


FINITE ELEMENT METHODS WITH NUMERICAL
QUADRATURE FOR PARABOLIC AND PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS WITH
INTERFACES

Thesis Submitted in partial fulfillment of the requirements

for the award of the degree of Doctor of Philosophy

Ram Charan Deka
Registration No. 003 of 2014

DEPARTMENT OF MATHEMATICAL SCIENCES
SCHOOL OF SCIENCES
TEZPUR UNIVERSITY, NAPAAM, TEZPUR, ASSAM
APRIL, 2014



Abstract

The purpose of the present work is to study finite element Galerkin methods for linear
parabolic and parabolic integro-differential cquations with interfaces. The emphasis is
on the theorctical aspects of such methods.

An attempt is made in this thesis to extend known results for finite element
Galerkin method for a parabolic differential equation to a parabolic cquation with inter-
faces. Optimal L*(L?) and L?(H') crror cstimates are shown to hold for both semidis-
crete and fully discrete schemes with quadraturc under minimum smoothness of the
initial data. Due to low global regularity of the solutions, the error analysis of the stan-
dard finite element methods for parabolic problems is difficult to adopt for parabolic
interface problems. In this work, we fill a theoretical gap between standard error analy-
sis technique of finite clement method for non interface problems and parabolic mterface
problems. Optimal L®(H!) and L*(L?) norms crror cstimates have been derived for
the semidiscrete case under practical regularity assumptions of the true solution for fit-
ted finite clement method with straight interface triangles. Further, the fully discrete
backward Euler scheme is also considered and optimal L*°(L?) norm crror estimate is
established. In this case, the initial data and interface function are assumed to be
sufficiently smooth.

Although various FEM for parabolic interface problems have been proposed and
studied in the literature, but FEM treatinent to the integro-differential equations with
interfaces is mostly missing. A priori error estimates are derived for integro-differential
cquations of parabolic type with interfaces. Continuous time Galerkin method for the
spatially discrete scheme and backward difference scheine in time direction are discussed
in L2(H™) and L°°(H™) norws for fitted finite element method with straight interface
triangles. More preciscly, optimal crror estimates are dervived in L2(H™) and L°(H™)
norrns when initial data ug € HZ(Q) and uy € H® N H(Q), respectively. The achieved
cstimates arc analogous to the case with a regular solution, however, due to low regu-
larity, the proof requires a careful technical work coupled with a approximation result

for the Ritz-Volterra projection under minimum regularity assumption.
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Chapter 1
Introduction

The purpose of this thesis is to preseut some results on finite element Galerkin meth-
ods for linear parabolic and parabolic integro-differential equations with discontinuous
coefficients. This chapter introduces the problem and it contains the notations and
preliminary materials to be used in the thesis. It also provides the survey for relevant
literature and motivation for the present study. The chapter-wise description of the

thesis is presented in the last scction of this chapter.

1.1 Problem Description

Differential equations with discontinuous coefficients are often referred as interface prob-
lems. The discontinuity of the coefficients corresponds to the fact that the medium
consists of two or morc physically different materials. To begin with, we first introduce
parabolic and parabolic integro-differential equations with interfaces.

Parabolic interface problems: Let 2 be a convex polygonal domain in R? with
boundary 8. Further, let Q; C 2 be an open domain with C? smooth boundary I" and
Qy = Q\Q; (see, Figure 1.1). We now consider the following lincar parabolic interface

problems of the form
w(z,t) + Lu(z,t) = f(z,t) in Q x (0,7 (1.1.1)
with initial and boundary conditions
u(z,0) = up(z) n; u(z.t) =0 on N x (0,7 (1.1.2)

1



Figure 1.1: Domain Q and its sub domains Qi, Qo with interface L.

and interface conditions
Jdu
[u] =0, [65;} = g(z,t) along I’ x (0.7, (1.1.3)

where u(z, () is a real-valued function of @ and (, uy(z,t) = 2(x,t) and T < co. The
symbol [v] is a jump of a quantity v across the interface T, i.e.. [v](z) = v1(z)—va(z), = €
I, where v,(z) = v(z)ln,, ¢ = 1,2 and n denotes the unit outward normal to the
boundary 9§2;. Operator £ is a sccond order elliptic partial differential operator of the

form

Ly(z) = —V.(B(z)Vv(z)).
We assume that the coceflicient function 8 is positive and piecewise constant, i.c.,
Blx)y=06 mQ, 1=1,2.

Further, f = f(z,t) and g = g(x,t) arc rcal valued functions defined in © x (0,7] and
" x (0, T], respectively.
Parabolic integro-differential equations with interfaces: We shall also consider

integro-differential equations of the form
u(z, t) + Lu(z, t) = f(z,t) + /(: B(t, s)u(z,s)ds inQ x (0,T) (1.1.4)
with initial and boundary conditions
u(z,0) = up(z) mQ; wu(a.t) =0 on I x (0,7 (1.1.5)
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and interface conditions
[u] =0, [ﬂg—i] =0 along I' x (0, 7). (1.1.6)

The domain €, operator £, symbols [v] and n are defined as before, and T' < co. The

operator B(t,s) is a sccond order partial differential operator of the form

Z <Uﬂct8) )-i—Zb(mts -+ bo(z;t, 5)1.

The equations of the form (1.1.1)-(1.1.3) arc oftcn encountered in the theory of
magnetic field, heat conduction theory, the theory of elasticity and in reaction diffusion
problems. Many interface problems in material science and fluid dynamics are mod-
eled after above problem when two or more distinct materials or fluids with differcut
conductivities or densities or diffusions are involved. Oune interesting class of parabolic
equations with discontinuous coefficients processes in heat conducting media with con-
centrated capacity in which the heat capacity cocflicient contains a Dirac delta function,
or equivalently, the juinp of the heat flow at the singular point is proportional to the time
derivative of the temperaturce (cf. [7]). For a detailed discussion on parabolic problems
with discontinuous cocfficients, sce Dautray and Lions {18], Gilbarg and Trudinger [30],
Ladyzhenskaya et al. [39], Li and Ito [40].

Equations (1.1.4) are often referred to as the parabolic partial differential equa-
tions with memory term or the Volterra integral term i.c. jot B(t, s)u(x, s)ds. Such
problems and variants of them arise in several physical phenomena such as.in models
for heat conduction in rigid matcrials with memory, the compression of poro-viscoelastic
media, rcactor dynamics and epidemic models in biology. For a dctailed discussion on
models for heat conduction in materials with memory, sce Belleni-Morante (6], Cole-
man and Gurtin [17], Gurtin and Pipkin [31], Miller [45], Nohel [47] and the rcferences
quoted therein. For the literature relating to other applications of the theory of parabolic
integro-differential equations, one may refer to Habetler and Schiffman [32] for the mnod-
cls for the compression of poro-viscoclastic media, Pao [50]-[52] for reactor dynamics,
Hornung and Showalter [35] for the compartment model of a double-porosity system
and Capasso [11] for epidemic phenomena in biology. As a modcl for parabolic integro-

differential equations (1.1.4) with discontinuous coefficients, we consider non-stationary



heat conduction problems in two dimensions with memory and conduction cocfficient 8
which is discontinuous across a smooth interface.

The presence of the Volterra integral term helps to accurately describe scveral
physical phenomena, which causes some new difficulties in both theoretical analysis
and numerical computation. Although various FEM for parabolic interface problems
have been proposed and studied in the literature, but FEM treatment to the integro-
differcntial equations with interfaces is mostly missing. An attenpt has been made in this
thesis to study the a priori error analysis for the parabolic integro-differential equations
with discontinuous coeflicients. In this process some new a priori error estimates are

derived for parabolic interface problems.

1.2 Notation and Preliminaries

In this scction, we shall introduce some standard notation and preliminaries to be used
throughout of this work.

All functions considered here are real valued. Let Q be a bounded domain
in RY, d—dimensional Euclidian space and 95) denote the boundary of . Let 2 =
(%1,%2,...,24) € Q, and let dx = du; ... dz,. Further, let a = (a4, ..., aq) be a d—tuple
with nonncgative integer componcents and denote order of a as |a] = oy + a2 +. .. + ay.
Then, by D%¢, we shall mcan the ath derivative of ¢ defined by

glelg
e 0a

We shall make frequent reference to the following well-known function spaces.

D%

For 1 < p < oo, LP(Q2) denotes the linear space of equivalence classes of measurable
functions ¢ in €2 such that [, |¢(2)|Pde exists and is finite. The norm on LP(Q) is given
by .
lellry = (/“ |q§(:y)|”d:l;>;, 1<p<oo.
For p = 0co. L*°(Q) denotes the space of functions ¢ on €2 such that
|#ll ooy = ess Zlelg l9(z)] < oo

When p = 2, L%(Q) is a Hilbert space with respect to the inmer product

($.) = /“ ()0 (x)dz.
4



By support of a function ¢, supp ¢, we mean the closure of all points 2 with ¢(x) # 0,
i.c.,
supp ¢ = {z : ¢(z) # 0},

For any nonnegative integer m. C™(§) denotes the space of functions with continuous
derivatives upto and including order m in Q. CJ*(9) is the space of all C™(f2) func-
tions with compact support in Q. Also, C§°(2) is the space of all infinitely differential
functions with compact support in €.

We now introduce the notion of Sobolev spaces. Let m > 0 and real p with
1 < p < oo. The Sobolev space of order (m, p) on 2, denoted by W™?(Q), is defined as a
linear space of functions (or equivalence class of functions) in LP(§2) whose distributional

derivatives upto order m are also in LP(Q), i.e.,
WmP(Q) ={¢: D% € LP(Q) for 0 < |a|] < m}.

The space W™P(Q2) is endowed with the norm

=

B = | [ 3 1070
o<lajsm

P

S D) L 1<p<co.

0<lal<m

When p = o0, the norm on the space W™°(£2) is defined by

¢llmeo = max || D*G(2)]lzeon-

0<al<m

For p = 2, these spaces will be denoted by H™(2). The space H™(S2) is a Hilbert space

with natural inner product defined by

@)= 3 [ Drupvdn v e Q).

0<lal<m

The sobolev space H™(Q) (respectively, Hy*(€2)) is also defined as the closure of C"™(2)
(respectively, C§°(§2)) with respect to the norm ||@ll = ||@|lm,2. This result is true
under some smoothness assumption on the boundary 892. Clearly, L2(Q2) = HO(§2) and

H™() = W™2(Q). For a more complete discussion on Sobolev spaces, see Adams [1].
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We shall also use the following spaces in our error analysis. For a given Banach

space B, we define, for m=0,1land 1 <p <

Hu(
(761

W"l*p(O,T;B):{ (t) € Bfor a.c. t €(0,7) andZ/ dt<oo}
B
cquipped with the norm

lwllwm e o8 = (Z/ B )

We write H™(0,T; B) = W™2(0,T;B) and L?(0,T;B) = 11%0,T; B). When no risk of
confusion exists we shall write L?(B) for L*(0,T; B) and HY(B) for H(0,T; B).
Further, we denote L™(0,T'; B) to be the collection of all functions v € B such

Bju(t)
ot

that

ess sup |jv(z,t)|s < oo.
te(0,T)

Bclow, we shall discuss some preliminary matcerials which will be of frequent use
in crror analysis in the subsequent chapters. The bilinear form A(:, -) associated with
the operator £, given by

Alu,v) = / B(z)Vu - Vudz,
Q2

satisfies the following boundedness and coercive properties: For ¢,¢ € H(f2), there

exists positive constants C' and ¢ such that

A(¢,¥) < Cligll @l m @

and
A(bd) 2 clloliin -
From time to time we shall also use the following inequalities (see, Hardy et al.
[34)):
(i) Young’s inequality: For a,b > 0 and € > 0, the following incquality

b<a—2+d’2
)

holds.



(ii) Cauchy-Schwarz inequality: For a,b >0, 1 < p < 0o and % + % =1,

In integral form | if ¢ and ¥ arc both real valued and ¢ € LP and ¥ € L9, then

/Q o0 < Il 1],

For p = ¢ = 2, the above inequality is known as Schwarz’s inequality. The

discrete version of Schwarz’s inequality may be stated as:

(iii) Let ¢;,%,,7 = 1,2,...,n be positive real numbers. Then
1 1
n n 2 n 2
PIRATES (Z </>3> (Z wf) -
=1 7=1 =1

Below, we state without proof, the following two versions of Grownwall’s lemma. For a

proof, see [55].

Lemma 1.2.1 (Continuous Gronwall's Lemma) Let G(t) be a continuous function
and H(t) a nonnegatwe continuous function on its wnterval to < t < to+a. If a

continuous function F(t) has the property

F(t) < G(t) + ‘tF(s)H(s)ds for t € [to, to + al,

to
then . "
F) <GU)+ | G(s)H(s)exp {/ H(T)d”r] ds fort € [to, o + a).

to s

In particular, when G(t) = C a nonnegative constant, we have

t

F(t) < Cexp [ H(s)ds} for ¢ € [to, to + aj.

to
Lemma 1.2.2 (Discrete Gronwall's Lemma) If (y,,), (f.) and (g,) are non-negative

sequences and
Un < Fat D Gk m >0,

0<k<n

Yn < ot Z gkfkexp< Z g]>. 1> 0.

0<k<n k<y<n

then



In addition, we shall also work on the following spaces:
X =1 NH* Q) NHA(Q) & Y = L2Q)N YY) N IHHY).

Forw:[0.7] - X,v:[0,7] = Y and t € x[0,T], we define

lwllx = lhw(z, Ollaw + vl llrze) + lwlz, O]z,
= [wt) @ + lwE a2y + 10E | E2000)-
and
lo@lly = lv@, Ollzeqy + o, Ollaiq) + v, Ol g,

= lv®)llz2) + lVE N ar ) + TvE -

Throughout this thesis, C' is a positive generic constant independent of the mesh

parameters {h, k} and not necessarily be the same at cach occurrence.

1.3 Background and Objectives

This section presents a brief survey of the relevant literature concerning the numerical
solutions of interface problems by means of finite element method. It also elucidates the
objectives for the present study.

Solving differential equations with discontinuous coeflicients by means of classical
finite element methods usually leads to the loss in accuracy. One major difficulty is that
the solution has low global regularity and the clements do not fit with the interface
of gencral shape. For non-interface problems, one can assume full regularitics of the
solutions (at least H2(f2)) on whole physical domain. But for the interface problems,
the global regularity of the solution is low. So the classical analysis is difficult to apply
for the convergence analysis of the interface problems. Thus the numerical solution to
the interface problem is challenging as well as intercsting also.

Finite clement methods for interface problems may be grouped into two cate-
gories: Fitted finite element method and Unfitted finite element method depending on
the choice of the discretization. In fitted finite element method, the discretization is

made in such a way that the grid line is either isoparametrically fitted to the interface



or an approximation of the smooth interface. In unfitted finite element methods, the
discretization is independent of the location of the interface.

In recent time, many new numerical methods have been developed to handle dif-
ferential equations with singularity. Somne of themn are developed with the modifications
in the standard methods, so that they can deal with the discontinuities and the singular-
ities. We first give a brief account of the development of the finite element methods for
clliptic interface problems. In [4], Babuska has studied the clliptic interface problem as
an equivalent minimization problemn. The finite element method is then applied to solve
the minimization problem and sub-optimal H'-norm error cstimate is obtained. The
algorithm in [4] requires the cxact evaluation of line integrals on the boundary of the
domain and on the interface, and exact integrals on the interface finite elements are also
needed. In the absence of variational crimes, finite element approximation of interface
problemn has been studied by Barrett and Elliott in [5]. They have shown that the finite
element solution converges to the true solution at optimal rate in L2 and H! norms over
any interior subdomain. In [5], it is assumed that the solution and the normal derivative
of the solution arc continuous along the interface, and fourth order differentiable on cach
subdomain. Bramble and King [8] have studied nonconforming finite element method
for such problems. In their work, interior domains €2; and 2y arc approximatced by
polygonal domains. Then the Dirichlet data and the interface function are transferred
to the polygonal boundaries. Finally, discontinuous Galerkin finite element method has
applied to the approximated problem and optimal order error cstimates are derived for
rough as well as smooth boundary data. Under the assumption that f|g, = 0, Neilsen
[46] has proved optimal order of convergence in H! norm. The algorithm in [46] requires
that the interface triangles follow exactly the actual interface I'. Conforming high order
fitted finite clement methods for elliptic interface problems can be found in Li et al.
[41). For finite element methods of order p, error cstimates of QO(A™nP(m+D/2}) 4nd
O(pmin{pmi+1) in the H! and L? norms, respectively, arc obtained when the interface
is approximated with splines of order m. Recently, a continuous finite element method
for elliptic interface problems in a higher dimensional polyhedral domain is discussed
by Duan et al. [28]. An error cstimate of O(R™) in cnergy norm has been obtained be-
tween the analytical solution and the continuous finite clement solution. The analytical

solution is assumed to be in IT7 (H"(€;))? for some r € (1/2,1]. Unfitted discontinu-



ous Galerkin method, based on the symmetric interior penalty DG method, has been
proposed to discretize elliptic interface problems in [43]. Optimal h-convergence of the
method for arbitrary p in the energy and L? norms arc obtained. This method can be
treated as a generalization of the unfitted method given by Hansbo et al. [33] for clliptic
interface problems. A comparative study on the cxisting numerical techniques to solve
clliptic interface problems has been carried out in [38], which also includes extensive list
of relevant litcrature.

