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Abstract

An attempt has been made in this thesis to study some stress-strength (S-S) models in
the interference theory of reliability. In interference theory, reliability of a system (or
component) is studied from interference of strength of the system and stress working on it.
To evaluation of reliability mainly standby and cascade systems have been considered.
Several continuous distributions viz. exponential, gamma, normal, Weibull, uniform and
Lindley distribution are considered and also two-point distribution is used among the discrete

distributions.

An n-standby system is considered where the number of stresses impinging on the
system in time (0,¢) follows a Poisson distribution. The system reliability at time ¢ is the

probability that the system stands 'r' impacts that is at least one component is working at
time ¢. Again n-standby system with imperfect switching for a single repair facility has been
considered. The stresses are impinging on the system in cycles and the life-time (discrete) of
a system is measured by number of cycles it can withstand. Switch and repair time is also
measured in cycles. For a 3-standby system, the reliability of the system at the N cycle is

calculated by using different stress-strength distributions.

In general, parameters of stress-strength distributions are assumed to be constant. But
in many situations this assumption may not be true and the parameters themselves may be
random variables. In this case stress-strength distributions are assumed as exponential
variates and one of the parameters involved may be random and other parameter remaining
constant with a known prior distribution. The prior distributions are considered as uniform

and two-point distributions for the parameters concerned.

Again from comparative study between warm and cold standby system with
imperfect switching for identical strength and stress, it has been observed that in case of
warm standby system, values of the system reliability becomes smaller than that of cold
standby system. An n-standby and n-cascade systems have been considered to evaluate the
reliability expressions, where all the stresses and strengths are independent random variables.
Also stress-strength distributions are assumed to be dissimilar. Again cascade reliability for

warm standby system with imperfect switching has been considered for our study. For this



purpose, exponential and gamma distributions are used to obtain the reliability expressions

up to 4-cascade system.

Finally, it is observed that, values of reliability are on expected line. In each Chapter,
the reliability of the system with the model under consideration is obtained. Often the
expressions of reliability are not simple enough to give an idea of their change with relevant
stress-strength parameters, so numerical results for reliability are tabulated against the
parameter(s) involved, in each case, to show the effect of various parameters on the system

reliability. Some graphs are plotted to illustrate our theoretical findings.
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Chapter 1

1 Imntroduction

The Interference theory concept is based upon the fact that when the strength of a
component or a device or a material is less than the stress imposed on it, the failure occurs.
The stress-strength (S-S) models are also called interference models, because here the
reliability can be represented in terms of interference area between stress and strength
densities. The main emphasis of this thesis is to obtain the reliabilities of different stress-

strength distributions.

1.1 Background of the Study

The word ‘reliability’ is used often in very different contexts, covering different areas
and disciplines like Educational Testing, Material Testing, Engineering, to name a few.
Depending on the context, the word takes on different shades of meaning. For example, a
psychological test for measuring the skills is considered reliable, if the scores obtained
through the test for the same individual at different times or individuals known to be of the

same ability will be nearly equal.

Technological developments lead to an increase in the number of complicated
systems as well as an increase in the complexity of the systems themselves. With remarkable
advancements made in electronics and communications, systems became more and more
sophisticated. Because of their varied natures, these problems have attracted the attention of
scientists from various disciplines especially the system engineers, software engineers and
applied probabilistic. An overall scientific discipline called reliability theory that deals with
the methods and techniques to ensure the maximum effectiveness of systems has developed.

Reliability theory introduces quantitative indices of the quality production (Gnedenko et al.,
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1969) and there is carried through from the design and subsequent manufacturing process to
the use and storage of technical devices. Due to the nature of the subjects, the methods of
Probability theory and Mathematical statistics play an important role in the problem solving

of reliability theory. In fact reliability is often defined in terms of probability.

The present study is an attempt to study of appropriate interference models to
describe the performance of a system with components of random quality operating in a
random environment. Different researchers have defined ‘reliability’ in different ways and in

its own context. Some of these definitions are listed below:

1. ‘Reliability is the probability of a device performing its purpose adequately for the
period of time intended under the operating conditions encountered’ (Radio-

Electronics-Television Manufactures Association, 1995, cf. Barlow and Proschan,
1965).

Symbolically, R(t)= [dF(x)

where F() represents the failure time distribution of the system.

2. ‘Reliability is the integral of the distribution of probabilities of failure- free operation
from the instant of switch on to the first failure. (cf. Polovko, 1968)

3. The reliability R(z) of a component (or a system) is the probability that the component
(or system) will not fail for a time ¢. (cf. Polvoko, 1968)

4. The reliability of a unit (or a system) is defined as the probability that it will perform
satisfactorily at least for a specified period of time without a major breakdown. (cf.
Sinha and Kale, 1980)

Reliability models, can be broadly classified into the following two groups---

(i) Time-Dependent Models and (ii) Stress-Strength Models or Interference Models

In the time-dependent models time is the important random variable and different
measures of reliability theory such as Reliability or Survival function, Availability,

Maintainability, Failure rate etc. are obtained from Time-to-Failure (TTF) distributions of the
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unit (system or component) under study. In such models the underlying idea is that the
characteristics of the unit gradually changes and failure occurs when it goes beyond the
specified limits. Ordinarily, here failure probability is an increasing function of time and
similarly other measures are also functions of time (except failure rate for exponential TTF
distribution). Majority of studies in reliability theory are based on the time dependent
models. A case in favour of such models is presented by Disney and Seth (1968), Yadav
(1973), Kapur and Lamberson (1977), Dhillon (1980) and many references cited by them.
Some such models are considered in the present study. In time-dependent models the time is

the dominating factor and in interference models stress is the dominating factor.

In S-S models, strength of the system and the stress working on it are the quantities of
interest. The words ‘stress® and ‘strength’ used in the reliability theory are not restricted to
mechanical loadings. It is used in a broader sense, applicable in many situations well beyond
the traditional, mechanical or structural systems. In reliability theory by ‘stress’ we mean any
agency which tends to produce failure of a component, a device or a material. The term
agency may be a mechanical load, environmental hazard, electric voltage etc. and the
‘strength’ represents an agency resisting failure of the system and it is measured by the

minimum stress required to cause the failure of the system (cf. Kapur and Lamberson, 1977).

Let us suppose that X and Y are continuous random variables with densities f(x)
and g(y) respectively and these are represented graphically as in the following figure.
bbviously, the probability of failure (:1—R) is represented by the shaded area in the
following figure. In other words, it is(z represented by the area of interference of stress and
strength densities. Hence the term “Interference models” is used when studying reliability
taking stress and strength into consideration and this is called interference theory of
reliability (cf. Kapur and Lamberson, 1977). Here it is understood that the system works
under impact of stresses i.e., the stress is not working continuously on the system but is
working as discrete impact (or impacts). From Fig. 1.1, it is intuitively clear that the greater
the amount of overlap between the curves f° (x) and g(y), the larger will be the probability
of failure. Under this assumption, if the two curves coincide, the probability of success will

be 50 percent (cf. Roberts, 1964 and Commente by Pandit and Sriwastav, 1975).
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bt
£(»)

Interference Area

Fig. 1.1 Stress-Strength Interference Model

Since imperfection and non-uniformity occur during the manufacture of system, the
system strength ' X' can be assumed to follow a probability distribution with density f (x)
Similarly the stresses 'Y" that impinge on the system are also independently and identically
distributed (i.i.d.) random variables with density function g(y). The reliability 'R' of the
system may be defined as the probability that ' X' is greater than 'Y'. Symbolically,

R=P(X2Y)=P(X-Y20)=P(Z20), where X-Y=2Z (1.1.1)

Once the respective distributions of stress and strength are known (or estimated), one can
obtain reliability of a system by employing equation (1.1.1). If f(x) and g(y) are the
densities of X and Y respectively then from (1.1.1)
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R= ﬂ?f(x)dx} £()dy
y

= [F(») gy
2 (1.1.2)
or R= [j J g(y)aw}f(x)dx
= [G(x) f(x)ax
T (1.1.3)

where F(x)=1-F(x), F(x) and G(y) are the distribution function of strength and stress,

respectively.

In our study, stress and strength are considered to be continuous random variables,
though they may be discrete also (cf. Charalambides, 1974, Winterbottom, 1974). The stress-
strength distributions may be of any type, but most commonly used distributions in reliability
theory are exponential, gamma, normal, Weibull, lognormal, Lindley and extreme value
distributions. Different types of distributions are used to represent the stress-strength in

different situations.

Sometimes, the distributions with fixed parameters may not represent the stress
and/or strength distributions adequately. For instance, if a particular component, having
certain strength distribution is manufactured in different lots, then for a particular lot the
parameters of the strength distribution may remain fixed but may vary from lot to lot. In such
situations the parameters of the strength distributions may themselves be taken as random
variables. Similar reasoning can be given for the distribution of stress also. So stress and

strength may be represented by compound distributions.

In the studies of S-S models, generally stress-strength of a component is supposed to
be independent random variables. But in many situations they may be correlated also. The

stresses and strengths together and even stress and strength separately may be correlated.
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A number of techniques are available to enhance the system reliability. For example,

1. Use of overrated components

2. Effective or creative design
3. System simplification

4.  Maintenance

5. Redundancy

The effect of the first four is limited. We cannot increase the system reliability
beyond a certain limit by their use. But redundancy may held in achieving any reliability
goal. Redundancy is the most effective way to increase the system reliability. Theoretically a
reliability are arbitrarily close to one (unity) can be achieved by incorporating redundancy

into the system in a suitable manner.

Redundancy is the technique in which more components than the minimum required
for normal operation (i.e., essential components) of the systems are attached to it. In such a
way that even if only a few components are working, the system works. The essential
components which are working initially may be termed as primary components and
additional components are termed as redundant components. The redundant components may
also remain active through out or may be activated after the failure of the active component.

Pieruschka (1963) has described the following forms of redundancy

(i) Active or Parallel redundancy
(i) Standby redundancy

(i) Parallel redundancy: In a parallel redundant system »-components are connected in a

parallel arrangement, and to start with all n-components are operating. The system continues
to operate till at least k£ of the components are operating. The system is also referred to as & -
out-of-n system. When k =n, it is the series system, when k=1 it is called completely

parallel system (Lloyed and Lipow, 1962).
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(i) Standby redundancy: In standby redundancy the redundant units (components) do not

work simultaneously with the primary unit, they remain in active. In an n-standby system
initially there is one primary unit which is working and there are (n —1) standby units. When

the primary units fail one from the standbys is activated (manually or automatically,

generally automatically) in its place and the system continues to work. Now this unit
becomes primary (or active) unit and the number of standbys reduces to (n - 2). When this

unit also fails another from standbys takes its place and the system remains working and so
on. The system fails when all the » units have failed until and unless stated. Otherwise all

the units work (and fail) independently.

Standby redundancy depending upon the nature of failures of standbys is further
divided into following three groups (Gnedenko et al., 1969)

(D Hot or active standby redundancy
(i) Cold or completely inactive standby redundancy and
(i)  Warm or tepid standby redundancy

(i) Hot or active standby redundancy: Here each component has the same failure rate

regardless of whether it is in standby or in operation. The situation is equivalent to the case of

pure paralle] redundancy when k =1. Many systems with electronic components are of this

type.

(i)) Cold or completely inactive standby redundancy: In this type of systems, only one
component will be working at any given time, the others being standbys and not working.
One of the standby components starts working only when the currently working component
fails. The system works until all of its components fail. Mostly mechanical systems are of

this type.

(iii) Warm or tepid standby redundancy: In practice the assumptions of hot and cold

standbys are often not true. Generally, the standbys may fail but fail with lesser probability
then they are activated. Such standbys are called warm standbys-and the system is called a

warm standby system. Here the redundant units are in a partially energized state up to the
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instant they take the place of active unit. Obviously hot and cold standbys are two extreme

cases of warm standbys.

In addition to the redundancy discussed above there is another type of redundancy
i.e., ‘Cascade redundancy’ (cf. Pandit and Sriwastav, 1975). Cascade redundancy is a special
kind of standby redundant system in which a new component faces a stress £ times the stress
on the preceding component, k£ being a constant or a random variable, called an attenuation

factor.

To take out a unit that has failed and insert in its place by a standby unit, we need a
device which is termed as switch. In general, it is assumed that the switching mechanism is
perfect i.e., it never fails to activate a redundant unit (if one is available). Also it is assume
that activation of a redundant unit is instantaneous i.e., as soon as the active unit fails at once
one unit from standbys start working in its place (i.e., there is no time-lag). Of course in
practice both the assumptions may not be true but unless otherwise stated we shall assume
that both the assumptions are varied. However, in reality the switch(es) are subject to failure
i.e., the switch is imperfect. The failure of the switch(es) may be either of the following types
(Gnedenko et al., 1969):

(1 The switch does not work when it is needed, i.e., the operating unit fails, but the

switch does not connect the standbys and so the system fails.

(i) The switch removes an operating unit from the operation when it should not and
does not replace it with a standby. So, there is no operating unit even if the units

are good, and hence the system fails.
Type (ii) switch failure is called false switching (Nakagawa, 1977).

The S-S models discussed so far, assume that the stress and strength are random
variables. However it is more general, they may be stochastic processes. Taking the system
strength and stress on it as two stochastic processes X (t) and Y (t) respectively, the concept
of reliability of the system can be obtained from the ‘Difference-process’, viz.
Z(t)={x(¢)-Y(t)}. The system fails when, for the “first-time’, the stochastic process Z(t)

crosses zero from the above (Sriwastav and Pandit, 1978).
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1.2 Review of Literature

In S-S models two types of studies are carried out (i) evaluations of system reliability
(or structural reliability) making certain assumptions about the strength distribution of the
system and the distribution of stresses applied to it and (ii) reliability inferences. As in the
present thesis we have studied only the structural reliability. Hence, reviews of some of the
works of other authors’ articles on structural reliability which are relevant to the present work

are discussed here.

Brinbaum (1955) is one of the pioneers in the field of reliability estimation in S-S
models. He considered a distribution free method for estimation of the probability viz.
p=P(X<Y)=1-R
where X and Y are random variables representing strength and stress of a system and R is
the reliability, under the sole weak condition that the distribution functions of X and Y are

continuous.

Kapur and Lamberson (1977) have presented some S-S models taking the cases when
stress is constant as well as random variable. For different distribution of X and Y they

have evaluated reliability for a single component systems.

Pandit and Sriwastav (1976) have obtained the distribution of the number of attacks
to failure for a cascade system and called it generalized geometric distribution. They have
also considered the cascade system subjected to stress arriving at a random process, Viz.
Poisson process and obtained with reliability expressions for 2- and 3-cascade system (Pandit

and Sriwastav, 1978).

