Revised

$$
\begin{aligned}
& 310 \\
& D E^{K}
\end{aligned}
$$

$$
T 296
$$

FINITE ELEMENT METHODS WITH NUMERICAL QUADRATURE FOR PARABOLIC AND PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INTERFACES

Thesis Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Ram Charan Deka

Registration No. 003 of 2014

Department of Mathematical Sciences
School of Sciences
TEZPUR UNIVERSITY, NAPAAM, TEZPUR, ASSAM APRIL, 2014

Abstract

The purpose of the present work is to study finite element Galerkin methods for linear parabolir and parabolic integro-differential equations with interfaces. The emphasis is on the theoretical aspects of such methods.

An attempt is made in this thesis to extend known results for finite element Galerkin method for a parabolic differential equation to a parabolic equation with interfaces. Optimal $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ crror estimates are shown to hold for both semidiscrete and fully discrete schemes with quadrature under minimum smoothness of the initial data. Due to low global regularity of the solutions, the error analysis of the standard finite element methods for parabolic problems is difficult to adopt for parabolic interface problems. In this work, we fill a theoretical gap between standard error analysis technique of finite element method for non interface problems and parabolic interface problems. Optimal $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms crror cstimates have been derived for the semidiscrete case under practical regularity assumptions of the true solution for fitted finite element method with straight interface triangles. Further, the fuilly discrete backward Euler scheme is also considered and optimal $L^{\infty}\left(L^{2}\right)$ norm crror estimate is established. In this case, the initial data and intcrface function are assumed to be sufficiently smooth.

Although various FEM for parabolic interface problems have been proposed and studied in the literature, but FEM treatment to the integro-differential equations with interfaces is mostly missing. A priori error estimates are derived for integro-differential equations of parabolic type with interfaces. Continuous time Galerkin method for the spatially discrete scheme and backward difference scheme in time direction are discussed in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms for fitted finite element method with straight interface triangles. More precisely, optimal error cstimates are derived in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms when initial data $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{0} \in H^{3} \cap H_{0}^{1}(\Omega)$, respectively. The achieved estimates are analogous to the case with a regular solution, however, due to low regularity, the proof requires a careful technical work coupled with a approximation result for the Ritz-Volterra projection under minimum regularity assumption.

Declaration

I, Ram Charan Deka, hereby declare that the subject matter in this thesis entiteed Finite Element Methods with Numerical Quadrature for Parabolic and Parabolic Integro-Differential Equations with Interfaces is the record of work done by me, that the contents of this thesis did not form basis of the award of any perevious degree to me or to the best of my knowledge to anybody else, and that the thesis has not been submitted by me for any research degree in any other university/institutc.

This thesis is being submitted to the Tezpur University for the degree of Doctor of Philosophy in Mathematical Sciences.

Place: Napaam
Date: $10-09-14$

(Ram Charan Dcka)

TEZPUR UNIVERSITY

Certificate

This is to certify that the thesis entitled Finite Element Methods with Numerical Quadrature for Parabolic and Parabolic Integro-Differential Equations with Interfaces submitted to the School of Sciences Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Mathematics is a record of research work carried out by Mr. Ram Charan Deka under my supervision and guidance.

All help received by him from various sources have been dully acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

April, 2014

Dr. Bhupen Deka Assistant Professor

Department of Mathematics
IIT Guwahati, Guwahati, Assam
Guwahati-781039

Acknowledgement

I take this opportunity of expressing my decpest gratitude and sincere thanks to Dr. Bhupen Deka for suggesting the problem of the thesis, invaluable advice, constant guidance, untiring help and inspiring support throughout the course of this work in spite of his busy schedule, which helped me to complete my work in time and bring it into its present form.

I am also gratcful to all the faculty members of the Department of Mathematics, Tezpur University for their cooperation and moral support throughout the whole period of association with them.

I am really gratcful to all my colleagucs of the Department of Mathematics, Darrang College, Tezpur, for their help, cooperation and encouragement during this period.

I am also gratcful to all my family members for all their love and support. And at last but not the least, I cannot overlook the extraordinary patience and moral support which my wife Mrs Chandra Deka has given all through during the period of her ordeal.

Ram Charan Deka
Department of Mathematical Sciences
Tezpur University, Tezpur, Assam

Contents

1 Introduction 1
1.1 Problem Description 1
1.2 Notation and Prcliminarics 4
1.3 Background and Objectives 8
1.4 Organization of the Thesis 13
2 Quadrature based Finite Element Methods for Linear Parabolic Inter- face Problems: $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ Error Estimates 14
2.1 Introduction 14
2.2 Preliminarics 16
2.3 Error Estimates for the Semidiscrete Problem 22
2.4 Error Estimate for Fully Discrete case 28
3 Finite Element Method with Quadrature for Parabolic Interface Prob-
lems: $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ Error Estimates 34
3.1 Introduction 35
3.2 Notations and Preliminaries 36
3.3 Error Analysis for the Semidiscrete Scheme 43
3.4 Error Analysis for the Fully Discrete Schome 46
4 FEM for Parabolic Integro-Differential Equations with Interfaces: $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ Error Estimates 50
4.1 Introduction 50
4.2 Preliminarics 52
4.3 Continuous Time Galerkin Finite Element 55
4.4 Discrete Time Galerkin Method 59
5 FEM for Parabolic Integro-Differential Equations with Interfaces: $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ Error Estimates 65
5.1 Introduction 65
5.2 Preliminarics 67
$5.3 \quad L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms Error Estimates 72
$5.4 L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ norms Error Estimates 76
5.5 Discrete time Galcrkin Method 79

Chapter 1

Introduction

The purpose of this thesis is to present some results on finite element Galerkin methods for linear parabolic and parabolic integro-differential equations with discontinuous coefficients. This chapter introduces the problem and it contains the notations and preliminary matcrials to be used in the thesis. It also provides the survey for relevant literature and motivation for the present study. The chapter-wise description of the thesis is presented in the last section of this chapter.

1.1 Problem Description

Differential equations with discontinuous coefficients are often referred as interface problems. The discontinuity of the coefficients corresponds to the fact that the medium consists of two or more physically different materials. To begin with, we first introduce parabolic and parabolic integro-differential equations with interfaces.

Parabolic interface problems: Let Ω be a convex polygonal domain in \mathbb{R}^{2} with boundary $\partial \Omega$. Further, let $\Omega_{1} \subset \Omega$ be an open domain with C^{2} smooth boundary Γ and $\Omega_{2}=\Omega \backslash \Omega_{1}$ (see, Figure 1.1). We now consider the following lincar parabolic interface problems of the form

$$
\begin{equation*}
u_{t}(x, t)+\mathcal{L} u(x, t)=f(x, t) \text { in } \Omega \times(0, T] \tag{1.1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { in } \Omega ; \quad u(x . t)=0 \text { on } \partial \Omega \times(0, T] \tag{1.1.2}
\end{equation*}
$$

Figure 1.1: Domain Ω and its sub domains Ω_{1}, Ω_{2} with interface Γ.
and interface conditions

$$
\begin{equation*}
[u]=0, \quad\left[\beta \frac{\partial u}{\partial \mathbf{n}}\right]=g(x, t) \quad \text { along } \Gamma \times(0 . T], \tag{1.1.3}
\end{equation*}
$$

where $u(x, l)$ is a real-valued function of x and $t, u_{t}(x, t)=\frac{\partial u}{\partial t}(x, t)$ and $T<\infty$. The symbol $[v]$ is a jump of a quantity v across the interface Γ, i.e.. $[v](x)=v_{1}(x)-v_{2}(x), \quad x \in$ Γ, where $v_{\imath}(x)=\left.v(x)\right|_{s_{2}}, \quad i=1,2$ and \mathbf{n} denotes the unit outward normal to the boundary $\partial \Omega_{1}$. Operator \mathcal{L} is a sccond order elliptic partial differential operator of the form

$$
\mathcal{L} v(x)=-\nabla \cdot(\beta(x) \nabla v(x)) .
$$

We assume that the cocfficient function β is positive and piecewise constant, i.e.,

$$
\beta(x)=\beta_{\imath} \text { in } \Omega_{\imath}, \imath=1,2 .
$$

Further, $f=f(x, t)$ and $g=g(x, t)$ are real valued functions defined in $\Omega \times(0, T]$ and $\Gamma \times(0, T]$, respectively.
Parabolic integro-differential equations with interfaces: We shall also consider integro-differential cquations of the form

$$
\begin{equation*}
u_{t}(x, t)+\mathcal{L} u(x, t)=f(x, t)+\int_{0}^{t} B(t, s) u(x, s) d s \text { in } \Omega \times(0, T] \tag{1.1.4}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { in } \Omega ; u(x \cdot t)=0 \text { on } \partial \Omega \times(0, T] \tag{1.1.5}
\end{equation*}
$$

and interface conditions

$$
\begin{equation*}
[u]=0, \quad\left[\beta \frac{\partial u}{\partial \mathbf{n}}\right]=0 \quad \text { along } \Gamma \times(0, T] . \tag{1.1.6}
\end{equation*}
$$

The domain Ω, operator \mathcal{L}, symbols $[v]$ and n are defined as before, and $T<\infty$. The operator $B(t, s)$ is a second order partial differential operator of the form

$$
B(t, s)=\sum_{\imath, j=1}^{2} \frac{\partial}{\partial x_{\imath}}\left(b_{\imath j}(x ; t, s) \frac{\partial}{\partial x_{j}}\right)+\sum_{j=1}^{2} b_{j}(x ; t, s) \frac{\partial}{\partial x_{j}}+b_{0}(x ; t, s) I .
$$

The equations of the form (1.1.1)-(1.1.3) are often encountered in the theory of magnetic field, heat conduction theory, the theory of elasticity and in reaction diffusion problems. Many interface problems in material science and fluid dynamics are modeled after above problem when two or more distinct materials or fluids with different conductivities or densities or diffusions are involved. One interesting class of parabolic equations with discontinuous coefficients processes in heat conducting media with concentrated capacity in which the heat capacity coofficient contains a Dirac delta function, or equivalently, the jump of the heat flow at the singular point is proportional to the time derivative of the temperature (cf. [7]). For a detailed discussion on parabolic problems with discontinuous coefficients, see Dautray and Lions [18], Gilbarg and Trudinger [30], Ladyzhenskaya et al. [39], Li and Ito [40].

Equations (1.1.4) are often referred to as the parabolic partial differential equations with memory term or the Volterra integral term i.c. $\int_{0}^{t} B(t, s) u(x, s) d s$. Such problems and variants of them arise in several physical phenomena such as in models for heat conduction in rigid materials with memory, the compression of poro-viscoelastic media, reactor dynamics and epidemic models in biology. For a detailed discussion on models for heat conduction in matcrials with memory, see Belleni-Morante [6], Colcman and Gurtin [17], Gurtin and Pipkin [31], Miller [45], Nohel [47] and the references quoted therein. For the literature relating to other applications of the theory of parabolic integro-differential equations, one may refer to Habetler and Schiffman [32] for the modcls for the compression of poro-viscoclastic media, Pao [50]-[52] for reactor dynamics, Hornung and Showalter [35] for the compartment model of a double-porosity system and Capasso [11] for epidemic phenomena in biology. As a model for parabolic integrodifferential equations (1.1.4) with discontinuous coefficients, we consider non-stationary
heat conduction problems in two dimensions with memory and conduction cocfficient β which is discontinuous across a smooth interface.

The presence of the Volterra integral term helps to accurately describe several physical phenomena, which causes some new difficulties in both theoretical analysis and numerical computation. Although various FEM for parabolic interface problems have been proposed and studied in the literature, but FEM treatment to the intcgrodifferential equations with interfaces is mostly missing. An attempt has been made in this thesis to study the a priori error analysis for the parabolic integro-differential equations with discontinuous coefficients. In this process some new a priori error estimates are derived for parabolic interface problems.

1.2 Notation and Preliminaries

In this section, we shall introduce some standard notation and preliminaries to be used throughout of this work.

All functions considered here are 1 cal valued. Let Ω be a bounded domain in \mathbb{R}^{d}, d-dimensional Euclidian space and $\partial \Omega$ denote the boundary of Ω. Let $x=$ $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \Omega$, and let $d x=d x_{1} \ldots d x_{d}$. Further, let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ be a d-tuple with nonnegative integer components and denote order of α as $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}$. Then, by $D^{\alpha} \phi$, we shall mean the α th derivative of ϕ defined by

$$
D^{\alpha} \phi=\frac{\partial^{|\alpha|} \varphi}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}
$$

We shall make frequent refcrence to the following well-known function spaces. For $1 \leq p<\infty, \quad L^{p}(\Omega)$ denotes the linear space of equivalence classes of measurable functions ϕ in Ω such that $\int_{\Omega 2}|\phi(x)|^{p} d x$ exists and is finite. The norm on $L^{p}(\Omega)$ is given by

$$
\|u\|_{L^{p}(\Omega)}=\left(\int_{\Omega 2}|\phi(x)|^{p} d x\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty .
$$

For $p=\infty, \quad L^{\infty}(\Omega)$ denotes the space of functions ϕ on Ω such that

$$
\|\phi\|_{L^{\infty}(\Omega)}=\operatorname{css} \sup _{x \in \Omega}|\phi(x)|<\infty .
$$

When $p=2, L^{2}(\Omega)$ is a Hilbert space with respect to the immer product

$$
(\phi, \psi)=\int_{\Omega 2} \phi(x) \psi(x) d x
$$

By support of a function $\phi, \operatorname{supp} \phi$, we mean the closure of all points x with $\phi(x) \neq 0$, i.c.,

$$
\operatorname{supp} \phi=\overline{\{x: \phi(x) \neq 0\}} .
$$

For any nonnegative integer $m . C^{m}(\bar{\Omega})$ denotes the space of functions with continuous derivatives upto and including order m in $\bar{\Omega} . C_{0}^{m}(\Omega)$ is the space of all $C^{m}(\Omega)$ functions with compact support in Ω. Also, $C_{0}^{\infty}(\Omega)$ is the space of all infinitely differential functions with compact support in Ω.

We now introduce the notion of Sobolev spaces. Let $m \geq 0$ and real p with $1 \leq p<\infty$. The Sobolev space of order (m, p) on Ω, denoted by $W^{m, p}(\Omega)$, is defined as a linear space of functions (or equivalence class of functions) in $L^{p}(\Omega)$ whose distributional derivatives upto order m are also in $L^{p}(\Omega)$, i.e.,

$$
W^{m, p}(\Omega)=\left\{\phi: D^{\alpha} \phi \in L^{p}(\Omega) \text { for } 0 \leq|\alpha| \leq m\right\} .
$$

The space $W^{m, p}(\Omega)$ is endowed with the norm

$$
\begin{aligned}
\|\phi\|_{m, p} & =\left(\int_{s 2} \sum_{0 \leq|\alpha| \leq m}\left|D^{\alpha} \phi(x)\right|^{p} d x\right)^{\frac{1}{p}} \\
& =\left(\sum_{0 \leq|\alpha| \leq m}\left\|D^{\alpha} \phi\right\|^{p}\right)^{\frac{1}{p}}, 1 \leq p<\infty .
\end{aligned}
$$

When $p=\infty$, the norm on the space $W^{m, \infty}(\Omega)$ is defined by

$$
\|\phi\|_{m, \infty}=\max _{0 \leq|x| \leq m}\left\|D^{\alpha} \phi(x)\right\|_{L^{\infty}(\Omega)} .
$$

For $p=2$, these spaces will be denoted by $H^{m}(\Omega)$. The space $H^{m}(\Omega)$ is a Hilbert space with natural inner product defined by

$$
(\phi, \psi)=\sum_{0 \leq|\alpha| \leq m} \int_{\Omega 2} D^{\alpha} \phi D^{\alpha} \psi d x, \quad \phi, \psi \in H^{m}(\Omega) .
$$

The sobolev space $H^{m}(\Omega)$ (respectively, $\left.H_{0}^{m}(\Omega)\right)$ is also defined as the closure of $C^{m}(\Omega)$ (rospectively, $\left.C_{0}^{\infty}(\Omega)\right)$ with respect to the norm $\|\phi\|_{m}=\|\phi\|_{m, 2}$. This result is true under some smoothness assumption on the boundary $\partial \Omega$. Clearly, $L^{2}(\Omega)=H^{0}(\Omega)$ and $H^{m}(\Omega)=W^{m, 2}(\Omega)$. For a more complete discussion on Sobolev spaces, see Adams [1].

We shall also use the following spaces in our error analysis. For a given Banach space \mathcal{B}, we define, for $m=0,1$ and $1 \leq p<\infty$

$$
W^{m, p}(0, T ; \mathcal{B})=\left\{u(t) \in \mathcal{B} \text { for a.c. } t \in(0, T) \text { and } \sum_{j=0}^{m} \int_{0}^{T}\left\|\frac{\partial^{j} u(t)}{\partial t^{j}}\right\|_{\mathcal{B}}^{p} d t<\infty\right\}
$$

equipped with the norm

$$
\|u\|_{W^{m, p}(0, T ; \mathcal{B})}=\left(\sum_{j=0}^{m} \int_{0}^{T}\left\|\frac{\partial^{j} u(t)}{\partial t^{j}}\right\|_{\mathcal{B}}^{p} d t\right)^{\frac{1}{p}} .
$$

Wc write $H^{m}(0, T ; \mathcal{B})=W^{m, 2}(0, T ; \mathcal{B})$ and $L^{2}(0, T ; \mathcal{B})=I^{0}(0, T ; \mathcal{B})$. When no risk of confusion exists we shall write $L^{2}(\mathcal{B})$ for $L^{2}(0, T ; \mathcal{B})$ and $H^{1}(\mathcal{B})$ for $H^{1}(0, T ; \mathcal{B})$.

Further, we denote $L^{\infty}(0, T ; \mathcal{B})$ to be the collection of all functions $v \in \mathcal{B}$ such that

$$
\text { ess } \sup _{t \in(0, T]}\|v(x, t)\|_{\mathcal{B}}<\infty .
$$

Below, we shall discuss some preliminary materials which will be of frequent use in error analysis in the subsequent chapters. The bilinear form $A(\cdot, \cdot)$ associated with the operator \mathcal{L}, given by

$$
A(u, v)=\int_{\Omega} \beta(x) \nabla u \cdot \nabla v d x
$$

satisfies the following boundedness and coercive properties: For $\phi, \psi \in H^{1}(\Omega)$, there exists positive constants C and c such that

$$
A(\phi, \psi) \leq C\|\phi\|_{H^{1}(\Omega)}\|\psi\|_{H^{1}(\Omega)}
$$

and

$$
A(\phi, \phi) \geq c\|\phi\|_{H^{1}(\Omega 2)}^{2} .
$$

From time to time we shall also use the following inequalities (see, Hardy et al. [34]):
(i) Young's inequality: For $a, b \geq 0$ and $\epsilon>0$, the following inequality

$$
a b \leq \frac{a^{2}}{2 \epsilon}+\frac{\epsilon b^{2}}{2}
$$

holds.
(ii) Cauchy-Schwarz inequality: For $a, b \geq 0,1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$,

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} .
$$

In integral form, if ϕ and ψ are both real valucd and $\phi \in L^{p}$ and $\psi \in L^{q}$, then

$$
\int_{\Omega} \phi \psi \leq\|\phi\|_{p}\|\psi\|_{q} .
$$

For $p=q=2$, the above inequality is known as Schwarz's inequality. The discrete version of Schwarz's inequality may be stated as:
(iii) Let $\phi_{j}, \psi_{j}, j=1,2, \ldots, n$ be positive real numbers. Then

$$
\sum_{j=1}^{n} \phi_{J} \psi_{j} \leq\left(\sum_{j=1}^{n} \phi_{j}^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n} \psi_{j}^{2}\right)^{\frac{1}{2}} .
$$

Below, we state without proof, the following two versions of Grownwall's lemma. For a proof, see [55].

Lemma 1.2.1 (Continuous Gronwall's Lemma) Let $G(l)$ be a continuous function and $H(t)$ a nonnegative continuous function on its interval $t_{0} \leq t \leq t_{0}+a$. If a continuous function $F(t)$ has the property

$$
F(t) \leq G(t)+\int_{t_{0}}^{t} F(s) H(s) d s \text { for } t \in\left[t_{0}, t_{0}+a\right],
$$

then

$$
F(t) \leq G(t)+\int_{t_{0}}^{t} G(s) H(s) \operatorname{cxp}\left[\int_{s}^{t} H(\tau) d \tau\right] d s \text { for } t \in\left[t_{0}, t_{0}+a\right]
$$

In particular, when $G(l)=C$ a nonnegative constant, we have

$$
F(t) \leq C \exp \left[\int_{t_{0}}^{t} H(s) d s\right] \text { for } t \in\left[t_{0}, t_{0}+a\right] .
$$

Lemma 1.2.2 (Discrete Gronwall's Lemma) If $\left\langle y_{n}\right\rangle,\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ are non-negative sequences and

$$
y_{n} \leq f_{n}+\sum_{0 \leq k<n} g_{k} y_{k}, \quad n \geq 0,
$$

then

$$
y_{n} \leq f_{n}+\sum_{0 \leq k<n} g_{k} f_{k} \exp \left(\sum_{k<j<n} g_{\jmath}\right) \cdot n \geq 0
$$

In addition, we shall also work on the following spaces:

$$
X=I I^{1}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right) \quad \& \quad Y=L^{2}(\Omega) \cap I^{1}\left(\Omega_{1}\right) \cap I^{1}\left(\Omega_{2}\right) .
$$

For $w:[0, T] \rightarrow X, v:[0, T] \rightarrow Y$ and $t \in \times[0, T]$, we define

$$
\begin{aligned}
\|w(t)\|_{X} & =\|w(x, t)\|_{H^{1}(\Omega)}+\|w(x, t)\|_{H^{2}\left(\Omega_{1}\right)}+\|w(x, t)\|_{H^{2}\left(\Omega_{2}\right)} \\
& \equiv\|w(t)\|_{H^{1}(\Omega)}+\|w(t)\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|w(t)\|_{H^{2}\left(\Omega_{2}\right)} .
\end{aligned}
$$

and

$$
\begin{aligned}
\|v(t)\|_{Y} & =\|v(x, t)\|_{L^{2}(\Omega)}+\|v(x, t)\|_{H^{1}\left(\Omega_{1}\right)}+\|v(x, t)\|_{H^{1}\left(\Omega_{2}\right)} \\
& \equiv\|v(t)\|_{L^{2}(\Omega)}+\|v(t)\|_{H^{1}\left(\Omega_{1}\right)}+\|v(t)\|_{H^{1}\left(\Omega_{2}\right)} .
\end{aligned}
$$

Throughout this thesis, C is a positive generic constant independent of the mesh parameters $\{h, k\}$ and not necessarily be the same at each occurrence.

1.3 Background and Objectives

This section presents a brief survey of the relevant literature concerning the numerical solutions of interface problems by means of finite element method. It also elucidates the objectives for the present study.

Solving differential equations with discontinuous coefficients by means of classical finite element methods usually leads to the loss in accuracy. One major difficulty is that the solution has low global regularity and the elements do not fit with the interface of gencral shape. For non-interface problems, one can assume full regularitics of the solutions (at least $H^{2}(\Omega)$) on whole physical domain. But for the interface problems, the global regularity of the solution is low. So the classical analysis is difficult to apply for the convergence analysis of the interface problems. Thus the numerical solution to the interface problem is challenging as well as intercsting also.

Finite clement methods for interface problems may be grouped into two catcgories: Fitted finite element method and Unfitted finite element method depending on the choice of the discretization. In fitted finite element method, the discretization is made in such a way that the grid line is either isoparametrically fitted to the interface
or an approximation of the smooth interface. In unfitted finite element methods, the discretization is independent of the location of the interface.

In recent time, many new numerical methods have been developed to handle differential equations with singularity. Some of them are developed with the modifications in the standard methods, so that they can deal with the discontinuities and the singularities. We first give a brief account of the development of the finite element methods for elliptic interface problems. In [4], Babuška has studied the clliptic interface problem as an equivalent minimization problem. The finite element method is then applied to solve the minimization problem and sub-optimal H^{1}-norm error cstimate is obtained. The algorithm in [4] requires the exact evaluation of line integrals on the boundary of the domain and on the interface, and exact integrals on the interface finite elements are also needed. In the absence of variational crimes, finite element approximation of interface problem has been studied by Barrett and Elliott in [5]. They have shown that the finite element solution converges to the true solution at optimal rate in L^{2} and H^{1} norms over any interior subdomain. In [5], it is assumed that the solution and the normal derivative of the solution are continuous along the interface, and fourth order differentiable on each subdomain. Bramble and King [8] have studied nonconforming finite element method for such problems. In their work, interior domains Ω_{1} and Ω_{2} are approximatcd by polygonal domains. Then the Dirichlet data and the interface function are transferred to the polygonal boundaries. Finally, discontinuous Galerkin finite element method has applied to the approximated problem and optimal order crror estimates are derived for rough as well as smooth boundary data. Under the assumption that $\left.\int\right|_{\Omega_{1}}=0$, Neilsen [46] has proved optimal order of convergence in H^{1} norm. The algorithm in [46] requires that the interface triangles follow exactly the actual interface Γ. Conforming high order fitted finite clement methods for clliptic interface problems can be found in Li et al. [41]. For finite element methods of order p, error cstimates of $\mathrm{O}\left(h^{\min \{p,(m+1) / 2\}}\right)$ and $\mathrm{O}\left(h^{\min \{p, m\}+1}\right)$ in the H^{1} and L^{2} norms, respectively, are obtained when the interface is approximated with splines of order m. Recently, a continuous finite element method for elliptic interface problems in a higher dimensional polyhedral domain is discussed by Duan et al. [28]. An error estimate of $\mathrm{O}\left(h^{r}\right)$ in energy norm has been obtained between the analytical solution and the continuous finite elenent solution. The analytical solution is assumed to be in $\prod_{l=1}^{L}\left(H^{r}\left(\Omega_{l}\right)\right)^{3}$ for some $r \in(1 / 2,1]$. Unfitted discontinu-
ous Galerkin method, based on the symmetric interior penalty DG method, has been proposed to discretize elliptic interface problems in [43]. Optimal h-convergence of the method for arbitrary p in the energy and L^{2} norms are obtained. This method can be treated as a generalization of the unfitted method given by Hansbo et al. [33] for elliptic interface problems. A comparative study on the existing numerical techniques to solve clliptic interface problems has been carried out in [38], which also includes extensive list of relevant litcrature.

We now turn to the finite element Galerkin approximation to parabolic interface problems (1.1.1)-(1.1.3). In the absence of memory term in (1.1.4), convergence analysis for parabolic interface problems via finite element procedure have been studied by several authors, sec [3, 15, 21, 27, 53, 58, 59]. For the backward Euler time discretization, Chen and Zou ([15]) have studied the convergence of fully discrete solution to the exact solution using fitted finite element method with straight interface triangles. They have proved almost optimal crror estimates in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms under practical regularity assumption of the solution. For similar finite element discretization, optimal error estimates in $L^{2}\left(I^{1}\right)$ norm have been derived in [59]. So, in order to maintain the best possible convergence rate in $L^{2}\left(L^{2}\right)$ norm, the authors of [58] have used a finite element discretization where interface triangles are assumed to be curved triangles instead of straight triangles like classical finite element methods. Optimal order error cstimates in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms are shown to hold for both semi discrete and fully discrete schemes. More recently, for similar triangulation, Deka and Sinha ([27]) have studied the pointwisc-in-time convergence in finite clement method for parabolic interface problems. Optimal crror estimates have been obtained in $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms under the assumption that grid line exactly follow the actual interface. Similar results are also obtained by Attanayake and Senaratne in [3] for immersed finite element method. In [53], the author have analyzed the Lagrange multiplier method with penalty for parabolic initial boundary valuc problems using semi discrete and fully discrete schemes. For straight interface, sub-optimal order of estimates for both semi discrete and fully discrete schemes have been derived. Optimal order of convergence in fitted finite element method with straight interface triangles can be found in [21].

Numerical solutions by mcans of finite element Galerkin procedures for the parabolic integro-differential equation without interface can be found in $[10.12,14,42,48,64,66$,

67]. The first contribution in this direction is given by Yanik and Fairweather [66]. Assuming the exact solution is smooth, they derived optimal order a priori error cstimates for fully discrete Crank-Nicolson scheme for nonlinear parabolic integro-differential equations (1.1.4) with $B(t, s)$ as a first-order partial differential operator. Subsequently, spatially semi-discrete scheme for (1.1.4) is thoroughly examined by Thomée and Zhang in [64]. They have obtained optimal order a priori crror estimates in the L^{2}-norm for both smooth and non-smooth initial data by extending the spatially scmidiscrete error analysis for linear parabolic equations [63] to parabolic integro-differential equations with an integral kernel consisting of a partial differential operator of order ≤ 2. The proof is based on the following decomposition of the main error $e=u-u_{h}$ as

$$
e=\left(u-R_{h} u\right)+\left(R_{h} u-u_{h}\right),
$$

where u_{h} and u denote the semidiscrete finite clement solution and the exact solution of the parabolic integro-differential equation. respectively. Here, $R_{h}: H_{0}^{1}(\Omega) \rightarrow V_{h}$ is the Ritz projection introduced by Wheeler in [65]. A simple alternative approach is proposed by Cannon and Lin [10] and is further developed by Lin et al. in [42]. The key technical tool used in these works is a generalization of the Ritz projection operator R_{h}, namely the nonlocal projection or the Ritz-Volterra projection operator. In order to reduce the storage requirements during the time stepping of a general parabolic integro-differential equations, Sloan and Thonee [61] have first proposed the application of quadrature rules with relatively higher order truncation error. Later on, several researchers have given valuable contributions towards the convergence analysis of the finite element Galerkin solution to the solution of parabolic integro-differential equations and its variants in the a priori framework. We refer to Cannon and Lin [10], Le Roux and Thomée [57], Thoméc and Zhang [64], Chen et al. [14], Pani et al. [48], Pani and Sinha [49], McLean and Thomée [44], Chen and Shih [12], Zhang [67] and Sinha et al. [60] for further works in this direction. Although various FEM for parabolic interface problems have been proposed and studied in the literature, but FEM treatment to the integro-differential equations with interfaces is mostly missing. For the finite element treatment of parabolic integro-differential equation with discontinuous coefficients. we refer to Pradhan et al. ([54]). In [54], authors have discussed a non-iterative domain decomposition procedure for parabolic integro-differential equation with interfaces and related a priori error cstimates are derived.

In practice, the integrals appearing in finite element approximation are cvaluated numerically by using some well known quadrature schemes. Quadrature based finite element method for elliptic interface problems have been discussed in [20, 36]. In [36], a mortar finite clement method have been discussed for a finite element discretization where interface triangles are assumed to be curved triangles. Optimal L^{2} norm and energy norm crror estimates are achicved when the exact integration are replaced by quadrature. Author of [20] has obtained optimal order error cstimates in L^{2} and H^{1} norms for conforming finite element method where the grid line need not follow the actual interface exactly. The previous work on finite element analysis with numerical quadrature for parabolic problems without interface can be found in [13], [56] and references therein.

The main objective is to study the convergence of fitted finite element solution to the exact solution of parabolic integro-differential equations with discontinuous coefficients. In this process some new a priori error estimates are derived for parabolic interface problems and those estimates are extended for integro-differential equations of parabolic type with intcrfaces. More precisely,

- Quadrature Based Finite Element Methods for Linear Parabolic Interface Problems: We have studied the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ error estimatcs are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^{2}\left(L^{2}\right)$ norm crror estimate is cstablished (cf. [24]). Further, optimal $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms error estimates have been derived under the assumption that initial data is more regular(cf. [26]).
- Finite Element Galerkin Approximation for Parabolic Integro-Differential Equations with Discontinuous Coefficients: In this work, convergence of continuous time Galcrkin method for the spatially discrete scheme and backward difference scheme in time direction are discussed in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms for fitted finite element method with straight interface triangles. Optimal error estimates are derived in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms when initial data $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{0} \in H^{3} \cap H_{0}^{1}(\Omega)$, respectively (cf. [23], [25]).

