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This thesis is the outcome of our study about the eigenvalues of the Laplacian and

the distance matrices of a graph and their relation to the structure of the graph.

A generalization of the edge corona of graphs is defined and the corresponding
Laplacian spectrum has been studied. The results are used to find an infinite family

of Laplacian cospectral graphs.

Like many fields of mathematics, in graph theory also one is often interested in find-
ing the maxima or minima of certain functions and identifying the points of optimality.
We consider the function “distance spectral radius” and try to maximize and minimize
it under different constraints and in different classes of graphs. Along this way, we
have obtained the graph having maximal distance spectral radius among all trees with
given matching number (resp. among all graphs with given number of pendent ver-
tices) conjectured by Aleksandar Ili¢ in [Distance spectral radius of trees with given
matching number, Discrete Applied Mathematics 158 (16), 1799-1806, 2010] (resp. by
Yu et al. in [Some graft transformations and its applications on the distance spectral
radius of a graph, Applied Mathematics Letters 25 (3), 315-319, 2012]).

The class of all connected graphs having connected complement (precisely a tree or
a unicyclic graph) is considered and the second smallest distance Laplacian eigenvalue
is studied. It has been proved that the largest distance Laplacian eigenvalue of path is

simple and the structure of the corresponding eigenvector is described.
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Chapter 1

Introduction

Algebraic graph theory is the study of many unexpected and many useful connections
between two beautiful and apparently unrelated, parts of mathematics: algebra and
graph theory. Some of the important problems in algebraic graph theory are matrix
completion problems, minimum rank problems and problems in spectra of graphs.
Spectral graph theory studies the relation between graph properties and the spectra
of certain matrices associated to it. The associated matrices include the adjacency

matrix, the Laplacian matrix, the distance matrix etc., and their normalized forms.

Spectral graph theory has a long history. In the early days, adjacency matrices of
graphs were studied using matrix theory and linear algebra. Algebraic methods are
especially effective in treating graphs which are regular and symmetric. In the past ten
years, new spectral techniques have emerged and they are powerful and well-suited for
dealing with general graphs. In a way, spectral graph theory has entered a new era.

This thesis is the outcome of our study about the eigenvalues of the Laplacian
and the distance matrices of a graph and their relation to the structure of the graph.
In literature, extensive study has been made on adjacency and Laplacian matrices.
The distance matrix of a graph, while not as common as the more familiar adjacency
matrix, has nevertheless come up in several different areas, including communication
network design (30|, graph embedding theory [23,29], network flow algorithms [27] etc.
Recently, the problem of finding all graphs with maximal or minimal distance spectral
radius among a class of graphs has been studied extensively (see [36,55,57,61,62,65]).
This thesis is intended to fill some conspicuous gaps in the study of the distance spectral
radius of graphs. The distance Laplacian matrix of a graph entered the scene of graph
spectra as late as 2013. This thesis also attempts to answer certain questions on the

distance Laplacian spectra of some graphs.
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1.1 Graph terminologies

All graphs we consider in this thesis are finite, undirected, and simple, i.e., without
loops and parallel edges. For a graph G = (V, E), we write V(G) and E(G) for the
vertex set V' and the edge set E of G, respectively. By |G| (i.e., the order of G) we
mean the cardinality of the vertex set of G and dg(v) is used to denote the degree (i.e.,
the number of incident edges) of a vertex v in G. An isolated vertez is a vertex of degree
0 and a pendent vertex is a vertex of degree 1. The vertex adjacent to a pendent vertex
is called a quasi-pendent vertex. A spanning subgraph of G is a subgraph containing
all the vertices of G. For a subset S of V(G), G[S] denotes the induced subgraph on S
(i.e., the maximal subgraph of G on S).

The distance between two vertices u,v € V(G) is denoted by d,, and is defined as
the length of a shortest path between v and v in G. The distance, as a function on

V x V, satisfies the triangle inequality. Thus, for any three vertices u, v and w,
d’U‘U) S du'u + d’U’lU.

The diameter (i.e., maximal distance between any two vertices) of G is denoted by
d(G).

We use the standard notations C,,, K,, P, and §,, for the cycle, the complete graph,
the path and the star, respectively, on n vertices. An empty graph of order n is denoted
by O, and is defined as the complement of K, i.e., a graph having no edge.

If G = (W1, Ey) and Gy = (V,, E;) are two graphs on disjoint sets of m and n
vertices, respectively, then their union is the graph G UG, = (VU V,, E3 U E,). Their
join is denoted by G; V G3 and consists of G; U G2 and all lines joining V; and V5.

A tree is a connected graph without a cycle. A bipartite graph G is a graph whose
vertex set V(G) can be partitioned into two disjoint subsets V; and V; such that every
edge of G joins a vertex of V; with a vertex of V5. If G contains every edge joining a
vertex of V; with a vertex of V,, then it is a complete bipartite graph and is denoted by
K n, where m, n are the number of vertices in V; and V3, respectively.

An edge independent set of a graph G is a set of edges such that any two distinct
edges of the set are not incident on a common vertex. The edge independence number
of G, denoted by m(G), is the maximum of the cardinalities of all edge independent
sets. An edge independent set (resp. edge independence number) is usually called a
matching (resp. matching number). For a connected graph G of order n, its matching
number m(G) satisfies 1 <m(G) < [Z].
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For a set S of vertices and edges in a graph G, G — S denotes the graph obtained
from G by deleting all the elements of S. It is understood that when a vertex is deleted,
all edges incident with it are deleted as well, but when an edge is deleted, the vertices
incident with it are not.

The vertex connectinity of a graph G, denoted by «(G), is the minimum number
of vertices whose deletion yields in a disconnected or a trivial graph. A cut vertez is
a vertex whose removal increases the number of components of a graph. Thus for a
graph G with a cut vertex, K(G) = 1. The neighbourhood Ng(v) of a vertex v in G is
{u:uv € E(G)}. If v is a vertex of a tree T, then the components of T — v are called
the branches of T at v. We say that a graph K is attached at a vertex v of G to mean
that a new graph is obtained by joining v and a vertex of K by an edge. For other
graph theoretic terms we follow [33].

A few words about the labels: the label of theorems, lemmas, corollaries, remarks,
definitions, equations and examples are made like c¢.s.n; where c¢ is the chapter number,

s is the section number and = is the item number.

1.2 Schur complement and Kronecker product of

matrices

Let My, My, M3 and M, be respectively p X p,p X q,q X p and ¢ x ¢ matrices with M;
and M, invertible. It is well known that

M, M -
det[ M; Mi} = det(My).det(M; — MoM; ' Ms),

det(M;).det(My — MsM{ M),

where My — Mo M M3 and My — MsM{ ' M, are called the Schur complements of My
and M; respectively [63].

The Kronecker product A ® B of two matrices A = {a,)}mxn and B = [b,]pxq is
the mp x ng matrix obtained from A by replacing each element a,, by a,,B. This
is an associative operation with the property that (A ® B)T = AT ® BT and (A®
B)(C ® D) = AC ® BD whenever the products AC and BD exist. The latter implies
(AQ B)™! = A"1 ® B~! for nonsingular matrices A and B. Moreover, if A and B are
n x n and p X p matrices, then det(A ® B) = (detA)”(detB)". Other properties of the
Kronecker product can be found in [34].
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Throughout the thesis, Jsx; (fesp. 0sx:) denotes the s x ¢ matrix with all entries
equal to 1 (resp 0), where s, > 2. Similarly, 1, (resp. 0,) denotes the s x 1 vector
with all entries equal to 1 (resp 0). The identity matrix of order k is denoted by Ij.

(Though sometimes we omit the order if it is clear from the context).

1.3 The Laplacian matrix of a graph »

Let V(G) = {v1,vs,...,v,} be the vertex set of G. The adjacency matrz of G, is
defined to be A(G) = [ay],, where
_ { 1, if v, and v, are adjacent,
71 0, otherwise.
Being a real symmetric matrix, all the eigenvalues of A(G) are real and their algebraic
multiplicities equal their geometric multiplicities [34].

The matriz of vertex degrees of G is the diagonal matrix Deg(G) of order n, whose
i-th diagonal entry is the degree of the i-th vertex. The matrix L = L(G) = Deg(G) —
A(G), is the Laplacian matriz of G.

The vertez-edge incidence matriz [7) M of G is a matrix whose rows and columns
are indexed by V(G) and E(G), respectively. After giving any arbitrary orientation
to the edges, the (7, j)-th entry of M is 0 if vertex ¢ and edge e, are not adjacent, and
otherwise it is 1 or —1 according as e, originates or terminates at ¢, respectively.

The matrix L is symmetric, singular (because all row sums are 0) and positive
semidefinite (because L = MMT). So all the eigenvalues of L are non-negative reals.

In 1847, Kirchoff proved a very important result involving the Laplacian matrix
which put the study of the Laplacian matrix as an interesting subject in front of many
researchers. The result is popularly known as Kirchoff’s Matriz Tree Theorem. See (47|

to collect some more references on this theorem.

Theorem 1.3.1. Let G be a graph. Denote by L(i|j) the (n — 1) x (n — 1) submatriz
of L obtained by deleting its i-th row and j-th column. Then (—1)"*det L(i|5) is the
number of spanning trees in G.

For a matrix M of order n,
o(M;x) = det(zl, — M)

is the characteristic polynomial of M. In particular, for a graph G, ¢(L(G); z) is called

the Laplacian characteristic polynomial of GG, and its roots are the Laplacian eigenvalues
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of G. The collection of eigenvalues of L(G) together with their multiplicities is called
the L-spectrum of G and is denoted by o*(G). Two graphs are said to be L-cospectral,
if they have the same L-spectrum.

Let puy > p2 > ... > pn—1 2> pn = 0 (we will use this ordering throughout the
thesis) denote the Laplacian eigenvalues of G. The second smallest eigenvalue p,_; of
L is called the algebraic connectivity. The justification for the name is the fact that
pn—1 = 0 iff the graph is disconnected. An eigenvector corresponding to p,_; is called
a Fiedler Vector. The algebraic connectivity of a graph and the structure of a Fiedler
vector is studied extensively in literature (see [24,38-40,47] and the references therein).

Let G denote the complement of a graph G. Then, as observed in [1],
L(G) + L(G) = L(K,) = nl, — J,.

It follows that n — pp—1 21 — pp—2 > ... > n — py > 0 are the Laplacian eigenvalues
of G.

Till now, many graph operations such as the disjoint union, the Cartesian product,
the Kronecker product, the corona, the edge corona, the neighbourhood corona and
the subdivision vertex (edge) neighbourhood corona have been introduced, and their
L-spectra are computed (see [11,15,17,18,20,28,35,42,44]). These operations help
to describe the spectrum of a relatively larger graph in terms of the spectra of some
smaller graphs.

In Chapter 2, we define graph with edge pockets (see Definition 2.1.2) which gener-
alizes the definition of edge-corona and discuss some results of their L-spectra. As an
application, we show that these results enables us to construct infinitely many pairs of

L-cospectral graphs.

1.4 The distance matrix and the distance spectral

radius of a graph

The distance matriz of a connected graph G of order n is defined to be D(G) = [d;],,
where d;; is the distance between the vertices v; and v; in G. Thus, D(G) is a symmetric
real matrix and have real eigenvalues [34]. The distance spectral radius p(G) of G is
the largest eigenvalue of the distance matrix D(G). Since D(G) is irreducible, by the
Perron-Frobenius theory, p(G) is simple and is afforded by a positive eigenvector, called
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the Perron vector [50]. If X(G) = (z1,%2,...,T,)T is the Perron vector of D(G), then

p(G)z, = Z dy,z;.

v, EV(G)

Distance energy DE(G) is a newly introduced molecular graph-based analog of the
total m-electron energy, and it is defined as the sum of the absolute eigenvalues of the
molecular distance matrix. The distance spectral radius is a useful molecular descriptor
in QSPR modelling, as demonstrated by Consonni and Todeschini in [16,59]. For more
details on distance matrices and distance energy one may refer to [49,54,58].

Balaban et al. in [3] proposed the use of distance spectral radius as a molecular
descriptor, while in [32] it was successfully used to infer the extent of branching and
model boiling points of alkanes. In [66] and [68], Zhou and Trinajsti¢ provided upper
and lower bounds for p(G) in terms of the number of vertices, Wiener index and Zagreb
index. Balasubramanian in [4,5] pointed out that the spectra of the distance matrices
of many graphs such as the polyacenes, honeycomb and square lattice have exactly one
positive eigenvalue, and he computed the spectrum of fullerenes Cgy and Crg.

In the case of a tree, the distance matrix has some attractive properties. As for
example, the determinant of the distance matrix of a tree depends only on the number

of vertices, and not on the structure of the tree, as seen in the following result.

Theorem 1.4.1. [30] Let T be a tree on n vertices, wheren > 2, and D be the distance
matriz of T. Then the determinant of D is given by

det D= (-1)""Y(n —1)2"2,

It was also shown in [30] that the distance matrix of a non trivial tree has just one
positive eigenvalue.

Let D be the distance matrix of a tree T with V(T) = {1,2,...,n}. It follows from
Theorem 1.4.1 that D is nonsingular. If 7, =2 —dr(i),i=1,...,n,and 7 is the n x 1
vector with components 7,...,7,, then the following result connects the inverse of

distance matrix of T with its Laplacian matrix.

Theorem 1.4.2. [29] Let T be a tree with V(T)={1,2,...,n}. Let D be the distance
matriz of T and L be the Laplacian matrix of T. Then

1 1 r
§L+ m’r’r .

[6]

Dl=—
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Merris in [46] obtained an interlacing inequality involving the distance and Laplacian

eigenvalues of trees which is as follows.

Theorem 1.4.3. [46] Let T be a tree of order n, where n > 2. Let D be the distance
matriz and L be the Laplacian matriz of T. Let Ay > 0 > A > ... 2 A, be the
eigenvalues of D and puy > po > ... 2> pno1 > pn = 0 be the eigenvalues of L. Then

2

0>-25n>-2s -
M1 H2 Hn-1

> Ay

Various other connections between the distance matrix and the Laplacian matrix of
a graph can be found in [6,8].

Let e = uv be an edge of a connected graph G such that G’ = G —e is also connected,
and let D' be the distance matrix of G — e. As observed already in [57], the removal
of e does not create shorter paths than the ones in G, and therefore, d;; < d;; for all
i,j € V(G), where d; is the (3, j)-th entry of D'. Moreover, 1 = d,, < d,,,, and by the
Perron-Frobenius theorem, one can conclude that

p(G) < p(G —e).
In particular, for any spanning tree T of G,
p(G) < p(T). 14.1

Similarly, adding a new edge f = st to G does not increase distances, while it does
decrease at least one distance; the distance between s and ¢ is 1 in G + f and at least
2 in G. Again by the Perron-Frobenius theorem,

p(G + f) < p(G). 1.4.2

Inequality (1.4.2) tells us immediately that the complete graph K, has the min-
imum distance spectral radius among the connected graphs on n vertices, while in-
equality (1.4.1) shows that the maximum distance spectral radius will be attained for
a particular tree.

Ruzieh and Powers [55] proved that for n > 3 the path P, has the maximum distance
spectral radius among trees on n vertices. Stevanovié and Ili¢ [57] generalized this
result, and proved that among trees with fixed maximum degree A, the broom graph
has maximum distance spectral radius and proved that the star S,, is the unique graph

with minimal distance spectral radius among trees on n vertices. Zhang and Godsil [65]
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studied the behaviour of the distance spectral radius when a graph is perturbed by
grafting edges, and then, as applications, they determined the graph with k cut vertices
(respectively, k cut edges) having the minimal distance spectral radius. Ili¢ [36] have
determined the unique graph that minimizes the distance spectral radius among trees
on n vertices with given matching number m. The unicyclic graphs having maximal and
minimal distance spectral radii have been obtained by Yu et al. [62]. Das [21] obtained
lower and upper bounds for the distance spectral radius of a connected bipartite graph
and characterize those graphs for which these bounds are best possible. Indulal [37]
has found sharp bounds on the distance spectral radius and the distance energy of
graphs. More results on the distance spectral radius can be found in [22,41,43,60,64].

In Chapter 3, we determine the graphs having maximal (minimal) distance spectral
radius in the class of all graphs with a given number of pendent vertices. The results
proved in this chapter are proved in [12,52].

In Chapter 4, we determine the graphs having maximal (minimal) distance spectral
radius in the class of all graphs without a pendent vertex. The results proved in this
chapter are proved in [14, 53].

In Chapter 5, we determine the unique graph with minimal distance spectral radius
in the class of all bipartite graphs with a given matching number. We also characterize
the graphs with minimal distance spectral radius in the class of all bipartite graphs
with a given vertex connectivity. The results proved in this chapter are proved in [51].

1.5 The distance Laplacian matrix of a graph

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v

to all other vertices in G, i.e.,

Tr(v) = Z Ay

u€V(G)

The distance Laplacian matriz of a connected graph G is defined as D* = DX(G) =
Tr(G) — D(G), where Tr(G) is the diagonal matrix, whose i-th diagonal entry is the
transmission of the i-th vertex [2]. Let §; > 6, > ... > 8,1 > &, (we will use this
ordering throughout the thesis) denote the eigenvalues of DL. It can be easily verified
that DL is a positive semidefinite matrix. Moreover, since sum of each row and column
of DY is 0, s0 6, = 0.

The following important result is obtained by Aouchiche and Hansen [2].
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Theorem 1.5.1. [2] Let G be a connected graph on n vertices and m > n edges.
Consider the connected graph G obtained from G by the deletion of an edge. Let §; >
by > ... > 61> 08 and & > 8 > ... > 8,1 > b, denote the distance Laplacian
eiegnualues of G and G respectively. Then &; > &;, for alli=1,...,n.

The authors have also proved that for a connected graph G of order n, the second
smallest distance Laplacian eigenvalue is at least n, where the equality holds if and
only if G is disconnected. In that case, the multiplicity of n as a distance Laplacian
eigenvalue of G is one less than the number of components of G. They have obtained
a relation connecting the Laplacian and the distance Laplacian eigenvalues for graphs
having diameter at most 2.

In Chapter 6, we study the second smallest distance Laplacian eigenvalue of a graph
when its complement is connected. We also study the distance Laplacian spectrum of
a path. We prove that the largest distance Laplacian eigenvalue of a path is simple
and describe the structure of the corresponding eigenvector.