Maiti (1995) has obtained reliability under S-S model in the geometric case.
Sriwastav and Kakati (1980) have considered that the parameters of the stress-strength
distributions are random variables. Although all the parameters involved may be taken as
random variables, they have considered only one parameter random and the others remain
constants. Then from compound distribution of stress-strength, they have obtained the

reliability of the system.
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Uma Maheswari et al. (1992) have considered the reliability of a system where n-
stresses act on a single component. The probability distributions considered are exponential,
gamma and normal. They have reported that when »-stresses act on a single component with
an exponential distribution, the component has the same reliability as single stress and
strength components which are connected in a series. They also observed that normal and

gamma distributions do not follow this rule.

Sriwastav and Dutta (1986) considered the standby redundant system with different
types of failure in S-S model. Sriwastav and Kakati (1981) have considered a n-standby
redundant system and obtained the system reliability when the stress and strength of the
system follows exponential, gamma or normal distributions. They have also evaluated the
system reliability for exponential strength and gamma stress, gamma strength and
exponential stress, normal strength and exponential stress, exponential strength and normal
stress for a n-cascade system. Pandit and Sriwastav (1975, 1978) have considered an n- ‘
cascade system and obtained the expressions for reliability where stress and strength
distributions are exponential, gamma and normal, assuming the attenuation factor, & to be a

constant and also when it is random.

Warm standby in stress-strength model is studied by Sriwastav and Dutta (1989).
They have considered an #-unit warm standby redundant system for stress-strength model to

obtain the reliability expressions. Cascade model for warm standby is studied by Bhowal
(1999).

Rekha et al. (1988) obtained the reliability of n-cascade system where stress and
strength are Log-normal and Weibull. Again Rekha et al. (1992) have derived an expression
for the reliability of a single component system where the strength of the component and the
imminent stress on the system are random and follow non-identical probability distribution.
They assumed that after successive arrivals, the strengths on the successive components are
attenuated by specified deterministic factors. They have considered survival function for the
stress and strength following exponential distribution. Rekha and Shyam Sunder (1997) have

considered an n-cascade system when the strengths of the components follow an exponential

10
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distribution and the imminent stress is impinged on the first component with a gamma

distribution to obtain the reliability.

Hanagal (1997) has estimated the reliability of a component subjected to two different
stresses which are independent of the strength of a component. In another paper (2003) he

estimated the system reliability in multicomponent series stress-strength models.

Raghavachar et al. (1983) have considered survival functions under stress attenuation
in cascade reliability. Rekha and Shyamsunder (1997) have derived an expression for
survival function for the strength attenuation system with stress-strength following

exponential distribution. They have obtained the lower and upper bounds when the strength

attenuation factor k' = k,.

Apart from the above time independent S-S models we have come across some

studies in time dependent S-S models.

Kapur and Lamberson (1977) studied the time dependent S-S model by considering
repeated application of stress and also the deterioration of strength with time. They have
obtained the expression for reliability of the system for a single component by considering

the deterministic and random cycle times.

Gopalan and Venkateswarlu (1982) have considered the reliability analysis of time-
dependent cascade system in stress-strength models by considering each of the stress and
strength variables as deterministic or random fixed or random independent. They have
considered the number of cycles in any period of time 't' to be deterministic. They (1983)
further extended this problem to the random cycle times, i.e., the number of cycles in any
period of time 't is assumed to be random. They obtained the reliability expressions for 2-
and 3-cascade systems for any time period 't' considering the attenuation factor to be
constant and the number of cycles per unit time follows a Poisson distribution. Assuming

components to be identical and attenuation factor k,’s to be constants, they have also

11
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obtained the expression for system reliability when stress and strength follow exponential

distributions.

Gopalan and Venkateswarlu (1985) further considered the repairman problem in
stress-strength model. They have carried out the reliability and availability analysis of a
repairable dissimilar two-unit standby system in S-S model with a single repair facility. The
time taken to repair a unit is either deterministic or random. They carried out the analysis for

arbitrary stress-strength and repair time distribution.

Shooman (1968) has obtained the reliability of a system from stress-strength time
model assuming that the stresses are coming to the system in a Poisson process with
parameter A as

R(f)=e"1*
“where p, is the probability of failure of the system with a single impact. He has introduced

the time factor in another way also, viz. by considering the deterioration of strength

parameter with time.

Shaw (1973) has obtained the reliability expression for components operating in
environments with repeated stress. They have considered time variations of stress and
strength. Raghavachar et al. (1984) have studied a system exposed to shocks at time points
from a discrete set and random time points. Tumolillo (1974) has considered the situation

where stresses change the failure rate of components stochastically.

Sriwastav (2005) have considered a stress-strength standby system with a single

repair facility. For a 3-standby system they calculated the reliability of the system at the N*
cycle when stress-strength is either exponential or gamma or normal assuming that the

number of cycles in time (0,¢) follows a Poisson distribution.

Xu, Guo, Yu, Zhu (2005) have studied the asymptotic stability of a repairable system

with repair time of failed system that follows arbitrary distribution. Srinivasan and Gopalan

12
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(1973) have considered a two-unit standby system with a single repair facility. They have
considered the cases where stresses are constants as well as random variables to obtain the

system reliability.

Subramanian and Anantharaman (1995) have considered probabilistic analysis of a
three unit cold standby system where the lifetime of the unit and the repair time are random
variables with arbitrary distributions. Srinivasan and Subramanian (2006) have considered
reliability analysis of a three unit warm standby redundant system with repair. Here they

were using imbedded renewal points to obtain the reliability and availability functions.

There are very few works available for unreliable switches in interference models. Of
course for time-to-failure models there are a few studies on imperfect switches. For example,
Osaki (1972) found the Laplace-Stieltjes transform of the distribution function of the time up
to the first system failure, for a two dissimilar unit standby system with repair and imperfect
switchover, using the exponential distribution for the unit. Srinivasan (1968) has considered a
non-instantaneous switchover where switchover time is a random variable. Nakagawa and
Osaki (1975) have obtained the stochastic behavior of a two-unit standby system with repair
and imperfect switchover. Gopalan (1975a) has considered the availability and reliability of
l-server-2-unit system with imperfect switch. Alidrisi (1992) has obtained the reliability
considering imperfect switching for dynamic warm standby system in TTF (time-to-failure)

model.

Sriwastav (2004) has obtained the reliability expressions for the »-standby system
where the standbys are warm standbys with an imperfect switch when all the stress-strength
are random variables with given density. Gajjar and Patel (2010) have considered an n-cold
standby system with imperfect switches in stress-strength model. They assume estimation of
standby reliability with imperfect switching under (a) geometric stress and geometric

strength (b) geometric stress and exponential strength.

A problem of system reliability of a standby system, when switches and the

components follow dissimilar continuous distributions is considered by Dutta and Bhowal
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(2000). A cascade reliability model for n-warm standby system is considered by Dutta and

Bhowal (1998) and cascade model with imperfect switching is considered by Sriwastav

(1992).

1.3 Objectives

In this investigation, our objectives were to study the stress-strength of the

components in the interference systems. To achieve the main goal of the study to be

presented in the thesis the following objectives have been undertaken.

To study an interference model with number of stresses which follows a Poisson
process. Here we assumed that the number of stresses impinging on the system

during time (0,¢) is a stochastic process and follows a Poisson distribution.

To study an n-standby repairable system with imperfect switching. For this
purpose, we have considered the repair of switch as well as the components and
evaluate reliability and other characteristics of reliability.

To study the identical stress-strength model with random parameters. In this
study, we have considered interference model where stress-strength are
exponential variates and one of the parameter (stress or strength) be a random
with a known prior distribution, other parameter remaining constant.

To study identical stress-strength model for warm and cold standby system with
imperfect switching. Here we have considered warm and cold standby system
where switching mechanism is not perfect.

To study the stress-strength models for standby redundancy and cascade
redundancy.

To study cascade model for warm standby system with imperfect switching.

1.4 Outline and Organization of the Thesis

With relevant to the objectives mentioned above, the present thesis is organized in

nine chapters under broad headings.

Chapter 1  Introduction

Chapter 2 An Interference Model with Number of Stresses a Poisson Process

14
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o Chapter 3 An n-Standby Repairable System with Imperfect Switching

o Chapter 4 Identical Stress-Strength Model with Random Parameters in
Reliability Theory

o Chapter 5 Identical Strength for Warm and Cold Standby System with Imperfect
Switch: A Comparative Study

o Chapter 6 Identical Stress for Warm and Cold Standby System with Imperfect
Switch: A Comparative Study

e Chapter 7 Stress-Strength Model with Standby Redundancy and Cascade
Redundancy

e Chapter 8 Cascade Model for Warm Standby System with Imperfect Switching

o Chapter 9 Summary and Future Works
A brief summary of each chapter of the thesis mentioned above is highlighted below.

Chapter 2 is concerned an n-standby stress-strength system where the number of
impacts of stresses faced by the system is a Poisson process. i.e., the number of stresses

impinging on the system in time (O,I) follows a Poisson distribution. The general expression
of the reliability of the system R, is obtained for n=1, 2, 3, 4 when both stress-strength of

the components follow exponential, gamma, normal and Weibull distributions. Numerical
integration method is used to obtain the system reliability in some cases. Some numerical

values of reliability R,(t), R,(t), R;,(t), R,(t) have also been tabulated, for different set of

values of the parameters of the stress-strength distributions in all the cases. To make the
things clear, a few graphs are drawn for selected values of the parameters. These graphs are
smooth enough to facilitate direct reading of reliability for intermediate values of the

parameters.

An n-standby stress-strength system with a single repair facility has been made in
Chapter 3. Here assumed that the stresses are impinging on the system in cycles and the life
time (discrete) of the system is measured by number of cycles it can withstand and also the

switch works under the impact of stresses. When stress-strength of the components and the

15
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switch follow exponential, gamma and normal distributions and repair time distribution is
geometric variate, reliability of a 3-component standby system at the & th cycle is obtained.
Some numerical values of the reliability corresponding to different values of the parameters

involved are also tabulated.

Chapter 4 deals with the identical stress-strength model where they are exponential
variates and one of the parameters (stress or strength) is assumed to be a random with a
known prior distribution, other parameters remaining constant. Here we have considered only
two cases. First, strength parameter is random but stress parameter is a constant. Secondly,
stress parameter is random but strength parameter is a constant. Uniform and two-point
distributions are taken as the prior distributions for the parameters concerned. Using the
derived compound distribution, general expressions of reliability of the system is obtained. In
order to see how system reliabilities change with parameters involved, we have tabulated

some values of R, R,, R,, R, for the distributions from their expressions. To make the

things clear, a few graphs are also drawn.

A comparative study between warm and cold standby system with imperfect
switching for identical strength has been discussed in Chapter 5. Similarly, a comparative
study for identical stress has been discussed in Chapter 6. The strengths of different
components and the stresses on them during functioning and when they are standbys, are all
independent random variables. When stress-strength of the components and the switch follow
particular distributions viz. exponential, gamma and normal then the general expressions of

system reliability R is obtained for n<3. Various reliability parameters have been

computed and analyzed by tabular illustrations. Some graphs are drawn for selected values of

the parameters in Chapter 6.

Chapter 7 is concerned with the determination of system reliability when stress-
strength distributions are assumed to be dissimilar for n-standby and n-cascade systems.
Here general n-standby and n-cascade systems have been considered where all stresses and

strengths are independent random variables. Depending upon the nature of f(x)’s and

16
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g,(y)’s different cases may be considered. Explicit expressions of reliability R(r),
r=1,2,..,n and hence R, is obtained for all the cases in an »n-standby system. For n-

cascade system, the reliability expressions considering the different cases are obtained up to
3-cascade system and a recursive rule is indicated, except in one case, for obtaining the

expression R(r). Some numerical values of reliabilities R(1), R(2), R(3) and R, are

tabulated against the different values of the parameters and graphical technique is described

for a particular set up.

In Chapter 8, the general cascade reliability model for n-warm standby system with
imperfect switching has been developed and the reliability expressions are obtained when the
stress-strength of the components and the switch follow particular distributions. Following
two cases have been considered for our study.

e Stress-strength for the active component, standby component and the switch

follow exponential distribution

o Stress-strength for the active component and the switch follow Exponential

distribution and standby component follows gamma distribution.

For both the cases the marginal reliability R(1), R(2), R(3), R(4) and the system reliability
R, for a 4-cascade system are obtained. Also some numerical values of the reliability, in

each case, are estimated and presented in tabular form against the parameters involved.

Lastly, overall summary and future works have been given in Chapter 9 and some
chapter-wise information/results in the form of tables, references and literatures cited in the

thesis of the present work are listed at the end.

* ok kok Kok

17



Chapter 2

An Interference Model with Number of
Stresses a Poisson Process



Chapter 2

An Interference Model with Number of Stresses a
Poisson Process

2.1 Introduction

In interference models in reliability theory it is assumed that a system is working
under impacts of stresses. The system has some property which withstands the impacts of
stresses; that property is called its strength and is measured by the minimum stress required
for the failure of the system. They are called the stress-strength of the system and are
assumed to be random variables. The system works if an impact of stress is smaller than or
equal to its strength. The reliability of the system is the probability that it works. Such types
of models are studied by many, e.g. [Dhillon (1980), Frudenthal (1996), Kapur and
Lamberson (1977), Pandit and Sriwastav (1978), Sriwastav (1994, 2003), Sriwastav and
Kakati (1981)].

In most of the studies of interference models, in evaluating the reliability of the
system, only its stress-strength are taken into consideration as if the passage of time has no
effect on it. But to assume that passage of time has no effect on the reliability of a system
seems to be somewhat unrealistic. A more realistic situation will be one in which both time
and stress directly affect the system reliability. In some studies e.g. Sriwastav (1994) time
has come into the picture in an indirect way. To bring time into the model, directly, it may be
assumed that the number of stresses impinging on the system in the time (O,t) is a stochastic
process. Here we have considered an »-standby system. We have assumed that the number
of stresses faced by the system is a Poisson process i.e., the number of stresses impinging on

the system in time (O,t) follows a Poisson distribution. Here the system reliability at time '¢#'
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is defined as the probability that 'r' impacts of stresses impinges on the system in time (O,t)

and the system stands '#' impacts i.e., at least one component is working at time 't'. Pandit

and Sriwastav (1978) have mentioned this problem for cascade reliability.

