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Abstract 

The central theme of our work is to explore connections between values of hyper

geometric functions and algebraic curves. The theory of classical hypergeometric 

series has been studied for centuries and their associations with counting points on 

algebraic curves have been fully explored. In 1980's, Greene introduced the notion 

of hypergeometric functions over finite fields analogous to classical hypergeometric 

series. Since then, connections between number of points on elliptic curves and 

hypergeometric functions over finite fields have been investigated by many mathe

maticians such as Ahlgren, Frechette, Koike, Ono, and Papanikolas. 

Recently, Fuselier gave formulas for traces of Frobenius of certain families of 

elliptic curves in terms of Gaussian hypergeometric functions involving characters 

of orders 12 as parameters for primes p satisfying p == 1 (mod 12). Following her 

approach, Lennon provided a general formula for the number of lFq-points of an 

elliptic curve E with j(E) =I 0,1728 in terms of values of Gaussian hypergeometric 

series containing characters of order 12 for q = pe == 1 (mod 12). Following these, 

in this dissertation, we present some general formulas connecting the number of 

points on certain families of elliptic curves given by Weierstrass normal form over 

IF q with Gaussian hypergeometric series containing characters of order 6, 4, and 3, 

separately. 

Most recently, Vega considered certain more general families of algebraic curves 

and expressed the number of lFq-points on those families as a linear combination 

of 2Fl hypergeometric functions. In our work, we have considered two families of 

algebraic curves, namely yl = x(x - l)(x - >.) and yl = (x - 1)(x2 + >.); and give 
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explicit formulas for the number of lFq-points on these families as sums of values of 

2FI and 3F2 Gaussian hypergeometric series, respectively. These formulas generalize 

certain known results on elliptic curves and Gaussian hypergeometric series. Further, 

we define period analogue for the algebraic curve yl = x{x -l)(x - ,\), and obtain an 

expression for the period analogue in terms of 2FI classical hypergeometric series. 

In all the known results connecting Gaussian hypergeometric series and algebraic 

curves, expressions are obtained in terms of 2FI and 3F2 Gaussian hyper geometric 

series. Hence, the task remained to find similar results for n+lFn Gaussian hyper

geometric series for n :2: 3. Ahlgren and Ono studied this problem and deduced the 

value of 4F3 hypergeometric series at lover lFp in terms of representations of 4p as 

a sum of four squares using the fact that the Calabi-Yau threefold is modular. For 

n > 3, the non-trivial values of n+IFn Gaussian hypergeometric series are difficult 

to obtain, and this problem was also mentioned by Ono. We present explicitly the 

number of distinct zeros of the polynomial x d + ax + b over IF q in terms of the Gaus

sian hypergeometric functions dFd-1 and d-lFd-2 containing characters of orders d 

and d - 1 as parameters. 

Finally, we deduce certain special values of 2FI and 3F2 Gaussian hypergeometric 

series containing higher order characters as parameters using our results. 
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Chapter 1 

Introduction 

1.1 General introduction 

The problem of finding the number of solutions of a polynomial equation over a field, 

in particular, over a finite field, has been of interest to mathematicians for many 

years. Recently, lots of progress have been made in this direction which paves the 

way to solve many important congruences, old conjectures, and related problems. 

Mathematicians such as Ahlgren, Fuselier, Frechette, Koike, Ono, and Papaniko-
'-

las have found many interesting connections of different parameters of algebraic 

curves and modular forms with hypergeometric functions over finite fields. For ex

ample, explicit formulas for traces of Frobenius of elliptic curves and traces of Heeke 

operators on certain spaces of modular forms are obtained in terms of Gaussian 

hypergeometric series. For details, see [2, 3, 14, 15, 16, 27, 28]. 

An algebraic curve or affine curve E over a field K is defined as the set of all points 

satisfying a polynomial equation in two variables P(x, y) = 0 over K. It is easy to 

check that if both the partial derivatives ~: and ~; do not vanish simultaneously 

at any point on E, there is a well-defined tangent line at every point on E. Such 

a curve is called a non-singular curve, otherwise it is singular. The projective form 

C of an algebraic curve E defined by P(x, y) is the collection of all points which 

satisfy the homogenous polynomial equation P(x, y, z) = 0 in three variables. If 

z =f=. 0, there is always a one-to-one correspondence between the points on E and the 

points on C. For z = 0, the points on C are called the points at infinity of E. For 
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details, see [24]. 

In 1812, Gauss presented to the Royal Society of Sciences at" Gottingen his fa

mous paper [17] in which he defined 2Fi classical hypergeometric series. He also gave 

criteria for the convergence of such infinite series in the same paper. Since then, con

nections between classical hypergeometric series and different mathematical objects 

have been investigated by mathematicians. Meanwhile, in 1980's, Greene introduced 

finite field analog of classical hypergeometric series as finite character sums called 

Gaussian hypergeometric function. It is found that this function also has many in

teresting connections with algebraic curves, modular forms, and other mathematical 

objects in the same way as classical hypergeometric series do. 

In this chapter, we begin by giving a survey of recent works in which classi

cal hypergeometric series and Gaussian hypergeometric series are connected with 

different parameters of algebraic curves, in particular elliptic curves. We recall def

initions of classical hypergeometric series, characters on finite fields, and Gaussian 

hypergeometric functions and list a few of their properties. 

1.2 Brief history 

1.2.1 Classical hypergeometric series and elliptic curves 

The Classical hypergeometric series have been studied for centuries. Ramanujan 

had studied classical hypergeometric series more extensively and contributed a lot 

in this area. He found many connections of classical hypergeometric series with 

other number theoretical functions. 

For a complex number a and a non-negative integer n, let (a)n denote the rising 

factorial defined by 

(a)o := 1 and (a)n:= a(a + 1)(a + 2) ... (a + n - 1) for n> O. 

Then, for complex numbers ~,bj and z, with none of the bj being negative integers 
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or zero, the classical hypergeometric series is defined as 

This hypergeometric series converges absolutely for Izl < 1. The series also converges 

absolutely for Izl = 1 if Re(L bi - L ai) > 0 and converges conditionally for Izl = 

1, z =1= 1 if 0 ~Re(L bi - L ai) > -1. For details, see [4, 5J. Classical hypergeometric 

series satisfy many interesting symmetries and transformation identities [38J. 

The relations of classical hypergeometric series with different mathematical ob

jects, for example, number of points on algebraic curves have been investigated by 

many mathematicians. In 1836, Kummer found a striking connection between the 

real period of a family of elliptic curves and classical hypergeometric series as given 

in the following theorem. 

Theorem 1.2.1. [22, Thm. 6.1J If 0 < t < 1, then the real period D(2El) of the 
elliptic curve 

is given by 

At the beginning of 20th century, mathematicians such as Beukers, Stiller, and 

others studied about classical hypergeometric series more extensively, and investi

gated relations of this series with modular forms and other mathematical objects. In 

[39J, Stiller connected classical hypergeometric series with graded algebra generated 

by classical Eisenstein series E4 and E6 . Soon after, Beukers [8J represented a period 

of the lattice associated to the family of elliptic curves 2E~ (t): y2 = x3 - X - t as a 

constant multiple of 2Fl classical hypergeometric series. In fact, he identified the pe-

riod fl(,E;j of the elliptic curve ,E; as a constant multiple of ,F, ( ,'" ¥ I '; t') . 
Recently, McCarthy [30J considered the Clausen family of elliptic curve and gave 

a relation between a period of the elliptic curve and 3F2 hypergeometric series. 



Theorem 1.2.2. [30, Thm. 2.1] Let 3E2 be the elliptic curve defined by 

3 E2 (t): y2 = (x - 1) (x2 + t), t E Q \ {O, -1}. 

Then for t > 0, 

4 

It is to be noted that the Clausen family of elliptic curve 3E2 has only one 

real point of order 2 for t > 0; whereas the Lagendre's family of elliptic curve 2E1 

considered by Kummer has three real points of order 2. 

1.2.2 Gaussian hypergeometric function and algebraic curves 

Analogous to the classical hypergeometric series, Greene [18] introduced hypergeo

metric series over finite fields or Gaussian hypergeometric series. Let lFq denote the 

finite field with q elements, where q = pe, p is a prime and e E N. Extend each 

multiplicative character X : IF; ---* ex to lFq by defining X(O) = O. For characters A 

and B of lFq, the binomial coefficient (~) is defined by 

(~) := B( -1) J(A, B) = B( -1) L A(x)B(l - x), 
q q xEFq 

where J(A, B) denotes the usual Jacobi sum and B is the inverse of B. With 

this notation, for characters Ao, Ab . .. ,An and B1 , B2 , .. . , Bn of lFq, the Gaussian 

hypergeometric series over IF q is defined as 

n+1Fn (Ao, Al
, ... , An I x) : = ~ L (AD X) (~~X) .,. (~nX)X(x), 

Bb ... , Bn q _ X X X nX 

where the sum is over all characters X of IF q. 

Greene explored properties of these functions and found that they satisfy many 

summation and transformation formulas analogous to classical hypergeometric se

ries. These similarities generated interest in finding connections that hypergeometric 

functions over finite fields may have with other objects, for example elliptic curves 

and modular forms. 
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Define an elliptic curve E over Q in Weierstrass form by 

E : y2 = x3 + ax + b. 

The discriminant f1(E) and j-invariant j(E) of E are given by 

and .(E) = (-48a)3 
J f1(E) 

For a prime p of good reduction, that is, if p f f1(E), the trace of Frobenius for E is 

given by 

ap(E) = 1 + p - #E(IFp), 

where 

denotes the set of points on E over IFp together with the point at infinity P = [0 : 

1 : 0]. Again, if p I f1(E), that is, p is a bad prime, then ap(E) = 0, ±1 depending 

on the nature of singularity. 

The Hasse-Weil L-function associated to an elliptic curve E is defined in terms 

of traces of Frobenius of the elliptic curve by the Euler product 

L(E, s):= II (1- app-stl II (1 - app-s + pl-2s)-1, 

pl~(E) pt~(E) 

where s is a complex number with Re(s) > ~. Further, the L-function has close 

connection with the rank of the elliptic curve as conjectured by Birch, Swinnerton, 

and Dyer. Thus, the trace of Frobenius of an elliptic curve E is an interesting pa

rameter, and finding simple expressions for ap(E) in terms of different mathematical 

objects is a problem of interest. 

Consider the following two families of elliptic curves defined by 

2El : y2 = x(x - l)(x - t), t =I 0,1 

3E2 : y2 = (x - 1)(x2 + t), t =I 0,-1. 

In the following theorem, Koike [25] and Ono [34] gave explicit formulas for the 

traces of Frobenius of the above families of elliptic curves in terms of Gaussian 

hypergeometric series. 



Theorem 1.2.3. ((a) [25], (b) [34]) Let p be an odd prime. Then 

(a) P·2Fl (<p, : It) = -<p(-1)ap(2El) 

(b) p2 . 3F2 (<p, <p, <p 11 + ~) = <p( -t)(ap(3E2)2 - p), 
c, c t 

where <p and c are quadratic and trivial characters on IF p, respectively. 

6 

These results are analogous to the expressions of real periods of the same families 

of elliptic curves in terms of classical hypergeometric series stated in Theorem 1.2.1 

and Theorem 1.2.2. In these formulas, only quadratic and trivial characters are 

used as parameter, and thus the task remained to find expressions with higher 

order characters as parameters [35]. Following are some of the directions where the 

relations of Gaussian hypergeometric series containing higher order characters and 

number of lFq-points on families of varieties have been explored. 

In [14], Fuselier gave formulas for the trace of Frobenius of certain families of 

elliptic curves which involved Gaussian hypergeometric series with characters of 

order 12 as parameters, under the assumption that p = 1 (mod 12). 

Theorem 1.2.4. [14, Thm. 1.2] Suppose p zs a prime, p = 1 (mod 12) and ~ E i; 
has order 12. If t E IF p \ {O, I}, then for the elliptic curve 

2 3 27 27 
E t : Y = 4x - 1 _ t x - 1 - t 

with j(Et ) = 17
t
28, we have 

In the same paper, Fuselier also considered elliptic curves constructed by Beukers 

[8], and found a striking resemblance between the Gaussian hypergeometric function 

expression of the trace of Frobenius and classical hypergeometric series expression 

of a period of the same family of elliptic curves. 

Afterwards, for q = 1 (mod 3), Lennon gave formulas for certain elliptic curves 

involving Gaussian hypergeometric series with characters of order 3 as parameters 

in [28]. 
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Theorem 1.2.5. [28, Thm. 1.1] Let Ea1 ,a3 be an !lliptic curve over Q in the form 
given by the equation 

Ea1 ,a3: y2 + alXY + a3Y = x3 

and let p be a prime for which Ea1 ,a3 has good reduction. Also assume that p {' aI, 

and q = pe == 1 (mod 3). Let p E ~ be a character of order three, and let c be the 

trivial character. If Ealoa3 denotes the curve obtained by reduced modulo p of Ea1,a3' 
then the trace of the Probenius map on Ea1 ,a3 is given by 

- (p, p2 27a3) aq (Ea1 ,a3) = -q . 2FI c I at . 
In all of the above results, the character parameters in the hypergeometric series 

depended on the family of curves considered. In addition, the values at which the 

hypergeometric series are evaluated are functions of the coefficients and so depended 

on the model used. Lennon [27] gave a general formula expressing the number of IF p

points of an elliptic curve in terms of more intrinsic properties of the curve without 

having to put the curve in a specific form. Consecutively, Lennon removed the 

restriction on p imposed by Fuselier [14], and provided a general formula connecting 

the number of lFq-points on an elliptic curve E with j(E) =/:- 0,1728 with Gaussian 

hypergeometric series for q = pe == 1 (mod 12). 

Theorem 1.2.6. [27, Thm. 1.1] Let q = pe,p > 0 a prime and q == 1 (mod 12). 
In addition, let E be an elliptic curve over IF q with j (E) =/:- 0, 1728 and T E ~ 
a generator of the character group. The trace of the Probenius map on E can be 
expressed as 

( ) (

!l=.! 
!l=.! 1728 T 12 , 

aq(E) = -q·T 12 -- '2FI 
b.(E) 

where b.(E) is the discriminant of E. 

!l=.! T 12 

2(q-l) 
T 12 

j(E)) 
I 1728 ' 

All formulas stated above connect Gaussian hypergeometric series with number 

of lFq-points on elliptic curves. Therefore, a natural question to ask is whether there 

are similar formulas for counting points of more general curves in terms of Gaussian 

hypergeometric series. Most recently, Vega in [40], generalized this problem to more 

general curves of degree f > O. For z E lFq, Vega considered the smooth projective 

curve with affine equation given by 
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where £ E Nand 1 ~ m, s < £ such that m + s = £. She explicitly related the 

number of points on Cz over lFq with Gaussian hypergeometric functions containing 

characters of order £ as parameters. 

