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INVESTIGATION OF THE BASIC PARAMETERS 

OF THE ELECTRON AND THE POSITRONIUM 

MASS SPECTRA INVOKING VARIOUS MODELS 

Abstract 

The electron is the first sub-atomic particle discovered. It was discovered by 

1. J. Thomson in 1897. It is a charged lepton, which does not decay into more 

fundamental particles. In the Standard model of particle physics it is called as a point 

particle. Different experimental facts have described the properties of the electron. 

Mass, charge, spin, magnetic moment, electric dipole moment, gyromagnetic ratio 

and the size or radius of the electron are the important parameters, which are dealt to 

connect experimental facts with the theoretical aspects of the electron. 

Depending on those properties several models of the electron are proposed 

theoretically. To depict a picture of the electron, the process of proposing electron 

models started by Lorentz immediately after the discovery of this particle. Lorentz­

Abraham-Poincare model, Zitterbewegung model, Relativistic Spinning Sphere 

model and Dynamical Spinning Sphere model are some recent amongst all the 

models. These models are based on the different electromagnetic phenomenon and 

they talk about different sizes or radii of the electron. Models discuss basically either 

sub-structures of the electron or some sort of structures depending on properties and 

mathematical formul~tions about the electron. 

The radii of the electron are revealed from different models to give the proper 

picture of the electron. They lie on a long-range scale. Though all these radii are 

originated from the different electromagnetic phenomenon, they have some common 

features, which co-relate them as well as those basic phenomena. 

Recent work about the size of the electron, anomalous magnetic moment and 

the gyromagnetic ratio provide us a good platform to test the theoretical results and 

also to refine the approaches for the electron models. An effort is given here to co­

relate all these models and the radii. The parameters and the models are studied with 



an aim to propose a possible new model covenng as much as of the prevIOUS 

problems regarding the models. 

After the work for the models and the parameters of the electron, we have 

done some investigations of the mass spectra of the positronium has been done. It is 

a quasi-stable bound state of the electron and the positron. This study is actually a 

shifting from semi-classical works of the electron to the quantum mechanical 

domain. Fine structure constant connects them in a unique way. Also the positronium 

is the very next step after the study of electron-positron and in that regard also this 

study is important. In this thesis we have studied the mass spectra for the S-wave of 

the positronium. In question of structural matter, the positron resembles the electron. 

Hence the immediate next one is their bound state, which is studied here. Thus our 

approach makes a bridge amongst the electron, the positron and the positronium. 

Moreover it has been shown a step forward from classical to quantum mechanical 

era. 

The Chapter 1 is the introductory chapter about the electron. Here we have 

started with the discussion about the basic building blocks of the Nature. A little 

touch is given to the Standard Model of particle physics too. Then the discovery of 

the electron is discussed with the historical accounts about the early experiments and 

the theories. In this connection the experiment of J. J. Thomson has been described 

elaborately. Next we have studied about the properties or the parameters of the 

electron with their experimental values. Charge, mass, spin, magnetic moment, 

gyromagnetic ratio, size are discussed there. 

In the Chapter 2, different models of the electron have been discussed 

according to the properties of the electron. They are mainly classified into the 

structural and the sub-structural models. The structural models are further classified 

into point-like, extended, and extended body with point-like charge models. Lorentz­

Abraham-Poincare model, Compton model, Bunge model, Zitterbewegung model, 

Relativistic Spinning Sphere model, Dynamical Spinning Sphere model are 

noteworthy amongst all these models. Unified Composite model of the particles in 

the discussion of sub-quark particles. Some limitations about old-fashioned Classical 
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model, Blinder model, Semi-classical Ring model, and Semi-classical Tachyonic 

model are discussed here. 

The Chapter 3 describes about the eight different radii of the electron. We 

have discussed their origin and the significance in the behaviour of the electron. 

Several relations amongst those radii are established. Following the trend of the 

relations of radii involving fine-structure constant, we offered the mathematical 

formalism of the charge radius with the order in agreement with the LEP result from 

CERN. In addition, the relations between Rydberg constant and the electron 

structure are also attempted. These relations not only unite the different radii of the 

electron, but plays significant role to co-relate different electromagnetic phenomena 

and the aspects to give better explanation for the various models of the electron. 

In the Chapter 4, the properties of the electron are discussed in terms of the 

fine structure constant. This dimensionless factor is found to be accountable for the 

relations among various radii of the electron. A current-loop has been developed in 

connection with the rotation of the charge around the axis of rotation and that work is 

extended to calculate the corresponding ·self-magnetic field also. The current-loop 

and the magnetic fields are expressed in a form with the intrinsic properties of the 

electron. It is noteworthy that all the current-loop and the magnetic field expressions 

have been come out in a-quantized manner. The behaviour of the charge particle in 

the external magnetic field is also shown with the help of a-quantization. 

Incorporating the a-mass leap proposal of MacGregor for fermion, we calculated the 

radius of the muon and the tau for the particles with electromagnetic nature. In the 

calculation, the velocity of the charge in the a-quantized manner is also followed. 

But the consequent velocity for the classical electron radius exceeds the speed of 

light and to control that fact we propose the classical electron radius as a length­

contracted form of the Compton radius of the electron. 

In the Chapter 5, the electromagnetic mass of the electron is discussed along 

with its magnetic moment and the spinning sphere model of the electron. In this 

chapter, a co-relation between the charge and the mass is also established in the light 
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of the electromagnetic mass of the electron. In addition to that, we expressed the 

energy of the electron here in terms of the charge and the mass together. 

In the Chapter 6, we have tried to give a model of the electron incorporating 

the basic features of this charged lepton. We considered basic features of the 

Relativistic Spinning Sphere model of the electron. Then the motion of the charge is 

also regarded here and we have tried to formulate the path of the rotation of the 

charge. Starting with the magnetic field radius calculation, we have arrived to a new 

radius of the electron, which is composed of the classical and the Compton radius of 

the electron. Composite radius gives the hint of a helical path that can be considered 

for the rotation of the charge. The rotation of the charge produces the current and the 

magnetic field in result. We calculated the number of turns of the helical path also in 

the frame of a Compton-sized spherical model. There we incorporated the recent 

anomalous magnetic moment and the gyro magnetic ratio values to compare the 

model with the recent measurements. The radius of the path decreases towards the 

pole of the sphere and the charge returns in a similar way followed towards the 

equator. It is also shown that though the charge is moving, it is mostly found at the 

equator. 

Using the approach of the exponential series of ~, one can get the exact 
21r 

radius in different levels in the sphere to represent the rotation of charge, which can 

actually be verified in order with gyromagnetic ratio expression. Relativistic 

Spinning Sphere model is connected with the Dynamical Spinning Sphere model and 

the Zitterbwewegung model of the electron to provide the conditions of the new 

model. More explicitly this model can co-relate the basic models with the logic of 

changing the size. In fact, the conflict between the point and the extended models can 

be solved with this model. 

In the Chapter 7, we have discussed about the positronium, the quasi-stable 

bound state of the electron and the positron. The discovery of the positronium is 

described here. Then we used the assumption of harmonic oscillator wave function 

and calculated the Hamiltonian for the same. The kinetic energy, one photon 
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exchange potential and the confinement potential are calculated with the 

corresponding wave function. These provide us the way to reach the mass spectra of 

the S-wave ofpositronium in the framework of the non-relativistic models. Hence for 

each wave function the kinetic energy and the potentials are calculated with the help 

of computer programming. The diagonalised mass matrix has re-produced the spectra 

for the singlet and the triplet of the S-wave positronium. 

In the Chapter 8, we have discussed about the conclusion came out from the 

works done in the previous chapters. Here we also have discussed about some of the 

future possible work regarding this subject. 
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Introduction 

Chapter 1 

Introduction 

What are the matters made of? This is the most fundamental question arose 

In the mind of the people at the dawn of the rational thinking of the human 

civilization. The preliminary thinking was developed considering air, water, earth as 

the basis. But, the inquisitive nature of human race did not allow them to be satisfied 

with the scenario. Scientists continued to get the fundamental building blocks of 

Nature. In the process the electron was discovered and it was followed by other 

particles. In the twentieth century physics these particles claim the most important 

role. But the properties of the electron are yet to be well-explained with a definite 

picture. Here in this chapter we have discussed about the discovery of the electron 

and the properties. This chapter bears almost an introduction of the electron and its 

properties which will create a platform for the next study. 

1.1 The journey begins 

Anaximenes's model of the fundamental structure of matter [1] is the primary 

footstep to the search for basic building blocks of the universe. Later Mendeleev's 

periodic table introduced more than hundred chemical elements. But, the first clearly 

identified sub-atomic particle in the history of physics is the electron. Following 

that, the proton and the neutron were discovered. In process a huge number of 

particles were discovered by 1960 so that the beautiful garden of the particles soon 

became a jungle [2]. Physicists felt the necessity to classify a11 the particles 

according to their properties. In 1961 M. Gellman and Y. N e' eman independently 

proposed the Eightfold Way of particles to put the baryons and mesons into weird 

geometrical patterns according to their charge and strangeness [2]. 
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Figure 1.3: Baryon decuplet in the eightfold way 

All the particles are classified due to their interacting nature and the 

interactions take place according to four fundamental forces. Hadrons are controlled 

by strong force and gluon plays the role of the mediator for them. They are discussed 
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Introduction 

in Chromodynamics theory. Two kinds of hadrons are there. They are baryons and 

mesons. Mesons are bosons in nature and they are composed of a quark and an anti­

quark. Baryons are classified into nucleons and hyperons. Baryons are composed of 

three quarks or three anti-quarks. The neutron and the proton are the two nucleons. A 

neutron is carrying an udd quark composition whereas a proton carries an uud quark 

composition. AO ,Ao ,L+ ,L- ,Lo ,So, rr are the hyperons. More intense investigation 

is going on to study the structure of hadrons using different QCD evolution equations 

[3-10]. 

Table 1.1: Four fundamental forces and their mediators 

(This table is adapted from ref. [2]) 

Forces Strength Theory Mediator 

Strong 1 Chromodynamics Gluon 

Electromagnetic 10-2 Electrodynamics Photon 

Weak lO- lJ Flavoudynamics WandZ 

Gravitational 10-42 Geometrodynamics Graviton 

Electromagnetic force involves leptons. The corresponding mediator is the 

photon and the concerned theory is electrodynamics. Leptons indeed undergo the 

weak interaction too. The electron, the muon, the tau and their corresponding 

neutrinos are the members of the lepton family. They have the smaller masses in 

comparison to the hadron masses. Neutrinos were first described as the massless and 

chargeless particles. Recent observations and theories give the signature of the mass 

ofthe neutrino and about its mass mixing [11-13]. 

The dynamics of the known sub-atomic particles is given by the Standard 

Model (SM) of particle physics. In 1960, S. Glashow introduced the electroweak 

theory, which is a combination of electromagnetic and weak interactions. S. 

Weinberg and A. Salam incorporated the Higgs mechanism to Glashow's theory and 

proposed the standard model in the present version. According to the standard model, 

all matter is made out of three kinds of elementary particles; e.g. leptons, quarks and 

mediators. The mediators, leptons and quarks are described in the standard model. 

Quarks and leptons are observed not to decay into more fundamental particles. The 
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meadiators are field particles. Structure of the standard model has a gauge 

groupSU(3) x SU(2) x U(l) that incorporates the strong force and unifies the 

electromagnetic and the weak interactions [14]. 

I 
llatter 

I 
Force Carriers 

( 

I I I 
Gluons w & Z bosons Photons 

I 
Gravitons 

Strong 

QuantUIII 
Chromodynamics 

I 

leak Electromagnetism Gravity 

~a~UI1I Quantum 
Electrodynamics Gravity 

I 

Electroweak Theory 
I 

I 
Grand Unified Theory 

Theory of Everything 

Forces 

Figure 1.4: Matter and forces 

The preon and other substructure models of the particles recommend for more 

fundamental states, which are the components of the existing lepton and quark 

families [15-18]. Indeed the modified version of the substructure model is described 

recently incorporating a new theory of sub-chromodynamics. 

Photons are the most commonly known mediator and are emitted or absorbed 

during an electromagnetic interaction. Gluons are considered to be exchanged 

between colours of quarks, which incorporate the chromodynamics in the standard 

model. In weak interactions mediators are W and Z bosons. But the graviton is 

hypothetical and yet to be detected experimentally. 

At this point, all the particles are well set in the standard model of particle 

physics with a huge success of the proposal. To explain the spontaneous symmetry 

breaking and the basis of mass of the universe, the Higgs boson was proposed by P. 

Higgs. This is yet to be discovered in the laboratories. In CERN the Large Hadron 

Collider (LHC) [19], the biggest machine of the human civilization is now in the 
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search of this God's particle. Identification of Higgs boson would be the greatest 

triumph of the mankind to have an overview of the birth of the universe. 

Table 1.2: Lepton classification 

Generations Lepton Charge Electron- Muon- Tau-

lepton lepton lepton 

number number number 

First e -1 1 0 0 

ve 0 1 0 0 

Second J.1 -1 0 1 0 

vJl 0 0 1 0 

Third r -1 0 0 1 

vr 0 0 0 1 

1.2 Discovery of the electron 

It is known in general that J. J. Thomson is the person responsible for the 

birth of the microphysics with his discovery of the electron. But it is notable that the 

discoveries in science are not the individual performances. Physicists attempted in 

between 1850-1900 to explain the nature of the charged bodies. That long list 

includes great and pioneering minds in the world of physics. In fact, at Cavendish 

laboratory people were trying and the others were also on their way with different 

approaches, according to the historical account by O. Lodge and W. Kauffman, 

which were discussed in "Histories of the Electron" book [20]. 

In 1856, W. E. Weber along with R. Kohlrausch recommended that the ratio 

of the electrostatic and the electromagnetic units produce a number that can be 

identified as the speed of light known at that time. 

G. J. Stoney was first to use the term 'electron' to represent the fundamental 

unit of electric charge [21-22]. In 1874 and 1881, Stoney suggested the minimum 

quantity of electricity as one of the key physical units. He also mentioned that it may 

be the basis of a complete body of systematic units and called it as "electron" or 
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"atom of electricity" [23]. The quantity of electricity traversing an electrolyte during 

electrolysis is described as "electron" by Stoney. 

Table 1.3: Steps ofthe discovery of the electron 

Evidence Discoverer 

Electric atom theory of electromagnetism Weber 

Optical dispersion by mechanical oscillators Helmholtz 

Optical dispersion by electric oscillators Lorentz 

Theory of motion of charged particles Heaviside, Poynting, Larmor 

Electromagnetic mass Thomson 

Atom of electricity, the electron Stoney 

Faraday's laws imply a unit of electricity, electron Helmholtz 

Maxwell's continuum electromagnetic theory Maxwell, Hertz 

Cathode rays, attempts to explain Crookes, Goldstein, Lenard, 
Perrin 

Estimates the size of the electron Richarz, Ebert, Stoney 

Mobility of carriers in gaseous conduction Townsend, Schuster 

mJe for cathode rays, suggests rays as corpuscles Thomson 

Reconciliation of Maxwell's and atomic theories Lorentz 
of electromagnetism 

Magnetic splitting of spectral lines Zeeman, Lorentz 
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Contemporary to Stoney, H. Helmholtz also observed that in the case of 

electrolytes each valency must be charged with a minimum quantity of electricity, 

which is non-divisible and known as "valency-charge". H. A. Lorentz predicted in 

his theory that the atom might consist of charged particles. His colleague and former 

student P. Zeeman was busy with the study of the spectrum of the element sodium in 

a magnetic field. Magnetic splitting of spectral lines observed by him in 1896 clearly 

advocated the indication of the likely sizes of the unitary charges [24]. He noticed 

that the widening of the D-lines of the spectrum of sodium is proportional to the 

magnetic field. Lorentz picked up the numerical factor from this relationship and 

used it to figure out the value of the ratio of the mass to charge of the carriers of 

electric charge in atoms [24]. F. Richarz, H. Ebert and G. J. Stoney also attempted to 

calculate the size of the electron from the emitting luminous vapour using the kinetic 

theory of gas [20]. 

Using the potential difference V between anode and cathode, E. Wichert 

reached upper limit of the kinetic energy of the particles in terms of e V and defined 

the magnetic deflection of cathode rays [25]. He used a collimated beam of cathode 

rays, which got deflected transversely by high-frequency coils, but separated from 

one another in the direction of the beam. Thus he reached the charge to mass ratio 

using the kinetic energy and the magnetic deflection. In 1897, Wichert was more 

specific about the value of e than Thomson [25]. 

Kaufmann also went on almost in the same line that of Wichert to produce 

the elm only in 1897. He used the f3 -rays from radioactive sources. But the result 

was not good enough. 

1.3 Thomson's experiment 

Though large number of physicists was involved in the process, the discovery 

of the particle "electron" is recognized appropriately in the name of the British 

Physicist Sir Joseph John Thomson [21]. He described the cathode rays and derived 

the famous formulation of "mle" of the electron [22]. The speed of the cathode rays 

was the first concern of Thomson and in 1894 he measured it as 200kmls, but he has 

thrown that out due to some faults. In 1897, he detected the deflection of the cathode 

rays by electric forces between the rays and electrified metal plates. The nature of the 
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deflection was away from the negatively charged plate and towards the positively 

charged plate [21]. 

Figure 1.5: Sir Joseph John Thomson 

In the cathode ray tube, the ray particles pass through a deflection region where they 

are subjected to some electric and magnetic forces acting at right angles to their 

original direction. There after they travel through a longer force-free region and 

strike at the end of the tube. Using Newton's second law of force, Thomson arrived 

at the interpretation of his own measurements and formulated the work as 

Force on ray Length of deflection Length of drift 

. particle. region • region 
Displacement of ray at the end of tube = . 

Mass of ray particle • (Velocity of ray particle)2 

Newton's second law states regarding the force on a body and its consequence with 

the acceleration as 

F=ma. 1.1 

In Thomson's experiment the force was F:::: 10-11 dyne, and the mass of the electron 

is about 9 x 10-28 gm. These ensure the acceleration of about a = F = 1.1 x 1016 cm/s2
• 

m 

Consequently the very high speed was calculated as 1.1 x 1010 cmls only after a micro 

second time. 
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The cathode 
The screen 

Figure 1.6: Schematic diagram of Thomson's experiment 

If the force F is exerted on the cathode-ray particles, acting in a transverse 

direction to the motion of the ray, then the particles will experience acceleration in 

the direction of magnitude a = F . The force will be operated for a time t and the 
m 

velocity perpendicular to their original motion comes out to be 

F 
v perp = ta = t - . 

m 
1.2 

The deflection region is of length I. If the particles travel the deflection region with a 

component of velocity v in the original direction of ray, then the time during which 

the particles are accelerated is 

I 
t =-. 

v 

Using equation 1.3 into 1.2 for t , perpendicular velocity comes out to be 

Fl 
vprep =-. 

mv 

1.3 

1.4 

After the deflection region, the ray particles travel through the drift region of length 

L with a velocity v in a deflected direction from the original direction. The time 

spent in the drift region is 

T= L. 1.5 
v 

But simultaneously the velocity of the ray particles is v prep in perpendicular direction 

to their original direction. Hence the displacement was counted as 
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d == Tv prep' 1.6 

Using equations 1.4 and 1.6 jointly the displacement comes out as 

d == (L) x ( FI ) == FIL . 
v mv mv 2 

1.7 

Equation 1.7 provides the extent of the displacement of the ray particles from the 

straight direction. 

Electric forces were introduced by the parallel, charged metal plates. In this 

experiment, the length and the width of the metal plates were considered much 

greater than their separation so that any effect of the plate edges can be very easily 

ignored. So the electric force here is at right angle to the axis of cathode ray. To be 

precised about the force, one can say that if the cathode-ray particles have electric 

charge e , the exerted electric force by electric field E on the particles is 

Fe/ee == eE . 

Consequently the displacement of the ray at the end of the tube will be 

eEIL 
d elee == --2 . 

mv 

Or in words 

1.8 

1.9 

Charge of Electric Length of Length of drift 

D· I fbI' fi Id ray particle • field • deflection region • region ISP acement 0 ray ye ectrlc Ie = ~--'-----------=------=-----~-
Mass of ray particle • (Velocity of ray particle)2 

Thomson treated the cathode rays as streams of individual particles. He was 

successful to get exactly the magnetic force on the moving particles and hence 

calculated the displacement of cathode ray due to a magnetic field at a right angle to 

its direction. 

The magnetic force by a magnetic field B on a particle with charge e and 

velocity v is given as 

Fmag == evB. 1.10 

By means of the expression of magnetic force from equation 1.10 in equation 1. 7, 

displacement of the ray due to magnetic force at the end of tube comes out as 
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d = eBIL 
mag mv 1.11 

Or in words 

Charge of Magnetic Length of defle - Length of drift 

D
· I f b . fi Id ray particle. field. - ction region • region ISP acement 0 ray y magnetic Ie = --:...--'----------=----.-::~---

Mass of ray particle • Velocity of ray particle 

As a result the ratio of the magnetic deflection and the electric deflection can be 

figured out as 

Magnetic deflection 

Electric deflection 

This gives magnitude of the velocity as 

Magnetic field V I . --=----. e OClty . 
Electric Field 

(E)(dmag
) v= Ii d

e1ec 
. 1.12 

Here comes out the aim of Thomson's experiment as the ratio of the mass to charge 

using equation 1.12 in equation 1.11 as 

m B2lLde'ec 
= 1.13 

e dmag 

On the 30th April 1897, J. J. Thomson announced the results of his 

experiments on cathode rays and according to him the rays were negatively charged 

subatomic particles, which were a universal constituent of matter [23]. Thomson also 

argued that the mass-to-charge ratio of cathode rays depended neither on the 

chemical composition of the gas within the cathode ray tube nor on the material of 

the tube's electrodes [24]. He named them as "corpuscles". In 1899, he again spoke 

about his corpuscle theory at the British Association Meeting and then it was 

accepted only after two years of his so-called announcement [23]. In this regard, we 

must say that though Stoney used the word "electron" [25-26], Thomson disagreed to 

approve it and R. A. Millikan too disapproved [27]. But other physicists affirmed the 

name "electron" ignoring Thomson and Millikan's opposition. 
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Figure 1.7: One of the catbode ray tubes used by Tbomson 

1.4 Properties of the electron 

More than a century ago electron was discovered. By this time different 

properties of the electron have been discovered. Here we are going to have a quick 

look on some important properties of the electron. When we are going to describe 

those properties of the eJectron, sometimes the other unit systems are also described. 

But when we have concentrated in our own work there only Gaussian system is used. 

The electron is a charged lepton. This refers to the significant spectroscopic 

properties of the electron. Till the time of this inscription, the electron is known as an 

elementary particle with very low mass. Thomson found the charge of the electron to 

be negative. From three different cathode ray tubes he measured the ratio m / e ::::: 0.4, 

0.5 and 0.9 xl 0-11 kg/C. From his measurement of the unit of charge on an ion, the 

magnitude of charge comes out to be e = 2.2 xl 0-19 C and this leads one to infer the 

mass-value as m::::: 1.4 ± 0.5 x 10-30 kg [27]. These estimations were within a factor of 

two with recent accepted values. K. Woltz gave a comprehensive list including his 

own work on e / m = 1.764(3) xl 011 C/kg. But more accurate results were given later 

in 1916 by Millikan during the precision measurement of charge e and Ii . He found 

the charge of the electron as e = 1.592 xl 0-19 C and Planck's constant 

isli=1.054xlO-34 1s. Along with the above calculations; Woltz's measurements 

provide the mass asm =9.025x 10-31 kg. Again with the development of the quantum 

electrodynamics using the general considerations by F. 1. Dyson, it can be shown that 
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the radiative corrections top the motion of the electrorre-macle HH:ite in all 

orders with the suitable use ofthe charge and mass renormalization [28]. 

Recent data of the electron properties from Particle Data Group [29] are 

given as: 

Mass m = 0.510998910 ± 0.000000013 MeV, 

Magnetic moment anomaly (g - 2) = (1159.65218073 ± 0.00000028)x 10-6
, 

2 

Electric dipole moment d = (0.07 ± 0.07)X 10-26 e-cm and 

Mean life T > 4.6 X 10 26 yr. 

Mass 

Mass of the electron is found extremely low from the various experimental 

measurements. But it is a question of ambiguity what actually the electron-mass is. 

Earlier it was thought that the entire mass of the electron was electromagnetic. But 

the reformed concept is apart from that. According to A. Pais, the mass of the 

electron is not purely electromagnetic in nature [30-31]. Again, he also confessed 

that the cause of the mass of the electron is still beyond our knowledge [30]. M. H. 

MacGregor expressed that no completely electromagnetic structure is available and 

the electromagnetic framework is needed for the electron just to hold it together [31]. 

In the current scenario, the origin of the mass of the electron is a big puzzle. Hence 

the concepts of the electromagnetic mass and the mechanical mass both are regarded 

in recent works. 

In a recent measurement of the g-factor the electron's mass has been 

determined with more accuracy. Currently in atomic mass unit the mass of the 

electron is presented as 0.0005485799092(4)u [29, 32]. Theoretical and experimental 

approaches with electron properties for more than a century state that four different 

kinds of mass or equivalent energy are attributed to the electron. They are 

electrostatic self-energy (WE), magnetic self-energy (WH), mechanical mass (WM) and 

gravitational mass (WG) [33]. In different units the mass of the electron is expressed 

below according to the experimental evidences [34]. 
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Table 1.4: Electron-mass in different units 

Symbol Numerical Value Unit 

me 9.10938215 (45)x 10-31 kg 

me = A, (e) 5.4857990943 (23)x 10-4 u 

meC 2 8.18710438 (41)x 10-14 J 

mec 2 0.510998910 (l3) MeV 

Charge 

Charge is one of the intrinsic properties of the electron and this is a 

fundamental quantity of Nature. For the electron the charge is negative. The 

numerical value of the elementary charge of the electron IS 

1.602176487(40)xlO-19 C [34]. This is the key factor behind the behaviour of the 

electron. Due to its charge, the electron is involved in the electromagnetic 

interactions. The size of the charge of the electron or the charge radius of the electron 

is yet to be precised though it is confirmed by the LEP results of CERN that the size 

is even less than 10-19 m or 10-17 cm [35]. Charge of the electron has a crucial role in 

describing the electron models. Some models show a classical distribution of charge 

[36]. They are surface and volume distributions of charge. The other models 

advocates for a point-charge [37]. It controls the current, magnetic field and 

magnetic moment of the electron. As a fundamental quantity of Nature the electric 

charge is also involved in the description of the fine structure constant. 

Spin 

The spin of the electron is a mysterious angular momentum for which no 

actual physical picture is available yet [38]. Experimentally, in 1921 spin was first 

exposed when O. Stem and W. Gerlach experimented with the silver atoms passing 

through a magnetic field and observed a non-classical distribution of silver atoms on 

photo-plate. Hypothesis of the spin of the electron was proposed by G. E. Uhlenbeck 

and S. A. Goudsmit in the framework of a small rigid rotating body. But W. E. Pauli 

did the most influential study over the matter theoretically. Pauli described the spin 

as "... a classically not describable two-valuedness". This "two-valued quantum 

degree of freedom" allowed him to formulate the famous 'Pauli exclusion principle'. 
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Uhlenbeck and Goudsmit's results met a favourable response by the work of L. H. 

Thomas. With the advancement of quantum physics, the spin is regarded as a 

quantum property of the electron instead of being a classical one [38]. The magnetic 

moment and the spin are related in the current representation of the picture according 

to the standard model of particles. 

Classically the spin is the rotation of the particle around its axis. It is called 

there as angular momentum. Classical and semi-classical models incorporate the spin 

with the rotation only. N. Bohr proposed a fundamental quantum unit of orbital 

angular momentum [39] in terms of Ii, which is the Planck's constant divided by21l' . 

Being a quantum mechanical property, the spin can take only discrete values. The 

spin of the electron is ~ or - Ii . In particle physics, depending on the spin the 
2 2 

particles are classified in two classes: bosons with integral spin and fermions with 

half-integral spin. Our concerned electron is a half-integral spin particle. 

Magnetic moment 

From the hypothesis of the spinning electron the magnetic moment of the 

electron is defined as ~ [40], where symbols have their usual meanings. 
4nmc 

Without radiative corrections, the intrinsic magnetic moment of the electron is given 

by the Bohr magneton only as j.lo = ~ [41]. The magnetic moment of any of the 
2mc 

three charged leptons (e = e, fl, r) is known as 

1.14 

where gt is the g-factor of the particle, m is its mass and s is its spin [34]. Otherwise 

one can mark the magnetic moment in terms of Bohr magneton as 

1.15 

with g = 1 for a point electron in a renormalizable Dirac explanation. According to 
2 

QED predictions it is considered that the vacuum fluctuations and polarization 
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slightly increase this value. For the lepton substructures this value could deviate from 

the QED or Dirac predictions [42-43]. 

Anomalous magnetic moment of the electron ae is one of the simplest 

quantities, which can be calculated very precisely [44]. This is measured 

experimentally asae = 1159652188.4(4.3)xl0-12
• It plays a crucial role to test the 

validity of QED. 

g-factor 

The g-value is a dimensionless measure of the moment. This is the magnetic 

moment in units of the Bohr magneton for the electron [43]. The g-factor for a Dirac 

point particle with g = 2, can be expressed as 

~ = 1 + a QED (a)+ ahadronic + a weak + anew' 

where aQED (a) ~ 10-3 is the anomalous magnetic moment and a function of the fine­

structure constant. Hadronic and weak are calculated accordingly and within the 

Standard model, whereas the last term can cause deviation from Dirac or QED 

prediction with a substructure idea of the electron [42] which is a subject of this 

thesis and beyond Standard model exposure. 

For free electron, the g-factor can be expressed as 

1.16 

where Pe is the magnetic moment, /-lB is the Bohr magneton and ae is the electron 

magnetic moment anomaly [45]. The numerical value of the factor is given in "The 

1986 adjustment of the fundamental physical constants" as 2.002319304386(20) 

[45]. 

Mean life 

The mean life of the electron is tested in different experiments for the years. 

Measured value of the mean life is as Te > 4.2(2.4)x 1024 yr. according to the 

experimental outcome on the electron stability and non-paulian transitions in Iodine 

atoms from Gran Sasso National Laboratory of INFN [46]. But very recent 
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observation recorded as a lower limit> 1.22 x 1026 yr for the mean life time of the 

electron decay via the branch e - ~ r + ve. With single Ge detector, the best limit till 

is counted as 1.93xl0 26 yr [47]. 

Size and shape 

Size of the electron is a real enigma yet. Some of the modem approaches 

regard the electron as a point particle [48]. The standard model of particle physics 

also supports them. But classical theories argue against. In fact, from different 

phenomenon the radius of the electron is measured are different. They vary in the 

range of 10-11 m to 1O-15 m [33, 49]. Compton calculated the radius of the electron in 

his way using classical electrodynamics as well as the scattering nature. He found 

that the magnitude of the diameter of the electron is comparable with the wavelength 

of the shortest r rays and thus the radius of the electron came out in his calculation 

as 2xlO-lo cm or 2xlO-12 m [50]. It is also confirmed in the same article that the 

radius of the electron is the same in all atoms. 

Lorentz calculated the size of the corpuscle of Thomson's corpuscle as 

- 10-13 cm or ...., 10-15 m. Though the size of the electron in term of radius is same in 

all the atoms, the sizes predicted by different electromagnetic phenomenon are 

different. The expressions of those sizes are called as different radii [33, 49]. They 

are listed below as: 

Ro = Classical radius, 

Rc = Compton radius, 

RQMC = Quantum mechanical Compton radius, 

R~MC = QED-corrected quantum mechanical Compton radius, 

Rem = Electromagnetic radius, 

RH = Magnetic field radius, 

RQED = QED charge distribution for a bound electron, 

RE = Charge radius. 

As we are going to have detailed study about the radii and the sizes, here we 

are not going in depth. Therefore the size of the electron is really an enigmatic thing 

17 



Introduction 

that is yet to be explained properly. The puzzling size of the electron also results in 

the shape of the electron. Shape of the electron is a question of ambiguity. If it is 

regarded as point particle, the shape will be meaningless. But extended models offer 

different shapes for the electron. Amongst them, spinning spheres are well-known. 

The idea of spherical electron was first done by Lorentz and others and later it was 

continued up to MacGregor, Rivas and other contemporaries. Compton advocated 

about the ring model. According to the string theory the particle's shape is given by 

the corresponding vibration. 

Table 1.5: Some of the fundamental physical constants related to the electron 

(This table is adapted from ref. [451) 

Quantity Symbol Value Unit 

Speed of light in vacuum c 299792458 ms· l 

Planck constant h 6.626075 5(40) 10-34 Js 

Elementary charge e 1.602 177 33(49) 10-19 C 

Bohr magneton f.1 25812.805 6(12) Q 

Fine-structure constant a 7.297353 08(33) 10-3 

Rydberg constant Roo 10973731.534(13) m -I 

Bohr radius Rem 0.529 177249(24) 1O-lo m 

Electron mass me 9.1093897(54) 10-31 kg 

5.485 79903(13) 10-4 u 

0.51099906(15) MeV 

Compton wavelength Ac 2.42631058(22) 10-12 m 

Classical electron radius Ro 2.81794092(38) 10-15 m 

Thomson cross section eYe 0.665246 16(18) 1O-28 m2 

Electron magnetic moment ae 
1.159652 193(10) 10-3 

anomaly 

Electron g-factor g 2.002319 304 386(20) -

18 



Introduction 

Electric dipole moment 

Electric Dipole Moment (EDM) of the electron is one very important 

observable for the testing of the CP violations. The presence of an electric dipole 

moment can be traced by placing the particle of interest in an electric field E and 

measuring the corresponding incremental energy according to W = -d.E. Several 

theoretical models predicted the electron's EDM. The standard model predicts the 

magnitude of EDM as Idel < 10-38 e cm, when supersymmetric models predict as 

Ide I < 10-27 e cm. Some of the models predict a range ofEDM. Amongst them lepton­

flavour changing model gives the range over 10-29 e cm to 10-26 e cm. In a more 

precised form, the left-right symmetry models claims the range of 10-28 e cm to 10-26 

e-cm, whereas Higgs models predict Idel in the range 10-28 e cm to 3 x 10-27 e cm 

[51]. 

Size, shape, magnetic moment, mass etc. are the properties of the electron 

and they are the evidences, which are not matching with the point particle theory. 