Chapter 2

On the Laplacian spectra of graphs with
edge-pockets

2.1 Introduction

Till now, many graph operations such as the disjoint union, the Cartesian product,
the Kronecker product, the corona, the edge corona, the neighbourhood corona and
the subdivision vertex (edge) neighbourhood corona have been introduced, and their
L-spectra are computed. These operations help to describe the spectrum of a relatively
larger graph in terms of the spectra of some smaller graphs. The following is such a
graph operation, introduced by Barik [9].

Definition 2.1.1. [9] Let F, H, be graphs of order n and m, respectively, where m > 1,
v be a specified vertex of H, and uy,...,ur € F. Let G = G[F,uy,...,ux, H,) be the
graph obtained by taking one copy of F' and k copies of H,, and then attaching the i-th
copy of H, to the verter u;, i = 1,...,k, at the vertex v of H (identify u; with the
vertex v of the i-th copy). Then the copies of the graph H, that are attached to the
vertices u;, 1 = 1,...,k are referred to as pockets, and G is described as a graph with
k pockets.

In [9], the author has described the L-spectrum of G[F,uy,...,ux, H,] using the
L-spectra of F' and H,, when dy,(v) = m — 1. In that case, if a copy of H, is attached
to every vertex of F, each at the vertex v of H,, that is, if G has n pockets, then
G = G[F,u, ..., Uy, H,] is nothing but the corona F o H, where H = H, — {v}. Then
in [11}], the complete L-spectrum of G is described using the spectra of F' and H.

For a subset S of E(G), Gg denotes the subgraph of G containing the edges in S only
and vertices, which are the endpoints of the edges in S. Motivated by Definition 2.1.1,
we define the following.

Definition 2.1.2. Let F' and H,, be two graphs of order n and m, respectively, where
n > 2 and m > 3. Let uv be a specified edge of Hy, such that H,, — {u} is isomorphic
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to Hy, — {v}, and S = {e1,...,ex} C E(F). Let G = G|Fs, Hy,| be the graph obtained
by taking one copy of F' and k copies of Hy,, and then pasting the edge uv in the i-th
copy of Hy, with the edge e; € S, where i = 1,...,k. We call the copies of the graph
H,, that are pasted to the edges e;, i = 1,...,k edge-pockets, and G is a graph with k
edge-pockets.

Note that order of G[Fs, Hy,] is n + k(m — 2); and if F has [; edges and H,, has
Iy edges, then G[Fs, Hy,| has I + (lo — 1)k edges. The following example illustrates
Definition 2.1.2.

Example 2.1.3. Let us consider the graphs F' and H,, shown in Fig. 2.1. Note that
uv 18 an edge of Hy, such that H,, — {u} is isomorphic to Hy, — {v}. If S = {e1,e2} C
E(F), then the graph G[Fs, H,,] is shown in Fig. 2.1.

2 3 2 3

€1 €2 i E €] €2
u v

1 4 1 4
F Hyy G[Fs, Hu|

Figure 2.1: The graphs F, H,, and G[Fs, H,,] of Example 2.1.3

This being a very general operation it is not possible to obtain the L-spectrum of
G|Fs, H,,] from the L-spectra of F' and H,,. But, a natural question remains is “how
far can the L-spectrum of G[Fs, H,,] be described by using the L-spectra of F and H,,?”

In Section 2.3, we show that the complete L-spectrum of G[Fs, H,,] can be described
in some particular cases. Finally, in a more general case, when Fys is a regular graph
and dy,, (u) = dg,,(v) = m — 1, we describe all but n + k Laplacian eigenvalues of
G|Fs, Hy,,) using the Laplacian eigenvalues of H,,. We also show that the remaining
n + k Laplacian eigenvalues of G[Fs, H,,] are independent of the graph Hy,. As an
application, we show that these results enable us to construct infinitely many pairs of
L-cospectral graphs.

2.2 Preliminaries

In this section, we give some preliminaries. The M-coronal T'p(x) of a matrix M of
order n is defined [17,44] to be the sum of the entries of the matrix (zI, — M), that
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is,
Tu(z) = 15 (zl, — M) '1L,,.

It is known [17, Proposition 2] that, if M is a matrix of order n with each row sum

equal to a constant [, then

Tu(z) = }:—717 2.2.1

In particular, since for any graph G on n vertices, each row sum of L(G) is equal to 0,

we have

n
FL(G)(:L‘) = E 2.2.2

The following theorem of [48] will be needed to prove our main results of this chapter.

Theorem 2.2.1. (48] Let G1, G2 be two graphs on disjoint sets of m,n, vertices, respec-
tively. If o2(G1) = {m(GL), . . -, tm-1(G1), um(G1) = 0} and oL (G3) = {(Ga),. .-,
En-1(G2), un(G2) = 0}, then oX(G1VGs) = {m+n,n+u(G1),- .., n+ ptm-1(G1),m+
p(Ga), - .., m+ pn_1(Ga),0}.

2.3 Spectrum of G[Fs, Hy,,|

In this section, we obtain the L-spectrum of G[Fg, H,,] with the help of the coronal
of a matrix. The 0-1 vertez-edge incidence matriz R(G) = [ri¢;| of a graph G is the
matrix with rows and columns indexed by vertices and edges of G, respectively, where
Tie; = 1 if the vertex ¢ is incident with the edge e; and 0 otherwise [7]. Thus, if G is
a r-regular graph, then R(G)R(G)” = A(G) + 1. Following is one of the main results
of this section.

Theorem 2.3.1. Let F' and H,, be two graphs of order n and m, respectively, where
n > 2 and m > 3. Let uv be a specified edge of Hy,, and S be a k-element subset of
E(F), such that dg, (u) = dg,,(v) = m—1 and Fs is a spanning subgraph of F. If F
1s r-reqular, then

O(L(G[Fs, Huw)); ) = ¢(L(H); z — 2)*¢(M; z),

where H = Hy, — {u,v}
and M = r((m —2)+ Tz — 2))n + L(F) + Ty (x — 2)A(Fs).
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Proof. Since dy  (u) = dp, (v) = m — 1, so Hy, can be written as Hy, =
({u, v}, {uv}) vV H. Thus, with a permutation similarity operation we can write
LE) +rm =Dl 1, @ ZR(Fs)
L(G[Fs,H,,)) = i
1,2® —R(Fs)T : (L(H) + 2Im_2) & I

The Laplacian characteristic polynomial of G[Fs, Hy,| is given by

P(L(G[Fs, Huw)); )

[;":’!p_:.@.@T).:.’ZQZ@_:?)_@_»_L_-______Ikm:z_@!?_(f:s_)_________}

= det |

Iz @ R(F5)T | ((z—2)In2— L(H))® L

= det((e ~ 2lnes - L(H))k.det(Sl)

= ¢(L(H);z — 2)*.det(Sy), 23.1

where S = zl, — L(F) —r(m — 2)I, — Ty (z — 2) R(Fs)R(Fs)T
= zl, — L(F) —r(m = 2)I, — Tymy(z — 2)(A(Fs) +r1,)
= I, - M 2.3.2

is the Schur complement of ((z — 2)I,,_2 — L(H)) ® I). Using (2.3.2) in (2.3.1) we have
the result. n

A factor of a graph G is a spanning subgraph of G which is not empty [33]. A
graph G is called the sum of factors G, if it is their line-disjoint union, and such a
union is called the factorization of G. A k-factor is regular of degree k. If G is the
sum of k-factors, their union is called a k-factorization and G itself is k-factorable. In
particular, Ky is 1-factorable whereas Koy is 2-factorable {33].

Corollary 2.3.2. Let F = Ky and Hy, be a graph of order m, where m > 3. Let uv
be a specified edge of Hy, and S be a k-element subset of E(F), such that dg, (u) =
dy,,(v) = m — 1 and Fs is a I-factor of F. If o (Hy,) = {pm(Huw), p2(Hyuy), - - -,
pn-1(Huw), pm(Hyw) = 0}, then oL (G[Fs, Hy,)) consists of the eigenvalues

(a) 0, m with multiplicity 1;

(b) py(Hyw) with multiplicity k, for each j = 3,4,...,m —1;

(c) m + 2k — 2 with multiplicity k; CENTRAL LIBRARY, T. U.
acc.no. T X2,
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(d) two roots of the equation z? — (2k + m)x + 4k = 0, each with multiphcity k — 1.

Proof. By Theorem 2.3.1, we have

m-3
H(L(G[Fs, Hu);z) = (z - 2)" [] (& = 2 — s, (H))".6(M; ), 233

J=1

where H = Hy, — {u,v},
GU(H) = {a(H), pa(H), -, imes(H), im-2(H) = 0} and

M = ((m—2)+Tyum(z —2)) ok + 2kl — Jax)

+PL(H)(ZE - 2)(Ik ® A(Kz))

-2
<(m—2)+——7;l_2 +2k) Lk — Ja +

[by (2.2.2)].

(Ix ® A(Kz))

m— 2
r—2

Let M1 = ((m — 2) + ZLT_; + 2](5) I2k + 7:;—__—22(.[19 X A(Kg)) so that M = M1 — Jgk.

Now

(M z)

det(zlo — M)

det(xlox — My + J2)

det(zlor — My) + 12 adj(x Iy, — M;) Lo
[where ‘adj’ is the adjoint of a matrix]

det(ilIIQk - Ml){l + llgk(xl% - Ml)_112k}
det(z o — MI){I + T, (x)}

(z? — (2k + m)z + 4k)* 2k(z — 2)
- (z —2)k {1+x2—(2k+m)x+4k}

(x —m+2-2k)
[by (2.2.1)]

2 k-1
z(x —m)(z —m+2— Zk)k(aC — (2k+m) + 4k) .

(x —2)%

2.34

Using (2.3.4) in (2.3.3), and by Theorem 2.2.1, we have the result. u
The following result describes the structure of the adjacency eigenvalues of a cycle
of order n, which will be useful to prove the next result of this section.

Lemma 2.3.3. [7] For n > 3, the eigenvalues of A(C,) are 2cos 2, where | =

1,2,....n

n?



Chapter 2 On the Laplacian spectra of graphs with edge-pockets

Corollary 2.3.4. Let F = K,, and H,, be a graph of order m, where n > 3 and
m > 3. Let uv be a specified edge of Hy, and S be a k-element subset of E(F), such
that dg,,(u) = dy,,(v) = m — 1 and Fs = Cy. If cL(Hy,) = {pm1(Huw), p2(Hup), - - -
pm-1(Huw), ttm(Huyy) = 0}, then oL(G|Fs, Hy,)]) consists of the eigenvalues

(a) 0, 2m — 2 with multiplicity 1;
(b) p;(Hyw) with multiplicity n, for each j = 3,4,...,m — 1;

. 2nly _
(c) two roots of the equation z* — (2m — 2 + n)z + 2n + 2(m — 2)(1 — cos &) = 0,
foreachl=1,2,...,n—1.

Proof. By Theorem 2.3.1, we have

H(L(G[Fs, Hyol); ) = (z — 2)" H (z — 2 — py(H))".$(M; ), 235

where H = H,, — {u,v}
o"(H) = {m(H),p2(H), .., pm-3(H), tm-2(H) = 0} and
M = 2((m~2)+ T (@ — ) + (0l — Ju) + Try(z — 2)A(C)

= (z(m_2)+w

m—2

Let My = (2(m —2) + 222 4 n) I, + 22 A(C,) so that M = M; — Jy.

Now o(M; )
= det(zl, — M)
= det(zl, — My + J,)
= det(zl, — M;) + 1¥adj(zI, — My)1,
= det(zl, — Ml){l + 17 (I, — Ml)‘llln}

= det(al, - M) {1+ Tan(@) }

_ 5”2—(2m—2+n)37+2n{1+ n(z — 2) }
B z—2 22— (2m—-2+n)z+2nl)
ﬁx2‘(2m—2+n)$+2n+2(m—2)(1—cos%"l)

=1 z—2

[by (2.2.1) and Lemma 2.3.3]
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z(z - 2m + 2) nlp? - (2m — 2+ n)x + 2n + 2(m — 2)(1 —cos-znl’)
= : = .
M) T -2 111 T —2
2.3.6
Using (2.3.6) in (2.3.5), and by Theorem 2.2.1, we have the result. u

Remark 2.3.5. If in Corollary 2.3.4, n is odd, then it can be seen as an analogue of
Corollary 2.3.2 for odd complete graph and a 2-factor of it.

Now, we consider a more general case. Let F' and H,, be two graphs of order n
and m, respectively, where n > 2 and m > 3. Let uv be a specified edge of H,, and
S be a k-element subset of E(F), such that dg, (uv) = dy,,(v) = m ~1. If Fs is a
regular graph, then except n+ k Laplacian eigenvalues, we describe all other Laplacian
eigenvalues of G[Fs, H,,| using the Laplacian eigenvalues of H,,. We also show that
the remaining n + k Laplacian eigenvalues of G[Fs, H,,) are independent of the graph
H,,. Let C7* be the graph of order m formed by m — 2 triangles such that each pair of
triangles have exactly one common edge e (See Fig. 2.2).

1

Figure 2.2: The graph C".

Theorem 2.3.6. Let F' and H,, be two graphs of order n and m, respectively, where
n > 2 and m > 3. Let uv be a specified edge of Hy, and S be a k-element subset of
E(F) such that dy,,(u) = dg,,(v) = m — 1. If Fs is a regular graph and o*(H,,) =
{1 (Hyo)s p2(Huo), - - -y pm—1(Huw ), pm(Huw) = 0}, then o¥(G|Fs, Hyy)) consists of the
etgenvalues

(a) p;j(Hyp) with multiplicity k, for each j = 3,4,...,m — 1 and

b) X € oL(G[Fs,C™)) — {2,2,...,2}, where e = cm,
(b) X € o"(G[Fs,C) {( 3)k}'weree wv of

Proof. Since dy, (u) = dg, (v) = m — 1, so Hy, can be written as H,, =
({u,v},{uv}) V H, where H = H,, — {u,v}. Let Fg be a r-regular graph on the
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first p vertices of F. Thus, with a permutation similarity operation we can write
L(G[Fs, Hy,))
I : Opxn—p
L(F)+r(m —2) |---F---- e

Lm—2® [ —R(Fs)T | Oksn—p | (L(H) 4 2In—5) ® I

The Laplacian characteristic polynomial of G[Fs, H,,] is given by

d)(L(G[FS, Huv]); ZE)
L i Openyp | R(Fs)
I, — L(F) — )l B e oo S 17 _,® [ ---------- }
o ( ) ’f'(m ) [ On-pxp : On—pxn—p :I ! 2 On—pxk
=det! e
1h2® [ R(FS)T : kan—p ] 5 ((.’E - 2)Im—2 - L(H)) ® Ik
k
= det((z - 2) I — L(H)) det(Sh)
= ¢(L(H);z — 2)F.det(S;)
m—3
= (=2 T (z — 2 — p;(H))*.det(S1), 2.3.7
j=1
where
S, = zl,— L(F)—r(m—2) [»————]P—-—-:L——(-)’-’f‘—"—f’—’---}
On—pxp ! On—-pxn—p
R(Fs)R(Fs)T | Opxn-—
) [.___(__5_)___(.__5_)___[*.6_2____2___]
n—pXxp 1 Yn—pxn—p
1 T
- ol ) ) [P RS O]
On—pxp J On—pxn—p
[by (2.2.2)] 2.3.8

is the Schur complement of ((z — 2)I,,_o — L(H)) & Ii.

Similarly, we have
L(G[FSa C:an])
L(F) +r(m - 2) l:_____j_p____g___Ql’Z‘ﬂ?l’_-.:'
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Thus, the Laplacian characteristic polynomial of G[Fs, C7'] is given by

HL(GIF5, O3 ) |
zl, — L(F) = r(m - 2) [—----IP-~--L--92-X-":B--]

0n~pxp ;On—pxn-p é 0n~pxk
= det 5 ]
______________________________________________________ b
Lz ® [ R(Fs)T | Okxn—p | L (= D2 ® Ik
k k(m—2
- det((a: - 2)Im_2> det(Sy) = (z — 2)5m2) det(S,), 239
where
Sy = aly— L(F)—r(m—2) [----fl’----é——‘??f-":?---]
On—pxpg On—pxn—p

_____________________________

Ty (2) [ R(Fs)R(Fs)™ | Opxn—p ]

On~pxp ; On~pxn—p

= zl, — L(F) — (m ~2) [ rly+ 25 R(Fs)R(Fs)™ | Opxn-p }

On“PXP :On—pxn—p

[by (2.2.1)] 2.3.10

is the Schur complement of (z — 2)1,,-2 ® .
By (2.3.10) and (2.3.8), we have S; = S,. Hence using (2.3.9) in (2.3.7) we get

3

_3 N
H(L(GIFs, Hunl)i2) = [ ] (@~ 2~ (D))", ¢(L(§;G.{.ﬁ;s>’k%—]$’ %),

1

2.3.11

<.
i

For each j, let F{; denote a column vector of order n + k(m — 2) with only two non
zero components 1 and -1 corresponding to the 1°t vertex and the j** vertex, respec-
tively, in the I copy of C™ — {u,v}, where 2 < j < m -2 and 1 <! < k. Then
{F;:7=23,...,m~21=12,...,k}is a set of (m — 3)k linearly independent
eigenvectors of L(G[Fs, C*}) corresponding to the eigenvalue 2. Therefore, by (2.3.11)
and Theorem 2.2.1, the result follows. n

The above theorem is illustrated by the following example.

Example 2.3.7. Consider the graphs F, H,, of order 8 and 5, respectively, in Fig. 2.3.
The vertices u and v of Hy, have degree 4. Let S = {f} C E(F), G[Fs, Hy,] is the
graph obtained by taking one copy of Hy, and pasting the edge uv to the edge f of F,
and G[Fs, C?] is the graph obtained by taking one copy of C° and pasting the edge e to
the edge f of F.
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A>T >

G[FSwHuu] G[FS,CeS]

Figure 2.3: The graphs F, H,,, G[Fs, H,,) and G[Fs,C?] in Example 2.3.7

It can be checked that o*(H,) = {5,5,5,3,0}, o*(G[Fs,C?)) = {6,5,2,2,1,0}
and oL (G[Fs, H,,)) = {6,5,5,3,1,0}. Notice that o*(G[Fs, Hy,)) can be obtained from
oL (G|Fs,C?)) and 0% (H,,) as described in Theorem 2.3.6.

Remark 2.3.8. The largest Laplacian eigenvalue of a graph G is called the Laplacian
spectral radius of G and is denoted by p"(G). Notice that G = G|Fs, Hy,| in Theo-
rem 2.8.6 contains vertices of degree m. Thus by using Theorem 4.2 of [7], p*(G) >
m~+1 > uy(Hy,). This implies that p~(G) is one of the n+k eigenvalues of G that are
independent of the graph H,,.