1.4 Organization of the Thesis

This thesis consists of five chapters and is organized as follows. Chapter 1 introduces the problem and it contains the basic notations, and preliminary materials to be used throughout this thesis.

In Chapter 2, convergence of quadrature based finite element solution to the exact solution have been discussed in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms. More preciscly, optimal error estimates are derived for arbitrary shape but smooth interfaces with a practical finite element discretization. Further, optimal crror estimates in $I^{1}\left(L^{2}\right)$ and $I^{1}\left(I^{1}\right)$ norms are derived under the high regularity of the initial conditions. The finite element discretization used in this work and a regularity result concerning parabolic interface problems are also introduced in this chapter.

Chapter 3 is devoted to the optimal $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms convergence of finite element method with quadrature for parabolic interface problems with straight interface triangles. The key to the analysis is the crror cstimates of elliptic projection under minimum smoothness of the solution.

Chapter 4 deals with the convergence of finite element method for a class of parabolic integro-differential equations with discontinuous coefficients. Under the assumption that $B(t, s)$ is a first order partial differential operator of the form

$$
B(t, s) u(s)=\sum_{k=1}^{2} b_{k}(x ; t, s) \frac{\partial u(x, s)}{\partial x_{k}}+u(x, s),
$$

optimal $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms are shown to hold in this chapter. Further, existence and uniqueness of the solution for parabolic integro-differential equations with discontinuous coefficients is also discussed in this chapter.

Chapter 5 is concerned with a priori error cstimates for interface problems (1.1.4)(1.1.6). Optimal crror estimates in $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ norms are established for continuous time discretization. Further, the fully discrete scheme based on a symmetric difference approximation is considered and optimal order convergence in H^{1} norm is established. The crucial fact used in this work is the newly established approximation result for the Ritz-Volterra projection under minimum regularity assumption.

For clarity of presentation we have repeatedly given equations (1.1.1) - (1.1.3) or (1.1.4) - (1.1.6) at the beginning of subsequent chapters.

Chapter 2

Quadrature based Finite Element Methods for Linear Parabolic Interface Problems: $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ Error Estimates

In this chapter, we study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^{2}\left(L^{2}\right)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.

2.1 Introduction

In this chapter, we consider a linear parabolic equation of the form

$$
\begin{equation*}
u_{t}+\mathcal{L} u=f(x . t) \quad \text { in } \Omega \times(0, T] \tag{2.1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0} \text { in } \Omega \& u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \tag{2.1.2}
\end{equation*}
$$

and interface conditions

$$
\begin{equation*}
[u]=0, \quad\left[\beta \frac{\partial u}{\partial \mathbf{n}}\right]=g(x, t) \quad \text { along } \Gamma \times(0, T] . \tag{2.1.3}
\end{equation*}
$$

Here, $\Omega=\Omega_{1} \cup \Gamma \cup \Omega_{2}$ is a convex polygonal domain in \mathbb{R}^{2} with boundary $\partial \Omega$ and $\Omega_{1} \subset \Omega$ is an open domain with C^{2} smooth boundary $\Gamma=\partial \Omega_{1}$. Let $\Omega_{2}=\Omega \backslash \Omega_{1}$ (sce, Figure 1.1). Here, $f=f(x, t)$ and $g=g(x, t)$ are real valued functions defined in $\Omega \times(0, T]$ and $\Gamma \times(0, T]$, respectively. The operator \mathcal{L}, symbols $[v]$ and \mathbf{n} are defined as in Chapter 1.

For our subsequent analysis, we now recall the bilinear form $A(\cdot, \cdot): H^{1}(\Omega) \times$ $H^{1}(\Omega) \rightarrow \mathbb{R}$ given by

$$
A(u, v)=\int_{\Omega 2} \beta(x) \nabla u \cdot \nabla v d x \quad \forall u, v \in I^{1}(\Omega) .
$$

Then the weak formulation of the interface problem (2.1.1)-(2.1.3) is stated as follows: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\left(u_{t}, v\right)+A(u, v)=(f, v)+\langle g, v\rangle_{\Gamma} \quad \forall v \in H_{0}^{1}(\Omega), \quad t \in(0, T] \tag{2.1.4}
\end{equation*}
$$

with $u(0)=u_{0}$. Here, (\cdot, \cdot) and $\langle\cdot, \cdot\rangle_{\Gamma}$ are used to denote the inner products of $L^{2}(\Omega)$ space and $L^{2}(\Gamma)$ space, respectively.

Convergence of the quadrature based finite element solution to the exact solution have bcen discussed in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms. More precisely, optimal error cstimatcs are derived for arbitrary shape but smooth interfaces with a practical finite element discretization. The key to the present analysis is the introduction of some auxiliary projections, duality arguments and some newly established convergence results in $H^{1}\left(L^{2}\right)$ and $H^{1}\left(H^{1}\right)$ norms for parabolic interface problems without quadrature. To the best of our knowledge, the effect of numerical quadrature in finite element methods for the parabolic interface problems have not been studied earlier. The previous work on finite element analysis with numerical quadrature for parabolic problems without interface can be found in [13], [56] and references therein.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the triangulation and recall some basic results from the literature. While Section 2.3 is devoted to the error analysis for the semidiscrete finite element approximation. error estimatcs for the fully discrete backward Euler time stepping scheme are derived in Scction 2.4.

2.2 Preliminaries

Due to the prescnce of discontinuous coefficients the solution u, in general, docs not belong to $H^{2}(\Omega)$. Regarding the regularity for the solution of the interface problem (2.1.1)-(2.1.3), we have the following result (cf. [15, 39, 58]).

Theorem 2.2.1 Let $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right), \quad g=0$ and $u_{0} \in H_{0}^{1}(\Omega)$. Then the problem (2.1.1)-(2.1.3) has a unique solution $u \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}(0, T ; Y)$. Further, for $u_{0} \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, solution u satisfies the following a priori estimate

$$
\begin{equation*}
\int_{0}^{t}\left\{\left\|u_{t}\right\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\left\|u_{t}\right\|_{H^{2}\left(\Omega \Omega_{2}\right)}^{2}\right\} d s \leq C\left\{\left\|u_{t}(0)\right\|_{H^{1}(\Omega)}^{2}+\int_{0}^{t}\left\|f_{t}\right\|_{L^{2}(\Omega)}^{2} d s\right\} . \tag{2.2.1}
\end{equation*}
$$

Proof. The existence of unique solution can be found in [15, 39].
Next, to obtain the a priori estimate we first transform the problem (2.1.1)-(2.1.3) to the following equivalent problem:

For a.e. $t \in(0, T], u_{t}(x, t) \in H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right)$ satisfies the following elliptic interface problem

$$
\begin{equation*}
-\nabla \cdot\left(\beta(x) \nabla u_{t}\right)=f_{t}-u_{t t} \quad \text { in } \Omega_{\imath}, i=1,2 \tag{2.2.2}
\end{equation*}
$$

along with boundary condition

$$
\begin{equation*}
u_{t}(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \tag{2.2.3}
\end{equation*}
$$

and jump conditions (cf. [37])

$$
\begin{equation*}
\left[u_{t}\right]=0 \quad \text { and } \quad\left[\beta \frac{\partial u_{t}}{\partial \mathbf{n}}\right]=0 \text { along } \Gamma . \tag{2.2.4}
\end{equation*}
$$

From the a priori estimate for clliptic interface problem (cf. [15]), it follows that

$$
\begin{equation*}
\left\|u_{t}\right\|_{H^{2}\left(\Omega_{1}\right)}+\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)} \leq C\left\{\left\|u_{t t}\right\|_{L^{2}(\Omega)}+\left\|f_{t}\right\|_{L^{2}(\Omega)}\right\} . \tag{2.2.5}
\end{equation*}
$$

For any

$$
v \in Y \cap\{\psi: \psi=0 \text { on } \partial \Omega\} \&[v]=0 \text { along } \Gamma
$$

we obtain

$$
\begin{align*}
&- \int_{\Omega_{1}} \nabla \cdot\left(\beta_{1} \nabla u\right) v d x-\int_{\Omega \Omega_{2}} \nabla \cdot\left(\beta_{2} \nabla u\right) v d x \\
&=-\int_{\Gamma} \beta_{1} \frac{\partial u}{\partial \mathbf{n}} v d s+\int_{\Omega \Omega_{1}} \beta_{1} \nabla u \cdot \nabla v d x \\
&+\int_{\Gamma} \beta_{2} \frac{\partial u}{\partial \mathbf{n}} v d s+\int_{s \Omega_{2}} \beta_{2} \nabla u \cdot \nabla v d x \\
&=\int_{\Omega_{1}} \beta_{1} \nabla u \cdot \nabla v d x+\int_{s \Omega_{2}} \beta_{2} \nabla u \cdot \nabla v d x+\int_{\Gamma}\left[\beta \frac{\partial u}{\partial \mathbf{n}} v\right] d s \\
&=A^{1}(u, v)+A^{2}(u, v) . \tag{2.2.6}
\end{align*}
$$

Since $[v]=0$ and $[\beta \partial u / \partial \mathbf{n}]=0$ along Γ. Here. $A^{l}(.,):. H^{1}\left(\Omega_{l}\right) \times H^{1}\left(\Omega_{l}\right) \rightarrow \mathbb{R}$ are local bilinear map given by

$$
A^{l}(w, v)=\int_{\Omega_{l}} \beta_{l} \nabla w \cdot \nabla v d x, \quad l=1,2 .
$$

Then multiplying (2.2.2) by such v and integrating over Ω, we have

$$
\begin{equation*}
\left(u_{t t}, v\right)+A^{1}\left(u_{t}, v\right)+A^{2}\left(u_{t}, v\right)=\left(f_{t}, v\right) . \tag{2.2.7}
\end{equation*}
$$

Again it follows from the arguments of [37] that $\left[u_{t t}\right]=0$ along Γ and $u_{t t}=0$ on $\partial \Omega$, and hence equation (2.2.7) leads to

$$
\begin{equation*}
\left(u_{t t}, u_{t t}\right)+A^{1}\left(u_{t}, u_{t t}\right)+\Lambda^{2}\left(u_{t}, u_{t t}\right)=\left(f_{t}, u_{t t}\right) \tag{2.2.8}
\end{equation*}
$$

so that

$$
\begin{aligned}
& \int_{0}^{t}\left\|u_{t t}\right\|_{L^{2}(\Omega)}^{2} d s+\frac{1}{2} A^{1}\left(u_{t}, u_{t}\right)+\frac{1}{2} A^{2}\left(u_{t}, u_{t}\right) \\
& \leq \frac{1}{2} A^{1}\left(u_{t}(0), u_{t}(0)\right)+\frac{1}{2} A^{2}\left(u_{t}(0), u_{t}(0)\right)+C \int_{0}^{t}\left\|f_{t}\right\|_{L^{2}(\Omega)}^{2} d s .
\end{aligned}
$$

Under the assumption that $u_{0} \in H^{3}(\Omega)$ and $f(x, 0) \in H^{1}(\Omega)$, we have $u_{t}(0) \in H^{1}(\Omega)$. Therefore, $u_{t t}$ satisfies the following a priori estimate

$$
\int_{0}^{t}\left\|u_{t t}\right\|_{L^{2}(\Omega)}^{2} d s \leq C\left\{\left\|u_{t}(0)\right\|_{H^{1}(\Omega)}^{2}+\int_{0}^{t}\left\|f_{t}\right\|_{L^{2}(\Omega)}^{2} d s\right\} .
$$

Finally, using above estimate in (2.2.5) we obtain

$$
\int_{0}^{t}\left\{\left\|u_{t}\right\|_{H^{2}\left(\Omega \Omega_{1}\right)}^{2}+\left\|u_{t}\right\|_{H^{2}\left(\Omega \Omega_{2}\right)}^{2}\right\} d s \leq C\left\{\left\|u_{t}(0)\right\|_{H^{1}(\Omega)}^{2}+\int_{0}^{t}\left\|f_{t}\right\|_{L^{2}(\Omega)}^{2} d s\right\} .
$$

Remark 2.2.1 Consider the following interface problems

$$
\begin{aligned}
& \xi_{t}-\nabla \cdot(\beta(x) \nabla \xi)=\int(x, t) \quad \text { in } \Omega \times(0, T] \\
& \xi(x, 0)=\frac{1}{2} u_{0} \text { in } \Omega ; \quad \xi(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \\
& {[\xi]=0, \quad\left[\beta \frac{\partial \xi}{\partial \mathrm{n}}\right]=0 \quad \text { along } \Gamma,}
\end{aligned}
$$

and

$$
\begin{aligned}
& \psi_{t}-\nabla \cdot(\beta(x) \nabla \psi)=0 \quad \text { in } \Omega \times(0, T] \\
& \psi(x, 0)=\frac{1}{2} u_{0} \text { in } \Omega ; \quad \psi(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \\
& {[\psi]=0, \quad\left[\beta \frac{\partial \psi}{\partial \mathbf{n}}\right]=g(x, t) \quad \text { along } \Gamma .}
\end{aligned}
$$

Then, $\xi+\psi$ satisfies the following weak formulution

$$
\begin{equation*}
\left(\xi_{t}+\psi_{t}, v\right)+A(\xi+\psi, v)=(f, v)+\langle g, v\rangle_{\Gamma} \quad \forall v \in H_{0}^{1}(\Omega) . \tag{2.2.9}
\end{equation*}
$$

Subtracting (2.2.9) from (2.1.4), we obtain

$$
\begin{equation*}
\left(u_{t}-\xi_{t}-\psi_{t}, v\right)+A(u-\xi-\psi, v)=0 \tag{2.2.10}
\end{equation*}
$$

Setting $v=u-\xi-\psi$ in (2.2.10) and coercivity of $A(.,$.$) leads to$

$$
\|u-\xi-\psi\|_{L^{2}(\Omega)}^{2} \leq C\|u(0)-\xi(0)-\psi(0)\|_{L^{2}(\Omega)}^{2} .
$$

Finally, use the fact $u(0)=\xi(0)+\psi(0)$ to have $u=\xi+\psi$ for a.e. $(x, t) \in \Omega \times(0, T]$.
For $g \in H^{2}\left(0, T ; H^{2}(\Gamma)\right)$, we assume that

$$
\psi \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right)\right)
$$

so that $u \in H^{1}\left(0, T ; L^{2}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right)\right)$.
Thus, under the assumptions $u_{0} \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega), f \in H^{1}\left(0, T ; L^{2}(\Omega)\right), f(x, 0) \in$ $H^{1}(\Omega)$ and $g \in H^{2}\left(0, T ; H^{2}(\Gamma)\right)$, solution u for the interface problem (2.1.1)-(2.1.3) is unique and $u \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right)\right)$.

We now describe the triangulation \mathcal{T}_{h} of Ω. We first approximate the domain Ω_{1} by a domain Ω_{1}^{h} with the polygonal boundary Γ_{h} whose vertices all lie on the interface
Γ. Let Ω_{2}^{h} be the approximation for the domain Ω_{2} with polygonal exterior and interior boundarics as $\partial \Omega$ and Γ_{h}, respectively. The triangles with one or two vertices on Γ are called the interface triangles, the set of all interface triangles is denoted by \mathcal{T}_{Γ}^{*} and we write $\Omega_{\Gamma}^{*}=U_{K \in \tau_{\Gamma}^{*}} K$.

We assume that the triangulation \mathcal{T}_{h} of the domain Ω satisfy the following conditions:
(A1) $\bar{\Omega}=\cup_{K \in \mathcal{T}_{h}} K$.
(\mathcal{A}) If $K_{1}, K_{2} \in \mathcal{T}_{h}$ and $K_{1}^{\prime} \neq K_{2}^{\prime}$, then either $K_{1} \cap K_{2}^{\prime}=\emptyset$ or $K_{1} \cap K_{2}$ is a common vertex or edge of both triangles.
(A3) Each triangle $K \in \mathcal{T}_{h}$ is either in Ω_{1}^{h} or Ω_{2}^{h} and has at most two vertices lying on Γ_{h}.
(A4) For each triangle $K \in \mathcal{T}_{h}$, let r_{K}, \bar{r}_{K} be the radii of its inscribed and circumscribed circles, respectively. Let $h=\max \left\{\bar{r}_{K}: K \in \mathcal{T}_{h}\right\}$.

Let V_{h} be a family of finite dimensional subspaces of $H_{0}^{1}(\Omega)$ defined on \mathcal{T}_{h} consisting of pieccwisc linear functions vanishing on the boundary $\partial \Omega$ and satisfying the following approximation properties

$$
\begin{equation*}
\inf _{v_{h} \in V_{h}}\left\{\left\|v-v_{h}\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(v-v_{h}\right)\right\|_{L^{2}(\Omega)}\right\} \leq C h^{s}\|v\|_{H^{s}(\Omega)}, \quad 1 \leq s \leq 2, \tag{2.2.11}
\end{equation*}
$$

when $v \in H^{s}(\Omega) \cap H_{0}^{1}(\Omega)$. Examples of such finite element spaces can be found in [9] and [16]. Further, we assume the following inverse estimate

$$
\begin{equation*}
\|\phi\|_{H^{1}(\Omega)} \leq C h^{-1}\|\phi\|_{L^{2}(\Omega)} \forall \phi \in V_{h} . \tag{2.2.12}
\end{equation*}
$$

In order to study the effect of numerical quadrature we need to define approximation of the original bilinear form $A(.,$.$) . For this purpose, we define the approximation$ $\beta_{h}(x)$ of the coefficient $\beta(x)$ as follows: For cach triangle $K \in \mathcal{T}_{h}$, let $\beta_{K}(x)=\beta_{\imath}$ if $K \subset \Omega_{i}^{h}, \mathrm{i}=1$ or 2 . Then β_{h} is defined as

$$
\beta_{h}(x)=\beta_{K}(x) \quad \forall K \in \mathcal{T}_{h} .
$$

Then the approximation $A_{h}(\cdot \cdot): H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{R}$ to $A(.,$.$) can be defined as$

$$
A_{h}(w, v)=\sum_{K \in \mathcal{T}_{h}} \int_{K} \beta_{K}(x) \nabla w \cdot \nabla v d x \quad \forall w, v \in H^{1}(\Omega) .
$$

To handle the L^{2} inner product, we define the approximation on V_{h} and its induced norm by

$$
\begin{equation*}
(w, v)_{h}=\sum_{K \in \mathcal{T}_{h}}\left\{\frac{1}{3} \operatorname{meas}(\mathrm{~K}) \sum_{j=1}^{3} w\left(P_{j}^{K}\right) v\left(P_{j}^{K}\right)\right\}, \tag{2.2.13}
\end{equation*}
$$

and $\|\phi\|_{h}=(\phi, \phi)_{h}^{\frac{1}{2}}$, where P_{j}^{K} are the vertices for the triangle K.
Let $\Pi_{h}: X \rightarrow V_{h}$ be the linear interpolation operator defined in [15]. For any $v \in X$, let v_{i} be the restriction of v on Ω_{i} for $i=1,2$. As the interface is of class C^{2}, we can extend the function $v_{i} \in H^{2}\left(\Omega_{i}\right)$ on to the whole Ω and obtain the function $\tilde{v}_{i} \in H^{2}(\Omega)$ such that $\tilde{v}_{i}=v_{i}$ on Ω_{i} and

$$
\begin{equation*}
\left\|\tilde{v}_{i}\right\|_{H^{2}(\Omega)} \leq C\left\|v_{i}\right\|_{H^{2}\left(\Omega_{2}\right)}, i=1,2 . \tag{2.2.14}
\end{equation*}
$$

For the existence of such extensions, we refer to Stcin [62]. Then, for $K \in \mathcal{T}_{h}$, we now define

$$
\Pi_{h} u=\left\{\begin{array}{l}
\Pi_{h} \tilde{u}_{1} \text { if } K \subseteq \Omega_{1}^{h} \\
\Pi_{h} \tilde{u}_{2} \text { if } K \subseteq \Omega_{2}^{h}
\end{array}\right.
$$

The following optimal approximation of Π_{h} operator is borrowed from [20].
Lemma 2.2.1 For $v \in X$ with $[v]=0$ along Γ, then the following approximation properties

$$
\left\|v-\Pi_{h} v\right\|_{H^{m}(\Omega)} \leq C h^{2-m}\|v\|_{X}, m=0,1,
$$

holds true.
We now recall some existing results on the approximation Λ_{h} and the inner product which will be frequently uscd in our analysis. For a proof, we refer to $[16,59]$.

Lemma 2.2.2 On V_{h} the norms $\|\cdot\|_{L^{2}(\Omega)}$ and $\|\cdot\|_{h}$ are equivalent. Further, for $w, v \in V_{h}$ and $f \in X$, we have

$$
\begin{aligned}
\left|A_{h}(w, v)-A(w, v)\right| & \leq C h \sum_{K \in \mathcal{T}_{F}^{*}}\|\nabla v\|_{L^{2}(K)}\|\nabla w\|_{L^{2}(K)} \\
\left|(w, v)-(w, v)_{h}\right| & \leq C h^{2}\|w\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)} \\
\left|\left(\Pi_{h} \int, v\right)_{h}-(J, v)\right| & \leq C h^{2}\|f\|_{X}\|v\|_{H^{1}(\Omega)} .
\end{aligned}
$$

We denote \mathcal{X} to be the collection of all $v \in\left\{\psi \in L^{2}(\Omega): \psi=0\right.$ on $\left.\partial \Omega\right\} \cap$ $H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right)$ with $[v]=0$ and $[\beta \partial v / \partial \mathbf{n}]=0$ along Γ. For any $v \in \mathcal{X}$, we define

$$
f^{*}=\left\{\begin{array}{l}
-\nabla \cdot\left(\beta_{1} \nabla v\right) \text { in } \Omega_{1} \\
-\nabla \cdot\left(\beta_{2} \nabla v\right) \text { in } \Omega_{2} .
\end{array}\right.
$$

Clcarly $f^{*} \in L^{2}(\Omega)$. Then define $P_{h}: \mathcal{X} \rightarrow V_{h}$ by

$$
A_{h}\left(P_{h} v, v_{h}\right)=\left(f^{*}, v_{h}\right) \forall v_{h} \in V_{h} .
$$

Again

$$
\begin{aligned}
\left(f^{*}, v_{h}\right)= & -\int_{s_{1}} \nabla \cdot\left(\beta_{1} \nabla v\right) v_{h} d x-\int_{s_{2}} \nabla \cdot\left(\beta_{2} \nabla v\right) v_{h} d x \\
= & -\int_{\Gamma} \beta_{1} \frac{\partial v}{\partial \mathbf{n}} v_{l} d s+\int_{\Omega_{1}} \beta_{1} \nabla v \cdot \nabla v_{h} d x \\
& +\int_{\Gamma} \beta_{2} \frac{\partial v}{\partial \mathbf{n}} v_{h} d s+\int_{\Omega_{2}} \beta_{2} \nabla v \cdot \nabla v_{h} d x \\
= & \int_{\Omega_{1}} \beta_{1} \nabla v \cdot \nabla v_{h} d x+\int_{\Omega_{2}} \beta_{2} \nabla v \cdot \nabla v_{h} d x+\int_{\Gamma}\left[\beta \frac{\partial v}{\partial \mathbf{n}}\right] v_{h} d s \\
=: & A^{1}\left(v, v_{h}\right)+A^{2}\left(v, v_{h}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
A_{h}\left(P_{h} v, v_{h}\right)=A^{1}\left(v, v_{h}\right)+A^{2}\left(v, v_{h}\right) \forall v_{h} \in V_{h} . \tag{2.2.15}
\end{equation*}
$$

Regarding the approximation propertics of P_{h} operator defined by (2.2.15), we have the following result (cf. [2])

Lemma 2.2.3 Let P_{h} be defined by (2.2.15), then for any $v \in \mathcal{X}$ there exists a postive constant C independent of the mesh parameter h such that

$$
\begin{array}{r}
\left\|P_{h} v-v\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|P_{h} v-v\right\|_{H^{1}\left(\Omega_{2}\right)} \leq C h\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right), \\
\left\|P_{h} v-v\right\|_{L^{2}(\Omega)} \leq \operatorname{Ch}^{2}\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right) .
\end{array}
$$

Let $L_{h}: L^{2}(\Omega) \rightarrow V_{h}$ be the standard L^{2} projection defined by

$$
\begin{equation*}
\left(L_{h} v, \phi\right)=(v, \phi), \quad v \in L^{2}(\Omega) \quad \forall \phi \in V_{h} . \tag{2.2.16}
\end{equation*}
$$

A simple application of Lemma 2.2.3 and inverse inequality (2.2.12) leads to the following optimal crror estimates for L^{2} projection.

Lemma 2.2.4 Let L_{h} be defined by (2.0.16). Then, for $v \in \mathcal{X}$, there exists a positive constant C independent of the mesh parameter h such that

$$
\begin{aligned}
& \left\|v-L_{h} v\right\|_{L^{2}(\Omega)} \leq C h^{2}\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right) \\
& \left\|v-L_{h} v\right\|_{H^{1}\left(\Omega \Omega_{1}\right)}+\left\|v-L_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)} \leq C h\left(\|v\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) .
\end{aligned}
$$

2.3 Error Estimates for the Semidiscrete Problem

This section deals with the error analysis for the spatially discrete scheme. For $f \in X$ and $g=0$, the semidiscrete finite element method with quadrature is defined as: Find $u_{h}^{*}(t) \in V_{h}$ such that

$$
\begin{equation*}
\left(u_{h t}^{*}, v_{h}\right)_{h}+A_{h}\left(u_{h}^{*}, v_{h}\right)=\left(\Pi_{h} f, v_{h}\right)_{h} \quad \forall v_{h} \in V_{h}, \tag{2.3.1}
\end{equation*}
$$

with $u_{h}^{*}(0)=P_{h} u_{0}$.
In order to discuss the error analysis of finite element method with quadrature, we consider the following auxiliary approximation $u_{h} \in V_{h}$ given by

$$
\begin{equation*}
\left(u_{h t}, v_{h}\right)+A_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}, \quad t \in(0, T] . \tag{2.3.2}
\end{equation*}
$$

with $u_{h}(0)=P_{h} u_{0}$.
Now, define the error $e(t)=u(t)-u_{h}^{*}(t)$ as

$$
e(t)=u(t)-u_{h}^{*}(t)=u(t)-u_{h}(t)+u_{h}(t)-u_{h}^{*}(t)=e_{1}(t)+e_{2}(t),
$$

where $e_{1}(t)=u(t)-u_{h}(t), e_{2}(t)=u_{h}(t)-u_{h}^{*}(t)$.
For the quadrature free error $e_{1}(t)$, we have the following error estimates (sce, Theorems 3.1-3.2 in [21])

Theorem 2.3.1 Let u and u_{h} be the solutions of (2.1.1)-(2.1.3) and (2.3.2), respectively. Then, for $u_{0} \in H_{0}^{1}(\Omega), g=0$ and $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$, there is a positive constant C independent of h such that

$$
\begin{aligned}
& \left\|u-u_{h}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+h\left\|u-u_{h}\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \\
& \leq C h^{2}\left(\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\|J\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+\|u(T)\|_{X}^{2}+\|u\|_{L^{2}(0, T ; X)}^{2}\right)
\end{aligned}
$$

Further, splitting e_{1} in terms of standard ρ and θ as

$$
e_{1}=\left(u-P_{h} u\right)+\left(P_{h} u-u_{h}\right)=\rho+\theta,
$$

where $\rho=u-P_{h} u$ and $\theta=P_{h} u-u_{h}$, we note that (cf. [63])

$$
\begin{equation*}
\left(\theta_{t}, v_{h}\right)+A_{h}\left(\theta, v_{h}\right)=-\left(\rho_{t}, v_{h}\right) \tag{2.3.3}
\end{equation*}
$$

For $v_{h}=\theta_{t}$, we have

$$
\begin{aligned}
\left(\theta_{t}, \theta_{t}\right)+\frac{1}{2} \frac{d}{d t} A_{l}(\theta, \theta) & \leq\left\|\rho_{t}\right\|_{L^{2}(\Omega)}\left\|\theta_{t}\right\|_{L^{2}(\Omega)} \\
& \leq C_{\epsilon}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+\frac{\epsilon}{2}\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Integrating the above cquation form 0 to t and using Lemma 2.2.3, we obtain

$$
\begin{align*}
\int_{0}^{t}\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} d s+A_{h}(\theta, \theta) & \leq C \int_{0}^{t}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2} d s \\
& \leq C h^{4} \sum_{i=1}^{2} \int_{0}^{t}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s \tag{2.3.4}
\end{align*}
$$

Again inverse cstimate (2.2.12) leads to

$$
\begin{equation*}
\int_{0}^{t}\left\|\theta_{t}\right\|_{H^{1}(\Omega)}^{2} d s \leq C h^{-2} \int_{0}^{t}\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} d s \leq C h^{2} \sum_{\imath=1}^{2} \int_{0}^{t}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s \tag{2.3.5}
\end{equation*}
$$

Finally, Lemma 2.2.3 together with estimates (2.3.4)-(2.3.5) leads to the following $H^{1}\left(L^{2}\right)$ and $H^{1}\left(H^{1}\right)$ norms error estimate

Theorem 2.3.2 Let u and u_{h} be the solutions of (2.1.1)-(2.1.3) and (2.3.2), respectively. Then, for $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega), \quad g=0$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, there ss a posttive constant C independent of h such that

$$
\int_{0}^{t}\left\|e_{1}^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2} d s+h^{2} \sum_{i=1}^{2} \int_{0}^{t}\left\|e_{1}^{\prime}(t)\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} d s \leq C h^{4} \sum_{i=1}^{2} \int_{0}^{t}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s
$$

Remark 2.3.1 The optimal error estimates in $H^{1}\left(L^{2}\right)$ and $H^{1}\left(H^{1}\right)$ norms are derived for high regularity of the initual conditions. Under low regularity assumptions of the initzal data, solution $u \in H^{1}(0, T ; Y)$ and for whuch $P_{h} u_{t}$ is not well defined. The inttal data is assumed to be very regular, so that a solution exists and belongs to the necessary Sobolev spaces satisfying a priorl estrmate (2.2.1). To the best of our knowledge, convergence of finite element method $2 n H^{1}\left(L^{2}\right)$ and $H^{1}\left(H^{1}\right)$ norms for the parabolic interface problems have not been studied earlier.

