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Abstract 

An attempt has been made in this thesis to study some stress-strength (S-S) models in 

the interference theory of reliability. In interference theory, reliability of a system (or 

component) is studied from interference of strength of the system and stress working on it. 

To evaluation of reliability mainly standby and cascade systems have been considered. 

Several continuous distributions viz. exponential, gamma, normal, Weibull, uniform and 

Lindley distribution are considered and also two-point distribution is used among the discrete 

distributions. 

An n -standby system is considered where the number of stresses impinging on the 

system in time (0,1) follows a Poisson distribution. The system reliability at time 1 is the 

probability that the system stands 'r' impacts that is at least one component is working at 

time I. Again n -standby system with imperfect switching for a single repair facility has been 

considered. The stresses are impinging on the system in cycles and the life-time (discrete) of 

a system is measured by number of cycles it can withstand. Switch and repair time is also 

measured in cycles. For a 3-standby system, the reliability of the system at the Nth cycle is 

calculated by using different stress-strength distributions. 

In general, parameters of stress-strength distributions are assumed to be constant. But 

in many situations this assumption may not be true and the parameters themselves may be 

random variables. In this case stress-strength distributions are assumed as exponential 

variates and one of the parameters involved may be random and other parameter remaining 

constant with a known prior distribution. The prior distributions are considered as uniform 

and two-point distributions for the parameters concerned. 

Again from comparative study between warm and cold standby system with 

imperfect switching for identical strength and stress, it has been observed that in case of 

warm standby system, values of the system reliability becomes smaller than that of cold 

standby system. An n -standby and n -cascade systems have been considered to evaluate the 

reliability expressions, where all the stresses and strengths are independent random variables. 

Also stress-strength distributions are assumed to be dissimilar. Again cascade reliability for 

warm standby system with imperfect switching has been considered for our study. For this 



purpose, exponential and gamma distributions are used to obtain the reliability expressions 

up to 4-cascade system. 

Finally, it is observed that, values of reliability are on expected. line. In each Chapter, 

the reliability of the system with the model under consideration is obtained. Often the 

expressions of reliability are not simple enough to give an idea of their change with relevant 

stress-strength parameters, so numerical results for reliability are tabulated against the 

parameter(s) involved, in each case, to 'show the effect of various parameters on the system 

reliability. Some graphs are plotted to illustrate our theoretical findings. 
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Chapter 1 

1 Introduction 

The Interference theory concept is based upon the fact that when the strength of a 

component or a device or a material is less than the stress imposed on it, the failure occurs. 

The stress-strength (S-S) models are also called interference models, because here the 

reliability can be represented in terms of interference area between stress and strength 

densities. The main emphasis of this thesis is to obtain the reliabilities of different stress­

strength distributions. 

1.1 Background of the Study 

The word 'reliability' is used often in very different contexts, covering different areas 

and disciplines like Educational Testing, Material Testing, Engineering, to name a few. 

Depending on the context, the word takes on different shades of meaning. For example, a 

psychological test for measuring the skills is considered reliable, if the scores obtained 

through the test for the same individual at different times or individuals known to be of the 

same ability will be nearly equal. 

Technological developments lead to an increase in the number of complicated 

systems as well as an increase in the complexity of the systems themselves. With remarkable 

advancements made in electronics and communications, systems became more and more 

sophisticated. Because of their varied natures, these problems have attracted the attention of 

scientists from various disciplines especially the system engineers, software engineers and 

applied probabilistic. An overall scientific discipline called reliability theory that deals with 

the methods and techniques to ensure the maximum effectiveness of systems has developed. 

Reliability theory introduces quantitative indices of the quality production (Gnedenko et ai., 



Chapter 1 

1969) and there is carried through from the design and subsequent manufacturing process to 

the use and storage of technical devices. Due to the nature of the subjects, the methods of 

Probability theory and Mathematical statistics play an important role in the problem solving 

of reliability theory. In fact reliability is often defined in terms of probability. 

The present study is an attempt to study of appropriate interference models to 

describe the performance of a system with components of random quality operating in a 

random environment. Different researchers have defmed 'reliability' in different ways and in 

its own context. Some of these definitions are listed below: 

1. 'Reliability is the probability of a device performing its purpose adequately for the 

period of time intended under the operating conditions encountered' (Radio­

Electronics-Television Manufactures Association, 1995, cf. Barlow and Proschan, 

1965). 

OJ 

Symbolically, R{t) = J dF{x) 
I 

where F{t) represents the failure time distribution of the system. 

2. 'Reliability is the integral of the distribution of probabilities of failure- free operation 

from the instant of switch on to the first failure. (cf. Polovko, 1968) 

3. The reliability R{t) of a component (or a system) is the probability that the component 

(or system) will not fail for a time t. (cf. Polvoko, 1968) 

4. The reliability of a unit (or a system) is defmed as the probability that it will perform 

satisfactorily at least for a specified period of time without a major breakdown. (cf. 

Sinha and Kale, 1980) 

Reliability models, can be broadly classified into the following two groups--­

(i) Time-Dependent Models and (ii) Stress-Strength Models or Interference Models 

In the time-dependent models time is the important random variable and different 

measures of reliability theory such as Reliability or Survival function, Availability, 

Maintainability, Failure rate etc. are obtained from Time-to-Failure (TTF) distributions ofthe 
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unit (system or component) under study. In such models the underlying idea is that the 

characteristics of the unit gradually changes and failure occurs when it goes beyond the 

specified limits. Ordinarily, here failure probability is an increasing function of time and 

similarly other measures are also functions of time (except failure rate for exponential TTF 

distribution). Majority of studies in reliability theory are based on the time dependent 

models. A case in favour of such models is presented by Disney and Seth (1968), Yadav 

(1973), Kapur and Lamberson (1977), Dhillon (1980) and many references cited by them. 

Some such models are considered in the present study. In time-dependent models the time is 

the dominating factor and in interference models stress is the dominating factor. 

In S-S models, strength of the system and the stress working on it are the quantities of 

interest. The words 'stress' and 'strength' used in the reliability theory are not restricted to 

mechanical loadings. It is used in a broader sense, applicable in many situations well beyond 

the traditional, mechanical or structural systems. In reliability theory by 'stress' we mean any 

agency which tends to produce failure of a component, a device or a material. The term 

agency may be a mechanical load, environmental hazard, electric voltage etc. and the 

'strength' represents an agency resisting failure of the system and it is measured by the 

minimum stress required to cause the failure of the system (cf Kapur and Lamberson, 1977). 

Let us suppose that X and Yare continuous random variables with densities j{x) 

and g(y) respectively and these are represented graphically as in the fo llowing figure. 

Obviously, the probability of failure (= 1- R) is represented by the shaded area in the 

following figure. In other words, it is represented by the area of interference of stress and 

strength densities. Hence the term "Interference models" is used when studying reliability 

taking stress and strength into consideration and this is called interference theory of 

reliability (cf Kapur and Lamberson, 1977). Here it is understood that the system works 

under impact of stresses i.e., the stress is not working continuously on the system but is 

working as discrete impact (or impacts). From Fig. 1.1, it is intuitively clear that the greater 

the amount of overlap between the curves j{x) and g(y), the larger will be the probability 

of failure. Under this assumption, if the two curves coincide, the probability of success will 

be 50 percent (cf Roberts, 1964 and Commente by Pandit and Sriwastav, 1975). 
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Interference Area 

Fig. 1.1 Stress-Strength Interference Model 

Since imperfection and non-unifonnity occur during the manufacture of system, the 

system strength I X' can be assumed to follow a probability distribution with density f(x). 

Similarly the stresses I Y' that impinge on the system are also independently and identically 

distributed (i.i.d.) random variables with density function g{y). The reliability I R' of the 

system may be defmed as the probability that I X' is greater than I Y'. Symbolically, 

R=P(X~Y)=p(X-Y~O)=p(Z~O} where X-Y=Z (1.1.1) 

Once the respective distributions of stress and strength are known (or estimated), one can 

obtain reliability of a system by employing equation (1.1.1). If f{x) and g(y) are the 

densities of X and Y respectively then from (1.1.1) 
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'" 
= f F(y)g(y)dy 

(1.1.2) 

'" 
= f G(x) f(x) dx 

( 1.1.3) 

where F(x) = 1-F(x), F(x) and G(y) are the distribution function of strength and stress, 

respectively. 

In our study, stress and strength are considered to be continuous random variables, 

though they may be discrete also (c£ Charalambides, 1974, Winterbottom, 1974). The stress­

strength distributions may be of any type, but most commonly used distributions in reliability 

theory are exponential, gamma, normal, Weibull, lognormal, Lindley and extreme value 

distributions. Different types of distributions are used to represent the stress-strength in 

different situations. 

Sometimes, the distributions with fixed parameters may not represent the stress 

and/or strength distributions adequately. For instance, if a particular component, having 

certain strength distribution is manufactured in different lots, then for a particular lot the 

parameters of the strength distribution may remain fixed but may vary from lot to lot. In such 

situations the parameters of the strength distributions may themselves be taken as random 

variables. Similar reasoning can be given for the distribution of stress also. So stress and 

strength may be represented by compound distributions. 

In the studies of S-S models, generally stress-strength of a component is supposed to 

be independent random variables. But in many situations they may be correlated also. The 

stresses and strengths together and even stress and strength separately may be correlated. 
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A number of techniques are available to enhance the system reliability. For example, 

1. Use of overrated components 

2. Effective or creative design 

3. System simplification 

4. Maintenance 

5. Redundancy 

The effect of the first four is limited. We cannot increase the system reliability 

beyond a certain limit by their use. But redundancy may held in achieving any reliability 

goal. Redundancy is the most effective way to increase the system reliability. Theoretically a 

reliability are arbitrarily close to one (unity) can be achieved by incorporating redundancy 

into the system in a suitable manner. 

Redundancy is the technique in which more components than the minimum required 

for normal operation (i.e., essential components) of the systems are attached to it. In such a 

way that even if only a few components are working, the system works. The essential 

components which are working initially may be termed as primary components and 

additional components are termed as redundant components. The redundant components may 

also remain active through out or may be activated after the failure of the active component. 

Pieruschka (1963) has described the following forms of redundancy 

(i) Active or Parallel redundancy 

(ii) Standby redundancy 

(i) Parallel redundancy: In a parallel redundant system n-components are connected in a 

parallel arrangement, and to start with all n -components are operating. The system continues 

to operate till at least k of the components are operating. The system is also referred to as k­

out-of- n system. When k = n, it is the series system, when k = 1 it is called completely 

parallel system (Lloyed and Lipow, 1962). 
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(ii) Standby redundancy: In standby redundancy the redundant units (components) do not 

work simultaneously with the primary unit, they remain in active. In an n -standby system 

initially there is one primary unit which is working and there are (n -1) standby units. When 

the primary units fail one from the standbys is activated (manually or automatically, 

generally automatically) in its place and the system continues to work. Now this unit 

becomes primary ( or active) unit and the number of standbys reduces to (n - 2). When this 

unit also fails another from standbys takes its place and the system remains working and so 

on. The system fails when all the n units have failed until and unless stated. Otherwise all 

the units work (and fail) independently. 

Standby redundancy depending upon the nature of failures of standbys IS further 

divided into following three groups (Gnedenko et aI., 1969) 

(i) Hot or active standby redundancy 

(ii) Cold or completely inactive standby redundancy and 

(iii) Warm or tepid standby redundancy 

(i) Hot or active standby redundancy: Here each component has the same failure rate 

regardless of whether it is in standby or in operation. The situation is equivalent to the case of 

pure parallel redundancy when k = I . Many systems with electronic components are of this 

type. 

(ii) Cold or completely inactive standby redundancy: In this type of systems, only one 

component will be working at any given time, the others being standbys and not working. 

One of the standby components starts working only when the currently working component 

fails. The system works until all of its components fail. Mostly mechanical systems are of 

this type. 

(iii) Warm or tepid standby redundancy: In practice the assumptions of hot and cold 

standbys are often not true. Generally, the standbys may fail but fail with lesser probability 

then they are activated. Such standbys are called warm standbys"and the system is called a 

warm standby system. Here the redundant units are in a partially energized state up to the 
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instant they take the place of active unit. Obviously hot and cold standbys are two extreme 

cases of warm standbys. 

In addition to the redundancy discussed above there is another type of redundancy 

i.e., 'Cascade redundancy' (cf Pandit and Sriwastav, 1975). Cascade redundancy is a special 

kind of standby redundant system in which a new component faces a stress k times the stress 

on the preceding component, k being a constant or a random variable, called an attenuation 

factor. 

To take out a unit that has failed and insert in its place by a standby unit, we need a 

device which is termed as switch. In general, it is assumed that the switching mechanism is 

perfect i.e., it never fails to activate a redundant unit (if one is available). Also it is assume 

that activation of a redundant unit is instantaneous i.e., as soon as the active unit fails at once 

one unit from standbys start working in its place (i.e., there is no time~lag). Of course in 

practice both the assumptions may not be true but unless otherwise stated we shall assume 

that both the assumptions are varied. However, in reality the switch(es) are subject to failure 

i.e., the switch is imperfect. The failure of the switch(es) may be either of the following types 

(Gnedenko et aI., 1969): 

(i) The switch does not work when it is needed, i.e., the operating unit fails, but the 

switch does not connect the standbys and so the system fails. 

(ii) The switch removes an operating unit from the operation when it should not and 

does not replace it with a standby. So, there is no operating unit even if the units 

are good, and hence the system fails. 

Type (ii) switch failure is called false switching (Nakagawa, 1977). 

The S~S models discussed so far, assume that the stress and strength are random 

variables. However it is more general, they may be stochastic processes. Taking the system 

strength and stress on it as two stochastic processes X{t) and Y{t) respectively, the concept 

of reliability of the system can be obtained from the 'Difference~process', viz. 

Z{t) = {X{t)-Y{t)}. The system fails when, for the 'flrst~time', the stochastic process Z{t) 

crosses zero from the above (Sriwastav and Pandit, 1978). 
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1.2 Review of Literature 

In S-S models two types of studies are carried out (i) evaluations of system reliability 

(or structural reliability) making certain assumptions about the strength distribution of the 

system and the distribution of stresses applied to it and (ii) reliability inferences. As in the 

present thesis we have studied only the structural reliability. Hence, reviews of some of the 

works of other authors' articles on structural reliability which are relevant to the present work 

are discussed here. 

Brinbaum (1955) is one of the pioneers in the field of reliability estimation in S-S 

models. He considered a distribution free method for estimation ofthe probability viz. 

p = p(x s Y)= l-R 

where X and Yare random variables representing strength and stress of a system and R is 

the reliability, under the sole weak condition that the distribution functions of X and Yare 

continuous. 

Kapur and Lamberson (1977) have presented some S-S models taking the cases when 

stress is constant as well as random variable. For different distribution of X and Y they 

have evaluated reliability for a single component systems. 

Pandit and Sriwastav (1976) have obtained the distribution of the number of attacks 

to failure for a cascade system and called it generalized geometric distribution. They have 

also considered the cascade system subjected to stress arriving at a random process, viz. 

Poisson process and obtained with reliability expressions for 2- and 3-cascade system (Pandit 

and Sriwastav, 1978). 

Maiti (1995) has obtained reliability under S-S model in the geometric case. 

Sriwastav and Kakati (1980) have considered that the parameters of the stress-strength 

distributions are random variables. Although all the parameters involved may be taken as 

random variables, they have considered only one parameter random and the others remain 

constants. Then from compound distribution of stress-strength, they have obtained the 

reliability of the system. 
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Uma Maheswari et al. (1992) have considered the reliability of a system where n­

stresses act on a single component. The probability distributions considered are exponential, 

gamma and normal. They have reported that when n -stresses act on a single component with 

an exponential distribution, the component has the same reliability as single stress and 

strength components which are connected in a series. They also observed that normal and 

gamma distributions do not follow this rule. 

Sriwastav and Dutta (1986) considered the standby redundant system with different 

types of failure in S-S model. Sriwastav and Kakati (1981) have considered a n -standby 

redundant system and obtained the system reliability when the stress and strength of the 

system follows exponential, gamma or normal distributions. They have also evaluated the 

system reliability for exponential strength and gamma stress, gamma strength and 

exponential stress, normal strength and exponential stress, exponential strength and normal 

stress for a n -cascade system. Pandit and Sriwastav (1975, 1978) have considered an n­

cascade system and obtained the expressions for reliability where stress and strength 

distributions are exponential, gamma and normal, assuming the attenuation factor, k to be a 

constant and also when it is random. 

Warm standby in stress-strength model is studied by Sriwastav and Dutta (1989). 

They have considered an n -unit warm standby redundant system for stress-strength model to 

obtain the reliability expressions. Cascade model for warm standby is studied by Bhowal 

(1999). 

Rekha et al. (1988) obtained the reliability of n -cascade system where stress and 

strength are Log-normal and Weibull. Again Rekha et al. (1992) have derived an expression 

for the reliability of a single component system where the strength of the component and the 

imminent stress on the system are random and follow non-identical probability distribution. 

They assumed that after successive arrivals, the strengths on the successive components are 

attenuated by specified deterministic factors. They have considered survival function for the 

stress and strength following exponential distribution. Rekha and Shyam Sunder (1997) have 

considered an n -cascade system when the strengths of the components follow an exponential 
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distribution and the imminent stress IS impinged on the first component with a gamma 

distribution to obtain the reliability. 

Hanagal (1997) has estimated the reliability of a component subjected to two different 

stresses which are independent of the strength of a component. In another paper (2003) he 

estimated the system reliability in multicomponent series stress-strength models. 

Raghavachar et al. (1983) have considered survival functions under stress attenuation 

in cascade reliability. Rekha and Shyamsunder (1997) have derived an expression for 

survival function for the strength attenuation system with stress-strength following 

exponential distribution. They have obtained the lower and upper bounds when the strength 

attenuation factor ( = k, . 

Apart from the above time independent S-S models we have come across some 

studies in time dependent S-S models. 

Kapur and Lamberson (1977) studied the time dependent S-S model by considering 

repeated application of stress and also the deterioration of strength with time. They have 

obtained the expression for reliability of the system for a single component by considering 

the deterministic and random cycle times. 

Gopalan and Venkateswarlu (1982) have considered the reliability analysis of time­

dependent cascade system in stress-strength models by considering each of the stress and 

strength variables as deterministic or random fixed or random independent. They have 

considered the number of cycles in any period of time tt' to be deterministic. They (1983) 

further extended this problem to the random cycle times, i.e., the number of cycles in any 

period of time '[' is assumed to be random. They obtained the reliability expressions for 2-

and 3-cascade systems for any time period 't' considering the attenuation factor to be 

constant and the number of cycles per unit time follows a Poisson distribution. Assuming 

components to be identical and attenuation factor k, 's to be constants, they have also 
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obtained the expression for system reliability when stress and strength follow exponential 

distributions. 

Gopalan and Venkateswarlu (1985) further considered the repairman problem in 

stress-strength model. They have carried out the reliability and availability analysis of a 

repairable dissimilar two-unit standby system in S-S model with a single repair facility. The 

time taken to repair a unit is either deterministic or random. They carried out the analysis for 

arbitrary stress-strength and repair time distribution. 

Shooman (1968) has obtained the reliability of a system from stress-strength time 

model assuming that the stresses are coming to the system in a Poisson process with 

parameter A. as 

. where p f is the probability of failure of the system with a single impact. He has introduced 

the time factor in another way also, viz. by considering the deterioration of strength 

parameter with time. 
\ 

Shaw (1973) has obtained the reliability expression for components operating in 

environments with repeated stress. They have considered time variations of stress and 

strength. Raghavachar et al. (1984) have studied a system exposed to shocks at time points 

from a discrete set and random time points. Tumolillo (1974) has considered the situation 

where stresses change the failure rate of components stochastically. 

Sriwastav (2005) have considered a stress-strength standby system with a single 

repair facility. For a 3-standby system they calculated the reliability of the system at the Nih 

cycle when stress-strength is either exponential or gamma or normal assuming that the 

number of cycles in time (O,t) follows a Poisson distribution. 

Xu, Guo, Yu, Zhu (2005) have studied the asymptotic stability of a repairable system 

with repair time of failed system that follows arbitrary distribution. Srinivasan and Gopalan 
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(1973) have considered a two-unit standby system with a single repair facility. They have 

considered the cases where stresses are constants as well as random variables to obtain the 

system reliability. 

Subramanian and Anantharaman (1995) have considered probabilistic analysis of a 

three unit cold standby system where the lifetime of the unit and the repair time are random 

variables with arbitrary distributions. Srinivasan and Subramanian (2006) have considered 

reliability analysis of a three unit warm standby redundant system with repair. Here they 

were using imbedded renewal points to obtain the reliability and availability functions. 

There are very few works available for unreliable switches in interference models. Of 

course for time-to-failure models there are a few studies on imperfect switches. For example, 

Osaki (1972) found the Laplace-Stieltjes transform of the distribution function ofthe time up 

to the ftrst system failure, for a two dissimilar unit standby system with repair and imperfect 

switchover, using the exponential distribution for the unit. Srinivasan (1968) has considered a 

non-instantaneous switchover where switchover time is a random variable. Nakagawa and 

Osaki (1975) have obtained the stochastic behavior ofa two-unit standby system with repair 

and imperfect switchover. Gopalan (1975a) has considered the availability and reliability of 

I-server-2-unit system with imperfect switch. Alidrisi (1992) has obtained the reliability 

considering imperfect switching for dynamic warm standby system in TTF (time-to-failure) 

model. 

Sriwastav (2004) has obtained the reliability expressions for the n -standby system 

where the standbys are warm standbys with an imperfect switch when all the stress-strength 

are random variables with given density. Gajjar and Patel (2010) have considered an n -cold 

standby system with imperfect switches in stress-strength model. They assume estimation of 

standby reliability with imperfect switching under (a) geometric stress and geometric 

strength (b) geometric stress and exponential strength. 

A problem of system reliability of a standby system, when switches and the 

components follow dissimilar continuous distributions is considered by Dutta and Bhowal 
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(2000). A cascade reliability model for n -warm standby system is considered by Dutta and 

Bhowal (1998) and cascade model with imperfect switching is considered by Sriwastav 

(1992). 

1.3 Objectives 

In this investigation, our objectives were to study the stress-strength of the 

components in the interference systems. To achieve the main goal of the study to be 

presented in the thesis the following objectives have been undertaken. 

• To study an interference model with number of stresses which follows a Poisson 

process. Here we assumed that the number of stresses impinging on the system 

during time (0,/) is a stochastic process and follows a Poisson distribution. 

• To study an n -standby repairable system with imperfect switching. For this 

purpose, we have considered the repair of switch as well as the components and 

evaluate reliability and other characteristics of reliability. 

• To study the identical stress-strength model with random parameters. In this 

study, we have considered interference model where stress-strength are 

exponential variates and one of the parameter (stress or strength) be a random 

with a known prior distribution, other parameter remaining constant. 

• To study identical stress-strength model for warm and cold standby system with 

imperfect switching. Here we have considered warm and cold standby system 

where switching mechanism is not perfect. 

• To study the stress-strength models for standby redundancy and cascade 

redundancy. 

• To study cascade model for warm standby system with imperfect switching. 

1.4 Outline and Organization of the Thesis . 
With relevant to the objectives mentioned above, the present thesis is organized in 

nine chapters under broad headings. 

• Chapter 1 Introduction 

• Chapter 2 An Interference Model with Number of Stresses a Poisson Process 
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0 Chapter 3 An n -Standby Repairable System with Imperfect Switching 

• Chapter 4 Identical Stress-Strength Model with Random Parameters in 

Reliability Theory 

• Chapter 5 Identical Strength for Warm and Cold Standby System with Imperfect 

Switch: A Comparative Study 

• Chapter 6 Identical Stress for Warm and Cold Standby System with Imperfect 

Switch: A Comparative Study 

• Chapter 7 Stress-Strength Model with Standby Redundancy and Cascade 

Redundancy 

• Chapter 8 Cascade Model for Warm Standby System with Imperfect Switching 

• Chapter 9 Summary and Future Works 

A brief summary of each chapter of the thesis mentioned above is highlighted below. 

Chapter 2 is concerned an n -standby stress-strength system where the number of 

impacts of stresses faced by the system is a Poisson process. i.e., the number of stresses 

impinging on the system in time (0, t) follows a Poisson distribution. The general expression 

of the reliability of the system Rn is obtained for n = 1, 2, 3, 4 when both stress-strength of 

the components follow exponential, gamma, normal and Weibull distributions. Numerical 

integration method is used to obtain the system reliability in some cases. Some numerical 

values of reliability R, (t), R2 (t ~ R3, (t), R4 (t) have also been tabulated, for different set of 

values of the parameters of the stress-strength distributions in all the cases. To make the 

things clear, a few graphs are drawn for selected values of the parameters. These graphs are 

smooth enough to facilitate direct reading of reliability for intermediate values of the 

parameters. 

An n -standby stress-strength system with a single repair facility has been made in 

Chapter 3. Here assumed that the stresses are impinging on the system in cycles and the life 

time (discrete) of the system is measured by number of cycles it can withstand and also the 

switch works under the impact of stresses. When stress-strength of the components and the 
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switch follow exponential, gamma and normal distributions and repair time distribution is 

geometric variate, reliability of a 3-component standby system at the Nth cycle is obtained. 

Some numerical values of the reliability corresponding to different values of the parameters 

involved are also tabulated. 

Chapter 4 deals with the identical stress-strength model where they are exponential 

variates and one of the parameters (stress or strength) is assumed to be a random with a 

known prior distribution, other parameters remaining constant. Here we have considered only 

two cases. First, strength parameter is random but stress parameter is a constant. Secondly, 

stress parameter is random but strength parameter is a constant. Uniform and two-point 

distributions are taken as the prior distributions for the parameters concerned. Using the 

derived compound distribution, general expressions of reliability of the system is obtained. In 

order to see how system reliabilities change with parameters involved, we have tabulated 

some values of RJ , R2 , R3 , R4 for the distributions from their expressions. To make the 

things clear, a few graphs are also drawn. 

A comparative study between warm and cold standby system with imperfect 

switching for identical strength has been discussed in Chapter 5. Similarly, a comparative 

study for identical stress has been discussed in Chapter 6. The strengths of different 

components and the stresses on them during functioning and when they are standbys, are all 

independent random variables. When stress-strength of the components and the switch follow 

particular distributions viz. exponential, gamma and normal then the general expressions of 

system reliability Rn is obtained for n ~ 3. Various reliability parameters have been 

computed and analyzed by tabular illustrations. Some graphs are drawn for selected values of 

the parameters in Chapter 6. 

Chapter 7 is concerned with the determination of system reliability when stress­

strength distributions are assumed to be dissimilar for n -standby and n -cascade systems. 

Here general n -standby and n -cascade systems have been considered where all stresses and 

strengths are independent random variables. Depending upon the nature of /, (x) 's and 
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g, (y)'s different cases may be considered. Explicit expressions of reliability R{r), 

r = 1,2, ... ,n and hence Rn is obtained for all the cases in an n -standby system. For n­

cascade system, the reliability expressions considering the different cases are obtained up to 

3-cascade system and a recursive rule is indicated, except in one case, for obtaining the 

expression R{r). Some numerical values of reliabilities R(1), R(2), R(3) and R3 are 

tabulated against the different values of the parameters and graphical technique is described 

for a particular set up. 

In Chapter 8, the general cascade reliability model for n -warm standby system with 

imperfect switching has been developed and the reliability expressions are obtained when the 

stress-strength of the components and the switch follow particular distributions. Following 

two cases have been considered for our study. 

• Stress-strength for the active component, standby component and the switch 

follow exponential distribution 

• Stress-strength for the active component and the switch follow Exponential 

distribution and standby component follows gamma distribution. 

For both the cases the marginal reliability R{l), R(2), R(3), R(4) and the system reliability 

R4 for a 4-cascade system are obtained. Also some numerical values of the reliability, in 

each case, are estimated and presented in tabular form against the parameters involved. 

Lastly, overall summary and future works have been given in Chapter 9 and some 

chapter-wise information/results in the form of tables, references and literatures cited in the 

thesis ofthe present work are listed at the end. 

****** 
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An Interference Model with Number of Stresses a 
Poisson Process 

2.1 Introduction 

In interference models in reliability theory it is assumed that a system is working 

under impacts of stresses. The system has some property which withstands the impacts of 

stresses; that property is called its strength and is measured by the minimum stress required 

for the failure of the system. They are called the stress-strength of the system and are 

assumed to be random variables. The system works if an impact of stress is smaller than or 

equal to its strength. The reliability of the system is the probability that it works. Such types 

of models are studied by many, e.g. [Dhillon (1980), Frudenthal (1996), Kapur and 

Lamberson (1977), Pandit and Sriwastav (1978), Sriwastav (1994, 2003), Sriwastav and 

Kakati (1981)]. 