The organization of this chapter is as follows: In Section 2.2, the general model is
presented mathematically. The reliability of the system can be obtained if the forms of the
stress and strength are specified. In Section 2.3, assuming that stress-strength both is either
exponential or gamma or normal or Weibull, the general expressions of the reliability of the
system are obtained in each case. For some particular values of the parameters involved
numerical values of the reliability are tabulated in the Table 2.1, Table 2.2, Table 2.3 and
Table 2.4 (cf. Appendix) and some graphs are plotted for all the cases in Section 2.4.

Results and discussions are given in Section 2.5.

2.2 Mathematical Description of the Model

Here we have an n-standby system. Let X,,X,,...,X,, be the strengths of the n-
components in the system arranged in the order of activation. Let Y,,Y,,....Y,, be the stresses
faced, respectively, by 1%, 2" ..., n™ component when they are activated. X,'s and Y's

are all independent. For detail description of such a system one may refer Sriwastav and
Kakati (1981).

The reliability R, of an n-standby system for a single impact of stress is given by,
[Sriwastav and Kakati (1981)]
R, =R(1)+R(2)+...+ R(n) (2.2.1)
where, R(i) is the increment in the system reliability due to the i ™ component, defined as
R(G)=P[X,<Y,X,<7,,., X

<Y _,X,27] (2.2.2)

=1 -1

Here we are to find the reliability of the system at time 't when the number of
impacts of stresses on the system during the time (O,t) is 'r' (a random variable), following a

Poisson distribution given by,
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plr)= e—@ r=012,. (2.23)
r.

In an n-standby system, in the starting, there are » good components, of which one
is active and faces the impact of stress; the remaining (n—l) are cold standbys. Here we
would like to note that at least one impact is required for the failure of a component and more
than one component may fail in a single impact. Further if m(< n) components fail in a
single impact then at the next impact system is an (n - m) standby system and the (m + 1)”'
component in the original order of activation behaves as the 1* component in the order of

activation, (m +2)" as the 2™ component, etc.

We have to obtain first the probability that the system survives 'r' attacks. Here we
have considered the case when n <4, though the expressions for any finite n can be

obtained but the complexity of the expressions increases rapidly with increasing ».

Now, if R, (r), r =1,2,3,4, is the reliability of the n-standby system at the r* attack

then Sriwastav (2003)
R(r)=R/ (2.2.4)
R,(r)=R + R(Z{:JR{'I . (2.2.5)

R()=R(r)+ R(3(;JR{" + {R(z)}z(;)}e,"2 (2.2.6)
and

R,(r)=R,(r)+ R(4{:JR{“ + 2R(2)R(3{;)R,”2 R +{R(Q2)} (;]&"3 (2.2.7)

where R(1)= R, .

In this way we can find R, (r) for any finite 7.
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Since, as per our assumptions here r is a random variable follows the Poisson

distribution employing the equation (2.2.3), then the reliability of the system, R, (¢), at time ¢

is given by

R,(0)=3 p(r)R, () (2.2.8)

r=0

Then, substituting the values of p(r) from (2.2.3) and R, (r) from (2.2.4) to (2.2.7), we get

R()= Zp(r)Rl (r)= ie_mf—;xt)rR{ = ¢~(R) (2.2.9)
B(0= 3Pl )R,()
= i e_mff“)( [R,’ + R(2{IJR,"‘] =M1+ R (2)]
(2.2.10)
R()= 3 pC)R0)
- io e—mr(‘!"’ J [Rz )+ R(3{:)Rl’" ¥ {R(2)}2[;)R,"2J
= e+ ar{R(2)+ RE)}+ farR Q) 1(2)]
@.2.11)
R()= 3 PR ()
- 2 "_mr(!a’)r [R3 )+ R(4)U)R{" ¥ 21((2)1{(3{;}12{’2 ¥ {R(Z)}g(;JR{*}
g )[1 +at{R(2)+ R(3)+ R(4)}+ ]
(@t} RCKR(2)+ 2R(G)}/(2) + {ar(2)} /(31)
(2.2.12)
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If the stress-strength distributions are specified then from equation (2.2.2) we can

obtain R(i), from (2.2.4) to (2.2.7) we can obtain R, (r) and from (2.2.9) to (2.2.12) we can
obtain R (¢), for n< 4.

2.3  Stress-Strength follows Specific Distributions

Exponential, gamma, normal and Weibull these are the most common distributions
used in reliability theory. What follows, we have assumed that the distributions of stress and
strength both for every component are either exponential or gamma or normal or Weibull

variates.

2.3.1 Stress and Strength Exponentially Distributed
Let us assume that both strength (X,) and Stress (¥) of the i component,
i =12,...,n are exponentially distributed with densities
f(x,.)= /Le"l’" ,i=1,2,..,n,0<x <0, 4, >0,

and , respectively (2.34)
g(y,.)= pe i=12,..,n0<y <o, y, >0

Then we can easily see [Sriwastav and Kakati (1981)] that

R(i)= R(p,)R(p, ) R(p,.. )R(p,) (2.3.2)
where p, = A , R(pi) - and E(p, )=1- R(p,) - (2.3.3)
H, I+p,

Usually, the components used in a standby system are identical and the working conditions
also do not change drastically. So strengths of all the components may be assumed to be

identically distributed, similarly all the stresses may also be identical i.e.,

Py =Py =...=p, =p (say)
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Then, (2.3.2) becomes

RG)=[R(e)" R(p)

Substituting these values in (2.2.9) to (2.2.12) we get

R (t) = exp|- arR(p)],

R, ()= exp|- arR(p)|fi + R(p)R(p)},

R,(t) = expl- arR(p)] |1 + atR(p)R(o )i + R(o)}+ e R(o)R(o)} /2],

1+ aR(p)R() + R(o)+ R(o)) }+
L RpR() 0.5+ Ro)}+ larR(p)R(o)] 1(3)

R,(0)=expl- arR(p)]

2.3.2 Stress and Strength Distributed as Gamma Variates

Let us assume that both stress (Y) and strength (X,) of the i

i =12,...,n are distributed as gamma variates with densities,

f(x)——e"x"’ T 0<x <00, m 21,

l

and , respectively

(yl)_-ﬁe ” /_l; OS Y < @, II 2 1, = 1,2,...,’1,

Then from Sriwastalv and Kakati (1981)
R(’) R(ml’l )R(mzal )~ R(m, -1» :-I)R(mu ,)

wd O(m, +1 - j-1)
h R ,l, = ! : s
whnere (m, ) ;rl(m‘ _j_l)!2,,,,+/‘__,_1

i=12,.,n

R(m,.1,)= 1—R(m ') and m,'s are integers.
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(2.3.6)

(2.3.7)

(2.3.8)
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(2.3.11)



Chapter 2

As commented in Sub section 2.3.] taking stresses and strengths identical, so that

m,=m,l =1V i, wehave

R(i) = [R(m, D] R(m, 1) 2.3.12)

Then, from (2.2.9) to (2.2.12) we have,

R, (1) = e==Fm) (2.3.13)
R, (€)= e + arR(m, 1)R(m, 1) (2.3.14)
Ry(¢) = e®ml 1 Rlom, 1)R(om, 1) + Rlom, 1)+ e Rm, DR(m, )} /(21 2.3.15)

1+ atﬁ(m,l)R(m,l){l + Rlm, 1)+ (R(m 1)f }

+wﬂ§wﬁmmmﬁgdmu%+’s

R,(f) = e7=Fm) (2.3.16)

%j&w@mmm3

2.3.3 Stress and Strength Normally Distributed
Let X, be a N(u,,0,) variate and ¥ be a N(%,,6,) variate. Then from Sriwastav

and Kakati (1981)
R(i)=¢(4,)6(4,)-$(4,_ (4,), (2.3.17)
where 4, S Hh g #(4)=1-9(4), i=12,..,n. (2.3.18)

ol +6}
Further, let us assume that X ,'s are identical and Y,'s are also identically distributed, then

H—A

A=d=—L"2 vi=12..n (23.19)
Vol +6?
andso,  R()=[p(d)]” () i=12,...n (2.3.20)
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Then, substituting these values in (2.2.9) to (2.2.12) we get

R/(f)= e, (2.3.21)
R,(t) = e 1 + () ()} (23.22)
R(f) = e~ 1+at¢(A)¢(A Y+ (a)}+ {at¢(A)¢ }} (2.3.23)
[+ arpla(a+ )+ G+ L adam(af §+23()
R, ()= e L 3 (2.3.24)
5 A (A()]

2.3.4 Stress and Strength Distributed as Weibull Variates
Let us assume that both stress (¥,) and strength (X,) of the i” component,

i=12,...,n are distributed as Weibull variates with densities,

N

fx)=bx""e ( ) /16°,0< x, <0, 0)0
and + , respectively (2.3.25)

(=)
glx)=cye (& /7,0<y, <, )0
Then we have,
R(i)= R(6,,4)R(6,,2,). R, 2, )R6,,4,) (2.3.26)
” b+ » ¢
where, R(O,,/l,)=l—%je{(e‘) [‘*) L,Hd}’,

(1]

E(GI’AI)ZI_R(QI’ I)

As commented in Sub-Section 2.3.1 taking stresses and strengths identical, so that
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0, =0, 4, =AVi we have,

R()=[R(6,4)]" R, 2) (2.3.27)

Then from (2.2.9) to (2.2.12) we have,

R (£) = e™R@A) (2.3.28)
R, (1) = e ®@V |1 + cu{R(6, A)R(6, 1) (2.3.29)
Ry(1) = =2 1 arR(0, A)R(6, M) + ’(6, A)}+ e R(6, A)RE, ) /(2)] (2.3.30)

1+ R0, )R, A + R0, 1)+ R(6,A) }+

(@) 6, A)R(G,A)}Z{%+'I§(6,A)}+a—;t3—{§(9,/l)R(0, W

R, () = e koA (2.3.31)

2.4 Graphical Representations
Some graphs are plotted in Fig. 2.1 to Fig. 2.4 by taking different parameters along
the horizontal axis and the corresponding reliability along the vertical axis for different

parametric values. In Fig. 2.1 taking a¢ along the horizontal axis and the corresponding

R, (t) along the vertical axis graphs are plotted for different values of p. One can read the
values of R, (t) for intermediate values of ot, from this graph. Thus, for p=0.5 we get
R,(t)= 0.4337. For ot =2.52 from graphical extrapolation, while the computed value is
R,()=0.4317. The difference is only 0.20%. From Fig. 2.2 Graphs of R;(t) against at are

plotted for different pairs of the values of m and . These graphs may be used for reading

the values of R,(¢), corresponding to intermediate values of at . For instance, for m=1, /=1
and af =3.5 from the graph we get R,(¢)=0.4707, whereas actual calculation yields the value
as R, (t)=0.4684. The difference is only 0.23%. Fig. 2.3, from the graph, as expected, it is

seen that R, (t) decreases steadily with increasing o . These graphs may be used to read the
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intermediate values directly. For example, for ar =4.5, u=1 and o =1 we get from the graph
R,(t)=0.6192 whereas by actual calculation we get R,(t)=0.6188. The difference is only
0.16%. Fig. 2.4, based on the values of R, (t), extensively tabulated in just above these
graphs, curves of R, (t) were drawn against az for different parameter values of ,8,c and
A. From these graphs we get R,(r)=0.5799. For ar=0.357, b=0.8, 6=0.6, c=0.7, 1=0.2
while the computed value is R, (r)=0.5768. The difference is only 0.31%.

R,(®)

Fig. 2.1 Exponential Stress-Strength: Graph for R, (¢) for different fixed values of p i.e.,

R ().
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1.0 -
] R,(3.1)
0.9 -
0.8 -
0.7 - R,(2.1)
0.6 -
= 0.5
" ]
0.4?
0.3 - R,(1,1
0.2 1
0.1 R,(1,2)
o
1 2 3 4 5 8 7 8 9

Fig. 22 Gamma Stress-Strength: Graph for R,(t) for different fixed values of m and !
ie., R,(m,I)

A

—AR (2,.5)

R,(2.1)

R,(1,.5)

R,(1,1)

(=]
o
-
-
-
p
-
4

at

Fig. 2.3 Normal Stress-Strength: Graph for R, (t) for different fixed values of 4 and o

ie, R,(u,0)
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1.0 4
0.9 A
R/(.9,7.8.1)
-L\‘\‘\A_\‘\‘\‘RA.B,B,J,.Z)
R‘(.7,.5,.6,.3)
0.3 4 R,(6,4,5,4)
0.2-
1
0.14
0.0  ——————————
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

at ——

Fig. 2.4 Weibull Stress-Strength: Graph for R, (t) for different fixed values of b,6,c and
Aie., R,(5,0,c,4).

2.5 Results and Discussions

For some specific values of the parameters involved in the expressions of R, (t),
i=12,3,4 and for given values of 't' we evaluate R, (t) to R, (t), for different distributions,
from their expressions obtained in the last section. From the expressions of R,(t), it is clear

that their values depend upon the values of ‘az’ (= mean no. of stresses in time 0 to ¢)

rather than the individual values of a and ¢.

Table 2.1 (cf. Appendix) presents the values of R,(t) R,(r) R,(t)and R,(f) for
different values of the parameter p for exponential distribution. From this table, it is clear

that the values of the reliability are on expected line. Increase in the values of a¢ decreases

the reliability. Increase in the values of p also decreases the reliability. For instance, when

at=1,p=.5 then R()=0.7165 R,(t)=0.8758, R,(r)=0.9465 and R,(r)=0.9973.
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Again when ar=2, p=1 then R (f)=0.3679, R,(t)=0.5518, R,(t)=0.6898 and
R,(t)=0.7894.

Table 2.2 (cf. Appendix) presents the values of R,(t), R,(t) R,(t) and R,(t) for

different values of the parameter / and m in case of gamma distribution. From this table, we
have seen that here also the change in the values of reliability is as expected. The increase in

the values of ar decreases the reliability. From the table we have seen that when af =2 then

the reliabilities are R, (¢)=0.2231, R,(t)=0.3068, R,(r)=0.3852 and R,(r)=0.4578.
Again when ar=3 then R/(t)=0.1054, R,(¢)=0.1647, R,(1)=0.2258 and
R,(1)=0.2873. When m increases, reliability increases. For example, if m=1 then
R(t)=0.3679, R,(t)=0.5518, R,(t)=0.6898 and R,(r)=0.7894 and if m=2 then
R (r)=0.6065, R,(t)=0.8340, R,(r)=0.9335 and R,(t)= 0.9744 i.e., reliability increases.