Next, for the term e_{2}, we have

$$
\begin{aligned}
& C\left\|u_{h}-u_{h}^{*}\right\|_{H^{1}(\Omega)}^{2} \\
& \leq A_{h}\left(u_{h}-u_{h}^{*}, u_{h}-u_{h}^{*}\right)=A_{h}\left(u_{h}, u_{h}-u_{h}^{*}\right)-A_{h}\left(u_{h}^{*}, u_{h}-u_{h}^{*}\right) \\
&=\left(f, u_{h}-u_{h}^{*}\right)-\left(u_{h t}, u_{h}-u_{h}^{*}\right)+\left(u_{h t}^{*}, u_{h}-u_{h}^{*}\right)_{h}-\left(\Pi_{h} f, u_{h}-u_{h}^{*}\right)_{h} \\
&=\left\{\left(f, u_{h}-u_{h}^{*}\right)-\left(\Pi_{h} f, u_{h}-u_{h}^{*}\right)\right\}+\left\{\left(\Pi_{h} f, u_{h}-u_{h}^{*}\right)-\left(\Pi_{h} f, u_{h}-u_{h}^{*}\right)_{h}\right\} \\
&+\left\{\left(u_{h t}^{*}, u_{h}-u_{h}^{*}\right)_{h}-\left(u_{h t}^{*}, u_{h}-u_{h}^{*}\right)\right\}-\left(u_{h t}-u_{h t}^{*}, u_{h}-u_{h}^{*}\right) \\
&= I_{1}+I_{2}+I_{3}-\frac{1}{2} \frac{d}{d t}\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

Integrating from 0 to T and assuming $u_{h}(0)=u_{h}^{*}(0)$, we have

$$
\begin{equation*}
\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s \leq \int_{0}^{T}\left(I_{1}+I_{2}+I_{3}\right) d s \tag{2.3.6}
\end{equation*}
$$

By Lemma 2.2.1 and Cauchy-Schwarz inequality it follows that

$$
\begin{equation*}
\int_{0}^{T} I_{1} d s \leq C h^{2}\left(\int_{0}^{T}\|f\|_{X}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|e_{2}\right\|_{L^{2}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \tag{2.3.7}
\end{equation*}
$$

Applying Lemma 2.2.2 for I_{2}, we have

$$
\begin{equation*}
\int_{0}^{T} I_{2} d s \leq C h^{2}\left(\int_{0}^{T}\|f\|_{X}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \tag{2.3.8}
\end{equation*}
$$

Similarly for I_{3}, we have

$$
\int_{0}^{T} I_{3} d s \leq C h^{2}\left(\int_{0}^{T}\left\|u_{h t}^{*}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}
$$

Then apply inverse inequality (2.2.12) to have

$$
\begin{align*}
\int_{0}^{T} I_{3} d s & \leq C h\left(\int_{0}^{T}\left\|u_{h t}^{*}\right\|_{L^{2}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \\
& \leq C h\left(\int_{0}^{T}\|f\|_{X}^{2} d s+\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \tag{2.3.9}
\end{align*}
$$

Estimates (2.3.6)-(2.3.9) yiclds

$$
\begin{equation*}
\left(\int_{0}^{T}\left\|e_{2}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \leq C h\left(\|/\|_{L^{2}(0, T ; X)}^{2}+\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.3.10}
\end{equation*}
$$

This together with Theorem 2.3.1 leads to the following optimal $L^{2}\left(H^{1}\right)$ norm estimate.

Theorem 2.3.3 Let u and u_{h}^{*} be the solutions of (2.1.1)-(2.1.3) and (2.3.1), respectively. Then, for $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}(0, T ; X) . \quad g=0$ and $u_{0} \in H_{0}^{1}(\Omega)$, the following $L^{2}\left(H^{1}\right)$ norm error estimate holds

$$
\begin{aligned}
& \left\|^{\prime} u-u_{n}^{*}\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \\
& \leq C h\left(\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\|f\|_{L^{2}(0, T ; X)}^{2}+\|u(T)\|_{X}^{2}+\|u\|_{L^{2}(0, T ; X)}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Next, for L^{2}-norm error estimate, we shall use the elliptic duality argument. For this purpose, we now consider the following auxiliary problem: Find $w \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\Lambda\left(w, v^{\prime}\right)=\left(u_{h}-u_{h}^{*}, v\right) \quad \forall v \in I I_{0}^{1}(\Omega), \quad t \in(0, T] \tag{2.3.11}
\end{equation*}
$$

with $[w]=0 \&\left[\beta \frac{\partial w}{\partial n}\right]=0$ across the interface Γ. Then its finite element approximation with quadrature is defined to be a function $w_{h} \in V_{h}$ satisfying

$$
\begin{equation*}
A_{h}\left(w_{h}, v_{l}\right)=\left(u_{h}-u_{h}^{*} . v_{h}\right)_{h} \quad \forall v_{l} \in V_{h}, \quad t \in(0, T] . \tag{2.3.12}
\end{equation*}
$$

Then following the arguments of Deka ([20]), we have

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(w-w_{h}\right)\right\|_{L^{2}(\Omega)} \leq C h^{2}\left\|u_{h}-u_{h}^{*}\right\|_{H^{1}(\Omega)} . \tag{2.3.13}
\end{equation*}
$$

Again subtracting (2.3.1) from (2.3.2), wc obtain

$$
\begin{align*}
\left(u_{h t}-u_{h t}^{*}, v_{h}\right)_{h}+\Lambda_{h}\left(u_{h}-u_{h}^{*}, v_{h}\right)= & \left(J . v_{h}\right)-\left(\Pi_{h} J, v_{h}\right)_{h} \\
& +\left(u_{h t}, v_{h}\right)_{h}-\left(u_{h t}, v_{h}\right) . \tag{2.3.14}
\end{align*}
$$

Setting $v=u_{h}-u_{h}^{*}$ in (2.3.11), we have

$$
\begin{aligned}
\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}(\Omega)}^{2}= & A\left(w, u_{h}-u_{h}^{*}\right) \\
= & A\left(w-w_{h}, u_{h}-u_{h}^{*}\right)+A\left(w_{h}, u_{h}-u_{h}^{*}\right) \\
= & A\left(u-w_{h}, u_{h}-u_{h}^{*}\right)+A\left(u_{h}, w_{h}\right)-A\left(u_{h}^{*}, w_{h}\right) \\
= & A\left(w-w_{h}, u_{h}-u_{h}^{*}\right)+A\left(u_{h}, w_{h}\right)-A_{h}\left(u_{h}, w_{h}\right) \\
& +\Lambda_{h}\left(u_{h}, w_{h}\right)-\Lambda_{h}\left(u_{h}^{*}, w_{h}\right)+\Lambda_{h}\left(u_{h}^{*}, w_{h}\right)-\Lambda\left(u_{h}^{*}, w_{h}\right) .
\end{aligned}
$$

Further equation (2.3.14) leads to

$$
\begin{align*}
\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}(\Omega)}^{2}= & \left\{A\left(w-w_{h}, u_{h}-u_{h}^{*}\right)\right\}+\left\{A_{h}\left(u_{h}^{*}, w_{h}\right)-A\left(u_{h}^{*}, w_{h}\right)\right\} \\
& +\left\{A\left(u_{h}, w_{h}\right)-A_{h}\left(u_{h}, w_{h}\right)\right\} \\
& +\left(f, w_{h}\right)-\left(u_{h t}, w_{h}\right)+\left(u_{h t}^{*}, w_{h}\right)_{h}-\left(\Pi_{h} f, w_{h}\right)_{h} \\
= & \left\{A\left(w-w_{h}, u_{h}-u_{h}^{*}\right)\right\}+\left\{A_{h}\left(u_{h}^{*}, w_{h}\right)-A\left(u_{h}^{*}, w_{h}\right)\right\} \\
& +\left\{A\left(u_{h}, w_{h}\right)-A_{h}\left(u_{h}, w_{h}\right)\right\} \\
& \left.+\left\{\left(f, w_{h}\right)-\left(\Pi_{h} f, w_{h}\right)\right)_{h}\right\}+\left\{\left(u_{h t}, w_{h}\right)_{h}-\left(u_{h t}, w_{h}\right)\right\} \\
& -\left(u_{h t}-u_{h t}^{*}, w_{h}\right)_{h} \\
=: & J_{1}+J_{2}+J_{3}+J_{4}+J_{5}-\left(u_{h t}-u_{h t}^{*}, w_{h}\right)_{h} . \tag{2.3.15}
\end{align*}
$$

Differentiating (2.3.12) with respect to t, we obtain

$$
A_{h}\left(w_{h t}, v_{h}\right)=\left(u_{h t}-u_{h t}^{*}, v_{h}\right)_{h} .
$$

Thus, we have

$$
\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}, w_{h}\right)=A_{h}\left(w_{h t}, w_{h}\right)=\left(u_{h t}-u_{h t}^{*}, w_{h}\right)_{h}
$$

and hence, integrating (2.3.15) from 0 to T we obtain

$$
\begin{equation*}
\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2} \leq C \int_{0}^{T}\left(\left|J_{1}\right|+\left|J_{2}\right|+\left|J_{3}\right|+\left|J_{4}\right|+\left|J_{5}\right|\right) d s \tag{2.3.16}
\end{equation*}
$$

Here, we have used $A_{h}\left(w_{h}(0), w_{h}(0)\right)=0$. Now, we cstimate each term separatcly. For the term J_{1}, use (2.3.10) and (2.3.13) to have

$$
\begin{align*}
\int_{0}^{T}\left|J_{1}\right| d s & \leq C\left(\int_{0}^{T}\left\|w-w_{h}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|u_{h}-u_{h}^{*}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \\
& \leq C h^{2}\left\|e_{2}\right\|_{\left.L^{2}\left(0, T ; L^{2}(\Omega)\right)\right)}\left(\|f\|_{L^{2}(0, T ; X)}^{2}+\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.3.17}
\end{align*}
$$

Using Lemma 2.2.2, cstimate (2.3.13) and Theorem 2.3.3, we have

$$
\begin{align*}
\int_{0}^{T}\left|J_{2}\right| d s \leq & C h\left(\int_{0}^{T}\left\|u_{h i}^{*}\right\|_{H^{1}(\Omega \Gamma)}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|w_{h}\right\|_{H^{1}\left(\Omega \Gamma_{\Gamma}^{*}\right)}^{2} d s\right)^{\frac{1}{2}} \\
\leq & \left.C h\left(\left\|u_{h}^{*}-u\right\|_{\left.L^{2}\left(0, T ; H^{1}(\Omega)\right)\right)}+\|u\|_{L^{2}\left(0, T ; H^{1}(\Omega+\Gamma\right.}^{*}\right)\right) \\
& \times\left(\left\|w_{h}-w\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)}+\|w\|_{L^{2}\left(0, T ; H^{1}\left(\Omega_{\Gamma}^{*}\right)\right)}\right) \\
\leq & C h^{2}\left(\|f\|_{L^{2}(0, T ; X)}^{2}+\left\|u_{0}\right\|_{\left.H^{1}(\Omega)\right)}^{2}+\|u\|_{L^{2}(0, T ; X)}^{2}\right)^{\frac{1}{2}} \\
& \times\left\|e_{2}\right\|_{\left.L^{2}\left(0, T ; L^{2}(\Omega)\right)\right) .} \tag{2.3.18}
\end{align*}
$$

Here, we have used the fact that (cf. Deka and Sinha [59], page 260)

$$
\|u\|_{H^{1}\left(\Omega \mathbf{l}_{\mathbf{T}}^{*}\right)} \leq C h^{\frac{1}{2}}\|u\|_{X} . \quad\|w\|_{H^{1}\left(\Omega \Omega_{\mathbf{F}}\right)} \leq C h^{\frac{1}{2}}\|w\|_{X} \leq C h^{\frac{1}{2}}\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}(\Omega)} .
$$

Similarly, for the term J_{3}, we have

$$
\begin{align*}
\int_{0}^{T}\left|J_{3}\right| d s \leq & C h^{2}\left(\|f\|_{L^{2}(0, T ; X)}^{2}+\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\|u\|_{L^{2}(0, T ; X)}^{2}\right)^{\frac{1}{2}} \\
& \times\left\|e_{2}\right\|_{\left.L^{2}\left(0, T ; L^{2}(\Omega)\right)\right)} . \tag{2.3.19}
\end{align*}
$$

Arguing as in I_{1} and I_{2}, we obtain

$$
\begin{align*}
\int_{0}^{T}\left|J_{4}\right| d s & \leq C h^{2}\|f\|_{L^{2}(0, T ; X)}\left\|w_{h}\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \\
& \leq C h^{2}\left\|\int\right\|_{L^{2}(0, T ; X)}\left\|e_{2}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} . \tag{2.3.20}
\end{align*}
$$

Herc, we have used the fact that $\left\|w_{h}\right\|_{H^{1}(\Omega)} \leq C\left\|u_{h}-u_{h}^{*}\right\|_{L^{2}(\Omega)}$.
For the term J_{5}, we again recall Lemma 2.2.2 along with Theorem 2.3.2 to have

$$
\begin{align*}
\int_{0}^{T}\left|J_{5}\right| d s & \leq C h^{2}\left(\int_{0}^{T}\left\|u_{h t}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|w_{h}\right\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}} \\
& \leq C h^{2}\left(\sum_{i=1}^{2} \int_{0}^{T}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s\right)^{\frac{1}{2}}\left\|e_{2}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} . \tag{2.3.21}
\end{align*}
$$

Then combinc (2.3.16)-(2.3.21) to have

$$
\begin{aligned}
&\left\|e_{2}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C h^{2}\left(\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\|f\|_{L^{2}(0, T: X)}^{2}\right. \\
&\left.+\|u\|_{L^{2}(0, T ; X)}^{2}+\sum_{i=1}^{2}\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega_{2}\right)\right)}^{2}\right)^{\frac{1}{2}},
\end{aligned}
$$

which together with Theorem 2.3.1 leads to the following optimal crror estimate
Theorem 2.3.4 Let u and u_{h}^{*} be the solutions of (2.1.1)-(2.1.3) and (2.3.1), respectively. Then, for $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega), g=0$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}(0 . T ; X)$, there is a positive constant C independent of h such that

$$
\begin{aligned}
\left\|u-u_{h}^{*}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C h^{2}(& \int_{0}^{T}\|f\|_{X}^{2} d s+\|u(T)\|_{X}^{2}+\int_{0}^{T}\|u\|_{X}^{2} d s \\
& \left.+\sum_{i=1}^{2} \int_{0}^{T}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s\right)^{\frac{1}{2}} \cdot \square
\end{aligned}
$$

2.4 Error Estimate for Fully Discrete case

In this section, we give error estimates for the fully discrete scheme with quadrature. Optimal order error estimate in $L^{2}\left(L^{2}\right)$ norm is derived.

In order to discretize (2.3.1) in time. we first divide the interval $[0, T]$ into M equally spaced subintervals by the following points

$$
0=t^{0} \leq t^{1} \leq \ldots \leq t^{M}=T
$$

with $t^{n}=n k, k=T / M$ the time step. Let $I_{n}=\left(t_{n-1}, t_{n}\right]$ be the n -th sub interval. We shall use the finite dimensional space

$$
S_{k h}=\left\{\phi:[0 . T] \rightarrow V_{h}:\left.\phi\right|_{I_{n}} \in V_{h} \text { is constant in timc }\right\} .
$$

For $\phi \in S_{k h}$, we denote by ϕ^{n} the value of ϕ at t_{n} and write $S_{k l l}^{n}$ for the restriction to I_{n} of the functions in $S_{k h}$. Now we introduce the backward difference quotient

$$
\Delta_{k} \phi^{n}=\frac{\phi^{n}-\phi^{n-1}}{k}
$$

for a given sequence $\left\{\phi^{n}\right\}_{n=0}^{M} \subset L^{2}(\Omega)$. For a given Banach space \mathcal{B} and some function $\xi \in L^{2}(0, T ; \mathcal{B})$, we write

$$
\begin{equation*}
\bar{\xi}^{n}=k^{-1} \int_{I_{n}} \xi(x, t) d t . \tag{2.4.1}
\end{equation*}
$$

Then, we consider the following fully discrete Galerkin method with quadrature: For $1 \leq n \leq M$, find $w_{h}^{n} \in S_{k h}$ such that

$$
\begin{equation*}
\left(\Delta_{k} w_{h}^{n}, v_{h}\right)_{h}+A_{h}\left(w_{h}^{n}, v_{h}\right)=\left(\bar{f}^{n}, v_{h}\right) \quad \forall v_{h} \in S_{k h}^{n}, \tag{2.4.2}
\end{equation*}
$$

with $w_{h}^{0}=L_{h} u_{0}$.
Before procecding further, we introduce the following auxiliary discrete problem: For $n=M, M-1, \ldots, 1$ find $z_{h}^{n-1} \in V_{h}$ such that

$$
\begin{equation*}
\left(-\Delta_{k} z_{h}^{n}, v_{h}\right)_{h}+A_{h}\left(z_{h}^{n-1}, v_{h}\right)=\left(\bar{u}_{I}^{n}-w_{h}^{n}, v_{h}\right)_{h} \quad \forall v_{h} \in V_{h} \tag{2.4.3}
\end{equation*}
$$

with $z_{h}^{M}=0$ and

$$
\bar{u}_{I}^{n}=k^{-1} \int_{I_{n}} \Pi_{h} u d t
$$

We shall need the following stability result for z_{h}^{n-1} satisfying (2.4.3).

Lemma 2.4.1 For z_{h}^{n-1}, we have

$$
\left\|z_{h}^{0}\right\|_{H^{1}(\Omega)}^{2}+\sum_{n=1}^{M} k\left\|\Delta_{k} z_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq \sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}
$$

Proof. The lemma can be proved by setting $v_{h}=-k \Delta_{k} z_{h}^{n}$ in (2.4.3) and applying the argument of [58]. We omit the details.

We need the following interface approximation estimate for z_{h}^{n-1}, which is crucial to study the L^{2}-norm error estimate.

Lemma 2.4.2 For z_{h}^{n-1}, we have

$$
\sum_{n=1}^{M} k\left\|z_{h}^{n-1}\right\|_{H^{1}\left(\Omega \Omega_{\mathrm{T}}^{*}\right)}^{2} \leq C h\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right) .
$$

Proof. Let $z^{n-1} \in X \cap H_{0}^{1}(\Omega)$ be the solution of the following auxiliary problem

$$
\begin{equation*}
A\left(z^{n-1}, v\right)=\left(\bar{u}_{I}^{n}-w_{h}^{n}+\Delta_{k} z_{h}^{n}, v\right) \quad \forall v \in H_{0}^{1}(\Omega) . \tag{2.4.4}
\end{equation*}
$$

Then applying elliptic regularity estimate (cf. [15]), we have

$$
\begin{equation*}
\left\|z^{n-1}\right\|_{X} \leq C\left(\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}+\left\|\Delta_{k} z_{h}^{n}\right\|_{L^{2}(\Omega)}\right) . \tag{2.4.5}
\end{equation*}
$$

We know from (2.4.3) that z_{h}^{n-1} is the finite element approximation of z^{n-1} with quadrature. Then arguing as in Theorem 3.1 of [20], we have

$$
\begin{aligned}
\left\|\Pi_{h} z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)}^{2} & \leq C h\left\|z^{n-1}\right\|_{X}\left\|_{H_{h}} z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)} \\
& +C h^{2}\left\|\bar{u}_{I}^{n}-w_{h}^{n}+\Delta_{k} z_{h}^{n}\right\|_{H^{1}(\Omega)}\left\|\Pi_{h} z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)} \\
& \leq C h\left\|z^{n-1}\right\|_{X}\left\|_{h} z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)} \\
& +C h\left\|\bar{u}_{I}^{n}-w_{h}^{n}+\Delta_{k} z_{h}^{n}\right\|_{L^{2}(\Omega)}\left\|\Pi_{h} z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)} .
\end{aligned}
$$

Then apply Lemma 2.2.1 and (2.4.5) to have

$$
\left\|z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)} \leq C h\left(\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}+\left\|\Delta_{k} z_{h}^{n}\right\|_{L^{2}(\Omega)}\right) .
$$

Summing over n from $n=1$ to $n=M$ and applying Lemma 2.4.1, we obtain

$$
\begin{equation*}
\sum_{n=1}^{M} k\left\|z^{n-1}-z_{h}^{n-1}\right\|_{H^{1}(\Omega)}^{2} \leq C h^{2} \sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \tag{2.4.6}
\end{equation*}
$$

Again using the fact $\left\|z^{n-1}\right\|_{H^{1}\left(\Omega_{\mathbf{1}}^{*}\right)} \leq C h^{\frac{1}{2}}\left\|z^{n-1}\right\|_{X}$ and (2.4.6), we have

$$
\begin{align*}
\sum_{n=1}^{M} k\left\|z_{h}^{n-1}\right\|_{H^{1}\left(s_{\Gamma}^{*}\right)}^{2} & \leq C h^{2} \sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}+C h \sum_{n=1}^{M} k\left\|z^{n-1}\right\|_{X}^{2} \\
& \leq C h \sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \tag{2.4.7}
\end{align*}
$$

In the last inequality we have used (2.4.5) and Lemma 2.4.1.
Next, we introduce the interpolant $P_{k} \in S_{k h}$ of u defined by

$$
\bar{P}_{k}^{n}=\frac{1}{k} \int_{I_{n}} P_{h} u d s
$$

Then, for $n=1,2 \ldots, M$ it follows from (2.2.15) that

$$
\begin{equation*}
A_{h}\left(z_{h}^{n-1}, \bar{P}_{k}^{n}\right)=A\left(z_{h}^{n-1}, \bar{u}^{n}\right) \tag{2.4.8}
\end{equation*}
$$

By setting $v_{h}=k\left(\bar{P}_{k}^{n}-w_{h}^{n}\right)$ in (2.4.3), we obtain

$$
\begin{aligned}
C k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq & k\left(\bar{u}_{I}^{n}-w_{h}^{n}, \bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right)_{h}+k\left(-\Delta_{k} z_{h}^{n}, \bar{P}_{k}^{n}-w_{h}^{n}\right)_{h} \\
& +k A_{h}\left(z_{h}^{n-1}, \bar{P}_{k}^{n}\right)-k A_{h}\left(z_{h}^{n-1}, w_{h}^{n}\right)
\end{aligned}
$$

which together with (2.4.8) yields

$$
\begin{align*}
C k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq & k\left(\bar{u}_{I}^{n}-w_{h}^{n}, \bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right)_{h}+k\left(-\Delta_{k} z_{h}^{n}, \bar{P}_{k}^{n}-w_{h}^{n}\right)_{h} \\
& +k A\left(z_{h}^{n-1}, \bar{u}^{n}\right)-k A_{h}\left(z_{h}^{n-1}, w_{h}^{n}\right) . \tag{2.4.9}
\end{align*}
$$

Again, note that for all $v \in H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\left(\Delta_{k} u^{n}, v\right)+\Lambda\left(\bar{u}^{n}, v\right)=\left(\bar{f}^{n}, v\right), \quad 1 \leq n \leq M \tag{2.4.10}
\end{equation*}
$$

Then it is casy to verify from the cstimates (2.4.2) and (2.4.10) that

$$
\begin{align*}
A\left(z_{h}^{n-1}, \bar{u}^{n}\right)-A_{h}\left(z_{h}^{n-1}, w_{h}^{n}\right)= & \left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)_{\tilde{h}}-\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right) \\
& +\left(-\Delta_{k}\left(u^{n}-w_{h}^{n}\right), z_{h}^{n-1}\right)_{\tilde{h}} \tag{2.4.11}
\end{align*}
$$

Since the solutions concerned are only on $I^{1}(\Omega)$ globally, it is not meaningful to use the definition (2.2.13) for evaluation of the term $\left(v, \phi_{h}\right)_{h}$ for $v \in X$ and $\phi_{h} \in V_{h}$. Therefore,
notations $\left(v, \phi_{h}\right)_{\bar{h}}$ and $\left(\phi_{h}, v\right)_{\bar{h}}$ have been introduced and are evaluated by the following formulac

$$
\left(v . \phi_{h}\right)_{\tilde{h}}=\left(L_{h} v, \phi_{h}\right)_{h} \&\left(\phi_{h}, v\right)_{\tilde{h}}=\left(\phi_{h}, L_{h} v\right)_{h} .
$$

Then, for any $v \in I_{0}^{1}(\Omega)$ and $\phi_{h} \in V_{h}$, it is easy to verify the following facts

$$
\begin{aligned}
& \left(v_{h}, \phi_{h}\right)_{\tilde{h}}=\left(v_{h}, \phi_{h}\right)_{h}, \quad v_{h} \in V_{h} \&\left(v, \phi_{h}\right)_{\tilde{h}}=\left(\phi_{h}, v\right)_{\tilde{h}}, \\
& \left(\phi+\psi, \phi_{h}\right)_{\tilde{h}}=\left(\phi, \phi_{h}\right)_{\tilde{h}}+\left(\psi, \phi_{h}\right)_{\tilde{h}} . \phi, \psi \in H_{0}^{1}(\Omega), \\
& \left|\left(v, \phi_{h}\right)_{\tilde{h}}\right| \leq C\|v\|_{L^{2}(\Omega)}\left\|\phi_{h}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

and

$$
\begin{align*}
\left|\left(v, \phi_{h}\right)_{\bar{h}}-\left(v, \phi_{h}\right)\right| & =\left|\left(L_{h} v, \phi_{h}\right)_{h}-\left(L_{h} v, \phi_{h}\right)\right| \\
& \leq C h^{2}\left\|L_{h} v\right\|_{H^{1}(\Omega)}\left\|\phi_{h}\right\|_{H^{1}(\Omega)} \\
& \leq C h^{2}\|v\|_{H^{1}(\Omega)}\left\|\phi_{h}\right\|_{H^{1}(\Omega)} . \tag{2.4.12}
\end{align*}
$$

Now, estimate (2.4.11) together with (2.4.9) leads to

$$
\begin{align*}
C k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq & k\left(\bar{u}_{I}^{n}-w_{h}^{n}, \bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right)_{h}+k\left(-\Delta_{k} z_{h}^{n}, \bar{P}_{k}^{n}-w_{h}^{n}\right)_{\tilde{h}} \\
& +k\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)_{\tilde{h}}-k\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right) \\
& +k\left(-\Delta_{k}\left(u^{n}-w_{h}^{n}\right), z_{h}^{n-1}\right)_{\tilde{h}} \\
\leq & k\left(\bar{u}_{I}^{n}-w_{h}^{n}, \bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right)_{h}+k\left(-\Delta_{k} z_{h}^{n}, \bar{P}_{k}^{n}-u^{n}\right)_{\tilde{h}} \\
& +k\left(-\Delta_{k} z_{h}^{n}, u^{n}-w_{h}^{n}\right)_{\tilde{h}}+k\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)_{\bar{h}} \\
& -k\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)+k\left(-\Delta_{k}\left(u^{n}-w_{h}^{n}\right), z_{h}^{n-1}\right)_{\tilde{h}} . \tag{2.4.13}
\end{align*}
$$

Summing over n, we have

$$
\begin{align*}
& C \sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2} \\
& \leq \sum_{n=1}^{M} k\left(\bar{u}_{I}^{n}-w_{h}^{n}, \bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right)_{h}+\sum_{n=1}^{M} k\left(-\Delta_{k} z_{h}^{n}, \bar{P}_{k}^{n}-u^{n}\right)_{\tilde{h}} \\
& \quad+\sum_{n=1}^{M} k\left\{\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)_{\tilde{h}}-\left(\Delta_{k} u^{n}, z_{h}^{n-1}\right)\right\}+\sum_{n=1}^{M} k\left\{\left(-\Delta_{k} z_{h}^{n}, u^{n}-w_{h}^{n}\right)_{\tilde{h}}\right. \\
& \left.\quad \quad+\left(-\Delta_{k}\left(u^{n}-w_{h}^{n}\right), z_{h}^{n-1}\right)_{\bar{h}}\right\} \\
& \quad=I V_{1}+I V_{2}+I V_{3}+I V_{4} . \tag{2.4.14}
\end{align*}
$$

Before estimating the four tems appearing in (2.4.14) we first rewrite $I V_{4}$. Using the fact that $z_{h}^{M}=0$ and applying the identity

$$
\sum_{n=1}^{M}\left(a_{n}-a_{n-1}\right) b_{n}=a_{M} b_{M}-a_{0} b_{0}-\sum_{n=1}^{M} a_{n-1}\left(b_{n}-b_{n-1}\right)
$$

to $I V_{4}$ with $a_{n}=z_{h}^{n}$ and $b_{n}=u^{n}-w_{h}^{n}$. we obtain

$$
I V_{4}=\left(z_{h}^{0}, u_{0}-w_{h}(0)\right)_{\tilde{h}}=\left(z_{h}^{0}, u_{0}-L_{h} u_{0}\right)_{\tilde{h}} \leq C\left\|z_{h}^{0}\right\|_{L^{2}(\Omega)}\left\|u_{0}-L_{h} u_{0}\right\|_{L^{2}(\Omega)} .
$$

Then Lemma 2.2.4 and Lemma 2.4.1 leads to

$$
\begin{equation*}
\left|I V_{4}\right| \leq C h^{2}\left\|u_{0}\right\|_{H^{2}(\Omega)}\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.4.15}
\end{equation*}
$$

Again it is easy to verify from Lemma 2.2.1 and Lemma 2.2.3 that

$$
\begin{equation*}
\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right\|_{H^{m}(\Omega)}^{2} \leq C h^{4-2 m}\|u\|_{L^{2}(0, T, X)}^{2}, \quad m=0,1 . \tag{2.4.16}
\end{equation*}
$$

Applying (2.4.16) for $I V_{1}$, we get

$$
\begin{align*}
\left|I V_{1}\right| & \leq C\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-\bar{P}_{k}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \\
& \leq C h^{2}\|u\|_{L^{2}(0, T, X)}\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.4.17}
\end{align*}
$$

Similarly, for $I V_{2}$, use of (2.4.16) and Lemma 2.4.1 leads to

$$
\begin{align*}
\left|I V_{2}\right| \leq & C\left(\sum_{n=1}^{M} k\left\|\Delta_{k} z_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \\
& \times\left[\left(\sum_{n=1}^{M} h\left\|\bar{P}_{k}^{n}-\bar{u}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)+\left(\sum_{n=1}^{M} h\left\|\bar{u}^{n}-u^{n}\right\|_{L^{2}(\Omega)}^{2}\right)\right]^{\frac{1}{2}} \\
\leq & C\left(k+h^{2}\right)\left(\|u\|_{L^{2}(0, T, X)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T, L^{2}(\Omega)\right)}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{M} k\left\|\Delta_{k} z_{l}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \\
\leq & C\left(k+h^{2}\right)\left(\|u\|_{L^{2}(0, T, X)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T, L^{2}(\Omega)\right)}^{2}\right)^{\frac{1}{2}} \\
& \times\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} . \tag{2.4.18}
\end{align*}
$$

Finally, for the term $I V_{3}$, we use (2.4.12) to have

$$
\begin{equation*}
\left|I V_{3}\right| \leq C h^{2} \sum_{n=1}^{M} k\left\|\Delta_{k} u^{n}\right\|_{H^{1}(\Omega)}\left\|z_{h}^{n-1}\right\|_{H^{1}(\Omega)} \tag{2.4.19}
\end{equation*}
$$

Again, it is easy to see that

$$
\sum_{n=1}^{M} k\left\|\Delta_{k} u^{n}\right\|_{H^{1}(\Omega)}^{2} \leq C\left(\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega_{1}\right)\right)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega_{2}\right)\right)}^{2}\right)
$$

Then apply Lemma 2.4 .2 and cstimate (2.4.19) to have

$$
\begin{align*}
\left|I V_{3}\right| \leq & C h^{2}\left(\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega_{1}\right)\right)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega \Omega_{2}\right)\right)}^{2}\right)^{\frac{1}{2}} \\
& \times\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.4.20}
\end{align*}
$$

By a simple calculation it follows that

$$
\begin{align*}
\left\|u-w_{h}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq & \left\|u-\bar{u}^{n}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+\left\|\bar{u}^{n}-\bar{u}_{I}^{n}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \\
& +\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \\
\leq & C k\left\|u_{t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+C h^{2}\|u\|_{L^{2}(0, T ; X)} \\
& +\left(\sum_{n=1}^{M} k\left\|\bar{u}_{I}^{n}-w_{h}^{n}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{2.4.21}
\end{align*}
$$

Then, cstimates (2.4.14)-(2.4.15) and (2.4.17)-(2.4.21) yiclds the following convergence result

Theorem 2.4.1 Let u and w_{h} be the solutions of the problem (2.1.1)-(2.1.3) and (2.4.2), respectively. Then, for $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right), g=0$ and $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$, the following $L^{2}\left(L^{2}\right)$ norm estimate holds

$$
\left\|u-w_{h}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C\left(k+h^{2}\right) \tilde{B}\left(f, u_{0}, u, u_{t}\right)
$$

where $\tilde{B}\left(f, u_{0}, u, u_{t}\right)$ is a function of f, u_{0}, u, u_{t}.