In most of the studies of interference models, in evaluating the reliability of the 

system, only its stress-strength are taken into consideration as if the passage of time has no 

effect on it. But to assume that passage of time has no effect on the reliability of a system 

seems to be somewhat unrealistic. A more realistic situation will be one in which both time 

and stress directly affect the system reliability. In some studies e.g. Sriwastav. (1994) time 

has come into the picture in an indirect way. To bring time into the model, directly, it may be 

assumed that the number of stresses impinging on the system in the time (0, t) is a stochastic 

process. Here we have considered an n -standby system. We have assumed that the number 

of stresses faced by the system is a Poisson process i.e., the number of stresses impinging on 

the system in time (O,t) follows a Poisson distribution. Here the system reliability at time 't' 
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is defined as the probability that' r' impacts of stresses impinges on the system in time (O,t) 

and the system stands 'r' impacts i.e., at least one component is working at time 't'. Pandit 

and Sriwastav (1978) have mentioned this problem for cascade reliability. 

The organization of this chapter is as follows: In Section 2.2, the general model is 

presented mathematically. The reliability of the system can be obtained if the forms of the 

stress and strength are specified. In Section 2.3, assuming that stress-strength both is either 

exponential or gamma or normal or Weibull, the general expressions of the reliability of the 

system are obtained in each case. For some particular values of the parameters involved 

numerical values of the reliability are tabulated in the Table 2.1, Table 2.2, Table 2.3 and 

Table 2.4 (cf Appendix) and some graphs are plotted for all the cases in Section 2.4. 

Results and discussions are given in Section 2.5. 

2.2 Mathematical Description of the Model 

Here we have an n-standby system. Let X"X2 , ... ,Xn , be the strengths of the n­

components in the system arranged in the order of activation. Let Yp Y2 , ... ,Yn , be the stresses 

faced, respectively, by 1 st, 2nd
, ... , nth component when they are activated. X,' sand Y,' s 

are all independent. For detail description of such a system one may refer Sriwastav and 

Kakati (1981). 

The reliability Rn of an n -standby system for a single impact of stress is given by, 

[Sriwastav and Kakati (1981)] 

R., = R{I)+ R(2)+ ... + R{n) (2.2.1) 

where, R(i) is the increment in the system reliability due to the i th component, defined as 

R (i) = P [X I < Yl> X 2 < Y2 , ... , X I_I < Y,_I' X, ~ Y,] (2.2.2) 

Here we are to find the reliability of the system at time 't' when the number of 

impacts of stresses on the system during the time (0, t) is 'r' (a random variable), following a 

Poisson distribution given by, 
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_ e-a'{atY _ 
p{r) - , r - 0,1,2, ... 

r! 
(2.2.3) 

In an n -standby system, in the starting, there are n good components, of which one 

is active and faces the impact of stress; the remaining (n -1) are cold standbys. Here we 

would like to note that at least one impact is required for the failure of a component and more 

than one component may fail in a single impact. Further if m{< n) components fail in a 

single impact then at the next impact system is an (n - m) standby system and the {m + 1 yh 
component in the original order of activation behaves as the 1 st component in the order of 

activation, (m + 2 t as the 2nd component, etc. 

We have to obtain first the probability that the system survives 'r' attacks. Here we 

have considered the case when n s; 4, though the expressions for any fmite n can be 

obtained but the complexity of the expressions increases rapidly with increasing n. 

Now, if Rn (r), r = 1,2,3,4, is the reliability of the n -standby system at the r,h attack 

then Sriwastav (2003) 

R1{r) = R; (2.2.4) 

R2 (r ) ~ R; + R{2 \: ~ )R;-l (2.2.5) 

R3 (r) = R2 (r)+ R{3 \: ~ )R;-l + {R(2W(; )R;-2 (2.2.6) 

and 

R4 (r) = R3 (r) + R{4 \: ~ )R;-l + 2R{2 )R{3 \:; )R;-2 R;-2 + {R{2 )}3 (; )R;-3 (2.2.7) 

where R{l) = Rl . 

In this way we can fmd Rn (r) for any fmite n. 
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Since, as per our assumptions here r is a random variable follows the Poisson 

distribution employing the equation (2.2.3), then the reliability of the system, R)t) , at time t 

is given by 

Rn (t) = f p{r )Rn (r) (2.2.8) 
r=O 

Then, substituting the values of p{r) from (2.2.3) and Rn (r) from (2.2.4) to (2.2.7), we get 

R\(t) = fp(r)R\(r)= f e-at(~tY R( = e-at(I-R1) 

r=O r=O r. 
(2.2.9) 

r=O 

(2.2.10) 

r=O 

= f e-
at (~t)' [R2 (r)+ R{3 {r)R;-1 + {R(2 )y(r)R;-2] 

r=O r. \ 1 2 

= e-at(I-R')[l +at{R(2)+ R(3)}+ {atR(2)Y 1{20] 

(2.2.11) 

r=O 

~ t. e-.'~~tY[ R,(r) + R(4t )R:-' + 2R(2)R(3{~)R:-' + (R(2)Y(; }:-,] 

= e-al(I-R
I 
)[1 + at {R(2) + R(3)+ R(4 )}+ ] 

(aty R(2){R(2) + 2R(3)}/(2!)+ {atR(2)}3 /(3!) 

(2.2.12) 
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If the stress-strength distributions are specified then from equation (2.2.2) we can 

obtain R(i), from (2.2.4) to (2.2.7) we can obtain Rn {r) and from (2.2.9) to (2.2.12) we can 

obtain Rn (t), for n ~ 4 . 

2.3 Stress-Strength follows Specific Distributions 

Exponential, gamma, normal and Weibull these are the most common distributions 

used in reliability theory. What follows, we have assumed that the distributions of stress and 

strength both for every component are either exponential or gamma or normal or Weibull 

variates. 

2.3.1 Stress and Strength Exponentially Distributed 

Let us assume that both strength (Xi) and Stress (1';) of the i1h component, 

i = 1,2, ... , n are exponentially distributed with densities 

f(xJ = A,e -A,.,\ i = 1,2, ... , n; 0 ~ x, ~(YJ, Ai > O,} 

and , respectively 

g(yJ = ,u,e-~'YI , i = 1,2, ... , n; 0 ~ Yi ~ 00, ,ui > 0 

(2.3.-1 ) 

Then we can easily see [Sriwastav and Kakati (1981)] that 

R(i) = R(PI)R(P2). .. R(Pn_I)R(pn) (2.3.2) 

A. 
where P, = _, , 

1-1-, 
R(p;)=_I_ and R(pl)=I-R(p,) 

1+ Pi 
(2.3.3) 

Usually, the components used in a standby system are identical and the working conditions 

also do not change drastically. So strengths of all the components may be assumed to be 

identically distributed, similarly all the stresses may also be identical i.e., 

PI = P2 = ... = Pn = P ·(say) 
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I 
I 
I 
I 

Then, (2.3.2) becomes 
i 

Substituting these values in (2.2.9) to (2.2.12) we get 

RI (t) = exp[- at R(P )], 

R2 (t) = exp[- atR(p )]{1 + at R(P )R(p)}, 

R3 (t) = exp[- atR(p)] II + atR(p )R(p ){1 + R(p )}+ ~tR(p )R(p)Y 12 J, 

() [ -( )][l+atR(p)R(p)~+R(P)+(R(P)Y}+ 1 R4 t = exp - at R p 
~tR(p )R(p)Y {O.5 + R(p )}+ ~tR(p )R(p )}3 /(30 

2.3.2 Stress and Strength Distributed as Gamma Variates 

Chapter 2 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

Let us assume that both stress (Y,) and strength (X,) of the i,h component, 

i = 1,2, ... ,n are distributed as gamma variates with densities, 

f( )- 1 -x, m,-I·O< < >1 x, --e x, , _x, _00, m, _ , 
fm, 

and , respectively 

( ) __ 1 _y, 1,-1. < < >._ g Y, - e y, , 0 _ y, _ 00, I, _ 1, I - 1,2, ... ,n, 
fl, I 

Then from Sriwast~v and Kakati (1981) 
I 

R(i) = R(mp IJR(m2,/2 ) .. R(m,_p 1,_JR(m, , I, ), 

where 
m,-I r(m, +1, - j-l) . 

R(m, ,I,) = L ( .). m,+/,-}-I' 1= 1,2, ... ,n. 
}=o fl m, - J -1 .2 

: 
- I 
R(m"i.) = l-R(m,~/,) and m,'s are integers. 
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As commented in Sub section 2.3.1 taking stresses and strengths identical, so that 

m, = m, I, = I Vi, we have 

R(i) = [R(m,l)j-l R(m,l) 

Then, from (2.2.9) to (2.2.12) we have, 

R3 (t) = e -atR{m,l) II + at R(m, l)R(m, i){1 + R(m, t)}+ ~t R(m, I)R(m, nY /(2!)J 

R (t) = e-atR{m,l) 3 3 

- [1 + atR(m,l)R(m,i)t + R(m,l) + (R(m,l)r } ] 

4 +a2t2{R(m,/)R(m,i)r{~+R(m,i)}+ a3~ {R(m,i)R(m,i)Y 

2.3.3 Stress and Strength Normally Distributed 

Chapter 2 

(2.3.12) 

(2.3.13) 

(2.3.14) 

(2.3.15) 

(2.3.16) 

Let X, be a N(f.l"a, ) variate and Y, be a N(A,,8, ) variate. Then from Sriwastav 

and Kakati (1981) 

R(i) = ¢(Al )¢(A2 ) ... ¢(A,_1 }P(A,), (2.3.17) 

f.l -A - ( ) where A, = ~ I I and ¢(A,)=l-¢ A" i=I,2, ... ,n. 
a 2 +8 2 

I I 

(2.3.18) 

Further, let us assume that X,' s are identical and Y, I S are also identically distributed, then 

f.l- A . A, = A = .J ' V, = 1,2, ... ,n. 
a 2 +8 2 

(2.3.19) 

and so, R(i) = [¢(A)l-l ¢(A~ i = 1,2, ... ,n (2.3.20) 
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Then, substituting these values in (2.2.9) to (2.2.12) we get 

(2.3.21) 

(2.3.22) 

(2.3.23) 

(2.3.24) 

2.3.4 Stress and Strength Distributed as Weibull Variates 

Let us assume that both stress (y,) and strength (X,) of the i 'h component, 

i == 1,2, ... ,n are distributed as Weibull variates with densities, 

f( )- b b-I -(~ r feb 0 < < £1)0 x, - x, e " _ x, _ CX), 0 

and , respectively (2.3.25) 

( ) - c-I -( ~ r f'c 0 < < ')0 g x, - cY, e .IL, , _ Y, _ CX), .IL 

Then we have, 

R(i) == R(el , AI )R(e2 , A2 ). .. R(e'_I' A'_I )R(e" A,) (2.3.26) 

h R(e ')==l_~foo {(fr~(~J] c-Id were, ".IL, c e y, y, 
A, 0 

R(e"A,) == 1- R(e" A,) 

As commented in Sub-Section 2.3.1 taking stresses and strengths identical, so that 
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e, = e, A, = A'll i we have, 

(2.3.27) 

Then from (2.2.9) to (2.2.12) we have, 

(2.3.28) 

(2.3.29) 

(2.3.30) 

R t - e-atR(9,).) 3 3 

_ f1 + atR{e, A)R{e, A){1 + R{e,A)+ R{e,AY}+ ] 

,() - (at)' {li(e, ,l)R(e,,l)l' H + lI(e,,l)} + a 3: {li(e,,l)R(e,,\)1' 
(2.3.31) 

2.4 Graphical Representations 

Some graphs are plotted in Fig. 2.1 to Fig. 2.4 by taking different parameters along 

the horizontal axis and the corresponding reliability along the vertical axis for different 

parametric values. In Fig. 2.1 taking at along the horizontal axis and the corresponding 

RI (t) along the vertical axis graphs are plotted for different values of p. One can read the 

values of RI (t) for intermediate values of at, from this graph. Thus, for p =0.5 we get 

RI (t)= 0.4337. For at =2.52 from graphical extrapolation, while the computed value is 

RI (t )=0.4317. The difference is only 0.20%. From Fig. 2.2 Graphs of R3 (t) against at are 

plotted for different pairs of the values of m and I. These graphs may be used for reading 

the values of R3 (t), corresponding to intermediate values of at . For instance, for m = 1, 1=1 

and at =3.5 from the graph we get R3 {t )=0.4707, whereas actual calculation yields the value 

as R3 (t )=0.4684. The difference is only 0.23%. Fig. 2.3, from the graph, as expected, it is 

seen that R2 (t) decreases steadily with increasing at. These graphs may be used to read the 
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intermediate values directly. For example, for at =4.5, .u=1 and u=1 we get from the graph 

R2 (t)=O.6192 whereas by actual calculation we get R2 {t)=O.6188. The difference is only 

0.16%. Fig. 2.4, based on the values of R4 (t), extensively tabulated in just above these 

graphs, curves of R4 (t) were drawn against at for different parameter values of b, 0, c and 

;to From these graphs we get RAt) =0.5799. For at =0.357, b=O.8, 0=0.6, c=0.7, ;t=0.2 

while the computed value is R4 (t )=0.5768. The difference is only 0.31 %. 

0.8 

0.7 

0.6 

0.5 

0.4 ---a:. .... 
0.3 

0.2 

0.1 

0.0 
1 2 3 4 5 

at • 

Fig. 2.1 Exponential Stress-Strength: Graph for R, (t) for different fixed values of p i.e., 

R,(P). 
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Fig. 2.2 Gamma Stress-Strength: Graph for R3 (t) for different fixed values of m and I 

i.e., R3(m,l} 
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Fig. 2.3 Normal Stress-Strength: Graph for R2 (t) for different fixed values of f.l and (j 

i.e., R2 (p, (j } 
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Fig. 2.4 Weibull Stress-Strength: Graph for R4 V) for different fixed values of b,(},c and 

it i.e., R.(b,(},c,it). 

2.5 Results and Discussions 

For some specific values of the parameters involved in the expressions of R/(t), 

i = 1,2,3,4 and for given values of I t' we evaluate R\ (t) to R. (t), for different distributions, 

from their expressions obtained in the last section. From the expressions of R;(t), it is clear 

that their values depend upon the values of ' at' (= mean no. of stresses in time 0 to t) 

rather than the individual values of a and t. 

Table 2.1 (cf. Appendix) presents the values of R\ (t} R2 (t} R3 V) and R4 (t) for 

different values of the parameter p for exponential distribution. From this table, it is clear 

that the values of the reliability are on expected line. Increase in the values of at decreases 

the reliability. Increase in the values of p also decreases the reliability. For instance, when 

at=1,p=.5 then R\V)=0.7165, ~(t)=0.8758, R3(t) = 0.9465, and R.(t) = 0.9973. 
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Again when at = 2, p = 1 then RI (t) = 0.3679, R2 (t) = 0.5518, RJ (t) = 0.6898 and 

R4 (t) = 0.7894. 

Table 2.2 (cf. Appendix) presents the values of RI(t}, R2(t1 RJ(t} and R4(t} for 

different values of the parameter I and m in case of gamma distribution. From this table, we 

have seen that here also the change in the values of reliability is as expected. The increase in 

the values of at decreases the reliability. From the table we have seen that when at = 2 then 

the reliabilities are RI (t) = 0.2231, R2 (t) = 0.3068, RJ (t) = 0.3852 and R4 (t) = 0.4578. 

Again when at = 3 then RI (t) = 0.1054, R2(t} = 0.1647, RJ (t)= 0.2258 and 

R4 {t} = 0.2873. When m increases, reliability increases. For example, if m = 1 then 

RI(t} = 0.3679, R2(t} = 0.5518, RJ(t}=0.6898 and R4(t}=0.7894 and if m=2 then 

Rl (t) = 0.6065, R2 (t) = 0.8340, RJ (t) = 0.9335 and R4 (t) = 0.9744 i.e., reliability increases. 

But when I increases, reliability decreases. For instance, when 1=1 then 

RI(t}=0.3679, R2(t} = 0.5518, RJ(t}=0.6898 and R4(t}=0.7894 and when [=2 then 

RI {t} = 0.2231, R2 {t} = 0.3068, RJ {t} = 0.3852 and R4 {t} = 0.4578. 

For normal distribution, the reliabilities R, (t), i = 1,2,3,4 are tabulated in Table 2.3 

(cf. Appendix) for different values of the parameter f1. and cr. This table is also self 

explanatory. With increasing at reliability decreases where as with increasing f1. increases 

but decreases with increasing cr. Of course, the effect of f1. is more than that of cr . 

Similarly the reliability values of RI {t}, R2 (t), RJ {t} and R4 (t) for different values 

of the parameter b,e,c and A are presented in Table 2.4 (cf. Appendix). Here also the 

change in the values of reliability is as expected. The increase in the values of at decreases 

the reliability. 

****** 
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An n-Standby Repairable System with Imperfect 
Switching 

3.1 Introduction 

As mentioned in chapter 1, switching mechanisms are required in standby redundant 

systems. Here we have considered a standby repairable system with imperfect switching. 

In a standby system when the active component fails to remove it and to insert its 

place a component from standbys a switching mechanism is required. In an stress-strength 

(S-S) standby system a component with strength (X) works under certain stress (Y), both 

X and Yare random variables. The component fails when the stress on it exceeds its 

strength; the reliability of the component is defined by the equation (1.1.1) as given in 

Chapter 1. 

In an S-S standby system with repair when the active component fails, it is sent for 

repair and the next component (if there remains 'any) is instantly activated by some device 

which is termed as switch. In general it is assumed that the switching mechanism is perfect 

i.e., absolutely reliable and switching is instantaneous. Hence, in the evaluation of system 

reliability, reliability of switch is not taken into account. But in practice the switch may also 

fail and this will change the reliability structure of the system. It is assumed that the impacts 

of stresses are coming in cycles and the life-time of a system is measured in number of 

cycles, (Pandit and Sriwastav, 1976). Here, it is assumed that in an impact (or cycle) only one 

component can fail. The repair time is also measured in cycles and at least one cycle is 

required to repair a failed component. The system will work if the first component works or 

at least one ofthe standby component along with switch works. 
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In this chapter we have considered a 3-component standby system with a single repair 

facility with imperfect switch and obtain the reliability of the system at the Nth cycle of the 

stress. 

Studies of standby system with imperfect switch for S-S models are considered by 

many persons, for example, Kapur and Lamberson (1977), Sriwastav and Dutta (1984), Dutta 

and Bhowal (1997, 1998, 1999) etc. However, standby system with repair are considered by 

several authors including Gopalan and Venkateswarlu (198S), Subramanian and 

Anantharaman (199S), _Xu, Guo, Yu and Zhu (200S), Sriwastav (200S), Srinivasan and 

Subramanian (2006) etc. 

Organization of this chapter is as fo llows: Section 3.2 deals with the description of 

the system. In Section 3.3, the general model for a 3-component standby system with 

imperfect switching is developed. In Section 3.4, numerical evaluation is presented. In 

Section 3.S, three specific distributions are considered to obtain the reliability. In Sub­

Sections 3.S.1, 3.S.2 and 3.S.3, all the distributions are assumed to be exponential, gamma 

and normal respectively for the components and the switch. To see the effect of changes in 

different parameters on reliabilities, some numerical values of R, (N1 N = 3,4,S are 

obtained in each case and tabulated against the parameters in the Table 3.1, Table 3.2 and 

Table 3.3 (cf. Appendix). Results and discussions are reported in Section 3.6. 

3.2 Description of the System 

Let us consider a 3-standby system where the components are arranged in the order of 

activation and numbered accordingly. To start with the first component is working; the 

second and third components are standbys. The components are dissimilar. When the first 

component fails, the second component starts working in its place by a switch and the system 

continues to work and the first component goes for repair and if its repair is completed before 

the second and third component fails, it will become the standby. There is a single repair 

facility, which takes up the components for repair on first-corne-first serve basis. When the 

second component fails, the third components starts working by a switch in its place and the 

system continues to work. The second component goes for repair. The system will work till 
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the switch works and either the first component works or there is a standby to work. The 

system fails when all the three components have failed or the active component fails and 

switch fails i.e., one is under repair and the two are in the queue for repair. The switch is also 

repaired by the same repair facility. 

As assumed in Section 3.1, the components and the switch are working under impact 

of stresses and stresses are impinging on the system in cycles. If the working component fails 

in a particular cycle the next component will face a stress in the next cycle. i.e., only one 

component can fail in one impact (or cycle) of the stress. Similarly components repair time is 

also measured in cycles and at least one cycle is required for the repair of a component. If a 

component is repaired in i 1h cycle, it will be available for use from (i + l)th cycle. Though the 

active component faces in cycles but the switch faces a stress only when it is to activate a 

standby unit. The switching is instantaneous i.e., if the switch works the next component is 

immediately activated and is ready to face the next cycle of stress on the system. 

3.3 General Model for a 3-Component Standby System 

As we have assumed that the switch also works under the impact of stresses. Let U 

be the strength of the switch and V be the stress on it. The switch fails when U < V, where 

U and V are assumed to be independent random variables. Let X/ be the strength of the ith 

component and 1', be the impact of stress on it, X, and 1', are both random variables. The 

switch and the components are assumed to work independently. Then a, the reliability of the 

i th component i = 1,2,3 is given by 

a, = p[X, ~ 1', ] (3.3.1) 

and the reliability of the switch is 

RS =P[U~ V] (3.3.2) 
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Let p, U} j = 1,2,3; j = 0,1,2, ... be the probability that the repair of the jth component is 

completed exactly at the jth cycles. Then the probability that the repair of the ith component 

is completed on or before the k th cycle is given by 

k 

p'(k) = LP,U) (3.3.3) 
J=O 

The reliability of the 3-standby system at the Nth cycle, N = 0,1,2, ... with imperfect 

switching is given by, 

(3.3.4) 

where F3,J (N - k - j) is the survival probability of the system for the remaining (N - k - j) 

cycles starting with the 3rd component. (1 st and 2nd component have already failed; 2nd 

component worked for (j -1) cycles and failed at the j th cycle. i.e., 

N-k-J 
F3,J (N -k - j) = a:-k-J + (1- a3 ) La~-lp(U ~ V)~ (j + 1)F1., (N - k - j -1) (3.3.5) 

,=1 

By the same argument as in (3.3.5) 

F;)N - k - j - i) = a~-k-]-' + (1- aJN-I~~-lp(u ~ V)pz (i + I)Fz,l(N -k - j - i-I) (3.3.6) 
1=1 

and 

N-k- J-,-I 
F2,1(N -k - j - i - 1)= a~-k-J-'-I + (1- a2 ) La;-lp(U ~ V)~(I + n)F;)N - k - j -i -I-n) 

n=1 

(3.3.7) 

In general, we can write, 

m 

Fr.s (m) = a; + (1- a,)L a;-I p(U ~ V)Pr+1 (s + i )Fr+l,,(m - i), r = 1,2,3; s = 1,2, ... ::; N - 2 
,=1 

(3.3.8) 
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Since there are only three components hence for r = 3, r + 1 = 1, because of the components 

are numbered in the order of activation and are repaired in the order they fail. Since, by 

assumption, at least one cycle is required for the repair of a component, hence 

P, (0 ) = 0, i = 1,2,3 

Further, with the convention that 

J 

I (.) = 0, for j(i, 

we can easily see from (3.3.5), (3.3.6) and (3.3.7) that 

F..Ao) = 1, i = 1,2,3; d = 1,2, ... 

Since only one component can fail in an impact (or cycle), so obviously 

R3 (0) = 1, R3 (1) = 1, R3 (2) = 1 

we can see this from (3.3.4) under the convention (3.3.10) and using (3.3.11). 

3.4 Numerical Evaluation 

(3.3.9) 

(3.3.10) 

(3.3.11) 

(3.3.12) 

Here the expression (3.3.4) could not be obtained in closed form but if stress-strength 

distributions are known we can find the values of a, 's, i = 1,2,3 and RS's if repair time 

distribution is known, then p, (.) 's, i = 1,2,3 are also known. Substituting these values in 

(3.3.5), (3.3.6), (3.3.7) and from (3.3.4) we can obtain the reliability R3(N) for any finite N. 

Here reliability R3 (N) is obtained for N = 3,4,5 when both stress-strength and the 

switch follow either exponential or gamma or normal variates and repair time distribution is 

geometric variate. 

Now, 

3 

R3 (3) = a; +(I-al )P(U ~ V)IA,a;-1 (3.4.1) 
,=1 

3-, 

where, A, = a;-' + (1- a2 )" arl p(U ~ V)F3 (3 - i - j~ i = 1,2,3 L... .J 
J=I 

4 

R3(4) = a: + (I-a l )p(u ~ V)IB,a;-1 (3.4.2) 
,=1 
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4-, 

where, B, = a:-' + (1- a2 )2:arl p(u ~ V)F3•
J 

(4 - i - j); i = 1,2,3,4 
J=I 

5 

R3 (5) = a: + (1- al )p(U ~ V)2: C,a;-I (3.4.3) 
1=1 

5-, 

where, C, = a~-' + (1- a2)2: at p(u ~ V)F3•
J 

(5 - i - j), i = 1,2,3,4,5 
J=I 

From (3.3.8) we have, 

F,.s (1) = a! + (1- a, )p(u ~ V)P,+I (s + I), r = 1,2,3; s = 1,2,3,4 (3.4.4) 

(3.4.5) 

F,..(3) = a~ + (1- a, )p(U ~ v)lp'+1 (s + I)F,+I.1 (2)+ a!P,+1 (s + 2)F,+1.2 (1)+ a; P,+I (s + 3)J 

(3.4.6) 

( )
_ 4 (_ ) ( > {P,+I(S+I)F,+I.I(3)+a:p,+I(S+2)F,+1.2(2)+] 

F 4 - a, + 1 a, P U _ V () ( ) () , 
'.S a; P,+I S + 3 F'+1.3 1 + a;P'+1 S + 4 

r = 1,2,3; S = 1,2,3,4 and for r = 3, r + 1 = 1 (3.4.7) 

3.5 Reliability for Specific Distributions 

In this section we consider stress-strength of the components and the switch follow 

particular distributions, viz. exponential, gamma and normal. 

3.5.1 Exponential Stress-Strength for the Switch and the Components 

Let us assume that both strength (X,) and stress (r;) for the i th , i = 1,?,3 component 

are exponential with mean 1/ fl, and 1/ A, respectively and let U and V be exponential with 

mean 11 d and 11 f3 for the switch. Then, Kapur and Lamberson (1977) 
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- p(x > y}= Jl , ==_1_ h - 12 a, - I - I ( ) , were P, -
A, + Jl , 1 + P A, 

(3.5.1) 

and 

RS = b = p(U~ V}=_a_ =_1_, where v = a 
f3+a l+v f3 

(3.5.2) 

Further let us assume that, repair time distribution of the i th component and the switch is a 

geometric variate with probability of repair being completed in a cycle P, then, 

Pk (m)= l-q~, m = 0,1,2, ... ; q, = 1- P, (3.5.3) 

The reliabilities R3 (N), for N = 3,4,5 are computed and presented in Table 3.1 (cf. 

Appendix) for P =.1, .5, 1.0, 1.5,2; v =.2, .3, .5, .7, .9 and P, =.9, .8, .6, .4, .2. In general, the 

components used in standby systems are identical, so reliability are calculated assuming 

PI = P2 = P3 = P (say) I.e., a l = a2 = a3 = a (say) and PI = P2 = P3 = P (say) i.e., 

qI = q2 = q3 = q (say). 

3.5.2 Gamma Stress-Strength for the Switch and the Components 

Let us assume that both stress and strength of the i th components are gamma variates 

with scale parameters unity and shape parameters (or degrees of freedom) I, and m, 

respectively. Further let U and V be gamma variates for the switch with degrees of freedom 

c and d respectively. If either I, or m, is an integer then the reliability a, and R S of the i th 

component and the switch is given by Kapur and Lamberson (1977), 

m,-I r(m +1 - i-I) 
a = " ( I '). I i = 1,2,3 

I L..J rt m _}. -1 2 m,+,}-I' 
}=o I I • 

and 

RS = b = ~ r(d + c - i-I} 
~ rc(d - i _1).2 d+c

- rl 
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As assumed in Sub-Section 3.5.1, generally, the components are identical. i.e., 

ml = m2 = m3 = m (say) and II = 12 = 13 = I (say) or in other words a l = a2 = a3 = a (say). 

