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This thesis is the outcome of our study about the eigenvalues of the Laplacian and 

the distance matrices of a graph and their relation to the structure of the graph. 

A generalization of the edge corona of graphs is defined and the corresponding 

Laplacian spectrum has been studied. The results are used to find an infinite family 

of Laplacian cospectral graphs. 

Like many fields of mathematics, in graph theory also one is often interested in find­

ing the maxima or minima of certain functions and identifying the points of optimality. 

We consider the function "distance spectral radius" and try to maximize and minimize 

it under different constraints and in different classes of graphs. Along this way, we 

have obtained the graph having maximal distance spectral radius among all trees with 

given matching number (resp. among all graphs with given number of pendent ver­

tices) conjectured by Aleksandar Hit in [Distance spectral radius of trees with given 

matching number, Discrete Applied Mathematics 158 (16), 1799-1806,2010] (resp. by 

Yu et al. in [Some graft transformations and its applications on the distance spectral 

radius of a graph, Applied Mathematics Letters 25 (3), 315-319, 2012]). 

The class of all connected graphs having connected complement (precisely a tree or 

a unicyclic graph) is considered and the second smallest distance Laplacian eigenvalue 

is studied. It has been proved that the largest distance Laplacian eigenvalue of path is 

simple and the structure of the corresponding eigenvector is described. 
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Chapter 1 

Introd uction 

Algebraic graph theory is the study of many unexpected and many useful connections 

between two beautiful and apparently unrelated, parts of mathematics: algebra and 

graph theory. Some of the important problems in algebraic graph theory are matrix 

completion problems, minimum rank problems and problems in spectra of graphs. 

Spectral graph theory studies the relation between graph properties and the spectra 

of certain matrices associated to it. The associated matrices include the adjacency 

matrix, the Laplacian matrix, the distance matrix etc., and their normalized forms. 

Spectral graph theory has a long history. In the early days, adjacency matrices of 

graphs were studied using matrix theory and linear algebra. Algebraic methods are 

especially effective in treating graphs which are regular and symmetric. In the past ten 

years, new spectral techniques have emerged and they are powerful and well-suited for 

dealing with general graphs. In a way, spectral graph theory has entered a new era. 

This thesis is the outcome of our study about the eigenvalues of the Laplacian 

and the distance matrices of a graph and their relation to the structure of the graph. 

In literature, extensive study has been made on adjacency and Laplacian matrices. 

The distance matrix of a graph, while not as common as the more familiar adjacency 

matrix, has nevertheless come up in several different areas, including communication 

network design [30], graph embedding theory [23,29], network flow algorithms [27] etc. 

Recently, the problem of finding all graphs with maximal or minimal distance spectral 

radius among a class of graphs has been studied extensively (see [36,55,57,61,62,65]). 

This thesis is intended to fill some conspicuous gaps in the study of the distance spectral 

radius of graphs. The distance Laplacian matrix of a graph entered the scene of graph 

spectra as late as 2013. This thesis also attempts to answer certain questions on the 

distance Laplacian spectra of some graphs. 
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1.1 Graph terminologies 

All graphs we consider in this thesis are finite, undirected, and simple, i.e., without 

loops and parallel edges. For a graph G = (V, E), we write V(G) and E(G) for the 

vertex set V and the edge set E of G, respectively. By IGI (i.e., the order of G) we 

mean the cardinality of the vertex set of G and dc(v) is used to denote the degree (Le., 

the number of incident edges) of a vertex v in G. An isolated vertex is a vertex of degree 

o and a pendent vertex is a vertex of degree 1. The vertex adjacent to a pendent vertex 

is called a quasi-pendent vertex. A spanning subgraph of G is a subgraph containing 

all the vertices of G. For a subset S of V(G), G[S] denotes the induced subgraph on S 

(i.e., the maximal subgraph of G on S). 

The distance between two vertices u, v E V(G) is denoted by duv and is defined as 

the length of a shortest path between u and v in G. The distance, as a function on 

V x V, satisfies the triangle inequality. Thus, for any three vertices u, v and w, 

The diameter (i.e., maximal distance between any two vertices) of G is denoted by 

d(G). 

We use the standard notations em K n, Pn and Sn for the cycle, the complete graph, 

the path and the star, respectively, on n vertices. An empty graph of order n is denoted 

by On and is defined as the complement of K n, Le., a graph having no edge. 

If GI = (Vi, EI ) and G2 = (V2' E2) are two graphs on disjoint sets of m and n 

vertices, respectively, then their union is the graph GI U G2 = (Vi U V;, EI U E2). Their 

join is denoted by GI V G2 and consists of GI U G2 and all lines joining Vi and V2. 

A tree is a connected graph without a cycle. A bipartite graph G is a graph whose 

vertex set V(G) can be partitioned into two disjoint subsets VI and V2 such that every 

edge of G joins a vertex of VI with a vertex of V2. If G contains every edge joining a 

vertex of VI with a vertex of V2, then it is a complete bipartite graph and is denoted by 

Km,n, where m, n are the number of vertices in Vi and V2, respectively. 

An edge independent set of a graph G is a set of edges such that any two distinct 

edges of the set are not incident on a common vertex. The edge independence number 

of G, denoted by meG), is the maximum of the cardinalities of all edge independent 

sets. An edge independent set (resp. edge independence number) is usually called a 

matching (resp. matching number). For a connected graph G of order n, its matching 

number m(G) satisfies 1 ::; m(G) ::; L~J. 
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For a set S of vertices and edges in a graph G, G - S denotes the graph obtained 

from G by deleting all the elements of S. It is understood that when a vertex is deleted, 

all edges incident with it are deleted as well, but when an edge is deleted, the vertices 

incident with it are not. 

The vertex connectzvzty of a graph G, denoted by K(G), is the minimum number 

of vertices whose deletion yields in a disconnected or a trivial graph. A cut vertex is 

a vertex whose removal increases the number of components of a graph. Thus for a 

graph G with a cut vertex, K(G) = 1. The neighbourhood Nc(v) of a vertex v in G is 

{u : uv E E(G)}. If v is a vertex of a tree T, then the components of T - v are called 

the branches of T at v. We say that a graph K is attached at a vertex v of G to mean 

that a new graph is obtained by joining v and a vertex of K by an edge. For other 

graph theoretic terms we follow [33]. 

A few words about the labels: the label of theorems, lemmas, corollaries, remarks, 

definitions, equations and examples are made like c.s.n; where c is the chapter number, 

s is the section number and n is the item number. 

1.2 Schur complement and Kronecker product of 

matrices 

Let M1, M2 , M3 and M4 be respectively p x p,p x q, q x p and q x q matrices with Ml 

and M4 invertible. It is well known that 

det [Z~ Z~] - det(M4).det(Ml - M2M4-
1 M3 ), 

- det(M1).det(M4 - M3Mll M2 ), 

where M1 - M2Mi1 M3 and M4 - M3Ml1 M2 are called the Schur complements of M4 

and Ml respectively [63]. 

The Kronecker product A 0 B of two matrices A = [atJ]mxn and B = [btJ]pxq is 

the mp x nq matrix obtained from A by replacing each element atJ by atJB. This 

is an associative operation with the property that (A 0 B)T = AT 0 BT and (A 0 

B)(C @ D) = AC 0 BD whenever the products AC and BD exist. The latter implies 

(A @ B)-l = A-1 @ B-1 for nonsingular matrices A and B. Moreover, if A and Bare 

n x nand p x p matrices, then det(A @ B) = (detA)P(detBt. Other properties of the 

Kronecker product can be found in [34]. 
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Throughout the thesis, Jsxt (resp. Osxt) denotes the s x t matrix with all entries 

equal to 1 (resp 0), where s, t ~ 2. Similarly, is (resp. Os) denotes the s x 1 vector 

with all entries equal to 1 (resp 0). The identity matrix of order k is denoted by I k . 

(Though sometimes we omit the order if it is clear from the context). 

1.3 The Laplacian matrix of a graph 

Let V(G) = {Vi, V2, ... ,vn } be the vertex set of G. The adjacency matrzx of G, is 

defined to be A(G) = [atJ]n, where 

{
I, 

atJ = 0, 
if V t and vJ are adjacent, 
otherwise. 

Being a real symmetric matrix, all the eigenvalues of A( G) are real and their algebraic 

multiplicities equal their geometric multiplicities [34]. 

The matrix of vertex degrees of G is the diagonal matrix Deg( G) of order n, whose 

i-th diagonal entry is the degree of the i-th vertex. The matrix L = L( G) = Deg( G) -

A(G), is the Laplacian matrix of G. 

The vertex-edge incidence matrix [7J M of G is a matrix whose rows and columns 

are indexed by V (G) and E( G), respectively. After giving any arbitrary orientation 

to the edges, the (i,j)-th entry of M is 0 if vertex i and edge eJ are not adjacent, and 

otherwise it is 1 or -1 according as eJ originates or terminates at i, respectively. 

The matrix L is symmetric, singular (because all row sums are 0) and positive 

semidefinite (because L = MMT
). So all the eigenvalues of L are non-negative reals. 

In 1847, Kirchoff proved a very important result involving the Laplacian matrix 

which put the study of the Laplacian matrix as an interesting subject in front of many 

researchers. The result is popularly known as KzrchoJJ's Matnx Tree Theorem. See [47J 

to collect some more references on this theorem. 

Theorem 1.3.1. Let G be a graph. Denote by L(ilj) the (n - 1) x (n - 1) submatrix 

of L obtained by deleting its i-th row and j-th column. Then (-l)t+J det L(ilJ) is the 

number of spanning trees in G. 

For a matrix M of order n, 

¢(M; x) = det(xln - M) 

is the characteristic polynomial of M. In particular, for a graph G, ¢(L(G); x) is called 

the Laplacian characteristic polynomial of G, and its roots are the Laplacian eigenvalues 
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of G. The collection of eigenvalues of L( G) together with their multiplicities is called 

the L-spectrum of G and is denoted by (J"L(G). Two graphs are said to be L-cospectral, 

if they have the same L-spectrum. 

Let /-ll 2:: /-l2 2:: ... 2:: /-In-l 2:: /-In = 0 (we will use this ordering throughout the 

thesis) denote the Laplacian eigenvalues of G. The second smallest eigenvalue /-In-l of 

L is called the algebraic connectivity. The justification for the name is the fact that 

/-In-l = 0 iff the graph is disconnected. An eigenvector corresponding to /-In-l is called 

a Fiedler Vector. The algebraic connectivity of a graph and the structure of a Fiedler 

vector is studied extensively in literature (see [24,38-40,47J and the references therein). 

Let G denote the complement of a graph G. Then, as observed in [1], 

L(G) + L(G) = L(Kn) = n1n - I n. 

It follows that n - /-In-l 2:: n - /-In-2 2:: ... 2:: n - /-ll 2:: 0 are the Laplacian eigenvalues 

of G. 

Till now, many graph operations such as the disjoint union, the Cartesian product, 

the Kronecker product, the corona, the edge corona, the neighbourhood corona and 

the subdivision vertex (edge) neighbourhood corona have been introduced, and their 

L-spectra are computed (see [11,15,17,18,20,28,35,42,44]). These operations help 

to describe the spectrum of a relatively larger graph in terms of the spectra of some 

smaller graphs. 

In Chapter 2, we define graph with edge pockets (see Definition 2.1.2) which gener­

alizes the definition of edge-corona and discuss some results of their L-spectra. As an 

application, we show that these results enables us to construct infinitely many pairs of 

L-cospectral graphs. 

1.4 The distance matrix and the distance spectral 

radius of a graph 

The distance matrix of a connected graph G of order n is defined to be D( G) = [diiJn' 

where dij is the distance between the vertices Vi and Vj in G. Thus, D( G) is a symmetric 

real matrix and have real eigenvalues [34J. The distance spectral radius p(G) of G is 

the largest eigenvalue of the distance matrix D( G). Since D( G) is irreducible, by the 

Perron-Frobenius theory, p(G) is simple and is afforded by a positive eigenvector, called 
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the Perron vector [50]. If X(G) = (Xl, X2, . •. ,xnf is the Perron vector of D(G), then 

p(G)Xt = L dtJxJ" 
v] EV(G) 

Distance energy DE(G) is a newly introduced molecular graph-based analog of the 

total 1r-electron energy, and it is defined as the sum of the absolute eigenvalues of the 

molecular distance matrix. The distance spectral radius is a useful molecular descriptor 

in QSPR modelling, as demonstrated by Consonni and Todeschini in [16,59]. For more 

details on distance matrices and distance energy one may refer to [49,54,58]. 

Balaban et al. in [3] proposed the use of distance spectral radius as a molecular 

descriptor, while in [32] it was successfully used to infer the extent of branching and 

model boiling points of alkanes. In [66] and (68], Zhou and Thinajstic provided upper 

and lower bounds for p( G) in terms of the number of vertices, Wiener index and Zagreb 

index. Balasubramanian in (4,5] pointed out that the spectra of the distance matrices 

of many graphs such as the polyacenes, honeycomb and square lattice have exactly one 

positive eigenvalue, and he computed the spectrum of fullerenes C60 and C70 . 

In the case of a tree, the distance matrix has some attractive properties. As for 

example, the determinant of the distance matrix of a tree depends only on the number 

of vertices, and not on the structure of the tree, as seen in the following result. 

Theorem 1.4.1. [30] Let T be a tree on n vertices, where n ~ 2, and D be the distance 

matrix of T. Then the determinant of D is given by 

It was also shown in [30] that the distance matrix of a non trivial tree has just one 

positive eigenvalue. 

Let D be the distance matrix of a tree T with V (T) = {I, 2, ... , n}. It follows from 

Theorem 1.4.1 that D is nonsingular. If Tt = 2 - dT(i), i = 1, ... , n, and T is the n x 1 

vector with components TI, ... ,Tn, then the following result connects the inverse of 

distance matrix of T with its Laplacian matrix. 

Theorem 1.4.2. [29] Let T be a tree with V(T)={ 1,2, ... ,n}. Let D be the distance 

matrix of T and L be the Laplacian matrix of T. Then 

-1 lIT 
D = -2L + 2(n _ 1) TT . 
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Merris in [46] obtained an interlacing inequality involving the distance and Laplacian 

eigenvalues of trees which is as follows. 

Theorem 1.4.3. [46] Let T be a tree of order n, where n ~ 2. Let D be the distance 

matrix and L be the Laplacian matrix of T. Let Al > 0 > A2 ~ ... ~ An be the 

eigenvalues of D and JLl ~ JL2 ~ ... ~ JLn-l > JLn = 0 be the eigenvalues of L. Then 

222 o > -- ~ A2 ~ -- ~ ... ~ - -- ~ An· 
JLl /l2 /In-l 

Various other connections between the distance matrix and the Laplacian matrix of 

a graph can be found in [6,8]. 

Let e = uv be an edge of a connected graph G such that G' = G - e is also connected, 

and let D' be the distance matrix of G - e. As observed already in [57], the removal 

of e does not create shorter paths than the ones in G, and therefore, dij ::; d~j for all 

i,j E V(G), where d~j is the (i,j)-th entry of D'. Moreover, 1 = duv < d~v and by the 

Perron-Frobenius theorem, one can conclude that 

peG) < peG - e). 

In particular, for any spanning tree T of G, 

p( G) ::; p(T). 

Similarly, adding a new edge f = st to G does not increase distances, while it does 

decrease at least one distance; the distance between sand t is 1 in G + f and at least 

2 in G. Again by the Perron-Frobenius theorem, 

peG + f) < peG). 

Inequality (1.4.2) tells us immediately that the complete graph Kn has the min­

imum distance spectral radius among the connected graphs on n vertices, while in­

equality (1.4.1) shows that the maximum distance spectral radius will be attained for 

a particular tree. 

Ruzieh and Powers [55] proved that for n ~ 3 the path Pn has the maximum distance 

spectral radius among trees on n vertices. Stevanovic and Hic [57] generalized this 

result, and proved that among trees with fixed maximum degree 6., the broom graph 

has maximum distance spectral radius and proved that the star Sn is the unique graph 

with minimal distance spectral radius among trees on n vertices. Zhang and Godsil [65] 
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studied the behaviour of the distance spectral radius when a graph is perturbed by 

grafting edges, and then, as applications, they determined the graph with k cut vertices 

(respectively, k cut edges) having the minimal distance spectral radius. Ilie [36] have 

determined the unique graph that minimizes the distance spectral radius among trees 

on n vertices with given matching number m. The unicyclic graphs having maximal and 

minimal distance spectral radii have been obtained by Yu et al. [62]. Das [21] obtained 

lower and upper bounds for the distance spectral radius of a connected bipartite graph 

and characterize those graphs for which these bounds are best possible. Indulal [37] 

has found sharp bounds on the distance spectral radius and the distance energy of 

graphs. More results on the distance spectral radius can be found in [22,41,43,60,64]. 

In Chapter 3, we determine the graphs having maximal (minimal) distance spectral 

radius in the class of all graphs with a given number of pendent vertices. The results 

proved in this chapter are proved in [12,52] .. 

In Chapter 4, we determine the graphs having maximal (minimal) distance spectral 

radius in the class of all graphs without a pendent vertex. The results proved in this 

chapter are proved in [14,53]. 

In Chapter 5, we determine the unique graph with minimal distance spectral radius 

in the class of all bipartite graphs with a given matching number. We also characterize 

the graphs with minimal distance spectral radius in the class of all bipartite graphs 

with a given vertex connectivity. The results proved in this chapter are proved in [51]. 

1.5 The distance Laplacian matrix of a graph 

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v 

to all other vertices in G, i.e., 

Tr(v) = L duv · 

uEV(G) 

The distance Laplacian matrix of a connected graph G is defined as DL = DL( G) = 
Tr(G) - D(G), where Tr(G) is the diagonal matrix, whose i-th diagonal entry is the 

transmission of the i-th vertex [2}. Let (h ~ 02 ~ ... ~ On-l ~ On (we will use this 

ordering throughout the thesis) denote the eigenvalues of DL. It can be easily verified 

that DL is a positive semidefinite matrix. Moreover, since sum of each row and column 

of DL is 0, so on = 0. 

The following important result is obtained by Aouchiche and Hansen [2]. 
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Theorem 1.5.1. [2] Let G be a connected graph on n vertices and m ~ n edges. 

Consider the connected graph G obtained from G by the deletion of an edge. Let 151 ~ 

152 ~ ... ~ t5n - 1 ~ 6n and 61 ~ 62 ~ ... ~ 6n - 1 ~ 6n denote the distance Laplacian 

eiegnvalues of G and G respectively. Then Ji ~ lSi, for all i = 1, ... ,n. 

The authors have also proved that for a connected graph G of order n, the second 

smallest distance Laplacian eigenvalue is at least n, where the equality holds if and 

only if G is disconnected. In that case, the multiplicity of n as a distance Laplacian 

eigenvalue of G is one less than the number of components of G. They have obtained 

a relation connecting the Laplacian and the distance Laplacian eigenvalues for graphs 

having diameter at most 2. 

In Chapter 6, we study the second smallest distance Laplacian eigenvalue of a graph 

when its complement is connected. We also study the distance Laplacian spectrum of 

a path. We prove that the largest distance Laplacian eigenvalue of a path is simple 

and describe the structure of the corresponding eigenvector. 
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On the Laplacian spectra of graphs with 

edge-pockets 

2.1 Introduction 

Till 'now, many graph operations such as the disjoint union, the Cartesian product, 

the Kronecker product, the corona, the edge corona, the neighbourhood corona and 

the subdivision vertex (edge) neighbourhood corona have been introduced, and their 

L-spectra are computed. These operations help to describe the spectrum of a relatively 

larger graph in terms of the spectra of some smaller graphs. The following is such a 

graph operation, introduced by Barik [9]. 