Theorem 1.2.7. [40, Thm. 1.1] Let a = ~ and b = ~ be rational numbers such 
that 0 < a, b < 1, and let z E lFq, z =1= 0,1. Consider the smooth projective algebraic 
curve wzth affine equation gwen by 

where £ = lcm(n, r). If q == 1 (mod f), then 

where X E W; is a character of order £ and #C£a,b\lFq ) denotes the number of points 

that the curve C£a,b) has over lFq. 

In the same paper, she proposed a conjecture connecting the 2Fl hypergeometric 

function of the above theorem and the reciprocal roots of zeta functions of Cz. She 

also proved the conjecture for some special cases. 

1.3 Preliminaries 

In this section, we define classical hypergeometric series, characters on finite fields, 

and Gaussian hypergeometric series. We list properties of characters and recall some 

symmetric and transformation identities of hypergeometric functions which will be 

used to prove our results. We start with the classical hypergeometric series. 

1.3.1 Classical hypergeometric series 

The classical hypergeometric series is an old example of infinite series. In 1810's, 

Gauss defined classical hypergeometric series in one of his famous papers. For 

a, b, e E C, he defined 2Fl classical hypergeometric series as 

F (
a, b I ) = (a)n(b)n . zn 

21 Z () I· e en n. 
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Mathematicians such as Euler, Kummer, and Vandermonde studied this series and 

found many interesting identities and transformation formulas. The classical hyper

geometric series satisfy a beautiful integral representation due to Euler [10] given 

as 

where Re e > Re b > O. Again, making a change of variables, the above integral can 

be stated as follows. 

Theorem 1.3.1. [9, p. 115] For Re c> Re b > 0, 

(
a, b) 2r(e) l1r/2 (sint)2b-l(cost)2C-2b-l 

2Fl I z = dt. 
e r(b)r(c - b) 0 (1 - z sin2 t)a 

, Kummer showed that 2Fl classical hypergeometric series satisfy a well known 

second order differential equation. The classical hyper geometric series enjoy many 

interesting symmetric and transformation properties. For example, the Pfaff's trans

formation is given as follows. 

Theorem 1.3.2. [38, p. 31] 

2Fl (a, ~ I x) = (1 - Xta2Fl (a, e: b I x: 1) . 

Many special values of classical hypergeometric series have been evaluated by 

mathematicians such as Gauss, Kummer, Vandermonde and Pfaff. In [17], Gauss 

deduced the following special value of classical hypergeometric series. 

Theorem 1.3.3. If Re (c - a - b) > 0, then 

2Fl (a, b 11) = r(e)r(e-a-b). 
c r(e - a)r(e - b) 

Further, the Kummer's Theorem is given by 

Theorem 1.3.4. [5, p. 9] 

F ( a, b I -1) = r(1 + b - a)r(1 + ~). 
2 1 1 + b - a r(1 + b)r(1 + ~ - a) 
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1.3.2 Characters on finite fields 

Let lFq be the finite field with q elements, where q = pe, p is prime and e is a positive 

integer. Recall that IF; = lFq \ {O} is a cyclic multiplicative group of order q - 1. 

A multiplicative character X : IF; -+ ex is a group homomorphism. Throughout, 

we reserve the notations c and <P for trivial and quadratic characters, respectively. 

Thus, for x E IF; 

c(x) = 1, 

and 

¢(x) = m = { ~1' if x is square of some element in IF; ; 

if x is not square of any element in .IF; , 
is the Lagendre symbol. The following theorem gives the structure of multiplicative 

characters on lFq. Also, every multiplicative character on lFq can be constructed from 

the following theorem. 

Theorem 1.3.5. [29, Thm. 5.8, p. 192] Let g be a generator of the multiplicative 
group oflFq . For each j = 0,1,2, ... ,q - 2, the function 

k 21nJk 
XJ(g ) = e q-l, for k = 0,1,2, ... ,q - 2, 

defines a multiplicatwe character on IF q. 

The set ~ of all multiplicative characters on IF; is a cyclic group under mul

tiplication of characters [6, 23, 29]. One extends the domain of all multiplicative 

characters X on .IF; to .lFq by defining X(O) = O. We state a result which enables us 

to count the number of points on a curve using multiplicative characters on .IF po 

Lemma 1.3.6. [23, Prop. 8.1.5] Let a E IF;. If nl(p - 1), then 

#{x E lFp: xn = a} = Lx(a), 

where the sum runs over all characters X on lFp of order dividing n. 

We now state the orthogonality relations for multiplicative characters in the 

following lemma. For proofs of these relations and further information on characters, 

see [23, 6]. 
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Lemma 1.3.7 . .E3, Chap. 8] Let T be a fixed generator for the group of multiplica
tive characters 1F~. Then 

{ 
q-1 

1. L:xEFq Tn(x) = 0 
if Tn = c; 
if Tn =1= c. 

2. L:~~~rn(x) = { 6 -1 t ~; i:· 
Definition 1.3.1. For multiplicative characters A and B of IFq, the Jacobi sum 
J(A, B) is defined by 

J(A, B) := L A(x)B(l - x). 
xEFq 

Define the additive character (): IFq -+ ex by O(a) = (tr(o). Note that (= e27Ti /
p 

and tr : IF q -+ IF p is the trace map given by 

2 0-1 

tr(a)=a+aP+aP +···+aP . 

The following theorem of additive character will be used frequently to express the 

number of IFq-points on polynomials in simplified form. 

Theorem 1.3.8. [23, Thm. 10.3.3] Let x, y, z E lFq . Then 

L e(z(x - y)) = qo(x, y), (1.3.1) 
zEFq 

where o(x, y) = 1 if x = y and zero otherwise. 

Further, we define an important character sum called Gauss sum as follows. 

Definition 1.3.2. For A E JF?, the Gauss sum is defined by 

G(A) := L A(x)(tr(x) = L A(x)e(x). 
xEFq 

Denoting T as a fixed generator of JF?, we often use the notation Gm to define 

G(rm). Now, we restate a lemma which provides us values of certain particular 

Gauss sums. 

Lemma 1.3.9. [14, Lemma 2.1] For q = pe, p a prime and e E N, we have 

(a) 

(b) 

G(c) = Go = -1 

G(¢) = Gtl. = { yq, 
2 ~...;q, 

if q == 1 (mod 4); 
if q == 3 (mod 4). 
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The following lemma enables us to evaluate multiplicative inverse of a Gauss 

sum. 

Lemma 1.3.10. [18, Eqn. 1.12] If k E Z and Tk i= c, then 

GkG-k = qTk(-I). 

Using orthogonality of characters, we have a lemma that provide a scope to 

express an additive character in terms of Gauss sums. 

Lemma 1.3.11. [14, Lemma 2.2] For all a E IF'~, 

1 q-2 

O(a) = --=-i L G_mrm(a). 
q m=O 

There are many nice relationships between Gauss sums and Jacobi sums. Among 

them, the most beautiful one is the following. 

Lemma 1.3.12. [18, Eqn. 1.14] Ifrm-n i= c, then 

GmG-n = q(~)Gm-nrn(-I) = J(rm,T-n)Gm_n. 

1.3.3 Gaussian hypergeometric functions 

Gaussian hypergeometric series is first introduced by Greene in [18] as finite field 

analogue of the classical hypergeometric series. 

Definition 1.3.3. For character A and B on IF'q, the binomial coefficient (~) is 
defined by 

(
;) := B( -1) J(A, B) = B( -1) I: A(x)B(1 - x), 

q q xEfq 

where B is the inverse of B. 

Many special cases of the binomial coefficient have been deduced by Greene. For 

example, the following special case is known from [18] 

(:) = (~) = -~ + q ~ ~O(A), (1.3.2) 

where o(A) = 0 if A i= c and o(A) = 1 if A = c. With these notation, Greene 

defined Gaussian hypergeometric series in the following way: 
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Definition 1.3.4. Let n be any positive integer and x E Fq • For characters 

Ao, AI,' .. , An and B}, B2 , . .. ,Bn in JF?, the Gaussian hypergeometric series n+IFn 
is defined to be 

Greene also provided an alternative definition of 2FI Gaussian hypergeometric 

function as follows. 

Definition 1.3.5. For character A, B, Con Fq and x E lFq, we have 

( A B) BC( -1) ,,- -
2F1 ' C I x = c(x) L..J B(y)BC(l - y)A(l - xy). 

q YEFq · 

(1.3.3) 

Greene found many symmetric and transformation formulas for Gaussian hyper-

geometric series analogous to those satisfied by classical hypergeometric series. Some 

follow directly from his definitions, while others are far more subtle. For characters 

AI,' .. ,An and B l , . .. , Bn on lFq, let 

denotes the product 

IT (~k). 
k=l Ie 

Further, let 

F (C, 4 I x) 
denotes the series 

~l~ Ix . ( 
C, AI, ... , An ) 

B1 , ... , En 

With these notation, we now recall some results of Greene.' 

Theorem 1.3.13. [18, Thm. 3.15 (v)] For characters A, B, C, E, D, F on Fq and 
x E Fq 
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Theorem 1.3.14. [18, Thm. 4.2 (ii)] For characters A, B, D, 0, E of lFq and 
x E lFq, 

F (A, B, 0 I x) = ABDOE(-l)A(x)F (A, AD, A! I~). 
D, E AB AC x , 

Moreover, Greene proved the following transformation formulas of Gaussian hy

pergeometric series using the binomial theorem of characters and making changes in 

variables in Definitions 1.3.4 and 1.3.5. Let c5 : lFq -+ {O, 1} be the function defined 

by c5(0) = 1 and c5(x) = 0 for x ::J O. 

Theorem 1.3.15. [18, Thm. 4.4 (i) & (ii)] For character A, B, C on lFq and x E lFq, 

(i) 2Fl(A, ~ IX)=A(-lhFl(A, A~C 11-X) 

+A(-l)C:C)c5(l-X) - (~)c5(X), . 

(ii) 2Fl (A, ~ I x) = C(-l)A(l- XhFl ( A, C~ I x: 1) 

+A(-l)(:c)c5(l-X). 

Lemma 1.3.16. [18, Coro. 3.16 (ii)] For characters A, B o~ lFq and x E lFq, 

F (A, E 
2 1 B I x) = (~) A( -l)B(x)AB(l - x) 

1 q-1 -
- -B( -l)E(x) + -A( -1)5(1 - x)8(AB). 

q q 

We will need the Hasse-Davenport relation to express traces of Frobenius endo

morphism of elliptic curves as special values of Gaussian hypergeometric series. The 

Hasse-Davenport relation can be stated as follows. Here 0 is considered as the addi

tive character though the most general version of this relation involves any additive 

character. 

Lemma 1.3.17. [26, Hasse-Davenport Relation] Let m be a posztive integer and let 
q = pe be a prime power such that q == 1 (mod m). Let 0 be the additzve character on 

lFq defined by O(a) = (tr(a), where ( = /;'. For multiplicative characters X, 'ljJ E iF? , 
we have 

(1.3.4) 
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1.4 Organization 

There are six chapters in this thesis. We explore connections that values of hyper

geometric functions may have with algebraic curves and polynomials. 

The Chapter 1 is introductory in nature which contains basic introduction to 

algebraic curves, classical hypergeometric series, and Gaussian hypergeometric se

ries. We also give a brief survey of recent works that relates algebraic curves with 

hypergeometric functions. 

Chapter 2 is dedicated to study connections between traces of Frobenius of el

liptic curves and Gaussian hypergeometric series. For each of the cases, q == 1 (mod 

6), q == 1 (mod 4), and q == 1 (mod 3), we find explicit relationships between the 

number of lFq-points on certain families of elliptic curves in Weierstrass normal form 

and the values of a particular hypergeometric function over lFq. 

In Chapter 3, we focus our attention on a particular family of algebraic curve of 

higher degree and find connection between the number of points on this family over 

lFp and sums of values of certain 2Fl Gaussian hypergeometric functions. We also 

provide a striking analogy between binomial coefficients involving rational numbers 

and those involving multiplicative characters. 

Chapter 4 is devoted to another family of algebraic curve of higher degree. We 

express the number of points on this family of curve over IF q as a linear combination 

of certain 3F2 Gaussian hypergeometric series. 

Chapter 5 contains relations between number of zeros on some polynomial equa

tions over lFq and n+lFn Gaussian hypergeometric series for n ~ 2. These expressions 

partially answer a question proposed by Ono [35]. 

Finally, in Chapter 6, we evaluate certain special values of 2Fl and 3F2 Gaussian 

hypergeometric series over IF q using the results of Chapter 2 and Chapter 4. 



Chapter 2 

Elliptic Curves and Gaussian 
Hypergeometric Series 

2.1 Introduction 

An elliptic curve is a particular family of algebraic curve, which can be described 

as non-singular cubic projective curve over a field in three variables with at least 

one point. These curves are of genus 1, and the points on such curves over any field 

enjoy the beautiful group law of algebra called Mordell-Weil group law [37, 22]. Any 

elliptic curve over Q can be represented by an equation 

E : y2 = f(x) = x3 + ax + b, 

where f(x) = 0 does not have any repeated roots. This form of an elliptic curve 

is called the Weierstrass normal form. The discriminant of E, denoted by t1(E), is 

given by 

Let E denote the reduction of E mod p. Recall that if p t t1(E) then E has good 

reduction, that is E is also an elliptic curve over lFp . In this case, we say that p is a 

prime of good reduction. We define the integer ap(E) by 

IThe contents of this chapter have been published in Proc. Amer. Math. Soc. (2013) and J. 
Number Theory (2013). 
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where #E(Fp) is the number of points on E over Fp including the point at infinity. 

If p is a prime of good reduction, ap(E) is called the trace of Frobenius as it can 

be interpreted as the trace of the Frobenius endomorphism on E. Further, if E is 

given by y2 = J(x) then 

ap(E) = - L ¢(J(x)), 
xEFp 

where ¢ is the quadratic character on Fp. For further details about elliptic curves 

and its different parameters, see [37, 41, 22]. 

Elliptic curves have many mysterious arithmetic properties and mathematicians 

are working to find their connections to other objects in number theory and related 

areas of mathematics. The connection between elliptic curves and modular forms 

brought to light famously in the proof of Fermat's Last Theorem. There are many 

open problems on elliptic curves and the most famous is the Birch and Swinnerton

Dyer conjecture. 

In this chapter, we consider the problem of expressing traces of Frobenius en

domorphisms of certain families of elliptic curves in terms of hypergeometric func

tions over finite fields. We present explicit relations between the traces of Frobe

nius endomorphisms of certain families of elliptic curves and special values of 2Fl

hypergeometric functions over Fq for q = 1 (mod 6), q = 1 (mod 4), and q = 1 (mod 

3). Moreover, we extend a result of Koike on Lagendre's family of elliptic curves 

which includes some more families of elliptic curves. 