The reliabilities R3(N), for N = 3,4,5 are computed and presented in Table 3.2 (c£ 

Appendix) for some selected values of the parameters. 

3.5.3 Normal Stress-Strength for the Switch and the Components 

Let the stress-strength of the i th component are N (0,1) and N (,u" a}) variates and 

let U and V be normal with N(0,1)and N(a,r2) variates, respectively for the switch. Then 

its reliability is given by Kapur and Lamberson (1977), as 

a, =¢(n). i=I,2,3 (3.5.6) 

and 

R
S = b = '1'( a ) 

JI-;;2 
(3.5.7) 

For illustration purpose reliabilities are computed for the components a, and the switch R' 

assuming the repair time distribution is geometric. The reliability of the 3-standby system 

R3 (N), at the Nth cycle N = 3,4,5 is presented in the Table 3.3 (c£ Appendix). 
I 

3.6 Results and Discussions 

From the Table 3.1 (c£ Appendix), it is observed that the values of the reliability are 

on expected line in case of exponential distribution. For example, when the number of cycles 

N increases R3(N), N=3,4,5 decreases. i.e., R3(3»R3(4»R3(5). This should be the 

case, because we use the components more than one times. If we use one component more 

than one or two times than its life goes to decrease (i.e., they have no capacity to work like as 

fIrst time because of it's used before). But the rate of decrease is very slow for large values of 

a's, b's and p's i.e., small q 'So For example, when a = 0.9091, b = 0.8333, q =.1 i.e., 

p =.9 then the values of reliability R3 (N), N = 3,4,5 becomes 0.9552, 0.9407 and 0.9265 
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respectively. Again the rate of decrease is faster for small a's, b 's and p 's i.e., large q's. 

For example, when a = 0.3333, b = 0.5263, q =.8 i.e., p =.2 then the reliabilities R3(N) 

become 0.2927, 0.1728 and 0.0990 respectively. The effect of changes in the values of a 's is 

more than that of q's. Even for comparatively unreliable components with highly reliable 

repair facility, at least for first few cycles high reliability can be achieved. The effect of 

decreasing values of a's and b 's is more for smaller p 's (i.e., larger q 's) than for large 

p 'so Similar conclusion can be made for the Table 3.2 and Table 3.3 (cf Appendix) in case 

of gamma and normal stress-strength. 

****** 
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Identical Stress-Strength Model with Random 
Parameters in Reliability Theory 

4.1 Introduction 

Mostly discussions of interference models assume that the parameters of S-S 

distributions are constants Beg (1980), Enis and Geisser (1971), Harris and Singpurwalla 

(1968), Kapur and Lamberson (1977), Kelly, Kelly, J.A. and Schucany (1976), Sriwastav 

(1976). But in many cases this assumption may not be true and the parameters may be 

assumed themselves to be random variables. In other words, the distributions with fixed 

parameters may not represent the stress and strength distributions adequately and a 

distribution with random parameters may represent the situations better. For example, if a 

particular component, having certain strength distribution is manufactured in different lots, 

then for a particular lot the parameters of the strength distribution may remain fixed but may 

vary randomly from lot to lot. In such situations the parameters of the strength distribution 

may themselves be taken as random variables Harris and Singpurwalla (1968). Similarly, the 

stress applied on a component (or system) is due to different factors such as temperature, 

pressure, vibration, humidity etc. Generally, one of these factors will be dominant and will be 

the main cause for the stress on the component and the stress distribution will be the 

distribution of this factor. But the other factors may vary at different times or at different 

places in such a way that, though they do not alter the nature of the distribution, they bring 

random changes in the parameters of the stress distribution. For example, the vibration at 

high temperature will be more severe for a joint than at low temperature Robert (1964) and 

hence the distribution of stress (due to vibration) may have different parameter value at 

different temperature or in other words we can say that the stress parameters are random 

variables. 



Chapter 4 

Further, if a prior knowledge exists about the parameters involved, it will be a waste 

of available data if we do not use a random parameter model i.e., a Bayesian model. In order 

to use the Bayesian approach, it is generally assumed that the subjective knowledge can be 

quantified somehow and represented in the form of a prior distribution of the parameter 

involved Kapur and Lamberson (1977). When prior distribution is known, the unconditional 

distribution of the random variable (stress and/or strength) can be recovered Harris and 

Singpurwalla (1968), Kapur and Lamberson (1977). 

Harris and Singpurwalla (1968) have considered life-time distributions with random 

parameters. They have taken uniform, two-point and gamma distributions as prior 

distributions for the parameters. They have considered estimation problem for this model. 

Here we have considered only uniform and two-point distributions as prior distributions to 

estimate the system reliability but not considered any estimation problem. Shooman (1968) 

has considered the parameter of strength distribution as a deterministic function of time. 

Tarman and Kapur (1975) have assumed that the parameters of the stress-strength 

distributions are variables but not random variables. 

In this chapter some of the results were presented in Gogoi and Borah (2011). Here 

stress-strength model is considered where they are exponential variates. Also assumed that 

the parameters of the stress-strength distributions are random variables. Though all the 

parameters involved may be taken as random variables for simplicity, only one parameter, at 

a time, is taken to be random with a known prior distribution, and other parameters 

remaining constant. The main aim of this chapter is to obtain the system reliability Rn for 

identical stress-strength model. The following two cases have been considered for this 

investigation. 

Case I: When strength parameter is random but stress parameter is a constant. 

Case II: When stress parameter is random but strength parameter is a constant. 

For the above two cases, the prior distributions considered for stress-strength 

parameters are either uniform or two-point distributions. 
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Section 4.2 deals with the general model for identical stress-strength. In Section 4.3, 

we consider that the strength parameter A is a random variable whereas the stress parameter 

J.l remains constant. Prior distribution of A is assumed to be uniform and two-point 

distributions respectively in Sub-Sections 4.3.1 and 4.3.2. Section 4.4 presents the opposite 

of that considered in Section 4.3. i.e., we consider here the stress parameter J.l is a random 

variable and A remains constant. Sub-Section 4.4.1 and 4.4.2 deals with the uniform and 

two-point prior distributions for J.l. The Table 4.1 (d Appendix) to Table 4.4 (cf. 

Appendix) can be used for making a system reliability analysis. To make the things clear, a 

few graphs are drawn in Section 4.5 for selected values of the parameters. These graphs are 

smooth enough to facilitate direct reading of reliability for intermediate values of the 

parameters. Section 4.6 is devoted to a discussion on the results obtained in Section 4.3 and 

4.4 respectively. 

4.2 Notations, Definitions and Formulation of the Model 

Here we have assumed that strength' X ' and stress' Y , are exponential variates with 

means ~ and ~, respectively. The parameters A and J.l may be random. 
A J.l 

Let P{A 1 p{A)= The prior distribution function and p.d.f (or p.m.f) ofthe random 

strength parameter A 

Q{J.l), q{J.l)= The prior distribution function and p.d.f (or p.m.f) ofthe random 

stress parameter J.l 

f{xl A)= The conditional p.d.f ofthe random variable X for a given value of A 

g(yl J.l)= The conditional p.d.f ofthe random variable Yfor a given value of J.l 

fx (x)= The unconditional p.d.f. of the random variable X 

g y (y)= The unconditional p.d.f of the random variable Y 

a) 

where fx (x) = f f{x I A )a'P{A) 

a) 

and g y (y) = f g{y I J.l )a'Q~ ) 
-a) 
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Here f(x I A) = fx (x) if A is constant and g(y I p.) = g y (y) if p. is constant. 

Let XI'X2 , ••• ,Xn be the strengths of the n components in order of activation, and 

Y" Y2 ' ••• 'Yn be the respective stresses on them. Here X, IS and Y, 's, i = 1,2, ... ,n, are all 

independent random variables reliability Rn. of the system is given by the equation (2.2.1). 

where, R(r) denotes the marginal reliability due to the r th component. 

(4.2.3) 

Let f,(x) be the p.d.f. of X, and g/{y) be that of Y" i = 1,2, ... ,n then from (4.2.3) 

(4.2.4) 

x 

where F, (x) = f j,{x}dx and F,(x)= F,(x) 

If all the components having some strength distributions are working under ·the same 

environment (stress) then we can assume that stress-strength distributions of all the 

components are identical, i.e., all the X,'s and Y, I S are i. i.d with p.d.f.s f{x) and g{y), 

respectively, i = 1,2, ... , n then (4.2.4) reduces to, 

(4.2.5) 

4.3 Random Strength Parameter 

Here we assume that the strength parameter A is a random variable whereas the 

stress parameter p. remains constant, i.e., f{xl ,.1,)= k-.o: and gy{y)= p.e-JIY 

Two types of prior distributions are considered for A 

4.3.1 Uniform and 4.3.2 Two-point 
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4.3.1 Uniform Prior for A 

In a situation where the components are homogeneous within each lot but different 

lots have different values of A and taking all the possible sources of the lots together, each 

value of A appears equally frequently, a uniform prior distribution will be suitable for A 

Harris and Singpurwalla (1968). 

Let A be uniformly distributed in the range (a, b), i.e., p{A) = _1_, 0 ::; a < A < b 
b-a 

Then the unconditional p.d.f of X is given by 

Hence from (4.2.5) we have, 

00[00 b] b+J1 = J J-1-J k-J..xdMx f.Le-J.lYdy =~log:+J1 
b-a b-a o y a 

R(2)~ [IF, (y)g,(yflIF , (y)g,(y)dy ] 

~ [[( 1- b ~ a e-o, ~ e-" )~-w dY]R(I) 

= [1- R{I)]R{I) 

Then in general we can write, 

R{r) = [1- R{l)tl R{l) 
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4.3.2 Two-Point Prior for A 

In a situation where it is known that A can take two only values A, and ~ (say), 

with probabilities p and (1- p), respectively, a two-point distribution for A is appropriate 

Harris and Singpurwalla (1968). 

Let A have a two-point distribution, given by, 

Pr{A = AI) = p{AI) and Pr{A = ,1,2) = p{A2) 

Then, 

2 

fx (x) = LA,P{A,) = pA,e-A,X +(1- p~e-A.zX 
,=1 

Hence from (4.2.5) we have, 

-[l-(-P + 1-P )11][(-P + 1-P )11] 
A, + 11 ~ + 11 Al + 11 ,1,2 + 11 

= [1- R{1 )]R{I) 

Then in general we can write, 

R{r) = [1- R{I)]'-1 R{l) 
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System reliability Rn may be computed by substituting the values of R{r ~ r = 1,2, ... ,n in the 

equation (2.2.1). For different values of the parameter a, b, J.l. and p, ~, A2 , J.l. the values of 

Rl' R2 , R3 , R4 from (4.2.3) are tabulated in Table 4.1 (cf Appendix) and Table 4.2 (cf 

Appendix). 

4.4 Random Stress Parameter 

Here also the stress and strength are exponential with mean ~ and ~ respectively. 
).l A 

But now J.l. IS a random variable and A remains constant, i.e. g{y / J.l.) = J.l.e- JIY and 

For J.l. also the prior distributions considered are uniform and two-point distributions 

respectively, in the fo Howing 

4.4.1 Uniform Prior for J.l. 

Let J.l. be distributed uniformly in the range (c, d), then 

Then, 

1 q{J.L) = --, 0 ~ c < J.l. < d 
d-c 

1 d 

g Y (y) = d _ c f J.Le-JIY dJ.l. 
c 

Hence from (4.2.5) we have, 

A d+A 
=1---log--

d-c C+A 
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R(2) = [IF, (y)g ,(Y fH F ,(y)g, (y}dy ] 

= [J(l- e-AY )f_1-J1e-w df.1dy][l--A-IOg d + A] = [1- R{l)}R{l) 
o cd-c d-c c+A 

Then in general we can write, 

R{r) = [1- R{l )y-I R{l) 

4.4.2 Two-Point Prior for fJ 

Here if it is assumed that fJ can take only two values fJl and fJ2 with probabilities q 

and (1- q), respectively. We have two-point prior distribution for fJ given as, 

Then, 

2 

gy{y) = LfJJq~J= qfJle-JJ1Y + (1- q)fJ2e-JJ2Y 

J;I 

Hence from (4.2.5) we have, 

= J e-AY~lqe-JJIY +{1-q)fJ2e- JJ2Y ~y 
o 

= ...!l!:!:L + (1- q )fJ2 

A + fJl A + fJ2 
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R(2) = [ IF(Y )g(y}Jy fUF(Y )g(y}Jy 1 
= [1-(~+ (l-q)~2 )l[~+ (l-q)~2] 

III + A ~2 + A ~I + A ~2 + A 

= [1- R(1 )}R(I) 

Then in general we can write, 

R(r) = [1- R(I)y-1 R(I) 

Hence we can obtain the system reliability Rn by substituting the values of R(r 1 r = 1,2, ... , n 

in (2.2.1). The values of Rl' R2 , R3 , R4 are tabulated in Table 4.3 (c£ Appendix) and Table 

4.4 (c£ Appendix) for parametric values c, d, A and q, ~I' ~2' A . 

4.5 Graphical Representations 

A few graphs of RI , R2 , R3 , R4 are drawn in Fig. 4.1(a)-4.1(d) and Fig. 4.2(a)-4.2(d) 

for different parametric values involved. In Fig. 4.1(a) to Fig. 4.1(d) show the graphs of 

RI , R2 , R3 , R4 respectively, taking ~ along the horizontal axis and the corresponding 

reliabilities along the vertical axis graphs are plotted for different pairs of a, b. From these 

graphs one can read directly the values of reliabilities Rl' R2 , R3 , R4 for intermediate values 

of ~ . It is observed from the graphs that reliability is steadily increasing with ~ increases 

whereas in Fig. 4.2(a) to Fig. 4.2(d) it is decreasing with increasing A. 
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Fig.4.1(a) Exponential Stress-Strength: 
Strength parameter A is random 
and uniformly distributed in the 
range (a ,b): Graph of R( vs ).J 
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Fig. 4.1 (c) Exponential Stress-Strength: 
Strength parameter A is random 
and uniformly distributed in the 
range (a, b): Graph of R3 vs ).J 
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Fig. 4.1 (b) Exponential Stress-Strength: 

Q1 

Strength parameter A is random 
and uniformly distributed in the 
range (a ,b): Graph of ~ vs ).J 
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Fig.4.I(d) Exponential Stress-Strength: 
Strength parameter A is random 
and uniformly distributed in the 
range (a ,b): Graph of R. vs ).J 



2345676 9 

A---

Fig.4.2(a) Exponential Stress-Strength: 

Q2 

01 

Stress parameter p is random 

and uniformly distributed in the 
range (c,d): Graph of R) vs l 
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Fig.4.2(c) Exponential Stress-Strength: 
Stress parameter p is random 

and uniformly distributed in the 
range (c,d): Graph of R3 vs l 
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Q1 

23456 7 8 9 

A- -

Fig. 4.2(b) Exponential Stress-Strength: 

Q2 

01 

Stress parameter p is random 

and uniformly distributed in the 
range (c,d): Graph of ~ vs l 
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),---

Fig.4.2(d) Exponential Stress-Strength: 
Stress parameter p is random 

and uniformly distributed in the 
range (c, d): Graph of R4 vs l 
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4.6 Results and Discussions 

In order to see how system reliabilities change with the parameters involved, we have 

tabulated some values of R1, R2 , R3 , R4 for both the distributions from their expressions 

obtained in the last section. Table 4.1 (cf. Appendix) presents the values of Rp R2 , R3 , R4 

when strength parameter is random but stress parameter is a constant and uniform 

distributions are considered as a prior distribution for A for different values of a,b and JI.. 

Here we have seen that the reliabilities are steadily increasing with JI. increases but decreases 

with increasing values of a and b. Similarly, when two-point distributions are considered 

as the prior distribution for A for the Case I, we have tabulated some values of 

Rp R2 , R3 , R4 for different values of p, A" A2 , JI. in Table 4.2 (cf. Appendix). From this 

table we have also seen that the reliabilities are steadily increasing with JI. increases and 

reliabilities are decreases (increases) with increasing p for A, > Az (~ < Az)· 

We have tabulated the reliabilities for different values of c,d,A in Table 4.3 (cf. 

Appendix) when the stress parameter is random but strength parameter is a constant and 

uniform distributions are considered as a prior distribution for JI.. From the table, it is clear 

that the reliabilities are decreases with increasing A, intuitively also this should be the case. 

But reliabilities are steadily increasing with increasing c and d. Similarly, when the prior 

distributions are considered as the two-point distribution for JI. for the Case II, some of the 

values are presented in respective case in Table 4.4 (cf. Appendix) for different values of q, 

Jl.l' Jl.2 and A. From the table we observe that reliabilities are decreases with increasing 

values of A and reliabi lities are increases ( decreases) with increasing q, if Jl.l > Jl.2 (Jl.l < Jl.2) . 

****** 
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Identical Strength 
System with Imperfect 
Study 

for Warm and Cold Standby 
Comparative Switch: A 

5.1 Introduction 

As discussed in Chapter 1 switching mechanisms are quite prevalent in standby 

redundant systems. In a standby redundant system when the active component fails the next 

component (if there remains any) is instantly activated by some device which is called a 

switch. In general, it is assumed that the switch is absolutely reliable i.e., perfect. However in 

the real situation the switch may also fail. i.e., the switch is imperfect and has its own failure 

pattern. Hence when evaluating the reliability of a standby redundant system not only the 

failure mechanisms of the different components are to be considered but also that of the 

switch is to be taken into account. 

In a standby system the standby components may be in anyone of the three different 

states viz. hot, cold and warm. In hot standbys the standby units are subjected to the same 

law of failure as the active unit. i.e., the probability of failure of a standby component in the 

same as that of an active component. In a cold standby system the standbys, by hypothesis, 

cannot fail unless they take the place of active units and in case of warm standby system the 

redundant units are in a partially energized state up to the instant they are put in place of the 

primary units. During the period they are as standby, they can fail but the probability of 

failure is less than the probability of failure of the active unit. In this chapter we have 

considered an n -standby system with cold and warm standbys with imperfect switching for a 

stress-strength model. Here we assumed that strengths are identical for exponential, gamma 

and normal distributions for both cold and warm standbys. 
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Stress-Strerigth reliability has been discussed in Kapur and Lamberson (1977). 

Studies on imperfect switching for cold standby systems in S-S model have been considered 

by Sriwastav and Dutta (1984). They have considered both the switches and the components 

following similar distributions. Studies on imperfect switching for dynamic warm standby 

system in TTF (time-to-failure) model have been considered by Alidrisi (1992). Imperfect 

switching with identical strength for a cold standby redundant system have been considered 

by Dutta and Bhowal (1997). The system reliability of a standby system, when switches and 

the components follow dissimilar continuous distributions, is considered by Dutta and 

Bhowal (2000). To obtain the system reliability for identical stress-strength model when the 

parameters of the distributions are random variable have been considered by Gogoi and 

Borah (20 II). Studies on warm standby system with imperfect switching in S-S model have 

been considered by Sriwastav (2004). He considered switches and the components following 

dissimilar continuous distributions. Warm standby with imperfect switching in cascade 

model is considered by Gogoi and Borah (2011). Also the problem of system reliability of a 

cold standby system with imperfect switching in discrete S-S model is considered by Gaijar 

and Patel (2010). But we have not come across any comparative study on identical strength 

for a cold and warm standby system with imperfect switching for similar continuous 

distributions. 

The main aim of this chapter is to obtain the system reliability R3 for cold and warm 

standby system with imperfect switching for identical strength and comparing the results for 

both the systems. 

In Section 5.2, mathematical formulations of the models are presented. In Sub­

Sections 5.2.1 and 5.2.2, the reliability of an n -cold and n -warm standby system with 

imperfect switch for identical strength is obtained. In Section 5.3, we have assumed some 

specific distributions to find out the reliability for the stress and strength involved. viz. 

exponential, gamma and normal. To observe the change in the values of reliabilities with 

parameters involved, some numerical values of reliabilities are tabulated in Table 5.1, Table 

5.2 and Table 5.3 (cf. Appendix). Results and discussions are given in Section 5.4. 
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5.2 Mathematical Formulation of the Model 

5.2.1 Mathematical Formulation of n-Cold Standby Model with Imperfect Switching 

for Identical Strength 

Let us consider an n -standby system working under the impact of stresses. Here we 

assume that standbys are cold standbys i.e., they cannot fail till put into operation. Let the 

strength of the n -components are the same say, X. Let YI' Y2 '''''Yn be the set of independent 

random variables representing the stresses on the n components, when they are activated. It 

is further assumed that the switch also works under the impact of stresses. Let U be the 

strength of the switch and V be the stress on it. The switch fails whenever U < V, U and V 

are assumed to be independent random variables. The switch and the components are 

assumed to work independently. Thus X, Y" i = 1,2, ... ,n, U and V are all independent 

random variables. Then the reliability, Rn of the system is given by (2.2.1) where 

R(r), r = 1,2, ... ,n is the marginal reliability due to the r th component. But now 

R(r ~ r = 1,2, ... ,n is given as follows 

R(I) = p[X;::~] (5.2.1) 

(5.2.2) 

(5.2.3) 

Then in general, we have 

(5.2.4) 

Let /(x), g,(y), h(u) and k(v), i=I,2, ... ,n bethep.d.f.'sof X,Y"Uand V respectively. 

Since all the components and the switch are working independently, we have 
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'" 
R{I)= J F{y)gl{y)dy 

R(3) ~ {I F(y )g, (y)dy }{J. H( v)k( v }dv }{J.F(y)g, (y }1y } 

{I H(v)k(v}dv}{IF(y)g, {y}1y} 

Then, 

R(r) ~ {I F(y )g, (y)dy }{ I H(v )k( v}dv }{J. F{y )g, (y)dy } 

{I F{y )g,-, {y)dy }{ I H(v )k( v }dv }{ IF {y)g, {y)dy} 

Chapter 5 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

where F{x) and H{u) are the cumulative distribution functions (c.d.£) of X and U 

x '" 

respectively. i.e., F{x) = J j{x)dx & F{x) = 1- F{x) & H{u) = J h{u)du 
u 

5.2.2 Mathematical Formulation of n-Warm Standby Model with Imperfect 

Switching for Identical Strength 

Let the strength of the n -components are the same say, X. Let Yp Y2 ' ••• 'Yn and 

Z2,Z3, ... ,Zn be the stresses on the nth component when it is active and it is standby 

respectively. Let U be the strength and V be the stress on the switch. The switch fails when 

U < V . We assume that X, y" Z" U and V are all independent random variables. The 
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reliability, Rn of the system is given by the equation (2.2.1). But now R{r), r = 1,2, ... , n is 

given as follows 

R{I) = p[X ~~] 

R(3) = p[X <~, {X:2: Z2'(U ~ V and X < Y2)or X < Z2}] 
{X ~ Z3'(U ~ V and X ~ Y3)} 

Then in general, we have 

X<~,{X~Z2,(U~Vand X<YJorX<Z2} 

() 
{X~Z3,(U:2:Vand X<Y3)or X<ZJ 

Rr=P 
... ,{X ~ ZH;(U:2: V and X < Y,_() or X < Z,_J 

{X ~ Z,,{U ~ V and X ~ Y,)} 

(5.2.9) 

(5.2.10) 

(5.2.11) 

(5.2.12) 

Let f{x), g,{y), wJ{z), h(u) and k{v), i=I,2, ... ,n, j=2,3, ... ,n be the p.d.f's of 

X, y" ZJ' U and V respectively. Since all the components and the switch are working 

independently, we have 

<0 

R(I) = f F{y)g ( (y }dy (5.2.13) 
-<0 

co C() co «:l 

R(2)= f F{y)g((y}iy f F2 (z)w2 (z}dz f H(v)k(v}dv J F{y)g2{y)dy (5.2.14) 
-<0 -0) 

R(3) = {IF{y )g, {y}dy HIF, (z )w, (z}dz I H(v )k(v}dv IF{Y )g,{y)dy + IF, (z)w, (z)dz} 

{IF'(Z)w,(z}dz I H(v)k(v}dv IF{y)g,{Y}dy} 

(5.2.15) 
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Then, 

R(r)= {IF(y)g, (y)dyHIF'(Z}w,(z}dz I H(v}«v}dv IF(y)g,(y)dy+ IF,(z}w,(z}dz} 

{IF, (z}w, (z}dz I H( v )« v }dv IF(y )g, (y )dy + IF, (z }w, (z}dz } .. 

{IF, (z}w,(z}dz I H(v}k(v}dv IF(y)g,(y)dy} where, r = 1.2 •... ," 

(5.2.16) 

Here F{x) and H{u) are the c.d.£'s of X and U respectively. 

5.3 Reliability for Specific Distributions 

5.3.1 Exponential Stress-Strength: Cold Standby for Identical Strength 

Let j{x), g, (y), h{u) and k{v), i = 1,2, ... ,n be all exponential densities with means 

1 1 1 1 . 
-8' -, , and - respectively, i = 1,2, ... ,n i.e., 

a, /l, 11. 

f(x) = {8e-~, x ~ 0, 8 ~ ° 
0, otherwise 

g, (y) = {::e-.,'" y, ~ 0, a, ~ ° 
otherwise 

h(u) = { A.e -'" , u ~ 0, A ~ ° 
0, otherwise 

k(v) = {,ue-"', v ~ 0, 11. ~ ° 
0, otherwise 

If A is a positive integer then, 
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From, (5.2.5) we get, 

R(I) = 1 F(y )gl (y)a'y = 1 e~lale-aIYldYl = e :la 
-~ 0 1 

From, (5.2.6) we get, 

A 
where p =-

f.l 

R(2) = {IF(y )g, (y}dy HI H(v }!c(v}dv }{IF(y )g, (y}dy} 

= [! (I - e-'" }x,e-'" dy, I! e-" }JP' dv I! e-'"' a,e-'" dy, ] 

e 1 a 2 = 
a 1 +el+pa2 +e 

From, (5.2.7) we get, 

= e f.l e f.l a 3 

a 1 + e f.l + A a 2 + e f.l + A a3 + e 

Then the system reliability R3 is given by the equation (2.2.1). 

5.3.2 Exponential Stress-Strength: Warm Standby for Identical Strength 

Chapter 5 

Let f(x), g,(y), w)(z1 h(u) and k(v1 i = 1,2, ... ,n, j = 2,3, ... ,n be all exponential 

d ···h 1 1 lId 1 . I ensltles Wit means -, -, -, - an - respective y. 
e a, (3) A f.l 
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Now, 

/(¥ {ee-~, x;:: 0, () ;:: ° 
0, otherwise 

g,{y}= {~:e-"'" y, ;::0, a,;::O 

otherwise 

w (z) = {p,e -P,', , z, ;:: 0, f3} ;:: ° 
} ° otherwise , 

h(u} = {"e-'" u;:: 0, Il;:: ° 
0, otherwise 

k(v} = {pe-'" v;:: 0, JI. ;:: ° 
0, otherwise 

From (5.2.13), (5.2.14) and (5.2.15) we get 

a) Cf') a) C(l 

R(2)= f F{y)gl(y)iy f F2{Z}w2{Z}dZ f H{v)k{v}dv f F{y)g2{y}dy 
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Similarly, 

Then the system reliability R3 is given by the equation (2.2.1). 

5.3.3 Gamma Stress-Strength: Cold Standby for Identical Strength 

Let f{x), g,(y), h{u) and k{v), i = 1,2, ... ,n be all gamma densities with shape 

parameters e,a"A and j.J. respectively and scale parameters equal to unity. 

Then, 

{

I -x 6-1 -e x 
j{x)= Ie ' 

0, 

x:?: 0, e:?: 1 

otherwise 

g, (y) = {1~' e-
Y

' y,a,-I, 

0, 

y, :?: 0, a,:?: 1 

otherwise 

{

I -u ).-1 > ° 1 1 h{u) = 1 A e u , u - , I\,:?: 

0, otherwise 

() 
{

_I_e-vvl'-l, v:?: 0, j.J.:?: 1 
k v = Ij.J. 