Definition 2.1.1. [9] Let F, Hv be graphs of order nand m, respectively, where m > 1, 

v be a specified veriex of Hv and Ul, ... ,Uk E F. Let G = G[F, Ul, ... ,Uk, Hvl be the 

graph obtained by taking one copy of F and k copies of H v , and then attaching the i-th 

copy of Hv to the vertex Ui, i = 1, ... , k, at the vertex v of H (identify Ui with the 

vertex v of the i-th copy). Then the copies of the graph Hv that are attached to the 

vertices Ui, i = 1, ... ,k are referred to as pockets, and G is described as a graph with 

k pockets. 

In [9], the author has described the L-spectrum of G[F, Ul, ... , Uk, HvJ using the 

L-spectra of F and Hv, when dHJv) = m - 1. In that case, if a copy of Hv is attached 

to every vertex of F, each at the vertex v of H v , that is, if G has n pockets, then 

G = G[F, Ul,' .. ,Un, Hvl is nothing but the corona F 0 H, where H = Hv - {v}. Then 

in [11 J, the complete L-spectrum of G is described using the spectra of F and H. 

For a subset S of E( G), G s denotes the subgraph of G containing the edges in S only 

and vertices, which are the endpoints of the edges in S. Motivated by Definition 2.1.1, 

we define the following. 

Definition 2.1.2. Let F and Huv be two graphs of order nand m, respectively, where 

n 2:: 2 and m 2:: 3. Let uv be a specified edge of Huv such that Huv - {u} is isomorphic 
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to Huv - {v}, and 5 = {e1,'" ,ed ~ E(F). Let G = G[Fs, Huv] be the graph obtained 

by taking one copy of F and k copies of Huv , and then pasting the edge uv in the i-th 

copy of Huv with the edge ei E 5, where i = 1, ... , k. We call the copies of the graph 

Huv that are pasted to the edges ei, i = 1, ... ,k edge-pockets, and G is a graph with k 

edge-pockets. 

Note that order of G[Fs, HuvJ is n + k(m - 2); and if F has h edges and Huv has 

h edges, then G[Fs, Huv] has II + (h - 1)k edges. The following example illustrates 

Definition 2.1.2. 

Example 2.1.3. Let us consider the graphs F and Huv shown in Fig. 2.1. Note that 

uv is an edge of Huv such that Huv - {u} is isomorphic to Huv - {v}. If 5 = {e1' e2} ~ 

E(F), then the graph G[Fs, HuvJ is shown in Fig. 2.1. 

2 3 

1 4 
G[Fs,Huvl 

Figure 2.1: The graphs F, Huv and G[Fs, HuvJ of Example 2.1.3 

This being a very general operation it is not possible to obtain the L-spectrum of 

G[Fs, Huv] from the L-spectra of F and Huv. But, a natural question remains is "how 

far can the L-spectrum of G[Fs, HuvJ be described by using the L-spectra of F and Huv 7" 

In Section 2.3, we show that the complete L-spectrum of G[Fs, HuvJ can be described 

in some particular cases. Finally, in a more general case, when Fs is a regular graph 

and dHuvCu) = dHuv(v) = m - 1, we describe all but n + k Laplacian eigenvalues of 

G[Fs, Huv] using the Laplacian eigenvalues of Hu~. We also show that the remaining 

n + k Laplacian eigenvalues of G[Fs, HuvJ are independent of the graph Huv. As an 

application, we show that these results enable us to construct infinitely many pairs of 

L-cospectral graphs. 

2.2 Preliminaries 

In this section, we give some preliminaries. The M-coronal fM(X) of a matrix M of 

order n is defined [17,44] to be the sum of the entries of the matrix (x1n - Mr\ that 
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is, 

It is known [17, Proposition 2] that, if M is a matrix of order n with each row sum 

equal to a constant I, then 

In particular, since for any graph G on n vertices, each row sum of L(G) is equal to 0, 

we have 
n 

rL(G)(X) = -
x 

The following theorem of [48] will be needed to prove our main results of this chapter. 

Theorem 2.2.1. [48] Let GI , G2 be two graphs on disjoint sets ofm, n, vertices, respec­

tively. If (J"L(Gd = {fLI(Gd, ... , fLm-I(Gd, fLm(GI) = O} and (J"L(G2 ) = {fLI(G2), ... , 

fLn-I(G2 ), fLn(G2 ) = O}, then (J"L(GI vG2) = {m+n, n+ fLI(GI), ... , n+ fLm-I(GI), m+ 
fLI(G2), •.. , m + fLn-I(G2 ), O}. 

2.3 Spectrum of G[Fs, Huv] 

In this section, we obtain the L-spectrum of G[Fs, Huv] with the help of the coronal 

of a matrix. The 0-1 vertex-edge incidence matrix R(G) = h,ej] of a graph G is the 

matrix with rows and columns indexed by vertices and edges of G, respectively, where 

ri,ej = 1 if the vertex i is incident with the edge ej and 0 otherwise [7]. Thus, if G is 

a r-regular graph, then R(G)R(Gf = A(G) + rIo Following is one of the main results 

of this section. 

Theorem 2.3.1. Let F and Huv be two graphs of order nand m, respectively, where 

n :2: 2 and m :2: 3. Let uv be a specified edge of Huv and S be a k-element subset of 

E(F), such that dHuv(u) = dHuv(v) = m -1 and Fs is a spanning subgraph of F. If Fs 

is r-regular, then 

¢(L(G[Fs, Huv]); x) = ¢(L(H); x - 2)k¢(M; x), 

where H - Huv - {u, v} 

and M r((m - 2) + fL(H)(X - 2))In + L(F) + fL(H)(X - 2)A(Fs). 
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Proof. Since dHuJu) = dHuJv) = m - 1, so Huv can be written as Huv = 

( {u, v}, {uv } ) V H. Thus, with a permutation similarity operation we can write 

The Laplacian characteristic polynomial of G[Fs, Huv] is given by 

¢(L(G[Fs, Huv]); x) 

det [-~I~-~~~~~~~~;~2J~"-i~~:~-~~:~~~~1l::;;~-~~-J 
det((x - 2)Im-2 - L(H)f.det(51) 

¢(L(H); x - 2)k.det (51), (2.3.1) 

where 51 x1n - L(F) - r(m - 2)In - rL(H)(X - 2)R(Fs )R(Fsf 
x1n - L(F) - r(m - 2)In - rL(H)(X - 2)(A(Fs) + rIn) 

- x1n - M 

is the Schur complement of ((x - 2)Im - 2 - L(H)) @h. Using (2.3.2) in (2.3.1) we have 

the result. • 

A factor of a graph G is a spanning subgraph of G which is not empty [33]. A 

graph G is called the sum of factors Gt if it is their line-disjoint union, and such a 

union is called the factorization of G. A k-factor is regular of degree k. If G is the 

sum of k-factors, their union is called a k-factorization and G itself is k-factorable. In 

particular, K2k is 1-factorable whereas K2k+1 is 2-factorable [33]. 

Corollary 2.3.2. Let F = K2k and Huv be a graph of order m, where m ::::: 3. Let uv 

be a specified edge of Huv and 5 be a k-element subset of E(F), such that dHuJu) = 
dHuv(v) = m - 1 and Fs is a i-factor of F. If a.L(Huv) = {J-ll(Huv) , J-l2(Huv) , ... , 

J-lm-l(Huv), J-lm(Huv) = O}, then aL(G[Fs, Huv]) consists of the eigenvalues 

(a) 0, m with multiplicity 1; 

(b) J-lJ(Huv) with multiplicity k, for each j = 3,4, ... , m - 1; 

(c) m + 2k - 2 with multiplicity k; CENTRAL LIBRARY, T. U. 

ACe. No .. T.:.;? .. l.?':::: .. 
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(d) two roots of the equatwn x2 - (2k + m)x + 4k = 0, each wzth multiplzcity k - 1. 

Proof. By Theorem 2.3.1, we have 

m-3 
¢(L(G[Fs, Huv]); x) = (x - 2)k IT (x - 2 - }lJ(H))k .¢(M; x), 

J=l 

where H Huv - {u,v}, 

(jL(H) {}ll(H), }l2(H) , ... , }lm-3(H), }lm-2(H) = O} and 

M ((m - 2) + fL(H)(X - 2))12k + (2khk - J2k ) 

+fL(H)(X - 2)(h ® A(K2)) 

- ((m - 2) + ~ ~; + 2k) 12k - J2k + ~ ~; (h ® A(K2» 

(by (2.2.2)]. 

Let M1 = ((m - 2) + r;~; + 2k) 12k + r;~;(Ik ® A(K2») so that M = M1 - J2k · 

Now ¢(M;x) 

- det(xl2k - M) 

- det(xl2k - M1 + J2k ) 

det(xl2k - M1 ) + llrkadj(xl2k - Mdll2k 

(where 'adj' is the adjoint of a matrix] 

det(xl2k - M1){ 1 + nIk(xI2k - Md-1ll2k} 

det(xl2k - Mr){ 1 + fMl (x)} 

(x _ m + 2 _ 2kt (x
2 

- (2k + m)x + 4k)k .{1 + 2k(x - 2) } 
(x-2)k x2 -(2k+m)x+4k 

[by (2.2.1)] 

( )( k)
dx2 - (2k + m)x + 4k)k-1 

x X - m x - m + 2 - 2 (x _ 2)k 

Using (2.3.4) in (2.3.3), and by Theorem 2.2.1, we have the result. • 
The following result describes the structure of the adjacency eigenvalues of a cycle 

of order n, which will be useful to prove the next result of this section. 

Lemma 2.3.3. [7J For n ~ 3, the ezgenvalues of A( en) are 2 cos 2;1, where 1 = 
1,2, ... ,no 
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Corollary 2.3.4. Let F = Kn and Huv be a graph of order m, where n ~ 3 and 

m ~ 3. Let uv be a specified edge of Huv and S be a k-element subset of E(F), such 

that dHuJu) = dHuv(v) = m - 1 and Fs = Cn. If aL(Huv) = {p'1(Huv ), pdHuv) , ... , 
f-Lm-1 (Huv), f-Lm(Huv) = O}, then aL( G[Fs, Huv]) consists of the eigenvalues 

(a) 0, 2m - 2 with multiplicity 1; 

(b) f-Lj(Huv) with multiplicity n, for each j = 3,4, ... , m - 1; 

(c) two roots of the equation x2 - (2m - 2 + n)x + 2n + 2(m - 2)(1- cos 2~1) = 0, 
for each 1 = 1,2, ... , n - 1. 

Proof. By Theorem 2.3.1, we have 

m-3 
¢(L(G[Fs, Huv]); x) = (x - 2t II (x - 2 - f-Lj(H)t,¢(M; x), 

j=1 

where H Huv - {u,v} 

{f-L1 (H), f-L2(H) , ... ,f-Lm-3(H), f-Lm-2(H) = O} and 

2((m - 2) + rL(H)(x - 2))In + (nIn - In) + rL(H)(x - 2)A(Cn) 

(2(m - 2) + 2(:_-22) + n) In - In + : ~~ A(Cn) [by (2.2.2)]. 

Let M1 = (2(m - 2) + 2(r;_~2) + n) In + r:~i A( Cn) so that M = M1 - In. 

Now ¢(M;x) 

det(xIn - M) 

- det(xIn - M1 + In) 

det(xIn - Md + ll;adj(xIn - M1)lln 

- det(xIn - M1){ 1 + ll;(xIn - Md-1lln} 

det(xIn - M1){ 1 + rMJx)} 

x2 - (2m - 2 + n)x + 2n { n(x - 2) } 
x - 2 1 + x2 - (2m - 2 + n)x + 2n . 

n
II
-1 x2 - (2m - 2 + n)x + 2n + 2(m - 2)(1 - cos ~) 

x-2 1=1 
[by (2.2.1) and Lemma 2.3.3] 
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( ) 
x(x - 2m + 2) nrr-1 x 2 - (2m - 2 + n)x + 2n + 2(m - 2)(1 - cos 211"1) 

~c/>M;x =. n 
x-2 x-2 1=1 

(2.3.6) 

Using (2.3.6) in (2.3.5), and by Theorem 2.2.1, we have the result. • 
Remark 2.3.5. If in Corollary 2.3.4, n is odd, then it can be seen as an analogue of 

Corollary 2.3.2 for odd complete graph and a 2-factor of it. 

Now, we consider a more general case. Let F and Huv be two graphs of order n 

and m, respectively, where n 2:: 2 and m 2:: 3. Let uv be a specified edge of Huv and 

S be a k-element subset of E(F), such that dHuv(u) = dHuv(v) = m - 1. If Fs is a 

regular graph, then except n + k Laplacian eigenvalues, we describe all other Laplacian 

eigenvalues of G[Fs, Huvl using the Laplacian eigenvalues of Huv' We also show that 

the remaining n + k Laplacian eigenvalues of G[Fs, Huvl are independent of the graph 

Huv' Let C;- be the graph of order m formed by m - 2 triangles such that each pair of 

triangles have exactly one common edge e (See Fig. 2.2). 

1 

e 

2 

Figure 2.2: The graph C;". 

Theorem 2.3.6. Let F and Huv be two graphs of order nand m, respectively, where 

n 2:: 2 and m 2:: 3. Let uv be a specified edge of Huv and S be a k-element subset of 

E(F) such that dHuJu) = dHuv(v) = m - 1. If Fs is a regular graph and aL(Huv) = 

{/L1(Huv), /L2(Huv), ... , /Lm-1(Huv ), /Lm(Huv) = O}, then aL(G[Fs, HuvD consists of the 

eigenvalues 

(a) /Lj(Huv) with multiplicity k, for each j = 3,4, ... , m - 1 and 

(b) .x E aL(G[Fs,C;"D - {2,2, ... ,2}, where e = uv ofC;". -----(m-3)k 

Proof. Since dHuv(u) = dHuJv) = m - 1, so Huv can be written as Huv = 
({ u, v}, {uv}) V H, where H - Huv - {u, v}. Let Fs be a r-regular graph on the 
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first p vertices of F. Thus, with a permutation similarity operation we can write 

L( G[Fs, Huv]) 

L(F) + r(m - 2) [ ____ !p ____ ~--~p2<-r:-=p---] 
On-pxp : On-pxn-p 

i 11 T fV\ [ __ -:J!:'cf§1.] 
I m-2'61 0 
: n-pxk 
I 
I 
I -----------------------------------------------1--------------------------
I 
I 

[ T ; ] 11 m - 2 ® -R(Fs) ~ Okxn-p ! (L(H) + 2Im- 2 ) ® h 

The Laplacian characteristic polynomial of G[Fs, Huvl is given by 

¢(L(G[Fs, Huv]); x) 

x1n - L(F) - r(m - 2) [ ____ !p ____ ~--~p:-r:-=p---] 
On-pxp ~ On-pxn-p 

- det 

I 
I 
I 
I 
I 
I 
I 
I 
I ------------------------------------------------------r--------------------------------

11m - 2 0 [ R(Fsf ! Okxn-p ] 

- det((x - 2)Im - 2 - L(H)f.det(Sl) 

- ¢(L(H);x - 2)k,det (Sl) 
m-3 

- (x - 2)k II (x - 2 - /-Lj(H))k,det(Sl), 
j=l 

where 

is the Schur complement of ((x - 2)Im-2 - L(H)) 0 h. 
Similarly, we have 

L(G[Fs, C;n]) 

L(F) + r(m - 2) [ ___ Jp ____ ~--~p2<..r:-=p---] 
On-pxp ~ On-pxn-p 

I 
I 

I 
I 

! ((x - 2)Im- 2 - L(H)) ® h 

-----------------------------------------------~-------------------------
I 
I 
I 
I 
I 
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Thus, the Laplacian characteristic polynomial of G[Fs, C~J is given by 

¢(L(G[Fs, C;n)); x) 

) 
[ 

Ip : Opxn-p ] x1n - L( F) - r( m - 2 .---------~-----------. 
On-pxp ~ On-pxn-p 

I 
I - det .-----------------------------------------------------t-----------------------· 
I 
I 

nm - 2 Q9 [ R(Fs)T ! Okxn-p ] 

- det((x - 2)Im - 2 r.det(52) = (x - 2)k(m-2).det(52), 

I 
I 
I (x - 2)Im - 2 Q9 h 

(2.3.9) 

where 

is the Schur complement of (x - 2)Im - 2 Q9 h. 
By (2.3.10) and (2.3.8), we have 51 = 52' Hence using (2.3.9) in (2.3.7) we get 

A.(L(G[F H J)' ) = mrr-3( _ 2 _ .(H))k ¢(L(GfFs,c;nJ);x) 
If' s, uv,x . x {lJ . (x _ 2)k(m-3) . 

J=1 . 

(2.3.11) 

For each j, let FL denote a column vector of order n + k(rn - 2) with only two non 

zero components 1 and -1 corresponding to the 1st vertex and the yth vertex, respec­

tively, in the lth copy of C;: - {u, v}, where 2 ::; j ::; m - 2 and 1 ::; l ::; k. Then 

{Fij : j = 2,3, ... ,m - 2;l = 1,2, ... ,k} is a set of (m - 3)k linearly independent 

eigenvectors of L(G[Fs, C;n]) corresponding to the eigenvalue 2. Therefore, by (2.3.11) 

and Theorem 2.2.1, the result follows. • 

The above theorem is illustrated by the following example. 

Example 2.3.7. Consider the graphs F, Huv of order 3 and 5, respectively, in Fig. 2.3. 

The vertices u and v of Huv have degree 4. Let 5 = {f} ~ E(F), G[Fs, HuvJ is the 

graph obtained by taking one copy of Huv and pasting the edge uv to the edge f of F, 

and G[Fs, C~J is the graph obtained by taking one copy of C~ and pasting the edge e to 

the edge f of F. 
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f~ 
G[Fs,Huvl G[Fs,C~1 

Figure 2.3: The graphs F, Huv, G[Fs, Huvl and G[Fs, C~l in Example 2.3.7 

It can be checked that aL(Huv) = {5,5,5,3,O}, aL(G[Fs,C~]) = {6,5,2,2,I,O} 

and aL(G[Fs, Huv]) = {6, 5, 5, 3,1, O}. Notice that aL(G[Fs, Huv]) can be obtained from 

aL(G[Fs, C~]) and aL(Huv) as described in Theorem 2.3.6. 

Remark 2.3.8. The largest Laplacian eigenvalue of a graph G is called the Laplacian 

spectral radius of G and is denoted by pL(G). Notice that G = G[Fs, Huvl in Theo­

rem 2.3.6 contains vertices of degree m. Thus by using Theorem 4.2 of ('lj, pL(G) 2:: 
m + 1 > 111 (Huv). This implies that pL (G) is one of the n + k eigenvalues of G that are 

independent of the graph Huv' 

Remark 2.3.9. In Theorem 2.3.6, if we take S = E(F), then G[Fs, Huvl is nothing 

but the edge corona F 0 H, where H = Huv - {u, v}. If F is a regular graph, then the 

complete L-spectrum of G[Fs, Huvl is described using the L-spectra of F and H {3S}. 

From Theorem 2.3.6 we have the following corollary, which enables us to construct 

infinitely many pairs of L-cospectral graphs. 

Corollary 2.3.10. Let F be a graph of order n, and H~v' H;y be two disjoint graphs 

of same order m, where n 2:: 2 and m 2:: 3. Let uv be a specified edge of H~v and xy be 

a specified edge of H;y such that dHtJu) = dHtJv) = dHfy(X) = dHfy(Y) = m - 1 and 

S be a k-element subset of E(F). If Fs is a regular graph and H~v is L-cospectral to 

H;y, then G[Fs, H~vl is L-cospectral to G[Fs, H;yl. 



