| CENTRAL LiBRARY
' TELPUR UNIVERSITY
Accession No. /('Lga

l
Date 2>\ %

{
1



INVESTIGATION OF THE BASIC
PARAMETERS OF THE ELECTRON AND
THE POSITRONIUM MASS SPECTRA
INVOKING VARIOUS MODELS

A thesis submitted in partial fulfilment of the requirements for award of

the degree of Doctor of Philosophy

SOVAN GHOSH
Registration No: 063 of 2010

Department of Physics
School of Sciences
Tezpur University

Napaam, Tezpur — 784028
Assam, India

June 2012



Let me not pray to be sheltered from dangers but to be fearless when

facing them - Rabindranath Tagore






Dedicated to my parents

Swapna Ghosh (maa)
And
Manimohan Ghosh (baba)
Whose unending sacvifice
made me able fo-carvry on

e research work
and
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OF THE ELECTRON AND THE POSITRONIUM
MASS SPECTRA INVOKING VARIOUS MODELS

Abstract

The electron is the first sub-atomic particle discovered. It was discovered by
J. J. Thomson in 1897. It is a charged lepton, which does not decay into more
fundamental particles. In the Standard model of particle physics it is called as a point
particle. Different experimental facts have described the properties of the electron.
Mass, charge, spin, magnetic moment, electric dipole moment, gyromagnetic ratio
and the size or radius of the electron are the important parameters, which are dealt to
connect experimental facts with the theoretical aspects of the electron.

Depending on those properties several models of the electron are proposed
theoretically. To depict a picture of the electron, the process of proposing electron
models started by Lorentz immediately after the discovery of this particle. Lorentz-
Abraham-Poincare model, Zitterbewegung model, Relativistic Spinning Sphere
model and Dynamical Spinning Sphere model are some recent amongst all the
models. These models are based on the different electromagnetic phenomenon and
they talk about different sizes or radii of the electron. Models discuss basically either
sub-structures of the electron or some sort of structures depending on properties and
mathematical formulations about the electron.

The radii of the electron are revealed from different models to give the proper
picture of the electron. They lie on a long-range scale. Though all these radii are
~ originated from the different electromagnetic phenomenon, they have some common
features, which co-relate them as well as those basic phenomena.

Recent work about the size of the electron, anomalous magnetic moment and
the gyromagnetic ratio provide us a good platform to test the theoretical results and
also to refine the approaches for the electron models. An effort is given here to co-

relate all these models and the radii. The parameters and the models are studied with



an aim to propose a possible new model covering as much as of the previous
problems regarding the models.

After the work for the models and the parameters of the electron, we have
done some investigations of the mass spectra of the positronium has been done. It is
a quasi-stable bound state of the electron and the positron. This study is actually a
shifting from semi-classical works of the electron to the quantum mechanical
domain. Fine structure constant connects them in a unique way. Also the positronium
is the very next step after the study of electron-positron and in that regard also this
study is important. In this thesis we have studied the mass spectra for the S-wave of
the positronium. In question of structural matter, the positron resembles the electron.
Hence the immediate next one is their bound state, which is studied here. Thus our
approach makes a bridge amongst the electron, the positron and the positronium.
Moreover it has been shown a step forward from classical to quantum mechanical

cra.

The Chapter 1 is the introductory chapter about the electron. Here we have
started with the discussion about the basic building blocks of the Nature. A little
touch is given to the Standard Model of particle physics too. Then the discovery of
the electron is discussed with the historical accounts about the early experiments and
the theories. In this connection the experiment of J. J. Thomson has been described
elaborately. Next we have studied about the properties or the parameters of the
electron with their experimental values. Charge, mass, spin, magnetic moment,

gyromagnetic ratio, size are discussed there.

In the Chapter 2, different models of the electron have been discussed
according to the properties of the electron. They are mainly classified into the
structural and the sub-structural models. The structural models are further classified
into point-like, extended, and extended body with point-like charge models. Lorentz-
Abraham-Poincare model, Compton model, Bunge model, Zitterbewegung model,
Relativistic Spinning Sphere model, Dynamical Spinning Sphere model are
noteworthy amongst all these models. Unified Composite model of the particles in

the discussion of sub-quark particles. Some limitations about old-fashioned Classical

ii



model, Blinder model, Semi-classical Ring model, and Semi-classical Tachyonic

model are discussed here.

The Chapter 3 describes about the eight different radii of the electron. We
have discussed their origin and the significance in the behaviour of the electron.
Several relations amongst those radii are established. Following the trend of the
relations of radii involving fine-structure constant, we offered the mathematical
formalism of the charge radius with the order in agreement with the LEP result from
CERN. In addition, the relations between Rydberg constant and the electron
structure are also attempted. These relations not only unite the different radii of the
electron, but plays significant role to co-relate different electromagnetic phenomena

and the aspects to give better explanation for the various models of the electron.

In the Chapter 4, the properties of the electron are discussed in terms of the
fine structure constant. This dimensionless factor is found to be accountable for the
relations among various radii of the electron. A current-loop has been developed in
connection with the rotation of the charge around the axis of rotation and that work is
extended to calculate the corresponding self-magnetic field also. The current-loop
and the magnetic fields are expressed in a form with the intrinsic properties of the
electron. It is noteworthy that all the current-loop and the magnetic field expressions
have been come out in a-quantized manner. The behaviour of the charge particle in
the external magnetic field is also shown with the help of a-quantization.
Incorporating the a-mass leap proposal of MacGregor for fermion, we calculated the
radius of the muon and the tau for the particles with electromagnetic nature. In the
calculation, the velocity of the charge in the a-quantized manner is also followed.
But the consequent velocity for the classical electron radius exceeds the speed of
light and to control that fact we propose the classical electron radius as a length-

contracted form of the Compton radius of the electron.
In the Chapter 5, the electromagnetic mass of the electron is discussed along

with its magnetic moment and the spinning sphere model of the electron. In this

chapter, a co-relation between the charge and the mass is also established in the light
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of the electromagnetic mass of the electron. In addition to that, we expressed the

energy of the electron here in terms of the charge and the mass together.