We now turn to the finite element Galerkin approximation to parabolic interface
problems (1.1.1)-(1.1.3). In the absence of memory term in (1.1.4), convergence analy-
sis for parabolic interface problems via finite clement procedure have been studied by
several authors, sec (3, 15, 21, 27, 53, 58, 59]. For the backward Euler time discretiza-
tion, Chen and Zou ([15]) have studied the convergence of fully discrete solution to the
exact solution using fitted finite element method with straight interface triangles. They
have proved almost optimal crror estimates in L2(L?) and L?(H') norms under practical
regularity assumption of the solution. For similar finite element discretization, optimal
crror estimates in L2(/I') norm have becn derived in [59]). So, in order to maintain
the best possible convergence rate in L*(L?) norm, the authors of [58) have used a fi-
nite clement discretization where interface triangles arc assumed to be curved triangles
instead of straight triangles like classical finite element methods. Optimal order error
cstimates in L2(L?) and L%(H') norms arc shown to hold for both semi discrete and
fully discrete schemes. More recently, for similar triangulation, Dcka and Sinha ([27])
have studicd the pointwisc-in-time convergence in finite clement method for paraholic
interface problems. Optimal crror estimates have been obtained in L°(H?!) and L°°(L?)
norms under the assumption that grid line exactly follow the actual interface. Sim-
ilar results arc also obtained by Attanayake and Senaratne in [3] for immersed finite
clement method. In (53], the author have analyzed the Lagrange multiplier method
with penalty for parabolic initial boundary valuc problems using semi discrete and fully
discrete schemes. For straight interface, sub-optimal order of cstimates for both semi
discrete and fully discrete schemes have been derived. Optimal order of convergence in
fitted finite element method with straight interface triangles can be found in [21].

Numecrical solutions by mecans of finite clement Galerkin procedures for the parabolic

integro-differential equation without interface can be found in [10. 12, 14, 42, 48, 64, 66,
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67). The first contribution in this direction is given by Yanik and Fairweather [66]. As-
suming the exact solution is smooth, they derived optimal order a priori error cstimates
for fully discrete Crank-Nicolson scheme for nonlinear parabolic integro-differential equa-
tions (1.1.4) with B(t, s) as a first-order partial differential operator. Subscquently, spa-
tially semi-discrete scheme for (1.1.4) is thoroughly examined by Thomée and Zhang in
[64]. They have obtained optimal order a priori crror estimates in the L?-norm for both
smooth and non-smooth initial data by extending the spatially scmidiscrete error anal-
ysis for linear parabolic equations [63] to parabolic integro-differential equations with
an integral kernel consisting of a partial differential operator of order < 2. The proof is

bascd on the following decomposition of the main error ¢ = « — wy, as
e = (u— Ruu) + (Ryu — up),

where w, and u denote the semidiscrete finite clement solution and the exact solution
of the parabolic integro-differential equation. respectively. Here, R, : H}(2) — V,
is the Ritz projection introduced by Wheeler in [65]. A simple alternative approach
is proposed by Cannon and Lin [10] and is further developed by Lin et al. in [42].
The key technical tool used in these works is a gencralization of the Ritz projection
operator Ry, namely the nonlocal projection or the Ritz-Volterra projection operator. In
order to reduce the storage requircments during the time stepping of a general parabolic
integro-differential equations, Sloan and Thoifee [61] have first proposed the application
of quadrature rules with relatively higher order truncation error. Later on, scveral
rescarchers have given valuable contributions towards the convergence analysis of the
finite element Galerkin solution to the solution of parabolic integro-differential equations
and its variants in the a priori framework. We refer to Cannon and Lin [10], Le Roux
and Thomée [{57], Thomdée and Zhang [64], Chen et al. {14], Pani et al. [48], Pani and
Sinha [49], McLean and Thomée [44], Chen and Shih [12], Zhang [67] and Sinha et al.
[60] for further works in this direction. Although various FEM for parabolic interface
problems have been proposed and studied in the literature, but FEM treatment to the
integro-differential equations with interfaces is mostly missing. For the finite element
treatment of parabolic integro-differential equation with discontinuous coefficients. we
refer to Pradhan et al. ([54]). In [54], authors have discussed a non-iterative domain
decomposition procedure for parabolic integro-differential equation with interfaces and

rclated a priori crror cstimates arc derived.
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In practice, the integrals appearing in finite element approximation arc cvaluated
numerically by using some well known quadrature schemes. (Quadrature based finite
element method for clliptic interface problems have been discussed in (20, 36]. In (36],
a mortar finite clement method have been discussed for a finite element discretization
wherc interface triangles are assumed to be curved triangles. Optimal L2 norm and
energy norm crror estimates are achicved when the exact integration are replaced by
quadrature. Author of {20] has obtained optimal order error cstimates in L2 and #H!
norins for conforming finite element method where the grid line need not follow the
actual interface exactly. The previous work on finite element analysis with numeri-
cal quadrature for parabolic problems without interface can be found in [13], [56] and
references therein.

The main objective is to study the convergence of fitted finite element solution
to the exact solution of parabolic integro-differcntial cquations with discontinuous co-
efficients. In this process some new a priori error estimates are derived for parabolic
interface problems and those estimates are extended for integro-differential equations of

parabolic type with intcrfaces. More preciscly,

e Quadrature Based Finite Element Methods for Linear Parabolic Inter-
face Problems: We have studied the effect of numerical quadrature in space on
semidiscrete and fully discrete piecewise linear finite element methods for parabolic
interface problems. Optimal L?(L?) and L%(H!) error cstimatcs are shown to hold
for semidiscrete problem under suitable regularity of the true solution in whole
domain. Further, fully discrete scheme based on backward Euler method has also
analyzed and optimal L?(L?) norm crror estimate is established (cf. [24]). Further,
optimal L>®°(H1!) and L>(L?) norms error cstimates have been derived under the

assumption that initial data is more regular(cf. [26]).

¢ Finite Element Galerkin Approximation for Parabolic Integro-Differential
Equations with Discontinuous Coefficients: In this work, convergence of
continuous time Galerkin method for the spatially discrete scheme and backward
difference scheme in time direction are discussed in L2(H™) and L*(H™) norms
for fitted finite element method with straight interface triangles. Optimal error es-
timates arc derived in L?(H™) and L*°(H™) norms when initial data uy € Hj(S2)

and ug € H3 N H} (). respectively (cf. [23], [25]).
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1.4 Organization of the Thesis

This thesis consists of five chapters and is organized as follows. Chapter 1 introduces
the problem and it contains the basic notations, and preliminary materials to be used
throughout this thesis.

In Chapter 2, convergence of quadrature based finite element solution to the
exact solution have been discussed in L(L?) and L?(H!) norms. More preciscly, optimal
error estimates are derived for arbitrary shapc but smooth interfaces with a practical
finite element discretization. Further, optimal crror estimates in [71(L?) and f{*({11)
norms are derived under the high regularity of the initial conditions. The finite element
discretization uscd in this work and a regularity result concerning parabolic interface
problems are also introduced in this chapter.

Chapter 3 is devoted to the optimal L(H?!) and L*(L?) norms convergence of
finite element method with quadrature for parabolic interface problems with straight
interface triangles. The key to the analysis is the crror cstimates of clliptic projection
under minimum smoothness of the solution.

Chapter 4 deals with the convergence of finite element method for a class of
parabolic integro-differential equations with discontinuous coefficients. Under the as-
sumption that B(t, s) is a first order partial differential operator of the form

Bt )uls) = 3 bulat, ) 0 ),

k=1
optimal L%(L?) and L?(H') norms arc shown to hold in this chapter. Further, exis-
tence and uniqueness of the solution for parabolic integro-differential equations with
discontinuous coeflicients is also discussed in this chapter.

Chapter 5 is concerned with a priori error estimates for interface problems (1.1.4)-
(1.1.6). Optimal crror estimates in L*°(L?) and L®(H'!) norms arc established for con-
tinuous time discretization. Further, the fully discrete scheme based on a symmetric
difference approximation is considered and optimal order convergence in H' norm is
cstablished. The crucial fact used in this work is the newly established approximation
result for the Ritz-Volterra projection under minimum regularity assumption.

For clarity of presentation we have repeatedly given equations (1.1.1) — (1.1.3) or

(1.1.4) — (1.1.6) at the beginning of subsequent chapters.
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Chapter 2

Quadrature based Finite Element
Methods for Linear Parabolic
Interface Problems: L?(L?) and
L*(HY) Error Estimates

In this chapter, we study the effect of numerical quadrature in space on semidiscrete and
fully discrete piecewise linear finite element methods for parabolic interface problems.
Optimal L?(L?) and L?(H?') crror estimates arc shown to hold for semidiscrete problem
under suitable regularity of the true solution in whole domain. Further, fully discrete
scheme based on backward Euler method has also analyzed and optimal L?(L?) norm
error estimate is established. The error estimates are obtained for fitted finite element

discretization bascd on straight interface triangles.

2.1 Introduction
In this chapter, we consider a lincar parabolic equation of the form
u+ Lu= f(z.t) inQx(0,T) (2.1.1)
with initial and boundary conditions
w(z.0) =up nQ & u(z,t) =0 on dN x (0.7 (2.1.2)
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and interface conditions

[u] =0, [ﬁg—z] =g(z,t) along " x (0,T]. (2.1.3)

Here, Q = Q;UTUS, is a convex polygonal domain in R? with boundary 9Q and Q; C Q
is an open domain with C? smooth boundary ' = 9. Let Qs = Q\Q,; (sce, Figure
1.1). Here, f = f(x,t) and g = g(x, () arc real valued functions defined in €2 x (0, T and
I' x (0,T), respectively. The operator £, symbols [v] and n are defined as in Chapter 1.

For our subsequent analysis, we now recall the bilinear form A(-,-) : HY{(Q) x
H(Q) — R given by

A(u,v) = [ B(x)Vu-Vodr Yu,v € Q).
Q

Then the weak formulation of the interface problem (2.1.1)-(2.1.3) is stated as follows:
Find u € H3(£2) such that

(u,v) + A(u,v) = (f,v) + {g,v)r Vv € HL(Q), t € (0,T] (2.1.4)

with ©(0) = uo. Here, (-,-) and (-,-)r arc used to denote the inner products of L2({2)
spacc and L2(T") space, respectively.

Convergence of the quadrature based finite element solution to the exact solution
have been discussed in L*(L2?) and L?(H*) norms. More precisely, optimal error cstimates
are derived for arbitrary shape but smooth interfaces with a practical finite element
discretization. The key to the present analysis is the introduction of some auxiliary
projections, duality arguments and some newly established convergence results in H*(L?)
and H'(H') norms for parabolic interface problems without quadraturc. To the best
of our knowledge, the effect of numerical quadrature in finite element methods for the
parabolic interface problems have not been studied earlier. The previous work on finite
element analysis with numerical quadrature for parabolic problems without interface can
be found in [13], [56] and rcferences therein.

The rest of the chapter is organized as follows. In Section 2.2, we introduce
the triangulation and recall some basic results from the literature. While Scction 2.3
is devoted to the error analysis for the semidiscrete finite element approximation. crror
estimates for the fully discrete backward Euler time stepping scheme are derived in
Scction 2.4.
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2.2 Preliminaries

Due to the prescnce of discontinuous coefficients the solution w, in general, docs not
belong to H?(2). Regarding the regularity for the solution of the interface problem
(2.1.1)-(2.1.3), we have the following result (cf. [15, 39, 58]).

Theorem 2.2.1 Let f € HY(0,T;L?(€))), g =0 and uo € HE(SY). Then the problem
(2.1.1)-(2.1.8) has a unique solution u € L*(0,T; X N Hy(Q)) N H*(0,T;Y). Further,
for ug € H3(Q) N HE(Q) and f € HY0,T; H(Q)), solution u satisfies the following a

priori estimate

t t
/0{Ilutll?qz(nlﬁ||ut||§;z(ng)}dsSC{Ilut(O)H%l(nﬁ/o 1fellzagyds}.  (221)

Proof. The existence of unique solution can be found in [15, 39].
Next, to obtain the a priori estimate we first transform the problem (2.1.1)-(2.1.3)
to the following equivalent problem:
For a.e. t € (0,T), w(z,t) € H*(Q1) N H*(Qy) satisfies the following elliptic
interfacc problem
-V -(B(2)Vw)=fi—up inQ,, i=1,2 (2.2.2)

along with boundary condition
ug(z.t) =0 on 9Q x (0,T) (2.2.3)

and jump conditions (cf. [37])

[ug =0 and [B%} =0 along I'. (2.2.4)

From the a priori estimate for clliptic interface problem (cf. {15]), it follows that
luellzr2ay) + Nuell 2y < Clllueell) + I fellzz }- (2.2.5)

For any
veYN{yY:v=0 ondQ} & v]=0along T,
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we obtain

_/ AVAR (ﬂIVU)'Ude} — A\VAR (,[52V’U)?}dfli
1921

(923

= —/ﬁl@vds-k BiVu - Vudz
r On N

+/[32Q(ivds + [ BaVu-Vudz
r

on 2
= B1Vu - Vudx + BoVu - Vudr + / [ﬂ@—bv] ds
o5 Qg rl On
= Al(u,v) + A%(u,v). (2.2.6)

Since [v] = 0 and [80u/On] = 0 along T'. Here. A'(...) : H} (%) x H}(£) — R arc local

bilinear map given by

A(w,v) = | BVw- - Vodz, 1=1,2.

§

Then multiplying (2.2.2) by such v and integrating over Q, we have
(utt,v) +A1(Ut,?)) +A2(ut,v) = (ft,’U). (227)

Again it follows from the arguments of [37] that [uy] = 0 along T and vy = 0 on 09,
and hence equation (2.2.7) lcads to

(Utty ’Uu) + Al('(Lt, utt) -+ A2(’(Lt, 'lLtt) = (jt, 'lLtt) (228)
so that

't 1 1
/ l[ueellZaoyds + §A1(Ut»ut) + §A2(Ut- )
Jo
1 1 ‘
< §A1(Ut(0)’ut(0)) + ‘2‘A2(Ut(0)~ut(0)) +C/0 1 fell 22y ds.
Under the assumption that ug € H3(Q) and f(z,0) € H(2), we have u,(0) € H'(Q).

Therefore, u;; satisfies the following a priori estimate

-t -t
/ [ueelZ2iyds < C{llue(0) I3y + /0 1/l 22y ds}-
0 .

Finally, using above estimate in (2.2.5) we obtain

t ot
[ By + el s < Ol @iy + [ Wfellas). O
0
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Remark 2.2.1 Consider the following interface problems

& — V- (B)VE) = [(2,1) inQx(0,T]
£(,0) = %uo in®; €@,1) =0 ondQx (0,T]

Kl =0, [ g%] =0 alongT,

and
Py — V- (Ba)VyY) =0 inQx(0,T]

P(z,0) = %uo in QY Y(x,t) =0 on 9N x (0,7T]

0
wj] =0, [ﬂ%] = g(z,t) alongT.

Then, & + i satisfies the following weak formulation
(& + e, v) + AE+0,v) = (f,v) + (g, v)r Yo € HE(S). (2.2.9)
Subtracting (2.2.9) from (2.1.4), we obtain
(ug — & — Y, v) + Alu — € — ¢, v) = 0. (2.2.10)
Setting v =u — & — ¢ in (2.2.10) and coercivity of A(.,.) leads to
lu = € = PlZ20) < Cllu(0) = £(0) — % (0)lIZ2(q).

Finally, use the fact u(0) = £(0) + ¥(0) to have u =&+ for a.e. (z,t) € Q x (0,T].
For g € H*(0,T; H*(T")), we assume that

Ye LX0,T; X N HYQ) N HY0,T; L*(Q) N H2(Sy) N H*(Qy))

so that w € H(0,T; LA(Q2) N H2(Sy) N H2(Qy)).

Thus, under the assumptions uy € H3(Q)NH(Q), f € HY(0,T; L*(Q)), f(z.0) €
HY(Q) and g € H%(0,T; H*(T')), solution u for the interface problem (2.1.1)-(2.1.8) is
unique and u € L2(0,T; X N HE(Q)) N HY(0,T; L*(Q) N H2(2,) N HY(Qy)). O

We now describe the triangulation 7, of Q. We first approximate the domain €

by a domain Q% with the polygonal boundary I';, whose vertices all lic on the interface
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I'. Let 2% be the approximation for the domain Q with polygonal exterior and interior
boundarics as 9 and 'y, respectively. The triangles with one or two vertices on I" are
called the interface triangles, the set of all interface triangles is denoted by 7 and we
write Qf = Uger IK.

We assume that the triangulation 7, of the domain 2 satisfy the following con-

ditions:
(.Al) ﬁ = UKG’U;K"

(A2) If Ky, K3 € T, and K1 # Ky, then either Ky N Ay = or K1 N K, is a common

vertex or edge of both triangles.

(A3) Each triangle K € Ty, is either in Q% or Q% and has at most two vertices lying on
Ty.

(A4) For each triangle K € Ty, let 7k, Fx be the radii of its inscribed and circumscribed

circles, respectively. Let & = max{Fx : K € Tp.}.

Let V, be a family of finite dimensional subspaces of H}(Q) defined on 75, con-
sisting of pieccwisc linear functions vanishing on the boundary 92 and satisfying the

following approximation properties

inf {|lv —wal r2) + BIIV(v = vp)llL2 ey} < CR|v]

v EVy

H3(Q)» 1 S S S 2, (2211)
when v € H*(Q2) N H}(§Y). Examples of such finite clement spaces can be found in [9]
and [16]. Further, we assume the following inverse estimate

¢l < ChH¢ll2@) ¥ ¢ € Vi (2.2.12)

In order to study the effect of numerical quadrature we need to define approxima-
tion of the original bilinear form A(.,.). For this purpose, we define the approximation
Brn(x) of the coefficient B(x) as follows: For cach triangle K € Ty, let fx(z) = B, if
K C QF, i=1 or 2. Then B, is defined as

ﬁh(l‘) = ,BK(CL) VK €Ty,

Then the approximation Ap(-. ) : HY(Q) x H(Q) — R to A(.,.) can be defined as

Ap(w,v) = Z /KBK(:L')Vw -Vudz Yw,v € HY(Q).