They not only state of the behaviour of this charged lepton, but also advocate an 

extended structure, which is classically acceptable. Consequently physicists tried to 

figure out a clear picture of the structure or the substructure of the electron which 

falls under the "beyond standard model physics" now. Experimentally to get the 

exact size and shape of the electron is a tough job and that is a limitation which 

prompts people to propose more theories of models of the electron. We therefore 

have studied the proposed models and tried to give an account in our own way 

without violating the behavioural nature of the electron. In this regard the key points 

to be discussed are given below: 

• Different models of the electron 

• Size of the electron from different electromagnetic phenomenon 

• Electron properties in the light of fine structure constant 

• Electromagnetic mass of the electron 

• Helical motion and spinning sphere model of the electron 
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At the end we have extended our study up to the positronium (bound state of 

the electron and the positron) mass spectra, so that we can even have a picture of the 

immediate next status after the free electron. 

1.5 Concluding remarks 

Studying all the above facts, it is seen that standard model cannot explain the 

electron completely. Therefore a new model is necessary to explain all the properties 

of the electron. Point particle structure is neither explainable from geometrical point 

of view, nor from the particle aspects. No proper explanation of EDM is also 

possible from the point particle theory. Hence this is a humble attempt where we are 

going to discuss and study the electron properties in the light of classical approach. 
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Models of the electron 

Chapter 2 

Models of the'electron 

The electron was identified in 1897 as the first subatomic particle [1 J. But the 

structure of the electron is still a subject of debate. The properties of the electron 

discussed in the previous chapter illustrate the different aspects of this particle. 

Depending on them, several models of the electron [2-4] have been proposed 

theoretically. Real experimental features say that the electron does not decay into 

other particle. But again it is questionable in this regard that whether it is our 

experimental limitation to probe the 0.511 Me V /c2 particles or not. If it is our 

limitation to break that small mass, then what can be the exact measures? To get the 

answer, throughout the last century, good numbers of theories were proposed. 

Models have been developed both in classical and quantum mechanical ways. Some 

of the models are at the boundary of the two and are known as semi-classical 

approaches. Roughly the models are either point-particle models or extended models. 

Depending on the present day experimental facts some of the existing models 

claim the electron to be a point particle. Basically the very low mass of the electron 

is responsible for this one to be counted as a point particle. Again as it does not 

decay into some more elementary particles this suggests it to be a point like particle. 

On the other hand the treatment of the electron is better studied in quantum physics 

and that obviously put forward the claim of a very tiny entity. Hence in the standard 

model it is considered as a point-like one. 

2.1 Classification of the models of the electron 

Classical results and sometimes its features have shown the behaviour of the 

electron as an extended particle. Idea of the extended structure of the electron is also 

advocated by number of physicists [3-4]. When an extended electron is supposed, 
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there arises the question about the nature of its charge. Two different types of 

extended models of the electron are considered in this regard. Some of the models 

represent the charge as glued over the entire outer surface of the structure [2, 4, 5]. 

On the other hand, several structures are there with an extended electron and a point 

charge [6-8]. Hence P. Lancini proposes the classification of the models of the 

electron [9], which we have listed below: 

A. Point-like models 

A point-like electron actually does not imply any structure and some works 

are devoted in the support of it [IOJ. They refer to the explanation of the properties of 

the electron without structure [11-13]. The standard model and other quantum 

mechanical models support a point-like electron. 

B. Extended models 

Several models propose an actual extended structure of the electron [2, 4, 5, 

14-19]. They argue of complete electromagnetic structure. Indeed these models say 

about the surface and volume charge distribution of the electron. 

C. Extended models with point-like charge 

The third kind refers to the extended body with a point charge [6-8]. In these 

models spherical structure is emphasized with a point-like charge on the sphere and 

charge is regarded not to be glued over the entire body. 

Some other models are also there which does not fall in these three kinds and 

they are chiefly sub-structure models. Lepton and quark sub-structure models are 

proposed in good number of articles [20-25]. Preon model, Rishon model and unified 

composite models fall in this category. 

Also there are some other theories, which deal with the extra dimensions or 

above the known four dimensions [9, 26-27] and they provide the picture of the 

electron in their own ways. 

We are going to discuss some important models of the electron in each 

category. 
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2.2 Point-like models 

2.2.1 Visser model 

In a classical model [11] of the electron proposed by M. Visser, ordinary 

electromagnetism coupled to the neo-Newtonian classical gravity is described. Here 

a charge point is considered in an electromagnetic field. Non-gravitation matter 

density is regarded to be 

1 1 Q2 
p=rnot5(r)+- 2 4' 

8JT 4.1TlioC r 
2.1 

Here rno is the bare mass and 1 1 2 Q: is the electromagnetic mass density, 
8JT 4JT&oc r 

with Q as the total charge and &0 as the free-space permittivity. In Geometrodynamic 

units [11] G == C == _1_ = 1 is regarded to represent the gravitational and the 
4"&0 

electromagnetic mass density together. Hence for a dimensionless variable '1/ the 

differential equation comes out as 

2.2 

The general solution of this equation is integrated out as 

() 
cosh( K - Q / 2r) 

If! r = , 
cosh(K) 

2.3 

where K is the integration constant and related to the mass of the system. The bare 

mass is expressed as 

rno =-Q. 2.4 

The total energy comes out to be equal to the gravitational mass of the system and is 

identified here as 

m = Qtanh(K). 2.5 

Visser's calculation for bare mass in rationalized MKSA units show that 

2.6 

With Q = e = 1.602 xl 0-19 C , the bare mass is figured out as 
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2.7 

Simultaneously, this bare mass is expressed in terms of Planck mass when connected 

through the fine structure constant as [11] 

rna = -Fa M Planck' 2.8 

But experimentally measured mass is not in agreement with this value of the 

bare mass concept given by the author. Firstly, the negative sign of this mass is not 

explained. Secondly, the magnitude of the electron mass measured is too small 

compared to the mass expressed in this model. This very high value of the mass 

makes this model of no use. In the recent scenario, the gravitational mass WG 

associated with the electron is regarded as negligibly small and hence it is expressed 

as WG = O. But the concept of mechanical mass is grown up with the certain logical 

steps and it takes around 99.9% of the total mass as expressed by MacGregor [7]. 

Another important property spin of the electron is completely ignored in this 

model. What role it can play in this model is not tested at all. The fact is that the 

known !: spin of the electron is not fitting with a huge massive electron. If one tries 
2 

to put this calculated bare mass and the known spin together the result indicates to a 

rest body. Similarly the magnetic moment of the electron, which plays the crucial 

role in the behaviours of the electron, is also omitted completely. These limitations 

weaken the model proposed by Visser. 

2.2.2 Blinder model 

In a recent work S. M. Blinder proposed a classical electron model [12] even 

without a structure. In this model, the self-energy of a point charge and that of a 

dipole are focussed keenly. The electron is considered here as a point particle. This 

model regards the total energy as electromagnetic and in consequence that offers an 

electromagnetic origin of the angular momentum. This allows the parameterisation of 

permittivity within the range of two-third of classical electron radius [12]. The 

angular momentum is set as 

2.9 
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where E is the electric field, H is the magnetic field and c is the speed of light in free 

space. The electric field energy is calculated here as We/ec = ~mc2 and the magnetic 
4 

self-energy as Wmag = ..!.mc2 with m as the mass of the electron. 
4 

The size or the radius of the electron in the model is not precised. lfthe radius 

or the size is used as classical electron radius, this is not clear that how it can be put 

again as a point particle with structure-less picture. Huge electric energy or mass is 

also questionable in today's conditions when the charge is confined within a length 

< 10-19 m or < 10-17 cm [8]. Again as the recent experimental results tell us of the 

length of the charge radius to be < 10-17 cm [8], Blinder's model loses its strength. 

2.2.3 Massless point charge model 

This model is developed on the Abraham-Lorentz equation for a point 

electron [13], which is expressed as 

where 

.. .. 2e 2 df 
mr =(mo +om)r =-3 -+F, 

3c dt 
2.10 

2.11 

with e = e. ra, k. =.r; / r., m. is the mass and r. is the radius of the electron. Here 
c 

F is some external force driving the electron and e. is the true or bare electronic 

charge. The bare mass is given as 

mo =m-om~-am •. 2.12 

Using Puthoff model [28] W. C. Daywitt arrived at the conclusion that the 

zero-point agitation of the Planck particles within the degenerate negative energy 

Planck vacuum creates zero-point electromagnetic field that exists in the free space. 

According to this model the driving force e.Ezp is responsible for the mass of the 

electron, and consequently the point charge e. and the radius too. Here E zp is the 

zero point electric field. 
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This model is mounted on a massless idea, whereas the mass of the electron is 
, 

playing the significant role in the leading models of the electron. Secondly, though 

Daywitt claims it as a massless one, the model in fact is not so. Neither the size nor 

the spin of the electron is precised with this model. None of the electromagnetic 

properties of the electron is also tested within this model. As a crucial point, it can be 

2 

pointed out that Daywitt marked ~ as Compton radius, but it is known commonly 
me 

as classical electron radius and the Compton radius is mathematically expressed as 

!!..-. Again the classical radius and the Compton radius are at a gap of the order 
me 

ofl 02 or exactly by the factor of the fine structure constant, which can incorporate a 

huge change in the corresponding calculation. 

2.3 Extended models 

2.3.1 Lorentz-Abraham model 

H. A. Lorentz constructed a particle electrodynamics [2], and tried to put the 

macroscopic phenomena of electromagnetism and optics in terms of microscopic 

behaviour of the electrons. Before Lorentz stepped into the business, his 

predecessors had tried with the interaction between the charges. But he did it the 

other way via the electromagnetic field. 

If the current density j and the charge density p are related as 

j=pv, 2.13 

and p is defined by 

e = f jXi3, , 2.14 

then the electric and magnetic fields can be produced by the Maxwell's equations. 

Here cf, represents the volume distribution of the electron within which the charge is 

distributed and v is the linear velocity of the charge. The force exerted by the fields E 

and B on a charged particle is then expressed as 

2.15 
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As Maxwell's equations are also applied in this case, the above expression is called 

as Maxwell-Lorentz equation [2]. 

The system was considered with the atoms or the ions to which the electrons 

are bound elastically. In other words, this is a physical system of a charged harmonic 

oscillator. The radiation is emitted by the oscillator with units of ergs/sec at the rate 

of 

2 e2 
2 

R=-·-·a 
3 c3 

2.16 

where a is the acceleration of the charge. This loss of energy results to a damping 

force as 

2 e2 da F =-.-.-
rod 3 c3 dt' 

2.17 

With a rigid spherical structure, M. Abraham got a purely electromagnetic electron 

of the classical electron radius [2]. The momentum of the electron is then given by 

the Poynting vector and is written as 

where 

1 f 3 P=-2 Sd r, 
c 

c 
S=-ExB. 

4n 

2.18 

2.19 

Here r is the radius of the spherical structure. This gave the momentum of the 

electron due to the Coulomb field of an electric field moving with velocity vas 

4 
P elm ="3 melm V , 2.20 

where melm was the electromagnetic mass considered [2]. Then the total momentum 

of the electron is calculated out as 

p=( mo +~melm }=mv, 2.21 

where mo v = P neutral is the momentum of uncharged part of the electron. 

The force exerted on the electron is also aimed to be calculated and for that 

we start with the Newton's law of motion 

2.22 
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if there is no radiation. But as the charge particle's acceleration is associated with 

radiation, the equation 2.22 can be given in a modified form as 

mv = Fexr + F rad · 2.23 

One may arrive now the exerted force by using equation 2.17 in equation 2.23 as 

2.24 

This is called as Abraham-Lorentz equation of motion [29]. 

This model gives the charge distribution as rigid and spherically symmetric. 

This consequently refers to the question of self-force, which can be incorporated; 

since due to Coulomb's law each part of the charged sphere repels all other parts. 

The self-force can be written as [2] 

Fse!f = f p( E + ~ x B } 3 r . 2.25 

If the electron is to be purely electromagnetic in structure, then for an external force 

employed on it, can be balanced as 

F.,e!f + F exrerenal = 0 . 2.26 

Dirac pointed out the great problems regarding this model. The 

electromagnetic origin of the Lorentz model is discarded [30]. He cited the example 

of the neutron mass, which claims the independence of electromagnetism for mass. 

Also in the theory of the positron, the idea of the electromagnetic mass no longer 

stands. This way, the self-force treatment is with diverging self-energy. Secondly the 

damping could make it to zero energy state that we cannot get for the electron. These 

problems made this model weak and opened the area for new speculations. 

2.3.2 Allen model 

In the meeting of royal society, H. S. Allen proposed the case for a ring 

electron [14]. He discussed the properties and the work done by others and gave his 

own conclusion to the properties in a ring type electron. He was in favour of an 

electron in the form of a current circuit capable of producing magnetic effects. 

According to him, exerting electrostatic forces, the electron behaves like a small 

magnet. The important outcomes of this model are discussed by him. According to 

him: there is no loss of energy by radiation, the ring electron gives good explanation 
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of the facts of paramagnetism, a small amount of ionisation of gases produced by X­

rays would be able to have an explanation and Bohr's theory of origin of series lines 

in spectra may be restated to apply to the ring electron and so on. 

2.3.3 Old classical model 

In the paper of D. Lynden-Bell [5] the old-fashioned electron model is 

discussed partially and he also pointed out the weakness of the model. We here did 

the job a bit extensively. The problem of the large velocity is discussed in short in 

that paper. It is a model of the electron given with uniform surface charge density. 

The angular momentum of the rapidly rotating uniformly charged sphere is 

expressed as [5] 

2 e2 v 
L=-·_·- 2.27 

9 c c 

The spin angular momentum of the electron is n. If this is employed in equation 
2 

2.27, the velocity of the sphere comes out as 

9 _\ 
v=-a c 

4 ' 
2.28 

where a is the fine structure constant. Hence the velocity of the sphere exceeds the 

velocity of light. This indicates the inconsistency of the proposed model due to the 

violation of the postulate of the special theory of relativity. If we consider with the 

same structure that describes the equation 2.27, the spin angular momentum comes 

out to be as 

L =~a vn. 
9 c 

Hence the radius of the electron is resulted as 

2 
R =-Ro , 

9 

2 

where Ro = ~, the classical electron radius. 
me 

The energy of the sphere in the electric field is given as [5] 

e 2 

6 =-
e 2R' 
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where, r is the concerned radius. The energy in the magnetic field is known as 

2.32 

Consequently the total energy due to the electric and the magnetic field is given as 

the sum of the equation 2.31 and 2.32 

E ~ ;: ( 1 + ~ ~: ) 2.33 

At the speed limit of v = c, we have the radius Rc = ~, which is known as 
me 

Compton radius [7]. Using Compton radius at maximum velocity, the total energy 

can be calculated from equation 2.33 as 

11 e2 

E: =-.-
c 18 R . 

c 

With the use of Compton radius in equation 2.32, we have the energy 

11 2 
E: =-a ·me 

c 18 

If the velocity is very less than the velocity of the light; i.e. v« c, we have 

2.34 

2.35 

2.36 

e2 

Using the classical electron radius, Ro = --2 ' the energy can be calculated from 
me 

equation 2.36 as 

For electromagnetic radius of the electron Rem = n22 ' we can write from 2.33 
me 

2.37 

2.38 

If the velocity v< <c, then for electromagnetic radius following equation 2.36 we can 

have a modified version of equation 2.38 as 

2.38-a 
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It is well known now that there are eight well-defined radii of the electron [7, 

31] and they all are derived from different electromagnetic aspects. Above­

mentioned energy equations 2.35, 2.37 and 2.38 are for Compton radius, classical 

electron radius and the electromagnetic radius respectively and these three radii 

belong to the family of those eight radii. Hence equation 2.33 can be considered as a 

generalized form of total energy. Therefore, Emax and Emin can be set with employing 

the conditions v = e and v« e in equation 2.33. From equations 2.35, 2.37 and 

2.38-a we know that the radius corresponds to Emax is Rc and radii concerned 

to Emin are Ro and Rem respectively. This concludes the range of electron size within 

the frame of Rem to Ro' which essentially rejects all other radii. Also the energy 

comes out from equation 2.28 with the classical radius 

E = 10558.0625me2 
• 2.39 

This is completely an absurd value for the energy as the maXImum energy IS 

regarded as me 2 
• 

As equation 2.33 refers to a relation between the radius and the velocity, the 

radius can be defined in terms of energy as 

2.40 

The maximum possible energy we can account for the particle is me 2
• Using this in 

equation 2.40 one will get the velocity v = ~ e for the classical electron radius Ro 

which is quite an impossible value according to special theory of relativity. 

Similarly, spinning sphere models follow the form of the angular momentum as 

L = 10), 2.41 

where 1 is the moment of inertia and 0) is the angular velocity. This gives the 

expression of angular momentum of a sphere as 

2 
L=-mvR. 

5 

Equation 2.42 leads to the velocity of the electron as 

v>::! 114e, 

which is quite absurd. 
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The smearing out charge over the entire sphere is a huge drawback that we 

have proved here from classical aspects only. Firstly, this offers a tachyonic electron, 

which is in contradiction with the special theory of relativity. Secondly, this rejects 

the other electromagnetic phenomenon, which advocate for the electron size. Thirdly, 

the recent experimental measurement of the radius of charge of the electron is also 

against to this idea. All the above problems occur with this model due to its charge 

distribution with a surface charge a = 41rR2 [5]. This refers to the fact that the models 

of the spinning sphere with the charge distribution over the sphere no longer stands 

good. At this juncture, the charge can be put as a very tiny object residing in a small 

place and can be treated as a point-charge. This confinns the experimental 

measurements from LEP [8] too. 

2.3.4 Compton model 

A. H. Compton calculated the scattering coefficient of high frequency 

radiation assuming rigid charged electron. He started the work [15] with the 

scattering coefficient per unit mass ofthe substance given by Thomson's work as 

a 81r Ne 4 

p =3· m 2C 4 ' 
2.44 

where a is the ratio of the scattered to the incident energy per unit volume of the 

material, p is its density and N is the number of electrons in unit mass of the 

substance. According to him, the scattering would depend upon the structural "form" 

of the electron. For the simplest structure of the rigid, unifonn, spherical shell of the 

electricity, the scattering coefficient is calculated as [15] 

2.45 

where a is the radius of the spherical shell and A is the wave-length of the incident 

beam. 

For the flexible spherical electron, this result comes out as 
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(j 2-1I.'L2 fTt 10 . ()d() - = lIJ.V. -SIn , 

PoI 
2.46 

with intensity I of the incident beam. When the beam is scattered by an electron with 

an angle () by an unpolarized beam of y-rays, the distance at which the intensity of 

the scattered beam is measured [15] is given by L. On the other hand, the ring 

electron assumption gives the mass scattering coefficient as 

(j = 8" ~{1-a(~)2 + b(~)4 _ C(~)6 + ... } 
P 3 m2C 4 A A A ' 

2.47 

where a, b , c are the constants. 

Comparing the experimental and the theoretical facts and getting the 

dissimilar results, Compton came to the conclusion that, only potential justification 

of the dissymmetry can be accounted by presuming that the scattering particles have 

dimensions comparable with the wave-length of the rays which they scatter. This 

concludes that the diameter of the electron is comparable in magnitude with the 

wave-length of the shortest y-rays and the radius of the electron comes out as about 

2 x 10-10 cm [15]. Continuation of his work came in good agreement with the 

experimental values for the absorption of high frequency radiation in aluminium if 

the electron is taken to be a ring of radius 1.85 ± 0.05 x 10-10 cm [16]. 

His work gave the very fundamental point about the size of the electron. 

Indeed Compton's work about the shape is acceptable one, as it does not go for any 

mathematical trouble. With the limited experimental set up it was a great triumph of 

him to calculate the scattering coefficient per unit mass and the size and shape of the 

electron. The striking fact is that, both in theoretical and experimental view point his 

results were quite good. Size and shape of the electron was given by his work, but 

the mass and the spin are the other important intrinsic properties remaining and if 

those would be calculated by him today we need not to write down the necessity of a 

complete picture of the electron. 
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2.3.5 Lortz model 

In this proposal the electron is portrayed by the combination of a model of 

relativistic continuum mechanics and vacuum electrodynamics [19]. The equations 

of the vacuum electrodynamics in SI units are given as 

and 

V.B=O, 

V.E+o,B=O, 

j=qv. 

2.48 

2.49 

2.50 

2.51 

2.52 

Here E and B are the electric and magnetic fields, j is the current density, q is the 

charge density, v is the corresponding velocity of charge, c is the speed of light in 

free space and 110 is the free space permeability. 

In this model extended charge is considered in order to avoid divergence of 

its self-energy. The model is axis symmetric. The electromagnetic field is poloidal 

[19], the current density and the flow are toroidal, while the mass and the charge 

densities are axis symmetric scalars. 

The total energy of the system is 

2.53 

where mechanical energy is 

2.54 

and the electromagnetic energies 

2.55 

and 

2.56 
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I 

( 

V2 J-2 
Here Po is the mass density and r = 1-~ and d 3r gives the distribution of the 

energy within the structure. This work has been extended with internal and external 

solutions also. It was concluded with the fact that for the electron model, the 

quantization is not always necessary, and sometimes the description by stationary 

states of continuum mechanics may be simpler. 

2.3.6 Semi-classical Sirota model 

The semi-classical radius of the electron is calculated by N. N. Sirota [32] in 

ring like charged body model. Here the ring is considered to be rotating as a rotating 

body with angular velocity OJ around the axis of rotation. The radius is calculated 

here equating the compressive force due to the magnetic field originated from the 

rotation ofthe charge and the centrifugal force due to the rotating volume. 

2 

The centrifugal force is denoted as Fe = mv and the compressive force is 
r 

F 1 ~2 h h fun . I d h I = ~. H = - J.Lo '-V I' were t e ctlon <l> I = - an t e current IS gIven as 
2 2 27rr 

Consequently equating these two forces we have 

mv 2 J.Loe
2v 2 

-r- = 321Z'2r2 . 

This evolves the semi-classical radius as 

J.L e
2
v 2 

r=c........::...° __ 
321Z' 2m . 

For the rotating particle, the angular momentum is known as 

L = mvr. 

2.57 

2.58 

2.59 

Again the angular momentum in the case of the electron is !!:.-. Hence the velocity 
2 

comes out to be as 

v ~ 104 mls. 

Using a velocity as v = c, we get the angular momentum as 

L ~ 27.51 X 10-22 1-s. 
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But the expected order is 10-34 which is far from the above result. This prompts us to 

question about this particular model as a partly failure. 

2.3.7 Semi-classical model with tachyonic matter 

An extended rotating object [33] was considered by G. N. Ramachandran and 

his colleagues to describe the model of the electron spin. The object is composed of 

two different parts. The core is with the linear velocity less than the speed of light in 

free space, i.e. c and this part is enclosed within a matter of the tachyonic matter [33] 

with velocity greater than c. This idea was introduced to get a better stability of the 

particle. This is an interesting presentation with the scheme of two different sorts of 

velocity according to the distance from the centre of the object. The mass of the 

electron is presented here as 

2 4 2 3 E == me == -1rke R 
3 ' 

2.62 

and the spin is given as 

2.63 

Here R is the radius of the spherical object. In both the expressions of the mass and 

the spin, the factor k is present. From equation 2.62, k seems to be the mass density 

of the object, though it is not well-explained in the article [32]. 

The key limitation of this model comes in terms of the use of the tachyonic 

matter. If instead of tachyonic matter, the velocity could be brought down up to c or 

less, this model may be a better choice then. Secondly, this model incorporates the 

lowest radius as Compton radius Re whereas upper limit goes up to .fiRe only. 

Thus this model rejects the other electromagnetic phenomena related to the electron 

and also the other radii. 

2.3.8 Semi-classical picture of the electron spin 

The relation between the spin angular frequency of the electron and its rest 

energy is developed with the help of its semi-classical model. Here the charge 

density and the mass density both are considered to be directly varying with the 

volume of the sphere, which prompts the distribution of the charge over the sphere 
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(34]. A close value of the spin angular momentum is deduced. But how the 

electrostatic energy will account for the rest mass of the electron is not discussed in 

the model. Again the distribution pattern of the mass and the charge is expressed 

there as Pm ex. Pe ex. r3. Pm is the relativistic mass density and the Pe is the charge 

density distribution. But it is not explained whether the distributions follow any kind 

of relation between the mass and the charge or not. 

2.4 Extended models with point-like charge 

2.4.1 Bunge model 

Without executing Foldy-Wouthuysen transformation [35-37], a mean 

position operator with a smooth motion is derived by M. Bunge to illustrate the 

picture of the electron [6]. This is actually a model of the electron, which represents 

the extended electron. This is a Compton-sized model with a point charge and 

distributed mass. L. L. Foldy and S. A. Wouthuysen gave the mean-position operator 

that Bunge says the center-of-mass operator. The operator given by them is not 

oscillatory and its time derivative is proportional to the momentum, and this is read 

as (6] 

2.64 

where x is the point where charge is concentrated. The displacement operator 

proposed by Bunge as 

2.65 

A~ /-I a Ii 0 (J" 
where s=-L../-IY -, A=- , J.1=0,1,2,3 and Y= . 

2 0 &/-1 moc - (j 0 

This gives a model of the electron within the frame of the standard 

representation of the one particle theory. This is a mixed model of the concepts of 

extended and the point particle. Here Lorentz force has been employed to the 

terminus of the trembling vector and that portrays the charge of Dirac's electron [6] 

at that point and its oscillation around the mean position co-ordinate with amplitude 

of the Compton radius. This model again tells about the spreading of the mass over a 

region of dimensions of a Compton wavelength. 

But this model does not predict a sharp boundary or the exact path of the 

motion of the charge. Again how long it can go or where the charge cannot go is not 
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mentioned. M. H. MacGregor also mentioned about the similarity of this model with 

his relativistic spinning sphere model of the electron with the limitations of the 

detailed relativistic structure and the equatorial location of the charge [7]. 

2.4.2 Relativistic spinning sphere model 

Relativistic spinning sphere model [7, 38-39] of the electron depicts the 

picture of merely a classical structure of the particle, which involves the 

spectroscopic properties of the electron at the first order of the fine structure 

constant, a. 

Framing the characteristic features, the sphere is considered to be made of the 

non-interacting but rigid mechanical mass along with the point charge e, residing at 

the equatorial zone of the sphere. This spherical model successfully transforms under 

the Lorentz transformation too. The observed electron spin, the total quantum­

mechanical spin and the accurate gyro magnetic ratio are reproduced exactly by this 

model. MacGregor has shown the context of the different energies corresponding to 

the electron structure. The spinning mass is taken here as ms = ~ mo , where mo is the 

rest mass of the electron. Starting with the relationship between the mass and the spin 

angular momentum of the electron, the RSS model is developed. 

MacGregor considered the well-known facts about the electron to build up 

the relativistic spinning sphere model of the electron. They are: a) the electron is 

spinning, b) the spin is quantized, c) the spin is J = .!. Ii and it is very large with 
2 

respect to the mass of the electron, d) the spherical shape of the electron is not 

changed due to relativistic rotation. 

As the relativistic rotation incorporates the increase in mass, the rest mass mo 

of an element of ring is changed according to 

mer) = mo(r) 
~1-o/r2 / c 2 

' 

2.66 

where OJ is the angular velocity of the spinning ring and r is the distance of the 

element from the axis of rotation. For a sphere with radius R , the mass-density of the 

sphere is figured out as 
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D = mer) = 3mo(r) 

VsPhere 47rR 3 .Jl- cu 2r2 I e2 ' 
2.67 

where V.,phere is the volume of the entire sphere. To get the relativistic mass of a 

spinning sphere, it is easier to explore the axially centred cylindrical mass elements. 

The volume of the cylindrical element becomes 

2.68 

where R is the radius of the sphere and r is the distance of the element from the axis 

of rotation. So the spinning mass of the element of the ring can be calculated as 

R2 _r2 
2 2 2 rdr. 

l-cu r Ie 
2.69 

Therefore for the entire sphere, the spinning mass is 

3M R R2 _r2 
M s = ---!-f 2 2 2 rdr , 

R 0 l-cu r Ie 
2.70 

where M 0 is the non-spinning mass. With the equatorial velocity e of the spinning 

sphere, the angular velocity attains the highest value without violating the special 

theory of relativity as 

This value of cu reduces the above equation 2.69 into 

3M R 

Ms = R/ f Rrdr 
o 

which implies 

3 
Ms ='2Mo. 

2.71 

2.72 

2.73 

MacGregor has established the model keeping the theory of relativity in his 

mind. That helped him to write down separately the conditions of non-rotating and 

the rotating frames. The relativistic moment of inertia of the spinning sphere about 

the axis of rotation comes out as 

3 2 1 2 
1 =-moR =-mR 

4 2 
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In the conclusion, it is shown that the mechanical mass constitutes 99.9% of the 

observed mass. 

2.4.3 Dynamical spinning sphere model 

A classical model, called dynamical spinning sphere model, for a spinning 

electron is proposed by M. Rivas in the framework of kinematical formalism [8, 40-

41]. The dynamics of the system is expressed in terms of some arbitrary evolution 

parameter r though the Lagrangian is independent of r. In the generalized 

Lagrangian, some kinematical variables will be the time derivatives of some other 

kinematical variables depending on the nature of the higher order derivatives. Thus 

the dynamical variables will no longer be of second order, rather fourth order or of 

higher, which advocate the condition for the charge position of a spinning particle. 

In this formalism, author has made good use of Galilei group of space-time 

transformation [40] to represent the dynamics of the elementary particles. The action 

of a group element g == (b,~, ~,;) on a space-time point x == &,;), is represented by 

x' = gx. a is the space parameter and b represents the time parameter whereas the 

-velocity parameter is v and a is dimensionless. The corresponding expression for 

the x' is given as 

2.75 

where H, P, K and J are the generators of the Poincare group. This is a rotation of 

the point, followed by a pure Galilei transformation and a space and time translation. 

The Lagrangian for the non-relativistic spinning elementary particle is given 

as 

- - -L=Ti+Rf+U.u+V.p 2.76 

and the functions are T = aL R = aL V = aL and V = aL . In general, they 
ai' , af" 'au' 'ajJ' 

will be the functions of the ten kinematical variables &,;,~,p) and the homogeneous 

functions of zero degree of the derivatives (t,r, u, jJ). Similarly the relativistic 

condition is described as 

- - -L=Ti+R.f+V.u+W.w, 2.77 
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aL aL aL 
where T=-., R

J 
=-, UJ =-and 

at af J au J 

functions of the ten kinematical variables 

w = aL . In general, they will be the 
J aa/ 

~,;,~,~) and the homogeneous functions 

of zero degree of the derivatives(t,r,u,li). Here t represents the time parameter, 

r represents the position, u represents the velocity of the particle as u=c and the 

orientation is given by a . This model describes the magnetic moment and the spin of 

the electron in a better way. This is concerned with the orientation part and 

ultimately describes the spinning sphere model by a fourth order differential equation 

using Frenet-Serret differential equations [42]. 

The mass of the particle got less attention in this work and that is a weaker 

point left by this model, as the mechanical mass plays a crucial role in the electron's 

total energy. This model has been built more or less considering the 

Zitterbewewgung model of the electron. But if structural phenomena to be 

considered, then the limits of the motion should also be defined as well, which is not 

in this case. 

2.5 Other models 

2.5.1 The electron in a (3+3)-dimensional space-time 

The electron is considered for this model by P. Lancini as a mass-less particle 

moving in a (3 + 3) dimensional space-time [9, 26]. This was first introduced by P. 

Demers, R. Mignani and E. Recami and later by E. A. B. Cole [26]. Concept of 

vacuum polarization is used here. When the electron moves in the extra-dimensional 

space-time, it is subjected to an attractive force toward the standard space-time. 

These extra dimensions assist the electron to be associated with a two-dimensional 

motion, which can produce the existence of the spin as well as the magnetic moment 

of the electron. 

From the Klein-Gordon equation [9], the mass of the electron is attained as an 

integral constant. The electron is considered here in the extra-dimensional time 

plane. There it is attracted toward standard space-time. When a negatively charged 

particle leaves toward the "time" space of the 6-D space-time, immediately a 

positively charged hole arises at the 4-D space-time left by the particle. Due to the 

vacuum polarization, an attractive force is presumed along the radial time direction 
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in the extra-dimensional plane and this is considered to be responsible for the spin 

and the magnetic moment of the electron. 

2.5.2 Classical electromagnetic and scalar fields 

The electron is regarded here as a composite model of classical 

electromagnetic and scalar fields [43]. This is a coupled system of two bosons, 

photon and mass-less boson with spin O. The electron is described in this approach as 

a classical electromagnetic-scalar wave related to the equation of motion. The 

slightly generalized classical Maxwell equations are considered in a specific medium 

that models the relativistic atom along with the half-spin representation [43]. Charge 

is here considered as a secondary quality, generated by the interacting 

electromagnetic-scalar fields. So, at the starting, there are two bosons. One is having 

spin 1 and the other one is having spin O. Therefore, the pair of Dirac equations are 

described here as a double bosonic system. 

The electric (B(;)) and the magnetic ~(;)) permeabilities are expressed in 

terms of the mass, mo and <I> , the interaction potential as 

-
B(;) = 1- <I>(x) + mo 

(() 

-
and f.l(;) = 1- <I>(x) + mo . 

{() 
2.78 

Here {() is the angular frequency. Thus the mass is related thus with the 

electromagnetic phenomenon here to couple the two bosons here. Author also gave 

the statement that the electron's states are the linear combinations of the 

electromagnetic-scalar field in the quark model of the hadrons [43]. 

2.5.3 Zitterbewegung model 

As the basis of the electron spin and the magnetic moment, Zitterbewegung 

motion is supposed to be responsible. Several works have been done in the field of 

Zitterbewegung [44-54]. This is a local circulatory motion of the electron. Though 

this has been proposed independently by many physicists, E. Schrodinger's 

contribution is the pioneering [44]. Schrodinger identified the highly oscillatory 

motion by investigating the behavior of charge [44]. 