Chapter '3 

On the distance spectral radius of graphs 

with r pendent vertices 

3.1 Introduction 

Let g~ be the class of all connected graphs of order n with r pendent vertices, where 

r ~ 1. In Section 3.2, we introduce a graph transformation which affects the distance 

spectral radius and in Section 3.3, we use it to determine the unique graph with minimal 

distance spectral radius in g~. 

Let 1I';;, be the class of all trees on n vertices with r pendent vertices and r",m be the 

class of all trees on n vertices with matching number m. The dumbbell D(n, a, b) consists 

of the path Pn - a - b together with a-independent vertices adjacent to one pendent vertex 

of P and lrindependent vertices adjacent to the other pendent vertex, where a, b ~ 1. 

Bit in [36], has determined the unique graph that minimizes the distance spectral radius 

in r",m. Furthermore, the author posed the following conjecture. 

Conjecture 3.1.1. Among trees on n vertices and matching number m, the dumbbell 

D(n, rnt1l - m, L nt1 J - m) is the unique tree that maximizes the distance spectral 

radius. 

In Section 3.4, we give an ordering of the components of the Perron vector of a 

dumbbell. As applications of this result, we give an affirmative answer to the Con­

jecture 3.1.1, and find the unique tree that maximizes the distance spectral radius in 

1l'~. 

In Section 3.5, we characterize the unique graph that maximizes the distance spectral 

radius in g~ for each r E {2, 3, n - 3, n - 2, n - 1}. In [61], Yu et al. have found the 

graph with maximal distance spectral radius in g~. They have also posed the following 

conjecture. 
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Conjecture 3.1.2. If G is a graph with the maximal distance spectral radius among 

all graphs on n vertices and r pendent vertices, then G ~ D (n, r ~ 1, l ~ J ), where 4 ~ 
r ~ n - 2. 

Using the results obtained in Section 3.4, we give an affirmative solution to the 

above conjecture. Hence the graph having the maximal distance spectral radius in g~ 

is completely characterized. 

3.2 A Transformation 

Here we give a graph transformation which will be useful to derive one of our main 

results of this chapter. 

Lemma 3.2.1. Let G be a graph with a clique Ks of order s (s 2: 2) and u, v be two 

vertices on the clique with p, q pendent vertices, respectively, where dc(v) = q + s - 1. 

If p 2: q 2: 1 and G' = G - vw + uw, where w is a pendent vertex adjacent to v in G, 

then p( G) > p( G'). 

Proof. 

G G' 

Figure 3.1: The graphs G and G' in Lemma 3.2.1 

Let the vertices of G and G' be labelled as in Fig 3.1. We partition V(G) = 
V(G') into Al U A2 U {u} U {v} U A U B U {bq }, where A = {aI,a2, ... ,ap }, B = 

{bI,b2, ... ,bq- I }, Al = {w I d(w,u) < d(w,v)} - A - {u,bq }, A2 = {w I d(w,u) = 

d(w, v)}. As we pass from G to G', the distances within A U Al U A2 U {u} U {v} U B 

are unchanged; the distance of bq with A2 is also unchanged; the distance of bq from 

a vertex in A U Al U {u} is decreased by 1, whereas the distance of bq from a vertex 

in B U {v} is increased by 1. If the distance matrices are partitioned according to 
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AI, A2, {u}, {v}, A, B, and {bq }, then their difference is 

0 0 0 0 0 0 eAl 
0 0 0 0 0 0 0 
0 0 0 0 0 0 1 

D(G) - D(G') = 0 0 0 0 0 0 -1 
0 0 0 0 0 0 eA 
0 0 0 0 0 0 -eB 
T 0 1 -1 eT -e~ 0 eAl A 

where e~ = (1, ... , If = nl~1 and i = AI, A, B. We denote p(G) by P and p(G') by 
'-v--' 

I~I 
Pl. Let X be an eigenvector of D( G') corresponding to Pl. By symmetry the com-

ponents of X have the same value, say a for the vertices in Au {bq } and b for the 

vertices in B whereas we take the components of X as Yl, Y2, . . , ) Yt, for the vertices in 

AI, Zl, Z2,' .. ,Zl, for the vertices in A2, Xl for u and X2 for v. Then X can be written as, 

We now have 

~(p - Pl) ? ~XT(D(G) - D(G'))X > a [Xl - X2 + pa - b(q - 1) + t y,]. (3.2.1) 

From eigenequations we have 

t 

PIX2 - PIXI - Xl + (P + l)a - X2 - (q - l)b + 2: Y~ 
~=l 

t 

(p+l)a-(q-l)b+ LY~' 
~=l 

t 

Xl - X2 - b - qb + pa + 3a + L Y~ 
~=l 

t 

=>(PI+l)(b-a) - XI-X2-qb+pa+2a+LY~' 
~=l 

I 

2: ZJ + 2X2 - 2a + 2( q - l)b 
J=l 

I 

LZJ + 2(q -1)b. 
J=l 
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From (3.2.4), we conclude that a > X2. If we assume a ~ b, then the L.H.S. of (3.2.3) 

is non positive, whereas the R.H.S. of (3.2.3) is 

t 

Xl + q(a - b) + (p - q)a + 2a - X2 + LYt, 
t=l 

which is positive as a > X2, an absurdity. Thus we must have a < b. 

Therefore by (3.2.3), we have 

t 

Xl - X2 - qb + pa + 2a + LYt > 0 
t=l 

t 

~ q(a - b) > X2 - Xl - (p - q)a - 2a - LYt. 
t=l 

Again by (3.2.2), we have 

t 

q(a - b) + (p - q)a + a + b + LYt 
t=l 

> X2 - Xl + b - a, which gives X2 > Xl. 

Since distance matrix is nonnegative and irreducible, its spectral radius is bounded 

below by the minimum row sum and thus we have 

s+2q+p-2<Pl i.e.,2q+p<PI' 

If p = q + t, where t ~ 0, then 

pa - (q - 1)b p(a - b) + (t + 1)b 

-p- [X2 + (p - t)b - (p + 2)a - Xl - t Yt] + (t + 1)b 
PI + 1 t=l 

1 [ t -- P(X2 - xt) + p2(b - a) - ptb - 2pa - p LYt 
PI + 1 

t=l 

+(t + l)b(Pl + I)] 

and 

_1_ [(P + 1)a - (p - t - 1)b + t Yt] 
PI + 1 t=l 

_1 _ [p( a - b) + a + (t + 1)b + t Yt]. 
PI + 1 t=l 
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Therefore, pa - (q - l)b - (X2 - Xl) + L~=l Yz 

1 t 
= --[P(X2 -Xl)+ (p2 +p)(b-a) + (t+ l)bpl-ptb-2pa-a+ (PI -p) 'L yJ (3.2.6) 

PI + 1 z=l 

From (3.2.5), we have PI > 2q + p = 3p - 2t. 

Therefore, 

(t + l)bpl > (t + l)b(3p - 2t) 

Since t ~ 0 and q ~ 1, so 

ptb + 2bp + (2btp + bp - 2t2b - 2tb) 

> ptb + 2ap + b(2tp + p - 2t2 - 2t). 

2tp + p - 2t2 - 2t 2(p - q)p + p - 2(p - q)2 - 2(p - q) 

2q(1-q+p)-p 

Therefore, (3.2.7) gives 

2q(l+t)-p 

q + 2qt + q - p 

q + 2qt - t ~ 1. 

(t + l)bpl > ptb + 2ap + b > ptb + 2ap + a 

=? (t + l)bpl - ptb - 2pa - a > O. 

Using (3.2.6) and (3.2.8) in (3.2.1) we get, P> Pl. • 
3.3 Graph with Minimal Distance Spectral Radius 

in g~ 

In this section, we determine the graph with minimal distance spectral radius in 9~. 

Let K~ denote the graph obtained by joining k isolated vertices to one vertex of K n - k . 

Further, we notice that 9j = ¢. However, when n ~ 4, 9~ =1= ¢ if and only if 0 ~ 

r ~ n - 1; furthermore, 9;:-1 has only one graph, namely, K 1,n-l, and 9;:-2 consists of 

precisely all dumbbells D(n, a, b), where a + b = n - 2. 

Theorem 3.3.1. For n ~ 4 and 1 ~ r ::; n - 1, there is a unique graph in 9~ 

with minimal d'lstance spectral radius, namely K~ for r =1= n - 2 and the dumbbell 

D(n, n - 3, 1) for r = n - 2. 
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Proof. Suppose that G* is a graph with minimal distance spectral radius among all 

graphs in Q~. If r = n - 1, Q~ consists of only one graph, i.e., the star KI,n-1 = K~-l, 

and the result follows in this case. Assume that 1 :::; r :::; n - 3. Let P be the set of all 

pendent vertices of G*, and let W be the set of all quasi-pendent vertices of G*. We 

first claim that G*[V - Pj is a complete graph; otherwise by adding an edge between 

any two non adjacent vertices of V - P, the resulting graph still belongs to Q~ and by 

(1.4.2), it has a smaller distance spectral radius, which contradicts the minimality of 

G*. 

Thus, if r = 1, then clearly G* ~ K~. For 2 :::; r :::; n - 3, we claim that W contains 

exactly one point. Otherwise, let WI, W2 E W be two vertices such that there are p 

and q pendent vertices adjacent to WI and W2 respectively where, p ~ q, say. But then 

by Lemma 3.2.1, if we delete one of the pendent edges incident on W2 and make the 

corresponding pendent vertex adjacent to WI, the resulting graph still belongs to Q~ 

with a smaller distance spectral radius and that is a contradiction to the minimality of 

G*. Therefore G* ~ K~, for 1 :::; r :::; n - 3. Finally if r = n - 2, then G* is a dumbbell 

D(n,p,q), such that p + q = n - 2. Now by repeated application of Lemma 3.2.1, we 

conclude that G* ~ D(n, n - 3,1). • 

3.4 Components of the Perron vector of a dumbbell 

and some applications 

In this section, we give an ordering of the components of the Perron vector of a dumb­

bell, which will be useful to obtain the main result of this section. 

Lemma 3.4.1. Let G = D(n, k + t, k) be a dumbbell of diameter 2d and VOVI ... V2d be 

a diametrical path in it, where t ~ o. If 

X= (~'XI' ... 'X2d_I,~)T 
k k+t 

is the Perron vector of D(G), then Xd-t ~ Xd+t' where 1 :::; i :::; d and xJ corresponds to 

the vertex VJ , for each j = 0, 1, ... , 2d; equality holds only when t = O. 

Proof. Let the vertices of G = D(n, k + t, k) be labeled as in Fig. 3.2. If t = 0, 

then by symmetry, Xd-t = Xd+z for 1 :::; i :::; d. Assume t ~ 1. 
2d-1 d-I 

We first claim that L xJ + (k + t)X2d > kxo + LxJ • 

J=d+1 J=I 
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Figure 3.2: The dumbbell D( n, k + t, k) 

Otherwise, 
2d-1 d-1 
L x) + (k +t)X2d::; kxo + LX). 

3=d+l 3=1 

Then, from eigenequations we have 

Similarly, for 2 ::; i ::; d - 1, using eigenequations we have 

t d-t-1 t 2d-1 
p(G)(Xd-t - Xd+t) = - L 2jxd-) - 2i L x) - 2ikxo + L 2jxd+) + 2i L x) 

)=1 )=1 )=1 )=d+t+1 

+2z(k + t)X2d 

and 

t-1 d-t t-1 

P(G)(Xd-t+1 - Xd+t-1) - - L 2jxd-) - 2(i - 1) LX) - 2(i - 1)kxo + L 2jXd+) 
)=1 )=1 )=1 

2d-1 
+2(i - 1) L x) + 2(i - 1)(k + t)X2d. 

)=d+z 

By (3.4.3) and (3.4.4), we get 

p(G)(Xd-t - Xd+z) - P(G)(Xd-z+1 - Xd+t-1) 

- 2 L~. x, + (k +I)X'd - kxo - ~x,] 

- 2 L~, x, + (k+ t)x", - kxo - ;x,]- 2 ~ [xd+, - xd-,]. (3.4.5) 

We now prove Xd-t - xd+t ::; 0 by induction on i, where 1 ::; i ::; d - l. 

If i = 1, then by (3.4.2) we get, Xd-l ::; Xd+l. 
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For i ~ 2, by the induction hypothesis Xd-J - xd+J ~ 0, where 1 ~ j ~ i - 1. Thus, 

~-1 

-2 L [Xd+J - Xd- J] ~ O. 
J=1 

Hence, by (3.4.5) we have 

P(G)(Xd-~ - Xd+~) - p(G)(Xd-~+l - Xd+~-1) < 0 

:::} P(G)(Xd-~ - Xd+~) ~ p(G)(Xd-~+1 - xd+~-d < 0 [by the induction hypothesis] 

Therefore, we have proved that Xd-~ - Xd+~ ~ 0, where 1 ~ i ~ d - 1. 

Again, 

p(G)(Xo - X2d) - P(G)(XI - X2d-l) 

:::} (p(G) + 2)(xo - X2d) 

~ 0, 

2(X2d - xo) 

P(G)(XI - XU-I) ~ 0 

2d-l d-l 

which in turn gives L xJ + (k + t)X2d > kxo + L XJ' a contradiction to (3.4.1). 
J=d+l 

Hence the claim is established. 
J=1 

Therefore, from (3.4.2) we get Xd-l > Xd+l. Proceeding as mentioned above and 

using induction, we get Xd-~ > Xd+~, where 1 ~ i ~ d. • 
Corollary 3.4.2. Let G = D(n, k + t, k) be a dumbbell of dwmeter 2d and VOVI ... V2d 

be a diametrical path in it, where t ~ 1. If 

is the Perron vector of D(G), where xJ corresponds to the vertex VJ for j = 0, 1, ... , 2d, 

then 

Similar to the above lemma and the corollary, we have the following results. 
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Lemma 3.4.3. Let G = D(n, k+t, k) be a dumbbell of diameter 2d+l and VOVI ... V2d+1 

be a diametrical path in it, where t ~ o. If 

x = (xo, ... , Xo, Xl, ... , X2d, X2d+I, . .. , X2d+I) T 
'---~ , " 
~ V' 

k k+t 

is the Perron vector of D(G), then Xd-i ~ Xd+i+l, where 0 ::; i ::; d and Xj corresponds 

to the vertex Vj, for each j = 0,1, ... ,2d + 1; equality holds only when t = 0. 

Corollary 3.4.4. Let G = D(n, k + t, k) be a dumbbell of diameter 2d + 1 and 

VOVI ... V2d+1 be a diametrical path in it, where t ~ 1. If 

is the Perron vector of D(G), where Xj corresponds to the vertex Vj for j = 0,1, ... , 2d+ 

1, then 

The following lemma will be useful to prove our main result. 

Lemma 3.4.5. If k ~ 2, then 

p(D(n, k, k)) > p(D(n, k + 1, k - 1)) > ... > p(D(n, 2k - 1,1)). 

G = D(n,k,k) G' = D(n, k + 1, k -1) 

Figure 3.3: The graphs in Lemma 3.4.5 

Proof. Let us denote D(n, k, k) and D(n, k + 1, k - 1) by G and G' , respectively. 

Case 1: Suppose the diameter of G is 2d + 1, and label the vertices as in Fig. 3.3. 
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If X = (~, Xl, ... , X2d'~2d+I'.",., X2d+I,) T is the Perron vector of D(G'), 
k-l k+l 

then from G to G' we have, 

~(p(G) - p(G')) > ~XT(D(G) - D(G'))X 

- X2d+1 [(2d - l)(k - 1) (X2d+1 - xo) + (2d - 1)X2d+1 

d 

+ L(2d - 2i + 1) (X2d-HI - X z)]. 

z=l 

d 

Claim: (2d-1)(k-1)(x2d+1-xo) +(2d-1)x2d+1 + L)2d-2i+1)(X2d-Z+I-XZ) > o. 
z=l 

Suppose to the contrary that 
d 

(2d - l)(k - 1) (X2d+1 - xo) + (2d - 1)x2d+1 + L)2d - 2i + 1) (X2d-Z+1 - xz) ~ o. 
z=l 

Then, from eigenequations we have 

p(G')(Xo - X2d+d 

(2d + 1) (X2d+1 - xo) + (2d - l)(k - 2) (X2d+1 - xo) + 2(2d - 1)X2d+1 
d 

+ L)2d - 2i + 1) (X2d-Z+1 - Xz) 
z=l 

- 2 [(2d - I)(k - I) (xu+, - xo) + (2d - l)x2d+' + 

t.(2d - 2i + I) (X2d-'+' - X,)] + t.(2d - 2i + I) (X, - xu-,+,) 

+{(2d - l)(k - 1) - 2} (xo - X2d+1) 

< 2 [(2d - I)(k - I) (xu+, - xo) + (2d - I)X2d+l + t(2d - 2i + I) (xu-,+, - X,) ] 

+( 1 + p(~,) [t.(2d - 2i + 1) (xo - X2d+1)] 

+{(2d -l)(k -1) - 2}(xo - X2d+1) [by Corollary 3.4.4], 

i.e., 

[P(G') - [(I + p(~')){ t.(2d - 2i + I)} + {(2d - I)(k - I) - 2}] ] (xo - X2d+!) 

@] 
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or 

2 [(2d - l)(k - 1) (X2d+! - XO) + (2d - l)x2d+! + t,(2d - 2i + 1) (X2d-HI - X,) 1 
< 0 

Since the spectral radius is bounded below by minimum row sum, we have 

Hence, (3.4.7) implies that Xo - X2d+l ~ 0, a contradiction to the fact Xo > X2d+l, as 

given by Lemma 3.4.3. Hence the claim, and therefore by (3.4.6) we get p(G) > p(G'). 

G = D(n,k,k) G' = D(n,k + l,k -1) 

Figure 3.4: The graphs in Lemma 3.4.5 

Case 2: Suppose the diameter of G is 2d, and label the vertices as in Fig. 3.4. 

If X = (~,X., ... 'X2d-I'~) T is the Perron vector of D(G'), then 

k-l k+l 
from G to G' we have, 

~(p(G) - p(G')) > ~XT(D(G) - D(G'))X 

X2d [(2d - 2)(k - 1) (X2d - xo) + (2d - 2)X2d 

d-l 
+ I)2d - 2i) (X2d-l - Xl)]. 

l=l 

d-l 
Claim: (2d - 2)(k - 1) (X2d - xo) + (2d - 2)X2d + L(2d - 2z) (X2d-l - Xl) > O. 

l=l 
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Suppose to the contrary that 

d-l 

(2d - 2)(k - 1) (X2d - xo) + (2d - 2)X2d + L(2d - 2i) (X2d-t - xt) ::; O. 
t=l 

Then, from eigenequations we have 

I.e., 

or 

p(G')(Xo - X2d) 

2d( X2d - xo) + (2d - 2)(k - 2) (X2d - xo) + 2(2d - 2)X2d 

d-l 

+ L(2d - 2i) (X2d-t - xt) 
t=l 

2 [(2d - 2)(k - 1) (X" - xo) + (2d - 2)xu + ~(2d - 2i) (xu-. - x.) ] 

d-l 

+ L (2d - 2i) ( Xt - X2d-t) + {( 2d - 2) k - 2d} ( Xo - X2d ) 
t=l 

< 2 [(2d - 2)(k - 1) (X'd - xo) + (2d - 2)X'd + ~(2d - 2i) (X'd-. - X.)] 

