities are steadily increasing with c and 

d. Similarly, when two-point distributions are considered as the prior distribution for J.1. in 

the 2nd case we have tabulated some values of R\ and R2 for different values of J.1.1'J.1.2,A,q 

and attenuation factor k in Table 5.4 (cf. Appendix). Here also we have seen that the 

reliabilities are decreasing with increasing values of q, A and k. 

******** 
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Cascade System with P(X <Y <Z) 

6.1 Introduction 

In Stress-Strength models, generally, a component fails when stress ( Y) on it exceeds 

its strength (X) and the reliability, R , of the component is given by the equation (1.1.1). In 

this chapter we have considered an n -cascade system. In literature this cascade system has 

been considered by many authors viz. Pandit and Sriwastav (1978), Sriwastav and Kakaty 

(1981), Bhowal (1999), Rekha et.al (1988), Beg (1980), Gopalan and Venkateswarlu (1982), 

Pandit and Sriwastav (1975), Sriwastav and Kakati (1980) etc. 

But sometimes a component (or system) can work only when the stress Y on it is not 

only less than certain values, say Z , but also must be greater than some other value, say X, 

i.e. stress is within certain limits. These limits mayor may not be constants. For example, 

many electronic components cannot work at very high voltage or at a very low voltage. Here 

the limits are generally constant for particular equipment. Similarly a person's blood pressure 

has two limits-systolic and diastolic pressures. For a healthy person his blood pressure must 

lie within these two limits. Both these pressure may vary within certain ranges beyond which 

a person cannot survive. 

The reliability of a component (or system) under such a situation may be defined as 

R = P(X < Y < Z) (6.l.1) 

where Y is the stress on the component and X and Z may termed as strengths. We shall call 

them lower and upper strengths. These X , Y and Z are random variables. 
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Singh (1980) has considered the estimation 10 stress-strength model under the 

assumption that strength of a component lies in an interval and estimates the probability 

where Xl and X 2 are independent random stress variables and Y independent of Xl and 

X 2 is random strength variable. Chandra and Owen (1975) obtained the estimation of 

reliability of a component subjected to several different stresses. They obtained the estimate 

R = P[Max(~ ,Y2, ... ,Yk) < X] when (~'Y2""'Yk) are i.i.d. normal distributions and X as 

an independent normal distribution. Hanagal (1997) has estimated the reliability of a 

component subjected to two different stresses which are independent of the strength of a 

component. 

Some of the results from this chapter have been accepted for publication in 'Journal of 

Informatics and Mathematical Sciences'. Here we have considered an n -cascade system with 

this model. We have not come across any study where cascade model is considered for such a 

model. The main aim of this chapter is to obtain the system reliability Rn for this model 

where stress on the component is subjected to two strengths. 

This chapter is organized as follows: In Section-6.2 the general model is developed for 

an n -cascade system. In Section-6.3 the reliability expressions of an n -cascade system is 

obtained when the stress-strength of the components follow particular distributions. In Sub

Section 6.3.1 to 6.3.5 the expressions of Rn, is obtained when stress-strength are either 

exponential or Rayleigh or Lindley and when both strengths are one-parameter exponential 

and stress follows Lindley and when both strengths are one-parameter exponential and stress 

follows two-parameters gamma distributions. In Section 6.4 some graphs are plotted for 

selected values ofthe parameters to facilitate the direct reading of reliability. Some numerical 

values of reliabilities R(1), R(2), R(3) and R3 are tabulated in Table 6.1, Table 6.2, Table 

6.3, Table 6.4 and Table 6.5 (cf. Appendix) for each cases and some results and discussions 

are given in Section-6.S. 
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6.2 Mathematical Formulation 

Let us consider a system with n components working under the impact of stresses. Let 

X, and 2, be the lower and upper strengths, respectively, on the i1h component and Y, be the 

stress on it, i = 1 ,2, ... , n . For a cascade system after every failure the stress is modified by a 

factor k which is given by the equation (2.2.1) 

It is obvious that once the distribution of Yt is specified the distribution of Y2 , 

Y3 '''''Yn are automatically specified. The i1h component works if the stress k,-tY, lie in the 

interval (X, , 2,). Whenever a stress falls outside these two limits, the component fails and 

another from standby takes the place of the failed component and the system continues to 

work. The system fails only if all the n components in cascade fail. It is further assumed that 

all the components work independently. Then the reliability, Rn, of the system is given by the 

equation (3.2.8). Here R(r) is different from the preceding chapters. 

Let J;(x),h,(z) be the probability density function of X" 2, ,i=1,2, ... ,n and g,(Yt) 

be the p.d.f. of 1'; 

Now we have, 

R(l) = P(X t < Y, < 2t) 

= P(Y, > Xt) - P(Y, > XpY, > 2 1) 

0) 0) 

= J F;(YI)gt(YI)dYt - J F;(YI)HI(YI)gl(YI)dYI 
-0) 

(6.2.1) 

where F,(x) and H,(z) are c.d.f.'s of X, and 2, respectively. 

= [1 - R(l)][PCk1'; > XI) - P(k YI > X 2 ,k Y, > 2 2 )] 

= [1- R(1)l [IF,(ky, )g,(y, )~, - IF,(k y,)H ,(k y,) g,(y, )dy, 1 (6.2.2) 
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Similarly 

R(3) ~ [i - R(l)][I- R(2){ IF,(k' y,)g, (y,)dy, - IF,(k' y,)H,(k' y,) g,(y, )dY,] (6.2.3) 

In general, we get 

(6.2.4) 

6.3 Stress-Strength follows Specific Distributions 

When Stress-Strength follows particular distributions we can evaluate the expression 

(6.2.4) to get. R(r) and thereby obtain the system reliability. In the following five Sub

Sections we assume different particular distributions of all the Stress-Strength involved and 

obtain expressions of system reliability. 

6.3.1 Stress-Strength follows Exponential Distributions 

Let 1, (x), g, (Yl) and h, (z) be all exponential densities with means 1/ A" 1/ J-l" 1I y, 

respectively, ;=1,2, ... , n i.e. 

1, (x, A) = A, e-J.,x, 

h ,(z, y) = Y, e-r, z, 

g, (Yl' fl.) = fl., e -I-' ,y, 

x, ;:::0, A,;:::O 

z,;::: 0, Y,;::: 0 

y, ? 0, fl., ? 0 

then from (6.2.1) to (6.2.4) we have 

fl., (6.3.1) 

(6.3.2) 
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(6.3.3) 

In general, 

R(r) = [1-R(l)][1-R(2)]. .. [1-R(r-l)][ f1, ,-I - ~~ '-I] 
f1, + y, k f1, + y, k + A, k 

(6.3.4) 

Substituting the values of R(r), r =1,2, ... n in (3.2.8) we can obtain Rn, the reliability 

of the system. 

Particular case 

Let the strengths of the n components be i.i.d. with p.d.£ I(x) and h(z) which 

follows exponential distributions with means 1/ A and 1/ Y and the p.d.f. of Y1 be 

exponential density with parameter f1 i.e. 

I(X,A) = Ae-,lx 

h(z,y) = ye-rz 

g(Yi>f1) = f1 e-PY
, 

x ~ 0, A ~ 0 

z ~ 0, y ~ 0 

YI ~ 0, f1 ~ 0 

then from (6.2.1) to (6.2.4) we have 

R(I) = _f1__ f1 
f1+y f1+Y+A 

R(2) = [l-R(I)][ f1 - f1 1 
f1+yk f1+yk+Ak 

R(3) = [1-R(I)][I-R(2)][ f1 2 - ~ 2] 
f1+yk f1+yk +Ak 
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In general, 

R(r) = [1-R(I)][I-R(2)]. .. b-R(r-l)][ J.1 _I - ~ _I] 
J.1 + r k' J.1 + r k r + A. k

r 
(6.3.8) 

A few numerical values of R(1), R(2), R(3) and R3 are tabulated in Table 6.1 (cf. 

Appendix) for different values of the parameters. 

6.3.2 Stress-Strength follows Rayleigh Distributions 

Let J, (x), g, (YI) and h, (z) be all Rayleigh densities with parameters cr" b, and s, 

respectively, i=I,2, ... , n i.e. 

X 2 2 

J,(x,cr) = -'2 e- x, 1217, x, ~ 0, cr, > ° 
cr, 

Z 2' 

h ( ) - , -z, 125,-, z,s --2 e z, ~ 0, s, > ° 
s, 

Y 2 2 

g (y b)=-I e-Y' 12b, 
,I' b 2 

I 

Y1 ~ 0, b, > ° 

then from (6.2.1) to (6.2.4) we have 

(6.3.9) 

(6.3.10) 

R(3) = [1 - R(1 )][1- R(2 )][ 4 ~/ 2 

k b3 +S3 

cr3 S3 2 2 1 (6.3.11) 

In general, 
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[ 

2 2 2 1 R r = 1- R 1 1- R 2 1- R r -1 s, _ (J, S, 
() [ ()][ ( )]. .. [ ( )] k2,-2b 2 + 2 2 2 +e,-2b 2 2 +k2,-2 2b 2 

, S, (J, S, , S, (J, , 

(6.3.12) 

Substituting the values of R(r), r =1 ,2, ... n in (3.2.8) we can obtain Rn, the reliability of the 

system. 

Particular case 

Let the strengths of the n components be i.i.d. with p.d.f. f(x) and h(z) which 

follows Rayleigh distributions with parameters (J and s, and the p.d.f. of Y1 be Rayleigh 

density with parameter b i.e. 

X 2/ 2 " f(x,(J) = -2 e- X ~-
(J x ~ 0, (J > ° 

h( ) -~ -z'/2s' 
z,S - 2 e 

S . 
x ~ 0, S > ° 

g(ypb) = :; e-y,'m' 

then from (6.2.1) to (6.2.4) we have 

S2 
R(l)= 2 2 

b +s 
(6.3.13) 

(6.3.14) 

R(3) = [1-R(1)][1-R(2)] 42 2 - 22 4 2 2 4 22 [ 
S2 (J2S2] 

k b +s (J S +k b S +k (J b 
(6.3.15) 

In general, 
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R(r) = [1- R(I)][I- R(2)]. .. [I- R(r -I)] 2 -2 2 2 
[ 

S2 

k r b +S 
(6.3.16) 

A few numerical values of R(l), R(2) , R(3) and R3 are tabulated in Table 6.2 (cf. 

Appendix) for different values of the parameters. 

6.3.3 Stress-Strength follows Lindley Distributions 

Let f,(x), g,(y.) and h,(z) be all Lindley densities with parameterse",u, and Y, 

respectively, i=I,2, ... , n i.e. 

e2 

f,( x e) = I (I + x )e-fl,x, 
• I' (1 +e,) I 

X, > 0, (), > ° 
2 

h (z Y)= Y, (I+z )e-r,Z 
I' (l+y,) I 

Z, > 0, Y, > ° 
2 

g,(y",u) = (1 ~/,u,) (1 + y.)e-I',Yl y. > O,,u, > ° 

then from (6.2.1) to (6.2.4) we have 

(6.3.17) 
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I 1 Y2k 2Y2k 
---+ 2 + 2 + 3 
Jl.2+Y2 k (Jl.2+Y2 k ) (l+Y2)(Jl.2+Yz k) (l+Y2)(Jl.Z+y2k) 

1 1 82 k 

8z k+Y2 k +Jl.Z -(82k+Y2k+Jl.2l-(l+8z)(8zk+Y2k+Jl.z)z 

R(2) = [1-R(1)] ~ Yzk _ 282k 
1+Jl.2 (1+Y2)(8z k+Y2 k +Jl.2)2 (1+82 ) (82k+y2k+,u2)3 

2Y2 k 282Y2 e 
(1 + Y 2) (82 k + Y 2 k + Jl.2)3 (1 + 82 ) (1 + Y 2)( 82 k + Y 2 k + Jl.2)3 

682 Y2 e 

(6.3.18) 

R(3) = [1- R(l )][1- R(2)] 

1 Y3 e 2y 3e 
Jl.3 +Y 3e + (Jl.3 +Y3 e )2 + (1+Y3)(Jl.3 +Y3 e )2 + (1 + Y3)(Jl.3 +Y3 e )3-

1 8e 

~ Y3 k2 28 e 3 

1 + Jl.3 (I + y3)(83 e + Y3 e + Jl.3)2 

2Y3 e _ 283Y3 e 
(I + Y3) (83 e + Y3 e + Jl.3)3 (1 +83 )(1 + Y3)(83 e + Y3 e + Jl.3)3 

683 Y3 e 

(6.3.19) 

In general, 
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R(r) = [1- R(l )][1 - R(2 )]. .. [1- R(r - 1)] 

1 1 Y k'-l 2y k'-l 
-----:-+ +' + ' -
f.1,+y,k'-1 (f.1,+y,k'-1)2 (l+Y,)(f.1,+y,k'-1)2 (l+Y,)(f.1,+y,k'-1)3 

1 1 ~k~ 

a, k'-' + y, k'-' + f.1, (a ,k'-l + Y, k'-l + f.1, Y (1 + a, )(a, k'-' + y, k'-' + J.i,)2 

2a k'-l , 
(1+a,) (a,k'-l +y,k'-l +f.1,)3 

2B k 2(,-I) , y, 
(1 + y,) (a, k'-l + r, k'-l + 11,) 3 (1 + a,)(l + y,)(B, k'-l + y, k'-l + f.1,)3 

6a e('-') , r, 
(l+a,)(l+Y,)(a,k'-1 +y,k'-l +11,)4 

(6.3.20) 

Substituting the values of R(r), r =1 ,2, ... n in (3.2.8) we can obtain Rn, the reliability ofthe 

system. 