But when [ increases, reliability decreases. For instance, when [=1 then

R (£)=0.3679, R,(¢)=0.5518, R,(t)=0.6898 and R,(t)=0.7894 and when /=2 then
R(r)=0.2231, R,(t) =0.3068, R,(t)=0.3852 and R,(t)=0.4578.

For normal distribution, the reliabilities R, (t), i=1,2,3,4 are tabulated in Table 2.3
(cf. Appendix) for different values of the parameter p and o . This table is also self
explanatory. With increasing ot reliability decreases where as with increasing u increases

but decreases with increasing o . Of course, the effect of u is more than that of o .
Similarly the reliability values of R, (), R,(t), R,(t) and R,(t) for different values

of the parameter b,0,c and A are presented in Table 2.4 (cf. Appendix). Here also the

change in the values of reliability is as expected. The increase in the values of a¢ decreases

the reliability.

%k k kK k
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Chapter 3

An n-Standby Repairable System with Imperfect
Switching

3.1 Introduction

As mentioned in chapter 1, switching mechanisms are required in standby redundant

systems. Here we have considered a standby repairable system with imperfect switching.

In a standby system when the active component fails to remove it and to insert its
place a component from standbys a switching mechanism is required. In an stress-strength
(S-S) standby system a component with strength (X) works under certain stress (¥), both
Xand Yare random variables. The component fails when the stress on it exceeds its
strength; the reliability of the component is defined by the equation (1.1.1) as given in
Chapter 1.

In an S-S standby system with repair when the active component fails, it is sent for
repair and the next component (if there remains "any) is instantly activated by some device
which is termed as switch. In general it is assumed that the switching mechanism is perfect
i.e., absolutely reliable and switching is instantaneous. Hence, in the evaluation of system
reliability, reliability of switch is not taken into account. But in practice the switch may also
fail and this will change the reliability structure of the system. It is assumed that the impacts
of stresses are coming in cycles and the life-time of a system is measured in number of
cycles, (Pandit and Sriwastav, 1976). Here, it is assumed that in an impact (or cycle) only one
component can fail. The repair time is also measured in cycles and at least one cycle is
required to repair a failed component. The system will work if the first component works or

at least one of the standby component along with switch works.
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In this chapter we have considered a 3-component standby system with a single repair
facility with imperfect switch and obtain the reliability of the system at the N " cycle of the

stress.

Studies of standby system with imperfect switch for S-S models are considered by
many persons, for example, Kapur and Lamberson (1977), Sriwastav and Dutta (1984), Dutta
and Bhowal (1997, 1998, 1999) etc. However, standby system with repair are considered by
several authors including Gopalan and Venkateswarlu (1985), Subramanian and
Anantharaman (1995), Xu, Guo, Yu and Zhu (2005), Sriwastav (2005), Srinivasan and
Subramanian (2006) etc.

Organization of this chapter is as follows: Section 3.2 deals with the description of
the system. In Section 3.3, the general model for a 3-component standby system with
imperfect switching is developed. In Section 3.4, numerical evaluation is presented. In
Section 3.5, three specific distributions are considered to obtain the reliability. In Sub-
Sections 3.5.1, 3.5.2 and 3.5.3, all the distributions are assumed to be exponential, gamma
and normal respectively for the components and the switch. To see the effect of changes in

different parameters on reliabilities, some numerical values of R,(N), N =34,5 are

obtained in each case and tabulated against the parameters in the Table 3.1, Table 3.2 and

Table 3.3 (cf. Appendix). Results and discussions are reported in Section 3.6.

3.2 Description of the System

Let us consider a 3-standby system where the components are arranged in the order of
activation and numbered accordingly. To start with the first component is working; the
second and third components are standbys. The components are dissimilar. When the first
component fails, the second component starts working in its place by a switch and the system
continues to work and the first component goes for repair and if its repair is completed before
the second and third component fails, it will become the standby. There is a single repair
facility, which takes up the components for repair on first-come-first serve basis. When the
second component fails, the third components starts working by a switch in its place and the

system continues to work. The second component goes for repair. The system will work till
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the switch works and either the first component works or there is a standby to work. The
system fails when all the three components have failed or the active component fails and
switch fails i.e., one is under repair and the two are in the queue for repair. The switch is also

repaired by the same repair facility.

As assumed in Section 3.1, the components and the switch are working under impact
of stresses and stresses are impinging on the system in cycles. If the working component fails
in a particular cycle the next component will face a stress in the next cycle. i.e., only one
component can fail in one impact (or cycle) of the stress. Similarly components repair time is
also measured in cycles and at least one cycle is required for the repair of a component. If a
component is repaired in i ™ cycle, it will be available for use from (i + 1)'h cycle. Though the
active component faces in cycles but the switch faces a stress only when it is to activate a
standby unit. The switching is instantaneous i.e., if the switch works the next component is

immediately activated and is ready to face the next cycle of stress on the system.

3.3 General Model for a 3-Component Standby System

As we have assumed that the switch also works under the impact of stresses. Let U
be the strength of the switch and V' be the stress on it. The switch fails when U <V, where
U and V are assumed to be independent random variables. Let X, be the strength of the i
component and Y, be the impact of stress on it, X, and Y, are both random variables. The
switch and the components are assumed to work independently. Then g, the reliability of the

. th
1

component i =1,2,3 is given by
a =Plx, >7)] (3.3.1)

and the reliability of the switch is

R =P[U2V] (33.2)
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Let p,(j) i=123; j=0,2,.. be the probability that the repair of the i™ component is
completed exactly at the ;™ cycles. Then the probability that the repair of the i * component

is completed on or before the k™ cycle is given by
k
P(k)=>p,0) (3.3.3)
=0

The reliability of the 3-standby system at the Nt cycle, N =0,1,2,...with imperfect

switching is given by,

N N-k
R(N)=al +(1-a)3 aP(U > V{ =a)S a P > VIR, (V-k- )
k=1

=

(3.3.4)

where F; (N —k- j) is the survival probability of the system for the remaining (N -k- j)

cycles starting with the 3™ component. (1% and 2™ component have already failed; 2™

component worked for (j 1) cycles and failed at the j ™ cycle. i.e.,

F,(N-k-j)=al* +(1-a, )Nf/a;‘P(U 2V +1)F, (N-k-j-1) (3.3.5)

=1

By the same argument as in (3.3.5)
N=k=j=i
F,(N-k-j-i)=a/""" +(1-q) zfa,’"P(U V)P (i+1)F,,(N~k—j-i-I) (3.3.6)
I=1
and
N—k— -1~

Fy(N-k-j-i-l)=a)"*"""+(l-a,) Y a'PU2V)R(+n)F,,(N-k-j-i-1-n)
n=1

(3.3.7)

In general, we can write,

F (m)=af +(-a,)3 a " PU 2 V)P, (s +i)F,
1=

r+l,:

(m-i), r=1,2,3; s=12,.<N-2

(3.3.8)
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Since there are only three components hence for » =3, r +1=1, because of the components

are numbered in the order of activation and are repaired in the order they fail. Since, by
assumption, at least one cycle is required for the repair of a component, hence

P(0)=0,i=1,23 (3.3.9)

Further, with the convention that

EJ:(-)= 0, for j, | (3.3.10)

we can easily see from (3.3.5), (3.3.6) and (3.3.7) that

F,(0)=1,i=123; d=12,. (3.3.11)
Since only one component can fail in an impact (or cycle), so obviously

R(0)=1, R,(1)=1, R,(2)=1 (3.3.12)

we can see this from (3.3.4) under the convention (3.3.10) and using (3.3.11).

3.4 Numerical Evaluation
Here the expression (3.3.4) could not be obtained in closed form but if stress-strength

distributions are known we can find the values of a,’s, i=1,23and R’’s if repair time
distribution is known, then P,(.)’s, i=1,2,3 are also known. Substituting these values in

(3.3.5), (3.3.6), (3.3.7) and from (3.3.4) we can obtain the reliability R,(N) for any finite N .

Here reliability R,(N) is obtained for N =3,4,5 when both stress-strength and the

switch follow either exponential or gamma or normal variates and repair time distribution is
geometric variate.

Now,

R(B)=a’ +(1-a)P{U > V)i Aa” (3.4.1)

=1

3
where, 4, =a;" +(1-a, )Za{"P(U > V)Fl; B-i-j) i=123

=1

R,(4)=a' +(1-a,)PU > V)ﬁjB a™ (34.2)

=1
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41
where, B, =a;” +(1-a,)) a} ' P(U 2V)F, (4~i- ) i=1234
=]

R(5)=a; +(1-a,)P(U > V)ZS: Ca™ (3.4.3)

5=
where, C, =a;” +(1-a,)Y a ' PU2V)F, (5-i-j) i=12345
=1

J

From (3.3.8) we have,
F.,(0)=a +(1-a,)PU=2V)P, (s+1)} r=123; s=1234 (3.4.4)
F..2)=a’+({-a,)PU2V)P.,(s+1)F,..,()+a' P, (s +2)] (3.4.5)

reor+t

Fr,.\' (3) = af + (1 —4a, )P(U = V)[Pm (s + l)FrH,l (2)+ a:Pm (s + 2)Fr+l,2 (1)+ af P, (S + 3)]

(3.4.6)
F 1
Fr 3(4) - a: + (1 _ ar )P(U > V Pr+l (S+ 1) r+i,1 (3)+ arPr+1 (S + Z)Frn,z (2)+ ,
, af Pr+l (S + 3)F‘r+l,3 (1) + aSPr-H (S + 4)
r=123; s=12,3,4 andfor »r =3, r+1=1 (3.4.7)

3.5 Reliability for Specific Distributions

In this section we consider stress-strength of the components and the switch follow

particular distributions, viz. exponential, gamma and normal.

3.5.1 Exponential Stress-Strength for the Switch and the Components

Let us assume that both strength (X, ) and stress(Y,) for the i™, i= 1,2,3 component
are exponential with mean 1/u, and 1/2, respectively and let U and ¥ be exponential with

mean 1/« and 1/ B for the switch. Then, Kapur and Lamberson (1977)
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K 1 H
a =PX, 2Y)= = , where p, = : 3.5.1
! ( 1 l) (/1,_*_#’) 1+p P /‘L, ( )
and
R=b=PU2V)=-2%—-=_1 Gherev=% (3.52)
B+a 1+v B

Further let us assume that, repair time distribution of the i™ component and the switch is a

geometric variate with probability of repair being completed in a cycie p, then,

P(m)=1-q", m=012,.; ¢ =1-p, (3.5.3)

The reliabilities R3(N), for N=3,4,5 are computed and presented in Table 3.1 (cf.
Appendix) for p=.1,.5,1.0,1.5,2; v=2, .3, .5,.7, 9and p,=.9, .8, .6, .4, .2. In general, the
components used in standby systems are identical, so reliability are calculated assuming
p,=p,=py=p(say) ie, a,=a,=a,=a(say) and p =p,=p,=p(say) ie,

4, =q, =9, = g (say).

3.5.2 Gamma Stress-Strength for the Switch and the Components

Let us assume that both stress and strength of the ;™ components are gamma variates

with scale parameters unity and shape parameters (or degrees of freedom) / and m,
respectively. Further let U and V' be gamma variates for the switch with degrees of freedom
c and d respectively. If either /, or m, is an integer then the reliability a, and R* ofthe i"

component and the switch is given by Kapur and Lamberson (1977),

X Tl 4, j-1)

: e 354
’ /Z; Fl: (ml —j—l)!2""+’-/-l > ! Liad] ( )
and
d-1 .
o Z r(d+c : 1) (3.5.5)

HTc(d - j— 1)+
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As assumed in Sub-Section 3.5.1, generally, the components are identical. i.e.,
m =m,=m, =m (say) and [, =1, =/, =1 (say) or in other words a, =a, =a, = a (say).
The reliabilities R,(N), for N =3,45 are computed and presented in Table 3.2 (cf.

Appendix) for some selected values of the parameters.

3.5.3 Normal Stress-Strength for the Switch and the Components

2
i

Let the stress-strength of the i™ component are N (0,1) and N ( U,0 ) variates and

let U and ¥ be normal with N(0,1)and N (a,rz) variates, respectively for the switch. Then

its reliability is given by Kapur and Lamberson (1977), as

a,=¢( o J,i:1,2,3 | (3.5.6)

Jl+o?

and

R’:b:u/( @ J (3.5.7)

For illustration purpose reliabilities are computed for the components a, and the switch R’

assuming the repair time distribution is geometric. The reliability of the 3-standby system

R, (N ) atthe N thcycle N =3,4,5 is presented in the Table 3.3 (cf. Appendix).

3.6 Results and Discussions

From the Table 3.1 (cf. Appendix), it is observed that the values of the reliability are
on expected line in case of exponential distribution. For example, when the number of cycles
N increases R,(N), N =345 decreases. i.e, R,(3)>R,(4)> R,(5). This should be the
case, because we use the components more than one times. If we use one component more
than one or two times than its life goes to decrease (i.e., they have no capacity to work like as
first time because of it’s used before). But the rate of decrease is very slow for large values of

a’s, b’sand p’sie., small ¢g’s. For example, when a=0.9091, 5=0.8333, g=.1 ie,
p =.9 then the values of reliability R3(N), N =3,4,5 becomes 0.9552, 0.9407 and 0.9265
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respectively. Again the rate of decrease is faster for small a’s, b’sand p’si.e., large ¢g’s.
For example, when a=0.3333, =0.5263, ¢=.8 ie, p=.2 then the reliabilities R, (N)
become 0.2927, 0.1728 and 0.0990 respectively. The effect of changes in the values of a’s is
more than that of ¢’s. Even for comparatively unreliable components with highly reliable

repair facility, at least for first few cycles high reliability can be achieved. The effect of

decreasing values of a’s and b ’s is more for smaller p’s (i.e., larger g ’s) than for large

p’s. Similar conclusion can be made for the Table 3.2 and Table 3.3 (cf. Appendix) in case

of gamma and normal stress-strength.