Chapter 3

Finite Element Method with Quadrature for Parabolic Interface Problems: $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ Error Estimates

The purpose of this chapter is to establish some new a priori pointwise-in-time crror estimates in finite element method with quadrature for parabolic interface problems. Due to low global regularity of the solutions, the error analysis of the standard finite element methods for parabolic problems is difficult to adopt for parabolic interface problems. In this work, we fill a theoretical gap between standard error analysis technique of finite element method for non interface problems and parabolic interface problems. Optimal $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms error estimates have been derived for the semidiscrete case under practical regularity assumptions of the true solution for fitted finite clement method with straight interface triangles. Further, the fully discrete backward Euler scheme is also considered and optimal $L^{\infty}\left(L^{2}\right)$ norm error estimate is cstablished. The interface is assumed to be smooth for our purpose.

3.1 Introduction

Let Ω be a convex polygonal domain in \mathbb{R}^{2} with boundary $\partial \Omega$ and $\Omega_{1} \subset \Omega$ be an open domain with C^{2} smooth boundary $\Gamma=\partial \Omega_{1}$. Let $\Omega_{2}=\Omega \backslash \Omega_{1}$ be an another open domain contained in Ω with boundary $\Gamma \cup \partial \Omega$ (see. Figure 1.1). In $\Omega=\Omega_{1} \cup \Gamma \cup \Omega_{2}$, we consider the following parabolic interface problem

$$
\begin{equation*}
u_{t}-\nabla \cdot(\beta(x) \nabla u)=f(x, t) \quad \text { in } \Omega \times(0, T] \tag{3.1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0} \text { in } \Omega ; \quad u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \tag{3.1.2}
\end{equation*}
$$

and jump conditions on the interface

$$
\begin{equation*}
[u]=0, \quad\left[\beta \frac{\partial u}{\partial \mathbf{n}}\right]=g(x, t) \quad \text { along } \Gamma \times(0, T], \tag{3.1.3}
\end{equation*}
$$

where the symbol $[v]$ is a jump of a quantity v across the interface Γ and \mathbf{n} is the unit outward normal to the boundary $\partial \Omega_{1}$. The coefficient function β is positive and pieccwise constant, i. e.

$$
\beta(x)=\beta_{i} \quad \text { for } x \in \Omega_{i}, \quad i=1,2 .
$$

Here, $f=f(x, t)$ and $g=g(x, t)$ are real valued functions defined in $\Omega \times(0, T]$ and $\Gamma \times(0 . T]$, respectively. Throughout this chapter, we assume $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$.

Although a good number of articles is devoted to the convergence of finite element solution of parabolic intcrface problems in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms, but pointwisc-intime crror analysis is mostly missing. More recently, Deka and Sinha ([27]) have studicd the pointwisc-in-time convergence in finite element method for parabolic interface problems. They have shown optimal error cstimates in $L^{\infty}\left(H^{1}\right)$ and $L^{\infty}\left(L^{2}\right)$ norms under the assumption that grid line exactly follow the actual interface. This may causes some technical difficulties in practice for the evaluation of the integrals over those curved elements near the interface. Further, it may be computationally inconvenient to fit the mesh to an arbitrary interface exactly, a finite element discretization based on previous chapter is considered. In this work, we are able to show that the standard error analysis technique of finite element method can be extended to parabolic interface problems. Optimal order pointwisc-in-time crror cstimates in the L^{2} and H^{1} norms are established for
the semidiscrete scheme. In addition, a fully discrete method based on backward Euler time-stepping scheme is analyzed and related optimal pointwisc-in-time crror bounds are derived. To the best of our knowledge, optimal pointwise-in-time crror estimates for a finite element discretization based on [15] have not been established carlier for the parabolic interface problem. The achieved estimates are analogous to the case with a regular solution, however, due to low regularity, the proof requires a carcful technical work coupled with a approximation result for the lincar interpolant. Other technical tools used in this work are Sobolev embedding incquality, approximation properties for elliptic projection, duality arguments and some known results on clliptic interface problems.

A brief outline of this chapter chapter is as follows. In Section 3.2, we introduce some notation, recall some basic results from the literature and prove some approximation properties related to the auxiliary projection used in our analysis. While Section 3.3 is devoted to the error analysis for the semidiscrete finite element approximation, error estimates for the fully discrete backward Euler time stepping scheme are derived in Scction 3.4.

3.2 Notations and Preliminaries

In order to introduce the weak formulation of the problem, we now recall the local bilincar form $A^{l}(.,):. H^{1}\left(\Omega_{l}\right) \times H^{1}\left(\Omega_{l}\right) \rightarrow \mathbb{R}$ by

$$
A^{l}(w, v)=\int_{\Omega_{l}} \beta_{l} \nabla w \cdot \nabla v d x . \quad l=1,2 .
$$

Then the global bilinear map $A(\cdot, \cdot): H_{0}^{1}(\Omega) \times I_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is defined by

$$
\begin{align*}
A(w, v) & =\int_{\Omega 2} \beta(x) \nabla w \cdot \nabla v d x \\
& =A^{1}(w, v)+A^{2}(w, v) \forall w, v \in H_{0}^{1}(\Omega) . \tag{3.2.1}
\end{align*}
$$

The weak form for the problem (3.1.1)-(3.1.3) is defined as follows: Find $u:(0, T] \rightarrow$ $H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\left(u_{t}, v\right)+A(u, v)=(f, v)+\langle g, v\rangle_{\Gamma} \quad \forall v \in H_{0}^{1}(\Omega), \text { a.e. } t \in(0, T] \tag{3.2.2}
\end{equation*}
$$

with $u(x, 0)=u_{0}(x)$. Here, (\cdot, \cdot) and $\langle\cdot, \cdot\rangle_{\Gamma}$ are used to denote the inner products of $L^{2}(\Omega)$ and $L^{2}(\Gamma)$ spaces, respectively.

Figure 3.1: Interface triangles K and S along with interface Γ

Regarding the regularity for the solution of the interface problem (3.1.1)-(3.1.3), we have borrowed the following result from previous chapter.

Theorem 3.2.1 Let $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), g \in H^{2}\left(0, T ; H^{2}(\Gamma)\right)$ and $u_{0} \in I^{3}(\Omega) \cap I_{0}^{1}(\Omega)$. Then solution $u \in L^{2}\left(0, T ; X \cap I_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega) \cap I^{2}\left(\Omega_{1}\right) \cap\right.$ $H^{2}\left(\Omega_{2}\right)$).

In this chapter, the convergence analysis has bcen carricd out for $g(x, t) \neq 0$ on $\Gamma \times[0, T)$ and accordingly we nced some relcvant notations. Further, notations $A_{h}(\cdot, \cdot),(\cdot, \cdot)_{h}$ and finite dimensional space V_{h} are with same meaning as in previous chapter.

Let X^{*} be the collection of all $v \in L^{2}(\Omega)$ with the propenty that $v \in I^{2}\left(\Omega_{1}\right) \cap$ $H^{2}\left(\Omega_{2}\right) \cap\{\psi: \psi=0$ on $\partial \Omega\}$ and $[v]=0$ along Γ. Since Γ is of class C^{2}, thus $v_{2}=\left.v\right|_{s_{2}}, \quad \imath=1,2$ can be extended to $\tilde{v}_{\imath} \in H^{2}(\Omega)$ such that

$$
\left\|\tilde{v}_{\imath}\right\|_{H^{2}(\Omega)} \leq C\left\|v_{\imath}\right\|_{H^{2}\left(\Omega_{2}\right)}
$$

For the existence of such extensions, we refer to Stcin [62]. Further, we have a C^{2} function ϕ in $[C, B]$ (sec, Figure 3.1) such that (c.f. [29])

$$
|\phi(x)| \leq C h^{2}
$$

and hence

$$
\operatorname{mcas}\left(K_{2}^{\prime}\right)=\int_{C}^{B}|\phi(x)| d x \leq C h^{2} \int_{C}^{B} d x \leq C h^{3} .
$$

Let $\Pi_{h}: C(\bar{\Omega}) \rightarrow V_{h}$ be the Lagrange interpolation operator corresponding to the space V_{h}. Then, for $K \in \mathcal{T}_{h}$ and $v \in X^{\star}$, we now define

$$
v_{I}=\left\{\begin{array}{l}
\Pi_{h} \tilde{v}_{1} \text { if } K \subseteq \Omega_{1}^{h} \tag{3.2.3}\\
\Pi_{h} \tilde{v}_{2} \text { if } K \subseteq \Omega_{2}^{h} .
\end{array}\right.
$$

Following the lines of proof for Lemma 2.2.3 in [2], it is possible to obtain the following optimal error bounds for linear interpolant v_{I} in X^{\star}. We include the proof for the completencss of this work.

Lemma 3.2.1 For any $v \in X^{*}$, we have

$$
\left\|v-v_{I}\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|v-v_{I}\right\|_{H^{1}\left(\Omega_{2}\right)} \leq C h\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) .
$$

Proof. For H^{1} norm estimate, we have

$$
\begin{align*}
& \left\|v-v_{I}\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|v-v_{I}\right\|_{H^{1}\left(\Omega_{2}\right)} \\
& \leq \sum_{\left.K \in \mathcal{T}_{h}\right) \mathcal{T}_{F}^{*}}\left\|v-v_{I}\right\|_{H^{1}(K)}+\sum_{K \in \mathcal{T}_{F}^{*}}\left\{\left\|v-v_{I}\right\|_{H^{1}\left(K_{1}\right)}+\left\|v-v_{I}\right\|_{H^{1}\left(K_{2}\right)}\right\} \\
& \leq C h\left\{\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right\} \\
& \quad+\sum_{K \in \mathcal{T}_{F}^{*}}\left\{\left\|v-v_{I}\right\|_{H^{1}\left(K_{1}\right)}+\left\|v-v_{I}\right\|_{H^{1}\left(K_{2}\right)}\right\} . \tag{3.2.4}
\end{align*}
$$

Here, $K_{1}=K \cap \Omega_{1}$ and $K_{2}=K \cap \Omega_{2}$. Again, for any $K^{-} \in \mathcal{T}_{h}$ either $K \subseteq \Omega_{1}^{h}$ or $K \subseteq \Omega_{2}^{h}$.
Let $K \subseteq \Omega_{1}^{h}$, then $v_{I}=\Pi_{h} \tilde{v}_{1}$ and hence, we have

$$
\begin{align*}
\left\|v-v_{I}\right\|_{H^{1}\left(K_{1}\right)} & =\left\|\tilde{v}_{1}-\Pi_{h} \tilde{v}_{1}\right\|_{H^{1}\left(K_{1}\right)} \leq\left\|\tilde{v}_{1}-\Pi_{h} \tilde{v}_{1}\right\|_{H^{1}(K)} \\
& \leq C h\left\|\tilde{v}_{1}\right\|_{H^{2}(K)} \leq C h\left\|v_{1}\right\|_{H^{2}\left(\Omega_{1}\right)} . \tag{3.2.5}
\end{align*}
$$

Again, since $v \in H^{2}\left(\Omega_{2}\right)$ and $K_{2} \subseteq \Omega_{2}$ with meas $\left(K_{2}\right) \leq C h^{3}$, we have

$$
\begin{align*}
\left\|v-v_{I}\right\|_{H^{1}\left(K_{2}\right)} & \leq C h^{\frac{3(p-2)}{2 p}}\left\|v-v_{I}\right\|_{W^{1, p}\left(K_{2}\right)} \forall p>2 \\
& =C h\left\|v-v_{I}\right\|_{W^{1,6}\left(K_{2}\right)}=C h\left\|v_{2}-\Pi_{h} \tilde{v}_{1}\right\|_{W^{1,6}\left(K_{2}\right)} \\
& \leq C h\left\|\tilde{v}_{2}-\tilde{v}_{1}\right\|_{W^{1,6}\left(K_{2}\right)}+C h\left\|\tilde{v}_{1}-\Pi_{h} \tilde{v}_{1}\right\|_{W^{1,6}\left(K_{2}\right)} \\
& \leq C h\left\|\tilde{v}_{2}-\tilde{v}_{1}\right\|_{W^{1,6}(K)}+C h\left\|\tilde{v}_{1}-\Pi_{h} \tilde{v}_{1}\right\|_{W^{1,6}(K)} \\
& \leq C h\left\|\tilde{v}_{2}-\tilde{v}_{1}\right\|_{H^{2}(\Omega)}+C h\left\|\tilde{v}_{1}\right\|_{H^{2}(K)} \\
& \leq C h\left\|\tilde{v}_{1}\right\|_{H^{2}(\Omega 2)}+C h\left\|\tilde{v}_{2}\right\|_{H^{2}(\Omega 2)} \\
& \leq C h\left(\|v\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) . \tag{3.2.6}
\end{align*}
$$

Then Lemma 3.2.1 follows immediately from the cstimates (3.2.4)-(3.2.6).
Let Y^{\star} be the collcetion of all $v \in L^{2}(\Omega)$ such that $v \in H^{1}\left(\Omega_{1}\right) \cap H^{1}\left(\Omega_{2}\right) \cap\{\psi$: $\psi=0$ on $\partial \Omega\}$ with $[v]=0$ along Γ. For any $v \in Y^{\star}$, we define

$$
\begin{equation*}
A_{h}\left(R_{h} v, v_{h}\right)=A^{1}\left(v, v_{h}\right)+A^{2}\left(v . v_{h}\right) \forall v_{h} \in V_{h} . \tag{3.2.7}
\end{equation*}
$$

Remark 3.2.1 Elliptic projection R_{h} defined by (3.2.7) is analogous to the projection P_{h} defined by (2.2.15) in Chapter 2. Only difference is the domain of definition. While P_{h} is defined on $\mathcal{X}=\left\{\psi \in L^{2}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{2}\right): \psi=0\right.$ on $\partial \Omega \&[\psi]=0=$ $[\beta \partial v / \partial \mathbf{n}]=0$ on $\Gamma\}$, operator R_{h} is defined on a more general space Y^{*}. Further, existence of operator R_{h} can be verified by Lax-Milgram lemma.

The following lemma shows that optimal approximation of R_{h} can be derived for $v \in X^{*}$.

Lemma 3.2.2 Let R_{h} be defined by (3.2.7), then for any $v \in X^{\star}$ there is a positive constant C independent of the mesh parameter h such that

$$
\begin{aligned}
& \text { (a) }\left\|R_{h} v-v\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|R_{h} v-v\right\|_{H^{2}\left(\Omega_{2}\right)} \leq C h\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right), \\
& \text { (b) }\left\|R_{h} v-v\right\|_{\left.L^{2}(\Omega)\right)} \leq C h^{2}\left(\|v\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right) .
\end{aligned}
$$

Proof. Coercivity of each local bilinear map and the definition of R_{h} projection leads to

$$
\begin{aligned}
&\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} \\
& \leq C\left\{A^{1}\left(v-R_{h} v, v-v_{h}\right)+A^{2}\left(v-R_{h} v, v-v_{h}\right)\right\} \\
&+C A^{1}\left(v, v_{h}-R_{h} v\right)-C A^{1}\left(R_{h} v, v_{h}-R_{h} v\right) \\
&+C A^{2}\left(v, v_{h}-R_{h} v\right)-C A^{2}\left(R_{h} v, v_{h}-R_{h} v\right) \\
&= C\left\{A^{1}\left(v-R_{h} v, v-v_{h}\right)+A^{2}\left(v-R_{h} v, v-v_{h}\right)\right\} \\
&+C\left\{A_{h}^{1}\left(R_{h} v, v_{h}-R_{h} v\right)-A^{1}\left(R_{h} v, v_{h}-R_{h} v\right)\right\} \\
&+C\left\{A_{h}^{2}\left(R_{h} v, v_{h}-R_{h} v\right)-A^{2}\left(R_{h} v, v_{h}-R_{h} v\right)\right\} \\
&= C\left\{A^{1}\left(v-R_{h} v, v-v_{h}\right)+A^{2}\left(v-R_{h} v, v-v_{h}\right)\right\} \\
&+C\left\{A_{h}\left(R_{h} v, v_{h}-R_{h} v\right)-A\left(R_{h} v, v_{h}-R_{h} v\right)\right\} .
\end{aligned}
$$

Then it follows from Lemma 2.2.2 and Young's inequality that

$$
\begin{aligned}
& \left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} \\
& \leq C\left\|v-R_{h^{\prime}} v\right\|_{H^{1}\left(\Omega_{1}\right)}\left\|v-v_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}+C\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)}\left\|v-v_{h}\right\|_{H^{1}\left(\Omega \Omega_{2}\right)} \\
& \quad+C h\left\|R_{h} v\right\|_{H^{1}(\Omega)}\left\|v_{h}-R_{h} v\right\|_{H^{1}(\Omega)} \\
& \leq \epsilon\left\|v-R_{h^{v} v}\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+\frac{C}{\epsilon}\left\|v-v_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+c\left\|v-R_{h^{\prime}} v\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} \\
& \quad+\frac{C}{\epsilon}\left\|v-v_{h}\right\|_{H^{1}\left(\Omega_{2}\right)}^{2}+\frac{C h^{2}}{\epsilon}\left\|R_{h} v\right\|_{H^{1}(\Omega 2)}^{2}+\epsilon\left\|v_{h}-R_{h} v\right\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Again applying the fact $\left\|R_{h_{h}} v\right\|_{H^{1}(\Omega)} \leq C\left(\|v\|_{H^{1}\left(\Omega_{1}\right)}+\|v\|_{H^{1}\left(\Omega_{2}\right)}\right)$ and for suitable $\epsilon>0$, we have

$$
\begin{aligned}
\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} \leq & C\left\|v-v_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}^{2}+C\left\|v-v_{h}\right\|_{H^{1}\left(\Omega_{2}\right)}^{2} \\
& +C h^{2}\left\{\|v\|_{H^{1}\left(\Omega_{1}\right)}^{2}+\|v\|_{H^{1}\left(\Omega_{2}\right)}^{2}\right\} .
\end{aligned}
$$

Now, setting $v_{h}=v_{I}$ and then using Lemma 3.2.1, we have

$$
\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)} \leq C h\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) .
$$

This completes the proof of part (a) of Lemma 3.2.2.
For L^{2} norm error cstimate, we will use the duality argument. For this purpose, we consider the following interface problem

$$
-\nabla \cdot(\beta \nabla \phi)=v-R_{h} v
$$

with the boundary condition $\phi=0$ on $\partial \Omega$ and interface conditions $[\phi]=0, \quad\left[\beta \frac{\partial \phi}{\partial \mathrm{n}}\right]=0$ along Γ.

Now, multiply the above equation by $w \in Y^{\star}$ and then integrate over Ω to have

$$
\begin{equation*}
A^{1}(\phi, w)+A^{2}(\phi, w)=\left(v-R_{h} v, w\right) . \tag{3.2.8}
\end{equation*}
$$

Let $\phi_{h} \in V_{h}$ be the finite element approximation to ϕ defined as: Find $\phi_{h} \in V_{h}$ such that

$$
\begin{equation*}
A_{h}\left(\phi_{h}, w_{h}\right)=\left(v-R_{h} v, w_{h}\right) \quad \forall w_{h} \in V_{h} . \tag{3.2.9}
\end{equation*}
$$

Arguing as in part (a), it can be concluded that

$$
\begin{aligned}
\left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}+ & \left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega_{2}\right)} \\
\leq & C\left(\left\|\phi-w_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|\phi-w_{h}\right\|_{H^{1}\left(\Omega_{2}\right)}\right) \\
& +C h\left(\|\phi\|_{H^{2}\left(\Omega_{1}\right)}+\|\phi\|_{H^{2}\left(\Omega_{2}\right)}\right) \quad \forall w_{h} \in V_{h} .
\end{aligned}
$$

Let ϕ_{I} be defined as in (3.2.3) and then set $w_{h}=\phi_{I}$ to have

$$
\begin{aligned}
\left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}+\left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega_{2}\right)} & \leq C h\left(\|\phi\|_{H^{2}\left(\Omega_{1}\right)}+\|\phi\|_{H^{2}\left(\Omega_{2}\right)}\right) \\
& \leq C h\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

In the last inequality, we used the elliptic regularity estimate $\|\phi\|_{X} \leq C\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}$ (cf. [15]). Thus, we have

$$
\begin{equation*}
\left\|\phi-\phi_{h}\right\|_{H^{1}(\Omega)} \leq C h\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} . \tag{3.2.10}
\end{equation*}
$$

Since $\left[v-R_{h} v\right]=0$ along Γ and $v-R_{h} v \in L^{2}(\Omega) \cap H^{1}\left(\Omega_{1}\right) \cap H^{1}\left(\Omega_{2}\right) \cap\{\psi: \psi=0$ on $\partial \Omega\}$, thercfore, set $w=v-R_{h} v$ in (3.2.8) to have

$$
\begin{align*}
\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}^{2}= & A^{1}\left(\phi, v-R_{h} v\right)+A^{2}\left(\phi, v-R_{h} v\right) \\
= & A^{1}\left(\phi-\phi_{h}, v-R_{h} v\right)+A^{2}\left(\phi-\phi_{h}, v-R_{h} v\right) \\
& +\left\{A^{1}\left(\phi_{h}, v-R_{h} v\right)+A^{2}\left(\phi_{h}, v-R_{h} v\right)\right\} \\
\leq & C\left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{1}\right)} \\
& +C\left\|\phi-\phi_{h}\right\|_{H^{1}\left(\Omega \Omega_{2}\right)}\left\|v-R_{h} v\right\|_{H^{1}\left(\Omega_{2}\right)} \\
& +\left\{A^{1}\left(\phi_{h}, v\right)+A^{2}\left(\phi_{h}, v\right)\right\}-\left\{A^{1}\left(\phi_{h}, R_{h} v\right)+A^{2}\left(\phi_{h}, R_{h} v\right)\right\} \\
\leq & C h\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} \cdot C h\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) \\
& +A_{h}\left(R_{h} v, \phi_{h}\right)-A\left(R_{h} v, \phi_{h}\right) \\
= & C h^{2}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}\left(\|v\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) \\
& +\left\{A_{h}\left(R_{h} v, \phi_{h}\right)-A\left(R_{h} v, \phi_{h}\right)\right\} \\
= & C h^{2}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right)+(J) . \tag{3.2.11}
\end{align*}
$$

Now, we apply Lemma 2.2.2 to have

$$
\begin{align*}
|(J)| \leq & C h \sum_{K \in \mathcal{T}_{r}^{*}}\left\|R_{h} v\right\|_{H^{1}(K)}\left\|\phi_{h}\right\|_{H^{1}(K)} \\
\leq & C h \sum_{K_{1}}\left\|R_{h} v\right\|_{H^{1}\left(K_{1}\right)}\left\|\phi_{h}\right\|_{H^{1}\left(K_{1}\right)} \\
& +C h \sum_{K_{2}}\left\|R_{h} v\right\|_{H^{1}\left(K_{2}\right)}\left\|\phi_{h}\right\|_{H^{1}\left(K_{2}\right)} \\
= & (J)_{1}+(J)_{2} . \tag{3.2.12}
\end{align*}
$$

Again, using part (a) and estimate (3.2.10), we have

$$
\begin{align*}
& \| R_{h} v\left\|_{H^{1}\left(K_{2}\right)}\right\| \phi_{h} \|_{H^{1}\left(K_{2}\right)} \\
& \leq\left\{\left\|R_{h} v-v\right\|_{H^{1}\left(K_{2}\right)}+\|v\|_{H^{1}\left(K_{2}\right)}\right\}\left\{\left\|\phi_{h}-\phi\right\|_{H^{1}\left(K_{2}\right)}+\|\phi\|_{H^{1}\left(K_{2}\right)}\right\} \\
& \leq\left\{\left\|R_{h} v-v\right\|_{H^{1}\left(\Omega_{2}\right)}+\left\|\tilde{v}_{2}\right\|_{H^{1}\left(K_{2}\right)}\right\}\left\{\left\|\phi_{h}-\phi\right\|_{H^{1}\left(\Omega_{2}\right)}+\|\phi\|_{H^{1}\left(K_{2}\right)}\right\} \\
& \leq C\left\{h\|v\|_{H^{2}\left(\Omega_{1}\right)}+h\|v\|_{H^{2}\left(\Omega_{2}\right)}+\left\|\tilde{v}_{2}\right\|_{H^{1}(K)}\right\} \\
& \times\left\{h\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}+\|\phi\|_{H^{1}(K)}\right\} . \tag{3.2.13}
\end{align*}
$$

Sctting $p=4$ in the Sobolev embedding inequality (cf. $[62,63]$)

$$
\begin{equation*}
\|v\|_{L^{p}\left(K_{2}\right)} \leq C p^{\frac{1}{2}}\|v\|_{H^{1}\left(K_{2}\right)} \forall v \in H^{1}\left(K_{2}\right), \quad p>2 \tag{3.2.14}
\end{equation*}
$$

and further, using Hölder's inequality, we obtain

$$
\begin{align*}
\left\|\tilde{v}_{2}\right\|_{H^{1}(K)} & =\left\|\tilde{v}_{2}\right\|_{L^{2}(K)}+\left\|\nabla \tilde{v}_{2}\right\|_{L^{2}(K)} \\
& \leq C h^{\frac{1}{2}}\left\|\tilde{v}_{2}\right\|_{L^{4}(K)}+C h^{\frac{1}{2}}\left\|\nabla \tilde{v}_{2}\right\|_{L^{4}(K)} \\
& \leq C h^{\frac{1}{2}}\left\|\tilde{v}_{2}\right\|_{H^{1}(K)}+C h^{\frac{1}{2}}\left\|\nabla \tilde{v}_{2}\right\|_{H^{1}(K)} \\
& \leq C h^{\frac{1}{2}}\left\|\tilde{v}_{2}\right\|_{H^{2}(K)} \leq C h^{\frac{1}{2}}\left\|v_{2}\right\|_{H^{2}\left(\Omega_{2}\right)}, \tag{3.2.15}
\end{align*}
$$

where we have used the fact that meas $(K) \leq C h^{2}$. Similarly, for $\|\phi\|_{H^{1}(K)}$, we have

$$
\begin{equation*}
\|\phi\|_{H^{2}(K)} \leq C h^{\frac{1}{2}}\|\phi\|_{X} \leq C h^{\frac{1}{2}}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} . \tag{3.2.16}
\end{equation*}
$$

Combining (3.2.13)-(3.2.16), we have

$$
\begin{aligned}
& \left\|R_{h} v\right\|_{H^{1}\left(K_{2}\right)}\left\|\phi_{h}\right\|_{H^{1}\left(K_{2}\right)} \\
& \leq C h\left\{\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right\}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Thercfore, for $(J)_{2}$, we have

$$
\begin{equation*}
(J)_{2} \leq C h^{2}\left\{\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right\}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} . \tag{3.2.17}
\end{equation*}
$$

Similarly, for $(J)_{1}$, we have

$$
\begin{equation*}
(J)_{1} \leq C h^{2}\left\{\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right\}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} . \tag{3.2.18}
\end{equation*}
$$

Then, using the estimates (3.2.17) and (3.2.18) in (3.2.12), we have

$$
\begin{equation*}
|(J)| \leq C h^{2}\left\|v-R_{h} v\right\|_{L^{2}(\Omega)}\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega \Omega_{2}\right)}\right) . \tag{3.2.19}
\end{equation*}
$$

Finally, (3.2.11) and (3.2.19) leads to the following optimal L^{2} norm cstimate

$$
\left\|v-R_{h} v\right\|_{L^{2}(\Omega)} \leq C h^{2}\left(\|v\|_{H^{2}\left(\Omega_{1}\right)}+\|v\|_{H^{2}\left(\Omega_{2}\right)}\right) .
$$

This completes the rest of the proof.
Let $g_{h} \in V_{h}$ be the lincar interpolant of g given by

$$
g_{h}=\sum_{j=1}^{m_{h}} g\left(P_{j}\right) \Phi_{j}^{h},
$$

where $\left\{\Phi_{j}^{h}\right\}_{j=1}^{m_{h}}$ is the set of standard nodal basis functions corresponding to the nodes $\left\{P_{j}\right\}_{j=1}^{m_{h}}$ on the interface Γ. Following the argument of [15] it is possible to obtain the following approximation property of g_{h} to the interface function g.

Lemma 3.2.3 Let $g \in H^{2}(\Gamma)$. If Ω_{Γ}^{*} is the union of all interface triangles then we have

$$
\left|\int_{\Gamma} g v_{h} d s-\int_{\Gamma_{h}} g_{h} v_{l} d s\right| \leq C h^{2}\|g\|_{H^{2}(\Gamma)}\left\|v_{v_{l}}\right\|_{H^{2}\left(\Omega_{\Gamma}^{*}\right)} \quad \forall v_{h} \in V_{h} .
$$

Proof. It follows from [15] (see, page 186) that

$$
\begin{aligned}
& \left|\int_{\Gamma} g v_{h} d s-\int_{\Gamma_{h}} g_{h} v_{h} d s\right| \\
& \leq C h^{2}\|g\|_{H^{2}\left(\Gamma^{\prime}\right)}\left\|v_{h}\right\|_{H^{1}\left(\Omega_{\Gamma}^{*}\right)}+C h^{3 / 2}\|g\|_{H^{2}(\Gamma)}\left\|v_{h}\right\|_{L^{2}\left(\Omega_{\Gamma}^{*}\right)} \quad \forall v_{h} \in V_{h} .
\end{aligned}
$$

Arguing as in (3.2.15), we obtain

$$
\begin{aligned}
\left\|v_{h}\right\|_{L^{2}\left(\Omega \Omega_{\Gamma}^{*}\right)} & =\sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|v_{h}\right\|_{L^{2}(K)} \\
& \leq C h^{1 / 2} \sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|v_{h}\right\|_{L^{4}(K)} \leq C h^{1 / 2}\left\|v_{h}\right\|_{H^{1}\left(\Omega \Omega_{\Gamma}^{*}\right)} .
\end{aligned}
$$

The desire result follows immediately from the above two estimates.

3.3 Error Analysis for the Semidiscrete Scheme

In this section, we discuss the semidiserete finite element method for the problem (3.1.1)(3.1.3) and derive optimal crror estimates in L^{2} and H^{1} norms.