Particular case 

Let the strengths of the n components be i.i.d. with p.d.f. I(x) and h(z) which follows 

Lindley distributions with parameters () and y and the p.d.f. of 1'; be Lindley density with 

parameter 11 i.e. 

()2 
I(x,a) = --(1 + x)e-£lx 

(l + ()) 
2 

h(z,y) = -y-(1 + z)e-rz 
(1 + y) 

2 

g(yp 11) = (1: 11) (I + y, )e-
tlY1 

then from (6.2.1) to (6.2.4) we have 

x> 0, a > 0 

z> 0, r > 0 

y, > 0,11 > 0 
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1 1 Y 2y 1 
--+ + + ---'---
f.1+Y (p+y)2 (1+Y)(f.1+y)2 (l+Y)(f.1+y)J 8+y+f.1 (8+y+f.1Y 

. 8 Y 28 2y 2 _ _ ______ ~ 

R(1)=~ (l+8)(8+y+f.1)2 (1+y)(8+Y+f.1)2 0+8) (8+Y+f.1)J (1+y) (8+Y+f.1i 

l+p 28y 68y 

(1 + 8) (1 + y)( 8 + y + f.1) J (1 + 8) (1 + y) ( 8 + y + p) 4 

2 

R(2) = [1- R(1)] ~ 
I. + P 

1 1 yk 2yk 
--+ + + -
f.1+yk (f.1+yk)2 (1+Y)(f.1+yk)2 (i+Y)(f.1+yk)3 

1 1 8k - ---------~ 

8k+yk+f.1 (8k+yk+f.1Y (l+8)(Bk+yk+p)2 

yk 28k 2yk 
- -

(6.3.21) 

(1+y)(Bk+yk+f.1)2 (1+B) (Bk+yk+f.1)J (1+y)(8k+yk+f.1)J 

2Bye 68ye 

(1+B)(I+y)(Bk+yk+f.1)J (l+B)(1+y)(ek+yk+p)4 

(6.3.22) 

R(3) = [1- R(l)][l- R(2)] 

lIre 2re 1 
---+ + + ------
p+re (p+re)2 (1+r)(p+yk2)2 O+r)(p+rk2)J 8e +rk2 +p 

1 8e re 

L (8e +r e +py (1+8)(8e +rk2 +p)2 (1+r)(8k 2 +r e +p)2 

1+f.1 28e 2re 28re 

In general, 

(1 + 8) (8 e + ye + p)J (I + r) (0 e + ye + p)J (1 + 8)(1 + y)(8 e + ye + p)J 

68ye 

6.3.23) 
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R(r) = [1 - R(1)][1 - R(2 )]. .. [1 - R{r - 1)] 

I 1 Y k'-I 2 Y k r-I 
---+ + + -
p+yk'-I (p+yk'-1)2 (l+y)(p+ykr-I)2 (1+y)(p+yk'-')3 

I I 8 k'-I 

L 8 e-I + ye-I + fl - (8 e-I + ye-I + flY (I + 8)(8 k'-I + r e-I + fl)2 

1 + fl Y k'-I 28 k'-I 2 r k'-I 

(1 + y)(8 k'-I + Y k r-
, 
+ fl / (1 + 8) (8 k r-' + y k r-' + fl)3 (1 + y) (8 k r-' + r k r-' + fl)3 

28 y k 2(r-lj 68 y e(r-'j 

(6.3.24) 

A few numerical values of R(l), R(2), R(3) and R) are tabulated in Table 6.3 (cf. 

Appendix) for different values of the parameters. 

6.3.4 Both Strength follows One-Parameter Exponential and Stress 

follows Lindley Distributions 

Let 1, (x) and h, (z) be one-parameter exponential densities with parameters A" 8, 

and let g, (YI) be Lindley densities with parameters p, respectively, i = I ,2, ... , n i.e. 

f,(X,A) = Afe-A,x, X~O,A~O 

h ,(z,8) = 8, e-O,z, z ~ 0, 8 ~ 0 

2 

g, (y" fl) = (1 ~'fll) (1 + YI )e-Jl,YI Y1 > 0, fl > 0 

then from (6.2.1) to (6.2.4) we have 

(6.3.25) 
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(6.3.26) 

1 1 1 

R(3) = [1- R(l)][l- R(2)] ~ 83 e + J-l3 + (83 e + J-l3)2 - 83 e + A; e + J-l3 
1+J-l3 1 

(6.3.27) 

(83 e + A; e + J-lJ 

In general, 

R(r) = [1- R(l)][l- R(2)] ... [l- R(r -1)] 

[ 
J-l r 

2 {Ill I}] 
1 + J-l r 8r k'-I + J-lr + (8r k'-I + J-lJ2 - 8r k

r-I + Itr k'-I + J-lr - (8r k'-I + Itr k'-I + J-lr Y 
(6.3.28) 

Substituting the values of R(r), r=1,2, ... ,n in (3.2.8) we can obtain Rn, the reliability of 

the system. 

Particular case 

Let the strengths of the n components be i.i.d. with p.d.f I(x) and h(z) which follows 

one-parameter exponential with means 1/ A. and 1/8 and the p.d.f of ~ be Lindley density 

with parameter J-l i.e. 

f(x,A.) = Ite- AX x ~ 0, It ~ ° 
h(z,8)=8e-lJz z~0,8~0 

2 

g(YpJ-l) = (l:J-l) (1 + YI)e-,uy, YI >0,J-l>0 
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then from (6.2.1) to (6.2.4) we have 

R(l)=L[_I_+ 1 _ I - I 1 
l+,u e+,u (e+,uf e+,u+A (e+,u+AY 

(6.3.29) 

R(2)=[1-R(1)] ~ + 2 
[ 

2 {I I 
I+,u ek+,u (ek+,u) ek+Ak+,u 

(6.3.30) 

R(3) = [1-R(I)][I-R(2)][L{ 21 + 21 2 II}] 
1 +,u e k +,u (e k +,u) e e + A e +,u - (e e + A e + ,u r 

(6.3.31) 

In general, 

R(r) = [1- R(1 )][1- R(2 )] ... [1- R(r -I)] 

[l~~ {Ok'!, + I' + (Ok'} + 1')' - Ok'-' +~k~' + I' 
(6.3.32) 

A few numerical values of R(l), R(2), R(3) and R3 are tabulated in Table 6.4 (cf. 

Appendix) for different values of the parameters. 

6.3.5 Both Strength follows One-Parameter Exponential and Stress 

follows Two-Parameter Gamma Distributions 

Let J, (x) and h, (z) be one-parameter exponential densities with parameters A" e, 
and let g,(y.) be two-parameter gamma densities with parameters Y, and,u, respectively, 

i=I,2, ... , n i.e. 

j,(x,A) = A, e-,l,x, 

h (z () = () e-B,z, 
I' I 

X, ~ 0, A, ~O 

z, ~ 0, (), ~ ° 
Y. > 0, r",u, > ° 
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then from (6.2.1) to (6.2.4) we have 

R(1) = 1 
(1 + e. y.Y' (1 + e. Y. + A, Y.)'" 

(6.3.33) 

R(2) = [1-R(I)][ 1 _ 1 ] 
(l+e2 Y2 k)"2 (1 +e2 Y2 k+~ Y2 k)"2 

(6.3.34) 

R(3) = [1-R(I)][1-R(2)][ 1 _ 1 ] 
(1+e'3Y3erJ (l+e3Y3 e +A,Y3 e r

J (6.3.35) 

In general, 

R(r) = [1-R(I)][I-R(2)]. .. [I-R(r-l)][( 1 r -( 1 r] (6.3.36) 
1 + e Y k'-·' 1 + e r k'-· + A r k'-· , 

r r r r r r 

Substituting the values of R(r), r=I,2, ... ,n in (3.2.8) we can obtain Rn, the reliability of 

the system. 

Particular case 

Let the strengths of the n components be i.i.d. with p.d.f. I(x) and h(z)which 

follows one-parameter exponential with means 1/ A and 1/ e and g(y.) be two-parameters 

gamma densities with degrees of freedom Y and J1 respectively and unit scale parameters 

I.e. 

f(X,A) = Ae-'<x 

h(z,e) = ee-Dz 

( ) 1 1'-' - y,'y 
g YP y, J1 = ----;;--r y, e 

y J1 

x ~ 0, A ~ ° 
z ~ 0, e ~ ° 
y. > 0, y,J1 > ° 

then from (6.2.1)to (6.2.4) we have 
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R(l) = ( \II 
1 +t1y ) 

(6.3.37) 

R(2) = [1-R(l)][( 1 Y' 
1+t1yk 

(6.3.38) 

R(3) = [1- R(l)][1 - R(2 )][ ( 1 r -( 1 r] 
l+eykZ l+eykz+.tlye 

(6.3.39) 

In general, 

R(r)=[I-R(1)][1-R(2)]. .. [1-R(r-l)][( 1 r -( 1 r] 
1 + e y k r

-
I 1 + eye-I +.tl y k r

-
I (6.3.40) 

A few numerical values of R(l),R(2),R(3) and R3 are tabulated in Table 6.5 (cf. 

Appendix) for different values of the parameters. 

6.4 Graphical Representations 

Some graphs are plotted in Fig. 6.1(a), Fig. 6.1(b), Fig. 6.2(a), Fig. 6.2(b), Fig. 6.3(a), 

Fig. 6.3(b), Fig. 6.4(a), Fig. 6.4(b), Fig. 6.5(a) and Fig. 6.5(b) taking different parameters 

along the horizontal axis and the corresponding reliabilities along the vertical axis for 

different parametric values. Fig. 6.1 (a) - Fig. 6.1 (b) signifies that reliabilities increase 

steadily with increasing y . These graphs may be used to read the intermediate values directly. 

In Fig. 6.2(a) - Fig. 6.2(b) it is seen that graphs ofR(1) ,R(2), R(3) and R3 against (jz for fix 

values of (jl and k are plotted for different values of (j 3 . From these graphs it is observed 

that if the stress parameter (j z and strength parameter (j 3 increase, R(1), R(2), R(3) and R3 

also increases. Similarly it is also seen that in Fig. 6.3(a) - Fig. 6.3(b) and Fig. 6.4(a) - Fig. 

6.4(b), reliabilities are decreases with increasing values of their parameters. But in Fig. 6.5(a) 

- Fig. 6.5(b) taking the attenuation factor k along the horizontal axis and the corresponding 

reliability along the vertical axis for different values of 14, r,.tl, e, it is to be observed that 

reliability is increasing with k. 
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For some specific values of the parameters involved in the expressions of R(r), 

r = 1,2,3 we evaluate the marginal reliabilities R(I) , R(2) , R(3) and system reliability R3 

for the above five cases from their expressions obtained in Sub-Section 6.3.1-6.3.5. 