He started with the Hamiltonian for the free electron-positron system as 

H = c-;;.p + mc 2 fJ , 2.79 
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where a and f3 satisfy the properties 

{a"aJ }=2JJ (i,j=1,2,3) 2.80 

and{a"f3} = 0 , f32 = I 0 The momentum vector p and the position vector (which is 

a conjugate co-ordinate) x are considered with 

2.81 

2.82 

and to commute with a and f3 0 

To represent the Heisenberg picture all these relations can be considered at 

anyone time and the time derivative of any of these operators (say A), which do not 

depend on the time explicitly, can be expressed as 

Hence 

while 

and 

dA =i[H,A]/no 
dt 

-dx 
-=ca 
dt 

da - - - - -
-in-= [H,a] = -{H,a}+2Ha = -2cp+2Ha 0 

dt 

Hence the last equation can be re-written as 

da -
-in-=2Hn dt Of , 

expressing 

17 =~ -cH-'p 0 

At this point Schrodinger noted that 

of" d17 of" da 2H--In-=-ln-= 17, 
dt dt 

so that 
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The 7]0 in the above equation is a constant operator and is represented as 

One can verify it simply that 

- -{H,7]} = 0 = {H,7]o}, 

so that it can be written using equation 2.90, 

;jet) = ;joe-2IHIIIi. 

2.90 

2.91 

2.92 

2.93 

Taking together the equations 2.86, 2.89 and 2.93, Schrodinger obtained the 

expressIOn 

2.94 

Integrating we get 

2.95 

where a is a constant operator of the integration and is expressed as 

- - 1 - 1 -
a = x(O) --nca(O)H-1 +-nc2 H-2 p. 

2 2 
2.96 

Therefore equation 2.94 can be written now as 

- - -
x(t) = X A (t) + ,;(t) 2.97 

with 

2.98 

This can be considered as the position-operator of a relativistic point-mass. The other 

part ofthe equation 2.96 is 

2.99 

This depicts a high-frequency Zitterbewewgung motion superimposed on the 

-macroscopioc motion associated with x A. The Zitterbewegung motion has the 

characteristic amplitude _n_, which is half of the Compton wavelength of the 
2mc 

electron. 
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According to D. Hestenes [47-49], Schrodinger's work raised the question 

about the possible physical significance which can be attributed to the 

Zitterbewegung. He pointed out the hints in three different ways stated below as: 

A. the Zitterbewegung is a mathematical artifact of the one-particle Dirac theory that 

does not appear in a correctly formulated quantum field theory. 

B. the Zitterbewegung is an erratic motion of the electron due to random electron­

positron pair creation and annihilation. 

C. the Zitterbewegung is a localized helical motion of the electron with an orbital 

angular momentum that can be identified with the electron spin. 

Barnt and his colleagues [44-45] continued their work incorporating the 

relative motion in the centre-of-mass rest frame. With p = 0, the Hamiltonian and its 

inverse become 

2.100 

where 13 = 13(0) is a constant of the motion. Then the relative co-ordinate c; takes the 

form 

with A- as the Compton wavelength. Starting with the facts 

dXA - - - - --- = 0 and p = 0 => P rei = P charge, 
dt 

2.101 

2.102 

the relative motion or Zitterbewegung is described in terms of the variables Q(t) and 

PCt) with Hamiltonian Hr' From the commutation relations they arrived at the 

harmonic oscillator with 

d 2Q --
--+u/Q=O 2.103 
dt 2 

and 

d 2P ----+oip=o 2.104 
dt 2 

' 

where 

2c 2mc 2 

2.105 0)=-=--. 
A- n 
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The general solutions come out as 

- - A?-
Q(t) = Q(O) cos mt +-P(O)sinmt 

21i 

- - 21i-
pet) = P(O)cosmt--2 Q(O) sin aJt . 

A 

2.106 

2.107 

Proceeding in this way, the states and the operators associated with the 

Zitterbewegung are obtained. They considered a compact phase space, with three 

degrees of freedom for a point carrying a charge e and thus derived the relative co­

ordinate of the charge as 

-1 Ii - 1 A- 1-
~ -i-afJ = -i-afJ = -Q, 

2 me 2 u u 
2.108 

where A represents the Compton wavelength and it is related to u with the angular 

frequency by the relation 

2e 
m=u-. 

A 
2.109 

To develop the model of the electron with the mass, spin and the electricity of 

the particle, Hestenes [47] begins with the clue that the electron spin is an orbital 

angular momentum in some instantaneous internal system of the electron, which is 

called by him as the rest system of the electron. The properties of the electron are 

considered in this modeling as given below: 

(1) the electron is a massless point particle, 

(2) the electron undergoes Zitterbewegung with an intrinsic orbital angular 

momentum or spin of fixed magnitude s = !!. , 
2 

(3) the Zitterbewegung frequency can be identified with the electron de Broglie 

frequency 

me 2 

(j) =--
o Ii' 

(4) the electron has an electric charge e and 

(5) the total free electron self-energy is given by 
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where Eo and the Vo are the kinetic energy and the self energy. This mass-less point 

particle model is possible only with a velocity of c, which compels a Compton-siz~d 

electron only. Again the kinetic energy is also calculable from the above 

consideration as 

and the self-energy as 

2.5.4 Unified composite model 

me2 

V =­
o 2 

2.112 

2.113 

Scheme of substructure of the fundamental particles was grown up in the last 

century [20-25]. Sometimes, they are called as Preon model [23], and with some 

different approach, sometimes they are called as Rishon model [25]. These sorts of 

endeavors display the particles in more elementary way. Though the experimental 

confirmation for them is a big deal and as they are not verified till, they may remain 

proposals only. Unified composite model of all fundamental particles and forces is 

one of these approaches. The concept of substructures introduces the possibility of 

smaller size and greater energy than in the present scenario. As well they claim for 

some more elementary particle and hence it is a beyond standard model concept. 

A unified model of the Nambu-Jona-Lasinio type is described by H. 

Terazawa [20]. This is based upon the relation between the fine structure constant 

and the Newtonian gravitational constant. This relation is given as 

31Z" 
2.114 

This is known as G-a relation. Re-arranging G-a relation from equation 2.114, one 

can express the mass of the particle in terms of the fine structure constant and G as 

2.115 

The platform gets ready with above equations. Testing with them for leptons and 

quarks one can now put a sub-quark model [21] as below: 
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e = (W2~CO), 

U, =(WI~C,), 

n, = (w2hIC, ) , 

for i =1, 2, 3. 
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Vp = (w l h2CO) , 

.u = (w2h2CO)' 

c, = (w l h2C,) , 

S, = (w2h2C,), 

Vr = (WI~CO)' 

r = (W2~CO)' 

t, = (Wl h3C,) , 

b, = (W2~C,), 

This model consists of an iso-doublet of spinor subquarks with charges ±!., 
2 

and a Pati-Salam color-quartet of scalar subquarks with charges +!. and 
2 

- ~ , Co and C, (i = 1, 2, 3). WI and w2 are called the "wakems" which are responsible 

for weak and electromagnetic interactions. Co and C, are called as "chroms", which 

stand for colors. They are the singlet and triplet under SU(3) color symmetry. This is 

consisting of the spinor and scalar sub quarks with the charge +!., WI and Co' The 
2 

left-handed wL and the right-handed W IR and W 2R are a doublet and singlets of the 

Weinberg-Salam SU (2) respectively. N-plet of the unknown H-symmetry is formed 

by the hi's. Therefore, with chroms one can set SU(4) symmetry for sub-colors, 

which can be described by the quantum subchromodynamics (QSCD), the Yang­

Mills gauge theory of SU(4). Subquark charges satisfy Nishijima-GellMann rule of 

Q = I w + (B - L)/2 and the anomaly-free condition of IQw = IQc = 0 [22]. 

Unified composite model presents the electron as a composite S-wave ground 

state of the spinor sub-quark W2 of charge -!. and spin O. The quantum numbers of 
2 

the electron are then constituted by those of sub-quarks. In this regard the properties 

of the electron are described there. Therefore, the spinor sub-quark and the sub-color 

singlet should come out from the electron. But till the date no experiment is devised 

to make this possible at least. Until and unless any decay channel of the electron is 

identified, it is almost impossible to comment positively on this sub-quark 

phenomenon. 
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2.6 Concluding remarks 

Here we have tried to discuss different kinds of models of the electron, so that 

the idea can be grown in which way one can proceed. This incorporates both 

theoretical and experimental facts. But it was not possible for us to describe all the 

models given till the date. One can have a look for further study in references [55-

62]. Some of the above-mentioned models are in fact carrying some information, 

which do not stand in the modern day physics, and we have tried to figure out their 

problems. The above study shows us very distinctly that two sorts of approaches are 

possible with the present experimental conditions. First kind is to go along with the 

standard model predictions, though it is difficult to explain the finite mass, the spin 

and the charge of the electron with the model. Second one is to chose the extended 

model with point-like charge and indeed this sort of ideas have better configurations 

with the existing properties. 
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Chapter 3 

The radii of the electron and their 

relations 

Following 1. 1. Thomson's discovery of the electron in 1897, varieties of 

experimental and theoretical conditions have been made to clarify its dynamic and 

static properties throughout the last century that we have illustrated partially in the 

chapter 1. Theoretically, different shapes and models were presumed for the electron. 

A brief prologue about the models of the electron is given in the previous chapter. 

Those models are based upon the properties of the electron, which reveal the 

different sizes of the electron. 

Depending upon the various models, we get different types of radii of the 

electron. Here we have discussed their origin and the significance in the behaviour of 

the electron. It is noteworthy that though their origins may be very different, they can 

be connected well together. We attempt here to put different types of the radii of the 

electron in such a manner that the originating phenomena can also be united. 

Following the trend of the relations of the radii involving fine-structure constant, we 

can offer the mathematical formalism of the charge radius with the order in 

agreement with the LEP result from CERN. In addition, we attempted to get a 

relation between Rydberg constant and the electron structure. 

3.1 Classical radius 

According to the theory of Thomson [1], for a charged particle in uniform 

motion with velocity v, the corresponding electromagnetic field will have a kinetic 

energy 
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3.1 

where f is a numerical factor that depends on the charge distribution within the 

sphere of radius Ro and total charge e. Comparing the known form of the kinetic 

energy as T
e'm 

= ~mv2 with equation 3.1, we have [1] 
2 

e2 

Ro=f'-2 . 
me 

3.2 

Abraham-Lorentz-Poincare model [1] also describes classical electron radius. This is 

a model with spherically symmetric charge distribution. Classical electron radius is 

worked out from this model, when the self-energy of the charged sphere is equated to 

1 e2 

its total energy. For surface distribution of charge, radius becomes R = - .-- and 
o 2 me 2 

for volume distribution the radius comes out as Ro = i. ~. The factors i or ~ 
5 me 5 2 

depend on the nature of the distribution of the charge and it is denoted by f in 

equation 3.2. The generalized version of the classical electron radius is given [2] as 

3.3 

The value of Ro is 2.82 xl 0-13 cm. 

The classical electron radius is also involved in the scattering of radiation by 

a free charge, shown by Thomson. This scattering cross-section 

(j T = 87l' (~J2 = 87l' Rg is also called as Thomson cross-section [2-3]. Hence a 
3 me 3 

classical distribution of charge should have a radius of this order if its electrostatic 

self-energy is equal to the electron mass [3]. As it is mentioned above, the classical 

electron radius is roughly the size of the electron would have its mass to be 

completely due to its electrostatic potential energy. But the idea of its mass being 

completely due to its electrostatic potential energy is not supported nowadays. In 

fact, a small contribution of electromagnetic mass is also witnessed [1-2]. The 

electromagnetic mass is represented by J. Schwinger in terms of electromagnetic 
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self-energy [4]. In modem classical-limit theories, e.g. in non-relativistic Thomson 

scattering and the relativistic Klein-Nishina formula [5], classical electron radius is 

used. Also this is the length scale at which renormalization becomes important in 

quantum electrodynamics. 

3.2 Compton radius 

Compton radius lies at the borderline of the classical and the quantum 

physics. In some of the articles, it is told as the least possible classical radius and 

classical physics does not go beyond this [6-7]. As reduced Planck's constant, n is 
involved, this is also considered as quantum mechanical measurement. Compton 

radius of an elementary particle is the length scale at which relativistic quantum field 

theory works. In other words, Compton radius of the electron is the characteristic 

length scale of QED. Experimentally Compton's work provided 2 x 10-10 cm [8] or in 

a more modified form (1.85 ± 0.05) xl 0-10 cm [9] as the radius of the electron. 

Energy of an elementary particle can be written with the help of particle 

nature as well as the wave nature of the particle. The Einstein equation of the energy 

is known as 

3.4 

and the Planck-Einstein relation 

E = nm. 3.5 

Here E, m, n, co and e are the energy of the electron, mass of the electron, Planck 

constant, angular velocity of the particle and speed of light in free space respectively. 

From equations 3.4 and 3.5, we have me 2 = nm and angular velocity becomes 

me 2 

0)=--. 
n 3.6 

If the rotational motion of the particle is associated with a linear velocity v = c , 

equation 3.6 gives the corresponding Compton radius as 

n 
Rc=­

me 
3.7 

From Compton-effect, the difference between the wavelength A and Ao 

gives .1.A = A -Ito = ~ (1- cos B) and ~ divided by 21r is Compton radius of 
me me 
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electron. Here A, Ao, h, m, e and () are the wavelength after scattering, initial 

wavelength, Planck constant, rest mass of the electron, speed of light in free space 

and the scattering angle respectively. Compton radius of electron is denoted as Rc 

and it is measured as Rc = 3.86 x 10-11 cm. In different classical electron models, Rc 

is directly used to get the spin Ii. The difference between the wavelengths and the 
2 

introduction of Ii put the Compton radius in the region of wave-nature. Schwinger's 

idea of total mass of electron, comprising of the mechanical mass and the 

electromagnetic mass, supports this. 

3.3 Electromagnetic radius 

Electrostatic energy of the electron [2] is expressed as 

e2 

W=­
E R' 3.8 

where e is the charge of the electron and R is the corresponding radius of the 

spherical electron. WE was considered as the total energy during the derivation of the 

classical electron radius. But this provides only the electrostatic part. Hence the 

magnetic part was required and was added later. With the introduction of the 

magnetic moment of electron, the expression comes out as [10] 

e2 J./ 
Wem =R+ e2 R3 ' 3.9 

where J.I is the magnetic moment, R is the radius and c is the velocity of light in free 

space. The electromagnetic condition is regarded here. 

If we consider the entire energy as electromagnetic energy, then the equation 

3.9 can be re-written as 

2 e2 J.l2 
me =-+-2-3' 

R cR 

The spin component is calculated as [10] 

S = eJ.l . 
e2R 

Using equation 3.11 in equation 3.10 with the replacement of J.I , we have 
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3.12 

and radius becomes 

3.13 

Charge of the electron is of the very small value whereas c is very high. 

2 

Therefore ~ becomes a negligibly small quantity with respect to the spin of the 
c 

e2 

electron. So we have S »-. Using this approximation and putting mass = m, 
c 

charge = e, and spin = 1'1, the electromagnetic radius [10] becomes 

1'12 
Rem =--2 . 

me 
3.14 

This radius is -104times larger than classical electron radius and -102times larger 

than Compton radius. This is also known as quantum Bohr radius of hydrogen atom. 

Due to the involvement of the magnetic moment, this radius becomes larger than the 

Compton radius and the classical radius. 

3.4 QED charge distribution for a bound electron 

According to the scattering experiments, the electron is regarded as a point­

particle, but its appearance in atomic bound states is not point-like and the Lamb 

shift [11] experiment demands the presence of the electric charge over a region of 

space that is comparable to Rc [2]. Hence the electron bound-state charge 

distribution radius, deduced from the Lamb shift experiments, is quite large. In the 

hydrogen atom, the charge on the electron appears to be spread out over a large 

region of space compared to the intrinsic size of the charge itself. QED calculations 

give accurate magnitude of the effect, but not a very clear explanation. 

Zitterbewegung motion [12-13], revealed by the Lamb shift is a phenomenon that 

shows a large electron charge distribution radius RQED [2]. Vacuum polarization [11, 

14] is another standard QED effect, which leads to a Coulomb polarization of the 

vacuum state by the charge e, where this polarization broadens over a distance that is 
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comparable to the Compton radius Rc' This broadening of the electric field of the 

charge and the spatial location of the charge specify the effective bound-state QED 

charge radius RQED == Rc [2]. 

3.5 Quantum mechanical Compton radius 

Relativistic spinning sphere model of the electron is a semi-classical 

approach that deals with a classical electron without violating QED. Relativistic 

moment of inertia [2] of the spinning sphere is 1 = 'imoR~ = 'imR~ where m = 'imo 
422 

and Rc is Compton radius of the sphere. Here mo is the rest mass of the electron and 

m is the spinning mass. The observed angular momentum of the electron is 

Ii. Ii me 2 

J=1m=-,wlth Rc =-and m=--. 
2 me Ii 

The relation between the total angular momentum vector and the total angular 

momentum quantum number is given as J = ~ j(j + 1)1i. As j =.!. for the electron, 
2 

the value comes out as 

3.15 

Therefore, one can write the expression of the total angular momentum together with 

the moment of inertia and the angular velocity as 

J3 Ii = 1m. 
2 

Relativistically spinning sphere model gives the result as 

1 
J =-mRc. 

2 

3.16 

3.17 

Hence the Compton radius is modified with this quantum mechanical behaviour as 

3.18 

Quantum mechanical Compton radius confirms the quantum mechanical behaviour 

of the electron and its value is RQMC = 6.69 x 10-11 cm. 
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3.6 QED-corrected quantum mechanical Compton radius 

To make theoretical prediction of the magnetic moment of the electron 

consistent with the experimental results, Schwinger introduced a correction to the 

magnetic moment [4] known as Schwinger correction [2]. This gives a more or less 

an accurate value with the form as [2, 4] 

eli ( a ) 
f.1 = 2mc 1 + 2rr . 3.19 

This form of the magnetic moment portrays the composite nature of the mass of the 

electron, which is considered to be a sum of the mechanical mass and the 

electromagnetic mass. 

With Schwinger correction, the spinning mass can be written as, 

m =m(l-~) 
s 2rr ' 

3.20 

a 
where - is the Schwinger correction term and the electromagnetic mass is termed 

2rr 

as 

a 
m·-=!:1m. 

27r 
3.21 

Quantum mechanical Compton radius is modified again by MacGregor [2] with the 

introduction of Schwinger correction and QED-corrected quantum mechanical 

Compton radius is expressed as 

3.22 

3.7 Magnetic field radius 

Four different kinds of mass and equivalently energy are attributed to the 

electron. They are electrostatic self-energy ( WE)' magnetic self-energy ( W H ), 

mechanical mass (W M) and gravitational mass (WG ). Electrostatic self-energy is 

expressed in equation 3.8. This involves only the electric part. Magnetic self-energy 

is the energy due to the self-magnetic field of the charge of the electron. The 99.9% 

[2] of the electron-energy is the mechanical mass which is the observed electron 
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mass. Gravitational mass is negligible at the sub-atomic length-scale and magnetic 

self-energy is about only O.l % of the total energy of the electron [2]. 

Rotation of charge gives birth to current and magnetic field. Magnetic field 

introduces the magnetic self-energyWH • The corresponding radius is known as 

magnetic field radius and it is represented by the symbol RH . 

z 

Point of 
A observation 

OA=r 

Figure 3.1: Magnetic field radius in the framework of spherical electron 

The representation of the magnetic moment of the electron can be set with the 

help of a current loop. Using polar co-ordinates and orienting the axis of the current 

loop along the z-axis, the asymptotic magnetic field components [2-3] are obtained 

as 

H = 2flCosO d H = f.lSinO 
r 3 an 0 3 

r r 
3.23 

Here fl is the magnetic moment, 0 is the angle between the z-axis and the point of 

observation, r is the distance of the point of observation from the origin of the co-

ordinate. Magnetic self-energy WH is represented asWH =.l f B.Hd3x. Here B is the 
2v 

magnetic field and H is the auxiliary magnetic field. 
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It can be divided into parts as W:..xt and wIt depending on [2] relativistic 

spinning sphere radius r > RH or r < RH. Hence WH = W /it + W ~nt. When r > RH ' 

external self-energy w;xt will be the energy and whenr < RH , the corresponding 

energy will be W ~nt . So [2] 

3.24a 

2 R" "( 1 ) 2 Wt't ~L f f -6 (3Cos2e+l~JZr2Sined()dr=4 
81l' 0 0 r 3RH 

3.24h 

Addition of equations 3 .24a and 3 .24b produces 

W Tot > 2p2 
H - 3' 

3RH 

3.25 

We consider here the 'equal' sign only to calculate with the minimum energy. 

As we have mentioned already, the electromagnetic self-energy of a free 

electron can be described in terms of electromagnetic mass is a small correction to 

the mechanical mass [2]. Hence we have Schwinger correction term as 

11m == m.~ [2]. So magnetic-self energy is written as 
21l' 

WH =e2!1m. 

Equating the expressions of 3.25 and 3.26 for W H , we have 

2 a 2p2 
me '-=--. 

21l' 3R 3 
H 

2 

As fine-structure constant is a = ~, from equation 3.27, we have ne 
2 e2 1 2p2 

me '-'-=--. 
ne 21l' 3R~ 

Therefore, the magnetic field radius can be expressed as 

R3 _ 41l'p2 
H- ame 2 • 

The formulation of the magnetic moment of the electron is known as 

en 
p=-. 

2me 
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Using the expression of the magnetic moment from equation 3.30 and writing 

the fine structure constant in terms of e, Ii and c in the equation 3.29, one can get the 

simple form of the magnetic field radius as 

RH =~1/3(;C). 3.31 

The bracketed term in the right hand side of the equation 3.31 is known to us 

according to equation 3.7 as the Compton radius of the electron. This prompts us to 

write the equation 3.31 as 

3.31a 

Schwinger-corrected form of the magnetic moment of the electron can be 

written as 

eli ( a ) J-l=- 1+- . 
2mc 2~ 

Using the equation 3.32 in equation 3.29, the expression of RH is obtained as 

With the help of equation 3.7, we re-write equation 3.33 as 

R~ = ~ R~(l +~)2 
3 2~ 

3.32 

3.33 

3.34 

In equation 3.34, magnetic field radius RH is expressed in terms of Compton radius. 

An approximation of !!...- i::! 1 can produce a simpler form of the magnetic field 
3 

radius as 

R~ "R~(l + ;,,)' 3.35 

Therefore, the magnetic field radius and the Compton radius can be re-written from 

the equation 3.35 as 

( )

2/3 

RH = Rc 1+ ~ 3.36 

Equation 3.36 represents the magnetic field radius in terms of Compton radius and 

fine structure constant. Indeed, it can be said that equation 3.36 is a Schwinger 
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corrected version of magnetic field radius, which has been expressed in equation 

3.31a. 

3.8 Charge radius 

The electron is a charged lepton and its charge plays the most significant role 

in the electromagnetic behaviour. Dynamics of a charged particle is in generally 

employed to express the nature of the electron. The electric dipole moment, the 

magnetic moment and a small fraction of the mass are directly dependent on the 

charge of the electron. The scattering properties of the electron also insist a vastly 

smaller radius for its electric charge [15]. In different models of the electron, the 

charge gets the importance due to the facts of the electrodynamics. Formerly it was 

assumed that the charge is smeared over the entire electron. In some models, the 

charge is considered to reside in the equatorial zone [16] also. Several classical and 

semi-classical models follow the idea of localized charge. But the exact measurement 

of the size of the charge of the electron is yet to be done. Quantum electrodynamics 

defines it as a point charge. Recent LEP experiment predicts that the charge of the 

electron is confined within a region of RE < 10-17 cm or RE < 10-19 m [17]. So the 

charge radius, RE is very small compared to Rc or Ro. 

~ a2 ~ ~ a2 
~ 

RH 
RoED 
R"'QMC 

RE Ro 
RoMe 

Rem Rc 

1 I I I I I I I I I I I I 
10,19 10,18 10,17 10,16 10,15 10,14 10,13 10,12 10,11 10,10 10,09 10'08 10,07 

+-- ~+--a-,-

Figure 3.2: Range of the electron radii 
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Table 3.1: Eight different electron radii 

Symbol Name Expression 

Ro Classical radius e2 

--
me 2 

Rc Compton radius n 
-
me 

RQMC Quantum mechanical Compton radius J3~ 
me 

RQMC QED-corrected quantum mechanical J3(1+~ )~ 
Compton radius 27r me 

Rem Electromagnetic radius n2 

--
me 2 

RH Magnetic field radius ~ O.106Rc 

RQED QED charge distribution for a bound =.Rc 

electron 

RE Charge radius Yet to be 

calculated 

3.9 Gravitational radius 

Gravitational electron radius has been proposed by M. Zagoni [18]. This 

radius is considered as 

Gm 
RG =-2 . 

e 

The important condition linked up with this is 

where r is denoting the order of u. 

The derivation leads to a value of 

!... = 10.0019±O.OOOl. 
2 

This refers to the fact that the order of a will go up to 
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r ~ 20. 3.40 

Equation 3.40 describes, together with equation 3.38, the value of the 

gravitational electron radius as 

RG ~ 10-53 cm. 3.41 

This is almost an improbable question with present facilities. Even it is difficult to 

imagine such a small length and this makes this radius insignificant. It can be noted 

that, it is even smaller than the Planck's length. Hence this radius is of no-use in the 

rest of the thesis, we have just mentioned this here as an infonnation. 

3.10 Analysis of classical, Compton and electromagnetic radii 

Classical radius is expressed mathematically with three universal constants, 

e, m and c. Indeed Compton radius and the Electromagnetic radius are also formed 

with the help of these universal constants and Planck's constant are also involved 

there. 

Table 3.2: Basic factors related to different radii 

Radii Power Power Power Power 

ofe of 1i ofc ofm 

Ro 2 0 -2 -1 

Rc 0 1 -1 -1 

Rem -2 2 0 -1 

From table 3.2, a general feature of the radius is seen. The radius or the 

length is inversely proportional to the mass from which we can predict that 

1 
Length ~ --, or 

Mass 

L h 
Constant 

engt = . 
Mass 

Considering the total mass as a combination of mechanical mass and electromagnetic 

mass, we get 

L h 
Constant 

engt = -;-----"7--

(1+ ~ )Mass 
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Hence the radius or the size of the electron is influenced by the electromagnetic 

effect also. Fine structure constant is also an electromagnetic phenomenon, which 

confirms that these radii are related to each other due to some electromagnetic 

phenomenon. Table 3.2 also shows, as the size decreases, the velocity is decreases. 

But the power of n is increases with the decreasing radii. 

3.11 Mathematical formalism of charge radius 

Classical electron radius and Compton radius are connected with the help of 

the fine structure constant as 

3.42 

Similarly, the relation between Compton radius and electromagnetic radius is also 

governed by the fine structure constant as 

3.43 

If we want to continue our observation of this behaviour of the electron radii, then 

we have two options: either it would be greater than electromagnetic radius or it 

should be lower than classical radius. The first condition can be omitted, as it would 

be a large figure for the tiny electron. Hence we follow the second condition, which 

prompts a smaller radius than classical electron radius. We already mentioned that 

result from LEP predicts the charge radius as R£ < 10-17 cm [17]. Figure 3.1 shows us 

that the region of R£ < 10-17 cm coincides with the second order of the fine structure 

constant starting from classical electron radius. Hence the charge radius can be 

expressed as 

2 e6 

R£ = a Ro = 2 4 • mn c 
3.44 

Generally, the radii are derived from the energy equations. The a 2 term plays 

for the magnetic part of the radius. It is to be noted that a = _1_ which reduces any 
137 

term when it is multiplied bya . Now, re-arranging equation 3.44, we can have the 

total energy of the electron as 

3.45 
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Therefore, equation 3.44 can take the form of the charge radius of the electron and 

that is a mathematical proposal in agreement with the experimental facts from LEP. 

3.12 Relations among different radii 

Relations of Rc with RQMC ' RQMC and RH are stated respectively in equations 

3.18, 3.22 and 3.31. Relation between Rc and RQED [2] is given as 

Rc == RQED · 

Using the relations 3.3, 3.42 and 3.44 together, we have 

R E = a 2 Ro = a 3 Rc . 

3.46 

3.47 

Using the relations 3.42 and 3.35, the relation between RH and Ro can be written as 

3.48 

Similarly the relation between RH and Rem can be brought out by using equation 

3.43 into equation 3.35 as 

R3 =a3(1+~)2R3 
H em' 

2" 
3.49 

Using equation 3.18 into equation 3.35, we have 

3.50 

A similar replacement of Rc by RQMC in equation 3.35 with the help of 

equation 3.22 leads to 

3.51 

From equations 3.47 and 3.48, we relate magnetic field radius with charge radius as 

R~~ a-' Ri(l + ;,,J' 3.52 

Equation 3.36 states about the relation between Compton radius and magnetic field 

( )

2/3 
radius. Expanding 1 + ~ binomially and neglecting the higher order terms, we 

get the simpler form of the relation as 
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3.53 

Combining equations 3.42 and 3.53, we can bind RH, Rc and Ro In a single 

equation as 

Ro 
RH -Rc =-

31l' 

Using equation 3.43 in the equation 3.53 we have the form 

Rc 
RH =a-+aRem · 

31l' 

3.54 

3.55 

Taking a out from left hand side of the equation 3.55 and using equation 3.43, we 

have 

RHRem = Rc + Rem. 
Rc 31l' 

3.56 

Re-arranging equation 3.56 we get the quadratic equation for Compton radius as 

3.57 

Combining equations 3.42,3.43,3.18,3.22 and 3.53, we can write 

3.58 

Equation 3.58 relates all these six radii in a single one. This relation also states how 

any two of them are related. We express those relations in the form of ratio in table-

3.3. We have aimed to make connection amongst all radii via Compton radius, as it is 

the significant point between the classical and the quantum domain. 

To relate the above radii, the equations involve c, velocity of light in free 

space, a fine structure constant. a itself involves e, electric charge of electron, Ii, 

Planck's constant divided by21l' and c. Of these three, e carries the intrinsic property 

of the electron. Hence, it can be concluded that, charge of the electron plays a 

significant role for its structure and in the relations amongst electron radii. The linear 

velocities of the charge of the electron corresponding to the above-discussed radii 

can also be calculated at ease using different relations amongst the radii. Indeed the 

properties, which involve the radius of the electron, will follow these relations too. 

72 



The radii of the electron and their relations 

Table 3.3: Relations in terms of a. among different radii 

Ratio a. involved relation 

Ro a 
Rc 

Rc a 
Rem 

Ro a2 

Rem 

RQMC J3 
Rc 

R~MC J3(1+ 2:) Rc 

RQMC J3a 
Rem 

R~MC J3a(l+ 2:) 
Rem 

RH a 
1+-

Rc 31r 

Ro a 
RH a 

1+-
31r 

3.13 Rydberg constant and the electron radii 

Rydberg constant [19] represents the limiting value of the highest wave 

number i.e. the inverse wavelength, of any photon that can be emitted from the 

hydrogen atom. For n = 1, the wave-number [20] comes out to be .l = Constant.JR 
A 

and Rydberg constant is read as the energy only. Rydberg constant not only connects 

fine-structures of the electronic energy levels of the corresponding spectroscopic 

radiations [21]. But it also provides a link between the wave nature and the particle 

nature of the electron by putting a limit of the highest wave-number corresponding to 
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a photon involved in spectroscopic radiation. Fine structure constant and the Planck's 

constant fix Rydberg constant as [19] 

3.59 

a 2, m, c and Ii are the parameters which relate Rydberg constant with the electron. 

a-quantized results of the electron radii prompt the involvement of Rydberg constant 

with the electron radii. 

The equations 3.7 along with 3.59 provide the relation between the Rydberg 

constant and the Compton radius as 

a 2 

R =--
ctJ 4rcRc 

Using the relation 3.42 in the equation 3.60, we have 

Similarly, from equations 3.43 and 3.60 for electromagnetic radius, we arrive at 

In the same way, using the equation 3.47 in equation 3.61, we get 

3.60 

3.61 

3.62 

3.63 

The equations 3.60 to 3.63 show the behaviour and the relation of the 

different radii of the electron with Rydberg constant. They reveal the a-quantized 

nature of the behaviour. Involvement of this constant with the size of the electron 

shows that the spectral lines and the fine structure constant have great 

electromagnetic impact on the size and the structure of the electron. 

3.14 Concluding remarks 

The long-range scale of the radii of the electron is mentioned here, which 

shows the enigmatic nature of the electron and its behaviour in some definite 

conditions. We have developed the relations amongst those radii of the electron and 

have reported the results in reference [22-23]. The relations brought not only the 

radii under the single scheme, but also their electromagnetic origins. 
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To introduce QED-corrected quantum mechanical Compton radius R~MC' the 

concept of electromagnetic mass is used. This prompts the connection between 

mechanical and the electromagnetic mass from the above-discussed relations. This 

also provides the behaviour in mechanical as well as electromagnetic way. 

From the Schwinger-corrected definite form of magnetic field radius RH , the 

relations of RH with other radii are developed. The calculation of magnetic field 

radius gives the signature of a slightly distorted spherical model of the electron. This 

model is following the relativistic spinning sphere model and does not violate QED. 

Magnetic field radius of the electron is also related with classical radius Ro' 

Compton radius Rc and electromagnetic radius Rem by a-associated terms. Hence the 

importance of a is realized as relating all sorts of phenomena of the electron. The 

concept of a-quantized mass leap is developed by MacGregor [24]. Here our 

approach proposes the a-quantization of the radii of the electron. All these a­

quantized factors will be discussed in details in next chapter. 

They show how much impact the fine-structure constant leaves in the lepton­

structure. In fact, in the calculation of current-loop for the different electron radii 

also, the a-quantized nature is being followed [22-23,25]. 

A significant finding of this part is the mathematical formulation of charge 

radius of the electron [23], which is based upon the a-quantized nature of the radii of 

the electron and the LEP results. 

All the a-quantized radii are connected together with Rydberg constant, 

which gives the signature of accurate measurement of classical electron radius. We 

developed here the relations of Rydberg constant with the other radii of the electron 

too and they all show the a-quantized nature. 
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a-quantization of the properties of the electron 

Chapter 4 

a-quantization of the properties of the 

electron 

In the previous chapter, we have discussed about the radii of the electron and 

observed that they follow the a-quantized nature. Here in the present chapter we 

shall discuss how the properties of the electron are influenced by the fine structure 

constant a. In the calculation of the current-loop, we have used different radii and 

have observed that the nature of the a-quantization is followed. Following the 

current-loop, the magnetic fields are also seen with a-quantized behaviour. 