KEeTh

19



To handle the L? inner product, we define the approximation on V5, and its induced
norm by

(w,v), = Z { meas(K iw PK v(PK } (2.2.13)

KeT,,

and ||¢||n = (¢, q’)),%, where P/ are the vertices for the triangle K.

Let II;, : X — V, be the linear interpolation operator defined in [15]. For any
v € X, let v; be the restriction of v on ; for ¢ = 1,2. As the interface is of class C?,
we can extend the function v; € H?(§2;) on to the whole Q and obtain the function
7; € H%(Q) such that 7; = v; on §; and

[:ll 20y < Clivill a2yt =1, 2. (2.2.14)

For the cxistence of such extensions, we refer to Stein [62]. Then, for K € Ty, we now
define

a4, if K C Q

Hhu = { R
,ds if K C QL.

The following optimal approximation of Il operator is borrowed from [20].

Lemma 2.2.1 For v € X with [v] =0 along I, then the following approzimation prop-
erties

v — Mpv|| amegy < CAE™|vllx, m =0,1,

holds true. O

We now rccall some cxisting results on the approximation A, and the inner

product which will be frequently used in our analysis. For a proof, we refer to {16, 59.

Lemma 2.2.2 On Vj, the norms ||.||t2q) and ||.||n are equivalent. Further, forw,v € V,
and f € X, we have

|Ap(w,v) — A(w,v)] < Ch Z Vol L2l V| L2k
KeTy
[(w,v) = (w,v)a| < CR*wl|lgyellvllai@

A

(S, o) = (S0)l < CEIflixlvllm@- O
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We denote X to be the collection of all v € {¢p € L%() : % = 0 on 92} N
H2()) N H%(,) with [v] = 0 and [88v/0n] = 0 along I'. For any v € X, we define

f* . { -V (ﬁ1VU) n Ql
L -V (V) in Q.

Clearly f* € L?(2). Then define P, : X — V), by

Ah(ljhv~vh) = (f*vvh) V’Uh € Vh-
Again

(o) = [ V- (B:Vv)ondz — / V- (,V0)ondz

1931 Sl

"0
= —/ 51—v’UhdS+ B1Vv - Vupdx
T é?ll

o)

+ / ﬂ2@0hd3 -+ BoVu - Vupdx
r 3n

29

= B Vv - Vu,dz + BoVu - Vupdz + / [’BZ_Z] vpds
r

191 (91

= AYv,v) + A*(v, ).

Thus, we have
An(Pyv,vy) = A(v,vp) + A% (v, vy) Yo, € V. (2.2.15)

Regarding the approximation propertics of P, operator defined by (2.2.15), we have the
following result (cf. [2])

Lemma 2.2.3 Let P, be defined by (2.2.15), then for any v € X there exists a positive

constant C' independent of the mesh parameter h such that

| Pov — v 1y + 1Py = vl ey < Ch(vl a2y + 0]l 2(02))
| P — ’U“L2(n) < ChQ(HUHH?(m) + ||v“H2(£22))' O

Let Ly, : L?(£2) — V}, be the standard L? projection defined by
(Lyv, @) = (v,¢), ve L Q) VeV, (2.2.16)

A simple application of Lemma 2.2.3 and inverse inequality (2.2.12) leads to the following

optimal crror estimates for L? projection.
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Lemma 2.2.4 Let Ly, be defined by (2.2.16). Then, for v € X, there exists a positive

constant C' independent of the mesh parameter h such that

v = Liollzay < CH (ol + 0z )

lv — Lavll gy + v — Luvllar,) < Ch(””llm(szl) + ||U||H2(s22))‘ O

2.3 Error Estimates for the Semidiscrete Problem

This section deals with the error analysis for the spatially discrete scheme. For f € X
and g = 0, the semidiscrete finite element method with quadrature is defined as: Find
uy (t) € Vj, such that

(U;;t, vh)h + Ah(u;u vh) - (thy Uh)h \V/U}L € ‘/}u (231)

with u}(0) = Pyuo.
In order to discuss the error analysis of finite element method with quadrature,

we consider the following auxiliary approximation u, € V), given by
(uhtavh) + Ah(uhv’vh) = (f' ’U},,) V'Uh € ‘/hv t e (07 T]- (232)

with uh(O) = Phuo.

Now, define the error e(t) = u(t) — uj,(t) as
e(t) = u(t) — w(t) = u(t) — un(t) +un(t) — uj(t) = ex(t) + ea(t),

where e;(t) = u(t) — up(t), ea(t) = up(t) — uj(t).
For the quadrature frce error e;(t), we have the following error estimates (sce,
Theorems 3.1-3.2 in [21])

Theorem 2.3.1 Letu anduy, be the solutions of (2.1.1)-(2.1.8) and (2.3.2), respectively.
Then, for ug € HY(Q), g =0 and f € H*(0,T; L?(Q)), there is a positive constant C
independent of h such that

lu— Uh||L2(o,T;L2(sz)) + hlu Uh”Lz(O,T;Hl(Sl))

< Cn? <”“0”§{1(n) + ”f”iz(o,T;U(Q)) + [[u(T)|% + ”’“'”%2(01;)()) .
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Further, splitting e; in tcims of standard p and 0 as
e; = (u— Pou) + (Pou—up) =p+6,
where p = u — Pyu and 6 = P,u — uy, we note that (cf. [63])
(O, vn) + An(8,v1) = —(p¢, vn) (2.3.3)

For vy, = 8;, we have
1d

(6, 6¢) + 5 EAIL(H’ )

IN

“Pz”LQ(sz)HHt”L?(sz)
€
< Cellpellia + gllgtﬂizm)-

Integrating the above equation form 0 to ¢ and using Lemma 2.2.3, we obtain

ot t
[ 1 + 40.0) < C [ il

2 )
< o'y / luel3aayds- (2.3.4)
=170
Again inverse cstimate (2.2.12) leads to
it ot ) 2 't
| 10dins < 017 [ 1o < €3 [ hulfayds @235)
=1

Finally, Lemina 2.2.3 together with cstimates (2.3.4)-(2.3.5) leads to the following
HY(L?) and H'(H") norms crror cstimate
Theorem 2.3.2 Letu and uy, be the solutions of (2.1.1)-(2.1.8) and (2.3.2), respectively.

Then, for ug € Hy(Q) N H3(QY), ¢ =0 and f € HY0.T; H*(Q)), there 1s a positive
constant C' wndependent of h such that

t 2 34 2 ot
/0 LB Eayds + 123 /0 14 ()2 s < CRES / ludlZagds. O
b 1=1" =1"

Remark 2.3.1 The optimal error estumates in H'(L?) and H*(H') norms are derwed
for hagh regularity of the wnitwal conditions. Under low reqularity assumptions of the
matral data, solution w € HY(0,T;Y) and for which Pyu; 15 not well defined. The wnitial
data 1s assumed to be very regular, so that a solution etists and belongs to the necessary
Sobolev spaces satisfying a prior estimate (2.2.1). To the best of our knowledge, conver-
gence of finite element method wn H'(L?) and H'(H') norms for the parabolic wnterface

problems have not been studied earlier.
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Next, for the term eq, we have

C”“h - UZ”%{I(&U
< Ap(up — up, wp, — uy) = Ap(up.up — uy) — Ap(up, up — uy,)
= (foup —up) — (tne un — up) + (U, up — up)n — (Up S, up — wp)n

={(fiun— UZ) — (IIn fs un — UZ)} + {(th~ up — up) — (M f,u, — Up)n}

1 .
=+ I+ Is — s —|lun — ) 3200

Integrating from 0 to 7" and assuming u;,(0) = u};(0), we have

T T
/ lealZ s < / (I + I + I)ds. (2.3.6)
40 0

By Lemma 2.2.1 and Cauchy-Schwarz inequality it follows that

T T 5T 3
/ Lds < CR? ( / ||f“2xds) ( / ue2||i2(mds> . (2.3.7)
0 0 0

Applying Lemma 2.2.2 for I, we have

T T % T %
/ Iads < CI? ( / ||f]|§;ds) ( / ||e2”i,l(mds) | (2.3.8)
J0O 0 0

Similarly for Iy, we have

T T 3/ T 3
/0 [3(15‘ S 0}12 (\/0 ”u;t”?{l(ﬂ)d‘g) </ ”62”%1(9)(18) .
0

Then apply inversc incquality (2.2.12) to have

T T i T 3
/0 Ids < Ch ( / uuztuia(mds) ( / ||e2n%,1m>ds)

T 3, T . 3
< ch( / IIindHIIUOII?p(m) ( / ||e2nip(mds) C (@239)

Estimates (2.3.6)-(2.3.9) yiclds

i~

IA

T 3 3
(/o ””2”?11(52)‘13> S Cl"(”./'||%2(0‘7‘;x) + ““'0”1%11(9)) : (2.3.10)

This together with Theorein 2.3.1 leads to the following optimal L?(H') norm cstimate.
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Theorem 2.3.3 Letu and uj, be the solutions of (2.1.1)-(2.1.3) and (2.3.1). respectively.
Then, for f € HY0,T; L*(Q)) N L2(0,T;X). g = 0 and uy € HF(Q), the following

L*(H*Y) norm error estimate holds

u— U;“U(O,T;H‘m))
1
2

< Ch(”“()”iﬂ(n) + ”f||2L2(o,T~,X) + “U(THB\ a ”u“%2(0,T;X)> SN

Next, for L2-norm error cstimate, we shall usce the clliptic duality argument. For
this purpose, we now consider the following auxiliary problem: Find w € H () such
that

AQw,v) = (up, —uj,v) Yo € II5(), t € (0,T) (2.3.11)

with [w] =0 & [ﬁ QE] = 0 across the interface T'. Theun its finite element approximation
} on

with quadrature is defined to be a function w), € V), satisfying
Ap(wn,v) = (up, — up op)n Yo, € Vi, t €(0,7). (2.3.12)
Then following the arguments of Deka ([20]), we have
lw — wil| 220y + AV (w = wi) || g2y < CRA s — u || aey- (2.3.13)
Again subtracting (2.3.1) from (2.3.2), we obtain

(unt = g, vn)n + Ap(un — wjpoon) = (Joon) = (Unf, o)
+(une, vn)n — (Une, Un)- (2.3.14)

Setting v = uy, — 4, in (2.3.11), we have

l|un — ‘uillim, = Alw,up ~ up)
= Alw —wy,up —u),) + Alwp, w, — uy,)
= A(w — wy,up, — up) + A(up, wp) — AQug,, wy,)
= A(w — wp,un — up) + A(up. wp) — Ap(un, wy,)

+ ARy, wp) — Ap(uy, wi) + Ap(uy, wy,) — Ay, wp).
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Further equation (2.3.14) leads to
lun = uillteqy = {A@w—wn,un — i)} + {An(u), wn) — Auy,wn)}
+{A(un, wn) — Ap(up, wr)}
+(f, wn) — (une, wn) + (uhy, wWa)n — (pfywp)n
= {Aw — wn,wn — uj)} + {An(ug, wa) — A(u, i)}
+{A(un, wp) = Ap(up, wy)}
+{(fswn) = (W fs wa)n} + {(wne, wn)n — (une, wa)}
—(unt — Ujps wr)n,
= S+ o+ Iy +Jy+ T5 — (up — why, Wi (2.3.15)
Differentiating (2.3.12) with respect to ¢, we obtain
An(wnt, vn) = (Ut — Upg, V-
Thus, we have
%EA’L(“”“ wp) = Ap(wne, wn) = (upy — gy, W)
and hence, integrating (2.3.15) from 0 to 7" we obtain

T
llun = 2o L2y < C/O (0] + 12| + 1Js] + 1Ja] + [ J5))ds. (2.3.16)

Here, we have used Ay, (wy,(0),w;,(0)) = 0. Now, we cstimate each term scparately. For
the term Ji, use (2.3.10) and (2.3.13) to have

T T . 5, T 3
/0 hlds < c( / ||w—wh||;p(mds) (/ ||uh—u;||im)ds)

0}12”92”L2(0,T;L2($2)) <”f||2Lz(o,T;X) + “%Hil%n)) . (2.3.17)

Using Lemma 2.2.2, cstimate (2.3.13) and Theorem 2.3.3, we have

T T \ 3 7 T 3
/0 \blds < Ch ( /0 Hu}‘LHHlm;)ds> ( /0 nwhnipm;)(zs>

IA

< Ch(lluy, — wll 2oy + liull 2o o)
X (Jlwn — wl 2z @ + 1wl 20,000 @2))
1
2
< 081 lzin + ol + Nl
xleal L2 o n202))- (2.3.18)
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Here, we have used the fact that (cf. Dcka and Sinha {59], page 260)

1 1 1
el ey < Ch2llullx.  |lwlla@on < Ch2lwllx < Ch2|lup — uj |l L2goy-

Similarly, for the term Js, we have
T 3
/0 |Jslds < Ch? (”f”%%o,:r;)() + ||u0||%11(u) + ”U”i%o,T;X))
x |lezll L2012 () (2.3.19)

Arguing as in I} and I, we obtain

T
/ |Jalds < CR?| fllrzorxlwnllczommqy
0

< CRIzomix)

LZ(O,T;L2(”))' (2320)

€2

Here, we have used the fact that ||w, g1y < Cllun — 4|l 220y

For the term Js5, we again recall Lemma 2.2.2 along with Theorem 2.3.2 to have

T T 3 T 3
[ e < o (/ Huht||?11(sz)d5> ( / uwhnip(mds)

2 T %
Ch? [[ae]| %72 a)@s | lle2ll2o,miz2¢0))- (2.3.21)
0 (82.)
i=1

IA

IA

Then combine (2.3.16)-(2.3.21) to have

lleall 20, miz2y) < Ch?(ﬂuo||3,l(m+ 1 f11Z20.7:x)
: ;
Flaors + 3 llutrliz@.T;Hzml))) ,

i=1

which together with Theorem 2.3.1 lcads to the following optimal crror cstimate

Theorem 2.3.4 Letu and u} be the solutions of (2.1.1)-(2.1.3) and (2.3.1), respectively.
Then, for ug € HY(Q) N H3(Q), g =0 and f € HY(0,T; H()) N L*(0.T; X), there is

a positive constant C independent of h such that

T T
lu = uillzorieey < Chz(/ ||f||§d3+||U(T)||§<+/ llull%ds
0 0
2 T %
3 / Hut||f{2ml)ds> O
i=1 Y0
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2.4 Error Estimate for Fully Discrete case

In this scection, we give error cstimates for the fully discrete scheme with quadrature.
Optimal order error estimate in L2(L?) norm is derived.
In order to discretize (2.3.1) in time. we first divide the interval [0,7] into M

cqually spaced subintervals by the following points
0=t<t!<..<tM=T

with t* = nk, k = T/M the time step. Let I,, = (t,,-1,t,) be the n-th sub interval. We

shall use the finite dimensional space
Sin=1{¢:[0.T) = Vi, : ¢|1, € V4 is constant in time}.

For ¢ € Si, we denote by ¢™ the value of ¢ at ¢, and write Sp), for the restriction to /,,

of the functions in Sg,. Now we introduce the backward difference quotient

n__ 4n-—-1
agr =TI

for a given sequence {¢"}M, C L%(). For a given Banach space B and some function
€ € L?(0,T; B), we write

£ =k [ e (2.4.1)
I,

Then, we consider the following fully discrete Galerkin method with quadrature: For

1< n <M, find wy, € Sy, such that
(Al vp)n + An(wit,on) = (F " vn) Yo, €SB, (2.4.2)

with w) = Lyuo.
Before proceeding further, we introduce the following auxiliary discrete problem:
Forn=M,M —1,...,1 find z,’f“l € Vj, such that

(~Akz,'f, vh)h + Ah(ZZ‘l, ’Uh) = (ﬂln — ’tU,T:,U;L)h Y, € Vi, (2.4.3)

with z,’l"! =0 and
Uy = k—l/ I, udt.
ITL

n—1

We shall nced the following stability result for 25,7 satisfying (2.4.3).
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Lemma 2.4.1 For z,'f_l, we have

M M
Hz}?lli’mm + Z ’C“Ak'zmlimz) < Zk”ﬁf - w}?”i?(sz)-
n=1

n=1

Proof. The lemma can be proved by sctting v, = —kAgz} in (2.4.3) and applying the
argument of [58]. We omit the details. O
We nced the following interface approximation estimate for z,’:'l, which is crucial

to study the L?-norm crror cstimate.

Lemma 2.4.2 For 2!, we have

M M
>kl Ry < Ch (Z Kl - w?tl!izm) :
n=1

n=1
Proof. Let z"~' € X N H}(Q) be the solution of the following auxiliary problem

A(z"Y0) = (@ — W + Ap2,v) Yo € HH(S). (2.4.4)
Then applying elliptic regularity cstimate (cf. [15]), we have
=" llx < CUllEr = willzaqy + 182kl 2). (2:4.5)

We know from (2.4.3) that 2" is the finite clement approximation of 2"~ with quadra-

ture. Then arguing as in Theorem 3.1 of [20], we have

IMa2"" = 2 ey < CRZ"HIx T2 = 237 e
+ CRap — wiy + Azl 1Tnz™ ™ = 207 ey
< Chl2" HIx ="t = 237 i
+ Chlaf — wip + Azl 2@ lnz""" = 237 ma-

Then apply Lemma 2.2.1 and (2.4.5) to have
127" = 23 gy < CR(IES — willza) + 1 Akzk Nl 2.