2.2 Traces of Frobenius endomorphism of elliptic 

curves 

Throughout, we consider an elliptic curve Ea,b,c over F q given by 

(2.2.1) 
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If we denote by aq(Ea,b,c) the trace of the F'robenius endomorphism on Ea,b,e, then 

(2.2.2) 

where #Ea,b,cCfq) represents the number of lFq-points on Ea,b,e including the point 

at infinity. Fuselier [14], Koike [25], Lennon [27, 28], and Ono [34] considered some 

particular forms of the elliptic curve Ea,b,e and expressed their traces of F'robenius 

endomorphism in terms of Gaussian hypergeometric series. Among them, Lennon 

[27] considered the most general form and related its number of points with hyperge

ometric series over lFq containing characters of order 12, as parameters for q = pe == 1 

(mod 12). 

In the following theorems, we extend the result for aq(Ea,b,e) of Lennon and 

deduce some expressions for aq(Ea,b,e) in terms of hypergeometric functions over lFq 

for q == 1 (mod 6), q == 1 (mod 4), and q == 1 (mod 3), respectively. In the proofs, 

we follow the method used in [14] and [27]. 

2.2.1 Case 1: q = 1 (mod 6) 

Theorem 2.2.1. Let q = pe, p > 0, be a prime and q == 1 (mod 6). In addition, let 

a be non-zero such that (-a/3) a quadratic residue in lFq • 1fT E ~ is a generator 

of the character group, then the trace of the F'robenius on EO,a,b : y2 = x3 + ax + b 

can be expressed as 

T5
(yl) k3 + ak + b) 

1- 4k3 ' 
C 

where c is the trivial character on lFq and k E lFq satisfies 3k2 + a = O. 

Theorem 2.2.1 will follow as a consequence of the next theorem. We consider the 

family of elliptic curves Ec,O,d over IF q for c i= O. Then, the trace of the F'robenius 

endomorphism of Ec,O,d is expressed as a special value of a hypergeometric function 

in the following way. 
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-Theorem 2.2.2. Let q = pe, p > 0, be a prime and q == 1 (mod 6). If T E IF; is 

a generator of the character group, then the trace of the Frobenius on Ec,Q,d : y2 = 

x3 + cx2 + d is given by 

where E is the trivial character on IF q. 

Proof. Consider the polynomial 

1
- 27d) 

4& ' 

and denote by #Ec,Q,d(lFq) the number of points on the curve Ec,Q,d over lFq including 

the point at infinity. Then 

#Ec,Q,d(lFq) -1 = #{(x,y) E lFq x lFq : P(x,y) = O}. 

The elementary identity (1.3.1) for the polynomial P(x, y) becomes 

L O(zP(x, V)) = { q 
zEFq 0 

Using this, we obtain 

q. (#Ec,Q,d(JFq ) -1) = L O(zP(x,y)) 
x,y,zEFq 

if P(x, y) = 0; 

if P(x, y) i= O. 
(2.2.3) 

= L O(OP(x, V)) + L O(zP(O, 0)) + L O(zP(O, V)) 
x,yElFq 

L O(zP(x, 0)) + L O(zP(x, V))· 

The polynomial P(x, y) and the fact 

L O(OP(x, V)) = L 0(0) = q2, 
x,yElFq x,yEFq 
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together yield 

q. (#Ec,O,d(Wq) - 1) = q2 + L ()(zd) + L ()(zd)()( _zy2)+ 
ZEF: y,zEF: 

:= q2 + A + B + C + D. (2.2.4) 

Now using Lemma 1.3.11 and then applying Lemma 1.3.7 repeatedly for each labeled 

term of (2.2.4), we deduce that 

1 q-2 1 q-2 

A = - " "G_ITI(zd) = -" G_ITI(d) " Tl(z) = Go = -1. q-1~~ q-1~ ~ 
ZEF: 1=0 1=0 ZEF: 

Here the second equality follows from the fact that the innermost sum is 0 unless 

l = 0, at which it is q - 1. Similarly, 
q-2 

B = (q ~ 1)2 L G_IG_mTI(d)'J"ffi( -1) L T2m(y) L Tl+m(z), 
l,m=O YEF: zEIF: 

which is nonzero if and only if l = -m and m = 0 or 9. Thus, Lemma 1.3.7 yields 

Using Lemma 1.3.10 for k = 9, we deduce that 

~ ~ ~ B = 1 + qT 2 (-l)T 2 (d)T 2 (-1) 

~ = 1 + qT 2 (d). 

Expanding the next term, we have 
q-2 

C = (q ~ 1)3 L G_IG_mG_nTI(d)rn(c) L Tl+m+n(z) L T 3m+2n (x). 
l,m,n=O zEIF: XEF: 

Finally, 

1 q-2 

D = (q _ 1)4 L G_IG_mG_nG_kTI(d)rn(c)Tk( -1) x 
l,m,n,k=O 
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The innermost sum of D is nonzero only when k = 0 or k = ~. Using the fact 

that Go = -1, we obtain 

D = -c + D9..=l., 
2 

where 

which is zero unless m = ':"'~n and n = -3l- 3(q;1). Since G
31

+3(q-l) = G3l+9..=l. and 
2 2 

G-21 -(q-l) = G-21 , we have 

Using Davenport-Hasse relation (1.3.4) for m = 2, 'lj; = T-l and m = 3, 'lj; = Tl+~ 

respectively, we deduce that 

and 

Therefore, 

Replacing l by l - ~, we have 

Now using Lemma 1.3.12, we obtain 
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Plugging the facts that if l =1= 0 then GIG-1 = qTI( -1) and if l = 0 then GIG-1 = 

qTI( -1) - (q - 1) in appropriate identities for each l, we deduce that 

q3T~(-1)T~(-3c) q-2 (Tl-~) (Tl+~) l-!C.l (27d) I 
D!C.l = ~ Tl-!C.l l-!C.l T 2 ~ T (-1) 

2 q - 1 ~ 2 T 2 4(.-
1=0 

2!C.l !C.l (T~) (TY) !C.l (27d) - q T 6 (-l)T 2 (-3c) T~ T~ T 2 4c3 . 

Replacing l by l + ~ in the first term and simplifying the second term, we obtain 

Putting the values of A, B, C, D all together in (2.2.4), we have 

1- 27d) 4c3 . 

Since aq(Ec,O,d) = q + 1- #Ec,O,d(IFq), we have completed the proof of the Theorem. 

o 

Proof of Theorem 2.2.1. Since a =1= 0 and (-a/3) is quadratic residue in IFq, we 

find k ElF; such that 3P + a = O. A change of variables (x, y) H (x + k, y) takes 

the elliptic curve EO,a,b : y2 = x3 + ax + b to 

Ea"o,b' : y2 = x3 + 3kx2 + (k3 + ak + b), 

where a' = 3k2 and b' = k3 + ak + b. Clearly aq(Eo,a,b) = aq(Ea"o,b'). Since 3k =1= 0, 

using Theorem 2.2.2 for the elliptic curve Ea',O,b" we complete the proof. 0 
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2.2.2 Case 2: q = 1 (mod 4) 

Theorem 2.2.3. Let q = pe, p > 3, be a prime and q == 1 (mod 4). Also assume 

that x 3 + ax + b = 0 has a non-zero solution in IF q and T E JF? is a generator of 

the character group. The trace of the Probenius on EO,a,b : y2 = x 3 + ax + b can be 

expressed as 

~ ) T 4 12h2 + 4a 
I 9h2 ' 

E 

where E is the trivial character oflFq and h E IF; satisfies h3 + ah + b = O. 

We now prove a result for the elliptic curve Ef,g,o : y2 = x 3 + fx2 + gx under 

the condition that q == 1 (mod 4) similar to Theorem 2.2.2, and then Theorem 2.2.3 

will follow from this result. 

---Theorem 2.2.4. Let q = pe, p> 0, be a przme and q == 1 (mod 4). 1fT E lF~ is a 

generator of the character group and f =I 0, then the trace of the Probenius on Ef,g,o 

is given by 

where E 2S the trivial character on IF q' 

Proof. We have 

~ T 4 

4
9

) I j2 , 

#Ef,g,oClFq ) -1 = #{(x,y) E lFq x lFq : P(x,y) = O}, 

where 
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Using (2.2.3), we express the number of points of Ef,g,o over lFq as 

q. (#Ef,g,o(lFq) -1) = L f)(zP(x,y)) 
x,y,zEFq 

(2.2.5) 

Now, following the same procedure as followed in the proof of Theorem 2.2.2, we 

deduce that 

where the third equality follows from the fact that the innermost sums are nonzero 

only for l = 0, at which both are q - 1 and Go = -1. Then expanding the next 

term, we obtain 

Finally, using Lemma 1.3.11 and Lemma 1.3.7 in the last term of (2.2.5), we deduce 

that 

1 q-2 

C = (q _ 1)4 L G-IG-mG-nG-k']""l(J)'r(g)Tk( -1) L Tl+m+n+k(z) x 
l,m,n=O ZEF~ 
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which is nonzero only if k = 0 or ~. Hence the term breaks up into two terms as 

L T3l+2m+n(x). 

XEF: 

Substituting the values of A, B, C all together in (2.2.5), we have 

q-2 

q. (#E/,g,o(JFq) - 1) = q2+ (q ~ 1)3 L G-IG-m G-n G9-rm(f)rn(g)x 
l,m,n=O 

Both inner sums of the second term is nonzero only when n = land m = - 2l - ~. 

Thus, we use Lemma 1.3.7 in the second term, and then simplify to obtain 

(2.2.6) 

The Davenport-Hasse relation (1.3.4) with m = 2, 'ljJ = Tl+~ yields 

(2.2.7) 

Using (2.2.7) and then Lemma 1.3.12 in (2.2.6), we have 

Then using the relation aq(E/,g,o) = q + 1- #E/,g,o(JFq), we complete the proof. 0 
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Proof of Theorem 2.2.3. Since x3 + ax + b = 0 has a non-zero solution in lFq, let 

h E IF; be such that h3 + ah + b = O. A change of variables (x, y) H (x + h, y) takes 

the elliptic curve EO,a,b : y2 = x3 + ax + b to 

Ea',b',O : y2 = x3 + 3hx2 + (3h2 + a)x, 

where a' = 3h and b' = 3h2 + a. Since aq(EO,a,b) = aq(Ea"b',o) and 3h =1= 0, using 

Theorem 2.2.4 for the elliptic curve Ea"b',o, we complete the proof of the theorem.O 

2.2.3 Case 3: q = 1 (mod 3) 

In Theorem 2.2.1 and Theorem 2.2.3, we expressed the trace of Frobenius of the 

elliptic curve EO,a,b in terms of Gaussian hypergeometric series involving characters of 

orders 6 and 4 under certain conditions. But all these expressions are not adequate to 

find trace of Frobenius formula for all families of elliptic curves in terms of Gaussian 

hypergeometric series because of the conditions imposed on the coefficients of the 

model. Here we consider a family of elliptic curves which is not included in above 

theorems and find relation of its number of points with hypergeometric function 

over finite fields. 

Hessian form of elliptic curve: Hessian form of elliptic curve is a particular 

family of elliptic curves. For some a E lFq and a3 =1= 1, the Hessian curve over lFq is 

given by the cubic equation 

Ca : x3 + y3 + 1 = 3axy. 

A birrational change of variables, the equation Ca transforms to a Weierstrass normal 

form of elliptic curves. 

In the following theorem, we express the number of points on Ca over IF q in terms 

of Gaussian hypergeometric series. Let Ca(lFq) denotes the set of alllFq-points on 

Ca given by 
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---Theorem 2.2.5. Let q = pe, p> 0, be a prime and q == 1 (mod 3). 1fT E IF; is a 

generator of the character group, then the number of IFq-points on the Hesszan form 

of elliptic curve can be expressed as 

T~ 1) 13 . 
c a 

Proof The method of this proof follows similarly to that given in [14] and [27]. We 

have 

#Ca(IFq) = #{(x,y) E IFq x IFq : P(x,y) = O}, 

where 

P( x, y) = x3 + y3 + 1 - 3axy. 

Using (2.2.3), we express the number of points as 

q. #Ca(IFq) = L (J(zP(x, y)) 
x,y,zEFq 

x,zEF; 

(2.2.8) 

Following the same procedure as followed in the proof of Theorem 2.2.2 and Theorem 

2.2.4, we deduce that 

q-2 q-2 

A = (q ~ 1)2 L L G_lG_mTl+m(z)T31(y) = q ~ 1 L G-lGl L T 31 (y). 
, l,m=O y,zEF; 1=0 YEF; 

By Lemma 1.3.7, the above sum is nonzero only if l = 0, y or 2(q;1). Thus, using 

Lemma 1.3.9 (a) and Lemma 1.3.10, we obtain 

A = GoGo + G9..=lG~ + G2(q-l)G9..=l = 1 + 2q. 
3 3 3 3 
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Similarly, 

B = 1 + 2q. 

Again, we use Lemma 1.3.11 and Lemma 1.3.7 repeatedly to deduce 

since the sums are nonzero only for m = 0, ~ or 2(q;1) , n = 2m - land k = 

-l - m - n. We use the Davenport-Hasse relation (1.3.4) for G3l given as 

in each term, and then Lemma 1.3.12 in the first term to obtain 

We use Lemma 1.3.10 in each term, and plug the facts that if l =1= 0 then GIG-l = 

qTl(-l) and if l = a then GIG-l = qTl(-l) - (q - 1) in appropriate identities for 



each l in the first sum to deduce that 

c = q3 q-2 (Tl+~) (TI+2(q;1»)TI ~ _ 2(T~) (T2(q;1») 
(q - 1) ~ Tl Tl ( a3 ) q c; c; 

2q2 2:q
-

2 
Tl( 1 ) 6q + - +--(q - 1) a3 q - 1· 

1-1140 2(q-l) 
- ,.,... 3' 3 

T 2(q;1) 
I ~) -1 + 2q2 [{~Tl(~)} - 3] + ~ 

a3 (q - 1) ~ a3 q - 1 
1=0 

I :,) -1- 6q 

Combining all the values of A, B, C and putting in (2.2.8), we obtain that 

completing the proof of the theorem. 

2(q-l) 
T 3 

29 

o 

The Hessian form of an elliptic curve can be transform to an elliptic curve in 

Weierstrass form by making a birrational change of variables. Therefore we have 

the following result. 