+( 1+ p(~')) [~(2d - 2i) (xo - xu) ] + {(2d - 2)k - 2d}( Xo - X,,) 

[by Corollary 3.4.2], 

[P( G') - [( 1 + p( ~')){ ~ (2d - 2i) } + { (2d - 2) k - 2d} l] (xo - X'd) 

2 [(2d - 2)(k -1) (xu - xo) + (2d - 2)xu + ~(2d - 2i) (X2d-. - X.)] sO 

Since the spectral radius is bounded below by minimum row sum, we have 

Hence, (3.4.9) implies that Xo - X2d ::; 0, a contradiction to the fact Xo > X2d, as given 

by Lemma 3.4.1. Hence the claim, and therefore by (3.4.8) we get p(G) > p(G'). 
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The other inequalities can be proved in a similar way. 

Similar to the above lemma, we have the following lemma. 

Lemma 3.4.6. If k ~ 2, then 

p(D(n, k + 1, k)) > p(D(n, k + 2, k - 1)) > ... > p(D(n, 2k, 1)). 

• 

If v is a vertex of a tree T, then the components of T - v are called the branches 

of T at v. For u E NT(v), we denote the branch of T resulting from deletion of v 

and containing u by Tu. If H is a sub graph of G, then the sum of the components of 

the Perron vector of D(G) corresponding to the vertices in H is denoted by S(H). As 

applications of the results obtained in this section, we give an affirmative solution to 

the Conjecture 3.1.1. The following lemmas will be helpful in doing so. 

Lemma 3.4.7. [61 J Let u be a cut vertex of a graph G such that G - {u} has at 

least three components GI,G2 ,G3 and S(G1 ) ~ S(G2 ), where S(G i ) is the sum of 

the components of the Perron vector of D( G) corresponding to the vertices in Gi , for 

i = 1,2. If G' G - L uv + L WV, where w is any vertex in GI , then 
VENG3 (u) . VENG3(u) 

p(G') > p(G). 

Lemma 3.4.8. [62J Suppose uv is a cut-edge of a connected graph G, but uv is not a 

pendent edge. If G' is the graph obtained from G by identifying u and v, and creating 

a new pendent vertex at the identified vertex, then p( G) > p( G'). 

Theorem 3.4.9. The dumbbell D(n, rn111 - m, l n11 J - m) is the unique tree that 

maximizes the distance spectral radius in ~m. 

Proof. If m = 1, then the result is trivial. Suppose m ~ 2, and let T be a tree 

in ~m with maximal distance spectral radius. Then T has two quasi-pendent vertices. 

Otherwise, there exists a vertex v in T such that T - v has at least three components, 

and at least two of which are nontrivial. Let Tx, Ty, Tz be three branches at the vertex 

v of T, and M be an m-matching of T. Then, at least two of vx, vy and vz are not in 

M. 

Case 1: Suppose Tx and Ty are non-trivial and vz is not in M. 

Without loss of generality assume that S(Tx) ~ S(Ty) and let VI be a quasi-pendent 

vertex of Ty • Then the tree T' = T - vz + VIZ is in ~m, and by Lemma 3.4.7, p(T') > 
p(T), a contradiction to the maximality of T. 

Case 2: Suppose vz is in M and Tz is non-trivial. 
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Then both vx and vy are not in M, and say Tx is non triviaL Reversing the roles of 

y and z in Case 1, we have a contradiction. 

Case 3: Suppose vz is in M and Tz is trivial. 

Then using Lemma 3.4.8 the tree T' = T - vx + zx still has matching number m, 

but has a larger distance spectral radius than T, a contradiction to the maximality of 

T. 

Thus T ~ D(n, a, b), for some a and b. If a = b = 1, then the result follows trivially. 

Suppose a = max(a, b) > 1, then any m matching ofT can not be a perfect matching 

of a diametrical path. Otherwise, by Lemma 3.4.8, we get T' ~ D(n, a-I, b) E ~m, 

and peT') > peT), a contradiction. Thus, if max(a, b) > 1, then Pn - a - b is of order 

2m -1. By Lemmas 3.4.5 and 3.4.6, we get T ~ D(n, rnt1l - m, l nt1 J - m). • 

We now find the tree having maximal distance spectral radius in 1r~. Since 1r~-1 = 

{Sn}, so there is nothing to do in this case. Let us now consider 2 ~ r ~ n - 2. 

Theorem 3.4.10. The dumbbell D(n, r~l, l~J) umquely maxzmnes the dzstance spec­

tral radws zn 1r~. 

Proof. Let T be a tree in 1r~ with maximal distance spectral radius. Then T has 

two quasi-pendent vertices. Otherwise, there exists a vertex v in T such that T - v 

has at least three components, and at least two of which are nontrivial. Let Tx , Ty , Tz 

be three branches at the vertex v of T, and Tx , Ty are non-trivial. Without loss of 

generality assume that S(Tx) 2 S(Ty). If VI is a non-pendent vertex of Ty, then the 

tree T' = T - vz + VIZ is in 1r~ and by Lemma 3.4.7, peT') > peT), a contradiction 

to the maximality of T. Thus T ~ D(n, a, b), where a + b ~ r. By Lemmas 3.4.5 and 

3.4.6, we get T ~ D(n, r~l, l~J)· • 

3.5 Graph with Maximal Distance Spectral Radius 

in g~ 

In this section, we characterize the graph with maximal distance spectral radius in g~. 

Clearly G~-l = {K1,n-d and hence for r = n - 1, the discussion is trivial. 

Theorem 3.5.1. The dumbbell D(n, rn;-21, l n;-2 J) umquely maxzmzzes the dzstance 

spectral radzus zn g~-2, where n 2 4. 

Proof. Clearly g~-2 contains only dumbbells D(n, p, q), where p + q = n - 2. Thus 

by Theorem 3.4.10, we have the result. • 
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Let G be a simple graph and v be one of its vertices. A pendent path in G is 

a path having one end vertex of degree at least 3, the other is of degree 1 and the 

intermediate vertices are of degree 2. For k, l ~ 0, G( v, k, l) denotes the graph obtained 

from G U Pk U PI by adding edges between v and one of the end vertices in both Pk 

and PI' The broom Bn,s is the tree consisting of a star 8s+1 along with a path Pn- s - 1 

attached to a pendent vertex of the star. 

To prove our next results we need the following two lemmas. 

Lemma 3.5.2. [57] If k ~ l ~ 1, then p(G(v, k, l)) < p(G(v, k + 1, l - 1)). 

Lemma 3.5.3. [57J Let T f Bn,tl be an arbitrary tree on n vertices with the maximum 

vertex degree ~, where 3 ~ ~ ~ n - 2, then p(Bn,tl) > p(T). 

Theorem 3.5.4. The dumbbell D(n, rn;31, In;3 J) uniquely maximizes the distance 

spectral radius in g~-3, where n ~ 6. 

Proof. Let G1 E g~-3 be a graph with maximum distance spectral radius. Since 

G1 has three non pendent vertices, so they induce either a path or a triangle. If they 

induce a path then by Theorem 3.4.10, the result follows. 

If they induce a triangle then there will be two cases. 

Case 1: At least two vertices of the triangle are quasi-pendent vertices. If we remove 

an edge joining two quasi-pendent vertices then the resulting graph belongs to g~-3 

and has larger spectral radius than G1, which is a contradiction. 

Case 2: Exactly one vertex of the triangle is a quasi-pendent vertex. Then removing 

an edge of the triangle incident on the quasi-pendent vertex we get D(n, n - 3,1) 

and p(D(n,n - 3,1)) > p(G1). Then by Lemma 3.5.2, we have p(D(n,n - 4,1)) > 
p(D(n, n - 3, 1)) and D(n, n - 4, 1) belongs to g~-3, a contradiction. • 
Theorem 3.5.5. The broom Bn,3 has the largest distance spectral radius in g~, where 

n ~ 4. 

Proof. Let g~3) be the class of all connected graphs on n vertices, having at least 

three pendent vertices. Clearly g~ C g~3). Suppose G E g~3) is a graph, having maximal 

distance spectral radius. We first observe that G is a tree, as otherwise, the deletion 

of an edge from a cycle in G results in a graph G' E g~3) with p(G) < p(G'). We 

now claim that G E g~. If not, then G has at least four pendent vertices. Then, 

we can find two pendent vertices U and v in G, which are the end points of two 

pendent paths UUl ... upw and VV1 ... VqW, where Ul, ... ,uP' VI, ... ,Vq are all distinct. 

Let L1 = UU1.·. up and L2 = VVl ... v q . Then G ~ H(w,p, q), where H = G- (£1 UL2). 



Chapter 3 On the distance spectral radius of graphs with r pendent vertices 

Applying Lemma 3.5.2, on G ~ H(w,p, q) repeatedly we will end up in a graph 

Gil having at least three pendent vertices with p( G) < p( Gil). This contradicts the 

maximality of G and so G E g~. But then G is a tree with maximum degree 3. So by 

Lemma 3.5.3, G ~ Bn •3 and the result follows. • 

Theorem 3.5.6. The path Pn is the unique graph with maximal distance spectral radius 

in g~, where n ~ 3. 

Proof. It is obvious that Pn E g~. Let G be any graph in g~ and G =I- Pn . Then 

for any spanning tree T of G, using (1.4.1) we have p(G) ~ p(T). Again from [55], we 

know that among trees on n vertices, the path Pn has the maximal distance spectral 

radius, where n ~ 3. So p(G) < p(Pn) and the result follows. • 

In [61], Yu et al. have proved that P~ is the graph with maximal distance spectral 

radius in g~, where P~ is obtained from a triangle C3 by attaching a path of length 

n - 3 to one of its vertices. For 2 ~ r ~ n - 2, they showed that the graph with 

maximal distance spectral radius in g~ is a dumbbell and posed the Conjecture 3.1.2. 

Theorem 3.4.10 essentially proves the Conjecture 3.1.2 to be true for all values of r, 

where 2 :s; r :s; n - 2. Hence, the graph having the maximal distance spectral radius in 

g~ is completely determined. 



Chapter 4 

On the distance spectral radius of graphs 

without a pendent vertex 

4.1 Introduction 

Let Cp and Cq be two vertex-disjoint cycles. Suppose Vo is a vertex of Cp and VI is a 

vertex of Cq • The graph obtained by joining Vo and VI by a path VOVI ... VI of length 

I (where I 2 0; I = 0 means identifying Vo with VI) is an infinity and is denoted by 

oo(p; l; q). A bicyclic graph containing an infinity oo(p; I; q) as an induced subgraph is an 

oo(p; I; q)-graph. Let Pp+1 = XIX2'" Xp+1, PHI = YIY2·· . Yt+1 and Pq+1 = ZI Z2··· Zq+1 

be three vertex-disjoint paths. Identifying the initial vertices as uo and the terminal 

vertices as Vo of these paths results in the graph O(p; t; q), called a theta. A bicyclic 

graph containing a theta O(p; t; q) as an induced subgraph is a O(p; t; q)-graph. We call 

the vertices uo and Vo of O(p; t; q)-graph as distinguished vertices. 

A cactus is a connected graph, in which any two cycles have at most one vertex in 

common. Let C(n, k) be the class of all cacti on n vertices and k cycles. A saw-graph 

of order n and length k is a cactus obtained from a path of length n - k by replacing k 

of its blocks with k triangles, where 0 :s; k :s; L n;-I J. A saw graph of length k and order 

2k + 1 is a proper saw-graph. The saw-graph obtained by joining an end of a proper 

saw graph of length p with an end of another proper saw graph of length q by a path of 

length I is denoted by S(p, q; l). If I = 0, then we have the proper saw-graph of length 

p + q. A balanced saw-graph of length k is obtained by joining two proper saw-graphs 

of lengths l~J and r~l by a path. An unbalanced saw-graph is obtained by joining two 

proper saw-graphs of lengths p and q by a path such that 1 p - q 12 2. We shall use 

the following result from [13]. 

Lemma 4.1.1. [13] If G is a graph with maximal distance spectral radius in C(n, k), 
then G ~ S (p, q; l), where p + q = k and l = n - 2k - 1. 

Let g~ be the class of all graphs on n vertices with r pendent vertices. For 1 :s; 
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r :::; n - 1, the graph having the maximal (minimal) distance spectral radius in g~ 

is obtained in Chapter 3. In this Chapter, we consider the case r = 0, and hence 

the structure of the graph with maximal (minimal) distance spectral radius in g~ is 

completely characterized. By (1.4.2), it is obvious that Kn is the graph having the 

minimal distance spectral radius in g~. 

Clearly, C3 and C4 are spanning subgraphs of any graph in gg and g2, respectively, 

whereas C5 or 00(3; 0; 3) is a spanning subgraph of any graph in g~. It can be verified 

that Cn is the graph with maximal distance spectral radius in g~, where 3 :::; n :::; 5. 

In this chapter, we prove that for n ~ 6, 00(3; n - 5; 3) is the unique graph with 

maximal distance spectral radius in g~. 

4.2 Preliminary Lemmas 

In this section we establish some preliminary lemmas, which will be useful to derive 

our main result. 

Lemma 4.2.1. lin ~ 7, then p(00(3;n - 5;3)) > p(Cn ). 

Proof. Let us denote 00(3; n - 5; 3) by G and label the vertices III V(Cn ) = 
V(00(3; n - 5; 3)) as shown in Fig. 4.1. As we pass from Cn to G, the following changes 

occur: 

The distances of Vn are decreased by 1 from {v r ~ 1 ' v r ~ 1 + I' ... , Vn -2} and is in-

creased by n-4 from VI; the distances of VI are decreased by 1 from {V3' V4,· .. , vr~ l} 
and is increased by n - 5 from Vn-I; distances among other vertices are increased or 

remain unchanged. 

Vn-l 

Figure 4.1: The graphs Cn and G in Lemma 4.2.1. 

If X is the Perron vector of D(Cn ), then by symmetry we have Xi = a (say), for all 
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i = 1,2, ... , n. Therefore 

~(p(G) - p(Cn)) > ~XT(D(G) - D(Cn))X 

> [n - 4 - ( l ~ J - 1) ] a2 + [n - 5 - ( l ~ J - 1) ] a2 

- (f~l-3)a2+(f%l-4)a2= (2f%l-7)a2
>0. 

Hence, p(G) > p(Cn). • 

Let Gil be the 00(3; 0; 3)-graph obtained by identifying an end vertex of a path of 

length n - 5 with a vertex of degree 2 in 00(3; 0; 3). If the vertices of Gil are labeled as 

in Fig. 4.2, then we have the following result. 

Vn-l V n -2 

Gil 

Figure 4.2: The graph Gil in Lemma 4.2.2. 

Lemma 4.2.2. If n ~ 9 and X = (xo, Xl,"" Xn-l) T is the Perron vector of D(G") , 
then 

where 0 S; i S; l n;3 J and xJ corresponds to the vertex VJ ' for each j = 0,1, ... ,n - 1; 

equality holds only at i = 0, if n is odd. 

Proof. We first claim that 

Otherwise 
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Then from eigenequations we have 

o , if n is odd; 
n-l ln23j 
L xJ - L xJ , if n is even, 

J=r n 231 J=O 

which gives xl n 23 j - x rn231 ~ O. Similarly for 1 ~ i ~ l n~7 J ' using eigenequations we 

have 

p(G") (xl n 23 j-t - xrn231+t) - p(G") (xl n 23 j-t+l - xrn231+t-1) 

2 [ ~ x, _ l "~ -, x,] 
J=r n 23 1+t J=O 

= 2 [ ~ xJ - lfj XJ] -2I: [xrn231+J -Xln23j-J]. (4.2.4) 
J=r n 231 J=O J=O 

We now prove xl n 23 j-t - xrn231+t ~ 0 by induction on i, where 0 :S i ~ l n~7 J . 
If i = 0, then by (4.2.3) we get xl n 23 j - xrn231 ~ O. 

For i ~ 1, by induction hypothesis xl n 23 j-J - xrn231+J :S 0, where 0 :S j ~ 1, - l. 

Thus 
t-l 

-2L[xrn231+J-Xln23j-J] ~O. 
J=O 

Hence by (4.2.2) and (4.2.4), we have 

p(G") (xl n 23 j-t - xrn231+t) - p(G") (xl n 23 j-t+l - xrn231+t-1) ~ 0 

==> p(G") (Xln23j-t -xrn231+t) ~p(G") (Xln23j-t+l-xrn231+t-l) ~O 
[by induction hypothesis] 

==> xl n 23 J-t - xr n 23 1+t :s o. 

Therefore if 0 ::; i ::; l n~7 J ' then we have proved by induction on i, that 
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Similarly from eigenequations, we have 

p(G")(XI - Xn-4) - p(G")(X2 - Xn-5) 

- 2 (Xn-4 + Xn-3 + Xn-2 - Xo - Xl) + Xn-! (4.2.6) 

- 2 L~,t -L~J Xl] 

In;7J 
-2 L [Xfn;31+J -Xln;3J-J] -Xn-l 

J=O 

< 0 [by (4.2.2) and (4.2.5)] 

:::;. p(G")(XI - Xn-4) < p(G")(X2 - Xn-5) :::; 0 [by (4.2.5)] 

and p(G")(xo - Xn-3) - p(G")(Xl - Xn-4) 

2(Xn-3 - xo) + Xn-2 

2 [ I: xJ - lI:J 
XJ] 

J=fn;31 J=O 

l n;5 J 
-2 L [Xfn;31+J - xl n;3 J-J] - Xn-2 - 2Xn-l 

J=O 

< 0 [by (4.2.2) and (4.2.5)] 

:::;. p(G")(xo - Xn-3) < p(G")(Xl - Xn-4) < 0 [by (4.2.7)] 

:::;. Xo - Xn-3 < O. 

From (4.2.5), (4.2.7), and (4.2.9) we have 

This is a contradiction to (4.2.2) and hence the claim is established. 

Therefore from (4.2.3) we get, xl n;3 J ~ Xfn;31' where the equality holds only if n 

is odd. Proceeding as mentioned above and using induction we get 

In -7J Xln;3J_z > Xfn;31+z' where 1:::; i:::; -2- . (4.2.10) 
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Adding (4.2.6) and (4.2.8), we get 

p(G")(xo - Xn-3) - p(G")(X2 - Xn-5) 

- -4xo - 2Xl + 2Xn-4 + 4Xn-3 + 3Xn-2 + Xn-l 

l n-l In;-3 j ] In;-7j 
2 L x) - L x) - 2 L [xrn;-31+) - xl n;-3 j_)] 

)= r n;-31 )=0 )=0 

+2(Xn-3 - Xo) + (Xn-2 - xn-d 

=> (p( G") + 2) (xo - Xn-3) - p( G")(X2 - Xn-5) 

2 [ ~ x, - If\] + (Xn-2 - Xn-l) 
)=r n ;-31 )=0 

In;-7j 

-2 L [xrn;-31+) -Xln;-3j_)] 
)=0 

Again from eigenequations we have 

and 

n-5 
p(G")(Xn-2 - xn-d = LX] - Xn-3 + 2(Xn-l - Xn-2) 

)=0 

n-5 
=> (p(G") + 2) (Xn-2 - Xn-l) - LX) - Xn-3 

)=0 

> X2 + Xn-6 + Xn-5 - Xn-3 

> Xn-6 + 2Xn-5 - Xn-3 

[by (4.2.10), X2 > Xn-5], 

p(G") (Xn-6 + 2Xn-5 - Xn-3) > -Xn-6 - Xn-5 + 7Xn-3 

=> (p( G") + 1) (Xn-6 + 2Xn-5 - Xn-3) > Xn-5 + 6Xn-3 > 0 
=> Xn-6 + 2Xn-5 - Xn-3 > O. 

Using (4.2.13) in (4.2.12) we have 

Xn-2 - Xn-l > O. 

Therefore, using (4.2.1), (4.2.10), and (4.2.14) in (4.2.11) we have 

(p(G") + 2)(xo - Xn-3) > P(G")(X2 - Xn-5) > O. 

=> Xo - Xn-3 > O. 