In the Chapter 6, we have tried to give a model of the electron incorporating
the basic features of this charged lepton. We considered basic features of the
Relativistic Spinning Sphere model of the electron. Then the motion of the charge is
also regarded here and we have tried to formulate the path of the rotation of the
charge. Starting with the magnetic field radius calculation, we have arrived to a new
radius of the electron, which is composed of the classical and the Compton radius of
the electron. Composite radius gives the hint of a helical path that can be considered
for the rotation of the charge. The rotation of the charge produces the current and the
magnetic field in result. We calculated the number of turns of the helical path also in
the frame of a Compton-sized spherical model. There we incorporated the recent
anomalous magnetic moment and the gyromagnetic ratio values to compare the
model with the recent measurements. The radius of the path decreases towards the
pole of the sphere and the charge returns in a similar way followed towards the
equator. It is also shown that though the charge is moving, it is mostly found at the

equator.
. . . a
Using the approach of the exponential series of P one can get the exact
z

radius in different levels in the sphere to represent the rotation of charge, which can
actually be verified in order with gyromagnetic ratio expression. Relativistic
Spinning Sphere model is connected with the Dynamical Spinning Sphere model and
the Zitterbwewegung model of the electron to provide the conditions of the new
model. More explicitly this model can co-relate the basic models with the logic of
changing the size. In fact, the conflict between the point and the extended models can

be solved with this model.

In the Chapter 7, we have discussed about the positronium, the quasi-stable
bound state of the electron and the positron. The discovery of the positronium is
described here. Then we used the assumption of harmonic oscillator wave function

and calculated the Hamiltonian for the same. The kinetic energy, one photon
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exchange potential and the confinement potential are calculated with the
corresponding wave function. These provide us the way to reach the mass spectra of
the S-wave of positronium in the framework of the non-relativistic models. Hence for
each wave function the kinetic energy and the potentials are calculated with the help
of computer programming. The diagonalised mass matrix has re-produced the spectra

for the singlet and the triplet of the S-wave positronium.

In the Chapter 8, we have discussed about the conclusion came out from the
works done in the previous chapters. Here we also have discussed about some of the

future possible work regarding this subject.
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You Rnow it would be sufficient to really understand the electron
- Albert Einstein



Introduction

Chapter 1

Introduction

What are the matters made of? This is the most fundamental question arose
in the mind of the people at the dawn of the rational thinking of the human
civilization. The preliminary thinking was developed considering air, water, earth as
the basis. But, the inquisitive nature of human race did not allow them to be satisfied
with the scenario. Scientists continued to get the fundamental building blocks of
Nature. In the process the electron was discovered and it was followed by other
particles. In the twentieth century physics these particles claim the most important
role. But the properties of the electron are yet to be well-explained with a definite
picture. Here in this chapter we have discussed about the discovery of the electron
and the properties. This chapter bears almost an introduction of the electron and its

properties which will create a platform for the next study.

1.1 The journey begins

Anaximenes’s model of the fundamental structure of matter [1] is the primary
footstep to the search for basic building blocks of the universe. Later Mendeleev’s
periodic table introduced more than hundred chemical elements. But, the first clearly
identified sub-atomic particle in the history of physics is the electron. Following
that, the proton and the neutron were discovered. In process a huge number of
particles were discovered by 1960 so that the beautiful garden of the particles soon
became a jungle [2]. Physicists felt the necessity to classify all the particles
according to their properties. In 1961 M. Gellman and Y. Ne’eman independently
proposed the Eightfold Way of particles to put the baryons and mesons into weird

geometrical patterns according to their charge and strangeness [2].
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Figure 1.2: Baryon octet in the eightfold way
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Figure 1.3: Baryon decuplet in the eightfold way

All the particles are classified due to their interacting nature and the
interactions take place according to four fundamental forces. Hadrons are controlled

by strong force and gluon plays the role of the mediator for them. They are discussed
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in Chromodynamics theory. Two kinds of hadrons are there. They are baryons and
mesons. Mesons are bosons in nature and they are composed of a quark and an anti-
quark. Baryons are classified into nucleons and hyperons. Baryons are composed of
three quarks or three anti-quarks. The neutron and the proton are the two nucleons. A

neutron is carrying an udd quark composition whereas a proton carries an uud quark
composition. A° AT, 3050 O are the hyperons. More intense investigation
is going on to study the structure of hadrons using different QCD evolution equations
[3-10].

Table 1.1: Four fundamental forces and their mediators

(This table is adapted from ref. [2])

Forces Strength Theory Mediator
Strong 1 Chromodynamics Gluon
Electromagnetic 10~ Electrodynamics Photon

Weak 107" Flavoudynamics Wand Z

Gravitational 10 Geometrodynamics | Graviton

Electromagnetic force involves leptons. The corresponding mediator is the
photon and the concerned theory is electrodynamics. Leptons indeed undergo the
weak interaction too. The electron, the muon, the tau and their corresponding
neutrinos are the members of the lepton family. They have the smaller masses in
comparison to the hadron masses. Neutrinos were first described as the massless and
chargeless particles. Recent observations and theories give the signature of the mass
of the neutrino and about its mass mixing [11-13].

The dynamics of the known sub-atomic particles is given by the Standard
Model (SM) of particle physics. In 1960, S. Glashow introduced the electroweak
theory, which is a combination of electromagnetic and weak interactions. S.
Weinberg and A. Salam incorporated the Higgs mechanism to Glashow’s theory and
proposed the standard model in the present version. According to the standard model,
all matter is made out of three kinds of elementary particles; e.g. leptons, quarks and
mediators. The mediators, leptons and quarks are described in the standard model.

Quarks and leptons are observed not to decay into more fundamental particles. The
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meadiators are field particles. Structure of the standard model has a gauge
group SUB)xSU(2)xU(1) that incorporates the strong force and unifies the

electromagnetic and the weak interactions [14].

Elementary Particles

Hatter Force Carriers
! 1
) ‘ ] ] 1 |
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1
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Figure 1.4: Matter and forces

The preon and other substructure models of the particles recommend for more
fundamental states, which are the components of the existing lepton and quark
families [15-18]. Indeed the modified version of the substructure model is described
recently incorporating a new theory of sub-chromodynamics.

Photons are the most commonly known mediator and are emitted or absorbed
during an electromagnetic interaction. Gluons are considered to be exchanged
between colours of quarks, which incorporate the chromodynamics in the standard
model. In weak interactions mediators are W and Z bosons. But the graviton is
hypothetical and yet to be detected experimentally.