The continuous-time Galerkin finite element approximation to (3.2.2) is stated as follows: Find $u_{h}:[0, T] \rightarrow V_{h}$ such that $u_{h}(0)=R_{h} u_{0}$ and

$$
\begin{equation*}
\left(u_{h t}, v_{h}\right)_{h}+A_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{h}+\left\langle g_{h}, v_{h}\right\rangle_{\Gamma_{h}} \quad \forall v_{h} \in V_{h}, \quad t \in(0, T] . \tag{3.3.1}
\end{equation*}
$$

Writc the crror $e(t)=u-u_{h}=u-R_{h} u+R_{h} u-u_{h}=\rho+\theta$, with $\rho=u-R_{h} u$ and $\theta=R_{h} u-u_{h}$. Again, using (3.2.7) for $v=u \in X^{\star}$ and further differentiating with respect to t, we have

$$
A_{h}\left(\left(R_{h} u\right)_{t}, v_{h}\right)=A^{1}\left(u_{t}, v_{h}\right)+A^{2}\left(u_{t}, v_{h}\right) .
$$

Also,

$$
A_{h}\left(R_{h} u_{t}, v_{h}\right)=A^{1}\left(u_{t}, v_{h}\right)+A^{2}\left(u_{t}, v_{h}\right)
$$

From the above two equations, we have

$$
A_{h}\left(\left(R_{h} u\right)_{t}-R_{h} u_{t}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h} .
$$

Setting $v_{h}=\left(R_{h} u\right)_{t}-R_{h} u_{t}$ in the above equation, we obtain $\left(R_{h} u\right)_{t}=R_{h} u_{t}$.
Now, by the definition R_{h} operator, (3.2.2) and (3.3.1), we obtain

$$
\begin{aligned}
\left(\theta_{t}, v_{h}\right)_{h}+A_{h}\left(\theta, v_{h}\right)= & \left(\left(R_{h} u\right)_{t}-u_{h t}, v_{h}\right)_{h}+A_{h}\left(R_{h} u-u_{h}, v_{h}\right) \\
= & \left(R_{h} u_{t}, v_{h}\right)_{h}+A_{h}\left(R_{h} u, v_{h}\right)-\left(u_{h t}, v_{h}\right)_{h}-A_{h}\left(u_{h} . v_{h}\right) \\
= & \left(R_{h} u_{t}, v_{h}\right)_{h}+A\left(u, v_{h}\right)-\left(f, v_{h}\right)_{h}-\left\langle g_{h}, v_{h}\right\rangle_{\Gamma_{h}} \\
= & \left\{\left(R_{h} u_{t}, v_{h}\right)_{h}-\left(R_{h} u_{t}, v_{h}\right)\right\}+\left\{\left(J, v_{h}\right)-\left(J, v_{h}\right)_{h}\right\} \\
& +\left\{\left\langle g, v_{h}\right\rangle_{\Gamma}-\left\langle g_{h}, v_{h}\right\rangle_{\Gamma_{h}}\right\}+\left(-\rho_{t}, v_{h}\right) .
\end{aligned}
$$

For $v_{h}=\theta$, we have

$$
\begin{aligned}
\left(\theta_{t}, \theta\right)_{h}+C\|\theta\|_{H^{1}(\Omega)}^{2} \leq & C h^{2}\left\|R_{h} u_{t}\right\|_{H^{1}(\Omega)}\|\theta\|_{H^{1}(\Omega)}+C h^{2}\|f\|_{H^{2}(\Omega)}\|\theta\|_{H^{1}(\Omega)} \\
& +C h^{2}\|g\|_{H^{2}(\Gamma)}\|\theta\|_{H^{1}\left(\Omega \Omega_{\Gamma}^{2}\right)}+C\left\|\rho_{t}\right\|_{L^{2}(\Omega)}\|\theta\|_{L^{2}(\Omega)} \\
\leq & C_{\epsilon}\left(\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+h^{4}\left\{\left\|R_{h} u_{t}\right\|_{H^{1}(\Omega)}^{2}+\|f\|_{H^{2}(\Omega)}^{2}\right.\right. \\
& \left.\left.+\|g\|_{H^{2}(\Gamma)}^{2}\right\}\right)+C(\epsilon)\|\theta\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Herc, we have used Lemma 2.2.2 and Lemma 3.2.3. Integrating the above equation form 0 to t and using Lemma 3.2.2, we obtain

$$
\begin{equation*}
\|\theta(t)\|_{L^{2}(\Omega)}^{2} \leq C h^{4} \int_{0}^{t}\left(\sum_{a=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega \Omega_{2}\right)}^{2}+\|f\|_{H^{2}(\Omega)}^{2}+\|g\|_{H^{2}(\Gamma)}^{2}\right) d s \tag{3.3.2}
\end{equation*}
$$

Now, combining Lemma 3.2.2 and (3.3.2), we have the following optimal pointwise-intime L^{2}-norm crror estimates.

Theorem 3.3.1 Let u and u_{h} be the solutions of the problem (3.1.1)-(3.1.3) and (3.3.1), respectively. Assume that $u_{h}(0)=R_{h} u_{0}$. Then there exists a constant C independent of h such that

$$
\begin{aligned}
\|e(t)\|_{L^{2}(\Omega)} \leq & C h^{2}\left[\|u\|_{X}+\left(\int _ { 0 } ^ { t } \left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{t}\right)}^{2}\right.\right.\right. \\
& \left.\left.\left.+\|f\|_{H^{2}(\Omega l)}^{2}+\|g\|_{H^{2}(\Gamma)}^{2}\right\} d s\right)^{\frac{1}{2}}\right] .
\end{aligned}
$$

For H^{1}-norm estimate, we first use Lemma 3.2.2 to have

$$
\begin{equation*}
\sum_{i=1}^{2}\|\rho(t)\|_{H^{1}\left(\Omega_{2}\right)} \leq C h \sum_{i=1}^{2}\|u\|_{H^{2}\left(\Omega_{2}\right)} . \tag{3.3.3}
\end{equation*}
$$

Applying inverse cstimate (2.2.12), we obtain

$$
\begin{align*}
\|\theta(t)\|_{H^{2}(\Omega)} & \leq C h^{-1}\|\theta(t)\|_{L^{2}(\Omega)} \\
& \leq C h^{-1} h^{2}\left[\int_{0}^{t}\left(\sum_{i=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2}+\|f\|_{H^{2}(\Omega)}^{2}+\|g\|_{H^{2}(\Gamma)}^{2}\right) d s\right]^{\frac{1}{2}} \\
& =C h\left[\int_{0}^{t}\left(\sum_{i=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2}+\|f\|_{H^{2}(\Omega)}^{2}+\|g\|_{H^{2}(\Gamma)}^{2}\right) d s\right]^{\frac{1}{2}} \tag{3.3.4}
\end{align*}
$$

Combining (3.3.3) and (3.3.4), we have the following optimal pointwisc-in-time H^{1}-norm error estimates.

Theorem 3.3.2 Let u and u_{n} be the solutions of the problem (3.1.1)-(3.1.3) and (3.3.1), respectively. Assume that $u_{h}(0)=R_{h} u_{0}$. Then there exists a constant C independent of h such that

$$
\begin{aligned}
\|e(t)\|_{H^{1}(\Omega)} \leq & C h\left[\|u\|_{X}+\left(\int _ { 0 } ^ { t } \left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right.\right.\right. \\
& \left.\left.\left.+\|f\|_{H^{2}(\Omega)}^{2}+\|g\|_{H^{2}(\Gamma)}^{2}\right\} d s\right)^{\frac{2}{2}}\right] .
\end{aligned}
$$

3.4 Error Analysis for the Fully Discrete Scheme

A fully discrete scheme based on backward Eulcr method is proposed and analyzed in this section. Optimal L^{2} norm error estimate is obtained for fully discrete scheme.

We first partition the interval $[0 . T]$ into M equally spaced subintervals by the following points

$$
0=t_{0}<t_{1}<\ldots<t_{M}=T
$$

with $t_{n}=n k, k=\frac{T}{M}$, be the time step. Let $I_{n}=\left(t_{n-1}, t_{n}\right]$ be the $n-t h$ subinterval. Now we introduce the backward difference quotient

$$
\Delta_{k} \phi^{n}=\frac{\phi^{n}-\phi^{n-1}}{k}
$$

for a given sequence $\left\{\phi^{n}\right\}_{n=0}^{M} \subset L^{2}(\Omega)$. For $\phi(t) \in V_{h}$, we denote ϕ^{n} be the value of ϕ at $t=t_{n}$.

The fully discrete finite element approximation to the problem (3.2.2) is defined as follows: For $n=1, \ldots, M$, find $U^{n} \in V_{h}$ such that

$$
\begin{equation*}
\left(\Delta_{k} U^{n}, v_{h}\right)_{h}+A_{h}\left(U^{n}, v_{h}\right)=\left(f^{n}, v_{h}\right)+\left\langle g_{h}^{n}, v_{h}\right\rangle_{\Gamma_{h}} \quad \forall v_{h} \in V_{h} \tag{3.4.1}
\end{equation*}
$$

with $U^{0}=R_{h} u_{0}$. For cach $n=1, \ldots, M$. the cxistence of a unique solution to (3.4.1) can be found in [15]. We then define the fully diserete solution to be a piecewise constant function $U_{h}(x, t)$ in time and is given by

$$
U_{h}(x, t)=U^{n}(x) \quad \forall t \in I_{n}, \quad 1 \leq n \leq M
$$

We now prove the main result of this section in the following theorem.
Theorem 3.4.1 Let u and U be the solutions of the problem (3.1.1)-(3.1.3) and (3.4.1), respectively. Assume that $U^{0}=R_{h} u_{0}$. Then there exists a constant C independent of h and k such that

$$
\begin{aligned}
& \left\|U\left(t_{n}\right)-u\left(l_{n}\right)\right\|_{L^{2}(\Omega)} \\
& \leq C\left(h^{2}+k\right)\left\{\left\|u^{0}\right\|_{H^{2}(\Omega)}+\| \| g^{n}\|+\| u_{t t}\left\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+\sum_{\imath=1}^{2}\right\| u_{t} \|_{L^{2}\left(0, T ; H^{2}\left(\Omega \Omega_{\imath}\right)\right)}\right\}
\end{aligned}
$$

Proof. We write the crror $U^{n}-u^{n}$ at time t_{n} as

$$
U^{n}-u^{n}=\left(U^{n}-R_{h} u^{n}\right)+\left(R_{h} u^{n}-u^{n}\right) \equiv: \theta^{n}+\rho^{n}
$$

where $\theta^{n}=U^{n}-R_{h} u^{n}$ and $\rho^{n}=R_{h} u^{n}-u^{n}$.
For θ^{n}, we have the following error equation

$$
\begin{align*}
&\left(\Delta_{k} \theta^{n}, v_{h}\right)_{h}+A_{h}\left(\theta^{n}, v_{h}\right) \\
&=\left(-\Delta_{k} R_{h} u^{n}+\Delta_{k} U^{n}, v_{h}\right)_{h}+A_{h}\left(-R_{h} u^{n}+U^{n}, v_{h}\right) \\
&=\left(\Delta_{k} U^{n}, v_{h}\right)_{h}+A_{h}\left(U^{n}, v_{h}\right)-\left(\Delta_{k} R_{h} u^{n}, v_{h}\right)_{h}-A_{h}\left(R_{h} u^{n}, v_{h}\right) \\
&=\left(f^{n}, v_{h}\right)+\left\langle g_{h}^{n}, v_{h}\right\rangle_{\Gamma_{h}}-\left(\Delta_{k} R_{h} u^{n}, v_{h}\right)_{h}-A\left(u^{n}, v_{h}\right) \\
&=\left(f^{n}, v_{h}\right)+\left\langle g_{h}^{n}, v_{h}\right\rangle_{\Gamma_{h}}-\left(\Delta_{k} R_{h} u^{n}, v_{h}\right)_{h} \\
&+\left(u_{t}^{n}, v_{h}\right)-\left(f^{n}, v_{h}\right)-\left\langle g^{n}, v_{h}\right\rangle_{\Gamma} \\
& \equiv:-\left(w^{n}, v_{h}\right)+\left\{\left(\Delta_{k} R_{h} u^{n}, v_{h}\right)-\left(\Delta_{k} R_{h} u^{n}, v_{h}\right)_{h}\right\} \\
&+\left\{\left\langle g_{h}^{n}, v_{h}\right\rangle_{\Gamma_{h}}-\left\langle g^{n}, v_{h}\right\rangle_{\Gamma}\right\}, \tag{3.4.2}
\end{align*}
$$

where $\omega^{n}=\Delta_{k} R_{h} u^{n}-u_{t}^{n}$. For simplicity of the cxposition, we write $\omega^{n}=w_{1}^{n}+w_{2}^{n}$, where $w_{1}^{n}=R_{h} \Delta_{k} u^{n}-\Delta_{k} u^{n}$ and $w_{2}^{n}=\Delta_{k} u^{n}-u_{t}^{n}$.

Now, setting $v_{h}=\theta^{n}$ in (3.4.2), we have

$$
\begin{align*}
\left(\Delta_{k} \theta^{n}, \theta^{n}\right)_{h}+A_{h}\left(\theta^{n}, \theta^{n}\right)= & -\left(w^{n}, \theta^{n}\right)+\left\{\left(\Delta_{k} R_{h} u^{n}, \theta^{n}\right)-\left(\Delta_{k} R_{h} u^{n}, \theta^{n}\right)_{h}\right\} \\
& +\left\{\left\langle g_{h}^{n}, \theta^{n}\right\rangle_{\Gamma_{h}}-\left\langle q^{n}, \theta^{n}\right\rangle_{\Gamma}\right\} . \tag{3.4.3}
\end{align*}
$$

Sincc $A_{h}\left(\theta^{n}, \theta^{n}\right) \geq C\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2}$, we have

$$
\begin{align*}
\left\|\theta^{n}\right\|_{L^{2}(\Omega)} \leq & k\left\|w^{n}\right\|_{L^{2}(\Omega)}+\left\|\theta^{n-1}\right\|_{L^{2}(\Omega)}+C h^{2} k^{\frac{1}{2}}\left\|R_{h} \Delta_{k} u^{n}\right\|_{H^{1}(\Omega)} \\
& +C h^{2} k^{\frac{1}{2}}\left\|g^{n}\right\|_{H^{2}(\Gamma)} \\
\leq & \left\|\theta^{0}\right\|_{L^{2}(\Omega)}+k \sum_{j=1}^{n}\left\|w_{1}^{3}\right\|_{L^{2}(\Omega)}+k \sum_{j=1}^{n}\left\|w_{2}^{3}\right\|_{L^{2}(\Omega)} \\
& +C h^{2} k^{\frac{1}{2}} \sum_{j=1}^{n}\left\|w_{1}^{\prime}\right\|_{H^{1}(\Omega)}+C h^{2} h^{\frac{1}{2}} \sum_{j=1}^{n}\left\|\Delta_{k} u^{\rho}\right\|_{H^{1}(\Omega)} \\
& +C h^{2} k^{\frac{1}{2}}\left\|g^{n}\right\|, \tag{3.4.4}
\end{align*}
$$

with $\left|\left|\left|g^{n}\left\|=\max _{1 \leq \jmath \leq n}| | g^{\jmath}\right\| \|_{H^{2}(\Gamma)}\right.\right.\right.$.

In Ω_{1}, the term w_{1}^{3} can be expressed as

$$
\begin{aligned}
w_{1}^{\jmath} & =R_{h} \Delta_{k} u_{1}^{\jmath}-\Delta_{k} u_{1}^{\jmath}=\left(R_{h}-I\right)\left(\Delta_{k} u_{1}^{J}\right) \\
& =\left(R_{h}-I\right) \frac{1}{k} \int_{t_{j-1}}^{t_{j}^{j}} u_{1, t} d l=\frac{1}{k} \int_{t_{j-1}}^{t_{j}}\left(R_{h} u_{1, t}-u_{1, t}\right) d l
\end{aligned}
$$

where $u_{\imath}, \imath=1,2$ is the restriction of u in Ω_{\imath} and $u_{2, t}=\frac{\partial u_{\imath}}{\partial t}$.
An application of Lemma 3.2.2 leads to

$$
k\left\|w_{1}^{\jmath}\right\|_{L^{2}\left(\Omega_{1}\right)} \leq C h^{2} \int_{t_{j-1}}^{t \jmath}\left\{\sum_{i=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{\imath}\right)}\right\} d t
$$

Similarly, we obtain

$$
k\left\|w_{1}^{\jmath}\right\|_{L^{2}\left(\Omega_{2}\right)} \leq C h^{2} \int_{t_{3-1}}^{t_{j}}\left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{\imath}\right)}\right\} d t
$$

Using above two estimates, we have

$$
\begin{equation*}
k \sum_{j=1}^{n}\left\|w_{1}^{\jmath}\right\|_{L^{2}(\Omega)} \leq C h^{2} \int_{0}^{t_{n}}\left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}\right\} d t \tag{3.4.5}
\end{equation*}
$$

Similarly, for the term w_{2}^{n}, we have

$$
k w_{2}^{\jmath}=u^{\jmath}-u^{\jmath-1}-k u_{t}^{\jmath}=-\int_{t_{\jmath-1}}^{t_{\jmath}}\left(s-t_{\jmath-1}\right) u_{t t} d s
$$

and hence

$$
k\left\|w_{2}^{3}\right\|_{L^{2}\left(\Omega_{2}\right)} \leq k \int_{t_{j-1}}^{t_{j}}\left\|u_{t t}\right\|_{L^{2}\left(\Omega_{2}\right)} d s
$$

Summing over \jmath from $\jmath=1$ to $\jmath=n$, we obtain

$$
\begin{equation*}
k \sum_{j=1}^{n}\left\|w_{2}^{3}\right\|_{L^{2}(\Omega)} \leq C k \int_{0}^{t_{n}}\left\{\sum_{\imath=1}^{2}\left\|u_{t t}\right\|_{L^{2}\left(\Omega_{2}\right)}\right\} d t . \tag{3.4.6}
\end{equation*}
$$

Arguing as in (3.4.5), we obtain

$$
\begin{equation*}
k \sum_{j=1}^{n}\left\|w_{1}^{\jmath}\right\|_{H^{1}(\Omega)} \leq C h \int_{0}^{t_{n}}\left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}\right\} d t . \tag{3.4.7}
\end{equation*}
$$

Combining (3.4.4) - (3.4.7) and using the fact that

$$
k \sum_{j=1}^{n}\left\|\Delta_{k} u^{\jmath}\right\|_{H^{1}(\Omega)}^{2} \leq C \int_{0}^{t_{n}}\left\{\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{1}\left(\Omega_{2}\right)}^{2}\right\} d t
$$

we obtain

$$
\begin{align*}
\left\|\theta^{n}\right\|_{L^{2}(\Omega)} \leq & C\left(h^{2}+k\right) \\
& \times\left[\sum_{\imath=1}^{2}\left\{\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega_{2}\right)\right)}+\left\|u_{t t}\right\|_{L^{2}\left(0, T ; L^{2}\left(\Omega_{2}\right)\right)}\right\}+\| \| g^{n}\| \|\right] . \tag{3.4.8}
\end{align*}
$$

An application of Lemma 3.2.2 for ρ^{n} yields

$$
\left\|\rho^{n}\right\|_{L^{2}(\Omega)} \leq C h^{2} \sum_{\imath=1}^{2}\left\|u^{n}\right\|_{H^{2}\left(\Omega \Omega_{2}\right)} .
$$

Again, it is casy to verify that

$$
\left\|u^{n}\right\|_{H^{2}\left(\Omega_{2}\right)} \leq\left\|u^{0}\right\|_{H^{2}\left(\Omega_{2}\right)}+\int_{0}^{t_{n}}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)} d t
$$

Thus, we have

$$
\begin{equation*}
\left\|\rho^{n}\right\|_{\left.L^{2}(\Omega)\right)} \leq C h^{2}\left\{\left\|u^{0}\right\|_{H^{2}(\Omega)}+\sum_{i=1}^{2}\left\|u_{t}\right\|_{L^{2}\left(0, T ; H^{2}(\Omega,)\right)}\right\} . \tag{3.4.9}
\end{equation*}
$$

Combining (3.4.8) and (3.4.9) the desired cstimate is casily obtained. This completcs the proof.

Chapter 4

FEM for Parabolic

Integro-Differential Equations with

 Interfaces: $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ Error EstimatesIn this chapter, convergence of finite clement method for a class of parabolic integrodifferential equations with discontinuous coefficients are analyzed. Optimal $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms are shown to hold when the finite element space consists of piecewise linear functions on a mesh that do not require to fit exactly to the interface. Both continuous time and discrete time Galerkin methods are discussed for arbitrary shape but smooth interfaces.

4.1 Introduction

In this work, we consider the following parabolic integro-differential equation

$$
\begin{equation*}
u_{t}(x, t)-\nabla \cdot(\beta \nabla u(x, l))=\int(x, l)+\int_{0}^{t} B(l, s) u(s) d s \text { in } \Omega \times(0, T] \tag{4.1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { in } \Omega \& u(x, t)=0 \text { on } \partial \Omega \times(0, T] \tag{4.1.2}
\end{equation*}
$$

where $\Omega=\Omega_{1} \cup \Gamma \cup \Omega_{2}$ is a convex polygonal domain in \mathbb{R}^{2} with boundary $\partial \Omega$ and $\Omega_{1} \subset \Omega$ is an open domain with C^{2} smooth boundary $\Gamma=\partial \Omega_{1}$. Let $\Omega_{2}=\Omega \backslash \Omega_{1}$ (sce, Figure 1.1). Coefficient $\beta(x)$ is positive and piccewise constant. We write

$$
\beta(x)=\beta_{2} \quad \text { for } \quad x \in \Omega_{2}, i=1,2,
$$

and $B(t, s)$ is a first order partial differential operator of the form

$$
B(t, s) u(s)=\sum_{k=1}^{2} b_{k}(x ; t, s) \frac{\partial u(x, s)}{\partial x_{k}}+u(x, s) .
$$

For compatibility of the problem (4.1.1)-(4.1.2), we assume that the solution $u(x, t)$ satisfies the following jump conditions on the interface Γ

$$
\begin{equation*}
[u]=0, \quad\left[\beta(x) \frac{\partial u}{\partial \mathbf{n}}\right]=0 \quad \text { along } \Gamma \times(0, T] \tag{4.1.3}
\end{equation*}
$$

The symbol $[v]$ is a jump of a quantity v across the interface Γ and \mathbf{n} denotes the unit outward normal to the boundary $\partial \Omega_{1}$.

Coefficients of $B(t, s)$ satisfy the following assumption: there exists positive constant K_{1} such that

$$
\begin{equation*}
\left|b_{k}(x ; t, s)\right|,\left|\frac{\partial b_{k}(x ; t, s)}{\partial x_{k}}\right|,\left|b_{k}^{\prime}(x ; t, s)\right| \leq K_{1} \text { in } \Omega \times(0, T], k=1,2 \tag{4.1.4}
\end{equation*}
$$

$b_{k}^{\prime}(x ; t . s), k=1,2$, is the partial derivative of b_{k} with respect to s. The nonhomogeneous term $f=\int(x, \iota)$ and initial data $u_{0}(x)$ are given functions.

For the finite element treatment of parabolic integro-differential equation with discontinuous coefficients. we refer to Pradhan et. al. ([54]). They have discussed a non-iterative domain decomposition procedure for parabolic integro-differential equation with interfaces and related a priori error estimates are derived. Numerical solutions by means of finite element Galerkin procedures for the parabolic integro-differential equation without interface can be found in [$10,12,42,48,64,66,67]$.

The organization of this chapter is as follows: While Section 4.2 introduces the regularity of the problem, finite element discretization and approximation properties of some auxiliary projection, Section 4.3 is concerned on the convergence of semi discrete finite element solution to the exact solution. Section 4.4 is devoted to the fully discrete error analysis.

4.2 Preliminaries

In this section, we shall study the regularity and the finite element approximation to the solution of the interface problems (4.1.1)-(4.1.3) under the appropriate regularity conditions on f and u_{0}.

Since we limit ourselves to finite element analysis, we only concern about the regularity of the weak solution u for the interface problem (4.1.1)-(4.1.3). Let $A(.,$.$) and$ $B(t, s ; \ldots)$ be the bilinear forms on $H^{1}(\Omega) \times H^{1}(\Omega)$ corresponding to the operators \mathcal{L} and $B(t, s)$, respectively i.e.,

$$
A(w, v)=\int_{\Omega} \beta(x) \nabla w \cdot \nabla v d x
$$

and

$$
B(t, s ; u(s), \phi)=\int_{\Omega}\left\{\sum_{k=1}^{2} b_{k}(x ; t, s) \frac{\partial u(x, s)}{\partial x_{k}}+u(x, s)\right\} \phi d x .
$$

Under the assumption (4.1.4), for $\phi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\psi \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, it is easy to see that

$$
|B(t, s ; \phi(s), \psi(t))| \leq C\|\phi(x, s)\|_{H^{1}(\Omega)}\|\psi(x, t)\|_{L^{2}(\Omega)} .
$$

For $\phi \in L^{2}(0, T ; Y)$ with $[\phi]=0$ along $\Gamma \times(0, T]$ and $\phi=0$ on $\partial \Omega \times(0, T]$, and $\psi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$, we have

$$
\begin{aligned}
\int_{\Omega} \mathbf{b} \cdot \nabla \phi \psi d x= & \int_{\Omega_{1}} \mathbf{b} \cdot \nabla \phi \psi d x+\int_{\Omega_{2}} \mathbf{b} \cdot \nabla \phi \psi d x \\
= & \int_{\Gamma} \mathbf{b} \psi \cdot \mathbf{n} \phi_{1} d s-\int_{\Gamma} \mathbf{b} \psi \cdot \mathbf{n} \phi_{2} d s \\
& -\int_{\Omega_{1}} \nabla \cdot(\mathbf{b} \psi) \phi d x-\int_{\Omega_{2}} \nabla \cdot(\mathbf{b} \psi) \phi d x \\
= & -\int_{\Omega} \nabla \cdot(\mathbf{b} \psi) \phi d x
\end{aligned}
$$

This together with assumption (4.1.4) leads to

$$
|B(t, s ; \phi(s), \psi(t))| \leq C\|\phi(x, s)\|_{L^{2}(\Omega)}\|\psi(x, t)\|_{H^{1}(\Omega)}
$$

and hence

$$
\left|B_{s}(t, s ; \phi(s), \psi(t))\right| \leq C\left\{\|\phi(x . s)\|_{H^{1}(\Omega)}+\left\|\phi_{s}(x . s)\right\|_{L^{2}(\Omega)}\right\}\|\psi(x, t)\|_{H^{1}(\Omega)} .
$$

Here, we have assumed that $\phi \in H^{1}(0, T ; Y)$ with $\left[\phi_{s}\right]=0$ along $\Gamma \times(0, T]$ and $\phi_{s}=0$ on $\partial \Omega \times(0, T]$.

Then the weak formulation is defined as: Find $u:[0, T] \rightarrow H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\left(u_{t}, v\right)+A(u, v)=(f, v)+\int_{0}^{t} B(t, s ; u(s), v) d s \quad \forall v \in H_{0}^{1}(\Omega), \quad t \in(0, T] \tag{4.2.1}
\end{equation*}
$$

with $u(0)=u_{0}$.
Clearly the problem (4.2.1) has a unique solution $u \in L^{2}\left(0, T ; I I_{0}^{1}(\Omega)\right)$. Regarding the regularity for the solution of the problem (4.2.1), we have the following result.

Theorem 4.2.1 Let $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$. Then the problem (4.2.1) has a unique solution $u \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}(0, T ; Y)$.

Proof. We consider the following parabolic interface problem: Find $\tilde{u}:[0, T] \rightarrow H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\left(\tilde{u}_{t}, v\right)+A(\tilde{u}, v)=\left(f+\int_{0}^{t} B(t, s) u(s) d s, v\right) \quad \forall v \in H_{0}^{1}(\Omega), t \in(0 . T] \tag{4.2.2}
\end{equation*}
$$

with $\tilde{u}(0)=u_{0}$ and $[\tilde{u}]=0=\left[\beta \frac{\partial \bar{u}}{\partial \mathrm{n}}\right]$ along $\Gamma \times(0, T]$. Then using the regularity result for the parabolic interface problems (cf. [15], [39]), we have

$$
\tilde{u} \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}(0, T ; Y) .
$$

Now, subtracting (4.2.2) from (4.2.1), we have

$$
\begin{equation*}
\left(u_{t}-\tilde{u}_{t}, v\right)+A(u-\tilde{u}, v)=0 \quad \forall v \in H_{0}^{1}(\Omega), t \in(0 . T] . \tag{4.2.3}
\end{equation*}
$$

Setting $v=u-\tilde{u} \in H_{0}^{1}(\Omega)$ in (4.2.3), we have

$$
\frac{1}{2} \frac{d}{d l}\|u-\tilde{u}\|_{L^{2}(\Omega)}^{2}+A(u-\tilde{u}, u-\tilde{u})=0 .
$$

Integrating from 0 to t and using the fact $u(0)=u_{0}=\tilde{u}(0)$, we obtain

$$
\frac{1}{2}\|u-\tilde{u}\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t} A(u-\tilde{u}, u-\tilde{u}) d s=0
$$

which implics $u(x \cdot t)=\tilde{u}(x, t)$ in $\Omega \times[0, T]$ and this completes the rest of the proof.

Remark 4.2.1 From (4.2.2), it is clear that \tilde{u} satisfies the following equation

$$
\tilde{u}_{t}+\mathcal{L} \tilde{u}=h(x, t) \quad \text { in } \Omega \times(0, T]
$$

with $h(x, t)=f(x, t)+\int_{0}^{t} B(t, s) u(s) d s$. Then it follows from Theorem 2.2.1 in Chapter 2 that $\tilde{u} \in H^{2}\left(0, T ; L^{2}(\Omega)\right)$ provided $f \in H^{2}\left(0, T ; L^{2}(\Omega)\right), f(x, 0) \in H^{2}(\Omega)$ and $u_{0} \in$ $H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$.

Let \mathcal{T}_{h} be a triangulation of domain Ω as defined in Chapter 2 and V_{h} be a family of finite dimensional subspaces of $H_{0}^{1}(\Omega)$ based on \mathcal{T}_{h} consisting of piecewise lincar functions vanishing on the boundary $\partial \Omega$. For a triangulation \mathcal{T}_{h}, triangles with one or two vertices on Γ are called the interface triangles.

For our convenience, we also recall the clliptic projection $P_{h}: \mathcal{X} \rightarrow V_{h}$ defined as

$$
\begin{equation*}
A_{h}\left(P_{h} v, v_{h}\right)=A^{1}\left(v, v_{h}\right)+A^{2}\left(v, v_{h}\right) \forall v_{h} \in V_{h}, v \in \mathcal{X} \tag{4.2.4}
\end{equation*}
$$

and standard L^{2} projection $L_{h}: L^{2}(\Omega) \rightarrow V_{h}$ defined by

$$
\begin{equation*}
\left(L_{h} v, v_{h}\right)=\left(v, v_{h}\right) \forall v_{h} \in V_{h}, v \in L^{2}(\Omega) . \tag{4.2.5}
\end{equation*}
$$

The space \mathcal{X} is as defined in Chapter 2.
The following result plays a crucial role in our subsequent analysis. For a proof, we refer to Lemma 3.3 of [59]

Lemma 4.2.1 If Ω_{Γ}^{*} is the union of all interface triangles, then we have

$$
\|v\|_{H^{1}\left(\Omega_{\mathrm{r}}^{*}\right)} \leq C h^{\frac{1}{2}}\|v\|_{X} \forall v \in X
$$

Further, we need the following approximation properties
Lemma 4.2.2 If \mathcal{T}_{Γ}^{*} is the collection of all interface triangles, then

$$
\sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|\nabla v_{h}\right\|_{L^{2}(\tilde{K})}^{2} \leq C h \sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|\nabla v_{h}\right\|_{L^{2}(K)}^{2} \forall v_{h} \in V_{h} .
$$

Proof. Suppose $K \in \mathcal{T}_{\Gamma}^{*}$ and \tilde{K} is either K_{1} or $K_{2}, K_{\imath}=K \cap \Omega_{i}$ for $i=1,2$. More precisely, $\tilde{K}=K_{1}$ if $K \subset \Omega_{2}^{h}$ and $\tilde{K}=K_{2}^{\prime}$ if $K \subset \Omega_{1}^{h}$. Assumc $K \subset \Omega_{1}^{h}$, as shown in Figure 3.1.

Since, $\forall v_{h} \in V_{h},\left|\nabla v_{h}\right|$ is constant in $K \in \mathcal{T}_{h}$, thus we have

$$
\begin{aligned}
\left\|\nabla v_{h}\right\|_{L^{2}(\tilde{K})}^{2} & =\int_{\tilde{K}}\left|\nabla v_{h}\right|^{2} d x \\
& =C^{2} \int_{\tilde{K}} d x, C=\left|\nabla v_{h}\right|=\mathrm{constant} \\
& =C^{2} \operatorname{meas}(\tilde{K})
\end{aligned}
$$

Again integrating over K and using the fact $\operatorname{meas}(\tilde{K}) \leq C h_{K}^{3}$, we have

$$
\begin{aligned}
\operatorname{meas}(K)\left\|\nabla v_{h}\right\|_{L^{2}(\tilde{K})}^{2} & =\operatorname{meas}(\tilde{K})\left\|\nabla v_{h}\right\|_{L^{2}(K)}^{2} \\
& \leq C h_{K}^{3}\left\|\nabla v_{h}\right\|_{L^{2}(K)}^{2} .
\end{aligned}
$$

Further, apply the fact that meas $(K) \geq C h_{K}^{2}$ and summing over $K \in \mathcal{T}_{\Gamma}^{*}$, we have

$$
\sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|\nabla v_{h}\right\|_{L^{2}(\tilde{K})}^{2} \leq C h \sum_{K \in \mathcal{T}_{\Gamma}^{*}}\left\|\nabla v_{h}\right\|_{L^{2}(K)}^{2} .
$$

This completes the proof of the lemma 4.2.2.