Remark 2.3.9. In Theorem 2.3.6, if we take S = E(F), then G[Fg, Hy,| is nothing
but the edge corona F' o H, where H = Hy,, — {u,v}. If F is a regular graph, then the
complete L-spectrum of G[Fs, Hy,) is described using the L-spectra of F' and H [35].

From Theorem 2.3.6 we have the following corollary, which enables us to construct

infinitely many pairs of L-cospectral graphs.

Corollary 2.3.10. Let F be a graph of order n, and H},,
of same order m, where n > 2 and m > 3. Let uv be a specified edge of H}, and zy be
a specified edge of HY, such that dgy, (u) = dpy, (v) = dpz (¢) = dyz,(y) =m — 1 and
S be a k-element subset of E(F). If Fs is a regular graph and H], is L-cospectral to

H?,, then G[Fs, H,,] is L-cospectral to G[Fs, HZ].

H2, be two disjoint graphs
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On the distance spectral radius of graphs

with r pendent vertices

3.1 Introduction

Let G;, be the class of all connected graphs of order n with r pendent vertices, where
r > 1. In Section 3.2, we introduce a graph transformation which affects the distance
spectral radius and in Section 3.3, we use it to determine the unique graph with minimal
distance spectral radius in G.

Let T, be the class of all trees on n vertices with r pendent vertices and 7,7 be the
class of all trees on n vertices with matching number m. The dumbbell D(n, a,b) consists
of the path P,_,_; together with a-independent vertices adjacent to one pendent vertex
of P and b-independent vertices adjacent to the other pendent vertex, where a,b > 1.
1li¢ in [36], has determined the unique graph that minimizes the distance spectral radius

in 7. Furthermore, the author posed the following conjecture.

Conjecture 3.1.1. Among trees on n vertices and matching number m, the dumbbell
D(n, [2] — m, | 22| — m) is the unique tree that mazimizes the distance spectral
radius.

In Section 3.4, we give an ordering of the components of the Perron vector of a
dumbbell. As applications of this result, we give an affirmative answer to the Con-
jecture 3.1.1, and find the unique tree that maximizes the distance spectral radius in
7.

In Section 3.5, we characterize the unique graph that maximizes the distance spectral
radius in G, for each r € {2,3,n — 3,n — 2,n — 1}. In [61], Yu et al. have found the
graph with maximal distance spectral radius in G!. They have also posed the following
conjecture.
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Conjecture 3.1.2. If G is a graph with the mazimal distance spectral radius among

T

all graphs on n vertices and r pendent vertices, then G = D(n,[%],|5]), where 4 <
r<n-2.

Using the results obtained in Section 3.4, we give an affirmative solution to the
above conjecture. Hence the graph having the maximal distance spectral radius in G],

is completely characterized.

3.2 A Transformation

Here we give a graph transformation which will be useful to derive one of our main
results of this chapter.

Lemma 3.2.1. Let G be a graph with a clique K, of order s (s > 2) and u, v be two
vertices on the clique with p, q pendent vertices, respectively, where dg(v) =q+s— 1.

Ifp>q>1and G' = G — vw+ uw, where w is a pendent vertex adjacent to v in G,
then p(G) > p(G").

Proof.

G

Figure 3.1: The graphs G and G’ in Lemma 3.2.1

Let the vertices of G and G’ be labelled as in Fig 3.1. We partition V(G) =
V(G') into Ay U A, U {u} U {v} U AU BU {b,}, where A = {ay,az,...,a,}, B =
{b1,bs,...,bg-1}, A1 = {w | d(w,u) < d(w,v)} — A — {u, b}, 43 = {w | d(w,u) =
d(w,v)}. As we pass from G to G, the distances within AU A; U A, U {u}U {v}UB
are unchanged; the distance of b, with A, is also unchanged; the distance of b, from
a vertex in AU A; U {u} is decreased by 1, whereas the distance of b, from a vertex

in B U {v} is increased by 1. If the distance matrices are partitioned according to
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Ay, Ay, {u}, {v}, A, B, and {b,}, then their difference is

0 00 0 0 0 ey
0 00 0 O 0 0
0 00 0 O 0 1
D) -DG)=] 0 00 0 0 0 -1 |,
0 00 0o 0 O €A
0 00 0 0 0 —ep
| ef, 01 -1 ef —efL 0 |

where ¢, = (1,...,1)T = i, and i = A, A, B. We denote p(G) by p and p(G’') by
Jol
pi- Let X be an eigenvector of D(G') corresponding to p;. By symmetry the com-

ponents of X have the same value, say a for the vertices in AU {b,} and b for the
vertices in B whereas we take the components of X as yy, ¥, ..., ¥, for the vertices in
Ai, 21,29, . .., 2, for the vertices in A, 7, for u and z, for v. Then X can be written as,
T
X = <y17y2a- Y21, 22, 00452, 21, 22,4, - - )aaba-' . )b’a) .
P q-1

We now have

%(p —-p1) > %XT(D(G) - D(G'NX >a |z —zo+pa—blg—1)+ Zyl] . (321

=1

From eigenequations we have

t
MTos — 1T = $1+(p+1)a——$2— (q— 1)b+ Zyz

1=1

=(p+D@e—1z1) = (p+Da—(¢g-1)b+ Zyz, 3.2.2

=1

t
pb—pra = avl—:102—b—qb—}-pa+3a—+—2:yz

=1

t
=(m+1)0b-a) = xl—x2~qb+pa+2a+2y,, 3.2.3
=1
l

p1a — p1Ta = Zz, +2z5 —2a+2(q— 1)

1=1
!

= (m+2)(a-1m) = Y 2z+2q-1b
7=1
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From (3.2.4), we conclude that a > z,. If we assume a > b, then the L.H.S. of (3.2.3)
is non positive, whereas the R.H.S. of (3.2.3) is

t
a:1+q(a—b)+(p—q)a+2a—sc2+2yz,

1=1
which is positive as a > x5, an absurdity. Thus we must have a < b.
Therefore by (3.2.3), we have

t
:vl—:1:2—qb+pa—+-2a+2yz > 0

=1
t
= q(a—b) > zg—xl—(p—q)a—2a—2y,.
1=1

Again by (3.2.2), we have

(b +1)(z2—z1) = gla—b)+@—-qata+db+) v

=1

> 1y —x1 +b—a, which gives x5 > ;.

Since distance matrix is nonnegative and irreducible, its spectral radius is bounded

below by the minimum row sum and thus we have
s+2g+p—2<pie, 2g+p<pr. 3.2.5
If p=gq+t, where ¢t > 0, then

pa—(g—1)b = pla—b)+(t+1)b

Tt (p—th—(p+2a—z1— > y|+({E+1)b

=1

p+1

1
p1+1

¢
p(zs — 21) + p*(b — a) — ptb — 2pa -pZy1

=1

+(t + 1)b(p; + 1)]

and
1 L]
— = +la—-(p—t—-1)b+ 3
Tg — X1 o1 (p ) (p ) ;y-
X - -
= a—b)+a+({t+1)b+ A
pl+1_p( ) (t+1) ;y_
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Therefore, pa — (¢ — 1)b — (22 — 1) + Zle Yo

1
RS

[p(z2— 1)+ (P* +p)(b—a) + (t-+1)bpy — ptb—2pa—a-+(p1 —p) D _ ui).

=1
From (3.2.5), we have p; > 2¢+p = 3p — 2t.
Therefore,
(t+1)bpr > (t+1)b(3p — 2t)
= ptb+ 2bp + (2btp + bp — 2t2b — 2tb)
> ptb+ 2ap + b(2tp 4+ p — 2% — 2t). 3.2.7

Since t > 0 and ¢ > 1, so

2Ap+p—-22~2t = 2p—-qp+p-2(p~q)°-2(p—9q)
= 2¢(1-q+p)-»p
= 2q(1+t)—p
= q+2qt+qg-—p
= q+2q—-t>1
Therefore, (3.2.7) gives

(t+1)bpy > ptb+2ap+b>ptb+2ap+a
= (t+ 1)bpy —ptb—2pa—a > O. 3.2.8

Using (3.2.6) and (3.2.8) in (3.2.1) we get, p > p;. m

3.3 Graph with Minimal Distance Spectral Radius
in G/

In this section, we determine the graph with minimal distance spectral radius in G.
Let K* denote the graph obtained by joining k isolated vertices to one vertex of K, .
Further, we notice that G} = ¢. However, when n > 4, G # ¢ if and only if 0 <
r < n — 1; furthermore, G"~! has only one graph, namely, K} ,—1, and G7~2 consists of
precisely all dumbbells D(n,a,b), where a +b=n — 2.

Theorem 3.3.1. Forn > 4 and 1 < r < n — 1, there is a unique graph in G,
with minimal distance spectral radius, namely K, for r # n — 2 and the dumbbell
D(n,n—3,1) forr=n—2.
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Proof. Suppose that G* is a graph with minimal distance spectral radius among all
graphs in G7. If r = n — 1, G" consists of only one graph, i.e., the star K;,_; = K™,
and the result follows in this case. Assume that 1 <r < n — 3. Let P be the set of all
pendent vertices of G*, and let W be the set of all quasi-pendent vertices of G*. We
first claim that G*[V — P] is a complete graph; otherwise by adding an edge between
any two non adjacent vertices of V — P, the resulting graph still belongs to G, and by
(1.4.2), it has a smaller distance spectral radius, which contradicts the minimality of
G*.

Thus, if r = 1, then clearly G* = K. For 2 < r < n — 3, we claim that W contains
exactly one point. Otherwise, let wy,wy € W be two vertices such that there are p
and ¢ pendent vertices adjacent to w; and ws respectively where, p > q, say. But then
by Lemma 3.2.1, if we delete one of the pendent edges incident on ws and make the
corresponding pendent vertex adjacent to w, the resulting graph still belongs to G,
with a smaller distance spectral radius and that is a contradiction to the minimality of
G*. Therefore G* = K7, for 1 <7 <n—3. Finally if r = n — 2, then G* is a dumbbell
D(n,p,q), such that p + ¢ = n — 2. Now by repeated application of Lemma 3.2.1, we
conclude that G* = D(n,n — 3,1). m

3.4 Components of the Perron vector of a dumbbell

and some applications

In this section, we give an ordering of the components of the Perron vector of a dumb-
bell, which will be useful to obtain the main result of this section.

Lemma 3.4.1. Let G = D(n,k+t,k) be a dumbbell of diameter 2d and vov; ... vz be
a diametrical path in it, where t > 0. If

T
X = (330,---,3?0,161,---,$2d—1,$2d,---,wzd)
e ———
+t

k k

is the Perron vector of D(G), then x4, > Tay,, where 1 < i < d and x, corresponds to

the vertex v,, for each j =0,1,...,2d; equality holds only when t = 0.

Proof. Let the vertices of G = D(n,k + t, k) be labeled as in Fig. 3.2. If t = 0,
then by symmetry, x4, = 244, for 1 <i < d. Assume ¢ > 1.

2d-1 d~1
We first claim that Z T, + (k+ t)x2a > ko + Zx].
J=d+1 =1



Section 3.4 Components of the Perron vector of a dumbbell and some applications

k - i pa 8 k+t
Figure 3.2: The dumbbell D(n, k +t, k)
Otherwise,
2d-1 d-1
Z z, + (k + t)zoq < kxo + Zx] 341
3=d+1 =1

Then, from eigenequations we have

=d+1

2d-1
p(GY(Tg-1 — Tat1) = LZ z, + (k + t)zoq — kxo — Z ,
= Tg1 < Tgii- 3.4.2

Similarly, for 2 < i < d — 1, using eigenequations we have

d—1-1 2d-1
(G T4y — Tay,) = — Z 2jxq-, — 2i Z z, — 2ikzo + Z 2jx4q, + 20 Z z,
7=d+1+1
+2z(k + t)Toq 343
and
P(C)(Ta—ry1 — Tage1) = — inxd_] —2(:1 —1) ix] —2(¢ — Dkxo + 12_:2]':1:(“]
) 2d~1 ) )
26— 1) > @y +2(i — 1)(k + t)T20.
J=d+

By (3.4.3) and (3.4.4), we get

p(G)(Td-1 — Tats) — P(G)(Ta—st1 — Tdsa-1)

[ 2d—-1 d—1
= 2 ZJI] k+t$2d—k$0—zxj]

Ly=d+: =1

s
,_n

[ 2d-1
= 2 Z z, + (k’ + t £L'2d — kmo - Z.’E{l -2 [l‘d+J - .’Ed_]] . 345
—d+1

We now prove x4, — 44, < 0 by induction on ¢, where 1 <i < d— 1.
If : = 1, then by (3.4.2) we get, £4_1 < ZTgy1.
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For i > 2, by the induction hypothesis z4_, — 244, < 0, where 1 < j <4 — 1. Thus,

1—1
—~2 Z [-'Ed—t—] - SCd_]:I S 0.
7=1

Hence, by (3.4.5) we have

IN

P(G)(Zd—2 = Tatr) — P(G)(Td-241 — Tate-1) 0
= p(G)(Ta=y — Tats) < p(G)(Tg—r41 — Ta4e—1) < 0 [by the induction hypothesis]

= Tg— < Tt

Therefore, we have proved that zq_, — 44, <0, where 1 <i<d - 1.

Again,
p(G) (o — T2g) — p(G) (@1 ~ T2a-1) = 2(z2a — To)
= (p(G) +2) (o —220) = p(G)(@1 — T2a-1) <0
= To—Zag <0,
2d—1 d-1
which in turn gives Z T, + (k + t)xoq > kxo + Zx], a contradiction to (3.4.1).
J=d+1 =1

Hence the claim is established.
Therefore, from (3.4.2) we get z4_1 > x4y1. Proceeding as mentioned above and
using induction, we get £4_, > T4y, where 1 < i < d. a

Corollary 3.4.2. Let G = D(n,k +t, k) be a dumbbell of diameter 2d and vov; .. . vag
be a diametrical path in it, wheret > 1. If

T
X = (1‘0,...,.'130,.’1,‘1,...,szd_l,xQd,...,IZd>
N e’ N, i
+1

k k

is the Perron vector of D(G), where x, corresponds to the vertex v, for j =0,1,...,2d,
then

(i) (Ta—e — Ta4s) > (Tg—r41 — Taye-1), where 1 <i<d~1, and
(ll) (1 + ;(2?))(1}0 — .’L‘zd) = (.’171 - a:zd_l).

Similar to the above lemma and the corollary, we have the following results.



Section 3.4 Components of the Perron vector of a dumbbell and some applications

Lemma 3.4.3. Let G = D(n,k+t,k) be a dumbbell of diameter 2d+1 and vov; . . . Vag41
be a diametrical path in it, wheret > 0. If

Vo

T
X = (mO,‘ <320, T1, - "7'(I:2da8:2d+la' . ‘aw2d+3>
N’
k k+t

is the Perron vector of D(G), then 4_; > Z4yiy1, where 0 < i < d and x; corresponds

to the vertex vj, for each j = 0,1,...,2d + 1; equality holds only when t = 0.

Corollary 3.4.4. Let G = D(n,k + t, k) be a dumbbell of diameter 2d + 1 and
Up1 . . . Vog41 be a diametrical path in it, wheret > 1. If

T
X = (xo,...,xo,zl,...,xzd,x2d+1,...,x2d+1>
N—_—— — -

—

k k+t

is the Perron vector of D(G), where x; corresponds to the vertez v; for j =0,1,...,2d+
1, then

(1) (Ta—i — Tavit1) > (Ta—i+1 — Tayi), where 1 <1< d—1, and
(ii) (1 + ;%)(wo ~ aant) = (@1 — T2a)-
The following lemma will be useful to prove our main result.
Lemma 3.4.5. If k > 2, then

p(D(n,k,k)) > p(D(n,k+ 1,k —1)) > ... > p(D(n, 2k — 1,1)).

k+1
k chh e—— @ e k e ——g -
Vo 1 V2 Vg Vd+1 V2d—-1 VeaV2d+41 vo 1 v Va Va4l V2d-1 Vaa\V2d+4
. . k-1] : 3

G = D(n, k, k) G'=D(n,k+1,k—1)

Figure 3.3: The graphs in Lemma 3.4.5

Proof. Let us denote D(n,k,k) and D(n,k+ 1,k — 1) by G and G’, respectively.
Case 1: Suppose the diameter of G is 2d + 1, and label the vertices as in Fig. 3.3.
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T
IfX = (a:o,...,xo,xl,...,xzd,x2d+1,...,x2d+1> is the Perron vector of D(G'),
N—— — N ~~ 4
k-1 k+1

then from G to G’ we have,

S0(G) ~p(@) 2 LXT(D(C) - D)X

= Tad+1 [(2d - 1)(k - 1)(£L'2d+1 - III()) + (2d - I)CL‘Zd_H

d
+ Z(Qd —2i+1) (de—z+1 - wz)] 3.4.6
1=1

d
Claim: (2d—1)(k—1) (xzdﬂ —xo) +(2d— o + > (2d—2i+1) (de_m —x,) > 0.
=1

Suppose to the contrary that

d
(2d - 1)(/() - 1) ($2d+1 - 1170) + (2d - 1)-'172d+1 + Z(Qd -2+ 1) (Z‘Qd_hq - .'E,) <0.
1=1

Then, from eigenequations we have

P(G’)(iﬂo — Tag11)
= (2d+1) (x2d+1 . xo) +(2d - 1)(k - 2) (xQdH - :1:0) +2(2d — DEgars

+ Xd:(zd — 2 +1) (a:2d_,+1 _ zz)
= 2 [(2(1 “ )k -1) <x2d+1 - xo) +(2d — 1)Tousy +

‘i@d —2i+1) (xQd_,H - :v)] + zd:(2d 2 +1) (:1; — x2d_,+1)
1=1

=1

+{(2d ~ 1)k~ 1) ~ 2} (20— 22011

< 2 [(Qd = 1)(k = 1) (22001 — 70) + (2 = Daraar + zd:(2d ~ 2+ 1) (224111 - z)}
+(1+ (é,)) [?;(Zd —2i+1) (o - x2d+1)]
+{(2d - 1}k —-1) -2} (:co - m2d+1) [by Corollary 3.4.4],
ie.,

[p(G')—[( ){Z(Qd 22+1)} {2d—1(k—1 2}]](0—x2d+1)
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= 2 [(2d ~1)(k-1) (m2d+1 - xo) +(2d — 1)zpa4 + Zd:(2d —2+1) (xzd_m - :v)}

=1

< 0

or

@)= [(1+=25)# + {2 -0k -1 - 2}]| (50— saans) <0, BaT

Since the spectral radius is bounded below by minimum row sum, we have

2
p(G")

Hence, (3.4.7) implies that zy — Toq41 < 0, a contradiction to the fact zy > 2441, 88
given by Lemma 3.4.3. Hence the claim, and therefore by (3.4.6) we get p(G) > p(G’).

k » ces @ k P @
Yo 1 v2 Vd V2d-2V2dN] V24 Yo 1 vz Vd Yod—2V2d
. . k-1)

G = D(n, k, k) G' =D(n,k+1,k—1)

p(G) > [d? +(k—1)(2d+1) + 2d] > [(1 + )d"’ +{@d-1)(k~-1) - 2}].

k+1

Figure 3.4: The graphs in Lemma 3.4.5

Case 2: Suppose the diameter of G is 2d, and label the vertices as in Fig. 3.4.
T

If X = (:co, e ,xo,xl,...,xgd_l,xzd,...,x2d> is the Perron vector of D(G'), then
N’ e’

k—1 k+1
from G to G’ we have,

S((G) —p(@) > SXT(D(CG) - DE)X
= 2y [(2d — 2)(k — 1)(2a — o) + (20 — 2)24
d-1

+ Z(Zd — 26) (Z2a-0 — xz)] : 3.4.8

=1

Claim: (2d — 2)(k — 1) (:m - mo) +(2d — 2)Tpq + §(2d — %) (x2d_, - a;) > 0.