Summing over n from n =1 to n = M and applying Lemma 2.4.1, we obtain

M M
Z kll=""t — zirf_l”%ll(sz) < Ch? Z kluf - wﬁ”?ﬁ(m- (2.4.6)
n=1

n=1
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Again using the fact |27z < Chz||z""!||x and (2.4.6), we have

M M M
D okl gy < CRPY kIR — williamy + CR Y kI HIX
n=1 n=1

n=1

IA

M
ChY " kllaf — will3aqy- (2.4.7)
n=1

In the last incquality we have used (2.4.5) and Lemma 2.4.1. O
Next, we introduce the interpolant Py € Sk, of u defined by

P = %/}n P,uds.
Then, for n =1,2...., M it follows from (2.2.15) that
AL P = AL A, (2.4.8)
By sctting v, = k(P — w}) in (2.4.3), we obtain

Cklaf — wplljey < k@ —wh o - P+ k(A2 P — wida

+hAW(zp P) — kAw(z T wp)
which together with (2.4.8) yiclds

Cllgy — willfay < k@ —wpaf = Pe')n + k(=2 Py — wihs
+ AL T") — kAL wp). (2.4.9)
Again, note that for all v € H} (), we have

(Agu™,0) + A@@™0) = (f ,v), 1<n< AL (2.4.10)

Then it is casy to verify from the cstimates (2.4.2) and (2.4.10) that

A am) — el = (A5 - (Bt )
+ (s ™ = wp), 2 Y; (2.4.11)

Since the solutions concerned arc only on /71(€2) globally, it is not meaningful to usc the
definition (2.2.13) for evaluation of the term (v, ¢,);, for v € X and ¢, € Vj. Therefore,
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notations (v, ¢5,);, and (¢n, v);, have been introduced and are cvaluated by the following

formulac

(U.(,bh) (th Qbh)h & (¢h7 ) (Qbh, th)

Then, for any v € IT3(2) and ¢, € V4, it is easy to verify the following facts

'Uha ¢}L>}L (U}u ¢h>h’ Up € Vh (’U, ¢h)ﬁ = ((bh,) v)ﬁ;
(‘#5 + 9, 9n)s = (6, ¢n); + (b, on)ie b ¥ € Hy (),
I(Uvd)h)ﬂl < C”U”Lz(sz)||¢h||L2(sz)

and
|(’U,¢h);1 - (’Ua ¢h)| |(L1LU, ¢h)h - (Lh'U»¢h)|
ChZ“LhU“Hl(Q)”¢h”H1(Q)

< Ol oyl dnlla ). (2.4.12)

Now, estimate (2.4.11) together with (2.4.9) leads to

(AN

Ckluf - w/’f“i%sz) < k@ —wp R = Py )+ k(= Arzp Py — w);,

+ k(Agu™, 27N — E(Agu™, 2

+h(=Op(u™ = wh), 27

k@ — wl ) — Py )+ k(= Azl Py — u™);,

+ k(= Agzp u — wi);, + k(Agu™, 25

—k(Apu™ Y + E(=Ap(u” — wl), 22N (2.4.13)

IA

Summing over n, we have

CZ’v“'U/I 'lU}T:“%g(n)

n=

M
< Zk Tt — w4t = P+ Y k(=Dgzi, P — )y,
n=1 n=1
+ZA{Aku,~}f" i — (Agu™, "1}-!-2]1{ — wh);,
n=1
el - a4
= IV +1Va+1V3+ 1V, (2.4.14)
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Before estimnating the fowr terms appearing m (2.4.14) we fist rewrite V4. Using the

fact that 2 = 0 and applying the identity

M M
Z(an - an—l)bn - aMbM - aObO - Z an—l(bn - bn—l)
n=1 n=1

to IV, with a,, = z;} and b, = u"™ — wj}}. we obtain
IVy = (Z?La Up — wh(o))ﬁ = (z,?, Up — Lhuo);} < 0“22||L2(sz)”u0 - Lhuo||L2(sz)-

Then Lemma 2.2.4 and Lemma 2.4.1 lcads to

M 2
Vs < Ch*||ugll g2 (Z klup — wgljiz(m> . (2.4.15)
n=1
Again it is easy to verify from Lemma 2.2.1 and Lemma 2.2.3 that
M
Z kllup — ?an%{m(sz) < Ch4—2m||u||2L2(o,T,x)» m=0,1. (2.4.16)
n=1
Applying (2.4.16) for IV;, we get
M /M 3
| < C (Z ki — Fk”“%?(sz)) (Z kllay — "U;f”QLZ(sz))
n=1 n=1
M 3
< CR?flull 20, ) (Z klaf — w;’f“iag») ~ (2.4.17)
n=1

Similarly, for V5, use of (2.4.16) and Lemma 2.4.1 leads to

M 3
e < C <Zk“AkZ;f“iz(sz)>

n=1
x KZAHE" - ﬁ"”%zg») + (Z Miz™ - u"llizm)ﬂ

1 /M
C(k+ h?) (HUHQH(D,T,X) + HutHiQ(O,T,LQ(SZ))) ’ <Z k“Akzﬁ”i?(sz)>

n=1

Nl

(A

"=

IA

Clk+12) (o) + el s

M 2
X ( ki "wmliz(sz)> . (2.4.18)
1

n=
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Finally, for the term IV3, we use (2.4.12) to have

M
IVs] < CR®Y kA moyllzy sy (2.4.19)

2
n=1

Again, it is easy to see that

M
Z kHAku"Hf{l(”) < C <||ut”2m(o,T;H2(szl)) + Hut”iz(O,T;H?(Slz))) .

n=1
Then apply Lemma 2.4.2 and estimate (2.4.19) to have
1
2

Vel < O (lualfiao rimmuy + ooz )

1

M 2
x <Z klur - wmii%sz)) . (2.4.20)
n=1

By a simple calculation it follows that

lv — wallzoriz2yy < N~ L2z + 1T™ — T L2012y

M 3
+ (Z kifu; — wZH"b(m)

n=1

< Cklluellzo,rz2) + CRul 20,15

1
M 2
n=1

Then, cstimates (2.4.14)-(2.4.15) and (2.4.17)-(2.4.21) yiclds the following convergence

result

Theorem 2.4.1 Letu and wy, be the solutions of the problem (2.1.1)-(2.1.3) and (2.4.2),
respectively. Then, for f € HY0,T; HY(Q)), g = 0 and ug € HE(Q) N H3(Q), the

following L*(L?) norm estimate holds
llw = wall 2,22y < Clk + R B(f, uo, u, uy)

where B(f,up, u.1;) 15 a function of f,up,u . O
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Chapter 3

Finite Element Method with
Quadrature for Parabolic Interface

Problems: L>®(L?) and L®(H') Error

Estimates

The purpose of this chapter is to establish some new a priori pointwise-in-time crror
estimates in finite element method with quadrature for parabolic interface problems.
Due to low global regularity of the solutions, the error analysis of the standard finite
element methods for parabolic problews is difficult to adopt for parabolic interface prob-
lems. In this work, we fill a theoretical gap between standard error analysis technique
of finite element method for non interface problems and parabolic interface problems.
Optimal L>®(H*') and L*(L?) norms error cstimates have been derived for the semidis-
crete case under practical regularity assumptions of the true solution for fitted finite
clement method with straight interface triangles. Further, the fully discrete backward
Euler scheme is also considered and optimal L% (L?) norm ecrror cstimate is cstablished.

The interface is assumed to be smooth for our purpose.
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3.1 Introduction

Let © be a convex polygonal domain in R? with boundary 962 and €; C §2 be an open
domain with C? smooth boundary I' = 9$;. Let 2, = Q\Q,; be an another open domain
contained in © with boundary I' U0 (see. Figure 1.1). In Q = Q; UT' U, we consider

the following parabolic interface problem
w — V- (B(x)Vu) = f(z,t) inQx (0,T] (3.1.1)
with initial and boundary conditions
u(z,0) =up inQ; u(z.t)=0 ondN x (0,7 (3.1.2)

and jump conditions on the interface

=0, [p2

where the symbol [v] is a jump of a quantity v across the interface I and n is the

] = g(z,t) along T x (0,T], (3.1.3)

unit outward normal to the boundary 9€;. The coefficient function 8 is positive and

pieccwise constant, i. e.
B(x)=6; for x €y, i=1,2.

Here, f = f(z,t) and g = g(z,t) are real valued functions defined in 2 x (0,7] and
I x (0.7, respectively. Throughout this chapter, we assume ug € H(2) N H3(Q).
Although a good number of articles is devoted to the convergence of finite clement
solution of parabolic interface problems in L2(L?) and L?(H!) norms, but pointwisc-in-
time crror analysis is mostly missing. More recently, Dcka and Sinha ([27]) have studied
the pointwisce-in-time convergence in finite element method for parabolic interface prob-
lems. They have shown optimal crror estimates in L®(H?') and L*°(L?) norms undecr
the assumption that grid line cxactly follow the actual interface. This may causes some
technical difficulties in practice for the evaluation of the integrals over those curved cl-
ements near the interface. Further, it may be computationally inconvenient to fit the
mesh to an arbitrary interface exactly. a finite element discretization based on previous
chapter is considered. In this work, we arc able to show that the standard crror analysis
technique of finite element method can be extended to parabolic interface problems. Op-

timal order pointwisc-in-time crror cstimates in the L? and H*! norms arc established for
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the semidiscrete scheme. In addition, a fully discrete method based on backward Euler
time-stepping scheme is analyzed and related optimal pointwisc-in-time crror bounds
arc derived. To the best of our knowledge, optimal pointwise-in-time crror cstimates
for a finite clement discretization based on [15] have not been established carlier for the
parabolic interface problem. The achieved estimates arc analogous to the case with a
regular solution, however, due to low regularity, the proof requires a carcful technical
work coupled with a approximation result for the lincar interpolant. Other technical
tools used in this work are Sobolev embedding incquality, approximation propertics
for elliptic projection, duality arguments and somc known results on clliptic interface
problems.

A bricf outline of this chapter chapter is as follows. In Section 3.2, we introduce
some notation, recall some basic results from the literature and prove some approxima-
tion properties rclated to the auxiliary projection used in our analysis. While Scction
3.3 is devoted to the error analysis for the semidiscrete finite element approximation,
error estimates for the fully discrete backward Euler time stepping scheme are derived

in Scction 3.4.

3.2 Notations and Preliminaries

In order to introduce the weak formulation of the problem, we now recall the local

bilincar form A%(.,.) : H*(€;) x H*(€,) — R by

A(w,v) = [ BVw-Vudz. 1=1,2.
o

Then the global bilinear map A(-,-) : H3(2) x [13($2) — R is defined by
Alw,v) = p(x)Vw - Vodz
Q
= Al(w,v) + A%(w,v) YV w, v € H}(Q). (3.2.1)

The weak form for the problem (3.1.1)-(3.1.3) is defined as follows: Find u : (0,7] —
H3 () such that

(ug,v) + A(u,v) = (f,v) + {g,v)r Yo € Hy(Q), a.e. t € (0.7 (3.2.2)

with u(z,0) = ug(z). Here, (+,-) and (-,-)r arc used to denote the inner products of

L?(Q2) and L?(T") spaces, respectively.
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Figurc 3.1: Interface triangles K and S along with interface T’

Regarding the regularity for the solution of the interface problem (3.1.1)-(3.1.3),

we have borrowed the following result from previous chapter.

Theorem 3.2.1 Let f € HY(0,T; L*(Q)) N L%0,T; HY(R)), g € H*(0,T; H*(T")) and
ug € I3(Q)NILL(QY). Then solutron u € L2(0,T; X NIF(Q))NVHO, T; LAQ)N )N
Q). O

In this chapter, the convergence analysis has been carried out for g(z,t) # 0
on I' x [0,T) and accordingly we nced some relevant notations. Further, notations
An(+,-), (-,+), and finite dimensional space V), are with same meaning as in previous
chapter.

Let X* be the collection of all v € L2(2) with the property that v € 112(£2;) N
HY )N {Y : ¥ =0 on 90} and [v] = 0 along TI. Since I' is of class C?, thus

v, =v|g,, 2 =1, 2 can be extended to v, € H?(Q) such that

|2y < Cllvel g2,y

For the existence of such extensions, we refer to Stein [62]. Further, we have a C?
function ¢ in [C, B] (sec, Figure 3.1) such that (c.f. [29])

lp(z)| < Ch?

and hence

B "B
meas(n) = [ lp@lde < O [ o< O,
C C
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Let I1; : C(Q) — V;, be the Lagrange interpolation operator corresponding to the
space V. Then, for K € T, and v € X*, we now define

0, if K C O
vy = { w11 =" (323)

3, if K C Q.

Following the lines of proof for Lemma 2.2.3 in [2], it is possible to obtain the following
optimal error bounds for linear interpolant vy in X*. We include the proof for the

completencss of this work.
Lemma 3.2.1 For any v € X*, we have

lv— UI”HI(Q]) + |lv — UI”HI(szz) < Ch(“U”H"’(Sh) + ”U”H2(522))'
Proof. For H! norm cstimate, we have

o — vrllgryy + Il = vrll gy

< D0 v —vlmag+ Y v —villae) + llv — vrllm ) }

KeT\T¢ KeTg
< Ch{vllmz@y) + vl r2g) }
+ Z {llv —villmywy + v — vill g ) }- (3.2.4)
KeTy

Here, Ky = KN§, and Ay = KN, Again, for any A € T, either K C Q) or K C Q4.

Let K C Q% then v; = I1,3; and hence, we have

lv—villmiy = 191 — Dada |y < 1100 — Tada|l o

< Chllon]| g2y < Chllv|| a2y (3.2.5)

Again, since v € H2(Qy) and K> C Qy with meas(K3) < Ch®, we have

v — vl < Ch %" v —villwreyy Vo > 2
= Ch|lv — vr|lwre@y) = Chllva — a0y |wis (k)
< Chl|tg — t1llwre(xs) + Chl|or — Hpdylwisay)
< Chl[5y — o1 Jlwiscior + ChllT1 — My llwrsgiy
< Ch||ta — o1l a2y + Chl|01 | r2x)
< Chlltn] 2y + Chllval m2 o)
< Chlllolm + W) (3.26)
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Then Lemma 3.2.1 follows immediately from the estimates (3.2.4)-(3.2.6). O
Let Y* be the collection of all v € L2(§2) such that v € H(€4) N HY() N {v :
¥ =0 on 90} with [v] = 0 along I". For any v € Y*, we define

An(Rpv,vp) = Al (v, v3) + A%(v,vp) Yoy, € V. (3.2.7)

Remark 3.2.1 Elliptic projection Ry, defined by (3.2.7) is analogous to the projection
P, defined by (2.2.15) in Chapter 2. Only difference is the domain of definition. While
P, is defined on X = {¢ € L*(QQ) NH*(SU)NH?*(Q2) : v =00n0Q & ) =0 =
[B0v/On] = 0 on I'}, operator Ry, is defined on a more general space Y*. Further,

existence of operator Ry, can be verified by Laz-Milgram lemma. O

The following lemma shows that optimal approximation of Ry, can be derived for
v € X*.

Lemma 3.2.2 Let Ry be defined by (3.2.7), then for any v € X* there is a positive

constant C independent of the mesh parameter h such that

(a) | Riv — vllarayy + | Rev — vl iy < Ch(l|v| g2y + vl a2e,)),
(b) [|Rwv — vl 2y < CR*([lvll 2y + VIl E2(2a))-

Proof. Coercivity of each local bilinear map and the definition of Rj, projection lcads to

l|v— th”%ﬂ(szl) +|lv - Rh””%ﬂ(szz)

< C{A (v — Ryv,v —vp) + A%(v — Ry, v — vp)}
+C A (v, v, — Ryv) — CAY(Ryv, v, — Rpov)
+C A* (v, vy, — Ryv) — CA%*(Ryv, vy, — Rpv)

= C{AYv — Ryv.v —vp) + A%(v — Ryv,v — Un) }
+C{A}(Ryv, v, — Ryv) — AY(Ryv, v, — Rpv)}
+C{ A (Rpv, vy, — Ryv) — A2(Ryw, vy, — Ryo)}

= C{AY (v — Ryv.v —vy) + A%(v — Ryv,v — v}
+C{An(Ryv, vy, — Rpv) — A(Ryv, v, — Ryv) }.
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Then it follows from Lemma 2.2.2 and Young’s incquality that

v = Ruvll By + 1o = Ruvllz g,
< Cllv = ol llv = onll iy + Cllv — Buoll gy v ~ vnllmiges,)
+Ch||Rpv| my@yllve — Ravllr@
C
< eflo — RuollFng, + ?”'” — ol + cllv — Ruolizn o,
C Ch?
+:HU - Uh“%{l(szz) + "E_“[[thlliﬂ(sz) + €ffvp — Rh”“i{l(u)-
Again applying the fact [ Rwvl[my < CUlvllar@yy + [vll mrq,)) and for suitable € > 0,
we have
flv— Rh"’”?{l(sz;) + v - RWH%{I(szz) < Clo- vh”?;l(szl) +Cllv - Uh”%{l(szz)
+Ch2{”UH%Jl(szl) + ”'U”%il(szz)}-
Now, setting v, = vy and then using Lemma 3.2.1, we have
v — Ruvllmay + 1v — Ruvll ey < Ch(lvl| a2, + vl i2,))-

This completes the proof of part (a) of Lemma 3.2.2.
For L? norm crror cstimate, we will use the duality argument. For this purpose,

we consider the following interface problem
-V (BV¢) =v — Ry

with the boundary condition ¢ = 0 on 92 and interface conditions [¢] = 0, [B g—ﬁ} =0
along I

Now, multiply the above cquation by w € Y™* and then integrate over ) to have
AYp, w) + A%(¢, w) = (v — Ryv, w). (3.2.8)
Let ¢, € V), be the finite element approximation to ¢ defined as: Find ¢, € V4 such that
Ap(dn, wp) = (v — Rpv,wp) Ywy € Vi, (3.2.9)
Arguing as in part (a), it can be concluded that

o — </5hHHI(szl) + ¢ — dullm
< Cllg — wallmioy) + 1@ — wallmes))
+Ch(||¢]l a2y + 10l H2(000)) Ywn € Vi
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Let ¢r be defined as in (3.2.3) and then set wy, = ¢r to have

¢ — dnllany + 16 — dullim, < Chlollazn) + 1l m2))
_<_ Ch||v - Rh’UHLz(Q).