(4.2.11) 

( 4.2.12) 

(4.2.13 ) 

(4.2.14) 

( 4.2.15) 
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Finally subtracting (4.2.8) from (4.2.6), we get 

2p(G")(XI - Xn-4) - p(G")(X2 - Xn-5) - p(G")(XO - Xn-3) 

-2XI + 2Xn-4 + Xn-2 + Xn-l 

=? (2p( G") + 2) (Xl - Xn-4) - p( G")(X2 - Xn-5) 

p(G")(xo - Xn-3) + Xn-2 + Xn-l > 0 [by (4.2.15)] 

=? (2p(G") + 2) (Xl - Xn-4) > p(G")(X2 - Xn-5) > 0 
=? Xl - X n -4 > O. (4.2.16) 

Hence by (4.2.10), (4.2.15), and (4.2.16) we have Xln;:3J_z ~ Xfn;:31+z' where 0 ~ i ~ 

ln23J. • 
From the proof of the above lemma we have the following corollary. 

Corollary 4.2.3. Ifn ~ 9 and X = (xo, Xl, ... , Xn-l) T is the Perron vector of D(G"), 

where xJ corresponds to the vertex VJ for j = 0,1, ... ,n - 1, then 

(i) xl n;:3 J -z - Xfn;:31 +z > xl n;:3 J -z+1 - X fn;:31 +z-l' where 1 ~ i ~ l n27 J 

(ii) (1 + P(~"») (xo - Xn-3) > (Xl - Xn-4) and 

(iii) (1 + P(~"») (xo - Xn-3) > (X2 - Xn-5). 

It was conjectured in [13], that S (l~J, f~l;n - 2k -1) uniquely maximizes the 

distance spectral radius in C(n, k). The following lemma together with Lemma 4.1.1 

prove the conjecture for k = 2. 

Lemma 4.2.4. If n ~ 6, then p(00(3; n - 5; 3)) > p(G"). 

Vn-l V n -2 Vn-l V n -2 

.e-_e-_e ... 
VO Vl Vn [) Vn 4 Vn 3 

VO Vn-3 

G" 
00(3; n - 5; 3) 

Figure 4.3: The graphs G" and 00(3; n - 5; 3) in Lemma 4.2.4 

Proof. For n E {6, 7, 8} it can be easily verified that p(00(3; n - 5; 3)) > p(G"). So 

let n ~ 9 and denote 00(3;n - 5;3) by G and label the vertices in V(G) = V(G") as 
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in Fig. 4.3. If X is the Perron vector of D( G") and X t denotes the component of X 

corresponding to vertex V t , where 0 ~ i ~ n - 1, then from G" to G we have 

~(p(G) - p(G")) 

> ~XT(D(G) - D(G"))X 
2 

r 
L n;5 J 

> Xn-l (n - 5) (Xn-3 - xo) + ~ (n - 2k - 4)(Xn-k-3 - Xk) 

+ Xn-4 + 2 ~ xJ + Xfn;31 + (n - 5)xn-2] (4.2.17) 
J= rn;11 

Claim: 

l n;5 J 
L - (n - 5)(Xn-3 - xo) + L (n - 2k - 4)(Xn-k-3 - Xk) + Xn-4 

k=l 
n-5 

+2 L xJ + X[n;31 + (n - 5)Xn-2 > O. 
J= [n;ll 

To the contrary, if L ~ 0, then from eigenequations we have 

L n;3 J 
p( G")(xo - Xn-3) L (n - 2k - 3)(Xn-k-3 - Xk) + (n - 4)Xn-2 

k=O 

+(n - 6)Xn-l' (4.2.18) 

By (4.2.18), we have 

p(G")(Xo - Xn-3) 
L n;5 J 

- 2L + (n - 7)(xo - Xn-3) + L (n - 2k - 5)(Xk - Xn-k-3) - 2Xn-4 
k=l 

-4 ~ x, + W ;3 J - rn ;31h';'J 
J=[n;ll 

+ (r n ; 31-l n ; 3 J - 2) X[n;31 + (n - 6)(Xn-l - Xn-2) 

@] 
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i.e., 

[
l n-sJ ] 

< 2£ + (n - 7){xo - Xn -3) + (1 + p(~")) t, (n - 2k - 5){xo - Xn -3) 

+[ (In;3j - rn;3l)XL"'J + W;31-ln;3j -2)xr','1 
-2Xn-4 - 4 I: Xj + (n - 6)(Xn-l - Xn-2)] [by Corollary 4.2.3], 

j=rn;ll 

[ { 
l n;s J }] 

p{G") - (n - 7) + (1 + p{~")) (; (n - 2k - 5) (xo - Xn -3) 

< [(ln~3J - rn~31)xln;3J + (rn~31-ln~3J -2)xrn;31 
n-5 ] 

-2Xn-4 - 4 L Xj + (n - 6)(Xn-l - Xn-2) + 2L 
j=rn;ll 

< 0 [by assumption and (4.2.14)]. (4.2.19) 

We have 

In-5J {(n_7)(n-5) ·f . dd· 
2 4 ,lnlso, 

L (n - 2k - 5) = 
k 1 (n-6)2·f . 

= 4' 1 n IS even. 

( 4.2.20) 

If f(j) denotes the row sum in D(G") corresponding to the vertex Vj of Gil, then for 

o ~ j ~ n - 5, we have 

f(j) = j(j + 1) + (n - j - 3)(n - j - 2) + (n _ j _ 4) + (n - j - 3) 
2 2 . 

Since f'(j) = 2j - n + 1, therefore as a function over JR, f will have minimum at 

j = n;l. Hence as a function over Il, f has a minimum at j = l n;1 J or j = rn;11 ' 
because f is a quadratic polynomial. Now 

f(ln~lJ) =f(rn~11) = {n:~17, Ifn IS odd; 

n 4 16 , If n IS even. 
(4.2.21 ) 

Also, the row sum in D(G") corresponding to the vertex Vn -4 of G" is f(n - 4) = 
n2 -7n+18 and 

2 ' 

f(n - 4) ~ min{f(n - 1), f(n - 2), f(n - 3), f(n - 4)}. ( 4.2.22) 

[E] 
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From (4.2.21) and (4.2.22), the minimum row sum in D(G") is 

f (In; 1J) = {n:~17 , lfn ffi odd; 
n 4 16 ,If n IS even. 

Since the spectral radius is bounded below by the minimum row sum, therefore 

p(G") > { 

If n is odd then by (4.2.20), we have 

, if n is odd; 

, if n is even. 

[ L~J ] 
(n - 7) + (1 + p( ~") ) tt (n - 2k - 5) 

_ (n-7) (1 _2_) (n-7)(n-5) 
+ + p(G") 4 

_ (n _ 7) n
2 

- 12n + 35 n
2 

- 12n + 35 [_1_] 
+ 4 + 2 p(G") 

( 4.2.23) 

< (n -7) + n
2 

-l!n+ 35 + n
2 

-1~n+ 35 [n
2 
~ 17] [by (4.2.23)] 

n2 
- 8n + 7 2(n2 

- 12n + 35) 
4 + n2 -17 

n2 
- 8n + 7 

4 + 2 [as n2 
- 12n + 35 < n2 

- 17 {:} 52 < 12n] < 

n2 
- 8n + 15 n2 

- 17 (G") 
- 4 < 4 <p . 

Hence by (4.2.19) Xo - Xn-3 < 0, a contradiction to the fact Xo 2 Xn-3, as given by 

Lemma 4.2.2. Hence the claim and therefore by (4.2.17) we get, peG) > p(G"). 
Similarly if n is even, then proceeding as above we obtain p(G) > p(G"). • 

Let G' be the 8(2; 1; 2)-graph obtained by identifying an end vertex of a path of 

length n - 4 with a vertex of degree 3 in 8(2; 1; 2). If the vertices of G' are labeled as 

in Fig. 4.4, then we have the following result. 

Lemma 4.2.5. If n 2 9 and X = (xo, Xl,.'" Xn-l) T is the Perron vector of D(G'), 
then 

X >x l¥J-i - r¥l+i' 
where 0 ~ i ~ l n;-3 J and Xj corresponds to the vertex Vj, for each j = 0,1, ... , n - 1; 

equality holds only at i = 0, if n is odd. 
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V n -2 

Vo V2 V n -5 ... ---i.t----... ... V n -3 

Vn-l 

G' 

Figure 4.4: The graph G' in Lemma 4.2.5 

Proof. We first claim that 

Otherwise 

From eigenequations we have 

p( G') (x L n 23 J - x r n 231 ) 
o , if n is odd; 

, if n is even, 

Preliminary Lemmas 

( 4.2.24) 

(4.2.25) 

which gives XLn23 J - xr n 231 ~ O. Similarly for 1 SiS l n25 J ' using eigenequations we 

have 

l-l 

- 2L [xrn231+J - XLn23J-J ]. 

J=O 

(4.2.26) 

We now prove xl n 23 J -l - X r n 231 +t S 0 by induction on i, where 0 SiS l n25 J . 
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If i = 0, then by (4.2.25) we get xl n;-3 J - xrn;-31 ~ O. 
For i ~ 1, by induction hypothesis Xln;-3j_J - xrn;-31+J ~ 0, where 0 ~ j ~ i-l. 

Thus, 
~-l 

-2L [xrn;-31+J -Xln;-3j_J] ~ O. 
J=O 

Hence by (4.2.24) and (4.2.26) we have 

p(G') (xl n;-3 J -~ - xrn;-31 +t) - p( G') (xl n;-3 j -~+1 - xrn;-31 +~-l) ~ 0 

=? p(G') (Xln;-3j_~ -xrn;-31+~) ~ p(G') (Xln;-3j_~+1 -xrn;-31+~-1) ~ 0 

[by induction hypothesisJ 

=? xl n;-3J_~ - xrn;-31+~ ~ o. 

Therefore if 0 ~ i ~ l n;5 J ' then we have proved by induction on i, that 

Again 

p(G')(XO - Xn-3) - P(G')(XI - Xn-4) 

- 2(Xn-3 - xo) + Xn-2 + Xn-l 

2 [~~'l x, - L~J x,] 
In;-5j 

-2 L [xrn;-31+3 -Xln;-3J-3] -Xn-2 -Xn-l 
3=0 

< 0 [by (4.2.24) and (4.2.27)J 

=? p(G')(xo - Xn-3) < p(G')(Xl - Xn-4) ~ 0 [by (4.2.27)J 

=? Xo - Xn-3 < O. 

From (4.2.27) and (4.2.29)' we have 

This is a contradiction to (4.2.24) and hence the claim is established. 

( 4.2.27) 

( 4.2.28) 

( 4.2.29) 
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Therefore from (4.2.25) we get Xln;3J ~ xrn;31' where equality holds only if n is 

odd. Proceeding as mentioned above and using induction we get xl n;3 J -z > x r n;31 +z' 

where 1 ~ i ~ l n;5 J . Finally, from (4.2.28) we have 

(p(G') + 2)(xo - Xn-3) - P(G')(XI - Xn-4) Xn-2 + Xn-l > 0 

=? (p(G') + 2)(xo - Xn-3) > P(G')(XI - Xn-4) > 0 

=? Xo > X n -3· 

Hence Xln;3j_z ~ xrn;31+z' where 0 ~ i ~ ln23J. • 
From the proof of the above lemma we have the following corollary. 

Corollary 4.2.6. lfn ~ 9 and X = (xo, Xl, ... , Xn-l) T is the Perron vector of D(G'), 
where xJ corresponds to the vertex VJ for j = 0,1, ... , n - 1, then 

(i) Xln;3j_z -xrn;31+z > Xln;3j_z+1 -xrn;31+z_l'where 1 ~ i ~ In;5J and 

(ii) (1 + P(~'») (xo - Xn -3) > (Xl - Xn -4). 

V n -2 

Vn-l V n -2 

~""~ 
Vo 00(3; n - 5; 3) V n -3 

Figure 4.5: The graphs G' and 00(3; n - 5; 3) in Lemma 4.2.7 

Lemma 4.2.7. lfn ~ 9, then p(00(3;n - 5;3)) > p(G'). 

Proof. Let us denote 00(3; n - 5; 3) by G and label the vertices in V(G) = V(G') 

as in Fig. 4.5. If X is the Perron vector of D( G') and X z denotes the component of X 

corresponding to vertex Vz for 0 ~ i ~ n-l, then by symmetry Xn-l = X n -2. Therefore 

from G' to G we have 

~(p(G) - p(G')) > ~XT(D(G) - D(G'))X 

- Xn-l [(n - 4)(Xn -3 - xo) + (n - 5)Xn -2 

l n;3j 

+ L (n - 2i - 3)(Xn - z-3 - xz)] 

z=l 

( 4.2.30) 
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ln23J 
Claim: (n - 4)(Xn -3 - xo) + (n - 5)Xn -2 + L (n - 2i - 3)(Xn - z-3 - xz) > o. 

z=l 
Suppose to the contrary, that 

l n 23 J 
(n - 4)(Xn -3 - xo) + (n - 5)Xn -2 + L: (n - 2i - 3)(Xn - z-3 - xz) ::; o. (4.2.31) 

z=l 

Then from eigenequations we have 

i.e., 

p(G')(Xo - Xn -3) 

(n - 3)(Xn -3 - xo) + (n - 4)Xn -l + (n - 4)Xn -2 
ln23J 

+ L (n - 2i - 3) (Xn - z-3 - xz) 

l n 23 J 
- (n - 3)(Xn -3 - xo) + 2(n - 4)Xn -2 + L (n - 2i - 3) (Xn - z-3 - xz) 

z=l 

2(n-4)[ 
- (n _ 5) (n - 4)(Xn -3 - xo) + (n - 5)Xn -2 

l n 2
3 J. ] n2 _ 8n + 17 

+ ~ (n - 2z - 3)(Xn - z-3 - xz) + n _ 5 (xo - Xn -3) 

(n_3)ln23J . 
+ (n _ 5) ~ (n - 2z - 3)(xz - Xn - z-3) 

2(n-4)[ < (n _ 5) (n - 4)(Xn -3 - xo) + (n - 5)Xn -2 

l n 2
3 J. ] n2 _ 8n + 17 

+ ~ (n - 2z - 3) (Xn - z-3 - xz) + n _ 5 (xo - Xn -3) 

(n _ 3) ( 2) l n 2
3 J . 

+ (n _ 5) 1 + p(G') ~ (n - 2z - 3)(xo - Xn -3). 

[by Corollary 4.2.6], 

l n-3J 

[ 
, {n2 - 8n + 17 (n - 3) ( 2) ~ . }] 

p(G)- n-5 + (n-5) 1+ p(G') ~ (n-2z-3) (XO-Xn -3) 

~ 
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2(n-4)[ ln23J. 1 
< (n _ 5) (n - 4)(Xn -3 - xo) + (n - 5)Xn -2 + B (n - 2z - 3) (Xn -i-3 - x t ) 

< 0 [by (4.2.31)]. (4.2.32) 

We have 

In-3J {(n-5)(n-3) ·f . dd· 2 4 ,I n IS 0 , 

L (n - 2i - 3) = 2 

i=l (n~4), if n is even. 
( 4.2.33) 

If f(j) denotes the row sum in D( G') corresponding to the vertex vJ of G', then for 

o ~ j ~ n - 4, we have 

f(j) = j(j + 1) + (n - j - 4)(n - j - 3) + 3(n _ j _ 3). 
2 2 

Since f'(j) = 2j - n + 1, therefore as a function over lR, f will have minimum at 

j = n~l. Hence as a function over IE, f has a minimum at j = l n~l J or j = rn~ll ' 
because f is a quadratic polynomial. Now 

if n is odd; 
( 4.2.34) 

if n is even. 

Also the row sum in D(C') corresponding to the vertex Vn -4 is fen - 4) = n
2
-7

2
n+18 

and 

fen - 4) ~ min{f(n - 1), fen - 2), fen - 3), fen - 4)}. (4.2.35) 

From (4.2.34) and (4.2.35), the minimum row sum in D(G') is 

f (In ; 1J) = { n:~13, un is odd; 
n 4

12
, If n IS even. 

Since the spectral radius is bounded below by the minimum row sum, therefore 

p(G') > { 
n 2 -12 
-4-' 

if n is odd; 
( 4.2.36) 

if n is even. 
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If n is odd then by (4.2.33), we have 

n2 
_ Sn + 17 (n _ 3) ( 2) [l n;3 J . ] 
n - 5 + (n _ 5) 1 + p(G') ~ (n - 22 - 3) 

_ n2 
- Sn + 17 + (n - 3) (1 + _2_) (n - 5)(n - 3) 
n-5 (n-5) p(G') 4 

n2-Sn+17 (n2 -6n+9) (n2 -6n+9) [ 1 ] 
- n - 5 + 4 + 2 p( G') 

n2 - Sn + 17 (n2 - 6n + 9) (n2 - 6n + 9) [ 4 ] 
< n - 5 + 4 + 2 n2 - 13 

n5 - 7n4 + 2n3 + 26n2 + 221n - 659 
4n3 - 20n2 - 52n + 260 

If possible, let 

n5 
- 7n4 + 2n3 + 26n2 + 221n - 659 

4n3 - 20n2 - 52n + 260 
{:} -Sn4 + 112n3 

- 416n2 + 20Sn + 744 

{:} ( -S) (n4 - 14n3 + 52n2 
- 26n - 93) 

{:} n4 - 14n3 + 52n2 - 26n - 93 

n2 -13 
> 

4 
> 0 

> 0 

< O. 

[by (4.2.36)] 

( 4.2.37) 

But if n is odd and n ~ 9, then n4 - 14n3 + 52n2 - 26n - 93 > 0, which is a 

contradiction. Hence 

n5 - 7n4 + 2n3 + 26n2 + 221n - 659 
4n3 - 20n2 - 52n + 260 

Thus by (4.2.37) and (4.2.3S), we have 

< 
n2 -13 

4 
( 4.2.38) 

n -Sn+17 + (n-3) (1+_2_) '"' (n-2i-3) n
2

-13 (G') 
2 [l n;3 J ] 

n - 5 (n - 5) p( G') -8 < 4 < P . 

Therefore if n is odd and n ~ 9, then from (4.2.32) we have, Xo - Xn-3 < 0, a con­

tradiction to the fact Xo ~ Xn-3 as given by Lemma 4.2.5. Hence the claim and so by 

(4.2.30) we get p(G) > p(G'). 

Similarly, if n is even, then proceeding as mentioned above we can obtain p( G) > 
p(G'). • 

To prove our next results we need the following lemma and the corollary after that. 
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Lemma 4.2.8. [65] Let u and v be two adjacent vertices of a connected graph G and 

for positive integers k and l, let Gk,l denote the graph obtained from G by adding paths 

of length kat u and length l at v. If k > l 2:: 1, then p(Gk,l) < p(Gk+1,I-l); if k = l 2:: 1, 

then p(Gk,l) < P(Gk+l,l-d or p(Gk,l) < P(Gk- 1,1+1)' 

Corollary 4.2.9. [65J Let VI and Vm be two adjacent vertices of a connected graph G. 

Let Pz and Pm be two pendent paths with roots VI and Vm, respectively. If l > m and X 

is the Perron vector of D(G), then LXv] > LXv]. 
V]EV(PI} VJEV(Pm } 

Lemma 4.2.10. Let 0(2; 1; 2) be formed from three vertex-disjoint paths P3 = XIX2X3, 

P2 = YlY2 and P3 = Z1Z2Z3 by identifying the initial vertices as Uo and the terminal 

vertices as Vo. Let G be a graph obtained by attaching the ends VI, ul and WI of the paths 

PzI =VIV2··· VIll Pz2 =UIU2··· UI2 andPz3 =WIW 2··· WI3 atvO,X2 andz2 of 0(2; 1;2), 
respectively. If i2 2:: i3 > h 2:: 1 and Go = G - X2UO + UOVl, then p( G') > p( Go) > p( G). 