Theorem 2.2.6. Let q = pe, p> 3, be a prime with q == 1 (mod 3). In addition, let 

m = -27d(d3 +8) and n = 27(cfl-20d3 -8), where d3 -I 1. 1fT E Jii? is a generator 

of the character group, then the trace of the Frobenius on Eo,m,n : y2 = x3 + mx + n 

is given by 

Proof. Consider the elliptic curve 

Eo,m,n : y2 = x3 + mx + n, 

2(q-l) 
T 3 
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where m = -27d(d3 + 8) and n = 27(d!> - 20d3 - 8). Making the birational change 

of variables x -t - 36-9d
3
+3dx-y and y -t - 36-9d

3
+3dx+y we obtain the equivalent 

6(9d2+x) 6(9d2+x) , 

form Cd (see [13]). Now, the points on Eo,m,n for x = -9d? do not correspond to 

any point on Cd. Thus there are 1 + <p( -3(8 + 92d3 + 35d!») extra points on Eo,m,n. 

On the other hand, under the inverse transformation 

12(d3 
- 1) 9d2 36(d3 

- 1) ( ) 
x-td - ,y-t

d 
y-x, 

+x+y +x+y 

the Hesssian curve Cd is birationally equivalent to Eo,m,n. In this case, the points 

on Cd for x + y + d = 0 do not correspond to any point on Eo,m,n and there are q 

such extra points. Therefore, we have 

and hence Theorem 2.2.5 yields 

~) T 3 1 
I d3 . 

c 

Finally, using the fact that aq(Eo,m,n) = 1 + q - #Eo,m,nC'iq) , we complete the 

~~ 0 

2.3 Number of lFq-points on Edward form of ellip-

tic curve 

We are now going to express the number of 'iq-points on Edward form of elliptic 

curve in terms of Gaussian hypergeometric series. Later this expression will be used 

to determine certain special values of Gaussian hypergeometric series. 

Edward form of elliptic curves: An Edward curve over a finite field 'iq with 

characteristic not equal to 2 is given by 
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where u E IF q with u5 =1= u. The twisted Edward curve is given by the equation 

where a and b are distinct nonzero elements of IFq(see [7]). This curve has great 

interest in cryptography. We express the number of lFq-points on Ca,b in terms of 

Gaussian hypergeometric series. Let 

be the set of allIFq-points on Ca,b. 

Theorem 2.3.1. Let q = pe, p > 0, be an odd prime and let T be a generator of the 
---.. 

character group IF~. The number of points on the twisted Edward curve Ca,b over IF q 

can be expressed as 

.t! T 2 

.t! .t! where ((a, b) = q - 1 - T 2 ( b) - T 2 (ab). 

Proof. We follow the technique followed by Fusilier [14J and Lennon [27J to prove 

the theorem. Let 

Then 

#Ca,b(IFq) = #{(x, y) E IF~ : P(x, y) = O}. 

Using the elementary identity (2.2.3) deduced from (1.3.1), we obtain 

q. #Ca,b(IFq) = L O(zP(x, y)) 
x,y,zEJIi'q 

+ L O(zP(x, y) 

:= q2 + A+ B+ C+ D. (2.3.1) 
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We use Lemma 1.3.11 and Lemma 1.3.7 repeatedly to each term of (2.3.1) to simplify 

the expression. First, we obtain that 

Expanding the next term yields 

q-2 

B = (q ~ 1)2 L G_1G_mTI( -1)rm(a) L Tl+m(z) L T 2m(x), 
l,m=O ZEF: XEF: 

which is nonzero when I = -m and m = ° or ~. Using this and Lemma 1.3.7, we 

deduce that 

Similarly, we deduce that 

Finally, 

1 q-2 

D = (q _ 1)4 L G_IG_mG_nG_kTI(a)'r( -1)Tk( -b) x 
l,m,n,k=O 

Now, D will be nonzero only for the following four cases. 

Case 1. I = -k,m = -k,n = k. 

Using Lemma 1.3.10, we obtain 

_1_ ~ GkG_kGkG_kTk(bJa) = _1_ {I + q2 ~Tk(bJa)} 
q - 1 k=O q - 1 k=l 

1- q2 
q-l 

= -(1 + q). 



C 2 l - k 2.=..! - k -k 2.=..! ase . - - + 2 ,m - - ,n - - 2 • 

Here, we use Lemma 1.3.12 and then Lemma 1.3.16 to deduce 

~ ~ = -qT 2 (b) - qT 2 (a). 

C 3 l - k - k 2.=..! -k 2.=..! ase . - - ,m - - + 2 ,n - - 2 . 

As in case 2, we obtain 

~ = - qT 2 (b / a) - q 

~ = -qT 2 (ab) - q. 

C 4 I - -k 2.=..! - -k 2.=..! - k ase . - + 2 ,m - + 2 ,n - . 

In this case, Lemma 1.3.12 yields 

33 
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Combining all the terms together in (2.3.1), we obtain 

!.L..! T 2 

which completes the proof. o 

The Edward family of elliptic curves is birrationally equivalent to the elliptic 

curve Ea{3.f32,O. It is to be noted that E0 {3,{32,O contains more families of elliptic curves 

including the Lagendre's family. 

Theorem 2.3.2. Let q = pe, p > 0, be an odd prime. If a =1= ±2 and (3 =1= 0, then 

the trace of F'robenius on the elliptic curve E a {3,{32,O can be expressed as 

<P I~). 
c a+2 

Proof. Consider the elliptic curve 

E . 2 3 (3 2 (32 
a{3,{J2,O . Y = x + a x + x. 

Following [7], we perfor~ the birational change of variables x -+ ~x, y -+ ~~;N to 

obtain the equivalent form Ca,b as 

where a = a(3 + 2(3 and b = a(3 - 2(3. Now, the points on Ea {3,{32,O for y = ° and 

x = -1 do not correspond to any point on Ca,b. 

!.L..! 2 1. For y = 0, there are 2 + T 2 (a -·4) extra points on E a {3,{32,O. 

!.L..! ) 2. Also x = -1 corresponds 1 + T 2 (a(3 - 2(3 extra points on E a {3,{32,o. 

Similarly, under the inverse transformation x -+ ~11~~), Y -+ ~~i~~~, the twisted 

Edward curve Ca,b is birationally equivalent to Ea {3,{32,O. Again, the points on Ca,b 
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for y = 1 and x = ° do not correspond to any point on Eo.{3,{32,O. In this case, (0,1) 

and (0, -1) are the only extra points on Ga,b. Hence, considering all we have 

Thus, Theorem 2.3.1 and the fact aq(Eo.{3,{32,O) = 1 + q - #Eo.{3,{32,oCF'q), together 

complete the proof. 0 

Corollary 2.3.3. Let q = pe, p > 0, be an odd pnme and q == 1 (mod 4). If a/3 =I- ° 
and a =I- ±2, then 

4) t! 2 (¢, ¢ I a 2 = T 4 (-1)¢(2a + 4ahFl 
E: 

a - 2) 
I a+2 . 

Proof. Replacing f = a/3 and 9 = /32 in Theorem 2.2.4, we have 

Then combining this with Theorem 2.3.2 we complete the proof. o 



Chapter 3 

Hypergeometric Functions and 
y£ == x(x - l)(x - A) 

3.1 Introduction 

Recall that every elliptic curve E over C can be written in the Weierstrass normal 

form 

2 4 3 Y = x - 92X - 93, (3.1.1) 

with 92,93 E C. If E(C) denotes the group of complex points on E, then we can 

associate a period lattice A to E via the biholomorphic mapping cp : CIA --t E(C) 

given by 

) { 
[p(z): p'(z) : 1], for z ct A; 

cp(z = 
[0 : 1 : 0], for z E A, 

where p is the Weierstrass p-function. If 92,93 E lR then A can be chosen to be of 

the form A = O(E)Z + O'(E)Z, where O(E) E lR and O'(E) E C. We call O(E) 

the real period of E. Furthermore, if the right-hand side of (3.1.1) has three real 

roots then O'(E) will be strictly imaginary. Thus, the period of an elliptic curve is 

a characterization to the real points of order 2 on the curve.-

In this chapter, we define O(Ci,A) for an algebraic curve Ci,A of degree f analogous 

to the real period of elliptic ~urves and find a relation with ordinary hypergeometric 

2The contents of this chapter have been published in The Ramanujan J. (2012). 
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series. We also give a relation between the number of points on Ct ,>. over a finite 

field and Gaussian hypergeometric series. Finally, we give an alternate proof of 

a result of [36] and develop the interplay between binomial coefficients involving 

rational numbers and those involving multiplicative characters by providing some 

expressions for ap( Ct ,>.) and O( Ci ,>.). 

3.2 Main results 

Let A E Q \ {O, 1} and f ~ 2, and denote by Ci ,>. the nonsingular projective curve 

over Q with affine equation given by 

yi = x(x - 1)(x - A). (3.2.1) 

The change of variables (x, y) M (x + 1~>', ~) takes (3.2.1) to 

yi = 2i(x - a)(x - b)(x - c), (3.2.2) 

where a = _1+>' b = 2>'-1 and c = 2->' 
3 ' 3' 3 . 

Remark 3.2.1. If f = 3, Ct ,>. is an elliptic curve. Dehomogenizing the projective 

curve C3 ,>. : y3 = X(X - Z)(X - AZ) by putting X = 1 and then making the 

substitution 

( 1+ A) Y -+ AX, Z -+ A y + 2A2 ' 

we find that C3 ,>. is isomorphic over Q to the elliptic curve 

2 3 A-1 
( )

2 

y = X + 2A2 (3.2.3) 

3.2.1 On yf x(x - l)(x - .:\) and classical hypergeometric 

series 

We define an integral for the family of curves (3.2.1) analogous to the real period of 

elliptic curves. 
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Definition 3.2.1. The complex number O(Ce,'\) is defined as 

l
b dx 

O( Ce,,\) := 2 a ye-1' 

where x and yare related as in (3.2.2). 

It is to be noted that, O2,,\ is the elliptic curve in Legendre normal form with 

real period 0(02,,\), and C3,'\ represents the elliptic curve (3.2.3) with period integral 

O( 0 3,,\). In the following theorem, we express the integral O( Oe,,\) in terms of 2F1 

classical hypergeometric series. 

Theorem 3.2.1. If 0 < ). < 1, then O(Oe,'\) is given by 

(r(~))2 ( (£ - 1)/£, 
O(Ce,'\) = 2e-2).ll2r(~) . 2F1 

1/£ ) I). . 
2/£ 

Proof Recalling (3.2.2), from the definition of O(Oe,'\) , we have 

O( Oe,,\) = 21b y~~l 

l
b dx 

= 2 a 2e-1{(x _ a)(x _ b)(x _ e)} tll . 

Note that a < x < b and 0 < ). < 1. Hence (x - a) is positive, while (x - b) and 

(x - c) are negative. Thus O(Ce,'\) is real. 

Putting (x - a) = (b - a) sin2 
(), we obtain 

n(O ) = 2 r/2 
2(b- a) sin ()cos() d() 

l,'\ Jo 2e- 1 [(b - a) sin2 ()(b - a) cos2 (){ (e - a) - (b - a) sin2 ()}]¥ 

__ 1_17r/2 (b - a)¥ (sin ())¥ (cos ())¥ 
- e 3 t-l d(). 

2- 0 {(c-a)-(b-a)sin2 ()}t 

Using (b - a) = ). and (c - a) = 1 yields 

1 17r/2 (sin O)2i-l(COS O)2i-2i-1 

O(Co ) = d() 
, 2e- 3 ). tl2 0 (1 _ ). sin2 ()) tll 

(r(t))2 ( (£ - 1)/£, 1/£ ) 
= 2e- 2 ).t-2 r (2) '2 F1 I). , 

t e 2/£ 
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where the last equality follows from Theorem 1.3.1. This completes the proof of the 

theorem. o 

Remark 3.2.2. If we put R = 2 'in Theorem 3.2.1, we obtain Theorem 1.2.1 using 

the facts that r(~) = J1r and r(l) = 1. 

3.2.2 On yl = x(x - l)(x - A) and Gaussian hypergeometric 

function 

We define ap ( Ce,>.) analogous to the trace of Frobenius of elliptic curves. 

Definitio~ 3.2.2. Suppose p is a prime of good reduction for Ce,>.. Define the 

integer ap( Ce,>.) by 

(3.2.4) 

where #Ce,>.(Fp) denotes the number of points that the curve Ce,>. has over Fp. 

It is clear that a prime p not dividing R is of good reduction for Ct ,>. if and only 

if ordp(A(A - 1)) = O. 

Remark 3.2.3. For A i= 0, 1, we have 

Ct ,>. : yl = zl-3x(x - z)(x - AZ). (3.2.5) 

Let R ~ 4, then Z = 0 implies that ye = 0, and hence [1 : 0 : OJ is the only point 

at infinity. If R = 2, then for Z = 0, we have x3 = O. Thus the point at infinity is 

(0 : 1 : OJ. Hence, if R i= 3, then 

#Ce,>.(Fp) = 1 + #{(x, y) E F; : yl = x(x - l)(x - An, 
Let R = 3. Putting Z = 0 in (3.2.5), we have y3 = x3. Let p 1 (mod 

3) and W E F; be of order 3. Then there are three points at infinity, namely, 

[1 : 1 : 0], [1 : W : 0], and [1 : w2 
: OJ. Hence, in this case, 

#Cl,>.(Fp) = 3 + #{(x, y) E F; : ye = x(x - 1)(x - An. 
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Again, if f = 3 and p == 2 (mod 3), then the point at infinity is [1 : 1 : OJ. Thus, 

in this case 

#Ce,>.(IFp) = 1 + #{(x, Y) E IF; : yi = x(x - l)(x - A)}. 

With this notation, we have the following result which connects the number of 

points of Ci ,>. over IF p with Gaussian hypergeometric series. 

Theorem 3.2.2. If p == 1 (mod f) and ordp(A(A - 1)) = 0, then ap(Ce,>.) satisfies 

if f =1= 3; 

if f = 3, 

where X is a character of IFp of order f. 

Proof. Since p == 1 (mod f), there exists a character X of order f on IFp. Using 

(1.3.3), we have 

Replacing t by ±, we deduce 

::, I A) = ~ ~ X'(t(t - 1)(t - A)) 

i-I 

= L Lxi(t(t - l)(t - A)). (3.2.6) 
tElFp i=I 



Moreover, 

#{(x,y) ElF;: yi = x(x -1)(x - An 

= :L #{y E lFp : yi = t(t - 1)(t - An 
tEFp 
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:L #{y E lFp : yi = t(t - 1)(t - An + #{t E lFp : t(t - 1)(t - A) = O}. 
tEF p,t( t-I )(t->');60 

Now applying Lemma 1.3.6, we obtain 

#{(x, y) E F; :yi = x(x - l)(x - A)} 

i-I 

= :L:L Xi(t(t - 1)(t - A)) + #{t E lFp : t(t - 1)(t - A) = O} 
tEFp i=O 

= {#{t E lFp: t(t -1)(t - A) = O} + :Lc(t(t -1)(t - A))} 
tEFp 

i-I 

+ :L:L Xi(t(t - 1)(t - A)) 
tEFp i=1 

i-I 

=p + :L L Xi(t(t - 1)(t - A)). 
tElFp i=1 

Then the equation (3.2.6) yields 

#{(x, y) Elf; : y' ~ x(x -l)(x - An = p + p. ~x'( -A'),F1 ( Xi, 

Since ordp(A(A - 1)) = 0; using (3.2.4) and Remark 3.2.3 we complete the proof of 

the result. o 

Remark 3.2.4. Theorem 1.2.3 (aJ can be obtained from Theorem 3.2.2 by putting 

f = 2. Note that for the quadratic character <P oflFp , we have <p( _A2) = <p( -1). 