At this point, all the particles are well set in the standard model of particle
physics with a huge success of the proposal. To explain the spontaneous symmetry
breaking and the basis of mass of the universe, the Higgs boson was proposed by P.
Higgs. This is yet to be discovered in the laboratories. In CERN the Large Hadron
Collider (LHC) [19], the biggest machine of the human civilization is now in the
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search of this God’s particle. Identification of Higgs boson would be the greatest

triumph of the mankind to have an overview of the birth of the universe.

Table 1.2: Lepton classification

Generations | Lepton | Charge | Electron- | Muon- Tau-
lepton lepton lepton
number | number | number
First e -1 1 0 0
v, 0 1 0 0
Second H -1 0 1 0
v, 0 0 1 0
Third T -1 0 0 I
v, 0 0 1

1.2 Discovery of the electron

It is known in general that J. J. Thomson is the person responsible for the
birth of the microphysics with his discovery of the electron. But it is notable that the
discoveries in science are not the individual performances. Physicists attempted in
between 1850-1900 to explain the nature of the charged bodies. That long list
includes great and pioneering minds in the world of physics. In fact, at Cavendish
laboratory people were trying and the others were also on their way with different
approaches, according to the historical account by O. Lodge and W. Kauffman,
which were discussed in “Histories of the Electron” book [20].

In 1856, W. E. Weber along with R. Kohlrausch recommended that the ratio
of the electrostatic and the electromagnetic units produce a number that can be
identified as the speed of light known at that time.

G. J. Stoney was first to use the term ‘electron’ to represent the fundamental
unit of electric charge [21-22]. In 1874 and 1881, Stoney suggested the minimum
quantity of electricity as one of the key physical units. He also mentioned that it may

be the basis of a complete body of systematic units and called it as “electron” or
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“atom of electricity” [23]. The quantity of electricity traversing an electrolyte during

electrolysis is described as “electron” by Stoney.

Table 1.3: Steps of the discovery of the electron

Evidence Discoverer
Electric atom theory of electromagnetism Weber
Optical dispersion by mechanical oscillators Helmholtz
Optical dispersion by electric oscillators Lorentz
Theory of motion of charged particles Heaviside, Poynting, Larmor
Electromagnetic mass Thomson
Atom of electricity, the electron Stoney
Faraday’s laws imply a unit of electricity, electron Helmholtz
Maxwell’s continuum electromagnetic theory Maxwell, Hertz
Cathode rays, attempts to explain Crookes, Goldstein, Lenard,
Perrin
Estimates the size of the electron Richarz, Ebert, Stoney
Mobility of carriers in gaseous conduction Townsend, Schuster
m/e for cathode rays, suggests rays as corpuscles Thomson
Reconciliation of Maxwell’s and atomic theories Lorentz
of electromagnetism
Magnetic splitting of spectral lines Zeeman, Lorentz
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Contemporary to Stoney, H. Helmholtz also observed that in the case of
electrolytes each valency must be charged with a minimum quantity of electricity,
which is non-divisible and known as “valency-charge”. H. A. Lorentz predicted in
his theory that the atom might consist of charged particles. His colleague and former
student P. Zeeman was busy with the study of the spectrum of the element sodium in
a magnetic field. Magnetic splitting of spectral lines observed by him in 1896 clearly
advocated the indication of the likely sizes of the unitary charges [24]. He noticed
that the widening of the D-lines of the spectrum of sodium is proportional to the
magnetic field. Lorentz picked up the numerical factor from this relationship and
used it to figure out the value of the ratio of the mass to charge of the carriers of
electric charge in atoms [24]. F. Richarz, H. Ebert and G. J. Stoney also attempted to
calculate the size of the electron from the emitting luminous vapour using the kinetic
theory of gas [20].

Using the potential difference V' between anode and cathode, E. Wichert
reached upper limit of the kinetic energy of the particles in terms of eV and defined
the magnetic deflection of cathode rays [25]. He used a collimated beam of cathode
rays, which got deflected transversely by high-frequency coils, but separated from
one another in the direction of the beam. Thus he reached the charge to mass ratio
using the kinetic energy and the magnetic deflection. In 1897, Wichert was more
specific about the value of e than Thomson [25].

Kaufmann also went on almost in the same line that of Wichert to produce

the e/m only in 1897. He used the f -rays from radioactive sources. But the result

was not good enough.

1.3 Thomson’s experiment

Though large number of physicists was involved in the process, the discovery
of the particle “electron” is recognized appropriately in the name of the British
Physicist Sir Joseph John Thomson [21]. He described the cathode rays and derived
the famous formulation of “m/e” of the electron [22]. The speed of the cathode rays
was the first concern of Thomson and in 1894 he measured it as 200km/s, but he has
thrown that out due to some faults. In 1897, he detected the deflection of the cathode

rays by electric forces between the rays and electrified metal plates. The nature of the
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deflection was away from the negatively charged plate and towards the positively

charged plate [21].

Figure 1.5: Sir Joseph John Thomson

In the cathode ray tube, the ray particles pass through a deflection region where they
are subjected to some electric and magnetic forces acting at right angles to their
original direction. There after they travel through a longer force-free region and
strike at the end of the tube. Using Newton’s second law of force, Thomson arrived

at the interpretation of his own measurements and formulated the work as

Forceonray Length of deflection Length of drift
particle e region e  region

Displacement of ray at the end of tube = >
Mass of ray particle o (Velocity of ray particle)

Newton’s second law states regarding the force on a body and its consequence with

the acceleration as
F=ma. 1.1

In Thomson’s experiment the force was F =10"'"' dyne, and the mass of the electron

is about 9 x1072 gm. These ensure the acceleration of abouta = F =1.1x10" cm/s”.
m

Consequently the very high speed was calculated as 1.1x10'° cm/s only after a micro

second time.
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Figure 1.6: Schematic diagram of Thomson’s experiment

If the force F is exerted on the cathode-ray particles, acting in a transverse

direction to the motion of the ray, then the particles will experience acceleration in

the direction of magnitudea = E The force will be operated for a time ¢ and the
m

velocity perpendicular to their original motion comes out to be

F
Vpep =t =1—. 1.2
m

The deflection region is of length /. If the particles travel the deflection region with a
component of velocity v in the original direction of ray, then the time during which

the particles are accelerated is
t= ! . 1.3
%

Using equation 1.3 into 1.2 for¢, perpendicular velocity comes out to be

v =£I—. 14

7P my
After the deflection region, the ray particles travel through the drift region of length
L with a velocity v in a deflected direction from the original direction. The time

spent in the drift region is

T =

—L—. 1.5
v

But simultaneously the velocity of the ray particles isv_,,  in perpendicular direction

prep

to their original direction. Hence the displacement was counted as
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d=Tv 1.6

prep *

Using equations 1.4 and 1.6 jointly the displacement comes out as

d=(£jx(ﬂ)= Ly 1.7
v my my

Equation 1.7 provides the extent of the displacement of the ray particles from the

straight direction.