0, otherwise 
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From, (5.2.5) we get, 

R{l) = IF{y)g,{Y}dy = HI /(x}dx ]g,{Y}dy 

_ U,S[su, 1 -x O-Idx] 1 -y, a,-I - -e x -e y 
o y re ral I 
0-1 r(e+al -i-I) 

= ~ral(e-i-l).2o+a'-'-1 
= R(e,aJ, say 

From, (5.2.6) we get, 

R{ 2) = {I F{y)g, {y }dy HI H{ v}ic{ v}dv HI F{y )g, {y}1y } 

-(1-~ r(e+al -i-I) )(~ r(e+a2 -i-I) )(~ r(A+,u-i-l) ) 
- ~ral(e-i-l).2o+a,-'-1 ~ra2(e-i-l).2o+al-'-1 ~r,u(A-i-l)!2;'+JI-'-1 

= R(e,aJR(e,a2)R(A,,u) 

Similarly from, (5.2.7) we get, 

R(3) = {IF{y)g, {y }dy }{ 1. H{ v }ic{ v }dv HI F{y)g, {y }1y HI H{v )k{ v}dv HI F{y)g, {y)dy } 

= R(e,al)R(e,a2)R(e,a3 )[R(A,,u)]2 

Then the system reliability R3 is given by the equation (2.2.1). 

5.3.4 Gamma Stress-Strength: Warm Standby for Identical Strength 

Let /(x), g,(y), wJ(z), h(u) and k(v), i=I,2, ... ,n, j=2,3, ... ,n be all gamma 

densities with shape parameters e,a,,{3J,A and ,u respectively and scale parameters equal to 

unity. 
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Then, 

{

I -x /1-1 ° 8 1 f{x) = r 8 ex, x ~, ~ 

0, otherwise 

g,(y)={r~, e-Y'y,U,-I, y, ~o, a, ~1 
0, otherwise 

{

I -u A-I 
h{u) = rAe u , u ~ 0, A ~ 1 

0, otherwise 

() 
{

_I e-vv p - I , v ~ 0, 11 ~ 1 
k v = rl1 

0, otherwise 

From (5.2.13), (5.2.14) and (5.2.15) we get 

() oofF(y) I .. \A ~ r{8+al -i-I) R(8) 
R 1 = _00 glV'JUY= ~ral(8-i-l).2o+al-i-l = ,aI' say 
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Similarly, 

Then the system reliability R3 is given by the equation (2.2.1). 

5.3.5 Normal Stress-Strength: Cold Standby for Identical Strength 

Let j{xt g,(y), h{u) and k{v) be N{8,a), N{a,;r,), N{..1.,u) and N{f.l,p) 

respectively, i = 1,2, ... ,n. Let us define Z = U - V> 0 and Z, = X - 1', > O. Then the 

rand<;>m variables Z and Z, are normally distributed with mean (A - f.l) and (8 - a,) and 

standard deviations ~U2 + p2 and ~a2 + ,,2 respectively, i = 1,2, ... ,n . 

Then from (5.2.5) we get, 

Then from (5.2.6) we get, 

1 "'s _~/,2 Z - (8 - a ) = __ e 2 dt where t = 1 1 
~ 1 1 ~ 2 2 v2n _ 8-a, (j +'1 

Ja2
+Tll 

= 1 ~+ J:~:~: ) 
=<DU~:~" ) 
= <fJ(AI)' say 

R(2) = {I F(y)g, (y)dy HI H( v)k( v )<tv }{ IF(y)g, (y )dy } 

= P(ZI < O)p(Z ~ 0)P(Z2 ~ 0) 
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Now as above, P(Z ~ 0) = <1>(~ A - Ii J = <1>(Sw), say 
u2 + p2 

Then, 

Similarly from (5.2.7) we get, 

Chapter 5 

R(3) = {IF(y)g, (y}iy HI H(v }!c(v}dv }{IF(y )g, (y}dy HI H(v }!c(v}dv HIF(Y )g, (y}dy} 

= <1>(AI }r>(A2 }r>(A3 )[<1>(SJ]2 

Then the system reliability R3 is given by the equation (2.2.1). 

5.3.6 Normal Stress-Strength: Warm Standby for Identical Strength 

Let f(x), g,(y), wJ{z) be N{e,u), N(a,,'r,) and N{jJJ,rJ respectively, 

i = 1,2, ... ,n; j = 2,3, ... ,n and h(u) and k(v) be N(A,U) and N(Ii,P) respectively. Let 

us define Z=U-V>O and Z, =X-Y, >0; i=I,2, ... ,n, T
J 
=X-Z

J
; j=2,3, ... ,n are 

normally distributed with mean (A - Ii ~ (e - a, ~ (e - f3J and standard deviations 

Then from (5.2.13), (5.2.14) and (5.2.15) we get 

R(I)= JF(y)gl(Y)dy=P(ZI ~0)=<1>[ e~al2J 
-00 ~u +"1 

= <1>{AJ, say 
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R(2) ~ {IF(y )g, (y )dy}{ IF, (z}w, (z ~ HI H(v )k(v)dv}{ IF(y)g, (y}dy} 

= p(z, < 0)P(T2 ~ o)p(z ~ 0)P(Z2 ~ 0) 

Now, P(Z ~ 0) = <l>[~ A - Jl ) = <l>(Sw), say 
u2 + p2 

Then, 

Similarly, 

Chapter 5 

R(3)~ {IF(y)g,(Y}dyHIF'(Z}w, (z}dz I H(v)k(v}1v IF(y)g,(y}1y + IF, (z)w, (¥} 
{I;,(z}w,(z~ I H(v)k(v}dv IF(y)g,(y)dy} 

= p(z, < 0 )[P(T2 ~ 0 )p(z ~ 0 )P(Z2 < 0)+ P(T2 < 0 )][P(T3 ~ 0 )p(z ~ 0 )P(Z3 ~ 0)] 

Then the system reliability R3 is given by the equation (2.2.1). 
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5.4 Results and Discussions 

For a few values of the parameters invo Ived in the expressions of R{r 1 r = 1,2,3 we 

evaluate R{11 R(2), R(3) and R3 for different distributions from their expressions obtained 

in the last section. 

From the Table 5.1 (cf. Appendix), it is observed that if the strength parameter () 

increases then reliability R3 decreases. When the stress parameter a l increases R{I) also 

increases. The value of marginal reliability R{I) becomes 0.7500, 0.6000, 0.5000, 0.4286 

and 0.3750 respectively for () =.1,.2,.3,.4.5. It can be noted from the Table 5.1 (cf. Appendix) 

that values of R{I) remains same for both cold and warm standby systems. In case of cold 

standby system, R(2) and R(3) become 0.0694 and 0.0053 respectively for a 2 = a3 = 1.1 . 

Similarly, when a 2 = a3 = 1.3 then R(2) and R(3) become 0.0603 and 0.0039 respectively. 

But in case of warm standby system, R(2) and R(3) become 0.0347 and 0.0187 respectively 

when a 2 = a3 = l.l. Similarly for a 2 = a3 = l.3, R(2) and R(3) become 0.0301 and 0.0161 

respectively. It is also observed that the parameters f32 , f33 in case of exponential 

distribution, are seems to be very sensitive for warm standby system. Hence, in case of warm 

standby system, the system reliability becomes smaller than that of cold standby system. 

From the Table 5.2 (cf. Appendix), it is clear that the system reliability increases as 

the values of corresponding () increases. In case of cold standby system, the system 

reliability R3 becomes 0.6563, 0.8555, 0.9331, 0.9677, 0.9841 and 0.9921 respectively for 

() = 1 ,2,3,4,5,6. But in case of warm standby system, the system reliability R3 becomes 

0.6016, 0.8445, 0.9314, 0.9675, 0.9841 and 0.9921 respectively for ()=1,2,3,4,5,6. The 

marginal reliability R{I) remains same for both cold and warm stan.dby systems. In case of 

gamma distribution, the parameters f32 , f33 are seems to be very sensitive for warm standby 

system. Hence, the values of the system reliability in case of warm standby system become 

smaller than that of cold standby system. 
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From the Table 5.3 (cf. Appendix), it is observed that when the strength parameter f) 

increases system reliability R) also increases but when (J increases the system reliability 

R3 decreases. For example, in case of cold standby system the system reliability R3 becomes 

0.8998, 0.9561, 0.9816, 0.9929, 0.9976 and 0.9993 respectively for f)=1,2,3,4,5,6. But RJ 

becomes 0.8998, 0.7965 and 0.7528 respectively for (J =1,2,3. Again in case of warm 

standby system, the system reliability RJ becomes 0.7925, 0.8682, 0.9256, 0.9661, 0.9877 

and 0.9964 respectively for f) =1,2,3,4,5,6. But RJ becomes 0.7925, 0.7106, 0.6767 for 

(J = 1 ,2,3. When the stress parameters '. '2 and 'J increase there are significant decreases 

in the values of R(I) with increasing v and p. Similarly, in case of normal distribution the 

stress parameters r2 and rJ are seemed to be very sensitive due to which the values of the 

system reliabilities of warm standby system becomes smaller than that of cold standby 

system. 

****** 
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Chapter 6 

Identical Stress for Warm and Cold Standby System 
with Imperfect Switch: A Comparative Study 

6.1 Introduction 

As mentioned in chapter 1 and Chapter 5 switching mechanisms are required in 

standby redundant systems. Also warm and cold standby systems are discussed earlier. In the 

previous chapter, we have discussed a comparative study between cold and warm standby 

system with imperfect switching for identical strength. But in this chapter we have discussed 

a comparative study between cold and warm standby system with imperfect switching for 

identical stress considering exponential, gamma and normal distributions. Some of the results 

of this chapter have been accepted for publication in IAPQRjournal. 

This chapter is organized as follows: In Section 6.2, the general mathematical models 

are developed. In Sub-Section 6.2.1 reliability of n -cold standby system with imperfect 

switch for identical stress is obtained and in Sub-Section 6.2.2 reliability of n -warm standby 

system with imperfect switch for identical stress is obtained. In Section 6.3, marginal 

reliability expressions, R(I), R(2) and R(3) are obtained when stress-strength of the 

components and that of the switch follow particular distributions. In Sub-Sections 6.3.1 and 

6.3.2, stress-strength distribution for the components and the switch are taken as exponential, 

in Sub-Sections 6.3.3 and 6.3.4, stress-strength distribution for the components and the 

switch involved are gamma and in Sub-Sections 6.3.5 and 6.3.6, stress-strength and the 

switch involved are normal with identical stress for cold and warm standbys and the marginal 

reliability expressions' R(l), R(2) and R(3) are obtained. Also the system reliability R3 is 

obtained for all the cases. To testing the validity of the derived model system reliabilities has 

been estimated with various parameters involved in the system and is also presented in 

tabular forms in the Table 6.1, Table 6.2 and Table 6.3 (cf. Appendix). To make the things 
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clear, a few graphs are plotted for each case in Section 6.4 for selected values of the 

parameters. Results and discussions are devoted to Section 6.5. 

6.2 Mathematical Formulation of the Model 

6.2.1 Mathematical Formulation of n-Cold Standby Model with Imperfect Switching 

for Identical Stresses 

Let XPX2, ... ,Xn be the strengths of the n-components in order of activation and let 

Y. = Y2 = ... = Yn = Y be the stress on them. Now to activate the standby components there is 

a switch when strength and stress U and V respectively. The switch fails when U < V. All 

the components and the switch are working independently i.e., X" Y, U and Vare all 

independent random variables{i= 1,2, ... ,n). The system reliability Rn is given by (2.2.1) 

where R{r), r = 1,2, ... ,n is the marginal reliability due to the r th component. But now, R{r), 

r = 1,2, ... ,n is given as follows 

(6.2.1) 

(6.2.2) 

(6.2.3) 

Then in general, we have 

R{r) = P[X. < Y,U ~ V and X 2 < Y, .. .u ~ V and X,_. < Y,U ~ V and X, ~ Y] 

(6.2.4) 

Let /,(x), g(Y1 h{u) and k{v) denote the p.d.f.'s of X" Y, Uand V respectively. Then we 

have, 

'" 
R{I)= J F.(y)g(y)dy (6.2.5) 
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R(3) = {IF, (y )g(y}1y HI H(v )k(v)1v}{ IF, (y )g(y)1y} 

{I H(v)k(v)dvHIF,(y)g(yJay} 

Then, 

R(r) = {IF, (y )g(y Jay }{ I H( v)k( v )dv }{ IF, (y )g(y }1y } ... 

{IF,_, (y )g(y Jay}{ I H(v)k(v)dv}{ IF, (y )g(y Jay} 

Chapter 6 

(6.2.6) 

(6.2.7) 

(6.2.8) 

Substituting the values of R{r), r = 1,2, ... , n in the expression (2.2.1) we can get the system 

reliability Rn' 

6.2.2 Mathematical Formulation of n-Warm Standby Model with Imperfect 

Switching for Identical Stresses 

Let us consider that all the components are working under the same stresses, under 

the same environment. Then we can take all the Y, 's to be i.i.d. Let us consider an n -standby 

system working under the impact of stresses. Initially there is one active component and 

(n-l) warm standby components. Let X"X2"",Xn be the strengths of the n-components 

in order of activation. Let Y1 = Y2 = '" = Yn = Y be the stresses on these n -components, 

respectively, when in operation. The (n -1) components as warm standbys face (n -1) 

stresses viz. Z2,Z3, ... ,Zn respectively. Let U and V be the strength and stress of the switch 

respectively. The switch fails when U < V. 
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All the components and the switch are working independently i.e., X,, Y, Z)' U and 

V are all independent random variables (i = 1,2, ... ,n; j = 2,3, ... ,n). Now the i th active 

component fails if X, < ~ and the j th standby component fails if X) < Z)' The system fails 

when all the compone~ts have failed, either in operation or as standbys. The reliability of the 

system is given by (2.2.1). But now, R(r ~ r = 1,2, ... ,n is given as follows 

R(3) = p[X1(Y,{X2 ;?: Z2'(U;?: V and X 2(y)or X 2(Z2}] 
{X3 ;?: Z3'(U;?: V and X3 ;?: Y)} 

Then in general, we have 

X 1(Y,{X2 ;?:Z2,(U;?:Vand X 2(Y)orX2(Z2} 

( ) 
{X3 ;?: Z3'(U;?: V and X 3(Y) or X 3(Z3}' 

Rr=P 
",,{X'_l ;?: Z,_p(U;?: V and X,_I(Y) or X,_I(Z,_I} 

{X; ;?: Z,,(U;?: V and X, ;?: Y)} 

(6.2.9) 

(6.2.10) 

(6.2.11) 

(6.2.12) 

Let /,(x), g(y), w)(z), h(u) and k(v), i = 1,2, ... ,n; j = 2,3, ... ,n be the p.d.f's of 

X,, Y, Z)' U and V respectively. Since all the components and the switch work 

independently, we have 

'" 
R(I) = J Fl (y )g(y )dy (6.2.13) 

00 co 00 co 

R(2) = J Fl (y )g(y}1y J F2 (z )w2 (z}tz J H(v )k(v}tv J F2 (y )g(y )dy (6.2.14) 

-'" 
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R(3) = {IF, (y )g(y }dy }{IF, (z )w, (z }dz I H (v)k( v}dv IF, (y )g(y }dy + IF, (z)w, (z}dz } 

{Jyz)w,(z}dz I H(v)k(v}dv 1.F,(y)g(y}dy} 

(6.2.15) 

Then, 

R{r) = {IF, (y )g(y}dy }{IF, (z)w, (z}dz 1. H( v)k( v }dv 1. F, (y )g(y}dy + IF, (z )w, (z}dz } 

{IF, (z)w, (z}dz I H(v )k(v}dv IF, (y )g(y}dy + IF, (z)w, (z)dz}. 

{IF,(Z}w,(z}dz I H(v)k(v}dv IF, (y)g(y}dy} where, r = 1,2, ... ,n 

(6.2.16) 

Substituting the values of R{r1 r = 1,2, ... ,n in the expression (2.2.1) we can get the system 

reliability R". 

6.3 Reliability for Specific Distributions 

6.3.1 Exponential Stress-Strength: Cold Standby for Identical Stress 

Let 1, (x 1 g{y), h{u) and k{v 1 i = 1,2, ... ,n be all exponential densities with means 

111 d l . I. -, -, - an - respectIve y, I.e., 
8, a A J.1. 

g(y) = {ae-ay

, 

0, 

x, ~ 0, 8, ~ ° 
otherwise 

y~ 0, a ~ ° 
otherwise 
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k{v) = {J1£-JiV, 
0, 

u ~ 0, A ~ ° 
otherwise 

v ~ 0, J1. ~ ° 
otherwise 

If A is a positive integer then, 

A 
where p =-

J1. 
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From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R{lt R(2) and R(3) may be obtained 

as 

(6.3.1) 

R(2) = {IF, {y )g{y)dy HI H(v )k(v)<tv HIF, {y )g{y)dy} 

= [[(1- e~' p,e-"'dy, II e-" j1£-'" dv II e-~"ae-<rhdy, 1 
(}I 1 a 

=------

(6.3.2) 

(6.3.3) 
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Then the system reliability R3 may be obtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R{lt R(2) and R(3) as given in (6.3.1), (6.3.2) and (6.3.3). 

6.3.2 Exponential Stress-Strength: Warm Standby for Identical Stress 

Let /,(x), g(y), w){z), h{u) and k{v), i=I,2, ... ,n; j=2,3, ... ,n be all exponential 

d ···h 1 1 lid 1 . I ensltIes Wit means -, -, -, - an - respective y. 

Now, 

g(y) = {ae-ay , 
0, 

h{u) = {k-W

, 

0, 

k{v) = {f.1.e-
JlV

, 

0, 

8, a p) A f.1. 

x, ~ 0, 8, ~ ° 
otherwise 

y ~ 0, a ~ ° 
otherwise 

z, ~ 0, p) ~ ° 
otherwise 

u ~ 0, A ~ ° 
otherwise 

v ~ 0, f.1. ~ ° 
otherwise 

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R(I} R(2) and R(3) may be 

obtained as 

R{I)=_a_ 
a +81 

(6.3.4) 
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(6.3.5) 

(6.3.6) 

Then the system reliability R3 may be obtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R{11 R(2) and R(3) as given in (6.3.4), (6.3.5) and (6.3.6). 

6.3.3 Gamma Stress-Strength: Cold Standby for Identical Stress 

Let 1, (x), g{y), h{u) and k{v), be all gamma densities with scale parameters equal to 

unity and degrees of freedom 8"a,A and f..l respectively, i = 1,2, ... ,n i.e., 

Then, 

- {I _y a-I -e y 
g,(y)= fa ' 

0, 

I {I -u A-I -e u 
h{u)= fA ' 

0, 

{

I -v 1'-1 -e v 
k{v)= ff..l ' 

0, 

x, ~ 0, 8, ~ 1 

otherwise 

y ~ 0, a ~ 1 

otherwise 

U ~ 0, A ~ 1 

otherwise 

v ~ 0, f..l ~ 1 

otherwise 
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From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R{I~ R(2) and R(3) may be obtained 

as 

OX) 

R{I)= f FI{y)g{y)a'y = R{epa) (6.3.7) 

R(2) = {l F, {y )g{y ~ }{ J.s( v}k( v jdv HI F, {y )g{y jdy} 

-(1-~ r{el +a-i-l) J(~ r{e2 +a-i-l) J(~ r{A.+,u-i-l) J - b ra{e
l 

- i _1).2 81 +a-,-1 b ra{e
2 

- i _1)2 82+a-,-1 :0- r,u{A. - i _1).2"+1'-'-1 

= R(ep a)R(e2 ,a)R(A.,,u) 

(6.3.8) 

(6.3.9) 

Then the system reliability R3 ,may be qbtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R(I~ R(2) and R(3) as given in (6.3.7), (6.3.8) and (6.3.9). 

6.3.4 Gamma Stress-Strength: Warm Standby for Identical Stress 

Let J,{x), g(y), wj{z}, h{u) and k{v), i=I,2, ... ,n; }=2,3, ... ,n be all gamma 

densities with shape parameters e(> a, f3
j

, A. and ,u respectively and scale parameters equal 

to unity. Then, 

() 
{

_I_e-x, x 8,-1, x,;?: 0, e, ;?: 1 
J, x = re, , 

0, otherwise 

g(y} = {/a e-Yya-I, y;?: 0, a;?: 1 

0, otherwise 

76 



Chapter 6 

{

I -u A-lOA. 1 
h(u) = r A. e u , u ~, ~ 

0, otherwise 

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R(l), R(2) and R(3) may be 

obtained as 

(6.3.10) 

(6.3.11) 

(6.3.12) 

h R(e ) (}L,-a r(e\ + a - i-I) 
were a = 

'1> r (e _ . -1"2()' +a-I-I ' 
1=0 a I I } 

(), -a r(e '. 1) R(e a) - " 2 + a - I -
2' - ~ r (e _. -1"2()' +a-I-I' 

1=0 a 2 I } 
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R(e a)- o~a r(e3 +a-i-l) 
3' - L..- r (e _ . -1"2°, +a-,-l 

,=0 a 3 I } 

R(e ~) _ ~l r(e2 + .82 - i -1) 
2,jJ2 - L..- r (e _ '_I)'20z+a-,-I' 

,=0 a 2 I . 

R A _ ).-\ r(A + ,u - i-I) 
( ,,u) - ~ r ,u(A - i _1)12).+11-'-\ 

Then the system reliability R3 may be obtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R(I), R(2) and R(3) as given in (6.3.10), (6.3.11) and (6.3.12). 

6.3.5 Normal Stress-Strength: Cold Standby for Identical Stress 

Let J,(x1 g(y), h(u) and k(v) be N(e"u,), N(a,.), N(A,V) and N(,u,p) 

respectively, i = 1,2, ... ,n. Let us define Z = U - V> 0 and Z, = X, - Y > O. Then the 

random variables Z and Z, are normally distributed with mean (A - ,u) and (e, - a) and 

standard deviations ~V2 + p2 and ~U,2 +.2 respectively, i = 1,2, ... ,n. 

From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R(I), R(2) and R(3) may be obtained 

as 
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~ I-{ J;~-+:' J 

~ $[ J;,'-+:' J 
= <1>(A1), say 

R(2) ~ {l F(y)g, (y)dy }{J. H( v)k( v }tv }{ I F(y )g, (y jay} 

= P(ZI < o)p(z ~ 0)P(Z2 ~ 0) 

Now as above, P(Z ~ 0) = <1>(~ }., - f.l ) = <1>(Sw)' say 
v2 + p2 

Then, 

Chapter 6 

(6.3.13) 

(6.3.14) 

R(3) ~ {l F(y)g, (y jay }{ I H( v}k( v}tv }{J. F (y)g, (y)dy }{J. H (v )k( v}tv }{ I F(y )g, (y)dy} 

= <1> (A 1 }D(A2 }D(A3 )[<1>(sJ12 
(6.3.15) 
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Then the system reliability RJ may be obtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R{l), R(2) and R(3) as given in (6.3.13), (6.3.14) and (6.3.15). 

6.3.6 Normal Stress-Strength: Warm Standby for Identical Stress 

Let /,(x~ g(y), w,{z)be N{e,,(J,~ N{a,r) and N{j3"yJ respectively, 

i = 1,2, ... ,n; j = 2,3, ... ,n and h{u) and k{v) be N{A,U) and N{/J,p) respectively. Let 

us defme Z=U-V>O and Z, =X,-Y>O; i=1,2, ... ,n, T, =X,-Z,; j=2,3, ... ,n are 

normally distributed with mean (A - /J), (e, - a) and (e, - f3,) and standard deviations 

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R{l~ R(2) and R(3) may be 

obtained as 

R(2) ~ {IF, {y )g{y}dy }{ IF, (z}w, (z}dz HI H(v)k( v}Iv HI F, {y )g{y}dy } 

= p{z( < 0)P{T2 ~ o)p{z ~ 0)P{Z2 ~ 0) 
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Then, 

(6.3.17) 

R(3) = {Ir;(y)g(Y}1y}{IF,(z)w,(z}1z I H(v)k(v}1v IF, (y)g(y}1y + IF,(z)w,(z}1z} 

{IF'(z)w,(z}!z I H(v)k(v}iv IF,(y)g(y}1y} 

=P(ZI <O)[P(T2 ~o)p(Z~O)P(Z2 <O)+P(T2 <o)llp(T3 ~o)p(Z~O)P(Z3 ~o)] 

= <I>(All<I>(B2 )<I>(s", )<I>(A2 )+ <I>(B2 )l<I>(B3 )<I>(sw )<I>(A3)] 

(6.3.18) 

Then the system reliability R3 may be obtained from the equation (2.2.1) in terms of the 

above marginal reliabilities R(11 R(2) and R(3) as given in (6.3.16), (6.3.17) and (6.3.18). 

6.4 Graphical Representations 

To make the things clear, graphs of R3 are drawn in Fig. 6.1(a)-6.1(b), Fig. 6.2(a)-

6.2(b), Fig. 6.3(a)-6.3(b) for selected values of the parameters for cold and warm standby 

systems in case of exponential, gamma and normal distributions. In Fig. 6.1(a)-6.1(b), Fig. 

6.2(a)-6.2(b), Fig. 6.3(a)-6.3(b) show the graphs of R3 , taking the stress parameter a along 

the horizontal axis and the corresponding reliabilities along the vertical axis graphs are 

plotted for different parametric values. From these graphs one can read directly the values of 

reliabilities R3 for intermediate values of a. From Fig. 6.1(a) and Fig. 6.1(b), it is seen that 

reliabilities are increasing with increasing the stress parameter in case of exponential 

distribution. Again from Fig. 6.2(a)-6.2(b), Fig. 6.3(a)-6.3(b), reliabilities are decreasing 

with increasing a in case of gamma and normal distributions. These graphs show that values 

of the system reliability become smaller in case of warm standby system than that of cold 

standby system for exponential, gamma and normal distributions. 
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6.5 Results and Discussions 

For a few values of the parameters involved in the expressions of R(r1 r = 1,2,3 we 

evaluate R(I), R(21 R(3) and R3 for different distributions from their expressions are 

obtained. 

From the Table 6.1 (C£ Appendix), here we observe that if mean stress a increases 

system reliability also increases. For example, if a = I, 2, 3, 4, 5, 6, 7, 8, 9 then the system 

reliability R3 becomes 0.9904, 0.9954, 0.9970, 0.9977, 0.9982, 0.9985, 0.9987, 0.9989, 

0.9990 respectively in case of cold standby system. Again in case of warm standby system if 

a = I, 2, 3, 4, 5, 6, 7, 8, 9 then we have the reliability (~) values are 0.9670, 0.9837, 

0.9892, 0.9920, 0.9936, 0.9947, 0.9954, 0.9960 and 0.9964 respectively. If ()l increases the 

corresponding R(I) decreases. The value of marginal reliability R(I) becomes 0.9091, 

0.8333, 0.7692 respectively for ()l = .1,.2,.3. The marginal reliability R(I) remains same for 

both cold and warm standby system. In case of cold standby system, if ()l = ()2 =.1 then R(I) 

and R(2) become .0751 and 0.0062 respectively. But in case of warm standby system, R(2) 

and R(3) become 0.0376 and 0.0203 for ()2 = ()3 =.1. Further it is clear that the parameters 

f32 , f33 in case of exponential distribution are seems to be very sensitive for warm standby 

system. Hence the values of the system reliability in case of warm standby system become 

smaller than that of cold standby system. 

From the Table 6.2 (cf. Appendix), it is seen that if the stress parameter a increases 

then the system reliability R3 decreases. In case of cold standby system the values of R3 

becomes 0.9677, 0.8958, 0.7884, 0.6563, 0.5158, 0.3840, 0.2725 respectively for 

a = 1,2,3,4,5,6,7. Again in case of warm standby system the value of the system reliability 

becomes 0.9675, 0.8947, 0.7856, 0.6520, 0.5108, 0.3793, 0.2687 respectively for 

a = 1,2,3,4,5,6,7. When the strength parameter ()l increases then the marginal reliability 

R(I) increases for both cold and warm standby system. For example, when ()l = 4, 5, 6 then 

R(l) becomes 0.9375, 0.9688 and 0.9844 respectively. Here also noted that R(I) remains 
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same for both the systems. When the strength and stress parameter It and J1. of the switch 

increases then also the reliability R3 increases. In case of cold standby system, for 

It = 3, 4, 5 and J1. = 3, 4, 5 the reliability values are 0.8958, 0.9420, 0.9677 respectively. 

Again in case of warm standby system when the mean strength of the switch It = 3, 4, 5 and 

mean stress of the switch J1. = 3,4,5 then R3 becomes 0.8947,0.9418,0.9677 respectively. 

In case of gamma distribution, f32 , f33 are seems to be very sensitive for warm standby 

system. Here also the values of the system reliability become smaller in case of warm 

standby system than that of cold standby system. 