In the last inequality, we used the clliptic regularity estimate ||¢]|x < Cllv — Ruvllr2q)
(cf. [15]). Thus, we have

¢ — dnllin) < Chllv — Ryvl| 2. (3.2.10)

Since [v— Ryv] = 0 along T and v— Ryv € L2 Q)N H () NH ()N {v : ¢ = 0 on 6},

therefore, sct w = v — Ryv in (3.2.8) to have
v — Ruvllfey = A'(,v— Ryv) + A*(¢,v — Ryv)

= AY$ - dn.v — Ryw) + AXd — ¢n.v — Ryv)
+{AY(¢n,v — Rpv) + A%(¢n,v — Ryv)}

< Cllo = dnllm@nllv = Ruvllaay

+CNé — Ol @ llv — Buvll oy

+{AN(gn.v) + A%(dn,v)} — {AN(¢n. Riv) + A(¢n, Riv)}
< Chllv = Rpollaq - Chl[vll2n) + ol r202)

+An(Ryv, ¢y) — A(Riv, 1)
= Ch?|lv - Riv| 2 (0| 200 + vl 2(00)
+{An{Rpv, ¢1) — A(Rpv, é1)}
=1 Ch*|lv — Ryl 2oy (0]l 2oy + 0]l m2gn)) + (J)- (3.2.11)

Now, we apply Lemma, 2.2.2 to have

I(J)] < Ch Z | Ruvll s oy 1l e ey
KeTy

< ChY IRl ol gnll
Ky

+Ch Z N Rl creay | 2 )

= (Uh+ ZJ)z- (3.2.12)
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Again, using part (a) and estimate (3.2.10), we have

| Rav ) e oy |00 || 2 (1)
< {l1Rwv = vllmge) + vll o Hllon = @ll ey + 1161 ) }
< {IRwv — vl ) + 102l ey Hllbn — Sl ) + N0l iy}
< C{hflull g, + Rllvllr2oy) + 12l v }
x{hllv = Ruv|l 2y + |l ooy }- (3.2.13)

Sctting p = 4 in the Sobolev embedding inequality (cf. [62, 63])
I|v||Lp(K2) S Cp%“U”Hl(Kz) V’U S Hl(f\’g), p > 2 (3214)
and further, using Holder’s inequality, we obtain

Woollinxy = Pl + V2|l L2k

Cha [T | s iy + CH2 |Vl agrey

A

< C/l%”@z”mu{) + Ch%IIVf)zIIHl(K)
C’Léll’ljg”Hx’(K) S Ch%“’()anz(Sh), (3215)

IA

where we have used the fact that meas(K) < Ch?. Similarly, for ||¢|l g1 (k), we have
Il a3 i) < CRE|dllx < Chi||v — Ryl a0 (3.2.16)
Combining (3.2.13)-(3.2.16), we have

| Ruv |l mn (i) |l 2 1)
< Ch{llvllm2g) + Ivlla2qn Hiv = Bavll L2y

Thercfore, for (J)2, we have

(N)2 < CR?{{[vll 2oy + IWll 2oy Hlo = Ruvllzacoy- (3.2.17)
Similarly, for (J)1, we have

(Ms < CH (ol + [0l o — Ravlzago (3:2.13)
Then, using the estimates (3.2.17) and (3.2.18) in (3.2.12), we have

I(N)] < CR*|Jv = Ruvll 2y (ol 2y + 1ol r2(00))- (3.2.19)
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Finally, (3.2.11) and (3.2.19) leads to the following optimal L? norm cstimate

lv = Bl 2y < CEP ([0l gz + 0]l r2i00) )-

This completes the rest of the proof. O
Let gi, € Vi, be the lincar interpolant of g given by

my
g =) g(P;)®},
i=1

where {@?};’;"1 is the set of standard nodal basis functions corresponding to the nodes
{P;}j2y on the interface I'. Following the argument of [15] it is possible to obtain the

following approximation property of g, to the interface function g.

Lemma 3.2.3 Let g € HX(T). If Q} is the union of all interface triangles then we have

/ gopds — / gnunds
r T

Proof. 1t follows from [15] (see, page 186) that

/gvhds_/ ghvhds
r Iy

< CR¥|gll ey llonll o) + CE 2|9l ey lonll 2oy Yon € Vi

< CVhZ”!]”H?(I‘)”'Uh”Hl(Q;) Yo, € V.

Arguing as in (3.2.15), we obtain

lorlizeqny = Z llvnll2x)

KeTy

CRY 3" Mloallzagy < CRY{lonllsmr gy

KeTy

IA

The desire result follows immediately from the above two cstimates. U

3.3 Error Analysis for the Semidiscrete Scheme

In this section, we discuss the semnidiscrete finite element method for the problem (3.1.1)-

(3.1.3) and derive optimal crror estimates in L? and H' norms.
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The continuous-time Galerkin finite element approximation to (3.2.2) is stated
as follows: Find wy, : [0, T] — Vj, such that u,(0) = Rpug and
(nt, Un)n + An(un, vn) = (frvn)n + {gn, va)r, Von € Vi, t € (0, 7. (3.3.1)

Write the error e(t) =u—up, =u—~ Rpu+ Rpu —up = p+ 6, with p =u — Rpu
and 0 = Ryu — uy. Again, using (3.2.7) for v = u € X* and further differentiating with

respect to t, we have

Ap((Rpu)g, vp) = Al (ug, vp) + AQ(ut, UR)-
Also,
An(Rpug, vs) = A (ug, vi) + A% (ug, vn).
From the above two equations, we have
Ap((Rpu)s ~ Rpug,vp) =0 YV € V.
Setting v, = (Rpu); — Ryue in the above equation, we obtain (Ruu); = Ruu;.
Now, by the definition R;, operator, (3.2.2) and (3.3.1), wc obtain
(O, vp)n + Ar(B,vr) = ((Bru)e — une, )b + An(Riu — up, vp)
= (Ruug,vn)n + An(Bnu, vn) — (nt, vn)n — An(un- vn)
= (Rpug, vp)n + A, vn) = (f,Vn)n — (Ghs Un)ry,
{(Bnue, vidn — (Buue, o)} + {(/, 0n) = (/s vn)n}
+{{g; va)r = (gn, vn)r, } + (=p1;vn).

For v, = 8, we have
060+ Clbliny < CRIRwullm@llf)l mey + CRA N fllaz@ 10]l ey
+C/12”9”H2(P)”9”H1(sz;) + Cllpell L2 10| 2202y

. (nptu%a(m R Rl + 1 e

IA

+Hgll’§;2m}) O

Here, we have used Lemma 2.2.2 and Lemma 3.2.3. Integrating the above cquation form

0 to t and using Lemma 3.2.2, we obtain

10Oy < O [ t (Z ey + 1y + nguipm)ds. (33.2)

1=1
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Now, combining Lemma 3.2.2 and (3.3.2), we have the following optimal pointwisc-in-

time L?-norm crror ecstimates.

Theorem 3.3.1 Letu and uy, be the solutions of the problem (3.1.1)-(3.1.8) and (8.8.1),
respectively. Assume that uy(0) = Ryug. Then there exists a constant C independent of
h such that

vt

el < cz»?[nunﬁ( [ tuley

B + ol pis) | O

For H'-norm estimate, we first use Lemma 3.2.2 to have

2 2
S ol < Ch Y sy (333)
=1 i=1

Applying inverse cstimate (2.2.12), we obtain

10 me < CRTHOE)] 120

S [/ (3 Wy + 1By + nguzm)ds}

i=1

t 2 %
Ch l:/o (Z “Ut”im(szl) + “f“%{z(sz) + Hglﬁqz(p))dS:I . (3.34)
i=1

Combining (3.3.3) and (3.3.4), we have the following optimal pointwisc-in-time H*-norm

If

error estimates.

Theorem 3.3.2 Letw and uy, be the solutions of the problem (3.1.1)-(3.1.8) and (3.3.1),
respectively. Assume that un(0) = Rpug. Then there exists a constant C independent of
h such that

le®llme < Ch[uuux+( LS Il

By + 9 ) } o
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3.4 Error Analysis for the Fully Discrete Scheme

A fully discrete scheme bascd on backward Euler method is proposed and analyzed in
this scction. Optimal L? norm error estimate is obtained for fully discrete scheme.
We first partition the interval [0. T} into M equally spaced subintervals by the
following points
O=tg<ti<...<ty=T

with ¢, = nk, k = ET?, be the time step. Let [, = (¢,—1.t,] be the n-th subinterval. Now

we introduce the backward difference quotient

n_ 4n—1
Ak¢n = —(b_—l:b—v

for a given sequence {¢?}2, < L3(2). For ¢(t) € V4, we denote ¢” be the valuc of ¢ at

t=1,.
The fully discrete finite element approximation to the problem (3.2.2) is defined

as follows: Forn=1, ..., M, find U™ € V,, such that
(AU™ vp)n + Ap(U™ v) = (£, vn) + (9, vn)r, Yon € Vi, (3.4.1)
with U° = Rjug. For cach n =1, ..., M. the cxistence of a unique solution to (3.4.1)

can be found in [15]. We then define the fully discrete solution to be a piccewise constant

function Uy(z,t) in time and is given by
Up(z,t) =U™x) Vtel,, 1<n<M.
We now prove the main result of this section in the following theorem.

Theorem 3.4.1 Letu and U be the solutions of the problem (8.1.1)-(8.1.8) and (3.4.1),
respectively. Assume that U° = Ryug. Then there exists a constant C independent of h
and k such that

10 (tn) = wtn)ll L2cs

2
<O + ’f){Huollm(sz) + g™+ lluaell2izaey + Hutllmo,T;H?(n,))}v

1=1
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Proof. We write the error U™ — w™ at time ¢, as
Ut —u™ = (U™ = Rpu™) + (Rpu™ — u™) = 6™ 4 p"

where 6" = U™ — Rpu™ and p" = Rpu™ — u™.

For 8", we have the following crror cquation

(ARG, op)n + An(0™, 0n)
= (AR U™ + AU op)n + Ap(=Rpu™ + U™, up)
= (AU vp)n + An(U™ v) — (AxRyu™, vp)n, — An(Rpu™, vp,)
= (f" ) + (gh, vn)r, — (DkRpu™, vp)p — A(u®, vs)
= (f".vp) + (g, vn)r, — (DeRyu™, vp)n
+(uf, vn) = (S o) — (g%, vp)r
=t —(w", vn) + {(AxRpu™, vn) — (AxRpu™, vi)n}
+{{gh> v, = (g, o)1}, (3.4.2)

where w" = AgpRpu™ — up. For simplicity of the exposition, we write w" = w} + w§,
where wf = RpAgu™ — Apu™ and wi = Agu™ — uf.
Now, sctting v, = 6™ in (3.4.2), we have
(Aké?", On)h + Ah(é’", 9”) = —‘(U/n, 9”) + {(Athu", 6’") — (Athu”, 0”)h}
+{{gk, ™), — (g™, 6™)r}. (3.4.3)

Since Ay (67,6™) > C||60™]31(,)> We have

1072y < Ellw™ (|2 + 167 | g2y + Ch?k%“RhAkun“Hl(n)
+ChE || g™ 2y
< 6 zawy + 5D Nwlllzagy + B> Ilwh]l 2y
1=1 g=1
+CRE Y wlllmgy + CB3AE D Ak ey
7=1 71=1
+CR2KE ||| g™, (3.4.4)
with |||g"|]] = maxi<,<n |19}l 2y
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In €, the term w! can be expressed as
IU‘{ = RhAkujl - Akll,{ = (Rh - I)(Aku{)

1 3 1 -7
= (]?h — I)Z/ Ul,tdl = -]g/ (1?},,U11t bt Ulyt)dt,
t]_l t]_l

where u,, 2 = 1,2 is the restriction of v 1 Q, and u,; = %“f.
An application of Lemma 3.2.2 leads to
» 2
k| oy < CH? /t {3 o Yt
1-1 =1

Similarly, we obtain

2
{3 Iullinqay Yot
1=1

ot
blwdlzzon < 1 |
t]—-l

Using above two estimates, we have

n tn 2
kY llwlllza < Ch2/ {Z ”“t”H?(szz)}dt
0 1=1

=1
Similarly, for the term wj, we have
t]
kwh = — ™! — kul = —/ (s — ty—1)upds
t;—1

and hence ;
J
Eledllia, < b / sl 2enyds.

t_1

Summing over 7 from 3 = 1 to 7 = n, we obtain

n tn 2
£ [z < Ok [ {3 o e
3=1 0 =1

Arguing as in (3.4.5), we obtain

n i 2
S el < Ch/ [ lll sy e
0 1=1

J=1

Combining (3.4.4) - (3.4.7) and using the fact that
n rtn 2
e 188y < € {3 Nl et
1=1 =1
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we obtain

”()n”LZ(“) S C(]L2+]€)

=1

An application of Lemma 3.2.2 for p" yields

2
P2y < CR2 Y L2 ga,)-

=1

Again, it is easy to verify that
tn
0oy < 1l + [ et
0

Thus, we have

2
ez < CH{ 1l + Dl sy

1=1

2
X {Z {”Ut”LZ(O,T;H?((Zl)) + ”UttHLQ(O,T;L?(Sll))} + |||9"|”} .

(3.4.8)

(3.4.9)

Combining (3.4.8) and (3.4.9) the desired cstimate is casily obtained. This completes

the proof. O
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Chapter 4

FEM for Parabolic
Integro-Differential Equations with

Interfaces: L?(L?) and L*(H') Error

Estimates

In this chapter, convergence of finite clement method for a class of parabolic integro-
differential equations with discontinuous coefficients are analyzed. Optimal L?(L?) and
L?(H*) norms are shown to hold when the finite element space consists of piecewise
linear functions on a mesh that do not require to fit exactly to the interface. Both
continuous time and discrete time Galerkin methods arc discussed for arbitrary shape

but smooth interfaces.

4.1 Introduction

In this work, we consider the following parabolic integro-differential equation

t

wi(,t) = V - (BVu(a, 1)) = [(z.0) + / B syu(s)ds inQx (0,T]  (41.1)

0

with initial and boundary conditions

w(z,0) = ug(z) m Q& ulx,t) =0 on I x (0,7] (4.1.2)
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where @ = O; U U§), is a convex polygonal domain in R? with boundary 8Q and
; C 2 is an open domain with C? smooth boundary I' = 89Q;. Let Q = Q\Q; (sce,

Figure 1.1). Coefficient 8(x) is positive and piccewise constant. We write
Blay=06, for z€8,, i=12,
and B(t, s) is a first order partial differential operator of the form

2 ,
Julx, s
B(t, s)u(s) = ;bk(w; ¢ S>—d(,1,k—) + u(z, s).
For compatibility of the problem (4.1.1)-(4.1.2), we assume that the solution

u(z,t) satisfies the following jump conditions on the interface T’
ou
[u] =0, 5(58)% =0 alongI' x (0,T]. (4.1.3)

The symbol [v] is a jump of a quantity v across the interface ' and n denotes the unit
outward normal to thc boundary 9€2;.

Coefficients of B(t, s) satisfy the following assumption: there exists positive con-
stant K such that

Obi(x;1, )

(s (3 ¢, 5)), l o ' b, (2;t.8) < K, in Q% (0,T], k=1, 2, (4.1.4)

bi(z;t.s), k = 1, 2, is the partial derivative of by with respect to s. The non-
homogeneous term [ = f(x.1) and initial data ug(2) arc given functions.

For the finite element treatment of parabolic integro-differential equation with
discontinuous coefficients. we refer to Pradhan et. al. ([54]). They have discussed a
non-iterative domain decomposition procedure for parabolic integro-differential equation
with interfaccs and rclated a priori crror cstimates arc derived. Numcrical solutions
by means of finite element Galerkin procedures for the parabolic integro-differential
cquation without interface can be found in [10, 12, 42, 48, 64, 66, 67].

The organization of this chapter is as follows: While Section 4.2 introduces the
regularity of the problem, finite element discretization and approximation properties of
some auxiliary projection, Scction 4.3 is concerned on the convergence of semi discrete
finite element solution to the exact solution. Section 4.4 is devoted to the fully discrete

crror analysis.
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4.2 Preliminaries

In this section, we shall study the regularity and the finite element approximation to
the solution of the interface problems (4.1.1)-(4.1.3) under the appropriate regularity
conditions on f and wg.