There we arrive at a new form of the expression of the current and the 

magnetic field in terms of the charge, the mass and the spin of the electron. We also 

tested the behaviour of the charge in external magnetic field for different radii. Using 

the a-quantized mass of the particles, we have attempted to calculate the radius of 

the muon and the tau. The linear velocities of the charge when it rotates in the 

surface of the electron with different radii for a spherical electron are also calculated 

here and they bear the signature of a striking result that classical radius is a length­

contracted form of Compton radius of the electron. 

4.1 Fine structure constant 

Fine structure constant is a magic number with which physicists are obsessed 

to spend countless hours [1]. This is a dimensionless number and mathematically 

e2 

formulated as a = -. MacGregor accounted for the double mystery of the fine 
lie 

structure constant to clarify its range of domain along with the mystery of its origin 
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[1]. To define the range of fine structure constant A. Czarnecki very nicely 

articulates it as connection between colour of a rose and the hardness of oak via 

electromagnetism [2]. First, it was described in the article by A. Somerfield [3]. This 

plays a crucial role in the characteristic features of the electron and this is the 

coupling constant in the electromagnetic interaction. The deviations of the spectral 

lines of the atomic spectral lines from the Bohr model introduced the fine structure 

constant. Here, in this chapter, we are going to observe how fine structure constant 

affects the different phenomena of the electron. 

4.2 a.-quantization of the radii of the electron 

In the previous chapter, we discussed about the size of the electron, which in 

deed is a very important property of the electron. The puzzling electromagnetic 

behaviour of the electron offers eight different measurements of its size in terms of 

the radii of the electron [4-5]. All these radii are lying on a long-range scale. 

Classical radius was expressed by both Thomson and Lorentz [4, 6] aiming 

the electron as a pure electromagnetic one. We have the expression of classical 

radius of the electron in the previous chapter and let us recapitulate it as 

4.1 

Similarly, we can look back to the other radii also. Compton radius [4] is formulated 

as 

;, 
Rc=­

me 

Mathematically equations 4.1 and 4.2 are connected as 

Ro = aRc . 

4.2 

4.3 

Fine structure constant is relating here classical radius and Compton radius. 

The relation is considered to be between two phenomena than between two radii of 

the electron. Electromagnetic radius of the electron [5] is known as 

;,2 
Rem =--2 . 

me 
4.4 

In the similar way, equations 4.2 and 4.3 relate two more different electromagnetic 

phenomena in a form with fine structure constant as 
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4.5 

Equations 4.3 and 4.5 describe two a-quantized steps amongst three different radii of 

the electron. Using equation 4.5 in equation 4.3, we can get 

4.6 

In equation 4.6 we arrive at the second order of difference ina between two radii. 

a-quantized behaviour of Ro, Rc and Rem are shown in equations 4.3, 4.5 and 

4.6. Out of all eight radii of electrons, Rem is the largest one. Numerically, Rc ' 

RQMC ' RQMC ' RQ£D andRH are close in results. Mathematical formalism of charge 

radius is yet to be precised and this is expected to be equal to LEP results or even 

less than that [7]. One can check easily that 10-17 cm is another second order a­

quantized state of classical radius and we havea 2 Ro _10-17
• Relating these points in 

the previous chapter, we have given a proposal of mathematical formulation of 

charge radius of the electron as 

4.7 

which has been expressed in reference [8]. Though we have discussed about the radii 

of the electron and their relations in the previous chapter, we have recapitulated them 

for the sake of the discussion about the other properties of the electron. 

4.3 Rotation of the charge and a-quantization of the current 

The charge passing per unit time per unit area is known as current, 1= Q , 
T 

where Q is the charge and T is the time by which Q amount of charge passes unit 

area. To deal with the electron, we say the charge as e. When a small charge e rotates 

in a circular path of radius R with linear velocity v around the axis of rotation, the 

current comes out as 

I=~. 
2nR 

4.8 

As we are studying relativistically spinning sphere model [4] and the charge is 

assumed to be rotating in the equator of the sphere with a velocity of c, we get 

current-loop corresponding to each radius for this electron model. 
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-,+===------A,''(is of rotation 

Figure 4.1: Rotation of the charge of the electron around the axis of rotation 

Using the expression of Compton radius of the electron from equation 4.2 in 

the equation 4.8, we have the current-loop 

I - ec _ c 2 [em] 
e - 2nRe - 4n ~ , 

4.9 

where e, m and Ii are the charge, the mass and the spin of the electron respectively. 
2 

Therefore, in other words, this current-loop can be written in terms of the charge, the 

mass and the spin of the electron as 

Ie = c
2 

(Charge:Mass]. 
4n Spm 

Using the mathematical expression of classical radius from equation 4.1 in 

the equation 4.8, the corresponding current-loop can be calculated as 

4.10 

Similarly, using equation 4.4 for the expression of the electromagnetic radius of the 

electron in equation 4.8, one can get the as 
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I =~=a[~[emll em 2:rRem 4:r~' 
4.11 

Quantum mechanical Compton radius and QED-corrected quantum 

mechanical Compton radius are defined by other authors [4]. The mathematical 

expression of quantum mechanical Compton radius [4] is 

R
QMC 

=Jj~, me 4.12 

when putting equation 4.12 into equation 4.8 the concerned current-loop can be 

given by 

4.13 

More accurate calculation [4] provides QED-corrected quantum mechanical 

Compton radius of the electron as 

R~MC =Jj(l+~)~. 
2:r me 4.14 

Current-loop for R~MC can be calculated by using equation 4.14 in the equation 4.8 as 

4.15 

Magnetic moment of the electron was calculated by G. E. Uhlenbeck and S. 

A. Goudsmit as J.1 = ~ [4]. But the experimental results differed from the 2me 
theoretical by 0.01 %. Solution to this problem was given by 1. Schwinger in 1949 [4, 

9]. From the virtual emission and absorption of light quanta, the logarithmically 

divergent self-energy of a free electron arises. The electromagnetic self-energy of a 

free electron can be described as electromagnetic mass of the electron and this must 

be added to the mechanical mass of the electron to give the experimental mass. This 

electromagnetic mass is the above-mentioned correction to the mechanical mass of 

the electron. Hence the corrected magnetic moment written as [4] 

82 



a-quantization of the properties of the electron 

en ( a) f.1 =-- 1+- , 
2mc 2;r 

4.16 

with a ~ _1_ is the fine-structure constant and ~ is known as Schwinger correction 
137 2;r 

tenn [4, 9]. Magnetic field and current are related as 

fA 
f.1=-, 

c 

where A = 7rR2 is the area of the current-loop with the radius R. 

4.17 

Putting equation 4.16 into 4.17, we can get the modified version of the 

current-loop for Compton radius from equation 4.9, as 

4.18 

In a similar way, for classical radius, the Schwinger-corrected fonn of current-loop is 

calculated from equations 4.10, 4.16 and 4.17 

4.19 

The Schwinger-corrected version of the current-loop for the electromagnetic radius, 

quantum mechanical Compton radius and the QED-corrected quantum mechanical 

Compton radius respectively are 

and 

1= =a[ :ti ]](1+ 2:), 

I
QMe = ~[ ::[ ei J](I+ ~), 
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4.22 

4.4 Magnetic field for the different electron radii 

In electrodynamics, current I can also be written with the help of current 

density Jas 

1= f J.da, 

where da is the area of the element. For magnetic field B, we have 

47Z' 
'\1xB=-J. 

C 

According to Stoke's theorem, for a surface S, closed by the curve C 

f ('\1 x B ).da = fB.dl, 
s c 

4.23 

4.24 

4.25 

where dl is the small line element on the curve C. Using equations 4.23 and 4.24 in 

equation 4.25, we get Ampere's law 

f B.dl = 47Z' 1. 
c C 

4.26 

Magnetic field is expressed in terms of current by equation 4.26. Hence using 

equation 4.26 we can extend our results of current for the magnetic fields also. 

For Rc ' Ampere's law for Compton radius can be calculated by putting equation 4.9 

into equation 4.26 as 

4.27 

Similar calculations using equations 4.10, 4.11, 4.13 and 4.15 for Ro, Rem' RQMC and 

R~MC respectively in equation 4.26, we get the magnetic fields as 

4.28 
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fcB~dl ~ ~[ei l 
t BQMCdl ~ ~ [ei l 

!Ba dl~c(I-t-J[em] :rc QMC' .fj ~. 

2 

4.29 

4.30 

4.31 

In the previous section we found the a-quantized nature from the expressions 

of the current for the different electron radii. It is noteworthy that Schwinger 

corrected magnetic moment can be used for the expression of the magnetic fields 

also. Hence using equations 4.18 - 4.22 one can get the corrections of the magnetic 

field equations 4.27 - 4.31 for Ampere's law as 

and 

fC Bc-
a7 ~ {ei ](1 + 2:), 

tBo.dl ~a-L{ ei ](1+ ;,J 

fcB~.dl~~[ei ](1+ ~), 

~BQMc.dl ~ ~[ e~ J(I+ ~) 
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4.36 

Equations 4.32 - 4.36 produce Ampere's law in terms of the charge, the mass 

and the spin of the electron. But mathematically, B is inside the integral and a 

product with line element dl. To get the value of B separately, long straight current 

carrying wire's approximation [10-11] is used which gives 

B= 21. 
cR 

4.37 

As equation 4.37 is a modified version of equation 4.26, the equations 4.32 to 4.36 

can be modified respectively as 

BC = _c [em](l +~) 
27rRc ~ 27r' 

4.38 

Bo = ~[em](l +~), 
27rRo ~ 27r 

2 

4.39 

B = ac [em](l+~) 
em 2R 1i 2' ;r. em _ 7r 

2 

4.40 

B -~ 1 [em](l+~) 
QMC - .J3 27rR

QMC 
i 27r 

4.41 

and 

Ba =~ 1 (em] 
QMC 13 27rR a 1i' 

QMC _ 

2 

4.42 

Here we get the expressions for magnetic field corresponding to five different radii 

of the electron, when the charge is in a rotational motion with linear velocity c. 
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4.5 Generalized current-loop and magnetic field 

For a rotational motion of charge on relativistic spinning sphere model, we 

have the equations 4.22 to 4.26 of the current-loop. The remarkable thing is that, all 

of these five expressions carry a common factor :: [ e~ ]. We say this common 

factor as generalized current 

4.43 

In fact, all of the above current-loops, i.e. equations 4.18 to 4.22, can be re-written 

respectively in terms of the generalized current-loop as 

and 

1 C = 1 G ( 1 + 2: ). 

10 = a-
1
1G (1 + 2:). 

1em = a1G(1 + ;:), 

1QMC = ~lG(I+;:) 

a 1G 
1QMC = J3' 

4.44 

4.45 

4.46 

4.47 

4.48 

In the equations 4.38 to 4.42 of magnetic field also, the term-generalized 

current-loop is present. Hence equations 4.38 to 4.42 can be re-written as 

B = 21G (l+~) 
C 2R 2' C c Jr 

B = 2a-
1

1G (l+~) 
o 2R 2' c 0 Jr 

B = 2a1G (1 ~) em 2 + , 
c Rem 21f 
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21G ( a ) BQMC = 2 1+-.J3c RQMC 27T 
4.52 

and 

Ba _ 21G 
QMC - (:;3 2R a 

'\j jC QMC 
4.53 

The current-loop equations 4.44 to 4.48 for different radii can now be related 

with each other as 

1c = ala = a-
1
10m = .J31QMC = .J3(1 + 2: }~Mc" 4.54 

Using equations 4.49 to 4.53, we have similar relations for the self-magnetic field 

produced for those above-mentioned radii as 

Bc = a2BO =a-
2
Bem =3BQMC =3(1+ ~)B~MC. 4.55 

As the current for different radii are found to be a-quantized, magnetic 

moment of the electron can be expressed with as [8] 

_I eRo eRc eRem 
Jl=a T=-2-=a-

2
-, 

which can be re-written with Schwinger-corrected magnetic moment as 

_ -\ eRo (1 a) _ eRc (1 a) _ eRem (1 a) Jl-a - +- --- +- -a-- +-. 
2 27T 2 27T 2 27T 

4.6 Rotation of the charge in external magnetic field 

4.56-a 

4.56-b 

In the section 4.3, the rotation of the charge is considered and the self­

magnetic field originated due to its own rotation is discussed. In that case, no 

external magnetic field was regarded. In this section, we are going to observe the 

behaviour of the rotating charge in an external magnetic field using the electron radii. 

Indeed the behaviour of the charge in uniform [12] magnetic field and non-uniform 

magnetic field [13] are analysed by H. Goldstein and R. J. Deissler. 

If a rotating charged non-conducting ring is considered, the lagrangian for 

the system can be written as [13] 

1 2 1 2 2 meR 
2 

() L=-mv +-mR OJ +--B z , 
2 2 2c 

4.57 
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where e is the charge of the electron, m is the mass of the electron, R is the radius of 

rotation of the charge and m is the angular velocity. Hence the generalized angular 

momentum [13] is 

4.58 

Using the angular momentum of electron as L = Ii , the z-component of magnetic 
2 

field from equation 4.58 can be written as 

4.59 

2 

Using the expression of fine structure constanta ==~, equation 4.59 can be re­
lic 

written as 

B( ) - -\ [e 2m me ] z-a ----. 
R2 Ii 

4.60 

Using Compton radius from equation 4.2, the corresponding magnetic field can be 

calculated in the form of 

Equation 4.61 holds one form Charge: Mass, where the charge, the mass and the spin 
Spm 

of the electron together. In the above sections, we have already noticed this factor for 

our work with the self-magnetic field. In fact, the fine structure constant can be 

analysed as 

Fine structure constant and g-factor are related as [4] 

g =1+~. 
2 271 
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Using equation 4.63 between fine structure constant and g-factor in equation 4.62 we 

have 

em (g-2)Jdi - = -""--~- 4.64 n 
2 

Equation 4.64 refers to the connection of the electron's intrinsic properties with the 

g-factor. 

Using classical radius fonn equation 4.1 in equation 4.60, we have 

In a similar way, using equation 4.4 for electromagnetic radius, we have 

( ) 
_\ em 2 me ft 2 me 

[ 
][ 

2 'J j:.[ 2 ] B •• z =a ~ a 2il-m = I' a 2il-m . 4.66 

Equations 4.61, 4.65 and 4.66 are not only carrying the tenn containing the charge, 

the mass and the spin, but also they are a-quantized. 

Using equation 4.61 and expressing current as ] = eBR from equation 4.37, 
2 

with an approximation of long straight current carrying wire, one can get the current 

contribution for Compton radius as 

4.67 

Similarly, for classical radius we have the current contribution from equation 4.65 as 

4.68 

Current contribution can be calculated from equation 4.66 for electromagnetic radius 

as 
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4.69 

When the ring oscillates around the z-co-ordinate, m = O. Then the corresponding 

magnetic fields can be given respectively as 

and 

e 
B =-­
eRR' o c 

2 e e 
Bern =a --=---

RoRc RernRC 

Form = 0, equation 4.61 can also be written as 

B () _ -J me 2 [em] c z -a -- -- . 
2tz tz 

2 

In a similar way equations 4.65 and 4.66 can be re-written respectively as 

B () _ -3 me2 [em] oz-a ----
2tz tz 

2 

and 

B.m(z)~a ~~lf J 

4.70 

4.71 

4.72 

4.73 

4.74 

4.75 

Using the relation 4.64 of g-factor with the intrinsic properties of the electron one 

can get the magnetic field from equation 4.73 as 

4.76 

Similarly, the magnetic field for classical electron radius can be written from 

equation 4.74 as 
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and from equation 4.75 for electromagnetic radius we have 

B em = a 2 mnc 2 (g - 2) . 
2f.1 

4.77 

4.78 

Equations 4.73 to 4.75 gave magnetic field for QJ = 0 with a-quantization) whereas 

equations 4.76 to 4.78 express magnetic field for (j) = 0 with a-quantization in terms 

of g-factor. 

The current comes out from equation 4.73 as 

1 =~[eml c 4 Ii' 

2 

4.79 

In a similar pattern, equations 4.74 and 4.75 produce current respectively as 

4.80 

and 

4.81 

The a-quantization nature is remaining invariant for current even when the angular 

velocity is set to be zero also, is seen in equations 4.79 to 4.81. 

4.7 a-quantized mass-leap and radii of the muon and the tau 

The muon and the tau are in the lepton family along with the electron. In the 

mass tree, they are in higher positions compared to the electron. But other properties 

are of similar nature. MacGregor has put all of them in a well-calculated connection 

[1]. In QED, the fine structure constant a is the coupling constant. Comparison of the 

electron with the other particle mass data set produces two different a- quantized 

masses, and they appear in two different forms know as fermionic with half-integral 
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spin and bosonic with integral spin. a.-quantized steps of the masses for fermions and 

the bosons are shown by MacGregor [1, 14] respectively as 

and 

3 me 
m =--

f 2 a 
4.82 

4.83 

Equation 4.82 expresses the mass quanta, which is created in the "a.-leap" from the 

electron to the muon and equation 4.83 expresses the mass quantum that is created as 

a part of a hadronically bound particle-antiparticle pair in the "a.-leap" from an 

electron-positron pair to the pion, where me is the electron mass [1]. 

The factor me is found in the expression of current-loop for classical radius, 
a 

i.e. equation 4.19 and by re-writing equation 4.19, we have 

4.84 

where me = m = mass of the electron. Using equation 4.82 in equation 4.84 we get 

4.85 

where m /1 is the mass of the muon. Comparing the current-loop expression for the 

muon in a similar way with that of the electron, we have the radius of the muon as 

R =l_n_ 
/1 2mc' 

/1 

4.86 

Compton radius of the electron is known as Rc = ~ with me as the mass of 
meC 

the electron. Equation 4.86 looks like Compton radius of the electron. Also right 

hand side carries a dimension of length that is essential for radius. Hence R/1 can be 

called as the radius of the muon. Mass of the tau is almost 17 times of the mass of the 
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muon. Therefore in the same way with the help of equation 4.19 and the a-leap of 

the fermionic mass from 4.82, we have 

10 =~[£[emr ]l(I+~)' 51 41l" Ii 21l" 
2 

4.87 

Again, comparing the current-loop expression for the tau in a similar way with that 

of the electron, the radius of the tau comes out as 

4.88 

This equation 4.88 gives a form of the radius just like equation 4.61 and this also 

looks like Compton radius. 

The first a-quantized mass-leap for fermion is given by equation 4.82. With 

the fermionic mass, the moment of inertia for a ring can be written as 

1 2 1f=2mfRf' 4.89 

where Rf is the radius of gyration. Using equation 4.82 in equation 4.89 for rnf , one 

can get the moment of inertia for the muon as 

I =~rneR2 
f 4 a f' 

4.90 

Thus the angular momentum can be written as 

4.91 

Using the angular momentum value as ~ in equation 4.91 we will arrive at 
2 

the form Charge: Mass, which we have derived already to deal with the current-loop 
SPIll 

as 

eme 4 ea --=-0_-
Ii 3 vfRf 

4.92 

2 

The left-hand side of the equation 4.92 describes the properties of the electron, 

whereas the right hand side is controlled by the properties of the immediate next 

fermion in the a-leap of masses of the elementary particles or in other words the 
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properties of the muon. Replacing compact form of the electron properties using 

equation 4.67 in the equation 4.43 we get the generalized current for the muon 

I -£(~J G - 3n vfR
f 

. 

4.8 a.-quantization of the velocity 

The relativistic moment of inertia of the spinning sphere is [4] 

1 2 
I=-msR, 

2 

4.93 

4.94 

where ms is the total mass of the spinning sphere. Spinning mass becomes ms = ~m 
2 

for higher velocity, with m being the non-spinning rest mass [4]. For smaller values 

of angular velocity, the spinning mass and non-spinning mass are equal, i.e. ms = m . 

With the increasing angular velocity OJ, the spinning mass ms increases. Hence the 

relativistic moment of inertia is [4] 

I = ~mR2 =.!.m R2 
4 2 s 

4.95 

Ii 
Compton radius, Rc glves spin with the linear velocity c. So the angular 

2 

momentum 

4.96 

The relation between the linear velocity and the angular velocity is v = rOJ . 

We are using here the suffixes according to the notations of the concerned radii. For 

classical radius, we have the expression of velocity as 

4.97 

where OJo is the corresponding angular momentum. 

The spin angular momentum will follow the pattern of the equation 4.96 and 

hence for classical radius we can write it as 

1 2 Ii 
- m s Ro liJo = - . 
2 2 

4.98 
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Then the angular velocity is 

4.99 

So the velocity will be 

4.100 

Therefore velocity va is calculated with the help of the equation 4.1 as 

-\ va = a c. 4.101 

But this is not possible, as it is well known from special theory of relativity 

that velocity of light is the highest velocity. As at the very beginning of the 

deduction, classical radius, one relativistic approach was equated to one non­

relativistic scheme this problem arises. So it is proved here that for a relativistic 

spinning sphere, classical radius does not stand at all with relativistic moment of 

inertia. If we have to use classical radius for relativistic spinning sphere model, we 

must have to introduce it in some other way. On the other hand the above result gives 

the indication for smaller radius and higher velocity also. 

As the radii are decreased, the velocities are increased. Now with the 

behaviour of the other parameters, it is clear that the velocity of the particle is in 

fraction of c. The velocity of the Compton-sized electron is well- known as c. Hence 

one can predict the other way round that the Classical electron radius is the 

contracted length of Compton radius of the electron with the help of a-quantized 

relation 4.3, Ra = aRc' Hence the velocity corresponding to classical electron radius 

becomes 

Va=C~. 4.102 

Now, we have the velocity of classical radius in terms of c and is closer to c, but it is 

not greater than c. This is in agreement with the special theory of relativity. 

In the similar way, for magnetic field radius, the velocity and the spin can be 

written respectively as 

4.103 

and 
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Using the simplified form of the relation between Rc and RH , we have 

Then along with Rc = _n_ we have 
msc 

V
H ~ m:RH ~ msRc(+{;) ~c(l- 3:)-

4.104 

4.105 

4.106 

For quantum mechanical Compton radius following a similar pattern of the 

relation between linear velocity and the angular velocity, we start with the relation 

and the corresponding angular momentum is 

1 2 n 
-mSRQMCOJQMC = -. 
2 2 

Proceeding in the similar way, we have 

n 
v QMC =---

mSRQMC 

Using equation 4.12 and Rc = _n_ we have 
msc 

C 

vQMC = J3' 

4.107 

4.108 

4.109 

4.110 

To continue the same sort of calculations, the linear velocity and the angular 

velocity for QED-corrected quantum mechanical Compton radius are related as 

a Ra a 
VQMC = QMC{j)QMC 4.111 

and the corresponding angular momentum is given 

1 2 n 
-mSRQMCOJQMC = -. 
2 2 

4.112 

In the similar way, we have 
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4.113 

Using equation 4.14 and relativistic moment of inertia corrected Compton radius 

n 
Rc = --we have 

msc 

4.114 

Electromagnetic radius is given in equation 4.4. The relation between the 

corresponding linear velocity and the angular velocity is written 

and the concerned angular momentum is 

1 2 n 
"2msRem OJem = 2 

4.115 

4.116 

Following previous way, we have the velocity for the charge associated with the 

electron, when electromagnetic radius is concerned, as 

Vem = ac. 4.117 

4.9 Concluding remarks 

Fine structure constant is found here as the connecting parameter amongst the 

different radii of the electron. Regarding this matter, it is noteworthy that all these 

radii or the sizes of the electron are derived or calculated from different 

electromagnetic phenomenon. Hence the correlation through a is actually a link 

amongst those basic phenomena, which differ from each other in the way of 

happening. The a-quantization of the current loop or magnetic field simply follows 

the nature of the relation amongst the radii. But the mass-leap says about the 

contribution of the fine structure constant for the mass, life-time [1, 14-15] of the 

concerned particle. Hence when we connect a-leap of the mass and the a­

quantization of the radii, current and magnetic field, the basic features of the electron 

are visualised in terms of the fine structure constant. The other prediction of the 

classical electron radius as a "length-contracted form of the Compton radius" also 

gets strong platform in the association of the a -related facts and the velocity of the 

charge can be well defined then for a classical sized-electron. 
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a-quantization of these properties of the electron for different radii is quite 

significant to connect between different electromagnetic phenomena. It is also clear 

from the above results that whenever the properties of the electron are changed or 

measured due to its various radii, fine structure constant controls the entire matter. 

Again a striking behaviour of the electron properties we have got here by 

representing current and magnetic field in terms of charge, mass and spin together. It 

is commonly known that current and magnetic field are dependent on the charge. But 

our results have shown their dependence on the mass and the spin also. Therefore the 

three intrinsic properties of the electron contribute on the current and the magnetic 

field. This reflects a hidden nature of the mass and the spin and we are going to 

discuss them in the next chapter. 

The results from the external magnetic field have shown two major points. 

Firstly, the magnetic field and the corresponding current are shown there in a manner 

where a-quantization is maintained. Three radii are used there and the a-quantization 

nature is very clear from the results. Secondly, the magnetic field and the current are 

expressed with the factor consisting of three intrinsic properties of the electron, 

which we got for the self-magnetic field of the electron [16] also. 

Another significant observation is that, the a-quantization property remains 

invariant from the definite value of angular velocity to zero angular velocity also. 

Hence this can be concluded that a-quantization is connected to the intrinsic nature 

of the particle, which gets affirmed with equation 4.62. Hence equation 4.62 is 

important to study the nature of the electron properties with the help of a. Lande g­

factor is also related to a, which ensures a better measurement for intrinsic properties 

of the electron and corresponding structure. 
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Electromagnetic mass of the electron 

Chapter 5 

Electromagnetic mass of the electron 

As in this thesis, we are working with the different properties of the electron, 

it is important for us to explain them also invoking the spinning sphere model of it. 

The electron is known as a tiny charged particle having a small amount of finite 

mass, and its charge makes it involve into electromagnetic interactions. This raises 

the question of the origin of its mass, whether it has some electromagnetic nature or 

not. Concept of the electromagnetic mass was primarily developed in the last half of 

the nineteenth century, and has been carried till the date from various approaches. 

Here, we have discussed some of those approaches and later have focussed on the 

mass corresponding to the charge of the electron in the framework of the spinning 

sphere of the electron. There, it is shown how the charge and the mass contribute 

together in total energy of the electron. We observed also here, how the charge and 

the mass behave in the relativistic speed. 

5.1 Mass and electromagnetic mass 

The mass of the electron is a fundamental constant [1]. But mass is not the 

only fundamental property associated with it. The charge and the spin are also 

attached with it and they play some crucial role in the electromagnetic behaviour of 

the electron. According to Newton "The quantity of any matter is the measure of it 

by its density and volume conjointly .... This quantity is what I shall understand by 

the term mass of a body .... " [2]. Around the year 1900, physicists became interested 

about the possibility of the electromagnetic origin of the part or of all the mass of the 

electron [3]. 

2 

Thomson described the electromagnetic mass [4] asmelm = f~, wherefis 
Rc 

a numerical factor of order 1 and this factor depends on the charge distribution 
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within the spherical structure with radius R. He argued this for one electromagnetic 

particle, which is in uniform motion with velocity v with the electromagnetic field 

2 2 

having a kinetic energyTe'm = f ~. After Thomson's work, the electron model 
2Rc 

and properties were treated by M. Abraham and H. A. Lorentz. They developed the 

radiation reaction force on an extended electron. J. H. Poincare gave the idea that it is 

impossible for the charged particles to be held together without the presence of any 

other attractive and non-electromagnetic forces. Hence Poincare stresses provided 

the condition for a mass to be added to the electromagnetic mass of the particle to get 

the observed mass [5). 

Electromagnetic mass is also discussed by M. Born and L. Infeld [6]. They 

2 

described the mass m asmc 2 =1.2361':'-'-, wherero =.,[;;. Here a-I is the absolute 
ro 

field and e is the charge. Their result also has showed the mass as self-energy of the 

electron that can justify the suppression of the associated quantum mechanical terms 

[6]. 

Dealing with the same problem, R. P. Peynman says that the electromagnetic 

mass can be expressed with the help of the energy of the electric field 

as Uelec = ~ melecc2 . Here he has considered the high velocity particle of course and 
4 

melee is defined as the electromagnetic mass [7]. 

Classical electrodynamics supports the idea of electromagnetic origin of the 

part of the mass of the electron as the rest mass of a charged particle is greater than 

that of its uncharged twin and hence one can express the total mass as a sum of its 

mechanical mass and electromagnetic mass [8] in the way m = mmeeh + mem . Indeed D. 

J. Griffiths and R. E. Owen described that the electromagnetic mass of a charged 

particle of specified size, shape and charge can be obtained in three ways: a) from the 

electrostatic energy of the particle, b) using the momentum of the particle and c) 

from the self-force of the particle [8]. 

A. M. Luiz illustrated the idea of electromagnetic mass of spheroidal bodies 

[9]. The uniform charge distribution is considered there. The body is assumed to be 

moving with a constant velocity v in an empty space. The total linear momentum is 
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shown as p = 6:c 2 J J J E 2dV = mv, where c is velocity of light in free space, E is 

the quasi-static electric field and m is the electromagnetic mass and this is expressed 

by Luiz as m = 2e
2

2 
with R as the radius ofthe body [9]. 

3Rc 

Thus electromagnetic mass is a puzzle to the electrodynamics as well as in 

electron-physics. If the problem is attacked to solve, we must have in our mind that it 

must be accommodated in the present theory of the electron and its models along 

with the current experimental background, and in the next section we are going to 

discuss them. 

5.2 Present scenario of charge radius 

LEP experiments indicate that the charge of the electron is distributed over a 

small radius of the order of 10-19 m or 10-17 cm [10], so that it can be considered as 

point-like. The explanation of related scattering by QED [11-12] too demand that the 

charge of the electron is concentrated with a smaller mass as compared to the total 

mass of the electron. This prompts us to link between the mass and the charge of an 

elementary particle. 

The experimental result of magnetic moment of the electron is not found to 

match with the magnetic moment when only the mechanical mass of electron is 

considered [13-14] in theoretical calculation. Schwinger proposed a correction term 

m.~[13-14] to compensate the difference between the theoretical and 
21' 

experimental results. This compensating mass is termed as electromagnetic mass of 

e2 

the electron [13-14]. It may be noted that a(= -) is the so-called fine structure 
lie 

constant coupling the strength of interaction between the electron and the photon 

[15]. 

In the standard relativistically spinning sphere model [14] of the electron, the 

charge is regarded to be confined in a very small region. We consider here the charge 

part of the electron to be in a tiny space of radius RE , which is smaller than all other 

known radii [10, 14, 16J. In fact, out of the eight different known electron radii, R£-
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10-19 m is the smallest one and the next is classical electron radius Ro~ 10-15 m, 

which is 104 times larger than R E • 

With all these facts and figures, now we are ready to incorporate the 

electromagnetic mass of the electron in the spinning sphere model and it can give us 

the probable answer about the electromagnetic origin of the mass of the electron. 

5.3 Charge of the electron and the magnetic self-energy 

Rotation of a charged particle around its axis of rotation gives rise to a 

current-loop 

e 
1=-. 

T 
5.1 

Here e is the charge and T is the time period of rotation. If the linear velocity of the 

charge is v and radius of rotation is R , the time period T can be written as 

T = 2lrR . 5.2 
v 

Putting equation 5.2 in equation 5.1, we have the expression of current in terms of 

velocity and the radius as 

5.3 

This current-loop introduces a magnetic field B and according to Ampere's law, B 

can be written as [17] 

Using equation 5.3 in equation 5.4 

B= 21. 
cR 

B-~ 
- lrcR 2 • 

5.4 

5.5 

Here we have the magnetic field related to the radius of rotation and the 

velocity of the charge in equation 5.5. The rotation is through free space permeability 

and the permeability for free space in Gaussian units has been considered f.1 = 1 . This 

helps us to step for auxiliary magnetic field as 

H=B. 5.6 

With the help of equation 5.5 and 5.6 we have the expression for auxiliary magnetic 

field due to the rotation of the charge 
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H=~ 
trcR 2 • 

5.7 

Magnetic self-energy is the energy, which is contained in the magnetic field 

associated with the magnetic moment of the electron. Magnetic field and moment are 

results of current, which is originated due to the motion of the charge. Thus 

considering the rotation of the charge of the electron we can continue for magnetic 

self-energy. Hence the magnetic self-energy of the above system will be read with 

the help of equations 5.5, 5.6 and 5.7 as 

5.8 

To be more specific for relativistic spinning sphere model, if we choose v = c, the 

magnetic self-energy comes out as 

5.9 

z 

Figure 5.1: Spherical polar co-ordinates 

If f d 3x is expressed in terms of spherical polar co-ordinate system and considering 

the orientation ofthe current-loop along the z-axis we have 

5.10 

Using equation 5.10 in equation 5.9 we have 
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2e 2 

WH =--
31tR 

5.11 

In the calculation of relativistic spinning sphere model [14], the correction of 

magnetic moment [13] is used. Hence the magnetic self-energy [14] is written with 

the help of electromagnetic mass of the electron as 

a 2 WH =m·-e 
21t 

5.12 

a a 
where m· - IS knowrl as electromagnetic mass and IS the Schwinger 

21t 2" 

correction. 

Equating equation 5.11 with equation 5.12 for the magnetic self-energy, we 

arrive at 

Hence the charge can be written as 

e=~"hmaR . 
2 

5.13 

5.14 

Here, we have not considered any of the knOwrl form of radii of the electron to 

represent R . So now we can get the expression of the radius R as 

R=ia-I~. 
3 me 2 

In the chapter 3 and the chapter 4, we have seen the form of classical radius as 

e2 

Ro =--2 . 
me 

Using equation 5.16 in equation 5.15, we have 

4 -I 
R =-a Ro' 

3 

5.15 

5.16 

5.17 

Again, we have seen earlier in the chapter 3 and the chapter 4, that the fine structure 

constant related classical radius with Compton radius as 

Ro = aRc . 5.18 

Using equation 5.18 in equation 5.17, we get the radius as 
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4 
R =-Rc. 

3 
5.19 

This shows that the charge and the mass can be related for a spherical 

electron theory with the help of fine structure constant. Basic constant c is also 

related with this formulation and that prompts us about the fact that the charge and 

the mass of the electron can be co-related only in a relativistic frame. Thus the above 

conditions demand a radius of the sphere as slightly higher than Compton radius. 

The expression of total energy is obtained using equation 5.13 

2e 2 
2 

E=(m+--)c . 
3;rR2 

5.20 

It is to be mentioned here that the mass can only be the rest mass of the sphere and it 

is less than the observed mass of the electron. 