Remark 3.2.5. The formula for ape C3,>.) in Theorem 3.2.2 gives the trace of F'robe

nius of the family of elliptic curves (3.2.3). 
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A typical result in the direction of finding the number of solutions over a finite 

field of a polynomial equation is the Hasse-Weil bound, which states that a smooth 

projective curve of genus 9 defined over a finite field with q elements has between 

q + 1 - 2g.,fli and q + 1 + 2g.,fli points.. For f 2:: 3, the genus of the curve Ce,>. is 

(f.-l~(e-2). Thus, the Hasse-Weil bound yields the following corollary. 

where X is a character of IFp of order f. 

If f = 3, then 

where X is a character of IFp of or.der 3. 

Corollary 3.2.4. If p == 1 (mod 3) and x2 + 3y2 = p, then 

p. t 2Fl (X" Xi. I -1) = (-lY+Y (::) . 2x - 2, 
i=l X2t 3 

where X is a character ofIFp of order 3. 

Proof. As mentioned in Remark 3.2.1, C3,-1 is isomorphic over Q to the elliptic 

curve 

Therefore, 

ap(C3,-1) = ap(E). (3.2.7) 

Again, [34, Prop. 2] states that 

(3.2.8) 

Using (3.2.8) in (3.2.7), the result follows from Theorem 3.2.2. o 
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3.3 Analog between classical and Gaussian hyper-

geometric series 

Greene [18J introduced the notion of hypergeometric series over finite fields, which 

are analogous to the classical hypergeometric series. Since then, the interplay be

tween ordinary hypergeometric series and Gaussian hypergeometric series has played 

an important role in character sum evaluation [20], the representation theory of 

S£(2, JR) [19], finite field versions of the Lagrange inversion formula [21], and find

ing the number of points on an algebraic curve over finite fields [34J. Recently, 

Rouse [36J and McCarthy [30J provided expressions for the traces of Frobenius of 

certain families of elliptic curves in terms of Gaussian hypergeometric series. These 

formulas are analogous to the expressions for the real periods of the curves in terms 

of classical hypergeometric series. Moreover, the classical hypergeometric series ex-. 
pression of the period integral of Ce,).. given in Theorem 3.2.1 is analogous to the 

Gaussian hypergeometric series expression of the number of lFp-points on CR.,).. given 

in Theorem 3.2.2. This section examine this analogy further and provide a striking 

analogy between binomial coefficients involving rational numbers and those involv

ing multiplicative characters. 

Theorem 3.3.1. For A = ~, we have 

(t) 
(

3'2'f) . 
2-e 
-R.-

(3.3.1) 
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( Moreover, if p == 1 (mod £), then 

if ~ is odd and £ i' 3; 

if ~ is even and £ i' 3; 

if £ = 3, 

(3.3.2) 

where X is a character of lFp of order £ and 4> is the quadratic character. 

Proof. By Theorem 1.3.4, we have 

1
1- l 21 

1/£ ) r(~)r(21+1) 
2/£ - - r(l11 )r(1t) 

(3.3.3) 

Putting), = 1/2 in Theorem 3.2.1, we obtain the relation 

I ~) 2 . 

Then using Theorem l.3.2, we have 

( 

(£ - 1)/£, 1/f. 1) t-l ( (f. - l)/f, 1/f. ) 
2Fl I - = 2-t 2Fl I -1 . 

2~ 2 2~ 

Thus 

2~r(~) . _ til ( (f - l)/f, l/f _) 
(r(~))2 n(c.q) - 2 2Fl 2/f I 1. (3.3.4) 
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From (3.3.3) and (3.3.4), we complete the proof of (3.3.1). 

Now, we shall prove the second part of the result. Putting A = ~ in Theorem 

3.2.2, we have 

-ap(Ce !) = 
'2 

I ~ ). iff i" 3; 

Xi 1) I 2 ' if £ = 3. 
X2i 

(3.3.5) 

Again, from [18, (4.15)], we have 

if B is not a square; 

if X is not square and £ =1= 3; 

if X is square and £ =1= 3; 

if £ = 3, 

(3.3.6) 

Note that p is an odd prime. Write X = wk , where w is a generator of the group of 

Dirichlet characters mod p. Let o( w) denote the order of w. Then o( w) = p - 1 and 

£ = o(wk ) = (p - l)/gcd(k,p - 1). So (p - 1)/£ = gcd(k,p - 1). 

If (p - 1) / £ is even, then k is also even, hence X is a square. 

Conversely, if X is a square, it is an even power of the generator w, hence k is 

even, and (p - 1)/£ = gcd(k,p - 1) is even. 

This implies that X is a square if and only if (p - 1) / £ is even. Moreover, Xi is 

always a square for even values of i, and for odd values of i, Xi is a square if and 

only if X is a square. Using these, from (3.3.6), we complete the proof of (3.3.2). 0 
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In [36], Rouse gave an analogy between ordinary hypergeometric series and Gaus

sian hypergeometric series by evaluating n(C21) and ap(C21) in terms of hyperge-
'2 '2 

ometric series. We now give an alternate proo~ of [36, Thm. 3, p. 3J with the note 

that (ij~) is real. Here we extend the definition of binomial coefficient to include 

rational arguments via 

(
n) f(n + 1) 
k - f(k + l)f(n - k + 1)" 

The statement of the result is as follow. 

Theorem 3.3.2. [36, Thm. 3J If ,\ = 1/2, then 

v'2 (1/4) 211" . n( C2,>.) = 1/2 . 

If p == 1 (mod 4), then 

where X4 is a character on lFp of order 4 and 4> is the quadratic character. 

Proof. Putting e = 2 in (3.3.1), we obtain 

which yields 

v'2 (1/4) 
211" . n(C2,~) = 1/2 ' 

since (-~4) = 1 and f(~) = Vi. 

For the second part, recall that p == 1 (mod 4). Putting J! = 2 in (3.3.2), we find 

that 

-4>(8) . a (C 1) = (X4) + (4)X4) 
P P 2'2 4> 4>' 
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since X~ = </J. Clearly </JX4 = X4, and this implies that (</J;4) = (~4). Also, 

observing that </J(8) = </J(2), we obtain 

Since p == 1 (mod 4), we have that </J( -1) = 1, and hence the result follows. 0 

Simplifying the expressions for ap(Ce.!) given in (3.3.2), we obtain the following 
'2 

result which generalizes the case £ = 2, p == 1 (mod 4) treated in Theorem 3.3.2. 

Corollary 3.3.3. Suppose that p == 1 (mod f). Then we have 

if ~ is odd and £ == 0 (mod 4); 

2p· t. Re [[~(8) (C~~) + (:~;;))] , 
if ~ is odd and £ == 2 (mod 4); 

-Up(Cq) = 2p. [¢(2)Re(~) + t.R+b-~(8) ((¢~~) + (:~))}] , 
if ~ and £ are even; 

2p. t. R+-';(8) ((¢~i~) + (::.))]. 

if ~ is even and £ is odd, £ ~ 5; 

2 + 2p· Re [ (~) + (</JXX) ] , if £ = 3; 

where 'Ij;, X, X4 are characters ofWp of order 2£, £, 4 respectively and </J is the quadratic 

character. 

Proof Let X be any character of order f.. For each i, we have Xl - i = Xi and 
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J xl
- t = R· Hence 

Thus, we have 

Therefore, the result follows from (3.3.2). o 

Corollary 3.3.4. If P == 1 (mod 3) and x2 + 3y2 = P, then 

where X is a character of order 3 on lFp and <P is the quadratic character. 

Proof. As mentioned in Remark 3.2.1, C3 -1 and C3 ! are isomorphic over Q to the 
, '2 

elliptic curve 

From (3.2.7) and (3.2.8), it is known that 

From Corollary 3.3.3, we have 

o 



Chapter 4 

Gaussian Hypergeometric Series 
and yf == (x - 1)(x2 + A) 

4.1 Introduction 

Finding number of solutions of a polynomial equation over a finite field has been 

of interest to mathematicians for many years. Recently, lots of progress have been 

made to express the number of lFq-points on certain families of al~ebraic curves in 

terms of Gaussian hypergeometric functions. For example, Fuselier [14], Koike [25], 

Lennon [27, 28], and Ono [34J expressed the traces of F'robenius of certain families 

of elliptic curves in terms of particular values of Gaussian hypergeometric series. In 

Chapter 2, we have also discussed this problem for certain families of elliptic curves, 

and extend some of the earlier results. Moreover, Vega [40J connected the number 

of points on an algebraic curve of degree f > 0 in IF q with Gaussian hypergeometric 

series. 

Let e 2 2, and f(x) be a cubic polynomial over Q. In Chapter 3, we considered 

the algebraic curve yf. = x(x - l)(x - >.) and found relations between the number 

of points on the algebraic curve and hypergeometric series over finite fields. In this 

chapter, we consider the algebraic curve yf. = (x - 1)(x2 + >.). For this family of 

algebraic curves, we give relations between the number of IF q-points on the algebraic 

curve and 2Fl and 3F2 Gaussian hypergeometric series, separately. We also provide 

3The contents of this chapter have appeared in Int. J. Number Theory (2012). 
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an alternate proof of a result of McCarthy [30]. 

4.2 Preliminaries 

First of all, we restate some results of Evans and Greene from [11, 12], which will be 

used to prove our results. In [12], for A, B E W; the function F(A, B; x) is defined 

by 

and its normalization as 

AU' ) 
F*(A, B; x) := F(A, Bj x) + AB( -1)_4 . 

q 

Another character sum from [11] that we will need is 

g(A, Bj x) := L A(l- t)B(l - xt2
), 

tEFq 

(4.2.1) 

(4.2.2) 

(4.2.3) 

There is a nice relationship between the two functions F* (A, B; x) and g(A, B; x) 

stated as follows. 

Theorem 4.2.1. [11, Thm. 2.2] If A =1= C and x tJ. {O, I}, then 

F* (A, C; _x_) = A(2)AC(1- x) . g(AC2
, ACj 1- x). 

x-I q 

Further, the following theorems give connections of the functions F* (A, B; x) 

and g(A, Bj x) with Gaussian hypergeometric series. 

"-

Theorem 4.2.2. [11, Thm. 2.5] Let C =1= 4>, A tJ. {oS, C, C2 }, x i- 1. Then 

~ IX) = - C(X)4>~l - x) + C( -1)AC(4lAd(l- xl x 

J(AC
2

, AC). (AC2 AC' 1 _ X)2. 
q2J(A, AC) 9 , , 
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Theorem 4.2.3. [12, Thm. 1.2J Let R2 tJ. {c, C, C 2}. Then 

F*(R2 C- x) = R(4) J(ef;, CR ) . F ' -2 (Ref; 
, , J(RC, Ref;) 2 1 

We now prove a result similar to the above theorem. 

Proposition 4.2.4. We have 

if C =1= c; 

F*(c, C; x) = 

Proof We prove the result following the technique used in [12J. From [18, (4.21)], 

we know that 

Putting B = c, we have 

(4.2.4) 

From (4.2.4) and (4.2.1), we obtain 

By Theorem 1.3.13, (4.2.5) reduces to 
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From (4.2.2), we have 

( cP) (cP) * C( -1) (cP) cP F(c, C; x) = cP F (c, C; x) - q cP' (4.2.7) 

Comparing equations (4.2.6) and (4.2.7), we obtain 

* (C) (cP) -1 ( cP, F (c, C; x) = C cP 2F1 

Using (1.3.2), we complete the proof of the result. o 

4.3 Main results 

Let A E Q \ {O, -I} and e ~ 2. Denote by \It,A the nonsingular projective algebraic 

curve over Q with affine equation given by 

(4.3.1) 

Remark 4.3.1. If e = 3, \It,A is an elliptic curve. The change of variables 

x - z -+ X, Y -+ Y and X -+ X 

transforms the projective curve 

to 

(4.3.2) 

Now dehomogenizing (4.3.2) by putting X = 1 and then making the substitution 

1 
Y -+ (1 + >')x, Z -+ (1 + A)Y - --, , 

1+/\ 

we find that V3,A is isomorphic over Q to the elliptic curve 

2 3 >. 
Y = x - (1 + A)4 . 
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We now define an integer aq(Vi,).) analogous to the trace of F'robenius of elliptic 

curves. 

Definition 4.3.1. Suppose p is a prime of good reduction for Vi,).. Let q = pe. 

Define the integer aq(Vi,).) by 

where #Vi,>.(lFq) denotes the number of points that the curve Vi,). has over lFq. 

It is clear that a prime'P not dividing f is of good reduction for Vi,). if and only 

if ordp(A(A + 1)) = O. 

Similar to the Remark 3.2.3, we have the following remark regarding the number 

of lFq-points on Vi,).. For details, see Remark 3.2.3. 

Remark 4.3.2. Let f =1= 3. Then 

#Vi,).(lFq) = 1 + #{(x,y) E lF~: yl = (x -1)(x2 + A)}. (4.3.3) 

In fact, for f 2 4, the point [1 : 0 : 0] is the only pomt at infinity. Moreover, if 

f = 2, the point at infinity is [0 : 1 : 0]. 

Further, let f = 3 and p == 1 (mod 3). Consider W E IF; be of order 3. Then 

there are three points at infinity of Vi,)., namely [1 : 1 : 0], [1 : W : 0], and [1 : w2 : 0]. 

Hence, 

#Vi,).(lFq) = 3 + #{(x, y) E lF~ : yl = (x - 1)(x2 + A)}. (4.3.4) 

Again, if f = 3 and p == 2 (mod 3), the only point at infinity is [1 : 1 : 0]. 
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4.3.1 yi = (x - 1)(x2 +,\) and 3F2 Gaussian hypergeometric 

series 

Ono [34, Thm. 5], proved that if A E Q \ {O, -1} and p is an odd prime for which 

ordp(A(A + 1)) = 0 then 

Note that a change of variables in Theorem 5 of Ono [34] is required to arrive at 

(4.3.5). In this chapter, we give a proof of the following result which generalizes 

(4.3.5) to the algebraic curve Vi,>. over lFq. 