Since we limit ourselves to finite clement analysis, we only concern about the
regularity of the weak solution u for the interface problem (4.1.1)-(4.1.3). Let A(.,.) and
B(t,s;.,.) be the bilinear forms on H*(2) x H'(Q)) corresponding to the operators £

and B((, s), respectively i.e.,
Alw,v) = / B(z)Vw.Vudz,
Q

and

B(t,s;u(s), ¢) = /Q { gbk(z;t, s)au;j;s) + 'u(a;,s)}d; dz.

Under the assumption (4.1.4), for ¢ € L2(0,7; HL () and ¢ € L%(0,T; L*(Q2)), it is

easy to see that

|B(t, s; ¢(s), ¥(1))| < Clig(, s) x| (2, D)l 2.

For ¢ € L%(0,T;Y) with [¢] = 0 along I x (0,7] and ¢ = 0 on 9§ x (0,7], and
Y € L*(0,T; HY(Q)), we have

/b -Voydr = / b- Vd)l//da;+/ b Voydz
Q 1 Q2

= /bw -ng1ds —/bw-nd)gds

r r
~ [ V-t | - (oy)gd
= —/ V - (by)pdx.
Q
This togcther with assumption (4.1.4) leads to
|B(t, 530(s), % ()| < Clig(z, s)ll 2l (@, )| mr

and hence

|Bs(t, 5 ¢(s), 9(8))] < C{H¢(w- Sy + llos(2. 3)||L2(S2)}||¢(wvt)“H1(n)-
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Here, we have assumed that ¢ € H(0,T;Y) with [¢s] = 0 along I' x (0,T] and ¢, = 0
on 992 x (0, T7.
Then the weak formulation is defined as: Find u : {0,T] — H(€2) such that

(u, v) + Alu, v) = (f,v) + /Ot B(t,s;u(s),v)ds Vv € Hy(Q), t€ (0,T) (4.2.1)

with u(0) = u.
Clearly the problem (4.2.1) has a unique solution w € L?(0, T; I1}(2)). Regarding
the regularity for the solution of the problem (4.2.1), we have the following result.

Theorem 4.2.1 Let f € HY(0,T; L*()) and uy € HL(Y). Then the problem (4.2.1)
has a unique solution v € L*(0,T; X N H(Q)) N HY0,T;Y).

Proof. We consider the following parabolic interface problem: Find @ : [0,T] — H(Q)
such that

(g, v) + A(G,v) = (f + /OtB(t, s)u(s)ds,v) Yo € Hy(Q), t € (0.T) (4.2.2)

with #(0) = ug and [@] = 0 = |#Z2E| along I' x (0,T]. Then using the regularity result
for the parabolic interface problems (cf. [15], [39]), we have

e L0, T; X NHy(Q))NHY0,T;Y).
Now, subtracting (4.2.2) from (4.2.1), we have
(ut - ﬂt.v) + A(u - ﬁ, U) =0 Vve Hé(Q), t e (0. T] (423)

Setting v = u — @ € H}(2) in (4.2.3), we have

1d . " .
§a]lu — U”%z(”) + A(u—%,u—1a) =0.
Integrating from 0 to ¢ and using the fact u(0) = ug = 4(0), we obtain

1 't
§Hu — ﬂ”%ﬁ(&l) + / A(U — 'ft, u — 'll)dS =0
0

which implics u(z.t) = @(a,t) in 2 x [0, T] and this completes the rest of the proof. 0O
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Remark 4.2.1 From (4.2.2), it is clear that @ satisfies the following equation
@+ L4 = h(z, ) mQx (0,7

with h(z,t) = f(z,t) +f0t B(t, s)u(s)ds. Then it follows from Theorem 2.2.1 in Chapter
2 that @ € H2(0,T; L3(Q)) provided f € H2(0,T; LXQ)), f(x,0) € HXS) and uy €
HOQNHNQ). O

Let 7, be a triangulation of domain Q as defined in Chapter 2 and V; be a
family of finite dimensional subspaces of H}(f2) based on 7, consisting of piccewise
lincar functions vanishing on the boundary 0f2. For a triangulation 7y, triangles with
one or two vertices on I' are called the interface triangles.

For our convenicnce, we also recall the clliptic projection Py, : X — V}, defined as
An(Pyo, o) = AY(v,vp) + A*(v,vp) Yo, € Vi, v EX (4.2.4)

and standard L? projection Ly : L2(Q2) — V}, defined by
(Lyv,vy) = (v,v3) Yo, € Vi, v € L2(Q). (4.2.5)

The space & is as defined in Chapter 2.
The following result plays a crucial role in our subsequent analysis. For a proof,

we refer to Lemma 3.3 of [59]

Lemma 4.2.1 If Qp is the union of all interface triangles, then we have
”U”Hl(gf‘) < Ch%“U“X Yve X. O
Further, we necd the following approximation propertics

Lemma 4.2.2 If T is the collection of all interface triangles, then

D o AVonlZazy < Ch D IVonllaxy You € Vi

KeTy KeTg

Proof. Supposc K € 77 and K is either K; or Ky, K, = KNQ; for i = 1,2. More
precisely, K = Ky if K € QF and K = K5 if K € QF. Assume K C QF, as shown in
Figurc 3.1.
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Since, Yup, € V},, |Vuy| is constant in A € Ty, thus we have

IVonlay = [ Vo

= (2 / dz, C = |Vuy| = constant
K
= C? meas(k).

Again integrating over K and using the fact meas(K) < Ch3,, we have

meas(K)[VonlZaz, = meas(K)|VonllZage

< ChilIVonllZe).

Further, apply the fact that meas(K) > Ch?% and summing over K € 7, we have

Yo Verliaz € Ch D IIVonllza):

KeTy KeT:

This completes the proof of the lemma 4.2.2. []

4.3 Continuous Time Galerkin Finite Element

In this section, an attempt is made to carry over known results for semidiscrete finite
element Galerkin method for a parabolic equation to an integro-diftferential cquation of
parabolic type. Optimal order convergence results are obtained in L2(L?) and L?(H')
norms.

The continuous time Galerkin finite clement approximation to (4.2.1) is stated
as: Find w, : [0,T] — V}, such that .

"t

(unt, vp) + Ap(un, vi) = (f, vn) +/ B(t, s;up(s),vn)ds Yup € Vj (4.3.1)
0

with u,(0) = Lpug. Subtracting (4.3.1) from (4.2.1), we have

(g — upe, v) + Alu —up, vp) = Ap(un, vn) — Alun, vn)

t
+ / B(t,s; (u — up)(s),vp)ds Yo, € Vi (4.3.2)
0
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Define the crror e(t) as e(t) = u(t) —uy,(t). Sctting v, = Lyu in (4.3.2) and using (4.2.5),
wc obtain

1d
Sl + Alee)

1d
= {Ah(uh, Lhu - uh) — A(uh, Lhu — Uh)} + ia”u — Lhulliz(u)
-t

+A(e,u — Lpu) +/ B(t, s;e(s), Lyu — u)ds
0

it
+/ B(L, s;¢(s),u — up)ds.
0

Then use coercivity and continuity of A(.,.) to have

1d

2dt
1d

< |An(un, Lnu — up) — A(up, Lpu — un)| + EBZHU - LhU“%?(Sl)

||€||2L2(sz) + C’|]e(t)||§{1(”)

t 1
+Cle®mvlle = Ll + C( [ els)pnds)llu = Lz
0

-I—C(/(;t

1d
< [An(un, Lnw — up) — A(up, Lyu — up)] + 5&”“ — Lyulliz(

1
2
() nads) el z2y

3
+C (e + Cellu = Lyul|}n ) + Ce /0 le(s) Iy ds
ot
+C(e)llu — Luullzaq + Ce/ le(s) 1z nds + Cle)lle(®) 3 -
0
Now, integrating from 0 to ¢ and setting suitable €, we obtain
ot -t
[ e nds < [ 1Anun Lo = ) = Al L = w)lds
0 0
1 t
5 1u(t) = Ll + C [ 1w = Ll
nt T
+C [ [ ets) oy
0

— D+ Dt Wt C [ [ el Bpsdr. (433
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For the term (1);, use Lemma 2.2.2 and Lemma 2.2.4 to have

|Ap(un, Lyu — up) — Alup, Lyu — uy)|

< Chllup|l @yl Liu — unl| g2 oy

< Chllunll oyl Lo = ull sy + Chllunll o lle) @
< Ceh*[lunllipay + CAILiw ~ ulffp gy + Cle)lle®)ingy
< Ceh®|lunllin ) + Cle)R* [ulz, )% + Cle)lle®)li g

and hence
t t
(1 < Ca [ lunlBosds + CW [ futz: 9)lids
0 0
t
+C(0) /0 le(s) 2 oy (4.3.4)
Similarly for the terms (1) & ()3, we have

%ds. (4.3.5)

it
(I)2 < C’h4||u(:1:,t)]]f\r & (I)3< C'hz/ lu(z, s)
0

Then combining the cstimates (4.3.3)-(4.3.5) and using the fact

t T
| Ml gds < (ol + [ 1713nds),

we have

N T
[ e s < O (ol + [ 1 0rnds + e, O

+/0'T Hu(:z;,s)Hg(dS) + /OtC’(/; ||e(s)||§11m)d3>d7—_

Then a simple application of Grownwall’s Lemma, leads to the following optimal L2(H!)

norm crror estimate

Theorem 4.3.1 Let u and uy be the solutions of the problem (4.2.1)and (4.3.1), re-
spectively. Then, for f € HY(0,T;L*(Q)) and ug € H{(Q), there exist a constant C
independent of h such that

T
lle()l2o,rmm @)y < Ch(”“O“i?(sz)*‘/O “f”%?(u)ds

1

2

T
T+ [ lute ) les) . O
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For the L? norm crror cstimate we shall use the duality trick. For this purpose

we consider the following interface problem: Find w € Hy(£2) such that
Aw.v) = (u—up,v) Yv € HJ(Q) (4.3.6)
and its finite elemnent approximation is defined to be the function w, € V; such that
Ap(wy, vn) = (u — up, v,) Yoy € Vi, (4.3.7)

Note that w € X N HF() is the solution of the elliptic interface problem (4.3.6) with
the jump conditions [w] = 0, [ﬂ(w)g—;‘l’]z 0 along I'. Further, w satisfies the a priori

estimatc
lwllx < Cllu = w2y (438)

Then it follows from [22] (see, Theorem 3.1) that

lw — wpl|mr) < Chllu — unll L2 (4.3.9)
Setting v = u — u, € H(Q) in (4.3.6) and using (4.3.2). we obtain

le@Zaqy = Alw—wn,u—un)+ Alws,w — )
= A(w — wp,u —up) + Ap(up. wp) — A(up, wp)
— (e, wp) + /OtB(t,s; e(s), wy)ds

Cllw — wallmaylle — unll iy + Anlun, wn) — Alun, w)
ot

—(et,wh)+/ B(t, s; e(s), wy)ds. (4.3.10)
0

IA

Again from the equation (4.3.7), we note that
1d
2dt

and hence, cstimate (4.3.10) reduces to

Ah(wh- wh) = Ah(wht, wh) = (ut — Upt, ’wh)

ez < Cllw — wallmllv — unlla + An{un, wa) — Aun, wr)

L
_Ld  on ) + / B(t. 5;e(s). wn)ds
24t ;

C{hlle@)l z2@plle) ey} + C{Rlle®) o lle(®)] L2y
1d
+0%(lu(z, t) (| x lle) 2} — QazAh(wh:wh)
+Clle(s)]l 2,2 le) | 2 - (4.3.11)

IA
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Here, we have used the fact that ||wp]|g1) < Cllu — ual|2¢n) and the estimate for the
term (1), in [22] (see, page 216). Further, a simple application of Young’s incquality

leads to
le@ i@y < Ceh®lle(®)Fn gy + Cehllulz, )% + Celle(s)II32(04.02 )

+COelt) Bry — 5 57 An(n 1) (13.12)

Therefore, for suitable € > 0 and integrating from 0 to ¢, we have

/0 le(s)|Zayds < Ch2 / le(3) s yds + CHE / lu(z, 3)|ds

t T 1
40 [ [ lels)Bagydstr + 5 An(un(0), wn0). (43,13
0 Jo
Taking t — 0, it now follows from (4.3.7) that
An(wn(0), wr(0)) = (uo — Liuo, ws(0)) = 0.

This together with (4.3.13), Gronwall’s inequality and Theorem 4.3.1 leads to the fol-

lowing optimal L?(L?) norm crror cstimate

Theorem 4.3.2 Let u and wu, be the solutions of the problem (4.2.1)and (4.5.1), re-
spectively. Then, for f € HY0,T;L*(Q)) and uy € H}(Y), there exist a constant C
independent of h such that

T
||€(5)||L2(0,T;L2(sz)) < Ch?(“UOH%Z(sz)‘F/ ”f”i?(sz)ds
0

1

2

T
+ e, T + / (e, )lkds)’. O

4.4 Discrete Time Galerkin Method

In this section, we shall discretize the cquation (4.3.1) in time direction. We shall make
use of backward difference scheme to discretize the problem in time dircetion and the
piecewise linear finite element method in space. Optimal error estimate in L2(H') norm
is derived for smooth initial function.
We first divide the interval [0,7] into M cqually spaced subintervals by the fol-
lowing points
0=""<tl<. .- <tM=T,
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with t" = nk, k = T/M be the time step. Let I, = (t,-1.t,) be the n-th sub interval.
M

n=1

For a given scquence {¢"} C L?(£2), we introduce the backward difference quotient

n__ 4n—1
R A A

The fully discrete finite element approximation to the problem (4.3.1) is defined
as follows: For 1 < n < M, find U™ € V,, such that

n—1
(AkUn, Uh) + A;L(Un, ’Uh) = (fn 'Uh) +k Z B(tn, tJ; UJ, ’Uh) VU}L S Vh (441)
=0
with U® = Ljug and the integral term in (4.3.1) has been approximated by the rectangle

rule

n—1

tn
$(s)ds~ kY & =Qip, 0<t, <T.
3=0

0

Note that the quadrature error in I, = (¢,-1, ) is cstimated as

el ‘ ° ! — _ !
/In b(3)ds — ko /l [ oryiras /In(tn N (r)dr

and hence o "
Qv — / o(s)ds| < k / (7)) (14.2)
0 0

Regarding the stability of the fully discrete solution, we have the following result.

Lemma 4.4.1 Let U™ be the solution for the fully discrete scheme defined by (4.4.1),

then we have

M M T
UM ey + B SN0 By < CES. 1 22y + CF / ey
n=1

n=1

T
+Ck / /22 0y ds + Clluo|Za.
0

Proof. The lemma can be proved by setting vy, = kU™ in (4.4.1) and using (4.4.2). We
omit the details. O

For the convenicencee, let us define the piccewise constant function Uy g in time by
Upi(z,t) = U™z), Vt € I,,n=1,2,3,..., M. Then, rcgarding the convergence of Uy, k,

we have the following result.
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Theorem 4.4.1 Let u and Uy be the solutions of the problems (4.2.1) and ({.4.1),
respectwely. Assume that ug € H3(QQ) N H}(Q), f € H*0,T;L*(Q)) and f(x,0) €
H?(Q). Then there exst a positwe constant C, independent of h and k such that

lv — Unillz20,7,m1 50y < Clug, f,u.ug, uge)(k + R).

Proof. At t = t,, (4.2.1) reduces to
.tn

(ug, vp) + A", vp) = (f", on) +/ B(tn. s;u(s),v)ds Yu € Hg(S). (4.4.3)
0

For simplicity of the cxposition, we write «* = u(z.nk), e* = u"™ — U™ and w" =
u™ — Pyu™. Using (4.4.1) and (4.4.3), it follows that
(Age™, e™) + A(e", e™)
= (Age™ w") + A(e™. w") + (Apu™ — up. Pu” — U™)
+{A, (U™, Pu" —U") — A(U™, Pu"™ — U™)}

n—1

tn
+{ / Bltn, s;u(s), U™ = Pau™)ds — k'S Btn, ty; 0, U™ — Phu")}
0 1=0
n—1
+k > Bltn,ty; €7, U™ — Pyu™)
7=0
6
=S un,. (4.44)

1=1

where
(1)1 = (Age™ w"), (I1)2=A(e",w"), (II);=(Apu™ —ug, Pu™ = U"),
(I1)y = {A (U™, Pu* — U™) — A(U™, Pyu™ — U™)},

vEn n—1
(11)s = / B(ln, s3u(s), U™ = Pyu™)ds = b Y Blln, by; 0?, U™ = Pyu™),
0 =0

n—1
(INs =k Y Bltn,t,;¢’,U" — Pyu™).
7=0

Summing (4.4.4) over n from n =1 to n = M, we have

1 M k M
oM la + 5D Al )+ 53 1Ak T
n=1 n=1
< Slelia + Ck Y S, (4.4.5)
n=1 3=1
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Using Lemma 2.2.3 and Young’s inequality, we obtain

M M M
EY (I < Ch'k Ytk + Cle)k D 1Ae™32- (4.4.6)
n=1 n=1 n=1
Similarly,
M M M
B> (D2 < Ch%k D i + COE Y e (4.4.7)
n=1 n=1 n=1

To cstimate k 3™ (11)s, we first note that

" 8?,4" 1 tn
A= 2 =2 /tn_l(s—tn-l)uss(s)ds

and hence using Lemma 2.2.3, we obtain

M M
k Z([I)B < Cekzllutt”iﬁ(o,T;Lﬁ(sz)) +C()h’k Z "%
* n=1 n=1
M
+C(k Y e 12 (4.4.8)
n=1

Using Lemma 2.2.2, we obtain

M M
B Uns < Chk Y LI lmll P ~ Ul }
n=1 n=1
M
< bk Y {CAU gy + COIP = Uy }
n=1
M M
< CORY e By + COPE S lul%
n=1 n=1
M T
+ChE S 2oy + Chk / ey ds
n=1
T
+C}Lk/(; “U“%z(“)ds + C}l“lm“%z(“). (449)

In the last incquality, we have used Lemma 2.2.3 and Lemma 4.4.1.