=1
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Suppose to the contrary that

d—1
(2d - 2)(k 1) (mzd - 350) +(2d — 2)32q + Z(Qd — 21) (a:Zd_, - wz) <0.
=1
Then, from eigenequations we have

p(G")(wo — T24)
= 2d(z2 - 7o) + (2 — 2)(k — 2) (224 — %0) + 2(2d — 2)a2q

d-1
+ ;(Qd — 2i9) (.ng_, - :vz)

= 2 [(zd ~9)(k 1) (xQd - xo) +(2d — 2)aga + di@d — 2i) (xm_, - x)}

1=1

+ §(2d —20) (2, = 224-1) + {(2d — 2)k — 24} (w0 — 720)

=1

2 {(261 —2)(k-1) (xQd - xo) +(2d ~ 2)z0q + g(zd — 2) (xzd_, - x)]

IA

+(1 + ;(%,7) {i\:_‘i@d — %) (xo - :@d)} + {(2d - 2)k — 2d} (:Eo - :Ezd)

1=1

[by Corollary 3.4.2],

[p(G') . [(1 + TQG’_)) { §(2d - 2¢)} + {(2d 2k — Zd}]] (wo - xzd)
— 9 [(261 —9)(k—1) (xzd - xo) +(2d ~ 2)aag + di(zd — 2i) (x2d_, - x)] <0
or

[p(G') . [(1 + %) (@ - d) + {(2d ~ 2)k — 2d}]] (wo - xzd) <0. (349

Since the spectral radius is bounded below by minimum row sum, we have

p(G") > [d2 ~d+2ka-1] > [(1 + Ré_)) (d? — d) + {(2d — 2)k — 2d}].

Hence, (3.4.9) implies that zo — o4 < 0, a contradiction to the fact zo > x4, as given
by Lemma 3.4.1. Hence the claim, and therefore by (3.4.8) we get p(G) > p(G').
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The other inequalities can be proved in a similar way. n

Similar to the above lemma, we have the following lemma.

Lemma 3.4.6. Ifk > 2, then
D,k +1,k)) > p(D(m, b +2,k = 1)) > ... > p(D(n, 2k, 1)).

If v is a vertex of a tree T, then the components of T' — v are called the branches
of T at v. For v € Nr(v), we denote the branch of T resulting from deletion of v
and containing u by T,. If H is a subgraph of G, then the sum of the components of
the Perron vector of D(G) corresponding to the vertices in H is denoted by S(H). As
applications of the results obtained in this section, we give an affirmative solution to

the Conjecture 3.1.1. The following lemmas will be helpful in doing so.

Lemma 3.4.7. [61] Let u be a cut vertex of a graph G such that G — {u} has at
least three components G,,Gs,Gs and S(G;) < S(G2), where S(G;) is the sum of
the components of the Perron vector of D(G) corresponding to the vertices in G;, for
i=12IfG =G - Z uv + Z wv, where w is any vertex in Gy, then

vENG, (u) . YENG,(u)

p(G') > p(G).

Lemma 3.4.8. [62] Suppose uv is a cut-edge of a connected graph G, but uv is not a
pendent edge. If G' is the graph obtained from G by identifying u and v, and creating
a new pendent verter at the identified vertex, then p(G) > p(G’).

Theorem 3.4.9. The dumbbell D(n, [2] — m, |28} ] — m) is the unique tree that
mazimizes the distance spectral radius in T™.

Proof. If m = 1, then the result is trivial. Suppose m > 2, and let T be a tree
in 7, with maximal distance spectral radius. Then T has two quasi-pendent vertices.
Otherwise, there exists a vertex v in T such that T — v has at least three components,
and at least two of which are nontrivial. Let T, T, T, be three branches at the vertex
v of T, and M be an m-matching of 7. Then, at least two of vz, vy and vz are not in
M.

Case 1: Suppose T, and T, are non-trivial and vz is not in M.

Without loss of generality assume that S(T,) > S(T,) and let v; be a quasi-pendent
vertex of T,. Then the tree 7" =T — vz + vy z is in 7™, and by Lemma 3.4.7, p(T") >
p(T), a contradiction to the maximality of 7.

Case 2: Suppose vz is in M and T, is non-trivial.
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Then both vz and vy are not in M, and say T is non trivial. Reversing the roles of
y and z in Case 1, we have a contradiction.

Case 3: Suppose vz is in M and T, is trivial.

Then using Lemma 3.4.8 the tree 7 = T — vx + zz still has matching number m,
but has a larger distance spectral radius than T, a contradiction to the maximality of
T.

Thus T = D(n,a,b), for some a and b. If a = b =1, then the result follows trivially.

Suppose a = max(a, b) > 1, then any m matching of T' can not be a perfect matching
of a diametrical path. Otherwise, by Lemma 3.4.8, we get 7" = D(n,a — 1,b) € T.",
and p(T') > p(T), a contradiction. Thus, if max(a,b) > 1, then P,_,_ is of order
2m — 1. By Lemmas 3.4.5 and 3.4.6, we get T = D(n, [%1] —m, | 2] — m). n

We now find the tree having maximal distance spectral radius in T7. Since T?™! =

{S.}, so there is nothing to do in this case. Let us now consider 2 <r < n — 2.

Theorem 3.4.10. The dumbbell D(n, [5],|5]) uniquely mazemazes the distance spec-
tral radwus wn T},.

Proof. Let T be a tree in T;, with maximal distance spectral radius. Then T has
two quasi-pendent vertices. Otherwise, there exists a vertex v in T such that T — v
has at least three components, and at least two of which are nontrivial. Let T,,T,, T,
be three branches at the vertex v of T, and Ty, T, are non-trivial. Without loss of
generality assume that S(7,) > S(T,). If v; is a non-pendent vertex of T, then the
tree T/ =T — vz + v1z is in T, and by Lemma 3.4.7, p(T') > p(T), a contradiction
to the maximality of 7. Thus T = D(n,a,b), where a + b = r. By Lemmas 3.4.5 and
3.4.6, we get T = D(n, [5],|5]). u

3.5 Graph with Maximal Distance Spectral Radius
in G’

In this section, we characterize the graph with maximal distance spectral radius in g;.

Clearly G*! = {K, -1} and hence for r = n — 1, the discussion is trivial.

Theorem 3.5.1. The dumbbell D(n, [%52],|252]) umquely mazimizes the distance
spectral radwus mn G2, where n > 4.

Proof. Clearly G?2 contains only dumbbells D(n, p, q), where p+q = n — 2. Thus
by Theorem 3.4.10, we have the result. u
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Let G be a simple graph and v be one of its vertices. A pendent path in G is
a path having one end vertex of degree at least 3, the other is of degree 1 and the
intermediate vertices are of degree 2. For &, > 0, G(v, k,[) denotes the graph obtained
from G U P, U P, by adding edges between v and one of the end vertices in both P
and P,. The broom B, , is the tree consisting of a star Ss;, along with a path P,_,_;
attached to a pendent vertex of the star.

To prove our next results we need the following two lemmas.
Lemma 3.5.2. [57] Ifk > 1> 1, then p(G(v, k1)) < p(G(v, k + 1,1 —1)).

Lemma 3.5.3. [57] Let T # B, a be an arbitrary tree on n vertices with the mazimum
vertex degree A, where 3 < A < n —2, then p(B,a) > p(T).

Theorem 3.5.4. The dumbbell D(n, [%52], |%52]) uniquely mazimizes the distance
spectral radius in G"~3, where n > 6.

Proof. Let G; € G72 be a graph with maximum distance spectral radius. Since
G; has three non pendent vertices, so they induce either a path or a triangle. If they
induce a path then by Theorem 3.4.10, the result follows.

If they induce a triangle then there will be two cases.

Case 1: At least two vertices of the triangle are quasi-pendent vertices. If we remove
an edge joining two quasi-pendent vertices then the resulting graph belongs to Gn=3
and has larger spectral radius than Gy, which is a contradiction.

Case 2: Exactly one vertex of the triangle is a quasi-pendent vertex. Then removing
an edge of the triangle incident on the quasi-pendent vertex we get D(n,n — 3,1)
and p(D(n,n — 3,1)) > p(G;). Then by Lemma 3.5.2, we have p(D(n,n —4,1)) >
p(D(n,n — 3,1)) and D(n,n — 4, 1) belongs to G*~3, a contradiction. u

Theorem 3.5.5. The broom B, 3 has the largest distance spectral radius in G3, where
n > 4.

Proof. Let G& be the class of all connected graphs on n vertices, having at least
three pendent vertices. Clearly G2 C G®. Suppose G € ¢¥isa graph, having maximal
distance spectral radius. We first observe that G is a tree, as otherwise, the deletion
of an edge from a cycle in G results in a graph G' € G with p(G) < p(G"). We
now claim that G € G3. If not, then G has at least four pendent vertices. Then,
we can find two pendent vertices u and v in G, which are the end points of two
pendent paths wu;...u,w and vv;...v,w, where uy,...,u, v1,...,7, are all distinct.
Let Ly = uuy ... upand Ly = vvy ... v3. Then G = H(w, p, q), where H = G— (L1 UL,).
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Applying Lemma 3.5.2, on G = H(w,p, q) repeatedly we will end up in a graph
G” having at least three pendent vertices with p(G) < p(G”). This contradicts the
maximality of G and so G € G3. But then G is a tree with maximum degree 3. So by
Lemma 3.5.3, G = B, 3 and the result follows. B

Theorem 3.5.6. The path P, is the unique graph with mazimal distance spectral radius
in G2, where n > 3.

Proof. It is obvious that P, € G2. Let G be any graph in G2 and G # P,. Then
for any spanning tree T of G, using (1.4.1) we have p(G) < p(T'). Again from [55], we
know that among trees on n vertices, the path P, has the maximal distance spectral
radius, where n > 3. So p(G) < p(P,) and the result follows. [

In [61], Yu et al. have proved that P/ is the graph with maximal distance spectral
radius in G}, where P! is obtained from a triangle C3 by attaching a path of length
n — 3 to one of its vertices. For 2 < r < n — 2, they showed that the graph with
maximal distance spectral radius in G, is a dumbbell and posed the Conjecture 3.1.2.
Theorem 3.4.10 essentially proves the Conjecture 3.1.2 to be true for all values of r,
where 2 < r < n — 2. Hence, the graph having the maximal distance spectral radius in
Gy, is completely determined.



Chapter 4

On the distance spectral radius of graphs

without a pendent vertex

4.1 Introduction

Let C, and C,, be two vertex-disjoint cycles. Suppose v is a vertex of C, and v; is a
vertex of C,. The graph obtained by joining vy and v; by a path vov; ...v; of length
[ (where I > 0; | = 0 means identifying vy with v;) is an nfinity and is denoted by
oo(p; l; q). A bicyclic graph containing an infinity co(p; [; ¢) as an induced subgraph is an
oo(p; l;q)-graph. Let Ppiy = T1%2 .. . Tpr1, Prvt = Y1Y2- . Y1 80d Pyyy = 2122+ . Zg41
be three vertex-disjoint paths. Identifying the initial vertices as uy and the terminal
vertices as vy of these paths results in the graph 6(p;t;q), called a theta. A bicyclic
graph containing a theta 6(p;t; q) as an induced subgraph is a 6(p; t; q)-graph. We call
the vertices ug and v of 8(p;t; q)-graph as distinguished vertices.

A cactus is a connected graph, in which any two cycles have at most one vertex in
common. Let C(n, k) be the class of all cacti on n vertices and k cycles. A saw-graph
of order n and length k is a cactus obtained from a path of length n — k by replacing k
of its blocks with k triangles, where 0 < k < Lﬂg—l |. A saw graph of length k£ and order
2k + 1 is a proper saw-graph. The saw-graph obtained by joining an end of a proper
saw graph of length p with an end of another proper saw graph of length ¢ by a path of
length ! is denoted by S(p, ¢;!). If | = 0, then we have the proper saw-graph of length
P+ q. A balanced saw-graph of length k is obtained by joining two proper saw-graphs
of lengths |_—’§J and [g] by a path. An unbalanced saw-graph is obtained by joining two
proper saw-graphs of lengths p and g by a path such that | p — ¢ |> 2. We shall use
the following result from [13].

Lemma 4.1.1. [13] If G is a graph with maximal distance spectral radius in C(n, k),
then G = S(p, q;1), where p+g=kand l =n — 2k — 1.

Let G; be the class of all graphs on n vertices with r pendent vertices. For 1 <



Chapter 4 On the distance spectral radius of graphs without a pendent vertex

r < n — 1, the graph having the maximal (minimal) distance spectral radius in G
is obtained in Chapter 3. In this Chapter, we consider the case r = 0, and hence
the structure of the graph with maximal (minimal) distance spectral radius in G, is
completely characterized. By (1.4.2), it is obvious that K, is the graph having the
minimal distance spectral radius in G°.

Clearly, Cs and Cy are spanning subgraphs of any graph in G and GJ, respectively,
whereas Cs or 0o(3;0;3) is a spanning subgraph of any graph in G2. It can be verified
that C, is the graph with maximal distance spectral radius in G2, where 3 < n < 5.

In this chapter, we prove that for n > 6, co(3;n — 5;3) is the unique graph with

maximal distance spectral radius in G2.

4.2 Preliminary Lemmas

In this section we establish some preliminary lemmas, which will be useful to derive
our main result.

Lemma 4.2.1. If n > 7, then p(co(3;n — 5;3)) > p(Cy).

Proof. Let us denote 0o(3;n — 5;3) by G and label the vertices in V(C,) =
V(o0(3;n—5; 3)) as shown in Fig. 4.1. As we pass from C,, to G, the following changes
occur:

The distances of v, are decreased by 1 from {U[E] Y U[a410 - ,’Un_z} and is in-
2 2
creased by n—4 from v,; the distances of v; are decreased by 1 from {v3, vy, ... Vg }
2

and is increased by n — 5 from v,_;; distances among other vertices are increased or
remain unchanged.

v2 Un-1

Figure 4.1: The graphs C, and G in Lemma 4.2.1.

If X is the Perron vector of D(C,), then by symmetry we have z; = a (say), for all
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i=1,2,...,n. Therefore

5(9(C) ~ (Cu)

v IV
N |
T
~
TS5
/—\\C_}
|
o
2
=

I
N
-
o3
]

I

w
—
]
—
-_—

\]
-1
I
SN
N~—
]
N
i
T
[N
—_—
|3
-1
I
\]
N—
=
[ ~]
vV
o

Hence, p(G) > p(Ch). u
Let G” be the 0o(3;0;3)-graph obtained by identifying an end vertex of a path of

length n — 5 with a vertex of degree 2 in 00(3;0; 3). If the vertices of G” are labeled as
in Fig. 4.2, then we have the following result.

Vn-—1 Un-2
° -~ o .. M
vo U1 vz YUn-5 Vn-4 Un-3

GH

Figure 4.2: The graph G” in Lemma 4.2.2.

T
Lemma 4.2.2. Ifn>9 and X = (.’L'(),.’E]_, . ,xn_l) is the Perron vector of D(G"),
then

T >z
[25%]= = P52

where 0 < ¢ < Lﬂgﬁj and T, corresponds to the vertex v, for each j =0,1,...,n —1;
equality holds only at i = 0, if n is odd.

Proof. We first claim that

n—1 LE_;AJ

> &> )

=[] 3=0

Otherwise
n—-1 l_ﬂT_a_I

E wJSZ:EJ'

1=[25] 7=0
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Then from eigenequations we have

1
(G () = 7252
0 , if n is odd;
n—1 I.nT_sj
- T, — Z z, ,if nis even,
1=0

=[]

which gives T|nzs | = T[asa] < 0. Similarly for 1 < ¢ < | 25|, using eigenequations we
have

PG (o252 s = 2pogel) = A" (oo o = 2oz

n—1 [252] -

= 2 Z T, — Z z,
=i

J=0

-

[ n—1 L%J 1—1
= 2| 3w Yoa| =23 [ o))

=[25%] 7=0

We now prove T\n=s |, ~ T[nzs]y, < 0 by induction on %, where 0 <i < [27].

If { = 0, then by (4.2.3) we get T|nss| = T[azs] < 0.