In equation 5.9, we have derived the magnetic self-energy considering the 

velocity v = c. But it is completely a special condition. Hence one can calculate the 

charge-mass relation and the corresponding radius using an arbitrary velocity v for a 

general condition. Now with the arbitrary velocity v, equation 5.11 can be re-written 

as 

2e2v 2 

WH = 2· 
3JrC R 

5.21 

Equating equation 5.21 with equation 5.12 we have the expression of the charge as 

c2 

e=-.J3maR. 
2v 

5.22 

Now two conditions are attached with this equation 5.22. The change of the 

velocity will obviously affect the body. We know that the mass is increased with the 

increasing velocity in relativistic condition. This keeps the radius and the charge un­

affected in equation 5.22. Now the change in charge can also be traced if we fix the 

radius and the mass. Or in other words the charge will be decreasing with the 

increasing velocity, which can be observed in the table 5.1. 

This is very clear from the mathematical observations that the amount of 

charge decreases with increasing velocity for a constant mass whereas vice-versa is 

true for the mass with constant charge. The increase of the mass is a known condition 

with the relativistic velocity. Thus below the velocity c, special theory of relativity 

will not be violated if one advocates for decreasing charge vide above-mentioned 
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conditions. This also ensures the fact provided in equation 5.20. The total energy is a 

constant. We have observed it to be composed of two components, the charge and 

the mass. Then obviously the increment in one component results in the decrement of 

the other. But when the velocity reaches c, it behaves in opposite manner. 

Table 5.1: Behaviour of the charge and the mass with relativistic velocity 

Velocity of the Charge (Mass fixed) Mass (Charge 

charge fixed) 

c 
- 50c.J3maR I e 2 

-----
100 7500 ac2 R 

c 4Sc.J3maR I e 2 

- -----
90 6075 ac 2 R 

c 
- 40c.J3maR 1 e2 

-----
80 4800 ac 2 R 

c 
- 35c.J3maR 1 e2 

-----
70 3675 ac 2 R 

c 
- 30c.J3maR 1 e2 

-----
60 2700 ac 2 R 

c 
- 25c.J3maR 1 e2 

-----
50 1875 ac 2 R 

c - 20c.J3maR 1 e2 

-----
40 1200 ac 2 R 

c 15c.J3maR 1 e2 

- ---
30 675 ac 2 R 

c - 10c.J3maR 1 e2 

---
20 300 ac 2 R 

c 5c.J3maR 1 e 2 

- ---
10 75 ac 2 R 

c ~c.J3maR 4 e2 

- ---
5 2 75 ac 2 R 

c 
- c.J3maR 1 e2 

---
2 3 ac 2R 
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Figure 5.2: Behaviour of the charge in relativistic velocity 
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Figure 5.3: Behaviour of the charge in relativistic velocity 
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Figure 5.4: Behaviour of the charge and the mass in relativistic velocity 

Here in figure 5.2 we get the behaviour of the charge of the electron when it is in 

relativistic linear velocity. It shows the amount of the charge is decreasing, when the 

mass is considered as constant. But when the charge is taken as constant, we get the 

increasing nature in the amount of the mass with the relativistic linear velocity of the 

charge in the figure 5.3. In the figure 5.4 we have given the overlapping of the figure 

5.2 and the figure 5.3 only to show the nature of the two curves in a single picture. 

The dotted curve in the figure 5.4 shows the decreasing in the amount of the charge 

whereas the solid line shows the increasing in the amount of the mass. 

5.4 Concluding remarks 

The electromagnetic mass is expressed by us as the mass responsible for the 

existence of the charge. The relation between the charge and the mass of the electron 

is shown here in the framework of spinning sphere model of the electron. The 

magnetic self-energy gives 0.07% of the total mass of the electron and the charge 

radius is also smaller than all other radii of the electron. These two facts are 
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completely supporting the calculation given here. This relation between the charge 

and the mass confirms the fact that without mass no charge can exist. Indeed, no 

charged particle in the particle physics is known without mass. Our work strengthens 

the above fact. 

We observed that at relativistic speed, for a fixed size of spinning sphere 

electron, the amount of the charge decreases with increasing velocity, when the mass 

is constant. With similar conditions if the charge is considered to be constant, the 

amount of mass increases with increasing velocity. This gives a signature of the fact 

that the charge may transform into the mass or the equivalent energy when the 

velocity approaches c. Therefore, one can predict some critical point just below the c 

velocity, where the charge and the mass are no longer different entity. Fine structure 

constant is shown as the cause of the conversion between the charge and the mass. 
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Chapter 6 

Helical motion of the charge and 

spinning sphere model 

In the previous chapters, we have studied the different properties of the 

electron, specially the radii of the electron and the other radii-involved properties in 

the framework of spinning sphere model of the electron. Depending on them, we are 

going to depict a picture of spinning sphere model of the electron, which can co­

relate the different electromagnetic phenomena, as well as can be linked up with 

current experimental consequences. Study of the energy of the electron leads here to 

, the new kind of radius of the electron and that gives the diagram of a helical motion 

of the charge. With this motion, we found the structure of the electron in agreement 

with the experimental results of the magnetic moment and the gyromagnetic ratio. 

The proposed model is expected to connect different models. 

6.1 Magnetic self-energy and composite radius 

Four different kinds of mass, or equivalent energy are attached to the 

electron. They are electrostatic self-energy (WE)' magnetic self-energy (WH)' 

mechanical mass (WM ) and the gravitational mass (WG ). 

It is about only 0.1% of the total energy of the electron [1). It is the energy 

contained within the magnetic field, associated with the magnetic moment [1]. This 

concept can be used to develop the electromagnetic part of the desired model of the 

electron. We have seen in equation 3.25 of chapter 3, that the total magnetic self­

energy is calculated in relativistic spinning sphere model as 

2JL2 
W -­

H - 3R 3 ' 
H 
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where 11(=~) is the magnetic moment and RH is magnetic field radius. This is 
2mc 

also in close approximation with the calculation of F. Rasetti and E. Fermi [1]. 

Magnetic field radius is closer to Compton radius in size. 

---- .. _-

Figure 6.1: Relativistic spinning sphere with a tiny charge at the equator 

To match the theoretical and the experimental values of the magnetic moment 

of the electron, 1. Schwinger introduced a correction term, which is known as 

Schwinger-correction [2]. In terms of the energy, the Schwinger-correction can be 

expressed as [1] 

w ~ m.!!.-c 2 

H 2" 
6.2 

Equating the expressions 6.1 and 6.2 for magnetic self-energy, we have 

R~ =R~(l+ ;,J 6.3 

Re-arranging and re-combining the terms of equation 6.3 we get a composition of 

classical electron radius and Compton radius as 

R~ = RcR~o' 6.4 
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where we have introduced Reo as addition in length only and mathematically it can 

be written as 

Reo =(Re + ~} 6.5 

As Reo is defined basically consisting classical electron radius and Compton 

radius [3], let us call this as Composite radius. From the relations amongst the radii 

of the electron, we know that fine structure constant relates classical radius and 

Compton radius from equation 3.42 

6.6 

Using equation 6.6 in equation 6.5 we can express the composite radius of the 

electron in terms of the Compton radius as 

Reo = Re(l+ ;:). 6.7 

Indeed, we can say now in that composite radius is the Schwinger-corrected 

Compton radius. Re-arrangement of the form of composite radius from equation 6.7 

tells us about the peripheral length with composite radius as 

6.8 

The left-hand side of equation 6.8 consists of two terms, out of which the first one' 

describes the circumference of a circle with Compton radius. The second term is the 

length equals to classical electron radius only. Hence one can conclude that these two 

terms together represent a helical path with first part covering horizontal distance and 

the second part vertical distance. 

6.2 Helical motion of the charge 

With this new composite radius, now we can try to calculate the current-loop 

for the rotation of the charge. Considering the rotation of the charge-centre around 

the mass-centre in this helical path, we get the dynamics of the charge of the electron 

model. But to be very specific, this is not the structure we are dealing exclusively 

with. Rather this gives us the signature of the electromagnetic nature of the electron 

. on a Compton-sized spinning sphere. To establish the current-loop, we must be as 

accurate as possible about the distance travelled by the charge of the electron. The 

charge is considered to be confined in a very tiny place on the equatorial zone of the 
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surface of the sphere obeying scattering incidents. In fact the electric charge is 

known to be confined within the charge radius of the electron, RE (1, 4]. Hence we 

consider the length for one complete tum due to the rotation, is equal to a distance 

RE + brReo' When the number of turns will be increasing the length can be 

calculated with the term RE + 2n7rReo . If the charge is having uniform velocity v, the 

total time required to complete n number of tum of rotation is 

T = RE + 2mrReo . 
v 

6.9 

Using equation 6.9 in the definition of current! =..:.., the current-loop 
T 

contribution for the rotation of the charge in helical path can be written 

ev 
1=----- 6.10 

RE + 2mrReo 

So, ultimately the denominator of the equation 6.10 employs classical radius, 

Compton radius and charge radius of the electron. 

The relation between the magnetic moment and the current is known as [5] 

lA 
f.1=-, 

c 
6.11 

where A is the area covered by the charge during the rotation. This area is concerned 

with the helical path and the corresponding area can be considered as 

6.12 

Therefore the magnetic moment can be written with equations 6.10, 6.11 and 6.12 

together as 

2(n -1)7'CevReRo 
f.1= . 

C(RE + 2n7'CReo) 
6.13 

Using the approximation of infinitely long current carrying wire for the helical 

21 
motion, the magnetic field comes out as B = - [6]. Therefore, ill the present 

cR 

situation we have the magnetic field as 

B=_2 [ ev ] 
cReo RE + 2n7'CReo . 

6.14 

Number of tum, n is chosen here arbitrarily. 
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Figure 6.2: Helical motion of the charge 

Employing the condition of n, we obtain the lower limit of n as 1 for the 

existence of the helical motion. Here we must remember that the magnetic field B 

and the velocity v depend on the concerned turn of rotation. For a Compton-sized 

model, the maximum height of the helical path within the sphere can be written as 

6.15 

as the distance between the two pole is 2Rc ' Again as the two successive·turns are at 

a distance of Ro, the maximum length or the vertical height can be calculated with 

the help ofthe classical electron radius with n number of turns as 

h=(n-l)Ro· 6.16 

Equating equations 6.15 with 6.16 and using equation 6.6, we can have the upper 

limit of the number of turns as 

2 
Hence the range of n goes from 1 to 1 + - . 

a 

2 
n=I+-. 

a 
6.17 

Magnetic field is originated due to the rotation of the charge in the helical 

path. This field at the end of the first turn will be 

6.18 
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where VI is the primary linear velocity of the charge. As the length of the path and the 

time-taken are very short, the magnetic field will affect in successive turns. Hence 

BI will act on the charge as an external magnetic field. Behaviour of the charged 

particle in uniform and non-uniform magnetic field is well studied by H. Goldstein 

[7] and R. 1. Deissler [5]. We have used the condition [5] for the charge in a non­

uniform magnetic field considering the charge in the magnetic field originated from 

the last tum. 

The hypothesis of spinning electron indeed is related with angular momentum 

and magnetic moment [8-9]. The generalized angular momentum of the system will 

be [5] 

L R eR~oB 
=m cV+ 

2c 
6.19 

m is the mass of the particle. Hence after the first tum, the generalized angular 

momentum will be 

eR~oBI 
LI = mRc VI + ----..:~...!-

2c 
6.20 

Magnetic field, BI initiates the force on the charge particle in the second turn. So the 

BI -initiated Lorentz force FLJ will act on the second tum and will introduce 

velocity v2 • The force FLI is 

6.21 

Though the Lorentz forces act, the charge continues with same circular path. This 

gives the hint of another force which balances the Lorentz force. It is very clear from 

the nature of the second force that it would be a centripetal force. At the same time 

the Lorentz force due to the previous turn will be subtracted and it can directly be 

derived from equation 6.20 as 

6.22 

Equating equations 6.21 and 6.22, we have the relations between V2 and VI 

as 

6.23 
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V2 will be the velocity at the second turn and this will govern the picture for the next 

turn. Therefore according to equation 6.14, the magnetic field originated at the end 

of the second turn, n = 2 is 

B __ 2 ( eV2 J 
2 - cRco RE + 41rRco . 

6.24 

Using equations 6.23 and 6.18 together in equation 6.24, one can have a modified 

version of equation 6.24 as 

6.24-a 

Following equation 6.19, generalized angular momentum after the turn n = 2 will be 

eR~oB2 
L2 = mRCv2 +-~-=-

2c 
6.25 

Using the expression for v2 and B2 from equations 6.23 and 6.24 respectively in 

equation 6.25, we have 

L2 = [ LI 2 - _1 ][mvI Rc + eR~oBI (RE + 27rRco J] . 6.26 
eBIRc 2c 2c RE + 41rRco 

For n = 3, a similar set of equations can be derived as 

6.27 

1][ L2 1 ] 
2c eR~B2 2c 

6.28 

and 

6.29 

From equation 6.29 it is seen that L3 is carrying the contributions from LI and L2 . 

Similarly the BI , B2, LI and L2 are contributing in B3 . 

Carrying on for the next turn, we have similar set of equations given below: 

6.30 
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and 

6.32 

The nature of equations for the fourth tum is similar to those of first, second 

and third turns of the charge. They give the equations for the n-th tum as 

v" =v"~,[ eR~"~"~, - L J 6.33 

B" = Bo( ~E :2~~:o J[ e~B, - 21E I eR~2B2 - L l{ eR~"L - ;E ] 6.34 
and 

6.35 

Centre 

Charge 

Figure 6.3: Relativistic spinning sphere with helical motion of the charge 
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Equations ,6.33 to 6.35 provide us the n-th order of the velocity, the magnetic field 

and the angular momentum of the charge. In our recent contribution [10] we have 

worked out the above part. 

6.3 Modified composite radius with higher orders of a 

Equation 6.7 predicts a helical path of the charge that we have discussed in 

the previous section. But at this juncture, it is questionable, whether the helical 

motion of the charge is restricted within the sphere and follows the spherical 

structure or not. We have observed from equations 6.5 and 6.7 that the first two 

terms of the newly given composite radius or modified Compton radius are 

representing Compton and classical radii of the electron which are related with each 

other via first order a-quantized relation in equation 6.6. The structure of composite 

radius and the a-quantization between the two radii in equation 6.6 together leave the 

signature of the a-quantized turns on the helical path within the spherical structure. It 

is known that a provides a fraction _1_ and hence the increasing order in a gives 
137 

smaller values. Consequently, if a charge-particle takes a helical path starting from 

equatorial zone, it would obviously follow lower radii towards the polar region of the 

sphere. Therefore, to get a complete helical path in terms of composite radius, one 

can include the higher order terms of a to equation 6.7 to provide a more accurate 

result [11] 

where K2 , K3 and K4 are the numerical constants associated with those terms. 

The first term in the right hand side of equation 6.36 is Compton radius and 

the second one is classical radius. Then the other terms would contribute for the next 

lower radii after classical radius. Indeed, every higher order term decreases the 

length of the radii. This tells us of a smaller periphery away from the centre. One can 

imagine the particular circular disks with these radii to constitute the sphere. Thus, it 

is a logical way to describe the helical motion of the charge on a spherical structure. 

In other words they provide some particular levels in the structure. 
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Table 6.1: Number of levels and distances of the levels from the pole 

Number of levels Distances from the pole 

1st Rc 

2nd aRc 

3rd a 2R c 

4th a 3R c 

5th a4RC 

...... . ..... 

n-th n-1R a c 

Figure 6.4: Circular disks in a sphere 

From equation 6.36, we see that the 1st level is at equator with radius Rc and the Rc 

distance away from the pole. The 2nd level is Ro = aRc distance away from the pole. 

The 3rd level is a 2 Rc away from the pole, whereas the 4th level is a 3 Rc away from 

the pole and so on. This shows that the charge touches only some particular heights 

away from the equator and they lie on a specific mathematical series. 
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CIl 0.008 

= :; 
CQ 

"" 0.007 
c 
0 .... 
Q. 
C 0.006 
0 
U .... 
0 0.005 .... 
'c 
= ~ 0.004 .c .... 
. :: 
~ 

0.003 '0 
Q. 

C 
0 0.002 .!: 
~ 
CJ 
C 
CQ 0.001 .... 
CIl 

is 
0.000 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Number of turns 

Figure 6.5: Number of turns vs its distances from the pole 

6.4 Modified helical motion and the magnetic moment 

The magnitude of the fundamental intrinsic magnetic moment of the electron 

without the radiative correction is defined as f.1 = ~ [12]. This is the zeroth-order 
2mc 

magnetic moment of the electron. It was given by Uhlenbeck and Goudsmit [1]. 

Later it was realized that the accurate magnetic moment of the electron is 

approximately 0.01% greater than this value. In the Schwinger-corrected form of the 

magnetic moment of the electron, this 0.01 % correction was included and provided 

with the help of the fine structure constant as 

en ( a ) f.1 =-- 1+- , 
2mc 21r 

with ~ multiplied with Bohr magneton gives the Schwinger correction [1-2]. 
21r 
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In QED, the measurement of the magnetic moment of the electron states 

about the interaction of the electron with the fluctuating vacuum [13-15]. Combining 

equations 6.7 and 6.37, we have the magnetic moment of the electron as 

eReo 
j.1=--. 

2 
6.38 

As Reo is composed of Re and Ro, one can re-write the expression of the magnetic 

moment in equation 6.38 as the sum of magnetic moments due to Re and Ro to 

eRe eRo 
j.1=-+-. 

2 41Z' 
6.39 

The factor 1 + ~ made it possible to expres~ the magnetic moment with Re and Ro . 
21Z' 

This factor also connects the g-factor and the fine structure constant as [1, 16] 

g a 
-=1+-. 
2 21Z' 

6.40 

Equation 6.40 states also about the dependence of the g-factor on a [17]. In fact, with 

the recent results, g -factor can be expressed more accurately as [18] 

; = 1 +(2: )-0.3284790(: J +L176s(:)3 -0.8(:)' 6.41 
It is noteworthy in this regard that more accuracy in the value of g-factor refers to the 

change in the value of the magnetic moment also. Hence the structure of this 

composite radius also changes accordingly. Indeed equation 6.7 can be re-written 

with the help of equation 6.40 as 

6.42 

Using equation 6.6, which describes the relation between Ro and Re , along with 

equation 6.39, we can have the relation of classical radius to Compton radius in 

terms of the g-factor as 

Ro (g) 
Re = 21Z' 2" -1 . 6.43 

This actually gives us hint about the fact that the relations amongst the different radii 

can go in the higher order of a if one obeys equation 6.40 of the g-factor. 
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Again the factor g - 2 is related with the anomalous magnetic moment of the 
2 

electron a and the Bohr magneton 1-'8 as [19] 

a=L-l= g-2. 
I-'B 2 

Equations 6.42 and 6.44 together provide the condition 

Reo = (1 + a)Rc-

6.44 

6.45 

If we compare now equation 6.45 with equation 6.36, we have the form of 

anomalous magnetic moment as 

a = .!!..-.. + K 2 (.!!..-..)2 + K 3 (.!!..-..)3 + K 4 (.!!..-..)4 +..... . 6.46 
2~ 2~ 2~ 2~ 

Here K2 , K3 and K4 are the numerical constants associated with those terms. We 

have not used the K" as we have followed the suffixes from the order of u. 

Contemporary expression of the anomalous magnetic moment of the electron from 

the experimental facts for higher order of the fine structure constant is given as 

a.(QED)~C:t)+C:4t)2 +c:"(:)' +c:'tJ + ... , 6.47 

where C!') s are the co-efficients and the first one was calculated by Schwinger [2, 

20]. Equations 6.46 and 6.47 are of same pattern and the orders of u is symmetric. 

The mass component associated with the anomalous magnetic moment is the 

Schwinger-corrected mass [1] 

a 
t:..m=m·-. 

2~ 
6.48 

Combining equations 6.40, 6.44 and 6.48, we have the electromagnetic mass, as we 

described in the chapter 5, in terms of g-factor and the anomalous magnetic moment 

of the electron as 

t:..m = m(; -1) = ma . 6.49 

Recent measurement of the g-factor leaves impact on the t:..m . Thus it ensures 

more accurate measurement of both electromagnetic and mechanical mass of the 
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electron. As we are describing 11m to be the electromagnetic mass, it can now be 

precised from equations 6.49 and 6.47 as 

fun = m[ c;''(: )+c;"(:)' +c;''(:)' +C!,,(~), + .. ..J 6.50 

Equation 6.50 is identical with equation 6.48 in addition with the next three orders of 

correction. The corresponding energy is then expressed with the help of equation 

6.50 as 

In the same way, one can re-write the magnetic moment as 

I' = 2~c[I+C;''(: )+C!''(: r +C!,,(:)3 +C!',(:), + .. J 6.52 

Using equation 6.52 in equation 6.1 and equating with equation 6.51 we have 

3 1 3 [1 + C!"(; )+C!·,(;), +C!"(;)' +C!"(;)' +.J 
RH = 6c aRc [C!t )+C!''(: r +C!',(:), +C!,,(:)' + .. ] 

6.53 

Introducing the relation between classical radius and Compton radius we get the 

combination of two radii as 

6.54 

For the convenience of our calculation, we write equation 6.54 as 

6.55 

where 

126 



Helical motion of the charge and spinning sphere model 

is the recent calculation of the anomalous magnetic moment from QED which we 

have seen equation 6.47. Indeed, this is of the same pattern with equation 6.46. But 

as we have different numerical constants in equation 6.46 and 6.47, let us take any 

one form amongst equation 6.46 and 6.47 and define it in a more generalised symbol 

% instead of Q or Qe. 

Therefore in a more pn'!cised form equation 6.54 can be written as 

R1 = SRoR~ox' 

where 

and 

S=_1_ 
6c% 

6.57 

6.58 

6.59 

This equation 6.59 [3] reveals here the new expression of the composite radius of the 

electron. One can get this sort of expression also by putting the higher order terms in 

the right hand side of equation 6.7. Independent of the way of arriving at the point of 

the present condition, the helical path will be there. Here, with this new pattern of 

composite radius, we can continue for the helical motion of the charge in the similar 

way we did earlier. 

So, the total time required for the motion of the charge of the electron will 

now be modified from equation 6.9 with the help of equation 6.59 as 

T = R£ + 2mrRcox 6.60 
v 

Therefore the corresponding current will be modified from equation 6.10 according 

to equation 6.60 as 

ev 
1=-----

R£ +2mrRcox 
6.61 

The magnetic moment will now be read in a modified form of equation 6.13 with the 

help of equation 6.59 as 
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2en -1)7revXR~ 
J-l= 

C(RE + 2mrRcoz ). 

The number of turns can now be calculated as 

2 
n=l+-. 

X 

6.62 

6.63 

Thus, with the new form of composite radius, we can have the new sets of equations 

of velocity, angular momentum and the magnetic field for different turns of rotation 

as given below. 

Magnetic field after the first turn will be calculated' as 

6.64 

Equation 6.64 is the modified form of equation 6.18. Similarly, equation 6.20 can be 

modified as below in equation 6.65 

eR~ozB, 
L, = mRcv, +-~-

2c 

The velocity v2 will retain the form of equation 6.23 

Equation 6.23 is modified as 

Equation 6.26 takes the modified form as 

6.65 

6.66 

6.67 

For n-th turn, equation 6.23 remains same, but equations 6.34 and 6.35 are expressed 

in corrected version below in equations 6.68 and 6.69. 
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and 

1][ L2 1 ] 
2c eR~B2 2c'" 

6.69 

All the turns of the rotation of the charge are expressed in above equations 6.64 to 

6.69. This helical path of the motion of the charge is of a similar category, which is 

described by dynamical spinning sphere model of the electron [4]. There, it is 

defined as the motion of the charge-centre around the centre of mass. The 

Zitterbewegung motion [21-25], which was introduced by Schrodinger [23] and 

developed by others portrays an analogous picture. We have seen that the 

experimental observations are providing the higher order corrections of the magnetic 

moment and g-factor. 

As the charge is following the Compton-sized path at the equator, it promotes 

the extended electron structure. Again at pole, it touches almost a point-like 

behaviour. Therefore extended and point-like structure can be connected with this 

feature. Thus we have come to know that the charge will take the smaller radius 

during the rotation, away from the equator and a bigger radius towards the equator. 

So one can imagine here the sphere as a system composed of several circular disks 

according to the spherical structure. 

As the charge is moving in a relativistic velocity and the distance required to 

be covered in the levels away from the equator is less, the charge gets more time to 

be at the equator. Because it can pass very fast through such small lengths. Hence 

the maximum probability of finding the charge is in the equatorial zone of the 

spherical structure. 

6.5 Generalized spinning mass 

As we have worked here with a relativistic but arbitrary velocity instead of 

considering c-velocity, we must look for a generalized spinning mass for the 

relativistic spinning sphere. MacGregor considered cylindrical mass elements in a 

spinning sphere [1] with the volume 
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6.70 

where r is the distance of the cylindrical element from the axis of rotation and R is 

the radius of the sphere. This gives the total mass of the spinning sphere is 

3M R R2 _r2 
M s = __ 0 f 2 2 2 rdr . 

2 0 I-m r Ie 

e 
For (]) = -, the total mass comes out as 

R 

with M s as spinning mass and the M 0 as the rest mass of the electron. 

Figure 6.6: Relativistic spinning sphere with cylindrical mass-strip 

If we consider the arbitrary velocity v , the angular velocity would be 

Hence the spinning mass can be expressed as 

Ms =3Mo J 
2 0 

Integrating within the limit we have the generalized form of the spinning mass as 
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where d = ~ is a ratio. For d = 1 orv = c, equation 6.75 takes exactly the same form 
v 

of 6.72, derived by MacGregor. 

6.6 Concluding remarks 

Here we have developed a model, which is in fact a modified version of the 

relativistic spinning sphere model of the electron. The stress is given in the charge 

part of the electron. We have designed the helical motion of the charge from the 

nature of the Composite radius of the electron. This motion is again re-constructed 

with the correction due to anomalous magnetic moment and the g-factor. The 

theoretical approach to explain the higher order of the anomalous magnetic moment 

is given. The generalized spinning mas1s is also calculated. 

The fact is that, though the work was started with the classical approach, we 

have finally arrived the quantized-states chosen by the charge during the rotation. As 

the residue magnetic field will affect on the charge at the pole and the energy 

retained at pole will be less than that given by the magnetic field, the charge would 

return towards the equator. Thus, we have the spherical structure with the helical 

motion of the charge. Zitterbewegung is a kind of helical motion and this model 

connects the Zitterbewegung with classical and semi-classical approaches. Again, 

this also predicts the connection amongst the point-like and the extended particle 

model. It is quite interesting that circular vortex streamlines gave a similar pattern of 

the electron structure from different sorts of calculations done by A. Martin in his 

article [26]. His work revealed the circular streamlines centered on the vertical axis. 

Hence a helical nature is seen in that work which supports our calculations. Our 

result for the shape of the electron is also in agreement with the recent measurement 

of the shape of the electron [27]. Indeed the aspheric nature of the shape of the 

electron is also reflected by the composite radius of the electron and the spinning 

sphere structure studied in this thesis. 
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Chapter 7 

Positronium mass spectra 

In the earlier chapters, we have concentrated over the semi-classical physics 

to depict a picture of the electron. The immediate next turn is the positron, the anti 

particle of the electron, and the behaviour of the positron will be similar to that of the 

electron as the properties concerned are matching with each other. The Positronium 

is a bound state of the electron and the positron. Here we attempt to obtain the mass 

spectrum of the S-wave positronium in the framework of non-relativistic models. 

One photon exchange potential is considered here. We tried to calculate the 

corresponding wave function considering the positronium as a harmonic oscillator. In 

this chapter, an attempt has been made to obtain the mass spectrum of the S-wave 

positronium 'in the frame work of non-relativistic models. A good agreement is 

obtained with the masses provided from the combination of the electron and the 

positron masses. 

7.1 Bound state 

Bound states are composed of generally two particles. A good number of 

bound states are present in recent particle physics. Positronium, Charmonium, 

Quarkonium and Bottomonium are the well-known bound states in the current 

scenario [1). Positronium is a quasi-stable bound system [2]. This is an electron­

positron bound state. It is its own anti-particle [3]. This system offers unique 

opportunities to test the understanding of bound states in the framework of QED [4]. 

S. Mohorovicic predicted the chance of existence of the positronium [5]. It was 

discovered by M. Deutsch and it is denoted as Ps [6]. Gross spectroscopic structure 

of the positronium is equivalent to that of hydrogen. The reduced mass of the 

positronium is half that of the electron [5]. Two major states of the positronium are 
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11 So and 1 3 SI' which are discussed later as singlet and triplet respectively. 1 1 So is 

known as para-positronium and 1 3 SI is known as ortho positronium [7] . 

....... ---., 
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Electron. \ 

I \ , , 
, ' 
I P~troMm I 
I I , ' 
'\ • , , , , 
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' ... -... _--.,..-

Figure 7.1: Positronium, tbe electron-positron bound state 

Positronium states are given as n (25+1)1 j. Here n is the principal quantum 

number,s is the spin quantum number and lis the orbital quantum number. For 

J = 0, we have positronium S-wave, for J = 1, we have positronium P-wave and for 

I = 2 , we have positronium D-wave. Therefore for principal quantum number, n = 1 , 

the state will be read as 1 (25+1)1). The total angular momentum quantum number iSj. 

If we aim to have positronium S-wave states, we must have to work with J = 0 

condition and it will be written as (2s+I)S) • To determine the value ofj, now we 

require the spin quantum number s. For singlet states is 0, whereas for triplet state 

sis 1. Thus for s = 0 and I = 0, we get j = o. This prompts us to write the concerned 

S-wave state as I So. If we consider s = 1 withl = 0, we have j = 1 and this gives 381 

triplet state. 

We have attempted here to produce the mass of the positronium states in 

terms of its wave-functions in the framework of potential model problem [8]. Mesons 

are also the bound states of quarks and anti-quarks [1] and they are represented in 

terms of quarks and anti-quarks invoking potential model problem [9-11]. We have 
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tried to continue our work in the same way including the properties of the electron 

and the positron in the place of quark and anti-quark. 

7.2 Non-relativistic model of the positronium 

We consider here the positronium as a harmonic oscillator potential. The 

Hamiltonian of the non relativistic positronium model is 

- -
H = K + Vconj(r) + Vopep(r), 7.1 

where K is the kinetic energy tenn, Vconj is the confinement potential and Vopep is the 

one-photon exchange potential. 

In case of meson bound states, one gluon exchange potential is considered 

and for the electron-positron bound state, one photon exchange potential is 

considered. The expression of the kinetic energy is given as [8, 12] 

7.2 

where M _ = M + == mass of the electron. K is sum of the kinetic energies of the 
e e 

electron and the positron, including the rest mass minus the kinetic energy of the 

centre of mass of the total system. The confinement tenn represents the effect of 

QED and it is given as [8] 

-
Vconj(r) == -OJ, 7.3 

where 0c is the confinement strength. The tenn r is the relative distance between the 

electron and the positron. The nature of the confinement potential is central in nature. 

The central part of two-body potential due to one photon exchange potential IS 

expressed as 

7.4 

where a is the fine structure constant, M _ is the mass of the electron, M + is the 
e e 

mass of the positron, a _ and a + are the Pauli spin matrices. 
e e 
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7.3 Harmonic oscillator wave function 

The general wave function of the harmonic oscillator is [8] 

a 2r2 

If/nlm (r,B,rp) = N(ar)' L~+lf2 (x)e --2-~m (B,rp) , 7.5 

where 

2a 3 n' 2[2(n+/)+I] 

INI2 =--' (n+/)! 
.[; (2n + 21 + I)! 

and 

are associated Laguerre polynomials, 

7.6 

7.7 

a = !.. and N is the 
b 

normalization constant. Symbols have their usual meanings. It is noteworthy that 

a =!.. is not the fine structure constant, b is the oscillator parameter. The harmonic 
b 

oscillator wave function for the as state is [8] 

_ 2 [-;;2] 
If/os - "lf4b3/2 e Yao(B,rp). 7.8 

Here as, 1 S, 28, 38 and 48 represent the harmonic oscillator wave functions for 8 

wave bound states for radial quantum numbers n = 0, 1, 2, 3 and 4. As we are dealing 

here with the positronium, we shall concentrate on the S-wave positronium. 

7.4 Kinetic energy matrix elements 

As the positronium is a bound state of the electron and the positron, the 

kinetic energy of it can be calculated only when both the electron and the positron 

will be contributing to it. In the matrix element ( e -e + I K I e -e + ), we have the 

electron-positron wave-functionle-e+). The non-relativistic expression for the 

kinetic energy of the electron-positron system is expressed in equation 7.2. The 

matrix element ( e -e' I - ~ ~ I e -e' ) can be evaluated to calculate the kinetic 

energy. f.1 is the reduced mass of the system and this can be expressed as 
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7.9 

The Laplace operator V2 can be expressed in spherical coordinates as 

V2 __ 1 ~(r2~)_~ 
- r2 ar ar 1i2r2' 7.10 

For OS state, the matrix element can be written as [11] 

3 
7.11 = 

4b 2 f.L ' 

where b is the oscillator parameter and f.L is the reduced mass. Thus we can have the 

kinetic energy matrix elements for various states as 
(( V

2

) J If/ nS - -If/ nS and 
2f.L n:O,I,2,3,4 

they are listed below: 

Table 7.1: Calculated kinetic energy matrix element 

Matrix element Results 

(~os -~; ~os) 3 --
4b 2 f.L 

(~1S -~>IS) 7 --
4b 2 f.L 

(~,,- ~>2S) 
11 --

4b 2 f.L 

(~JS -~; ~JS) 15 --
4b 2 f.L 

(~,,- ~>4S) 
19 --

4b 2 f.L 
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7.5 Central one-photon exchange potential matrix elements 

The central one-photon exchange potential is written in equation 7.4. Now the 

matrix elements can be expressed as 

where -;;:-:.;-: = -3 for I So and -;;:-:.;-: = 1 for 3 Sl. In the central one-photon 
e e e e 

exchange potential matrix elements, we see two associated parts. They are 

(e-e<I~le-e<) and (e-e<!o'(;l!e-e< ). The first one is the Coulombic potential matrix 

element and the second one is the radial part of the 8 3 
(;) matrix elements. 