UI U2 'Ul 2 -1 Ut2 ... --
X2 

Vo Vl VLl-l Vtl Vo X2 'Ul 'UL2-1 'UL2 
Uo ... -- Uo . •. ________ 

Z2 

--WI W2 WLa- 1 Wt3 

G Go 

Figure 4.6: The graphs G and Go in Lemma 4.2.10. 

Proof. If X is the Perron vector of G, then we identify its components with the 

labels of the vertices of G. Since i2 2:: i3 > iI, so by Corollary 4.2.9 we have 

12 II 

X2 + L u) > Vo + LV)" ( 4.2.39) 
)=1 )=1 

As we pass from G to Go, the distances of Uo are increased by 1 from {X2' Ub U2, ... , U12} 

and are decreased by 1 from {VI, V2, ... , VII}; distances among other vertices remain 

unchanged [Fig.4.6]. Therefore, we have 

~(p(Go) - p(G)) > ~XT(D(Go) - D(G))X 

- Uo [X2 + t, u, - t, v,] ( 4.2.40) 
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Using (4.2.39) in (4.2.40) we have p(Go) > p(G). Now using Lemma 4.2.8 repeatedly 

for the adjacent vertices vo, VI and vo, Z2, we finally have p( G') > p( Go) > p( G). • 

Lemma 4.2.11. Let 0(2; 1; 2) be formed from three vertex-disjoint paths P3 = XIX2X3, 

P2 = YIY2 and P3 = Z1Z2Z3 by identifying the initial vertices as Uo and the terminal 

vertices as Vo. For 1 SiS 4 and 1i ~ 0, suppose G is a graph obtained by attaching 

paths of lengths 11,[2,13 and l4 at vo, X2, Uo and Z2 of B(2; 1; 2), respectively. If h +h ~ I, 

then p( G') > p( G). 

Proof. Here we have the following cases. 

Case 1. If min{h, h} ~ max{12' l4}, then by repeated applications of Lemma 4.2.8 

we have p(G') > p(G). 

Case 2. Suppose min{h, l3} < max{l2' l4}. If min{h, l3} > 0, then applying Lemma 

4.2.10 we have p(G') > p(G). If min{h, 13} = 0 and max{h, h} < max{l2' l4}, then 

again applying Lemma 4.2.10 we have p(G') > p(G). So let max{h, 14} S max{h, 13}, 

but then by Lemmas 4.2.8 and 4.2.10, we have p(G') > p(G).· • 

Lemma 4.2.12. If G is a O(p; q; t)-graph, where min{p, q, t} ~ 2, then there exists a 

B(2; 1; 2)-graph G* such that one of the distinguished vertices of B(2; 1; 2)-graph is of 

degree at least 4 and p( G*) > p( G). 

Proof. Let G be a O(p; t; q)-graph formed by three vertex-disjoint paths Pp+1 = 

XIX2 ... Xp+b Pt+1 = YIY2·· . Yt+l and Pq+1 = ZlZ2 ... Zq+b where min{p, t, q} ~ 2. We 

identify the initial vertices as Uo and the terminal vertices as Vo. Let X be the Perron 

vector of D(G), Tv be the attached tree rooted at a vertex v and S'(v) be the sum of 

the components of X corresponding to the vertices in Tv (including v also). Then we 

have the following cases. 

Case 1. p ~ q ~ t = 2. Case 2. p ~ q ~ t ~ 3. 

Case 1. 

Subcase (a). p = q = t = 2. If S'(vo) ~ S'(Y2) and G1 = G - X2VO - Z2VO +X2Y2 + 

Z2Y2, [Fig. 4.7J then from G to G1 the distances of TX2 UTZ2 are increased by 1 from Tvo 

and decreased by 1 from Ty2 ; distances between any other vertices remain unchanged. 

Thus, 

~(p(Gd - p(G)) > ~XT(D(Gl) - D(G))X 

- [S'(X2) + S'(Z2)] (S'(vo) - S'(Y2)) 2 0 

~ p(G1 ) > p(G). 
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G 

Figure 4.7: The graphs G, G1 and G2 in Lemma 4.2.12 Case l(a) 

If p(G 1) = p(G), then from p(G 1):2 XTD(G 1)X :2 XTD(G)X = peG), X must be a 

Perron vector of D(G1 ). But if D(G)o (resp. D(G1)o) denotes the row corresponding 

to Vo in D(G) (resp. D(G1 )), then p(G1)xvo = (D(G 1 ))oX > (D(G))oX = p(G)xvo' a 

contradiction. So p(G1 ) > p(G). 

And if S'(vo) < S'(Y2) and G2 = G - Y2UO + VOUo, [Fig. 4.7J then from G to G2 the 

distances of Tuo are increased by 1 from TY2 and are decreased by 1 from Tvo; distances 

between any other vertices remain unchanged. Thus, 

~(P(G2) - p(G)) > ~XT(D(G2) - D(G))X 

- S'(uo) (S'(Y2) - S'(vo)) > 0 

=? p(G2) > p(G). 

Thus, the lemma is proved in this case by taking G* = G1 or G* = G2 . 

p l~J 
Subcase (b). p > q = t = 2. If L S'(X~) + S'(vo):2 L S'(X~), then let 

~=r~l ~=2 
G1 = G - Y2VO - Z2VO + Y2X2 + Z2X2 [Fig. 4.8J. If p is even, then from G to G1 the 

distances of TY2 U TZ2 are increased by at least 1 from U:=r~l Tx" are increased by at 

lEHJ least 3 from Tvo ' and are decreased by 1 from u~=i Tx ,; the distances between any 

other vertices are increased or remain unchanged. And if p is odd, then from G to G1 

the distances of TY2 U TZ2 are increased by at least 2 from U:= r ~ 1 + 1 Tx" are increased 

l EHJ-1 
by at least 2 from Tvo ' and are decreased by 1 from u~=i Tx,; the distances between 
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any other vertices are increased or remain unchanged. Thus for any p, we have 

~(P(GI) - p(G)) > ~XT(D(GI) - D(G))X 

[ 
ll!HJ ] 

> (S'(Y2) + S'(Z2)) t S'(Xt ) + 2S'(vo) - t S'(xt ) 

t=r~l t=2 
> 0 

~ p(GI) > p(G). 

G 

Figure 4.8: The graphs G, GI and G2 in Lemma 4.2.12 Case 1(b) 

p l~J 
And if L S'(x t ) + S'(vo) < L S'(xz), then let G2 = G -UOX2 +vouo [Fig. 4.8J. 

t=r~l t=2 
If p is even, then from G to G2 the distances of Tuo are increased by at least 1 from 
l~J . Uz=2 Tx" and are decreased by 1 from ~= r ~ 1 Tx, U Tvo; the dIstances between any 

other vertices are increased or remain unchanged. And if p is odd, then from G to G2 
ll!H J-I 

the distances of Tuo are increased by at least 1 from Ut=~ Tx" and are decreased by 

1 from ~= r ~ 1 +1 Tx, U Tvo; the distances between any other vertices are increased or 

remain unchanged. Thus for any p, we have 

1 ~XT(D(G2) - D(G))X 2(P(G2) - p(G)) > 

[lillJ ] > S'(uo) t S'(xt ) - t S'(x t ) - S'(vo) >0 
t=2 t=r~l 

~ p(G2) > p(G). 

Thus, in this case also the lemma is proved by taking G* = GI or G* = G2 . 

Subcase (c). p ~ q > t = 2. 
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G H 

Figure 4.9: The graphs G, H in Lemma 4.2.12 Case 1(c) 

Without loss of generality assume that 

[ l~J l~J] 
2 ~ S'(xl) + ~ S'(Zl) + S' (Xl~+lJ) + S' (Zl~+1J) 

> S' (xr~+11) + S' (zr~+11) + 2 [ t S'(xl ) + t S'(Zl)] ' 
l=r~+21 l=r~+21 

and let H = G - X2UO - Z2UO + xpuo + zpuo [Fig. 4.9]. 

As we move from G to H the distances of Tuo are increased by at least 2 from 

[Ul~J Tx,] u [Ul~j Tz,] ,and are decreased by 2 from [U~=r~+21 Tx,] u [U~=r~+21 Tz,] ; 
the distances between TX2 and TZ2 are increased by at least 2. Moreover, 

(i) If p is even and q is odd, then the distances of Tuo are increased by at least 1 

from TZL1+1J' and are decreased by 1 from Tzr1+11. 

(ii) If both p and q are odd, then the distances of Tuo are increased by at least 1 

from TxL ,+lJ U TZL1+1J' and are decreased by 1 from Txrf+ll U TZr1 +l1. 

(iii) If p is odd and q is even, then the distances of Tuo are increased by at least 1 

from TxL,+lJ ' and are decreased by 1 from Txr~+ll. 

The distances between any other vertices are increased or remain unchanged. Thus 
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for any p and q, we have 

1 
2(p(H) - p(G)) 

> ~XT(D(H) - D(G))X 

> S'(uo) [2 {~S'(X') + ~ S'(z,) } + [S' h¥+lJ) + S' (ZL!+lJ) 1 

-[S'(xr~+11)+S'(zr!+11)]-2{ t S'(xt)+ t S'(Zt)}] 
t=r~+21 t=r!+21 

+2S1 (X2)SI (Z2) 

> 0 

=::;. p( H) > p( G). 

In any case, H is a 0(2; 2; 2)-graph. Now using Subcase (a), we can obtain the required 

graph G*, such that p( G*) ~ p( H) > p( G). 

Case 2. p ~ q ~ t ~ 3. 

G G* 

Figure 4.10: The graphs G and G* in Lemma 4.2.12 Case 2 

p q 

Without loss of generality assume that L S'(xt) ~ L S'(Zt), and let G* = G -
t=2 t=2 

XpVo - UOY2 + ZqYt + ZqYt-l [Fig. 4.10j. Then from G to G* the distances of ~=2Tx. 

are increased by at least 2 from U~:~ Ty" and are increased by at least 1 from Tyt ; 

the distances between Ty and uq L!.tlJ Tz are decreased by at most 2, where j = 
J t= 2 +2-) , 

2,3, ... ,t - 1; the distances between TYt and U~=L ~ J+2_tTz, are decreased by at most 
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1; the distances between any other vertices are increased or remain unchanged. Thus, 

~(p(G*) - p(G)) > ~XT(D(G*) - D(G))X 

> 2 ~ ( 8'(y,) [t, 8'(x.) - '~l.t+2-' 8'(z,) 1 ) 
p q 

+S'(Yt) [L S'(xt) - L S'(Zt)] > 0 
t=2 t=l ~ j+2-t 

~ p(G*) > p(G). 

Therefore, combining all the above cases, we have the result. • 
4.3 Graph with maximal distance spectral radius 

in g~ 

Theorem 4.3.1. If n ~ 6, then 00(3; n - 5; 3) is the umque graph wzth maxzmal 

distance spectral radius in g~. 

Proof. If G E g~, then we must have one of the following three cases. 

Case 1. Cn is a spanning subgraph of G. 

If n = 6, then it can bp verified that p(00(3; 1;3)) = 9.19615> p(C6 ) = 9 ~ p(G); 

whereas if n ~ 7, then by Lemma 4.2.1 we have p(00(3; n - 5; 3)) > p(Cn ) ~ p(G). 

Case 2. An oo(p; q; r)-graph G1 is a spanning subgraph of G. 

We have p(G1 ) ~ p(G). By Lemmas 4.1.1 and 4.2.4,00(3; n-5; 3) is the unique graph 

with maximal distance spectral radius in C(n,2). Since G1 E C(n,2), so p(00(3; n -

5; 3)) ~ p(Gd, which implies p(00(3; n - 5; 3)) ~ p(G). 

Case 3. A O(p; q; r)-graph G2 is a spanning subgraph of G, where min{p, q, r} ~ 2. 

We have p(G2 ) ~ p(G). Applying Lemma 4.2.12 we get a 0(2; 1; 2)-graph G* with 

p(G*) > p(G2 ). Now, by Lemmas 3.5.2, 4.2.8, 4.2.10 and 4.2.11, we have p(G') > p(G*). 

If 6 ~ n ~ 8, then it can be verified that p( 00(3; n - 5; 3)) > p( G') and if n ~ 9, then 

by Lemma 4.2.7 we get p(00(3; n - 5; 3)) > p(G'). Thus p(00(3; n - 5; 3)) > p(G). • 



Chapter 5 

On the distance spectral radius of bipartite 

graphs 

5.1 Introduction 

Let B: be the class of all bipartite graphs of order n with matching number m, and 

B~ be the class of all .bipartite graphs of order n with vertex connectivity s. In Sec­

tion 5.2, we determine the unique graph with minimum distance spectral radius in B~. 

In Section 5.3, we characterize the graphs with minimal distance spectral radius in B~. 

5.2 Graph with minimum distance spectral radius 

in Bm n 

Here we find the unique graph with minimum distance spectral radius in B:. 
W-WM 

Gil = Km,n-m 

Figure 5.1: The graphs G' and Gil in Theorem 5.2.1 

Theorem 5.2.1. Km,n-m zs the unique graph that minimizes the distance spectral 

radius in B:. 
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Proof. Let G be a graph in B: with minimum distance spectral radius. For 

m = l ~ J the discussion is trivial. 

Let (U, W) be the bipartition of the vertex set of G such that IWI 2:: lUI 2:: m, 

and let M be a maximal matching of G. Since the distance spectral radius of a graph 

decreases with addition of edges so for lUI = m, G = Km,n-m' 

Let us assume that lUI > m and U M, W M be the sets of vertices of U, W which 

are incident to the edges of M, respectively. Therefore, IUMI = IWMI = m. Note that 

G contains no edges between the vertices of U - U M and the vertices of W - W M , 

otherwise any such edge may be united with M to produce a matching of cardinality 

greater than that of M, violating the maximality of M. 

Adding all possible edges between the vertices of U M and W M, U M and W - W M, U­

U M and W M we get a graph G' with p( G) > p( G'). We now form a complete bipartite 

graph Gil = Km,n-m from G' with the bipartition (UM, W U (U - UM)). 

Let IU - UMI = nl, IW - WMI = n2. So n2 2:: nl. We partition V(G') = V(G") 

into UM U WM U (U - UM) U (W - WM) as shown in Fig. 5.1. If the distance matrices 

D(G') and D(G") are partitioned according to UM, WM, (U - UM), and (W - WM), 

then their difference is 

D(G') - D(G") = [ ~ 
Jn1xm 

o 

o 
o 

Jmxn1 

-Jmxn1 

o 
Jn2xnl 

We denote p(G') by p and p(G") by Pl. Let X be the Perron vector of D(G"). Then 

by symmetry, components of X have the same value, say Xl for the vertices in U M and 

X2 for the vertices in W U (U - UM). Then, X can be written as 

X=(~,~)T 
m n-m 

We have 

From eigenequations we have 

PIXI 2(m - l)XI + (n - m)x2' 

PIX2 mXI + 2(n - m - 1)x2. 
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Thus, 

Following [21], the distance spectral radius of the complete bipartite graph Kp,q is p + 
q - 2 + V p2 - pq + q2, so PI > n + m - 1. 

Again, 

> 

> 

_ (nl + n
2

2)mX2 + n2X2 [by (5.2.2)] 
PI+ -m 

[-(nl + n2)m + n2(n + 1)]x2 

PI + 2 - m 
(since PI > n + m - 1] 
[-(nl + n2)m + n2(nl + n2 + 2m + 1)]x2 

PI + 2 - m 

[n~ + n2n l + n2]x2 0 -------------- > . 
PI + 2 - m 

Thus from (5.2.1) we get P > PI, and so p(G) > p(G"), a contradiction. Therefore 

/U/=m. • 

5.3 Graphs in B~ with minimal distance spectral 

radius 

In this section, we characterize the graphs with minimal distance spectral radius in 

B~. It is shown in [67] that KL~J.r~l has minimum distance spectral radius among all 

connected bipartite graphs. This result also says that for vertex connectivity s = l ~ J , 
Ks,n-s is the unique graph with minimum distance spectral radius in B~. 

Clearly B! = {P4,S4} and Bg = {P5,S5,Cl}, where CJ is the graph with a single 

pendent attached to a vertex of C4 . It can be easily verified that 84 and CJ are the 

graphs with minimal distance spectral radius in B! and Bg, respectively. Thus for 

3 ::; n ::; 5, the discussion is over. From now onwards we will assume that n ? 6. 

To prove the main result in this section, we need to define some notations and prove 

some lemmas. 

In Kp,q, we assume that p 2 q 2 1. By K I, we mean KI,o or KO,I, which will be clear 

from the context. By OS VI (Kn1 ,n2 UKm1 ,m2)' we mean the graph obtained by joining all 

the vertices in Os to the vertices belonging to the partitions of cardinality nl in K n1 ,n2 

and ml in K m1 ,m2' respectively, where nl, mi > O. Similarly, by OS V2 (Kn1 ,n2 UKm1 ,m2)' 
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we mean the graph obtained by joining all the vertices in as to the vertices belonging 

to the partitions of cardinality n2 in K n1 ,n2 and m2 in K m1 ,m2' respectively, where 

n2,m2 > o. 

Lemma 5.3.1. If s + q ~ p + 1 and p ~ s, then 

Proof. Let us denote aS V1 (K1 U Kp,q) by G and aS V1 (K1 U Kp+1,q-1) by G'. 

We partition V(G) = V(G') into {v} U C U A U B U {bq }, where C = {C1' C2,· .. , cs }, 

A = {a1' a2, . .. , ap} and B = {b1, b2, . .. , bq- 1} as in Fig. 5.2. 

v v 

G G' 

Figure 5.2: The graphs G and G' in Lemma 5.3.1 

As we pass from G to G', the distance of bq is decreased by 1 with {v }UCUB and the 

distance of bq is increased by 1 with A; the distances within any other pairs of vertices 

remain unaltered. If the distance matrices are partitioned according to {v}, C, A, B 

and {bq }, then their difference is 

0 0 0 0 1 
0 0 0 0 ec 

D(G) - D(G') = 0 0 0 0 -eA 
0 0 0 0 eB 
1 eT T e~ 0 C -eA 

where et = (1, ... , II = nltl and i = A, B, C. We denote p(G) by p and p(G') by Pl. 
'--v--"' 

It I 
Let X be the Perron vector of D(G'). Then by symmetry, components of X have the 

same value, say a for the vertices in Au {bq }, b for the vertices in B, c for the vertices 
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in C, and Xl for v. Then, X can be written as 

X = (Xl, e, . .. ,e, a, ... ,a, b, ... ,b, a) T '---v--" _____ '---v--" 
s p q-l 

We now have 

~(p - PI) ~ ~XT(D(G) - D(G'))X = a[XI + es - pa + b(q - 1)]. 

From eigenequations we have 

PIXI - se + 3(q - 1)b + 2(p + 1)a, 

PIC - Xl + 2(s -1)e+ 2(q -1)b+ (p+ 1)a, 

PIa 2XI + se + (q - 1)b + 2pa, 

Pib - 3XI + 2se + 2(q - 2)b + (p + 1)a. 

From which we get, 

(PI + 2)(b - c) 

(PI + 1)(XI - c) 

(PI + 1)(e - a) 

(PI + 2)(XI - a) 

-

-

-

2x I > 0 =::;. b > e, 

e+ (p+ 1)a+ (q -1)b - se, 

-Xl + (s - l)e - pa + (q - 1)b, 

2(q - 1)b ~ 0 =::;. Xl ~ a. 

(5.3.2) 

(5.3.3) 

(5.3.4 ) 

(5.3.5 ) 

Since distance matrix is nonnegative and irreducible, its spectral radius is bounded 

below by the minimum row sum and thus we have PI > 3p ~ 3s. 