Electric forces were introduced by the parallel, charged metal plates. In this
experiment, the length and the width of the metal plates were considered much
greater than their separation so that any effect of the plate edges can be very easily
ignored. So the electric force here is at right angle to the axis of cathode ray. To be
précised about the force, one can say that if the cathode-ray particles have electric

charge e, the exerted electric force by electric field E on the particles is

F,.=ek. 1.8

elec
Consequently the displacement of the ray at the end of the tube will be
d - eElL .

elec 2

my

1.9

Or in words

Charge of  Electric Length of Length of drift

Displacement of ray by electric field = ray particle o field e deflection region e region

Mass of ray particle o (Velocity of ray particle)2

Thomson treated the cathode rays as streams of individual particles. He was
successful to get exactly the magnetic force on the moving particles and hence
calculated the displacement of cathode ray due to a magnetic field at a right angle to
its direction.

The magnetic force by a magnetic field Bon a particle with charge e and
velocity v is given as

F,e =evB. 1.10

By means of the expression of magnetic force from equation 1.10 in equation 1.7,

displacement of the ray due to magnetic force at the end of tube comes out as

10
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g =B 1.11

ma,
e my

Or in words

Chargeof Magnetic Length of defle- Length of drift
ray particlee field ® -ctionregion e region
Mass of ray particle e Velocity of ray particle

Displacement of ray by magnetic field =

As a result the ratio of the magnetic deflection and the electric deflection can be

figured out as

Magnetic deflection _ Magnetic field

- - ——— o Velocity -
Electric deflection  Electric Field

This gives magnitude of the velocity as

v=(_’§)( d'"”g]. 112
B delec

Here comes out the aim of Thomson’s experiment as the ratio of the mass to charge

using equation 1.12 in equation 1.11 as

2
_@:B_H‘ﬂc_. .13
e d

mag

On the 30th April 1897, J. J. Thomson announced the results of his
experiments on cathode rays and according to him the rays were negatively charged
subatomic particles, which were a universal constituent of matter [23]. Thomson also
argued that the mass-to-charge ratio of cathode rays depended neither on the
chemical composition of the gas within the cathode ray tube nor on the material of
the tube's electrodes [24]. He named them as “corpuscles”. In 1899, he again spoke
about his corpuscle theory at the British Association Meeting and then it was
accepted only after two years of his so-called announcement [23]. In this regard, we
must say that though Stoney used the word “electron” [25-26], Thomson disagreed to
approve it and R. A. Millikan too disapproved [27]. But other physicists affirmed the

name “electron” ignoring Thomson and Millikan’s opposition.

11
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Figure 1.7: One of the cathode ray tubes used by Thomson

1.4 Properties of the electron

More than a century ago electron was discovered. By this time different
properties of the electron have been discovered. Here we are going to have a quick
look on some important properties of the electron. When we are going to describe
those properties of the electron, sometimes the other unit systems are also described.
But when we have concentrated in our own work there only Gaussian system is used.

The electron is a charged lepton. This refers to the significant spectroscopic
properties of the electron. Till the time of this inscription, the electron is known as an
elementary particle with very low mass. Thomson found the charge of the electron to

be negative. From three different cathode ray tubes he measured the ratio m/e ~ 0.4,
0.5 and 0.9x107"' kg/C. From his measurement of the unit of charge on an ion, the
magnitude of charge comes out to be e =2.2x10™"° C and this leads one to infer the

mass-value as m~1.4+0.5x10°kg [27]. These estimations were within a factor of

two with recent accepted values. K. Woltz gave a comprehensive list including his
own work on e/m=1.764(3)x10"" C/kg. But more accurate results were given later
in 1916 by Millikan during the precision measurement of charge eand# . He found
the charge of the electron as e=1.592x10"°C and Planck’s constant
ish=1.054x10*Js. Along with the above calculations; Woltz’s measurements

provide the mass asm =9.025x 107 kg. Again with the development of the quantum

electrodynamics using the general considerations by F. J. Dyson, it can be shown that

12
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the radiative corrections top the motion of the electron-camrbe-made-fintte—in all

orders with the suitable use of the charge and mass renormalization [28].

Recent data of the electron properties from Particle Data Group [29] are
given as:
Mass m = 0.510998910 + 0.000000013 MeV,

Magnetic moment anomaly(—g;—a =(1159.65218073 + 0.00000028)x 10°,

Electric dipole moment d = (0.07 +0.07)x 10 e-cm and

Mean life 7 > 4.6 x10* yr.

Mass

Mass of the electron is found extremely low from the various experimental
measurements. But it is a question of ambiguity what actually the electron-mass is.
Earlier it was thought that the entire mass of the electron was electromagnetic. But
the reformed concept is apart from that. According to A. Pais, the mass of the
electron is not purely electromagnetic in nature [30-31]. Again, he also confessed
that the cause of the mass of the electron is still beyond our knowledge [30]. M. H.
MacGregor expressed that no completely electromagnetic structure is available and
the electromagnetic framework is needed for the electron just to hold it together [31].
In the current scenario, the origin of the mass of the electron is a big puzzle. Hence
the concepts of the electromagnetic mass and the mechanical mass both are regarded
in recent works.

In a recent measurement of the g-factor the electron’s mass has been
determined with more accuracy. Currently in atomic mass unit the mass of the
electron is presented as 0.0005485799092(4)u [29, 32]. Theoretical and experimental
approaches with electron properties for more than a century state that four different
kinds of mass or equivalent energy are attributed to the electron. They are
electrostatic self-energy (Wg), magnetic self-energy (W), mechanical mass (W) and
gravitational mass (W) [33]. In different units the mass of the electron is expressed

below according to the experimental evidences [34].