From the Table 6.1, we notice that if the strength parameter A and y increases then 

the system reliability R3 increase. When the stress parameter fl increases R(J) decreases but 

R(2) and R(3) increases. For instance, if fl = I , R(I) = 0.1442 and if fl = 2, R(I) = 0.1003 . 

In general we see that when y,A increases then R(2) and R(3) will also increases. When the 

attenuation factor k increases then the marginal reliabilities R(I) , R(2) , R(3) and system 

reliability R3 decreases. 

Table 6.2, shows that with some set of values of the parameters, if 0") increases, the 

system reliability decrease. i.e., if 0") = I , R3 == 0.4575 and if 0") = 2, R3 == 0.3235 . But ifthe 
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stress parameter (72 and strength parameter (73 increase, R(l), R(2) and R(3) also increase. 

Here it is seen that when the attenuation factor k increases the marginal reliabilities 

R(l) ,R(2), R(3) and the system reliability R3 decreases. 

From the Table 6.3, it is clear that when the strength parameters () and r increases 

the system reliability R3 and marginal reliabilities R(l) ,R(2), R(3) decreases. But if the 

stress parameter J.1 and attenuation factor k increases, reliability also increases. 

In Table 6.4, it is seen that with some set of values of the parameters if e and A, 

increases then the system reliability decreases and R(l), R(2), R(3) also decreases. Here also 

it is apparent that when the attenuation factor k and stress parameter J.1 increases, the 

marginal reliabilities R(l), R(2) , R(3) and the system reliability R3 increases. 

From the tabulated value of Table 6.5, we observe that when the strength parameters 

A, and () and stress parameters J.1 and r increases, marginal reliabilities R(l), R(2) , R(3) 

and system reliability R3 increases with constant value of k. When the attenuation factor k 

increases there are significant increase in the values of R(2) , R(3) and R3 but no significant 

difference in the values of R(l). 
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Conclusion 

7.1 Summary of the thesis 

In our study, different cascade models are considered to estimate the system reliability. 

For this estimation, several distributions viz. exponential, gamma, Weibull, Rayleigh, 

Lindley, two-point and uniform distribution are considered. Generally in cascade system the 

attenuation factor is assumed to be a constant for all the components. But in the 2nd chapter 

the attenuation factor K is taken to be uniform random variable to evaluate the expressions 

of the unconditional reliability of a system and exponential, gamma and Weibull distribution 

have been used to obtain the cascade reliability. It has been observed that when stress

strength follows exponential distribution, reliability decreases with increasing values of the 

parameters. But for Weibull distribution, increase in the values of shape parameters increases 

the reliability and increase in the values of scale parameters decreases the reliability. 

Cascade reliability can also be obtained if stress and strength are represented by a 

mixture of two distributions, which is discussed in chapter 3. It has been observed from the 

numerical values of reliabilities that for fix values of one mix parameter and attenuation 

factor, reliabilities are decreasing for increased values of another mix parameter and is 

mentioned in Table 3.1 (cf. Appendix). It is also seen that the. increase of one mix parameter 

increases the reliability. 

In chapter 4, an n -cascade system with three failure models have been 

discussed. Using these models marginal reliability and system reliability of n -cascade 

system has been developed and their values are presented graphically. Two distributions viz. 

exponential and Rayleigh has been used to find out the reliabilities. When exponential 



Chapter 7 

distribution is used for the first failure model then we observed that increase in the 

parametric values result a corresponding increase of the reliabilities. Similarly in model II we 

considered n - cascade system with identical components where m stresses on the 

component lie in an interval (a
J 

,b
J

). The component fails even if one of stresses on the 

component falls outside the specified limits. Here model II and model III are almost similar 

except that the components are not identical. It is seen from the Table 4.2 (cf Appendix) and • 

Table 4.3 (cf. Appendix) that keeping all other parameters fixed, reliability can be increased 

by increasing the upper limits. But sometimes it is seen that reliabilities decrease when any 

one ofthe lower limits increases. 

In chapter 5, the system reliability of 2-cascade system has been formulated, when the 

parameters of the stress-strength distributions are considered as random variable. For this 

purpose, stress and strength are assumed as exponential random variables with certain 

parameters. Further it is assumed that either stress or strength parameter is a random variable 

with a known prior distribution. The obtained expressions of the system reliabilities are 

verified using some numerical values of the parameters. It has been found from Table 5.1(cf 

Appendix) and Table 5.2 (cf Appendix) that when the prior distributions are uniform and 

two-point type, the reliabilities are steadily increasing with increasing value of the stress 

parameter and the attenuation factor. But when stress parameter is random then reliabilities 

are decreasing with increasing value of the strength parameter. In stress-strength model the 

reliability of a component is defmed as the probability that its strength is not less than the 

stress working on it. But sometimes a component can work only when the stress Y on it is 

not only less than certain values, say Z, but must be greater than some other value, say X, 

i.e. stress is within certain limits, where X and Z are identified as lower and upper strengths. 

This assumptions has been followed in chapter 6, where reliability of n -cascade system 

under such process has been obtained using different stress-strength distribution. It has been 

observed from the numerical values of the reliab'ility that when the attenuation factor 

increases, marginal reliabilities and system reliability decreases. The results may vary from 

distribution to distribution. 
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7.2 Future Works 

In this research, the reliability of the cascade system is obtained from the distribution 

of its strength and that of stress working on it. Cascade reliability can also be evaluated for 

some truncated stress-strength. Such type of problem is considered as a future research 

prospect. Again for fmding the system reliability of n -cascade system, we considered one 

case where stress on the component is subjected to two strengths. But it is also possible to 

obtain the system reliability where the strength of the components lying between two 

stresses, which is not included in this research due to mathematical complication and the 

limited time. Therefore, it may be a new research interest. 

In most of the studies of S-S models, stress-strength are taken into consideration in 

evaluating the reliability of the system, passage of time has no effect on it. So by taking time 

as an important factor, one time dependent cascade model with different stress-strength 

distribution will be considered in our next study. We have not come across any study oftime 

dependent cascade model where parameters of the distributions are function of time. So our 

future research work will be to study such type of models. 

******** 
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APPENDIX 
List of Tables 

Table 2.1 Values of R), R2, R3 when Stress-Strength follows Exponential Distribution 

P R) R2 R3 
0.1 0.9091 0.9921 0.9990 
0.2 0.8333 0.9742 0.9947 
0.3 0.7692 0.9516 0.9872 
0.4 0.7143 0.9272 0.9773 
0.5 0.6667 0.9022 0.9659 
0.6 0.6250 0.8776 0.9535 
0.7 0.5882 0.8536 0.9405 
0.8 0.5556 0.8306 0.9274 
0.9 0.5263 0.8086 0.9142 
l.1 0.4762 0.7678 0.8883 -l.2 0.4545 0.7488 0.8758 
l.3 0.4348 0.7308 0.8636 
1.4 0.4167 0.7138 0.8517 
l.5 0.4000 0.6975 0.8401 
l.6 0.3846 0.6821 0.8289 
l.7 0.3704 0.6674 0.8180 
l.8 0.3571 0.6534 0.8075 
l.9 0.3448 0.6400 0.7974 
.01 0.9901 0.9999 1.0000 
.02 0.9804 0.9996 1.0000 
.03 0.9709 0.9992 l.0000 
.04 0.9615 0.9985 0.9999 
.05 0.9524 0.9978 0.9999 
.06 0.9434 0.9969 0.9998 
.07 0.9346 0.9959 0.9996 
.08 0.9259 0.9947 0.9995 
.09 0.9174 0.9934 0.9993 
10 0.0909 0.2660 0.8482 
20 0.0476 0.1664 0.5870 
30 0.0323 0.1242 0.4685 
40 0.0244 0.1002 0.3980 
50 0.0196 0.0846 0.3502 
60 0.0164 0.0735 0.3153 
70 0.0141 0.0652 0.2884 
80 0.0123 0.0587 0.2669 
90 0.0110 0.0535 0.2492 
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Table 2.2 Values of R), R2 when Stress-Strength follows Weibull Distribution 

c e a A R) R2 
1 10 6 2 0.8295 0.9846 
1 15 1 1 7 0.6389 0.9297 
1 20 16 12 0.5582 0.8930 
1 25 21 17 0.5142 0.8689 
1 30 26 22 0.4866 0.8525 
2 10 6 2 0.9646 0.9996 
2 15 11 7 0.8167 0.9877 
2 20 16 12 0.7110 0.9693 
2 25 21 17 0.6420 0.9525 
2 30 26 22 0.5949 0.9390 
3 10 6 2 0.9929 1.000 
3 15 11 7 0.9118 0.9978 
3 20 16 12 0.8184 0.9908 
3 25 21 17 0.7438 0.9821 
3 30 26 22 0.6873 0.9730 
4 10 6 2 0.9985 1.000 
4 15 11 7 0.9584 0.9996 
4 20 16 12 0.8884 0.9971 
4. 25 21 17 0.8202 0.9929 
4 30 26 22 0.7625 0.9876 
5 10 6 2 0.9997 1.0000 
5 15 11 7 0.9804 0.9998 
5 20 16 12 0.9322 0.9991 
5 25 21 17 0.8754 0.9972 
5 30 26 22 0.8216 0.9942 
6 10 6 2 0.9999 1.0000 
6 15 11 7 0.9908 0.9999 
6 20 16 12 0.9591 0.9998 
6 25 21 17 0.9143 0.9989 
6 30 26 22 0.8671 0.9972 
7 10 6 2 1.0000 1.0000 
7 15 11 7 0.9956 0.9999 
7 20 16 12 0.9753 0.9998 
7 25 21 17 0.9413 0.9995 
7 30 26 22 0.9015 0.9986 
8 10 6 2 1.0000 1.0000 
8 15 I I 7 0.9979 0.9980 
8 20 16 12 0.9851 0.9999 
8 25 21 17 0.9599 0.9997 
8 30 26 22 0.9272 0.9993 
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Table 2.3 Values of R), R2 when Strength follows Exponential and Stress follows Gamma 

Distribution 

I A R) R2 
2 0.1 0.8264 0.9780 
2 0.2 0.6944 0.9325 
2 0.3 0.5917 0.8802 
2 0.4 0.5102 0.8277 
2 0.5 0.4444 0.7778 
2 0.6 0.3906 0.7315 
3 0.1 0.7513 0.9591 
3 0.2 0.5787 0.8820 
3 0.3 0.4552 0.8005 
3 0.4 0.3644 0.7247 
3 0.5 0.2963 0.6574 
3 0.6 0.2441 0.5986 
4 0.1 0.6830 0.9366 
4 0.2 0.4823 0.8273 
4 0.3 0.3501 0.7210 
4 0.4 0.2603 0.6291 
4 0.5 0.1975 0.5525 
4 0.6 0.1526 0.4891 
5 0.1 0.6209 0.9115 
5 0.2 0.4019 0.7716 
5 0.3 0.2693 0.6463 
5 0.4 0.1859 0.5451 
5 0.5 0.1317 0.4654 
5 0.6 0.0954 0.4027 
6 0.1 0.5645 0.8845 
6 0.2 0.3349 0.7171 
6 0.3 0.2072 0.5783 
6 0.4 0.1328 0.4733 
6 0.5 0.0878 0.3949 
6 0.6 0.0596 0.3358 
7 0.1 0.5132 0.8564 
7 0.2 0.2791 0.6649 
7 0.3 0.1594 0.5178 
7 0.4 0.0949 0.4131 
7 0.5 0.0585 0.3385 
7 0.6 0.0373 0.2844 
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Table 3.1 Reliabilities Rio R2 and R3 when Stress and Strength are mixture of Exponential 

Distribution for J.1 = A = 1, e = f3, f3 = 2 where p' + p" = 1 and q' + q" = 1 

k=0.6 k=0.8 

p' q' RI R2 R3 RI R2 R3 
0 0 0.5 0.7404 0.8796 0.5 0.6984 0.8102 

0.2 0 0.5333 0.773 0.9015 0.5333 0.7348 0.8422 
0.4 0 0.5667 0.8034 0.9205 0.5667 0.7686 0.87 
0.6 0 0.6 0.8314 0.9367 0.6 0.7998 0.894 
0.8 0 0.6333 0.857 0.9505 0.6333 0.8285 0.9145 
1 0 0.6667 0.8803 0.9619 0.6667 0.8546 0.9318 
0 0.2 0.4667 0.7023 0.8483 0.4667 0.6588 0.7718 