The matrix element (e -e <I~e -e < ) for OS state can be written as 

- - - - (r + r ) --
We use here the transformation r = r1 - r2 and R = ' 2, where r, and r2 are the 

2 

distance of the electron and the positron from the centre of the system. Performing 

the integration over the centre of mass coordinates R and evaluating the Gaussian 

integral, we have the matrix elements as 

The potential due to 8 3 
(;) provides two sorts of matrix elements, one is of 

radial part and other is of angular matrix elements. The 8 3 
(;) potential is given by 

[8] 
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where yk 's are the renormalized spherical harmonics. The matrix element 

('I' OS 'I' os 183 (r )1'1' OS 'I' OS) = 

( 
1 )3 1 "'J "'J [( ) 2 ]5~, - r) [( 2 2) 2 L3 3 

-2 - exp -1[; +rj 12b 2 j exp -I[, +rj 12b p r,d rj = r;; 3 3/2' 
7rb 47r -«>--'" r, 2 v 2b 7r 

The matrix elements of the one-photon exchange potential for Coulombic potential 

and the radial part are given below: 

Table 7.2: Diagonal matrix elements for Coulombic potential and radial part 

n 
(~~~~"S ) ('I' nS 153 

(r )1'1' nS ) 

0 2 1 

b.[; 2.fib3
7r

3/2 

1 5 41 

3b.[; 128.fib3
7r

3/2 

2 89 8257 

60b); 32768.fib3
7r

3/2 

3 381 448697 

280b.[; 2097152.fib 3
7r

3/2 

4 25609 405918745 

20 160b.[; 2147483648.fib3
7r

3
/2 

7.6 Confinement potential matrix elements 

Again confinement potential for the positronium system we already have 

described in equation 7.3 as 

-
Vconj(r) = -aJ, 

where ac is the confinement strength of the system. 

The diagonal matrix elements (('I' nS Irl'l' ns) _ ) are expressed in the table 
n-O,I,2,3,4 

below: 
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Table7.3: Calculated confinement potential matrix elements 

Matrix element Results 

(OSlrIOS) 2b 
J; 

(ISlrllS) 3b 
J; 

(2SlrI2S) ISb 

4f; 

(3SlrI3S) 35b 
8f; 

(4SlrI4S) 315b 
64J; 

7.7 S-wave spectroscopy 

We have described the full Hamiltonian of the S-wave positronium system in 

equation 7.1. Individual terms are also given above. The relative wave function for 

OS state becomes [8] 

( 
1 )3/4 ( 2 ) 

VI os:::: trb 2 exp ;~2 ' 
where b is the oscillator parameter. In computing the mass of the positronium, we 

have diagonalized the Hamiltonian matrix ((Vlislrl'P')s) '_ ) in the relative 
1,)-0,1,2" .. ,10 

space. The total energy or the mass of the positronium is obtained by calculating the 

energy eigen values of the Hamiltonian in the harmonic oscillator basis. Therefore, 

we see here that the wave function depends on the oscillator parameter b. 

As the electron mass and the positron mass are same and they are given 

asM _ :::: M + :::: 0.511 MeV, the positronium mass can have a maximum value of 
e e 

1.022 MeV. Varying the b-parameters we got the values closer to expected 

positronium mass of 1.022 MeV at around b = 4.0 picometer. Using the above 

parameters we got the value of the positronium S-wave as 1.029145 MeV for 3S1 

state, which is very close to the above-mentioned 1.022 MeV. 
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Figure 7.2: Positronium mass vs. b-parameter 

Table 7.4: Parameters and values used 

Parameters values 

b 4.0 pm 

M _ + 0.511MeV 
e .e 

ac 
260MeVfm- 1 

a 0.00729927 

7.8 Concluding remarks 

We started this part of the positronium work with the inspiration from quark­

anti quark bound state problems. The meson system involves huge mass compared to 

the electron or the positron masses. Again the coupling constant is used for the 

positronium system is the a instead of as for the meson. The a s is very large 

compared to the fine structure constant as the strong force is very strong compared to 

the electromagnetic force. Hence the only possible condition was b, the oscillator 

parameter, which could control the situation to produce positronium mass spectra 

with logical theory. There we get a large b for positronium compared to the b values 

for mesons. It is 4 picometer and physically acceptable as it falls in the order of the 
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Compton radius of the electron, or the Compton wavelength. The value of the b 

parameter gives the signature of the positronium of picometer order. We have 

worked on the Compton-sized electron. Hence it is also a favourable result to 

advocate for the positronium structure. 
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Conclusions 

Chapter 8 

Conclusions 

In this thesis, we have concentrated on the 'enigmatic' particle electron and 

its classical and semi-classical structural models in the light of the properties of the 

electron. The size and the shape of this particle have been focussed and we have 

studied the radii of the electron from different electromagnetic phenomena. 

C<msequently, we established some relations amongst different radii of the electron 

[1]. Our study has confirmed the involvement of the fine structure constant in the 

electron radii and we found the relations between any two radii are a-quantized [2J. 

The radii of the electron are related in terms of the fine structure constant. Thus all 

the known radii are related and this reflects the relations amongst the originating 

electromagnetic phenomena indeed. Depending on the a-quantized relations of the 

radii, we propose the mathematical form of the charge radius of the electron, which 

is in agreement with the measurement and the prediction of the experimental facts [1-

2]. 

As the fine structure constant connects the different radii of the electron, it 

controls all the properties involving the size of the electron. Thus for different radii, 

we get a-quantized results for current-loops and magnetic fields too. We have 

introduced here the current-loop of the electron in terms of its intrinsic properties -

the charge, the mass and the spin in a compact form and this form is found to exist in 

all the current-loops and the magnetic fields for different radii [3]. Thus we get a 

generalised current-loop form for the electron which is independent of phenomena 

and it functions as a general feature of the electron. The similar nature of the current­

loop expression is observed in the external magnetic field also [4]. The work for 

current-loop is also extended for the muon and the tau [4] with the help of a~ 
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quantized mass feature. The linear velocity of the charge with spinning sphere model 

is calculated for different radii and we found there classical radius as contracted form 

of Compton radius [1]. We have established the relations of the radii of the electron 

with the Rydberg constant also. 

The anomalous magnetic moment and the Schwinger correction got 

importance in our work here. Regarding the electromagnetic mass of the electron, we 

have focussed on the Schwinger-corrected mass. This led us to the expression of the 

energy in terms of the charge and the mass [5]. Our observations show that below the 

linear velocity c, charge decreases and the mass increases with the increasing 

velocity [6]. 

Using the magnetic self-energy, we have extracted a new kind of radius of the 

electron, which is composed of classical and Compton radius [7]. This is done in the 

frame work of the relativistic spinning sphere. In turn, we expressed it as modified 

Compton radius also [8]. Incorporating the higher order terms for this radius we have 

composite radius which produces magnetic moment in good agreement with current 

experimental observation [9]. This radius introduces a helical path of the motion of 

the charge [5, 9]. The charge is shown to follow the helical path with a rotational 

motion. The charge continues the rotational motion in the helical path with 

decreasing order of radii in each turn. Those radii in the turns are specific and they 

follow the orders of a, multiplied with the Compton radius. We have described the 

entire set of radii in the helical path as composite radius. This is also related to the 

higher orders of the anomalous magnetic moment of the electron. We expressed the 

spinning mass of the relativistic spinning sphere with arbitrary velocity. 

This model also offers explanation of the different sizes of the electron and 

connects various models of it. This shows how the charge can be related to a point or 

extended electron model. Indeed, when the charge takes tum at the equator, it shows 

the behaviour of an extended particle, but as it arrives at the pole, the point-like 

nature is revealed. Hence this model obeys experimental stands as well as touches 

the theoretical points with the help of fine structure constant. The charge lies mostly 

at equatorial zone. 

We have considered at the final phase of the thesis, positronium as a 

harmonic oscillator and then calculated its mass for the bound system with the help 
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of one photon exchange potential. This leaves the signature of the structural 

behaviour of the positronium along with its mass spectra and it is also shown that the 

positronium is also in the order of the Compton-size. 

For future, the work of the model of the electron can be associated with the 

wave functions corresponding to the specific energies within the structure of the 

electron. The model of the electron can also be tested for other leptons. For 

positronium P and D waves also, one can observe the various parameters to get a 

complete picture of the positronium structure. Then it can confirm the co-relation of 

the structure of the electron model with that of the positronium. 
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Appendix 

1 Harmonic Oscillator Wave Function 

The harmonic oscillator wave function is given as 

Here 

and 

INI2 = 2ah'd 2(2(71, + l) + 1) (71, + l)! 
.Jff (271, + 2l + I)! 

1 ( ) _([+1) dn 
L1+-2() exp x x 2 [() l+l+n] n X = - exp -x x 2 

71,! dxn 

dn <Xl I 1 dn- s dS 

~ n. [ -X] [[+l.+n] 
dxn = L (71, _ s)! s! dxn-s e dxs x 2 

s=o 

We know that N = 271, + l. 
Leibnitz theorem says 

dn 
<Xl n! 1 dn - s dS 

dxn [A(x)B(x)] = ~ (71, _ s)! s! &Cn-s [A(x)] dxs [B(x)] 

Case (i) 

71, = 0, l = 0 and N = 0 

N = (~)~. 
1 

Lg (x) = 1 
1 

Using N, Lg (x) we have 
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U . 1 
smg a = b' we get 

1 :l r2 

'l/Jooo = (1Tb2 ) 4" e - 2h'! . 

Here b is the oscillator parameter. 
S-wave functions upto n = 5 are given below: 

2 Calculation to find out confinement poten­
tial 
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(1) 

3 Evaluattion of 83(r) matrix elements 

The radial part of the O(TtJ) potential is given by 

i"3( ) _ O(Tt - TJ ) ~ 2k + 1 k(.) y k(.) 
U TtJ - 2 ~ Y z. J, 

T t k=O 47f 

where Y<k)'s are the renormalized flpherical harmonic. 
For S-wave k == O. Therefore, L:~=o 2~!1 yk(i).yk(j) = 4~. The matrix 

element < 'ljJos'ljJoS/Q3(TtJ)/'ljJos'ljJos >= I is evaluated below: 

Th b · . 2r2 2· d b d U· h· b e su stltutlcm 1f = t gIves us Tl = .j2 t. smg t IS su stitution 
in equation (2), we have 
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I 

(3) 

4 Approximation for kinetic energy kernels 

The non-relativistic expression for the kinetic energy of the electron­
positron bound system is given by 

(4) 

Here 'i = 1 denotes the electron and 'i = 2 expresses the positron in the 
equation (4). The total mass of the system is lYI = m! + m2, where m! is 
the mass of the electron and m2 is the mass of the positron. The position 
vectors corresponding to ml and mz are rl and rz respectively. The relative 
distance between rl and rz is 

Therefore, the position vector of the centre of mass of the system is 

R = mirl + m2r2. 
m! +m2 

Therefore rl and r2 are expressed in terms of R, r, ml and m2 as 

and 

respectively. 
The reduced mass of the system is defined as 

165 

(5) 

(6) 

(7) 

(8) 

(9) 



Let the momentum of the electron be Pl' Then P1 = m1 rl and that can 
be expressed by using equations (7) and (9) as 

(10) 

Similarly, the momentum of the positron can be written from equations 
(8) and (9)as 

(11) 

Therefore we have the sum of the kinetic energy for the electron and the 
positron as 

p2 p,2 
_1_ + _2_ 

2ml 2m2 

1 . 2 1 . 
-2 -[mlR + j.trl + -2 -[m2R - I.tTl 

rnl m2 
p2 p2 

R + r 

2M 2j.t 
(12) 

Here PR = M R is the kinetic energy of the centre of mass of the system 
and Pr = j.tr is the kinetic energy for the reduced mass of the system. 

Hence we have, 

p2 p,2 p2 p2 
1 2 R -+---=-

2ml 2m2 2M 2j.t 
(13) 

Now for a non-relativistic S-wave we have the kinetic energy kernel ac­
cording to equation (4) and ~ -+ in '\l, . Hence the matrix element can be 
formulated as < e-e+1 - ~: le-e+ >. 
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Abstract 

Here we study the behavior of the self-magnetic field and current due to the 
rotations of charge in the semi-classical modified relativistic spinning sphere 
model of electron. Though the original model is Compton-sized, we have 
tested below and above Compton-radius and a -quantized results come out as 
consequence. 

Keywords: Electron-radii, Electron-model, a-quantization. 

Introduction 
Studies of the properties of the charged particles can be explored by probing about its 
behavior in unifOlm [1] and non-uniform [2] magnetic fields. Charged particles are 
studied along with its dynamics for more than a century. The dynamics of charged 
particles was focused by Maxwell who gave birth to electrodynamics [3]. Maxwell's 
macroscopic theory [3] was replaced by Lorentz's microscopic theory [3] after the 
discovery of electron. 

Electron is the lightest charged particle and this is called as a point particle in the 
Standard Model of Particle Physics. But different electromagnetic phenomenon 
revealed eight different electron radii (Table-I) [4] [5] which give the signature of 
some extended electron model. Lorentz and Abraham made the first attempt to arrive 
at the structure of eiectron with the help of the dynamics of its charge [3]. Afterwards 
quite a large number of models of electron were proposed. [3] [6]. Relativistic 
Spinning Sphere model by M.H. MacGregor [4] [6] is proposed in recent-days. This is 
a semi-classical model which correlates the spectroscopic properties of the electron 
accurately to first order of a. This behaves as a relativistically spinning mechanical 
sphere of matter with an equatorial point charge e [4]. In this article we have 
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considered the rotation of the equatorial charge with the speed e and examined the 
nature of current and magnetic field produced due to that rotation. Charge e is in fact 
residing in a very small space compared to the volume of the electron as charge radius 

RE < 10-19 m which is predicted from recent LEP experiment [6] [7]. 

Table I: Eight different electron radii. 

Symbols Name Values 

Ro Classical electron radius e2 

--
me2 

Rc Compton radius h 
-
me 

10MC Quantum mechanical Compton radius .J3~ 
me 

RQMC QED-corrected quantum mechanical .J3 a h 
Compton radius 3(1+-)-

2:rr me 
R elll 

Classical electromagnetic radius h2 

--
me2 

RH Magnetic field radius ? 0.106Rc 

RQED Observed QED charge distribution for a ~Rc 
bound electron 

RE Charge-radius of electron Yet to be calculated 

In this process we don't consider any external field. Formulating the current-loop 
calculation of the charge within the radius of electron we proceed here. Out of the 
eight different electron radii, five are formulated with a, h, e, e, m, where a is fine 
structure constant, h is reduced Planck's constant, e is charge of electron, m is mass 
of the electron and c is the velocity of light in free space. Hence we use classical 
electron radius, Compton radius of electron, Quantum mechanical Compton radius, 
QED-corrected Quantum mechanical Compton radius and electromagnetic radius of 
electron to study the magnetic field originated from the rotation of the charge on the 
equator of the relativistic spinning sphere. 

Rotation of charge and Ampere's law 

Charge passing per unit time per unit area is known as current, 1= Q , where Q is the 
T 

charge and T is the time by which Q amount of charge passes unit area. To deal with 
electron we say the charge as e. When a small charge e rotates in a circular path of 
radius R with linear velocity v around the axis of rotation, the current comes out as 
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.as 

I=~ 
27rR 

(1) 

In electrodynamics, current I can also be written'with the help of current density J 

1= f J.da, (2) 

where da is the area of the element. For magnetic field B, we have 

\1x B = J.1oJ. (3) 

where J.1o is the free space permittivity. According to Stoke's theorem, for a surface S, 

closed by the curve C 

f(\1xB).da ~ 1B.dl (4) 
s e 

where dl is the small line element on the curve C. Using equation (2) and (3) together 
in equation (4) we get Ampere's law 

1B.dl = f-LoI (5) 
e 

As we are studying RSS model and the charge is assumed to be rotating in the 
equator of the sphere with a velocity of c, we get current-loop corresponding to each 
radius for relativistically spinning spherical electron model. 

Compton radius of electron is known as Re =!!:.-, where h is reduced Planck's 
mc 

constant, m is the mass of electron, c is the velocity of light in free space. 
Using Compton radius in equation (1), we have 

2 

Ie =~=~(em) (6) 
27rRe 47r h 

2 

where e is the charge of electron, m is the mass of electron and !!.. is the spin of 
2 

electron. Therefore in other words this current-loop can be written in terms of three 
intrinsic properties (charge, mass and spin) of electron as 

Ie = c
2 

(Charge:Mass). 
47r Spzn 
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e2 

Classical electron radius is mathematically expressed as Rv = --2 . This is also 
me 

known as Thomson scattering cross-section or Lorentz-radius. The current-loop for 
classical electron radius is 

(7) 

li 2 

Classical electromagnetic radius is also known as Bohr radius of the 
me 2 

hydrogen atom. This is a larger one than the classical electron radius and the Compton 
radius of electron. The current-loop expression for this radius comes out as 

f = ee 
em 2.D 

JrI\em 

(8) 

Quantum mechanical Compton radius (RQMC ) and QED-corrected quantum 

mechanical Compton radius (R;MC) are defined by M. H. MacGregor [4]. The 

formalism of quantum mechanical spin and magnetic moment projection factors lead 

to an electron radius RQMC = .J3 ~ , quantum mechanical Compton radius of electron. 
me 

Hence the current-loop of quantum mechanical Compton radius is calculated as 

1 e2 em 
f QMC = ~[4Jr ( Ii )] (9) 

2 

Applying magnetic self-energy corrections becomes 

R'QMC = .J3 (1 + !!...-) ~, QED-corrected quantum mechanical Compton radius. The 
2Jr me 

corresponding current-loop comes out as 

fa ~_1 (l_!!...-)[~(em)] . 
QMC ~ 2Jr 4Jr Ii 

(10) 

2 

For Rc ' Ampere's law can be calculated by putting equation (6) into equation (5) 

as 
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c2 em 
{Bc.dl = ,uo[47r (T))· (11) 

2 

Similar calculations using equations (7), (8), (9), and (10) for Ro, Rem' RQMC and 

RQMC respectively produce 

and 

2 J ~ c em 
1: Bo·dl = ,uoa [47r (T)], 

2 
c2 em 

{Bem.dl = ,uoa[47r (T)), 

2 

{ 
,uo c2 em 

BoMc·dl = ~[-(~)], 
- ",3 47r fl 

2 
a 

f.lo(1- -) 2 

J B" .dl = 27r [~(m)]. 
1: QMC J3 4 Jr n 

2 

(12) 

(13) 

(14) 

(15) 

Magnetic moment of electron was calculated by Uhlenbeck and Goudsmit as 

,u = ~. But the experimental results differed from the theoretical by 0.01%. 
2mc 

Solution to this problem was given by Schwinger in 1949 [4] [8]. From the virtual 
emission and absorption of light quanta the logarithmically divergent self-energy of a 
free electron arises. The electromagnetic self-energy of a free electron can be 
described as electromagnetic mass of the electron and this must be added to the 
mechanical mass of the electron to give the experimental mass. This electromagnetic 
mass is the above-mentioned correction to the mechanical mass of the electron. Hence 

h d · . -eh (1 a) h 1 . h t e correcte magnetlc moment wntten as ,u = -- + - ) were a::::J -IS t e 
2mc 27r 137 

fine-structure constant and ~ is known as Schwinger correction term [4][8]. 
27r 

Using the total mass of electron (= mechanical mass + electromagnetic mass), the 

expressions (6) - (10) can be re-written with the introduction of m(l + ~) 
27r 

2 

Ic = [~7r (;)](1 + 2:)' (16) 

2 
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_\ c 2 em a 
10 = a [4Jr (T)] (1 + 2Jr)' (17) 

2 

c2 em a 
lelll = a[ 4Jr (T )](1 + 2Jr)' (18) 

2 

1 c2 em a 
lQMC = .J3 [4Jr ( Ii )](1 + 2Jr) , (19) 

2 

1 =_1 [~(m)]. 
o .J3 4Jr ~ 

(20) 

2 

In the same way the corrections can be made in expressions (11) - (15) for 
Ampere's law as 

(21) 

i -\ c2 em a 
Bo·dl = flo a [-(7)](1 +-), 

4Jr fl 2Jr 
(22) 

2 

(23) 

i flo c
2 em a 

BoMc·dl = r;;:[-(7)](1+-) 
- v3 4Jr fl 2Jr 

(24) 

2 

and (25) 

Approximation for long straight wire and B in terms of charge, mass 
and spin 
The expressions (21) - (25) produce Ampere's law in terms of charge, mass and spin 
of the electron. But mathematically B is inside the integral and having product with 
line element dl. To get the value of B separately long straight current carrying wire's 
approximation [9] is used here which gives 
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B = fLoI . 
21£R 

97 

(26) 

As equation (26) is a modified version of equation (5), the expressions (21) - (25) 
,can be modified respectively as 

2 

BC =~[~(m)](1+~), (27) 
21lRc 41£ n 21£ 

2 

(28) 

2 

Bem = f.1.oa [~(m)](1 +~), 
27rRem 47r n 27r 

(29) 

2 

B = 1 fLo [~(em)](1 +~) 
aMC r::; 2 .D - 4 n 2' v j 1li.'-QMC 1£ _ 1£ 

(30) 

2 

Ba = 1 f.1.o [~(em)] 
QUC r::; 2 .D a 4 n . 

V 3 1£nQMC 1£ 

(31) 

2 

Generalized current-loop and magnetic field 
For a rotational motion of charge on RSS model, we have the current-loop 
expressions (16) - (20). The remarkable thing is that all of these five expressions 

2 

carry a common factor[~(:Z)]. We say this common factor as generalized current 
47r fl 

2 
c 2 em 

IG =[-(7)]' In fact all of the above current-loops (equations (16) - (20» can be 
41£ fl 

2 
re-written respectively in terms of the generalized current-loop as 

a 
Ic =IG (1+-), 

21£ 
(32) 

(33) 

(34) . 
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1 a 
lOMC = h"lG(l+-), 
- v3 2;r 

(35) 

(36) 

In the expressions (27) - (31) of magnetic field also the term generalized current­
loop is present. Hence the equations (27) - (31) can be re-written as 

Bc = JiolG (1 +~), (37) 
2;rRc 2;r 

Bo = a-'JiolG (l+~), 
2;rRo 2;r 

(38) 

B = aJiolG (1 +~) 
em 2JrR. 2;r , 

em 

(39) 

B - _1_ JiolG (1 ~) OMC - h +, 
- v3 2;rRQMC 2;r 

(40) 

B a __ 1_ JiolG 
OMC - h 

v3 2;rRQMC 
(41) 

The current-loop expressions ((32) - (36)) for different radii can now be related 
with each other as 

(42) 

Using the equations (37) - (41) we have similar relation for the self-magnetic field 
produced for those above-mentioned radii as 

Bc = a 2 
Bo = a-

2 
Bem = 3BQMC = 3(1 + ~)B~Mc" 

2;r 
(43) 

a. - quantized mass-leap and approximation for radius of muon and 
tau 
In QED, the fine structure constant a is a coupling constant too. Comparison of the 
electron to the other particle mass data set has been yielded ~'o different a­
quantized masses, and they appear in two different forms know as fermionic (with 
half integral spin) and bosonic (with integral spin). These two a -masses are (1) 

m f = l me = 1 05Me V mass quanta that is created in the" a -leap" from the electron 
2 a 
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m 
to the muon; (2) mb = _e = 70Me V mass quantum that is created as part of a 

a 
hadronically bound particle-antiparticle pair in the "a -leap" from an electron-
positron pair to the pion (where me is the electron mass) [10]. 

The factor (me) is found in the expression of current-loop for classical electron 
a 

radius (equation (17» and by re-writing equation (17), we have 

me 
2 e-

10 = [~( i;.a) ](1 + ~ ) , 
4n- n 2n-

2 

where me::: m = mass of electron. Using m f ::: ~ me in equation (44) we get 
2 a 

(44) 

(45) 

where mJ.l is the mass of muon. Comparing the current-loop expression for muon in a 

similar way to electron we have the radius of muon as 

R :::i~ 
J.l 2m c J.l 

(46) 

Compton radius of electron is known as Rc ::: ~ with me as the mass of the 
mec 

electron. Equation (46) looks like the Compton radius of electron. Also right hand 
side carries a dimension of length which is essential for radius. Hence RJ.l can be 

called as radius of muon. 
Mass of tau is almost 17 times of the mass of the muon. Therefore in the same 

way with the help of equation (17) and the a -leap of the fermionic mass, we have 

2 c 2 emr a 
10 =-[-(-)](1+-) . 

51 4n- n 2n-
(47) 

2 

Therefore radius of tau comes out as 

R =.?2~ 
, 2 m,c . (48) 

This equation (48) gives a form of radius just like equation (46) and this also 
looks like Compton radius. 
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Conclusion 
Current (equations (16) - (20» and magnetic field (equations (27) - (31) are 
expressed in terms of three intrinsic properties of electron; i.e. charge, mass and spin. 
This is an interesting feature that mass and spin are also involved in describing current 
and magnetic field. 

With the help of equations (32) - (36) the relation amongst the current-loops is 
developed in equation (42). Similar relation amongst the equations (37) - (41) is 
derived in equation (43). 

It is also remarkable that though Compton radius, classical electron radius and 
electromagnetic radius are originated from different electromagnetic phenomenon, 
their current and the magnetic field are expressed in a generalized way with a­
quantization. a -leap of the mass of elementary particles is discussed by MacGregor 
[10] and that helped to formulate equations (44) - (48) about muon and tau. Equations 
(46) and (48) prompt to suggest lower radius and higher mass-density for rising in 
mass of leptons. 
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RELATIONS OF THE ELECTRON 
RADII AND ELECTRON MODEL 
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I H£P I,aboratory, Department oj PhYSICS, Tezpl/r Universi~v, Napoo/ll, 

Tezpur-784 028. Ass(fll/, India 

Abstract: Varieties of experimental and theoretical considerations indicate eight 
different types of radii (~r electron. Here we attempt tofine! relations between d!f!erent 
types of radii of electron A Iso ll'e explore the physical sign!ficances of a-qlfonlJ=alion 
of electron radiI the velocities for different radIi are a/so ca/clllated here. In 
addition. relations between Rydberg constant and electron strllcture are also 
attempted. 

Keywords: Electron-radii, a-quQnti=ation. 

1. INTRODUCTION 

Since the discovery of electron in 1897, variOliS approaches have been made to explain its 
different dynamic and static properties. ,Theoretically different shapes were assumed for 
electron and with those assumptions various sizes of the particle were calculated. But at the 
beginning of the 20th century little attention was paid to electron radius due to the diverging , 

e-
electromagnetic self-energy [l]. Thomson introduced electron radius as R=j--1 [I] 

me 
with e as the charge of electron, 111 as the mass of the electron, c-velocity of the light 
in free space and! being a numerical factor. Later, approaches to give model of electron 
were led by Lorentz and Abraham. Lorentz replaced Maxwell's macroscopic theory by his 
microscopic ideas and correspondingly determined the upper limit of the size of electron 
(at that time) [1]. With the introduction of quantum theory of particles and its application to 
Electrodynamics, the inclusion of QED correction [2][3) \vas made in the radius of electron. 
Theory of Compton scattering also suggests a different radius of the electron. LEP 
experiments in CERN gives the signature of the size of the charge-radius of the electron as 
Rf < lo-J7cm (4]. The modern-day particle-physics regards electron a~a point particle. But 
different electromagnetic phcnomenon revealed different radii of electron. Eight of them 
[3) lS], as shown in Table 1, are considered in this paper to seek further information 
and concepts related to the size of electron. The fact is that some of the above-mentioned 
radii follow classical elcctromagnctism and the rest follow Cjuantul1lll1cchanical approaches. 

'Corre~p(1nding author gSOl'lIn0jgnulIl c()m 
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But it is significant that the classical and quantum mechanical results are related to each 
other. 

Symhols 

I?'tJA 1(' 

I? em 

Table 1 
Eight Different Electron Radii 

Name 

Classical electron radIUs 

Compton radius 

Quantum mechanIcal Compton radius 

Of:O-corrected quantum mechanical Compton radiu~ 

Classical electromagnetic radius 

Magnetic lie\d radius 

Observed OED charge distnbution lor a bound electron 

Radius of thc electric charge on the elcctron 

) .1. Classical Electron Radius 

Values 

h 

me 

J3~ 
me 

J3(1+~)~ 
2n me 

<! 0 \06 He 

== R( 

Yet to be calculated 

According to the theory of Thomson, for a charged particle in uniform motion with velocity 
v, the corresponding electromagnetic field will have a kinetic energy 

(1) 

whcrefis a numerical factor that depends on the chargc distribution within the sphere of 
I , 

radius Ro and total charge e. Comparing the known fOlm of kinetic encrgy as 'F.'flll = '2 I11V -

with equation (I ), we have [I] 

(2) 

Abraham-Lorentz-Poincare model is also described with class 1 c:2t! ' lcctron radius. This 
i~ a model of spherically symmetric charge distribution. Classical ciccI: 0,1 mdius is calculated 
li'OI11 this model. when the scll:'cllcrgy of the charged sphere is equated \.ltI1 its rotal cnergy. 

I , 
For surfacc distribution of charge, radius bccomcs Ro = -I1lC- and I~ ; ,':l["lne distribution 

, 2 
3 e 3 I 

the radius comcs out as !~) -- ::---2' 1\11.' "r-7 depends on the nature ofthc distribution 
~ /I1e 5_ 
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of the charge and this factor is denoted be/in equation (2). The generalized version of 
classical electron radius is given [3] as 

(3) 

The value of Rn is 2.82>< 10-13 cm. The classical electron radius is also involved in the 
scatteri(ng of rad(iat:o

J

n
2 
by a freJe charge, shown by Thomson. This scattering cross-

8n e- 8n, 
section crT = 3 mc2 = TR; is also called as Thomson cross-section [3][6 J. Hence a 

classical distribution of charge totaling the electronic charge should have a radius of this 
order if its electrostatic self-energy is equal to the electron mass [6]. As it is mentioned 
above, the classical electron radius is roughly the size; the electron would need to have for 
its mass to be completely due to its electrostatic potential energy. But the idea of its mass 
being completely due to its electrostatic potential energy is not supported nowadays. In fact 
a small contribution of electromagnetic mass is also witnessed [1 ][3]. For point particle an 
infinite self-energy is a doubtful, which admits physically meaningless solutions and 
violations of causality [2]. In modem classical-limit theories; e.g. in non-relativistic Thomson 
scattering and th~ relativistic Klcin-Nishina formula, classical electron radius is used. I\lso 
this is the length scale at which renormalization becomes important in quantulll 
electrodynamics. 

1.2. Compton Radius 

Compton radius comes out at the boundary of classical and quantum physics. It is being 
said as the lowest possible classical radius and classical physics don't go beyond this [7" 8·/. 
As this involves Planck's constant, li, this is considered as quantum mechanical measurement 
also. Compton radius of an elementary particle is the length scale at which relativistic 
quantum field theory works. In other words, Compton radius of electron is the characteristic 
length scale of QED. Energy of an elementary particle can be written with the help of 
particle nature as well as the wave nature of the particle; i.e. with the Einstein equation 

(4) 

and the Planck-Einstein relation 

E=n(J) (5) 

From equations (4) and (5), we have me2 = ljW and angular velocity becomes 

mel 
W=-. (6) 

h 

(fthe rotational motion of the particle is considered to be characterized with a velocity 
ofv = c, equation (6) gives the corresponding radius (Compton radius) as 

II 
R,.=-. 

me 
(7) 
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From Compton-effect the difference between the wavelength A and Ao gives ~A = A - Ao 
h h 

= - (J - cos 8) and - divided by 21t is Compton radius of electron. Compton radius of 
me me 

electron is denoted as Rc and it measures as Rc = 3.86xlO-ll em. In different classical 
. h 

electron models, Rc is directly used to get the spin 2" . The difference between the 

wavelengths and the introduction of Ii put the Compton radius in the region of wave-nature. 
As well as we ean predict from the introduction of the Compton radius as a difference of 
the two wavelengths that the Compton-sized electron is a composite model of two different 
wavelengths matters. Schwinger's idea of total mass of electron, comprising of the 
mechanical mass and the electromagnetic mass, supports this. 

1.3. Quantum Mechanical Compton Radius and QED-corrected Quantum Mechanical 
Compton Radius 

MacGregor introduced two modified forms of Compton radius of electron. These are 
quantum mechanical Compton radius, RQMC and QED-corrected quantum mechanical 
Compton radius RQMc [3]. Relativistic spinning sphere model of electron is a semi-classical 
approach that deals with a classical electron without violating QED. Relativistic moment 

3 3 . 3 
of incI1ia [3 J of the spinn ing sphere is 1 = 4" moe

2 ="2 me
2 
where m = "2 mo and Rc is Compton 

h 11 mel 
radius of the sphere. The angular momentum is J = lro = -2 with Rc = - and ro = -- . 

me h 
But the quantum mechanical formalism of angular momentum vectors shows that the total 
spin angu lar momentum of the electron is 

Hence the He is modified with this quantum mechanical behavior as 

RoM!· = .fiR( . 

(8) 

(9) 

Quantum mechanical Compton radius confirms the quantum mechanical behavior of 
electron and it is written as RQMC = 6.69)( 10-11 cm. . 

As the mass of the electron is considered to be composed of mechanical mass and 

electromagnetic mass, the spinning mass can be written aS,111, = m( \- ~), where :rr is 

the Schwinger correction and the electromagnetic mass is termed as 

a 
/ll.-- = !~m' 2rr (10) 

Quantum mechanical Compton radius is modified again with the introduction of 
Schwinger correction and QED-corrected quantum mechanical Compton radius is expressed 
as 
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(II) 

From different scattering experiments electron is regarded as a point-particle, but its 
manifestation in atomic bound states is not point-like and the Lamb shift experiment claims 
that the electric charge is smeared out over a region of space that is comparable to Rc. In 
fact electron bound-state charge distribution radius, deduced from the Lamb shift experiments 
is very large. In the hydrogen atom, the charge on the electron appears to be spread out over 
a large region of space compared to the intrinsic size of the charge itself. QED calculations 
give accurate magnitude of the effect but not a very clear explanation. Zittcrbewegung 
motion revealed by the Lamb shift [9][10] is a phenomenon that shows a large electron 
charge distribution radius Rol:.o. Vacuum polarization is another standard QED effect, 
which leads to a Coulomb polarization of the vacuum state by the charge e, where this 
polarization extends over a distance that is comparable to the Compton radius Rc- This 
broadening of the electric field of the charge and the spatial location of the charge indicates 
for an effective bound-state QED charge radius RQED == R("" 

1.4. Magnetic field radius 

Rotation of charge gives birth to current and magnetic field. Magnetic field introduces the 
magnetic self-energy. The radius, around which this magnetic field is considered, is known 
as magnetic field radius. This magnetic field, according to Ampere's hypothesis arises from 
the motion of the electric charge e, and is asymptotic magnetic self-energy WI-f' apply all 
the way in to a magnetic field radius Rf/" Hence the magnetic sel f-energy is expressed as 

2 2 

WI/ ~ 3~J with p as the anomalous magnetic moment of the electron [3]. On the other 
If 

hand the expression of magnetic self-energy consists of electromagnetic mass of electron 
and the velocity of light in free space. Modern day idea of electromagnetic mass was first 
introduced by J. Schwinger to match the theoretical value magnetic moment of electron 
with the experimental data [2]. Therefore magnetic field radius is responsible for the magnetic 
field around the electron and this is parameter, which has greater impact on the magnetic 
moment of electron. 