From the tabulated values of Table 6.3 (cf. Appendix), we observe that when the 

mean stress a increases then the values of the system reliability R3 decreases. For instance, 

in case of cold standby system a = 0, 1, 2, 3 the reliability values R3 become 0.9789, 

0.8989,0.7623 and 0.5857 respectively. Again in case of warm standby system R3 becomes 

0.9028, 0.8104, 0.6606, 0.4770 respectively for a = 0, 1, 2, 3. On the other hand, R(I) 

decreases with the increase of standard deviation 0'1' It is seen that the marginal reliability 

R(I) remains same for both cold and warm standby system. The increase in the strength (v) 

and stress (p) parameter of the switch also decreases the system reliability. For example, in 

case of cold standby system, when v = 2, R3 = 0.9789 and when v = 4, R3 = 0.8878. For 

p = 2, 4, 6 the system reliability R3 becomes 0.9789, 0.8878 and 0.8275 respectively. Again 

in case of warm standby system R3 = 0.9028 for v = 2 and R3 = 0.8196 for v = 4. For 

p = 2,4,6 the system reliability R3 becomes 0.9028, 0.8196 and 0.7632 respectively. In 

case of normal distribution, we observe that the parameters Y2' Y3 are s~ems to be very 

sensitive for warm standby system. Hence the values of the system reliability of warm 

standby system become smaller than that of cold standby system. 

****** 

85 



Chapter 7 

Stress-Strength Model with Standby 
Redundancy and Cascade Redundancy 



Chapter 7 

Stress-Strength Model with Standby Redundancy 
,and Cascade Redundancy 

7.1 Introduction 

Increase in the complexity of jobs performed increases the complexity of the devices 

(eg. Computer, Satellite, Plans, Missiles etc.) which increases the number of essential 

components in it. An increase in the number of essential components (i.e., components in 

series) decreases the reliability but the importance of jobs carried out by such complex 

devices requires that they should be highly reliable. So, the problem of increasing the 

reliability of a device is a real problem. 

The strength of a component [Raghavachar, Kesava Rao and Pandit (1983), Rekha, 

and Shyam Sunder (1997), Shooman (1968)] can obviously be defined as the minimum stress 

required causing the component (or system) failure by considering the situation where a 

component works under the impact of stresses. If the stress equals or exceeds the strength of 

the component, it fails; otherwise it works. In practical situations, the magnitude of the stress 

is random, with considerable variations. 

By cascade redundancy (Pandit and Sriwastav, 1975) we mean a standby redundancy 

where a standby component taking the place of a failed component is subjected to a modified 

value of the preceding stress. We assume that this modified value of stress is equal to 'k' 

times the stress on the preceding (failed) component. Here' k' is called attenuation factor 

which is generally assumed to be a constant for all the components or a parameter having 

different fixed values for different components (Pandit and Sriwastav, 1975). But an 

attenuation factor may be a random variable also (Pandit and Sriwastav, 1978). Here we shall 
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assume that k is a constant through it may be changing from component to component or 

even it may be a random variable (Gogoi and Borah, 2012). 

Here we have assumed that stress-strength of all the components in the system are 

independent. Sriwastav and Kakati (1981) have assumed that the components stress-strengths 

are similarly distributed. But in general the stress distributions will be different from the 

strength distributions not only in parameter values but also in forms since stresses are 

independent of strengths and the two are governed by different physical conditions. They 

have considered a cascade system with dissimilar distributions of X's and f's but not for 

stress-strength model. So in this chapter we have considered stress-strength model for 

dissimilar continuous distributions. 

This chapter is organized as follows: Section 7.2 is devoted for mathematical models. 

In Sub-Section 7.2.1 and 7.2.2, an n -standby and an n -cascade system, respectively, are 

considered. In Section 7.3, we have assumed different particular forms of density functioris 

for the stress-strength components and the system reliability is obtained. We have considered 

in Sub-Section 7.3.1, strength follows one-parameter exponential distribution and stress 

follows two-parameter exponential distribution, in Sub-Section 7.3.2, strength follows one­

parameter exponential distribution and stress follows two-parameter gamma distribution, in 

Sub-Section 7.3.3, strength is Lindley and stress is one-parameter gamma distribution and in 

Sub-Section 7.3.4, strength is Lindley and stress is two-parameter gamma distribution. For all 

the cases we have obtained the general expressions of reliability for an n -standby system. In 

Sub-Section 7.3.5, the general expressions of reliability for n -cascade system are obtained 

when the strength follows one-parameter exponential distribution and stress follows two­

parameter gamma distribution. In Sub-Section 7.3.5.A, a special case is considered when 

X, 's are one-parameter i.i.d exponential strength with parameter A and stress follows two-

parameter gamma distribution and the system reliability Rn for n -cascade system is 

obtained. In Sub-Section 7.3.6, reliability expressions of 3-cascade system is obtained when 

the strength follows one-parameter exponential distribution and stress of the components 

follows Lindley distributions. The reliability expressions are not simple enough to reflect the 
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changes in reliability of different systems with change in parameters. To observe the change 

in the values of reliabilities with different parameters involved some numerical values of 

reliabilities are tabulated in Table 7.1 and Table 7.7 (cf Appendix). In Section 7.4 some 

graphs are plotted for selected values of the parameters to facilitate the direct reading of 

reliability. Section 7.5 deals with the results and discussions. 

7.2 Mathematical Formulation of the Model 

7.2.1 An n-Standby System 

Consider an n -standby system i.e:, in an n -standby system, initially there are n­

components, out of which only one is working under impact of stresses and the remaining 

(n -1) are standbys. Whenever the working component fails one from standbys takes its 

place and is subjected to impact of stresses and the system works. The system fails when all 

the components fail. For a detailed description of such a system one may refer to Gogoi, 

Borah and Sriwastav (2010), Kakati (1983), Pandit and Sriwastav (1975) and Sriwastav and 

Kakati (1981). 

Symbolically, let Xi'X2 , ••• ,Xn , be a set of n independent random variables, 

representing the strengths of the n -components arranged in order of activation in the system 

and let Yt , Y2 , ••• , Yn , be another set of independent random variables, representing the stresses 

on the n -components respectively then the system reliability Rn of the system is given by 

the equation (2.2.1) where the marginal reliability R{r) is the contribution to the reliability of 

the system by the r th component may be defined as 

Let J, (x) and g, (y) be the probability density functions (p.d.f) of X, and Y" i = 1,2, ... , n 

respectively then 

(7.2.1) 
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where F, {x} is the cumulative distribution function (c.d.£) of X" i.e., 

X 

F, {x} = f J, {x}ix and F, {x} = 1- F, {x} 
-00 

The following four conditions for strength i.e., J,{x} and stress i.e., g,{y}, have been 

considered for this investigation. 

• Strength follows one-parameter exponential and stress follows two-parameter 

exponential distribution 

• Strength follows one-parameter exponential and stress follows two-parameter 

gamma distribution 

• Strength follows Lindley distribution and stress follows one-parameter gamma 

distribution 

• Strength follows Lindley distribution and stress follows two-parameter 

gamma distribution 

7.2.2 An n -Cascade System 

An n -cascade system is a special type of n -standby system (Pandit and Sriwastav, 

1975). Let XI'X2 "",Xn be the strengths of n-components in the order of activation and let 

Yl' Y2 , ... , Yn are the stresses working on them. In cascade system after every failure the stress 

is modified by a factor k which is called attenuation factor such that 

Then the reliability Rn of the system is defined by the equation (2.2.1) 

R{r) is the marginal reliability due to the r th component or we can write for cascade system, 

(7.2.2) 
-00 
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We consider here the following two cases for this system 

• One-parameter exponential strength and two-parameter gamma stress 

41 One-parameter exponential strength and Lindley stress 

7.3 Reliability for Specific Distributions 

Chapter 7 

When stress-strength follow particular distributions, we can fmd the R(r), 

r = 1,2, ... ,n and thereby obtain the system reliability Rn' In the following six subsections we 

assume different particular distributions for the stress-strength invo lved. 

7.3.1 One -parameter Exponential strength and Two-parameter Exponen~ial stress 

Let J,{x) be the one-parameter exponential strength with mean ~ and gi(Y) be the 
A.i 

two-parameter exponential (Krishnamoorthy, Mukherjee and Guo, 2007) stress with 

parameter Pi and 0i respectively, i = 1,2, ... ,n then we have the following probability 

density functions 

.t;{x,A.)= A,e , Xi - '~'-
{ 

, -A;x,. > 0 ' > 0 

0, otherwise 

and 

{ 

jYI-"') 

(y 8) 
~e 8, ; Yi'> Pi' Pi ~ 0, 8i > 0 

g, ;P, = 8i 

0, otherwise 

Then from (7.2.1) we get, 

(7.3.1) 
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(7.3.2) 

(7.3.3) 

Therefore in general, 

Here considering, Au = eo = 0 (7.3.4) 

For some particular values of the parameters we have tabulated some values of R(I), R(2), 

R(3) and R3 in Table 7.1 (c£ Appendix). 

7.3.2 One -parameter Exponential strength and Two-parameter Gamma stress 

Let /, (x) be one-parameter exponential strength with mean -.l and g, (y) be the two­
A, 

parameter gamma stress with parameters fl., and e, respectively, i = 1,2, ... , n, then we have 

the following probability density functions 

J,(x,A)={A,e-.l.,X,; x, ~O, A, ~O 
0, otherwise 

and 
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Then from (7.2.1) we get, 

(7.3.5) 

(7.3.6) 

(7.3.7) 

In general, 

where, A = ( ); Here considering Au = Bo = ° 
1 + A,B, 14 

(7.3.8) 

Substituting the values of R{r 1 r = 1,2,3, ... ,n we can obtain Rn, the reliability of the system. 

A few numerical values of R{11 R(2), R(3) and R3 are tabulated in Table 7.2 (c£ Appendix) 

for different values of the parameters. 

7.3.3 Strength is Lindley and stress is One-parameter Gamma distribution 

Let J,{x) be the strength of Lindley distribution [Ghitany, Atieh and Nadarajah 

(2008), Mutairi, Ghitany and Kundu (to appear)] with parameter B, and g, (y) be one-

parameter gamma stress with parameter m, respectively, i = 1,2, ... , n, then we have the 

following probability density functions 

{ 

B2 

( ) 
-' {I + x,)e -8, x, ; x, )0, B,)O 

I' X' B = 1 + B j, , I 

0, otherwise 
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and 

{

I -y, m, -\. Y > (\ m > 1 
g,(y)= r{m,)e Y, , , -'1;(' ,-

0, otherwise 

Then from (7.2.1) we get, 

(7.3.9) 

(7.3.10) 

(7.3.11) 

In general, 

R(r) ~ [ (1 + ::')".' + (1 :~J~,., I (1 +!: t,,, + (I :~J~,., H (1 +~, )m, + (1 :~~im,.' 1 
(7.3.12) 

Combining the terms R{r1 r=I,2,3, ... ,n the reliability of the system Rn, can be obtained 

from (2.2.l). Table 7.3 (cf. Appendix) shows a few numerical values of R{l} R(2), R(3) and 

R3 for different values of the parameters. 
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7.3.4 Strength is Lindley and stress is Two-parameter Gamma distribution 

Let J,(x) be the strength of Lindley distribution with parameter 8, and g,(y) be two-

parameter gamma stress with parameters p, and A, respectively, i = 1,2, ... , n, then we have 

the following probability density functions 

( ) {~(I+X,)e-O'X'; x,)O, 8,)0 
/, x; 8 = 1 + 8, 

0, otherwise 

and 

{ 

1 
y, 

!'i-I A, 
g,(y;p,A)= A;'f(p,)Y, e ; y"p"A, >0 

0, otherwise 

Then from (7.2.1) we get, 

(7.3.13) 

R(2)-[ 81
2 

+ A, 81
2 

PI ][ 1 + A282P2 ] 

- (1 + 81 Xl + AI81 Y'I (1 + 81 Xl + A,81 )"I+l (1 + ~82 Y" (1 + 82 Xl + A282 )',,+1 

(7.3.14) 

(7.3.15) 
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In general, 

(7.3.16) 

Table 7.4 (cf. Appendix) shows a few numerical values of R(I), R(2), R(3) and R3 for 

different values of the parameters. 

7.3.5 One-parameter Exponential strength and Two-parameter Gamma stress for 

Cascade system 

Let XI'X2 , ... ,Xn be one-parameter exponential strength i.e., f,(x) with mean J.­
A, 

and Y, be a two-parameter gamma stress then we have the following probability density 

functions 

1, (x, A)= {Ale-.l,X,; x, ~ 0, A, ~ ° 
0, otherwise 

and 

r ... e)={e}r y~-Ie-~; y"li,e)O 
g I,)' " Ii, Ii 

0, otherwise 

Then from (7.2.2) we have, 

R(I) _ 1 
- (1 + A,e)1' 

(7.3.17) 
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(7.3.18) 

(7.3.19) 

In general, 

(7.3.20) 

Substituting the values of R(r 1 r = 1,2,3, ... ,n we can obtain Rn, the reliability of the system. 

A few numerical values of R(11 R(2), R(3) and R3 are tabulated in Table 7.5 (cf Appendix) 

for different values of the parameters. 

7.3.S.A Special Case 

When X., X 2 , ••. ,Xn are one-parameter i.i.d. exponential strength with parameter A then we 

have, 

R(I) _ 1 
- (1 + Ae)" 

(7.3.21) 

R(2) _ 1 
- (1 + Ake)" 

1 
(7.3.22) 

(7.3.23) 
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Then in general, 

(7.3.24) 

The expression of R{r + 11 can be obtained from that of R{r), in a similar way as obtained 

by Sriwastav (1976). We note that: 

A typical term in R{r) can be written as, 

[ 1 ( )] ,1=0,1,2, ... ,{2
r
-

1
-l) 

I+A8g rl k' I' 

I 
where gAk') is an appropriate sum of k"s, i = 1,2, ... ,{r -1). Each of these terms gives rise 

to two terms of R{r + 11 one positive and the other negative. We get the ftrst term by 

multiplying each term in grl (k') by k. The second term is got by adding A8 to the 

denominator of the ftrst term. Thus from the term, 

I 
we get the two terms as 

[1 + ABg rl (k' )r ' 

1 and _ 1 for R{r + 1) . 
[I + A8g rl {kl+l )]1' [1 + A8 + A8g rl {k,+1 )]1' 

Combining the terms R{r 1 r = 1,2,3, ... , n the reliability of the system Rn, can be obtained 

from the equation (2.2.1). Table 7.6 (C£ Appendix) shows a few numerical values of 

R{I), R(2), R(3) and R3 for different values ofthe parameters. 
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7.3.6 One-parameter Exponential strength and Lindley stress for Cascade system 

Let /, (x) be the one-parameter exponential strength with mean J-. and YI be the 
A, 

stress of the Lindley distribution with parameter 8, then we have the following probability 

density functions 

and 

/'(X,A)={A,e-;"X,; x, ;:::O,~,;:::O 
0, otherwise 

( 8) {~(! + YI)e-~'; YI)O, 8)0 
g YI' = 1-f 8 

0, otherwise 

Then from (7.2.2) we have, 

1 1 1 1 

(7.3.25) 

7.3.26) 

R 3 _ ~ (~e + 8) + (~e + 8 Y + ('.tl + A2k + ~e + 8) + (AI + A2k + ~e + 8 y 
( ) - (1 + 8) 1 1 1 1 

-(A2k+~k2 +8)- (A2k+~e +8Y -(A, +~e +8)- (AI +~e +8Y 
(7.3.27) 

Then the system reliability R3 for a 3-cascade system from the equation (2.2.1) is given by 

R3 = R(l) + R(2) + R(3). We have tabulated some numerical values of R(11 R(2), R(3) and 

R3 in Table 7.7 (c£ Appendix) for different values of the parameters. 
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7.4 Graphical Representations 

Some graphs are plotted in Fig. 7.l(a)-7.l(b), Fig. 7.2(a)-7.2(b), Fig. 7.3(a)-7.3(b), 

Fig. 7.4(a)-7.4(b), Fig. 7.S(a)77.S(b), Fig. 7.6, Fig. 7.7, by taking different parameters along 

the horizontal axis and the corresponding reliability along the vertical axis for different 

parametric values. In Fig. 7.1(a)-7.1(b) taking AI = A2 = ~ along the horizontal axis and the 

corresponding R(l) and R3 along the vertical axis graphs are plotted for different fixed 

values of 11" 112 , 113 ,8" 82 , 83 , In Fig. 7.2(a)-7.2(b) taking 81 = 82 = 83 along the horizontal 

axis and the corresponding R(l) and R3 along the vertical axis graphs are plotted for 

different fixed values of AI' A2 , ~,111' 112,113' Again in Fig. 7.3(a)-7.3(b) taking 

ml = m2 = m3 along the horizontal axis and the corresponding R(l) and R3 along the 

vertical axis graphs are plotted for different fixed values of 81, 82 , 83 , Some graphs are 

drawn for different fixed values of AI' A2, ~,Ill' 112,113 in Fig. 7.4(a)-7.4(b) by taking 

81 = 82 = 83 along the horizontal axis and the corresponding R(l) and R3 along the vertical 

axis. From the above mentioned Fig., it is observed that the marginal reliability R(l) and the 

system reliability R3 decrease with increasing different stress-strength parameters. In Fig. 

7.S(a) and Fig. 7.S(b) graphs are plotted for different fixed values of A" A2 , ~,8, 11 by 

taking k along the horizontal axis and the corresponding R3 along the vertical axis. Again in 

Fig. 7.6 taking A = 11 along the horizontal axis and the corresponding R3 along the vertical 

axis graphs are plotted for different fixed values of k and 8. Also in Fig. 7.7 taking 8 along 

the horizontal axis and the corresponding R3 along the vertical axis graphs .are plotted for 

different fixed values of k, A" A2 , ~ • From these graphs of system reliability, as expected, 

it is also seen that R3 decreases steadily with increasing the attenuation factor k. These 

graphs may also be used for reading the values of reliability, corresponding to intermediate 

values ofthe parameter. 
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7.5 Results and Discussions 

For some specific values of the parameters involved in the expressions of 

R(r), r = 1,2,3 we evaluate the marginal reliabilities R(I), R(2), R(3) and the system 

reliability R3 for each cases of different distributions from their expressions obtained in the 

last section, 

From the above Table 7.1 (cf Appendix) we have seen that the system reliability R3 

decreases when the strength parameter is constant with increasing stress parameter. For 

instance, if the strength parameters i) = A2 = ~ = 1 are fixed and the stress parameter 

and increases then the system reliabilities 

{

0.9851 

R3 = 0.9493 increases. Increasing stress and strength parameter decreases the system 

0.8956 

reliability. When strength parameter increases with some fixed stress parameter also 

decreases the reliability. For example, if strength parameter ~ = 1,2,3,4 increases with fixed 

stress parameter Jl) = Jl 2 = Jl3 = 8) = 82 = 83 =.1 the system reliabilities R3 = 0.9944, 

R3 = 0.9679, R3 = 0.9204, R3 = 0.8584 decreases. 

Table 7.2 (cf. Appendix) stated above we can conclude that when 81' 82 , 83 

increases with increasing some values of A), A2 , ~, Jl), Jl2' 113 the system reliability R3 

decreases. For example, if 8) = 82 = 83 = I, ~ = A2 = ~ = .1, Jl) = 112 = Jl3 = 2 then the 

system reliability ~ = 0.9948 and if 

Jl) = Jl2 = Jl3 = 3 then the system reliability R3 = 0.7433. 

From the above Table 7.3 (cf. Appendix) we have seen that when the strength 

parameter 81' 82 ,83 increases with increasing some stress parameter ml' m2, m3 then the 
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system reliability R) decreases. For example, if 8. = .1, 82 = .2, 8) = .3, m. = m2 = m) = 1 

then the system reliability R) = 0.9999 and when 8. =.4, 82 = .5, 8) = .6, m. = m2 = m) = 2 

then ~ = 0.8234. By proper choice of the different parameters very high system reliability 

R) = 0.9999 can be achieved. 

When stress is two-parameter gamma distribution and strength is Lindley distribution, 

a few values of R(I),R(2),R(3) and R) have been computed and presented in Table 7.4 (cf 

Appendix) for different values of stress-strength parameters. It is to be observed that, system 

reliability R) decreases with increasing stress-strength parameters. Also we have seen that 

some fixed values of the stress parameter AI' A2 , ~, J1.1' J1.2' J1.) with increasing the values of 

the strength parameter 8., 82 , 8) we get the system reliability R) decreases. For instance, 

8. = 82 = 83 = .1 then R3 = 0.9839 and if 

For different values of AI' A2 , ~, 8, J1. and k we have tabulated the values of 

R(I). R(2) , R(3) and R3 in Table 7.5 (cf. Appendix). From the tabulated values of R3, it is 

observe that, the reliabilities are decreases with some fixed values of A. = 1, 8 = 1 if the 

strength parameter~,~, stress parameter J1. and the attenuation factor k(i.e., k=.I, .3, .5, 

.7, .9) increases. For example, when the strength parameter A2 = 1, ~ = .5, J1. = 1 and k=.I, 

.3, .5, .7, .9 then the system reliability becomes 0.9993, 0.9853, 0.9505, 0.9011, 0.8462 

respectively. Again when A2 = 1, ~ = .5, J1. = 2 and k =.1, .3, .5, .7, .9 then the values of the 

system reliability become 0.9977,0.9584,0.8695,0.7565, 0.6451 respectively. But when the 

strength parameter A2 = 5, ~ = 1.5, J1. = 1 and k=.I, .3, .5, .7, .9 then R3 becomes 0.9932, 

0.9226, 0.8168, 0.7205, 0.6491 respectively. Again the values of the reliability become 

0.9812,0.8169,0.6094,0.4541,0.3611 respectively for ~ =5, ~ =1.5, J1.=2 and k=.l, 

.3, .5, .7, .9. By proper choice of the parameters a high reliability R3 = 0.9993 can be 

achieved. 
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From the tabulated values of Table 7.6 (C£ Appendix), we observed here that the 

change in the values of reliability is as expected. When the strength parameter (A.,) and the 

stress parameter (,u) increases with increasing the attenuation factor k also then the values 

of the system reliability decreases. For instance, if A = 1, ,u = 1, k = .1, .2, .3, .4,.5 with 

fixed values () = 1, then the system reliability R3 becomes 0.9985, 0.9901, 0.9724, 0.9463, 

and 0.9144 respectively. Again when .1.=3, ,u = 3, k = .1, .2, .3, .4,.5 with fixed values 

() = 1, then the values of the reliability become 0.9453, 0.7600, 0.5376, 0.3533, and 0.2258 

respectively. 

From the Table 7.7 (cf Appendix), we observed that, when the strength parameter ~ 

increases then there are significant decrease in the values of the marginal reliabilities R{I). 

For example, if .1.( = 2, 3, 4 then the values of the marginal reliability becomes 0.2222, 

0.1563 and 0.1200 respectively. Again if the stress parameter () increases with strength 

parameter .1.( = .1.2 = ~ = 2,3,4 and attenuation factor k = .2,.4,.6 then the system reliability 

R3 also increases. For example, if () = 1, k = .2, .4,.6 and .1.( (= .1.2 = ~) = 2,3, 4 then R3 

becomes 0.9396, 0.6491 and 0.3711 respectively. Again for () = 2, k = .2, .4,.6 and 

.1.(= .1.2 =~) = 2,3,4 the values of the system reliability R3 becomes 0.9837,0.8526 and 

0.6324 respectively. 

****** 
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Cascade Model for Warm Standby System with 
Imperfect Switching 

8.1 Introduction 

As discussed in Chapter 2, in a stress-strength (S-S) model the components of a 

system work under the impact of stresses. A component fails if the stress on it exceeds its 

strength. Imperfect switching is also discussed in Chapter I. 

The components are under stress-whether active or standbys. Generally, the stress 

working on a component and the stress working on it when it was a standby may be quite 

different. For example, a standby component may fail due to humidity, corrosion etc. 

whereas the same component when activated may be facing mechanical stress, voltage 

fluctuations, vibrations etc. Similarly the switch may also under different kind of stress. That 

is, stress working on active component, standby components and the switch may be quite 

different from one another. 

As mentioned in Chapter 7, Cascade reliability model is a stress-strength model with 

a particular type of redundancy. When an active component fails, the component taking its 

place faces an attenuated stress which is k times the stress on the preceding component, 

where k is called an attenuation factor which may be a constant or a random variable [Pandit 

and Sriwastav (1975, 1978)]. 

In this chapter we have considered an n -cascade system for warm standbys with 

imperfect switching. We have assumed to be cascade models for active as well as standby 

components and also for the switch. The system starts with one active component and a 

number of warm standbys. When the active component fails a component from standbys is 
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put in its place by a device, called switch, if the switch is working. But if the switch has 

already failed, no component is put in place of the failed component then the system will fail. 

If the switch has not failed, it will bring a standby, which if not already failed as standby, will 

work and the system will work. But if this component has already failed as a standby and if 

switch is still working then another component is put in its place and so on. 

Many authors have studied stress-strength model eg., Kakati (1983), Kapur and 

Lamberson (1977) etc. Studies of warm standby system for time-to-failure (TTF) models are 

considered by several authors including Srinivasan and Gopalan (1973), Gopalan (l975b), 

Gopalan and Venkatchalam (1977), Usha (1979) etc. Warm standby in S-S model is studied 

by Sriwastav and Dutta (1989), imperfect switching in S-S model is discussed by Sriwastav 

(2004), Bhowal (1999), Sriwastav and Dutta (1984) etc., cascade model for warm standby 

system is studied by Bhowal (1999), cascade model with imperfect switching is studied by 

Sriwastav (1992). But there have not been any studies for warm standby with imperfect 

switching in cascade model. 

This chapter is organized as follows: In Section 8.2, general mathematical 

formulation of the model is developed and reliability of an n -cascade model for warm 

standby is obtained. In section 8.3, we have assumed different particular forms of density 

functions for the stress-strength components and the switch and the system reliability of a 4-

cascade system R4 is obtained. In Su b-section 8.3.1, stress-strength for the active component, 

standby component and the switch follow exponential distribution and the marginal 

reliability R(I), R(2), R(3), R(4) and system reliability R4 for a .4-cascade system is 

obtained. In Sub-section 8.3.2, stress-strength for the active component and the switch follow 

exponential distribution and standby component follow gamma distribution and the marginal 

reliability expressions R(l), R(2), R(3) and R(4) are obtained. Also we evaluate the system 

reliability R4 for a 4-cascade system in this case. The reliability, in each case, are estimated 

numerically and presented in tabular form in Table 8.1 and Table 8.2 (cf. Appendix). Results 

and discussions are devoted to Section 8.4. 
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8.2 Mathematical Formulation of the Model 

Let us consider an n -cascade system (Bhowal, 1999) where, in the beginning one 

component is working and the remaining (n -1) are warm standbys. 

Let XI'X2"",Xn be n random variables representing the strength of the n­

components, arranged in the order of activation. Let ~ be a random variable representing the 

stress on the first component. The attenuation factor k is assumed to be constant. Let 

Z2,Z3"",Zn be the (n-1) stresses on the 2nd, 3rd
, ... , nth components respectively, when 

they are as warm standbys. Let U and V be the strength and stress of the switch. We assume 

that X,,~,Z) are all independent random variables (Sriwastav, 2004). 

Let R(i1 i = 1,2, ... ,n be the marginal reliability due to the jth component and Rn be 

the system reliability (Pandit and Sriwastav, 1975) which is given by the equation (2.2.1). 