13
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Table 1.4: Electron-mass in different units

Symbol Numerical Value Unit
m, 9.10938215(45)x 107" kg
m, =4 (e) 5.4857990943 (23)x 10~ u
m,c’ 8.18710438 (41)x 107" J
m,c? 0.510998910(13) MeV

Charge
Charge is one of the intrinsic properties of the electron and this is a
fundamental quantity of Nature. For the electron the charge is negative. The

numerical value of the elementary charge of the electron s
1.602176487(40)x 107" C [34]. This is the key factor behind the behaviour of the

electron. Due to its charge, the electron is involved in the electromagnetic
interactions. The size of the charge of the electron or the charge radius of the electron

is yet to be précised though it is confirmed by the LEP results of CERN that the size

is even less than 107" m or 107" ¢m [35]. Charge of the electron has a crucial role in
describing the electron models. Some models show a classical distribution of charge
[36]. They are surface and volume distributions of charge. The other models
advocates for a point-charge [37]. It controls the current, magnetic field and
magnetic moment of the electron. As a fundamental quantity of Nature the electric

charge is also involved in the description of the fine structure constant.

Spin

The spin of the electron is a mysterious angular momentum for which no
actual physical picture is available yet [38]. Experimentally, in 1921 spin was first
exposed when O. Stern and W. Gerlach experimented with the silver atoms passing
through a magnetic field and observed a non-classical distribution of silver atoms on
photo-plate. Hypothesis of the spin of the electron was proposed by G. E. Uhlenbeck
and S. A. Goudsmit in the framework of a small rigid rotating body. But W. E. Pauli
did the most influential study over the matter theoretically. Pauli described the spin
as “... a classically not describable two-valuedness”. This “two-valued quantum

degree of freedom™ allowed him to formulate the famous ‘Pauli exclusion principle’.

14
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Uhlenbeck and Goudsmit’s results met a favourable response by the work of L. H.
Thomas. With the advancement of quantum physics, the spin is regarded as a
quantum property of the electron instead of being a classical one [38]. The magnetic
moment and the spin are related in the current representation of the picture according
to the standard model of particles.

Classically the spin is the rotation of the particle around its axis. It is called
there as angular momentum. Classical and semi-classical models incorporate the spin
with the rotation only. N. Bohr proposed a fundamental quantum unit of orbital
angular momentum [39] in terms of 7, which is the Planck’s constant divided by 27z .

Being a quantum mechanical property, the spin can take only discrete values. The
spin of the electron is —Z— or —%. In particle physics, depending on the spin the

particles are classified in two classes: bosons with integral spin and fermions with

half-integral spin. Our concerned electron is a half-integral spin particle.

Magnetic moment
From the hypothesis of the spinning electron the magnetic moment of the

eh
47rmc

electron is defined as [40], where symbols have their usual meanings.

Without radiative corrections, the intrinsic magnetic moment of the electron is given

by the Bohr magneton only as u, = 2_eh_ [41]. The magnetic moment of any of the
mc
three charged leptons (£ = e, i, 7) is known as

H, =g,—i-s, 1.14
2m,

where g, is the g-factor of the particle, m is its mass and s is its spin [34]. Otherwise

one can mark the magnetic moment in terms of Bohr magneton as

g S
8, S 1.15
=y ey

with —§—= 1 for a point electron in a renormalizable Dirac explanation. According to

QED predictions it is considered that the vacuum fluctuations and polarization

15
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slightly increase this value. For the lepton substructures this value could deviate from
the QED or Dirac predictions [42-43].

Anomalous magnetic moment of the electron a, is one of the simplest
quantities, which can be calculated very precisely [44]. This is measured
experimentally asa, =1159652188.4(4.3)x107'?. It plays a crucial role to test the
validity of QED.

g-factor
The g-value is a dimensionless measure of the moment. This is the magnetic
moment in units of the Bohr magneton for the electron [43]. The g-factor for a Dirac

point particle with g =2, can be expressed as

g _
5 =1+ aQED (a)+ D padronic + Qrveak + Qe >

where a,,, (2)~107is the anomalous magnetic moment and a function of the fine-

structure constant. Hadronic and weak are calculated accordingly and within the
Standard model, whereas the last term can cause deviation from Dirac or QED
prediction with a substructure idea of the electron [42] which is a subject of this
thesis and beyond Standard model exposure.
For free electron, the g-factor can be expressed as
g. =2ﬁ=2(1+ae), 1.16
Hg

where 4, is the magnetic moment, u, is the Bohr magneton and q, is the electron

magnetic moment anomaly [45]. The numerical value of the factor is given in “The
1986 adjustment of the fundamental physical constants” as 2.002319304386(20)
[45].

Mean life

The mean life of the electron is tested in different experiments for the years.
Measured value of the mean life is as 7, >4.2(2.4)x10 yr. according to the

experimental outcome on the electron stability and non-paulian transitions in Iodine

atoms from Gran Sasso National Laboratory of INFN [46]. But very recent
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observation recorded as a lower limit > 1.22x10% yr for the mean life time of the

electron decay via the branche™ — y +v,. With single Ge detector, the best limit till

is counted as 1.93x10% yr [47].

Size and shape

Size of the electron is a real enigma yet. Some of the modern approaches
regard the electron as a point particle [48]. The standard model of particle physics
also supports them. But classical theories argue against. In fact, from different
phenomenon the radius of the electron is measured are different. They vary in the
range of 107" ' m to 107" m [33, 49]. Compton calculated the radius of the electron in
his way using classical electrodynamics as well as the scattering nature. He found
that the magnitude of the diameter of the electron is comparable with the wavelength
of the shortest ¥ rays and thus the radius of the electron came out in his calculation
as 2x10™%cm or 2x10™%m [50]. It is also confirmed in the same article that the
radius of the electron is the same in all atoms.

Lorentz calculated the size of the corpuscle of Thomson’s corpuscle as
~10™"cm or ~107" m. Though the size of the electron in term of radius is same in
all the atoms, the sizes predicted by different electromagnetic phenomenon are
different. The expressions of those sizes are called as different radii [33, 49]. They
are listed below as:

R, =Classical radius,

R. =Compton radius,

R,y = Quantum mechanical Compton radius,

Ry = QED-corrected quantum mechanical Compton radius,
R,, =Electromagnetic radius,

R,, =Magnetic field radius,

R,;» = QED charge distribution for a bound electron,

R, =Charge radius.
As we are going to have detailed study about the radii and the sizes, here we

are not going in depth. Therefore the size of the electron is really an enigmatic thing
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that is yet to be explained properly. The puzzling size of the electron also results in
the shape of the electron. Shape of the electron is a question of ambiguity. If it is
regarded as point particle, the shape will be meaningless. But extended models offer
different shapes for the electron. Amongst them, spinning spheres are well-known.
The idea of spherical electron was first done by Lorentz and others and later it was
continued up to MacGregor, Rivas and other contemporaries. Compton advocated
about the ring model. According to the string theory the particle’s shape is given by

the corresponding vibration.