Again, setting p = 4 in the Sobolev embedding inequality (cf. [62, 63])

lvlley < CoEllvllmu Yo € HYK), p>2
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and using Holder’s inequality, we obtain

luollzzy = Nuollzge

KeTh
1
< Ch> Z lluoll La¢xy

KeTy

1 1
< Chz Z H?Lonﬂl(K) = Ch3 [0l 152y
KE’EL

where we have used the fact that meas(K) < Ch?, K € 7T,. Using this fact in (4.4.9),

we have
M M M
EY (D4 < COhkY Nl + CORPE Y [ull%
n=1 ;L/I:l ) n=1
+Cth”f"“i2(u) +Chk/ ”Ut”%?(sz)ds
n-—:’; 0
+Chik /0 22y ds + C2 o1 (4.4.10)

Finally, (4.4.2) lcads to
M M vt
kz(11)5 < ZAQ/ (el gy + Nusll 2 ds]l o™ g o
n=1 n=1 Vin-1

M tn
+ Z k® el ey + llwsll L2 Ydslle™ |

n=1 tn-1

tn

M .
Ck® Y /
n=1"1n

M
+C(OF > e i)
n=1

M
el ey + ||UsHL2(sz)}2d<S + C(C)k2 Z ||7Un“311(n)

1—1 n=1

IA

M
Cok*{||wll 2o,z m300) + el 2o, L2y} + C()RR D kllur Ik

n=1

M
+C (kY lle I - (4.4.11)

n=1

A
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Then, for k = O(h) and suitable ¢ > 0, it follows from the estimates (4.4.5)-(4.4.11) that

M M
Z k“e"”%l(u) < Ch2([|u0||§( + Z ”“nﬂgc + “UH%Z(O,T;L?(Q))

n=1

+Hutni2(0T 2y T ”Utt||2L2(o T;L2(Q)

M n—1
+an"nm +CE S Blta, tj;0, U™ — Pou®)
n=1 n=1 3=0
5 M n—1
=: C+Ck* D Y " Blta,t,;€,U" — Bu™). (4.4.12)
n=1 3=0

Then it follows from [14] (sce, Lemma 7 thercin) that

M ) M M-1n-1
Z klle"ll?mn) < C+C(e)k” Z ||e"||§{1m) + Cck? ||eJH%11(sz)
= n=1 n=1 j=0
M
C)]f2 Z “‘Un”%ﬂ(m»
n=1
Thus, for suitable € > 0, we have
M~-1n-1
Zk“e"”mm < C+Ckh? Z Ellutlly +Ck2 > > 1€y (44.13)
n=1 3=0

Setting & = 3L _ kllen HHI(”) in (4.4.13), we obtain

M-1

u SC+Ck Y6
n=1

Then a simple application of discretc Grownwall’s lemma lcads to

M
Ev < O (Jluollk + Z ™% + el oo rizzcy + Ul 2aorcz)
n=1
M
Fllewl 20,200y + Z /™72 (0)- (4.4.14)

n=1

Again it follows from Chen and Zou [15] that

M 2
v — Unkllz.r, oy < Ckllucllzomy) +C <Z k”e”“fpm)) : (4.4.15)

n=1

Then Theorem 4.4.1 follows immediately from (4.4.14)-(4.4.15). O
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Chapter 5

FEM for Parabolic
Integro-Differential Equations with
Interfaces: L°(L?) and L*°(H!) Error

Estimates

In the previous chapter, we have considered a interface problem of parabolic-integro
type with first order memory term. Finite element treatment for parabolic integro-
differential equations with discontinuous coefficients and second order memory term
arc presented in this work. Convergence of continuous time Galerkin method for the
spatially discrete scheme and backward difference scheme in time direction are discussed
in L*(H™) and L*®(H™) norms for fitted finite element method with straight interface
triangles. Optimal crror estimates are derived in L2(H™) and L°°(H™) norms when

initial data ug € Hy () and uy € H3 N HL(S2), respectively.

5.1 Introduction

The aim of this chapter is to analyze finite clement methods for solving initial-boundary
value problems of the form

4

ug(x, 1) = V - (BVu(z, 1)) = f(x.t) +/ B(t,s)u(s)ds inQ x (0,T] (5.1.1)

0
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with initial and boundary conditions
u(x,0) = up(z) in Q& u(z,t) =0 on dQ x (0,T) (6.1.2)

where Q@ = Q; UT Uy is a convex polygonal domain in R? with boundary 99 and
©; C is an open domain with C? smooth boundary I' = 89Q;. Let 2, = Q\Q; (see,

Figure 1.1). Information between both the domains are transferred via jump conditions

[u] =0, [ﬁ(m)g—Z} =0 alongI'x (0,T]. (5.1.3)

The symbol [v] is a jump of a quantity v across the interface I' and n denotes the unit

outward normal to the boundary 0§2;. We write
Blx)=6; for z€%Q, i=1,2.
Further, B(t, s) is a second order partial differential operator of the forin
B, s)u(s) = =V - (b(w; ¢, s)Vu) + bo(w; L, s)ulx, s).

Cocfficients of B(t,s) arc assumed to be smooth and satisfy the following assumption:

therc exists a positive constant K; such that
|b(z;t, 8)|, Jbo(x;¢,8)| & b (x5, 8)] < K3 in Q% (0,7T), (5.1.4)

V'(x;t,s) is the partial derivative of b with respect to s. The non-homogencous term
f = f(z,t) and initial data uo(z) arc given functions.

In this chapter, an attempt is made to carry over known results of finite elemnent
Galerkin method for non interface parabolic integro-differential equation to integro-
differential equation of parabolic type with discoutinuous coefficients. A priori error
estimates are derived for minimum smooth and sufficiently regular initial data. More
precisely, optimal error cstimates are derived in L2(/I™) and L*®(I[™) norms when
initial data wy € H3(Q) and ug € H® N H}(N), respectively. The achieved estimates
arc analogous to the case with a regular solution, however, due to low regularity, the
proof requires a carcful technical work coupled with a approximation result for the Ritz-
Volterra projection under minimum regularity assumption. Other technical tools used

in this work are Sobolev embedding incquality, approximation propertics for clliptic
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projection, duality arguments and some known results on clliptic interface problems.
The main emphasis of this work is on the theoretical aspect of convergence of finite
element method under the low global regularity of the truc solution. Numerical solutions
by means of finite clement Galerkin procedures for the parabolic integro-differential
cquation without interface can be found in [10, 12, 14, 42, 48, 64, 66, 67].

For the_purpose of finite element Galerkin procedure, we need bilinear forms
associated with the operators in (5.1.1). Let A(.,.) and B(¢, s;.,.) be the bilinear forms

on H} x H} corresponding to operators £ and B(t, s) i.e.,
Alw,v) = / B(z)Vw - Vudz and
Q
B(l, s;w(s),v) = / (b(w; 8, s)Vw(x, s) - Vo + bo(a; L, s)w(x, s)v)de.
Q

The organization of this chapter is as follows: While scction 5.2 introduces the
regularity of the problem, finite element discretization and approximation properties of
some auxiliary projection, scction 5.3 is concerned with the convergence of semidiscrete
finitc clement solution to the exact solution in L%(L2) and L%(H!) norms. scction 5.4 is
devoted to the point wisc in time crror analysis in L? and H! norms for the semidiscrete
case. Finally, backward difference scheme has been used to discretize the problem in

time direction and related error estimates are derived in scction 5.5.

5.2 Preliminaries

In this section, we shall study the regularity and the finite element approximation to
the solution of the interface problems (5.1.1)-(5.1.3).

The weak formulation of the problem (5.1.1)-(5.1.3) may be stated as: Find
u: [0,T) = H§ such that

g4

() + Aw.6) = | Blt,siuls), 9)ds +(7.9) Vo € HY(@), L€ 0.7 (521)

0
with u(z,0) = uo.
Clearly, under the assumptions (5.1.4), the problem (5.2.1) has a unique solution
u € L2(0,T; Hy(2)) (cf. [64]). Again it follows from the analysis of previous chapter

that the solution u can be characterized as a solution of parabolic interface problem. For
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the regularity results of parabolic interface problems, we refer to [15, 39, 58]. Thercfore,

we assume the following regularity result for the weak solution .

Theorem 5.2.1 Let f € HY(0,T;L*(Q)) and uo € H}(Q). Then the problem (5.2.1)
has a unique solution v € L?(0,T; X N HY(Q))n HY0,T;Y). O

Remark 5.2.1 It is observed from the reqularity result that ug € Hg () is the minimum
regularity assumption for the emstence of solution in L*(0,T; X N H(Q)) N HY(0,T;Y)
(cf. [15, 89]). For more regular initial dataug € H3(Q)NH3(Q) and f € H*(0,T; H(R)),
it follows from Chapter 8 that w € L*(0,T; X N H(Q)) N HY(0,T; L*(2) N H* () N
11%(Q)). O

Central to the analysis of finite element methods for integro-differential equations
has been the Ritz-Volterra projection introduced in [42]. Before proceeding further, let
us recall some notations from Chapter 3. Let Y* be the collection of all v € L2(2) such
that v € H(Q1) N HY(Q2) N {3 : ¢ = 0 on 9} with [v] = 0 along I'. For any v € Y*,
we define

An(Ryv,vy) = At(v,v) + A% (v, vp) Yoy, € Vi (5.2.2)
The Ritz-Volterra projection W), : Y* — V), is defined as
Ah(Whvv vh) - Ah(RhUa Uh)

-t
+/ B(l, s; Wy — v)(s),vp)ds Yu, € Vp, vEY™ (5.2.3)
Jo :

Here, bilincar map B(t, s; ., .) is defined as

2

B(t, s;w(s),z) = Z/ (b(z;t, 5)Vw(z, s) - Vz + bo(z; ¢, s)w(z, 5)z) da.
1=1 7

Note that, for v € X N H(Q), Wyv satisfies the following identity

Ay(Whv,v,) = An(Ryv,vp)

t
+/ B(t,s; Wyv —v)(s),vn)ds Vv, € V.
0 :

The approximation properties of Ritz-Volterra projection arc well known (c.f.

[12], [42]) for sufficiently smooth functions. Here, indeed we will show the same optimal
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crror estimates for H' and L? norms, cven if the solution u does not belong to H?

globally.
By sctting vy, = Wpv(t) — Ryo(t) in (5.2.3) and using Lemma 3.2.2, we obtain

Wi () — Ruo(®) gy
< ClIWav(t) = Ruo()] sy / lemv(s — 0(8) [ rayds

< C[Wio(t) - Rh”(t)H?{l(sz)
t 2
C(E)/o {{IWiv(s) — R/LU(S)”?{I(U) + Z | Brv(s) — v(s)”él(sz,)}dé’
1=1
t
< Cl Wi (t) — Riv() |7y + C(é)/0 [Whv(s) — Rro(s)|nqyds
11
GO [ (oo + 1005 B b
Hence, for suitable ¢ > 0, we obtain
i
[Whv(t) = Rev@®l3 ey < 0112/0 {lv() 20y + ()| Fragenyy J a5
t
+C [ 1Wh(s) = Fa(s) B
0
Then Grownwall’s incquality leads to
-t
[Whv(t) — Bro()|F gy < C’LQ/O {lo() 2y + 0(8) 1 qaaqy

and hence

2 2
Z IWho(t) — v )“%{1(9,) < ChK? Z “'U(L)||§{2(n,)
=1 =1

vew [ 5 106 g (524)

=1

For the L? norm error estimate, we consider the following interface problem: For

fixed ¢ € [0,T), find z(¢t) € X N HF() such that

-V - (B(@)Vz(l)) = Wyo(t) — Rpo(t) in Q
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along with interface conditions [2] = 0 = [9z/0n] along I'. Then 2 satisfics the following

a priori estimate
2l a2 + 12 | a2,y < CliW(E) — Bro(t)] 2
For ¢ € Hy (), we obtain
/ v- 2(t)pde = — anﬁ(a;) z(t) - ngds + / Bz ) - Vodz
- s; Bx)Va(t) - Voda = A(=(t), ).
Thus, weak formulation may be defined as : Find z(t) € H}(£2) such that
A(2(t), ) = (Who(t) — Rwv(t), ¢) V¢ € Hy() (5.2.5)
and finite element approximation z,(t) € Vj, satisfying
An(2n(t), n) = Wrv(t) — Ruv(t), én) ¥V én € Vi (5.2.6)
Next, apply Theorem 3.1 in [22] to have
120) = 2Ol < CHIWAE) = Riv(Oll 2.
Setting ¢, = Wrv(t) — Rpo(t) in (5.2.6), we have
IWhv(t) = Buv(t)Z2y = Anlan(t), Wio(t) — Ryo(t))
- /O Bt, s; (Wi —v)(s), zu(t))ds

= T+ Ty (5.2.7)
with
T = /0 Bt 5 (Ww = 0)(s), (2 — 2)(£))ds,
T, = /OtBts (Wiw — v)(s), 2(£))ds.
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For the term T, we usc (5.2.4) to have

T < Cllzalt) — 2(t) |l m /0 Z”Wh ()|l 11 (05
=1
t
< CHI@lCh /0 16+ o
ot
< CRIWR() ~ RivOllrey | (ool + 1o(6) ey s
0
< CllWio(t) — Ryv(0)||720)

C(e)ht / {08 gy + 10(5) Emgery } . (5.28)

To estimate T3, we need some preparation. For ¢ € L2(0,T;Y) with [¢] = 0 along T, we

have

/ b(w;t,s)Vd)Vzdw-i-/ b(x;t, s)VoVzde
o 2
/b(:L t,s) ’1¢ds—/b(x t,s) a“%ﬁd
_ / V- (b(z:t. 5)V2)bdz — / V- (b(z:t. 5)V2)da.
135 (32
Using the fact [ Z$] = 0 along T, we obtain
B(t, s; Wyu(t) —v(t), 2(t)) = —Z V (b(z;t, $)V2())(Wyv — v)(t)dx

2

+Z/ bo(w; ¢, 8)2(t) (Wi — v)(t)dz,
1=1 7k
so that

|B(t. s; Wio(t) — v(t), 2(£))] < Cl[Wav(t) — v(t)]l L2 Z l2(8) || zr2s0,)-

Hence

| T3]

IN

it
Cll=(0)llx / Wio(s) — v(s)l|zzayds

IA

Cell=()1% + C(e) / IWio(5) = v(5) 225y ds.
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This together with Lemma 3.2.2 leads to

T < ammulnmma—wwmm%

IA

t
Cellz(lIx + C(e) /0 Whv(s) — ()| ds

IA

CelWiv(t) = Ruv(O)|| 2 + C )R /: {lv() ) + o() 12 tds
+C(e) /Ot [Whv(s) — Ruv(s)l|Z2ds. (5.2.9)
Combining (5.2.7)-(5.2.9) and sctting suitable € > 0, we obtain
Who(t) - th(t)“?ﬁ(sz) < Cht /Ot {“U(S)“%ﬂ(ul) + ”U(S)”%l?(szg)}ds
+C [ W) = Rt
Finally, Grownwall’s Lemma yields
[Wio(t) — th(t)”imz) < Cht /Ot {||U(5)||312(szl) + ””(s)nfﬂ(szz)}d&
Hence, Lemma 3.2.2 leads to

[Wiv(t) —v(t)Zeqy < CRH IOy + 1Ol }

t
OB [ {0(s) ey + Iy s (5:210)

5.3 L*(L? and L?*(H') norms Error Estimates

In this scction, optimal order convergence results arc obtained in L%(L?) and L2(II')
norms for semidiscrete finite element Galerkin method. Here, we have assumed ug €
H}(Q) and f € HY(0,T; L*(Q)).

The continuous time Galerkin finite element approximation to (5.2.1) is stated

as: Find wuy, : [0,T] — Vj, such that

-t
(unt, vp) + Ap(un, vn) = (f,vn) +/ B(t, s;up(s),vn)ds Y, € Vy (5.3.1)
0
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with u,(0) = Lpug. Subtracting (5.3.1) from (5.2.1), we have

(g — ung, vn) + Alw — up, ) = Ap(un, vn) — Alun, vy)
t
+ / B(t, s; (u— up)(s),vp)ds Yo, € V3. (5.3.2)
0
Define the error e(t) as e(t) = u(t) — uy(t). Then following the lines of proof for
Theorem 4.3.1 in Chapter 4, it is possible to obtain the following optimal crror cstimate

in L*(H') norm. For f € HY(0,T;L?(Q)) and up € H}(S?), there exists a constant C
independent of /i such that

t
||e(5)||L2(0,t;H1(!2)) < Ch(”'uoniﬂ(m‘*‘/o ||f(5)||2L2(sz)d3

+ww&+£ﬁmm&wﬁ
=: C(uo, fyu)h. (5.3.3)

Here, C(ug, f, w) is a positive constant, independent of h, such that

o, £.) = C(lipioy + | 176 s + Ol + [ Nulo)licds)’

for some positive constant C.