0.2 0.2 0.5 0.7371 0.8737 0.5 0.6969 0.807 
0.4 0.2 0.5333 0.7695 0.8959 0.5333 0.7324 0.8378 
0.6 0.2 0.5667 0.7995 0.9151 0.5667 0.7653 0.8647 
0.8 0.2 0.6 0.8271 0.9316 0.6 0.7957 0.8878 
1 0.2 0.6333 0.8524 0.9455 0.6333 0.8234 0.9075 
0 0.4 0.4333 0.6641 0.817 0.4333 0.6193 0.7333 

0.2 0.4 0.4667 0.7011 0.8459 0.4667 0.6591 0.7718 
0.4 0.4 0.5 0.7355 0.8714 0.5 0.6963 0.8057 
0.6 0.4 0.5333 0.7676 0.8935 0.5333 0.7308 0.8353 
0.8 0.4 0.5667 0.7972 0.9126 0.5667 0.7628 0.8611 
I 0.4 0.6 0.8244 0.929 0.6 0.7921 0.8832 
0 0.6 0.4 0.626 0.7857 0.4 0.5797 0.6948 

0.2 0.6 0.4333 0.6651 0.8182 0.4333 0.6212 0.7365 
0.4 0.6 0.4667 0.7016 0.8468 0.4667 0.6601 0.7735 
0.6 0.6 0.5 0.7357 0.8719 0.5 0.6963 0.806 
0.8 0.6 0.5333 0.7673 0.8937 0.5333 0.7299 0.8343 
1 0.6 0.5667 0.7964 0.9125 0.5667 0.7609 0.8589 
0 0.8 0.3667 0.5879 0.7544 0.3667 0.5401 0.6563 

0.2 0.8 0.4 0.6291 0.7904 0.4 0.5834 0.7013 
0.4 0.8 0.4333 0.6677 0.8223 0.4333 0.6239 0.7413 
0.6 0.8 0.4667 0.7038 0.8503 0.4667 0.6618 0.7766 
0.8 0.8 0.5 0.7374 0.8748 0.5 0.6971 0.8076 
1 0.8 0.5333 0.7684 0.8961 0.5333 0.7297 0.8346 
0 1 0.3333 0.5498 0.7231 0.3333 0.5006 0.6178 

0.2 1 0.3667 0.5931 0.7626 0.3667 0.5455 0.6661 
0.4 1 0.4 0.6338 0.7977 0.4 0.5878 0.7091 
0.6 I 0.4333 0.6719 0.8287 0.4333 0.6273 0.7473 
0.8 1 0.4667 0.7075 0.8559 0.4667 0.6642 0.7809 
1 1 0.5 0.7404 0.8796 0.5 0.6984 0.8102 
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Table 3.2 Reliabilities R], R2 and R3 when Stress and Strength are mixture of Rayleigh 

Distribution for 0"] = 0"3 = 1, 0"2 = 0"4' 0"4 = 2 where p' + p" = 1 and q' + q" = 1 

k=0.6 k=0.8 

p' q' R] R2 R3 R] R2 R) 

0 0 0.5 0.8116 0.9576 0.5 0.731 ' 0.8654 
0.2 0 0.44 0.7564 0.9321 0.44 0.6728 0.8211 
0.4 0 0.38 0.6932 0.8985 0.38 0.6055 0.7638 
0.6 0 0.32 0.6218 0.8556 0.32 0.529 0.6914 
0.8 0 0.26 0.5422 0.8023 0.26 0.4434 0.602 
1 0 0.2 0.4546 0.7376 0.2 0.3486 0.4934 
0 0.2 0.56 0.8435 0.9656 0.56 0.7753 0.8902 

0.2 0.2 0.5 0.7953 0.9446 0.5 0.723 0.8527 
0.4 0.2 0.44 0.7394 0.9167 0.44 0.6618 0.8036 
0.6 0.2 0.38 0.6759 0.8809 0.38 0.5918 0.741 
0.8 0.2 0.32 0.6047 0.8362 0.32 0.5129 0.6631 
1 0.2 0.26 0.526 0.7816 0.26 0.4251 0.5678 
0 0.4 0.62 0.8754 0.9736 0.62 0.8197 0.9151 

0.2 0.4 0.56 0.8341 0.9571 0.56 0.7732 0.8843 
0.4 0.4 0.5 0.7856 0.9349 0.5 0.7181 0.8434 
0.6 0.4 0.44 0.73 0.9061 0.44 0.6545 0.7906 
0.8 0.4 0.38 0.6672 0.87 0.38 0.5823 0.7241 
1 0.4 0.32 0.5974 0.8256 0.32 0.5016 0.6422 
0 0.6 0.68 0.9073 0.9817 0.68 0.8641 0.9399 

0.2 0.6 0.62 0.8729 0.9696 0.62 0.8234 0.9159 
0.4 0.6 0.56 0.8318 0.9531 0.56 0.7745 0.8833 
0.6 0.6 0.5 0.7841 0.9314 0.5 0.7173 0.8402 
0.8 0.6 0.44 0.7297 0.9038 0.44 0.6518 0.7852 
1 0.6 0.38 0.6688 0.8696 0.38 0.578 0.7166 
0 0.8 0.74 0.9392 0.9897 0.74 0.9085 0.9648 

0.2 0.8 0.68 0.9117 0.9821 0.68 0.8736 0.9475 
0.4 0.8 0.62 0.878 0.9713 0.62 0.8308 0.9231 
0.6 0.8 0.56 0.8382 0.9567 0.56 0.78 0.8898 
0.8 0.8 0.5 0.7922 0.9376 0.5 0.7212 0.8463 
1 0.8 0.44 0.7402 0.9136 0.44 0.6545 0.791 
0 1 0.8 0.9712 0.9977 0.8 0.9528 0.9896 

0.2 1 0.74 0.9505 0.9946 0.74 0.9238 0.9792 
0.4 1 0.68 0.9242 0.9895 0.68 0.8871 0.9629 
0.6 1 0.62 0.8923 0.9819 0.62 0.8427 0.9394 
0.8 1 0.56 0.8548 0.9715 0.56 0.9707 0.9074 
1 1 0.5 0.8116 0.9576 0.5 0.731 0.8654 
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Table 3.3 Reliabilities RI. R2 and R3 when Stress and Strength are mixture of Wei bull 

Distribution for J..L = A = e = {3 = 1, A = C = 1, B = D, D = 2 where pi + p" = 1 

and q' + q" = 1 

k =0.6 k =0.8 

P 
I q' RI R2 R3 RI R2 R3 

0 0 0.5 0.8116 0.9576 0.5 0.731 0.8654 
0.2 0 0.4895 0.7731 0.9217 0.4895 0.6945 0.8303 
0.4 0 0.4790 0.7396 0.891 0.479 0.6641 0.8018 
0.6 0 0.4685 0.7109 0.8654 0.4685 0.6398 0.7798 
0.8 0 0.458 0.6871 0.8449 0.458 0.6216 0.7641 
1 0 0.4475 0.6682 0.8293 0.4475 0.6094 0.7546 
0 0.2 0.5076 0.8001 0.9448 0.5076 0.7223 0.8516 . 

0.2 0.2 0.4977 0.769 0.9213 0.4977 0.6939 0.8278 
0.4 0.2 0.4878 0.7417 0.8991 0.4878 0.6701 0.8071 
0.6 0.2 0.4778 0.7182 0.8782 0.4778 0.6511 0.7898 
0.8 0.2 0.4679 0.6985 0.8583 0.4679 0.6368 0.776 
1 0.2 0.458 0.6826 0.8394 0.458 0.6272 0.7658 
0 0.4 0.5153 0.7886 0.932 0.5153 0.7137 0.8379 

0.2 0.4 0.5059 0.7648 0.9208 0.5059 0.6933 0.8252 
0.4 0.4 0.4966 0.7438 0.9072 0.4966 0.6762 0.8124 
0.6 0.4 0.4872 0.7254 0.8909 0.4872 0.6624 0.7999 
0.8 0.4 0.4778 0.7099 0.8717 0.4778 0.6521 0.7879 
1 0.4 0.4685 0.697 0.8494 0.4685 0.645 0.7769 
0 0.6 0.5229 0.7772 0.9192 0.5229 0.7051 0.8241 

0.2 0.6 0.5141 0.7607 0.917 0.5141 0.6927 0.8227 
0.4 0.6 0.5053 0.7458 0.9153 0.5053 0.6822 0.8177 
0.6 0.6 0.4966 0.7327 0.9037 0.4966 0.6738 0.8099 
0.8 0.6 0.4878 0.7213 0.8852 0.4878 0.6673 0.7998 
1 0.6 0.479 0.7115 0.8595 0.479 0.6628 0.788 
0 0.8 0.5306 0.7657 0.9064 0.5306 0.6964 0.8104 

0.2 0.8 0.5223 0.7565 0.8939 0.5223 0.692 0.7941 
0.4 0.8 0.5141 0.7479 0.8893 0.5141 0.6883 0.7901 
0.6 0.8 0.5059 0.74 0.8856 0.5059 0.6851 0.7865 
0.8 0.8 0.4977 0.7326 0.8761 0.4977 0.6826 0.7811 
1 0.8 0.4895 0.7259 0.867 0.4895 0.6806 0.7791 
0 1 0.5382 0.7542 0.8937 0.5382 0.6878 0.7966 

0.2 1 0.5306 0.7523 0.8895 0.5306 0.6814 0.7903 
0.4 1 0.5229 0.75 0.8815 0.5229 0.6743 0.7883 
0.6 1 0.5153 0.7472 0.8742 0.5153 0.6722 0.78 
0.8 1 0.5076 0.744 0.8621 0.5076 0.6707 0.7791 

1 1 0.5 0.7404 0.8596 0.5 0.6636 0.7728 
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Table 3.4 Reliabilities Rio R2 and R) when Stress and Strength are mixture of Wei bull 

Distribution for A = J..i = I, e = /3, A = B = C = D = 1, /3=2 where 
p' + p" = 1 and q' + q" = 1 

k=0.6 k=0.8 

p' q' R, R2 R) R, R2 R) 
0 0 0.5 0.5694 0.7083 0.5 0.5292 0.64 

0.2 0 0.4666 0.5408 0.6882 0.4666 0.5006 0.6151 
0.4 0 0.4331 0.5098 0.6648 0.4331 0.4694 0.586 
0.6 0 0.3997 0.4765 0.6376 0.3997 0.4356 0.5524 
0.8 0 0.3663 0.4409 0.6064 0.3663 0.3993 0.5139 
1 0 0.3329 0.4029 0.571 0.3329 0.3605 0.4704 
0 0.2 0.5333 0.6316 0.759 0.5333 0.5943 0.6984 

0.2 0.2 0.4999 0.604 0.7437 0.4999 0.5662 0.6768 
0.4 0.2 0.4665 0.5741 0.7252 0.4665 0.5355 0.6511 
0.6 0.2 0.4331 0.5419 0.7031 0.4331 0.5022 0.621 
0.8 0.2 0.3997 0.5073 0.6771 0.3997 0.4664 0.586 

1 0.2 0.3663 0.4704 0.6468 0.3663 0.4281 0.5459 
0 0.4 0.5667 0.6938 0.8097 0.5667 0.6594 0.7567 

0.2 0.4 0.5333 0.6673 0.7992 0.5333 0.6318 0.7384 
0.4 0.4 0.4999 0.6384 0.7857 0.4999 0.6016 0.7162 
0.6 0.4 0.4665 0.6073 0.7687 0.4665 0.5689 0.6896 
0.8 0.4 0.4331 0.5738 0.7479 0.4331 0.5336 0.6581 
1 0.4 0.3997 0.538 0.7227 0.3997 0.4958 0.6214 
0 0.6 0.6 0.756 0.8605 0.6 0.7245 0.8151 