4.3 Continuous Time Galerkin Finite Element

In this section, an attempt is made to carry over known results for semidiscrete finite element Galerkin method for a parabolic equation to an integro-differential cquation of parabolic type. Optimal order convergence results are obtained in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms.

The continuous time Galerkin finite element approximation to (4.2.1) is stated as: Find $u_{h}:[0, T] \rightarrow V_{h}$ such that

$$
\begin{equation*}
\left(u_{h t}, v_{h}\right)+A_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), v_{h}\right) d s \quad \forall v_{h} \in V_{h} \tag{4.3.1}
\end{equation*}
$$

with $u_{h}(0)=L_{h} u_{0}$. Subtracting (4.3.1) from (4.2.1), we have

$$
\begin{align*}
\left(u_{t}-u_{h t}, v_{h}\right)+A\left(u-u_{h}, v_{h}\right) & =A_{h}\left(u_{h}, v_{h}\right)-A\left(u_{h}, v_{h}\right) \\
& +\int_{0}^{t} B\left(t, s ;\left(u-u_{h}\right)(s), v_{h}\right) d s \forall v_{h} \in V_{h} . \tag{4.3.2}
\end{align*}
$$

Define the crror $e(t)$ as $e(t)=u(t)-u_{h}(t)$. Sctting $v_{h}=L_{h} u$ in (4.3.2) and using (4.2.5), we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|e\|_{L^{2}(\Omega)}^{2}+ & A(e, e) \\
= & \left\{A_{h}\left(u_{h}, L_{h} u-u_{h}\right)-A\left(u_{h}, L_{h} u-u_{h}\right)\right\}+\frac{1}{2} \frac{d}{d t}\left\|u-L_{h} u\right\|_{L^{2}(\Omega)}^{2} \\
& +A\left(e, u-L_{h} u\right)+\int_{0}^{t} B\left(t, s ; e(s), L_{h} u-u\right) d s \\
& +\int_{0}^{t} B\left(t, s ; e(s), u-u_{h}\right) d s
\end{aligned}
$$

Then use cocrcivity and continuity of $A(.,$.$) to have$

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|e\|_{L^{2}(\Omega)}^{2}+C\|e(t)\|_{H^{1}(\Omega)}^{2} \\
& \leq\left|A_{h}\left(u_{h}, L_{h} u-u_{h}\right)-A\left(u_{h}, L_{h} u-u_{h}\right)\right|+\frac{1}{2} \frac{d}{d t}\left\|u-L_{h} u\right\|_{L^{2}(\Omega)}^{2} \\
& +C\|e(t)\|_{H^{1}(\Omega)}\left\|u-L_{h} u\right\|_{H^{1}(\Omega)}+C\left(\int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\left\|u-L_{h} u\right\|_{L^{2}(\Omega)} \\
& +C\left(\int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s\right)^{\frac{1}{2}}\|e(t)\|_{L^{2}(\Omega)} \\
& \leq\left|A_{h}\left(u_{h}, L_{h} u-u_{h}\right)-A\left(u_{h}, L_{h} u-u_{h}\right)\right|+\frac{1}{2} \frac{d}{d t}\left\|u-L_{h} u\right\|_{L^{2}(\Omega)}^{2} \\
& +C(\epsilon)\|e(t)\|_{H^{1}(\Omega)}^{2}+C_{\epsilon}\left\|u-L_{h} u\right\|_{H^{1}(\Omega)}^{2}+C_{\epsilon} \int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s \\
& +C(\epsilon)\left\|u-L_{h} u\right\|_{L^{2}(\Omega)}^{2}+C_{\epsilon} \int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s+C(\epsilon)\|e(t)\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Now, integrating from 0 to t and setting suitable ϵ, we obtain

$$
\begin{align*}
\int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s \leq & \int_{0}^{t}\left|A_{h}\left(u_{h}, L_{h} u-u_{h}\right)-A\left(u_{h}, L_{h} u-u_{h}\right)\right| d s \\
& +\frac{1}{2}\left\|u(t)-L_{h} u(t)\right\|_{L^{2}(\Omega)}^{2}+C \int_{0}^{t}\left\|u-L_{h} u\right\|_{H^{1}(\Omega)}^{2} d s \\
& +C \int_{0}^{t} \int_{0}^{\tau}\|e(s)\|_{H^{1}(\Omega)}^{2} d s d \tau \\
= & (I)_{1}+(I)_{2}+(I)_{3}+C \int_{0}^{t} \int_{0}^{\tau}\|e(s)\|_{H^{1}(\Omega)}^{2} d s d \tau . \tag{4.3.3}
\end{align*}
$$

For the term $(I)_{1}$, use Lcmma 2.2.2 and Lemma 2.2.4 to have

$$
\begin{aligned}
& \left|A_{h}\left(u_{h}, L_{h} u-u_{h}\right)-A\left(u_{h}, L_{h} u-u_{h}\right)\right| \\
& \leq C h\left\|u_{h}\right\|_{H^{1}(\Omega)}\left\|L_{h} u-u_{h}\right\|_{H^{1}(\Omega)} \\
& \leq C h\left\|u_{h}\right\|_{H^{1}(\Omega)}\left\|L_{h} u-u\right\|_{H^{1}(\Omega)}+C h\left\|u_{h}\right\|_{H^{1}(\Omega)}\|e(t)\|_{H^{1}(\Omega)} \\
& \leq C_{\epsilon} h^{2}\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon)\left\|L_{h} u-u\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon)\|e(t)\|_{H^{1}(\Omega)}^{2} \\
& \leq C_{\epsilon} h^{2}\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon) h^{2}\|u(x, t)\|_{X}^{2}+C(\epsilon)\|e(t)\|_{H^{1}(\Omega)}^{2}
\end{aligned}
$$

and hence

$$
\begin{align*}
(I)_{1} \leq & C_{\epsilon} h^{2} \int_{0}^{t}\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2} d s+C(\epsilon) h^{2} \int_{0}^{t}\|u(x, s)\|_{X}^{2} d s \\
& +C(\epsilon) \int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s . \tag{4.3.4}
\end{align*}
$$

Similarly for the terms $(I)_{2} \&(I)_{3}$, we have

$$
\begin{equation*}
(I)_{2} \leq C h^{4}\|u(x, t)\|_{X}^{2} \quad \& \quad(I)_{3} \leq C h^{2} \int_{0}^{t}\|u(x, s)\|_{X}^{2} d s \tag{4.3.5}
\end{equation*}
$$

Then combining the cstimates (4.3.3)-(4.3.5) and using the fact

$$
\int_{0}^{t}\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2} d s \leq C\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|f\|_{L^{2}(\Omega)}^{2} d s\right)
$$

we have

$$
\begin{aligned}
\int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s \leq & C h^{2}\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|f\|_{L^{2}(\Omega)}^{2} d s+\|u(x, t)\|_{X}^{2}\right. \\
& \left.+\int_{0}^{T}\|u(x, s)\|_{X}^{2} d s\right)+\int_{0}^{t} C\left(\int_{0}^{\tau}\|e(s)\|_{H^{1}(\Omega)}^{2} d s\right) d \tau
\end{aligned}
$$

Then a simple application of Grownwall's Lemma leads to the following optimal $L^{2}\left(H^{1}\right)$ norm crror estimate

Theorem 4.3.1 Let u and u_{h} be the solutions of the problem (4.2.1)and (4.3.1), respectively. Then, for $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$, there exist a constant C independent of h such that

$$
\begin{aligned}
\|e(s)\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \leq C h & \left(\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|f\|_{L^{2}(\Omega)}^{2} d s\right. \\
& \left.+\|u(x, T)\|_{X}^{2}+\int_{0}^{T}\|u(x, s)\|_{X}^{2} d s\right)^{\frac{1}{2}}
\end{aligned}
$$

For the L^{2} norm crror estimate we shall use the duality trick. For this purpose we consider the following interface problem: Find $w \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
A(w \cdot v)=\left(u-u_{h}, v\right) \quad \forall v \in H_{0}^{1}(\Omega) \tag{4.3.6}
\end{equation*}
$$

and its finite element approximation is defined to be the function $w_{h} \in V_{h}$ such that

$$
\begin{equation*}
A_{h}\left(w_{h}, v_{h}\right)=\left(u-u_{h}, v_{h}\right) \forall v_{h} \in V_{h} . \tag{4.3.7}
\end{equation*}
$$

Notc that $w \in X \cap H_{0}^{1}(\Omega)$ is the solution of the elliptic interface problem (4.3.6) with the jump conditions $[w]=0,\left[\beta(x) \frac{\partial w}{\partial \mathrm{n}}\right]=0 \quad$ along Γ. Further, w satisfies the a priori estimate

$$
\begin{equation*}
\|w\|_{X} \leq C\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \tag{4.3.8}
\end{equation*}
$$

Then it follows from [22] (see, Theorem 3.1) that

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{H^{1}(\Omega)} \leq C h\left\|u-u_{h}\right\|_{L^{2}(\Omega)} . \tag{4.3.9}
\end{equation*}
$$

Setting $v=u-u_{h} \in H_{0}^{1}(\Omega)$ in (4.3.6) and using (4.3.2). we obtain

$$
\begin{align*}
\|e(t)\|_{L^{2}(\Omega)}^{2}= & A\left(w-w_{h}, u-u_{h}\right)+A\left(w_{h}, u-u_{h}\right) \\
= & A\left(w-w_{h}, u-u_{h}\right)+A_{h}\left(u_{h}, w_{h}\right)-A\left(u_{h}, w_{h}\right) \\
& -\left(e_{t}, w_{h}\right)+\int_{0}^{t} B\left(t, s ; e(s), w_{h}\right) d s \\
\leq & C\left\|w-w_{h}\right\|_{H^{1}(s)}\left\|u-u_{h}\right\|_{H^{1}(\Omega)}+A_{h}\left(u_{h}, w_{h}\right)-A\left(u_{h}, w_{h}\right) \\
& -\left(e_{t}, w_{h}\right)+\int_{0}^{t} B\left(t, s ; \rho(s), w_{h}\right) d s . \tag{4.3.10}
\end{align*}
$$

Again from the equation (4.3.7), we note that

$$
\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h} \cdot w_{h}\right)=A_{h}\left(w_{h t}, w_{h}\right)=\left(u_{t}-u_{h t}, w_{h}\right)
$$

and hence, cstimate (4.3.10) reduces to

$$
\begin{align*}
\|e(t)\|_{L^{2}(\Omega)}^{2} \leq & C\left\|w-w_{h}\right\|_{H^{1}(\Omega)}\left\|u-u_{h}\right\|_{H^{1}(\Omega)}+A_{h}\left(u_{h}, w_{h}\right)-A\left(u_{h}, w_{h}\right) \\
& -\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}, w_{h}\right)+\int_{0}^{t} B\left(t, s ; e(s), w_{h}\right) d s \\
\leq & C\left\{h\|e(t)\|_{L^{2}(\Omega)}\|e(t)\|_{H^{1}(\Omega)}\right\}+C\left\{h\|e(t)\|_{H^{1}(\Omega)}\|e(t)\|_{L^{2}(\Omega)}\right. \\
& \left.+h^{2}\|u(x, t)\|_{X}\|e(t)\|_{L^{2}(\Omega)}\right\}-\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}, w_{h}\right) \\
& +C\|e(s)\|_{L^{2}\left(0, t, L^{2}(\Omega)\right)}\|e(t)\|_{L^{2}(\Omega)} . \tag{4.3.11}
\end{align*}
$$

Here, we have used the fact that $\left\|w_{h}\right\|_{H^{1}(\Omega)} \leq C\left\|u-u_{h}\right\|_{L^{2}(\Omega)}$ and the cstimate for the term $(I I)_{2}$ in [22] (see, page 216). Further, a simple application of Young's incquality leads to

$$
\begin{align*}
\|e(t)\|_{L^{2}(\Omega)}^{2} \leq & C_{\epsilon} h^{2}\|e(t)\|_{H^{1}(\Omega)}^{2}+C_{\epsilon} h^{4}\|u(x, t)\|_{X}^{2}+C_{\epsilon}\|e(s)\|_{L^{2}\left(0, t ; L^{2}(\Omega)\right)}^{2} \\
& +C(\epsilon)\|e(t)\|_{L^{2}(\Omega)}^{2}-\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}, w_{h}\right) . \tag{4.3.12}
\end{align*}
$$

Therefore, for suitable $\epsilon>0$ and integrating from 0 to t, we have

$$
\begin{align*}
\int_{0}^{t}\|e(s)\|_{L^{2}(\Omega)}^{2} d s \leq & C h^{2} \int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s+C h^{4} \int_{0}^{t}\|u(x, s)\|_{X}^{2} d s \\
& +C \int_{0}^{t} \int_{0}^{\tau}\|e(s)\|_{L^{2}(\Omega)}^{2} d s t \tau+\frac{1}{2} A_{h}\left(w_{h}(0), w_{h}(0)\right) \tag{4.3.13}
\end{align*}
$$

Taking $t \rightarrow 0$, it now follows from (4.3.7) that

$$
A_{h}\left(w_{h}(0), w_{h}(0)\right)=\left(u_{0}-L_{h} u_{0}, w_{h}(0)\right)=0
$$

This together with (4.3.13), Gronwall's inequality and Theorem 4.3.1 leads to the following optimal $L^{2}\left(L^{2}\right)$ norm crror cstimate

Theorem 4.3.2 Let u and u_{h} be the solutions of the problem (4.2.1) and (4.3.1), respectively. Then, for $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$, there exist a constant C independent of h such that

$$
\begin{aligned}
&\|e(s)\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C h^{2}\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|f\|_{L^{2}(\Omega)}^{2} d s\right. \\
&\left.+\|u(x, T)\|_{X}^{2}+\int_{0}^{T}\|u(x, s)\|_{X}^{2} d s\right)^{\frac{1}{2}}
\end{aligned}
$$

4.4 Discrete Time Galerkin Method

In this section, we shall discretize the equation (4.3.1) in time direction. We shall make use of backward difference scheme to discretize the problem in time direction and the piecewise linear finite element method in space. Optimal error estimate in $L^{2}\left(H^{1}\right)$ norm is derived for smooth initial function.

We first divide the interval $[0, T]$ into M equally spaced subintervals by the following points

$$
0=t^{0}<t^{1}<\cdots<t^{M}=T,
$$

with $t^{n}=n k, k=T / M$ be the time step. Let $I_{n}=\left(t_{n-1} . t_{n}\right]$ be the n-th sub interval. For a given scquence $\left\{\phi^{n}\right\}_{n=1}^{M} \subset L^{2}(\Omega)$, we introduce the backward difference quotient

$$
\Delta_{k} \phi^{n}=\frac{\phi^{n}-\phi^{n-1}}{k}
$$

The fully discrete finite element approximation to the problem (4.3.1) is defined as follows: For $1 \leq n \leq M$, find $U^{n} \in V_{h}$ such that

$$
\begin{equation*}
\left(\Delta_{k} U^{n}, v_{h}\right)+A_{h}\left(U^{n}, v_{h}\right)=\left(f^{n}, v_{h}\right)+k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; U^{\jmath}, v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{4.4.1}
\end{equation*}
$$

with $U^{0}=L_{h} u_{0}$ and the integral term in (4.3.1) has been approximated by the rectangle rulc

$$
\int_{0}^{t_{n}} \phi(s) d s \approx k \sum_{j=0}^{n-1} \phi^{j}=Q_{1}^{n} \phi, 0<t_{n} \leq T
$$

Note that the quadrature error in $I_{n}=\left(t_{n-1}, t_{n}\right)$ is estimated as

$$
\int_{I_{n}} \phi(s) d s-k \phi^{n-1}=\int_{I_{n}} \int_{t_{n-1}}^{s} \phi^{\prime}(\tau) d \tau d s=\int_{I_{n}}\left(t_{n}-\tau\right) \phi^{\prime}(\tau) d \tau
$$

and hence

$$
\begin{equation*}
\left|Q_{1}^{n} \phi-\int_{0}^{t_{n}} \phi(s) d s\right| \leq k \int_{0}^{t_{n}}\left|\phi^{\prime}(\tau)\right| d \tau \tag{4.4.2}
\end{equation*}
$$

Regarding the stability of the fully discrete solution, we have the following result.
Lemma 4.4.1 Let U^{n} be the solution for the fully dascrete scheme defined by (4.4.1), then we have

$$
\begin{aligned}
\left\|U^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M}\left\|U^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & C k \sum_{n=1}^{M}\left\|f^{n}\right\|_{L^{2}(\Omega)}^{2}+C k \int_{0}^{T}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} d s \\
& +C k \int_{0}^{T}\|u\|_{L^{2}(\Omega)}^{2} d s+C\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Proof. The lemma can be proved by setting $v_{h}=k U^{n}$ in (4.4.1) and using (4.4.2). We omit the details.

For the convenience, let us define the piecewise constant function $U_{h, k}$ in time by $U_{h, k}(x, t)=U^{n}(x), \forall t \in I_{n}, n=1,2,3, \ldots, M$. Then, regarding the convergence of $U_{h, k}$, we have the following result.

Theorem 4.4.1 Let u and $U_{h k}$ be the solutions of the problems (4.2.1) and (4.4.1), respectively. Assume that $u_{0} \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega), f \in H^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $f(x, 0) \in$ $H^{2}(\Omega)$. Then there exist a positive constant C, independent of h and k such that

$$
\left\|u-U_{h k}\right\|_{L^{2}\left(0, T, H^{2}(\Omega)\right)} \leq C\left(u_{0}, f, u, u_{t}, u_{t t}\right)(k+h) .
$$

Proof. At $t=t_{n}$, (4.2.1) reduces to

$$
\begin{equation*}
\left(u_{t}^{n}, v_{h}\right)+A\left(u^{n}, v_{h}\right)=\left(f^{n}, v_{h}\right)+\int_{0}^{t_{n}} B\left(t_{n}, s ; u(s), v_{h}\right) d s \quad \forall v \in H_{0}^{1}(\Omega) . \tag{4.4.3}
\end{equation*}
$$

For simplicity of the exposition, we write $u^{n}=u(x . n k), e^{n}=u^{n}-U^{n}$ and $w^{n}=$ $u^{n}-P_{h} u^{n}$. Using (4.4.1) and (4.4.3), it follows that

$$
\begin{align*}
& \left(\Delta_{k} e^{n}, e^{n}\right)+A\left(e^{n}, e^{n}\right) \\
& =\left(\Delta_{k} e^{n}, w^{n}\right)+A\left(e^{n} \cdot w^{n}\right)+\left(\Delta_{k} u^{n}-u_{t}^{n} \cdot P_{h} u^{n}-U^{n}\right) \\
& +\left\{A_{h}\left(U^{n}, P_{h} u^{n}-U^{n}\right)-A\left(U^{n}, P_{h} u^{n}-U^{n}\right)\right\} \\
& +\left\{\int_{0}^{t_{n}} B\left(t_{n}, s ; u(s), U^{n}-P_{h} u^{n}\right) d s-k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; u^{j}, U^{n}-P_{h} u^{n}\right)\right\} \\
& +k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; e^{\jmath}, U^{n}-P_{h} u^{n}\right) \\
& =: \sum_{j=1}^{6}(I I)_{\jmath} . \tag{4.4.4}
\end{align*}
$$

where

$$
\begin{aligned}
& (I I)_{1}=\left(\Delta_{k} e^{n}, w^{n}\right), \quad(I I)_{2}=A\left(e^{n}, w^{n}\right), \quad(I I)_{3}=\left(\Delta_{k} u^{n}-u_{t}^{n}, P_{h} u^{n}-U^{n}\right), \\
& (I I)_{4}=\left\{A_{h}\left(U^{n}, P_{h} u^{n}-U^{n}\right)-A\left(U^{n}, P_{h} u^{n}-U^{n}\right)\right\}, \\
& (I I)_{5}=\int_{0}^{t_{n}} B\left(t_{n}, s ; u(s), U^{n}-P_{h} u^{n}\right) d s-h \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; u^{3}, U^{n}-P_{h} u^{n}\right) \\
& (I I)_{6}=k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; e^{\jmath}, U^{n}-P_{h} u^{n}\right) .
\end{aligned}
$$

Summing (4.4.4) over n from $n=1$ to $n=M$, we have

$$
\begin{align*}
\frac{1}{2}\left\|e^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M} A\left(e^{n}, e^{n}\right)+ & \frac{k}{2} \sum_{n=1}^{M}\left\|\Delta_{k} e^{n}\right\|_{L^{2}(\Omega)}^{2} \\
& \leq \frac{1}{2}\left\|e^{0}\right\|_{L^{2}(\Omega)}^{2}+C k \sum_{n=1}^{M} \sum_{j=1}^{6}(I I)_{j} \tag{4.4.5}
\end{align*}
$$

Using Lemma 2.2.3 and Young's inequality, we obtain

$$
\begin{equation*}
k \sum_{n=1}^{M}(I I)_{1} \leq C_{\epsilon} h^{4} k \sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2}+C(\epsilon) k \sum_{n=1}^{M}\left\|\Delta_{k} e^{n}\right\|_{L^{2}(\Omega)}^{2} \tag{4.4.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
k \sum_{n=1}^{M}(I I)_{2} \leq C_{\epsilon} h^{2} k \sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2}+C(\epsilon) k \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} \tag{4.4.7}
\end{equation*}
$$

To cstimate $k \sum_{n=1}^{M}(I I)_{3}$, we first note that

$$
\Delta_{k} u^{n}-\frac{\partial u^{n}}{\partial t}=-\frac{1}{k} \int_{t_{n-1}}^{t_{n}}\left(s-t_{n-1}\right) u_{s s}(s) d s
$$

and hence using Lemma 2.2.3, we obtain

$$
\begin{align*}
k \sum_{n=1}^{M}(I I)_{3} \leq & C_{\epsilon} k^{2}\left\|u_{t t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+C(\epsilon) h^{2} k \sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2} \\
& +C(\epsilon) k \sum_{n=1}^{M}\left\|e^{n}\right\|_{L^{2}(\Omega)}^{2} \tag{4.4.8}
\end{align*}
$$

Using Lemma 2.2.2, we obtain

$$
\begin{align*}
k \sum_{n=1}^{M}(I I)_{4} \leq & C h k \sum_{n=1}^{M}\left\{\left\|U^{n}\right\|_{H^{1}(\Omega)}\left\|P_{h} u^{n}-U^{n}\right\|_{H^{1}(\Omega)}\right\} \\
\leq & h k \sum_{n=1}^{M}\left\{C_{c}\left\|U^{n}\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon)\left\|P_{h} u^{n}-U^{n}\right\|_{H^{1}(\Omega)}^{2}\right\} \\
\leq & C(\epsilon) h k \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon) h^{3} k \sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2} \\
& +C h k \sum_{n=1}^{M}\left\|f^{n}\right\|_{L^{2}(\Omega)}^{2}+C h k \int_{0}^{T}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} d s \\
& +C h k \int_{0}^{T}\|u\|_{L^{2}(\Omega)}^{2} d s+C h\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2} \tag{4.4.9}
\end{align*}
$$

In the last inequality, we have used Lemma 2.2.3 and Lemma 4.4.1.
Again, setting $p=4$ in the Sobolev cmbedding incquality (cf. [62, 63])

$$
\|v\|_{L^{p}(K)} \leq C p^{\frac{1}{2}}\|v\|_{H^{1}(K)} \quad \forall v \in H^{1}(K), \quad p>2
$$

and using Hölder's inequality, we obtain

$$
\begin{aligned}
\left\|u_{0}\right\|_{L^{2}(\Omega)}= & \sum_{K \in \mathcal{T}_{h}}\left\|u_{0}\right\|_{L^{2}(K)} \\
& \leq C h^{\frac{1}{2}} \sum_{K \in \mathcal{T}_{h}}\left\|u_{0}\right\|_{L^{1}(K)} \\
& \leq C h^{\frac{1}{2}} \sum_{K \in \mathcal{T}_{h}}\left\|u_{0}\right\|_{H^{1}(K)}=C h^{\frac{1}{2}}\left\|u_{0}\right\|_{H^{1}(\Omega)}
\end{aligned}
$$

wherc we have used the fact that $\operatorname{meas}(K) \leq C h^{2}, K \in \mathcal{T}_{h}$. Using this fact in (4.4.9), we have

$$
\begin{align*}
k \sum_{n=1}^{M}(I I)_{4} \leq & C(\epsilon) h k \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon) h^{3} k \sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2} \\
& +C h k \sum_{n=1}^{M}\left\|f^{n}\right\|_{L^{2}(\Omega)}^{2}+C h k \int_{0}^{T}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} d s \\
& +C h k \int_{0}^{T}\|u\|_{L^{2}(\Omega)}^{2} d s+C h^{2}\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2} \tag{4.4.10}
\end{align*}
$$

Finally, (4.4.2) lcads to

$$
\begin{align*}
k \sum_{n=1}^{M}(I I)_{5} \leq & \sum_{n=1}^{M} k^{2} \int_{t_{n-1}}^{t_{n}}\left\{\|u\|_{H^{1}(\Omega)}+\left\|u_{s}\right\|_{L^{2}(\Omega)}\right\} d s\left\|\omega^{n}\right\|_{H^{1}(\Omega)} \\
& +\sum_{n=1}^{M} k^{2} \int_{t_{n-1}}^{t_{n}}\left\{\|u\|_{H^{1}(\Omega)}+\left\|u_{s}\right\|_{L^{2}(\Omega)}\right\} d s\left\|e^{n}\right\|_{H^{1}(\Omega)} \\
\leq & C_{\epsilon} k^{2} \sum_{n=1}^{M} \int_{t_{n-1}}^{t_{n}}\left\{\|u\|_{H^{1}(\Omega)}+\left\|u_{s}\right\|_{L^{2}(\Omega)}\right\}^{2} d s+C(c) k^{2} \sum_{n=1}^{M}\left\|w^{n}\right\|_{H^{1}(\Omega)}^{2} \\
& +C(\epsilon) k^{2} \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} \\
\leq & C_{\epsilon} k^{2}\left\{\|u\|_{L^{2}\left(0, T, H^{1}(\Omega)\right)}+\left\|u_{t}\right\|_{L^{2}\left(0, T, L^{2}(\Omega)\right)}\right\}^{2}+C(\epsilon) k h^{2} \sum_{n=1}^{M} k\left\|u^{n}\right\|_{X}^{2} \\
& +C(\epsilon) k^{2} \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} . \tag{4.4.11}
\end{align*}
$$

Then, for $k=\mathrm{O}(h)$ and suitable $\epsilon>0$, it follows from the estimates (4.4.5)-(4.4.11) that

$$
\begin{align*}
\sum_{n=1}^{M} k\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & C h^{2}\left(\left\|u_{0}\right\|_{X}^{2}+\sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2}+\|u\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}\right. \\
& +\left\|u_{t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+\left\|u_{t t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2} \\
& \left.+\sum_{n=1}^{M}\left\|f^{n}\right\|_{\left.L^{2}(\Omega)\right)}^{2}\right)+C k^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; e^{\jmath}, U^{n}-P_{h} u^{n}\right) \\
& =\tilde{C}+C k^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; e^{J}, U^{n}-P_{h} u^{n}\right) \tag{4.4.12}
\end{align*}
$$

Then it follows from [14] (sce, Lemma 7 therein) that

$$
\begin{aligned}
\sum_{n=1}^{M} k\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & \tilde{C}+C(\epsilon) k^{2} \sum_{n=1}^{M}\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2}+C_{\epsilon} k^{2} \sum_{n=1}^{M-1} \sum_{j=0}^{n-1}\left\|e^{\jmath}\right\|_{H^{1}(\Omega)}^{2} \\
& +C(c) k^{2} \sum_{n=1}^{M}\left\|w^{n}\right\|_{H^{1}(\Omega) \cdot}^{2} .
\end{aligned}
$$

Thus, for suitable $\epsilon>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{M} k\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2} \leq \tilde{C}+C k h^{2} \sum_{n=1}^{M} k\left\|u^{n}\right\|_{X}^{2}+C k^{2} \sum_{n=1}^{M-1} \sum_{j=0}^{n-1}\left\|e^{\jmath}\right\|_{H^{1}(\Omega)}^{2} \tag{4.4.13}
\end{equation*}
$$

Sctting $\xi_{l}=\sum_{n=1}^{l} k\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2}$ in (4.4.13), we obtain

$$
\xi_{M} \leq \tilde{C}+C k \sum_{n=1}^{M-1} \xi_{n} .
$$

Then a simple application of discrete Grownwall's lemma leads to

$$
\begin{align*}
\xi_{M} \leq & C h^{2}\left(\left\|u_{0}\right\|_{X}^{2}+\sum_{n=1}^{M}\left\|u^{n}\right\|_{X}^{2}+\|u\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+\left\|u_{t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}\right. \\
& \left.+\left\|u_{t t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+\sum_{n=1}^{M}\left\|f^{n}\right\|_{L^{2}(\Omega)}^{2}\right) \tag{4.4.14}
\end{align*}
$$

Again it follows from Chen and Zou [15] that

$$
\begin{equation*}
\left\|u-U_{h k}\right\|_{L^{2}\left(0, T, H^{1}(\Omega)\right)} \leq C k\left\|u_{t}\right\|_{L^{2}(0, T ; Y)}+C\left(\sum_{n=1}^{M} k\left\|e^{n}\right\|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \tag{4.4.15}
\end{equation*}
$$

Then Theorem 4.4 .1 follows immediatcly from (4.4.14)-(4.4.15).

Chapter 5

FEM for Parabolic

Integro-Differential Equations with
 Interfaces: $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ Error Estimates

In the previous chapter, we have considered a interface problem of parabolic-integro type with first order memory term. Finite element treatment for parabolic integrodifferential equations with discontinuous coefficients and second order memory term are presented in this work. Convergence of continuous time Galerkin method for the spatially discrete scheme and backward difference scheme in time direction are discussed in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms for fitted finite element method with straight interface triangles. Optimal crror estimates are derived in $L^{2}\left(H^{m}\right)$ and $L^{\infty}\left(H^{m}\right)$ norms when initial data $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{0} \in H^{3} \cap H_{0}^{1}(\Omega)$, respectively.

5.1 Introduction

The aim of this chapter is to analyze finite element mothods for solving initial-boundary value problems of the form

$$
\begin{equation*}
u_{t}(x, l)-\nabla \cdot(\beta \nabla u(x, t))=f(x, l)+\int_{0}^{t} B(t, s) u(s) d s \text { in } \Omega \times(0, T] \tag{5.1.1}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { in } \Omega \& u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T] \tag{5.1.2}
\end{equation*}
$$

where $\Omega=\Omega_{1} \cup \Gamma \cup \Omega_{2}$ is a convex polygonal domain in \mathbb{R}^{2} with boundary $\partial \Omega$ and $\Omega_{1} \subset \Omega$ is an open domain with C^{2} smooth boundary $\Gamma=\partial \Omega_{1}$. Let $\Omega_{2}=\Omega \backslash \bar{\Omega}_{1}$ (see, Figure 1.1). Information between both the domains are transferred via jump conditions

$$
\begin{equation*}
[u]=0, \quad\left[\beta(x) \frac{\partial u}{\partial \mathbf{n}}\right]=0 \quad \text { along } \Gamma \times(0, T] \tag{5.1.3}
\end{equation*}
$$

The symbol $[v]$ is a jump of a quantity v across the interface Γ and \mathbf{n} denotes the unit outward normal to the boundary $\partial \Omega_{1}$. We write

$$
\beta(x)=\beta_{i} \quad \text { for } \quad x \in \Omega_{\imath}, i=1,2
$$

Further, $B(t, s)$ is a second order partial differential operator of the form

$$
B(l, s) u(s)=-\nabla \cdot(b(x ; t, s) \nabla u)+b_{0}(x ; l, s) u(x, s)
$$

Cocfficients of $B(t, s)$ arc assumed to be smooth and satisfy the following assumption: there exists a positive constant K_{1} such that

$$
\begin{equation*}
|b(x ; t, s)|,\left|b_{0}(x ; t, s)\right| \&\left|b^{\prime}(x ; t, s)\right| \leq K_{1} \quad \text { in } \Omega \times(0, T] \tag{5.1.4}
\end{equation*}
$$

$b^{\prime}(x ; t, s)$ is the partial derivative of b with respect to s. The non-homogencous term $f=f(x, t)$ and initial data $u_{0}(x)$ are given functions.