1.5. Charge radius of electron 

Electron is a charged particle and this charge is related to the other propel1ies also. Being 
the charged particle electron follows the dynamics of charged particles. (t is a matter of fact 
that the dipole moment, magnetic moment and a small fraction of mass also depend upon 
the charge of the electron. The scattering properties of the electron also insist a vastly 
smaller radius for its electric charge [II]. In different models of electron the charge gets the 
importance due to its dynamics. Earlier idea was of a distribution of charge over the entire 
electron. In some models charge is considered to reside in the equatorial zone [12] also. 
Several classical and semi-classical models follow the idea of localized charge. But the 
exact measurcment of the size of the charge of the electron is yet to be done. Quantum 
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electrodynam ics defines it as a point charge. Recent LEP experiment predicts that the charge 
of the electron is confined within a region of RJ:: < 10-17 cm or R£ < 10-19 m [4]. So charge 
radius, RE is very small compared to Rc or Ro. 

1.6. Electromagnetic Radius 

The electrostatic contribution of the electron to its energy in terms of electromagnetic radius 
[5] is written as 

e­w-­r. - R ( 12) 

With the introduction of the magnetic moment of electron, the expression for energy becomes 

2 e~ ~2 
me =-+-­

R e2 R3 ' 
(13) 

where p is the magnetic moment, R is the radius and c is the velocity of light in free space. 
Therefore the Spin component comes out as 

S=~ 
e2R' 

Using equation (14) in equation (13) with the replacement ofp, we have 

and radius becomes 

With the mass = tn, charge = e, and spin = Ii, th~ electromagnetic radius is read as 

h2 

Rem = --=-:;-. 
me-

(14) 

(15) 

( 16) 

(17) 

This is also known as quantum Bohr radius of hydrogen atom. Due to the involvement 
of the magnetic moment this radius becomes larger than the Compton radius and the classical 
radius. 

2. a QUANTIZATION OF CLASSICAL, COMPTON AND ELECTROMAGNETIC 
RAl)IDS OF ELECTRON 

Classical electron radius or Lorentz radius is expressed in equation (1). Compton radius of 
electron is given by equation (7), with the inclusion of n, the reduced Planck's constant. 
Equation (17) gives Rem' the electromagnetic radius of electron [5]. Using equation (3) and· 
(7), we have 
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(18) 

Similarly from (7) and (17), we get 

( 19) 

First order a-leap for electron radii is introduced by equation (18) and (19). Combination 
of equation (18) and (19) gives us the second order a-leap as 

(20) 

In Compton effect, one needs to apply quantum field theoretical approach in order to 

" capture QED related phenomena QfCompton effect. Hence large Rem needs to be squeezed 
to a point where relativistic field theoretical approach starts to matter: In the process, if RI!III 

(i.e. hydrogen atom radius) is squeezed by a( 1 ~7 ), we arrive the Compton-radius, Rc 

Again in Ro' no quantum mechanical effccts are considerable, wherc as in Rc' elements of 
uncertainty principle pushes up its size. With the analysis from Table 2 also it can be 
defined that these three radii are a-quantized. Secondly charge radius of electron that is 
Rr. < 1 O-19m (I O-17cm) according to LEP expcriments in CERN [4]. Hence with the help of 
ollr analysis charge-radius of electron can be approximated as 

2 eb 

RI. = a ~) = , 4 
mh-c 

(21) 

First and second order of -quantization of electron radii are shown in Figure 1, which 
contains all the eight radii mentioned here in centimeter-scale. From this figure also our 
prediction of the form of charge-radius, Rr. is supported. 

Table 2 
Basic Factors Related to Different Radii 

RadII Power of e POiler of h Power of c Power (1111 

Ro 2 0 -2 -\ 

R( 0 -I -I 
R -2 ·m 2 0 -I 

From Table 2 a general feature ofradius is seen. Radius or length is inversely proportional 
to mass from which we can predict that 

Therefore. 

1 
Length oc --. 

Mass 

l h 
Constant 

,cngt =---
Mass 
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Considering the total mass as a combination of mechan ical mass and electromagnetic 
mass 

Hence radius or size of electron is influenced by electromagnetic effect also. Fine 
structure constant is also an electromagnetic phenomenon, which confirms that these radii 
are related to each other due to some electromagnetic phenomenon. 

3. MAGNETIC SEL.'-ENERGY AND MAGNETIC .'IELD RADIUS 

The representation of the magnetic moment of the electron can be given by a current loop. 
Using polar (r, e, z) co-ordinate and orienting the axis of the current loop along the z-axis, 
the asymptotic magnetic field components [3][6] are obtained as 

H = 2JlCosS H = J.t5in8 
r rJ' 0 rJ (22) 

Magnetic self-energy W" is represented as WI1 = ~ fB.Hd)x. ,. 
Magnetic self-energy can be divided into parts as Magnetic self-energy can be divided 

into parts as WJ;j1and Wj~1 depending on [3] relativistic spinning sphere radius r> RJf or 

r < RH. Hence ~, = ~~~rl + ~~JI • 

When r > RH, external self-energy WEjjl will be the energy and when r < RH, the 
corresponding energy will be W1}1. 

So 
, x R ) , ~;rI = ~ f ~ (3Cos 2S + 1) 27tr~ SinSdOdr = ,.,W) 

87t r .>Rf{ 
liN 0 

We consider here the 'equal' sign only to calculate with the minimum energy. 

Addition of equations (23) and (24) produces 

(23) 

(24) 

WTw = 2Jl2 
1/ 3R J ' (25) 

f{ 

As we have mentioned already, the electromagnetic self-energy of a free electron can 
be described in terms of electromagnetic mass and this electromagnetic mass is a small 
correction to the mechanical mass [2](3). Hence we have Schwinger correction term as , 

a 
6111 =: m. 2n [1]. So magnetic-self energy is written as 
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W,,= c2 flm. 

Equating the expressions of (25) and (26) for WI!' we have 

e2 

As fine-structure constant is a = -h ,from equation (27), we have 
Ie 

2 e} J 211 ~ 
me ---=--) . 

he 27t 3R" 

Schwinger-corrected form of magnetic mument of electron is 

Using the equation (29) in equation (28), the expression of RJI is obtained as 

{( )

2, 2 } 1 47t a e- h 
R" = , 1 + - , , . 

3me-a 27t 4nre" 

With the help of equation (7), we re-write equation (30) as 
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(26) 

(27) 

(28) 

(29) 

(30) 

(31 ) 

In equation (3 I), magnetic field radius R" is expressed in terms of Compton radius. 

7t a a a-
( )

2 ( , J Approximating 3 ~ 1 and rc-writing 1+ 27t = 1 +;- + 47t2 in equation (3 I), we obtain 

(32) 

Equation (32) reflects the fact that magnetic field radius is Compton radius modified 
by zeroth, first and second order terms of electromagnetic fine structure constant. 

Using the equation between classical and Compton electron radius in eqlltition (32), we 
arrive at the form 

(33) 

where, (34) 

The above relation (33) and (34) states that the magnetic field due to the charge of 
electron is effective within a volume made of Rc and Rro' 
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4. RELATIONS AMONG DIFFERENT RADII 

Relations of R(' with RQMC' RU Q.\I(" Ro' Rell1 and Rlf are stated in equations (9). <. 11), (18), 
(19) and (32). Relation between Rc and RQED [3] is known as 

Rc == == ROE!)' (35) 

Exact formulation of the charge-radius of electron is yet to be done. According to 
our proposal of a-quantized configuration of RE, the relation between Rc and RE can be 
written as 

(36) 

Replacement of Rc by Ro in equation (32) with the help of equation (18) gives the 
relation between R"and Ro as 

J -1 ( (1 (12 J J RH =a I+-+-,~. 
rr 4rr-

(37) 

Similarly using the relation (19) in equation (32), we get the relation between RH 
and R 

I!'II 

1 :> ( a)' J R" = a 1+ 2rr Rell/' (38) 

Using equation (9) into equation (32), we have 

R ,> ~~ (1 + ;"J (39) 

A similar replacement of R(' by ROHC in equation (32) with the help of equation (II) 
leads to -

R J= I\;II/(" (1_ ~). 
If 3.J3 2rr 

(40) 

From equations (21) and (32) we relate the magnetic field radius with the charge-radius 
of electron as 

1 -C) 3 ( a ) R /I = a RI. 1 + 2n (41 ) 

Looking for a simpler form of equation (32) we take cube root of Rcand it results as 
2 

~:. =(1+ ~y =(1+ 3:) (42) 

Using equation (J 8) into equation (42) we can bind RH , R(' and Ro in a single equation 
as 
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(43) 

Equation (24) and the a-quantized relation a = :(' form a quadratic equation of Rcas 
e/ll 

Rc.~ + 37tRelll~" - 37tRH Rem = o. (44) 

From equations (9), (11), (18), (19) and (42) we can write 

(45) 

Equation (45) relates all these six radii in a single one. This relation also states how any 
two of them are related. We express those relations in the form of ratio in Table 3. 

Table 3 
Relations in Terms of Among Different Radii 

Ratio a involved relations 

a 

a 

, 
R 

.111 

a-

a. 

( 1 + ~ I 
.J1t ) 



136 InternatIOnal Journal of PhysI c.\ 

To relate the above radii, the equations involve c (velocity of light in free space) and 
a (fine structure constant). a itself involves e (electric charge of electron), h (Plane\.;\ 
constant divided by 2rr) and c. Of these three, charge, e carries the intrinsic property of 
electron. Hence it can be concluded that charge of electron plays a significant role for 
electron's structure and in the relations amongst electron radii. 

Another importance of these relations is that, the velocity of the electron for those 
11 

different radii can be brought out by keeping the spin, "2 and we are going to do this in the 

next section. 

5. VELOCITIES FOR DIFFERENT RADII 
I , 

The relativistic moment of inertia of the spinning sphere is 1 = 2111., R- , where I11s is the 

3 
total mass of the spinning sphere. Spinning mass becomes 111, = 21Tl for higher velocity, 

with 111 being the non-spinning rest mass [3]. For smaller values of angular velocity. !. the 
spinning mass and non-spinning mass are equal; i.e: 111s = m. With the increasing angular 
velocity, (I), the spinning mass, ms increases. Hence the relativistic moment of inertia 

3 ,I > 
/ = -mR- = - 111 \ R-

4 2' 
h 

Compton radius, Rr gives 2' spin with the linear velocity c. So 

I , h 
L = /0) = -111\R(~O) =-

2 2 
(46) 

Following v = r(l) and different suffixes of the radii the notations arc used here. For 
classical electron radius (Ro)' Vo = Rocoo with Wo as the corresponding angular momentulll. 

The spin angular Illomentum will be 
I 0 h 2m.\RoO)o = 2' Then the angular velocity is 

h· e2 

So the velocity will be Vo = --. With Ro = --, , the velocity Vo 
m" Ro 11/ \ c-

n "0 
0) =--=-o J)2 J)' 

111,\ ''0 ''0 
becomes 

Vo = a-lc. (47) 

But this is not possible; as it is well known from special theory of relativity that velocity 
of light is the highest velocity. As at the very beginning of the deduction the classical 
electron radius, one relativistic approach was equated to one non-relativistic scheme this 
problem arises. So it is proved here that for a relativistic spinning sphere the classical 
electron radius does not stand at all with relativistic moment of inertia. If we have to use 
classical electron radius for relativistic spinning sphere model, we must have to introduce it 
in some other way. On the other hand the above result gives the indication for smaller 
radius and higher velocity also. 

This problem can be solved in a different way. As the size of the radii is decreased, the. 
velocity is increased. Now with the behavior of the other parameters it is clear that the 
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velocity of the particle is ill fraction of c. Hence one can write as va = pc. The velocity of the 
Compton-sized electron is wei 1·- known as c. Hence one can predict the other way round 
that the Classical electron radius is the contracted lel1f:,rth form of Compton radius of electron 
with the help of a-quantized relation (6), RI) = aRc' '·Ience the velocity corresponding to 
classical electron radius becomes 

(48) 

Now we have the velocity of the classical electrorl radius in terms of c and closed to c, 
but it is not greater than c. This is in agreement with the special theory of relativity. 

In the similar way for magnetic field radius the velocity and spin can be written as 
1 , Iz Ii 

VII = R,fl) II and -;:;m.,.R"<D,, =-2 . 1·lenec hsing equation (24) and R(. =-- we have 
~ ~c 

h h (a) VII = --. .::- -----. -----j == c I - ~ . 
m,R" [1) a J .)11: 111 ,. He + -- -

31t 

(49) 

for quantum mechanical Compton radius we start with vIJ"'( = R(j.\I(,wIJ'\/I· and 
II I, h 

-;;11l.,R{j.\I('(O(j,\((' =-2' Proceeding in the similar way we have v(I'\/(' -= ---;;-- . Using 
- In, '\1'\/( 

~ h 

expression (9) and VUM(' := ---R - we have 
171, (l1/(' 

c 
VtjAlI = .j3-' (50) 

For QED-c:orrected quantum mechanical Compton radius we have V;~A((, = R(~A,«·W~~.\I( and 
I, 17 0. h - --

-2 m., R~\/( <D(!.I/( = -2 In the similar way we have vIJ.I!( == /11 RU • Using expression (II) and 
S IJAI(' h 

relativistic moment of inertia corrected Compton radius 1\. = -- we have 
me ., 

(51) 

I 2 .1 
Electromagnetic radius IS R<./I' -- ---2' and R"m =a- I 1\ .. Then with the help of 

1 , h me 
v == R 0) and -,171, R:'"O)elll -= -:::- . ',\ e have 

l',11 ~'I" '~1I1 , _ L 

l' ::-:: ac 
ifl1! 

6. RYDBERG CONSTANT AND ELECTRON RADII 

(52) 

Rydberg constant represents the' I imiting value of the highest wave number (the inverse 
wavelength) of any photon that can be em ittce! from the hydrogen atom. For!7 = I, the wave 

number [131 comes out lO be .!.. = ConstantJR and the Rydberg constant is read as the enerbov 
'),. - ~ -
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only. Rydberg constant not merely connects fine-structures of the electronic energy levels 
of the corresponding spectroscopic radiations [14]. It also provides a link between the 
wave and particle nature of the electron by putting a limit of highest wavenumber 
corresponding to a photon involved in spectroscopic radiation. Fine-structure constant and 
the Plal1(:k's constant fix the Rydberg constant as [151 

R = a: me. 
'- 2h 

(53) 

0.2, 111, c, h are the parameters which relate Rydberg constant with electron. a-quantized 
results of electron radii prompt the involvement of Rydberg constant with electron radii. 

Therefore using equations (\8), (34) and (53) we have 

(54) 

r lence Rydberg constant gives here the energy of the model we predicted in this'paper 
with the help of equation (54). Involvement of this constant with the size of the electron 
shows that the spectral lines and the fine-struct·ure constant have great electromagnetic 
impact on the size and the structure of the electron. 

Table 4 
Electron Radii and Corresponding Velocities 

J<adlll.\ Ve I (}C II}' (mls) 

c 

I? ('J.e 
l'm 

7. CONCLUSION 

The above relations co-relate the different phenomena, which produce those pa11icular radii 
of electron. With reference to RSS model developed by MacGregor, we aimed to bind the 
di rferent physical aspects of electron in a single model. As throughout the paper, we have 
Llsed the Schwinger correction for mass, it appears distinct which part of the radii is 
responsible for which sort of mass (mechanical or electromagnetic). 
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Lorentz, Compton and Bohr radii ofelcctron are a-quantized. The magnetic tield radius 
of electron is also related with Ro, Rcand RI!IH b)t a-associated terms. Hence the impol1nacc 
of is realized as relating all sorts of phenomena of eiectron. The concept of a-quanti/cd 
mass leap is developcd by MacGregor [161. Here our approach proposes the a-quantization 
of the radii of the electron. 

This shows how much impact the fine-structure constant leaves in the lepton-structurc. 
In fact in the calculation of current-loop for different electron radii also the a-quantized 
nature is being followed [17]. 

Here the tentative a-quantized form of charge radius of electron RI:' is proposed, the 
measurement of which is yet to be precised experimentally. 

The velocities for different radii are calculated here. This conceptually can put the fact 
that change in velocities of electron can produce different forms of electron according to 
sizes and different electromagnetic phenomenon take place and the vice-versa. The vaillc 
of the velocity calculated for Ro in the formal way helps us to predict that the classical 
electron radius is a Lorentz contracted Compton radius of electron. 

From the Schwinger-corrected definite form of the magnetic field radius, the relations 
of R/-I with other radii are developed. The calculation of magnetic field radius gives thc 
signature of a slightly distorted spherical model of electron. 

This model is following the RSS model and does not violate QED. The addition 
(equation (34)) of Ro and Rc produces a new radius, we say as Composite radius of 
electron, Reo' 

All the a-quantized radii are connected together with Rydberg constant, which givcs 
the signature of accurate measurement of the classical electron radius. The best-measured 
constant [14][15] is described here as the energy of the model we prcdicted for electron 

with radii Rc and Rco' 
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Abstract 

The indication of LEP results about the distribution of charge of electron over 
a very small region of radius ~ 1 0-19m is used in the Relativistic spinning 
sphere (RSS) model of electron. Electromagnetic mass of electron was 
introduced in QED to compensate the difference between the theoretical and 
the experimental results of magnetic moment. This prompts us to interpret the 
charge of electron together with magnetic self-energy, LEP results and RSS 
model of electron. It is also predicted that the particles with zero mass will not 
contain any charge. 

Keywords: Electron, Charge-mass equivalence, Charge-energy equivalence 

Introduction 
LEP experiments indicate that the charge of the electron is distributed over a small 
radius ~ 10-19 m or 10-17 cm [1] so that the charge distribution could be considered as 
point-like. The explanation of related scattering by QED [2-3] too demand that the 
charge of electron is concentrated with a smaller mass as compared to the total mass 
of electron. This prompts us to link between mass and charge of an elementary 
particle. 

The experimental result of magnetic moment of electron is not found to match 
with the magnetic moment when only the mechanical mass of electron i~ considered 

[4-5] in theoretical calculation. Schwinger proposed a correction term m . .!:... [4-5] to 
2n 

compensate the differenc'e between the theoretical and experimental results. This 
compensating mass is termed as electromagnetic mass of electron [4-5]. It may be 
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2 

noted that a( = ~) is the so-called fine structure constant coupling the strength of 
lie ' 

interaction between electron and photon [6]. 
In the standard RSS (Relativistically Spinning Sphere) model [5] of the electron, 

the charge is considered to be confmed in a very small region and this is consistent 
with the demands of LEP experiments and QED theory. Thus we allow the charge 
part of the electron to be a small sphere of radius R£, which is smaller than all other 

known radii [1] [5] [7]. In fact out of the eight different known electron radii, RE (~ 

10-19 m) is the smallest one and the next is classical electron radius Ro(~ 10-15 m), 

which is 104 times larger than RE . 

Magnetic self-energy and charge of electron 
Magnetic self-energy is the energy, which is contained in the magnetic field 
associated with the magnetic moment of electron. Magnetic field and moment are 
results of current, which is originated due to the motion of the charge. Hence 
considering the rotation of the charge of electron we can procee~ for magnetic self­
energy. 

Rotation of a charge particle around its axis of rotation gives rise to a current-loop 

1=!.... (1) 
T 

Here e is the charge and T is the time period of rotation. If the velocity is v and 
radius of rotation is R, the time period T can be written as 

T = 2nR. (2) 
v 

Putting equation (2) in (1) we have the expression' of current in terms of velocity 
and the radius as 

1=~. 
27rR 

(3) 

This current-loop introduces a magnetic field B and according to Ampere's law, 
B can be written as 

B = fL01 (4) 
27rR 

Using equation (3) in (4) 

B- ev 
- f.10 (27rR) 2 . 

(5) 
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Here we have the magnetic field related with the radius of rotation and the 
velocity through free space permeability. This helps us to step for auxiliary magnetic 
field and it is related with B as 

H=~. W 
J-io 

With the help of equation (5) and (6) we have the expression for auxiliary 
magnetic field due to the rotation of the charge 

H= ~ m 
(27!R) 2 

Hence the magnetic self-energy of the system will be read as 

1 2 2d 3 

W = _ fH.Bd 3 X = J-io e v x . 
rl 2 2 (27!R) 4 

(8) 

To be more specific for relativistic spinning sphere model, if we choose v = c, the 
magnetic self-energy comes out as 

2 2 

W = flo f e c d 3 x . (9) 
H 2 (27!R) 4 

If fd 3 x is expressed in terms of spherical polar co-ordinate system and 

considering the orientation of the current-loop along the z-axis we have 
R fT 2fT 4 f f fr2 sin BdrdBd¢ = -7!R 3

• (10) 
00 0 3 

Using equation (10) in (9) we have 

J-i e2c 2 

WH=2~7!3R. (11) 

In the calculation ofRSS (Relativistic spinning sphere) model [5] the correction of 
magnetic moment [4] is used. Hence the magnetic self-energy [5] is written with the 
help of electromagnetic mass of electron as 

a 2 
WH =m.-c , 

27! 
(12) 

where m. ~ is known as electromagnetic mass and ~ is the Schwinger correction. 
27! 27! 

Equating (11) with (12) for the magnetic self-energy, we arrive at 
2 

a floe 
m. 27! = 247!3 R . (13) 
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Hence charge can be written as 

m.a.127r 2 R 
e= 

J-lo 

Sovan Ghosh et al 

(14) 

This shows that charge is the expression of a special phenomenon permeated in 
the matrix of mass which is switched on by permeability J10 of the matter. Thus J10 is 

the enabling or stirring parameter in the exchange of mass into charge and vice-versa. 
The expression of total energy is obtained using the equation (13) 

J-l e
2 

E=(m+ 0 )c 2
• (15) 

247r 3 R 

In terms of Coulomb force the energy can be written as 

E ( F.R) 2 = m+--
2 

c . 
67r 

(16) 

Conclusions 
Equations (15) and (16) give the total energy in which the first term corresponds to 
the mass and the second term to the charge or the mass equivalent to charge. The so­
called electromagnetic mass [5] is expressed in this article as the mass responsible for 
the existence of charge. Thus we establish charge-mass equivalence in equation (15) 
and the direct relation between the charge and mass is established in the equation 
(14). Hence equation (15) can be told as charge-mass-energy relation or extended 
form of mass-energy relation with the help of electromagnetic mass. The magnetic 
self-energy gives 0.07% of the total mass of the electron and the charge radius is also 
smaller than all other radii of electron. These two facts are completely supporting the 
calculation lead in this article. In other words the charge is a small fraction in 'electron 
with some sort of relation with its mass as expressed in' equations (14), (15) and (16). 
Equations (13) and (14) also predict that no charge can be contained in zero-mass 
particles or charge can't reside without mass. 
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EXTERNAL MAGNETIC FIELD WITH DIFFERENT 
RAI)II 0." ELECTRON AND INTRINSIC PROPERTIES OF 

ELECTRON INVOKING THE SPINNING SPHERE 
MODEL OF ELECTRON 

S. GI-~OSH, A. CHOUDHURY & J. K. SARMA 

ARSTRACT: Several models of eleceron are proposed for last one century depending on tLc 
properties of electron. Different electromagnetic phenomenon also revealed the different 
radii. ror different radii the behavior of charged spinning sphere (electron) is one interesting 
lOpl\': and being discussed here in und~r non-uniform magnetIc field. It also reveals the 
nature of how the external magnetic fIeld can get affected for the different electron radii 
and lead to the results, which include the intrinsic properties of electron in a special manner. 
These results arc a-quantized. too. 

1. INTRODUCTION 

Properties of electron are well studied in the particle physics. Since its discovery in 
1897 by J. J. Thomson many attempts have been made by the scientists to give a 
proper picture of electron depending on its different properties, which are shown 
with the help of different experimental facts [1]. Different radii of electron [21(3) are 
described by several electromagnetic phenomena, out of which some follow classical 
behaviour and rest take the quantum path. Some works on electron properties and 
models [2Jl4JlS) have been done recently. Relativistic spinning sphere model [2] by 
MacGregor and Dynamical spinning sphere model [51 by Martin Rivas arc two of 
them. 

According to RSS model [2] the charge of the electron is residing in a very tiny 
place on the spherical electron. Moreover the charge is not glued over thc entire 
surface of the sphere and this is in agreement with QED. This model states about a 
Compton-sized electron that carnes the tiny charge. But the size of this charge is 
a real enigma. The charge radius is recently predicted by LEP experiment in CERN 
as RL. < 10-19 or RE < 10-17 cm [5]. A very recent approach is taken by the cun'cnt 
authors to predict theoretically the charge radius of electron l6J. 

Again a rotating charge constitutes corresponding magnetic field, which are 
calculated for different radii of electron and repOlted very recently by our group [51. 

l\e.'~II'()rds: Eleclron model. Electron radii. (i-quantizatIon 
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Th1s magnetic field is calculated due to its own rotation in the absence of any external 

field. 

On the other hand if the charge is rotating under the influence of some external 
magnetic field, the body will experience the force. In fact the behaviour of charge in 
uniform [7] magnetic field and non-uniform magnetic field [8] are analysed by 

Goldstein and Deissler. Hence here we attempt other way round to observe how the 
external magnetic field being treated by the self-magnetic field originated due to 

rotation of charge of electron for three different radii of electron. As the RSS model 

is we are dealing with. we consider Compton radius along with classical electron 
radius and eledromagnetic radius keeping the fact in mind that classical electron 
radius and electromagnetic radius are related to the Compton-radius in a -quantized 
manner 

2. ROTATION ()F CHARGE IN EXTERNAL MAGNETIC FIELD 

I r a rotati ng charged non-conducting ling is considered, the lagrangian for the system 
cali he written as [8] 

1 2 1 2 2 meR2 
L = - lin: T -l11R m -j- 8(z.), 

2 2 2c 
(1) 

\"here e is the charge of electron. III is the mass of electron, R is the radius of rotation 
oflhe charge and co is the angular velocity. Hence the generalized angular momentum 
[8] 1S 

2 '] eR 
L = fllN-m + - B(z) . 

'1 ' LoC 
(2) 

Using the angular momentum of ckclron as L ::.= 4 . the .:-eomponent of magnetic 
field from equation (2) can be written as -

2c [Ii ? l 
B(z) = -') - - mR-mJ' 

eR- 2 
(3) 

Using the expression of fine structure constant a. = ~~ . equa60n (3) can be 
re-writtcn as 

r J 1 
B -1 l e _mme 

(z) = a -,., - j' 
R- h 

(4) 
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If we use Compton radius, R = Rc :::.J!..., cOlTesponding magnetic field comes 
mc 

out as 

B - -1 rem J [me
2 

] - 11 [me
2 

JI c(z.)-a - ---0) -- ---0) . 

~ 211 ~l 2h 
, 2 

(5) 

The second term in equation (5) holds the charge, mass and spin of electron 
together. In our recent work [9] also this particular factor is noticed dt ring the 
calculation of current and self-magnetic field. Also the a-quantization n, lure for 
different properties of electron and lepton is well-known fact [6][lOlrllJll~1. ln 
fact the fine structure constant can be analysed as 

a ::: [ em J ~l . 
12 tz 

2 

(6) 

Fine structure constant and g-factor are related as [2] 

g:::l+l1,. 
2 27t 

(7) 

Using the relation between fine structure constant and g-factor in equation (6) 
we have 

( em \J = (g - 2) nh . 

I ~~ ~l 
\ 2 

(8 ) 

Equation (8) refers to the connection of electron's intrinsIc properties with the 
g-factor. 

U~ing classIcal electron radius R = Ro = e~) in equation (4) we have 
/II( -

l') ( ) - -I ( em J [ -2 me
2 1_ h [ - 2 me

2 1 .10 Z - a - a -- - 0) 1- - a -- - (l) . 

~ 217 J ~l 2f7 J 

2 . 

(9) 
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In similar way, for electromagnetic radius R = Rem = "2) we have 
lIIe-

-I ( em J r, 2 mc
2 J 11 [ 2 mc

2 
] B (z)=a - a --0) =- a --0) . (10) 

ell1 ~1 L 211 ~l 211 
2 

Equations (5), (9) and (J 0) are not only carrying the term containing charge, 
mass and spin, as well they are a-quantized also. 

Using equation (5) and expressing current as I = ('~R • with an approximation of 
long straight cutTenl calTying wire, one can get the current contribution for Compton 
radius as 

( ll) 

Similarly for classical electron radius we have the current contribution from 
equation (9) as 

l - -I (} (em J [-I 2wRo 1 o -a - - a - J' 4 Ii c 

2 

(12) 

CU'TCnt contribution can be cillculated from equation (10) for electromagnetic 
radius as 

I = -I c
2 

( em J [ _ 20) Rem] 
em a I" a . 4 rl C 

~ 2-
(13) 

When the ring oscillates arollnd the z-co-ordinate, 0) == O. Then the COlTcsponding 
magnctic fields can be givcn respectively as 

e 
B(" =--

RoRe 

l~ - a 2 __ l._' _ e 
)elll - =---

Ro Rc Rem Rc 

(14) 

(15) 

( 16) 
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For ()) = 0, equation (5) can also be written as 

B - --I meL. (em] r(z)-u I· 
21z 1 

2 

( 17) 

In similar way equation (9) and (10) can be fe-written respectively as 

(18) 

(19) 

Using the relation (8) of g-factor with the intnnsic properties of electron one can 
get the magnetic field from equation (J 7) as 

B
-1 1!iln.2(g - 2) 

c=a 
2~l 

(20) 

Similarly the magnetic field for classical electron radius can be written from 
equation (18), as 

2 

B
-3 nine (g-2) 

o=a , 
2~l 

(21 ) 

and from equation (19) for electromagnetic radi us we have 

? 

B
_ 2 1!111C-U~ - 2) 

em - a . 
2~L 

(22) 

Equations (17)-(19) gave magnetic field for (I) = 0 with a-quantization, where as 
equations (20)-(22) express magnetic field for 0) = 0 with a-quantization in terms of 
g-fa<.:tor. 
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The current comes out from equation (17) as 

(23) 

In similar way equations (I 8) and (19) produces cun'ent respectively as 

I - a-' c' ( em J (24) 
0- 4 \ ~ 

\ 2 

and 

c em , J I". ~4[ i . (25) 

The a-quantization nature is remaining invaliant for current even when the angular 
velocity is set to be zero also, is seen in equations (23)-(25). 

3. CONCLUSION 

The results shown here predict two major points. Firstly the magnetic f\eld and the 
corresponding cun'ent are shown here in a manner where a-quantization is maintained. 
Three radii are used there and the a-quantization nature is very clear from the results. 
Secondly the magnetic field and the cun-ent are expressed with the factor consisting 
of three intrinsic properties of electron. Earlier this sort of nature we got for the 
self-magnetic field of electron 19J. Here we are getting the same for the external 
fieJd also. 

Another significant thing is noticed here that the a:quantization propel1y remains 
invariant from the definite value of angular velocity to a zero angular velocity also. 
lIenee this can be concluded that a-quantization is connected 10 the intrinsic nature 
of the particle which gets affirmed with the equation (6). Fine structure constant or 
ex. is in generally expressed with charge of electron, Planck's constant and velocity 
of light in free space. It is notewonhy that these three also playa significant role in 
the electron-structure, size and other properties. Hence the eq'tation (6) is important 
to study the nature of electron properties with the help of a. Lande g-faetor is also 
related to 11..., which ensures a better measurement for intrinsic properties of electron 
and corresponding structure. 
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Abstract: Varieties of experimental and theoretical considerations indicate eight different types of radii of an electron 
like classical electron radius, Compton radius (electron), electromagnetic radius (electron) etc. Here we attempt to discuss 
the ~-quantized relations among different types of radii of electrons, where (X is the fine structure constant. In addition, (X­

quantized results for current and magnetic fields are also focused here, 
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PACS Nos.: 41.20,-q; 14.60.Cd 

1. Introduction 

Since the discovery of electrons in 1897, various approa­
ches have been made to explain its nature [1]. But the 
structure of electrons is yet to be discovered [2]. In fact to 
find the hadron and lepton structures works are going on. 
For hadrons, the structure functions have been calculated in 
theoretical ways [3]. An electron is stated as a point par­
ticle in the Standard Model of Physics. But it seems that 
anything point is an improbable entity. The different 
dynamic and static properties of an electron have revealed 
some facts about its extended size and shape [1, 2]. Various 
approaches have been made to give the exact structure of 
an electron. Thomson gave the idea of classical electron 
radius, Ro considering classical electrodynamics and later 
this was re-constructed by Lorentz, Abraham and Poincare 
[1]. Hence Ro is also known as Thomson-scattering length 
or Lorentz radius. 

With the help of Compton scattering experiment the 
Compton radius of an electron, Rc has been introduced by 
equating Einstein energy equation and Planck-Einstein 

relation [1, 2, 4] and this is approximately 102 times larger 
than the classical electron radius. From the calculation of 
magnetic self-energy, the magnetic field radius RH is 
determined (4]. Application of electron self-energy is also 
used in a wider range [5]. QED equivalent electron radius 
RQED' which comes from Lamb shift [4], is approximately 
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equal to Rc [4]. By considering the quantum mechanical 
formalism of angular momentum of electrons MacGregor 
has introduced a corrected version of Compton radius of 
electron as quantum mechanical Compton radius RQMC. 

Again considering Schwinger correction [6] of magnetic 
moment of electrons to RQMC, we have QED-corrected 
quantum mechanical Compton radius RQMC [4]. 