0.2 0.6 0.5666 0.7305 0.8547 0.5666 0.6974 0.8001 
0.4 0.6 0.5333 0.7028 0.8462 0.5333 0.6677 0.7813 
0.6 0.6 0.4999 0.6727 0.8343 0.4999 0.6355 0.7582 
0.8 0.6 0.4665 0.6402 0.8186 0.4665 0.6007 0.7302 
1 0.6 0.4331 0.6055 0.7985 0.4331 0.5634 0.6969 
0 0.8 0.6333 0.8182 0.9112 0.6333 0.7896 0.8734 

0.2 0.8 0.6 0.7938 0.9102 0.6 0.7629 0.8617 
0.4 0.8 0.5666 0.7671 0.9067 0.5666 0.7338 0.8464 
0.6 0.8 0.5333 0.738 0.8999 0.5333 0.7021 0.8268 
0.8 0.8 0.4999 0.7067 0.8893 0.4999 0.6678 0.8023 
1 0.8 0.4666 0.673 0.8744 0.4666 0.631 0.7724 
0 1 0.6667 0.8803 0.9619 0.6667 0.8546 0.9318 

0.2 1 0.6333 0.857 0.9557 0.6333 0.8285 0.9234 
0.4 I 0.6 0.8314 0.9371 0.6 0.7999 0.9115 
0.6 1 0.5667 0.8034 0.9155 0.5667 0.7687 0.8897 
0.8 1 0.5333 0.7731 0.89 0.5333 0.735 0.8612 
1 1 0.5 0.7405 0.8606 0.5 0.6987 0.8309 
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Table 4.1 Values of R(1), R(2) , R(3) and R3 for Failure model I where Stress-Strength 

Distributions are Exponential 

8. 82 83 a. a 2 
k R(1) R(2) R(3) R3 

0.5 1 2 1 1 0.1 0.4444 0.4358 0.1122 0.9925 
1 1 2 1 1 0.1 0.2500 0.5997 0.1414 0.9911 

0.5 1 2 1 3 0.1 0.5714 0.3589 0.0662 0.9966 
1 1 2 1 3 0.1 0.3750 0.5313 0.0894 0.9957 

0.5 1 2 3 1 0.1 0.5714 0.3589 0.0662 0.9966 
1 1 2 3 1 0.1 0.3750 0.5313 0.0894 0.9957 

0.5 1 2 3 3 0.1 0.7347 0.2421 0.0227 0.9994 
1 1 2 3 3 0.1 0.5625 0.4011 0.0355 0.9992 

0.5 1 2 I 2 0.1 0.5333 0.3850 0.0774 0.9958 
1 1 2 I 2 0.1 0.3333 0.5586 0.1029 0.9948 

0.5 I 2 2 1 0.1 0.5333 0.3850 0.0774 0.9958 
1 1 2 2 1 0.1 0.3333 0.5586 0.1029 0.9948 

0.5 1 2 1 1 0.5 0.4440 0.1944 0.1044 0.7433 
I 1 2 1 I 0.5 0.2500 0.2844 0.1456 0.6800 

0.5 1 2 1 3 0.5 0.5714 0.1964 0.0881 0.8560 
1 1 2 1 3 0.5 0.3750 0.3048 0.1298 0.8095 

0.5 1 2 3 1 0.5 0.5714 0.1964 0.0881 0.8560 
1 1 2 3 1 0.5 0.3750 0.3048 0.1298 0.8095 

0.5 1 2 3 3 0.5 0.7347 0.1722 0.0541 0.9610 
1 1 2 3 3 0.5 0.5625 0.2902 0.0877 0.9405 

0.5 1 2 1 2 0.5 0.5333 0.2000 0.0952 0.8286 
1 1 2 1 2 0.5 0.3333 0.3048 0.1381 0.7762 

0.5 1 2 2 1 0.5 0.5333 0.2000 0.0952 0.8286 
1 1 2 2 1 0.5 0.3333 0.3048 0.1381 0.7762 

0.5 I 2 1 1 0.9 0.4444 0.1034 0.0241 0.5720 
1 I 2 1 1 0.9 0.2500 0.1581 0.0376 0.4457 

0.5 1 2 1 3 0.9 0.5714 0.1208 0.0296 0.7218 
1 1 2 1 3 0.9 0.3750 0.1937 0.0474 0.6165 

0.5 1 2 3 1 0.9 0.5714 0.1208 0.0296 0.7218 
1 I 2 3 I 0.9 0.3750 0.1937 0.0478 0.6165 

0.5 1 2 3 3 0.9 0.7347 0.1268 0.0313 0.8928 
1 1 2 3 3 0.9 0.5625 0.2169 0.0530 0.8324 

0.5 1 2 1 2 0.9 0.5333 0.1179 0.0287 0.6799 
1 1 2 1 2 0.9 0.3333 0.1861 0.0457 0.5652 

0.5 1 2 2 1 0.9 0.5333 0.1179 0.0287 0.6799 
1 1 2 2 1 0.9 0.3333 0.1861 0.0457 0.5652 
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Table 4.2 Values of R(l), R(2), R(3) and R3 for Failure model II where Stress-Strength 

Distributions are Exponential 

GI G 2 G3 bl b2 b3 a l a 2 a3 k R(l) R(2) R(3) R3 

0.1 0.2 0.3 4 4 4 0.2 0.2 0.2 0.5 0.1337 0.3248 0.2891 0.7477 
0.1 0.2 0.3 4 4 4 0.2 0.2 0.2 0.7 0.1337 0.2119 0.2505 0.5961 
0.1 0.2 0.3 4 4 4 0.2 0.2 0.2 I 0.1337 0.1158 0.0703 0.3198 
0.1 0.2 0.3 4 4 4 0.2 0.2 0.2 1.2 0.1337 0.0809 0.0498 0.2644 
0.1 0.2 0.3 4 4 4 1 1 1 0.5 0.5217 0.1466 0.0309 0.6901 
0.1 0.2 0.3 4 4 4 1 1 1 0.7 0.5217 0.2041 0.0831 0.7999 
0.1 0.2 0.3 4 4 4 1 1 1 1 0.5217 0.2498 0.1218 0.8843 
0.1 0.2 0.3 4 4 4 1 1 1 1.2 0.5217 0.2597 0.1270 0.9084 
1 0.2 0.3 4 4 4 0.6 0.6 0.6 0.5 0.5045 0.2337 0.0620 0.8002 
1 0.2 0.3 4 4 4 0.6 0.6 0.6 0.7 0.5045 0.2504 0.0884 0.8433 
1 0.2 0.3 4 4 4 0.6 0.6 0.6 1 0.5045 0.2519 0.1239 0.8803 
1 0.2 0.3 4 4 4 0.6 0.6 0.6 1.2 0.5045 0.2657 0.1354 0.9056 

0.3 0.3 0.3 5 5 5 0.5 0.5 0.5 0.5 0.4720 0.2088 0.0527 0.7336 
0.3 0.3 0.3 5 5 5 0.5 0.5 0.5 0.7 0.4720 0.2496 0.1084 0.8300 
0.3 0.3 0.3 5 5 5 0.5 0.5 0.5 1 0.4720 0.2592 0.1316 0.8628 
0.3 0.3 0.3 5 5 5 0.5 0.5 0.5 1.2 0.4720 0.2699 0.1435 0.8854 
0.1 0.4 0.5 5 4 3 0.8 0.8 0.8 0.5 0.3594 0.1265 0.0209 0.5069 
0.1 0.4 0.5 5 4 3 0.8 0.8 0.8 0.7 0.3594 0.1887 0.0865 0.6347 
0.1 0.4 0.5 5 4 3 0.8 0.8 0.8 1 0.3594 0.2302 0.1475 0.7372 
0.1 0.4 0.5 5 4 3 0.8 0.8 0.8 1.2 0.3594 0.2333 0.1487 0.7414 
0.2 0.4 0.6 4 4 4 0.9 0.9 0.9 0.5 0.3008 0.0802 0.0082 0.3893 
0.2 0.4 0.6 4 4 4 0.9 0.9 0.9 0.7 0.3008 0.1450 0.0609 0.5067 
0.2 0.4 0.6 4 4 4 0.9 0.9 0.9 1 0.3008 0.2103 0.1471 0.6582 
0.2 0.4 0.6 4 4 4 0.9 0.9 0.9 1.2 0.3008 0.2303 0.1582 0.6894 
0.3 0.5 0.7 3 4 5 0.1 0.1 0.1 0.5 0.0230 0.0977 0.2289 0.3495 
0.3 0.5 0.7 3 4 5 0.1 0.1 0.1 0.7 0.0230 0.0502 0.0961 0.1693 
0.3 0.5 0.7 3 4 5 0.1 0.1 0.1 1 0.0230 0.0225 0.0219 0.0674 
0.3 0.5 0.7 3 4 5 0.1 0.1 0.1 1.2 0.0230 0.0144 0.0090 0.0464 
0.2 0.4 0.6 4 4 4 0.1 0.1 0.1 0.5 0.0244 0.1034 0.2392 0.3670 
0.2 0.4 0.6 4 4 4 0.1 0.1 0.1 0.7 0.0244 0.0533 0.1014 0.1791 
0.2 0.4 0.6 4 4 4 0.1 0.1 0.1 1 0.0244 0.0238 0.0233 0.0715 
0.2 0.4 0.6 4 4 4 0.1 0.1 0.1 1.2 0.0244 0.0153 0.0095 0.0493 
0.3 0.5 0.7 3 4 5 0.9 0.9 0.9 0.5 0.2924 0.0808 0.0083 0.3815 
0.3 0.5 0.7 3 4 5 0.9 0.9 0.9 0.7 0.2924 0.1447 0.0616 0.4987 
0.3 0.5 0.7 3 4 5 0.9 0.9 0.9 1 0.2924 0.2069 0.1464 0.6457 
0.3 0.5 0.7 3 4 5 0.9 0.9 0.9 1.2 0.2924 0.2250 0.1562 0.6736 
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Table 4.3 Values of R(1), R(2), R(3) and R3 for Failure model III where Stress-Strength Distributions are 

Exponential for all = al2 = al3 = a21 = a22 = 0.1, a23 = a31 = a32 = a33 = 0.1 

bll bl2 bl3 b21 b22 b23 b31 b32 b33 u l u 2 u 3 
k R(1) R(2) R(3) 

2 3 3 2 3 3 2 3 3 0.2 0.2 0.2 0.1 0.0577 0.5025 0.0011 
2 3 3 2 3 3 2 3 3 0.2 0.2 0.2 0.5 0.0577 0.2097 0.3661 
2 3 3 2 3 3 2 3 3 0.2 0.2 0.2 0.9 0.0577 0.0685 0.0794 
2 3 3 2 3 3 2 3 3 0.2 0.2 0.2 1.3 0.0577 0.0294 0.0149 
2 3 3 2 3 3 2 3 3 0.5 0.5 0.5 0.1 0.3093 0.1541 0.0001 
2 3 3 2 3 3 2 3 3 0.5 0.5 0.5 0.5 0.3093 0.3886 0.1611 
2 3 3 2 3 3 2 3 3 0.5 0.5 0.5 0.9 0.3093 0.2442 0.1778 
2 '3 3 2 3 3 2 3 3 0.5 0.5 0.5 l.3 0.3093 0.1442 0.1714 
2 3 3 2 3 3 2 3 3 l.0 l.0 l.0 0.1 0.5626 0.0218 0.0001 
2 3 3 2 3 3 2 3 3 l.0 1.0 l.0 0.5 0.5626 0.2337 0.0615 
2 3 3 2 3 3 2 3 3 l.0 1.0 l.0 0.9 0.5626 0.2539 0.1083 
2 3 3 2 3 3 2 3 3 1.0 1.0 l.0 l.3 0.5626 0.2125 0.0855 
6 8 9 6 8 9 6 8 9 0.2 0.2 0.2 0.1 0.4307 0.1188 0.0011 
6 8 9 6 8 9 6 8 9 0.2 0.2 0.2 0.5 0.4307 0.0061 0.0296 
6 8 9 6 8 9 6 8 9 0.2 0.2 0.2 0.9 0.4307 0.0013 0.0017 
6 8 9 6 8 9 6 8 9 0.2 0.2 0.2 l.3 0.4307 0.0005 0.0002 
4 5 6 4 5 6 4 5 6 0.3 0.3 0.3 0.1 0.4027 0.2428 0.0001 
4 5 6 4 5 6 4 5 6 0.3 0.3 0.3 0.5 0.4027 0.4146 0.1258 
4 5 6 4 5 6 4 5 6 0.3 0.3 0.3 0.9 0.4027 0.2721 0.1652 
4 5 6 4 5 6 4 5 6 0.3 0.3 0.3 l.3 0.4027 0.1666 0.0769 
1 2 3 1 2 3 1 2 3 0.4 0.4 0.4 0.1 0.0980 0.2641 0.0001 
1 2 3 1 2 3 1 2 3 0.4 0.4 0.4 0.5 0.0980 0.2566 0.2874 
1 2 3 1 2 3 1 2 3 0.4 0.4 0.4 0.9 0.0980 0.1075 0.1139 
1 2 3 1 2 3 1 2 3 0.4 0.4 0.4 l.3 0.0980 0.0520 0.0273 
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R) 