Table 1.5: Some of the fundamental physical constants related to the electron
(This table is adapted from ref. [45])

Quantity Symbol Value Unit
Speed of light in vacuum c 299 792 458 ms’
Planck constant h 6.626 075 5(40) 107 Js
Elementary charge e 1.602 177 33(49) 107" C
Bohr magneton H 25812.805 6(12) Q
Fine-structure constant a 7.297 353 08(33) 1072
Rydberg constant R, 10 973731.534(13) m™
Bohr radius R, 0.529 177 249(24) 10"m
Electron mass m, 9.109 389 7(54) 10~ kg
5.485 799 03(13) 10~y
0.510 999 06(15) MeV
Compton wavelength A 2.426 310 58(22) 10"?m
Classical electron radius R, 2.817 940 92(38) 10" m
Thomson cross section o, 0.665 246 16(18) 10%m?
Electron magnetic moment a, 1.159 652 193(10) 107
anomaly
Electron g-factor g 2.002 319 304 386(20) -
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Electric dipole moment

Electric Dipole Moment (EDM) of the electron is one very important
observable for the testing of the CP violations. The presence of an electric dipole
moment can be traced by placing the particle of interest in an electric field E and
measuring the corresponding incremental energy according to W =-d.E. Several
theoretical models predicted the electron’s EDM. The standard model predicts the
d,

magnitude of EDM as <107 e cm, when supersymmetric models predict as

def <107% e cm. Some of the models predict a range of EDM. Amongst them lepton-

flavour changing model gives the range over 10 e cm to 10™°¢ cm. In a more

-28

précised form, the left-right symmetry models claims the range of 107 ¢ cm to 107

d,| in the range 10 e cm to 3x10™% e cm

e-cm, whereas Higgs models predict

e

[51].

Size, shape, magnetic moment, mass etc. are the properties of the electron
and they are the evidences, which are not matching with the point particle theory.
They not only state of the behaviour of this charged lepton, but also advocate an
extended structure, which is classically acceptable. Consequently physicists tried to
figure out a clear picture of the structure or the substructure of the electron which
falls under the “beyond standard model physics” now. Experimentally to get the
exact size and shape of the electron is a tough job and that is a limitation which
prompts people to propose more theories of models of the electron. We therefore
have studied the proposed models and tried to give an account in our own way
without violating the behavioural nature of the electron. In this regard the key points
to be discussed are given below:

e Different models of the electron

o Size of the electron from different electromagnetic phenomenon
e Electron properties in the light of fine structure constant

e Electromagnetic mass of the electron

e Helical motion and spinning sphere model of the electron
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At the end we have extended our study up to the positronium (bound state of
the electron and the positron) mass spectra, so that we can even have a picture of the

immediate next status after the free electron.

1.5 Concluding remarks

Studying all the above facts, it is seen that standard model cannot explain the
electron completely. Therefore a new model is necessary to explain all the properties
of the electron. Point particle structure is neither explainable from geometrical point
of view, nor from the particle aspects. No proper explanation of EDM is also
possible from the point particle theory. Hence this is a humble attempt where we are

going to discuss and study the electron properties in the light of classical approach.
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Chapter 2
Models of the’electron

The electron was identified in 1897 as the first subatomic particle {1]. But the
structure of the electron is still a subject of debate. The properties of the electron
discussed in the previous chapter illustrate the different aspects of this particle.
Depending on them, several models of the electron [2-4] have been proposed
theoretically. Real experimental features say that the electron does not decay into
other particle. But again it is questionable in this regard that whether it is our
experimental limitation to probe the 0.511 MeV/c® particles or not. If it is our
limitation to break that small mass, then what can be the exact measures? To get the
answer, throughout the last century, good numbers of theories were proposed.
Models have been developed both in classical and quantum mechanical ways. Some
of the models are at the boundary of the two and are known as semi-classical
approaches. Roughly the models are either point-particle models or extended models.

Depending on the present day experimental facts some of the existing models
claim the electron to be a point particle. Basically the very low mass of the electron
is responsible for this one to be counted as a point particle. Again as it does not
decay into some more elementary particles this suggests it to be a point like particle.
On the other hand the treatment of the electron is better studied in quantum physics
and that obviously put forward the claim of a very tiny entity. Hence in the standard

model it is considered as a point-like one.

2.1 Classification of the models of the electron
Classical results and sometimes its features have shown the behaviour of the
electron as an extended particle. Idea of the extended structure of the electron is also

advocated by number of physicists [3-4]. When an extended electron is supposed,
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there arises the question about the nature of its charge. Two different types of
extended models of the electron are considered in this regard. Some of the models
represent the charge as glued over the entire outer surface of the structure [2, 4, 5].
On the other hand, several structures are there with an extended electron and a point
charge [6-8]. Hence P. Lancini proposes the classification of the models of the
electron [9], which we have listed below:

A. Point-like models

A point-like electron actually does not imply any structure and some works
are devoted in the support of it {10]. They refer to the explanation of the properties of
the electron without structure {11-13]. The standard model and other quantum
mechanical models support a point-like electron.

B. Extended models

Several models propose an actual extended structure of the electron {2, 4, 5,
14-19]. They argue of complete electromagnetic structure. Indeed these models say
about the surface and volume charge distribution of the electron.

C. Extended models with point-like charge

The third kind refers to the extended body with a point charge [6-8]. In these
models spherical structure is emphasized with a point-like charge on the sphere and
charge is regarded not to be glued over the entire body.

Some other models are also there which does not fall in these three kinds and
they are chiefly sub-structure models. Lepton and quark sub-structure models are
proposed in good number of articles [20-25]. Preon model, Rishon model and unified
composite models fall in this category.

Also there are some other theories, which deal with the extra dimensions or
above the known four dimensions [9, 26-27] and they provide the picture of the
electron in their own ways.