In this chapter, an attempt is made to carry over known results of finite element Galerkin method for non interface parabolic integro-differential equation to integrodifferential equation of parabolic type with discontinuous coefficients. A priori error estimates are derived for minimum smooth and sufficiently regular initial data. More precisely, optimal error estimates are derived in $L^{2}\left(I^{m}\right)$ and $L^{\infty}\left(I^{m}\right)$ norms when initial data $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{0} \in H^{3} \cap H_{0}^{1}(\Omega)$, respectively. The achieved estimates are analogous to the case with a regular solution, however, due to low regularity, the proof requires a carcful technical work coupled with a approximation result for the RitzVolterra projection under minimum regularity assumption. Other technical tools used in this work are Sobolev cmbedding incquality, approximation propertics for clliptic
projection, duality arguments and some known results on elliptic interface problems. The main emphasis of this work is on the theoretical aspect of convergence of finite element method under the low global regularity of the truc solution. Numerical solutions by means of finite element Galerkin procedures for the parabolic integro-differential cquation without interface can be found in $[10,12,14,42,48,64,66,67]$.

For the purpose of finite element Galerkin procedure, we need bilinear forms associated with the operators in (5.1.1). Let $A(.,$.$) and B(t, s ;, .$, be the bilinear forms on $H_{0}^{1} \times H_{0}^{1}$ corresponding to operators \mathcal{L} and $B(t, s)$ i.e.,

$$
\begin{aligned}
A(w, v) & =\int_{s 2} \beta(x) \nabla w \cdot \nabla v d x \text { and } \\
B(l, s ; w(s), v) & =\int_{\Omega 2}\left(b(x ; l, s) \nabla w(x, s) \cdot \nabla v+b_{0}(x ; l, s) w(x, s) v\right) d x .
\end{aligned}
$$

The organization of this chapter is as follows: While section 5.2 introduces the regularity of the problem, finite element discretization and approximation properties of some auxiliary projection, section 5.3 is concerned with the convergence of semidiscrete finitc clement solution to the exact solution in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms. section 5.4 is devoted to the point wisc in time crror analysis in L^{2} and H^{1} norms for the semidiscrete case. Finally, backward difference scheme has been used to discretize the problem in time direction and related error cstimates are derived in section 5.5.

5.2 Preliminaries

In this section, we shall study the regularity and the finite element approximation to the solution of the interface problems (5.1.1)-(5.1.3).

The weak formulation of the problem (5.1.1)-(5.1.3) may be stated as: Find $u:[0, T] \rightarrow H_{0}^{1}$ such that

$$
\begin{equation*}
\left(u_{t}, \phi\right)+A(u, \phi)=\int_{0}^{t} B(t, s ; u(s), \phi) d s+(f, \phi) \quad \forall \phi \in H_{0}^{1}(\Omega), t \in(0, T] \tag{5.2.1}
\end{equation*}
$$

with $u(x, 0)=u_{0}$.
Clearly, under the assumptions (5.1.4), the problem (5.2.1) has a unique solution $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ (cf. [64]). Again it follows from the analysis of previous chapter that the solution u can be characterized as a solution of parabolic interface problem. For
the regularity results of parabolic interface problems, we refor to [15, 39, 58]. Therefore, we assume the following regularity result for the weak solution u.

Theorem 5.2.1 Let $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$. Then the problem (5.2.1) has a unique solution $u \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}(0, T ; Y)$.

Remark 5.2.1 It is observed from the regularity result that $u_{0} \in H_{0}^{1}(\Omega)$ is the minimum regularity assumption for the extstence of solution in $L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}(0, T ; Y)$ (cf. [15, 39]). For more regular initial data $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, it follows from Chapter 3 that $u \in L^{2}\left(0, T ; X \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega) \cap H^{2}\left(\Omega_{1}\right) \cap\right.$ $\left.I^{2}\left(\Omega_{2}\right)\right)$.

Central to the analysis of finite element methods for integro-differential equations has been the Ritz-Volterra projection introduced in [42]. Bcfore procceding further, let us recall some notations from Chapter 3. Let Y^{\star} be the collection of all $v \in L^{2}(\Omega)$ such that $v \in H^{1}\left(\Omega_{1}\right) \cap H^{1}\left(\Omega_{2}\right) \cap\{\psi: \psi=0$ on $\partial \Omega\}$ with $[v]=0$ along Γ. For any $v \in Y^{\star}$, wo define

$$
\begin{equation*}
A_{h}\left(R_{h} v, v_{h}\right)=A^{1}\left(v, v_{h}\right)+A^{2}\left(v, v_{h}\right) \quad \forall v_{h} \in V_{h} . \tag{5.2.2}
\end{equation*}
$$

The Ritz-Voltcrra projection $W_{h}: Y^{\star} \rightarrow V_{h}$ is defined as

$$
\begin{align*}
A_{h}\left(W_{h} v, v_{h}\right)= & A_{h}\left(R_{h} v, v_{h}\right) \\
& +\int_{0}^{t} \tilde{B}\left(l, s ;\left(W_{h} v-v\right)(s), v_{h}\right) d s \quad \forall v_{h} \in V_{h}, v \in Y^{\star} . \tag{5.2.3}
\end{align*}
$$

Here, bilincar map $\tilde{B}(t, s ;,$.$) is defined as$

$$
\tilde{B}(t, s ; w(s), z)=\sum_{l=1}^{2} \int_{\Omega_{l}}\left(b(x ; t, s) \nabla w(x, s) \cdot \nabla z+b_{0}(x ; t, s) w(x, s) z\right) d x
$$

Note that, for $v \in X \cap H_{0}^{1}(\Omega), W_{h} v$ satisfies the following identity

$$
\begin{aligned}
A_{h}\left(W_{h} v, v_{h}\right)= & A_{h}\left(R_{h} v, v_{h}\right) \\
& +\int_{0}^{t} B\left(t, s ;\left(W_{h} v-v\right)(s), v_{h}\right) d s \quad \forall v_{h} \in V_{h} .
\end{aligned}
$$

The approximation properties of Ritz-Volterra projection are well known (c.f. [12], [42]) for sufficiently smooth functions. Here, indeed we will show the same optimal
crror estimates for H^{1} and L^{2} norms, even if the solution u does not belong to H^{2} globally.

By setting $v_{h}=W_{h} v(t)-R_{h} v(t)$ in (5.2.3) and using Lemma 3.2.2, we obtain

$$
\begin{aligned}
&\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)}^{2} \\
& \leq C\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)} \int_{0}^{t} \sum_{l=1}^{2}\left\|W_{h} v(s)-v(s)\right\|_{H^{1}\left(\Omega_{l}\right)} d s \\
& \leq C_{\epsilon}\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)}^{2} \\
&+C(\epsilon) \int_{0}^{t}\left\{\left\|W_{h} v(s)-R_{h^{\prime}} v(s)\right\|_{H^{1}(\Omega)}^{2}+\sum_{l=1}^{2}\left\|R_{h} v(s)-v(s)\right\|_{H^{1}\left(\Omega_{l}\right)}^{2}\right\} d s \\
& \leq C_{\epsilon}\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)}^{2}+C(\epsilon) \int_{0}^{t}\left\|W_{h} v(s)-R_{h} v(s)\right\|_{H^{1}(\Omega)}^{2} d s \\
&+C(c) h^{2} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s .
\end{aligned}
$$

Hence, for suitable c >0, we obtain

$$
\begin{aligned}
\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)}^{2} \leq & C h^{2} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(s_{2}\right)}^{2}\right\} d s \\
& +C \int_{0}^{t}\left\|W_{h} v(s)-R_{h} v(s)\right\|_{H^{1}(\Omega)}^{2} d s
\end{aligned}
$$

Then Grownwall's incquality leads to

$$
\left\|W_{h} v(t)-R_{h} v(t)\right\|_{H^{1}(\Omega)}^{2} \leq C h^{2} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s
$$

and hence

$$
\begin{align*}
\sum_{l=1}^{2}\left\|W_{h} v(l)-v(l)\right\|_{H^{1}\left(\Omega_{l}\right)}^{2} \leq & C h^{2} \sum_{l=1}^{2}\|v(l)\|_{H^{2}\left(\Omega_{l}\right)}^{2} \\
& +C h^{2} \int_{0}^{t} \sum_{l=1}^{2}\|v(s)\|_{H^{2}\left(\Omega_{l}\right)}^{2} d s \tag{5.2.4}
\end{align*}
$$

For the L^{2} norm error estimate, we consider the following interface problem: For fixed $t \in[0, T]$, find $z(t) \in X \cap H_{0}^{1}(\Omega)$ such that

$$
-\nabla \cdot(\beta(x) \nabla z(l))=W_{h} v(t)-R_{h} v(l) \text { in } \Omega
$$

along with interface conditions $[z]=0=[\partial z / \partial \mathbf{n}]$ along Γ. Then z satisfies the following a priori estimate

$$
\|z(t)\|_{H^{2}\left(\Omega_{1}\right)}+\|z(t)\|_{H^{2}\left(\Omega_{2}\right)} \leq C\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)} .
$$

For $\phi \in H_{0}^{1}(\Omega)$, we obtain

$$
\begin{aligned}
-\int_{\Omega} \nabla \cdot(\beta(x) \nabla z(t)) \phi d x & =-\int_{\partial \Omega} \beta(x) \nabla z(t) \cdot \mathbf{n} \phi d s+\int_{\Omega} \beta(x) \nabla z(t) \cdot \nabla \phi d x \\
& =\int_{\Omega \Omega} \beta(x) \nabla z(t) \cdot \nabla \phi d x=A(z(t), \phi)
\end{aligned}
$$

Thus, weak formulation may be defined as : Find $z(t) \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
A(z(t), \phi)=\left(W_{h} v(t)-R_{h} v(t), \phi\right) \quad \forall \phi \in H_{0}^{1}(\Omega) \tag{5.2.5}
\end{equation*}
$$

and finite element approximation $z_{h}(t) \in V_{h}$ satisfying

$$
\begin{equation*}
A_{h}\left(z_{h}(t), \phi_{h}\right)=\left(W_{h} v(t)-R_{h} v(t), \phi_{h}\right) \forall \phi_{h} \in V_{h} . \tag{5.2.6}
\end{equation*}
$$

Next, apply Theorem 3.1 in [22] to have

$$
\left\|z(t)-z_{h}(t)\right\|_{H^{1}(\Omega)} \leq C h\left\|W_{h} v(l)-R_{h^{2}} v(t)\right\|_{L^{2}(\Omega)} .
$$

Setting $\phi_{h}=W_{h} v(t)-R_{h} v(t)$ in (5.2.6), we have

$$
\begin{align*}
\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)}^{2} & =A_{h}\left(z_{h}(t), W_{h} v(t)-R_{h} v(t)\right) \\
& =\int_{0}^{t} \tilde{B}\left(t, s ;\left(W_{h} v-v\right)(s), z_{h}(t)\right) d s \\
& \equiv: T_{1}+T_{2}, \tag{5.2.7}
\end{align*}
$$

with

$$
\begin{aligned}
& T_{1}=\int_{0}^{t} \tilde{B}\left(t, s ;\left(W_{h} v-v\right)(s),\left(z_{h}-z\right)(t)\right) d s, \\
& T_{2}=\int_{0}^{t} \tilde{B}\left(t, s ;\left(W_{h} v-v\right)(s), z(t)\right) d s .
\end{aligned}
$$

For the term T_{1}, we usc (5.2.4) to have

$$
\begin{align*}
\left|T_{1}\right| \leq & C\left\|z_{h}(t)-z(t)\right\|_{H^{1}(\Omega)} \int_{0}^{t} \sum_{l=1}^{2}\left\|W_{h} v(s)-v(s)\right\|_{H^{1}\left(\Omega_{l}\right)} d s \\
\leq & C h\|z(t)\|_{X} C h \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}\right\} d s \\
\leq & C h^{2}\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}\right\} d s \\
\leq & C_{\epsilon}\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)}^{2} \\
& +C(\epsilon) h^{4} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\left(\Omega_{1}\right)\right.}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s . \tag{5.2.8}
\end{align*}
$$

To estimate T_{2}, we need some preparation. For $\phi \in L^{2}(0, T ; Y)$ with $[\phi]=0$ along Γ, we have

$$
\begin{aligned}
& \int_{s 1_{1}} b(x ; t, s) \nabla \phi \nabla z d x+\int_{s 2_{2}} b(x ; t, s) \nabla \phi \nabla z d x \\
& =\int_{\Gamma} b(x ; t, s) \frac{\partial z_{1}}{\partial \mathbf{n}} \phi d s-\int_{\Gamma} b(x ; t, s) \frac{\partial z_{2}}{\partial \mathbf{n}} \phi d s \\
& \quad-\int_{s \Omega_{1}} \nabla \cdot(b(x ; t, s) \nabla z) \phi d x-\int_{s l_{2}} \nabla \cdot(b(x ; t, s) \nabla z) \phi d x .
\end{aligned}
$$

Using the fact $\left[\frac{\partial z}{\partial \mathrm{n}} \phi\right]=0$ along Γ, we obtain

$$
\begin{aligned}
\tilde{B}\left(t, s ; W_{h} v(t)-v(t), z(t)\right)= & -\sum_{l=1}^{2} \int_{s_{l}} \nabla \cdot(b(x ; t, s) \nabla z(t))\left(W_{h} v-v\right)(t) d x \\
& +\sum_{l=1}^{2} \int_{\Omega_{l}} b_{0}(x ; t, s) z(t)\left(W_{h} v-v\right)(t) d x
\end{aligned}
$$

so that

$$
\left|\tilde{B}\left(t . s ; W_{h} v(t)-v(t), z(t)\right)\right| \leq C\left\|W_{h} v(t)-v(t)\right\|_{L^{2}(\Omega)} \sum_{l=1}^{2}\|z(t)\|_{H^{2}\left(s_{l}\right)}
$$

Hence

$$
\begin{aligned}
\left|T_{2}\right| & \leq C\|z(t)\|_{X} \int_{0}^{t}\left\|W_{h} v(s)-v(s)\right\|_{L^{2}(\Omega)} d s \\
& \leq C_{\epsilon}\|z(t)\|_{X}^{2}+C(\epsilon) \int_{0}^{t}\left\|W_{h} v(s)-v(s)\right\|_{L^{2}(\Omega)}^{2} d s
\end{aligned}
$$

This together with Lemma 3.2.2 leads to

$$
\begin{align*}
\left|T_{2}\right| \leq & C\|z(t)\|_{X} \int_{0}^{t}\left\|W_{h} v(s)-v(s)\right\|_{L^{2}(\Omega)} d s \\
\leq & C_{\epsilon}\|z(t)\|_{X}^{2}+C(\epsilon) \int_{0}^{t}\left\|W_{h} v(s)-v(s)\right\|_{L^{2}(\Omega)}^{2} d s \\
\leq & C_{\epsilon}\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)}^{2}+C(\epsilon) h^{4} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega \Omega_{2}\right)}^{2}\right\} d s \\
& +C(\epsilon) \int_{0}^{t}\left\|W_{h} v(s)-R_{h} v(s)\right\|_{L^{2}(\Omega)}^{2} d s . \tag{5.2.9}
\end{align*}
$$

Combining (5.2.7)-(5.2.9) and sctting suitable $\epsilon>0$, we obtain

$$
\begin{aligned}
\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)}^{2} \leq & C h^{4} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s \\
& +C \int_{0}^{t}\left\|W_{h^{v}} v(s)-R_{h} v(s)\right\|_{L^{2}(\Omega)}^{2} d s .
\end{aligned}
$$

Finally, Grownwall's Lemma yields

$$
\left\|W_{h} v(t)-R_{h} v(t)\right\|_{L^{2}(\Omega)}^{2} \leq C h^{4} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s
$$

Hence, Lemma 3.2.2 leads to

$$
\begin{align*}
\left\|W_{h} v(t)-v(t)\right\|_{L^{2}(\Omega)}^{2} \leq & C h^{4}\left\{\|v(t)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(t)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} \\
& +C h^{4} \int_{0}^{t}\left\{\|v(s)\|_{H^{2}\left(\Omega_{1}\right)}^{2}+\|v(s)\|_{H^{2}\left(\Omega_{2}\right)}^{2}\right\} d s . \tag{5.2.10}
\end{align*}
$$

5.3 $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms Error Estimates

In this section, optimal order convergence results are obtained in $L^{2}\left(L^{2}\right)$ and $L^{2}\left(I^{1}\right)$ norms for semidiscrete finite element Galerkin method. Here, we have assumed $u_{0} \in$ $H_{0}^{1}(\Omega)$ and $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$.

The continuous time Galerkin finite element approximation to (5.2.1) is stated as: Find $u_{h}:[0, T] \rightarrow V_{h}$ such that

$$
\begin{equation*}
\left(u_{h t}, v_{h}\right)+A_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)+\int_{0}^{t} B\left(t, s ; u_{h}(s), v_{h}\right) d s \quad \forall v_{h} \in V_{h} \tag{5.3.1}
\end{equation*}
$$

with $u_{h}(0)=L_{h} u_{0}$. Subtracting (5.3.1) from (5.2.1), we have

$$
\begin{align*}
\left(u_{t}-u_{h t}, v_{h}\right)+A\left(u-u_{h}, v_{h}\right) & =A_{h}\left(u_{h}, v_{h}\right)-\Lambda\left(u_{h}, v_{h}\right) \\
& +\int_{0}^{t} B\left(t, s ;\left(u-u_{h}\right)(s), v_{h}\right) d s \forall v_{h} \in V_{h} . \tag{5.3.2}
\end{align*}
$$

Define the error $e(t)$ as $e(t)=u(t)-u_{h}(t)$. Then following the lines of proof for Theorem 4.3.1 in Chapter 4, it is possible to obtain the following optimal crror cstimate in $L^{2}\left(H^{1}\right)$ norm. For $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$, there exists a constant C independent of h such that

$$
\begin{align*}
\|e(s)\|_{L^{2}\left(0, t ; H^{1}(\Omega)\right)} \leq & C h\left(\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\int_{0}^{t}\|f(s)\|_{L^{2}(\Omega)}^{2} d s\right. \\
& \left.+\|u(l)\|_{X}^{2}+\int_{0}^{t}\|u(s)\|_{X}^{2} d s\right)^{\frac{1}{2}} \\
\equiv & C\left(u_{0}, f, u\right) h . \tag{5.3.3}
\end{align*}
$$

Here, $C\left(u_{0}, f, u_{t}\right)$ is a positive constant, independent of h, such that

$$
C\left(u_{0}, f, u\right)=C\left(\left\|u_{0}\right\|_{H^{1}(\Omega)}^{2}+\int_{0}^{t}\|f(s)\|_{L^{2}(s)}^{2} d s+\|u(t)\|_{X}^{2}+\int_{0}^{t}\|u(s)\|_{X}^{2} d s\right)^{\frac{1}{2}}
$$

for some positive constant C.
The memory term considered in Chapter 4 involve only a first order partial differential cquation and hence Thcorem 4.3.2, therein, can not be casily extended for the equation (5.1.1) containing sccond order equation as memory. For the L^{2} norm error estimate, we again recall the duality trick: For fixed $t \in[0, T]$, find $w(t) \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
A(w(t), v)=\left(u(t)-u_{h}(t), v\right) \quad \forall v \in H_{0}^{1}(\Omega) \tag{5.3.4}
\end{equation*}
$$

and its finite element approximation is defined to be the function $w_{h}(t) \in V_{h}$ such that

$$
\begin{equation*}
A_{h}\left(w_{h}(t) \cdot v_{h}\right)=\left(u(t)-u_{h}(t), v_{h}\right) \quad \forall v_{h} \in V_{h} . \tag{5.3.5}
\end{equation*}
$$

Note that solution $w(t)$ to the problem (5.3.4) belongs to $X \cap H_{0}^{1}(\Omega)$ and satisfies the jump conditions $[w]=0,\left[\beta(x) \frac{\partial w}{\partial n}\right]=0$ along Γ. Further, w satisfies the a priori estimatc

$$
\begin{equation*}
\|w(l)\|_{X} \leq C\left\|u(t)-u_{h}(l)\right\|_{L^{2}(\Omega)} . \tag{5.3.6}
\end{equation*}
$$

Regarding the convergence of w_{h}, we have (sec, Theorem 3.1 in [22])

$$
\begin{equation*}
\left\|w(t)-w_{h}(t)\right\|_{H^{1}(\Omega)} \leq C h\left\|u(t)-u_{h}(t)\right\|_{L^{2}(\Omega)} . \tag{5.3.7}
\end{equation*}
$$

Then it follows from [23] that

$$
\begin{align*}
\|e(t)\|_{L^{2}(\Omega)}^{2} \leq & C\left\{h\|e(t)\|_{L^{2}(\Omega)}\|e(t)\|_{H^{1}(\Omega)}\right\}+C\left\{h\|e(t)\|_{H^{1}(\Omega)}\|e(t)\|_{L^{2}(\Omega)}\right. \\
& \left.+h^{2}\|u(t)\|_{X}\|e(t)\|_{L^{2}(\Omega)}\right\}-\frac{1}{2} \frac{d}{d l} A_{h}\left(w_{h}(t), w_{h}(t)\right)+(J), \tag{5.3.8}
\end{align*}
$$

with $(J)=\int_{0}^{t} B\left(t, s ; e(s), w_{h}(t)\right) d s$.
Term (J) can be rewritten as

$$
\begin{aligned}
(J) & =\int_{0}^{t} B\left(t, s ; e(s), w_{h}(t)\right) d s \\
& =\int_{0}^{t} B\left(t, s ; e(s),\left(w_{h}-w\right)(t)\right) d s+\int_{0}^{t} B(t, s ; e(s), w(t)) d s \\
& \equiv:(J)_{1}+(J)_{2},
\end{aligned}
$$

where $(J)_{2}, i=1,2$, are defined as

$$
(J)_{1}=\int_{0}^{t} B\left(t, s ; e(s),\left(w_{h}-w\right)(t)\right) d s, \quad(J)_{2}=\int_{0}^{t} B(t, s ; e(s), w(t)) d s
$$

For the term $(J)_{1}$, apply (5.3.3) and (5.3.7) to have

$$
\begin{align*}
\left|(J)_{1}\right| & \leq C\|e(s)\|_{L^{2}\left(0, t ; H^{1}(\Omega)\right)}\left\|w_{h}(t)-w(t)\right\|_{H^{1}(\Omega)} \\
& \leq C\left(u_{0}, f, u\right) h^{2}\|e(t)\|_{L^{2}(\Omega 2)} . \tag{5.3.9}
\end{align*}
$$

Before estimating $(J)_{2}$. we need some preparation. For fixed $t \in[0, T]$, we define

$$
f^{*}(s)=-\nabla \cdot\left(b(x ; t, s) \nabla w_{k}(t)\right)+b_{0}(x ; t, s) w_{k}(t), \quad(x, s) \in \Omega_{k} \times(0, t), k=1,2 .
$$

Clearly $f^{*}(s) \in L^{2}(\Omega)$ and assumptions (5.1.4) leads to

$$
\left\|f^{*}(s)\right\|_{L^{2}(\Omega)} \leq C\left\{\|\omega(t)\|_{H^{2}\left(\Omega_{1}\right)}+\|w(t)\|_{H^{2}\left(\Omega_{2}\right)}\right\} \forall s, s<t .
$$

Further,

$$
\begin{aligned}
\left(f^{*}(s), e(s)\right) & =-\int_{\Omega 2} \nabla \cdot(b(x ; t . s) \nabla w(t)) e(s) d x+\int_{\Omega 2} b_{0}(x ; t, s) w(t) e(s) d x \\
& =\int_{\Omega} b(x ; t, s) \nabla w(t) \cdot \nabla e(s) d x+\int_{\Omega 2} b_{0}(x ; t, s) w(t) e(s) d x \\
& =B(t, s ; e(s), w(t))
\end{aligned}
$$

and hence

$$
\begin{align*}
(J)_{2} & =\int_{0}^{t} B(t, s ; e(s), w(t)) d s=\int_{0}^{t}\left(f^{*}(s), e(s)\right) d s \\
& \leq C \int_{0}^{t}\left\|f^{*}(s)\right\|_{L^{2}(\Omega)}\|e(s)\|_{L^{2}(\Omega)} d s \\
& \leq C\left\{\|w(t)\|_{H^{2}\left(\Omega \Omega_{1}\right)}+\|w(t)\|_{H^{2}\left(\Omega_{2}\right)}\right\} \int_{0}^{t}\|e(s)\|_{L^{2}(\Omega)} d s \\
& \leq C\|e(t)\|_{L^{2}(\Omega)}\|e(s)\|_{\left.L^{2}\left(0, t ; L^{2}(\Omega)\right)\right\rangle} . \tag{5.3.10}
\end{align*}
$$

Combining the estimates (5.3.8)-(5.3.10), wc obtain

$$
\begin{aligned}
\|e(t)\|_{L^{2}(\Omega)}^{2} \leq & C\left\{h\|e(t)\|_{L^{2}(\Omega)}\|e(t)\|_{H^{1}(\Omega)}\right\}+C\left\{h\|e(t)\|_{H^{1}(\Omega)}\|e(t)\|_{L^{2}(\Omega)}\right. \\
& \left.+h^{2}\|u(t)\|_{X}\|e(t)\|_{L^{2}(\Omega)}\right\}-\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}(t), w_{h}(t)\right) \\
& +C\left(u_{0}, f . u\right) h^{2}\|e(t)\|_{L^{2}(\Omega)} \\
& +C\|e(t)\|_{L^{2}(\Omega)}\|e(s)\|_{L^{L^{2}\left(0, t ; L^{2}(\Omega)\right)}} .
\end{aligned}
$$

Further, a simple application of Young's inequality leads to

$$
\begin{align*}
\|e(t)\|_{L^{2}(\Omega)}^{2} \leq & C_{c} h^{2}\|e(t)\|_{H^{1}(\Omega)}^{2}+C_{\epsilon} h^{4}\|u(t)\|_{X}^{2}+C_{\epsilon}\|e(s)\|_{L^{2}\left(0, t ; L^{2}(\Omega)\right)}^{2} \\
& +C_{\epsilon}\left(u_{0}, f, u\right) h^{4}+C(\epsilon)\|e(t)\|_{L^{2}(\Omega)}^{2}-\frac{1}{2} \frac{d}{d t} A_{h}\left(w_{h}, w_{h}\right) . \tag{5.3.11}
\end{align*}
$$

Therefore, for suitable $\epsilon>0$ and integrating from 0 to t, we have

$$
\begin{align*}
\int_{0}^{t}\|e(s)\|_{L^{2}(\Omega)}^{2} d s & \leq C h^{2} \int_{0}^{t}\|e(s)\|_{H^{1}(\Omega)}^{2} d s+C h^{4} \int_{0}^{t}\|u(s)\|_{X}^{2} d s \\
& +h^{4} \int_{0}^{t} C_{\epsilon}\left(u_{0}, f, u\right) d s \\
& +C \int_{0}^{t} \int_{0}^{\tau}\|e(s)\|_{L^{2}(\Omega)}^{2} d s t \tau+\frac{1}{2} A_{h}\left(w_{h}(0), w_{h}(0)\right) . \tag{5.3.12}
\end{align*}
$$

Taking $t \rightarrow 0$, it now follows from (5.3.5) that

$$
A_{h}\left(w_{h}(0), w_{h}(0)\right)=\left(u_{0}-L_{h} u_{0}, w_{h}(0)\right)=0 .
$$

This together with (5.3.12), Gronwall's inequality and (5.3.3) leads to the following optimal $L^{2}\left(L^{2}\right)$ norm error estimate.

Theorem 5.3.1 Let u and u_{h} be the solutions of the problem (5.2.1) and (5.3.1), respectively. Then, for $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$, there exists a constant \tilde{C} independent of h such that

$$
\|e(s)\|_{L^{2}\left(0, t ; L^{2}(\Omega 2)\right)} \leq \tilde{C}\left(u_{0}, f, u\right) h^{2}
$$

5.4 $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ norms Error Estimates

In this section, optimal order convergence results are obtained in $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ norms. We have assumed that initial data $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$ and $u_{h}(0)=W_{h} u_{0}$. For the simplicity of the exposition, we have used symbol $C\left(u, u_{t}\right)$, depends on u and u_{t}, to denote a positive term such that

$$
\|u(t)\|_{X}^{2}+\|u\|_{L^{2}(0, t, X)}^{2}+\int_{0}^{t} \sum_{\imath=1}^{2}\left\|u_{t}(s)\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s \leq C\left(u, u_{t}\right) .
$$

Sctting $u(t)-u_{h}(t)=u(t)-W_{h} u(t)+W_{h} u(t)-u_{h}(t)=\rho(t)+\theta(t)$, wc obtain

$$
\begin{align*}
\left(\theta_{t}, v_{h}\right)+A\left(\theta, v_{h}\right)= & -\left(\rho_{t}, v_{h}\right)+\int_{0}^{t} B\left(t, s ; \rho(s), v_{h}\right) d s+\int_{0}^{t} B\left(t, s ; \theta(s), v_{h}\right) d s \\
& +\left\{A_{h}\left(u_{h}-W_{h} u, v_{h}\right)-\Lambda\left(u_{h}-W_{h} u, v_{h}\right)\right\} \\
& +A_{h}\left(W_{h} u-R_{h} u, v_{h}\right) . \tag{5.4.1}
\end{align*}
$$

It follows from the definitions of R_{h} and W_{h} operators that

$$
A_{h}\left(W_{h} u(t)-R_{h} u(t), v_{h}\right)=\int_{0}^{t} B\left(t, s ;\left(W_{h} u-u\right)(s), v_{h}\right) d s
$$

This together with (5.4.1), we obtain the following error cquation in θ

$$
\begin{equation*}
\left(\theta_{t}, v_{h}\right)+A_{h}\left(\theta, v_{h}\right)=-\left(\rho_{t}, v_{h}\right)+\int_{0}^{t} B\left(t, s ; \theta(s), v_{h}\right) d s \tag{5.4.2}
\end{equation*}
$$

Sct $v_{h}=\theta_{t}$ in (5.4.2) to have

$$
\begin{align*}
\left(\theta_{t}, \theta_{t}\right)+\frac{1}{2} \frac{d}{d t} A_{h}(\theta, \theta) \leq & C_{\epsilon}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+C(\epsilon)\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} \\
& +C h^{-1}\left\|\theta_{t}\right\|_{L^{2}(\Omega)} \int_{0}^{t}\|\theta(s)\|_{H^{1}(\Omega)} d s \\
\leq & C_{\epsilon}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+C(\epsilon)\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} \\
& +C_{\epsilon} h^{-2} \int_{0}^{t}\|\theta(s)\|_{H^{1}(\Omega)}^{2} d s+C(\epsilon)\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} . \tag{5.4.3}
\end{align*}
$$

Here, we have used Young's inequality and inverse cstimate (2.2.12). Thus, for suitable $\epsilon>0$, we get

$$
\begin{equation*}
\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2} \frac{d}{d t} A_{h}(\theta, \theta) \leq C\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+C h^{-2} \int_{0}^{t}\|\theta(s)\|_{H^{1}(\Omega)}^{2} d s . \tag{5.4.4}
\end{equation*}
$$

Then intcgrating (5.4.4) from 0 to t and applying cstimate (5.2.10), we obtain

$$
\begin{align*}
\int_{0}^{t}\left\|\theta_{t}\right\|_{L^{2}(\Omega)}^{2} d s+\|\theta\|_{H^{1}(\Omega)}^{2} & \leq C \int_{0}^{t}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2} d s+C h^{-2} \int_{0}^{t} \int_{0}^{\tau}\|\theta(s)\|_{H^{1}(\Omega)}^{2} d s d \tau \\
& \leq C\left(u, u_{t}\right) h^{4}+C h^{-2} \int_{0}^{t}(t-s)\|\theta(s)\|_{H^{1}(\Omega)}^{2} d s \\
& \leq C\left(u, u_{t}\right) h^{4}+C h^{-2} \int_{0}^{t}\|\theta(s)\|_{H^{1}(\Omega)}^{2} d s . \tag{5.4.5}
\end{align*}
$$

Then a simple application of Grownwall's Lemma leads to

$$
\|\theta\|_{H^{1}(s)}^{2} \leq G(t) h^{4}+C h^{4} \int_{0}^{t} G(s) H(s) e^{-C h^{2}(t-s)} d s
$$

with $G(t)=C\left(u, u_{t}\right)$ and $H(s)=C h^{-2}$. Further using the fact that $e^{-x} \leq 1, x>0$, we obtain

$$
\begin{equation*}
\|\theta\|_{H^{1}(\Omega)}^{2} \leq C\left(u, u_{t}\right) h^{4}+C h^{2} \int_{0}^{t} C\left(u, u_{s}\right) d s \tag{5.4.6}
\end{equation*}
$$

Now, combining (5.2.4) and (5.4.6), we obtain the following optimal H^{1}-norm error estimate.