0.5613 
0.6335 
0.2056 
0.1022 
0.4634 
0.8589 
0.7313 
0.5248 
0.5844 
0.8573 
0.9248 
0.0606 
0.5505 
0.4664 
0.4337 
0.4314 
0.6456 
0.9431 
0.8400 
0.6462 
0.3621 
0.6419 
0.3194 
0.1773 
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Table 4.4 Values of R(1), R(2), R(3) and R3 for Failure model I where Stress-Strength 

Distributions are Rayleigh 

0", 0"2 0"3 fJ, fJ2 k R(I) R(2) R(3) R3 
0.5 1 2 1 1 0.1 0.1600 0.8209 0.0048 0.9857 
1 1 2 1 1 0.1 0.2500 0.7328 0.0043 0.9871 

0.5 1 2 1 3 0.1 0.0216 0.8868 0.0229 0.9313 
1 I 2 1 3 0.1 0.0500 0.8590 0.0227 0.9318 

0.5 1 2 3 1 0.1 0.0216 0.8868 0.0229 0.9313 
1 1 2 3 1 0.1 0.0500 0.8590 0.0227 0.9318 

0.5 1 2 1 2 0.1 0.0471 0.9052 0.0119 0.9642 
1 1 2 1 2 0.1 0.1000 0.8533 0.0117 0.9650 

0.5 1 2 2 I 0.1 0.0471 0.9052 0.0119 0.9642 
1 1 2 2 1 0.1 0.1000 0.8533 0.0117 0.9650 

0.5 1 2 1 1 0.5 0.1600 0.4949 0.0826 0.7375 
1 1 2 1 1 0.5 0.2500 0.4425 0.0735 0.7659 

0.5 1 2 1 3 0.5 0.0216 0.2267 0.1570 0.4054 
1 I 2 1 3 0.5 0.0500 0.2099 0.1542 0.4141 

0.5 1 2 3 1 0.5 0.0216 0.2267 0.1570 0.4054 
1 1 2 3 1 0.5 0.0500 0.2099 0.1542 0.4141 

0.5 1 2 1 2 0.5 0.0471 0.3577 0.1347 0.5395 
1 1 2 1 2 0.5 0.1000 0.3259 0.1296 0.5555 

0.5 1 2 2 1 0.5 0.0471 0.3577 0.1347 0.5395 
1 1 2 2 1 0.5 0.1000 0.3259 0.1296 0.5555 

0.5 1 2 1 1 0.9 0.1600 0.1867 0.1109 0.4576 
1 I 2 1 1 0.9 0.2500 0.1786 0.0952 0.5238 

0.5 1 2 1 3 0.9 0.0216 0.0511 0.0724 0.1451 
1 1 2 1 3 0.9 0.0500 0.0461 0.0682 0.1642 

0.5 1 2 3 1 0.9 0.0216 0.0511 0.0724 0.1451 
1 I 2 3 1 0.9 0.0500 0.0461 0.0682 0.1642 

0.5 1 2 1 2 0.9 0.0471 0.0963 0.1009 0.2442 
1 1 2 1 2 0.9 0.1000 0.0871 0.0928 0.2800 

0.5 1 2 2 1 0.9 0.0471 0.0963 0.1009 0.2442 
1 1 2 2 1 0.9 0.1000 0.0871 0.0928 0.2800 

0.5 I 2 1 1 1.3 0.1600 0.0488 0.0511 0.2600 
1 1 2 1 1 1.3 0.2500 0.0648 0.0425 0.3572 

0.5 1 2 1 3 1.3 0.0216 0.0115 0.0147 0.0478 
1 1 2 1 3 1.3 0.0500 0.0122 0.0126 0.0748 

0.5 1 2 3 I 1.3 0.0216 0.0115 0.0147 0.0478 
1 1 2 3 1 1.3 0.0500 0.0122 0.0126 0.0748 

0.5 I 2 1 2 \.3 0.0471 0.0227 0.0272 0.0970 
I I 2 I 2 1.3 0.1000 0.0249 0.0231 0.1479 

0.5 I 2 2 I 1.3 0.0471 0.0227 0.0272 0.0970 
1 I 2 2 1 1.3 0.1000 0.0249 0.0231 0.1479 
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Table 4.5 Values of R(I), R(2), R(3) and R3 for Failure model II where Stress-Strength 

Distributions are Rayleigh 

a l a2 bl b2 
k R(I) R(2) R(3) R3 

0.1 0.2 4 4 0.5 0.7096 0.1592 0.0395 0.9083 
0.1 0.2 4 4 0.7 0.7096 0.1876 0.0557 0.9529 
0.1 0.2 4 4 I 0.7096 0.2061 0.0598 0.9755 
0.1 0.2 4 4 1.2 0.7096 0.2082 0.0578 0.9757 
0.1 0.3 4 4 0.5 0.6405 0.1614 0.0400 0.8419 
0.1 0.3 4 4 0.7 0.6405 0.2012 0.0699 0.9116 
0.1 0.3 4 4 I 0.6405 0.2303 0.0828 0.9535 
0.1 0.3 4 4 1.2 0.6405 0.2363 0.0805 0.9572 
1 0.4 4 4 0.5 0.2279 0.0468 0.0027 0.2774 
1 0.4 4 4 0.7 0.2279 0.1024 0.0383 0.3687 
1 0.4 4 4 I 0.2279 0.1760 0.1359 0.5398 
1 0.4 4 4 1.2 0.2279 0.2097 0.1709 0.6086 

0.3 0.5 5 5 0.5 0.4403 0.1130 0.0182 0.5715 
0.3 0.5 5 5 0.7 0.4403 0.1780 0.0746 0.6929 
0.3 0.5 5 5 1 0.4403 0.2464 0.1379 0.8247 
0.3 0.5 5 5 1.2 0.4403 0.2750 0.1502 0.8655 
0.1 0.6 5 4 0.5 0.4764 0.1290 0.0240 0.6294 
0.1 0.6 5 4 0.7 0.4764 0.1909 0.0796 0.7470 
0.1 0.6 5 4 1 0.4764 0.2494 0.1306 0.8565 
0.1 0.6 5 4 1.2 0.4764 0.2703 0.1363 0.8831 
0.2 0.7 5 4 0.5 0.3884 0.1010 0.0140 0.5033 
0.2 0.7 5 4 0.7 0.3884 0.1674 0.0707 0.6264 
0.2 0.7 5 4 1 0.3884 0.2375 0.1453 0.7712 
0.2 0.7 5 4 1.2 0.3884 0.2655 0.1606 0.8145 
0.3 0.4 6 7 0.5 0.4943 0.1247 0.0232 0.6421 
0.3 0.4 6 7 0.7 0.4943 0.1860 0.0766 0.7569 
0.3 0.4 6 7 1 0.4943 0.2500 0.1264 0.8706 
0.3 0.4 6 7 1.2 0.4943 0.2786 0.1356 0.9085 
0.2 0.6 2 2 0.5 0.2826 0.1323 0.0237 0.4386 
0.2 0.6 2 2 0.7 0.2826 0.1827 0.0960 0.5613 
0.2 0.6 2 2 1 0.2826 0.2027 0.1454 0.6307 
0.2 0.6 2 2 1.2 0.2826 0.1970 0.1325 0.6121 
0.5 0.8 6 6 0.5 0.2699 0.0542 0.0037 0.3279 
0.5 0.8 6 6 0.7 0.2699 0.1139 0.0434 0.4272 
0.5 0.8 6 6 I 0.2699 0.1971 0.1439 0.6109 
0.5 0.8 6 6 1.2 0.2699 0.2414 0.1886 0.6999 
0.3 0.4 5 5 0.5 0.4871 0.1265 0.0235 0.6371 
0.3 0.4 5 5 0.7 0.4871 0.1882 0.0778 0.7531 
0.3 0.4 5 5 I 0.4871 0.2498 0.1281 0.8651 
0.3 0.4 5 5 1.2 0.4871 0.2744 0.1353 0.8968 
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Table 4.6 Values of R(1), R(2), R(3) and R3 for Failure model III where Stress-Strength Distributions are Rayleigh 

all a l2 a 2l a22 a 3l a32 bll bl2 b2l b22 b3l b32 k R(l) R(2) R(3) R3 
0.1 0.1 0.1 0.1 0.1 0.1 2 3 2 3 2 3 0.1 0.6580 0.0463 0.0001 0.7043 
0.1 0.1 0.1 0.1 0.1 0.1 2 3 2 3 2 3 0.5 0.6580 0.2235 0.0532 0.9343 
0.1 0.1 0.1 0.1 0.1 0.1 2 3 2 3 2 3 0.9 0.6580 0.2311 0.0762 0.9652 
0.1 0.1 0.1 0.1 0.1 0.1 2 3 2 3 2 3 1.3 0.6580 0.2011 0.0694 0.9284 

0.2 0.2 0.2 0.2 0.2 0.2 6 8 6 8 6 8 0.1 0.6680 0.0061 0.0001 0.6741 
0.2 0.2 0.2 0.2 0.2 0.2 6 8 6 8 6 8 0.5 0.6680 0.1492 0.0369 0.8541 
0.2 0.2 0.2 0.2 0.2 0.2 6 8 6 8 6 8 0.9 0.6680 0.2125 0.0729 0.9534 
0.2 0.2 0.2 0.2 0.2 0.2 6 8 6 8 6 8 1.3 0.6680 0.2406 0.0691 0.9777 

2 4 2 4 2 4 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.4375 0.0014 0.0001 0.4389 
2 4 2 4 2 4 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.4375 0.1637 0.0361 0.6373 
2 4 2 4 2 4 0.3 0.3 0.3 0.3 0.3 0.3 0.9 0.4375 0.2411 0.l331 0.8116 
2 4 2 4 2 4 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.4375 0.2437 0.1259 0.8071 

6 8 6 8 6 8 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.4474 0.0002 0.0001 0.4476 
6 8 6 8 6 8 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4474 0.1116 0.0180 0.5770 
6 8 6 8 6 8 0.4 0.4 0.4 0.4 0.4 0.4 0.9 0.4474 0.2267 0.1212 0.7954 
6 8 6 8 6 8 0.4 0.4 0.4 0.4 0.4 0.4 1.3 0.4·474 0.2937 0.1536 0.8948 

7 9 7 9 7 9 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3673 0.0002 0.0001 0.3673 
7 9 7 9 7 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3673 0.0856 0.0100 0.4629 
7 9 7 9 7 9 0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.3673 0.2081 0.1235 0.6989 
7 9 7 9 7 9 0.5 0.5 0.5 0.5 0.5 0.5 1.3 0.3673 0.2908 0.1840 0.8420 