% Kk %k k k
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Identical Stress-Strength Model with Random
Parameters in Reliability Theory

4.1 Introduction

Mostly discussions of interference models assume that the parameters of S-S
distributions are constants Beg (1980), Enis and Geisser (1971), Harris and Singpurwalla
(1968), Kapur and Lamberson (1977), Kelly, Kelly, J.A. and Schucany (1976), Sriwastav
(1976). But in many cases this assumption may not be true and the parameters may be
assumed themselves to be random variables. In other words, the distributions with fixed
parameters may not represent the stress and strength distributions adequately and a
distribution with random parameters may represent the situations better. For example, if a
particular component, having certain strength distribution is manufactured in different lots,
then for a particular lot the parameters of the strength distribution may remain fixed but may
vary randomly from lot to lot. In such situations the parameters of the strength distribution
may themselves be taken as random variables Harris and Singpurwalla (1968). Similarly, the
stress applied on a component (or system) is due to different factors such as temperature,
pressure, vibration, humidity etc. Generally, one of these factors will be dominant and will be
the main cause for the stress on the component and the stress distribution will be the
distribution of this factor. But the other factors may vary at different times or at different
places in such a way that, though they do not alter the nature of the distribution, they bring
random changes in the parameters of the stress distribution. For example, the vibration at
high temperature will be more severe for a joint than at low temperature Robert (1964) and
hence the distribution of stress (due to vibration) may have different parameter value at
different temperature or in other words we can say that the stress parameters are random

variables.
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Further, if a prior knowledge exists about the parameters involved, it will be a waste
of available data if we do not use a random parameter model i.e., a Bayesian model. In order
to use the Bayesian approach, it is generally assumed that the subjective knowledge can be
quantified somehow and represented in the form of a prior distribution of the parameter
involved Kapur and Lamberson (1977). When prior distribution is known, the unconditional
distribution of the random variable (stress and/or strength) can be recovered Harris and

Singpurwalla (1968), Kapur and Lamberson (1977).

Harris and Singpurwalla (1968) have considered life-time distributions with random
parameters. They have taken uniform, two-point and gamma distributions as prior
distributions for the parameters. They have considered estimation problem for this model.
Here we have considered only uniform and two-point distributions as prior distributions to
estimate the system reliability but not considered any estimation problem. Shooman (1968)
has considered the parameter of strength distribution as a deterministic function of time.
Tarman and Kapur (1975) have assumed that the parameters of the stress-strength

distributions are variables but not random variables.

In this chapter some of the results were presented in Gogoi and Borah (2011). Here
stress-strength model is considered where they are exponential variates. Also assumed that
the parameters of the stress-strength distributions are random variables. Though all the
parameters involved may be taken as random variables for simplicity, only one parameter, at
a time, is taken to be random with a known prior distribution, and other parameters
remaining constant. The main aim of this chapter is to obtain the system reliability R, for
identical stress-strength model. The following two cases have been considered for this
investigation.

Case I:  When strength parameter is random but stress parameter is a constant.

Case II: When stress parameter is random but strength parameter is a constant.

For the above two cases, the prior distributions considered for stress-strength

parameters are either uniform or two-point distributions.
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Section 4.2 deals with the general model for identical stress-strength. In Section 4.3,
we consider that the strength parameter A is a random variable whereas the stress parameter

4 remains constant. Prior distribution of A is assumed to be uniform and two-point

distributions respectively in Sub-Sections 4.3.1 and 4.3.2. Section 4.4 presents the opposite

of that considered in Section 4.3. i.e., we consider here the stress parameter x4 is a random
variable and A remains constant. Sub-Section 4.4.1 and 4.4.2 deals with the uniform and

two-point prior distributions for u. The Table 4.1 (cf. Appendix) to Table 4.4 (cf.

Appendix) can be used for making a system reliability analysis. To make the things clear, a
few graphs are drawn in Section 4.5 for selected values of the parameters. These graphs are
smooth enough to facilitate direct reading of reliability for intermediate values of the
parameters. Section 4.6 is devoted to a discussion on the results obtained in Section 4.3 and

4.4 respectively.

4.2 Notations, Definitions and Formulation of the Model

Here we have assumed that strength ¢ X * and stress ‘Y’ are exponential variates with

1 .
means % and —, respectively. The parameters A and g may be random.
u

Let P(/l), p(}t)= The prior distribution function and p.d.f. (or p.m.f}) of the random
strength parameter A
Q(,u), q(,u)= The prior distribution function and p.d.f. (or p.m.f)) of the random
stress parameter u
f(x//l)= The conditional p.d.f. of the random variable X for a given value of A
g(y//,t) = The conditional p.d.f. of the random variable Y for a given value of u

£.(x)= The unconditional p.d.f. of the random variable X

g, (¥)= The unconditional p.d.f. of the random variable ¥

where £, (x)= T f(x/2)ap(2) (4.2.1)

and g,(y)= _Tg(y/u)dQ@) (4.2.2)
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Here f(x/A)= f,(x) if A is constant and g(y/ u)= gy(y) if p is constant.

Let X,,X,,...,X, be the strengths of the n components in order of activation, and
Y,Y,,..,Y, be the respective stresses on them. Here X,'s and Y's, i=12,...,n, are all
independent random variables reliability R, of the system is given by the equation (2.2.1).

where, R(r) denotes the marginal reliability due to the »™ component.
ie.R(r)=P(X,<¥,X,<Y,,..X, <Y _,X, 2Y) (4.2.3)

Let f,(x) be the p.d.f. of X, and g,(y) be thatof ¥,, i =1,2,...,n then from (4.2.3)

R(r):[j;m (y>gl<y)ay}[jp(y)g2 uwy}...BF,-,(y)g,-xy)dy}[joﬁ(y)g, uw}

(4.2.9)

X

where F(x)= jf, (x)dx and F,(x): F.(x)

—w0

If all the components having some strength distributions are working under the same
environment (stress) then we can assume that stress-strength distributions of all the

components are identical, i.e., all the X,'s and Y's are i.i.d with p.d.fs f(x) and g(y),

respectively, i =1,2,...,n then (4.2.4) reduces to,

R(r)= D:F (y)g(y)dy]_l[if(y)g(y)dy} (42.5)

4.3 Random Strength Parameter
Here we assume that the strength parameter A is a random variable whereas the

stress parameter (4 remains constant, i.e., f(x//1)= Ae™™ and g, (y): e

Two types of prior distributions are considered for A

4.3.1 Uniform and 4.3.2 Two-point
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4.3.1 Uniform Prior for 2

In a situation where the components are homogeneous within each lot but different
lots have different values of A and taking all the possible sources of the lots together, each
value of A appears equally frequently, a uniform prior distribution will be suitable for A
Harris and Singpurwalla (1968).

1
b-a’

Let A be uniformly distributed in the range (a, b), ie., p(l):

Then the unconditional p.d.f. of X is given by

~*dx

fx)=

Hence from (4.2.5) we have,

|
|

Jw)gy(y} [jF gy(y)dy]

R()=|

¢ ey 8

. (xyx}gy@)dy

b+u

| b
= { { 1a£/1e-”d/1dx]ue-way=zi_‘—alog:w

=
—~

Y%}
p

I

=_T(1- il j,ue'”dy}R(l)

[ o b-a y

=[1- ROIRQ)

)= [ 0%, (»]H 706,00 | <1 0

Then in general we can write,

R(r)=[1- RA)I™ R()
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In a situation where it is known that A can take two only values A, and A, (say),

with probabilities p and (1— p), respectively, a two-point distribution for A is appropriate

Harris and Singpurwalla (1968).

Let A have a two-point distribution, given by,
Pr(A = 4,)= p(1,) and Pr(2 = 2,)= p(4,)
Then,

fx (x) = i]/l,p(/l, ) = ple™ + (1 _ p)lze"“’

Hence from (4.2.5) we have,
Tl

N AL B
Atu A +u

R(2)=| [F, gy(y)} [IF g, y)dy}

| | _P 1-p P 1-p
! [ﬁq+#+iz+#]ﬂ}[(l.+#+%+#]#}

=[1-ROIRO)

#0)<| F00e,0)] [ 1700, 00 -t~ m

Then in general we can write,

R(r)=[1- RO R()
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System reliability R, may be computed by substituting the values of R(r), r=12,..,n in the
equation (2.2.1). For different values of the parameter a,b,u and p,4,,4,,u the values of
R, R,, R,, R, from (4.2.3) are tabulated in Table 4.1 (cf. Appendix) and Table 4.2 (cf.

Appendix).

4.4 Random Stress Parameter

o 1 1 .
Here also the stress and strength are exponential with mean — and 1 respectively.
M

But now g is a random variable and A remains constant, ie. g(y/u)= pe™ and

S x)= e

For u also the prior distributions considered are uniform and two-point distributions

respectively, in the following

4.4.1 Uniform Prior for u

Let u be distributed uniformly in the range (c,d), then

q(u)= ! , 0sc<pu<d

Then,

1 ¢
gy(y)=E!ue “dy
Hence from (4.2.5) we have,

R<1>=T[fo(xyx}gy<y>dy

A d+ A
log
d—c c+A

=1-
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)= [0k, (y)]z_lﬁfy(y)gy o]

[I( "’I '*”dudy}[l— nog"”*} - ROJRO)

[+

[I F,(v), y)}s_’ﬁfy(y)gy(y)dy} = [1- RO)F R()

—c0

Then in general we can write,

R(r)=[1- RO R(1)

4.4.2 Two-Point Prior for u
Here if it is assumed that u can take only two values u, and u, with probabilities g

and (1 - q), respectively. We have two-point prior distribution for u given as,

Prip=p)=a(w) and Pr(p=p,)=q(u,)
Then,

2
g,(0)=3 w,qly, )= que™ +({1-q)u,e™ (4.4.1)
=1

Hence from (4.2.5) we have,

T[Tf (xyx}g,wy
Te Ynge™” + (- e by

_ 9k +(1"Q)/uz
Aty Atp
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L

<)-| _[OF(y)g(y)dsz" 1700

B O 7 ) R | O )
Mt+A p A J A g+ A

= [1- ROIR()

R()=[1- RO)F R()

Then in general we can write,

R(r)=[1- RO RO)

Hence we can obtain the system reliability R, by substituting the values of R(r), r=12,..,n
in (2.2.1). The values of R, R,, R;, R, are tabulated in Table 4.3 (cf. Appendix) and Table

4.4 (cf. Appendix) for parametric values c¢,d, A and q, u, p,, 2.

4.5 Graphical Representations

A few graphs of R, R,, R;, R, are drawn in Fig. 4.1(a)-4.1(d) and Fig. 4.2(a)-4.2(d)
for different parametric values involved. In Fig. 4.1(a) to Fig. 4.1(d) show the graphs of
R, R,, R,, R, respectively, taking u along the horizontal axis and the corresponding
reliabilities along the vertical axis graphs are plotted for different pairs of a,b. From these
graphs one can read directly the values of reliabilities R, R,, R,, R, for intermediate values

of u. It is observed from the graphs that reliability is steadily increasing with u increases

whereas in Fig. 4.2(a) to Fig. 4.2(d) it is decreasing with increasing A .
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Fig. 4.1(a) Exponential Stress-Strength: Fig. 4.1(b) Exponential Stress-Strength:
Strength parameter A is random Strength parameter A is random
and uniformly distributed in the and uniformly distributed in the
range (a,b): Graph of R, vs u range (a,b): Graph of R, vs u

Q3+ Q3+

Q2 Q24

Q14 a1

Qe T Ll T L 1 T 1 1 m T T LML AL L LA BN |

1 2 3 4 5 6 4 8 9 1 2 3 4 8 6 7 8 9
[ u
Fig. 4.1(c) Exponential Stress-Strength: Fig. 4.1(d) Exponential Stress-Strength:

Strength parameter A is random Strength parameter A is random
and uniformly distributed in the and uniformly distributed in the
range (a,b): Graph of R, vs u range (a,b): Graph of R, vs u
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Fig. 4.2(a) Exponential Stress-Strength:
Stress parameter g is random
and uniformly distributed in the
range (c,d): Graph of R, vs A
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Fig. 4.2(c) Exponential Stress-Strength:
Stress parameter u is random
and uniformly distributed in the
range (c,d): Graph of R, vs A
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Fig. 4.2(b) Exponential Stress-Strength:
Stress parameter u is random
and uniformly distributed in the
range (c,d): Graph of R,vs A
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Fig. 4.2(d) Exponential Stress-Strength:
Stress parameter x is random
and uniformly distributed in the
range (c,d): Graph of R, vs A
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4.6 Results and Discussions

In order to see how system reliabilities change with the parameters involved, we have
tabulated some values of R,, R,, R,, R, for both the distributions from their expressions
obtained in the last section. Table 4.1 (cf. Appendix) presents the values of R, R, R;, R,

when strength parameter is random but stress parameter is a constant and uniform

distributions are considered as a prior distribution for A for different values of a,b and u.
Here we have seen that the reliabilities are steadily increasing with u increases but decreases
with increasing values of @ and b . Similarly, when two-point distributions are considered
as the prior distribution for A for the Case I, we have tabulated some values of
R,, R,, R;, R, for different values of p,A,,A4,,u in Table 4.2 (cf. Appendix). From this
table we have also seen that the reliabilities are steadily increasing with u increases and

reliabilities are decreases (increases) with increasing p for 4, > 4,(4 < 4,).

We have tabulated the reliabilities for different values of c,d,A in Table 4.3 (cf.

Appendix) when the stress parameter is random but strength parameter is a constant and

uniform distributions are considered as a prior distribution for u. From the table, it is clear

that the reliabilities are decreases with increasing A, intuitively also this should be the case.
But reliabilities are steadily increasing with increasing ¢ and 4. Similarly, when the prior

distributions are considered as the two-point distribution for u for the Case II, some of the
values are presented in respective case in Table 4.4 (cf. Appendix) for different values of ¢,
Ky, M, and 4. From the table we observe that reliabilities are decreases with increasing

values of A and reliabilities are increases (decreases) with increasing g, if 4, > u, (1, < p,).

*ok ok ko K
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Identical Strength for Warm and Cold Standby
System with Imperfect Switch: A Comparative
Study

5.1 Introduction

As discussed in Chapter 1 switching mechanisms are quite prevalent in standby
redundant systems. In a standby redundant system when the active component fails the next
component (if there remains any) is instantly activated by some device which is called a
switch. In general, it is assumed that the switch is absolutely reliable i.e., perfect. However in
the real situation the switch may also fail. i.e., the switch is imperfect and has its own failure
pattern. Hence when evaluating the reliability of a standby redundant system not only the
failure mechanisms of the different components are to be considered but also that of the

switch is to be taken into account.