We are going to discuss some important models of the electron in each

category.
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2.2 Point-like models
2.2.1 Visser model

In a classical model [11] of the electron proposed by M. Visser, ordinary
electromagnetism coupled to the neo-Newtonian classical gravity is described. Here
a charge point is considered in an electromagnetic field. Non-gravitation matter

density is regarded to be
2
. 2.1

1
=myd(r)+— .
p=molr) 87 4ze,c r'

: 1 iy . ,
Here m, is the bare mass and — 5 94—13 the electromagnetic mass density,

8w dmeyc” r

with Q as the total charge and &, as the free-space permittivity. In Geometrodynamic

units {11] G=c= 41 =1is regarded to represent the gravitational and the

€
electromagnetic mass density together. Hence for a dimensionless variable y the

differential equation comes out as
2
Ay = (27zm053 (r)+ %Q—J v . 2.2
r

The general solution of this equation is integrated out as

_cosh(xk ~Q/2r)
- cosh(x)

w(r) ; 23

where « is the integration constant and related to the mass of the system. The bare

mass is expressed as
m, =-Q. 2.4
The total energy comes out to be equal to the gravitational mass of the system and is
identified here as
m = Qtanh(x). 2.5

Visser’s calculation for bare mass in rationalized MKSA units show that

my = ——2 = _(1.16x10"kg/C)Q. 2.6

\4ne,G

With O =e=1.602x107"°C, the bare mass is figured out as
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my =~1.85x10"kg =~1.04x10""GeV /. 2.7

Simultaneously, this bare mass is expressed in terms of Planck mass when connected

through the fine structure constant as [11]
my = ‘\/EM Planck * 2.8

But experimentally measured mass is not in agreement with this value of the
bare mass concept given by the author. Firstly, the negative sign of this mass is not
explained. Secondly, the magnitude of the electron mass measured is too small

compared to the mass expressed in this model. This very high value of the mass

makes this model of no use. In the recent scenario, the gravitational mass W

associated with the electron is regarded as negligibly small and hence it is expressed

as W; =0. But the concept of mechanical mass is grown up with the certain logical

steps and it takes around 99.9% of the total mass as expressed by MacGregor [7].
Another important property spin of the electron is completely ignored in this
model. What role it can play in this model is not tested at all. The fact is that the

ho . : . . . .
known 5 spin of the electron is not fitting with a huge massive electron. If one tries

to put this calculated bare mass and the known spin together the result indicates to a
rest body. Similarly the magnetic moment of the electron, which plays the crucial
role in the behaviours of the electron, is also omitted completely. These limitations

weaken the model proposed by Visser.

2.2.2 Blinder model

In a recent work S. M. Blinder proposed a classical electron model [12] even
without a structure. In this model, the self-energy of a point charge and that of a
dipole are focussed keenly. The electron is considered here as a point particle. This
model regards the total energy as electromagnetic and in consequence that offers an
electromagnetic origin of the angular momentum. This allows the parameterisation of
permittivity within the range of two-third of classical electron radius [12]. The

angular momentum is set as

S == [rx(ExH)r, 2.9
C
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where E is the electric field, H is the magnetic field and ¢ is the speed of light in free

3 :
space. The electric field energy is calculated here as W, = chz and the magnetic

1 .
self-energyas W, . = ch2 with m as the mass of the electron.

The size or the radius of the electron in the model is not précised. If the radius
or the size is used as classical electron radius, this is not clear that how it can be put
again as a point particle with structure-less picture. Huge electric energy or mass is
also questionable in today’s conditions when the charge is confined within a length
<107 m or <1077 cm [8]. Again as the recent experimental results tell us of the

length of the charge radius to be <107 cm [8], Blinder’s mode! loses its strength.

2.2.3 Massless point charge model
This model is developed on the Abraham-Lorentz equation for a point

electron [13], which is expressed as

mr_(m0+5m)r_2i3315+p, 2.10
3¢ dt
where
_ 4dam,
j =5 2.11

0

withe = e, Ja s ko= Jr/ r., m, is the mass and r. is the radius of the electron. Here

F is some external force driving the electron and e. is the true or bare electronic
charge. The bare mass is given as

my, =m-om=—am, . 2.12

Using Puthoff model [28] W. C. Daywitt arrived at the conclusion that the

zero-point agitation of the Planck particles within the degenerate negative energy

Planck vacuum creates zero-point electromagnetic field that exists in the free space.

According to this model the driving force e.E,, is responsible for the mass of the
electron, and consequently the point charge e. and the radius too. Here E, is the

zero point electric field.

28



Models of the electron

This model is mounted on a massless idea, whereas the mass of the electron is
playing the significant role in the leading models of the electron. Secondly, thom'lgh
Daywitt claims it as a massless one, the model in fact is not so. Neither the size nor
the spin of the electron is précised with this model. None of the electromagnetic

properties of the electron is also tested within this model. As a crucial point, it can be

eZ

pointed out that Daywitt marked as Compton radius, but it is known commonly

mc?

as classical electron radius and the Compton radius is mathematically expressed as

—ri-. Again the classical radius and the Compton radius are at a gap of the order
mc

of10% or exactly by the factor of the fine structure constant, which can incorporate a

huge change in the corresponding calculation.

2.3 Extended models
2.3.1 Lorentz-Abraham model
H. A. Lorentz constructed a particle electrodynamics [2], and tried to put the
macroscopic ;;henomena of electromagnetism and optics in terms of microscopic
behaviour of the electrons. Before Lorentz stepped into the business, his
predecessors had tried with the interaction between the charges. But he did it the
other way via the electromagnetic field.
If the current density j and the charge density p are related as
J=pv, 2.13
and pis defined by
e=[pd’r, 2.14
then the electric and magnetic fields can be produced by the Maxwell’s equations.
Here &’ Trepresents the volume distribution of the electron within which the charge is

distributed and v is the linear velocity of the charge. The force exerted by the fields £

and B on a charged particle is then expressed as

f=p(E+3xBj. 2.15
c

29



Models of the electron

As Maxwell’s equations are also applied in this case, the above expression is called
as Maxwell-Lorentz equation [2].

The system was considered with the atoms or the ions to which the electrons
are bound elastically. In other words, this is a physical system of a charged harmonic
oscillator. The radiation is emitted by the oscillator with units of ergs/sec at the rate

of

2
R=2.5 .4, 2.16
3¢
whereais the acceleration of the charge. This loss of energy results to a damping
force as
2 2
Fmd=—-e—3-@. 2.17
3 ¢ dt

With a rigid spherical structure, M. Abraham got a purely electromagnetic electron
of the classical electron radius [2]. The momentum of the electron is then given by

the Poynting vector and is written as

1
=—\|Sd°r, 2.18
p=—[sd'r
where
c
S=—ZExB. 2.19
4z

Here r is the radius of the spherical structure. This gave the momentum of the

electron due to the Coulomb field of an electric field moving with velocity vas

pelm =§melmv ’ 2’20

where m,,, was the electromagnetic mass considered [2]. Then the total momentum

of the electron is calculated out as
4

where mv=p, ... is the momentum of uncharged part of the electron.