Theorem 4.3.1. Let p be a prime such that ordp(A(A + 1)) = 0 and q = pe == 1 

(mod R). If R ~ 2 is such that 3 f R or 4 f R, then 

2 2 i-I J(S3i, S-i) (S3i, Si, 
aq(Vi,>.) = q . ~ Si( _4A3)J(Si, s~) ·3H S4i 

where 

Q= 

i-I ¢( -A)J(S3i, S-i) 
+ q . ~ Si( -4A(1 + A)2)J(Si, Si) + Q, 

(R - 1)(q - 1) - (R - 3)aq(Vi,>.), 

(R - 2)(q - 1) - (R - 2)aq(Vi,>.) 

~-1 J(¢, S-2i) ( S3i, 
-2q· ~ J(Si¢, S-3i) ·2

F
l 

and S is a character on lFq of order f. 

, 

Proof. Putting A = Si, B = Si and x = -i- in (4.2.3), we obtain 

9 ( Si, Si; - ~) = L S-~ ( - A) Si ( (t - 1) (t2 + A)) 
tElFq 

if R is odd; 

if R is even 
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which gives 

L Si((t - 1)(t2 + A)) = Si( -A)g (Si, Si; -~) . (4.3.6) 
tEFq 

Moreover, 

#{(x,y) E lF~ : yf. = (x -1)(x2 + An 

= L #{y E lFq : yf. = (t - 1)(t2 + An 
tEIFq 

= L, #{y E lFq : yf. = (t - 1)(t2 + A)} + #{t E lFq : (t - 1)(t2 + A) = O}. 
tEll q,( t-l) (t2 +>.)to 

Applying Lemma 1.3.6, we obtain 

#{(x, y) E lF~ : yf. = (x - 1)(x2 + A)} 

f.-I 
= L L Si ( (t - 1) (t2 + A)) + # {t E IF q : (t - 1)( t2 + A) = O} 

tEFq i=O 

f.-I 
= q + L L Si((t - 1)(t2 + A)). 

tElFq i=1 

Since ordp(A(A + 1)) = 0, (4.3.3) yields 

f.-I 
-aq(Vi,>.) = L L Si((t - 1)(t2 + A)). (4.3.7) 

i=1 tEFq 

Squaring both sides of (4.3.7), we obtain 

Again using (4.3.6), we deduce that 

f.-I 
+ L 
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Then Lemma 1.3.7 yields 

e-l 
+ L (4.3.8) 

i,j=I,i#j,i+#e tEF q 

Since 3 t f or 4 t f, taking A = S-3i, C = S-2i and x = It' in Theorem 4.2.2, we 

obtain 

(
"i. _~)2 _ 2. Si( -4A)J(S-3i, Si) . ( S-3i, 

9 5", S, A - q J(S-i, S-i) 3F2 
S-i , 

S-4i , 

+ . ¢>(-A)Si(_~)J(S-3i,Si) 
q J(S-i, S-i) (4.3.9) 

Now we find the value of 

e-l 
L L 5"+j((t - 1)(t2 + A)). 

i,j=l,i#j,i+#e tEFq 

Let P(ik) be the set of all possible values of i such that i + j = k (mod f), 1 :::; i, j :::; 

f - 1 and i =I j. Then for odd values of f 

and for even values of l 

{ 

f- 2 
#P(ik) = ' 

f - 4, 

Therefore, 

e-l 
L L Si+j((t - l)(e + A)) 

i,J= l,i#j,i+J'# tEF q 

e-l 
(f - 3) 2: L Si((t"- 1)(t2 + A)), 

i=1 tEFq 

if k is odd; 

if k is even. 

= i-I ~-1 

if f is odd; 

(f - 2) L L Si((t - 1)(t2 + A)) - 2 L L S2t((t - 1)(t2 + A)), if f is even. 
t=1 tEFq i=1 tEFq 



From (4.3.7), (4.2.3) and Theorem 4.2.1, we deduce that 

i-I 

L L S·+j((t - 1)(t2 + A)) 
',j=I,i#],.+j#l tElFq 

-(£ - 3)aq(Vi,).), 

- (£ - 2)aq(Vi,).) , 

!-I j(</J, S2i) ( S-3i</J, 
-2q ~ J(S-i, S3i</J) . 2Fl 

S-3i 

S-4i 

Using (4.3.9) and (4.3.10) in (4.3.8), we complete the proof. 

Remark 4.3.3. Putting £ = 2 in Theorem 4.3.1, we obtain 

which yields (4.3.5) over lFq • 

</J, ¢ 1'1 + A) 
-A- +q, 

E, E 
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if £ is odd; 

if f is even. 

(4.3.10) 

o 

(4.3.11) 

4.3.2 yf = (x - 1)(x2 +.\) and 2Fl Gaussian hypergeometric 

series 

In the previous subsection, we have expressed the number of lFq-points on the al

gebraic curve Vi,). as linear combination of 3F2 Gaussian hypergeometric function. 

Now, we prove the following result, which connects the number of points on Vi,). and 

2Fl hypergeometric series over lFq • 

Theorem 4.3.2. Suppose that q = pe == 1 (mod f) and ordp(A(A + 1)) = O. If 3 f f 

and ~ is even, then 

(4.3.12) 
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and for.e = 3, 

(4.3.13) 

where S is a character of order.e on lFq • 

Proof. Following the proof of Theorem 4.3.1, we obtain 

I: Si((t - l)(e + A)) = Si( -A)g (Si, St; -1) 
tEFq 

(4.3.14) 

and 

i-I 

#{(x, y) E lF~ : yi = (x - 1)(x2 + A)} = q + I: L Si((t - 1)(t2 + >.)). (4.3.15) 
tEFq i=I 

Since Si =1= c, we have S-2i =1= S-3i. Putting A = S-3i, C = S-2i and x = It>' in 

Theorem 4.2.1, we deduce that 

(4.3.16) 

As ~ is even, Si is a square. Also, 3 t .e implies that Si =1= c. So applying Theorem 

4.2.3, we obtain 

(4.3.17) 

From (4.3.14), (4.3.15), and (4.3.17), we have 

S-2t 

Since ordp(A(A + 1)) = 0, (4.3.3) completes the proof of (4.3.12). 
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Again, if R = 3, then S-3i = c and S-2i = St. Therefore, using Proposition 4.2.4 

in (4.3.16), we obtain 

( 4.3.18) 

Now combining (4.3.18) with (4.3.14) and (4.3.15), we deduce that 

which yields the result because of (4.3.4). o 

Corollary 4.3.3. Letp be an odd prime Jor which ordp ().().+l)) = O. lJp == 1 (mod 

3) and x2 + 3y2 = p, then 

and 

~ (¢, c 1) x+ (X) 
p. f=t2 Fl X3 '"2 = ¢(2)(-1) y "3 . 2x - 2, 

where X3 is a character on lFp oj order 3. 

Proof. As mentioned in Remark 4.3.1, V3 _1 is isomorphic over Q to the elliptic 
, 2 

curve 

which is 2-quadratic twist of E' : y2 = x3 + 1. It is known that if E( d) is the 

d-quadratic twist of the elliptic curve E and gcd(p, d) = 1, then 

ap(E) = ¢(d)ap(E(d)). 
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Again, from [34, Prop. 2], we have 

ap(E') = (_ly+y
-l (~) ·2x. 

Since gcd(p, 2) = 1, we must have 

ap(V3,_~) = </>(2)ap(E') 

= </>(2)(_I)x+y
-l (~) ·2x. ( 4.3.19) 

Again combining this result with the equation (4.3.13), we complete the second 

part of the corollary. o 

Now, we have the following corollary which is the finite field analog of a particular 

case of the Clausen Theorem of classical hypergeometric series. 

Corollary 4.3.4. Let p be an odd prime for which ordp(A(A + 1)) = O. If q = pe == 

1 (mod 4), then 

3F, ( ~, 
where X4 is a character of order 4 on lFq . 

Proof. Putting f. = 2 in Theorem 4.3.2 and then squaring both sides, we have 

a (\1. )2 = q2. J(</>, </»2 • F (X4' X4 11 + A) 2 
q 2,>' J( -)2 2 1 X4,X4 C 

By (1.3.2), we have J(</>, </» = J(X4, X4). Hence comparing with (4.3.11), we complete 

the proof. o 

Corollary 4.3.5. Let q = pe, p > 0 a pnme and q == 1 (mod 4). If a(3 i= 0 and 
, 

(
4(4-02)) 

a i= ±2 such that ordp ~ = 0, then 

</>, </> 
4 ) 1 14 2 +-. -a q c, c 



Proof. Replacing). by 4_~2 in Corollary 4.3.4, we have 
or 

Again, from Corollary 2.3.3, we obtain 

Hence the proof follows. 

¢, ¢ 

E:, E: 

¢ a _ 2) 2 

la+2 
E: 

4.4 On yf = (x - 1)(x2 + A) for A = ~ 

1 +-. 
q 
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o 

We now will consider the special case when). = ~ for the algebraic curve Ve,,,. In 

this case, simpler expressions for the Gaussian hypergeometric functions involved in 

Theorem 4.3.2 are known. We use a known transformation of the hypergeometric 

series in terms of the gamma function to simplify the expression as a binomial 

coefficient. 

Theorem 4.4.1. If q = 1 (mod f), then for). = ~, we have 

0, zf f i= 3 and q = 2 (mod 3); 

9 . ~ 8'(2;) [ (~:) + (~!) l' -I t # 3 and 9 ",1 (mod 3); 

2 + 9 t, [ (~:) + (~D 1 ' ,jt ~ 3, 

where Sand X3 are characters on IF q of order £ and 3 respectwely. 

Proof. Putting). = ~ in (4.3.1) and making the change of variables (x, y) --+ (~ + 

!, y), and then replacing -~ by x we obtain the equivalent equation of 



as 

l 8 3) Y = --(I+x . 
27 

Therefore, 

1 
# {( X, y) E lF~ : yl = (X - 1)( x2 + 3)} 

8 
= #{(x, y) E lF~ : yl = - 27(1 + x3)} 
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8 
= L #{y E lFq : yl = - 27(1 + x3)} + #{x E lFq : 1 + x3 

= O} 
XEFq ,1+x3¥O 

Applying Lemma 1.3.6, we obtain 

Now recall that the binomial theorem (see [18]) for a character A on lFq is given by 

A(1 + x) = c5(x} + q ~ 1 L (~) X(x), 
x 

(4.4.1) 

By Lemma 1.3.7, 2:xElF
q 

X3(x) is nonzero if and only if X3 = c, which is possible 

only for c, X3 and X~. Therefore, (4.4.1) reduces to 

1 
#{(x, y) E lF~ : yl = (x - 1)(x2 + 3)} 

{ 

q, 

~ q+q. ~S(2;) [(~) + (~)l' 
if q == 2 (mod 3); 

if q == 1 (mod 3), 

which completes the proof of the result because of (4.3.3) and (4.3.4). 0 
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We now give an alternate proof of a result of McCarthy [30]. In this result, the 

trace of F'robenius of an elliptic curve is expressed in terms of the binomial coefficient 

of characters, which can be also express in terms of Gauss sums. 

Theorem 4.4.2. [3D, Thm. 2.3] If q = 1 (mod 3), then 

¢( -2) (X3) --q- . aq(V2,~) = 2Re ¢ 

and 

-¢(-2) . a (v.: 1) = 2Re [G(X3)G(¢)] 
q 2'3 G(X3¢)' 

where X3 is a character of order 3 on IF q and G(X) is a Gauss sum. 

Proof. Since q = 1 (mod 3), putting f = 2 in Theorem 4.4.1 we find that 

We know that ¢( -3) = 1 if and only if q = 1 (mod 3). Hence the first part of the 

theorem follows from the fact that (~) = (1). 

Again the second part follows from the fact that if X"?) is nontrivial, then 

(
X) = 1}J( -1) J( .1,) = 1}J(-1) G(X)G("?)) 
1}J q X, 'f' q G(x1}J)' 

where J(X,1}J) and G(X) are Jacobi and Gauss sums respectively. o 

Simplifying the expression for aq(Vi,A) given in Theorem 4.4.1, we obtain the 

following result which generalizes the case f = 2, treated in Theorem 4.4.2. 

Corollary 4.4.3. Let d = lcm(3, f). If q = 1 (mod d), then 

2 + 2q . R~ [ (~:) + (~:) ] , if f = 3; 

2q ~R£ [s c:) {(~) + (~)}], ifl is odd, l> 3; 

2q [¢(-2)R£(~) + ~R£ {s c;) ((~:) + (~))}] , 
if f is even; 

where Sand X3 are characters on IF q of order f and 3 respectively. 
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Proof. Applying the same procedure as followed in the proof of Corollary 3.3.3 in 

the expression of Theorem 4.4.1, we can obtain the result. 0 



Chapter 5 

On The Polynomial xd + ax + band 
Gaussian Hypergeometric Series 

5.1 Introduction 

In the previous chapters, we have discussed about connections between number of 

points on algebraic curves over IF q and Gaussian hypergeometric functions. In all 

those expressions only 2Fl and 3F2 Gaussian hypergeometric functions are involved 

containing characters of different orders as parameters. 

The problem of finding special value~ of n+1Fn Gaussian hypergeometric series 

for n > 2 was discussed by many mathematicians. For n > 2, the non-trivial 

values of n+1Fn Gaussian hypergeometric series have been difficult to obtain. For 

example, Ono and Ahlgren-Ono mentioned this problem in [35] and [1], respectively. 

In [1], Ahlgren and Ono deduced the value of 4F3 (</>, </>, </>, </> 11) in terms of 
E, E, E 

representations of 4p as a sum of four squares. The deduction of the value relies on . 
the fact that the Calabi-Yau threefold is modular. Except this, there is not much 

known results in literature where expressions of different mathematical 'objects can 

be obtained in terms of n+1Fn Gaussian hypergeometric series for n > 2. 

In this chapter, we consider this problem and explicitly find the number of solu

tions of a polynomial equation Pd(x) = 0 of degree din IFq as special values of dFd-l 

and d-lFd-2 Gaussian hypergeometric series with characters of orders d and d - 1 

4The contents of this chapter have appeared in Int. J. Number Theory (2013). 
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as parameters. Thus these expressions partially solve a problem posed by Ken Qno 

[35, p. 204] on special values of n+lFn Gaussian hypergeometric series for n > 2. 

5.2 Main results 

First of all we look into two special cases of Hasse-Davenport relation. Then we 

state our main results of this section in detail and subsequently prove them using 

the following two special cases. 

Lemma 5.2.1. Let d be a posztive integer, l E Z, q = pe == 1 (mod d), and t E 

{1, -1}. 