In a standby system the standby components may be in any one of the three different
states viz. hot, cold and warm. In hot standbys the standby units are subjected to the same
law of failure as the active unit. i.e., the probability of failure of a standby component in the
same as that of an active component. In a cold standby system the standbys, by hypothesis,
cannot fail unless they take the place of active units and in case of warm standby system the
redundant units are in a partially energized state up to the instant they are put in place of the
primary units. During the period they are as standby, they can fail but the probability of
failure is less than the probability of failure of the active unit. In this chapter we have
considered an n-standby system with cold and warm standbys with imperfect switching for a
stress-strength model. Here we assumed that strengths are identical for exponential, gamma

and normal distributions for both cold and warm standbys.
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Stress-Strength reliability has been discussed in Kapur and Lamberson (1977).
Studies on imperfect switching for cold standby systems in S-S model have been considered
by Sriwastav and Dutta (1984). They have considered both the switches and the components
following similar distributions. Studies on imperfect switching for dynamic warm standby
system in TTF (time-to-failure) model have been considered by Alidrisi (1992). Imperfect
switching with identical strength for a cold standby redundant system have been considered
by Dutta and Bhowal (1997). The system reliability of a standby system, when switches and
the components follow dissimilar continuous distributions, is considered by Dutta and
Bhowal (2000). To obtain the system reliability for identical stress-strength model when the
parameters of the distributions are random variable have been considered by Gogoi and
Borah (2011). Studies on warm standby system with imperfect switching in S-S model have
been considered by Sriwastav (2004). He considered switches and the components following
dissimilar continuous distributions. Warm standby with imperfect switching in cascade
model is considered by Gogoi and Borah (2011). Also the problem of system reliability of a
cold standby system with imperfect switching in discrete S-S model is considered by Gajjar
and Patel (2010). But we have not come across any comparative study on identical strength
for a cold and warm standby system with imperfect switching for similar continuous

distributions.

The main aim of this chapter is to obtain the system reliability R, for cold and warm

standby system with imperfect switching for identical strength and comparing the results for

both the systems.

In Section 5.2, mathematical formulations of the models are presented. In Sub-
Sections 5.2.1 and 5.2.2, the reliability of an n-cold and n-warm standby system with
imperfect switch for identical strength is obtained. In Section 5.3, we have assumed some
specific distributions to find out the reliability for the stress and strength involved. viz.
exponential, gamma and normal. To observe the change in the values of reliabilities with
parameters involved, some numerical values of reliabilities are tabulated in Table 5.1, Table

5.2 and Table 5.3 (cf. Appendix). Results and discussions are given in Section 5.4.
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5.2 Mathematical Formulation of the Model
5.2.1 Mathematical Formulation of n-Cold Standby Model with Imperfect Switching
for Identical Strength
Let us consider an n-standby system working under the impact of stresses. Here we
assume that standbys are cold standbys i.e., they cannot fail till put into operation. Let the
strength of the #-components are the same say, X. Let Y,,Y,,...,Y, be the set of independent
random variables representing the stresses on the n components, when they are activated. It
is further assumed that the switch also works under the impact of stresses. Let U be the
strength of the switch and V' be the stress on it. The switch fails whenever U <V, U and V
are assumed to be independent random variables. The switch and the components are

assumed to work independently. Thus X, Y ,i=12,.,n, U and V are all independent
random variables. Then the reliability, R, of the system is given by (2.2.1) where
R(r), r=12,..,n is the marginal reliability due to the pth component. But now

R(r), 7 =12,..,n is given as follows

R()=Plx 27] (5.2.1)
RQ2)=P[X <Y, U2V and X 2Y,] (5.2.2)
RB3)=PlX <Y,,U2V and X <Y,,U2V and X 27,] (5.2.3)

Then in general, we have

R(r)=P[X <Y, U>V. and X <Y,,, U2V and X<Y,_ U2V and X >Y,]
(5.2.4)

Let f(x), g,(»), hu) and k(v), i=12,...,n be the p.d.f’s of X, Y ,Uand ¥ respectively.

Since all the components and the switch are working independently, we have
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=_if<y)g.<y)dy (525)
:{j}v(y)g. uw}{lﬁ(v>k<v>dv}{ifo)gz <y)dy} (526

={7F(y)g, (y)dy} _];ﬁ(v)k(v)dv}{_]}(y)gz(ywy}

-0

{TH v)dv}{”F( )g3(y)dy}

—o0

(5.2.7)

Then,

R = { e gl(ywy}{ TH6RG) }{ [F() gz(y)dy}
{ FFOe. u)dy}{ T k(v>dv}{ TFO)e, (y)dy}

(5.2.8)

where F (x) and H(u) are the cumulative distribution functions (c.d.f) of Xand U

respectively. i.e., F(x)= _J{f(x)dx & f(x) =1-F(x) & ﬁ(u) = Th(u)du

5.2.2 Mathematical Formulation of »-Warm Standby Model with Imperfect
Switching for Identical Strength

Let the strength of the n-components are the same say, X. Let Y,7,,...Y, and

h

Z,,Z,,...Z, be the stresses on the n" component when it is active and it is standby

respectively. Let U be the strength and ¥ be the stress on the switch. The switch fails when

U<V . We assume that X,Y,,Z ,U and V are all independent random variables. The

55



Chapter 5

reliability, R, of the system is given by the equation (2.2.1). But now R(r), r=12,.,n is

given as follows

R()=P[X 2Y] (5.2.9)
RR)=PlX <Y, {X22Z,,(U2Vand X 21,)}] (5.2.10)
X<Y,{X>2Z,(U2Vand X <Y,)or X <Z,}
RB3)=P
{X2Z,,U2Vand X 2 1,)} (5.2.11)

Then in general, we have

X<Y,{X>2,(U2V and X <Y,)or X < Z,}

k()= P {X>2,,Uz2V and X <Y,)or X <Z,}, (52.12)
ER X2z U2V and X<Y_)or X<z ) -

X>2,, U=V and X 27,)}

Let f(x) g,(»), wj(z), hu) and k(v), i=12,.,n, j=23,.,n be the p.d.f’s of
X,Y,,Z,,U and V respectively. Since all the components and the switch are working

independently, we have

R()= Tl_”(y)g.(y)dy (5.2.13)

R(z)=_Tm)gl(yyysz<z)w2(z)dz_"fmv)k(v)dvjf(y)gz(y)dy (5:2.14)

R()= {TF(y)g,(y)dyHsz(z)wz (Z)dzjﬁ(v)k(v)dvTF(y)gz(y)dy+ (7w, (z)dz}
{7 R 70 |

(5.2.15)
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Then,

)= [0 OW | TF2 (e JHOKOM [ PO b+ [ ek
{_“fa_ (o [FOKGK [FO)e, ks + [ o (z)dz}...
{jfr(z)w, (z)dzjﬁ(v)k(v)dv Tf(y)g,(y)dy} where, r =12,...,n

(5.2.16)

Here F(x) and H(u) are the c.d.f.’s of X and U respectively.

5.3 Reliability for Specific Distributions
5.3.1 Exponential Stress-Strength: Cold Standby for Identical Strength
Let f(x), g, (), A(u) and k(v), i=12,...,n be all exponential densities with means

and 1 respectively, i=12,...,n ie,
/1 .

111
0 a’ A

Ge™®, x20,020
xX)=
f( ) {O, otherwise

ae™™, ¥,20,a,20
g.v)= .
0, otherwise

e >0,A>0
h(u) _ e B u 0,
0, otherwise

s > >
k(v) — :“Le 2 v - O’ # - 0
0, otherwise

If Ais a positive integer then,
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jH(v)k(v)dv = I e dv = ,u# - where p =%

From, (5.2.5) we get,

R(1)= _Tf(y)gl Wy = [ e e dy, ==

0+a,

From, (5.2.6) we get,

R(z>:{_]':om)gl@)dy}{_zﬁ(v)k(vwv}{jof(y)gz u)dy}
- {]0 (1-e® ke=dy, ][Ie'“ ue'””de e o, dyz}

0
_ 6 1«
o +01+pa,+6

From, (5.2.7) we get,

RG)- { JF(y>g.(y>dy}{ THGK v)dv}{ FFOe, dy}{ THOKON }{ T70)e, y)dy}

_ 6 u 6 JTR A
a,+0u+ia,+0 u+io,+0

(1Y 6 6 a
l+p) oy +0a,+0 a, +6
Then the system reliability R, is given by the equation (2.2.1).

5.3.2 Exponential Stress-Strength: Warm Standby for Identical Strength
Let f(x), g,(y), wj(z), h(u) and k(v), i=12,..,n, j=273,...,n be all exponential

o . 1 .
densities with means and — respectively.

3 3

LI I S
6 a,’ B, A

58



Ge®, x20,620
x)= '
7 ) {0, otherwise

a,e ™", ¥,20,a,20
&)= .
0, otherwise

w1(2)={ﬁje_ﬂlz” z,20,5,20

0, otherwise

M >0, A>
h(u)_ Ae s u s A20
0, otherwise

el >0, >0
k(v): He s v » M
0, otherwise

From (5.2.13), (5.2.14) and (5.2.15) we get

RO= [FO) 0y = [eaeray, -

a,+60

RQ)= [F()e, 0k [Faew, (z)dzfﬁ(v)k@)dv_]’f(y)gz )y

0
— 9 ﬁZ 1 az
a,+0 B,+01+pa,+06

0
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Similarly,

R(3)= 6 ﬂz 1 0 + 0 B3 1 (0 48
a,+0| | B, +01+pa,+8) B,+0 (| B;+01+pa,+0

Then the system reliability R, is given by the equation (2.2.1).

5.3.3 Gamma Stress-Strength: Cold Standby for Identical Strength
Let f(x), g,(»), h(u) and k(v), i=12,.,n be all gamma densities with shape

parameters 8,a,,A and u respectively and scale parameters equal to unity.

Then,
( ) Le"‘x‘g‘I x20, 021
f x) = I_,e 1) = Y =
0, otherwise
1 -y 5, %1
2.(y)= He Y., 320, a 21
0, otherwise
— e u* 20, A21
h(u)z 1"/16 u'”, u=20, A2
0, otherwise
1 -v_ =l
k(v)= —,ue v vz 0, u=1
0, otherwise

60



Chapter 5

From, (5.2.5) we get,

< Ta,(6-i-1)yf!
G,al), say

:i r@+a,-i-1)
_ R(

From, (5.2.6) we get,

:{}F(y)gl(y)dy}{fﬁ<v>k<vwv}{if@)gz(ywy}

o-1 r(6+a1—z—1) "Z'i r@+a,-i-1) g T(A+p—i-1)
G To, (0-i-1)2 ™" NG Ta,@-i-1p"" Tu(A —i—1)2r+ !

= 1_2( 0,c, )R(t9,oe2 )R(A,,,u) -

Similarly from, (5.2.7) we get,
{IF e, y)dyH [HEK v)de [F()e, dy}{ [HEK()a H [F()es y)dy}
= R(6,0,)R(6, 0, )R(O, 0, )R(2, )]
Then the system reliability R, is given by the equation (2.2.1).

5.3.4 Gamma Stress-Strength: Warm Standby for Identical Strength
Let f(x) g(») w,(z), Al) and k(v), i=12,.,n, j=23,..,n be all gamma

densities with shape parameters 6,a,,3,,4 and u respectively and scale parameters equal to

unity.
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Then,
) ! e*x%t, x>0, 62>1
f x)= ra ) = Yy
0, otherwise
'Le‘y‘y 9,20, a, 21
g (y)_'ﬁ ral ' ’ I ’ '
0, otherwise
{ 1 ﬂ
~Z -1
w(z)—Jl",Be zj’ , 2120, ,8121
J - J
0, otherwise
H) = I"/le—" u*, u>0, A>1
0, otherwise
1 -v_ pu-l
k(v)= Ee v, v20, u21
0, otherwise

From (5.2.13), (5.2.14) and (5.2.15) we get

- [P0y =S TS - k) s

pors r 1)2 9+a|-l-l

o0

RG) = { FFO, O)dy}{ TFa(ew, z)dz}{ 176) v)dv}{ 170, (y)dy}
(St o)
Sris k) S
- RO, )R, B, )R w)R(,c,)
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Similarly,
R() =6, RO, B,)R(, 1JR(6,2,) + RO, B, )R(E, B, )R(2, 1)R(B, )}
Then the system reliability R, is given by the equation (2.2.1).

5.3.5 Normal Stress-Strength: Cold Standby for Identical Strength
Let f(x) g,(») h(u) and k(v) be N{@,0), Nla,,z,) N(A,v) and N(y,p)
respectively, i=12,...,n. Let us define Z=U-V>0 and Z =X-Y, >0. Then the

random variables Z and Z, are normally distributed with mean (A - ) and (6 —¢,) and

standard deviations \/u® + p? and \Jo? + 72 respectively, i=12,..,n.

Then from (5.2.5) we get,

14 Z,~(0-a,) :
7 1 1 K ‘E[J,,z—ﬂz]
0= [P0l 6y =z 20— L[ T g,
o \/E\/GZ +1l %
__L Te_%l'ldt where t _2,-06-a)
\/5;_ 6-a, l l o’ +1}
;]azﬂ,’

Then from (5.2.6) we get,

RQ)- {j;F(y)gl (y)dy}{iﬁ(v)k(vwv}{lf(y)gz @)dy}

= P(Z, <0)P(Z 2 0)P(zZ, > 0)
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Now as above, P(Z > 0)= CD[&J = (S, ), say

Jul+p?
Then,
R(2)=[1—d{ ez‘“lzﬂ{q{ ezazzﬂld{ )’z'”zﬂ
ol +1; o +1, v +p
= o4 ko4, )0(s,)

Similarly from (5.2.7) we get,

{J'F (s, y)dyHIH(v v)de [FO)e. (v dyH [H (V)k(V)dVH [F()e, (v dy}
= o{d Jo(a: Jo(a, (s, )T

Then the system reliability R, is given by the equation (2.2.1).

5.3.6 Normal Stress-Strength: Warm Standby for Identical Strength

Let f(x), g (), wj(z) be N(@,0), N(a,,7,) and N(ﬁj,yj) respectively,
i=12,..,m, j=23,.,n and h(u) and k(v) be N(A,0) and N(u, p) respectively. Let
usdefine Z=U-V>0 and Z, =X-Y,>0; i=12,.,n, T,=X-Z,; j=23,.,n are

normally distributed with mean (A-u) (6-«,) (9— ﬂj) and standard deviations

\/02 +p°, \/02 +77 and \Jo? +y] respectively.

Then from (5.2.13), (5.2.14) and (5.2.15) we get

R(l)= IF e, (y)dy = P(Z, 2 0) = a{%}

= d)(Al ), say
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8

{L g.(y)dyH [Fa(z)w, Z)dZ}{ [HE)« V)dVHIF ()g. (v dy}

= P(Z, < 0)P(T, 2 0)P(Z 2 0)P(Z, = 0)

Now, P(Z20)= q{ A u J = (s, ), say

Jul+p?