The force exerted on the electron is also aimed to be calculated and for that
we start with the Newton’s law of motion
mv=F 2.22

ext ?
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if there is no radiation. But as the charge particle’s acceleration is associated with

radiation, the equation 2.22 can be given in a modified form as

mv=F,_+F,_,. 2.23
One may arrive now the exerted force by using equation 2.17 in equation 2.23 as
2
m[\} - -32-6—31;) =F,,. 2.24
¢

This is called as Abraham-Lorentz equation of motion [29].

This model gives the charge distribution as rigid and spherically symmetric.
This consequently refers to the question of self-force, which can be incorporated;
since due to Coulomb’s law each part of the charged sphere repels all other parts.

The self-force can be written as 2]

Fop = p(E+%xB}V3r. 2.25

If the electron is to be purely electromagnetic in structure, then for an external force
employed on it, can be balanced as

F  +F

cef T Foxterenar = 0 - 2.26

Dirac pointed out the great problems regarding this model. The
electromagnetic origin of the Lorentz model is discarded [30]. He cited the example
of the neutron mass, which claims the independence of electromagnetism for mass.
Also in the theory of the positron, the idea of the electromagnetic mass no longer
stands. This way, the self-force treatment is with diverging self-energy. Secondly the
damping could make it to zero energy state that we cannot get for the electron. These

problems made this model weak and opened the area for new speculations.

2.3.2 Allen model

In the meeting of royal society, H. S. Allen proposed the case for a ring
electron [14]. He discussed the properties and the work done by others and gave his
own conclusion to the properties in a ring type electron. He was in favour of an
electron in the form of a current circuit capable of producing magnetic effects.
According to him, exerting electrostatic forces, the electron behaves like a small
magnet. The important outcomes of this model are discussed by him. According to

him: there is no loss of energy by radiation, the ring electron gives good explanation
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of the facts of paramagnetism, a small amount of ionisation of gases produced by X-
rays would be able to have an explanation and Bohr’s theory of origin of series lines

in spectra may be restated to apply to the ring electron and so on.

2.3.3 Old classical model
In the paper of D. Lynden-Bell [S] the old-fashioned electron model is
discussed partially and he also pointed out the weakness of the model. We here did
the job a bit extensively. The problem of the large velocity is discussed in short in
that paper. It is a model of the electron given with uniform surface charge density.
The angular momentum of the rapidly rotating uniformly charged sphere is

expressed as [5]

=222 . 227
9

The spin angular momentum of the electron is % If this is employed in equation
2.27, the velocity of the sphere comes out as
v= ga“c , 2.28
4

where « is the fine structure constant. Hence the velocity of the sphere exceeds the
velocity of light. This indicates the inconsistency of the proposed model due to the
violation of the postulate of the special theory of relativity. If we consider with the

same structure that describes the equation 2.27, the spin angular momentum comes

out to be as
L= Z a -‘zl— . 2.29
9 ¢
Hence the radius of the electron is resulted as
R=%Rw 2.30

2
e . .
where R, = —, the classical electron radius.
mc

The energy of the sphere in the electric field is given as [5]

€, =——, 2.31
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where, r is the concerned radius. The energy in the magnetic field is known as

e’v?

£ = )
" 9Rc?

Consequently the total energy due to the electric and the magnetic field is given as

2.32

the sum of the equation 2.31 and 2.32

2 2
£ =-2%(1 +-§-12—}. 2.33
4

At the speed limit of v=c, we have the radius R, =—E—, which is known as
mc
Compton radius [7]. Using Compton radius at maximum velocity, the total energy

can be calculated from equation 2.33 as

2
gC = _1_1_ . e__ . 2.34
18 R,
With the use of Compton radius in equation 2.32, we have the energy
&c U me, 2.35
18 .
If the velocity is very less than the velocity of the light; i.e. v <<c, we have
2
P 2.36
2R

2

. . . e
Using the classical electron radius, R, =—, the energy can be calculated from

mc

equation 2.36 as

2

£, = 2.37
2
hZ
For electromagnetic radius of the electron R, = —-, we can write from 2.33
me
2 2 2
6, =M1, 2| 2.38
2 9¢

If the velocity v<<c, then for electromagnetic radius following equation 2.36 we can

have a modified version of equation 2.38 as

a’mc?

& = > 2.38-a
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It is well known now that there are eight well-defined radii of the electron [7,
31] and they all are derived from different electromagnetic aspects. Above-
mentioned energy equations 2.35, 2.37 and 2.38 are for Compton radius, classical
electron radius and the electromagnetic radius respectively and these three radii
belong to the family of those eight radii. Hence equation 2.33 can be considered as a

generalized form of total energy. Therefore, ¢, and &,;, can be set with employing
the conditions v=c¢ and v <<cin equation 2.33. From equations 2.35, 2.37 and
2.38-a we know that the radius corresponds to ¢, is R. and radii concerned
tog,,are Ryand R, respectively. This concludes the range of electron size within
the frame of R, toR,, which essentially rejects all other radii. Also the energy
comes out from equation 2.28 with the classical radius
£ =10558.0625mc” . 2.39

This is completely an absurd value for the energy as the maximum energy is
regarded as mc”.

As equation 2.33 refers to a relation between the radius and the velocity, the
radius can be defined in terms of energy as

2 2
R =—;——(1+§v—2') 2.40
& c

The maximum possible energy we can account for the particle is mc?. Using this in

equation 2.40 one will get the velocity v = —3—c for the classical electron radius R,

V2

which is quite an impossible value according to special theory of relativity.

Similarly, spinning sphere models follow the form of the angular momentum as
L=lw, 2.41

where /is the moment of inertia and ®is the angular velocity. This gives the

expression of angular momentum of a sphere as

L= %va . 242

Equation 2.42 leads to the velocity of the electron as
va~1l4c, 2.43

which is quite absurd.
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The smearing out charge over the entire sphere is a huge drawback that we
have proved here from classical aspects only. Firstly, this offers a tachyonic electron,
which is in contradiction with the special theory of relativity. Secon