Theorem 5.4.1 Let u and u_{h} be the solutions of the problem (5.2.1) and (5.3.1), respectively. Then, for $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, we have

$$
\|e(t)\|_{H^{1}(\Omega)} \leq C h\left(C\left(u, u_{t}\right)+\int_{0}^{t} C\left(u, u_{s}\right) d s\right)^{\frac{1}{2}}
$$

Next, sct $v_{h}=\theta(t)$ in (5.4.2) to have

$$
\begin{aligned}
\left(\theta_{t}, \theta\right)+A_{h}(\theta, \theta) \leq & C_{\epsilon}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+C(\epsilon)\|\theta\|_{L^{2}(\Omega)}^{2} \\
& +C_{\epsilon} \int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s+C(c)\|\theta\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Thus

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|\theta\|_{L^{2}(\Omega)}^{2}+C\|\theta\|_{H^{1}(\Omega)}^{2} \leq & C_{\epsilon}\left\|\rho_{t}\right\|_{L^{2}(\Omega)}^{2}+C(\epsilon)\|\theta\|_{L^{2}(\Omega)}^{2} \\
& +C_{\epsilon} \int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s+C(\epsilon)\|\theta\|_{H^{1}(\Omega)}^{2} . \tag{5.4.7}
\end{align*}
$$

Then integrating (5.4.7) from 0 to t, we obtain

$$
\begin{align*}
\frac{1}{2}\|\theta\|_{L^{2}(\Omega)}^{2}+C \int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s \leq & C_{\epsilon} \int_{0}^{t}\left\|\rho_{s}\right\|_{L^{2}(\Omega)}^{2} d s+C(\epsilon) \int_{0}^{t}\|\theta\|_{L^{2}(\Omega)}^{2} d s \\
& +C_{\epsilon} \int_{0}^{t} \int_{0}^{\tau}\|\theta\|_{H^{1}(\Omega)}^{2} d s d \tau \\
& +C(\epsilon) \int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s . \tag{5.4.8}
\end{align*}
$$

Hence, for suitable $\epsilon>0$, we have

$$
\begin{align*}
\|\theta\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s & \leq C \int_{0}^{t}\left\|\rho_{s}\right\|_{L^{2}(\Omega)}^{2} d s+C \int_{0}^{t} \int_{0}^{\tau}\|\theta\|_{H^{1}(\Omega)}^{2} d s d \tau \\
& \leq C\left(u, u_{t}\right) h^{4}+C \int_{0}^{t} \int_{0}^{\tau}\|\theta\|_{H^{1}(\Omega)}^{2} d s d \tau . \tag{5.4.9}
\end{align*}
$$

Here we have used estimate (5.2.10). Splitting (5.4.9) into two parts, we obtain

$$
\begin{align*}
\|\theta\|_{L^{2}(\Omega)}^{2} & \leq C\left(u, u_{t}\right) h^{4}+C \int_{0}^{t} \int_{0}^{\tau}\|\theta\|_{H^{1}(\Omega)}^{2} d s d \tau \tag{5.4.10}\\
\int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s & \leq C\left(u, u_{t}\right) h^{4}+C \int_{0}^{t} \int_{0}^{\tau}\|\theta\|_{H^{1}(\Omega)}^{2} d s d \tau \tag{5.4.11}
\end{align*}
$$

For the term $\int_{0}^{t}\|\theta\|_{H^{1(\Omega)}}^{2} d s$, we use Grownwall's Lemma in (5.4.11) to have

$$
\int_{0}^{t}\|\theta\|_{H^{1}(\Omega)}^{2} d s \leq C h^{4}\left(C\left(u, u_{t}\right)+\int_{0}^{t} C\left(u, u_{s}\right) d s\right)
$$

This together with (5.4.10) leads to

$$
\begin{equation*}
\|\theta(t)\|_{L^{2}(\Omega)}^{2} d s \leq C h^{4}\left(C\left(u, u_{t}\right)+\int_{0}^{t} C\left(u, u_{s}\right) d s\right) . \tag{5.4.12}
\end{equation*}
$$

Finally, approximation result (5.2.10) together with (5.4.12) yiclds the following optimal L^{2}-norm error estimatc.

Theorem 5.4.2 Let u and u_{h} be the solutions of the problem (5.2.1) and (5.3.1), respectively. Then, for $u_{0} \in H_{0}^{1}(\Omega) \cap H^{3}(\Omega)$ and $f \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, we have

$$
\|e(t)\|_{L^{2}(\Omega)} \leq C h^{2}\left(C\left(u, u_{t}\right)+\int_{0}^{t} C\left(u, u_{s}\right) d s\right)^{\frac{1}{2}}
$$

5.5 Discrete time Galerkin Method

In this section, we shall consider the completely discrete scheme for the problem (5.3.1). Backward difference scheme has been used to discretize the problem in time direction and the piecewise linear finite element method in space. Optimal error estimate is shown in L^{2} norm for sufficiently smooth initial data. For the simplicity, we have assumed that $f=0$ in Ω.

We first divide the interval $[0, T]$ into N equally spaced subintervals by the following points

$$
0=t_{0}<t_{1}<\cdots<t_{N}=T .
$$

with $t_{n}=n k, k=T / N$ be the time step. Let $I_{n}=\left(l_{n-1}, l_{n}\right]$ be the n -th sub interval. For a given sequence $\left\{\phi^{n}\right\}_{n=1}^{N} \subset L^{2}(\Omega)$, we introduce the backward difference quotient

$$
\Delta_{k} \phi^{n}=\frac{\phi^{n}-\phi^{n-1}}{k} .
$$

For $\phi(t) \in V_{h}$, we denote ϕ^{n} be the value of ϕ at $t=t_{n}$.
The complete discrete finite element approximation to the problem (5.3.1) is defined as follows: For $1 \leq n \leq N$, find $U^{n} \in V_{h}$ such that

$$
\begin{equation*}
\left(\Delta_{k} U^{n}, v_{h}\right)+A_{h}\left(U^{n}, v_{h}\right)=k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; U^{j}, v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{5.5.1}
\end{equation*}
$$

with $U^{0}=W_{h} u_{0}$.
Integral term in (5.3.1) has been approximated by the rectangle rule

$$
\int_{0}^{t_{n}} \phi(s) d s \approx k \sum_{j=0}^{n-1} \psi^{j}=Q_{1}^{n} \phi, 0<t_{n} \leq T
$$

Note that the quadrature crror in $I_{n}=\left(t_{n-1}, t_{n}\right]$ is cstimated as

$$
\int_{I_{n}} \phi(s) d s-k \phi^{n-1}=\int_{I_{n}} \int_{t_{n-1}}^{s} \phi^{\prime}(\tau) d \tau d s=\int_{I_{n}}\left(t_{n}-\tau\right) \phi^{\prime}(\tau) d \tau
$$

and hence

$$
\begin{equation*}
\left|Q_{1}^{n} \phi-\int_{0}^{t_{n}} \phi(s) d s\right| \leq k \int_{0}^{t_{n}}\left|\phi^{\prime}(\tau)\right| d \tau \tag{5.5.2}
\end{equation*}
$$

At $t=t_{n}$, (5.2.1) reduces to

$$
\begin{equation*}
\left(u_{t}^{n} \cdot v_{h}\right)+A\left(u^{n}, v_{h}\right)=\int_{0}^{t_{n}} B\left(t_{n}, s ; u(s), v_{h}\right) d s \quad \forall v \in H_{0}^{1}(\Omega) . \tag{5.5.3}
\end{equation*}
$$

We write the error $U^{n}-u^{n}$ at time t_{n} as

$$
U^{n}-u^{n}=\left(U^{n}-W_{h} u^{n}\right)+\left(W_{h} u^{n}-u^{n}\right) \equiv: \theta^{n}+\rho^{n}
$$

where $\theta^{n}=U^{n}-W_{h} u^{n}$ and $\rho^{n}=W_{h} u^{n}-u^{n}$.
Combining (5.5.1) and (5.53), we obtain

$$
\begin{align*}
&\left(\Delta_{k}\left(\theta^{n}, v_{h}\right)+A_{h}\left(\theta^{n}, v_{h}\right)\right. \\
&= k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{\jmath}, v_{h}\right)-\left(w^{n}, v_{h}\right)+k \sum_{\jmath=0}^{n-1} B\left(t_{n}, t_{j} ; W_{h} u^{j}, v_{h}\right) \\
&-\int_{0}^{t_{n}} B\left(t_{n}, s ; W_{h} u(s), v_{h}\right) d s . \tag{5.5.4}
\end{align*}
$$

Here, $w^{n}=\Delta_{k} W_{h} u^{n}-u_{t}^{n}$. For simplicity of the exposition, we write $w^{n}=w_{1}^{n}+w_{2}^{n}$, where $w_{1}^{n}=W_{h} \Delta_{k} u^{n}-\Delta_{k} u^{n}$ and $w_{2}^{n}=\Delta_{k} u^{n}-u_{t}^{n}$.

Now, sctting $v_{h}=\theta^{n}$ in (5.5.4), we have

$$
\begin{align*}
\frac{1}{2}\left\|\theta^{n}\right\|_{L^{2}(\Omega)}^{2}+k\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & k^{2} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{\jmath}, \theta^{n}\right)+C(\epsilon) k\left\|w^{n}\right\|_{L^{2}(\Omega)}^{2} \\
& +C_{\epsilon} k\left\|\theta^{n}\right\|_{L^{2}(\Omega)}^{2}+k\left[k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; W_{h} u^{J}, \theta^{n}\right)\right. \\
& \left.-\int_{0}^{t_{n}} B\left(t_{n}, s ; W_{h} u(s) \cdot \theta^{n}\right) d s\right] \\
& +\frac{1}{2}\left\|\theta^{n-1}\right\|_{\left.L^{2}(\Omega)\right\}}^{2} \tag{5.5.5}
\end{align*}
$$

Thus, for suitable $\epsilon>0$ and summing (5.5.5) over n from $n=1$ to $n=M$, we have

$$
\begin{align*}
\left\|\theta^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & h^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{3}, \theta^{n}\right)+C k \sum_{n=1}^{M}\left\|w^{n}\right\|_{L^{2}(\Omega)}^{2} \\
& +k \sum_{n=1}^{M}\left[k \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; W_{h} u^{j}, \theta^{n}\right)\right. \\
& \left.-\int_{0}^{t_{n}} B\left(t_{n}, s ; W_{h} u(s), \theta^{n}\right) d s\right] \\
\equiv & k^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{j}, \theta^{n}\right)+(I)_{1}+(I)_{2} . \tag{5.5.6}
\end{align*}
$$

Terms ($I)_{1}$ and $(I)_{2}$ are given by

$$
\begin{aligned}
& (I)_{1}=C k \sum_{n=1}^{M}\left\|w^{n}\right\|_{L^{2}(\Omega)}^{2}=C k \sum_{n=1}^{M}\left\|w_{1}^{n}+w_{2}^{n}\right\|_{L^{2}(\Omega)}^{2} \& \\
& (I)_{2}=k \sum_{n=1}^{M}\left[k \sum_{j=0}^{n-1} B\left(l_{n}, t_{j} ; W_{h} u^{J}, \theta^{n}\right)-\int_{0}^{t_{n}} B\left(l_{n}, s ; W_{h} u(s), \theta^{n}\right) d s\right] .
\end{aligned}
$$

Now, we proceed to estmate both the terms separately. In Ω_{1}, the term w_{1}^{n} can be expressed as

$$
\begin{aligned}
w_{1}^{n} & =W_{h} \Delta_{k} u_{1}^{n}-\Delta_{k} u_{1}^{n}=\left(W_{h}-I\right)\left(\Delta_{k} u_{1}^{n}\right) \\
& =\left(W_{h}-I\right) \frac{1}{k} \int_{t_{n-1}}^{t^{n}} u_{1, t} d t=\frac{1}{k} \int_{t_{n-1}}^{t^{n}}\left(W_{h} u_{1, t}-u_{1, t}\right) d t,
\end{aligned}
$$

where $u_{\imath}, \imath=1,2$, is the restriction of u in Ω_{\imath} and $u_{2, t}=\frac{\partial u_{2}}{\partial t}$.
An application of estimate (5.2.10) leads to

$$
\begin{aligned}
k\left\|w_{1}^{n}\right\|_{L^{2}\left(\Omega_{1}\right)} & \leq C h^{2} \int_{t_{n-1}}^{t^{n}} \sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)} d t \\
& \leq C h^{2} k^{\frac{1}{2}}\left(\int_{t_{n-1}}^{t^{n}}\left(\sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}\right)^{2} d t\right)^{\frac{1}{2}}
\end{aligned}
$$

Hence

$$
k\left\|w_{1}^{n}\right\|_{L^{2}\left(\Omega_{1}\right)}^{2} \leq C h^{4} \int_{t_{n-1}}^{t^{n}} \sum_{2=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{t}\right)}^{2} d t .
$$

Similarly, we obtain

$$
h\left\|\omega_{1}^{n}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2} \leq C h^{4} \int_{t_{n-1}}^{t^{n}} \sum_{\imath=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d l .
$$

Using above two cstimates, we have

$$
\begin{equation*}
k \sum_{n=1}^{M}\left\|\omega_{1}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq C h^{4} \int_{0}^{t_{n}} \sum_{i=1}^{2}\left\|\mu_{t}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d t . \tag{5.5.7}
\end{equation*}
$$

For the term w_{2}^{n}, we have

$$
k w_{2}^{n}=u^{n}-u^{n-1}-k u_{t}^{n}=-\int_{t_{n-1}}^{t_{n}}\left(s-t_{n-1}\right) u_{t t} d s
$$

and hence

$$
k\left\|w_{2}^{n}\right\|_{L^{2}\left(\Omega_{2}\right)} \leq k \int_{t_{n-1}}^{t_{n}}\left\|u_{t t}\right\|_{L^{2}\left(\Omega_{2}\right)} d s \leq k k^{\frac{1}{2}}\left(\int_{t_{n-1}}^{t_{n}}\left\|u_{t t}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2} d t\right)^{\frac{1}{2}}
$$

Summing over n from $n=1$ to $n=M$, we obtain

$$
\begin{equation*}
k \sum_{n=1}^{M}\left\|w_{2}^{n}\right\|_{L^{2}(\Omega)}^{2} \leq C k^{2} \int_{0}^{t_{n}}\left\|u_{t t}\right\|_{L^{2}(\Omega)}^{2} d t . \tag{5.5.8}
\end{equation*}
$$

In view of estimates (5.5.7)-(5.5.8), the following estimate holds for $(I)_{1}$

$$
\begin{equation*}
(I)_{1} \leq C h^{4} \int_{0}^{t_{n}} \sum_{i=1}^{2}\left\|u_{t}\right\|_{H^{2}\left(\Omega \Omega_{2}\right)}^{2} d t+C k^{2} \int_{0}^{t_{n}}\left\|u_{t t}\right\|_{L^{2}(\Omega)}^{2} d t \tag{5.5.9}
\end{equation*}
$$

Next, we write $\phi(s)=B\left(t_{n}, s ; W_{h} u(s), \theta^{n}\right)$ so that estimate (5.5.2) leads to

$$
\begin{align*}
(I)_{2} & =k \sum_{n=1}^{M}\left(k \sum_{j=0}^{n-1} \phi\left(t_{j}\right)-\int_{0}^{t_{n}} \phi(s) d s\right) \\
& \leq k \sum_{n=1}^{M}\left(k \int_{0}^{t_{n}}\left|\frac{\partial \phi(s)}{\partial s}\right| d s\right) . \tag{5.5.10}
\end{align*}
$$

Then apply assumptions (5.1.4) to have

$$
\left|\frac{\partial \phi(s)}{\partial s}\right| \leq C\left\{\left\|W_{h} u(s)\right\|_{H^{1}(\Omega)}+\left\|W_{h} u_{s}(s)\right\|_{H^{1}(\Omega)}\right\}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}
$$

This together with (5.5.10) yiclds

$$
\begin{align*}
(I)_{2} \leq & C k^{2} \sum_{n=1}^{M} \int_{0}^{t_{n}}\left\{\left\|W_{h} u(s)\right\|_{H^{1}(\Omega)}+\left\|W_{h} u_{s}(s)\right\|_{H^{1}(\Omega)}\right\}\left\|\theta^{n}\right\|_{H^{1}(\Omega)} d s \\
\leq & C(\epsilon) k^{2} \sum_{n=1}^{M} \int_{0}^{t_{n}}\left\{\left\|W_{h} u(s)\right\|_{H^{1}(\Omega)}^{2}+\left\|W_{h} u_{s}(s)\right\|_{H^{1}(\Omega)}^{2}\right\} d s \\
& +C_{\epsilon} k^{2} \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{2}(\Omega)}^{2} . \tag{5.5.11}
\end{align*}
$$

Finally, use estimates (5.5.9) and (5.5.11) in (5.5.6) to have

$$
\begin{align*}
& \left\|\theta^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \\
& \leq C h^{4} \int_{0}^{t_{N}} \sum_{i=1}^{2}\left\|u_{s}\right\|_{H^{2}\left(\Omega_{2}\right)}^{2} d s+C h^{2} \int_{0}^{t_{N}}\left\|u_{s s}\right\|_{L^{2}(\Omega)}^{2} d s \\
& \quad+C k^{2} \sum_{n=1}^{M} \int_{0}^{t_{N}}\left\{\left\|W_{h} u(s)\right\|_{H^{1}(\Omega)}^{2}+\left\|W_{h} u_{s}(s)\right\|_{H^{1}(\Omega)}^{2}\right\} d s \\
& \quad+k^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{3}, \theta^{n}\right) \\
& \leq \tag{5.5.12}\\
& \tilde{C}_{N}\left(h^{4}+k^{2}\right)+k^{2} \sum_{n=1}^{M} \sum_{j=0}^{n-1} B\left(t_{n}, t_{j} ; \theta^{3}, \theta^{n}\right) .
\end{align*}
$$

Here, $\tilde{C}_{N}>0$ is a constant independent of M such that

$$
C\left\{\left\|u_{t t}\right\|_{L^{2}\left(0, T, L^{2}(\Omega)\right)}^{2}+\|u\|_{L^{2}(0, T, X)}^{2}+\sum_{i=1}^{2}\left\|u_{t}\right\|_{L^{2}\left(0, T, H^{2}\left(\Omega_{2}\right)\right)}^{2}\right\} \leq \tilde{C}_{N}
$$

Then it follows from [14] (see, Lemma 7 thercin) that

$$
\begin{aligned}
\left\|\theta^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \leq & \tilde{C}_{N}\left(h^{4}+k^{2}\right)+C(\epsilon) k^{2} \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \\
& +C_{\epsilon} k^{2} \sum_{n=1}^{M-1} \sum_{j=0}^{n-1}\left\|\theta^{3}\right\|_{H^{1}(\Omega)}^{2}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|\theta^{M}\right\|_{L^{2}(\Omega)}^{2}+k \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2} \leq \tilde{C}_{N}\left(h^{4}+k^{2}\right)+C k^{2} \sum_{n=1}^{M-1} \sum_{j=0}^{n-1}\left\|\theta^{3}\right\|_{H^{1}(\Omega)}^{2} \tag{5.5.13}
\end{equation*}
$$

Setting $\xi_{l}=\sum_{n=1}^{l} k\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2}$ in (5.5.13), we obtain

$$
\xi_{M} \leq \tilde{C}_{N}\left(h^{4}+k^{2}\right)+C k \sum_{n=1}^{M-1} \xi_{n} .
$$

Then a simple application of discretc Grownwall's lemma leads to

$$
\begin{equation*}
k \sum_{n=1}^{M}\left\|\theta^{n}\right\|_{H^{1}(\Omega)}^{2}=\xi_{M} \leq \tilde{C}_{N}\left(h^{4}+k^{2}\right) \sum_{n=1}^{M-1} C k \leq \tilde{C}_{N}\left(h^{4}+k^{2}\right) k N . \tag{5.5.14}
\end{equation*}
$$

In combination (5.2.10) leads to the following optimal L^{2} norm error cstimatc.

Theorem 5.5.1 Assume that $u_{0} \in H^{3}(\Omega) \cap H_{0}^{1}(\Omega)$. Then there exist a positive constant C_{N}, independent of h and k, such that

$$
\left\|U^{M}-u\left(t_{M}\right)\right\|_{L^{2}(\Omega)} \leq C_{N}\left(h^{2}+k\right), \quad 1 \leq M \leq N
$$

Bibliography

[1] Adams, R. A. Sobolev Spaces, Academic Press, New York, 1975.
[2] Ahmed, T. Finite Element Methods for Interface Problems, Ph.D. Thesis, Tezpur University, Tczpur, Assam, India, 2012.
[3] Attanayake, C. and Senaratne, D. Convergence of an immersed finite element method for semilinear parabolic interface problems, Applied Mathematical Sciences, 5, 135-147, 2011.
[4] Babuška, I. The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213, 1970.
[5] Barrett, J. W. and Elliott, C. M. Fitted and unfitted finite element methods for clliptic cquations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300, 1987.
[6] Belleni-Morante, A. An integro-differential equation arising from the theory of heat conduction in rigid materials with memory, Boll. Un. Mat. Ital. B, 15, 470-482, 1978.
[7] Bojović, R. D. and Jovanović, S. B. Convergence of a finite difference method for solving 2D parabolic intcrface problems, J. Comput. Appl. Math., 236, 3605-3612, 2012.
[8] Bramble, J. H. and King, J. T. A finite element method for interface problems in domains with smooth boundarics and interfaces, Adv. Comput. Math., 6, 109-138, 1996.
[9] Brennor, S. C. and Scott, L. R. The Mathematical Theory of Finite Element Methods, Springer-Verlag, Ncw York, 1994.
[10] Cannon, J. R. and Lin, Y. P. A priori L^{2} error estimates for finite element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal., 27, 595-607, 1990.
[11] Capasso, V. Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath. 97, Springer-Verlag, Heidelberg, 1993.
[12] Chen, C. and Shih Tsimin, P. G. Finite Element Methods for Integro-Differential Equations, World Scientific, London, 1997.
[13] Chen, C. M. and Thomée, V. The lumped mass finite element method for a parabolic problems, J. Austral. Math. Soc. B, 26, 329-354, 1985.
[14] Chen, C. Thomée, V. and Wahlbin, L. B. Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp., 58, 587-602, 1992.
[15] Chen, Z. and Zou, J. Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 175-202, 1998.
[16] Ciarlct, P. G. The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1975.
[17] Coleman, B. R. and Gurtin, M. E. Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math., 18, 199-208, 1967.
[18] Dautray, R. and Lions, J. L. Mathematical Analysis and Numerical Methods for Science and Technology, vol. II: Functional and variational methods, Springer-Verlag, Berlin, 1988.
[19] Dcka, B. Finite Element Methods for Elliptic and Parabolic Interface Problems, Ph.D. Thesis, Indian Institute of Technology Guwahati, Guwahati, India, 2006.
[20] Deka, B. Finite element methods with numerical quadrature for elliptic problems with smooth intcrfaces, J. Comp. Appl. Math., 234, 605-612, 2010.
[21] Deka, B. and Ahmed. T. Semidiserete finite element methods for linear and semilincar parabolic problems with smooth interfaces: some new optimal crror estimates, Numer. Func. Anal. Optim., 33, 524-544, 2012.
[22] Deka, B. and Ahmed, T. Finite clement methods for semilinear elliptic problems with smooth interfaces, Ind. J. Pure Appl. Math., 42, 205-223, 2011.
[23] Deka, B and Deka, R. C. Finite clement method for a class of parabolic integrodifferential equations with interfaces, Ind. J. Pure. Appld. Math., 44, 823-847, 2013.
[24] Deka, B. and Deka. R. C. Quadrature based finite element methods for linear parabolic interface problems, Bull. Kor. Math. Soc., accepted.
[25] Deka, B. and Deka, R. C. Finite clement Galerkin approximation for parabolic integro-differential equations with discontinuous coefficients: error analysis, submitted for publication.
[26] Deka, B., Sinha, R. K., Dcka, R. C. and Ahmed, T. Finite element method with quadrature for parabolic interface problems, Neural Parallel Sci. Comput., 21, 477496, 2013.
[27] Dcka, B. and Sinha, R. K. $L^{\infty}\left(L^{2}\right)$ and $L^{\infty}\left(H^{1}\right)$ norms error estimates in finite element method for lincar parabolic interface problems, Numer. Funct. Anal. Optim., 32, 267-285, 2011.
[28] Duan, H., Lin. P. and Tan. R. C. E. Analysis of a continuous finite element method for H(curl, div)-clliptic intcrface problem, Numer. Math., 123, 671-707, 2013.
[29] Feistauer, M., On the finite element approximation of a cascade flow problem, Numer. Math., 50, 655-684, 1987.
[30] Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977.
[31] Gurtin, M. E. and Pipkin, A. C. A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31, 113-126, 1968.
[32] Habetler, G. J. and Schiffman, R. L. A finite difference method for analyzing the compression of poro-viscoclastic mcdia, Computing, 6, 342-348, 1970.
[33] Hansbo, A. and Hansbo, P. An unfitted finite clement method, based on Nitsche's method, for clliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552, 2002.
[34] Hardy. G. H., Littlewood, J. E. and Pólya, G. Inequalities, Cambridge Univ. Press, London, 1964.
[35] Hornung, U. and Showalter. R. E. Diffusion models for fractured media, J. Math. Anal. Appl., 147, 69-80, 1990.
[36] Huang, J. and Zou, J. A morter element method for clliptic problems with discontinuous coefficients, IMA J. Numer. Anal., 22, 554-576, 2002.
[37] Huang, J. and Zou, J. Some new a priori estimates for second-order elliptic and parabolic interface problems, J. Differentral Equations, 184, 570-586, 2002.
[38] Kumar, M. and Joshi, P. Some numerical techniques for solving elliptic interface problems, Numer. Methods for Partial Differential Equations, 28, 94-114, 2012.
[39] Ladyzhenskaya, O. A., Rivkind, V. Ja., Ural'ceva, N. N., The classical solvability of diffraction problems, Trudy Mat. Inst. Steklov, 92, 116-146, 1966.
[40] Li, Z. and Ito, K. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM, 2006.
[41] Li, J., Melcnk, J. M., Wohlmuth, B. and Zou, J. Optimal a priori cstimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60, 19-37, 2010.
[42] Lin, Y., Thomée, V. and Wahlbin, L. B. Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal., 28, 1047-1070, 1991.
[43] Massjung, R. An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50, 3134-3162, 2012.
[44] McLean, W. and Thomée, V. Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. B, 35, 23-70, 1993.
[45] Miller. R. K. An integrodifferential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66, 313-332, 1978.
[46] Nielsen, B. F. Finite element discretizations of elliptic problems in the presence of arbitrarily small ellipticity: An error analysis, SIAM J. Numer. Anal., 36, 368-392, 1999.
[47] Nohel, J. A. Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc., 68, 323-329, 1962.
[48] Pani, A. K., Thomée, V. and Wahlbin. L. B. Numerical methods for hyperbolic and parabolic integro-differential equations. J. Integral Equ. Appl., 4, 533-584, 1992.
[49] Pani, A. K. and Sinha, R. K. Error estimates for semidiscrete Galerkin approximation to a time dependent parabolic integro-differential equation with nonsmooth data, Calcolo, 37, 181-205, 2000.
[50] Pao, C. V. Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics, J. Math. Anal. Appl., 48, 470-492, 1974.
[51] Pao, C. V. Bifurcation analysis of a nonlinear diffusion system in reactor dynamics, Appl. Anal., 9, 107-119, 1979.
[52] Pao, C. V. On nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 87, 165198, 1982.
[53] Patel, A. Lagrange multiplier method with penalty for elliptic and parabolic interface problems, J. Appl. Math. Comput., 37, 37-56, 2011.
[54] Pradhan, D., Nataraj, N. and Pani, A. K. An explicit/implicit Galcrkin domain decomposition procedure for parabolic integro-differential equations. J. Appl. Math. Comput., 28, 295-311, 2008.
[55] Rao, M. R. M. Ordinary Differential Equations Theory and Aplications, East-West Press Pvt. Ltd., 1980.
[56] Raviart, P. A. The use of numertcal integratzon in finte element methods for solving parabolic equations, topics in numerical aualysis, J. J. H. Miller. ed., Academic Press, New York, 1973.
[57] Le Roux, M. N. and Thomée, V. Numerical solution of semilinear integro- differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26, 1291-1309, 1989.
[58] Sinha, R. K. and Deka, B. Optimal crror cstimates for lincar parabolic problems with discontinuous coefficients, SIAM J. Numer. Anal., 43, 733-749, 2005.
[59] Sinha, R. K. and Deka. B. A priori crror estimates in finite clement method for nonselfadjoint elliptic and parabolic interface problems, Calcolo, 43, 253-278, 2006.
[60] Sinha, R. K., Ewing, R. E. and Lazarov, R. D. Some new crror estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data, SIAM J. Numer. Anal., 43, 2320-2343, 2006.
[61] Sloan, I. H. and Thomée, V. Time discretization of an integro-differential equation of parabolic typc, SIAM J. Numer. Anal., 23, 1052-1061, 1986.
[62] Stcin, E. M. Singular Integrals and Differentiability Properties of Functions, Princcton University Press, Princcton, 1970.
[63] Thomée, V. Galerkin Finite Element Methods For Parabolic Problems, SpringerVerlag, 1997.
[64] Thomée, V. and Zhang. N. Y. Error cstimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp., 53, 121-139, 1989.
[65] Whecler, M. F. A priori L^{2} error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759, 1973.
[66] Yanik, E. G. and Fairweather, G. Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12, 785-809, 1988.
[67] Zhang, N. Y. On fully discretc Galcrkin approximations for partial integrodifferential equations of parabolic type, Math. Comp., 60, 133-166, 1993.