For ¢ > 1, by induction hypothesis xlﬁE—sJ-J — x[nT_a]ﬂ <0,where0<j<21-1.
Thus

22 [erastis = o] <0

Hence by (4.2.2) and (4.2.4), we have

G (a2} = 2papsn) = G (32 s — T[aptancs) <O
aCAICIEIREL I L O CTTRNEL PR L
[by induction hypothesis]
RO R B
Therefore if 0 < i < L"—jj , then we have proved by induction on ¢, that
T|nss| ., T[asaly, <0. 4.2.5
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Similarly from eigenequations, we have

p(G") (@1 — Tn-4) — p(G”")(T2 — Tn-3)
= 2 (:En_4 + Tp-3+ Tp—2 — Ty — .’131) + Tn-
n—1 l_n_;:jJ
= 2 Z z, — Z x,
i=[%2] 7=0
|257]
2 3 [t o)) -

< 0 [by ( .2) and (4.2.5)]
= p(G")(z1 ~ Tn-a) < p(G")(z2 — Tn-5) < 0 [by (4.2.5)]

=T —Tpa < 0, 427

and p(G")(xo — Tn-3) — p(G") (@1 — Tn-4)
= 2(zp-3 — To) + Tn-2 428
n-1 1252]
= 2 [2331 z; — 2; T

Z [ Fle2l0 T ”"L"—;E*J_J] — Tn-g — 2Tp-1

[by 4.2.2) and (4.2.5)]
= p(G")(@o — zn-3) < p(G")(z1 = Tn-4) <O [by (4.2.7)]

=T — Tp-z3 < 0. 429

From (4.2.5), (4.2.7), and (4.2.9) we have

Ln_;_:}_] n—3 n-1
doz< Y < Y a,
A
This is a contradiction to (4.2.2) and hence the claim is established.
Therefore from (4.2.3) we get, T nss | > T[azs)) where the equality holds only if n
is odd. Proceeding as mentioned above and using induction we get

i n—17
wl_nT_aJ > xl—%—a]“’ where 1 <7 < [—Z_J . 4.2.10
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Adding (4.2.6) and (4.2.8), we get

p(G")(@o — zn-3) — p(G")(z2 — Tn-s)
= —dxy—2T14+ 2%, 4+ 4xn 3+ 3Tp 24+ Tp1
n-1 | 25°] |25
i PIEED I EED MRS
=[3%] s=0 7=0
+2(Tp-3 — Zo) + (Tp-2 — Tn-1)
= (p(G") +2) (@0 — 2n-5) = (G")(@> ~ T_s)

n-1 I,n_;a_‘

= 2 Z T, — Z Z,| + (Tn-2 — Tn-1)

S Ea

125
2 ; [x[g%g]ﬂ —an_;gJ_J] 4211

Again from eigenequations we have
n—>5

p(G")(Tn-2 — Tn1) = 233] — Tp-g + 2(Tn-1 — Tn—3)
1=0

n—>5
= (p(G”) + 2) (Tp-2—Tp_1) = Zx] — Tn-3
go‘l‘ Tn-6 1t Tn—5 — Tn-3
Tp6+ 2Tp_5 — Tn_3
[by (4.2.10), z3 > Zp-5),
and
p(G")(Tn—6 + 2Tn-5 — Tn-3) > —Tn_g— Tn-s+ TTn_3
= (p(G”) + 1)(%—6 + 2%, 5 — Tp_3) > Tp_5+6T,_3>0
= Tpg+ 2Tpn_5 —Tpn_z > 0.
Using (4.2.13) in (4.2.12) we have
Tpo9 — Tpoy > 0.
Therefore, using (4.2.1), (4.2.10), and (4.2.14) in (4.2.11) we have
(p(G") + 2) (®o — Tp-3) > p(G")(z2 — Tp_s) > 0.

= T — Tpz > 0. 4.2.15
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Finally subtracting (4.2.8) from (4.2.6), we get

2p(G") (1 = Tn-4) ~ p(G") (T2 — Tn-s) — p(G")(T0 — Tn-3)

=271+ 2Tp_ 4+ Tn2+ Tn1

(20(G") +2) (@1 = Za-a) = P(G")(@2 = Tn-s)

p(G") (o — Tn_3) + Tn—2 + Tp—1 > 0 [by (4.2.15))

= (2p(G”) + 2) (1 — Tn-a) > p(G") (T2 — Tp—5) >0

= I1 —Tn-q4>0. 4.2.16

4

Hence by (4.2.10), (4.2.15), and (4.2.16) we have eI > e where 0 < i <

=2
2 1 |
From the proof of the above lemma we have the following corollary.

T
Corollary 4.2.3. Ifn>9 and X = (wo,xl, . ,.’En_l) is the Perron vector of D(G"),

where x, corresponds to the vertex v, for j =0,1,...,n — 1, then
. . _7
(1) |nge |y = T[22 40 > T m22 | _yyy — F[nz2) 4,y where 1 <i < 25
(ii) (1 + p(%;) (o — Tn-3) > (21 — Tp-4) and

(i) (1 + 5% ) (@ = Tns) > (22 = Tn-s).

It was conjectured in [13], that S (|£],[£];n — 2k — 1) uniquely maximizes the
distance spectral radius in C(n, k). The following lemma together with Lemma 4.1.1
prove the conjecture for k = 2.

Lemma 4.2.4. Ifn > 6, then p(oco(3;n — 5;3)) > p(G”).

Un-—1 Un -2 Un—1 Un-2
i i i i V1 v2 Vn-5 Un—4q
vo vy vz Un 5 Un 4 YUn 3
Vo Un-3

o oo(3;n —5;3)

Figure 4.3: The graphs G” and 0o(3;n — 5;3) in Lemma 4.2.4

Proof. For n € {6,7,8} it can be easily verified that p(co(3;n — 5;3)) > p(G”). So
let n > 9 and denote co(3;n — 5;3) by G and label the vertices in V(G) = V(G”") as
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in Fig. 4.3. If X is the Perron vector of D(G”) and z, denotes the component of X
corresponding to vertex v,, where 0 < ¢ < n — 1, then from G” to G we have

S (9(G) — (@)

> SXT(D(G) - D(E")X
1222
> Zp1 |(n—5)(Tn-z — o) + (n—2k — 4)(Tn-k—3 — Tr)
k=1
n—>5
+Zpoa+2 Z $]+$l'n_;§]+(ﬂ—5)$n_2
=[]
Claim:
1)
L = (’I’L - 5) (Z’n_g — .'I?o) + (n -2k — 4)(3771—/4:—3 — ZL‘k) + Tn-y
k=1
n—5
+2 Z )+ Tnca) + (n —5)xn—g > 0.
e
To the contrary, if L < 0, then from eigenequations we have
125%]
p(G")(xo = Tn-3) = > (n—2k—3)(Tnok-3 — Tk) + (n — 4)Tn2
k=0
+(n = 6)zn-1. 4.2.18
By (4.2.18), we have
p(G")(xo — Tn-3)
123%]
= 2L+ (n—T7)(zo — Tn-3) + Z (n — 2k — 5)(zx — Tnk-3) — 2Tpn_4
k=1
n->5
n-—3 n—3
B ()5
=[]

(P25 -t
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[25°]
< 2L+ (’I'L - 7)(.’130 — IL‘n_3) (1 + — 2 ) (n -2k — 5)(1‘0 - CL‘n_3)

)| =
} - 2) s

AP D (527112

—2z,_4—4 Z z; + (n — 6)(Tp_1 — Tpn-2) } [by Corollary 4.2.3],

i=[54]
ie.,
B (
p(G”) _ 1(7), - 7) ( G” ) Z n 2k — 5 (.’1:0 — IL‘n_g)
I k=1
< [ (|n—-3 _[n-=3 (= n—3 _9)\ s
A\l 2 | 2 [22] 2 2 sl
—2Tp_yq4 — 4 Z Z; + (n - 6)(113”_1 - .'L‘n_z):l +2L
ey |
< 0 [by assumption and (4.2.14)]. 4.2.19
We have
|25%) %’—’_—5) , if n is odd;
(n—2k—5)= 4.2.20
k=1 "_46 ? , if n is even.

If f(j) denotes the row sum in D(G") corresponding to the vertex v; of G”, then for
0<7<n-5, we have

f() (];1)+(n_j_3)2(n‘j—2)

Since f'(j) = 2j — n + 1, therefore as a function over R, f will have minimum at

j = 25, Hence as a function over Z, f has a minimum at j = [25] or j = [%5}],

+(n—73—-4)+(n—-7-3).

because f is a quadratic polynomial. Now

n2-17 :
n—1 n—1 > if nis odd;
(=) - (2D -{ o

7> if nis even.

Also, the row sum in D(G") corresponding to the vertex v,_4 of G” is f(n —4) =

2_
n 72n+18’ and

f(n—4) < min{f(n - 1), f(n - 2), f(n — 3), f(n — 4)}.
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From (4.2.21) and (4.2.22), the minimum row sum in D(G") is

n2_17 . N .
; n—1 ~ == ,ifnis odd;
2 B n2-16

1 , if n is even.

Since the spectral radius is bounded below by the minimum row sum, therefore

”2217 , if n is odd;
p(G") > 4223

2_ . .
18 if nis even.

If n is odd then by (4.2.20), we have
|22

2
(n—7)+(1+m) ; (n — 2k — 5)

= (n—7)+(1+ 2 >(n—7)("_5)

p(G”) 4
n?—12n+35 n?-12n+35[ 1
= (n-7
-+ R R ]
n?—-12n+35 n?2-12n+435 4
_ 42.2
< (-m+ TR [n2_17] [by (4.2.23)]
_ n?—=8n+7  2(n’-12n+ 35)
B 4 n? — 17
2 _8n+7
< -7}—:—++2[asn2—12n+35<n2—17¢>52<12n]
2_8n+15 n?—17
= f+ <X 1 < p(G").

Hence by (4.2.19) zy — z,—3 < 0, a contradiction to the fact zy > z,-3, as given by
Lemma 4.2.2. Hence the claim and therefore by (4.2.17) we get, p(G) > p(G").
Similarly if n is even, then proceeding as above we obtain p(G) > p(G"). u
Let G' be the 6(2;1;2)-graph obtained by identifying an end vertex of a path of
length n — 4 with a vertex of degree 3 in 6(2;1;2). If the vertices of G’ are labeled as
in Fig. 4.4, then we have the following result.

T
Lemma 4.2.5. If n > 9 and X = (:vo,xl, e ,xn_l) is the Perron vector of D(G'),
then

z >z ,
|52+ = [
where 0 <1 < [5;—3J and x; corresponds to the vertex vj, for each j =0,1,...,n -1,
equality holds only at i = 0, if n is odd.
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Yn-2

vo vt v2 Un-~% Un—4q

VUn-1

Gl

Figure 4.4: The graph G’ in Lemma 4.2.5

Proof. We first claim that

n—1 Ln_;s'_l
Yoo Y oz,
S Ca
Otherwise
n—-1 I.L;_a'_'
S 5y s
1=[252] 7=0

From eigenequations we have

PG (o122 = o2
(0 , if n is odd;

= { |=2) 4.2.25

E z, — E z, ,if nis even,

[T

which gives T 3|~ F[az2] < 0. Similarly for 1 <4 < | 25|, using eigenequations we
have

[ n—1 |_nT—3,| -t
= 2 z, — Z z,
=[232]+ =0
[ L1272 =1
= 2 Z T, — Z T, —ZZ[IEl'nT_a‘l_H—:CLnT-sJ_J] 4.2.26
O =

We now prove 2| szs | _, = Z[2zs1,, < 0 by induction on i, where 0 <i < |22].
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If £ =0, then by (4.2.25) we get T|n3| ~ T[2z2] <0.
For i > 1, by induction hypothesis T|ns|, = T[az3]y, <0,where0<j<i-1.
Thus,

_232;; [ = 2] <

Hence by (4.2.24) and (4.2.26) we have

TR P R GRS PR L

/ !
= PG (2553 = o) < PIE) (3o foans = ofagrfin) <0
[by induction hypothesis]
= xL"T_a_l_’ — Iil'nT—s'lH <0.
Therefore if 0 < i < | 25|, then we have proved by induction on i, that
xl_nT_e‘J_’ —CII|'1;_3'I+Z S 0. 4.2.27
Again
p(G')(@o — Tn-3) — p(G')(21 — Tn-d)
= 2(-'1371—3 — CEo) + Tpn-o +Tp_q 4.2.28
n—1 Lﬂ‘;jJ
= 2 T, — Z z,
i=[23%] 7=0
|222]

Z [ [n 4 T |_l'—g—3J-3] — Tn-2 — Tn-1

< 0lby =(4 2.24) and (4.2.27)]
= p(G") (@0 — Tn-3) < p(G')(21 — Tn-d) <0 [by (4.2.27)]

=>To—Tu_z < 0. 4.2.29

From (4.2.27) and (4.2.29), we have
Z z, < Z z, < Z z,.
=%t =170

This is a contradiction to (4.2.24) and hence the claim is established.
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Therefore from (4.2.25) we get T|nss) > T[azs], where equality holds only if n is
2
odd. Proceeding as mentioned above and using induction we get a:L nss |, > :1:[ S
where 1 <i < |22 . Finally, from (4.2.28) we have

(p(G") + 2) (@0 — Tp-3) — p(G') (T} ~ Tn-a) = Tp_a+Tp_y >0
= (p(G") +2)(z0 — Tn-3) > p(G')(T1 = Tp-g) >0

=Ty > Tp-3.

. n—3
Hence Tna |, > Tns2) 40 where 0 < i < [—2——J ) -
From the proof of the above lemma we have the following corollary.

T
Corollary 4.2.6. Ifn > 9 and X = (.’1:0, T,... ,:En_l) is the Perron vector of D(G'),
where , corresponds to the vertez v, for j =0,1,...,n — 1, then

() o) = Ta52)4 > a2 vy ~ O )nop Where 1 S0 < [253] and

(ii) (1 + (G, ) (Zo — Tpn—3) > (X1 — Tn-4).

Un-2
Yo v1 vz Yn-5 Un—
> —o— @ --- Un-3
G
Un-1

oo(3;n — 5;3)

Figure 4.5: The graphs G’ and co(3;n — 5;3) in Lemma 4.2.7

Lemma 4.2.7. If n > 9, then p(co(3;n — 5;3)) > p(G').

Proof. Let us denote 0o(3;n — 5;3) by G and label the vertices in V(G) = V(G")
as in Fig. 4.5. If X is the Perron vector of D(G’) and z, denotes the component of X
corresponding to vertex v, for 0 < ¢ < n—1, then by symmetry x,_; = z,_2. Therefore
from G’ to G we have

36(6) ~p(@) = X"(D(G) - DE)X
= T, [(n — 4)(Tn_s — T0) + (1 — 5)Tn_z
22)

+ 3 (120~ 3)(@nso ~ 2,)
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122
Claim: (n — 4)(Tn-3 — %0) + (R = 5)Tu_g + Y (n—2i — 3)(Tn_s—3 — 7,) > 0.

Suppose to the contrary, that

125
(n—4)(xn—3 — z0) + (N — 5)Tp_2 + Z (n—2i—3)(zp--3—12,) <0. (4.2.31
1=1
Then from eigenequations we have

p(G')(zo — Tn-3)

(n=3)(zn-3s—z0)+ (n—4)zp1+ (n — 420
22

+ Z (n —2i - 3)(Tp_r-3 — T.)

|222]
= (n=3)(Tn_z —29) +2(n — 4)Tp_2 + Z(n—?i—B)(mn_,_3—z,)
_ An—Y n—4zp3 -z n—>5z
= [( )@n s~ 70) + (1~ 5)ns

[25°] 2
n° — 8n 4+ 17
— 2 — a3 — T, — (20 — Tp—
+ ?21: (n—2i - 3)(%n-1-3 37)] T s (To — Tn-3)

+EZ : 2; Z (n —2i - 3)(, — Tn-1-3)

1=1

2(n —4)
(n—3)

[(n —4)(Tn—3 — o) + (n — 5)ZTn_2

2] .
+ Y (0= 2= 3) (o - m] + By~ 0y)
Ln=3) (1+ ——2—) L;Ej(n—%—@(x — Tp_3)

(n —5) p(G") oo

=1

[by Corollary 4.2.6],

ie.,

1232
) n?~8n+17 (n-3) 2
[p(G)_{ n—5 +(n—5)<1+m) ;

(n—2i-3) }} (Zo — Tn-3)
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2]

2(n—4 .
((:_ 5)) [(n —4)(xp-3 — Tg) + (B — 5)Tp_o + Z (n—2i—3)(Tn_i_3— )
i=1
< 0 [by (4.2.31)]. 4.2.32
We have
125*] (=9)m9) - if n is odd;
Y n-2-3)= 2
i=1 9‘_4#) , if n is even.

If f(j) denotes the row sum in D(G’) corresponding to the vertex v, of G, then for
0 <3 <n-—4, we have

foy = D i io8) oy

Since f'(j) = 2j — n + 1, therefore as a function over R, f will have minimum at

j = %5*. Hence as a function over Z, f has a minimum at j = |2%2] or j = [25],

because f is a quadratic polynomial. Now

n—1 n—1 @, if n is odd;
(=)= (D)

2_ . .
2212 if nis even.

Also the row sum in D(G') corresponding to the vertex vn_4 is f(n — 4) = ©=mn+18
and

f(n~4) <min{f(n - 1), f(n-2), f(n - 3), f(n — 4)}.
From (4.2.34) and (4.2.35), the minimum row sum in D(G') is

; n-1]\ 22—21—3, if n is odd;
2 B n?-12

7, ifniseven.

Since the spectral radius is bounded below by the minimum row sum, therefore

@, if n is odd;
PG >

2_ . .
"4——12, if n is even.
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If n is odd then by (4.2.33), we have

n?—8n+17 (n-23) )
+
n—>5 (n—5)

n?—8n+17 (n-—23) (n — 5)n—3)
+
) p(G’
n2—8n+17+(n ——6n+9)+ 2—6n—}—9) 1
n—5 1 2 (
n?—8n+17 (n—6n+9) (n®—6n+9)[ 4
e e e [n2—13] by (4.2.36)]

_ n® —Tn* 4 2n® + 26n° + 221n — 659 1757
B 4n3 — 20n? — 52n + 260 —

If possible, let

n® — Tnt + 2n3 + 26n2 + 221n — 659 n? —13
4n3 — 20n2? — 52n + 260 4

tv

< —8nt+112n% —416n% +208n + 744 > 0
& (~8) (n4 — 1473 + 52n% — 26n — 93) > 0
ent—14n®+52n%—-26n—-93 < 0

But if n is odd and n > 9, then n* — 14n3 + 52n% — 26n — 93 > 0, which is a

contradiction. Hence

n® — Tt + 2nd® 4 26n2 + 221n — 659 n? —13

4238
41 — 20m2 — 52n + 260 < T3
Thus by (4.2.37) and (4.2.38), we have
noSn 17 (=3 (), 2 Ln_féj(n—zi—s) B
n-5  (n-5\ " pG) P

i=1

Therefore if n is odd and n > 9, then from (4.2.32) we have, zo — T,-3 < 0, a con-
tradiction to the fact o > z,-3 as given by Lemma 4.2.5. Hence the claim and so by
(4.2.30) we get p(G) > p(G).