5 6 5 6 5 6 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.2962 0.0001 0.0002 0.2962 
5 6 5 6 5 6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.2962 0.0638 0.0053 0.3653 
5 6 5 6 5 6 0.6 0.6 0.6 0.6 0.6 0.6 0.9 0.2962 0.1837 0.1176 0.5974 
5 6 5 6 5 6 0.6 0.6 0.6 0.6 0.6 0.6 1.3 0.2962 0.2659 0.1912 0.7533 
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Table 5.1 Values of RI' R2 for Exponential Stress-Strength when Strength parameter A is 

random and Uniformly distributed in the range (a, b) 

a b ll- k RI R2 

1 2 2 4 0.5754 0.6877 

1 2 3 6 0.6694 0.8332 

1 2 4 8 0.7293 0.9317 

1 2 5 10 0.7708 0.9671 

1 2 6 12 0.8012 0.9810 

1 2 7 14 0.8245 0.9917 

2 3 2 3 0.4463 0.5778 

2 3 3 5 0.5470 0.7094 

2 3 4 7 0.6166 0.7922 

2 3 5 9 0.6677 0.8469 

2 3 6 11 0.7067 0.8860 

2 3 7 13 0.7375 0.9159 

3 4 2 0.2 0.3646 0.8152 

3 4 3 0.4 0.4625 0.8478 

3 4 4 0.6 0.5341 0.9195 

3 4 5 0.8 0.5889 0.9786 

3 4 6 l.0 0.6322 0.9836 

3 4 7 l.2 0.6672 0.9903 

4 5 2 1 0.3083 0.5173 

4 5 3 4 0.4006 0.5378 

4 5 4 7 0.4711 0.5838 

4 5 5 10 0.5268 0.6271 

4 5 6 l3 0.5719 0.6652 

4 5 7 16 0.6091 0.6980 
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Table 5.2 Values of R" R2 for Exponential Stress-Strength when Strength parameter A is 

random having Two-Point Distribution 

p /I, A2 J1 k R) R2 

0 1 2 1 1 0.3333 0.4667 
0 1 2 3 2 0.6000 0.6952 
0 1 2 5 3 0.7143 0.7842 
0 1 2 7 4 0.7778 0.8327 
0 1 2 9 5 0.8182 0.8633 

0.2 1 2 1 2 0.3667 0.4332 
0.2 1 2 3 4 0.6300 0.6779 
0.2 1 2 5 6 0.7381 0.7732 
0.2 1 2 7 8 0.7972 0.8248 
0.2 1 2 9 10 0.8345 0.8572 
0.4 1 2 1 0.1 0.4000 0.8884 
0.4 1 2 3 0.2 0.6600 0.9480 
0.4 1 2 5 0.3 0.7619 0.9649 
0.4 1 2 7 0.4 0.8167 0.9734 
0.4 1 2 9 0.5 0.8509 0.9785 
0.6 1 2 1 0.2 0.4333 0.8334 
0.6 1 2 3 0.4 0.6900 0.9237 
0.6 1 2 5 0.6 0.7857 0.9492 
0.6 1 2 7 0.8 0.8361 0.9617 
0.6 1 2 9 1 0.8673 0.9692 
0.7 1 2 1 1 0.4500 0.6137 
0.7 1 2 3 3 0.7050 0.7787 
0.7 1 2 5 5 0.7976 0.8453 
0.7 1 2 7 7 0.8458 0.8811 
0.7 1 2 9 9 0.8755 0.9034 
0.8 1 2 1 1 0.4667 0.6320 
0.8 1 2 3 3 0.7200 0.7935 
0.8 1 2 5 5 0.8095 0.8569 
0.8 1 2 7 7 0.8556 0.8905 
0.8 1 2 9 9 0.8836 0.9113 
0.9 1 2 1 3 0.4833 0.5333 
0.9 1 2 3 5 0.7350 0.7773 
0.9 1 2 5 7 0.8214 0.8542 
0.9 1 2 7 9 0.8653 0.8917 
0.9 1 2 9 11 0.8918 0.9138 

1 1 2 1 10 0.5000 0.5076 
1 1 2 3 12 0.7500 0.7625 
1 1 2 5 14 0.8333 0.8465 
1 1 2 7 16 0.8750 0.8877 
1 1 2 9 18 0.9000 0.9119 
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Table 5.3 Values of Rp R2 for Exponential Stress-Strength when Stress parameter J1 IS 

random and Uniformly distributed in the range (c, d) 

c d A k R
J R2 

1 2 2 4 0.4246 0.4518 

1 2 3 6 0.3306 0.3408 

1 2 4 8 0.2707 0.2755 

1 2 5 10 0.2292 0.2318 

1 2 6 12 0.1988 0.2003 

1 2 7 14 0.1755 0.1765 

2 3 2 3 0.5537 0.6095 

2 3 3 5 0.4530 0.4739 

2 3 4 7 0.3834 0.3929 

2 3 5 9 0.3323 0.3373 

2 3 6 11 0.2933 0.2962 

2 3 7 l3 0.2625 0.2643 

3 4 2 0.2 0.6354 0.9400 

3 4 3 0.4 0.5375 0.8275 

3 4 4 0.6 0.4659 0.7051 

3 4 5 0.8 0.4111 0.5973 

3 4 6 1.0 0.3678 0.5101 

3 4 7 1.2 0.3328 0.4415 

4 5 2 1 0.6917 0.8545 

4 5 3 4 0.5994 0.6413 

4 5 4 7 0.5289 0.5440 

4 5 5 10 0.4732 0.4801 

4 5 6 13 0.4281 0.4318 

4 5 7 16 0.3909 0.3931 
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Table 5.4 Values of RI' R2 for Exponential Stress-Strength when Stress parameter f.J is 
random having Two-Point Distribution 

q f.J 1 f.J2 A k RI R2 

0 1 2 1 1 0.6667 0.8333 
0 1 2 3 2 0.4000 0.4682 
0 I 2 5 3 0.2857 0.3125 
0 I 2 7 4 0.2222 0.2348 
0 I 2 9 5 O. I 818 0.1887 

0.2 1 2 1 2 0.6333 0.7300 
0.2 I 2 3 4 0.3700 0.3931 
0.2 I 2 5 6 0.2619 0.2696 
0.2 1 2 7 8 0.2028 0.2061 
0.2 I 2 9 10 0.1655 0.1672 
0.4 1 2 1 0.1 0.6000 0.9575 
0.4 1 2 3 0.2 0.3400 0.7503 
0.4 1 2 5 0.3 0.2381 0.5464 
0.4 I 2 7 0.4 0.1833 0.3999 
0.4 1 2 9 0.5 0.1491 0.3014 
0.6 1 2 1 0.2 0.5667 0.9076 
0.6 1 2 3 0.4 0.3100 0.5883 
0.6 1 2 5 0.6 0.2143 0.3776 
0.6 1 2 7 0.8 0.1639 0.2611 
0.6 1 2 9 1 0.1327 0.1939 
0.7 I 2 1 3 0.5500 0.6050 
0.7 1 2 3 5 0.2950 0.3072 
0.7 I 2 5 7 0.2024 0.2067 
0.7 1 2 7 9 0.1542 0.1561 
0.7 1 2 9 11 0.1245 0.1256 
0.8 1 2 1 1 0.5333 0.7000 
0.8 1 2 3 3 0.2800 0.3063 
0.8 1 2 5 5 0.1905 0.1978 
0.8 1 2 7 7 0.1444 0.1474 
0.8 1 2 9 9 0.1164 0.1178 
0.9 1 2 1 1 0.5167 0.6833 
0.9 1 2 3 4 0.2650 0.2805 
0.9 1 2 5 7 0.1786 0.1823 
0.9 1 2 7 10 0.1347 0.1361 
0.9 1 2 9 13 0.1082 0.1088 
1 1 2 I 10 0.5000 0.5076 
1 1 2 3 12 0.2500 0.2520 
I 1 2 5 14 0.1667 0.1676 
1 1 2 7 16 0.1250 0.1255 
1 1 2 9 18 0.1000 0.1003 
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Table 6.1 Values of R(l), R(2), R(3) and R3 when Stress-Strength follows Exponential 

Distribution 

fl r A k R(l) R(2) R(3) R3 

1 0.3 0.3 0.1 0.1442 0.0235 0.0025 0.1702 
1 0.5 0.5 0.1 0.1667 0.0361 0.0040 0.2067 
1 0.7 0.7 0.1 0.1716 0.0475 0.0054 0.2245 
1 0.9 0.9 0.1 0.1792 0.0581 0.0069 0.2342 
2 0.3 0.3 0.2 0.1003 0.0247 0.0052 0.1302 
2 0.5 0.5 0.2 0.1333 0.0375 0.0081 0.1789 
2 0.7 0.7 0.2 0.1525 0.0486 0.0108 0.2120 
2 0.9 0.9 0.2 0.1633 0.0585 0.0134 0.2353 
3 0.3 0.3 0.3 0.0758 0.0254 0.0079 0.1090 
3 0.5 0.5 0.3 0.1071 0.0387 0.0123 0.1581 
3 0.7 0.7 0.3 0.1290 0.0500 0.0163 0.1953 
3 0.9 0.9 0.3 0.1442 0.0599 0.0201 0.2242 
4 0.3 0.3 0.4 0.0607 0.0258 0.0106 0.0971 
4 0.5 0.5 0.4 0.0889 0.0394 0.0165 0.1448 
4 0.7 0.7 0.4 0.1103 0.0511 0.0218 0.1832 
4 0.9 0.9 0.4 0.1267 0.0611 0.0266 0.2144 
5 0.3 0.3 0.5 0.0505 0.0261 0.0133 0.0899 
5 0.5 0.5 0.5 0.0758 0.0400 0.0206 0.l364 
5 0.7 0.7 0.5 0.0959 0.0519 0.0271 0.1749 
5 0.9 0.9 0.5 0.1122 0.0621 0.0329 0.2072 
6 0.3 0.3 0.6 0.0433 0.0263 0.0159 0.0855 
6 0.5 0.5 0.6 0.0659 0.0404 0.0246 0.1310 
6 0.7 0.7 0.6 0.0847 0.0525 0.0322 0.1695 
6 0.9 0.9 0.6 0.1003 0.0630 0.0390 0.2023 
7 0.3 0.3 0.7 0.0379 0.0264 0.0185 0.0828 
7 0.5 0.5 0.7 0.0583 0.0408 0.0285 0.1276 
7 0.7 0.7 0.7 0.0758 0.0530 0.0372 0.1660 
7 0.9 0.9 0.7 0.0906 0.0636 0.0448 0.1991 
8 0.3 0.3 0.8 0.0336 0.0266 0.0210 0.0812 
8 0.5 0.5 0.8 0.0523 0.0410 0.0324 0.1257 
8 0.7 0.7 0.8 0.0685 0.0535 0.0420 0.1640 
8 0.9 0.9 0.8 0.0825 0.0642 0.0504 0.1972 
9 0.3 0.3 0.9 0.0302 0.0266 0.0235 0.0804 
9 0.5 0.5 0.9 0.0474 0.0412 0.0361 0.1247 
9 0.7 0.7 0.9 0.0625 0.0538 0.0467 0.1629 
9 0.9 0.9 0.9 0.0758 0.0647 0.0557 0.1962 
10 0.3 0.3 1 0.0275 0.0267 0.0260 0.0802 
10 0.5 0.5 I 0.0433 0.0414 0.0397 0.1244 
10 0.7 0.7 1 0.0574 0.0541 0.0512 0.1626 
10 0.9 0.9 1 0.0700 0.0651 0.0608 0.1959 
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Table 6.2 Values of R(1), R(2), R(3) and R3 when Stress-Strength fo Hows Rayleigh 