Equating the total energy of the electron to the elec­
trostatic contribution of the electron and its magnetic 
moment, we have arrived at the electromagnetic radius of 
electron Rem [7]. This is also known as Bohr radius of 
hydrogen atom [7]. The charge radius of the electron RE is 
yet to be calculated precisely. The Relativistic Spinning 
Sphere (RSS) model describes a point charge in an 
extended Compton-sized electron [4]. The Dynamical 
Spinning Sphere model also supports the same idea [8]. 
Recent LEP experiments in CERN give the sIgnature of the 

size of the charge-radius of the electron as RE < 10- 19 m 
(10- 17 cm) (8]. 

2. a-Quantized relations 

Classical electron radius is known as [1] 

e2 

Ro=-
mc2 

(1) 

where, e is the charge of electron, m is the mass of the 
electron and c is the speed of light in free-space. The 
Compton radIUS of electron can be written as [1, 2,4] 
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Ii 
Re=-· 

me 

Hence from Eqs. (1) and (2) we have 

Ro = aRc 

(2) 

(3) 

where fine structure constant a = ~~. The electromagnetic 
radius is given by [7] 

li2 

Rem =-2' 
me 

Relating Eqs. (2) and (4) we have 

Re = aRem · 

(4) 

(5) 

Equations (3) and (5) describe two a-quantized steps 
amongst three different radii of electron which will be clear 
in Fig. 1. Using Eq. (5) in Eq. (3) we get 

Ro = r:iRem . (6) 

In Eq. (6) we arrive at the next order of difference in a. 
a-Quantized behavior of Ro, Rc and Remare shown in 

Eqs. (3), (5) and (6). Out of all eight radii of electrons Rem 
is the largest one. Being concerned with numerical values 
of the electron radii, one can find that Re , RQMe, RQMe , 

RQED and RH are close in results. Remaining is charge 
radius of the electron and this radius is expected according 
to LEP results of 10- 17 cm (10- 19 m) order or even less 
than that [6]. It is to be mentioned that 10-17 cm (lO-19m) 

is another a-quantized state and we have r:PRo", 10- 17 . 

Hence it can be written that 

(7) 

From Eqs. (3) and (6), we get 

RoRem =R~. (8) 

Using Eqs. (6) and (7) (taking RE = a2Roonly), we 
obtain 

Fig. 1 IX-Quantized behavior of 
the different electron radii 

(9) 

S. Ghosh et al. 

We observe that Eqs. (3), (5), (6) and (7) give the 
relations between two radii, but Eqs. (8) and (9) give those 
of three radii. 

3. IX-Quantization of current and magnetic field 

a-Quantized results of electron radii inspire us to examine 
the other properties of the electron. Magnetic moment of 
the electron is invariant for any radii and it is given by [4] 

eh 
}l = 2me . (10) 

From Eqs. (1) and (10) we obtain 

_leRo 
}l = a T' (11) 

Using the a-quantization property of radii of electron 
from Eqs. (3), (6) and (7) in Eq. (11) we can write 

_I eRo eRe eRem -3 eRE 
}l=rx -=-=a--=a -

2 2 2 2 
(12) 

Again the rotating charge produces current and for the 
different electron radii the current contribution come out as 
[9] 

ec 
Ie=--

2rrRe' 
_I ee 

Io=a --
2nRe ' 

ee 
Iem = a--

2rrRe 

and 

IE = a-3~. 
2rrRe 

(l3a) 

(l3b) 

(l3c) 

(l3d) 

Current contributions resulting from Egs. (13a-d) are 
distinctly shown as a-quantized where factor of a is 
multiplied with Ie to produce the currents for other radii. 
Hence the a-quantization in current is very distinct here. 

R ... 

10'19 10.18 10.17 10.16 10·1S 10.14 10.13 10.12 10.11 10.10 10.09 10-08 10.07 

-E- a. -7 ~ a. -7 

Different electron radii in centimeter 



RadII of electrons 

Table 1 IX-Quantized radII of electron and corresponding current and 
magnetic field 

RadiUS Current Magnetic field 

Ro 10 = IX-lIe Bo = 1X-2Be 

Re Ie Be 

Rem lem = We Bern = 1X2Be 

RE IE = 1X-3/e BE = 1X-6Be 

Table 2 IX-Quantized factors of radII of electron and corresponding 
current and magnetic field 

RadIUS IX-Quantized IX-Quantized IX-Quantized 
factor for radII factor for I factor for B 

Ro IX IX-I B-2 

Re 

Rem IX-I IX 1X2 

RE 1X3 1X-3 1X-6 

SimIlarly, magnetic field and current are related [10] as 

21 
B = - (14) 

cR 

Putting the results of Eqs (13a-d) In Eq (14), (also 
follOWing the relations among the current-loops from [9]) 
the magnetic fields are obtamed as 

2/e 
Be = -R ' (ISa) 

c e 

_2 2/e 
Bo=a -R ' 

c e 

2 2/e 
Bern =a -R 

c e 

and 

_6 2/e 
BE=a -

cRe 

(ISb) 

(ISc) 

( ISd) 

4. Conclusions 

Our calculatIOns show the a-quantizatIOn among several 
radII of electrons, their current contnbutlOns and the 
magnetic fields It IS shown that all the eight radII of elec­
trons are a-quantized a-Quantized relatIOns also enable 
us to connect the dIfferent electromagnetic phenomena, 
which are responSIble for the ongm of those electron radll 
Corresponding current and magnetic fields are also related 
accordingly The results for a-quantized factors for different 
radII of the electron strengthen our proposal of the form of 
charge-radIUS RE Interestingly the value for that radIUS IS 
consistent With LEP results [8] The fine-structure constant 
deals a role of connector between any two radll and thiS 
reflects the fact that those different phenomena are also 
connected through a only 
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Cial support to the work under a project Authors are thankful to 
M H MacGregor for useful dISCUSSion 

References 

[I] Rohrllch F ClaSSIcal Charged PartICles (Massachusetts 
Addison-Wesley Publishing Company Inc) (1965) 

[2] V Slmullk What IS the Electron? (Montreal Apelron) (2005) 
[3] R Batshya and J K Sarma Indian J Phys 86 145 (2012) 
[4] M H MacGregor The Enigmatic Electron (Dordrecht Kluwer 

Academlc Publishers) (1992) 
[5] N Parhl. G C Rout and S N Behera Indian J Phys 84 1369 

(2010) 
[6] J SchWinger Phys Rev 73 416 (1948) 
[7] J M L Leblond Eur J Phys 10 265 (1989) 
[8] M RIVas J Phys A Math Gen 36 4703 (2003) 
[9] S Ghosh. M R Devi. A Choudhury and J K Sarma. amv 

09121726 [phYSICS hep-th).lnt J Appl Phys 191 (2011) 
[10) S P Pun ClaSSical ElectrodynamICs (New Delhi Tata McGraw 

Hill Pubhshlng Company Limited) (1997) 



Accepted for publication in Apeiron 

Radius of electron, magnetic moment and helical mo­
tion of the charge of electron 

S. Ghosh l , A. Choudhury and J. K. Sarma 
REP Laboratory, Department of Physics, Tezpur University, Tezpur, Assam, 784 028, India 

1 gsovan@gmail.com 

Abstract 

Depending on different electromagnetic phenomenon, 
several models of electron are described by the scientists 
for more than a century. Electromagnetic phenomenon 
revealed eight different electron radii, which are related 
with each other in -quantiL;ed way. Leading from one -
quantized relation amongst classical electron radius and 
Compton radius of electron, composite radius is defined. 
Higher order corrections to magnetic moment and g-factor 
are used to describe more accurate and a generalised form 
of composite radius. Depending on the generalised com­
posite radius the helical model of electron is developed 
which is a modified relativistic spinning sphere model but 
with slightly aspheric nature. 

PACS number(s): 14.60. Cd, 41.75 Ht 
Keywords: Electron-model, Magnetic moment, Elec­

tron radius 

1 Introd uction 

Electron was discovered in 1897 by J. J. Thomson. After the discovery 
of electron several models of the electron have been proposed [1], [2]. The 
proposals are based on the properties of the electron, which are indeed enig­
matic. They are roughly divided into three classes, in which the electron is 
regarded as: a) A strictly point-like particle; b) An actual extended particle; 
c) An extended-like particle in which the position of the point-like charge is 
distinct from the particle center-of-mass [2J. 

1 



As electron is a charged lepton, its properties involve electromagnetic 
phenomena. Different electromagnetic phenomena revealed eight different 
radii of electron [3), [4). The models of electron are also related to the size of 
the particle or the radii and hence with electromagnetic phenomenon as those 
different electromagnetic phenomena are the origin of the radii. Relativistic 
spinning sphere model of electron introduces the spectroscopic way to treat 
electron model in a semi-classical manner which involves a spherical structure 
of the particle with tiny charge and mass without violating QED theory [3]. 

It is noteworthy that the strictly point-like models face the problem with 
classical formalism and the velocity goes beyond c. Again the extended model 
in which the charge is glued over the entire body violates QED. Hence the 
extended body with a point like charge is more approachable. Relativistic 
spiining sphere model (3] is of that type. Here we are introducing the way 
to co-relate relativistic spinning sphere model with the semi-classical helical 
motion of charge, which in other words can be said as type of zitterbewegung 
motion. Zitterbewegung model of electron was [5], [6], [7] and [8], originally 
proposed by Schrodinger [5] is also carrying the feature of an extended-like 
particle with a point-like charge that is distinct from the behaviour of its 
center-of-charge and center-of-mass. 

Indeed the hypothesis of spinning electron or a fast rotating particle in­
corporates an angular momentum and a magnetic moment to the electron 
[9], [10). This magnetic moment was originally introduced due to Dirac equa­
tion and calculated of one Bohr magneton [11]. Again the g-factor coming 
out from magnetic moment is related to the fine structure constant, which 
is claimed to be one of the most accurately measured constants. These leave 
impact on the facts and figures of the spectroscopic properties of electron. 
Hence starting with a semi-cla..'lsical model of electron we can proceed to 
the QED-corrected region of particles to describe the electromagnetic phe­
nomenon with the help of different electron radii and also in connection with 
the fine-structure constant. 

In the framework of relativistic spinning sphere model we have incor­
porated the helical motion of point-like charge of the electron with the help 
of the fine structure constant and the recent measurements of anomalous 
magnetic moment of the electron. 
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2 Magnetic self-energy and composite radius 
of electron 

Four different kinds of mass (or equivalently energy) are attributed to 
electron. They are electrostatic self-energy (WE)' magnetic self-energy (W H)' 
mechanical mass (W M) and gravitational mass (W G). Magnetic self-energy 
is about only 0.1 % of the total ellergy of electron [3J. 

Magnetic self-energy of an electron is the energy contained in the mag­
netic field, associated with the magnetic moment [3J. Therefore using this 
concept we develop the electromagnetic part of desired model. According to 
RSS model of electron [3}, which is in close approximation with the calcula­
tion of Rasetti and Fermi [3}, the total magnetic self-energy of the electron 
comes out as 

(1) 

where f-t( = 2:c) is the magnetic moment and RH is the magnetic field 
radius of electron [3J. Magnetic field radius is closer to Compton radius 
in size. To match the theoretical and experimental values of magnetic mo­
ment of electron, in 1948 J. Schwinger introduced a correction term, which 
is known as Schwinger-corrected mass term [12J. Schwinger-correction can 
be expressed in terms of energy as 

Q 2 
WJ1 :::: m.-c . (2) 

27f 

Equating the expressions (1) and (2) for magnetic self-energy, we have 

(3) 

Re-arranging and re-combining the terms of equation (3) we resolve a 
composition (only addition in length) of classical electron radius and Comp­
ton electron radius as 

where 
Ro 

Reo = (Re + 27f) 

3 
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(5) 



As Reo is defined basically with the classical electron radius and Compton 
radius, we say this as Composite radius of electron. Fine structure constant, 
a = ~: relates the classical electron radius and Compton radius [3] [13] in the 
way 

Ro = aRc· (6) 

Equation (6) indicates a-quantizedrelation among the two radii of elec­
trOLl. In fact RSS (relativistic spinning sphere) model, given by M. H. Mac­
Gregor [3] correlates the spectroscopic properties of the electron accurately 
to first order in a. Results of some other properties of the electron are also 
observed with a-quantization in some recent works [14] [15] [16]. 

Using the relation (6) in equation (5) we can define composite radius in 
another way as 

a 
Reo = Re(1 + 27f)' (7) 

3 Magnetic moment of electron, g-factor and 
composite radius 

Magnitude of the fundamental intrinsic magnetic moment of electron with­
out the radiative corrections is defined as 2:C [17]. Hence this is also being 
known as r,eroth-order value for electron magnetic moment [3]. In QED 
the measurement of magnetic moment of electron states the interaction of 
electron with the fluctuating vacuum. This also ensures of substructure of 
electron [18][19][20). This zeroth-order of electron magnetic moment was 
given by Uhlenbeck and Goudsmit [3]. Later it was realised that the actual 
magnetic moment for electron is approximately 0.01 % larger than this value. 
This concludes in a corrected form of magnetic moment as [3] 

en a 
It = 2mc (1 + 27f) (8) 

where, a is the fine structure constant and ;: is the famous Schwinger 
correction [12]. Combining equations (7) and (8), we have the magnetic 
moment of electron as 

eReo 
{t=--2 . 

4 

(9) 



Hence one can say that 

eRe eRo 
fJ,=-+-. 

2 47r 
(10) 

The factor (1 + 2~) made it possible to express the magnetic moment with 
Re and Ro . The factor (1 + ~) is also connecting the g-factor and the fine 
structure constant as [3] 

9 Ct 
-=1+-
2 27r 

(11) 

and equation (11) states that about the dependence of g-factor on Ct [21]. 
In fact with recent result, a more accurate 9 is expressed as [22] 

~ = 1 + (~) - O.3284790(~)2 + 1.1765(~)3 - O.8(Ct)4. (12) 
2 27r 7r 7r 7r 

It is to be mentioned that more accurate value of 9 means the change in 
the value of magnetic moment also. Hence the structure of this composite 
radius also changes and exactly this is expressed from both equations (11) 
and (12) in equation (13) 

9 
Reo = '2Re. (13) 

With the help of 9 factor and equation (13) the ratio of classical electron 
radius and Compton radius can be concluded as 

Ro 9 - = 27r(- -1). 
Re 2 

(14) 

Again the factor (~ - 1) is related with the anomalous magnetic moment 
of electron and the Bohr magneton as [21] 

fJ, 9 - 2 
a=--l=--. 

fJ,B 2 

where,a is the anomalous magnetic moment of electron. 
Using equations (13) and (15) together, one can conclude that, 

Reo = (1 + a)Re. 

Electromagnetic mass of electron is defined 8.'3 

Ct 
~m = rrL.-. 

27r 

5 

(15) 

(16) 

(17) 



Combination of equations (11), (15) and (17) produce the expression of 
electromagnetic mass in terms of anomalous magnetic moment as 

~m=m(%-I)=ma. (18) 

At the present situation anomalous magnetic moment is expressed from 
experimental facts up to higher order of fine structure constant as [24] [25] 

where, C~i) s are the co-efficients and the first one was calculated by 
Schwinger in 1948 [12] [24]. 

Hence the recent measurement of g-factor is also got affected with these 
values, which in turn leaves impact on the electromagnetic mass, ~m too. 
This in fact offers us not only to measure the electromagnetic mass of electron 
more accurately, also ensures the more accurate measurement of mechanical 
mass of electron and the ultimately the more prcised values of spin too. 

Therefore the electromagnetic mass can be calculated with the corrected 
higher order terms as 

which is exactly identical with equation (17), only with more accurate 
measurement. The corresponding energy is then expressed in with the help 
of equation (20) 

WH ~ mc2[C~2)(~) + C~1)(~)2 + C~6)(~)3 + C~8)(~)4 + ... ]. (21) 
7r 7r 7r 7r 

In the same way one can re-write the magnetic moment as 

Using equations (22) in equation (1) and equating with equation (21) we 
have 

(23) 
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Using equation (6) in equation (23) again we have the combination of two 
radii 

R 3 _ 2 R R 2[1 + C~2)(;) + C~4)(;)2 + C~6)(;)3 + C~8)(;)4 + .. / 
H - '3 -o·e [C~2)(;) + C~4)(;)2 + C~6)(;)3 + C~8)(;)4 + ... J 

(24) 

For the convenience of our calculation equation (24) can be written as 

(25) 

where, 
x = [C~2)(~) + C~4)(~)2 + C~6)(:t)3 + C~8)(~)4 + ... J. (26) 

1f 1f 1f 1f 

In a more prcised form we express equation (26) as 

where, 

S 
2_1 

= -X 
3 

(28) 

and 
Reox. = Re(1 + X)· (29) 

Equation (29) reveals here the new expression of composite radius of 
electron. The first term in the left hand side of equation (29) is only Compton 
radius part, but the second term XRe involves 0: -quantized terms of electron 
radii. Hence the nature of helical motion can be invariant like the preliminary 
version of composite radius and this XRe part will take care of the distance 
between two successive turns. 

We developed the nature of helical motion of charge and electron model 
with the composite radius in a companion paper. Continuing the similar 
effect for the corrected pattern of composite radius we can have the total 
time required for the motion of the charge as 

T = RE + 2n1f Reox. . 
v 

The corresponding current therefore can be written as 

1= ev 
RE + 2n1f Reox. 

7 

(30) 

(31) 



Current and magnetic moment are related as [25] 

fA 
~t= -, 

C 
(32) 

where, A is the corresponding area. The corresponding magnetic moment 
comes out to be 

2(n - 1)7revxRc2 
~= 

c( RE + 2n7r Rcox) 
(33) 

Using the approximation of infinite long current carrying wire (in Gaus­
sian) the magnetic field can be calculated for n-th arbitrary term as 

B = _2_[ ev ], 
Rcux RE + 2n7r Rcox 

(34) 

where, v is the corresponding velocity. 
Number of turns n and the velocity of the charged particle are chosen 

here arbitrarily in the way of developing this dynamics. For the existence 
of the helical motion the lower limit can be chosen for the number of turn 
as n = 1 and the Compton-sized model can have a maximum length of the 
helical path as 

hmax = 2Rc · (35) 

On the other hand the maximum length in terms of XRc can be written as 

h = 2(n - l)7rXRc. (36) 

Therefore we get the range of n as the upper limit of n comes out by 
equating the equations (35) and (36) as 

1 
n = 1 +-. 

So n ranges from 1 to 1 + 1 . 
x 

X 

At the end of the first turn the magnetic field will be generated as 

Bl = _2_[ eVl ] 

Rcox RE + 2n7r Rcox ' 

(37) 

(38) 

where, VI is the primary velocity. Magnetic field will now act on the charge as 
external magnetic field so that we can consider the sphere as sum of rotating 
rings. 
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The generalized angular momentum of the system [26] will be read as 

eR2 B 
L = mRc'V + co 

2c 
(39) 

Hence after the first turn the generalized angular momentum will be 

eRboxBl 
L1 = mRC'Vl + 2c (40) 

L1 will initiate the force Fu which will act on the charge in the second 
turn. The force F u is 

( 41) 

The force for which the charge continues the circulatory motion with the 
same radius is 

FCI = Lj'Vj _ eBI'VI . (42) 
Rb 2c 

Equating these two forces from equations (41) and (42) we have 

Ll 1 
V2 = VI [ B R2 - -2 J. ( 43) 

e ICC 

Therefore the magnetic field originated at the end of second term, n = 2 
IS 

B2 = _2_ Bl(RE + 27rRcox)[ Ll 2 - ~]. (44) 
Rcox RE + 47r Rcox eBIRc 2c 

Hence the generalized angular momentum after n = 2 turn will be read 
as 

eRcox
2B2 

L2 = mRcv2 + 2c . (45) 

Using V2 and B2 from equations (43) and (44) in equation (45) we have 

L - [Ll 1][ R eRcoxBl (RE + 27rRcox)] 
2 - , - - m1J} c + . 

eBIRb 2c c RE + 47r Rcox 
(46) 

In a similar manner we can go up to n-th order and have equations for 
Vn, Bn and Ln respectively as 

[ Ln-l 1] 
Vn = Vn-l B R2 - -2 ' 

e n-l C C 
(47) 
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B = B ( RE + 27TRCOX)[ L1 1][ L2 1] 
n 1 RE + 2n7T RcoX eR~Bl - 2c eR~B2 - 2c 

L3 1 1 [Ln - 1 1 ] 
[eB3R~ - 2c ........ eBn-1R~. - 2c . ( 48) 

and 

[ Ln-l _ 2.] [ R eRCOX 
2 
B1 ( RE + 21r RcoX )] 

.. 2 mVl C + . 
eBn- 1Rc 2c 2c RE + 2n1rRcox 

(49) 

Here with equations (47)- ( 49) the velocity, magnetic field and the angular 
momentum for the n-th order are derived. Relativistic spinning sphere model 
with corrections from anomalous magnetic moment is modified here. 

4 Conclusion 

With the introduction of composite radius, the results vary from those of 
the RSS model. RSS model is developed on Compton radius only. But here 
classical electron radius is also taking part when magnetic moment is taken 
with only Schwinger correction. Therefore the results change, but in a regu­
lar pattern as fine structure constant, Q is controlling the difference between 
Compton and classical electron radius. Relation of Q with the g-factor leads 
us to connect anomalous magnetic moment with this semi-classical idea of 
model of electron through the composite radius and Compton radius. The 
combination of 9 and Q also makes the connection between the QED cal­
culations to the semi-classical approaches. When the anomalous magnetic 
moment and its recent corrected forms are used, composite radius is also 
changed and we got a generalised form of the helical motion for relativistic 
spinning sphere. The structure with radii Rc and Rcox is not one exact 
sphere, rather one can say as aspheric in nature, which is also supported by 
one recent observation [27]. It is quite interesting that a similar pattern of 
the electron structure from different sorts of calculations was shown by A. 
Martin in his article [28]. 
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ADDENDUM-A 



Points raised by the examiners and the responses of the author 

Examiner's comment Author's response 

Examiner 1: Comment 1: 

It is always of interest to compare new Though the aspheric nature is mentioned 

theoretical work with pertinent in Ref. 27 of the Chapter 6, in the page 

experimental data, although this not 131, the authors of Ref. 27 also 

always possible. In this connection, the mentioned that their measurement of the 

calculation of a helical charge electric dipole moment IS within the 

configuration for the electron is carried experimental errors, consistent with a 

out in Chapter 6 of the thesis, which symmetrical shape. The electron dipole 

leads to an asymmetrical charge moment is the responsible factor for the 

distribution. Then the experimental work overall asymmetric shape of the electron. 

in Ref. 27 (see page 133) is cited here Though in our work the shape of the tiny 

(see page 131) as evidence of this charge appears to be symmetric, the 

asymmetrical shape. However, the shape of the electron, however, IS 

conclusion of the authors of Ref. 27 is inferred a little aspheric due to the helical 

that their highly accurate measurement of motion of the charge. This IS ill 

the charge itself (via the electric dipole agreement with Ref. 27. 

moment) is, within experimental errors, 

consistent with a symmetrical shape. 

Thus the discussion of Ref. 27 in the 

thesis (page 131) should probably be 

modified. The fact that the electron itself 

has a dipole magnetic moment serves as 

evidence that the overall electron shape 

is asymmetrical. But the intrinsic shape 

of the tiny point charge on the electron 

seems to be symmetric. 

a 



Examiner 3: Comment 1: 

On page 13 the author states: the spin of The property spin is not discussed in the 

the electron is a mysterious angular thesis on page 13, it is in page 14. He! 

momentum for which no actual physical She mentioned some efforts by some 

picture is available yet, ... the spin is authors to give the plausible explanations 

regarded as a quantum property of the of the classical interpretations of the 

electron instead of being a classical one spin. However, we believe that no 

and makes a reference to a publication of consistent classical picture of spin has 

1986. This is not true. Since Corben's emerged till date. On the other hand 

book, authors like Lavy-Leblond, Barut quantum explanation of the electron spin 

et coil., Nikitin and myself have devoted is well known. Reviewer himself !herself 

some effort in this direction to state that quoted Pauli to state that the two­

there are many plausible classical valuedness of spin has no classical 

interpretations of the spin, once the explanation. To address this raised point 

independent degrees of freedom have we can tell that nowhere in this thesis it 

been properly chosen. What is a quantum is not claimed that explanation of spin is 

property is that the angular momentum of impossible classically, rather it is men­

elementary matter, when measured, is tioned that no actual classical physical 

quantized. It is equivalent to say that the picture is present with us. Indeed the 

energy of hydrogen atom is not a quantization and hence the two­

classical property because its spectrum is valuedness of spin angular momentum of 

discrete. Material systems have energy the electron has not been explained 

and angular momentum, in the classical classically. 

and in the quantum mechanical descrip-

tion. Angular momentum conservation is 

a fundamental conservation law such as 

the energy conservation, because space is 

three-dimensional and isotropic. But its 

quantum description produces a discrete 

spectrum. This wrong statement IS 

contained in many excellent books on 
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quantum mechanics and it IS usually 

attributed to Pauli. But what Pauli wrote 

was that the two valuedness of spin has 

no classical explanation, i.e., the spin is 

quantized and not that the spin cannot be 

explained classically. 

Examiner 3: Comment 2: 

The author quotes in chapter 2, where the Examiner 3 has written briefly about 

different models are analyzed, the hislher owrl model describing the facts of 

Lecture Notes of a course I delivered at Chapter 2. According to hirn/her i~ 'is a 

New Delhi in 2007. This lecture course, point-like model. He says that the author 

which IS a short transcription of my has not understood the model and hislher 

book, was devoted to a general model IS not used m the subsequent 

formalism for describing elementary work. A model of the electron, which 

spmnmg particles, formalism which describes two different centers CC and 

describes many models either relativistic CM, cannot be considered as a point 

and non relativistic. Among all the model though he/she claimed to be so. 

models there is one and only one That is why we have not put it in point 

relativistic model which satisfies Dirac's model section. It is the fact that hislher 

equation when quantized. This model is model is not used extensively to propose 

presented here as a spmnmg sphere the new model, but the nature of the 

model on pages 43-44, and that ... has proposed model is touching hislher 

been built more or less considering the model too. Obeying hislher advise now 

zitterbewegung model of the electron. In "dynamical spinning sphere" will be read 

fact the model is a point-like model and as "dynamical spmnmg electron" m 

it has no spherical shape. The charge of Chapter 2 , 2.4.3 subsection at page 43, 

the electron is located at a point, which is in Chapter 6, page 129, paragraph 1 of 

therefore interpreted as the center of the thesis and also in page I of Contents 

charge CC. But the center of mass, CM, of the thesis. This should also be noticed 

becomes different point so that the CC that the Chapter 2 contains an extensive 

moves around the CM suggesting this survey of different approaches of the 
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motion the so called zitterbewegung problem and there a good number of 

motion. It is a consequence of the models are discussed which is addressed 

separation of both points that the model by Examiner 1 as an excellent summary 

offers a zitterbewegung-like structure. of the various approaches to the problem. 

The separation between these points is In the same point Examiner 2 also 

half Compton's wavelength, mentioned that the author painstakingly 

R = n / 2mc, and the frequency of this summarizes total 16 ( sixteen) such 

motion IS (1) = 2mc 2 / n as in Dirac's models. Examiner 4 also mentioned , 

theory, when quantized, because it about Chapter 2 that some limitations of 

satisfies Dirac's equation. I think the some other models have also been 

author has not understood the description discussed in the thesis. 

of the model. Nevertheless, this model is 

not used in the subsequent work. 

Examiner 3: Comment 3: 

Chapter 3 is devoted to the different Examiner 3 has mentioned about the 

definitions of the radius of the electron Chapter 3 that when the charge is located 

according to a postulated structure, at a single point it thus corresponds to the 

electromagnetic, gravitational, magneto- mass distribution, but when the charge is 

static, etc. and some corrections to them distributed is unclear. Here Examiner 3 

due to the anomalous gyromagnetic ratio. has expressed his/her doubt over the 

In some places it is not clear whether the matter of distribution of charge. Indeed 

radius is related to the mass or charge distribution of charge and related radius, 

distribution. When the charge is located which is discussed in section 3.4 at page 

at a single point it thus corresponds to the 61 In Chapter 3 of the thesis, is 

mass distribution, but when the charge is concerned only with a bound state. The 

distributed it is unclear. 

d 

concerned experimental facts are obtain­

ed by Lamb Shift. But it IS to be 

mentioned here that bound states are in 

general stable for very short period of 

time. On the other hand our work is 



Examiner 3: Comment 4: 

about a stable and free electron model. 

Such kind of systems cannot follow a 

distribution of charge for a Compton­

sized particle as it violates scattering 

property. 

Chapters 4, 5 and 6 deal basically with During the description of Chapters 4, 5 

the model proposed by Mac Gregor in and 6, Examiner 3 has expressed hislher 

the book The enigmatic electron, with doubt about the model of the electron 

some peculiar modifications. The proposed by M. H. MacGregor. The 

problem with Mac Gregor's model and work over the relativistic spinning sphere 

its modification, in my opinion, is that it model of the electron is a classical and to 

does not satisfy Dirac equation when some extent semi-classical approach. 

quantized, so that its classical analysis Hence here the quantization IS not 

has a limited scope. It is not only a addressed. The modified model proposed 

matter of adjusting certain parameters to in this thesis is in good agreement with 

match the different observables with the some of the contemporary experimental 

experimental results. Most of the analysis observations from LEP, CERN and 

done by Mac Gregor is concerned with Harvard University. Again the fact is that 

experimental results of low energy the point charge obeys the QED and 

physics, around or below 1 0 MeV, in hence one can expect to touch the Dirac 

which the scattering cross section equation quantizing this model. 

predicts greater values for the electron 

radius. 

Examiner 3: Comment 5: 

The notation of the different radii, Ra, Rc, Examiner 3 commented about the study 

RH, etc., follow the definition given in of the author regarding the different radii 

that book, and are obtained by different of the electron and calculations lead with 

physical assumptions concernmg the them as, "The physical interest of this 
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energy of the electron, whether this kind of gymnastics of formulae is rather 

energy IS pure electrostatic, doubtful, because it is not related to any 

magneto static, Compton-like, etc. From suggested physical experiment." We 

this, the author makes some expansions believe that our work is based on the 

of the different radii in terms of powers logical interpretation of experimental 

of the finite structure constant, data. The experimental observations are 

considered as a ratio between the studied m theory to understand the 

classical electrostatic electron radius and original mechanisms. Afterwards those 

Compton radius. The original aspect is theories are tested against new 

that it produces different results than in experiments done with better accuracy. 

the spherical spinning model of Mac That is why perhaps the Examiner 1 

Gregor. The physical interest of this kind noted: "It IS always of interest to 

of gymnastics of formulae is rather compare new theoretical work with 

doubtful, because it is not related to any pertinent experimental data, although this 

suggested physical experiment. not always possible ". 

Examiner 3: Comment 6: 

A paper of mine is cited extensively in Examiner 3 advised in hislher report to 

various chapters and in the published follow arxiv: hep-phJ0002172 by Dimitri 

papers by the author and collaborators, as Bourilkov instead of hislher paper 

the source that the experimental radius of mentioned several times in the thesis to 

the electron in scattering experiments is point out the electron's charge radius < 

R£ < 10 -19 m. (The dynamical equation 2.8xl0-19 m. Throughout the thesis 

of the spinning electron 1. Phys. A: Math. instead of the Ref. "Rivas, M. The 

And General, 36, 4703 (2003), arxlV: dynamical equation of the spmrung 

physics/0112005 ). electron, J Phys. A: Math. and General 

I am not an experimentalist. I got that 36(16),4703--4715,2003" mentioned in 

number from various CERN reports and the list below, "Bourilkov, D. Search for 

papers. For instance, the PRD paper by TeV Strings and new phenomena m 

Bourilkov, arxiv:hep-phJ0002172, Bhabha scattering at CERN LEP 2, Phys. 

analyzes various LEP experiments in the Rev. D 62(7) 076005, 2000 will be used 
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energy range from 4.2 to 16.2 TeV to now to discuss about the CERN-result of 

derive un upper limit of the electron the size of the charge radius of the 

radius < 2.8x10-19 m. But this SIze electron in the following pages: 

depends on the energy of the beam. This 

limit decreases when the colliding energy 1. Chapter 1, Page 14, Paragraph 1, 

increases, suggesting that the charge Ref. 35; 

distribution of the electron has a point- 2. Chapter 2, Page 28, Paragraph 2, 

like structure, thus contradicting all Ref. 8; 

models with a finite charge distribution 3. Chapter 2, Page 35, Paragraph 1, 

extension. My quoted paper suggest a Ref. 8; 

different dynamical behaviour of the 4. Chapter 3, Page 67, Paragraph 2, 

electron than the models analyzed in the Ref. 17; 

manuscript. I think its quotation IS 5. Chapter 3, Page 70, Paragraph 2, 

misleading and should be replaced by Ref. 17; 

anyone from experiments at LEP. 6. Chapter 4, Page 80, Paragraph 2, 

Instead of this quotation the author Ref. 7; 

should have analyzed the historical 7. Chapter 5, Page 103, Paragraph 3,5 

evolution of the experimental value of Ref. 10; 

the electron radius with the increasing 8. Chapter 6, Page 116, Paragraph 1, 

energy of the colliding beams In Ref. 4. 

scattering experiments, to justify how the 

point-like hypothesis for the charge is 

sustainable. 

Examiner 3: Comment 7: 

In my opinion the author should have In the proposed model, Zitterbewegung 

restrict to mention explicitly that In and spinning sphere are combined 

addition to an exposition of different through the helical motion of charge on a 

classical electron models, the maIn spherical structure. At equatorial zone of 

subject of the thesis is the analysis of the spherical structure the radius is Re. This 

different electron and positronium advocates for extended electron. Again 

parameters, of a particular model. I when the interacting charge reaches polar 
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cannot understand how the proposed regIOn, it behaves like a point particle. 

model is expected to connect different Depending on all these points the 

models, as is stated on page 113. proposed model is expected to connect 

h 

different models, as stated in page 113 in 

the first paragraph. The connection 

between the point-like and the extended 

pictures are expressed in page 129 in the 

2nd and the 3 rd paragraphs and the 

connection amongst various models via 

proposed model is discussed in page 131 

in the subsection "6.6 Concluding 

remarks" also. 