Similarly, if n is even, then proceeding as mentioned above we can obtain p(G) >
p(G'). m

To prove our next results we need the following lemma and the corollary after that.
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Lemma 4.2.8. [65] Let u and v be two adjacent vertices of a connected graph G and
for positive integers k and [, let Gy, denote the graph obtained from G by adding paths
of length k at u and length l at v. If k > 1> 1, then p(Gr,) < p(Gry10-1); fk=1>1,
then p(Gi1) < p(Grr1-1) or p(Gry) < p(Gr-1,441)-

Corollary 4.2.9. [65] Let v; and vn, be two adjacent vertices of a connected graph G.
Let P, and Py, be two pendent paths with roots v; and vy, respectively. Ifl > m and X
is the Perron vector of D(G), then Z Ty, > Z Ty, -
v, eV(R) v,€V(Pm)

Lemma 4.2.10. Let §(2;1;2) be formed from three vertez-disjoint paths Py = z1x,73,
P, = y1y2 and P3 = 212223 by identifying the initial vertices as ug and the terminal
vertices as vy. Let G be a graph obtained by attaching the ends vy, u; and w; of the paths
P, =vvy... vy, P, =wus... uy, and P, = wiw,...wy, ot v, z2 and z; of 8(2;1;2),
respectively. Ifly > I3 > 13 > 1 and Gy = G ~ Tauqg + uov1, then p(G’) > p(Gy) > p(G).

uy uz  Ug—1 Uiy v2 V-1 Yy
)

Vo v V-1 Yy uy  Ulg-1 Ul
v —— Ug .. @—mm—o

wy wy Wig-1 Wiy wy wz Wiz-—1 Wiy

G Go
Figure 4.6: The graphs G and Gy in Lemma 4.2.10.

Proof. If X is the Perron vector of G, then we identify its components with the
labels of the vertices of G. Since Iy > {3 > [, so by Corollary 4.2.9 we have

Tyt Y U > Ut v 4.2.39

=1 J=1
As we pass from G to Gy, the distances of ug are increased by 1 from {2, uj, ug, ..., u,}
and are decreased by 1 from {vy,vs,..., v, }; distances among other vertices remain

unchanged [Fig.4.6). Therefore, we have

S(0(Go) ~ p(@)) > SXT(D(Gy) - D(G)X
la l
Ug [IEg + Zu] — Z U]] . 4.2.40
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Using (4.2.39) in (4.2.40) we have p(Gp) > p(G). Now using Lemma 4.2.8 repeatedly
for the adjacent vertices vy, vy and vy, 22, we finally have p(G') > p(Go) > p(G). u

Lemma 4.2.11. Let 0(2;1;2) be formed from three vertez-disjoint paths P; = z1x23,
Py = y1ys and Py = 212923 by identifying the initial vertices as wy and the terminal
vertices as vo. For 1 < i < 4 and l; > 0, suppose G is a graph obtained by attaching
paths of lengths ly, ls, I3 and ly at vy, T2, uq and 22 of 8(2;1;2), respectively. Ifly+13 > 1,
then p(G’) > p(G).

Proof. Here we have the following cases.

Case 1. If min{ly, l3} > max{lz, 14}, then by repeated applications of Lemma 4.2.8
we have p(G') > p(G).

Case 2. Suppose min{ly, l3} < max{ls,l4}. If min{l;,l3} > 0, then applying Lemma
4.2.10 we have p(G’) > p(G). If min{l;,l3} = 0 and max{ly,l3} < max{ly,ls}, then
again applying Lemma 4.2.10 we have p(G') > p(G). So let max{ls, 14} < max{l,l3},
but then by Lemmas 4.2.8 and 4.2.10, we have p(G’) > p(G)." »

Lemma 4.2.12. If G is a 8(p; q; t)-graph, where min{p, q,t} > 2, then there exists a
6(2;1;2)-graph G* such that one of the distinguished vertices of 6(2;1;2)-graph is of
degree at least 4 and p(G*) > p(G).

Proof. Let G be a 0(p;t;g)-graph formed by three vertex-disjoint paths P, =
T1Zy ... Tpi1, Piy1 = Y1Y2- - - Ye41 and Ppyy = 2129... 2441, where min{p,t,q} > 2. We
identify the initial vertices as up and the terminal vertices as vy. Let X be the Perron
vector of D(G), T, be the attached tree rooted at a vertex v and S’(v) be the sum of
the components of X corresponding to the vertices in T, (including v also). Then we
have the following cases.

Casel. p>qg>t=2. Case2.p>q>t>3.

Case 1.

Subcase (a). p=g=t=2. If $'(vg) > S'(y2) and G| = G — z2vg — 220g + TaYa +
22Y2, [Fig. 4.7] then from G to G, the distances of T}, UT,, are increased by 1 from Ty,

and decreased by 1 from T,,; distances between any other vertices remain unchanged.
Thus,

SXT(D(GY) ~ DIG)X

[5'(22) + 5'(22)] (' (w0) = S'(a0)) 2 0
= p(G1) > p(G).

v

S(6(G1) ~ p(G))
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Figure 4.7: The graphs G, G; and G5 in Lemma 4.2.12 Case 1(a)

If p(G1) = p(G), then from p(G;) > XTD(G1)X > XTD(G)X = p(G), X must be a
Perron vector of D(G,). But if D(G)o (resp. D(G4)o) denotes the row corresponding
to vp in D(G) (resp. D(G1)), then p(G1)zy, = (D(G1))oX > (D(G))oX = p(G)Ty,, a
contradiction. So p(G1) > p(G).

And if §'(v) < S'(y2) and Gy = G — yaug + vouo, [Fig. 4.7] then from G to G, the

distances of T, are increased by 1 from T}, and are decreased by 1 from T,,; distances

between any other vertices remain unchanged. Thus,

S0(Co) —p(@) > XT(D(C:) - D(G)X
= 5'(u0)(S'(ya) — §'(w) ) >0

= p(G2) > p(G).

Thus, the lemma is proved in this case by taking G* = G; or G* = G,.

P 12
Subcase (b). p>¢g=1t=21f z S'(x,) + S'(vo) > Z S'(z,), then let
il

G1 = G — yovg — 2209 + Y2Z2 + 2222 [Fig. 4.8]. If p is even, then from G to G; the
distances of Ty, UT}, are increased by at least 1 from U:’Z[ 1,;_3]T z., are increased by at

i3
least 3 from T, and are decreased by 1 from UL:2 JT:c ; the distances between any
0 1=2 )

other vertices are increased or remain unchanged. And if p is odd, then from G to G;

the distances of T, UT,, are increased by at least 2 from Uf=[ T,,, are increased

o el
ptsd

+3 | _
by at least 2 from T, and are decreased by 1 from U J 1Tx,; the distances between

1=
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any other vertices are increased or remain unchanged. Thus for any p, we have

S6(G) ~ p(G)) 2 SXT(D(G) - DG)X

17%°]
> (S'(w) +5'(2)) Z S'(2.) + 25 (vo) Z S'(,)
=[]
0

Figure 4.8: The graphs G, G; and G3 in Lemma 4.2.12 Case 1(b)

P 1%
And if Z S'(z,)+ 8 (vy) < Z S'(z,), then let G; = G —ugxa +vgug [Fig. 4.8].
e

If p is even, then from G to G, the distances of T, are increased by at least 1 from

L}ﬂJTm , and are decreased by 1 from U” ez +3]Tz, U T,,; the distances between any
other vertices are increased or remain unchanged And if p is odd, then from G to G,
the distances of T,,, are increased by at least 1 from UL 5] T.,, and are decreased by
1 from U” zta 1T”“ U T,,; the distances between any other vertices are increased or

remain unchanged. Thus for any p, we have

(@)~ p(G)) > XT(D(G:) ~ DIG)X
152 :
> Sug) | Y S@)— D S(z)-S(w)| >0

2]

= p(G2) > p(G).

Thus, in this case also the lemma is proved by taking G* = G; or G* = Gs,.
Subcase (c). p>g¢g>t=2.
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Tog Toyg Topoy Ty

Ug

Figure 4.9: The graphs G, H in Lemma 4.2.12 Case 1(c)

Without loss of generality assume that

H 1]
2|2 8@+, (@) + 5 (2)50)) + 5 (251

1=2 1=2

> 8 (app07) + 5 (2g0]) +2 }p: S'(z) + f: S'(z)]

~[512] ~f3+2]

and let H = G — xaup — zoup + Tpup + 2,up [Fig. 4.9].

As we move from G to H the distances of T, are increased by at least 2 from
4 q
[ ,"_fil Tm,J U [U,Lﬁzj Tz,] , and are decreased by 2 from [Uf _[242] Tm} U [UL [142] Tzl] ;
the distances between T, and T, are increased by at least 2. Moreover,

(i) If p is even and q is odd, then the distances of T, are increased by at least 1

from Tz[%+1 P and are decreased by 1 from Tz[§+1]'

(ii) If both p and g are odd, then the distances of T, are increased by at least 1

from T, urT. and are decreased by 1 from T urT.

TlE+) T A g [g+1] “g+1]°
(iit) If p is odd and g is even, then the distances of T, are increased by at least 1
from Tg,,.“iJr1 P and are decreased by 1 from T’[gm'

The distances between any other vertices are increased or remain unchanged. Thus
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for any p and ¢, we have

S(o(H) — p(C)
lXT(D(H) - D(G))X

(o) |2 ZS’<~%>+ZS’ (=) ¢+ 5 (2 130) +5 (2130))

%

v

— [S’ (x[gﬂ]) + 9 (Zf§+1])] —2 Zp: S'(z,) + i S'(z)
~ “fR] i
+25'(22)S(22)
> 0

= p(H) > p(G).

In any case, H is a 6(2;2; 2)-graph. Now using Subcase (a), we can obtain the required
graph G*, such that p(G*) > p(H) > p(G).
Case 2. p>qg>t>3.

T, Tey Te

p—1

Figure 4.10: The graphs G and G* in Lemma 4.2.12 Case 2

P q
Without loss of generality assume that ZS'(:E,) > ZS’ (), and let G* = G —
1=2 =2
TpVo — UoY2 + ZqYt + 241 [Fig. 4.10]. Then from G to G* the distances of U_,T;,

are increased by at least 2 from U!Z}T,,, and are increased by at least 1 from Tj,;

the distances between T, and U g2 T,, are decreased by at most 2, where j =

2,3,...,t —1; the dlstances between Ty, and U T,, are decreased by at most

=)ot
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1; the distances between any other vertices are increased or remain unchanged. Thus,

S0(@) —p(@) > ZXT(D(C) - D)X

2> 2§ (S,(yj)[zp:‘sl(xz) - i S,(zz)]>

=2 1=2 z=[%ﬂ+2—]
P q
@[S - D S@)] >0
1=2 =42t
= p(G*) > p(G).
Therefore, combining all the above cases, we have the result. m

4.3 Graph with maximal distance spectral radius
in G°
n

Theorem 4.3.1. If n > 6, then oo(3;n — 5;3) is the unique graph with mazimal
distance spectral radius in GD.

Proof. If G € G2, then we must have one of the following three cases.

Case 1. C, is a spanning subgraph of G.

If n = 6, then it can be verified that p(oo(3;1;3)) = 9.19615 > p(Cs) = 9 > p(G);
whereas if n > 7, then by Lemma 4.2.1 we have p(co(3;n — 5;3)) > p(Cr) > p(G).

Case 2. An oco(p; ¢;7)-graph G, is a spanning subgraph of G.

We have p(G,) > p(G). By Lemmas 4.1.1 and 4.2.4, 0o(3; n—>5; 3) is the unique graph
with maximal distance spectral radius in C(n,2). Since G; € C(n,2), so p(co(3;n —
5;3)) > p(G1), which implies p(co(3;n — 5;3)) > p(G).

Case 3. A 0(p; g;r)-graph G, is a spanning subgraph of G, where min{p,q,r} > 2.

We have p(G3) > p(G). Applying Lemma 4.2.12 we get a 6(2;1;2)-graph G* with
p(G*) > p(G2). Now, by Lemmas 3.5.2, 4.2.8, 4.2.10 and 4.2.11, we have p(G') > p(G*).
If 6 < n <8, then it can be verified that p(0co(3;n — 5;3)) > p(G’) and if n > 9, then
by Lemma 4.2.7 we get p(co(3;n — 5;3)) > p(G’). Thus p(oo(3;n —5;3)) > p(G). m



Chapter 5

On the distance spectral radius of bipartite

graphs

5.1 Introduction

Let B be the class of all bipartite graphs of order n with matching number m, and
B:? be the class of all bipartite graphs of order n with vertex connectivity s. In Sec-
tion 5.2, we determine the unique graph with minimum distance spectral radius in B*.

In Section 5.3, we characterize the graphs with minimal distance spectral radius in BZ.

5.2 Graph with minimum distance spectral radius
in B

Here we find the unique graph with minimum distance spectral radius in B}).

G" = K’m,n—m

Figure 5.1: The graphs G’ and G” in Theorem 5.2.1

Theorem 5.2.1. K,,,_m is the unique graph that minimizes the distance spectral
radius in B".
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Proof. Let G be a graph in B}’ with minimum distance spectral radius. For
m = | 2] the discussion is trivial.

Let (U, W) be the bipartition of the vertex set of G such that |W| > |U| > m,
and let M be a maximal matching of G. Since the distance spectral radius of a graph
decreases with addition of edges so for |U| =m, G = Ky n-m.

Let us assume that |U| > m and Uy, Wy be the sets of vertices of U, W which
are incident to the edges of M, respectively. Therefore, |Up| = |Wp| = m. Note that
G contains no edges between the vertices of U — Uy and the vertices of W — Wy,
otherwise any such edge may be united with M to produce a matching of cardinality
greater than that of M, violating the maximality of M.

Adding all possible edges between the vertices of Ups and Wy, Upr and W —W)y,, U—
Unm and Wy we get a graph G’ with p(G) > p(G’). We now form a complete bipartite
graph G" = K from G’ with the bipartition (Up, W U (U — Uyy)).

Let |U — Uyl = nq, |W — Wy| = na. So nz > ny. We partition V(G') = V(G")
into Upy UWp U (U — Up) U (W — Wyy) as shown in Fig. 5.1. If the distance matrices
D(G’) and D(G") are partitioned according to Uy, Wy, (U — Upy), and (W ~ Wyy),

then their difference is

0 0 Jmxny 0

n "y _ 0 0 _menl 0
D(G) D(G ) - Jnlxm _Jnlxm 0 Jn1Xn2

0 0 Inpxny 0

We denote p(G’) by p and p(G”) by p;. Let X be the Perron vector of D(G"). Then
by symmetry, components of X have the same value, say z, for the vertices in Uj; and
x for the vertices in W U (U — Uyy). Then, X can be written as

T
X = T1y.-3L1,X2,...,T2 .
N -~ N ~ -
m n-m

1 1
5([’ —p1) 2 §XT(D(G') — D(G"))X = mza[mzy + noxa — may). 5.2.1

We have

From eigenequations we have

pit1 = 2(m—1)z; + (n — m)z,,

piz2 = mxy+2(n—m— 1)z,.
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Thus,
(p1 +2 —m)(z1 — 32) = (2m — n)z2 = — (N1 + N2) 2. 5.2.2

Following [21], the distance spectral radius of the complete bipartite graph K, is p+

qg—2+VpP—pg+¢,sopp>n+m-—1.

Again,
(n1 + ng)may
- = —~ - Z Z by (5.2.2
m(z; — Ta) + a2 P [by (5.2.2)]
S [—(ny + n2)m + nz(n + 1))z,
~,1 +2-m

[since py > n+m —1]
[—(nl + ng)m + Tlg(TIq -+ Tig + 2m + 1)].’1)2
p+2—m
[n2 + nony + nylz, 0.
n+2—-m

Thus from (5.2.1) we get p > p1, and so p(G) > p(G”"), a contradiction. Therefore
Ul =m. n

5.3 Graphs in B} with minimal distance spectral

radius

In this section, we characterize the graphs with minimal distance spectral radius in
B;. It is shown in [67] that K|z [z has minimum distance spectral radius among all
connected bipartite graphs. This result also says that for vertex connectivity s = |5,
K n_s is the unique graph with minimum distance spectral radius in B2.

Clearly B} = {P4, Ss} and B} = {P, S5, Ci}, where C} is the graph with a single
pendent attached to a vertex of Cy. It can be easily verified that Sy and C} are the
graphs with minimal distance spectral radius in B} and B}, respectively. Thus for
3 < n £ 5, the discussion is over. From now onwards we will assume that n > 6.

To prove the main result in this section, we need to define some notations and prove
some lemmas.

In K, 4, we assume that p > ¢ > 1. By K, we mean K or K, which will be clear
from the context. By O,V (K, n,UKm, mp ), We mean the graph obtained by joining all
the vertices in O, to the vertices belonging to the partitions of cardinality n; in Ky, n,

and my in Ky, m,, respectively, where ny,m; > 0. Similarly, by O, Va (K, 5, UKy ms ),
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we mean the graph obtained by joining all the vertices in O, to the vertices belonging
to the partitions of cardinality ny in K, ,, and me in K, m,, respectively, where
ng, mg > 0.

Lemma 5.3.1. Ifs+qg>p+1 andp > s, then
p(Os V1 (K1 U Kpq)) > p(Os Vi (K1 U Kpy1,6-1))-

Proof. Let us denote O, Vi (K1 U K, ) by G and O, Vq (K1 U Kpp14-1) by G-
We partition V(G) = V(G’) into {v} UCU AU BU {b,}, where C = {¢y,¢a,...,¢s},
A={ay,ay,...,a,} and B = {by,bs,...,b,—1} as in Fig. 5.2.

Figure 5.2: The graphs G and G’ in Lemma 5.3.1

As we pass from G to G, the distance of b, is decreased by 1 with {v}UCUB and the
distance of b, is increased by 1 with A; the distances within any other pairs of vertices
remain unaltered. If the distance matrices are partitioned according to {v},C, A, B
and {b,}, then their difference is

0 0 0 0 1
0 0 0 0 ec
D(G)-DG)=]10 0 0 0 -—es
0 O 0 0 ep
1 e& —ef e§ 0

where e, = (1,...,1)T = 1, and i = A, B,C. We denote p(G) by p and p(G’) by p1.
[+

Let X be the Perron vector of D(G’). Then by symmetry, components of X have the
same value, say a for the vertices in AU {b,}, b for the vertices in B, c for the vertices
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in C, and x; for v. Then, X can be written as

T
X=\|z,c...,c,a,...,a,b,...,b,a | .
S——— S N —
s -1

p q

We now have

1 1 ,

§(p - p1) > EXT(D(G’) — D(G"))X = alzy + cs — pa + b(g — 1))]. 5.3.1
From eigenequations we have

;T = sc+3(g—1)b+2(p+ 1),
pic = x1+2(s—1Lec+2(g— 1o+ (p+ 1a,
pa = 21+ sc+ (q—1)b+ 2pa,
pb = 3z 4+ 2s¢c+2(g—-2)b+ (p+ 1a.