1. If d > 1 zs odd, then 

d-l (d-l)(d+l)(q-l) -l ( d) 
GlGl+t~ Gl+t 2(qi1} ... Gl+t (d-l~q-l) = q 2 T 8d ( -1)T d Gld. 

(5.2.1) 

2. If d is even, then 

d-2 (d-2)(q-l) -l d 
GlGl+t~ Gl+t2(q-l) ... Gl+t(d-l)(q-l} = q 2 G~T 8 (-1)T (d )Gld . 

d d d 2 

(5.2.2) 

Proof. Let d > 1 be an odd integer and consider m = d in Lemma 1.3.17. Since 

q == 1 (mod d), there are d multiplicative characters of order dividing d, namely, 
~ 2(q-l} (d-l)(q-l) 

c, T----.r, T d , ... , T d • Applying Hasse-Davenport relation for these charac-

ters and for any arbitrary multiplicative character Tl of lFq, we have 

G(Tl)G(Tl+~) ... G(Tl+(d-l~q-l}) 

= -G(Tld)Tl(d-d)G(c)G(T~) . .. G(T(d-l~q-l}) 
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Using Lemma 1.3.10, and the fact Go = G(c) = -1, we obtain 

I d {~ } {(d-l)~q-l) } = G1dT- (d) qT d (-1) ... qT 2 (-1) 

d-l T(d-l)(d+l)(q-l) ( 1)T-1 (dd) G = q 2 Sd - ld 

as required. To get the other equality, we use Hasse-Davenport relation for the d 
~ (d-l)(q-l) 

characters c, T- d ) .•. , T- d • Thus we complete the proof of (5.2.1). 

For even values of d 2:: 2, the proof of (5.2.2) follows similarly to that of (5.2.1) 

by virtue of Hasse-Davenport relation. o 

We are now going to state and prove our main results. Throughout the chapter, 

for d 2:: 2, we consider the polynomial 

over lFq, where a, b =1= 0. For even and odd values of d, we find separate expressions 

for the number of points on Pd over lFq in terms of d-lFd-2 and dFd-l Gaussian 

hyper geometric functions, respectively. The method of the proofs follow similarly 
\ 

to that given in [14] and [27]. 

5.2.1 Number of zeros of xd + ax + b for even d 

Theorem 5.2.2. Let d 2:: 2 be an even integer and q == 1 (mod d(d - 1)). If Nd is 

the number of distinct solutions in lFq of the polynomial equation Pd(X) = 0, then 

d-2 
Nd = 1 + q-2 X 

x, 

V;, 

... , 

... , 

d-2 
X-2, 

d-2 V;-2 , 

d+2 
X d- 1 

d ( bd f') X 2 , ... , 
d V;d-2 I ~ a(d - 1) , 

V;2, ... , 

where V; and X are characters of order d - 1 and d, respectively. 
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Proof. We first recall that the polynomial Pd(x) defined over IFq is given by 

where a, b =1= O. We also have 

the number of distinct zeros of the polynomial Pd(x) in IFq. Using (1.3.1) for the 

polynomial Pd(x), we have 

and hence 

q. Nd = L 8(zPd(x)) 
X,zEFq 

q if Pd(X) = OJ 

o if Pd(x) =1= 0, 

= q + L 8(zb) + L 8(zxd)8(zax)8(zb) 
x,zEF~ 

:=q+A+B. 

(5.2.3) 

(5.2.4) 

Now using Lemma 1.3.11 and then applying Lemma 1.3.7 repeatedly for each term 

of (5.2.4), we deduce that 

(5.2.5) 

The second equality follows from the facts that the innermost sum is nonzero only 

if l = 0, at which it is q - 1, and Go = -1. Similarly, 

q-2 

B (q ~ 1)3 L G_IG_mG_n']"ffi(a)'r(b) L Tl+m+n(z) L T1d+m(z). 
l,m,n=O zEF: xEF: 

This term is zero unless m = -ld and n = l(d - 1). Plugging these values, we have 

1 q-2 I (bd-
1

) 
B = q -1 LG-IG1dG-I(d-l)T 7 . 

1=0 
(5.2.6) 
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Here d ~ 2 is even. Using the Hasse-Davenport relations for G 1d and G-l(d-l) as 

given in (5.2.2) and (5.2.1), we deduce that 

GIGI+~ G I+2(qi 1) ... Gl+(d-1Mq-1) Tl(dd) 
G 1d = d-2 (d-2)(q-1) 

q-2 G!ClT 8 (-1) 
2 

(5.2.7) 

and 

G -IG -l-!Cl G -1- 2(q-1) ... G -1- (d-2)(q-1) 
G d-1 d-1 d 1 

-l(d-l) = d-2 d(d-2)(q-1) 
q-2 T 8(d 1) (-1)Tl((d _ 1)d-l) 

(5.2.8) 

Using (5.2.7) and (5.2.8) in (5.2.6), we obtain 

(5.2.9) 

where 

d ( bd )d-l 
f3 = ~ a(d - 1) 

To eliminate GIG-I, we use the facts that if l i- 0, then G1G-1 = qTl( -1); and if 

l = 0, then G1G-1 = 1 = qTl( -1) - (q - 1) in appropriate identities of (5.2.9) and 

deduce that 

(d-2P-1) q-2 

B = (~_8~);:_;~~ L {Gl+~G-l} {Gl+¥G-1- E }··· 
2 1=0 

X {G1+ (d-2)(q-1) G -I (d-2)(q-1)} {G1+ (d+2)(q-1) G -1- t-1l } ... 
2d 2(d 1) 2d 2 d-1 

(d-2)(q-1) 

X {G1+(d-l)(q-1)G_
1
_(d-2)(q-1)}TI (-f3) + T 8(d ;~2 (-1) {Gi2.=.!lG_!Cl} ... d d 1 q d d-1 

X {G (d-2)~q-1) G (d-2)(q-1)} {G (d+2)~q-1) G _ d13-1l} ... {G (d-1)(q-1) G _ (d-2)(q-1)} . 
2 2(d 1) 2 2 -1 d d 1 



Now, we rearrange the Gauss sums of the second term to get 

X {Cl+(d-2)(q_l) C_ L 2d 
(d-2)(q-l) } {CL+(d+2)(q-l) C -L-t-1l} ... 

2(d 1) 2d 2 d-l 
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(d-2)(q-l) 

} 
I T S(d 1) (-1) { } 

(d-2)(q-l) T ( - (3) + d-2 C (q-l) C (d-l)(q-l) 
d 1 q d d 

X {C_.t.!C_(d-2)(q-l)}'" {C(d-2)(q-l)C(d+2)(q-l)} {C_(d-2)(q-l)C_d1q-1l}' 
d-l d 1 2d 2d 2(d-l) 2 d-l 

But, C (d-l)(q-l) = C _1i=D, C _ (d-2)(q-l) = C.t.!, and so on. Using Lemma 1.3.12 in 
d d d-l d-l . 

the first term and Lemma 1.3.10 in the second term, we have 

B 

{
1i=D } {1i=D } {(d-2)(q-l) } {(d-2)(q-l) } x qT d (-1) qT d-l (-1) .,. qT 2d (-1) qT 2(d-l) (-1) . 

Finally, we use Lemma 1.3.10 again, and simplify to get 

( 

d-2 ~ 
d <p, x, ... , X 2 , X 2 , 

B = 1 + q"2 d-lFd-2 
d-2 d 

'ljJ, ... , 'ljJ-2-, 'ljJ"2, 

... , 

'" , 

Substituting the values of A and B in (5.2.4), we have 

... , ( 

d-2 ~ 
d <p, x, ... , X 2 , X 2 , 

q. Nd = q + q"2 d- 1 F d- 2 
d-2 d 

'ljJ, ... , 'ljJ-2-, 'ljJ"2, 

... , 

Canceling q from both sides, we complete the proof of the theorem. o 
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5.2.2 Number of zeros of xd + ax + b for odd d 

Theorem 5.2.3. Let d > 2 be an odd integer and q == 1 (mod d(d - 1)). If Nd is 

the number of distinct solutions in lFq of the polynomial equation Pd(x) = 0, then 

¢( -ad) d-1 
Nd =1- + q-2 ¢( -l)x 

q 

(

¢, x, ... , dFd-l 
'1/;, ... , 

d-1 d-1 
'1/;-2, '1/;-2, 

d-l d ( bd )d_l) 
:::: :d-2 I-~ a(d-1) , 

where 'I/; and X are characters of order d - 1 and d, respectively. 

Proof. We follow the same procedure as followed in the proof of Theorem 5.2.2. We 

have 

and 

From the proof of Theorem 5.2.2, we know that 

(5.2.10) 

B 

Here d ~ 3 is odd. We evaluate the labeled term B using the Hasse-Davenport 

relation for G ld and G-l(d-I) from (5.2.1) and (5.2.2). We have 

and 

G -Ie -I-'l..::..! G -l- 2(q-1) ... e -l (d-2)(q-1) 

e Gl-l d-1 d-1 T- l ((d _ l)d-l) . 
-l(d-I) = d-3 G T (d-3)(q 1) ( 1) 

q 2 'l..::..! 8 -
2 
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Plugging these in the labeled term of (5.2.10), we deduce that 

B 

where 

d ( bd )d-l 
(3 = -;, a(d - 1) 

The facts G1G-1 = qTl( -1) if l =1= 0, and G1G-1 = qTl( -1) - (q -1) if l = 0 together 

yield that 

(3d-l~q-l) ( ) q-2 

B = r 1
8

) d_3;;1 L {G1+9..::.l··· G 1+(d-l)(q-l)} {G-1G_1_9..::.l··· G_1_(d-2)(q-l)} q - q 9..::.l d d d-l d 1 
2 1=0 

(3d-l)(q-l) ( ) 

I T 8d -1 { } { } x T (-(3) + d-2 G!.!L2lG(d-l)(Q-l) G_9..::.lG_(d-2)(Q-l)··· 
q d d d-l d-l 

x {G (d-l)(q-l) G (d+l)~q-l) } {G (d-3)(q-l) G _ (d+l)(q-l) } . 
2d 2 2(d-l} 2(d 1) 

Again, using 

for appropriate values of l, we have 

if l =1= ~; 

if l - !1..=.! - 2 

(5.2.11) 

q-2 { } 
= ~ L { G 1+9..::.l G -I} { G 1+!.!L2l G -l-£i } . .. G 1+ (d-l)(q-l) G -1- (d-~(q-1) 

qT 2 1=0 2 d -1 2d 2{ 1} 

x {G1+ (d+l)(q-l) G -I (d-l)(q-l)} ... {G1+ (d-l)(q-l) G -1- (d-2)(q-1) } Tl ({3) 
2d 2(d I} d d 1 

_ (q ~)Gy {G(d+2)(q-l)G(3d-2)(q-l)} {G_(d+l)(q-l)G_(3d-s)(q-l)} ... 
qT 2 (-ad) 2d 2d 2{d I} 2{d 1) 

x {G (2d-l)(q-l) G (2d+l)(q-l) } {G _ (2d-4)(q-1) G _ 2d?-V } . 
2d 2d 2(d 1) 2 d-1 

(5.2.12) 
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We use (5.2.12) and Lemma 1.3.12 in (5.2.11), and then simplify to get 

q2T(3d-~~q-l) (-l)T-9( -1) q-2 (T1+-9) (Tl+~) 
B = ~ G'12. I '12. G...,.3.;:.!...,··· (q - l)G'12. ~ Tl 2 T + d-l - d(d-l) 

2 1=0 
l+ (d-l)(q-l) Tl+ (d+l)(q-l) 

x (~+ (d-1ltq-1») G (d-2)(q-l) ( 1+ (d-l~tq-l») G (d-2)(q-l) ••. 
"1. 2{ 1) - 2d{d-l) T 2{d 1) 2d(d 1) 

x (T:: ::~:~:~:;) G J.=L Tl ( - (3) - T-9 ( -ad) + 1 T d 1 d(d-l) 

!!±.! (¢, X, ... , X d;l, X!!:f! , ... , 
=1 - ¢( -ad) + q 2 dFd-l 

d-l d-l 
.1. .1.- .1'-2, \f') ... , 'f/ 2, 'P ... , 

Finally, putting the value of B in (5.2.10), we have 

d+l 
q. Nd =q - ¢(-ad) + q-2 ¢(-l)x 

( 

d-l 
¢, X, ... , X-2-, 

dFd-l 
d-l 

1j;, ... , 1j;-2 , 

Thus we complete the proof of the theorem. 

!ill. 
X 2 , 

d-l 
1j;-2 , 

... , 

... , 

·We have the following immediate consequence from our main results. 

I-fi) . 

o 

Corollary 5.2.4. Let a, bE IF; and q == 1 (mod 6). The polynomial x 3 + ax + b is 

irreducible over IF q if and only if 

2 P. (¢, X3, 
q '3 2 

¢, 

X~ 27b
2

) ¢ I - 4a3 = ¢(3a) - q¢( -1), 

where X3 is a character on lFq of order 3. 

Again the polynomial Pd is of degree d, so it can have at most d zeros in IF q. 

Thus a ~ Nd ~ d, and hence we have the following two corollaries from our main 

results. 

Corollary 5.2.5. Let d > 2 be an even mteger and q = 1 (mod d(d - 1)). If 



a, b E 1F;, then 

... , 

... , 

d-2 
X-2, 

d-2 'IjJ-2, 

!!B 
X 2 , 

oJ,!!. 
'f/ 2 , 

... , 

... , 
d ( bd )d-l) 

I ~ a(d - 1) 

where'IjJ and X are characters of order d - 1 and d, respectively. 
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Corollary 5.2.6. Letd > 2 be an odd integerandq = 1 (modd(d-l)). Ifa,b ElF;, 

then 

</lead) - q</l( -1) 
!!±! ~ 

q 2 

( 

d-l!!±! 
</l, X, ... , X-2 , X 2 , 

dFd-l 
d-l d-l 

'IjJ, ... , 'IjJ-2, 'IjJ-2, 

.. , , d ( bd )d_l) 
I -~ a(d - 1) 

'" , 

qed - 1)</l( -1) + </lead) 
~ !!±! ' q 2 

where 'IjJ and X are characters of order d - 1 and d, respectively_ 



Chapter 6 

Special Values of Gaussian 
Hypergeometric Series 

6.1 Introduction 

Classical hypergeometric functions are well understood. Mathematicians such as 

Gauss, Kummer, Pfaff, and Vandermonde deduced many special values of classi

cal hypergeometric series at different arguments, for example see [4, 5, 17]. Since 

the introduction of hypergeometric functions over finite fields analogous to classical 

hypergeometric series, mathematicians are taking interest in finding special values 

of Gaussian hypergeometric functions. The Gaussian hypergeometric functions are 

closely related to different parameters of algebraic varieties and number theoreti

cal objects similarly as classical hypergeometric series. However, only a few special 

values of the Gaussian hypergeometric series are known. 