= (4, Jo (8, Jo(s, ol 4,)

Similarly,

R@)= { [FO)e, (y)dyH_T Falo)w, (z)dzjﬁ(v)k(v)dv [ F()gs )y + j E,(2)w, (z)dz}
{17 ok TR M [P0, 01

= P(z, < 0)[P(T, 2 0)P(Z 2 0)P(Z, < 0)+ P(T, < 0)|[P(T, = 0)P(Z = 0)P(Z, = 0)]
= o4 Jo(z, )0 (s, Jo(4: )+ (6. JJo 8, )05, Jo (4, )]

Then the system reliability R, is given by the equation (2.2.1).
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5.4 Results and Discussions
For a few values of the parameters involved in the expressions of R(r), r =1,2,3 we
evaluate R(l), R(2), R(3) and R, for different distributions from their expressions obtained

in the last section.

From the Table 5.1 (cf. Appendix), it is observed that if the strength parameter 6
increases then reliability R, decreases. When the stress parameter ¢, increases R(1) also
increases. The value of marginal reliability R(l) becomes 0.7500, 0.6000, 0.5000, 0.4286
and 0.3750 respectively for 8=.1,.2,.3,.4.5. It can be noted from the Table 5.1 (cf. Appendix)
that values of R(1) remains same for both cold and warm standby systems. In case of cold
standby system, R(2) and R(3) become 0.0694 and 0.0053 respectively for a, =a, =1.1.
Similarly, when @, = @, =1.3 then R(2) and R(3) become 0.0603 and 0.0039 respectively.
But in case of warm standby system, R(2) and R(3) become 0.0347 and 0.0187 respectively
when o, =, =1.1. Similarly for &, = a, =1.3, R(2) and R(3) become 0.0301 and 0.0161
respectively. It is also observed that the parameters f,, B, in case of exponential

distribution, are seems to be very sensitive for warm standby system. Hence, in case of warm

standby system, the system reliability becomes smaller than that of cold standby system.

From the Table 5.2 (cf. Appendix), it is clear that the system reliability increases as

the values of corresponding € increases. In case of cold standby system, the system
reliability R, becomes 0.6563, 0.8555, 0.9331, 0.9677, 0.9841 and 0.9921 respectively for
6=12,3,4,5,6. But in case of warm st.andby system, the system reliability R, becomes
0.6016, 0.8445, 0.9314, 0.9675, 0.9841 and 0.9921 respectively for 6=1,2,3,4,5,6. The
marginal reliability R(l) remains same for both cold and warm standby systems. In case of
gamma distribution, the parameters (,, 3, are seems to be very sensitive for warm standby

system. Hence, the values of the system reliability in case of warm standby system become

smaller than that of cold standby system.
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From the Table 5.3 (cf. Appendix), it is observed that when the strength parameter 6

increases system reliability R, also increases but when o increases the system reliability
R, decreases. For example, in case of cold standby system the system reliability R, becomes
0.8998, 0.9561, 0.9816, 0.9929, 0.9976 and 0.9993 respectively for 6=1,2,3,4,5,6. But R,

becomes 0.8998, 0.7965 and 0.7528 respectively for o =1,2,3. Again in case of warm
standby system, the system reliability R, becomes 0.7925, 0.8682, 0.9256, 0.9661, 0.9877

and 0.9964 respectively for 6=1,2,3,4,5,6. But R, becomes 0.7925, 0.7106, 0.6767 for
o =1,2,3. When the stress parameters 7, 7, and 7, increase there are significant decreases
in the values of R(1) with increasing v and p . Similarly, in case of normal distribution the
stress parameters ¥, and y, are seemed to be very sensitive due to which the values of the

system reliabilities of warm standby system becomes smaller than that of cold standby

system.

ook Kok K
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Identical Stress for Warm and Cold Standby System
with Imperfect Switch: A Comparative Study

6.1 Introduction

As mentioned in chapter 1 and Chapter 5 switching mechanisms are required in
standby redundant systems. Also warm and cold standby systems are discussed earlier. In the
previous chapter, we have discussed a comparative study between cold and warm standby
system with imperfect switching for identical strength. But in this chapter we have discussed
a comparative study between cold and warm standby system with imperfect switching for
identical stress considering exponential, gamma and normal distributions. Some of the results

of this chapter have been accepted for publication in IAPQR journal.

This chapter is organized as follows: In Section 6.2, the general mathematical models
are developed. In Sub-Section 6.2.1 reliability of n-cold standby system with imperfect
switch for identical stress is obtained and in Sub-Section 6.2.2 reliability of »-warm standby
system with imperfect switch for identical stress is obtained. In Section 6.3, marginal

reliability expressions, R(1) R(2) and R(3) are obtained when stress-strength of the

components and that of the switch follow particular distributions. In Sub-Sections 6.3.1 and
6.3.2, stress-strength distribution for the components and the switch are taken as exponential,
in Sub-Sections 6.3.3 and 6.3.4, stress-strength distribution for the components and the
switch involved are gamma and in Sub-Sections 6.3.5 and 6.3.6, stress-strength and the
switch involved are normal with identical stress for cold and warm standbys and the marginal
reliability expressions 'R(l), R(2) and R(3) are obtained. Also the system reliability R, is
obtained for all the cases. To testing the validity of the derived model system reliabilities has

been estimated with various parameters involved in the system and is also presented in

tabular forms in the Table 6.1, Table 6.2 and Table 6.3 (cf. Appendix). To make the things
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clear, a few graphs are plotted for each case in Section 6.4 for selected values of the

parameters. Results and discussions are devoted to Section 6.5.

6.2 Mathematical Formulation of the Model
6.2.1 Mathematical Formulation of n-Cold Standby Model with Imperfect Switching
_ for Identical Stresses

Let X,,X,,....X, be the strengths of the n-components in order of activation and let
Y=Y, =..=Y, =Y be the stress on them. Now to activate the standby components there is
a switch when strength and stress U and V respectively. The switch fails when U < V. All
the components and the switch are working independently ie., X,,Y,U and Vare all
independent random variables (i =1,2,..,n). The system reliability R, is given by (2.2.1)
where R(r), r =1,2,...,n is the marginal reliability due to the r th component. But now, R(r),

r=12,...,n is given as follows

R()=P[X, 2 7] (6.2.1)
R(2)=PX, <Y,U2V and X, >7Y] (6.2.2)
RB3)=P[X, <Y, U2V and X,<Y,U2V and X,>Y] (6.2.3)

Then in general, we have

R(r)=P[X, <Y, U2V and X, <Y, U>V and X, ,<Y,U>V and X, 27|
(6.2.4)

Let f(x), g(») A(x) and k(v) denote the p.d.f’s of X,, ¥, Uand ¥ respectively. Then we

have,

R()= [Fi()e0)ay (6.2.5)
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©

RC)- {fF (y)g<y)dy}{ ;ﬁ(v)k@)dv}{ia(y)g(y)dy} 626)

-

R(G3)= {IOE (y)g(y)a'yHjjiﬁ(v)k(v)dv}{:jip2 (y)g(y)dy}
{lﬁ(v)k(v)dv}{:fa(y)g(y)dy}

(6.2.7)

Then,

R()- {_Jf (y)g(y)dy}{imv)k(v)dv}{yZ(y)g(y)dy}..
ﬂ” (y)g(y)dy}{_zﬁ(»k(v)dv}{jf,(y)go)dy}

(6.2.8)

Substituting the values of R(r), r=12,...,n in the expression (2.2.1) we can get the system

reliability R .

6.2.2 Mathematical Formulation of »n-Warm Standby Model with Imperfect
Switching for Identical Stresses
Let us consider that all the components are working under the same stresses, under

the same environment. Then we can take all the Y, ’s to be i.i.d. Let us consider an n-standby

system working under the impact of stresses. Initially there is one active component and

(n—1) warm standby components. Let X,, X,,...,X, be the strengths of the n-components
in order of activation. Let Y, =Y, =...=Y, =Y be the stresses on these »-components,
respectively, when in operation. The (n—l) components as warm standbys face (n—l)
stresses viz. Z,,Z;,...,Z, respectively. Let U and V' be the strength and stress of the switch

respectively. The switch fails when U < V.
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All the components and the switch are working independently i.e., X ,¥,Z , U and
V are all independent random variables (i=1,2,...,n, j =2,3,...,n). Now the i th active
component fails if X, <Y, and the j * standby component fails if X, <Z, . The system fails

when all the components have failed, either in operation or as standbys. The reliability of the

system is given by (2.2.1). But now, R(r), = 1,2,...,n is given as follows

R(l)=P[x, 2 7] (6.2.9)
R(2)= P[X(Y,{X, 2 Z,,(U>V and X, > V)}] (6.2.10)
RG)= P XY, {X,22Z,,(U=2Vand X,(Y)or X,(Z,} 62.11)
X,22,,(U2Vand X, 2 Y)}
Then in general, we have
XY {X,>Z,,(U2V and X,(¥)or X,(Z,}
R()=P {X,>2,,(U2V and X (¥)or X,(Z,}, (6.2.12)

wofX, 22, U2V and X, (Y)or X, (Z,}
{X;22,,(U2Vand X, 27)}

Let f,(x), g(y), wj(z), h(u) and k(v), i=12,..,m j=23,..,n be the p.df’s of
X,Y, Z,,U and V respectively. Since all the components and the switch work

independently, we have

R(1)= T F(»)g(y)dy (6.2.13)

RQ)= [RO)e0My [Frlehw, (h [HONG TR 0)e ey (6214
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#6) | TE0)e0M [ TFeh b HOMOK |, 0)e0h + [ e
{TF e e OIS T 0 0b

(6.2.15)
Then,

R(") = {j I (y)g (y)dy }{j E(Z)Wz (Z )dz:f —1‘17'(v)/c(v)dv;[o F, ( y)g( y)dy + TFZ (z)w2 (z)dz}
{I F (2w, (z)dz_“f Ao [ F0)eb)ay + _} £ (o, (z)dz}_ .
{17 4 TR [EQIOK | whrs =12,

-

(6.2.16)

Substituting the values of R(r), r=12,...,n in the expression (2.2.1) we can get the system

reliability R, .

6.3 Reliability for Specific Distributions
6.3.1 Exponential Stress-Strength: Cold Standby for Identical Stress
Let £ (x), g(y), h(u) and k(v), i =12,..,n be all exponential densities with means

111 and 1 respectively, i.e
6, a’ A T

Be %, x,20,08 20
(%)= .

0, otherwise

0, otherwise

ae™™, >0, a20
g(y>={ y
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— > >
h(u): Ae N u_O,)L_O
0, otherwise

s > >
k(v)= He ", v20, 420
0, otherwise

If A is a positive integer then,

IH(v Ye(v)dv = I  ue ™ dy =

1 A
=—— where p=—
H+A l+p 7

From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R(1), R(2) and R(3) may be obtained

as

jF ) (y)dy = jf"ylae Pdy, = afe (6.3.1)
1

RG)= { TR0k y)dy}{ TH6K v)dv}{ ng(y)dy}
[I(l)zdy}[fued}[fdy]

0 0
_ 6 1 a
a+6, 1+pa+0,

(6.3.2)

RG) = {ng(ywy}{ THORG) }{ JFog(y)dy}{ TG }{F«y)g(y)dy}

1 ’ 0, 6, fo
l+p) a+6,a+6, a+0,
(6.3.3)
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Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the

above marginal reliabilities R(l), R(2) and R(3) as given in (6.3.1), (6.3.2) and (6.3.3).

6.3.2 Exponential Stress-Strength: Warm Standby for Identical Stress
Let f.(x), g(»), w,(z), h(u) and k(v), i=12,..,n; j=23,.,n be all exponential

e 1 .
densities with means and — respectively.

1111
el’a,ﬁ/’l

Now,

{Q,e'e"" , x,20,6,20

0, otherwise

ae ™, y20,a20
gly)= .
0, otherwise

0, otherwise

—B,z,
w,(l):{ﬂ!e ? Z‘Zo’ﬂ!ZO

— > >
h(u): Ae s u_O,A_O
0, otherwise

st >0 2
kp)={#e > Va0
0, otherwise

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R(l), R(2) and R(3) may be

obtained as

R()=— ; = (6.3.4)
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RR)=—%__ P 1« (6.3.5)
a+6, B,+6,1+pa+6,

R(3)= b, B, 1 6 L9 P 1« (6.3.6)
a+6, | |B,+0, 1+pa+6,] B,+6,| B +6;,1+pa+0,

Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the
above marginal reliabilities R(l), R(2) and R(B) as given in (6.3.4), (6.3.5) and (6.3.6).

6.3.3 Gamma Stress-Strength: Cold Standby for Identical Stress
Let £,(x), g(v), #(u) and k(v), be all gamma densities with scale parameters equal to

unity and degrees of freedom 8,,a,4 and u respectively, i=1,2,...,n ie.,

Then,

x', x,20, 0621
£,(x)=1T8,

0, otherwise

—e7y T, >0, a>1
g,(0)=1Ta’ y=5 @

0, otherwise

L gy u>0, A1

0, otherwise

—l—e'"v"", v>0, u>1
k(v)=4Tu

0, otherwise
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From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R(l), R(2) and R(3) may be obtained

as

R(1)= jf,(y)g(y)dy =R(6,,a) (6.3.7)

0

)={ [F00ks { TR0 [EO) K}

E B +a-i-1) Y& T +a-i-1) Y& T@A+p-i-1)
=|1- 1 2
( Zo: Ta(g, —i-1)2%* j(zo Ta(f, -i-1)2%" Zo Tu(a—i—prs

= R(6,,0)R(6,,0)R(2, )

(6.3.8)
R(3)= R(6,,2)R(6,,a)R(,,a fR(A, k)] (6.3.9)

Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the

above marginal reliabilities R(l), R(2) and R(3) as given in (6.3.7), (6.3.8) and (6.3.9).