From which we get,

(o1 +2)(b—c) = 22, >0=b>c, 5.3.2
(pr+1)(x1—¢c) = c+(+1a+(g—1)b—sc, 5.3.3
(o1 +1)(c—a) = —z;+(s—1ec—pa+(qg-—1)b, 5.3.4
(p1+2)(z1—a) = 2(¢q-1)b>0=2z; > a. 5.3.5

Since distance matrix is nonnegative and irreducible, its spectral radius is bounded

below by the minimum row sum and thus we have p; > 3p > 3s.

Again by the given condition ¢ — 1 > p — s = k (say). Therefore from (5.3.4), we

get
(pr+1l)(c—a) > —z1+pc—pa+(s—1—-plc+(p—s)b
= (p+1-pc—a) > —z1+(—k—1)c+kb
= (p+1-—p)lc~-a) > —c—z1+kb-c)
1
= (C - a) > m[—C — I+ k(b - C)] 5.3.6
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Using (5.3.5) in (5.3.3), we get

(o1 +1)(21 — )

= (p1 +1)(z1 — ¢

= (p+1)(z1 -0

= (pr+1-3s)(z1—¢)

Again,

v

>

= I

v

Y

(p1 +2)(z1 — a)
2

%[20 +2(p+a — 2sc + (p1 + 2)(z1 ~ a)]

c+(p+1)a—sc+

1
5[20 +2(p+ 1)a — 2sc + 2s(z; — a)] [since p; > 3s]

1
5[2c+2(p+1 — 8)a] >0

C.

zy +cs —pa+b(g—1)

x1 +cs ~—pa+blp—s)
z1+ (p—k)c—pa+ kb
z1 +p(c—a) + k(b—c¢)

2k$1
——[-c~ k(b —c)] +
x1+m+1—p[ ¢- ot kb=o) p+2
[by (5.3.2) and (5.3.6)]
m+2+2k D 2kxy
z —Cc~x1+
P R ey g o)

(p1 + 1)2kz1 + (p1 + 2)[(p1 + 1 — 2p)z1 — pC]

(p1 + 1)2kzy + (o1 + 2)p(7:

(p1+1-p)p1+2)

—¢) [since py + 1 — 2p > p)

0.

Thus by (5.3.1), p > p1.

By the above lemma we have the following corollary.

(p1+1-p)(p+2)

Corollary 5.3.2. If ¢ > 1, then p(Os Va (K1 U K, ,)) > p(Os V1 (K1 UK, ,)); equality
holds only when p = q.

Lemma 5.3.3. If s+q+4 <p, then

p(Os V1 (K1 U Kpg)) > p(Os Vi (K1 U Kpo1g41))-

Proof. Let p=s+q+k, k> 4. Let us denote O, V; (K; U K,,) by G and O, V;
(K1UKp_1,441) by G'. We partition V(G) = V(G’) into {v} UCUAUBU{a,}, where
C=A{a,c...,¢}, A={a1,as,...,a,1} and B = {b1,by,...,b,} as in Fig. 5.3.
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Figure 5.3: The graphs G and G’ in Lemma 5.3.3

As we pass from G to G, the distance of a, is increased by 1 with {v}UCUB and the
distance of a, is decreased by 1 with A; the distances within any other pair of vertices
remain unaltered. If the distance matrices are partitioned according to {v}, C, A, B,

and {a,}, then their difference is

0 0 0 © -1
0 0 0 0 —€c
DG)-DGY=| 0 0 0 0 s
0 0 0 0 =—ep

where e, = (1,...,1)T = 1,y and i = A, B,C. We denote p(G) by p and p(G’) by
l2|
p1. Let X be the Perron vector of D(G’). Then by symmetry, components of X have

the same value, say a for the vertices in A, b for the vertices in B U {a,}, ¢ for the
vertices in C, and z; for v. Then X can be written as,

T
X =\|z,c...,c,a,...,a,b,...,b | .
et N e N’
s +1

p-1 q
We now have

%(p -pm) 2 %XT(D(G) — D(G")X = b[—z1 — sc — bg + a(p — 1)]. 5.3.7

From eigenequations we have

(;1+2)(x1—a) = 2(g+1)b>0,
(p1+2)(b—c) = 2, >0.
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Thus z; > a and b > c. We also have,

(p1+2)(2a —b) =z, +3(p — 1)a > 0 = 2a > b, 5.3.8
and
(pp+4)(2a—~z)) = sc+2(p+1a—(g+1)b>0 [by (53.38)
=20 > zx1. 5.3.9
Again,
(pp+1)(a—b)=—z1—sc+(p—1)a—a—qgb

If a > b, then from (5.3.10), we have —z; — sc+ (p — 1)a — ¢b > a; and by (5.3.7), we

get p > p1.
Let us assume that a < b. Since distance matrix is nonnegative and irreducible, its

spectral radius is bounded below by the minimum row sum and thus we have

pm > p+2q+ 2s.

Therefore,
(g+1)a—gb = qgla—bd)+a
= (o + D@+ 1a—gb] = [~gz1 - sqc+ (p~2)ga — ¢*b] + (p1 + 1)a

[by (5.3.10)]

> [—gz; — sgc+ (p — 2)ga — ¢*b)
+(p+2¢+25+1)a

= q(2a—z;)+plg+1a+2(s—qglata
—gsc — ¢%b

> q(2a—z1)+plg+1)a+2(s—qlat+a
—qsb — ¢*b [since b >

= q(2a—71)+plg+1)a+2(s—q)a+a
—qb(s +q)

= g¢2a—z)+plg+1)a+2(s—qla+a
—qb(p — k)

= (m+1-pllg+a—qb] > q(2a—1z1)+2(s—q)a+a+ qbk.

If s > g, then by (5.3.9) and (5.3.11), (¢ + 1)a > gb.
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Otherwise, let t = g — s. Then again by (5.3.11),

(o1 +1-p)(g+1)a—gbl > q(2a — 1) + a+ (kgb — 2ta)
> ¢(2a — z1) + (4gb — 2ta)
> q(2a —z;) + (4tb — 2ta) [since q > t]

> 0 [since 2a > z; and b > qa].

Thus we can conclude that (g + 1)a > gb.
Finally,

(p1+2)(a—¢c) = zy—sc+(p—1a—(¢g+1)b
= (z1—a)—sc+(g+s+kla—(g+1)b
= (z1—a)+s(a—c)+{(g+1)a—qb}
+{(k — 1)a — b}

= (m+2-s)a—c) = (z1-a)+{(g+1Da—qb}+{(k—1)a—1b}

Il

> (1 —a)+{(¢+1)a—gb} + (3a — b)
> 0 [since z; >a, (g+ 1)a > ¢b and 2a > b
=a > C
Therefore,
—x1—sc—bg+alp—1)
= —r1—sc—-bg+alg+s+k—1)
= {(g+1)a—qgb} +s(a—c)+{(k—2)a—z}
> {(g+1)a—gb}+s(a—c)+(2a—x,)
> 0 [since (¢ + 1)a > gb, a > c and 2a > z;].
Therefore from (5.3.7), we get p > p;. n

Similar to the above lemma we have the following lemma.

Lemma 5.3.4. Ifn>6 and 1 < s < |%], then

/)(Ks,n—s) > p(Os Vl (Kl U Kn—s—2,1))'

Lemma 5.3.5. If G € B;, and U is a vertex cut-set of order s in G such that G—U has
two nontrivial components, then G cannot be a graph with minimal distance spectral
radius in B?.
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Figure 5.4: The graphs in Lemma 5.3.5

Proof. Let G; and G2 be the nontrivial components of G — U with biparti-
tions (A, B) and (C, D) respectively. Let U = U; U U, be the bipartition of U in-
duced by the bipartition of G. Now joining all possible edges between the vertices of
A and B, C and D, U; and U, we get a graph G in B? such that p(G) > p(G).
Therefore we suppose that G = G.

If there exists some vertex w in G —U such that dg(w) = s, then forming a complete
bipartite graph within the vertices of G — {w} we would get a graph in BZ with smaller
distance spectral radius. Thus we may assume that each vertex in G — U has degree
greater than s.

Let |A] = my, IBI = mg, |C| = nq, |D| = ng, |Uy| = ¢, |Us] = k.

We choose a vertex ¢; from C and observe that dg(c;) = t + |D| > s, where
t(0 <t < s) is the total number of edges joining ¢, and the vertices of U;. Since Uy UU,
is the vertex cut-set of order s so mq,n; > t, mg,ns > k. Without loss of generality
we may assume that m; = max{m,, ms,n;,n2} and since s > 1 so m; > 2. We now
pick a subset D, of D with |Dy| = |D| — k > 0. Deleting all the edges between ¢; and
the vertices of D5, and then forming a complete bipartite graph within the vertices of
G — {c1} we get a new graph G* € B?.

We partition V(G) = V(G*) into U3 UU; UAUBUC'"U Dy U DyU{c;}, where Uy =
{wi,u2, ... u}, Uy = {uj,uy,...,up}, A = {a1,a,...,am}, B = {b1,b2,...,bm,},
C' = {027 s 7cn1}1 Dl = {dlad27 R dk}7 and D2 = {dk+1adk+27 s 7dn2} as in Flg 9.4.

If the distance matrices are partitioned according to Uy, Us,, A, B,C’, D;, D, and



Chapter 5 On the distance spectral radius of bipartite graphs

{c1}, then their difference is D(G) — D(G*) =

[0 0 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 Wmixk 2Jmix(na—t) O
0 0 0 0 2 max(m-1) O 0 0
0 0 0 2Jtn1—1)xma 0 0 0 0
00  2Jexm 0 0 0 0 0
0 0 2Jmy—kyxm: 0 0 0 0 ~2ep,
| 0 0 0 0 0 0 —2¢%, 0

where ep, = (1,...,1)T = 1p,. We denote p(G) by p and p(G*) by p;. Let X be
————r

|Dz|
the Perron vector of D(G*). Then by symmetry, components of X have the same value,

say u for the vertices in U; U Dy, b for the vertices in B U D,, a for the vertices in
AUU; U, and ¢ for ¢;. Then X can be written as,

NIERPEAVAUSRSEAV AR AR LLZL S AL A
t k my mo n1—1 k ng—k

T
X=\|u,...,u,a,...,a,a,...,a,b,...,b,a,...,0,u,...,u,b,... . b,c| .
N —r
We now have

1(/0 -p1) > %XT(D(G) — D(G")X = 2kmyau+2abma(n; — 1) +2(n2 — k)b(mya — ¢).

2
5.3.12
From eigenequations we have

(m+6)Ba—c) = 2su+4(mi+m +k+2)a>0= 3a>c, 5.3.13
(Mm+2)2a—-b) = c+3(mi+ni+k—1)a>0=2a>b 5.3.14

From (5.3.13) and (5.3.12), we have p > p; if m; > 3.
Again if m; = 2, then

(p1+4)(2a—¢)

su+2(my+n;+k+1)a— (mg+ny — k)b
> su+8a—4b
> 0 [by (5.3.14)].

Thus 2a > ¢ and therefore by (5.3.12), we have p > p;. n

Let G},G35, G35, and G} be the graphs described in Fig. 5.5. The following is the
main result in this section.
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Figure 5.5: The graphs in Theorem 5.3.6

Theorem 5.3.6. Let G be a graph in BS with minimal distance spectral radius, where
1 <s<|%L]. Then G € {G},G3}, if n is odd and G € {G3,G3}, if n is even.

Proof. Let G be a graph with minimal distance spectral radius in B;. Let U
be a vertex cut-set of G containing s vertices, whose deletion yields the components
G1,Ga,...,Gy of G — U, where t > 2. If some component G; of G — U has at least two
vertices, then it must be complete bipartite. Again if some component G; of G—U is a
singleton, say G; = {u}, then u is adjacent to all the vertices of U otherwise k(G) < s;
hence the subgraph G[U] induced by U contains no edges, and belongs to the same
partition of G. We now have the following cases.

Case 1: All the components of G — U are singletons. Then G = K;,_,. For
s=|25] we have K, n_, = G}, if nis odd and K, = G}, if n is even; and thus the
result.

Let us assume that 1 < s < |21 |. Then by Lemma 5.3.4, p(K,n-,) > p(O, V1 (KU
K, _s-21)), which contradicts the minimality of G. Therefore not all the components
of G — U can be singletons.

Case 2: One component of G — U, say G, contains at least two vertices. Then
G — U contains exactly two components; otherwise, forming a complete bipartite graph
within the vertices of G1 UGy U ... U G-, we obtain a new graph G from G with
smaller distance spectral radius such that Ge B;, a contradiction. Let GG;, G2 be the
components of G — U. By Lemma 5.3.5, either G; = K; or G, = K;. Without loss of
generality assume that G, = K; = {u}. Then u joins all vertices of U, and each vertex
of U joins every vertex of (G; which are in the same partition as u. Since G is a graph
with minimal distance spectral radius then by Corollary 5.3.2, G = O, V1 (K1 U K, 4)
for some p and q. We note that p > s, otherwise s cannot be the vertex connectivity
of G. If g+ s < p < g+ s+ 3, then the result follows. Again if ¢ + s > p, then by
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repeated application of Lemma 5.3.1, G = G, if n is odd and G = G3, if n is even.
Finally if p > g + s + 4, then by using Lemma 5.3.3 repeatedly, we have G is either

G35 or G} according as n is odd or even. .



Chapter 6

On the distance Laplacian eigenvalues of

graphs

6.1 Introduction

The second smallest Laplacian eigenvalue (known as the algebraic connectivity of a
graph) is studied extensively in literature (see [24,38-40,47] and the references therein).
Aouchiche and Hansen have introduced the distance Laplacian matrix and proved that
for a connected graph G of order n, the second smallest distance Laplacian eigenvalue
is at least n, where the equality holds if and only if G is disconnected [2]. In that case,
the multiplicity of n as a distance Laplacian eigenvalue of G is one less than the number
of components of G. In Section 6.3, we study the second smallest distance Laplacian
eigenvalue for some class of graphs whose complement is connected (precisely a tree
or a unicyclic graph, respectively). In Section 6.4, we study the distance Laplacian
spectrum of path and prove that the largest distance Laplacian eigenvalue (called the
distance Laplacian spectral radius) is simple. We also describe the structure of the

corresponding eigenvector.

6.2 Preliminary Lemmas

Here we mention some preliminary lemmas which will be useful to obtain our main
results of this chapter. Let py > pg > ... > pn_1 > g =0 (resp. 6 > 6 > ... >
dp-1 > 6, = 0) denote the Laplacian (resp. distance Laplacian) eigenvalues of a graph.

Lemma 6.2.1. [38] Let G be a connected graph with a cut vertez v. Then
,un—l(G) <1

equality holds if and only if v is adjacent to every vertex of G.
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It is known that ( [31, Corollary 4.2]) if G is a graph and a new pendent vertex is
added at some vertex of G to obtain H, then

pi(H) < pi(G), 6.2.1

where p;(H), u;(G) are the i-th smallest Laplacian eigenvalues of H and G, respectively.
Let K* be the graph obtained by joining k isolated vertices to a single vertex of
K,_x and U,, be the class of all unicyclic graphs of order n, where n > 3.

Lemma 6.2.2. [40] The mazimum algebraic connectivity over U, is uniquely attained
by Cy, if n < 5 and uniquely attained by K* 3 ifn > 6. When n = 6, Cs and K¢ are
the only two graphs, up to isomorphism, having the mazimum algebraic connectivity
over Us.

The following result gives a relation between the Laplacian eigenvalues and the
distance Laplacian eigenvalues, for graphs of diameter at most 2.

Lemma 6.2.3. [2] Let G be a connected graph on n vertices with diameter d(G) < 2.
Let py > po > ... 2 pin—y > pn = 0 be the Laplacian eigenvalues of G. Then the
distance Laplacian eigenvalues of G are 2n—p,_1 > 2n—pip-2 > ... > 2n—pu; > 6, = 0.
Moreover, for everyi = 1,2,...,n—1, the eigenspaces corresponding to u; and to 2n—u;
are the same.

Two vertices are co-neighbours if they share the same neighbours. Clearly, if S is
a set of pairwise co-neighbour vertices of a graph G, then S is an independent set. A
cluster of order k of G is a set S of k pairwise co-neighbour vertices [47]. Clearly, each
vertex of a cluster have the same transmission, which we call the transmission of a

cluster. Following is an important observation for graphs with a cluster.

Lemma 6.2.4. Let G be a graph with a cluster S of order k and transmission t, where

k > 1. Then t + 2 is a distance Laplacian eigenvalue of G with multiplicity at least
k-1.

Proof. Let S = {v,vs,..., v} be the cluster. Assuming Ng(v1) = {vrs1, Vka2,- -+,
Uk41}, we have

Ui+ 2L(Ki) + (t—1—2k+2)I; | ~1,1, -P
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where P is a k X (n—k—1) matrix with all identical rows. It can be verified that the first
k rows of the matrix D¥(G) — (t+2)I are equal. Therefore, rank(DL(G) ~(t+ 2)1) <
n — (k — 1), i.e., the null space of D*(G) — (¢ + 2)I has dimension not less than k — 1.
Hence, t + 2 is an eigenvalue of DL(G) with multiplicity at least k — 1. )

Suppose ¢ and j are fixed but arbitrary nonadjacent vertices of a graph G. Let G+e
be the graph obtained from G by joining the edge e = ij. Then with a suitable ordering,
we have L(G + e) = L(G) + S, where

1 -1
S=[_1 1 jl@on-—Z-

The situation when the Laplacian spectra of G and G + e differ just at one place with
one eigenvalue of G increasing by 2 while the others remaining the same, is called
spectral integral variation occuring at one place [10,25]. So [56] has proved that the
spectral integral variation at one place occurs from G to G + e if and only if 7 and j
are co-neighbours. Fan [25] has given some equivalent conditions for the occurrence
of spectral integral variation at one place. Note that if i and j are two nonadjacent
co-neighbour vertices of G, then DX(G) = D¥(G + e) + S. Therefore, we can obtain
similar results given in [25], when the distance Laplacian spectra of G and G + e differ
just at one place with one eigenvalue of G decreasing by 2 while the others remaining
the same. Among those results, the following will be important for us. We omit the
proof, as it is similar to the proof given in [25].