Distribution 

(J', (J'2 (J'3 k R(1) R(2) R(3) R3 

1 3 3 0.1 0.4091 0.0479 0.0005 0.4575 
1 5 5 0.1 0.4630 0.1055 0.0012 0.5697 
1 7 7 0.1 0.4804 0.1681 0.0021 0.6506 
1 9 9 0.1 0.4880 0.2256 0.0032 0.7168 
2 3 3 0.2 0.2647 0.0563 0.0025 0.3235 
2 5 5 0.2 0.3788 0.1158 0.0054 0.5000 
2 7 7 0.2 0.4258 0.1756 0.0090 0.6144 
2 9 9 0.2 0.4551 0.2294 0.0131 0.6976 
3 3 3 0.3 0.1667 0.0583 0.0062 0.2312 
3 5 5 0.3 0.2907 0.1241 0.0135 0.4256 
3 7 , 7 0.3 0.3657 0.1805 0.0216 0.5678 
3 9 9 0.3 0.4091 0.2311 0.0304 0.6706 
4 3 3 0.4 0.1098 0.0553 0.0114 0.1764 
4 5 5 0.4 0.2193 0.1193 0.0252 0.3638 
4 7 7 0.4 0.3025 0.1786 0.0397 0.5207 
4 9 9 0.4 0.3584 0.2274 0.0542 0.6400 
5 3 3 0.5 0.0763 0.0496 0.0171 0.1430 
5 5 5 0.5 0.1667 0.1111 0.0387 0.3165 
5 7 7 0.5 0.2475 0.1695 0.0608 0.4778 
5 9 9 0.5 0.3092 0.2173 0.0815 0.6079 
6 3 3 0.6 0.0556 0.0431 0.0223 0.1210 
6 5 5 0.6 0.1289 0.0995 0.0512 0.2796 
6 7 7 0.6 0.2025 0.1553 0.0805 0.4383 
6 9 9 0.6 0.2647 0.2018 0.1066 0.5731 
7 3 3 0.7 0.0421 0.0366 0.0256 0.1042 
7 5 5 0.7 0.1016 0.0866 0.0595 0.2477 
7 7 7 0.7 0.1667 0.1384 0.0939 0.3990 
7 9 9 0.7 0.2263 0.1829 0.1236 0.5327 
8 3 3 0.8 0.0328 0.0307 0.0261 0.0896 
8 5 5 0.8 0.0817 0.0741 0.0615 0.2173 
8 7 7 0.8 0.1384 0.1209 0.0978 0.3571 
8 9 9 0.8 0.1938 0.1625 0.1288 0.4851 
9 3 3 0.9 0.0263 0.0255 0.0242 0.0760 
9 5 5 0.9 0.0668 0.0626 0.0576 0.1870 
9 7 7 0.9 0.1161 0.1040 0.0924 0.3126 
9 9 9 0.9 0.1667 0.1423 0.1225 0.4315 
10 3 3 1 0.0215 0.0211 0.0206 0.0632 
10 5 5 1 0.0556 0.0525 0.0497 0.1577 
10 7 7 I 0.0984 0.0887 0.0808 0.2679 
10 9 9 1 0.1441 0.1234 0.1081 0.3756 
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Table 6.3 Values of R(l), R(2), R(3) and R3 when Stress-Strength fo llows Lindley 

Distribution 

Ii e r k R(1) R(2) R(3) R3 

1 3 4 2 0.0553 0.0279 0.0139 0.0972 
1 5 6 2 0.0404 0.0200 0.0099 0.0703 
1 7 8 2 0.0311 0.0154 0.0076 0.0541 
1 9 10 2 0.0252 0.0124 0.0062 0.0437 
2 3 4 3 0.1000 0.0415 0.0148 0.1564 
2 5 6 3 0.0829 0.0312 0.0108 0.1248 
2 7 8 3 0.0683 0.0246 0.0084 0.1013 
2 9 10 3 0.0574 0.0203 0.0069 0.0846 
3 3 4 4 0.1217 0.0481 0.0135 0.1833 
3 5 6 4 0.1111 0.0366 0.0098 0.1575 
3 7 8 4 0.0964 0.0293 0.0077 0.1334 
3 9 10 4 0.0839 0.0243 0.0063 0.1145 
4 3 4 5 0.1305 0.0521 0.0122 0.1948 
4 5 6 5 0.1285 0.0398 0.0087 0.1770 
4 7 8 5 0.1165 0.0319 0.0068 0.1553 
4 9 10 5 0.1043 0.0266 0.0056 0.1365 
5 3 4 6 0.1326 0.0550 0.0110 0.1986 
5 5 6 6 0.1317 0.0420 0.0078 0.1885 
5 7 8 6 0.1306 0.0337 0.0061 0.1703 
5 9 10 6 0.1198 0.0281 0.0050 0.1529 
6 3 4 7 0.1312 0.0572 0.0100 0.1984 
6 5 6 7 0.1443 0.0436 0.0070 0.1949 
6 7 8 7 0.1402 0.0349 0.0054 0.1805 
6 9 10 7 0.1314 0.0291 0.0045 0.1650 
7 3 4 8 0.1279 0.0590 0.0092 0.1961 
7 5 6 8 0.1468 0.0449 0.0064 0.1931 
7 7 8 8 0.1465 0.0359 0.0049 0.1873 
7 9 10 8 0.1401 0.0299 0.0040 0.1740 
8 3 4 9 0.1238 0.0606 0.0085 0.1929 
8 5 6 9 0.1473 0.0459 0.0059 0.1921 
8 7 8 9 0.1506 0.0366 0.0045 0.1917 
8 9 10 9 0.1464 0.0305 0.0037 0.1806 
9 3 4 10 0.1194 0.0619 0.0079 0.1891 
9 5 6 10 0.1464 0.0469 0.0054 0.1987 
9 7 8 10 0.1529 0.0373 0.0042 0.1943 
9 9 10 10 0.1510 0.0310 0.0034 0.1853 
10 3 4 11 0.1148 0.0630 0.0073 0.1852 
10 5 6 II 0.1447 0.0477 0.0051 0.1974 
10 7 8 II 0.1539 0.0379 0.0038 0.1956 
10 9 10 II 0.1541 0.0314 0.0031 0.1887 
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Table 6.4 Values of R(1), R(2), R(3) and R3 when both Strength follows One-Parameter 

Exponential and Stress follows Lindley Distributions 

J1. () A k R(1) R(2) R(3) R3 

1 2 3 2 0.1250 0.0616 0.0302 0.2168 
1 3 4 2 0.0859 0.0421 0.0206 0.1487 
1 4 5 2 0.0650 0.0318 0.0156 0.1124 
1 5 6 2 0.0521 0.0255 0.0125 0.0901 
2 2 3 4 0.1990 0.0667 0.0179 0.2836 
2 3 4 4 0.1554 0.0474 0.0124 0.2152 
2 4 5 4 0.1270 0.0368 0.0095 0.1734 
2 5 6 4 0.1072 0.0301 0.0077 0.1451 
3 2 3 6 0.2236 0.0697 0.0130 0.3063 
3 3 4 6 0.1900 0.0495 0.0089 0.2484 
3 4 5 6 0.1642 0.0387 0.0068 0.2097 
3 5 6 6 0.1442 0.0318 0.0056 0.1816 
4 2 3 8 0.2272 0.0724 0.0104 0.3099 
4 3 4 8 0.2051 0.0510 0.0070 0.2631 
4 4 5 8 0.1849 0.0397 0.0053 0.2299 
4 5 6 8 0.1675 0.0326 0.0043 0.2045 
5 2 3 10 0.2219 0.0748 0.0088 0.3055 
5 3 4 10 0.2098 0.0523 0.0058 0.2679 
5 4 5 10 0.1955 0.0405 0.0044 0.2404 
5 5 6 10 0.1816 0.0332 0.0036 0.2184 
6 2 3 12 0.2132 0.0771 0.0076 0.2979 
6 3 4 12 0.2089 0.0535 0.0050 0.2674 
6 4 5 12 0.2000 0.0412 0.0038 0.2450 
6 5 6' 12 0.1897 0.0337 0.0030 0.2264 
7 2 3 14 0.2032 0.0792 0.0067 0.2892 
7 3 4 14 0.2050 0.0546 0.0044 0.2640 
7 4 5 14 0.2007 0.0419 0.0033 0.2458 
7 5 6 14 0.1938 0.0341 0.0026 0.2305 
8 2 3 16 0.1931 0.0811 0.0061 0.2803 
8 3 4 16 0.1996 0.0556 0.0039 0.2591 
8 4 5 16 0.1991 0.0425 0.0029 0.2445 
8 5 6 16 0.1951 0.0345 0.0023 0.2320 
9 2 3 18 0.1834 0.0828 0.0055 0.2717 
9 3 4 18 0.1934 0.0566 0.0036 0.2535 
9 4 5 18 0.1960 0.0431 0.0026 0.2417 
9 5 6 18 0.1946 0.0349 0.0021 0.2316 
10 2 3 20 0.1742 0.0843 0.0051 0.2636 
10 3 4 20 0.1869 0.0575 0.0033 0.2477 
10 4 5 20 0.1921 0.0437 0.0024 0.2382 
10 5 6 20 0.1929 0.0353 0.0019 0.2301 
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Table 6.5 Values of R(l), R(2), R(3) and R) when both Strength follows One-Parameter 

Exponential and Stress follows Two-Parameter Gamma Distributions 

f.1 r A e k R(l) R(2) R(3) R) 

0.1 0.2 0.3 0.4 2 0.0054 0.0096 0.0159 0.0308 
0.2 0.3 0.4 0.5 2 0.0191 0.0310 0.0042 0.0944 
0.3 0.4 0.5 0.6 2 0.0411 0.0590 0.0720 0.1721 
0.4 0.5 0.6 0.7 2 0.0684 0.0858 0.0898 0.2441 
0.1 0.2 0.3 0.4 3 0.0054 0.0131 0.0250 0.0435 
0.2 0.3 0.4 0.5 3 0.0191 0.0395 0.0578 0.1165 
0.3 0.4 0.5 0.6 3 0.0411 0.0700 0.0799 0.1910 
0.4 0.5 0.6 0.7 3 0.0684 0.0947 0.0867 0.2498 
0.1 0.2 0.3 0.4 4 0.0054 0.0160 0.0311 0.0525 
0.2 0.3 0.4 0.5 4 0.0191 0.0456 0.0628 0.1275 
0.3 0.4 0.5 0.6 4 0.0411 0.0765 0.0799 0.1955 
0.4 0.5 0.6 0.7 4 0.0684 0.0983 0.0775 0.2542 
0.1 0.2 0.3 0.4 5 0.0054 0.0185 0.0348 0.0586 
0.2 0.3 0.4 0.5 5 0.0191 0.0502 0.0636 0.1330 
0.3 0.4 0.5 0.6 5 0.0411 0.0805 0.0734 0.1950 
0.4 0.5 0.6 0.7 5 0.0684 0.0993 0.0689 0.2566 
0.1 0.2 0.3 0.4 6 0.0054 0.0206 0.0368 0.0628 
0.2 0.3 0.4 0.5 6 0.0191 0.0537 0.0628 0.1356 
0.3 0.4 0.5 0.6 6 0.0411 0.0830 0.0687 0.1928 
0.4 0.5 0.6 0.7 6 0.0684 0.0991 0.0616 0.2291 
0.1 0.2 0.3 0.4 7 0.0054 0.0224 0.0379 0.0657 
0.2 0.3 0.4 0.5 7 0.0191 0.0564 0.0612 0.1367 
0.3 0.4 0.5 0.6 7 0.04 II 0.0845 0.0643 0.1899 
0.4 0.5 0.6 0.7 7 0.0684 0.0983 0.0557 0.2224 
0.1 0.2 0.3 0.4 8 0.0054 0.0240 0.0385 0.0678 
0.2 0.3 0.4 0.5 8 0.0191 0.0585 0.0595 0.1371 
0.3 0.4 0.5 0.6 8 0.0411 0.0854 0.0604 0.1869 
0.4 0.5 0.6 0.7 8 0.0684 0.0971 0.0508 0.2163 
0.1 0.2 0.3 0.4 9 0.0054 0.0254 0.0387 0.0694 
0.2 0.3 0.4 0.5 9 0.0191 0.0602 0.0577 0.1370 
0.3 0.4 0.5 0.6 9 0.0411 0.0859 0.0569 0.1840 
0.4 0.5 0.6 0.7 9 0.0684 0.0958 0.0467 0.2109 
0.1 0.2 0.3 0.4 10 0.0054 0.0266 0.0387 0.0707 
0.2 0.3 0.4 0.5 10 0.0191 0.0616 0.0560 0.1367 
0.3 0.4 0.5 0.6 10 0.0411 0.0861 0.0539 0.1811 
0.4 0.5 0.6 0.7 10 0.0684 0.0943 0.0433 0.2061 
0.1 0.2 0.3 0.4 1 I 0.0054 0.0277 0.0386 0.0716 
0.2 0.3 0.4 0.5 I I 0.0191 0.0627 0.0544 0.1362 
0.3 0.4 0.5 0.6 I I 0.0411 0.0860 0.0513 0.1785 
0.4 0.5 0.6 0.7 1 I 0.0684 0.0929 0.0404 0.2017 
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