The memory term considered in Chapter 4 involve only a first order partial dif-
ferential cquation and hence Theorem 4.3.2, therein, can not be casily extended for the
cquation (5.1.1) containing sccond order equation as mcemory. For the L? norm crror
estimate, we again recall the duality trick: For fixed ¢ € [0, 7], find w(t) € H(§) such
that

A(w(t),v) = (u(t) — wn(t),v) Yv € Hy(Q) (5.3.4)

and its finite element approximation is defined to be the function wy(t) € V}, such that
Ap(wp(t). vg) = (u(t) — up(t), v) Yo, € Vi, (5.3.5)

Note that solution w(t) to the problem (5.3.4) belongs to X N H(£2) and satisfies the
jump conditions [w] = 0, [ﬂ(z)g—ﬂz 0 along I'. Further, w satisfies the a prior:

estimate
lw(llx < Cllult) — unl)ll L2y (5.3.6)

73



Regarding the convergence of wy, we have (see, Theorem 3.1 in [22])
lw(t) — wn()ll oy < Chllu(t) — un(t)ll 2. (5.3.7)
Then it follows from [23] that
le@izy < C{rlle®)l2@lle®)lm ) }+ C{hlle(l‘)“mm)lle( Mz
+Hh? lu()lxlle(®) 2} = Ah(w,,(t) wa(t)) +(J),  (5.3.8)

with (J) = [ B(t, s;e(s), wn(t))ds.

Term (J) can be rewritten as
(J) = /[; B(t, s; e(s), wy(t))ds
= /(; B(t, s; e(s), (wn — w)(t))ds +/0 B(t, s;e(s), w(t))ds
=: (J)l + (J)Q,
where (J),, 1 =1, 2, are defined as
(M=AB“m@ﬁ%ﬂMm%(%ZAB@M@W@W
For the term (J)1, apply (5.3.3) and (5.3.7) to have

(D1l < Cllels)l|zzom1@pllwa(t) — w(t) | )
< Cluo, fw)h?|le(®) 2- (5.3.9)

Before estimating (J)2. we need some preparation. For fixed t € [0, T}, we define
5 (s) = =V - (b(z; t, ) Vwi(t)) + bola; t, s)wi(t), (z,s) € Qe x (0,1), k=1,2.
Clearly f*(s) € L?(£2) and assumptions (5.1.4) leads to
1/ (lzzey < ClloOllazgn) + w2} Vs, s <t
Further,
(f*(s),e(s)) = /V (z;t. s)Vw(t))e(s )d1+/bo(w;t,s)w(t)e(s)dw
= /b(m,t.s)Vw(t) Ve(s)dx 4-/ bo(z;t, s)w(t)e(s)dx
= B“(t,s;e(s),w(t)) "
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and hence

(J)y = /0B(t,s;e(s),w(t))ds:/[;(j'*(s),e(s))ds

IA

C/o £ ()= lle(s)l 2y ds

IA

Clllw®ll 2 + w2 } /Ot le(s)ll 2y ds
Clle®)|lLz o lle(s) 2o L) (5.3.10)
Combining the estimates (5.3.8)-(5.3.10), we obtain
le@lizg < C{hlle®lzalle® e} + C{alle®)lme ez
2t et s — 5 5 AnCwn(0), wi(e)
+C (o, f. u)h?|le(e) |2y
+Clle(®)ll 2 lle(s)ll 20220 -
Further, a simple application of Young’s incquality leads to
”e(t)”imz) < Cch2||e(t)”§{1(sz) + Ch*lu@®ll% + Ce”e(s)”i?(o,t;y(sz))
+C. (o, f,u)l + C(e)lle(®) By ~ ;—%Ah(wh,wh). (5.3.11)
Therefore, for suitable ¢ > 0 and integrating from 0 to ¢, we have

/ le(s)|Bamds < CH? / le(s)12p s + O / ()12 ds

IA

t
+ h4/ Ce(ug, f,u)ds
0

v C /D t /0 ' ||e(s){|2Lgm)dstT+%Ah(wh(O),wh(O)). (5.3.12)
Taking ¢ — 0, it now follows from (5.3.5) that
Ap(wr(0),w,(0)) = (up — Lpuo, wr(0)) = 0.
This together with (5.3.12), Gronwall’s incquality and (5.3.3) leads to the following
optimal L2(L?2) norm error cstimate.

Theorem 5.3.1 Let u and uy be the solutions of the problem (5.2.1)and (5.3.1), re-
spectively. Then, for f € HY0,T;L*(Q)) and ug € H(Q), there ezists a constant C
independent of h such that

He(s)z20,622(0) < Clug, fyu)h?. O
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5.4 L*(L?) and L*(H') norms Error Estimates

In this scction, optimal order convergence results are obtained in L*(L?) and L®(H*)
norms. We have assumed that initial data ug € H () N H3(Q) and u,(0) = Wyug. For
the simplicity of the exposition, we have used symbol C(u,w;), depends on v and wu,, to

denotc a positive term such that

it 2
@I + el z20.x) +/0 D Nz ds < Clu.u).
1=1

Setting u(t) — wup(t) = u(t) — Win(t) + Wiu(t) — up(t) = p(t) + 6(t), we obtain

t t
(B, vn) + A0, vn) = —(pt,vn) +/ B(t, s; p(s),v)ds +/ B(t, 5;6(s), vn)ds
0 0
+{An(un, — Wi, vy) — Aup — Wat, vp)}
+AR(Whu — Ry, vy). (5.4.1)

It follows from the definitions of R; and W}, opcrators that

An(Whu(t) — Ryu(t).v,) = /Ot B(t, s; (Whu — u)(s), vp)ds.

This together with (5.4.1), we obtain the following crror cquation in 6

t
(O, vn) + An(0, vr) = —(pt, vi) +/ B(t, s;6(s),v;)ds. (65.4.2)
0

Sct v, = 6, in (5.4.2) to have

1d
(B¢, 0¢) + §d—tAh(9- ) < Ce”Pt”%?(sz) + C(E)Hgtnfrﬁ(sz)

t
+Ch—1”9t”L2(Q)/ 10(s) ||z (snyds
0

< Ce”/)t“%ﬂ(sz) + C(E)Ilet“%ﬂ(sz)
i
+Ceh_2/0 ”9(5)”%1102)513 + C(e)”et”%ﬂ(sz)' (5.4.3)
Here, we have used Young’s incquality and inverse cstimate (2.2.12). Thus, for suitable
e > 0, we get
2 ld 2 o [ 2
10l 22y + 555 An(0,0) < Cllpellzay + Ch i [16Cs) 11152y - (5.4.4)
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Then integrating (5.4.4) from 0 to ¢ and applying cstimate (5.2.10), we obtain

ot ot ot T
AHQMWW&HW@W>S cAnmm@w+cw{LAlwgmmmwT

ot
< ﬂwmwﬂ%m”AU—QWBW%M%

t
< Clu,u)ht + Ch= / 16(8) s oy s (5.4.5)
0
Then a simple application of Grownwall’s Lemma lecads to

t
“9“2{1(“) < G(t)h4+0h4/0 G(S)H(S)G—Cn?(t—s)ds’

with G(t) = C(u,w;) and H(s) = Ch™2. Further using the fact that e™* < 1, z > 0, we

obtain
4
161132y < Clu, u)h? + 0712/ C(u, us)ds. (5.4.6)
0

Now, combining (5.2.4) and (5.4.6), we obtain the following optimal H'-norm crror

estimate.

Theorem 5.4.1 Let u and uy, be the solutions of the problem (5.2.1)and (5.8.1), respec-
tively. Then, for ug € HY(Q) N H3(Q) and f € HY(0,T; HY(Q)), we have

el < Ch(Cluw + [ Owgas)’. 0
Next, sct oy, = 8(t) in (5.4.2) to have
(6,,0) + An(0,8) < Cellpelliay + CNON 72
£, [ 10t + GO

Thus
1d

5 dtllgllii’(sz) + 0”0”?11(&2) < Ceupt“i?(sz) + C(f)”e”%ﬁ(sz)

ot
<O [ WBlnuds + OBl (5:4)
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Then integrating (5.4.7) from 0 to ¢, we obtain
L2 o * 2 *
5“6HL2(52)+C/0 HGHHl(sz)dS < CE/O HpSHL2(Q)d8+C(€)/O H9||2L2(Q)d5
't pT
‘. / / 16112 gy dscir
0 Jo
t
+C(e) /O 1612 s (5.48)
Hence, for suitable € > 0, we have
i 5 t 9 t T
B0+ [ 1Blnds < C [ odiayds+C [ [ 101Bydsde
t T
< Clu, w)h* + C/ / ||9H?p(mdsd7. (5.4.9)
o Jo
Here we have used cstimate (5.2.10). Splitting (5.4.9) into two parts, we obtain
't T
HHH%Z(Q) S C(U, '(,Lt)h4 + C‘/O /0 Ilb’“%ﬂ(u)deT, (5410)
t ot T
[ V6lnds < Ctwwpt+C [ [ 1oBudsar. @410
For the term jot ||(7’]|§11(“)d5, we use Grownwall’s Lemma in (5.4.11) to have
ot ot
/ 108nds < OB (Clu,u) + /0 Clu,u)ds).
0
This together with (5.4.10) leads to
t
1007 2yds < Ch? (C(u,ut) +/0 C’(u,us)ds). (5.4.12)

Finally, approximation result (5.2.10) together with (5.4.12) yiclds the following optimal

L?-norm crror cstimate.

Theorem 5.4.2 Let v and uy, be the solutions of the problem (5.2.1)and (5.8.1), respec-
tively. Then, for ug € HY(Q) N H3(Q) and f € HY(0,T; H*(Q)), we have

t 1
lle(®)|l 2@y < CH? (C’(u.ut) +/ Clu, us)ds) ‘.0
0
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5.5 Discrete time Galerkin Method

In this section, we shall consider the completely discrete scheme for the problem (5.3.1).
Backward difference scheme has been used to discretize the problem in time direction
and the piecewise linear finite element method in space. Optimal error estimate is shown
in 2 norm for sufficiently smooth initial data. For the simplicity, we have assumed that
f=0in Q.

We first divide the interval [0, 7] into N equally spaced subintervals by the fol-
lowing points

O=ty<ty < - <ty =T,

with ¢, = nk, k = T/N be the time step. Let I, = (-1, (,) be the n-th sub interval.

N

N | C L*(Q), we introduce the backward difference quotient

¢n _ ¢n—1
A . T - —
K 5
For ¢(t) € Vj,, we denote ¢™ be the valuc of ¢ at ¢ = t,,.
The complete discrete finite clement approximation to the problem (5.3.1) is

defined as follows: For 1 < n < N, find U™ € V}, such that

For a given sequence {¢"}

n—1
(AU™ o) + Ap(U™ i) = k> Blta, t;;U7,vh) Vo, € Vi (5.5.1)
1=0

with U° = Wyu,.

Integral term in (5.3.1) has been approximated by the rectangle rule

tn n-1
| stes ey ¢ =Quo o<t < T
0

=0
Note that the quadraturc crror in I, = (tn-1,%y,] is cstimated as
/ o(s)ds — k™! = / ¢'(T)drds = / (tn — )¢/ (T)dT
In In tn—l In

and hence ;
*in

Q6 — ¢®Mﬂ§kAHW%NM- (55.2)

0
At t =t,, (5.2.1) reduces to

‘tn
(up.vp) + A(u™, vp) = / B(tn, s; u(s),vy)ds Yv € Hy(Q). (5.5.3)
0
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We write the error U™ — ™ at time ¢, as
Ut —u™ = (U™ = W) + (Whu™ — u™) = 6" + p"

where 6" = U™ — Wyu™ and p" = Wyu™ — u™.

Combining (5.5.1) and (5.5 3), we obtain

(A0, up) + AR(0", vp,)

n—1 n—1
=k Z B(tn, t,; 67, up) — (W™, v) + k Z B(ty, ty; Wyt )
7=0 =0
tﬂ
_ / Bltn. 5, Wat(s), vy )ds. (5.5.4)
0

Here, w™ = A Wyru™ — ufl. For simplicity of the exposition, we write w™ = wi + wg,
where w] = WipApu™ — Agu™ and wi = Agu™ — uf.
Now, sctting v, = 6™ in (5.5.4), we have

n—1

1 mn 12 ki3 V{3
5“9 “%2(9) + k||6 ”%11(9) < k2ZB(tnth§6Uv() )+ Cle)k|lw ”2L2(sz)

1=0

n—1
O gy + k[E Y Bltns tys Wi, 67)

J=0

.tn
—/ B(ty, s; W;Lu(s)ﬂ")ds]

0
1 —
+'2‘“0 1“%2(sz)~ (5.5.5)

Thus, for suitable € > 0 and summing (5.5.5) over n from n =1 to n = M, we have

M M n-1 M
0¥ 122y + & Z 10"y < A° Z Z Btn.ty;67,0%) + Ck Z ™32
n=1 n=1 3=0 n=1
M n—1

+k [k ‘};6 B(tn, t,; Wy, 6™)

=1

vt
_ / Bt 5 Wya(s), 07)ds]
Q

A n—1

K2 0D Blta,ty;02,6") + (D1 + (2. (5.5.6)

n=1 3=0
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Terms (I); and (1), arc given by

M M
(N1 =Ck Y |[w3aqy = Ck Y [} + whl}aqy &
n=1 n=1

n—1

M tn
(Ng = kZ [I. Z B(ly, ty; Wi 67) — / B(ly, s; Whu(s), H")ds].
3=0 0

n=1

Now, we proceed to estimate both the terms separately. In €25, the term w] can

be expressed as
wi = Wil — Agut = (Wh — [){(Aguy)

1 g7 1 N
= (W]L - [)—k:_ / Ulltdt = E / (Whul,t - ul,t)dt,

tn-1 tn—1

where u,, @ = 1. 2, is the restriction of v in , and v, = %%.

An application of cstimate (5.2.10) leads to

3t 2
k’“’(USL“Lz(QI) < 0}22/ Z“utHHZ(Uz)dt

tn—1 =1

) T 2 2 3
< Cmm(/ (leutllm(sz») dt> ~
tn—1 =1

Hence

tn 2
kllwl 32, < Ch* /

tn-1 1=

luelzrz o, dt.
1

Similarly, we obtain

" 2
k”(U?”%}(QZ) S Ch4 / L ”llt”%]Z(Ql)dt.
Ji

n—1 =1
Using above two cstimates, we have
M by 2
k Z ”“’?”i?(sz) < 0}24/0 Z H“t”?ﬂ(sz,)dL (5.5.7)
n=1 =1

For the term wg, we have

tTl
kwy = u" — u™ ! — kul = —/ (s — tp—1)unds
tn-1

n—
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and hence

1
tn l t'". 2

Kl 2 < k / el ey ds < KR / el 2oy )
tn—l tn-1

Summing over n from n = 1 to n = M, we obtain

t"L
k Z [[wh |72y < CAQ/O lJueel| 220y dt. (5.5.8)

In view of estimates (5.5.7)-(5.5.8), the following cstimate holds for (1),

t, 2 tn
(I); < Ch“/0 Zuutuipml,dwc/‘k?/o lutge |3 22y it (5.5.9)
i=1

Next, we write ¢(s) = B(t,, s; Wihu(s), 8™) so that cstimate (5.5.2) lcads to

(D = ;(AnZeb t"</>s)ds)
< kZ( /Ot" Od(s )dé). (5.5.10)

Then apply assumptions (5.1.4) to have

lad)( s) < C{IIWhu(s) gy + IWhus(s) | oy HIO™ ooy

This together with (5.5.10) yiclds
M rtn
e = oRY / [IWas($) ey + IWaa(5) i e " s

< ClOF Z / (W33 sy + [ Watsa () s o s

n=1

+Ck* Z 6™ 72 - (5.5.11)

n=1
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Finally, usc cstimates (5.5.9) and (5.5.11) in (5.5.6) to have

M
1™ 20y + & Y 16" ey
n=1

N

< cont /0 Zuusum ds + CA? / taslZ5(0y s

=1

#0123 [ W+ 1o s

M n-1

+k2Y 0 " Blta, ty;67,6")

n=1 3=0
3 M n—1
<O+ R+ R > Blta ) 07,67). (5.5.12)
n=1 3=0
Here, Cy > 0 is a constant independent of Al such that
2

C{}}uttl‘%2(0,T,L2(sz)) + HUH2L2(0,T,X) + Z ”UtHZLZ(o,T,HZ(sz,))} <Cy
=1

Then it follows from [14] (sec, Lemma 7 therein) that

M
HHMHL?(sz + kz N6y < Cn(p* + k%) + C(e)k? Z 16" 171 02
n=1 n=1
M~-1n-1
+C.k? 16° 1310
n=1 3=0
and hence
M-1n-1
6M117 w Tk Z 6™l o < Cn(h* + k) + Ck? Z Z ”9]”111(9) (5.5.13)
n=1 n=1 3=0

Setting & = >\ _ L klIO™M131(qy in (5.5.13), we obtain

M-1

& < COn(K + 8 +Ck D &

n=1

Then a simple application of discrete Grownwall’s lemma leads to

M M-1
kD N0 =& < Cn(h* + 53 Y Ck < Cn(h* + E*)EN. (5.5.14)
n=1 n=1

In combination (5.2.10) leads to the following optimal L? norm crror cstimate.
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Theorem 5.5.1 Assume that ug € H3(Q)NH(Q). Then there exist a positive constant
Cn, independent of h and k, such that

UM — utm )2y < Cn(R*+k), 1<M<N. O
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