Now the j th active component fails if X, < k,-l ~ and j th standby component fails if 

X) < ZJ . The system fails when all the components have failed, either in operation or as 

standbys. The expressions for R(i1 i = 1,2, ... ,n for the system considered here are as follows 

R(2) = P[XI < ~,(U ~ vXX2 ~ Z2 and X 2 ~ k~)] 
= p(U ~ V)P(X2 ~ Z2)P(X1 < ~,X2 ~ k~) 

R(3) = p[XI < Y1,(U ~ vXX2 ~ Z2 and X 2 < kYI or X 2 < Z2}] 
{U ~ V){X3 ~ Z3 and X3 ~ eyJ 

= [p(U ~ V)y[P(X2 ~ Z2,X3 ~ ZJp(XI < ~,X2 < k~,X3 ~ e~)l 
+p(X2 < Z2,X3 ~ Z3)P(X1 < ~,X3 ~ e~)J 
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[

XI < ~,(U 2 vXX2 2 Z2 and X 2 < k~ or X 2 < Z2}] 

R(4) = P (U 2 V){X3 2 Z3 and X3 < e~or X3 < Z3} 

(U 2 V){X4 2 Z4 and X 4 2 k 3yJ 

P(X2 2 Z2,X3 2 ZPX4 2 ZJp{X I < ~,X2 < k~'X3 < eYl'X4 2 ZJ 
= (p{U 2 vW + P(X2 < Z2,X3 2 Z3,X4 2 ZJp{X I < ~,X3 < k2~,X4 2 eyl ) 

+P(X2 2Z2,X3 <Z3,X4 2Z4)P{X1 <~,X2 <kr;,X4 2er;) 

+ P{X2 < ZZ, X 3 < Z3,X4 2 ZJp{XI < r;,X4 2 er;) 

(8.2.4) 

Then in general we have, 

P{X2 2 Z2,X3 2 Z3""'X, 2 Z,)P{XI < Y1,X2 < kYp ... ,X, 2 k,-lyl) 

+p(X2 < Z2,X3 2 Z3""'X, 2 Z,)P{XI < YPX3 < eyp ... ,X, 2 k,-lyl) 

R{i)=(P{U2V))'-1 +P{X2 2Z2"X3 <Z3,X4 2Z4""'X, 2Z,) 

P{XI < YI>X2 < kYp X 4 < k3yp ... ,X, 2 k,-lyl) 

+",+p(X2 <Z2,X3 <Z3"",X,_1 <Z,_pX, 2Z,)P(XI <YpX, 2k'-I~) 

(8.2.5) 

Let f,{x~ g,(y) and wJ{z) be the probability density functions of X, y" ZJ' 

i = 1,2, ... ,n; j = 2,3, ... ,n. Similarly k{u) and s{v) be the p.d.f's of U and V respectively. 

The reliability R{s) of the switch is given by 

"" 
R{S)=P{U2V)= fk{v)s(v}dv, (8.2.6) 

where k(u) is the distribution function of U and k(u) = 1- k(u). 

Since all the components work independently we can write the above expressions (8.2.1) to 

(8.2.4) as 
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00 

R(l)= J Fl(y)g(y)dy (8.2.7) 

., 00 

R(2) = R{s) f F 2 {Z )W2 {z)dz J Fl (y )F 2 (ky )g(y}iy (8.2.8) 

[1 F2(Z}w2{Z}iZ j FJ(z}wJ(z)dz 1 Fl (y)F2 (ky)FJ (ey)g(Y)dY] 

R(3) = [R(s)Y -00 -dJ -00 

+ [IF, (z)w, (z)dz IF,(z)w,(z)dz IF, (y)F,(k'y)g(y)dy ] 

(8.2.9) 

00 00 00 

J F2 (Z}w2 {z}iz J FJ {Z)WJ {z}dz J F4 {Z}w4 {z}dz 
-00 _ -00 

J Fl (y )F2 {ky )FJ (e y )F 4 (e y )g(y }dy 
-00 

00 00 00 

J F2 {Z}w2 (z}dz J FJ {Z )WJ {z}dz J F 4 {Z)w4 {z)dz 
+ -00 -dJ -00 

J Fl (y )FJ (e y )F 4 (e y )g{y }dy 
-00 

00 00 00 

f F2(Z}w2(Z}dZ f FJ(z}wJ(z)dz J F4 (Z)W4 (z}dz 
+ 00 -00 -00 

J ~ (y )F2 {ky )F 4 (e y )g{y }dy -
00 00 00 

J F2 {Z}w2 {z}dz J FJ {Z}wJ (z}dz f F 4 {Z )W4 (z}dz 
+_ -00 -00 

(8.2.10) 
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Then in general we can write, 

00 00 00 

f F2 {Z}W2 {z}iz f F3 {Z }W3 {z}dz ... f F r {Z}Wr {z}dz 
-00 -00 -00 

-00 

00 00 00 

f F2 {Z }W2 {Z }dz f F3 {Z}w3 {Z }dz ... f F r {Z )Wr {z}dz 
R{i} = [R{S}]'-l + -00 

j F\ (y }F3 (k 2 Y } .. Fr_3 (k r-2 y)F r-2 (k r-l y )g{y}dy 

-00 -co 

-00 

co 00 

f F2 {Z}w2 {Z )dz ... f Fr - 1 {Z}w r-l {z}dz 
+ ... + -00 -00 

-co -co 

(8.2.1 I) 

where F, (x) is the cumulative distribution function of X, and F, (x) = 1- F, (x), i = 1,2, ... ,n. 

Substituting back the expression of R(i t i = 1,2, ... , n from (8.2.7) to (8.2.11) in (2.2.1) we get 

the system reliability Rn. 

8.3 Stress-Strength follows Specific Distributions 

When stress-strength follows particular distributions, we can find R{it i = 1,2, ... ,n 

and thereby obtain the system reliability Rn. 

8.3.1 Exponential Stress-Strength 

Let j, (x), g(y), w) (z), k(u) and s{v) be all exponential densities with means 
, 

J.., ~, _I , ~ and ~ respectively (i = 1,2, ... ,n; j = 2,3, ... ,n). 
e, a f3) A. r 
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Then from equation (8.2.6), 

1 A R(s) = --, where J.l. =-
1+ J.l. r 

(8.3.1) 

Similarly R(11 R(2), R(3) and R(4) may be obtained from (8.2.7), (8.2.8), (8.2.9) and 

(8.2.10) respectively as 

ao ao 

R{l) = J FI{y)g{y)dy = J e-O,yae-aydy 
o 0 

a 
= 

1 
=--, 

1+ PI 

I 1 

R(3)=(_1_)2 1+11/21+11/3 
1 + J.l. 

(}I 
where PI =­

a 
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(8.3.3) 

(8.3.4) 



R(4) = (_1 )3 
1 +.u 

h
e, 

were, If, =-, 
{3, 

i=2,3,4 and 

1 + e P4 1 + PI + e P4 
1 

+------
l+PI +kP2 +k3p4 1+ep3 +k3p4 

1 1 

+ 1 + PI + k 2 P3 + k 3 P4 + 1 + kp2 + e P3 + e P4 

1 

e, 
p, =-, 

a 
i = 1,2,3,4 

Chapter 8 

(8.3.5) 

Then ultimately the system reliability R4 for a 4- cascade system may be obtained from the 

equation (2.2.1). 

8.3.2 Exponential Stress-Strength for the Active Component and the Switch 

and Gamma Stress for the Standbys 

L f. () () k{) d () b II . I d .. . h 1 1 1 et ,x, g y , u an s v e a exponentla ensltles Wit means -, -, -
e, a A 

an~ ~ respectively. Also let w) (z) be Gamma density with shape parameter {3) and scale 
r 

parameter unity. Then R(I\ R(2), R(3) and R(4) may be obtained from (8.2.7), (8.2.8), 

(8.2.9) and (8.2.10) respectively as 
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«> a 

R(l) = J Fl(y)g(y)dy = J e-8l y ae-aydy = _a_ 
o 0 a+~ 

1 81 =-- where PI =-
1+ PI a 

(8.3.6) 

R(2) - (_1) 1 [ 1 - 1 1 
- 1 + J.i (1 + ( 2 )P' 1 + kp2 1 + P2 + kp2 

(8.3.7) 

(8.3.8) 
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1 1 1 

(I + 02 )P, (I + 03 Y' (I + °4 )11' 

1 
----3-+ 3 
1 + kp2 + k P 4 1 + PI + kP2 + k P 4 

1 1 

1 + e P3 + e P 4 + 1 + PI + e P3 + e P 4 

1 
+ 2 J 

1 + kp2 + k P3 + k P4 

1 

{ I} 1 1 l+k
3
p4 I+PI +ep4 

+ 1- (1+0JP2 (1+0
3
)P' (1+0

4
Y' _ 1 + 1 

l+epJ +ep4 l+PI +k2p3 +ep4 

+ 1 {I- 1 } 1 11 + ~3 P4 1 + PI + e P4 - 1 + kP2

1

+ kJ 

P4) 
(1+02 )112 (1+03 )11' (1+04 )11' + 1 

1 + PI + kP 2 + e P4 

+{l- (I+!,)~ }{I- (I+!,y. LI+!.y, L+~,p. -I+p, ~k'pJ 

where, P, = ~, i = 1,2,3,4 
a 

(8.3.9) 

Then ultimately the system reliability R4 for a 4- cascade system may be obtained from the 

equation (2.2.1). 

8.4 Results and Discussions 

It is observed from the Table 8.1 (c£ Appendix) that the reliability decreases with 

increase in k values if the other parameter remains constant. Also we observe that for k < 1, 

reliability will be very high for all values of p, P and lIf. For instance, when 

k = 0.1, 0.3, 0.5, 1.5 then the system reliability becomes R4 = 0.9904, 0.9895, 0.9890 and 
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0.9843 respectively. The table can be used for making a marginal reliability analysis. R(l) 

decreases with increase in PI and k. From the table we observe that when k = 0.1, PI = 0.1 

then R(I) = 0.9091 but when k = 0.3, PI = 0.2 then R(l) = 0.8333. When P2 increases R(2) 

also increases but R(2) decreases with increasing y; 2' Again when PJ and y; J together 

increase there is significant change in R(3). For example, when 

k=O.l, PI =P2 =P3 =P4 =O.l, Y;2 =Y;3 =Y;4 =0.1 then R(3) = 0.0074. Again when 

k = O.l, PI = P2 = P3 = P4 = 0.2, y; 2 = y; 3 = y; 4 = OJ then R(3) = 0.0276. We may say that 

in this case reliability increases with increase in y; values. Similar conclusion may be drawn 

for y; 4 . Increase in the values of k, PI' P2' P3' P 4' y; 2' Y; 3' Y; 4 the values of the reliability 

decreases. 

From the Table 8.2 (d Appendix), it is observe that reliability R4 decreases with 

increasing k and J..l values, ifthe other parameter remains constant. When PI increases then 

the values of the marginal reliability R(I) decreases. For example, R(l) = 0.9091 for 

PI = 0.1 and R(I) = 0.8333 for PI = 0.2. But when P2 increases R(2) also increases. Again 

when P3 and P4 increases R(3) and R(4) also increases. When f32 and 82 increases R(2) 

decreases. Again when f33, f34, 83 and 84 increase we see increase in R(3) and R(4) values. 

For example, when k = O.l, J..l = 0.1, PI = P2 = P3 = P4 = 0.2, 82 = 83 = 84 = 0.3, 

f32 =f33 =f34 =1.0 then R(3)=0.0273 and R(4) = 0.0058. Again when k=O.l, J..l=0.1, 

PI = P2 = P3 = P4 = 0.2, 82 = 83 = 84 = 0.5, f32 = f33 = /34 = 1.5 then R(3) = 0.0355 and 

R(4) = 0.0148. 

****** 
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Chapter 9 

Summary and Future works 

In this study, some stress-strength models in the interference theory of reliability have 

been investigated. A summary of our [mdings and certain propositions for future works 

related to these studies have been highlighted. 

9.1 General Summary 

In most of the studies of interference models, in evaluating the reliability of the 

system, only its stress-strength is considered. But in real life situation, time is an important 

factor which affects the reliability of the system. Therefore it is very much essential to bring 

time into the model directly. The motivation for studying this, an n -standby system has been 

considered and assumed that the number of stresses faced by the system in time (0,/) follows 

a Poisson distribution in Chapter 2. Reliability can now be defined as the probability that the 

system working under impact of stresses will survive up to time I, when the stresses 

impinging on the system arrive as a Poisson process. Exponential, gamma, normal and 

Weibull stress-strength distributions have been studied to obtain the reliability. Tables for 

numerical values of reliability for some specific values of the parameters of the resulting 

distribution are also computed and some reliability graphs are drawn. Numerical values of 

reliability for some specific parametric values for exponential, gamma, normal and Weibull 

distribution shows that reliability decreases for increasing in the values of the parameter. 

Repair facility has been studied in Chapter 3. To evaluate the reliability of the system 

at the NIh cycle of the stress, a 3-component standby system with a single repair facility with 

imperfect switch has been considered. In this case, most commonly used distributions in 

reliability theory viz. exponential, gamma and normal distributions have been studied. Also 

numerical values of reliability at the NIh cycle for the considering distribution shows that the 
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values of the reliability are on expected line. That is, it is clear from the tables of numerical 

values of reliability R3 (N), N = 3,4,5, that the reliability decreases when the number of 

cycle N increases. This should be the case, because if we use one component more than one 

or two times than its life goes to decrease. 

Generally, it has been found that the parameters of stress-strength distributions are 

assumed to be constant. But in many situations this assumption may not be true and the 

parameters themselves may be random variables. In other words, the distributions with fixed 

parameters may not represent the stress and strength distributions adequately; distribution 

with random parameters may represent the situations better. Therefore, in Chapter 4, an 

attempt has been made to study identical stress-strength model with random parameters 

where stress-strength are exponential variates and one of the parameters (stress or strength) is 

assumed to be a random with known prior distribution, other parameters remaining constant. 

Reliability for uniform prior and two-point prior distribution is also computed for the 

parameters concerned. To study the reliability numerical values of RI , Rz, R3 , R4 have been 

obtained for uniform prior and two-point prior distributions. From tables of numerical values 

of RI , Rz, R3 , R4 it is clear that the reliabilities are steadily increasing with fJ, increases and 

reliabilities are decreases (increases) with increasing p for AI > Az (AI < Az). Again 

reliabilities are decreases with increasing values of A and reliabilities are increases 

(decreases) with increasing q, if fJ,1 > fJ,Z(fJ,1 < fJ,z)· 

In Chapter 5, a comparative study has been performed between warm and cold 

standby system with imperfect switching for identical strength. Various marginal reliability 

and system reliability for exponential, gamma and normal distributions have been derived in 

both warm and cold standby systems. Numerical marginal reliability values R(l), R(2), R(3) 

and system reliability R3 have been computed for selected values of the parameters. It is 

noted from the tables that the values of the system reliability become smaller in case of warm 

standby system than that of cold standby system. In comparison between warm and cold 

standby system it has been found that cold standby system is better to get the high system 

reliability. Same conclusion can be drawn in Chapter 6 for identical stress. In this chapter, to 
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make the things clear, graphical set up has also been performed for cold and warm standby 

systems in case of exponential, gamma and normal distributions. 

A number of techniques are to enhance the system reliability. But redundancy is the 

technique to achieve high reliability goals with any amount of maintenance. This is one of 

the means to achieve highly reliable systems with less dependable units. Therefore, in 

Chapter 7, redundancy has been made to study for stress-strength models. An n -standby and 

an n -cascade systems have been considered for our study when stress-strength are assumed 

to be dissimilar. We have considered four cases namely strength follows one-parameter 

exponential distribution and stress follows two-parameter exponential distribution, strength 

follows one-parameter exponential distribution and stress follows two-parameter gamma 

distribution, strength follows Lindley distribution and stress follows one-parameter gamma, 

strength follows Lindley distribution and stress follows two-parameter gamma distribution 

for an n-standby system. For all the four cases, it is clear from the numerical values of 

reliability that the values of the system reliability R3 decreases with increasing different 

stress-strength parameters. Again for an n -cascade system we have considered only two 

cases, viz. strength follows one-parameter exponential distribution and stress follows two­

parameter gamma distribution and strength follows one-parameter exponential distribution 

and stress follows Lindley distributions. From the numerical values of reliability for above 

two cases, it has been observed that the values of the system reliability R3 decreases steadily 

with increasing the attenuation factor k. Similar conclusion can be drawn for the reliability 

from the graphical techniques. 

Problem of warm standby with imperfect switching for stress-strength models has 

been studied in Chapter 5 and Chapter 6. But in Chapter 8, warm standby system for cascade 

model with imperfect switching has been performed. Reliability expressions have been 

derived when the stress-strength of the components and the switch follow particular 

distributions. Considering stress-strength for the active component, standby component and 

the switch follow exponential distributions and stress-strength for the active component and 

the switch follow exponential distribution and standby component follow gamma distribution 
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then the marginal reliability R(lt R(2), R(3), R(4) and system reliability R4 for a 4-cascade 

system have been obtained. Tables for numerical values of reliability of the resulting 

distribution are also computed. Numerical values of reliability for exponential and gamma 

distribution shows that, reliability decreases with increasing the attenuation factor k if the 

other parameter remains constant. 

9.2 Future Works 

Along this line of research on reliability theory some possible works to consider in 

the future. 

From the survey of literature, very few studies are there for repairable systems in 

interference. With proper redundancy and repair, reliability can be achieved very close to 

one. For repairable system, more than reliability, availability of the system and cascade 

model with repair is not included in this thesis. Therefore, study on availability and cascade 

system with repair is also a new field in near future. Several authors have studied stress­

strength as mixture of distributions. But one of the interesting modifications of reliability 

theory is the concept of progressive repairable system where stress-strength is mixture of 

distributions. 

The reliability growth model is a structured process used to discover reliability 

deficiencies through testing, analyzing such deficiencies and implementation of corrective 

measures to lower the rate of occurrence. Some of the important advantages of the reliability 

growth model include assessments of achievement and projecting the product reliability 

trends. Therefore, in the development or even during testing of a large system some 

corrective actions (including repair) will be helpful for the future with a view of enhancing 

the reliability of the system. 

In the absence of hard data for different systems discussed in this thesis, simulation 

technique will be helpful for future to estimate the system reliability or even availability and 

other characteristics of reliability, such as failure rate (FR), mean time to failure (MTTF), etc. 

****** 
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Appendix 

List of Tables 

Table 2.1 Reliability R, {t}, i = 1,2,3,4 at time' t' when stress-strength follows exponential 

distribution 

at P RJ{t} R2 {t} R3{t} R4 {t} 
1 (t=l,a = 1) .5 0.7165 0.8758 0.9465 0.9773 

1 0.6065 0.7582 0.8529 0.9114 
1.5 0.5488 0.6805 0.7754 0.8430 -
2 0.5134 0.6275 0.7162 0.7848 

2.5 0.4895 0.5894 0.6710 0.7372 

2 (t=l,a = 2 or .5 0.5134 0.7416 0.8684 0.9350 
t=2,a=l) 1 0.3679 0.5518 0.6898 0.7894 

1.5 0.3012 0.4458 0.5672 0.6664 
2 0.2636 0.3808 0.4849 0.5755 

2.5 0.2397 0.3375 0.4273 0.5084 

3 (t=l,a = 3 or .5 0.3679 0.6131 0.7766 0.8766 
t=3, a = 1) 1 0.2231 0.3905 0.5369 0.6572 

1.5 0.1653 0.2843 0.3986 0.5031 
2 0.l353 0.2256 0.3158 0.4027 

2.5 0.1173 0.1891 0.2624 0.3350 

4 (t=l,a = 4 or .5 0.2636 0.4979 0.6801 0.8065 
t=2, a = 2 or 1 0.1353 0.2707 0.4060 0.5301 
t=4,a = 1) 1.5 0.0907 0.1778 0.2719 0.3668 

2 0.0695 0.1312 0.1999 0.2721 
2.5 0.0574 0.1043 0.1569 0.2134 

5 (t=l,a = 5 or .5 0.1889 0.3987 0.5853 0.7295 
t=5, a = 1) 1 0.0821 0.1847 0.3001 0.4166 

1.5 0.0498 0.1095 0.1812 0.2601 
2 0.0357 0.0753 0.1238 0.1789 

2.5 0.0281 0.0568 0.0919 0.1325 



Table 2.2 Reliability R,{t}, i = 1,2,3,4 at time 't' when stress-strength follows gamma 

distribution 

at m I R,{t} R2 {t} R3 {t} R4 {t} 

2 (t=l,a = 2 or 1 1 0.3679 0.5518 0.6898 0.7894 
t=2,a = 1) 1 2 0.2231 0.3068 0.3852 0.4578 

2 1 0.6065 0.8340 0.9335 0.9744 
3 1 0.7788 0.9492 0.9891 0.9978 

3 (t=l,a = 3 or 1 1 0.2231 0.3905 0.5369 0.6572 
t=3,a=l) 1 2 0.1054 0.1647 0.2258 0.2873 

2 1 0.4724 0.7381 0.8792 0.9472 
3 I 0.6873 0.9128 0.9780 0.9948 

4 (t=l,a = 4 or 1 I 0.l353 0.2707 0.4060 0.5301 . 
t=2,a = 2 or 1 2 0.0498 0.0871 0.1291 0.1746 
t=4,a = 1 ) 2 1 0.3679 0.6438 0.8162 0.9111 

3 1 0.6065 0.8719 0.9631 0.9902 

5 (t=l,a = 5 or 1 1 0.0821 0.1847 0.3001 0.4166 
t=5,a=l) 1 2 0.0235 0.0456 0.0724 0.1036 

2 1 0.2865 0.5551 0.7482 0.8672 
3 1 0.5353 0.8280 0.9446 0.9838 

6 (t=l,a = 6 or 1 1 0.0498 0.1245 0.2178 0.3205 
t=2, a = 3 or 1 2 0.0111 0.0236 0.0400 0.0602 
t=3, a = 2 or 2 1 0.2231 0.4742 0.6781 0.8173 
t=6, a = 1 ) 3 1 0.4724 0.7824 0.9228 0.9753 

7 (t=l,a = 7 or 1 1 0.0302 0.0830 0.1557 0.2421 
t=7,a = 1) 1 2 0.0052 0.0121 0.0218 0.0345 

2 1 0.1738 0.4019 0.6085 0.7631 
3 1 0.4169 0.7360 0.8981 0.9648 

8 (t=l,a = 8 or 1 1 0.0183 0.0549 0.1099 0.1801 
t=2, a = 4 or 1 2 0.0025 0.0062 0.0118 0.0194 
t=4, a = 2 or 2 1 0.l353 0.3383 0.54l3 0.7063 
t=8, a = 1 ) 3 1 0.3679 0.6898 0.8708 0.9522 
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Table 2.3 Reliability R, (t 1 i = 1,2,3,4 at time 't' when stress-strength follows normal 

distribution 

at )J. (J Rl(t) R2 (t) R3 (t) R4 (t) 
1 (t=l,a = 1) 1 .5 0.8307 0.9562 0.9890 0.9968 

1 1 0.7868 0.9302 0.9777 0.9922 
2 .5 0.9639 0.9980 0.9999 1.0000 
2 1 0.9244 0.9913 0.9990 0.9998 

2 (t=l,a = 2 or 1 .5 0.6900 0.8985 0.9687 0.9877 
t=2,a = 1) 1 1 0.6191 0.8448 0.9400 0.9730 

2 .5 0.9290 0.9949 0.9997 0.9999 
2 1 0.8544 0.9783 0.9970 0.9992 

3 (t=l,a = 3 or 1 .5 0.5731 0.8330 0.9401 0.9718 
t=3,a = 1) 1 1 0.4871 0.7535 0.8902 0.9424 

2 .5 0.8954 0.9907 0.9993 0.9998 
2 1 0.7898 0.9615 0.9937 0.9977 

4 (t=l,a = 4 or 1 .5 0.4761 0.7638 0.9042 0.9496 
t=2, a = 2 or 1 1 0.3833 0.6627 0.8316 0.9031 
t=4,a = 1) 2 .5 0.8631 0.9855 0.9987 0.9995 

2 1 0.7301 0.9417 0.9890 0.9953 

5 (t=l,a = 5 or 1 .5 0.3954 0.6942 0.8626 0.9229 
t=5,a = 1) 1 1 0.3016 0.5764 0.7675 0.8592 

2 .5 0.8319 0.9794 0.9979 0.9990 
2 1 0.6749 0.9194 0.9829 0.9917 

6 (t=l,a = 6 or 1 .5 0.3285 0.6263 0.8166 0.8937 
t=2,a = 3 or 1 1 0.2373 0.4968 0.7009 0.8148 
t=3, a = 2 or 2 .5 0.8018 0.9724 0.9968 0.9984 

t=6, a = 1 ) 2 1 0.6238 0.8950 0.9753 0.9871 

7 (t=l,a = 7 or 1 .5 0.2729 0.5615 0.7677 0.8644 
t=7,a = 1) 1 1 0.1867 0.4249 0.6340 0.7731 

2 .5 0.7728 0.9646 0.9955 0.9976 
2 1 0.5766 0.8691 0.9663 0.9814 

8(t=l,a=8or 1 .5 0.2266 0.5006 0.7171 0.8368 
t=2, a = 4 or 1 1 0.1469 0.3611 0.5686 0.7365 
t=4, a = 2 or 2 .5 0.7449 0.9562 0.9939 0.9966 
t=8, a = 1) 2 1 0.5330 0.8420 0.9559 0.9748 
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Table 2.4 Reliability R, {t}, i = 1,2,3,4 at time I t' when stress-strength follows Weibull 

distribution 

at b e c A. R({t} R2 {t} R3 {t} R4 {t} 

.1 (t=l,a =.1 or .9 .7 .8 .1 0.7670 0.7769 0.7854 0.7926 
t=.I,a=l) .8 .6 .7 .2 0.6373 0.6506 0.6600 0.6668 

.7 .5 .6 .3 0.5365 0.5495 0.5573 0.5620 

.6 .4 .5 .4 0.4648 0.4764 0.4825 0.4857 

.2 (t=l,a =.2 or .9 .7 .8 .1 0.6940 0.7120 0.7274 0.7407 
t=.2,a = 1) .8 .6 .7 .2 0.5766 0.6007 0.6181 0.6307 

.7 .5 .6 .3 0.4855 0.5089 0.5234 0.5323 

.6 .4 .5 .4 0.4205 0.4416 0.4529 0.4590 
.3 (t=l, a =.3 or .9 .7 .8 .1 0.6280 0.6523 0.6734 0.6917 

t=.3,a = 1) .8 .6 .7 .2 0.5218 0.5544 0.5783 0.5960 
.7 .5 .6 .3 0.4393 0.4711 0.4911 0.5037 
.6 .4 .5 .4 0.3805 0.4090 0.4248 0.4334 

.4 (t=l,a =.4 or .9 .7 .8 .1 0.5682 0.5976 0.6232 0.6456 
t=.4,a=l) .8 .6 .7 .2 0.4721 0.5114 0.5408 0.5626 

.7 .5 .6 .3 0.3975 0.4358 0.4604 0.4762 

.6 .4 .5 .4 0.3443 0.3787 0.3981 0.4090 

.5 (t=l,a =.5 or .9 .7 .8 .1 0.5142 0.5474 0.5766 0.6022 
t=.5,a = 1) .8 .6 .7 .2 0.4272 0.4717 0.5053 0.5307 

.7 .5 .6 .3 0.3596 0.4030 0.4314 0.4499 

.6 .4 .5 .4 0.3115 0.3505 0.3729 0.3857 
.6 (t=l,a =.6 or .9 .7 .8 .1 0.4652 0.5013 0.5332 0.5615 

t=.6,a=l) .8 . 6 
. 