Lemma 6.2.5. Let i and j be two nonadjacent co-neighbour vertices of G, and G +e be
the graph obtained from G by adding the edge e = ij. If the distance Laplacian spectra
of G and G + e differ just at one place with one eigenvalue of G decreasing by 2 while
the others remaining the same, then the changed eigenvalue is Tr(i) + 2.

Note that in the above lemma, the fact that Tr(i) + 2 is a distance Laplacian
eigenvalue of G, is assured by Lemma 6.2.4.

6.3 Second smallest distance Laplacian eigenvalue

Here we study the second smallest distance Laplacian eigenvalue d,,_;. The following

lemma, which gives a lower bound for 4,_; can be found in [2].

Lemma 6.3.1. [2] Let G be a connected graph on n vertices. Then §,—1(G) > n with
equality holding if and only if G is disconnected. Furthermore, the multiplicity of n as
an eigenvalue of DL(G) is one less than the number of components of G.
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Thus, if G is connected, then §,_1(G) > n. In the following two subsections, we
consider the graphs whose complement is connected (precisely a tree or a unicyclic
graph, respectively) and characterize the graphs among them having n + 1 as the

second smallest distance Laplacian eigenvalue.

6.3.1 Second smallest distance Laplacian eigenvalue of a graph

whose complement is a tree

For positive integers k, [, the following lemma determines the distance Laplacian eigen-
values of a graph whose complement is the dumbbell D(n, k,1), where k +1=n — 2.

Lemma 6.3.2. Let G be a graph of ordern such that G = D(n, k, 1), where k+1 = n—2.
Then the distance Laplacian spectrum of G consists of the eigenvalues

(a) 0 with multiplicity 1;
(b) n + 1 with multiplicity n — 4;
(¢) n + t; with multiplicity 1, where t; is a oot of the equation
2 —(n+4)r*+ Bn+kl+3)z—2n=0,
for each i =1,2,3.

Proof. Let us label the vertices of D(n, k,1) as vy, va, ..., v, such that vy, ve,..., v
are the pendent vertices at v, and vk 1, Uk, - - ., Uky are the pendent vertices at v,_;.

Then, we have

(n+1)Ines = Jnos [jﬁiﬁk]
DG) = | T
._I_ll_ls__i____?_]!l__. i [ E+20+3 -3 }
T IR BT S
..Q’J.‘.%’S’_l_—?_j____QIL_—_ZR_@ _____
= L(G)+2L(G) + T
O2xn-2 E [ 11 }
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where P =

[.__QZ__E:_]!LT__]
L L-15f o0 ]

é 0 | 1 T
-1 In__ A PRt ot
&= 1) | [ L1 0 ]
$(Pig) = det| T
__(_)Lc_%_]}l__. tTz—1-2 9
L L 1,10, 1] i
= (z-1)""det(S5), 6.3.2
T
z—1-2 2 eSS 0
where S5, = 9 e—k—9|"
0 1 -5 11,
z-l-2- L 2
= 6.3.3
2 T—-k—-2-%
is the Schur complement of (z — 1)1, _5. Using (6.3.3) in (6.3.2) we have
&(P; ) = oz — 1)" (a:3 —(n+4)2?+ (3n+ Kkl +3)z — 2n)

It is known that the spectrum of nl, — J, consists of eigenvalue n with multiplicity
n — 1 and 0 with multiplicity 1. Clearly, 1,, is an eigenvector of both nl,, — J, and P
corresponding to eigenvalue 0. Thus, 0 is an eigenvalue of DL(G) with eigenvector 1.
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Since 0 is a simple eigenvalue of DX(G) and P is a positive semidefinite matrix that
commutes with nl, — J,, so from (6.3.4) and (6.3.1) we have the result. u

Following is the main result of this section.
Theorem 6.3.3. There exist no graph G such that G is a tree and 6,_1(G) =n+ 1.

Proof. If G is a tree such that G is connected, then d(G) > 3. If d(G) > 4, then

d(G) < 2. Thus, by Lemmas 6.2.1 and 6.2.3, 0,-1(G) = 2n — u1(G) = n+ pa_1(G) <

n+ 1. If d(G) = 3, then G = D(n,k,l), where k +1 = n — 2 and k,l > 1. Let

f(z) =2® — (n+4)z* + (3n + kl + 3)x — 2n. Since f(0) < 0 and f(1) > 0, so there is a

root ¢t of f(z) =0 in (0,1). Therefore, by Lemma 6.3.2, §,_1(G) =n+t < n+ 1. This

completes the proof. u
From the proof of the above theorem, we have the following,.

Corollary 6.3.4. If G is a graph such that G is a tree, then n < 6,_1(G) < n+ 1.

6.3.2 Second smallest distance Laplacian eigenvalue of a graph

whose complement is a unicyclic graph

Let Cy4(k,!) be the graph obtained by joining k,! isolated vertices to two adjacent
vertices of a cycle C,, where k,!I > 0. Then, similar to Lemma 6.3.2 we have the
following three lemmas.

Lemma 6.3.5. Let G be a graph of order n such that G = Cs(k,1), where k,l > 1.
Then the distance Laplacian spectrum of G consists of the eigenvalues

(a) 0 with multiplicity 1;
(b) n+ 1 with multiplicity n — 5;
(¢) n+ t; with multiplicity 1, where t; is a root of the equation
* — (n+ 7z + (6n+ ki + 14)2® — 2(5n + kl + 4)z + 51 = 0,
for each i =1,2,3,4.

Lemma 6.3.6. Let G be a graph of order n such that G = Cy(k,l), where k,1 > 1.
Then the distance Laplacian spectrum of G consists of the eigenvalues

(a) 0 with multiplicity 1;
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(b) n+ 1 with multiplcity n — 5;

(c) n+t, with multiplicity 1, where t, 1s a oot of the equation
= (n+ N2+ (Tn+kl+12)z2 — (14n + 3kl + 2z + Tn =0,
for each1=1,2,3,4.

Lemma 6.3.7. Let G be a graph of order n such that G = Cy(k,0), where k > 1. Then
the distance Laplacian spectrum of G consists of the eigenvalues

(a) 0,n + 3 with multiplicaty 1;
(b) n 4+ 1 with multiplicity n — 4;

(c) n + BASEVA-ORE2 yuih multsphcaty 1.
We now discuss the case, when 8,_;(G) =n+1 and G is a unicyclic graph.

Lemma 6.3.8. Let G be a graph such that G 1s a unicychc graph of gurth 3. Then
dn-1(G) <n+1.

Proof. Since G is connected and G is of girth 3, so d(G) > 3. If d(G) = 3, then we
have the following three cases:

Case 1: G is obtained by joining two co-neighbour pendent vertices of D(n, k,1),
where k +1 = n — 2 and k,I > 1. Then by Lemmas 6.2.5 and 6.3.2, the distance
Laplacian spectrum of G consists of the eigenvalues

(a) 0, n + 3 with multiplicity 1;
(b) n + 1 with multiplicity n — 5; '
(¢) m +t, with multiplicity 1, where ¢, is a oot of the equation
* — (n+4)z?+ Bn+kl+3)z —2n =0,
for each 1 = 1,2, 3.

Since at least one ¢, € (0,1), so 6,_,(G) <n+ 1.

Case 2: G = Cs(k, 1), where k,I > 1. Then by Lemma 6.3.5, we have 6,_;(G) <
n+1, since a root of the equation z*—(n+7)a3+(6n+kl+14)z%—2(5n+kl+4)z+5n = 0
lies in (0, 1).
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Case 3: G = Cs(k,1,m), where Cs(k,l,m) is the graph obtained by joining k,l,m
isolated vertices, respectively to each vertex of Cs, where k,I,m > 1. Then G contains
a cut vertex, and hence by Lemma 6.2.1, u,_1(G) < 1. Since d(G) = 2, by Lemma 6.2.3
we have, 6,_1(G) <n+ 1.

Thus, if d(G) = 3, then 6,_1(G) < n+ 1.

Now, let us consider d(G) > 4. Since G have a cut vertex, by Lemma 6.2.1,
pn-1(G) < 1. Thus, by Lemma 6.2.3, 6,_1(G) < n + 1, since d(G) = 2. -

Lemma 6.3.9. Let G be a graph such that G is a unicyclic graph of girth 4. Then
6n-1(G) = n+1 if and only if G & Cy(k,0), where k > 1.

Proof. Since G is connected and G is of girth 4, so d(G) > 3. If d(G) = 3, then
either G = Cy(k,0), where k > 1 or G = Cy(k, 1), where k,I > 1. In the first case by
Lemma 6.3.7, 6,—1(G) = n + 1, since T3V 60425 » 7

In the second case by Lemma 6.3.6, we have d,_1(G) < n + 1, since a root of the
equation ¢ — (n + 7)x3 + (Tn + kl + 12)z% — (14n + 3kl + 2)z + Tn = 0 lies in (0, 1).

By Lemma 6.2.1, we have p,_1(C4(1,0)) < 1. Since any other unicyclic graph G
contains C4(1,0) as an induced subgraph, so by (6.2.1), pn—1(G) < 1. Therefore if
d(G) > 4, then by Lemma 6.2.3, 6,-1(G) < n + 1, since d(G) = 2. ™

Lemma 6.3.10. Let G be a graph such that G is a unicyclic graph of girth 5. Then
0,-1(G) #n+ 1.

Proof. If G = Cs, then d(G) = d(G) = 2. Since p,_1(Cs) # 1, so by Lemma 6.2.3,
0n—1(G) #n+ 1.

By Lemma 6.2.1, we have p,_1(Cs(1,0)) < 1. Since any other unicyclic graph G
contains Cs(1,0) as an induced subgraph, so by (6.2.1), p,_1(G) < 1. Therefore if
d(G) > 3, then by Lemma 6.2.3, 6,-1(G) < n + 1, since d(G) = 2. .

Lemma 6.3.11. Let G be a graph such that G is a unicyclic graph of girth 6. Then
0n-1(G) = n+ 1 if and only if G = Cs.

Proof. If G & Cs, then d(G) = 2. Since pp-1(Cs) = 1, so by Lemma 6.2.3,
0n-1(G) =n+1.

Suppose G % Cs, then d(G) > 4 and G contains a cut vertex. Hence by Lemma 6.2.1,
pn-1(G) < 1. Thus by Lemma 6.2.3, &-1(G) < n+1, since d(G) = 2. u

Lemma 6.3.12. Let G be a graph such that G is a unicyclic graph of girth at least 7.
Then 6,—1(G) <n+ 1.
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Proof. If G = C,, then d(G) = 2. Since n > 7, by Lemma 6.2.2 we have, tn—1(Cr) <
1. Hence by Lemma 6.2.3, §,_,(G) <n + 1.
Suppose G % C,, then G contains a cut vertex, and hence by Lemma 6.2.1,

pn—1(G) < 1. Thus by Lemma 6.2.3, 6,_1(G) < n + 1, since d(G) = 2. m

We summarize our discussions to state the main result of this subsection.

Theorem 6.3.13. Let G be a graph such that G is a unicyclic graph. Then 6,_,(G) =
n+1 if and only if G = Cq or G = Cy(k,0), where k > 1.

6.4 Distance Laplacian spectrum of path

In this section, we study the distance Laplacian spectrum of a path, specially the
distance Laplacian spectral radius d; and the corresponding eigenvectors. The following
lemma will be useful in doing so.

Lemma 6.4.1. Let P = ~---$—A—- be a partitioned matriz. Then X is an eigenvalue

of P if and only if ) is an eigenvalue of A+ B or A— B.

Proof. If ) is an eigenvalue of A+ B (resp. A— B) with corresponding eigenvector

X, then it can be seen that A is an eigenvalue of of P with [ ;—((— ] (resp. [-—;)-g-(- ]) as
the corresponding eigenvector.
Conversely, let A be an eigenvalue of P with [ —';-,(-- as the corresponding eigenvector.

Then from eigenequation, we have (A — B)(X —Y) = A(X —Y). Therefore, if X #Y,

then ) is an eigenvalue of A — B. And if X =Y, then (A+ B)X = )X, ie, Aisan

eigenvalue of A + B. n
Let the vertices of the path P, be labelled as in Fig. 6.1.

& —en

*r—s

k k-1 3 2 1 k+1k+2 k+32k—1 2
Figure 6.1: The path Px.
Then, for i =1,2,...,k, we have

Tr(i) = Tr(k+1) = k* + 42 — . 6.4.1
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Therefore, _
o= 414
Tr(1) -1 -2 o —(k=1)]
~1 Tr(2) -1 - (k-2
where A = -2 -1 Tr(3) -+ —(k-3) 6.4.2
k1) —(k-2) —(k—3) - Tr(k) |
[ -1 -2 -3 ... —k ]
-2 -3 4 o —(k+1)
and B = -3 —4 -3 e —(k+2) |, 6.4.3
_ k(4D —(ht2) o (k1) _

Thus by Lemma 6.4.1, the eigenvalues of DX(Py) are those of A+ B and A — B. But

in this case we can say even more, as given in the following lemma.

Lemma 6.4.2. If A and B are the matrices gwen by (6.4.2) and (6.4.3), respectwvely,
then the spectrum of A+ B = {0,Tr(2),Tr(3),...,Tr(k)}.

Proof. Using (6.4.1), we have (A + B)1ly = 0. Also by (6.4.1), it can be verified

‘_]11—1

that X, = :z:—: 1 | is an eigenvector of (A + B) corresponding to T'r(z), where
Ok—z

t=2,3,...,k. Since order of A+ B is k so the result follows. u

Thus from Lemmas 6.4.1 and 6.4.2, we have the following theorem.

Theorem 6.4.3. If A and B are the matrices given by (6.4.2) and (6.4.3), repectively,
then the distance Laplacian spectrum of Poy 18

{0, /\1, /\2, ceey /\k, TT‘(Q), T’f’(3), ceey Tr(k)},
where A, 15 an ewgenvalue of A— B for j =1,2,... k.

If A denotes the maximum vertex degree, then p; > A + 1 (see [7]). Let T be the
maximum vertex transmission of a graph. Then, in a similar way (hence the proof is
omitted) we can prove that §; > I' + 1. Following is one of the main results of this
section.
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X
Theorem 6.4.4. The distance Laplacian spectral radius of Py is simple with '

as the corresponding eigenvector, where X is positive. Moreover, X (i + 1) > X (i),
where i =1,2,...,k ~ 1, and X (i) is the component of X corresponding to vertez i.

Proof. Since §; > I' + 1, so by by Theorem 6.4.3, the distance Laplacian spectral
radius of Py is the largest eigenvalue of A — B, where A and B are given by (6.4.2)
and (6.4.3), repectively. Since A — B is a positive matrix so by the Perron-Frobenius

Theorem, the largest eigenvalue of A — B is simple and is afforded by a positive eigen-
vector X. From the proof of Lemma 6.4.1, it follows that [——-)-(-—-] is the eigenvector of
DL(Py) corresponding to 4;.

Fori=1,2,...,k — 1, from the eigenequation we have

(61(P2k) —Tr(i + 1)>X(i +1) = (51(P2k) - Tr(i))X(z') +2 i X (),

j=i+1

= (6u(Pow) = Tr(i+ 1) X(5) + 20X (3)

k
+2 Y X(j) [by (6.4.1)]

j=i+1

Since d;(Py;) > Tr(i + 1) and X is positive, so by (6.4.4) we get, X (i + 1) > X(i). m
We now consider the path of odd order. Let the vertices of the path Py, be labelled
as in Fig. 6.2.

P

*r——e

k ko1 2 1 0 k+1k+22—1 2%
Figure 6.2: The path Pogyi.
Then, for i =0,1,2,...,k, we have
Tr(i) = k*+4% + k. 6.4.5

Also fori=1,2,...,k,
Tr(i) = Tr(k + 7). 6.4.6
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Thus,
[ Tr(0)i 27 i 27
DY(Pyi1) = _____Z'____L_é_j__g__ ,
l Z [ C A
[~ _1 =
-2

where Z = =31,

e —k -
C = B-—J, 6.4.8

and A, B are the matrices given by (6.4.2), (6.4.3), respectively.

Theorem 6.4.5. If A and C are the matrices gien by (6.4.2) and (6.4.8), repectvely,
then the distance Laplacian spectrum of Pogyq 1S

{0, A1, Mgy ., A, Tr(1), Tr(2), ..., Tr(k)},
where X, is an eigenvalue of A —C, for j=1,2,...,k.

Proof. Clearly, 1ox41 is the eigenvector of DZ(Py;11) corresponding to 0. If ), is

an eigenvalue of A — C with corresponding eigenvector X, then it can be seen that

0
), is also an eigenvalue of DX(Pyy1) with :z(: J: as the corresponding eigenvector,
~X,

where j =1,2,...,k.

It is obvious that if « is an eigenvalue of A+C + = )Z ZT with eigenvector Y, then

2 zZTy
o T X (1) Do
7 is an eigenvalue of D( Py, ;) with eigenvector Y , where Z is given by
_____ 7
(6.4.7). Using (6.4.5) and (6.4.6), it can be verified that (A+C’+ m)—TT——ZZT)Y =
____2_3—.1_]_1}_—_1__
Tr())Y,, where Y, = | 1 and ¢ = 1,2,..., k. Thus, Tr(i) is an eigenvalue
Ok—z
T
Rromnokig
of D*(Pyy1) with Y, as the corresponding eigenvector, where ¢ =
_________ A
1,2,...,k. It can be seen that
o OB RO
g RERR NN (U T i i ERESENY 1§ (PO
_XJ Y,
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is a set of mutually orthogonal vectors. Since the order of D¥(Pyy;) is 2k + 1, the

result follows. ]
0

Theorem 6.4.6. The distance Laplacian spectral radius of Poryq is stimple with | X
-X

as the corresponding eigenvector, where X is positive. Moreover, X (i+1) > X (i), where
1=1,2,....k—1, and X(3) is the component of X corresponding to vertez «.

Proof. Similar to the proof of Theorem 6.4.4 m

Remark 6.4.7. Theorem 6.4.4 and Theorem 6.4.6 are similar in spirit to the work
done by Fiedler (see [26], Theorem 3.11) and Merris (see [45], Section II, Theorem B),
where the authors dealt with the eigenvector of the Laplacian matriz corresponding to
the smallest positive eigenvalue.
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