For a given elliptic curve E over Q, the trace of Frobenius endomorphism ap are 

important quantities. Recall that ,6.(E) denotes the discriminant of E, and a prime 

p is called good or bad accordingly p f ,6.( E) or p I ,6.( E). In terms of the trace of 

Frobenius, the Hasse-Wei! L-function of an el~iptic E is defined by the Euler product 

5The contents of this chapter have been published in Int. J. Number Theory (2012) and J. 
Number Theory (2013). 
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as 

L(E, s):= II (1- app-S)-l II (1- app-s + pl-2S)-I, (6.1.1) 
pl.6(E) pt.6(E) 

where s is a complex number. It is known from Hasse-Weil bound that lapl < 2JP. 
The Euler product (6.1.1) converges for Re(s) > ~ and has analytic continuation 

to the whole complex plane. Moreover, the Birch and Swinnerton-Dyer conjecture . 
concerns the behavior of L(E, s) at s = 1. In fact, the conjecture predicts that 

ords=l(L(E, s)) = rank(E/Q). 

In Chapter 2, we have found general formulas for the trace of Frobenius endo

morphism of certain families of elliptic curves in Weierstrass normal form in terms of 

Gaussian hypergeometric series. Thus, finding special values of Gaussian hypergeo

metric functions is an important and interesting problem. Earlier works of Greene 

[18], Ono [34], Ahlgren-Ono [1], and Evans-Greene [11, 12J pave the way to find 

special values of many Gaussian hypergeometric functions. Most of them have been 

used to solve many old conjectures [31, 32J and supercongruences [33J. 

In this chapter, we mainly concentrate to find special values of certain Gaussian 

hypergeometric series using our earlier results. 

6.2 Main results 

In this section, we give a brief description of the special values of Gaussian hyp~rge

ometric series those have been already evaluated. Then we deduce some more values 

of hypergeometric functions over finite fields.· We start with the special values of 

2Fl Gaussian hypergeometric series. 

6.2.1 Values of 2Fl Gaussian hypergeometric series 

The story of special values of Gaussian hypergeometric series begins from its incep

tion in [18J by Greene. After introducing hypergeometric functions over finite fields, 
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Greene [18] deduced certain special values of 2Pl Gaussian hypergeometric functions 

at some particular arguments. 

Theorem 6.2.1. [18, (4.11), (4.14) & (4.15)] For any two characters A, B on lFq, 

we havf; 

( A, 
B 

1-1) = { ~~) + (<f), 
if B 2S not a square; 

(i) 2Fl 

AB if B = C2. 

( A, 
B 

) { 0 
if B is not a square; 

(ii) 2Fl j2 = A(-l) , 
A2 (~) + (cPX) , if B = C2. 

( A, 
A 

I !) = A( -2) { 0, 
if B is not a square; 

(iii) 2Pl 

AB 2 (~)+(4f), if B = C2. 

Further, Gno worked in this direction and found the following interesting results 

in which he explicitly deduced special values of 2Fl hypergeometric series over lFp. 

He used the technique of complex multiplication of elliptic curves to establish these 

results. 

Theorem 6.2.2. [34, Thm. 2] Let), E {-1,~, 2}. If p is an odd prime, then 

( 

¢, ¢ ) {o, '- if p == 3 (mod 4); 
2Fl j). = :r:+~+l 

f 2X(-1~ if x2 + y2 = P == 1 (mod 4), and x odd. 

Motivated by all these results, we have also deduced certain special values of 

2Fl Gaussian hypergeometric series. We have mainly used the formulas of traces of 

F'robenius of elliptic curves and some transformation formulas of Gaussian hyperge

ometric series to prove the results. 



Theorem 6.2.3. Let q = pe, p> 0 a prime with q == 1 (mod 4). Then 

(i) ,F, ( X4, :1 I ~ ) 

(ii) ,F, ( X4, :1 I ~ ) 

(iii) ,p, ( X,, :' I -~) = X.(-B) [(~,) + (~1) 1 

:4 I-B) = [(~4)+(1)l 
where X4 is a character of order 4 on IF q. 

Proof. If we put A = B = <p in Theorem 6.2.1 (iii) we obtain 

2Fl (<p, : I~) = <p( -2) { 0['(:4) + (<P;'4)], if q == 3 (mod 4); 
'" 'f' 'f' if q == 1 (mod 4), 
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= { :'(2) [(~,) + (~1) l, ::::: ~:: :;: (6.2.1) 

This is because any character X of order l on lFq is square if.and only if CZy! is even 

and hence <p = X~. 

(i) Replacing a by 6 in Corollary 2.3.3, we have 

Hence the proof follows from (6.2.1). 

(ii) Putting x = ~ in Theorem 1.3.15 (i), we obtain 

( 
X4, X~ 8) (X4, X~ 

2Fl C 1"9 = X4(-1hFl C 



Thus the result (i) completes the proof of (ii). 

(iii) For x = -i, Theorem 1.3.15 (ii) yields 

Hence the proof of (iii) follows from the proof of (i). 

(iv) Finally, putting x = -8 in Theorem 1.3.15 (ii), we have 

x~ I~) 
E 9 

This completes the proof due to (ii). 
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o 

Moreover, if we use Theorem 1.3.15 (i) in each of Theorem 6.2.3 (iii) & (iv) , 

respectively we can deduce the following Corollary. 

Corollary 6.2.4. Let q = pe, p> 0 a pnme and q == 1 (mod 4). Then 

:' 1 ~) = X,(8) [(~,) + (~l)]. 

:' 1
9) =X,(-1)[(~')+(~)] 

where X4 ~s a character of order 4 on lFq. 

The above special values of Gaussian hypergeometric functions are valid only for 

certain special characters of particular order in IF q' we now focus on special values of 

hyper geometric functions over finite fields containing characters of arbitrary order. 

Theorem 6.2.5. Let S be a character on lFq whose order'Ls not equal to 3. If S is 
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square of some character on lFq, then 

. (";S-3rp, ";S-3 4) 
(2) 2Fl I -3 = 

S-2 

0, ifq == 2 (mod 3); 

S(!?)J(J5-l, vfs3</;) [(S) + (~)] , 
J(</;, S) X3 X3 

if q == 1 (mod 3). 

0, if q == 2 (mod 3); 

S(!?)J(J5-l,vfs3</;) [(S) + (S)], 
..JS</;( -l)J(</;, S) X3 X~ 

ifq == 1 (mod 3). 

0, if q == 2 (mod 3); 

v's(-~)J(J5-l,vfs3</;) [(S) (S)] 
</;(-3)J(</;,S) X3 + X~ , 

if q == 1 (mod 3) and S =J </;. 

0, ifq == 2 (mod 3); 

v's(-17)J(J5-l,vfs3</;) [(S) (S)] 
</;(3)J(rp, S) X3 + X~ , 

if q == 1 (mod 3). 

We need the following two corollaries to deduce the above special values. 

Lemma 6.2.6. Let S be any character on lFq. For.A = ~, we have 

L S ( (x - 1)( x
2 
+ .A)) = { 0, _..§.. [ ( S ) ( S ) ] 

XElFq qS( 27) + 2 ' 
X3 X3 

where X3 is a character of order 3 on lFq. 

if q == 2 (mod 3); 

if q == 1 (mod 3), 

Proof. Recall that making the change of variables (x, y) -+ (~ + ~,y), and then 

replacing -~ by x we obtain the eql;livalent form of 

as 
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For any multiplicative character A on IF q, we have the binomial theorem from [18] 

as 

A(1 + x) = o(x) + q ~ 1 L (~)X(x), 
x 

where o(x) = 1 (resp. 0) if x = 0 (resp. x i= 0). Using this, we have 

1 8 L 5((x - 1)(x2 + 3)) = L 5( - 27)5(1 + x3
) 

xEIFq XEIFq 

8 q 8" ,,(5) 3 = 5(--) + -5(--) ~ ~ X (x) 
27 q -1 27 IF X 

xE q x 

8 q 8" (5)" 3 = 5(--) + -5(--) ~ ~ X (x). 
27 q - 1 27 X F x xE q 

By Lemma 1.3.7, the innermost sum in the second term is nonzero only if X3 = c at 

which it is q - 1. Thus X = c, if q = 2 (mod 3); and X = c, X3, or X~, if q = 1 (mod 

?). Hence the result follows immediately. o 

Lemma 6.2.7. If 5 is square of some character on IFq and 5 is not of order 3, then 

Proof. Putting A = 5, B = 5 a~d T = -1 in (4.2.3), we obtain 

1 L 5((x - 1)(x2 + ,X)) = 5( -,X)g(5, 5; -~). 
XElFq 

Again, 5 is a square of some character of IFq. Hence applying Theorem 4.2.1, we 

deduce that 

and hence 

L 5((x - 1)(x2 + ,X)) = q53 (2)F*(5-3
, 5-2

; 1 + ,X). (6.2.2) 
xEFq 

Further, 5 is not of order 3. Thus using Theorem 4.2.3, we complete the proof. 0 
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Following the proof of Lemma 6.2.7 and applying Proposition 4.2.4 in spite of 

Theorem 4.2.3 in (6.2.2), we have the following result. 

Lemma 6.2.8. If 5 is a character of order 3 on lFq) then 

~ (cp, c ~ 5((x - 1)(x2 + 'x)) = q. 2Fl 

xEFq 5 
(6.2.3) 

Now, we give the proof of Theorem 6.2.5 using Lemma 6.2.6 and Lemma 6.2.7. 

Proof of 6.2.5. (i) Putting ,x = ~ in Lemma 6.2.7, we have 

F (J5- 3CP
, J5- 3 I i) = J(.j5-l, y'S3cp) ~ 5(( -1)( 2 ~)) 

2 1 -2 3 J(A- 5) ~ x x + 3 . 5 q ,/-" xEFq 

Therefore, we complete the proof of (i) after using Lemma 6.2.6. 

(ii) Taking x = ~ in Theorem 1.3.15 (i), we obtain 

Now using (i), we complete the proof. 

(iii) Applying Theorem 1.3.15 (ii) for x = ~, we have 

if 5 =1= cp. Hence the result follows from (i). 

(iv) Using Theorem 1.3.15 (ii) for x = -~, we find that 

and then the proof follows from the proof of (ii). 

6.2.2 Values of 3F2 Gaussian hypergeometric series 

o 

The value of 3F2 Gaussian hypergeometric series at the argument 1 is first evaluated 

by Greene in his famous paper [18]. The non-trivial values of 3F2 hypergeometric 
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series over lFp are explicitly deduced by Ono. He used the technique of complex 

multiplication of elliptic curves to deduce the following special values of 3F2 Gaussian 

hypergeometric series. 

Theorem 6.2.9. [34, Thm. 6] If). E n, 36, 8, 3, -12, ~~, ~252}, then for every odd 

prime p for which or£ip().(). - 4)) = 0, the value of 3F2(4~J is given by: 

if p == 3 (mod 4); 

ifp == 3 (mod 4); 

ifp == 5,7 (mod 8); 

ifp == 2 (mod 3); 

ifp == 3,5,6 (mod 7); 

The characters involve in the above formulas are only quadratic and trivial. In 

[11], Evans and Greene gave an expression for 3F2(~) containing characters of ar

bitrary orders, which extend Theorem 6.2.9 (v) evaluated by Ono. To obtain the 

following result, Evans and Greene deduced some transformation relations between 

3F2 and 2Fl hypergeometric functions over finite fields analogous to Clausen Theo

rem of classical hypergeometric series. 
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Theorem 6.2.10. [11, Thm. 1.3] Let 5 be a character on IFq which is not trivial, 

cubic, or quartic. Then 

</>( -1)8(4) 
q 

if q =- 2 (mod 3); 

</>(-1)8(4) (1 + J(S,x) + J(8,x») '/,j q =- 1 (mod 3), q J(8,x) J(8,x) , 

where X is a character of order 3 on IFq • 

Further, Evans and Greene deduced the following special value of Gaussian hy-

pergeometric series. 

Theorem 6.2.11. [12, Thm. 1.8] Suppose that 5 is a character whose order is not 

equal to 1, 3 or 4 over IF q' Then 

3 F2 I--
(

5, 53, 5 1) 
52, 5¢ 8 

.if 5 is not a square; = { -</>( -lJ8( -8) 

</>( -1)8(8) + </>( -1)8(2)J(8,83
) (J(5 D)2 + J(5 DA.)2) ij 5 = D2 q q2J(8,8) , , '1', . 

In the following theorem, we evaluate the value of 3F2(4) hypergeometric series 

over IFq , which extends another result of Ono [34] (see Theorem 6.2.9 (vi)). The 

result of Ono can be obtained by putting 5 = ¢, thus solving a problem posed by 

M. Koike [25, p. 465]. 

Theorem 6.2.12. If 5 is a character on IFq with order not equal to 1, 3, or 4, then 

¢( -3)5(16) 
ifq =- 2 (mod 3); 

( S-3, 5-1 5-2¢ 
14) 

q 

[(:J + (:~) r 5( - ~~)J(5-1, 5-1) 
3F2 

, 

5-4 5-2 J~5-3 5) , 
¢ -3)8(16) 

if q =- 1 (mod 3), 
q 

where X3 is a character of order 3 ofIFq . 

We remark that in view of Theorem 1.3.14, there is a result similar to Theorem 

6.2.12 in which the argument 4 is replaced by ~. However, our result about 3F2(~) 
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will be different from Theorem 6.2.10 obtained by Evans and Greene. We now prove 

the following lemma from which Theorem 6.2.12 will follow directly after combining 

with Lemma 6.2.6. 

Lemma 6.2.13. If 8 is a character on IFq whose order 2S not equal to 1, 3 or 4, 

then 

8-1 , 

8-4 , 

[ ]

2 
82 1+A L 8((x - l)(x2 + A)) - (T) ¢( -A). 

XEFq q 

Proof. Since 8 is a character on IFq whose order is not equal to 1, 3 or 4, so applying 

Theorem 4.2.2 directly for A = 8-3 , C = 8-2 , and x = 1tA, we obtain 

8-1 , 

8-4 , 

8-
2
¢ 1 + A) 1-

8-2 A 

Again, from (4.2.3), we have 

. 
Hence combining (6.2.4) and (6.2.5), we complete the proof. 

Proof of 6.2.12. Putting A = ~ in Lemma 6.2.13, we obtain 

(6.2.4) 

(6.2.5) 

o 

( 

8-3 8-1 

3F2 ' , 
8-4 , [ ]

2 

J(8-l, 8-1) 2 1 14) ~ q2S( _f,jJ(S-3, S) ~ S((x - l)(x + 3)) 

- 8(16) ¢( -3). 
q 

Now combining this with Lemma 6.2.6, we complete the proof of the result. 0 
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