.7 .2 0.3865 0.4348 0.4719 0.5002 
.7 .5 .6 .3 0.3254 0.3725 0.4039 0.4247 
.6 .4 .5 .4 0.2819 0.3242 0.3490 0.3636 

.7 (t=l,a =.7 or .9 .7 .8 .1 0.4210 0.4590 0.4930 0.5233 
t=.7,a = 1) .8 .6 .7 .2 0.3492 0.4007 0.4404 0.4711 

.7 .5 .6 .3 0.2944 0.3442 0.3779 0.4006 

.6 .4 .5 .4 0.2551 0.2997 0.3265 0.3425 
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Table 3.1 Reliability R3 (N), N = 3,4,5 when stress-strength of the switch and the 

components follow exponential distribution 

q a = 1/(1 + p) b = 1/(1 + u) R3 (3) ~(4) R3 (5) 
.1 .9091 .8333 .9552 .9407 .9265 

.6667 .7692 .7864 .7257 .6697 

.5000 .6667 .5783 .4816 .4010 

.4000 .5882 .4264 .3207 .2412 

.3333 .5263 .3199 .2185 .1493 
.2 .9091 .8333 .9552 .9407 .9264 

.6667 .7692 .7859 .7246 .6681 

.5000 .6667 .5772 .4795 .3983 

.4000 .5882 .4251 .3185 .2386 

.3333 .5263 .3186 .2166 .1472 
.3 .9091 .8333 .9552 .9407 .9263 

.6667 .7692 .7850 .7227 .6651 

.5000 .6667 .5754 .4758 .3933 

.4000 .5882 .4229 .3146 .2339 

.3333 .5263 .3164 .2132 .1435 
.4 .9091 .8333 .9552 .9406 .9262 

.6667 .7692 .7838 .7197 .6603 

.5000 .6667 .5728 .4703 .3856 

.4000 .5882 .4198 .3090 .2270 

.3333 .5263 .3134 .2082 .1381 
.5 .9091 .8333 .9551 .9404 .9259 

.6667 .7692 .7823 .7157 .6536 

.5000 .6667 .5694 .4630 .3751 

.4000 .5882 .4159 .3014 .2176 

.3333 .5263 .3059 .2017 .1309 
.6 .9091 .8333 .9551 .9403 .9256 

.6667 .7692 .7805 .7105 .6445 

.5000 .6667 .5654 .4536 .3614 

.4000 .5882 .4110 .2920 .2056 

.3333 .5263 .3048 .1936 .1219 
.7 .9091 .8333 .9550 .9401 .9251 

.6667 .7692 .7783 .7041 .6328 

.5000 .6667 .5606 .4423 .3445 

.4000 .5882 .4053 .2806 .1912 

.3333 .5263 .2991 .1840 .1112 
.8 .9091 .8333 .9550 .9398 .9245 

.6667 .7692 .7757 .6964 .6182 

.5000 .6667 .5550 .4288 .3242 

.4000 .5882 .3987 .2674 .1745 

.3333 .5263 .2927 .1728 .0990 
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Table 3.2 Reliability R3 (Nt N = 3,4,5 when stress-strength of the switch and the 

components follow gamma distribution 

I m c d q a b R3 (3) R3(4) ~(5) 
2 2 2 3 .1 .5000 .6875 .6003 .5061 .4267 
4 2 3 2 .1875 .3125 .0858 .0378 .0167 
2 4 2 5 .8125 .8906 .9397 .9204 .9014 
4 6 3 5 .7461 .7734 .8371 .7888 .7434 
6 4 5 3 .2539 .2266 .0756 .0320 .0135 

2 2 2 3 .2 .5000 .6875 .5991 .5038 .4236 
4 2 3 2 .1875 .3125 .0853 .0373 .0163 
2 4 2 5 .8125 .8906 .9395 .9200 .9009 
4 6 3 5 .7461 .7734 .8369 .7883 .7426 
6 4 5 3 .2539 .2266 .0755 .0318 .0134 

2 2 2 3 .3 1 .6875 1 1 1 
4 2 3 2 .6875 .3125 .4839 .3799 .2982 
2 4 2 5 1 .8906 1 1 1 
4 6 3 5 .7461 .7734 .8365 .7874 .7412 
6 4 5 3 .2539 .2266 .0752 .0316 .0132 

2 2 2 3 .4 .5625 .6875 .6390 .5461 .4662 
4 2 3 2 .2500 .3125 .1116 .0527 .0249 
2 4 2 5 .8125 .8906 .9390 .9185 .8983 \ 
4 6 3 5 .7461 .7734 .8359 .7860 .7388 
6 4 5 3 .4414 .2266 .1829 .1036 .0586 

2 2 2 3 .5 .5000 .6875 .5905 .4855 .3977 
4 2 3 2 .1875 .3125 .0819 .0338 .0139 
2 4 2 5 .8125 .8906 .9386 .9173 .8960 
4 6 3 5 .7461 .7734 .8353 .7841 .7354 
6 4 5 3 .4414 .2266 .1827 .1033 .0583 

2 2 2 3 .6 .5000 .6875 .5861 .4752 .3825 
4 2 3 2 .1875 .3125 .0801 .0320 .0126 
2 4 2 5 .8125 .8906 .9381 .9156 .8927 
4 6 3 5 .7461 .7734 .8344 .7816 .7307 
6 4 5 3 .2539 .2266 .0739 .0301 .0122 

2 2 2 3 .7 .5000 .6875 .5808 .4627 .3637 
4 2 3 2 .1875 .3125 .0780 .0298 .0112 
2 4 2 5 .8125 .8906 .9374 .9136 .8884 
4 6 3 5 .7461 .7734 .8334 .7785 .7246 
6 4 5 3 .2539 .2266 .0733 .0294 .0116 

2 2 2 3 .8 .5000 .6875 .5747 .4479 .3413 
4 2 3 2 .1875 .3125 .0755 .0273 .0095 
2 4 2 5 .8125 .8906 .9367 .9111 .8829 
4 6 3 5 .7461 .7734 .8323 .7747 .7168 
6 4 5 3 .2539 .2266 .0726 .0285 .0109 
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Table 3.3 Reliability R3 (N1 N = 3,4,5 when stress-strength of the switch and the 

components foJlow normal distribution 

f.i (I a r q a b R3(3) ~(4) ~(5) 
3 1 2 1.5 .1 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8136 .7596 .7091 
2 3 5 1 .7365 .9998 .9997 .9994 .9991 
3 6 .5 4 .6891 .5483 .6350 .5457 .4690 
1 6 3.5 5 .5653 .7538 .7117 .6352 .5668 

3 1 2 1.S .2 .9831 .8664 .9932 .9910 .9887 
1 5 1.5 4 .8145 .6420 .8136 .7595 .7089 
2 3 5 1 .7365 .9998 .9991 .9981 .9971 
3 6 .5 4 .6891 .5483 .6348 .5454 .4686 
1 6 3.5 5 .5653 .7538 .7106 .6330 .5638 

3 1 2 1.5 .3 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8135 .7593 .7086 
2 3 5 1 .7365 .9998 .9982 .9958 .9932 
3 6 .5 4 .6891 .5483 .6346 .5449 .4678 
1 6 3.5 5 .5653 .7538 .7089 .6292 .5582 

3 1 2 1.5 .4 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8134 .7589 .7081 
2 3 5 1 .7365 .9998 .9969 .9923 .9871 
3 6 .5 4 .6891 .5483 .6342 .5441 .4665 
1 6 3.5 5 .5653 .7538 .7064 .6235 .5497 

3 1 2 1.5 .5 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8132 .7585 .7072 
2 3 5 1 .7365 .9998 .9953 .9876 .9784 
3 6 .5 4 .6891 :5483 .6338 .5429 .4647 
1 6 3.5 5 .5653 .7538 .7032 .6159 .5377 

3 1 2 1.5 .6 .9831 .8664 .9932 .9910 .9887 
1 .5· 1.5 4 .8145 .6420 .8131 .7579 .7061 
2 3 5 1 .7365 .9998 .9933 .9814 .9666 

.3 6 .5 4 .6891 .5483 .6332 .5414 .4621 
1 6 3.5 5 .5653 .7538 .6994 .6061 .5220 

3 1 2 1.5 .7 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8128 .7572 .7046 
2 3 5 1 .7365 .9998 .9909 .9738 .9513 
3 6 .5 4 .6891 .5483 .6326 .5395 .4587 
1 6 3.5 5 .5653 .7538 .6948 .5942 .5024 

3 1 2 1.5 .8 .9831 .8664 .9932 .9910 .9887 
1 .5 1.5 4 .8145 .6420 .8126 .7563 .7026 
2 3 5 1 .7365 .9998 .9881 .9645 .9322 
3 6 .5 4 .6891 .5483 .6319 .5372 .4544 
1 6 3.5 5 .5653 .7538 .6895 .5800 .4787 
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Table 4.1 Values of R1, R2, R3, R4 for exponential stress-strength when strength parameter 

A is random and uniformly distributed in the range (a, b) 

a b f.I. Rl R2 R3 R4 

1 2 1 0.4055 0.6466 0.7898 0.8751 
3 0.6694 0.8907 0.9639 0.9881 
5 0.7708 0.9475 0.9880 0.9972 
7 0.8245 0.9692 0.9946 0.9991 
9 0.8578 0.9798 0.9971 0.9996 

3 4 1 0.2231 0.3965 0.5312 0.6358 
3 0.4625 0.7111 0.8447 0.9165 
5 0.5889 0.831 0.9305 0.9714 
7 0.6672 0.8893 0.9632 0.9877 
9 0.7204 0.9218 0.9781 0.9939 

5 6 1 0.1542 0.2846 0.3949 0.4881 
3 0.3533 0.5818 0.7296 0.8251 
5 0.4766 0.7261 0.8567 0.9249 
7 0.5603 0.8067 0.9150 0.9626 
9 0.6209 0.8563 0.9455 0.9794 

7 8 1 0.1178 0.2217 0.3134 0.3942 
3 0.2859 0.4901 0.6359 0.7400 
5 0.4002 0.6402 0.7842 0.8706 
7 0.4830 0.7327 0.8618 0.9285 
9 0.5456 0.7935 0.9061 0.9574 

9 10 1 0.0953 0.1815 0.2925 0.3301 
3 0.2401 0.4226 0.5612 0.6666 
5 0.3450 0.5709 0.7189 0.8159 
7 0.4244 0.6687 0.8093 0.8902 
9 0.4866 0.7364 0.8647 0.9305 
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Table 4.2 Values of Rl' R2, R3, R4 for exponential stress-strength when strength parameter 

A is random having two-point distribution 

p A, A2 J.l R
J R2 R3 R4 

0.1 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.5167 0.7664 0.8871 0.9454 
2 1 3 0.7350 0.9298 0.9814 0.9951 

0.2 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.5333 0.7822 0.8984 0.9526 
2 1 3 0.7200 0.9216 0.9780 0.9939 

0.3 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.5500 0.7975 0.9089 0.9590 
2 1 3 0.7050 0.9130 0.9743 0.9924 

0.4 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.5667 0.8122 0.9186 0.9647 
2 1 3 0.6900 0.9039 0.9702 0.9908 

0.5 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.5833 0.8264 0.9277 0.9699 
2 1 3 0.6750 0.8944 0.9657 0.9888 

0.6 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.6000 0.8400 0.9360 0.9744 
2 1 3 0.6600 0.8844 0.9607 0.9866 

0.7 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.6167 0.8531 0.9437 0.9784 
2 1 3 0.6450 0.8740 0.9553 0.9841 

0.8 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.6333 0.8656 0.9507 0.9819 
2 1 3 0.6300 0.8631 0.9493 0.9813 

0.9 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.6500 0.8775 0.9571 0.9850 
2 I 3 0.6150 0.8518 0.9429 0.9780 
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Table 4.3 Values of Rp R2 , R3 , R4 for exponential stress-strength when stress parameter 

J.L is random and uniformly distributed in the range (c, d) 

c d A Rl R2 R3 R4 
1 2 1 0.5945 0.8356 0.9333 0.9730 

3 0.3306 0.5519 0.7000 0.7992 
5 0.2292 0.4059 0.5421 0.6471 
7 0.1755 0.3202 0.4395 0.5379 
9 0.1422 0.2642 0.3608 0.4586 

2 3 1 0.7123 0.9172 0.9762 0.9932 
3 0.4530 0.7008 0.8364 0.9105 
5 0.3323 0.5542 0.7024 0.8013 
7 0.2625 0.4561 0.5988 0.7041 
9 0.2169 0.3868 0.5198 0.6239 

3 4 1 0.7769 0.9503 0.9890 0.9975 
3 0.5375 0.7861 0.9011 0.9543 
5 0.4111 0.6532 0.7958 0.8797 
7 0.3328 0.5549 0.7030 0.8019 
9 0.2796 0.4810 0.6261 0.7307 

4 5 1 0.8177 0.9668 0.9939 0.9989 
3 0.5994 0.8395 0.9357 0.9742 
5 0.4732 0.7225 0.8538 0.9230 
7 0.3909 0.6290 0.7740 0.8624 
9 0.3330 0.5551 0.7033 0.8021 

5 6 1 0.8458 0.9762 0.9963 0.9994 
3 0.6467 0.8752 0.9559 0.9844 
5 0.5234 0.7729 0.8918 0.9484 
7 0.4397 0.6861 0.8241 0.9014 
9 0.3791 0.6145 0.7607 0.8513 

6 7 1 0.8665 0.9822 0.9976 0.9997 
3 0.6839 0.9001 0.9684 0.9900 
5 0.5649 0.8107 0.9177 0.9642 
7 0.4812 0.7309 0.8604 0.9276 
9 0.4192 0.6626 0.8040 0.8862 

7 8 I 0.8822 0.9861 0.9983 0.9998 
3 0.7141 0.9183 0.9767 0.9933 
5 0.5998 0.8398 0.9359 0.9743 
7 0.5170 0.7667 0.8873 0.9456 
9 0.4544 0.7023 0.8376 0.9114 
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Table 4.4 Values of Rp R2 , R3 , R4 for exponential stress-strength when stress parameter f..l 

is random having two-point distribution 

q f..ll f..l2 A RI R2 RJ R4 

0.1 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.4833 0.7331 0.8621 0.9287 
2 1 3 0.2650 0.4598 0.6029 0.7082 

0.2 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.4667 0.7156 0.8483 0.9191 
2 1 3 0.2800 0.4816 0.6268 0.7313 

0.3 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.4500 0.6975 0.8336 0.9085 
2 1 3 0.2950 0.5030 0.6496 0.7530 

'0.4 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.4333 0.6789 0.8180 0.8969 
2 1 3 0.3100 0.5239 0.6715 0.7733 

0.5 1 1 1 0.5000 0.7500 0.8750 0.9375 
I 2 2 0.4167 0.6597 0.8015 0.8842 
2 1 3 0.3250 0.5444 0.6925 0.7924 

0.6 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.4000 0.6400 0.7840 0.8704 
2 1 3 0.3400 0.5644 0.7125 0.8103 

0.7 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.3833 0.6197 0.7655 0.8554 
2 1 3 0.3550 0.5840 0.7317 0.8269 

0.8 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.3667 0.5989 0.7460 0.8391 
2 1 3 0.3700 0.6031 0.7500 0.8425 

0.9 1 1 1 0.5000 0.7500 0.8750 0.9375 
1 2 2 0.3500 0.5775 0.7254 0.8215 
2 1 3 0.3850 0.6218 0.7674 0.8569 
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Table 5.1 Marginal and system reliability of cold and warm standby system for identical strength in case of exponential distribution 

e p a 1 a 2 a3 R(l) Cold standby Warm standby 

R(2) R(3) R3 f32 f33 R(2) R(3) R3 
0.1 0.1 0.3 0.3 0.3 .7500 .1705 .0387 .9592 0.1 0.1 .0852 .0523 .8875 
0.1 0.1 0.5 0.5 0.5 .8333 .1263 .0191 .9787 0.1 0.1 .0631 .0363 .9328 
0.1 0.1 1.1 1.1 1.1 .9167 .0694 .0053 .9914 0.1 0.1 .0347 .0187 .9701 
0.1 0.1 1.3 1.3 1.3 .9286 .0603 .0039 .9928 0.1 0.1 .0301 .0161 .9748 
0.2 0.1 0.3 0.3 0.3 .6000 .2182 .0793 .8975 0.2 0.2 .1091 .0744 .7835 
0.2 0.2 0.3 0.3 0.3 .6000 .2000 .0667 .8667 0.2 0.2 .1000 .0667 .7667 
0.2 0.2 0.5 0.5 0.5 .7143 .1701 .0405 .9248 0.2 0.2 .0850 .0526 .8502 
0.2 0.2 1.1 1.1 1.1 .8462 .1085 .0139 .9685 0.2 0.2 .0542 .0306 .9310 
0.2 0.2 1.3 1.3 1.3 .8667 .0963 .0107 .9737 0.2 0.2 .0481 .0267 .9416 
0.3 0.1 0.3 0.3 0.3 .5000 .2273 .1033 .8306 0.3 0.3 .1136 .0826 .6963 
0.3 0.2 0.3 0.3 0.3 .5000 .2083 .0868 .7951 0.3 0.3 .1042 .0738 .6780 
0.3 0.3 0.3 0.3 0.3 .5000 .1923 .0740 .7663 0.3 0.3 .0962 .0666 .6627 
0.3 0.3 0.5 0.5 0.5 .6250 .1803 .0520 .8573 0.3 0.3 .0901 .0581 .7732 
0.3 0.3 1.1 1.1 1.1 .7857 .1295 .0213 .9366 0.3 0.3 .0648 .0377 .8882 
0.3 0.3 1.3 1.3 1.3 .8125 .1172 .0169 .9466 0.3 0.3 .0586 .0335 .9046 
0.4 0.1 0.3 0.3 0.3 .4286 .2226 .1157 .7669 0.4 0.4 .1113 .0846 .6245 
0.4 0.2 0.3 0.3 0.3 .4286 .2041 .0972 .7298 0.4 0.4 .1020 .0753 .6059 
0.4 0.3 0.3 0.3 0.3 .4286 .1884 .0828 .6998 0.4 0.4 .0942 .0678 .5906 
0.4 0.4 0.3 0.3 0.3 .4286 .1749 .0714 .6749 0.4 0.4 .0875 .0616 .5776 
0.4 0.4 0.5 0.5 0.5 .5556 .1764 .0560 .7879 0.4 0.4 .0882 .0581 .7018 
0.4 0.4 1.1 1.1 1.1 .7333 .1397 .0266 .8996 0.4 0.4 .0698 .0416 .8447 
0.4 0.4 1.3 1.3 1.3 .7647 .1285 .0216 .9148 0.4 0.4 .0643 .0375 .8665 
0.5 0.1 0.3 0.3 0.3 .3750 .2131 .1211 .7091 0.5 0.5 .1065 .0835 .5651 
0.5 0.2 0.3 0.3 0.3 .3750 .1953 .1017 .6720 0.5 0.5 .0977 .0743 .5469 
0.5 0.3 0.3 0.3 0.3 .3750 .1803 .0867 .6420 0.5 0.5 .0901 .0667 .5319 
0.5 0.4 0.3 0.3 0.3 .3750 .1674 .0747 .6171 0.5 0.5 .0837 .0605 .5192 
0.5 0.5 0.3 0.3 0.3 .3750 .1562 .0651 .5964 0.5 0.5 .0781 .0553 .5085 
0.5 0.5 0.5 0.5 0.5 .5000 .1667 .0556 .7222 0.5 0.5 .0833 .0556 .6389 
0.5 0.5 1.1 1.1 1.1 .6875 .1432 .0298 .8606 0.5 0.5 .0716 .0433 .8024 
0.5 0.5 1.3 1.3 1.3 .7222 .1337 .0248 .8807 0.5 0.5 .0669 .0396 .8287 
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Table 5.2 Marginal and system reliability of cold and warm standby system for identical strength in case of gamma distribution 

e a l a 2 a 3 
A P R(I) Cold standby Warm standby 

R(2) R(3) R3 /32 /33 R(2) R(3) R3 
1 1 1 1 1 1 .5000 .1250 .0313 .6563 1 I .0625 .0391 .6016 
1 2 2 2 2 1 .2500 .1406 .0791 .4697 2 2 .0352 .0313 .3165 
1 3 3 3 3 1 .1250 .0957 .0733 .2940 3 3 .0120 .0116 .1486 

2 1 1 1 1 1 .7500 .0938 .0117 .8555 1 1 .0703 .0242 .8445 
2 2 2 2 2 1 .5000 .1875 .0703 .7578 2 2 .0938 .0645 .6582 
2 3 3 3 3 1 .3125 .1880 .1131 .6136 3 3 .0587 .0514 .4227 

3 1 1 1 1 1 .8750 .0547 .0034 .9331 1 1 .0479 .0086 .9314 
3 2 2 2 2 1 .6875 .1611 .0378 .8864 2 2 .1108 .0525 .8507 
3 3 3 3 3 1 .5000 .2188 .0957 .8145 3 3 .1094 .0786 .6880 

4 1 1 1 1 1 .9375 .0293 .0009 .9677 1 1 .0275 .0025 .9675 
4 2 2 2 2 1 .8125 .1143 .0161 .9428 2 2 .0928 .0280 .9333 
4 3 3 3 3 1 .6563 .1974 .0594 .9130 3 3 .1295 .0701 .8559 

5 1 I 1 I I .9688 .0151 .0002 .9841 1 1 .0147 .0006 .9841 
5 2 2 2 2 1 .8906 .0731 .0060 .9697 2 2 .0651 .0119 .9676 
5 3 3 3 3 1 .7734 .1533 .0304 .9572 3 3 .1186 .0451 .9371 

6 1 1 1 1 1 .9844 .0077 .00006 .9921 1 1 .0076 .0001 .9921 
6 2 2 2 2 1 .9375 .0439 .0021 .9835 2 2 .0412 .0044 .9831 
6 3 3 3 3 1 .8555 .1082 .0137 .9773 3 3 .0926 .0234 .9714 
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Table 5.3 Marginal and system reliability of cold and warm standby system for identical strength in case of normal distribution: 
Here A = 2, a l = a 2 = a 3 = f32 = f33 = Jl = 0 

() 0- 'l"t 'l"2 'l"3 U P R(l) Cold standby Warm standby 
\ R(2) R(3) R3 r2 r3 R(2) R(3) R3 

1 1 2 2 2 1 2 .6726 .1793 .0478 .8998 2 2 .0587 .0611 .7925 
1 2 4 4 4 2 4 .5885 .1629 .0451 .7965 4 4 .0670 .0551 .7106 
1 3 6 6 6 3 6 .5593 .1521 .0414 .7528 6 6 .0671 .0504 .6767 

2 1 2 2 2 1 2 .8145 .1231 .0186 .9561 2 2 .0228 .0309 .8682 
2 2 4 4 4 2 4 .6726 .1481 .0326 .8534 4 4 .0485 .0474 .7685 
2 3 6 6 6 3 6 .6172 .1458 .0345 .7975 6 6 .0558 .0476 .7206 

3 1 2 2 2 1 2 .9101 .0666 .0049 .9816 2 2 .0060 .0095 .9256 
3 2 4 4 4 2 4 .7488 .1265 .0214 .8967 4 4 .0318 .0358 .8164 
3 3 6 6 6 3 6 .6726 .1359 .0275 .8360 6 6 .0445 .0423 .7595 

4 1 2 2' 2 1 2 .9632 .0289 .0008 .9929 2 2 .0011 .0018 .9661 
4 2 4 4 4 2 4 .8145 .1016 .0127 .9288 4 4 .0189 .0238 .8571 
4 3 6 6 6 3 6 .7245 .1232 .0209 .8686 6 6 .0339 .0356 .7940 

5 1 2 2 2 1 2 .9873 .0102 .0001 .9976 2 2 .0001 .0002 .9877 
5 2 4 4 4 2 4 .8682 .0770 .0068 .9520 4 4 .0101 .0139 .8923 
5 3 6 6 6 3 6 .7720 .1086 .0153 .8959 6 6 .0248 .0282 .8250 

6 1 2 2 2 1 2 .9964 .0030 .000008 .9993 2 2 .00001 .00001 .9964 
6 2 4 4 4 2 4 .9101 .0550 .0033 .9685 4 4 .0049 .0073 .9223 
6 3 6 6 6 3 6 .8145 .0933 .0107 .9184 6 6 .0173 .0212 .8529 
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Table 6.1 Marginal and system reliability of cold and warm standby system for identical stress in case of exponential distribution 

a P 81 82 83 R(l) Cold standb Warm standby 

R(2) R(3) R3 f32 f33 R(2) R(3) R3 
1 0.1 0.1 0.1 0.1 .9091 .0751 .0062 .9904 0.1 0.1 .0376 .0203 .9670 
1 0.1 0.2 0.2 0.2 .8333 .1263 .0191 .9787 0.1 0.1 .0421 .0302 .9056 
1 0.1 0.3 0.3 0.3 .7692 .1614 .0339 .9645 0.1 0.1 .0403 .0324 .8419 
2 0.1 0.1 0.1 0.1 .9524 .0412 .0018 .9954 0.1 0.1 .0206 .0108 .9837 
2 0.1 0.2 0.2 0.2 .9091 .0751 .0062 .9904 0.1 0.1 .0250 .0174 .9515 
2 0.1 0.3 0.3 0.3 .8696 .1031 .0122 .9849 0.1 0.1 .0258 .0201 .9154 
3 0.1 0.1 0.1 0.1 .9677 .0284 .0008 .9970 0.1 0.1 .0142 .0073 .9892 
3 0.1 0.2 0.2 0.2 .9375 .0533 .0030 .9938 0.1 0.1 .0178 .0122 .9674 
3 0.1 0.3 0.3 0.3 .9091 .0751 .0062 .9904 0.1 0.1 .0188 .0145 .9423 
4 0.1 0.1 0.1 0.1 .9756 .0216 .0004 .9977 0.1 0.1 .0108 .0055 .9920 
4 0.1 0.2 0.2 0.2 .9524 .0412 .0018 .9954 0.1 0.1 .0137 .0094 .9755 
4 0.1 0.3 0.3 0.3 .9302 .0590 .0037 .9930 0.1 0.1 .0147 .0113 .9563 
5 0.1 0.1 O.l 0.1 .9804 .0175 .0003 .9982 0.1 0.1 .0087 .0044 .9936 
5 0.1 0.2 0.2 0.2 .9615 .0336 .0012 .9963 0.1 0.1 .0112 .0076 .9803 
5 0.1 0.3 0.3 0.3 .9434 .0485 ·.0025 .9944 0.1 0.1 .0121 .0093 .9648 
6 0.1 0.1 O.l 0.1 .9836 .0147 .0002 .9985 0.1 0.1 .0073 .0037 .9947 
6 0.1 0.2 0.2 0.2 .9677 .0284 .0008 .9970 0.1 0.1 .0095 .0064 .9836 
6 0.1 0.3 0.3 0.3 .9524 .0412 .0018 .9954 0.1 0.1 .0103 .0078 .9705 
7 0.1 0.1 0.1 0.1 .9859 .0126 .0001 .9987 O.l 0.1 .0063 .0032 .9954 
7 0.1 0.2 0.2 0.2 .9722 .0246 .0006 .9974 0.1 0.1 .0082 .0055 .9859 
7 0.1 0.3 0.3 0.3 .9589 .0358 .0013 .9961 0.1 0.1 .0090 .0068 .9747 
8 0.1 0.1 0.1 0.1 .9877 .0111 .0001 .9989 0.1 0.1 .0055 .0028 .9960 
8 0.1 0.2 0.2 0.2 .9756 .0216 .0004 .9977 0.1 0.1 .0072 .0049 .9877 
8 0.1 0.3 0.3 0.3 .9639 .0317 .0010 .9966 O.l 0.1 .0079 .0060 .9778 
9 0.1 0.1 0.1 0.1 .9890 .0099 .00009 .9990 O.l 0.1 .0049 .0025 .9964 
9 0.1 0.2 0.2 0.2 .9783 .0193 .0003 .9980 0.1 0.1 .0064 .0043 .9890 
9 0.1 0.3 0.3 0.3 .9677 .0284 .0008 .9970 0.1 0.1 .0071 .0054 .9802 
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Table 6.2 Marginal and system reliability of cold and warm standby system for identical stress in case of gamma distribution 

a 8( 82 83 
A J.i R(I) Cold standby Warm standby 

R(2) R(3) R3 /32 fJ3 R(2) R(3) R3 
1 4 4 4 3 3 .9375 .0293 .0009 .9677 1 1 .0275 .0025 .9675 
I 5 5 5 4 4 .9688 .0151 .0002 .9841 1 1 .0147 .0006 .9841 
1 6 6 6 5 5 .9844 .0077 .00006 .9921 1 1 .0076 .0001 .9921 
2 4 4 4 3 3 .8125 .0762 .0071 .8958 1 1 .0714 .0107 .8947 
2 5 5 5 4 4 .8906 .0487 .0027 .9420 1 1 .0472 .0040 .9418 
2 6 6 6 5 5 .9375 .0293 .0009 .9677 1 1 .0288 .0013 .9677 
3 4 4 4 3 3 .6563 .1128 .0194 .7884 1 1 .1057 .0236 .7856 
3 5 5 5 4 4 .7734 .0876 .0099 .8710 1 I .0849 .0120 .8703 
3 6 6 6 5 5 .8555 .0618 .0045 .9218 1 1 .0609 .0053 .9216 
4 4 4 4 3 3 .5000 .1250 .0313 .6563 1 1 .1172 .0348 .6520 
4 5 5 5 4 4 .6367 .1157 .0210 .7734 1 1 .1120 .0232 .7720 
4 6 6 6 5 5 .7461 .0947 .0120 .8528 1 1 .0932 .0131 .8524 
5 4 4 4 3 3 .3633 .1157 .0368 .5158 1 1 .1084 .0391 .5108 
5 5 5 5 4 4 .5000 .1250 .0313 .6563 1 1 .1211 .0331 .6542 
5 6 6 6 5 5 .6230 .1174 .0221 .7626 1 1 .1156 .0233 .7619 
6 4 4 4 3 3 .2539 .0947 .0353 .3840 1 1 .0888 .0366 .3793 
6 5 5 5 4 4 .3770 .1174 .0366 .5310 1 1 .1138 .0379 .5286 
6 6 6 6 5 5 .5000 .1250 .0313 .6563 1 1 .1230 .0322 .6553 
7 4 4 4 3 3 .1719 .0712 .0295 .2725 1 1 .0667 .0301 .2687 
7 5 5 5 4 4 .2744 .0996 .0361 .4101 1 1 .0964 .0369 .4078 
7 6 6 6 5 5 .3872 .1186 .0364 .5422 1 1 .1168 .0370 .5410 
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Table 6.3 Marginal and system reliability of cold and warm standby system for identical stress in case of normal distribution: 
Here f.i = 0, (}. = (}2 = (}J = A = 2 

a T 0') 0'2 O'J V P R(l) Cold standby Warm standb 
R(2) R(3) RJ /32 /33 Y2 Y3 R(2) R(3) R3 