Again by the given condition q - 1 ~ p - s = k (say). Therefore from (5.3.4), we 

get 

(PI + l)(e - a) > -Xl + pc - pa + (s - 1 - p)e + (p - s)b 

=::;. (PI + 1 - p)(c - a) > -Xl + (-k - l)c + kb 

=::;. (PI + 1 - p)(e - a) > -e - Xl + k(b - c) 

=::;. (c-a) 
1 

(5.3.6) > [-e - Xl + k(b - c)]. 
(PI + 1 - p) 

[§] 
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Using (5.3.5) in (5.3.3), we get 

(PI + l)(XI - e) 

:::} (PI + l)(XI - c) 

:::} (PI + l)(XI - e) 

( 1) 
(PI + 2)(XI - a) 

- e + p + a - se + 2 

1 
- "2[2e + 2(p + l)a - 2se + (PI + 2)(XI - a)J 

> ~[2e + 2(P + l)a - 2se + 2S(XI - a)J [since PI ~ 3sJ 

1 

Again, 

"2 [2e + 2(p + 1 - s )a] > 0 

:::} Xl > e. 

Xl + es - pa + b(q - 1) 

> Xl + es - pa + b(p - s) 

- Xl + (p - k)c - pa + kb 

- xI+p(e-a)+k(b-e) 
p 2kxI 

> Xl + [-c - Xl + k(b - c)] + --
PI + 1- P PI + 2 

[by (5.3.2) and (5.3.6)J 

PI + 2 + 2k p [ 2kxI 1 
----Xl + -c - Xl + --

PI + 2 PI + 1 - P PI + 2 
(PI + 1)2kXI + (PI + 2)[(PI + 1 - 2P)XI - peJ 

(PI + 1 - p) (PI + 2) 

(PI + 1)2kxI + (PI + 2)P(XI - c) [ . 1 2 ] 
> (1)( 2) smce PI + - P > P PI + - P PI + 
> O. 

Thus by (5.3.1), P> Pl. 

By the above lemma we have the following corollary. 
• 

Corollary 5.3.2. If q ~ 1, then p(Os V2 (KI U Kp,q» ~ p(Os VI (KI U Kp,q»; equality 

holds only when p = q. 

Lemma 5.3.3. If s + q + 4 ::; p, then 

Proof. Let p = s + q + k, k ~ 4. Let us denote OS VI (KI U Kp,q) by G and OS VI 

(KI UKp- l ,q+1) by C'. We partition V(C) = V(C') into {v} U CUAuBU {ap}, where 

C = {CI, C2,"" Cs}, A = {aI, a2,· .. , ap-d and B = {bI , b2, ... , bq} as in Fig. 5.3. 
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v v 

G G' 

Figure 5.3: The graphs G and G' in Lemma 5.3.3 

As we pass from G to G', the distance of ap is increased by 1 with { v } U CUB and the 

distance of ap is decreased by 1 with A; the distances within any other pair of vertices 

remain unaltered. If the distance matrices are partitioned according to {v}, C, A, B ~ 

and {ap }, then their difference is 

0 0 0 0 -1 
0 0 0 0 -ec 

D(G) - D(G') = 0 0 0 0 eA 
0 0 0 0 -eB 

-1 T eT -e~ 0 -ec A 

where et = (1, ... , If = nltl and i = A, B, C. We denote p(G) by P and p(G') by 
"--v--' 

It I 
Pl. Let X be the Perron vector of D(G'). Then by symmetry, components of X have 

the same value, say a for the vertices in A, b for the vertices in B U {ap }, c for the 

vertices in C, and Xl for v. Then X can be written as, 

We now have 

X = (Xl, C, ... , e, a, ... , a, b, ... , b) T 
----~----s p-l q+l 

~(p - PI) ~ ~XT(D(G) - D(G'))X = b[-XI - Be - bq + a(p - I)J. 

From eigenequations we have 

(PI + 2)(XI - a) - 2(q + l)b > 0, 

(PI + 2)(b - c) - 2XI > O. 
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Thus Xl > a and b > e. We also have, 

and 

Again, 

(PI + 2)(2a - b) = Xl + 3(p - l)a > 0 =* 2a > b, 

(PI + 4)(2a - xd - se + 2(p + l)a - (q + l)b > 0 [by (5.3.8)] 

=* 2a > Xl. 

(PI + 1)(a - b) = -Xl - se + (p - l)a - a - qb. (5.3.10) 

If a ~ b, then from (5.3.10), we have -Xl - se + (p - l)a - qb ~ a; and by (5.3.7), we 

get P > Pl' 

Let us assume that a < b. Since distance matrix is nonnegative and irreducible, its 

spectral radius is bounded below by the minimum row sum and thus we have 

PI > P + 2q + 2s. 

Therefore, 

(q + l)a - qb q(a - b) + a 

=* (PI + 1)[(q + l)a - qb] - [-qXI - sqe + (p - 2)qa - q2b] + (PI + l)a 

[by (5.3.10)] 

> [-qXI - sqe + (p - 2)qa - q2b] 

+(p + 2q + 2s + l)a 

- q(2a- x I)+p(q+l)a+2(s-q)a+a 

-qse - q2b 

> q(2a- xd+p(q+l)a+2(s-q)a+a 

-qsb - q2b [since b > e] 

- q(2a- xI)+p(q+l)a+2(s-q)a+a 

-qb(s + q) 

q(2a - xd + p(q + l)a + 2(s - q)a + a 

-qb(p - k) 

=* (PI + 1 - p)[(q + l)a - qb] > q(2a - Xl) + 2(s - q)a + a + qbk. 

If s ~ q, then by (5.3.9) and (5.3.11), (q + l)a > qb. 

(5.3.11) 
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Otherwise, let t = q - s. Then again by (5.3.11), 

(PI + 1 - p)[(q + l)a - qb] > q(2a - xt} + a + (kqb - 2ta) 

> q(2a - xd + (4qb - 2ta) 

> q(2a - xd + (4tb - 2ta) [since q > t] 

> 0 [since 2a > Xl and b> aJ. 

Thus we can conclude that (q + l)a > qb. 

Finally, 

(PI+2)(a-e) - xl-se+(p-l)a-(q+l)b 

- (Xl - a) - se + (q + s + k)a - (q + l)b 

- (Xl - a) + sea - e) + {(q + l)a - qb} 

+{(k - l)a - b} 

:::;. (PI + 2 - s)(a - e) - (Xl - a) + {(q + l)a - qb} + {(k - l)a - b} 

> (Xl - a) + {(q + l)a - qb} + (3a - b) 

> 0 [since Xl > a, (q + l)a > qb and 2a > bJ 

:::;. a > e. 

Therefore, 

-Xl - se - bq + a(p - 1) 

- -xl-se-bq+a(q+s+k-l) 

- {(q + l)a - qb} + sea - e) + {(k - 2)a - xr} 

> {(q + l)a - qb} + sea - e) + (2a - Xl) 

> 0 [since (q + l)a > qb, a> e and 2a > xd. 

Therefore from (5.3.7), we get P > Pl. 

Similar to the above lemma we have the following lemma. 

Lemma 5.3.4. If n 2:: 6 and 1 ~ s < l n~l J, then 

• 

Lemma 5.3.5. If G E B~ and U is a vertex cut-set of order s in G such that G - U has 

two nontrivial components, then G cannot be a graph with minimal distance spectral 

radius in B~. 
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C* 

Figure 5.4: The graphs in Lemma 5.3.5 

Proof. Let G1 and G2 be the nontrivial components of G - V with biparti­

tions (A, B) and (C, D) respectively. Let U = U1 U U2 be the bipartition of U in­

duced by the bipartition of G. Now joining all possible edges between the vertices of 

A and B, C and D, U1 and V2 we get a graph G in B~ such that p(G) ~ p(G). 

Therefore we suppose that G = G. 

If there exists some vertex w in G - V such that de (w) = s, then forming a complete 

bipartite graph within the vertices of G - { w} we would get a graph in B~ with smaller 

distance spectral radius. Thus we may assume that each vertex in G - U has degree 

greater than s. 

We choose a vertex Cl from C and observe that de(Cl) = t + IDI > s, where 

t( 0 ~ t ~ s) is the total number of edges joining Cl and the vertices of VI' Since VI U U2 

is the vertex cut-set of order s so ml, nl > t, m2, n2 > k. Without loss of generality 

we may assume that ml = max{ml' m2, nl, n2} and since s ~ 1 so ml ~ 2. We now 

pick a subset D2 of D with ID21 = IDI - k > O. Deleting all the edges between Cl and 

the vertices of D2 , and then forming a complete bipartite graph within the vertices of 

G - {cd we get a new graph G* E B~. 

We partition V(G) = V(G*) into VI U U2 U Au BuC' U Dl U D2 u {Cl}, where VI = 

{Ul,U2, ... ,Ut}, U2 = {u~,u~, ... ,ua, A = {al,a2, ... ,am J, B = {b1,b2, ... ,bm2 }, 

C' = {C2, ... , cnJ, Dl = {d1, d2, . .. ,dd, and D2 = {dk +1, dk+21 ... , dn2 } as in Fig. 5.4. 

If the distance matrices are partitioned according to U1 , U2 , A, B, C', D 1 , D2 and 
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{CI}, then their difference is D(G) - D(G*) = 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 2Jmlxk 2Jml x(n2-k) 0 
0 0 0 0 2Jm2x (nl-l) 0 0 0 
0 0 0 2J(nl-l) xm2 0 0 0 0 
0 0 2Jkxml 0 0 0 0 0 
0 0 2J(n2-k )xml 0 0 0 0 -2eD2 

0 0 0 0 0 0 - 2eb2 0 

where eD2 = (1, ... , If = ].ID21. We denote p(G) by P and p(G*) by Pl. Let X be 

---------ID21 
the Perron vector of D(G"'). Then by symmetry, components of X have the same value, 

say u for the vertices in UI U DI , b for the vertices in B U D2 , a for the vertices in 

A U U2 U C', and c for CI. Then X can be written as, 

X = (u, ... , u, a, ... , a, a, ... , a, b, ... , b, a, ... , a, u, ... , u, b, ... , b, c) T _______ "--v--' "--v--' ~ "--v--' _______ """-v--" 
t k ml m2 nl-l k n2-k 

We now have 

~(p - PI) ~ ~XT(D(G) - D(G*))X = 2kmlau + 2abm2(nl -1) + 2(n2 - k)b(mla - c). 

(5.3.12) 

From eigenequations we have 

(PI + 6)(3a - c) - 2su + 4(ml + nl + k + 2)a > 0 => 3a > C, 

(PI + 2)(2a - b) - c + 3(ml + nl + k - l)a > 0 => 2a > b. 

From (5.3.13) and (5.3.12), we have p> PI if ml 2: 3. 

Again if ml = 2, then 

(PI + 4)(2a - c) - su + 2(ml + nl + k + l)a - (m2 + n2 - k)b 

> su + 8a - 4b 

> 0 [by (5.3.14)]. 

Thus 2a > c and therefore by (5.3.12), we have P > Pl. 

(5.3.13) 

(5.3.14 ) 

• 
Let Gi, G;, G;, and G: be the graphs described in Fig. 5.5. The following is the 

main result in this section. 
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Gi G3 

Figure 5.5: The graphs in Theorem 5.3.6 

Theorem 5.3.6. Let G be a graph in B~ with minimal distance spectral radius, where 

1 ~ s ~ Ln;lJ. Then G E {Gi,Gg}, ifn is odd and G E {G2,G4}, ifn is even. 

Proof. Let G be a graph with minimal distance spectral radius in B~. Let U 

be a vertex cut-set of G containing s vertices, whose deletion yields the components 

GI , G2 , • •. ,Gt of G - U, where t 2': 2. If some component Gi of G - U has at least two 

vertices, then it must be complete bipartite. Again if some component Gi of G - U is a 

singleton, say Gi = {u}, then u is adjacent to all the vertices of U otherwise /\,( G) < s; 
hence the subgraph G[U] induced by U contains no edges, and belongs to the same 

partition of G. We now have the following cases. 

Case 1: All the components of G - U are singletons. Then G = Ks,n-s' For 

s = L n;l J we have Ks,n-s ~ Gi, if n is odd and Ks,n-s ~ G2, if n is even; and thus the 

result. 

Let us assume that 1 ~ s < L n;l J. Then by Lemma 5.3.4, p(Ks,n-s) > p(Os VI (KI U 

Kn - s - 2,1)), which contradicts the minimality of G. Therefore not all the components 

of G - U can be singletons. 

Case 2: One component of G - U, say GI , contains at least two vertices. Then 

G - U contains exactly two components; otherwise, forming a complete bipartite graph 

within the vertices of GI U G2 U ... U Gt - 1 we obtain a new graph G from G with 

smaller distance spectral radius such that G E B~, a contradiction. Let GI , G2 be the 

components of G - U. By Lemma 5.3.5, either GI = KI or G2 = K I . Without loss of 

generality assume that G2 = KI = {u}. Then u joins all vertices of U, and each vertex 

of U joins every vertex of GI which are in the same partition as u. Since G is a graph 

with minimal distance spectral radius then by Corollary 5.3.2, G = OS VI (KI U Kp,q) 

for some p and q. We note that p 2': s, otherwise s cannot be the vertex connectivity 

of G. If q + s ~ p ~ q + s + 3, then the result follows. Again if q + s > p, then by 
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repeated application of Lemma 5.3.1, G = Gi, if n is odd and G = G-i, if n is even. 

Finally if p ~ q + s + 4, then by using Lemma 5.3.3 repeatedly, we have G is either 

Gi or G1 according as n is odd or even. • 



Chapter 6 

On the distance Laplacian eigenvalues of 

graphs 

6.1 Introduction 

The second smallest Laplacian eigenvalue (known as the algebraic connectivity of a 

graph) is studied extensively in literature (see [24,38-40,47] and the references therein). 

Aouchiche and Hansen have introduced the distance Laplacian matrix and proved that 

for a connected graph G of order n, the second smallest distance Laplacian eigenvalue 

is at least n, where the equality holds if and only if G is disconnected [2]. In that case, 

the multiplicity of n as a distance Laplacian eigenvalue of G is one less than the number 

of components of G. In Section 6.3, we study the second smallest distance Laplacian 

eigenvalue for some class of graphs whose complement is connected (precisely a tree 

or a unicyclic graph, respectively). In Section 6.4, we study the distance Laplacian 

spectrum of path and prove that the largest distance Laplacian eigenvalue (called the 

distance Laplacian spectral radius) is simple. We also describe the structure of the 

corresponding eigenvector. 

6.2 Preliminary Lemmas 

Here we mention some preliminary lemmas which will be useful to obtain our main 

results of this chapter. Let J-l1 ~ J-l2 ~ ... ~ J-ln-l ~ J-ln = 0 (resp. 61 ~ 62 ~ ... ~ 

6n - 1 > 6n = 0 ) denote the Laplacian (resp. distance Laplacian) eigenvalues of a graph. 

Lemma 6.2.1. [38] Let G be a connected graph with a cut vertex v. Then 

equality holds if and only if v is adjacent to every vertex of G. 
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It is known that ( [31, Corollary 4.2]) if G is a graph and a new pendent vertex is 

added at some vertex of G to obtain H, then 

where /-Li (H), /-Li (G) are the i-th smallest Laplacian eigenvalues of Hand G, respectively. 

Let K~ be the graph obtained by joining k isolated vertices to a single vertex of 

K n- k and Un be the class of all unicyclic graphs of order n, where n 2: 3. 

Lemma 6.2.2. [40] The maximum algebraic connectivity over Un is uniquely attained 

by Cn if n :::; 5 and uniquely attained by K:;-3 if n > 6. When n = 6, C6 and KJ are 

the only two graphs, up to isomorphism, having the maximum algebraic connectivity 

overU6 · 

The following result gives a relation between the Laplacian eigenvalues and the 

distance Laplacian eigenvalues, for graphs of diameter at most 2. 

Lemma 6.2.3. [2] Let G be a connected graph on n vertices with diameter d( G) :::; 2. 
Let /-LI 2: /-L2 2: ... 2: /-Ln-I > /-Ln = 0 be the Laplacian eigenvalues of G. Then the 

distance Laplacian eigenvalues ofG are 2n-/-Ln-l 2: 2n-/-Ln-2 2: ... 2: 2n-/-Ll > 6n = o. 
Moreover, for every i = 1, 2, ... , n -1, the eigenspaces corresponding to /-Li and to 2n - /-Li 

are the same. 

Two vertices are co-neighbours if they share the same neighbours. Clearly, if S is 

a set of pairwise co-neighbour vertices of a graph G, then S is an independent set. A 

cluster of order k of G is a set S of k pairwise co-neighbour vertices [47]. Clearly, each 

vertex of a cluster have the same transmission, which we call the transmission of a 

cluster. Following is an important observation for graphs with a cluster. 

Lemma 6.2.4. Let G be a graph with a cluster S of order k and transmission t, where 

k > 1. Then t + 2 is a distance Laplacian eigenvalue of G with multiplicity at least 

k -1. 

Proof. Let S = {VI, V2, ... ,vd be the cluster. Assuming N G (VI) = {Vk+ 1, Vk+2, ... , 

Vk+l}, we have 

Ih + 2L(Kk ) + (t -1 - 2k + 2)h i -nknr -p ~ _______________________________________ L _____________ __ _ 

_pT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

* 
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where P is a k x (n-k-l) matrix with all identical rows. It can be verified that the first 

k rows of the matrix DL(G) - (t+2)I are equal. Therefore, rank ( DL(G) - (t+2)I) ~ 
n - (k - 1), i.e., the null space of DL(G) - (t + 2)1 has dimension not less than k-1. 

Hence, t + 2 is an eigenvalue of DL( G) with multiplicity at least k - 1. • 
Suppose i and j are fixed but arbitrary nonadjacent vertices of a graph G. Let G + e 

be the graph obtained from G by joining the edge e = ij. Then with a suitable ordering, 

we have L(G + e) = L(G) + S, where 

[ 1 -1] S = -1 1 EEl On-2' 

The situation when the Laplacian spectra of G and G + e differ just at one place with 

one eigenvalue of G increasing by 2 while the others remaining the same, is called 

spectral integral variation occuring at one place [10,25]. So [56] has proved that the 

spectral integral variation at one place occurs from G to G + e if and only if i and j 

are co-neighbours. Fan [25] has given some equivalent conditions for the occurrence 

of spectral integral variation at one place. Note that if i and j are two nonadjacent 

co-neighbour vertices of G, then DL(G) = DL(G + e) + S. Therefore, we can obtain 

similar results given in [25], when the distance Laplacian spectra of G and G + e differ 

just at one place with one eigenvalue of G decreasing by 2 while the others remaining 

the same. Among those results, the following will be important for us. We omit the 

proof, as it is similar to the proof given in [25]. 

Lemma 6.2.5. Let i and j be two nonadjacent co-neighbour vertices of G, and G + e be 

the graph obtained from G by adding the edge e = ij. If the distance Laplacian spectra 

of G and G + e differ just at one place with one eigenvalue of G decreasing by 2 while 

the others remaining the same, then the changed eigenvalue is Tr( i) + 2. 

Note that in the above lemma, the fact that Tr( i) + 2 is a distance Laplacian 

eigenvalue of G, is assured by Lemma 6.2.4. 

6.3 Second smallest distance Laplacian eigenvalue 

Here we study the second smallest distance Laplacian eigenvalue c5n - 1. The following 

lemma, which gives a lower bound for c5n - 1 can be found in [2]. 