6.3.4 Gamma Stress-Strength: Warm Standby for Identical Stress
Let f(x), g(»), w](z), h(u) and k(v), i=12,.,n; j=23,.,n be all gamma

densities with shape parameters 6,,a,,,A and u respectively and scale parameters equal

to unity. Then,

|
—ex,, x,20,6 21
f(x)=sr6," ™ '
0, otherwise
1 -y a1
g(y)= F;e y&, y20, a2l
0, otherwise
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zZ, B;1
e’z , 2,20,8 21
W] (Z) — rﬂ_, J J J
0, otherwise
Le"‘u’H, u20, 1>1
hu)=4TA
0, otherwise

—l—e"”v""1 v20, u=1

0, otherwise

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R(1), 1é(2) and R(3) may be

obtained as
R(1)=R(6,,a) (6.3.10)
R(2)= R(6,,@)R(6,, B,)R(A, 1)R(6,, ) (6.3.11)

R(3) = R, a){RO;, B,)R(1, )R (6,,a)+ RO, B, RO, B, )R(A, 1)R(O, )}
(6.3.12)

6, -a .
where, R(6,,a)= Z r6+a—i-))

I‘a( ) A R(6,a)=1-R(6,a)
=0

= 1O, +a-i-1 =
R(6,,a)= Z +a1),;ez+3: T R(@Z,a)=l—R(92,a)
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R(93,a) G,Z—a (9 +a—i—1)

o l—-a( 1)'29,+a -1
R(023ﬁ2) 2 I—-ar(‘(g b :BZ )lzle;l)-: 1 72(92: ﬁ2)= 1- R(ezaﬂz)
R@,.p,) = & r(e +p,—i-1)

S Tal@,-i-1)%"

& r(/1+y-z-1)
)= r )'2).+u-1 -1
=0 /’t

Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the

above marginal reliabilities R(1), R(2) and R(3) as given in (6.3.10), (6.3.11) and (6.3.12).

6.3.5 Normal Stress-Strength: Cold Standby for Identical Stress
Let f(x), g(») hu) and k(v) be N(B,0,), N(a,z), N(Av) and N(u,p)
respectively, i=1,2,..,n. Let us define Z=U-V>0 and Z =X,-Y >0. Then the

random variablesZ and Z, are normally distributed with mean (1~ 4) and (6, —«) and

standard deviations U + p> and Jo? +7? respectively, i =1,2,...,n.

From, (6.2.5), (6.2.6) and (6.2.7) marginal reliabilities R(1), R(2) and R(3) may be obtained

as
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» 1
Y ,[9_2' dt, where t =Z‘_(9‘_a)

1 i
2% G Jol+1?

= q)(Al) say
(6.3.13)
{ TFOe, ywy}{f (K (v)dv}{ 17Ok, (y)dy}
= P(zZ, <0)P(z 2 0)P(z, 2 0)
Now as above, P(Z > 0) = (D[\/%J = CD(SW ), say
Then,
- 1-f £ HH e HH — H
= o(4, o (4, )0(s,)
(6.3.14)

RQ)= { [F(y gl(y)dij (v)k V)dVH [FO)e, dy}{] (V)k(V)dVH [F(»)es (y)dy}
= o{d o(dz Jo(4, Yoo (s, )F

(6.3.15)
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Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the

above marginal reliabilities R(1), R(2) and R(3) as given in (6.3.13), (6.3.14) and (6.3.15).

6.3.6 Normal Stress-Strength: Warm Standby for Identical Stress
£ g0) w@be N6.0) N@r) and N(B,.y,) respectively
i=12,..,n j=23,..,n and h(u) and k(v) be N(A,u) and N(y,p) respectively. Let
us define Z=U-V>0 and Z =X -Y>0;, i=12,..,n, T, =X,-Z; j=23,.,n are

normally distributed with mean (1-u), (6, —a) and (0, -pB j) and standard deviations

Jor+p?, Jol+7? and |Jo? +y, respectively.

From (6.2.13), (6.2.14) and (6.2.15), marginal reliabilities R(1), R(2) and R(3) may be

obtained as

(6.3.16)

{ [ g(y)dy}{ [Falew, (z)dz}{ f6) v)dv}{ in y)g(ywy}

= P(Z, <0)P(T, 2 0)P(Z > 0)P(Z, > 0)

Now, P(Z20)= di{—)'l} = @(S,), say

o+ p?

P(T, 2 0)= q{kﬁz—} = d(B,), say

[2 .2
g, t¥,
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(6.3.17)

R0)=| TR O)e0M | el b KON 7,0+ [ et
{TFleh e [FORCI [E DO

= P(Z, < 0)|P(T, = 0)P(Z 2 0)P(Z, < 0)+ P(T, < O)[P(T, = 0)P(Z = 0)P(Z, = 0)]
= o(a: o8, )o(s, )o(4: )+ o(B. JJo(8, o (s, o4, )]
(6.3.18)

Then the system reliability R, may be obtained from the equation (2.2.1) in terms of the

above marginal reliabilities R(l), R(2) and R(B) as given in (6.3.16), (6.3.17) and (6.3.18).

6.4 Graphical Representations
To make the things clear, graphs of R, are drawn in Fig. 6.1(a)-6.1(b), Fig. 6.2(a)-

6.2(b), Fig. 6.3(a)-6.3(b) for selected values of the parameters for cold and warm standby
systems in case of exponential, gamma and normal distributions. In Fig. 6.1(a)-6.1(b), Fig.

6.2(a)-6.2(b), Fig. 6.3(a)-6.3(b) show the graphs of R,, taking the stress parameter & along

the horizontal axis and the corresponding reliabilities along the vertical axis graphs are
plotted for different parametric values. From these graphs one can read directly the values of

reliabilities R, for intermediate values of « . From Fig. 6.1(a) and Fig. 6.1(b), it is seen that

reliabilities are increasing with increasing the stress parameter in case of exponential
distribution. Again from Fig. 6.2(a)-6.2(b), Fig. 6.3(a)-6.3(b), reliabilities are decreasing
with increasing « in case of gamma and normal distributions. These graphs show that values
of the system reliability become smaller in case of warm standby system than that of cold

standby system for exponential, gamma and normal distributions.
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Fig. 6.1(a) R, for cold standby in case of

Exponential Stress-Strength:
Here R,(p.6,,6, ,6,)

1.04
09
084
074
A
o 064
\ R
054 . ‘\\ R(66655)
\\\ .
04 w R(E5544)
034 \
"R(44433)
02 T L L T ' 1 L v 1
1 2 3 4 5 6 7 8

— = i

Fig. 6.2(a) R, for cold standby in case of

Gamma Stress-Strength:

Here R,(6,,6,.0,, 4, u)
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Fig. 6.1(b) R, for warm standby in case of

Exponential Stress-Strength:
Here R3(p,0, ,0,,05, B, ,ﬂ_x)
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Fig. 6.2(b) R, for warm standby in case of

Gamma Stress-Strength:

Here R3(01’02’03”19/"ﬂ2’ﬂ3)
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Fig. 6.3(a) R, for cold standby in case of Normal Stress-Strength:

Here R,(A,4,7.6,.6,.6,,0,,0,,0,,0,p)
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Fig. 6.3(b) R, for warm standby in case of Normal Stress-Strength:

Here R,(A,y,r,&,,92,03,0',,0'2,0'3,11,;),,8,,,8,,72,73) where i= j=0,1,2,3
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6.5 Results and Discussions
For a few values of the parameters involved in the expressions of R(r), r=123 we
evaluate R(1), R(2) R(3) and R, for different distributions from their expressions are

obtained.

From the Table 6.1 (cf. Appendix), here we observe that if mean stress « increases

system reliability also increases. For example, if a =1, 2, 3,4, 5,6, 7, 8, 9 then the system
reliability R, becomes 0.9904, 0.9954, 0.9970, 0.9977, 0.9982, 0.9985, 0.9987, 0.9989,

0.9990 respectively in case of cold standby system. Again in case of warm standby system if

a=1,2,3,4,5, 6,7, 8 9 then we have the reliability (R3) values are 0.9670, 0.9837,
0.9892, 0.9920, 0.9936, 0.9947, 0.9954, 0.9960 and 0.9964 respectively. If 6, increases the
corresponding R(l) decreases. The value of marginal reliability R(l) becomes 0.9091,
0.8333, 0.7692 respectively for 6, =.1,.2,.3. The marginal reliability R(l) remains same for
both cold and warm standby system. In case of cold standby system, if 8, =6, =.1 then R(l)
and R(2) become .0751 and 0.0062 respectively. But in case of warm standby system, R(2)
and R(3) become 0.0376 and 0.0203 for 8, =, =.1. Further it is clear that the parameters
B,, B, in case of exponential distribution are seems to be very sensitive for warm standby

system. Hence the values of the system reliability in case of warm standby system become

smaller than that of cold standby system.

From the Table 6.2 (cf. Appendix), it is seen that if the stress parameter « increases

then the system reliability R; decreases. In case of cold standby system the values of R,

becomes 0.9677, 0.8958, 0.7884, 0.6563, 0.5158, 0.3840, 0.2725 respectively for

o =1,2,3,4,5,6,7. Again in case of warm standby system the value of the system reliability
becomes 0.9675, 0.8947, 0.7856, 0.6520, 0.5108, 0.3793, 0.2687 respectively for

a=1,2,3,4,5,6,7. When the strength parameter 6, increases then the marginal reliability
R(l) increases for both cold and warm standby system. For example, when 8, =4, 5, 6 then

R(1) becomes 0.9375, 0.9688 and 0.9844 respectively. Here also noted that R(1) remains
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same for both the systems. When the strength and stress parameter A and u of the switch
increases then also the reliability R, increases. In case of cold standby system, for
A=3,4,5 and pu=3, 4,5 the reliability values are 0.8958, 0.9420, 0.9677 respectively.
Again in case of warm standby system when the mean strength of the switch 2 =3, 4,5 and
mean stress of the switch u =3, 4, 5 then R, becomes 0.8947, 0.9418, 0.9677 respectively.
In case of gamma distribution, f,, B, are seems to be very sensitive for warm standby

system. Here also the values of the system reliability become smaller in case of warm

standby system than that of cold standby system.

From the tabulated values of Table 6.3 (cf. Appendix), we observe that when the

mean stress ¢ increases then the values of the system reliability R, decreases. For instance,
in case of cold standby system o« =0,1, 2,3 the reliability values R, become 0.9789,
0.8989, 0.7623 and 0.5857 respectively. Again in case of warm standby system R, becomes
0.9028, 0.8104, 0.6606, 0.4770 respectively for & =0,1,2,3. On the other hand, R(1)
decreases with the increase of standard deviation o,. It is seen that the marginal reliability
R(l) remains same for both cold and warm standby system. The increase in the strength (u)
and stress (p) parameter of the switch also decreases the system reliability. For example, in
case of cold standby system, when v =2, R, =0.9789 and when v =4, R, =0.8878. For
p =2, 4, 6 the system reliability R, becomes 0.9789, 0.8878 and 0.8275 respectively. Again
in case of warm standby system R, =0.9028 for v=2 and R, =0.8196 for v=4. For
p=2,4,6 the system reliability R, becomes 0.9028, 0.8196 and 0.7632 respectively. In
case of normal distribution, we observe that the parameters y,, y, are seems to be very

sensitive for warm standby system. Hence the values of the system reliability of warm

standby system become smaller than that of cold standby system.

% % % k% k
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Stress-Strength Model with Standby Redundancy
and Cascade Redundancy

7.1 Introduction

Increase in the complexity of jobs performed increases the complexity of the devices
(eg. Computer, Satellite, Plans, Missiles etc.) which increases the number of essential
components in it. An increase in the number of essential components (i.e., components in
series) decreases the reliability but the importance of jobs carried out by such complex
devices requires that they should be highly reliable. So, the problem of increasing the

reliability of a device is a real problem.

The strength of a component [Raghavachar, Kesava Rao and Pandit (1983), Rekha,
and Shyam Sunder (1997), Shooman (1968)] can obviously be defined as the minimum stress
required causing the component (or system) failure by considering the situation where a
component works under the impact of stresses. If the stress equals or exceeds the strength of
the component, it fails; otherwise it works. In practical situations, the magnitude of the stress

is random, with considerable variations.

By cascade redundancy (Pandit and Sriwastav, 1975) we mean a standby redundancy
where a standby component taking the place of a failed component is subjected to a modified
value of the preceding stress. We assume that this modified value of stress is equal to ‘&’
times the stress on the preceding (failed) component. Here ‘&’ is called attenuation factor
which is generally assumed to be a constant for all the components or a parameter having
different fixed values for different components (Pandit and Sriwastav, 1975). But an

attenuation factor may be a random variable also (Pandit and Sriwastav, 1978). Here we shall
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assume that &k is a constant through it may be changing from component to component or

even it may be a random variable (Gogoi and Borah, 2012).

Here we have assumed that stress-strength of all the components in the system are
independent. Sriwastav and Kakati (1981) have assumed that the components stress-strengths
are similarly distributed. But in general the stress distributions will be different from the
strength distributions not only in parameter values but also in forms since stresses are
independent of strengths and the two are governed by different physical conditions. They
have considered a cascade system with diss.imilar distributions of X's and Y's but not for
stress-strength model. So in this chapter we have considered stress-strength model for

dissimilar continuous distributions.

This chapter is organized as follows: Section 7.2 is devoted for mathematical models.
In Sub-Section 7.2.1 and 7.2.2, an n-standby and an n-cascade system, respectively, are
considered. In Section 7.3, we have assumed different particular forms of density functions
for the stress-strength components and the system reliability is obtained. We have considered
in Sub-Section 7.3.1, strength follows one-parameter exponential distribution and stress
follows two-parameter exponential distribution, in Sub-Section 7.3.2, strength follows one-
parameter exponential distribution and stress follows two-parameter gamma distribution, in
Sub-Section 7.3.3, strength is Lindley and stress is one-parameter gamma distribution and in
Sub-Section 7.3.4, strength is Lindley and stress is two-parameter gamma distribution. For all
the cases we have obtained the general expressions of reliability for an »n-standby system. In
Sub-Section 7.3.5, the general expressions of reliability for »n-cascade system are obtained
when the strength follows one-parameter exponential distribution and stress follows two-
parameter gamma distribution. In Sub-Section 7.3.5.A, a special case is considered when

X,’s are one-parameter i.i.d exponential strength with parameter 1 and stress follows two-

parameter gamma distribution and the system reliability R, for n-cascade system is

obtained. In Sub-Section 7.3.6, reliability expressions of 3-cascade system is obtained when
the strength follows one-parameter exponential distribution and stress of the components

follows Lindley distributions. The reliability expressions are not simple enough to reflect the
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changes in reliability of different systems with change in parameters. To observe the change
in the values of reliabilities with different parameters involved some numerical values of
reliabilities are tabulated in Table 7.1 and Table 7.7 (cf. Appendix). In Section 7.4 some
graphs are plotted for selected values of the parameters to facilitate the direct reading of

reliability. Section 7.5 deals with the results and discussions.

7.2 Mathematical Formulation of the Model
7.2.1 An n-Standby System

Consider an n-standby system i.e., in an n-standby system, initially there are n-
components, out of which only one is working under impact of stresses and the remaining

(n—l) are standbys. Whenever the working component fails one from standbys takes its

place and is subjected to impact of stresses and the system works. The system fails when all
the components fai