0 2 2 2 2 2 2 .7602 .1386 .0801 .9789 0 0 2 2 .1053 .0372 .9028 
0 4 2 2 2 2 4 .6726 .1481 .0670 .8878 0 0 4 4 .0996 .0474 .8196 
0 6 2 2 2 2 6 .6241 .1464 .0570 .8275 0 0 6 6 .0914 .0477 .7632 
0 2 4 4 4 4 2 .6726 .1481 .0670 .8878 0 0 2 2 .0996 .0474 .8196 
0 4 4 4 4 4 4 .6382 .1474 .0600 .8455 0 0 4 4 .0940 .0479 .7801 
0 6 4 4 4 4 6 .6092 .1450 .0538 .8081 0 0 6 6 .0884 .0473 .7450 
1 ,2 2 2 2 2 2 .6382 .1756 .0852 .8989 1 1 2 2 .1120 .0602 .8104 
1 4 2 2 2 2 4 .5885 .1629 .0645 .8158 1 1 4 4 .0959 .0551 .7394 
1 6 2 2 2 2 6 .5628 .1536 .0539 .7703 1 1 6 6 .0864 .0511 .7003 
1 2 4 4 4 4 2 .5885 .1629 .0645 .8158 1 1 2 2 .0959 .0551 .7394 
1 4 4 4 4 4 4 .5702 .1564 .0569 .7835 1 1 4 4 .0892 .0523 .7116 
1 6 4 4 4 4 6 .5551 .1505 .0509 .7565 1 1 6 6 .0835 .0497 .6884 
2 2 2 2 2 2 2 .5000 .1901 .0722 .7623 2 2 2 2 .0950 .0656 .6606 
2 4 2 2 2 2 4 .5000 .1682 .0566 .7247 2 2 4 4 .0841 .0562 .6403 
2 6 2 2 2 2 6 .5000 .1560 .0487 .7047 2 2 6 6 .0780 .0512 .6292 
2 2 4 4 4 4 2 .5000 .1682 .0566 .7247 2 2 2 2 .0841 .0562 .6403 
2 4 4 4 4 4 4 .5000 .1595 .0509 .7104 2 2 4 4 .0798 .0526 .6324 
2 6 4 4 4 4 6 .5000 .1523 .0464 .6987 2 2 6 6 .0762 .0497 .6258 
3 2 2 2 2 2 2 .3618 .1756 .0483 .5857 3 3 2 2 .0635 .0517 .4770 
3 4 2 2 2 2 4 .4115 .1629 .0451 .6195 3 3 4 4 .0670 .0504 .5289 
3 6 2 2 2 2 6 .4372 .1536 .0419 .6326 3 3 6 6 .0671 .0481 .5524 
3 2 4 4 4 4 2 .4115 .1629 .0451 .6195 3 3 2 2 .0670 .0504 .5289 
3 4 4 4 4 4 4 .4298 .1493 .0391 .. 6183 3 3 4 4 .0672 .0488 .5459 
3 6 4 4 4 4 6 .4449 .1505 .0408 .6361 3 3 6 6 .0669 .0472 .5590 
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Table 7.1 

A, ,.1,2 
1 1 
1 1 
1 1 

2 2 
2 2 
2 2 

3 3 
3 3 
3 3 

4 4 
4 4 
4 4 

5 5 
5 5 
5 5 
6 6 
6 6 
6 6 
7 7 
7 7 
7 7 
1 1 
2 2 
3 3 
4 4 

.1 .1 

.1 .1 

.1 .1 

.1 .1 

.1 .1 

.1 .1 

.1 .1 

.1 .1 

Marginal reliability R(I), R(2 ~ R(3) and system reliability R3 when strength is 

one-parameter exponential and stress is two-parameter exponential distribution 

~ J-l1 J-l2 J-l3 81 82 83 R(I) R(2) R(3) R3 
1 .1 .1 .1 .2 .2 .2 .7540 .1855 .0456 .9851 
1 .2 .2 .2 .3 .3 .3 .6298 .2332 .0863 .9493 
1 .3 .3 .3 ,4 ,4 ,4 .5292 .2491 .1173 .8956 

2 .1 .1 .1 .2 .2 .2 .5848 .2428 .1008 .9284 
2 .2 .2 .2 .3 .3 .3 ,4190 .2434, .1414 .8038 
2 .3 .3 .3 ,4 ,4 ,4 .3049 .2119 .1473 .6641 
3 .1 .1 .1 .2 .2 .2 ,4630 .2486 .1335 .8452 
3 .2 .2 .2 .3 .3 .3 .2888 .2054 .1461 .6403 
3 .3 .3 .3 ,4 ,4 ,4 .1848 .1507 .1228 ,4583 

4 .1 .1 .1 .2 .2 .2 .3724 .2337 .1467 .7528 
4 .2 .2 .2 .3 .3 .3 .2042 .1625 .1293 ,4961 
4 .3 .3 .3 ,4 ,4 ,4 .1158 .1024 .0906 .3088 

5 .1 .1 .1 .2 .2 .2 .3033 .2113 .1472 .6618 
5 .2 .2 .2 .3 .3 .3 .1472 .1255 .1070 .3797 
5 .3 .3 .3 ,4 ,4 ,4 .0744 .0688 .0637 .2069 
6 .1 .1 .1 .2 .2 .2 .2495 .1872 .1405 .5772 
6 .2 .2 .2 .3 .3 .3 .1076 .0960 .0857 .2892 
6 .3 .3 .3 ,4 ,4 ,4 .0486 .0463 .0440 .1389 

7 .1 .1 .1 .2 .2 .2 .2069 .1641 .1301 .5012 
7 .2 .2 .2 .3 .3 .3 .0795 .0732 .0674 .2202 
7 .3 .3 .3 ,4 ,4 ,4 .0322 .0312 .0302 .0936 

1 .1 .1 .1 .1 .1 .1 .8226 .1459 .0259 .9944 
2 .1 .1 .1 .1 .1 .1 .6823 .2168 .0689 .9679 
3 .1 .1 .1 .1 .1 .1 .5699 .2451 .1054 .9204 
4 .1 .1 .1 .1 .1 .1 ,4788 .2496 .1301 .8584 

.1 .2 .2 .2 1 1 1 .8911 .0970 .0106 .9987 

.1 .2 .2 .2 2 2 2 .8168 .1496 .0274 .9939 

.1 .2 .2 .2 3 3 3 .7540 .1855 .0456 .9851 

.1 .2 .2 .2 4 4 4 .7001 .2099 .0630 .9730 

.1 1 1 1 .1 .1 .1 .8959 .0933 .0097 .9989 

.1 2 2 2 .1 .1 .1 .8106 .1535 .0291 .9932 

.1 3 3 3 .1 .1 .1 .7335 .1995 .0521 .9811 

.1 4 4 4 .1 .1 .1 .6637 .2232 .0751 .9620 
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Table 7.2 Marginal reliability R(11 R(21 R(3) and system reliability R3 when strength is 

one-parameter exponential and stress is two-parameter gamma distribution 

81 82 83 A, A2 ~ f.ll f.l2 f.l3 R(I) R(2) R(3) R3 
1 1 1 .1 .1 .1 2 2 2 .8264 .1434 .0249 .9948 
1 1 1 .2 .2 .2 3 3 3 .5787 .2438 .1027 .9252 
1 1 1 .3 .3 .3 4 4 4 .3501 .2275 .1479 .7255 
1 1 1 .4 .4 .4 5 5 5 .1859 .1514 .1232 .4605 
2 2 2 .1 .1 .1 2 2 2 .6944 .2122 .0648 .9715 
2 2 2 .2 .2 .2 3 3 3 .3644 .2316 .1472 .7433 
2 2 2 .3 .3 .3 4 4 4 .1526 .1293 .1096 .3915 
2 2 2 .4 .4 .4 5 5 5 .0529 .0501 .0475 .1505 
3 3 3 .1 .1 .1 2 2 2 .5917 .2416 .0986 .9319 
3 3 3 .2 .2 .2 3 3 3 .2441 .1845 .1395 .5682 
3 3 3 .3 .3 .3 4 4 4 .0767 .0708 .0654 .2130 
3 3 3 .4 .4 .4 5 5 5 .0194 .0190 .0187 .0571 
4 4 4 .1 .1 .1 2 2 2 .5102 .2499 .1224 .8825 
4 4 4 .2 .2 .2 3 3 3 .1715 .1421 .1177 .4312 
4 4 4 .3 .3 .3 4 4 4 .0427 .0409 .0391 .1227 
4 4 4 .4 .4 .4 5 5 5 .0084 .0083 .0083 .0250 
5 5 5 .1 .1 .1 2 2 2 .4444 .2469 .1372 .8285 
5 5 5 .2 .2 .2 3 3 3 .1250 .1094 .0957 .3301 
5 5 5 .3 .3 .3 4 4 4 .0256 .0249 .0243 .0749 
5 5 5 .4 .4 .4 5 5 5 .0041 .0041 .0041 .0123 
6 6 6 .1 .1 .1 2 2 2 .3906 .2380 .1451 .7737 
6 6 6 .2 .2 .2 3 3 3 .0939 .0851 .0771 .2561 
6 6 6 .3 .3 .3 4 4 4 .0163 .0160 .0157 .0480 
6 6 6 .4 .4 .4 5 5 5 .0022 .0022 .0022 .0066 
7 7 7 .1 .1 .1 2 2 2 .3460 .2263 .1480 .7203 
7 7 7 .2 .2 .2 3 3 3 .0723 .0671 .0623 .2017 
7 7 7 .3 .3 .3 4 4 4 .0108 .0107 .0106 .0321 
7 7 7 .4 .4 .4 5 5 5 .0013 .0013 .0013 .0013 
8 8 8 .1 .1 .1 2 2 2 .3086 .2134 .1475 .6695 
8 8 8 .2 .2 .2 3 3 3 .0569 .0537 .0506 .1612 
8 8 8 .3 .3 .3 4 4 4 .0075 .0074 .0074 .0223 
8 8 8 .4 .4 .4 5 5 5 .0008 .0008 .0007 .0023 

145 



Table 7.3 Marginal reliability R(I), R(2 ~ R(3) and system reliability R3 when strength is 

Lindley and stress is one-parameter gamma distribution 

81 82 83 ml m2 m3 R(I) R(2) R(3) R3 
.1 .2 .3 1 1 1 .9842 .0150 .0007 .9999 
.1 .2 .3 2 2 2 .9630 .0188 .0010 .9829 
.1 .2 .3 3 3 3 .9376 .0209 .0012 .9597 
.1 .2 .3 4 4 4 .9088 .0216 .0012 .9316 
.1 .2 .3 5 5 5 .8775 .0213 .0011 .8999 
.2 .3 .4 1 1 1 .9491 .0461 .0041 .9993 
.2 .3 .4 2 2 2 .8873 .0495 .0046 .9415 
.2 .3 .4 3 3 3 .8198 .0471 .0041 .8711 
.2 .3 .4 4 4 4 .7502 .0417 .0033 .7951 
.2 .3 .4 5 5 5 .6810 .0352 .0023 .7185 
.3 .4 .5 1 1 1 .9058 .0810 .0107 .9976 
.3 .4 .5 2 2 2 .8018 .0747 .0095 .8860 
.3 .4 .5 3 3 3 .6976 .0612 .0067 .7655 
.3 .4 .5 4 4 4 .5987 .0467 .0042 .6497 
.3 .4 .5 5 5 5 .5084 .0339 .0024 .5448 
.4 .5 .6 1 1 1 .8601 .1140 .0200 .9941 
.4 .5 .6 2 2 2 .7185 .0909 .0140 .8234 
.4 .5 .6 3 3 3 .5876 .0646 .0081 .6603 
.4 .5 .6 4 4 4 .4728 .0428 .0041 .5197 
.4 .5 .6 5 5 5 .3757 .0270 .0019 .4046 
.5 .6 .7 1 1 1 .8148 .1429 .0309 .9886 
.5 .6 .7 2 2 2 .6420 .0992 .0176 .7587 
.5 .6 .7 3 3 3 .4938 .0616 .0082 .5637 
.5 .6 .7 4 4 4 .3731 .0357 .0034 .4122 
.5 .6 .7 5 5 5 .2780 .0197 .0013 .2990 
.6 .7 .8 1 1 1 .7715 .1670 .0426 .9811 
.6 .7 .8 2 2 2 .5737 .1016 .0198 .6951 
.6 .7 .8 3 3 3 .4158 .0555 .0076 .4790 
.6 .7 .8 4 4 4 .2956 .0283 .0026 .3266 
.6 .7 .8 5 5 5 .2071 .0138 .0008 .2217 
.7 .8 .9 1 1 1 .7307 .1865 .0544 .9717 
.7 .8 .9 2 2 2 .5136 .1001 .0209 .6346 
.7 .8 .9 3 3 3 .3514 .0484 .0067 .4066 
.7 .8 .9 4 4 4 .2357 .0219 .0019 .2596 
.7 .8 .9 5 5 5 .1555 .0095 .0005 .1657 
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Table 7.4 Marginal reliability R(I), R(2 t R(3) and system reliability R3 when strength is 

Lindley and stress is two-parameter gamma distribution 

A, ..1.2 ~ III 112 113 ()l ()2 ()3 R(I) R(2) R(3) R3 
1 1 1 2 2 2 .1 .1 .1 .9630 .0204 .0004 .9839 
1 1 1 2 2 2 .2 .2 .2 .8873 .0548 .0034 .9455 
1 1 1 2 2 2 .3 .3 .3 .8018 .0834 .0087 .8938 
1 1 1 2 2 2 .4 .4 .4 .7185 .1017 .0144 .8346 
1 1 1 2 2 2 .5 .5 .5 .6420 .1110 .0192 .7721 
1 1 1 2 2 2 .6 .6 .6 .5737 .1135 .0224 .7096 
1 1 1 2 2 2 .7 .7 .7 .5136 .1115 .0242 .6493 
1 1 1 2 2 2 .8 .8 .8 .4611 .1068 .0247 .5926 
1 I 1 2 2 2 .9 .9 .9 .4151 .1006 .0244 .5401 
2 2 2 3 3 3 .1 .1 .1 .8418 .0266 .0008 .8692 
2 2 2 3 3 3 .2 .2 .2 .6247 .0401 .0026 .6674 
2 2 2 3 3 3 .3 .3 .3 .4554 .0366 .0029 .4949 
2 2 2 3 3 3 .4 .4 .4 .3348 .0284 .0024 .3656 
2 2 2 3 3 3 .5 .5 .5 .2500 .0208 .0017 .2726 
2 2 2 3 3 3 .6 .6 .6 .1900 .0150 .0012 .2061 
2 2 2 3 3 3 .7 .7 .7 .1468 .0107 .0007 .1583 
2 2 2 3 3 3 .8 .8 .8 .1153 .0077 .0005 .1235 
2 2 2 3 3 3 .9 .9 .9 .0918 .0056 .0003 .0977 
3 3 3 4 4 4 .1 .1 .1 .6439 .0210 .0006 .6656 
3 3 3 4 4 4 .2 .2 .2 .3433 .0148 .0006 .3588 
3 3 3 4 4 4 .3 .3 .3 .1886 .0073 .0002 .1962 
3 3 3 4 4 4 .4 .4 .4 .1092 .0034 .0001 .1128 
3 3 3 4 4 4 .5 .5 .5 .0666 .0016 .0004 .0682 
3 3 3 4 4 4 .6 .6 .6 .0424 .0008 .00001 .0433 
3 3 3 4 4 4 .7 .7 .7 .0281 .0004 .000006 .0285 
3 3 3 4 4 4 .8 .8 .8 .0192 .0002 .000002 .0195 
3 3 3 4 4 4 .9 .9 .9 .0135 .0001 .000001 .0137 
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Table 7.5 Marginal reliability R(l), R(2 ~ R(3) and system reliability R3 for one-parameter 

exponential (A) strength and two-parameter gamma (,u, e) stress, where Al = 1, 

e =1 

~ ~ k ,u R(I) R(21 R(3) R3 
I .5 .1 I .5000 04329 .0664 .9993 

.3 .5000 .3344 .1509 .9853 

.5 .5000 .2667 .1839 .9505 

.7 .5000 .2179 .1832 .9011 

.9 .5000 .1815 .1647 .8462 

.1 2 .2500 .5997 .1480 .9977 

.3 .2500 04027 .3057 .9584 

.5 .2500 .2844 .3351 .8695 

.7 .2500 .2088 .2977 .7565 

.9 .2500 .1581 .2370 .6451 
5 .5 .1 1 .5000 .2667 .2310 .9977 

.3 .5000 .1143 .3571 .9714 

.5 .5000 .0635 .3587 .9221 

.7 .5000 .0404 .3211 .8615 

.9 .5000 .0280 .2714 .7994 

.1 2 .2500 .2844 .4592 .9936 

.3 .2500 .0784 .6018 .9302 

.5 .2500 .0322 .5393 .8216 

.7 .2500 .0163 04326 .6989 

.9 .2500 .0094 .3260 .5854 
7 .5 .1 1 .5000 .2179 .2794 .9973 

.3 .5000 .0787 .3912 .9699 

.5 .5000 .0404 .3799 .9203 

.7 .5000 .0246 .3350 .8596 

.9 .5000 .0165 .2810 .7975 

.1 2 .2500 .2088 .5340 .9928 

.3 .2500 .0446 .6337 .9283 

.5 .2500 .0163 .5535 .8199 

.7 .2500 .0077 04398 .6976 

.9 .2500 .0042 .3300 .5843 
9 .5 .1 1 .5000 .1815 .3156 .9971 

.3 .5000 .0575 04117 .9692 

.5 .5000 .0280 .3915 .9194 

.7 .5000 .0165 .3423 .8588 

.9 .5000 .0109 .2859 .7968 

.1 2 .2500 .1581 .5843 .9924 

.3 .2500 .0278 .6497 .9275 

.5 .2500 .0094 .5598 .8192 

.7 .2500 .0042 04429 .6971 
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.9 .2500 .0023 .3317 .5840 

1 1.5 .1 1 .5000 .4329 .0649 .9978 
.3 .5000 .3344 .1265 .9609 
.5 .5000 .2667 .1207 .8874 
.7 .5000 .2179 .0912 .8090 
.9 .5000 .1815 .0624 .7439 
.1 2 .2500 .5997 .1436 .9933 
.3 .2500 .4027 .2399 .8926 
.5 .2500 .2844 .1882 .7226 
.7 .2500 .2088 .1146 .5735 
.9 .2500 .1518 .0631 .4712 

5 1.5 .1 1 .5000 .2667 .2265 .9932 
.3 .5000 .1143 .3083 .9226 
.5 .5000 .0635 .2533 .8168 
.7 .5000 .0404 .1801 .7205 
.9 .5000 .0280 .1211 .6491 
.1 2 .2500 .2844 .4468 .9812 
.3 .2500 .0784 .4885 .8169 
.5 .2500 .0322 .3271 .6094 
.7 .2500 .0163 .1877 .4541 
.9 .2500 .0094 .1017 .3611 

7 1.5 .1 1 .5000 .2179 .2742 .9920 
.3 .5000 .0787 .3397 .9184 
.5 .5000 .2667 .1207 .8874 
.7 .5000 .0246 .1910 .7156 
.9 .5000 .0165 .1281 .6446 
.1 2 .2500 .2088 .5200 .9789 
.3 .2500 .0446 .5171 .8116 
.5 .2500 .0163 .3385 .6049 
.7 .2500 .0077 .1930 .4507 
.9 .2500 .0042 .1043 .3586 

9 1.5 .1 1 .5000 .1815 .3098 .9913 
.3 .5000 .0575 .3587 .9162 
.5 .5000 .0280 .2815 .8094 
.7 .5000 .0165 .1970 .7135 
.9 .5000 .0109 .1319 .6427 
.1 2 .2500 .1581 .5694 .9775 
.3 .2500. .0278 .5317 .8094 
.5 .2500 .0094 .3438 .6032 
.7 .2500 .0042 .1953 .4495 
.9 .2500 .0023 .1055 .3578 
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Table 7.6 

A 

1 

2 

3 

4 

5 

6 

Marginal reliability R(11 R(2), R(3) and system reliability R3 for Special 

Case: where Al = ,.1,2 = ~ = A (identical), e = 1 

k J1 R(I) R(2) R(3) R3 
.1 1 .5000 .4329 .0656 .9985 
.2 .5000 .3788 .1113 .9901 
.3 .5000 .3344 .1379 .9724 
.4 .5000 .2976 .1487 .9463 
.5 .5000 .2667 .1478 .9144 

.1 2 .1111 .5968 .2761 .9840 

.2 .1111 .4237 .3780 .9128 

.3 .1111 .3135 .3737 .7982 

.4 .1111 .2394 .3196 .6701 

.5 .1111 .1875 .2522 .5508 

.1 3 .0156 .4426 .4871 .9453 

.2 .0156 .2339 .5105 .7600 

.3 .0156 .1373 .3847 .5376 

.4 .0156 .0868 .2509 .3533 

.5 .0156 .0580 .1522 .2258 

.1 4 .0016 .2591 .6218 .8826 

.2 .0016 .0944 .4839 .5799 

.3 .0016 .0420 .2684 .3120 

.4 .0016 .0214 .1285 .1515 

.5 .0016 .0119 .0581 .0716 

.1 5 .0001 .1316 .6717 .8034 

.2 .0001 .0312 .3824 .4137 

.3 .0001 .0102 .1515 .1618 

.4 .0001 .0041 .0516 .0558 

.5 .0001 .0019 .0169 .0189 

.1 6 .000008 .0596 .6572 .7168 

.2 .000008 .0088 .2703 .2792 

.3 .000008 .0021 .0742 .0763 

.4 .000008 .0006 .0175 .0181 

.5 .000008 .0002 .0041 .0043 
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Table 7.7 Marginal reliability R(I), R(2 ~ R(3) and system reliability R3 when strength 

follows one-parameter exponential and stress follows Lindley distribution 

() k ~ A2 ~ R(I) R(2) R(3) R3 
1 .2 2 2 2 .2222 .4219 .2954 .9396 

.4 3 3 3 .1563 .2159 .2769 .6491 

.6 4 4 4 .1200 .1136 .1375 .3711 
2 .2 2 2 2 .4167 .4151 .1519 .9837 

.4 3 3 3 .3200 .2971 .2354 .8526 

.6 4 4 4 .2593 .1943 .1788 .6324 
3 .2 2 2 2 .5400 .3626 .0908 .9933 

.4 3 3 3 .4375 .3074 .1792 .9240 

.6 4 4 4 .3673 .2290 .1724 .7687 
4 .2 2 2 2 .6222 .3144 .0600 .9966 

.4 3 3 3 .5224 .2959 .1373 .9556 

.6 4 4 4 .4500 .2408 .1543 .8452 
5 .2 2 2 2 .6803 .2753 .0425 .9981 

.4 3 3 3 .5859 .2783 .1076 .9718 

.6 4 4 4 .5144 .2416 .1352 .8912 
6 .2 2 2 2 .7232 .2440 .0316 .9988 

.4 3 3 3 .6349 .2599 .0862 .9810 

.6 4 4 4 .5657 .2369 .1180 .9206 
7 .2 2 2 2 .7562 .2186 .0244 .9992 

.4 3 3 3 .6737 .2423 .0705 .9866 

.6 4 4 4 .6074 .2297 .1031 .9403 
8 .2 2 2 2 .7822 .1978 .0194 .9994 

.4 3 3 3 .7052 .2263 .0586 .9901 

.6 4 4 4 .6420 .2214 .0906 .9539 
9 .2 2 2 2 .8033 .1805 .0158 .9996 

.4 3 3 3 .7312 .2118 .0495 .9926 

.6 4 4 4 .6710 .2127 .0800 .9637 
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Table 8.1 Marginal reliability R(I~ R(2~ R(3~ R(4) and system reliability R4 for a 4-cascade system in case of exponential 
distribution 

k J.l. PI P2 P3 P4 1f/2 1f/3 1f/4 R(I) R(2) R(3) R(4) R4 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0737 .0074 .0002 .9904 
0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0710 .0094 .0004 .9895 
0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0684 .0111 .0003, .9890 
1.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0575 .0126 .0051 .9843 
0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0676 .0062 .0001 .9830 
0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0651 .0079 .0003 .9821 
0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0627 .0093 .0003 .9814 
1.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .9091 .0527 .0106 .0039 .9763 
0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 .8333 .l328 .0154 .0006 .9822 
0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 .8333 .1238 .0220 .0011 .9802 
0.5 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 .8333 .1156 .0265 .0031 .9785 
1.5 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 .8333 .0848 .0228 .0089 .9497 
0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 .9091 .0619 .0096 .0008 .9815 
0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 .9091 .0597 .0110 .0005 .9803 
0.5 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 .9091 .0575 .0l20 .0008 .9795 
0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 .8333 .1124 .0273 .0046 .9775 
1.5 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 .9091 .0483 .0119 .0053 .9746 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 .9091 .0737 .0062 .0012 .9902 
0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 .9091 .0624 .0167 .0003 .9885 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 .9091 .0737 .0074 .0001 .9903 
0.1 0.1 0.2 0.2 0.2 0.5 0.2 0.5 0.1 .8333 .1218 .0180 .0066 .9796 
0.1 0.2 0.1 0.1 0.1 0.3 0.1 0.2 0.5 .9091 .0676 .0057 .0004 .9828 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 .7692 .1172 .0338 .0052 .9255 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 .6667 .1016 .0427 .0129 .8239 
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 .5882 .0742 .0339 .0l37 .7101 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 .5263 .0508 .0210 .0086 .6067 
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 .4545 .0279 .0082 .0025 .4932 
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 .4000 .0155 .0030 .0006 .4192 
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Table 8.2 Marginal reliability R(I), R(21 R(31 R(4) and system reliability R4 for a 4-cascade system when the active component 
and the switch follow exponential distribution and the standby component follow gamma distribution 

k f.J. PI P2 P3 P4 ()2 ()3 ()4 /32 /33 /34 R(I) R(2) R(3) R(4) R4 
0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0676 .0105 .0021 .9872 
0.5 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0627 .0132 .0031 .9850 
1.0 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0574 .0142 .0044 .9807 
1.5 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0527 .0130 .0042 .9748 
0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0619 .0088 .0016 .9799 
0.5 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0575 .0111 .0024 .9777 
1.0 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0526 .0119 .0034 .9736 
1.5 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .9091 .0483 .0110 .0032 .9684 
0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .1334 .0144 .0016 .9811 
0.5 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .1161 .0252 .0050 .9746 
1.0 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .0988 .0272 .0094 .9593 
1.5 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .0851 .0218 .0069 .9403 
0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .1223 .0121 .0012 .9977 
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .1064 .0212 .0039 .9609 
1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .0906 .0229 .0073 .9468 
1.5 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.5 .8333 .0780 .0183 .0053 .9297 
0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.5 0.5 .8333 .1435 .0066 .0005 .9834 
0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.4 1.0 1.0 1.0 .9091 .0541 .0173 .0056 .9804 
0.1 0.1 0.5 0.1 0.1 0.1 0.2 0.3 0.4 1.0 1.0 1.0 .6667 .0676 .0382 .0075 .7724 
0.1 0.2 0.2 0.2 0.2 0.2 1.0 1.0 1.0 0.5 0.5 0.5 .8333 .0947 .0259 .0064 .9540 
0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 1.0 1.0 1.0 .8333 .1218 .0207 .0041 .9758 
0.5 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 1.0 1.0 1.0 .8333 .1060 .0286 .0078 .9679 
0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 1.0 1.0 1.0 .8333 .1124 .0273 .0058 .9730 
0.1 0.1 0.2 0.2 0.2 0.2 0.5 0.5 0.5 1.5 1.5 1.5 .8333 .0795 .0355 .0148 .9484 
0.5 0.1 0.2 0.2 0.2 0.2 0.5 0.5 0.5 1.5 1.5 1.5 .8333 .0692 .0370 .0178 .9395 
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