Lemma 6.3.1. [2] Let G be a connected graph on n vertices. Then c5n - 1(G) ~ n with 

equality holding if and only if G is disconnected. Furthermore, the multiplicity of n as 

an eigenvalue of DL( G) is one less than the number of components of G. 
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Thus, if G is connected, then On-I(G) > n. In the following two subsections, we 

consider the graphs whose complement is connected (precisely a tree or a unicyclic 

graph, respectively) and characterize the graphs among them having n + 1 as the 

second smallest distance Laplacian eigenvalue. 

6.3.1 Second smallest distance Laplacian eigenvalue of a graph 

whose complement is a tree 

For positive integers k, l, the following lemma determines the distance Laplacian eigen­

values of a graph whose complement is the dumbbell D(n, k, l), where k + l = n - 2. 

Lemma 6.3.2. Let G be a graph of ordern such that G = D(n, k, l), where k+l = n-2. 

Then the distance Laplacian spectrum of G consists of the eigenvalues 

(a) 0 with multiplicity 1; 

(b) n + 1 with multiplicity n - 4; 

(c) n + ti with multiplicity 1, where ti is a root of the equation 

x3 
- (n + 4)x2 + (3n + kl + 3)x - 2n = 0, 

for each i = 1,2,3. 

Proof. Let us label the vertices of D(n, k, l) as VI, V2, . .. , Vn such that VI, V2,' .. , Vk 

are the pendent vertices at Vn and Vk+I, Vk+2,' .. ,Vk+1 are the pendent vertices at Vn-I. 

Then, we have 

I 

(n + 1)In - 2 - I n - 2 ! 
I 
I 
I 
I 
I 

[ 
-lk i -21k ] 

--------r--------
-211! -11 

~----------------------,------------------------------_. 
I 
I 

- k I - I I 

[ 

1T I 21T]: 
-~;~-;r~~~- i [ k + ~; + 3 I + ~: + 3] 

[ 

On-2xn-2 i On-2x2 ] 

L( G) + 2L( G) + ·-----------r[--~----~~-]--· 
02xn-2: -1 1 
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i [ Ok : -llk ] I -------t-------

: -11.1: 01 I , 
I 
I 
I .-- - ---- - - - -- - - - - -- - -,-- - -- --- - - - - -- - - - - ---
I 
I 

[ 

OT : 1I.T]: k 1- 1 I 

·-~--~-r--~--· : [ 1 ~22 
llk! 0t ! 

-2 ] 
k+2 

- nln - I n + P, 

where P -

I ______ .... ______ _ i [ Ok : -llk ] 
: -llt: Ot 
I • 
I 
I 
I ._------------------,-------------------_. 
I 
I 

[·--~~--t-~-~~-·] i [ 1 + 2 
TIT I -2 

-llk: 01 : . , 

-2 ] 
k+2 

The characteristic polynomial of P is given by 

¢(P; x) det 

I 

(x - 1)In - 2 i 
I 
I 
I 
I 
I 

[--~~-t-~~--] 
·----------------r------------------------------

I 
I 

[ 

OT i llT 1 : 
---~-t--L- 1 [ x - 1 - 2 

TIT I 2 
1I.k ; 0t ; 

- (x - lr-2.det(8d, 

where 8 1 
_ [x -l - 2 2 ] _ [ ll~ X~1 Illll 

2 x-k-2 o 

[

X-l-2--
1 

2 1 x-I 

2 x-k-2-_k-
x-I 

is the Schur complement of (x - 1)In - 2 . Using (6.3.3) in (6.3.2) we have 

¢(P; x) = x(x - lr-4
( x3 

- (n + 4)x2 + (3n + kl + 3)x - 2n) 

It is known that the spectrum of nln - I n consists of eigenvalue n with multiplicity 

n - 1 and 0 with multiplicity 1. Clearly, 1I.n is an eigenvector of both nln - In and P 

corresponding to eigenvalue O. Thus, 0 is an eigenvalue of DL(C) with eigenvector lln. 
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Since 0 is a simple eigenvalue of DL (G) and P is a positive semidefinite matrix that 

commutes with nIn - Jm so from (6.3.4) and (6.3.1) we have the result. • 

Following is the main result of this section. 

Theorem 6.3.3. There exist no graph G such that G is a tree and 6n - 1 (G) = n + 1. 

Proof. If G is a tree such that G is connected, then d( G) 2: 3. If d( G) 2': 4, then 

d(G) ~ 2. Thus, by Lemmas 6.2.1 and 6.2.3, 6n - 1(G) = 2n - J.ll(G) = n + J.ln-l(G) < 
n + 1. If d(G) = 3, then G ~ D(n,k,l), where k + l = n - 2 and k,l 2': 1. Let 

f(x) = x 3 - (n + 4)x2 + (3n + kl + 3)x - 2n. Since f(O) < 0 and f(1) > 0, so there is a 

root t of f(x) = 0 in (0,1). Therefore, by Lemma 6.3.2, 6n - 1 (G) = n + t < n + 1. This 

completes the proof. • 

From the proof of the above theorem, we have the following. 

Corollary 6.3.4. If G is a graph such that G is a tree, then n < 6n - 1 (G) < n + 1. 

6.3.2 Second smallest distance Laplacian eigenvalue of a graph 

whose complement is a unicyclic graph 

Let Cg(k, l) be the graph obtained by joining k, l isolated vertices to two adjacent 

vertices of a cycle Cg , where k, l 2': O. Then, similar to Lemma 6.3.2 we have the 

following three lemmas. 

Lemma 6.3.5. Let G be a graph of order n such that G = C3(k, l), where k, l 2': 1. 

Then the distance Laplacian spectrum of G consists of the eigenvalues 

(a) 0 with multiplicity 1; 

(b) n + 1 with multiplicity n - 5; 

(c) n + ti with multiplicity 1, where ti is a root of the equation 

X4 - (n + 7)x3 + (6n + kl + 14)x2 
- 2(5n + kl + 4)x + 5n = 0, 

for each i = 1,2,3,4. 

Lemma 6.3.6. Let G be a graph of order n such that G = C4 (k, l), where k, l 2: l. 

Then the distance Laplacian spectrum of G consists of the eigenvalues 

(a) 0 with multiplicity 1; 
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(b) n + 1 w2th mult2pi2c2ty n - 5; 

(c) n + t~ w2th mult2pi2c2ty 1, where t~ 2S a root of the equatwn 

X4 - (n + 7)x3 + (7n + kl + 12)x2 
- (14n + 3kl + 2)x + 7n = 0, 

for each 2 = 1,2,3,4. 

Lemma 6.3.7. Let G be a graph of order n such that G = C4 (k, 0), where k ~ 1. Then 

the d2stance Laplaczan spectrum of G cons2sts of the e2genvalues 

(a) 0, n + 3 w2th mult2pi2c2ty 1; 

(b) n + 1 w2th mult2pl2c2ty n - 4; 

(c) n + n+5±v'n;-6n+25 w2th mult2pi2c2ty 1. 

We now discuss the case, when 6n - 1(G) = n + 1 and G is a unicyclic graph. 

Lemma 6.3.8. Let G be a graph such that G 2S a umcycl2c graph of g2rth 3. Then 

6n - 1(G) < n + 1. 

Proof. Since G is connected and G is of girth 3, so d( G) ~ 3. If d( G) = 3, then we 

have the following three cases: 

Case 1: G is obtained by joining two co-neighbour pendent vertices of D(n, k, l), 

where k + 1 = n - 2 and k, 1 ~ 1. Then by Lemmas 6.2.5 and 6.3.2, the distance 

Laplacian spectrum of G consists of the eigenvalues 

(a) 0, n + 3 with multiplicity 1; 

(b) n + 1 with multiplicity n - 5; 

(c) n + t~ with multiplicity 1, where t~ is a root of the equation 

x3 
- (n + 4)x2 + (3n + kl + 3)x - 2n = 0, 

for each 2 = 1,2,3. 

Since at least one t~ E (0,1), so 6n - 1(G) < n + 1. 

Case 2: G ~ C3 (k, l), where k, 1 ~ 1. Then by Lemma 6.3.5, we have 6n - 1(G) < 
n+l, since a root of the equation x4 -(n+7)x3+(6n+kl+14)x2 -2(5n+kl+4)x+5n = ° 
lies in (0,1). 
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Case 3: G s:: C3 (k, l, m), where C3(k, l, m) is the graph obtained by joining k, l, m 

isolated vertices, respectively to each vertex of C3 , where k, l, m ~ 1. Then G contains 

a cut vertex, and hence by Lemma 6.2.1, J.1n-l(G) < 1. Since d(G) = 2, by Lemma 6.2.3 

we have, 6n - 1 (G) < n + 1. 

Thus, if d(G) = 3, then 6n- 1(G) < n + 1. 

Now, let us consider d(G) ~ 4. Since G have a cut vertex, by Lemma 6.2.1, 

J.1n-l(G) < 1. Thus, by Lemma 6.2.3, 6n- 1(G) < n + 1, since d(G) = 2. • 

Lemma 6'.3.9. Let G be a graph such that G is a unicyclic graph of girth 4. Then 

6n - 1 (G) = n + 1 if and only if G s:: C4 (k, 0), where k ~ 1. 

Proof. Since G is connected and G is of girth 4, so d( G) ~ 3. If d( G) = 3, then 

either G s:: C4 (k, 0), where k ~ 1 or G s:: C4 (k, l), where k, l ~ 1. In the first case by 

Lemma 6.3.7, 6n- 1(G) = n + 1, since n+5±v'n;-6n+25 > 1. 

In the second case by Lemma 6.3.6, we have 6n - 1(G) < n + 1, since a root of the 

equation x4 - (n + 7)x3 + (7n + kl + 12)x2 
- (14n + 3kl + 2)x + 7n = 0 lies in (0,1). 

By Lemma 6.2.1, we have J.1n-l(C4 (1,0)) < 1. Since any other unicyclic graph G 

contains C4(1,0) as an induced subgraph, so by (6.2.1), J.1n-l(G) < 1. Therefore if 

d,(G) ~ 4, then by Lemma 6.2.3, 6n- 1(G) < n + 1, since d(G) = 2. • 

Lemma 6.3.10. Let G be a graph such that G is a unicyclic graph of girth 5. Then 

6n - 1 (G) =I- n + 1. 

Proof. If G s:: C5, then d(G) = d(G) = 2. Since J.1n-l(C5) =I- 1, so by Lemma 6.2.3, 

6n - 1 (G) =I- n + 1. 

By Lemma 6.2.1, we have J.1n-l(C5(1,0)) < 1. Since any other unicyclic graph G 

contains C5(1,0) as an induced subgraph, so by (6.2.1), J.1n-l(G) < 1. Therefore if 

d(G) ~ 3, then by Lemma 6.2.3, 6n- 1(G) < n + 1, since d(G) = 2. • 

Lemma 6.3.11. Let G be a graph such that G is a unicyclic graph of girth 6. Then 

6n - 1 (G) = n + 1 if and only if G s:: C6 . 

Proof. If G s:: C6, then d(G) = 2. Since J.1n-l(C6) = 1, so by Lemma 6.2.3, 

6n - 1(G) = n + 1. 

Suppose G ~ C6 , then d( G) ~ 4 and G contains a cut vertex. Hence by Lemma 6.2.1, 

J.1n-l(G) < 1. Thus by Lemma 6.2.3, ~l(G) < n + 1, since d(G) = 2. • 

Lemma 6.3.12. Let G be a graph such that G is a unicyclic graph of girth at least 7. 

Then 6n - 1(G) < n + 1. 
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Proof. If G rv Cn, then d( G) = 2. Since n ~ 7, by Lemma 6.2.2 we have, 11n-l (Cn) < 
1. Hence by Lemma 6.2.3, 6n - 1(G) < n + 1. 

Suppose G ~ Cn, then G contains a cut vertex, and hence by Lemma 6.2.1, 

pn-l (G) < 1. Thus by Lemma 6.2.3, 6n - 1 (G) < n + 1, since d( G) = 2. • 

We summarize our discussions to state the main result of this subsection. 

Theorem 6.3.13. Let G be a graph such that G is a unicyclic graph. Then 6n - 1(G) = 
n + 1 if and only if G ~ C6 or G ~ C4 (k, 0), where k ~ 1. 

6.4 Distance Laplacian spectrum of path 

In this section, we study the distance Laplacian spectrum of a path, specially the 

distance Laplacian spectral radius 61 and the corresponding eigenvectors. The following 

lemma will be useful in doing so. 

[ A: B] Lemma 6.4.1. Let P = ----+--_. be a partitioned matrix. Then A is an eigenvalue 
B:A 

of P if and only if A is an eig~nvalue of A + B or A-B. 

Proof. If A is an eigenvalue of A + B (resp. A - B) with corresponding eigenvector 

X, then it can be seen that A is an eigenvalue of of P with [-i-·] (resp. [.-.=.\_.]) as 

the corresponding eigenvector. 

Conversely, let A be an eigenvalue of P with [- -~- -] as the corresponding eigenvector. 

Then from eigenequation, we have (A - B)(X - Y) = A(X - Y). Therefore, if X =1= Y, 

then A is an eigenvalue of A-B. And if X = Y, then (A + B)X = AX, i.e., A is an 

eigenvalue of A + B. • 
Let the vertices of the path P2k be labelled as in Fig. 6.1. 

• •. .. •• --•• ---< ........ -~ ........ -~.t---..... .... . 
k k - 1 3 2 1 k + 1 k + 2 k + 3 2k - 1 2k 

Figure 6.1: The path P2k . 

Then, for i = 1,2, ... , k, we have 

Tr(i) = Tr(k + i) = k2 + i2 
- i. 
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Therefore, 

D
L

(P2k) = [--~-t-~--] , 
Tr(1) -1 -2 -(k - 1) 

-1 Tr(2) -1 -(k - 2) 

where A - -2 -1 Tr(3) -(k - 3) ( 6.4.2) 

-(k - 1) -(k - 2) -(k - 3) Tr(k) 

-1 -2 -3 -k 
-2 -3 -4 -(k + 1) 

and B - -3 -4 -5 -(k + 2) (6.4.3 ) 

-k -(k + 1) -(k + 2) -(2k - 1) 

Thus by Lemma 6.4.1, the eigenvalues of DL(P2k ) are those of A + B and A-B. But 

in this case we can say even more, as given in the following lemma. 

Lemma 6.4.2. If A and B are the matnces gwen by (6.4.2) and (6.4.3), respectwely, 

then the spectrum of A + B = {O, Tr(2), Tr(3), . .. , Tr(k)}. 

Proof. Using (6.4.1), we have (A + B)D. k = Ok. Also by (6.4.1), it can be verified 

[ 

-D.t-l ] 
that X t = __ !_=}___ is an eigenvector of (A + B) corresponding to Tr(z), where 

°k-t 

i = 2,3, ... ,k. Since order of A + B is k so the result follows. • 

Thus from Lemmas 6.4.1 and 6.4.2, we have the following theorem. 

Theorem 6.4.3. If A and B are the matrices gwen by (6.4.2) and (6.4.3), repectwely, 

then the distance Laplacwn spectrum of P2k zs 

{O, AI, A2, ... ,Ak, Tr(2), Tr(3), . .. , Tr(k)} , 

where AJ zs an ezgenvalue of A - B for j = 1,2, ... , k. 

If ~ denotes the maximum vertex degree, then III ~ ~ + 1 (see [7]). Let r be the 

maximum vertex transmission of a graph. Then, in a similar way (hence the proof is 

omitted) we can prove that 61 > r + 1. Following is one of the main results of this 

section. 
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Theorem 6.4.4. The distance Laplacian spectral radius of P,. is simple with [--!x-J 
as the corresponding eigenvector, where X is positive. Moreover, X(i + 1) > X(i), 

where i = 1,2, ... , k - 1, and X(i) is the component of X corresponding to vertex i. 

Proof. Since 61 > r + 1, so by by Theorem 6.4.3, the distance Laplacian spectral 

radius of P2k is the largest eigenvalue of A - B, where A and B are given by (6.4.2) 

and (6.4.3), repectively. Since A - B is a positive matrix so by the Perron-Frobenius 

Theorem, the largest eigenvalue of A - B is simple and is afforded by a positive eigen-

vector X. From the proof of Lemma 6.4.1, it follows that [--..=.1---] is the eigenvector of 

DL (P2k ) corresponding to 61 , 

For i = 1, 2, ... , k - 1, from the eigenequation we have 

k 

((h(P2k ) - Tr(i + 1) )X(i + 1) = ((h(P2k ) - Tr(i) )X(i) + 2 L X(j), 
j=i+1 

(c)1(P2k ) - Tr(i + 1) )X(i) + 2iX(i) 

k 

+2 L X(j) [by (6.4.1)] 
j=i+l 

Since c)l(P2k ) > Tr(i + 1) and X is positive, so by (6.4.4) we get, X(i + 1) > X(i) .• 

We now consider the path of odd order. Let the vertices of the path P2k+1 be labelled 

as in Fig. 6.2. 

. .. .. . •. --.. -~ . ..--~ . ..--...... .... . 
k k - 1 2 10k + 1 k + 2 2k - 1 2k 

Figure 6.2: The path P2k+1' 

Then, for i = 0, 1,2, ... , k, we have 

Tr( i) = k2 + i2 + k. 

Also for i = 1,2, ... , k, 

Tr(i) = Tr(k + i). 
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Thus, 

[ 

Tr(O) : ZT : ZT ] 
---------~----~------

Z : A : C , 
---------~----~------

Z : C : A 

-1 
-2 

where Z - -3 

and A, B are the matrices given by (6.4.2), (6.4.3), respectively. 

Theorem 6.4.5. If A and C are the matr'lces gwen by (6.4.2) and (6.4.8), repectwely, 

then the distance Laplacian spectrum of P2k+1 1,S 

{O, A1, A2, ... , Ak, Tr(l), Tr(2), . .. , Tr(k)}, 

where A) is an eigenvalue of A - C, for j = 1,2, ... ,k. 

Proof. Clearly, 1l2k+l is the eigenvector of DL(P2k+1) corresponding to o. If A) is 

an eigenvalue of A - C with corresponding eigenvector X 3 , then it can be seen that 

A, is also an eigenvalue of DL (P2k+1) with [::~,::] as the corresponding eigenvector, 
wherej = 1,2, ... ,k. 

? ~t~ :::::::f i::;::~;g:~:~~:::~c::l~~:;~~;f~;r~ ::::v:::::e:h:: 
(6.4.7). Using (6.4.5) and (6.4.6), it can be verified that (A+C+ Tr(~)~Tr(O)ZZT)~ = 

[ 

- 2~~1 n~-l ] 
Tr(i)~, where ~ = :~~~~~}~~~~~~: and i = 1,2, ... , k. Thus, Tr(i) is an eigenvalue 

Ok-~ 

of DL(P2k+1) with [:::~~~~:~:::::~:] as the corresponding eigenvector, where i ~ 
1,2, ... ,k. It can be seen that 

{ [::~i::] : j ~ 1,2, ... , k} U { [:::~~:~I~~::::~::] : i ~ 1,2, ... , k } U{U2k+l} 

[§J 
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is a set of mutually orthogonal vectors. Since the order of D L(P2k+1) is 2k + 1, the 

result follows. • 

Theorem 6.4.6. The distance Laplacian spectral radius of P'k+! is simple with [::A::] 
as the corresponding eigenvector, where X is positive. Moreover, X(i+1) > X(i), where 

i = 1,2, ... , k - 1, and X(i) is the component of X corresponding to vertex i. 

Proof. Similar to the proof of Theorem 6.4.4 • 
Remark 6.4.7. Theorem 6.4.4 and Theorem 6.4.6 are similar in spirit to the work 

done by Fiedler (see [26j, Theorem 3.11) and Merris (see [45], Section II, Theorem B), 

where the authors dealt with the eigenvector of the Laplacian matrix corresponding to 

the smallest positive eigenvalue. 
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